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Preface

Partial differential equations is a many-faceted subject. Created to describe the
mechanical behavior of objects such as vibrating strings and blowing winds, it
has developed into a body of material that interacts with many branches of math-
ematics, such as differential geometry, complex analysis, and harmonic analysis,
as well as a ubiquitous factor in the description and elucidation of problems in
mathematical physics.

This work is intended to provide a course of study of some of the major aspects
of PDE. It is addressed to readers with a background in the basic introductory
graduate mathematics courses in American universities: elementary real and com-
plex analysis, differential geometry, and measure theory.

Chapter 1 provides background material on the theory of ordinary differential
equations (ODE). This includes both very basic material — on topics such as the
existence and uniqueness of solutions to ODE and explicit solutions to equations
with constant coefficients and relations to linear algebra — and more sophisticated
results — on flows generated by vector fields, connections with differential geom-
etry, the calculus of differential forms, stationary action principles in mechanics,
and their relation to Hamiltonian systems. We discuss equations of relativistic
motion as well as equations of classical Newtonian mechanics. There are also
applications to topological results, such as degree theory, the Brouwer fixed-point
theorem, and the Jordan—Brouwer separation theorem. In this chapter we also treat
scalar first-order PDE, via Hamilton—Jacobi theory.

Chapters 2—6 constitute a survey of basic linear PDE. Chapter 2 begins with the
derivation of some equations of continuum mechanics in a fashion similar to the
derivation of ODE in mechanics in Chap. 1, via variational principles. We obtain
equations for vibrating strings and membranes; these equations are not necessarily
linear, and hence they will also provide sources of problems later, when nonlinear
PDE is taken up. Further material in Chap. 2 centers around the Laplace operator,
which on Euclidean space R” is

02 02
1 A = - CRCIEY _’
(1) T e
and the linear wave equation,
32
) 8 Au=o.
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We also consider the Laplace operator on a general Riemannian manifold and
the wave equation on a general Lorentz manifold. We discuss basic consequences
of Green’s formula, including energy conservation and finite propagation speed
for solutions to linear wave equations. We also discuss Maxwell’s equations for
electromagnetic fields and their relation with special relativity. Before we can
establish general results on the solvability of these equations, it is necessary to
develop some analytical techniques. This is done in the next couple of chapters.

Chapter 3 is devoted to Fourier analysis and the theory of distributions. These
topics are crucial for the study of linear PDE. We give a number of basic ap-
plications to the study of linear PDE with constant coefficients. Among these
applications are results on harmonic and holomorphic functions in the plane,
including a short treatment of elementary complex function theory. We derive ex-
plicit formulas for solutions to Laplace and wave equations on Euclidean space,
and also the heat equation,

3) 0 au=o
ot ==

We also produce solutions on certain subsets, such as rectangular regions, using
the method of images. We include material on the discrete Fourier transform, ger-
mane to the discrete approximation of PDE, and on the fast evaluation of this
transform, the FFT. Chapter 3 is the first chapter to make extensive use of func-
tional analysis. Basic results on this topic are compiled in Appendix A, Outline of
Functional Analysis.

Sobolev spaces have proven to be a very effective tool in the existence the-
ory of PDE, and in the study of regularity of solutions. In Chap.4 we introduce
Sobolev spaces and study some of their basic properties. We restrict attention
to L?-Sobolev spaces, such as H*(R"), which consists of L? functions whose
derivatives of order < k (defined in a distributional sense, in Chap. 3) belong to
L?(R™), when k is a positive integer. We also replace k by a general real number
s. The L?-Sobolev spaces, which are very useful for nonlinear PDE, are treated
later, in Chap. 13.

Chapter 5 is devoted to the study of the existence and regularity of solutions to
linear elliptic PDE, on bounded regions. We begin with the Dirichlet problem for
the Laplace operator,

4) Au= f on {2, u=g onds2,

and then treat the Neumann problem and various other boundary problems, in-
cluding some that apply to electromagnetic fields. We also study general boundary
problems for linear elliptic operators, giving a condition that guarantees regu-
larity and solvability (perhaps given a finite number of linear conditions on the
data). Also in Chap.5 are some applications to other areas, such as a proof of
the Riemann mapping theorem, first for smooth simply connected domains in the
complex plane C, then, after a treatment of the Dirichlet problem for the Laplace
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operator on domains with rough boundary, for general simply connected domains
in C. We also develop Hodge theory and apply it to DeRham cohomology, extend-
ing the study of topological applications of differential forms begun in Chap. 1.

In Chap.6 we study linear evolution equations, in which there is a “time”
variable ¢, and initial data are given at ¢ = 0. We discuss the heat and wave
equations. We also treat Maxwell’s equations, for an electromagnetic field, and
more general hyperbolic systems. We prove the Cauchy—Kowalewsky theorem, in
the linear case, establishing local solvability of the Cauchy initial value problem
for general linear PDE with analytic coefficients, and analytic data, as long as the
initial surface is “noncharacteristic.” The nonlinear case is treated in Chap. 16.
Also in Chap. 6 we treat geometrical optics, providing approximations to solu-
tions of wave equations whose initial data either are highly oscillatory or possess
simple singularities, such as a jump across a smooth hypersurface.

Chapters 1-6, together with Appendix A and B, Manifolds, Vector Bundles,
and Lie Groups, make up the first volume of this work. The second volume con-
sists of Chaps. 7-12, covering a selection of more advanced topics in linear PDE,
together with Appendix C, Connections and Curvature.

Chapter 7 deals with pseudodifferential operators (¥ DOs). This class of opera-
tors includes both differential operators and parametrices of elliptic operators, that
is, inverses modulo smoothing operators. There is a “symbol calculus” allowing
one to analyze products of ¥ DOs, useful for such a parametrix construction. The
L?-boundedness of operators of order zero and the Garding inequality for elliptic
¥DOs with positive symbol provide very useful tools in linear PDE, which will
be used in many subsequent chapters.

Chapter 8 is devoted to spectral theory, particularly for self-adjoint elliptic
operators. First we give a proof of the spectral theorem for general self-adjoint
operators on Hilbert space. Then we discuss conditions under which a differential
operator yields a self-adjoint operator. We then discuss the asymptotic distribu-
tion of eigenvalues of the Laplace operator on a bounded domain, making use of
a construction of a parametrix for the heat equation from Chap. 7. In the next four
sections of Chap. 8 we consider the spectral behavior of various specific differ-
ential operators: the Laplace operator on a sphere, and on hyperbolic space, the
“harmonic oscillator”

®) —A + |x?,

and the operator
©) ~A -

which arises in the simplest quantum mechanical model of the hydrogen atom.
Finally, we consider the Laplace operator on cones.

In Chap. 9 we study the scattering of waves by a compact obstacle K in R3.
This scattering theory is to some degree an extension of the spectral theory of the
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Laplace operator on R3 \ K, with the Dirichlet boundary condition. In addition to
studying how a given obstacle scatters waves, we consider the inverse problem:
how to determine an obstacle given data on how it scatters waves.

Chapter 10 is devoted to the Atiyah—Singer index theorem. This gives a for-
mula for the index of an elliptic operator D on a compact manifold M, defined by

@) Index D = dim ker D — dim ker D*.

We establish this formula, which is an integral over M of a certain differential
form defined by a pair of “curvatures,” when D is a first order differential oper-
ator of “Dirac type,” a class that contains many important operators arising from
differential geometry and complex analysis. Special cases of such a formula in-
clude the Chern—Gauss—Bonnet formula and the Riemann—Roch formula. We also
discuss the significance of the latter formula in the study of Riemann surfaces.

In Chap. 11 we study Brownian motion, described mathematically by Wiener
measure on the space of continuous paths in R”. This provides a probabilistic
approach to diffusion and it both uses and provides new tools for the analysis of
the heat equation and variants, such as

(8) L
a u’

where V' is a real-valued function. There is an integral formula for solutions to (8),
known as the Feynman—Kac formula; it is an integral over path space with respect
to Wiener measure, of a fairly explicit integrand. We also derive an analogous
integral formula for solutions to

©) M _Au+ X
a “

where X is a vector field. In this case, another tool is involved in constructing the
integrand, the stochastic integral. We also study stochastic differential equations
and applications to more general diffusion equations.

In Chap. 12 we tackle the 9-Neumann problem, a boundary problem for an el-
liptic operator (essentially the Laplace operator) on a domain £2 C C”, which
is very important in the theory of functions of several complex variables. From a
technical point of view, it is of particular interest that this boundary problem does
not satisfy the regularity criteria investigated in Chap. 5. If §2 is “strongly pseu-
doconvex,” one has instead certain “subelliptic estimates,” which are established
in Chap. 12.

The third and final volume of this work contains Chaps. 13—18. It is here that
we study nonlinear PDE.

We prepare the way in Chap. 13 with a further development of function space
and operator theory, for use in nonlinear analysis. This includes the theory of
LP-Sobolev spaces and Holder spaces. We derive estimates in these spaces on
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nonlinear functions F(u), known as “Moser estimates,” which are very useful.
We extend the theory of pseudodifferential operators to cases where the symbols
have limited smoothness, and also develop a variant of DO theory, the theory
of “paradifferential operators,” which has had a significant impact on nonlinear
PDE since about 1980. We also estimate these operators, acting on the function
spaces mentioned above. Other topics treated in Chap. 13 include Hardy spaces,
compensated compactness, and “fuzzy functions.”

Chapter 14 is devoted to nonlinear elliptic PDE, with an emphasis on second
order equations. There are three successive degrees of nonlinearity: semilinear
equations, such as

(10) Au = F(x,u, Vu),
quasi-linear equations, such as

(11) > @ (x.u, Vu)d;ogu = F(x,u. Vu),
and completely nonlinear equations, of the form

(12) G(x, D*u) = 0.

Differential geometry provides a rich source of such PDE, and Chap. 14 contains a
number of geometrical applications. For example, to deform conformally a metric
on a surface so its Gauss curvature changes from k(x) to K(x), one needs to solve
the semilinear equation

(13) Au = k(x) — K(x)e".

As another example, the graph of a function y = u(x) is a minimal submanifold
of Euclidean space provided u solves the quasilinear equation

(14) (I + [Vul®)Au+ (Vu) - H(u)(Vu) = 0,

called the minimal surface equation. Here, H (1) = (9 0xu) is the Hessian matrix
of u. On the other hand, this graph has Gauss curvature K(x) provided u solves
the completely nonlinear equation

(15) det H(u) = K(x)(l + |Vu|2)(n+2)/2,

a Monge—Ampere equation. Equations (13)—(15) are all scalar, and the maximum
principle plays a useful role in the analysis, together with a number of other tools.
Chapter 14 also treats nonlinear systems. Important physical examples arise in
studies of elastic bodies, as well as in other areas, such as the theory of lig-
uid crystals. Geometric examples of systems considered in Chap. 14 include
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equations for harmonic maps and equations for isometric imbeddings of a
Riemannian manifold in Euclidean space.

In Chap. 15, we treat nonlinear parabolic equations. Partly echoing Chap. 14,
we progress from a treatment of semilinear equations,

9
(16) a—L; = Lu+ F(x,u, Vu),

where L is a linear operator, such as L = A, to a treatment of quasi-linear equa-
tions, such as

du "
(17) o= > 0 a7 (1. x wdu + X ().

(We do very little with completely nonlinear equations in this chapter.) We study
systems as well as scalar equations. The first application of (16) we consider is
to the parabolic equation method of constructing harmonic maps. We also con-
sider “reaction-diffusion” equations, £ x £ systems of the form (16), in which
F(x,u, Vi) = X(u), where X is a vector field on R¢, and L is a diagonal opera-
tor, with diagonal elements a; A, a; > 0. These equations arise in mathematical
models in biology and in chemistry. For example, u = (uy, ..., ug) might repre-
sent the population densities of each of £ species of living creatures, distributed
over an area of land, interacting in a manner described by X and diffusing in a
manner described by a; A. If there is a nonlinear (density-dependent) diffusion,
one might have a system of the form (17).

Another problem considered in Chap. 15 models the melting of ice; one has
a linear heat equation in a region (filled with water) whose boundary (where the
water touches the ice) is moving (as the ice melts). The nonlinearity in the problem
involves the description of the boundary. We confine our analysis to a relatively
simple one-dimensional case.

Nonlinear hyperbolic equations are studied in Chap. 16. Here continuum me-
chanics is the major source of examples, and most of them are systems, rather
than scalar equations. We establish local existence for solutions to first order hy-
perbolic systems, which are either “symmetric” or “symmetrizable.” An example
of the latter class is the following system describing compressible fluid flow:

dp

(18) % Vvt Laradp =0
— v+ —gradp =0,
ot v T Braldp ot

+ Vyp+ pdive =0,

for a fluid with velocity v, density p, and pressure p, assumed to satisfy a relation
p = p(p), called an “equation of state.” Solutions to such nonlinear systems tend
to break down, due to shock formation. We devote a bit of attention to the study
of weak solutions to nonlinear hyperbolic systems, with shocks.

We also study second-order hyperbolic systems, such as systems for a k-
dimensional membrane vibrating in R”, derived in Chap. 2. Another topic covered
in Chap. 16 is the Cauchy—Kowalewsky theorem, in the nonlinear case. We use
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a method introduced by P. Garabedian to transform the Cauchy problem for an
analytic equation into a symmetric hyperbolic system.

In Chap. 17 we study incompressible fluid flow. This is governed by the Euler
equation

ad
(19) a_z[) + Vyv = — grad p, divv = 0,

in the absence of viscosity, and by the Navier—Stokes equation

)

(20) o

+ Vyv = vLv — grad p, divv =0,

in the presence of viscosity. Here £ is a second-order operator, the Laplace op-
erator for a flow on flat space; the “viscosity” v is a positive quantity. Equation
(19) shares some features with quasilinear hyperbolic systems, though there are
also significant differences. Similarly, (20) has a lot in common with semilinear
parabolic systems.

Chapter 18, the last chapter in this work, is devoted to Einstein’s gravitational
equations:

(21) ij = SJIKTjk.

Here G j is the Einstein tensor, given by G jx = Ricjx —(1/2)Sg jx, where Ric jx
is the Ricci tensor and S the scalar curvature, of a Lorentz manifold (or “space-
time”) with metric tensor g ;. On the right side of (21), T is the stress-energy
tensor of the matter in the spacetime, and « is a positive constant, which can be
identified with the gravitational constant of the Newtonian theory of gravity. In
local coordinates, G ;i has a nonlinear expression in terms of g ;x and its second
order derivatives. In the empty-space case, where T = 0, (21) is a quasilin-
ear second order system for g ;. The freedom to change coordinates provides an
obstruction to this equation being hyperbolic, but one can impose the use of “har-
monic” coordinates as a constraint and transform (21) into a hyperbolic system.
In the presence of matter one couples (21) to other systems, obtaining more elab-
orate PDE. We treat this in two cases, in the presence of an electromagnetic field,
and in the presence of a relativistic fluid.

In addition to the 18 chapters just described, there are three appendices, al-
ready mentioned above. Appendix A gives definitions and basic properties of
Banach and Hilbert spaces (of which L?-spaces and Sobolev spaces are exam-
ples), Fréchet spaces (such as C°°(R")), and other locally convex spaces (such as
spaces of distributions). It discusses some basic facts about bounded linear oper-
ators, including some special properties of compact operators, and also considers
certain classes of unbounded linear operators. This functional analytic material
plays a major role in the development of PDE from Chap. 3 onward.

Appendix B gives definitions and basic properties of manifolds and vector
bundles. It also discusses some elementary properties of Lie groups, including
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a little representation theory, useful in Chap. 8, on spectral theory, as well as in
the Chern—Weil construction.

Appendix C, Connections and Curvature, contains material of a differential
geometric nature, crucial for understanding many things done in Chaps. 10-18.
We consider connections on general vector bundles, and their curvature. We dis-
cuss in detail special properties of the primary case: the Levi—Civita connection
and Riemann curvature tensor on a Riemannian manifold. We discuss basic prop-
erties of the geometry of submanifolds, relating the second fundamental form to
curvature via the Gauss—Codazzi equations. We describe how vector bundles arise
from principal bundles, which themselves carry various connections and curvature
forms. We then discuss the Chern—Weil construction, yielding certain closed dif-
ferential forms associated to curvatures of connections on principal bundles. We
give several proofs of the classical Gauss—Bonnet theorem and some related re-
sults on two-dimensional surfaces, which are useful particularly in Chaps. 10 and
14. We also give a geometrical proof of the Chern—Gauss—Bonnet theorem, which
can be contrasted with the proof in Chap. 10, as a consequence of the Atiyah—
Singer index theorem.

We mention that, in addition to these “global” appendices, there are appendices
to some chapters. For example, Chap. 3 has an appendix on the gamma function.
Chapter 6 has two appendices; Appendix A has some results on Banach spaces of
harmonic functions useful for the proof of the linear Cauchy—Kowalewsky theo-
rem, and Appendix B deals with the stationary phase formula, useful for the study
of geometrical optics in Chap. 6 and also for results later, in Chap.9. There are
other chapters with such “local” appendices. Furthermore, there are two sections,
both in Chap. 14, with appendices. Section 6, on minimal surfaces, has a com-
panion, Sect. 6B, on the second variation of area and consequences, and Sect. 13,
on nonlinear elliptic systems, has a companion, Sect. 12B, with complementary
material.

Having described the scope of this work, we find it necessary to mention a
number of topics in PDE that are not covered here, or are touched on only very
briefly.

For example, we devote little attention to the real analytic theory of PDE. We
note that harmonic functions on domains in R” are real analytic, but we do not
discuss analyticity of solutions to more general elliptic equations. We do prove
the Cauchy—Kowalewsky theorem, on analytic PDE with analytic Cauchy data.
We derive some simple results on unique continuation from these few analyticity
results, but there is a large body of lore on unique continuation, for solutions to
nonanalytic PDE, neglected here.

There is little material on numerical methods. There are a few references to
applications of the FFT and of “splitting methods.” Difference schemes for PDE
are mentioned just once, in a set of exercises on scalar conservation laws. Finite
element methods are neglected, as are many other numerical techniques.

There is a large body of work on free boundary problems, but the only one
considered here is a simple one space dimensional problem, in Chap. 15.
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While we have considered a variety of equations arising from classical physics
and from relativity, we have devoted relatively little attention to quantum me-
chanics. We have considered one quantum mechanical operator, given in formula
(6) above. Also, there are some exercises on potential scattering mentioned in
Chap. 9. However, the physical theories behind these equations are not discussed
here.

There are a number of nonlinear evolution equations, such as the Korteweg—
deVries equation, that have been perceived to provide infinite dimensional ana-
logues of completely integrable Hamiltonian systems, and to arise “universally”
in asymptotic analyses of solutions to various nonlinear wave equations. They are
not here. Nor is there a treatment of the Yang—Mills equations for gauge fields,
with their wonderful applications to the geometry and topology of four dimen-
sional manifolds.

Of course, this is not a complete list of omitted material. One can go on and on
listing important topics in this vast subject. The author can at best hope that the
reader will find it easier to understand many of these topics with this book, than
without it.
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Introduction to the Second Edition

In addition to making numerous small corrections to this work, collected over
the past dozen years, I have taken the opportunity to make some very significant
changes, some of which broaden the scope of the work, some of which clarify
previous presentations, and a few of which correct errors that have come to my
attention.



xxii Preface

There are seven additional sections in this edition, two in Volume 1, two in
Volume 2, and three in Volume 3. Chapter 4 has a new section, “Sobolev spaces
on rough domains,” which serves to clarify the treatment of the Dirichlet problem
on rough domains in Chap. 5. Chapter 6 has a new section, “Boundary layer phe-
nomena for the heat equation,” which will prove useful in one of the new sections
in Chap. 17. Chapter 7 has a new section, “Operators of harmonic oscillator type,”
and Chap. 10 has a section that presents an index formula for elliptic systems of
operators of harmonic oscillator type. Chapter 13 has a new appendix, ‘“Variations
on complex interpolation,” which has material that is useful in the study of Zyg-
mund spaces. Finally, Chap. 17 has two new sections, “Vanishing viscosity limits”
and “From velocity convergence to flow convergence.”

In addition, several other sections have been substantially rewritten, and nu-
merous others polished to reflect insights gained through the use of these books
over time.
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Pseudodifferential Operators

Introduction

In this chapter we discuss the basic theory of pseudodifferential operators as it
has been developed to treat problems in linear PDE. We define pseudodifferential
operators with symbols in classes denoted S ZS’ introduced by L. Hérmander. In
§2 we derive some useful properties of their Schwartz kernels. In §3 we discuss
adjoints and products of pseudodifferential operators. In §4 we show how the
algebraic properties can be used to establish the regularity of solutions to elliptic
PDE with smooth coefficients. In §5 we discuss mapping properties on L2 and on
the Sobolev spaces H*. In §6 we establish Garding’s inequality.

In §7 we apply some of the previous material to establish the existence of
solutions to hyperbolic equations. In §8 we show that certain important classes
of pseudodifferential operators are preserved under the action of conjugation by
solution operators to (scalar) hyperbolic equations, a result of Y. Egorov. We in-
troduce the notion of wave front set in §9 and discuss the microlocal regularity of
solutions to elliptic equations. We also discuss how solution operators to a class of
hyperbolic equations propagate wave front sets. In §10 there is a brief discussion
of pseudodifferential operators on manifolds.

We give some further applications of pseudodifferential operators in the next
three sections. In §11 we discuss, from the perspective of the pseudodifferential
operator calculus, the classical method of layer potentials, applied particularly to
the Dirichlet and Neumann boundary problems for the Laplace operator. Histor-
ically, this sort of application was one of the earliest stimuli for the development
of the theory of singular integral equations. One function of §11 is to provide a
warm-up for the use of similar integral equations to tackle problems in scattering
theory, in §7 of Chap. 9. Section 12 looks at general regular elliptic boundary prob-
lems and includes material complementary to that developed in §11 of Chap. 5. In
§13 we construct a parametrix for the heat equation and apply this to obtain an
asymptotic expansion of the trace of the solution operator. This expansion will be
useful in studies of the spectrum in Chap. 8 and in index theory in Chap. 10.

In §14 we introduce the Weyl calculus. This can provide a powerful alternative
to the operator calculus developed in §§1-6, as can be seen in [Ho4] and in Vol. 3

M.E. Taylor, Partial Differential Equations I1: Qualitative Studies of Linear Equations, 1
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_1,
© Springer Science+Business Media, LLC 1996, 2011
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of [Ho5]. Here we concentrate on identities, tied to symmetries in the Weyl cal-
culus. We show how this leads to a quicker construction of a parametrix for the
heat equation than the method used in §13. We will make use of this in §10 of
Chap. 10, on a direct attack on the index theorem for elliptic differential operators
on two-dimensional manifolds.

In §15, we study a class of pseudodifferential operators of “Harmonic oscillator
type.” This class contains the Harmonic oscillator,

H = —A + |x]?,

with symbol |x|? + |£|?, and results on these operators are interesting variants on
those with symbols in S{",.

Material in §§1-10 is taken from Chap.0 of [T4], and the author thanks
Birkhduser Boston for permission to use this material. We also mention some
books that take the theory of pseudodifferential operators farther than is done
here: [Ho5,Kg, T1], and [Tre].

1. The Fourier integral representation and symbol classes

Using a slightly different convention from that established in Chap. 3, we write
the Fourier inversion formula as

(L) fx) = / £(6) &7 dt.

where f & =Qm)y™"[f (x)e~™*€ dx is the Fourier transform of a function on
R”. If one differentiates (1.1), one obtains

(1.2) D% f(x) = / £ f(§)e™ dt.
where D% = D{'--- Dy", D; = (1/i) d/0x;. Hence, if

p(x,D) = Z aq(x)D*

la|<k

is a differential operator, we have

(13) p(x. D) f(x) = / p(x.6) f®)eE de

where

PE) =) au(x)E™.

la|<k
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One uses the Fourier integral representation (1.3) to define pseudodifferential
operators, taking the function p(x, £) to belong to one of a number of different
classes of symbols. In this chapter we consider the following symbol classes, first
defined by Hormander [Ho2].

Assuming p,8 € [0,1], m € R, we define Sl’)’,’a to consist of C*°-functions

p(x, &) satisfying

(1.4) |DfD§‘p(x,§)| < Cyp(E)ymPlel+dIBl.

for all «, B, where (§) = (1 + |£]?)'/2. In such a case we say the associated
operator defined by (1.3) belongs to OPS ZS' We say that p(x, §) is the symbol
of p(x, D). The case of principal interest is p = 1, § = 0. This class is defined
by [KNI].

Recall that in Chap. 3, §8, we defined P(§) € ST"(R") to satisfy (1.4), with
p = 1, and with no x-derivatives involved. Thus ST", contains S{" (R").

If there are smooth pp,—; (x, §), homogeneousin § of degree m — j for |§| > 1,
that is, pm—; (x,78) = 1™/ pp_;(x,€) for r, |€| > 1, and if

(1.5) P&~ pmj(x.6)

Jj=0
in the sense that
N
(1.6) P& =D pm—j(x.6) € STV,
j=0

for all N, then we say p(x,§) € S7, or just p(x,&) € S™. We call p,(x,§)

cl’

the principal symbol of p(x, D). We will give a more general definition of the
principal symbol in §10.

It is easy to see that if p(x,§&) € Sl’)”a and p,6 € [0,1], then p(x, D) :
S(R") — C*(R"). In fact, multiplying (1.3) by x%, writing x%e** =
(—Dg)"‘e”"f , and integrating by parts yield

(1.7) p(x, D) : SR") — S(R").

Under one restriction, p(x, D) also acts on tempered distributions:
Lemma 1.1. If§ < 1, then

(1.8) p(x,D): S'(R") — S'(R").

Proof. Givenu € &', v € S, we have (formally)

(1.9) (v, p(x, D)u) = (py, it),



4 7. Pseudodifferential Operators

where

pol®) = @m)" / V() p(x. £)¢E dx.

Now integration by parts gives

£pu® = @ [ DEo(p(x. )¢ dx
SO

|pu(§)] < Cq(g)mTileli=lel,

Thus if § < 1, we have rapid decrease of p,(£). Similarly, we get rapid decrease
of derivatives of p,(£), so it belongs to S. Thus the right side of (1.9) is well
defined.

In §5 we will analyze the action of pseudodifferential operators on Sobolev
spaces.

Classes of symbols more general than S”"s have been introduced by R. Beals
and C. Fefferman [BF, Be], and still more general classes were studied by
Hormander [Ho4]. These classes have some deep applications, but they will
not be used in this book.

Exercises

1. Show that, for a(x, &) € S(R?"),
(1.10) a(x,D)yu = /Ez(q,p) eI XeiPDy(xy dg dp,

where (g, p) is the Fourier transform of a(x, £), and the operators ¢/?'%X and /7D

are defined by
X y(x) = 1 u(x), P Pu(x) = u(x + p).
2. Establish the identity
(1.11) P DoiaX _ ,iqp piq-X ,ipD
Deduce that, for (z, ¢, p) € R x R"” x R"” = H", the binary operation
(1.12) (t.g.p)o(t'.q".py=0+t"+p-¢d'.q+4.p+p)
gives a group and that
(1.13) 7(t,q, p) = elleldX i X
defines a unitary representation of 4" on L2(R™); in particular, it is a group homomor-

phism: 7(z 07') = 7w (z)7 (). H" is called the Heisenberg group.
3. Give a definition of a(x — ¢, D — p), acting on u(x). Show that

a(x —q,D — p) = 7#(0.¢, p) a(x, D) 7(0.q. p) "



2. Schwartz kernels of pseudodifferential operators 5

4. Assume a(x,§) € S;”S and b(x, &) € S(R™ x R™). Show that ¢(x, §) = (b * a)(x, &)
belongs to S ;”8 (% being convolution on R2"). Show that

¢(x. Dyu = /b(y, M a(x—y.D —n)dy dn.

5. Show that the map W(p,u) = p(x, D)u has a unique, continuous, bilinear extension
from S;’% x S(R™) — S(R") to
U 8'(R?) x S(R™) — S'(R"),

so that p(x, D) is “well defined” for any p € S’(R" x R™).
6. Let x(§) € C§°(R™) be 1 for [§] < 1, xe(§) = x(e&). Given p(x,£) € S;”s, let
Pe(x,8) = xe(&) p(x,&). Show that if p, § € [0, 1], then

(1.14) u € S(R") = pe(x, D)u — p(x,D)u in S(R").
If also § < 1, show that
(1.15) ueSR") = pe(x,D)u — p(x,D)u inS'(R"),

where we give S'(R") the weak™ topology.
7. Fors € R, define A® : S’ (R") — S’(R") by

(1.16) Alu(x) = / (€)SaE) e dE,

where (£) = (1 + |£]?)!/2. Show that A* € OPS®.

8. Given pj(x,§) € Sp 8/ ,for j > 0, with p,§ € [0,1] and m; ( —o0, show that there

exists p(x,£) € S;'fg such that

px.&) ~ Y pj(x.6),

Jj=0
in the sense that, for all k,
k—1
p(x.§) =D pi(x.§) e Sy

Jj=0

2. Schwartz kernels of pseudodifferential operators

To an operator p(x, D) € OPS ;”8 defined by (1.3) there corresponds a Schwartz
kernel K € D'(R" x R"), satisfying

(W(x)(y). K) = // u(x) p(x. E)D(E)E dE dx
Q2.1

=Q2n)™" /// u(x)p(x,é)ei(x_Y)'Ev(y) dy d§ dx.
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Thus, K is given as an “oscillatory integral”

22) K=o [ peepel % d

We have the following basic result.
Proposition 2.1. If p > 0, then K is C* off the diagonal in R" x R".

Proof. For given o > 0,

23 (= 3K = [V DEp(r. ) de.

This integral is clearly absolutely convergent for |«| so large that m — pla| < —n.
Similarly, it is seen that applying j derivatives to (2.3) yields an absolutely con-
vergent integral provided m + j — pla| < —n, so in that case (x — y)*K €
C/(R™ x R™). This gives the proof.

Generally, if T has the mapping properties
T:CPR") — C®[R"), T:&R"— D'R"),
and its Schwartz kernel K is C* off the diagonal, it follows easily that
sing supp Tu C sing supp u, foru € £&'(R").

This is called the pseudolocal property. By (1.7)— (1.8) it holds for T € OPSZ"S
if p>0andd§ < 1.
We remark that the proof of Proposition 2.1 leads to the estimate

(2.4) IDE K| < Clx—y|7F,

where k > 0 is any integer strictly greater than (1/p)(m + n + |B]). In fact, this
estimate is rather crude. It is of interest to record a more precise estimate that
holds when p(x,§) € ST'.

Proposition 2.2. If p(x,§) € S, then the Schwartz kernel K of p(x, D) satis-
fies estimates

(2.5) IDE K| < Clx —y|™ Al

providedm + || > —n.

The result is easily reduced to the case p(x, &) = p(§), satisfying | D% p(§)| <
Cq (&)1l for which p(D) has Schwartz kernel K = p(y — x). It suffices to
prove (2.5) for such a case, for 8 = 0 and m > —n. We make use of the following
simple but important characterization of such symbols.
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Lemma 2.3. Given p(§) € C*°(R"), it belongs to S if and only if
(2.6)  pr(&) = r " p(ré) is bounded in C*(1 < |§] <2), forr €[l,00).
Given this, we can write p(§) = po(§) + fooo q-(e7TE)dt with po(§) €
Cs°(R™) and e ™™g, (§) bounded in the Schwartz space S(R"), for v €

[0,00). Hence e™™%G.(z) is bounded in S(R"). In particular, e™™%|G.(z)|
<Cn()7", s0

5@ < o) + C / (1 4 emz) N
0

o0
(2.7) <C+ Clel‘""”/ M (1 4 ety Ny,
log|z|
which implies (2.5). We also see that in the case m + || = —n, we obtain a result

upon replacing the right side of (2.5) by C log |x—Ay|_1, (provided |[x—y| < 1/2).
We can get a complete characterization of P(x) € S'(R"), given P(§) €
STH(R™), provided —n < m < 0.

Proposition 2.4. Assume —n < m < 0. Let ¢ € S'(R") be smooth outside the
origin and rapidly decreasing as |x| — oo. Then ¢ = P for some P(§) €
STH(R™) if and only if g € LL (R™) and, for x # 0,

loc
(2.8) |DEq(x)| < Cp x| 1AL

Proof. That P € S*(R") implies (2.8) has been established above. For the
converse, write ¢ = go(x) + ijo V¥ (x)q(x), where o € C§°(R") is sup-
ported in 1/2 < |x| < 2,9;(x) = ¥0(2/x), > ;50 ¥;(x) = L on |x| < 1. Since
lg(x)] < C|x|™" ™, m < 0, it follows that ) _ y; (xx)q(x) converges in Ll-nor_m.
Then go € S(R"). The hypothesis (2.8) implies that 27"/ ™"/ 1 ; (27/ x)g(27/ x)
is bounded in S(R"), and an argument similar to that used for Proposition 2.2
implies Go(€) + >-72,(V;9)"(§) € ST'(R").

We will deal further with the space of elements of S’(R”) that are smooth
outside the origin and rapidly decreasing (with all their derivatives) at infinity. We
will denote this space by Sj(R").

If m < —n, the argument above extends to show that (2.8) is a sufficient
condition for ¢ = P with P ¢ ST*(R™), but, as noted above, there exist sym-
bols P € ST"(R") for which ¢ = P does not satisfy (2.8). Now, given that
g € S{(R™), it is easy to see that

(2.9) Vg € F(STT(R™)) < g € F(ST'(R")).

Thus, if —n — 1 < m < —n, then Proposition 2.4 is almost applicable to V¢, for
n>2.



8 7. Pseudodifferential Operators

Proposition 2.5. Assumen > 2and —n — 1 <m < —n. Ifq € SH(R") N L},
then g = ﬁforsome P e S™(R") if and only if (2.8) holds for |B] = 1.

Proof. First note that the hypotheses imply ¢ € L!(R"); thus G(£) is continuous
and vanishes as |§|] — oo. In the proposition, we need to prove the “if” part.
To use the reasoning behind Proposition 2.4, we need only deal with the fact
that Vg is not assumed to be in Llloc. The sum ) ¥, (x)Vg(x) still converges in
LY(R™), and so Vg — Y_ ¥, (x)Vq is a sum of an element of S(R") and possibly
a distribution (call it v) supported at 0. Thus 7 (£) is a polynomial. But as noted,

4 (&) is bounded, so D (§) can have at most linear growth. Hence

§j4(&) = P;j (&) +¢£;(5),

where P; € SI"H (R™) and £ (§) is a first-order polynomial in £. Since g(§) — 0
as |§| > ocandm + 1 < —n 4+ 1 < 0, we deduce that £;(§) = c;, a constant,
that is,

(2.10) £;G(€) = Pj(§) +c;, PjeSMTIRY, m+1<0.

Now the left side vanishes on the hyperplane §; = 0, which is unbounded if n > 2.
This forces ¢; = 0, and the proof of the proposition is then easily completed.

If we take n = 1 and assume —2 < m < —1, the rest of the hypotheses of
Proposition 2.5 still yield (2.10), so

dq N
— = P14+ cié.
dx 1 1
If we also assume ¢ is continuous on R, then ¢; = 0 and we again conclude

that g = P with P € ST*(R). But if g has a simple jump at x = 0, then this
conclusion fails.

Proposition 2.4 can be given other extensions, which we leave to the reader.
We give a few examples that indicate ways in which the result does not extend,
making use of results from §8 of Chap. 3. As shown in (8.31) of that chapter, on
R",

(2.11) v = PF |x|™" = 0(€§) = C, logl&].
Now v is not rapidly decreasing at infinity, but if ¢(x) is a cut-off, belonging
to C§°(R") and equal to 1 near x = 0, then f = ¢v belongs to Sj(R") and

= c¢¢ * U behaves like log |é| as |§] — oo. One can then deduce that, for
n=1,

(2.12)  f(x) = g(x) log|x| sgn |x| => f(§) ~ C £" logl|, [§] — oc.

Thus Proposition 2.5 does not extend to the case n = 1, m = —1. However, we
note that, in this case, f belongs to SI_HS(R), for all ¢ > 0. In contrast to (2.12),
note that, again forn = 1,
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(2.13) g(x) = (x) log|x| = g(&) ~ C ], [E] — oo

In this case, (d/dx)log|x| = PV (1/x).

Of considerable utility is the classification of F (S o (]R”)). Whenm = —j isa
negative integer, this was effectively solved in §§8 and 9 of Chap. 3. The following
result is what follows from the proof of Proposition 9.2 in Chap. 3.

Proposition 2.6. Assume ¢ € Sj(R") N L} (R™). Let j = 1,2,3,.... Then

loc

q= Isfor some P € Sc_lj (R™) if and only if

(2.14) g~ Y _(qc+ pe(x)log|x]),
>0

where

(2.15) e € Hj g, (R"),

and p¢(x) is a polynomial homogeneous of degree j +1{—n; these log coefficients
appear only for { > n — j.

We recall that Hi (R™) is the space of distributions on R”, homogeneous of
degree 11, which are smooth on R” \ 0. For > —n, Hf (R") C L] .(R"). The

loc
meaning of the expansion (2.14) is that, for any k € Z™*, thereis an N < oo such
that the difference between ¢ and the sum over £ < N belongs to C¥(R"). Note
that, for n = 1, the function g(x) in (2.13) is of the form (2.14), but the function
f(x)in (2.12) is not.
To go from the proof of Proposition 9.2 of Chap. 3 to the result stated above, it
suffices to note explicitly that

(2.16) o(x)x*log |x| € F(S7" T \(R™)),

where ¢ is the cut-off used before. Since F intertwines Dg and multiplication by
x%, it suffices to verify the case @ = 0, and this follows from the formula (2.11),
with x and £ interchanged.

We can also classify Schwartz kernels of operators in OP ST’ and OPS[), if
we write the kernel K of (2.2) in the form

(2.17) K(x,y) = L(x,x —y),
with
(2.18) L(x,z) = (2n)‘"/p(x,é‘)e"z'5 dg.

The following two results follow from the arguments given above.
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Proposition 2.7. Assume —n < m < 0. Let L € S'(R" x R") be a smooth
function of x with values in Sj(R™) N L (R™). Then (2.17) defines the Schwartz
kernel of an operator in OPST' if and only if, for z # 0,

(2.19) |DEDY L(x,2)| < Cpy ||,

Proposition 2.8. Assume L € S'(R" x R") is a smooth function of x with values
inSy(R™)N LY(R™). Let j = 1,2,3,.... Then (2.17) defines the Schwartz kernel

of an operator in OPSC_/ if and only if

(2.20) L(x,2) ~ ) (qe(x.2) + pelx, 2) log|z]),
£>0

where each Dgcu (x,-) is a bounded continuous function of x with values in
H§+Z—n’ arfd pe(x,z) is a polynomial homogeneous of degreci j + {—ningz
with coefficients that are bounded, together with all their x-derivatives.

Exercises

1. Using the proof of Proposition 2.2, show that, given p(x, §) defined on R” x R”, then
DS Dgp(x.6) = C'(E) T, for 1] < 1, ol <5+ 1+ BI,
implies
K.yl < Clx—y[™ and |VxyK(x.y)| < Clx—y|™"7".

2. If the map « is given by (2.2) (i.e., k(p) = K) show that we get an isomorphism
Kk : S'(R?™) — S'(R?™). Reconsider Exercise 3 of §1.

3. Show that «, defined in Exercise 2, gives an isomorphism (isometric up to a scalar fac-
tor) k : L2(R?") — L2(R?"). Deduce that p(x, D) is a Hilbert-Schmidt operator on
L?%(R™), precisely when p(x,£) € LZ(R?").

3. Adjoints and products

Given p(x,&) € S ;" , we obtain readily from the definition that the adjoint is
given by

D p.D)v = Q20" / PO, 6 () dy dE.

This is not quite in the form (1.3), as the amplitude p(y, £)* is not a function of
(x, ). We need to transform (3.1) into such a form.
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Before continuing the analysis of (3.1), we are motivated to look at a general
class of operators

(3-2) Au(x) = (271)_"/a(x,y,é)ei(x_Y)'Eu(y) dy dE.
We assume
(3.3) |D} DE Dga(x,y,8)| < Copy () PllF811B1+520y]

and then say a(x, y,§) € Sp 5,8 A brief calculation transforms (3.2) into
(3.4) (2m)™" / q(x, §)e' ™% u(y) dy dg,
with

q(x.£) = (271)‘"/a(x,y,n)ei(x‘Y)'("_g) dy dn

= ePePra(x, y, £)ly=x.

(3.5)

Note that a formal expansion e/Ps Py = | 4 iDg- Dy — (1/2)(Dg - Dy)* +
gives

|oe]
(3.6) q(x.£) ~ Z’ [ DgDYa(x.y.5)|,_

a>0

Ifa(x,y,§) € Sp 5.8, with 0 < §, < p < 1, then the general term in (3.6)

belongs to ST (o=l , where § = max(8;,8,), so the sum on the right is for-

mally asymptotlc This suggests the following result:

Proposition 3.1. Ifa(x, y,§) € SM b with 0 < 65 < p < 1, then (3.2) defines
an operator

A e OPS™ 8 = max(8y, 82).

Furthermore, A = q(x, D), where q(x, ) has the asymptotic expansion (3.6), in
the sense that

0,8’

j lee
! —N(p—$
4(e.§) = Y —DEDSatx.y.6)|,_, = rv(x.§) e Sy,
la|<N

To prove this proposition, one can first show that the Schwartz kernel

K(x,y)=Qn)™" /a(x,y,fg‘)ei(X—J’)'E d§
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satisfies the same estimates as established in Proposition 2.1, and hence, altering
A only by an operator in OPS™%°, we can assume a(x, y, ) is supported on
|x —y| < 1.Let

3.7) bx, . E) = 7)™ /a(x,x BT dy,
SO
(3.8) q(x.§) = / b(x.n.& +n) dn.

The hypotheses on a(x, y, ) imply
(3.9) IDEDEb(x.n.§)] < Cyop(E)mToIBITI2vPlal ()=,

where § = max (d;,8). Since §, < 1, it follows that g(x, ) and any of its
derivatives can be bounded by some power of (£).

Now a power-series expansion of b(x, 1, § + 1) in the last argument about &
gives

A 1 A
ble,mE+m) = Y —(De)*b(x, 0, E)1°
le|<N "

(3.10) < ColnlN ()™ sup (£ + tp)mTo2vPN,

0<r<1

Taking v = N, we get a bound on the left side of (3.10) by
1
(3.11) C ey~ @=2N it ol < SIel,
while taking v large, we get a bound by any power of (1) ~! for || < 2|5|. Hence

1
(G.12) [g(x. )= 3 — (D) Diatx.x +y.8)|, | = Cle)m Y,
la|<N

The proposition follows from this, plus similar estimates on the difference when
derivatives are applied.
If we apply Proposition 3.1 to (3.1), we obtain:

Proposition 3.2. If p(x, D) € OPS;'fS, 0<6<p<=<1,then

(3.13) p(x,D)* = p*(x,D) € OPSZS,



3. Adjoints and products
with
* l ‘a‘ o o *
(3.14) Pr06E) ~ D DEDIp(x, 6.
a>0
The result for products of pseudodifferential operators is the following.

Proposition 3.3. Given p;(x, D) € OPSZ;j 5> Suppose

(3.15) 0 <6 <p =<1, withp=min(p1, p2).
Then
(3.16) pi(x. D)pa(x, D) = q(x, D) € OPS,3*"2,

with § = max (81, 62), and

'Ol‘

\
(3.17) q(x.§) ~ 3 —-DEpi(x.§) DY pa(x. ).
a>0

This can be proved by writing
(3.18) p1(x, D)p2(x, D)u = p1(x, D)p;(x, D)*u = Au,
for A as in (3.2), with

(3.19) a(x,y,§) = p1(x,§)p;(». )",

and then applying Propositions 3.1 and 3.2, to obtain (3.16), with

jlol=ly|
G200 q@§)~ 3 e DEDY(pi(n ODDLp(r.6)

=X
y,0>0 7

The general term in this sum is equal to
jlol=lvl
Do l)VDy+o ( )
O"]/' £ PI(X’S) £E7x D2 X,S .

Evaluating this by the product rule

o
D)= » (a> DZu- Dfv

a+p=0

gives

13
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1B1=ly!

N L i B+y nB+y+a

321  q(x.§) Z Dgpl(x s>Z g De DT T pa(x. ).
o
That this yields (3.17) follows from the fact that, whenever |u| > 0,
jB-

(3.22) > B D DETTH po(x,8) = 0,

B+y=pn v

an identity we leave as an exercise.
An alternative approach to a proof of Proposition 3.3 is to compute directly
that p;(x, D)p2(x, D) = q(x, D), with

q(x.§) = (271)‘"/pl(x,n)pz(y,é)e"(x‘y”(”‘f) dndy

= &Py pi(x, P2 (0 )|y g

(3.23)

and then apply an analysis such as used to prove Proposition 3.1. Carrying out this
latter approach has the advantage that the hypothesis (3.15) can be weakened to

0<é<p =1,

which is quite natural since the right side of (3.17) is formally asymptotic under
such a hypothesis. Also, the symbol expansion (3.17) is more easily seen from
(3.23).

Note that if P; = p;(x,D) € OPS / are scalar, and 0 < § < p < 1,
then the leading terms in the expansions of the symbols of Py P, and P, Py agree.
It follows that the commutator

[(P1, P2] = P1P— P2 P
has order lower than m 4 m5. In fact, the symbol expansion (3.17) implies
(3.24) Pj € OPS) scalar = [Py, Py] € OPSIi "7,

Also, looking at the sum over |¢| = 1 in (3.17), we see that the leading term in
the expansion of the symbol of [Py, P,] is given in terms of the Poisson bracket:

(3.25) [Py, Pl =q(x,D), q(x,&) = —{Pl,pz}(x £) mod Sm1+m2 2(p— 8)

The Poisson bracket { p1, p»} is defined by

(3.26) tr1, p2}(x,8) =

PRARL IR
8j ax;  Ox; 0,
as in §10 of Chap. 1.

The result (3.25) plays an important role in the treatment of Egorov’s theorem,
in §8.
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Exercises

1. Writing a j (x, D) in the form (1.10), that is,
(327) 4jx.0) = [ 4;q. et PP dg ap.

use the formula (1.11) for elPDeid"X o express a1(x, D)az(x, D) as a 4n-fold inte-
gral. Show that it gives (3.20).

2. If Q(x, x) is any nondegenerate, symmetric, bilinear form on R”, calculate the kernel
Kg(x,y,t) for which

(3.28) e12DD)y(x) = / Ko (x.y.1) u(y) dy.
Rn

In case x € R” is replaced by (x, £) € R?" use this to verify (3.5).
(Hint: Diagonalize Q and recall the treatment of '’ A in (6.42) of Chap. 3, giving

e_”AS(x) = (—47'rz't)_"/2 elxlz/‘m, x € R".

Compare the treatment of the stationary phase method in Appendix B of Chap. 6.)
3. Establish the identity (3.22), used in the proof of Proposition 3.3.
(Hint: The left side of (3.22) is equal to

i1Bl=1vl
( Y )DQD!?*"‘pz(x,S),

B+y=n

so one needs to show that the quantity in parentheses here vanishes if || > 0. To see
this, make an expansion of (z + w)*, and setz = (i,...,i), w = (—i,...,—i).)

4. Elliptic operators and parametrices

We say p(x, D) € OPS}{’)’,’(s is elliptic if, for some r < oo,

4.1 Ip(x, &)~ < C(€)™, for|g| >r.

Thus, if ¥ (§) € C*°(R") is equal to O for || < r, 1 for || = 2r, it follows easily
from the chain rule that

4.2) VEPE T =qo(x.£) € S 7.
Aslongas 0 < § < p < 1, we can apply Proposition 3.3 to obtain

QO(X,D)p(X,D) =1+ ro(X,D),

4.3) .
P(st)QO(LD) =1 + I'()(X,D),
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with

(4.4) ro(x.8), Fo(x.£) € 5,77

Using the formal expansion

(4.5) I —ro(x, D) +ro(x,D)*> —--- ~ I +5(x,D) € OPS) s
and setting g(x, D) = (I + s(x, D))qo(x, D) € OPSP_””, we have
(4.6) q(x,D)p(x,D) =1 +r(x,D), r(x,§)eS™.
Similarly, we obtain g(x, D) € OPSp_,g” satisfying

4.7 p(x,D)g(x,D) =1+ F(x,D), F7(x,§)eS™.
But evaluating

“8)  (q(x.D)p(x. D))d(x. D) = q(x, D)(p(x. D)j(x, D))
yields ¢(x, D) = g(x, D) mod OPS~°, so in fact

q(x,D)p(x,D) = I mod OPS™°,

4.9
(49) p(x, D)q(x, D) = I mod OPS™°.

We say that g(x, D) is a two-sided parametrix for p(x, D).
The parametrix can establish the local regularity of a solution to

(4.10) p(x,D)u = f.

Suppose u, f € §'(R") and p(x, D) € OPS}{’)"(s is elliptic, with0 < § < p < 1.
Constructing g(x, D) € OPS;:S" as in (4.6), we have

4.11) u=gq(x,D)f —r(x,D)u.
Now a simple analysis parallel to (1.7) implies that

(4.12) Re OPS™ —= R: & — S.
By duality, since taking adjoints preserves OPS™°,
(4.13) ReOPS™ = R:§8 — C*.
Thus (4.11) implies

(4.14) u=q(x,D)f mod C*.
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Applying the pseudolocal property to (4.10) and (4.14), we have the following
elliptic regularity result.

Proposition 4.1. If p(x, D) € OPS;"S is elliptic and 0 < § < p < 1, then, for
any u € §'(R"),

(4.15) sing supp p(x, D)u = sing supp u.

More refined elliptic regularity involves keeping track of Sobolev space regu-
larity. As we have the parametrix, this will follow simply from mapping properties
of pseudodifferential operators, to be established in subsequent sections.

Exercises

1. Give the details of the implication (4.1) = (4.2) when p(x,§) € S;"S, 0<é<p<l
Include the case where p(x, ) is a k x k matrix-valued function, using such identities
as

0 0
= PO = —pr§) 7 T p )
Xj Xj

2. On R x R”, consider the operator P = d/dt — L(x, Dy), where

L(x.Dx) =) ai(x)0;0pu~+ Y bj(x)dju+ clxu

Assume that the coefficients are smooth and bounded, with all their derivatives, and that
L satisfies the strong ellipticity condition

—La(x.£) =Y aj(x)éjE = CE*. C >0.

Show that .
(it—Lax,§) +1)7 = Et.x,7.§) € S{/h 0
Show that E(t,x, D)P = Ay(t,x, D) and PE(t,x, D) = Ax(t,x, D), where A; €
OPS ? /2,0 &€ elliptic. Then, using Proposition 4.1, construct a parametrix for P, be-
longing to OPSI_/I2 0
3. Assume —n < m < 0, and suppose P = p(x,D) € OPSé'l’ has Schwartz kernel
K(x,y) = L(x,x — y). Suppose that, at xo € R",

L(xo.2) ~alg| ™"+, 20,
with a # 0, the remainder terms being progressively smoother. Show that

Pm(x0.§) =bIE[". b #0,

and hence that P is elliptic near xg.

4. Let P = (Pj) be a K x K matrix of operators in OPS™*. It is said to be “elliptic in
the sense of Douglis and Nirenberg” if there are numbers a ;, b j» 1 = j = K, such that
Pji € OPS%i +5k and the matrix of principal symbols has nonvanishing determinant
(homogeneous of order ) (a; +b;)), for £ # 0.If A® isasin (1,17),let Abea K x K
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diagonal matrix with diagonal entries A~%/, and let B be diagonal, with entries A
Show that this “DN-ellipticity” of P is equivalent to the ellipticity of APB in OPS".

5. L*-estimates
Here we want to obtain L2-estimates for pseudodifferential operators. The fol-
lowing simple basic estimate will get us started.

Proposition 5.1. Let (X, t) be a measure space. Suppose k(x, y) is measurable
on X x X and

sy [kepldee e [ kenldeo) < e
X X

for all y and x, respectively. Then

(52) Tuw) = [ kG u0) du)

satisfies

(5.3) ITullLe < €7 C' JullLr.

for p € [1, 00], with

(5.4) 1y
p

=1.

Q| =

This is proved in Appendix A on functional analysis; see Proposition 5.1 there.
To apply this result when X = R” and k¥ = K is the Schwartz kernel of
p(x,D) € OPS ;"8, note from the proof of Proposition 2.1 that

(5.5) |K(x, )| < Cw|x—y|N, for|x—y|>1
as long as p > 0, while
(5.6) |K(x.y)| < Clx—y|7®™V, for|x—y| <1

as long as m < —n + p(n — 1). (Recall that this last estimate is actually rather
crude.) Hence we have the following preliminary result.

Lemma 5.2. If p(x, D) € OPS;” ,p>0andm < —n + p(n — 1), then
(57) p(x.D): LP(R") — LP(R"), 1< p < oo.

If p(x, D) € OPSY's, then (5.7) holds for m < 0.
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The last observation follows from the improvement of (5.6) given in (2.5).
Our main goal in this section is to prove the following.

Theorem 5.3. If p(x, D) € OPS:)’S and0 < § < p < 1, then
(5.8) p(x,D): L*(R") — L*(R").

The proof we give, following [Ho5], begins with the following result.

Lemma 5.4. If p(x, D) € OPSp_g, 0<d<p<=<1l,anda > 0, then (5.8) holds.

Proof. Since ||Pu||2L2 = (P*Pu,u), it suffices to prove that some power of

p(x,D)*p(x, D) = Q is bounded on L2. But Q% ¢ OPSP_?‘“, so for k large
enough this follows from Lemma 5.2.

To proceed with the proof of Theorem 5.3, set ¢(x, D) = p(x, D)* p(x, D)
€ OPS;(;)E’ and suppose |¢(x,&)| <M —b,b > 0, so

(5.9) M — Reg(x,§) = b > 0.
In the matrix case, take Re ¢(x, §) = (1/2)(¢(x.§) + q(x,£)*). It follows that
(5.10) A(x.§) = (M — Req(x.£)"? e S,

and

(5.11) A(x, D)*A(x,D) = M —q(x.D)+r(x. D), r(x.D)e 0PS¢

Applying Lemma 5.4 to r(x, D), we have

(5.12)
Mllull3> — | pCx. D)ull3 > = [[AGx, D)ull?> — (r(x, D)u,u) = —C|lul3,.

or
(5.13) Ip(x, Dyul®> < (M + C)|lulZ.,
finishing the proof.

From these L2-estimates easily follow L2-Sobolev space estimates. Recall
from Chap. 4 that the Sobolev space H*(R") is defined as
(5.14) H*R") = {u e S'(R") : (£)°u(§) € L2(R")}.

Equivalently, with

(5.15) ASu = /(g)sa(g)e”’f dg;  AS e OPS?®,
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we have

(5.16) H*([R") = A~ L*(R").

The operator calculus easily gives the next proposition:

Proposition 5.5. If p(x, D) € OPSZS, 0<é<p=<1lm,s €R,then

(5.17) p(x,D): H*R") — H"™R™).

Given Proposition 5.5, one easily obtains the Sobolev regularity of solutions to
the elliptic equations studied in §4.
Calderon and Vaillancourt sharpened Theorem 5.3, showing that

(5.18)  p(x.§) €82, 0<p<1=> p(x,D): L*R") — L*R").

This result, particularly for p = 1/2, has played an important role in linear PDE,
especially in the study of subelliptic operators, but it will not be used in this book.
The case p = 0 is treated in the exercises below.

Another important extension of Theorem 5.3 is that p(x, D) is bounded on
LP(R"), for 1 < p < oo, when p(x,§) € S?,&' Similarly, Proposition 5.5 ex-
tends to a result on L”-Sobolev spaces, in the case p = 1. This is important for
applications to nonlinear PDE, and will be proved in Chap. 13.

Exercises
Exercises 1-7 present an approach to a proof of the Calderon-Vaillancourt theorem,
(5.18), in the case p = 0. This approach is due to H. O. Cordes [Cor]; see also T. Kato
[K] and R. Howe [How]. In these exercises, we assume that U(y) is a (measurable)

unitary, operator-valued function on a measure space Y, operating on a Hilbert space H.
Assume that, for f, g € V), a dense subset of H,

(5.19) /!(U(y)ﬁ D> dm(y) = Coll 11 18112
Y

1. Let g € H be a unit vector, and set ¢, = U(y)¢po. Show that, for any 7' € L(H),
6200 QAL = [ [ Lre) o) v fo) dm() dm(y'),
YvY
where

(5.21) Lr(y.y) = (Tey. ¢y).

(Hinz: Start by showing that [(f1,9y)(@y, f2) dm(y) = Co(f1, f2).)
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A statement equivalent to (5.20) is

(5.22) T— // Lr(r.y) U ®oU(") dm(y) dm(y),

where ® is the orthogonal projection of H onto the span of gg.
2. For a partial converse, suppose L is measurable on Y x Y and

(5.23) / IL(y.y) dm(y) < Cy. / IL(y.y) dm(y") < Cy.
Define
(5.24) T, = // L(y.y") UG)®oUG)* dm(y) dm(y).

Show that the operator norm of 77, on H has the estimate
ITL] < CFCr.

3. If G is a trace class operator, and we set

(5.25) TLg = // L(y.y) UR)GUG* dm(y) dm(y'),
show that
(5.26) 1726l < C§C1 |Gl

(Hint: In case G = G*, diagonalize G and use Exercise 2.)
4. Suppose b € L*®°(Y) and we set

(5.27) T = [ 60) U0IGUG)” dm()
Show that
(5.28) I74 1l < Collbl| Lo G ITx-

5. Let Y = R2", with Lebesgue measure, y = (g, p). Set U(y) = el9X¢iPD —
7(0, ¢, p), as in Exercises 1 and 2 of §1. Show that the identity (5.19) holds, for f, g €
L%(R™) = H, with Cy = (27r)™". (Hint: Make use of the Plancherel theorem.)

6. Deduce that if a(x, D) is a trace class operator,

(5.29) I(b * @)(x, D)l 12y < ClIbllzoo latr. D).

(Hint: Look at Exercises 3—4 of §1.)
7. Suppose p(x,£) € 58,0. Set

(5.30) a(x,&) = Y)Y (E). bx.&) = (1 —A0X(1 - Ak p(x,8),

where k is a positive integer, 1/}(5) = (¢ )_Zk. Show that if k is chosen large enough,
then a(x, D) is trace class. Note that, for all k € Z%, b € L% (R?"), provided
pE S(())O' Show that

(5.31) p(x,D) = (b*a)(x, D),

and deduce the p = 0 case of the Calderon-Vaillancourt estimate (5.19).
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8. Sharpen the results of problems 3—4 above, showing that

(5.32) 172,612 < €3 1L 222 (xy) IG TR

This is stronger than (5.26) in view of Proposition 5.1.

6. Garding’s inequality

In this section we establish a fundamental estimate, first obtained by L. Garding
in the case of differential operators.

Theorem 6.1. Assume p(x, D) € OPS/’)’,’S, 0<é<p=<l1,and
(6.1) Re p(x,£) = C|E|", for |§] large.

Then, for any s € R, there are Cy, Cy such that, for u € Hm/Z(R"),
(6.2) Re (p(x, D)u,u) = Collul|31m/> — CrllullZys-

Proof. Replacing p(x, D) by A™/2p(x, D)A™™/2, we can suppose without
loss of generality that m = 0. Then, as in the proof of Theorem 5.3, take

1 \1/2
(6.3) Ax, £) = (Re p(x,£) — 5C) € 8%
SO

1
A(x,D)*A(x,D) = Re p(x,D) — EC +r(x, D),

(6.4)
r(x.D) e OPS, ¢
This gives
1
Re (p(x, D)u,u) = || A(x, D)ul7, + ECllulliz + (r(x, Dyu, u)
(6.5)

1
> S Cllulgz = CilulFs

with s = —(p — §)/2, so (6.2) holds in this case. If s < —(p — §)/2 = 50, use the
simple estimate

(6.6) el Zrso < ellull7> + C(e)llulFys

to obtain the desired result in this case.
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This Garding inequality has been improved to a sharp Garding inequality, of
the form

6.7) Re (p(x, D)u, u) > —C||u||iz when Re p(x,§) > 0,

first for scalar p(x,§) € Sll,o, by Hormander, then for matrix-valued symbols,
with Re p(x, &) standing for (1/2)(p(x, &) + p(x, E)*), by P. Lax and L. Niren-
berg. Proofs and some implications can be found in Vol. 3 of [Ho5], and in [T1]
and [Tre]. A very strong improvement due to C. Fefferman and D. Phong [FP]
is that (6.7) holds for scalar p(x,§) € 512,0- See also [Ho5] and [F] for further
discussion.

Exercises

1. Suppose m > 0 and p(x,D) € OPS{", has a symbol satisfying (6.1). Examine the
solvability of

d
5 = plx. Dy

foru = u(t,x),u(0,x) = f € HS(R").
(Hint: Look ahead at §7 for some useful techniques. Solve

Ju
a_: = Jop(x. D) Jgug

and estimate (d/dt)||ASue(t) HZLZ’ making use of Garding’s inequality.)

7. Hyperbolic evolution equations

In this section we examine first-order systems of the form

(7.1) g—? =L(t,x,Dy)u+g(t,x), u(0)=f

We assume L(¢,x,§) € S 11,0, with smooth dependence on ¢, so
(7.2) |D/ DEDEL(1,x.6)| < Crap)' 7.

Here L(t,x,§) is a K x K matrix-valued function, and we make the hypothesis
of symmetric hyperbolicity:

(7.3) L(t,x.8)* + L(t,x.§) € 57,.

We suppose f € HS(R"),s e R, g € C(R, H*(R")).
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Our strategy will be to obtain a solution to (7.1) as a limit of solutions u, to

du
(7.4) a—; = JoLJous + g, ug(0) = f,
where
(7.5) Je = p(eDy),

for some ¢(§) € S(R"), ¢(0) = 1. The family of operators J is called a
Friedrichs mollifier. Note that, for any ¢ > 0, J, € OPS™°, while, for ¢ € (0, 1],
J¢ is bounded in OPS? .

For any ¢ > 0, J.LJ, is a bounded linear operator on each H*, and solvability
of (7.4) is elementary. Our next task is to obtain estimates on u,, independent of
e € (0, 1]. Use the norm |ju|| gs = || ASul| ;2. We derive an estimate for

(7.6) %HAsus(l)Hiz = 2Re (A*JeLJeug, Aug) +2Re (A°g, Aug).
Write the first two terms on the right as the real part of

(7.7) 2(LA° Jeug, A° Jeug) + 2(IA°, L] Jeue, A° Jeug).

By (7.3), L + L* = B(t,x, D) € OPSRO, so the first term in (7.7) is equal to
(7.8) (B(t,x, DYN* Jeutg, NS Jeug) < C||Jete]| s

Meanwhile, [A*, L] € OPSj ,, so the second term in (7.7) is also bounded by the
right side of (7.8). Applying Cauchy’s inequality to 2(A® g, A®u), we obtain

d
(7.9) EIIASue(l)IIiz < ClIAue(®)> + Cllg @17
Thus Gronwall’s inequality yields an estimate

(7.10) lue@17s < COLIS s + NgNeo.01,25)]-

independent of ¢ € (0, 1]. We are now prepared to establish the following exis-
tence result.

Proposition 7.1. If (7.1) is symmetric hyperbolic and
feH®R"), geCR,H*®R")), seR,
then there is a solution u to (7.1), satisfying

(7.11) uel®

loc

(R, HS(R™)) N Lip (R, HS"L(R™)).
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Proof. Take I = [T, T']. The bounded family
ue € C(I, HYNC'(1, H ™)

will have a weak limit point u satisfying (7.11), and it is easy to verify that such u
solves (7.1). As for the bound on [—T, 0], this follows from the invariance of the
class of hyperbolic equations under time reversal.

Analogous energy estimates can establish the uniqueness of such a solution u
and rates of convergence of u; — u as ¢ — 0. Also, (7.11) can be improved to

(7.12) ue CR,HS(R") N CYR, H7L(RM)).

To see this, let f; € H**', f; — f in H®, and let u; solve (7.1) with u;(0) =
/7. Then each u; belongs to L2 (R, H**1) N Lip(R, H*), so in particular each
uj € C(R,H®). Now v; = u — u; solves (7.1) with v;(0) = f — f;, and
| f = fillgs — 0as j — oo, so estimates arising in the proof of Proposition 7.1
imply that ||v;(¢)||gs — 0 locally uniformly in ¢, giving u € C(R, H*).

There are other notions of hyperbolicity. In particular, (7.1) is said to be sym-
metrizable hyperbolic if there is a K x K matrix-valued S(¢,x,§) € S ?,0 that
is positive-definite and such that S(¢, x, &) L(¢, x, &) = L(t, x, §) satisfies (7.3).
Proposition 7.1 extends to the case of symmetrizable hyperbolic systems. Again,
one obtains u as a limit of solutions u. to (7.4). There is one extra ingredient
in the energy estimates. In this case, construct S(¢) € OPS?’O, positive-definite,
with symbol equal to S(z, x, §) mod Sy o- For the energy estimates, replace the
left side of (7.6) by

d, . s
(7.13) E(A ue(t), SN ue(t)) ;.

which can be estimated in a fashion similar to (7.7)—(7.9).

A K x K system of the form (7.1) with L(z, x,§) € Scll is said to be strictly
hyperbolic if its principal symbol L (z, x, §), homogeneous of degree 1 in &, has
K distinct, purely imaginary eigenvalues, for each x and each & # 0. The results
above apply in this case, in view of:

Proposition 7.2. Whenever (7.1) is strictly hyperbolic, it is symmetrizable.

Proof. If we denote the eigenvalues of L; (¢, x,£&) by iA,(z,x, &), ordered so
that A1 (¢, x,&) < --- < Ag(t, x,§), then A, are well-defined C °°-functions of
(t,x, &), homogeneous of degree 1 in &. If P, (¢, x, §) are the projections onto the
i Ay-eigenspaces of L,

(7.14) Py(t,x.£) = 2—;/(5—&(1,%&))_1 dg.
Yv
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where p,, is a small circle about i A, (¢, x, £), then P, is smooth and homogeneous
of degree 0 in £. Then

(7.15) S(t.x.§) =) Pj(t.x.§)"P;(t.x.€)
J

gives the desired symmetrizer.

Higher-order, strictly hyperbolic PDE can be reduced to strictly hyperbolic,
first-order systems of this nature. Thus one has an analysis of solutions to such
higher-order hyperbolic equations.

Exercises

1. Carry out the reduction of a strictly hyperbolic PDE of order m to a first-order system
of the form (7.1). Starting with

gy Mol 3/ u
Lu= 8y_m —+ Z Aj(y,x,Dx)m,
Jj=0
where A;(y, x, D) has order <m — j, form v = V1, ..., vm)" with
V] = Am_lu,...,vj = 8)/;_1Am_ju,...,vm = 8;"_114,
to pass from Lu = f to 5
v
— = K(.,x,Dx)v + F,
dy

with F = (0,...,0, f). Give an appropriate definition of strict hyperbolicity in this
context, and show that this first-order system is strictly hyperbolic provided L is.
2. Fixr > 0. Let y, € £ (R?) denote the unit mass density on the circle of radius r:

1 4
(u, yr) = —/ u(rcos 0, rsin @) do.
2 J_x

Let I'yu = y; * u. Show that there exist A, (§) € S_I/Z(RZ) and B, (§) € Sl/Z(RZ),
such that

sinr+/—A

(7.16) Iy = Ap(D)cosrv/—A + Br(D) Ny

(Hint: See Exercise 1 in §7 of Chap. 6.)

8. Egorov’s theorem

We want to examine the behavior of operators obtained by conjugating a pseudod-
ifferential operator Py € OP ST, by the solution operator to a scalar hyperbolic
equation of the form

8u_

8.1 o

i A, x, Dy)u,
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where we assume A = A7 + Ao with
(8.2) Ai(t,x,€) € S&real,  Ao(t,x,£) € SY.

We suppose A (z, x, £) is homogeneous in &, for |§] > 1. Denote by S(¢, s) the
solution operator to (8.1), taking u(s) to u(¢). This is a bounded operator on each
Sobolev space H?, with inverse S(s, t). Set

(8.3) P(t) = S(t,0)PpS(0,1).
We aim to prove the following result of Y. Egorov.

Theorem 8.1. If Py = po(x, D) € OPSY",, then for each t, P(t) € OPST,
modulo a smoothing operator. The principal symbol of P(t) (mod S{"'O_l) ata

point (xg, &) is equal to po(yo, no), where (yo, no) is obtained from (xg, &) by
following the flow C(t) generated by the (time-dependent) Hamiltonian vector
field

" (34, 0 94, 9
B4 o =3 (e ar ~ i)

Jj=1
To start the proof, differentiating (8.3) with respect to ¢ yields
(8.5) P'(t) = i[A(t,x, D), P(t)], P(0) = Py.
We will construct an approximate solution Q (¢) to (8.5) and then show that Q (t)—

P(¢) is a smoothing operator.
So we are looking for Q(r) = ¢q(t, x, D) € OPSY), solving

(8.6) Q'(t) = i[A(t.x, D), Q)] + R(t). Q(0) = Py,

where R(¢) is a smooth family of operators in OPS~%°. We do this by construct-
ing the symbol ¢ (z, x, £) in the form

8.7 q(t,x.8) ~qo(t. x,§) +q1(t, x,8) +---.
Now the symbol of i [A4, Q(¢)] is of the form
v @ @
(8.8) Haq + {Aog)+i ) — (4“0 — 4@ 4@).
lel>2

where 4@ = D?A, A@) = D¢A, and so on. Since we want the difference be-
tween this and dg/dt to have order —oo, this suggests defining go (¢, x, £) by

d
(89) (& - HAl)qO(t’x’S) = O’ CIO(O’X’S) = Po(X,S).
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Thus qo(z, x0,&0) = po(Yo,no), as in the statement of the theorem; we have
qo(t, x,§) € ST’y Equation (8.9) is called a transport equation. Recursively, we
obtain transport equations

0
B.10) (5 = Ha)aj (2.8 =bj(.x.6). ¢;0.x.8) =0,

for j > 1, with solutions in S{’,lo_ J , leading to a solution to (8.6).
Finally, we show that P(z) — Q(t) is a smoothing operator. Equivalently, we
show that, for any f € H?(R"),

(8.11) v(t)—w(@) =St 0P f —Q@)Sk, 00 f € H°R"),
where H*°(R") = Ny HS(R"). Note that

(8.12) g—l; =iA(t,x,D)v, v(0)= P, f,

while use of (8.6) gives

(8.13) %—lf =iA(t,x,D)w+g, wO)=Pof,

where

(8.14) g=R®St, 0w e C®R, H®[R")).

Hence

(8.15) i(v—w) =iA(t,x,D)(v—w)—g, v(0)—w(0)=0.

ot

Thus energy estimates for hyperbolic equations yield v(¢) — w(t) € H°, for any
f € H°(R"), completing the proof.
A check of the proof shows that

(8.16) Py € OPS" = P(t) € OPS™.

Also, the proof readily extends to yield the following:
Proposition 8.2. With A(t, x, D) as before,

(8.17) Py € OPS)'s = P(t) € OPS;"’g
provided

1
(8.18) p>§, §=1—np.



9. Microlocal regularity 29

One needs § = 1 — p to ensure that p(C(¢)(x,§)) € S;"S, and one needs p > §
to ensure that the transport equations generate g (¢, x, §) of progressively lower
order.

Exercises

I. Let y : R” — R” be a diffeomorphism that is a linear map outside some compact set.
Define y* : C®(R") — C®°(R") by x* f(x) = f(x(x)). Show that

(8.19) P € OPST'y = (x*) ' Py* € OPST,.

(Hint: Reduce to the case where y is homotopic to a linear map through diffeomor-
phisms, and show that the result in that case is a special case of Theorem 8.1, where
A(t,x, D) is a t-dependent family of real vector fields on R”.)

2. Leta € Cg°(R"), ¢ € C°(R") be real-valued, and V¢ # 0 on supp a. If P €
OPS™, show that

(8.20) P(ae?®) = b(x, 1) 40X,
where
8.21) b(x, k) ~ A [bE (x) + bE()A -], A — Foo.

(Hint: Using a partition of unity and Exercise 1, reduce to the case ¢(x) = x - &, for
some § € R" \ 0.)

3. If a and ¢ are as in Exercise 2 above and I'; is as in Exercise 2 of §7, show that, mod
0(A™),

sinr+/—A
v —=A

(822) TIy(a ei/\(") = cosrvV—A(Ar(x, )t)e“‘”) + (Br(x. )t)ei/w’),

where
Ar(x,4) ~ /\_l/z[a(:)tr(x) + aitr(x))t_l + ],
Br(x,2) ~ AMY2[biE (x) + bE (A 4],

as A — +oo.

9. Microlocal regularity

We define the notion of wave front set of a distribution u € H~™°(R") =
Us H5(R"), which refines the notion of singular support. If p(x,§) € S™ has
principal symbol p,,(x,§), homogeneous in &, then the characteristic set of
P = p(x, D) is given by

9.1) Char P = {(x,£) e R”" x (R"\ 0) : ppm(x,&) = 0}.
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If pm(x,§) is a K x K matrix, take the determinant. Equivalently, (xo, &) is
noncharacteristic for P, or P is elliptic at (xg, &), if | p(x,£)"!| < C|§|™™, for
(x,&) in a small conic neighborhood of (xo,&p) and |&| large. By definition, a
conic set is invariant under the dilations (x, £) — (x,r§), r € (0, 00). The wave
front set is defined by

9.2) WF(u) = (|{Char P : P € OPS°, Pue C™}.

Clearly, WF(u) is a closed conic subset of R” x (R” \ 0).

Proposition 9.1. If & is the projection (x, &) — x, then
w(WF(u)) = sing supp u.

Proof. If xo ¢ sing supp u, there is a ¢ € C§°(R"), ¢ = 1 near xg, such that
pu € Cg°(R"). Clearly, (xo,£) ¢ Char ¢ for any £ # 0, so 7(WF(u)) C sing

supp u.
Conversely, if xo ¢ (W F(u)), then for any £ # 0 thereisa Q € OPS° such

that (xo, &) ¢ Char Q and Qu € C*°. Thus we can construct finitely many Q; €
OPS" such that Q ju € C* and each (xo, £) (with |§| = 1) is noncharacteristic
for some Q;. Let Q = ) Q’;QJ € OPS°. Then Q is elliptic near xo and
Qu e C®,souis C* near xg.

We define the associated notion of ES(P) for a pseudodifferential operator. Let
U be an open conic subset of R” x (R” \ 0). We say that p(x,§) € S 75 has order
—oo on U if for each closed conic set V' of U we have estimates, for each N,

(9.3) IDEDE p(x. 6)| < Capnv (€)™, (x.6) €V.

IfP=pxD)e OPS/’)’,’ , we define the essential support of P (and of p(x, §))
to be the smallest closed conic set on the complement of which p(x, §) has order
—o0. We denote this set by ES(P).

From the symbol calculus of §3, it follows easily that

9.4) ES(P; P») C ES(P1) NES(P,)

provided P; € OPS:;;jsj and p; > 8,. To relate WF(Pu) to WF(u) and ES(P),
we begin with the following.

Lemma 9.2. Let u € H™°°(R"), and suppose that U is a conic open set

satisfying
WFu)NU = 0.

IfP e OPS;”,p>O,8< 1, and ES(P) C U, then Pu € C*°.
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Proof. Taking Py € OPS° with symbol identically 1 on a conic neighborhood
of ES(P), so P = PPy mod OPS~°, it suffices to conclude that Pou € C°°, so
we can specialize the hypothesis to P € OPS°.

By hypothesis, we can find Q; € OPS° such that Q;u € C* and each
(x.&) € ES(P) is noncharacteristic for some Q;, and if 0 = ) Q;fQj, then
Qu € C* and Char Q N ES(P) = 0. We claim there exists an operator A €
OPS° such that AQ = P mod OPS~. Indeed, let Q be an elliptic operator
whose symbol equals that of O on a conic neighborhood of ES(P), and let 9~ 1
denote a parametrix for 0. Now simply set A = P Q~'. Consequently, (mod
C*>®) Pu= AQu € C*, so the lemma is proved.

We are ready for the basic result on the preservation of wave front sets by a
pseudodifferential operator.

Proposition 9.3. I[fu € H ™ and P € OPSZS, with p > 0, § < 1, then
(9.5) WF(Pu) C WF(u) N ES(P).

Proof. First we show WF(Pu) C ES(P). Indeed, if (xo, &) ¢ ES(P), choose
QO = q(x,D) € OPS° such that ¢(x,£) = 1 on a conic neighborhood of
(x0,&0) and ES(Q) N ES(P) = @. Thus QP € OPS™°, so QPu € C*.
Hence (x¢, &) € WF(Pu).

In order to show that WF(Pu) C WF(u), let I' be any conic neighborhood
of WF(u), and write P = Py + P>, P; € OPSZ,[&’ with ES(P;) C T and
ES(P2) N WF(u) = 9. By Lemma 9.2, P,u € C*°. Thus WF(u) = WF(Pyu) C
I', which shows WF(Pu) C WF(u).

One says that a pseudodifferential operator of type (p,§), with p > 0 and
8 < 1,1is microlocal. As a corollary, we have the following sharper form of local
regularity for elliptic operators, called microlocal regularity.

Corollary 9.4. If P € OPSZ,I& is elliptic, 0 < 6 < p < 1, then
(9.6) WF(Pu) = WF(u).

Proof. We have seen that WF(Pu) C WF(u). On the other hand, if £ € OPS
is a parametrix for P, we see that WF(«) = WF(EPu) C WF(Pu). In fact, by
an argument close to the proof of Lemma 9.2, we have for general P that

(9.7) WF(u) C WE(Pu) U Char P.

We next discuss how the solution operator e/*4 to a scalar hyperbolic equation
du/dt = iA(x, D)u propagates the wave front set. We assume A(x,§) € Scl,
with real principal symbol. Suppose WF(x) = X. Then there is a countable family
of operators p;(x, D) € OPS°, each of whose complete symbols vanishes in a
neighborhood of X, but such that
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(9.8) T = {(x.6): pj(x.§) = 0}.
J

We know that p;(x, D)u € C* for each j. Using Egorov’s theorem, we want
to construct a family of pseudodifferential operators ¢ (x, D) € OPS° such that
qj(x,D)e’ 14y € C°°, this family being rich enough to describe the wave front
set of e 4y,

Indeed, let ¢;(x, D) = e”Apj (x, D)e~ "4 Egorov’s theorem implies that
q;(x, D) € OPS° (modulo a smoothing operator) and gives the principal sym-
bol of g (x, D). Since p;(x, D)u € C*, we have e”Apj(x, D)u € C*, which
in turn implies ¢, (x, D)e!*4u € C*. From this it follows that WF(e!"4y) is con-
tained in the intersection of the characteristics of the g ; (x, D), which is precisely
C(t)X, the image of X under the canonical transformation C(¢), generated by
H 4, . In other words,

WE(e!"u) C C(t)WF(u).

However, our argument is reversible; u = e~/'4(e/*4y). Consequently, we have

the following result:

Proposition 9.5. If A = A(x, D) € OPS! is scalar with real principal symbol,
then, foru € H=>°,

9.9) WF(e'"u) = C(t)WF(u).

The same argument works for the solution operator S(¢,0) to a time-
dependent, scalar, hyperbolic equation.

Exercises

1. Ifa € Cg°(R"), ¢ € C*°(R") is real-valued, V¢ # 0 on supp a, as in Exercise 2 of
§8,and P = p(x,D) € OPS™, so

P(a ei’x‘p) = b(x,)t)ei’l‘p(x),

as in (8.20), show that, mod O(]A|~°°), b(x, A) depends only on the behavior of p(x, &)
on an arbitrarily small conic neighborhood of

Cy = {(x,)tdw(x)) 1X € suppa, A # 0}.

If CJ’ is the subset of Cy on which A > 0, show that the asymptotic behavior of
b(x,A) as A — +oo depends only on the behavior of p(x,£) on an arbitrarily small
conic neighborhood of CJ .

2. If T’y is as in (8.22), show that, given r > 0,

(9.10) (cosrv/—A)(a ) =T, 0,(a ), mod O(A™), A >0,

for some Q, € OPS 1/2, Consequently, analyze the behavior of the left side of (9.10),
as A — +o0, in terms of the behavior of ', analyzed in §7 of Chap. 6.
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10. Operators on manifolds

Let M be a smooth manifold. It would be natural to say that a continuous linear
operator P : C§°(M) — D’'(M) is a pseudodifferential operator in OP S ;’,lé’ (M)
provided its Schwartz kernel is C*° off the diagonal in M x M, and there exists
an open cover £2 ; of M, a subordinate partition of unity ¢;, and diffeomorphisms
F;:Q; — O; C R” that transform the operators g Pp; : C®(Q2;) — £'(Q)
into pseudodifferential operators in OPSZS, as defined in §1.

This is a rather “liberal” definition of OPS 28 (M). For example, it poses no
growth restrictions on the Schwartz kernel K € D'(M x M) at infinity. Conse-
quently, if M happens to be R”, the class of operators in OPS’"S (M) as defined
above is a bit larger than the class OPS s defined in §1. One negative conse-
quence of this definition is that pseudodlfferentlal operators cannot always be
composed. One drastic step to fix this would be to insist that the kernel be prop-
erly supported, so P : C§°(M) — Cg°(M).If M is compact, these problems do
not arise. If M is noncompact, it is often of interest to place specific restrictions
on K near infinity, but we won’t go further into this point here.

Another way in which the definition of OPS 28 (M) given above is liberal is
that it requires P to be locally transformed to pseudodifferential operators on R”
by some coordinate cover. One might ask if then P is necessarily so transformed
by every coordinate cover. This comes down to asking if the class OP S, defined
in §1 is invariant under a diffeomorphism F : R” — R”. It would sufﬁce to
establish this for the case where F is the identity outside a compact set.

In case p € (1/2,1] and § =1 — p, this invariance is a special case of the
Egorov theorem established in §8. Indeed, one can find a time-dependent vec-
tor field X (¢) whose flow at ¢ = 1 coincides with F and apply Theorem 8.1 to
iA(t,x, D) = X(¢t). Note that the formula for the principal symbol of the conju-
gated operator given there implies

(101) p(ls F()C),%') = pO(xs F/(x)té)v

so that the principal symbol is well defined on the cotangent bundle of M.

We will therefore generally insist that p € (1/2,1] and § = 1 — p when
talking about OP S :)’,ls (M) for a manifold M, without a distinguished coordinate
chart. In special situations, it might be natural to use coordinate charts with special
structure. For instance, for a Cartesian product M = R x 2, one can stick to
product coordinate systems. In such a case, we can construct a parametrix E for
the hypoelliptic operator d/0t — Ax,t € R, x € 2, and unambiguously regard E
as an operator in 0PS1/2 o (R X €2).

We make the following comments on the principal symbol of an operator P €
OPSZS (M), when p € (1/2,1],5 = 1 — p. By the arguments in §8, the principal
symbol is well defined, if it is regarded as an element of the quotient space:

(10.2) p(x.€) € Sm(T* M)/ ST CP (T M),
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In particular, by Theorem 8.1, in case P € OPS {’,’0 (M), we have
(10.3) p(x.§) € ST(T*M) /ST (T M).

If P € S]}(M), then the principal symbol can be taken to be homogeneous in §
of degree m, by (8.16). Note that the characterizations of the Schwartz kernels of
operators in OP ST’ and in OPS(] given in §2 also make clear the invariance of
these classes under coordinate transformations.

We now discuss some properties of an elliptic operator A € OPS{"(M ), when
M is a compact Riemannian manifold. Denote by B a parametrix, so we have, for
eachs € R,

(10.4) A:HS ™M) — HS(M), B:H’(M)— H*™™(M),

and AB =1+ Ky, BA=1+ K, where K; : D'(M) — C*®°(M). Thus K is
compact on each Sobolev space H* (M), so B is a two-sided Fredholm inverse of
Ain (10.4). In particular, A is a Fredholm operator; ker A = Ksy,, C HST™(M)
is finite-dimensional, and A(H**™(M)) C H*(M) is closed, of finite codimen-
sion, so

Cs={ve H*(M): (Au,v) =O0forallu € H ™™ (M)}
is finite-dimensional. Note that C; is the null space of
(10.5) A* H (M) — H™(M),

which is also an elliptic operator in OPS{"((M). Elliptic regularity yields, for
all s,

(10.6) Ksym={ueC®M): Au=0}, C;={veC>®M):A%v =0}.

Thus these spaces are independent of s.
Suppose now that m > 0. We will consider 4 as an unbounded operator on the
Hilbert space L2(M), with domain

(10.7) D(A) ={uec L>(M) : Au € L>(M)}.

It is easy to see that A is closed. Also, elliptic regularity implies

(10.8) D(A) = H™(M).

Since A is closed and densely defined, its Hilbert space adjoint is defined, also as
a closed, unbounded operator on L2(M), with a dense domain. The symbol A*

is also our preferred notation for the Hilbert space adjoint. To avoid confusion,
we will temporarily use A’ to denote the adjoint on D'(M), so A* € OPS™(M),
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At HST™M(M) — HS(M), for all s. Now the unbounded operator A* has
domain

(10.9) D(A*) = {ue L*(M) : |(u, Av)| < c)||v]z2,V v € D(A)},
and then A*u is the unique element of L2(M) such that
(10.10) (A*u,v) = (u, Av), forall v € D(A).

Recall that D(A) = H™(M). Since, forany u € H™(M),v € H™ (M), we have
(A'u,v) = (u, Av), we see that D(4*) D H™(M) and A* = A on H™(M). On
the other hand, (1, Av) = (A%u, v) holds for all v € H™(M), u € L?>(M), the
latter inner product being given by the duality of H (M) and H™ (M ). Thus it
follows that

ueDA*) = A*u= A'uec L>(M).

But elliptic regularity for A € OPS{'y(M) then implies u € H™(M). Thus

(10.11) D(A*) = H" (M), A* = A’|Hm(M).

In particular, if A is elliptic in OPS{"((M), m > 0, and also symmetric (i.e.,
A = A"), then the Hilbert space operator is self-adjoint; A = A*. For any A €
C\R,(AI —A)™':L2(M) — D(A) = H™(M), so A has compact resolvent.
Thus L?(M) has an orthonormal basis of eigenfunctions of A, Au; = Aju;,
|A ;| = oo, and, by elliptic regularity, each u; belongs to C*°(M ).

Exercises

In the following exercises, assume that M is a smooth, compact, Riemannian manifold.
Let A € OPS™(M) be elliptic, positive, and self-adjoint, with m > 0. Let u; be an
orthonormal basis of LZ(M) consisting of eigenfunctions of A, Au i = Aju;. Given

f € D'(M), form “Fourier coefficients” f(]) = (fu;). Thus f € L?(M) implies

o0
(10.12) f=Y fGu;,
Jj=0
with convergence in LZ-norm.

1. Givens € R, show that f € HS(M) if and only if ) |f(j)|2()tj)25/m < 00.

2. Show that, for any s € R, f € H*(M), (10.12) holds, with convergence in H*-norm.
Conclude thatif s > n/2 and f € H®(M), the series converges uniformly to f.

3. If s > n/2 and f € H¥(M), show that (10.12) converges absolutely. (Hint: Fix
Xo € M and pick ¢; € C, |c;| = 1, such that ¢; f(j)u;(xo) > 0. Now consider
Yoci f(uj.)

4. Let —L be a second-order, elliptic, positive, self-adjoint differential operator on a com-
pact Riemannian manifold M. Suppose A € OPS(M) is positive, self-adjoint, and
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A%2 = —L + R, where R : D/(M) — C®(M). Show that A — V=L : D'(M) —
C®(M).
One approach to Exercise 4 is the following.
5. Given f € HS(M), form

u(y,x) = e V7L F(x), vy x) = e f(),
for (y,x) € [0, 00) x M. Note that

(;y—z2 + L)u -0, (;y—zz + L)v = —Ruv(y,x).

Use estimates and regularity for the Dirichlet problem for 82/3y2 + L on [0, 00) x M
to show that u — v € C*°([0, 00) x M). Conclude that du/dy — 8v/8y’y=0 =(A-
V=L)f € C®(M).

6. With L as above, use the symbol calculus of §4 to construct a self-adjoint A €
OPSY (M), with positive principal symbol, such that A2 + L € OPS~°°(M). Con-
clude that Exercise 4 applies to A.

7. Show that OPS ?,O(M ) has a natural Fréchet space structure.

11. The method of layer potentials

We discuss, in the light of the theory of pseudodifferential operators, the use of
“single- and double-layer potentials” to study the Dirichlet and Neumann bound-
ary problems for the Laplace equation. Material developed here will be useful in
§7 of Chap. 9, which treats the use of integral equations in scattering theory.

Let Q be a connected, compact Riemannian manifold with nonempty bound-
ary; n = dim . Suppose @ C M, a Riemannian manifold of dimension
n without boundary, on which there is a fundamental solution E(x, y) to the

Laplace equation:
(11.1) AxE(x,y) = 8y(x),

where E(x, y) is the Schwartz kernel of an operator E(x, D) € OPS™2(M); we
have

(11.2) E(x,y) ~ cn dist(x, y)>™" + -
as x — y,ifn > 3, while
(11.3) E(x,y) ~ ¢z log dist(x, y) + ---

if n = 2. Here, ¢, = —[(n — 2)Area(S"_1)]_1 forn > 3,and ¢c; = 1/2n. The
single- and double-layer potentials of a function f on 92 are defined by

(11.4) SC f(x) = f FOVE(x.y) dS().
Q
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and

oE
(115) DE () = [ £0) 5(3) dSO).
y
aQ

for x € M \ 99Q2. Given a function v on M \ 9€2, for x € dL2, let vy (x) and v_(x)
denote the limits of v(z) as z — x, fromz € Q andz € M \ Q = O, respectively,
when these limits exist. The following are fundamental properties of these layer
potentials.

Proposition 11.1. For x € d$2, we have

(11.6) SE fr(x) = S f-(x) = Sf(x)
and
a17) DL fi(x) = 5 () + 3 NF ()

where, for x € 0€2,

(11.8) ‘WU)=/fUﬂ%mwdﬂw
Q
and
oE
(19) N1 =2 [ 015 () dSO).
k19 Vy

Note that E(x,)|,, is integrable, uniformly in x, and that the conclusion in
(11.6) is elementary, at least for f continuous; the conclusion in (11.7) is a bit
more mysterious. To see what is behind such results, let us look at the more gen-
eral situation of

(11.10) v = p(x, D)(fo),

where o € £'(M) is surface measure on a hypersurface (here dQ2), f € D'(3R2),
so fo € &' (M). Assume that p(x, D) € OPS™(M). Make a local coordinate
change, straightening out the surface to {x, = 0}. Then, in this coordinate system
vwcxn=1[f@vdffpufc&k”ﬁ"d&d?

= q(xn, X', Dx) f.

(11.11)
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for x,, # 0, where

(1112 0¥ 8) = [ 8 e d,
If p(x, &) is homogeneous of degree m in &, for |£] > 1, then for |£'| > 1 we have

(1113) q(xnvx/vg/) = |%‘/|m+1ﬁ(wi/vxn|g/|)s

where 0’ = £'/|¢’| and

v 0 7) = / P, ) d.

Now, if m<—1, the integral in (11.12) is absolutely convergent and
q(xn, x’, ') is continuous in all arguments, even across x, = 0. On the other
hand, if m = —1, then, temporarily neglecting all the arguments of p but the
last, we are looking at the Fourier transform of a smooth function of one variable
whose asymptotic behavior as &, — oo is of the form C{t&, 1 + C5E6,2 + - .
From the results of Chap. 3 we know that the Fourier transform is smooth except
at x, = 0, and if ClJr = Cy, then the Fourier transform has a jump across
X, = 0; otherwise there may be a logarithmic singularity.

It follows that if p(x, D) € OPS™(M) and m < —1, then (11.10) has a limit
on 0%, given by

(11.14) V|, =Qf. Q€ OPS™(3Q).

On the other hand, if m = —1 and the symbol of p(x, D) has the behavior that,
for x € 02, vy normal to 2 at x,

(11.15) p(xExtvy) = £C(x, 6T 1+ 0(7?), - +o0,
then (11.10) has a limit from each side of d€2, and
(11.16) ve =0+f Ox € OPS°HQ).

To specialize these results to the setting of Proposition 11.1, note that

(11.17) St f = E(x,D)(fo)
and
(11.18) DL f = E(x,D)X*(fo),

where X is any vector field on M equal to d/dv on 92, with formal adjoint X *,
given by

(11.19) X*v = —Xv — (div X)v.
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The analysis of (11.10) applies directly to (11.17), with m = —2. That the bound-
ary value is given by (11.8) is elementary for f € C(9f2), as noted before. Given
(11.14), it then follows for more general f.

Now (11.18) is also of the form (11.10), with p(x,D) = E(x,D)X* €
OPS~1(M). Note that the principal symbol at x € 9L is given by

(11.20) Po(x,§) = —[E[(v(x),§),

which satisfies the condition (11.15), so the conclusion (11.16) applies. Note that

po(x,§ £1vy) =—[E+ TVx|_2(VX7§ + Tvx),

so in this case (11.15) holds with C(x, §) = 1. Thus the operators Q + in (11.16)
have principal symbols + const. That the constant is as given in (11.7) follows
from keeping careful track of the constants in the calculations (11.11)—(11.13)
(cf. Exercise 9 below).

Let us take a closer look at the behavior of (d/dv,)E(x, y). Note that, for x
close to y, if Vx , denotes the unit vector at y in the direction of the geodesic from
X to y, then (forn > 3)

(11.21) VyE(x,y) ~ (2 —n)ey dist(x, ) 7 Vi y + -+ .

If y € 92 and v,, is the unit normal to €2 at y, then
J : 1-n
(11.22) WE(X,y) ~ (2—=n)cp dist(x,y) " (Ve,y,vy) + -+ .
y

Note that (2—n)c, = —1/Area(S" ). Clearly, the inner product (Vyy, vy ) =
a(x, y) restricted to (x, y) € 02 x 92 is Lipschitz and vanishes on the diagonal
x = y. This vanishing makes (0E/dv, )(x, y) integrable on 92 x 2. It is clear
that in the case (11.7), Q4+ have Schwartz kernels equal to (9/dv,)E(x,y) on
the complement of the diagonal in 92 x d€2. In light of our analysis above of the
principal symbol of Q 1, the proof of (11.7) is complete.

As a check on the evaluation of the constant ¢ in D€ fy = +cf + (1/2)Nf,
¢ = 1/2, note that applying Green’s formula to [(Al) - E(x, y) dy readily gives

Q

oE

/ —(x,y)dS(y) =1, forx e Q,
vy

IQ

0, forxeQ,

as the value of D¢ f4 for f = 1. Since D{ f — DL f_ = 2cf, this forces
c=1/2.
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The way in which £(1/2) f(x) arises in (11.7) is captured well by the model
case of 92 a hyperplane in R”, and

E((, %), (. 0) = ea[ (¢ = )% +22]@7/2,

when (11.22) becomes

0 -n
o E(O00.01.0) = @ =mensa [ =y + 5]

though in this example N = 0.
The following properties of the operators S and N are fundamental.

Proposition 11.2. We have
(11.23) S,N € OPS~1(3Q), S elliptic.

Proof. That S has this behavior follows immediately from (11.2) and (11.3). The
ellipticity at x follows from taking normal coordinates at x and using Exercise 3
of §4, for n > 3; for n = 2, the reader can supply an analogous argument. That
N also satisfies (11.23) follows from (11.22) and the vanishing of a(x,y) =
(Vx,y. vy) on the diagonal.

An important result complementary to Proposition 11.1 is the following, on the
behavior of the normal derivative at 32 of single-layer potentials.

Proposition 11.3. For x € d$2, we have

]
(11.24) a—vse fr(x) = %(:Ff—i-N#f),

where N* € OPS~1(0Q) is given by

oE
(11.25) N*f(x) =2 / SO 5= ) S0,
Q

Proof. The proof of (11.24) is directly parallel to that of (11.7). To see on general
principles why this should be so, use (11.17) to write (3/dv)S¥ f as the restriction
to 92 of

(11.26) XSt f = XE(x,D)(fo).
Using (11.18) and (11.19), we see that

DL f + XSE f = [X, E(x, D)|(fo) — E(x, D)(div X)(fo)

(11.27)
= A(x, D)(fo),
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with A(x, D) € OPS~™2(M), the same class as E(x, D). Thus the extension of
A(x, D)(fo) to dL2 is straightforward, and we have

0
(11.28) 586 fr =-DL fx + A(x,D)(f0)],q-

In particular, the jumps across dS2 are related by

(11.29) iS@ f+ - iSﬁ fo=DL f_L—D¢L fy,
av av

consistent with the result implied by formulas (11.7) and (11.24).

It is also useful to understand the boundary behavior of (d/dv)D{ f. This
is a bit harder since d?E/9v,dv, is more highly singular. From here on, as-
sume E(x,y) = E(y,x), soalso A, E(x,y) = 6x(»). We define the Neumann
operator

(11.30) N C®OQ) — CPOQ)

as follows. Given f € C®(3R2), let u € C°°(Q2) be the unique solution to

(11.31) Au=00onQ, u= fondQ,
and let

du
(11.32) Nf= a—y)m,

the limit taken from within 2. It is a simple consequence of Green’s formula that
if we form

oE
133) [[£0) 500 =NFOIEG0)]aS() = DE f(0)-SEN S (o).
y
Q2

forx € M \ 0L2, then

DL f(x) —SEN f(x) =u(x), xe€,

(11.34) _
0, xeM\Q,

where u is given by (11.31). Note that taking the limit of (11.34) from within €2,
using (11.6) and (11.7), gives f = (1/2) f + (1/2)Nf — SN f, which implies
the identity

(11.35) SN = —%(1 —N).
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Taking the limit in (11.34) from M \ Q gives the same identity. In view of the
behavior (11.23), in particular the ellipticity of S, we conclude that

(11.36) N € OPS'(3Q), elliptic.

Now we apply d/dv to the identity (11.34), evaluating on d€2 from both sides.
Evaluating from 2 gives

0

(11.37) P

0
Dﬁf+—5S€Nf+=Nf,

while evaluating from M \ Q gives

(11.38) iD@ fo— iSﬁ Nf-=0.
av av

In particular, applying d/dv to (11.34) shows that (d/dv)DE fi exists, by
Proposition 11.3. Furthermore, applying (11.24) to (3/0v)S€ N fi, we have a
proof of the following.

Proposition 11.4. For x € d$2, we have

(11.39) %Dmgmzéu+Mmm

In particular, there is no jump across 92 of (d/0v)DYL f.

We have now developed the layer potentials far enough to apply them to the
study of the Dirichlet problem. We want an approximate formula for the Poisson
integral u = PI f, the unique solution to

(11.40) Au=0inQ, uly,=f.

Motivated by the Poisson integral formula on R” , we look for a solution of the
form

(11.41) u(x) =Dl g(x), x €,

and try to relate g to f. In view of Proposition 11.1, letting x — z € 9dQ in
(11.41) yields

1
(11.42) u(z) = E(g + Ng), forz e dQ.

Thus if we define u by (11.41), then (11.40) is equivalent to

(11.43) f=%U+Nm
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Alternatively, we can try to solve (11.40) in terms of a single-layer potential:
(11.44) u(x) =8 h(x), xeQ.
If u is defined by (11.44), then (11.40) is equivalent to
(11.45) f =Sh.

Note that, by (11.23), the operator (1/2)({ + N) in (11.43) is Fredholm, of index
zero, on each space H*(02). It is not hard to verify that S is elliptic of order —1,
with real principal symbol, so for each s,

S H 1 0Q) — H*(3Q)

is Fredholm, of index zero.
One basic case when (11.43) and (11.45) can both be solved is the case of
bounded Q in M = R”, with the standard flat Laplacian.

Proposition 11.5. If Q is a smooth, bounded subdomain of R™, with connected
complement, then, for all s,

(11.46) I +N : H*(0Q) — H*(Q) and S:H'(0Q) — H*(IQ)
are isomorphisms.

Proof. It suffices to show that / + N and S are injective on C*°(9<2). First,
if g € C*(0R2) belongs to the null space of / + N, then, by (11.42) and the
maximum principle, we have D€ g = 0 in Q. By (11.7), the jump of D¢ g across
0K is g, so we have for v = DL g|p, where O = R" \ Q,

(11.47) Av=00n0, v|,,=—g

Also, v clearly vanishes at infinity. Now, by (11.39), (3/dv)D{ g does not jump
across 052, so we have dv/dv = 0 on d<2. But at a point on 92 where —g is
maximal, this contradicts Zaremba’s principle, unless g = 0. This proves that
I + N is an isomorphism in this case.

Next, suppose i € C°°(92) belongs to the null space of S. Then, by (11.45)
and the maximum principle, we have S¢ 1 = 0 on Q. By (11.24), the jump of
(0/0v)SL h across 02 is —h, so we have for w = S h|p that

0
(11.48) Aw=0om0, 2| —p,

av 19Q
and w vanishes at infinity. This time, S¢ i does not jump across 9€2, so we also
have w = 0 on d2. The maximum principle forces w = 0 on O, so & = 0. This
proves that S is an isomorphism in this case.
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In view of (11.6), we see that (11.44) and (11.45) also give a solution to Au = 0
on the exterior region R™\ 2, satisfyingu = f on 92 and u(x) — 0 as |x| — oo,
if n > 3. This solution is unique, by the maximum principle.

One can readily extend the proof of Proposition 11.5 and show that I + N and

S in (11.46) are isomorphisms in somewhat more general circumstances.
Let us now consider the Neumann problem

(11.49) Au=0o0ng, g—:=<pon8§2.

We can relate (11.49) to (11.40) via the Neumann operator:

(11.50) p=NFf.

Let us assume that 2 is connected; then

(11.51) Ker N = {f = const. on Q},

so dim Ker A" = 1. Note that, by Green’s theorem,

(11.52) N f8) 200 = —(du,dv) 2y = (LN 2000)
where u = PI f,v = PI g,so N is symmetric. In particular,
(11.53) N[ Nrzee) = —ldul]s g

so N is negative-semidefinite. The symmetry of A/ together with its ellipticity
implies that, for each s,

(11.54) N HT1 Q) — H*(0Q)
is Fredholm, of index zero, with both Ker A/ and R(J\/')J- of dimension 1, and so

(11.55) RN) = {qp e H(OQ) : /(/) ds = o},
0

this integral interpreted in the obvious distributional sense when s < 0.
By (11.35), whenever S is an isomorphism in (11.46), we can say that (11.50)
is equivalent to

(11.56) (I -N)f =-2Sg.

We can also represent a solution to (11.49) as a single-layer potential, of the form
(11.44). Using (11.24), we see that this works provided # satisfies

(11.57) (I — N)h = =2¢.
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In view of the fact that (11.44) solves the Dirichlet problem (11.40) with f = Sh,
we deduce the identity ¢ = N'Sh, or

(11.58) NS = —%(1 —N¥),

complementing (11.35). Comparing these identities, representing SA'S in two
ways, we obtain the intertwining relation

(11.59) SN* = NS.

Also note that, under the symmetry hypothesis E(x,y) = E(y,x), we have
N# = N*.

The method of layer potentials is applicable to other boundary problems. An
application to the “Stokes system” will be given in Chap. 17, §A.

We remark that a number of results in this section do not make substantial
use of the pseudodifferential operator calculus developed in the early sections;
this makes it easy to extend such results to situations where the boundary has
limited smoothness. For example, it is fairly straightforward to extend results on
the double-layer potential D{ to the case where 92 is a C !*"-hypersurface in
R”, for any r > 0, and in particular to extend (partially) the first part of (11.46),
obtaining

I+ N :L*0Q) — L*(3S) invertible,

in such a case, thus obtaining the representation (11.41) for the solution to the
Dirichlet problem with boundary data in L2(32), when 92 is a C!*"-surface.
Results on S in (11.23) and some results on the Neumann operator, such as
(11.36), do depend on the pseudodifferential operator calculus, so more work is
required to adapt this material to C ' -surfaces, though that has been done.

In fact, via results of [Ca3] and [CMM], the layer potential approach has
been extended to domains in R” bounded by C!-surfaces, in [FIR], and then
to domains bounded by Lipschitz surfaces, in [Ver] and [DK]. See also [JK]
for nonhomogeneous equations. Extensions to Lipschitz domains in Riemannian
manifolds are given in [MT1] and [MT2], and extensions to “uniformly rectifi-
able” domains in [D, DS], and [HMT]. We mention just one result here; many
others can be found in the sources cited above and references they contain.

Proposition 11.6. If Q2 is a Lipschitz domain in a compact Riemannian manifold
M, then
PI: L?(0Q) — H(Q).

Exercises

1. Let M be a compact, connected Riemannian manifold, with Laplace operator L, and
let @ = [0,1] x M, with Laplace operator A = 82/3y2 + L, y € [0, 1]. Show that
the Dirichlet problem

Au=00nL, u0,x)= fo(x), u(l,x) = f1(x)
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has the solution

=e WV Lyy 4 e~V

u(y, x) Loy +ky,

where « is the constant k = (vol M)~} fM (f1 — fo)dV,and
go = (1—e V") (o —e V7L fi —p),
VL (f -k = eV R fy)

)

p1=(l-e

the operator (1 — e=2¥~L)~1 being well defined on (ker L)~ .
2. It N fo(x) = (du/dy)(0, x), where u is as above, with f; = 0, show that

Nfo=-v=Lfo+Rfo.
where R is a smoothing operator, R : D' (M) — C%(M). Using (11.36), deduce
that these calculations imply
V—L e OPS'(M).

Compare Exercises 4-6 of §10.
3. If PI. C*°(92) — C°(R) is the Poisson integral operator solving (11.40), show
that, for x € Q,

PLfx) = f k(x, 1) £ () dS(),
with
[k(x, »)| < C(d(x,y)2 + p(x)Z)—(n—l)/z,

where n = dim €, d(x, y) is the distance from x to y, and p(x) is the distance from
x to 092.

4. If M is an (n — 1)-dimensional surface with boundary in &2, intersecting dQ transver-
sally, with 9M C 92, and p : C°(Q) — C (M) is restriction to M, show that

poPl: L2(3Q) — L2(M).

(Hint: Look at Exercise 2 in §5 of Appendix A on functional analysis.)
5. Given y € , let Gy, be the “Green function,” satisfying

AGy =8y, Gy =00n0Q.
Show that, for f € C*°(92),

PI f(y) = / £() 0 Gy (x) dS(x).

(Hint: Apply Green’s formula to (PI f, AGy) = (P1 f, AGy) — (A PL f,Gy).)
6. Assume u is scalar, Au = f, and w is a vector field on €2. Show that

/(v,w)|Vu|2 ds = 2/(un)(3,,u) ds — 2/(un)f dv
Q Q

(11.60) %

+ /(div w)|Vul? dV — 2/([,wg)(Vu, Vu) dV,



12. Parametrix for regular elliptic boundary problems 47

where g is the metric tensor on £2. This identity is a “Rellich formula.”
(Hint: Compute diV((Vu, Vu)w) and 2 div(Vyu - Vu), and apply the divergence the-
orem to the difference.)

7. In the setting of Exercise 6, assume w is a unit vector field and that (v, w) > a > 0 on
0Q2. Deduce that

/|Vu|2 ds < —/|3,,u|2 dS+/|f|2dV
Q2 Q2

+ /{|div w| + 2|Def w| + 1}|Vu|2 dav.
Q

(11.61)

When Au = f = 0, compare implications of (11.61) with implications of (11.36).
See [Ver] for applications of Rellich’s formula to analysis on domains with Lipschitz
boundary.

8. What happens if, in Proposition 11.5, you allow @ = R” \ € to have several con-
nected components? Can you show that one of the operators in (11.46) is still an
isomorphism?

9. Calculate q(xn,x’,€') in (11.13) when p(x,&) = £;|&|72. Relate this to the results
(11.7) and (11.24) for DL f4 and 9, S€ f1. (Hint. The calculation involves [(1 +
;2)—1 ilt dt = ﬂe—lrl )

10. Let N and N* be the operators given by (11.9) and (11.25). Show that N¥ = N*, the
L?-adjoint of N.

12. Parametrix for regular elliptic boundary problems

Here we shall complement material on regular boundary problems for elliptic
operators developed in §11 of Chap.5, including in particular results promised
after the statement of Proposition 11.16 in that chapter.

Suppose P is an elliptic differential operator of order m on a compact manifold
M with boundary, with boundary operators Bjoforderm;,1 < j < {,satisfying
the regularity conditions given in §11 of Chap. 5. In order to construct a parametrix
for the solution to Pu = f, Bjulspps = g;, we will use pseudodifferential op-
erator calculus to manipulate P in ways that constant-coefficient operators P (D)
were manipulated in that section. To start, we choose a collar neighborhood C of
oM, C ~ [0,1] x dM; use coordinates (y,x), y € [0,1],x € dM; and without
loss of generality, consider

am m—1
12.1) Pu = o + ZA (. x, Dx)

the order of A4;(y,x, Dx) being < m — j. We convert Pu = f to a first-order
system using v = (v1,..., V)", with

(12.2) vy = A", v = 8§_1Am_ju, U = a'y"_lu,
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as in (11.41) of Chap.5. Here, A can be taken to be any elliptic, invertible oper-
ator in OPS'(dM), with principal symbol |£| (with respect to some Riemannian
metric put on M ). Then Pu = f becomes, on C, the system

(12.3) g_v = K(y,x,Dy)v + F,
y

where F = (0,...,0, )" and

0 A
0 A
(12.4) K = .
A
CO C1 Cz Cm_1
where
(12.5) Ci(y,x,Dx) =—A;(y,x, D )A=m=D)

is a smooth family of operators in OPS!(dM), with y as a parameter. As in

Lemma 11.3 of Chap. 5, we have that P is elliptic if and only if, for all (x, &) €

T*0M \ 0, the principal symbol K; (v, x, £) has no purely imaginary eigenvalues.
We also rewrite the boundary conditions B;u = g; at y = 0.If

ak
(12.6) Bj = Y bj(x.Dx) ——
k§m,- ay

at y = 0, then we have for v; the boundary conditions

(127) D" bjk(x, DA v 1 (0) = A" gy = hy, 1< <,

k§mj
where b ik (x, D) has the same principal symbol as b jx (x, D). We write this as
(12.8) B(x,Dx)v(0) =h, B(x,Dy) e OPS°(OM).
We will construct a parametrix for the solution of (12.3), (12.8), with F' = 0.
Generalizing (11.52) of Chap.5, we construct Eo(y,x, &) for (x,§) €
T*OM\O, the projection onto the sum of the generalized eigenspaces of

Ki1(y,x,§) corresponding to eigenvalues of positive real part, annihilating the
other generalized eigenspaces, in the form

(12.9) Eo(y.x.£) = %m/(é—Kl(%xvf))_ldCs
Y
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where y = y(y, x,§) is a curve in the right half-plane of C, encircling all the
eigenvalues of K;(y,x,§&) of positive real part. Then Eo(y, x, &) is homoge-
neous of degree 0 in £, so it is the principal symbol of a family of operators in
OPS°(0M).

Recall the statement of Proposition 11.9 of Chap. 5 on the regularity condition
for (P, Bj,1 < j <{). One characterization is that, for (x,&) € T*0M \ 0,

(12.10) Bo(x.£) : V(x,§) —> C* isomorphically,

where V(x,€) = ker Eo(0,x,£), and Bo(x,&) : C¥ — C?* is the principal
symbol of B(x, D,). Another, equivalent characterization is that, for any n € (C’\,
(x,&) € T*OM \ 0, there exists a unique bounded solution on y € [0, c0) to the
ODE

9
(12.11) % —Ki(0,x,6)p =0, Bo(x,E)p(0) = .

In that case, of course, ¢(0) = ¢(0, x, §) belongs to V(x, ), so ¢(y, x, £) is actu-
ally exponentially decreasing as y — +o0, for fixed (x, £), and it is exponentially
decreasing as || — oo, for fixed y > 0,x € IM.

On a conic neighborhood I' of any (xg, &) € T*dM \ 0, one can construct
Uo(y, x, &) smooth and homogeneous of degree 0 in &, so that

_ E; 0
12.12 KUt =
( ) UoK1 U, ( 0 F1) ,

where E;(y, x, §) has eigenvalues all in Re { < 0 and F; has all its eigenval-
ues in Re ¢ > 0. If we set w® = Uy(y, x, D)v, then the equation dv/dy =
K(y, x, Dy)v is transformed to

Jw©®
(12.13) lg - (E F) w® 4 Aw© = Gw©® 4 4p©,
y

where E(y,x, Dy) and F(y,x, Dy) have E; and F; as their principal sym-
bols, respectively, and A(y, x, Dy) is a smooth family of operators in the space
OPS°(0M).

We want to decouple this equation more completely into two pieces. The next
step is to decouple terms of order zero. Let w = (I + V)w©®, with V; €
OPS™! to be determined. We have

(12.14)
dqw®

5— = +V)GU + V)T w® 4 (1 + VAl + V)t ® 4
Y

= Guw" + (G -GV + Hw® + ...,
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where the remainder involves terms of order at most —1 operating on w». We
would like to pick V; so that the off-diagonal terms of V;G — GV; 4 A vanish.
We require V; to be of the form

0 V2
Vi = .
' (Vzl 0 )
If A is putinto 2 x 2 block form with entries A4 jx, we are led to require that (on
the symbol level)

VioE1 — F1Vi2 = — A2,
(12.15) 12£1 1V12 12

Va1 Fi — E1Va1 = — Az
That we have unique solutions V (y, x, §) (homogeneous of degree —1 in §) is a
consequence of the following lemma.

Lemma 12.1. Let F € M, x,, the set of v x v matrices, and E € M x,. Define
Yo Myxy — Myx,, by

v(T)=TF — ET.
Then  is bijective, provided E and F have disjoint spectra.

Proof. In fact, if { f;} are the eigenvalues of F and {ey} those of E, it is easily
seen that the eigenvalues of v are { f; — ex}.

Thus we obtain solutions V7, and V,; to (12.15). With such a choice of the
symbol of K, we have

dw®

(12.16) W Gw® o (AT ) u® 4 B,
ady A

2

with B € OPS~'. To decouple the part of order —1, we try w® = (I + V,)w™®
with V, € OPS™2. We get

ow®
(12.17) —lg =Guw® + (Al 4 ) w? + (G -GV + B)w® + -,
Y

2

so we want to choose V; so that, on the symbol level, the off-diagonal terms of
VoG — GV, + B vanish. This is the problem solved above, so we are in good
shape.

From here we continue, defining w) = (I + V,-)w(j_l) with V; € OPS™/,
decoupling further out along the line. Letting w = (I + V)v, with

(12.18) I+V~o(I+Va)I +Vo)I +Vy), VeOPS,
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we have

ow E’ oo
(12.19) w = ( F’) w, mod C*,

with E/ = E, F' = F mod OPS°. The system (12.3) is now completely
decoupled.

We now concentrate on constructing a parametrix for an “elliptic evolution
equation”

(12.20) g—: = E(y,x, Dx)u, u(0) = f

where E is a k x k system of first-order pseudodifferential operators, whose prin-
cipal symbol satisfies

(12.21) spec E1(y,x,6) C{¢{eC:Re¢ <—Cplé] <0}, £H#0O,

for some Cy > 0. We look for the parametrix in the form (in local coordinates on
oM)

(12.22) u) = [ 40 %9 ) d

with A(y, x, £) in the form

(12.23) Ay, x,8) ~ Y Aj(7,.x.8),
Jj=0

and the 4 (y, x, §) constructed inductively. We aim to obtain A(y, x, §) bounded
in S?,o’ for y € [0, 1], among other things. In such a case,

20 (-Eu=en [(F-L0x0)e 6 d
where

1
(12.25) L(y,x,£) ~ ZaE(“)(y,x,s)A(a)(y,x,s).

a>0

We define Ag(y, x, §) by the “transport equation”

d
(1226) EA()(_)/,X,S) = E(y,x,E)Ao(y,x,S), AO(O,X,%-) =1



52 7. Pseudodifferential Operators
If E is independent of y, the solution is
Ao(y, x, &) = eYEGE)

In general, Ao(y,x,&) shares with this example the following important
properties.

Lemma 12.2. Fory € [0,1], k,£ =0,1,2,..., we have
(12.27) y¥DEAo(y. x.§) bounded in ST .

Proof. We can take C; € (0, Cp) and M large, so that E(y, x, §) has spectrum in
the half-space Re { < —C;[&], for |£] > M. Fixing K € (0, C,), if S(y,0, x,§)
is the solution operator to dB/dy = E(y, x, §) B, taking B(o, x,£) to B(y, x, §),
then, for y > o,

(12.28) 1S(y,0,x,£)B| < C e KO=9ElB|  for |£| > M.
It follows that, for y € [0, 1],
(12.29) |Ao0(y, x,8)| < C e KV

which implies
Iy Ao (y, x, §)| < Cr(£)7F e KVIEI2,
Now Ao; = dAo/d§; satisfies
0 O
@Ao]' = E(y,x,8)A0; + g(J’eXf)Ao, Ao, (0,x,8) =0,
J

SO

y OE
(12.30) Aoj (y,x,§) =/0 S(y,G,X,E)g(U,X,E)AO(U,Xf) do,
J

which in concert with (12.28) and (12.29) yields

(12.31) %Ao(y,x,é)‘ < Cye—KYIE\ < C(é)_le_Kym/z.
J

Inductively, one obtains estimates on D? D )’? Ao(y, x, &) leading to the £ = 0 case
of (12.27), and then use of (12.26) and induction on £ give (12.27) in general.

For j > 1, we define 4 (y, x, §) inductively by

04
(12.32) a—y’ =E(y.x.0A4;(,x.8) + R;(y,x.§), 4;0,x,§) =0,
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where

1
(12.33) Ri(y.x.5)= ) EE(‘”(% x.§)Ag) (v, X, §).
L<jltlal=j
Then, if, as above, S(y, 0, x, £) is the solution operator to the equation dB/dy =
E(y,x,§)B, we have

(12.34) Ai(y,x,§) = /y S(y.,0,x,§)R;(0,x,§) do, j=>1.
0

The arguments used to prove Lemma 12.2 also establish the following result.

Lemma 12.3. Fory € [0,1], k,£ =0,1,2,...,j > 1, we have
(12.35) Y¥DE4; (. x. £) bounded in S 7.

A symbol satisfying the condition (12.35) will be said to belong to P~/ . In fact,
it is convenient to use the following stronger property possessed by the symbols
Aj(y,x,§), for j > 0. Given the hypothesis (12.21) on spec Ei(y, x,§), let
0 < C; < Cp. Then

(1236)  A;(y,x.€) = B;(y,x,§)e Y, with B;(y,x,§) e P~/.

We will say 4, (y, x,€) € P’ ' if this holds or, more generally, if it holds modulo
a smooth family of symbols S(y) € S7°, y € [0, 1]. The associated families of
operators will be denoted OPP~/ and OP P, , respectively.

Operators formed from such symbols have the following mapping property, re-
capturing the Sobolev space regularity established for solutions to regular elliptic
boundary problems in Chap. 5.

Proposition 12.4. If A = A(y, x, D) has symbol
A(.VvX,%‘) = B(y,x,%')e_cly(f)’ B(y,x,%_) E'P_j,

then, fors > —j — 1/2,

(12.37) A: HS(OM) — HST/HV2(] x aM).

Proof. First consider the case s = —1/2, j = 0. As B(y, x, Dy) is bounded in
L(L2(OM)) for y € [0, 1], we have, for f € H~Y2(dM),

/ LAG) £ 1B gppydy < € / [emCUA £ 12,y

oA 2 f 122 ga0) — Calle AN 2 F125 00
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with C, = C/(2Ch), since

(e—ClyAﬁ e—ClyAf) — _Li(e—chyAf, A_lf).
2C1 dy
This proves (12.37) in this case. The extensiontos = k —1/2 (k = 1,2,...),
J = Ois straightforward, and then the result for general s > —1/2, j = 0 follows
by interpolation. The case of general j is reduced to that of j = 0 by forming
A(y,x,£)(E)™/. One can take any j € R.

Having constructed operators with symbols in P2 as parametrices of (12.20),
we now complete the construction of parametrices for the system (12.3), (12.8),
when the regularity condition (12.10) holds. Using a partition of unity, write / as
asum y_ &, each term of which has wave front set in a conic set I'; on which the
decoupling procedure (12.12) can be implemented. We drop the subscript j and
just call the term /. Then, we construct a parametrix for w = (I 4+ V)Uyv, so that
w solves (12.19), with w(0) = (£, 0)!. Set U = (I + V)Uy, and let U~ denote
a parametrix of U. The solution w(y) takes the form w(y) = (wi(y),0), with

(12.38) wi(y) = A1(y.x, Dx) . A1(y,x.§) € P,

using the construction (12.22)-(12.34). Note that v(0) = U '(f£.0)) =
U~'J; f, where here and below we set J; f = (f.0)’. Then

(12.39) Bv(0) = BU ' f,

so the boundary condition (12.8) is achieved (mod C *°) provided f satisfies (mod
C®)

(12.40) BUYJ, f =h.
The regularity condition (12.10) is precisely the condition that BU ! J; is an

elliptic A x A system, in OPS®(dM). Letting Q € OPS°(dM) be a parametrix,
we obtain

(12.41) v(y) = U(y) " 1A1(y)Oh = A*(y)h.

Recall that Q € OPS°(M), U(y)~! is a smooth family of operators in
OPS°(OM), and A;(y) € OPP?. We can then say the following about the com-
position A*(y) = A*(y, x, Dy).

Lemma 12.5. Given P;(y), smooth families in OPS™/(0M), and A(y) €
OPPY, we have

(12.42) Pi(»)A(y)P2(y) = B(y) € OPPLF™MTm2,

The proof is a straightforward application of the results on products from §3.
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Consequently, we have a solution mod C*° to (12.3), (12.8), constructed in the
form v(y) = A*(y)h, with A*(y) € OPP?. Finally, returning to the boundary

problem for P, we have:

Theorem 12.6. If (P, B;,1 < j < {) is a regular elliptic boundary problem,
then a parametrix (i.e., a solution mod C*°) for

(12.43) Pu=0onM, Bju=g;onoM

is constructed in the form
L
(12.44) u=>y 0;g.
j=1
where Q jg; is C* on the interior of M, and, on a collar neighborhood C =
[0,1] x oM,

(12.45) 0;g;=0,;(0g;. Q;(y)€ OPP,".

Recall that m ; is the order of B;. Here, the meaning of solution mod C*° to
(12.43) is that if u* is given by (12.44), then

(12.46) Pu* € C®(M), Bju"—g; € C®@OM).
Of course, the regularity results of Chap. 5 imply that if « is a genuine solution to
(12.43), then u — u* € C®(M).

The following is an easy route to localizing boundary regularity results.

Proposition 12.7. Take A(y,x.£) € P~/. Let ¢, € C®(0M), and assume
their supports are disjoint. Then

(12.47) feD(OM) = pA(y,x, D)y¥f € C*([0,1] x IM).
Proof. Symbol calculus gives
9A(y.x. D)y € P*, Vk=>0.

Hence this is a smooth family of elements of OPS~°°(dM). This readily gives
(12.47).

Proposition 12.7 immediately gives the following.

Corollary 12.8. In the setting of Theorem 12.6, if O C_0M is open and g; €
C>(O) for each j, then u € C* on a neighborhood in M of O.
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Exercises

1. Suppose A(y) € OPP™. Show that
9/ m+j
(12.48) mA(y)yy=0 =0,f 0;coPS" @am).

If A(y) € OPPg is given by the construction (12.24)—(12.34), show that Q; €
OPSJ (IM). o

2. Applying the construction of this section to the Dirichlet problem for A on M, show
that the Neumann operator A/, defined by (11.31)—(11.32), satisfies

(12.49) N € OPSY(0M),

thus providing a proof different from that used in (11.36).
3. Show that A(y, x, §) belongs to P2 if and only if, for some € > 0 and all N < oo,

(1250)  |DYDEDEAo(y.x.6)] < Copy e E (5)mH71l 1 ().

4. If A(y,x,£) € P, 7/, show that, for some k > 0, you can write
(1251)  A(y.x.D)=e2B(y.x, D). B(y.x.§) e P/, yelo.1],

modulo a smooth family of smoothing operators.
5. If u = PIf is the solution to Au = 0, ”’39 = f, use Proposition 12.4 and
Theorem 12.6 to show that

1
(12.52) PI: H*(0Q) — H*TYV2(Q), Vs> -5

Compare the regularity result of Propositions 11.14-11.15 in Chap. 5.

13. Parametrix for the heat equation

Let L = L(x, D) be a second-order, elliptic differential operator, whose princi-
pal symbol L (x, £) is a positive scalar function, though lower-order terms need
not be scalar. We want to construct an approximate solution to the initial-value
problem

(13.1) g—': =—Lu, u(0)=f,

in the form

(13.2) u(t,x) = /a(fax,S)e”ff(é‘) dg,
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for f supported in a coordinate patch. The amplitude a(z, x, §) will have an
asymptotic expansion of the form

(13.3) a(t,x.§) ~ Y aj(t.x.).

