


Grundlehren der
mathematischen Wissenschaften 342
A Series of Comprehensive Studies in Mathematics

Series editors

M. Berger P. de la Harpe F. Hirzebruch
N.J. Hitchin L. Hörmander A. Kupiainen
G. Lebeau F.-H. Lin B.C. Ngô
M. Ratner D. Serre Ya.G. Sinai
N.J.A. Sloane A.M. Vershik M. Waldschmidt

Editor-in-Chief

A. Chenciner J. Coates S.R.S. Varadhan



For further volumes:
http://www.springer.com/series/138

http://www.springer.com/series/138


Vladimir Maz’ya

Sobolev Spaces

with Applications to Elliptic Partial
Differential Equations

2nd, revised and augmented Edition



Professor Vladimir Maz’ya
Department of Mathematics Sciences
University of Liverpool
Liverpool L69 7ZL,
UK
and
Department of Mathematics
Linköping University
Linköping 581 83,
Sweden
vlmaz@mai.liu.se

The 1st edition, published in 1985 in English under Vladimir G. Maz’ja in the Springer Series of Soviet
Mathematics was translated from Russian by Tatyana O. Shaposhnikova

ISSN 0072-7830
ISBN 978-3-642-15563-5 e-ISBN 978-3-642-15564-2
DOI 10.1007/978-3-642-15564-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011921122

Mathematics Subject Classification: 46E35, 42B37, 26D10

c© Springer-Verlag Berlin Heidelberg 1985, 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:vlmaz@mai.liu.se
http://www.springer.com
http://www.springer.com/mycopy


To Tatyana



Preface

Sobolev spaces, i.e., the classes of functions with derivatives in Lp, occupy
an outstanding place in analysis. During the last half-century a substantial
contribution to the study of these spaces has been made; so now solutions to
many important problems connected with them are known.

In the present monograph we consider various aspects of theory of Sobolev
spaces in particular, the so-called embedding theorems. Such theorems, orig-
inally established by S.L. Sobolev in the 1930s, proved to be a useful tool in
functional analysis and in the theory of linear and nonlinear partial differential
equations.

A part of this book first appeared in German as three booklets of Teubner-
Texte für Mathematik [552, 555]. In the Springer volume of “Sobolev Spaces”
[556] published in 1985, the material was expanded and revised.

As the years passed the area became immensely vast and underwent im-
portant changes, so the main contents of the 1985 volume had the potential
for further development, as shown by numerous references. Therefore, and
since the volume became a bibliographical rarity, Springer-Verlag offered me
the opportunity to prepare the second, updated edition of [556].

As in [556], the selection of topics was mainly influenced by my involvement
in their study, so a considerable part of the text is a report on my work in the
field. In comparison with [556], the present text is enhanced by more recent
results. New comments and the significantly augmented list of references are
intended to create a broader and modern view of the area. The book differs
considerably from the monographs of other authors dealing with spaces of
differentiable functions that were published in the last 50 years.

Each of the 18 chapters of the book is divided into sections and most of
the sections consist of subsections. The sections and subsections are numbered
by two and three numbers, respectively (3.1 is Sect. 1 in Chap. 3, 1.4.3 is
Subsect. 3 in Sect. 4 in Chap. 1). Inside subsections we use an independent
numbering of theorems, lemmas, propositions, corollaries, remarks, and so
on. If a subsection contains only one theorem or lemma then this theorem
or lemma has no number. In references to the material from another section
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or subsection we first indicate the number of this section or subsection. For
example, Theorem 1.2.1/1 means Theorem 1 in Subsect. 1.2.1, (2.6.6) denotes
formula (6) in Sect. 2.6.

The reader can obtain a general idea of the contents of the book from
the Introduction. Most of the references to the literature are collected in the
Comments. The list of notation is given at the end of the book.

The volume is addressed to students and researchers working in functional
analysis and in the theory of partial differential operators. Prerequisites for
reading this book are undergraduate courses in these subjects.
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Introduction

In [711–713] Sobolev proved general integral inequalities for differentiable
functions of several variables and applied them to a number of problems of
mathematical physics. Sobolev considered the Banach space W l

p(Ω) of func-
tions in Lp(Ω), p ≥ 1, with generalized derivatives of order l integrable with
power p. In particular, using these theorems on the potential-type integrals as
well as an integral representation of functions, Sobolev established the embed-
ding of W l

p(Ω) into Lq(Ω) or C(Ω) under certain conditions on the exponents
p, l, and q.1

Later the Sobolev theorems were generalized and refined in various ways
(Kondrashov, Il’in, Gagliardo, Nirenberg, et al.). In these studies the domains
of functions possess the so-called cone property (each point of a domain is
the vertex of a spherical cone with fixed height and angle which is situated
inside the domain). Simple examples show that this condition is precise, e.g.,
if the boundary contains an outward “cusp” then a function in W 1

p (Ω) is not,
in general, summable with power pn/(n− p), n > p, contrary to the Sobolev
inequality. On the other hand, looking at Fig. 1, the reader can easily see that
the cone property is unnecessary for the embedding W 1

p (Ω) ⊂ L2p/(2−p)(Ω),
2 > p. Indeed, by unifying Ω with its mirror image, we obtain a new domain
with the cone property for which the above embedding holds by the Sobolev
theorem. Consequently, the same is valid for the initial domain although it
does not possess the cone property.

Now we note that, even before the Sobolev results, it was known that cer-
tain integral inequalities hold under fairly weak requirements on the domain.
For instance, the Friedrichs inequality ([292], 1927)

∫
Ω

u2 dx ≤ K
(∫

Ω

(gradu)2 dx+
∫
∂Ω

u2 ds
)

1 A sketch of a fairly rich prehistory of Sobolev spaces can be found in Naumann
[624].

xxiii
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Fig. 1.

was established under the sole assumption that Ω is a bounded domain for
which the Gauss–Green formula holds. In 1933, Nikodým [637] gave an exam-
ple of a domain Ω such that the square integrability of the gradient does not
imply the square integrability of the function defined in Ω. The monograph
of Courant and Hilbert [216], Chap. 7, contains sufficient conditions for the
validity of the Poincaré inequality

∫
Ω

u2 dx ≤ K
∫
Ω

(gradu)2 dx+
1

mnΩ

(∫
Ω

u dx
)2

(see [663, p. 76] and [664, pp. 98–104]) and of the Rellich lemma [672] on the
compactness in L2(Ω) of the set bounded in the metric

∫
Ω

[
(gradu)2 + u2

]
dx.

The previous historical remarks naturally suggest the problem of describ-
ing the properties of domains that are equivalent to various properties of
embedding operators.

Starting to work on this problem in 1959 as a fourth-year undergraduate
student, I discovered that Sobolev-type theorems for functions with gradients
in Lp(Ω) are valid if and only if some isoperimetric and isocapacitary inequal-
ities hold. Such necessary and sufficient conditions appeared in the early 1960s
in my works [527–529, 531, 533, 534]. For p = 1 these conditions coincide with
isoperimetric inequalities between the volume and the area of a part of the
boundary of an arbitrary subset of the domain.

For p > 1, geometric functionals such as volume and area prove to be
insufficient for an adequate description of the properties of domains. Here
inequalities between the volume and the p-capacity or the p-conductivity arise.



Introduction xxv

Similar ideas were applied to complete characterizations of weight func-
tions and measures in the norms involved in embedding theorems. Moreover,
the method of proof of the criteria does not use specific properties of the Eu-
clidean space. The arguments can be carried over to the case of Riemannian
manifolds and even abstract metric spaces. A considerable part of the present
book (Chaps. 2–9 and 11) is devoted to the development of this isoperimetric
and isocapacitary ideology.

However, this theory does not exhaust the material of the book even con-
ceptually. Without aiming at completeness, I mention that other areas of the
study in the book are related to the following questions. How massive must a
subset e of a domain Ω be in order that the inequality

‖u‖Lq(Ω) ≤ C‖∇lu‖Lp(Ω)

holds for all smooth functions vanishing on e? How does the class of domains
admissible for integral inequalities depend upon additional requirements im-
posed upon the behavior of functions at the boundary? What are the con-
ditions on domains and measures involved in the norms ensuring density of
a space of differentiable functions in another one? We shall study the crite-
ria of compactness of Sobolev-type embedding operators. Sometimes the best
constants in functional inequalities will be discussed. The embedding and ex-
tension operators involving Birbaum–Orlicz spaces, the space BV of functions
whose gradients are measures, and Besov and Bessel potential spaces of func-
tions with fractional smoothness will also be dealt with.

The investigation of the above-mentioned and similar problems is not only
of interest in its own right. By virtue of well-known general considerations it
leads to conditions for the solvability of boundary value problems for elliptic
equations and to theorems on the structure of the spectrum of the correspond-
ing operators. Such applications are also included.

I describe briefly the contents of the book. More details can be found in
the Introductions to the chapters.

Chapter 1 gives prerequisites to the theory. Along with classical facts this
chapter contains certain new results. It addresses miscellaneous topics related
to the theory of Sobolev spaces. Some of this material is of independent in-
terest and some (Sects. 1.1–1.3) will be used in the sequel. The core of the
chapter is a generalized version of Sobolev embedding theorems (Sect. 1.4).
We also deal with various extension and approximation theorems (Sects. 1.5
and 1.7), and with maximal algebras in Sobolev spaces (Sect. 1.8). Section 1.6
is devoted to inequalities for functions vanishing on the boundary along with
their derivatives up to some order.

The idea of the equivalence of isoperimetric and isocapacitary inequalities
on the one hand and embedding theorems on the other hand is crucial for
Chap. 2. Most of this chapter deals with the necessary and sufficient conditions
for the validity of integral inequalities for gradients of functions that vanish
at the boundary. Of special importance for applications are multidimensional
inequalities of the Hardy–Sobolev type proved in Sect. 2.1. The basic results
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of Chap. 2 are applied to the spectral theory of the Schrödinger operator in
Sect. 2.5.

Chapters 3 and 4 briefly address the so-called conductor and capacitary
inequalities, which are stronger than inequalities of the Sobolev type and are
valid for functions defined on quite general topological spaces.

The space L1
p(Ω) of functions with gradients in Lp(Ω) is studied in

Chaps. 5–8. Chapter 5 deals with the case p = 1. Here, the necessary and
sufficient conditions for the validity of embedding theorems stated in terms of
the classes Jα characterized by isoperimetric inequalities are found. We also
check whether some concrete domains belong to these classes. In Chaps. 6
and 7 we extend the presentation to the case p > 1. Here the criteria are
formulated in terms of the p-conductivity. In Chap. 6 we discuss theorems
on embeddings into Lq(Ω) and Lq(∂Ω). Chapter 7 concerns embeddings into
L∞(Ω) ∩ C(Ω). In particular, we present the necessary and sufficient con-
ditions for the validity of the previously mentioned Friedrichs and Poincaré
inequalities and of the Rellich compactness lemma. In Chap. 9 we study the
essential norm and other noncompactness characteristics of the embedding
operator L1

p(Ω) → Lq(Ω).

Throughout the book and especially in Chaps. 5–8 we include numerous
examples of domains that illustrate possible pathologies of embedding opera-
tors. For instance, in Sect. 1.1 we show that the square integrability of second
derivatives and of the function do not imply the square integrability of the
first derivatives. In Sect. 7.5 we consider the domain for which the embedding
operator of W 1

p (Ω) into L∞(Ω) ∩ C(Ω) is continuous without being com-
pact. This is impossible for domains with “good” boundaries. The results of
Chaps. 5–7 show that not only the classes of domains determine the parame-
ters p, q, and so on in embedding theorems, but that a feedback takes place.
The criteria for the validity of integral inequalities are applied in Chap. 6 to
the theory of elliptic boundary value problems. The exhaustive results on em-
bedding operators can be restated as necessary and sufficient conditions for
the unique solvability and for the discreteness of the spectrum of boundary
value problems, in particular, of the Neumann problem.

Chapter 9, written together with Yu.D. Burago, is devoted to the study
of the space BV (Ω) consisting of the functions whose gradients are vector
charges. Here we present a necessary and sufficient condition for the existence
of a bounded nonlinear extension operator BV (Ω) → BV (Rn). We find nec-
essary and sufficient conditions for the validity of embedding theorems for
the space BV (Ω), which are similar to those obtained for L1

1(Ω) in Chap. 5.
In some integral inequalities we obtain the best constants. The results of
Sects. 9.5 and 9.6 on traces of functions in BV (Ω) make it possible to dis-
cuss boundary values of “bad” functions defined on “bad” domains. Along
with the results due to Burago and the author in Chap. 9 we present the
De Giorgi–Federer theorem on conditions for the validity of the Gauss–Green
formula.
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Chapters 2–9 mainly concern functions with first derivatives in Lp or in C∗.
This restriction is essential since the proofs use the truncation of functions
along their level surfaces. The next six chapters deal with functions that have
derivatives of any integer, and sometimes of fractional, order.

In Chap. 10 we collect (sometimes without proofs) various properties of
Bessel and Riesz potential spaces and of Besov spaces in R

n. In Chap. 10 we
also present a review of the results of the theory of (p, l)-capacities and of
nonlinear potentials.

In Chap. 11 we investigate necessary and sufficient conditions for the va-
lidity of the trace inequality

‖u‖Lq(μ) ≤ C‖u‖Sl
p
, u ∈ C∞

0

(
R

n
)
, (0.0.1)

where Lq(μ) is the space with the norm (
∫
|u|q dμ)1/q, μ is a measure, and

Sl
p is one of the spaces just mentioned. For q ≥ p, (0.0.1) is equivalent to the

isoperimetric inequality connecting the measure μ and the capacity generated
by the space Sl

p. This result is of the same type as the theorems in Chaps. 2–9.
It immediately follows from the capacitary inequality

∫ ∞

0

cap
(
Nt;Sl

p

)
tp−1 dt ≤ C‖u‖p

Sl
p
,

where Nt = {x : |u(x)| ≥ t}. Inequalities of this type, initially found by the
author for the spaces L1

p(Ω) and L̊2
p(R

n) [543], have proven to be useful in a
number of problems of function theory and were intensively studied.

For q > p ≥ 1 the criteria for the validity of (0.0.1), presented in Chap. 11
do not contain a capacity. In this case the measure of any ball is estimated
by a certain function of the radius.

Chapter 12 is devoted to pointwise interpolation inequalities for derivatives
of integer and fractional order.

Further, in Chap. 13 we introduce and study a certain kind of capacity. In
comparison with the capacities defined in Chap. 10, here the class of admissible
functions is restricted, they equal the unity in a neighborhood of a compactum.
(In the case of the capacities in Chap. 10, the admissible functions majorize
the unity on a compactum.) If the order l of the derivatives in the norm of the
space equals 1, then the two capacities coincide. For l �= 1 they are equivalent,
which is proved in Sect. 13.3.

The capacity introduced in Chap. 13 is applied in subsequent chapters to
prove various embedding theorems. An auxiliary inequality between the Lq-
norm of a function on a cube and a certain Sobolev seminorm is studied in
detail in Chap. 14. This inequality is used to justify criteria for the embedding
of L̊l

p(Ω) into different function spaces in Chap. 15. By L̊l
p(Ω) we mean the

completion of the space C∞
0 (Ω) with respect to the norm ‖∇lu‖Lp(Ω). It is

known that this completion is not embedded, in general, into the distribution
space D ′. In Chap. 15 we present the necessary and sufficient conditions for the
embeddings of L̊l

p(Ω) into D ′, Lq(Ω, loc), and Lp(Ω). For p = 2, these results
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can be interpreted as necessary and sufficient conditions for the solvability of
the Dirichlet problem for the polyharmonic equation in unbounded domains
provided the right-hand side is contained in D ′ or in Lq(Ω). In Chap. 16
we find criteria for the boundedness and the compactness of the embedding
operator of the space L̊l

p(Ω, ν) intoW r
q (Ω), where ν is a measure and L̊l

p(Ω, ν)
is the completion of C∞

0 (Ω) with respect to the norm

(∫
Ω

|∇lu|p dx+
∫
Ω

|u|p dν
)1/p

.

The topic of Chap. 17 is a necessary and sufficient condition for density
of C∞

0 (Ω) in a certain weighted Sobolev space which appears in applications.
Finally, Chap. 18 contains variations on the theme of Molchanov’s discreteness
criterion for the spectrum of the Schrödinger operator as well as two-sided
estimates for the first Dirichlet–Laplace eigenvalue.

Obviously, it is impossible to describe such a vast area as Sobolev spaces
in one book. The treatment of various aspects of this theory can be found
in the books by Sobolev [713]; R.A. Adams [23]; Nikolsky [639]; Besov, Il’in,
and Nikolsky [94]; Gel’man and Maz’ya [305]; Gol’dshtein and Reshetnyak
[316]; Jonsson and Wallin [408]; Ziemer [813]; Triebel [758–760]; D.R. Adams
and Hedberg [15]; Maz’ya and Poborchi [576]; Burenkov [155]; Hebey [361];
Haroske, Runst, and Schmeisser [354]; Haj�lasz [342]; Saloff-Coste [687]; At-
touch, Buttazzo, and Michaille [54]; Tartar [744]; Haroske and Triebel [355];
Leoni [486]; Maz’ya and Shaposhnikova [588]; Maz’ya [565]; and A. Laptev
(Ed.) [479].



