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Preface

Fourier analysis is a prototype of beautiful mathematics with many-faceted ap-
plications not only in mathematics, but also in science and engineering. Since
the work on heat flow of Jean Baptiste Joseph Fourier (March 21, 1768–May 16,
1830) in the treatise entitled “Théorie Analytique de la Chaleur”, Fourier series
and Fourier transforms have gone from triumph to triumph, permeating math-
ematics such as partial differential equations, harmonic analysis, representation
theory, number theory and geometry. Their societal impact can best be seen from
spectroscopy to the effect that atoms, molecules and hence matters can be iden-
tified by means of the frequency spectrum of the light that they emit. Equipped
with the fast Fourier transform in computations and fuelled by recent technolog-
ical innovations in digital signals and images, Fourier analysis has stood out as
one of the very top achievements of mankind comparable with the Calculus of Sir
Isaac Newton. This sentiment is shared by David Mumford [28] among others.

This is a mathematical book on Fourier analysis, which best exemplifies interdisci-
plinary studies. The aim is to present the basic notions and techniques of Fourier
transforms, wavelets, filter banks, signal analysis and pseudo-differential operators
in discrete settings, thus making this fascinating area of mathematics accessible
to as wide a readership as possible in mathematical sciences. It is my conviction
that the beauty and the usefulness of the subject can be conveyed most effectively
in the Definition-Theorem-Proof format interlaced with remarks, discussions and
motivations from signal analysis.

The book consists of two parts. The first thirteen chapters contain topics related to
the finite Fourier transform that can be understood completely by undergraduate
students with basic knowledge of linear algebra and calculus. The last ten chapters
are built on Hilbert spaces and Fourier series. A self-contained account on Hilbert
spaces covering a broad spectrum of topics from basic definitions to the spectral
theorem for self-adjoint and compact operators to Schatten–von Neumann classes
is presented. The pointwise convergence and the L2-theory of Fourier series are
the contents of a chapter in the book. It is standard wisdom that the context for
a proper study of Fourier series is the Lebesgue theory of measures and integrals.
Notwithstanding the use of the language from measure theory in the second part
of the book, much of the contents are accessible to students familiar with a solid
undergraduate course in real analysis. An average graduate student in mathematics
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should be able to benefit from the entire book and hence equipped to do research
in this subject.

Any book on Fourier analysis can be hoped to impart only a small part of the
subject. This book is no exception and the emphasis is on the operator-theoretical
aspects of the subject. The last two chapters of the book constitute an account of
the published research works of mine and my former Ph.D. student, Dr. Shahla
Molahajloo, on discrete pseudo-differential operators.



Chapter 1

The Finite Fourier Transform

A good starting point is the finite Fourier transform that underpins the contents
of the first thirteen chapters of the book.

Let C be the set of all complex numbers. For a positive integer N ≥ 2, we
let CN be the set defined by

CN =




z(0)
z(1)

...
z(N − 1)

 : z(n) ∈ C, n = 0, 1, . . . , N − 1

 .

Then CN is an N -dimensional complex vector space with respect to the usual
addition and scalar multiplication of vectors. In fact, it is an inner product space
in which the inner product ( , ) and norm ‖ ‖ are defined by

(z, w) =
N−1∑
n=0

z(n)w(n)

and

‖z‖2 = (z, z) =
N−1∑
n=0

|z(n)|2

for all z =


z(0)
z(1)

...
z(N − 1)

 and w =


w(0)
w(1)

...
w(N − 1)

 in CN . Of particular impor-

tance in the first thirteen chapters is the space ZN defined by

ZN = {0, 1, . . . , N − 1}.

1M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
DOI 10.1007/978-3-0348-0116-4_1, © Springer Basel AG 2011



2 Chapter 1. The Finite Fourier Transform

Let z : ZN → C be a function. Then the function z : ZN → C is completely

specified by


z(0)
z(1)

...
z(N − 1)

 . Thus, we can write

z =


z(0)
z(1)

...
z(N − 1)

 .

In other words, we can think of the function z : ZN → C as a finite sequence. If
we let L2(ZN ) be the set of all finite sequences, then we get

L2(ZN ) = CN .

Thus, CN can be considered as the set of all finite sequences, or more precisely,
functions on ZN . These finite sequences, i.e., functions on ZN , are in fact the
mathematical analogs of digital signals in electrical engineering.

Definition 1.1. Let ε0, ε1, . . . , εN−1 ∈ L2(ZN ) be defined by

εm =



0
0
...
1
...
0


, m = 0, 1, . . . , N − 1,

where εm has 1 in the mth position and zeros elsewhere.

Proposition 1.2. {ε0, ε1, . . . , εN−1} is an orthonormal basis for L2(ZN ).

The proof of Proposition 1.2 is left as an exercise.
The orthonormal basis {ε0, ε1, . . . , εN−1} is the standard basis for L2(ZN ).

For another orthonormal basis for L2(ZN ), we look at the signals in the following
definition.

Definition 1.3. Let e0, e1, . . . , eN−1 ∈ L2(ZN ) be defined by

em =


em(0)
em(1)

...
em(N − 1)

 , m = 0, 1, . . . , N − 1,
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where

em(n) =
1√
N
e2πimn/N , n = 0, 1, . . . , N − 1.

Proposition 1.4. {e0, e1, . . . , eN−1} is an orthonormal basis for L2(ZN ).

Proof. For j, k = 0, 1, . . . , N − 1, we get

(ej , ek) =

N−1∑
n=0

ej(n)ek(n)

=
N−1∑
n=0

1√
N
e2πijn/N

1√
N
e2πikn/N

=
1

N

N−1∑
n=0

e2πijn/Ne−2πikn/N

=
1

N

N−1∑
n=0

e2πi(j−k)n/N

=
1

N

N−1∑
n=0

(
e2πi(j−k)/N

)n
. (1.1)

If j = k, then (1.1) gives

‖ej‖2 = (ej , ej) =
1

N

N−1∑
n=0

1 = 1, j = 0, 1, . . . , N − 1.

If j 6= k, then −N < j − k < N and hence e2πi(j−k)/N 6= 1. Therefore for
j, k = 0, 1, . . . , N − 1, (1.1) gives

(ej , ek) =
1

N

1−
(
e2πi(j−k)/N

)N
1− e2πi(j−k)/N

. (1.2)

But, for j, k = 0, 1, . . . , N − 1,(
e2πi(j−k)/N

)N
= e2πi(j−k) = 1. (1.3)

By (1.2) and (1,3), (ej , ek) = 0 if j 6= k. Hence {e0, e1, . . . , eN−1} is orthonormal
and hence linearly independent. Since L2(ZN ) is N -dimensional, it follows that
{e0, e1, . . . , eN−1} is a basis for L2(ZN ). This completes the proof. �

We call the basis {e0, e1, . . . , eN−1} in Proposition 1.4 the orthonormal Fourier
basis for L2(ZN ). As an immediate consequence of Proposition 1.4, we have the
following expression of a signal z in terms of the signals in the orthonormal Fourier
basis.
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Proposition 1.5. Let z and w be signals in L2(ZN ). Then

z =
N−1∑
m=0

(z, em)em, (1.4)

(z, w) =
N−1∑
m=0

(z, em)(w, em) (1.5)

and

‖z‖2 =
N−1∑
m=0

|(z, em)|2. (1.6)

Proof. To prove (1.4), let z ∈ L2(ZN ). Since {e0, e1, . . . , eN−1} is a basis for
L2(ZN ), it follows that

z =
N−1∑
m=0

αmem, (1.7)

where αm ∈ C, m = 0, 1, . . . , N − 1. Thus, for j = 0, 1, . . . , N − 1, using the
orthonormality of the basis {e0, e1, . . . , eN−1}, we obtain

(z, ej) =
N−1∑
m=0

αm(em, ej) = αj . (1.8)

Hence by (1.7) and (1.8), the proof of (1.4) is complete. Now, let z and w be in
L2(ZN ). Then, using (1.4) and the orthonormality of {e0, e1, . . . , eN−1}, we get

(z, w) =

(
N−1∑
m=0

(z, em)em,
N−1∑
l=0

(w, el)el

)

=
N−1∑
m=0

(z, em)

(
em,

N−1∑
l=0

(w, el)el

)

=
N−1∑
m=0

(z, em)
N−1∑
l=0

(w, el)(em, el)

=
N−1∑
m=0

(z, em)(w, em).

Thus, (1.5) is proved. Finally, if we put w = z in (1.5), then we get

‖z‖2 = (z, z) =
N−1∑
m=0

(z, em)(z, em) =
N−1∑
m=0

|(z, em)|2,

and the proof is complete. �
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Let z ∈ L2(ZN ). Then for m = 0, 1, . . . , N − 1,

(z, em) =
1√
N

N−1∑
n=0

z(n)e−2πimn/N . (1.9)

In view of the importance of the inner products (z, em), m = 0, 1, . . . , N − 1,
revealed by Proposition 1.5, we need to study these inner products more carefully,
and we introduce the following definition.

Definition 1.6. Let z ∈ L2(ZN ). Then we let ẑ ∈ L2(ZN ) be defined by

ẑ =


ẑ(0)
ẑ(1)

...
ẑ(N − 1)

 ,

where

ẑ(m) =
N−1∑
n=0

z(n)e−2πimn/N , m = 0, 1, . . . , N − 1.

We call ẑ the finite Fourier transform of z, which is sometimes denoted by
FZN

z. It is important to note that by (1.9), we have

(FZN
z)(m) = ẑ(m) =

√
N(z, em), m = 0, 1, . . . , N − 1. (1.10)

We note that we have thrown away the factor 1√
N

from the right-hand side of

(1.9) in defining the finite Fourier transform. The advantage of doing this lies in
the fact that in numerical computations, it is better to avoid computing

√
N .

Using the finite Fourier transform and (1.10), we can reformulate Proposition
1.5 in the following form.

Theorem 1.7. Let z and w be signals in L2(ZN ). Then

(i) (The Fourier Inversion Formula)

z(n) =
1

N

N−1∑
m=0

ẑ(m)e2πimn/N , n = 0, 1, . . . , N − 1, (1.11)

(ii) (Parseval’s Identity)

(z, w) =
1

N

N−1∑
m=0

ẑ(m)ŵ(m) =
1

N
(ẑ, ŵ), (1.12)



6 Chapter 1. The Finite Fourier Transform

(iii) (Plancherel’s Formula)

‖z‖2 =
1

N

N−1∑
m=0

|ẑ(m)|2 =
1

N
‖ẑ‖2. (1.13)

Proof. By (1.4) and (1.10), we get

z(n) =
N−1∑
m=0

1√
N
ẑ(m)

1√
N
e2πimn/N =

1

N

N−1∑
m=0

ẑ(m)e2πimn/N , n = 0, 1, . . . , N−1.

Thus, (1.11) follows. To prove (1.12), we note that by (1.5) and (1.10),

(z, w) =
N−1∑
m=0

1√
N
ẑ(m)

1√
N
ŵ(m) =

1

N

N−1∑
m=0

ẑ(m)ŵ(m) =
1

N
(ẑ, ŵ).

Finally, for (1.13), we use (1.6) and (1.10) to get

‖z‖2 =
N−1∑
m=0

∣∣∣∣ 1√
N
ẑ(m)

∣∣∣∣2 =
1

N

N−1∑
m=0

|ẑ(m)|2 =
1

N
‖ẑ‖2. �

In order to understand the Fourier inversion formula in Theorem 1.7 better,
we let F0, F1, . . . , FN−1 ∈ L2(ZN ) be defined by

Fm =


Fm(0)
Fm(1)

...
Fm(N − 1)

 , m = 0, 1, . . . , N − 1,

where

Fm(n) =
1

N
e2πimn/N , n = 0, 1, . . . , N − 1. (1.14)

Obviously, {F0, F1, . . . , FN−1} is orthogonal, but not orthonormal in L2(ZN ). Be-
ing an orthogonal set of N elements in the N -dimensional vector space L2(ZN ),
{F0, F1, . . . , FN−1} is a basis for L2(ZN ) and we call it the Fourier basis for
L2(ZN ). Using the Fourier basis for L2(ZN ) defined by (1.14), the Fourier in-
version formula in Theorem 1.7 becomes

z =
N−1∑
m=0

ẑ(m)Fm. (1.15)

Thus, the components of the signal z with respect to the Fourier basis are the
components of the finite Fourier transform ẑ.
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That the finite Fourier transform FZN
: L2(ZN ) → L2(ZN ) can be rep-

resented as a matrix can be seen as follows. Let z ∈ L2(ZN ). Then for m =
0, 1, . . . , N − 1,

(FZN
z)(m) = ẑ(m) =

N−1∑
n=0

z(n)e−2πimn/N

=
N−1∑
n=0

z(n)
(
e−2πi/N

)mn
=
N−1∑
n=0

z(n)ωmnN , (1.16)

where
ωN = e−2πi/N .

If we let ΩN be the matrix defined by

ΩN = (ωmnN )0≤m,n≤N−1 ,

then, by (1.16) and (1.17), we get

ΩN =


1 1 1 1 · · · 1

1 ωN ω2
N ω3

N · · · ωN−1N

1 ω2
N ω4

N ω6
N · · · ω

2(N−1)
N

...
...

...
... · · ·

...

1 ωN−1N ω
2(N−1)
N ω

3(N−1)
N · · · ω

(N−1)(N−1)
N

 , (1.17)

and
ẑ = ΩNz. (1.18)

Thus, the finite Fourier transform is the matrix ΩN given by (1.17) and the formula
(1.18) is often used in the computation of the finite Fourier transform ẑ of the signal
z. We call ΩN the Fourier matrix of order N ×N or simply the Fourier matrix.

Example 1.8. Let N = 2. Then using (1.17), we get

Ω2 =

(
1 1
1 ω2

)
.

But
ω2 = e−2πi/2 = e−πi = −1.

So,

Ω2 =

(
1 1
1 −1

)
.
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Example 1.9. Let N = 4. Then using (1.17) again, we get

Ω4 =


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 .

But

ω4 = e−2πi/4 = e−πi/2 = −i.

So,

Ω4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

Example 1.10. Let z be the signal in L2(Z4) given by

z =


1
0
1
i

 .

Then ẑ can be computed using the definition of the finite Fourier transform. On
the other hand, using the formula (1.18) and the formula for Ω4 in Example 1.9,
we get

ẑ = Ω4z =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
0
1
i

 =


2 + i
−1

2− i
1

 .

Remark 1.11. In order to compute the finite Fourier transform ẑ of a signal z
in L2(ZN ), we multiply z by the Fourier matrix ΩN to get ẑ. Hence it is nice if
there are a lot of zeros in the entries of ΩN , i.e., if ΩN is a sparse matrix. But a
look at the formula (1.17) for ΩN immediately tells us that ΩN has no nonzero
entries. Thus, in order to compute the finite Fourier transform ẑ of a signal z in
L2(ZN ) using the Fourier matrix ΩN , N2 complex multiplications are apparently
necessary. In signal analysis, N is usually very big. A television signal, for instance,
requires 108 pixel values per second, and hence one second of the sampled signal
necessitates the use of a vector of length N = 108. This makes the computation
of the finite Fourier transform using the Fourier matrix ΩN a seemingly enormous
task in signal processing. We shall pick up this interesting issue on computations
later in the course.
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Definition 1.12. Let w be a signal in L2(ZN ). Then we define the signal w̌ in
L2(ZN ) by

w̌ =


w̌(0)
w̌(1)

...
w̌(N − 1)

 ,

where

w̌(n) =
1

N

N−1∑
m=0

w(m)e2πimn/N , n = 0, 1, . . . , N − 1.

We call w̌ the inverse finite Fourier transform of w and we sometimes denote
it by F−1ZN

w. The full justification for the terminology will come later. Meanwhile,
the following proposition provides a partial justification.

Proposition 1.13. Let z be a signal in L2(ZN ). Then ˇ̂z = z.

Proof. For n = 0, 1, . . . , N−1, we can use the Fourier inversion formula in Theorem
1.7 to get

z(n) =
1

N

N−1∑
m=0

ẑ(m)e2πimn/N ,

and hence by Definition 1.12,

z(n) = ˇ̂z(n).

This proves that ˇ̂z = z. �

We have seen that the finite Fourier transform FZN
: L2(ZN ) → L2(ZN ) is

the same as the Fourier matrix ΩN . Let us now compute the matrix of the inverse
finite Fourier transform F−1ZN

: L2(ZN ) → L2(ZN ). To this end, let w ∈ L2(ZN ).
Then for m = 0, 1, . . . , N − 1,

(F−1ZN
w)(m) = w̌(m) =

1

N

N−1∑
n=0

w(n)e2πimn/N

=
1

N

N−1∑
n=0

w(n)
(
e2πi/N

)mn
=

1

N

N−1∑
n=0

w(n)
(
e−2πi/N

)mn
=

1

N

N−1∑
n=0

w(n)ωNmn

=
1

N

(
ΩNw

)
(m),
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where ΩN is the matrix obtained from ΩN by taking the complex conjugate of
every entry in ΩN . Thus,

F−1ZN
w = w̌ =

1

N
ΩNw, w ∈ L2(ZN ).

So, the matrix of the inverse finite Fourier transform F−1ZN
: L2(ZN )→ L2(ZN ) is

equal to 1
NΩN .

The following proposition explains why we call F−1ZN
: L2(ZN )→ L2(ZN ) the

inverse finite Fourier transform.

Proposition 1.14. F−1ZN
: L2(ZN ) → L2(ZN ) is the inverse of FZN

: L2(ZN ) →
L2(ZN ).

Proof. If we think of FZN
and F−1ZN

as matrices, then, by Proposition 1.13,

F−1ZN
FZN

= I, (1.19)

where I is the identity matrix of order N ×N . Thus,

det(F−1ZN
FZN

) = det I = 1,

where det(· · · ) is the determinant of (· · · ). Therefore

detF−1ZN
detFZN

= 1

and consequently detFZN
6= 0. So, the matrix FZN

is invertible, i.e., the inverse
of FZN

exists and let us denote it by A. Now, we multiply both sides of (1.19) on
the right by A and we get

F−1ZN
FZN

A = IA.

Hence
F−1ZN

= A

and the proof is complete. �

Corollary 1.15. Ω−1N = 1
NΩN .

Example 1.16. Using Example 1.8 and Corollary 1.15, we get

Ω−12 =

(
1 1
1 −1

)−1
=

1

2

(
1 1
1 −1

)
.

Example 1.17. Using Example 1.9 and Corollary 1.15, we get

Ω−14 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


−1

=
1

4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
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Example 1.18. Let w be the signal in L2(Z4) given by

w =


2 + i
−1

2− i
1

 .

Find the signal z in L2(Z4) such that ẑ = w.

Solution. We use the inverse of the Fourier matrix Ω4 in Example 1.17 to get

z = Ω−14 w =
1

4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




2 + i
1

2− i
−1

 =


1
0
1
i

 . �

We are now in a position to give an interpretation of the finite Fourier trans-
form in the context of signal analysis. The most fundamental formula is the Fourier
inversion formula in Theorem 1.7. To recall, let z ∈ L2(ZN ). Then (1.15) gives

z =
N−1∑
m=0

ẑ(m)Fm,

where {F0, F1, . . . , FN−1} is the Fourier basis for L2(ZN ). For m = 0, 1, . . . , N−1,

Fm =


Fm(0)
Fm(1)

...
Fm(N − 1)

 ,

where

Fm(n) =
1

N
e2πimn/N , n = 0, 1, . . . , N − 1.

For the sake of exposition, we assume that N is big and even. To simplify matters,
we also drop the factor 1

N from Fm(n) and look at only the real part of e2πimn/N ,
which is the same as cos(2πmn/N) for m,n = 0, 1, . . . , N − 1. The crucial idea
is to look at cos(2πmn/N) as a function of n on ZN for each value of m from 0
to N − 1. For m = 0, we get the value 1 for each n in ZN . For m = 1, we have
the function cos(2πn/N). To graph this function, we first draw the graph of the
function f on [0, N ] given by

f(x) = cos(2πx/N), x ∈ [0, N ],
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and then mark the points on the curve corresponding to n = 0, 1, . . . , N − 1. The
resulting picture is a set of N evenly spaced sampled points on the graph of one
cycle of the cosine function. For m = 2, a similar argument will give the graph of
cos(2π2n/N) as a set of N evenly spaced sampled points on the graph of two cycles
of the cosine function. For m = 0, 1, . . . , N/2, the same argument applies and the
graph of cos(2πmn/N) is a set of N evenly spaced sampled points on m cycles of
the cosine function. To see what happens when m = N/2, . . . , N , let us first look
at the case when m = N . The function then is cos(2πn) and we are back to the
value 1 for each n in ZN . In other words, we are back to the function when m = 0.
For m = N − 1, the function is cos(2π(N − 1)n/N), which is exactly cos(2πn/N).
So, we are back to the case when m = 1. These qualitative observations lead
us to conclude that each Fm in the Fourier basis is a wave with pure frequency
m when m = 0, 1, . . . , N/2; and is a wave with pure frequency N − m when
m = (N/2)+1, . . . , N−1. As m increases from 0 to N/2, the pure frequency given
by Fm increases; and as m increases from N/2 to N , the pure frequency given by
Fm decreases. The pure frequency of Fm is high when m is near the middle and is
low when m is near the endpoints of ZN . With this interpretation of each Fm as
a wave with pure frequency that depends on m, we can now give the meaning of
the Fourier inversion formula in signal analysis. According to the Fourier inversion
formula in Theorem 1.7, every signal z in L2(ZN ) can be decomposed using the
Fourier basis as

z =
N−1∑
m=0

ẑ(m)Fm.

Hence for m = 0, 1, . . . , N−1, ẑ(m) measures the “amount” of the wave Fm that is
needed in composing the signal z. If |ẑ(m)| is big (small) for values of m near N/2,
then the signal z has strong (weak) high-frequency components. If |ẑ(m)| is big
(small) near 0 and near N − 1, then the signal z has strong (weak) low-frequency
components.

We end this chapter with a study of the interactions of the finite Fourier
transform with translation and complex conjugation on L2(ZN ). Let us first extend
the definition of a signal in L2(ZN ), initially defined only on ZN , to the set Z of all
integers. We do this in such a way that the resulting function on Z, again denoted
by z, is periodic with period N . In other words, we demand that

z(n+N) = z(n), n ∈ Z.

From now on, we identify the function z ∈ L2(ZN ) with its periodic extension z
to all of Z.

We give in the following proposition a basic property of periodic functions
on Z with period N . It tells us that the sum on any interval of length N of a
periodic function on Z with period N is the same as the sum of the function on
the fundamental domain ZN . More precisely, we have
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Proposition 1.19. Let z be a periodic function on Z with period N . Then for every
integer k,

k+N−1∑
n=k

z(n) =
N−1∑
n=0

z(n).

Proof. Let us first prove the formula for nonnegative integers k. For k = 0, the
formula is trivially true. Let us assume that the formula is true for the positive
integer k. Then

k+N∑
n=k+1

z(n) =
k+N−1∑
n=k

z(n)− z(k) + z(k +N) =
k+N−1∑
n=k

z(n)

because z is periodic with period N . Hence the formula is also true for the positive
integer k + 1. To prove the formula for negative integers k, we let k = −κ, κ =
1, 2, . . . . Then we need to prove that

−κ+N−1∑
n=−κ

z(n) =
N−1∑
n=0

z(n), κ = 1, 2, . . . . (1.20)

Let κ = 1. Then

N−2∑
n=−1

z(n) =
N−1∑
n=0

z(n) + z(−1)− z(N − 1) =
N−1∑
n=0

z(n)

because z is periodic with period N . Thus, (1.20) is valid for κ = 1. Now, suppose
that (1.20) is true for the positive integer κ. Then

−κ+N−2∑
n=−κ−1

z(n) =
−κ+N−1∑
n=−κ

z(n) + z(−κ− 1)− z(−κ+N − 1) =
−κ+N−1∑
n=−κ

z(n)

because z is periodic with period N . Therefore (1.20) is also true for the positive
integer κ+ 1. �

Remark 1.20. If, in the definition of the finite Fourier transform ẑ of a signal
z ∈ L2(ZN ), we put

ẑ(m) =
N−1∑
n=0

z(n)e−2πimn/N , m ∈ Z,

then ẑ is periodic with period N . If, in the definition of the inverse finite Fourier
transform w̌ of a signal w ∈ L2(ZN ), we put

w̌(n) =
1

N

N−1∑
m=0

w(m)e2πimn/N , n ∈ Z,

then w̌ is periodic with period N . The proofs of these two facts are left as exercises.
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Definition 1.21. Let z be a signal in L2(ZN ) and let k ∈ Z. Then we define the
function Rkz on Z by

(Rkz)(n) = z(n− k), n ∈ Z.

We call Rkz the translation of z by k.

Example 1.22. Let z be the signal in L2(Z6) given by

z =


1

2 + i
8i

3− i
4
6

 .

Let k = 2. Then, by Definition 1.21 and the fact that z is periodic with period 6,
we get

R2z =


z(0− 2)
z(1− 2)
z(2− 2)
z(3− 2)
z(4− 2)
z(5− 2)

 =


z(−2)
z(−1)
z(0)
z(1)
z(2)
z(3)

 =


z(4)
z(5)
z(0)
z(1)
z(2)
z(3)

 =


4
6
1

2 + i
8i

3− i

 .

From Example 1.22, we see that the effect of the translation by 2 is to push
the entries except the last two in a signal down by two positions. The last two
entries are rotated into the first two positions.

Proposition 1.23. Let z be a signal in L2(ZN ) and let k ∈ Z. Then for all m in Z,

R̂kz(m) = e−2πimk/N ẑ(m).

Proof. Let m ∈ Z. Then we use the definition of the finite Fourier transform in
Remark 1.20 and the definition of the translation by k to get

R̂kz(m) =
N−1∑
n=0

(Rkz)(n)e−2πimn/N =
N−1∑
n=0

z(n− k)e−2πimn/N .

If we change the summation variable from n to l by the formula l = n− k, then

R̂kz(m) =
N−1−k∑
l=−k

z(l)e−2πim(l+k)/N = e−2πimk/N
N−1−k∑
l=−k

z(l)e−2πiml/N . (1.21)

Thus, applying Proposition 1.19 to the last term in (1.21), we get

R̂kz(m) = e−2πimk/N ẑ(m). �
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Obviously, form ∈ Z, |R̂kz(m)| = |ẑ(m)|. Thus, a translation cannot alter the
amplitudes of the complex coefficients of the waves Fm that make up the signal.
The phase of the finite Fourier transform ẑ, though, is changed in accordance
with the formula in Proposition 1.23. Thus, the effect of the translation by k of a
signal is not detected by the norm of the finite Fourier transform. In other words,
information on the composition of z in terms of the waves Fm at a particular
instant is not provided by the norm ‖ẑ‖ of z. It is to be found in the phase of ẑ.

We can now come to complex conjugation on L2(ZN ).

Definition 1.24. Let z be a signal in L2(ZN ). Then we define the signal z in L2(ZN )
by

z =


z(0)

z(1)
...

z(N − 1)

 .

We call z the complex conjugate of z.

Proposition 1.25. Let z be a signal in L2(ZN ). Then

ẑ(m) = ẑ(−m), m ∈ Z.

Proof. Using the definition of the finite Fourier transform and the definition of
complex conjugation, we get

ẑ(m) =

N−1∑
n=0

z(n)e−2πimn/N =

N−1∑
n=0

z(n)e2πimn/N = ẑ(−m)

for all m in Z. �

Definition 1.26. A signal z in L2(ZN ) is said to be real if z = z.

We can give a corollary of Proposition 1.25.

Corollary 1.27. A signal z in L2(ZN ) is real if and only if

ẑ(m) = ẑ(−m), m ∈ Z. (1.22)

Proof. Suppose that z is real. Then z = z. Thus, by Proposition 1.25,

ẑ(m) = ẑ(m) = ẑ(−m), m ∈ Z.

Conversely, suppose that (1.22) holds. Then, by Proposition 1.25 again,

ẑ(m) = ẑ(m), m ∈ Z.

Thus, ẑ = ẑ. So, by the Fourier inversion formula in Theorem 1.7, we get z = ẑ,
i.e., z is a real signal. �
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Exercises

1. For m = 0, 1, . . . , N − 1, let εm ∈ L2(ZN ) be defined by

εm =



0
0
...
1
...
0


,

i.e., εm has 1 in the mth position and zeros elsewhere. Prove that

{ε0, ε1, . . . , εN−1}

is an orthonormal basis for L2(ZN ).

2. Let z ∈ L2(Z216) be the signal given by

z(n) = 3 sin (2π5n/216)− 2 cos (2π6n/216), n = 0, 1, . . . , 215.

Compute FZ216
z.

3. Compute Ω3 and use it to compute FZ3z, where

z =

 1
i
2

 .

4. Prove that for all positive integers N ≥ 2,

Ω−1N =
1

N
Ω∗N ,

where Ω∗N is the adjoint of ΩN , i.e., the matrix obtained from ΩN by taking
the transpose of the complex conjugate of ΩN .

5. Let z ∈ L2(ZN ). Find a formula for ˆ̂z.

6. Let z ∈ L2(ZN ). Prove that ẑ and ž are periodic with period N .



Chapter 2

Translation-Invariant Linear Operators

We give in this chapter the most basic class of linear operators from L2(ZN ) into
L2(ZN ) in signal analysis.

Definition 2.1. Let A : L2(ZN )→ L2(ZN ) be a linear operator, i.e.,

A(z + w) = Az +Aw

and

A(αz) = αAz

for all z and w in L2(ZN ) and all α in C. Then we say that A is translation-
invariant if

ARk = RkA

for all k in Z, where Rk is the translation by k on L2(ZN ).

Remark 2.2. A translation-invariant linear operator A is the mathematical analog
of a filter that transmits signals in electrical engineering. Its function is to trans-
form an input signal z in L2(ZN ) into an output signal Az in L2(ZN ). The effect of
a filter on two signals together is the sum of the effects of the filter on each signal
separately. Also, if a signal is multiplied by a complex number, then the output
signal should be multiplied by the same complex number. This explains why lin-
earity is desirable. As for the condition that A should commute with translations,
we note that if we delay or advance an input signal by a certain amount, then the
output signal should be delayed or advanced by the same amount. In other words,
if z is a signal in L2(ZN ) and k ∈ Z, then

A(Rkz) = Rk(Az).

Therefore the condition that ARk = RkA is a natural one to impose on a filter.

The main result that we want to prove in this chapter is contained in the
following theorem.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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Theorem 2.3. Let A : L2(ZN ) → L2(ZN ) be a translation-invariant linear opera-
tor. Then for m = 0, 1, . . . , N − 1, Fm is an eigenfunction of A.

Proof. Let m ∈ ZN . Then, using the fact that {F0, F1, . . . , FN−1} is a basis for
L2(ZN ), we can find complex numbers α0, α1, . . . , αN−1 such that

(AFm)(n) =
N−1∑
k=0

αkFk(n), n = 0, 1, . . . , N − 1. (2.1)

Thus,

(R1AFm)(n) =
N−1∑
k=0

αkFk(n− 1)

=
1

N

N−1∑
k=0

αke
2πik(n−1)/N

=

N−1∑
k=0

αke
−2πik/NFk(n), n = 0, 1, . . . , N − 1. (2.2)

Now, for n = 0, 1, . . . , N − 1,

(R1Fm)(n) = Fm(n− 1) =
1

N
e2πim(n−1)/N = e−2πim/NFm(n),

and hence, using the linearity of A, we get

(AR1Fm)(n) = e−2πim/N (AFm)(n) =
N−1∑
k=0

αke
−2πim/NFk(n). (2.3)

Thus, by (2.2), (2.3) and equating coordinates, we get

αke
−2πik/N = αke

−2πim/N , k = 0, 1, . . . , N − 1.

Thus, αk = 0 whenever k 6= m, and (2.1) becomes

AFm = αmFm.

Therefore Fm is an eigenfunction of A. �

In order to understand the full thrust of Theorem 2.3, a recall of some basic
linear algebra is in order. Let B = {z0, z1, . . . , zN−1} be a basis for L2(ZN ). Then
for any signal z in L2(ZN ),

z =
N−1∑
k=0

αkzk,
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where α0, α1, . . . , αN−1 ∈ C. We define (z)B by

(z)B =


α0

α1

...
αN−1


and call (z)B the coordinates of z with respect to B. We can construct the matrix
of an arbitrary linear operator A : L2(ZN )→ L2(ZN ) with respect to the basis B
as follows. Using the fact that B = {z0, z1, . . . , zN−1} is a basis for L2(ZN ), we
can find complex numbers amn, m, n = 0, 1, . . . , N − 1, such that

Az0 = a00z0 + a10z1 + · · ·+ aN−1,0zN−1,

Az1 = a01z0 + a11z1 + · · ·+ aN−1,1zN−1,

· · ·
AzN−1 = a0,N−1z0 + a1,N−1z1 + · · ·+ aN−1,N−1zN−1.

Now, we let (A)B be the matrix defined by

(A)B = (amn)0≤m,n≤N−1 =


a00 a01 a02 · · · a0,N−1
a10 a11 a12 · · · a1,N−1
...

...
... · · ·

...
aN−1,0 aN−1,1 aN−1,2 · · · aN−1,N−1

 .