J=0

and the a (¢, x, §) will be defined recursively, as follows. By the Leibniz formula,
write
ix-& ix-§ ilal (@) o
L@e'*®) =e Z HL (x,&)DYa(t, x,§)

lo|<2

(13.4) 2
= eix'f[Lz(x, Ea(t,x, &) + Z By e(x,§, Dx)a(t, x, S)]’

(=1

where B,_;(x, &, Dy) is a differential operator (of order £) whose coefficients are
polynomials in &, homogeneous of degree 2 — £ in £.
Thus, we want the amplitude a (¢, x, ) in (13.2) to satisfy (formally)

da 2
5 ~ —Lya — EX_; Bz—@(x’é’ Dy)a.

If a is taken to have the form (13.3), we obtain the following equations, called
“transport equations,” for a ; :

da
(13.5) 5 = Lt Hao(t.x.8)
and, for j > 1,
8aj
(136) W = —LZ(X,S)aj(t,xag)+Qj(t’x’é§-),
where
2
(13.7) Qj(t,x,6) ==Y By o(x.& Dx)ajo(t, x,§).
(=1
By convention we set a_; = 0. So that (6.15) reduces to Fourier inversion at

t = 0, we set

(13.8) ap(0,x,§) =1, a;(0,x,§) =0, forj > 1.
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Then we have
(13.9) ao(t,x, &) = e7L2®8),

and the solution to (13.6) is
t
(13.10) a;j(t,x,§) =/ e(s_’)LZ(x’E)Qj(s,x,S) ds.
0

In view of (13.7), this defines a; (¢, x, §) inductively in terms of a; (¢, x, §) and

aj_(t, x,§).
We now make a closer analysis of these terms. Define 4 (¢, x, §) by

(13.11) aj(t,x,&) = A;(t,x, g)e 28
The following result is useful; it applies to A; forall j > 1.

Lemma 13.1. If u = 0,1,2,..., v € {1,2}, then Az, 4+ can be written in the
form

(13.12) Appao(t,x,8) =tV A | (x, 0.8), witho = 1'%,

The factor A§M+v (x,w, &) is a polynomial in both w and &. It is homogeneous of
degree 2 — v in & (i.e., either linear or constant). Furthermore, as a polynomial
in w, each monomial has even order; equivalently, A§M+v(x, —w,§) =

A§M+v(x’ w, S)

To prove the lemma, we begin by recasting (13.10). Let I';(f,x,£) be
defined by

(13.13) Q(t.x.8) = T;(1.x. e L2,
Then the recursion (13.7) yields

2
(13.14) Tje™ b2 = =" By y(x.£ Dyx)(Aj_ge"12).
=1

Applying the Leibniz formula gives
2
(13.15) Tj==>" 3" Ae(x.@)BY (x. 8. D) Aj_e(t.x.8).
=1ly|=t
evaluated at v = 11/2§, where

(13.16) eth(x’f)D;e—th(x,E) = A, (x, 12g).
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Clearly, Ay (x, t'/2§) is a polynomial in & and also a polynomial in ; hence
A, (x,®) is an even polynomial in w. Note also that the differential operator
Bgy_]e (x,&, Dy) is of order £ — |y|, and its coefficients are polynomials in &, ho-
mogeneous of degree 2 — £, as were those of B,_¢(x,&, Dx). The factor 4; is
given by

t

(13.17) Aj(t,x,§) =/ Lj(s, x,§) ds.
0

The recursion (13.15)—(13.17) will provide an inductive proof of Lemma 13.1.
To carry this out, assume the lemma true for A;, forall j < 2u + v. We then
have

Copo(t.x.8) = Y 3 Aex.0)BY, (x.6. DAL, ((x. 0. E)" !

I<i<v|y|<t

(13.18) + YD Al ) B (x, 8 DAY, (x 0, 6
v=<£=<2|y|<t

The first sum is empty if v = 1. In the first sum, A§M+v—£ (x,w, &) is homoge-
neous of degree 2 + £ — v in &, so in the first sum

(13.19)
A (v 0)BY (v 6. DAY, (vo0.8) = (PTTHE L (v 0.6),

# . . .
where H;w &y (x, , &) is a polynomial in &, homogeneous of degree 4 — v, and an
even polynomial in w. We can hence write

(13.20) ELH g (6, 0. 8) = 1 Hygy (x, 0.8),

where H ¢y (X, ®, §) is a polynomial in £, homogeneous of degree 2 — v, and an
even polynomial in w.

In the last sum in (13.18), A§M+u—£ is homogeneous in & of degree £ — v, so in
this sum

(1321)  1"Ay (x, @) B (x. & DAY, 1, (X, @, 8) = 1" Hyty (x, 0, 6),

where, as in (13.20), H ¢, (x, , £) is a polynomial in £, homogeneous of degree
2 — v, and an even polynomial in w. Thus

(13.22) Doppo(t.x.6) = %Y Hypty (%, 0.8) = 1" Ky (x, 0. §).
Ly
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where K, is a polynomial in £, homogeneous of degree 2 — v, and an even
polynomial in w. It follows that

t
(13.23) Agpin(t,x,8) = / SPK o (x, sV2E,E) ds
0

has the properties stated in Lemma 13.1, whose proof is complete.
The analysis of (13.12) yields estimates on a (¢, x, §), easily obtained by writ-
ing (for j =2u +v,v =1o0r2)
(13.24) aj(t,x,§) = t“HA’; (x, 0, £)e L2x@)/2,=1L2(x.0)/2
and using the simple estimates

(13.25) o[t L2002 < ¢ (1]g?) e RO < 0y

Note that 411 = (/2 if j is even; if j is odd, then r#+1 = /2. t1/2 and the

factor £1/2 can be paired with the linear factor of £ in A% . Thus we have estimates
(13.26) la,(t,x. £)] < C;1?

and

(13.27) laj(t.x.6)| = C;(€) 7.

Derivatives are readily estimated by the same method, and we obtain:

Lemma 13.2. For0 <t <T, k > —j, we have
(13.28) t*/2Dta;(t,x.€) boundedin 75+,

We can construct a function a(z, x, £) such that each difference a(z, x, §) —
ij ag(t, x, £) has the properties (13.28), and then, for u(¢, x) given by (13.22),
we have u(0, x) = f(x) and

d
(13.29) (a_t + L)u(l,x) =r(t,x),
where r (¢, x) is smooth for ¢ > 0 and rapidly decreasing as t \ 0. If the construc-
tion is made on a compact manifold M, energy estimates imply that the difference
between u(t,x) and v(t,x) = e 'L f(x) is smooth and rapidly decreasing as
t \ 0, forall f € D'(M). Consequently the “heat kernel” H(t, x, y), given by

(13.30) L f(x) = / H(tox.y) f() dV().
M
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and the integral kernel Q(z, x, y) of the operator constructed in the form (13.2)
differ by a function R(¢, x, y), which is smooth on [0, 00) x M x M and rapidly
decreasing as t \ 0.

Look at the integral kernel of the operator

(13.31) Q;t,x,D)f = /a,(z,x,g)el’xff(g) dE,

which is

1330 Qxn =@ [aex et de.
R~7

For a;(t, x, §) in the form (13.11)—(13.12), we obtain

(1333) Qj([,x,y) — [(j_n)/z qj(x’t—l/Z(x_y)),

where

(13.34) do(x,2) = (27)" / L2, icE g
R}’l

and, for j > 1,
(1335)  g;(x.9) = @Qn)~" / A (x5 §)e 20D g,
Rn
We can evaluate the Gaussian integral (13.34) via the method developed in

Chap. 3. If, in the local coordinate system used in (13.2), L, (x, &) = L(x)& - &,
for a positive-definite matrix £(x), then

-1/2
(13.36) Go(x.2) = [det(47r£(x))] e9@e/4,
where G(x) = L(x)~!. Consequently,
-1/2
(1337)  Qolt.x.y) = (nt)™/2[detL(x)| eI ar,
The integrals (13.35) can be computed in terms of

[ —-1/2
(13.38) (2”)_n/Sﬂe_LZ(x’g)elZ'EdE = [det(4n£(x))] DB~/

= pp(x,2) e~ 9()z2/4
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where pg(x, z) is a polynomial of degree |B| in z. Clearly, pg(x, z) is even or odd
in z according to the parity of |8|. Note also that, in (13.35), A’; (x,&,8) is even
or odd in § according to the parity of j. We hence obtain the following result.

Proposition 13.3. If L is a second-order,; elliptic differential operator with pos-
itive scalar principal symbol, then the integral kernel H(t, x, y) of the operator
e~ 'L has the form

(13.39) H(t,x,y) ~ Zt(j_")/z pi(x, 172 (x — y)) e 9D GD)/4
Jj=0

where p;(x,z) is a polynomial in z, which is even or odd in z according to the
parity of j.

To be precise about the strong sense in which (13.39) holds, we note that, for
any v < oo, there is an N < oo such that the difference Ry (¢, x, y) between
the left side of (13.39) and the sum over j < N of the right side belongs to
C" ([0, 00) x M x M) and vanishes to order v as ¢ \ 0.

In particular, we have

(13.40) H(t.x,x) ~ Y 1724 pyi(x.0),
=0

since p;(x,0) = 0 for j odd. Consequently, the trace of the operator e~ L has
the asymptotic expansion

(13.41) Tre 't ~72(ag + art + azt® +---),
with
(13.42) a; :/pzj(x,O)dV(x).

M

Further use will be made of this in Chaps. 8 and 10.

Note that the exponent in (13.39) agrees with r(x, y)2/4t, up to O(r3/t), for
x close to y, where r(x, y) is the geodesic distance from x to y. In fact, when
L = —A, the integral operator with kernel

(13.43) Ho(t,x,y) = (dmt)™/2 T @?/4 4 5

is in some ways a better first approximation to e ~*Z than is (13.2) with a(t, x, £)
replaced by ag(t, x, &) = e L2058 (See Exercise 3 below.) It can be shown that

9
(13.44) <8_t n Lx)Ho(t,x,y) —0(tx,y), >0,
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is the integral kernel of an operator that is regularizing, and if one defines

(13.45) Ho#0(t, x,y) =/ /Ho(t—s,x,z)Q(s,z,y)dV(z) ds,
0
M

then a parametrix that is as good as (13.39) can be obtained in the form
(13.46) ~ Ho — Ho#Q + Ho#0#Q —---.

This approach, one of several alternatives to that used above, is taken in [MS].
One can also look at (13.43)—(13.46) from a pseudodifferential operator per-
spective, as done in [Gr]. The symbol of /9t + L isit + L(x,§), and

(13.47) Ho(x,7,£) = (ir + Lo(x, g))_1 € Siho(R x M),

The operator with integral kernel Ho(# — s,x,y) given by (13.43) belongs to
OPS 1_/12,0(]1% x M) and has (13.47) as its principal symbol. This operator has two
additional properties; it is causal, that is, if v vanishes for r < T', so does Hyv,
for any 7', and it commutes with translations. Denote by C" the class of operators
in OPS{’;Z,O(]R x M) with these two properties. One easily has P; € "/ =
Py P, € C™1TM2 The symbol computation gives

9
(13.48) (5+L)H0:I+Q, 0ec,

and from here one obtains a parametrix
(13.49) HeC', H~Hy—HyQO + HyQ>—---.

The formulas (13.46) and (13.49) agree, via the correspondence of operators and
their integral kernels.

One can proceed to construct a parametrix for the heat equation on a manifold
with boundary. We sketch an approach, using a variant of the double-layer-
potential method described for elliptic boundary problems in §11. Let 2 be an
open domain, with smooth boundary, in M, a compact Riemannian manifold
without boundary. We construct an approximate solution to

Ju
13.50 W
( ) o u
for (£, x) € RT x Q, satisfying

(13.51) u(0,x) =0, u(t,x)=h(t,x), forx € 02,
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in the form

(13.52) u="DLg(t x) :/ /g(s,y) STH(r—s,x,y) dS(y) ds,
0 y
0

where H(t, x,y) is the heat kernel on R™ x M studied above. For x € 0%,
denote by DL g (¢, x) the limit of D¢ g from within RT x Q. Asin (11.7), one
can establish the identity

1
(13.53) Dlgy =5 +Ng.

where (1/2)Ng is given by the double integral on the right side of (13.52), with
y and x both in d€2. In analogy with (11.23), we have

N € OPS, o (RT x 092).

For u to solve (13.50)—-(13.51), we need
1
(13.54) h = 5(1 + N)g.
Thus we have a parametrix for (13.50)—(13.51) in the form (13.52) with

(13.55) g~2(I =N+ N?—..)h.

We can use the analysis of (13.50)—(13.55) to construct a parametrix for the
solution operator to

i)
(13.56) a—': = Au, forx €, u(0,x)= f(x), u(t,x)=0, forx € Q.

To begin, let v solve

0 ~
(13.57) a—’; — AvonR* x M, v(0) =7,

where

f(x) = f(x), forx e,
0, forxeM\Q.

(13.58)
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One way to obtain u would be to subtract a solution to (13.50)—(13.51), with
—L=Ah=v |]R+X 9q- This leads to a parametrix for the solution operator for
(13.56) of the form

oH
v,

p(t,x,y) =H(,x,y)— /Ooo / h(s,z,y) (t —s,x,2) dS(z) ds,
a0

(13.59)
h(stsy) ~ 2H(s,z,y) + - )
where, as above, H(t, x, y) is the heat kernel on Rt x M.

We mention an alternative treatment of (13.56) thit has some advantages. We
will apply a reflection to v. To do this, assume that €2 is contained in a compact
Riemannian manifold M, diffeomorphic to the double of 2, andlet R : M — M
be a smooth involution of M, fixing 02, which near 92 is a reflection of each
geodesic normal to 0€2, about the point where the geodesic intersects d€2. Pulling

back the metric tensor on M by R yields a metric tensor that agrees with the
original on d€2. Now set

(13.60) ui(t,x) =v(t,x) — v(l, R(x)), x € Q.

We see that 1 satisfies

]
(13.61) % = Aur+g w©0,x)=f u(t,x) =0, forx € I,

where
(13.62) g=L"g o T(t.x) =v(t, R(x)),

and where LY is a second-order differential operator, with smooth coefficients,
whose principal symbol vanishes on d€2. Thus the difference u — u; = w solves

9
(13.63) % —Aw—g, w0) =0, w(tx)=0, forx e dQ.

Next let v, solve

9 _
(13.64) % — Avs—FonRT x M, v(0) =0,

where
g(t,x) = g(t,x), forx e,
0, forx e M\ Q,

(13.65)
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and set

(13.66) U2 = V2|4 g

It follows that wy = u — (u; + uy) satisfies

ow
(13.67) 8_12 = Aw, onRT x 2, w2(0) =0, wa|pt 00 = —2|gtrsa-

Now we can obtain w, by the construction (13.52)—(13.55), with

h = _vziR+x3§Z'
To illustrate the effect of this construction using reflection, suppose that, in
(13.56),

(13.68) f e HH(Q).

Then, in (13.57)—(13.58), 7 e H'(M),sov € C(R+, HI(M)), and hence
(13.69) up € C(RY, HJ (Q)).

Furthermore, given the nature of L% and that of the heat kernel on R™ x M x M s
one can show that, in (13.62),

(13.70) g€ C(RT,L*(Q)).

that is, L? effectively acts like a first-order operator on ¥, when one restricts to
Q. It follows that g € C(R*, L?(M)) and hence, via Duhamel’s formula for the
solution to (13.64), that v, € C (R, H27¢(M)), ¥ € > 0. Therefore,

(13.71) u € C(R*, H>5(Q)),

and, in (13.67), we have a PDE of the form (13.50)—(13.51), with h €
C (R+, H?3/2€ (39)), for all € > 0. One can deduce from (13.52)—(13.55)
that w, has as much regularity as that given for u5 in (13.71).

It also follows directly from Duhamel’s principle, applied to (13.63), that

(13.72) we C(RT, H¢(Q)),

so we can see without analyzing (13.52)—(13.55) that w, has as much regularity as
mentioned above. Either way, we see that when f satisfies (13.68), the principal
singularities of the solution u to (13.56) are captured by u;, defined by (13.60).
Constructions of u and, via (13.52)—(13.55), of w, yield smoother corrections,
at least when smoothness is measured in the spaces used above.

The construction (13.56)—(13.67) can be compared with constructions in §7 of
Chap. 13.
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Exercises

1. Let L be a positive, self-adjoint, elliptic differential operator of order 2k > 0 on a
compact manifold M, with scalar principal symbol L, (x, £). Show that a parametrix
for du/dt = —Lu can be constructed in the form (13.2)~(13.3), with a (¢, x, §) of the
following form, generalizing (13.11)-(13.12):

aj(t,x,§) = Aj(t,x,g)e_tL%(X,E)’

where Ag(¢,x,§) =landif u =0,1,2,... andv € {1,...,2k}, then

b5 = (08 0=
where Angrv(x ,w,§) is a polynomial in &, homogeneous of degree 2k — v, whose

coefficients are polynomials in @, each monomial of which has degree (in @) that is an

integral multiple of 2k, so Agku+v(x,e”i/kw, £) = Agku+v(x,w,$).

2. In the setting of Exercise 1, show that
Tre L ~ t_"/Zk(ao +aytVE 4 ap?lk 4 ),

generalizing (13.41).
3. Let gk (y,x) denote the components of the metric tensor at x in a normal coordi-

nate system centered at y. Suppose —Lu(x) = Au(x) = gjk (y,x)dj0gu(x) +
bl (y,x) d;u(x) in this coordinate system. With Ho(z,x,y) given by (13.43), show
that

d
(5 + Lx) Ho(t,x,y)
= Ho(t,x,Y){(Zl)_z[gjk(x,x) — /Ry, 0] =y )Gk — )

- g/ jrx) =gl j(rox) = b (3. x)(x; — yj>]}

o(e5) (=)

Compare formula (2.10) in Chap. 5. Note that g ;5 (v, y) = 8k, ¢gjx (¥, y) = 0, and
b7 (y,y) = 0. Relate this calculation to the discussion involving (13.43)—(13.49).

4. Using the parametrix, especially (13.39), show that if M is a smooth, compact Rieman-
nian manifold, without boundary, then

= Hy(t,x,y)

e'A ek — k)

is a strongly continuous semigroup, for each k € Z7T.

14. The Weyl calculus

To define the Weyl calculus, we begin with a modification of the formula (1.10)
for a(x, D). Namely, we replace el X gip-D by e!@X+p-D) and set

(14.1) a(X, Dyu = / 6(¢. p)e' CXHPD) 4 dg dp,
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initially for a(x, &) € S(R2"). Note that v(f, x) = e!*@X+PD)y(x) solves the
PDE

av av )
(14.2) i Xi:pjgj +i(g-x)v, v(0,x)=u(x),

and the solution is readily obtained by integrating along the integral curves of
d/dt — )" p; 9/0x;, which are straight lines. We get

(14.3) e @XFTPDYy(x) = 1 IXTITPI2 y(x + p).

Note that this is equivalent to the identity

(14.4) o!@X+pD) _ ,iqp/2 ,igX ,ipD

If we plug (14.3) into (14.1), a few manipulations using the Fourier inversion
formula yield

xty

(14.5) a(X,Dyu(x) = Qn)™" /a( 3

£)e' I u(y) dy .

which can be compared with the formula (1.3) for a(x, D). Note that a(X, D) is
of the form (3.2) with a(x, y, §) = a((x +y)/2, E), while a(x, D) is of the form
(3.2) with a(x, y,&) = a(x, ). In particular, Proposition 3.1 is applicable; we
have

(14.6) a(X, D) = b(x, D),

where

Xty

(14.7) b(x,£) = e!PeDy a( :

£)|,_, = PP ar ).

Ifa(x,§) € Sl’)’,’ ,with 0 < 6 < p < 1, then b(x, &) also belongs to S;’fs and,
by (3.6),

jlel
(14.8) b(x.§) ~ Y 27 DEDYa(x. ).

a>0

Of course this relation is invertible; we have a(x, £) = e~(/2PeDxp(x &) and a
corresponding asymptotic expansion. Thus, at least on a basic level, the two meth-
ods of assigning an operator, either a(x, D) or a(X, D), to a symbol a(x, §) lead
to equivalent operator calculi. However, they are not identical, and the differences
sometimes lead to subtle advantages for the Weyl calculus.
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One difference is that since the adjoint of ¢/ (@ X+P-D) jg ¢=i(@-X+1-D) e have
the formula

(14.9) a(X,D)* =b(X,D), b(x,€) =a(x,§)",
which is somewhat simpler than the formula (3.13)—(3.14) for a(x, D)*.

Other differences can be traced to the fact that the Weyl calculus exhibits cer-
tain symmetries rather clearly. To explain this, we recall, from the exercises after
§1, that the set of operators

(14.10) e't ¢! X o'PD = 7(1.q. p)

form a unitary group of operators on L?(R"), a representation of the group H",
with group law

(14.11) (t.q.p)o(.q' . p)=@t+t"+p-q.qa+4.p+p).
Now, using (14.4), one easily computes that

(14.12) ei(t+q~X+p~D) ei(z’+q’~X+p’~D) — ei(s+u~X+v~D),
withu=¢g +¢q’,v=p+ p’,and

1 1
(14.13)  s=t+1t + E(p.q’ —gq-p)=t+1+ Ea((p,q), (r'.4)).
where o is the natural symplectic form on R” x R”. Thus
(14.14) n(t.q. p) = ' CHIXTID)

defines a unitary representation of a group we’ll denote H”, which is R x R?"
with group law

1
(14.15) tw) - w) = (t +1t' + Eo(w, w),w + w’),

where we have set w = (g, p). Of course, the groups H"” and H” are isomor-
phic; both are called the Heisenberg group. The advantage of using the group
law (14.15) rather than (14.11) is that it makes transparent the existence of the
action of the group Sp(n, R) of linear symplectic maps on R?”, as a group of
automorphisms of H”. Namely, if g : R?” — R?" is a linear map preserving the
symplectic form, so o (gw, gv) = o(w, v) for v, w € R?", then

(14.16) a(g) :H* > H",  a(g)(t,w) = (1. gw)
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defines an automorphism of H”, so

(14.17) @t w)- (', w) = (s,v) = @, gw) (', gw) = (s, gv)

and x(gg’) = a(g)a(g’). The associated action of Sp(n, R) on H" has a formula

that is less clean.
This leads to an action of Sp(n, R) on operators in the Weyl calculus. Setting

(14.18) ag(x,§) = a(g_l(x,f;‘)),

we have
(14.19)  a(X,D)b(X,D) =c(X,D) = ays(X,D)be(X, D) = cg(X, D),

for g € Sp(n, R).
In fact, let us rewrite (14.1) as

a(X,D) = /&(w)n(O, w) dw.
Then
a(X,D)b(X, D)

_ ~ rio ! ’ ’
(14.20) = // a(w)b(w")m (0, w)r(0,w’) dw dw

= / / a(w)b(w)e® @270, w + w') dw dw',
so ¢(X, D) in (14.19) has symbol satisfying
(14.21) c(w) = Q2mr)™ /Ez(w —w')b(w)e 7@ wN/2 gy

The implication in (14.19) follows immediately from this formula. Let us write
c(x,&) = (a o b)(x, &) when this relation holds.
From (14.21), one easily obtains the product formula

(1422)  (aob)(x,&) = PPrPemDrPilg(x £)b(y, ) 3
y=x,n=

Ifa € SZS, b e S:f,&, 0 <6 < p =< 1, we have the following asymptotic
expansion:

1
(14.23) (aob)(x.£) ~ab+ ) ﬁ{a,b}j(x, £),

Jjz1
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where

(14.24)  {a,b};(x.) = (-%)’(ay g = B) ale. DO
For comparison, recall the formula for

(14.25) a(x, D)b(x, D) = (a#b)(x, D)

given by (3.16)—(3.20):

(th)(x.§) = P PaGe b8

(14.26) el
~ab+ )" (;—)!aga(x, £)0%b(x. £).

a>0

In the respective cases, (a o b)(x, &) differs from the sum over j < N by an

element of S m+“ N(®=9) and (a#b)(x, £) differs from the sum over |a| < N by
an element of the same symbol class.
In particular, for p = 1, § = 0, we have

(14.27) (aob)(x,€) =a(x,£)b(x,£) + {a b}(x,£) mod Sy 72,

where {a, b} is the Poisson bracket, while

da ab
§j ox

m—+u—2
mod S7’g" 7.

(14.28) (a#b)(x,&) = a(x,&)b(x, &) — lZ 3

Consequently, in the scalar case,

[a(X, D),b(X, D)] = [a(x, D), b(x, D)]

14.29
(1629) = e(x, D) = e(X, D) mod OPS{"y" 2,
with

(14.30) e(x, &) =i{a,b}(x,§).

Now we point out one of the most useful aspects of the difference between
(14.27) and (14.28). Namely, one starts with an operator A = a(X,D) =
ai(x, D), maybe a differential operator, and perhaps one wants to construct
a parametrix for A, or perhaps a “heat semigroup” e~*4, under appropriate
hypotheses. In such a case, the leading term in the symbol of the operator
b(X, D) = b1(x, D) used in (14.20) or (14.25) is a function of a(x, &), for exam-
ple, a(x, £)71, or e~19(.8) But then, at least when a(x, &) is scalar, the last term
in (14.27) vanishes! On the other hand, the last term in (14.28) generally does
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not vanish. From this it follows that, with a given amount of work, one can often
construct a more accurate approximation to a parametrix using the Weyl calculus,
instead of using the constructions of the previous sections.

In the remainder of this section, we illustrate this point by reconsidering the
parametrix construction for the heat equation, made in §13. Thus, we look again
at

(14.31) ?)_’: =—Lu, u(0)=f
This time, set
(14.32) Lu =a(X, D)u+ b(x)u,
where
B =) g WEiE+ D L
1433) a(x,£) =Y g EE + )L (xE

=g(x. ) + £(x, ).

We assume g(x, £) is scalar, while £(x, S) and b(x) can be K x K matrix-valued.
As the notation indicates, we assume (g/%) is positive-definite, defining an inner
product on cotangent vectors, corresponding to a Riemannian metric (g;¢). We
note that a symbol that is a polynomial in £ also defines a differential operator in
the Weyl calculus. For example,

{(x, D)u = sz(x) dju =
(14.34) 1
X D= () jut 5 3 (@

and
a(x,D) = Z ajr(x)0;0ku =
1
(1435)  a(X.Dyu= Y |a()d;0u + (3;a0)0u + 7 (3;0¢au]
1
= > [0t + 0 0a0u].
We use the Weyl calculus to construct a parametrix for (14.31). We will begin by
treating the case when all the terms in (14.33) are scalar, and then we will discuss
the case when only g(x, ) is assumed to be scalar.

We want to write an approximate solution to (14.31) as

(14.36) u= E(t X,D)f.
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We write
(14.37) E(t,x,§) ~ Eo(t,x,8) + E1(t.x,§) + -+

and obtain the various terms recursively. The PDE (14.31) requires
ad
(14.38) gE(l,X, D)= —-LE(t,X,D)=—(LoE)(t,X,D),

where, by the Weyl calculus,

(14.39) (LoE)(t,x,§) ~L(x,8§)E(t,x,&) + Z %{L, E}i(t.x,8).
j=17

It is natural to set
(14.40) Eo(t,x,£) = e 198,

as in (13.9). Note that the Weyl calculus applied to this term provides a better
approximation than the previous calculus, because

(14.41) {a, e} = 0.

If we plug (14.37) into (14.39) and collect the highest order nonvanishing terms,
we are led to define E;(z, x, §) as the solution to the “transport equation”

oE 1
(14.42) 8_11 =—ak; - E{a’ Eo}2 —b(x)Eo, E1(0,x,§)=0.
Let us set
1 —ta —ta(x,§)
(14.43) Qq(t,x, &) = —E{a,e }a —b(x)e s

Then the solution to (14.42) is
t
(14.44) Ei(t,x.§) = / 6D Q (5, x, ) ds.
0

Higher terms E; (¢, x,§) are then obtained in a straightforward fashion. This
construction is similar to (13.6)—(13.10), but there is the following important dif-
ference. Once you have Ey(t, x,§) and E;(t, x, §) here, you have the first two
terms in the expansion of the integral kernel of e "L on the diagonal:

(14.45) K, x,x) ~ co(x)t_"/2 + cl(x)t_"/2+1 + .-
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To get so far using the method of §13, it is necessary to go further and compute
the solution ax (¢, x, £) to the next transport equation. Since the formulas become
rapidly more complicated, the advantage is with the method of this section. We

proceed with an explicit determination of the first two terms in (14.45).
Thus we now evaluate the integral in (14.44). Clearly,

t
(14.46) / e(s—z)a(x,é)b(x)e—sa(x,s) ds — tb(x)e_’“(x’g).
0
Now, a straightforward calculation yields
s ) 52 )
(14.47) {a,e™%}, = EQ(V a)e ¢ — ZT(Va, VZa)e™ ¢,

where

(1448)  O(V2a) = Y| (95, 06, @) (I 0x, @) — (D, D, @) (9, D5, )|

k.t
and
T(Va,V3a)
(14.49) = %{(3& Jg,a)(9x, @) (Dx, @)
+ (0x; 0x,a) (g, ) (3g,a) — 2(0g, 3xea)(3x](a)(a&a)}.
Therefore,

t 12 /3
(14.50) / ey TN, ds = ZQ(Vza)e_m — ET(Va, Via)e 4,
0

We get E1(t, x, £) in (14.44) from (14.46) and (14.50).
Suppose for the moment that £(x,§) = 0 in (14.33), that is, a(X, D) =
g(X, D). Suppose also that, for some point xg,

(14.51) Vi g% (x0) =0, g/ (x0) = 8.

Then, at xo,

0 (Vza) = Z(a& a&ea) (axk Ox, a)

k.t

32 Jjk
=2) S0kt

Jat Ot

(14.52)
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and
T(Va, Vza) = Z(axk axza) (aéka) (aéza)
kL
(14.53) /k
=4y (x0)&; Exem.
jklm m

Such a situation as (14.51) arises if g/% (x) comes from a metric tensor g ik (x),
and one uses geodesic normal coordinates centered at xo. Now the Laplace-
Beltrami operator is given by

(14.54) Au=g™"?% 0,87 ¢" 20 u,

where g = det(gx). This is symmetric when one uses the Riemannian volume
element dV = /g dxy---dx,. To use the Weyl calculus, we want an operator
that is symmetric with respect to the Euclidean volume element dx; - --dx,, so
we conjugate A by multiplication by g'/*:

(14.55)  —Lu=g"* A(g™"*u) = g7/* ) " 0;87% "> 0 (g7"/*u).

Note that the integral kernel k7 (x, y) of el is gl/4 ()KL (x, y)g~ 1/4(y); in par-
ticular, of course, the two kernels coincide on the diagonal x = y. To compare L
with g(X, D), note that

(14.56) —Lu=Y_09,;g% 0pu+ ®(x)u,
where
(1457) qD(x) — Z a] (gjkgl/2 —1/4 Zgjk 1/2 1/4)(akg_l/4)-

If g7¥ (x) satisfies (14.51), we see that
(14.58) @ (xo) = Zaz “xo) = — Za g(xo).
Since g(xo + heg) = det(8x + (1/2)h*82g k) + O(h?), we have

1
(14.59) P(xo) = =7 D 07gj; (Xo).
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By comparison, note that, by (14.35),

g(X.Dyu=—Y"0;¢’% dpu+ W(x)u,

(14.60) 1 "
W) =—7 ) 950k’ ().

If xy is the center of a normal coordinate system, we can express these results
in terms of curvature, using

. 1 1
(14.61) dmg’* (x0) = 3 Rjthom (%0) + 3R jmke (Xo),

in terms of the components of the Riemann curvature tensor, which follows from
formula (3.51) of Appendix C. Thus we get

I 2 1
®(x0) = =7 3 D Rjtjelxo) = = S(xo),
L
(14.62) ’

11 1
W(xo) = =7 3> [Ryjkk (o) + Riikj (x0)] = 1S (x0).
Jk

Here S is the scalar curvature of the metric g jx.
When a(X, D) = g(X, D), we can express the quantities (14.52) and (14.53)
in terms of curvature:

2 4
(1463)  Q(V2g) =23} Ryuke(xo)éjék = 3 ) Ricje(xo)E; bk,
Jk,L J.k

where Ric ;. denotes the components of the Ricci tensor, and
2
(14.64) T(Ve, V) =43 > Rjtm(X0)é;ékéebm =0,
J.k,Lm

the cancelation here resulting from the antisymmetry of R ¢k, in (j,£) and in
(k,m).
Thus the heat kernel for (14.31) with

(14.65) Lu=g(X,D)u+ b(x)u

is of the form (14.36)—(14.37), with Eg = e "848 and

2 r
Ei(t.x.8) = (~ib(x) - 5 O(Vg) + . T(Vg. Vg) Je '8

(14.66)
2

= ~(1b() + = Ric(g. ) 1#¢D),

at x = xo. Note that g(XO, S’-‘) = |‘§>:|2
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Now the integral kernel of E; (¢, X, D) is

(14.67) Kj(tx) = @ [ B (1552 6)e 0% e
In particular, on the diagonal we have
(14.68) Kj(tx0 = @ [ B de

We want to compute these quantities, for j = 0, 1, and at x = x. First,
(14.69) Ko(t, X0, X0) = (271)_”/["5‘2 dg = (4mr)™/2,

since, as we know, the Gaussian integral in (14.69) is equal to (7r/ t)”/ 2 Next,
(27[.)” Kl (Zv X0, xO)

14.70 > 2 2
T o b [ ag - TS R [ e P ag

We need to compute more Gaussian integrals. If j # k, the integrand is an odd
function of £;, so the integral vanishes. On the other hand,

[geretas = [ eperitag

(14.71) .
1 1
— __ E e—tlE\zd%- — _gn/2n/2-1
Thus
_n/2 l
(14.72) Ki(t,x0,x0) = —(4mt) (Zb(xo) + ES(xo)),

since ) Ricj; (x) = S(x).

As noted above, the Laplace operator A on scalar functions, when conjugated
by g1/4, has the form (14.65), with b(xg) = ®(x¢) — ¥(x¢) = —S(x¢)/4. Thus,
for the keat kernel e’2 on scalars, we have

4
(14.73) K1 (1, x0, x0) = (471t)_"/28$(x0).
We now generalize this, setting

(14.74) a(x.§) = g(x.6) +L(x.6), L(x.6) =Y £;(x)E.
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Continue to assume that a(x, §) is scalar and consider L = a(X, D) + b(x). We
have

(14.75) Eo(t,x, &) = e ta(x.8) — ,—1l(x.8) e—tg(xaé)’

and E1 (¢, x, &) is still given by (14.42)—(14.50). A point to keep in mind is that we
can drop £(x, £) from the computation involving {a, e %},, altering K1 (¢, x, x)
only by o(t /21y as t \ 0. Thus, mod o(¢ /21, K|(t, xo, Xo) is still given
by (14.73). To get Ko (t, xo, X0), expand e~ in (14.75) in powers of ¢:

2
(14.76) Eo(tx.8) ~ [1 = 16(x. ) + %g(x’ B 4o JesD,

When doing the &-integral, the term 7£(x, £) is obliterated, of course, while, by
(14.71),

t? 1
(14.77) E/e(xo,g)ze—"flz d§ = Zn"/zz—"/“l > j(xo)%.
Hence, in this situation,

(14.78)
Ko(t, x0, x0) + K1 (¢, X0, x0)

= (4m)—"/2[1 +1 (Z €;(x0)? — b(xo) — 11—25(x0)) + O(tz)].

Finally, we drop the assumption that £(x, £) in (14.74) be scalar. We still as-
sume that g(x,&) defines the metric tensor. There are several changes whose
effects on (14.78) need to be investigated. In the first place, (14.41) is no longer
quite true. We have

) da 0 da 0
14.7 —tay _ L 04 9 ,ta_ % 9 —al
(14.79) ta. e =3 > % o, T }

In this case, with a(x, £) matrix-valued, we have

aie_’“ = —te™'* E(ad(—1a)) (aa_a)

X j X j

(14.80) / 5 /
a

= —te 14 E(ad(—tﬁ)) (a) s

where E(z) = (1 —e™%)/z, s0

0 —ya g da [, O
E)x,-e =1e axj+2€’8x,- +

da

an

(14.81)

= —1 + O(PJe)e ™ + -
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and so forth. Hence

—ta _ az a_ﬁ —ta

This is smaller than any of the terms in the transport equation (14.42) for Ey, so
it could be put in a higher transport equation. It does not affect (14.78).
Another change comes from the following modification of (14.46):

t
/e(s—t)a(x,&")b(x)e—sa(x,S) ds
(14.83) 0 ,
_ [ / =D (1)p=5Ux.) ds] 18

0

This time, b(x) and £(x, £) may not commute. We can write the right side as

/tes ad £(x,£) [b(x)] ds e—t@(x,g)e—tg(x,g)
(14.84) 0 Z
= t{b(x) = 5 (£ 9P + b)Lx, §) + ...}e—tg(x,@.

Due to the extra power of ¢ with the anticommutator, this does not lead to a change
in (14.78).

The other change in letting £(x, £) be nonscalar is that the quantity £(x, £)% =
> € (x)k(x)E; & generally has noncommuting factors, but this also does not
affect (14.78). Consequently, allowing £(x, £) to be nonscalar does not change
(14.78). We state our conclusion:

Theorem 14.1. If Lu = a(X, D)u + b(x)u, with
(14.85) a(x,£) =) g+ Y Li(0E),

where (g7%) is the inverse of a metric tensor (gjk), and L;(x) and b(x) are
matrix-valued, and if g ji(x0) = 8k, Vg k(xo) = 0, then the integral kernel
K(t,x,y) of e has the property

(14.86)
K(t, X0, x0) = (4m)—"/2[1 + t(Z €, (x0)% — b(x0) — %S(xo)) + 0(:2)].

Exercises

1. Ifa(x,€) = > aq(x)E% is a polynomial in £, so that a(x, D) is a differential operator,
show that a(X, D) is also a differential operator, given by
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]|,
=5 ¥ ()2 7l DY ag(x) DBu(x).

@ Bty=a

a(X, D)u(x) = Z DS [aa(x —;

Verify the formulas (14. 34) and (14.35) as special cases.
2. If pe S mo and g € S o are scalar symbols and p o q is defined so that the product
p(X, D)q(X D) = (p ° q)(X D), as in (14.22)—(14.23), show that

gopoqg=gq medSm+2M —2

More generally, if p ;. € ST Pjk = Pkj.-and g € S{LO, show tha
+2u—2
D djopikodr =Y 4;pjkdr mod ST T

Jik Jik

Relate this to the last identity in (14.35), comparing a second-order differential operator
in the Weyl calculus and in divergence form.

15. Operators of harmonic oscillator type

In this section we study operators with symbols in S7*(R"), defined to consist of
functions p(x, £), smooth on R?” and satisfying

(15.1) |DEDEp(x.€)| < Cap(l + |x| + |y 1I-IAL
This class has the property of treating x and & on the same footing. We define
OP ST (R™) to consist of operators p(X, D) with p(x,§) € ST*(R"). Here we
use the Weyl calculus, (14.5). In this setting, the Sp(n, R) action (14.18)—(14.19)
can be well exploited. This action does not preserve S7’;(R"), but it does preserve
ST'(R™). The class OPST'(R") has been studied in [GLS Ho4], and [V], and
played arole in mlcrolocal analysis on the Heisenberg group in [T2].

Note that
(15.2) SY(R™) C 8P (R,
so it follows from Theorem 6.3, plus (14.6)—(14.8), that
(15.3) P € OPS)(R") = P : L*(R") — L*(R").

Ifa e ST and b € S{L, variants of methods of §3 and (14.22)—(14.24) give

(15.4) a(X.D)b(X, D) = (a o b)(X.D) € OPS™R"),
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with
(155) (@ob)(r &) ~ab+ Y ~ta.b}(x.6).
Jj=1 J:
where {a, b}; is given by (14.24). Note that
(15.6) {a,b}; € ST (R).

We mention that if either a(x, &) or b(x, §) is a polynomial in (x, £), then the sum
in (15.5) is finite and provides an exact formula for (a o b)(x, §).

The set of “classical” symbols in S7* (R"), denoted S™ (R"), is defined to con-
sist of all p(x,§) € S7"(R") such that

(15.7) P, &) ~ D pj(x.8),

Jj=0

with p; (x, &) smooth and, for |x|?> + |£? > 1, homogeneous of degree m — 2j
in (x, £). The meaning of (15.7) is that for each N,

N-1
(15.8) P& =Y pi(x.£) €SPV R,
j=0
It follows from (15.4)—(15.6) that
aeS"(R"), b e S*(R") = a(X,D)b(X, D)
(15.9) = (aob)(X,D),aob e S"THR").

Sobolev spaces tailored to these operator classes are defined as follows, for
kezt.

HER™) = {u e L2R") : Puc L2(R"), V P € D¥(R™)},
(15.10)
DF(R") = spanof x# D%, || +|B| < k.

Note that D¥(R") C OP S¥(R"). The following Rellich type theorem is straight-
forward:

(15.11)  The natural inclusion H¥(R") < L?(R") is compact, ¥ k > 1.
The results (15.4) and (15.3) yield, for k € Z,

(15.12) A€ OPSTF(R") = A: L2(R") - H K ®R™).
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We will obtain other Sobolev mapping properties below. These spaces will be seen
to be natural settings for elliptic regularity results.

An operator P = p(X, D) € OPST"(R") is said to be elliptic provided
(15.13) PG )7 = CA+ x| + 1§D,

for |x|? + |£|? sufficiently large. With the results (15.4)—(15.6) in hand, natural
variants of the parametrix construction of §4 yield for such elliptic P,

Q € OPS;™(R"), PQ=I1+R,., QP =1+R,,

(15.14) R; € OPST®([R") = (| OPST*(R"),
k>1

Clearly, for eachm € R,

(15.15) Am(x,E) = (1 + |x]* + [gH)™/?

is the symbol of an elliptic operator in OP S7*(R"). We have
(15.16) Am(X,D)A_n(X,D) =1 + Ry, Ry € OPST*(R").

In this situation, (15.5) applies, and {A4,,, A—m}1 = 0.
We now introduce the central operator in this class, the harmonic oscillator,
(15.17) H=—A+|x]*= Z(——erf).

2
= 9%

This is an elliptic element of OPS?(R™), with symbol |x|? + |£|2. It defines a
positive, self adjoint operator on L2(R"). Note that

Li=0; +x; :>L;f =—0; +x;
(15.18) = LjL; = —07 +x7 -1
= H=) LiL;+n,

so H is positive definite, with H~! bounded on L?(R"). The following result
will be very useful.

Theorem 15.1. For all s € (0,00), H™* € OPS™25(R"). With A (x,£) as in
(15.15),

(15.19) H™® — A _54(X,D) € OPS™H2(R").

We postpone the proof of Theorem 15.1 and observe some of its consequences.
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Proposition 15.2. Fork € Z™,
(15.20) H7*? . [2(R") — HFR")

is an isomorphism.

Proof. The mapping property (15.20) follows from Theorem 15.1 and (15.12). If
k = 24 is even, the two sided inverse to (15.20) is

(15.21) H': H*(R") — L*(R").
We need to show that if k = 2¢ — 1 is odd,
(15.22) H*? = g2 25N R — L2 (R™).

Indeed, take u € H2¢~1(R"). Then

(15.23) H'u=Y"Xju;. u;jeL*R"). X; € D'R"),
and hence
(15.24) HEY2y = Z H™Y2X u;,

which belongs to L2(R") since H_I/ZXJ € OPS°(R™).

Given Proposition 15.2, it is natural to set
(15.25) HS(R") = H™S/2L2(R"),

for s € R, and we have that this space agrees with (15.10) for s = k € Z™. For
s > 0, this says

(15.26) HE(R™) = D(H*'?).

Thus, by Proposition 2.2 of Chap. 4, we can identify H*(R") with the complex
interpolation space:

(15.27) HS(R") = [L2(R"), H*(R™)]s, s =k6, 6 € (0, 1).
Also note that

(15.28) (\H®RY=S®R". [|J H®R")=S®R".

§S<O0 §>—00

In fact, (15.10) gives Ngez+HE(R?) = S(R™), and (15.25) gives H*(R")" =
H(R").
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Given Theorem 15.1, it easily follows that
(15.29) H® € OPS*(R"), VseR.

In fact, given s > 0, take an integer k > s and write H* = H* H5™%_ Also, given
(15.25), we have, for all m, s € R,

(15.30) P € OPS"(R") = P : H*(R") — H*™(R").
Indeed, P = H-6—m/12(gb6=—m/2pg=s/2)gs/2 and HE—™/2pH—s/2 ¢

OPS?(R™) is bounded on L?(R").
We will approach the proof of Theorem 15.1 via the identity

1 oo
(1531) H™S = m/ E_ZHls_l dt, s>0.
s) Jo

Thus we have the task of writing
(15.32) e M = (X, D)

and computing %, (x, £). We need to solve

(15.33) %ht(X, D)=—-Hh{(X,D), ho(x,§) =1

Taking
(1534) bl(XvD):Hht(XvD)v H: Q(XsD)s Q(-x’g)zl-x'z—i_lé'zs

since Q(x, &) is a polynomial, the formula (15.5) for composition is a finite sum,
and it is exact:

2
(1535) (. 6) = Q. O (5.8) + Y- {0 huby (x.6).
=

Now we make the “guess” that for each t > 0, h;(x,§) is a function of |x|> +

£1* = 0,
(15.36) hi(x,8) = g(t, Q).

In that case, {Q, h;}1 = 0, and (15.33)—(15.35) lead to the equation

2 2
L e}

oh, 2 2 1
15.37) —(x,&) = — he(x, -
( ) o (x,8) (Ix[* + 181 he (x, ) + 4Zk <8x,§ g}
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with initial condition /¢ (x, ) = 1, or equivalently to solve

a 9
(15.38) = =08 —l—Q@—i-n% 2(0,0) = 1.

We now guess that (15.38) has a solution of the form
g(t. Q) = a()e" 2.

Then the left side of (15.38) is (a’/a + b’ Q)g and the right side is (—Q + Qb2 +
nb)g, so (15.38) is equivalent to

a (t)

15.39
( ) a0

nb(t), b'(t) =b()*>—1.

We can solve the second equation for H(¢) by separation of variables. Since
g(0, Q) = 1, we need b(0) = 0, and the unique solution is

(15.40) b(t) = — tanht.

Then the equation @’ /a = —n tanhf with a(0) = 1 gives
(15.41) a(t) = (coshr)™.

We have our desired formula

(15.42) By (x, ) = (cosh ) e (tanh (x> +E)

We discuss briefly why the “guess” that &, (x, £) is a function of |x|* + |£|?
was bound to succeed. It is related to the identity (14.19) for the composition of
operators transformed by ag (x,§) = a(g™ 1 (x,§)), g € Sp(n, R). If we identify
R2" with C™ and (x, £) with x + i £, then the unitary group U(n) acts on C" =
R2", as a subgroup of Sp(n, R), preserving |x|? + |£|> = |x + i£|%. It follows
from (14.9) that the set of operators whose symbols are invariant under this U(n)
action forms an algebra. From there, it is a short step to guess that e *# belongs
to this algebra. For more details, see Chap. 1, §7 of [T3].

We return to the identity (15.31), which implies

(15.43) H™ = Q_4(X,D)

with

1 o0
(15.44) O0_s(x,8) = _/ ;S—l(cosht)—ne—(tanht)(lxlzﬂélz) dt.
'(s) Jo
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To complete the proof of Theorem 15.1, it remains to show that, whenever s > 0,
(15.45) Q_s(x,&) € ST (R"), and Q_s(x,E) — A_os(x,€) € STZ2(RM).

To begin, it is clear by inspection that O _5 € C*(R?") whenever s > 0. Also, if
we set

1 1
(15.46) Qlls(x,g) = _/ tS—l(cosht)—ne—(tanht)(|x|2+\g|2) dr.
I'(s) Jo

we easily get

(15.47) O—s(x, &) — Qb (x,§) € ST®RM).

We can set t = tanh ¢ and write
b 1 a 24182
(15.48) 0 (x.6) = _/ o g (e)e—t K HED) 1
L'(s) Jo
with @ = tanh 1 and ¢ € C ([0, a]), with power series
(15.49) @(x) ~ 1+ b17% + byt + -+
Thus, as |x|? + |£]?> — oo, we have

(15.50) Q-5 (x,8) ~ D qs j(x. ),

Jj=0
with

Gs.i(x, &) = i/w o TUXPHIEP) ps+2j-1 jo
ST

L'(s+2j) 2 s— 2/
iy (P IEP)”

(15.51)
= bj

and b9 = 1. This proves Theorem 15.1.

Remark: We can sharpen (15.45) as follows. Replace A_»5(x, ) by Ay (x,§),
smooth on R?” and equal to (|x|? + |£|2)~2* for |x|?> + |£|?> > 1. Then

(15.52) O—s(x.§) = Aa(x.§) € ¥R
We make a further specific study of the harmonic oscillator H in §6 of Chap. 8,

including results on the eigenvalues and eigenfunctions of H, and an alternative
approach to the analysis of the semigroup e 4.
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We can extend the Rellich type result (15.11) as follows. By (15.11) and
(15.20), we have H~! compact on L?(R"), so H~! has a discrete set of eigen-
values, tending to 0, and hence so does H ~? forall 0 > 0. Thus H ¢ is compact
on L2(R"), and, by (15.26), also compact on H*(R"), for all s € R. This gives
the following.

Proposition 15.3. Given r < s € R, the natural inclusion
(15.53) HY(R™) — H"(R")

is compact.

If P € OPST(R") is elliptic (say a k x k system), and Q € OPS;™(R") is
a parametrix, as in (15.14), we see that the operators R; are compact on H*(R")
for all s, so we have the following.

Proposition 15.4. If P € OP ST (R") is elliptic, then, for all s € R,

(15.54) P :H' R") — H™R") is Fredholm.
Also
(15.55) Ker P, Ker P* C S(R"),

and the index of P is independent of s.

Material on the index of elliptic operators in OP 8™ (R”") will be covered in
§11 of Chap. 10. See the exercises below for some preliminary results.

Exercises

1. Incase n = 1, consider
Dq =01 + x1.

Show that D; € OPS!(R) is elliptic, and that
Index D1 = 1.

2. Incase n = 2, consider
D, — 01 +x1 02 —Xxp
2 = .
d2 + xp —01 + X1
Show that D> € OPS!(R?) is elliptic and that

Index D, = 1.

3. Inthe setting of Exercises 1-2, compute D;f Djand D; D;f, and compare with H. This
should help to compute the kernels of D ; and D;f.
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8

Spectral Theory

Introduction

This chapter is devoted to the spectral theory of self-adjoint, differential opera-
tors. We cover a number of different topics, beginning in §1 with a proof of the
spectral theorem. It was an arbitrary choice to put that material here, rather than in
Appendix A, on functional analysis. The main motivation for putting it here is to
begin a line of reasoning that will be continued in subsequent sections, using the
great power of studying unitary groups as a tool in spectral theory. After we show
how easily this study leads to a proof of the spectral theorem in §1, in later sec-
tions we use it in various ways: as a tool to establish self-adjointness, as a tool for
obtaining specific formulas, including basic identities among special functions,
and in other capacities.

Sections 2 and 3 deal with some general questions in spectral theory, such as
when does a differential operator define a self-adjoint operator, when does it have
a compact resolvent, and what asymptotic properties does its spectrum have? We
tackle the latter question, for the Laplace operator A, by examining the asymptotic
behavior of the trace of the solution operator e*2 for the heat equation, showing
that

(0.1) Tre'® = (4n1) ™2 vol Q + o(t™?), 1t \ 0,

when 2 is either a compact Riemannian manifold or a bounded domain in R”
(and has the Dirichlet boundary condition). Using techniques developed in §13
of Chap. 7, we could extend (0.1) to general compact Riemannian manifolds with
smooth boundary and to other boundary conditions, such as the Neumann bound-
ary condition. We use instead a different method here in §3, one that works without
any regularity hypotheses on 2. In such generality, (0.1) does not necessarily
hold for the Neumann boundary problem.

The study of (0.1) and refinements got a big push from [Kac]. As pursued in
[MS], it led to developments that we will discuss in Chap. 10. The problem of to
what extent a Riemannian manifold is determined by the spectrum of its Laplace
operator has led to much work, which we do not include here. Some is discussed

M.E. Taylor, Partial Differential Equations I1: Qualitative Studies of Linear Equations, 91
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_2,
© Springer Science+Business Media, LLC 1996, 2011
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in [Ber, Br, BGM], and [Cha]. We mention particularly some distinct regions in
R? whose Laplace operators have the same spectra, given in [GWW].

We have not included general results on the spectral behavior of A obtained
via geometrical optics and its refinement, the theory of Fourier integral operators.
Results of this nature can be found in Volume 3 of [Ho], in [Shu], and in Chap. 12
of [T1].

Sections 47 are devoted to specific examples. In §4 we study the Laplace
operator on the unit spheres S”. We specify precisely the spectrum of A and
discuss explicit formulas for certain functions of A, particularly

K 1/2
0.2) A VsintA, A:GA+ZM—N).

with K = 1, the sectional curvature of S”. In §5 we obtain an explicit formula
for (0.2), with K = —1, on hyperbolic space. In §6 we study the spectral theory
of the harmonic oscillator

(0.3) H =—A + x|
We obtain an explicit formula for e ~*#

Chap. 10. In §8 we study the operator

, an analogue of which will be useful in

(0.4) H=-A—-K|x|"!

on R3, obtaining in particular all the eigenvalues of this operator. This operator
arises in the simplest quantum mechanical model of the hydrogen atom. In §9 we
study the Laplace operator on a cone. Studies done in these sections bring in a
number of special functions, including Legendre functions, Bessel functions, and
hypergeometric functions. We have included two auxiliary problem sets, one on
confluent hypergeometric functions and one on hypergeometric functions.

1. The spectral theorem

Appendix A contains a proof of the spectral theorem for a compact, self-adjoint
operator A on a Hilbert space H. In that case, H has an orthonormal basis {u}
such that Au; = Aju;, A; being real numbers having only 0 as an accumulation
point. The vectors u; are eigenvectors.

A general bounded, self-adjoint operator A may not have any eigenvectors, and
the statement of the spectral theorem is somewhat more subtle. The following is
a useful version.

Theorem 1.1. If A is a bounded, self-adjoint operator on a separable Hilbert
space H, then there is a o-compact space 2, a Borel measure |, a unitary map

(1.1) W L*(Q,dwn) — H,
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and a real-valued function a € L°*° (2, dw) such that
(1.2) WHAWS(x) = a(x) f(x). [ € L*(Q.dp).

Note that when A is compact, the eigenvector decomposition above yields (1.1)
and (1.2) with (2, ) a purely atomic measure space. Later in this section we will
extend Theorem 1.1 to the case of unbounded, self-adjoint operators.

In order to prove Theorem 1.1, we will work with the operators

(1.3) U(t) = ™,

defined by the power-series expansion
o0 .
. H"
(1.4) e = (WiyT

This is a special case of a construction made in §4 of Chap. 1. U(¢) is uniquely
characterized as the solution to the differential equation

d
(1.5) EU(t) =iAU(t), U(0) = 1.
We have the group property

(1.6) Ui +1)=Uls)U@),

which follows since both sides satisfy the ODE (d/ds)Z(s) = iAZ(s), Z(0) =
U(t). If A = A*, then applying the adjoint to (1.4) gives

(1.7) U(t)* = U(-1),

which is the inverse of U(¢) in view of (1.6). Thus {U(¢) : ¢t € R} is a group of
unitary operators.

For a given v € H, let H, be the closed linear span of {U(¢)v : t € R}; we
say H, is the cyclic space generated by v. We say v is a cyclic vector for H if
H = H,.If H, is not all of H, note that HUJ- is invariant under U(¢), that is,
U (t)HvJ- - HUJ- for all 7, since for a linear subspace V' of H, generally

(1.8) Ut)V c V= U@)*Vtcvt
Using this observation, we can prove the next result.

Lemma 1.2. If U(¢) is a unitary group on a separable Hilbert space H, then H
is an orthogonal direct sum of cyclic subspaces.
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Proof. Let {w;} be a countable, dense subset of H. Take vi = w; and H; =
Hy, .If Hy # H, let v, be the first nonzero element Pyw;, j > 2, where P is
the orthogonal projection of H onto Hi, and let H, = H v, - Continue.

In view of this, Theorem 1.1 is a consequence of the following:

Proposition 1.3. If U(¢) is a strongly continuous, unitary group on H, having a
cyclic vector v, then we can take Q = R, and there exists a positive Borel measure
won R and a unitary map W : L2(R,du) — H such that

(1.9) WUOW f(x) =e™f(x), [ eL*R.dp).

The measure i on R will be the Fourier transform

(1.10) w=_
where
(1.11) c(r) = 2n)" V2 (e, v).

It is not clear a priori that (1.10) defines a measure; since { € L*°(R), we see that
W is a tempered distribution. We will show that u is indeed a positive measure
during the course of our argument. As for the map W, we first define

(1.12) W:SR)— H,

where S(R) is the Schwartz space of rapidly decreasing functions, by

(1.13) W(f) = f(Av,

where we define the operator f(A) by the formula

(1.14) F(A) = 2m)~V/? /oo F)e'™ dr.

The reason for this notation will become apparent shortly; see (1.20). Making use
of (1.10), we have

(f(Av, g(A)) = n)™! (/ f(s)eiSAv ds, / g(0)e'y dt)

= (Q2n)7! // f(s)m(ei(s_’)“‘v, v) ds dt
(1.15) A .
= 02 / £ - $)t(0) dsdo
= ((f2).¢)
= (fZ. 1.
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Now, if g = f, the left side of (1.15) is || £ (A4)v]||?, which is > 0. Hence

(1.16) (If?. ) =0, forall f e SR).

With this, we can establish:

Lemma 1.4. The tempered distribution [, defined by (1.10)—(1.11), is a positive
measure on R.

Proof. Apply (1.16) with f = |/ Fs o, where
Fso(7) = (471s)_1/ze—(’_”)2/4s, s>0,0€eR.

Note that this is a fundamental solution to the heat equation. For each
s >0, Fgo* u is a positive function. We saw in Chap.3 that Fyo * u con-
verges to i in 8’(R) as s — 0, so this implies that u is a positive measure.

Now we can finish the proof of Proposition 1.3. From (1.15) we see that W has
a unique continuous extension

(1.17) W :L*(R,du) — H,

and W is an isometry. Since v is assumed to be cyclic, the range of W must be
dense in H, so W must be unitary. From (1.14) it follows that if f € S(R), then

(1.18) e f(A) = fi(A), with fy(z) = € f(7).

Hence, for f € S(R),

(1.19) Wl AW f =W fi(A) = 7 f(2).

Since S(R) is dense in L2(R, d), this gives (1.9). Thus the spectral theorem for

bounded, self-adjoint operators is proved.
Given (1.9), we have from (1.14) that

(1200 W' f(ADW g(x) = f(x)g(x). [ €SR), ge L*R,dp),

which justifies the notation f(A) in (1.14).
Note that (1.9) implies

(1.21) WYAW f(x) =x f(x), f e L*R,duw),

since (d/dt)U(¢t) = i AU(t). The essential supremum of x on (R, ) is equal to
|A|l. Thus p has compact support in R if A is bounded. If a self-adjoint operator
A has the representation (1.21), one says A has simple spectrum. It follows from
Proposition 1.3 that A has simple spectrum if and only if it has a cyclic vector.
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One can generalize the results above to a k-tuple of commuting, bounded,

self-adjoint operators A = (Aj, ..., Ag). In that case, fort = (t1,...,t) € R¥,
set
(1.22) Uity =e"4, - A=1,41 +- + tr A

The hypothesis that the A; all commute implies U(¢) = U, (t1) - - - Ug(#x ), where
U;(s) = ¢4 U(t) in (1.22) continues to satisfy the properties (1.6) and (1.7);
we have a k-parameter unitary group. As above, for v € H, we set H, equal to the
closed linear span of {U(t)v : t € R¥}, and we say v is a cyclic vector provided
H, = H.Lemma 1.2 goes through in this case. Furthermore, for f € S(R¥), we
can define

(1.23) fi) = @t [ foersar

and if H has a cyclic vector v, the proof of Proposition 1.3 generalizes, giving a
unitary map W : L2(R¥,du) — H such that

(1.24) WlUOWF(x) = " f(x), f e L*[R*,du), teRF.

Therefore, Theorem 1.1 has the following extension

Proposition 1.5. If A = (Ai,..., Ax) is a k-tuple of commuting, bounded,
self-adjoint operators on H, there is a measure space (2, L), a unitary map
W:L*(2,du) — H, and real-valued a; € L™®(Q,dp) such that

(125)  WAWIW =a;(0) f(x).  f e LAQ.dp). 1< j <k

A bounded operator B € L(H) is said to be normal provided B and B* com-
mute. Equivalently, if we set

1 1
(1.26) A = E(B + B*), A= T(B — B¥),
i
then B = A; 4 iA;, and (A1, A2) is a 2-tuple of commuting, self-adjoint
operators. Applying Proposition 1.5 and setting b(x) = a;(x) +iaz(x), we have:

Corollary 1.6. If B € L(H) is a normal operator, there is a unitary map W :
L%(Q2,dp) — H and a (complex-valued) b € L*>(Q, d) such that

(1.27) WTIBWF(x) = b(x) f(x), f € L*(Q.du).

In particular, Corollary 1.6 holds when B = U is unitary. We next extend
the spectral theorem to an unbounded, self-adjoint operator A on a Hilbert space
H, whose domain D(A) is a dense linear subspace of H. This extension, due to
von Neumann, uses von Neumann’s unitary trick, described in (8.18)—(8.19) of
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Appendix A. We recall that, for such A, the following three properties hold:

A +1i:D(A) — H bijectively,
(1.28) U= (A—i)(A+i)"!is unitary on H,
A=i(I+U)I-U)"",

where the range of I — U = 2i(A + i)~! is D(A). Applying Corollary 1.6 to
B = U, we have the following theorem:

Theorem 1.7. If A is an unbounded, self-adjoint operator on a separable Hilbert

space H, there is a measure space (0, jt), a unitary map W : L*>(Q,du) — H,
and a real-valued measurable function a on Q2 such that

(1.29) W AW f(x) = a(x) f(x), W[ € D(A).

In this situation, given f € L*(,du), WF belongs to D(A) if and only if the
right side of (1.29) belongs to L*(2, du).

The formula (1.29) is called the “spectral representation” of a self-adjoint op-
erator A. Using it, we can extend the functional calculus defined by (1.14) as
follows. For a Borel function f : R — C, define f(A) by

(1.30) W f(A)Wg(x) = fla(x))g(x).

If f is a bounded Borel function, this is defined for all g € L2(R2,du) and
provides a bounded operator f(A) on H. More generally,

(1.31) D(f(A)) ={Wge H:geL*(Q.du)and f(a(x))g € L*(Q.dp)}.
In particular, we can define ¢4 for unbounded, self-adjoint A4, by
W—leitAWg — eita(x)g(x)

Then e'?4 is a strongly continuous unitary group, and we have the following result,
known as Stone’s theorem (stated as Proposition 9.5 in Appendix A):

Proposition 1.8. If A is self-adjoint, then iA generates a strongly continuous,
unitary group, U(t) = e'*4.

Note that Lemma 1.2 and Proposition 1.3 are proved for a strongly continuous,
unitary group U(¢) = e'4, without the hypothesis that 4 be bounded. This yields
the following analogue of (1.2):

(1.32) WIU@OWF(x) = @ f(x), [ e L*(Q,dw),
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for this more general class of unitary groups. Sometimes a direct construction,
such as by PDE methods, of U(t) is fairly easy. In such a case, the use of U(¢)
can be a more convenient tool than the unitary trick involving (1.28).

We say a self-adjoint operator A is positive, A > 0, provided (Au, #) > 0, for
all u € D(A). In terms of the spectral representation, this says we have (1.29)
with a(x) > 0 on Q. In such a case, ¢4 is bounded for r > 0, even for complex
t with Re ¢+ > 0, and also defines a strongly continuous semigroup. This proves
Proposition 9.4 of Appendix A.

Given a self-adjoint operator A and a Borel set § C R, define P(S) = ys(A),
that is, using (1.29),

(1.33) WIP(S)Wg = rs(a(x)g(x), g € L*(Q.dp).
where yg is the characteristic function of S. Then each P(S) is an orthogonal

projection. Also, if S = ;. S; is a countable union of disjoint Borel sets S,
then, foreachu € H,

Jj=1

n
(1.34) lim > P(S)u=P(S)u,
j=1
with convergence in the H -norm. This is equivalent to the statement that

n
Z 1s;(a(x))g — xs(a(x))g in L?-norm, foreach g € L*(R,dp),
j=1

which in turn follows from Lebesgue’s dominated convergence theorem. By
(1.34), P(-) is a strongly countably additive, projection-valued measure. Then
(1.30) yields

(1.35) £(4) = / F(4) (D),

P(.) is called the spectral measure of A.
One useful formula for the spectral measure is given in terms of the jump of
the resolvent R; = (A — A)™', across the real axis. We have the following

Proposition 1.9. For bounded, continuous f : R — C,

(o]

(136) f(A = lim ﬁ B f(x)[(x e A (A tie— A)_l]udk.

Proof. Since W~! f(A)W is multiplication by f(a(x)), (1.36) follows from the
fact that
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o0 A
-/ SNy s ),

(1.37) 7)o A —a(x))? + &2

pointwise and boundedly, as & \ 0.

An important class of operators f(A) are the fractional powers f(A4) =
A%, a € (0,00), defined by (1.30)—(1.31), with f(A) = A%, provided A > 0.
Note that if g € C([0, 00)) satisfies g(0) = 1, g(1) = O(A™%) as A — oo, then,
foru e H,

(1.38) u € D(A%) < ||A%g(¢A)ul| g is bounded, fore € (0, 1],

as follows easily from the characterization (1.31) and Fatou’s lemma. We note
that Proposition 2.2 of Chap. 4 applies to D(A%), describing it as an interpolation
space.

We particularly want to identify D(A'/2), when 4 is a positive, self-adjoint
operator on a Hilbert space H constructed by the Friedrichs method, as described
in Proposition 8.7 of Appendix A. Recall that this arises as follows. One has a
Hilbert space H1, a continuous injection J : H; — H with dense range, and one
defines A by

(1.39) (AUu). Jv) yy = (u, v)ay
with

D(A) = {Jue JH, C H :v> (u,v)p, is

(1.40) . . .
continuous in Jv, in the H -norm}.

We establish the following.

Proposition 1.10. If A is obtained by the Friedrichs extension method (1.39)—
(1.40), then

(1.41) D(AY?) = J(H,) C H.

Proof. D(A'/2) consists of elements of H that are limits of sequences in D(A),
in the norm ||AY2u||y + |ulz. As shown in the proof of Proposition 8.7 in
Appendix A, D(A) = R(JJ*). Now

(1.42) IAY2IT* flI3 = (AJT* £.0T* fg = I1T* £,

Thus a sequence (JJ* f,,) converges in the D(A4'/?)-norm (to an element g) if
and only if (J* f,) converges in the Hj-norm (to an element «), in which case
g = Ju. Since J* : H — H; has dense range, precisely all u € H; arise as limits
of such (J* f,), so the proposition is proved.
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Exercises

1. The definition (1.33) of the spectral measure P(-) of a self-adjoint operator A depends
a priori on a choice of the spectral representation of A. Show that any two spectral
representations of A yield the same spectral measure.

(Hint: For f € S(R), f(A)is well defined by (1.14), or alternatively by (1.36).)

2. Self-adjoint differential operators

In this section we present some examples of differential operators on a manifold
2 which, with appropriately specified domains, give unbounded, self-adjoint op-
erators on L2(2,dV), dV typically being the volume element determined by a
Riemannian metric on £2.

We begin with self-adjoint operators arising from the Laplacian, making use of
material developed in Chap. 5. Let  be a smooth, compact Riemannian manifold
with boundary, or more generally the closure of an open subset 2 of a compact
manifold M without boundary. Then, as shown in Chap. 5,

.1 I—A:H(Q) — H(Q)*
is bijective, with inverse we denote T'; if we restrict 7" to L2(),
(2.2) T : L*(Q) — L%(Q) is compact and self-adjoint.

Denote by R(T) the image of L2(2) under 7. We can apply Proposition 8.2 of
Appendix A to deduce the following

Proposition 2.1. If Q is a region in a compact Riemannian manifold M, then
A is self-adjoint on L*(), with domain D(A) = R(T) C H}(RQ) described

above.

For a further description of D(A), note that

(2.3) D(A) ={uec H} (Q) : Aue L*(Q)}.

If 92 is smooth, we can apply the regularity theory of Chap. 5 to obtain
(2.4) D(A) = Hy () N H*(Q).

Instead of relying on Proposition 8.2, we could use the Friedrichs construction,
given in Proposition 8.7 of Appendix A. This construction can be applied more
generally. Let €2 be any Riemannian manifold, with Laplace operator A. We can
define HJ () to be the closure of C{°(2) in the space {u € L?(Q) : du €
L2(2, A1)}. The inner product on H/ () is

(25) (M, U)l = (M, U)LZ + (dl/l, dU)LZ.
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We have a natural inclusion HOl () < L?(R), and the Friedrichs method gives
a self-adjoint operator 4 on L?(2) such that

(2.6) (Au,v) ;> = (u,v)1, foru e D(A), v e HY(Q),

with

@7 D(A) = {u € HO1 () : v = (u,v); extends from Ho1 ()—>Ctoa
continuous linear functional L?(Q2) — C},

that is,

28) D(A) = {u € Hy(Q) : 3f € L*(Q) such that

. v)1 = (fiv)r2. Vv € HJ(Q)}.

Integrating (2.5) by parts for v € C§°(2), we see that A = [ — A on D(4), so
we have a self-adjoint extension of A in this general setting, with domain again
described by (2.3).

The process above gives one self-adjoint extension of A, initially defined on
Cy°(R2). It is not always the only self-adjoint extension. For example, suppose Q
is compact with smooth boundary; consider H ! (), with inner product (2.5), and
apply the Friedrichs extension procedure. Again we have a self-adjoint operator
A, extending I — A, with (2.8) replaced by

D(A) = {ue H'(Q):3f € L*(Q) such that

2.9
9) (w.v)1 = (fiv)p2.Yv € H'(Q)}.

In this case, Proposition 7.2 of Chap. 5 yields the following

Proposition 2.2. If Q is a smooth, compact manifold with boundary and A the
self-adjoint extension just described, then

(2.10) D(A) = {ue H*(Q) : dyu = 0 0n IQ}.

In case (2.10), we say D(A) is given by the Neumann boundary condition,
while in case (2.4) we say D(A) is given by the Dirichlet boundary condition.

In both cases covered by Propositions 2.1 and 2.2, (—A)'/2 is defined as a
self-adjoint operator. We can specify its domain using Proposition 1.10, obtaining
the next result:

Proposition 2.3. In case (2.3), D((-A)Y?) = H}(Q); in case (2.10),
D((-A)'?) = HY(Q).

Though A on C§°(£2) has several self-adjoint extensions when €2 has a bound-
ary, it has only one when €2 is a complete Riemannian manifold. This is a classical
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result, due to Roelcke; we present an elegant proof due to Chernoff [Chn]. When
an unbounded operator Ag on a Hilbert space H, with domain Dy, has exactly
one self-adjoint extension, namely the closure of Ay, we say Ay is essentially
self-adjoint on Dy.

Proposition 2.4. If Q2 is a complete Riemannian manifold, then A is essentially
self-adjoint on C§°(2). Thus the self-adjoint extension with domain given by (2.3)
is the closure of A on C§°(2).

Proof. We will obtain this as a consequence of Proposition 9.6 of Appendix A,
which states the following. Let U(t) = ¢'*4 be a unitary group on a Hilbert space
H which leaves invariant a dense linear space D; U(¢)D C D.If A is an extension
of Ap and Ap : D — D, then Ay and all its powers are essentially self-adjoint
onD.

In this case, U(t) will be the solution operator for a wave equation, and we will
exploit finite propagation speed. Set

2.11) idg = (A (i / é) . D(4o) = C57(R2) & 57 ().

The group U(¢) will be the solution operator for the wave equation

2.12) v (;) - (IZ((?)) ’

where u(z, x) is determined by

P
012

It was shown in §2 of Chap. 6 that U(¢) is a unitary group on H = HJ(Q) &
L?(Q); its generator is an extension of (2.11), and finite propagation speed im-
plies that U(¢) preserves Cg°(2) @ C§°(2) for all ¢, provided 2 is complete.
Thus each Alg is essentially self-adjoint on this space. Since

o (A-1 0
(2.13) AO—( 0 A_1)

—(A=Du=0; u,x)=/f u(0,x)=¢g

we have the proof of Proposition 2.3. Considering A%k, we deduce furthermore
that each power A* is essentially self-adjoint on C§°(2), when € is complete.

Though A is not essentially self-adjoint on C§°(£2) when € is compact, we do
have such results as the following:

Proposition 2.5. If Q is a smooth, compact manifold with boundary, then A is
essentially self-adjoint on

(2.14) {ue C®(Q):u=00ndQ},
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its closure having domain described by (2.3). Also, A is essentially self-adjoint on
(2.15) {ue C®(Q): dyu=00ndQ},
its closure having domain described by (2.10).

Proof. It suffices to note the simple facts that the closure of (2.14) in H2(R) is
(2.3) and the closure of (2.15) in H?(R) is (2.10).

We note that when € is a smooth, compact Riemannian manifold with bound-
ary, and D(A) is given by the Dirichlet boundary condition, then
g .
2.16) (D) ={ueC®Q): Afu=00n0Q, k =0,1.2,...},
ji=1
and when D(A) is given by the Neumann boundary condition, then
[e )

(2.17) () D(AY) = {ue C®Q): 0,(AFu) = 00n dQ. k > 0}.

ji=1

We now derive a result that to some degree amalgamates Propositions 2.4 and
2.5. Let Q2 be a smooth Riemannian manifold with boundary, and set

(2.18) C2(Q) = {u € C®°(Q) : supp u is compact in Q};

we do not require elements of this space to vanish on d$2. We say that Q is com-
plete if it is complete as a metric space.

Proposition 2.6. If Q is a smooth Riemannian manifold with boundary which is
complete, then A is essentially self-adjoint on

(2.19) {ue CX(Q):u=0o0n0Q}.
In this case, the closure has domain given by (2.3).

Proof. Consider the following linear subspace of (2.19):
(2.20) Do ={ueC>®Q): Au=00n0dQforj =0,1,2,...}.

Let U(¢) be the unitary group on Hy () & L?(R2) defined as in (2.12), with u
also satisfying the Dirichlet boundary condition, u(¢, x) = 0 for x € d2. Then,
by finite propagation speed, U(t) preserves Doy @ Dy, provided Q is complete, so
as in the proof of Proposition 2.4, we deduce that A is essentially self-adjoint on
Do; a fortiori it is essentially self-adjoint on the space (2.19).
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By similar reasoning, we can show that if Q is complete, then A is essentially
self-adjoint on

(2.21) {ue CX(Q):dyu=00n03Q}.

The results of this section so far have involved only the Laplace operator A. It
is also of interest to look at Schrodinger operators, of the form —A + V', where the
“potential” V' (x) is a real-valued function. In this section we will restrict attention
to the case V' € C°°(£2) and we will also suppose that ' is bounded from below.
By adding a constant to —A + V', we may as well suppose

(2.22) V(x) > 1 on Q.

We can define a Hilbert space H&O(Q) to be the closure of C§°(£2) in the space
(2.23) HY(Q) = {ue L3(Q) :du e LA, AY), VV2ue L2(Q)},

with inner product

(2.24) (u,v)1,y = (du,dv)i2 + (Vu,v) 2.

Then there is a natural injection H Il/o(Q) < L?(Q), and the Friedrichs extension
method provides a self-adjoint operator A. Integration by parts in (2.24), with
v € C§°(£2), shows that such A is an extension of —A + V. For this self-adjoint
extension, we have

(2.25) D(AY?) = H} ().

In case Q is a smooth, compact Riemannian manifold with boundary and
V € C*®(Q), one clearly has H},,(Q) = H{ (). In such a case, we have an
immediate extension of Proposition 2.1, including the characterization (2.4) of
D(—A + V). One can also easily extend Proposition 2.2 to —A + V in this case.
It is of substantial interest that Proposition 2.4 also extends, as follows:

Proposition 2.7. If Q is a complete Riemannian manifold and the function V €
C®(Q) satisfies V > 1, then —A + V is essentially self-adjoint on C§°(2).

Proof. We can modify the proof of Proposition 2.4; replace A — 1 by A — V in
(2.11) and (2.12). Then U(¢) gives a unitary group on H‘I,O(Q) ® L%(Q), and the
finite propagation speed argument given there goes through. As before, all powers
of —A + V are essentially self-adjoint on C5°(£2).

Some important classes of potentials I have singularities and are not bounded
below. In §7 we return to this, in a study of the quantum mechanical Coulomb
problem.
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We record here an important compactness property when V' € C°°($2) tends
to 400 at infinity in

Proposition 2.8. If the Friedrichs extension method described above is used to
construct the self-adjoint operator —A + V for smooth V' > 1, as above, and if
V — 400 at infinity (i.e., for each N < oo, Qny = {x € Q : V(x) < N} is
compact), then —A + V' has compact resolvent.

Proof. Given (2.25), it suffices to prove that the injection H‘l,0 (Q) - L32(Q)
is compact, under the current hypotheses on V. Indeed, if {u,} is bounded in
H} (), with inner product (2.24), then {du,} and {V'2u,} are bounded in
L?(Q). By Rellich’s theorem and a diagonal argument, one has a subsequence
{un, } whose restriction to each Qy converges in L?(Q2y)-norm. The bound-
edness of {V'/2u,} in L?(Q) then gives convergence of this subsequence in
L?(Q)-norm, proving the proposition.

The following result extends Proposition 2.4 of Chap. 5

Proposition 2.9. Assume that Q is connected and that either Q2 is compact or
V. — 400 at infinity. Denote by Ao the first eigenvalue of —A + V. Then
a Ag-eigenfunction of —A + V is nowhere vanishing on Q2. Consequently, the
Ao-eigenspace is one-dimensional.

Proof. Letu bea Ap-eigenfunction of —A + V. As in the proof of Proposition 2.4
of Chap.5, we can write u = u™ + u~, where u™(x) = u(x) for u(x) > 0
and u~(x) = u(x) for u(x) < 0, and the variational characterization of the
Ao-eigenspace implies that u* are eigenfunctions (if nonzero). Hence it suffices
to prove that if u is a Ag-eigenfunction and u(x) > 0 on €2, then u(x) > 0 on .
To this end, write

u(x) = MOV HA0y (1) = / pee () V()
Q

We see that this forces p;(x, y) = 0 forall ¢t > 0, when
xeX={x:u(x)=0}, yeO, O={x:u(x)>0}

since p;(x, y) is smooth and > 0. The strong maximum principle (see Exercise 3
in §1 of Chap. 6 forces £ = 0.

Exercises

1. Let H‘l, (2) be the space (2.23). If V > 1 belongs to C°°(2), show that the Friedrichs

extension also defines a self-adjoint operator A1, equal to —A 4 V on C§°(2), such

that D(A}/ 2) = H‘l, (2). If Q is complete, show that this operator coincides with the

extension A defined in (2.25). Conclude that, in this case, Hll, (Q) = H‘I,O(Q).
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2. Let 2 be complete, V' > 1 smooth. Show that if A4 is the self-adjoint extension of
—A + V described in Proposition 2.7, then

(2.26) D(A) ={u e L*(Q): —Au+ Vu e L>(Q)}.
where a priori we regard —Au + Vu as an element of D'(R2).

3. Define T : L2(Q) — L2(Q,AY) ® L2(Q) by D(T) = H}((Q). Tu = (du. V'/?u).
Show that

(227) D(T*)={(v1.v2)eL?(Q. A") & L2(Q) : §v; e L2(Q), V% e L2(Q)}.

Show that T*T is equal to the self-adjoint extension 4 of —A + V defined by the
Friedrichs extension, as in (2.25).

4. If Q is complete, show that the self-adjoint extension A of —A + V in Proposition 2.7
satisfies

(2.28) D(A) = {ue L*(Q): Aue L3(Q), Vu e L*(Q)}.

(Hint: Denote the right side by W. Use Exercise 3 and A = T*T to show that
D(A) C W. Use Exercise 2 to show that W C D(4).)

5. Let D = —id/dx on C*®°(R), and let B(x) € C®(R) be real-valued. Define the
unbounded operator L on L?(R) by

(2290 D(L)={ue L?R): Due L*>(R), Buec L>(R)}, Lu= Du+iB(x)u

Show that L* = D —iB, with

D(L*) = {u e L*(R) : Du—iBu € L*(R)}

Deduce that Ag = L* L is given by Agu = D%u + B2u + B’(x)u on

D(Ag) = {u € L>(R) : Du € L>(R), Bu € L*>(R), D?u+ B?u+ B’ (x)u € L*>(R)}
6. Suppose that |B’(x)| < 9B(x)? + C, for some ¥ < 1, C < 0o. Show that

D(Ag) = {u € L>(R) : D?u+ (B? 4+ B')u € L2(R)}
(Hint: Apply Exercise 2 to D? 4+ (B% 4+ B’) = A, and show that D(Al/z) is given by

D(L), defined in (2.29).)
7. In the setting of Exercise 6, show that the operator L of Exercise 5 is closed.

(Hint: L¥*L = A is a self-adjoint extension of D2 + (B2 + B’). Show that D(A}/z)
= D(L) and also = D(L).) Also show that D(L*) = D(L) in this case.

3. Heat asymptotics and eigenvalue asymptotics

In this section we will study the asymptotic behavior of the eigenvalues of the
Laplace operator on a compact Riemannian manifold, with or without boundary.
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We begin with the boundaryless case. Let M be a compact Riemannian man-

ifold without boundary, of dimension n. In §13 of Chap.7 we have constructed a
parametrix for the solution operator e’ of the heat equation

3.1) (% —A)u=00onR* x M, u(0,x)= f(x)
and deduced that

(3.2) TretA~t_”/2(ao+a1t—i—azlz—i-———), t\,0,

for certain constants a ;. In particular,

(3.3) ao = (4)™2 vol M.

This is related to the behavior of the eigenvalues of A as follows. Let the eigen-

values of —Abe 0 = Ag < A; < Ay < --- /" oo. Then (3.2) is equivalent to

o0
Ga P e~ P ag b at t @ ) N0,
j=0

We will relate this to the counting function
(3.5 NQ) ~#Aj:Aj <AL,

establishing the following:

Theorem 3.1. The eigenvalues {A ;} of —A on the compact Riemannian manifold
M have the behavior

(3.6) NQA) ~ C(M)A"?, L — +oo,
with

IM
(3.7) cM) = 20 Yo

TE+ 1) TE+ D@2

That (3.6) follows from (3.4) is a special case of a result known as Karamata’s
Tauberian theorem. The following neat proof follows one in [Si3]. Let u be
a positive (locally finite) Borel measure on [0,00); in the example above,

u([0.2]) = N(»).

Proposition 3.2. If i is a positive measure on [0, 00), o € (0, 00), then

(3.8) / e du\) ~ar™, 1\, 0,
0
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implies
X
(3.9) / du(d) ~ bx*, x / oo,
0
with
a
A ="
(3.10) b IMNoe+1)

Proof. Let dji; be the measure given by u,(A) = t*u(t~'A), and let dv(})
= aA®1dA; then v, = v. The hypothesis (3.8) becomes

(3.11) thi%/e—* du:(A) = b/e—A dv(}),

with b given by (3.10), and the desired conclusion becomes

(3.12) g%/ﬂmmmm=b/ﬂmwa>

when y is the characteristic function of [0, 1]. It would suffice to show that (3.12)
holds for all continuous y(A) with compact support in [0, 00).

From (3.11) we deduce that the measures e ~*d; are uniformly bounded, for
t € (0, 1]. Thus (3.12) follows if we can establish

(3.13) gg/gak*dmuozb/gak*dwm,

for g in a dense subspace of Co(R ™), the space of continuous functions on [0, co)
that vanish at infinity. Indeed, the hypothesis implies that (3.13) holds for all g
in 2, the space of finite, linear combinations of functions of A € [0, co0) of the
form ¢s(1) = e™*, s € (0,00), as can be seen by dilating the variables in
(3.11). By the Stone-Weierstrass theorem, 2 is dense in C,(R™), so the proof is
complete.

We next want to establish similar results on N(A) for the Laplace operator A
on a compact manifold © with boundary, with Dirichlet boundary condition. At
the end of §13 in Chap. 7 we sketched a construction of a parametrix for /2 in
this case which, when carried out, would yield an expansion

(3.14) Tre'® ~ 7% (ag + ayjat'/? +art +---), 1 \,0,
extending (3.2). However, we will be able to verify the hypothesis of Proposition

3.2 with less effort than it would take to carry out the details of this construction,
and for a much larger class of domains.
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For simplicity, we will restrict attention to bounded domains in R” and to the
flat Laplacian, though more general cases can be handled similarly. Now, let €2 be
an arbitrary bounded, open subset of R”, with closure 2. The Laplace operator
on £2, with Dirichlet boundary condition, was studied in §5 of Chap. 5

Lemma 3.3. For any bounded, open 2 C R”", A with Dirichlet boundary con-
dition, e'® is trace class for all t > 0.

Proof. Let @ C B, a large open ball. Then the variational characterization of
eigenvalues shows that the eigenvalues A ; (2) of —AonQ andA;(B)of L = —A
on B, both arranged in increasing order, have the relation

(3.15) Aj(R2) = A;(B).

But we know that e *% has integral kernel in C*°(B x B) for each ¢ > 0, hence is
trace class. Since e 4/ () < 714/ (B) this implies that the positive self-adjoint
operator e’2 is also trace class.

Limiting arguments, which we leave to the reader, allow one to show that, even in
this generality, if H (¢, x,y) € C*®(Q2 x Q) is, for fixed ¢ > 0, the integral kernel
of e'® on L2(Q), then

(3.16) Tref® = / H(t,x,x) dx.
Q

See Exercises 1-5 at the end of this section.

Proposition 3.4. If Q is a bounded, open subset of R™ and A has the Dirichlet
boundary condition, then

(3.17) Tre'® ~ (4nt) ™2 vol Q, 1\, 0.
Proof. We will compare H(¢, x, y) with Ho(¢, x,y) = (4nt)_"/ze‘x_Y|2/4’, the

free-space heat kernel. Let E(z, x,y) = Ho(¢,x,y) — H(t, x, y). Then, for fixed
y e,

JIE
(3.18) a—AxE:OOnR”LxQ, E,x,y) =0,
and
(3.19) E(t,x,y) = Ho(t,x,y), forx € 0Q.

To make simple sense out of (3.19), one might assume that every point of <2
is a regular boundary point, though a further limiting argument can be made to
lift such a restriction. The maximum principle for solutions to the heat equation
implies
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320) 0<E(f.x.y) < sup Ho(s.2.y) < sup (dms) /2 ¢80 /4s
( ) = (v vy)_ p O(svy)_ p( ) s

0<s<t,2€Q 0<s<t

where §(y) = dist(y, 9R2). Now the function
Ys(s) = (ds) ™26/

on (0, 00) vanishes at 0 and oo and has a unique maximum at s = §2/2n; we
have ¥(82/2n) = C,87". Thus

(3.21) 0<E(@tx,y) < max((4m)—"/2e—8<y)2/4’, CnS(y)_").

Of course, E(t,x,y) < Ho(Z, x, y) also.
Now, let O CC €2 be such that vol(2 \ O) < &. For ¢ small enough, namely
for s < 82/2n where §; = dist(O, 9$2), we have

(3.22) 0<E(t,x,x) < (47rl)_”/ze_8(x)2/4’, x €0,

while of course 0 < E(t,x,x) < (47”)‘”/2, for x € Q \ O. Therefore,

(3.23) lim sup (47tt)"/2/E(t,x,x) dx < &,
t—>0
Q

SO

vol @ — ¢ < lim inf (4m)"/2/H(z,x,x) dx
—
(3.24) @
< limsup (471)"/? / H(t,x,x)dx < vol Q.
Q

t—0

As ¢ can be taken arbitrarily small, we have a proof of (3.17).

Corollary 3.5. If Q2 is a bounded, open subset of R", N(A) the counting function
of the eigenvalues of —A, with Dirichlet boundary condition, then (3.6) holds.

Note that if O, is the set of points in € of distance > & from d<2 and we define
v(e) = vol(Q \ O), then the estimate (3.24) can be given the more precise
reformulation

(3.25) 0 < vol Q2 — (4mt)"? Tre'® < w(v2n1),

where

(3.26) w(e) =v(e) + /00 o?/26? dv(s).

&
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The fact that such a crude argument works, and works so generally, is a special
property of the Dirichlet problem. If one uses the Neumann boundary condition,
then for bounded 2 C R” with nasty boundary, A need not even have compact
resolvent. However, Theorem 3.1 does extend to the Neumann boundary condition
provided 92 is smooth. One can do this via the sort of parametrix for boundary
problems sketched in §13 of Chap. 7.

We now look at the heat kernel H(z, x, y) on the complement of a smooth,
bounded region K C R”. We impose the Dirichlet boundary condition on 9K .
As before, 0 < H(t,x,y) < Hy(t, x,y), where Hy(¢, x, y) is the free-space heat
kernel. We can extend H (¢, x, y) to be Lipschitz continuous on (0, co) x R” x R"
by setting H(t,x,y) = 0 when either x € K or y € K. We now estimate
E(t,x,y) = Ho(t,x,y) — H(t,x,y). Suppose K is contained in the open ball
of radius R centered at the origin.

Lemma 3.6. For |x — y| < |y| — R, we have

(3.27) E(t,x,y) < Ci~ V2~ 01=R1?/41.

Proof. With y € Q = R" \ K, write

o0
(3.28) H(t,x,y) = (4m)—1/2/ ¢4 cossA ds,

—0o0

where A = +/—A and A is the Laplace operator on €2, with the Dirichlet
boundary condition. We have a similar formula for Hy(z, x, y), using instead
Ao = /—Ap, with A the free-space Laplacian. Now, by finite propagation
speed,

cossA §y,(x) = cossAg §y(x),

provided
|s| =d = dist(y,0K), and |x —y| <d

Thus, as long as |x — y| < d, we have

(3.29) E(t,x,y) = (4m1)~"/? / e /41 cos sAg 8, (x) — cossA 8y (x)] ds.

Is|=d

Then the estimate (3.27) follows easily, along the same lines as estimates on heat
kernels discussed in Chap. 6, §2.

When we combine (3.27) with the obvious inequality
(3.30) 0 < E(t,x,y) < Ho(t, x, y) = (dt) ™/ 2e l—17/41

we see that, for each t > 0, E(z,x, y) is rapidly decreasing as |x| + |y| — oo.
Using this and appropriate estimates on derivatives, we can show that E(t, x, y)
is the integral kernel of a trace class operator on L2(IR"). We can write



112 8. Spectral Theory

(3.31) Tr (e"20 — e’ P) =/E(Z,x,x) dx,

R”7

where P is the projection of L2(R") onto L2(£2) defined by restriction to 2. Now,
ast \, 0, (47t)"/2E(t, x, x) approaches 1 on K and 0 on R” \ K. Together with
the estimates (3.27) and (3.30), this implies

(3.32) (4nt)"/2/E(t,x,x) dx — vol K,

R~7
as t \ 0. This establishes the following:

Proposition 3.7. If K is a closed, bounded set in R", A is the Laplacian on
L%(R™ \ K), with Dirichlet boundary condition, and Ay is the Laplacian on
L2(R™), then e'20 — ' P is trace class for eacht > 0 and

(3.33) Tr (e’AO — etAP) ~ (47t)™? vol K,

ast N\ 0.

This result will be of use in the study of scattering by an obstacle K, in Chap. 9.
It is also valid for the Neumann boundary condition if 0K is smooth.

Exercises

In Exercises 14, let 2 C R” be a bounded, open set and let O ; be open with smooth
boundary such that

0Oy CCOyCcC---CCO;CC--- Q.

Let L; be —A on L, with Dirichlet boundary condition; the corresponding operator
on Qi 1s simply denoted —A.
1. Using material developed in §5 of Chap. 5, show that, for any 7 > 0, f € L2(),

o—tLj P f— ¢! f strongly in L2(R),

as j — oo, where P; is multiplication by the characteristic function of O ;.
Don’t peek at Lemma 3.4 in Chap. 11!
2. If 1,(O;) are the eigenvalues of L ;, arranged in increasing order for each j, show
that, for each v,
A(O)) (A (), as j — oo.

3. Show that, for each t > 0,
Tre —le /{ Tr etA

4. Let H;(t,x, y) be the heat kernel on R x O X O Extend H; to Rt xQ x Qso
as to Vamsh if x or y belongs to 2\ O;. Show that, for each x € Q yeQ, t>0,

Hjt,x,y) /" H(t,x,y), as j — oo.
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Deduce that, for each ¢t > 0,

/Hj(t,x,x)dx/’/H(t,x,x)dx
i Q

b

Using Exercises 1-4, give a detailed proof of (3.16) for general bounded 2 C R”.
6. Give an example of a bounded, open, connected set & C R? (with rough boundary)
such that A, with Neumann boundary condition, does not have compact resolvent.

4. The Laplace operator on S”

A key tool in the analysis of the Laplace operator As on S” is the formula for the
Laplace operator on R”*! in polar coordinates:
2 na 1

4.1 A= — —Ag.
“.1) 8r2+r8r+2 §

In fact, this formula is simultaneously the main source of interest in Ag and the
best source of information about it.

To begin, we consider the Dirichlet problem for the unit ball in Euclidean
space, B = {x e R"*! : |x| < 1}:

4.2) Au=0inB, u= fonS"=20B,

given f € D'(S™). In Chap.5 we obtained the Poisson integral formula for the
solution:

1— 2
(43) u(r) = 1= / - / (yliH S(y).

where A, is the volume of S”. Equivalently, if we set x = rw withr = | x|, w € S,

f (@)

!/
2ra) . C()/ + r2)(ﬂ+1)/2 dS((l) )

1— 2
4.4) u(rw) = ) ! / =
S'l

Now we can derive an alternative formula for the solution of (4.2) if we use
(4.1) and regard Au = 0 as an operator-valued ODE in r; it is an Euler equation,
with solution

4.5) u(rw) = rA_("_l)/zf(a)), r<l,

where A is an operator on D’(S™), defined by

(n— 1)2)1/2.

(4.6) a=(-bs+ .
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If we set r = e~ and compare (4.5) and (4.4), we obtain a formula for the

semigroup e ~*4 as follows. Let §(w, ') denote the geodesic distance on S” from
w to ', s0 cos O(w, w’') = w - . We can rewrite (4.4) as

2
u(rw) = i sinh(log r ") r~("—1/2
n

@) Y f@)

— dS (o).
[2 cosh(logr—1) — 2 cos 6 (w, a)’)] (n+1)/2

Sll
In other words, by (4.5),

f(@')

dS (o).
(2 cosht —2cosf(w,w’)

4.8) e f(w) = 2 Ginht f

A )(n+1)/2

Sll
Identifying an operator on D’(S™) with its Schwartz kernel in D'(S" x S™), we
write

A 2 sinh ¢

4.9 _ ’
“ ¢ Ay (2 cosh t —2cos §)nt1)/2

t > 0.

Note that the integration of (4.9) from ¢ to oo produces the formula
(4.10) A7'e™ =2C, (2 cosht —2cos§)~"V/2 1 >0,
provided n > 2, where

1 1 n—1
C. — — L ~m+n/2p
" —DAa, 4" ( 2 )

With the exact formula (4.9) for the semigroup e *4, we can proceed to give

formulas for fundamental solutions to various important PDE, particularly

9%u .
4.11) — — Lu=0 (wave equation)

012
and

du .
4.12) Fri Lu =0 (heat equation),
where

—1?

4.13) L=as-" . Y _

If we prescribe Cauchy data u(0) = f, u;(0) = g for (4.11), the solution is

(4.14) u(t) = (costA) f + A (sintA)g.



4. The Laplace operator on S” 115

Assume n > 2. We obtain formulas for these terms by analytic continuation of
the formulas (4.9) and (4.10) to Re ¢+ > 0 and then passing to the limit 7 € iR.
This is parallel to the derivation of the fundamental solution to the wave equation
on Euclidean space in §5 of Chap. 3. We have

A tel—04 — >, [2 cosh(it — &) — 2 cos 9]_("_1)/2,

(4.15) , ’ B

el=e)4 — - sinh(it — &)[2 cosh(it — €) — 2 cos 6 | (/2.

n
Letting & \ 0, we have
A7lsintA =
(4.16) li\r‘% —2Cp, Im (2 cosh e cost — 2i sinh esint — 2 cos 9)_(”_1)/2
&
and
costA =

(4.17)

-2
lim — Im(sin#)(2 coshecost — 2i sinhesint — 2 cos 9)_("+1)/2.
e\o0 Ay

For example, on S2 we have, for0 <t < 7,

A7 'sintA = —2C,(2cos @ —2cost) V2, 0 < 1],

4.18
(415) 0, 6> t],

with an analogous expression for general 7, determined by the identity
(4.19) A7 Vsin(t +27)4A = —A7'sintA  on D' (§%),

plus the fact that sinfA4 is odd in ¢. The last line on the right in (4.18) re-
flects the well-known finite propagation speed for solutions to the hyperbolic
equation (4.11).

To understand how the sign is determined in (4.19), note that, in (4.15),
with ¢ > 0, for t = 0 we have a real kernel, produced by taking the —(n —
1)/2 = —k + 1/2 power of a positive quantity. As ¢ runs from O to 27w, the
quantity 2 cosh(it — &) = 2 cosh e cost — 2i sinh e sint moves once clockwise
around a circle of radius 2(cosh2 &+ sinh? 8)1/ 2 centered at 0, so 2 cosh & cos t —
2i sinh e sint — 2 cos @ describes a curve winding once clockwise about the ori-
gin in C. Thus taking a half-integral power of this gives one the negative sign
in (4.14).

On the other hand, when n is odd, the exponents on the right side of (4.15)—
(4.17) are integers. Thus

(4.20) A7'sin(r +27)A = A 'sintA  on D'(§%H1).
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Also, in this case, the distributional kernel for A~! sin t A must vanish for |¢| # 6.
In other words, the kernel is supported on the shell 6 = |¢|. This is the general-
ization to spheres of the strict Huygens principle.

In case n = 2k + 1 is odd, we obtain from (4.16) and (4.17) that

(421) A7 lsintA f(x) = ! i)k_l(sinZk_lsf(x,s))Ft

S
2k — ) \sin s ds

and

1 1 0\k —
(4.22) costA f(x) = - sin s (Eg) (sin2k_1s f(x,s))s=t,

where, as in (5.66) of Chap.3, 2k — )!! =3-5---(2k — 1) and
(4.23)  f(x,s) = mean value of f on Zs(x) = {y € S" : O(x,y) = |s|}.

We can examine general functions of the operator A by the functional calculus

(4.24)  g(A) = @2n)"V/? / ~ g(n)e™ dt = 2m)~V/? / - &(1) cos A dt,

—00

where the last identity holds provided g is an even function. We can rewrite this,
using the fact that cos A has period 27 in ¢ on D’(S™) for n odd, period 47 for
n even. In concert with (4.22), we have the following formula for the Schwartz
kernel of g(A) on D’/ (S%*+1), for g even:

o0

1 1 9
(4.25) g(A)=(27r)_1/2<—Z®—9) Z 2(0 + 2kn).

As an example, we compute the heat kernel on odd-dimensional spheres. Take
g(k) = e—t/lz_ Then gr(s) = (2;)—1/26—32/4t and

(4.26) (2n)~V/? ng(s +2kn) = (4mr)~Y/? Ze_(s+2k”)2/4’ = 9(s,1),
k k

. . 2 . .
where 9 (s, ) is a “theta function.” Thus the kernel of e7*4” on §2¥*1 is given by

—az 1 1 0
(4:27) = (2 ae) B(.0)-

A similar analysis on S2¥ gives an integral, with the theta function appearing in
the integrand.
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The operator 4 has a compact resolvent on L2(S™), and hence a discrete set
of eigenvalues, corresponding to an orthonormal basis of eigenfunctions. Indeed,
the spectrum of A has the following description

Proposition 4.1. The spectrum of the self-adjoint operator A on L>(S™) is
1
(4.28) specA={E(n—l)—i—k:k:O,l,Z,...}.

Proof. Since 0 is the smallest eigenvalue of —A g, the definition (4.6) shows that
(n — 1)/2 is the smallest eigenvalue of A. Also, (4.20) shows that all eigenvalues
of A are integers if n is odd, while (4.19) implies that all eigenvalues of A are
(nonintegral) half-integers if 7 is even. Thus spec A is certainly contained in the
right side of (4.28).

Another way to see this containment is to note that since the function u(x)
given by (4.5) must be smooth at x = 0, the exponent of r in that formula can
take only integer values.

Let Vi denote the eigenspace of A with eigenvalue vy = (n — 1)/2 + k. We
want to show that V; # 0 fork =0, 1,2,.... Moreover, we want to identify V.
Now if f € Vg, it follows that u(x) = u(ro) = rA=®=D/2 f(w) = rk f(w)
is a harmonic function defined on all of R**1 which, being homogeneous and
smooth at x = 0, must be a harmonic polynomial, homogeneous of degree k in
x. If Hy, denotes the space of harmonic polynomials, homogeneous of degree k,
restriction to §” C R”*! produces an isomorphism:

(4~29) P Hk — Vk.

To show that each Vi # 0, it suffices to show that each Hy # 0.
Indeed, for ¢ = (¢1,...,¢n+1) € C"*1 consider

pe(x) = (c1x1 + - + eng1xnt1)".
A computation gives

Ape(x) = k(k — D){c,e)(crxt + - + cpxp) 2,

2 2
(c,c) =ci 4+ +cp.

Hence Ap, = 0 whenever (c, ¢) = 0, so the proposition is proved.
We now want to specify the orthogonal projections Ej of L2(S™) on Vj.. We

can attack this via (4.10), which implies

oo
(4.30) Z vile "k Eg(x,y) = 2Cy(2 cosh t — 2 cos g)~(—1/2,
k=0
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where 6 = 6(x, y) is the geodesic distance from x to y in S™. [f we set r = e

and use vy = (n — 1)/2 + k, we get the generating function identity

[e )
Z rkvlzlEk(x, y) = 2C,(1 —2rcos § + r2)~=1/2

(4.31) k=0 .

= Z ¥ pr(cos 6);
in particular,
(4.32) Ex(x,y) = vk pr(cosb).

These functions are polynomials in cos 8. To see this, set # = cos 6 and write

o0
(4.33) (I=2r+7r3)" =" Cr) r*,
thus defining coefficients CZ (7). To compute these, use
o0 .
_ +a—1)\ ;
(1-9=) (’ . )zf,
=0\ /

with z = r(2t — r), to write the left side of (4.33) as

Z (?)rj(Zt — r)j =

Jj=0

Hence
[k/2]
o _ _ Vi k—€+(x—1 k—@ k=24
(4.34) Cy(t) = ZEZO( 1) ( k—¢ )( ¢ )(2t) .

These are called Gegenbauer polynomials. Therefore, we have the following:

Proposition 4.2. The orthogonal projection of L*>(S™) onto Vi has kernel

1
(4.35) Er(x,y) =2Cuvx C(cosh), a= E(n -1,

with Cy, as in (4.10).

Z (] —|—;X 1) (2)(—1)£r]+£(2l)]_£

>
oo [k/2]
=X ) 1)4(" T 1) (kze)(zok—”rk.

—t
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In the special case n = 2, we have C; = 1/4x, and vy = k + 1/2; hence

2k + 1 2k + 1
e+l Cl/z(cos 0) = +

4.36 Ex(x,y) =
( ) k(x, ) 4 k 4

Py (cos6),

where C kl / 2(t) = Py (t) are the Legendre polynomials.
The trace of Ej is easily obtained by integrating (4.35) over the diagonal, to
yield

_ 2 _
(4.37) Tr Ex = 2C, Ao C7V/2(1) = L"l V2,
n J—

Setting ¢ = 1in (4.33), s0 (1 —2r + r?)™* = (1 — r) 2%, we obtain

k+20—1

(4.38) c(1) = ( .

), e.g., Pr(1) = 1.

Thus we have the dimensions of the eigenspaces V% :

Corollary 4.3. The eigenspace Vi of —As on S™, with eigenvalue
1
)Lkzv,%—z(n—l)zzk2+(n—l)k,

satisfies

) 2k4+n—-1(k+n-2 k+n-2 k+n-1

In particular, on S2 we have dim Vi =2k + 1.

Another natural approach to Ey is via the wave equation. We have

T
Ek _ e—tvktettA dt
2T |1
(4.40)

1 (T
= —/ cost(A —vg) dt,
2T J_r
where T = 7 or 2 depending on whether 7 is odd or even. (In either case, one

can take 7 = 2m.) In the special case of S 2 when (4.18) is used, comparison of
(4.36) with the formula produced by this method produces the identity

)

1 [? cos(k + 1)t
441 P 0) = — 2
(441) k(cos6) /4 /_9 (2cost —2cosf)1/2

for the Legendre polynomials, known as the Mehler-Dirichlet formula.
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Exercises

Exercises 1-5 deal with results that follow from symmetries of the sphere. The group
SO(n + 1) acts as a group of isometries of S C R”*1, hence as a group of unitary
operators on L2(S™). Each eigenspace Vj of the Laplace operator is preserved by this
action. Fix p = (0,...,0,1) € S", regarded as the “north pole.” The subgroup of
SO(n + 1) fixing p is a copy of SO(n).

1. Show that each eigenspace Vj has an element u such that u(p) # 0. Conclude by
forming

u(gx) dg
SO(n)

that each eigenspace Vj, of Ag has an element z; # 0 such that zz (x) = z; (gx), for
all g € SO(n). Such a function is called a spherical function.

2. Suppose Vi has a proper subspace W invariant under SO(n + 1). (Hence wt c Vi
is also invariant.) Show that W must contain a nonzero spherical function.

3. Suppose zj; and y are two nonzero spherical functions in V. Show that they must be
multiples of each other. Hence the unique spherical functions (up to constant multiples)
are given by (4.35), with y = p. (Hint: z; and yj are eigenfunctions of —Ag, with
eigenvalue A = k2 4 (n — 1)k. Pick a sequence of surfaces

Y ={xeS8":0(x,p)=¢;} CS",

with &j — 0, on which z; = & # 0. With B; = y |y, it follows that Bjzx — ajyk
is an eigenfunction of —Ag that vanishes on X ;. Show that, for j large, this forces
Bjzk — ajyx to be identically zero.)

4. Using Exercises 2 and 3, show that the action of SO(n + 1) on each eigenspace Vj is
irreducible, that is, Vj has no proper invariant subspaces.

5. Show that each V} is equal to the linear span of the set of polynomials of the form
Pe(x) = (c1x1 + -+ + cng1Xn41)K, with {c.c) = 0.
(Hint: Show that this linear span is invariant under SO(n + 1).)

6. Using (4.9), show that

2 sinh ¢

4.42 Tre 4 = }
“42) (2 cosh t —2)(n+1)/2

Find the asymptotic behavior as ¢ N\ 0. Use Karamata’s Tauberian theorem to deter-
mine the asymptotic behavior of the eigenvalues of A4, hence of —Ag. Compare this
with the general results of §3 and also with the explicit results of Corollary 4.3.

7. Using (4.27), show that, for A on S” withn = 2k + 1,

Tp o142 _ A2kt (_L 1 i)ke—92/4t‘
(4.43) 4t

o
27 sin6 00 0 +06™)
= (47'[[)_"/2 A2k+1 + O(I_n/2+1),

6=

as t N\ 0. Compare the general results of §3.
8. Show that

(4.44) e TIA==D/2) () = f(—w), f e L2(S™).
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(Hint: Check it for f € Vj, the restriction to S” of a homogeneous harmonic
polynomial of degree k.)
Exercises 9-13 deal with analysis on S” when n = 2. When doing them, look for
generalizations to other values of 7.

9. If E(A) has integral kernel Kz (x, y), show that whenn = 2,

1 & 1
(4.45) Kz(x,y) = EZ;)(ZZ + l)n(i + E)Pg(cos 0),

where cos § = x - y and Py(¢) are the Legendre polynomials.
10. Demonstrate the Rodrigues formula for the Legendre polynomials:

1 dy\k
(4.46) Pi(t) = 50 (E) (-1,

(Hint: Use Cauchy’s formula to get
1 —1/2 —k—
Pr(t) = —,/(1—2zt+z2) 12, =k=1 g,
2ri Jy

from (4.33); then use the change of variable 1 —uz = (1 — 2tz + 22)1/2. Then appeal
to Cauchy’s formula again, to analyze the resulting integral.)

11. If f € L%(S?) has the form f(x) = g(x - y) = > @gPe(x - y), for some y € 52,
show that

ZZ—i—l

1 1
@4 g = / Py ds@ = (t+3) [ ewri ar

(Hint: Use [¢2 Eg(x,2)Eq(z, y) dS(z) = 8¢ E¢(x,y).) Conclude that g(x - y) is the
integral kernel of ¢ (A4 — 1/2), where

4 1
(4.48) v() = Y Qg =27 /_1 g(t)Py(2) dr.

This result is known as the Funk-Hecke theorem.
12. Show that, for x, y € SZ,

(4.49) etkxy = Z(ZZH)I Je(k) Pg(x - y).
=0
where
) \1/2 iz
aso i =(5) " rp0 =15 G) [La-tea

(Hint: Take g(r) = ¢ in Exercise 11, apply the Rodrigues formula, and integrate by
parts.) Thus e’**"Y is the integral kernel of the operator
(1/2)mi(A-1/2)

4 e Ja-172(k)
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For another approach, see Exercises 10 and 11 in §9 of Chap. 9.
13. Demonstrate the identities

d
4.51) [(1 —1)2 Zt]Pg(t) — (P4 (0)
and
4.52) i[(1—t2)i P (t)] F L+ D)Py(t) =0
' dt ar ¢ ¢ '

Relate (4.52) to the statement that, for fixed y € S2, ¢(x) = Py(x - y) belongs to the
L(£ + 1)-eigenspace of —Ag.

Exercises 14-19 deal with formulas for an orthogonal basis of V}, (for S 2y, We will
make use of the structure of irreducible representations of SO(3), obtained in §9 of
Appendix B, Manifolds, Vector Bundles, and Lie Groups.

14. Show that the representation of SO(3) on V} is equivalent to the representation Dy,
foreachk =0,1,2,....

15. Show that if we use coordinates (6, 1) on S2, where 0 is the geodesic distance from
(1,0,0) and v is the angular coordinate about the x1-axis in R3, then

9 oyl 0 d
(4.53) Li=g,. Le=ie [£55 +icotd aw].
16. Set
(4.54) Wi (x) = (x2 + ix3)k = sink 6 ¥V

Show that wy € V. and that it is the highest-weight vector for the representation, so
Liwg =ik wy
17. Show that an orthogonal basis of V} is given by
wy, L—wg, ..., szwk

18. Show that the functions ij = Lli_jwk, jel{-k,—k+1,....k—1,k}, listed in
Exercise 17 coincide, up to nonzero constant factors, with z ;, given by

ko = Zk>

the spherical function considered in Exercises 1-3, and, for 1 < j <k,
_7J _gJ
Th,—j = LY 7, zxj = Lz
19. Show that the functions zj y coincide, up to nonzero constant factors, with

(4.55) eV Pl(cosh), —k<j <k

where Plg (1), called associated Legendre functions, are defined by

i ; i d\lJl
; — (1) (1 —H)ll2( L
(4.56) Pk/ @) =D/ —5)V (dt) Pr(2).
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5. The Laplace operator on hyperbolic space

The hyperbolic space H" shares with the sphere S” the property of having
constant sectional curvature, but for H” it is —1. One way to describe H" is as a
set of vectors with square length 1 in R”*!, not for a Euclidean metric, but rather
for a Lorentz metric

5.1) (v,v) = —vf —---—vp +vpy,
namely,
(5.2) H' ={v e R (v,v) =1, v,q1 > 0},

with metric tensor induced from (5.1). The connected component G of the identity
of the group O(n, 1) of linear transformations preserving the quadratic form (5.1)
acts transitively on ", as a group of isometries. In fact, SO(n), acting on R” C
R"*1 leaves invariant p = (0,...,0,1) € H" and acts transitively on the unit
sphere in T, H"™. Also, if A(uy, ..., un,tn+1)" = (U1, ..., unt1,us)", then e is
a one-parameter subgroup of SO(n, 1) taking p to the curve

y = {(O,...,O,xn,xn+1):x,%_H—x,% =1,xp41 > 0}

Together these facts imply that H" is a homogeneous space.
There is a map of H" onto the unit ball in R”, defined in a fashion similar to
the stereographic projection of S”. The map

(5.3) s:H'"— B"={xeR":|x| <1}
is defined by
(5.4) 5(xX, Xpt1) = (1 + x041) 7' X

The metric on H" defined above then yields the following metric tensor on B”:
(5.5) ds?* = 4(1 - |x]?) Z dx3.

Another useful representation of hyperbolic space is as the upper half space
= {x € R" : x, > 0}, with a metric we will specify shortly. In fact, with
en =(0,...,0,1),

(5.6) T(x) = |x + en|_2(x +en) — zen

defines a map of the unit ball B” onto R’ , taking the metric (5.5) to

n
(5.7) ds® = x,;2 ) " dx3.
j=1
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The Laplace operator for the metric (5.7) has the form

n
Au = Zx,’: 9; (xﬁ_" aju)
(5.8) =
= x,% Z 8514 + (2 —n)x, dpu.

Jj=1

which is convenient for a number of computations, such as (5.9) in the following:

Proposition 5.1. If A is the Laplace operator on H", then A is essentially self-
adjoint on C§°(H"), and its natural self-adjoint extension has the property

(5.9) spec(—A) C [%(n —1)2, oo).

Proof. Since H” is a complete Riemannian manifold, the essential self-adjoint-
ness on C§°(H") follows from Proposition 2.4. To establish (5.9), it suffices to
show that

> 2
el

(—AM,M)Lz(Hn) > L2(H")’

(n—1)
4

for all u € C§°(H"). Now the volume element on ", identified with the upper
half-space with the metric (5.7), is x,;” dx; - - - dxp, so for such u we have

((—A — %(n — 1)2)u,u)L2

_ 2_ M)Z] 251 Gy
5.10) - /[(anu) ( . X2 dxy - doxy
n—1
+ Z /(3ju)2x,%_” dxy--dxy.
ji=1
Now, by an integration by parts, the first integral on the right is equal to

(5.11) /[an(x;(n—l)/zu)]Z Xp dxy - dxy.

R}

Thus the expression (5.10) is > 0, and (5.9) is proved.

We next describe how to obtain the fundamental solution to the wave equation
on H". This will be obtained from the formula for S”, via an analytic continuation
in the metric tensor. Let p be a fixed point (e.g., the north pole) in S”, taken to be
the origin in geodesic normal coordinates. Consider the one-parameter family of
metrics given by dilating the sphere, which has constant curvature K = 1. Spheres
dilated to have radius > 1 have constant curvature K € (0, 1). On such a space,
the fundamental kernel A~! sinzA §,(x), with
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K 1/2
(5.12) A= (—A + - 1)2) ,
can be obtained explicitly from that on the unit sphere by a change of scale. The

explicit representation so obtained continues analytically to all real values of K
and at K = —1 gives a formula for the wave kernel,

o B A T 1/2
(5.13) A7 sintA $y(x) = R(t,p,x), A=(-A 4(11 1) .

We have
. . —(n-1)/2
(5.14) R(t,p,x) = 11\r4n —2C, Im [2 cos(it — &) — 2 cosh r] ,
&\0
where r = r(p,x) is the geodesic distance from p to x. Here, as in (4.10),

C, = 1/(n — 1)A,. This exhibits several properties similar to those in the case
of §” discussed in §4. Of course, for r > |t|, the limit vanishes, exhibiting the
finite propagation speed phenomenon. Also, if n is odd, the exponent (n — 1) /2 is
an integer, which implies that (5.14) is supported on the shell r = |¢|.

In analogy with (4.25), we have the following formula for g(A4)8,(x), for g €
S(R), when acting on L2(H"), with n = 2k + 1:

1 1 d\k
5.15 A= m) V2 (—— 2N 5.
( ) g(4) = (2m) ( 27 sinhrar) &(r)
If n = 2k, we have
g(A) =
5.16 1 0 1 1 0\k _
( : —1/2/ (_Z_Sinh g) g(s)(coshs— coshr) Y2 Ginh s ds.
b4 - F11 s
Exercises

1. Ifn = 2k + 1, show that the Schwartz kernel of (=A — (n —1)2/4—72) " on H", for
7€ C\[0,00),is

1 1 1 0\k;
G0 = 5 (5-amrar) ¢

where r = r(x, y) is geodesic distance, and the integral kernel of e’(A+(”_1)2/ 4), for

t>0,is
1 1 1 9\k _.2
Hi(x,y) = (————) e /4




126 8. Spectral Theory
6. The harmonic oscillator

We consider the differential operator H = —A + |x|? on L2(R"). By Proposition
2.7, H is essentially self-adjoint on C§°(R"). Furthermore, as a special case of
Proposition 2.8, we know that H has compact resolvent, so L?(R") has an or-
thonormal basis of eigenfunctions of H. To work out the spectrum, it suffices to
work with the case n = 1, so we consider H = D? 4+ x2, where D = —i d/dx.

The spectral analysis follows by some simple algebraic relations, involving the
operators

d
6.1) a:D_lx:T<E+x)’
1,d
at =D +ix= l—<a—x)
Note that on D' (R),
(6.2) H=aat—1=a"a+1,
and
(6.3) [H,a) = —2a, [H,a']=2a".

Suppose that u; € C*°(R) is an eigenfunction of H, that is,
(6.4) uj€ D(H), Huj = Aju;.
Now, by material developed in §2,
D(H'Y?) = {ue L>(R) : Du € L*(R), xu € L>(R)},
© D(H) = {u € L*(R) : D%u+ x2u € L*(R)}.

Since certainly each u; belongs to D(H '/2), it follows that au; and a ¥ u; belong
to L2(R). By (6.3), we have

(6.6) H(auj) = (A; —2)au;, H(a%u) = (; +2)aty;
It follows that au; and a™ u; belong to D(H ) and are eigenfunctions. Hence, if

6.7) Eigen(A, H) = {u e D(H) : Hu = Au},
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we have, forall A € R,

6.8) a™ : Eigen(A, H) — Eigen(A + 2, H),

) a : Eigen(A + 2, H) — Eigen(A, H).
From (6.2) it follows that (Hu, u) > ”””2L2’ for all u € C§°(R); hence, in view
of essential self-adjointness,

(6.9) spec H C [1,00), forn =1.

Now each space Eigen(A, H) is a finite-dimensional subspace of C*°(R), and,
by (6.2), we conclude that, in (6.8), at is an isomorphism of Eigen(A;, H)
onto Eigen(4; + 2, H), for each A; € spec H. Also, a is an isomorphism of
Eigen(A;, H) onto Eigen(A; — 2, H), for all A; > 1. On the other hand, ¢ must
annihilate Eigen(A¢, H) when A is the smallest element of spec H, so

uo € Eigen(Lo, H) = ug(x) = —xup(x)

(10 = up(x) = K 22,

Thus

6.11) Ao =1, Eigen(l, H) = span(e™*"/?).

Since e=*"/2 spans the null space of a, acting on C *°(RR), and since each nonzero

space Eigen(A;, H) is mapped by some power of a to this null space, it follows
that, forn =1,

(6.12) spec H ={2k+1:k=0,1,2,...}
and
d k 2
(6.13) Eigen(2k + 1, H) = span (8_ —x) e¥/2).
X

One also writes

k
(6.14) (% - x) 12 = Hy (x) e¥12,

where Hy (x) are the Hermite polynomials, given by

Hi(x) = (_1)kex2 (%)ke_xz

(6.15) k/2]
—Z( —,(k 2),( 2x)F72
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We define eigenfunctions of H:

0 k
(6.16) () = ek (5= —x) € = e Hi(e 2,

where ci is the unique positive number such that || || L2(g) = 1. To evaluate c,
note that

(6.17) la®hill72 = (@athy, hi) 2 = 2(k + D) hg |72

Thus, if ||ig |2 = 1, in order for hxy; = yxa™hy to have unit norm, we need
Yk = 2k +2)~'/2 Hence

(6.18) o = [x"/22k k)]

Of course, given the analysis above of H on L?(R), then for H = —A + |x|?
on L2(R™), we have

(6.19) spec H ={2k +n:k=0,1,2,...}.
In this case, an orthonormal basis of Eigen(2k + n, H) is given by
(6.20) ek Hig (1) - H, (en)e P20 ky ook = K,
where ky, € {0, ..., k}, the Hy (x,) are the Hermite polynomials, and the ¢, are
given by (6.18). The dimension of this eigenspace is the same as the dimension of
the space of homogeneous polynomials of degree k in n variables.

We now want to derive a formula for the semigroup e 7', t > 0, called the
Hermite semigroup. Again it suffices to treat the case n = 1. To some degree

paralleling the analysis of the eigenfunctions above, we can produce this formula
via some commutator identities, involving the operators

(6.21) X=D*=-9% Y =x Z=x0y+0xx=2x0y+ 1.
Note that H = X + Y. The commutator identities are

(6.22) [X,Y]|=-2Z, [X,Z]=4X, [Y,Z]=—4Y.

Thus, X, Y, and Z span a three-dimensional, real Lie algebra. This is isomor-

phic to sl(2,R), the Lie algebra consisting of 2 x 2 real matrices of trace zero,
spanned by

0 1 0 O 1 0
(6.23) n+=(0 0), n_=(1 0), az(o _1).
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‘We have

(6.24) ny.n_]=a, [n4y,a]l=-2ny, [n_,a]=2n_.

The isomorphism is implemented by

(6.25) X < 2ny, Y ©2n_., Z < 2.

Now we will be able to write

(626) e—t(2n++2n7) — e—201(t)n+ e—20’3(t)0[ e—202(t)n7’
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as we will see shortly, and, once this is accomplished, we will be motivated to

suspect that also
(627) e—tH — e—o'l(t)X eU3(t)Z e—O’z(t)Y.

To achieve (6.26), write

250 0
628 —20'3(1 — e — y ,
e (00 2)=(

o202m— _ 1 0 _ 1 0

—202 1 Z 1)’

and
h 2¢ — sinh 2¢ u v
) —2t(ny+n-) — Ccos — )

(6.29) ¢ — sinh 2¢ cosh 2t v u

Then (6.26) holds if and only if

1 1

y:—:

6.30 _
( ) u cosh 2t

v

X =z = — = — tanh 21,
u

so the quantities o (¢) are given by

1
(6.31) 01(t) = 0x(t) = 3 tanh 2¢, €293® = cosh 21.
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Now we can compute the right side of (6.27). Note that

e Xutx) = (o) 2 [0 o) dy,

(6.32) e 2 y(x) = e_ozxzu(x),
e?3Zu(x) = e u(e?*3x).

Upon composing these operators we find that, forn = 1,
(6.33) e M y(x) = /Kt (x, y)u(y) dy,
with

exp{[—%(cosh 2t)(x? + y?) + xy]/sinh 2t}

(27 sinh 2t)1/2

(6.34) Ki(x.y) =

This is known as Mehler’s formula for the Hermite semigroup. Clearly, for gen-
eral n, we have

(6.35) M) = [ Kaltx () dy,
with
(6.36) Ky(t,x,y) = Ki(x1,y1) - K¢ (Xn, yn).

The idea behind passing from (6.26) to (6.27) is that the Lie algebra homo-
morphism defined by (6.25) should give rise to a Lie group homomorphism from
(perhaps a covering group G of) SL(2,R) into a group of operators. Since this
involves an infinite-dimensional representation of G (not necessarily by bounded
operators here, since e *# is bounded only for ¢ > 0), there are analytical prob-
lems that must be overcome to justify this reasoning. Rather than take the space
to develop such analysis here, we will instead just give a direct justification of
(6.33)—(6.34).

Indeed, let v(z, x) denote the right side of (6.33), with u € L?(R) given. The
rapid decrease of K;(x,y) as |x| + |y| — oo, for t > 0, makes it easy to show
that

(6.37) u€ L*(R) = v € C®((0,00), S(R)).

Also, it is routine to verify that

(6.38) = _Hv.
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Simple estimates yielding uniqueness then imply that, for each s > 0,
(6.39) v(t +5,)) = e (s, ).

Indeed, if w(z, -) denotes the difference between the two sides of (6.39), then we
have w(0) = 0, w € C(RT, D(H)), dw/dr € C(R*, L?(R)), and

d
- w32 = —2(Hw,w) <0,

sow(t) =0, forall r > 0.
Finally, as t \( 0, we see from (6.31) that each o (¢) \, 0. Since v(t, x) is
also given by the right side of (6.27), we conclude that

(6.40) v(t,) = uin L2(R), ast \,O.
Thus we can let s \ 0 in (6.39), obtaining a complete proof that e ¥
by (6.33) whenn = 1.