1

Basic Properties of Sobolev Spaces

The plan of this chapter is as follows. Sections 1.1 and 1.2 contain the prereq-
uisites on Sobolev spaces and other function analytic facts to be used in the
book. In Sect. 1.3 a complete study of the one-dimensional Hardy inequality
with two weights is presented. The case of a weight of unrestricted sign on
the left-hand side is also included here, following Maz’ya and Verbitsky [593].
Section 1.4 contains theorems on necessary and sufficient conditions for the
Lq integrability with respect to an arbitrary measure of functions in W l

p(Ω).
These results are due to D.R. Adams, p > 1, [2, 3] and the author, p = 1,
[551]. Here, as in Sobolev’s papers, it is assumed that the domain is “good,”
for instance, it possesses the cone property. In general, in requirements on a
domain in Chap. 1 we follow the “all or nothing” principle. However, this rule
is violated in Sect. 1.5 which concerns the class preserving extension of func-
tions in Sobolev spaces. In particular, we consider an example of a domain for
which the extension operator exists and which is not a quasicircle.

In Sect. 1.6 an integral representation of functions in W l
p(Ω) that vanish

on ∂Ω along with all their derivatives up to order k − 1, 2k ≥ l, is obtained.
This representation entails the embedding theorems of the Sobolev type for
any bounded domain Ω. In the case 2k < l it is shown by example that some
requirements on ∂Ω are necessary. Section 1.7 is devoted to an approximation
of Sobolev functions by bounded ones. Here we reveal a difference between
the cases l = 1 and l > 1. The chapter finishes with a discussion in Sect. 1.8
of the maximal subalgebra of W l

p(Ω) with respect to multiplication.

1.1 The Spaces Ll
p(Ω), V l

p(Ω) and W l
p(Ω)

1.1.1 Notation

Let Ω be an open subset of n-dimensional Euclidean space R
n = {x}. Con-

nected open sets Ω will be called domains. The notations ∂Ω and Ω̄ stand for
the boundary and the closure of Ω, respectively. Let C∞(Ω) denote the space

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 1, c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Basic Properties of Sobolev Spaces

of infinitely differentiable functions on Ω; by C∞(Ω̄) we mean the space of
restrictions to Ω of functions in C∞(Rn).

In what follows D(Ω) or C∞
0 (Ω) is the space of functions in C∞(Rn) with

compact supports in Ω. The classes Ck(Ω), Ck(Ω̄), and Ck
0 (Ω) of functions

with continuous derivatives of order k and the classes Ck,α(Ω), Ck,α(Ω̄), and
Ck,α

0 (Ω) of functions for which the derivatives of order k satisfy a Hölder
condition with exponent α ∈ (0, 1] are defined in an analogous way.

Let D ′(Ω) be the space of distributions dual to D(Ω) (cf. L. Schwartz [695],
Gel’fand and Shilov [304]). Let Lp(Ω), 1 ≤ p < ∞, denote the space of
Lebesgue measurable functions, defined on Ω, for which

‖f‖Lp(Ω) =
(∫

Ω

|f |p dx
)1/p

<∞.

We use the notation L∞(Ω) for the space of essentially bounded Lebesgue
measurable functions, i.e., uniformly bounded up to a set of measure zero. As
a norm of f in L∞(Ω) one can take its essential supremum, i.e.,

‖f‖L∞(Ω) = inf
{
c > 0 : |f(x)| ≤ c for almost all x ∈ Ω

}
.

By Lp(Ω, loc) we mean the space of functions locally integrable with power
p in Ω. The space Lp(Ω, loc) can be naturally equipped with a countable
system of seminorms ‖u‖Lp(ωk), where {ωk}k≥1 is a sequence of domains with
compact closures ω̄k, ω̄k ⊂ ωk+1 ⊂ Ω, and

⋃
k ωk = Ω. Then Lp(Ω, loc)

becomes a complete metrizable space.
If Ω = R

n we shall often omit Ω in notations of spaces and norms. Inte-
gration without indication of limits extends over R

n. Further, let supp f be
the support of a function f and let dist(F,E) denote the distance between
the sets F and E. Let B(x, �) or B�(x) denote the open ball with center x
and radius �, B� = B�(0). We shall use the notation mn for n-dimensional
Lebesgue measure in R

n and vn for mn(B1).
Let c, c1, c2, . . . , denote positive constants that depend only on “dimen-

sionless” parameters n, p, l, and the like. We call the quantities a and b equiv-
alent and write a ∼ b if c1a ≤ b ≤ c2a. If α is a multi-index (α1, . . . , αn),
then, as usual, |α| =

∑
j αj , α! = α1!, . . . , αn!, Dα = Dα1

x1
, . . . , Dαn

xn
, where

Dxi = ∂/∂xi, xα = xα1
1 , . . . , x

αn
n . The inequality β ≥ α means that βi ≥ αi

for i = 1, . . . , n. Finally, ∇l = {Dα}, where |α| = l and ∇ = ∇1.

1.1.2 Local Properties of Elements in the Space Ll
p(Ω)

Let Ll
p(Ω) denote the space of distributions on Ω with derivatives of order l

in the space Lp(Ω). We equip Ll
p(Ω) with the seminorm

‖∇lu‖Lp(Ω) =
(∫

Ω

(∑
|α|=l

∣∣Dαu(x)
∣∣2
)p/2)1/p

.
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Theorem. Any element of Ll
p(Ω) is in Lp(Ω, loc).

Proof. Let ω and g be bounded open subsets of R
n such that ω ⊂ g ⊂ Ω.

Moreover, we assume that the sets ω and g are contained in g and Ω along
with their ε neighborhoods. We introduce ϕ ∈ D(Ω) with ϕ = 1 on g, take an
arbitrary u ∈ Ll

p(Ω), and set T = ϕu. Further, let η ∈ D be such that η = 1
in a neighborhood of the origin and supp η ⊂ Bε.

It is well known that the fundamental solution of the polyharmonic oper-
ator Δl is

Γ (x) =

{
cn,l(−1)l|x|2l−n, for 2l < n or for odd n ≤ 2l,
cn,l(−1)l−1|x|2l−n log |x|, for even n ≤ 2l.

Here the constant cn,l is chosen so that ΔlΓ = δ(x) holds.
It is easy to see that Δl(ηΓ ) = ζ + δ with ζ ∈ D(Rn) and δ denoting

Dirac’s function. Therefore,

T + ζ ∗ T =
∑

|α|=l

l!
α!
Dα(ηΓ ) ∗DαT,

where the star denotes convolution. We note that ζ ∗ T ∈ C∞(Rn). So, we
have to examine the expression Dα(ηΓ ) ∗DαT. Using the formula

Dα(ϕu) =
∑
α≥β

α!
β!(α− β)!

DαϕDα−βu,

we obtain
DαT = Dα(ϕu) = ϕDαu,

in g. Hence,
Dα(ηΓ ) ∗DαT = Dα(ζΓ ) ∗ ϕDαu,

in ω. To conclude the proof, we observe that the integral operator with a weak
singularity, applied to ϕDαu, is continuous in Lp(ω). �

Corollary. Let u ∈ Ll
p(Ω). Then all distributional derivatives Dαu with

|α| = 0, 1, . . . , l − 1 belong to the space Lp(Ω, loc).

The proof follows immediately from the inclusion Dαu ∈ Ll− |α|
p (Ω) and

the above theorem.

Remark. By making use of the results in Sect. 1.4.5 we can refine the
theorem to obtain more information on local properties of elements in Ll

p(Ω).
By the above theorem, if Ω is connected, we can supply Ll

p(Ω) with the
norm

‖u‖Ll
p(Ω) = ‖∇lu‖Lp(Ω) + ‖u‖Lp(ω), (1.1.1)

where ω is an arbitrary bounded open nonempty set with ω̄ ⊂ Ω.
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1.1.3 Absolute Continuity of Functions in L1
p(Ω)

First we mention some simple facts concerning the approximation of functions
in Lp(Ω) by smooth functions.

Let ϕ ∈ D , ϕ ≥ 0, supp ϕ ⊂ B1, and
∫
ϕ(x) dx = 1.

With any u ∈ Lp(Ω) that vanishes on R
n\Ω, we associate the family of

its mollifications

(Mεu) = ε−n

∫
ϕ

(
x− y
ε

)
u(y) dy.

The function ϕ is called a mollifier and ε is called a radius of mollification.
We formulate some almost obvious properties of a mollification:

1. Mεu ∈ C∞(Rn);
2. If u ∈ Lp(Ω), then Mεu→ u in Lp(Ω) and ‖Mεu‖Lp(Rn) ≤ ‖u‖Lp(Ω);
3. If ω is a bounded domain ω̄ ⊂ Ω, then for sufficiently small ε

DαMεu = MεD
αu,

in ω. Hence, for u ∈ Ll
p(Ω),

DαMεu→ Dαu in Lp(ω), |α| ≤ l.

The properties of a mollification enable us to prove easily that
‖∇lu‖Lp(Ω) = 0 is equivalent to asserting that u is a polynomial of a de-
gree not higher than l − 1.

We now discuss a well-known property of L1
p(Ω), p ≥ 1. A function defined

on Ω is said to be absolutely continuous on the straight line l if this function
is absolutely continuous on any segment of l, contained in Ω.

Theorem 1. Any function in L1
p(Ω) (possibly modified on a set of zero

measure mn) is absolutely continuous on almost all straight lines that are
parallel to the coordinate axes. The distributional gradient of a function in
L1

p(Ω) coincides with the usual gradient almost everywhere.

In the proof of this assertion we use the following lemma.

Lemma. There is a sequence {ηk} of functions in D(0, 1) such that inclu-
sion g ∈ L1(0, 1) and equations

∫ 1

0

g(t)η′
k(t) dt = 0

for all k = 1, 2, . . . , imply that g(t) = const a.e. on (0, 1).
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Proof. Let Δ be any interval with rational endpoints such that Δ̄ ⊂ (0, 1).
Let Φ(Δ) denote the collection of mollifications of the characteristic function
χΔ with the radii dist(Δ,R1\(0, 1))/2i, i = 1, 2, . . . . Clearly the union Φ =⋃

Δ Φ(Δ) is a countable subset of D(0, 1), hence Φ is a sequence Φ = {ϕk}∞
k=1.

We observe that if f ∈ L1(0, 1) and

∫ 1

0

f(t)ϕk(t) dt = 0

for all k = 1, 2, . . . , then ∫
e

f(t) dt = 0

for any interval e ⊂ (0, 1) and hence for any measurable subset e of (0, 1).
Thus f = 0 a.e. on (0, 1).

Now ηk can be defined by

ηk(t) =
∫ t

0

(
ϕ(s) − α(s)

∫ 1

0

ϕk(τ) dτ
)

ds,

where α ∈ D(0, 1) and ∫ 1

0

α(t) dt = 1.

Indeed, if g ∈ L1(0, 1) and

∫ 1

0

g(t)η′
k(t) dt = 0 for k = 1, 2, . . . ,

we have

0 =
∫ 1

0

g(t)
(
ϕk(t) − α(t)

∫ 1

0

ϕk(s) ds
)

dt

=
∫ 1

0

(
g(t) −

∫ 1

0

g(s)α(s) ds
)
ϕk(t) dt.

Therefore

g(t) =
∫ 1

0

g(s)α(s) ds a.e. on (0, 1). �

For the proof of Theorem 1.1.3/1 it suffices to assume that Ω = {x : 0 <
xi < 1, 1 ≤ i ≤ n}. Let x′ = (x1, . . . , xn−1). By Fubini’s theorem

∫ 1

0

∣∣∣∣∂u∂t (x′, t)
∣∣∣∣ dt <∞ for almost all x′ ∈ ω,

where ∂u/∂t is the distributional derivative. Therefore, the function
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x �→ v(x) =
∫ xn

0

∂u

∂t
(x′, t) dt

is absolutely continuous on the segment [0, 1] for almost all x′ ∈ ω and its
classical derivative coincides with ∂u/∂xn for almost all xn ∈ (0, 1).

Let ζ be an arbitrary function in D(ω) and let {ηk} be the sequence from
the above lemma. After integration by parts we obtain

∫ 1

0

v(x′, t)η′
k(t) dt = −

∫ 1

0

ηk(t)
∂v

∂t
(x′, t) dt, k = 1, 2, . . . .

Multiplying both sides of the last equality by ζ(x′) and integrating over ω, we
obtain ∫

Ω

v(x)η′
k(xn)ζ(x′) dx = −

∫
Ω

ηk(xn)ζ(x′)
∂v

∂xn
dx.

By the definition of distributional derivative,
∫
Ω

u(x)η′
k(xn)ζ(x′) dx = −

∫
Ω

ηk(xn)ζ(x′)
∂v

∂xn
dx.

Hence the left-hand sides of the two last identities are equal. Since ζ ∈ D(ω)
is arbitrary, we have for almost all x′ ∈ ω

∫ 1

0

[
u(x′, xn) − v(x′, xn)

]
η′
k(xn) dxn = 0, k = 1, 2, . . . .

By the Lemma, for the same x′ ∈ ω the difference u(x′, xn) − v(x′, xn)
does not depend on xn. In other words, for almost any fixed x′ ∈ ω

u(x) =
∫ xn

0

∂u

∂t
(x′, t) dt+ const,

which completes the proof. �

The converse assertion is contained in the following theorem.

Theorem 2. If a function u defined on Ω is absolutely continuous on
almost all straight lines that are parallel to coordinate axes and the first clas-
sical derivatives of u belong to Lp(Ω). Then these derivatives coincide with
the corresponding distributional derivatives, and hence u ∈ L1

p(Ω).

Proof. Let vj be the classical derivative of u with respect to xj and let
η ∈ D(Ω). After integration by parts we obtain

∫
Ω

ηvj dx = −
∫
Ω

∂η

∂xj
u dx,

which shows that vj is the distributional derivative of u with respect to xj .�
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1.1.4 Spaces W l
p(Ω) and V l

p(Ω)

We introduce the spaces

W l
p(Ω) = Ll

p(Ω) ∩ Lp(Ω) and V l
p(Ω) =

l⋂
k=0

Lk
p(Ω),

equipped with the norms

‖u‖W l
p(Ω) = ‖∇lu‖Lp(Ω) + ‖u‖Lp(Ω),

‖u‖V l
p(Ω) =

l∑
k=0

‖∇ku‖Lp(Ω).

We present here two examples of domains which show that, in general, the
spaces Ll

p(Ω), W l
p(Ω), and V l

p (Ω) may be nonisomorphic if ∂Ω is not suffi-
ciently regular.

In his paper of 1933 Nikodým [637] studied functions with a finite Dirichlet
integral. There he gave an example of a domain for which W 1

2 (Ω) �= L1
2(Ω).

Example 1. The domain Ω considered by Nikodým is the union of the
rectangles (cf. Fig. 2)

Am =
{
(x, y) : 21−m − 2−1−m < x < 21−m, 2/3 < y < 1

}
,

Bm =
{
(x, y) : 21−m − εm < x < 21−m, 1/3 ≤ y ≤ 2/3

}
,

C =
{
(x, y) : 0 < x < 1, 0 < y < 1/3

}
,

where εm ∈ (0, 2−m−1) and m = 1, 2, . . . .
Positive numbers αm are chosen so that the series

Fig. 2.
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Fig. 3.

∞∑
m=1

α2
mm2(Am), (1.1.2)

diverges. Let u be a continuous function on Ω that is equal to αm on Am, zero
on C, and linear on Bm. Since the series (1.1.2) diverges, u does not belong
to L2(Ω). On the other hand, the numbers εm can be chosen to be so small
that the Dirichlet integral

∞∑
m=1

∫∫
Bm

(
∂u

∂y

)2

dxdy,

converges.

Example 2. The spaces W 2
2 (Ω) and V 2

2 (Ω) do not coincide for the domain
shown in Fig. 3. Let

u(x, y) =

⎧⎪⎨
⎪⎩

0 on P,
4m(y − 1)2 on Sm (m = 1, 2, . . .),
2m+1(y − 1) − 1 on Pm (m = 1, 2, . . .).

We can easily check that
∫∫

Sm

(∇2u)2 dxdy = 22−m,

∫∫
Sm

u2 dxdy = 2−5m,

∫∫
Pm

u2 dxdy ∼ 2−m/2,

∫∫
Sm

(∇u)2 dxdy ∼ 2−3m,
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∫∫
Pm

(∇u)2 dxdy ∼ 2m/2.

Therefore, ‖∇u‖L2(Ω) = ∞ whereas ‖u‖W 2
2 (Ω) <∞.

1.1.5 Approximation of Functions in Sobolev Spaces by Smooth
Functions in Ω

Let 1 ≤ p < ∞. The following two theorems show the possibility of approxi-
mating any function in Ll

p(Ω) and W l
p(Ω) by smooth functions on Ω.

Theorem 1. The space Ll
p(Ω) ∩ C∞(Ω) is dense in Ll

p(Ω).