Then

(A)B(z)B =


∑N−1
k=0 a0kαk∑N−1
k=0 a1kαk

...∑N−1
k=0 aN−1,kαk

 . (2.4)

But

Az = A (α0z0 + α1z1 + · · ·+ αN−1zN−1)

= α0Az0 + α1Az1 + · · ·+ αN−1AzN−1

=

(
N−1∑
k=0

a0kαk

)
z0 +

(
N−1∑
k=0

a1kαk

)
z1 + · · ·+

(
N−1∑
k=0

aN−1,kαk

)
zN−1.

Thus,

(Az)B =


∑N−1
k=0 a0kαk∑N−1
k=0 a1kαk

...∑N−1
k=0 aN−1,kαk

 . (2.5)
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So, by (2.4) and (2.5),
(Az)B = (A)B(z)B .

We call (A)B the matrix of the linear operator A : L2(ZN )→ L2(ZN ) with respect
to the basis B for L2(ZN ). If B is the standard basis S = {ε0, ε1, . . . , εN−1}, then

Az = (Az)S = (A)S(z)S = (A)Sz, z ∈ L2(ZN ).

Thus, the matrix (A)S of A with respect to S is equal to A. It is then of enormous
interest to find a basis B for L2(ZN ) such that the matrix (A)B of A with respect
to B is as simple as, say, a diagonal matrix.

The following theorem is an immediate consequence of Theorem 2.3.

Theorem 2.4. Let A : L2(ZN )→ L2(ZN ) be a translation-invariant linear operator
and let F = {F0, F1, . . . , FN−1} be the Fourier basis for L2(ZN ). Then the matrix
(A)F of A with respect to F is diagonal. In fact,

(A)F =


λ0 0 0 · · · 0
0 λ1 0 · · · 0
0 0 λ2 · · · 0
...

...
... · · ·

...
0 0 0 · · · λN−1

 ,

where λm is the eigenvalue of A corresponding to the eigenfunction Fm, m =
0, 1, . . . , N − 1.

Proof. We get
AF0 = λ0F0 + 0F1 + 0F2 + · · ·+ 0FN−1,

AF1 = 0F0 + λ1F1 + 0F2 + · · ·+ 0FN−1,

AF2 = 0F0 + 0F1 + λ2F2 + · · ·+ 0FN−1,

· · ·

AFN−1 = 0F0 + 0F1 + 0F2 + · · ·+ λN−1FN−1.

Thus, the matrix (A)F of A with respect to the Fourier basis F is given by

(A)F =


λ0 0 0 · · · 0
0 λ1 0 · · · 0
0 0 λ2 · · · 0
...

...
... · · ·

...
0 0 0 · · · λN−1

 . �

In order to study translation-invariant linear operators in detail, we introduce
the notions of circulant matrices, convolution operators and Fourier multipliers,
which are the topics in the following three chapters.
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Exercises

1. Let A : L2(Z4)→ L2(Z4) be the linear operator defined by

(Az)(n) = 3 (R1z)(n) + z(n), n = 0, 1, 2, 3.

Prove that A is translation-invariant.

2. For the translation-invariant operator A in Exercise 1, find the matrix (A)S
of A with respect to the standard basis S of L2(Z4).

3. For the translation-invariant operator A in Exercise 1, find the matrix (A)F
of A with respect to the Fourier basis F of L2(Z4).

4. Do Exercises 1–3 again for the linear operator A : L2(Z4)→ L2(Z4) defined
by

(Az)(n) = (R3z)(n) + iz(n)− i(R−2z)(n), n = 0, 1, 2, 3.

5. Prove that a linear operator A : L2(ZN ) → L2(ZN ) is translation-invariant
if and only if A commutes with R1.



Chapter 3

Circulant Matrices

We have seen that the matrix (A)F of a translation-invariant linear operator A :
L2(ZN ) → L2(ZN ) with respect to the Fourier basis F for L2(ZN ) is a diagonal
matrix. Can we say something about the structure of the matrix (A)S with respect
to the simplest basis for L2(ZN ), namely, the standard basis S?

To answer this question, let (amn)0≤m,n≤N−1 be an N ×N matrix. Then we
define amn for all m and n in Z by periodic extension to all of Z in each of the
variables m and n. In other words, we demand that

am+N,n = amn

and
am,n+N = amn

for all m and n in Z. An N ×N matrix is assumed to be so periodized from now
on.

Definition 3.1. Let C = (amn)0≤m,n≤N−1 be an N×N matrix periodized as above.
Then we say that C is circulant if

am+1,n+1 = amn, m, n ∈ Z.

Let C = (amn)0≤m,n≤N−1 be a circulant matrix of order N × N . Then the
(n+ 1)st column of C is equal to

a0,n+1

a1,n+1

...
am+1,n+1

...
aN−1,n+1


=



a−1,n
a0n

...
amn

...
aN−2,n


=



aN−1,n
a0n

...
amn

...
aN−2,n


= R1



a0n
a1n

...
am+1,n

...
aN−1,n


.

So, the (n+1)st column of C is obtained from the nth column by the translation by
1. Similarly, the (m+1)st row of C is obtained from the mth row by the translation

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 23
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by 1. Thus, it is easy to recognize a circulant matrix whenever we come across
one.

Example 3.2. Let

C =


α δ γ β
β α δ γ
γ β α δ
δ γ β α

 .

Then C is a circulant matrix of order 4× 4.

Proposition 3.3. Let A : L2(ZN )→ L2(ZN ) be a translation-invariant linear oper-
ator. Then the matrix (A)S of A with respect to the standard basis S is circulant.

Proof. Let n ∈ Z. Then, by the division algorithm,

n+ 1 = qN + r,

where r is some integer in ZN . Thus, letting

εn+1 = εr,

we obtain

(A)Sεn+1 = (A)S



0
0
...
0
1
0
...
0


,

where the 1 is in the rth position. Hence for all m and n in Z,

(A)Sεn+1 =



a0r
a1r
...

amr
...

aN−1,r


=



a0,n+1

a1,n+1

...
am,n+1

...
aN−1,n+1


,

and, using the translation-invariance of A, we get

am+1,n+1 = am+1,r = ((A)Sεn+1)(m+ 1) = (Aεn+1)(m+ 1)

= (AR1εn)(m+ 1) = (R1Aεn)(m+ 1) = (Aεn)(m)

= ((A)Sεn)(m) = amn.

This proves that (A)S is circulant. �
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Exercises

1. Find the circulant matrix corresponding to the linear operator A : L2(Z4)→
L2(Z4) given by

(Az)(n) = z(n+ 2)− 2z(n+ 1) + z(n), n = 0, 1, 2, 3.

2. Prove that the product of two circulant matrices is circulant.

3. Prove that the adjoint of a circulant matrix is circulant.

4. Let A be a circulant matrix. Prove that the linear operator A : L2(ZN ) →
L2(ZN ) is translation-invariant.

5. Prove that a circulant matrix A is normal, i.e., A commutes with its adjoint
A∗.



Chapter 4

Convolution Operators

Translation-invariant linear operators from L2(ZN ) into L2(ZN ) can be given an-
other representation that gives new insight into signal analysis. We first give a
definition.

Definition 4.1. Let z and w be signals in L2(ZN ). Then we define the signal z ∗w
in L2(ZN ) by

(z ∗ w)(m) =
N−1∑
n=0

z(m− n)w(n), m ∈ Z.

We call z ∗ w the convolution of z and w.

Let b be a signal in L2(ZN ). Then we define the mapping Cb : L2(ZN ) →
L2(ZN ) by

Cbz = b ∗ z, z ∈ L2(ZN ).

Proposition 4.2. Cb : L2(ZN )→ L2(ZN ) is a linear operator.

Proof. Let z and w be signals in L2(ZN ) and let α ∈ C. Then we get

(Cb(z + w))(m) =
N−1∑
n=0

b(m− n)(z + w)(n)

=
N−1∑
n=0

b(m− n)z(n) +
N−1∑
n=0

b(m− n)w(n)

= (b ∗ z)(m) + (b ∗ w)(m)

= (Cbz)(m) + (Cbw)(m)

and

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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(Cb(αz))(m) =
N−1∑
n=0

b(m− n)(αz)(n)

= α
N−1∑
n=0

b(m− n)z(n)

= α(b ∗ z)(m) = α(Cbz)(m)

for all m in Z. Therefore

Cb(z + w) = Cbz + Cbw

and
Cb(αz) = α(Cbz).

This completes the proof. �

We call Cb the convolution operator associated to the kernel b.

Proposition 4.3. Let C = (amn)0≤m,n≤N−1 be an N × N circulant matrix. Then
for every z in L2(ZN ),

Cz = Cbz,

where b is the first column of C, i.e.,

b =


a00
a10

...
aN−1,0

 .

Proof. Since C is circulant, it follows that

am−n,0 = am−n+1,1 = · · · = amn, m, n ∈ Z. (4.1)

So, for m ∈ Z, we get, by (4.1) and the definition of the convolution operator,

(Cz)(m) =
N−1∑
n=0

amnz(n) =
N−1∑
n=0

am−n,0z(n)

=
N−1∑
n=0

b(m− n)z(n) = (b ∗ z)(m) = (Cbz)(m)

for all m in Z. �

Remark 4.4. Let A : L2(ZN )→ L2(ZN ) be a translation-invariant linear operator.
Then, by Proposition 3.3, A = (A)S is a circulant matrix. Hence, by Proposition
4.3, A is also a convolution operator with kernel b given by the first column of
the matrix A. The following proposition tells us that a convolution operator is
translation-invariant.
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Proposition 4.5. Let Cb : L2(ZN )→ L2(ZN ) be a convolution operator with kernel
b, where b ∈ L2(ZN ). Then Cb is translation-invariant.

Proof. Let k ∈ Z. Then for all z ∈ L2(ZN ),

(CbRkz)(m) =
N−1∑
n=0

b(m− n)(Rkz)(n)

=
N−1∑
n=0

b(m− n)z(n− k)

=
N−1−k∑
l=−k

b(m− k − l)z(l), m ∈ Z. (4.2)

Since b(m − k − l)z(l) is a periodic function of l on Z with period N , it follows
from Proposition 1.19 that

N−1−k∑
l=−k

b(m− k − l)z(l)

=
N−1∑
l=0

b(m− k − l)z(l)

= (b ∗ z)(m− k) = (RkCbz)(m), m ∈ Z. (4.3)

Thus, by (4.2) and (4.3), CbRk = RkCb, and this proves that Cb is translation-
invariant. �

Remark 4.6. Let A : L2(ZN ) → L2(ZN ) be a linear operator. Then, by Proposi-
tions 3.3, 4.3 and 4.5,

A is translation-invariant

⇔ the matrix (A)S of A with respect to the standard basis S for L2(ZN ) is
circulant

⇔ A is a convolution operator.

It is about time again for us to look at an application of translation-invariant
linear operators in signal analysis. Let us begin with the important signal δ in
L2(ZN ) defined by

δ =


1
0
0
...
0

 .
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The signal δ is called the Dirac delta or the unit impulse, and enjoys the important
property that

z ∗ δ = z, z ∈ L2(ZN ).

Indeed, for all m ∈ Z,

(z ∗ δ)(m) =
N−1∑
n=0

z(m− n)δ(n) = z(m).

We have seen that a filter in signal analysis is a translation-invariant linear operator
A : L2(ZN ) → L2(ZN ) in Fourier analysis. By Remark 4.4, A is a convolution
operator Cb with some kernel b in L2(ZN ). To determine the kernel b, we note
that

Aδ = Cbδ = b ∗ δ = b.

Thus, the kernel b is the effect or response of the filter A = Cb on the unit impulse
δ. Hence the kernel b is just the impulse response of the filter A = Cb in electrical
engineering.

We end this chapter with a result, which tells us that the finite Fourier
transform converts convolutions into multiplications.

Proposition 4.7. Let z and w be signals in L2(ZN ). Then

ẑ ∗ w(m) = ẑ(m)ŵ(m), m ∈ Z.

Proof. Using the definition of the finite Fourier transform and the definition of
convolution, we get

ẑ ∗ w(m) =
N−1∑
n=0

(z ∗ w)(n)e−2πimn/N

=
N−1∑
n=0

(
N−1∑
k=0

z(n− k)w(k)

)
e−2πim(n−k)/Ne−2πimk/N

=
N−1∑
k=0

(
N−1∑
n=0

z(n− k)e−2πim(n−k)/N

)
w(k)e−2πimk/N

=
N−1∑
k=0

w(k)e−2πimk/N

(
N−1∑
n=0

z(n− k)e−2πim(n−k)/N

)

=
N−1∑
k=0

w(k)e−2πimk/N

(
N−1−k∑
l=−k

z(l)e−2πiml/N

)
(4.4)

for all m in Z. Since z(l)e−2πiml/N is a periodic function of l on Z with period N ,
it follows from Proposition 1.19 that

N−1−k∑
l=−k

z(l)e−2πiml/N =
N−1∑
l=0

z(l)e−2πiml/N = ẑ(m), m ∈ Z. (4.5)
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Thus, by (4.4) and (4.5),

ẑ ∗ w(m) = ŵ(m)ẑ(m), m ∈ Z,

and the proof is complete. �

Exercises

1. Compute FZN
δ.

2. Let Cb1 and Cb2 be convolution operators from L2(ZN ) into L2(ZN ) associ-
ated to kernels given, respectively, by b1 and b2 in L2(ZN ). Prove that

Cb1Cb2 = Cb1∗b2 .

3. Let A : L2(ZN ) → L2(ZN ) be a linear operator. Then its adjoint A∗ :
L2(ZN )→ L2(ZN ) is defined to be the linear operator such that

(Az,w) = (z,A∗w), z, w ∈ L2(ZN ).

Find the kernel of the adjoint of a convolution operator Cb : L2(ZN ) →
L2(ZN ).



Chapter 5

Fourier Multipliers

We now come to the last ingredient in the analysis of translation-invariant linear
operators. We begin with the multiplication of two signals in L2(ZN ).

Definition 5.1. Let z and w be signals in L2(ZN ). Then we define the signal zw
in L2(ZN ) by

zw =


z(0)w(0)
z(1)w(1)

...
z(N − 1)w(N − 1)

 ,

i.e.,
(zw)(n) = z(n)w(n), n ∈ Z.

Let σ ∈ L2(ZN ). Then we define the mapping Tσ : L2(ZN )→ L2(ZN ) by

Tσz = (σẑ)∨, z ∈ L2(ZN ).

The proof of the following proposition is easy and is left as an exercise.

Proposition 5.2. Let σ ∈ L2(ZN ). Then Tσ : L2(ZN )→ L2(ZN ) is a linear opera-
tor.

We call Tσ the Fourier multiplier or the pseudo-differential operator associ-
ated to the symbol σ. It is more often and more instructive to call it a Fourier
multiplier at this stage.

To see the role of a Fourier multiplier in signal analysis, let σ ∈ L2(ZN ).
Then for all signals z in L2(ZN ), we get

(Tσz)
∧(m) = σ(m)ẑ(m), m ∈ Z.

So, using the Fourier inversion formula in Theorem 1.7, we get

Tσz =
N−1∑
m=0

(Tσz)
∧(m)Fm =

N−1∑
m=0

σ(m)ẑ(m)Fm

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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34 Chapter 5. Fourier Multipliers

for all z in L2(ZN ). Therefore the effect of the Fourier multiplier Tσ on a signal
z is to pitch the amount of each of the waves F0, F1, . . . , FN−1 by the symbol σ
in the composition of z in order to produce the output signal Tσz. The heart of
the matter is that a Fourier multiplier can be thought of as a frequency-pitching
device in signal analysis.

Proposition 5.3. Let Cb : L2(ZN ) → L2(ZN ) be a convolution operator, where
b ∈ L2(ZN ). Then

Cb = Tσ,

where σ = b̂. Conversely, let Tσ : L2(ZN ) → L2(ZN ) be a Fourier multiplier,
where σ ∈ L2(ZN ). Then

Tσ = Cb,

where b = σ̌.

Proof. Let z ∈ L2(ZN ). Then, using the Fourier inversion formula in Theorem 1.7
and Proposition 4.7,

Cbz = b ∗ z = (b̂ ∗ z)∨ = (b̂ẑ)∨ = (σẑ)∨ = Tσz.

Conversely, using the Fourier inversion formula and Proposition 4.7 again, we get

Tσz = (σẑ)∨ = (b̂ẑ)∨ = (b̂ ∗ z)∨ = b ∗ z = Cbz. �

Proposition 5.4. Let A : L2(ZN ) → L2(ZN ) be a linear operator. Then A is a
Fourier multiplier if and only if the matrix (A)F of A with respect to the Fourier
basis F is diagonal. Moreover, if A is the Fourier multiplier Tσ associated to the
symbol σ in L2(ZN ), then

(A)F = (Tσ)F =


σ(0) 0 0 · · · 0

0 σ(1) 0 · · · 0
0 0 σ(2) · · · 0
...

...
... · · ·

...
0 0 0 · · · σ(N − 1)

 .

Proof. Suppose that A = Tσ. Let m ∈ ZN . Then, using the Fourier inversion
formula in Theorem 1.7 and the definition of the Fourier multiplier,

TσFm =
N−1∑
n=0

(TσFm)∧(n)Fn =
N−1∑
n=0

σ(n)F̂m(n)Fn. (5.1)

Using the Fourier inversion formula again,

Fm =
N−1∑
n=0

F̂m(n)Fn ⇒ F̂m(n) =

{
1, n = m,
0, n 6= m.

(5.2)
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So, by (5.1) and (5.2),

TσF0 = σ(0)F0 + 0F1 + 0F2 + · · ·+ 0FN−1,

TσF1 = 0F0 + σ(1)F1 + 0F2 + · · ·+ 0FN−1,

TσF2 = 0F0 + 0F1 + σ(2)F2 + · · ·+ 0FN−1,

· · ·

TσFN−1 = 0F0 + 0F1 + 0F2 + · · ·+ σ(N − 1)FN−1,

and hence

(Tσ)F =


σ(0) 0 0 · · · 0

0 σ(1) 0 · · · 0
0 0 σ(2) · · · 0
...

...
... · · ·

...
0 0 0 · · · σ(N − 1)

 .

Conversely, suppose that

(A)F = D =


d0 0 0 · · · 0
0 d1 0 · · · 0
0 0 d2 · · · 0
...

...
... · · ·

...
0 0 0 · · · dN−1

 ,

where d0, d1, . . . , dN−1 ∈ C. Let σ ∈ L2(ZN ) be defined by

σ =


d0
d1
...

dN−1

 .

Then for all z ∈ L2(ZN ), we get, by the Fourier inversion formula in Theorem 1.7,

(Az)F = (A)F (z)F = D(z)F

= D


ẑ(0)
ẑ(1)

...
ẑ(N − 1)

 =


d0ẑ(0)
d1ẑ(1)

...
dN−1ẑ(N − 1)


= σẑ = (Tσz)

∧ = (Tσz)F .

Hence
Az = Tσz, z ∈ L2(ZN ),

and this proves that A = Tσ. �
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Remark 5.5. Let A : L2(ZN ) → L2(ZN ) be a linear operator. Then, by Proposi-
tions 5.3 and 5.4,

A is a convolution operator

⇔ A is a Fourier multiplier

⇔ the matrix (A)F of A with respect to the Fourier basis F for L2(ZN ) is
diagonal.

Remark 5.6. Let A : L2(ZN ) → L2(ZN ) be a linear operator. Then, by Remarks
4.6 and 5.5,

A is a translation-invariant linear operator

⇔ the matrix (A)S of A with respect to the standard basis S for L2(ZN ) is
circulant

⇔ A is a convolution operator

⇔ A is a Fourier multiplier

⇔ the matrix (A)F of A with respect to the Fourier basis F for L2(ZN ) is
diagonal.

Exercises

1. Prove that Tσ : L2(ZN )→ L2(ZN ) is a linear operator.

2. Let σ and τ be signals in L2(ZN ). Prove that

TσTτ = Tστ

and
T ∗σ = Tσ.



Chapter 6

Eigenvalues and Eigenfunctions

The results obtained in Chapters 2–5 can be used in the computation of eigenvalues
of filters, which are given by translation-invariant linear operators. To recall, let
A : L2(ZN ) → L2(ZN ) be a filter, i.e., a translation-invariant linear operator.
Then the matrix (A)S of A with respect to the standard basis S for L2(ZN ) is
circulant. The filter A is in fact a convolution operator Cb with impulse response
b, where b is simply the first column of the matrix A. The filter A is also a Fourier
multiplier Tσ with symbol σ and σ = b̂. The matrix (A)F of the filter A with
respect to the Fourier basis F for L2(ZN ) is diagonal, and is given by

(A)F =


λ0 0 0 · · · 0
0 λ1 0 · · · 0
0 0 λ2 · · · 0
...

...
... · · ·

...
0 0 0 · · · λN−1

 ,

where λm is the eigenvalue of A corresponding to the eigenfunction Fm, m =
0, 1, . . . , N − 1.

We can now give an explicit formula for the eigenvalues λ0, λ1, . . . , λN−1. We
want the formula to be so tractable that it can be used in computation. Such a
formula comes readily from Propositions 5.3 and 5.4, and the discussion given in
the first paragraph of this chapter.

Theorem 6.1. Let A : L2(ZN ) → L2(ZN ) be a translation-invariant linear opera-
tor. Then the eigenvalues of A are given by

σ(0), σ(1), . . . , σ(N − 1),

where σ = b̂ and b is the first column of the matrix A. Moreover, for m =
0, 1, . . . , N − 1, the eigenfunction of A corresponding to the eigenvalue σ(m) is
the wave Fm.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
DOI 10.1007/978-3-0348-0116-4_6, © Springer Basel AG 2011

37
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Example 6.2. Let ∆ : L2(ZN )→ L2(ZN ) be the linear operator defined by

(∆z)(n) = z(n+ 1)− 2z(n) + z(n− 1), n ∈ Z,

for all z in L2(ZN ). Find all the eigenvalues of ∆.

Solution. That ∆ is a linear operator is easy to check and is hence omitted. To
check that ∆ is translation-invariant, let k ∈ Z. Then for all z ∈ L2(ZN ),

(∆Rkz)(n) = (Rkz)(n+ 1)− 2(Rkz)(n) + (Rkz)(n− 1)

= z(n− k + 1)− 2z(n− k) + z(n− k − 1), n ∈ Z.

On the other hand,

(Rk∆z)(n) = (∆z)(n− k)

= z(n− k + 1)− 2z(n− k) + z(n− k − 1), n ∈ Z.

Therefore ∆Rk = Rk∆, and hence ∆ is translation-invariant. Let us now find the
first column of the matrix ∆ = (∆)S of ∆ with respect to the standard basis S
for L2(ZN ). To this end, we note that for all z ∈ L2(ZN ),

(∆z)(0) = z(1)− 2z(0) + z(−1) = z(1)− 2z(0) + z(N − 1)

and hence

∆ = (∆)S =


−2 1 0 0 · · · 0 1
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

... · · ·
...

...
1 0 0 0 · · · 1 −2

 .

So, the first column b of ∆ = (∆)S is given by

b =



−2
1
0
...
0
1


.

Then the eigenvalues of ∆ are σ(0), σ(1), . . . , σ(N − 1), where σ is the symbol of
∆ given by
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σ(m) = b̂(m) =
N−1∑
n=0

b(n)e−2πimn/N

= −2 + e−2πim/N + e−2πim(N−1)/N

= −2 + e−2πim/N + e2πim/N

= −2 + 2cos(2πm/N)

= −4sin2
(πm
N

)
, m ∈ Z. �

Remark 6.3. ∆ is the Laplacian on ZN .

Exercises

1. Find the eigenvalues of the linear operator D : L2(ZN )→ L2(ZN ) given by

(Dz)(n) = iz(n+ 1)− iz(n), n = 0, 1, . . . , N − 1.

(D is the Dirac operator on ZN .)

2. Let σ∈L2(ZN ). Find the eigenvalues of the Fourier multiplier Tσ : L2(ZN )→
L2(ZN ).

3. Let b ∈ L2(ZN ). Find the eigenvalues of the convolution operator Cb :
L2(ZN )→ L2(ZN ).



Chapter 7

The Fast Fourier Transform

The Fourier inversion formula in Theorem 1.7 states that for every signal z in
L2(ZN ), the coordinates (z)F and (z)S of z with respect to the Fourier basis F
and the standard basis S for L2(ZN ) respectively are related by

(z)F = ẑ = ΩNz = ΩN (z)S ,

where ΩN is the Fourier matrix of order N × N . So, the change of basis from
the standard basis S for L2(ZN ) to the Fourier basis F for L2(ZN ) is the same
as multiplying an N × 1 column vector by the N × N matrix ΩN , and it has
been pointed out in Remark 1.11 that this entails N2 multiplications of complex
numbers. In view of the fact that in signal analysis, N is usually very big and
therefore the task of carrying out N2 complex multiplications is formidable even
for high-speed computers. As a matter of fact, the number of additions should
have been taken into account. Due to the fact that multiplication is much slower
than addition on a computer, an idea of the speed of computer time required for
the computation of the finite Fourier transform can be gained by just counting
the number of complex multiplications.

Do we really need N2 complex multiplications? Apparently, the answer is yes
and we cannot do better than this because there is not even one single zero entry
in the matrix ΩN . The key that helps us in reducing the number of multiplications
by a great deal lies in the structure of the matrix ΩN . The entries in ΩN are just
powers of the single complex number ωN given by

ωN = e−2πi/N .

This structure enables us to decompose ΩN into factors with many zeros. This
factorization, first envisaged by Gauss in 1805 and developed by Cooley and Tukey
in 1965, is the basic idea behind the fast Fourier transform, of which the acronym
is justifiably FFT.

We illustrate the basic ideas of the fast Fourier transform in this chapter. To
make life simple, we only look at the case when N is a power of 2. The trick then
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is to work with the matrix ΩN/2 instead of ΩN . To wit, suppose that N = 4. Then

Ω4 =


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 ,

and we can write

Ω4 =


1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


=

(
I2 D2

I2 −D2

)(
Ω2 0
0 Ω2

)
P4, (7.1)

where I2 is the identity matrix of order 2× 2, D2 is the diagonal matrix of which
the diagonal entries are 1 and ω4 and P4 is the permutation matrix that puts z(0)
and z(2) before z(1) and z(3) in the signal z in L2(Z4). The formula (7.1) is the
decomposition of Ω4 into factors with many zeros. It is also the reduction of Ω4 to
Ω2. The first matrix on the right-hand side of (7.1) aligns the two half-size outputs
to produce the desired Ω4z. A generalization of (7.1) is the following formula of
Cooley and Tukey to the effect that

ΩN =

(
IN/2 DN/2

IN/2 DN/2

)(
ΩN/2 0

0 ΩN/2

)
PN , (7.2)

where IN/2 is the identity matrix of order N
2 ×

N
2 , DN/2 is the diagonal matrix of

which the diagonal entries are 1, ωN , ω
2
N , . . . , ω

(N−2)/2
N , and PN is the permutation

matrix that puts the evens before the odds. The Cooley and Tukey formula (7.2)
is the FFT or the first step of the FFT.

What is then the next step? It is of course the reduction of the matrix ΩN/2
to the matrix ΩN/4 by means of the Cooley–Tukey formula (7.2) where the N is
now replaced by N/2. Then we keep going from N/4 to N/8 and so on.

To see how much is saved in using the FFT, let us recall that without the
FFT, direct matrix multiplication requires N2 complex multiplications. What do
we gain with the FFT? To answer this question, let N = 2l, where l is a positive
integer. Then we have the following theorem.

Theorem 7.1. The number of complex multiplications using the FFT is at most
1
2Nl = 1

2N log2N .

Proof. Let l = 1. Then N = 2. Let

z =

(
z(0)
z(1)

)
.
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Then

ẑ = Ω2z =

(
1 1
1 −1

)(
z(0)
z(1)

)
=

(
z(0) + z(1)
z(0)− z(1)

)
and no multiplication is required. Suppose that the theorem is true for l. Then
the number of complex multiplications required at level l is at most 1

22ll. Using
the Cooley-Tukey formula (7.2), we need 2l multiplications using the diagonal D’s
to put together the half-size products from the level l. Thus, we need at most
2l + 2ll = 1

22l+1(l + 1). By the principle of mathematical induction, the proof is
complete. �

Remark 7.2. In order to appreciate the power of the FFT, let l = 10. Then

N = 210 = 1024.

Direct matrix multiplication without the FFT requires (1024)2 complex multipli-
cations. We need to perform more than a million complex multiplications. Using
the FFT, we need at most 1

2 × 1024 × 10 = 5120 complex multiplications. The
save in computer time is enormous.

Remark 7.3. Convolutions can also be computed rapidly with the FFT. To see
how, let us recall that, by Proposition 4.7 and the Fourier inversion formula, we
get

z ∗ w = (ẑ ∗ w)∨ = (ẑŵ)∨, z, w ∈ L2(ZN ).

If N is a power of 2, then, by Theorem 7.1, we need at most 1
2N log2N complex

multiplications to compute ẑ, at most 1
2N log2N complex multiplications to com-

pute ŵ, at most N complex multiplications to compute ẑŵ and at most 1
2N log2N

complex multiplications to compute the inverse finite Fourier transform of ẑŵ. So,
using the FFT, we need at most N+ 3N

2 log2N complex multiplications to compute
z ∗ w. This observation will be useful to us in the study of wavelets.

Exercises

1. Let σ ∈ L2(ZN ), where N is a power of 2. Use the FFT to find an upper
bound on the number of complex multiplications required to compute Tσz,
where z ∈ L2(ZN ).

2. Let b1 and b2 be signals in L2(Z), where N is a power of 2. Use the FFT to
find an upper bound on the number of complex multiplications required to
compute the product Cb1Cb2 .



Chapter 8

Time-Frequency Analysis

Let z be a signal in L2(ZN ). Then we say that z is time-localized near n0 if all
components z(n) are 0 or relatively small except for a few values of n near n0. An
orthonormal basis B for L2(ZN ) is said to be time-localized if every signal in B is
time-localized.

Let B = {z0, z1, . . . , zN−1} be a time-localized orthonormal basis for L2(ZN ).
Then for every signal z in L2(ZN ),

z =
N−1∑
n=0

αnzn, (8.1)

where α0, α1, . . . , αN−1 ∈ C. If we are interested in the part of the signal z near
a point n0, then we can concentrate on the terms for which the basis signals are
localized near n0 and ignore the rest. An advantage then is that the full sum (8.1)
is replaced by a much smaller one. We have performed signal compression in so
doing.

Let us for a moment think of n as the space variable instead of the time
variable. Suppose that a coefficient in the sum (8.1) is big. Then, using a space-
localized orthonormal basis, we can locate and concentrate on this big coefficient.
This is the idea underlying medical imaging.

Let z be a signal in L2(ZN ). Then we say that z is frequency-localized near
m0 if all components ẑ(m) are 0 or relatively small except for a few values of m
near m0. An orthonormal basis B for L2(ZN ) is said to be frequency-localized if
every signal in B is frequency-localized.

Example 8.1. The standard basis S = {ε0, ε1, . . . , εN−1} for L2(ZN ) is time-
localized, but not frequency-localized.

Proof. Indeed, let k ∈ Z. Then

εk(n) =

{
1, n = k,
0, n 6= k,
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and hence εk in L2(ZN ) is localized at k. On the other hand,

ε̂k(m) =
N−1∑
n=0

εk(n)e−2πimn/N = e−2πimk/N , m ∈ Z.

Since |ε̂k(m)| = 1, m ∈ Z, it follows that εk is not frequency-localized. �

Example 8.2. The Fourier basis F = {F0, F1, . . . , FN−1} for L2(ZN ) is frequency-
localized, but not time-localized.

Proof. The argument used in the proof of Example 8.1 shows that F is not time-
localized. To see that F is frequency-localized, let k ∈ Z. Then, using the Fourier
inversion formula, we get

Fk =
N−1∑
m=0

F̂k(m)Fm.

Hence

F̂k(m) =

{
1, m = k,
0, m 6= k,

and this proves that Fk is frequency-localized at k. �

Why are frequency-localized orthonormal bases good? First of all, we can
expect that such a basis, like the Fourier basis, is amenable to fast computation. To
see another benefit that can be obtained from a frequency-localized orthonormal
basis, let us suppose that we need to remove the high-frequency components of a
signal without affecting adversely the quality of the resulting signal. Then we need
to know which frequencies to remove. This information is provided by a frequency-
localized orthonormal basis. To render this idea concrete and transparent, let us
return to the Fourier basis F , which is the prototype of a frequency-localized
orthonormal basis. By the Fourier inversion formula in Theorem 1.7, every signal
z in L2(ZN ) is of the form

z =
N−1∑
m=0

ẑ(m)Fm.

We see from our discussions in Chapter 1 that this is a high-frequency signal if
|ẑ(m)| is big for frequencies m near N/2. Thus, we see clearly that a frequency-
localized orthonormal basis such as the Fourier basis F locates the high-frequency
components of a signal if any.

An important objective is to construct orthonormal bases B for L2(ZN ) such
that B is time-localized, frequency-localized and there is a fast algorithm for the
computation of (z)B for all z in L2(ZN ). To this end, we need some preparations.