It is useful to write down the formula for e™** using the Weyl calculus, in-
troduced in §14 of Chap.7. We recall that it associates to a(x, £) the operator

u is given

tH

a(X, Dyu = 2m)™" / a(q. p)e' Xt Py(x) dg dp
(6.41)
= @m™ / A )¢ U uy) dy i

In other words, the operator a(X, D) has integral kernel K, (x, y), for which

a(X. Dyux) = [ Kty ay

given by

Katxo) = @0 [ a(F526)e 0 ag
Recovery of a(x, &) from K,(x, y) is an exercise in Fourier analysis. When it is
applied to the formulas (6.33)—(6.36), this exercise involves computing a Gaussian
integral, and we obtain the formula
(6.42) e = h,(X, D)
on L2(R"), with

(6.43) he(x, &) = (cosht)™ o~ (tanh t)(lX|2+|E\2).
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It is interesting that this formula, while equivalent to (6.33)—(6.36), has a simpler
and more symmetrical appearance.

In fact, the formula (6.43) was derived in §15 of Chap. 7, by a different method,
which we briefly recall here. For reasons of symmetry, involving the identity
(14.19), one can write

(6.44) he(x,6) = g(t,Q), 0Q(x.§) = |x]* + [E]%.

Note that (6.42) gives d; h(X,D) = —Hh,(X, D). Now the composition for-
mula for the Weyl calculus implies that %, (x, £) satisfies the following evolution
equation:

d

ght(x,é) =—(Qoh)(x,§)

00 e (x.6) — (0. i (x. )

(el + IV (e, 8) + S0+ 92, e, ).

k

(6.45)

Given (6.44), we have for g(¢, Q) the equation

2 ag

Q2 "0

It is easy to verify that (6.43) solves this evolution equation, with fg(x, &) = 1.
We can obtain a formula for

(6.46) a =—Q +Qa

(6.47) e719XD) — 2 (X, D),

for a general positive-definite quadratic form Q(x, £). First, in the case

(6.48) Q(x. &)=Y uj(x?+&). ;>0

j=1
it follows easily from (6.43) and multiplicativity, as in (6.36), that

n n
-1
6.49) h2(x.£) = l_[ (coshrpj) - expq— Z(tanh tuj)(x? + EJZ)
ji=1 j=1
Now any positive quadratic form Q(x,§) can be put in the form (6.48) via a
linear symplectic transformation, so to get the general formula we need only

rewrite (6.49) in a symplectically invariant fashion. This is accomplished using
the “Hamilton map” Fg, a skew-symmetric transformation on R?" defined by

(6.50) Qu,v) = o(u, Fouv), u,v € R,
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where Q (u, v) is the bilinear form polarizing Q, and o is the symplectic form on
R?"; o(u,v) = x-& —x' - Eifu = (x,§), v = (x',&). When Q has the form

(6.48), Fp is a sum of 2 x 2 blocks ( 0 ’Lt)j), and we have
—Hj

n _ —-1/2
(6.51) H(cosh ) = (det cosh itFQ) .
j=1

Passing from Fg to
(6.52) Ao = (-F3)"?,
the unique positive-definite square root, means passing to blocks
(Mj 0 )
0wy

and when Q has the form (6.48), then

(6.53) > (anh 1)) (xF +§7) = 10 ((140)8. ).

Jj=1

where { = (x,£) and

tanh ¢
(6.54) 9(t) = a“t ,
Thus the general formula for (6.47) is
Q -1/2 B(tA
(6.55) h(x.£) = (cosh 1A Q) 10400

Exercises

1. Define an unbounded operator A on L?(R) by
D(A) = {u € L>(R) : Du e L>(R), xu € L>(R)}, Au= Du—ixu.
Show that A is closed and that the self-adjoint operator H satisfies
H=A"A+1=A44" -1

(Hint: Note Exercises 5-7 of §2.)
2. If Hy(x) are the Hermite polynomials, show that there is the generating function
identity
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1 2
Z FHk (x)sk — p2Xs—s
k=0
(Hint: Use the first identity in (6.15).)
3. Show that Mehler’s formula (6.34) is equivalent to the identity

0 .
Y hi(hj(y)s! =
Jj=0
21 —s2)71/2 exp{(l - sz)_l[nys —(x2+ yz)sz]} -e_(x2+y2)/2,

for 0 < s < 1. Deduce that

o0 Sj
> Hj(x)?-—

’ 2J j!
Jj=0

=(1 _Sz)—1/262sx2/(1+s), Is] < 1.

4. Using
o0
H™S = L/ e tHH =1 gt Res >0,
r'(s) Jo

find the integral kernel Ag(x, y) such that
Hu) = [ Astr o) dy.

Writing Tr H ™S5 = f Ags(x,x)dx,Res > 1, n = 1, show that

_ 1 ooys—l
“S)—m/o .

See [Ing], pp. 4144, for a derivation of the functional equation for the Riemann zeta
function, using this formula.
5. Let Hy = —d?/dx? + »%x2. Show that e *Ho has integral kernel

K®(x.y) = (4m)—1/2 y(2wt)1/2 o~V 2w0)[(cosh 2wt)(x2+y2)—2xy]/4t’

where

6. Consider the operator

O(X,D) = —(% - ia)xz)z - (% + iwx1)2

ad ad
A 21,12 .
&l 2 ( 28x1 18x2)'

Note that Q(x, £) is nonnegative, but not definite. Study the integral kernel K,Q (x,y)
of e12(X:D) _Show that

K2 (x.0) = (4n1)™" y(2wr) eTT@ODIXP /41,
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where
7(z) = z coth z.
7. Let (wjx) be an invertible, n x n, skew-symmetric matrix of real numbers (so n must

be even). Suppose
2

L:—Z E_izw‘jkxk
Jj=1 - k
Evaluate the integral kernel K,L (x, y), particularly at y = 0.

8. In terms of the operators a,a™ given by (6.1) and the basis of L2(R) given by (6.16)—
(6.18), show that

a+hk = \/2k +2hk+l? ahk = \/zk hk—l'

7. The quantum Coulomb problem
In this section we examine the operator
(7.1) Hu = —Au— K|x|tu,

acting on functions on R3. Here, K is a positive constant.

This provides a quantum mechanical description of the Coulomb force between
two charged particles. It is the first step toward a quantum mechanical description
of the hydrogen atom, and it provides a decent approximation to the observed
behavior of such an atom, though it leaves out a number of features. The most im-
portant omitted feature is the spin of the electron (and of the nucleus). Giving rise
to further small corrections are the nonzero size of the proton, and relativistic ef-
fects, which confront one with great subtleties since relativity forces one to treat
the electromagnetic field quantum mechanically. We refer to texts on quantum
physics, such as [Mes], [Ser], [BLP], and [IZ], for work on these more sophisti-
cated models of the hydrogen atom.

We want to define a self-adjoint operator via the Friedrichs method. Thus we
want to work with a Hilbert space

(7.2) H=1ue L*(R®:Vue L*(R?), / x| 7 u(x)|? dx < oo} |
with inner product
(7.3) (u, V) = (Vu,Vo)r2 + A(u,v) 12 — K/ lx| " u(x)v(x) dx,

where A is a sufficiently large, positive constant. We must first show that A can be
picked to make this inner product positive-definite. In fact, we have the following:
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Lemma 7.1. Forall ¢ € (0, 1], there exists C(g) < oo such that
a4 [ T P dx < elVal?, + ol

forallu e H'(R3).

Proof. Here and below we will use the inclusion

2
(1.5) HS(R™) C LP(R"), V pe [2, " ) 0<s<2
n—2s 2

from (2.42) of Chap.4. In Chap. 13 we will establish the sharper result that
H*(R™) c L*/®=25)(R"); for example, H ' (R3) c L(R?). We will also cite
this stronger result in some arguments below, though that could be avoided.
We also use the fact that (if B = {|x| < 1} and yp(x) is its characteristic
function),
BV € LI(R?), forallg <3

Here and below we will use V(x) = |x|~!. Thus the left side of (7.4) is
bounded by
1.6) sV e - ulZag + 22 < Clullyo s, + 2.

where we can take any ¢’ > 3/2; take ¢’ € (3/2,3). Then (7.6) holds for some
o < 1, for which L2'(R?) > H° (R?). From this, (7.4) follows immediately.

Thus the Hilbert space H in (7.2) is simply H!(R3), and we see that indeed,
for some A > 0, (7.3) defines an inner product equivalent to the standard one
on H'(R3). The Friedrichs method then defines a positive, self-adjoint operator
H + Al, for which

(1.7) D((H + AI)'/?) = H'(R).
Then
(7.8) D(H) ={ue H'(R?) : —Au— K|x|"'u € L2(R3)},

where —Au — K|x|™'u is a priori regarded as an element of H~1(R?) if u €
H'(R3). Since H?(R3) C L*(R3), we have

(7.9) ue H*(R?*) = |x|"'u € L32(R?),
SO
(7.10) D(H) D H*(R?).

Indeed, we have:
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Proposition 7.2. For the self-adjoint extension H of —A— K |x|~! defined above,
(7.11) D(H) = H*(R?).

Proof. Pick A in the resolvent set of H; for instance, A € C \ R. If u € D(H)
and (H — M)u = f € L?>(R3), we have

(7.12) u— KR,Vu=R, f =g,

where V(x) = |x|7! and R} = (—A — 1)~!. Now the operator of multiplication
by V(x) = |x|~! has the property
(7.13) My : HY(R?) — L?7%(R?),
forall ¢ > 0, since H!'(R3) ¢ LS(R3®) N L2(R3) and V € L3¢ on |x| < 1.
Hence

My : H'(R®) — H™(R3),
for all & > 0. Let us apply this to (7.12). We know that u € D(H) C D(H'/?) =

H'(R?),s0 KRy Vu € H*¢(R3). Thus u € H>"¢(R?), for all ¢ > 0. But, for
& > 0 small enough,

(7.14) My : H**(R%) — L*(R?),

sothen u = KRy (Vu) + Ry f € H?(R3). This proves that D(H) C H?*(R?)
and gives (7.11).

Since H is self-adjoint, its spectrum is a subset of the real axis, (—oo, 00). We
next show that there is only point spectrum in (—oo, 0)

Proposition 7.3. The part of spec H lying in C \ [0, 00) is a bounded, discrete
subset of (—00,0), consisting of eigenvalues of finite multiplicity and having at
most {0} as an accumulation point.

Proof. Consider the equation (H — A)u = f € L?(R3), that s,
(7.15) (A —Nu—KVu=f,

with V(x) = |x|! as before. Applying R; = (—A — 1)™! to both sides, we
again obtain (7.12):

(7.16) (I —KRyMy)u =g, = R, f.

Note that R, is a holomorphic function of A € C \ [0, 00), with values in
L(L*(R3), H2(R?)). A key result in the analysis of (7.16) is the following:

Lemma 7.4. For A € C \ [0, 00),
(7.17) RiMy € K(L*(R?)),

where K is the space of compact operators.
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We will establish this via the following basic tool. For A € C \ [0,00), ¢ €
Co(R3), the space of continuous functions vanishing at infinity, we have

(7.18) MyR; € K(L?) and RyM, € K(L?).

To see this, note that, for ¢ € Cg° (]R3), the first inclusion in (7.18) follows from
Rellich’s theorem. Then this inclusion holds for uniform limits of such ¢, hence
for ¢ € Co(R?). Taking adjoints yields the rest of (7.18).

Now, to establish (7.17), write

(7.19) V=V + Vs,

where Vi = ¢V, ¥ € CP(R?), ¥(x) = 1 for |x| < 1. Then V» € Co(R?), so
R)My, € K. We have V; € L1(R?), for all g € [1, 3), so, taking ¢ = 2, we have

(7.20) My, : L*(R®) — LY (R?®) ¢ H73/275(R?),
for all ¢ > 0, hence
(7.21) R;My, : L2(R®) — HY?>*(R%) c L2(R®).

Given V; supported on a ball Bg, the operator norm in (7.21) is bounded by
a constant times ||V;| 2. You can approximate V; in L?-norm by a sequence
w; € C{(R3). It follows that Ry My, is a norm limit of a sequence of compact
operators on LZ(]R3), so it is also compact, and (7.17) is established.

The proof of Proposition 7.4 is finished by the following result, which can be
found as Proposition 7.4 in Chap. 9

Proposition 7.5. Let O be a connected, open set in C. Suppose C(A) is a
compact-operator-valued holomorphic function of A € O. If I — C(Q) is invert-
ible at one point p € O, then it is invertible except at most on a discrete set in O,
and (I — C(L))~Y is meromorphic on O.

This applies to our situation, with C(1) = KR) My ; we know that I — C(1)
is invertible for all A € C \ R in this case.

One approach to analyzing the negative eigenvalues of H is to use polar co-
ordinates. If —K |x|~! is replaced by any radial potential V(|x|), the eigenvalue
equation Hu = — Eu becomes

%u 2 0u 1
(7.22) 2 Asu—V(r)u= Eu
or ror r2

We can use separation of variables, writing u(r8) = v(r)p(0), where ¢ is an
eigenfunction of A, the Laplace operator on S2,

1, 1
(7.23) Asp=—dp. A= (k+ 5)2 -1 = k% + k.
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Then we obtain for v(r) the ODE

A
(7.24) v (r) + %v’(r) + f(rv(@r) =0, f(r)=—-E— 2 V(r).

One can eliminate the term involving v’ by setting

(7.25) w(r) = rv(r).
Then
(7.26) w’(r) + f(Hw(r) = 0.

For the Coulomb problem, this becomes
K A

(7.27) W (r) + [—E +=- —z]w(r) —0.
r r

If we set W(r) = w(Br), B = 1/2/E, we get a form of Whittaker’s ODE:

1 2
7 M

1 x
1 _ - —
(7.28) W@+ [+ T+ e =0
with
K 1 1\2
) e M 1 2

This in turn can be converted to the confluent hypergeometric equation

(7.30) W' @)+ (b —2V¥' () —ay(z) =0

upon setting

(731) W(Z) — ZM-‘FI/Z e—Z/Z W(Z),
with
1 K
a=p—x+-=k+1-—=,
(7.32) 2 2VE

b=2u+1=2k+2.

Note that ¥ and v are related by

(7.33) v(r) = QVE)FT! ke 2VEr 4 0 VEr).
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Looking at (7.28), we see that there are two independent solutions, one behav-
ing roughly like e~/2 and the other like ¢/, as z — +oc. Equivalently, (7.30)
has two linearly independent solutions, a “good” one growing more slowly than
exponentially and a “bad” one growing like e, as z — —+o00. Of course, for a
solution to give rise to an eigenfunction, we need v € L2(R*,r2dr), that is,
w € L*(R*,dr). We need to have simultaneously w(z) ~ ce™%/? (roughly) as
z — 400 and w square integrable near z = 0. In view of (7.8), we also need
v e L2(RT,r2dr).

To examine the behavior near z = 0, note that the Euler equation associated
with (7.28) is

(7.34) 2W"(2) + G — MZ)W(Z) =0,

with solutions z!/27# and z!/27#, i, K and 7%, k = 0,1,2,....Ifk = 0,
both are square integrable near 0, but for k£ > 1 only one is. Going to the confluent
hypergeometric equation (7.30), we see that two linearly independent solutions
behave respectively like z° and 772 = 772k~ as 7 — 0.

As a further comment on the case k = 0, note that a solution W behaving like
2 at z = 0 gives rise to v(r) ~ C/r asr — 0, with ¢ # 0, hence v/'(r) ~
—C/r2. This is not square integrable near r = 0, with respect to 72 dr, so also
this case does not produce an eigenfunction of H.

Ifb ¢ {0,—1,-2,...}, which certainly holds here, the solution to (7.30) that
is “good” near z = 0 is given by the confluent hypergeometric function

(@)n "

(7.35) 1Fi(a:b;z) = ;
n; (b)n n!

an entire function of z. Here, (a), = a(a + 1)---(a + n —1); (a)o = 1. If also
a ¢ {0,—1,-2,...}, it can be shown that

r (b) s Z—(b—a)

(7.36) 1Fi(a;b;2) ~ @)

, Z—> to0.

See the exercises below for a proof of this. Thus the “good” solution near z = 0 is
“bad” as z — 400, unless a is a nonpositive integer, say a = —j. In that case, as
is clear from (7.35), 1 F1(—j; b; z) is a polynomial in z, thus “good” as z — +o0.
Thus the negative eigenvalues of H are given by —FE, with

(7.37) K i+ k+1
. — = =n,
2VE !
that is, by
KZ
(7.38) F=— n=1273....

4n2’
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Note that, for each value of n, one can write n = j + k 4 1 using n choices
of k € {0,1,2,...,n — 1}. For each such k, the (k? + k)-eigenspace of Ag has
dimension 2k + 1, as established in Corollary 4.3. Thus the eigenvalue —F =
—K?/4n? of H has multiplicity

n—1
(7.39) > @k + 1) =n?
k=0

Let us denote by V;, the n2-dimensional eigenspace of H , associated to the eigen-
value A, = —K?2/4n>.
The rotation group SO(3) acts on each V;,, via

p(g) f(x) = f(g7'x). g€SOB). x R’

By the analysis leading to (7.39), this action on V}, is not irreducible, but rather
has n irreducible components. This suggests that there is an extra symmetry, and
indeed, as W. Pauli discovered early in the history of quantum mechanics, there is
one, arising via the Lenz vector (briefly introduced in §16 of Chap. 1), which we
proceed to define.

The angular momentum vector L = x x p, with p replaced by the vector oper-
ator (0/dxy, 0/dxz, d/dx3), commutes with H as a consequence of the rotational
invariance of H. The components of L are

0 0

Xi—— — Xy ——
Jaxk

(7.40) L= kT
8x,-

where (j, k, £) is a cyclic permutation of (1, 2, 3). Then the Lenz vector is defined
by

(7.41) B:%(pr—pr)—’r—(,

with components Bj, 1 < j < 3, each of which is a second-order differential
operator, given explicitly by

1 X
(7.42) B; = E(Lkag + gLy — L¢dg — 0 Lyg) — 7’

where (J, k, £) is a cyclic permutation of (1,2, 3). A calculation gives
(7.43) [H,B;] =0,

in the sense that these operators commute on C ®(R3 \ 0).

It follows that if u € V;,, then B;u is annihilated by H — A,, on R3\ 0. Now,
we have just gone through an argument designed to glean from all functions that
are so annihilated, those that are actually eigenfunctions of H. In view of that, it
is important to establish the next lemma
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Lemma 7.6. We have
(7.44) Bj:Vy — V.

Proof. Let u € V,,. We know that u € D(H) = H?(R3). Also, from the anal-
ysis of the ODE (7.28), we know that u(x) decays as |x| — oo, roughly like

e 1nl"21x] 1t follows from (7.42) that Bju € L2(R3). It will be useful to obtain
a bit more regularity, using V,, C D(H?) together with the following.

Proposition 7.7. Ifu € D(H?), then, for all ¢ > 0,

(7.45) ue H>*5(R3).
Furthermore,
(7.46) g € S(R?), g(0) =0 = gue H"/**R>).

Proof. We proceed along the lines of the proof of Proposition 7.2, using
(7.12), i.e.,

(7.47) u=KR)Vu+ Ry f,
where f = (H — A)u, with A chosen in C \ R. We know that f = (H — A)u

belongs to D(H), so Ry f € H*(R?®). We know that u € H?(R3). Parallel to
(7.13), we can show that, for all ¢ > 0,

(7.48) My : H*(R?) — HY?75(R?),

so KRy Vu e H5/?7¢(R3). This gives (7.45).
Now, multiply (7.47) by g and write

(7.49) gu=KRygVu+ K[Mg,R)]Vu+ gR, f.
This time we have
Mgy : H*(R?) — H>7¢(R?),
so RygVu € H?/27¢(R3). Furthermore,
(7.50) [Mg,R;] = Ry [A, Mg] Ry : HS(R®) — HST3(R?),

so [Mg, Ry]Vu e H7/27¢(R3). This establishes (7.46).
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We can now finish the proof of Lemma 7.6. Note that the second-order deriva-

tives in B; have a coefficient vanishing at 0. Keep in mind the known exponential
decay of u € Vy. Also note that My /, : H2(R3) — H?3/27¢(R3). Therefore,

(7.51) ueV, = Bjue H¥?*(R3).
Consequently,
(7.52) A(Bju) € H™Y275(R3), and V(B,u) € L'(R?) + L?(R?).
Thus (H —A,)(B,u), which we know vanishes on R\ 0, must vanish completely,
since (7.52) does not allow for a nonzero quantity supported on {0}. Using (7.8),
we conclude that B;u € D(H ), and the lemma is proved.

With Lemma 7.6 established, we can proceed to study the action of B; and L ;
on V,,. When (J, k, £) is a cyclic permutation of (1, 2, 3), we have
(7.53) [Lj. Lkl = Ly,

and, after a computation,
4
(7.54) [Lj,Bx]l = By, [Bj,Bx]= —?HLE-

Of course, (7.52) is the statement that L ; span the Lie algebra so(3) of SO(3).
The identities (7.54), when L ; and B; act on V}, can be rewritten as

K

(7.55) [Lj Akl = Ag. [Aj, Al = Ag, A = ST B
~—/n

If we set

1 1

(7.56) M= §(L+A), N= E(L_A)’

we get, for cyclic permutations (j, k, £) of (1,2, 3),

(7.57) (M;, My] =My, [N;,N¢]=Ng, [Mj,Njy]=0,

which is clearly the set of commutation relations for the Lie algebra so(3) @so(3).
We next aim to show that this produces an irreducible representation of SO(4) on
V., and to identify this representation. A priori, of course, one certainly has a
representation of SU(2) x SU(2) on V.

We now examine the behavior on V;, of the Casimir operators M? = M2 +
M3 + M} and N2. A calculation using the definitions gives B - L = 0, hence
A-L =0,s0,0nV,,
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(7.58)

1 K?
=-(L*>- —B?
4 ( 4A, )
We also have the following key identity:
(7.59) K?*(B>—1)=4H(L*> + 1),

which follows from the definitions by a straightforward computation. If we com-
pare (7.58) and (7.59) on V,,, where H = A,,, we get

2

K
(7.60) 4M? = 4N? = _(1 +

4)tn)1 on V.

Now the representation o, we get of SU(2) x SU(2) on V,, is a direct sum
(possibly with only one summand) of representations D j/» ® D j/», where D j/»
is the standard irreducible representation of SU(2) on C/T!, defined in §9 of
Appendix B. The computation (7.60) implies that all the copies in this sum are
isomorphic, that is, for some j = j(n),

w
(7.61) On = @ Djwmyj2 ® D jm/2-
=1

A dimension count gives /L(j(l’l) + 1)2 = n?. Note that on D, ® D/, we have
M? = N? = (j/2)(j/2 + 1). Thus (7.60) implies j(j +2) = —1 + K?/4A,, or

K? ..
(7.62) Ap = TESIE J=Jjn).

Comparing (7.38), we have (j + 1)? = n?, that is,
(7.63) ) =n—1.

Since we know that dim Vj, = n?, this implies that there is just one summand in
(7.61), so

(7.64) on = Du—1)/2 ® Dn-1)/2-

This is an irreducible representation of SU(2) x SU(2), which is a double cover
of SO(4),
k : SU(2) x SU(2) — SO(4).

It is clear that o, is the identity operator on both elements in ker «, and so o,
actually produces an irreducible representation of SO(4).
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Let p, denote the restriction to V;, of the representation p of SO(3) on L3(R3),
described above. If we regard this as a representation of SU(2), it is clear that p,
is the composition of o, with the diagonal map SU(2) — SU(2) x SU(2). Results
established in §9 of Appendix B imply that such a tensor-product representation
of SU(2) has the decomposition into irreducible representations:

n—1

(7.65) on A @ Dk.

This is also precisely the description of p, given by the analysis leading to (7.39).

There are a number of other group-theoretic perspectives on the quantum
Coulomb problem, which can be found in [Eng] and [GS2]. See also [Ad] and
[Cor], Vol. 2.

Exercises

1. For H = —A — K|x|~! with domain given by (7.8), show that
(7.66) D(H) = {ue L>(R®) : —Au— K|x|"'u e L2(R3)},

where a priori, if u € L2(R3), then Au € H?(R3) and |x|™'u € LIR3) +
L%2(R3) c H2(R3).
(Hint: Parallel the proof of Proposition 7.2. If u belongs to the right side of (7.66), and
if you pick A € C \ R, then, as in (7.12),

(7.67) u—KR;Vu= R, f e H*(R?))
Complement (7.13) with

My : L2R3) — (| H3/27*(®3),
&>0
My o () HY?#(®R3) — () H/4(R3).
>0 >0

(7.68)

(Indeed, sharper results can be obtained.) Then deduce from (7.67) first that u €
H/2-¢(R3) and then that u € H¥/48(R3) c H!(R3).)
2. As a variant of (7.4), show that, for u € H!(R3),

(7.69) / x| 72 |u(x)|? dx < 4/ |Vu(x)|? dx.

Show that 4 is the best possible constant on the right. (Hint: Use the Mellin transform
to show that the spectrum of r d/dr — 1/2 on L2(R*, r~1dr) (which coincides with
the spectrum of r d/dr on L2(R*, dr))is {is —1/2 : s € R}, hence

(7.70) / ") Pr < 4 / TR ar
0 0

This is sometimes called an “uncertainty principle” estimate. Why might that be?
(Cf. [RS], Vol. 2, p. 169.)
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3. Show that H = —A — K/|x| has no non-negative eigenvalues, i.e., only continuous
spectrum in [0, co). (Hint: Study the behavior as r — 400 of solutions to the ODE
(7.28), when —FE is replaced by +E € [0, o). Consult [Olv] for techniques. See also
[RS], Vol. 4, for general results.)

4. Generalize the propositions of this section, with modifications as needed, to other
classes of potentials V(x), such as

Vel?+el™®,

the set of functions V' such that, for each ¢ > 0, one can write V = V| + V5, V] €
L2, |VallLeo < €. Consult [RS], Vols. 24, for further generalizations.

Exercises on the confluent hypergeometric function
1. Taking (7.35) as the definition of 1 F(a; b; z), show that

F(b) ! zt .a—1 b—a—1
—l"(a)l"(b—a)/o et (1-1) dt,

(7.71) Reb > Rea > 0.

1Fi(a;b;z) =

(Hint: Use the beta function identity, (A.23)—(A.24) of Chap.3.) Show that (7.71)
implies the asymptotic behavior (7.36), provided Re b > Rea > 0, but that this is
insufficient for making the deduction (7.37).

Exercises 2-5 deal with the analytic continuation of (7.71) in @ and b, and a com-
plete justification of (7.36). To begin, write

L®) Ayl(a,—z) + lb)A(g(b —a,z)e’,

(1.72) 1Fi(aibig) = ¢ T(a)

(b—a)

where, for Re ¢ > 0, ¥ € C*([0, 1/2]), we set

1 1/2
(1.73) Ay(e.2) = %/0 e~y dr,

and, in (7.72),
Yy =(1-0b"71 @) =1 -1,

2. Given Re ¢ > 0, show that

(7.74) Ay(c.2) ~¥(0)z ¢, z— 4o0,
and
1
(7.75) Ay(c,—2) ~ %z_lez/z, 7z — +o0.

3. Forj =0,1,2,...,set

1 1/2 ‘i 1
(7.76) Ai(e,t) = —/ e el dt,
i I'(c) Jo
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s0 Aj(c,z) = Ay (c,z), with yr(¢) = t/. Show that

e+ j)z—c—j 1 *© ot cti—1 g
L(c) () Ji/2

for Re z > 0. Deduce that A4 (c, t) is an entire function of ¢, for Re z > 0, and that

Aj(c,2) =

Clc+Jj) ——j
AJ(C,Z)’V WZ =) 7 400,
ifc ¢ {0,—1,-2,...}.
4. Givenk = 1,2,3, ..., write
_ 1
V() =ao+art + - +ap_ 1K k. oy e Coo([o’ 5])
Thus
k-1 L
(777) Aw(C,Z) = Z ajAj(C,Z) + m/ e—ztwk(z)tk-l-c—l dt.
L C 0
Jj=0

Deduce that Ay, (c, z) can be analytically continued to Re ¢ > —k when Re z > 0 and
that (7.74) continues to hold if ¢ ¢ {0,—1,—-2,...}, ag # 0.
5. Using t¢~1 = ¢~1(d/dt)t¢ and integrating by parts, show that

(7.78) Ao(c,z) = zAo(c +1,2) — /2

1
2T +1)°
for Re ¢ > 0, all z € C. Show that this provides an entire analytic continuation of
Ao(c, z) and that (7.74)—(7.75) hold, for ¥ (¢) = 1. Using

I'(c+J)

Aj(C,Z) = TC)

Ao(c + J.2)
and (7.77), verify (7.75) for all ¥ € C°([0, 1/2]). (Also again verify (7.74)). Hence,
verify the asymptotic expansion (7.36).

The approach given above to (7.36) is one the author learned from conversations
with A. N. Varchenko. In Exercises 6—15 below, we introduce another solution to the
confluent hypergeometric equation and follow a path to the expansion (7.36) similar
to one described in [Leb] and in [Olv].

6. Show that a solution to the ODE (7.30) is also given by

2P R+ a—b2-bi2),
in addition to 1 F1(a; b; z), defined by (7.35). Assume b # 0, —1,—2,.... Set

oy Ld=b) .
V(a;b;z) = T +a—b) 1F1(a;b;2)
re-1
(7.79) +% b 1Fi(l4+a—b;2-b;72).

Show that the Wronskian is given by

lb) ~b,z,

W (1Fi(a;b;2), ¥(a:b;z)) = _F(a)z
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7. Show that
(7.80) 1Fi(a;b;z) =e* 1F1(b—a;b;—z), b ¢{0,—1,-2,...}

(Hint: Use the integral in Exercise 1, and set s = 1—¢, for the case Re b > Re a > 0.)
8. Show that

1 o0
(7.81) W(a:b;z) = m/ e ¥ V(1 + )P 1 gt, Rea >0, Rez> 0.
a 0

(Hint: First show that the right side solves (7.30). Then check the behavior as z — 0.)
9. Show that

(7.82) W(a;b;z) =z @+ 1;b+ L)+ (1 —a—b)¥(a+ 1;b;z2).
(Hint: To get this when Re a > 0, use the integral expression (7.81) for W(a + 1;b +

1;z), write ze~% = —(d/dt)e™?, and integrate by parts.)
10. Show that

L)  +rai
Fi(a;b;z) = —————e>" " W(a; b;
1F1(a;b;2) l"(b—a)e (a;b;z)
(7.83) + L0 b e Wb —a;b;—z).

T'(a)

where —z = eT7iz b #0,—1,-2,.... (Hint: Make use of (7.80) as well as (7.79).)
11. Using the integral representation (7.81), show that under the hypotheses § > 0, b ¢
{0,—1,-2,...},and Re a > 0, we have

(7.84) W(a;biz) ~2%, |z = oo,
in the sector

(7.85) |Arg 2| < % 3

12. Extend (7.84) to the sector |Arg z| < 7 —§. (Hint: Replace (7.81) by an integral along
the ray y = {e!%s : 0 < 5 < oo}, given |a| < 7/2.)

13. Further extend (7.84) to the case where no restriction is placed on Re a.
(Hint: Use (7.82).)

14. Extend (7.84) still further, to be valid for

3n
(7.86) |Arg z| < - = 8.
(Hint: See Theorem 2.2 on p. 235 of [Olv], and its application to this problem on

p- 256 of [Olv].)
15. Use (7.83)—(7.86) to prove (7.36), that is,

(7.87) 1F1(a;b;2) ~ 0] R T N ST

T'(b
I'(a)

provided a, b ¢ {0,—1,-2,...}.
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Remarks: For the analysis of V(b — a; b; —z) as 7 — 400, the result of Exercise
14 suffices, but the result of Exercise 13 does not. This point appears to have been
neglected in the discussion of (7.87) on p. 271 of [Leb].

8. The Laplace operator on cones

Generally, if N is any compact Riemannian manifold of dimension m, possibly
with boundary, the cone over N, C(N), is the space Rt x N together with the
Riemannian metric

(8.1) dr? + r2g,

where g is the metric tensor on N. In particular, a cone with vertex at the origin
in R™*! can be described as the cone over a subdomain  of the unit sphere
S™ in R™*1, Our purpose is to understand the behavior of the Laplace operator
A, a negative, self-adjoint operator, on C(N). If dN # @, we impose Dirichlet
boundary conditions on dC (N ), though many other boundary conditions could be
equally easily treated. The analysis here follows [CT].

The initial step is to use the method of separation of variables, writing A on
C(N) in the form

7?2 ma 1

(8.2) or? rar—i_r2 N

where Ay is the Laplace operator on the base N. Let 1, ¢;(x) denote the
eigenvalues and eigenfunctions of —A y (with Dirichlet boundary condition on
dN if ON # @), and set

—1
(8.3) v =, +a?)? o= —mT.

If
grx) =) g;(Ng;(x),
J

with g; (r) well behaved, and if we define the second-order operator L, by

02 0
(8.4) L,g(r)= (m"‘%g—%)g(’”),

then we have

8.5) Ag(r,x) =) Ly, g;(r)g;(x).
J

In particular,

(8.6) Agjp) = —Ag;p;
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provided
(8.7) gi(r)=r=m D2 (r).

Here J, (z) is the Bessel function, introduced in §6 of Chap. 3; there in (6.6) it is
defined to be

2 v 1 .

(88) Jv (Z) — 1(Z/ ) : / (1 _ ZZ)U_I/Zeth dl,
rHre+3) Ja
forRe v > —1/2;1in (6.11) we establish Bessel’s equation
d? 1d p2
8.9 —_—+ —— 1-— J; =0,
89 |:dz2 NPT ( Zz):| v@
which justifies (8.6); and in (6.19) we produced the formula
( 1)k 2k

8.10 J = .
(8.10) v() () Zkll"(k+v+1)<)

We also recall, from (6.56) of Chap. 3, the asymptotic behavior

2 \1/2 bRV 4 ~3/2
(8.11) Jy(r) ~ (;) cos(r -5 - Z) + O(r ), r — 4oo.

This suggests making use of the Hankel transform, defined for v € R™ by
[e )
(8.12) H,(g)(A) = / g(r)Jy(Ar)r dr.
0

Clearly, H, : C§° ((0 oo)) — L% (R™). We will establish the following:
Proposition 8.1. Forv > 0, H, extends uniquely from Cé’o((O, oo)) to
(8.13) H, : L>(RY,rdr) — L?>(R*, X dA), unitary.
Furthermore, for each g € L*>(R™,r dr),

(8.14) H,oH,g =g

To prove this, it is convenient to consider first

Jy(Ar) F2vHl
(Ar)Y

since, by (8.10), (Ar)™" Jy,(Ar) is a smooth function of Ar. Set

(8.15) Hof(h) = / Fry 2D vt g,

(8.16) SRY) = {f|g+ : f € S(R) is even}.
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Lemma 8.2. Ifv > —1/2, then

(8.17) H,:S®RT) — SRT).

Proof. By (8.10), Jy,(Ar)/(Ar)” is a smooth function of Ar. The formula (8.8)
yields

Jy(Ar)

(8.18) Gy

<C, < o0,

for Ar € [0,00), v > —1/2, aresult that, by the identity
2\1/2

(8.19) J_15() = (—) cosz,
Tz

established in (6.35) of Chap. 3, also holds for v = —1/2. This readily yields
(8.20) H,:SRT) — L®[R"),

whenever v > —1/2. Now consider the differential operator ZU, given by

~ i D If
__—2v=1 9 (2419

Pf 2v+10df

ar2 rooor

(8.21)

Using Bessel’s equation (8.9), we have

»va ( J,,()Lr)) _ 2 Jy(Ar)

(8.22) Gy Gy

and, for f € S(RT),

Hy(L, f)(X) = A2H, f (1),

(8.23) ~ ~ ~
Hy(r? fYR) = LvHy fQ).

Since f € L*®(R™) belongs to S(R™) if and only if arbitrary iterated applica-
tions of L, and multiplication by r2 to f yield elements of L (R™), the result
(8.17) follows. We also have that this map is continuous with respect to the natural
Frechet space structure on S(R™T).

Lemma 8.3. Consider the elements E, € S(R™T), given for b > 0 by

2

(8.24) Ep(r) = e b7,
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We have

(8.25) HyE1(0) = E1pa(h),
and more generally

(8.26) HyEp() = 2b) """ Evjap(A).

Proof. To establish (8.25), plug the power series (8.10) for J,(z) into (8.15) and
integrate term by term, to get

(—l)k 2—v—2k

s o
8.27 HyE () = ,\Zk/ 2k+20+1,-1%/2 4,
(8.27) 1/2(4) ;k!r‘(k+v+1) ; r e r

This last integral is seen to equal 2T T'(k + v + 1), so we have

)LZ

k 12
2) =12 = E ().

~ — 1
(8.28) HyE )2(A) = Z F(
k=0

Having (8.25), we get (8.26) by an easy change of variable argument.
In more detail, set 72/2 = bs?, or s = r/~/2b. Then set u = +/2bA, so
Ar = us. Then (8.28), which we can write as

[e.e]
(8.29) / e_rz/sz()u’)r”'H dr = A”e‘kz/z’
0

translates to

o0
(8.30) / e 257 1, (us)(2b) TV 2L 2p) 2 g5 = (2b) VY e 4D

0
or, changing notation back,

oo 2 5
(8.31) f eI T, (As)sV T ds = (2b) TV IAYe A4,
0

which gives (8.26).
From (8.26) we have, for each b > 0,
(8.32) H,H,Ey, = (2b)"""'H,E1/3p = Ep.

which verifies our stated Hankel inversion formula for f = Ejp, b > 0. To get the
inversion formula for general f € S(R™), it suffices to establish the following.
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Lemma 8.4. The space
(8.33) V = Span{E, : b > 0}

is dense in S(R™T).

Proof. Let V denote the closure of V in S(R*). From

(8.34) l(e_b'2 — e_(b“)rz) — 2ot
&

we deduce that r2e~? r? eV, and inductively, we get
(8.35) r2let? eV Vet
From here, one has

(8.36) (cosér)e™ eV, VEeR.

Now each even @ € S’(R) annihilating (8.36) for all £ € R has the property that
¢~ has Fourier transform zero, which implies w = 0. The assertion (8.33)
then follows by the Hahn-Banach theorem.

Putting the results of Lemmas 8.2-8.4 together, we have
Proposition 8.5. Given v > —1/2, we have
(8.37) HH,f =,
forall f € S(RT).
We promote this to
Proposition 8.6. Ifv > —1/2, we have a unique extension ofﬁv from S(RT) to
(8.38) H,: L*@R*, r Tl dr) — L2R*, 22711 40,
as a unitary operator, and (8.37) holds for all f € L2(R*,r?*1dr).

Proof. Take f,g € S(R™), and use the inner product

(8.39) (f.g) = /0 g dr,

Using Fubini’s theorem and the fact that J,, (Ar)/(Ar)" is real valued and sym-
metric in (4, r), we get the first identity in

(8.40) (H,f Hyg) = (H,H, f.g) = (f.2),
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the second identity following by Proposition 8.5. From here, given that the linear
space S(RT) C L2(R™, r2"*1 dr) is dense, the assertions of Proposition 8.6 are
apparent.

We return to the Hankel transform (8.12). Note that
(8.41) Hy(r [)(A) = A"H, f(3),
and that M,, f(r) = r” f(r) has the property that
(8.42) M, : L>(R™, r?*1 dr) — L?>(R™", rdr) is unitary.

Thus Proposition 8.6 yields Proposition 8.1.

Another proof is sketched in the exercises. An elaboration of Hankel’s original
proof is given on pp. 456—464 of [Wat].

In view of (8.23) and (8.41), we have

Hv(r_"‘LMg):/ Lo, (Ar)g r™ dr
0

(8.43) = —12/ gr®Jy(Ar)r™ dr
0

=—A2H,(r %g).

Now from (8.5)—(8.13), it follows that the map H given by
(8.44) H = (Huy(r™g0). Hy (1), )

provides an isometry of L2(C(N)) onto L2(R™, A d A, £?), such that A is carried
into multiplication by —A2. Thus (8.44) provides a spectral representation of A.
Consequently, for well-behaved functions f, we have

S (=D)g(r.x)

845 _ ey T 10 0ma [ s (g (s) ds dX ) ().
-, /

Now we can interpret (8.45) in the following fashion. Define the operator v on
N by

(8.46) v = (—Ay +a?)"%

Thus vp; = v;@;. Identifying operators with their distributional kernels, we can
describe the kernel of f(—A) as a function on RT xR taking values in operators
on N, by the formula
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F-B) = (rir2)* f FO2) Ty ) J(hr)h dA
0
= K(r1,r2,v),

(8.47)

since the volume element on C(N) is ¥ dr dS(x) if the m-dimensional area
element of N is dS(x).

At this point it is convenient to have in hand some calculations of Hankel
transforms, including some examples of the form (8.47). We establish some
here; many more can be found in [Wat]. Generalizing (8.31), we can compute
Jetr ? J,(Ar)r**1 dr in a similar fashion, replacing the integral in (8.27) by

o0

(8.48) / PRIVt gy = b Thowfamviae 1r( + 5 +k+1)
0 2

We get

e br? Jy(Ar)rttl gr
(8.49)

rg+s+k+1 k
__ qvA—v—1lgp—u/2—v/2—1
=472 b Z kK'T(k+v+1) ( 4b) ’

We can express the infinite series in terms of the confluent hypergeometric func-
tion, introduced in §7. A formula equivalent to (7.35) is

T'(b) i [(a+ k)

(8.50) 1Fi(a;b;2) = rw & IO+ k)&

since (@) = a(a+1)---(a+k—1) =T(a+k)/ T (a). We obtain, forRe b > 0,
Re(u +v) > =2,
(8.51)

o 2
/ e br Jy(Ar)yr*tl dr
0
rg+s+1 A2
— sz—v—lb—u/z—v/z 1 2 F 1 1
RS 1<2+2+ V=)

—br2 —br

We can apply a similar attack when e is replaced by ™", obtaining

(o]

e_er,,()Lr)r“_1 dr
C(w+v+2k), A2\k
( ) a UZ:k'r(v+k+1)( W) ’

at least provided Re b > |A|, v > 0, and i + v > 0; here we use

(8.52)
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o0
(8.53) / e~brp2ktutv=l gy — p=2kmHV (1 v 4 2K).
0

The duplication formula for the gamma function (see (A.22) of Chap. 3) implies

— o —1/252k+ptv—1p (A Y Hov l
(8.54) T2k +p+v) =722 F(2+2+k)r(2+2+k+2),

so the right side of (8.52) can be rewritten as

ST+ L +0TG+5+5+k) A%k
855 —I/ZA’V2[L—1b—;,L—v 2 2 2 2 2 . .
(8.55) = k; KIT(v + 1+ k) bZ)

This infinite series can be expressed in terms of the hypergeometric function,
defined by

— (a)i(a2)i 2
2F1(ay,az:b;z) = kZ: %F
(8.56) =0 N
__Tr® [(ay + k)T (a2 + k) 2+
"~ T(a1)T(a2) = L+ k) K’

foray,a, ¢ {0,—1,-2,...}, |z| < 1.If we put the sum in (8.55) into this form,
and use the duplication formula, to write

= KoY KoY l _ - 1/2h—p—v+1
()T (az) = r(2 n 2)F<2 +3+ 2) ) T(+v),

we obtain

/ e P LAy dr
8.57) “°

A)vb_u_v Pty (u

2 T(v+1)

LT B
y = = =V ; .
2 )

2 b2
This identity, established so far for [A| < Re b (and v > 0, u+ v > 0), continues
analytically to A in a complex neighborhood of (0, o).

To evaluate the integral (8.47) with f(A2?) = e‘“z, we can use the power
series (8.10) for J,,(Arq) and for J, (Ary) and integrate the resulting double series
term by term using (8.48). We get

(8.58)

f e (1 A) Ty (P X)X d A
0
2. 2

Ly Frwv+j+k+1) 1 FENT ¢ raNK
- Z(T) Xj_;or(wj+1)r(u+k+1)j!k!(_ﬂ) (_4_21) ’
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for any #,r;, 7, > 0, v > 0. This can be written in terms of the modified Bessel
function 7, (z), given by

v X k
®59) 0= ()X arorrrn ()

One obtains the following, known as the Weber identity.

Proposition 8.7. Fort,ry,r; > 0,

o 1 2.0 rir
(8.60) /0 I (T2 dh = o e T (22,

Proof. The left side of (8.60) is given by (8.58). Meanwhile, by (8.59), the right
side of (8.60) is equal to (1/2¢)(r1r2/4t)” times

1 r2NE, r2m & 1 rirp\2n
8.61 —(=L) (-2 _(—) .
(8.61) Z @!m!( 4t) ( 4t) Zn!F(v+n+1)(4t )
£,m=>0 n=0
If wesety; = —r]z /4t, we see that the asserted identity (8.60) is equivalent to
the identity
Z FTw+j+k+1) 1 ok
Y~ Tw+j+DIw+k+1) k7172
Jk=0
(8.62) | |
— Z y{f+ny;n+n
m! n!
i Lm'nT(v+n+1)

We compare coefficients of y{ y’z‘ in (8.62). Since both sides of (8.62) are sym-
metric in (y1, y2), it suffices to treat the case

(8.63) J <k,

which we assume henceforth. Then we take £ +n = j, m +n = k and sum over
n € {0,...,j}, to see that (8.62) is equivalent to the validity of

(8.64)

Z’: 1 B Tw+j+k+1) 1
= (j=m)!(k —n)n!IT(v +n + 1) S Tw+j+DPw+k+1) 1k

whenever 0 < j < k. Using the identity

rv+j+H)=@w+j)--(v+n+Hv+n+1
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and its analogues for the other I'-factors in (8.64), we see that (8.64) is equivalent
to the validity of

/ i1k
(8.65) Z_%(j _n)j!(k_n)!n!(v—i-j)---(v—i-n—i-l) = (Wt j4k) - (kA1)

for 0 < j < k. Note that the right side of (8.65) is a polynomial of degree j in v,

and the general term on the left side of (8.65) is a polynomial of degree j —n in v.
In order to establish (8.65), it is convenient to set

(8.66) w=v+j

and consider the associated polynomial identity in p. With

po(w) =1, pi(w)=pn, p2(p)=pp-1),...

8.67
(8.7 pi() =pu(p—=1)---(u—j+1),

we see that {po. p1,..., p;} is a basis of the space P; of polynomials of degree
j in wu, and our task is to write

(8.68) pilu+k)=@p+)p+k=1)-(n+k—j+1)
as a linear combination of py, ..., p;. To this end, define

(8.69) T:P;—Pj, Tpp) =pp+1).

By explicit calculation,

pi(p+1) = pr(n) + po(u),

(8.70)
palp+ 1) =(pu+Dp=pp—1+2u=pa(p) +2p1(n),

and an inductive argument gives

(8.71) Tp; = pi +ipi-1.

By convention we set p; = 0 fori < 0. Our goal is to compute 7% p ;. Note that
(8.72) T=1+N, Np;=ipi,

and

s
(8.73) Th=>3" ( )N”,
n=0 n
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if j < k.By (8.72),

(8.74) N'pi=i(i—1)---(i —n+ 1)pi_n,
so we have
! (k
T*pi=3" (n)j(j — D (f =+ 1Dpjn
(8.75) =0

/ k! j!
= Z (k —n)n! ( _n)lpj_"'
o In! (j !
This verifies (8.65) and completes the proof of (8.60).

Similarly we can evaluate (8.47) with f(12) = e~**/A, as an infinite series,
using (8.53) to integrate each term of the double series. We get

(8.76)

/ eI, (A Jy (ra)) d A
0

_Lyriryy FrQv+2j+2k+1) 1 r2N\Jj/ rZ.\k
- ?(7) j;ol"(v—i-j + DI +k + 1)/!k!(‘ﬁ) <__2) ’

provided¢ > r; > 0.Itis possible to express this integral in terms of the Legendre
function Q,_1/2(2).

Proposition 8.8. One has, forall y,ri,r» >0, v >0,
(8.77)

% - 1 - ri+r+y?
/ e yk]v("lk)]v("z)ﬁ)dlz;(rlrz) I/ZQV—I/Z(I 2 y )
0

27‘11‘2

The Legendre functions P,_1/2(z) and O, _1/2(z) are solutions to

(8.78) diz[(l - zz)dizu(z)] + <v2 — i)u(z) - 0;

Compare with (4.52). Extending (4.41), we can set

0

2 _
(8.79) P,_1/2(cosf) = — / (2 coss — 2 cos 9) 172 cosvs ds,
T Jo

and Q,_1/2(z) can be defined by the integral formula

o0

(8.80) Qv—1/2(cosh n) = / (2 cosh s — 2 cosh ;7)_1/2 eV ds.
n

The identity (8.77) is known as the Lipschitz-Hankel integral formula.
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Proof of Proposition 8.8. We derive (8.77) from the Weber identity (8.60).
Recall

(8.81) L(y) = e ™2 I(iy). y>0.
To work with (8.60), we use the subordination identity

(8.82) e = % /°° oyt 13212 .
T Jo

cf. Chap. 3, (5.31) for a proof. Plugging this into the left side of (8.77), and using
(8.60), we see that the left side of (8.77) is equal to

1 % Pr2ey? rirzy _
8.83 — (ri+ra+yd) /4 p (C172Y,=3/2 40
(659 Zﬁ/o ¢ v( 2t )

The change of variable s = ryr,/2¢ gives

(8.84) lzi(rlrz)—l/zf oS3ty /2rir2 L(s)s~/2 ds.
us 0

Thus the asserted identity (8.77) follows from the identity

% [2
(8.85) / e, (s)s V2 ds = \[ = 0yo1)2(2), 7> 0.
0 T

As for the validity of (8.85), we mention two identities. Recall from (8.57) that

(8.86)
o _ _ A" T+
SZJ)L /le: - nw—v
/Oe v(As)s" ds (2)Z T+ 1)
u | VA A2
o S R STI Pty |
21(2+2+22+2 + ZZ)

Next, there is the classical representation of the Legendre function Q,_;,2(z) as
a hypergeometric function:

(8.87)

rr
Qu—l/z(Z) — M

rv+1

-Iklw

1 1
(22)7""V2,F L + v+ L=,
4 2

[\®]
<

cf. [Leb], (7.3.7) If we apply (8.86) with A = i, u = 1/2 (keeping (8.81) in
mind), then (8.85) follows.

Remark: Formulas (8.77) and (8.60) are proven in the opposite order in [W].
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By analytic continuation, we can treat f(12) = e **1~!sin Az for any & > 0.
We apply this to (8.47). Letting ¢ \ 0, we get for the fundamental solution to the
wave equation:

(=A) "2 sinr(—A)Y/?

(8.88) = —Sli\% (r1r2)% Im /0 e~ CFOL g (Ar)Jy(Ary) dA

i+ (8+it)2)

1 a—1/2 1:
= —— Iim Im O, _ (
n(”lrz) 81\0 Ov_1/2 i

Using the integral formula (8.80), where the path of integration is a suitable path
from 7 to 400 in the complex plane, one obtains the following alternative integral
representation of (—A)~'/2 sin¢(—A)'/2. The Schwartz kernel is equal to

(8.89) 0, ifr< |r1 —r2|,

1 A _
(8.90) —(r1r)”* / [tz — (rl2 + r22 —2r1ry cos s)] 1/2 cosvs ds,
T 0

if |[ry —ra| <t <ry+rz,and

1 0 B
(891)  —(r1r2)* COS”V/ [r? +r3 +2r1r2 cosh s — 7] V2 omsv g,
d B>
ift > ry + rp, where
2442 42 2_ 2 _ 2
-t 1% — _
(92 pr=cos (T2 T0) gy = coht (S
2rira 2ryra

Recall that = —(m — 1)/2, where m = dim N.

We next show how formulas (8.89)—(8.91) lead to an analysis of the classical
problem of diffraction of waves by a slit along the positive x-axis in the plane R2.
In fact, if waves propagate in R? with this ray removed, on which Dirichlet bound-
ary conditions are placed, we can regard the space as the cone over an interval of
length 2, with Dirichlet boundary conditions at the endpoints. By the method of
images, it suffices to analyze the case of the cone over a circle of circumference
47 (twice the circumference of the standard unit circle). Thus C(/N) is a double
cover of R? \ 0 in this case. We divide up the spacetime into regions I, II, and
I1I, respectively, as described by (8.89), (8.90), and (8.91). Region I contains only
points on C(N) too far away from the source point to be influenced by time ¢;
that the fundamental solution is O here is consistent with finite propagation speed.

Since the circle has dimension m = 1, we see that

B d? )1/2

(8.93) b= (—AN)V2 = ( i
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in this case if 8 € R/(4wZ) is the parameter on the circle of circumference 4.
On the line, we have

1
(8.94) cos sv 8g, (62) = 5[8(01 — 6 +5)+ 861 — 02— ).

To get cossv on R/(4wZ), we simply make (8.94) periodic by the method of
images. Consequently, from (8.90), the wave kernel (—A)~"/2sinr(—A)Y/2 is
equal to

(5.95) Q@m) 12 =12 = r2 + 2riracos(6y — 0)] 7 if |61 — 6a] < 7,
0 if |6 — 02| > m,

in region II. Of course, for |6; — 62| < m this coincides with the free space

fundamental solution, so (8.95) also follows by finite propagation speed.

We turn now to an analysis of region III. In order to make this analysis, it is
convenient to make simultaneous use both of (8.91) and of another formula for
the wave kernel in this region, obtained by choosing another path from 7 to oo
in the integral representation (8.80). The formula (8.91) is obtained by taking a
horizontal line segment; see Fig. 8.1.

If instead we take the path indicated in Fig. 8.2, we obtain the following for-
mula for (—A)~/2sint(—A)'/? in region III:

T
7 (ryrp) /2 { / (t2 — ”12 — r22 + 2ryrp cos s)_l/2 cossv ds
0
(8.96)
: P2 2_.2_ .2 -1/2 _sv
—sinmv | (1> —rf —r —2riracoshs) "7 eV dsp .
0

The operator v on R/ (47 Z) given by (8.93) has spectrum consisting of

1,3,2,...},
2

1
(8.97) Specv = {0, ok

i ¢

FIGURE 8.1 Integration Contour
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FIGURE 8.2 Alternative Contour

all the eigenvalues except for 0 occurring with multiplicity 2. The formula (8.91)

shows the contribution coming from the half-integers in Spec v vanishes, since
cos %nn = 0 if n is an odd integer. Thus we can use formula (8.96) and compose

with the projection onto the sum of the eigenspaces of v with integer spectrum.
This projection is given by

(8.98) P = cos®* v
on R/(4xZ). Since sintn = 0, in the case N = R/(4wZ) we can rewrite
(8.96) as
T
(8.99) n_l(rlrz)_(m_l)/Z/ (t2 — rl2 — r22 + 2ryr cos s)_l/2 P cossv ds.
0

In view of the formulas (8.94) and (8.96), we have

P cos sv &g, (62)
1
(8100) = Z[8(61 =62 +5) + 861 =62 —)
+8(61 — 62 + 27 +5) + 8(61 — 62 + 27 —5)|  mod 4.

Thus, in region III, we have for the wave kernel (—A)~'/2sinz(—A)'/? the
formula

(8.101) ()7 (2 = rf =} + 2r1rs cos(6r — 62) 7.

Thus, in region III, the value of the wave kernel at points (rq, 61), (r2, 62) of the
double cover of R? \ 0 is given by half the value of the wave kernel on R? at
the image points. The jump in behavior from (8.95) to (8.101) gives rise to a
diffracted wave.

We depict the singularities of the fundamental solution to the wave equation
for R? minus a slit in Figs. 8.3 and 8.4. In Fig. 8.3 we have the situation |¢| < 7y,
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0 P
|
FIGURE 8.3 Reflected Wave Front
B
0
I I

FIGURE 8.4 Reflected and Diffracted Wave Fronts

where no diffraction has occurred, and region III is empty. In Fig. 8.4 we have a
typical situation for |¢| > rq, with the diffracted wave labeled by a “D.”

This diffraction problem was first treated by Sommerfeld [Som] and was the
first diffraction problem to be rigorously analyzed. For other approaches to the
diffraction problem presented above, see [BSU] and[Stk].

Generally, the solution (8.89)—(8.91) contains a diffracted wave on the bound-
ary between regions Il and III. In Fig. 8.5 we illustrate the diffraction of a
wave by a wedge; here N is an interval of length £ < 27. We now want to
provide, for general N, a description of the behavior of the distribution v =
(—A)"Y25sint(—=A)Y/2 §,, x,) near this diffracted wave, that is, a study of the
limiting behavioras r; \(t —rp, andasr; /'t —r;.

We begin with region II. From (8.90), we have v equal to

1
(8.102) E(rlrz)"‘_l/2 Py_1/2(cos B1) 8y, inregionII,

where P,_j, is the Legendre function defined by (8.79) and B is given by (8.92).
Note thatasr; \(t —r2, B1 7 7.
To analyze (8.102), replace s by = — s in (8.79), and, with §; = & — B, write

g

%Pu_l/z(cosﬁl) = cosnv/ (200881 — 2coss)_1/2 cossv ds

(8.103) 51

g
+ sin m)/ (2 cosd; — 2coss)_1/2 sinsv ds.
)

1



8. The Laplace operator on cones

(’z‘ 12)

FIGURE 8.5 Diffraction by a Wedge

As 61 N\ 0, the second term on the right tends in the limit to

.
(8.104) sinrrv/ "2 ds,
o singzs

Write the first term on the right side of (8.103) as

g

COS TV (2cosd; — 2coss) "2 (cossv — 1) ds
81

4
+cosm)/ (2cos8y —2coss) V2 ds.
81

(8.105)

As §1 \{ 0, the first term here tends in the limit to

sin g

b4
-1
(8.106) cosm)/ %ds.
0 2

165

The second integral in (8.105) is a scalar, independent of v, and it is easily seen

to have a logarithmic singularity. More precisely,

4
/ (2cosé; — 2coss)_% ds
51

25\ X . X .
~ (logg);AjS{ +> B8], Ag=1.

Jj=1

(8.107)

Consequently, one derives the following.
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Proposition 8.9. Fix (r3,x3) andt. Then, asry \(t — 12,
(=8)7"2sint(=8)"? 8 1)

1 2
(5.108) = ;(rlrz)"‘_l/2 {log E COS TV iy,

2cosis 45 8xy + R Oxa

/” COSSV — COS TV
0 2

where, for s > (m 4+ 1)/2,

1
(8.109) IR1 B lp-s-1 < 1 log - as 81\, 0.
1

The following result analyzes the second term on the right in (8.108).

Proposition 8.10. We have

k4 1 \—1
/ (2 cos —s) (cossv —cosmv)ds
0 2

(8.110) K .
= —1 WL i Sk (v),
COS TV ogv—i—jz:;)a]v + > sintv + Sg(v)

where Sg(v) : D — DSt2K for all s.

The spaces D* are spaces of generalized functions on N, introduced in Chap. 5,
Appendix A.
We turn to the analysis of v in region III. Using (8.91), we can write v as

1
(8.111) —(r1r2)* Y2 cos v Qy—1/2(cosh ) 8x,,  inregion III,
7

where Q,_1/» is the Legendre function given by (8.80) and B, is given by (8.92).
It is more convenient to use (8.96) instead; this yields for v the formula

1 g
—(rlrz)"‘_l/z% / (2 cosh B + 2coss) V2 cossv ds
T 0

(8.112) 5

—sinmy (2 cosh B> — 2 cosh s) /2™ ds! .
0

Note thatas r; 7t —ra2, B2 \( 0.
The first integral in (8.112) has an analysis similar to that arising in (8.103);
first replace s by = — s to rewrite the integral as
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T
cos nv/ (2 cosh B, — ZCOSS)_l/Z cossv ds
(8.113) 0 .
+ sinzv / (2 cosh By — 2 coss) "1/ 2 sinsv ds.
0

As B2 N\ 0, the second term in (8.113) tends to the limit (8.104), and the first
term also has an analysis similar to (8.105)—(8.107), with (8.107) replaced by

4
/ (2 cosh B — 2 coss) ™2 ds
0

(log )ZA/,B2+ZB ,32, Ay = 1.

Jj=0 Jjz1

(8.114)

It is the second term in (8.112) that leads to the jump across r; = ¢ — 3, hence to
the diffracted wave. We have

B2 B2
(8.115) (2 cosh B — 2 cosh )" V/2e™5" ds ~ /
0

J*

Thus we have the following:
Proposition 8.11. Forr; /'t —ra,
(=A) V2 sint (=A)Y? 8¢, 1)

1 2
= ;(rlrz)“_l/z% log /3— Cos TV by,

(8.116) 2

/2
COSSV —COos TV T ~
+/ —dsé’xZ—Esmnvc?xZ—FRleZ .
0

1
2cos 58

where, for s > (m 4+ 1)/2,

1
(8.117) | R18x, | p—s—1 < CB2log B as B2 ™\ 0.
2

Note that (8.116) differs from (8.108) by the term 7~ (r1r2)*~"/2 times
(8.118) —%sinnv 8.

This contribution represents a jump in the fundamental solution across the
diffracted wave D. There is also the logarithmic singularity, (r;72)%~ /2 times

1 2
(8.119) —log < cosmv 8y,,
b4 1]
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where § = §; in (8.108) and § = B, in (8.116). In the special case where N is
an interval [0, L], so dim C(N) = 2, cosmwv 8y, is a sum of two delta functions.
Thus its manifestation in such a case is subtle.

We also remark that if N is a subdomain of the unit sphere S%* (of even di-
mension), then cos wv §x, vanishes on the set N \ Ny, where

(8.120) Ny = {x; € N : forsome y € dN, dist(xz, y) + dist(y, x1) < w}.

Thus the log blow-up disappears on N \ Np. This follows from the fact that
cos mvg = 0, where vy is the operator (8.46) on S2¥, together with a finite prop-
agation speed argument.

While Propositions 8.9-8.11 contain substantial information about the nature
of the diffracted wave, this information can be sharpened in a number of respects.
A much more detailed analysis is given in [CT].

Exercises

1. Using (7.36) and (7.80), work out the asymptotic behavior of 1 Fj(a;b;—z) as
z — +oo, given b,b —a ¢ {0,—1,-2,...}. Deduce from (8.51) that whenever
v>0, s €R,

00 ) (A +1-i
(8.121) tim [ e P 1) dr = 2—”M.
»N\0Jo L(z(v+1+is))

2. Define operators
(8.122) M f(r) =rf(r). T f(r)=fGrh),
Show that

M, L?RT,rdr) — L?@®RT,r7Ydr), J:L°®R* . r 'dr)
(8.123) — L’®RT,r Ydr)

are unitary. Show that

(8.124) Hf = IM, HyM,!
is given by
(8.125) HYf() = (f » o)),

where * denotes the natural convolution on R, with Haar measure r ~1dr:

(8.126) (@ = [ rose o ar
and

(8.127) L) =r Y.
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3. Consider the Mellin transform:

(8.128) M f(s) = /0 = fryrsldr.,
As shown in (A.17)-(A.20) of Chap. 3, we have

(8.129) (271)_1/2./\/1# cL2(RT, 77V dr) — L?(R.ds). unitary.
Show that

(8.130) M(f % g)(s) = M* f(5)- MPg(s).

and deduce that
(8.131) MPHE f(s) = W(s)MP £(s),
where
(8.132)
W(s) = / L2 dr = / Jo(ryr dr =277
0 0

169

r(3(v+1—is))
I(3(v+1+is)

4. From (8.126)—(8.132), give another proof of the unitarity (8.13) of H). Using sym-
metry, deduce that spec H,, = {—1, 1}, and hence deduce again the inversion formula

(8.14).

5. Verify the asymptotic expansion (8.107). (Hint: Write 2cos§ —2coss = (s — §2)
F(s,8) with F smooth and positive, F(0,0) = 1. Then, with G(s,8) = F(s, 8)_1/2,

ds

1 1
(8.133) / 2¢cos 8 —2coss) /2 ds:/ G(s,8) —.
;s ¢ : Ve

Write G(s,8) = g(s)+6H(s,8), g(0) = 1, and verify that (8.133) is equal to A1 + A2,

where

T ds 1 1
A :/5 G(s.8) = = g(0)log 5 + 0(810g g)’

k4 1 1
Az = /8 g(s)[m =] @+ 00 = 52+ 06)

Show that
/8
B, = g(O)/ [; - 1] dt + 0(8) = Cs + 0(8),
1 V2 -1

G = /100[ ,21_1 a ;] dt

Use the substitution ¢ = cosh u to do this integral and get C; = log2.)
Next, verify the expansion (8.114).

with
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Exercises on the hypergeometric function

1. Show that 5 F1(ay,as; b; z), defined by (8.56), satisfies

che o) — I'(b) ! ar>—1 b—ar—1 —ay
(.134) 2Fi(ananibio) = s [ la et a -,

forRe b > Reas > 0, |z| < 1. (Hint: Use the beta function identity, (A.23)—(A.24) of
Chap. 3, to write

(@) _ I'(b)
O T(@)T®

and substitute this into (8.39). Then use

1
/ ta2—1+k(1 _ t)b—az—l dt, k=0,12,...,
—az) Jo

Z (al)k( DE=(1 -7, 0<i<1, |g<1)

2. Show that, given Re b > Reap > 0, (8.134) analytically continues in zto z € C \
[1,00).
3. Show that the function (8.134) satisfies the ODE

d? d
z(1 —z)d—; +{b—(a1 +az+ l)z}d—z —ajaou=0

Note that u(0) = 1, ¥’ (0) = ayaz/b, but zero is a singular point for this ODE. Show
that another solution is

u(z) = P 2F1(ay—b+1,a—b+1;2—b;7).
4. Show that
2Fi(ay,az;b;2) = (1 —z)~4! 2F1(a1,b —az;b;(z— 1)_1Z).

(Hint: Make a change of variable s = 1 — ¢ in (8.134).)
For many other important transformation formulas, see [Leb] or [WW].
5. Show that
1Fi(a;b;z) = lim ,Fi(a,c;b; c_lz).
c /o0

We mention the generalized hypergeometric function, defined by

L K
qu(a,b,z)—];)Wk—!,

where p < g +1, a = (a1....,ap), b = (b1....,bg), bj € C\{0,—1,-2,...},
|z] <1, and

@k = (@i @pl, B = (b1 -+ (bg)k

and where, as before, for c € C, (¢); = c(c + 1) (c + k — 1). For more on this
class of functions, see [Bai].
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6. The Legendre function Q,,_1,,(z) satisfies the identity (8.87), for v > 0, |z| > 1, and
|Arg z| < m; cf. (7.3.7) of [Leb]. Take z = (rl2 + r22 +1%)/2r1 13, and compare the
resulting power series for the right side of (8.77) with the power series in (8.76).
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Scattering by Obstacles

Introduction

In this chapter we study the phenomenon of scattering by a compact obstacle in

Euclidean space R3. We restrict attention to the three-dimensional case, though

a similar analysis can be given for obstacles in R” whenever n is odd. The Huy-

gens principle plays an important role in part of the analysis, and for that part the

situation for n even is a little more complicated, though a theory exists there also.
The basic scattering problem is to solve the boundary problem

(0.1) (A+k*Hv=0inQ, v=fondk,

where Q@ = R3 \ K is the complement of a compact set K. (We also assume £ is
connected.) We place on v the “radiation condition”

0
(0.2) r (8_v — ikv) —> 0, asr — o0,
r

in case k is real. We establish the existence and uniqueness of solutions to (0.1)
and (0.2) in §1. Motivation for the condition (0.2) is also given there.

Special choices of the boundary value f give rise to the construction of the
Green function G(x, y, k) and of “eigenfunctions” uy(x,kw). In §2 we study
analogues of the Fourier transform, arising from such eigenfunctions, providing
&, unitary operators from L2(2) to L?(R?3) which intertwine the Laplace op-
erator on 2, with the Dirichlet boundary condition, and multiplication by |£|? on
L%(R3).

For any smooth f on 9K, the solution to (0.1) and (0.2) has the following
asymptotic behavior:

(0.3) v(r0) = r e * T a(£,0,k) + o(r™Y), r —> oo,

known as the “far field expansion.” In case f(x) = —e!*®* on 9K, the coefficient
is denoted by a(w, 6, k) and called the “scattering amplitude.” This is one of the

M.E. Taylor, Partial Differential Equations I1: Qualitative Studies of Linear Equations, 175
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_3,
© Springer Science+Business Media, LLC 1996, 2011
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fundamental objects of scattering theory; in §3 it is related to the unitary operator
S = &, ®~! on L2(R3?), the “scattering operator.”

The term “scattering” refers to the scattering of waves. Connection with the
wave equation is made in §§4 and 5, where the scattering operator is related to the
long-time behavior of the solution operator for the wave equation, in counterpoint
to the long-distance characterization of the scattering amplitude given in §1. In
the study of the wave-equation approach to scattering theory, a useful tool is a
semigroup Z (), introduced by Lax and Phillips, which is described in §6.

Section 7 considers the meromorphic continuation in £ of the solution operator
to (0.1) and (0.2). This operator has poles in the lower half-plane, called scattering
poles. The analytical method used to effect this construction involves the classical
use of integral equations. We also relate the scattering poles to the spectrum of the
Lax—Phillips semigroup Z(¢). In §8 we derive “trace formulas,” further relating
the poles and Z(¢). In §9 we illustrate material of earlier sections by explicit
calculations for scattering by the unit sphere in R3.

In §§10 and 11, we discuss the “inverse” problem of determining an obstacle
K, given scattering data. Section 10 focuses on uniqueness results, asserting that
exact measurements of certain scattering data will uniquely determine K. In §11
we discuss some methods that have been used to determine K approximately,
given approximate measurements of scattering data. This leads us to a discussion
of “ill-posed” problems and how to regularize them.

In §12 we present some material on scattering by a rough obstacle, pointing
out similarities and differences with the smooth cases considered in the earlier
sections. Appendix A at the end of this chapter is devoted to the proof of a trace
identity used in §8.

We have confined attention to the Dirichlet boundary condition. The scattering
problem with the Neumann boundary condition, and for electromagnetic waves,
with such boundary conditions as discussed in Chap. 5, are of equal interest. There
are also studies of scattering for the equations of linear elasticity, with boundary
conditions of the sort considered in Chap.5. Many of the results in such cases
can be obtained with only minor modifications of the techniques used here, while
other results require further work. For further material on the theory of scattering
by obstacles, consult [LP1], [Rm], [CK], and [Wil].

Another important setting for scattering theory is the Schrodinger operator
—A + V;see [RS], [New], and [Ho] for material on this. We include some exer-
cises on some of the simplest problems in this quantum scattering theory. These
exercises indicate that very similar techniques to those for scattering by a compact
obstacle apply to scattering by a compactly supported potential. It would not take
a much greater modification to handle potentials V(x) that decay very rapidly as
|x| — oo. Such potentials, with exponential fall-off, are used in crude models of
two-body interactions involving nuclear forces. It takes more substantial modifi-
cations to treat long-range potentials, such as those that arise from the Coulomb
force. The most interesting quantum scattering problems involve multiparticle in-
teractions, and the analysis of these requires a much more elaborate set-up.
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1. The scattering problem

In this section we establish the existence and uniqueness for the following
boundary problem. Let K C R3 be a compact set with smooth boundary and
connected complement 2. Let f € H*(dK) be given, and let k > 0. We want to
solve

(1.1) (A+k*>Hv=0 onQ,
(1.2) v=f ondk.

In addition, we impose a “radiation condition,” of the following form:

ad
(1.3) [rv(x)| < C, r(a—v—ikv) —> 0, asr — o0,
r

where r = |x|. This condition will hold provided v satisfies the integral identity

a 0
o= [[F0E b - b 0)] s
¥y
oK

for x € Q, where
(1.5) g(x,y,k) = (47-[|x _ yl)—l oiklx=yl

Our existence proof will utilize the following fact. If k > 0 is replaced by
k +ie, ¢ > 0, then —(k + ig)? belongs to the resolvent set of the Laplace
operator A on €2, with Dirichlet boundary conditions on dK. Hence, for s > 3/2,
(1.1)=(1.2) (with k replaced by k + i¢) has a unique solution v, € L?(Q). To
obtain this, extend f to /* € H*(Q2), andset ¢ = (A + (k +i¢)?) f* € L*(Q).
Then
ve=fT—(A+(k+ie)?) o

Furthermore, in this case, the integral formula (1.4) does hold, as a consequence
of Green’s theorem, with g(x, y, k) replaced by

(1.6) glx,y,k+is) = (47r|x _ y|)—1 e(ik—a)lx—y\,

which, as we saw in Chap. 3, is (the negative of) the resolvent kernel for (A + (k +
i£)?)~! on free space R3, a kernel that converges to (1.5) as & N\ 0. The strategy
will be to show that, as ¢ N\ 0, v, converges to the solution to (1.1)—(1.3).

Before tackling the existence proof, we first establish the uniqueness of solu-
tions to (1.1)-(1.3), as this uniqueness result will play an important role in the
existence proof.

Proposition 1.1. Given k > 0, if v satisfies (1.1)~(1.3) with f = 0, thenv = 0.
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Proof. Let Sg denote the sphere {|x| = R} in R3; for R large, Sg C €2, and,
with v, = dv/dr, we have

(1.7) / lv, —ikv|? dS = /(|v,|2 + k*|v|?) dS — ik /(vvr — Vv, dS.
SR SR SR
Now Green'’s theorem applied to v and v implies
_ v _adv
(1.8) /(vvr—vvr) dSz/(va—v—va—U)dSzo,
SR oK
provided v|sx = 0. Since the hypothesis (1.3) implies
(1.9) /}v,—iku}zds—m, as R —> 00,
SR
we deduce from (1.7) that
(1.10) /|v|2ds—>o, as R —> oo.
SR
The proof of Proposition 1.1 is completed by the following result.

Lemma 1.2. If v satisfies (A + k?)v = 0 for |x| > Ro and (1.10) holds, then
v(x) = 0 for|x| > Ro.

Proof. It suffices to prove that, for r > Ry,
(1.11) V(r) = /v(ra))qo(w) dS(w)
S2

is identically zero, for each eigenfunction ¢ of the Laplace operator Ag on the
unit sphere S2:

(1.12) (As+ 1) =0 (n=>0).
In view of the formula for A on R3 in polar coordinates,

”? 290 1

(19 AR

it follows that V(r) satisfies the ODE

2
(1.14) Vi) + 2 V) + (-5 ey =0 r=zro.
r r
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This ODE has two linearly independent solutions of the form r~1/ szj )(kr),

j =1,2, where H\fl)(z) and H\fz) (z) are the Hankel functions discussed in
Chap.3, and v2 = pu? + 1/4. In view of the integral formulas given there, it
follows that the asymptotic behavior of these two solutions is of the form

(1.15) Vi(r) = Cxer e Lo, r — .

Clearly, no nontrivial linear combination of these two is o(r~!) as r — oco. Since
the hypothesis implies that V(r) = o(r~!), we deduce that V = 0.

Applying Lemma 1.2, we see that under the hypotheses of Proposition 1.1,
v = 0 for |x| > Ry, given that K C {x : |x| < Rop}. Since v satisfies the unique
continuation property in €2, this implies v = 0 in €2, so Proposition 1.1 is proved.

Remark: The uniqueness proof above really used (1.9), which is formally weaker
than the radiation condition (1.3). Consequently, (1.9) is sometimes called the
radiation condition. On the other hand, the existence theorem, to which we turn
next, shows that the formally stronger condition (1.3) holds.

The following result, which establishes the existence of solutions to (1.1)—
(1.3), is known as the limiting absorption principle.

Theorem 1.3. Let s > 3/2, and suppose that as € \ 0,
(1.16) fe—> f in H*(3K).
Let v, be the unique element of L*(Q) satisfying

(1.17) (A+(k+ie)),=0 ingQ,
(1.18) ve = fo ondK.

Then, as € \, 0, we have a unique limit
(1.19) ve —> v = B(k) f.

satisfying (1.1)—(1.3). Convergence occurs in the norm topology of the space
L2(2, (x)~3dx) for any 8 > 0, as well as in Hlf,jl/z(Q), and the limit v satis-
fies the identity (1.4).

It is convenient to divide the proof into two parts. Fix R such that K C {|x| <
R} andlet Or = 2 N {|x| < R}.

Lemma 1.4. Assume UE}OR is bounded in L?>(OR) as & \, 0. Then the conclu-

sions of Theorem 1.3 hold.

Proof. Fix S < R with K C {|x| < S}. The elliptic estimates of Chap.5 imply
that if [|ve [l 72(0 ) is bounded, then
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(1.20) vell zs+1/2(05) = Ck + Ckl fell s ok)-

Passing to a subsequence, which we continue to denote by v, we have
(1.21) ve — v weakly in H*TV2(0y),

for some v € H*T1/2(Og). The trace theorem implies weak convergence

(1.22) Ve|yw —> V|pp  in H*(3K),

and

(1.23) e W 10K,
Jdv av

Since each v, satisfies

e (y)
dv

0ge
(1.24) ve(x) = /(fe(J’)éiv_ga

oK

)dS(y), x €Q,

with g, = g(x,y,k + ie) given by (1.6), we deduce from (1.22) and (1.23) that
the right side of (1.24) converges locally uniformly in x € ©, as & \ 0, to a limit,
call it v, that coincides with the limit (1.21) on Og. Furthermore, in view of the
formula (1.6), we have the estimate

(1.25) lue(x)] < Cr(x)™', xeQ,

with Cy independent of €. Thus the limit v satisfies this estimate, and we have
ve — vin L2(2, (x)~'~% dx) for any § > 0. Furthermore, the limit v satisfies the
identity (1.4), so the radiation condition (1.3) holds.

So far we have convergence for subsequences, but in view of the uniqueness
result of Proposition 1.1, this limit v is unique, so Lemma 1.4 is proved.

The proof of Theorem 1.3 is completed by the following argument.

Lemma 1.5. The hypotheses (1.16)—(1.18) of Theorem 1.3 imply that {v,} is
bounded in L2(S2, (x)~17% dx), for any § > 0.

Proof. Fix sucha§. Suppose Ne = [|vel| 12(q, (x)~1-8 4x) —> 00 for a subsequence
en \¢ 0. Set we = N 1v,. Then Lemma 1.4 applies to w,, with wa}aK = ft=
N;1f, — 0in H*(3K). Thus the conclusion of Lemma 1.4 gives

we —> w strongly in L2(, (x) ™' 7% ).

The limit w satisfies the scattering problem (1.1)—(1.3) with f = 0, so our unique-
ness result implies w = 0. This contradicts the fact that each w, has norm 1 in
L2(Q, (x)™'7¥ dx), so the proof is complete.
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Remark: Considering the dense subspace H**1(3K) of H*(3K), we can improve

. 1/2
weak convergence of v, — v in H, s+1/

e | (£2) to strong convergence in this space.

We draw a couple of conclusions from Theorem 1.3. The first concerns the
limiting behavior as ¢ N\ 0 of the Green function G(x, y, k + i¢), the kernel for

the resolvent (A + (k + i8)2)_1 on £, which is of the form
(1.26) G(x,y,k+ie)=g(x,y,k+ie)+h(x,y,k+ie),

where g(x, y,k + i¢) is the free-space Green kernel (1.6) and h(x, y, k + i¢) is,
for each y € Q, the element of L2(R) satisfying

(Ax + (k +ie)*)h =0,

(1.27) . .
h(x,y,k+ie)=—g(x,y,k +ie), forx € IK.

Clearly, as ¢ \( 0, g(x,y,k +ig) — g(x,y,k), given by (1.5). On the other
hand, for any y € €2, Theorem 1.3 applies to fz(x) = —g(x,y,k + i¢), and we
have

(1.28) h(x,y,k +ie) — h(x,y, k),

where h(x, y, k) solves the scattering problem (1.1)-(1.3), with h(x, y,k) =
—g(x,y,k) for x € K. Consequently, as ¢ \{ 0,

(1.29) G(x,y,k+ie) — G(x,y,k),
where
(1.30) G(x,y.k) =g(x,y,k)+ h(x,y k).

Another important family of functions defined by a scattering problem is the
following. Note that we have

(1.31) (A + |E])e ™ =0 onR>,

for any £ € R3. We define the functions u(x, £) on  x R3 by

(1.32) u(x,£) = e ¥ £ y(x, £),

where v(x, £) satisfies the scattering problem (1.1)-(1.3), with k2 = |£|? and
(1.33) v(x,€) = —e7 ¥ on K.

As we will see in the next section, u(x, &) plays a role on Q of generalized

eigenfunction of the Laplace operator on €2, with Dirichlet boundary conditions,
analogous to the role played by ug(x, £) = e~*¢ on R3.
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There is an interesting relation between the Green function G(x, y, k) and the
“eigenfunctions” u(x, &), which we give here, which will play an important role in
the analysis in the next section. It involves the behavior of G(x, y, k) as |y| — oo.

Proposition 1.6. For y = rw, w € S2, r — o0, and any fixed k > 0,
(1.34) G(x,rw. k) = (drr) Le* u(x, ko) + 0Gr™2).
This is uniformly valid for (x, w, k) in any bounded subset of 2 x S x RT.

Proof. Write G(x,rw,k) = g(x,rw,k) + h(x,rw,k), as in (1.30). Thus
hr(x) = h(x, rw, k) satisfies

(1.35) (A + kD (x) =0, hyly = —gx.ro.k),

together with the radiation condition as |x| — oo. Now, in view of (1.5), as
r — 00, we have, for x € dK, or indeed for x in any bounded subset of R3,

(1.36) g(x,rw, k) = (4rr) Lelkre ikex L o2,

where the remainder is O(r~2) in C*(dK) for any £. Thus, in view of the estimates
established in the proof of Theorem 1.3, we have

(1.37) hy = (4r) ek y(x, ko) + O(r72), r — oo,
with v(x, &) defined above. This gives the desired result (1.34).

We remark that a similar argument gives

0 :
(1.38) a—G(x,ra),k) = (4rr) Vik e* u(x, kw) + 02,
r
as r — oo.
Note that, for any f € C*°(dK), by (1.4) we have an asymptotic behavior of
the form

(1.39) v(ro) = r_le”"a(f, 0.k) +o(r Y, r— oo,

with @ € S2, for the solution to the scattering problem (1.1)—(1.3), with a smooth
coefficient a( f, -, -). Also,

(1.40) a%v(r@) = %el’k’a(f, 0,k) +o(r™h).

In particular, the function v(x, £) given by (1.33) has the asymptotic behavior

(1.41) v(rb, kw) ~ r_leikra(—w, 0,k), r— oo,
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for fixed 8, w € S2, k € RT, and its r-derivative has an analogous behavior. The
coefficient a(w, 0, k) is called the scattering amplitude and is one of the funda-
mental objects of scattering theory. We will relate this to the scattering operator
in §3.

The radiation condition (1.3) is more specifically called the “outgoing radiation
condition.” It has a counterpart, the “incoming radiation condition”:

av

(1.42) [rv(x)| < C, r<8r

+ikv) —> 0, asr — oo.

Clearly there is a parallel treatment of the scattering problem (1.1), (1.2), (1.42).
Indeed, if v(x) satisfies (1.1)—(1.3), then v(x) satisfies the incoming scattering
problem, with f replaced by f, and conversely. In particular, we can define

(1.43) u_(x, &) = e ™ 1 u_(x,8),

where v_(x, £) satisfies the scattering problem (1.1), (1.2), (1.42), with
(1.44) v_(x,€) = —e ™% on 9K,

and we clearly have

(1.45) vo(x, §) = v(x.—§).  u_(x.§) = u(x,—§).

In analogy with (1.41), we have the asymptotic behavior

(1.46) v_(r0. ko) ~ r e a_(w,0,k), r — oo,
with
(1.47) a_(w,0,k) =a(w,0,k).

Sometimes, to emphasize the relation between these functions, we use the notation
uy(x,8), vy(x,§) and a4 (w, 6, k) for the functions defined by (1.32) and (1.33)
and by (1.41).

We note that while the discussion above has dealt with k > 0, the case k = 0
can also be included. In this case, the proof of Proposition 1.1 does not apply; for
example, (1.7) no longer implies (1.10). However, the existence and uniqueness
of a solution to

(1.48) Av=00n, v= fondk,
satisfying

(1.49) [ro(x)| < C, [r?d,v| <C, asr — oo,
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is easily established, as follows. We can assume that the origin 0 € R? is in the
interior of K. Then the inversion y(x) = x/|x|? interchanges 0 and the point at
infinity, and the transformation

(1.50) v(x) = x| w(]x|%x)

preserves harmonicity. We let w be the unique harmonic function on the bounded
domain v (£2), with boundary value w(x) = |x|™! f(¥(x)) on 3y (Q) = ¥ (9K).
It is easily verified that v(x) satisfies (1.49) in this case. Conversely, if v(x) satis-
fies (1.48) and w is defined by (1.50), then w is harmonic on ¥ (£2) \ 0 and equal
to f oy on ¥ (dK). If v also satisfies (1.49), then w is bounded near 0, and so is
r dw/or.

Now the boundedness of w near 0 implies that 0 is a removable singularity
of w, since Aw € D'(¥(2)) is a distribution supported at 0, hence a finite linear
combination of derivatives of §(x), which implies that w is the sum of a function
harmonic on 1/ (£2) and a finite sum of derivatives of |x| ™!, and the latter cannot be
bounded unless it is identically zero. Similarly, » dw/dr is harmonic on ¥ (2) \ 0,
and if it is bounded near 0 then it extends to be harmonic on ¥ (£2), and this in turn
implies that w extends to be harmonic on ¥ (£2). Therefore, either one of the two
conditions in (1.49) gives uniqueness. Of course, if f € C(0K) the uniqueness
of solutions to (1.48), satisfying the first condition in (1.49), follows from the
maximum principle.

With this result established, the limiting absorption principle, Theorem 1.3,
also holds for k = 0. We also note that the proof of Theorem 1.3 continues to
work if instead of using k + ie (¢ N\ 0) in (1.17), one replaces k + ie by any
A(e) approaching k € [0, 00) from the upper half-plane. Furthermore, the limit
v depends continuously on k. In particular, the functions u4 (x, §) defined above
are continuous in £ € R3, and a+ (w, 8, k) is continuous on S2 x $2 x [0, 00).

There is a natural fashion in which u4 (x, §) and u_(x, §) fit together, which
we describe. This will be useful in §4. Namely, fork e R, w € S 2, set

(1.51) Us(x. k,0) = e 7K 4 Vi (x,k, w),

where V satisfies (1.1)—(1.3) and V_ satisfies (1.1), (1.2), (1.42), with the bound-
ary condition Vi = —e tkx® for x € 9K. In each case, k is not restricted to be
positive; we take any k € R (using (1.49) for k = 0). It is easy to see that,
forany k > 0, Vi(x,k,w) = vi(x,kw), while, for k < 0, Vi(x,k,w) =
vx(x, —|k|w) = vE(x, kw). Consequently,

k>0= Us(x,k,w) = us(x, kw),

(1.52)
k<0= Us(x,k,w) = ux(x, kw).

Similarly, we can define A4 (w, 6, k) for k € R. Note that as r — +o0,
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e:l:ikr

k>0= Vi(ro,k,w) ~
(1.53) r

Fikr
k<0= Vi(r0,k,w) ~

a+(Fo,0.k),

ar(tw, 0,k).
,

Exercises

1. Let v solve (1.1)—(1.3), with f € H(3K), with k > 0. Show that

/Bv_
® =7 Im —vdS
ov

oK

satisfies

for all R such that K C Bg(0), and that

L T v |2 2 12 B 2
o= lim - / (‘8]) + k2| )dS_nk/|a(f,0,k)| do.
|x|=R S2

The quantity @ is called the flux of the solution v. Show that ® = 0 implies v = 0.
(Hint: Refer to the proof of Proposition 1.1.)

2. Investigate solutions of (1.1)~(1.3) for f € HS(dK) with s < 3/2. (Hint: When
extending f to f* € HS +1/ 2(R2), use a parametrix construction for the Dirichlet
problem for A + k2.)

3. If (A+k?)v(x) = 0for x € O, open in R”, note that w(x, y) = v(x)eky is harmonic
on OxR c R"*1, Deduce that v must be real analytic on (, as asserted in the unique
continuation argument used to prove Proposition 1.1.

4. Witha(w, 0, k) defined for k € R so that (1.53) holds, show that

(1.54) k>0= a(w,0,—k) = a(w,0.k).

Relate this to (1.47).
5. If the obstacle K> is obtained from K; by translation, K» = Kj + 1, show that the
scattering amplitudes are related by

ag,(w,0,k) = el k(@=0)n ak, (@,0,k).

The following exercises deal with the operator H = —A + V on R3, assuming V(x)
is a real-valued function in C(‘)’o (R3). We consider the following variant of (1.1)—(1.3),

given f € L2 _(R3):

comp

(1.55) (A—V +k*v=f onR3,

0
(1.56) [ro(x)| <C, r (a_v — ikv) — 0, asr — oo.
r
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6. Show thatif k > 0 and v satisfies (1.55)—(1.56) and f = 0, then v = 0. (Hint: Modify
the proof of Proposition 1.1, to get v(x) = 0 on R3 \ Bg, given V supported on Bg.
Then use the following unique continuation result:

Theorem UCP. If L is a second-order; real, scalar, elliptic operator on a connected
region 2, Lv=0on Q, and v =0 on a nonempty open set O C 2, then v=0on Q.

A proof of this theorem can be found in [Ho], or in Chap. 14 of [T3].)

7. Show that H has no positive eigenvalues. (Hint: Use similar reasoning, with an ap-
propriate variant of Lemma 1.2.) Obtain an analogue of Proposition 7.3 of Chap. 8§,
regarding negative eigenvalues.

8. Modity the proof of Theorem 1.3 to obtain a (unique) solution of (1.55)—(1.56), as a

limit of (—H + (k + is)z)_lf, as ¢ \{ 0, given k > 0. Show that (parallel to (1.4))
the solution v satisfies

L5 v = - / (VOwG) + £0))g (. v k) dy = RGI Vv + £).

This is called the Lippman-Schwinger equation.
9. Letu(x,£) = e 4 y(x,£), where v satisfies

(A=V 4k =V(x)e ™, k2=

and (1.56). Establish an analogue of Proposition 1.6 and an analogue of (1.41), yield-
ing a(—w, 0, k). Note the following case of (1.57):

(1.58) v E) = — / V(s (x.5)g(x.y. k) dy.

10. Note that the argument involving (1.48)—(1.50) has no analogue for the k = 0 case of
(1.55)—(1.56). Reconsider this fact after looking at Exercise 9 of §9.

2. Eigenfunction expansions

The Laplace operator on 2 with the Dirichlet boundary condition, that is, with

domain
D(A) = Hy(Q) N H*(Q),

is self-adjoint and negative, so by the spectral theorem there is a projection-valued
measure d E () such that

(2.1) (p(—A)Uz/O o(A) dE(A)v,

for any bounded continuous function ¢. Furthermore, this spectral measure is
given in terms of the jump of the resolvent across the real axis:

(22) o(=A)y = lim ﬁ / pM[(A+2—ie) ' —(A+Ar+ie) vda.
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Using the kernel G(x, y, k + i¢) for (A + (k + is)z)_l, we can write this as
2 o0
(23)  @(=A)v(x) = lim —/ /<p(k2) Im G(x,y,k +ie)v(y)dy k dk.
eNO T Jo
Q

From the limiting behavior
G(x,y,k+ie) — G(x,y,k)

established in §1, we can draw the following conclusion.

Proposition 2.1. The operator A on Q2 has only absolutely continuous spectrum.
For any continuous ¢ with compact support, we have

(2.4) o(V=~A)v(x) = %/0 /Im G(x,y,k)v(y) dy (k) k dk.
Q

The meaning of the first statement of the proposition is that the spectral measure
is absolutely continuous with respect to Lebesgue measure.

The primary goal of this section is to give the spectral decomposition of
the Laplace operator on €2 in terms of the “eigenfunctions” u(x, §) defined by
(1.32)—(1.33). We use a modified version of an approach taken in [Rm]. In view
of (2.4), the following result plays a key role in achieving the spectral decom-
position.

Proposition 2.2. We have the identity

2.5) ImG(x,y,k) =

/u(x,ka)) u(y, kw) do.
S2

1672

Proof. We obtain this identity from the asymptotic result of Proposition 1.6, as
follows. Applying Green’s theorem to G(x, y, k) and G(x, y, k), and using the
fact that they both vanish for x € 0K, we have

Im G(x, y, k)

o6 _ L KB _ 9
=5 /[G(x,y,k)alzlG(z,y,k) G(x,y,k)a|Z|G(z,y,k)] ds(z),
SR

for R large, where Sg = {z € R3 : |z] = R}. Letting R — oo, and using (1.34)
and (1.38), gives (2.5) in the limit.

In view of (2.5), we can write the identity (2.4) as

QN (VA() = 1) / / u(x. Oyl B(e(E] dy dE.

R3 Q
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Therefore, we are motivated to define the following analogues of the Fourier
transform:

2.8) (®0) (&) = @) / V(0. E) dy
Q

and

(2.9) (P*w)(x) = 2n) /2 / u(x, £)w(§) dE.
]R3

We aim to prove that ® defines a unitary transformation from L2(2) onto
L?(R3), with inverse ®*. Note that §1 gives the estimate

(2.10) lu(x.£)| < 1+ CE)(x)7",

with C(§) locally bounded, but we have obtained no bound on C(§) as |§| — oo,
so our analysis of ® and ®* will require some care. The following results on &
and ®* are elementary.

Lemma 2.3. We have

(2.11) ®: CP(Q) — C(R?),

(2.12) *: LY, (R?) — L®(Q) N C®(Q),

and

(2.13) (®*w.v) = (w, Pv), forv e CP(Q), w e LY, (R?).

We also note that (2.7) gives
(2.14) p(V=A)v = O*(p(|§))Pv), forv e Cg(R), ¢ € C°(R).

Using these results, we will be able to establish the following.

Proposition 2.4. Ifv € C{°(Q), then v € L?(R?) and
(2.15) [PVl 2®3y = vllL2(@)-
Consequently, ® has a unique extension to an isometric map
(2.16) o L3(Q) — L*(RY),

and ®* has a unique continuous extension to a continuous map
(2.17) o* : L2(R3) — L3(Q),

the adjoint of (2.16).
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Proof. Given ¢ € C§°(R), v € C§°(£2), we have

(e (EDPv. Pv) = (" ¢(IE]) PV, v) (by (2.13))

(2.18)
= (p(V=A)v,v). (by (2.14))

In other words,

2.19) / (D] @V (E)|? dt = (p(V—D)v.v).

R3

Now let ¢ ' 1. The monotone convergence theorem applies, so

(2.20) /\qm(s)f dt = (v,v).
R3

This proves the proposition.

In order to prove that (2.16) is surjective—hence unitary—we will need to
know that ®* in (2.17) is injective. Before proving this, it will be useful to estab-
lish the following.

Proposition 2.5. For any even ¢ € C,(R) (i.e., ¢ continuous and ¢(t) — 0 as
|t| = o0), and for any w € L*(R3),

(2.21) " (p(lEhw) = p(vV=-2) 2" w.
Proof. It suffices to establish this identity for w € C§*° (R3). For such w, we have
(1= 00w = @0~ [t 67w dé = o ((6) 7).
R3

the left side a priori a distribution on €2. By (2.17), we know that O*((£)%w)
€ L?(Q). The integral above clearly belongs to C*°(£2) and vanishes on 9<2.
Thus ®*w(x) belongs to the domain of A}, where

D(Ae) = {ue C®(Q) :u=0o0ndQ, supp u bounded}.

It follows from Proposition 2.6 of Chap. 8 that A is essentially self-adjoint on
D(A.), so we conclude that ®*w(x) belongs to the domain of A, namely, to
H}(Q) N H*(Q).

An inductive argument shows that ®*w belongs to the domain of each self-
adjoint operator (1 — A)X and

(1-M)Kd*w(x) = o*((£)* w).
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Replacing w by (§) 2K w, we deduce
O*((5) 2K w) = (1 — A K o*w,
for all w € CS°(R?). From this we get
O* (|67 (€)X w) = AV (1 - A) Fo*w.

Consequently, the identity (2.21) is valid for any ¢(t) = 2/ (t)72K, j < K.
Now the space of finite linear combinations of such ¢ is dense in the space of
even elements of C,(R), with the sup norm, by the Stone-Weierstrass theorem, so
(2.21) holds in general.

We also have the following dual result.

Proposition 2.6. For v € L%(Q), ¢ € C,(R) even, we have

(2.22) D(p(V=A)) () = p(E))(PV)(E).

Proof. Since, by Proposition 2.4, ® and ®* are L2-continuous and adjoints of
each other, this follows directly from (2.21).

We now prove the asserted unitarity of ® and ©*.

Proposition 2.7. The map ®* is injective on L*>(R?). Hence the maps (2.16) and
(2.17) are unitary and are inverses of each other.

Proof. By Proposition 2.5, if w € ker ®*, then ¢(|é|)w € ker ®*, for any ¢ €
C§°(R). Hence if ker ®* is nonzero, it contains an element with compact support.
Let w denote such an element. Then

(2.23) 0= / u(y. H)p((E)w(E) dt. forall y € Q.

R3

for any continuous ¢, the integral being absolutely convergent. This being the
case, we can take

(2.24) p(lE]) = g(x. y. [§].

Also, we can use ¢(|€]) = dg(x, y,|&])/d|y]|, and we can also replace u(y, £) by
du(y, £)/0|y|. Consequently, for all » > Ry, such that K C {x € R3: |x| < Ro},
we have

a du
[ [ w@uo. o556 et D0 6)] dso ag
(2.25) Y Y

lyl=r
=0,
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for all x € R3. In the limit r — oo, this gives
(2.26) 0= / w(E)e € dg, forall x € R,

In other words, the Fourier transform of w vanishes identically. This implies
w = 0 and completes the proof.

If we replace u(x, &) = us(x,§) by u_(x, &), given by (1.43)—(1.45), we can
define the operator ®_ by

2.27) (@_v)(€) = (27) 2 / (a8 dy.

Q

The arguments as above show that ®_ provides a unitary operator from L?(£)
onto L2(R?), and the intertwining property (2.22) also holds for ®_. The relation
between ®_ and @ is important in scattering theory; often we denote ® by & to
emphasize this.

Exercises

1. If ¢ € C§°(R) is even, show that the Schwartz kernel of ¢(+/—A) is given by

(2.28) Ky(x.y) = 1) / u(x. a0 D)) dE.
]R3

In particular,

(2.29) Kp(x.x) = 2m)~3 / (. )P (E]) dE.
R%

2. Show that (2.29) is also valid for (1) = ¢ (A) = e_t’lz, given t > 0. (Hint: Let
9j € CPR), @ / ¢r.)

3. Show that the heat kernel H; (x, y) on £ x  of et A, with Dirichlet boundary condition,
has the pointwise bound

Hy(x.y) < (4mr) ™2 oo Plar,

Deduce that, for each x € €2,

@)~ / e B e E” dE < (4mi) 32,
R%

and hence

(2.30) / lu(x. £ dE < C R3.
|E|<R
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4. Deduce that (2.28) and (2.29) remain valid for even ¢ € S(R), indeed, for continuous
even ¢ satisfying |p(1)] < C(A)™47¢, ¢ > 0.

5. Verify that (2.26) follows from (2.25). (Hint: If e~iY" is substituted for u(y, £)in (2.25),
Green’s formula applies. If v(y, &) is substituted, use the asymptotic behavior to show
that the inner integral tends to 0 as r — 00.)

6. Produce results parallel to those of this section for H = —A 4V, given V € C§° R3),

real, u(x, £) as in Exercise 9 of §1. Show that ® : H, — LZ(R3) is unitary, where
‘Hc is the orthogonal complement of the set of eigenfunctions of H (with negative
eigenvalue, if any). To what extent does k = 0 cause a problem?

3. The scattering operator

In §2 we produced the two unitary operators

3.1) dy: L2(Q) — L*(RY),
defined for f € C§°(S2) by

(3.2) (@1 f)(&) = @) / 20 D /() dy.

Q
From these one constructs the unitary operator
(3.3) S =&, 0% : L2(R3) — L?(R?),

called the scattering operator. Recall that & and ®_ intertwine ¢(~/—A) on
L?(2) with multiplication by ¢(|£]) on L2(R3), for ¢ € C,(R). It follows that S
commutes with such ¢(|£]):

(34 So(E)) = ¢(|EDS.

From the definition (3.3) we see that S is uniquely characterized by the property

(3.5) S(p(Ehu-(y.)) = e(IEDhus(y, ), forally € Q,

for all ¢ € Cg°(R). We will relate the operator S to “wave operators” in §5.
We aim to establish the following formula for S, in terms of the scattering
amplitude a(w, 0, k) defined in §1.

Proposition 3.1. For g € C$°(R3), we can write

(3.6) (S8)(§) = S(k) glkw), §=ko, weS>
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where, for each k € Rt, S(k) is a unitary operator on L*>(S?) given by

k
3.7) Sk) f(@) = f() + %/a(w,é,k)f(e) do.
S2

Proof. Let
(3.8) w(y, ko) = u(y, ko) —u_(y, ko) = v4(y, ko) —v-(y, ko).

The assertion above is equivalent to the integral identity

(3.9 w(y, kw) = —%/a(w, 0,k)uy(y, k0) do.
i
S2

In order to prove this, note that, since w(x, kw) = 0 for x € 0K, Green’s theorem
gives, for R > |y|,

(3.10)
ow

G
w(y, kw) = /[w(x,ka))m(y,x,k) - G(y,x,k)w(x,kw)] das(x),
SR

where Sg = {x : |[x| = R}. Now let R — oo. Using the asymptotic behavior
(1.34) and (1.38) for G(y, x,k) and its radial derivative (with x and y inter-
changed and w replaced by #) and the asymptotic behavior, for [x| = R — oo,
x = RO,

eikR —ikR
wx, ko) ~ — a(—w, 0,k) — a_(w,0,k),
3.11) R
G. ow eikR e—ikR
ﬁ(x,ka)) ~ ikT a(—w,0,k) +ik R a_(w,0,k),
with
(3.12) a_(w,0,k) =a(w,0,k),

as in (1.46)—(1.47), we see that the integrand in (3.10) is asymptotic to

2ik
47 R?

(3.13) a_(w,0,k)uy (v, ko) + o(R™2),

(the terms involving e? kR canceling out), so passing to the limit R — oo gives
(3.9) and proves the proposition.

We can rewrite the formula (3.7) as

(3.14) SU) = I+ ——ack),
2mi
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with

(3.15) Ak) f (@) = /a(w,@,k)f(@) do.
S2

Note that unitarity of S(k) on L2(S?) is equivalent to the identity
1 N k "

(3.16) T[A(k) —A(k)] = —Ak)* A(k),
i 4

that is, to the integral identity
l— k [——
(3.17) T[a(@,w,k) —a(w,@,k)] = 4—/a(n,a),k)a(n, 0,k) dn.
i /4
S2

The special case of this where w = 6 is known as the optical theorem:

k
(3.18) Ima(w,w, k) = —4—/|61(77,a),k)|2 dn.
b
S2

It is useful to know integral identities for the scattering amplitude. We note one
that follows from the characterization

(3.19) v(r6, kw) ~ r_leikra(—a), 0,k), r— o0
and the integral identity (a consequence of Green’s identity)
ag v
(3.20) v(x,kw) = [v(y,ka))a—(x, v, k) —g(x, y,k)—(y,kw)] ds(y).
vy v
0K

We evaluate the integrand on the right as x = rf, r — oo. Using (1.36), that is,
(3.21) g(x, v, k) ~ —(47rr)_leik’e_ik9'y, x=r0, r - oo,

we find from (3.19) and (3.20) that

1 . 9 .
a(w.0,k) = — — / etk —omik8y gg(y)
47 dv
0K

1

—ikoy O
+ H/e ko-y gv()h—ka)) as(y).

oK

(3.22)
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The first term on the right side of (3.22) can be written as

ik . ik .
(3.23) ;—n /(v(y) -0) @Y gg(y) = ;—ne - Ak (k(w — 8)),
oK

where, for £ € R3,

(3.24) Ax(€) = / v(y) e’ dS(y).

0K

The function A k (£) clearly extends to an entire analytic function of £ € C3. For
£ € R3 tending to infinity, one can (typically) find the asymptotic behavior of
A (§) via the stationary phase method. Note that

(3.25) Ak(0) = 0.

One way of writing the last term in (3.22) is the following. For any real k,
or more generally for Im k& > 0, define the Neumann operator A/ (k) on f €
H'(0K) to be the value of dv/dv in L?(dK), where v is the unique solution to
the scattering problem (1.1)—(1.3). Define the functions e¢ on 3K by

(3.26) es(y) =%y € dk.

Then the last term in (3.22) is

1
(3.27) o (N(©)ekw. exo) 12 ok)-

Consequently, the formula for the scattering amplitude can be written as

k. 1
(3.28)  a(w,,k) = ;—ne Ak (k@ = 0) + (N (K)ero.exs) 12 -

We will investigate the Neumann operator further in §7.
We can produce a variant of the formula (3.22) by using G(x, y, k) instead of
g(x, y,k) in (3.20). We then get

(3.29) v(x, kw) = —/e‘”“” g—G(x,y,k) ds(y).
Vy
oK

Using the limiting behavior for G(x, y, k) as |[x| — oo, which follows from
(1.34), we have

U o)
(3.30) a(w,0,k) = ——/elkw'y My, k6) dS(y).
4 Jdv
0K
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If we write u(y, k) = e'%9Y 4 y(y, k6), this becomes a sum of two terms. The
first is identical to the first term in (3.22), while the second differs from the second
term in (3.22) precisely by the replacement of (w, 6) by (—8, —w). From this
observation, we can derive the following identity, called the reciprocity relation:

(3.31) a(w,0,k) =a(—0,—w,k).

To see this, it suffices to show that k(w + 0) - /AlK(k(w — 9)) = 0. Since w + 6
and @ — 6 are orthogonal for unit w and 6, this is equivalent to the observation
that

(3.32) Ag(§) is parallel to £, for & € R3,

and this follows easily from Green’s theorem.

Exercises

1. Show that (3.5) follows from

/ u_ (6. )p(EN_ () dE = / up (. ) (D uy (0.8 dE,

which in turn follows from (2.28).

2. Fill in the details on the identities (3.25) and (3.32) for A k (£), and then on the reci-
procity relation (3.31). What is the intuitive content of (3.31)?

3. If you set S— = <I>_<I>j_, obtain an analogue of (3.7), with a(w, 6, k) replaced by
a—(w,0,k).

4. Incase f = —e™! kxo | x> With corresponding scattered wave v, show that the flux @
studied in Exercise 1 of §1 is given by

o(w.k) = lim 7k / [v(x, kw)|? dS(x)
lx|=r

= nk/ la(—w, 0, k)| db.
S2

We call o(w, k) the scattering cross section. Using the optical theorem and the reci-
procity relation (3.31), show that

o(w.k) = —47% Ima(w, ©. k).
5. Generalizing (3.22), show that, for f € H*(dK),
(3.33) Bi (k) f(r0) ~ r L™ Ag (k) £(0) + o(r71),
as r — 0o, where

(334 Ax(k)[f(0) = ﬁ / TR [ik (v(3) - 0) () + N(K) £ ()] dS().
0K
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6. Make a parallel study of the scattering operator for H = —A+V, V € C§° (R3), real-

valued, using results from the exercises in §§1 and 2. To begin, use the unitary operators
&4 1 He — L2(R3) to construct § = &4 ®* . Show that, parallel to (3.22),

a(-0.0.0) = / V(. ko) ¥ dy,

or equivalently,

639 a@.0.6) =~(2) Pk -w) - / V(. k)0 gy,
4. Connections with the wave equation

The initial-value problem for the wave equation on R x €2, with Dirichlet bound-
ary conditions on R x 0K, is of the following form:

4.1 ;)ZTZ —Au=0,

(4.2) u(0,x) = f(x),  u(0,x) = g(x),
fort e R, x € Q, with

4.3) u(t,x) =0, forx € JK.

As we know, given f € Hy (), g € L?(Q), there is a unique solution u belong-
ing to C(R, H} (2))NC! (R, L?(R2)) to this problem, given in terms of functions
of the self-adjoint operator A on L?(2), with domain Hy (Q) N H*(R), as

4.4) u(t, x) = (costA) f(x) + (A LsintA)g(x),
where
(4.5) A = (=A)V?

is the unique nonnegative, self-adjoint square root of —A. Recall that the domain
of A is precisely D(A) = H, (). Alternatively, we can write

()=00 ()

where U(t) is the one-parameter group of operators on H/ (Q2) & L?(2) given by

costA A~ lsintA
4.7) U = (—A sintA costA )
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Using either of the unitary operators
(4.8) Oy L3(Q) — L2R?),
we can write
(costA) f = <I>;1 cost|&| D4 f,
4.9)
(A" LsintA)g = <D;1|§|_1 sinz|&| D1 g.
Note that 4 also provide isomorphisms

(4.10) Oy HY(Q) — L*(R?, (£)%dE).

The group U(t) is not a uniformly bounded group of operators on the Hilbert
space Hy () @ L?*(Q). Indeed, with / = 0, we see from (4.4) that the best
uniform estimate on [|u(z, -)|| .2(g) is

(4.11) lu, )2 =< l7l gl 22@)-

There is another Hilbert space on which U(¢) naturally acts as a group of unitary
operators, namely the space

(4.12) E=HoL*Q),

where H is the completion of H (2) with respect to the norm given by

“.13) 1 B = 187 gy = [ 150 d.
Q
(Recall that ||f||§{(% @ = ||f||iz(m + ||Af||iz(m.) If we equip H with this

norm, then @4 extend to unitary operators
(4.14) Oy i H — LA(R?, [£]7dE).

Since unitary operators are special, it is natural to use the Hilbert space (4.12)
rather than HJ(Q) & L*(2). We will denote an element of £ by (f.g);
f € H, g € L?>(). When U(¢) is applied, this is treated as a column vector,
as in (4.6); we will also use the column vector notation for elements of £ when
convenient.

Elements of H need not belong to L2(£2), though they do belong to L2 Q).
In fact, if B is a bounded subset of 2, the estimate

(4.15) lullz2(p) = Crllullx
can be established by the argument used to prove Proposition 5.2 in Chap.4,

provided K has nonempty interior. Since clearly [ |Vul|*dx < [q |Vu|* dx, we
hence have
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(4.16) lull g1 gy < Cpllullx.

Further estimates are given in the exercises.
The unitarity of U(z) on € reflects the conservation of total energy, given by

@1 E@) = )3 = / (IVsialt. 0P + s (1. 0)) .
Q

There is also the notion of local energy, given as follows. For a bounded subset B
of 2, set

(4.18) Eg(u(t)) = /(|qu(t,x)|2 + |ut(l,x)|2) dx.
B

Using the absolute continuity of the spectrum of A on L2(Q) established in §2,
or more precisely, the absolute continuity of the spectrum of a related operator
specified below, we will establish the following result on local energy decay.

Proposition 4.1. Given (f,g) € £, (u,u;) = U(@)(f, g), we have
(4.19) Ep(u(t)) — 0, as |t| — oo,
for any bounded B C Q.

Before starting the proof of this proposition, we will make some further com-
ments on the infinitesimal generator of the unitary group U(¢) on £. This is a
skew-adjoint operator, and it has the form

0 I
(4.20) B = (_ ; 0),

where, for f € D(A) C H,
(4.21) Af = —-Af

in the distributional sense. Then B? is a self-adjoint operator of the form

2 _ (A1 O
(4.22) B _( 0 )

where A is self-adjoint on H, Aj is self-adjoint on L?(£2), and they both satisfy
(4.21), on their respective domains. Note that the unitary operators

Oy H®LAQ) — L2(R3, |67 dE) @ L*(R?)
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intertwine (4.20) with multiplication (on each factor) by |£|? and
D(®+B>®') = L2 (R, [§]7(€)* d§) & L2(R®. (§)* d£).

In particular, the operators A1 and A, have only absolutely continuous spectrum.
Let

1/2
(4.23) Lj=4)

be their unique nonnegative, self-adjoint square roots. Both L; and L, are inter-
twined via &4 with multiplication by ||, so we can identify them, denoting them
by L, and if (u,u;) = U(¢)(f, g), we have

u(t) = (costL) f + (L™ 'sintL)g,

(4.24) .
u;(t) = (—LsintL) f + (costL)g.

We now begin the proof of Proposition 4.1. Since U(¢) is unitary and
Ep(u(t)) < E(u(t)) = |[{u, us)||2, we see that it suffices to prove the proposition
for ( f, g) in a dense subset of £. In particular, we will take

(4.25) feD(L)) CH, geD(Ly)CL*Q).

Lemma 4.2. If f and g satisfy (4.25), then, as |t| — oo,

(4.26) u(t) — 0 weakly in D(Ly) and
' u(t) — 0 weakly in D(L>).

Proof. Fix wg € D(L1), w; € D(L;). Note that

(4.27) Oy f € L2(R,[617(6)2dE),

and so on, so using the images under ®4 to justify the inner-product calculations,
and noting that, by (4.27),

(4.28) Lf € H(Q), L*>fel*Q), Lgel*Q)
(and similarly for wg, wy), we obtain

(u(2), wo)D(Ll) = (Lu(t). Lwo) + (u(t). wo),

(4.29)
= (L?u(t). L*wo) ;> + (Lu(t), Lwo), ».



4. Connections with the wave equation 201
To examine each term, write (with j = 1 or 2)

(L7u(t), L’ wo) ;> = (L7 costL) f + (L/"'sintL)g, L’ wo) ;2

o
(4.30) :/0 (costA) d(F L7 f, L' wy)
+/ (sintAd) d(Fy L/ g, L/ wy),
0

where F) is the spectral measure of L. In light of (4.28) and the absolute conti-
nuity of Fy, it follows that d(Fj L/ f, L/ w¢) and d(FyL/~'g, L/ wy) are finite
measures on R that are absolutely continuous with respect to Lebesgue measure.
Hence (4.30) is the Fourier transform of an L!-function on R. Thus the Riemann—
Lebesgue lemma implies that this tends to 0 as |¢| — oo. Similarly,

(431) (ut (t)’ wl)D(Lz) = (Lut (t)v Lwl)Lz + (ut(t)’ wl)LZ'
This time, to examine each term, write (with j = 0 or 1)
(Ljut (1), ijl)L2 = ((—LjJrl sintL) f + (L’ costL)g, ijl)LZ

(4.32) = —/0 (sintA) d(FyL’ ' f, L/ wy)

+/ (costA) d(Fy L7 g, L/ wy).
0

Again the Riemann-Lebesgue lemma applies, and the proof of Lemma 4.2 is
complete.

To derive local energy decay from this, we reason as follows. For any R < oo,
set

(4.33) Qr={xeQ:|x| <R}

Then, for f € H,if(rf = f|QR’ by (4.16) we have

(4.34) lerf o @p) < CRILS 17

Similarly, for any f € D(L,),

(4.35) ler f 2R < Crlf D@y

Thus, restricted to Qg, u(f) is bounded in H?(Qg) and u,(¢) is bounded in

H'(QpR),fort € R, given the hypothesis (4.25) on the initial data. Thus these two
families of functions on Qg are compact in H!(Qg) and L?(QR), respectively,
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by Rellich’s theorem. The weak convergence to zero of (4.26) hence implies the
strong convergence to zero:

(4.36) u(t) — 0in H'(QR), u:(t) — 0in L*(QR),

as |t| — oo, whenever f and g satisfy (4.25). Proposition 4.1 is hence proved on
the dense set given by (4.25), and as we remarked before, that proves it in general.

Instead of representing { £, g) € & as a pair of functions, L? with respect to
different weights, via @4, it is often convenient to use the following construction,
of Lax—Phillips. Namely, for f, g € C£°(S2), define ¥4 ( f,g) on R x S by

k? -
vy (;) (k,w) = 1032 /f(x)Ui(x,k,w) dx
Q

4.37) :
l _—
+ 47302 /g(x)Ui(X,k,a)) dx.
Q

This is the same as the (formally computed) £-inner product
(4.38) (/. &), (Us( k, ), ikUL (- k, ),

times 271/2(277)73/2. Note that e’K* U (x, k, w) solves the wave equation, with
Cauchy data (U4 (x,k, w),ikUy (x,k, w)). In terms of the operators @4, studied
before, we can write (4.37) as 1/«/5 times

K (®x f)(kw) + ik(Prg)(kw), fork > 0,

(4.39) ) )
k(O f)(kw) + ik(Pxg)(kw), fork < 0.

Note that f € H ¢ @ f € L*(R®,[§]?d§) & [§°@x f € L*(R®, |£[72d$),
or, switching to polar coordinates,

(4.40) feH < k*(d+ f)kw) € L*(RT x S?,dk dw).

Similarly,

(4.41) g€ L3(Q) < k(®+g)(kw) € L>(RT x S?,dk dw).

Therefore, for (£, g) € &£, the quantity (4.39) belongs to

(4.42) L*(R x §2,dk dw) = L*(R, N),
with
(4.43) N = L*(S?).

We can now establish the following.
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Proposition 4.3. For each choice of sign, W1 provides a unitary map of € onto

L2(N).

Proof. It is clear that the restrictions of W to H @ 0 and to 0 @ L?(2) are both
isometries, by the arguments leading to (4.40) and (4.41). Also, it is easy to see
that the images of these spaces under W4 are mutually orthogonal, so W4 is an
isometry of & into L?(R, N). To show that it is surjective, we show how to solve
for ( f, g) € & the pair of equations

(4.44) SL(Lf +ig) =uy, Px(Lf—ig) =u,

for arbitrary ug,u; € L?(R3). Inverting the unitary operators ®1 and ®=, we
reduce this to a trivial system for Lf + ig and Lf — ig, easily solved for
f €M, g € LAQ), since L : H — L?(RQ) is an isomorphism. This proves
the proposition.

The maps W4 intertwine the evolution group U(¢) with a simple multiplication
operator:

Proposition 4.4. We have, for ¢ € L2(R,N),
(4.45) Wi U(t) 3! ok, 0) = e ¥ ok, w).

Proof. This follows directly from the intertwining properties of @, given (4.39)
and the following computation:

k2 (Dxu(t)) (ko) + ik (®su (1)) (ko)
=k?[(coskt)®y f + (k™' sinkr) P4 g]
+ ik[—k(sinkt)®+ f + (cosk?)P1g]
=kZe oL f +ike ™ Og,

(4.46)

for k > 0, with a similar computation for k < 0.

The unitary maps discussed above are called “spectral representations” for
U(t). In §6 we will study related maps, called “translation representations.” Note
that in the case K = @, the functions U1 (x, k, w) become Uy(x, k, w) = e tkox
and both spectral representations coincide. We denote this free-space spectral rep-
resentation by Wo. It is a unitary map of & = Ho® L?(R3) onto L?(R, \), given
in terms of the Fourier transform by

N o = 2 oy 4 7% 4
4.47) Yy (g) k,w) = ﬁf(ka)) + ﬁg(kw).

Here, Hy is the completion of C§° (R3) with respect to the norm ||V f]| L2(R3)s
mapped unitarily by the Fourier transform onto L2(R3, |£]2d £).
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Exercises

1.

(4.48) o(A) =

7.

Let ¢ € S(R) be an even function in the following exercises. Let A = +/—A, as in
(4.5), and let Ky (x,y) be the Schwartz kernel of ¢(A), as in (2.28). Let Ag be the
free-space Laplacian on R3, Ag = /—Ag, and let K g (x,y) be the Schwartz kernel
of p(Ayg), so, parallel to (2.28),

KRG = @) [ e EEg) at.
R3
Let Dy(x,y) = Ky(x,y) — Kg(x,y), where Ky (x,y) is set equal to 0 if x € K or

y e K.
Use the formula

1 o0
— (1) costA dt
V21 /—oo @)
together with finite propagation speed to show that
supp (1) C{|t| = T} = supp Dy(x.y) C{lx|.|y| = R+ T}

if K C Bg(0).
Use (4.48) to show that, for some J = J(a, B),

IDEDE Ky(x. )| < ClI9N 1 my + 1D Dl 1wy -

forx,y € Q.

Use Exercises 1 and 2 to show that when ¢ € S(R) is even, then Dy (x, y) is rapidly
decreasing and is the Schwartz kernel of a trace class operator on L?(R3).

Let H1(R") denote the completion of C°(R™) with respect to the norm in (4.13).
Show that if n > 3, there is a natural injective map

crHYR™) — S'(R™)
and the Fourier transform maps 7! (R”) isomorphically onto
FHIR") = {u € Lo (R") : [§|u(§) € L2R™)} = L2R". [§*d5).

Show that, for n > 3,
L*(R", [§]?d§) C LY (R",d§),

loc
provided 1 < ¢ < 2n/(n + 2). Conclude that if n > 3, any &t € FH!'(R") can
be written as a sum of an element of L2(R") and a compactly supported element of
L9(R"™), given g € [1,2n/(n + 2)).
Show that LZ(R2, |£|2d€) is not contained in LllOC (R?).
Let ¥4 (§) be the Fourier transform of (x)~9. Show that if ¢ € [1, 2), then

g € Lmp(R") = Y5 x g € L2(R"),

provided o > (2 — q)n/2q. (Hint: Interpolate between easy cases.)
Show thatif n > 3 and o > 1, then

(4.49) HYR™) c L2(R”, (x) 2% dx).

Note that this extends the estimate (4.15) in several ways.
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8. Show thatif n > 3,
(4.50) HY(R") c L2 D (R?),

Show that this result implies (4.49).
Reconsider this problem after reading §2 of Chap. 13.

5. 'Wave operators

In this section we examine the asymptotic behavior of the unitary group U(¢) on &,
as t — Foo. More precisely, we show that, as t — £o0, U(t)M,Uo(—1)( f. g)
converges to a limit, Wi (f, g); the operators Wy are called wave operators,
and they are easily seen to be isometries from & into £. Here, £ is the space
constructed in §4 for Q = R3 \ K, & that for the region Q¢ = R3, and
Uo(t) the “free-space” evolution operator for R3; M, is multiplication by a
function ¢ € C*®(R?), equal to zero in a neighborhood of K, and equal to 1
outside a bounded set. We will show that Wy have as right inverses operators
Qi =Yy Iy, where W are the unitary operators constructed in §4; W is the
corresponding operator constructed for 9 = R3. Since Q4 are unitary, it will
follow from this that the wave operators are also unitary.

We begin with the following observation, a simple consequence of Huygens’
principle. Suppose f and g are in C{°(R?), supported in Bg = {x € R? :
|x| < R}. Then, for |t| > R,

(5.1) Uo(t)(f, g) =0, for|x| < |t| — R.

This follows directly for the formula for the fundamental solution to the wave
equation on R x R3, which, recall from Chap. 3, is

8(lx| — It

(5.2) R(t.x) = = —

Consequently, if K C Bg and if f and g are supported in Bg,, then
(5.3) U(s)Up(—s)(f.g) = U(R + Ro)Uo(—R — Ro)(f. g), fors > R+ Ry,
with a similar identity for s < —R — Ro. We can insert an M, between the two

unitary factors on the left if ¢(x) = 1 for |x| > R, without altering anything. It
follows that

(54) Wilfig) = lim U(=0)M,Uo(1)(f.)

exists, for { f, g) in the dense subset of &, consisting of compactly supported func-
tions. Consequently, the limits exist on all of &, and the operators W, called
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wave operators, are isometries from & into £. A major result, established below,
is that these operators are actually unitary, from & onto £.
In fact, consider the following operators:

(5.5) Qe =V 'y & — &.

By Proposition 4.3 we know €24 are unitary. We aim to establish the following
result.

Proposition 5.1. We have

(5.6) QWi =1 and Q_W_ =1 oné&y.

In order to prepare to prove this, we introduce the following set of initial data
for the wave equation. If R is sufficiently large that K C Bp, set

Dy (R) = {{f.g) € C°(R?) @ C5°(R?) : Uo(1){f. g) = 0.

5.7
) fort >0, [x| < R +1}.

In particular, f and g vanish near K, and we can regard ( f, g) as an element of
&y orof £, and

(5.8)  (f.8) € D§(R) = Uo(t){f.g) = Ut){f.g), fort > 0.
Clearly,
(5.9) Uo(t)DS (R) C DS (R), fort >0,

though not for # < 0. Also, by the argument involving Huygens’ principle dis-
cussed above, it is clear that

(5.10) () Us() D (R) is dense in &.

t<0

Note that (5.8) implies
(5.11) Wy =1 onDf(R).

Our first step in establishing Proposition 5.1 is the following.

Lemma 5.2. We have
(5.12) Qy=1 onDf(R).
Proof. This is equivalent to the identity

(5.13) U, =¥, onDf(R),
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which in turn follows from the identity
(5.14) ((f8). (Vi (ko). ik Vi (k. ))), =0,

fork e R,w € S2,(f.g) € D(')F (R). (Here V. is the function defined in (1.51).)
Note that the left side of (5.14) is equal to ¢'k! times

(5.15) (Uo()(f. 8). (Vi ik V),

for any ¢+ > 0. We will show that, for ¢ large, this can be dominated by a small
quantity. Indeed, an examination of (u(¢),u,(t)) = Uy (¢)(f, g) via the formula
(5.2) for the Riemann function shows that, for ¢ large and positive, V,u(t, x) is
approximately radial, and u; (¢, x) ~ u, (¢, x). Thus (5.15) is equal to

(5.16) /[u,(t, x)a;/—r+ + (ik)u(t, x)7+] dx + o(1),
Q

as t — —oo. In light of the radiation condition for V., the two terms in this
integral cancel out, up to a remainder that vanishes as ¢ — 4-00; this proves the
lemma.