Proof. Let {Bk}k≥1 be a locally finite covering of Ω by open balls Bk

with radii rk, B̄k ⊂ Ω, and let {ϕk}k≥1 be a partition of unity subordinate to
this covering. Let u ∈ Ll

p(Ω) and let {�k} be a sequence of positive numbers
which monotonically tends to zero so that the sequence of balls {(1 + �k)Bk}
has the same properties as {Bk}. If Bk = B�(x), then by definition we put
cBk = Bc�(x). Let wk denote the mollification of uk = ϕku with radius �krk.
Clearly, w =

∑
wk belongs to C∞(Ω). We take ε ∈ (0, 1/2) and choose �k to

satisfy
‖uk − wk‖Ll

p(Ω) ≤ εk.

On any bounded open set ω, ω̄ ⊂ Ω, we have

u =
∑

uk,

where the sum contains a finite number of terms. Hence,

‖u− w‖Ll
p(Ω) ≤

∑
‖uk − wk‖Ll

p(Ω) ≤ ε(1 − ε)−1.

Therefore, w ∈ Ll
p(Ω) ∩ C∞(Ω) and

‖u− w‖Ll
p(Ω) ≤ 2ε.

The theorem is proved. �

The next theorem is proved similarly.

Theorem 2. The space W l
p(Ω)∩C∞(Ω) is dense in W l

p(Ω) and the space
V l
p(Ω) ∩ C∞(Ω) is dense in V l

p(Ω).

Remark. It follows from the proof of Theorem 1 that the space Ll
p(Ω) ∩

C∞(Ω) ∩ C(Ω̄) is dense in Ll
p(Ω) ∩ C(Ω̄) if Ω has a compact closure. The

same is true if Ll
p is replaced by W l

p or by V l
p .

In fact, let �k be such that

‖uk − wk‖C(Ω̄) ≤ εk.
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We put

VN =
N∑

k=1

wk +
∞∑

k=N+1

uk.

Then

sup
x∈Ω

∣∣w(x) − VN (x)
∣∣ ≤

∞∑
k=N+1

‖uk − wk‖C(Ω̄) ≤ 2 εN+1,

and hence w ∈ C(Ω̄) since w is the limit of a sequence in C(Ω̄). On the other
hand,

‖u− w‖C(Ω̄) ≤
∞∑

k=1

‖uk − wk‖C(Ω̄) ≤ 2 ε,

which completes the proof. �

1.1.6 Approximation of Functions in Sobolev Spaces by Functions
in C∞(Ω̄)

We consider a domainΩ ⊂ R
2 for which C∞(Ω) cannot be replaced by C∞(Ω̄)

in Theorems 1.1.5/1 and 1.1.5/2. We introduce polar coordinates (�, θ) with
0 ≤ θ < 2π. The boundary of the domain Ω = {(�, θ) : 1 < � < 2, 0 < θ < 2π}
consists of the circles � = 1, � = 2, and the interval {(�, θ) : 1 < � < 2, θ = 0}.
The function u = θ is integrable on Ω along with all its derivatives, but it is
not absolutely continuous on segments of straight lines x = const > 0, which
intersect Ω. According to Theorem 1.1.3/1 the function u does not belong
to Ll

p(Ω1), where Ω1 is the annulus Ω = {(�, θ) : 1 < � < 2, 0 ≤ θ < 2π}.
Hence, the derivatives of this function cannot be approximated in the mean
by functions in C∞(Ω̄).

A necessary and sufficient condition for the density of C∞(Ω̄) in Sobolev
spaces is unknown. The following two theorems contain simple sufficient con-
ditions.

Definition. A domain Ω ⊂ R
n is called starshaped with respect to a point

O if any ray with origin O has a unique common point with ∂Ω.

Theorem 1. Let 1 ≤ p < ∞. If Ω is a bounded domain, starshaped with
respect to a point, then C∞(Ω̄) is dense in W l

p(Ω) and V l
p (Ω), p ∈ [1,∞). The

same is true for the space Ll
p(Ω), i.e., for any u ∈ Ll

p(Ω) there is a sequence
{ui}i≥1 of functions in C∞(Ω̄) such that

ui → u in Lp(Ω, loc) and
∥∥∇l(ui → u)

∥∥
Lp(Ω)

→ 0.

Proof. Let u ∈W l
p(Ω). We may assume that Ω is starshaped with respect

to the origin. We introduce the notation uτ (x) = u(τx) for τ ∈ (0, 1). We can
easily see that ‖u− uτ‖Lp(Ω) → 0 as τ → 1.



1.1 The Spaces Ll
p(Ω), V l

p (Ω) and W l
p(Ω) 11

From the definition of the distributional derivative it follows thatDα(uτ ) =
τ l(Dαu)τ , |α| = l. Hence uτ ∈W l

p(τ
−1Ω) and

∥∥Dα(u− uτ )
∥∥
Lp(Ω)

≤
∥∥(Dαu

)
τ
−Dα(uτ )

∥∥
Lp(Ω)

+
∥∥Dαu−

(
Dαu

)
τ

∥∥
Lp(Ω)

≤
(
1 − τ l

)∥∥(Dαu
)
τ

∥∥
Lp(Ω)

+
∥∥Dαu−

(
Dαu

)
τ

∥∥
Lp(Ω)

.

The right-hand side tends to zero as τ → 1. Therefore, uτ → u in W l
p(Ω).

Since Ω̄ ⊂ τ−1Ω, the sequence of mollifications of uτ converges to uτ in
W l

p(Ω). Now, using the diagonalization process, we can construct a sequence
of functions in C∞(Ω̄) that approximates u in W l

p(Ω). Thus we proved the
density of C∞(Ω̄) in W l

p(Ω). The spaces Ll
p(Ω) and V l

p (Ω) can be considered
in an analogous manner.

Theorem 2. Let 1 ≤ p < ∞. Let Ω be a domain with compact closure
of the class C. This means that every x ∈ ∂Ω has a neighborhood U such
that Ω ∩ U has the representation xn < f(x1, . . . , xn−1) in some system of
Cartesian coordinates with a continuous function f. Then C∞(Ω̄) is dense in
W l

p(Ω), V l
p(Ω), and Ll

p(Ω).

Proof. We limit consideration to the space V l
p (Ω). By Theorem 1.1.5/2 we

may assume that u ∈ C∞(Ω) ∩ V l
p (Ω).

Let {U } be a small covering of ∂Ω such that U ∩ ∂Ω has an explicit
representation in Cartesian coordinates and let {η} be a smooth partition of
unity subordinate to this covering. It is sufficient to construct the required
approximation for uη.

We may specify Ω by

Ω =
{
x = (x′, xn) : x′ ∈ G, 0 < xn < f(x′)

}
,

where G ⊂ R
n−1 and f ∈ C(Ḡ), f > 0 on G. Also we may assume that u has

a compact support in Ω ∪ {x : x′ ∈ G, xn = f(x′)}.
Let ε denote any sufficiently small positive number. Obviously, uε(x) =

u(x′, xn − ε) is smooth on Ω̄. It is also clear that for any multi-index α,
0 ≤ |α| ≤ l, we have

∥∥Dα(uε − u)
∥∥
Lp(Ω)

=
∥∥(Dαu

)
ε
−Dαu

∥∥
Lp(Ω)

→ 0

as ε→ +0. The result follows. �

Remark. The domain Ω, considered at the beginning of this section, for
which C∞(Ω̄) is not dense in Sobolev spaces, has the property ∂Ω �= ∂Ω̄. We
might be tempted to suppose that the equality ∂Ω = ∂Ω̄ provides the density
of C∞(Ω̄) in Ll

p(Ω). The following example shows that this conjecture is not
true.

Example. We shall prove the existence of a bounded domain Ω ⊂ R
n such

that ∂Ω = ∂Ω̄ and L1
p(Ω) ∩ C(Ω̄) is not dense in L1

p(Ω).
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We start with the case n = 2. Let K be a closed nowhere dense subset of
the segment [−1, 1] and let {Bi} be a sequence of open disks constructed on
adjacent intervals of K taken as their diameters. Let B be the disk x2+y2 < 4
and let Ω = B\∪Bi. We can choose K so that the linear measure of Γ = {x ∈
K : |x| < 1/2} is positive. Consider the characteristic function θ of the upper
halfplane y > 0 and a function η ∈ C∞

0 (−1, 1) which is equal to unity on
(−1/2, 1/2).

The function U , defined by

U(x, y) = η(x)θ(x, y),

belongs to the space L1
p(B) for all p ≥ 1. Suppose that uj → U in L1

p(Ω),
where {uj}j≥1 is a sequence of functions in C(Ω̄) ∩ L1

p(Ω). According to our
assumption, for almost all x ∈ Γ and for all δ ∈ (0, 1/2),

uj(x, δ) − uj(x,−δ) =
∫ δ

−δ

∂uj(x, y)
∂y

dy.

Hence ∫
Γ

∣∣uj(x, δ) − uj(x,−δ)∣∣ dx ≤
∫∫

Γ (δ)

∣∣graduj(x, y)
∣∣ dxdy,

where Γ (δ) = Γ × (−δ, δ).
Since uj → U in L1

1(Ω), the integrals
∫∫

Γ (δ)

∣∣graduj(x, y)
∣∣ dxdy, j ≥ 1,

are uniformly small. Therefore, for each ε > 0 there exists a δ0 > 0 such that
for all δ ∈ (0, δ0) ∫

Γ

∣∣uj(x, δ) − uj(x,−δ)∣∣ dx < ε.
Applying Fubini’s theorem, we obtain that the sequence in the left-hand side
converges to ∫

Γ

∣∣U(x, δ) − U(x,−δ)
∣∣ dx = m1(Γ )

as j → ∞ for almost all small δ. Hence m1(Γ ) ≤ ε which contradicts the
positiveness of m1(Γ ). Since ∂Ω = ∂Ω̄, the required counterexample has been
constructed for n = 2.

In the case n > 2, let Ω2 denote the plane domain considered previously,
put Ω = Ω2 × (0, 1)n−2, and duplicate the above argument.

1.1.7 Transformation of Coordinates in Norms of Sobolev Spaces

Let H and G be domains in R
n and let
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T : y → x(y) =
(
x1(y), . . . , xn(y)

)
,

be a homeomorphic map of H onto G.
We say that T is a quasi-isometric map, if for any y0 ∈ H,x0 ∈ G,

lim sup
y→y0

|x(y) − x(y0)|
|y − y0|

≤ L, lim sup
x→x0

|y(x) − y(x0)|
|x− x0|

≤ L, (1.1.3)

and the Jacobian det x′(y) preserves its sign in H.
We can check that the estimates (1.1.3) are equivalent to

‖x′(y)‖ ≤ L a.e. on H, ‖y′(x)‖ ≤ L a.e. on G,

where x′, y′ are the Jacobi matrices of the mappings y → x(y), x → y(x)
and ‖ · ‖ is the norm of the matrix. This immediately implies that the quasi-
isometric map satisfies the inequalities

L−n ≤
∣∣detx′(y)

∣∣ ≤ Ln. (1.1.4)

By definition, the map T belongs to the class Cl−1,1(H̄), l ≥ 1, if the
functions y → xi(y) belong to the class Cl−1,1(H̄). It is easy to show that if
T is a quasi-isometric map of the class Cl−1,1(H̄), then T−1 is of the class
Cl−1,1(Ḡ).

Theorem. Let T be a quasi-isometric map of the class Cl−1,1(H̄), l ≥ 1,
which maps H onto G. Let u ∈ V l

p(G) and v(y) = u(x(y)). Then v ∈ V l
p (H)

and for almost all y ∈ H the derivatives Dαv(y), |α| ≤ l exist and are expressed
by the classical formula

Dαv(y) =
∑

1≤ |β|≤|α|
ϕα

β(y)
(
Dβu

)(
x(y)

)
. (1.1.5)

Here

ϕα
β (y) =

∑
s

cs

n∏
i=1

∏
j

(
Dsijxi

)
(y),

and the summation is taken over all multi-indices s = (sij) satisfying the
conditions

∑
i,j

si,j = α, |sij | ≥ 1,
∑
i,j

(
|sij | − 1

)
= |α| − |β|.

Moreover, the norms ‖v‖V l
p(H) and ‖u‖V l

p(G) are equivalent.

Proof. Let u ∈ C∞(G) ∩ V l
p(G). Then v is absolutely continuous on al-

most all straight lines that are parallel to coordinate axes. The first partial
derivatives of v are expressed by the formula
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∂v(y)
∂ym

=
n∑

i=1

∂xi(y)
∂ym

(
∂u

∂xi

)(
x(y)

)
, (1.1.6)

for almost all y. Since

‖∇v‖Lp(H) ≤ c‖∇u‖Lp(G),

it follows by Theorem 1.1.3/2 that v ∈ V 1
p (H). After the approximation of an

arbitrary u ∈ V l
p (G) by functions in C∞(G) ∩ V 1

p (G) (cf. Theorem 1.1.5/2)
the result follows in the case l = 1.

For l > 1 we use induction. Let (1.1.5) hold for |α| = l − 1. Since Dβu ∈
V 1
p (G), the functions y → (Dβu)(x(y)) belong to the space V l

p (H). This and
the inclusion ϕα

β ∈ C0,1(H̄) imply that each term on the right-hand side of
(1.1.4) with |α| = l − 1 belongs to V 1

p (H). Applying (1.1.6) to (1.1.5) with
|α| = l, we obtain

‖∇lv‖Lp(H) ≤ c‖u‖V l
p(G).

The result follows. �

1.1.8 Domains Starshaped with Respect to a Ball

Definition. Ω is starshaped with respect to a ball contained in Ω if Ω is
starshaped with respect to each point of this ball.

Lemma. Let Ω be a bounded domain starshaped with respect to a ball B�

with radius � and with center at the origin of spherical coordinates (r, ω). If
∂Ω has a representation r = r(ω), then r(ω) satisfies a Lipschitz condition.

Proof. We show that for all x, y ∈ ∂Ω with

|ωx − ωy| < 1, (1.1.7)

the inequality
|x− y| ≤ 2D2�−1|ωx − ωy|

holds where D is the diameter of Ω.
The inequality (1.1.7) means that the angle ϕ between the vectors x and

y is less than π/3. We shall show that the straight line l, passing through the
points x, y, cannot intersect the ball B�/2.

In fact, if there exists a point z ∈ l ∩B�/2, then z belongs to the segment
xy since Ω is starshaped with respect to z. Consider the triangles Oxz, Oyz.
The inequalities |x| ≥ �, |y| ≥ �, |z| ≤ �/2 imply |z| ≤ |y − z|, |z| ≤ |x − z|.
Hence �Oxz ≤ π/3, �Oyz ≤ π/3, and ϕ = π−�Oxz −�Oyz ≥ π/3, which
contradicts (1.1.7).

The distance from the origin O to the line l is |x||y||x − y|−1 sinϕ which
is less than �/2 since l ∩B�/2 �= ∅. Therefore

|x− y| ≤ 2�−1|x||y| sinϕ ≤ 4�−1D2 sin(ϕ/2) = 2�−1D2|ωx − ωy|,

and the result follows. �
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Remark. It is easy to see that the converse assertion also holds. Namely, if
Ω is a bounded domain and ∂Ω has the representation r = r(ω) in spherical
coordinates with r(ω) satisfying a Lipschitz condition, then Ω is starshaped
with respect to a ball with its center at the origin.

1.1.9 Domains of the Class C0,1 and Domains Having the Cone
Property

Definition 1. We say that a bounded domain Ω belongs to the class C 0,1 if
each point x ∈ ∂Ω has a neighborhood U such that the set U ∩ Ω is repre-
sented by the inequality xn < f(x1, . . . , xn−1) in some Cartesian coordinate
system with function f satisfying a Lipschitz condition.

By Lemma 1.1.8 any bounded domain starshaped with respect to a ball
belongs to the class C0,1.

Definition 2. A domain Ω possesses the cone property if each point of Ω
is the vertex of a cone contained in Ω along with its closure, the cone being
represented by the inequalities x2

1 + · · · + x2
n−1 < bx2

n, 0 < xn < a in some
Cartesian coordinate system, a, b = const.

Remark 1. It is easy to show that bounded domains of the class C0,1 have
the cone property. The example of a ball with deleted center shows that the
converse assertion is not true.

Lemma 1. Let Ω be a bounded domain having the cone property. Then Ω
is the union of a finite number of domains starshaped with respect to a ball.

Since a domain having the cone property is a union of congruent cones
and hence it is a union of domains starshaped with respect to balls of a fixed
radius, then Lemma 1 follows immediately from the next lemma.

Lemma 2. If a bounded domain Ω is a union of an infinite number of
domains Gα starshaped with respect to balls Bα ⊂ Gα of a fixed radius R > 0,
then for each r < R there exists a finite number of domains Ωk (1 ≤ k ≤ N)
starshaped with respect to balls of radius r, contained in Ωk, and such that⋃

k Ωk = Ω.

Proof. Let G1 be a domain in the collection {Gα}. Consider the domain
Ω1 =

⋃
β Gβ , where the union is taken over all domains Gβ for which the

distance between the centers of the balls Bβ and B1 is � ≤ R− r. Obviously,
any of the balls Bβ contain the ball C1 of radius r concentric with B1. Since
any Gβ is starshaped with respect to C1, then Ω1 is starshaped with respect
to C1.