Definition 8.3. Let z be a signal in L2(ZN ). Then we define the involution z∗ of z
by

z∗(n) = z(−n), n ∈ Z.
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Proposition 8.4. Let z be a signal in L2(ZN ). Then

ẑ∗(m) = ẑ(m), m ∈ Z.

Proof. Let m ∈ Z. Then, using the definition of the finite Fourier transform and
the involution, we get

ẑ∗(m) =
N−1∑
n=0

z∗(n)e−2πimn/N

=
N−1∑
n=0

z(−n)e−2πimn/N

=
0∑

l=−(N−1)

z(l)e2πiml/N

=

0∑
l=−(N−1)

z(l)e−2πiml/N . (8.2)

Since z(l)e−2πiml/N is a periodic function of l on Z with period N , we can use
Proposition 1.19 and (8.2) to get

ẑ∗(m) =
N−1∑
l=0

z(l)e−2πiml/N = ẑ(m). �

Proposition 8.5. Let z and w be signals in L2(ZN ). Then

(z ∗ w∗)(m) = (z,Rmw) (8.3)

and
(z ∗ w)(m) = (z,Rmw

∗) (8.4)

for all m in Z.

To prove Proposition 8.5, we need a lemma.

Lemma 8.6. Let z and w be signals in L2(ZN ). Then

z ∗ w = w ∗ z.

Proof. Using the definition of the convolution of z and w, we get

(z ∗ w)(m) =

N−1∑
n=0

z(m− n)w(n)

=

m−(N−1)∑
l=m

w(m− l)z(l), m ∈ Z. (8.5)
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Since w(m − l)z(l) is a periodic function of l on Z with period N , we can use
Proposition 1.19 and (8.5) to get

(z ∗ w)(m) =
N−1∑
l=0

w(m− l)z(l) = (w ∗ z)(m), m ∈ Z. �

To prove (8.3), we note that, by Lemma 8.6 and the definition of the involu-
tion,

(z,Rmw) =
N−1∑
n=0

z(n)(Rmw)(n)

=
N−1∑
n=0

z(n)w(n−m)

=
N−1∑
n=0

z(n)w∗(m− n)

= (w∗ ∗ z)(m) = (z ∗ w∗)(m), m ∈ Z.

To prove (8.4), we first note that

(w∗)∗(n) = w∗(−n) = w(n) = w(n), n ∈ Z,

and hence, by (8.3),

(z,Rmw
∗) = (z ∗ (w∗)∗)(m) = (z ∗ w)(m), m ∈ Z,

and (8.4) is proved.
Let us now suppose that there exists a signal w in L2(ZN ) such that

B = {R0w,R1w, . . . , RN−1w}

is an orthonormal basis for L2(ZN ). We note that B is an orthonormal basis for
L2(ZN ) generated by successive translations of the single signal w. Then for every
z in L2(ZN ),

z =
N−1∑
n=0

αnRnw,

where α0, α1, . . . , αN−1 ∈ C. But for k ∈ Z,

(z,Rkw) =
N−1∑
n=0

αn(Rnw,Rkw).

Since {R0w,R1w, . . . , RN−1w} is orthonormal, we see that

(z,Rkw) = αk, k ∈ Z,
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and hence

z =
N−1∑
n=0

(z,Rnw)Rnw.

So, by (8.3),

z =
N−1∑
n=0

(z ∗ w∗)(n)Rnw

and consequently

(z)B =


(z ∗ w∗)(0)
(z ∗ w∗)(1)

...
(z ∗ w∗)(N − 1)

 = z ∗ w∗.

So, the computation of (z)B for all z in L2(ZN ), or the change of basis from the
standard basis S for L2(ZN ) to the basis B, can be performed by a fast algorithm,
i.e., the FFT. See Remark 7.3 in this connection.

By choosing the signal w in L2(ZN ) to be such that w is time-localized
near some point n0, the orthonormal basis B = {R0w,R1w, . . . , RN−1w} is of
course a time-localized basis. We have just seen that the change of basis from the
standard basis S for L2(ZN ) to the orthonormal basis B can be computed by a fast
algorithm. So, if B is also frequency-localized, then the objective of this chapter
is achieved. Is the orthonormal basis B frequency-localized? Unfortunately, the
answer is no and this can be seen from Proposition 8.8. First we need a lemma.

Lemma 8.7. Let z and w be signals in L2(ZN ). Then

(Rjz,Rkw) = (z,Rk−jw)

for all j and k in ZN with j ≤ k.

Proof. Let j, k ∈ Z. Then

(Rjz,Rkw) =
N−1∑
n=0

(Rjz)(n)(Rkw)(n)

=
N−1∑
n=0

z(n− j)w(n− k)

=

N−1−j∑
l=−j

z(l)w(l + j − k). (8.6)
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Since z(l)w(l + j − k) is a periodic function of l on Z with period N , it follows
from Proposition 1.19 and (8.6) that

(Rjz,Rkw) =
N−1∑
l=0

z(l)w(l + j − k)

=
N−1∑
l=0

z(l)(Rk−jw)(l)

= (z,Rk−jw). �

Proposition 8.8. Let w be a signal in L2(ZN ). Then {R0w,R1w, . . . , RN−1w} is
an orthonormal basis for L2(ZN ) if and only if

|ŵ(m)| = 1, m ∈ Z.

Proof. Let us begin with the formula for the finite Fourier transform of the unit
impulse δ and this is the answer to Question 1 in Chapter 4. Indeed,

δ̂(m) =
N−1∑
n=0

δ(n)e−2πimn/N = 1, m ∈ Z.

Suppose that {R0w,R1w, . . . , RN−1w} is an orthonormal basis for L2(ZN ). Then

(w,Rkw) =

{
1, k = 0,
0, k 6= 0,

(8.7)

for all k in ZN . By (8.3), we get

(w,Rkw) = (w ∗ w∗)(k), k ∈ Z,

and hence, by (8.7),
w ∗ w∗ = δ.

So, by Propositions 4.7 and 8.4, we get

1 = δ̂(m) = (w ∗ w∗)∧(m) = ŵ(m)ŵ∗(m) = ŵ(m)ŵ(m) = |ŵ(m)|2

for allm in Z. Conversely, suppose that |ŵ(m)|2 = 1, m ∈ Z. Then, by Propositions
4.7 and 8.4,

(w ∗ w∗)∧(m) = ŵ(m)ŵ∗(m) = ŵ(m)ŵ(m) = |ŵ(m)|2 = 1

for all m in Z. Thus,
w ∗ w∗ = δ

and by (8.3),

(w,Rkw) = (w ∗ w∗)(k) =

{
1, k = 0,
0, k 6= 0.
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Hence, by Lemma 8.7 and (8.7),

(Rjw,Rkw) =

{
1, j = k,
0, j 6= k.

So, {R0w,R1w, . . . , RN−1w} is an orthonormal basis for L2(ZN ). �

Exercises

1. Let k ∈ Z. Then we define Mk : L2(ZN )→ L2(ZN ) by

(Mkz)(n) = e−2πink/Nz(n), n ∈ ZN .

Prove that
M̂kz(m) = (R−kẑ)(m), m ∈ ZN .

2. Give a characterization of all signals w in L2(ZN ) such that

{M0w,M1w, . . . ,MN−1w}

is an orthonormal basis for L2(ZN ).

3. Explain how to obtain a frequency-localized orthonormal basis for L2(ZN ).



Chapter 9

Time-Frequency Localized Bases

We have seen in the previous chapter that successive translations of a single signal
in L2(ZN ) can give us a time-localized orthonormal basis B for L2(ZN ) such that
the change of basis from the standard basis S for L2(ZN ) to the basis B can be
implemented by the FFT. The only thing that is missing from the basis B, though,
is frequency-localization. Can we still do something with translations of signals
in the construction of orthonormal bases, which are time-localized, frequency-
localized and amenable to computation by a fast algorithm? If we cannot do it
with one signal, can we do it with two signals? The answer is amazingly yes. We
explain how this can be done in this chapter.

Throughout this chapter, we assume that N is an even integer, say, N = 2M,
where M is a positive integer.

Definition 9.1. Suppose that there exist signals ϕ and ψ in L2(ZN ) for which the
set B given by

B = {R0ϕ,R2ϕ, . . . , R2M−2ϕ} ∪ {R0ψ,R2ψ, . . . , R2M−2ψ}

is an orthonormal basis for L2(ZN ). Then we call B a time-frequency localized
basis for L2(ZN ). The signals ϕ and ψ are called the mother wavelet and the father
wavelet for the time-frequency localized basis B respectively.

Remark 9.2. The basis {R0ϕ,R2ϕ, . . . , R2M−2ϕ} ∪ {R0ψ,R2ψ, . . . , R2M−2ψ} is
more conveniently written as {R2kϕ}M−1k=0 ∪ {R2kψ}M−1k=0 .

We need some preliminary results for the construction of wavelet bases for
L2(ZN ).

Definition 9.3. Let N = 2M, where M is a positive integer, and let z be a signal
in L2(ZN ). Then we define the signal z+ in L2(ZN ) by

z+(n) = (−1)nz(n), n ∈ Z.

Proposition 9.4. Let z be a signal in L2(ZN ), where N = 2M . Then

ẑ+(m) = ẑ(m+M), m ∈ Z.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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Proof. Using the definition of z+ and the definition of the finite Fourier transform,
we get

ẑ+(m) =
N−1∑
n=0

z+(n)e−2πimn/N

=
N−1∑
n=0

(−1)nz(n)e−2πimn/N

=
N−1∑
n=0

e−2πinM/Nz(n)e−2πimn/N

=
N−1∑
n=0

z(n)e−2πin(m+M)/N = ẑ(m+M)

for all m in Z. �

The following remark on the signals z and z+ in L2(ZN ) is useful to us.

Remark 9.5. Let z be any signal in L2(ZN ). Then for all n in Z,

(z + z+)(n) = 2z(n)

if n is even, and is 0 if n is odd.

The following technical lemma is the key to the construction of wavelet bases.

Lemma 9.6. Let N = 2M , where M is a positive integer. Let w be a signal in
L2(ZN ). Then {R0w,R2w, . . . , R2M−2w} is an orthonormal set with M distinct
signals in L2(ZN ) if and only if

|ŵ(m)|2 + |ŵ(m+M)|2 = 2, m = 0, 1, . . . ,M − 1. (9.1)

Proof. Suppose that {R0w,R2w, . . . , R2M−2w} is an orthonormal set with M dis-
tinct signals. Then, by (8.3),

(w ∗ w∗)(2k) = (w,R2kw)

=

{
1, k = 0,
0, k = 1, 2, . . . ,M − 1.

(9.2)

By (9.2) and Remark 9.5,

((w ∗ w∗) + (w ∗ w∗)+)(2k)

= 2(w ∗ w∗)(2k) =

{
2, k = 0,
0, k = 1, 2, . . . ,M − 1.

(9.3)

Therefore, by (9.3),
(w ∗ w∗) + (w ∗ w∗)+ = 2δ, (9.4)
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where δ is the unit impulse in L2(ZN ). Taking the finite Fourier transform on both

sides of (9.4), we get, by Propositions 4.7 and 9.4, and the fact that δ̂(m) = 1 for
all m in Z,

ŵ(m)ŵ∗(m) + (w ∗ w∗)∧(m+M) = 2, m ∈ Z. (9.5)

Applying Propositions 4.7 and 8.4 to (9.5), we get

ŵ(m)ŵ(m) + ŵ(m+M)ŵ(m+M) = 2, m ∈ Z,

and (9.1) is proved. Conversely, suppose that (9.1) is valid. Then

|ŵ(m)|2 + |ŵ(m+M)|2 = 2, m ∈ Z. (9.6)

Indeed, let m ∈ Z. Then, by the division algorithm,

m = qM + r,

where r is some integer in {0, 1, . . . ,M − 1}. Thus,

|ŵ(m)|2 + |ŵ(m+M)|2 = |ŵ(r + qM)|2 + |ŵ(r + (q + 1)M)|2. (9.7)

If q is even, then, by (9.1), (9.7) and the fact that ŵ is periodic with period 2M ,
we get

|ŵ(m)|2 + |ŵ(m+M)|2 = |ŵ(r)|2 + |ŵ(r +M)|2 = 2.

If q is odd, then the analog of (9.6) is

|ŵ(m)|2 + |ŵ(m+M)|2 = |ŵ(r + (q − 1)M +M)|2 + |ŵ(r + (q − 1)M)|2. (9.8)

Thus, by (9.1), (9.8) and the fact that ŵ is periodic with period 2M , we get

|ŵ(m)|2 + |ŵ(m+M)|2 = |ŵ(r +M)|2 + |ŵ(r)|2 = 2,

and (9.6) is established. Now, for all m in Z, we use Propositions 4.7, 8.4 and 9.4
as in the first part of the proof and (9.5) to get

(w ∗ w∗)∧(m) + ((w ∗ w∗)+)∧(m) = 2

and hence
(w ∗ w∗) + (w ∗ w∗)+ = 2δ. (9.9)

Thus, by (8.3) and (9.9), we get, for k = 0, 1, . . . ,M − 1,

(w,R2kw) = (w ∗ w∗)(2k)

=
1

2

(
(w ∗ w∗) + (w ∗ w∗)+

)
(2k)

=

{
1, k = 0,
0, k = 1, 2, . . . ,M − 1.

(9.10)
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Now, let j, k ∈ {0, 1, . . . ,M − 1} be such that j 6= k. Suppose that j < k. Then,
by Lemma 8.7 and (9.10),

(R2jw,R2kw) = (w,R2k−2jw) = 0.

Also, for k = 0, 1, . . . ,M − 1, we get, by Lemma 8.7 and (9.10) again,

‖R2kw‖2 = (R2kw,R2kw) = (w,R0w) = 1.

This proves that {R0w,R2w, . . . , R2M−2w} is an orthonormal set in L2(ZN ). �

Definition 9.7. Let N = 2M , where M is a positive integer. Let ϕ and ψ be signals
in L2(ZN ). Then for all m in Z, we define the 2× 2 matrix Aϕ,ψ(m) by

Aϕ,ψ(m) =
1√
2

(
ϕ̂(m) ψ̂(m)

ϕ̂(m+M) ψ̂(m+M)

)
.

We call Aϕ,ψ(m) the system matrix of the signals ϕ and ψ at the integer m.
We can now give the result, which we can use to construct wavelet bases.

Theorem 9.8. Let N = 2M , where M is a positive integer. Let ϕ and ψ be signals in
L2(ZN ). Then the set B = {R2kϕ}M−1k=0 ∪{R2kψ}M−1k=0 is a time-frequency localized
basis for L2(ZN ) if and only if Aϕ,ψ(m) is a unitary matrix for m = 0, 1, . . . ,M−1.
Equivalently, B is a time-frequency localized basis for L2(ZN ) if and only if

|ϕ̂(m)|2 + |ϕ̂(m+M)|2 = 2, (9.11)

|ψ̂(m)|2 + |ψ̂(m+M)|2 = 2, (9.12)

and
ϕ̂(m)ψ̂(m) + ϕ̂(m+M)ψ̂(m+M) = 0 (9.13)

for m = 0, 1, . . . ,M − 1.

Proof. Suppose that B is an orthonormal basis for L2(ZN ). Then {R2kϕ}M−1k=0

and {R2kψ}M−1k=0 are orthonormal sets with M distinct signals in L2(ZN ). So, by
Lemma 9.6, we get

|ϕ̂(m)|2 + |ϕ̂(m+M)|2 = 2

and
|ψ̂(m)|2 + |ψ̂(m+M)|2 = 2

for m = 0, 1, . . . ,M − 1. Hence (9.11) and (9.12) are proved. To prove (9.13), we
note that orthonormality gives

(ϕ,R2kψ) = 0, k = 0, 1, . . . ,M − 1. (9.14)

By (8.3) and (9.14), we get

(ϕ ∗ ψ∗)(2k) = (ϕ,R2kψ) = 0, k = 0, 1, . . . ,M − 1. (9.15)
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By (9.15) and Remark 9.5,

(ϕ ∗ ψ∗) + (ϕ ∗ ψ∗)+ =


0
0
...
0

 . (9.16)

So, taking the finite Fourier transform on both sides of (9.16), using Propositions
4.7, 8.4 and 9.4, we obtain

ϕ̂(m)ψ̂(m) + ϕ̂(m+M)ψ̂(m+M) = 0

for m = 0, 1, . . . ,M − 1. Conversely, suppose that (9.11)–(9.13) are valid. Then,
by (9.11), (9.12) and Lemma 9.6, {R2kϕ}M−1k=0 and {R2kψ}M−1k=0 are both orthonor-
mal sets with M distinct signals in L2(ZN ). Now, by (9.13) and the periodicity
argument used in the proof of Lemma 9.6, we get

ϕ̂(m)ψ̂(m) + ϕ̂(m+M)ψ̂(m+M) = 0, m ∈ Z.

(See Exercise 4 in this regard.) Thus, by Propositions 4.7, 8.4 and 9.4, we get

((ϕ ∗ ψ∗) + (ϕ ∗ ψ∗)+)
∧

(m) = 0, m ∈ Z.

Then

(ϕ ∗ ψ∗) + (ϕ ∗ ψ∗)+ =


0
0
...
0

 ,

and hence

(ϕ,R2kψ) = (ϕ ∗ ψ∗)(2k) = 0 (9.17)

for k = 0, 1, . . . ,M −1. Now, let j, k ∈ {0, 1, . . . ,M −1} be such that j ≤ k. Then,
by Lemma 8.7 and (9.17),

(R2jϕ,R2kψ) = (ϕ,R2k−2jψ) = 0.

Thus, B = {R2kϕ}M−1k=0 ∪{R2kψ}M−1k=0 is an orthonormal set with N distinct signals
in L2(ZN ), and is hence an orthonormal basis for L2(ZN ). This completes the
proof. �

Remark 9.9. Let us look at the relations between the mother wavelet and the
father wavelet given by (9.11)–(9.13). By (9.11), we can have, say,

|ϕ̂(m0)|2 = 2
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and
|ϕ̂(m0 +M)|2 = 0

where m0 is some integer in ZM . For such an integer m0, we get, by (9.13),

|ψ̂(m0 +M)|2 = 2

and hence, by (9.12),

|ψ̂(m0)|2 = 0.

This means that for such an integer m0, the amount of the wave Fm0
in the father

wavelet ψ is 0, while the amount of the same wave Fm0
in the mother wavelet ϕ is

full. So, we can construct the mother wavelet ϕ and the father wavelet ψ in such a
way that ϕ contains only low-frequency waves and ψ contains only high-frequency
waves. Thus, in the culture of signal analysis, a mother wavelet is a low pass filter
and a father wavelet is a high pass filter.

Exercises

1. Let ϕ ∈ L2(Z4) be given by

ϕ̂ =


√

2
1
0
1

 .

Find a father wavelet ψ in L2(Z4) such that {R0ϕ,R2ϕ,R0ψ,R2ψ} is an
orthonormal basis for L2(Z4).

2. Let ϕ and ψ be signals in L2(ZN ), N = 2M , where M is a positive integer,
be given by

ϕ =



1√
2
1√
2

0
0
...
0


and

ψ =



1√
2

− 1√
2

0
0
...
0


.

Prove that {R2kϕ}M−1k=0 ∪ {R2kψ}M−1k=0 is an orthonormal basis for L2(ZN ).
(We call this orthonormal basis a Haar basis for L2(ZN ).)
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3. Let N = 2M, where M is a positive integer. Let ϕ and ψ be signals in L2(ZN ).
Prove that the set B = {R2kϕ}M−1k=0 ∪ {R2kψ}M−1k=0 is a time-frequency local-
ized basis for L2(ZN ) if and only if

|ϕ̂(m)|2 + |ψ̂(m)|2 = 2,

|ϕ̂(m+M)|2 + |ψ̂(m+M)|2 = 2

and
ϕ̂(m)ϕ̂(m+M) + ψ̂(m)ψ̂(m+M) = 0

for m = 0, 1, . . . ,M − 1.

4. Let N = 2M, where M is a positive integer. Let ϕ and ψ be signals in
L2(ZN ) such that (9.11)–(9.13) are satisfied for m = 0, 1, . . . ,M − 1. Prove
that (9.11)–(9.13) are also valid for all m in Z.
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Wavelet Transforms and Filter Banks

Let B = {R2kϕ}M−1k=0 ∪{R2kψ}M−1k=0 be a time-frequency localized basis for L2(ZN ),
where ϕ is the mother wavelet and ψ is the father wavelet. For every signal z in
L2(ZN ), we get, by the fact that B is an orthonormal basis for L2(ZN ) and (8.3),

z =
M−1∑
k=0

(z,R2kϕ)R2kϕ+
M−1∑
k=0

(z,R2kψ)R2kψ. (10.1)

So, by (8.3),

(z)B =



(z,R0ϕ)
(z,R2ϕ)

...
(z,R2M−2ϕ)

(z,R0ψ)
(z,R2ψ)

...
(z,R2M−2ψ)


=



(z ∗ ϕ∗)(0)
(z ∗ ϕ∗)(2)

...
(z ∗ ϕ∗)(2M − 2)

(z ∗ ψ∗)(0)
(z ∗ ψ∗)(2)

...
(z ∗ ψ∗)(2M − 2)


, z ∈ L2(ZN ). (10.2)

Let Vϕ,ψ be the N ×N matrix defined by

Vϕ,ψ = (R0ϕ| · · · |R2M−2ϕ|R0ψ| · · · |R2M−2ψ) .

Then, by (10.1) and (10.2), we get

z = (z)S = Vϕ,ψ(z)B

or
(z)B = V −1ϕ,ψz, z ∈ L2(ZN ).

Definition 10.1. Let Wϕ,ψ : L2(ZN )→ L2(ZN ) be defined by

Wϕ,ψ = V −1ϕ,ψ.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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Then we call Wϕ,ψ the wavelet transform associated to the mother wavelet ϕ and
the father wavelet ψ.

Remark 10.2. The wavelet transform Wϕ,ψ is the change of basis matrix from the
standard basis S for L2(ZN ) to the time-frequency localized basis B generated by
ϕ and ψ.

Remark 10.3. Since Vϕ,ψ is a unitary matrix, it follows that

Wϕ,ψ = V −1ϕ,ψ = V ∗ϕ,ψ,

where V ∗ϕ,ψ is the adjoint of Vϕ,ψ, i.e., the transpose of the conjugate of Vϕ,ψ. So,
an explicit formula for the wavelet transform Wϕ,ψ is available.

Using the explicit formula for the wavelet transform Wϕ,ψ, we can compute
the coordinates (z)B of every signal z in L2(ZN ) by means of the formula

(z)B = Wϕ,ψz.

As has been pointed out, this computation may entail up to N2 complex multipli-
cations on a computer, and hence is not a feasible formula for the computation of
(z)B for z in L2(ZN ). As a matter of fact, it is the formula (10.2) that people use
to compute (z)B for every z in L2(ZN ). A look at (10.2) reveals that for every z
in L2(ZN ), the components in (z)B are given by convolutions of z with the involu-
tions of the mother and father wavelets, and hence (z)B can be computed rapidly
by the FFT. In order to exploit the structure of (10.2), we need a definition.

Definition 10.4. Let N = 2M , where M is a positive integer. Then we define the
linear operator D : L2(ZN )→ L2(ZM ) by

(Dz)(n) = z(2n), n = 0, 1, . . . ,M − 1,

for all z in L2(ZN ).

What the linear operator D does to a signal z in L2(ZN ) can best be seen
by an example.

Example 10.5. Let z be the signal in L2(Z8) defined by

z =



2
1
3
4
6
5
8
7


.
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Then Dz is the signal in L2(Z4) given by

Dz =


2
3
6
8

 .

Note that D discards the entries of a signal evaluated at the odd integers.
We call D the downsampling or the decimation operator. The downsampling op-
erator is also denoted frequently in the engineering literature by ↓2. Using the
downsampling operator, the computation of (z)B for every z in L2(ZN ) is given
schematically by the following process.

z 7→
{
z ∗ ϕ∗ 7→ D(z ∗ ϕ∗)
z ∗ ψ∗ 7→ D(z ∗ ψ∗)

}
7→
(
D(z ∗ ϕ∗)
D(z ∗ ψ∗)

)
= (z)B . (10.3)

The prcocess described by (10.3) is an example of a filter bank in multi-rate signal
analysis or subband coding, which is a prosperous field in electrical engineering.

The filter bank (10.3) is what engineers use to compute the wavelet transform
Wϕ,ψz of a signal z in L2(ZN ). Mathematically, we have the following theorem.

Theorem 10.6. Let ϕ and ψ be, respectively, the mother wavelet and the father
wavelet of a time-frequency localized basis for L2(ZN ). Then

Wϕ,ψz =

(
D(z ∗ ϕ∗)
D(z ∗ ψ∗)

)
, z ∈ L2(ZN ).

We end this chapter with a filter bank to compute the inverse wavelet trans-
form W−1ϕ,ψz of a signal z in L2(ZN ). First, we need a definition.

Definition 10.7. Let N = 2M , where M is a positive integer. Then we define the
linear operator U : L2(ZM )→ L2(ZN ) by (Uz)(n) = z

(
n
2

)
if n is even, and is 0 if

n is odd.

The linear operator U doubles the size of every signal z by inserting an entry
0 after every entry in z. We call U the upsampling operator and it is sometimes
denoted by ↑2.

Example 10.8. Let us look at the signal

w =


2
3
6
8

 ,
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which is obtained by downsampling the signal

z =



2
1
3
4
6
5
8
7


in Example 10.5. Now, upsampling w gives us

UDz =



2
0
3
0
6
0
8
0


.

It is important to note that UDz 6= z. In fact,

UDz =
1

2
(z + z+).

We can now give a filter bank consisting of two phases. The first phase is
the analysis of a signal z in L2(ZN ) using the wavelet transform Wϕ,ψ and the
second phase is the reconstruction of the signal from the wavelet transform using
the inverse wavelet transform W−1ϕ,ψ. The entire computation is captured by the
following process.

Theorem 10.9. Let N = 2M , where M is a positive integer, and let z be a signal
in L2(ZN ). Then

z 7→
{
z ∗ ϕ∗ 7→ D(z ∗ ϕ∗) 7→ UD(z ∗ ϕ∗) 7→ ϕ ∗ UD(z ∗ ϕ∗)
z ∗ ψ∗ 7→ D(z ∗ ψ∗) 7→ UD(z ∗ ψ∗) 7→ ψ ∗ UD(z ∗ ψ∗)

}
+ 7→ z,

where the final step in the filter bank is given by

z = (ϕ ∗ UD(z ∗ ϕ∗)) + (ψ ∗ UD(z ∗ ψ∗)).

Proof. Let

w =


w(0)
w(1)

...
w(N − 1)

 .
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Then, using the definition of the downsampling operator,

Dw =


w(0)
w(2)

...
w(2M − 2)

 .

Now, using the definition of the upsampling operator and Remark 9.5,

UDw =



w(0)
0

w(2)
0
...

w(2M − 2)
0


=

1

2
(w + w+). (10.4)

Thus, by (10.4),

(UD(z ∗ ϕ∗)) =
1

2
((z ∗ ϕ∗) + (z ∗ ϕ∗)+). (10.5)

If we take the finite Fourier transform on both sides of (10.5), then, by Propositions
4.7, 8.4 and 9.4, we get

(ϕ ∗ UD(z ∗ ϕ∗))∧(m)

= ϕ̂(m)(UD(z ∗ ϕ∗))∧(m)

= ϕ̂(m)
1

2
(ẑ(m)ϕ̂(m) + ẑ(m+M)ϕ̂(m+M)) (10.6)

for all m in Z. Similarly,

(ψ ∗ UD(z ∗ ψ∗))∧(m)

= ψ̂(m)
1

2
(ẑ(m)ψ̂(m) + ẑ(m+M)ψ̂(m+M)) (10.7)

for all m in Z. Adding (10.6) and (10.7), we get

{(ϕ ∗ UD(z ∗ ϕ∗)) + (ψ ∗ UD(z ∗ ψ∗))}∧(m)

=
1

2
ẑ(m){|ϕ̂(m)|2 + |ψ̂(m)|2}

+
1

2
ẑ(m+M){ϕ̂(m)ϕ̂(m+M) + ψ̂(m)ψ̂(m+M)} (10.8)

for all m in Z. Since ϕ is the mother wavelet and ψ is the father wavelet of the
time-frequency localized basis B, it follows that the system matrix Aϕ,ψ is unitary.
So,

|ϕ̂(m)|2 + |ψ̂(m)|2 = 2 (10.9)
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and
ϕ̂(m)ϕ̂(m+M) + ψ̂(m)ψ̂(m+M) = 0 (10.10)

for all m in Z. Hence, by (10.8), (10.9) and (10.10),

{(ϕ ∗ UD(z ∗ ϕ∗)) + (ψ ∗ UD(z ∗ ψ∗))}∧(m) = ẑ(m)

for all m in Z. Therefore, using the inverse finite Fourier transform, we conclude
that

(ϕ ∗ UD(z ∗ ϕ∗)) + (ψ ∗ UD(z ∗ ψ∗)) = z

and the proof is complete. �

From Theorem 10.9, we see that the inverse wavelet transform W−1ϕ,ψ can in
fact be computed using the filter bank{

UD(z ∗ ϕ∗) 7→ ϕ ∗ UD(z ∗ ϕ∗)
UD(z ∗ ψ∗) 7→ ψ ∗ UD(z ∗ ψ∗)

}
+ 7→ z

for every z in L2(ZN ).

Exercises

1. Prove the downsampling operator D and the upsampling operator U on
L2(ZN ), where N = 2M and M is a positive integer, are adjoint to each
other in the sense that

(Dz,w) = (z, Uw)

for all z in L2(ZN ) and all w in L2(ZM ).

2. Let ϕ and ψ be, respectively, the mother wavelet and the father wavelet of
the Haar basis for L2(ZN ) in Exercise 2 of the preceding chapter. Compute
the wavelet transform Wϕ,ψz and the inverse wavelet transform W−1ϕ,ψz of z

for all z in L2(ZN ).
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Haar Wavelets

Let z be a signal in L2(ZN ), where we now assume that N = 2l for some positive
integer l. We let N = 2M , where M is a positive integer. As usual, we write

z =


z(0)
z(1)

...
z(N − 1)

 .

Let a be defined by

a =


a0
a1
...

aM−1

 ,

where

an =
z(2n) + z(2n+ 1)√

2
, n = 0, 1, . . . ,M − 1,

and let d be defined by

d =


d0
d1
...

dM−1

 ,

where

dn =
z(2n)− z(2n+ 1)√

2
, n = 0, 1, . . . ,M − 1.

We call a the trend and d the fluctuation of the signal z.

Definition 11.1. Let W : L2(ZN )→ L2(ZN ) be the linear operator defined by

Wz =

(
a
d

)
, z ∈ L2(ZN ),

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
DOI 10.1007/978-3-0348-0116-4_11, © Springer Basel AG 2011
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where a is the trend and d is the fluctuation of the signal z.

We call W the Haar transform. More precisely, it should be called the first-
level Haar transform. It is easy to see that the Haar transform W has the inverse
W−1 given by

W−1



a0
a1
...

aM−1
d0
d1
...

dM−1


=



(a0 + d0)/
√

2

(a0 − d0)/
√

2

(a1 + d1)/
√

2

(a1 − d1)/
√

2

(a2 + d2)/
√

2
...

(aM−1 + dM−1)/
√

2

(aM−1 − dM−1)/
√

2


,



a0
a1
...

aM−1
d0
d1
...

dM−1


∈ L2(ZN ).

In order to understand the Haar transform, which transforms the input signal
z into its trend a and fluctuation d, let us study the small fluctuation property
and the similar trend property of a signal in L2(ZN ).

Proposition 11.2 (Small Fluctuation Property). The fluctuation signal d is very
small in the sense that

d +


0
0
...
0

 .

To see why the small fluctuation property is valid, let us recall that the
components of z are samples of a continuous analog signal g with a very short,
but the same, time interval between the consecutive samples. In other words,

z(n) = g(tn), n ∈ ZN ,

and
tn+1 − tn = h, n ∈ ZN ,

where h is some very small positive number, which people call the step size. So,
using the continuity of the function g, we get

dn =
z(2n)− z(2n+ 1)√

2
=
g(t2n)− g(t2n+1)√

2
+ 0

for n = 0, 1, . . . ,M − 1.
A similar continuity argument can be used to explain the trend property of

a signal.

Proposition 11.3 (Similar Trend Property). The trend signal behaves like the orig-
inal signal.



69

Indeed, using the continuity of the function g, we get

an =
z(2n) + z(2n+ 1)√

2
=
g(t2n) + g(t2n+1)√

2
+
√

2g(t2n+1)

for n = 0, 1, . . . ,M − 1. Thus, the trend a is the signal obtained by sampling the
values of g at the equally spaced instants t1, t3, . . . , tN−1.

Remark 11.4. Recall that the Haar transform splits a given signal z in L2(ZN )
into its trend a and fluctuation d. The fluctuation d is small in the sense of the
small fluctuation property and the trend a is like the original z in the sense of the
similar trend property. Thus, we can transmit the trend a instead of the original
z without affecting much the originality of the signal z. The advantage accrued
is that only half the number of bits of the original z need to be transmitted.
This process of transmitting the trend instead of the original is known as signal
compression.