In view of (5.11), we now know that
(5.17) QiWy =1 onDg(R).
Now it follows easily from the definition that
(5.18) WiUp(t) = U(t) Wy, forallt,
and from Proposition 4.4 it follows that
(5.19) QiU() = Up(t)Q2+, forallt.

Given that (5.17) holds when applied to Uy (¢){f, g), provided this belongs to
DS’ (R), we deduce that

(5.20) QWi (fg) = (f.g), for (f.g) € Us(=1)Dg (R), t > 0;
in other words,

(5.21) Q Wy =1 on|JUs(-1)DJ (R).

t>0
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In light of (5.10), this implies that Q4+ W4 = I on &y, establishing the first identity
in (5.6). The second identity is proved in the same fashion, and Proposition 5.1
is done.

The unitarity of 2+ then gives the following result, known as the completeness
of the wave operators.

Corollary 5.3. The wave operators Wy are unitary from &y onto £. We have the
identities

(5.22) Wi = W',

Note that (5.6) implies the surjectivity of 24, hence of W4, since the invert-
ibility of Wy is obvious (just the Fourier inversion formula). Thus the proof of
Proposition 5.1 contains an alternative proof of Proposition 4.3, and hence of

Proposition 2.7.
The operator

(5.23) Si = W'Wo = v (U, W)W,

a unitary operator on &y, is often called the scattering operator. In view of the sim-
ple nature of W, it is equally convenient to call the unitary operator on L? (R, ):

(5.24) S=wv, vl
also a scattering operator. Note that, if we make the identification
L2 (R,N) = L2R" x $?) & L2(R™ x S?),

and follow with the natural unitary map L2(R* x §2) — L?(R?) involving polar
coordinates, we can write

CI3+CI3:1 0
2 = .
(5.25) S ( 0 q>_q>;1)

The operator § = & ®~! is the scattering operator studied in §3; the other
operator, $_ @;1 = S_, appears in Exercise 2 of §3.

Another consequence of the unitarity of the wave operators is the following
nontrivial variant of (5.10).

Proposition 5.4. Pick R so that K C BR. Then

(5.26) U@ D (R) is dense in €.

t<0
Proof. Any (f, g) € £ can be written in the form

(5.27) (f.8) = Wi (/0. 80):
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with ( fo, go) € 0. Approximate { fo, go) to within ¢ in the &y-normby ( f1, g1) €
CSP(R?) @ C$°(R3). Then, forall 7 > R + Ry sufficiently large,

(5.28) Wi(f1,g1) = U(=)Uo(t){ f1.,&1),

by (5.3) and (5.4), and by the Huygens principle argument given there, for any
such ¢ = 19,

(5.29) Uo(t0)( f1.81) = (f2.82) € D (R).
Since ( f, g) — U(—19){ f2, g2) has E-norm less than &, the proposition is proved.

We can also produce a formula for W;l of a form similar to (5.4) but not
involving an arbitrary choice, for example, of M,. Note that there is a natural
isometric mapping

(5.30) J:£E—&

defined on ( f, g) by extending these functions to be zero on K. We have tacitly
used this before. We now establish the following.

Proposition 5.5. Forany (f,g) € &,
(5.31) Wil fg) = lim Us(=)JU()(/.g).

Proof. For simplicity we analyze W_:l. By (5.28), for {f1,g1) € CP(R?) @
C$°(R3) supported in Bg,,, we have

(5.32) JUOWL(f1.81) = Uo(t){ f1,81)-

forall t > R + Ry. This is equivalent to

(5.33) Uo(—)JU ) f, 83) = W' (f3, g3),

for (f3,g3) = Wi(f1.g1), t > R 4+ Ry. This gives (5.31) on a dense subset
of &£, hence on all of £ in view of the uniform boundedness of U(¢) and Uy ().

Exercises

The following exercises deal with the existence and completeness of Schrodinger wave
operators:

(5.34) Wyf = lim e'HemitHoy

t—+to0

where Hy = —A, H = —A + V, acting on functions on R”.
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1. Show that Wy € £(L2(R")) exists provided that, for each f € C°(R™M),
oo .
(5.35) / |V e iHo | dr < oco.
0

(Hint: ''H ¢=itHo f — fé e!sHye=isHo £ (g ) Note that when Wy exist, they are
isometries (i.e., [[We f|| = [|f| forall f € L2(R™)).

2. Show that f € C§°(R") implies ! Ho f||p oo < C(r)™™/2. Deduce that Wy exists
if V e L2(R™). (Hint: ¢'28(x) = (drit)~"/2e—xP/4it )

3. Show thatif ¢ = 2/(1 —6) € [2,00), then f € C§°(R") implies

le'™H0 £ || Lo gy < C (1) 7972,

Deduce that W4 exists if V € L™ (R™), with r < n. In particular, W exists provided
[Vx)| <C{x)™°, 0 > 1.

4. Show that, for any f, g € L2(R"), (g.e~*H0 f) - 0 as |t| — oco. Use this to show
that if g; is an eigenfunction of H, then (e_”ng, eltHo £y 5 0as |t| — oo, for all
f € L2(R™). Hence, for Wy given by (5.34), R(W4) C He.

5. Suppose V € C(‘)’O(R3), so we have @ by Exercise 5 of §2. Let ¢ be the in-
verse Fourier transform. Show that &4 W, <I>0_1 commutes with multiplication by
e"slg‘z, for all s € R. Hence it commutes with ¢(|€]) for all ¢ € C,(R). (Hint:
W:i: — eiSHW:te_iSHO.)

6. When the conditions of Exercise 1 hold, show that

Foo X X
Wif = lim/ geTeloItH —itHo £ gy
e\ Jo

and hence that
Foo X .
(5.36) (We=Df.g)= gn\% /0 i(e"Hye=itHo g gyeEet gy,

7. Choosing the + sign, show that the integral on the right side of (5.36) is equal to

[ [ @ ra@veo[e i o fi Gp avag a
(5.37)
— [[ @ey@veo| (o~ 6P + 07 o) Jar Gy a .

(Hint: Use @4 to intertwine eltH with e!tHo )

8. IfV e Cy® (R3), show that the limit of (5.37) as & \, 0 is equal to

1 —_— o—iklx—yl
an /// (Q+8)OV () o SO (B dy d dé.

provided f € C(‘)X’(R3) and (P4 g)(§) is supported on |§| € [a,b] CC (0, 00). Here
k = |&|. Using (1.58), write this as

—/ (P+8)E) v+ (3.8 f()dy d§ = —(P+ f. P4+ g) + (Do f. P+ g).
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9. Using the previous exercises, show that, given V' € Cé’o (]R3) (real-valued), we have
(Wi f.8) = (@p f. Pyg) forall f,g € L2(R3), hence
Wy = o7 .
Deduce the completeness of the wave operators: R(W4) = He.

Compare arguments in Chap.5 of [Si], dealing with a larger class of potentials.
Completeness for a nearly maximal class of potentials to which Exercise 3 applies is
treated in Chap. 13 of [RS]. Long-range potentials are treated in Chap. 3 of [Ho].

6. Translation representations and the Lax—Phillips
semigroup Z(t)

From the “spectral representations” Wy : £ — L?(R, N) defined in §4, which,
as shown in Proposition 4.4, intertwine U(t) with multiplication by e ¥, we
construct “translation representations,” unitary operators

(6.1) T: : £ — L2(R.N),

by taking the Fourier transform with respect to k:

(6.2) Ty (f ) (s, 0) = (27)"/? / ks v, (f ) (k, w) dk.
g - g

oo

Consequently, Proposition 4.4 implies
(6.3) TUWTI f(s.0) = f(s —1.0).

The operators 7+ are useful for exposing various features of U(t), and we ex-
plore this in the current section. We begin with a look at the free-space translation
representation 7y, a unitary map from & onto L2(R,\) given by using Wy in
(6.2).

We can produce an explicit formula for 7y using the formula (4.47) for Wy,
which we recall is

(6.4) 21/2 (2: ) k.w) = k* f (ko) + ik (ko).

The formula for 7y is expressed naturally in terms of the Radon transform, which
is defined (initially for £ € S(R?)) by

©.5) Rf(s.0) = / £() dS(y).

y-o=s
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fors € R, w € S2. Note that the Fourier transform can be expressed as

o0
(6.6) flkw) = (27r)_3/2/ eTRSR £ (s, w) ds.
—00
Thus, taking the inverse Fourier transform in k, we have
0 . ~
(6.7) Rf(s,0) = 2n)'/? / e'*s f(kw) dk.
—0o0

In light of this, we see that taking the Fourier transform with respect to k of (6.4)
gives

(6.8) To (Jgr) (s, 0) = %[—afRf(s, w) + sRg(s, w)].

The unitarity of 7y gives rise to the inversion formula

fx) = %/k(x-a),a)) dw,

S2

(6.9) 1
gx)=—— / osk(x - w,w) dw,
2
S2

for ( f, g) in terms of
(6.10) k(s,w) =Ty (i:) (s, w).

This result is related to the Radon inversion formula,

(6.11) fx) = ﬁ/@?Rf(x—w,w) dw,
S2

which can be deduced from (6.9), or directly from (6.6) and the Fourier inversion
formula.

In view of (6.3), for 7, we see that the solution to the free-space wave equation
u;y — Au = 0 with initial data { f, g) can be written as

(6.12) u(t,x) = L/k(x cw—t,w)do,
21
S2

where k (s, w) is given by (6.10). More fully, by (6.8),

(6.13)  u(t,x) = 2 [—8§Rf(x cw—t,w)+ sRg(x-w—t, w)] do.

S2
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Note that if f and g are supportedin Bg, = {|x| < Ro}, then, by (6.5), R f (s, w)
and Rg (s, w) vanish for |s| > Ry. Therefore, R f(x-w—t,w) and Rg(x-w—t, w)
vanish for |x| < |¢| — Ro. Thus from (6.13) we rederive the Huygens principle,
that u(t, x) vanishes for |x| < |¢| — R in this case.

Use of 7p and 71 will augment arguments involving the Huygens principle
made in §5. We introduce the space

6.14)  DY(R)={(f.g) €& :Us(t){f.g) =0fort > 0,|x| < R+ 1.

Note that D;‘ (R), defined by (5.7), consists of the elements of D ¥ (R) that are
smooth and compactly supported. Similarly, set

6.15) D (R) = {({f.g) €& :Ust){f.g) = Ofort <O0,|x| <R+ |t]}.

For R = 0, we denote these spaces simply by DT and D, respectively. From
(6.12) it is clear that if 7o( f, g)(s,w) is supported in s > R (resp., s < —R),
then (£, g) belongs to DT (R) (resp., D~ (R)). Furthermore, the converse result
is true:

Proposition 6.1. The transformation Ty : £y — L*>(R, N') maps D+ (R) (resp.
D~ (R)) onto the space of functions in L*>(R, N) supported in [R, o) (resp., sup-
ported in (—oo, —R]), for any R > 0. In particular, D™ and D~ are orthogonal
complements of each other in &.

In order to prove this proposition, it suffices to demonstrate that if { f, g) € &
belongs to DT, then k(s, w) = 7o(f, g) vanishes for s < 0. This comes down to
showing that, if k € L?(R, ) and if the integral (6.12) vanishes for ¢ > |x|, then
k(s,w) = 0 for s < 0. Applying a mollifier, we can suppose k € C®(R, N).
Since 7 clearly commutes with rotations, it suffices to prove this for k (s, ) of the
form k(s, w) = K(s)@p(w), where ¢ is an eigenfunction of the Laplace operator
on S2. So suppose

(6.16) u(t,x) = % / Kx-o—-t)ew)do
S2

vanishes for ¢ > |x|. Since this implies DSu(t,0) = 0 for ¢ > 0, for all o, we
have

6.17) 0= altalK(—t)/co"‘(p(a)) do, t>0,

S2

for all «. Since, by the Stone-Weierstrass theorem, {w®} has dense linear span in
C(5?), there exists a such that the integral in (6.17) is nonvanishing. This implies
that 8',“' K(—t) =0fort > 0, so K(t) coincides with a polynomial in ¢ for ¢ < 0.
Since K € L2(R), this implies K(t) = 0 for t < 0, and the proposition is proved.
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Now we look at the maps 71 : & — L?(R, N), in the presence of an obstacle
K, which we suppose is contained in a ball Bg. Note that D*(R) can be regarded
as subspaces both of & and of £. Lemma 5.2 (specifically (5.13)), which was
important in the last section, immediately implies the following.

Proposition 6.2. We have
(6.18) Ty =Toon D (R) and T- = Ty on Dy (R).

The potential usefulness of this is indicated by the next result.

Proposition 6.3. The properties (6.3) and (6.18) uniquely characterize T+ and
7_ as continuous linear maps.

Proof. Equations (6.3) and (6.18) specify 7 on U(t)D(‘)F (R) for allt € R. By
Proposition 5.4, the union of these spaces is dense in £, so the result follows for
T5+. The proof for 7_ is similar.

Note that we can set %i = To on D*(R) and since U(t) = Up(t), fort >0
on DT(R) and fort < 0 on D™ (R), we can extend 7  so that (6.3) holds. The
uniqueness result above then implies 7 + = 74, so we have

(6.19) T, =Toon DY(R) and 7_ = Ty on D™ (R),

sharpening (6.18).

If we use the translation representations 7+ in place of the spectral represen-
tations W, the scattering operator S defined by (5.24) is replaced by the unitary
operator on L?(R, N):

(6.20) S=T,7".

The operator S clearly commutes with translations. It also possesses the following
important property.

Proposition 6.4. We have
(6.21) S L?((—00,—R], N) —> L*((—o0, R], ).

Proof. 7! maps L?((—oo,—R].N) onto D~(R), which is orthogonal to
DT (R), as a consequence of Proposition 6.1. Since 7 maps D' (R) onto
L?([R, o0), N) and is unitary, it must map D~ (R) into the orthogonal comple-
ment of L2([R, 00), N); this proves (6.21).

Now the action of S on L2(R,N) is given by multiplication by a unitary
operator-valued function S(k), similar to the action of S in terms of S(k) dis-
cussed in §3. The action of S on L2(R, ) is then given by convolution by an
operator-valued tempered distribution S (), the Fourier transform of S(k). From
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(6.21) we conclude that S (s) is supported in the half-line (—oo, 2R]. It follows
that S(k) extends to be a holomorphic, operator-valued function in the half-space
Im k > 0, a fact that can also be seen directly from an analysis of the scattering
amplitude a(w, 6, k), in view of the relation established in §3. We will study the
meromorphic continuation of these objects into the lower half-plane in §7.

We now look at a semigroup of operators, introduced by P. Lax and R. Phillips,
defined as follows. Fixing R such that K C B, set

(6.22) K= (D*(R)® D™ (R))",

the orthogonal complement in £. For ¢ > 0, define

(6.23) Z(t) = PcU(t) Py,

where Py is the orthogonal projection of £ onto K.

Proposition 6.5. Z(t) is a strongly continuous semigroup of operators on K, so
(6.24) Z(t +s)=Z(@)Z(s), fort,s > 0.

Proof. If (f,g;) € K, then U(t){f1,g1) € D' (R) fort > 0, and furthermore
U(—s){f2,82) € (D_(R))J' for s > 0. Hence, for s, > 0,

(6.25) (U(=5)(f2.g2). PcUD)(f1.81)) s = (U(=5)(f2.82). U)( /1. 81))-

Thus PrU(s)PcU(t) P = PrcU(s + t)Px, which implies (6.24). The strong
continuity is obvious.

We note that the Lax—Phillips semigroup Z(#) can also be expressed as
(6.26) Z(t)=PLU@G)P- (=0,
where Py is the orthogonal projection of £ onto (DﬂE (R))J'. To see this, note that
Px =P P_=P_P,.

Since U(t) leaves Dt (R) invariant, Py U(¢) P+ = P+ U(t), for ¢t > 0. Similarly,
P_U@)P-=U(t)P_,fort >0, s0

PcU(t)Px = P_PLU(t) P4 P—
= P_P,U(t)P_
=P, P_U(t)P_
=P U®t)P_.

(6.27)
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Since Z(t) is a strongly continuous semigroup on /C, it has a generator C,
whose resolvent is given by

(6.28) A-C) ' = / eMZ(t)dt, Rel>0.
0

The following result gives important spectral information on Z(t).

Proposition 6.6. Forany T > 2R, A > 0,
(6.29) (A —C) L Z(T) is compact.

We can derive this from the following result, of independent interest. Given
p € CP(R™), let

(6.30) Z(p) = /0 p(t)Z(t) dt.

Define U(p) and Uy(p) similarly.

Proposition 6.7. If p € C§°((2R, 00)), then

(6.31) Z(p) = P+[U(p) = Uo(p)| P-.
Proof. Since it is easy to see that

(6.32) PLUy(t)P- =0, fort > 2R,

this is clear from the formula (6.26).

Now to prove (6.29), it suffices to show that Z(p) is compact for any p €
Cy° ((2R, oo)), since the operator (6.29) is equal to f0°° e M Z(t + T)dt, which
is a norm limit of such Z(p). We show that, for such p, U(p) — Uy (p) is compact,
from £ to &. Indeed, if p is supported in [2R, T'], then, by finite propagation
speed,

(6.33) [U(p) — Uo(p)]( /. g) is supported in |x| < 2R + T,

for any ( f, g) € £. Also we have, for such p, by integrating by parts, and elliptic
regularity,

(6.34) U(p): £ - C®(Q), Up(p): & — C®R3).

The compactness of U(p) — Up(p) then follows, by Rellich’s theorem. We note
that complementing (6.33), we also have, for any ( f, g) € £,

(6.35) [U(p) = Us(p)](. ) depends only on (£.8)| 5, . -
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For any nonzero o« € C in the spectrum of the operator (6.29) (for a fixed
A > 0, T > 2R), this compact operator has an associated finite-dimensional,
generalized «-eigenspace Vy. Z(t) clearly preserves Vg, for ¢ > 0, and the spec-
trum of Z(t)\V consists of e*/!, where, for each such «, M is a finite set of
complex numbers, each satisfying

A—pj)teti' =a.

We call the set of all such 1, as & ranges over the nonzero elements of the spec-
trum of (6.29), scattering characters. It is a fact that this set coincides precisely
with the spectrum of the generator C of Z(¢), but we will not make explicit use
of this and we do not include a proof. (See [LP1].) By the analysis above, the set
of scattering characters j; can be characterized as follows:
(6.36) point spec Z(1) = {e//* : j1; scattering character}.
In §7 we relate the set of scattering characters to the set of scattering poles.

We end this section with some comments on the semigroup Z(¢) in the trans-
lation representation, that is, we look at
(6.37) Zo(t) =T Z()T]",
acting on K4 C L?(R, N), where
(6.38) K+ =T4(K).
Note that { f, g) belongs to K if and only if
(6.39) supp 74(f. &) C (—oo, R] and supp 7_(f. g) C [-R,00),

in view of Proposition 6.1 and (6.19). Recalling the scattering operator S, given
by (6.20), we see that

(6.40) K+ ={f € L*((~00, RLLN) : §7' f € L*([-R.0),N)}.
By (6.37) and (6.3) we have, for f € K4,

Zi)f(s,w) = f(s—t,w), fors <R,

(6.41)
0, fors > R.

Exercises

1. Prove the Radon inversion formula (6.11) from the definition (6.5) and the Fourier in-
version formula.
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2. Consider a first-order, constant-coefficient PDE

du

Fri A(Dx)u, u(0,x) = f(x),

where A(Dy) is an £ x £ matrix. Assume the principal symbol A;(§) has £ distinct
imaginary roots for £ € R3 \ 0. Express the solution in terms of the Radon transform.
When can you deduce Huygens’ principle?

7. Integral equations and scattering poles

In §1 we established results on the existence and uniqueness of solutions to the
scattering problem

(A+k>»Hv=00nQ, v= fondk,

(7.1) v .
r(a—zkv) — 0, asr — oo.

Asin (1.19), let us denote the solution operator to (7.1) by
(7.2) v = Bk)f

We established the proof that B(k) is uniquely defined, for k € R, via the limit-
ing absorption principle in §1; related is the elementary fact that such a solution
operator is also uniquely defined for complex k such that Im k > 0, since k?
belongs to the resolvent set for the Laplace operator on 2 (with Dirichlet bound-
ary condition) for Im k > 0. The limiting absorption principle implies that 5(k)
is strongly continuous in {k € C : Im k > 0}; of course, it is holomorphic on
{k :Im k > 0}.

Here we will show that v = B(k) f can be obtained as the solution to an
integral equation over dK . Use of such integral equations is a convenient tool for
a number of investigations in scattering theory. We use it here to show that 5(k)
has a meromorphic continuation to an operator-valued function on C, with some
poles in {k : Im k < 0}. These poles are known as scattering poles and provide
fundamental objects for study in scattering theory.

The integral equations applying to (7.1) will be obtained from a study of the
following operators, called single- and double-layer potentials, respectively:

(1.3) SOk f(x) = / £() g(x.y. k) dS(y)
oK

and
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0
(7.4 DL 1) = [ 1) 5 v ds).
y
0K

where, as in §1,
(7.5) g(x,y,k) = (47‘[|x _ yl)—l oiklx=yl

For f € C*®(0K), oreven for f € L'(dK), the functions (7.3) and (7.4) are well

defined and smooth for x € R3\ 9K = Q U K, where K is the interior of K. For
such v, x € 9K, we denote by v (x) the limit from the exterior region 2, v_(x)

the limit from the interior region K, and by dv/dvy and dv/dv_ their normal

derivatives, in the direction pointing into €2, taken as limits from 2 and from K,
respectively. By the methods used to treat layer potentials in §11 of Chap. 7, one
derives the following results:

St(k) f+(x) = Stk) f-(x) = G(k) f(x),

76) Lo
DUK) f2(x) = £5f () + SN () f (),

where, for x € 0K,

.7) Gk f(x) = / £ gx.y. k) dS()
K
and
0
.8 N 1@ =2 [ 10) 35y st
y
oK

Note that, for [x — y| < 1, g(x, y, k) has an estimate of the form
(7.9) g(x.y. k)| < Celx — y|™".

We have for Vyg the poorer estimate |Vyg(x,y,k)| < Cglx — y|72, but the
normal derivative dg/dv, has a weaker singularity on dK x 9K, of the same kind

as g:

a
(7.10) ‘%(x,y,k)) <Clx—y|™Y, forx,y e dK.
y

It follows that G (k) and N (k) are compact operators on L2(3K), foreachk € C,
with holomorphic dependence on k.
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We will first consider the possibility of obtaining the solution v to the scattering
problem in the form

(7.11) v=DBk)f =Dlk)g onQ,
where g (whose dependence on k we suppress) satisfies the identity
(7.12) (I + N(k))g =2f ondK.

We will establish the following result.

Proposition 7.1. The operator I + N(k) is invertible on L?(3K) for all Imk > 0,
and for all real k, except for k = A j, where —)L% is an eigenvalue for A on the

o
interior region K, with Neumann boundary condition on 0K .

Proof. Since N (k) is compact, it suffices to consider whether / 4+ N (k) is injec-
tive. Suppose therefore that

(7.13) (I + N(k))g =0,

and consider v = D{(k)g on R3 \ 9K. On Q, v satisfies (7.1), with £ = 0 (for
real k, and it is also exponentially decaying as |x| — oo if Im k > 0), so the
uniqueness result implies that v = 0 on . Thus dv/dv4 = 0. Now an analysis
of the double-layer potential (7.4), parallel to that for (11.39) of Chap.7, shows
that, in general,

DLk f _ IDW) f

7.14
(7.14) vy dv_

on oK.

Hence, for v = DL(k)g, with (7.13) satisfied, we have

(7.15) N oniK.
dv_

Thus v satisfies the homogeneous Neumann boundary condition, together with
the PDE

(7.16) (A+k*>v =0 on K.

Since, by (7.7), the jump of v across dK is g(x), and since v4+ = 0, we deduce

that v_ = —g, so v is not identically zero in K if g # 0. The spectrum of the
Laplace operator A on K, with Neumann boundary condition, is a discrete subset
of {k?} of R™, so the proposition is proved.

The extension of B(k) to a neighborhood of the real line in C, including
the exceptional points A ; defined above, is neatly accomplished by considering
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the following alternative integral equation. Namely, we look for a solution v to
the scattering problem of the form

(7.17) v =Bk)f = DUk)g + inSt(k)g in Q.

where g is to be determined as a function of f. Here 7 is a real constant; we can
take n = £1. In this case, we require that g satisfy the identity

(7.18) [1 + N(k) +2inG(k)]g = 2f.

Proposition 7.2. For a given real n # 0, the operator I + N (k) + 2inG(k) is
invertible on L*(9K), for all k such that

(7.19) Imk >0 and nRek > 0.

Proof. Again it suffices to check injectivity. Suppose g € L2(dK) satisfies

(7.20) [1 + N(k) +2inG(k)]g =0,
and let
(7.21) v =Dl(k)g + inSt(k)g inR>\ K.

Then v satisfies (7.1) (for k real, also with exponential decay for Im k > 0) on €2,
with f = 0, so our familiar uniqueness result implies v = 0 on €2, hence v4 = 0
and dv/dv4 = 0 on dK. Hence, as before, by (7.6)—(7.8),

(7.22) v— = —g onJK.

Similarly, dv/dv_ is equal to the jump of dv/dv across dK. To calculate this
jump, we use (7.14) for DL(k)g, and for i nSL(k)g, we use the identity

aSLl(k)g

7.2
(7.23) s

(x) = %(N#(k)g F g).

where
0
124 N'(K)g) =2 / §0) 250y K) dS0), ¥ € 0K,
K

Consequently, complementing (7.14), we have

aSl(k)g B aStk)g
vy -

(7.25) —g on K.
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Therefore, for v given by (7.21), we have

ad
(7.26) v —ing on dK.
dv_

Hence, on the interior region, v satisfies

(7.27) (A +k?)v =0o0n 10(, g—” —inv =0ondK.
vV

Given that 1 # 0, we claim that this implies v = 0 on K. Indeed, Green’s identity
implies

(7.28) ”VU”iZ(K) - kZHU”iZ(K) = _in”v”izaﬂ()-
Taking the imaginary part of this identity, we have the following. If k = A + i,

(7.29) 2AM||”||%2(K) = _77”1)”%2(31()-

Under the hypotheses (7.19), the coefficients on the two sides of (7.29) have op-
posite signs, so v = 0 on dK. In view of (7.22), this implies g = 0, so this
proposition is proved.

Taking n = +1, we have I 4+ N(k) =+ 2i G(k) invertible in the first (resp., sec-
ond) closed quadrant in C, hence invertible in a neighborhood of such a quadrant.
Thus B(k) is extended to an operator-valued function holomorphic on a neighbor-
hood of the closed upper half-plane Im k& > 0.

We next show that, in fact, B(k) has a continuation to a meromorphic operator-
valued function on C. This is an immediate consequence of the following result.

Proposition 7.3. The operator I + N(k) is invertible on L*(K) for all k € C
except for a discrete set, and (I + N(k))™' is a meromorphic function on C.

This result in turn is a special case of the following elementary general result.

Proposition 7.4. Let O be a connected open set in C. Suppose C(z) is a com-
pact, operator-valued, holomorphic function of z € O. Suppose that I + C(2) is
invertible at some point py € O. Then I + C(z) is invertible except at most on a
discrete set in O, and (I + C(z))~! is meromorphic on O.

Proof. The operator I + C(z) fails to be invertible at a point z € O if and only
if the compact operator C(z) has —1 in its spectrum. For a given zo € O, let y
be a small circle about —1, disjoint from the spectrum of C(zg). For z in a small
neighborhood U of zp, we can form the projection-valued function

(7.30) P(z) = 21? /(x —C(@) " da.
14
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For z € U, this is a projection of finite rank (say £); using P (zo) we can produce a
family of isomorphisms of the range R(P(z)) with R(P(z0)), and then C(z) P(z)
can be treated as a holomorphic family of £ x £ matrices. This proposition in
the case of £ x £ matrices is easy, via determinants. By hypothesis, —1 is not
identically an eigenvalue for this family, so

(I +C@)"'PQ
is a meromorphic function on /. Clearly,
(I +C@)™'U - PQ)
is a holomorphic function on I, so this establishes the proposition.

Corollary 7.5. The solution operator B(k) for (7.1) has a meromorphic continu-
ation to C; all its poles are in the lower half-plane Im k < 0.

This follows from the formula
(7.31) B(k) = 2DE(k)[1 + N(k)] ™,
except at the real points k = A ;, from Proposition 7.1, together with the formula

(7.32) B(k) = 2[De(k) + inSt(k)] [I + N(k) + 2inGk)] ",

for n = =41, which defines B(k) as holomorphic on a neighborhood of the
real axis.

The poles of B(k) are called scattering poles. It follows immediately from
(7.31) that the set of scattering poles is contained in the set of poles of [I +
N(k)]™! within the lower half-plane Im k < 0. In fact, these two sets coincide;
this is a consequence of the following.

Lemma 7.6. If Im k # 0, then DL(k) : L?>(0K) — L?

ioc(2) is injective.
Proof. The argument used in the proof of Proposition 7.1 shows that if g €
L*(dK) and Dl(k)g = 0 on , then g = v|aK where 'U|Io( is an eigenfunction

o

for A on K, with Neumann boundary condition on dK, and with eigenvalue —k2.
Since the spectrum of this elliptic operator is real and nonpositive, the lemma is
proved.

Proposition 7.7. The set of scattering poles is precisely equal to the set of poles
k, for [I + N(k)]_l, such thatIm k < 0.

Proof. If [ + N(k)]~! has a pole of order m at k = k;, Imk; < 0, then there is
an element & € L2(3K) such that, with nonzero h,, € L?(3K),

(7.33) [1+ NG| =k =k [hm + (k —k)hmer + -]
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Since DL(k j)hm = b # 0in L (), it follows that, for k near k ;,

loc
(7.34) Bk)h = (k —k;j) b + O((k —k;)™™ ), k —kj,
so B(k) is singular at k ;.
We also have the following characterization of scattering poles.

Proposition 7.8. A complex number k ; is a scattering pole if and only if there is
a nonzero v € C*°(Q) satisfying

(7.35) (A—i—k?)szonQ, v =0o0n oK,
of the form
(7.36) v="Dlkj)g,

for some g € L*(0K).

Proof. We know that, for Im k; > 0, v satisfying (7.35)—(7.36) must vanish on
2. On the other hand, if Im k; < 0, we know that k; is a scattering pole if and
only if / + N(k ;) has nonzero kernel. We claim that, for Im k; < 0,

(7.37) De(kj) : ker(I + N(k;)) — {v satisfying (7.35)~(7.36)},

isomorphically. Indeed, surjectivity is obvious, and injectivity follows from
Lemma 7.6. This proves Proposition 7.8.

The condition (7.36) can be viewed as an extension of the radiation condition,
which we initially defined for real k. A sharper result is given in Proposition 7.13
below.

It is clear that the Green function G(x, y, k), defined in §1 by (1.26)—(1.30),
has a meromorphic extension in k, with poles confined to the set of scattering
poles defined above. Indeed, we can write

(738) G(X, yvk) = g(xv yvk) - B(k)]/y,k(x),

where g(x,y,k) is given by (1.5) for all k € C, and y, x is the restriction of
g(x,y,k) to x € 0K. Similarly, the “eigenfunctions” u4(x, kw), defined by
(1.32)—(1.33), have such a meromorphic continuation in k, and so do the scat-
tering amplitude a(w, 0, k) and the scattering operators S(k) and S(k). We will
explore these last objects further at the end of this section. First we consider an-
other integral-equation approach to the scattering problem (7.1).

As another alternative to (7.11), it is of interest to obtain solutions to the scat-
tering problem in the form

(7.39) v=Bk)f = Stk)g on %,

where g satisfies the integral equation
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(7.40) G(k)g = f ondK.

The operator-valued function G (k) is defined by (7.6). As we have noted, G (k)
is compact on L2(dK). In fact, analysis done in Chap.7 shows that G(k) is a
pseudodifferential operator of order —1 on 9K, and examination of its symbol
shows that it is elliptic. The principal symbol of G(k) is positive on S*(dK).
Consequently, for each k € C, each real s,

(7.41) G(k) : H*(0K) — H*'!(dK) is Fredholm, of index zero.

In analogy with Proposition 7.1, we have the following result:

Proposition 7.9. The operator G(k) : HS(0K) — HS*1(dK) is invertible for
all k such that Im k > 0, and for all real k, except for k = | such that —,u% is

o

an eigenvalue of A on the interior region K, with Dirichlet boundary condition
on 0K.

Proof. In view of (7.41), it suffices to check the injectivity of G (k). This goes
as in the proof of Proposition 7.1. Setting v = S€(k)g on R3 \ 9K, uniqueness
as before yields v = 0 on Q if g € ker G(k), Im k > 0. Then v— = 0 on 9K,
by (7.6), while by (7.25) dv/dv_ = g on 0K, so if g # 0 then v|, # 0 is

o
an eigenfunction for A on K, with Dirichlet boundary condition and with eigen-
value —k?2.

In addition to (7.41), we obtain from the analysis of G (k) as a pseudodifferen-
tial operator that its principal symbol is independent of k, hence

(7.42) G(k) — G(0) = D(k) : HS(0K) — H*T2(3K).

By Proposition 7.9, G(0) is invertible. Then

(7.43) G0) 'G(k) =1+ GO0)"'D(k) : H*(0K) — H*(IK)

is holomorphic in &, and

(7.44) G0)™'D(k) : H*(0K) — H*1T(3K);

in particular, this operator is compact on H*(dK), for each s > 0. Since

Proposition 7.9 implies that the operator (7.43) is invertible for Im k > 0, we
can apply the general operator result of Proposition 7.4, to obtain:

Proposition 7.10. The operator-valued function

(7.45) G(k)™' : HST1(0K) — H*(K)
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has a meromorphic continuation to C, with poles contained in Im k < 0 together
with the set |1 ; of real numbers specified in Proposition 7.9.

In view of (7.39), the set of poles of (7.45) satisfying Im k < O contains the set
of scattering poles, and

(7.46) B(k) = St(k) G(k)™!,

where G(k)™! is regular. In fact, in parallel with the proofs of Lemma 7.6 and
Proposition 7.7, we easily obtain the following:

Proposition 7.11. If Im k # 0, then SU(k) : L?(0K) — L2 () is injective.

Therefore, the set of scattering poles is precisely equal to the set of poles for
G (k)™ such that Im k < 0. Furthermore, a complex number k ; is a scattering
pole if and only if there is a nonzero v € C°°(R2) satisfying (7.35), of the form

(7.47) v =Slkj)g,
for some g € L*(dK). More precisely, for Imk; < 0,
(7.48) Sl(k;) : ker G(k;) —> {v satisfying (7.35) and (7.47)},
isomorphically.
From the formula (7.7) for G(k), we see that
(7.49) G(k)* = G(—k).
We therefore have the following:

Corollary 7.12. The set of scattering poles is symmetric about the imaginary
axis.

We can also obtain a characterization of the set of scattering poles which is
more satisfactory than that of Proposition 7.8 or the last part of Proposition 7.11.

Proposition 7.13. A complex number k is a scattering pole if and only if there is
a nonzero v € C () satisfying (7.35), of the form

(7.50) v="Dl(k)g1 + Slk)gs on 2,
for some g; € L*(0K).

Proof. For v of the form (7.50), note that

(7.51) vy = %(1 + N(k))g1 + G(k)g2 on dK.
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In particular, if vy = 0 on dK and k is not a scattering pole, but Im k # 0, then
g1 = —2(I + N(k))"'G(k)g>. Now we know that, forImk > 0, v; = O on
0K implies v = 0 on €2, so we have the identity

(7.52) 2DL(k)(T + N(k)) ™ G(k) — St(k) =0,

for Im k > 0, as a map from L2(9K) to C°°(2). This identity continues analyti-
cally to the lower half-plane Im k& < 0, excluding the scattering poles, and implies
that if v is of the form (7.50), v4+ = 0 on 0K, and k is not a scattering pole, then
v = 0 on Q. Given the results of Propositions 7.8 and 7.11 when k = k; is a
scattering pole, this finishes the proof.

We can obtain a few more conclusions from (7.52), which we write as
(7.53) DL(k)M (k) = St(k) on €2,
valid for all k € C at which I 4+ N (k) is invertible, with
(7.54) M(k) = 2(I + N(k)) ' G(k).

First, using the injectivity of D{(k) for Im k < 0, as in the proof of Proposition
7.7, we see that M (k) has an analytic continuation to all Im k < 0, including
the set of scattering poles. The only poles of M (k) are at the real numbers A ;
of Proposition 7.1. Also, M (k) is invertible, except at the real numbers p; of
Proposition 7.9; in particular, M (k) is invertible at all the scattering poles. There-
fore, when k = k; is a scattering pole, M (k;) gives an isomorphism from ker
G(kj), in (7.48), to ker ({ + N(k;)), in (7.37). Furthermore, any v of the form
(7.50), with k = k, can be written both in the form (7.36) and in the form (7.47)
(with different g’s).

Another calculation using the representation of the solution to the scattering
problem by a single-layer potential (7.39)—(7.40), produces an analysis of the
Neumann operator A/ (k), which we define as follows, first for Im k > 0. For
f € C*(3K), let v be the solution to the scattering problem (7.1), v = B(k) f,
and define

(1.55) N f = aaTv on 9K.
+

By elliptic regularity estimates, we can deduce that, for s > 1,
(7.56) N (k) : HS(0K) — H* 1(9K).

We produce a formula for AV (k) using the representation v = Sl(k)g, g =
G(k)~! f, valid for Im k > 0. From the formula (7.23) for 0S{(k)g/dv+, we see
that

(7.57) N(k) = %(N#(k) —1)G(k)™",
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for Im k > 0. This identity continues analytically to the complement of the set of
poles of G(k)~! in C. Note that, complementing (7.49),

(7.58) N*(k) = N(-k)*,

so (7.57) can also be written as
_ o 1
(7.59) NER) = (V) - D 6w]")

By the analysis of the scattering problem for Im k > 0, we know that N'(k) is a
strongly continuous function of k, with values in the Banach space

L(H*(9K), H*™' (3K)),

for Im k > 0. Thus A/ (k) does not have poles on the real axis; such singularities
are therefore removable on the right side of (7.57). The poles of G(k)™! on the real
axis must be canceled by a null space of N*(k) — I, for k = A ;. The occurrence
of these real poles of G(k)™! makes (7.57) a tool of limited value in analyzing the
Neumann operator N (k) for real k.

We can produce another formula for NV (k), first for Im k > 0, by using the
representation (1.4) for v = B(k) f, that is,
(7.60) Bk) f = DLk) f — SLk)N (k) f.

Evaluating this on K , we have

(7.61) f= %(1 + N(k)) f = G(k)N (k) f.
which implies

(7.62) N(k) = %G(k)‘l(N(k) —1),

for Im k > 0. Of course, this identity also continues analytically to all k € C
outside the set of poles of G(k)™'. Comparing (7.62) with (7.57), we see that
N(k) and N*(k) are related by the identity

(7.63) N(k)G(k) = G(k)N*(k),

for all k € C. Also, comparing (7.62) with (7.59), we see that

(7.64) N(=k) = N(k)*;
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in particular, N'(k) is self-adjoint when k is purely imaginary. Furthermore, in
view of (7.60) and (7.57), we see that the set of poles of N'(k) coincides exactly
with the set of scattering poles.

Note that the factor (1/2)(N (k) — I) in (7.62) arises from evaluating DL (k) f

on dK as a limit from the interior region K, by (7.7). Thus the analogue of the
identity (7.53) which is valid on K is obtained by replacing M (k) by N (k)~'.
Equivalently,

(7.65) DL(k) = St(k)N (k) on K,

where N (k) is the exterior Neumann operator defined above.

So far we have not established that there actually are scattering poles. We will
show that in fact there are infinitely many scattering poles on the negative imag-
inary axis, for any nonempty smooth obstacle K, by a study of G (k). We begin
with the following result:

Lemma 7.14. For real s > 0, G(is) is positive-definite.
Proof. Given g € L?(dK), set v = SL(is)g on R3 \ dK. Then Green’s theorem

gives, for s > 0,

) dv
(Av, )2y + 14072 q) = = / G 5 B
oK

. v
(Av,v) 2k + vl (k) = / Glis)g 3.— dS.
0K

(7.66)

Recall from (7.25) that dv/dv— — dv/dvy = g, so adding the identities above
gives

(Glis)g. &) 2oy = 52 (1013 2y + 0122k, )

(7.67) ) )
+ ”VUHL2(Q) + ||VU||L2(K),

for s > 0, which proves the lemma in this case. Since we know that G(0) is
invertible, this is also positive-definite.

To proceed with the demonstration that G (is) ™! is singular for infinitely many
negative real s, we set

(7.68) n(s) = # negative eigenvalues of G (is),
for s < 0. Our next claim as follows:

Lemma 7.15. As s N\ —o0, n(s) — oo.
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Proof. We will show that (G(is)gl, gz) defines a negative definite inner product
on a vector space V' whose dimension can be taken large with |s|. Then the lemma
follows, by the variational characterization of the spectrum of G (is). Pick points
p.q € K such that | p — ¢| is maximal. Then, for any N, you can pick p; near p
and g; near ¢, for 1 < j < N, such that

(7.69) min {|p; —q;|:1<j <N} >max{|p; —qil : j #k}.

Put small disjoint disks D ; about p;, D;. about g, all of the same area, within
0K, and define functions g; € L?(dK) by

(7.70) gj=1lonD;, —lonD, O0elsewhere.

Then {g; : 1 < j < N} is a set of orthogonal functions, all of the same norm.
Let V' be the linear span of these g;. With V so fixed, of dimension N, a simple
calculation gives

(Glis)gj.gj) <—y <0,

(7.71) . .
|(G(is)gj. k)| << . forj #k,

for s large and negative (because |x—y|~'el! *=»I is maximal for x and y distant,
if you exclude a small neighborhood of x = y), and the lemma follows.

In view of (7.41), only finitely many of the eigenvalues of G (is) (all of which
are real) can cross from positive to negative at any point s = s, so we have the
following conclusion from the last two lemmas.

Proposition 7.16. The operator-valued function G(k)™! has an infinite number
of poles on the negative imaginary axis, each of which is a scattering pole.

As we have already mentioned, the scattering amplitude a(w, 6, k) and also the
scattering operators S(k) and S(k) have meromorphic continuations, with poles
confined to the set of scattering poles. Indeed, by (3.28), a(w, 8, k) is the sum of
an entire function and 1/47 times

(7.72) (N(k)eka)’ eke)LZ(BK)’

where eg(y) = e€ for y € dK. We now draw a connection between the set of
poles of S(k) and the set of scattering characters, described in §6 in terms of the
spectrum of Z ().

First note that since S(k) is unitary for k real, we have

(7.73) S(k)Sk)* = S(k)*S(k) = 1,

for k in a neighborhood of the real axis. By continuation, knowing that S(k) is
holomorphic for Im k > 0, we see that a complex number k such that Im k < 0
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is a pole of S(k) if and only if S (k) fails to be invertible. Now, by (3.14)-(3.15),
and its analogue for S(k), we see that, for Im k > 0,

(7.74) Sy =1+ Ak,
27

where, for such k, A(k) is a compact operator on L2?(S?), given by a smooth
integral kernel. Such S(k) is Fredholm of index zero. Thus, for Im & > 0, S(k)
fails to be invertible if and only if it has a nonzero kernel. Furthermore, this hap-
pens if and only if S(k)* has a nonzero kernel. We are now prepared to establish
the following result.

Proposition 7.17. A complex number  is a scattering character if and only if i
is a pole of S(k).

Proof. p is a scattering character if and only if there exists a nonzero f € K4
such that Z4 (¢) f = e® f, fort > 0. By (6.41), this implies

f(s,0) = e ™ op(w), fors <R,

(7.75)
0, fors > R,

for some nonzero ¢ € L?(S?). By (6.40), such an f belongs to K if and only if
S* f is supported in [R, c0). By the Paley—Wiener theorem, we can deduce that
this will hold if and only if S(k)* f (k) is holomorphic in Im k < 0. Now

A _ -1/2 p(w)
(7.76) fk)=Q@2n) Py T

which has a pole at k = i, so this analyticity holds if and only if ¢ belongs to
the kernel of S(k)*, for k = ip. This establishes the proposition.

Exercises

1. Verify that G(k), defined by (7.7), is an elliptic pseudodifferential operator of order —1
on 0K . Compute its principal symbol.
2. Justify (7.69).

The following exercises deal with an integral-equation attack on the scattering prob-
lemfor H = —A + V on R3. Assume V € C(‘)X’. We use (1.57), that is,

(I =V(k)v = R(k) .

where V(k) = R(k)(Vv) and
Rw() = = [ 0070 dy.

with g(x, y, k) = (4rm|x — y|)_1eik|x_y‘.
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3. Show that, forImk >0, 0 > 1,

R(k): L2, (R3) — L2(R3, (x) 72 dx) is compact.

comp
4. Show that, for Imk > 0, k2 not a negative eigenvalue of —A + V,and o > 1,
I —V(k): L>(R3, (x)72%dx) — L?(R3, (x) 727 dx)

is injective, hence invertible. (Hint: If u = V(k)u = R(k)(Vu), show that u satisfies
the hypotheses for the uniqueness result of Exercise 6 in §1 when k € R. When Im
k > 0, the argument is easier.)

5. Fix k € (0, 00). Show that, for Im k > —«,

R(k): L2, (R3) — L2(R3, e 2I¥| 4x) is compact.

comp

Also show that
1 —V(k) . LZ(R:)’,e_ZK‘X‘dX) N LZ(R3,6_2K|x|dx)

is holomorphic in {k : Im k > —«}, and invertible for Im k > 0, k2 ¢ point spec H.
Deduce that its inverse has a meromorphic continuation.

8. Trace formulas; the scattering phase

In Proposition 6.7 we showed that, for any p € Cg° ((2R, oo)), the operator
Z(p) = f0°° p(t)Z(t) dt is compact. Recall that the proof used the identity

8.1) Z(p) = P+[U(p) — Uo(p)] P, for p € C§°((2R, 00)).

We then saw that U(p) —Up(p) has a smooth, compactly supported integral kernel.
It follows that the operator (8.1) is not only compact, but in fact trace class. By a
theorem of V. Lidskii, which we will prove in Appendix A at the end of this
chapter, it follows that the trace Tr Z(p) is equal to the sum of the eigenvalues of
Z(p), counted with multiplicity. Thus we have

(8.2) Tr Z(p) = ) plin;)

where the sum is over the set of scattering characters, characterized by (6.36). In
view of Proposition 7.17, we can write

(8.3) Tr Z(p) = ) _ p(z)).

poles

where {z;} is the set of poles of the scattering operator S(k) (counted with multi-
plicity).

Using (8.1), we will establish the following formula for Tr Z(p), which then
sheds light on the right side of (8.3).
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Proposition 8.1. For p € C§°((2R, 00)), we have

Tr Z(p) = Tr [U(p) — Uo(p)]

4
64 =2Tr /p(t)[costv—A —cost/—Ao] dt,

where A is the Laplacian on Q = R3 \ K, with Dirichlet boundary condition,
and A the Laplacian on R3.

Proof. Using the facts that Tr AB = Tr BA and that P P_ = P_P,, we see
from (8.1) that, for p € C§°((2R, 00)),

Tr Z(p) = Tr P_[U(p) — Uo(p)] P+.

Now forany ¢ > 0, U(t) = Up(t) on DT, so [U(p)—Uo(p)]| P+ = U(p)—Us(p).
Similarly, P_[U(p)—Uo(p)] = U(p)—Uos(p), so we have the first identity in (8.4).
The second identity is elementary.

Combining (8.3) and (8.4), we have the identity

1 R
(8.5) Tr /p(l)[costv—A —costy/—Ag] dr = 3 Z p(z)),

poles

valid for any p € C§°((2R, 00)). This identity has been extended to all p €
C§°(R™), by R. Melrose [Mel], using a more elaborate argument.
Note that (8.4) is equal to the trace of

(8.6) o(V=4) — o(vV=A0).

with (1) = p(A) + p(—A). It is useful to note that, for any even ¢ € S(R), the
operator (8.6), given by an integral formula such as in the last line of (8.4) with
o = @, has a Schwartz kernel that is smooth and rapidly decreasing at infinity, so
that (8.6) is of trace class for this more general class of functions ¢. (See Exercises
1-3 from §4.) Recall from (2.7) that if ¢ € C§°(R), then

87 o(V_A)u(x) = @n) / / uy (6. Oy 0 D)@ (E]) dy dE.
R3 Q

where uy(x,£) are the generalized eigenfunctions of A on Q defined by
(1.32)—(1.33). It follows that, for such ¢, the trace of (8.6) is equal to

(8.8) Aim (2m)73 / ¢(IEDTR(E) dE,

R3

with
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8.9) R (E) = / (s (e )2 — 1) dx

Br

where we set u4(x,£) =0, forx € K =R3\ ,and Bg = {x : |x| < R}.

In order to evaluate (8.9), we will calculate [ |u(x,£)|?dx over Qg = {x €
Q : |x| < R} via Green’s theorem. Note that since (A + k?)uy = 0, for |§| = k,
we have

ad
(8.10) (A + k?) (%) = kuy, |E]=k.
Hence, via Green’s theorem, we have
9%u duy 0u
20 — — 0, 2T
/'“*' dv = (8v8ku+ ok v ) a5
8.11
( ) / 82u+_ 8u+ 8u+ ds.
T2k arok' T ok or
|x|=R

since uy = 0 on dK. We want to evaluate the limit of (8.11) as R — co. Extend-
ing (1.41), we can write

(8.12) ur (r0, kw) = e %09 L kT B 0 0 k),
with
(8.13) B ~ r_la(—a), 0,k) + r2ay(—w,0,k) +---, r— oo,

where a(w, 0, k) is the scattering amplitude and a; are further coefficients. Dif-
ferentiating (8.12) yields the following (unfortunately rather long) formula for the
integrand in (8.11):

8u+ 8ﬁ+ 82u+

ok or  drdk

—0JB 0B
=2kr(0-w)®> +i(0-w)— 2lea—k —i—era—

(8.14) _zB) 0BOB 9B

+ o T or ok Cordk

+ {2kr| B2 = krBe/ kTGO . ) 1]

— krBe krlG-o) g . ) — (0 "")2]}
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+ eikr[(@-w)-i—l]

0B 9(rB)  9°B
7 i -
kg0 o) =1 =i= arak}

. dB =
+ e ikrl(@-0)+1] {_I-r(e . w)a— +i(0-w)B
r

A primary tool in the analysis of the integral of this quantity over |x| = R will be
the stationary phase method, which was established in Appendix B of Chap. 6.

We make some preliminary simplification of (8.14), using the fact that (8.11)
is clearly real valued. Also, we can throw out some terms in (8.14) that contribute
0 in the limit R — oo, after being integrated over |x| = R. This includes all the
terms in the first set of curly brackets above. Also, a stationary phase evaluation
of the last two terms in the third set of curly brackets yields a 0 contribution in the
limit R — oo. Thus, we can replace (8.14) by the real part of

_9B 9B
2kr(0 - w)? —2le% + era—
(8.15) + {2kr|B|2 + krBelkrtoo+1 (1 _g -w)z}

: B 9B
+ elkrlfot1] ik—[0 -w—1]+irf -0o— —if -wB;}.
ok ar

The first term on the right side of (8.15) integrates to 2k times (4/3)7R3,
exactly canceling out fl x|<R dx. The contribution of the second and third terms to
(8.11) is, in the limit R — oo,

0
(8.16) —ia £ — %|a|2 integrated with respect to 6.

We can neglect the second term in (8.16), since it is imaginary.

Terms in (8.15) appearing with a factor e =47 [(¢-©)+1] have an asymptotic be-
havior as R — oo given by the stationary phase method, upon integration with
respect to 0. The leading part in the terms within the first set of brackets is seen
to be (upon taking the real part)

2k 4
(8.17) —{/ la(—w, 0, k)|*d6 + % Im a(—a),—a),k)},
r

S2

which cancels, by the optical theorem, (3.18). This cancelation is necessary since,
if (8.17) were nonzero, one would get an infinite contribution to (8.11) as R — oo.
What gives a finite contribution to (8.11) is the f-integral of the next leading term
in this part of (8.15); the contribution to (8.11) one gets from this, as R — o0, is
(again upon taking the real part)
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/ (a@> + aaz)(—w, 0, k)db
(8.18) $2

4 8
+ % Ima(—w,—w, k) + % Rea(—w,—w, k).

The rest of the terms in (8.15) also give a finite contribution to (8.11) as R — oo,
via stationary phase, namely —1/2k times

da 4w _
(8.19) 47 P Ta, atd = —w,

plus a term containing an oscillatory factor e~2*”, which disappears after integra-

tion with respect to £. This disappearance is guaranteed, since the limit in (8.8)
as R — oo does exist. Putting together (8.16)—(8.19), we arrive at a computation
of (8.9).

All these contributions are expressed in terms of the scattering amplitude a,
except for (8.18), which involves also the coefficient a, appearing in (8.13). Now
ay is related to a in a simple fashion, because (A + k?)(e’*” B) = 0. Expressing
A in polar coordinates gives a sequence of relations among the coefficients in the
expansion of B as r — oo. In particular, we get

(8.20) 2ikaz(w, 0, k) = Aqra(w, 0,k),

where A, denotes the Laplace operator on the sphere {|#| = 1}, applied to the
second argument of a(w, 6, k). It follows that f aay(—w, 0,k)d0 is purely imag-
inary, so the integral in (8.18) vanishes. In concert with the reciprocity formula
(3.31), we can deduce that 4ikas(w, w, k) = Ara(w,w, k) + Aa(—w, —w, k).
Hence

4ik/a2(a),a),k) do = /(A1 + Ay)a(w,w, k) dow = 0.

This disposes of the middle term in (8.18), upon integration with respect to w.
Thus, in addition to (8.16) and (8.19), the last term in (8.18) remains.
Consequently, we have

. k2
Rh—r>noo(27)3 // (Jus(x, kw)|* — 1) dx dw

BRXS2
—ik? da 1
(8.21) _ /’_/—__ IR
Re {(2]”3 @50 000 d0 — a0, ~0.k)
S2 S2
k Oa
- G a—k(—w,—w,k)} do.



8. Trace formulas; the scattering phase 237

On the other hand, —(1/27i)S (k)(dS* /dk) has integral kernel

%{2—a(w 6.k) + —k—“(e ., k)
+ 4k2/a(w t,k)a(z,0,k)dt
(8.22) 4
2
+4k—2 a(, 7, k) (c o, k)dt}
S2

Noting that the trace of —(1/27i)S (k)(dS™ /dk) must also be real, one sees that
(8.21) is equal to the trace of this operator, which proves the following:

Proposition 8.2. For even ¢ € C§°(R),

823)  Tr[e(V=A) - o(v—ho)] = — /0 o(k)s' (k) dk.
with
(8.24) §'(k) = L Tr (S(k)*S'(k)) = —% Tr (S()S'(k)").

where S (k) is the scattering operator (3.7).

An equivalent characterization of (8.24) is s’ (k) = ds(k)/dk, with
1 1
(8.25) stk)y = — log det S(k) = — arg det S(k).

The quantity s(k) is called the scattering phase. It is real, for k € R, since the
scattering operator is unitary. To give yet another formulation, if we set

(8.26) D(k) = det S(k),
then

o 1 D'k
(8.27) s'(k) = 27l D)

By both (8.24) and (8.27) it is clear that s’(k) extends from k € R to a mero-
morphic function in the plane, with poles coinciding precisely with the poles of
the scattering operator and their complex conjugates. For complex k, one replaces
(8.24) by

s' (k) = —Tr (S(k)*S'(k)).



238 9. Scattering by Obstacles

As stated, Propositions 8.1 and 8.2 apply in disjoint situations, but note that
the left side of (8.23) is defined for any even ¢ € S(R) and defines a continuous
linear functional of such ¢. Thus the right side of (8.23) is well defined, at least in
a distributional sense; in particular, we have s* € S’(R). Also, replacing p by its
even part on the left side of (8.5) leaves this quantity unchanged. We deduce the
following.

Proposition 8.3. Let p € C§°((2R, 00)). Then

1 R [e.e]

o3 b = - /0 p(k)s' (k) dk,
poles

with 1

o) = 3[5(6) + k)]

Equivalently, with s(k) = —s(—k) fork € R,

(8.28) > b = [ sk a
poles >

the integral interpreted a priori in the sense of tempered distributions.

In view of (8.27), this identity can be thought of as a “formal” consequence of
the residue calculus, but a rigorous proof seems to require arguments as described
above.

It can be proved that the integral above is actually absolutely convergent. In-
deed, it has been shown that s(k) has the asymptotic behavior

(8.29) s(k) = C(vol K)k* + O(k?), ask — oo, inR.

This was established for K strictly convex by A. Majda and J. Ralston [MjR],
and for K starshaped by A. Jensen and T. Kato [JeK]. We outline a proof for the
starshaped case in the exercises (with a weaker remainder estimate).

The result (8.29) was extended to “nontrapping” K by V. Petkov and G. Popov
[PP] and finally to general smooth K by Melrose [Me3]. Also, results of Melrose
[Mel] extend (8.28) to all p € CS°(R™T).

Exercises
1. Use the formula (8.24) to establish the following formula for s”(k):

s'(ky=C / /(x . u)’%‘—:(x,ke)f d6 dS(x)
0K S2

=C /((x . V)N(k)ekaN(k)ekG)LZ(aK) de.
S2

(8.30)

2. Conclude that if K is starshaped, so one can arrange x - v > 0, then s(k) is monotone.
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3. Sets(k) = —s(—k), k € R, as in Proposition 8.3. Show that if K is starshaped, s’ (k)
is a positive function that defines a tempered distribution on R and hence that s(k) has

a polynomial bound in k:
Is ()] < € (k)M

4. Write (8.23) in the form

To(v=8) ~ (V=30 = 5 [

(o]

¢'(k)s (k) dk.

for even ¢ € S(R). If K is starshaped, Exercise 3 implies that the integral on the right

is absolutely convergent. Use ¢(k) = ¢;(k) = e™* ke and the results on heat kernel

asymptotics of Chap. 7 to deduce that
[e ) k2
(8.31) t/ e ks(k) dk = (4mt) 3% vol K + o(173/2),
—0o0

ast N\ 0.
5. Show that Karamata’s Tauberian theorem (established in §3 of Chap. 8) applies to (8.31)

to yield
s(k) = C(vol K)k2 + o(k?), k — oo.

Evaluate C.

9. Scattering by a sphere

In this section we analyze solutions to problems of scattering by the unit sphere
S2 C R3, starting with the scattering problem

9.1) (A+k>»v=00nQ, v= fonS2 r(dv—ikv) — 0, asr — oo,
where @ = {x € R3 : |x| > 1}, the complement of the unit ball. We start by
considering real k. This problem can be solved by writing the Laplace operator A
on R3 in polar coordinates,

9.2) A =03 +2r719, +r2As,

where A is the Laplace operator on the sphere S2. Thus v in (9.1) satisfies

9.3) r20%v + 2rd,v 4+ (K*r* + As)v = 0,

for r > 1. In particular, if {¢,} is an orthonormal basis of L>(S?) consisting of
eigenfunctions of Ag, with eigenvalue —k? , and we write

9.4) v(rw) = Zvj(r)goj(w), r>1,
J
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then the functions v; (r) satisty
9.5) r? v (r) 4 2rv); (r) + (k2 2—/12)1)](r) =0, r>1.

As in (1.14), this is a modified Bessel equation, and the solution satisfying the
radiation condition r(v;- (r) —ikv;(r)) — 0 as r — oo is of the form

(9.6) vi(r) = a‘,-r_l/zHlfjl,)(kr),

where Hlfl)(k) is the Hankel function, which arose in the proof of Lemma 1.2.
We recall from (6.33) of Chap. 3 the integral formula

2\ 1/2 ¢iG=mv/2—7/4) oo s \v—1/2
9.7y HOV () = (_) —1/ e_ssv_1/2<1 - —) ds.
7z rv+3 Jo 2iz

This is valid for Re v > —1/2 and —nr/2 < arg z < . Also, in (9.6), v; is given
by

9.8) v = (xﬁ n %)1/2.

The coefficients a; in (9.6) are determined by the boundary condition v; (1) =

(f.9;),s0

(f ‘P/)

9.9) a; = 1

Using these calculations, we can write the solution operator 5(k) to (9.1), v =
B(k) f, as follows. Introduce the self-adjoint operator

12
(9.10) a=(-as+ i) .

50

9.11) Apj =v;gp;.

Then

(9.12) B(k) f(r0) = r~2x(A, k,kr) f(6),

where x(v,k,kr) = H,fl)(kr)/H\fl)(k) and, for each k,r, x(A,k,kr) is re-
garded as a function of the self-adjoint operator A. For convenience, we use the
notation

H (kr)

9.13) B(k) f(ro) = r~1/2 =4 10
(k)

A1), 6eS%

Similar families of functions of the operator A will arise below.
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Taking the r-derivative of (9.13), we have the following formula for the
Neumann operator:

HY' (k) 1
(9.14) Nk)f(©0) = pHa ®) 1 1)
HP (k) 2
A
We also denote the operator on the right by kQ (A, k) — 1/2, with
H (k
(9.15) O, k) = T()
Hy " (k)

We will want to look at the Green function and scattering amplitude, but first
we derive some properties of the operators (9.13) and (9.14) which follow from
the special nature of the operator defined by (9.10). The analysis of the spectrum
of the Laplace operator on S? given in Chap. 8 shows that

1
(9.16) specAz{m+§:m=0,1,2,...}.

Now, as shown in Chap. 3, HYSJ)FI /2 (A) and the other Bessel functions of order
m + 1/2 are all elementary functions of A. We have

9.17) HY), ,0) = (%)l/zhm(m,
where

Ll d \meit
(9.18) () = =i (=1 (%ﬁ) (eT)

— A—m—lpm(k)eil

and p,, (1) is a polynomial of order m in A, given by

e e (INE (m k)
pm(3) =17 (S) SR Ak
2(3)

2/ kl(m—k)!
(9.19) ( )
m— 1 (2m)!
=" I)Lm - )
l e 2mi  m!
Consequently,
1 hm (k . k
(920) r_%}f(m + 5’k,k’,) — m( r) _ r_m_lelk(r_l) pm( r)

T () Pm (k)
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and
1 , 1 Pm(k)
9.21) k (m+_,k)=,k_(m+_)+k (k)
¢ 2 2 pm(k)
Each polynomial p,, (1) has m complex zeros {1, - .., {mm}, by the fundamen-

tal theorem of algebra, and the collection of all these {; is clearly the set of
scattering poles for S2. Note that (9.21) can be written as

1 , 1 ¢ _
(9.22) kO (m+§,k) :lk—(m+5)+ka_:l(k—§m,) L
We now look at the expression for the Green kernel G(x, y, k) for the operator
(A 4+ k?)71, for k real. Thus we look for a solution to
(9.23) (A+kHu= fonQ, u=0ondk,

satisfying the radiation condition at infinity, given f* € C§°(2). If we write

9.24) fr0) =" fi(r)g;(6),
J

using the eigenfunctions ¢; as before, and

(9.25) u(rd) = u;(r)e;(0).
J

then the functions u; (r) satisty
(9.26) r2ui(r) + 2ru; (r) + (K*r? = M) (r) = r* fi(r), r>1,

together with the boundary condition u;(1) = 0 and, as a consequence of the
radiation condition, r(u//. (r)—iku;(r)) — Oasr — oo. We will write the solution
in the form ‘

9.27) uj(r) = / h Gy, (r.5.k) fi(s)s* ds,
1

where the kernel G, (r, s, k) remains to be constructed, as the Green kernel for the
ordinary differential operator

> 2d A2 1\'/2
9.28 Ly=—+-—+[k>==), v=(A2+-) .
( ) dr2+rdr+( r2) Y ( +4)

that is,

(9.29) L,gv(-.s.k) =528 on (1,00),
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satisfying the boundary condition of vanishing at r = 1, together with the radiation
condition as r — oo. This operator is self-adjoint on the space L2([1, 00), r2dr),
and G (7, s, k) satisfies the symmetry condition

(9.30) G, (r,s,k) = G,(s,1,k).

Thus it suffices to specify Gy, (r, s, k) for r > s. Since G, (-, s, k) is annihilated by
L, for r > s and satisfies the radiation condition, we must have

(9.31) Gy(r,s.k) = ¢, (s.k)rV2HD (rk), forr > s,

for some coefficient ¢, (s, k) that remains to be determined. In view of the sym-
metry (9.30), ¢y, (-, k) satisfies the same sort of modified Bessel equation, and so is

a linear combination of s~1/2J, (sk) and s~1/2 H{" (sk). The boundary condition
gives ¢, (s, k) = 0ats = 1, so we can write

T (k)
H (k)

(9.32) (s, k) = bv(k)s‘l/z(J,,(sk) - H§1>(sk)),

where the coefficient b, (k) remains to be determined. This can be done by plug-
ging (9.32) into (9.31), using (9.30) to write G, (r, s, k) for r < s, and examining
the jump in the first derivative of g, with respect to r across r = s. Achiev-
ing (9.29) then specifies b, (k) uniquely. A straightforward calculation shows that
by (k) is the following constant, independent of v and k, in view of the Wronskian
relation:

9.33) by(k) =b = K =
Jo(sk)Hy (sk) — J)(sk)Hy (sk) 21

To summarize, G, (r, s, k) is given by

Ju (k)
H (k)
Ju (k)
H" (k)

b(rs)_1/2<J,,(sk) - H§1>(sk))H§1>(rk), r>s,

(9.34)

b(rs)_1/2<Jv(rk) — H§1>(rk))Hv(1>(sk), r<s.

In light of this, we can represent the Green kernel for the solution to (9.23)
satisfying the radiation condition as follows. Using the Schwartz kernel theorem,
we can identify an operator on functions on €2 with a (generalized) function of
r, s with values in the space of operators on functions on the sphere S2. With this
identification, we have

1
(9.35) G(x,y, k) = —Gu(r,s, k),
4
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where |x| = r, |y| = s, and A4 is given by (9.10). This is also the formula for the
resolvent kernel of (A + k2)~!, for Im k > 0.

The formula (9.34) for G, (r, s, k), as a sum of two terms, corresponds to the
decomposition (1.30) for G(x, y, k), that is,

(9.36) G(x,y, k) = g(x,y,k) + h(x,y,k),

where, as in (1.5),

eiklx—=yl
(9.37) glx,y,k) =

dm|x —y|
Now recall from Proposition 1.6 how we can obtain the eigenfunctions

(9.38) u(x,£) = e 4 u(x, €)

from the asymptotic behavior of G(x, y, k) as |y| — oo, via

eikr
(9.39) hx,rw,k) =

v(x, kw) + 02, r — oo,
4rrr

proved in (1.37). We therefore have
(9.40) v(r0, ko) = lim se ®hy(r, s, k),
§S—>00

where we set

(9.41) hy(r,s, k) = 4n b(rs)—1/2JVI—U‘)HU(U(sk)HU(U(rk).
H" (k)

As before we identify a function of (6, w) with an operator on C*®(S52), with A
acting on functions of 6. To evaluate the limit in (9.40), we can use

2\ 1/2 .
(9.42) HOQ) = (n—)L) et Ommv/2=m/8) 4 o -12) ) L o,

which can be deduced from the integral formula (9.7). We obtain
(9.43) v(rf,kw) = V(A,r,k),

where

1/2 .
944)  V(v.rk) = 2x% (—2 ) e mies LK)y
wrk HY (k)
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We can now evaluate the scattering amplitude, which satisfies

(9.45) a(—w,0,k) = l_i)m re v (ro, kw),

according to (1.41). Using (9.42)-(9.44), we have

4 Tak) .
(9.46) a(-0.0.k) = 27 J4E) s,
k H® (k)

In other words, if the right side is E (A), then

B(A)fO) = /a(—w, 0.k) f(w) do.
Now, as shown in the study of harmonic analysis on spheres, in (4.44) of Chap. 8,
(9.47) e f(0) = ~i f(-0). [ eL*S?).

SO wWe can write

(9.48) a(w,0,k) = —%J(Al—gk).
HP (k)

Recall that the scattering amplitude a(w, 6,k) is related to the scattering
operator S (k) by

k
(9.49) S(k) =1+ —A(k),
2mi
where a(w, 6, k) is the kernel of A(k), by (3.14)—(3.15). In other words, A(k) is

the operator on the right side of (9.48). Therefore, the scattering operator itself
has the form

@)
H "~ (k)
(9.50) S(k) = —f(’T
H " (k)
in view of the identity
9.51) HYQ) + HP L) =2 J,().

We also note that

(9.52) H® (k) = H® (k),
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for v and k real, so (9.50) explicitly displays the unitarity of the scattering
operator, for real k.

The investigation of scattering by a sphere can be carried further, based on
these formulas. For example, qualitative information on the zeros of Hlfl)()t)
yields qualitative information on the scattering poles. Some of the most delicate
results on such scattering make use of the uniform asymptotic behavior of H, 51) A)
as v and A both tend to co. A treatment of this in a modern spirit, touching on more
general approaches to diffraction problems, is given in [T2] and [MT1], and, in
more detail, in Appendix C of [MT2]. Also, [Nus] gives a lengthy analysis of
scattering by a sphere, from a more classical perspective.

Exercises
. (1) _ 1/2 —m—1 iz g
1. Derive from (9.7) that Hm+1/2(z) = (2z/m)'/*z pm(2)e’?, with
B (—i)m+l e’} em g\m
pm(z) = T/o e s (z — E) ds.

Show that this yields (9.19).
2. From the material on Bessel functions developed in Chap. 3, show that there is the
Wronskian identity

C
Y W HP ) - B P () = S

and evaluate C. Using this, prove that H,El)()t) is not zero for any A € (0, 00),
v € (0, 00).

3. Use results on the location of scattering poles from §7 to show that (9.13) and (9.14)
imply H\Sl)(z) has zeros only inImz < 0, forv =m +1/2, m =0,1,2,....
It is known that this property holds for all v € [0, co). See [Wat], p. 511. There it
is stated in terms of the zeros of Ky (z), which is related to the Hankel function by
Kv(@) = (ri/2)em/2HV (iz).

4. A formula of Nicholson (see [Olv], p. 340, or [Wat], p. 444) implies

8 o0
I@?+Y()? = = / Ko(2z sinh ¢) cosh 2v7 dt,
7= Jo
for Re z > 0. Here K¢(r) is Macdonald’s function, the v = 0 case of the function
mentioned in Exercise 3; cf. (6.50)—(6.54) in Chap. 3. Ko(r) is a decreasing function of
r € (0, 00), and hence, for fixed v > 0, Jy,(x)2 + Yy(x)%isa decreasing function of
x € RT. Show that this implies that

B(k,r) : L2(S%) — L2(5?),

defined by B(k,r) f(8) = B(k) f(rf), has operator norm < r~U2 forr > 1.
Consequently,

(9.53) 1B fll 2@, x~4av) = IS 1 12(s52)-
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Using the integral formula (6.50) of Chap. 3, show that rKq(r) is decreasing on R,

hence that |r1/2Hlfl) (r)] is decreasing on R, for fixed v > 0. Use this to show that
|B(k,r)|| < r~! for r > 1, and sharpen (9.53).

5. Let2 = {x e R3: 1 < |x| < 2}. Withu = B(k) f, use Au = —k?u and estimates
derivable from Chap. 5, in concert with Exercise 4, to show that

(9.54) 1B £l 2@y < CIf Igsrags2y + CR21f 252y

Deduce that

(9.55) ING) fll 17252y < Clf I szs2y + k2||f||L2(s2)-

6. Show that
|k Q(m +1/2,k)| < C(lk| +m + 1),
for k € R, m > 0. Deduce that, for s € R, k € R,

9.56) NG f L s sy < Csllf gt s2y + Cs k- 1 DL pzs s2)-

Compare this with the bound on A (k) derived in the previous exercise.
(Hint: Consider uniform asymptotic expansions of Bessel and Hankel functions, dis-
cussed in [Erd] and in Chap. 11 of [Olv]. Compare a related analysis in [T2].)

7. Suppose an obstacle K is contained in the unit ball By = {|x| < 1}. Show that
the solution to the scattering problem (1.1)—(1.3) is uniquely characterized on 1 =
(R3\ K) N B as the solution to

(9.57) (A+k>v=00nQ;, v=fondk, g—:)z./\/(k)vonSz,
where N (k) is given by (9.14).

8. Derive the formulas of this section, particularly the formula analogous to (9.50) for
S(k), in the case of scattering by a sphere of radius R, centered at p € R3, displaying
explicitly the dependence of the various quantities on R and p.

9. It follows from (9.46)—(9.48) that the scattering amplitude for S 2 satisfies

(9.58) a(w,0,k) =a(0,w,k) and a(w,0,k)=a(—w,—0,k).

Demonstrate these identities directly, for 8K = S2. How much more generally do
they hold? Compare (3.31).
10. Suppose v € C*®(R3) solves (A + kZ)v = 0. Show that v(r6) has the form

v(r0) = > v, (r)e;(0).
J

where ¢ is an eigenfunction of Ag, asin (9.4),and v;(r) = b; jv/._l/z(kr).
(Hint: v (r) solves (9.5) and does not blow up as r — 0.) '
Deduce that, for some coefficients By,

o0
(9.59) e = 3" By jy(kr) Py(e-9).
£=0

where Py(t) are the Legendre polynomials, defined in (4.36) of Chap. 8.
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As shown in (4.49) of Chap. 8, this formula holds with 8, = (2£ + 1)i 5o

(9.60) et =Y (2t +1) it ju(s) Pet), seR, te[-11].
{=0

1. As noted in §4 of Chap. 8, the identity (9.59), with Be = QL+ )i s equivalent to
the assertion that ¢*""? is the integral kernel of

(9.61) Bip(A) = 4 VDTHAZD) 4o (kr).

Show that this is in turn equivalent to the r = 1 case of (9.43)—(9.44).
(Hint: Use (9.47).)

12. Derive explicit formulas for scattering objects (e.g., S(k)), in the case of the quantum
scattering problem for H = —A + V, when

V(x) = b, for |x| < R,
0, otherwise.

Keep track of the dependence on b and R. If you fix R = 1 and let b decrease from
b = 0 to the first value b = —f, below which —A + V has a negative eigenvalue,
what happens to some of the scattering poles?

10. Inverse problems I

By “inverse problems” we mean problems of determining a scatterer dK in terms
of information on the scattered waves. These problems are of practical interest.
One might be given observations of the scattered wave v(x, kw), for x in a region
not far from 0K, k belonging to some restricted set of frequencies (maybe a single
frequency). Or one might have only the far field behavior, defined by the scattering
amplitude a(w, 6, k), which we recall is related to v(x, kw) by

ikr

(10.1) 0(r, kw) ~ —a(~w,0,k), r— oco.

r

In this section we examine the question of what scattering data are guaranteed to
specify 0K uniquely, at least if the data are measured perfectly.

It is useful to begin with the following explicit connection between the scat-
tered wave v(x, kw) and the scattering amplitude.

Proposition 10.1. If K C Bgr(0), then, forr > R,
(102) (=, 0,k) = —ik ™' VDTAD ey g(6),
where g = gy o k IS given by

(10.3) g(0) = v(ro, kw).
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Asin§9, ha_1/2(kr)~! is regarded as a family of functions of the self-adjoint
operator A defined by (9.10). Recall that /,, (1) is given by (9.17)—(9.18).

Proof. This result follows easily from (9.12), which implies

ha— 1/2(/”)

1),

for f € C*(S§2). To prove (10.2)—(10.3), we can suppose without loss of gener-
ality that R = 1 and apply (10.4) with f(6) = v4(0, kw) to get

ha- 1/2(kr)

vy (rbkw) = Ta12 ()

) f(0) =v(0. ko).

Now compare the asymptotic behavior of both sides as r — oo. For the left side
we have (10.1), while the behavior of the right side is governed by

ikr

(10.5) B (kr) ~ ™1 —
kr

by (9.18)~(9.19), so (10.2) follows.

Now we can invert the operator in (10.2), to write
(10.6) v(r6, kw) = ik e V/PTAYD o (kr)a(—w, 8, k),

where the operator acts on functions of 6. The operator s 4_;/2(kr) is an un-
bounded operator on L2(S?); indeed, it is not continuous from C*(S?) to
D’(S?), which has consequences for the inverse problem, as we will see in §11.

Suppose now that K; and K, are two compact obstacles in R giving rise
to scattered waves which both agree with v(x,kw) in some open set O in
R3\ (K; U K3). In other words v;(x,kw) = v(x,kw) for x € O, where the
functions v; are solutions to

(10.7) (A+k*v; =00nR*\ K;, v; =—e"**ondkK;,

satisfying the radiation condition. We suppose the sets K ; have no “cavities”; that
is, each Q; = R\ K has just one connected component. In this case, possibly
the complement of K; U K> is not connected; cf. Fig. 10.1. We will let I/ denote
the unbounded, connected component of this complement, and consider R3\ U,
which we denote by Kz, so K1 C K2 This is illustrated in Figs. 10.1 and 10.2.
We assume O C U. Let R be any connected component of the interior of K, \ K.
(Switch indices if K, C K;.)
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FIGURE 10.2 Filled Obstacle

The functions v; and v, described above agree on U, since they are real ana-
lytic and agree on O. Thus u; and u, agree onU, where u; (x) = v;(x) + e @,
Since each u; vanishes on 9K ;, it follows that u = u; |R vanishes on dR, so

(10.8) (A+k»Hu=00nR, u=0o0ndR.

In fact, u € HO1 (R). However, u does not vanish identically on R. In particular, u

provides an eigenfunction of A on each connected component R of the interior of
K> \ K1, with Dirichlet boundary condition (and with eigenvalue —k?) if u is not
identically zero, and if the symmetric difference K; A K5 has nonempty interior.
Now, there are circumstances where we can obtain bounds on

(10.9) dim ker (A + k?)| Al oy = Ak

for example, if we know the obstacle is contained in a ball Br. We then have the
following uniqueness result:
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Proposition 10.2. Let k € (0, 00) be fixed. Suppose ¥ = {wy} is a subset of S>
whose cardinality is known to be greater than d (k) /2. (If wg and —wy both belong
to X, do not count them separately.) Then knowledge of v (x, kwy) for x in an
open set O uniquely determines the obstacle K. Hence knowledge of a(—wy, 0, k)
for 0 € S? uniquely determines K.

Proof. If K were not uniquely determined, there would be a nonempty set R such
as described above. The corresponding uy (x) = v(x, kawy) +e*?¢, together with
their complex conjugates, which are all eigenfunctions on R, must be linearly
independent. Indeed, any linear dependence relation valid on R must continue on
all of R3 \ (K N K3); but near infinity, u;(x) = e®™®¢ 4+ O(|x|™") guarantees
independence.

We make a few complementary remarks. First, a(—w, 6, k) is analytic in its
arguments, so for any given w, k, it is uniquely determined by its behavior for 8
in any open subset of S2. Next, for k small enough, we can say that d (k) = 0, so
uniqueness holds in that case, for a single @ = wy. Note that even when k? is an
eigenvalue of —A on R, it would be a real coincidence for a corresponding eigen-
function to happen to continue to R3 \ (K; N K,) with the appropriate behavior
at infinity. It is often speculated that knowledge of a(—w, 0, k), for 6 € S 2 (or
an open set) and both k& and o fixed, always uniquely determines the obstacle K.
This remains an interesting open problem.

Furthermore, suppose a(—w, 6, k) is known on 6 € S2, for a set {wg} C
S? and a set {k,,} C R™T. Then one has uniqueness provided card{w;} >
min d (k,,)/2. In particular, if {k,,} consists of an interval / (of nonzero length),
then mind(k,) = 0, so knowledge of a(—w,0,k) for 6 € S, k € I, and a
single w uniquely determines K.

All of these considerations are subject to the standing assumption made
throughout this chapter on the smoothness of dK. There are interesting cases of
non-smooth obstacles, not equal to the closure of their interiors, to which the
proof of Proposition 10.2 would not apply. We will discuss this further in §12.

We also mention that the method used to prove Proposition 10.2 is ineffective
when one has the Neumann boundary condition. A uniqueness result in that case,
using a different technique, can be found in [CK2]; see also [Isa].

One study that sheds light on the inverse problem is the linearized inverse prob-
lem. Here, given an obstacle K, denote by Bk (k) the solution operator (7.1)—(7.2)
and by Sk (k) the scattering operator (3.7), with corresponding scattering ampli-
tude ag (w, 0, k), as in (3.14)—(3.15). We want to compute the “derivative” with
respect to K of these objects, and study their inverses.

More precisely, if K is given, dK smooth, we can parameterize nearby smooth
obstacles by a neighborhood of 0 in C*°(dK), via the correspondence that, to
Y € C*°(0K) (real-valued), we associate the image 0K, of dK under the map

(10.10) Fy(x) =x+ ¥y (x)N(x), x eIk,
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where N(x) is the unit outward-pointing normal to 0K, at x. Then, denote
Bk, (k) and ag, (w, 0, k) by By (k) and ay (w, 0, k). We want to compute

9
(10.11) Dy Bx(k)f = 5-Byy (k) f],_q

and Dy ag(w,0,k) = dsasy (0, 0,k) |s=0. The following is a straightforward
exercise.

Proposition 10.3. If f is smooth near 0K and vy (x) = ast,(k)f}s=0, for
x € R3\ K, then vy (x) is uniquely characterized by

(A+k*vy =0 on R\ K,

(10.12) i’(a;—rw - ikv¢) — 0, asr — o0,
0
v =y (VB — L) oo

Here, NV (k) is the Neumann operator, defined by (7.55). In other words,

(10.13) Dy Br(h)f = By (Nk) £~ ).

The linearized problem is to find .

Therefore, for a given smooth obstacle K, granted that the operators B (k)
and N (k) have been constructed (e.g., by methods of §7), we can to some de-
gree reduce the linearized inverse problem for ¥ to the following linear inverse
problem:

Problem. Given (an approximation to) w = B(k)g(x) on |x| = R; (and assum-
ing that K C {x : |x| < R;}), find (an approximation to) g on dK.

As for finding Bk (k) and NV (k) via an integral-equation method, we mention
that an integral equation of the form (7.18) is preferable to one of the form (7.12),
since it is very inconvenient to deal with the set of values of k for which (7.12) is
not solvable. This point is made in many expositions on the subject, such as, [Co].
Solving (7.18) leads to the formula (7.32) for Bg (k).

We note that when we take f = e~ the solution to the linearized inverse
problem is unique:

Proposition 10.4. Given K nonempty, smooth, and compact, such that R3\ K is
connected, define

(10.14) Lx(k,w): HS(3K) - C®(R3\ K)
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by
(10.15) Li(k,w)y = DyBg(k)f. f(x)=e o~
Then Lk (k, w) is always injective.
Proof. By (10.13), our claim is that

(10.16) BK(k){w(x)(N(k)f - %)} =0 onR3\ K = y = 0on dK.

Since BK(k)giaK = g, the hypothesis in (10.16) implies ¥ (x) (N (k) f —dy f) =
0 on 0K, so it suffices to show that

a
(10.17) Nk f — a—f vanishes on no open subset O of 0K
v

when f(x) = e7*®* To see this, consider w = B(k) f —e~*®* which satisfies
(10.18) (A+k*Hw=00nR>*\ K, w =0ondK.
IfN(k)f —dyf = 0on O, then

(10.19) a_w =0 onO.
v

But if O is a nonempty, open subset of dK, then (10.18)—(10.19) imply that w
is identically zero, by uniqueness in the Cauchy problem for A + k2. This is
impossible, so the proof is complete.

Parallel to (10.13), we have

0
Dyax(-0.0.5) = Ax({y ) (N — L)} o),
f(x) — e—ikarx’

where Ak (k) is as in (3.33)—(3.34). Note that (10.2) extends readily to the identity

(10.20)

(1021)  Ag(k)f =ikt DU s (k)T B (k) .

In view of the injectivity of the operator acting on B, (k) f, on the right side of
(10.21) we see that, under the hypotheses of Proposition 10.4, we have

(10.22) Lx(k,w): H*(0K) — C®(S?) injective,
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foreach k € R, w € S2, where

(10.23) Txk.o)y = Dy Ax(k) f, f = e ko>,

Exercises

1. Fix k € (0, 00). Show that a given obstacle K is a ball centered at 0 if and only if
a(w,0,k)=a(R(w), R(9),k),

for every rotation R : S — §2. (Hint: For the “if” part, make use of Proposition 10.2
to compare K and its image under a rotation.)

2. Suppose you are given that K is a ball, but you are not given its radius or its center.
How can you determine these quantities from the scattering amplitude? How little in-
formation on a(w, 0, k) will suffice?

3. The set R arising in the proof of Proposition 10.2 might not have smooth boundary, so
how do you know that u = u; ‘R’ which vanishes on 9R, belongs to H(} (R)?

4. Suppose K is known to be contained in the unit cube Q = {x € R3 : 0 < x; <1}
Letw € S2, k € R be fixed. Show that exact knowledge of a(—w, 6, k), for 8 € S2,
uniquely determines K, as long as

k| < V6 7.

Given w1,ws € S2, such that wi,wp, —w;, and —w, are distinct, show that
a(—wj,0,k), for k fixed, 0 € S2 Jj = 1,2, uniquely determines K, as long as

k| < 37.

Can you improve these results?
5. Give a detailed proof of Proposition 10.3.

11. Inverse problems II

In this section we describe some of the methods used to determine an obstacle K
(approximately) when given a measurement of scattering data, and we deal with
some aspects of the “ill-posed” nature of such an inverse problem.

For simplicity, suppose you know that By C K C Bg,, where B, = {x €
R3 : |x| < r}. Suppose you have a measurement of a(—w, 6, k) on 6 € S2, with
k fixed and w fixed. One strategy is to minimize

CI)(f, K) = ”-Al (k)f - a(_a)’ "k)”i2(s2)

(11.1) it
+ ”BIK(k)f +e ka”iz(BK)’
with f and K varying over certain compact sets, determined by a priori
hypotheses on the scatterer. This is close to some methods of Angell and
Kleinman, Kirsch and Kress, as described at the end of [Co2].
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Here we use the following notation: A, (k) = Ap, (k), where Ag (k) is as in
(10.20), that s,

(11.2) Ak (k) f(0) = lim re % B (k) f(r0).

Also, if K is contained in the interior of K5, then g = Bk, (k)f\aK2 defines a
bounded operator

(11.3) Bk, k, (k) : H*(0K1) — C*(dK3),
and if either K; = B, or K» = B,, we use the notation B, g, (k) or Bk, ,(k); if
both K; and K are such balls, we use the notation B,, (k).

More generally, we might have measurements of a(—w;,0.k) on 6 € § 2 for
a sequence of directions w;. Then one might take

N
® = [Aik) S —a(=w; - k)52,

ji=1
(11.4) N i

+ Z ”81K(k)fj + e_lkwj.x ||L2(3K)

Jj=1
and minimize over (fi, ..., fa; K). One might also consider weighted sums, and
perhaps stronger norms.
Note that

(11.5) Ai(k) f; = Ax (k)Bik (k) ;.

The feasibility of approximating the actual scattered wave by such a function
follows from the next lemma, provided K is connected and has connected com-
plement.

Lemma 11.1. If K; are compact sets in R> (with connected complement) such
that K1 C Ko, then for any k € R the map B, k, (k) is injective. If also K is

connected, this map has dense range.

Proof. If u = Bk, (k) f vanishes on 0K>, then u restricted to R3 \ K, is an
outgoing solution to the basic scattering problem (1.1), with K = K>, so by the
uniqueness of solutions to (1.1)—(1.3), we have u = 0 on R3 \ K. Then unique
continuation forces u = 0 on R3 \ K7, so the injectivity of (11.3) is established.

As for the second claim, note that if y € K, then

(11.6) |x — y|7te** ¥ = ¢ (x) € Range Bk, (k).
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Thus if f € L?(9K>) is in the orthogonal complement of the range of Bk, k, (k),
we deduce that

(11.7) Flx) = / F0)gx(y) dS()

K>

o o o

is zero for x € K, hence for x € K, (if K, is connected). Also material in §7
implies that F' is continuous across dK, and is an outgoing solution of (1.1) on
R3 \ K,. The uniqueness of solutions to (1.1)=(1.3) forces F = 0 on R3 \ Kj.
Since, by (7.25), the jump of 9, F across 0K is proportional to f, this implies
f = 0, proving denseness.

If K is not known to be connected, one could use several spherical bodies as
domains of f; in (11.4), provided it is known that each connected component of
K contains one of them, as can be seen by a variant of the proof of Lemma 11.1.

Instead of minimizing (11.4) over (f1,..., fn; K), an alternative is first to
minimize the first term of (11.4), thus choosing f;, within some compact set of
functions, and then to pick K to minimize the second term, within some compact
set of obstacles.

An attack pursued in [Rog] and [MTW] takes a guess K, of K, solves (ap-
proximately) a linearized inverse problem, given K, and applies an iteration,
provided by Newton’s method, to approximate K. See also [Kir].

If one has a measurement of the scattered wave v(x, kw) on the sphere |x| = r,
say for k fixed and @ = wq,...,wy, instead of a measurement of a(—w, 6, k),
then parallel to (11.4) one might take

N
® =" |Bir (k) f; — v ko)) 2252,

=1
(11.8) ! .
ik % 1|2
+ D [Bik () £ + e | Lo e
j=1
and minimize over (fi,..., fa; K). Alternatively, first minimize the first sum

over f; (in some compact set of functions) and then minimize the second sum
over K (in some compact set of obstacles).

In fact, a number of approaches to the inverse problem, when measurements
of the scattering amplitude a(—w, 6, k) are given, start by first constructing an
approximation to v(x, kw) on some sphere |x| = r, such that K C B,, and then
proceed from there to tackle the problem of approximating K. Recall the relation
established in §10:

(11.9) v(rf, kw) = ik e”V/PTAD o (kr) a(—w, 6, k),
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where the operator acts on functions of 8. As noted there, the operator i1 41 /2 (k1)
is a seriously unbounded operator on L2(S?). In fact, this phenomenon is be-
hind the ill-posed nature of recovering the near field behavior v(x, kw) from the
far field behavior defined by the scattering amplitude a(—w, 6, k). As this is one
of the simplest examples of an ill-posed problem, we will discuss the following
problem. Suppose you know that an obstacle K is contained in a ball Bg,. Fix
keR, weS2

Problem A. Given an approximation b(—w, 0, k) to the scattering amplitude,
with

(11.10) la(=w,- k) —b(—=w,- k)|l12(s2) < &,

how well can you approximate the scattered wave v(x, kw), for x on the shell
|x| = Rl,given R1 > R()?

As we have said, what makes this problem difficult is the failure of the operator
ha—1/2(kr) appearing in (11.9) to be bounded, even from C>(S5?) to D'(S?).
Indeed, for fixed s € (0, 0o0), one has the asymptotic behavior, as v — 400,

1/2 v
(11.11) HW(s) ~ —i (i) (2—")
TV es

(see the exercises) and hence

(11.12) By—1/2(s) ~ —i(sv)~1/? (2—”) .

es

Consequently, an attempt to approximate v (x, kw) for x = R0 by
(11.13) vo(0) = ike=W/DTIAD 0 (KR )b(—w, 6, k)

could lead to nonsense. We will describe a method below that is well behaved.
But first we look further into the question of how well can we possibly hope to
approximate v(x, kw) on the shell |x| = R; with the data given.

In fact, it is necessary to have some further a priori bound on v4 to make
progress here. We will work under the hypothesis that a bound on v(x, kw) is
known on the sphere |x| = Ry:

(11.14) [v(Rob. ko)l 252, =< E-

Now, if we are given that (11.10) and (11.14) are both true and we have
b(—w, 0, k) in hand (for w,k fixed, & € S?), then we can consider the set F
of functions f(6) such that
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(1115) ||f_b(—(l),',k)||L2(S2) =¢

and such that

(11.16) Ik ha—1/2(kRo) fll2(s2) < E,

knowing that F is nonempty. We know that a(0) = a(—w, 6, k) belongs to F,
and that is all we know about a(—w, 6, k), in the absence of further data. The
greatest accuracy of an approximation vy (6) to v(R16, kw) that we can count on,
measured in the L2(S?) norm, is

(11.17) 101(0) = v(R16, k)| 1252, < 2 M(e. E),

where M (e, E) is defined as follows. Denote by

(11.18) Tj: F— L*(S%, j=0,1,

the maps

(11.19) T; f(0) = ike”V/DmIA=D ) (kR;) £(6).
Then we set

(11.20) 2M(e, E) = sup {|T1 f —Tigll2s2) : .8 € F},
that is,

(11.21) M(e, E) = sup {[|T1fll2 : 1/ 2 = eand |[Tof .2 < E}.

One way to obtain as accurate as possible an approximation to v on |x| =
R would be to pick any f € F and evaluate 77 f. However, it might not be
straightforward to obtain elements of F. We describe a method, from [Mr2] and
[MrV], which is effective in producing a “nearly best possible” approximation.
We formulate a more general problem. We have a linear equation

(11.22) Sv=a,

where S is a bounded operator on a Hilbert space H, which is injective, but S~!
is unbounded (with domain a proper linear subspace of H'). Given an approximate
measurement b of a, we want to find an approximation to the solution v. This is a
typical ill-posed linear problem. As a priori given information, we assume that

(11.23) Ib—ally <e |Toalu < E.
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Ty is an auxiliary operator. In the example above, H = Lz(Sg), and Tp and T}
are given by (11.19). Generalizing (11.20)—(11.21), we have a basic measurement
of error:

M(e. E) = sup {|Ti fllu : | fla < eand |Tof|u < E}

(11.24) 1

=7 sup (T f —Tiglu : f.g € F},
where
(11.25) F={feH |f-blu=<el|Tofla <E}.

Now, if all one knows about a in (11.22) is that it belongs to F, then the greatest
accuracy of an approximation v; to the solution v of (11.22) one can count on is

(11.26) lvi —vllg =2M(e, E).

This recaps the estimates in (11.14)—(11.21). Now we proceed. An approxima-
tion method is called nearly best possible (up to a factor y) if it yields a vy € H
such that

(11.27) lvi —vllg =2yM(e, E).

We now describe one nearly best possible method for approximating v, in cases
where Ty is a self-adjoint operator, with discrete spectrum accumulating only
at +-o00. Then, pick an orthonormal basis {u; : 1 < j < oo} of H, consisting
of eigenvectors, such that

(11.28) Tou; =ojuj, o / +oo.

When Ty is given by (11.19), this holds as a consequence of (11.12). It is essential
that the o ; be monotonic, so the eigenvectors need to be ordered correctly. Now let

l
(11.29) fo=P, Pu=y (uuju,.
j=1
Now let N be the first £ such that
(11.30) I fe —blla <2e.

We then claim that

(11.31) ITofnlla < 2E.
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This can be deduced from:

Lemma 11.2. [f the set F defined by (11.25) is nonempty, and if M + 1 is the
first j such thataj > E /¢, then

(11.32) | far —bllg <2¢ and |To ful|lg < 2E.
Proof of lemma. The key facts about M are the following:

IPugll <e= lToPugl < E,

11.33
(1139 |(To(1 = Pa)hll < E —> (1 — Pag)h] < e.

We are given that there exists f such that
(11.34) I f =bll <€ and |Tof| < E.

The first part of (11.34) implies | Py f — fm| < &, which via the first part
of (11.33) yields the second part of (11.32). The second part of (11.34) implies
|To(1 — Payr) f|| < E, which by the second part of (11.33) gives ||(1 — Pa) f ||
<. Since || f — b|| < &, this yields the first part of (11.32).

Having the lemma, we see that N < M, so ||[To fnll < |Tofam|l, giving
(11.31). Then (11.30) and (11.31), together with (11.23), yield

(11.35) Ifn —allg <3¢ and |[To(fy —a)lla < 3E.

We have established:

Proposition 11.3. Under the hypotheses (11.23), if we set vy = T1 fn, where N
is the smallest £ such that (11.30) holds, we have

(11.36) lvv —vllg <3 M(e, E).

Hence this method of approximating v is nearly best possible. Note that the
value of the estimate E of (11.14) does not play an explicit role in the method
described above for producing the approximation vy ; it plays a role in estimating
the error vy — v.

The method described above provides a technique for solving a certain class
of ill-posed problems. Other related problems involve the analytic continuation of
functions and solving backwards heat equations. Further discussions of this and
other techniques, can be found in papers of K. Miller [Mr1], [Mr2], and references
given there.

We now turn to the task of estimating M(e, E), for our specific prob-
lem, defined by (11.18)—(11.21). Thus, with Ry < R;, we want to estimate
lha—1/2(kRy)|| 2, given that || fl;2 < e and ||[hg—1/2(kRo) f| 2 < E. If
we also assume that k lies in a bounded interval, this is basically equivalent to
estimating ||A~1/2e A4 44 f|; 2, given that
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Ifl2 <. AT 27444 f 2 < E,

where e™® = 2/eRg and e™# = 2/eR;, so @ < B. We can get a hold on this
using the inequality

(11.37) pT12e7Bvyv < e_(ﬁ_"‘)x(v_l/ze_“”v“) + V2x%,

valid forv > 1/2, 0 < x < 00, to write
(11.38) ITifll> < C inf (e_yxE n xxzs),
xeR+

where y = 8 —«, given || f|| <e, ||To f|| < E. While picking x to minimize the
last quantity is not easy, we can obtain a reasonable estimate by picking

log E/e

11.39 = —)
( ) * loglog E /¢

in which case

ya(E/e) B(E/¢e)
et = (i) . oext = E(i) .
E E
with ¢(E/e) = 1/(loglog E/¢) and B(E/¢) = (logloglog E/¢)/(loglog E/¢).
Consequently,

(11.40) M(e. E) < CE [(%)W(E/S) + (%)ME/E)} .

As for the exponents that appear in (11.40), note the following values (to three
digits):
e/E  a(E/e)  P(E/e)

1072 .655 277
1073 517 341
1074 450 359
1073 409 .366
107¢ .381 .368
1077 .360 .368

The close agreement of the last two figures in the right column is due to the fact
that f(y) = (logloglog y)/(loglog y) achieves its maximum value of 1/e at
y = e a 3.81 x 10° and is very slowly varying in this region. As for the close
agreement of the two figures corresponding to & = 1077, note that log log log
e¢“ = 1. An estimate similar to (11.40) is also given in [Isa].

Even though the analysis in (11.13)-(11.39) does not directly deal with the
problem of describing dK given an approximation b(w, 0, k) to the scattering
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amplitude a(w, 6, k), to some degree it reduces this problem to that of describing
dK, given the solution u = B(k) f to the scattering problem (1.1)-(1.3) (i.e.,
to (7.1)), with u(x) evaluated near |x| = R;, for a certain class of boundary
data, namely f(x) = e ko |BK (where k and w belong to a specified subset
of R and S2, respectively). One assumes it given that K C {x : |x| < Ro},
where Ry < R;. This reduction is an intermediate step in many studies of inverse
problems. Thus Problem A is complemented by:

Problem B. Approximate v = B(k) f on |x| = Ry, given (an approximation to)
v on |x| = R; and having some a priori estimate of v on |x| = Ry, but not on a
smaller sphere.

Rescaling, we can consider the case Ry = 1, Ry = R > 1. By (10.4), we
have

(1141) g =v(0)andw = v(RH) —> g = %w = Cr(k)w,

where the last identity is the definition of the unbounded operator Cr(k) on
L?(S?). In view of (11.12), we have, for fixed k € (0,00), R > 1,

hv—l/z(k) +1/2
(11.42) T2 RVH2 — C e,y — too,
hy—1/2(kR)

where y = log R > 0.

Parallel to (11.14)-(11.21), we consider the problem of estimating Cr(k)w in
L?(S?), given a small bound on ||w|| 12(s2) (estimate on observational error) and

an a priori bound on Cg(k)w in H*(S?), for some £ > 0. That is, we want to
estimate

(1143)  M(e. E) = sup {[Cr()wll > : [wll> <& [CrRK)w e < E}.
Parallel to (11.37)—(11.38), we can attack this by writing

(11.44) e’ < (vx~Hbe? 4 e7*,

valid for v, x € (0, 00). Thus, if ||g|| z¢ = ||4%g]| 2, we have

(11.45) ICr()w .2 < Cp inf (xTCE + e7%¢).

We get a decent upper bound by setting x = (1/2y)log(£E/ey). This yields

LEN— LEe\1/2
(11.46) M(E,E)ECk(Zy)ZEOog%) +Ck<7€> .
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This is bad news; ¢ would have to be terribly tiny for M (e, E) to be small. Fortu-
nately, this is not the end of the story.

As a preliminary to deriving a more satisfactory estimate, we produce a variant
of the “bad” estimate (11.46). Fix ¥ € C§°(R), supported on [—1, 1], such that
¥ (0) = 1. Instead of (11.43), we estimate

(11.47) Ms(e, E) = sup{ [y GACrK)wl 2:wl 2 <e, [CrK)w]|L> < EY.

We proceed via

(11.48) Y (Bv)e”” < e [y (Sv)e’ |e” + e Y (8v).

to get

(11.49) [y @A) w2 < inf [Cr,8)e 7> CLE + 7]
where

(11.50) C(y,8) = sup0 Y(v)e?” < e?/? = RS,

Using (11.42) again, we have the estimate
(11.51) Ms(e, E) < Cx RV? JEe.

Now we do want to be able to take § small, to make ¥ (§4) f close to f, but
R'/28 = ¢¥/28 plows up very rapidly as 8 N\ 0, so this gives no real improvement
over (11.46). Compare (11.51) with the estimate

(11.52) Iy (BA)CR(K)w] 2 < CLRY &,
when ||w||;2 < ¢, involving no use of the a priori estimate |Cr(k)w| ;2 < E.

We now show that a different technique yields a useful bound on the quantity
Mg (e, E), when 6 lies in the range § > 1/k.

Proposition 11.4. Let R > 1 and a > 1 be fixed. Then there is an estimate
o
(11.53) W @EACRKIW L2(52) = Cllwllz2(s2). for - =8

In particular, C is independent of k.

Proof. Since ¥ (8A4) and Cr(k) commute, it suffices to show that

(11.54) ICrR(k)w]|z2 < C|lw| 2, forw e Range y(§4),
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given o/ k < &, where y(A) is the characteristic function of [0, 1]. Thus
(11.55) 0 < A < (ka™')I onRange y(64).

Equivalently, we claim that an outgoing solution u(r, ®) to the reduced wave
equation (A + k2?)u = 0 satisfies

(11.56)  [lu(1, )| z2¢s2) < Cllu(R,")||L2(s2), foru(R,-) € Range x(§4),

givena/k < 4.
Now u satisfies the equation

%u  20u 1
11.57 — + S — 4+ (K>=r2L)u=0, L=A%>--=—Ag.
( ) arz + rar +( r )u 4 S

We can replace u(r, w) by v(r, w) = ru(r, ®), satisfying

9%v

(11.58) PrE

+ (k2 — r_zL)v =0,
and it suffices to establish

(11.59) lo(1, )l 252y < Clv(R, )l L2(s52)s

given v(R,-) € Range x(8A4), and assuming that v = ru, u an outgoing solution
to (11.57); let us denote by Vi the vector space of such functions v.
It will be convenient to use a family of norms, depending on r and k, given by

2

AL60) N = ((1=krL)vv) | o+ k_z"?)_:‘

L2(S2) L2(52)

where v = v(r,-) € Vis. Note that dv/dr = [N, (k) 4+ r~'Ju(r, ), where N; (k)

is the Neumann operator (7.55), for the obstacle {|x| = r}. By (9.56), extended
to treat balls of radius r € [1, R],

N () £ 13252 < CILE sy + RS Bagsy

(11.61)
= CR[(K2LL f) o+ [ £]72]

Now, by (11.55),

(11.62) 0 < (kr)™2L < a2 onRange x(54),

given a/k < § and r > 1. Consequently, if « > 1, we have constants C; €
(0, 00), independent of k, such that
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(1163) C0||U(”)||L2(S2) Nkr(v(r))z = C1||v(r)||L2(S2),

forall v € Vgs.

We now show that, for v € Vis, Ni,(v(r))? = E(r) is a monotonically
increasing function of » € [1, R]; this will establish the estimate (11.59) and
hence complete the proof of Proposition 11.4. To see this, write

dE _ 2Re((1 — (kr)_ZL)a—U,v)
dr or
(11.64) %
k2 5 (Lv, v)+2Re(k 52 8r)

and use (11.58) to replace k=2 8%v/dr? by —(1 — (kr)~2L)v. We obtain

(11.65) ‘f ((kr) *Lv,v) > 0,

and the proof is complete.

We can place the analysis in (11.60)—(11.65) in the following more general
context. Suppose

82

(11.66) PrE

+ A(r)v =0,
where each A(r) is positive-definite, all having the same domain. If we set

(11.67) 0r(v) = (A(r)v,v) + [19,v]%,

then

% 0r(v) =2Re(A(r)v, 3,v) + 2 Re(37v, 0,v)
+ (A/(r)v, v) = (A’(r)v, v).

(11.68)

If A’(r) can be bounded by A(r), then we have an estimate

d
(11.69) )d—r 0:(v)| =€ 0,(v).

Of course, if A’(r) is positive-semidefinite, we have monotonicity of Q,(v), as
in (11.65).

This result indicates that, using signals of wavelength A = 1/k, one can expect
to “regularize” inverse problems, to perceive details in an unknown obstacle on a
length scale ~ A. Further analytical estimates with the goal of making this precise
are given in [T4]. This idea is very much consistent with intuition and experience.
For example, a well-known statement on the limitations of an optical microscope
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is that if it has perfect optics, one can use it to examine microscopic detail on
a length scale approximately equal to, but not smaller than, the wavelength of
visible light.

We emphasize that this limitation applies to discerning detail on an obstacle
whose diameter is much larger than 1/k. If one has a single obstacle whose
diameter is ~1/k, then one is said to be dealing with an inverse problem in
the “resonance region,” and, given some a priori hypotheses on the obstacle,
one can hope to make out some details of its structure to a higher precision than
one wavelength. This sort of problem is discussed in a number of papers on in-
verse problems, such as [ACK], [AKR], [JM], and [MTW].

Exercises

1. Using the power series for Jy(z) given as (6.19) of Chap. 3, show that, for fixed s €
(0, 00), as v — +o00,

To(s) ~ (2m)—1/2(%)”.

Modify this argument to establish (11.11).

2. Generalize Proposition 11.3 to the case where different Hilbert spaces (or even different
Banach spaces) H; are involved, thatis, S : H; — H, and T;:V;—>H;, j=0,1,
where Vj C Hy,aceVyny.

12. Scattering by rough obstacles
In the previous sections we have restricted attention to scattering of waves by
compact obstacles in R? with smooth boundary. Here we extend some of this
material to the case of compact K C R3, which is not assumed to have smooth
boundary. We do assume that @ = R3 \ K is connected.

The first order of business is to construct the solution (in a suitable sense) to
the problem

(12.1) (A+kHv=0mQ=R3>\ K, v=fondk,

satisfying the radiation condition
v .
(12.2) [rv(x)| < C, r(a— — lkv) — 0, asr — 00,
r

given k > 0. Our analysis will use a method from §5 of Chap. 5; we take compact
K ; with smooth boundary such that

(12.3) KiD>DK;DD---DDK; \(K.

SetQj=R3\Kj,SOQj/Q.
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Let us assume f |, is the restriction to 0K of some f € CZ(R?). We will

extend the method of proof of Theorem 1.3. For e > 0, j € Z™T, let w,; €
L?(Q2) be the solution to

(12.4) (A+ (k+ie)*)we; =heonQj, wyy o, = 0,
where
(12.5) he =—(A + (k +i¢)?) f. onQ.

Set wg; = 0 on K. Then set vg; = f + wgj, SO
(12.6) (A+(k+ie)*)ve; =00n Q). e[y = f.

By methods of Chap. 5, §5, for fixed & > 0, as j — 00, wg; — wg in H}(RQ),
the domain of (—A)!/2, when A is the self-adjoint operator on L2(2) with the
Dirichlet boundary condition on 02 = 9K, and

(12.7) we = (A + (k +i6)) 'he € HA(Q).

We have wgiaK
in H1(R), and

= 01in a generalized sense. It follows that v;; — v, = we + f

(12.8) (A4 (k+ie)®)ve=00nQ, V| = £

the boundary condition holding in a generalized sense. Furthermore, v, is the
unique solution to (12.8) with the property that v, — f € Hj (Q).

If € CZ(R?) is supported in B4 = {|x| < A}, then elliptic estimates imply
we; — we in C®(R3\ By), hence vgj — v in C®(R3 \ By). It follows that,
for any fixed A7 > A,if ¥ = {|x| = A1}, then

avs(y)
v

.
129 v = [[0enFE s

X

Jas. 1xl > 41,

where g, = g(x, y,k + i¢) is given by (1.6). Compare with the identity (1.24).
We now state a result parallel to Theorem 1.3.

Theorem 12.1. For v, constructed above, we have, as € \ 0, a unique limit
(12.10) ve > v =DBk)f
satisfying (12.1)—(12.2). Convergence occurs in the norm topology of the space

L2(2, (x)™ B dx), for any 8 > 0, as well as weakly in H*(Q N {|x| < R}), for
any R < oo, and the limit v satisfies the identity
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d d
(12.11) v(x) = /[v(y)f —g%] ds(y), |x| > Ay
X

More generally, we can replace the boundary condition on vg in (12.8) by ve = f¢
on 3K, with f. — f in CZ(R3).

As in §1, we begin the proof by establishing a uniqueness result.
Lemma 12.2. Given k > 0, if v satisfies (12.1)-(12.2) with f = 0, then v = 0.

Proof. Here, to say v = 0 on dK means yv € H, (), for some y € C(R?),
chosen so y(x) = 1 for |x| < A. The proof of Proposition 1.1 works here, with a
minor change in the identity (1.8). Namely, write the equation

(12.12) (A+k*v=00nBr\ K, v[ye =0, v[g =v
in the weak form
2 dg
(12.13) [—(dv.de) + K*ve] dx = vas ds,
v
BR\K SR

forall ¢ € H'(Bg \ K) such that (p\BK = 0 and ¢ is smooth near Sg. This
applies to ¢ = v, yielding

(12.14) / [—(dv, dD) + k*vD] dx = /vv, ds.
BRr\K SR
Also, we can interchange the roles of v and v and subtract the resulting identity
from (12.14), obtaining
(12.15) /(vir —ov,)dS =0,
SR
asin (1.8). The rest of the proof proceeds exactly as in the proof of Proposition 1.1.

We continue with the proof of Theorem 12.1. Pick R > A; and set Og =
Q N {|x| < R}. Parallel to Lemma 1.4, we have

Lemma 12.3. Assume vg}ok is bounded in L?>(OR) as & \ 0. Then the conclu-

sions of Theorem 12.1 hold.

Proof. Fix S € (41, R). Elliptic estimates imply that if [|ve || ;2(o ) is bounded,
then

(12.16) lvell 1 o) = C-
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Passing to a subsequence, which we continue to denote by v,, we have
(12.17) v, — v weakly in H(Og).

Also, w, = v — fo > w =v — f,and for y € C5°(|x| < S) such that y =1
on a neighborhood of K, we have yw, — yw in HJ(Os). Thus v|8K = f,in
our current sense.

Since (A + (k + i€)*)ve = 0 on Ok, elliptic estimates imply that if US}OR is
bounded in L2(ORg), then v, is bounded in C*®(A4 < |x| < R). Thus we obtain
(12.11) from (12.9), and (12.11) implies the radiation condition (12.2) and also
the convergence v, — v in L2(S2, (x) ™13 dx).

So far we have convergence for subsequences, but by Lemma 12.2 this limit is
unique, so Lemma 12.3 is proved. The proof of Theorem 12.1 is completed by:

Lemma 12.4. The hypotheses of Theorem 12.1 imply that the family {v.} is
bounded in the space L*(2, (x)~173dx), for any § > 0.

The proof is the same as that of Lemma 1.5.
The fact that, for each j € 77+, vgj converges as € — 0 to a limit v; solving
the scattering problem

(12.18) (A+k*v; =00nQ;, v; = fondkK;,

plus the radiation condition, is a consequence of Theorem 1.3. The following
approximation result is useful. Extend v; to be equal to f on Q \ ;.

Proposition 12.5. For any R € (A, c0), § > 0, we have
(12.19) vj = v in C®(Qy) N L2(Q, {(x) 18 dx).

More generally, we can replace the boundary condition by v; = f; on 0K},
where f; — f in CZ2(R3?). Furthermore,

(12.20) v; — v in H'(OR), innorm.

Proof. To establish (12.19), an argument parallel to that used for Lemmas 1.4
and 12.3 shows that it suffices to demonstrate that {v;} is bounded in the space
L?(Og), and then an argument parallel to that used for Lemmas 1.5 and 12.4
shows that indeed {v,} is bounded in L2(%2, (x)7178 dxdx).

Arguments such as those used to prove Theorems 1.3 and 12.1 also show that
v; — v weakly in H!(ORg). To get the norm convergence stated in (12.20), note
that, parallel to (12.14),

(12.21) /[—(dvj,dij)+k2|vj|2] dx:/vj(a,vj) das.

ORr Sr



270 9. Scattering by Obstacles

Since v; — v in L?(Og) and v; — v in C* on a neighborhood of Sg =
{Ix| = R}, we have [, k2|v;|? dx — Jor k?|v|? dx and Js, 0i(9,;) dS —
s, v(9-) dS. Consequently,

/|dv,~|2 dx —> / \dv|? dx.
Or OR

SO

(12.22) lvillaror — IVl k)

This, together with weak convergence, yields (12.20).

It is useful to note that if we extend v; to be f; on K; and extend v to be f
on K, then (12.20) can be sharpened to

(12.23) v; —> vin H'(Bg), innorm.
Now, we have a well-defined operator
(12.24) Bg (k) : C*(K) — C®(R>\ K),

for any k > 0, any compact K C R3, extending (1.19). By (12.11), we have
asymptotic results on Bg (k) f(x), as |x| — oo, of the same nature as derived in
§1. In particular, the scattering amplitude ax (—w, 6, k) is defined as before, in
terms of the asymptotic behavior of Bg (k) f(rf), when f(x) = —e~*® on 9K .

We next want to discuss the uniqueness of the scatterer, when K is not required
to be smooth. A special case of Proposition 10.2 is that if K C Bpr is assumed
to be smooth and one has fixed k € (0,00) and sufficiently many w; € S 2
then the knowledge that ag (—wg, 6,k) = 0, V 6 € S2, implies K is empty. The
appropriate statement of this result when K is not required to have any smoothness
is the following:

Proposition 12.6. Given compact K C Bp, fixedk € (0,00), and 0 € S?, then if
(12.25) ag(—we.0,k) =0, VO eS?

for a single wy € S?, it follows that

(12.26) cap K = 0.

Here “cap K is the Newtonian capacity of K, which is discussed in detail in
§6 of Chap. 11. One characterization is

(12.27) cap K = inf{/ IV f()Pdx: feCP®R?), f=1onnbdof K}.
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One can derive the estimate that if / € Lip(IR?) has compact supportand A > 0,
then

(12.28) cap({x € R : [f(x)| = A}) < A2V f 7.

See (6.64)—(6.65) of Chap. 11.
To prove the proposition, first note that, as in the proof of Proposition 10.2, the
hypothesis (12.25) implies

(12.29) u(x, kwy) = e~*keex,
for x € R3 \ I?\ , the unbounded, connected component of R3 \ K; we may as well

suppose that K = K. Fix ¢ € C§°(R?) so that ¢ = 1 on a neighborhood of K.
Then (12.29) implies

(12.30) p(x)e e ¢ HI(R?\ K).
Hence
(12.31) ¢ € HI (R?\ K).

We claim this implies cap K = 0. Indeed, take ¢, € C{°(R?\ K) so that ¢, — ¢
in H'-norm. Then f, = ¢ — ¢y € CC(R?), f, = 1 on a neighborhood of K,
and [ |V £, (x)|? dx — 0. By (12.27), this implies cap K = 0, so the proposition
is proved.

We now want to compare two nonempty obstacles, K; and K», with identical
scattering data a(—w, 0, k), perhaps for (@, k) running over some set. Our next
step is to push the arguments used in the proof of Proposition 10.2 to show that
under certain conditions the symmetric difference K; A K5 has empty interior.
After doing that, we will take up the question of whether cap(K; A K5) = 0.

So, as in the proof of Proposition 10.2, suppose K; and K, are two compact
obstacles in R3 giving rise to scattered waves v; that agree on an open set O
in the unbounded, connected component of R® \ (K; U K5). In other words,
uj = e *@ 4 y;(x, kw) has the properties

(12.32) (A+k*Hu; =0 on R\ K;, ou; € Hy(R*\ K),
and v; = u; —e *¥ gatisfies the radiation condition. Here, we fix ¢ € C{°(R?)
such that ¢ = 1 on a ball containing K; U K> in its interior. We suppose the sets
K ; have no cavities, so each ; = R\ K has just one connected component.
As before, R3 \ (K; U K,) might not be connected, so let I/ be its unbounded
component, and consider K = R3 \ U.If K; # K», then either K; or K3 is a
proper subset of K. Let us suppose K is.

Note that the functions #; and u, agree on U, since they are real analytic and
agree on O.
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Proposition 12.7. For any (w, k) for which Ky and K> have identical scattering
data (for all ), so do K, and K.

Proof. By the uniqueness result, Lemma 12.2, it suffices to show that
(12.33) u=uy=u; onu

has the property that pu € HJ U), for any ¢ € C$°(R?) equal to 1 on a neigh-
borhood of K. In turn, this is a consequence of the following general result.

Lemma 12.8. Let Q; be open in R", f; € Hj(R;). Let O be a connected
component of Q1 N Qy. Then

(12.34) fi=fo=f on O= f e HO).

Proof. It suffices to assume that the functions f; are real-valued. The hypotheses
imply fj+ € HO1 (2;) and flJr = f2Jr = £ on O. Thus it suffices to assume in
addition that f; > 0 on ;. Now we can find g, € C§°(R21) and h, € C§°(Q22)
such that g, — fi in H'(Q;) and h, — f> in H'(Q5). Hence g — f and
hf — f»in H'-norm. Now
v = min (g7 h)|

has the properties

Yy € HO1 (©), ¢, — f in H'-norm,
so (12.34) is proved.

Thus we replace K, by K (which we relabel as K>), and we investigate
whether K1 C K> can have identical scattering data, for (k, ) belonging to
some set. We return to the considerations of the functions u, as in (12.32). (Now,
U =)

Suppose K> \ K; has nonempty interior R. Note that 9R \ 92; C Q1 N 9Q>.
We claim that w = u \  has the property

(12.35) w € H} (R).

This is a consequence of the following general result.

Lemma 12.9. Let R C Q2 be open. Then

(1236) [ e H{(QNC(Q). f =0 ondR\IQ = f|, € Hy(R).
Proof. It suffices to assume f is real-valued. Then the hypotheses apply to f

and f~, so it suffices to assume f > 0 on Q. Take f, € C§°(R), f, — f in
H'-norm. Then f,¥ — f in H'-norm. Also, if we define 7.(s) for s > 0 to be
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ne(s)= 0 if0 <s <eg,

12.37
( ) s—¢ ifs>e,

and extend 7, to be an odd function, we have 7¢(f) — f in H'-norm. Now set

(12.38) gv = min( £, 710()) |-

We see that g, € H} (R) and g, — f in H!'-norm, so we have (12.36).

Now return to w = u; \ - We claim this function satisfies the hypotheses of
(12.36), with Q = Q7. To see that w vanishes on dR \ 921, we use the fact
that u; = up on 2 and argue that u, vanishes pointwise on a dense subset
of IR \ 092;. In fact, a dense subset satisfies an exterior sphere condition (with
respect to €2,). Hence, a barrier construction (applied to the harmonic function
ekyuz) gives this fact. Thus we have (12.35). Also,

(12.39) (A+k>w =0 on R.

Of course, w is not identically zero on R, so k2 must be an eigenvalue of —A
on R. Hence we have the following parallel to Proposition 10.2. Suppose we have
a bound on

(12.40) dim ker(A + k2 = d(k).

)}Hé (R)

Proposition 12.10. Let Ky and K, be arbitrary compact obstacles, with no cav-
ities. Let k € (0,00) be fixed. Suppose ¥ = {w¢} is a subset of S? whose
cardinality is known to be greater than d(k)/2. (If wg and —wy both belong to
Y, do not count them separately.) Then

(12.41) ak, (—wg, 0,k) = ag,(—we,0,k), YwreX, 0eS?
implies that K1 A K, has empty interior.

We next show that under stronger hypotheses we can draw a stronger
conclusion.

Proposition 12.11. If K| C K, are compact sets without cavities in R3 and
(12.42) ag,(—,0,k) = ag,(~w,0,k), Yw,0e€S? ke (0,00),

then every compact subset of K, \ K is negligible.

Proof. What we need to show is that if L is a compact subset of K, \ K1, and if
B € H™(R?) is supported on L, then 8 = 0.

By Proposition 12.10, the current hypotheses imply that K, \ K; has empty
interior. Hence K, \ K1 C 095, so K \ K1 = @27 N 9Q5,. Also, as in the
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considerations above, we have u1 (x, kw) = uz(x, kw) for all x € Q5; this time,
for all kw € R3 \ 0. We claim that this implies, for all compact L C 21 N 092>,

(12.43) Be H'R?, supppf C L= (ui(-.kw),p) =0.

To see this, we argue as follows (suppressing the parameters k,): Pick
@ € C{P(Q), equal to 1 on a neighborhood of L. Then gu, € H}(22), so
we can take a sequence f, € C;°(22) such that f, — ¢u; in H'(Q2,)-norm.
We can also regard f, as an element of C§°(21), and of course ( f, ) is Cauchy in
H(} (21). We claim that

(12.44) fo = oup in HY(Q,).

Indeed, we have f, — w for some w € Ho1 (21), and hence w = @u, on Q2,. We
want to show that w = @u; on Q7. Since u; = up on Q2,, we have w = ¢u; on
Q,, so

(12.45) supp (w — puy) C Q21 N K>,

a set that, in the current setting, is equal to ; N d2,. Of course, if 21 N 92,
has three-dimensional Lebesgue measure 0, we can deduce w = ¢u;. If it has
positive measure, we argue as follows. First, the characterization w = lim f,
clearly implies w = 0 on £; N K,. Furthermore, material on regular points
discussed in Chap. 11, §6, applied to the harmonic functions e*”u j(x), implies
that limy_, x, u2(x,kw) = 0 forall xo € 02, except for a set of interior capacity
zero; in the current situation this implies u; = 0 a.e. on 1 N d2,. Hence we
again have w = ¢uy, so (12.44) holds. On the other hand, (12.43) follows from
(12.44).

Having (12.43), for all § = kw € R3 \ 0, we deduce that, given F' € C§°
(R3\ 0), if we set

(12.46) g(x) = / u(x. ) F (£) dE.
then
(12.47) e H ' (R, suppp C L = (g.B) =0.

However, the set of functions of the form (12.46) is dense in HO1 (21), by the
isomorphism (4.10), which continues to hold in this setting. Thus

(12.48) Be HYR?), supppCc L = B =0.

As discussed in Chap. 5, this means L is negligible.
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A consequence of material in §6 of Chap. 11 is that if a compact set is negli-
gible, then its capacity is zero. Thus, by Proposition 12.11 (in conjunction with
Proposition 12.7), when (12.43) holds, K1 A K3 has “inner capacity” zero; see §6
of Chap. 11 for further discussion of inner capacity.

Exercises

1. Extend results of §§1-6 to obstacles considered here, with particular attention to results
needed in the proof of Proposition 12.11.

2. Show that, for any open  C R”, the map u — |u] is continuous on H !(2). Use this
to justify the limiting arguments made in the proofs of Lemmas 12.8 and 12.9.

A. Lidskii’s trace theorem

The purpose of this appendix is to prove the following result of V. Lidskii, which
is used for (8.2):

Theorem A.1. If A is a trace class operator on a Hilbert space H, then
(A1) Tr A = Z(dim ViA;,

where {A; : j > 1} = Spec A\ {0} and V; is the generalized A ;-eigenspace
of A.

We will make use of elementary results about trace class operators, established
in §6 of Appendix A, Functional Analysis. In particular, if {u } is any orthonormal
basis of H, then

(A.2) TrA=) (Auj.u)).

the result being independent of the choice of orthonormal basis, provided A is
trace class.