We define G2 to be any of the domains Gα such that Gα ∩ Ω1 = ∅.
Repeating the preceding construction, we define a domain Ω2 starshaped with
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respect to the ball C2 of radius r with the center situated at a distance d >
R− r from the center of the ball C1. Analogously, we construct a domain Ω3

starshaped with respect to a ball C3 of radius r with the center situated at a
distance d > R− r from the centers of the balls C1 and C2, and so on.

Clearly this process will stop after a finite number of steps since the centers
of the balls C1, C2, . . . , are contained in a bounded domain and the distance
between centers is more than R− r > 0. The result follows.

Remark 2. Domains of the class C 0,1 are sometimes called domains hav-
ing the strong Lipschitz property, whereas Lipschitz domains are defined as
follows.

Definition 3. A bounded domain Ω is called a Lipschitz domain if each
point of its boundary has a neighborhood U ⊂ R

n such that a quasi-isometric
transformation maps U ∩Ω onto a cube.

Clearly, domains of the class C0,1 are Lipschitz domains. The following
example shows that the converse is not true, i.e., a Lipschitz domain may not
have a strong Lipschitz property. Moreover, the Lipschitz domain considered
in the next example fails to have the cone property (cf. Remark 1).

Example. Let Ω ⊂ R
2 be the union of the rectangles Pk = {x : |x1−2−k| <

2−k−2, 0 ≤ x2 < 2−k−2}, k = 1, 2, . . . , and the square Q = {x : 0 < x1 <
1, −1 < x2 < 0}. Obviously, Ω does not have the cone property. We shall
show that Ω can be mapped onto the square Q by a quasi-isometric map.

We can easily check that the mapping T0 : x → y = (y1, y2), being the
identity on Q and defined on Pk by

y1 =
(
x1 − 2−k

)(
1 − 2kx2

)
+ 2−k, y2 = x2,

is quasi-isometric. The image T0Ω is the union of the square T0Q and the set
{y : 0 < y1 < 1, 0 ≤ y2 < f(y1)} with f satisfying the Lipschitz condition
with the constant 4 and 0 ≤ f(y1) ≤ 1/8 (cf. Fig. 4).

Let η be a piecewise linear function, η = 1 for y > 0 and η = 0 for y < −1.
The Lipschitz transformation T1 : y → z, defined by

z1 = y1, z2 = y2 − f(y1)η(y2),

maps T0Ω onto the square {z : 0 < z1 < 1,−1 < z2 < 0}. The Jacobian of T1

is greater than 1/2; therefore T1 is a quasi-isometric mapping.
Thus, Ω is mapped onto Q by the quasi-isometric mapping T0T1.

1.1.10 Sobolev Integral Representation

Theorem 1. Let Ω be a bounded domain starshaped with respect to a ball Bδ,
Bδ ⊂ Ω, and let u ∈ Ll

p(Ω). Then for almost all x ∈ Ω
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Fig. 4.

u(x) = δ−n
∑

|β|<l

(
x

δ

)β ∫
Bδ

ϕβ

(
y

δ

)
u(y) dy

+
∑

|α|=l

∫
Ω

fα(x; r, θ)
rn−1

Dαu(y) dy, (1.1.8)

where r = |y−x|, θ = (y−x)r−1, ϕβ ∈ D(B1), fα are infinitely differentiable
functions in x, r, θ such that

|fα| ≤ c (D/δ)n−1,

where c is a constant that is independent of Ω and D is the diameter of Ω.

Proof. It suffices to put δ = 1. Let ϕ ∈ D(B1) and
∫
B1

ϕ(z) dz = 1.

First we assume that u ∈ C∞(Ω̄). If x ∈ Ω, z ∈ B1, the line segment [z, x] is
contained in Ω and so the following Taylor’s formula applies:

u(x) =
∑

|β|<l

Dβu(z)
β!

(x−z)β+l
∫ 1

0

(1−t)l−1
∑

|α|=l

1
α!
Dαu

(
z+t(x−z)

)
(x−z)α dt.

Multiplying this equality by ϕ(z) and integrating over z ∈ B1, we obtain
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u(x) =
∑

|β|<l

∫
B1

Dβu(z)
β!

(x− z)βϕ(z) dz

+ l
∑

|α|=l

1
α!

∫ 1

0

dt

×
∫
B1

(1 − t)l−1Dαu
(
z + t(x− z)

)
(x− z)αϕ(z) dz. (1.1.9)

Since ∫
B1

Dβu(z)(x− z)βϕ(z) dz

= (−1)|β|
∫
B1

u(z)Dβ
z

(
(x− z)βϕ(z)

)
dz, |β| < l,

the former of the last two sums in (1.1.9) is a polynomial of degree l − 1 in
R

n, which can be written in the form of the first term on the right-hand side
of (1.1.8). We extend Dαu to be zero outside Ω for |α| = l and perform the
change of variable y = z+ t(x−z) in the last integral over B1 in (1.1.9). Then

x− z = (1 − t)−1(x− y), dz = (1 − t)−n dy,

and the general term of the second sum in (1.1.9) is

1
α!

∫
Rn

dy
∫ 1

0

Dαu(y)(x− y)αϕ
(
y − tx
1 − t

)
dt

(1 − t)n+1
.

The last expression can be written as

1
α!

∫
Rn

Dαu(y)(x− y)αK(x, y) dy,

with

K(x, y) =
∫ 1

0

ϕ

(
y − tx
1 − t

)
dt

(1 − t)n+1
= r−n

∫ ∞

r

ϕ(x+ �θ)�n−1 d�,

where r = |x− y| and θ = (y − x)/|x− y|. Here we have made the change of
variables

y − tx
1 − t = x+ �θ,

that is, y − x = (1 − t)�θ and r = (1 − t)�.
Note that the function R

n \ {y} � x �→ K(x, y) is in C∞(Rn \ {y}) for any
fixed y ∈ R

n. Moreover, K(x, y) = 0 if the line segment [x, y] is not contained
in the cone Vx =

⋃
z∈B1

[x, z]. Thus, formula (1.1.8) holds where

fα(x, r, θ) =
(−1)ll
α!

θα
∫ ∞

r

ϕ(x+ �θ)�n−1 d�.
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To check the estimate |fα| ≤ cDn−1, we observe that

∣∣fα(x, r, θ)
∣∣ ≤ l

α!

∫ D

r

∣∣ϕ(x+ �θ)
∣∣�n−1 d�

≤ l

α!
Dn−1

∫
x+�θ∈B1

∣∣ϕ(x+ �θ)
∣∣ d�.

The last integral is dominated by 2 sup{|ϕ(z)| : z ∈ B1}, which gives the
required estimate.

The representation (1.1.8) has been proved for u ∈ C∞(Ω̄). Suppose u ∈
Ll

p(Ω) and p ∈ [1,∞). By Theorem 1.1.6/1, there is a sequence {ui}i≥1 such
that

ui ∈ C∞(Ω̄), ui → u in Lp(Ω, loc), ‖∇l(ui − u)‖Lp(Ω) → 0.

Passing to the limit in (1.1.8) for ui and using the continuity of the integral
operator with a weak singularity in Lp(Ω), we arrive at (1.1.8) in the general
case. This completes the proof of the theorem. �

For Ω = R
n we obtain a simpler integral representation of u ∈ D .

Theorem 2. If u ∈ D , then

u(x) =
(−1)ll
ωn

∑
|α|=l

∫
Rn

θα

α!
Dαu(y)

dy
rn−l

, (1.1.10)

where ωn is the (n− 1)-dimensional measure of Sn−1, i.e.,

ωn =
2πn/2

Γ (n/2)
, (1.1.11)

and as in Theorem 1, r = |y − x|, θ = (y − x) r−1.

Proof. For fixed x ∈ R
n and θ ∈ Sn−1, we have

u(x) =
(−1)l

(l − 1)!

∫ ∞

0

rl−1 ∂
l

∂rl
u(x+ rθ) dr.

Since
∂l

∂rl
u(x+ rθ) =

∑
|α|=l

l!
α!
θα(Dαu)(x+ rθ),

it follows that

u(x) = (−1)ll
∫ ∞

0

rl−1
∑

|α|=l

θα

α!
(Dαu)(x+ rθ) dr.

Integration with respect to θ implies (1.1.10). �
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1.1.11 Generalized Poincaré Inequality

The following assertion, based on Lemma 1.1.9/1 and Theorem 1.1.10/1, will
be used in Sect. 1.1.13.

Lemma. Let Ω be a bounded domain having the cone property and let ω
be an arbitrary open set, ω̄ ⊂ Ω. Then for any u ∈ Ll

p(Ω), p ≥ 1, there exists
a polynomial

Π(x) =
∑

|α|≤l−1

(u, ϕα)xα, (1.1.12)

such that
l−1∑
k=0

∥∥∇k(u−Π)
∥∥
Lp(Ω)

≤ C‖∇lu‖Lp(Ω). (1.1.13)

Here ϕα ∈ D(ω) and C is a constant independent of u.

Proof. Clearly, we may assume that ω is a ball.
Let G be any subdomain of Ω starshaped with respect to a ball referred to

in Lemma 1.1.9/1 and let B be the corresponding ball. We construct a finite
family of open balls {Bi}Mi=0 such that B0 = B, Bi ∩ Bi+1 �= ∅, BM = ω.
Since G is starshaped with respect to any ball contained in B0 ∩B1, then by
the integral representation (1.1.8) and by continuity of the integral operator
with the kernel |x− y|l−k−n in Lp(G) we obtain

‖∇ku‖Lp(G) ≤ C
(
‖∇lu‖Lp(G) + ‖u‖Lp(B0∩B1)

)
, 0 ≤ k < l. (1.1.14)

Also, for i = 1, . . . ,M − 1,

‖u‖Lp(Bi) ≤ C
(
‖∇lu‖Lp(Bi) + ‖u‖Lp(Bi ∩Bi+1)

)
.

Therefore,
‖∇ku‖Lp(G) ≤ C

(
‖∇lu‖Lp(Ω) + ‖u‖Lp(ω)

)
.

Summing over all G we obtain

‖∇ku‖Lp(Ω) ≤ C
(
‖∇lu‖Lp(Ω) + ‖u‖Lp(ω)

)
. (1.1.15)

From the integral representation (1.1.8) for a function on ω it follows that

‖u−Π‖Lp(ω) ≤ C‖∇lu‖Lp(ω),

where
Π(x) =

∑
|β|<l

xβ
∫
ω

ϕβ(y)u(y) dy, ϕβ ∈ D(ω).

It remains to replace u by u−Π in (1.1.15). The Lemma is proved. �

The Lemma implies the following obvious corollary.
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Corollary. The spaces V l
p(Ω), W l

p(Ω), and Ll
p(Ω) coincide for Ω having

the cone property.

Remark. In this section we deliberately do not give a general formulation
of the lemma for functions on domains that have the cone property. Such a for-
mulation follows immediately from the Lemma combined with Theorem 1.4.5,
which will appear later.

On the other hand, the class of domains, considered in the Lemma, is also
not maximal. The statements of the Lemma and of the Corollary are true
for any bounded domain which is a union of domains of the class C, defined
in Theorem 1.1.6/2. The proof is essentially the same, but we must use the
following simple property of domains of the class C instead of (1.1.14).

Let

Ω =
{
x : x2

1 + · · ·+ x2
n−1 < �

2, 0 < xn < f(x1, . . . , xn−1)
}
,

with a continuous function f defined on the ball x2
1 + · · ·+ x2

n−1 ≤ �2. Let G
denote the “base” of Ω, i.e., the cylinder

{
x : x2

1 + · · ·+ x2
n−1 < �

2, 0 < xn < min f(x1, . . . , xn−1)
}
.

Then, for all u ∈ C1(Ω̄),

‖u‖Lp(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Lp(G)

)
.

The last inequality follows from the elementary inequality
∫ a

0

∣∣f(t)∣∣p dt ≤ c
(
ap
∫ a

0

∣∣f ′(t)
∣∣p dt+

a

b

∫ b

0

∣∣f(t)∣∣p dt
)
, (1.1.16)

where f ∈ C1[0, a], 0 < b < a,k and c depends only on p.
The proof of (1.1.16) runs as follows. Let

Φa =
(
a−1

∫ a

0

∣∣f(t)∣∣p dt
)1/p

,

be the value of |f | at some point of (0, a). We have

|Φa − Φb| ≤
∫ a

0

|f ′(t)| dt ≤ a(p−1)/p‖f ′‖Lp(0,a),

and (1.1.16) follows.

Example. Considering the domain

Ω =
{
(x, y) ∈ R

2 : |y| < exp(−1/x), 0 < x < 1
}
,

and the function u(x, y) = x2l exp(1/(p x)), we may easily check that, in
general, the space Lp(Ω) on the left-hand side of (1.1.13) cannot be replaced
by any of the spaces Lq(Ω), q > p, for domains of the class C.
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1.1.12 Completeness of W l
p(Ω) and V l

p(Ω)

In the following theorem Ω is an arbitrary open subset of R
n.

Theorem. The spaces W l
p(Ω) and V l

p(Ω) are complete.

Proof. Let {uk}k≥1 be a Cauchy sequence in W l
p(Ω). Let uk → u in Lp(Ω)

and let Dαuk → vα, |α| = l in Lp(Ω). For any ϕ ∈ D(Ω) we have
∫
Ω

uDαϕdx = lim
k→∞

∫
Ω

ukD
αϕdx

= (−1)l lim
k→∞

∫
Ω

ϕDαuk dx = (−1)l
∫
Ω

vαϕdx.

Thus, vα = Dαu and the sequence {uk} converges to u ∈ W l
p(Ω). The result

follows for the space W l
p(Ω). The case of V l

p(Ω) can be considered in the same
way. �

1.1.13 The Space L̇l
p(Ω) and Its Completeness

Let Ω be a domain.

Definition. L̇l
p(Ω) is the factor space Ll

p(Ω)/Pl−1, where Pk is the sub-
space of polynomials of degree not higher than k.

We equip L̇l
p(Ω) with the norm ‖∇lu‖Lp(Ω). The elements of L̇l

p(Ω) are
classes u̇ = {u+Π} where Π ∈ Pl−1, u ∈ Ll

p(Ω).

Theorem 1. The space L̇l
p(Ω) is complete.

Proof. Let {u̇k}k≥1 be a Cauchy sequence in L̇l
p(Ω). This means that for

any uk in the class u̇k and any multi-index α, |α| = l, Dαuk → Tα in Lp(Ω).
We shall show that there exists a u ∈ Ll

p(Ω) such that Dαu = Tα.
Let B be an open ball B̄ ⊂ Ω, and let {ωj}j≥0 be a sequence of domains

with compact closures and smooth boundaries such that

B̄ ⊂ ω0, ω̄j ⊂ ωj+1,
⋃
j

ωj = Ω.

Let Πk be a polynomial specified by the set ω = B and by the function uk in
Lemma 1.1.11. Since uk is in the class u̇k, then

vk = uk −Πk

is in the same class. By Lemma 1.1.11, {vk} is a Cauchy sequence in Lp(ωj)
for any j. We denote the limit function by u. Clearly, for any ϕ ∈ D(Ω) and
any multi-index α with |α| = l,

(
u,Dαϕ

)
= lim

k→∞

(
vk, D

αϕ
)

= lim
k→∞

(−1)l
(
Dαuk, ϕ

)
= (−1)l(Tα, ϕ).
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The result follows. �

The proof of Theorem 1 also contains the following assertion.

Theorem 2. Let {uk} be a sequence of functions in Ll
p(Ω) such that

∥∥∇l(uk − u)
∥∥
Lp(Ω)

k→∞−−−−→ 0

for some u ∈ Ll
p(Ω). Then there exists a sequence of polynomials Πk ∈ Pl−1

with uk −Πk → u in Ll
p(Ω, loc).

1.1.14 Estimate of Intermediate Derivative and Spaces W̊ l
p(Ω) and

L̊l
p(Ω)

We start with an optimal estimate of the first derivative by the L1 norms of
the function and its second derivative.

Lemma. Let −∞ < a < b < ∞. For all f ∈ W 2
1 (a, b) and for every

x ∈ [a, b] ∣∣f ′(x)
∣∣ ≤

∫ b

a

∣∣f ′ ′(t)
∣∣ dt+ 4

(b− a)2
∫ b

a

∣∣f(t)∣∣ dt. (1.1.17)

Both constants 4(a − b)−2 and 1 in front of the integrals on the right-hand
side are sharp.

Proof. By dilation, (1.1.17) is equivalent to the inequality

∣∣f ′(x)
∣∣ ≤

∫ 1

−1

∣∣f ′ ′(t)
∣∣ dt+

∫ 1

−1

∣∣f(t)∣∣dt. (1.1.18)

Integrating by parts, one checks the identity

f ′(x) =
∫ 1

−1

K (x, t)f ′ ′(t) dt+
∫ 1

−1

(sign t)f(t) dt,

where

K (x, t) =

{∫ t

−1
(1 − |y|) dy for t < x,∫ 1

t
(|y| − 1) dy for t > x.

Inequality (1.1.18) follows from

∫ 1

−1

(
1 − |y|

)
dy = 1.