The signal compression described in Remark 11.4 or the application of the
Haar transform can certainly be iterated on the trends of the original signal. Thus,
we have

L2(ZN ) 3 z 7→
(
a(1)

d(1)

)
7→

 a(2)

d(2)

d(1)

 7→


a(3)

d(3)

d(2)

d(1)

 7→ · · · .
To compute the second-level trend a(2) and the second-level fluctuation d(2)

of a signal z in L2(ZN ), we note that

a(2) =



a
(1)
0 +a

(1)
1√

2
a
(1)
2 +a

(1)
3√

2
...

a
(1)
M−2+a

(1)
M−1√

2

 =


z(0)+z(1)+z(2)+z(3)

2
z(4)+z(5)+z(6)+z(7)

2
...

z(N−4)+z(N−3)+z(N−2)+z(N−1)
2


and

d(2) =



a
(1)
0 −a

(1)
1√

2
a
(1)
2 −a

(1)
3√

2
...

a
(1)
M−2−a

(1)
M−1√

2

 =


z(0)+z(1)−z(2)−z(3)

2
z(4)+z(5)−z(6)−z(7)

2
...

z(N−4)+z(N−3)−z(N−2)−z(N−1)
2

 .

In order to get more transparent formulas for the trends a(1), a(2) and the fluctu-
ations d(1), d(2) of a signal, we introduce N signals

V
(1)
0 , V

(1)
1 , . . . , V

(1)
M−1,W

(1)
0 ,W

(1)
1 , . . . ,W

(1)
M−1,
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at the first level and M = N
2 signals

V
(2)
0 , V

(2)
1 , . . . , V

(2)
M
2 −1

,W
(2)
0 ,W

(2)
1 , . . . ,W

(2)
M
2 −1

,

at the second level.

Definition 11.5. Let

V
(1)
0 =



1√
2
1√
2

0
0
0
0
...
0


, V

(1)
1 =



0
0
1√
2
1√
2

0
0
...
0


, . . . , V

(1)
M−1 =



0
0
0
0
...
0
1√
2
1√
2


.

We call V
(1)
0 , V

(1)
1 , . . . , V

(1)
M−1 the first-level Haar scaling signals and we note

that

{V (1)
0 , V

(1)
1 , . . . , V

(1)
M−1} = {R2kV

(1)
0 }

M−1
k=0 .

Definition 11.6. Let

W
(1)
0 =



1√
2

− 1√
2

0
0
0
0
...
0


, W

(1)
1 =



0
0
1√
2

− 1√
2

0
0
...
0


, . . . , W

(1)
M−1 =



0
0
0
0
...
0
1√
2

− 1√
2


.

We call W
(1)
0 ,W

(1)
1 , . . . ,W

(1)
M−1 the first-level Haar wavelets and we note that

{W (1)
0 ,W

(1)
1 , . . . ,W

(1)
M−1} = {R2kW

(1)
0 }

M−1
k=0 .

In fact, by Theorem 9.8, {R2kV
(1)
0 }

M−1
k=0 ∪{R2kW

(1)
0 }

M−1
k=0 can be shown to be

a time-frequency localized basis for L2(ZN ), where V
(1)
0 is the father wavelet and

W
(1)
0 is the mother wavelet. This is left as Exercise 1. A similar structure exists

for the Haar scaling signals and the Haar wavelets at the second level, which we
introduce in the following two definitions.
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Definition 11.7. Let

V
(2)
0 =



1/2
1/2
1/2
1/2
0
0
0
0
0
...
0
0



, V
(2)
1 =



0
0
0
0

1/2
1/2
1/2
1/2
0
...
0
0



, . . . , V
(2)
M
2 −1

=



0
0
0
0
0
...
0
0

1/2
1/2
1/2
1/2



.

We call V
(2)
0 , V

(2)
1 , . . . , V

(2)
M
2 −1

the second-level Haar scaling signals.

Definition 11.8. Let

W
(2)
0 =



1/2
1/2
−1/2
−1/2

0
0
0
0
0
...
0
0



, W
(2)
1 =



0
0
0
0

1/2
1/2
−1/2
−1/2

0
...
0
0



, . . . , W
(2)
M
2 −1

=



0
0
0
0
0
...
0
0

1/2
1/2
−1/2
−1/2



.

We call W
(2)
0 ,W

(2)
1 , . . . ,W

(2)
M
2 −1

the second-level Haar wavelets.

Remark 11.9. The first-level and the second-level Haar scaling signals and Haar
wavelets are generated from the standard basis. To see how, we note that for
α1 = α2 = 1√

2
,

V
(1)
0 = α1ε0 + α2ε1,

V
(1)
1 = α1ε2 + α2ε3,

· · ·

and hence
V (1)
m = α1ε2m + α2ε2m+1, m = 0, 1, . . . ,M − 1.
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Also,

V
(2)
0 = α1V

(1)
0 + α2V

(1)
1 ,

V
(2)
1 = α1V

(1)
2 + α2V

(1)
3 ,

· · ·

and hence

V (2)
m = α1V

(1)
2m + α2V

(1)
2m+1

for m = 0, 1, . . . , M2 − 1. Similarly, if we let β1 = 1√
2

and β2 = − 1√
2
, then

W (1)
m = β1ε2m + β2ε2m+1

for m = 0, 1, . . . ,M − 1, and

W (2)
m = β1V

(1)
2m + β2V

(1)
2m+1

for m = 0, 1, . . . , M2 −1. We call α1, α2 the scaling numbers and β1, β2 the wavelet
numbers respectively.

The first-level Haar scaling signals and the first-level Haar wavelets can be
used to represent, respectively, the first-level trend a(1) and the first-level fluctu-
ation d(1) of a signal z.

Proposition 11.10. Let z be a signal in L2(ZN ). Then

a(1) =


(z, V

(1)
0 )

(z, V
(1)
1 )

...

(z, V
(1)
N
2 −1

)

 , d(1) =


(z,W

(1)
0 )

(z,W
(1)
1 )

...

(z,W
(1)
N
2 −1

)

 .

Applying translations, (8.3) and the downsampling operator to Proposition
11.10, we leave it as Exercise 4 to prove that for every signal z in L2(ZN ),

a(1) = D(z ∗ (V
(1)
0 )∗)

and

d(1) = D(z ∗ (W
(1)
0 )∗).

However, we prefer to look at the components of a(1) and d(1) as inner products
in this chapter.

The second-level Haar scaling signals and the second-level Haar wavelets can
be used to represent, respectively, the second-level trend a(2) and the second-level
fluctuation d(2) of a signal z.
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Proposition 11.11. Let z be a signal in L2(ZN ). Then

a(2) =


(z, V

(2)
0 )

(z, V
(2)
1 )

...

(z, V
(2)
M
2 −1

)

 , d(2) =


(z,W

(2)
0 )

(z,W
(2)
1 )

...

(z,W
(2)
M
2 −1

)

 .

The proofs of Propositions 11.10 and 11.11 follow immediately from the def-
initions for trends, fluctuations, Haar scaling signals and Haar wavelets given at
the first and second levels.

We can now give a discussion of the very important multiresolution analysis,
which we abbreviate as MRA. Let us recall that the formula for the inverse Haar
transform gives for every signal z in L2(ZN ),

z =



a0+d0√
2

a0−d0√
2
...

aM−1+dM−1√
2

aM−1−dM−1√
2



=



a0√
2

a0√
2
...

aM−1√
2

aM−1√
2

+



d0√
2

− d0√
2

...
dM−1√

2

−dM−1√
2


=
M−1∑
n=0

anV
(1)
n +

M−1∑
n=0

dnW
(1)
n

=
M−1∑
n=0

(z, V (1)
n )V (1)

n +
M−1∑
n=0

(z,W (1)
n )W (1)

n .

If for every z in L2(ZN ), we define A(1) and D(1) by

A(1) =

M−1∑
n=0

(z, V (1)
n )V (1)

n

and

D(1) =
M∑
n=1

(z,W (1)
n )W (1)

n ,
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then

z = A(1) +D(1).

A(1) is called the first-level average signal and D(1) is called the first-level detail
signal of the given signal z. Iterations give

z = A(1) +D(1) = A(2) +D(2) +D(1)

= A(3) +D(3) +D(2) +D(1)

= · · · = A(l) +
l∑

j=1

D(j), z ∈ L2(ZN ),

where A(j) and D(j) are, respectively, the jth-level average signal and the jth-level
detail signal of z. To get the formula for A(2) and the formula for D(2), we note
that if we apply the inverse of the first-level Haar transform to A(1), then we get

A(1) =



a
(1)
0√
2

a
(1)
0√
2

a
(1)
1√
2

a
(1)
1√
2
...

a
(1)
M−1√

2
a
(1)
M−1√

2


=



a
(2)
0 +d

(2)
0

2
a
(2)
0 +d

(2)
0

2
a
(2)
0 −d

(2)
0

2
a
(2)
0 −d

(2)
0

2
...

a
(2)
M
2
−1
−d(2)M

2
−1

2
a
(2)
M
2
−1
−d(2)M

2
−1

2



=



a
(2)
0

2
a
(2)
0

2
a
(2)
0

2
a
(2)
0

2
...

a
(2)
M
2
−1

2
a
(2)
M
2
−1

2


+



d
(2)
0

2
d
(2)
0

2

−d
(2)
0

2

−d
(2)
0

2
...

−
d
(2)
M
2
−1

2

−
d
(2)
M
2
−1

2


=

M
2 −1∑
n=0

a(2)n V (2)
n +

M
2 −1∑
n=0

d(2)n W (2)
n

=

M
2 −1∑
n=0

(z, V (2)
n )V (2)

n +

M
2 −1∑
n=0

(z,W (2)
n )W (2)

n
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for all z in L2(ZN ). Thus,

A(2) =

M
2 −1∑
n=0

(z, V (2)
n )V (2)

n

and

D(2) =

M
2 −1∑
n=0

(z,W (2)
n )W (2)

n .

Remark 11.12. The MRA gives us

z = A(1) +D(1) = A(2) +D(2) +D(1) = · · ·

= A(l−1) +

l−1∑
j=1

D(j) = A(l) +

l∑
j=1

D(j), z ∈ L2(ZN ).

Thus,

{W (1)
0 , . . . ,W

(1)
M−1}, {W

(2)
0 , . . . ,W

(2)
M
2 −1
}, . . . , {W (l−1)

0 ,W
(l−1)
1 }, {W (l)

0 }, {V
(l)
0 }

is an orthonormal basis for L2(ZN ). See Exercise 6. We call it the multiresolution
basis for L2(ZN ). For j = 1, 2, . . . , l, the average signal A(j) and the detail signal
D(j) at level j are, respectively, given by

A(j) =

N

2j
−1∑

n=0

(z, V (j)
n )V (j)

n

and

D(j) =

N

2j
−1∑

n=0

(z,W (j)
n )W (j)

n .

At level j, j = 1, 2, . . . , l, the signal z is the sum of the average signal at level j and
the detail signals from the first level to the jth level. For the sake of illustration,
let us examine the first two levels in some detail. For j = 1, the signal z is given
by

z = A(1) +D(1).

The first-level average signal A(1) is a linear combination of the Haar scaling sig-

nals V
(1)
0 , V

(1)
1 , . . . , V

(1)
M−1. Each of these Haar scaling signals is a short-lived signal

moving across the time axis in steps of two time units and lives for only two
time units. The Haar scaling signals measure short-lived trends in the signal z.
The first-level detail signal D(1) is a linear combimation of the Haar wavelets

W
(1)
0 ,W

(1)
1 , . . . ,W

(1)
M−1. Each of these Haar wavelets is also short-lived, moves

across the time axis in steps of two time units and lives for two time units. These
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Haar wavelets can detect short-lived fluctuations in the signal z. For j = 2, the
signal z is given by

z = A(2) +D(2) +D(1).

The second-level average signal A(2) is a linear combination of the second-level

Haar scaling signals V
(2)
0 , V

(2)
1 , . . . , V

(2)
M
2 −1

. Each of these moves across the time

axis in steps of four time units and lives for four time units. Similarly, the second-
level detail signal D(2) is a linear combination of the second-level Haar wavelets

W
(2)
0 ,W

(2)
1 , . . . ,W

(2)
M
2 −1

. Each of them moves across the time axis in steps of four

time units and lives for four time units. The second-level Haar scaling signals
measure short-lived trends and the second-level Haar wavelets detect short-lived
fluctuations in the signal z. The scale on which these transients can be measured
and detected at the second level is twice as long as the scale at the first level.

Another way to see that the detail signals of a signal can be ignored is in
terms of the energy of a signal. The energy E(z) of a signal z in L2(ZN ) is simply
given by

E(z) = ‖z‖2.
We need the following lemma in order to explain the concentration of the energy
of a signal.

Lemma 11.13. Let z and w be orthogonal signals in L2(ZN ). Then

‖z + w‖2 = ‖z‖2 + ‖w‖2.

Proof. Using the orthogonality of z and w, we get

‖z+w‖2 = (z+w, z+w) = (z, z) + (z, w) + (w, z) + (w,w) = ‖z‖2 + ‖w‖2. �

Proposition 11.14. Let z be a signal in L2(ZN ), N = 2l, where l is a positive
integer. Then

E(z) + E(A(j)), j = 1, 2, . . . , l.

The proposition tells us that the energy of a signal is concentrated in the
average signals. To see why, let us use the small fluctuation property and Lemma
11.13 to get

E(D(k)) = E

 N

2k
−1∑

n=0

(z,W (k)
n )W (k)

n


=

∥∥∥∥∥∥
N

2k
−1∑

n=0

(z,W (k)
n )W (k)

n

∥∥∥∥∥∥
2

=

N

2k
−1∑

n=0

∣∣∣(z,W (k)
n )

∣∣∣2
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=

N

2k
−1∑

n=0

{d(k)n }2 + 0

for k = 1, 2, . . . , l. Thus, by Lemma 11.13 again,

E(z) = E

(
A(j) +

j∑
k=0

D(k)

)

=

∥∥∥∥∥A(j) +

j∑
k=0

D(k)

∥∥∥∥∥
2

= ‖A(j)‖2 +

j∑
k=0

‖D(k)‖2

+ ‖A(j)‖2 = E
(
A(j)

)
for j = 1, 2, . . . , l.

The concentration of energy of a signal in the average signals can best be
seen by means of the following example.

Example 11.15. Let z be the signal in L2(Z8) defined by

z =



4
6
10
12
8
6
5
5


.

Then the first-level trend a(1) and the first-level fluctuation d(1) are given by

a(1) =


5
√

2

11
√

2

7
√

2

5
√

2

 , d(1) =


−
√

2

−
√

2√
2

0

 .

The second-level trend a(2) and the second-level fluctuation d(2) are given by

a(2) =

(
16
12

)
, d(2) =

(
−6
2

)
.

Now,

A(1) =
3∑
j=0

a
(1)
j V

(1)
j
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and hence
E(A(1)) = ‖A(1)‖2 = ‖a(1)‖2 = 440.

Since
E(z) = ‖z‖2 = 446,

it follows that 98.7% of the energy of the signal z is in the first-level average. Now,
note that

A(2) =
1∑
j=0

a
(2)
j V

(2)
j

and hence
E(A(2)) = ‖A(2)‖2 = ‖a(2)‖2 = 400,

which is 89.7% of the energy of z.

Exercises

1. Prove that {R2kV
(1)
0 }

M−1
k=0 ∪{R2kW

(1)
0 }

M−1
k=0 is a time-frequency localized basis

for L2(ZN ).

2. Prove Proposition 11.10.

3. Prove Proposition 11.11.

4. Prove that
a(1) = D(z ∗ (V

(1)
0 )∗)

and
d(1) = D(z ∗ (W

(1)
0 )∗).

5. Use the Haar wavelets to write down explicitly the full MRA

A(l) +
l∑

j=1

D(j)

of the signal z in L2(Z8) given by

z =



4
6
10
12
8
6
5
5


.

6. Prove that

{W 1
0 , . . . ,W

(1)
M−1}, {W

(2)
0 , . . .W

(2)
M
2 −1
}, . . . , {W l−1

0 ,W l−1
1 }, {W (l)

0 }, {V
(l)
0 }

is an orthonormal basis for L2(ZN ).



Chapter 12

Daubechies Wavelets

We first give a more detailed discussion of the small fluctuation property for the
first-level Haar wavelets. Once this is understood, we can ask whether or not the
same property can be upheld for other wavelets. It is in this context that we
introduce the Daubechies wavelets in this chapter.

Let z be a signal in L2(ZN ). We again suppose that N = 2M , where M is a
positive integer. Let us write

z =


z(0)
z(1)

...
z(N − 1)

 .

Suppose that z is obtained by sampling an analog signal g and we assume that g
has a continuous second derivative. So,

z(n) = g(tn), n = 0, 1, . . . , N − 1.

We also suppose that the sample values are obtained in such a way that the step
size h at time tn given by

h = tn+1 − tn

is the same for n = 0, 1, . . . , N − 1. Let us now compute the fluctuation (z,W
(1)
0 ),

where W
(1)
0 is the first Haar wavelet at the first level, i.e.,

W
(1)
0 =



β1
β2
0
0
...
0
0


.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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Then, using Taylor’s theorem,

(z,W
(1)
0 ) = z(0)β1 + z(1)β2

= z(0)β1 + g(t1)β2

= z(0)β1 + g(t0 + h)β2

= z(0)β1 + {g(t0) +O(h)}β2
= z(0)β1 + {z(0) +O(h)}β2
= z(0)(β1 + β2) +O(h)

as h → 0. It is physically intuitive that if the step size goes to zero, then the
fluctuation of the signal also goes to zero. Thus,

(z,W
(1)
0 ) = O(h)

as h→ 0, or equivalently, β1 +β2 = 0. This is indeed the case for the Haar wavelet
numbers

β1 =
1√
2
, β2 = − 1√

2
.

Let us now go one step further and look for new wavelets by determining
wavelet numbers β1, β2, β3 and β4. What does the small fluctuation property
impose on these four numbers? To answer this question, let us note that the first
wavelet at the first level is given by

W
(1)
0 =



β1
β2
β3
β4
0
...
0


.

So, by Taylor’s theorem, the fluctuation (z,W
(1)
0 ) of the signal z is given by

(z,W
(1)
0 ) = z(0)β1 + z(1)β2 + z(2)β3 + z(3)β4

= z(0)β1 + g(t1)β2 + g(t2)β3 + g(t3)β4

= z(0)β1 + g(t0 + h)β2 + g(t0 + 2h)β3 + g(t0 + 3h)β4

= z(0)β1 + {g(t0) + g′(t0)h+O(h2)}β2
+ {g(t0) + g′(t0)2h+O(h2)}β3
+ {g(t0) + g′(t0)3h+O(h2)}β4

= z(0)(β1 + β2 + β3 + β4)

+ g′(t0)h(β2 + 2β3 + 3β4) +O(h2) (12.1)
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as h → 0. Again, we invoke the physical intuition that if the step size goes to
0, then the fluctuation of a signal goes to 0. In addition to this intuition, we

expect from (12.1) that the more refined wavelet W
(1)
0 should be able to detect

the O(h2)-fluctuation in this case. Thus, it is reasonable to expect that

(z,W
(1)
0 ) = O(h2)

as h→ 0. So, by (12.1), we get

β1 + β2 + β3 + β4 = 0 (12.2)

and
β2 + 2β3 + 3β4 = 0. (12.3)

The equations (12.2) and (12.3) on β1, β2, β3 and β4 are two of the most important
ingredients in the construction of the Daubechies wavelets to be studied next.

We begin with introducing another orthonormal basis for L2(ZN ) consisting

of the first-level scaling signals V
(1)
0 , V

(1)
1 , . . . , V

(1)
N
2 −1

and the first-level wavelets

W
(1)
0 ,W

(1)
1 , . . . ,W

(1)
N
2 −1

due to Daubechies. Motivated by the small fluctuation

property, we suppose that

W
(1)
0 =



β1
β2
β3
β4
0
0
0
0
0
...
0
0



, W
(1)
1 =



0
0
β1
β2
β3
β4
0
0
0
...
0
0



, . . . , W
(1)
N
2 −1

=



β3
β4
0
0
0
0
0
...
0
0
β1
β2



,

where the wavelet numbers β1, β2, β3 and β4 are configured in such a way that in

W
(1)
N
2 −1

, β3 and β4 are rotated to the top. Furthermore, the wavelet numbers β1,

β2, β3 and β4 satisfy the system of nonlinear equations given by

β2
1 + β2

2 + β2
3 + β2

4 = 1, (12.4)

β1 + β2 + β3 + β4 = 0, (12.5)

β2 + 2β3 + 3β4 = 0, (12.6)

β1β3 + β2β4 = 0. (12.7)
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It should be noted that (12.4) and (12.7) follow from the orthonormality of the

wavelets {W (1)
0 ,W

(1)
1 , . . . ,W

(1)
N
2 −1
}, and (12.5) and (12.6) are just, respectively,

(12.2) and (12.6) in the last chapter. Solving the nonlinear system for β1, β2, β3
and β4 gives us

β1 =
1−
√

3

4
√

2
, β2 =

√
3− 3

4
√

2
, β3 =

3 +
√

3

4
√

2
, β4 =

−1−
√

3

4
√

2
,

or

β1 = −1−
√

3

4
√

2
, β2 = −

√
3− 3

4
√

2
, β3 = −3 +

√
3

4
√

2
, β4 = −−1−

√
3

4
√

2
.

We take the first set of values for β1, β2, β3 and β4 as the wavelet numbers.
In order to determine the first-level scaling signals, we use the following fact.

Lemma 12.1. Let ψ ∈ L2(ZN ), N = 2M , be such that {R2kψ}M−1k=0 is an orthonor-
mal set with M distinct signals in L2(ZN ). If we define ϕ ∈ L2(ZN ) by

ϕ(n) = (−1)n−1ψ(1− n), n ∈ Z,

then {R2kϕ}M−1k=0 ∪ {R2kψ}M−1k=0 is a time-frequency localized basis for L2(ZN ).

Proof. For all m in Z, we can use the definition of the finite Fourier transform and
periodicity to get

ϕ̂(m) =

N−1∑
n=0

ϕ(n)e−2πimn/N

=
N−1∑
n=0

(−1)n−1ψ(1− n)e−2πimn/N

=
2−N∑
k=1

(−1)−kψ(k)e−2πi(1−k)m/N

= e−2πim/N
N−1∑
k=0

(eπi)−kψ(k)e2πikm/N

= e−2πim/N
N−1∑
k=0

ψ(k)e−2πi(m+M)k/N

= e−2πim/N ψ̂(m+M). (12.8)

So, by (12.8) and the periodicity of ψ̂, we get

ϕ̂(m+M)

= e−2πi(m+M)/N ψ̂(m+ 2M)
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= e−2πiM/Ne−2πim/N ψ̂(m)

= −e−2πim/N ψ̂(m) (12.9)

for all m in Z. Hence, by (12.8), (12.9) and Lemma 9.6, we get

|ϕ̂(m)|2 + |ϕ̂(m+M)|2 = |ψ̂(m)|2 + |ψ̂(m+M)|2 = 2 (12.10)

for m = 0, 1, . . . ,M − 1. Moreover,

ϕ̂(m)ψ̂(m) + ϕ̂(m+M)ψ̂(m+M)

= e−2πim/N ψ̂(m+M)ψ̂(m)− e−2πim/N ψ̂(m)ψ̂(m+M)

= 0 (12.11)

for m = 0, 1, . . . ,M − 1. Thus, by (12.10), (12.11) and Theorem 9.8, the proof is
complete. �

We can now use Lemma 12.1 to determine the first-level scaling signals.

Indeed, we define V
(1)
0 by

V
(1)
0 (n) = (−1)n−1W

(1)
N
2 −1

(1− n), n ∈ Z, (12.12)

and then define V
(1)
k , k =, 1, 2, . . . ,M − 1, by

V
(1)
k = R2kV

(1)
0 .

We note that, by (12.12),

V
(1)
0 =



−β4
β3
−β2
β1
0
0
0
0
0
...
0
0



,

and hence the scaling numbers α1, α2, α3 and α4 are given by

α1 = −β4, α2 = β3, α3 = −β2, α4 = β1.
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We call V
(1)
0 , V

(1)
1 , . . . , V

(1)
M−1 the first-level Daubechies scaling signals, and

W
(1)
0 ,W

(1)
1 , . . . ,W

(1)
M−1 the first-level Daubechies wavelets.

As in the case of Haar wavelets, the Daubechies scaling signals and the
Daubechies wavelets at the first level and the second level are generated from
the standard basis for L2(ZN ). Indeed, we get

V (1)
m = α1ε2m + α2ε2m+1 + α3ε2m+2 + α4ε2m+3, m = 0, 1, . . . ,

N

2
− 1,

V (2)
m = α1V

(1)
2m + α2V

(1)
2m+1 + α3V

(1)
2m+2 + α4V

(1)
2m+3, m = 0, 1, . . . ,

N

4
− 1,

W (1)
m = β1ε2m + β2ε2m+1 + β3ε2m+2 + β4ε2m+3, m = 0, 1, . . . ,

N

2
− 1,

and

W (2)
m = β1V

(1)
2m + β2V

(1)
2m+1 + β3V

(1)
2m+2 + β4V

(1)
2m+3, m = 0, 1, . . . ,

N

4
− 1,

with the understanding that

V
(1)

m+N
2

= V (1)
m , m ∈ Z.

Let z ∈ L2(ZN ), N = 2l, where l is a positive integer. Then for j = 1, 2, . . . , l,
we can define the jth-level trend a(j) and the jth-level fluctuation d(j) by

a(j) =


(z, V

(j)
0 )

(z, V
(j)
1 )
...

(z, V
(j)
N

2j
−1)


and

d(j) =


(z,W

(j)
0 )

(z,W
(j)
1 )

...

(z,W
(j)
N

2j
−1)

 .

The MRA of a signal z in L2(ZN ) is then given by

z = A(1) +D(1) = A(2) +D(2) +D(1)

= A(3) +D(3) +D(2) +D(1)

= · · · = A(l) +
l∑

j=1

D(j),
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where A(j) and D(j) are the jth-level average signal and the detail signal of z
given, respectively, by

A(j) =

N

2j
−1∑

n=0

(z, V (j)
n )V (j)

n

and

D(j) =

N

2j
−1∑

n=0

(z,W (j)
n )W (j)

n .

By now, we have enough evidence and hence confidence to conclude that the
mathematics for the Daubechies wavelets is the same as the mathematics for the
Haar wavelets. What is then the point of studying Daubechies wavelets when the
Haar wavelets are already there to give the mathematics of wavelets? The answer
is that, in general, the Daubechies wavelets are much more refined tools in signal
analysis than the Haar wavelets. However, signals abound in such great complexity
and variety that we cannot expect a single method or a few techniques can serve
them all. A time-frequency localized basis that is good for one kind of signals may
not work as well for another kind. Thus, it is desirable to have as many good
wavelet bases as possible.

Example 12.2. For the signal z in Example 11.15 given by

z =



4
6
10
12
8
6
5
5


,

if we use the Haar wavelets, then 98.7% of the energy is in the first-level average.
Let us see how it works out when we use the Daubechies wavelets. We get

a(1) =


16−3

√
3√

2
19+2

√
3√

2
11.5+

√
3√

2
9.5√
2

 .

Then, as in Example 11.15,

‖A(1)‖2 = ‖a(1)‖2 = 443.35,

which is 99.4% of the energy of the original signal z. Thus, we can improve the
concentration of energy when the Daubechies wavelets are used instead of the
Haar wavelets.
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We end this chapter with some remarks. The Haar wavelets have two nonzero
wavelet numbers given by

β1 =
1√
2

and

β2 = − 1√
2
.

We may call these Haar wavelets Haar(2) wavelets. The N/2 first-level Daubechies
wavelets in this chapter, also referred to as the Daub(4) wavelets, have four
nonozero wavelet numbers β1, β2, β3 and β4, which can be solved from a nonlinear

system of four equations. The Daubechies wavelet W
(1)
N
2 −1

has a wrap-around in

which β3 and β4 are rotated to the top. Using the methodology of the previous
chapter and this chapter, wavelets having six nonzero wavelet numbers with wrap-

around in W
(1)
0 and in W

(1)
N
2

have also been devised and they are dubbed Coiflets

or Coif(6) wavelets in deference to Coifman. In addition to the Haar(2), Daub(4)
and Coif(6) wavelets, there are many other kinds of wavelets. Details can be found
in the book [45] by Walker.

Exercises

1. Solve Equations (12.4)–(12.7) for the wavelet numbers β1, β2, β3 and β4.

2. Repeat Exercise 5 of the preceding chapter using the Daubechies wavelets.

3. For the signal z in L2(Z8) given in Exercise 5 of the preceding chapter, use
the Daubechies wavelets to find the % of the energy of the signal saved in
the second-level average A(2).



Chapter 13

The Trace

We give in this chapter a class of linear operators A from L2(ZN ) into L2(ZN ) for
which the trace tr(A) of A can be computed.

Let σ and ϕ be signals in L2(ZN ). Then we define the linear operator Tσ,ϕ :
L2(ZN )→ L2(ZN ) by

Tσ,ϕz =
N−1∑
k=0

σ(k)(z, πkϕ)πkϕ, z ∈ L2(ZN ),

where

πkϕ =
√
N(Rkϕ)∨, k = 0, 1, . . . , N − 1.

The following fact tells us that if we choose the signal ϕ to be the unit
impulse δ, then the linear operator Tσ,ϕ is a scalar multiple of the Fourier multiplier
associated to the symbol σ.

Proposition 13.1. Let σ be any signal in L2(ZN ). Then

Tσ,δ = Tσ.

Proof. For k = 0, 1, . . . , N−1, we get, by the definition of the inverse finite Fourier
transform and Proposition 1.23,

(Rkδ)
∨(n) =

1

N
(Rkδ)

∧
(−n) =

1

N
e2πink/N δ̂(−n), n ∈ Z. (13.1)

Using (13.1) and the fact that δ̂(m) = 1 for allm in Z, we get for k = 0, 1, . . . , N−1,

(Rkδ)
∨(n) =

1

N
e2πink/N = Fk(n), n ∈ Z.

Therefore

πkδ =
√
NFk, k = 0, 1, . . . , N − 1. (13.2)
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Since

(z, Fk) =
1

N
ẑ(k), k = 0, 1, . . . , N − 1,

it follows from (13.2) and the definition of Tσ,δ that

Tσ,δz = N
N−1∑
k=0

σ(k)(z, Fk)Fk

=
N−1∑
k=0

σ(k)ẑ(k)Fk, z ∈ L2(ZN ). (13.3)

Using the definition of the Fourier multiplier and the Fourier inversion formula,
we can see that

Tσz =
N−1∑
m=0

σ(m)ẑ(m)Fm, z ∈ L2(ZN ). (13.4)

So, by (13.3) and (13.4),
Tσ,δ = Tσ.

�

Let us choose a signal ϕ in L2(ZN ) such that

|ϕ̂(m)| = 1, m ∈ Z.

Then, by Proposition 8.8, we know that {R0ϕ,R1ϕ, . . . , RN−1ϕ} is an orthonor-
mal basis for L2(ZN ). Hence, using Parseval’s identity and the Fourier inversion
formula, we get for j, k = 0, 1, . . . , N − 1,

(πjϕ, πkϕ) = N((Rjϕ)
∨
, (Rkϕ)

∨
)

= (Rjϕ,Rkϕ) =

{
1, j = k,
0, j 6= k.

So, {π0ϕ, π1ϕ, . . . , πN−1ϕ} is an orthonormal basis for L2(ZN ). With this obser-
vation, complete information on the eigenvalues and eigenfunctions for the linear
operator Tσ,ϕ is contained in the following proposition, which is an extension of
Theorem 6.1.

Proposition 13.2. Let σ be a signal in L2(ZN ) and let ϕ be a signal in L2(ZN )
such that

|ϕ̂(m)| = 1, m ∈ Z. (13.5)

Then the eigenvalues of the linear operator Tσ,ϕ are given by

σ(0), σ(1), . . . , σ(N − 1).

Moreover, for m = 0, 1, . . . , N − 1, the eigenfunction of Tσ,ϕ corresponding to the
eigenvalue σ(m) is the signal πmϕ.
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Proof. For m = 0, 1, . . . , N −1, we get, by the definition of Tσ,ϕ and the orthonor-
mality of {π0ϕ, π1ϕ, . . . , πN−1ϕ},

Tσ,ϕ(πmϕ) =

N−1∑
k=0

σ(k)(πmϕ, πkϕ)πkϕ = σ(m)πmϕ,

and this completes the proof. �

In the more often case when the signal ϕ does not fulfil the condition (13.5),
the computation of the eigenvalues and eigenfunctions of Tσ,ϕ is more difficult.
However, some information on the eigenvalues, i.e., the trace tr(Tσ,ϕ), can still
be obtained in terms of the symbol σ. To this end, a brief and self-contained
recapitulation of the trace of a square matrix may be in order.