To begin the proof, let E; = B, V;,andlet Py = Q1 + -~ + Oy denote
the orthogonal projection of H onto Ey. Thus

APy = P APy,

restricted to Ey, has spectrum {A ;:1 < j <{}. We will choose an orthonormal set
{u; : j > 1} according to the following prescription: {u; : 1 +dim E,—; < j <
dim E;} will be an orthonormal basis of R(Q¢), with the property that Q;AQ,
(restricted to R(Qy)) is upper triangular. That this can be done is proved in The-
orem 4.7 of Chap. 1. Note that {u; : 1 < j < dim E} is then an orthonormal
basis of Ey, with respect to which AP, = P; APy is upper triangular. It follows
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that the diagonal entries of PgAPg} E, with respect to this basis are precisely
Aj, 1 < j < {, counted with multiplicity dim V;. Inductively, we conclude that
the diagonal entries of each block Q¢ AQ consist of dim Vy copies of 4.

Let Hy denote the closed linear span of {u; : j > 1}, and H; the orthogonal
complement of Hy in H, and let R, be the orthogonal projection of H on H,,.
We can write 4 in block form

(40 B
(A.3) A—(O Al)’

where A, = R, AR,, restricted to H,,. Clearly, Ao and A are trace class and, by
the construction above plus (A.2), we have

(A.4) Tr Ap = Y _(dim V;)A;.

Thus (A.1) will follow if we can show that Tr A; = 0. If H; = 0, there is no
problem.

Lemma A.2. If Hy # 0, then Spec A1 = {0}.

Proof. Suppose Spec A; contains an element ;& # 0. Since A; is compacton Hy,
there must exist a unit vector v € Hj such that Ajv = pv. Let H = Hy + (v).
Note that

Av = puv +w, w € Hy.

Hence H is invariant under A; let A denote A restricted to H. Of course, Hy is
invariant under A, and A restricted to Hy is Ag.

Note that both 7;, = A¢g—ul (on Hy)and 7, = A— pul (on H) are Fredholm
operators of index zero, and that

Codim 7,,(H) = 1 4+ Codim T}, (Ho).

Hence
Dim Ker(A — ul) = 1+ Dim Ker(A4p — p1).

It follows that the p-eigenspace of A is bigger than the p-eigenspace of Ag. But
this is impossible, since by construction, for any u # 0, the pu-eigenspace of Ay
is the entire p-eigenspace of A. Thus the lemma is proved.

A linear operator K is said to be quasi-nilpotent provided Spec K = {0}. If this
holds, then (I + zK)™! is an entire holomorphic function of z. The convergence
of its power series implies

(A.5) sup |z |K/|| < o0, VzeC,
J

a condition that is in fact equivalent to Spec K = {0}. To prove Theorem A.1, it
suffices to demonstrate the following.
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Lemma A.3. If K is a trace-class operator on a Hilbert space and K is quasi-
nilpotent, then Tr K = 0.

To prove Lemma A.3, we use results on the determinant established in §6 of
Appendix A, Functional Analysis. Thus, we consider the entire holomorphic func-
tion

(A.6) ¢(z) = det(I + zK),
which is well defined for trace class K. By (6.45) of Appendix A,
(A7) lp(2)] < Cee, Ve>o0.

Also, by Proposition 6.16 of Appendix A, ¢(z) # 0 whenever / +zK is invertible.
Now, if K is quasi-nilpotent, then, as remarked above, I + zK is invertible for all
z € C. Hence ¢(z) is nowhere vanishing, so we can write

(A.8) 0(2) = /@,

with f(z) holomorphic on C. Now (A.7) implies Re f(z) < C¢ + ¢l|z] for all
& > 0, and a Harnack inequality argument applied to this gives

(A.9) Re f(z)] < Cl+¢lzl, Ve>0,

See Chap. 3, §2, Exercises 13—16. The estimate (A.9) in turn (e.g., by Proposition
4.6 of Chap.3) implies that Re f is constant, so f is constant, and hence ¢ is
constant. But, by (6.41) of Appendix A, we have

(A.10) Tr K = ¢/(0),

so the lemma is proved. Hence the proof of Theorem A.1 is complete.

A proof of Lidskii’s theorem—avoiding the first part of the argument given
above, and simply using determinants, but making heavier use of complex func-
tion theory—is given in [Si2].
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10

Dirac Operators and Index Theory

Introduction

The physicist P. A. M. Dirac constructed first-order differential operators whose
squares were Laplace operators, or more generally wave operators, for the purpose
of extending the Schrodinger—Heisenberg quantum mechanics to the relativistic
setting. Related operators have been perceived to have central importance in
the interface between PDE and differential geometry, and we discuss some of
this here.

We define various classes of “Dirac operators,” some arising on arbitrary
Riemannian manifolds, some requiring some special geometrical structure, such
as a spin structure, discussed in §3, or a spin¢ structure, discussed in §8.

Dirac operators on compact Riemannian manifolds are elliptic and have an in-
dex. Evaluating this index, in terms of an integrated “curvature,” is the essence
of the famous Atiyah—Singer index theorem. We present a proof of this index
formula here, using a “heat-equation” method of proof. Such a proof was first
suggested in [McS], but it seemed difficult to carry out, as it required under-
standing of a coefficient in the asymptotic expansion of the traces of e *L/, for
a pair of positive, second-order, elliptic operators L ;, well below the principal
term. Ingenious arguments, beginning with V. Patodi [Ptl, Pt2], led to a proof
in Atiyah—Bott—Patodi [ABP]. Later, physicists, motivated by ideas from “super-
symmetry,” proposed more direct heat-equation proofs. Such proposals were first
made by E. Witten [Wit]; particularly elegant mathematical treatments were given
by E. Getzler in [Gtl] and [Gt2]. We present a heat-equation proof in §6, using
Getzler’s method of exploiting an analogue of Mehler’s formula for the expo-
nential of the harmonic oscillator Hamiltonian. Our analytical details differ from
Getzler’s; instead of introducing a noncommutative symbol calculus as in [Gtl1],
or the dilation argument of [Gt2], we fit the analysis more into a “classical” ex-
amination of heat-equation asymptotics, such as dealt with in Chap. 7. One major
achievement of Getzler’s approach is to make the appearance of the (rather subtle)
fl-genus of M in the index formula arise quite naturally.

We present two specific examples of the index formula here. In §7 we de-
rive the Chern—Gauss—Bonnet formula, giving the Euler characteristic y(M)

M.E. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, — 281
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_4,
© Springer Science+Business Media, LLC 1996, 2011
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of a compact, orientable Riemannian manifold in terms of an integral of the
“Pfaffian” applied to its curvature tensor. In §9 (following a discussion in §8
of spin€ structures) we discuss the Riemann—-Roch formula, a tool for under-
standing holomorphic (and meromorphic) sections of line bundles over Riemann
surfaces (of real dimension 2), which is important in the study of the structure and
function theory of Riemann surfaces. These are the simplest applications of the
Atiyah-Singer formula; both were established well before the general formula.
From a technical point of view, both have in common that the A-genus of M is
effectively discarded.

Other examples of the index formula include higher-dimensional
Riemann—Roch formulas and signature formulas. Further material on these can
be found in [Pal] and [Gil]. There is also an operator associated with “self-dual”
connections on bundles over 4-manifolds, whose index plays an important role in
the study of the Yang—Mills equations; see [AHS] and [FU]. For a recent variant,
arising from the Seiberg—Witten equations, see [D] and [Mor].

The heat-equation proof of the Chern—Gauss—Bonnet theorem was Patodi’s
[Pt1] first step in this circle of results. An exposition of the heat-equation proof
of this result due to B. Simon is given in the last chapter of [CS]. Another proof
of the Chern—Gauss—Bonnet theorem, celebrating closely physicists’ ideas about
supersymmetry, is given in [Rog].

Due to the low dimension, one can give a direct proof of the Riemann—Roch
theorem, using techniques of [McS]; such a proof is given in [Kot]. Such a direct
approach, with a good bit more effort, could be expected to be effective in other
low dimensions (e.g., complex dimension 2); in a sense, the sort of analysis re-
quired to accomplish this is what was done in [Ko1]. In §10, we give a direct proof
of an index formula for first-order, elliptic differential operators of Dirac type on
a 2-manifold M, in terms of a direct calculation of the second term in the expan-
sion of the heat kernel, carried out in §14 of Chap. 7, using the Weyl calculus. We
show how this formula yields the Gauss—Bonnet formula and the Riemann—Roch
formula.

There are also other heat-equation proofs of the index theorem, particularly
[Bil] and [BV]. In [Bi2] the heat equation method is applied to families of
operators; see also [Don] and [BiC]. There are several recent books devoted to ex-
positions of heat-equation proofs of the index theorem, including [BGV,Gil,Mel],
and [Roe].

A systematic “blow up” of the original proof of the Atiyah-Singer index
theorem has led to the interesting subject of operator K-theory. An introduc-
tory exposition is given in Blackadar [Bl]. Further developments are described
in [Con].

In §11 we change course, and produce an index formula for a class of elliptic
k x k systems on Euclidean space R”. We do this for the class of pseudodiffer-
ential operators of harmonic oscillator type, introduced in §15 of Chap.7. The
proof here makes no use of heat-equation techniques. It uses some results from
topology, particularly results on the homotopy groups of the unitary groups U(k),
including the Bott periodicity theorem, results for which we refer to [Mil] for
proof. Section 11 can be read independently of the other sections of this chapter.
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1. Operators of Dirac type

Let M be a Riemannian manifold, E; — M vector bundles with Hermitian met-
rics. A first-order, elliptic differential operator

(1.1) D :C*®(M,Ey) — C*(M, E;)
is said to be of Dirac type provided D* D has scalar principal symbol. This implies
(12) O-D*D(xvs) :g(xsé)l : EOX — EOXs

where g(x,§) is a positive quadratic form on 7," M. Thus g itself arises from
a Riemannian metric on M. Now the calculation of (1.2) is independent of the
choice of Riemannian metric on M. We will suppose M is endowed with the
Riemannian metric inducing the form g(x, &) on T*M.

If Eg = Eyand D = D*, we say D is a symmetric Dirac-type operator.
Given a general operator D of Dirac type, if we set E = Eo @ E; and define D
on C®(M, E) as

- 0 D*
(1.3) D:(D o)’

then D is a symmetric Dirac-type operator.

Let ¥ (x, &) denote the principal symbol of a symmetric Dirac-type operator.
With x € M fixed, set ¥(¢) = ¥(x,&). Thus ¢ is a linear map from T M = {&}
into End(E}), satisfying

(1.4) P (E) = 9(E)"
and
(1.5) 9(E)? = (£.6)1.

Here, ( , ) is the inner product on 77 M let us denote this vector space by V.
We will show how ¥ extends from V' to an algebra homomorphism, defined on a
Clifford algebra CI(V, g), which we now proceed to define.

Let V' be a finite-dimensional, real vector space, g a quadratic form on V.
We allow g to be definite or indefinite if nondegenerate; we even allow g to be
degenerate. The Clifford algebra CI(V, g) is the quotient algebra of the tensor
algebra

(1.6) QRV=ReVe(Veae(VaVel e
by the ideal Z C Q) V generated by

(1.7) rew+w®v—-2(v,w)-1:v,wel}
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where (, ) is the symmetric bilinear form on V arising from g. Thus, in
CIl(V,g), V occurs naturally as a linear subspace, and there is the anti-
commutation relation

(1.8) vw + wv =2(v,w)-1in CI(V,g), v,weV.

We will look more closely at the structure of Clifford algebras in the next section.
Now if ¢ : V' — End(E) is a linear map of the V into the space of endomor-
phisms of a vector space E, satisfying (1.5), i.e.,

(1.9) dw)? = (v,v)I, vev,
it follows from expanding # (v + w)? = [¢#(v) + & (w)]? that
(1.10) F(w)d(w) + P (w)d(v) =2(v,w)l, v,wev.

Then, from the construction of C/(V, g), it follows that ¢ extends uniquely to an
algebra homomorphism

(1.11) % :CI(V,g) — End(E), 9(1)=1.

This gives E the structure of a module over CI(V, g), or a Clifford module. If E
has a Hermitian metric and (1.4) also holds, that is,

(1.12) () = (w)*, vev,

we call E a Hermitian Clifford module. For this notion to be useful, we need g to
be positive-definite.

In the case where E = E¢ @ E; is a direct sum of Hermitian vector spaces, we
say a homomorphism ¢ : CI(V, g) — End(FE) gives E the structure of a graded
Clifford module provided ¢ (v) interchanges E¢ and E1, for v € V, in addition to
the hypotheses above. The principal symbol of (1.3) has this property if D is of
Dirac type.

Let us give some examples of operators of Dirac type. If M is a Riemannian
manifold, the exterior derivative operator

(1.13) d:NM— ANTM

has a formal adjoint

(1.14) §=d*:AMTIM — A M,

discussed in Chap. 2, §10, and in Chap. 5, §§8 and 9. Thus we have

(1.15) d+8:A*M —s A*M,
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where, with n = dim M,
n
ANM =AM
j=0

As was shown in Chap. 2, (d + 8)*(d + 8) = d*d + dd” is the negative of the
Hodge Laplacian on each A/ M, so (1.15) is a symmetric Dirac-type operator.
There is more structure. Indeed, we have

(1.16) d+8:A"M — AN

If D is this operator, then D* = d + § : A°®M — A®°"M, and an operator
of type (1.3) arises. If M is compact, the operator (1.16) is Fredholm, with in-
dex equal to the Euler characteristic of M, in view of the Hodge decomposition.
A calculation of this index in terms of an integrated curvature gives rise to the
generalized Gauss—Bonnet formula, as will be seen in §7.

Computations implying that (1.15) is of Dirac type were done in §10 of
Chap. 2, leading to (10.22) there. If we define

(L17) Ayt AV — ATV Ay A= AV)) = VAU A A D,
on a vector space V' with a positive-definite inner product, and then define
(1.18) i ATV — ATV

to be its adjoint, then the principal symbol of d + 8 on V = T))M is 1/i times
Ag — tg. That is to say,

(1.19) iM(v) = Ay — Ly
defines a linear map from V' into End(A¢ V') which extends to an algebra homo-

morphism
M :Cl(V,g) — End(AgV).

Given Ay Ay = — Ay Ay and its analogue for ¢, the anticommutation relation
(1.20) M@)Mw) + M(w)M(v) = 2{v, w)I

follows from the identity

(1.21) Avlw F+ twAy = (v, w) 1.

In this context we note the role that (1.21) played as the algebraic identity behind
Cartan’s formula for the Lie derivative of a differential form:

(1.22) Lxa=d]X)+ (do)|X:

cf. Chap. 1, Proposition 13.1, and especially (13.51).
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Another Dirac-type operator arises from (1.15) as follows. Suppose dim M =
n = 2k is even. Recall frpm Chap. 5, §8, that d* = § is given in terms of the
Hodge star operator on A’ M by

d* = (_l)j(n—j)+j % d *

(1.23) )
= *d * ifn = 2k.

Also recall that, on A/ M,
(1.24) %2 = (=1)/0=) = (=1)/  ifn = 2k.

Now, on the complexification AZ{: M of the real vector bundle A* M, define

(1.25) @ ALM — A M
by
(1.26) a=i/UD% 5 on ALM.

It follows that

(1.27) o =1
and
(1.28) a(d +8) = —(d + §)a.

Thus we can write

(1.29) AgM = AYM @ A™M, witha = +1 on AT M,
and we have
(1.30) DE =d +8:C®°(M,A%) — C®(M,AT).

Thus DI‘; is an operator of Dirac type, with adjoint D% . This operator is called
the Hirzebruch signature operator, and its index is called the Hirzebruch signature
of M.

Other examples of operators of Dirac type will be considered in the following
sections.

Both of the examples just discussed give rise to Hermitian Clifford modules.
We now show conversely that generally such modules produce operators of Dirac
type. More precisely, if M is a Riemannian manifold, 7Y M has an induced inner
product, giving rise to a bundle CI(M) — M of Clifford algebras. We suppose
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E — M is a Hermitian vector bundle such that each fiber is a Hermitian C [, (M )-
module (in a smooth fashion). Let E — M have a connection V, so

(1.31) V:C®M,E)— C®(M,T* ® E).

Now if Ey is a Cl(M)-module, the inclusion 7} < Cl gives rise to a linear
map

(1.32) m:C®M, T*® E) — C*(M,E),

called “Clifford multiplication.” We compose these two operators; set
(1.33) D=imoV:C®M,E)— C®(M,E).

We see that, forv € E,

(1.34) op(x.§)v =mE®v) =§-v,

soop(x,§) is |€], times an isometry on E,. Hence D is of Dirac type.

If U is an open subset of M, on which we have an orthonormal frame {e;}
of smooth vector fields, with dual orthonormal frame {v;} of 1-forms, then, for a
section ¢ of F,

(1.35) Dp=i) v;-Ve¢ onU.

Note that op (x, £)* = op(x, £), so D can be made symmetric by altering it at
most by a zero-order term. Given a little more structure, we have more. We say V
is a “Clifford connection” on E if V is a metric connection that is also compatible
with Clifford multiplication, in that

(1.36) Vx(-¢) = (Vxv) ¢ +v-Vxop,

for a vector field X, a 1-form v, and a section ¢ of E. Here, of course, Vx v arises
from the Levi—Civita connection on M .

Proposition 1.1. If'V is a Clifford connection on E, then D is symmetric.
Proof. Let ¢,y € C§°(M, E). We want to show that
(1.37) [[1we.01 = t0.0m]av =0,

M

We can suppose ¢, ¥ have compact supportin a set U on which local orthonormal
frames e, v; as above are given. Define a vector field X on U by

(X, v) = (p,v-¥), veAllU.
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If we show that, pointwise in U,
(1.38) idivX = (Dg,y)— (¢, DY),

then (1.37) will follow from the divergence theorem. Indeed, starting with
(1.39) divX =) (Ve X.v)).

and using the metric and derivation properties of V, we have

div X = Z[ej : (X,Uj) - (X’Vefvj):l

= Z[ej (@.vj-¥) — (9. (Ve,v)) - W]'

Looking at the last quantity, we expand the first part into a sum of three terms,
one of which cancels the last part, and obtain

(1.40) diVX:Z[(Vejgo,vj'lﬂ)—i-(go,vj-Vejlﬁ)],

which gives (1.38) and completes the proof.

If E = E¢ @ E; is a graded Hermitian C /(M )-module, if E¢ and E are each
provided with metric connections, and if (1.36) holds, then the construction above
gives an operator of Dirac type, of the form (1.3).

The examples in (1.15) and (1.30) described above can be obtained from
Hermitian Clifford modules via Clifford connections. The Clifford module is
A*M — M, with natural inner product on each factor A¥M and CI1(M)-module
structure given by (1.19). The connection is the natural connection on A* M, ex-
tending that on 7* M, so that the derivation identity

(1.41) Vx(eAy) = (Vxo) Ay + o A (VxY)

holds for a j-form ¢ and a k-form . In this case it is routine to verify the com-
patibility condition (1.36) and to see that the construction (1.33) gives rise to the
operator d + d* on differential forms.

We remark that it is common to use Clifford algebras associated to negative-
definite forms rather than positive-definite ones. The two types of algebras are
simply related. If a linear map ¢ : V' — End(FE) extends to an algebra homo-
morphism CI(V,g) — End(E), then i ¢ extends to an algebra homomorphism
Cl(V,—g) — End(FE). If one uses a negative form, the condition (1.12) that £
be a Hermitian Clifford module should be changed to ' (v) = =9 (v)*, v € V.
In such a case, we should drop the factor of i in (1.33) to associate the Dirac-type
operator D to a CI(M)-module E. In fact, getting rid of this factor of 7 in (1.33)
and (1.35) is perhaps the principal reason some people use the negative-definite
quadratic form to construct Clifford algebras.
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Exercises

1. Let E be a CI(M)-module with connection V. If ¢ is a section of E and f is a scalar
function, show that

D(fo) = f Do +i(df)- ¢,
where the last term involves a Clifford multiplication.
2. If V is a Clifford connection on E and u is a 1-form, show that

D(u-¢)=—u-Do +2iVyp +i(Du)- g,
where U 1is the vector field corresponding to u via the metric tensor on M, and
D:C®M, A — C®(M,CI)

is given by
Du =i Zvj -Veju,
with respect to local dual orthonormal frames e;,v;, and V arising from the Levi-
Civita connection.
3. Show that D(df) = iAf.
Note: Compare with Exercise 6 of §2.
4. If D arises from a Clifford connection on E, show that

D2(fg) = f D*¢ = 2Vya ro — (Af)g.

2. Clifford algebras

In this section we discuss some further results about the structure of Clifford al-
gebras, which were defined in §1.

First we note that, by construction, C/(V, g) has the following universal prop-
erty. Let Ap be any associative algebra over R, with unit, containing V' as a linear
subset, generated by V, such that the anticommutation relation (1.8) holds in Ao,
for all v,w € V; thatis, vw + wv = 2(v, w) - 1 in Ag. Then there is a natural
surjective homomorphism

2.1 a:Cl(V, g) — Ap.
If {e1,...,en} is a basis of V, any element of CI(V, g) can be written as a
polynomial in the e;. Since e jex = —exe; + 2(e;, ex) - 1 and in particular e? =

(ej,e;)-1, we can, starting with terms of highest order, rearrange each monomial
in such a polynomial so the e; appear with j in ascending order, and no exponent
greater than 1 occurs on any e;. In other words, each element w € CI(V, g) can
be written in the form

i .
2.2) w = Z Ay iy ell ---eil”,

ipy=0or1l

with real coefficients a;;...;, .
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Denote by A the set of formal expressions of the form (2.2), a real vector space
of dimension 2”; we have a natural inclusion V' C A. We can define a “product”
A® A — A in which a product of monomials (e} ---e})-(e]' - --e;"), with each
iy and each j;, equal to either O or 1, is a linear combination of monomials of such
a form, by pushing each e‘,’j‘ past the el forv > W, invoking the anticommutation
relations. It is routine to verify that this gives A the structure of an associative
algebra, generated by V. The universal property mentioned above implies that A
is isomorphic to CI(V, g). Thus each w € CI(V, g) has a unique representation
in the form (2.2), and dim C/(V, g) = 2" if dim V = n.

Recall from §1 the algebra homomorphism M : CI[(V,g) — End(A*V),
defined there provided g is positive-definite (which can be extended to include
general g). Then, we can define a linear map

(2.3) M :CI(V,g) — A*V: M(w)= Mw)(),

for w € CI(V, g). Note thatif v € V C CI(V,g), then M (v) = v. Comparing
the anticommutation relations of C[(V, g) with those of A*V, we see that if w €
CI(V, g) is one of the monomials in (2.2), say w = e{l .- -e‘,{” ,all j, eitherOor 1,
k= ji1+-+ ju, then

(2.4) M(e{l---e,{")—e{‘ /\---/\e*,{” e Ak 1y,

It follows easily that (2.3) is an isomorphism of vector spaces. This observation
also shows that the representation of an element of C/(V, g) in the form (2.2) is
unique. If g is positive-definite and e is an orthonormal basis of V', the difference
in (2.4) vanishes.

In the case g = 0, the anticommutation relation (1.8) becomes vw = —wv,
for v, w € V, and we have the exterior algebra

CI(V,0) = A*V.
Through the remainder of this section we will restrict attention to the case where
g is positive-definite. We denote (v, v) by |v|2. For V = R” with g its standard

Euclidean inner product, we denote C/(V, g) by Cl(n).
It is useful to consider the complexified Clifford algebra

Cl(n) = C ® Cl(n),

as it has a relatively simple structure, specified as follows.

Proposition 2.1. There are isomorphisms of complex algebras
(2.5) Cll)~C®C, CI(2)~ End(C?),
and

(2.6) Cl(n +2) =~ Cl(n) ® Cl(2);
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hence, with k = 2k
2.7) Cl(2k) =~ End(C*), CIl(2k + 1) ~ End(C*) & End(C*).

Proof. The isomorphisms (2.5) are simple exercises. To prove (2.6), imbed R"*+?2
into C/(n) ® CI(2) by picking an orthonormal basis {ej, ..., e,+2} and taking

ejt>iej®eprieptn, forl < j <n,
(2.8)
ej—~>1®ej, forj =n+1lorn+2.

Then the universal property of C/(n + 2) leads to the isomorphism (2.6). Given
(2.5) and (2.6), (2.7) follows by induction.

While, parallel to (2.5), one has C/(1) = R@®R and C/(2) = End(R?), other
algebras Cl(n) are more complicated than their complex analogues; in place of
(2.6) one has a form of periodicity with period 8. We refer to [LM] for more on
this.

It follows from Proposition 2.1 that €2 has the structure of an irreducible
C(2k)-module, though making the identification (2.7) explicit involves some un-
tangling, in a way that depends strongly on a choice of basis. It is worthwhile to
note the following explicit, invariant construction, for V, a vector space of real
dimension 2k, with a positive inner product { , ), endowed with one other piece
of structure, namely a complex structure J. Assume J is an isometry for (, ).
Denote the complex vector space (V, J) by V, which has complex dimension k.
On V we have a positive Hermitian form

(2.9) (u,v) = (u,v) +iu, Jv).

Form the complex exterior algebra
(2.10) ALY =P ALy,

with its natural Hermitian form. For v € V), one has the exterior product vA :
A{C_V — A{CHV; denote its adjoint, the interior product, by j, : A{CHV —
A{CV. Set

(2.11) ip)e =vA@—jyp, vVEV, @AV

Note that v A ¢ is C-linear in v and j,¢ is conjugate linear in v, so p(v) is only
R-linear in v. As in (1.20), we obtain

(2.12) p)p) + p)pu() = 2(u,v) - 1,
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so  : V — End(A{ V) extends to a homomorphism of algebras
(2.13) w:Cl(V,g) — End(AgV).

hence to a homomorphism of C-algebras

(2.14) wu:CI(V,g) — End(AgV),

where CI(V, g) denotes C @ CI(V, g).

Proposition 2.2. The homomorphism (2.14) is an isomorphism when V' is a real
vector space of dimension 2k, with complex structure J, V the associated complex
vector space.

Proof. We already know that both C/(V, g) and End(A{)) are isomorphic to
End(C¥), k = 2*. We will make use of the algebraic fact that this is a complex
algebra with no proper two-sided ideals. Now the kernel of u in (2.14) would
have to be a two-sided ideal, so either © = 0 or w is an isomorphism. But for
vel, uw)-1=v,sou # 0;thus p is an isomorphism.

We next mention that a grading can be put on C/(V, g). Namely, let CI°(V, g)
denote the set of sums of the form (2.2) with iy + - - - + i, even, and let CI(V, g)
denote the set of sums of that form with i; + - + 7, odd. It is easy to see that
this specification is independent of the choice of basis {e; }. Also we clearly have

(2.15) ueCl(V,g), we CI¥(V,g) = uw e CIVH*(V, g),

where j and k are each 0 or 1, and we compute j + k mod 2. If (V, g) is R" with
its standard Euclidean metric, we denote CI/ (V, g) by Cl/(n), j =0or 1.
We note that there is an isomorphism

(2.16) j:ClR2k —1) — CI°2k)

uniquely specified by the property that, for v € R?*~1 j(v) = veyx, where
{e1,...,ex—1} denotes the standard basis of R2k=1 | with ek added to form a
basis of R2*. This will be useful in the next section for constructing spinors on
odd-dimensional spaces.

We can construct a finer grading on CI(V, g). Namely, set

(2.17)  CI%(V, g) = set of sums of the form (2.2), with iy + -+ + i, = k.
Thus CI1/(V, g) is the set of scalars and CII(V, g) is V. If we insist that {e;}
be an orthonormal basis of V', then C/ [k](V, g) is invariantly defined, for all k. In

fact, using the isomorphism (2.3), we have

(2.18) Ci®(v,g) = M~ (A*V).
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Note that

Cl'v.g)= @ c1™(v.g) and CI'(V.g) = @@ c1¥(V. ).

k even k odd

Let us also note that C/[2/(V, g) has a natural Lie algebra structure. In fact, if
{e;} is orthonormal,

[eiej.exer] = eiejere; — exegeie;
(2.19)
= 2(8jke,~eg - é’gje,-ek + é’ikegej — é’g,-ekej).

The construction (2.17) makes C/(V, g) a graded vector space, but not a

graded algebra, since typically CIV1(V, g) - CI%] (V,g) is not contained in
CIUTKI(V, g), as (2.19) illustrates. We can set

(2.20) CI®W.g) = @P{CIV(V.g): j <k. j =k mod 2},

and then C1U)(V, g)-CI1®(V, g) c C1UTR(V, g). As k ranges over the even or
the odd integers, the spaces (2.20) provide filtrations of C1°(V, g) and CI'(V, g).

Exercises
1. Let V have an oriented orthonormal basis {eg,--- , ex}. Set
2.21) v=e;---en € CIL(V, g).

Show that v is independent of the choice of such a basis.
Note: M(v) = e1 A--+ Aep € A"V, with M as in (2.3).
2. Show that v2 = (—1)"(@=1D/2,
Show that, forall u € V, vu = (—=1)" " Luv.
4. With p as in (2.11)—(2.14), show that

bl

p()* = (=102 0y and pw)*pv) = 1.
5. Show that
M (vw) = cup * M (w),

forw € Cl[k](V, g), where * : ARV > ARV s the Hodge star operator. Find the
constants ¢, .
6. LetD: C®(M,T*) — C>®(M, Cl) be as in Exercise 2 of §1, namely,

Duzinj -Veju,

where {e} is a local orthonormal frame of vector fields, {v;} the dual frame. Show
that ~
M (Dv) = —i(d +d*)v.
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7. Show that End(C™) has no proper two-sided ideals. (Hint: Suppose My # 0 belongs
to such an ideal Z and vg # 0 belongs to the range of My. Show that every v € C™
belongs to the range of some M € Z, and hence that every one-dimensional projection
belongs to Z.)

3. Spinors

We define the spinor groups Pin(V, g) and Spin(V, g), for a vector space V with
a positive-definite quadratic form g; set |[v|?> = g(v,v) = (v, v). We set

(3.1) Pin(V,g) ={vi---vx € CI(V,g):vj €V, |vj| =1},

with the induced multiplication. Since (vy -+ - vg)(vg ---v1) = 1, it follows that
Pin(V, g) is a group. We can define an action of Pin(V, g) on V as follows. If
ueVandx eV, then ux + xu = 2(x,u) - 1 implies

(3.2) uxu = —xuu + 2(x, uyu = —|ul®>x + 2(x, u)u.
Ifalsoy e V,
(3.3) (uxu, uyu) = ul>(x,y) = (x,y) if [u] = 1.

Thus if u = v; --- v € Pin(V, g) and if we define a conjugation on CI(V, g) by
(3.4) u* =vg--evr, v eV,

it follows that

(3.5) X uxu®, xeV,

is an isometry on V for each u € Pin(V, g). It will be more convenient to use
(3.6) Wt = DR, u= vy

Then we have a group homomorphism

3.7 T :Pin(V,g) — O(V, g),
defined by
(3.8) t(uw)x = uxu®, x eV, uePin(V,g).

Note thatif v € V, |v| = 1, then, by (3.2),

(3.9 t(v)x = x —2{(x,v)v



3. Spinors 295

is the reflection across the hyperplane in V' orthogonal to v. It is easy to show
that any orthogonal transformation 7 € O(V, g) is a product of a finite number of
such reflections, so the group homomorphism (3.7) is surjective.

Note that each isometry (3.9) is orientation reversing. Thus, if we define

Spin(V, g) ={vi---vp € CI(V,g):v; €V, |vj| =1, k even}

(3.10) ) 0
=Pin(V,g) N CI"(V, g),

then

(3.11) T : Spin(V, g) — SO(V, g)

and in fact Spin(V, g) is the inverse image of SO(V, g) under 7 in (3.7). We now
show that t is a 2-fold covering map.

Proposition 3.1. t is a 2-fold covering map. In fact, ker T = {£1}.

Proof. Note that +1 € Spin(V, g) C CI(V, g) and £1 acts trivially on V, via
(3.8). Now, if u = vy ---vx € Kker t, k must be even, since 7(x) must preserve
orientation, so u* = u*. Since uxu* = x for all x € V, we have ux = xu, so
uxu = |u|>x, x € V.If we pick an orthonormal basis {ej, ..., e,} of VV and write
u € ker 7 in the form (2.2), each iy + --- 4 i, even, since e ;ue; = u for each j,
we deduce that, for each j,

u= Z(—l)if aiy iy e'ninif y e ker 1.

Hence i; = Oforall j, so uis a scalar; hence u = £1.
We next consider the connectivity properties of Spin(V, g).

Proposition 3.2. Spin(V, g) is the connected 2-fold cover of SO(V, g), provided
g is positive-definite and dim V > 2.

Proof. It suffices to connect —1 € Spin(V, g) to the identity element 1 via a
continuous curve in Spin(V, g). In fact, pick orthogonal e;, e», and set

y(1) = er - [—(cost)ey + (sint)ez], 0<1 <m.

If V = R”" with its standard Euclidean inner product g, denote Spin(V, g) by
Spin(n). It is a known topological fact that SO(n) has fundamental group Z,, and
Spin(n) is simply connected, for n > 3. Though we make no use of this result,
we mention that one route to it is via the “homotopy exact sequence” (see [BTu])
for S* = SO(n + 1)/SO(n). This leads to 711 (SO(n + 1)) ~ m1(SO(n)) for
n > 3. Meanwhile, one sees directly that SU(2) is a double cover of SO(3), and
it is homeomorphic to S3.
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We next produce representations of Pin(V, g) and Spin(V, g), arising from
the homomorphism (2.13). First assume V' has real dimension 2k, with complex
structure J; let V = (V, J) be the associated complex vector space, of complex
dimension k, and set

(3.12) S(V.g.J) = AV,

with its induced Hermitian metric, arising from the metric (2.9) on V. The
inclusion Pin(V,g) < CI(V,g) C CI(V,g) followed by (2.14) gives the
representation

(3.13) p:Pin(V,g) — Aut(S(V, g, J)).

Proposition 3.3. The representation p of Pin(V, g) is irreducible and unitary.

Proof. Since the C-subalgebra of CI/(V,g) generated by Pin(V, g) is all of
CI(V, g), the irreducibility follows from the fact that u in (2.14) is an isomor-
phism. For unitarity, it follows from (2.11) that u(v) is self-adjoint for v € V;
by (2.12), u(v)? = |v|?I,s0v € V, |v| = 1 implies that p(v) is unitary, and
unitarity of p on Pin(V, g) follows.

The restriction of p to Spin(V, g) is not irreducible. In fact, set
(3.14) S+(V.g, J) = AZ™W, S_(V,g,J) = AZV.

Under p, the action of Spin(V, g) preserves both S; and S_. In fact, we have
(2.14) restricting to

(3.15) p:CI%V,g) — Endc(S+(V.g.J)) & Endc(S—(V.g,J)).
this map being an isomorphism. On the other hand,
(3.16) zeCIN(V,g) = u(z) : S+ — S¥.
From (3.15) we get representations
(3.17) D, : Spin(V. g) — Aut(S+(V.g.J)),
which are irreducible and unitary.
If V = R2* with its standard Euclidean metric, standard orthonormal basis
e1,...,e, we impose the complex structure Je; = ej4x, Jejyx = —ei, 1 <

i <k,and set

(3.18) S©2k) = S(R*,| 12, J), S+(2k) = S+(R3*,| 2, J).
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Then (3.17) defines representations

(3.19) D, : Spin(2k) —> Aut(S+(2k)).
We now consider the odd dimensional case. If V = ]RZk_l, we use the
isomorphism
(3.20) ClQ2k — 1) — CI°(2k)
produced by the map
(3.21) V> vey, UE R2-1,

Then the inclusion Spin(2k — 1) C CI/(2k — 1) composed with (3.20) gives an
inclusion

(3.22) Spin(2k — 1) — Spin(2k).

+

Composing with D /2

from (3.19) gives a representation
(3.23) D1+/2 : Spin(2k — 1) — Aut S (2k).

We also have a representation Dl_/2 of Spin(2k — 1) on S_(2k), but these two
representations are equivalent. They are intertwined by the map

(3.24) ea) : S+(2k) — S_(2k).

We now study spinor bundles on an oriented Riemannian manifold M, with
metric tensor g. Over M lies the bundle of oriented orthonormal frames,

(3.25) P— M,
a principal SO(n)-bundle, n = dim M. A spin structure on M is a “lift,”
(3.26) P— M,

a principal Spin(#n)-bundle, such that P is a double covering of P in such a way
that the action of Spin(n) on the fibers of P is compatible with the action of
SO(n) on the fibers of P, via the covering homomorphism t : Spin(n) — SO(n).
Endowed with such a spin structure, M is called a spin manifold. There are topo-
logical obstructions to the existence of a spin structure, which we will not discuss
here (see [LM]). It turns out that there is a naturally defined element of H2(M, Z5)
whose vanishing guarantees the existence of a lift, and when such lifts exist,
equivalence classes of such lifts are parameterized by elements of H! (M, Z,).
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Given a spin structure as in (3.26), spinor bundles are constructed via the
representations of Spin(n) described above. Two cases arise, depending on
whether n = dim M is even or odd. If n = 2k, we form the bundle of spinors

(3.27) S(P) = P x, S(2k),

where p = Dt 1/2 e Dl_/2 is the sum of the representations in (3.19); this is a sum
of the two vector bundles

(3.28) Si(P)=P Xpi_ S+ (2k).

Recall that, as in §6 of Appendix C, on Connections and Curvature, the sections
of S(P) are in natural correspondence with the functions f on P, taking values
in the vector space S(2k), which satisfy the compatibility conditions

(3.29) f(p-g) =p() " f(p). peP, geSpin2k),

where we write the Spin(n)-action on Pasa right action.
Recall that S(2k) is a CI(2k)-module, via (2.13). This result extends to the
bundle level.

Proposition 3.4. The spinor bundle S(P) is a natural C1(M)-module.

Proof. Given a section u of CI(M) and a section ¢ of S (P) we need to define
u- ¢ as asection of S (P) We regard u as a function on P with values in C[(n)
and @ as a function on P with values in S (n). Then u - ¢ is a function on P with
values in S(n); we need to verify the compatibility condition (3.29). Indeed, for
p € P, g € Spin(2k),

w-p(p-g~") = t(gu(p) - p(g)e(p)
(3.30) = gu(p)g’gp(p)
= gu(p) - ¢(p),
since gg* = 1 for g € Spin(n). This completes the proof.

Whenever (M, g) is an oriented Riemannian manifold, the Levi-Civita con-
nection provides a connection on the principal SO(n)-bundle of frames P. If M
has a spin structure, this choice of horizontal space for P lifts in a unique natural
fashion to provide a connection on P. Thus the spinor bundle constructed above
has a natural connection, which we will call the Dirac—Levi—Civita connection.

Proposition 3.5. The Dirac—Levi-Civita connection V on S(P) is a Clifford
connection.
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Proof. Clearly, V is a metric connection, since the representation p of Spin(2k)
on S(2k) is unitary. It remains to verify the compatibility condition (1.36),
namely,

(3.31) Vx(-¢9) = (Vxv)-¢ +v-Vxo,

for a vector field X, a 1-form v, and a section ¢ of S (15). To see this, we first
note that as stated in (3.30), the bundle C /(M) can be obtained from P — M
as P x, CI(2k), where k is the representation of Spin(2k) on C(2k) given by
k(g)w = gwg”. Furthermore, T* M can be regarded as a subbundle of CI(M),
obtained from P x P R2k with the same formula for k. The connection on T* M
obtained from that on P is identical to the usual connection on 7* M defined via
the Levi—Civita formula. Given this, (3.31) is a straightforward derivation identity.

Using the prescription (1.31)—(1.33), we can define the Dirac operator on a
Riemannian manifold of dimension 2k, with a spin structure:

(3.32) D : C®(M,S(P)) — C®(M,S(P)).
We see that Proposition 1.1 applies; D is symmetric. Note also the grading:
(3.33) D : C®(M,S+(P)) — C*®(M, S+(P)).

In other words, this Dirac operator is of the form (1.3).

On a Riemannian manifold of dimension 2k with a spin structure P—>M , let
F — M be another vector bundle. Then the tensor product £ = S (f’ )® Fisa
CI(M)-module in a natural fashion. If F" has a connection, then E gets a natural
product connection. Then the construction (1.31)-(1.33) yields an operator D r
of Dirac type on sections of E; in fact

(3.34) Dp :C®(M,E+) — C®(M,Es), Ei+=S+(P)®F.

If F has a metric connection, then E gets a Clifford connection. The operator D g
is called a twisted Dirac operator. Sometimes it will be convenient to distinguish
notationally the two pieces of DF; we write

Df:C®(M,E;) — C®(M, E-),

(3.35) _
Dy :C®(M,E_) — C®(M,E;).

When dim M = 2k — 1 is odd, we use the representation (3.23) to form the

bundle of spinors ~ ~
S+(P)=P xD1+/2 S+(2k).

The inclusion C1(2k — 1) < C1°(2k) defined by (3.20)—(3.21) makes S (2k) a
C1(2k — 1)-module, and analogues of Propositions 3.4 and 3.5 hold. Hence there
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arises a Dirac operator, D : C*°(M, S+ (P)) — C°°(M, S4+(P)). Twisted Dirac
operators also arise; however, in place of (3.34), we have Df : C*°(M, E4) —
COO(M, E+), with E+ = S+(P) ® F.

Exercises

1. Verity that the map (3.15) is an isomorphism and that the representations (3.17) of
Spin(V, g) are irreducible when dim V = 2k.
2. Let v be as in Exercises 1-4 of §2, with n = 2k. Show that
a) the center of Spin(V, g) consists of {1, —1,v, —v},
b) wu(v) leaves S+ and S— invariant,
¢) w(v) commutes with the action of CI%(V, g) under y, hence with the represen-
tations th/z of Spin(V, g),
d) p(v) acts as a pair of scalars on St and S—, respectively. These scalars are the
two square roots of (—l)k .

3. Calculate p(v) - 1 directly, making use of the definition (2.11). Hence match the scalars
in exercise 2d) to St and S—. (Hint: p(efqq---exr) - 1 = (—i)kek_H A e A
ey in A{EV. Usingejip =iejinV, forl <j < k, we have

p)-1=pler---ex)ler A Aeg),

and there are k interior products to compute.)

4. Show that CI[2(V, g), with the Lie algebra structure (2.19), is naturally isomorphic
to the Lie algebra of Spin(V, g). In fact, if (@ ;) is a real, antisymmetric matrix, in
the Lie algebra of SO(n), which is the same as that of Spin(#), show that there is the
correspondence

1
A=(ajr) Zzajk ejex = k(A).
In particular, show that k(A1 42 — A2A41) = k(A1)k(A2) —k(A2)k(A1).
5. If X is a spin manifold and M C X is an oriented submanifold of codimension 1, show

that M has a spin structure. Deduce that an oriented hypersurface in R” has a spin
structure.

4. Weitzenbock formulas

Let E — M be a Hermitian vector bundle with a metric connection V. Suppose
E is also a CI(M)-module and that V is a Clifford connection. If we consider
the Dirac-type operator D : C*°(M, E) — C°°(M, E) and the covariant deriva-
tive V: C®(M,E) — C®(M,T* ® E), then D? and V*V are operators on
C (M, E) with the same principal symbol. It is of interest to examine their dif-
ference, clearly a differential operator of order < 1. In fact, the difference has
order 0. This can be seen in principle from the following considerations. From
Exercise 4 of §1, we have

(4.1) D*(f¢) = f D*¢ —2Vua r¢ — (Af)g
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when ¢ € C°(M, E), f a scalar function. Similarly, we compute V*V( f¢).
The derivation property of V implies

4.2) V(fo)=fVe +df ®¢.

To apply V* to this, first a short calculation gives

(4.3) Vifu®e)= fViu®p)—(dfu.
foru e C®(M,T*), ¢ € C*(M, E), and hence

4.4) VEfVe) = V'V = Veua ro.

This gives V* applied to the first term on the right side of (4.2). To apply V* to
the other term, we can use the identity (see Appendix C, (1.35))

4.5) V¥ u® @) = —Vye — (divU)e,

where U is the vector field corresponding to u via the metric on M . Hence
(4.6) VHAf ® ¢) = —Veua 1o — (Af)p.

Then (4.6) and (4.4) applied to (4.2) gives

4.7 VIV(fe) = fV*V9 =2V s — (Af ).
Comparing (4.1) and (4.7), we have

4.8) (D?=V*V)(fg) = f(D* = V*V)g.

which implies D? — V*V has order zero, hence is given by a bundle map on E.
We now derive the Weitzenbock formula for what this difference is.

Proposition4.1. If E — M is a CI(M)-module with Clifford connection and
associated Dirac-type operator D, then, for p € C*°(M, E),

(4.9) D?p = V*V@—kaij(ek,ej)go,
j>k

where {e;} is a local orthonormal frame of vector fields, with dual frame field
{v;}, and K is the curvature tensor of (E, V).
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Proof. Starting with Do =i > v; Ve, ¢, we obtain
D2<p = - Z Vi Ve, (vj Vej (p)
Jk

= —ka[vjvekvejﬁﬁ + (Vekvf)Vej(p]’
J-k

(4.10)

using the compatibility condition (1.36). We replace V, V. ; by the Hessian, us-
ing the identity

(4.11) vjk,ejw = Ve Ve; 9 — Vv, e; 0

cf. (2.4) of Appendix C. We obtain

quo = — Z vkvjVezk,ejqo
jk
4.12)

_ Z Ukl:UjVngej(p =+ (Vekv,-)Vejqo].
J.k

Let us look at each of the two double sums on the right. Using v2 = 1 and the
anticommutator property vgv; = —v; vk for k # j, we see that the first double
sum becomes

(4.13) =Y V2 0= viviK(ex.e))p,
J

>k

since the antisymmetric part of the Hessian is the curvature. This is equal to the
right side of (4.9), in light of the formula for V*V established in Proposition 2.1
of Appendix C. As for the remaining double sum in (4.12), for any p € M, we
can choose a local orthonormal frame field {e;} such that V., ex = 0 at p, and
then this term vanishes at p. This proves (4.9).

We denote the difference D2 — V*V by K, so
(4.14) (D?>—-V*V)p = K¢, KeC®(M,EndE).

The formula for IC in (4.9) can also be written as

1
(4.15) ngoz—Ekaij(ek,ej)go.
Jik

Since a number of formulas that follow will involve multiple summation, we will
use the summation convention.
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This general formula for K simplifies further in some important special cases.
The first simple example of this will be useful for further calculations.
Proposition 4.2. Let E = A*M, with Cl(M)-module structure and connection
described in §1, so K € C°(M, End A*). In this case,
(4.16) ue AN'M = Ku = Ric(u).

Proof. The curvature of A*M is a sum of curvatures of each factor A¥* M. In
particular, if {e;, v;} is a local dual pair of frame fields,

(4.17) K(ei,e;)vx = —RF g,

where R¥,; ; are the components of the Riemann tensor, with respect to these
frame fields, and we use the summation convention. In light of (4.15), the desired
identity (4.16), will hold provided

1 .
(4.18) Vi v;veR¥i; = Ric(vp),

so it remains to establish this identity. Since, if (7, j, {) are distinct, v;v;vy =
VgV V; = v;vgv;, and since by Bianchi’s first identity

Rkeij + Rkje[ + Rkijg = O,

it follows that in summing the left side of (4.18), the sum over (i, j, ) distinct
vanishes. By antisymmetry of R¥; ., the terms with i = j vanish. Thus the only
contributions arise fromi = ¢ # j and i # { = j. Therefore, the left side of
(4.18) is equal to

1 .
4.19) E(_vj Rk,’,:,' + v; Rkjij) = V; Rk‘j,",' = RIC(vk),

which completes the proof.

We next derive Lichnerowicz’s calculation of K when E = S(P), the spinor
bundle of a manifold M with spin structure. First we need an expression for the
curvature of S(P).

Lemma 4.3. The curvature tensor of the spinor bundle S (}3) is given by
ok
(4.20) K(ei.ej)p = ZR £ij VR VL.

Proof. This follows from the relation between curvatures on vector bundles and
on principal bundles established in Appendix C, §6, together with the identifica-
tion of the Lie algebra of Spin(n) with C {2 (n) given in Exercise 4 of §3.
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Proposition 4.4. For the spin bundle S(P), K € C®(M, End S(P)) is given by

1
4.21) Ko = ZS(/),

where S is the scalar curvature of M.

Proof. Using (4.20), the general formula (4.15) yields
1 k 1 k
(4.22) Ky = —gR €ij ViVj VU = gvivjveR tij Vk®s

the last identity holding by the anticommutation relations; note that only the sum
over k # £ counts. Now, by (4.18), this becomes

1
K:QD = Zvikakjij(p

1
(4.23) =1 Ric;;¢ (by symmetry)
1
= _So.
1 ¥
completing the proof.

We record the generalization of Proposition 4.4 to the case of twisted Dirac
operators. We mention that one often sees a different sign before the sum, due to
a different sign convention for Clifford algebras.

Proposition 4.5. Let E — M have a metric connectiola V, with curvature RE.
For the twisted Dirac operator on sections of F = S(P) ® E, the section K of
End F has the form

1

1
(4.24) Ko = ZS(/)_E E viijE(ei,ej)go.
i,j

Proof. Here RE (¢;, e;) is shorthand for I ® RZ (e;, e;) acting on S(P)Q E.
This formula is a consequence of the general formula (4.15) and the argument
proving Proposition 4.4, since the curvature of S(P)® Eis K® I +1 ® RE, K
being the curvature of S(P), given by (4.20).

These Weitzenbock formulas will be of use in the following sections. Here we
draw some interesting conclusions, due to Bochner and Lichnerowitz.

Proposition 4.6. If M is compact and connected, and the section K in (4.14)—
(4.15) has the property that K > 0 on M and IC > 0 at some point, then ker
D =0.
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Proof. This is immediate from

(D¢, 9) = (Ko, ) + [Vol3..

Proposition 4.7. If M is a compact Riemannian manifold with positive Ricci ten-
sor, then by (M) = 0, that is, the deRham cohomology group H'(M,R) = 0.

Proof. ViaHodge theory, we want to show thatif u € Al (M)anddu = d*u=0,
then u = 0. This hypothesis implies Du = 0, where D is the Dirac-type operator
dealt with in Proposition 4.2. Consequently we have, for a 1-form u on M,

(4.25) | Dull3> = (Ric(u), u) + || Vul|3.,
so the result follows.

Proposition 4.8. If M is a compact, connected Riemannian manifold with a spin
structure whose scalar curvature is > 0 on M and > 0 at some point, then M has
no nonzero harmonic spinors, that is, ker D = 0 in C*°(M, S(P)).

Proof. Inlight of (4.21), this is a special case of Proposition 4.6.

Exercises

1. Let A be the Laplace operator on functions (0-forms) on a compact Riemannian mani-
fold M, Aj the Hodge Laplacian on k-forms. If Spec(—A) consists of 0 = Ao < A1 <
Ay <---,show that A1 € Spec(—A1).

2. If Ric > ¢ol on M, show that A1 > cq.

3. Recall the deformation tensor of a vector field u:

1 1
Defu = >Lug = >(Vu+ Vi), Def:C®(M,T) — C®(M,S?).

Show that
Def*v = —div v,

where (div v)/ = v/ k .k - Establish the Weitzenbock formula

(4.26) 2 div Def u = —V*Vu + grad div u + Ric(u).

The operator div on the right is the usual divergence operator on vector fields. (This
formula will appear again in Chap. 17, in the study of the Navier—Stokes equation.)
4. Suppose M is a compact, connected Riemannian manifold, whose Ricci tensor satisfies

4.27) Ric(x) <0on M, Ric(xg) <0, for some xg € M.

Show that the operator Def is injective, so there are no nontrivial Killing fields on M,
hence no nontrivial one-parameter groups of isometries. (Hint: From (4.26), we have

(4.28) 2Def ull7, = |Vl 5 + [Idiv u]|> — (Ric(u), u) ;».)
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5. As shown in (3.39) of Chap.2, the equation of a conformal Killing field on an
n-dimensional Riemannian manifold M is

(4.29) Def X — %(div X)g = 0.

Note that the left side is the trace-free part of Def X € C%°(M, S2T*). Denote it by
DrrF X. Show that

1
(430) Dip =—div S2T> D7pDrrX = —divDef X + —(grad div X),
0 n

where S2T* is the trace-free part of S27*. Show that

@30 1D XIZ = SIVK I, + (5 - ) Iaiv X2 = 3 (Rie(x). X) .
Deduce that if M is compact and satisfies (4.27), then M has no nontrivial one-
parameter group of conformal diffeomorphisms.

6. Show that if M is a compact Riemannian manifold which is Ricci flat (i.e., Ric = 0),
then every conformal Killing field is a Killing field, and the dimension of the space of
Killing fields is given by

4.32) dimpg ker Def = dim H! (M, R).
(Hint: Combine (4.25) and (4.28).)
7. Suppose dim M = 2 and M is compact and connected. Show that, for u €

C®(M,S2T*),
1
1D} pull = 5190l + [ Klul? av.
M

where K is the Gauss curvature. Deduce that if K > 0 on M, and K(xg) > 0 for some
Xo € M, then Ker D;"F = 0. Compare with Exercises 6-8 of §10.
8. If u and v are vector fields on a Riemannian manifold M, show that

(4.33) div Vv = V,(div v) + Tr((Vu)(Vv)) — Ric(u, v).

Compare with formula (3.17) in Chap. 17, on the Euler equation. Relate this identity to
the Weitzenbock formula for A on 1-forms (a special case of Proposition 4.2).

5. Index of Dirac operators

If D:C®(M, Ey) — C>®(M, E;) is an elliptic, first-order differential operator
between sections of vector bundles Ey and E; over a compact manifold M, then,
as we have seen, D : H*t*'(M, Ey) — H*(M, E,) is Fredholm, for any real k.
Furthermore, ker D is a finite-dimensional subspace of C*°(M, Ey), independent
of k, and D* : HX(M,E|) — H%'(M, Ey) has the same properties. A
quantity of substantial importance is the index of D:

(5.1) Index D = dim ker D — dim ker D*.
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In this section and the next we derive a formula for this index, due to Atiyah and
Singer. Later sections will consider a few applications of this formula.

One basic case for such index theorems is that of twisted Dirac operators.
Thus, let ¥ — M be a vector bundle with metric connection, over a compact
Riemannian manifold M with a spin structure. Assume dim M = n = 2k is
even. The twisted Dirac operator constructed in §3 in particular gives an elliptic
operator

(5.2) Dr :C®(M,S+(P)® F) — C®(M,S_(P) ® F).
The Atiyah—Singer formula for the index of this operator is given as follows.

Theorem 5.1. If M is a compact Riemannian manifold of dimensionn = 2k with
spin structure and D F the twisted Dirac operator (5.2), then

(5.3) Index Dy = (A(M) Ch(F),[M]).

What is meant by the right side of (5.3) is the following. fl(M ) and Ch(F') are
certain characteristic classes; each is a sum of even-order differential forms on
M, computed from the curvatures of S(P) and F, respectively. We will derive
explicit formulas for what these are in the course of the proof of this theorem,
in the next section, so we will not give the formulas here. The pairing with M
indicated in (5.3) is the integration over M of the form of degree 2k = n arising
in the product A(M)Ch(F).

The choice of notation in A(M) and Ch(F) indicates an independence of such
particulars as the choice of Riemannian metric on M and of connection on F. This
is part of the nature of characteristic classes, at least after integration is performed;
for a discussion of this, see §7 of Appendix C. There is also a simple direct reason
why Index DF does not depend on such choices. Namely, any two Riemannian
metrics on M can be deformed to each other, and any two connections on F' can
be deformed to each other. The invariance of the index of DF is thus a special
case of the following.

Proposition 5.2. If Ds, 0 < s < 1, is a continuous family of elliptic differen-
tial operators Dg : C®°(M, Eg) — C°°(M, E1) of first order, then Index Dy is
independent of s.

Proof. We have a norm-continuous family of Fredholm operators Dy
HY(M, Ey) — L?(M, E/); the constancy of the index of any continuous family
of Fredholm operators is proved in Appendix A, Proposition 7.4.

The proof of Theorem 5.1 will be via the heat-equation method, involv-
ing a comparison of the spectra of D*D and DD*, self-adjoint operators on
L?(M, Ey) and L?(M, E;), respectively. As we know, since D*D = Lg and
DD* = L are both elliptic and self-adjoint, they have discrete spectra, with
eigenspaces of finite dimension, contained in C*°(M, E ), say

(5.4) Eigen(L;, 1) = {u € C®(M.E;): Lju=Au}.
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We have the following result:

Proposition 5.3. The spectra of Lo and L are discrete subsets of [0, 00) which
coincide, except perhaps at 0. All nonnero eigenvalues have the same finite
multiplicity.

Proof. It is easy to see that for each A € [0,00), D : Eigen(Lo,A) —

Eigen(L,A)and D* : Eigen(L,A) — Eigen(Lg,A).ForA # 0, D and A™'D*
are inverses of each other on these spaces.

We know from the spectral theory of Chap. 8 that ¢(L¢) and ¢(L;) are trace
class for any ¢ € S(R). We hence have the following.

Proposition 5.4. For any ¢ € S(R), with ¢(0) = 1,

(5.5) Index D = Tr o(D*D) — Tr o(DD").
In particular, for any t > 0,

(5.6) Index D = Tre P"D _ Ty —1PD"

Now, whenever D is of Dirac type, so D*D = Lo and DD* = L; have scalar
principal symbol, results of Chap. 7 show that

5.7) =L u(x) = / k(.. y) u(y) dV(y),
M

with
(5.8) kj (t,x,x) ~ t_”/z[a‘,-o(x) +aj (x)t + -+ a‘,-g(x)te + :I,

ast \, 0, witha; € C®(M,End E}), so

(5.9) Tre b~ 172 (bjo + byt 4o+ bjutt +--1)),
with
(5.10) bjg 2/ Traje(x) dV(x).

M
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In light of (5.6), we have the following result:

Proposition 5.5. If D is of Dirac type on M, of dimension n = 2k, then

(5.11) Index D = boy, — by = / Tr [aok (x) — arx(x)]d V(x),
M

where a jy are the coefficients in (5.8).

‘We remark that these calculations are valid for dim M = n odd. In that case,
there is no coefficient of % in (5.8) or (5.9), so the identity (5.6) implies Index
D = 0 for dim M odd. In fact, this holds for any elliptic differential operator, not
necessarily of Dirac type. On the other hand, if dim M is odd, there exist elliptic
pseudodifferential operators on M with nonzero index.

We will establish the Atiyah—Singer formula (5.3) in the next section by show-
ing that, for a twisted Dirac operator D r, the 2k-form part of the right side of
the formula (5.3), with 121(M ) and Ch(F') given by curvatures in an appropriate
fashion, is equal pointwise on M to the integrand in (5.11). Such an identity is
called a local index formula.

6. Proof of the local index formula

Let DF be a twisted Dirac operator on a compact spin manifold, as in (5.2). If
Lo = D} DF and L1 = DF D7}, we saw in §5 that, for all > 0,

(6.1) Index Dp = /[Tr ko(t,x,x)— Tr kl(t,x,x)] dV(x),
M

where k; (¢, x, y) are the Schwartz kernels of the operators e~*Lj In the index for-

mula stated in (5.3), 121(M ) and C h(F) are to be regarded as differential forms on
M, arising in a fashion we will specify later in this section, from curvature forms
given by the spin structure on M and a connection on F'; the product is the wedge
product of forms. The following is the local index formula, which refines (5.3).

Theorem 6.1. For the twisted Dirac operator D F, we have the pointwise identity

(6.2) lim [7r ko(t, x,x) — Trki(t,x,x)]dV = {A(M) A Ch(F)}, .

t—0 n
where {f}n denotes the component of degree n = dim M of a differential form p,
and dV denotes the volume form of the oriented manifold M .

We first obtain a formula for the difference in the traces of k¢(¢, x, x) and of
ki(t, x, x), which are elements of End((S+)x ® Fy). It is convenient to put these
together, and consider

(ko ©
(6.3) K = (o kl) € End(S ® F),
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where § = S+ @ S_, and we have dropped x and ¢. Using the isomorphism
(2.14), u : CI(2k) — End S, we can write

(6.4) End(S ® F) = CI(2k) ® End(F).

We will suppose dim M = n = 2k. In other words, we can think of an element of
End(S ® F) as a combination of elements of the Clifford algebra, whose coeffi-
cients are linear transformations on F. Since (6.3) preserves S+ ® F and S_® F,
we have

(6.5) K € CI°(2k) ® End(F).

For K of the form (6.3), the difference Tr ko— Tr k; is called the “supertrace”
of K, written

(6.6) Str K = Tr(¢eK), withe = ((1) 01) .

The first key step in establishing (6.2) is the following identity, which arose in the
work of F. Berezin [Ber] and V. Patodi [Pt1]. Define the map

(6.7) t:CIQ2k) — C

to be the evaluation of the coefficient of the “volume element” v = eq---eo,
introduced in Exercises 1—4 of §2. Similarly define

6.8) tF:Cl2k)® End(F) — End F, 7:Cl(2k)® End(F)— C
to be
(6.9) tr=1t®I, T= Trortp,

where the last trace is Tr : End F — C.

Lemma 6.2. The supertrace is given by
(6.10) Str K = (—2i)*#(K),

using the identification (6.4).

Proof. If this is established for the case F' = C, the general case follows easily.
We note that, with v = ey -- - ey,

Sy ={xes: ,u(ikv)x = +x}.
Thus, for K € CI(2k),

(6.11) Str K = Tr(i*vK).
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Thus (6.10) is equivalent to
(612) Trw = 2k wo,

for w € CIl(2k) ~ End S, where wy is the scalar term in the expansion (2.2) for
w. This in turn follows from

(6.13) Tr1 =2k
and
(6.14) Trel'---elm =0 ifiy+--+in>0, iy=0o0rl.

To verify these identities, note that 1 acts on S as the identity, so (6.13) holds
by the computation of dim S. As for (6.14), using § ® S’ ~ CI(2k), we see

that (6.14) is a multiple of the trace of e}' ---e," acting on CI(2k) by Clifford
multiplication, which is clearly zero. The proof is complete.

Thus we want to analyze the C/1*1(2k) ® End F component of K(z, x, x),
the value on the diagonal of K(z, x, y), the Schwartz kernel of

—tLg
e_’DAZF _(¢€ 0 ]
0 e—ZLl

We recall that a construction of K(z, x, y) was made in Chap. 7, §13. It was shown
that, in local coordinates and with a local choice of trivializations of S(P) and of
F, we could write, modulo a negligible error,

(6.15) e Pru(x) = (2m) "2 / a(t, x. §)u§)e™* ds,
where the amplitude a(¢, x, £) has an asymptotic expansion
(6.16) a(t.x.§) ~ Y aj(t.x.).

Jj=0

The terms a; (¢, x, §) were defined recursively in the following manner. If, with
such local coordinates and trivializations,

(6.17) D% = L(x, Dy),
then, by the Leibniz formula, write
(6.18)
i lor|
ix-&y _ ix& l_ () a
L@e™*)=e Z p L' (x,§&) Dia(t,x,§)

lo|<2

2
= o7t [Lz(x, £)a(t.x.8) + Y Brg(x.£ Dy)alt. x. 5)] ,

{=1
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where B4 (x, &, Dy) is a differential operator (of order £) whose coefficients are
polynomials in &, homogeneous of degree 2 — £ in £&. L, (x,§) is the principal
symbol of L = D%.

Thus we want the amplitude a(z, x, £) in (6.15) to satisfy formally

2
(6.19) 5~ ~Lea- ; B_¢(x.€, Dy)a.

If a is taken to have the form (6.16), we produce the following transport equations
fora;:

9
(6.20) % — —Ly(x,E)ao(t, x, £)
and, for j > 1,
8aj
(621) w :—LZ(X,S)QJ' +Qj(l‘,x75)s
where
2
(6.22) Qj(1,x,8) == By y(x.& Dy)aj¢(t. x. ).

{=1

By convention, we set a_; = 0. So that (6.15) reduces to Fourier inversion at
t =0, we set

(6.23) ap(0,x,8) =1, a;j(0,x,&) =0, forj > 1.

Then we have
(6.24) ao(t, x,§) = e 28,
The solution to (6.21) is
t
(6.25) aj(t,x,£) = /0 e @ (5, x, §) ds.

Now, as shown in Chap. 7, we have

(6.26) Tre 't~ Tr // aj(t,x,§) dE dx,

Jj=0

with

627) / a;(t.x.§) d§ = 107D/ (),



6. Proof of the local index formula 313

Furthermore, the integral (6.27) vanishes for j odd. Thus we have the expansion
(6.28) K, x,x) ~ l_"/z[ao(x) +a;(x)t 4 -+ ag(x)rt +- -~],

with a; (x) = by (x).

Our goal is to analyze the C/!*1 ® End F component of ay (x), with n = 2k.
In fact, the way the local index formula (6.2) is stated, the claim is made that
ag(x) has zero component in this space, for £ < k. The next lemma gives a more
precise result. Its proof will also put us in a better position to evaluate the trea-
sured C/?1 @ End F component of ay, (x). Recall the filtration (2.20) of C1°(2k);
complexification gives a similar filtration of C/(2k).

Lemma 6.3. In the expansion (6.28), we have
(6.29) aj(x) e CI®)(2ky® End F, 0<j <k.

In order to prove this, we examine the expression for L = D2 . in local coordi-
nates, with respect to convenient local trivializations of S (P)and F.Fix xg € M.
Use geodesic normal coordinates centered at xo; in these coordinates, xo = 0. Let
{eq} denote an orthonormal frame of tangent vectors, obtained by parallel trans-
lation along geodesics from x¢ of an orthonormal basis of T, M ; let {vy } denote
the dual frame. The frame {e, } gives rise to a local trivialization of the spinor bun-
dle S(P). Finally, choose an orthonormal frame {¢, } of F, obtained by parallel
translation along geodesics from xg of an orthonormal basis of Fy,. The connec-
tion coefficients for the Levi-Civita connection will be denoted as I'%y; for the
coordinate frame, I'*g; for the frame {eq}; both sets of connection coefficients
vanish at 0, their first derivatives at 0 being given in terms of the Riemann curva-
ture tensor. Similarly, denote by 6; = (Ol*vj) the connection coefficients for F,
with respect to the frame {¢, }. Denote by ®qg the curvature of F', with respect
to the frame {ey}.

With respect to these choices, we write down a local coordinate expression for
D%- , using the Weitzenbock formula

1 1
D2 = V*V + ZS — Evavﬂanﬂ,

together with the identity V*V = —y o V2, proved in Proposition 2.1 of Appendix
C. We obtain

: 1 1
D%- = _gﬂ(a‘,- + —Fﬁaj Vo Vg + 9j)<3g + —Fsyg vy + 9@)
4 4
(6.30)
+(gfj£F"g-(3~+lF’3 i Vg U +9~)+lS—£<I> VgV
i\ 9i 4 aiVa Vg i 4 ) afValg.
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This has scalar second-order part. The coefficients of 9; are products of elements
of C1®(2k) with connection coefficients, which vanish at 0. Terms involving no
derivatives include products of elements of C/® (2k) with curvatures, which may
not vanish, and products of elements of C1®* (2k) with coefficients that vanish to
second order at 0.

Hence we can say the following about the operators B,z (x, &, Dy ), which
arise in (6.18) and which enter into the recursive formulas for a; (¢, x, §). First,
Bo(x, &, Dy), a differential operator of order 2 that is homogeneous of degree 0
in £ (thus actually independent of §), can be written as

Bo(x,£ Dx) = ) Bou(x,£)DS,

loe|<2

where Bgo(x, £) has coefficients in C1® (2k), and also coefficients that are
O(|x]?) in CI™(2k); Boy(x,£) for |&| = 1 has some coefficients that are
O(|x|) in CI1®(2k). Each Bog(x, £) for |a| = 2 is scalar. Note that By (x, £, D)
actsona;_»(t, x, §) in the recursive formula (6.21)—(6.22) fora; (¢, x, §).

The operator By (x, &, D), a differential operator of order 1 that is homoge-
neous of degree 1 in £, can be written as

Bi(x.£,Dx) = ) Bia(x,§)DS,

lal<1

and among the coefficients are terms that are O(|x|) in C{® (2k). The operator
Bi(x,§, Dy)actsona;_(t,x,§) in (6.21)—(6.22).

We see that while the coefficients in C/¥(2k) in a j(t,x,§) give rise to co-
efficients in CI+21(2k) in a;41(t, x, &) and in CIEF4(2k) in a;42(t, x, §),
the degree of vanishing described above leads exactly to the sort of increase in
“Clifford order” stated in Lemma 6.3, which is consequently proved.

The proof of Lemma 6.3 gives more. Namely, the C 1127 ]-components of
a;j(xp), for 0 < j <k, are unchanged if we replace D% by the following:

(6.31) L= Z 0 19- i 1o1>
. = o= axj 3 jeXe 5 af Va VB,

where €2 j; denotes the Riemann curvature tensor, acting on sections of S(IS) as
(6.32) ng = Rjgaﬂ Va V.

In (6.31), summation over £ is understood. At this point, we can exploit a key ob-
servation of Getzler—that the Schwartz kernel K (t,x,y) of e7'L can be evaluated
in closed form at y = 0—by exploiting the similarity of (6.31) with the harmonic
oscillator Hamiltonian, whose exponential is given by Mehler’s formula, provided

we modify L in the following fashion.
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Namely, for the purpose of picking out the C/[2/1- -components of a; (xo), we
might as well let L act on sections of C/(2k) ® F rather than S(P) ® F, and then
we use the linear isomorphism C/(2k) &~ A*R", and let the products involving
v and vg in (6.31) and (6.32) be wedge products, which, after all, for the purpose
of our calculation are the principal parts of the Clifford products.

We can then separate L into two commuting parts. Let Lo denote the sum over
j in (6.31), and let KO (z, x, y) be the Schwartz kernel of e ’LO. We can evaluate
Ko(t, x,0) using Mehler’s formula, established in §6 of Chap. 8 (see particularly
Exercises 6 and 7 at the end of that section), which implies that whenever (2 ;)
is an antisymmetric matrix of imaginary numbers (hence a self-adjoint matrix),
then

s Qt/4 172
6.33 Ko(t,x,0) = (4rt) ™" det( ——L—— —(f(Q@e/H)x.x)/4t
6.33)  Kolt, x,0) = (471) e<sinh(§2t/4)) e

where f(s) = 2s coth 2s. Now it is straightforward to verify that this formula is
also valid whenever €2 is a nilpotent element of any commutative ring (assumed
to be an algebra over C), as in the case (6.32), where €2 is an End(7x, M )-valued
2-form. Evaluating (6.33) at x = 0 gives

~ Qt/4 1/2
6.34 Ro(1,0,0) = (470) ™"/ det( ——=—)
(039 o(t,0,0) = (41) sinh(Q7/4)

When 2 is the curvature 2-form of M, with its Riemannian metric, this is to
be interpreted in the same way as the characteristic classes discussed in §7 of
Appendix C. The A-genus of M is defined to be this determinant, at t = 1/27i:

n Q/8mi 1/2
6.35 AM) = det| ———=————
(6.35) (M) = de (sinh(sz/sm))
The CI?¥l-component of the t°-coefficient in the expansion of e 'L s

(—2i)7% times the 2k-form part of the product of (6.35) with Tr e~ ®/27/  where
® is the End F-valued curvature 2-form of the connection on F'. This is also a
characteristic class; we have the Chern character:

(6.36) Ch(F) = Tre ®/?7

This completes the proof of Theorem 6.1.

Exercises

1. Write out the first few terms in the expansion of the formula (6.35) for /Al(M ), such as
forms of degree 0, 4, 8.
2. If M is a compact, oriented, four-dimensional manifold, show that



316 10. Dirac Operators and Index Theory
N 1
637) Gon. ) = —5; [ prran,
M

where p is the first Pontrjagin class, defined in §7 of Appendix C.

3. If M = C P2, show that (A(M), [M]) = —1/8. Deduce that C P2 has no spin struc-
ture.

4. If M is a spin manifold with positive scalar curvature, to which Proposition 4.8 applies,
show that (/AI(M ), [M]) = 0. What can you deduce about the right side of (5.3) in such
a case? Consider particularly the case where dim M = 4.

5. Let Fj — M be complex vector bundles. Show that

Ch(F; ® F») = Ch(F}) + Ch(F>),
Ch(F; ® F») = Ch(F;) A Ch(F>).

6. If F — M is a complex line bundle, relate Ch(F) to the first Chern class ¢ (F),
defined in §7 of Appendix C.

7. The Chern—Gauss—Bonnet theorem

Here we deduce from the Atiyah—Singer formula (5.3) the generalized Gauss—
Bonnet formula expressing as an integrated curvature the Euler characteristic
x(M) of a compact, oriented Riemannian manifold M, of dimension n = 2k.
As we know from Hodge theory, y (M) is the index of

(7.1) d+d*: A¥"M — A% M.
This is an operator of Dirac type, but it is not actually a twisted Dirac operator of
the form (3.34), even when M has a spin structure. Rather, a further twist in the
twisting procedure is required. Until near the end of this section, we assume that
M has a spin structure.

With V = R2k , we can identify C A*V, both as a linear space and as a Clifford
module, with CI(2k). Recall the isomorphism (2.14):
(7.2) u:Cl(2k) — End S,
where S = S(2k) = S+ (2k) & S—_(2k). This can be rewritten as

Clky~S® S’

Now if CI(2k) acts on the left factor of this tensor product, then there is a twisted
Dirac operator

0 Dy
7. S’
7 (o )
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produced from the grading S ® S’ = (S+ ® S) & (S— ® §’), but this is
not the operator (7.1). Rather, it is the signature operator. To produce (7.1), we
use the identities CA®"V = C[°(2k) and CA°YV = CI'(2k). Recall the
isomorphism (3.15):

(7.4) wu:CIl°2k)y — End S. @ End S_.

We rewrite this as

(7.5) CI°Ck) ~ (S+ ® S}) @ (S-® S).
Similarly, we have an isomorphism

(7.6) w: Cl'(2k) — Hom(Sy,S_) ® Hom(S_, S4),
which we rewrite as

(7.7) CI'2k) =~ (S-® S,) ® (S+ ® S).

It follows from this that the operator (7.1) is a “twisted” Dirac operator of the
form

0 Dy, @ Dj,
7.8 D = + -
(7.8) D}, & D, 0
A 2

In other words, the index y (M) of (7.1) is a difference:

Index DY, 5~ Index D,
+

S/ 9
since Index DEL = — Index D;L. Furthermore, this difference is respected in the
local index formula, an observation that will be useful later when we remove the
hypothesis that M have a spin structure.

The Atiyah—Singer formula (5.3) thus yields

(7.9) x(M) = (A(M)[Ch(S’,) — Ch(S")], [M]).

The major step from here to the Chern—Gauss—Bonnet theorem is to produce a
2k-form on M expressing Ch(S’ ) — Ch(S”) in purely differential geometric
terms, independent of a spin structure.

If 74 are the representations of Spin(2k) on Sy, d 4 the derived representa-
tions of spin(2k), and € the spin(2k)-valued curvature form on P, then

(7.10) Ch(Sy) = Tre 47+ /27,
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a sum of even-order forms formally related to the characters of 74,

(7.11) x+(g) = Trms(g), g € Spin(2k).

Note that dim S+ = dim S_ implies y4(e) — y—(e) = 0. It is a fact of great
significance that the difference y4+(g) — y—(g) vanishes to order k at the iden-
tity element ¢ € Spin(2k). More precisely, we have the following. Take X €
spin(2k) ~ so(2k), identified with a real, skew-symmetric matrix, X = (X;;);
there is the exponential map Exp : spin(2k) — Spin(2k). The key formula is
given as follows:

Lemma 7.1. For X € so(2k),
(7.12) lim 1744 (Exp tX) — y—(Exp tX)] = (=i)* PF(X).

Here, Pf : so(2k) — R is the Pfaffian, defined as follows. Associate to X €
so(2k) the 2-form

1
(7.13) E=E(X)=2) Xyeinej,
eq,...,es denoting an oriented orthonormal basis of R2*. Then
(7.14) K'PfX)ey A~ Neap =EN---ANE  (k factors).

It follows from this definition that if 7 : R?* — R?¥ is linear, then T*£(X) =
E(T'XT),so

(7.15) Pf(T'XT) = (det T)Pf (X).

Now any X € so(n) can be written as X = T AT, where T € SO(n), and A is a
sum of 2 x 2, skew-symmetric blocks, of the form

sz(o av), a,,ER.
—a, 0

Thus £(A) = aje1 Aex + -+ + agesp—1 A esg, SO
(7.16) Pf(X) = Pf(A) = ay ---ax.
It follows that

(7.17) Pf(X)? = det X.
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We also note that, if one uses Clifford multiplication rather than exterior
multiplication, on k factors of £(X), then the result has as its highest-order term
k!(Pf X)ey - - - eax. In other words, in terms of the map 7 : C/(2k) — C of (7.7),

(7.18) KIPEX) = t(E---£),

with k factors of &.

To prove Lemma 7.1, note that the representation 7 = w4 @ 7— of Spin(2k)
on S = S4 @ S_ is the restriction to Spin(2k) of the representation u of C/(2k)
on S characterized by (2.11). Consequently, in view of Exercise 4 in §3,

(7.19) Tr 74 (Bxp tX) — Tr 7_(Exp tX) = Str M(eZZXffefef/‘*),

where Str stands for the supertrace, as in (6.6). This can be evaluated by Berezin’s
formula, (6.10), as (—2i)¥ times the coefficientof v = ey - - - e in e Y Xijeiej/4,
Now the lowest power of ¢ in the power-series expansion of this quantity, which
has a multiple of v as coefficient, is the kth power; the corresponding term is

1k koo gk
(7.20) k—!4—k(ZX,-jeiej) = e (PEX) 4.

by (7.18). Thus, by (6.10), the leading term in the expansion in powers of ¢ of
(7.19)is (—it)* (Pf X), which proves (7.12).

We remark that the formula (7.12) plays a central role in the proof of the index
formula for (twisted) Dirac operators, in the papers of Bismut [Bi] and of Berline—
Vergne [BV].

In §8 of Appendix C, it is shown that the Pfaffian arises directly for the general-
ized Gauss—Bonnet formula for a hypersurface M C R**1 when one expresses
the degree of the Gauss map M — S2¥ as an integral of the Jacobian determinant
of the Gauss map and evaluates this Jacobian determinant using the Weingarten
formula and Gauss’ Theorema Egregium.

From (7.12) it follows that

(7.21) Ch(S%,) — Ch(S’) = 2m) % Pf(Q).

This is defined independently of any spin structure on M. Since locally any
manifold has spin structures, the local index formula of §6 provides us with the
following conclusion.

Theorem 7.2. If M is a compact, oriented Riemannian manifold of dimension
n = 2k, then the Euler characteristic y(M) satisfies the identity

(7122) x(M) = 27)* / PF(Q).

M
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Proof. It remains only to note that in the formula
(1) (AM)PE(Q). [M]) = 1(M),

since the factor Pf(£2) is a pure form of degree 2k = n, only the leading term 1 in
A(M) contributes to this product.

Exercises

1. Verify that when dim M = 2, the formula (7.22) coincides with the classical Gauss—
Bonnet formula:

(7.23) / K dV =2ny(M).
M

2. Work out “more explicitly” the formula (7.22) when dim M = 4. Show that

1
(7.24) (M) = — (|R|2 — 4[Ric® + SZ) dav,
b4
M
where R is the Riemann curvature tensor, Ric the Ricci tensor, and S the scalar curva-

ture. For some applications, see [An].
3. Evaluate (7.19); show that

inhtX/2\1/2
u) PfX.

(1.25) Str M(etle—_,- e,-e_,-/4) = (—ink det( e

(Hint: Reduce to the case where X is a sum of 2 x 2 blocks.)
4. Apply Theorem 6.1 to give a formula for the index of the signature operator D}, using

the representation (7.3) of DI'; ® DY as a twisted Dirac operator. Justify the formula
when M has no spin structure. Show that, if M is a compact, oriented 4-manifold, then

(7.26) Index D}, = —8(A(M).[M]).

(Hint: Take a peek in [Roe].)

8. Spin® manifolds

Here we consider a structure that arises more frequently than a spin structure,
namely a spin€ structure. Let M be an oriented Riemannian manifold of dimen-
sion n, P — M the principal SO(n)-bundle of oriented orthonormal frames. A
spin€ structure on M is a principal bundle Q — M with structure group

(8.1) Spin‘ (1) = Spin(n) x S'/{(1,1), (=1,—-1)} = G.
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Note that {—1,1} C Spin(n) is the pre-image of the identity element of SO(#).
For this principal bundle Q, we require that there be a bundle map p : 9 — P,
commuting with the natural Spin(n) actions on Q and P.

There is a natural injection Spin(n) <> Spin®(n), as a normal subgroup. Note
that taking the quotient R = Q/ Spin(n) produces a principal S!-bundle, over
which Q projects. We display the various principal bundles:

O —— R

(8.2) i l

P — M

There is a topological obstruction to the existence of a spin® structure on M,
though it is weaker than the obstruction to the existence of a spin structure. We
refer to [LM] for these topological considerations; we will give some examples of
spin¢-manifolds later in this section.

The standard representation of S! on C produces a complex line bundle

(8.3) L — M.

Suppose n = 2k. Recall the representation Df'/z @ Dl_/2 of Spin(n) on S(2k)

from (3.19). If we take the product with the standard representation of S! on C,
this is trivial on the factor group appearing in (8.1), so we get a representation of
Spin®(n) on S(2k), which we continue to denote D1+/2 @Dl_/z. This representation
produces a vector bundle over M, which we continue to call a spinor bundle:

(8.4) S(Q)=S$1(Q) @ 5(Q): S£(Q) =0 xpz S+(2K).

In case n is odd, we have instead the bundle of spinors constructed from the rep-
resentation (3.24) of Spin(n), via the same sort of procedure.

As in §3, we will be able to define a Dirac operator on C*°(M, S(Q)) in terms
of a connection on @, which we now construct. The Levi—Civita connection on
M defines an so(n)-valued form 6y on P, which pulls back to an so(rn)-valued
form 6y on Q. Endow the bundle R = Q/ Spin(n) — M with a connection 6,
so L — M gets a metric connection. Then 6, pulls back to an i R-valued form 6,
on Q, and

(8.5) 0 =6+ 6;
defines a spin®(n)-valued form on Q, which gives rise to a connection on Q. This
leads to a connection on the spinor bundle S(Q) — M, and the analogues of

Propositions 3.4 and 3.5 hold. Thus we produce the Dirac operator

(8.6) D=imoV:C®M,S)— C®(M,S).
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More generally, if E — M is a vector bundle with a metric connection, one
gets a Clifford connection on S(Q) ® E and hence a twisted Dirac operator

8.7) Dg:C®M,SQE)— C®(M,S QE).

If dim M is even, D g maps sections of S+ ® E to sections of Sy ® E.

We consider some ways in which spin€ structures arise. First, a spin structure
gives rise to a spin® structure. Indeed, if the frame bundle P — M lifts to a
principal Spin(n)-bundle P — M, then Q can be taken to be the quotient of
the product bundle PxS' > M by the natural Zj-action on the fibers. The
canonical flat connection on S! x M — M is used, to provide Q — M with a
connection, and then the Dirac operator (8.6) defined by O — M coincides with
that defined by P — M.

Another family of examples of spin® structures of considerable importance
arises as follows. Suppose M is a manifold of dimension n = 2k with an almost
complex structure, J : TxM — T M, J 2 = —J. Endow M with a Riemannian
metric such that J is an isometry. 7 M, which is (TM, J) regarded as a complex
vector bundle of fiber dimension k, then acquires a natural Hermitian metric, as
in (2.9). The associated frame bundle F — M is a principal U(k) bundle. Note
that

(8.8) U(k) ~ SU(k) x S'/T,

where I' = {(/,1),(—1,—1)}. Since SU(k) is simply connected, the inclusion
U(k) — SO(n) yields a uniquely defined homomorphism

(8.9) SU(k) — Spin(n),
and hence a homomorphism
(8.10) U(k) ~ SU(k) x S'/T — Spin®(n).

From the bundle F — M, this gives rise to a principal Spin®(n) bundle Q — M.

In this case, the map U(k) — Spin°(n) — S! is given by the determinant,
det : U(k) — S'. The principal S!-bundle R — M is obtained by taking the
quotient of the principal U(k)-bundle F' by the action of SU(k). The associated
line bundle L — M is seen to be

(8.11) L=AkT.

Other geometrical structures give rise to spin® structures; we refer to [LM] for
more on this. We mention the following: namely, any oriented hypersurface in a
spin® manifold inherits a natural spin€ structure. In this fashion the sphere bundle
S*M over a Riemannian manifold gets a spin® structure, as a hypersurface of
T*M , which can be given an almost complex structure.



8. Spin® manifolds 323

Though a spin® structure is more general than a spin structure, it is a very
significant fact that a spin® structure in turn gives rise to a spin structure, in the
following circumstance. Namely, suppose the principal S!-bundle R — M lifts
to a double cover

(8.12) R— M,
corresponding to the natural two-to-one surjective homomorphismsq: S — S!.

This is equivalent to the hypothesis that the line bundle L — M possess a “square
root” A — M:

(8.13) A®A=L.

In such a case, the quotient of Q x R—>M by the natural action of S! on each
factor gives a lift of Q to a principal Spin(n) x S!-bundle

(8.14) 0 — M.

Then the quotient

(8.15) P=0Q/S'—>M

defines a spin structure on M. The vector bundles S(Q) and S (P) are related by
(8.16) S(0)=S(P)® A.

Furthermore, the connection on S(Q) defined above coincides with the product
connection on S(P) ® A arising from the natural connections on each factor.
Therefore, if Dg and D% are respectively the twisted Dirac operator associated
with a vector bundle E — M (given a metric connection) via the spin® and spin
structures described above, then

(8.17) Dg = Djgp.

This holds, we recall, provided L has a square root A.

One consequence of this is the following extension of the Weitzenbock formula
(4.24). Namely, if D is the twisted Dirac operator on S(Q) ® E described there,
then applying (4.24) to the right side of (8.17) gives

(8.18) D% =V*V + K,

with

1 1 1
(8.19) Ko = ZS(/) —5 Zvivja)/l(ei,ej)go ) Z viv; RE (e;, e))p,
iJ

iJ
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or equivalently
(8.20) Ko = ZS(/) 7 Zvivjw (ei ej)p — 5 ZvinR (ei.ej),
i,j i,J

where, as before, {e;} is a local orthonormal frame of vector fields on M, with
dual frame field {v;}. Here w* is the curvature form of the line bundle A and w®
that of L.

Now locally there is no topological obstruction to the existence of the lift
(8.12). Consequently, the identity (8.20) holds regardless of whether L possesses
a global square root. Therefore, the proof of the local index formula given in §6
extends to this case. Furthermore, we have the pointwise identity of forms:

(8.21) Ch(A ® E) = e“'W Ch(E), c1(A) = %cl(L),

where c is the first Chern class, defined in §7 of Appendix C. Therefore, we have
the following extension of Theorem 5.1:

Theorem 8.1. If M is a compact Riemannian manifold of dimension n = 2k
with spin€ structure and Dg : C*°(M, S+ @ E) — C®(M,S_Q® E) is a twisted
Dirac operator, then

(8.22) Index Dg = <e”‘ D2 cp(E)AM), [M]>,

where L is the line bundle (8.3), and c1 (L) is its first Chern class.

The index formula for twisted Dirac operators on spin® manifolds furnishes a
tool with which one can evaluate the index of general elliptic pseudodifferential
operators. Indeed, let P be any elliptic pseudodifferential operator (of order m),

(8.23) P :C®(M, Eg) — C®(M, Ey),

E; — M being vector bundles. Then, as seen in Chap. 7, we have the principal
symbol

(8.24) op € C®(S*M,Hom(Ey, E 1)),

E,- — S*M being the pull-backs of E; — M. The ellipticity of P is equivalent
to op being an isomorphism at each point of S* M. Now, we can construct a new
vector bundle E over BM , the double of the ball bundle B*M, as follows. We
let E ; also denote the pull-back of E; to B*M, and, when the two copies of
B*M are glued together along S*M to form BM , we also glue together Eo and
E1, over S*M, using the isomorphism (8.24). The construction of £ — BM by
this process is known as the “clutching construction.” Now BM can be given a
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Riemannian metric, and also a spin® structure, arising from the almost complex
structure on B* M . If E is endowed with a connection, one obtains a twisted Dirac
operator Dg on BM. The following result, together with the formula for Index
DE given by Theorem 8.1, provides the general Atiyah—Singer index formula.

Theorem 8.2. If P is an elliptic pseudodifferential operator, giving rise to a
twisted Dirac operator D g by the clutching construction described above, then

(8.25) Index P = Index DE.

The proof of this result will not be given here; it involves use of the Bott pe-
riodicity theorem. Related approaches, computing Index P from a knowledge of
the index of twisted signature operators, are discussed in [Pal] and [ABP]. A re-
finement of (8.25), involving an identity in K-homology is established in [BDT].

Exercises

1. Consider the following zero-order pseudodifferential operator on L2(S1):
Q=M¢gP +Mg(I—P),

where P is the projection

o0 o0
P (Z cneine) = cheine.
= 0

We assume f and g are smooth, complex-valued functions; M pu = fu. If f and
g are nowhere vanishing on S1, Q is elliptic. A formula for its index is produced in
Exercises 1-5 of Chap. 4, §3.

Construct the associated twisted Dirac operator D g, acting on sections of a vector
bundle over the manifold BS! ~ T2. Evaluate the index of D E using Theorem 8.1,
and verify the identity (8.25) in this case.

9. The Riemann—Roch theorem

In this section we will show how the index formula (8.22) implies the classi-
cal Riemann—Roch formula on compact Riemann surfaces, and we also discuss
some of the implications of that formula. For implications of generalizations of
the Riemann—Roch formula to higher-dimensional, compact, complex manifolds,
which also follows from (8.22), see [Har] and [Hir].

Let M be a compact two-dimensional manifold, with a complex structure, de-
fined by J : TxM — TyM, J?> = —I. As shown in Chap.5, §10, this a priori
“almost complex” structure automatically gives rise to holomorphic charts on M
in this dimension. We can put a Riemannian metric and an orientation on M such
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that J is an isometry on each tangent space, counterclockwise rotation by 90°.
Then TM gets the structure of a complex line bundle, which we denote 7 M,
with a Hermitian metric. We have the dual line bundle 7'M . Note that the Her-
mitian metric on 7 M yields a Hermitian metric on 7'M and also produces a
conjugate linear bundle isomorphism of 7 M with 7'M . We also define the com-
plex line bundle 7 M to be the tangent bundle 7M with complex structure given
by —J and 7 M to be its dual.

A functionu € C°°(M) is holomorphic if du/dz = 0 in any local holomorphic
coordinate system and is antiholomorphic if du/dz = 0. We denote the space of
holomorphic functions on an open set U C M by Oy, and antiholomorphic
functions by Oy . There are invariantly defined operators

9.1) 3:C®(M) — C®(M,T), 3:C®°M)— C®(M,T),

given as follows. If X is a real vector field, namely, a section of TM, set

1 — 1
9.2) oxu = E(Xu—i(JX)u), dyu = E(Xu—i-i(JX)u).
Note that
(9.3) dyxu=idxu, Oyxu= —idxu,

which justifies (9.1).

In addition to holomorphic functions, we also have the notion of a holomorphic
line bundle over M. Given a complex line bundle L — M, let {U;} be a covering
of M by geodesically convex sets. A holomorphic structure on L is a choice of
nowhere-vanishing sections s; of L over U; such that s; = ojrs; on Uy =
U; N Uy, with 0 j; holomorphic complex-valued functions. Similarly, a choice of
nowhere-vanishing sections 7; of L over U; such that 7; = 1zt on Uj, Tk
antiholomorphic, gives L the structure of an antiholomorphic line bundle.

The bundle 7 M has a natural structure of a holomorphic line bundle; in a
local holomorphic coordinate system {U;}, let s; = d/dx. 7’ is a holomorphic
line bundle with s; = dx. To see this, note that if  : U — V is a holomorphic
map relating two local coordinate charts on M, ¥ = u + iv, then (Dvy)(d/dx)
is equal to

axox T oxdy  dxox | ax’ ox

du 0 dv 0 _aua 3vJ 0 (314 ,31))3 ay d
ax  Ox Ox’

=l Tl

Here, the first two quantities are regarded as local sections of TM, the last two
as local sections of 7 M . Similarly, 7 and T have natural structures as antiholo-
morphic line bundles, using the same choices of local sections as above.

It is also common to identify 7M and 7M with complementary subbun-
dles of the complexified tangent bundle 7TcM = C ® TM, a complex vector
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bundle whose fibers are two-dimensional complex vector spaces. Namely, the
local section d/dx of TM is identified with (1/2)(d/dx — id/dy) = 9/0z to
yield TM < TcM and it is identified with (1/2)(d/dx + id/dy) = 93/9Z to
yield TM <> Tc M. More generally, these two maps are given respectively by
X — (1/2)(X —iJX)and X — (1/2)(X + iJX). Identifying 7M and T M
with their images in 7c M, we have

TcM =TM &TM.

Similarly, we have the complexified cotangent bundle 7o M = C ® T*M, and
natural injections 7'M <> TEM, TM TEM, so that

TeM =TM&T M.
In this case, dx is mapped respectively to (dx + idy)/2 = dz/2 and to (dx —
idy)/2 =dz/2.
We use the following common notation for these line bundles equipped with

these extra structures:

9.4) T=x', T'=x, T=k', T

Il
ol

We can rewrite (9.1) as

3:C®(M) — C®(M,k), 9:C®(M)— C®(M,F%).

We note that k1 and ¥ are isomorphic as C *°-line bundles; « is called the canon-
ical bundle.

More generally, if L — M is any holomorphic line bundle, we have a naturally
defined operator

9.5) 9:C®(M,L) — C®(M,L ®%),

defined as follows. Pick any local (nowhere-vanishing) holomorphic section S
of L, for example, S = s; on Uj, used in the definition above of holomorphic
structure. Then an arbitrary section u is of the form u = v, v complex-valued,
and we set

(9.6) &H=ﬁ5®dz

0z
It is easy to see that this is independent of the choice of holomorphic section
S or of local holomorphic coordinate system. Sometimes, to emphasize the de-
pendence of (9.5) on L, we denote this operator by dr. The operator (9.5) is
a first-order, elliptic differential operator, and the Riemann—Roch formula is a
formula for its index.
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The kernel of 5L in (9.5) consists of holomorphic sections of L; namely,
sections u such that, with respect to the defining sections s; on U;, u = vjs;
with v; holomorphic. We denote this space of holomorphic sections by

9.7) O(L) = ker dy.

The significance of the Riemann—Roch formula lies largely in its use as a tool for
understanding as much as possible about the spaces (9.7).

The cokernel of 9y, in (9.5) can be interpreted as follows. The Hermitian metric
on 7T gives rise to a trivialization of k¥ ® ¥ and to a duality of L?(M, L ® ) with
L?>(M, L™! ® k). With respect to this duality, the adjoint of d is

9.8) —3:C®°M, L' Qk) — C®M,L™' ® k  %).
Consequently,
9.9) Index 9, = dim O(L) — dim O(L™! ® k).

The Riemann—Roch theorem will produce a formula for (9.9) in terms of topolog-
ical information, specifically, in terms of ¢; (L) and ¢ (k).

Recall that M has a natural spin€ structure, arising from its complex structure.
We will produce a twisted Dirac operator on M whose index is the same as that of
9. In fact, when the construction of the spinor bundle made in §8 is specialized
to the case at hand, we get

(9.10) S, =1, S_.=T=F,

where 1 denotes the trivial line bundle over M . Furthermore, the line bundle de-
noted as L in (8.11)is 7 ~ « L. If L is a (holomorphic) line bundle over M,
we give L a Hermitian metric and metric connection V. Then the twisted Dirac
operator

9.11) Dp:C®(M,L) — C®°(M,L ®«)
is given by

1
9.12) (Dpu, X) = E(VXu-FiVun),

for X a section of TM, identified with TM ~ &, noting that
(9.13) (Dpu,JX) =—(Dru, X).

It is easy to see that 9z and Dy are differential operators with the same prin-
cipal symbol. Disregarding the question of whether one can pick a connection on
L making these operators equal, we clearly have

9.14) Index 3, = Index Dy.
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Now applying the index formula (8.22) to the right side of (9.14) gives

(9.15) Index Dy, = (e_cl(")/z Ch(L)A(M), [M]>.

Since /Al(M ) is 1 plus a formal sum of forms of degree 4, 8, ..., we obtain
1

9.16) Index Dp = c1(L)[M] — Ecl(K)[M].

Putting together (9.9), (9.14), and (9.16) gives the Riemann—Roch formula:

Theorem 9.1. If L is a holomorphic line bundle over a compact Riemann surface
M, with canonical bundle k, then

9.17) dim O(L) — dim O(L™! @ k) = ¢1(L)[M] — %CI(K)[M].

According to the characterization of the Chern classes given in §7 of
Appendix C, if L has a connection with curvature 2-form wy,, then

1
M

In particular, ¢ (k)[M] is given by the Gauss—Bonnet formula:
9.19) a()[M]=—x(M) =2g -2,
where y(M) is the Euler characteristic and g is the genus of M.
We begin to draw some conclusions from the Riemann—Roch formula (9.17).
First, for the trivial line bundle 1 we clearly have

(9.20) dim O(1) = 1,

assuming M is connected, since holomorphic functions on M must be constant.
If we apply (9.17)to L = k, using k! ® k = 1 and the formula (9.19), we obtain

9.21) dim O(k) = g.

The space O(«) is called the space of holomorphic 1-forms, or “Abelian differen-
tials.” We claim there is a decomposition

(9.22) Hi(M) = O(k) ® O(k),

of the space H; (M) of (complex) harmonic 1-forms on M into a direct sum of
O(k) and the space O(x) of antiholomorphic sections of k. In fact, the Hodge
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star operator * : A'M — A'M, extended to be C-linear on C ® A'M, acts on
H1(M), with xx = —1, and O(x) and O(k) are easily seen to be the i and —i
eigenspaces of * in H; (M ). Furthermore, there is a conjugate linear isomorphism

(9.23) C : O(k) — O(x)
given in local holomorphic coordinates by
C (u(z) dz) = u(z) dz.

Now (9.22) and (9.23) imply
. L. L. 1
(9.24) dim O(k) = 3 dim H (M) = 3 dim H* (M, C),

where H!'(M,C) is a deRham cohomology group, and the last identity is by
Hodge theory. Granted that dim H! (M, C) = 2g, this gives an alternative deriva-
tion of (9.21), not using the Riemann—Roch theorem.

The Hodge theory used to get the last identity in (9.24) is contained in
Proposition 8.3 of Chap.5. Actually, in §8 of Chap.5, H; denoted the space of
real harmonic 1-forms, which was shown to be isomorphic to the real deRham
cohomology group H!(M, R), which in turn was denoted H! (M) there.

Just for fun, we note the following. Suppose that instead of (9.17) one had in
hand the weaker result

(9.25) dim O(L) — dim O(L™' ® k) = Acy(L)[M] + Bey(k)[M],

with constants A and B that had not been calculated. Then using the results (9.19)
and (9.21), one can determine A and B. Indeed, substituting L = 1 into (9.25)
gives 1 — g = B(2g — 2), while substituting L = « in (9.25) gives g — 1 =
(A+ B)(2g —2). Aslongas g # 1, thisforces A =1, B=—1/2.Theg =1
case would also follow if one knew that (9.25) held with constants independent
of M.

Before continuing to develop implications of the Riemann—Roch formula, we
note that, in addition to O(L), it is also of interest to study M(L), the space of
meromorphic sections of a holomorphic line bundle. The following is a funda-
mental existence result.

Proposition 9.2. If L — M is a holomorphic line bundle, there exist nontrivial
elements of M(L).

Proof. The operator (9.5) extends to

(9.26) 9:H ' (M, L) — H(M,L %),
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which is Fredholm. There are elements vy, ..., vg € C®(M, L~ ®«) such that,
foralls € R,if f € H'(M,L ® k) and (f,v;) = Ofor j = 1,..., K, then
there exists u € HST1(M, L) such that du = f. Now, for s < —1, there is a finite
linear combination of “delta functions,” in H*(M, L ® k), orthogonal to these v ;.
Denote such an f by f = a;8,,. Thenletu € HST'(M, L) satisfy du = f.
In particular, du = 0 on the complement of a finite set of points. Near each p €

supp f, u looks like the Cauchy kernel, so u is a nontrivial meromorphic section
of L.

Such an existence result need not hold for O(L); in Corollary 9.4 we will see
a condition that guarantees O(L) = 0. Such a result should not be regarded in
a negative light; indeed knowing that O(L) = 0 for some line bundles can give
important information on O(L) for certain other line bundles, as we will see.

Any nontrivial u € M (L) will have a finite number of zeros and poles. If p is
a zero of u, let v,(p) be the order of the zero; if p is a pole of u, let —v,(p) be the
order of the pole. We define the “divisor” of u € M(L) to be the formal finite sum

9.27) Bw) =Y vu(p)-p
y4

over the set of zeros and poles of u. It is a simple exercise in complex analysis
that if u is a nontrivial meromorphic function on M (i.e., an element of M (1)),
then Y » Vu(p) = 0. The following is a significant generalization of that.

Proposition 9.3. If L — M is a holomorphic line bundle and u € M(L) is
nontrivial, then

(9.28) cl(L)M] =Y vu(p).
p

Proof. The left side of (9.28) is given by (9.18), where wy, is the curvature 2-form
associated to any connection on L. We will use the formula

1

2mwi
M

(9.29) wr, = Index X,

for any X € C°(M, L) with nondegenerate zeros, proved in Appendix C,
Proposition 5.4, as a variant of the Gauss—Bonnet theorem. The section X will be
constructed from u € M(L) as follows. Except on the union of small neighbor-
hoods of the poles of u, we take X = u. Near the poles of u, write u = vS, S a
nonvanishing holomorphic section of L defined on a neighborhood of such poles,
v meromorphic. Pick R > 0 sufficiently large, and replace u by (R?/v)S, where
|v| > R. Smooth out X near the loci |[v| = R. Then the formula (9.29) for X is
equivalent to the desired formula, (9.28).
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The following is an immediate consequence.

Corollary 9.4. If L — M is a holomorphic line bundle with c1(L)[M] < 0, then
every nontrivial u € M(L) has poles; hence O(L) = 0.

Note that if ¢ (L)[M] = 0 and O(L) # 0, by (9.28) we have that any u €
O(L) not identically zero is nowhere vanishing. Thus we have

(9.30) c1(L)[M] =0, O(L) # 0 = L is trivial holomorphic line bundle.

To relate Corollary 10.4 to the Riemann—Roch formula (9.17), we note that
since dim O(L™! ® k) > 0, (9.17) yields Riemann’s inequality:

9.31) dim O(L) > c;(L)[M]—g + 1.
In view of the identities

c1(L1 ® Ly)[M] = ci(LD)[M] + c1(L2)[M],

(9.32) o
c1(L7)[M] = —c1(D)[M],
we see that
(9.33) cl(L)M]>2g-2= O(L"' ®@«) =0.

Thus we have the following sharpening of Riemann’s inequality:

Proposition 9.5. If M has genus g and c1(L)[M] > 2g — 2, then
(9.34) dimO(L) =c1(L)[M]—g+ 1.

Generalizing (9.27), we say a divisor on M is a finite formal sum

(9.35) 9= v(p)p,
p

v(p) taking values in Z. One defines —¢ and the sum of two divisors in the
obvious fashion. To any divisor ¢ we can associate a holomorphic line bundle,
denoted Ey; one calls Ey a divisor bundle. To construct E, it is most convenient
to use the method of transition functions. Cover M with holomorphic coordinate
sets Uy, pick ; € My, having a pole of order exactly |[v(p)| at p,if v(p) <0,
a zero of order exactly v(p) if v(p) > 0 (provided p € U;), and no other poles
or zeros. The transition functions

(9.36) ik =V vy
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define a holomorphic line bundle Ey. The collection {y;,U;} defines a
meromorphic section

(9.37) v e M(Ey)
and
(9.38) -9 (y) = 9.

Thus Proposition 9.3 implies

(9.39) c1(Ep) ==Y v(p) = (9),

p

where the last identity defines (¢}).

Divisor bundles help one study meromorphic sections of one line bundle in
terms of holomorphic sections of another. A basic question in Riemann surface
theory is when can one construct a meromorphic function on M (more generally,
a meromorphic section of L) with prescribed poles and zeros. A closely related
question is the following. Given a divisor ¢ on M, describe the space

(9.40) M(L,D) ={ue ML) : 3w > v},
where 1 > 9 means " —9 > 0, that is, all integers u(p) in ;-9 =Y u(p)-p
are > 0. When L = 1, we simply write M () for the space (9.40). A straightfor-

ward consequence of the construction of Ey is the following:

Proposition 9.6. There is a natural isomorphism
(9.41) M(L,%) ~ O(L ® Ey).

Proof. The isomorphism takes u € M(L,¥) to uyr, where v is described by
(9.36)-(9.37).

We can hence draw some conclusions about the dimension of M (L, ). From
the identity (9.34) we have

9.42) ci(L)[M]+(P) >2g—2 = dim M(L,?¥) = c1(L)[M]+(¥)—g+1,
and, in particular,

(9.43) (0) >2¢g —2 = dim M) = (J)— g+ 1.

Also one has general inequalities, as a consequence of (9.31).

Now Corollary 9.4 and Proposition 9.5 specify precisely dim O(L) provided
either ¢1 (L)[M] < Oorci(L)[M] > 2g —2, but (9.31) gives weaker information
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if 0 < ¢y (L)[M] <2g—2;in fact, for ¢; (L)[M] < g —1, it gives no information
at all. In this range the lower bound (9.31) can be complemented by an upper
bound. For example, (9.30) implies

(9.44) c1(L)[M] = 0= dim O(L) = Oor 1.

We will show later that both possibilities can occur. We now establish the follow-
ing generalization of (9.44).

Proposition 9.7. Let k = 0,1,...,g — 1. Then, for a holomorphic line bundle
L— M,

(9.45) aDMl=g—-1-k=0=<dmO(L)<g—k
and
(9.46) ca(DM)l=g—-14+k=k < dmO(L) <g.

Proof. First we establish (9.46). The lower estimate follows from (9.31). For
the upper estimate, pick any divisor ¢ < 0 with (¢}) = k. Then dim O(L) <
dim M(L,?¥) = dim O(L ® Ey), which is equal to g since ¢1 (L Q Ey)[M] =
2g — 1 and Proposition 9.5 applies. The upper estimate in (9.45) follows by inter-
changing L and L~! ® « in the Riemann-Roch identity.

To illustrate (9.46), we note the following complement to (9.44):
(9.47) ()Ml =2¢g-2=dimO(L)=g—1lorg.

On the other hand, the closer ¢ (L)[M] gets to g — 1, the greater the uncertainty
in dim O(L), except of course when g = 0; then Corollary 9.4 and Proposition
9.5 cover all possibilities. It turns out that, for “typical” L, the minimum value of
dim O(L) in (9.45)—(9.46) is achieved; see [Gu].

We now use some of the results derived above to obtain strong results on the
structure of compact Riemann surfaces of genus g = O and 1.

Proposition 9.8. If M is a compact Riemann surface of genus g = 0, then M is
holomorphically diffeomorphic to the Riemann sphere S?.

Proof. Pick p € M; with ¥ = —p, so (¢) = 1, (9.43) implies dim M (J) = 2.
Of course, the constants form a one-dimensional subspace of M (#); thus we
know that there is a nonconstant u € M (¥); u cannot be holomorphic, so it must
have a simple pole at p. The proof thus follows from the next result.

Proposition 9.9. If there exists a meromorphic function u on a compact Riemann
surface M, regular except at a single point, where it has a simple pole, then M is
holomorphically diffeomorphic to S*.



9. The Riemann—Roch theorem 335

Proof. By the simple argument mentioned above (9.28), u must have precisely
one zero, a simple zero. By the same reasoning, for any A € C, u — A must
have precisely one simple zero, so u : M — C U {oo} = S? is a holomorphic
diffeomorphism.

Proposition 9.10. If M is a compact Riemann surface of genus g = 1, then there
exists a lattice T' C C such that M is holomorphically diffeomorphic to C/T.

Proof. By (9.21), or alternatively by (9.24), dim O(x) = 1 in this case. Pick a
nontrivial section &. By (9.28), >~ ve(p) = 2¢ — 2 = 0. Since § has no poles, it
also has no zeros, that is, k is holomorphically trivial if g = 1. (Compare with
(9.30).)

We use a topological fact. Namely, since dim H'(M,C) = 2if g = 1, by
deRham’s theorem there exist closed curves y1, y» in M such that, for any closed
curve y in M, there are integers m, m» such that

/vzmI/v—i-mz/v,

14 Y1 V2

for any closed 1-form v on M. Granted this, it follows that if we pick py € M,
the map

(9.48) M92|—>/Z§
P

0

defines a holomorphic map
(9.49) ®:M—C/I",

where I is the lattice in C generated by {; = fy/_ & j = 0,1. Since £ is
nowhere vanishing, the map (9.49) is a covering map. It follows that there is a
holomorphic covering map ¥ : C — M, and the covering transformations form a
group of translations of C (a subgroup of I'/, call it I"). This gives the holomorphic
diffeomorphism M =~ C/I". We remark that, with a little extra argument, one can
verify that (9.49) is already a diffeomorphism.

Propositions 9.8 and 9.10 are special cases of the uniformization theorem for
compact Riemann surfaces. The g > 2 case will be established in Chap. 14 as a
consequence of solving a certain nonlinear PDE. Also in that chapter, an alterna-
tive proof of Proposition 9.10 will be presented; in that case the PDE becomes
linear. Also in Chap. 14 we present a linear PDE proof that treats the case g = 0.
We note that in the treatment of the g = 1 case given above, the Riemann—Roch
theorem is not essential; the analysis giving (9.22)—(9.24) suffices.

We return to the study of dim O(L), for L = Ey. We illustrate how the first
possibility can occur in (9.44). In fact, pick distinct points p, g € M, and consider
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¥ = p —q. Clearly, c;(Ep—q)[M] = 0. Now O(Ep—;) ~ M(p —¢q), and it
follows from Proposition 9.9 that if there is a nontrivial member of M(p — q),
then M must be the sphere S2. We thus have

(9.50) O(Ep—g) =0 if p#qe M, of genus g > 1.

On the other hand, if p,q,r € M are distinct, then ¢1(E_p—g4-)[M] = 1, and
(9.34) applies for g = 1; hence

(9.51) g=1= dimM(-p—-qg+r)=1

By the discussion above, a nontrivial u € M(—p — g + r) cannot have just a
simple pole; it must have poles at p and ¢. This proves the next result:

Proposition 9.11. If p,q, and r are distinct points in M, of genus 1, there is
a meromorphic function on M with simple poles at p and g, and a zero at r,
unique up to a multiplicative constant. Similarly, if p = q # r € M, one has a
meromorphic u with a double pole at p, and a zero at r.

Given that M = C/ T, these meromorphic functions are the elliptic functions
of Weierstrass, and they can be constructed explicitly. The uniqueness statement
can also be established on elementary grounds. Note that, with p,q, and r as
in Proposition 9.11, the corresponding elliptic function u vanishes at one other
uniquely determined point s (or perhaps has a double zero at r, so s = r). In
other words, if we set # = —p —¢q + r + s, for M of genus 1, the line bundle
Ey is trivial for a unique s € M, given p,q,r € M, r different from p or q.
Actually, this last qualification can be dispensed with; r = p forces s = ¢q. It
is a basic general question in Riemann surface theory to specify conditions on
a divisor ¥ (in addition to (¥}) = 0) necessary and sufficient for Ey to be a
trivial holomorphic line bundle over M. The question of whether Ey is trivial
is equivalent to the question of whether there exists a nontrivial meromorphic
function on M, with poles at p of order exactly |v(p)|, where v(p) < 0, in the
representation (9.35) for ¥, and zeros of order exactly v(p), where v(p) > 0. This
question is answered by a theorem of Abel; see [Gu] for a discussion. The answer
is essentially equivalent to a classification of holomorphic line bundles over M .

Exercises

1. Show that the conjugate linear map C in (9.23) is indeed well defined, independently
of a choice of local holomorphic coordinates.

2. Show that if M is a compact Riemann surface, then the complex line bundle « has
a square root, i.e., a line bundle A such that k ~ A ® A. Show that A can even be
taken to be a holomorphic square root. Thus M actually has a spin structure. (Note
also Exercise 5 of §3.)

3. Deduce the index formula (9.15), which leads to the Riemann—Roch formula, directly
from Theorem 5.1, for twisted Dirac operators on spin manifolds.
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Is it possible to choose a connection on L such that the operators 9z, and Dy in (9.14)
are actually equal?

Sections of the line bundle k¥ ® « are called quadratic differentials. Compute the di-
mension of O(k ® k). Given a divisor ¥ < 0, compute dim M (k ® k, ).

Extend Theorem 9.1 to the case where L — M is a holomorphic vector bundle.
Formulate a version of the Riemann—Roch theorem for a compact, complex manifold
M of higher dimension, and prove it, using Theorem 8.1.

Show that (9.41)—(9.42) provide an alternative proof of the existence result, Proposi-
tion 9.2.

Deduce from Proposition 9.2 that every holomorphic line bundle L over a Riemann
surface is isomorphic to a divisor bundle E.

A nonconstant meromorphic function f : M — C U {oo} can be regarded as a
holomorphic map f : M — S2, which is onto. It is called a branched covering of
S2 by the Riemann surface M. A branch point of M is a point p € M such that
df(p) = 0. The order o(p) is the order to which df (p) vanishes at p.

If f: M — S? is a holomorphic map with branch points P show that

(9.52) > o(pj) =2deg(f) +2g —2.

11.

12.

13.

J

(Hint: Reduce to the case where all poles of f are simple, so (counting multiplicity)
# poles of f/ = 2 x #poles of f,

while the left side of (9.52) is equal to # zeros of f’. Think of f’ as a meromorphic
section of x.)

Give another derivation of (9.52) by triangulating S so that the points q; = f(py)
are among the vertices, pulling this triangulation back to M, and comparing the num-
bers of vertices, edges, and faces.

The formula (9.52) is called Hurwitz’ formula.

Let X be a “real” vector field on a compact Riemann surface M. Assume M is given a
Riemannian metric compatible with its complex structure, so that J : Tx M — Ty M
is an isometry. Picture X as a section of the complex line bundle 7 = x~!. Show
that X generates a group of conformal diffeomorphisms of M if and only if it is a
holomorphic section of k1. If g is the genus of M, show that

g=2= 0k ") =0,

g=1= dimc O™ ) =1,

g =0= dimc Ok ') =3.
Deduce the dimension of Lie groups of conformal diffeomorphisms in these cases.
Compare the conclusion in case g > 2 with that of Exercise 5 of §4, given (see
Chap. 14, §2) that one could choose a Riemannian metric of curvature —1. Compare

the g = 1 case with Exercise 6 of §4.
Considering M(k, p) = {u € O(x) 1 u(p) = 0} ~ O(k ® Ep), show that

g>1=dmM(k,p)=g—1.
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Deduce that, for each p € M, there exists u € O(k) such that u(p) # 0, provided
g > 1. Hint. Use (9.17) to get dim O(k ® Ep) — dim O(E;l) = g — 2. Then show
that dim O(E;l) = dim M(—p) = 1 if g > 1. (Cf. Proposition 9.9)
14. Consider 3 : HS(M.x) - HS"Y(M,k ® ¥) ~ H5~1(M). Show that the range of
3, has codimension 1. Hint. As in (9.8), the adjoint is —9 : H!™S(M) — HS(M.%).
15. Let u; be meromorphic 1-forms on neighborhoods O; of p; (1 < k < K), w1th
poles at p ;. Use Exercise 14 to show there exists u € ./\/l(/c) such that u —uj|o; i

pole free for each j, if and only if Z] =1 Resp, u; =0.

16. Let E — M be a holomorphic vector bundle over a compact Riemann surface, of rank
k. That is, each fiber £, has complex dimension k. Modify the proof of Theorem 9.1
to show that

dim O(E) —dim O(E’' ® k) = ¢1(E)[M] — gcl ()[M].

Here E’ is the dual bundle of E. (Hint. Obtain an analogue of (9.15) and use
Ch(E) = Tr e~®/271 a5 in (6.36), where @ is the End(FE)-valued curvature form
of a connection on E, to get

e~ 1/2Ch(E) = ¢1(e) — gﬂ(lf)-)

10. Direct attack in 2-D

Here we produce a direct analysis of the index formula for a first-order, elliptic
operator

(10.1) D : C®(M, Ey) —s C®(M, Ey)

of Dirac type when dim M = 2. In view of (5.11), if k; (¢, x, y) are the integral

kernels of e *P" D and ¢ *PP" | j = 0,1, then

(10.2) ki(t,x,x) ~ ajo()c)t_1 +aji(x)+aj(0t 4,
ast \( 0, and
(10.3) Index D = /[am(x) — au(x)] dV(x).

M

As shown in Chap. 7, §14, we can produce explicit formulas for a j; (x) via calcu-
lations using the Weyl calculus.

Thus, pick local frame fields for E¢ and E; so that, in a local coordinate chart,
D = A(X, D), with

(10.4) A(x.§) =) A;(0)E; + Cx).
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a K x K matrix-valued symbol. Assume that

D*D = g(X, D) + Lo(X, D) + Bo(x),

10.
(105) DD* = g(X,D)+ £1(X, D)+ Bi(x),

where g(x, £) defines a metric tensor, while £ (x, §) and B; (x) are K x K matrix-
valued, and

(10.6) C(x.8) = > V(g

J
By (14.86) of Chap. 7, we have the following:

Proposition 10.1. If D is an operator of Dirac type satisfying the hypotheses
above and dim M = 2, then Index D is equal to

1
(10.7) E/ Tr Z[ZEO)()C)Z — z;l)(x)Z] + Tr [Bl(x) - Bo(x)] dv.
M J
Of course, the individual terms in the integrand in (10.7) are not generally
globally well defined on M ; only the total is. We want to express these terms

directly in terms of the symbol of D. Assuming the adjoint is computed using
L*(U,dx), we have D*D = Lo(X, D) and DD* = L{(X, D), with

Lo(x,6) = A, §)" A(x.6) + 514°, 4},

(10.8) .
Li(x.£) = A(x.§)A(x.£)" + ’E{A, A%}
Hence
Lo(x.£) = A1 (x,6)*C(x) + C(x)* 41 (x. £) + %{A*,Al},
(10.9)

(5 = A B + CWAD” + 511 AT,
where A;(x,£) =) A;(x)&;, and
Bo(x) = C(*Clx) + 51C, A} + S{4].C).

(10.10) . .
Bi(x) = C(x)C(x)* + ’E{c, AT+ ’E{Al, c*).
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Suppose that, for a given point xo € M, we arrange C(xo) = 0. Then

. 0AT 041 0AT 94,
€o(x0.§) = -{A Ay =5 Z(ag, E_Wj@)’

(10.11)
041 0AT 04, 047
£1(xo, —{A1, A7} = — 1),
1 (00.8) = 31, AT} = Z(ag, 5 )
and
Bo(o) = 5{C*, At} + 5141.C}
_ _Z(_agaﬁ oy oc
B dx; 9§, 35/ 0x;
(10.12)
Bi(xo) = —{Cw‘l*} + —{ALC*}
_ _Z<_a_cai oy g7y
- dx; 98; 8&, 9
Note that if A;(x,£) is scalar, then £o(x0,&) = —f€1(x0,&) (granted that

C(x9) = 0). Hence their contributions to the integrand in (10.7) cancel. Also,
if A1(x,£) is scalar, then Bj(x9) = —Bo(x0). Thus, at x¢, the integrand in (10.7)
is equal to

— aC ac*
(10.13) 2Tr Bi(xo) = — Tr (A~——A )
Zj: T ox; 0x

in this case. This situation arises for elliptic differential operators on sections of
complex line bundles. In such a case, C(x) is also scalar, and we can rewrite
(10.13) as

Y Te
(10.14) —2Im ZA,-a—
- X
J

Let’s take a look at the operator Dy : C*°(M,L) - C*®(M, L ® k), where
M is a Riemann surface, L — M is a complex line bundle, with a Hermitian
metric and a metric connection V, and, for a vector field X,

(10.15) (Dru,X) = Vxu+iVyxu.

This is the same as (9.11)—(9.12), up to a factor of 2. Here J is the complex
structure on 7M. We can assume M has a Riemannian metric with respect to
which J is rotation by 90°. Pick xo € M. Use a geodesic normal coordinate
system centered at xo, so the metric tensor g j; satisfies

(10.16) Vg (x0) = 0.
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Let X(x9) = 0/0dx1, and define X by parallel transport radially from x¢ (along
geodesics). Then

0

(10.17) X(x) = a{(x)% +af s
with
(10.18) aj(xo) =1, ai(xo) =0. Vaj(xo)=0.
Furthermore,
(10.19) JX(x) = az%(x)i + ag(x)i,
dx1 0xo
with
(10.20) ay(xo) =0, a3(xo) =1, Vaé (x9) = 0.

Next, let ¢ be a local section of L such that ¢(x() has norm 1, and ¢(x) is obtained
from ¢(x¢) by radial parallel translation. Thus

(10.21) u=vp = Vy,u=(;v+ib;v)e,
where the connection coefficients satisfy
(10.22) 0;(x0) =0.

In such a coordinate system, and with respect to such choices, the operator Dy,
takes the form

1 v
(10.23) Dy (vg) = ZTZ[AJWJ—Ajejv](p@z‘},
where
(10.24) Aj=i(a] +iaj)

and where ¥ € C*°(U, k) satisfies
(X,9) =1, (JX,9)=1i.

Then D7 : C®°(M,L ® k) — C*(M, L) is given by

. In i~ 9 o
(1025) Di(wy®#) == g 1/2[A‘,-Wj+(a,-f1‘,- +4,0)](g"?w)e.
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Now we want to take adjoints using L?(U, dx) rather than L?(U, ,/gdx), so we

conjugate by g!/4, and replace Dy, by

- 1 J , _
(10.26) D = - Z[gIMAjE(g 1/41)) — Aj@jv].

Thus we are in the situation of considering an operator of the form (10.4), with
A; given by (10.24) and

i 0A4; 1 ag
10.27 = =L A0, —-g ' =4;].
(10.27) C(X) Z|:2 ax]' I 4g 8x,- J:|
Thus C(xo) = 0, by (10.18)—(10.22), while
i 1
(10.28) 0 C(x0) = Z —A;(0x0;) + EakajA‘,- — ZAj(akajg) .
J
Now 90, (xo) is given by the curvature of V on L:

30, 1
(10.29) @(xo) = 5 Fjic(xo).

Meanwhile, as shown in §3 of Appendix C, dxd;A; can be expressed in terms of
the Riemannian curvature:

1 1
(10.30) d;0ral, (xo) = — s Rejmk = < Rekmj

and of course so can dx 0 g(xo). Consequently, at xg, the formula (10.14) for the
integrand in (10.7) becomes

2 1
(10.31) —=Fiz2 + 5 S(x0).

Note that S/2 = K, the Gauss curvature. Thus the formula (10.7) becomes

1 2
Index Dp = — [ (—=F K)dVv
ndex D 47r/(i12+)
M

(10.32)
! + /KdV
= —_—— w _— .
i ) F T ax
M M

where wp is the curvature form of L. We have the identities

1 1 1
M M

the latter being the Gauss—Bonnet theorem.



10. Direct attack in 2-D 343

Now, if L — M is a holomorphic line bundle, then (1/2) Dy has the same
principal symbol, hence the same index, as

(10.34) 9. :C®(M,L) — C®(M,L ®F%).
Hence we obtain the Riemann—Roch formula:
- 1
(10.35) Index a7, = ¢1(L)[M] + Ex(M),
in agreement with (9.17).
We finish with a further comment on the Gauss—Bonnet formula; y (M) is the
index of

(10.36) d+68:AN°M & A*M — A'M

if dim M = 2. If M is oriented, both A’ M and (A® @ A?)M get structures of
complex line bundles via the Hodge * operator; use

(10.37) J=xonA', J=—x:A"> A% J=x:A%> A"

It follows easily that (d + 6)J = J(d + §), so we get a C-linear differential
operator

(10.38) U:AeM — AM,
where A, = A°® A2, A, = AL, regarded as complex line bundles, so
Index ¢ = % Index(d + §).
Ker ¢ is a one-dimensional complex vector space:
Ker % = span(l) = span(x1).

The cokernel of d + § in (10.36) consists of the space H; of (real) harmonic
I-forms on M . This is invariant under *, so it becomes a complex vector space:

1
(10.39) dimc H; = > dimgp H; = g.
Thus

1
(10.40) Index ¢ = 5(2 —2g)=1—g.
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When one applies an analysis parallel to that above, leading to (10.32), one gets

1
(10.41) Index ¥ = —/K av.
4
M

Putting together (10.40) and (10.41), we again obtain the Gauss—Bonnet formula,
for a compact, oriented surface.

Exercises

2.

. Use (10.36)—(10.39) to give another proof of (9.24), that is,

1

dim O (k) = - dim HY (M, C) =g.

In Exercises 2—4, suppose E; — M are complex line bundles over M, a compact
manifold of dimension 2, and suppose

D :C®(M,Eg) — C®(M, E;)

is a first-order, elliptic differential operator.
Show that the symbol of D induces an R-linear isomorphism

(10.42) op(x): Ty —> L(Eox, E1x).