Putting f(t) = t in (1.1.18), we see that 4(b− a)−2 is the best constant in
(1.1.17). To show the sharpness of the constant 1, we choose f as a smooth
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approximation of the function ε−1(t− 1 + ε)+, where ε is an arbitrarily small
positive number. �

Remark. The just proved lemma leads directly to the inequality

‖f ′‖pLp(a,b) ≤ c(p)
(
(b− a)‖f ′ ′‖pLp(a,b) + (b− a)−1‖f‖pLp(a,b)

)
, (1.1.19)

where p ∈ [1,∞]. In its turn, (1.1.19) implies

‖f ′‖pLp(R) ≤ c(p)
(
ε‖f ′ ′‖pLp(R) + ε−1‖f‖pLp(R)

)
, (1.1.20)

with an arbitrary ε > 0. Clearly, (1.1.20) is equivalent to the inequality

‖f ′‖Lp(R) ≤
(
2c(p)

)1/p‖f ′ ′‖1/2
Lp(R)‖f‖

1/2
Lp(R), (1.1.21)

which can be found in Hardy, Littlewood, and Pólya [351], Sect. 7.8 (see also
Lemma 1.8.1/2 in the present book).

Let, as before, Ω denote an open subset of R
n. We conclude this section

by introducing the spaces V̊ l
p (Ω) and W̊ l

p(Ω), as completions of C∞
0 (Ω) in the

norms of V l
p (Ω) and W l

p(Ω), 1 ≤ p < ∞. In fact, these new spaces coincide,
which results from the one-dimensional inequality (1.1.21).

Another space L̊l
p(Ω), to be used frequently in what follows, is defined as

the completion of C∞
0 (Ω) in the norm ‖∇lu‖Lp(Ω). Important properties of

L̊l
p(Ω) will be studied in Chap. 15.

1.1.15 Duals of Sobolev Spaces

Theorem 1. Let 1 ≤ p <∞. Any linear functional on Ll
p(Ω) can be expressed

as
f(u) =

∫
Ω

∑
|α|=l

gα(x)Dαu(x) dx, (1.1.22)

where gα ∈ Lp′ (Ω), pp′ = p+ p′, and

‖f‖ = inf
∥∥∥∥
(∑

|α|=l

g2α

)1/2∥∥∥∥
Lp′ (Ω)

. (1.1.23)

Here the infimum is taken over all collections {gα}|α|=l, for which (1.1.22)
holds with any u ∈ Ll

p(Ω).

Proof. Obviously, the right-hand side of (1.1.22) is a linear functional on
Ll

p(Ω) and

‖f‖ ≤
∥∥∥∥
(∑

|α|=l

g2α

)1/2∥∥∥∥
Lp′ (Ω)

.
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To express f(u) as (1.1.22), consider the space Lp(Ω) of vectors v = {vα}|α|=l

with components in Lp(Ω), equipped with the norm

∥∥∥∥
(∑

|α|=l

v2α

)1/2∥∥∥∥
Lp(Ω)

.

Since the space Ll
p(Ω) is complete, the range of the operator ∇l : Ll

p(Ω) →
Lp(Ω) is a closed subspace of Lp(Ω). For any vector v = ∇lu we define
Φ(v) = f(u). Then

‖Φ‖ = ‖f‖,

and by the Hahn–Banach theorem Φ has a norm-preserving extension to
Lp(Ω). The proof is complete. �

As before, let W l
p(Ω) = Ll

p(Ω) ∩ Lp(Ω) and let W̊ l
p(Ω) be the completion

of D(Ω) with respect to the norm in W l
p(Ω).

The following assertion is proved in the same manner as Theorem 1.

Theorem 2. Any linear functional on W l
p(Ω) (or on W̊ l

p(Ω)) has the form

f(u) =
∫
Ω

(∑
|α|=l

gα(x)Dαu(x) + g(x)u(x)
)

dx, (1.1.24)

where gα ∈ Lp′ (Ω), g ∈ Lp′ (Ω), and

‖f‖ = inf
∥∥∥∥
(∑

|α|=l

g2α + g2
)1/2∥∥∥∥

Lp′ (Ω)

. (1.1.25)

Here the infimum is taken over all collections of functions gα, g ∈ Lp′ (Ω) for
which (1.1.24) holds with any u ∈W l

p(Ω) (or u ∈ W̊ l
p(Ω)).

The following simpler characterization of the space of linear functionals on
W̊ l

p(Ω) is a corollary of Theorem 2.

Corollary. Any linear functional on W̊ l
p(Ω) can be identified with a gen-

eralized function f ∈ D ′(Ω) given by

f =
∑

|α|=l

(−1)lDαgα + g, (1.1.26)

where gα and g belong to Lp′ (Ω). The norm of this functional is equal to the
right-hand side of (1.1.25), where the infimum is taken over all collections of
functions gα, g, entering the expression (1.1.26).
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1.1.16 Equivalent Norms in W l
p(Ω)

The following theorem describes a wide class of equivalent norms in W l
p(Ω).

Theorem. Let Ω be a bounded domain such that Ll
p(Ω) ⊂ Lp(Ω) (for

example, Ω has the cone property). Let F (u) be a continuous seminorm in
W l

p(Ω) such that F (Πl−1) �= 0 for any nonzero polynomial Πl−1 of degree not
higher than l − 1. Then the norm

‖∇lu‖Lp(Ω) + F (u), (1.1.27)

is equivalent to the norm in W l
p(Ω).

Proof. Let I be the identity mapping of W l
p(Ω) into the space B(Ω)

obtained by the completion of W l
p(Ω) with respect to the norm (1.1.27). This

mapping is one-to-one, linear, and continuous. By Theorem 1.1.13/1 on the
completeness of L̊l

p(Ω) it follows that B(Ω) ⊂ Ll
p(Ω). Since Ll

p(Ω) = W l
p(Ω),

then I maps W l
p(Ω) onto B(Ω). By the Banach theorem (cf. Bourbaki [128],

Chap. 1, §3, Sect. 3), I is an isomorphism. The result follows. �

Remark. The functional

F (u) =
∑

0≤ |α|<l

∣∣fα(u)
∣∣,

where fα are linear functionals in W l
p(Ω) such that

det
(
fα
(
xβ
))

�= 0, |α|, |β| ≤ l − 1,

satisfies the conditions of the Theorem. For example, we can put

fα(u) =
∫
Ω

uDαϕdx,

where ϕ ∈ D(Ω) and ∫
Ω

ϕ(x) dx �= 0.

Let P be a projector of W l
p(Ω) onto the polynomial subspace Pl−1, i.e.,

a linear continuous mapping of W l
p(Ω) onto Pl−1 such that P2 = P. Then

we may take |P(u)| as F (u).
Since P(u − P(u)) = 0, by the Theorem we have the equivalence of the

seminorms ‖∇lu‖Lp(Ω) and ‖u− P(u)‖W l
p(Ω) (cf. Lemma 1.1.11).

1.1.17 Extension of Functions in V l
p(Ω) onto R

n

In this section we discuss space-preserving extensions of functions in V l
p (Ω)

onto the exterior of Ω. We begin with the well-known procedure of “finite-
order reflection.”
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We introduce the notation. Let x = (x′, xn), where x′ = (x1, . . . , xn−1), let
π be an n-dimensional parallelepiped, P = π×(−a/(l+1), a), P+ = π×(0, a),
P− = P\P+.

Theorem. For any integer l ≥ 0 there exists a linear mapping

C∞(P̄+) � u∗ → u ∈ Cl(P̄ ),

such that u∗ = u on P+. It can be uniquely extended to a continuous mapping
Lk

p(P+) → Lk
p(P ), p ≥ 1, for k = 0, 1, . . . , l.

The extension u → u∗ can be defined on the space Ck,1(P̄+), k =
0, 1, . . . , l − 1. It is a continuous mapping into Ck,1(P̄ ).

This mapping has the following property: if dist(suppu, F ) > 0 where F
is a compactum in P̄+, then u∗ = 0 in a neighborhood of F .

Proof. Let u ∈ C∞(P̄+). We set u∗ = u in P+ and

u∗(x) =
l+1∑
j=1

cju(x′,−jxn) in P−,

where the coefficients cj satisfy the system

l+1∑
j=1

(−j)kcj = 1, k = 0, . . . , l.

The determinant of this system (the Vandermonde determinant) does not
vanish.

Obviously, u∗ ∈ Cl(P̄ ). It is also clear that

‖∇ku‖Lp(P ) ≤ c‖∇ku‖Lp(P+).

Since C∞(P̄+) is dense in Lk
p(P+) by Theorem 1.1.6/1, the mapping u∗ → u

admits a unique extension to a continuous mapping Lk
p(P+) → Lk

p(P ). The
continuity of the mapping Ck,l(P̄+) � u → u∗ ∈ Ck,l(P̄ ) can be checked
directly.

Let dist(suppu, F ) > 0. We denote an arbitrary point of F ∩ π by x and
introduce a small positive number δ such that (l + 1)δ < dist(suppu, F ).
Since u = 0 on {x ∈ P̄+ : |x′| < (l + 1)xn}, we have u∗ = 0 on {x ∈ P− :
|x′|2 + (l + 1)x2

n < (l + 1)2δ2}. Thus, u∗ = 0 if |x| < δ. This completes the
proof. �

Let Ω be a domain in R
n with compact closure Ω̄ and with sufficiently

smooth boundary ∂Ω. Using the described extension procedure along with a
partition of unity and a local mapping of Ω onto the halfspace, it is possible
to construct a linear continuous operator E : V l

p (Ω) → V l
p (Rn) such that

E u|Ω = u for all u ∈ V l
p (Ω).
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If such an operator exists for a domain then, by definition, this domain
belongs to the class EV l

p .
Thus, domains with smooth boundaries are contained in EV l

p . The bounded
domains of the class C0,1 turn out to have the same property. The last as-
sertion is proved in Stein [724], §3, Ch.VI (cf. also Comments to the present
section).

In Sect. 1.5 we shall return to the problem of description of domains
in EV l

p .

1.1.18 Removable Sets for Sobolev Functions

Here we describe a class of sets of removable singularities for elements in
V l
p (Ω), Ω ⊂ R

n. The description will be given in terms of the (n − 1)-
dimensional Hausdorff measure. We begin with the definition of the s-
dimensional Hausdorff measure.

Let E be a set in R
n. Consider various coverings of E by countable collec-

tions of balls of radii ≤ ε. For each s ≥ 0, let

σs(ε) = vs inf
∑
i

rsi ,

where ri is the radius of the ith ball, vs > 0, and the infimum is taken over
all such coverings. By the monotonicity of σs, there exists the limit (finite or
infinite)

Hs(E) = lim
ε→+0

σs(ε).

This limit is called the s-dimensional Hausdorff measure of E. If s is a pos-
itive integer, then vs = ms(B

(s)
1 ), otherwise vs is any positive constant. For

example, one may put vs = πs/2/Γ (1 + s/2) for any s ≥ 0. In the case where
s is a positive integer, s ≤ n, the Hausdorff measure Hs agrees with the s-
dimensional area of an s-dimensional smooth manifold in R

n. In particular,
Hn(E) = mn(E) for Lebesgue measurable sets E ⊂ R

n (see, e.g., Federer
[271, 3.2], Ziemer [812, 1.4.2]).

Theorem. Let u ∈ V l
p (Ω \ F ), where Ω ⊂ R

n is an open set and F ⊂ Ω

is a closed set in Ω satisfying Hn−1(F ) = 0. Then u ∈ V l
p (Ω).

Proof. If u ∈ V l
p (Ω \ F ), then u and Dαu, |α| ≤ l are defined almost

everywhere on Ω and hence Dαu ∈ Lp(Ω). It suffices to verify that Dαu is
the generalized derivative of u on Ω, i.e., for all η ∈ D(Ω),

∫
Ω

uDαη dx = (−1)|α|
∫
Ω

ηDαu dx. (1.1.28)

Let
pi(x) = (x1, . . . , xi−1, xi+1, . . . , xn), 1 ≤ i ≤ n,



1.1 The Spaces Ll
p(Ω), V l

p (Ω) and W l
p(Ω) 29

denote the projection of a point x ∈ R
n on the coordinate hyperplane orthog-

onal to the xi axis. By assumptions, each set pi(F ) has (n − 1)-dimensional
Lebesgue measure zero. Thus, almost every straight line that is parallel to the
xi axis is disjointed from F . According to Fubini’s theorem, we have

∫
Ω

η
∂u

∂xi
dx =

∫
Ω′

dx′
∫
�(x′)

η
∂u

∂xi
dxi, 1 ≤ i ≤ n,

where Ω′ = pi(Ω), x′ = pi(x) and �(x′) is the intersection of Ω with the line
x′ = const. Note that �(x′) is in Ω \ F for almost all x′ ∈ Ω′. An application
of Theorem 1.1.3/2 leads to

∫
Ω′

dx′
∫
�(x′)

η
∂u

∂xi
dxi = −

∫
Ω′

dx′
∫
�(x′)

u
∂η

∂xi
dxi −

∫
Ω

u
∂η

∂xi
dx.

Hence (1.1.28) follows for |α| = l = 1. The general case can be concluded by
induction on l. Indeed, let l ≥ 2 and let (1.1.28) hold for u ∈ V l−1

p (Ω \F ) with
|α| ≤ l − 1. If u ∈ V l

p(Ω \ F ), |α| = l, and Dα = DiD
β for some 1 ≤ i ≤ n,

the left-hand side of (1.1.28) equals

−
∫
Ω

∂u

∂xi
Dβη dx, (1.1.29)

since u ∈ V 1
p (Ω\F ). By the induction hypothesis, expression (1.1.29) coincides

with the right-hand side of (1.1.28) (because ∂u/∂xi ∈ V l−1
p (Ω \ F )). This

completes the proof. �

Let us show that the condition Hn−1(F ) = 0 in the above theorem cannot
be replaced by the finiteness of Hn−1(F ).

Example. Let Ω = {x ∈ R
2 : |x| < 2} and let F be the segment {x ∈ Ω :

x2 = 0, |x1| ≤ 1}. We introduce the set S = {x ∈ Ω : |x1| ≤ 1, x2 > 0} and
define the function u on Ω by

u(x) =

{
0 on Ω\S,
exp(−(1 − x2

1)
−1) on S.

We have H1(F ) = 2, u ∈ V l
p (Ω\S) for any l, but u /∈ V l

p (Ω).

1.1.19 Comments to Sect. 1.1

The space W l
p(Ω) was introduced and studied in detail by Sobolev [711–

713]. (Note that as early as in 1935 he also developed a theory of distribu-
tions in (Cl

0)
∗ [710].) The definitions of the spaces Ll

p(Ω) and L̇l
p(Ω) are

borrowed from the paper by Deny and Lions [234]. The proofs of Theo-
rems 1.1.2, 1.1.5/1, 1.1.12, 1.1.13/1, and 1.1.13/2 follow the arguments of
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this paper where similar results are obtained for l = 1. Theorem 1.1.5/1 was
also proved by Meyers and Serrin [599]. Concerning the contents of Sect. 1.1.3
we note that the mollification operator Mε was used by Leray in 1934 [487]
and independently by Sobolev in 1935 [709]. A detailed exposition of proper-
ties of mollifiers including those with a variable radius can be found in Chap. 2
of Burenkov’s book [155]. For a history of the mollifiers see Naumann [624].

The property of absolute continuity on almost all straight lines parallel
to coordinate axes served as a foundation for the definition of spaces similar
to L1

p in papers by Levi [489], Nikodým [637], Morrey [612], and others. The
example of a domain for which W 2

2 (Ω) �= V 2
2 (Ω) (see Sect. 1.1.4) is due to the

author. The example considered at the beginning of Sect. 1.1.6 is borrowed
from the paper by Gagliardo [299]. Remark 1.1.6 and the subsequent example
are taken from the paper by Kolsrud [440]. Theorem 1.1.6/1 is given in the
textbook by Smirnov [705] and Theorem 1.1.6/2 was proved in the above-
mentioned paper by Gagliardo. The topic of Sect. 1.1.6 was also discussed by
Fraenkel [285] and Amick [46]. The following deep approximation result was
obtained by Hedberg (see [370]).

Theorem. Let Ω be an arbitrary open set in R
n and let f ∈ W̊ l

p(Ω) for
some positive integer l and some p, 1 < p <∞. Then there exists a sequence
of functions {ων}ν≥1, 0 ≤ ων ≤ 1, such that suppων is a compact subset of Ω,
ωνf ∈ (L∞ ∩ W̊ l

p)(Ω), and

lim
ν→∞

‖f − ωνf‖W l
p(Ω) = 0.

An ingenious approximation construction for functions in a two-dimension-
al bounded Jordan domain was proposed by Lewis in 1987 [492] (see also
[491]). He proved that C∞(Ω̄) is dense in W 1

p (Ω) for 1 < p < ∞. Unfortu-
nately, this construction does not work for higher dimensions, for p = 1, and
for the space W l

p(Ω) with l > 1. If a planar domain is not Jordan, it may
happen that for l > 1 bounded functions in the space Ll

p(Ω) are not dense in
Ll

p(Ω) (Maz’ya and Netrusov [572], see Sect. 1.7 in the sequel).
The problem of the approximation of Sobolev functions on planar domains

by C∞ functions, which together with all derivatives are bounded on Ω, was
treated by Smith, Stanoyevitch, and Stegenga in [707], where some interesting
counterexamples are given as well.