The trace tr(A) of an N × N matrix A with complex entries is the sum of
the eigenvalues, repeated according to multiplicity, of A. The best scenario is that
we are able to compute all the eigenvalues of A explicitly. This is very often very
difficult. In the case when we do not know the eigenvalues explicitly, the trace will
give us some information about the eigenvalues.

Theorem 13.3. Let A be an N ×N matrix with complex entries. Then

tr(A) =
N−1∑
j=0

ajj ,

where a00, a11, . . . , aN−1,N−1 are the diagonal entries of A.

Proof. The characteristic polynomial p(λ) of the matrix A is given by

p(λ) = det(A− λI),

where det{· · · } is the determinant of {· · · } and I is the identity matrix of order
N ×N . By the fundamental theorem of algebra, we can write

p(λ) = (λ0 − λ)(λ1 − λ) · · · (λN−1 − λ),

where λ0, λ1, . . . , λN−1 are the eigenvalues of A, which are counted according to

multiplicity. The coefficient of λN−1 is then easily seen to be (−1)
N−1

tr(A). On
the other hand,

p(λ) = det


a00 − λ a01 · · · a0,N−1
a10 a11 − λ · · · a1,N−1
...

...
...

...
aN−1,0 aN−1,1 · · · aN−1,N−1 − λ

 .

It follows from the definition of the determinant that the determinant is a sum
of terms in which each term is a product of entries contributed by each row and
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each column exactly once. Thus, the terms of degree N − 1 in p(λ) can only come
from (a00 − λ)(a11 − λ) · · · (aN−1,N−1 − λ). So, the coefficient of λN−1 is equal to

(−1)
N−1∑N−1

j=0 ajj . This completes the proof. �

The following theorem on the computation of the trace is often useful.

Theorem 13.4. Let A be an N ×N matrix with complex entries. Then

tr(A) =

N−1∑
j=0

(Aϕj , ϕj),

where {ϕ0, ϕ1, . . . , ϕN−1} is any orthonormal basis for L2(ZN ).

Proof. Let B = {ϕ0, ϕ1, . . . , ϕN−1} be an orthonormal basis for L2(ZN ). Then

Aϕ0 = α00ϕ0 + α10ϕ1 + · · ·+ αN−1,0ϕN−1,

Aϕ1 = α01ϕ0 + α11ϕ1 + · · ·+ αN−1,1ϕN−1,

· · ·

AϕN−1 = α0,N−1ϕ0 + α1,N−1ϕ1 + · · ·+ αN−1,N−1ϕN−1.

In other words, for 0 ≤ i ≤ N − 1,

Aϕi = α0iϕ0 + α1iϕ1 + · · ·+ αN−1,iϕN−1. (13.6)

Using the orthonormality of the basis B, we get

αij = (Aϕj , ϕi), i, j ∈ ZN .

So, the matrix (A)B of A with respect to the basis B is given by

(A)B = (αij)0≤i,j≤N−1 = ((Aϕj , ϕi))0≤i,j≤N−1. (13.7)

Let S = {ε0, ε1, . . . , εN−1} be the standard basis for L2(ZN ). The matrix (A)S of
A with respect to S for L2(ZN ) is the same as the matrix A = (aij)0≤i,j≤N−1. Let
us now compute the change of basis matrix from S to B. To do this, we note that

ε0 = c00ϕ0 + c10ϕ1 + · · ·+ cN−1,0ϕN−1,

ε1 = c01ϕ0 + c11ϕ1 + · · ·+ cN−1,1ϕN−1,

· · ·

εN−1 = c0,N−1ϕ0 + c1,N−1ϕ1 + · · ·+ cN−1,N−1ϕN−1.

More succinctly, we can write for 0 ≤ i ≤ N − 1,

εi = c0iϕ0 + c1iϕ1 + · · ·+ ci,N−1ϕN−1. (13.8)
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Using the orthonormality of the basis B, we get

cij = (εj , ϕi), i, j ∈ Z.

Let
C = (cij)0≤i,j≤N−1 = ((εj , ϕi))0≤i,j≤N−1.

Since

N−1∑
j=0

cljckj =
N−1∑
j=0

(εj , ϕl)(ϕk, εj)

=
N−1∑
j=0

(ϕk, (ϕl, εj)εj)

=

ϕk,N−1∑
j=0

(ϕl, εj)εj


= (ϕk, ϕl) =

{
1, k = l,
0, k 6= l,

it follows that C is a unitary matrix. Now, we note that the coordinates (z)B with
respect to the basis B are given by

(z)B = Cz, z ∈ L2(ZN ),

and
A = C−1(A)BC. (13.9)

To see that (13.9) is true, we use (13.6) and (13.8) to obtain for 0 ≤ i ≤ N − 1,

Aε1 =
N−1∑
l=0

cliAϕl =
N−1∑
l=0

cli

N−1∑
k=0

αklϕk

=
N−1∑
k=0

(
N−1∑
l=0

αklcli

)
ϕk =

N−1∑
k=0

((A)BC)kiϕk, (13.10)

where ((A)BC)ki is the entry in the kth row and ith column of the matrix (A)BC.
On the other hand, using (13.8) again,

Aεi =
N−1∑
l=0

aliAεl =
N−1∑
l=0

ali

N−1∑
k=0

cklϕk

=
N−1∑
k=0

(
N−1∑
l=0

cklali

)
ϕk =

N−1∑
k=0

(CA)kiϕk, (13.11)
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where (C−1A)ki is the entry in the kth row and ith column of the matrix CA.
Thus, by (13.10) and (13.11),

(A)BC = CA

and hence
A = C−1(A)BA,

as asserted. So, by (13.7) and (13.9),

(aij)0≤i,j≤N−1 = C−1

(
N−1∑
l=0

αilclj

)
0≤i,j≤N−1

=

(
N−1∑
k=0

cki

N−1∑
l=0

αklclj

)
0≤i,j≤N−1

. (13.12)

Thus, by (13.12) ,

ajj =
N−1∑
k,l=0

αklcljckj , j = 0, 1, . . . , N − 1,

and hence, using the unitarity of C,

N−1∑
j=0

ajj =
N−1∑
k,l=0

αkl

N−1∑
j=0

cljckj =
N−1∑
k=0

αkk =
N−1∑
k=0

(Aϕk, ϕk).

Thus, by Theorem 13.3 and the definition of the trace, the proof is complete. �

We can now compute the trace of Tσ,ϕ.

Theorem 13.5. Let σ and ϕ be signals in L2(ZN ). Then the trace tr(Tσ,ϕ) of the
linear operator Tσ,ϕ associated to the signals σ and ϕ is given by

tr(Tσ,ϕ) = ‖ϕ‖2
N−1∑
k=0

σ(k).

Proof. Let {z0, z1, . . . , zN−1} be any orthonormal basis for L2(ZN ). Then

tr(Tσ,ϕ) =

N−1∑
j=0

(Tσ,ϕzj , zj)

=

N−1∑
j=0

N−1∑
k=0

σ(k)|(zj , πkϕ)|2

=

N−1∑
k=0

σ(k)

N−1∑
j=0

|(zj , πkϕ)|2. (13.13)
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Since {z0, z1, . . . , zN−1} is an orthonormal basis for L2(ZN ), it follows that for
k = 0, 1, . . . , N − 1, we get

πkϕ =
N−1∑
j=0

(πkϕ, zj)zj ,

and hence, by Lemma 11.13,

‖πkϕ‖2 =

∥∥∥∥∥∥
N−1∑
j=0

(πkϕ, zj)zj

∥∥∥∥∥∥
2

=
N−1∑
j=0

|(πkϕ, zj)|2. (13.14)

So, by (13.13) and (13.14), we get

tr(Tσ,ϕ) =
N−1∑
k=0

σ(k)‖πkϕ‖2. (13.15)

By Plancherel’s theorem, we get for k = 0, 1, . . . , N − 1,

‖πkϕ‖2 = N‖(Rkϕ)∨‖2 = ‖Rkϕ‖2 = ‖ϕ‖2. (13.16)

Thus, by (13.15) and (13.16),

tr(Tσ,ϕ) = ‖ϕ‖2
N−1∑
k=0

σ(k). �

Exercises

1. Let b ∈ L2(ZN ). Prove that the convolution operator Cb : L2(ZN )→ L2(ZN )
is a linear operator of the form Tσ,ϕ : L2(ZN )→ L2(ZN ), where σ and ϕ are
signals in L2(ZN ).

2. Let b ∈ L2(ZN ). Compute the trace tr(Cb) of the convolution operator Cb :
L2(ZN )→ L2(ZN ).

3. For all signals σ and ϕ in L2(ZN ), the linear operator Aσ,ϕ : L2(ZN ) →
L2(ZN ) is defined by

Aσ,ϕz =
N−1∑
k=0

σ(k)(z, ρkϕ)ρkϕ, z ∈ L2(ZN ),

where
ρkϕ = (M−kϕ)∨, k = 0, 1, . . . , N − 1,

and M−k is defined in Exercise 1 of Chapter 8. Suppose that

|ϕ(m)| = 1

N
, m ∈ Z. (13.17)

Find all the eigenvalues and the corresponding eigenfunctions of Aσ,ϕ.
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4. Let σ and ϕ be signals in L2(ZN ) Compute the trace tr(Aσ,ϕ) of the linear
operator Aσ,ϕ : L2(ZN ) → L2(ZN ) defined as in the preceding exercise, but
without the condition (13.17).

5. Prove that for all N ×N matrices A and B,

tr ([A,B]) = 0,

where [A,B] is the commutator of A and B defined by

[A,B] = AB −BA.

6. Let A and B be N ×N matrices such that

B = C−1AC,

where C is an N ×N invertible matrix. Prove that

tr(A) = tr(B).



Chapter 14

Hilbert Spaces

Our starting point is an infinite-dimensional complex vector space X. An inner
product ( , ) in X is a mapping from X ×X into C such that

• (αx+ βy, z) = α(x, z) + β(y, z),

• (x, αy + βz) = α(x, y) + β(x, z),

• (x, x) ≥ 0,

• (x, x) = 0⇔ x = 0

for all x, y and z in X and all complex numbers α and β. Given an inner product
( , ) in X, the induced norm ‖ ‖ in X is given by

‖x‖2 = (x, x), x ∈ X.

Let us make a very useful remark that from the definition of an inner product
we can prove that

(x, y) = (y, x), x, y ∈ X.

We leave this as an exercise. See Exercise 1.
The most fundamental fact about an inner product is the Schwarz inequality

to the effect that for all x and y in X,

|(x, y)| ≤ ‖x‖ ‖y‖

and equality occurs if and only if x and y are linearly dependent. We leave the
proof of the Schwarz inequality as an exercise. See Exercise 2. Let us also recall
that ‖ ‖ is a norm in X in the sense that for all x and y in X and all complex
numbers α,

‖x‖ ≥ 0, (14.1)

‖x‖ = 0⇔ x = 0, (14.2)

‖αx‖ = |α| ‖x‖, (14.3)

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
DOI 10.1007/978-3-0348-0116-4_14, © Springer Basel AG 2011
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‖x+ y‖ ≤ ‖x‖+ ‖y‖. (14.4)

The easy proof is left as an exercise. See Exercise 3.

Let X be an infinite-dimensional complex vector space in which the inner
product and the norm are denoted by, respectively, ( , ) and ‖ ‖.

Let {xj}∞j=1 be a sequence in X. Then we say that {xj}∞j=1 converges to x
in X if

‖xj − x‖ → 0

as j →∞. It is easy to to prove that if {xj}∞j=1 converges to x in X, then

(xj , y)→ (x, y)

for all y in X. The simple proof is left as an exercise. See Exercise 5.

A sequence {xj}∞j=1 in X is said to be a Cauchy sequence if

‖xj − xk‖ → 0

as j, k → ∞. If every Cauchy sequence in X converges, then we call X a Hilbert
space.

Remark 14.1. A complex vector space X is said to be a normed vector space if
there exists a function ‖ ‖ : X → [0,∞) satisfying (14.1)–(14.4). Such a function
is a norm in X. A normed vector space in which every Cauchy sequence in X
converges in X is said to be complete. A complete normed vector space is called a
Banach space. While Banach spaces do not belong to the main focus in this book,
they do come up frequently in our discussions.

A sequence {xj}∞j=1 in a Hilbert space X is said to be orthogonal if

(xj , xk) = 0

for all positive integers j and k with j 6= k. An orthogonal sequence {xj}∞j=1 in a
Hilbert space X is said to be an orthonormal sequence if

‖xj‖ = 1, j = 1, 2, . . . .

An orthonormal sequence {xj}∞j=1 in a Hilbert space X is said to be complete if
every element x in X with the property that

(x, xj) = 0, j = 1, 2, . . . ,

is the zero element in X. We call a complete orthonormal sequence in a Hilbert
space X an orthonormal basis for X.

We assume that every Hilbert space X encountered in this book has an
orthonormal basis {ϕj}∞j=1 in the sense described in the preceding paragraph.
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Let {xj}∞j=1 be a sequence in a Hilbert space X. For every positive integer
n, we let sn be the partial sum defined by

sn =
n∑
j=1

xj .

If the sequence {sn}∞n=1 converges to s in X, then we say that the series
∑∞
j=1 xj

converges to s in X and we write

∞∑
j=1

xj = s.

The series
∑∞
j=1 xj is said to be absolutely convergent if

∞∑
j=1

‖xj‖ <∞.

Proposition 14.2. Let {xj}∞j=1 be a sequence in a Hilbert space X such that the

series
∑∞
j=1 xj is absolutely convergent. Then

∑∞
j=1 xj converges in X.

The proof of Proposition 14.2 is very easy and is left as an exercise. See
Exercise 6.

We now give two useful lemmas. The first lemma is an inequality, which is
known as the Bessel inequality.

Lemma 14.3. Let {ϕj}∞j=1 be an orthonormal sequence for a Hilbert space X. Then
for all elements x in X,

∞∑
j=1

|(x, ϕj)|2 ≤ ‖x‖2.

Proof. For all N in N, let sN be the partial sum given by

sN =
N∑
j=1

(x, ϕj)ϕj .

Then

‖x− sN‖2 = (x, x)− (x, sN )− (sN , x) + (sN , sN )

= ‖x‖2 − 2 Re(x, sN ) + ‖sN‖2.

But

(x, sN ) =
N∑
j=1

(x, ϕj)(x, ϕj) =
N∑
j=1

|(x, ϕj)|2
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and

‖sN‖2 =

 N∑
j=1

(x, ϕj)ϕj ,
N∑
k=1

(x, ϕk)ϕk


=

N∑
j=1

N∑
k=1

(x, ϕj)(x, ϕk)(ϕj , ϕk) =
N∑
j=1

|(x, ϕj)|2.

So,

‖x− sN‖2 = ‖x‖2 −
N∑
j=1

|(x, ϕj)|2,

or equivalently,
N∑
j=1

|(x, ϕj)|2 = ‖x‖2 − ‖x− sN‖2.

Therefore
N∑
j=1

|(x, ϕj)|2 ≤ ‖x‖2.

Letting N →∞, we get
∞∑
j=1

|(x, ϕj)|2 ≤ ‖x‖2. �

The second lemma is a criterion for a series to converge in X.

Lemma 14.4. Let {ϕj}∞j=1 be an orthonormal sequence in a Hilbert space X. Let

{αj}∞j=1 be a sequence of complex numbers. Then
∑∞
j=1 αjϕj converges in X if

and only if
∞∑
j=1

|αj |2 <∞.

Proof. Suppose that
∑∞
j=1 αjϕj converges to x in X. Then for all positive integers

M and N with M ≥ N, M∑
j=1

αjϕj , ϕN

 =
M∑
j=1

αj(ϕj , ϕN ) = αN .

Letting M →∞, we get

(x, ϕN ) =

 ∞∑
j=1

αjϕj , ϕN

 = αN .
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By Bessel’s inequality in Lemma 14.3, we get

∞∑
N=1

|αN |2 =
∞∑
N=1

|(x, ϕN )|2 ≤ ‖x‖2 <∞.

Conversely, suppose that
∞∑
j=1

|αj |2 <∞.

For all positive integers M , let

sM =
M∑
j=1

αjϕj .

Then for all positive integers M and N with M ≥ N,

‖sM − sN‖2 =
M∑
j=N

‖αjϕj‖2 =
M∑
j=N

|αj |2 → 0

as N →∞. So, {sM}∞M=1 is a Cauchy sequence in X. Since X is a Hilbert space,
it follows that sM → x for some x in X as M →∞, and the proof is complete. �

The following simple facts on series in Hilbert spaces are easy to be estab-
lished and are also left as exercises. See Exercises 7 and 8. The first proposition is
an infinite-dimensional analog of Pythagoras’ theorem.

Proposition 14.5 (Pythagoras’ Theorem). Let {xj}∞j=1 be an orthonormal sequence
in a Hilbert space X and let {αj}∞j=1 be a sequence of complex numbers such that∑∞
j=1 αjxj converges in X. Then∥∥∥∥∥∥

∞∑
j=1

αjxj

∥∥∥∥∥∥
2

=
∞∑
j=1

|αj |2.

The second proposition is a formula for the inner product of two series in a
Hilbert space.

Proposition 14.6. Let {xj}∞j=1 and {yj}∞j=1 be sequences in a Hilbert space X such

that
∑∞
j=1 xj and

∑∞
j=1 yj both converge in X. Then ∞∑

j=1

xj ,
∞∑
j=1

yj

 =
∞∑
j=1

∞∑
k=1

(xj , yk).
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Remark 14.7. In an orthonormal basis {ϕj}∞j=1 for a Hilbert space, we have used
the set N of all positive integers for the index set of the basis. In fact, any infinite
and countable index set J can be used instead of N because J can be put in a
one-to-one correspondence with N.

The following theorem contains all that we need to know about orthonormal
bases for Hilbert spaces.

Theorem 14.8. Let {ϕj}∞j=1 be an orthonormal basis for a Hilbert space X. Then
for all x and y in X, we have the following conclusions.

(i) (The Fourier Inversion Formula)

x =
∞∑
j=1

(x, ϕj)ϕj .

(ii) (Parseval’s Identity)

(x, y) =
∞∑
j=1

(x, ϕj)(ϕj , y).

(iii) (Plancherel’s Theorem)

‖x‖2 =
∞∑
j=1

|(x, ϕj)|2.

Proof. By Bessel’s inequality in Lemma 14.3, the series
∑∞
j=1(x, ϕj)ϕj converges

in X. Let y be the element in X such that

y = x−
∞∑
j=1

(x, ϕj)ϕj .

Then for k = 1, 2, . . . ,

(y, ϕk) = (x, ϕk)−
∞∑
j=1

(x, ϕj)(ϕj , ϕk) = (x, ϕk)− (x, ϕk) = 0.

Since {ϕj}∞j=1 is an orthonormal basis for X and hence complete, it follows that
y = 0. Therefore

x =
∞∑
j=1

(x, ϕj)ϕi.

This proves the Fourier inversion formula. As for Parseval’s identity, we write

x =
∞∑
j=1

(x, ϕj)ϕj
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and

y =
∞∑
k=1

(y, ϕk)ϕk.

Then by Proposition 14.6,

(x, y) =

 ∞∑
j=1

(x, ϕj)ϕj ,
∞∑
k=1

(y, ϕk)ϕk


=
∞∑
j=1

∞∑
k=1

(x, ϕj)(y, ϕk)(ϕj , ϕk)

=
∞∑
j=1

(x, ϕj)(ϕj , y).

Then Plancherel’s formula follows immediately from Parseval’s identity by letting
y = x. �

We end this chapter with a more in-depth study of the inner products in
Hilbert spaces culminating in the Riesz representation theorem.

Let X be an infinite-dimensional Hilbert space in which the inner product
and norm are denoted by, respectively, ( , ) and ‖ ‖. A linear functional on X is
a linear transformation from X into C, where C is to be understood as a one-
dimensional complex vector space. A linear functional T on X is said to be a
bounded linear functional on X if there exists a positive constant C such that

|T (x)| ≤ C‖x‖, x ∈ X.

It can be shown that for every fixed element y in X, the linear transformation
T : X → C defined by

T (x) = (x, y), x ∈ X,

is a bounded linear functional on X. See Exercise 9. That all bounded linear
functionals on X come from inner products in this way is the content of the Riesz
representation theorem. Before embarking on a proof of this fact, we first have a
glimpse into the geometry of Hilbert spaces.

Theorem 14.9. Let M be a closed subspace of X in the sense that the limits of all
sequences in M lie in M . Let x ∈ X \M and let d be the distance between x and
M defined by

d = inf
z∈M
‖x− z‖.

Then there exists an element z in M such that

‖x− z‖ = d.
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Proof. There exists a sequence {zj}∞j=1 in M such that

‖x− zj‖ → d

as j →∞. By the law of the parallelogram in Exercise 4, we get for j, k = 1, 2, . . . ,

2‖x− zj‖2 + 2‖x− zk‖2

= ‖(x− zj) + (x− zk)‖2 + ‖(x− zj)− (x− zk)‖2,

which can be rewritten as

4

∥∥∥∥x− zj + zk
2

∥∥∥∥2 + ‖zj − zk‖2 = 2‖x− zj‖2 + 2‖x− zk‖2. (14.5)

Since

d ≤
∥∥∥∥x− zj + zk

2

∥∥∥∥ , j, k = 1, 2, . . . ,

it follows from (14.5) that for j, k = 1, 2, . . . ,

‖zj − zk‖2 ≤ 2‖x− zj‖2 + 2‖x− zk‖2 − 4d2 → 0

as j, k → ∞. Therefore {zj}∞j=1 is a Cauchy sequence in X. Since X is complete,
there exists an element z in X such that

zj → z

in X as j →∞. But {zj}∞j=1 is a sequence in M and M is closed. So, z ∈M and

d = lim
j→∞

‖x− zj‖ = ‖x− z‖. �

Let M be a closed subspace of a Hilbert space X. Then the orthogonal
complement M⊥ of M is defined by

M⊥ = {x ∈ X : (x, y) = 0, y ∈M}.

Theorem 14.10. Let M be a closed subspace of a Hilbert space X. Then for every
x in X, we can find unique elements v and w such that v ∈M , w ∈M⊥ and

x = v + w.

Proof. If x ∈ M , then we can let v = x and w = 0. If x /∈ M, then we can apply
Theorem 14.9 to obtain an element z in M such that

‖x− z‖ = d,

where
d = inf

z∈M
‖x− z‖.
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Then we can write
x = z + (x− z)

and note that x − z ∈ M⊥. Indeed, let w = x − z. Then w /∈ M . Hence for all
nonzero elements u in M and all complex numbers α, we get

d2 ≤ ‖w − αu‖2 = ‖w‖2 − 2 Re(α(u,w)) + |α|2‖u‖2. (14.6)

If we write
(u,w) = |(u,w)|ei arg (u,w)

and choose α such that
α = te−i arg (u,w),

where t is any positive number, then by (14.6),

d2 ≤ ‖w‖2 − 2t|(u,w)|+ t2‖u‖2

= ‖u‖2
(
t2 − 2t

|(u,w)|
‖u‖2

+
|(u,w)|2

‖u‖4

)
+ d2 − |(u,w)|2

‖u‖2

= ‖u‖2
(
t− |(u,w)|

‖u‖2

)2

+ d2 − |(u,w)|2

‖u‖2
. (14.7)

If we let t = |(u,w)|
‖u‖2 in (14.7), then

|(u,w)|2 ≤ 0.

Thus, (u,w) = 0, which is the same as saying that

x− z ∈M⊥.

Finally, for uniqueness, let us assume that

x = v1 + w1

and
x = v2 + w2,

where v1, v2 ∈M and w1, w2 ∈M⊥. Then

v1 − v2 = w2 − w1.

Thus,
v1 − v2 ∈M ∩M⊥,

which means that
‖v1 − v2‖2 = (v1 − v2, v1 − v2) = 0.

So, v1 − v2 = 0, i.e., v1 = v2. Similarly, w1 = w2, and the proof is complete. �
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As a corollary of Theorem 14.10, we give the following result.

Corollary 14.11. Let M be a proper and closed subspace of a Hilbert space X. Then
there exists a nonzero element y in X such that

(y, z) = 0, z ∈M.

Proof. Let x ∈ X \M . Then by Theorem 14.10,

x = v + w,

where v ∈ M and w ∈ M⊥. Let y = w. Then the corollary is proved if we can
show that w 6= 0. But

w = 0⇒ x = v ∈M,

which is a contradiction. �

Here is the Riesz representation theorem as promised.

Theorem 14.12 (The Riesz Representation Theorem). Let T be a bounded linear
functional on a Hilbert space X. Then there exists a unique element y in X such
that

T (x) = (x, y), x ∈ X.

Proof. If T (x) = 0 for all x in X, then we take y = 0 and the theorem is proved.
So, suppose that T is not identically zero. Let M be the subspace of X defined by

M = {x ∈ X : T (x) = 0}.

Then M is the null space of T and, by Exercise 10, must be closed. By Corollary
14.11, there exists a nonzero element w in X such that w ∈ M⊥. Then w /∈ M .
Hence T (w) 6= 0 and for all x in X,

T (T (w)x− T (x)w) = T (w)T (x)− T (x)T (w) = 0.

So,
T (w)x− T (x)w ∈M.

Since w ∈M⊥, it follows that

(T (w)x− T (x)w,w) = 0,

which can be expressed as

T (x)‖w‖2 = T (w)(x,w).

Thus,

T (x) =

(
x,
T (w)

‖w‖2
w

)
, x ∈ X,
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and the theorem is proved by taking y = T (w)
‖w‖2w. To prove uniqueness, let y1 and

y2 be elements in X such that

T (x) = (x, y1)

and
T (x) = (x, y2)

for all x in X. Then
(x, y1 − y2) = 0, x ∈ X.

If we let x = y1 − y2, then

‖y1 − y2‖2 = (y1 − y2, y1 − y2) = 0

and hence y1 = y2. �

Exercises

1. Use the definition of an inner product to prove that for all x and y in a
complex vector space X with inner product ( , ),

(x, y) = (y, x).

2. Let X be a complex vector space equipped with an inner product ( , ) and
the induced norm ‖ ‖. Prove that for all x and y in X,

|(x, y)| ≤ ‖x‖ ‖y‖

and equality occurs if and only if x and y are linearly dependent.

3. Prove that the norm ‖ ‖ induced by an inner product ( , ) in a complex vector
space X has the properties (14.1)–(14.4).

4. Let X be a complex vector space in which the norm ‖ ‖ is induced by the
inner product ( , ). Prove that for all x and y in X,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Explain why this is sometimes known as the law of the parallelogram.

5. Let X be an infinite-dimensional complex vector space with inner product
( , ). Prove that if {xj}∞j=1 converges to x in X, then for all y in X,

(xj , y)→ (x, y)

as j →∞. Is the converse true?

6. Prove Proposition 14.2.
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7. Prove Proposition 14.5.

8. Prove Proposition 14.6.

9. Let X be a Hilbert space in which the inner product and norm are denoted
by, respectively, ( , ) and ‖ ‖. Let y ∈ X. Then prove that the mapping
T : X → C defined by

T (x) = (x, y), x ∈ X,

is a bounded linear functional.

10. Prove that the null space of a bounded linear functional T on X must be a
closed subspace of X.

11. Prove that for all elements x in a Hilbert space X with inner product ( , )
and norm ‖ ‖,

‖x‖ = sup
‖y‖=1

|(x, y)|.
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Bounded Linear Operators

A linear operator A on a Hilbert space X is said to be a bounded linear operator
on X if there exists a positive constant C such that

‖Ax‖ ≤ C‖x‖, x ∈ X.

For a bounded linear operator A on a Hilbert space X, we define the norm ‖A‖∗
of A by

‖A‖∗ = sup
x 6=0

‖Ax‖
‖x‖

= sup
‖x‖=1

‖Ax‖. (15.1)

It follows from (15.1) that if A is a bounded linear operator on a Hilbert space X,
then

‖Ax‖ ≤ ‖A‖∗‖x‖, x ∈ X.

A linear operator A on a Hilbert space X is said to be continuous at a point
x in X if for every sequence {xj}∞j=1 converging to x in X,

Axj → Ax

in X as j →∞.
It is a basic fact in functional analysis that a linear operator A on a Hilbert

space X is a bounded linear operator on X if and only if A is continuous at a
point in X. See Exercise 1.

Let B(X) be the set of all bounded linear operators on a Hilbert space X.
Then it is easy to prove that B(X) is a complex vector space with respect to the
usual addition of two bounded linear operators and the usual scalar multiplication
of a bounded linear operator by a complex number. In fact, B(X) is a normed
vector space with respect to the norm ‖ ‖∗ given by (15.1). See Exercise 2.

In fact, we have the following theorem.

Theorem 15.1. B(X) is a Banach space with respect to the norm ‖ ‖∗.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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Proof. Let {Aj}∞j=1 be a Cauchy sequence in B(X), i.e.,

‖Aj −Ak‖∗ → 0

as j, k →∞. Then all we need to prove is that there exists an element A in B(X)
such that

‖Aj −A‖∗ → 0

as j →∞. We first note that there exists a positive constant M such that

‖Ajx‖ ≤M‖x‖, x ∈ X, j = 1, 2, . . . . (15.2)

Indeed, there exists a positive integer N such that

‖Aj −Ak‖∗ < 1, j, k ≥ N.

So, using the triangle inequality for the norm ‖ ‖∗, we see that

‖Aj‖∗ < 1 + ‖AN‖∗, j ≥ N.

If we let
M = max{‖A1‖∗, . . . , ‖AN−1‖∗, 1 + ‖AN‖∗},

then
‖Aj‖∗ ≤M, j = 1, 2, . . . ,

establishing (15.2). Now, for all x in X,

‖Ajx−Akx‖ = ‖(Aj −Ak)x‖ ≤ ‖Aj −Ak‖∗‖x‖ → 0

as j, k →∞. So, {Ajx}∞j=1 is a Cauchy sequence in X. Since X is a Hilbert space,
{Ajx}∞j=1 converges to an element in X, which we denote by Ax. That A : X → X
so defined is a linear operator follows from the linearity of taking limits. (This is
Exercise 3.) Furthermore, we see from (15.2) that

‖Ax‖ = lim
j→∞

‖Ajx‖ ≤M‖x‖, x ∈ X.

Therefore A ∈ B(X). It remains to prove that

‖Aj −A‖∗ → 0

as j → ∞. But for all positive numbers ε, there exists a positive integer N such
that

‖Aj −Ak‖∗ < ε

whenever j, k ≥ N. So, for all x in X,

‖Ajx−Akx‖ ≤ ‖Aj −Ak‖∗‖x‖ ≤ ε‖x‖
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whenever j, k ≥ N . Letting k →∞, we get for all x in X,

‖Ajx−Ax‖ ≤ ε‖x‖

whenever j ≥ N. Thus,
‖Aj −A‖∗ ≤ ε

whenever j ≥ N and the proof is complete. �

We now give a result on the boundedness of a family of bounded linear oper-
ators on a Hilbert space. The result is known as the principle of uniform bounded-
ness or the Banach–Steinhaus theorem and is dependent on the fine structure of
Banach spaces, i.e., complete normed vector spaces. To explicate the structure, let
X be a Banach space in which the norm is denoted by ‖ ‖. We denote by B(x0, r)
the open ball with center x0 and radius r in X given by

B(x0, r) = {x ∈ X : ‖x− x0‖ < r}.

A subsetW ofX is said to be nowhere dense inX if the closureW ofW contains no
open balls. Then we have the following result known as Baire’s category theorem.

Theorem 15.2. A Banach space cannot be expressed as a countable union of no-
where dense sets.

Proof. Let X be a Banach space with norm ‖ ‖. Suppose by way of contradiction
that

X =
∞⋃
k=1

Wk,

where Wk is nowhere dense for k = 1, 2, . . . . Since W1 is nowhere dense, there
exists a point x1 in X such that x1 /∈W1. Thus, there exists a number r1 in (0, 1)
such that

B(x1, r1) ∩W1 = ∅.

Since W2 is nowhere dense, the open ball B(x1, r1) is not a subset of W2. So, there
exists a point x2 in B(x1, r1) \W2. Hence there exists a number r2 in

(
0, 12
)

such
that

B(x2, r2) ∩W2 = ∅

and
B(x2, r2) ⊂ B(x1, r1).

Thus, we can find a sequence {B(xk, rk)}∞k=1 of open balls in X such that

rk ∈
(

0,
1

k

)
,

B(xk, rk) ∩Wk = ∅
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and
B(xk, rk) ⊂ B(xk−1, rk−1).

Now, for j > k, xj ∈ B(xk, rk) and hence

‖xj − xk‖ < rk <
1

k
. (15.3)

So, {xk}∞k=1 is a Cauchy sequence in X. Since X is complete, it follows that there
exists a point x0 in X such that

xk → x0

in X as k →∞. Letting j →∞ in (15.3), we get

‖xk − x0‖ ≤ rk, k = 1, 2, . . . .

Therefore
x0 ∈ B(xk, rk), k = 1, 2, . . . .

Then
x0 /∈Wk, k = 1, 2, . . . .

So,

x0 /∈
∞⋃
k=1

Wk = X

and this is a contradiction. �

We can now give the Banach–Steinhaus theorem for a family of bounded
linear operators on a Hilbert space. The full-fledged version is presented as an
exercise in this chapter.