Hence M has a complex structure, making this C-linear. This gives M an orientation;
reversing the orientation makes (10.42) conjugate linear.

If M is oriented so that (10.42) is conjugate linear, show that D has a principal symbol
homotopic to that of Dy, given by (10.15), with L = Eg, L ® ¥ ~ E;. Deduce that

(10.43) Index D = %cl(Eo)[M] + %cl(El)[M].

4.

What happens to the formula for Index D*?

In Exercises 5-8, S(%T* denotes the bundle of symmetric second-order tensors with

trace zero on a Riemannian manifold M, and S& o1 denotes the bundle of symmetric
tensors of type (1, 1) with trace 0. The metric tensor provides an isomorphism of these
two bundles.

. If M is a compact, oriented 2-fold, with associated complex structure J : TxM —

Tx M, show that a complex structure is defined on Sé)’cl C Hom Tx by

(10.44) JA) = %[J, Al = JA.

6.

Thus Sé’l and S(%T* become complex line bundles.
Recall the first-order operator considered in (4.29)—(4.31):

1
(10.45) Dpp : C®(M,T) — C®(M,S2T*), DrpX = Def X — 5 (div X)g.
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incasen = dim M = 2. If T and SgT* are regarded as complex line bundles, show
that D7 is C-linear.

7. Recall that ker D7 F consists of vector fields that generate conformal diffeomorphisms
of M, hence of holomorphic sections of 7 = «~!. Show that there is an isomorphism
SgT* ~ k~! ® ¥ transforming (10.45) to

(10.46) 3:CPM,kH — C®M, kI ®F).

Note that Index 9 = —(3g — 3) in this case, if g is the genus of M.
8. In view of (4.30), the orthogonal complement of the range of D7 is the finite dimen-
sional space

(10.47) V={ueC®M,SZT*) : divu = 0}.

Comparing (10.45) and (10.46), show that V ~ O(k ® «). If M has genus g > 2, 3in
(10.46) is injective (by Exercise 12, §9). Deduce that

(10.48) dimg V = 6g — 6, if g > 2.

Compare Exercise 5 of §9. For g = 0, compare Exercise 7 of §4.
For connections with the dimension of Teichmuller space, see [Tro].

11. Index of operators of harmonic oscillator type

In this section we study elliptic operators of harmonic oscillator type, introduced
in §15 of Chap.7. We recall that a symbol p(x, &) belongs to S7"(R”) if it is
smooth in (x, §) € R” x R" and satisfies estimates

(1L.D) IDEDEP(x.6)| = Cop(1 + |x| + gy 1781,

The associated operator P = p(X, D) € OPST'(R") is defined using the Weyl
calculus. The operator is elliptic provided that, for |x|?* + |£|? large enough,

(11.2) [P, 7 < C(1L+ |x] +[ED) 7™

In such a case, P has a parametrix Q € OPS;™(R"), such that PQ — I and
QP — I belong to OPS;7*°(R"). The class S (R") of classical symbols is de-
fined to consist of elements p(x,§) € ST*(R") such that

(11.3) P §) ~ > pilx. ),

Jj=0

where p;(x,§) € S;"_ZJ (R™) is homogeneous of degree m — 2j in (x, &) for
|x|? + |£]> > 1. If such a symbol satisfies the ellipticity condition (11.2), then
P = p(X, D) has parametrix Q € OPS ™ (R"). A paradigm example of such
an operator is the harmonic oscillator
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(11.4) H=—A+|x,

which is elliptic in OPS?(R™), with symbol |x|? + |£|2. It is a positive definite
operator, and, as shown in Chap. 7,

(11.5) H® € OPS*(R"), VseR.

There are Sobolev-type spaces H*(R"), s € R, such that, fors =k € Z+,
(11.6)  H¥(R™) = {u € L>(R") : x*DPu € L2(R™), V || + |B| < k}.
As shown in Chap. 7, if P € OPS™(R"), then, forall s € R,

(11.7) P H'R") — HTR"),

and if P is elliptic, this map is Fredholm. We want to study its index. For simplic-
ity, we stick to operators with symbols of classical type.

If P = p(X, D) is an elliptic operator (k x k matrix valued), with symbol
expansion of the form, we call po(x, &) the principal symbol. Recall we assume
Po(x, £) is homogeneous of order m for |x|? + |£|? > 1. We then have the symbol
map

op: S — GU(k,C),

(11.8
) op(x.E) = por.6). |x[+ €2 = 1.

Note that P € OPS™(R") and PH* € OPS™2*(R") have the same symbol
map, and they have the same index, one on H*(R") — H*™™(R") and the other
on H*(R") — H*~™=2(R"). Basic Fredholm theory gives the following.

Proposition 11.1. Given elliptic k x k systems P; € OPS™/ (R"), if op, and
op, are homotopic maps from S?"~! to GL(k, C), then Index P; = Index P;.

Letustaken = 1 and k = 1 and look for specific index formulas. In this case,
given elliptic scalar P € OPS™(R), we have

(11.9) op:S'— GL(1,C)=C 0.
Such a map is specified up to homotopy by the winding number

(11.10) indop = - [2©

27i ) op(f)
Sl

di,

where { = x + i&. If Py and P, are two such elliptic operators, we have

(11.11) Index P; P, = Index P; + Index P>,
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and
(11.12) indop, p, =indop, +indop,.
Let us consider the operator

0
(11.13) Dy = — +x1,
axl

acting on functions of x; € R. Its symbol is x; + i&;, so
(11.14) indop, = 1.

Note that D} = —9; + xy, and

(11.15) DfDy =-3 +x?—1, DDf=-3+x3+1.
We have
(11.16) Ker D; = Span{e_xlz/z}, and
DD > 2] = Ker D} =0,
hence
(11.17) Index Dy = 1.

Putting together (11.9)—(11.17) and Proposition 11.1, we have the following.
Proposition 11.2. If P € OPS™(R) is a scalar elliptic operator, then
(11.18) Index P = indop.

We nextkeepn = 1 and let P € OPS™(R) be an elliptic k X k system, so
(11.19) op:S' — Gk, C).

We want to classify these maps, up to homotopy. To do this, we bring in the
following topological fact about

(11.20) Slk,C)={A e Glk,C):detA =1},
namely

(11.21) SL(k,C) is simply connected.
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Using this fact, we prove the following.

Proposition 11.3. Given a symbol map (11.19), define Gp : S* — GL(k,C) by

(11.22) Gp(x,€) = (dew}(’)(x’ ) ?) ,

where I denotes the (k — 1) x (k — 1) identity matrix. Then op and G6p are
homotopic.

Proof. Given (11.19) and (11.22), we set

(11.23) yi=6pop' 1 S' — SU(k,C).

Using (11.21), we can deform y; to yo = I, through y; : St — S¢(k,C), 0 <
T < 1. A homotopy from op to Gp is then givenby o5 (x,§) = y:(x,§)op(x.§),
0<t<l.

We have a scalar operator P € OPSkm (R), defined uniquely mod
OP S*™=2(R) by the condition

(11.24) op = detop.
Then

P
(11.25) Index P = Index 7))

which by Proposition 11.2 is given by ind detop. We have proved the following.
Proposition 11.4. If P € OPS™(R) is an elliptic k X k system,
(11.26) Index P = inddetop.
Returning to (11.21), we note that it is equivalent to the result
(11.27) SU(k) is simply connected.
To see this, we use the polar decomposition
(11.28) AeGlk,C) = A=U(A)II(A),

where
1(A) = (A*A)"/? is positive definite,

U(A) = A(A*A)~Y? e U(k).
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With this, we can define a 1-parameter family of maps

(11.29) 9. : GL(k,C) — GL(k,C), tel0,1],
by

(11.30) 9. (4) = U(A)TI(A)".

We have

(11.31) 90(A) = U(A), 91(A) = A.

This makes U(k) a deformation retract of G£(k, C). As a consequence, each con-
tinuous map o : $?"~! — G{(k,C) is homotopic to the map g o o : S?"~! —
U(k). Note that

det A

(11.32) et TI(A) = |det A|, detU(A) = 2
| det A|

SO

(11.33) 9o - SL(k,C) — SU(K),

and ¥; makes SU(k) a deformation retract of S{¢(k,C). This establishes the
equivalence of (11.21) and (11.27). In case k = 2, we have

(11.34) SUQ) = {(Z _ab) ca,beC, la*+ b2 =1¢ ~ §3,
which is clearly simply connected. For k > 2, (11.27) is a special case of (11.56)
below.

Let us now take n > 2 and consider a k X k elliptic system P € OPS™(R"),
giving a symbol map (11.8). Making use of the deformation retract (11.29)—
(11.31), we see that op is homotopic to a symbol map

(11.35) ops 1 S — U(k),

for an operator P* € OPS™(R"), uniquely defined mod OPS™ 2(R"), and
Index P = Index P*. For k = 1, we have the following topological result.

Lemma 11.5. If n > 2, every continuous map ¢ : S?*~1 — U(l) = S' is
homotopic to a constant map.

Proof. Indeed, since S~ ! is simply connected for n > 2, o lifts to a continuous
map 6 : S?*~! — R, which is clearly homotopic to a constant map.
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In light of this, if we have (11.35) and set (as in (11.22))

detop:(x,&) 0

(11.36) 5(x,£) = ( ) /

), G821 S Uk),

then, for n > 2, ¢ is homotopic to a constant. Hence o p# and
(11.37) ol 82" S SUK), oP(x,§) =6(x,6) Lops(x, §),

are homotopic. Given u € R, this is the symbol map of an operator P e
OPS™(R™), uniquely determined up to a lower order operator. We have the fol-
lowing result.

Proposition 11.6. Forn > 2, if P € OPS™(R") is an elliptic k Xk system, there
exists for each i € R an elliptic k x k system P € OPS*(R") whose symbol
map

(11.38) 05 §2n=1 5 SU(k)
is homotopic to op, as maps S*"~! — GU(k, C). Hence
(11.39) Index P = Index P.
Let us now specialize to n = 2. By Lemma 11.5, every scalar elliptic P €

OP S™(R?) must have index 0. We construct an elliptic 2 x2 system with nonzero
index as follows. With D asin (11.13), set

D :(31+X1 82—X2)
2 dr +x2 —0d1+x1

(11.40)
_ (P L3
T\ L, Dy ’
where
(11.41) Ly = 07 + x3, L; = —07 + X3.
Note that

x1+i& —x2+ib
X2 +i&  x1—i&

(11.42) op, = ( ) s0 0p, : S* — SUQ2) ~ S

is essentially the identity map. A computation gives

D*D, +L*L,
11.43 DiD, =1 2 ,
( ) 272 ( D\D¥ + LyL}
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and

* *
(11.44) DD} = (D1D1 + L3L,

DIDy + LZL;) '
We recall the formulas for D{ Dy and D1 Dy in (11.15). Similarly,
(11.45) LiLy = -2 +x3—1, LL}=-3+x3+1.

Hence Ker L, = Span{e‘x%/ 2} and L, L3 > 21, and we have for the four diago-
nal elements of (11.43)—(11.44) that

dimKer(D{ Dy + L3L,) =1,
DD + LoL; > 41,

(11:46) DD} + LiL, > 21,
DDy + LyL3 > 21.

Hence

(11.47) dimKer D, =1, dimKer D5 =0,

)

(11.48) Index D, = 1.

Now consider an arbitrary 2 x2 elliptic system P € OPS™ (R?). Asin (11.38),
we have an adjusted operator P, with the same index as P, and

(11.49) 05:8° — SUQ) ~ S°.

The homotopy class of this map is an element of 73(S?). Results on this homo-
topy group, which we will discuss in more detail below, imply the following.

Proposition 11.7. Let P € OPS™(R?) be a 2 x 2 elliptic system. For op as in
(11.49), there is a unique integer £ such that either

{ >0 and 0p is homotopic to Opts

(11.50) £ =0 and op IS homotopic to a constant map,

€ <0 and o3 is homotopic to O(py)lel-
We denote this £ by

(11.51) { = indos.
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Then
(11.52) Index P = Index P = ind 0p-

To see that (11.52) follows from (11.50), note that in the first case Index P =
Index Dg = { and in the third case Index P = Index(D;)W =—|| = L.

We now discuss some homotopy theory behind (11.50). It is convenient to
place this in a more general setting. If M is a smooth, connected manifold and j €
N, 7; (M) denotes the set of homotopy classes of continuous maps ¢ : S/ — M
(which is equivalent to the set of homotopy classes of smooth maps). This can be
given a group structure as follows. Fix po € S/, g9 € M. Given maps ¢, ¢ :
S/ — M, one can produce maps homotopic to these that take pg to go, S0 assume
¢ and ¥ have this property. Now take S/ and collapse its “equator,” which is
homeomorphic to S/ 71, to a point. You obtain two copies of S/, joined at a point,
which we identify with po. Then map the top sphere to M by ¥ and the bottom
sphere to M by ¢, and compose with the collapse map, to getamapo : S/ — M,
whose homotopy class [o] = [¢] - [¥].

In case G is a connected Lie group, there is another way to define a product
on 7;(G). Namely, if ¢,y : S/ — G, consider the map ¢ - ¢ : S/ — G given
by (¢ - ¥)(x) = @(x)¥(x), using the product on G. If ¢ and ¢ are homotopic
(write ¢ ~ @) and also ¥ ~ x}, wehave ¢ - ¥ ~ @ - x}, so this gives a product
on 77;(G). It is a basic fact that this product on 7 ; (G) agrees with the previously
defined one; cf. [Spa], Chap. 1.

What makes (11.50) work is the j = 3 case of the following fundamental
result of H. Hopf.

Proposition 11.8. For each j € N,
(11.53) (S~ Z,
and (the homotopy class of) the identity map Id : S/ — S/ is a generator.

In fact, if @, ¥ : S/ — S/ are smooth, they have degrees, defined in Chap. 1,
§19, and the Hopf theorem says they are homotopic if and only if they have the
same degree. Cf. [Spa], p. 398.

Under the identification (11.34) of SU(2) with (a,b) € S3,0p, : S*> — §3
is the identity map, and o pt € 73 (S3) is an £-fold product, hence corresponds
to £ € Z under this isomorphism, while Opy = —1 € 73(S?), and Oyl =
—|e] € 73(S?).

Let us next consider a k x k elliptic system P € OPS™(R?), giving rise to P*

asin (11.35) and P asin (11.38), all having the same index. The following result
is useful.

Proposition 11.9. For each k € N, the natural inclusion SU(k) — U(k)
induces an isomorphism
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(1154) 7 (SUK)) = 7;(U(K). i j > 1.

Furthermore, the inclusions U(k) — U(k +£) and SU(k) — SU(k + ), given
by

(11.55) A (A ),

1
where I denotes the £ x { identity matrix, induce isomorphisms
(11.56)

;i (U(k)) = 7 (Uk+1)), m;j(SUKk)) = ;i (SU(k+1)), if j <2k-—1.

We mention that a proof of (11.54) requires just a few arguments beyond the
proof of Proposition 11.6. The proof of (11.56), with £ = 1, which then proceeds
inductively, follows by applying the “homotopy exact sequence” to

(11.57) Uk + 1)/ Uk) ~ %+ SUKk +1)/SU(k) ~ S?k+1,

See (11.82) below. According to Proposition 11.9, when j = 3, (11.56) holds for
k > 2. Taking (11.53) into account, we have

(11.58) m3(SU(k)) ~ m3(U(k)) ~Z, Vk=>2.
We can now augment Proposition 11.7 as follows.

Proposition 11.10. Lez P € OPS™(R?) be a k x k elliptic system, k > 2. For
03 - S3 — SU(k) as in (11.49), there is a unique integer £ such that, with I
denoting the (£ — 2) x (£ — 2) identity matrix, either

o
€ >0 and o is homotopic to ( D} 1),
(11.59) £ =0 and o3 is homotopic to a constant map,

O(p*
£ <0 and 0% is homotopic to ( (D) 1).

We denote this £ by

(11.60) {= indcr/[;.
Then
(11.61) Index P = Index P = ind 0.

P
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We now turn to higher dimensions. Our next task is to construct, for each j an
elliptic system D; € OPS'(R/) (actually a system of differential operators) of
index 1. The construction is inductive. Assume we have such an elliptic system
D,,_1, with the properties

(11.62) dimKer D, =1,
and
(11.63) Dp_1D;_, > 2I.

By (11.15)—(11.16) we have this for n — 1 = 1, and by (11.43)—(11.47) we have
this forn — 1 = 2. We then set

Dp_i Oy —x Dp_y —L*
11.64 D, = n=1 noAn) = (et ),
( ) " (an +xn Dy ) ( Ly D;zk—l)

where
(11.65) L, = 0, + x,, L;=—8n+xn.

Parallel to (11.43)—(11.44), a computation gives

D* Dp_y + L*L
11.66 D*D, = “n17" n=n ,
( ) nen ( D,,_lD;_1+L,,L;)
and

Dp_1D* . + L*L
11.67 D,Df =" 171 n=n .
( ) n=n ( D;_ID,,_1+L,,L:)

Parallel to (11.45), we have
(11.68) LiL,=—-3%+x2—1, L,L}=-34x2+1.

We see that L, annihlates e"‘%/2 and L, L} > 21. Hence, parallel to (11.46), we
have
dimKer(D,_Dy—1 + Ly L,) =1,

DnpD;_y + LnL, > 41,

Dp1Dy | +LyL, =21,

Dy _Dy_1+ L,L} >2I.

(11.69)

Consequently, we have

(11.70) dimKer D, =1,
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and

(11.71) D,D; > 21,
hence

(11.72) Index D, = 1.

This completes the inductive construction. Note that the matrix doubles in size at
each iteration, so D,, is a 2"~ x 2"~ matrix of differential operators.

We can extend Proposition 11.10, using the following fundamental result of
R. Bott. Cf. [Mil], §23.

Proposition 11.11. Forn € N,
(11.73) Ton—1(U(k)) ~ mon—1 (SUKk)) ~ Z, if k >n.

Note that (11.58) is the case n = 2 of this result. Given this proposition, the
calculation (11.72) implies the following.

Proposition 11.12. Forn € N, the map
(11.74) op, : S 1 —y@eh
defines a generator of wyu—1 (U(2"1)).

Note: The calculation (11.66) implies opxp, (x,§) = op, (x,§)*0op, (x,§) = 1,
for |x|? + &> = 1.

From here, we have the following extension of Proposition 11.10.

Proposition 11.13. Let P € OPS™(R") be a k x k elliptic system, with associ-
ated symbol map 0% : S2n=1 5 SU(k). Ifk = 2", there is a unique integer {
such that either

£ >0 and 0p is homotopic to Opt-
(11.75) £ =0 and 0 Is homotopic to a constant map,

{ <0 and 05 is homotopic to O(pyylel-
we denote this { by

(11.76) € = indos.
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Then

(11.77) Index P = Index P = ind 0p-

Ifk <2771, then Index P = Index P = Index P, where

(11.78) o = (05 1),

I being the (2" ! —k)x (2"~ —k) identity matrix, and the considerations above
apply to give Index P, hence Index P.
Ifk > 2"71 then there is a unique integer £ such that either

€ >0 and o3 is homotopic to (aDﬁ 1) ,
(11.79) ¢ =0 and o is homotopic to a constant map,

P

? <0 and 05 is homotopic to (U(D'*;)“Z 1),

I being the (k — 2"~1) x (k — 2"7Y) identity matrix, and analogues of (11.76)—
(11.77) hold.

Remark: An integral formula for Index P is given in [Fed]; see also [Ho].

Also of use in index theory is the following complement to Proposition 11.11.
Proposition 11.14. Given k > 1,
(11.80) J#{1,3,... 2k — 1} = 7;(U(k)) is finite.

Thanks to Shrawan Kumar for mentioning this and for explaining the proof,
which we now sketch. One ingredient is the result that

(11.81) 7;(S%71) s finite forall j # 2k — 1.

See [Spa], p. 515. The proof of (11.80) goes by induction on k. The case k = 1
is clear. The case k = 2 follows from (11.54), which reduces (11.80) with k = 2
to the assertion that 77; (SU(2)) = 7, (S?) is finite for j # 3. To do the inductive
step, we assume that

(11.82) j#{1.3,....2k =3} = 7, (U(k — 1)) is finite,
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and aim to deduce (11.80). Another ingredient for this is the homotopy exact
sequence for U(k)/U(k — 1) = S2~1 which includes the segment

(11.83) nj_H(SZk—l) — 7;(U(k — 1)) - 7;(U(k)) — ﬂj(SZk—l)’
cf. [Mil], p. 128. We tensor with Q, denoting 77 (X) ® Q by n;@ (X).

1184 2% (5% = 2 RUk - 1) » 22Uk — 7P (%),

By (11.81),
(11.85) r (S =0 if j #2k—1.

Thus

(11.86) J# {2k —2.2k — 1} = 7 2(UK) ~ 72 (UK - 1)).

With this, (11.82) leads to
(11.87) n;Q(U(k)) =0if j ¢{1,3,...,2k—3} and j ¢ {2k —2,2k — 1}.

On the other hand, setting j = 2k — 2 in (11.84) gives

(11.88) Q — g, (Ulk— 1)) = 2 _,(U(k)) — 0.
SO
(11.89) na Uk —1)=0= ng_,(UKk)) =0,

giving (11.80).

See the exercises for an application of Proposition 11.14.

Remark: S. Kumar has also shown the author how further arguments yield,
fork > 2,

T2k +1 (U(k)) =0 if k is Odd,
(11.90)
Z/(2) ifk iseven.
In case k = 2, one has

(11.91) 75(U(2) = 75(SU(2)) = n5(S%) = Z/(2).

See [Spa], p. 520.
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Exercises

1. Give a Clifford algebra description of the operator Dy, in (11.64).
2. Show that if k > n, there exists for each £ € Z a k x k elliptic system

P € OPS™(R") such that Index P = {.
3. Suppose you know that
on—1(U(k)) is a finite group.

(By (11.73) this would require k < n.) Show thatif P € OPS™(R™) is a k x k elliptic
system,
Index P = 0.

(Hint. Index P/ = j Index P.)
4. Using Exercise 3 and Proposition 11.14, show thatif P € OP S™(R") is a k xk elliptic
system,
k <n = Index P = 0.
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11

Brownian Motion and Potential Theory

Introduction

Diffusion can be understood on several levels. The study of diffusion on a
macroscopic level, of a substance such as heat, involves the notion of the flux
of the quantity. If u(z, x) measures the intensity of the quantity that is diffusing,
the flux J across the boundary of a region O in x-space satisfies the identity

0
(0.1) — fut,x)dV(x)=— [ v-JdS(x),
: /

a0

as long as the substance is being neither created nor destroyed. By the divergence
theorem, this implies

0.2) o _ _div s
. — = —div J.

ot
The mechanism of diffusion creates a flux in the direction from greater concen-
tration to lesser concentration. In the simplest model, the quantitative relation
specified is that the flux is proportional to the x-gradient of u:

0.3) J = —D grad u,
with D > 0. Applying (0.2), we obtain for # the PDE

ou
4 M _pa
0.4) o u,

in case D is constant. In such a case we can make D = 1, by rescaling, and this
PDE is the one usually called “the heat equation.”

Many real diffusions result from jitterings of microscopic or submicroscopic
particles, in a fashion that appears random. This motivates a probabilistic attack
on diffusion, including creating probabilistic tools to analyze the heat equation.
This is the topic of the present chapter.

M.E. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, — 361
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_5,
© Springer Science+Business Media, LLC 1996, 2011



362 11. Brownian Motion and Potential Theory

In §1 we give a construction of Wiener measure on the space of paths in R”,
governed by the hypothesis that a particle located at x € R” at time #; will have
the probability P(¢, x, U) of being in an open set U C R” at time ¢ + ¢, where

0.5) P(t,x,U) = /p(f,xﬂ) dy,
U

and p(¢, x, y) is the fundamental solution to the heat equation. We prove that,
with respect to Wiener measure, almost every path is continuous, and we estab-
lish a modulus of continuity. Our choice of e’2 rather than e’2/2 to define such
probabilities differs from the most popular convention and leads to minor differ-
ences in various formulas. Of course, translation between the two conventions is
quite easy.

In §2 we establish the Feynman—Kac formula, for the solution to

du
0.6) — = Au+ V(x)u,

ot
in terms of an integral over path space. A limiting argument made in §3 gives us
formulas for the solution to (0.4) on a bounded domain €2, with Dirichlet boundary
conditions. This also leads to formulas for solutions to

0.7) Au= fonQ, u=00ndQ,
and
(0.8) Au=0o0nQ, u=gonodf2.

A different, and more natural, formula for the solution to (0.8) is derived in §5,
after the development in §4 of a tool known as the “strong Markov property.” In
§6 we present a study of the Newtonian capacity of a compact set K C R”, in
the case n > 3, which is related to the probability that a Brownian path starting
outside K will hit K. We give Wiener’s criterion for a point y in 92 to be regular
for the Dirichlet problem (0.8), in terms of the capacity of K, = {z € dQ :
|z— y| < r}, as r — 0, which has a natural probabilistic proof.
In §7 we introduce the notion of the stochastic integral, such as

(0.9) /0 f(s,a)(s)) dw(s),

which is not straightforward since almost all Brownian paths fail to have locally
bounded variation. We show how the solution to

ou

(0.10) o = Aut Xu
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can be given in terms of an integral over path space, whose integrand involves a
stochastic integral, in case X is a first-order differential operator. The derivation
of this formula, like the derivation of the Feynman—Kac formula in §2, uses a tool
from functional analysis known as the Trotter product formula, which we establish
in Appendix A at the end of this chapter.

In §8 we consider a more general sort of stochastic integral, needed to solve
stochastic differential equations:

(0.11) dX=bt,X)dt +0(t,%X)dw,

which we study in §9. Via Ito’s formulas, stochastic differential equations can be
used to treat diffusion equations of the form

9
0.12) a—l;:ZAjk(x)ajaku-i-ij(x)aju—i-V(x)u,

in terms of path space integrals. We look at this in §10. Results there, specialized
to (0.10), yield a formula with a different appearance than that derived in §7. The
identity of these two formulas leads to a formula of Cameron-Martin-Girsanov,
representing the “Jacobian determinant” of a certain nonlinear transformation of
path space.

An important topic that we do not treat here is Malliavin’s stochastic calculus
of variations, introduced in [Mal], which has had numerous interesting applica-
tions to PDE. We refer the reader to [Stk2] and [B] for material on this, and further
references.

1. Brownian motion and Wiener measure

One way to state the probabilistic connection with the heat equation

3u_Au

(1.1) =

is in terms of the heat kernel, p(¢, x, y), satisfying

(1.2) B f(x) = / Pt ) () dVY).

If A in (1.1) is the Friedrichs extension of the Laplacian on any Riemannian man-
ifold M, the maximum principle implies

(1.3) pt,x,y) = 0.
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In many cases, including all compact M and M = R”", we also have

(1.4) /p(t,x,y) dV(y) = 1.

Consequently, for each x € M, p(t,x,y) dV(y) defines a probability distribu-
tion, which we can interpret as giving the probability that a particle starting at the
point x at time 0 will be in a given region in M at time ¢.

Restricting our attention to the case M = R”, we proceed to construct a proba-
bility measure, known as “Wiener measure,” on the set of paths o : [0, co) — R”,
undergoing a random motion, sometimes called Brownian motion, described as
follows. Given t; < f, and that w(#;) = x1, the probability density for the loca-
tion of w(ty) is

(1.5) €8, (x) = p(t.x —x1) = (47tt)_”/ze_|x_x”2/4t, t =1t —1.

The motion of a random path for #; <t < 7, is supposed to be independent of its
past history. Thus, given 0 < #; < #; < --- < I, and given Borel sets £; C R",
the probability that a path, starting at x = 0 at ¢ = 0, lies in E; at time ¢; for
each j € [1,k]is

(1.6) /--'/P(fk—tk—1,xk—xk—l)"'l’(fl,)m)dxk"'d’Xl-

E, Ex

It is not obvious that there is a countably additive measure characterized by these
properties, and Wiener’s result was a great achievement. The construction we give
here is a slight modification of one in Appendix A of [Nel2].

Anticipating that Wiener measure is supported on the set of continuous paths,
we will take a path to be characterized by its locations at all positive rational t.
Thus, we consider the set of “paths”

(1.7) B=[] rR"

teQt

Here, R” is the one-point compactification of R” (i.e., R" = R" U {o0}). Thus
P8 is a compact, metrizable space. We construct Wiener measure W as a positive
Borel measure on 3.

By the Riesz theorem, it suffices to construct a positive linear functional
E : C(P) — R, on the space C(P) of real-valued, continuous functions on
B, satisfying E(1) = 1. We first define E on the subspace C*, consisting of con-
tinuous functions that depend on only finitely many of the factors in (1.7); that is,
functions on P of the form

(1.8) (@) = F(o(t), ..., 0(t)), 0 <- <,
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where F is continuous on ]_[’1c R”, and ¢ ; € Q. To be consistent with (1.6), we
take

E(p) = /"'/P(fl,m)l’(fz—fl,xz—xl)

oo p(te = te—1, Xk — Xk—1)
F(xy,...,xp)dxg---dxy.

(1.9)

If (w) in (1.8) actually depends only on w(z,) for some proper subset {z,} of
{t1,..., 1}, there arises a formula for E(¢) with a different appearance from
(1.9). The fact that these two expressions are equal follows from the semigroup
property of e2. From this it follows that E : C* — R is well defined. It is also a
positive linear functional, satisfying E£(1) = 1.

Now, by the Stone-Weierstrass theorem, C* is dense in C(3). Since
E :C* — R is a positive linear functional and E(1) = 1, it follows that E
has a unique continuous extension to C(*}3), possessing these properties. Thus
there is a unique probability measure W on ‘P such that

(1.10) E(g) = /m () dW(®).

This is the Wiener measure.

Proposition 1.1. The set By of paths from Q7T to R”, which are uniformly con-
tinuous on bounded subsets of QV (and which thus extend uniquely to continuous
paths from [0, 00) to R"), is a Borel subset of B with Wiener measure 1.

For a set S, let oscs (w) denote sup; ;s |@(s) — ()] Set
(1.11) E(a,b,s) = {® € P : oscfg p](®) > 2¢};

here [a, b] denotes {s € QT : a < s < b}. Its complement is

(1.12) E(a,b,e) = ﬂ {w € P lals) — o) <26},

t,s€la,b]

which is closed in 3. Below we will demonstrate the following estimate on the
Wiener measure of E(a, b, ¢):

(1.13) W(E(a.b.e)) < 2p(§,|b—a|),

where

(1.14) p(e,8) = sup / p(t,x)dx,
t<§

|x|>¢e



366 11. Brownian Motion and Potential Theory

with p(t, x) = e'28(x), as in (1.5). In fact, the sup is assumed at = §, so

&
(1.15) 6.8) = / Ly)dy =y (<o),
p(e. ) 7p( y)dy w(\/g)
[y|>¢/~/8
where
116 ) =@ [ Py a e
lyl>r
asr — oQ.

The relevance of the analysis of E(a, b, ¢) is that if we set
(1.17) F(k.e.8) ={w e P:3J C[0.k]NQ*. £(J) <. oscy(w) > 4e},
where £(J) is the length of the interval J, then
(1.18) F(k,e,8) = J{E(a,b,2¢) : [a,b] C [0,k], |b —a| <5}

is an open set, and, via (1.13), we have

(1.19) W (F(k.e.5)) < 2kp(2’ 9.

Furthermore, with F€¢(k,e,8) = P\ F(k,¢,6),

Bo = {a):Vk < 00,Ve > 0,35 > Osuch thatw € Fc(k,s,S)}

(1.20) :ﬂ ﬂ U FC(k,e,8)

k e=1/vé=1/u

is a Borel set (in fact, an F,g set), and we can conclude that W(o) = 1 from
(1.19), given the observation that, for any ¢ > 0,

p(e, )

(1.21) ;

—> 0, asd — 0,

which follows immediately from (1.15) and (1.16). Thus, to complete the proof
of Proposition 1.1, it remains to establish the estimate (1.13).

Lemma 1.2. Given ¢,6 > 0, take v numbers t; € Qt,0<1t <--- <ty such
thatt, —t; < 6. Let

(1.22) A={weP:|on)—owl))| > ¢ forsomej=1,... v}
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Then
(1.23) W(A) < 2p(§, ).
Proof. Let

B={o: o) -o®) > 3}
(124) C; = ool — o) > 3},

Dj ={w:|w()—ow(t;)| > ¢cand
lo(t1) — o(te)| < e, ¥k < j—1}

v
Then A C BU |J (C; N Dj),so
j=1

%
(1.25) W(A) < W(B)+ Y _W(C; N Dy).
Jj=1
Clearly, W(B) < p(g/2,§). Furthermore, via (1.8)—(1.9), if we set

D(o(t1),....0(t;)) =1, ifw € D, 0otherwise,
C(a)(tj),a)(tv)) =1, ifw € C;, 0 otherwise,

we have C(x;, x,) = Ci1(x; — x,) and

W(C; N Dj)

:/W/DmmwMW@ﬂMMEMW@—%M—M%'
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pt;j —tj—1,x; —xj—1)pty —tj, xy —xj) dxydx;j - -dx;

(1.26)
< 9(2’8)/'“/D(xl’--'axj)p(tlsxl)“'p(tj —lj—1,Xj —Xj-1)

- dx; -

&
SO

&
(1.27) ijw(c,- nD;) <p(5.9).

since the D ; are mutually disjoint. This proves (1.23).

-dx1
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Let us note an intuitive approach to (1.26). Since D; describes properties of
w(t) fort € [t1,t;] and C; describes a property of w(?,) — w(t;), these sets
describe independent events, so W(C; N D;) = W(C;)W(D;); meanwhile
W(C;) < ple/2.5).

We continue the demonstration of (1.13). Now, given such ¢; as in the state-
ment of Lemma 1.2, if we set

(1.28) E ={o:|o(tj) — o(ty)| > 2¢, for some j.k € [1,v]}.
it follows that

(1.29) W(E) < 2p(§,5),

since E is a subset of A4, given by (1.22). Now, E(a, b, ¢), given by (1.11), is
a countable increasing union of sets of the form (1.28), obtained, say, by let-

ting {¢1,...,t,} consist of all # € [a, b] that are rational with denominator < K,
and taking K /' +o00. Thus we have (1.13), and the proof of Proposition 1.1 is
complete.

We make the natural identification of paths w € o with continuous paths
o : [0,00) — R". Note that a function ¢ on B of the form (1.8), with 7; € RY,
not necessarily rational, is a pointwise limit on B of functions in C¥, as long as
F is continuous on ]_[lf R”, and consequently such ¢ is measurable. Furthermore,
(1.9) continues to hold, by the dominated convergence theorem.

An alternative approach to the construction of W would be to replace (1.7)
by B = ]_[{R" 1t € R+}. With the product topology, this is compact but not
metrizable. The set of continuous paths is a Borel subset of %, but not a Baire set,
so some extra measure-theoretic considerations arise if one takes this route.

Looking more closely at the estimate (1.19) of the measure of the set F'(k, €, §),
defined by (1.17), we note that you can take ¢ = K /6 log 1/8, in which case

(1.30) (e, 8) = ¥n (K,/log %) <C, (1og %)"/ 2K

Then we obtain the following refinement of Proposition 1.1.

Proposition 1.3. For almost all € B, we have the modulus of continuity

8./8log1/é, thatis, given 0 < s,t <k < 00,

(1.31) tim sup (|a)(s) — ()] - 8,/510¢ l) <0,
|s—t|=6—0 )

In fact, (1.30) gives W(Sg) = 1, where S is the set of paths satisfying (1.31),
with 8 replaced by 8 + 1/k, and then (), Sk is precisely the set of paths
satisfying (1.31).
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This result is not quite sharp; P. Levy showed that, for almost all € ‘3, with

n(8) =24/8log1/8,0 <s,t <k < o0,

(1.32) lim sup 128 = @Ol _
|s—t|—0 ,LL(|S - l|)

See [McK] for a proof. We also refer to [McK] for a proof of the result, due to
Wiener, that almost all paths @ are nowhere differentiable.

By comparison with (1.31), note that if we define functions X; on ‘3, taking
values in R”, by

(1.33) X (w) = (1),

then a simple application of (1.8)—(1.10) yields

(134 X0y = [ 1xPpte.x) dx = 20,
and more generally
(1.35) I1X: — Xsll 20 = V20 |s — t]'/2

Note that (1.35) depends on n, while (1.32) does not.

Via a simple translation of coordinates, we have a similar construction for the
set of Brownian paths w starting at a general point x € R¥, yielding the positive
functional E : C(B) — R, and Wiener measure Wy, such that

(1.36) Ex(g) = / (@) dWy(®).
Ry

When ¢(w) is given by (1.8), Ex(¢) has the form (1.9), with the function p(#1, x1)
replaced by p(#1, x; — x). To put it another way, E(¢) has the form (1.9) with
F(x1,...,xx) replaced by F(x1 + x,...,xx + x).

We will often use such notation as

Ex(f(o()

instead of [i; f (X, (@))d Wx(w) or Ex(f(X;(@))).
The following simple observation is useful.

Proposition 1.4. If ¢ € C(*B), then Ex (@) is continuous in x.

Proof. Continuity for ¢ € C*, the set of functions of the form (1.8), is clear from
(1.9) and its extension to x # 0 discussed above. Since C* is dense in C(F3), the
result follows easily.
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Exercises

1. Given a > 0, define a transformation D, : Po — Po by
(Daw)(1) = aw(a™21).

Show that D, preserves the Wiener measure W . This transformation is called Brownian

scaling. »
2. LetBo = {w € Po : limg— 0 s~ Lw(s) = 0}. Show that W(Po) = 1.

Define a transformation p : Py — Po by
(pw)(t) = to(t™1),

for t > 0. Show that p preserves the Wiener measure W.
3. Given a > 0, define a transformation R, : Po — Bo by

(Raw) (1) = (1), for0 <t <a,
2w(a) —w(t), fort >a.

Show that R, preserves the Wiener measure W.

4. Show that L? (Pg,d Wy) is separable, for | < p < oo. (Hint: ‘B is a compact metric
space. Show that C(]3) is separable.)

5.If0 < ay < by < ap < by, show that Xp, — Xq, is orthogonal to Xp, — Xg, in
L2(B, d Wy, R™), where X;(w) = w(?), as in (1.33).

6. Verify the following identities (when n = 1):

(1.37) Ey (e/l(a)(z)—a)(s))) — e\t—SMz,

2k)!
(1.38) Ex([a)(t)—w(s)]Zk) - %n — sk,
(1.39) E(o(s)w(t)) = 2 min(s, ).

7. Show that e*@® ¢ L2380, d W) if and only if A < 1/8t.

2. The Feynman—Kac formula

To illustrate the application of Wiener measure to PDE, we now derive a formula,
known as the Feynman—Kac formula, for the solution operator e~") to

0
@.1) a—bt‘ = Au—Vu, u(0) =/,
given f in an appropriate Banach space, such as LP(R"), 1 < p < oo, or
f € Co(R"), the space of continuous functions on R” vanishing at infinity. To
start, we will assume V' is bounded and continuous on R”. Following [Nel2], we
will use the Trotter product formula

2.2) A~ fim (e(t/k)Ae—(z/k)V)k y

k—o00
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k
For any k, (e(t/k)Ae_(’/kW) [ is expressed as a k-fold integral:

k
(e(z/k)Ae—(z/k)V) ()
B t
@3 = [ [ e OV by ) OOV
t
. e—(t/k)V(xl)p(Px — x1) dxy -+~ dxg.

Comparison with (1.36) gives

k
24 (/8= BV) 1) = Exen).
where

t
k

J

k
235) (@) = f(0@) eSO S (w) =

1
We are ready to prove the Feynman—Kac formula.

Proposition 2.1. If V is bounded and continuous on R", and f € C(R") van-
ishes at infinity, then, for all x € R",

(2.6) A f(x) = Eyx ( f(@())e™ V(w(r))dr) .

Proof. We know that e!(®~Y) £ is equal to the limit of (2.4) as k — oo, in the
sup norm. Meanwhile, since almost all @ € ‘B3 are continuous paths, S (w) —
fé V(w(t))d T boundedly and a.e. on 3. Hence, for each x € R”, the right side
of (2.4) converges to the right side of (2.6). This finishes the proof.

Note that if V is real-valued and in L>°(R"), then e’A~") is defined on
L>®(R"), by duality from its action on L!(R"), and

2.7) fo € CPR™), f S1= AV, etV
Thus, if V is real-valued, bounded, and continuous, then, for all x € R”,

(2.8) et(A—V)l(x) —E, (e—fg V(w(r))dr) '

We can extend these identities to some larger classes of V. First we consider
the nature of the right side of (2.6) for more general V.
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Lemma 2.2. Fixt € [0,00). If V € L*®(R"), then

2.9) Iy (w) 2/0 Viw(t)) dt

is well defined in L*°(B). If V,, is a bounded sequence in L*(R") and V,, — V
in measure, then Iy, — Iy boundedly and in measure on *B3. This is true for each
measure Wy, x € R".

Proof. Here, L*° is the set of equivalence classes (mod a.e. equality) of bounded
measurable functions, that is, elements of £°°(R"). Suppose W € L®(R") is a
pre-image of V. Then fé W(w(t)) dt = tw(w) is defined and measurable, and
lew |l cooepy < [IW | zoonyt. If W¥ is also a pre-image of V, then W = W*
almost everywhere on R”. Look at U, defined on 8 x R by

U(w, s) = W(w(s)) — WHw(s)).

This is measurable. Let K C R” be the set where W(x) # W#(x); this has
measure 0. Now, for fixed s, the set of w € 8 such that w(s) € K has Wiener
measure 0. By Fubini’s theorem it follows that U = 0 a.e. on f x R*, and
hence, for almost all @ € P, U(w,-) = 0 ae. on R*. Thus [; W#(w(r)) dt =
f(; W(w(t)) dt for a.e. w € B, so Iy is well defined in L () for each V €
L®([R"). Clearly, [Ty ||z < [|[V||Loot.

If V,, = V boundedly and in measure, in view of the previous argument we can
assume without loss of generality that, upon passing to a subsequence, V, (x) —
V(x) for all x. Consider

U(@.5) = V(w(s)) — Vi(w(s)),

which is bounded in L% (p x R™). This converges to 0 for each (w, s) € PxRT,
so by Fubini’s theorem again, f(f Uy(w,s) ds — 0 for a.e. . This completes the
proof.

A similar argument yields the following.

Lemma 2.3. IfV € L} (R") is bounded from below, then

loc
(2.10) ey (w) = e~ o V@@ dr
is well defined in L>°(P). If V,, € L}

e R™) are uniformly bounded below and

Vo, > VinL }UC, then ey, — ey boundedly and in measure on ‘L.

Thus, if V € L. (R"), V > —K > —o0, take bounded, continuous ¥, such

loc

that V, > —K and V,, — V in L} . We have e A=V2) || < X* for all v, where
|| - || can be the operator norm on L? (R") or on C,(R"). Now, if we replace V'
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by V) in (2.6), then Lemma 2.3 implies that, for any f € C3°(R"), the right side
converges, for each x, namely,

@2.11) Ex (f(w(x))e—fé Vv(w(ﬂ)df) s P(t) f(x), asv — oo.

Clearly | P(¢) f(x)] <eX"Ex(| f|) <eX?| f| Lo . Consequently, for each x € R",
if f € Co(RM),

2.12) et(A—Vv)f(x) — P(t) f(x) = Ex (f(w(l))e_fé V(a)(t))dr) '
It follows that P(t) : Cg°(R") — L*°(R"). Since
(2.13) " A1) f(x)] < eKre®| £1(x).

we also have P(r) : C{°(R") — L'(R™). Furthermore, we can pass to the limit in
the PDE du, /9t = Au, — Vyu, foru, = e'®=") £ to obtain for u(t) = P(¢) f
the PDE
ou

(2.14) rri Au—Vu, u)=f
If A — V, with domain D = D(A) N D(V), is self-adjoint, or has self-adjoint
closure A, the uniqueness result of Proposition 9.11 in Appendix A, Functional
Analysis, guarantees that P(¢) f = e’ f. For examples of such self-adjointness
results on A — V, see Chap. 8, §2, and the exercises following that section. Thus
the identity (2.6) extends to such V, for example, to V € L% (R"); so does the
identity (2.8).

We can derive a similar formula for the solution operator S(¢, 0) to

(2.15) ?TL; =Au—=V(t,x)u, u()=f

using the time-dependent Trotter product formula, Proposition A.5, and its conse-
quence, Proposition A.6. Thus, we obtain

(2.16) S(t,0) f(x) = Ex (f(a)(t))e_fé V(t,w(r))dr)
when V(t) € C ([O, 00), BC(R")), BC(R") denoting the space of bounded con-

tinuous functions on R”. By arguments such as those used above, we can extend
this identity to larger classes of functions V(¢).

Exercises
1. Givene¢ > 0,1 € R, compute the integral operator giving

2.17) et OF—ex?=Ax) £y,
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(Hint: Use ex? + Ax = e(x + A/2¢)% — A2/4¢ to reduce this to the problem of
computing the integral operator giving

(2.18) et 036X g (1),

For this, see the material on the harmonic oscillator in §6 of Chap. 8, in particular,
Mehler’s formula.)
2. Obtain a formula for

(2.19) Ex (e—a J§ ()2 ds—24 [§ o(s) ds) — (103 —ex2—Ax) 100),
in the case of one-dimensional Brownian motion. (Hint: Use the formula

et(ai—axz)l(x) — a(t)e—b(t)xz,
(2.20) i |
a(t) = (cosh 24/¢t) . b)) = Eﬁtanh 2./¢t,

which follows from the formula for (2.18). Alternatively, verify (2.20) directly, exam-
ining the system of ODE

d'(t) = =2a()b(t), b'(1) =e—4b(1)%)
3. Pass to the limit ¢ N\ 0 in (2.19), to evaluate

2.21) Ex (e—" fo “’(S)dS).

Note that the monotone convergence theorem applies.

Exercises 4 and 5 will investigate

222) Y =W ({w eP: /(;a w(s)? ds < s}) =P (/(;a w(s)? ds < s) .

4. Using Exercise 2, show that, for all A > 0,

/'°° 1///(S)e_)LS ds = Eg (e—)t J§ 0(s)? ds)
0
= (cosh Zaﬁ)_l/z = ﬁe—aﬁ(l +e_4“ﬁ)_1/2,

Other derivations of (2.23) can be found in [CM] and [Lev].
5. The subordination identity, given as (5.22) in Chap. 3, implies

o0
—As —avA a —3/2 —a2/4s
s)e ds = V2e if s) = K e .
/0 ®a () Pals) o

T

(2.23)

Deduce that | 3
W/(S) = @q(s) — E(PSa(S) + §¢9a(s) —e,

hence that

%P (/(;a w(s)? ds < s)

a —3/2[ —a2/as L o _9sa2/4s | 3 o —8142/4s ]
—c e — =-5e + =9 —ee |
2 2 8

(2.24)
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Show that the terms in this alternating series have progressively decreasing magnitude
provided £/a? < 1/2. (Hint: Use the power series

1 3
1 “1/2 2 Zy2 ..
1+y) 7Vt gy

with y = e_4aﬁ.)
6. Suppose now that w(¢) is Brownian motion in R”. Show that

Eo (e S los)1? ”’S) = (cosh 2av/2) ™2,

Deduce that in the case n = 2,

d “ 2 _ 2a —-3/2 —a2/£ —9a2/£ —25a2/£
%P(/O | (s)] ds<s)_ﬁg [e _3e 4 5e _]

Show that the terms in this alternating series have progressively decreasing magnitude
provided ¢ < 2a2.

3. The Dirichlet problem and diffusion on domains
with boundary

We can use results of §2 to provide connections between Brownian motion and
the Dirichlet boundary problem for the Laplace operator. We begin by extending
Lemma 2.3 to situations where V;, / V, with V(x) possibly equal to 400 on a
big set. We have the following analogue of Lemma 2.3.

Lemma 3.1. Let V,, € L} (R"), =K <V, /' V, with possibly V(x) = ~+00 on
a set of positive measure. Then ey (w), given by (2.10), is well defined in L*°(3),
provided we set e~ = 0, and ey, — ey boundedly and in measure on Q, for
eacht.

Proof. This follows from the monotone convergence theorem.

Thus we again have convergence with bounds in (2.11)—(2.13). We will look at
a special class of such sequences. Let 2 C R” be open, with smooth boundary
(in fact, Lipschitz boundary will more than suffice), and set £ = R” \ Q. Let
V, > 0 be continuous and bounded on R” and satisfy

(3.1) V,=00nQ, V,>vonkE,, V, 7,

where E, is the set of points of distance > 1/v from Q. Given f € L2(R"),
g€ L), set Pof = fla € L?(RQ), and define Eqg € L?(R") to be g(x)
forx € 2, Oforx € E =R"\ Q.

Proposition 3.2. Under the hypotheses above, if € L?>(R™), then
(3.2) AN s Egette(Pg f),

as v — oo, where Agq is the Laplace operator with Dirichlet boundary
condition on S2.
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Proof. We will first show that, for any A > 0,

(3.3) (A=A+W)'f > Ea(A—Ag) ' Pof

Indeed, denote the left side of (3.3) by uy, so (A — A + V,)u, = f. Taking the
inner product with u,,, we have

A
(B4 Alus |72+ Vau |l +/ Vluw|? dx = (fiun) < IIMuIIinr ||f||Lz,

SO

65 Sl IVuls + [Vl v < S

Thus, for fixed A > 0, {u, : v € Z%} is bounded in H!(R"), while
[, lw|* dx < C/v. Thus {u,} has a weak limit point u € H'(R"), and
u = 0 on UE,. The regularity hypothesized for 32 implies u € H, (). Clearly,
(A — A)u = f on , so (3.3) follows, with weak convergence in H!(R"). But
note that, parallel to (3.4),

MlullZz + 1Vul7> = (fow) = lim (f.u),
SO

(3.6) MullZ> + Va7, = limsup Aluy |75 + [ Vi [175-
v—>00

Hence, in fact, we have H!-norm convergence in (3.3), and a fortiori L2-norm
convergence.

Now consider the set F of real-valued ¢ € C, ([0, 00)) such that, for all f €
L*(R"),

(3.7) o(=A + V,) f — Eqe(—Agq)Pq f, in L>(R")-norm,

where @(H) is defined via the spectral theorem for a self-adjoint operator H.
(Material on this functional calculus can be found in §1 of Chap. 8.) The analysis
above shows that, for each A > 0, r3(s) = (A + )~ ! belongs to F. Since Po Eq
is the identity on L2(2), it is clear that F is an algebra; it is also easily seen to be
a closed subset of C, ([0, 00)). Since it contains r, for A > 0, it separates points,
so by the Stone-Weierstrass theorem all real-valued ¢ € C,([0, 00)) belong to F.
This proves (3.2).
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The version of (2.12) we have this time is the following.

Proposition 3.3. Let 2 C R” be open, with smooth boundary, or more generally
with the property that

{ue H'(R") : suppu C Q} = H} (Q).

Let F € C®(R"), f = Flg. Then, forallx € Q, t >0,

(3.8) A f(x) = E, ( f(w(,))e—./éeg(w(z»df) .

On the left, e’ is the solution operator to the heat equation on Rt x Q with
Dirichlet boundary condition on d€2, and in the expression on the right

(3.9) la(x)=0o0nQ, +o00 onR"\Q=E.
Note that, for w continuous,

o Jita@@)dr _ Vglw, 1) =1 ifo([0,1]) C Q,

0 otherwise.

(3.10)

The second identity defines ¥ (w, t). Of course, for w continuous, ([0, t]) C Q
if and only if w([0,7] N Q) C Q.

We now extend Proposition 3.3 to the case where Q2 C R” is open, with no
regularity hypothesis on d€2. Choose a sequence €2 ; of open regions with smooth
boundary, such that ; CC Q41 CC -+, |J;2; = Q. Let A; denote the
Laplace operator on 2 j, with Dirichlet boundary condition, and let A denote that
of €2, also with Dirichlet boundary condition.

Lemma 3.4. Given f € L?(Q), t > 0,

(3.11) ey jli)n;o Eje'®i P, f.

where P; f = flq; and, for g € L%(Q;), E;jg(x) = g(x) for x € Q;, 0 for
x e \ Qj.

Proof. Methods of Chap. 5, §5, show that, for A > 0,

(3.12) EiA=A)7T"Pif - (A =A)"f

in L2-norm, and then (3.11) follows from this, by reasoning used in the proof of
Proposition 3.2.
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Suppose f € Cg°(21). Then, for j > L, Eje’AJ'f — e!® f in L2-norm, as
we have just seen. Furthermore, local regularity implies

(3.13) EjetA-/' f — e f  locally uniformly on €.

Thus, given such f, and any x € Q (hence x € Q; for j large),
(3.14) 2 f(x) = lim Ey (f(a)(t))wﬁj (, t)) .
J—)OO

Now, as j — oo,

(3.15) Vg, (@.1) S Yalo.1),
where we define

Va(w,t) =1 ifw(0,t]) C Q,

(3.16) .
0 otherwise.

This yields the following:

Proposition 3.5. For any open Q@ C R”, given f € C§°(R2), x € Q,

(3.17) "2 f(x) = Ex (f (o)) ¥a(w,1)).

In particular, if £ has smooth boundary, one can use either Yo (w, ) or Yg(w,t)
in the formula for e’ f(x). However, if 2 is not smooth, it is Vg (w, #) that one
must use.

It is useful to extend this result to more general f. Suppose f; € C§°(R2), f €
L?(2), and f;(x) N\, f(x) foreach x € Q. Then, forany ¢ > 0, etAfj — A f
in L2(£2) N C*°(Q), while, for each x € Q. Ex(f;(w(t))¥a(w.1)) converges
\| to the right side of (3.17), by the monotone convergence theorem. Hence (3.17)
holds for all such f'; denote this class by £(£2). Clearly, the characteristic function
Xk € L(2) for each compact K C Q.

By the same reasoning, the class of functions in L2(S2) for which (3.17)
holds is closed under forming monotone limits, either f;  f or f; \ f,
of sequences bounded in L2?(£2). An argument used in Lemma 2.2 shows that
modifying f € L?(R) on a set of measure zero does not change the right side of
(3.17). If S C 2 is measurable, then

xs(x) = lim yg;(x), ae.,
J]—>00 )
for an increasing sequence of compact sets K; C S, so (3.17) holds for f = xs.

Thus it holds for finite linear combinations of such characteristic functions, and
an easy limiting argument gives the following:
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Proposition 3.6. The identity (3.17) holds forall f € L*(Q2) whent > 0, x € Q.

Suppose now that €2 is bounded. Then, for f € L?(R), 1 < p < oo,

(3.18) —AT f = / A f dt,
0

the integral being absolutely convergent in L”-norm. If f € C5°(2), we hence
have, for each x € Q,

(3.19) —A7 f(x) = Ey (/Ooo fo®)va(o.1) dt) )

Furthermore, by an argument such as used to prove Proposition 3.6, this identity
holds for almost every x € Q, given f € L*(S2), and for every x if f; € C{°(R)
and f;(x) / f(x) for all x. In particular, for 2 bounded,
(3.20) —AT'(x) = Ex(da(w). x€Q,
where, if w is a continuous path starting inside €2, we define
o0
to(w) = / Ya(w,t)dt =sup{t : o([0,t]) C Q}
0
=min{¢ : w(t) € 0Q}.

(3.21)

In other words, Jq(w) is the first time w(?) hits d€2; it is called the “first exit
time.” Since A™!1 € C®(Q), it is clear that the first exit time for a path starting
at any x € € is finite for Wy -almost every @ when €2 is bounded. (If w starts at a
point in dQ or in R” \ , set ¥q(w) = 0.) Note that we can write

Yo (w)
(3.22) —A"Vf(x) = Ey (/0 f (o)) dt) .

If 0R2 is smooth enough for Proposition 3.3 to hold, we have the formula (3.19),
with Yq (w, t) replaced by Vg (w, t), valid for all x € Q. In particular, for smooth
bounded 2,

(3.23) —AT'1(x) = Ex(dg()), x€Q,
where we define

(3.24) dg(w) =inf{r : (t) € R" \ Q} = max {t : 0([0,7]) C Q}.

(If @(0) € R" \ Q, set V¥g(w) = 0.) Comparing this with (3.20), noting that
Vg(w) > dq(w), we have the next result.



380 11. Brownian Motion and Potential Theory

Proposition 3.7. If Q is bounded and 02 is smooth enough for Proposition 3.3
to hold, then

(3.25) x € Q = Vq(w) = dg(w), for Wy- almost every w,
and
(3.26) X € 0Q = Ug(w) =0, for Wy- almost every o.

The probabilistic interpretation of this result is that, for any x € €, once a
Brownian path  starting at x hits 9<2, it penetrates into the interior of R” \ Q
within an arbitrarily short time, for Wy-almost all w. From here one can show
that, given x € 0€2, Wy-a.e. path @ spends a positive amount of time in both
and R" \ Q, on any time interval [0, s¢], for any so > 0, however small. This is
one manifestation of how wiggly Brownian paths are.

Note that taking f = 1 in (3.17) gives, for all x € €2, any open set in R”,

(3.27) A 1(x) = We({w : Do) > 1)), xeQ,

the right side being the probability that a path starting in €2 at x has first exit
time > ¢. Meanwhile, if d€2 is regular enough for Proposition 3.3 to hold, then

(3.28) e 1(x) = Wy (fo : Og(w) > 1}) .

Comparing these identities extends Proposition 3.7 to unbounded €2.
The following is an interesting consequence of (3.28).

Proposition 3.8. For one-dimensional Brownian motion, starting at the origin,
givent >0, A > 0,

(3.29) W({w: sup w(s) > A}) =2W({w: o) = A}).

0<s<t

Proof. The right side is ffop(t,x) dx, with p(t,x) = e’dz/dxzé’(x) =
(4rt)"1/2e=x*/4 the n = 1 case of (1.5). The left side of (3.29) is the same
as W({ow : ¥oon(w) < t}), which by (3.28) is equal to 1 — e'L1(0) if
L = d?/dx? on (—o0, A), with Dirichlet boundary condition at x = A. By the
method of images we have, for x < A,

1 (x) = / PtV HO —x + ) dy.

where H(s) = 1 fors > 0, —1 for s < 0. From this, the identity (3.29) readily
follows.
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We next derive an expression for the Poisson integral formula, for the solution
PI f =uto

(3.30) Au=00n%, ulsg=f

This can be expressed in terms of the integral kernel G(x,y) of A™1 if dQ is
smooth. In fact, an application of Green’s formula gives

d
(3.31) PI f(x) = / F) 5-Glx. ) dS().
y
Q

where v, is the outward normal to dQ2 at y. A closely related result is the fol-
lowing. Let f be defined and continuous on a neighborhood of d€2. Given small
§ > 0, set

(3.32) Ss = {x € Q : dist(x, 9Q) < b},

and define us by

Aus =82 f;onQ, us=00nd<Q,

(3.33)
fs = fonSs, 0onQ\ Ss.

Lemma 3.9. If 092 is smooth, then, locally uniformly on 2,

. 1
(3.34) lim us = —= PI f.
§—0 2

Proof. If v is the outward normal, we have
wey =0 [ [ Gle.y — ) f(9) ds dS(3) + o(1)
0
(3.35) - é 106t ([ s ds) ds() + o)
-5/ f(y)%G(x,y) d5(y) +o(1),
o

so the result follows from (3.31).

Comparing this with (3.22), we conclude that when 92 is smooth,

2 Yo (w)
(3.36) PI f(x) = 511\% = E, (/0 f(w@))iss (@, 1) dt) ,
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where Ss is as in (3.32), and, for S C €,

is(w,t)y =1 ifw()es,

(3.37) .
0 otherwise.

We will discuss further formulas for PI £ in §5.

Exercises

1. Looking at the definitions, check that Yg(w, ) and dg(w) are measurable when
Q C R” is open with smooth boundary and that ¥q (w, ) and ¥q(w) are measur-
able, for general open 2 C R”.

2. Show that if x € O, then

(3.38) {wePo: g <toy= ) {0ePo:o@s) eR"\O}L
5€[0,60)NQ

3. For any finite set S = {s1,...,5x} CQT, N € Z1, set

Fys(@) = @y,s(0(s1). .. 0(sk)).
Oy s(x1,...,xK) = min(N, min{s, : x, € R” \6})

Show that, for any continuous path w,

(3.39) V& (w) = sup inf Fy s(w).
N S

Note that the collection of such sets S is countable.
4. f Pz y = to € Po : ¥5(w) < N} and O is bounded, show that

(3.40) We(Bo \ Ba ) < CN7L.

(Hint: Use (3.23).)
5. If o € P > show that

(3.41) Vp(@) = lim (@),

where
Py N (@) = min(N, inf{s € 27V L w(s) ¢ 6})

Write ¢, y(w) = @y N (a)(sl), ey a)(sL)), where ®,, x has a form similar to ®y s
in Exercise 3.

6. For one-dimensional Brownian motion, establish the following, known as
Kolmogorov’s inequality:

2t
(3.42) W({w: sup |o(s)|>¢}) <=, &>0.
0<s<t €
(Hint: Write the left side of (3.42) as W({a) D (e (@) < t}), and relate this to the
heat equation on = [—¢, €], with Dirichlet boundary condition, in a fashion parallel
to the proof of Proposition 3.8.)
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Note that this estimate is nontrivial only for r < £2/2. By Brownian scaling, it suffices
to consider the case ¢ = 1. Compare the estimate

w ({w :osup Jo(s)| > 8}) < 4/00 p(t,x) dx,
0<s<t &

which follows from (3.29).

7. Given 2 C R” open, with complement K, and A with Dirichlet boundary condition
on 052, show that, for x € €,

(3.43) We ({0 : 9g(w) = co}) = Hi (x).
where

(3.44) Hg(t,x) = e21(x) \\ Hg(x), ast / co.

8. Suppose that K = R™ \ € is compact, and suppose there exists H x(x) € C(Q),
harmonic on €2, such that H g = 0 on dK and H g (x) — 1, as |x| — oco. Show that
Hg(t,x) > ﬁK(x), for all t < oo.
(Hint: Show that AHg (¢t,x) < 0 and that Hg (t,x) — 1 as |x| — oo, and use the
maximum principle.)
Deduce that if such H g (x) exists, then Wy ({w : 9 (w) = co}) > 0.
9. In the context of Exercise 8, show that if such H g exists, then in fact

(3.45) Hg(x) = Hg(x), forallx € Q.

(Hint: Show that H g must be harmonic in € and that limsup|x| oo Hg(x) < 1.)
By explicit construction, produce such a function on R” \ B when B is a ball of radius
a > 0, provided n > 3.

10. Using Exercises 7-9, show that when n > 3,

(3.46) Wx({w Cw(t)] > coast — oo}) =1
(Hint: Given R > 0, the probability that |@(¢)| > R for some ¢ is 1. If R >> a, and
|(tp)| > R, show that the probability that |w(t9 + s)| < a for some s > 0 is small,
using (3.43) for K = B, = {x : |x| < a}.) To restate (3.46), one says that Brownian
motion in R” is “non-recurrent,” for n > 3.

11. If n < 2 and K = By, show that Hg (¢, x) = 0 in (3.44), and hence the probability
defined in (3.46) is zero. Deduce that if n < 2 and U C R” is a nonempty open set,
almost every Brownian path w visits U at an infinite sequence of times ¢, — oo.

One says that Brownian motion in R” is “recurrent,” for n < 2.

12. Relate the formula (3.34) for PI f to representations of PI f by double-layer poten-
tials, discussed in §11 of Chap. 7. Where is the second layer coming from?

13. If Q is a bounded domain with smooth boundary, show that (3.36) remains true with

Sg replaced by _ .
Ss = {x e R"\ Q: dist(x, Q) < §}
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and with ¥ (w) replaced by g (w), where Q5 = Qu ’55. (Hint: Start by showing
that ug (x) — —(1/2)PI f(x), for x € Q, where, in place of (3.33),

Atig = 672 fs on Qg, 15 = 0 on 3R,

with f5 = f onfs:g, 0 on Q.

4. Martingales, stopping times, and the strong
Markov property

Given ¢ € [0, 00), let B, be the o-field of subsets of P3¢ generated by sets of the
form

4.1 {w e Po : w(s) € E},

where s € [0,¢] and E is a Borel subset of R”. One easily sees that each element
of B, is a Borel set in ‘B3. As ¢ increases, B; is an increasing family of o-fields,
each consisting of sets which are Wy-measurable, for all x € R”. Set By, =

0(Ut<oo %l)'

Given f € L'(Po, Boo. d W), we can define the conditional expectation
4.2) Ex(f|%B:).

a function measurable with respect to ‘B;, as follows. Denote by W, ; the restric-
tion of the Wiener measure Wy to the o-field B;. Then

4.3) A(S) = / F@) dWi(@) = Ex(f1s)
S

defines a countably additive set function on ‘B;, which is absolutely contin-
uous with respect to Wy, so by the Radon-Nikodym theorem there exists a
B;-measurable function ®;, uniquely defined W, ;-almost everywhere, such that
(4.3) is equal to fS ®;(w) d Wy s(w), for all S € B;. This function is Ex( f|B;).
Clearly,

“44) [ € L' (Po.Boo. dWi) => Ex(f|B:) € L' (Bo. Br.dWr,).

This construction of conditional expectation generalizes in the obvious way to
any situation where f is measurable with respect to some o-field §, and is L!
with respect to a given probability measure on §, and one wants to define the
conditional expectation E( f|Fo) with respect to some sub-o-field §o of 5.
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Note that we can regard L!(Bo, B, d Wy ;) naturally as a closed linear sub-
space of L'(Bo.Boo,dWy). Then the map f — E(f|DB;) is a projection.
Similarly, we have

f € L*(Po. Boo. dWx) = Ex(f[B:) € L*(Bo. By, d Was),

and in this case E.(f|®B;) is simply the orthogonal projection of f onto
L?(Po, B, d Wy ), regarded as a linear subspace of L2(Bo, Boo,d Wy). The
reader might think of this in light of von Neumann’s proof of the Radon-Nikodym
theorem, which is sketched in the exercises for §2 of Appendix A.

The following is a statement that Brownian motion possesses the Markov

property.
Proposition 4.1. Givens,t >0, f € C(R"),
4.5) Ex(f((t +5))|Bs) = Eugs)(f (@), for Wy-almost all o.

Proof. The right side of (4.5) is ‘Bs-measurable, so the identity is equivalent to
the statement that

@o) [ s+ dwiw = [ ([ £@0) oy @) st
S S

for all S € ‘B;. It suffices to verify (4.6) for all S of the form
S ={wePo:w)€ Ey,...,0(k) € Ex},

givent; € [0,s], E; Borel sets in R”. For such §, (4.6) follows directly from the
characterization of the Wiener integral given in §1, that is, from (1.6)—(1.9) in the
case x = 0, together with the identity

47 [ 1@y aw,@ = E(f0 + o)
used to define (1.36).
We can easily extend (4.5) to
(4.8)  Ex(F(o(s +11),...,0(s + 1£)|Bs) = Eo) (F(o(th), ..., o)),

for W-almost all w, given t1,...,# > 0, and F continuous on ]_[]1C R”, as in
(1.8). Also, standard limiting arguments allow us to enlarge the class of functions
F for which this works. We then get the following more definitive statement of
the Markov property.

Proposition 4.2. For s > 0, define the map

(4.9) os 1 Po — Po, (o:0)(1) = w(t + 5).
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Then, given ¢ bounded and B o -measurable, we have

(4.10) Ex(¢ 003|Bs) = Eu(s) (@), for Wy-almost all w.

The following is a useful restatement of Proposition 4.2.

Corollary 4.3. For s > 0, define the map
4.11) U5 1 PBo = Po, @Bs0)() = ot +5) — w(s).
Then, given ¢ € L'(Po,d Wp), we have
(4.12) Ex(p o 05|Bs) = Eo(p).
In particular,
(4.13) Ex(f (950(0))|%Bs) = Eo(f(0(1))).
Note that (4.12) implies 5 is measure preserving, in the sense that
(4.14) We (97(8)) = Wo (),

for Wp-measurable sets S. The map 9 is not one-to-one, of course, but it is onto
the set of paths in ¢ satisfying w(0) = 0.

The Markov property also implies certain independence properties. A function
@ € L'(Bo,dWy) is said to be independent of the o-algebra B, provided that,
for all continuous F,

(4.15) /F((p(a))) dWy(w) = Wi(S)Ex(Fog), VY S e%B;.
S

An equivalent condition is

(4.16) Ex(F(p)V) = Ex(F(@)Ex(¥), V¢ € L'(Po, By, dWr),
given F(p)y € L'(Po, d Wy), and another equivalent condition is

4.17) Ex(F()|B:) = Ex(F(¢)).

In turn, this identity holds whenever the left side is constant. From Corollary 4.3
we deduce:

Corollary 4.4. Fors > 0, dsw(t) = o(t + s) — w(s) is independent of B.
Proof. By (4.13),
(4.18) Ex(F(o(t + 5) — (5))|Bs) = Eo(F(w(1))),

which is constant.



4. Martingales, stopping times, and the strong Markov property 387

The Markov property gives rise to martingales. By definition (valid in gen-
eral for an increasing family B; of o-fields), a martingale is a family F; €
L'(PBo, B, d Wy ;) such that

(4.19) Ex(F;|Bs) = Fy whens < 1.

If Ex(F;|Bs) = Fs fors < t, {F;} is called a submartingale over B;. The
following is a very useful class of martingales.

Proposition 4.5. Let h(t, x) be smooth int > 0,x € R”, and satisfy |h(t, x)| <
C,se's‘)“2 for all € > 0, and the backward heat equation

oh
a
Then b (w) = h(t, w(t)) is a martingale over B;.

(4.20) —Ah.

Proof. The hypothesis on A (, x) implies that, for ¢, s > 0,
(4.21) h(s,x) = /p(t, Vh(t +s,x—y)dy,

where p(t, x) = e'28(x) is given by (1.5). Now

Ex(bt+s|%s) = Ex(h(t +S’w(t +S))|%s)

(4.22)
= Eus) (h(l + 5, a)(l))),

for Wy-almost all w, by (4.5). This is equal to

4.23) / Pty — () h(t +5.v) dy.

by the characterization (1.9) of expectation, adjusted as in (1.36), and by (4.21)
this is equal to A (s, w(s)) = bs(w).

Corollary 4.6. For one-dimensional Brownian motion, the following are martin-
gales over *B;:

(4.24) t) =o@), g =o0@)?-2t, ;) = e‘“"(t)_“zt,
givena > 0.

One important property of martingales is the following martingale maximal
inequality.

Proposition 4.7. If F; is a martingale over By, then, given any countable set
{t;} C RY, the “maximal function”

(4.25) F*(w) = sup F; (o)
J
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satisfies, for all A > 0,

1
(426) Wx({(l) : F*((l)) > A,}) < X”Ft”Ll(;BO’dWx).
Of course, the assumption that F; is a martingale implies that || F¢|| ;1 is inde-
pendent of 7.

Proof. It suffices to demonstrate this for an arbitrary finite subset {¢;} of RT.
Thus we can work with fj(w) = F;;(®),B; = B;,,1 < j < N, and take
11 < tp <--- < tp,and the martingale hypothesis is that Ex(fk|%j) = f; when
J < k. There is no loss in assuming fy (@) > 0, so all f;(w) > 0. Now consider

(4.27) Sy ={o: ff(w) > A} = {w:some fj(w) > A}.
There is a pairwise-disjoint decomposition

N
“28)  Sp=JSr. Sy ={o:fi>2ibut fi(w) <Aforl < j}.
j=1

Note that S, is 9B j-measurable. Consequently, we have

[ v awi)

Sa
N N

(4.29) =y / In (@) dWi(w) = / fi (@) dWy(w)
J=1g;, j=1g,,
N
> DA Wa(S2) = A We(Sp).

j=1

This yields (4.26), in this special case, and the proposition is hence proved.

aw(t)—at

Applying the martingale maximal inequality to 3;(w) = e , we obtain

the following.

Corollary 4.8. For one-dimensional Brownian motion, givent > 0,

(4.30) Wo({w € Po: sup o(s) —as > A}) < e,

0<s<t
Proof. The set whose measure is estimated in (4.30) is

{w € Po: sup eaw()—a’s o ey,

0<s<t
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Since paths in P are continuous, one can take the sup over [0, ¢] N Q, which is
countable, so (4.26) applies. Note that Ey(3;) = 1.

We turn to a discussion of the strong Markov property of Brownian motion.
For this, we need the notion of a stopping time. A function t on B¢ with values
in [0, +00] is called a stopping time provided that, for each ¢t > 0, {®w € Py :
7(w) < t} belongs to the o-field B, . It follows from (3.39) that ¥ is a stopping
time. So is Yp.

Given a stopping time 7, define B, to be the o-algebra of sets S € B, such
that S N {w : 7(w) < t} belongs to B, for each ¢ > 0. Note that t is measurable
with respect to 8. . The hypothesis that 7 is a stopping time means precisely that
the whole set Py satisfies the criteria for membership in B.. We note that any
t € [0, 00), regarded as a constant function on By, is a stopping time and that, in
this case, B4 = (,~; Bs.

The following analogue of Propositions 4.1 and 4.2 is one statement of the
strong Markov property.

Proposition 4.9. If t is a stopping time such that t(w) < oo for Wy-almost all o,
and ift > 0, then

(431) Ex(f (@t +0)[Bes) = Eoco (f@0),
for Wy-almost all w. More generally, with
(o:0)(t) = w(t + 1),
and ¢ bounded and *B »-measurable, we have
(4.32) Ex(¢00¢|Bry) = Euw (@)

for Wy-almost all w.

As in (4.6), the content of (4.31) is that

(4.33) / f (T + 1)) dWy(w) = / ( / f(w#(t))dWw(,)(w#))dWx(w),
S S

given S € B.4. In other words, given that S N {w : t(w) < ¢’} € By, for each
t’ > 0. There is no loss in taking x = 0, and we can rewrite (4.33) as

(4.34) / flo+1) dW(w) = / / f(@* (1) + 0(x)) dW(0*) dW(w).
S S

It is useful to approximate t by discretization:

(4.35) Ty(w) =27, if 277k — 1) < t(w) < 27"k.
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Thus
(4.36) {w: () <t} ={w: (@) <27k} e By,

so each 1, is a stopping time. Note that

Ay ={o (@) =27k}

4.37) _ _
={w:1t(w) <27k} \{w: (@) <27k -1)}

belongs to Br—vg.
If t is replaced by t,, the left side of (4.34) becomes

(4.38) > / f (ot +277k)) dW(w),

vk SAA,

and the right side of (4.34) becomes

(4.39) > / / f(@*(t) + 027k)) dW(w*) dW(w).

VK SAA L

Note that if S € B4+, then S N Ayx € B,r—vg. Thus, the fact that each term in
the sum (4.38) is equal to the corresponding term in (4.39) follows from (4.6).
Consequently, we have

(4.40) / flo(m +1)) dW(w) = / / f (o' @) + o(v)) dW(o®) dW(w),
S S

for all v, if S € B,4. The desired identity (4.34) follows by taking v — oo,
if f € C(R"). Passing from this to (4.32) is then done as in the proof of
Proposition 4.2.

In particular, the extension of (4.31) analogous to (4.8), in the special case
F(x1,x2) = f(x2 — x1), yields the identity

/ floG@+1)—w(@) dW(w) = / / f (0" @) dW(w®) dW(w)
@41 4 J

= E(f(o(1)) - W(S),

given S € B.4. This, together with the extension to F(xy,...xg), says that
o(t + t) — w(r) = B(¢) has the probability distribution of a Brownian motion,
independent of B ;. This is a common form in which the strong Markov property
is stated.

It is sometimes useful to consider stopping times for which {w : t(w) = oo}
has positive measure. In such a case, the extension of Proposition 4.9 is that (4.32)
holds for Wy-almost w in the set {w : 7(w) < oo}. Thus, for example, (4.33) and
(4.34) hold, given S € B,y and S C {w : 1(w) < 00}.
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We next look at some operator-theoretic properties of

O; :L*(Po, dWo) — L*(Po,dWo), 0:9 = Eo(9|By),

(4.42) , ,
O :L7(Po,dWo) — L*(Po.dWs), Orp(w) = ¢(tw),

where ¥ is given by (4.11). For each t > 0, Q; is an orthogonal projection, and
0;0: = 0,05 = Qy, for s < t. Note that (4.13) implies

(4.43) 0:0; = Qo,
since Qy is the orthogonal projection of L2(B¢. d W) onto

(4.44) R(Qo) = set of constant functions.

Proposition 4.10. The family ©;, t € [0, 00), is a strongly continuous semigroup
of isometries of L?(Po, d Wy), with

(4.45) R(®;) C Ker(Q; — Qo) = {¢ : Eo(¢|B;) = const.}.
Proof. That ®, is an isometry follows from the measure-preserving property
(4.14). If we apply Qg to (4.43), we get Q¢®; = Qo; hence (Q; — Q0)BO; =0,

which yields (4.45).
The semigroup property follows from a straightforward calculation:

(4.46) Vo D50 = Vo450 = Ospo = O;05.
The convergence

(4.47) O — ©;¢ in L2(Po,d W), ass — t,
is easy to demonstrate for ¢(w) of the form (1.8), that is,
(4.48) o) = f(o(t), ... o)),

with f continuous on R” x --- x R” (k factors). In fact, p(ds(®)) = ¢s(w) —
¢t (w) boundedly and pointwise on 3¢ for such ¢. Since the set of ¢ of the form
(4.48) is dense in L2(Bo, d Wp), (4.47) follows.

Proposition 4.11. The family of orthogonal projections Q; is strongly continuous
int €0, 00).

Proof. Itis easy to verify that, for any ¢ € L?(Bo.d Wp),

(4.49) Os¢ — Q-9 = Eo(pB;-), ass Tt,
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provided ¢ > 0, and

(4.50) Os¢ = Qr+¢ = Eo(@|Br+), ass (1,

where

4.51) B, = a(U %s), B, =) Bs.
s<t s>t

It is also easy to verify that B;_ = B, fort > 0,s0 Qs¢ — Qrpass /' t.On
the other hand, it is not true that 8,4 = 9B, so the continuity of Q;¢ from above
requires more work.

Suppose £; € Q* and

(4.52) O0<th<h< - <ly=<t<tpy; < - <ltk.
Let f; e C (R") Consider any function on ‘B3 of the form
¢(@) = A¢(0) Bre(w)
= fi(w()) - fe(wt) - frr1(@(ter1)) - forr (@(terr)).

Denote by C” the linear span of the set of such functions. For ¢ of the form (4.53),
we have

(4.53)

(4.54) Eo(¢]B:) = Ag(w) Eo(Bie|Br).
Ifty4, =t + 5y, 1 <v <k, we have, by (4.8),

(4.55)  Eo(Bie|B:) = Ew@)(fe+1(@(s1) - frar(@(sk))).  ae. onPo.

Now, if t <t + h < ty41, we also have

Eo(@|Bi+n) = Ag(w)Eo(Bre|Bi+n)

4.56

(430 = Ag(@) Ew+n)(Ye),
where

(4.57) V(@) = frgr(o(s1 —h) - forx (0(sk — h)).

Now, as in (1.9),

Ex(f0) = /---/p(sl X1 plss — 1. %2 — x1)

<o p(Sk — Sk—1, Xk — Xk—1)
Serr (1 +x) - fopr(Xk + x) dxg - dxy.

(4.58)
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The continuity in (x, &) is clear. Since paths in 3¢ are continuous, we have, by
linearity, that

(4.59) ¢ € C= Eo(p|B;) = }}1\% Eo(@|Br+n), Wo-ae.

Now the Stone-Weierstrass theorem implies that C” is dense in C(3), which is
dense in L2(B, d Wy) = L*(Bo.d Wp). Thus we have

(4.60) Eo(@|Bi+) = Eo(¢|B:). Wo-ae.,

for every ¢ € L2(Bo.d Wp), and the proposition is proved.

Exercises
1. Show that the martingale maximal inequality applied to r; (@) = w(t) yields

Wo({w €Po: sup w(s) > b\/4z/n}) < l

0<s<t

Compare with the precise result in (3.29).

2. With 9B;_ characterized by (4.51), show that B;_ = By, as stated in the proof of
Proposition 4.11. (Hint: In the characterization (4.1) of 98, one can restrict attention to
E open in R™))

3. Using (4.60), show that

S €Botr = Wp(S) =0o0rl.
This is called Blumenthal’s 01 law. If £ € R” is a closed set, show that
{w € Po : w(ty) € E for some 1, \ 0}
is a set in B+ . (Hint: Consider {® € Py : dist(w(t), E) > § > 0fort € [27V¢,e] N
Q} = S(E,d,¢e,v).)
4. Let N be the collection of (Wy-outer measurable) subsets of 3¢ with Wy-measure zero.

Form the family of o -algebras %f = B; UN, called the augmentation of B;. Show
that %? D B4 and, with notation parallel to (4.51),

Bf_ =8} =B},

Note: The augmentation of 9B; is bigger than the completion of B;.
5. Let §; be the U—algebgg of subsets of Po generated by sets of the form (4.1) for s > 7,
and set Ao = ﬂt>0 $¢. Using Blumenthal’s 01 law and Exercise 2 of §1, show that

S € Aso = Wo(S) =0or L.
If E C R” is a closed set, show that
{w € Po : w(ty) € E for some t,, / oo}

is a setin Aeo.
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5. First exit time and the Poisson integral

At the end of §3 we produced a formula for PI f, giving the solution u to
5.1 Au=0inQ2, u= fondQ,

at least in case 2 is a bounded domain in R” with smooth boundary. Here we
produce a formula that is somewhat neater than (3.36) and that is also amenable
to extension to general bounded, open 2 C R”, with no smoothness assumed on
092. In the smooth case, the formula is

(5.2) Pl f(x) = Ex(f(0(dg))), x€Q,

where ¥ (w) is the first exit time defined by (3.24).

From an intuitive point of view, the formula (5.2) has a very easy and natural
justification. To show that the right side of (5.2), which we denote by u(x), is
harmonic on €2, it suffices to verify the mean-value property. Let x € Q2 be the
center of a closed ball B C Q2. We claim that u(x) is equal to the mean value of
ulsp. Indeed, a continuous path w starting from x and reaching d€2 must cross
0B, say at a point y = w(¥p). The future behavior of such paths is independent
of their past, so the probability distribution of the first contact point w (), when
averaged over starting points in dB, should certainly coincide with the probabil-
ity distribution of such a first contact point in d€2, for paths starting at x (the
distribution of whose first contact point with 0B must be constant, by symmetry).

The key to converting this into a mathematical argument is to note that the time
¥ p(w) is not constant, so one needs to make use of the strong Markov property
as a tool to establish the mean-value property of the function u(x) defined by the
right side of (5.2).

Let us first make some comments on the right side u(x) of (5.2). By (3.40) we
have

(5.3)

w0 = [ 1) dWe@) = CIf liam N7

Pa.n

Let us extend f € C(9R2) to an element f € Co(R"), without increasing the sup
norm. By (3.41), we have

(5.4) fo@g) = vli)n;o f (@ n (@), forw e Pg v,

where ¥, y(0) = min(N, inf {s € 27VZ" : w(s) ¢ 5}) Thus, if the integral in
(5.3) is denoted by uy (x), then

65 un) = lim @ =t [ f (@08 @) dWi)

Pa.n
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Here the limit exists pointwise in x € 2. Now each uy, is continuous on €2,
indeed on R”. Consequently, u(x) given by the right side of (5.2) is at least a
bounded, measurable function of x.

To continue the analysis, given x € €2, we define a probability measure vy o
on J€2 by

(5.6) Ex(f (@) = / FO) dvs.a ().
Q

for f € C(0R2).
Lemma 5.1. Ifx € O CC Q and O and Q are open, then

(5.7) Vy,Q = / vy.Q dvx,o(y).
a0

Proof. The identity (5.4) is equivalent to the statement that, for f € C(dS2),

(58) Ex(f@0g)) = [ E,(f@(0g)) dvso).
a0
The right side is equal to

(5.9) Ex(g(@(Pp)). &) = Ey(f(o(¥g))).

In other words,

(5.10) g(05)) = Evpe) (@), ¢@) = f(o@g®))).
Now we use the strong Markov property, in the form (4.32), namely,

Ew(‘r)(§0) = Ex (€0 o Ur|%r+),

for Wy-almost all w, where (o;w)(t) = w(t + ) and t is a stopping time. This
implies

G0 [ B dWei@) = [ ExlpooBer) dWi(o) = Enlp00n),
PBo PBo

Applied to © = U, this shows that (5.9) is equal to Ex(¢ o 0y). Now, with
o(t) = op 0(t) = o(t + ¥5(w)), we have, for O CC Q, Vg(@) = dg(w) —
& (w), as long as w is a continuous path starting in O. Hence

(5.12) 9@) = [ (@(0g(0) —¥5(w) = f(0(¥g())) = ¢(®).

Thus (5.9) is equal to Ex(¢), which is the left side of (5.6), and the lemma is
proved.
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Consequently, the right side u(x) of (5.2) is a bounded, measurable function
of x satisfying the mean-value property. An integration yields that such u(x) is
equal to the mean value of u over any ball D C €2, centered at x, from which it
follows that u(x) is continuous in 2. Then the mean-value property guarantees
that u is harmonic on 2. To verify (5.2), it remains to show that u(x) has the
correct boundary values.

Lemma 5.2. Assume 9S2 is smooth. Given y € 92, we have u(y) = f(y), and u
is continuous at y € Q.

Proof. That u(y) = f(y) follows from the fact that ¥g(w) = 0 for W) -almost
all w, according to Proposition 3.7. To show that u(x) — u(y) as x — y from
within €2, we argue as follows.

By (3.23), for x € Q, Ex(dg) = —A~'1(x). Hence this quantity approaches
0as x — y. Thus, given ¢; > 0, there exists § > 0 such that

(5.13) Ix —y| <8 = Wi({w: dg(w) > &1}) < &.

Meanwhile, in a short time, 0 < s < g1, a path w(s) is not likely to wander far. In
fact, by (3.28) plus a scaling argument,

We, = {0 € Bo: sup |o(s) —w(0)] = &1/
(5.14) O=s=e1
— Wx(Wsl) = 1//(51)’

where ¥ (¢) — 0 as e — 0.
Thus, if |x — y| < §, with probability > 1 — &, — ¥ (e1), a path starting at
x will, within time e1, hit 82, without leaving the ball B,1/3(x) of radius e;’>
1
centered at x. Now, a given f € C(d<2) varies only a little over {z € 9Q :
1
lz—y] < 81/
asx — y.

4 8} if g1 and § are small enough. Therefore, indeed u(x) — u(y),

We have completed the demonstration of the following.

Proposition 5.3. If 2 is a bounded region in R™ with smooth boundary and [ €
C(0R2), then PI f is given by (5.2).

Recall from §5 of Chap. 5 the construction of
(5.15) PI: C(0R2) — L®(Q)NC®(Q)

when  is an arbitrary bounded, open subset of R”, with perhaps a very nasty
boundary. As shown there, we can take

(5.16) QCcCcQcc---CccQ; /Q

such that each boundary 0S2; is smooth, and, if f is extended from 92 to an
element of C,(R™), then

(5.17) x e Q=PI f(x) = lim u;(x),
j—o00
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where u; € C(Q;) is the Poisson integral of Slag, - In (5.17) one has uniform
convergence on compact sets K C 2, the right side being defined for j > jo,
where K C 2 ,. The details were carried out in Chap. 5 for f € C*°(R"), but
approximation by smooth functions plus use of the maximum principle readily
extends this to f € C,(R").

If we apply Proposition 5.3 to 2 ;, we conclude that, for f € C,(R"), x € ,

(5.18) PLA(x) = lim ( £ (g, ))).
On the other hand, it is straightforward from the definitions that
(5.19) 1951, (w) /" Vq(w), forallw € Po.

Therefore, via the dominated convergence theorem, we can pass to the limit in
(5.18), proving the following.

Proposition 5.4. If Q2 is any bounded, open region in R" and f € C(0S2), then

(5.20) PI f(x) = Ex (f(w(f}g))), xeqQ.

We recall from Chap.5 the notion of a regular boundary point. A point
y € 0% is regular provided PI f is continuous at y, for all f € C(0R).
We discussed several criteria for a boundary point to be regular, particularly in
Propositions 5.11-5.16 of Chap. 5. Here is another criterion.

Proposition 5.5. If Q C R” is a bounded open set, y € 0S2, then y is a regular
boundary point if and only if

(5.21) E.(¥q) =0, asx — y, x € Q.

Proof. Recall from (3.20) that E,(%q) = —A~'1(x). Thus (5.21) holds if and
only if this function is a weak barrier at y € 9%, as defined in Chap.5, right
after (5.26). Therefore, (5.21) here implies y is a regular point. On the other hand,
A™'1(x) can be written as the sum x7 /2+uo(x), where ug = —(1/2) PL(x}|,(,).
so if (5.21) fails, y is not a regular point.

One might both compare and contrast this proof with that of Lemma 5.2. In
that case, where 92 was assumed smooth, the known regularity of each boundary
point was exploited to guarantee that £y (dg) — 0as x — y € 9Q, which then
was exploited to show that u(x) — u(y) as x — y.

In the next section, we will derive another criterion for y to be regular, in terms
of “capacity.”



398 11. Brownian Motion and Potential Theory

Exercises

1. Explore connections between the formulas for PI f(x), for f € C(d2), when Q is
bounded and 92 smooth, given by (3.36) and by (5.2), respectively.

6. Newtonian capacity

The (Newtonian) capacity of a set is a measure of size that is very important in
potential theory and closely related to the probability of a Brownian path hitting
that set. In our development here, we restrict attention to the case n > 3 and define
the capacity of a compact set K C R”. We first assume that K is the closure of
an open set with smooth boundary.

Proposition 6.1. Assume n > 3. If K C R” is compact with smooth bound-
ary 0K, then there exists a unique function Uk, harmonic on R" \ K, such that
Uk(x) > lasx — K and Ug(x) — 0 as |x| — oo.

Proof. We can assume that the origin 0 € R” is in the interior of K. Then the
inversion ¥ (x) = x/|x|? interchanges 0 and the point at infinity, and the trans-
formation

(6.1) v(x) = |x|7" P w(|x|2x)

preserves harmonicity. We let w be the unique harmonic function on the bounded
domain ¥ (R” \ K), with boundary value w(x) = |x|~®=2 on ¥ (dK). Then
v, defined by (6.1), is the desired solution. The uniqueness is immediate, via the
maximum principle.

Note that the construction yields
62)  Uxk@)| = Clx|7"™2 13, Uk (x)] < Clx[7"7V [x] — oo.

The n = 3 case of this result was done in §1 of Chap. 9.

Another approach to the proof of Proposition 6.1 would be to represent Uk (x)
as a single-layer potential, as in (11.44) of Chap.7. This was noted in a remark
after the proof of Proposition 11.5 in that chapter.

Now that we have established the existence of such Uk, Exercises 7-9 of §3
apply, to yield

(6.3) Ug(x) /' Uk(x), ast /' oo,
where, forx € O = R" \ K,

Uk(x) = 1 —e"221(x)

6.4
(6.4) = We({o : Yo(w) < 1}).



6. Newtonian capacity 399

Here, Ao is the Laplace operator on O, with Dirichlet boundary condition. The
last identity follows from (3.27). We can replace the first exit time 9 by the first
hitting time:

(6.5) bk (@) = Vrn\k (0).
Consequently,
(6.6) Uk (x) = Wx ({0 : b (@) < co}):

that is, for x € O, Uk (x) is the probability that a Brownian path w, starting at x,
eventually hits K.

We set Ug(x) = 1 for x € K. Then (6.6) holds for x € K also. It follows
that Ug € C,(R™), and AUk is a distribution supported on dK . In fact, Green’s
formula yields, for ¢ € C§°(R"),

d
©67) (Ux. Ag) = — / o) - UR() dS()
K

where v is the unit normal to dK, pointing into K. By Zaremba’s principle,
dyUk(y) > 0, for all y € 0K, so we see that AUx = —ug, where g is a
positive measure supported on dK. The total mass of px is called the capacity
of K:

(6.8) cap K = /d/LK(X).
K

Since, with C, = (n — 2) - Area(S"!),

69) Ug(x) = A~ g = G, / X = y[7D dpg ().
we have
(6.10) /[ an T Qux) dit ) d|ff ) / Uk (x) dpk (x) = cap K,

the left side being proportional to the potential energy of a collection of charged
particles, with density d g, interacting by a repulsive force with potential C, |x —
y|~"=2)_ The function Uk (x) is called the capacitary potential of K. Note that
we can also use Green’s theorem to get

6.11) IVUk sy = [ Uk(o) dpe() = cap K.
K
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Note that if K1 C K> have capacitary potentials U;, AU; = —pu ;, then U, = 1
on K1, so

cap K; = /Uz(x) dui(x) = —(Up, AUY)
(6.12)

= /Ul(x) dpa(x) < cap Ks,

since U (x) < 1. Thus capacity is a monotone set function.

Before establishing more formulas involving capacity, we extend it to general
compact K C R”. We can write K = (| K, where K; DD K, DD --- DD
K; \( K, each K being compact with smooth boundary. Clearly, U; = Uk;
is a decreasing sequence of functions < 1, and by (6.11), VU, is bounded in
L?(R"). Furthermore, AU; = —u;, where 4 is a positive measure supported
on 0K ;, of total mass cap K, which is nonincreasing, by (6.12). Consequently,
we have a limit:

(6.13) lim U; = Uk,

J—>00

defined a priori pointwise, but also holding in various topologies, such as the
weak™ topology of L*°(R"). We have Ux € L*°(R"), 0 < Uk(x) <1; VUg €
L?(R"™), and AUg = —u, where p is a positive measure, supported on K. Fur-
thermore, (4 ; — ( in the weak* topology, and Uy = —A~! . Any neighborhood
of K contains some K;. Thus, if K DD K3 DD -+- DD K | K is another
choice, one is seen to obtain the same limit Uk, hence the same measure u, which
we denote as pg. We set

(6.14) cap K = /d/LK(X).

Note that, as in (6.12), cap K = [ U;(x) dug(x), for each j. Thus, as before,
cap K = [Ug(x) dug(x), this time by the monotone convergence theorem.
Consequently,

(6.15) Uk(x) =1 ug-almost everywhere.
Clearly, cap K < inf cap K. In fact, we claim
(6.16) cap K = inf cap K.

This is easy to see; p; converges to ug pointwise on C,(R"); choose g €
C,(R™), equal to 1 on K7; then

(6.17) cap K = (g, uk) = lim (g, u;) = lim capKj,

proving (6.16). We consequently extend the monotonicity property:
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Proposition 6.2. For general compact K C L, we have cap K < cap L.

Proof. We can take compact approximants with smooth boundary, K; ~\ K,
L; \ L, such that K; C L;. By (6.12) we have cap K; < cap L, and this
persists in the limit by (6.16). We also have Uk (x) < Up(x) for all x. Using
(6.15), we obtain

(6.18) capK:/UL(x) dug(x).

One possibility is that cap K = 0. This happens if and only if g = 0, thus if
and only if Ux = 0 almost everywhere. If cap K > 0, we continue to call Uk the
capacitary potential of K.

We record some more ways in which U; — Uk. First, it certainly holds in
the weak™ topology on L*°(R"). Hence VU; — VUkg in D'(R"). By (6.11),
VU; is bounded in L2(R"); hence VU; — VUkg weakly in L2(R"). Since also
U; € Co(R"™), we have

IVUk|3. = lim (VU;,VUg) = lim —(U;, AUk)
j—o0 j—o0

(6.19)

lim /Uj(x) du(x) = cap K,
j—o00

the last identity holding as in the derivation of (6.15). Thus (6.11) is extended to
general compact K. Furthermore, this implies

(6.20) VU; — VUg in L*(R")-norm.
Hence
(6.21) w; — ug in H'(R")-norm.

We now extend the identities (6.3) and (6.6) to general compact K, in reverse
order.

Proposition 6.3. The identity (6.6) holds for general compact K C R”.

Proof. Since (6.6) has been established for the compact K ; with smooth bound-
ary, we have

(622) 1-Uj(x) = Wa(@k,), Ak, = {® € Bo: 0R’) CR"\ K;}.

Clearly, if K; \ K, g, C Rk, C--- Ck; / ﬁK, where ﬁK is a proper
subset of Ax = {® € Po : ®(RT) C R" \ K}. However, for n > 3, Brownian
motion is nonrecurrent, as was established in Exercise 10 of §3. Thus |w(7)| —
oo ast — oo, for Wy-almost all w, so in fact Wy (Q[K \ QlK) = 0, and hence
1 — Uk (x) = Wx(k), which is equivalent to (6.6).
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Proposition 6.4. The identity (6.3) holds for general compact K C R”.
Proof. We define U (x) to be 1 — e'201(x), as in (6.4); the second identity in

(6.4) continues to hold, by (3.27). Now, clearly, the family of sets S; = {w € Bp :
hx(w) <t} isincreasing as ¢t ' 0o, with union

S = {@ € Po : hr(w) < 0o},
and this gives (6.3).
We next establish the subadditivity of capacity.

Proposition 6.5. If K and L are compact, then

(6.23) Ukur(x) < Ug(x) + UL(x)
and
(6.24) cap(K U L) < (cap K) + (cap L).

Proof. The inequality (6.23) follows directly from (6.6) and the subadditivity of
Wiener measure. Now, as in (6.12), we have

/ Uk (x) dpgor(x) = —(Ux. AUgor)

(6.25) _ / Ukur(x) dig (x)

= cap K,

the last identity by (6.18), with L replaced by K U L. Hence

cap K + cap L = /[UK(X) + UL(x)] dugur(x),

so the estimate (6.23) implies (6.24).

Note that even if K and L are disjoint, typically there is inequality in (6.23),
hence in (6.24). In fact, if K and L are disjoint compact sets,

(cap K) + (cap L) = cap(K U L) + R,

(6.26) R =/UK(X) d,lLKuL(X)+/UL(x) dugur(x),
L K

the quantity R being > 0 unless either cap K = 0 or cap L = 0. Unlike measures,
the capacity is not an additive set function on disjoint compact sets.
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We began this section with the statement that the capacity of K is closely
related to the probability of a Brownian path hitting K. We have directly tied
Uk (x) to this probability, via (6.6). We now provide a two-sided estimate on
Uk (x) in terms of cap K.

Proposition 6.6. Ler §(x) = sup{|x — y| : y € K}, and let d(x) denote the
distance of x € R" from K. Then

6.27)

Cy c,
§(x)n—2 (cap K) < U (x) < W(CGP K).

Proof. The formula Ug(x) = Cy [ |x — y|~ (= Z)d,u k (y) represents Uk (x) as
C,(cap K) times a weighted average of [x — y|~"~2 over K. Now, for y € K,
d(x) < |x —y| <8(x), so0 (6.27) follows.

We want to compare this with the probability that a Brownian path hits dK in
the interval [0, z]. It ¢ is large, we know that |w(?)| is probably large, given that
n > 3, and hence w(s) probably will not hit K for any s > ¢. Thus we expect
this probability (which is equal to U (x)) to be close to Uk (x). We derive a
quantitative estimate as follows. Since 1 — UL (x) = e’21(x), we have, for
s >0,

(6.28) UL (x) — Uk(x) = "0 1(x) — U920 (x) = ' 20 UL (x),
and taking s /' oo, we get
(6.29) Uk (x) — Uk (x) = "0 Uk (x).

Hence, if we denote the heat kernel on O = R” \ K by po(t, x, y), and that on
R” by p(t,x — y), asin (1.5),

Uk (x) — Ug(x)

(6.30) = /PO(vavJ’)UK(J’) dy = /p(l,x—y)UK(y) dy
=G // plt.x |n 2 dy dpk(z) < (cap K)ok(t, x),

where

t,x — ©
p(_—z|n—yz) dy = sup / p(s,x —z) ds,
t

€K

(6.31) ok(t,x) =C, sup
ze€K |y

the last integral being another way of writing e’®(—A)~18(x — z) when n > 3.
An upper bound on ok (t, x) is fzoo (47s)™"2 ds, so we have

2 _
(6.32) 0= Uk(x) — Uk (x) < — (4n) "2 /24 (cap K).
n J—
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There is an interesting estimate on the smallest eigenvalue of —A on the
complement of a compact set K, in terms of cap K, which we now describe.
Let Q0 = {x € R” : 0 < x; < 1} be the closed unit cube in R”, and let K C Q
be compact. We consider the boundary condition on functions on Q \ K:

(6.33) u = 0on ik, g—::OOHBQ\aK.

To define this precisely, let H'(Q, K) denote the closure in H'(Q) of the set
of functions in C°°(Q) vanishing on a neighborhood of K. Then the quadratic
form (du, dv) > restricted to H'(Q, K)x H'(Q, K) defines an unbounded, self-
adjoint operator L, which we denote —Ag g, with D(LY/?) = H'(Q,K) C
H'(Q). Hence —A g, g has compact resolvent and thus a discrete spectrum. Let
Ao(K) be its smallest eigenvalue.

Proposition 6.7. The smallest eigenvalue Lo(K) of —A on Q \ K, with boundary
condition (6.33), satisfies the estimate

(6.34) Ao(K) = yn cap K,
for some y, > 0.

Proof. Let pp x (¢, x, y) denote the heat kernel of Ag g. With O = R" \ K, let
po(t, x,y) denote the heat kernel of A on O, with Dirichlet boundary condition,
as in (6.30). We claim that

(6.35) /pQ,K(t,x,y) dy < /po(t,x,y) dy, xe€Q.
0 R

To see this, define K by the method of images, so in each unit cube with integer
vertices we have a reflected image of K, and, with O = R” \ K,

(6.36) Pok(t,x,y) =) p5t.x,R;y), x.y€Q,

J
where the transformations R; are appropriate reflections. Then (6.35) follows
from the obvious pointwise estimate pg(f,x,y) < po(t,x,y). Now, if we set

(6.37) M(t) = sug /po(t,x,y) dy,
X€E

it follows that

638 sup [ poxtrn)dy = MO swp [ pottx.y)dx = M),
x y
(9] 0
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the latter by symmetry. It is well known that the operator norm of e22.K is
bounded by the quantities (6.38). (See Proposition 5.1 in Appendix A.) Thus

(6.39) le* ek | < M(2).
To relate this to capacity, note that

(6.40) M(t) = sup (1 — Ug(x)).
xeQ

Now, applying the first estimate of (6.27), in concert with the estimate (6.32), we
have

2
(6.41)  M(t) <1—Cun™?"!(cap K) + m(4n)—"/2z—"/2+1 (cap K).
In particular, there exists a finite 7 = T, and ¥ > 0 such that
(6.42) M(T) < 1—k(cap K) < e < K

Since this is an upper bound on ||e722.X ||, we have Ao(K) > (k/T) cap K,
proving (6.34).

As an application of this, we establish the following result of Molchanov on a
class of Dirichlet problems with compact resolvent.

Proposition 6.8. Let Q2 be an unbounded, open subset of R", with complement S.
Suppose that there exists ¥ (a) /" oo as a \ 0, such that, for each a € (0,1], if
R" is tiled by cubes Q,; of edge a, we have

(6.43) cap(Qaj N S) = Y(a)a®" ),

for all but finitely many j. Then the Laplace operator A on 2, with Dirichlet
boundary condition, has compact resolvent.

Proof. By scaling Q,; to a unit cube, we see that if (6.43) holds, then —A on
Qq; \ S, with Dirichlet boundary condition on 9.5, Neumann on dQ,; \ S, has
smallest eigenvalue > y,(cap Qg N S ya—2=2)  which, by hypothesis (6.43)
is > yp¥(a) for all but finitely many j. The variational characterization of the
spectrum implies that the spectral subspace of L?(£2) on which —A has spectrum
in [0, y, ¥ (a)] is finite-dimensional, for each @ > 0, and this implies that A has
compact resolvent.

In our continued study of which boundary points of a region €2 are regular, it
will be useful to have the following variant of Proposition 6.6. Here, B, is the ball
of radius r centered at the origin in R”; see Fig. 6.1.
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FIGURE 6.1 The Set K

Proposition 6.9. Let K be a compact subset of the ball By. Let Vk (x) denote the
probability that a Brownian path, starting at x € R”", hits K before hitting the
shell 0By = {x : |x| = 4}. Then there is a constant y, > 0 such that

(6.44) x € By = Vg(x) = Vn(cap K).

Proof. Note that, by (5.20), Vi is also defined by

(6.45) AVk =0on B4\ K, Vg =1onK, Vg =0ondBy,.

We will compare Vg (x) with Uk (x). By (6.27), we have

(6.46) x € By = Uk(x) = 27""2C,(cap K)
and
(6.47) X € 9By = Ug(x) <3772, (cap K).

By (6.47) and the maximum principle, we have, for x € B4 \ K,

(6.48) Vi (x) = M, q(K) = 3772 C,(cap K).

1 —¢q(K)

Now Cy(cap K) < Cy(cap B;) = 1 (compare with Exercise 1 at the end of this
section), so using (6.46) we readily obtain (6.44), with

(6.49) T = (1 _ 3—(n—2))_1 (2—(n—2) _ 3—(n—2)) c,

In particular, 73 = C3/4 = 7.
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FIGURE 6.2 Setup for the Wiener Test

Of course, since Vg (x) < Uk (x), we also have
(6.50) X € By, dist(x, K) > p == Vg(x) < Cop~ " (cap K).

This upper bound is valid for K C By4; we don’tneed K C Bj.

Now suppose y € K is the center of concentric balls B, of radius 2= Jr,
where r > 0 is fixed, 0 < j < v. See Fig. 6.2. Pick x € B,. We want to estimate
the probability that a Brownian path starting at x will exit By before hitting K.
Let’s call the probability pmiss(x, K). Using Proposition 6.9 and scaling, we see
that, given x € B, the probability that it hits dB;_» before hitting K N B; is
< 1= rj_("_z) - cap(K N Bj), where r; = 27/r. Using the independence of
this event and of the event that, given x € dB;_,, the path will hit 9B ;_4 before
hitting K N B;_», which follows from the strong Markov property, we have an
upper bound

65D puis(r K) = [ (1= Far~ 220727 cap(K N B))),
JE€Sy

where S, = {j : 0 < j < v, j = vmod2}. A similar argument dominates
Pmiss(x, K) by a product over {1,...v}\ Sy, so

v
652)  puiss(r, K2 = [T(1=70r~ 220727 - cap(K 1 B;)).
j=0
Note that, as v — o0, the right side of (6.52) tends to zero, precisely when the sum

o0
(6.53) > 20D/ cap(K N B)
j=0

is infinite. We are now ready to state the Wiener criterion for regular points.
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Proposition 6.10. Let 2 be a bounded, open set in R", and let y € 9S2. If Q is
inside a ball B, set K = B\ Q. Then y is a regular point for 2 if and only if the
infinite series (6.53) is divergent, where B; = {x € R" : |x — y| <27/}.

Proof. First suppose (6.53) is divergent. Fix f € C(d2), and look at

(6.54) u(x) = PLf(x) = Ex(f (@(bx))).

Given ¢ > 0, fix r > 0 so that f varies by less than e on {z € 02 : |z — y| < r}.
By (6.52), if § > 0 is small enough and |x — y| < &, then the probability that a
Brownian path w(?), starting at x, crosses 0By = {z : |z — y| = r} before hitting
K is < ¢. Consequently,

(6.55) x -y <d=

Ex(f(00x)) = f0)] < e+ sup | /]

This shows that PI f(x) — f(y)asx — y,forany f € C(dR2), so y is regular.
For the converse, if (6.53) converges, we claim there is a J < oo such that

there exist points in N By, arbitrarily close to y, which are starting points of

Brownian paths whose probability of hitting K before exiting By is < 1/2.

Consider the shells A; = {x : 27/7! < |x —y| < 27/}; B; = U, Ar.
We will estimate the probability that a point picked at random in Ay is the starting
point of a Brownian path that hits K before exiting By, where £ is chosen > J.
Since we are assuming n > 3, by the analysis behind nonrecurrence in Exercises
7-10 of §3, the probability that a path starting in Ay ever hits B4 3 is < 1/4. Thus
if we alter K to Ky = K \ By, 3, the probability that a Brownian path starting in
Ay hits K; before dB is not decreased by more than 1/4. We aim to show that
this new probability is < 1/4if J is chosen large enough.

Now there is no further decrease in probability that the path hits K, before B s
if we instead have it start at a random point in By 5, since almost all such paths
will pass into Ay, in a uniformly distributed fashion through its inner boundary. So
we deal with the modified problem of estimating the probability 7 that a Brownian
path, starting at a random point in By, 5, hits K; = K \ By 3 before exiting By .

We partition the set {j : J < j < £+ 3} into two sets, where j is even or odd;
call these subsets Jp and J;, respectively. Then form

(6.56) Ao=J 4;. A= 4.

Jj€Jdo JET

We estimate the probability p,, that a path starting in By s hits K, N A, before
hitting dB ;. We have

(6.57) Pu) < Y pujs
JE€Tu
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where p,,; is the probability that, given |x — y| = (3/4)-27/7! (i.e., x ison a
shell §; 41 halfway between the two boundary components of A1), then a path
starting at x hits K N A; before hitting S;_;. By (6.50) and a dilation argument,
we have an estimate of the form

(6.58) Puj < vp2" 72 cap(K N A)).
Thus the probability 7 that we want to estimate satisfies

{+3
(6.59) P<y, Y 207/ cap(K N Aj).
ji=J

Of course, cap(K N A;) < cap(K N Bj), so if (6.53) is assumed to converge,
we can pick J sufficiently large that the right side of (6.59) is guaranteed to be
<1/4.

From here it is easy to pick f € C(9€2) such that f(y) = 1 but (6.54) does not
converge to 1 as x — y. This completes the proof of Proposition 6.10 and also
shows that the hypothesis of convergence or divergence of (6.53) can be replaced
by such a hypothesis on

oo
(6.60) > 20D cap(K N A;).
j=0

We can extend capacity to arbitrary sets S C R”. The inner capacity cap™(S)
is defined by

(6.61) cap (S) = sup {cap K : K compact, K C S}.

Clearly, cap™(K) = cap K for compact K. If U C R” is open, we also set cap
U = cap™ (U). Now the outer capacity cap™ (S is defined by

(6.62) cap™(S) = inf {cap U : U open, S C U}.

It is easy to see that cap™(S) > cap™(S) for all S. If cap™(S) = cap (S),
then S is said to be capacitable, and the common quantity is denoted cap .S. The
analysis leading to (6.16) shows that every compact set is capacitable; also, by
definition, every open set is capacitable. G. Choquet proved that every Borel set is
capacitable; in fact, his capacitability theorem extends to a more general class of
sets, known as Souslin sets. We refer to [Mey] for a detailed presentation of this
result.

The outer capacity can be shown to satisfy the property that, for any increasing
sequence of sets §; C R”,

S; /'S = capt(8;) S cap™(S).

We establish a useful special case of this.
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Proposition 6.11. IfU; and U are open and U; /' U, then

capU; /" cap U.

Proof. Given ¢ > 0, pick a compact K C U such thatcap K > cap U —¢. Then
K C Uj forlarge j,socap U; > cap U — ¢ for large j.

We next present a result, due to M. Brelot, to the effect that the set of irregular
boundary points of a given bounded, open set is rather small.

Proposition 6.12. If Q@ C R” is open and bounded, the set I of irregular bound-
ary points in 02 has inner capacity zero.

Proof. The claim is that if K C I is compact, then cap K = 0. By subadditivity,
it suffices to show the following: Given y € d<2, there is a neighborhood B of y
in R” such that any compact K C I N B has capacity zero.

We prove the result in the case that  is connected. Let L = B \ , and
consider the capacitary potential Uz (x). In this case, R” \ L is connected. The
function 1 — U (x) is a weak barrier at any z € L N 02 with the property that
Up(x) > lasx — z, x € R"\ L. Thus it suffices to show that the set J = {z €
L : Ur(z) < 1} has inner capacity zero.

Let K C J be compact. We know that Ug(x) < Up(x) for all x € R”.
Thus Ug(x) < 1 on K. Now, by (6.15), Ug(x) = 1 for ug-almost all x, so we
conclude that ux = 0, hence cap K = 0. This completes the proof when € is
connected.

The general case can be done as follows. If €2 is not connected, it has at most
countably many connected components. One can connect the various components
via little tubes whose total (inner) capacity can be arranged, via Proposition 6.11,
to be arbitrarily small, say < ¢. Then the set of irregular points is decreased by a
set of inner capacity < €. The reader is invited to supply the details.

As noted in Proposition 5.5, the set of irregular points of 92 can be charac-
terized as the set of points of discontinuity of a function E, defined on Q to be
—A7!(x) for x € Q and to be 0 on dQ. Such a set of points of discontinuity is
a Borel subset of €2, in fact an F,s-set. Thus the capacitability theorem applies:
If @ C R” is a bounded open set, the set of irregular points of 2 has capacity
zero. This sharpening of Proposition 6.12 was first established by H. Cartan.

As we stated at the beginning of this section, we have been working under
the assumption that » > 3. Two phenomena that we have exploited fail when
n = 2. One is that A has a fundamental solution < 0 on all of R”. The other
is that Brownian motion is nonrecurrent. (Of course, these two phenomena are
related.) There is a theory of logarithmic capacity of planar sets. One way to ap-
proach things is to consider capacities only of subsets of some fixed disk, of large
radius R, and use the Laplace operator on this disk, with the Dirichlet boundary
condition. Then one looks at Brownian paths only up to the first exit time from
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this disk. The results of this section extend. In particular, the Wiener criterion for
n = 2 is the convergence or divergence of

(6.63) > j-cap(K N 4y).
j=1

Exercises

1. If K C R” is compact, show that

‘xl‘lm Ix|""2Uk (x) = Cp, cap K.

If K = By is a ball of radius a, show that cap B, = an_Z/Cn.
Show generally that if @ > 0 and K, = {ax : x € K}, then cap K = a2 cap K.
2. Show that cap K = cap dK. Show that the identity cap 9B, = a*~2/C, follows
from (6.27), with x the center of B,.
3. Let Cg4p be the union of two balls of radius a, with centers separated by a distance r.
Show that
cap Cqr /" 2cap By, asr — oo.
Estimate the rate of convergence.
4. The task here is to estimate the capacity of a cylinder in R”, of height b and radius a.
Suppose C(a,b) ={x e R" : 0 < x,, < b, x% + -+ x,zl_l < az}. Show that there
are positive constants o, and 8, such that

capC(a,1) ~ ana® 3, a—0,n>4,

cap C(a,1) ~ Bnd" ™2, a— oo, n > 3.

Derive an appropriate result forn = 3, a — 0.
5. Let v be a positive measure supported on a compact set K C R”, such that

Uv(x) = —A" V(x) Cn/% <1

Show that Uy (x) < Uk (x) for all x € R”. Taking the limit as |x| — oo, deduce
from the asymptotic behavior of Uy (x) and Uk (x) (as in Exercise 1) that [ dv(x) <
cap K.

6. Show that, for compact K C R”,

6.64) cap K = inf{/ IVf(x)2 dx : f € CS°(R™), f = 1onnbd of K}.

(Hint: Show that a minimizing sequence f; approaches Uk .)
Show that the condition f = 1 on a neighborhood of K can be replaced by f > 1
on K. Show thatif f € C(} (R™), A >0,

(6.65) cap(fx e R : | f(x)] = A}) <A 2|V SI3,

7. Show that, for compact K C R”,
dA(x)dA
Cn// ( ) (y) = FK}’

|n2

6.66
( ) cap K~
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10.

11.

7.

where 73; denotes the space of probability measures supported on K.
(Hint: Consider the sesquilinear form

Y (. A) = Cn // = ¥ dp () dA(y) = —(A e )

as a (positive-definite) inner product on the Hilbert space HEI(]R") = {u €
H~Y(R"™) : supp u C K}. Thus

ly (e, D] <y, )2 y(a, 0)1V2,

Take . = (cap K)_I/LK € 731"(', where (g is the measure in (6.8)—(6.10). Show that
(at least, when dK is smooth),

1
he PN HE'®Y = y(ud) = —— [ Uk() da0) =

cap cap K’

and conclude that y(A, 1) > 1/(cap K). Then use some limiting arguments.)
If K c R3 is compact, relate cap K to the zero frequency limit of the scattering
amplitude, defined in Chap. 9, §1.

. Try to establish directly the equivalence between the regularity criteria given by

Propositions 5.5 and 6.10.

In Chap. 5, §5, a compact set K C R” was called “negligible” provided there is no
nonzero u € H~1(R") supported on K. Show that if K is negligible, then cap K = 0.
Try to prove the converse.

Sharpen the subadditivity result (6.24) to

cap(K U L) + cap(K N L) < (cap K) + (cap L),
for compact sets K and L. This property is called “strong subadditivity.”
(Hint: By (6.6), Ug(x) = Wx(Sk), where Sx = {w : hg(w) < oo}. Show that
SkurL = Sg USL and Sgnr, = Sg N S, and deduce that

Ugur (x) + Ugnp (x) < Ug(x) + UL (x).

Extending the reasoning used in the proof of Proposition 6.5, deduce that
cap K + cap L= [ [Uk(0)+ U] dugor (o)

> /[UKUL(X) + UKmL(X)] dugur(x)

= cap(KUL)+ cap(KN L))

Stochastic integrals

We will motivate the introduction of the stochastic integral by modifying the

Feynman-Kac formula, to produce a formula for the solution operator e

t(A+X) to
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71.1) M Aut Xu, w0 =f: X > x5 ) du
. — = Au u, u0)=7r; u= i(X)—
ot I 0x
As in (2.2), we use the Trotter product formula to write

(7.2) AT £ — Iim (e(t/k)Xe(t/k)A)kf

k—o00

If we assume that each coefficient X ; of the vector field X is bounded and uni-
formly Lipschitz, then Proposition A.2 applies to (7.2), given f € LP(R"), 1 <
p < oo,or f € Co(R"), in view of Proposition 9.13 in Appendix A. Now, for
any k, (e(’/k)Xe(t/k)A)kf can be expressed as a k-fold integral:

(e(t/k)xe(t/km)kf(x)
(7.3) / /f xk) p(o Xk — Xg— 1——%‘k 1)
p(pxz X — —El) (ltc’xl X — —Eo) dxy---dxy,
where (with xo = x)
(7.4) £ =X(xj)+rj, rj=0k").
Now we can write
(7.5) P(%’xfﬂ —xj - éé,-) = P(é’xjﬂ —xj) &8 xRN B,

Consequently, parallel to (2.4),

(7.6) (e(t/k)Xe(t/k)A)kf(x) = Ex(¢),
where
(7.7) or(w) = f(w(t))eAk(w)_Bk(w),
with
= J j+1 J
Ak (@) ZO[X(‘”( L)+ 7] [0l — o(20)]
(7.8) /= -
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Thus we expect to establish a formula of the form

19) AT 1(x) = Ey ( f () A9 -B0)
where
1 [t 2
(7.10) B(t,w) = Z/ X (w(s))” ds,
0
and
1 = j j+1 j
1) AGw) =3 lim ;x(w(?)).[w( . t)—a)(%t)].

In (7.10), X(w)? denotes Y X (w)?. If the coefficients X; are real-valued, this
is equal to | X (w)]?.

Certainly By (w) — B(t, w) nicely for all ® € Py. The limit we now need to
investigate is (7.11), which we would like to write as

(7.12) Alt,w) = %/Ot X ((s)) - deo(s).

However, w(s) has unbounded variation for Wy-almost all @, so there remains
some analysis to be done on this object, which is a prime example of a stochastic
integral.

We aim to make sense out of stochastic integrals of the form

t
(7.13) /0 g(s, w(s)) - do(s),

beginning with
k—1

, | | o .
(7.14) /0 g(s) - do(s) = lim ;g(ﬁr)-[w(’Tr)—w(%Z)]-

This is readily seen to be well defined in LZ(‘BO, dWy), in view of the fact that
the terms 6; (0) = w((j + 1)t/k) — o(jt/k) satisfy

t .
T15) 051 2pgamwy = 250 0500 L2cpgamy =0, for j # ¢,

the first by (1.38). Thus
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2 k_ll j )
L2(Ro,d W) = 2JZ=:0E}g(;Z)} .

(7.16) ((gg(él)[w(j,{if)—“’(%l)]‘

For continuous g, this is a Riemann sum approximating fé lg(s)|? ds, as k — oo.
Thus we obtain the following:

Proposition 7.1. Given g € C([O,t]), the right side of (7.14) converges in
L2(Bo, dWy). The resulting correspondence

g /0 ¢(s) doo(s)

extends uniquely to /2 times an isometry osz([O, t], dt) into L?>(Po. d Wy).

We next consider

k—1 k—1
(117 Se(@) =Y g(tj o)) - [ot1) —o@)] = gi@) - ;).
j=0 Jj=0

where 0;(w) = w(tj+1) — w(t;), t; = (j/k)t. Following [Si], Chap.5, we
compute

(7.18) | Sk ”iz(mo,dWx) = Z Ex (gj (w)ej (w)ge(w)b; (w))
Jit

If€ > j, 6g(w) = o(tg4+1) — w(ty) is independent of the other factors in paren-
theses on the right side of (7.18), so the expectation of the product is equal to
Ex(g;0;8¢)Ex(6y) = 0 since Ex(6¢) = 0. Similarly the terms in the sum in
(7.18) vanish when £ < j, so

ISklIZ 2 . amy = D Ex (18 @) Ex(16;1)
J

(7.19)
=2 Z Ex(Ig(tj, w@)?)(tj41 — 1))
J

If g and w are continuous, this is a Riemann sum approximating the integral
2 [y Ex(lg(s, (s))|?) ds, and we readily obtain the following result.

Proposition 7.2. Given g € BC ([0, t] x R”), the expression (7.17) converges as
k — oo, in L>(Po.d Wy), to a limit we denote by (7.13). Furthermore, the map

g |—>/0 g(s.w(s)) - do(s)
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is /2 times an isometry into L2(Bo, d Wy), when g has the square norm
! 2
(720 0:(9) = [ Ex(Je(s.00))") ds
0

Note that Qx(g) = f(f Jrn 18(s. W) p(s.x —y) dy ds.Incase g = g(w(s)),
we have Q(g) given as the square of a weighted L2-norm:

121)  0xle) = / 8O rex — y) dy = Re(D)[g2().
RV!

where

(7.22) R/(D) =AY = 1), ri(x) = R/(D)8(x).

We see that R, (D) € OPS~2(R"). The convolution kernel r,(x) is smooth on
R” \ 0 and rapidly decreasing as |x| — oo. More precisely, one easily verifies
that

1
(7.23) mmgcmomﬂfmmﬁmmwz?
and
2—n 1
(724) rl(x) = C(}’l,[)|x| s for |x| =< Es n= 39

with |x|>™" replaced by log1/|x| for n = 2 and by 1 for n = 1. Of course,
re(x) >0forallt > 0,x € R*\ 0.

In particular, the integral in (7.21) is absolutely convergent and Q,(g) is a
continuous function of x provided

(7.25) g € LE (R"), forsome p >n, and g € L*(R", (x) 2o~ X741 dx).

loc

Proposition 7.2 is adequate to treat the case where the coefficients X; are in
BC(R") and purely imaginary. Since Ay (w) — A(t, ) in L?(Po.d Wy),

(7.26) k@) o pAW0) ih measure,

and boundedly, since the terms in (7.26) all have absolute value 1. Then conver-
gence of (7.6) follows from the dominated convergence theorem. In such a case,
X(w)? in (7.10) is equal to —| X (w)|?. We have the following.

Proposition 7.3. If X = iY is a vector field on R" with coefficients that are
bounded, continuous, and purely imaginary, then
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(7.27)
et AHY) £() = ( £ ((1))e/2Jo Y@@)daG)+1/4) Jy \Y(w(s))|2ds) _

One final ingredient is required to prove Proposition 7.3, since in this case e’

is not a semigroup of bounded operators, so we cannot apply Proposition A.2.
However, we can apply Proposition A.3, with

S f(x) = / FOIp(t.y — x — 1X(x)) dy.

If X =1iY is purely imaginary, then, parallel to (7.5), we have

Pty —x —itY(x)) = p(t, y — x)e VIO WP/,

If V is bounded and continuous, a simple modification of the analysis above,
combining techniques of §2, yields

(7128)  AFXV) £y = E, (f(w(t))eA(t,w)/Z—B(t,a))/4—./’(; V(a)(s))ds)

when X is purely imaginary. For another interpretation of this, consider

H= Z(—z% - Aj(x))2 +V
(7.29) !

? 0 A,
J
Assume each A is real-valued, and A, 04, /dx; € BC(R"). Then
—tH — S(t,w)
e f(x) = Ex (f (@0)e5).
t
(7.30) Stw)=i /0 A(w(s)) - do(s)

—i /Ot(div A)(w(s)) ds — /Ot V(w(s)) ds.

Compare with the derivation in [Si], Chap. 5.

If the coefficients of X are not assumed to be purely imaginary, we need some
more estimates. More generally, we will derive further estimates on the approxi-
mants Sg (w) to fé g(s, w(s)) - dw(s), defined by (7.17).