In [346] Haj�lasz and Malý studied the approximation of mappings u : Ω →
R

m from the Sobolev space [W 1
p (Ω)]m by a sequence {uν}ν≥1 of more regular

mappings in the sense of convergence∫
Ω

f(x, uν ,∇uν) dx→
∫
Ω

f(x, u,∇u) dx

for a large class of nonlinear integrands.
During the last two decades a theory of variable exponent Sobolev spaces

W 1,p(·)(Ω) was developed, where the Lebesgue Lp-space is replaced by the
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Lebesgue space with variable exponent p(x). This topic in not touched in
the present book, but we refer to Kováčik and Rákošnik [461] where such
spaces first appeared and to the surveying papers by Diening, Hästö and
Nekvinda [236], Kokilashvili and Samko [439] and S. Samko [690]. In partic-
ular, the density of C∞

0 (Rn) in W 1,p(·)(Rn) was proved by S. Samko [688]
under the so-called log-condition on p(x), standard for the variable exponent
analysis: ∣∣p(x) − p(y)∣∣ ≤ const

| log |x− y||
for small |x − y|. This question is nontrivial because of impossibility to use
mollifiers directly. The Hardy type inequality in variable Lebesgue spaces are
studied by Rafeiro and Samko [669].

In connection with Sect. 1.1.7 see the books by Morrey [613], Reshet-
nyak [677], and the article by the author and Shaposhnikova [578], see also
Sect. 9.4 in the book [588].

The condition of being starshaped with respect to a ball and having the
cone property were introduced into the theory of W l

p spaces by Sobolev [711–
713]. Lemma 1.1.9/2 was proved by Glushko [312]. The example given in
Sect. 1.1.9 is due to the author; another example of a Lipschitz domain that
does not belong to C0,1 can be found in the book by Morrey [613]. Properties
of various classes of domains appearing in the theory of Sobolev spaces were
investigated by Fraenkel in [285]. Fraenkel’s paper [286] contains a thorough
study of the conditions on domains Ω guaranteeing the embedding of the
space C1(Ω̄) in C(0,α)(Ω̄) when α > 0.

Integral representations (1.1.8) and (1.1.10) were obtained by Sobolev [712,
713] and used in his proof of embedding theorems. Various generalizations
of such representations are due to Il’in [396, 397], Smith [706] (see also the
book by Besov, Il’in, and Nikolsky [94]), and to Reshetnyak [675]. We follow
Burenkov [154] in the proof of Theorem 1.1.10/1.

The Poincaré inequality for bounded domains that are the unions of do-
mains of the class C was proved by Courant and Hilbert [216]. Properties
of functions in Ll

p(Ω) for a wider class of domains were studied by J.L. Li-
ons [499].

Stanoyevitch showed [720] (see [721] for the proof) that the best constant
in the one-dimensional Poincaré inequality

‖u− ū‖Lp(−1,1) ≤ C‖∇u‖Lp(−1,1)

is equal to 1 if p = 1 and

(p′)1/pp1/p
′

Γ (1/p)Γ (1/p′)
=
p sin(π/p)
π(p− 1)1/p

,

if 1 < p < ∞. Moreover, a unique extremal function exists if and only if
1 < p ≤ ∞.

Theorem 1.1.16 on equivalent norms inW l
p(Ω) is due to Sobolev [713, 714].
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The extension procedure described at the beginning of Sect. 1.1.17 was pro-
posed by Hestenes [378] for the space Ck(Ω̄) (see also Lichtenstein [494]). The
same method was used by Nikolsky [638] and Babich [59] for W l

p(Ω). The fact
that a space-preserving extension for functions in W l

p(Ω) (1 < p < ∞) onto
R

n is possible for domains of the class C0,1 was discovered by Calderón [163].
His proof is based on the integral representation (1.1.8) along with the theo-
rem on the continuity of the singular integral operator in Lp. A method that
is appropriate for p = 1 and p = ∞ was given by Stein [724]. The main part of
his proof was based on the extension of functions defined in a neighborhood
of a boundary point. Then, using a partition of unity, he constructed a global
extension. For the simple domain

Ω =
{
x = (x′, xn) : x′ ∈ R

n−1, xn > f(x′)
}
,

where f is a function on R
n−1 satisfying a Lipschitz condition, the extension

of u is defined by

u∗(x′, xn) =
∫ ∞

1

u
(
x′, xn + λδ(x′, xn)

)
ψ(λ) dλ, xn < f(x′).

Here δ is an infinitely differentiable function, equivalent to the distance to
∂Ω. The function ψ is defined and continuous on [1,∞), decreases as λ→∞
more rapidly than any power of λ−1, and satisfies the conditions

∫ ∞

1

ψ(λ) dλ = 1,
∫ ∞

1

λkψ(λ) dλ = 0, k = 1, 2, . . . .

More information on extension operators acting on Sobolev spaces can be
found in Sect. 1.5.

Theorem 1.1.18 on removable sets for Sobolev functions is due to Väisälä
[771] (see also Reshetnyak [677, Chap. 1, 1.3]). Koskela showed that W 1

p re-
movability of sets lying in a hyperplane depends on their thickness measured
in terms of a so-called p porosity [455].

1.2 Facts from Set Theory and Function Theory

In this section we collect some known facts from set theory and function theory
that will be used later.

1.2.1 Two Theorems on Coverings

The following assertion is a generalization of the classical Besicovitch covering
theorem, see Guzman [332] or DiBenedetto [235] for a proof.

Theorem 1. Let S be a set in R
n. With each point x ∈ S we associate

a ball Br(x)(x), r(x) > 0, and denote the collection of these balls by B. We
assume that
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Fig. 5.

(α) the radii of balls in B are totally bounded,
(β) the sequence of radii of any disjoint sequence of balls in B tends to

zero.
Then we can choose a sequence of balls {Bm} in B such that :

1. S ⊂
⋃

m Bm;
2. There exists a number M , depending on the dimension of the space only,

such that every point of R
n belongs to at most M balls in {Bm};

3. The balls (1/3)Bm are disjoint ;
4.
⋃

B∈B
B ⊂

⋃
m 4Bm.

Remark 1. Theorem 1 remains valid if balls are replaced by cubes with
edges parallel to coordinate planes. This result is contained in the paper by
Morse [615]. It also follows from [615] that balls and cubes can be replaced
by other bodies. The best value of M was studied by Sullivan [733] as well as
Füredi and Loeb [297].

We anticipate another covering theorem by the next auxiliary assertion.

Lemma. Let g be an open subset of R
n with a smooth boundary and let

2mn(Br ∩ g) = mn(Br). Then

s(Br ∩ ∂g) ≥ cnrn−1,

where cn is a positive constant which depends only on n, and s is the (n− 1)-
dimensional area.

Proof. Let χ and ψ be the characteristic functions of the sets g ∩ Br and
Br\g. For any vector z �= 0 we introduce a projection mapping Pz onto the
(n−1)-dimensional subspace orthogonal to z (see Fig. 5). By Fubini’s theorem,
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(1/4)v2nr
2n = mn(g ∩Br)mn(Br\g) =

∫
Rn

∫
Rn

χ(x)ψ(y) dxdy

=
∫

Rn

∫
Rn

χ(x)ψ(x+ z) dz dx

=
∫

|z|≤2r

mn

(
{x : x ∈ Br ∩ g, x+ z ∈ Br\g}

)
dz.

Since every interval connecting x ∈ g ∩ Br with (x + z) ∈ Br\g intersects
Br ∩ ∂g, the last integral does not exceed

2r
∫

|z|≤2r

mn−1

[
Pz(Br ∩ ∂g)

]
dz ≤ (2r)n+1vns(Br ∩ ∂g).

The lemma is proved. �

Remark 2. The best value of cn equals the volume of the (n−1)-dimensional
unit ball (cf. Lemma 5.2.1/1 below).

Theorem 2. Let g be a bounded open subset of R
n with smooth boundary.

There exists a covering of g by a sequence of balls with radii �i, i = 1, 2, . . . ,
such that ∑

j

�n−1
j ≤ c s(∂g), (1.2.1)

where c is a constant which depends only on n.

Proof. Each point x ∈ g is the center of a ball Br(x) for which

mn(Br(x) ∩ g)
mn(Br(x))

=
1
2
. (1.2.2)

(This ratio is a continuous function of r, which is equal to 1 for small values
of r and converges to zero as r → ∞.) Let us put B = {B3r(x)(x)}, where
Br(x)(x) satisfies (1.2.2). By Theorem 1 there exists a sequence of disjoint
balls Brj (xj) such that

g ⊂
∞⋃
j=1

B3rj (xj).

(Here we actually use a weaker variant of Theorem 1 (cf. Dunford and
J. Schwartz [244], III.12.1).)

The Lemma together with (1.2.2) implies

s(Brj (xj) ∩ ∂g) ≥ cnrn−1
j .

Therefore,

s(∂g) ≥
∑
j

s(Brj (xj) ∩ ∂g) ≥ 31−ncn
∑
j

(3rj)n−1.

Thus, {B3rj (xj)} is the required covering. �
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1.2.2 Theorem on Level Sets of a Smooth Function

We recall the Vitali covering theorem (see Dunford and J. Schwartz [244],
III.12.2).

Let E ⊂ R
1 and let M be a collection of intervals. We say that M forms

a covering of E in the sense of Vitali if for each t ∈ E and any ε > 0 there
exists an interval i ∈ M such that t ∈ i, m1(i) < ε.

Theorem 1. If E is covered by a collection M of intervals in the sense of
Vitali, then we can select a countable or finite set of intervals {ik} such that
ik ∩ il = ∅ for k �= l, m1(E\

⋃
k ik) = 0.

Consider a function f

Ω � x→ f(x) = t ∈ R
1.

The set
K1 = {x : ∇f(x) = 0}

is called critical.
If E ⊂ Ω then f(E) is the image of E under the mapping f . If A ⊂ R

1

then f−1(A) is the pre-image of A in Ω. We shall briefly denote f−1(t) by Et.

Theorem 2. Let Ω be an open set in R
n and f ∈ C∞(Ω). Then

m1

[
f(K1)

]
= 0.

Proof. It is sufficient to assume that Ω is a bounded set.
1. We introduce the notation

Kn =
{
x : (∇f)(x) = 0, . . . , (∇nf)(x) = 0

}
.

First we show that
m1

[
f(Kn)

]
= 0.

For any ε > 0 and each x ∈ Kn we choose a number rx > 0 such that
B(x, rx) ⊂ Ω and

osc
B(x,rx)

f < εrnx .

We fix a point t ∈ f(Kn) and consider any point

x(t) ∈ Et ∩Kn.

Then we cover t by intervals (t− δ, t+ δ) with

δ < εrnx(t). (1.2.3)
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The collection of all these intervals forms a covering of f(Kn) in the sense
of Vitali. We choose a countable system of disjoint intervals i1, i2, . . . , which
covers f(Kn) up to a set of linear measure zero.

Let
im = (tm − δm, tm + δm),

and xm ∈ Etm ∩Kn. By (1.2.3), δ < ε rnxm
. Hence

f−1(im) ⊃ B
(
xm, (δm/ε)1/n

)
,

and therefore,

mn

[
f−1(im)

]
≥ vn

δm
ε
.

Since the intervals im are mutually disjointed, their pre-images have the same
property. Thus,

∑
δm ≤ ε

vn

∞∑
m=1

mn

[
f−1(im)

]
≤ mn(Ω),

i.e., m1[f(Kn)] ≤ cεmn(Ω), hence m1[f(Kn)] = 0.

2. Now we use an induction on n. The theorem holds for n = 1. Assume
it holds for n− 1.

Consider the set K1\Kn. For any x ∈ K1\Kn there exists a multi-index
α, |α| < n, and an integer i ≤ n such that

(
Dαf

)
(x) = 0,

(
∂

∂xi
Dαf

)
(x) �= 0. (1.2.4)

Let H be a set of points for which (1.2.4) holds. This set is obviously defined
by the pairs (α, i). We show that

m1

[
f(H)

]
= 0.

Without loss of generality we may assume that i = n. With the notation
g = Dαf , we have

g(x) = 0,
∂g

∂xn
�= 0 for x ∈ H.

By the implicit function theorem, for any x0 ∈ H there exists a neighborhood
U such that

U ∩
{
x : g(x) = 0

}
⊂
{
x : xn = ϕ(X)

}
,

where X = (x1, . . . , xn−1) and ϕ is an infinitely differentiable function in some
domain G ⊂ R

n−1. Since we can select a countable covering from any covering
of H, it is sufficient to prove that

m1

[
f(H ∩ U )

]
= 0.
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If x ∈ H ∩ U , then
f(x) = f

(
X,ϕ(X)

) def= h(X),

where X ∈ G. Let P denote the projection of H ∩ U onto the plane xn = 0.
Since ∇h = 0 for X ∈ P , by the induction hypothesis we have

m1

[
h(P )

]
= 0.

Taking into account that h(P ) = f(H ∩ U ), we complete the proof. �

From Theorem 2 and the implicit function theorem we immediately obtain
the following corollary.

Corollary. Let f ∈ C∞(Ω) (f ∈ D(Ω)), then for almost all t the sets
Et = {x : f(x) = t} are C∞-manifolds (C∞-compact manifolds).

1.2.3 Representation of the Lebesgue Integral as a Riemann
Integral along a Halfaxis

Lemma. Let (X,B, μ) be a space with a (nonnegative) σ-finite measure and
let u : X → R

1 be a μ-measurable nonnegative function. Then∫
X

u(x)μ(dx) =
∫ ∞

0

μ(Lt) dt =
∫ ∞

0

μ(Mt) dt, (1.2.5)

where

Lt =
{
x ∈ X : u(x) > t

}
, Mt =

{
x ∈ X : u(x) ≥ t

}
.

Proof. Let χ(a,b) denote the characteristic function of the interval (a, b) of
real axis. Writing

u(x) =
∫ ∞

0

χ(0,u(x))(t) dt,

and using Fubini’s theorem on the product space X × (0,∞), we obtain∫
X

u(x)μ(dx) =
∫ ∞

0

dt
∫
X

χ(0,u(x))(t)μ(dx) =
∫ ∞

0

μ(Lt) dt.

Thus the first equality (1.2.5) is established. The second equality can be ob-
tained in the same way. The lemma is proved. �

Remark. We can easily derive a generalization of (1.2.5) for the integral∫
X

u(x)μ(dx),

where μ is a charge, u is not necessarily of a definite sign, and∫
X

∣∣u(x)∣∣|μ|(dx) <∞.
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1.2.4 Formula for the Integral of Modulus of the Gradient

Here we establish the following assertion (we refer the reader to the beginning
of Sect. 1.1.18 for the definition of Hausdorff measure).

Theorem. Let Φ be a Borel measurable nonnegative function on Ω and
let u ∈ C0,1(Ω), where Ω is an open subset of R

n. Then
∫
Ω

Φ(x)
∣∣∇u(x)∣∣ dx =

∫ ∞

0

dt
∫

Et

Φ(x) ds(x), (1.2.6)

where s is the (n − 1)-dimensional Hausdorff measure, Et = {x ∈ Ω :
|u(x)| = t}.

We shall derive (1.2.6) in the following weaker formulation, which will be
used in this chapter.

If Φ ∈ C(Ω), Φ ≥ 0, and u ∈ C∞(Ω), then (1.2.6) holds.
(Here we may assume s to be the (n − 1)-dimensional Lebesgue measure,

since by Corollary 1.2.2 the sets Et are smooth manifolds.)

Proof. Let w be an n-tuple vector function in D(Ω). Using integration by
parts and applying Lemma 1.2.3, we obtain

∫
Ω

w∇u dx = −
∫
Ω

u div w dx

= −
∫ ∞

0

dt
∫
u≥t

div w dx+
∫ 0

− ∞
dt
∫
u≤t

div w dx.

Since u ∈ C∞(Ω), the sets {x : u(x) = t} are infinitely differentiable manifolds
for almost all t. Therefore for almost all t > 0,

∫
u>t

div w dx = −
∫
u=t

wν ds = −
∫
u=t

w∇u
|∇u| ds,

where ν(x) is the normal to {x : u(x) = t} directed into the set {x : u(x) ≥ t}.
The integral ∫

u≤t

div w dx,

must be treated analogously. Consequently,
∫
Ω

w∇u dx =
∫ ∞

0

dt
∫

Et

w∇u
|∇u| dx.

Setting

w = Φ
∇u

(|∇u|2 + ε)1/2
,

where Φ ∈ D(Ω) and ε is a positive number, we obtain
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∫
Ω

Φ
(∇u)2

((∇u)2 + ε)1/2
dx =

∫ ∞

0

dt
∫

Et

w∇u
|∇u| ds.

Passing to the limit as ε ↓ 0 and making use of Beppo Levi’s monotone
convergence theorem, we obtain (1.2.6) for all Φ ∈ D(Ω).