Theorem 15.3. For every Hilbert space X, let W ⊂ B(X) be such that for all x in
X,

sup
A∈W

‖Ax‖ <∞.

Then
sup
A∈W

‖A‖∗ <∞.

Proof. For all positive integers n, let Sn be the subset of X defined by

Sn = {x ∈ X : ‖Ax‖ ≤ n,A ∈W}.

Then Sn is closed in X. Indeed, let {xk}∞k=1 be a sequence in Sn such that xk → x
in X. Then for all A in W ,

‖Axk‖ ≤ n, k = 1, 2, . . . ,
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and
Axk → Ax

in X as k →∞. So, for all A in W ,

‖Ax‖ = lim
k→∞

‖Axk‖ ≤ n.

Therefore x ∈ Sn. Let x ∈ X. Since

sup
A∈W

‖Ax‖ <∞,

it follows that x ∈ Sn for some n. Hence

X =
∞⋃
n=1

Sn.

By Theorem 15.2, there exists a positive integer N such that SN is not nowhere
dense. So, we can find an open ball B(x0, r) in X such that

B(x0, r) ⊂ SN .

Let x be any nonzero element in X and let z be the element in X defined by

z = x0 +
r

2‖x‖
x.

Then
‖z − x0‖ =

r

2
< r

and hence
z ∈ B(x0, r) ⊂ SN .

Thus, for all A in W ,
‖Az‖ ≤ N

and hence

‖Ax‖ =

∥∥∥∥2‖x‖
r

(z − x0)

∥∥∥∥ ≤ 4N

r
‖x‖.

This proves that

sup
A∈W

‖A‖∗ ≤
4N

r
. �

Let A be a bounded linear operator on a Hilbert space X. A complex number
λ is said to be an eigenvalue of A if there exists a nonzero element x in X such
that

Ax = λx. (15.4)

Let λ be an eigenvalue of A. Then a nonzero element x in X for which (15.4) holds
is called an eigenvector of A corresponding to λ.
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Remark 15.4. The set of all eigenvalues of a bounded linear operator A on a
Hilbert space X is in general a proper subset of the spectrum Σ(A) of A. In fact,

Σ(A) = C \ ρ(A),

where ρ(A) is the resolvent set of A defined by

ρ(A) = {λ ∈ C : A− λI : X → X is bijective},

and I is the identity operator on X. It is then easy to see that an eigenvalue λ of
A is in Σ(A) because A− λI : X → X is not injective.

A crowning achievement in linear algebra is that an n×n self-adjoint matrix
A can be transformed into a diagonal matrix in which the diagonal entries are the
eigenvalues of A. Moreover, there exists an orthonormal basis for Cn consisting
of eigenvectors of A. We need an analogous diagonalization of self-adjoint and
compact operators on Hilbert spaces.

Exercises

1. Prove that a linear operator A on a Hilbert space X is a bounded linear
operator on X if and only if A is continuous at a point in X.

2. Prove that ‖ ‖∗ given by (15.1) is a norm in B(X).

3. Prove that in the proof of Theorem 15.1, A : X → X is a linear operator.

4. Let X and Y be Banach spaces with norms denoted, respectively, by ‖ ‖X
and ‖ ‖Y , and let A : X → Y be a bounded linear operator, i.e., a linear
operator such that there exists a positive constant C such that

‖Ax‖Y ≤ C‖x‖X , x ∈ X.

Then the set B(X,Y ) of all bounded linear operators from X into Y is a
Banach space with respect to the norm ‖ ‖B(X,Y ) given by

‖A‖B(X,Y ) = sup
x 6=0

‖Ax‖Y
‖x‖X

= sup
‖x‖X=1

‖Ax‖Y

for all A in B(X,Y ). Prove the Banach–Steinhaus theorem to the effect that
if W is a subset of B(X,Y ) such that for all x in X,

sup
A∈W

‖Ax‖Y <∞,

then
sup
A∈W

‖A‖B(X,Y ) <∞.
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Self-Adjoint Operators

Of particular importance in operator theory are self-adjoint operators. To this
end, we first recall the notion of the adjoint of a bounded linear operator A on a
Hilbert space X. A linear operator B on X is said to be an adjoint of A if

(Ax, y) = (x,By), x, y ∈ X.

It is easy to see that a bounded linear operator A on X has at most one adjoint.
See Exercise 1.

Theorem 16.1. Every bounded linear operator A on a Hilbert space X has an
adjoint, which is also a bounded linear operator on X.

Proof. We first observe that for each fixed element y in X, the linear functional
Ty : X → C defined by

Ty(x) = (Ax, y), x ∈ X,

is a bounded linear functional on X. Indeed, using the Schwarz inequality and
the assumption that A is a bounded linear operator on X, there exists a positive
constant C such that

|Ty(x)| = |(Ax, y)| ≤ ‖Ax‖ ‖y‖ ≤ C ‖y‖ ‖x‖.

So, by the Riesz representation theorem, there exists a unique element z in X such
that

Ty(x) = (Ax, y) = (x, z), x ∈ X. (16.1)

We now define the mapping A∗ : X → X by

A∗y = z

for all y in X, where z is the unique element in X that depends on y and is
guaranteed for each y in X by the Riesz representation theorem. To see that

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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A∗ : X → X is a linear operator, let α1 and α2 be complex numbers, and let y1
and y2 be elements in X. Then by (16.1), we get for all x in X,

(x,A∗(α1y1 + α2y2))

= (Ax, α1y1 + α2y2) = α1(Ax, y1) + α2(Ax, y2)

= α1(x,A∗y1) + α2(x,A∗y2) = (x, α1A
∗y1) + (x, α2A

∗y2)

= (x, α1A
∗y1 + α2A

∗y2).

Thus,
A∗(α1y1 + α2y2) = α1A

∗y1 + α2A
∗y2.

That A∗ is bounded follows because for all y in X, we can use the Schwarz in-
equality and the assumption that A is bounded to obtain a positive constant C
such that

‖A∗y‖2 = (A∗y,A∗y) = |(AA∗y, y)| ≤ C‖A∗y‖ ‖y‖.

Thus,
‖A∗y‖ ≤ C‖y‖, y ∈ X,

and the proof is complete. �

A bounded linear operator A from a Hilbert space X into X is said to be
self-adjoint if A = A∗.

Self-adjoint operators enjoy special properties not shared by bounded linear
operators in general. The following interesting result on the norm of a self-adjoint
operator should be compared with the formula (15.1).

Theorem 16.2. Let A be a self-adjoint operator on a Hilbert space X. Then

‖A‖∗ = sup
‖x‖=1

|(Ax, x)|.

Proof. Let x ∈ X be such that ‖x‖ = 1. Then by the Schwarz inequality and the
fact that A is a bounded linear operator,

|(Ax, x)| ≤ ‖Ax‖ ‖x‖ ≤ ‖A‖∗‖x‖2 = ‖A‖∗.

Thus,
sup
‖x‖=1

|(Ax, x)| ≤ ‖A‖∗.

To prove the converse, we let

M = sup
‖x‖=1

|(Ax, x)|.

Then for all x in X,
|(Ax, x)| ≤M‖x‖2. (16.2)
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It is left as Exercise 3 to prove that for all x and y in X,

4(Ax, y) = {(A(x+ y), x+ y)− (A(x− y), x− y)}
+ i{(A(x+ iy), x+ iy)− (A(x− iy), x− iy)}. (16.3)

Then for all z in X with z 6= 0 and Az 6= 0, let

u =
Az

α
,

where α2 = ‖Az‖
‖z‖ . Then by (16.2), (16.3) and Exercise 4, we get

‖Az‖2 = (A(αz), u)

=
1

4
{(A(αz + u), αz + u)− (A(αz − u), αz − u)}

≤ 1

4
M(‖αz + u‖2 + ‖αz − u‖2)

=
1

2
M(‖αz‖2 + ‖u‖2)

=
1

2
M

(
α2‖z‖2 +

1

α2
‖Az‖2

)
= M‖Az‖ ‖z‖.

Thus, for all z in X with z 6= 0 and Az 6= 0,

‖Az‖ ≤M‖z‖. (16.4)

It is clear that (16.4) is trivially true for Az = 0 or z = 0. Thus,

‖Az‖ ≤M‖z‖, z ∈ X,

and therefore
‖A‖∗ ≤M = sup

‖x‖=1

|(Ax, x)|. �

Theorem 16.3. Let A be a self-adjoint operator on a Hilbert space X. Then all
eigenvalues of A are real. Moreover, if x and y are eigenvectors of A corresponding
to, respectively, eigenvalues λ and µ, where λ 6= µ, then

(x, y) = 0.

Proof. Let λ be an eigenvalue of A and let ϕ be a corresponding eigenvector with
‖ϕ‖ = 1. Then

λ = λ(ϕ,ϕ) = (Aϕ,ϕ) = (ϕ,Aϕ) = λ.

So, λ is a real number. Now, using the fact that λ and µ are real and the self-
adjointness of A,

λ(x, y) = (Ax, y) = (x,Ay) = µ(x, y).
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So,
(λ− µ)(x, y) = 0.

Since λ 6= µ, it follows that
(x, y) = 0. �

The second part of Theorem 16.3 tells us that eigenvectors corresponding to
distinct eigenvalues of a self-adjoint operator are orthogonal.

Exercises

1. Prove that a linear operator on a Hilbert space has at most one adjoint.

2. Let A be a bounded linear operator on a Hilbert space X. Let M be a closed
subspace of X such that M is invariant with respect to A, i.e.,

x ∈M ⇒ Ax ∈M.

Prove that the orthogonal complement M⊥ of M is invariant with respect to
A∗.

3. Prove (16.3) for all bounded linear operators A on a Hilbert space X.

4. Prove that a bounded linear operator A is self-adjoint on a Hilbert space X
if and only if

(Ax, x) ∈ R

for all x in X.

5. Let A be a bounded linear operator on a Hilbert space X. Prove that

(A∗)∗ = A.

6. Prove that for all bounded linear operators A on a Hilbert space X,

‖A∗‖∗ = ‖A‖∗.
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Compact Operators

A sequence {xj}∞j=1 in a Hilbert space X is said to be bounded if there exists a
positive constant C such that

‖xj‖ ≤ C, j = 1, 2, . . . .

A bounded linear operator A on a Hilbert space X is said to be compact if for
every bounded sequence {xj}∞j=1 in X, the sequence {Axj}∞j=1 has a convergent
subsequence in X.

A bounded linear operator A on a Hilbert space X is said to be an operator
of finite rank if the range R(A) of A given by

R(A) = {Ax : x ∈ X}

is finite-dimensional. It can be proved that an operator of finite rank must be
compact. See Exercise 1.

Theorem 17.1. Let {Aj}∞j=1 be a sequence of compact operators on a Hilbert space
X such that

‖Aj −A‖∗ → 0

as j → ∞, where A is a bounded linear operator on X. Then A is a compact
operator on X.

Proof. Let {xj}∞j=1 be a bounded sequence in X. Then there exists a positive
constant C such that

‖xj‖ ≤ C, j = 1, 2, . . . .

Since A1 is compact, there exists a subsequence {x1,j}∞j=1 of {xj}∞j=1 such that
{A1x1,j}∞j=1 converges in X. Since A2 is compact, there is a subsequence {x2,j}∞j=1

of {x1,j}∞j=1 such that {A2x2,j}∞j=1 converges in X. Thus, repeating this argument,
there exists a subsequence {xn,j}∞j=1 of {xn−1,j}∞j=1 such that {Anxn,j}∞j=1 con-
verges in X. For j = 1, 2, . . . , let zj = xj,j . Then for k = 1, 2, . . . , {Akzj}∞j=1
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converges in X. So, for j, k, l = 1, 2, . . . ,

‖Azj −Azl‖ ≤ ‖Azj −Akzj‖+ ‖Akzj −Akzl‖+ ‖Akzl −Azl‖
≤ 2C‖A−Ak‖∗ + ‖Akzj −Akzl‖. (17.1)

Now, for every positive number ε, there exists a positive integer K such that

2C‖A−AK‖∗ <
ε

2
. (17.2)

Since {AKzj}∞j=1 converges in X, it follows that there exists a positive integer N
such that

j, l ≥ N ⇒ ‖AKzj −AKzl‖ <
ε

2
. (17.3)

So, by (17.1)–(17.3),
j, l ≥ N ⇒ ‖Azj −Azl‖ < ε.

Thus, {Azj}∞j=1 is a Cauchy sequence in X and hence convergent in X. �

A sequence {xj}∞j=1 in a Hilbert space X is said to converge weakly to x in
X if

(xj , y)→ (x, y)

for all y in X as j → ∞. By Exercise 5 in Chapter 14, convergence in X implies
weak convergence in X, but the converse is not true. It is also an exercise in this
chapter to show that a weakly convergent sequence in X has to be bounded.

Theorem 17.2. Let A be a compact operator on a Hilbert space X. Then A maps
weakly convergent sequences into convergent sequences.

Proof. Let {xj}∞j=1 be a sequence in X such that xj → x weakly in X as j →∞.
Then for all y in X,

(Axj −Ax, y) = (xj − x,A∗y)→ 0

as j → ∞. Therefore Axj → Ax weakly in X as j → ∞. Suppose that {Axj}∞j=1

does not converge to Ax in X. Then there exists a positive number ε such that

‖Axjk −Ax‖ ≥ ε,

where {xjk}∞k=1 is a subsequence of {xj}∞j=1. It is clear that {xjk}∞k=1 is a weakly
convergent sequence in X and hence it is bounded. Since A is compact, we can
find a subsequence of {xjk}∞k=1, again denoted by {xjk}∞k=1, such that

Axjk → y

for some y in X as k → ∞. Thus, {Axjk}∞k=1 converges weakly to y in X as
k →∞. Thus, Ax = y, and hence

Axjk → Ax

in X as k →∞. �
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Theorem 17.3. Let A be a self-adjoint and compact operator on a Hilbert space X.
Then ‖A‖∗ or −‖A‖∗ is an eigenvalue of A.

Proof. By Theorem 16.2,

‖A‖∗ = sup
‖x‖=1

|(Ax, x)|.

So, we can find a sequence {xj}∞j=1 of elements in X such that

‖xj‖ = 1, j = 1, 2, . . . ,

and
|(Axj , xj)| → ‖A‖∗

as j → ∞. There are three cases to be considered. The first case is when there
exists a positive integer J such that

j ≥ J ⇒ (Axj , xj) > 0.

The second case is when > 0 is replaced by < 0. The third case is when the first
case and the second case do not stand. For the first case, let λ = ‖A‖∗. Then

‖Axj − λxj‖2 = ‖Axj‖2 − 2λ(Axj , xj) + λ2‖xj‖2

≤ 2λ2 − 2λ(Axj , xj)→ 0 (17.4)

as j →∞. Since A is a compact operator, there exists a subsequence of {xj}∞j=1,
again denoted by {xj}∞j=1, such that

Axj → y (17.5)

for some y in X as j →∞. By (17.4) and (17.5), we see that

λxj → y (17.6)

as j →∞. Using the boundedness and hence continuity of A,

λAxj → Ay

as j →∞. But by (17.5) again,

λAxj → λy.

Thus,
Ay = λy.

So, λ = ‖A‖∗ is an eigenvalue of A if we can show that y 6= 0. But by (17.6),

‖y‖ = lim
j→∞

‖λxj‖ = ‖A‖∗ 6= 0.

This completes the proof for the first case. The proof for the second case is the
same if we let λ = −‖A‖∗. The third case is the same as the first case or the
second case if we pass to a subsequence of {xj}∞j=1. �



120 Chapter 17. Compact Operators

Exercises

1. Prove that an operator of finite rank on a Hilbert space is compact.

2. Let K(X) be the set of all compact operators on a Hilbert space X. Prove
that K(X) is a two-sided ideal in B(X), i.e., for all K ∈ K(X) and all
A ∈ B(X),

KA ∈ K(X)

and
AK ∈ K(X).

3. Prove that the limit of a weakly convergent sequence in X is unique.

4. Let {xj}∞j=1 be a weakly convergent sequence in a Hilbert space X. Prove
that {xj}∞j=1 is bounded.

5. Let X be a Hilbert space with inner product ( , ) and norm ‖ ‖. Let {xj}∞j=1

be a sequence in X such that xj → x in X weakly and

‖xj‖ → ‖x‖

as j →∞. Prove that xj → x in X as j →∞.



Chapter 18

The Spectral Theorem

We are now in a good position to state and prove the spectral theorem for self-
adjoint and compact operators on Hilbert spaces.

Theorem 18.1 (The Spectral Theorem). Let A be a self-adjoint and compact op-
erator on a Hilbert space X. Then there exists an orthonormal basis {ϕj}∞j=1 for
X consisting of eigenvectors of A. Moreover, for all x in X,

Ax =
∞∑
j=1

λj(x, ϕj)ϕj ,

where λj is the eigenvalue of A corresponding to the eigenvector ϕj.

Proof. By Theorem 17.3, ‖A‖∗ or −‖A‖∗ is an eigenvalue of A. Let λ1 = ±‖A‖∗
and let ϕ1 be a corresponding eigenvector with ‖ϕ1‖ = 1. Let Φ1 = Span{ϕ1}
and let X2 = Φ⊥1 . Φ1 is obviously invariant with respect to A. Then by Exercise
2 in Chapter 16, X2 is invariant with respect to A∗ and hence A. Let A2 be
the restriction of A to X2. Then A2 : X2 → X2 is obviously compact. It is also
self-adjoint because for all x and y in X2,

(A2x, y) = (Ax, y) = (x,Ay) = (x,A2y) = (A∗2x, y).

By Theorem 17.3 again, ‖A2‖∗ or −‖A2‖∗ is an eigenvalue of A2. Let λ2 = ±‖A2‖∗
and let ϕ2 be a corresponding eigenvector with ‖ϕ2‖ = 1. Repeating this construc-
tion, let us suppose that we have eigenvectors

ϕ1, ϕ2, . . . , ϕn

of A and corresponding eigenvalues

λ1, λ2, . . . , λn

such that
|λj | = ‖Aj‖∗, j = 1, 2, . . . , n,
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|λ1| ≥ |λ2| ≥ · · · ≥ |λn|, (18.1)

A1 = A and for 2 ≤ j ≤ n, Aj is the restriction to the orthogonal complement

Xj = (Span{ϕ1, ϕ2, . . . , ϕj−1})⊥.

Moreover, for 2 ≤ j ≤ n, Aj : Xj → Xj is self-adjoint and compact. We repeat
this process and stop if An = 0. If An = 0, then for all x in X,

xn = x−
n−1∑
j=1

(x, ϕj)ϕj ∈ Xn,

and so is the same as

Anxn = Ax−
n−1∑
j=1

(x, ϕj)Aϕj .

Thus,

Ax =
n−1∑
j=1

λj(x, ϕj)ϕj , x ∈ X,

as required. Now, suppose that

An 6= 0, n = 1, 2, . . . .

Let x ∈ X. Then the element xn defined by

xn = x−
n−1∑
j=1

(x, ϕj)ϕj

is in Xn. So, by Proposition 14.5, we get

‖x‖2 = ‖xn‖2 +
n−1∑
j=1

|(x, ϕj)|2.

Therefore

‖xn‖ ≤ ‖x‖, n = 1, 2, . . . .

But

‖Axn‖ = ‖Anxn‖ ≤ ‖An‖∗‖xn‖ ≤ |λn| ‖x‖, n = 1, 2, . . . .

So, ∥∥∥∥∥∥Ax−
n−1∑
j=1

λj(x, ϕj)ϕj

∥∥∥∥∥∥ ≤ |λn| ‖x‖.
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Now, we note that λn → 0 as n→∞. Indeed, using the compactness of A, there
exists a subsequence {ϕnj

}∞j=1 of {ϕn}∞n=1 such that {Aϕnj
}∞j=1 converges in X.

Thus,

‖λnj
ϕnj
− λnk

ϕnk
‖2 = ‖Aϕnj

−Aϕnk
‖2 → 0

as j, k →∞. So,

|λnj |2 + |λnk
|2 = ‖λnjϕnj − λnk

‖2 → 0

as j, k →∞. Hence by (18.1),

|λn| → 0

as n→∞. So,

Ax =
∞∑
j=1

λj(x, ϕj)ϕj , x ∈ X. (18.2)

Note that in (18.2),

λj 6= 0, j = 1, 2, . . . .

Let {ψj}Kj=1 be an orthonormal basis for the null space N(A) of A, where K ≤ ∞.
By Theorem 16.3, we see that

(ϕj , ψk) = 0, j = 1, 2, . . . , k = 1, 2, . . . ,K.

Now, let x ∈ X. Then by (18.2),

x−
J∑
j=1

(x, ϕj)ϕj ∈ N(A).

Therefore

x =
J∑
j=1

(x, ϕj)ϕj +
K∑
k=1

(x, ψk)ψk, x ∈ X,

and the proof is complete. �

Exercises

1. Let A be a self-adjoint and compact operator on a Hilbert space X such that

Ax =
∞∑
j=1

λj(x, ϕj)ϕj , x ∈ X,

where {ϕj}∞j=1 is an orthonormal basis for X consisting of eigenvectors of A
and λj is a corresponding eigenvalue of A corresponding to ϕj . Prove that if
a complex number λ is an eigenvalue of A, then there exists a positive integer
j such that λ = λj .
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2. Let A be a positive operator on a Hilbert space X, i.e.,

(Ax, x) ≥ 0, x ∈ X.

Furthermore, suppose that A is compact and can be written as in Exercise
1, i.e.,

Ax =

∞∑
j=1

λj(x, ϕj)ϕj , x ∈ X.

Then we define the square root A1/2 of A by

A1/2x =
∞∑
j=1

λ
1/2
j (x, ϕj)ϕj , x ∈ X.

Prove that for j = 1, 2, . . . , λ
1/2
j is an eigenvalue of A1/2.

3. Let A and A1/2 be as in Exercise 2. Prove that for every eigenvalue λ of A1/2,

there exists a positive integer j such that λ = λ
1/2
j .



Chapter 19

Schatten–von Neumann Classes

We consider special classes of compact operators in this chapter known as Schat-
ten–von Neumann classes Sp, 1 ≤ p < ∞. The most distinguished class is S2,
which is made up of Hilbert–Schmidt operators.

Let A be a compact operator on a Hilbert space X. Then by Exercise 2
in Chapter 17, A∗A is compact. It is easy to show that A∗A is self-adjoint. See
Exercise 1. Then by Exercises 2 and 3 in Chapter 18, we can look at all eigenvalues
of (A∗A)1/2 and we enumerate them as

s1, s2, . . . .

We call these positive numbers the singular values of A. For 1 ≤ p < ∞, the
compact operator A is said to be in the Schatten–von Neumann class Sp if

∞∑
j=1

spj <∞.

For all A ∈ Sp, 1 ≤ p <∞, we define ‖A‖Sp
by

‖A‖Sp
=

 ∞∑
j=1

spj

1/p

.

To complete the picture, we define S∞ to be simply B(X). The classes S1

and S2 are, respectively, the trace class and the Hilbert–Schmidt class. Now, we
study the Hilbert–Schmidt class in some detail. We begin with a lemma, which we
leave as Exercise 3.

Lemma 19.1. Let A be a bounded linear operator on a Hilbert space X. Then for
all orthonormal bases {ϕj}∞j=1 and {ψj}∞j=1 for X,

∞∑
j=1

‖Aϕj‖2 =
∞∑
j=1

‖A∗ψj‖2,

where the sums may be ∞.
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Theorem 19.2. Let A be a bounded linear operator on a Hilbert space X. Then
A ∈ S2 if and only if there exists an orthonormal basis {ϕj}∞j=1 for X such that

∞∑
j=1

‖Aϕj‖2 <∞.

Proof. Suppose that A ∈ S2. Then let {ϕj}∞j=1 be an orthonormal basis for X

consisting of eignvectors of (A∗A)1/2. For j = 1, 2, . . . , let sj be the eigenvalue
of (A∗A)1/2 corresponding to the eigenvector ϕj . Then for j = 1, 2, . . . , s2j is an
eigenvalue of A∗A with ϕj as a corresponding eigenvector. Thus,

∞∑
j=1

‖Aϕj‖2 =
∞∑
j=1

(A∗Aϕj , ϕj) =
∞∑
j=1

s2j <∞.

The proof of the converse is the same if we can prove that A is compact. For all
positive integers N , we define the linear operator AN on X by

ANx =
N∑
j=1

(Ax,ϕj)ϕj , x ∈ X.

Then the range of AN is spanned by ϕ1, ϕ2, . . . , ϕN and is hence finite-dimensional.
Thus, AN is an operator of finite rank on X. Moreover, we obtain by means of
Lemma 14.3 and the Schwarz inequality for all x in X,

‖(A−AN )x‖2 =

∥∥∥∥∥∥
∞∑

j=N+1

(Ax,ϕj)ϕj

∥∥∥∥∥∥
2

≤
∞∑

j=N+1

|(Ax,ϕj)|2

=
∞∑

j=N+1

|(x,A∗ϕj)|2

≤ ‖x‖2
∞∑

j=N+1

‖A∗ϕj‖2.

Thus,

‖A−AN‖∗ ≤
∞∑

j=N+1

‖A∗ϕj‖2.

By Lemma 19.1,
∞∑
j=1

‖A∗ϕj‖2 <∞
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and hence

‖A−AN‖∗ ≤
∞∑

j=N+1

‖A∗ϕj‖2 → 0

as N → ∞. So, A is the limit in norm of a sequence of compact operators on X.
By Theorem 17.1, A is compact. �

Exercises

1. Let A be a bounded linear operator on a Hilbert space. Prove that A∗A is
self-adjoint.

2. Prove that if 1 ≤ p ≤ q ≤ ∞, then Sp ⊆ Sq.

3. Prove Lemma 19.1.



Chapter 20

Fourier Series

In this chapter we give a succinct and sufficiently self-contained treatment of
Fourier series that we need for the rest of this book. A proper treatment of Fourier
series entails the use of measure theory and the corresponding theory of integra-
tion, which we assume as prerequisites.

Let us begin with the space L1[−π, π] of all functions f on [−π, π] such that∫ π

−π
|f(θ)| dθ <∞.

Let f ∈ L1[−π, π]. Then we define the Fourier transform f̂ on the set Z of all
integers by

f̂(n) =
1

2π

∫ π

−π
e−inθf(θ) dθ, n ∈ Z. (20.1)

We also call f̂(n) the Fourier transform or the Fourier coefficient of the function

f at frequency n. The formal sum
∑∞
n=−∞ f̂(n)einθ is referred to as the Fourier

series of f on [−π, π].

Remark 20.1. We take to heart the convention that the interval [−π, π] can be
identified with the unit circle S1 centered at the origin. With this identification,
functions on [−π, π] can be identified as functions on S1 or as periodic functions
with period 2π on R. Fourier series can then be thought of as Fourier analysis on
S1 and we have this picture in mind for the rest of the book.

The most obvious and fundamental problem at this point is the mathematical
interpretation of the equation

f(θ) =
∞∑

n=−∞
f̂(n)einθ, θ ∈ [−π, π]. (20.2)

A natural interpretation of (20.2) is that the Fourier series
∑∞
n=−∞ f̂(n)einθ con-

verges pointwise to f(θ) for all θ in [−π, π]. To be more precise, let {sN}∞N=0 be
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the sequence of partial sums of the Fourier series defined by

sN (θ) =
N∑

n=−N
f̂(n)einθ, θ ∈ [−π, π].

Then
∞∑

n=−∞
f̂(n)einθ = f(θ)

for all θ in [−π, π] means that

lim
N→∞

sN (θ) = f(θ)

for all θ in [−π, π]. Sufficient conditions on f ensuring the pointwise convergence
as defined abound and we give in the first part of this chapter a small sample of
such sufficient conditions. In order to do this, we need some preparation.

For 1 ≤ p <∞, let Lp(S1) be the set of all measurable functions f on [−π, π]
such that ∫ π

−π
|f(θ)|pdθ <∞.

Then Lp(S1) is a vector space endowed with the norm ‖ ‖p given by

‖f‖p =

(∫ π

−π
|f(θ)|pdθ

)1/p

, f ∈ Lp(S1).

In fact, Lp(S1) is a Banach space with respect to the norm ‖ ‖p. This simply means
that every sequence {fj}∞j=1 with

‖fj − fk‖p → 0

as j, k →∞ has to converge to some f in Lp(S1) as j →∞, i.e.,

‖fj − f‖p → 0.

For p =∞, L∞(S1) is the space of all essentially bounded functions on [−π, π]. It
turns out that L∞(S1) is a Banach space with respect to the norm ‖ ‖∞ given by
the essential supremum of f on [−π, π]. In fact, for all f in L∞(S1),

‖f‖∞ = inf{M > 0 : m{θ ∈ [−π, π] : |f(θ)| > M} = 0},

where m{· · · } is the Lebesgue measure of the set {· · · }.
Of particular importance is the space L2(S1), which is a Hilbert space in

which the inner product ( , )2 and norm ‖ ‖2 are given, respectively, by

(f, g)2 =

∫ π

−π
f(θ)g(θ) dθ
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and

‖f‖2 =

(∫ π

−π
|f(θ)|2dθ

)1/2

for all f and g in L2(S1).
For n ∈ Z, we define the function en on [−π, π] by

en(θ) =
1√
2π
einθ, θ ∈ [−π, π]. (20.3)

Then we have the following simple but useful result.

Lemma 20.2. {en}∞n=−∞ is an orthonormal set in L2(S1).

Proof. For m,n ∈ Z with m 6= n, we have

(em, en)2 =

∫ π

−π
em(θ)en(θ) dθ

=
1

2π

∫ π

−π
ei(m−n)θdθ

=
1

2π

1

m− n
ei(m−n)θ

∣∣∣π
−π

= 0.

If m = n, then

(em, en)2 =
1

2π

∫ π

−π
dθ = 1. �

We have the following useful corollary, which is known as the Riemann–
Lebesgue lemma.

Corollary 20.3. Let f ∈ L1(S1). Then lim|n|→∞ f̂(n) = 0.

To prove the Riemann–Lebesgue lemma and other results in analysis, we
invoke the space of all C∞ functions ϕ on (−π, π) such that the support supp(ϕ)
of ϕ is contained in (−π, π). Let us also recall that supp(ϕ) is the closure of the
set {θ ∈ (−π, π) : ϕ(θ) 6= 0}.

Lemma 20.4. C∞0 (S1) is dense in Lp(S1), 1 ≤ p <∞.

For a proof of Lemma 20.4, see, for instance, [19, 49].

Proof of Corollary 20.3. Let f ∈ L2(S1). Then using the orthonormality of the
sequence {en}∞n=−∞ and the Bessel inequality in Lemma 14.3, we get by (20.1)
and (20.3)

∞∑
n=−∞

|f̂(n)|2 ≤ 1

2π

∞∑
n=−∞

|(f, en)2|2 ≤
1

2π
‖f‖22.

So,
f̂(n)→ 0
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as |n| → ∞. Now, let f ∈ L1(S1) and let ε be a given positive number. Then by
Lemma 20.4, there exists a function ϕ in C∞0 (−π, π) such that

‖f − ϕ‖1 < πε.

Thus, by (20.1) and the triangle inequality, we get for all n in Z,

|f̂(n)| ≤ |ϕ̂(n)|+ 1

2π
‖f − ϕ‖1 < |ϕ̂(n)|+ ε

2
.

Since ϕ ∈ L2(S1), it follows that

ϕ̂(n)→ 0

as |n| → ∞. So, there exists a positive integer N such that

|n| ≥ N ⇒ |ϕ̂(n)| < ε

2
.

Therefore
|n| ≥ N ⇒ |f̂(n)| < ε

2
+
ε

2
= ε

and the proof is complete. �

The next lemma gives an integral representation for the partial sum of a
Fourier series.

Lemma 20.5. Let f ∈ L1(S1). Then for all N = 0, 1, 2, . . . ,

sN (θ) =
1

2π

∫ π

−π
DN (θ − φ)f(φ) dφ, φ ∈ [−π, π],

where

DN (θ) =
sin
(
N + 1

2

)
θ

sin 1
2θ

, θ ∈ [−π, π].

Remark 20.6. The function DN is usually dubbed the Dirichlet kernel of the
Fourier series and Lemma 20.5 gives an expression for the partial sum of a Fourier
series of a function as the convolution of the Dirichlet kernel and the function. See
Exercise 3 for convolutions in general.

Proof of Lemma 20.5. For N = 0, 1, 2, . . . , and θ ∈ [−π, π],

sN (θ) =
N∑

n=−N
f̂(n)einθ

=
1

2π

N∑
n=−N

(∫ π

−π
e−inφf(φ) dφ

)
einθ

=
1

2π

N∑
n=−N

∫ π

−π
ein(θ−φ)f(φ) dφ.
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Let us now compute
∑N
n=−N e

inθ explicitly. Indeed,

N∑
n=−N

einθ = 1 +
N∑
n=1

(einθ + e−inθ) = 1 + 2Re
N∑
n=1

einθ.

But

N∑
n=1

einθ = eiθ
N−1∑
n=0

einθ = eiθ
1− eiNθ

1− eiθ
=
e

1
2 iθ − ei(N+ 1

2 )θ

e−
1
2 iθ − e 1

2 iθ

= −
cos 1

2θ − cos
(
N + 1

2

)
θ + i

(
sin 1

2θ − sin
(
N + 1

2

)
θ
)

2i sin 1
2θ

.