Lemma 7.4. If g is bounded and continuous, then

2
(7.31) Ex(e¥F) <€,y =g,
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and
(7.32) E (M%) < 2012777,

Proof. The left side of (7.31) is
1
E, (ego90 o 8k—1 9k—1) - Z EEX (ego9o .. egk—zek—zg%_l 9}:_1)
(7.33 ad
) < Z y—Ex (68090 . ,egk—29k—2)Ex (911',}—1)

= Ex (eg090 .. .egk—2‘9k—2)Ex (eyek_l )’

by independence arguments such as used in the analysis of (7.18). Note that
the sums over v above have terms that vanish for odd v. Now E,(e?%) =

e®i+171)7? A inductive argument leads to (7.31), and (7.32) follows from this
plus el <e'4 e

We next estimate the LZ(EBO, dWy)-norm of Sy; — Si. Another calculation,
parallel to (7.18)—(7.19), yields

||S2k — Sk HZLZ(‘Bo,de)

734 _ Z Ex(ig(fj+1/2,w(fj+1/2)) - g(fj,w(fj))iz)(fjﬂ —1j+1/2)s
J

where t; = jt/k asin (7.17), and t; 1o = (j + 1/2)t/k. If we assume a
Lipschitz condition on g, we obtain the following estimate.

Lemma 7.5. Assume that

(7.35) |g(t. x) — g(s, y)|> < Colt —s]* + Cy]x — y|.
Then

7.36 S Skl <C 2 20, L

( . ) ” 2k — k”LZ(‘BO,dVVx) = Ok_2+ IE-

Proof. This follows from (7.34) plus Ex (|o(t) — w(s)|*) = 2|t — s|.

We can now make an estimate directly relevant to the limiting behavior of (7.7).

Lemma 7.6. Given the bound ||g||p < y, we have

2
(7.37) leS2k — 55| 1 e awyy < V211S2k — Skll L2(pg.amye>> -
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Proof. Using e — e? = (u— v)®(u, v), with |®(u, v)| < 2+2IVl e have

. |l n1/2
(7.38)  [leS2% — et |1 ) = 112k = Skll L2y - eSS0

and the estimate (7.32), plus 2e“*? < e + ¢2?, then yields (7.37).

With these estimates, we can pass to the limit in (7.6)—(7.7), obtaining the
following result.

Proposition 7.7. If X is a real vector field on R™ whose coefficients are bounded
and uniformly Lipschitz, and if € Cg°(R"), then

(7.39) €0 f(x) = Ey( f (w(0))e!1/2 o X@Ddo)-1/4) f; K@) ds).

Now that the identity (7.39) is established for X and f such as described above,
one can use limiting arguments to extend the identity to more general cases. Such
extensions are left to the reader.

We now evaluate the stochastic integral fé w(s)dw(s) in the case of one-
dimensional Brownian motion. One might anticipate that it should be w(#)?/2 —
@(0)?/2. However, guesses based on what should happen if @ had bounded vari-
ation can be misleading, and the truth is a little stranger. Let us begin with

k—1
o(t)> = 0(0)> = Y [0(tj+1)* — o(;)?]
(7.40) j=0

=Y [o@+1) + 0)] - [0t +1) — @),
J

where t; = (j/k)t, as in (7.17). We also use 8, (w) = w(t;j+1) — w(t;) below.
Recalling that fé w(s) dw(s) is the limit of )~ w(7;)[w(tj4+1) — w(t;)], we write
(7.40) as

k—1 k—1
(7.41) o) — (0> =2 o(t)f;(@) + Y 0;()>.

j=0 j=0
The next result is the key to the computation.

Lemma 7.8. Givent > 0,

k—1

(7.42)  O(w) = Z[w(ﬂt) - a)(it)]2 — 2t in L*(Po, d Wy),
j=0

as k — oo.
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Proof. We have

o2
- ;Ex([a,-(w)z ‘2E] ).

Ex(10x —21%) = Ex

(7.43)

the last identity by independence of the different 6. Now we know that £ (9]2) =
2t/ k; furthermore, generally Ex ([F — Ex(F)]?) < Ex(F?), so it follows that

ZZ
(7.44) Ex(10 —1]?) < Z Ex(6]) = 127

This proves the lemma.
Thus, as k — oo, the right side of (7.41) converges in L2(Po, dWy) to
fé (s) dw(s) + t. This gives the identity

(7.45) /Ot w(s) do(s) = %[a)(t)z —w(0)® — 2t],

for Wy -almost all w.
More generally, for sufficiently smooth f, we can write

k—1

(7.46) [ (@) = f(00) =D [f(@;+1) = f(e@)))]

j=0
and use the expansion
o) = f (o))
(7.47) 1 1 2, 3
=0;(0) f'(0(t))) + S0i@)yf ((t))) + 0(16; (@)

to generalize (7.45) to Ito’s fundamental identity:

(7.48) f (o) = f(0(0) = /0 f(w(s)) do(s) + /0 1" (w(s)) ds

for one-dimensional Brownian motion. For n-dimensional Brownian motion and
functions of the form f = f(t, x), this generalizes to
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f(l, w(t)) — f(O, a)(O))
(7.49) = / (Vi f)(s.w(s)) - dox(s)

t
0
t t
+ / (Af)(s,a)(s)) ds + / fi(s.w(s)) ds.
0 0
Another way of writing this is

(7.50) df (t,0(1)) = (Vxf) -dw + (Af) dt + f; dt.

We remind the reader that our choice of e?? rather than e’2/2 to define the
transition probabilities for Brownian paths leads to formulas that sometimes look
different from those arising from the latter convention, which for example would
replace (A f) dt by (1/2)(Af)dt in (7.50).

Note in particular that

d(elw(z)—kzt) — ) roO—A% do(t):
in other words, we have a solution to the “stochastic differential equation”:
(7.51) dX = AX do(t), X(1) = 0O

for Wp-almost all w. Recall from (4.16) that this is the martingale 3; ().

We now discuss a dynamical theory of Brownian motion due to Langevin,
whose purpose was to elucidate Einstein’s work on the motion of a Brownian
particle. Langevin produced the following equation for the velocity of a small
particle suspended in a liquid, undergoing the sort of random motion investigated
by R. Brown:

(7.52) Z_lt) =—Bv+ (), v(0) = vp.

Here, the term —fv represents the frictional force, tending to slow down the
particle as it moves through the fluid. The term w’(¢), which contributes to the
force, is due to “white noise,” a random force whose statistical properties identify
it with the time derivative of w, which is defined, not classically, but through
Propositions 7.1 and 7.2. Thus we rewrite (7.52) as the stochastic differential
equation

(7.53) dv=—-pvdt+dw, v(0)=v.

As in the case of ODE, we have d(ef'v) = eP!(dv 4+ Bv dt), so (7.50) yields
d(eP'v) = eP?dw, which integrates to
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t
v(1) = voe P! +/ e P9 du(s)
(7.54) 0 .
=voe P+ w(t) - B / e P9 4(s) ds.
0

The actual path of such a particle is given by

t

(7.55) x(t) = x0+ / v(s) ds.
0

In the case xg = 0, v9 = 0, we have

x(t) = /Ot /OS e P dw(r) ds

(7.56) A
= E/o [1—e P9 das).

Via the identity in (7.54), we have

t
(7.57) x(7) :/ e P9 4(s) ds.
0

Of course, the path x (¢) taken by such a particle is not the same as the “Brownian
path” w(¢) we have been studying, but it is approximated by w(¢) in the following
sense. It is observed experimentally that the frictional force component in (7.52)
acts to slow down a particle in a very short time (~ 1078 sec.). In other words,
the dimensional quantity § in (7.52) is, in terms of units humans use to measure
standard macroscopic quantities, “large.” Now (7.57) implies

(7.58) ﬂlim Bxp(t) = w(t),

where xg (t) denotes the path (7.57).

There has been further work on the dynamics of Brownian motion, particu-
larly by L. Ornstein and G. Uhlenbeck [UO]. See [Nel3] for more on this, and
references to other work.

Exercises
1. If g € C1([0,7]), show that the integral of Proposition 7.1 is given by

t t
/ ¢(s) do(s) = g(o(1) — gO)w(0) — / ¢ ()o(s) ds.
0 0

Show that this yields the second identity in (7.54) and the implication (7.56) = (7.57).
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2. With 6; as in (7.15), show that
k—1
Ex(D16;@)?) =0, ask — oo.
j=0

(Hint: Use 2|03 < €]0;]% + e 1|6;|* and (7.44).)

3. Making use of Exercise 2, give a detailed proof of Ito’s formula (7.48). Assume f €
C2%(R) and

D% f(x)] = Cee®™F, Ve 0, fo] 2.

More generally, establish (7.49).
Warning: The estimate of the remainder term in (7.47) is valid only when |w(¢;41 —
o(t;)] is bounded (say < K). But the probability that |w (¢ 4.1) —w(;)] is > K is very
small.

4. Show that (7.42) implies that Wy-almost all paths w have locally unbounded variation,
on any interval [s, t] C [0, 00).

5. fy(t,w) = jé g(s,w(s)) - dw(s) is a stochastic integral given by Proposition 7.2,
show that

Ex(y(t.-) = 0.

Show that ¥ (z, -) is a martingale, that is, E (w(t, -)|%S) = ¥ (s,-), fors < t. Compare
Exercise 2 of §8.

8. Stochastic integrals, II

In §7 we considered stochastic integrals of the form

8.1 ht,w) = /0 g(s,a)(s)) -dw(s),

where g is defined on [0, co) x R”. This is a special case of integrals of the form

t
(82) V(t.0) = /0 0(s. ) - do(s).

where ¢ is defined on [0, 00) X Bo. There are important examples of such ¢ which
are not of the form ¢(s, w) = g(s, w(s)), such as the function £ in (8.1), typically.
It is important to be able to handle more general integrals of the form (8.2), for a
certain class of functions ¢ on [0, 00) X called “adapted,” which will be defined
below.

To define (8.2), we extend the analysis in (7.17)—(7.19). Thus we consider

k—1 k—1
83)  Skt.w) =Y (. 0) [0j)—o)] =) ¢j@)-0;w),
j=0 j=0

where, as before, 0; (w) = w(tj+1) —w(t;), t; = (j/k)t. Asin (7.18), we want
to compute

(8.4) ISk 2 amwy = O Ex(@;6;9¢00).
Jil
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Following the analysis of (7.18), we want 6, to be independent of the other factors
in the parentheses on the right side of (8.4) when £ > j. Thus we demand of ¢
that

(8.5) @(s,-) is independent of w(t + h) —w(t), Vit >s, h>0.

Granted this, we see that the terms in the sum in (8.4) vanish when j # £, and

”Sk(t )“Lz(‘ﬁo dWy) — ZE |§0J |9 | )

(8.6)
= 2ZEx ot I P)(tj+1 = 1)).
J

IfopeC (R+, L?(%Bo. d Wx)), this is a Riemann sum approximating

t
2 [ B 0P) ds = 2000 gopeey
We use the following spaces:

C(I,R(Q)) = {¢ € C(I, L*(Po, d Wx)) : ¢(t) = Q:9(1), V1 € I},

8.7
D 12(1R(0)) = {p € L2(1. L2(Bo. W) - 9(0) = Qup(0). V1 € 1),

where I = [0,T], and, as in §4, Q¢ = Ex(¢|®B;). Elements of these spaces
satisfy (8.5), by Corollary 4.4.

Proposition 8.1. Given ¢ € C (I, R(Q)), the expression (8.3) converges as k =
2 — oo, in the space C(I,R(Q)), to a limit we denote (8.2). Furthermore,
Y = J(¢) extends uniquely to a linear map

(8.8) 3: L*(1.R(Q)) — C(I,R(Q)),
satisfying
(8.9) 13(@) (. )| L2po.awyy = V2 101 12 0.0y x30.d1 dWre)-

Regarding continuity, note that

(8.10) [[3(@)(t + 1. ) =T(@)(t. ) | L20p0.amwe) = V2 10N L2 (s 4 hixpo.dr dw)-

We need to verify that J(¢)(t,-) € R(Q:). But clearly, each term ¢(¢;,w) -
[w(tj+1) — w(t;)] in (8.3) belongs to R(Q;) in this case, so we have the desired
result.
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We mention an approach to (8.8) just slightly different from that described
above. Define a simple function to be a function ¢(¢, w) that is constant in ¢ for ¢
in intervals of the form [£277, (£ + 1)27"), with values in R(Qy), s = £277, for
some v € Z™. For a simple function ¢, the stochastic integral has a form similar
to (8.3), namely,

£—1

[ ot d06) = Yt 0) ot ) ~ 0]

8.11) =

+ o(tg, w) - [o(t) — o(ty)],

where?; = j27V and? € [62_", L+ 1)2_"). An identity similar to (8.6), together
with the denseness of the set of simple functions in L2(1, R(Q)), yields (8.8).
There is the following generalization of Ito’s formula (7.49)—(7.50). Suppose

t t

u(s,w) ds + / v(s, w) dw(s),

to

(8.12) X(t) = Xo + /

to

where u, v € L2(1,R(Q)). Then X € C (I, R(Q)). We write
(8.13) dX =udt +vdow.

We might assume X, u, and w take values in R” and v is #n x n matrix-valued.
More generally, let @ take values in R”, X and u in R, and v in Hom(R"”, R™).

IfYP@) = g(t, %(t)), with g(¢, x) real-valued and smooth in its arguments,
then

dY(t) = (Vi) (1. X(1)) - dX(1)

(8.14) +(D2g)(t, X(1)) (dX (1), dX (1)) + & (1. X(1)) dt,

where (D?g)(dX,dX) = Y (0°g/0x;0x) d X - d X is computed, via (8.13),
by the rules

(8.15) dt-dt =dt -dw; =dw;-dt =0, dw;-dox =38 dt.

There is also an integral formula for g(l, Z{(Z)) — g(to, Xo), parallel to (7.49):

t 2

g(t, %)) =g(to,3€0)+/ (Ebc,—égxk)

to

t t ag
+/ g (s, X(s)) ds+/ —(uj ds + vjg doy).

to to axf

VjgVke ds
(8.16)

Here, we sum over repeated indices. The formulas (7.49) and (7.50) cover the
special case u = 0, v = I. The proof of (8.16) is parallel to that of (7.49).
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If we apply (8.14) to g(x) = e**, m = 1, we obtain for

V(r) = exp(xae(z) Y /t v (s, w)[2 ds),
(8.17) fo

X = /tt v(s,w) - dw(s),

0

the stochastic differential equation
(8.18) dY) =AY v-do,

generalizing the identity (7.51).

There is another important property that )(¢), defined by (8.17), has in com-

mon with 3, (w) = e*@®O-A%,

Proposition 8.2. Given v € L? (I, R(Q)), with values in R", the function )(t)
defined by (8.17) is a supermartingale; that is, for s < t,

(8.19) Ex(D(1)|Bs) <VD(s). Wi-a.e. on Po.

Proof. We treat the case o = 0. First suppose v, is a simple function, con-
stant as a function of ¢ on intervals of the form [£277, (£ + 1)27"), with values
in R(Qg-v), and ), is given by (8.17), with v = v,. We claim that ), is a
martingale, that is,

(8.20) Ex(D0(1)|Bs) = Do (s), fors <1

Suppose, for example, that 0 < t < 27, s0 vy, (s) = v, (0), for s < z. Now v, (0)
is independent of w(¢) — w(s), so in this case

—1—32 2
Ex(ﬁjy(t)i%s) = Ex(e)tvu(O)[a)(z) x]—=A2t|vy, (0)] |%S)
= ekvv(0)[w(s)—x]—12s|vv(0)\2 “E, (ekvv(0)[co(t)—a)(s)]_,12(t_s)‘vv(0)‘2}%S),

and the last conditional expectation is 1. A similar argument in the case {27 <
s <t <(€+1)27, using (8.11), gives

Ex(Du(1)]Bs) = D (1) Ex (00l O-olto =20 t00lone g5, ) = 99, (5),

where t,, = €277, v,y = v, (t,¢). The identity (8.20), for general s < ¢, follows
easily from this.

For general v € L?(I,R(Q)), we can take simple v, converging to v in
the norm of this space, and then X, — X in C(I,R(Q)), where X, (t) =

fé Uy (s, ®) - dw(s). Passing to a subsequence, we can assume (for fixed s, )
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that X, (s) — X(s) and X,(t) — X(¢), Wx-a.e.; hence 9,(s) — 2(s) and
(1) — Y(t), Wx-a.e. Then (8.19) follows, by Fatou’s lemma.

The case of general #9 > 0 is easily obtained from this; one can extend v(s, w)
tobe 0 for0 <s < 1p.

Note in particular that s = 0 in (8.19) implies

(8.21) Ex (e"x(f)—lz./;’o \v(s,')lzds) -1

Using Cauchy’s inequality, we deduce that

. 1/2
(8.22) E(FX072) < p (2 fio P ) ”

We get a similar estimate upon replacing v(s, w) by —v(s, ®), which converts
X(t) to —X(¢). Since e*l < e 4+ ¢, we have (replacing A by 21)

(8.23) E, (ewe(z)\) < 2Ex(e“2 I ‘v(s’,)|2ds)l/2.

Compare with Lemma7.4. Note that the convexity of the exponential function
implies

(8.24) Ex(et—‘fé F(S,~)ds) < ; / ! Ex<eF(S")) n
0

Therefore, (8.23) implies

1 t 1/2
Ex(ex\ae(t)\) < 2|: / Ex<e4},2t|v(s~)2)ds}
- I —1o to

<2 max Ex<e“2””(s")|2)l/2.

to<s<t

(8.25)

t
If we expand ), (¢) = e/ue”(t)_/12 Jig v P2 ds 3 powers of A, the coefficient
of each A/ is a martingale. The coefficient of A4, for example, is

1 4 1 2 ! 2 1 ! 2 2
(826 T ~ 3200 (/to vy (5. )] ds)+§</to [ou(s. @) ds) .

This has expectation zero; hence

L (x0f) < .

24 Ex (2002 ( zt v, (5. )2 ds) )

(8.27) t 2
Ec(201%) + 488 (( [ It ds)),

= v

=

N

8
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SO
! 2
E(201) <47 (([ P as)’)
(8.28) o [ Nz
S e / Ex(jou(s.)|*) ds

< (48l —ro)” max, Ex(luu(s.)l).

where the second inequality here uses convexity, as in (8.24). Again a use of
Fatou’s lemma yields for

(8.29) X = /t v(s,w) - dw(s)

0

the estimate

1/2
(B30)  IXOlzsug < (481 —10)" max o659l aco
Similarly we obtain, for #; < 1,

B31) X)) — X papg) < Crltr — 1a]'/? J0ax (s )2 o)

with C; = +/48, when X(¢) is given by (8.29). If X(¢) is given more generally by
(8.12), we have

1%(0) = X(2) | sy = Coltr =12l max Jues, )| s
(8.32) s
+ Cilr =2 max [uGs. )L gy

The martingale maximal inequality of Proposition 4.7 extends to submartin-
gales, but it is not obvious that it applies to the supermartingale ) (7). However, it
does apply to 2, (7), so, for each v € Z*, we have

Wx({a) ePo: sup  Xu(t) — Xu(t0) —A/zt vy (s, @)|2 ds > /3})

tel(to,t1)

(8.33)
<e P

where I(tg,11) = [to, t1] N Q. It follows that
(8.34)
1
We(loePo: sup |20 = X(00)| > A/ v, (5, @) 2 ds + B} )
to

tel(to,t1)

< 20 B
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Thus, if we have
n ﬂ

(8.35) / vy (s, w) | ds < T forw € S,
o

then

(836) Wi (S N{wePo: sup |X,(0) — X, (10)] > 2,3}) <2078,
tel(to,ty)
Now

t
[vy (s, w)l2 ds >

>

Wx({a) € Bo :/t

0

)

(8.37)

A fh ,
<= Ex(|UU(S,')| )ds'
18 to

Taking B = §, A = 1/82, we deduce that if
n 2 3
(8.38) [ 590 g s < 5%

then

839 Wi ({w ePo: sup  |Xo(r) — Xo(to)] > 25}) <ete U8,

tel(to,t1)

Since X, (¢) converges to X(¢) in measure, locally uniformly in ¢, we have

(8.40) Wy ({w ePo: sup |X() - X(t0)| > 25}) <e4e /8

tel(to,t1)

whenever
! 2 3
(8.41) /to lv(s, ')||L2(q30) ds < 8e.

The estimate (8.40) enables us to establish the following important result.

Proposition 8.3. Let I = [0,T]. Given v € L*(I,R(Q)), so [ v(s,®) -
do(s) = X(t) belongs to C(I,R(Q)), you can define X(t,w) so that t +>
X(t, w) is continuous in t, for Wy-a.e. w.

Proof. Start with any measurable function on I x B¢ representing X(¢); call it
xP(t,w), so for each t € I, XP(t,-) = X(t), Wy-ae. on Po. Set X(t,w) =
X(t, ), fort € I N Q. From (8.40)—(8.41) it follows that there is a set N C Lo
such that Wy (N) = 0 and 0, (¢) = X(¢, w) is uniformly continuousint € I N Q
for each w € Po \ N. Then, for v € Py, ¢ € I\ Q, define X(¢, w) by continuity:
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(8.42) Xt.w)= lim X@t,.0), oePo\N.
I1NQ>t,—>t

If w € N, define X (¢, w) arbitrarily.
To show that this works, it remains to check that, for each t € I,

(8.43) X(@t,) = X(t), Wy-ae.onPop.

Indeed, since X2(1,,-) — X(¢) in L?-norm, passing to a subsequence we have
xb (tv;,+) = X(t) Wx-a.e. Comparing with (8.42), we have (8.43).

Exercises

1. Generalize (8.30) to show that X(¢) = jti) v(s,w) - do(s) satisfies

t
1O () < Crlt =10/~ / 10675k 35 45

fork e Z7.
2. Given ¢ € L%([0, 00), R(Q)), show that, for ¢ > s,

Ex(/: w(r,w)'dw(r)‘%s) =0.

Deduce that the stochastic integral ¥ (¢, w) = f(; ¢(s,w)-dw(s) is a martingale, so that,
fort > s,

Ex(y(t,)|Bs) = ¥ (s,).
3. Show that if v(s, w) satisfies the hypotheses of Proposition 8.2, then the supermartingale
) (¢) in (8.17) is a martingale if and only if

Ex9@t)=1, Vt>0.

9. Stochastic differential equations

In this section we treat stochastic differential equations of the form

9.1) dX=b(t,X)dt +o(t,X)dw, X(ty) = Xo.

The function X is an unknown function on I x B¢, where I = [to, T']. We assume
to > 0. As in the case of ordinary differential equations, we will use the Picard

iteration method, to obtain the solution X as the limit of a sequence of approximate
solutions to (8.1), which we write as a stochastic integral equation:

92)  X(1) = %o+ / zb(s,%(s)) ds + / zo(s,.’{(s)) do(s) = PX(r).

o o



9. Stochastic differential equations 431

The last identity defines the transformation ®, and we look for a fixed point of ®.
As usual, X(¢) is shorthand for X(¢, ). If w is a Brownian path in R”, we can
let X and b(¢, x) take values in R and let o (¢, x) be an m x n matrix-valued
function.

Let us assume that o (¢, x) and b(¢, x) are continuous in their arguments and
satisfy

|b(z, x)| = Ko(1 + |x]), |b(t.x) = b(r.y)| < Lolx — yl.

(9.3)
lo(t, x)| < Ki(1 4 |x[)V2, Jo(t,x) —o(t,y)] < Lilx — y|.

We will use results of §8 to show that
9.4) ®: L*(I,R(Q)) — C(I.R(Q)),
where, as in (8.7),

C(I.R(Q)) = {g € C(I.L*(Po.dWp)) : ¢(t) € R(Q0). V1 € I},

and L?(I,R(Q)) is similarly defined. Note that X(s) belongs to R(Q;) if
and only if X(s) is (equal Wp-a.e. to) a Bs-measurable function on Po, so if
X(s) € R(Qs), then also o(s,X(s)) and b(s, X(s)) belong to R(Qy). Thus
Proposition 8.1 applies to the second integral in (9.2), and if Xo € R(Qy,), we
have (9.4).

Applying (8.9) to estimate the second integral in (9.2), we have

; 2
I920) = ol =263 ([ (14 1XO)20) ds)

o

(9.5) .
+41<12/ (1 + 1XG7 2 (g5,)) d5-

o
Also (8.9) applies to an estimate of the second integral in

OX(1) — V(1) = / [b(s. X(5)) — b(s.D(s))] ds
(9.6) 0

+ /,t[o(s,%(o")) —o(s. ()] ds

0

We get

t 2
|9X(1) — DY) 22y, < 2L3 ( / 1265) = D) 122 50) ds)
9.7

_|_4L2/ | X(s) — @(S)HLZ(EB)



432 11. Brownian Motion and Potential Theory

To solve (9.2), we take Xo (¢, w) = Xo(w), the given initial value, and induc-
tively define X ;11 = ®X;. Note that

t t

b(s, Xo(w)) ds + / o (s, Xo(@)) dw(s)

to

9.8) xdnw)=%dw%+/

to

contains a stochastic integral of the form (7.14), provided X (w) is constant. On
the other hand, the stochastic integral yielding X, (¢, w) is usually not even of the
form (7.13), but rather of the more general form (8.2). The following estimate will
readily yield convergence of the sequence X ;.

Lemma 9.1. For some M = M(T) < oo, we have

(M |t — to])/+!

G sisT

9.9)  1X51() = X022, <

Proof. We establish this estimate inductively. For j = 0, we can use (9.5), with
X = X1, and the j = 0 case of (9.9) follows. Assume that (9.9) holds for j =
0,...,k — 1; we need to get it for j = k. To do this, apply (9.7) with X =
Xk, Y = Xp—1, to get

2L2A4k
1 (0) = Bk O sy = o (/ s 10|k/2ds)

(9.10)
4L2A1k
/|s—mﬁds

Thisis < (M|t — to|)k+1/(k + 1)! as long as M is sufficiently large for (9.9) to

hold for j = 0 and also M > ZL% max(1,7T) + 4L%.
These estimates immediately yield an existence theorem:

Theorem 9.2. Given 0 <ty < T < oo, I = [ty, T}, if b and o are continuous
on I x R" and satisfy the estimates (9.3), and if X9 € R(Qy,), then the equation
(9.2) has a unique solution X € C (I, R(Q)).

Only the uniqueness remains to be demonstrated. But if X and ) are two such
solutions, we have X = X and ) = 2, so (9.7) implies

12() = D(O)]22 gy < right side of (9.7).

and a Gronwall argument implies || X(¢) — D (#)||2 = 0, forallz € I.

Of course, the hypothesis that b and o are continuous in ¢ can be weakened in
ways that are obvious from an examination of (9.4)-(9.7). Allowing b and o to
be piecewise continuous in ¢, still satisfying (9.3), we can reduce (9.1) to the case
to = 0, by setting b(¢,x) = 0and o(¢,x) = 0for0 <t < to.
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If Xy has higher integrability, so does the solution X(¢). To see this, in case
Xo € L*(PBo). we can exploit (8.26)—(8.30) to produce the following estimate,
parallel to (9.7):

19X — VO 50y =
! 4
011 SLA( [ 120 D0y )

t
+ UL~ to] [ 126) = DOy 5
to

Using this, assuming Xo € L*(Bo, d Wp), we can obtain the following analogue

of (9.9):

(Mt —12)" "
(G + D!

9

(9.12) 1% +1(0) = X (Ol agqs,) <

for M = M(T), on any interval ¢ € [tg, T]. We have the following:

Proposition 9.3. Under the hypotheses of Theorem 9.2, if also Xo € L*(Po,
dWO), thenX € C (1, L4(q30, dWO))

More generally, one can establish that X € C (1, L?* (o)), provided Xy €

L?*(By), k > 1. The case 2k = 4 enables us to prove part of the following
important result.

Proposition 9.4. The solution X(t) to (9.2) given by Theorem 9.2 can be rep-
resented as X(t,w) such that, for Wyo-a.e. o € Py, the map t — X(t,w) is
continuous in t.

Proof. First we assume Xo € L*(Po.dWp) and give a demonstration that is
somewhat parallel to that of Theorem 1.1. Given ¢ > 0,8 > 0, and 5,1 € Rt
such that |t — 5| < §, we estimate the probability that |X(t) — X(s)| > &. We use
the estimate

©.13) 120 = XO) sy < Clt =5,

C =C(T), fors,t € [0, T], which follows (when ¢ > s) from

t 4
%0 = X6,y = € ([ 1o 2@ )
9.14) 5

t
e / lo(e. X)), dx.

together with the estimate || X(s)|| 4+ < C(r). Consequently, given s, € RT,
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<

2
€4|t—s| .

(9.15) Wo({a) € Po 1 |X(t, 0) — X(s,0)| > e}) <
Now an argument parallel to that of Lemma 1.2 gives

Wo<{a) € Po : |X(11,0) — X(tj,w)| > &, for some j = 2, ...,v})

(9.16)
= Cr(5.9)
r\—-, 3
- 2
when {t1,...,t,} is any finite set of numbers in Q%1 suchthat0 <ty <--- <t
and t, — 1; < 6, where
9.17) r(e,8) = min(1, C§%™*).

The function r (¢, §) takes the place of p(e, §) in (1.23); as in (1.21), we have

r(e, )

(9.18) -0, as§ — 0,

for each ¢ > 0. From here, one shows just as in the proof of Theorem 1.1 that, for
some Z C PBo such that Wy(Z) = 0, the map ¢ — X (¢, ®) is uniformly continu-
ouson? € QF, foreach w € Py \ Z. the rest of the proof of Proposition 9.4 can
be carried out just like the proof of Proposition 8.3.

We now give another demonstration of Proposition 9.4, not requiring Xg
to be in L*(Po), but only in LZ(Po). In such a case, under the hypothe-
ses, and conclusions, of Theorem 9.2, we have a(t,%(t)) € C(I,R(Q)).
Hence Proposition 8.3 applies to the second integral in (9.2), so A(f,w) =

fti) o (s, X (s)) dw(s) can be represented as a continuous function of ¢, for Wy-a.e.

w € Po. Furthermore, we have b(t, %(t)) € C(I, LZ(‘BO)) C C(I, LI(EBO)).
Thus, by Fubini’s theorem, the first integral in (9.2) is absolutely integrable, hence
continuous in ¢, for Wy-a.e. w. This establishes the desired property for the left
side of (9.2).

We next investigate the dependence of the solution to (9.2) on the initial data
Xo, in a fashion roughly parallel to the method used in §6 of Chap. 1. Thus, let )
solve

t t

b(s.D(s)) ds + / o(s.9(s)) do(s).

to

9.19) (1) = Vo + /

to

Proposition 9.5. Assume that b(t,x) and o(t,x) satisfy the hypotheses of
Theorem 9.2 and are also C' in x. If X(t) and )(t) solve (9.2) and (9.19),
respectively, then

(9.20) 1X(1) = DOl L2(p0) = €1, Lo, LD X0 — DollL2(0)-
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Proof. Consider Z(t) = X(¢) — 2 (t), which satisfies the identity

Z(t) = 2o +/ b'(s.%(5).9(s)) Z(s) ds
(9.21) o
+/ o' (s, X, 9(s)) Z(s) do(s),

0
with Zy = Xo — @0. Here
1
(9.22) b'(s,x,y) = / Dib(s,ux + (1 —u)y) du,
0
sob'(s,x,y)(x —y) = b(s,x) — b(s, y), and similarly
1
(9.23) o'(s,x,y) = / Dyo(s,ux + (1 —u)y) du.
0

We estimate the right side of (9.21) in L2(B¢). By (9.3), |b’(s, x, )| < Lo, so

(9.24) /t b' (s, %(5). D(s)) Z(s) ds
1

0

t
< Lo / 1Z)ll.2 ds.
L2 to

Since |0/(s, x, )| < L1 and o’ (s, X(s), D (5)) Z(s) € R(Qys), we have

t 2 t
(9.25) / o' (5. X(5), D(5)) Z(s) dw(s)| < L%/ IZ()7- ds.
7 L2 to

0

Thus the identity (9.21) implies
t
(9.26) 1201172 < 31%0 = Vo7 +3[L5(t —10)* + LT] / 121172 ds.
to

Now Gronwall’s inequality applied to this estimate yields (9.20).

Note that (9.21) is a linear stochastic equation for Z(¢), of a form a little dif-
ferent from (9.2), if X(s) and )(s) are regarded as given. On the other hand, we
can regard X, %), and Z as solving together a system of stochastic equations, of
the same form as (9.2).

An important special case of (9.2) is the case Xp = x, a given point of R, so
let us look at X*-%(¢), defined for ¢ > s as the solution to

(9.27) X55() = x + /t b(r. %(r)) dr + /t o(r, %(r)) do(r).
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In this case we have the following useful property, which is basically the Markov
property. Let B% denote the o-algebra of subsets of Py generated by all sets of
the form

(9.28) {wePo:w(ty)—w(sy) € A}, s<s;1 <1 <t, ACR" Borel,

plus all sets of Wy-measure zero.

Proposition 9.6. For any fixed t > s, the solution X**(t) to (9.27) is B-
measurable.

Proof. By the proof of Theorem 9.2, we have X*°(¢) = limg_, o X (?), where
Xo(t) = x and, fork > 0,

Xp+10) =x + / b(r, .’{k(r)) dr + / U(r, .’{k(r)) dw(r).

It follows inductively that each X (¢) is B’ -measurable, so the limit also has this
property.

The behavior of X*>*(¢) will be important for the next section. We derive an-
other useful property here.

Proposition 9.7. Fors <t <t, we have
(9.29) X5t w) = X7t w), q=X"(1,w),

for Wy-a.e. € Py.

Proof. Let (¢) denote the right side of (9.29). Thus Y(r) = X**(r). The
stochastic equation satisfied by X**(¢) then implies

D) = X% (1) +/ b(r,Q)(r)) dr +/ O'(V,Q)(I‘)) do(r).

Now (9.27) implies that X*-°(¢) satisfies this same stochastic equation, for t > 7.
The identity 9 (z) = X**(¢) a.e. on Py follows from the uniqueness part of
Theorem 9.2.

Exercises

1. Show that the solution to
dX =a@)X@)dt +b)X(t) dw(?),

incase m = n = 1, is given by

t t
(9.30)  X(r) = X(0) exp{ /0 [a(s) — b(s)?] ds + /0 b(s) dw(s)} = X(0)e3W.
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In this problem and the following one, X(¢) depends on w, but a(¢) and b(¢) do not
depend on w, nor do f(¢) and g(¢) below.
2. Show that the solution to
dX(1) = [f(0) +a(®)X@)] dt + [g(t) + b()X(t)] do(t),

incase m = n = 1, is given by X(t) = 3@ (¢), where ¢3@ is as in (9.30) and

t t
V(1) = x(0) + / [e—3(s) f(s)—g(s)b(s)] ds + / g(5)e™3C) dw(s).
0 0
3. Consider the system
(9.31) dX(1) = [AOX(@) + f(1)]dt + (1) dw(1),

where A(t) € End(R™), f(¢) € R™, and g(t) € Hom(R",R™). Suppose S(z, s) is the
solution operator to the linear m x m system of differential equations

dy
— = A(t S, 1) =1
T ()y’ (’) ’

as considered in Chap. 1, §5. Show that the solution to (9.31) is

t t
X)) =St0X(0) + / S(t,s)f(s)ds +/ S(t,5)g(s) dw(s).
0 0
4. The following Langevin equation is more general than (7.52):
(9.32) x"(t) = =VV(x(1)) = Bx'(1) + &' (¢).

Rewrite this as a first-order system of the form (9.1). Using Exercise 3, solve this equa-

tion when V(x) is the harmonic oscillator potential, V(x) = ax?2.

10. Application to equations of diffusion

Let X**(¢) solve the stochastic equation

t t
(10.1) X*5(1) = x +/ b(X**(r)) dr +/ o (X*%(r)) do.

As in (9.2), x and b can take values in R” and ¢ values in Hom(R”, R™). We
want to study the transformations on functions on R” defined by

(10.2) DL f(x) = Eo f(X™°(1)), 0<s<r1.
Clearly, X**(s) = x, so

(10.3) P} f(x) = f(x).
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We assume b(x) and o (x) are bounded and satisfy the Lipschitz conditions of
(9.3). For simplicity we have taken b and o to be independent of ¢ in (10.1). We
claim this implies the following:

(10.4) D f(x) = & f(x),
for s,t > 0. In fact, it is clear that
(10.5) X551t + 5, 0) = ¥00, d0),

where Js0(t) = w(t 4+ 5) — w(s), as in (4.11). The measure-preserving property
of the map 9 : Po — Po then implies

Eo f (2. 0,0)) = Eo f(¥7°0)) = & /(x).

so we have established (10.4). Let us set
(10.6) P'f =@} f = Eo f(X*(1)).

where for notational convenience we have set X*(t) = X*9(¢).
We will study the action of P’ on the Banach space C,(R™) of continuous
functions on R™ that vanish at infinity.

Proposition 10.1. For eacht > 0,
(10.7) P': Co(R™) —> C,(R™),
and P forms a strongly continuous semigroup of operators on Co(R™).

Proof. If f € C,(R™), then f is uniformly continuous, that is, it has a modulus
of continuity:

(10.8) lf(x) = fO) <wr(lx =),

where w ¢ (8) is a bounded, continuous function of § such that ws(§) — 0 as
8 — 0. Then

(10.9) |P'f(x) = P f()| < Eo | f(X*() = f (X ()]
' < Eq wy(|X*(t) — X2 (1)]).

Now if x is fixed and y = x,, — x, then, for eacht > 0, X*(t) — X* () - 0

in L2(Po), by Proposition 9.5. Hence X*(t) — X*v(t) — 0 in measure on Lo,

so the Lebesgue dominated convergence theorem implies that (10.9) tends to 0 as

y — x. This shows that P’ f € C(R™) if f € C,(R™).
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To show that P’ f(x) vanishes at infinity, for each ¢ > 0, we note that, for
most w € Po (in a sense that will be quantified below), | X*(t) — x| < C(t) if C
is large, so if f € C,(R™) and |x| is large, then f(%x (t, a))) is small for most

w € ‘Bo.
In fact, subtracting x from both sides of (10.1) and estimating L2-norms, we
have

(10.10) || X% (1) —x||§2(%) <2B%*+28%, B =sup |b|. S =sup |o|.
Hence

2B%t? +28%

(10.11) Wo({w € Po 1 X7 (t.0) — x| > l}) = 22

The mapping property (10.7) follows.
We next examine continuity in #. In fact, parallel to (10.9), we have

(10.12) |P! f(x) = P° f(x)| < Eo wf(|X* (1) — X¥(s)|).

We know from §9 that X*(¢) € C (R+, L? (EBO)), and estimates from there readily
yield that the modulus of continuity can be taken to be independent of x. Then
the vanishing of (10.12), uniformly in x, as s — ¢, follows as in the analysis of
(10.9).

There remains the semigroup property, P* P!~ = P! for0 < s < . By
(10.4), this is equivalent to ®§ ®% = ®f. To establish this, we will use the identity

(10.13) Eo(f (X%°1)|Bs) = Eo f (X)) = ® f(x),

which is an immediate consequence of Proposition 9.6. If we replace s by 7 in
(10.13), and then replace x by X**(t), with s < v < ¢, and use the identity

(10.14) XTT() = X5°@), q=X"(1),

established in Proposition 9.7, we obtain

(10.15) Eo(f (2%°(1)|Bc) = L f (X% ().
We thus have, fors <t <1,
TP f(x) = Eo(cp’, f(%x’s(r))|%s)
(10.16) = Eo(Eo( /(77 (0))|B:)
= E()(f(%q’t(l)”%s)y

)
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and again using (10.14) we see that this is equal to the left side of (10.13), hence
to @ f(x), as desired. This completes the proof of Proposition 10.1.

We want to identify the infinitesimal generator of P’. Assume now that D f,
for |a| < 2, are bounded and continuous on R”. Then Ito’s formula implies

t 82
f(XX(t)) = f(x) +/0 (ﬁ)aﬂm{g dr

J

9y
+ /0 ij(bj dr +oj¢ dwy),

(10.17)

using the summation convention. Let us apply Ey to both sides. Now

t af
10.1 E 0 =

(10.18) of /0 g 0t doe) =0
so we have

t 2

Eo(f @) = £ + [ Eo(5—Aj) dr
0 X 0Xg
(10.19) ; of
+/0 EO(EbJI) dr,
where A ji in the first integral is given by
(10.20) Aj(y) =Y ojMoe(y), ¥y =X(r).
14

In matrix notation,
(10.21) A =o0o'.

We can take the 7-derivative of the right side of (10.16), obtaining

J .
513 fx) =

(10.22)
Eo (A (X%(1)) 0,0k f (X5(0) + b, (X*(1)) 9, £ (X*(1))).

In particular,
(10.23)
5 P g =D Ak 8,9k f () + 3 bj(x) 9, f(x) = Lf (x),

Jk J



10. Application to equations of diffusion 441

where the last identity defines the second-order differential operator L, acting
on functions of x. This is known as Kolmogorov’s diffusion equation. We have
shown that the infinitesimal generator of the semigroup P?, acting on C, (R™), is
a closed extension of the operator

(10.24) L= Ap(x)d;0+ Y bj(x).

defined initially, let us say, on CO2 R™).
Itis clear from (10.6) that || P* f'||peo < || /|| foreach f € Co(R™), so P’
is a contraction semigroup on C,(R™). It is also clear that

(10.25) f>0= P'f >0 onR",
that is, P! is “positivity preserving.” For givenx € R”, t > 0, f — P! f(x)isa

positive linear functional on C,(R™). Hence there is a uniquely defined positive
Borel measure jty,; on R™, of mass < 1, such that

(10.26) Pl f(x) = / FO) dpins ().

In fact, by the construction (10.6),
(10.27) Mx,r = Fen«Wo,

where F(x (@) = X*(t, ), and (10.27) means fiy,(U) = WO(F(;}t)(U)) fora
Borel set U C R™. This implies that, for each x,#, uy is a probability measure
on R™, since |X*(¢)| is finite for Wy-a.e. w € Po.

We will use the notation

(10.28) P(s,x,t,U) = px—s(U), 0=<s<t, UCR", Borel

We can identify P(s, x,t, U) with the probability that X**(¢) is in U. We can
rewrite (10.26) as

(10.29) P f(x) = / f(y) PO, x,t,dy)
or
(10.30) @10 = [ 1) PGxtdy).

The semigroup property on P’ implies
(10.31) P(s,x,t,U) = / P(s,x,t,dy) P(r,y,t,U), 0<s<t<t,

which is known as the Chapman—Kolmogorov equation.
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Let us denote by L the extension of (10.24) that is the infinitesimal generator
of P'. If V is a bounded, continuous function on R™, then £ — V generates a
semigroup on C,(R™), and an application of the Trotter product formula similar
to that done in §2 yields

(10.32) V) f(x) = Ey ( F (&) e o V(xm))ds) _

This furnishes an existence result for weak solutions to the initial-value
problem

0
5= 2 Aw() 80+ Y by () dju— V.
u(0) = f € Co(R™).

(10.33)

under the hypotheses that ' is bounded and continuous, the coefficients b;
are bounded and uniformly Lipschitz, and A i has the form (10.20), with o
bounded and uniformly Lipschitz. As for the last property, we record the follow-
ing fact:

Proposition 10.2. If A(x) is a C? positive-semidefinite, matrix-valued func-
tion on R™ with D*A(x) bounded on R™ for |a| < 2, then there exists a
bounded, uniformly Lipschitz, matrix-valued function o(x) on R™ such that

A(x) = o(x)o(x)".

This result is quite easy to prove in the elliptic case, that is, when for certain
Aj €(0,00),

(10.34) Molél> < D A (& < Mil8)%,

but a careful argument is required if A(x) is allowed to degenerate. See the exer-
cises for more on this.

If Ay (x) has bounded, continuous derivatives of order < 2, we can form the
formal adjoint of (10.24):

(10.35) L'f =Y 0;0(An)f) =D 0;(bjx)f)=Lf —Vf.

where L has the same second-order derivatives as L, though perhaps a different
first-order part, and V(x) = — > 9;0xA;x(x) + >_0dxb;(x). Thus L has an
extension, which we denote as £, generating a contraction semigroup on C,(R™),
with the positivity-preserving property. Furthermore, L—V' generates a semigroup
on C,(R™), and there is a formula for e!“=Y) f parallel to (10.32). Thus we
obtain a weak solution to the initial-value problem

du
(1036) — = D 00k (Aje(u) =Y 9, (bj(x)u).  u©0) = f € Co(R™),
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provided that A j (x) satisfies the conditions of Proposition 10.2, and that each b
is bounded, with bounded, continuous first derivatives. Equation (10.36) is called
the Fokker-Planck equation.

To continue, we shall make a further simplifying hypothesis, namely that the
ellipticity condition (10.34) hold. We will also assume A, (x) and b;(x) are
C°, and that D*A jx(x) and D*b;(x) are bounded for all . In such a case,
(gjk) = (Ajx)~! defines a Riemannian metric on R™, and if A, denotes its
Laplace operator, we have

(10.37) Lf = A f + X/,

for some smooth vector field X = )" &;(x) 9, such that D¥£; (x) is bounded for
|a| < 1. Note that if we use the inner product

(10.38) (f.8) = / f(x)g(x) dV(x),

where dV is the Riemannian volume element determined by the Riemannian

metric g, then this puts the same topology on L?(R™) as the inner product

If (x)@ dx. We prefer the inner product (10.38), since A is then self-adjoint.
Now consider the closed operator £, on L2(R™) defined by

(10.39) Lof =Lf onD(Ly) = H*(R™).

It follows from results on Chap. 6, §2, that £, generates a strongly continuous
semigroup e’“2 on L2(R™). To relate this semigroup to the semigroup P! = e’
on C,(R™) described above, we claim that

(10.40) e’ f = et f, for f € CR™).

To see this, let up(z, x) and u; (¢, x) denote the left and right sides, respectively.
These are both weak solutions to d;u; = Lu;, for which one has regularity re-
sults. Also, estimates discussed in §2 of Chap. 6 imply that ug(¢, x) vanishes as
|x| — o0, locally uniformly in ¢ € [0, co). Thus the maximum principle applies
to ug(t, x) —u; (¢, x), and we have (10.40). From here a simple limiting argument
yields

(10.41) 2 f = e f, for f e Co(R™) N L2(R™).

Now the dual semigroup (e’“2)* is a strongly continuous semigroup on
L?(R™), with infinitesimal generator £}, defined by

(10.42) Ly f =L"f onD(Lh) = H*(R™),
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where L' is given by (10.35). An argument parallel to that used to establish
(10.41) shows that

(1043)  (e"2)"f = o f = ! T f for f € C,(R™) N LA(R™).

On the other hand, (P")* = (e'%)* is a weak*-continuous semigroup of op-
erators on M(R™), the space of finite Borel measures on R™; it is not strongly
continuous. Using (10.43), we see that

(10.44) (/. eng) = (e’(Z_V)f, g). for f,g € C§°(R™),
and bringing in (10.40) we have
(1045) (ell:)*f — et(Z—V)f"

for f € C§°(R™), hence for f € Co(R™) N L' (R™). From here one can deduce
that (e'%)” preserves L' (R™) and acts as a strongly continuous semigroup on
this space.

Let us return to the family of measures P (s, x, ¢, -). Under our current hypothe-
ses, regularity results for parabolic PDE imply that, for s < ¢, there is a smooth
function p(s, x, ¢, y) such that

(10.46) P(s,x,t,U) =/p(s,x,t,y) dy.
U
‘We have
(10.47) ! f(x) = / FO) plsxty)ydy. s <1,
and
(10.48) (cpg)*f(y):/f(x) p(s.x.t,y)dx, s<t.

Furthermore, we have for p(s, x, ¢, y) the “backward” Kolmogorov equation
(10.49) ZA,k( ) Zb (x)—

and the Fokker-Planck equation

p &2 9
(10.50) == %: ay,-—ayk(A jk(y)p) 2,: —(bj (y)p).

3)’/
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While we have restricted attention to the smooth elliptic case for the last set
of results, it is also interesting to relax the regularity required on the coefficients
as much as possible, and to let the coefficients depend on ¢, and also to allow
degeneracy. See [FdIn] and [StV] for more on this. Exercise 5 below illustrates
the natural occurence of degenerate L.

We mention that, working with (10.32), we can obtain the solution to

du
M Lu. fort>0. x Q.
(10.51) o e tort =0 xe

u(t,x) =0, forx € 02, u(0,x)= f(x),

by considering a sequence V;, — oo on R™ \ €, as in the analysis in §3, when
2 is an open domain in R™, with smooth boundary, or at least with the regularity
property used in Proposition 3.3. In analogy with (3.8), we get

(10.52) u(t) = Eo(f (&5 () ¥g(**.0)),
where

(10.53) Vg(X* 1) =1 if %x([p,l]) C Q,
0 otherwise.

The proof can be carried out along the same lines as in the proof of
Proposition 3.3, provided £, (defined in (10.39)) is self-adjoint. Otherwise a
different approach is required. Also, when £, is self-adjoint, the analysis leading
to Proposition 3.5 extends to (10.51), for any open 2 C R™, with no boundary
regularity required. For other approaches to these matters, and also to the Dirich-
let problem for Lu = f on 2, in both the elliptic and degenerate cases, see
[Fdln] and [Fr].

We end this section with a look at a special case of (10.1), namely wheno = 1,
so we solve

t

(10.54) X*1t) =x+ o) + / b(X*(r)) dr.
0

Assume as before that b is bounded and uniformly Lipschitz. Then the analysis of
(10.6) done above implies

(10.55) AT f(x) = Eo f(X7(1)). X =) b;(x)0;.

On the other hand, in §7 we derived the formula

(10.56) A0 f(x) = Ex(f (0())e*?),
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where L |t
Z(t) = 5/0 b(w(s)) - do(s) — Z/o |b(a)(s))|2 ds.

We conclude that the right-hand sides of (10.55) and (10.56) coincide. We can
restate this identity as follows. Given x € R”, we have a map

(10.57) EY :PBo — Po, EX(w)() =X(1).
Then Wiener measure W, on By gives rise to a measure 5 Wy on Py, by
(10.58) EXWo(S) = Wo((EX)7(S)).

For example,if 0 <#; <--- <1y,

(10.59) / F(w(ll), .. ,a)(lk)) dEIWy = Ey F(.’{x(ll), ... ,f{x(lk)).
PBo

Thus the identity of (10.55) and (10.56) can be written as

(10.60) /f(w(t))dEiﬁWO:/f(a)(t))ez(’)dWx.
PBo PBo

This is a special case of the following result of Cameron-Martin and Girsanov:

Proposition 10.3. Given t € (0,00), Ei Wy
respect to Wy

}% is absolutely continuous with
t

i‘B , with Radon-Nikodym derivative
t

dEXW,
10.61 —2 2 = F0,
( ) aw, ¢

Note that by taking f, /1 in (10.56), we have Ex(eZ®) = 1, so the super-
martingale eZ® is actually a martingale in this case.

To prove the proposition, it suffices to show that, for 0 <t < --- < <,
and a sufficiently large class of continuous functions f;,

Eo( A(X* () fi(X* ()

(10.62)
= Ex(fi(o) -+ fi(0@)e*®).

We will get this by extending (10.55) and (10.56) to formulas for the solution

operators to time-dependent equations of the form

(10.63) g—? =(A+X)u—V(E,x)u, u)=f
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Only the coefficient V (¢, x) depends on ¢; X does not. Parallel to (2.16), we can
extend (10.55) to

(10.64) u(t) = Eo ( f(%x(,))e—fé V(s,x)C(s))ds),
and we can extend (10.56) to
(10.65) u(t) = Ex (ezm 1 (w()e™ V(s,w(s))ds) ‘

Now we can pick V(s, x) to be highly peaked, as a function of s, near s =
1, ..., in such a way as to get

(10.66) S Veoends  Vilew) | Vi (ew)

Thus having the identity of (10.64) and (10.65) for a sufficiently large class of
functions V(s, x) can be seen to yield (10.62). We leave the final details to the
reader.

For further material on the Cameron-Martin-Girsanov formula (10.61), see
[Fr], [Kal], [McK], and [@K].

Exercises
1. As an alternative derivation of (10.13), namely,

Eo(f (% (0)[Bs) = P/~ f(x).

via the Markov property, show that in light of the identity (10.5), it follows by applying
(41210 Eo(f (X% (¢ = 5, 95) |Bs ).
2. Under the hypotheses of Proposition 10.1, show that, for A > 0,

Eo(ewexm—x\) < 28212S2t+ABt.

(Hint: If Z(t) denotes the last integral in (10.1), use (8.23) to estimate the quantity
Eo(e*Z®).) Using this estimate in place of (10.10), get as strong a bound as you can
on the behavior of P? f(x), for fixed r € Rt as |x| — oo, given f € Co(R"), that is,
f continuous with compact support. _

3. Granted the hypotheses under which the identity (e’ L)* = ¢'©=Y) on the space
Co(R™) N L1(R™) was established in (10.45), show that if P (¢) denotes (e 5)* re-
stricted to L (R™), then P(1) = P (1)* : L®(R™) — L% (R™) is given by the same
formula as (10.6):

P f(x) = Eo f(X*(1)). f€L®®R™).

Show that
P(s,x,t,U) =Pt —s)xu (x).
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4. Assume A(x) is real-valued, A € C2(R™), and A(x) > 0 for all x. Show that

2A(x) }
VA

VAP = 44(x) sup {ID2AM)] < |x = y] <

Use this to show that /A(x) is uniformly Lipschitz on R™, establishing the scalar case
of Proposition 10.2. (Hint: Reduce to the case m = 1; show that if 4’(c) > 0, then A’
must change by at least A’(c)/2 on an interval of length < 24(c)/A’(c), to prevent A
from changing sign. Use the mean-value theorem to deduce |A” (¢)| > |4’ (c)|?/4A(c)
for some ¢ in this interval.) For the general case of Proposition 10.2, see [FdIn], p. 189.

5. Suppose (10.1) is the system arising in Exercise 4 of §9, for X = (x, v). Show that the
generator L for P! is given by

2

(10.67) L= 337 —[Bv+ V’(x)]% + v%.

6. Using methods produced in Chap. 8, §6, to derive Mehler’s formula, compute the inte-
gral kernel for e'L when L is given by (10.67), with V(x) = ax?2.
Remark: This integral kernel is smooth for t > 0, reflecting the hypoellipticity of d; — L.
This is a special case of a general phenomenon analyzed in [Ho]. A discussion of this
work can also be found in Chap. 15 of [T3].

A. The Trotter product formula

It is often of use to analyze the solution operator to an evolution equation of the
form 3

o _ Au+ Bu

ot
in terms of the solution operators e’4 and e’8, which individually might have
fairly simple behavior. The case where A is the Laplace operator and B is multi-
plication by a function is used in §2 to establish the Feynman—Kac formula, as a
consequence of Proposition A.4 below.

The following result, known as the Trotter product formula, was established

in [Tro].

Theorem A.1. Let A and B generate contraction semigroups e and e'B, on a
Banach space X. If A + B is the generator of a contraction semigroup R(t), then

(A.1) Rt f = nli)néo(e(t/n)A e(z/n)B)nﬁ

forall f € X.

Here, A 4+ B denotes the closure of A+ B. A simplified proof in the case where
A + B itself is the generator of R(¢) is given in an appendix to [Nel2]. We will
give that proof.
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Proposition A.2. Assume that A, B, and A+ B generate contraction semigroups
P(t), O(t), and R(t) on X, respectively, where D(A+ B) = D(A) ND(B). Then
(A.1) holds forall f € X.

Proof. It suffices to prove (A.1) for f € D = D(A+ B). In such a case, we have
(A2) P(MQ) f — f =h(A+ B)f +o(h),

since P(h)Q(h) f—f = (P(h) f = f)+ P(h)(Q(h) f = f). Also, R(h) f — f =
h(A+ B)+o(h), so

PO f —RM) f =o(h)in X, for f €D.

Since A + B is a closed operator, D is a Banach space in the norm || f|p =
I(A+ B)f| + || f|l. Foreach f € D, h=*(P(h)Q(h) — R(h)) f is a bounded
setin X . By the uniform boundedness principle, there is a constant C such that

%”P(h)Q(h)f —RMf| =Clflp.

forall h > 0 and f € D. In other words, {A~(P(h)Q(h) — R(h)) : h > 0} is
bounded in £L(D, X), and the family tends strongly to 0 as # — 0. Consequently,

HIPGYOM |~ Ry f| —0

uniformly for f is a compact subset of D.
Now, with ¢ > 0 fixed, for any f € D, {R(s)f : 0 < s < t} is a compact
subset of D, so

(A.3) [(P()Q(h) — R(M)R(s) f | = o(h).

uniformly for 0 < s < t. Set h = t/n. We need to show that (P(h)Q(h))nf —
R(hn)f — 0, as n — oo. Indeed, adding and subtracting terms of the form
(P(h)Q(h))! R(hn — hj), and using || P(h) Q(h)|| < 1, we have

|(P(YQ®)" f — R(an) [ |
< [(P(H Q) = R(W) Rk = 1)) f |
+ (PO — RUD)R((n ~2)) / |
+ o+ (PO - RM)) £ |-

(A4)

This is a sum of n terms that are uniformly o(z/n), by (A.3), so the proof is done.

Note that the proof of Proposition A.2 used the contractivity of P(¢) and of
Q(t), but not that of R(¢). On the other hand, the contractivity of R(¢) follows
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from (A.1). Furthermore, the hypothesis that P(¢) and Q(¢) are contraction semi-
groups can be generalized to ||P(¢)|| < %, ||Q()| < e?*.IfC = A+ B
generates a semigroup R(t), we conclude that | R(z)|| < e@*?)",

We also note that only certain properties of S(h) = P(h)Q (h) play a role in
the proof of Proposition A.2. We use

(A.5) Sth)f —f=hCf +o(h), feD=DC),
where C is the generator of the semigroup R(h), to get
(A.6) Sh)f—RMh)f =o(h), feD.

As above, we have h=1||S(h) f — R(h) f|| < C|| f|lp in this case, and conse-
quently A7Y||S(h) f — R(h) f|| — O uniformly for f in a compact subset of D,
such as {R(s) f : 0 < s < t}. Thus we have analogues of (A.3) and (A.4), with
P(h)Q(h) everywhere replaced by S (%), proving the following.

Proposition A.3. Let S(t) be a strongly continuous, operator-valued function of
t € [0,00), such that the strong derivative S'(0) f = Cf exists, for f € D =
D(C), where C generates a semigroup on a Banach space X. Assume ||S(t)| < 1
or, more generally, ||S(t)|| < e°’. Then, forall f € X,

(A7) e = lim S f

This result was established in [Chf], in the more general case where S’(0) has
closure C, generating a semigroup.

Proposition A.2 applies to the following important family of examples. Let
X = LPR"), 1 < p < oo, orlet X = C,(R"), the space of continuous
functions vanishing at infinity. Let A = A, the Laplace operator, and B = — My,
that is, Bf (x) = —V(x) f(x). If V is bounded and continuous on R”, then B is
bounded on X, so A —V, with domain D(A), generates a semigroup, as shown in
Proposition 9.12 of Appendix A. Thus Proposition A.2 applies, and we have the
following:

Proposition A4. If X = LP(R"), 1 < p < oo, or X = C,(R"), and if V is
bounded and continuous on R”", then, for all f € X,

(AS) el(A—V)f = lim (e(t/n)Ae—(l/n)V)nf:

n—oo

This is the result used in §2. If X = LP(R"), p < oo, we can in fact take
V e L*°(R"). See the exercises for other extensions of this proposition.

It will be useful to extend Proposition A.2 to solution operators for time-
dependent evolution equations:

(A.9) g—’: = Au+ B(t)u, u(0)= f.
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We will restrict attention to the special case that A generates a contraction
semigroup and B(t) is a continuous family of bounded operators on a Banach
space X . The solution operator S(z, s) to (A.9), satisfying S(z, s)u(s) = u(t), can
be constructed via the integral equation

t
(A.10) u(t)y = f + / DB (s)u(s) ds,

0
parallel to the proof of Proposition 9.12 in Appendix A on functional analysis. We

have the following result.

Proposition A.5. If A generates a contraction semigroup and B(t) is a continu-
ous family of bounded operators on X, then the solution operator to (A.9) satisfies

A1) 5(,0)f = lim (ea/n)A e(r/n)B((n—l)z/n)) . (ea/n)A e(r/n)B(O))ﬁ

foreach f € X.

There are n factors in parentheses on the right side of (A.11), the jth from the
right being e /M4 t/mBW(=11t/n)

The proof has two parts. First, in close parallel to the derivation of (A.4), we
have, for any f € D(A), that the difference between the right side of (A.11) and

(A.12) et/MA+B((n=1)t/n)) e(t/n)(A+B(0))f

has norm < n - o(1/n), tending to zero as n — oo, for ¢ in any bounded interval
[0, T']. Second, we must compare (A.12) with S(¢, 0) f. Now, for any fixed ¢ > 0,
define v(s) on 0 < s < ¢ by

9 1 1 :
a3 L s+ B(J Z)v, I = i<s<Le w0y = £
as n n n

Thus (A.12) is equal to v(z). Now we can write

(A.14) g—: = Av + B(s)v + R(s)v, v(0) = f,

where, for n large enough, | R(s)|| < &, for 0 < s <. Thus

(A.15) v(t) = St,0)f + /t S(t,s)R(s)v(s) ds,
0

and the last term in (A.15) is small. This establishes (A.11).
Thus we have the following extension of Proposition A.4. Denote by BC(R")
the space of bounded, continuous functions on R”, with the sup norm.
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Proposition A.6. If X = LP(R"), 1 < p < o0, or X = C,(R"), and if V(t)
belongs to C ([0, ), BC(]R")), then the solution operator S(t,0) to

(3—1: =Au—V(t)u

satisfies
(A.16) S(1,0)f = lim (e(t/n)Ae—(z/n)V((n—l)z/n)),,,(e(z/n)Ae—(t/n)V(O))ﬁ
n—oo

forall f € X.

To end this appendix, we give an alternative proof of the Trotter product for-
mula when Au = Au and Bu(x) = V(x)u(x), which, while valid for a more
restricted class of functions V(x) than the proof of Proposition A.4, has some

k
desirable features. Here, we define vy = (e(l/")Ae_(l/”)V) Jf and set
1

k
(A.17) v(t) = e BV, fort =—+5 0<s<—.
n

S

We use Duhamel’s principle to compare v(¢) with u(f) = e'®~") f. Note that
v(t) > vgq4rast S (k+1)/n,andfork/n <t < (k +1)/n,

0
o Av—et VeV v
(A.18) ot

=(A=V)v+[V,e2e™ .

Thus, by Duhamel’s principle,

t
(A.19) v(it) =AMy / eU=IANIR(s) ds,
0
where
oAy, —oV k 1
(A.20) R(s) = [V,e%%]e v, fors = - +0,0<0< .

We can write [V, e?2] = [V, e®® — 1], and hence
(A2D) R(s) = V(e = De™ v = (7% = Ve vy
Now, as long as

(A.22) D(A —V) = D(A) = H?(R"),
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we have, for0 <y <1,
(A-V) _ A=) -
(A23) et | cc=2v 12y = ¢ | cz2. 20y = C(DTY,
for0 < ¢t < T. Thus, if we take y € (0, 1) and ¢ € (0, T'], we have for
t
(A.24) F(t) = / eUATVIR(s) ds,
0
the estimate
t
(A25) 1FOl =€ [ =57 IRO)g-2» ds
0
We can estimate || R(s)|| z—2» using (A.21), together with the estimate
A
(A.26) |e°® =1 s og2y=Co¥, O0<y=1.
Since o € [0, 1/n] in (A.21), we have

IR g—2v = Cn™"o(V)| f 2.

(A.27)
p(V) = (”VHL(HZV) + ||V||Loo)eS”V”L°°,

Thus, estimating v(¢) = u(t) att = 1, we have

(A.28) H (ea/nme—a/n)v)"f_e(A_V)f‘

L2 = G fllgz - n77,

for 0 < y < 1, provided multiplication by V is a bounded operator on H?” (R").
Note that this holds if D*V € L*°(R") for |«| < 2, and

(A.29) IVllgz2ry < C sup [[D*V]pee.

lo|<2

One can similarly establish the estimate

A30)  |(etmaemtmVy' @ pll < CoppVIf 2 n

Exercises

1. Looking at Exercises 2—4 of §2, Chap. 8, extend Proposition A.4 to any V/, continuous
on R”, such that Re V(x) is bounded from below and |Im V(x)| is bounded.
(Hint: First apply those exercises directly to the case where V' is smooth, real-valued,
and bounded from below.)
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2. Let H = L2(R), Af =df/dx, Bf =ixf(x),s0e'df(x) = f(x+1), e'B f(x) =
€' f(x). Show that Theorem A.1 applies to this case, but not Proposition A.2. Com-
pute both sides of

ePA+IB ¢ — nli)moo(e(p/n)Ae(q/n)B)”ﬁ

and verify this identity directly.

Compare with the discussion of the Heisenberg group, in §14 of Chap. 7.
3. Suppose A and B are bounded operators. Show that

t(A+B) _ (,(t/mA @/mByn| - Ct
e (e %e )l =~

and that
||et(A+B) _(e(t/2n)Ae(t/n)Be(t/2n)A)"” < %
n

(Hint: Use the power series expansions for e®/MA and so forth.)

References

[Az] R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France
102(1974), 193-240
[B] D. Bell, The Malliavin Calculus, Longman, Essex, 1987
[BG] R. Blumenthal and R. Getoor, Markov Processes and Potential Theory, Academic,
New York, 1968
[CM] R.Cameron and W. Martin, Evaluation of various Wiener integrals by use of certain
Sturm-Liouville differential equations, Bull. AMS 51(1945), 73-90
[Chf] P. Chernoff, Note on product formulas for operator semigroups, J. Func. Anal.
2(1968), 238-242
[CW] K. Chung and R. Williams, Introduction to Stochastic Integration, Birkhauser,
Boston, 1990
[Db1] J. Doob, The Brownian movements and stochastic equations, Ann. Math. 43(1942),
351-369
[Db2] J. Doob, Stochastic Processes, Wiley, New York, 1953
[Db3] J. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer,
New York, 1984
[DS] N. Dunford and J. Schwartz, Linear Operators, Wiley, New York, 1958
[Dur] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, Belmont,
CL, 1984
[Ein] A. Einstein, Investigations on the Theory of the Brownian Movement, Dover,
New York, 1956
[El] K. Elworthy, Stochastic Differential Equations on Manifolds, LMS Lecture Notes
#70, Cambridge University Press, Cambridge, 1982
[Em] M. Emery, Stochastic Calculus in Manifolds, Springer, New York, 1989
[FdIln] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton
University Press, Princeton, NJ, 1985
[Fr] A. Friedman, Stochastic Differential Equations and Applications, Vols. 1 & 2,
Academic, New York, 1975



[HP]
[Ho]
[TkW]

[Ito]
[IMc]

[Kac]

[Kal]
[KS]

[K]
[Kol]

[Lam]
[Lev]
[Mal]

[McK]

[Mey]
[Nel]

[Nel2]

[Nel3]

[@k]
[Par]

[Pet]
[PS]
[RaT]
[RS]
[Sch]
[Si]
[Stk]
[Stk2]

[StV]

References 455

E. Hille and R. Phillips, Functional Analysis and Semi-groups, Colloq. Publ. AMS,
Providence, RI, 1957

L. Hormander, Hypoelliptic second order differential equations, Acta Math. 119
(1967), 147-171

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Pro-
cesses, North Holland, Amsterdam, 1981

K. Ito, On Stochastic Differential Equations, Memoirs AMS #4, 1951

K. Ito and H. McKean, Diffusion Processes and Their Sample Paths, Springer,
New York, 1974

M. Kac, Probability and Related Topics in Physical Sciences, Wiley, New York,
1959

G. Kallianpur, Stochastic Filtering Theory, Springer, New York, 1980

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer,
New York, 1988

T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966

A. Kolmogorov, Uber die analytishen Methoden in Wahrscheinlichkeitsrechnung,
Math. Ann. 104(1931), 415-458

J. Lamperti, Stochastic Processes, Springer, New York, 1977

P. Lévy, Random functions, Univ. of Calif. Publ. in Statistics 1(12)(1953), 331-388
P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, Proc.
Intern. Symp. SDE, Kyoto (1976), 195-263

H. McKean, Stochastic Integrals, Academic, New York, 1969

P. Meyer, Probability and Potentials, Blaisdell, Waltham, MA, 1966

E. Nelson, Operator Differential Equations, Graduate Lecture Notes, Princeton
University, Princeton, NJ, 1965

E. Nelson, Feynman integrals and the Schrodinger equation, J. Math. Phys.
5(1964), 332-343

E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press,
Princeton, NJ, 1967

B. @ksendal, Stochastic Differential Equations, Springer, New York, 1989

E. Pardoux, Stochastic partial differential equations, a review, Bull. des Sciences
Math. 117(1993), 2947

K. Petersen, Brownian Motion, Hardy Spaces, and Bounded Mean Oscillation,
LMS Lecture Notes #28, Cambridge University Press, Cambridge, 1977

S. Port and C. Stone, Brownian Motion and Classical Potential Theory, Academic,
New York, 1979

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed do-
mains, J. Func. Anal. 18(1975), 27-59

M. Reed and B. Simon, Methods of Mathematical Physics, Academic, New York,
Vols. 1,2, 1975; Vols. 3,4, 1978

Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley,
New York, 1980

B. Simon, Functional Integration and Quantum Physics, Academic, New York,
1979

D. Stroock, The Kac approach to potential theory I, J. Math. Mech. 16(1967),
829-852

D. Stroock, The Malliavin calculus, a functional analytic approach, J. Func. Anal.
44(1981), 212-257

D. Stroock and S. Varadhan, Multidimensional Diffusion Processes, Springer,
New York, 1979



456 11. Brownian Motion and Potential Theory

[T]
[T2]
(T3]

[Tro]

[Ts]
[UO]

[Wal]

[Wie]
[Yo]

M. Taylor, Scattering length and perturbations of —A by positive potentials,
J. Math. Anal. Appl. 53(1976), 291-312

M. Taylor, Estimate on the fundamental frequency of a drum, Duke Math. J.
46(1979), 447-453

M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ,
1981

H. Trotter, On the product of semigroups of operators, Proc. AMS 10(1959),
545-551

M. Tsuji, Potential Theory and Modern Function Theory, Chelsea, New York, 1975
G. Uhlenbeck and L. Ornstein, On the theory of Brownian motion, Phys. Rev.
36(1930), 823-841

J. Walsch, An introduction to stochastic partial differential equations, pp. 265-439
in Ecole d’été de Probabilité de Saint-Fleur XIV, LNM #1180, Springer, New York,
1986

N. Wiener, Differential space, J. Math. Phys. 2(1923), 131-174

K. Yosida, Functional Analysis, Springer, New York, 1965



12

The 9-Neumann Problem

Introduction

Here we study a boundary problem arising in the theory of functions of several
complex variables. A function u on an open domain 2 C C” is holomorphic if
du = 0, where

(0.1) ou=Yy" ;T” dz;,

with dz; = dx; —idy; and

0.2) du 1 [/ Ou n Ju
. — ==-l—+i—]).
8Z,~ 2 an 8yj

In the study of complex function theory on €2, one is led to consider the equation
(0.3) u=f

with f = > f; dz;. More generally, one studies (0.3) as an equation for a (0, ¢)-
form u, given a (0, g + 1)-form f'; definitions of these terms are given in §1. One
is led to a study of a boundary problem for the second-order operator

0.4) O0=290 +9 0,

the d-Neumann boundary problem, which will also be specified in §1. While the
operator [ is elliptic, the boundary condition does not satisfy the regularity con-
dition dealt with in Chap. 5. The solution to this boundary problem by J. J. Kohn
[K1] thus marked an important milestone in the theory of linear PDE, as well as a
significant advance in complex function theory.

The way that (0.3) leads to the 9-Neumann problem is somewhat parallel to
the way the deRham complex leads to the boundary problems for the Hodge

M.E. Taylor, Partial Differential Equations I1: Qualitative Studies of Linear Equations, 457
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_6,
© Springer Science+Business Media, LLC 1996, 2011
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Laplacian discussed in §9 of Chap.5. Appendix A to this chapter puts the deR-
ham complex in a general context. Though appendices to chapters in this book are
almost always put at the end of their chapters, we put this one at the beginning,
since its role is to link the previous material on the Hodge Laplacian, particularly
with absolute boundary conditions, to the material of this chapter.

In §1 we introduce the d complex and the d-Neumann problem, and show that
it is not regular. §§2—4 are devoted to establishing replacements for the regular
elliptic estimates established in Chap. 5, for (0, 1)-forms, under a “geometrical”
hypothesis on €2, namely that it be “strongly pseudoconvex.” This notion is de-
fined in §2, in the course of establishing an estimate of C. B. Morrey. In §3 we
show how this leads to a “1/2-estimate,” to wit, an estimate of the form

(0.5) Qu.u) > Cllull% .

in a situation where a regular elliptic boundary problem would yield an estimate
on ||u||§{l . We then define the Friedrichs extension £ of [J, and show that it has
compact resolvent. In §4 we produce higher-order a priori estimates, of the form

0.6) lull g+ < CllLull g,

assuming u € D(L) is smooth on Q. In §5 we establish the associated regularity
theorem, that £~' : H¥(Q, A%") — H*¥T1(Q, A%"). Following [KN], we use
the method of elliptic regularization to accomplish this.

In §6 we apply the results established in §§2-5 to solve (0.3), when f is a
(0, 1)-form satisfying Fl f = 0 and smooth on  (assumed to be strongly pseu-
doconvex). We obtain a solution # € C° () under these hypotheses. As a
consequence, we show that such €2 is a “domain of holomorphy”; that is, there ex-
ist holomorphic functions on €2 that cannot be extended beyond any point of 9€2.

In §7 we derive a formula for the orthogonal projection B of L?(2) onto the
subspace H(£2) of L2-holomorphic functions on €, in terms of £~! acting on
(0, 1)-forms, and we establish some consequences. We consider Toeplitz opera-
tors, of the form Ty = BM ¢, on H(R2), for f € C(Q). We show that Ty is

Fredholm if f ) is invertible, and we briefly discuss the problem of computing

the index of Tf; this index problem is related to index problems considered in
Chap. 10.

In §§2-6 we concentrate on (0, 1)-forms, making use of this theory to study
(0, 0)-forms in §7. In §8 we study the d-Neumann problem on (0, ¢)-forms for
general ¢ > 1. The main point is to extend Morrey’s inequality. Once this is done,
it is routine to extend the arguments of §§3—6. We also have in §8 an extension of
results of §7 regarding the compactness of commutators of Mz, for f € C (Q),
with certain projections, namely the orthogonal projections onto the positive, neg-

= %
ative, and zero spectral subspaces of the relevant closed extension of d + d on
®q>0 L*(, A%9).
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In §9 we discuss a method that provides an alternative to the sort of energy
estimates done in §§2—5, namely reduction of the problem to an equation on the
boundary, of the form

(0.7) Ofg=f.

where OV is a first-order pseudodifferential operator on d$2. The operator OO
is not elliptic; its principal symbol is > 0 and vanishes to second order on a ray
bundle over d€2. We show that this operator is hypoelliptic when € is strongly
pseudoconvex. In fact, we do this via energy estimates that are not completely
different from those arising in earlier sections, though alternative approaches to
the analysis of (0" are mentioned. B

Up through §9, our attention is confined to the d-complex on domains in C”.
In §10 we analyze the 5-c0mplex on a strongly pseudoconvex, complex manifold;
in fact, we consider manifolds with an almost complex structure, satisfying an
integrability condition, that can be stated as

(0.8) 3 =o.

By doing the estimates in this context, one is able to prove the Newlander—
Nirenberg theorem, that an integrable, almost complex structure actually is a
complex structure, admitting local holomorphic coordinates. (In fact, all this was
done by Kohn in [K1].)

At the end of this chapter are two additional appendices. Appendix B gives
some complementary results on the Levi form, introduced in §2 in the course of
deriving Morrey’s inequality and defining strong pseudoconvexity. Appendix C
derives a result on the Neumann operator N for the Dirichlet problem (for the
Laplace operator), useful for the analysis in §9. Namely, we specify the principal
symbol of N' + /—Ax € OPS°(3R2), where Ay is the Laplace operator on
X = 9%, in terms of the second fundamental form of Q2 — €.

Other methods have been applied to the 5-complex. We mention particularly
the method of weighted L?-estimates, such as done in [AV, Hol], and [Ho3].
These methods also apply directly to general pseudoconvex domains (i.e., one
can omit the “strong”), though they ignore detailed boundary behavior. Another
approach to the d-equation is given in [EMM]. There has also been considerable
work on the 3-Neumann problem on various classes of weakly pseudoconvex do-
mains, including particularly [Cat, Chr, FeK, K2], and [NRSW].

There is a very different approach to the d-equation, making use of explicit
integral kernels; see the survey article of [Kh], or [HP1].

As another offshoot of the study of the d-complex, we mention the study of
“CR manifolds” (of which the boundary of a complex domain is the simplest
example); surveys of this are given in [Bog] and [Tai]. Also, there are studies of
general overdetermined systems; see [Sp] for a survey.
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A. Elliptic complexes
We give a brief discussion of a setting in which the study of boundary problems

for the Hodge Laplacian in §9 of Chap. 5 can be included. The Hodge Laplacian
arises from the deRham complex, a sequence of maps

(A.1) o LA AR 4

where d is the exterior derivative. Key properties are that > = 0 and that the
symbol sequence is exact, for each nonzero & € T)}:

(A2) B SN N Sy L S
This implies that d*d + dd* is elliptic.

More generally, consider a sequence of first-order differential operators be-
tween sections of vector bundles F; — ‘M. For notational simplicity, we will use
script (e.g., ;) to denote spaces of smooth sections of various vector bundles.
Suppose we have maps

(A.3) O Fr — Fry1, 02 =0.

Suppose the symbol sequence is exact; we are said to have an elliptic complex.
Set

(A4) EOZ@FZjv EIZ@F2j+1s E =E)® E;,
J J

so we also have spaces of sections, &, £1, and £. Using metrics on F; and M to
define 0* : F, — Fi_1, we have

(A.5) Do:& —&. Di:&E— &, Dj=90+9",
and we fit these together to form D : £ — &. Since 92 = 0, we have
(A.6) D*D = D? = 99* + 9% : Fr — Fr.

Now the general Green formula implies
(A7) (D*Du,v) = (Du, Dv) + B(u,v),

with boundary term

1
a8)  pv) =7 [ (o0, () Dot vo) + (05 er.v) Drr. w1} .
oM
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where we write u € £ asu = up + u1, u; € £;. For the sake of definiteness, let
us take

(A.9) ueF,, veF,

for a fixed £. Then

puv) = [{0+ 90049000 as
oM

= l /[(ﬁu, o9 (x,V)v) + (0 u, o9« (x, v)v)] ds.

l
oM

(A.10)

We rewrite this in two different ways, parallel to (9.1) and (9.2) of Chap.5,
respectively, namely

(A.11) Bu,v) = zl /[(z‘}u,ag(x, V)v) + (og(x,v)*u, v)] ds
oM

and

(A.12) Blu, v) = ll /[(019*(x,v)19u,v) +(9*u, ag*(x,v)v)]dS.
oM

Thus there arise two boundary problems for D*D on Fy, the generalization of
the “relative” boundary condition (9.4):

(A.13) op(x,V)u=0, oy(x,v)"u=0o0ndM,
and the generalization of the “absolute” boundary condition (9.5) of Chap. 5:
(A.14) ogx(x,V)u =10, og«(x,v)0u = 0onIM.

In each case we have f(u,v) = 0 provided u and v satisfy the boundary condi-
tion. We remark that the “absolute” boundary condition (A.14) is often called the
“abstract Neumann boundary condition.”

Define Sobolev spaces Hbj (M, Fy) in analogy with (9.11) of Chap.5, with
b = R or A; namely, u € H'(M, Fy) belongs to H,} (M, Fy) if and only if the
zero-order boundary condition in (A.13) (for b = R) or (A.14) (for b = A) is
satisfied, and u € H?(M, F;) belongs to Hb2 (M, Fy) if and only if both boundary
conditions, in either (A.13) or (A.14), are satisfied.
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Lemma A.1. Given u € Hb1 (M, Fy) and D*Du € L*(M, Fy), then B(u,v) =0
forall v € Hb1 (M, Fy) if and only if all the appropriate boundary data for u
vanish (e.g., o9 (x,v)0*u = 00n OM, in case b = R).

Proof. We need to establish the “only if” part. Take the case b = R. To start
the argument, pick o € C°°<ﬁ, Hom(Fy_q, Fg)) such that o0 (x) = oy (x,v) for

x € dM. Then, for any w € Fy_1, we have v = ow € HIIQ(M, Fy), and hence,
forany u € Hy(M, Fy),

B(u.v)

%/<o,9(x,v)l9*u,00(x,‘))w> ds

oM

% /(019 (x,v)*o9 (x, v)(z?*u), w> ds.

oM

(A.15)

This vanishes for all w € Fy_1 if and only if o9 (x, v)*oy (x, v) (9 *u) = Oon OM,
which in turn occurs if and only if o (x, v)(#*u) = 0 on M. This establishes
the lemma for b = R; the case b = A is similar.

Of course, the method of proof of the existence and regularity results in
Propositions 9.4-9.7 of Chap.5, via Lemma 9.2, does not extend to this more
general situation. It is conceivable that one of the boundary conditions, (A.13) or
(A.14), for L = D* D, could be regular for all £, for some £, or for no £. Since
L is strongly elliptic, Proposition 11.13 of Chap. 5 can be used to examine regu-
larity. We will now investigate consequences of the hypothesis that one of these
boundary conditions is regular, for L acting on sections of Fy. We will call this
hypothesis Reg(¥, £, b), with b = R or A.

Let us define the unbounded operator Dy on L2(M, Fy) — L?*(M,E) to
be the closure of D acting on Hb1 (M, Fy¢). Let Dy, denote the Hilbert space
adjoint of Dy, an unbounded operator on L?(M, E). Then £ = Dy, Dyp is
an unbounded, self-adjoint operator on L?(M, Fy), with dense domain D(L).
Since for all u € D(L), v € Hbl(M, Fy), we have (Lu,v) = (Du, Dv), tak-
ing v € Fy compactly supported in the interior M implies Lu = D*Du in
D’'(M). Hence u has well-defined boundary data, in (A.13) or (A.14), and, by
Lemma A.1, the appropriate boundary data vanish. Therefore, the regularity re-
sult of Proposition 11.14 in Chap. 5 is applicable; we have D(L) C Hb2 (M, Fyp),
under the hypothesis Reg(¥, £, b). The reverse inclusion is easy. If we define £
tobe D*D on Hb2 (M, Fy), it follows that L is a symmetric extension of £, but
a self-adjoint operator cannot have a proper symmetric extension. Thus

D(L) = H (M, Fy),



A. Elliptic complexes 463
granted the hypothesis Reg(19, £, b). We restate this as follows:

Proposition A.2. Under the hypothesis Reg(, £, b), the operator L defined by
(A.16) D(L) = HZ (M, F;), Lu= D*DuonD(L)

is self-adjoint.

It follows then from Reg(¥, £, b) that Ker L is a finite-dimensional subspace
of Fy; call it Hf. Parallel to (9.38) of Chap. 5, we have

(A.17) ueM) < ue HNM, F) and du = 9*u = 0.

Denote by P}f’ the orthogonal projection of L?(M, F;) onto H? . As in (9.38)-
(9.39) of Chap. 5, we have continuous maps

(A.18) G®: L*(M, F;) — HZ(M, F))

such that G® annihilates Hf and inverts L on the orthogonal complement of Hf ,
SO

(A.19) LGbu = (I — PPyu, forue L*(M, Fy)

and, by elliptic regularity, G® : H/(M, F;) — H’*2(M, F;). The following
result generalizes Proposition 9.8 of Chap. 5.

Proposition A.3. Granted Reg(9, L, b), then given u € H/ (M, F;), j > 0, we
have

(A.20) u=99*G + 0*9G u + Pbu = Pou+ Phou+ Phu.

The three terms on the right side are mutually orthogonal in L>(M, Fy). Further-
more,

Pt PL. PP H/(M,F) — H/ (M, F).

Proof. Only the orthogonality remains to be checked. As in the proof of
Proposition 9.8 of Chap. 5, we use

(A21) (Pu,v) = (. 9*v) + y(u.v),
for sections u of Fj_1 and v of F;, with
1 1
(A.22) y(u,v) = - /(o,;(x,v)u,v) ds = - /(u,ag*(x,v)v) ds.
i i
oM oM

Note that y(u, v) = 0 if eitheru € H5(M, F;_1) or v € H}(M, F;). In particu-
lar, we see that
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(A.23) ue Hy(M, Fj—1) = du L ker9* N H'(M, F;),
(A.24) ve HY(M, Fj) = 9*v L kerd N H'(M, F;_,).

From the definitions, we have

O*: H3(M,F;) — Hp(M, Fj_y),

(A.25) 5 )

U Hy(M, Fj) — HyM, Fjy1),
SO
(A.26) SO H3(M, Fy) L ker 9* N H' (M, Fy)
and
(A.27) S*OHZ(M, Fy) L ker 9 N H'(M, Fy).

Now (A.26) and (A.27) imply, respectively, for the ranges,
(A28) R(PH) LR(PE)+R(PR) and R(PZL) L R(PS) + R(PH).

Now, if u € Hf and v = ¥GRw, then y(u,v) = 0, so (u, ¥*v) = (Yu,v) =
0. Similarly, if v € Hz‘ and u = 9*G4w, then y(u,v) = 0, so (Yu,v) =
(u, #*v) = 0. Thus

(A.29) R(PE) L R(PF) and R(PS) L R(P).

The proof is complete.

Even though the proof of Proposition A.3 is perfectly parallel to that of
Proposition9.11 of Chap. 5, we have included the details, as they will be needed
for an argument below that is not parallel to one of §9 in Chap. 5.

The application made to relative cohomology in (9.51)—(9.55) of Chap. 5 does
not have a straightforward extension to the general setting. The natural general-
ization of C°(M, A¥) in (9.51) is

(A.30) ]—',f = {u € Fr :09(x,v)u=0o0n 8M},
but in contrast to (9.52), we cannot expect in general to have
(A31) 9 FR— FE

Of course, we do have § : Fy — Fi41. We can define &k c Ck ¢ Fy asthe
image and kernel of 9, respectively, and then we have cohomology groups

(A.32) HE () = Ck/ex.
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The argument in Proposition 9.11 of Chap. 5, relating H* (M) to the space Hl‘f of
harmonic forms, used a homotopy argument, which has no analogue in the general
case. However, another approach works, to give the following:

Proposition A.4. Under the hypothesis Reg(9,{, A), there is a natural isomor-
phism

(A.33) HE ~ HE (D).

Proof. Let u € Fy, du = 0. Use the orthogonal decomposition (A.20), with
b = A, to write u = Pé“u + Plf,‘l*u + P};“u. Now (A.27) implies Plf,‘l*u =0, so
u = ¥(*GAu) + P}f u, hence every u € C® is cohomologous to an element of
H?. Thus the natural homomorphism arising from Hf c ct,

@ HE — HY),

is surjective. The proof that & is injective is parallel to the argument used in
Proposition9.11 of Chap.5. If v € Hg‘ and v = du, u € Fy_q, then y(u,v) =0,
so (v,v) = (Pu,v) = (u,9*v) = 0. Hence £ is injective, and the proof is
complete.

With this sketch of elliptic complexes done, it is time to deliver the bad news.
The regularity hypothesis is rarely satisfied, other than for the deRham complex.
The most fundamental complex that arises next is the d-complex, for which the
regularity hypothesis does not hold. However, for a certain class of domains M,
one has “subelliptic estimates,” from which useful variants of Propositions A.3
and A.4 follow. We will explore this in the rest of this chapter.

1. The d-complex

To begin, let us assume €2 is an open subset of C”. Standard complex coordinates
on C" are (z1,...,2,), with z; = x; 4+ iy;. We identify C" ~ R2" with coor-
dinates (X1,...,Xn, ¥1,.-.,¥Yn). A (p,g)-form on Q2 is by definition a section of
C ® APTIT*Q of the form

(1.1) u=Y ug, ) d rdz.
By

where

(1.2) d?f =dzg N---ndzg,, dT =dZ, A AdZy,,
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with
(1.3) dzj =dxj+idy;, dz; =dx;—idy;.

We impose the same anticommutation relations on wedge products as before, so

(1.4)
dzjndzy = —dzeNdz;, dZjndzy = —dzendZ;, dzjndzy = —dzendz;.

If the coefficients ug, in (1.1) belong to C*°(2), we write u € AP9(Q); if they
belong to C®(Q), we write u € AP(Q). There is a differential operator

(1.5) 3: AP1(Q) — APITH(Q)

defined by

— ugy, _ ~
=73 az,-y dz; nd nd7
By,j
=7 )" ugy df ndz; nd7
3z, / '

(1.6)

B.v.j

Here, we define 9/0z; by

av 1/ dv av
1.7 I ;
(1.7) 0z 2(ax,~ +’ay,-)’

so that a complex-valued function v € C°(L2) is holomorphic if and only if
d/dz; = 0, 1 < j < n. Equivalently, v € A%%(Q) is holomorphic if and
only if v = 0. The operator 9 has some properties in common with the exterior
derivative d . For example, just as d? = 0, we have

(1.8) =0,
by virtue of the identity d%ug, /9zx9z; = 9*up, /dzZ, 0z and the relation dZ; A
dzx = —dzx A dz;. Thus we have, for each p, a complex:
0 Ara@y S Arati gy L
(1.9) o> API(Q) > APITH(Q) > .-

As in (A.6), we form the second-order operator

(1.10) O=1030 +0 0:AP4(Q) — AP4(Q).
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When 9 is given by (1.6) and we take dz? A dZ” to be orthogonal to the form
dzP’ A d7”" when the indices satisfy

:31<"'<:317’ :3/1<"'<:3/p’
Y1 << Vg V{<"'<)’¢;,

(B.y) # (B'.7),

and we take dz? A dZ” to have square norm 2714, we obtain

1 82uﬂ,, 82uﬁy
- __ Z by , Z TPY B =
(1.11) Du——ZZZ( PR P dz? nd7,
By J J J
when u has the form (1.1). In other words, Cu = —(1/2)Au, where Au is com-

puted componentwise. The “absolute” boundary condition (A.14) becomes
(1.12) oge(x,V)u =0, og+(x, V)ou =0 ondS.

This is the (homogeneous) 9-Neumann boundary condition.

Now the system (1.11)—(1.12) does not generally yield a regular elliptic bound-
ary problem. If it did, the frozen-coefficient boundary problem on any region
O C C” bounded by a hyperplane would also be regular. We can investigate
such a boundary problem as follows.

First, applying a rotation by a unitary matrix acting on C”, we can take O to
be {z € C" : Im z, > 0}. Let us consider the case (p,q) = (0, 1), so

n
(1.13) u=Yy u;dz.
j=1

Then, since du = ) .k 0uj/0zk) dZx A dZ;, we have

n—1 u n—1 u
1.14 sev)ou =Yy —Ldz; - dz.
(1.14) o7+ (X, v)du & 0 Z‘/ Pl *

so the boundary condition (1.12) says that, for z = (Z, x5, 0) € 00, we have

ou:
(1.15) Un(@ %0, 0) = 0, “L( %000 =0, 1<j<n—1I.
0Zn
Thus, in this case the d-Neumann problem decouples into n boundary prob-
lems for the Laplace operator A acting on complex-valued functions. One is the
Dirichlet problem, which of course is regular. The other n — 1 are all of the form
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v,

(1.16) Av=fon0O, —(,x,,0)=0.
0Zn

Equivalently, we can investigate regularity for

)

(1.17) Av =00n0, —
07y

(Z/s Xn, 0) = g(Z/, Xn).

If we attempt to write v = P h, then g and / are related by

1(9 . 3
(1.18) E(axn +z./\/)h—g,

where A is the Neumann operator for A, given by

(1.19) WRY(E ) = =1 + 10/ 2hE ),

where ¢ = (&1,....&,) and ' = (y1,...,7n,—1) are variables dual to x

(x1,...,xp)andto y = (¥1,..., Yn—1), respectively. Thus,

(1.20) ( aa

Xn

+iN ) E) = =i (60 + VIEP + 1P )R,

We see that the pseudodifferential operator d/dx, + i is not elliptic. The ray
(&,n) onwhich & = - =&, =0=n = - = fgu_1 but§, < 0is
characteristic for this operator. Since this operator is not elliptic, the boundary
problem (1.17) is not regular. Consequently, if n > 2, the d-Neumann problem is

never a regular elliptic boundary problem for (0, 1)-forms.

Exercises

1. Define 8 : AP4(Q) — APTL4(Q) by

9
(1.21) =Y ZBY i ndiP A dT
B.ysJ o

when u is given by (1.1) and we set

Bv_l(av ,Bv)y

a5 =2\,

(1.22) — =i
8)Cj 8yj

parallel to (1.7). Show that
3% = 0.

2. Ifu =) u; dz;, show that

—x ou;
1.23 du=-2Y —L.
(123) u ; %
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More generally, calculate 3" on (p,g)-forms. Then verify the formula (1.11) for
O=200 +9 0.

3. When dim = 7, show that the 9-Neumann problem for (0, n)-forms is equivalent to
the Dirichlet problem for A acting on scalar functions and consequently is coercive.

2. Morrey’s inequality, the Levi form, and strong
pseudoconvexity

The following estimate of C. B. Morrey provides the first useful handle on the
d-Neumann problem.

Proposition 2.1. If Q is a smoothly bounded region in C" that is strongly pseu-
doconvex, then, for some C > 0,

@.1) 19ul2 5 + 119" ull?, > c/ lul?dS, V¥ ueD".
Q2

Here, DO consists of smooth (0, 1)-forms on & satisfying the zero-order part
of the d-Neumann boundary condition (1.12). More generally, we set
(2.2) DP? = {u € API(Q) : o5+ (x, v)u = 0 on 9Q}.

We will define “strongly pseudoconvex” below, after deriving an identity that
leads to (2.1) once the appropriate definition is made.
We prepare to work on the left side of (2.1). Writing u = )" u; dz;, we have

(2.3) 5u=2(@—8¥) dzndzy, Tu=—23 2,
j<k j

0z 075 0z,

and if p € C*°(Q) is a real-valued, defining function for £, so p = 0 on 9 and
p < 0on £, while |Vp| = 1 on 02, then

dp
2.4 e P! — — =0 on 09Q.
24) u 2 g

Thus, for u € D%,

- Ju;  Oug |2
Bul2> = 4> 522 - =
Jj<

0 0z; L2
p Zk Z]

2.5
2.5) b

_42‘

du; 0
el 2 7 )
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Integration by parts yields

(au, 3uk)L2=_< 3214{ ’“k)L2+/ dp 3u,ﬁde

0Zx " 9z, 0z, 0Zk 0z; 07k
(2.6)
Ou; Oug / op Ouj _ 3,0 3u,_
+ — L ds.
<az, sz) [8z]~ 0Zx e 07 3zj ]
Q2

The condition (2.4) implies that D>, (dp/9zx)uxr = 0 on 9S2, so the last term on
the right side of (2.6) vanishes after being summed over k. Also, (2.4) implies that
Yk ukd/0zZx = Z is a tangential derivative on 9€2. Hence

ad ap
2.7 U — i— | =0 092,
27) ijuk = ;u, 7 on
S0
0p Ouj _ _
2.8 — U = — i 9.
2.8) T 0z; 0z e = Zaz 8zku1uk on

Thus (2.6) becomes

2.9) Xk:(a”’ a”") = zk:(a"’ a”") —Z/Ejkujﬁk ds,

- 07 " 9z; /L D dz; " Oz /L T 5o
where
0%p
2.10 Lix = .
( ) 7k 0z; 07k

Since the first term on the right side of (2.9) is equal to (1/4)”5*”|li2’ we have

from (2.5) the identity
4/<Z£jk”jﬁk) ds
e Sk

The integrand in the last integral involves the Levi form, a sesquilinear form
defined as follows on the “holomorphic tangent space” of Q2. If p € 2, we set

@11 Joul3, + 0 ullzz—“ZHau]

2

”p -
ibr, Va,b a92),
aZjaZka] k a Eﬁp( )

2.12) Lpa.b) = Liy(pajbi =Y
j.k

Jjk
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where
9

2.13) H,(09) = {ae(C":Zaj%(p)zo}.
J

Note that §) ,(3€2) is precisely the maximal C-linear subspace of the tangent space
T,0Q C R?" = C".Itis readily verified that (2.12) is unchanged if p is replaced
by another defining function p, satisfying the conditions specified above for p.
(This fact is also an immediate consequence of the formula (2.21) below.)

By definition, a smoothly bounded domain 2 C C" is strongly pseudoconvex
if and only if its Levi form is a positive-definite Hermitian form on $) ,(9€2), for
all p € 9%2.

In view of the fact that, for u € D%!, the n-tuple (uj (p)) belongs to ,(IQ2)

for each p € 92, we see from (2.10) that if Q is strongly pseudoconvex, then
(2.1) holds. In fact, we have a stronger estimate:

_ — 2
@.14) [3ul?, + 3" ul2, > 4ZHau,~/aZkﬂL2+c/|u|2ds, Ve D

Jjk 90

Exercises

1. A smooth function f : C" — R is called “strongly plurisubharmonic” if

*f . . .
(2.15) ( 92, 0% ) is positive-definite.

Given such a function, show that @ = {z € C" : f(z) < 0} is strongly pseudoconvex
if it is not empty.

2. Show that any strongly convex, smooth f : C" — R is strongly plurisubharmonic, and
deduce that any strongly convex, bounded 2 C C” is strongly pseudoconvex.

(Hint: See (B.13).)

3. Suppose € is a bounded domain in C”, O a neighborhood of 92, and f : O — R a
smooth function such that f = ¢ = const. on d2 and (2.15) holds on O, while f < ¢
in 2. Deduce that 2 is strongly pseudoconvex.

4. Suppose conversely that 2 is strongly pseudoconvex, with defining function p as in
(2.10). Show that, for sufficiently large A > 0, f = e*P satisfies (2.15) on a neighbor-
hood of 0€2.

(Hint: Use the identity

2 2
9 Ji AeAp—a 'O_ +Aze/lpa—pa_—p.
0z 0z 0z 07y 0z; Ozg

5. Given f : O — R such that f = ¢ = const. on 92 and (2.15) holds on O, a
neighborhood of d€2, while f < ¢ in 2, and given p € d<2, consider the function

32 f

0z 0zx

a 1
Q16 @ =Y 20— )+ 3 2 5 () &)~ Pk P,
j J

Jik
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Show that p has a neighborhood U such that
S={zelU:g@)=0=SNQ={pl.

(Hint: Write out the power series of f(p + hz), to O(h3), using 0/0z;,0/9z;, etc.,
rather than 9/dx;, d/dy;, etc., to see that

32
f(p+hz) = f(p)+2Reg(p + hz) + h? Z ﬁzﬁk + 0(|hz|3).)
gk

3. The %—estimate and some consequences

Here we will derive a “1/2-estimate” from Morrey’s inequality, and discuss a few
consequences, before establishing higher-order a priori estimates and regularity
in the next two sections. Throughout this section we assume that €2 is a bounded,
strongly pseudoconvex domain in C”.

Proposition 3.1. For some C > 0,

—_ —%
(3.1 18ull7 > + 118 ull7> = Cllull32. ¥V ue D
Proof. From (1.10) and (1.11) we have

(3.2) KllAul?, - < 0ul?s + 13 |2,

2
H-1 =
and together with (2.1) this yields (for various K > 0)

- —*
(3.3) uwﬁ;+nam@zszAw;4-+K/ﬂm%m, Y ue Do
Q2

Now we claim that regularity for the Dirichlet problem implies

(3.4) lull® | < K[| Aull3,— + K/ |ul? dS,
H?2
Q2

and this yields (3.1).

To see (3.4), suppose Ou = —(1/2)Au = f, u)m = g. Write u = u; + u,
where
3.5 Auy = -2, =0; Auy =0, ‘ =g
(3.5) uy Jfowm ’a ) 2|, =8

Then results of Chap. 5, §1 imply

(3.6) lurll3 < ClUf 13=1,
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while Propositions 11.14 and 11.15 of Chap. 5 imply
3.7 ||’42||§11/2 = C”g”iZ(ag)'

More precisely, using the spaces H s)(C) defined in §11 of Chap. 5, where C
is a collar neighborhood of 92, we have

(3.8) g € H*7123Q) = us € Hip5)(C),

and, in particular, if || - ||, denotes the norm in H 4 (C), ||uz||%2 3/2)

C ||g||iz(am; hence

_ —*
(3.9) i 1 /2y < CllGulZ> + C 0wl ¥ ue DL,

Recall from (11.95) of Chap. 5 that if C is identified with [0, 1) x €2, then

k 1
(3.10) llfegy =D /0 1DJu(y, M ygiss—s gy 4V-
j=0

Note that (3.7) is basically equivalent to the statement that the Poisson integral
has the property
PI: L2(0Q2) — H'?(Q).

This also follows from results in §12 of Chap. 7.

We next define a self-adjoint extension of [0 = %* + 5*5 on (0, 1)-forms, sat-
isfying 0-Neumann boundary conditions. Let 7; be the Hilbert space completion
of D%! with respect to the square norm

3.11) Qu,u) = [[9u)?, + 119" ull?,.

We can identify 7, with the closure of D%! in {u € L?(Q,A%) : 5u,5*u €
L?(Q)}. Then we have a natural, continuous, dense injection H; < Ho =
L?(Q2, A%1). Thus, the Friedrichs extension method (discussed in §1 of Chap. 8
and in §8 of Appendix A) yields an unbounded, self-adjoint operator £ on Hg
such that

D(L) = {u € Hy : v (v,u)n, is Ho-continuous},

3.12
( ) (Lu,v) = (u, V), -

Note that

(3.13) D%« D(L) C D(LY?) = H,,
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the latter identity by Proposition 1.10 of Chap. 8. The estimate (3.1) implies the
inclusion H'/2(Q, A%!) > Hj, so

(3.14) D(L) c D(LV?) ¢ HY2(Q, A%Y).

The characterization (3.12) implies that, for all u € D(L),

1 . ,
(3.15) Lu=0u= _EAM in D'(R2).
Thus, interior elliptic regularity implies

(3.16) D(L) C HE.(Q) N HY2(Q).

We see that £ has compact resolvent. Since ||£21/2u||i2 = (u,u)y, >
C ||u||f,_11/2 for all u € D(L/?), zero is in its resolvent set, so £~ is a compact,
self-adjoint operator on L2(£2, A%1).

Our next goal is to demonstrate that elements of D(L) do indeed satisfy the
9-Neumann boundary conditions. First, if u € D(£/2), then since du € L%(R2)

and 3 u € L?(R), it follows that u‘m is well defined in D’ (9€2). Indeed, since
u is a limit of a sequence u; € D! in H;-norm, we can deduce from (2.1) that
u| € L*R)and uj‘ — u) in L2(dR2). It follows that

Q2 Q2 Q2

(3.17) ueD(L?) = o5 (x.V)u=0 on Q.
Furthermore, if u € D(L), so Lu = f € L*(Q,A%1), we can write u =
ui + up where u; € H2(Q) N Ho1 (2) solves Au; = —2f and u; € HY2(Q)is

harmonic. It follows that

3/2 3 1/2
ul)m e H2(0Q), aul‘m e H'2(Q).

Since u, is harmonic, uz‘ and guz) are well defined, in D’'(9€2). Hence u
aQ aQ aQ

and Ju

. are well defined. The same argument also applies to 3 u.

We now establish the following.

Proposition 3.2. If u € D(L), then u satisfies the boundary conditions (1.12),
namely,

(3.18) o (X, V)u =0, oz (x,v) u=0 onds.

Proof. The first identity in (3.18) follows from (3.17). To get the second identity,
note that if Lu = f, we have
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(3.19) (Ou, dv) 2 + (5*u, 5*v)Lz = (fiv)2, YveD%

We have already noted that 90 u +_5*5u = f in Q. Furthermore, the comments
above imply that, for all v € A®1(Q),

(3.20) (O, 3v) 2 + (@ .9 v)2 = (Ou,v) 2 + B, v),

where, in parallel with (A.12),

(3.21) Bu,v) = ll,/[(ag* (x,v) du, v) + (5*u, o+ (x, v)v)] ds.

Q2

The last term in the integrand vanishes if v € D%!, so we deduce that

(3.22) ueDKL) = /(05* (x,v)du,v)dS =0, VveD".
Q2

In particular, (3.22) holds for v = o5+ (x, V)¢ on 02, for any ¢ € A%2(Q), so

(3.23) ueDL) = /(a*oﬁu,q;) dS =0, V¢eA*(Q),
Q2

where o is short for O+ (x,v). This implies that o* ¢ annihilates 9u on 9. Since
Ul o has been shown only to be in D’(9€2), we need a little care in deducing

that o annihilates du on 9S2, but since o (x)*o (x) is a smooth, projection-valued
function on 02, this implication follows, and Proposition 3.2 is proved.

For a converse of sorts, suppose u € H; and Ou = f € L?(R). The ar-

ag A well defined in D’ (9L2).

Also, (3.20)~(3.21) hold for such u and for any v € D%!. Hence, as long as
o5+ (x, v)u = 0 = o= (x, v) du on 92, we have

gument below (3.17) implies that u)m and du

Q,u) < C(w)||v] 2. YveD%
In view of the characterization (3.12), we have the following result:

Proposition 3.3. The domain of L is specified by

D(L) = {u € Hi : Ou € LA(Q), o5 (x, v)u = 0,
(3.24) a
o5+ (x,v)du = 0 on 89}.
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We record another regularity estimate:

Proposition 3.4. Ifu € D(L), thenu € H(j,—1/2)(C) and

(3.25) leell?y —1 /2y < ClLull 22 ull 2

Proof. If u € D(£) C D(L!/?), then the estimate (3.9) holds. Hence
||’4||%1,_1/2) < Cu,uwyn, = C(Lu,u);z.

Applying Cauchy’s inequality yields (3.25).

Exercises

1. Consider the space

i = e 12@.A%) Gue 12, T ue L2, o (x,v)u’ag = o,
with square norm ||5u||i2 + ||§*u||2L2 + ||u||%2 Try to show that D% is dense in H’{
and hence that H*; ="H;.
2. For small s > 0, let
Ty ={z€Q:p() = —s}

s0 Yo = 092. Assume that, for 0 < s < b, X is a smooth surface on which Vp # 0.
Show that

= —k
(3.26) up el = € (Bl + 13" ul32). we DO

0<s<
(Hint: Follow the argument using (3.5)—(3.7), but replace (3.7) by
PI: L2(0Q) — L2(Zy).

with an appropriate norm estimate.)
3. Show that (3.26), together with the fact that

L+ D7 L2QAYY) — HR(Q. A%,

implies that (£ + I)~! is compact on L2(€2, A%1), without making use of (3.14).
Compare [Mor], p. 336.

4. Higher-order subelliptic estimates

We want to extend the estimates (3.9) and (3.25) to estimates on higher derivatives
of u € A%1(Q) N D(L), in terms of estimates on Lu. The associated regularity
results will be established in §5. As in §3, we make the standing assumption that €2
is a bounded, strongly pseudoconvex domain in C”. We begin with the following
improvement of (3.25).
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Proposition 4.1. Foru € A% (Q) N'D(L), we have
2 2
4.1 lullz = CllLully..

Proof. It suffices to consider the case where u is supported on the collar neigh-
borhood C of 92 introduced in §3. As there, we identify C with [0, 1) x 2.
Let A2 € OPS'/2(3Q) be an elliptic self-adjoint operator, with scalar prin-

cipal symbol acting on sections of A%! . Arrange that A'/2 commutes with
P(x) = o(x)*o(x), where o(x) = o3=(x,v). Note that

(4.2) ~ IAY2ulf

||”||§11(C) -1/2)°
Now, if u € A% (Q) N D(L), then A2u € D! and, by (3.9),
(4.3) IAY2ull?) /2y < COAY?u, AM?u).

Below, we will show that, for a certain smooth family of operators A(y) €
OPS'(9R), we have Au € D*! and

“4)  OAYPuAY?u) = O(u. Au)+ R, |R| < Cllullfy ).
Granted this, we have (4.3) dominated by

C Re Q(u, Au) + Cllul|{y _1 /5y = C Re (Lu, Aw)p2 + Cllullgy _y )

(4.5) 2
= CllLull 2 llullo,1) + Cllully,—1/2)-

Writing C || Lul 2 ||ull0,1) < (C?/e)[|Lull?, + &llu]l3,, and absorbing the latter
term on the left, we have

(4.6) lul2, < CllLul?s + Cllull?, _y .

If we use (3.25) to estimate the last term and recall that zero is not in the spectrum
of £, we have (4.1).

Our next step is to obtain higher-order a priori estimates in the tangential
directions.

Proposition 4.2. Foru € A% (Q) N D(L), k > 1, we have
4.7) ||’4||%1,k/2_1/2) = C”E””%o,k/z_l/z) + C||“||2Lz~

Proof. We will prove (4.7) by induction on k; the case k = 1 is implied by (4.1).
To begin, we have
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48) ey /21720 = ISy 2y < € Q(Ak/ZM,Ak/ZM),

the latter inequality by (3.9), since A¥/?u € D%!. Now, extending (4.4), we have
49)  OAF2u A¥2u) = O(u. Agu) + Re. | Rie| < Clullfy g /oy

for a certain smooth family of operators A (y) € OPS*(dR2), for which Agu €
D1 as will be demonstrated below. Thus (4.8) is dominated by

C Re Q(u, Axu) + Clullf /o1
(4.10) = C Re (Lu, Ag) 2 + Cllullfy /01y
< Cl1Lullok/2-1/llull0.k/241/2) + Cllullgy g/2—1y-

As in the passage from (4.5) to (4.6), this implies

2 2 2
(4.11) ||'4||(1,k/2_1/2) = C”E””(o,k/z_l/z) + C”“”(l,k/z_l),
which by induction on k yields the desired estimate (4.7).

We now take up the task of proving (4.4) and (4.9). It will be convenient to
assume that the diffeomorphism C = [0, 1) x 92 has the property that Lebesgue
measure on C, induced from that on C”, coincides with the product measure on
[0,1) x 02, up to a constant factor, a matter that can be arranged. We retain the
fiber metric on A%!; on {y} x 9 this fiber metric depends on y. Then A*/2,
originally specified to be self-adjoint on L2(3$2, A%1), has the property

(4.12) (A2u,0) 12y = (. Rjav) 2.
where

Arpau(y) = A2u(y) + Be(n)u(y),

4.13
@19 Br(y) € OPS*/271(3Q), B (0) = 0.

Then we take
(4.14) Ae(y) = Ao AY? = AR 4 Bi(y)AF/2,
Clearly, Ay preserves D%
Now, if we also let A¥/2 denote an elliptic self-adjoint operator in the class

OPS*/2(3Q), acting on on sections of A%® and A%2, having the same scalar
principal symbol as the one acting on sections of A%!, we can write
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(§Ak/2u, §Ak/2u)Lz = (Ju, Xk/ngk/zu)Lz

(4.15) _ _
+ ([0, A*2)u, aN*20) 2.

Further commutator pushing, plus use of the fact that the left side of (4.15) is
real-valued, yields

(4.16) (OA*24 9A*/21) ;> = Re (du, dAu) ;2 + Ry,
where

R = Re {([5, ARy, éAk/Zu)L2 n (5u, [Kk/z,ﬁ]Ak”u)Lz}

(4.17)
= Re (Ri2 + Ri3).
Now
Rz + Ris = ([5, Ak/z]u,gAk/zu)L2 _ ([5, Aij2) AR 2y, 5M)L2
— (13 AKk/21,, 19 AK/2 = A k/21. B
(4.18) = (0. A*2)u. 0. AF2u) | + (B0, A¥ 0. 8u)

+ ([Ak/z, [0, A¥/2Ju, 5u)L2 + ([Bk,ﬁ]Ak/zu,ﬁu)Lz
= Rika + Ris + Rie + Ri7,
and standard pseudodifferential operator estimates yield
(4.19) |Rial + | Ris| + | Rie| + |Rez| < Cllullfy 121y
which consequently bounds Re (Rg, + Rg3). The term
(g*Ak/Zu, 5*Ak/2u)Lz
has a similar analysis, so the estimates in (4.4) and (4.9) follow, and the proofs of

Propositions 4.1 and 4.2 are complete.
The following is our main a priori estimate.

Proposition 4.3. Foru € A% (Q) N D(L) and j, k > 1, we have

(4.20) ”u”%j,k/z_l/z) =< C”‘C””%j_l,k/z_l/z) + CHMHZLZs
and hence
4.21) lull,, < ClLull3y,— -

Proof. It suffices to prove (4.20) since the k = 1 case of this plus the invertibility
of £ implies (4.21). Note that the j = 1 case of (4.20) is precisely the conclusion
of Proposition 4.2. We will give an inductive proof for j > 2. Note that if j > 2,
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2 12112 2
(4.22) 112172 2 1P IG =2 72172 + WG —1 e 21/2)-

Now since [ is elliptic, we can use the standard trick of writing D%u in terms of
Ou, second-order tangential derivatives of «, and first-order tangential derivatives
of Dyu, to obtain

2 2 2
(4.23) ||u||(j7k/2_1/2) = C”‘Cu”(j—z,k/z_l/z) + C||”||(j_1,k/2+1/2)-
The inductive hypothesis dominates the last term by C ||£u||%j_2,k 124172 T

C ”””2L2’ and this implies (4.20).

Note that if the d-Neumann boundary condition were regular, we would have
the estimate [|ul|7,,,, < C|[Lul%,,_, in place of (4.21). The estimate (4.21)

is called a subelliptic estimate. One also says that the 9-Neumann problem on a
strongly pseudoconvex domain is subelliptic, with loss of one derivative.

Exercises
1. Sharpen the estimate (4.20) to
1ll?, e 21 j2y < CULUIZ 3 gej2gr 2y + €l
for all u € A%1(Q) N D(L), provided k > 1 and j > 2. In particular,
lul%ys < CllLul? gy + Clul,.

2. Verify (4.19), namely, that | R ;| < C||u||%1’k/2_1) ford <j <7
(Hint: For example, part of the desired estimate on | R 4| follows from an estimate

Jix. Ak/z]uHLz(am = Cllull g2 ag)-

for any first-order differential operator X on d2. This in turn follows since
[X. A*/2] e oPS*/2(392).
Similarly, part of the desired estimate on |Ry¢| follows because

[A*/2 [x, AK/2)] € oPS*1(0Q).

5. Regularity via elliptic regularization

2 2
s = CllLully, -

provided u € D(L) is smooth on © to the regularity result that whenever

Our main goal here is to go from the a priori estimate that | u||
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ueDL)and Lu = f € H/7Y(Q), then u € H/(Q). Following [KN], we use
the method of elliptic regularization, which is the following. For § > 0, consider
the quadratic form

(5.1) Qs(uu) = Qu,u) +8Y_ [10jul7,. ueD,
J

where Q(u,u) = ||5u||2L2 + ||5*u||2L2 as in §3, and 9; = 0/0x;, Opq; =
0/dy;, 1 < j < n, applied to u componentwise. We take H;5 to be the comple-
tion of D%! with respect to the square norm Qs. Due to the last term in (5.1), we
obviously have

(5.2) His = {ue H' (Q,A%") s oge(x,v)u =00n 9Q}, V§>0.
Note that H;5 C H;y, for § > 0, and Qg(u,u) > Q(u,u), for u € Hys. Thus
Morrey’s inequality and the proof of Proposition 3.1 apply, yielding

(5.3) Qs(u,u) = CllulFyn +C / ul> dS + C8llulfy,  u e His.
0

We will define the self-adjoint operator L by the Friedrichs extension method,
S0 D(E;/z) = H;s and
5.4) (Lsu,v)r2 = Qs(u,v), uecD(Ls), veHis.
Thus ES_I is a compact, self-adjoint operator on L2(2, A%!). Note that if u €

D(Ls), the argument used in the proof of Proposition 3.2 shows that du . is
well defined in D’(9R2), and, for v € D%! we have

(5.5) 0s(u.v) = (D= 8Akv) , + Bs(u.v),

where

(5.6) Bs(u,v) = /[%(05* (x,v) Ou, v> — 5(2—3, v>] ds.
Q

If we set v = o5+ (x,v)p on d€2, we deduce that

oz (x,v)u =0
5.7 ueDLs) = 1 _ P on 0$2.
o5(x, v)[lfcrg* (x,v) du + 8%] =0

For any § > 0, (5.3) is a coercive estimate. Such arguments as used in §7 of
Chap. 5, for the Neumann boundary problem, produce higher-order estimates of
the form
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(5.8) lull i+ < CjsllLsull g,  u € D(Ls),

plus associated regularity theorems. Alternatively, the boundary condition (5.7)
for the operator g = O — A = —(1/2 4 §)A is seen to be a regular boundary
condition, and the results of §11 in Chap. 5 apply. Thus, for each § > 0,

(5.9) L' H/(Q) — H/TX(Q), j=0.

The estimates in (5.9) depend crucially on § of course, and one loses control as
8 \u 0. However, the analysis of §4 applies to L, and one obtains

(5.10) Il g1 < CjllLsullgsi.  ue D(Ls) N A (),
with C; independent of § € (0, 1]. Using this, we will establish the following:

Proposition 5.1. The operator L has the property that

(5.11) L7 H(Q)— HITY(Q), j >0,
and
(5.12) L7 A% Q) — A%N(Q).

Of course, (5.12) follows from (5.11), but it will be technically convenient to
prove these results together, completing the proof of (5.12) shortly before that of
(5.11).

To begin, take f € A%1(Q) (so f is smooth on Q). Then, for each
§>0, Es_lf = us € A%(Q). Hence (5.10) is applicable; we have
{us : § € (0,1]} bounded in H/ (), for each j. Thus this set is relatively
compact in H/~1(Q) for each j, so there is a limit point

o € (| H (. A%") = A (Q);
j>0

us, — ug in the C*°-topology while §, ~\ 0. Now

(5.13) O-0A)us = f = Oug = f.
Also,

(5.14) o+ (X, v)u,g)m = 0= oy=(x, v)uo‘m =0
and

1 = ou _
(5.15)  oj(x, v)[lfog* (x,v)du+ 88_1)] ‘BQ = 0= oy=(x,v) 8140‘89 =0.
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Therefore, ug € D(L), so
(5.16) L7V =uy e A%YQ).

This proves (5.12). -
To prove (5.11), if f € Hj(Q,AO’ll, take f, € A%1(Q) so that f, — f in
H/(Q). Wehaveu, = L7 f, € A%1(Q) and, by (4.21),

(5.17) luw —upllgier < Clfo = fullgs-

Hence (u,) is Cauchy in H/t1(Q), so L7 f = lim, 00 uy € H/TH(Q).

Exercises

1. Verity that the boundary condition described in (5.7) is a regular boundary condition
for L5 = Cg A, as defined in §11 of Chap. 5.
2. As an approach to Exercise 1, show that the analogue of the boundary condition (1.15)
in this case, for the region {Im z;, > 0}, is
un(Z' xn,0) =0, 34 +53ﬁ(z’,xn,0) =0, 1<j<n-1
0Zn yn

Show that the pseudodifferential equation arising in parallel with (1.18) is

(ai ++2)N)h =g
n

and that, for any § > 0, the pseudodifferential operator acting on /4 is elliptic.

6. The Hodge decomposition and the 5—equation

We begin with the following Hodge decomposition theorem.

Theorem 6.1. I]i Q is a bounded, strongly pseudoconvex domain in C", then,
givenu € A% (Q), we have

6.1) w=209 L7'u+3 0L 'u = Pju+ Pgu.

The two terms on the right side are mutually orthogonal in L*>(2, A®V). Further-
more,

(6.2) Py, Py H/(Q,A%) — H/7H(Q, A%, j =1L

Proof. The first identity in (6.1) is equivalent to u = L££'u, and the second is
simply the definition of Py and Pg*. That (6.2) holds follows from (5.11). Only
the orthogonality remains to be checked.
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Following the proof of Proposition A.3, we use

(6.3) (v, w) 2 = (v,g*w)Lz + ll,/(v,crg*(x,v)w) ds,
Q

valid forv € A%(Q), w € A%T1(Q). Thus

(6.4) w e D™ = 37w L kerd N A%(Q),

where D% is defined as in (2.2). Results established in previous sections imply
(6.5) L™t A%(Q) — D2,

so we can apply (6.4) to w = AL uto get

(6.6) 99L7 L ker d N A®N(Q).
Hence
(6.7) uj € A*'(Q) = Pju; L Pprup  in L*(Q,A%").

This finishes the proof of the theorem. It also implies that Py and Py« extend
uniquely to bounded operators (in fact, to complementary orthogonal projections)
acting on L2(Q, A%1).

The most significant application of this Hodge decomposition is to the equation

(6.8) u=f

given f € A% (Q), forsome u € A%°(Q) = C®(R). Since 3 =0, anecessary
condition for solvability of (6.8) is

(6.9) af =0.
For strongly pseudoconvex domains, this is sufficient:

Theorem 6.2. If 2 is a bounded, strongly pseudoconvex domain in C", and f €
A%Y(Q) satisfies (6.9), then there exists u € C*°(Q) satisfying (6.8).

Proof. With g = L' f € A%!(Q), we have

(6.10) f =00 g+0 9g=Pyf + Py f.

However, (6.4) applied to w = dg implies Py« f L f,soin fact Py« f = 0 and
6.11) =030 g).

Thus we have (6.8), with u = g*g.
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We will use Theorem 6.2 to establish the following important result concerning
function theory on a bounded, strongly pseudoconvex domain.

Proposition 6.3. Let $2 be a bounded, strongly pseudoconvex domain in C", and
fix p € 0Q2. Then there is a function u, holomorphic on 2, such thatu € C*°(Q2 \
{p}), but u blows up at p.

Proof. Itis shown in the exercises for §2 that there are a neighborhood O of p and
a holomorphic function g, given by (2.16), suchthat {z € O : g(z) = 0} N Q =
{p}. Now the function
1
V= ——
g(2)

is holomorphic on O N Q and C*® on O N Q \ {p}, and it blows up at p.
Pick ¢ € C$°(O) such that ¥ = 1 on a neighborhood O, of p, and set

6.12)

(6.13) w = Yv
on O, extended to be 0 on the complement of . Now consider
(6.14) f=ow

on Q; we take f = 0on O, N Q. Thus f € A%(Q) and df = 0, so by
Theorem 6.2 there exists

(6.15) wy € C®(Q), dwy = f
Now we set
(6.16) u=w—w.

We have du = S — f = 0o0n £, souis holomorphic on 2. The construction of
w and the smoothness of w, on 2 imply thatu € C*°(Q2 \ {p}) and that u blows
up at p, so the proof is complete.

Assuming that €2 is a bounded, strongly pseudoconvex domain in C”, we con-
struct another special holomorphic function on €, as follows. Let {p; : j € ZT}
be a dense set of points in d€2, and for each j let u; be a holomorphic function
on Q such thatu; € C*°(Q \ {p;}), constructed as above. Then we can produce
mutually disjoint line segments y; lying in Q, normal to dQ at p j,such that u;

Yi
blows up at p;. Now consider

(6.17) u=Yy cjuj.

Jj=0
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where ¢; € C are all nonzero, but picked so small that

1) lcjuj(@)] < 27~/ on O; = {z € Q:dist(z,0Q2) > 273,
(ii) lejuj@| <27/, for ze | Jye
l<j

Condition (i) implies that (6.17) is uniformly convergent on compact subsets of
Q, hence u is holomorphic on . Condition (ii) implies that, for each k € Z,
v = Zj?ék cju; is bounded on y; hence u = vg + cpuy is unbounded on yy.
This produces a holomorphic function on €2 with the following property:

Proposition 6.4. If Q2 is a bounded, strongly pseudoconvex domain in C", then
there is a holomorphic function u on Q2 that is unbounded on each open set ON K2,
for any open O such that O N 02 # @. Hence u does not extend holomorphically
past any point in 052.

A domain 2 C C” having such an inextensible holomorphic function u is
called a domain of holomorphy. Domains of holomorphy play an important role
in the theory of holomorphic functions of several complex variables; we refer to
[GR,Ho3,Krl], and [Lel] for material on this.

We mention that, for the solution to (6.8) given by

(6.18) u=Sf=aLf

we have S : H/(Q) — H/(RQ), as a consequence of (5.11). In fact, one can do
better:

(6.19) S:H/(Q) — H/TV2(Q).
One method of proving this is sketched in the exercises after §9.

Exercises

1. Interpolate (6.2) with the L2-boundedness of Pg and Pg* to show that

Py, Py CHI(Q,A%Y) — HI75(Q, A%, Ve>0,j>1

(Hint: Replace j by Nj in (6.2).)
Can you get rid of the &?
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7. The Bergman projection and Toeplitz operators

We use the operator £~ on (0, 1)-forms to produce the following Hodge decom-
position for (0, 0)-forms. Throughout this section we assume that €2 is a bounded
strongly pseudoconvex domain in C”.