Let Φ ∈ C(Ω), suppΦ ⊂ Ω and let MhΦ be a mollification of Φ with
radius h. Since supp MhΦ ⊂ Ω for small values of h, we have

∫
Ω

(MhΦ)(∇u) dx =
∫ ∞

0

dt
∫

Et

MhΦ ds. (1.2.7)

Obviously, there exists a constant C = C(Φ) such that
∫

Et

MhΦ ds ≤ C
∫

Et

α ds, (1.2.8)

where α ∈ D(Ω), α = 1 on
⋃

h supp MhΦ, α ≥ 0. By (1.2.6), applied to
Φ = α, the integral on the right-hand side of (1.2.8) is an integrable function
on (0,+∞). Since MhΦ → Φ uniformly and since s(Et ∩ suppα) < ∞ for
almost all t, then also

∫
Et

MhΦ ds h→0−−−→
∫

Et

Φ ds

for almost all t. Now, Lebesgue’s theorem ensures the possibility of passing to
the limit as h→ 0 in (1.2.7).

Further, we remove the restriction suppΦ ⊂ Ω. Let Φ ∈ C(Ω), Φ ≥ 0
and let αm be a sequence of nonnegative functions in D(Ω) such that⋃

m suppαm = Ω, 0 ≤ αm ≤ 1 and αm(x) = 1 for x ∈ suppαm−1. Then
supp(αmΦ) ⊂ Ω and

∫
Ω

αmΦ|∇u| dx =
∫ ∞

0

dt
∫

Et

αmΦ ds.

Since the sequence αmΦ does not decrease, we may pass to the limit asm→∞
by Beppo Levi’s theorem (see Natanson [627]). This completes the proof. �

1.2.5 Comments to Sect. 1.2

In Sect. 1.2 we collected auxiliary material most of which will be used in this
chapter.

Theorem 1.2.1/1 is due to Besicovitch in the two-dimensional case for
disks [86]. Morse generalized this result to more general spaces and shapes
[616]. Theorem 1.2.1/2 is due to Gustin [331]. Here we presented a simple
proof of Theorem 1.2.1/2 given by Federer [270]. Theorem 1.2.2/2 was proved
by Morse [614] for functions in Cn. Here we followed the proof presented in the
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book by Landis [475] Chap. II, §2. Whitney showed in [795] that there exist
functions f ∈ Cn−1 for which Theorem 1.2.2/2 fails.

Lemma 1.2.3 is contained in the paper by Faddeev [266]. The equal-
ity (1.2.6) was established by Kronrod [466] in the two-dimensional case
for asymptotically differentiable functions. Federer proved a generalization
of Theorem 1.2.4 for Lipschitz mappings R

n → R
m, in [269]. This result,

frequently called the coarea formula, is the identity
∫
Ω

Φ(x)
∣∣Jmf(x)∣∣ dx =

∫
Rm

∫
f−1(y)

Φ(x) dHn−m(x) dy,

where Ω ⊂ R
n is an open set, f : Ω → R

m is Lipschitz, Φ is integrable
: Ω → R, Jmf is its m-dimensional Jacobian, so that |Jmf | is the square
root of the sum of the squares of the determinants of the m × m minors
of the differential of f , and 1 ≤ m < n. Malý, Swanson, and Ziemer [514]
generalized the co-area formula to the case f ∈ [W 1

p (Ω, loc)]m with p > m > 1
or p ≥ m = 1. Refinements and consequences of this result concerning the
space W 1

1 can be found in the paper by Swanson [735].
In the form of an inequality with an appropriate definition of the modulus

of the gradient of a function, Theorem 1.2.4 may be extended to abstract
metric spaces, cf. Bobkov and Houdré [116, 117].

1.3 Some Inequalities for Functions of One Variable

1.3.1 Basic Facts on Hardy-type Inequalities

Most of this section is concerned with variants and extensions of the following
Hardy inequality (cf. Hardy, Littlewood, and Pólya [351], Sect. 9.9).

If f(x) ≥ 0, then
∫ ∞

0

x−rF (x)p dx ≤
(

p

|r − 1|

)p ∫ ∞

0

x−r
(
xf(x)

)p dx, (1.3.1)

where p > 1, r �= 1 and

F (x) =
∫ x

0

f(t) dt for r > 1,

F (x) =
∫ ∞

x

f(t) dt for r < 1.

In this section we make some remarks concerning (1.3.1) and related in-
equalities.

(i) First of all, (1.3.1) fails if r = 1 for each of the above definitions of F .
One can see it by choosing either f or 1 − f as the characteristic function of
the interval [0, 1].
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(ii) The constant factor in front of the integral on the right-hand side of
(1.3.1) is sharp. Let, for example, r > 1, and let

∫ ∞

0

x−r|F |p dx ≤ C
∫ ∞

0

x−r+p|f |p dx (1.3.2)

hold. We take

fε(x) =

{
0 for x > 1,

x
r−p−1

p −ε for x > 1,

where ε is a positive sufficiently small number. Then

Fε(x) =
∫ x

0

fε(t) dt =

{
0 for x < 1,

1
r−1

p −ε
(x

r−1
p −ε − 1) for x > 1.

We have∫ ∞

0

x−r|Fε|p dx =
(

p

r − 1 − pε

)p ∫ ∞

1

(
1− x

1−r
p +ε

)p dx
x1+pε

.

Since (1 − x
1−r

p +ε)p = 1 +O(x
1−r

p +ε) for x > 1, the last integral is equal to
∫ ∞

1

dx
x1+pε

+O(1) = (pε)−1 +O(1).

The right-hand side of (1.3.2) is
∫ ∞

0

xr+p|fε|p dx =
∫ ∞

1

x−1−pε dx = (pε)−1.

Hence (1.3.2) becomes

pp

(r − 1 − pε)p

(
1
pε

+O(1)
)
≤ C(pε)−1,

which implies

C ≥ pp

(r − 1)p
.

The case r < 1 is quite similar.
(iii) A multidimensional variant of Hardy’s inequality is
∫

Rm

∣∣u(y)∣∣p|y|−s dy ≤
(

p

|s−m|

)p ∫
Rm

∣∣∇u(y)∣∣p|y|p−s dy, (1.3.3)

where u ∈ C∞
0 (Rm) and s �= m. In the case s > m we require u(0) = 0. This

inequality follows from the one-dimensional inequality (1.3.3) written as
∫ ∞

0

|v(r)|p
rs−m+1

dr ≤
(

p

|s−m|

)p ∫ ∞

0

∣∣v′(r)
∣∣prm+p−s−1 dr,
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if one passes to spherical coordinates r = |x|, ω = x/r and remarks that
|∂u∂r | ≤ |∇u|. One should use, of course, that

∫
Rm

· · · dx =
∫
Sm−1

dsω
∫ ∞

0

· · · rm−1 dr.

The constant in (1.3.3) is sharp, which can be shown by radial functions.
(iv) A more general Hardy’s inequality

∫
Rm+n

∣∣u(z)∣∣p|y|−s dz ≤
(

p

|s−m|

)p ∫
Rm+n

∣∣∇u(z)∣∣p|y|p−s dz,

where u ∈ C∞
0 (Rm+n), z = (x, y), x ∈ R

n, y ∈ R
m, s �= m, and additionally

u(x, 0) = 0 for all x ∈ R
n if s > m, is obtained by integration of (1.3.3), with

u(z) instead of u(y), over R
n.

(v) Finally, a few words about the critical value s = m excluded in (1.3.3).
The one-dimensional inequality holds

∫ ∞

1

|u(t)|p
t(log t)p

dt ≤
(

p

p− 1

)p ∫ ∞

1

|u′(t)|ptp−1 dt, (1.3.4)

where u(1) = 0 and p > 1. In fact, by introducing the new variable x = log t,
we rewrite (1.3.4) as the Hardy inequality

∫ ∞

0

|ũ(x)|p
xp

dx ≤
(

p

p− 1

)p ∫ ∞

0

|ũ′(x)|p dx

with ũ(x) = u(ex).
As a consequence of (1.3.4) we obtain

∫
Rn+m

|u(z)|p dz
|y|m(log |y|)p ≤

(
p

p− 1

)p ∫
Rn+m

∣∣∇u(z)∣∣p|y|p−m dz

for all u ∈ C∞
0 (Rn+m) such that u(z) = 0 for |y| ≤ 1.

1.3.2 Two-weight Extensions of Hardy’s Type Inequality in the
Case p ≤ q

Theorem 1. Let μ and ν be nonnegative Borel measures on (0,∞) and let
ν∗ be the absolutely continuous part of ν. The inequality

[∫ ∞

0

∣∣∣∣
∫ x

0

f(t) dt
∣∣∣∣
q

dμ(x)
]1/q

≤ C
[∫ ∞

0

∣∣f(x)∣∣p dν(x)
]1/p

, (1.3.5)

holds for all Borel functions f and 1 ≤ p ≤ q ≤ ∞ if and only if

B := sup
r>0

[
μ
(
[r,∞)

)]1/q[∫ r

0

(
dν∗

dx

)−1/(p−1)

dx
](p−1)/p

<∞. (1.3.6)
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Moreover, if C is the best constant in (1.3.5), then

B ≤ C ≤ B
(

q

q − 1

)(p−1)/p

q1/q. (1.3.7)

If p = 1 or q = ∞, then B = C.
In the case q = ∞ the condition (1.3.6) means that

B = sup
{
r > 0 : μ([r,∞)) > 0

}
<∞,

and dν∗

dx > 0 for almost all x ∈ [0, B].

We begin with the proof of the following less general theorem on absolutely
continuous measures μ and ν.

Theorem 2. Let 1 ≤ p ≤ q ≤ ∞. In order that there exists a constant C,
independent of f , such that

[∫ ∞

0

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣
q

dx
]1/q

≤ C
[∫ ∞

0

∣∣v(x)f(x)∣∣p dx
]1/p

, (1.3.8)

it is necessary and sufficient that

B := sup
r>0

(∫ ∞

r

∣∣w(x)
∣∣q dx

)1/q(∫ r

0

∣∣v(x)∣∣−p′

dx
)1/p′

<∞, (1.3.9)

where p′ = p/(p − 1). Moreover, if C is the best constant in (1.3.8) and B is
defined by (1.3.9), then (1.3.7) holds. If p = 1 or p = ∞, then B = C.

Proof. The case 1 < p ≤ q < ∞. Necessity. If f ≥ 0 and supp f ⊂ [0, r],
then from (1.3.8) it follows that

(∫ ∞

r

∣∣w(x)
∣∣q dx

)1/q ∫ r

0

f(t) dt ≤ C
(∫ r

0

∣∣v(x)f(x)∣∣p dx
)1/p

.

Let ∫ r

0

∣∣v(x)∣∣−p/(p−1) dx <∞.

We set f(x) = |v(x)|−p′
for x < r and f(x) = 0 for x > r. Then

[∫ ∞

r

∣∣w(x)
∣∣q dx

]1/q[∫ r

0

∣∣v(x)∣∣−p′

dx
]1/p′

≤ C. (1.3.10)

If ∫ r

0

∣∣v(x)∣∣−p′

dx = ∞,

then we arrive at the same result, replacing v(x) by v(x) + ε sgn v(x) with
ε > 0 in (1.3.8) and passing to the limit as ε→ 0.
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Sufficiency. We put

h(x) =
(∫ x

0

∣∣v(t)∣∣−p′

dt
)1/qp′

.

By Hölder’s inequality,
(∫ ∞

0

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣
q

dx
)p/q

≤
{∫ ∞

0

∣∣w(x)
∣∣q
(∫ x

0

∣∣f(t)h(t)v(t)∣∣p dt
)q/p

×
(∫ x

0

∣∣h(t)v(t)∣∣−p′

dt
)q/p′

dx
}p/q

. (1.3.11)

Now we prove that
(∫ ∞

0

ϕ(x)
(∫ x

0

f(y) dy
)r

dx
)1/r

≤
∫ ∞

0

f(y)
(∫ ∞

y

ϕ(x) dx
)1/r

dy,

(1.3.12)
provided that ϕ ≥ 0, f ≥ 0 and r ≥ 1. In fact, the left-hand side in (1.3.12)
is equal to (∫ ∞

0

(∫ ∞

0

ϕ(x)1/rf(y)χ[y,∞)(x) dy
)r

dx
)1/r

,

where χ[y,∞) is the characteristic function of the halfaxis [y,∞). By Minkows-
ki’s inequality the last expression does not exceed

∫ ∞

0

(∫ ∞

0

[
ϕ(x)1/rf(y)χ[y,∞)(x)

]r dx
)1/r

dy

=
∫ ∞

0

f(y)
(∫ ∞

y

ϕ(x) dx
)1/r

dy.

By (1.3.12), the right-hand side in (1.3.11) is majorized by

∫ ∞

0

∣∣f(t)h(t)v(t)∣∣p
(∫ ∞

t

∣∣w(x)
∣∣q
(∫ x

0

∣∣h(y)v(y)∣∣−p′

dy
)q/p′

dx
)p/q

dt.

(1.3.13)
Using here the expression for h, we rewrite the integral in x as

∫ ∞

t

∣∣w(x)
∣∣q
(∫ x

0

∣∣v(y)∣∣−p′
(∫ y

0

∣∣v(z)∣∣−p′

dz
)−1/q

dy
)q/p′

dx. (1.3.14)

Since
∫ x

0

∣∣v(y)∣∣−p′
(∫ y

0

∣∣v(z)∣∣−p′

dz
)−1/q

dy = q′
(∫ x

0

∣∣v(x)∣∣−p′

dy
)−1/q′

,
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(1.3.14) is equal to

(q′)q/p
′
∫ ∞

t

∣∣w(x)
∣∣q
(∫ x

0

∣∣v(y)∣∣−p′

dy
)q/(p′q′)

dx.

By the definition of B this expression is majorized by

Bq/q′
(q′)q/p

′
∫ ∞

t

∣∣w(x)
∣∣q
(∫ ∞

x

∣∣w(y)
∣∣q dy

)−1/q′

dx

= Bq−1(q′)q/p
′
q

(∫ ∞

t

∣∣w(x)
∣∣q dx

)1/q′

≤ Bq(q′)q/p
′
q

(∫ t

0

∣∣v(x)∣∣−p′

dx
)−1/p′

= Bq(q′)q/p
′
qh(t)−q. (1.3.15)

Therefore, (1.3.11) has the following majorant
∫ ∞

0

∣∣f(t)v(t)h(t)∣∣p(Bq(q′)q/p
′
qh(t)−q

)p/q dt

= Bq(q′)p/p
′
qp/q

∫ ∞

0

∣∣v(t)f(t)∣∣p dt.

Hence, (1.3.8) holds with the constant B(q′)(p−1)/pq1/q.
Now we consider the limit cases.
If p = ∞ then q = ∞ and (1.3.8) follows from the obvious estimate

ess sup
0<x<∞

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣

≤ ess sup
0<x<∞

∣∣w(x)
∣∣
∫ x

0

dt
|v(t)| ess sup

0<t<x

∣∣v(t)f(t)∣∣.

If p = 1, q <∞, then from (1.3.12) it follows that

(∫ ∞

0

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣
q

dx
)1/q

≤
∫ ∞

0

∣∣f(t)∣∣
(∫ ∞

t

∣∣w(x)
∣∣q dx

)1/q 1
|v(t)|

∣∣v(t)∣∣ dt
≤ B

∫ ∞

0

∣∣v(t)f(t)∣∣ dt.
Let q = ∞, p = 1. Then
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ess sup
0<x<∞

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣

≤ ess sup
0<x<∞

(∣∣w(x)
∣∣ ess sup

0<t<x

1
|w(t)|

∫ x

0

∣∣v(t)f(t)∣∣ dt
)

≤ B
∫ ∞

0

∣∣v(t)f(t)∣∣ dt.
If p > 1, then

ess sup
0<x<∞

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣

≤ ess sup
0<x<∞

[∣∣w(x)
∣∣
(∫ x

0

∣∣v(t)∣∣−p′

dt
)1/p′(∫ x

0

∣∣v(t)f(t)∣∣p dt
)1/p]

≤ B
(∫ x

0

∣∣v(t)f(t)∣∣p dt
)1/p

.

This completes the proof of Theorem 2. �

Proof of Theorem 1. Setting f = 0 on the support of the singular part of
the measure ν, we obtain that (1.3.5) is the equivalent to

[∫ ∞

0

∣∣∣∣
∫ x

0

f(t) dt
∣∣∣∣
q

dμ(x)
]1/q

≤ C
[∫ x

0

∣∣f(x)∣∣p dν∗

dx
dx
]1/p

.

The estimate B ≤ C can be derived in the same way as in the proof of
Theorem 2, if |v(x)|p is replaced by dν∗/dx and

∫ ∞

r

∣∣w(x)
∣∣q dx

by μ([r,∞)).
Now we establish the upper bound for C. We may assume f ≥ 0. Let

{gn} be a sequence of decreasing absolutely continuous functions on [0,∞)
satisfying

0 ≤ gn(x) ≤ gn+1(x) ≤ μ
(
[x,∞)

)
,

lim
n→∞

gn(x) = μ
(
[x,∞)

)
,

for almost all x. We have
[∫ ∞

0

(∫ x

0

f(t) dt
)q

dμ(x)
]1/q

=
[∫ ∞

0

μ
(
[x,∞)

)
d
(∫ x

0

f(t) dt
)q]1/q

.
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By the monotone convergence theorem the right-hand side is equal to

sup
n

[∫ ∞

0

gn(x) d
(∫ x

0

f(t) dt
)q]1/q

= sup
n

[∫ ∞

0

(∫ x

0

f(t) dt
)q[

−g′
n(x)

]
dx
]1/q

. (1.3.16)

The definition of the constant B and the sequence {gn} imply
[∫ ∞

r

[
−g′

n(x)
]
dx
]1/q[∫ r

0

(
dν∗

dx

)−p′/p

dx
]1/p′

≤ B.