So,

Re
N∑
n=1

einθ = −1

2

(
1−

sin
(
N + 1

2

)
θ

sin 1
2θ

)
.

Thus,
N∑

n=−N
einθ =

sin
(
N + 1

2

)
θ

sin 1
2θ

(20.4)

and we get

sN (θ) =
1

2π

∫ π

−π
DN (θ − φ)f(φ) dφ,

as asserted. �

Corollary 20.7. For N = 0, 1, 2, . . . , DN is an even function such that∫ π

−π
DN (θ) dθ = 2π.

Proof. That DN is an even function is obvious. By (20.4),

∫ π

−π
DN (θ) dθ =

∫ π

−π

N∑
n=−N

einθdθ =
N∑

n=−N

∫ π

−π
einθdθ.

Since ∫ π

−π
einθdθ =

{
0, n 6= 0,

2π, n = 0,

the proof is complete. �

The following theorem gives a criterion for the Fourier series of a function to
converge to the function at a point.
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Theorem 20.8. (Dini’s Test) Let f ∈ L1(S1). If θ ∈ [−π, π] is such that∫ π

−π

|f(θ + φ)− f(θ)|
|φ|

dφ <∞,

then
sN (θ)→ f(θ)

as N →∞.

Proof. By Lemma 20.5 and Corollary 20.7,

sN (θ)− f(θ) =
1

2π

∫ π

−π
DN (φ)f(θ − φ) dφ− f(θ)

1

2π

∫ π

−π
DN (φ) dφ

=
1

2π

∫ π

−π
DN (φ)(f(θ − φ)− f(θ)) dφ

=
1

2π

∫ π

−π
DN (φ)(f(θ + φ)− f(θ)) dφ

=
1

2π

∫ π

−π

f(θ + φ)− f(θ)

sin 1
2φ

sin

(
N +

1

2
φ

)
dφ.

Without loss of generality, we assume that f is a real-valued function. Since

f(θ + φ)− f(θ)

φ

φ

sin 1
2φ
∈ L1(S1)

as a function of φ, it follows from the Riemann–Lebesgue lemma in Corollary 20.3
that

sN (θ)− f(θ) =
1

2π
Im

(∫ π

−π

f(θ + φ)− f(θ)

φ

φ

sin 1
2φ
ei(N+ 1

2 )φdφ

)
→ 0

as N →∞. �

In order to obtain a familiar class of functions satisfying the Dini condition
in Theorem 20.8, we say that a function f in L1(S1) is Lipschitz continuous at a
point θ in [−π, π] if there exist positive constants M and α such that

|f(θ)− f(φ)| ≤M |θ − φ|α, φ ∈ [−π, π].

The number α is the order of Lipschitz continuity of the function f at the point
θ. A function f in L1(S1) is said to be Lipschitz continuous of order α if it is
Lipschitz continuous of order α at all points in [−π, π].

Theorem 20.9. Let f ∈ L1(S1) be such that f is Lipschitz continuous of order α at
θ in [−π, π], where α is a positive number. Then the Fourier series of f converges
to f at the point θ.
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Proof. Let θ ∈ [−π, π]. Then using the Lipschitz continuity of f ,∫ π

−π

|f(θ + φ)− f(θ)|
|φ|

dφ ≤
∫ π

−π
|φ|α−1dφ <∞.

So, by Theorem 20.8, the theorem is proved. �

Theorem 20.10. Let f be a continuous function on [−π, π] such that

f(−π) = f(π),

f ′ exists at all but possibly a finite number of points in [−π, π] and∫ π

−π
|f ′(θ)|2dθ <∞.

Then the Fourier series of f converges to f absolutely and uniformly on [−π, π].

We need the following lemma for a proof of Theorem 20.10.

Lemma 20.11. Let f be as in Theorem 20.10. Then f is Lipschitz continuous of
order 1

2 on [−π, π].

Proof. For all θ and φ in [−π, π] with θ ≥ φ, we get by means of the Schwarz
inequality,

|f(θ)− f(φ)| =

∣∣∣∣∣
∫ θ

φ

f ′(ω) dω

∣∣∣∣∣
≤

(∫ θ

φ

dω

)1/2(∫ θ

φ

|f ′(ω)|2dω

)1/2

≤ |θ − φ|1/2
(∫ π

−π
|f ′(ω)|2dω

)1/2

= ‖f ′‖2|θ − φ|1/2

and the proof is complete. �

Proof of Theorem 20.10. Let g = f ′. Then by integration by parts, we get for all
n in Z,

ĝ(n) =
1

2π

∫ π

−π
e−inθf ′(θ) dθ

=
1

2π
e−inθf(θ)

∣∣π
−π +

in

2π

∫ π

−π
e−inθf(θ) dθ

= inf̂(n). (20.5)



136 Chapter 20. Fourier Series

Now, for all positive integers M and N with M < N, we get by Schwarz inequality,
(20.5) and the Bessel inequality in Lemma 14.3

|sN (θ)− sM (θ)| =

∣∣∣∣∣
N∑

n=−N
f̂(n)einθ −

M∑
n=−M

f̂(n)einθ

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

M<|n|≤N

f̂(n)

∣∣∣∣∣∣ ≤
∑

M<|n|≤N

|f̂(n)|

≤

 ∑
M<|n|≤N

1

n2

1/2 ∑
M<|n|≤N

n2|f̂(n)|2
1/2

≤

 ∑
M<|n|≤N

1

n2

1/2( ∞∑
n=−∞

|ĝ(n)|2
)1/2

≤

 ∑
M<|n|≤N

1

n2

1/2

(2π)−1/2‖f ′‖2.

Since
∑∞
n=−∞

1
n2 <∞, it follows that for every positive number ε, there exists a

positive integer K such that

N > M ≥ K ⇒

 ∑
M<|n|≤N

1

n2

1/2

(2π)−1/2‖f ′‖2 < ε.

Thus,
N > M ≥ K ⇒ |sN (θ)− sM (θ)| < ε

for all θ in [−π, π]. So, there exists a continuous function h on [−π, π] such that

sN → h

absolutely and uniformly on [−π, π] as N → ∞. By Lemma 20.11, f is Lipschitz
continuous of order 1

2 on [−π, π]. So, by Theorem 20.9,

sN (θ)→ f(θ)

for all θ in [−π, π]. Thus,

f(θ) = h(θ), θ ∈ [−π, π],

and so
sN → f

absolutely and uniformly on [−π, π] as N →∞. �
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All these positive results on pointwise convergence notwithstanding, a sur-
prising result of Andrey Kolmogorov [21, 22] tells us that there exists a function
f in L1(S1) such that the Fourier series of f diverges at every point in [−π, π].
It has long been an outstanding open problem on whether or not there exists a
continuous function in L1(S1) such that the Fourier series of f diverges on a set of
positive measure. A stunning result in 1966 due to Lennart Carleson states that
if f ∈ L2(S1), then the Fourier series of f converges to f almost everywhere on
[−π, π]. A more precise result due to Richard Hunt gives the same conclusion on
almost everywhere convergence on [−π, π] if f ∈ Lp(S1) for 1 < p ≤ ∞.

We now change the point of view from almost everywhere convergence to
convergence in the mean. First, we need to sharpen Lemma 20.2.

Theorem 20.12. {en}∞n=−∞ is an orthonormal basis for L2(S1).

Proof. Let f ∈ L2(S1). Then for every positive number ε, we can use Lemma 20.4
to find a function ϕ in C∞0 (−π, π) such that

‖f − ϕ‖2 <
ε

3
.

Then by Theorem 20.10,

N∑
n=−N

(ϕ, en)2en(θ) =
N∑

n=−N
ϕ̂(n)einθ → ϕ(θ)

uniformly with respect to θ on [−π, π] as N →∞. So,∥∥∥∥∥
N∑

n=−N
(ϕ, en)2en − ϕ

∥∥∥∥∥
2

→ 0

as N → ∞. Now, by Pythagoras’ theorem in Proposition 14.5 and the Bessel
inequality in Lemma 14.3, we have∥∥∥∥∥

N∑
n=−N

(f, en)2en −
N∑

n=−N
(ϕ, en)2en

∥∥∥∥∥
2

=

(
N∑

n=−N
|(f, en)2 − (ϕ, en)2|2

)1/2

≤

( ∞∑
n=−∞

|(f, en)2 − (ϕ, en)2|2
)1/2

≤ ‖f − ϕ‖2 <
ε

3
.
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Therefore

‖f − sN‖2

=

∥∥∥∥∥f −
N∑

n=−N
(f, en)2en

∥∥∥∥∥
2

≤ ‖f − ϕ‖2 +

∥∥∥∥∥ϕ−
N∑

n=−N
(ϕ, en)2en

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

n=−N
(ϕ, en)2en −

N∑
n=−N

(f, en)2en

∥∥∥∥∥
2

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus,

sN =
N∑

n=−N
(f, en)2en → f

in L2(S1) as N →∞. It is then obvious to see that if f ∈ L2(S1) is such that

f̂(n) = 0, n ∈ Z,

then f = 0. Therefore {en}∞n=−∞ is an orthonormal basis for L2(S1). �

The L2-theory of Fourier series can now be easily obtained as corollaries of
Theorem 20.12.

Theorem 20.13 (Plancherel’s Formula). Let f and g be functions in L2(S1). Then

∞∑
n=−∞

f̂(n)ĝ(n) =
1

2π
(f, g)2.

Proof. By (20.1) and (20.3), we get for all n in Z,

f̂(n) =
1√
2π

(f, en)2

and

ĝ(n) =
1√
2π

(g, en)2.

By Parseval’s identity in Theorem 14.8, we get

(f, g)2 =
∞∑

n=−∞
(f, en)2(g, en)2 = 2π

∞∑
n=−∞

f̂(n)ĝ(n).

This completes the proof of the theorem. �
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We can now give another interpretation of (20.2).

Theorem 20.14. Let f ∈ L2(S1). Then (20.2) is valid in the sense that

sN → f

in L2(S1) as N →∞.

Proof. By the Fourier inversion formula in Theorem 14.8,

f =
∞∑

n=−∞
(f, en)2en.

This is then the same as saying that

sN =
N∑

n=−N
(f, en)2en → f

in L2(S1) as N →∞. �

Remark 20.15. Theorem 20.14 can be reformulated conveniently, albeit less pre-
cisely, as

f(θ) =
∞∑

n=−∞
f̂(n)einθ, θ ∈ [−π, π],

and the convergence of the Fourier series is in L2(S1). This is the Fourier inversion
formula for Fourier series.

Exercises

1. Prove that for 1 ≤ p < q ≤ ∞,

Lq(S1) ⊂ Lp(S1)

and the inclusion is proper.

2. Let f be the Dirichlet function on [−π, π], i.e., for all θ in [−π, π], f(θ) = 1

if θ is irrational and f(θ) = 0 if θ is rational. Compute f̂(n) for all n in Z.
What is the Fourier series of f?

3. Let f and g be functions in L1(S1). Let f ∗ g be the convolution of f and g
defined by

(f ∗ g)(θ) =

∫ π

−π
f(θ − φ)g(φ) dφ, θ ∈ [−π, π].

Prove that f ∗g is a periodic function with period 2π on R and f ∗g ∈ L1(S1).

Compute f̂ ∗ g(n) for all n in Z.
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4. Let f be a periodic function with period 2π on R such that f and its first N
derivatives are continuous on R. Prove that

f̂(n) = O(|n|−N )

as |n| → ∞.

5. Prove that ∫ π

−π
|DN (θ)| dθ →∞

as N →∞.

6. Let X be the Banach space of all continuous functions f on [−π, π] such that

f(−π) = f(π)

and the norm ‖ ‖X is given by

‖f‖X = sup
θ∈[−π,π]

|f(θ)|

for all f in X. For N = 0, 1, 2, . . . , prove that the mapping AN : X → C
defined by

ANf =
1

2π

∫ π

−π
DN (θ)f(θ) dθ, f ∈ X,

is a bounded linear functional and

‖AN‖B(X,C) =
1

2π

∫ π

−π
|DN (θ)| dθ.

7. Use the Banach–Steinhaus theorem in Exercise 4 of Chapter 15 to prove the
existence of a continuous function f on [−π, π] such that f(−π) = f(π) and
the Fourier series of f diverges at 0.



Chapter 21

Fourier Multipliers on S1

The Plancherel theorem and the Fourier inversion formula for Fourier series are
the basic ingredients for the study of filters on the unit circle S1 with center at
the origin. As a motivation, let us recall that for all functions f in L2(S1),

f =
∞∑

n=−∞
(f, en)2en, (21.1)

where the convergence is in L2(S1). Equation (21.1) can be recast as

I =
∞∑

n=−∞
(·, en)2en, (21.2)

where I is the identity operator on L2(S1). Equation (21.2) vividly reveals the fact
that the identity operator I on L2(S1) can be decomposed into an infinite sum of
one-dimensional projections, i.e., (·, en)2en, n ∈ Z.More interesting operators with
useful applications can then be obtained by inserting into the Fourier inversion
formula (21.1) or (21.2) a suitable function σ on Z. To see how this is done, we
first introduce the function spaces from which we choose the functions σ.

For 1 ≤ p <∞, we let Lp(Z) be the set of all sequences a = {an}∞n=−∞ such
that

∞∑
n=−∞

|an|p <∞.

It can be shown that Lp(Z) is a Banach space in which the norm ‖ ‖Lp(Z) is given
by

‖a‖Lp(Z) =

( ∞∑
n=−∞

|an|p
)1/p

, a ∈ Lp(Z).

We let L∞(Z) be the set of all bounded sequences a = {an}∞n=−∞. It can also be
shown that L∞(Z) is a Banach space in which the norm ‖ ‖L∞(Z) is given by

‖a‖L∞(Z) = sup
n∈Z
|an|, a ∈ L∞(Z).

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
DOI 10.1007/978-3-0348-0116-4_21, © Springer Basel AG 2011
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It is left as an exercise to prove that for 1 ≤ p ≤ q ≤ ∞,

Lp(Z) ⊂ Lq(Z),

the inclusion is proper and

‖a‖Lq(Z) ≤ ‖a‖Lp(Z), a ∈ Lp(Z).

See Exercise 1.
We note that L2(Z) is a Hilbert space in which the inner product ( , )L2(Z) is

given by

(a, b)L2(Z) =
∞∑

n=−∞
anbn

for all a = {an}∞n=−∞ and b = {bn}∞n=−∞ in L2(Z). We need the following result
that follows from the Plancherel formula in Theorem 20.13.

Theorem 21.1 (Plancherel’s Theorem). The linear operator FS1 : L2(S1)→ L2(Z)
defined by

(FS1f)(n) = f̂(n), n ∈ Z,
is a bijection such that

(FS1f,FS1g)L2(Z) =
1

2π
(f, g)2 (21.3)

for all f and g in L2(S1).

The linear operator FS1 in Theorem 21.1 is the Fourier transform on S1

Proof. Linearity is obvious. (21.3) is a reformulation of the Plancherel formula in
Theorem 20.13. Injectivity follows immediately from (21.3). To prove surjectivity,
let a = {an}∞n=−∞ ∈ L2(Z). Then for N = 0, 1, 2, . . . , we define the function sN
on [−π, π] by

sN (θ) =
N∑

n=−N
ane

inθ =
N∑

n=−N
an
√

2πen(θ), θ ∈ [−π, π].

Then for all positive integers M and N with N > M,

‖sN − sM‖22 =

∥∥∥∥∥∥
∑

M<|n|≤N

an
√

2πen

∥∥∥∥∥∥
2

2

=

 ∑
M<|n|≤N

an
√

2πen,
∑

M<|n|≤N

an
√

2πen


2

= 2π
∑

M<|n|≤N

|an|2 → 0
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as M → ∞. Therefore {sN}∞N=0 is a Cauchy sequence in L2(S1). Since L2(S1) is
complete,

sN → f

for some f in L2(S1) as N →∞. Now, for a fixed m in Z,

ŝN (m) =
1

2π

∫ π

−π
e−imθsN (θ) dθ =

1

2π

N∑
n=−N

an

∫ π

−π
ei(n−m)θdθ = am (21.4)

for sufficiently large N . Moreover, for all m in Z, using the Schwarz inequality, we
get

|ŝN (m)− f̂(m)| ≤ 1

2π

∫ π

−π
|sN (θ)− f(θ)|dθ

≤ 1

2π

(∫ π

−π
|sN (θ)− f(θ)|2dθ

)1/2(∫ π

−π
dθ

)1/2

=
1√
2π
‖sN − f‖2 → 0 (21.5)

as N →∞. So, by (21.4) and (21.5), f̂(m) = am and hence

FS1f = a.

This completes the proof. �

From the proof of Theorem 21.1, we have the following corollary.

Corollary 21.2. For all a in L2(Z), F−1S1 a is the function in L2(S1) defined by

(F−1S1 a)(θ) =
∞∑

n=−∞
ane

inθ, θ ∈ [−π, π].

Let σ ∈ L∞(Z). Then for all f in L2(S1), we define the function Tσf on S1
by

(Tσf)(θ) =
∞∑

n=−∞
einθσ(n)f̂(n), θ ∈ [−π, π]. (21.6)

It is worth pointing out that in (21.6), the role of σ is to assign different weights
to different frequencies in the frequency space Z so as to contribute to a new
or filtered signal Tσf . As such, either the function σ or the operator Tσ can be
looked at as a filter . As the filter is only applied on the frequency domain, we
call it a frequency-modulation filter or FM-filter. As the operator Tσ is completely
specified by the function σ, we call σ the symbol of the operator Tσ.

Remark 21.3. The operator Tσ is customarily dubbed a Fourier multiplier on S1
in mathematics. It is easy to understand why it is Fourier. In order to understand
why it is a multiplier, see Exercise 2.
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We develop in this chapter the theory of Fourier multipliers on S1. The choice
of L∞(Z) for symbols is reasonable in view of the following result.

Theorem 21.4. Let σ be a measurable function on Z, i.e., a sequence. Then Tσ
is a bounded linear operator from L2(S1) into L2(S1) if and only if σ ∈ L∞(Z).
Moreover, if σ ∈ L∞(Z), then

‖Tσ‖∗ = ‖σ‖L∞(Z).

Proof. Suppose that σ ∈ L∞(Z). Then for all f in L2(S1),

σf̂ ∈ L2(Z).

By (21.6) and Corollary 21.2,

Tσf ∈ L2(S1)

and hence by (21.3),

‖Tσf‖2 =
√

2π‖σf̂‖L2(Z) ≤
√

2π‖σ‖L∞(Z)‖f̂‖L2(Z) = ‖σ‖L∞(Z)‖f‖2.

Therefore Tσ : L2(S1)→ L2(S1) is a bounded linear operator with

‖Tσ‖∗ ≤ ‖σ‖L∞(Z). (21.7)

To prove the converse, let σ /∈ L∞(Z). Suppose that Tσ : L2(S1) → L2(S1) is a
bounded linear operator. Then there exists a positive constant C such that

‖Tσf‖2 ≤ C‖f‖2, f ∈ L2(S1). (21.8)

For N = 1, 2, . . . , there exists an integer nN such that

|σ(nN )| > N.

Without loss of generality, we can assume that

|n1| < |n2| < · · · .

For N = 1, 2, . . . , let fnN
be the function on S1 defined by

fnN
= einNθ, θ ∈ [−π, π].

Then for N = 1, 2, . . . ,

f̂nN
(n) =

{
1, n = nN ,
0, n 6= nN .

So, for N = 1, 2, . . . ,

(TσfnN
)(θ) =

∞∑
n=−∞

einθσ(n)f̂nN
(n) = einNθσ(nN ),
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which gives us
‖TσfnN

‖2 =
√

2π|σ(nN )| >
√

2πN. (21.9)

Thus, by (21.8) and (21.9), we get for N = 1, 2, . . . ,

√
2πN < C‖fnN

‖2 =
√

2πC.

This contradiction proves that Tσ : L2(S1) → L2(S1) is not a bounded linear
operator. Finally, we need to prove that

‖Tσ‖∗ = ‖σ‖L∞(Z).

Suppose by way of contradiction that

‖Tσ‖∗ 6= ‖σ‖L∞(Z).

Then by (21.7),
‖Tσ‖∗ < ‖σ‖L∞(Z).

Hence there exists an integer m such that

|σ(m)| > ‖Tσ‖∗.

So, for all nonzero functions f in L2(S1),

‖Tσf‖22 ≤ ‖Tσ‖2∗‖f‖22 < |σ(m)|2‖f‖22,

and in view of (21.3), we get

∞∑
n=−∞

|σ(n)|2|f̂(n)|2 < |σ(m)|2
∞∑

n=−∞
|f̂(n)|2. (21.10)

Now, let f ∈ L2(S1) be the function such that

f̂(n) =

{
1, n = m,
0, n 6= m.

Then by (21.10),
|σ(m)|2 < |σ(m)|2,

and this contradiction proves the theorem. �

We can now look at the spectral theory of Fourier multipliers on S1.

Theorem 21.5. Let σ ∈ L∞(Z). Then for all n in Z, σ(n) is an eigenvalue of
Tσ : L2(S1) → L2(S1) and en is a corresponding eigenfunction. Moreover, the
spectrum Σ(Tσ) of Tσ : L2(S1)→ L2(S1) is precisely given by

Σ(Tσ) = {σ(n) : n ∈ Z}c,

where {· · · }c denotes the closure in C of the set {· · · }.
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Proof. Let m ∈ Z. Then

Tσem =
√

2π

∞∑
n=−∞

σ(n)êm(n)en,

where the convergence is in L2(S1). But

êm(n) =
1√
2π

∫ π

−π
ei(m−n)θdθ =

{ 1√
2π
, n = m,

0, n 6= m.

Therefore

Tσem = σ(m)em,

i.e., σ(m) is an eigenvalue of Tσ : L2(S1) → L2(S1) and em is a corresponding
eigenfunction. Let λ /∈ {σ(n) : n ∈ C}c. Then there exists a positive constant C
such that

|σ(n)− λ| ≥ C, n ∈ Z. (21.11)

By Theorem 21.1, we get for all f in L2(S1),

‖(Tσ − λI)f‖22 = 2π
∞∑

n=−∞
|σ(n)− λ|2|f̂(n)|2 ≥ 2πC

∞∑
n=−∞

|f̂(n)|2 = C‖f‖22.

Thus, Tσ −λI : L2(S1)→ L2(S1) is injective. To show surjectivity, let g ∈ L2(S1).
Then by Theorem 21.1,

{ĝ(n)}∞n=−∞ ∈ L2(Z).

By (21.11),
ĝ

σ − λ
∈ L2(Z).

By Theorem 21.1, there exists a function f in L2(S1) such that

f̂(n) =
ĝ(n)

σ(n)− λ
, n ∈ Z.

Therefore

(σ(n)− λ)f̂(n) = ĝ(n), n ∈ Z.

This gives

(Tσ − λI)f = g

and the proof is complete. �

We give in the following theorem a characterization of compact Fourier mul-
tipliers on S1.
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Theorem 21.6. Let σ ∈ L∞(Z). Then Tσ : L2(S1)→ L2(S1) is compact if and only
if

lim
|n|→∞

σ(n) = 0.

Proof. We first prove the necessity. Indeed, for all f in L2(S1), using the Riemann–
Lebesgue lemma in Corollary 20.3,

(en, f) =
1√
2π

∫ π

−π
e−inθf(θ) dθ → 0

as |n| → ∞. Therefore
en → 0

weakly in L2(S1) as |n| → ∞. So, it follows from the compactness of Tσ : L2(S1)→
L2(S1) that

‖Tσen‖2 → 0

as |n| → ∞. By Theorem 21.5,

Tσen = σ(n)en, n ∈ Z.

Therefore
|σ(n)| → 0

as |n| → ∞, and the necessity is established. To prove the sufficiency, we define
for all positive integers N , the function σN on Z by

σN (n) =

{
σ(n), |n| ≤ N,

0, |n| > N.

Then for N = 1, 2, . . . , we get for all f in L2(S1),

TσN
f =

∑
|n|≤N

σ(n)(f, en)2en,

which is an operator of finite rank and hence compact. Now, for all f in L2(S1),

‖TσN
f − Tσf‖22 = 2π

∑
|n|>N

|σ(n)|2|f̂(n)|2.

For every positive number ε, we can find a positive integer N0 such that

|n| ≥ N0 ⇒ |σ(n)| < ε.

So,

|n| ≥ N0 ⇒ ‖TσN
f − Tσf‖22 ≤ 2πε2

∑
|n|>N

|f̂(n)|2 ≤ ε2
∞∑

n=−∞
|f̂(n)|2 ≤ ε2‖f‖22
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whenever |n| ≥ N0. Therefore

|n| ≥ N0 ⇒ ‖TσN
− Tσ‖∗ ≤ ε.

In other words, Tσ is the limit in norm of the sequence {TσN
}∞N=1 of compact

operators and so must be compact by Theorem 17.1. �

Theorem 21.4 on the L2-boundedness of Fourier multipliers on S1 is only the
tip of an iceberg.

Theorem 21.7. For 1 ≤ p < ∞, the Fourier multiplier Tσ : L2(S1) → L2(S1) is
in the Schatten–von Neumann class Sp if and only if σ ∈ Lp(Z). Moreover, if
σ ∈ Lp(Z), then

‖Tσ‖Sp = ‖σ‖Lp(Z).

To prove Theorem 21.7, we use the following lemma.

Lemma 21.8. Let σ ∈ L∞(Z). If we let

|Tσ| = (T ∗σTσ)1/2,

then
|Tσ| = T|σ|.

Proof. By Exercise 2 in this chapter,

T ∗σTσ = Tσσ = T|σ|2 = T 2
|σ|.

Therefore
|Tσ| = (T ∗σTσ)1/2 = T|σ|,

as claimed. �

Proof of Theorem 21.7. Since σ ∈ Lp(Z), it follows that

lim
|n|→∞

σ(n) = 0.

Hence Tσ : L2(S1) → L2(S1) is compact. By Lemma 21.8 and Theorem 21.5, we
get for all n in Z,

|Tσ|en = T|σ|en = |σ(n)|en.
So, the singular values of Tσ are given by |σ(n)|, n ∈ Z. Therefore

Tσ ∈ Sp ⇔
∞∑

n=−∞
|σ(n)|p <∞⇔ σ ∈ Lp(Z).

Moreover, if σ ∈ Lp(Z), then

‖Tσ‖Sp
=

( ∞∑
n=−∞

|σ(n)|p
)1/p

= ‖σ‖Lp(Z),

as required. �
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Exercises

1. Prove that for 1 ≤ p < q ≤ ∞,

Lp(Z) ⊂ Lq(Z),

the inclusion is proper and

‖a‖Lq(Z) ≤ ‖a‖Lp(Z), a ∈ Lp(Z).

2. Let σ and τ be symbols in L∞(Z). Prove that

TσTτ = TτTσ

and
T ∗σ = Tσ.



Chapter 22

Pseudo-Differential Operators on S1

We present in this chapter time-varying FM-filters that extend the FM-filters in the
preceding chapter. These time-varying FM-filters are pseudo-differential operators
on the unit circle S1 with center at the origin.

For 1 ≤ p <∞, we denote by Lp(S1 × Z) the set of all measurable functions
σ on S1 × Z such that

∞∑
n=−∞

∫ π

−π
|σ(θ, n)|pdθ <∞.

Then Lp(S1 × Z) is a Banach space in which the norm ‖ ‖Lp(S1×Z) is given by

‖σ‖Lp(S1×Z) =

( ∞∑
n=−∞

∫ π

−π
|σ(θ, n)|pdθ

)1/p

, σ ∈ Lp(S1 × Z).

L2(S1×Z) is a Hilbert space with inner product ( , )L2(S1×Z) and norm ‖ ‖L2(S1×Z)
given, respectively, by

(σ, τ)L2(S1×Z) =
∞∑

n=−∞

∫ π

−π
σ(θ, n)τ(θ, n) dθ

and

‖σ‖L2(S1×Z) =

( ∞∑
n=−∞

∫ π

−π
|σ(θ, n)|2dθ

)1/2

for all σ and τ in L2(S1 × Z).
Let σ be a measurable function on S1×Z. Then for all f in L2(S1), we define

the function Tσf on S1 formally by

(Tσf)(θ) =
∞∑

n=−∞
einθσ(θ, n)f̂(n), θ ∈ [−π, π].

We call Tσ the pseudo-differential operator corresponding to the symbol σ.

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
DOI 10.1007/978-3-0348-0116-4_22, © Springer Basel AG 2011
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Why is Tσ so defined differential? To understand this, let us look at the linear
differential operator P (θ,D) on S1 defined by

P (θ,D) =
m∑
j=0

aj(θ)D
j ,

where D = −i ddθ , and a0, a1, . . . , am are measurable functions on S1. Let f ∈
C∞(S1). Then by (20.5),

(FS1D
jf)(n) = (−i)j(in)j f̂(n) = nj f̂(n), n ∈ Z.

So, by Corollary 21.2,

(P (θ,D)f)(θ) =
m∑
j=0

aj(θ)(D
jf)(θ)

=
m∑
j=0

aj(θ)(F−1S1 FS1D
jf)(θ)

=
m∑
j=0

aj(θ)
∞∑

n=−∞
nj f̂(n)einθ

=
∞∑

n=−∞
einθ

 m∑
j=0

aj(θ)n
j

 f̂(n) (22.1)

for all θ in [−π, π]. The message of the integral representation (22.1) for P (θ,D)f
is that a pseudo-differential operator Tσ corresponding to a polynomial

σ(θ, n) =
m∑
j=0

aj(θ)n
j

is a linear differential operator. In the context of filters in signal analysis, a pseudo-
differential operator corresponding to a symbol σ depending on both time θ in S1
and frequency n in Z is a time-varying FM-filter. In view of the fact that a pseudo-
differential operator is a filter in which time and frequency are to be controlled
simultaneously, it is a much more intricate object to work with precisely because
of the Heisenberg uncertainty principle.

Theorem 22.1. Let σ ∈ L2(S1×Z). Then Tσ : L2(S1)→ L2(S1) is a bounded linear
operator and

‖Tσ‖∗ ≤ (2π)−1/2‖σ‖L2(S1×Z).

For a proof of Theorem 22.1, we use Minkowski’s inequality in integral form
to the effect that for 1 ≤ p < ∞, if f is a measurable function on X × Y , where
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(X,µ) and (Y, ν) are measure spaces, then(∫
X

∣∣∣∣∫
Y

f(x, y) dν(y)

∣∣∣∣p dµ(x)

)1/p

≤
∫
Y

(∫
X

|f(x, y)|pdµ(x)

)1/p

dν(y).

Instead of giving a rigorous proof, we give a heuristic argument for why it is
true. To do this, we note that

∫
Y
f(·, y) dν(y) can be considered as a sum of

functions indexed by y. So, the left-hand side is in fact the Lp norm of a sum of
functions, which according to the triangle inequality is at most the sum of the
Lp norms of the functions. But the sum of the Lp norms of the functions is just∫
Y

(∫
X
|f(x, y)|pdµ(x)

)1/p
dν(y).

Proof of Theorem 22.1. Let f ∈ L2(S1). Then by Minkowski’s inequality in inte-
gral form,

‖Tσf‖2 =

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
einθσ(θ, n)f̂(n)

∣∣∣∣∣
2

dθ

1/2

≤
∞∑

n=−∞

(∫ π

−π
|σ(θ, n)|2|f̂(n)|2dθ

)1/2

=
∞∑

n=−∞
|f̂(n)|

(∫ π

−π
|σ(θ, n)|2dθ

)1/2

.

So, by the Schwarz inequality and the Parseval identity for Fourier series in The-
orem 21.1,

‖Tσf‖2 ≤

( ∞∑
n=−∞

|f̂(n)|2
)1/2( ∞∑

n=−∞

∫ π

−π
|σ(θ, n)|2dθ

)1/2

= (2π)−1/2‖σ‖L2(S1×Z)‖f‖2. �

The following Lp formula is useful to us.

Theorem 22.2. Let σ ∈ Lp(S1 × Z), 1 ≤ p <∞. Then

∞∑
n=−∞

‖Tσen‖pp = (2π)−p/2‖σ‖pLp(S1×Z).

Proof. For j ∈ Z, we get

(Tσej)(θ) =
∞∑

n=−∞
einθσ(θ, n)êj(n), θ ∈ [−π, π]. (22.2)
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But

êj(n) =
1

2π

∫ π

−π

1√
2π
ei(j−n)θdθ =

{ 1√
2π
, n = j,

0, n 6= j.
(22.3)

So, by (22.2) and (22.3),

(Tσej)(θ) = σ(θ, j)
1√
2π
eijθ = σ(θ, j)ej(θ), θ ∈ [−π, π]. (22.4)

Hence
∞∑

j=−∞
‖Tσej‖pp =

∞∑
j=−∞

∫ π

−π
|σ(θ, j)|p(2π)−p/2dθ = (2π)−p/2‖σ‖pLp(S1×Z),

as asserted. �

Using Theorem 19.2, Theorem 22.2 and the fact that {en}∞n=−∞ is an or-
thonormal basis for L2(S1), we have the following result.