Proposition 7.1. For all u € A%°(Q),
(7.1) u=Bu+9 L 9u

is an orthogonal decomposition in L*(Q). The operator B, extended to L*(R2),
coincides with the orthogonal projection onto

(7.2) H(Q) = {ue L*(Q) : du = 0}.

Here, we take (7.1) as the definition of B. Thus, by (5.12), B : A%%(Q) —
A%0(Q). We need to prove that the decomposition (7.1) is orthogonal and that B,
extended to L2(R2), is indeed the stated projection.

We first note that

(7.3) (0.9 L70u) 2 = (. L7 0u) 2. Y u.ve A%0Q),

since the two sides differ by the integral over dQ2 of (v, O (x,v)L~9u), which
vanishes. This identity shows that, given v € A%%(Q),

(7.4) W=0=vL10d L 9u, VueA®®Q).

Next we claim that

(7.5) dBv =0, VuveA®Q).

This is equivalent to the statement that

(7.6) 39" L7 v = .

Now, if we apply the decomposition (6.1) to 9v, we see that the two sides of (7.6)
differ by 8 0L~ v; but this vanishes, by (6.6), so we have (7.5).

Combining (7.4) and (7.5), we have

(1.7) Bv L3 L£L%u, VuveAQ),
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so the decomposition (7.1) is orthogonal. Thus B does extend to an orthogonal
projection on L2(2) and, by (7.5), R(B) C H(). If we apply (7.1) to an element
u of

(7.8) H(Q) = {ue A®°(Q) : du = 0},
we get u = Bu, so we have
H(Q) C R(B) C H(R),

where H(2) denotes the closure of H(R) in L2(Q).

In fact, since B : A%%(Q) — A%%(Q) and A%°(Q) is dense in L3(RQ), it
is now clear that R(B) = H($2). We could stop here (rephrasing the statement
of Proposition 7.1), but it is of intrinsic interest to equate this space with H(£2),
which we now do.

Lemma 7.2. If Q is a strongly pseudoconvex domain in C", then H(2) is dense
in H(2).

Proof. It suffices to show that
(7.9) HQ) LD L7 u, Yue A®Q).

Now, if v € H(Q) and u € A®°(Q), so w = L7 19u € D! ¢ A%1(Q), then

(7.10) (v, Lt 3u)L2(Q) = hm / v, F) w) dV,
Qy

where Q; = {z € Q : p(z) < —s}. We have
(7.11) /(v,g*w) dV = /(5v,w) dVv + / (v, 05+ (x, v)w) dS.
Qy Qs 082

Of course, the first term on the right side of (7.11) vanishes if v € H(£2). Now,
we can take a collar neighborhood of €2 and identify 925 with <2, for s small.

Then, for each v € H(Q2), v(s) = U’asz provides a bounded family in D’(9R2) as

s — 0. Meanwhile, for any w € o1,

(7.12) ow(s) = 05*(x’v)w’39 —0 in C*(0Q),
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as s — 0. Thus the second term on the right side of (7.11) vanishes as s — 0, so
we have (7.9), and the lemma is proved.

The orthogonal projection B is called the Bergman projection. If we take as its
defining property that B projects L?(£2) onto H(S2), then the content of Proposi-
tion 7.1 is that we have a formula for B:

(7.13) Bu=u—9 £ 9u,
at least for u € H'(Q). The mapping property (5.11) implies B : H/(Q) —
H/7Y(Q), for j > 1. If we interpolate this with B : L%(Q) — L2*(), we
deduce that
(7.14) B:H/(Q) — H/™5(Q), Ve>0,,>1.
Compare with Exercise 1 in §6. In [K3] it is proved that actually B : H/(Q) —
H/(Q).

Since Bu is holomorphic for each u € L?(2), the evaluation at any z € Q

is a continuous linear functional on L?(£2), so there exists a unique element of
L?(R2), which we denote as k., such that

(7.15) Bu(z) = (u.k) 2, Yue L*(Q).

Since holomorphic functions are harmonic, the mean-value property implies that
whenever ¢, € C5°(R2) is real-valued and radially symmetric about z € 2, with
total integral 1, then

(7.16) Bu(z) = (B”’¢Z)L2 = (u, B‘pZ)L%
so, for each z € €2,
(7.17) k., = By, € C®(Q).

Also, one can clearly choose ¢.() depending smoothly on z and £, so the map
z > k, is C* on 2, with values in C°°(£2). Thus we can write

(7.18) k.(0) =Kz 0), KeC®QxQ).

Then we can rewrite (7.15) as

(7.19) Bu(z) = /u(é)K(z, &) dV(g).
Q
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The function K(z, ¢) is called the Bergman kernel function. Since B = B*, we
have

(7.20) K(z,0) = K(£,2);
hence (7.18) implies
(7.21) KeC®QxQ)NC®QxQ).

This regularity result is due to [Ker2].

In [F] an analysis was made of the asymptotic behavior of K(z,z) as z ap-
proaches d2. It was used there as a tool to prove that if 2, and 2, are
two bounded, strongly pseudoconvex domains with smooth boundary and
d: Q) — Q, is a biholomorphism, then & extends to a diffeomorphism
® : Q; — Q. Later, S. Bell and E. Ligocka [BL] found a simpler proof of
this mapping result, relying on the property that B : C*®(Q) — C () (which
follows from (7.14). Nevertheless, the asymptotic analysis of K(z, z) has substan-
tial intrinsic interest. A discussion of a number of aspects of this study is given in
the survey [BFG]. In [BSj] the analysis of K(z, z) is related to an analysis of the
Szegd projection, a projection analogous to the Bergman projection but defined
on L?(3R2). Alternative approaches to the analysis of the Szegd projection are
given in [KS] and in [Tay].

We turn now to a study of Toeplitz operators, defined as follows. Given f €
L*°(R2), we denote M pu = fu and set

(7.22) Tru= B(fu), uecH).

Thus Ty : H(Q2) — H(2). We call Ty a Toeplitz operator. Note that since
| B|| = 1, we have an L?-operator norm bound on 7's:

(7.23) ITrl <1 llzeo.

Toeplitz operators have a number of interesting properties, some of which we
derive here. In the statements below, £ denotes the space of bounded operators
and KC the space of compact operators, acting on the relevant Hilbert space, usually
L%(Q) or H(Q).

Proposition 7.3. If f.g € C(Q), then
(7.24) TiTg —Tre € K.
Also, if f € C(Q),

(7.25) fl,g =0=Tr k.
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Thus [ +— Ty produces a homomorphism of Banach algebras

(7.26) 7:C(0Q2) — L/K.

In view of (7.23), it suffices to prove (7.24) for f, g € C*®(Q). Also, it suffices to
prove (7.25) for f € C§°(R2). In fact,

(7.27) feCPQ) = Tr:H(Q) - C®(Q),

so the compactness of Ty in this case is obvious.
To prove (7.24), note that

TyTou—Trou= BfBgu— Bfgu=—Bf(I — B)gu,
so (7.24) follows if we show that
(7.28) feC®Q)= BMs(I - B) K.
It is more convenient to show that
(7.29) (I —-B)MsB ek,
which implies (7.28) upon taking adjoints. To see this, let us use (7.13) to write
(7.30) (I —B)YM;Bu=79 L 3(fBu),

at least for u € C°°(Q). Since Bu is holomorphic, d( fBu) = (d f)Bu, so we
have

(1.31) (I-B)M;Bu=09 L ((5f)Bu),

an identity that extends to L?(2) since both sides are bounded on L?(Q). Thus
(7.29) will be established, and the proof of Proposition 7.3 will be complete, when
we establish the following:

Lemma 7.4. We have

(7.32) 3LV LA(Q, A% — L2(Q)  compact.
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Proof. For v € M, we have |3 v||;2 < [[£/2v] 12, so, foru € L2(Q, A%1),
(7.33) 18" L7 ull 2 < L7 2u) 2.

Since £7'/2 is compact on L2, (7.32) easily follows.

Proposition 7.3 extends to the case when f and g take values in End(C™), and
Ty, Ty act on m-tuples of elements of H(£2). We then have the following.

Proposition 7.5. If f € C (ﬁ, End(Cm)) and f(z) is invertible for each 7 € 02,
then Ty is Fredholm.

Proof. Let g € C(ﬁ,End((Cm)) satisfy fg = gf = [ on 0. Then
Proposition 7.3 implies

[-TiTgek, I—TeTyek,

so Ty is a Fredholm inverse of T'y.

It is natural to ask what is the index of T'r, which clearly depends only on the
homotopy class of f : Q2 — GIl(m,C), by general results on Fredholm opera-
tors established in §7 of Appendix A, on functional analysis. A formula for Index
Ty is given by [Ven] in case 2 is a ball in C”. The case of a general, strongly
pseudoconvex domain is treated in [B2]. The formula given there is equivalent to
an identity of the form

(7.34) Index Ty = Index Py,

where Py is an elliptic pseudodifferential operator on 9<2, constructed as fol-
lows. The manifold 92 possesses a spin® structure and associated Dirac operator
Djq (objects defined in Chap. 10). The operator Djg is a self-adjoint operator on
L%(0Q, S), where S — 0Q is a certain spinor bundle. Denote by H the closed
linear span of the positive eigenspaces of Dy and by P, the orthogonal projec-
tion onto H4. If f takes values in End(C™), let P+ also denote the orthogonal
projection of L2(d2, S ® C™) onto H;y ® C™. Then we set

(7.35) Py =P MsPy+ (I —Py), actingon L*(0Q,S ® C™).

We see that Py € OPS°(9Q) if f is smooth, and Py is elliptic if f’asz is

invertible. The index of Py is given by the Atiyah—Singer formula; see (8.22)-
(8.25) in Chap. 10.

We note that the correspondence f +— Py has properties like those established
for f — Ty in Proposition 7.3. That is, if f, g € C(9R2),

(7.36) P;Pg— Prg €K,
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so f — Py produces a homomorphism of Banach algebras
(7.37) w:C0RQ) — L/K.

In fact, (7.36) is established more easily than (7.24); if f, g € C*°(d2), we have
Py Py — Pse € OPS™1(9Q). In addition, one can also show that

(7.38) () =N w(f) ==

The maps 7 and 7 are said to produce extensions of C(0€2) by K. There are cer-
tain equivalence relations among such extensions, first specified by [BDF], and
the resulting equivalence classes define elements of the K-homology group
K1(02). In [BDT] it is proved that T and m define the same element of
K1(0€2), a result that implies (7.34) and hence refines Boutet de Monvel’s index
theorem.

Exercises
1. Let {u; } be an orthonormal basis of H(£2). Show that

K@) =) uj@u;Q),

J

the series converging in C (2 x Q).
2. Show that

1
Kz2) > —. VzeQ.
@9z 0g ‘

(Hint: Take a orthonormal basis {u } of H(2) with u; = const.)
3. Show that W(z) = log K(z,z) is strongly plurisubharmonic on €2, in the sense defined
in (2.15). Deduce that 5
e\
hjx(2) = 92 %8
defines a positive-definite Hermitian metric on 2. This is called the Bergman metric
on .

4. Suppose F : 21 — €2, is a biholomorphic diffeomorphism between two strongly
pseudoconvex domains €21 and 5. Compute the relation between the Bergman kernel
functions, and deduce that F' preserves the Bergman metric.

5. Let B” be the unit ball in C". Show that an orthonormal basis for H(B") is given by

1
Ug(2) = baz®,  bo = %-

Deduce that the Bergman kernel function for B” is given by
K@g) =V, (=2 070D,

where V;, = Vol B”. Compute the Bergman metric for the ball.
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8. The 0-Neumann problem on (0, g)-forms

So far, we have analyzed the 9-Neumann problem for (0, 1)-forms, but it was
formulated for (p, g)-forms in §1. Here we extend the analysis of §§2—-6 to (0, g)-
forms. Our first order of business is to try to extend Morrey’s inequality. We try to
parallel the computation in (2.5)—(2.11). It is convenient to perform the computa-
tion in a more invariant way, using (1.10)—(1.11), that is,

(8.1) 90 u+0 ou=0Ou=—LAu,

where A acts on u componentwise, for u € A0 (§), Q C C". We have, as in
(3.20)—(3.21),

— —x 1 =
62 Al + 17l = Quge— 1 [ o5 (x0T as.
R

. =% . . . .
for u € D%, the other boundary integrand (8 U, o (x, v)u> vanishing in this
case. Also, we have

83)  (Qu.u = 22”%‘
k

2 du
12 + i / Z(UB/BZk (x, v)@,u> ds
e k
Hence, for u € D4,

+ y(u, u),

) % 02 du |2
(8:4) 3ul2 + 13l —z;H@ .
where

(8.5) y(u,u) = /(a «(x, V) au—ZZaa/azk(x v)a_ , >dS.

aQ

Note that when g = 1, the first term on the right side of (8.4) is equal to the
first term on the right side of (2.11), since |dz;|* = 2.
Let us write the integrand in (8.5) as «(u, u) + B(u, u), with

(8.6) a(u,u) = —;(05* (x,v) Ou, u> = —(0u, dp A u)

and

&7  Bluu) = %Z<03/37k(x v)a_ , >= 2y 2 9 < ou u>
k

p 7k \ 07
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Note that in the case ¢ = 1, whenu = ) ujdz;j,so Quis given by (2.3), we have
- 9 0

(8.8) IINEDY (4@6 - Tpu‘,-) dz; A dZ.

)

07k

ou ; 8uk ap _ ap _
=4 ) _ Tk R
e ;2: (3Zk 0z ) (8z,~ * u‘/)
(8.9)

Here, the first part of the last sum cancels f(u, u), and the rest is what appears on
the left side of (2.8) (multiplied by —4). Upon applying the identity (2.8), we thus
recover the identity (2.11), forg = 1.

More generally, if u is a (0, g)-form:

(8.10) U= Zua dz®,

summed over o < --- < o, then

9 9
a(uu) = = :<a:"‘ dz; A d7® ,fuﬂ A7 A d7 >
J

(8.11) 30 3
24+ Y g (/1) 22 ez,
Z < azk aZ/
where sgn (,ﬁg) is +11if j,aq,..., a4 are distinct and are an even permutation of
k,B1,...,Bg,is —1 if an odd permutation, and is zero otherwise. We also have
ap 3ua
8.12 u,u) = 2911
(8.12) Blu.w) /Z 0, 0,

which cancels out the part of the last sum in (8.11) for which j = k and @ = 8.
We next want to extend the identity (2.8), so we look for some derivatives
tangent to 9S2, arising from u € D%4. A calculation gives

0 _
(8.13) O (x,v)u = 2}/:(; sgn (;;) ua%)dzy,

summed over y; < -+ < yg4—1. Thus, if u € D%, then
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o d
(8.14) dosan| o Juaz—p=0. Yyi<-<yg.
o Jjv)] 0z
Hence, extending (2.7), we have
d 0
(8.15) Z sgn (/3 )ﬁyFng (ka )uaa_p) =0,
jkap NV o)
forally; <---<y4—1and oy <--- < o04—1. Hence
B a \( Oduy dp  _ 0%p
8.16 sgn | . sgn {M T——i—uu_—}:O,
(8.16) j;;ﬁ g (]y SV ﬂaZj 0zk b ¥ 07,0z

for all such y and 0. In this sum we also require 1 < --- < .
Now we can put (8.11) and (8.12) together with (8.16), to establish the
following:

Proposition 8.1. Ifu € D%9, then

a2 % 2
[ull7> + 110 ull72

(8.17) H ou |2 441 / 0%p
=2 — 2 E E — W, Wi, dS,
2 gzt oz 0z TR
k LYo Jk

with

o
(8.18) Wiy = Xa:sgn (k)/)ua.

Proof. It suffices to show that o(u, u) + B(u, u), given by (8.11) and (8.12), is
equal to

B o\ dp Jug _
8.19 — — —1ug,
(319 2 e (j y) e (ky) 0 0

where we sum over j, k,«, 8, y, witha; < --- < a4, and so on.

To establish the identity at a given point p € 09, rotate coordinates so
Vp(p) = 9/9dyy,, and hence dp/dzx = —(i/2)8kn- Then, at p, the quantity (8.19)
is equal to 7 times

1 a
(8.20) 3 sgn ( 'B ) sgn ( * )ab_t—aﬁlg
By JY nyj ozj
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That u € D%¢ implies that ug = 0 at p whenever n occurs in 8, so we can take
the sum in (8.20) over j # n. Meanwhile, (8.11) and (8.12) sum to i times

3ua 1 g _
21 — - = — Uy
I D D
Jaﬂ o

at p; this is equal to

1 o\ Oug _ aua_ 0l _
8.22 — —ug — .
. %Z,;Sgn(ﬂ) CUBEIE RS PO ()

Now the first two sums in (8.22) cancel and the last sum is equal to (8.20). This
proves the proposition.

Note that (8.13) is equivalent to ) _ ; Wj, dp/dz; = 0 for all y, so the hypoth-
esis that the Levi form be positive-definite implies

(8.23) Z

Wiy Wiy = CZ|WJY|2’ V.

8z 8zk -

Hence the last term in (8.17) is

(8.24) >C Z/ W, |2 dS,
jal’ag

when € is strongly pseudoconvex. On the other hand, the map u +— (Wg,) is
clearly injective, s0 Y ;  [W;y|*> = C|u|*>. We hence have the following:

Corollary 8.2. If Q is strongly pseudoconvex and u € D%, g > 1, then

3 . du |2
2 2
(8.25) [Oull7> + 110 ull7> = 2;”@ L2

+C / lul? dS.
d

In the rest of this section, we assume that 2 is a bounded, strongly pseudocon-
vex domain in C”.
From here, we can use the argument from Proposition 3.1 to show that

—_ —%
(8.26) Bul22 + 13" ul2s = Cllulzn Vue DO,

as long as ¢ > 1, and more precisely we can use ||u||%1 _1/2) On the right, as in
(3.9).

As in (3.12)—(3.16), we can define an unbounded, self-adjoint operator £ on
L2(2, A%7), for each ¢ > 1, such that D(£!/?) is the completion of D4 with

respect to the square norm Q (u, u) = ||5u||2L2 + ”5*””22’ and
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(8.27) I£2ul}2 = Qu,uw), ¥ ueDELY?),

By (8.25) and (8.26), £1/2 has compact resolvent, and zero is not in the spectrum
of £1/2,s0 £ exists and is a compact operator on L2(2, A%?), for 1 < ¢ < n.
Furthermore, Proposition 3.2 extends, so (3.18) holds for u € D(L).

Then the higher-order a priori estimates of §4 and the regularity results of §5
extend, to yield the following:

Proposition 8.3. For1 < g <n,

(8.28) L7V HI(Q, A% — H/TY(Q, A%, j >0,
and
(8.29) L7 A% Q) — A% Q).

Thus the material of §6 extends. We have the next result:

Proposition 8.4. Given u € A% (Q), ¢ > 1, we have
(8.30) w=209 L7'u+3 0L 'u = Pju+ Pgu.

The two terms on the right side are mutually orthogonal in L?(2, A®9). Further-
more, for j > 1,

(8.31) Py, Pyt HY(Q,A%) — H/75(Q,A%), Ve>0.

Corollary 8.5. If g > l and f € A%4(Q) satisfies  f = 0, then there exists
u € A%71(Q) satisfying du = f.

Note that there is no “cohomology” here. In the more general case of strongly
pseudoconvex complex manifolds, which will be discussed in §10, there can per-
haps be cohomology, arising from a nontrivial null space of £ on A%4(Q), g > 1.

We next echo some constructions of §A. We define vector bundles £; — Q by

(8.32) Eo=@PA*». Er=@PA"¥*". E=Ey®E.
Jj=0 Jj=0

We then define the unbounded operator Dy on L2(2, E) to be the closure of
9+ 5*, acting on @qzo D%, As usual, D% is as defined in (2.2); in particular,
we have D%0 = A%9(Q). Note that, forg > 1, D(Dn)NL3(Q, A%9) coincides
with D(L£1/?), as defined in §3 for ¢ = 1 and in this section for general ¢ > 1.
Also, the orthogonality relations imply that

(8.33) D(Dy) = @D(DN) N L2(Q, A%9).
q=>0
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It is easily verified from Green’s formula that Dy is symmetric; in fact, such
arguments as needed for Exercise 1 in §3 imply that Dy is self-adjoint.

General considerations imply that the Friedrichs extension method, applied to
the quadratic form Q(u,u) = ||D1\1u||i2 on H; = D(Dy), gives rise precisely
to the positive, self-adjoint operator Dy, Dy = DIZV. In view of the construction
of the self-adjoint operator £ on L2 (2, A%9) discussed above, we have

(8.34) DJZV =L oneach factor L?(Q, A%9),

for ¢ > 1. In particular, we have the identity of the domains of these operators.
The operator Dy provides an example of the following structure. Dy = D
has the form

0 A*
(8.35) D:(AO)’

a self-adjoint operator on a Hilbert space H = Hy & H;, where A : Hy — H; is
a closed, densely defined operator. In the present case, H; = LZ(Q, E ;). Thus

A*A 0O
. D* =
(8.36) ( 0 AA*)’
and our results on £ imply that
(8.37) (D? +1)7! is compacton Hj.

Of course, (D2 + 1)_1 is not compact on Hj in this case, since it coincides
with the identity on H(Q) C L2(R,A%%) C H,, which is an infinite-
dimensional space. There is another important property, namely that, for any
feC®Q), M ¢ preserves D(Dy) and

(8.38) [M s, D] extends to a bounded operator on Ho @ H.

Using these properties, we will establish the following, which, as we will see,
complements Proposition 7.3. Set

0T*

- 2 -1/2 _
(8.39) F=DMD"+1) = (T 0

) ., T =AA"A+1)"V2

Proposition 8.6. The operator F has closed range, and for all f € C(Q), we
have a compact commutator:

(8.40) M/, F] e K(Ho & Hy).
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To establish (8.40), we may as well assume f € C (). Then we can write
841) My, F]=[Ms,D)(D*+1)"? + D[Ms, (D> + 1)7'/].

It follows from (8.38) that the first term on the right is compact on H;. Before
looking at the last term on the right, we derive a result that gives some information
on the behavior of the first term on Hy.

Lemma 8.7. The operator (D* + 1)™Y/2 is compact on the orthogonal comple-
ment of ker D (in Hy).

Proof. We are saying that (4* 4 4+ 1)71/2 is compact on the orthogonal comple-
ment of ker 4 in Hy. We will deduce this via the identity

(8.42) Ag(A*A) = g(AA*)A  on D(A),

which holds for any bounded, continuous function g on [0, c0). The identity (8.42)
is a consequence of the identity

(8.43) Dg(D?) = g(D*>)D on D(D).

Another ingredient in the proof of the lemma is the following. Since AA* has
compact resolvent, H; has an orthonormal basis of eigenvectors for AA*, and we
have

A : Eigen(A, A*A) — Eigen(A, AA™),

8.44
(844) A* : Eigen(A, AA*) —> Eigen(A, A*A).

If A # 0, these maps are inverses of each other, up to a factor A, so they are
isomorphisms.
To prove the lemma, we first show that

(8.45) 9 € CP(R), ¢(0) = 0= p(A*A) € K(Hy).

To do this, write ¢(s) = s@1(5)@2(s)93(s), ¢; € Cg°(R). Then, applying (8.42)
with g = ¢1¢,, we have

(8.46) P(A*A) = A" A(p192) (A" A)p2(A™ A)
' = A%p1(AA™)p2(AA") A3 (A" A).

Here, Ap3(A*A) € L(Ho, Hi), ¢2(AA*) € K(H1), and A%p1(AA¥) €
L(Hy, Hyp), so (8.45) follows. Consequently, the spectrum of A*A, which is
contained in [0, 00), is discrete on any compact interval in (0, co), of finite multi-
plicity. It remains to show that this spectrum cannot accumulate at 0. Indeed, the
argument involving (8.44) shows that

(8.47) {0} U spec A*A = {0} U spec 44",
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and since AA* has compact resolvent, its spectrum does not accumulate at 0, so
Lemma 8.7 is proved.

To proceed with the proof of Proposition 8.6, we next show that the last term
in (8.41) is compact on H; and on the orthogonal complement of ker D in Hy.
One tool will be the integral representation

1 o0
(D% +1)7V2 = ;/0 ATV2(D2 1407 dA
8.48
( ) 2 * 2 2\—1
== (D +1+5%)"" ds.
0

In order to get a convenient formula for [M s, (D? + 1 +s5%) 1], setr = /1 + 52
and write

(8.49) (D*+t) V=D +it)y (D —it),

o)

0,50 My, (D> 4+ 1) =Mz, (D +it) (D —it)™!
(850 +(D+it) " [Ms, (D —ir)"].
Since, for f € C*®(Q), M ¢ preserves D(D), we have
(8.51) Mg, (D +it) '] =—(D +it)"'[Mys,D|(D +it)~".

Hence

My, (D*+ %)= — (D +it)[My, D|(D* +t*)~!

8.52
(852) —(D* +t*)[Ms,D)(D —it)"".

Therefore the last term in (8.41) is equal to
——/ D+l 1+s2) [Ms, DI(D? + 1+ s*)"' ds

—1
(8.53) —3/ D(D? + 1+ 527 [My. D] (D—i\/l +s2) ds
T Jo
=T + T>.

In view of the operator norm estimates

ID(D+in <1, [(D+in7' <7,
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for t > 0, it follows that both integrals in (8.53) are convergent in the operator
norm. Thus 7} 4 T3 is compact on any closed subspace of Hy & H; on which the
integrands are compact, for all s € [0, 00).

The integrand for 7T} is a product of bounded operators with the factor (D? 4
1 + s?)~!, which we know to be compact on H; and on (ker D)L, so T} is
compact there. The integrand for 7, is a product of bounded operators and
D(D? + 1 + s?)~L. It follows from Lemma 8.7 that this factor is compact on
all of Hy @ H;, so T is compacton Hy & H;.

To complete the proof of compactness of the commutator (8.40), it remains to
show that this commutator is compact on ker D, for f € C° (). In such a case
we can write, in place of (8.41),

(8.54)
[Mf,D(D2 —+ 1)_1/2] — [Mf’ (D2 + 1)_1/2D]

= [My,(D*+ 1)"Y2]D + (D? + 1)""/?[M, D],

on D(D). On ker D, this is equal to
(8.55) (D% 4+ 1)™V2[M/, D).
Now [M s, D] maps Hy to Hy, and (D? + 1)~Y2is compact on Hy, so (8.55) is
compact on Hy. This completes the proof of the compactness assertion (8.40).

Finally, the proof of Lemma 8.7 shows that zero is an isolated point of spec
D2, hence of spec D, so D has closed range, and hence F has closed range. This
completes the proof of Proposition 8.6.

Another consequence of Lemma 8.7 is that
(8.56) F—FyeK, Fo=PT—P",
where P is the orthogonal projection onto the closed linear span of the positive
eigenspaces of D, and P~ is the orthogonal projection onto the closed linear span
of the negative eigenspaces of D. Thus (8.40) is equivalent to
(8.57) My, Fo] € K,
forall f € C(Q). Note that
(8.58) FZ=Pt+P =1-P°
where P? is the orthogonal projection onto ker D. Since

My, F3] = [My, FolFo + Fo[My, Fol,

we have the following variant of (8.40):
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Proposition 8.8. Forall f € C(2), we have compact commutators:
(8.59) [My, PT], [My, P7], [My, P°] € K(Ho & H).

In our present situation, P preserves each factor L2(Q, A%9) in Hy @ H,.
In fact, P is zero on all these spaces except L2(2, A%?), on which it is the
Bergman projection. Thus the compactness of [M r, P°] is equivalent to the com-
pactness of [M ¢, B], established in Proposition 7.3.

The value of Propositions 8.6—-8.8 as a complement to Proposition 7.3 is par-
ticularly revealed in its relevance to the index identity (7.34). We will give only a
brief description of this connection here, referring to [BDT] for details. As shown
in [BDT], the results in Propositions 8.6—8.8 imply that Dy determines a rel-
ative K-homology class, [Dy] € Ko(Q2,9L), and that the K-homology class
[t] € K1(0€2) described in §7 is obtained from [D ] by applying a natural bound-
ary map:

9 Ko(Q,0Q) — K, (09).

It is then shown in [BDT] that a certain identity in Ko(Q,99) leads, via the
application of this boundary map, to the identity [t] = [r] € K1(dS2) mentioned
in §7, an identity that in turn implies the index identity (7.34).
Exercises
1. Extend the results of this section to
3:C®@QV @A) — C®@Q, VAT,
for any finite-dimensional, complex vector space V. Deduce results for
9:AP(Q) — APATL(Q).

2. Establish an analogue of Proposition A.4 for the 5—complex.

9. Reduction to pseudodifferential equations on the boundary

In this section we reduce the 3-Neumann problem on  to a system of equations
on d€2. This method provides an alternative to the sort of analysis carried out in
§§2-5. We consider the boundary problem

Ou=0 on €,

9.1) _
o (x,V)u =0, oz (x,v)0u= f on 9.

We write u in terms of a solution to the Dirichlet problem:

9.2) Ou=0on 2, u =g,
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thatis, u = PI g. Thus, g satisfies the equation

9.3) Ag =,
where
9.4) Ag = og+(x,v) d(PLg) ao’

and we require

9.5) O (x,v)g =0.

Thus, we can regard A as a linear operator

(9.6) A:C®0RQ,E) — C*®(0Q,E),
where £ — 0% is the complex vector bundle

9.7) E = Kerog+(x,v) = Imog«(x,v).

Here, if we are looking at O on (0, ¢)-forms, the first o+ (x,v) in (9.7) acts on
A4 ' and the second acts on A%4+! )39' The second identity in (9.7) follows

from the exactness of the symbol sequence for the g-complex.
For simplicity, we confine attention to the case ¢ = 1, which was studied in
§§2—-6. Thus u = PI g has the form

9.8) MZZMJ' dz;, u; = g; onodQ.
Sayv =) (v;dx;+pjdyj),so

9.9) vy =) 0 dz. gp = —ing.

The condition that o3+ (x, v)u = 0 on d<2 is equivalent to

(9.10) Y g =0.
A computation gives

= _ 1 8u<,- 8uk
9.11) 05*()6,\1)814:2]"; dz;, ijZXk:GDk (E—g)

Note that )~ ¢; f; = 0, a fact consistent with the second identity in (9.7).
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To express (9.11) in the form (9.3), write

ou 1
(9.12) = = (Ve + axN)g,
07k 2
for u = PI g, where Y is a (complex) vector field tangent to 92, a; €

C>(9R2), and N is the Neumann operator for the Dirichlet problem:
(9.13) Ng=—, u=Plg.
v

Thus we get Ag = f, thatis, f; = Ajkgk, with

9.14) 8fj = Y ok Yk +axN)g; — D e (Y +a;N)gy.
k k

Note that >, oxgx = 0 = > oxYigk = — > 1 (Y;9r) gk, for each j. Thus
we can write the system as

©0.15)  8f; =Y +aN)g; —a; Y exNegk + ) _(Yipn) gk
k k

with

(9.16) iy = Z(kak, a= Zakwk.
k k

Now, (9.12) implies that Re ay = v and Im ax = pu, or
9.17) ax = @y.

Also, of course, 1 = Y (vF + u3) = X |¢;]% so we have a = 1 in (9.16).

Furthermore, if p is a defining function for £, as in §2 (so p = 0and [Vp| =1
on 92, p < 0 on ), then gy = —20p/0dzx and, for all v € C*(R),

(9.18) Y %<5v,5p>;

so,ifu; = PI g;, we have

(9.19) (iY 4+aN)g; = (u;,dp) "

Fix p € 0%, and rotate coordinates so d<2 is tangent to {y, = c} at p, and
Vp = —09/dy, at p. Then dp = —(i/2) dz, at p, so we have

9o
&) + Ngj.

(9.20) (iY +aN)g; = —i
axp
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We recapture the identity @ = 1 and see that, in (9.15), Y is a real vector field
tangent to d€2, namely

9.21) Y = —J(Vp).

Note that we can write (9.10), and the analogous result for f, as

(9.22) Y gia;=0=>_ fa,.

If we define Q € C*°(92, End(C")) to be the orthogonal projection that annihi-
lates (a1, ...,an),then Qg = gand Qf = f, so we can apply Q to (9.15), and
write

(9.23) 8f =N +iY)g +Cg,

where C = C; 4+ C,, with

9.24) Cig=[0.N+iY]g. (C29); = 0, (Yegu) (02
k.l

Note that, for each x € 02, R(Q(x)) = Ex = 9x(9R) (defined by (2.33)) in
this case.
Thus we need to analyze the pseudodifferential operator

(9.25) Ot =N +iY + C € OPS'(0Q),
which we claim to be hypoelliptic. The principal symbol is given by

(9.26) og+(x.§) =—[§[ + t(x.§), t(x.§) =(Y.§),

which is < 0 everywhere and vanishes to second order on the ray bundle gen-
erated by J?(dp), which we will denote as X+ C T*(32) \ 0. Thus X is the
characteristic set of O,

Since og+ = o4y Vvanishes to second order on >+, it follows that C; =
[0.N +iY] € OPS°(0Q) satisfies

(9.27) oc,(x,€)=0 on TT.

It will turn out that this implies that the presence of C; does not affect the hypoel-
lipticity of O%.

The operator C, (also of order zero) requires further study. If we fix p € 9Q
and rotate coordinates so that 7, (3€2) is given by {y, = c}, then Q(p) annihilates
the last component of a vector in C”, and we have
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ad 0
928)  Cag(p) =2 ﬂgk,... Z g0

Note that the Levi form arises here:

ok Ip
9.29 22— =—4 = —4L;;
©-29) 3z, 3z, 021 K

on 9. Thus, for any g, h € L?(3S2, C"), we have

(9.30) (Cag, )2 = —4/E(Qg, Qh)ds.

If g and & are sections of £ — 92, we can omit the Qs in (9.30).

We have used the fact that N' = —/—=Ax mod OPS°(3Q) in the symbol
calculation (9.26), where A is the Laplace operator on X = 9€2. We next make
use of a finer analysis of V, given in §C at the end of this chapter, which says

(931) N =—y/-Ax + B, BeOPS’0dRQ), op(x,§) = Tr (An Py),

where Ay is the Weingarten map (arising from the second fundamental form
of 3@ C R?") and PEO is the orthogonal projection of T (9€2) onto the linear

subspace annihilated by &. Thus
(9.32) -0t =-Ax—iY + By, By =-B—C e 0PS°0Q).
In (9.29) we have related the principal symbol of the most important part C, of C

to the Levi form. If we use (B.20), we can write the principal symbol of B on X+
as

(9.33) op(x,n) = 2(Tr 2)1, n = J'(dp),

where we use the Hermitian metric on $)(9€2) to produce the section
Lec(092.End$)

from the Levi form. Hence

(9.34) o8, (x.6) = —2[(Tr D) 220 + B(x.6),

where B(x, §) vanishes on 7.
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The action of O on sections of E is of major interest, but it is convenient to
analyze Ot on general functions u € L2(32,C™). To do this, it is convenient to
replace ZQ by . R

Lo=LO +yx)U-0),

where y(x) is a positive function to be specified later. Thus, we replace (9.34) by
(9.35) B, (x.8) = —2[(Tr DI — 22Q] + B(x, £).

From now on, we work with this modified O%.
The structure of (1™ is to some degree simplified by composing on the left by
O™, defined by

(9.36) -0 = V-Ax +iY + Ba,

where B, € OPS°(dS2) will be specified shortly. Note the different sign in front
of iY. Thus O™ is elliptic on >+ its characteristic set is X7, the ray bundle in
T*(0R) \ 0 generated by —J*(dp). We have

9.37) O 0O"=-Ax +Y2+F,

where F € OPS'(3Q2) is given by

(9.38)
F= (J—AX ¥ iY) B —i [ —AX,Y] + B, (\/—AX —iY) + ByB,.
Since

+i [ —AX,Y] - [\/E, “Ax j:iY]

and «/—Ayx £ iY is doubly characteristic on >7F, we see that
(9.39) Oiv—ar.y]*.§) =0 on TTUZ.

Now 7(x, £) = £|£| on ©*. Consequently, the principal symbol of F satisfies

©.40) op (1. £) = { 2lElop, (x.§) on Ej} _
2|€loB,(x,§) onX

Thus, if B, is chosen so that

(9.41) B, (x.£) = 2[(Tr oI — 2ZQ] on ¥,

then

942)  op(x,£) = —4[(Tr oI — 2ZQ]z(x,g) onT=3xtUs.
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If O~ is constructed in this fashion, we have
(9.43) OOV =-Ax+Y?2—ia(x)Y + R =0 + R,
with
9.44) a(x) = 4[(Tr DI — 2ZQ], R e OPS'(0Q), or(x,£) =0 on X.

As we have suggested, R will play a minor role in the analysis. Now the opera-
tor 0, = —Ax + Y2 +ia(x)Y is a second-order differential operator, doubly
characteristicon ¥ = X% U X7, It is essentially the “Kohn Laplacian” on 9.
We now derive an analogue of the “1/2-estimate” for (j, + R. In the analysis,
R (or perhaps R’ or R;) will denote an arbitrary element of OPS!(9Q) (some-
times a differential operator) whose principal symbol vanishes on X; it might

vary from line to line. We begin with an estimate on ((Db + R)u, u)L2 when

u is supported on an open set O C 92 diffeomorphic to a ball in R?"~1, Let
{X; :1 < j < 2n} be asmooth, orthonormal frame field for $(9€2) over O, such
that X, ; = JX;.

Lemma 9.1. Assume L is positive-definite on 9, (0R2), for all x € I2. Also as-
sume n > 3. Ifu € Cg°(O, C"), then, for some C; > 0,

©045) Re((@p+ Ruwu) = Co Y IXjuls + Collllyyz — il

Proof. Note that

(9.46) —AX+Y2:—§:X}+R.
j=1
Now set
(9.47) Zj=X;—iXjn. Zj=X;+iXjin.
We have

— 5 s 1 —
Zij =Xj +Xj+n_§[zj’zj]’
(9.48) 1
Z;Z; = ij +X]2+n + E[Zj,Zj].
If we use (B.7), and recall that Y = —J(Vp), we have

1 — ~
(9.49) E[Zj,Zj] = —iﬁj(x)Y—i—Rj, ﬁj(x) = 4£(Xj,Xj) = 4(£Xj,Xj).
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(The factor of 4 arises from a slightly different definition of Z; and Z ; in (B.10).)
Note also that

(9.50) Z;Zj=-Z,Z;+R;. Z;,Zj=-Z;Z;+R)}.
Hence, since ) B; = 4 Tr Z,

—Ax +Y2=)"Z;Z% +4i(Tr L)Y + R

(9.51) R

=Y "Z3Z; —4i(Tr L)Y + R,.
Thus,

Op+R=) Z;Z*+iA1(x)Y + Ry

(9.52) 2.2

=Y Z5Z;—iA(x)Y + R,
where
(9.53) A1(x) = 8Lp. Ax(x) = 8((Tr oI — ZQ).

Recall that EQ = zQ + y(x)({ — Q). As long as y(x) > 0, A;(x) is a
positive-definite matrix function. Also, as long as n > 3, Tr L exceeds any sin-
gle eigenvalue of L, so we can pick y(x) > 0 small enough that A,(x) is also a
positive-definite matrix function.

Given that A;(x) and A,(x) are positive-definite, we want to take a “convex
combination” of the two expressions on the right side of (9.52) and obtain an
expression for which the estimate (9.45) is obvious. Let ¢;(x,§) € S % be real-
valued and satisfy

(954) q)](xsé) > 5> 07 </’1(xs§)2 + 902()67%‘)2 =1

Then the operators ¢ (x, D) are elliptic, and we have

Op+ R=¢1(x.D)* Y Z; Z5¢1(x. D)
(9.55) + @200, D)* Y Z5Z¢a2(x, D)
+i[41(0)¢1(x. D) = A2 ()2, D) Y + R

Now the operator

(9.56) V = i[41@)e1(x. D) = A2(x)ga(x, D) ]
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has symbol on ¥ given by

O51)  ov(x.§) = £[ Ae(x.§) — A2()e2(x.§)||E] on T

Given that A, (x) is positive-definite, we see that oy (x, £) is positive-definite on
=7 as long as @5 (x, £) is sufficiently small on T ; similarly, if A, (x) is positive-
definite, then oy (x, §) is positive-definite on X~ as long as ¢; (x, £) is sufficiently
small on .

Thus, under the hypotheses of Lemma 9.1, we can arrange

(9.58) ov(x,€) > colé|Il on X, c¢o>0.
Now we can write
(9.59) V=W+R, ow(x,& >colé]I on T*O\DO,

and deduce from (9.55) that

Re((Db+R)u, u)L2

(9-60) = Y {1Z}e1(x. Dyl + 1Z¢2(x. Dyul |
+ Re(Wu,v);2 + Re(Ru,u);2,

Garding’s inequality implies
9.61) Re(Wu,u)r2 = Collull31/2 — CillullZ-.
If we note that [Z;, ¢1(x, D)] and [Z7, 2(x, D)] belong to OPS°(0R) and use

elliptic estimates, we see that the sum over j on the right side of (9.60) is

2n
(9.62) > Co ) IXjuly = Cullull7.
j=1

Finally, given R € OPS'(dR2), or(x,£) = 0 on X, we can write

(9.63) R=)"S;X;+S, S;€0PS°(0Q)
and obtain
(9.64) |(Ru,w)] < C Y X jull g2 llull g2 + Clull .

From these estimates, we have (9.45).
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Note that since Re((Db + R)u, u)L2 < |lull 12 11(Tp + Ryull 1,2, the in-
equality (9.45) implies the estimate

©9.65) Y _IXjuly2 + lullyre < CI@s + Rully—1/2 + Cllul} 2,
foru e Cg°(0,C").

We can localize the estimate (9.65) as follows. Given ¢ € C§°(0O), we see
that

(9.66) Yo(x)(Tp + R) — (Op + R)Yo(x) = R'.
Assuming ¥; € Cg°(O), ¥j+1 = 1 onsupp ¥;, we have
9.67) Yo(Op + R) — ¥1(Tp + R)Wo = Y1 R'Y2 + Y [y2, R'].

Applying (9.65) with u replaced by ¥ou, we then have

D OIX Wowll7 2 + [voul%
(9.68) < Cllyo(Op + R)””%;—l/z +C Z X (qu)”%;—l/z
+ Cllpoul22 + Cllull?.
foru e C*(0Q,C").
If we cover 02 by a finite collection of open sets O, diffeomorphic to balls,
and sum the resulting estimates, we obtain a global estimate of the form

(9.69)
IVsul7> + lulFe < CIOp + Ryulg—1/ + ClIVsulg—1/o + Clull7,

for all u € C*°(02,C"), where, for each component u; of u, Vgu;(x) is the
orthogonal projection of Vuj(x) € CQTx(9Q) onto C ®r Hx (), s0 Vyu(x) €
C" Rr $Hx(92). We can write

(9.70) IVoulf—1/2 < ellVaul2 + C(e)[Vouly—

and absorb the term ¢|| Vﬁl/i”iz, obtaining

9.71) ||VYJ“||2Lz + ||”||%v.11/2 =C|(@ + R)“”fq—l/z + C”””%r

We can obtain higher-order estimates as follows. With A = /—Ax + I, we
have

9.72) A¥(@p + R) — (O + R)AF = R'AF,
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so applying (9.71) with u replaced by A¥u yields

k. 12 k. 12
Ve A ull72 + 1A%l 7,2

9.73)
< CIAM @ + Ryulyy 1o + CIR A ulyy 1o + ClIA U],
Now we have ||R’Aku||§_rl/2 <C|Vsq Aku||’g,l/2+c ||Aku||§_171/2, so standard

methods yield the a priori estimate
9.74) ||Vﬁ“||§1k + ||“||§1k+1/2 =Cl(@ + R)””%{k—lﬂ + C”””iz’

forallu € C*° (02, C").
We can go from the estimate (9.74) to the associated regularity theorem:

Theorem 9.2. If Q is a bounded, strongly pseudoconvex domain in C" and
n > 3, then the operator Oy + R given by (9.43)-(9.44) is hypoelliptic. If
u € L?(32,C"), then, for any s € [—1/2, 00),

9.75) (0p+ Rue H = ue HL.

Proof. We first establish the local version of (9.75), fors = k—1/2, k =0,1,2,
and so on. Let O be a coordinate patch on 9%, identified with a ball in R2?*1,
Take ¥; € C{°(O) such that ¥; 41 = 1 on supp ;. Let ¢ € C{(R?"H1)
satisfy (&) = 1 for |€] < 1, O for || > 3/2. Consider the following families of
operators, for ¢ € (0, 1]:

(9.76) Jeu = Y1 ()p(eD)Yo(X)u,  Keu = Y3(x)9(2~ eD) 2 (x)u.

We have

9.77) Je, K¢ boundedin OPSRO, O(s_k) in OPSI_,g,
and

(9.78) K¢Je — Je boundedin OPS| .

The formula (9.46) yields
(9.79) Ke(Op + R)— (Op + R)Ke = — Y [Ke. X7] —i[Ke. @Y ] + [K,. R'],
which is equal to

(9.80) > BjcRj. Bj; boundedin OPS{,. O(¢7¥)in OPS;3.
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Also we have

(9.81) BjeR;J: boundedin OPS| .
Now, we apply (9.74) with u replaced by J.u, to get

Ve Jeul 3 + 1 Teullygesr/o
< C|K:(Op + R)””%{k—l/z
+C Y IBje R Jeulyii sz + Cll Jeull?
< Cl(@p + RulFyi-rjz + Cllul?,.

(9.82)

Passing to the limit ¢ — 0 yields the local version of the regularity result (9.75),
fors =k—1/2, k =0,1,2,...,and the result (9.75) for general s € [—1/2, 00)
can be deduced via an interpolation argument.

We are now in a position to prove the main result of this section.
Theorem 9.3. If Q2 is a bounded, strongly pseudoconvex domain in C", and

n > 2, then the operator O given by (9.25) is hypoelliptic. If u € L?(32,C"),
then, for any s € [1/2, 00),

(9.83) Otue H = ue H'.

Proof. If n > 3, this is immediate from Theorem 9.2. It remains to deal with the
case n = 2.
What happens to the argument involving 0" = O, + R whenn = 2 is

that we cannot pick ¢;(x, £) to satisty (9.54) and arrange that oy (x, §) 5 given
by (9.57), be > c¢¢|&|, with ¢y > 0. The reason is that A, is not positive definite.
Recall from (9.53) that A(x) = 8((Tr Z)I — EQ), so if n = 2, zero must be an

eigenvalue of A»(x), V x € dQ2. This makes it impossible to make oy (x, &) >

co|&| on 7. However, we can still arrange that oy (x, £) > ¢o|£| on =T, In fact,

for this we can just take ¢ (x,&) = 1 — 8, @2(x, &) = 6, for small, positive §.
To fix Op + R, we merely alter it on a small conic neighborhood of £7. Set

(9.84) Op=0p+ R+ S,

where S € OPS!, S(x,§&) is supported on a small conic neighborhood of %7,
and furthermore S(x, §) . > ¢1]€|, for sufficiently large, positive ¢1. Then the

arguments used to prove Lemma 9.1 and Theorem 9.2, starting with (9.58)—(9.60),
show that Oy, is hypoelliptic and

(9.85) Opuec HS = uec HHL.

Since ﬁb is equal to 0~ microlocally near £* and OV is elliptic away from
T, this is enough to complete the proof of Theorem 9 .3.
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Though we will not pursue details, we mention that there are constructions
of parametrices for various classes of hypoelliptic operators with double char-
acteristics which include the operators studied above. Constructions making use
of Fourier integral operators are given in [B1, Sj], and [Tr2]. Another approach
makes use of analysis on the Heisenberg group; this was initiated in [FS] and pur-
sued in a number of papers, including [BG, BGS, BS, D, Gel, GS,RS], and [Tay].
The Heisenberg group approach provides a convenient way to obtain estimates in
other function spaces, such as L?-Sobolev spaces and Holder spaces, on which
results were first obtained, by other methods, in [Ker].

The reduction of the d-Neumann problem to the study of 0% was made in
[GS], for (0,1)-forms, on a strongly pseudoconvex manifold, with a special met-
ric, typically different from the Euclidean metric, called a Levi metric. A special
property of a Levi metric is that_z, arising as in (9.33) and (9.34), is a multiple of
the identity. A reduction of the d-Neumann problem for (0,1)-forms, with a gen-
eral metric, was made in [Cha]. The analogous study for (0, g)-forms, g > 1, is
made in [LR], for a Levi metric, and in [BS] for a general metric. In these analy-
ses, Q can be a general strongly pseudoconvex complex manifold, not necessarily
a domain in C”. In §10 we will derive estimates for the d-Neumann problem on
such manifolds, via the sort of energy-estimate approach used in §§2-5 and 8.
The details of the reduction to the boundary made in this section would have to be
modified to treat the more general situation, since we made use of the fact that [J
is (a constant multiple of) the Laplace operator, acting componentwise, on forms
on a domain in C”, with its standard flat metric.

While we have emphasized C* regularity, there are also results on the ana-
lytic regularity of solutions to the d-Neumann problem when 0€2 is real analytic
and strongly pseudoconvex, in [Tar, Tr1], and [Gel], the latter two making use of
analytic pseudodifferential operator calculi on 9€2.

Exercises

1. Work out the formula for 0 when 2 is the unit ball in C”, using (C.29), withm = 2n.
2. Extend the results of Theorems 9.2 and 9.3 to all s. (Hint: For any invertible, elliptic
A% € OPS9(02) with scalar principal symbol, write

A0, + R)A® =0, + R)

3. Show that the regularity results of §5 follow from Theorem 9.3. (Hint: If U solves
OU = F, with homogeneous d-Neumann boundary conditions of the form (1.12),
write U = Up + u, where Uy solves the Dirichlet problem

OUy = F on Q. U’ —0,
0 on OBQ

and u solves (9.1), with _
f = o5 )ls|, )
4. Show that under the hypotheses of Theorem 9.3 (but with no restriction on s € R),

(9.86) Otu e H(0Q) = u € H () and Veu € H*"2(IQ).
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Let v = Pl u. If (9.86) holds, for some s > —1/2, then
ve HSH/2(Q).

5. Let P be a first-order differential operator with constant coefficients, acting on
A%1(RQ). Suppose

(9.87) Po| = A(x) + Pian?,

where v is the inward normal, and suppose

(9.88) —A(x)|E| + op,, (x,&) vanisheson 7.
Show that if v is as in Exercise 4, then

9.89) Pv e H*(Q).

(Hint: Pv is harmonic on . Write Pv s = w = A(x)Nu + Penu, and show that
we HS"Y2(3Q)))
6. Suppose v satisfies the hypotheses of Exercise 4 and, in addition, that u = v is a

section of E, so that Qu = u. Show that the conclusion (9.89) of Exercise 5 still holds
when the hypothesis (9.88) is weakened to

(9.90) (—A(x)|§‘| +op, (x, g)) O(x) vanishes on T

7. Show that Exercise 6 applies to 3. Using this, establish (6.19).

10. The d-equation on complex manifolds and almost
complex manifolds

Let M be a compact C *°-manifold with boundary. We can assume M is contained
in a smooth manifold O without boundary, such that the interior M is open in O.
An almost complex structure on M is a smooth section J of End(T M) such that
J2 = —]. If there is such a structure, the real dimension of M must be even,
say k = 2n. Thus, for p € M, TI,M, regarded as a complex vector space, has
complex dimension 7.

A (0, 1)-form on M is a section of the complexified cotangent bundle C T* M
of the form

(10.1) a=p—il'p,

where B is a section of T*M, and J* : T;M — T;H is the adjoint of J.
Similarly, a (1, 0)-form on ‘M has the form ﬂ/ =pg+iJ 8. We have vector
bundles A%'M and A*°M  and clearly CT*M = A®'M &AM . An obvious
algebraic procedure yields subbundles A”*YM of CA"T*M, r = p + ¢, and
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(10.2) CA'T*M = @ A»'M.
p+q=r

We also use A?>4(M) to denote the spaces of C *°-sections of these bundles.
Let I, denote the natural projection of CA"T*M onto AP4M . We define
the operators

(10.3)  3: APA(M) — APITY (M), 0: API(M) — APTH(M)
by
(10.4) u=Mpgr1du, du=Tpi1qdu.

The basic case of an almost complex manifold is a complex manifold. For
example, we say O is a complex manifold if it has a covering by coordinate charts
(into open subsets of C") whose transition maps are holomorphic. Then McCO
is a complex manifold with boundary. In such a case, d and d are as defined in §1
(in any local holomorphic coordinate patch), and the following relations hold:

(10.5) 9 =0, =0, d=0+0.

These relations need not hold for an arbitrary, almost complex manifold, but it is
readily verified that if any one of them holds, so do the other two. In such a case,
the almost complex structure is said to be integrable. Thus, for a complex mani-
fold, the almost complex structure is integrable. The converse to this is known as
the Newlander—Nirenberg theorem; any manifold with an integrable, almost com-
plex structure has a holomorphic coordinate chart. We will say more about this
later in this section. There is also a direct characterization of the integrability con-
dition in terms of J, which we will not need for our analysis, but we will mention
it in the exercises.

In the rest of this section, we assume M has an integrable, almost complex
structure. As in earlier sections, we are interested in the equation

(10.6) du=f on M,

foru € A%4 (M), given f € A%4H1 (M), satisfying 3 f = 0. For this to lead to
a d-Neumann problem, we need an operator

(10.7) 3 APITL() —s APA(M),

a formal adjoint of 9. We assume M has a Riemannian metric with the property
that J : T,M — T, M is an isometry, which can be obtained from an arbitrary
Riemannian metric by averaging over the action of {1, J, J2, J3}.

The Riemannian metric yields both a volume element on M and a Hermitian
metric on CA*T*M, hence inner products (u,v);2 for u,v € AP4(M), and
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Hilbert spaces L2(§2, A??), as well as the operator 3. Asin (2.2), we can define
(10.8) DP4 = {u e API(M) : o+ (x,v)u = 0 on IM}

and then consider

(10.9) O(u,v) = (du, )2 + @ u,d v)2, wuveD™.

We can define the subbundle $(dM) of T(dM) in a fashion similar to that
done in §2; given p € IM,

(10.10) 9,(0M) ={X € T,(0M): JX € T,(dM)}.

We can define the notion of a strongly pseudoconvex manifold, though it is more
convenient to use an approach of §B than that of §2. Suppose p € C®(M), p <0
on M, p = 0on dM, |Vp| = 1 on dM. Then, as in (B.14)—(B.15), define the
Levi form as a quadratic form on $(dM ) by

(10.11) L(X, X) = <[JX, X],oc> — (da)(X,JX), «=J'dp).

If £(X, X) > 0 for all nonzero X € $,(dM), we say M is strongly pseudocon-
vex at p.

The version of Morrey’s inequality available in this setting is a little weaker
than (2.1). We will prove the following.

Proposition 10.1. If M is strongly pseudoconvex, then, for some C >0, all ¢ > 1,

_ —k
(10.12) 0ull3> + 110" ull7> + llull3. = C / ul>dS, Y ueD™.
oM
It will suffice to establish (10.12) when u € D% has support in some coor-
dinate patch U intersecting dM . We can assume that, over U, there is a smooth

orthonormal frame field {w; : 1 < j < n} for AL°, with w, = +/20p. Let
{L;: 1< j < n} be the dual basis, consisting of (complex) vector fields. Set

(10.13) Cjx = L(Lj. Ly) = <[L<,-,Zk],a)n>, 1< jk<n—1.

One can verify that this is essentially equivalent to the Levi form. In particular, M
is strongly pseudoconvex if and only if (C i) is a positive-definite matrix, at each
p € M. Then, foru € A%9(U), we can write

(10.14) U=y U
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Here and below, all multi-indices will be increasing (see the conventions in §8).
Note that

(10.15) ueD™ < uy =0 ondM whenevern € a.

Using these frames, we have the following formulas:

ou = Z sgn (kﬁoc) (Zkua)ﬁﬂ + Au,

k.,
(10.16) b
Su=— Z sgn ( * )(Lkua)ay + Bu,
ky
k,o,y
where A and B are operators of order zero.
Let us set
1017 E@?= Y [Tl + s + [ f? as.
ak oM

The following result will suffice to prove Proposition 10.1.

Lemma 10.2. Assume that (Cji) is diagonal at p € M, with eigenvalues
Alse..sAn—1. Let 8 > 0 be given. There is a neighborhood U of p such that
ifq > 1 and u € D% is supported in U, then

(10.18) [[3ully, +18"ull} = Y I Zeuall}o+ ) Y Ak / Jual® S + R(u),
ko ® kea gy

where

(10.19) |R(u)| < 8E(u)?* + C|lull 2 E (u).

To begin the estimates, we use (10.16) to write

a2 T 2
19ul?> = Y I Lkual -
ké¢a

(10.20)
o . —
+ ) sen (kj;) sgn (J.ﬁ)(Lkua, Ljug)r> + R,

where |Ry| < C Y || Liute|z2]lull 2 + C ||u||i2 Here and below, the quantities
R; will all satisfy estimates (either stronger than or) of the form (10.19). From
this we can deduce
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19ul7> = Z ILkual?

(10.21)
— ngn (ji) sgn (kf/) (zkua,zjulg)Lz + Rs.
Now
—(Zkua,zjuﬂ)Lz = (szkua,uﬁ)Lz + R4
(10.22)

= —(Ljug. Lxug)r2 + (L. LiJug.up) 12 + Rs,

so the second term on the right side of (10.21) is equal to

— Z sgn(j?y) sgn (kﬁ()') (Ljuq, Lxug)y>
(220 Bt

Meanwhile, the formula for 9 uin (10.16) implies that the first sum in (10.23) is
equal to

(10.23)

(10.24) —19" ull?, + Ry.

Putting together (10.21)—(10.24), we have

—_ —%
JGul2, + 13" ull3 = Z I Zetal2,

(10.25) P
o _
+ Z sgn (j y) sgn (ka) ([L‘,-,Lk]ua, u,g)L2 + Rg.

To pass from here to (10.20), it remains to consider the second sum on the right
side of (10.25). Making use of (10.15), one can show that if j € o and k € B,
then

(10.26)
(IL) Tiluaug) |, = V2CikLntasup)o + Ry if juk <n—1,

Rio if j=nork =n.
Now write

(10.27) Cjk = MSjk +Dbjk, bjx(p)=0.
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Note that « = B for nonzero terms for which j = k, in the last sum in (10.25).
Also

(A8 ik Lnug,ug) 2 = Ak (uq, Znua)Lz

1
+ Axdjk / lT<ULn(X,V)Ma,Ma> dS + R

(10.28) oM
1
= Ekk&jk / |ug|? dS + Ria.
oM
Similarly,
1 _
(10.29) (bjkLpug,ug)r2 = EM//; bjkugiig dS + Ry3,

and if U is such a small neighborhood of p that sup |b x| is small compared to §,
this can also be denoted as R;4.
Combining (10.26)-(10.29) and summing, we have

Z sgn (qu) sgn (kﬁo) ([Lj,fk]ua, Mﬂ)Lz

=Y M / lue)* dS + Rys.
kea oM

(10.30)

Using this in (10.25), we have Lemma 10.2.

We can now use the Friedrichs method to define an unbounded, self-adjoint
operator £ on L2(M, A%9), for any ¢ > 1, such that D(£!/?) is the completion
of D%4 with respect to the square norm Q (u, u) + ||u||2LZ, where Q(u, v) is given
by (10.9), and (Lu,v);2 = Q(u,v) for u € D(L), v € D%4. One difference
between this situation and those that arose in §§3 and 8 is that, while £ > 0, we
might possibly have 0 € spec L. The estimates of §§3 and 4 and the regularity
result of §5 extend without difficulty if M is strongly pseudoconvex, which we
will assume in the rest of this section.

We have

(1031)  ueDL), Lu= f e H (M,A*) = ue H/T1 (M, A®9);
for ¢ > 1; in particular,

(10.32) Ker £ C A% (M).

Denote this space by H%4(M). In fact, we have

(10.33) HU (M) ={ueD :9u=0=20 u.
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Let P, denote the orthogonal projection of L2(M, A%?) onto Ker L. Given f €
L?(M, A%9), let Gf denote the unique element u of (Ker £)* such that Lu =
(I — Pp) f. Clearly,

(10.34) G: H/ (M, A% — H/TY(M, A%,

for ¢ > 1. We have the following Hodge decomposition for u € A% (M):

(10.35) =29 Gu+19 9Gu+ Pyu= Pyu+ Pyeu+ Pyu.

Arguments used in §§6 and 8 extend to show that these three terms are mutually
orthogonal in L2 (M, A%9), so Py and Py= (as well as Pp) extend to bounded op-

erators on L2 (M, A%?), which in fact are orthogonal projections. Such arguments
as used before also yield

(10.36) Py, Py : H (M) — H/™(M), Ve&>0.

In connection with the Hodge decomposition, note that just as in (6.4), we have
(10.37) w e D™t — 3w L kerd N A% ().
We hence have the following extension of Theorem 6.2 and Corollary 8.5:
Proposition 10.3. Ifg > 1 and f € A% (M) satisfies
(10.38) Af =0 and [ LH™M),
then there exists u € A%~V (M) satisfying du = f.

Proof. With g = Gf € A%9(M), we have the decomposition into orthogonal
pieces

(10.39) f=00g+0dg+Ppf

Now (10.37), applied to w = dg, implies 5*§g L f, while the second hypothesis
in (10.38) implies Py f = 0. This gives

(10.40) f =309,

. . =%
so we have the desired result, withu = 0 g.

Note also by (6.3) that if u € A%4~(M) and f = du, then / L w when-

everw € D% and 9 w = 0, so the condition f 1 H%9(M) is necessary for
solvability.
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Since solving du = f is of primary importance, the last result suggests two
objects of study: Determine when H%4(M) = 0, and work out how to deal with
the requirement that f | H%4(M) if you cannot show that H%4(M) = 0.

Here is an example of the first sort. Suppose J; is a smooth family of integrable,
almost complex structures on a compact Riemannian manifold with boundary,
parameterized by s € [0,a]. We can adjust the metric to depend smoothly on
s and make each J; an isometry. Denote the resulting object by M. We have

i ; =
operators dg, d,, Ly, etc.; we often drop the subscript when s = 0. Assume M
is strongly pseudoconvex; then M ; is strongly pseudoconvex if |s| is sufficiently
small.

Proposition 10.4. If ¢ > 1 and H>9(My) = 0, then H®9(Mg) = 0 for |s|
sufficiently small.

Proof. The proof of the Morrey-type estimates and consequent derivation of the
1/2-estimate yields

(1041) (I + £5)™" bounded in E(LZ(MS,AO"I),HI/Z(MS,AO"I)),
for |s| small. Now, suppose s; — 0, H%4 (M;,) # 0. Pick

(10.42) Us

J

e HOU(M,,). lus, 2 = 1.

Then (10.41) implies ||us; || z1/2 < K. Hence, passing to a subsequence, we have
(10.43) us, — ug strongly in L2(M), weaklyin H'?(M).

In particular, ||lug||;2 = 1. Now, via (10.37), we can say

(10.44) us, L3, (DAHY) = ug LG (D*7H),

while, by the remark after (10.40), we can say

(10.45) us, L3, (Ao’q—l(mj)) — up L 5(/\0"1—1(%).

The conclusions of (10.44) and (10.45) imply that ug € H%9(M). Since |uol| 2

= 1, this means H%9(M,) # 0, so we have a contradiction to the hypothesis that
HO9 (M) # 0.

Corollary 10.5. Under the hypotheses of Proposition 10.4, we have, for each
J =0,

(10.46) £7' bounded in E(Hj (M, A%y, HI+ (M, AO"I)),

for |s| sufficiently small.



524 12. The 9-Neumann Problem

Proof. A check of the sorts of estimates arising in §4 shows that
(1047) (I + £5)"! bounded in c(Hf' (M, A%y, HI+ (M, A°=‘1)),

for |s| sufficiently small. Passing from this to (10.46) can be done by arguments
similar to those used in the proof of Proposition 10.4.

Let us give an example of a situation where Proposition 10.4 and Corol-
lary 10.5 apply. Let O be a manifold of real dimension 2n, with an integrable,
almost complex structure J, and fix p € O. Without loss of generality, we
identify a neighborhood U of p with an open set in C”, and suppose J U

V2
coincides with the “standard” complex structure on C”, which for now we denote

Jo. We may as well suppose p = 0. Use the standard metric on C”, and consider
B = {z € C" : |z| < &}. For small e, B, is strongly pseudoconvex both for Jy
and for J. Now we produce a family M of almost complex manifolds as follows.
Asaset, My = M = By = {z€ C" :|z] < 1}. We have ¢5 : My — By, given
by ¢s(z) = sz, and we pull back J (restricted to By) to get integrable, almost
complex structures Jg on My, for 0 < s < a (for some a > 0). Clearly, such J;
and Jj fit together smoothly. Also, since M is a strongly pseudoconvex domain
in C", the results of §§2 and 8 imply H%9 (M) = 0 for g > 1. Using this family,
we will now prove the Newlander—Nirenberg theorem. This proof was given by
Kohn in [K1], following a suggestion of D. Spencer.

Theorem 10.6. If O has an integrable, almost complex structure, then O has
holomorphic coordinate charts, so O is a complex manifold.

Proof. It suffices to show that any point p € O has a neighborhood B such that
there are smooth complex-valued functions u; on B (i.e., u; € A%%(B)) that are
holomorphic (i.e., ou 7 =0),and such that duy, ..., du, are linearly independent
at p.

Let us bring in the structure described in the preceding paragraph. Thus we
have a family of small neighborhoods B; of p, blown up to My, with integrable,
almost complex structures, and Proposition 10.4 and Corollary 10.5 apply to Mg
for |s| small. As a set, My = M is the unit ball in C". We will be done if we
produce some so > 0 and uy,...,u, € AO’O(MSO) such that 5301” = 0 and
du;(0) are linearly independent.

We write ujs = z; + vjs, where the functions z; are the standard coordinate
functions on C”, and we pick v j; to be convenient solutions to

(10.48) 8Svjs = TIjs On Ms, rjs = —gst.
Namely, we take

(10.49) vjs = 0, L5 s
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It follows from Proposition 10.4 and Corollary 10.5 that, for |s| sufficiently small,
(10.49) is well defined, and, foreach £ € Z T,

(10.50) lvisl ey < Kellrjsllaea

with K, independent of s.
On the other hand, since J; approaches Jy as s — 0, we have

Now if we pick £ > n + 1, we deduce that

(10.52) Osujs =0, ujs=2z;+vjs, |vjsllcr1 <Cs.

It is thus clear that, for s = s¢ sufficiently small, a desired coordinate system is
produced.

The reader can compare this argument with the proof of the existence of
isothermal coordinates on a two-dimensional Riemannian manifold, given in §10
of Chap. 5.

An important class of strongly pseudoconvex complex manifolds arises as fol-
lows. Let X be a compact, real analytic manifold; we can regard X C TX as the
zero section. Then there is a neighborhood U of X in T'X that has the structure
of a complex manifold, and U contains a strongly pseudoconvex neighborhood
M of X, diffeomorphic to the unit ball bundle of X (given some Riemannian
metric), so M is diffeomorphic to the unit sphere bundle of X. The solution to
the 0-Neumann problem on such M yields the result that there is a real analytic
imbedding of X into Euclidean space R”. See Chap. 8 of [Mor] for an account
of this. It was in the process of tackling this problem that the ‘“Morrey inequality”
was derived.

In this section we have continued to restrict our attention to the case of strongly
pseudoconvex manifolds. However, as discovered in [Hol], the basic estimate
(10.12) holds for u € DP9 under a more general condition, called “condition
Z(q).” This condition is that (if dim dM = 2n — 1) the Levi form has either at
least n — g positive eigenvalues or at least ¢ + 1 negative eigenvalues. A strongly
pseudoconvex manifold satisfies condition Z(g) for all ¢ > 1, and for a bounded
domain in C” this is the only way condition Z(q) can be satisfied, at least over all
of dM . But there are open domains M with smooth boundary in compact, com-
plex manifolds (such as complex projective space) which can satisfy condition
Z(q) for some but not all g, by virtue of the Levi form on dM having some nega-
tive eigenvalues. A proof of the estimate (10.12) under condition Z(g) is given in
[FK]. Also, [BS] analyzes the d-Neumann problem via reduction to pseudodiffer-
ential operators on dM , under condition Z(g).
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Exercises

In Exercises 1-7, M is a Riemannian manifold with an almost complex structure J
satisfying (X, Y) = (JX, JY), where (, ) is the Riemannian inner product.
1. For X,Y € TM, set
X.Y)=(X.Y)+i(X,JY).

Show that
X, X)=(X.X), (JX,V)=i(X,Y), (X,Y)=(Y,X),

so we have a Hermitian metric. Thus we will call such M a Hermitian manifold.
2. Show that if M is actually a complex manifold, the Lie bracket of two vector fields
X +iJX and Y + iJ Y has the same form, that is,

N(X,Y) = J([X, Y]-[JX, JY]) - ([JX, Y]+ [X, JY])

vanishes. Show that N'(fX, gY) = fgN(X,Y) for f,g € C®(M), so N defines a
tensor field of type (1,2). A related tensor N, defined by N(X,Y) = 2JN(X,Y), is
called the Nijenhuis tensor.

3. Show that on any almost complex manifold, the vanishing of N is equivalent to the
integrability condition (10.5).

4. Let V be the Levi—Civita connection on M, and set

o(X,Y) = (X,JY),
a 2-form on M. Show that
2<(VXJ)Y, z> — (dw)(X,JY,JZ) — (dw)(X.Y,Z) + <N(Y, 2), X>.

A Riemannian manifold M is called a symmetric space if, for each p € M, there is
an isometry tp : M — M such thatip(p) = pand Dip(p) = —1 on Ty M. If M is
an almost complex manifold with metric as above (i.e., a Hermitian manifold), and is
also a symmetric space, and if each isometry ¢, preserves the almost complex structure
J, then M is called a Hermitian symmetric space.

5. Show that if M is a Hermitian symmetric space, then, for all vector fields X,

VxJ =0.

(Hint: Consider the tensor field F = VJ, of type (1,2). Show that l;F = F on M and
that L;F =—Fatp,sothat F = —F at p,forall p e M.)

6. Show that the almost complex structure of any Hermitian symmetric space is integrable.
(Hint: Show that VJ = 0 = Vw = 0 = dw = 0, and then use Exercise 4.)

7. More generally, a Hermitian manifold M is said to be a Kihler manifold if VJ = 0.
Show that M is Kéhler if and only if the almost complex structure J is integrable and
do = 0.

8. Show that the 5—0perator is well defined:

3:C®°M,E®A") — C®(M,E ® A1),

for any holomorphic vector bundle E over the complex manifold with boundary M.
Extend the results of this section to this case.
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B. Complements on the Levi form
In this appendix we will give further formulas and other results for the Levi form

on a hypersurface in C”. As a preliminary, we reexamine the formulas (2.7) and
(2.8) in terms of the complex vector fields

(B.1) Z=Yw=— Z=) W
3Zk aZk

We assume that at each p € 92, u(p) = (u1,...,u,) belongs to §,(92), de-
fined by (2.13). As noted in §2, this hypothesis is equlvalent both to Zp = 0 and
to Zp = 0 on 9. Then (2.7) simply says ZZp = 0 on Q. Also, of course,
ZZp = 0 on 0€2, and hence

[Z,Z]p=0 on 39,
but this is not the content of (2.8). To restate (2.8), note that
_ du; 0 _ Ouy 0 )
B.2 Z,Z] = U=t — — U — | .
(B-2) (2.2] ;;( Moz 0z, 0z, x

Now let us apply the operator J that gives the complex structure of C”, so

d 0 d d
B.3 J—=—, J—=—,
- dx; Ay, dy; dx
and hence
d ad ad d
0z 0z; 0z 07,
‘We have

— du; 9 duj 0
B. W=JZZ=-i L — i
(B.5) JZ.Z)=-i) (uk — + Tk azkaz,)

where to get the last term in parentheses from J applied to (B.2), we have inter-
changed the roles of j and k. Hence

ou; 8p
B.6 Wp = —-2i R J
( ) e Z "k oz aZk aZj

Now the quantity in parentheses here is precisely the left side of (2.8). Since the
right side of (2.8) is clearly real-valued, we have
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(B.7) (J[Z,?],dp> =" Ljkumi  on 4.

1
2i T
Leta = J'dp, so the left side of (B.7) is 1/2i times a([Z, Z]). Since
da)(Z,Z)=Z -a(Z)—Z -a(z) —a([Z,Z])
and «(Z) = dp(JZ) = —iZp = 0, we have (da)(Z,Z) = —a([Z, Z]), so
(B.7) implies

_ 1 =
(B.8) Zk:cjkujuk = —Z(da)(Z, 7).
Js

another useful formula for the Levi form.
It is also useful to write these formulas in terms of

0 d .
(B.9) X=>fiz—+&z—) wm=fi+ig.
p dxe vk
where fr = Reug, gr = Imug. The hypothesis Zp = 0 is still in effect, so,
for p € 9Q, X(p) € H,(0Q) C T,d2 C R?". Note that
(B.10) 2Z=X-iJX, 2Z=X+iJX.
Thus (B.8) implies

(B.11) 43 Ljguji = —(da)(X, JX).
J.k

Following the trail (B.7)=(B.8) backward, we note that (da)(X,JX) = X -
a(JX)—(JX)-a(X)—a([X,JX]) anda(X) =0 = a(JX), so (da)(X, JX) =
—a([X, JX]), and hence

(B.12) 43" Lot = a([X, JX]) = <J[X, JX],dp).
j.k

Note also that, by direct calculation,

(B.13) 43 " Ljgujime = H(X. X) + H(JX, JX).
J.k

where H is the (2n) x (2n) real Hessian matrix of second-order partial derivatives
of p with respect to (X1,...,Xn, Y1,---, Vn)-
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We can recast the Levi form in the following more invariant way, as done in
[HN]. For a local section X of $(9$2), we will define

(B.14) Ly(X.X) € H%09),

where f;g(asz) C T,(3%2) is the annihilator of §,(32) C T, (9d<2). To do this,
we set

(B.15) 4L(X, X) (o) = ([X, JX], @)

=—(do)(X, JX).
When o = J'dp, this coincides with (B.11)—(B.12). This object is clearly invari-
ant under conjugation by biholomorphic maps (i.e., under biholomorphic changes
of coordinates). The property of positivity of £ is invariantly defined, since the
real line bundle )"3(1’,(89) has a natural orientation, defined by declaring that
J'dp > 0. Thus we have the following:

Proposition B.1. If Q is strongly pseudoconvex at p € 0Q and if F : 0->U
C C" is a biholomorphic map defined on a neighborhood of p, then F(ON Q) =
Q is strongly pseudoconvex at p = F(p).

It follows readily from (B.13) that Q is strongly pseudoconvex at any p € 9
at which Q is strongly convex. By Proposition B.1 we see then that any (local)
biholomorphic image of a strongly convex  C C” is (locally) strongly pseudo-
convex.

We can also relate the Levi form to the second fundamental form of 92 as a
hypersurface of R?", using the following:

Lemma B.2. If I1 is the second fundamental form of 9Q C R?", and if X is a
section of $H(0R2), then

(B.16) II(X,X)=—PyJ Vx(JX) = —JPsy Vx(JX).

Here, V is the Levi—Civita connection on 92, Py is the orthogonal projection
of R2" onto the span of N = —Vp (the sign chosen so N points inward), and
Py is the orthogonal projection of R?" onto the span of JN. We denote the
span of JN by ﬁl(aQ), which is isomorphic to f_)O(aQ), via the Riemannian
metric on 9€2.

To prove the lemma, recall from §4 of Appendix C (Connections and Cur-
vature) that if X and Y are tangent to 02, then /I(X,Y) = PyDyxY, where
Dy denotes the standard flat connection on R?”. Of course, also 1 (X,Y) =
DxY —VxY.Note that Dx(JY) = JDxY,so II(JX,X) = I[I(X,JX) =
PND}((JX) = PNJ(DxX). Hence

B.17) 11(JX,X)=PnJ II(X,X)+ PnJ VxX.
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Similarly, I I(JX,JX) = PNJDjxX = PyJ 1I(JX,X)+ PyJ Vyx X, and
substituting (B.17) yields

II(JX,JX) = PyJPNyJ II(X,X)+ PNJPNJ VxX + PyJ Vix X.

Now, JPyJ = —Pjy, which is orthogonal to Py, so Py JPyJ = 0, and we
have
(B.18) 11(JX,JX)=PNyJ Vy;xX =JPjN VjxX.

Replacing X by J X hence yields (B.16) and proves the lemma.
We can add (B.16) and (B.18), obtaining

11X, X)+ 11(JX.JX)

(B.19)
- PNJ[VJXX - VX(JX)] — PyJ [JX, X].

Comparing this with (B.12) and using the notation //(X,Y) = Tf(X, Y)N, as

in (4.15) of Appendix C, we see that

(B.20) 43 " Ljujie =TI(X. X) + TT(J X, JX).
J.k

This can also be obtained from (B.13), plus formula (4.25) of Appendix C.

We will consider one more formula for the Levi form, in terms of the geometry
of $(d2) as a subbundle of the trivial bundle 322 x R?" ~ dQ x C". Associated
to this subbundle there is a second fundamental form 7 I, defined as in (4.40) of
Appendix C. A formula for 7/ can be given as follows. Let R(d€2) denote the
orthogonal complement of $(0€2); this can be viewed as a real vector bundle of
rank 2, generated by N and JN, or as a complex line bundle generated by N. If
Pg denotes the orthogonal projection of R?" onto &, then we have

(B.21) 115(X,Y) = PgDxY,

when X and Y are sections of £(92).
We want to relate /g to the Levi form. It is convenient to use the previous
analysis of /1. Since Pg = Py + Pjn, we have

I15(X,X)=1I(X,X)+ PyyDxX.

As noted in the proof of (B.16), I1(JX,X) = PyJ DxX, which is equal to
JPjny Dx X, so we have

(B.22) 15X, X)=1I(X.X)—J [I(JX, X).
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Substituting J X for X, we have
(B.23) 15(JX,JX)=1IJX,JX)+J II(JX, X),

and adding this to (B.22) and using (B.20), we obtain

(B.24) Ig(X,X) + 115(JX,JX) = 4(2 c,-ku,-uk)zv.
J.k

C. The Neumann operator for the Dirichlet problem

Let M be a compact Riemannian manifold with boundary dM = X. Then X has
an induced Riemannian metric, and X < M has a second fundamental form,
with associated Weingarten map

(C.1) Ay 1 Tx X — Tx X,

defined as in §4 of Appendix C, Connections and Curvature. We take N to be the
unit normal to X, pointing into M .

Both M and X have Laplace operators, which we denote A and Ay, respec-
tively. The Neumann operator N is an operator on D’ (X)) defined as follows:

du
C2 = —, =Pl f
(C2) Nf N Y g
where to say u = PI f is to say
c3 Au=0on M. ul =f
(C.3) u on u - f

As shown in §§11 and 12 of Chap.7, N is a negative-semidefinite, self-adjoint
operator, and also an elliptic operator in OPS!(X). It is fairly easy to see that

(C.4) N =—y/—Ax mod OPS°(X).

Our main purpose here is to capture the principal part of the difference.

Proposition C.1. The Neumann operator N is given by
(C.5) N =—y/—Ax + B mod OPS™1(X),
where B € OPS°(X) has principal symbol

(C.6) op(x,§) = % (TVAN . (A;(VS’S>) '

(6.6)
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Here, A%, : T X — T} X is the adjoint of (C.1), and (, ) is the inner product on
T X arising from the given Riemannian metric.

To prove this, we choose coordinates x = (x1,..., X;—1) on an open set in X
(if dim M = m) and then coordinates (x, y) on a neighborhood in M such that
¥y =0on X and |Vy| = 1 near X while y > 0 on M and such that x is constant
on each geodesic segment in M normal to X. Then the metric tensor on M has
the form

o) = (4457 0)

where, in the first matrix, 1 < ji < m, and in the second, 1 < j,k <m — 1.
Thus the Laplace operator A on M is given in local coordinates by

Au= g1, (gl/zgjkaku)
(€3) = W20, (B 0y + 20 (W2 D)

1 hy
=Pu+ 57<9yu+L(y x, Dy)u,

where, as usual,
(C.9) g = det(gjx), h= det(hg);

weset hy, = 0h/dy,and L(y) = L(y,x, Dy) is a family of Laplace operators on
X, associated to the family of metrics (h ik (y)) on X, so L(0) = Ax. In other
words,

h

(C.10) Au=Pu+a(y)dyu—+ Ly, a(y) = %

N =

We will construct smooth families of operators 4;(y) € OPS!(X) such that

€1 B +a()dy + L) = (3 = 410)) (3, + 420)),

modulo a smoothing operator. The principal parts of A;(y) and A,(y) will be
—L(y). It will follow that

(C.12) N = —45(0) mod OPS~°(X),

and we can then read off (C.5)—(C.6).
To construct 4 (y), we compute that the right side of (C.11) is equal to

(C.13) — A1(»)dy + A2(»)0y + A5 (y) — A1 (»)A2()).
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so we need

A2(y) — A1(y) = a(y),

(C.14) ,
—A1(»)A2(y) + A3(y) = L(y).

Substituting A2(y) = A1(y) + a(y) into the second identity, we get an equation
for A1(y):

(C.15) A1(9)* + A1(0)a(y) — A} (y) = —L(y) + d'(»).
Now set
(C.16) A1(y) = A(y) + B(y), AQ)=vV-L().

We get an equation for B(y):

2B(y)A(y) + [A(y). B(;)] + B(»)* — B'(y) + B(y)a(y)

(C.17) , /
=AN©y)—A)a(y) +d ().

Granted that B(y) is a smooth family in OPS°(X), the principal part Bo(y) must
satisfy 2Bo(y)A(y) = A'(y) —a(y)A(y), or

1
€18 Bo() = 3N (A - 3a0) mod 0PSTHX).

We can inductively obtain further terms B;(y) € OPS™/(X) and establish that,
with B(y) ~ ;50 B;(»), the operators

A1(y) = vV—=L(y) + B(y), A2(y) = v—L(y)+ B(y) +a(y)

do yield (C.11) modulo a smoothing operator. Details are similar to those arising
in the decoupling procedure in §12 of Chap. 7.
Given this, we have (C.5) with

(C.19) —B = By(0) + a(0) = %A’(O)A(O)_l + %a(O) mod OPS™1(X).
In turn, since A(y) = /—L(y), we have

(C.20) AO)A0) ! = %L’(O)L(O)_l mod OPS™1(X).

Hence

1, ok
(C21) B = Z(L OLO)™ + 22, x)).
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To compute the symbol of B, note that

(C22) oL)(x, ) = =Y 3,h7 (0, )€ k.

while, of course, o) (x,§) = —Zhjk 0,x)§;& = —(£,&). Now, (4.68)-
(4.70) of Appendix C, Connections and Curvature, we have

(C.23) > 0yh(0.X)U; Vi = =2(ANU. V).

SO

(C.24) YOk (0, )8 & = 2(ARE€).

Thus,

(C.25) oL L1 (X §) = 2%

Next, for h = Det(h ;i) = Det H, we have hy, = h Tr(H ' Hy). Looking in a
normal coordinate system on X, centered at xo, we have

h
(C.26) %(o, xo) = 2,: dyh;;(0,x0) = =2 Tr Ay,

the last identity by (C.23). Combining (C.25) and (C.26) yields the desired for-
mula (C.6).
The following alternative way of writing (C.6) is useful. We have

1
(C.27) op(x,§) = 5T (Ax P,

where, for nonzero £ € T} X, P;' is the orthogonal projection of 7 X onto the
orthogonal complement of the linear span of £. Another equivalent formula is

1
(C.28) op(x.§) =3 Tr (AN Py),

where Pg0 is the orthogonal projection of T, X onto the subspace annihilated by £.

To close, we mention the special case where ‘M is the closed unit ball in R™,
so M = S™~ 1 Tt follows from (4.5)—(4.6) of Chap. 8 that

2
(C.29) N=—f-Ax+c2 +cm cm= mT
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in this case. Note that, in this case, Ay = I, so this formula is consistent with
(C.5)—(C.0).

We mention that calculations of the symbol of A/ in a similar spirit (but for a
different purpose) were done in [LU]. Another approach was taken in [CNS].
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C

Connections and Curvature

Introduction

In this appendix we present results in differential geometry that serve as a
useful background for material in the main body of the book. Material in §1 on
connections is somewhat parallel to the study of the natural connection on a Rie-
mannian manifold made in §11 of Chap. 1, but here we also study the curvature
of a connection. Material in §2 on second covariant derivatives is connected with
material in Chap. 2 on the Laplace operator. Ideas developed in §§3 and 4, on the
curvature of Riemannian manifolds and submanifolds, make contact with such
material as the existence of complex structures on two-dimensional Riemannian
manifolds, established in Chap. 5, and the uniformization theorem for compact
Riemann surfaces and other problems involving nonlinear, elliptic PDE, arising
from studies of curvature, treated in Chap. 14. Section 5 on the Gauss—Bonnet
theorem is useful both for estimates related to the proof of the uniformization
theorem and for applications to the Riemann—Roch theorem in Chap. 10. Further-
more, it serves as a transition to more advanced material presented in §§6-8.

In §6 we discuss how constructions involving vector bundles can be derived
from constructions on a principal bundle. In the case of ordinary vector fields,
tensor fields, and differential forms, one can largely avoid this, but it is a very
convenient tool for understanding spinors. The principal bundle picture is used to
construct characteristic classes in §7. The material in these two sections is needed
in Chap. 10, on the index theory for elliptic operators of Dirac type. In §8 we show
how one particular characteristic class, arising from the Pfaffian, figures into the
higher-dimensional version of the Gauss—Bonnet formula. The proof given here
is geometrical and uses the elements of Morse theory. In Chap. 10 this result is
derived as a special case of the Atiyah—Singer index formula.

M.E. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, 539
Applied Mathematical Sciences 116, DOI 10.1007/978-1-4419-7052-7_17,
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1. Covariant derivatives and curvature on general vector
bundles

Let E — M be a vector bundle, either real or complex. A covariant derivative,
or connection,on E is a map

(1.1) Vx : C®(M, E) —s C®(M, E)

assigned to each vector field X on M, satisfying the following three conditions:

(1.2) Vx(u+v) = Vxu+ Vyv,
(1.3) V(fxq.y)bt = fVxu+ Vyu,
(1.4) Vx(fu) = fVxu+ (Xf)u.

where u, v are sections of E, and f is a smooth scalar function. The examples
contained in Chaps. 1 and 2 are the Levi—Civita connection on a Riemannian man-
ifold, in which case E is the tangent bundle, and associated connections on tensor
bundles, discussed in §2.2.

One general construction of connections is the following. Let F' be a vector
space, with an inner product; we have the trivial bundle M x F. Let E be a sub-
bundle of this trivial bundle; for each x € M, let Py be the orthogonal projection
of Fon Ex C F.Anyu € C*®(M, E) can be regarded as a function from M to
F, and for a vector field X, we can apply X componentwise to any function on M
with values in F'; call this action u — D xu. Then a connection on M is given by

(1.5) Vxu(x) = Py Dxu(x).

If M is imbedded in a Euclidean space RY, then T, M is naturally identified
with a linear subspace of RY for each x € M. In this case it is easy to verify
that the connection defined by (1.5) coincides with the Levi—Civita connection,
where M is given the metric induced from its imbedding in RY. Compare with
the discussion of submanifolds in §4 below.

Generally, a connection defines the notion of “parallel transport” along a curve
y in M. A section u of E over y is obtained from u(y(fp)) by parallel transport if
it satisfies Vzu = 0 on y, where T = p(¢).

Formulas for covariant derivatives, involving indices, are produced in terms of
a choice of “local frame” for E, thatis, aset ¢, 1 < o < K, of sections of £
over an open set U which forms a basis of E, for each x € U; K = dim E,.
Given such a local frame, a smooth section u of E over U is specified by

(1.6) u = u®e, (summation convention).

If D; = 0/0x; in a coordinate system on U, we set

(1.7) Vp,u=ujeq = (;u® + uPT%;)eq,
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the connection coefficients I'* g; being defined by
(1.8) VD_/.elg = Faﬂjea.

A vector bundle E — M may have an inner product on its fibers. In that case,
a connection on E is called a metric connection provided that

(1.9) X{u,v) = (Vxu,v) + {u, Vyv),

for any vector field X and smooth sections u, v of E.
The curvature of a connection is defined by

(1.10) R(X,Y)u = [Vx,VY]u—V[XJ]u,

where X and Y are vector fields and u is a section of E. It is easy to verify that
(1.10) is linear in X, Y, and u, over C°*°(M ). With respect to local coordinates,
giving D; = 0/0x;, and a local frame {e,} on E, as in (1.6), we define the
components R* g of the curvature by

(1.11) R(Dj, Dy)eg = R%gjreq,
as usual, using the summation convention. Since D; and Dj; commute,
R(Dj,Dr)eg = [Vp,,Vp,lep. Applying the formulas (1.7) and (1.8), we

can express the components of R in terms of the connection coefficients. The
formula is seen to be

(1.12) Raﬂjk = ajF“ﬂk — akl"“,gj + F"‘yjl“yﬁk — F“,,kl"yﬁj.

The formula (1.12) can be written in a shorter form, as follows. Given a choice
of local frame {e, : | < @ < K}, we can define K x K matrices I'; = (I'%g;)
and also R jr = (R%g;x). Then (1.12) is equivalent to

(1.13) Rjpg =0; T — 0k Ij + [, Ik

Note that R j; is antisymmetric in j and k. Now we can define a “connection
1-form” I" and a “curvature 2-form” Q2 by

1
(1.14) Fz;rj dx;, Q:E;mﬂ{ dx; A dxy.
Js

Then the formula (1.12) is equivalent to

(1.15) Q=dT +T AT.
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The curvature has symmetries, which we record here, for the case of general
vector bundles. The Riemann curvature tensor, associated with the Levi—Civita
connection, has additional symmetries, which will be described in §3.

Proposition 1.1. For any connection V on E — M, we have
(1.16) R(X,Y)u=—R(Y, X)u.

If'V is a metric connection, then

(1.17) (R(X,Y)u,v) = —(u, R(X,Y)v).

Proof. Equation (1.16) is obvious from the definition (1.10); this is equivalent to
the antisymmetry of R%g in j and k noted above. If V is a metric connection,
we can use (1.9) to deduce

0= (XY —YX —[X,Y]){u,v)
= (R(X,Y)u,v) + (u, R(X,Y)v),

which gives (1.17).

Next we record the following implication of a connection having zero curva-
ture. A section u of E is said to be “parallel” if Vxu = 0 for all vector fields X .

Proposition 1.2. I[f E — M has a connection V whose curvature is zero, then
any p € M has a neighborhood U on which there is a frame {e,} for E consisting
of parallel sections: Vyxeq = 0 forall X.

Proof. If U is a coordinate neighborhood, then e, is parallel provided Ve, = 0
for j = 1,...,n = dim M. The condition that R = 0 is equivalent to the
condition that the operators VD_/. all commute with each other, for 1 <j <n.
Consequently, Frobenius’s theorem (as expanded in Exercise 5 in §9 of Chap. 1)
allows us to solve the system of equations

(1.18) Vpea =0, j=1,....n,

on a neighborhood of p, with e, prescribed at the point p. If we pick ey (p), 1 <
o < K, tobe abasis of £, then eq(x), 1 < a < K, will be linearly independent
in E for x close to p, so the local frame of parallel sections is constructed.

It is useful to note, in general, several formulas that result from choosing a
local frame {e,} by parallel translation along rays through a point p € M, the
origin in some coordinate system (xy, ..., Xp), SO

(1.19) VrB/Breoz =0, 1<ac=<Kk.
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This means ) x; VDj eq = 0. Consequently, the connection coefficients (1.8)
satisfy

(1.20) x1I%y 4+ x, %, = 0.
Differentiation with respect to x; gives

(1.21) I =—x10,;T%g —---—x,0;T%,,.
In particular,

(1.22) I'“g;i(p) =0.

Comparison of (1.21) with

(1.23) ;= x101T%;(p) + -+ + x,0.T%g, (p) + O(|x]?)
gives
(1.24) akF"‘,gj = —a;l—‘algk, at p.

Consequently, the formula (1.12) for curvature becomes
(1.25) R%gjx =20;T%gy, atp,

with respect to such a local frame. Note that, near p,

(1.26) R%gjx = 0;T%gr — 0k % + O(|x|?).

Given vector bundles E; — M with connections V/, there is a natural co-
variant derivative on the tensor-product bundle £; ® E, — M, defined by the
derivation property

(1.27) Vxw®v) = (Vyu) ® v +u® (V).
Also, if A is a section of Hom(E1, E3), the formula
(1.28) (Vi Au = V% (Au) — A(Vyv)

defines a connection on Hom(E1, E>).

Regarding the curvature tensor R as a section of (®27*) ® End(E) is natural
in view of the linearity properties of R given after (1.10). Thus if £ — M has
a connection with curvature R, and if M also has a Riemannian metric, yielding
a connection on T*M, then we can consider Vx R. The following, known as
Bianchi’s identity, is an important result involving the covariant derivative of R.
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Proposition 1.3. For any connection on E — M, the curvature satisfies

(1.29) (VZR)(X,Y)+ (VxR)Y,Z)+ (VY R)(Z,X) =0,

or equivalently

(1.30) RBijk + R¥jicsi + R prizj = 0.

Proof. Pick any p € M. Choose normal coordinates centered at p, and choose

a local frame field for E by radial parallel translation, as above. Then, by (1.22)
and (1.26),

(1.31) Raﬂlj;k = 3k3iraﬂj — 8k8,-1"°‘,3i, at p.

Cyclically permuting (7, j, k) here and summing clearly give 0, proving the
proposition.

Note that we can regard a connection on E as defining an operator
(1.32) V:C®M,E) — C®°(M,T* ® E),

in view of the linear dependence of Vy on X. If M has a Riemannian metric and
E a Hermitian metric, it is natural to study the adjoint operator

(1.33) V¥:C®M, T*® E) — C®(M,E).
If u and v are sections of E, § a section of T*, we have

(0. V*(E ® u)) = (Vv.& ® u)
(1.34) = (Vxv,u)
= (v, Vyu),

where X is the vector field corresponding to £ via the Riemannian metric. Using
the divergence theorem we can establish:

Proposition 1.4. If E has a metric connection, then
(1.35) V*(E ®u) = Vyu = —Vxu— (div X)u.
Proof. The first identity follows from (1.34) and does not require E to have a
metric connection. If E does have a metric connection, integrating
(Vxv,u) = —(v, Vxu) + X (v, u)

and using the identity
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(1.36) /Xf dV:—/(divX)f dV, feC&(M),

M M

give the second identity in (1.35) and complete the proof.

Exercises

1. If V and v are two connections on a vector bundle £ — M, show that
(1.37) Vyu=Vyu+CX,u),

where C is a smooth section of Hom(T ® E, E) ~ T*® End(E). Show that conversely,
if C is such a section and V a connection, then (1.37) defines V as a connection.

2. If V and V are related as in Exercise 1, show that their curvatures R and R are related
by

(138)  (R—R)(X.Y)u=[Cx.Vylu—[Cy.Vxlu—Crx yju+[Cx.Cylu,

where Cy is the section of End(E) defined by Cyu = C(X, u).

In Exercises 3-5, let P(x), x € M, be a smooth family of projections on a vector
space F, with range E, forming a vector bundle £ — M ; E gets a natural connection
via (1.5).

3. Lety : I — M be a smooth curve through xo € M. Show that parallel transport of
u(xg) € Ex, along I is characterized by the following (with P’(t) = dP(y(1))/dt):

du ,

T P'(t)u.

4. If each P(x) is an orthogonal projection of the inner-product space F onto Ex, show
that you get a metric connection. (Hint: Show that du/dt L u(y(t)) via P'P = (I —
P)P')

5. In what sense can I’ = —dP P = —(I — P) dP be considered the connection 1-form,
as in (1.13)? Show that the curvature form (1.15) is given by

(1.39) Q=PdP AndP P.

For more on this, see (4.50)—(4.53).
6. Show that the formula

(1.40) dQ=QAT -T AQ

follows from (1.15). Relate this to the Bianchi identity. Compare with (2.13) in the next
section.

7. Let E — M be a vector bundle with connection V, with two local frame fields {ey }
and { fo }, defined over U C M. Suppose

fa(x) = gPa(x)eg(x),  ealx) = hPo(x) f5(x);

note that gﬂ y (A (x) = §By. Let T g, be the connection coefficients for the frame

field {eq}, as in (1.7) and (1.8), and let )f:“ g, be the connection coefficients for the
frame field { fo }. Show that
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(1.41) T = h*uT"y;87 g + 1% (0,87 p)-

2. Second covariant derivatives and covariant-exterior
derivatives

Let M be a Riemannian manifold, with Levi—Civita connection, and let £ — M
be a vector bundle with connection. In §1 we saw that the covariant derivative
acting on sections of E yields an operator

(2.1) V:C®(M,E) — C®°(M, T*® E).

Now on T* ® E we have the product connection, defined by (1.27), yielding
(2.2) V:CP(T*"QE)— C®M,T*"®T*® E).

If we compose (2.1) and (2.2), we get a second-order differential operator called
the Hessian:

(2.3) V2:C®(M,E) — C®(T*®T*Q E).

If u is a section of E and X and Y are vector fields, (2.3) defines VJZ( y as asection
of E; using the derivation properties, we have the formula

(2.4) Viyiu=VxVyu— Vi, yu.
Note that the antisymmetric part is given by the curvature of the connection on E:
(2.5) Viyu—Vyxu=R(X,Y)u.

Now the metric tensor on M gives a linear map 7* ® T* — R, hence a linear
bundle map y : T* ® T* ® E — E. We can consider the composition of this
with V2 in (2.3):

(2.6) yoV2:C®(M,E) — C®(M, E).

We want to compare y o V2 and V*V, in the case when E has a Hermitian metric
and a metric connection.

Proposition 2.1. If'V is a metric connection on E, then

(2.7) V*V = —yoV? on C®°(M, E).
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Proof. Pick a local orthonormal frame of vector fields {e; }, with dual frame {v  }.
Then, foru €e C*(M,E), Vu=) v; ® Ve, u, so (1.35) implies

(2.8) V*Vu =Y [V, Ve,u— (dive;)ul.
Using (2.4), we have
(2.9) VVu=—3 V2 u—D [Vy, e;u+ (dive;)Ve,u].

The first term on the right is equal to —y o V2u. Now, given p € M, if we choose
the local frame {e; } such that V. ex = 0 at p, the rest of the right side vanishes
at p. This establishes the identity (2.7).

We next define a “covariant-exterior derivative” operator
(2.10) dV :C®(M,AN*T* @ E) — C® (M, A*"'T* ® E)
as follows. Fork =0, d¥Y = V, given by (2.1), and we require
(2.11) d¥(BAu)y=dB)Au—BAd u

whenever 8 is a 1-form and u is a section of A¥T* ® E. The operator d " is also
called the “gauge exterior derivative.” Unlike the case of the ordinary exterior
derivative,

dvodv . Cc® (M, AFT* & E) SENGLY (M, Af+2T* g E)
is not necessarily zero, but rather
(2.12) dVd¥u=Q Au,

where €2 is the curvature, and we use the antisymmetry (1.16) to regard €2 as a
section of A2T* @ End(E), as in (1.15). The verification of (2.12) is a straight-
forward calculation; (2.5) is in fact the special case of this, for k = 0.

The following is an alternative form of Bianchi’s identity (1.29):

(2.13) dVQ =0,

where the left side is a priori a section of A3T* ® End(E). This can also be de-
duced from (2.12), the associative law d ¥V (dVd V) = (dVd")d "V, and the natural
derivation property generalizing (2.11):

(2.14) dY(Anu) = (dVA) Au+ (1) And u,

where u is a section of A¥T* ® E and A is a section of A/ T* ® End(E).
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Exercises

1. Let E — M be a vector bundle with connection V, u € C*°(M, E).Fix p € M. Show
that if Vu(p) = 0, then Vg(,yu( p) is independent of the choice of connection on M.

2. In particular, Exercise 1 applies to the trivial bundle R x M, with trivial flat connection,
for which Vyxu = (X, du) = Xu. Thus, if u € C°°(M) is real-valued and du(p) = 0,
then D2u(p) is well defined as a symmetric bilinear form on TpM . 1If, in a coordinate
system, X =) X;09/dx;, Y =) Y; d/dx;, show that

02u
2.1 D? =y ——(p) X Y.
(2.15) x.yu(p) Z 0x; 0xg (p) X; Y

Show that this invariance fails if du(p) # 0.
3. If u is a smooth section of AKT* ® E , show that

dvu(X(),...,Xk) = Z(—l)jVXju(X(),...,?‘/',...,Xk)
(2.16) ’

+ 3 ([X X Xow R R X))
j<t
Compare with formula (13.56) of Chap. 1 and Exercises 2 and 3 in §3 of Chap. 2.

4. Verify the identity (2.12), namely, dVdVu=Q Au.

5. If V and V are connections on E — M, related by Vxyu = VXu + C(X, u),
C € C®(M, T* ® End(E)), with curvatures R and R, and curvature forms 2 and Q
show that

(2.17) Q-Q=dVC+CAC.

Here the wedge product of two sections of T*®End(E) is a section of the bun-
dle AZT*®End(E), produced in a natural fashion, as in (1.15). Show that (2.17) is
equivalent to (1.38).

3. The curvature tensor of a Riemannian manifold

The Levi—Civita connection, which was introduced in §11 of Chap. 1, is a metric
connection on the tangent bundle 7M of a manifold M with a Riemannian metric,
uniquely specified among all such connections by the zero-torsion condition

(3.1) VyX —VxY =[Y, X].
We recall the defining formula

2VxY.Z) = X(Y.Z)+ Y(X.Z)— Z(X.Y)

3.2)
+([X.Y]. Z) = ([X. Z].Y) = ([Y. Z]. X),
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derived in (11.22) of Chap. 1. Thus, in a local coordinate system with the naturally
associated frame field on the tangent bundle, the connection coefficients (1.8) are
given by

1 Ogjn |, 08ku 08k
33 FZ o= L JH no J )
3-3) k=58 |: 0xk + 0x; 0xy

The associated curvature tensor is the Riemann curvature tensor:
(3.4) R(X,Y)Z =[Vx,Vy]Z — Vix 1 Z.

In a local coordinate system such as that discussed above, the expression for the
Riemann curvature is a special case of (1.12), namely,

3.5) R ttm = 8T km — 0m T ke + T 00T kom — T o ke
Consequently, we have an expression of the form

(3.6) R im = L (8ap. 00v8ys) + O(Lap. 0.8y6):

where L is linear in the second-order derivatives of gog(x) and Q is quadratic in
the first-order derivatives of gqg(x), each with coefficients depending on gqg (x).

Building on Proposition 1.2, we have the following result on metrics whose
Riemannian curvature is zero.

Proposition 3.1. If (M, g) is a Riemannian manifold whose curvature tensor
vanishes, then the metric g is flat; that is, there is a coordinate system about
each p € M in which g ji (x) is constant.

Proof. It follows from Proposition 1.2 that on a neighborhood U of p there are

parallel vector fields V), j = 1,...,n = dim M, namely, in a given coordinate
system
3.7 Vo Vi) =0, 1=<j,k<n,

such that V() (p) form a basis of T, M. Let v be the 1-forms associated to V()
by the metric g, so

(3.8) v(H(X) = g(X. Vi),
for all vector fields X. Hence
(3.9 Vpvy =0, 1=j, k=<n.

We have v(jy = Zvé‘j) dxy, with v{‘j) = v(jy(Dx) = (Dk.v()). The zero-
torsion condition (3.1), in concert with (3.8), gives

(3.10)  d¢(v(jy. Di) — 0k (v(j). De) = (v(;). Vb, D) — (v(;). V. D) = 0,
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which is equivalent to

(3.11) dvyy=0, j=1,...,n.

Hence, locally, there exist functions x;, j = 1,...,n, such that

(3.12) vy = dx;.

The functions (xi,...,x,) give a coordinate system near p. In this coordinate

system the inverse of the matrix (g ik (x)) has entries g/ (x) = (dx 7, dxg). Now,
by (1.9),

(3.13) deg’® (x) = (Vp, dxj,dxi) + (dx;,Vp, dx;) =0,

so the proof is complete.

We have seen in Proposition 1.1 that R has the following symmetries:

(3.14) R(X.Y) = —R(Y., X),
(3.15) (R(X.Y)Z, W) = —(Z, R(X,Y)W).

In other words, in terms of

(3.16) Rjkem = (R(D¢, D) Di. Dj),
we have

(3.17) Rikem = —Rjkme

and

(3.18) Rjkem = —Rijim-

The Riemann tensor has additional symmetries:

Proposition 3.2. The Riemann tensor satisfies

(3.19) R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0
and
(3.20) (RIX,Y)Z,W)=(R(Z,W)X,Y),

or, in index notation,

(3.21) Rijwe + Rixgj + Rigjk = 0
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and
(3.22) Rijre = Ryyjj.
Proof. Plugging in the definition of each of the three terms of (3.19), one gets a
sum that is seen to cancel out by virtue of the zero-torsion condition (3.1). This
gives (3.19) and hence (3.21). The identity (3.22) is an automatic consequence of

(3.17), (3.18), and (3.21), by elementary algebraic manipulations, which we leave
as an exercise, to complete the proof. Also, (3.22) follows from (3.50) below.

The identity (3.19) is sometimes called Bianchi’s first identity, with (1.29) then
called Bianchi’s second identity.

There are important contractions of the Riemann tensor. The Ricci tensor is
defined by
(3.23) Ricjx = Ry = g Rijmi.

where the summation convention is understood. By (3.22), this is symmetric in
J, k. We can also raise indices:

(3.24) Ric/; = g/*Ricge;  Ric/F = gFRic/y.
Contracting again defines the scalar curvature:
(3.25) S = Ric’ ;.

As we will see below, the special nature of Ry for dim M = 2 implies
. 1 S,
(3.26) Ricj; = Engk ifdim M = 2.

The Bianchi identity (1.29) yields an important identity for the Ricci tensor.
Specializing (1.30) to @ = i, § = j and raising the second index give

(3.27) Rk + RY i + RY i = 0,
hence, Sk — Ricik;i — Ricjk;j =0, or
(3.28) S = 2 Ric/g;.

This is called the Ricci identity. An equivalent form is

. 1 .
(3.29) Ric/k,; = 50 g’%).;.
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The identity in this form leads us naturally to a tensor known as the Einstein
tensor:

. . 1 .
(3.30) G’* = Ric/* — 5S g’k
The Ricci identity is equivalent to

(3.31) Gk =o.

¥

As shown in Chap. 2, this means the Einstein tensor has zero divergence. This fact
plays an important role in Einstein’s equation for the gravitational field. Note that
by (3.26) the Einstein tensor always vanishes when dim M = 2. On the other
hand, the identity (3.31) has the following implication when dim M > 2.

Proposition 3.3. Ifdim M = n > 2 and the Ricci tensor is a scalar multiple of
the metric tensor, the factor necessarily being 1/n times the scalar curvature:

1
(3.32) Ricjx = —Sgjk.
n

then S must be a constant.

Proof. Equation (3.32) is equivalent to
; 1 1 .
(3.33) Gk = (_ _ _) Sgi*.

By (3.31) and the fact that the covariant derivative of the metric tensor is 0, we
have

or S.x = 0, which proves the proposition.

We now make some comments on the curvature of Riemannian manifolds M
of dimension 2. By (3.17) and (3.18), in this case each component R j¢,, of the
curvature tensor is either 0 or & the quantity

(3.34) Ri212 = Ro121 = gK, g = det(gjir).

One calls K the Gauss curvature of M when dim M = 2.
Suppose we pick normal coordinates centered at p € M, so g;x(p) = k.
We see that if dim M = 2,

Ric;k(p) = Rijik + Rajok-

Now, the first term on the right is zero unless j = k = 2, and the second term is
zero unless j = k = 1. Hence, Ricx(p) = K(p)d k, in normal coordinates, so
in arbitrary coordinates

1
(3.35) Ricjr = Kgjr: hence K = ES ifdim M = 2.
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Explicit formulas for K when M is a surface in R3 are given by (4.22) and
(4.29), in the next section. (See also Exercises 2 and 5-7 below.) The following
is a fundamental calculation of the Gauss curvature of a two-dimensional surface
whose metric tensor is expressed in orthogonal coordinates:

(3.36) ds? = E(x) dx? + G(x) dx3.

Proposition 3.4. Suppose dim M = 2 and the metric is given in coordinates by
(3.36). Then the Gauss curvature k(x) is given by

o 0G 0,E
(3.37) k(x) = 2@ [81 (\/E) + 0, (—«/E)] .

To establish (3.37), one can first compute that

; 1 E‘181E E‘182E
—(1T/,.) = =
I (F kl) 2 (— _182E G_IBIG) ’

; 182E —E_lalG
o= (k) = ( -19,G G‘lazG.)

Then, computing R1p = (R’ x12) = 0,2 — 3,y + I'1 [, — 2T, we have

1 G 1 0 E
Rl = — = - — =
212 = 281( E ) 282( E )

3.38
(3.38) 1 _81E81G 02 E 0,G 1 82E82E_81G81G
E FE E G 4\ E E E G )

4

Now Ri212 = E R',;5 in this case, and (3.34) yields

1 1
3.39 k — R = _R!
(3.39) (x) = 7g Rz =g Ron.

If we divide (3.38) by G and then in the resulting formula for k(x) interchange E
and G, and d; and 9,, and sum the two formulas for k(x), we get

o= (540 ()
i[in(2)- 30 (E)]

which is easily transformed into (3.37).
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If E = G = ¢?¥, we obtain a formula for the Gauss curvature of a surface
whose metric is a conformal multiple of the flat metric:

Corollary 3.5. Suppose dim M = 2 and the metric is given in coordinates by
(3.40) gjk(x) = e*"8 k.

for a smooth v. Then the Gauss curvature k(x) is given by

(3.41) k(x) = —(Agv)e 2,

where Ay is the flat Laplacian in these coordinates:

v v
3.42 Ay = — + ——.
(5.42) oY ax? * ax3

For an alternative formulation of (3.41), note that the Laplace operator for the
metric g jx is given by

Af=g'28;(¢"¢"? 0 f),
and in the case (3.40), g/K = ¢72§/k and g1/2 = €2, so we have
(3.43) Af =e Ao,
and hence (3.41) is equivalent to
(3.44) k(x) = —Av.

The comparison of the Gauss curvature of two surfaces that are conformally
equivalent is a source of a number of interesting results. The following general-
ization of Corollary 3.5 is useful.

Proposition 3.6. Let M be a two-dimensional manifold with metric g, whose
Gauss curvature is k(x). Suppose there is a conformally related metric

(3.45) g =e%g.
Then the Gauss curvature K(x) of g’ is given by
(3.46) K(x) = (—Au + k(x))e ™,

where A is the Laplace operator for the metric g.

Proof. We will use Corollary 3.5 as a tool in this proof. It is shown in Chap. 5,
§11, that (M, g) is locally conformally flat, so we can assume without loss of
generality that (3.40) holds; hence k(x) is given by (3.41). Then
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(3.47) (&) jk =8k, w=u+v,
and (3.41) gives
(3.48) K(x) = —(Aqw)e " = [—(Aou)e " — (Agv)e *"Je ™.

By (3.43) we have (Agu)e™2" = Au, and applying (3.41) for k(x) gives (3.46).

We end this section with a study of 90k g¢m (po) When one uses a geodesic
normal coordinate system centered at po. We know from §11 of Chap. 1 that in
such a coordinate system, Fejk (po) = 0 and hence 0;gx¢(po) = 0. Thus, in
such a coordinate system, we have

(3.49) R kem(Po) = 3T km(po) — 9m T ke (po),

and hence (3.3) yields

1
(3.50)  Rjkem(po) = 3 (0 0mgre + 0k 0egjm — 0;0¢Zkm — Ok Omgje) -

In light of the complexity of this formula, the following may be somewhat sur-
prising. Namely, as Riemann showed, one has

1 1
(3.51) 0;0k&em(Po) = —= Rejmik — = Rokemy -

3 3
This is related to the existence of nonobvious symmetries at the center of a
geodesic normal coordinate system, such as 90k g¢m(po) = 0¢9mgjk(po). To
prove (3.51), by polarization it suffices to establish

2 .
(3.52) 958ee(po) = =3 Rejejs V.

Proving this is a two-dimensional problem, since (by (3.50)) both sides of the
asserted identity in (3.52) are unchanged if M is replaced by the image under
Exp,, of the two-dimensional linear span of D; and Dy. All one needs to show is
thatif dim M = 2,

2
(3.53) 97g22(po) = —EK(PO) and 97g11(po) = 0,

where K(pg) is the Gauss curvature of M at po. Of these, the second part is
trivial, since g11(x) = 1 on the horizontal line through pg. To establish the first
part of (3.53), it is convenient to use geodesic polar coordinates, (r, 8), in which

(3.54) ds®> = dr* + G(r,0) db>.

It is not hard to show that G(r, 8) = r2H(r, 0), with H(r,0) = 1 4+ O(r?). For
the metric (3.54), the formula (3.37) implies that the Gauss curvature is

He | B

1 1
3.55 K=—3G+—0,G)>?=——L — ,
(3.55) + 9-G) rH 2H ' 4H?

2G 7 4G?
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so at the center

1 3
(3.56) K(po) = —Hyy — EHrr = _EHrr-
On the other hand, in normal coordinates (x1, x»), along the xj-axis, we have
g22(5,0) = G(s,0)/s> = H(s,0), so the rest of the identity (3.53) is established.

Exercises

Exercises 1-3 concern the problem of producing two-dimensional surfaces with con-
stant Gauss curvature.
1. For a two-dimensional Riemannian manifold M, take geodesic polar coordinates, so
the metric is
ds? = dr? + G(r,0) d6*.

Use the formula (3.55) for the Gauss curvature, to deduce that

K= —8%ﬁ.
VG
Hence, if K = —1, then
2G = V/G.

Show that

VG(0.0) =0, 9,v/G(0,0) =1,
and deduce that v/G (1, 0) = @(r) is the unique solution to
¢"(r) =) =0, ¢0) =0, ¢'(0)=1.

Deduce that
G(r.0) = sinh? r.

Use this computation to deduce that any two surfaces with Gauss curvature —1 are
locally isometric.
2. Suppose M is a surface of revolution in R3, of the form

x?+y2 =g(2)%
If it is parameterized by x = g(u) cosv, y = g(u) sinv, z = u, then
ds? = (1+ ¢’ w?) du® + g(u)? dv?.
Deduce from (3.37) that
"
K = _g—(“)z,
gw)(1+g'()?)

Hence, if K = —1, )

g"(w) = g)(1 +g'w?)".
Note that a sphere of radius R is given by such a formula with g(z) = v R2 — u2.
Compute K in this case.
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2A. Suppose instead that M is a surface of revolution, described in the form

o=/ (V7).

If it is parameterized by x = u cosv, y = u sinv, z = f(u), then

ds? = (1 + f'(w)?) du* + u? dv*.

Show that
K 1 d 1 o' (u) W) = 1
= — — = — S U = ——
wTE e d\ Vit we) T T T T w
Thus deduce that

K:—l=>(p(u):u2+c=>f(u):/”uzl+c—ldu.

We note that this is an elliptic integral, for most values of ¢. Show that, for ¢ = 0, you
get

flu) = \/l—uz—%log(l—}— l—uz)—}—%log(l—\/l—uz).

3. Suppose M is a region in R? whose metric tensor is a conformal multiple of the
standard flat metric

gjk = E()8jk = e*¥ 8.
Suppose E = E(r), v = v(r). Deduce from (3.37) and (3.41) that

K=- ! (E”()+ E(r))

1
2E2 E3E (r )2 (U”(V) + ;U/(’”)) e 2,

2
Hence, if K = —1,
1
V() + —v'(r) =
r
Compute K when
4
8jk = (1—r2)2 8 jk-

4. Show that whenever g (x) satisfies g jx (po) = 8k, 9¢g jk(po) = 0, at some point
Po, then (3.50) holds at pg. If dim M = 2, deduce that

1
(3.57) K(po) = —5(3%5’22 +33g11 — 20192812).
5. Suppose M C R3 is the graph of

X3 = f(xl»XZ)’

so, using the natural (x1, x2)-coordinates on M,
ds? = (1 + fP)dxi +2f1 fa dxy dxz + (1 + f5) dx3,

where f; = 9; f. Show that if V f(0) = 0, then Exercise 4 applies, so
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(3.58) Vf(0) =0= K(0) = fi1/22 — [

Compare the derivation of (4.22) in the next section.
6. If M C R3 is the surface of Exercise 5, then the Gauss map N : M — S2is given

by
(—=f1.—f2. 1) .

JI+ 2+ 17

Show that if V £(0) = 0, then, at pg = (0, £(0)), DN(po) : R? — R? is given by

N(x, f(x)) =

(3.59) DN(po) = _( A 1(0) 3132f(0))

9201/(0) 93/(0).

Here, Tpy M and T(g 0,1)S 2 are both identified with the (x1, x2)-plane. Deduce from
Exercise 5 that
K(po) = det DN(po).

7. Deduce from Exercise 6 that whenever M is a smooth surface in R3, with Gauss map
N : M — §2, then, with DN(x) : Tx M — Ty(x)S2,

(3.60) K(x) = det DN(x), VxeM.

(Hint: Given x € M, rotate coordinates so that Ty M is parallel to the (x1, x3)-plane.)
This result is Gauss’ Theorema Egregium for surfaces in R3. See Theorem 4.4 for a
more general formulation; see also (4.35), and Exercises 5, 8, 9, and 14 of §4.

8. Recall from §11 of Chap. 1 that if y(¢z) is a family of curves ys : [a,b] > M
satisfying ys(a) = p, ys(b) = ¢, and if E(s) = f:(T, Tydt, T = yi@),
then, with V' = (3/9s)ys(t)|s=0, E'(s) = —fo(V, VrT)dt, leading to the
stationary condition for E that V7T = 0, which is the geodesic equation. Now sup-
pose yr,s(t) is a two-parameter family of curves, yrs(a) = p, vrs(b) = q. Let
V = (0/9s)yr,s(t)]0,0, W = (0/97)yr,s(t)]0,0. Show that

2

b
(3.61) ai%E(o,O):zf [(ROW,T)V.T) + (Vg V.V W) — (Vy V, V7 T)] dt.
a

Note that the last term in the integral vanishes if yg o is a geodesic.
9. If Z is a Killing field, generating an isometry on M (as in Chap. 2, §3), show that

Zjkse = R 4kj Zm.-

(Hint: From Killing’s equation Z;.x + Zy,; = O, derive Zj.p.y = —Zpyp:j —

R™ 1y i Zm. lterate this process two more times, going through the cyclic permu-

tations of (j,k,¢). Use Bianchi’s first identity.) Note that the identity desired is

equivalent to 5 o .

V(X,Y)Z = R(Y,Z)X if Z is aKilling field.

10. Derive the following equation of Jacobi for a variation of geodesics. If ys(¢) is a one-
parameter family of geodesics, X = y;(¢), and W = (3/3s)ys, then

VxVxy W =R(X,W)X.
(Hint: Start with 0 = VyyVx X, and use [X, W] = 0.)
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11. Raising the second index of R/,,, you obtain R/ k ¢m> the coordinate expression
for R, which can be regarded as a section of End(A2T). Suppose M = X x ¥
with a product Riemannian metric and associated curvatures R, Ry, Ry . Using the
splitting

A2(VaeW)=AVea (A'V oA W) AW,

write R as a 3 x 3 block matrix. Show that

Ry 0 0
R=] 0 0 0
0 0 Ry

In Exercises 12-14, let X, Y, Z, and so forth, belong to the space g of left-invariant
vector fields on a Lie group G, assumed to have a bi-invariant Riemannian metric.
(Compact Lie groups have these.)

12. Show that any (constant-speed) geodesic y on G with y(0) = e, the identity element,
is a subgroup of G, thatis, y(s + t) = y(s)y(¢). Deduce that Vy X = 0 for X € g.
(Hint: Given p = y(to), consider the “reflection” R, (g) = pg1p, an isometry on
G that fixes p and leaves y invariant, though reversing its direction. From this, one
can deduce that p% = y(2tp).)

13. Show that Vx Y = (1/2)[X, Y] for X,Y € g. (Hint: 0=Vx X =VyY =V(x,y)
X+7Y))

This identity is called the Maurer-Cartan structure equation.

14. Show that

1 1
15. If E — M is a vector bundle with connection ’5, and V = v + C, as in Exercises 1
and 2 of §1, and M has Levi-Civita connection D, so that Hom(T ® E, E) acquires a

connection from D and V, which we’ll also denote as V, show that (1.38) is equivalent
to

(3.62) (R—R)(X.Y)u=(VxC)¥.u)— (VyC)(X.,u) + [Cx.Cy]u.

This is a general form of the “Palatini identity.”

16. If g is a metric tensor and & a symmetric, second-order tensor field, consider the
family of metric tensors gr = g + th, for t close to zero, yielding the Levi—Civita
connections

VI =V +C(),
where V = V0. If C’ = C’(0), show that
1 1 1
(363)  (C'(X.Y).Z) = S(VxW(Y. 2) + S(Vy )(X. Z) = 5(VZ)(X. V).
(Hint: Use (3.2).)
17. Let R(t) be the Riemann curvature tensor of g, and set R* = R’(0). Show that

(3.62) yields

(3.64) R(X,Y)Z = (VxC)(Y,Z)— (VyC')(X, Z).
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Using (3.63), show that

(3.652)(R’(X, Y)Z.W) = (Viwh)(X.Z) + (Vg zh) (Y. W) = (Vi wh) (Y. Z)
— (V§ z)(X. W) + h(R(X,Y)Z, W) + h(R(X, Y)W, Z).

(Hint: Use the derivation property of the covariant derivative to obtain a formula for

Vx C’ from (3.63).)
18. Show that

6(RX.VNZW)=KX+W,Y+Z)—KY +W,X + Z)
—KX.Y+Z)—KRY.X+W)—RK(Z, X+ W)

(3.66) —KW,Y+Z)+KX.Y+W)+ KXY, Z+W)
+KZ.Y+W)+ KW, X+ 2Z)+ K(X,Z)
+ K@Y, W)—K(X,Y)—K(,2Z),

where
(3.67) K(X,Y) = (R(X,Y)Y, X).

See (4.34) for an interpretation of the right side of (3.67).
19. Using (3.51), show that, in exponential coordinates centered at p, the function
g = det(g ;i) satisfies, for |x| small,

1 .
(3.68) g =1-3 > " Ricgy (p)xexm + O(|x]?).
L,m
Deduce that if A,—; = area of S®~! ¢ R” and V,, = volume of unit ball in R”,
then, for r small,
An—l

(3.69) V(Br(p)) = (Vn )

S(pyr? + 0(r3)) .

4. Geometry of submanifolds and subbundles

Let M be a Riemannian manifold, of dimension 7, and let S be a submanifold,
of dimension k, with the induced metric tensor. M has a Levi—Civita connection
V and Riemann tensor R. Denote by V° and Ry the connection and curvature of
S, respectively. We aim to relate these objects. The second fundamental form is
defined by

4.1 I1(X,Y) =VxY — V%Y,

for X and Y tangentto S. Note that /7 is linear in X and in ¥ over C°°(S). Also,
by the zero-torsion condition,

4.2) 1I(X,Y) = 1I(Y, X).
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Proposition4.1. /1/(X,Y) is normal to S at each point.

Proof. If X,Y and Z are tangent to .S, we have
(VxY,Z)—(VSY,Z) = —(Y,VxZ) + X (Y, Z) + (Y, VS Z) — X (Y, Z),
and making the obvious cancelation, we obtain
(4.3) (II1(X,Y),Z)=—(Y,1]1(X, 2)).
Using (4.2), we have
4.4 (11(X,Y),Z)=—(Y,1I(Z,X));

that is, the trilinear form given by the left side changes sign under a cyclic permu-
tation of its arguments. Since three such permutations produce the original form,
the left side of (4.4) must equal its own negative, hence be 0. This proves the
proposition.

Denote by v(S) the bundle of normal vectors to S, called the normal bundle
of S. It follows that /] is a section of Hom(7'S ® TS, v(S)).

Corollary 4.2. For X and Y tangent to S, V?(Y is the tangential projection on
TS of VxY.

Let £ be normal to S. We have a linear map, called the Weingarten map,

4.5) Ag : TS — T,S
uniquely defined by
(4.6) (AeX,Y) = (£, 11(X,Y)).

We also define the section A of Hom(v(S) ® TS, TS) by

4.7 A(E, X) = AgX.

We define a connection on v(S) as follows; if £ is a section of v(S), set
Vy§ = PLVxé,

where P1(x) is the orthogonal projection of Ty M onto vy (S). The following
identity is called the Weingarten formula.

Proposition 4.3. If & is a section of v(S),

(4.8) Vi€ = Vx& + AeX.
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Proof. It suffices to show that Vy & 4 A¢ X is normalto S. In fact, if Y is tangent
to S,

(VXE.Y) + (AeX.Y) = X(£,Y) — (. VxY) + (£. II(X.Y))
=0— (£ VYY) — (£, 1I(X.Y)) + (£. T1(X.Y