Theorem 22.3. The pseudo-differential operator Tσ : L2(S1)→ L2(S1) is a Hilbert–
Schmidt operator if and only if σ ∈ L2(S1×Z). Moreover, if Tσ : L2(S1)→ L2(S1)
is a Hilbert–Schmidt operator, then

‖Tσ‖S2 = (2π)−1/2‖σ‖L2(S1×Z).

The proof of Theorem 22.2 gives a necessary condition on a measurable func-
tion σ on S1 × Z for Tσ : L2(S1) → L2(S1) to be a bounded linear operator. To
wit, let σ be a measurable function on S1×Z and let f ∈ L2(S1). Then for n ∈ Z,
we can use (22.4) to obtain

(Tσen)(θ) = σ(θ, n)en(θ), θ ∈ [−π, π],

and hence

‖Tσen‖22 =
1

2π

∫ π

−π
|σ(θ, n)|2dθ.

So, if Tσ : L2(S1) → L2(S1) is a bounded linear operator, we can get a positive
constant C such that

‖Tσen‖22 ≤ C‖en‖22, n ∈ Z,
which is then the same as∫ π

−π
|σ(θ, n)|2dθ ≤ 2πC, n ∈ Z.

Therefore a necessary condition for Tσ : L2(S1)→ L2(S1) to be a bounded linear
operator is

sup
n∈Z

∫ π

−π
|σ(θ, n)|2dθ <∞. (22.5)

The following example shows that (22.5) is not sufficient for Tσ : L2(S1)→ L2(S1)
to be a bounded linear operator.
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Example 22.4. Let σ be the function on S1 × Z defined by

σ(θ, n) = e−inθ, θ ∈ [−π, π], n ∈ Z.

Then

sup
n∈Z

∫ π

−π
|σ(θ, n)|2dθ = 2π <∞.

Let f be the function on S1 defined by

f(θ) =
∞∑
n=1

1

n
einθ, θ ∈ [−π, π].

Since the sequence {an}∞n=−∞ defined by

an =

{
1
n , n ≥ 1,
0, n < 1,

is in L2(Z), it follows from Theorem 21.1 that f ∈ L2(S1). But for all θ ∈ [−π, π],

(Tσf)(θ) =
∞∑

n=−∞
einθσ(θ, n)f̂(n) =

∞∑
n=1

1

n
=∞.

The following theorem tells us when a pseudo-differential operator Tσ :
L2(S1)→ L2(S1) is a bounded linear operator.

Theorem 22.5. Let σ be a measurable function on S1×Z. Suppose that we can find
a positive constant C and a function w in L1(Z) such that

|σ̂(m,n)| ≤ C|w(m)|, m, n ∈ Z, (22.6)

where

σ̂(m,n) =
1

2π

∫ π

−π
e−imθσ(θ, n) dθ. (22.7)

Then Tσ : L2(S1)→ L2(S1) is a bounded linear operator and

‖Tσ‖∗ ≤ C‖w‖L1(Z).

In order to prove Theorem 22.5, we first establish Young’s inequality for the
convolution of two functions on Z.

Theorem 22.6. Let

a = {an}∞n=−∞ ∈ L1(Z)

and

b = {bn}∞n=−∞ ∈ Lp(Z),
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where 1 ≤ p ≤ ∞. Then the function a ∗ b on Z defined by

(a ∗ b)n =
∞∑

k=−∞

an−kbk, n ∈ Z,

is in Lp(Z) and

‖a ∗ b‖Lp(Z) ≤ ‖a‖L1(Z)‖b‖Lp(Z).

Remark 22.7. The sequence a ∗ b is known as the convolution of a and b. The
inequality in Theorem 22.6 is known as Young’s inequality.

Proof of Lemma 22.6. For 1 ≤ p <∞, we note that by Minkowski’s inequality in
integral form,

‖a ∗ b‖p =

( ∞∑
n=−∞

|(a ∗ b)n|p
)1/p

=

( ∞∑
n=−∞

∣∣∣∣∣
∞∑

k=−∞

an−kbk

∣∣∣∣∣
p)1/p

=

( ∞∑
n=−∞

∣∣∣∣∣
∞∑

k=−∞

akbn−k

∣∣∣∣∣
p)1/p

≤
∞∑

k=−∞

( ∞∑
n=−∞

|ak|p|bn−k|p
)1/p

=
∞∑

k=−∞

|ak|

( ∞∑
n=−∞

|bn−k|p
)1/p

=
∞∑

k=−∞

|ak|

( ∞∑
n=−∞

|bn|p
)1/p

= ‖a‖L1(Z)‖b‖Lp(Z).

For p =∞, we get for all n in Z,

|(a ∗ b)n| =

∣∣∣∣∣
∞∑

k=−∞

an−kbk

∣∣∣∣∣ ≤
∞∑

k=−∞

|an−k| |bk|

≤ ‖b‖L∞(Z)

∞∑
k=−∞

|an−k| = ‖b‖L∞(Z)

∞∑
k=−∞

|ak|

= ‖a‖L1(Z)‖b‖L∞(Z). �

Proof of Theorem 22.5. Let f ∈ C∞(S1). Then we have

‖Tσf‖22 =

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
einθσ(θ, n)f̂(n)

∣∣∣∣∣
2

dθ

=

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞

∞∑
m=−∞

ei(m+n)θσ̂(m,n)f̂(n)

∣∣∣∣∣
2

dθ.
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So,

‖Tσf‖22 =

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞

∞∑
k=−∞

eikθσ̂(k − n, n)f̂(n)

∣∣∣∣∣
2

dθ

=

∫ π

−π

∣∣∣∣∣
∞∑

k=−∞

eikθ

( ∞∑
n=−∞

σ̂(k − n, n)f̂(n)

)∣∣∣∣∣
2

dθ. (22.8)

Using (22.8) and the orthogonality of the functions {ej}∞j=−∞ in L2(S1),

‖Tσf‖22 = 2π
∞∑

k=−∞

∣∣∣∣∣
∞∑

n=−∞
σ̂(k − n, n)f̂(n)

∣∣∣∣∣
2

≤ 2π

∞∑
k=−∞

( ∞∑
n=−∞

|σ̂(k − n, n)||f̂(n)|

)2

. (22.9)

Using (22.6), we get

‖Tσf‖22 ≤ 2πC2
∞∑

k=−∞

( ∞∑
n=−∞

|w(k − n)| |f̂(n)|

)2

≤ 2πC2
∞∑

k=−∞

|(|w| ∗ |f̂ |)(k)|2,

where |w| ∗ |f̂ | is the convolution of |w| and |f̂ |. Finally, using Young’s inequality
and the Parseval identity for Fourier series, we have

‖Tσf‖22 ≤ 2πC2‖w‖2L1(Z)‖f̂‖
2
L2(Z) = C2‖w‖2L1(Z)‖f‖

2
2. (22.10)

By Lemma 20.4, C∞(S1) is dense in L2(S1) and it follows that (22.10) holds for
all functions f in L2(S1). �

Remark 22.8. In order to justify the interchange of the two sums in (22.8), we
note that by Fubini’s theorem, it is sufficient to prove that

∞∑
k=−∞

∞∑
n=−∞

|σ̂(k − n, n)||f̂(n)| <∞.

Since f ∈ C2(S1), it follows from Exercise 4 in Chapter 20 that

|f̂(n)| ≤ O(n−2)

as |n| → ∞. Hence f̂ ∈ L1(Z). Using an argument in the proof of Theorem 22.5,
we have

∞∑
k=−∞

∞∑
n=−∞

|σ̂(k − n, n)||f̂(n)| ≤ C‖w‖L1(Z)‖f̂‖L1(Z) <∞.
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Remark 22.9. The sufficient conditions on the symbol σ to ensure the boundedness
of Tσ : L2(S1)→ L2(S1) in [30, 31] require a certain number of derivatives of σ with
respect to θ. By means of Theorem 22.5 and Bernstein’s theorem, i.e., Theorem
3.1 in Chapter VI of the book [53], we see that all we need is that the symbol σ
is Lipschitz continuous of order α, α > 1

2 .

Let σ be a measurable function on S1 ×Z such that Tσ : L2(S1)→ L2(S1) is
compact. From the proof of Theorem 21.6, we know that en → 0 weakly in L2(S1)
as |n| → ∞. Then it follows from the compactness of Tσ : L2(S1) → L2(S1) that
‖Tσen‖2 → 0 as |n| → ∞. By (22.4), we see that∫ π

−π
|σ(θ, n)|2dθ → 0 (22.11)

as |n| → ∞. That the condition (22.11) is not enough for Tσ : L2(S1) → L2(S1)
to be compact can be illustrated by the following example.

Example 22.10. Let σ be the function on S1 × Z defined by

σ(θ, n) =

{
1

lnne
−inθ, n > 1,

0, n ≤ 1,
(22.12)

for all θ in [−π, π]. Then it can be seen easily that σ satisties (22.11). If we let f
be the function on S1 defined by

f(θ) =
∞∑
n=1

1

n
einθ, θ ∈ [−π, π],

then as in Example 22.4, f ∈ L2(S1). But

(Tσf)(θ) =

∞∑
n=−∞

einθσ(θ, n)f̂(n) =

∞∑
n=2

1

n lnn
, θ ∈ [−π, π].

So, Tσf is not even in L2(S1).

The following theorem gives the L2-compactness of pseudo-differential oper-
ators on L2(S1).

Theorem 22.11. Let σ be a measurable function on S1 × Z. Suppose that we can
find a function w in L1(Z) and a function C on Z such that

lim
|n|→∞

C(n) = 0

and
|σ̂(m,n)| ≤ C(n)|w(m)|, m, n ∈ Z. (22.13)

Then Tσ : L2(S1)→ L2(S1) is compact.
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Proof. For all positive integers N , we define the function σN on S1 × Z by

σN (θ, n) =

{
σ(θ, n), |n| ≤ N,

0, |n| > N,

for all θ in [−π, π] and n in Z. Then for N = 1, 2, . . . ,

∞∑
n=−∞

∫ π

−π
|σN (θ, n)|2dθ =

N∑
n=−N

∫ π

−π
|σ(θ, n)|2dθ <∞

and hence by Theorem 22.3, TσN
: L2(S1)→ L2(S1) is a Hilbert–Schmidt operator.

Let τN = σ − σN . Then by the definition of σN , we have

τN (θ, n) =

{
0, |n| ≤ N,

σ(θ, n), |n| > N,

for all θ in [−π, π]. Let ε be a given positive number. Then there exists a positive
integer N0 such that

|C(n)| < ε

whenever |n| > N0. So, for N ≥ N0,

‖(TσN
− Tσ)f‖22 =

∫ π

−π
|(TτN f)(θ)|2dθ

=

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
einθτN (n, θ)f̂(n)

∣∣∣∣∣
2

dθ.

Now, we use the same argument in the derivation of (22.9) to get

‖(TσN
− Tσ)f‖22 ≤ 2π

∞∑
k=−∞

( ∞∑
n=−∞

|τ̂N (k − n, n)||f̂(n)|

)2

= 2π
∞∑

k=−∞

 ∑
|n|>N

|σ̂(k − n, n)||f̂(n)|

2

.

Using (22.13), we get

‖(TσN
− Tσ)f‖22 ≤ 2π

∞∑
k=−∞

 ∑
|n|>N

C(n)|w(k − n)| |f̂(n)|

2

≤ 2πε2
∞∑

k=−∞

( ∞∑
n=−∞

|w(k − n)| |f̂(n)|

)2

.
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Using the same argument in the derivation of (22.10), we have

‖(TσN
− Tσ)f‖22 ≤ ε2B‖f‖22,

where B = ‖w‖2L1(Z). Thus, for N ≥ N0,

‖Tσ − TσN
‖∗ ≤

√
Bε.

In other words, Tσ is the limit in norm of the sequence {TσN
}∞N=1 and so must be

compact by Theorem 17.1. �

We end this chapter with a glimpse into the Lp-boundedness of pseudo-
differential operators.

We first give sufficient conditions on a function σ on Z to ensure that the
corresponding Fourier multiplier Tσ : Lp(S1)→ Lp(S1), 1 < p <∞, is a bounded
linear operator.

Lemma 22.12. Let σ be a measurable function on Z and let k be the smallest integer
greater than 1

2 . Suppose that there exists a positive constant C such that

|(∂jσ)(n)| ≤ C〈n〉−j , n ∈ Z,

for 0 ≤ j ≤ k, where ∂j is the difference operator given by

(∂jσ)(n) =

j∑
l=0

(−1)j−l
(
j

l

)
σ(n+ l), n ∈ Z,

and
〈n〉 = (1 + |n|2)1/2, n ∈ Z.

Then for 1 < p <∞, Tσ : Lp(S1)→ Lp(S1) is a bounded linear operator and there
exists a positive constant B, depending on p only, such that

‖Tσf‖p ≤ BC‖f‖p, f ∈ Lp(S1).

Remark 22.13. The condition on the number k of “derivatives” in Lemma 22.12
can best be understood in the context of the multi-dimensional torus in which k
should be the smallest integer greater than d/2, where d is the dimension of the
torus.

The proof of Lemma 22.12 entails the use of the Littlewood–Paley theory in
Fourier series in, e.g., Chapter XV of the book [53] by Zygmund. See, in particular,
Theorem 4.14 in Chapter XV of [53] in this connection. Extensions of Lemma
22.12 to the context of compact Lie groups are attributed to Weiss [46, 47] and
the Littlewood–Paley theory for compact Lie groups can be found in Stein [36].
Analogs of Lemma 22.12 for Rn can be found in the works of Hörmander [18] and
Stein [35].

The following theorem gives sufficient conditions for the Lp-boundedness of
pseudo-differential operators on S1. The ideas for the result and its proof come
from Theorem 10.7 in the book [49] by Wong.
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Theorem 22.14. Let σ be a measurable function on S1×Z and let k be the smallest
integer greater than 1

2 . Suppose that we can find a positive constant C and a
function w in L1(Z) such that

|(∂jnσ̂)(m,n)| ≤ C|w(m)|〈n〉−j , m, n ∈ Z, (22.14)

for 0 ≤ j ≤ k, where σ̂(m,n) is as defined in (22.7) and ∂jn is the partial difference
operator with respect to the variable n in Z. Then for 1 < p < ∞, Tσ : Lp(S1) →
Lp(S1) is a bounded linear operator. Moreover, there exists a positive constant B
depending only on p such that

‖Tσ‖B(Lp(S1)) ≤ BC‖w‖L1(Z),

where ‖ ‖B(Lp(S1)) is the norm in the Banach space of all bounded linear operators
from Lp(S1) into Lp(S1).

Proof. Let f ∈ Lp(S1). Then by Fubini’s theorem,

(Tσf)(θ) =
∞∑

n=−∞
einθσ(θ, n)f̂(n)

=
∞∑

n=−∞
f̂(n)

{ ∞∑
m=−∞

σ̂(m,n)eimθ

}
einθ

=
∞∑

m=−∞
eimθ

{ ∞∑
n=−∞

σ̂(m,n)f̂(n)einθ

}

=
∞∑

m=−∞
eimθ(Tσm

f)(θ)

for all θ in [−π, π], where

σm(n) = σ̂(m,n) =
1

2π

∫ π

−π
e−imθσ(θ, n) dθ, m, n ∈ Z.

By (22.14),

|(∂jσm)(n)| = |(∂jnσ̂)(m,n)| ≤ C|w(m)|〈n〉−j , m, n ∈ Z,

for 0 ≤ j ≤ k. Therefore by Lemma 22.12, there exists a positive constant B
depending only on p such that

‖Tσmf‖p ≤ BC|w(m)| ‖f‖p, m ∈ Z. (22.15)

Then by (22.15) and Minkowski’s inequality in integral form, we get

‖Tσf‖p =

{∫ π

−π

∣∣∣∣∣
∞∑

m=−∞
eimθ(Tσm

f)(θ)

∣∣∣∣∣
p

dθ

}1/p
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≤
∞∑

m=−∞

{∫ π

−π
|(Tσmf)(θ)|pdθ

}1/p

=
∞∑

m=−∞
‖Tσmf‖p

≤ BC‖w‖L1(Z)‖f‖p,

and this completes the proof. �

Exercises

1. Let a ∈ L1(Z) and b ∈ Lp(Z), 1 ≤ p ≤ ∞. Prove that

a ∗ b = b ∗ a.

2. Prove that the function σ in (22.12) satisfies the condition (22.11).

3. The Rihaczek transform R(f, g) of two functions f and g in L2(S1) is the
function on S1 × Z defined by

R(f, g)(θ, n) = einθf̂(n)g(θ), θ ∈ [−π, π], n ∈ Z.

Let σ ∈ L2(S1 × Z). Prove that for all f and g in L2(S1),

(Tσf, g)2 =
∞∑

n=−∞

∫ π

−π
σ(θ, n)R(f, g)(θ, n) dθ.

4. Prove that for all functions f1, g1, f2 and g2 in L2(S1),

(R(f1, f2), R(g1, g2))L2(S1×Z) =
1

2π
(f1, g1)2(f2, g2)2.

(This is the Moyal identity for the Rihaczek transform.)



Chapter 23

Pseudo-Differential Operators on Z

This chapter is a “dual” of the preceding chapter. Presenting this duality can
contribute to a better understanding of pseudo-differential operators.

Let a ∈ L2(Z). Then the Fourier transform FZa of a is the function on the
unit circle S1 centered at the origin defined by

(FZa)(θ) =
∞∑

n=−∞
a(n)einθ, θ ∈ [−π, π].

Then by Theorem 21.1,

FZ = F−1S1 .

Thus, FZa ∈ L2(S1) and the Plancherel formula for Fourier series gives

∞∑
n=−∞

|a(n)|2 =
1

2π

∫ π

−π
|(FZa)(θ)|2dθ.

The Fourier inversion formula for Fourier series gives

a(n) =
1

2π

∫ π

−π
e−inθ(FZa)(θ) dθ, n ∈ Z.

Let σ : Z× S1 → C be a measurable function. Then for every sequence a in
L2(Z), we define the sequence Tσa formally by

(Tσa)(n) =
1

2π

∫ π

−π
e−inθσ(n, θ)(FZa)(θ) dθ, n ∈ Z.

Tσ is called the pseudo-differential operator on Z corresponding to the symbol σ
whenever the integral exists for all n in Z. It is the natural analog on Z of the
standard pseudo-differential operators on Rn explained in, e.g., [49].

M.W. Wong, Discrete Fourier Analysis, Pseudo-Differential Operators 5, 
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Theorem 23.1. The pseudo-differential operator Tσ : L2(Z)→ L2(Z) is a Hilbert–
Schmidt operator if and only if σ ∈ L2(Z× S1). Moreover, if Tσ : L2(Z)→ L2(Z)
is a Hilbert–Schmidt operator, then

‖Tσ‖S2
= (2π)−1/2‖σ‖L2(Z×S1).

Proof. The starting point is the standard orthonormal basis {εk}k∈Z for L2(Z)
given by

εk(n) =

{
1, n = k,
0, n 6= k.

For k ∈ Z, we get

(FZεk)(θ) =
∞∑

n=−∞
εk(n)einθ = eikθ, θ ∈ [−π, π],

and hence

(Tσεk)(n) =
1

2π

∫ π

−π
e−inθσ(n, θ)(FZεk)(θ) dθ

=
1

2π

∫ π

−π
e−i(n−k)θσ(n, θ) dθ

= (FS1σ)(n, n− k)

for all n ∈ Z, where (FS1σ)(n, ·) is the Fourier transform of the function σ(n, ·) on
S1 given by

(FS1σ)(n,m) =
1

2π

∫ π

−π
e−imθσ(n, θ) dθ, m, n ∈ Z.

So, using Fubini’s theorem and the Plancherel formula for Fourier series, we get

‖Tσ‖2S2
=

∞∑
k=−∞

‖Tσεk‖2L2(Z) =
∞∑

k=−∞

∞∑
n=−∞

|(FS1σ)(n, n− k)|2

=
∞∑

n=−∞

∞∑
k=−∞

|(FS1σ)(n, n− k)|2 =
∞∑

n=−∞

∞∑
k=−∞

|(FS1σ)(n, k)|2

=
1

2π

∞∑
n=−∞

∫ π

−π
|σ(n, θ)|2dθ =

1

2π
‖σ‖2L2(Z×S1)

and this completes the proof. �

As for the Lp-boundedness and the Lp-compactness, 1 ≤ p <∞, of pseudo-
differential operators on Z, let us begin with a simple and elegant result on the
L2-boundedness of pseudo-differential operators on Z.
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Theorem 23.2. Let σ be a measurable function on Z× S1 such that we can find a
positive constant C and a function w ∈ L2(Z) for which

|σ(n, θ)| ≤ C|w(n)|

for all n ∈ Z and almost all θ in [−π, π]. Then Tσ : L2(Z) → L2(Z) is a bounded
linear operator. Furthermore,

‖Tσ‖∗ ≤ C‖w‖L2(Z).

Proof. Let a ∈ L2(Z). Then by the Schwarz inequality and the Plancherel formula,

‖Tσa‖2L2(Z) =
1

4π2

∞∑
n=−∞

∣∣∣∣∫ π

−π
e−inθσ(n, θ)(FZa)(θ) dθ

∣∣∣∣2
≤ 1

2π

∞∑
n=−∞

∫ π

−π
|σ(n, θ)|2|(FZa)(θ)|2dθ

≤ C2

2π

∞∑
n=−∞

|w(n)|2
∫ π

−π
|(FZa)(θ)|2dθ

= C2‖w‖2L2(Z)‖a‖
2
L2(Z). �

The next theorem gives a single sufficient condition on the symbols σ for the
corresponding pseudo-differential operators Tσ : Lp(Z) → Lp(Z) to be bounded
for 1 ≤ p <∞.

Theorem 23.3. Let σ be a measurable function on Z× S1 such that we can find a
positive constant C and a function w in L1(Z) for which

|(FS1σ)(n,m)| ≤ C|w(m)|, m, n ∈ Z.

Then the pseudo-differential operator Tσ : Lp(Z) → Lp(Z) is a bounded linear
operator for 1 ≤ p <∞. Furthermore,

‖Tσ‖B(Lp(Z)) ≤ C‖w‖L1(Z),

where ‖ ‖B(Lp(Z) is the norm in the Banach space of all bounded linear operators
from Lp(Z) into Lp(Z).

Proof. Let a ∈ L1(Z). Then for all n ∈ Z, we get

(Tσa)(n) =
1

2π

∫ π

−π
e−inθσ(n, θ)(FZa)(θ) dθ

=
1

2π

∫ π

−π
e−inθσ(n, θ)

( ∞∑
m=−∞

a(m)eimθ

)
dθ
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=
1

2π

∞∑
m=−∞

a(m)

∫ π

−π
e−i(n−m)θσ(n, θ) dθ

=

∞∑
m=−∞

(FS1σ)(n, n−m)a(m)

= ((FS1σ)(n, ·) ∗ a)(n). (23.1)

So,

‖Tσa‖pLp(Z) =
∞∑

n=−∞
|((FS1σ)(n, ·) ∗ a)(n)|p

≤
∞∑

n=−∞
(|(FS1σ)(n, ·)| ∗ |a|)(n))p

≤ Cp
∞∑

n=−∞
|(|w| ∗ |a|)(n)|p. (23.2)

Thus, by Young’s inequality in Theorem 22.6,

‖Tσa‖pLp(Z) ≤ C
p‖w‖pL1(Z)‖a‖

p
Lp(Z),

which is equivalent to
‖Tσ‖B(Lp(Z)) ≤ C‖w‖L1(Z).

Since L1(Z) is dense in Lp(Z) by Exercise 3, the proof is complete for 1 ≤ p <
∞. �

The very mild condition in Theorem 23.3 on the Lp-boundedness of pseudo-
differential operators on Z is dramatically different from the condition for Lp-
boundedness of pseudo-differential operators on Rn in which derivatives with re-
spect to the configuration variables and the dual variables are essential. See Chap-
ter 10 of [49] for boundedness of pseudo-differential operators on Lp(Rn), 1 < p <
∞.

The following theorem is a result on Lp-compactness.

Theorem 23.4. Let σ be a measurable function on Z× S1 such that we can find a
positive function C on Z and a function w in L1(Z) for which

|(FS1σ)(n,m)| ≤ C(n)|w(m)|, m, n ∈ Z,

and
lim
|n|→∞

C(n) = 0.

Then the pseudo-differential operator Tσ : Lp(Z) → Lp(Z) is a compact operator
for 1 ≤ p <∞.
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Proof. For every positive integer N , we define the symbol σN on Z× S1 by

σN (n, θ) =

{
σ(n, θ), |n| ≤ N,

0, |n| > N.

Now, by (23.1), we get for all a ∈ Lp(Z),

(TσN
a)(n) =

{
((FS1σ)(n, ·) ∗ a)(n), |n| ≤ N,

0, |n| > N.

Therefore the range of TσN
: Lp(Z) → Lp(Z) is finite-dimensional, i.e., TσN

:
Lp(Z)→ Lp(Z) is a finite rank operator. Let ε be a positive number. Then there
exists a positive integer N0 such that

|C(n)| < ε

whenever |n| > N0. So, as in the derivation of (23.2), we get for N > N0,

‖(Tσ − TσN
)a‖pLp(Z) =

∞∑
n=−∞

|((FS1(σ − σN ))(n, ·) ∗ a)(n)|p

=
∑
|n|>N

|((FS1σ)(n, ·) ∗ a)(n)|p

≤
∑
|n|>N

|(|(FS1σ)(n, ·)| ∗ |a|)(n)|p

≤
∑
|n|>N

C(n)p|(|w| ∗ |a|)(n)|p

≤ εp
∑
|n|>N

|(|w| ∗ |a|)(n)|p.

By Young’s inequality, we get for N > N0,

‖(Tσ − TσN
)a‖pLp(Z) ≤ ε

p‖w‖pL1(Z)‖a‖
p
Lp(Z).

Hence for N > N0,
‖Tσ − TσN

‖B(Lp(Z)) ≤ ε‖w‖L1(Z).

So, Tσ : Lp(Z) → Lp(Z) is the limit in norm of a sequence of compact operators
on Lp(Z) and hence by Theorem 17.1 must be compact. �

We end this chapter with a result on the numerical analysis of pseudo-
differential operators on Z.

Theorem 23.5. Let σ be a symbol satisfying the hypotheses of Theorem 23.3. Then
for 1 ≤ p < ∞, the matrix Aσ of the pseudo-differential operator Tσ : Lp(Z) →
Lp(Z) is given by

Aσ = (σnk)n,k∈Z,
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where
σnk = (FS1σ)(n, n− k).

Furthermore, the matrix Aσ is almost diagonal in the sense that

|σnk| ≤ C|w(n− k)|, n, k ∈ Z.

Remark 23.6. Since w ∈ L1(Z), it follows that, roughly speaking,

w(m) = O(|m|−(1+α))

as |m| → ∞, where α is a positive number. So, the entry σnk in the nth row and
the kth column of the matrix Aσ decays in such a way that

|σnk| = O(|n− k|−(1+α))

as |n − k| → ∞. In other words, the off-diagonal entries in Aσ are small and the
matrix Aσ can be seen as almost diagonal. This fact is very useful for the numerical
analysis of pseudo-differential operators on Z. See [32] for the numerical analysis
of pseudo-differential operators and related topics.

Proof of Theorem 23.5. By (23.1), we get for all n ∈ Z,

(Tσa)(n) = (FS1σ)(n, ·) ∗ a)(n) =
∞∑

k=−∞

(FS1σ)(n, n− k)a(k).

So, Tσa is the same as the product Aσa of the matrices Aσ and a. �

We give a numerical example to illustrate the almost diagonalization.

Example 23.7. Let

σ(n, θ) =

(
n+

1

2

)−2 ∞∑
k=−∞

eikθ
(
k +

1

2

)−2
, n ∈ Z, θ ∈ S1.

Then

σnk =

(
n+

1

2

)−2(
n− k +

1

2

)−2
, k, n ∈ Z.

Computing the 7×7 matrix Aσ = (σnk)−3≤k,n≤3 numerically, we get the following
matrix in which the entries are generated by MATLAB.



0.6400 0.6400 0.0711 0.0256 0.0131 0.0079 0.0053
0.1975 1.7778 1.7778 0.1975 0.0711 0.0363 0.0219
0.6400 1.7778 16.000 16.000 1.7778 0.6400 0.3265
0.3265 0.6400 1.7778 16.000 16.000 1.7778 0.6400
0.0219 0.0363 0.0711 0.1975 1.7778 1.7778 0.1975
0.0053 0.0079 0.0131 0.0256 0.0711 0.6400 0.6400
0.0019 0.0027 0.0040 0.0067 0.0131 0.0363 0.3265
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Example 23.8. As another example with a closed formula for the symbol, we let

σ(n, θ) = e−n
2

θ2/2, n ∈ Z, θ ∈ S1.

Then

(FS1σ)(n,m) =

{
(−1)me−n

2

/m2, m 6= 0,

π2e−n
2

/6, m = 0,

and hence

σnk =

{
(−1)n−ke−n

2

/(n− k)2, k 6= n,

π2e−n
2

/6, k = n.

The 7× 7 matrix Aσ = (σnk)−3≤k,n≤3 is given numerically by

0.0002 −0.0001 0.0000 −0.0000 0.0000 −0.0000 0.0000
−0.0183 0.0301 −0.0183 0.0046 −0.0020 0.0011 −0.0007

0.0920 −0.3679 0.6051 −0.3679 0.0920 −0.0409 0.0230
−0.1111 0.2500 −1.0000 1.6449 −1.0000 0.2500 −0.1111

0.0230 −0.0409 0.0920 −0.3679 0.6051 −0.3679 0.0920
−0.0007 0.0011 −0.0020 0.0046 −0.0183 0.0301 −0.0183

0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0001 0.0002


.

Remark 23.9. Almost diagonalization of wavelet multipliers using Weyl–Heisen-
berg frames can be found in [51].

Exercises

1. Let σ ∈ L2(S1). Prove that for all a in L2(Z),

Tσ,Za = FS1σFZa,

where Tσ,Z is the pseudo-differential operator on Z with symbol σ.

2. Let σ ∈ L2(Z). Prove that for all f in L2(S1),

Tσ,S1f = FZσFS1f,

where Tσ,S1 is the pseudo-differential operator on S1 with symbol σ.

3. Prove that L1(Z) is dense in Lp(Z) for 1 ≤ p <∞.

4. Is L1(Z) dense in L∞(Z)? Explain your answer.
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2002.

[51] M. W. Wong and H. Zhu, Matrix representations and numerical computa-
tions of wavelet multipliers, in Wavelets, Multiscale Systems and Hypercom-
plex Analysis, Editor: D. Alpay, Birkhäuser, 2006, 173–182.
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orthogonal complement, 102
orthonormal basis, 2, 3, 75, 96, 137,

164
orthonormal Fourier basis, 3

Parseval identity, 5, 100
periodic, 12, 23, 129
phase, 15
Plancherel formula, 6, 138, 142, 163
Plancherel theorem, 100, 142
pointwise convergence, 130
positive operator, 124
principle of uniform boundedness, 109
pseudo-differential operator, 33, 151,

163

pure frequency, 12
Pythagoras’ theorem, 99

resolvent set, 112
Riemann–Lebesgue lemma, 131
Riesz representation theorem, 104
Rihaczek transform, 162

scaling numbers, 72, 83
Schatten–von Neumann class, 125
Schwarz inequality, 95
self-adjoint, 114
signal, 2
signal compression, 45, 69
singular value, 125
small fluctuation property, 68, 80
small trend property, 68
spectral theorem, 121
spectrum, 112
standard basis, 2
support, 131
symbol, 33, 87, 143, 151, 163
system matrix, 56

time-frequency localized basis, 53, 70
time-localization, 45
time-varying FM-filter, 152
trace, 89
trace class, 125
translation, 14
translation-invariant, 17
trend, 67

unit impulse, 29
upsampling operator, 63

wave, 12
wavelet numbers, 72, 80
wavelet transform, 62
weak convergence, 118

Young inequality, 156


	Discrete Fourier Analysis
	Contents
	Preface
	Chapter 1 The Finite Fourier Transform
	Chapter 2 Translation-Invariant Linear Operators
	Chapter 3 Circulant Matrices
	Chapter 4 Convolution Operators
	Chapter 5 Fourier Multipliers
	Chapter 6 Eigenvalues and Eigenfunctions
	Chapter 7 The Fast Fourier Transform
	Chapter 8 Time-Frequency Analysis
	Chapter 9 Time-Frequency Localized Bases
	Chapter 10 Wavelet Transforms and Filter Banks
	Chapter 11 Haar Wavelets
	Chapter 12 Daubechies Wavelets
	Chapter 13 The Trace
	Chapter 14 Hilbert Spaces
	Chapter 15 Bounded Linear Operators
	Chapter 16 Self-Adjoint Operators
	Chapter 17 Compact Operators
	Chapter 18 The Spectral Theorem
	Chapter 19 Schatten{von Neumann Classes
	Chapter 20 Fourier Series
	Chapter 21 Fourier Multipliers on S1
	Chapter 22 Pseudo-Di erential Operators on S1
	Chapter 23 Pseudo-Di erential Operators on Z
	Bibliography
	Index