From this and Theorem 2 we conclude that the right-hand side in (1.3.16) is
not greater than

B(q′)(p−1)/pq1/q
(∫ ∞

0

(
f(x)

)p dν∗

dx
dx
)1/p

,

which completes the proof. �

Replacing x by x−1 we derive the following assertion from Theorem 1.

Theorem 3. Let 1 ≤ p ≤ q ≤ ∞. In order that there exist a constant C,
independent of f and such that

[∫ ∞

0

∣∣∣∣
∫ ∞

x

f(t) dt
∣∣∣∣
q

dμ(x)
]1/q

≤ C
[∫ ∞

0

∣∣f(x)∣∣p dν(x)
]1/p

, (1.3.17)

it is necessary and sufficient that the value

B := sup
r>0

[
μ
(
(0, r)

)]1/q[∫ ∞

r

(
dν∗

dx

)−1/(p−1)

dx
](p−1)/p

,

be finite. The best constant in (1.3.17) satisfies the same inequalities as in
Theorem 1.

Analogously, by the change of variable

(0,∞) � x→ y = x− x−1 ∈ (−∞,+∞),

from Theorem 1 we obtain the next assertion.

Theorem 4. Let 1 ≤ p ≤ q ≤ ∞. In order that there exist a constant C,
independent of f and such that

[∫ +∞

− ∞

∣∣∣∣
∫ ∞

x

f(t) dt
∣∣∣∣
q

dμ(x)
]1/q

≤ C
[∫ +∞

− ∞

∣∣f(x)∣∣p dν(x)
]1/p

, (1.3.18)

it is necessary and sufficient that

B := sup
r∈(− ∞,+∞)

[
μ
(
(−∞, r)

)]1/q[∫ ∞

r

(
dν∗

dx

)−1/(p−1)

dx
](p−1)/p

<∞.

Constants B and C are related in the same way as in Theorem 1.
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1.3.3 Two-Weight Extensions of Hardy’s Inequality in the Case
p > q

Lemma. Let 1 ≤ q < p ≤ ∞ and let ω be a nonnegative Borel function on
(0, b), where b ∈ (0,∞]. In order that there exist a constant C, independent
of ψ and such that

(∫ b

0

ω(t)
∣∣∣∣
∫ t

0

ψ(τ) dτ
∣∣∣∣
q

dt
)1/q

≤ C
(∫ b

0

∣∣ψ(t)
∣∣p dt

)1/p

, (1.3.19)

it is necessary and sufficient that

B :=
(∫ b

0

(∫ b

t

ω(τ) dτ
)p/(p−q)

t(q−1)p/(p−q) dt
)(p−q)/pq

<∞. (1.3.20)

If C is the best constant in (1.3.19), then

(
p− q
p− 1

)(q−1)/q

q1/qB ≤ C ≤
(

p

p− 1

)(q−1)/q

q1/qB

for q > 1 and B = C for q = 1.

Proof. Sufficiency. First consider the case q > 1. We may assume
ψ(t) ≥ 0. Integrating by parts on the left-hand side of (1.3.19) and using
Hölder’s inequality with exponents p/(p− q), p/(q − 1), and p, we obtain

(∫ b

0

ω(t)
(∫ t

0

ψ(τ) dτ
)q

dt
)1/q

= q1/q
(∫ b

0

∫ b

t

ω(τ) dτ ψ(t)
(∫ t

0

ψ(τ) dτ
)q−1

dt
)1/q

≤ q1/q
[(∫ b

0

ψ(t)p dt
)1/p(∫ b

0

(∫ t

0

ψ(τ) dτ
)p

t−p dt
)(q−1)/p

×
(∫ b

0

t(q−1)p/(p−q)

(∫ b

t

ω(τ) dτ
)p/(p−q)

dt
)(p−q)/p]1/q

. (1.3.21)

From (1.3.20) and Hardy’s inequality (1.3.2), it follows that (1.3.21) is ma-
jorized by

B

(
p

p− 1

)(q−1)/q

q1/q
(∫ b

0

ψ(t)p dt
)1/p

.

Necessity. Consider, for example, the case b = ∞. The proof is similar for
b < ∞. If (1.3.19) holds for the weight ω with the constant C, then it holds
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for the weight ωn = ωχ[0,N ], where χ[0,N ] is the characteristic function of the
segment [0, N ], with the same constant. We put

fN (x) =
(∫ ∞

x

ωN (t) dt
)1/(p−q)

x(q−1)/(p−q),

BN =
(∫ ∞

0

(∫ ∞

t

ωN (τ) dτ
)p/(p−q)

t(q−1)p/(p−q) dt
)(p−q)/p

.

From (1.3.19) we have

CB
q/(p−q)
N = C

(∫ ∞

0

fN (x)p dx
)1/p

≥
(∫ ∞

0

ωN (t)
(∫ t

0

fN (τ) dτ
)q

dt
)1/q

. (1.3.22)

Integrating by parts, we find that the right-hand side in (1.3.22) is equal to
(
q

∫ ∞

0

fN (t)
∫ ∞

t

ωN (τ) dτ
(∫ t

0

fN (τ) dτ
)q−1

dt
)1/q

. (1.3.23)

Since
(∫ t

0

fN (τ) dτ
)q−1

=
(∫ t

0

x(q−1)/(p−q)

(∫ ∞

x

ωN (τ) dτ
)1/(p−q)

dx
)q−1

≥
(∫ ∞

t

ωN (τ) dτ
)(q−1)/(p−q)

t(p−1)(q−1)/(p−q)

(
p− 1
p− q

)1−q

,

we see that (1.3.23) is not less than

q1/q
(
p− 1
p− q

)(1−q)/q(∫ ∞

0

(∫ ∞

t

ωN (τ) dτ
)p/(p−q)

t(q−1)p/(p−q) dt
)1/q

= q1/q
(
p− 1
p− q

)(1−q)/q

B
p/(p−q)
N .

Therefore,

BN ≤ q−1/q

(
p− q
p− 1

)(1−q)/q

C,

and the same estimate is valid for B.
In the case q = 1 the condition (1.3.6) becomes especially simple:

B =
(∫ b

0

(∫ b

t

ω(τ) dτ
)p′

dt
)1/p′

<∞.
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To prove that in this case C ≤ B we integrate by parts on the left-hand side
of (1.3.19) and apply Hölder’s inequality with exponents p and p′ (cf. (1.3.21)).
Then the right-hand side of (1.3.19) has the upper bound

(∫ b

0

(∫ ∞

t

ω(τ) dτ
)p′

dt
)1/p′(∫ b

0

∣∣ψ(t)
∣∣p dt

)1/p

.

Thus, we proved that C ≤ B.
To derive the inequality B ≤ C we substitute

fN (x) =
(∫ ∞

x

ωN (t) dt
)1/(p−1)

,

into (1.3.23). This yields BN ≤ C and hence B ≤ C. The lemma is proved.�

Theorem 1. Let 1 ≤ q < p ≤ ∞. Then (1.3.8) holds if and only if

(∫ ∞

0

[(∫ x

0

dy
|v(y)|p′

)q−1 ∫ ∞

x

∣∣w(y)
∣∣q dy

]p/(p−q) dx
|v(x)|p′

)(p−q)/pq

<∞.

(1.3.24)
If C is the best constant in (1.3.8) and B stands for the left-hand side of

(1.3.24), then

(
p− q
p− 1

)(q−1)/q

q1/qB ≤ C ≤
(

p

p− 1

)(q−1)/q

q1/qB

for 1 < q < p ≤ ∞ and B = C for q = 1, 1 < p ≤ ∞.

Proof. We may assume that f ≥ 0, since the right-hand side in (1.3.8) does
not change and the left-hand side increases if f is replaced by |f |. We may as
well assume f(x) = 0 for sufficiently large values of x. Let us put

t(x) =
∫ x

0

∣∣v(y)∣∣−p′

dy.

Then (1.3.8) becomes

(∫ b

0

∣∣w̃(t)
∣∣q∣∣ṽ(t)∣∣p′∣∣ϕ(t)

∣∣q dt
)1/q

≤ C
(∫ b

0

∣∣ϕ′(t)
∣∣p dt

)1/p

,

where w̃(t(x)) = w(x), ṽ(t(x)) = v(x),

ϕ
(
t(x)

)
=
∫ x

0

f(y) dy, b =
∫ ∞

0

∣∣v(y)∣∣−p′

dy.

Now, in the case 1 ≤ q < p <∞ the result follows from the Lemma.
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Let p = ∞. Then

B =
(∫ ∞

0

(∫ x

0

dy
|v(y)|

)q−1 ∫ ∞

x

∣∣w(y)
∣∣q dy

dx
|v(x)|

)1/q

= q−1/q

(∫ ∞

0

∣∣w(x)
∣∣q
(∫ x

0

dy
|v(y)|

)q

dx
)1/q

.

Hence (∫ ∞

0

∣∣∣∣w(x)
∫ x

0

f(t) dt
∣∣∣∣
q

dx
)1/q

≤ Bq1/q ess sup
0<x<∞

|vf |.

To prove the necessity we note that v does not vanish on the set of positive
measure and put f = 1/v. The theorem is proved. �

The following more general assertion can be derived from Theorem 1 in
the same way as Theorem 1.3.2/1 was derived from Theorem 1.3.2/2.

Theorem 2. Let μ and ν be nonnegative Borel measures on (0,∞) and
let ν∗ be the absolutely continuous part of ν. Inequality (1.3.8) with 1 ≤ q <
p ≤ ∞ holds for all Borel functions f if and only if

B =
(∫ ∞

0

[
μ
(
[x,∞)

)(∫ x

0

(
dν∗

dy

)−p′

dy
)q−1]p/(p−q)(dν∗

dx

)−p′

dx
)(p−q)/pq

< ∞.

The best constant C in (1.3.17) is related with B in the same manner as
in Theorem 1.

The change of variable (0,∞) � x → y = x − x−1 ∈ (−∞,+∞) leads to
the following necessary and sufficient condition for the validity of (1.3.18):

∫ +∞

− ∞

[
μ
(
(−∞, x]

)(∫ ∞

x

(
dν∗

dy

)−p′

dy
)q−1]p/(p−q)(dν∗

dx

)−p′

dx <∞,

where 1 ≤ q < p ≤ ∞.

1.3.4 Hardy-Type Inequalities with Indefinite Weights

Here we are concerned with inequalities similar to those in Sect. 1.3 with
weights of unrestricted sign. We start with the estimate

∣∣∣∣
∫

R+

u(x)v(x)Q(x) dx
∣∣∣∣ ≤ const‖u′‖Lp(R+)‖v′‖Lp′ (R+) (1.3.25)

for all u, v ∈ C∞
0 (R+).
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Let us assume that Q is a locally integrable real- or complex-valued func-
tion such that

lim
b→+∞

∫ b

a

Q(x) dx =
∫ ∞

a

Q(x) dx (1.3.26)

exists for every a > 0.

Theorem 1. Under the above assumptions on Q, let

Γ (x) =
∫ ∞

x

Q(t) dt, x > 0.

Let 1 < p <∞, and p∗ = max(p, p′). Then (1.3.25) is valid if and only if

sup
a>0

ap
∗ −1

∫ ∞

a

∣∣Γ (x)
∣∣p∗

dx <∞. (1.3.27)

It is not difficult to see that (1.3.27) is equivalent to the pair of conditions

sup
a>0

ap−1

∫ ∞

a

∣∣Γ (x)
∣∣p dx <∞, sup

a>0
ap

′ −1

∫ ∞

a

∣∣Γ (x)
∣∣p′

dx <∞. (1.3.28)

Proof. For u, v ∈ C∞
0 (R+), let

〈Qu, v〉 =
∫ ∞

0

Q(x)u(x)v(x) dx.

We can extend 〈Qu, v〉 by continuity to the case where

u(x) =
∫ x

0

f(t) dt, v(x) =
∫ x

0

g(τ) dτ,

for f, g ∈ C∞
0 (R+), by setting

〈Qu, v〉 = lim
a→+∞

∫ a

0

Q(x)u(x)v(x) dx.

To show that the limit on the right-hand side exists, assume that both f and
g are supported in (δ, b) ⊂ R+. Then clearly,

lim
a→+∞

∫ a

0

Q(x)u(x)v(x) dx =
∫ b

δ

Q(x)
(∫ x

δ

f(t) dt
∫ x

δ

g(τ) dτ
)

dx

+
∫ ∞

b

Q(x) dx
∫ b

δ

f(t) dt
∫ b

δ

g(τ) dτ.

Observe that we have to be careful here: In what follows one cannot esti-
mate the two terms on the right-hand side of the preceding equation separately
because this would lead to the restriction
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sup
b>0

b

∣∣∣∣
∫ ∞

b

Q(x) dx
∣∣∣∣ <∞,

which is not necessary for the boundedness of the bilinear form.
Using Fubini’s theorem, we obtain

〈Qu, v〉 =
∫ b

δ

∫ b

δ

f(t)g(τ)
∫ b

max(t,τ)

Q(x) dxdt dτ

+
∫ ∞

b

Q(x) dx
∫ b

δ

f(t) dt
∫ b

δ

g(τ) dτ

=
∫ b

δ

∫ b

δ

f(t)g(τ)
∫ ∞

max(t,τ)

Q(x) dxdt dτ.

By definition

Γ
(
max{t, τ}

)
=
∫ ∞

max(t,τ)

Q(x) dx.

Thus, (1.3.25) is equivalent to the inequality
∣∣∣∣
∫ ∞

0

∫ ∞

0

f(t)g(τ)Γ
(
max{t, τ}

)
dt dτ

∣∣∣∣
≤ const‖f‖Lp(R+)‖g‖Lp′ (R+) (1.3.29)

for compactly supported f, g.
Using the reverse Hölder inequality, the preceding estimate can be rewrit-

ten in the equivalent form
∫ ∞

0

∣∣∣∣
∫ ∞

0

Γ
(
max{t, τ}

)
f(t) dt

∣∣∣∣
p

dτ ≤ c‖f‖pLp(R+). (1.3.30)

Clearly,
∫ ∞

0

Γ
(
max{t, τ}

)
f(t) dt = Γ (τ)

∫ τ

0

f(t) dt+
∫ ∞

τ

f(t)Γ (t) dt. (1.3.31)

Suppose now that (1.3.27), or equivalently, both inequalities in (1.3.28)
hold. Then the estimate involving the first term in (1.3.31) is established by
means of the weighted Hardy inequality

∫ ∞

0

∣∣∣∣
∫ τ

0

f(t) dt
∣∣∣∣
p∣∣Γ (τ)

∣∣p dτ ≤ C‖f‖pLp(R+), (1.3.32)

which holds if and only if the first part of condition (1.3.28) is valid (see
Theorem 1.3.2/1).

The second term in (1.3.31) is estimated by using a similar weighted Hardy
inequality



54 1 Basic Properties of Sobolev Spaces

∫ ∞

0

∣∣∣∣
∫ ∞

τ

f(t)Γ (t) dt
∣∣∣∣
p

dτ ≤ C‖f‖pLp(R+),

which, by Theorem 1.3.2/3, is equivalent to the second part of condition
(1.3.28). This proves the “if” part of the theorem.

To prove the “only if” part, it suffices to assume that f(x) in (1.3.30) is
supported on an interval [δ, a], a > 0, and restrict the domain of integration
in τ on the left-hand side of (1.3.30) to τ ∈ (a,+∞). Taking into account that
the second term in (1.3.31) vanishes, we get

∫ ∞

a

∣∣∣∣
∫ a

δ

Γ
(
max{t, τ}

)
f(t) dt

∣∣∣∣
p

dτ

=
∣∣∣∣
∫ a

δ

f(t) dt
∣∣∣∣
p ∫ ∞

a

∣∣Γ (τ)
∣∣p dτ ≤ C‖f‖pLp(R+).

Applying the reverse Hölder inequality again, we obtain the first part of
(1.3.28)

ap−1

∫ ∞

a

∣∣Γ (τ)
∣∣p dτ ≤ C.

Since (1.3.30) is symmetric, a dual estimate in the Lp′ norm yields the
second part of (1.3.28)

ap
′ −1

∫ ∞

a

∣∣Γ (τ)
∣∣p′

dτ ≤ C.

Hence (1.3.27) holds. �

Remark 1. Notice that a similar argument works with minor changes if the
integration (1.3.25) is performed against real- or complex-valued measure dQ
in the place of Q(x) dx. However, the general case where Q is a distribution
requires taking care of some technical problems which are considered in detail
by the author and Verbitsky in [592], Sect. 2.

Remark 2. For any p ∈ (1,∞), a simple condition

sup
a>0

a
∣∣Γ (a)

∣∣ <∞, (1.3.33)

is sufficient, but generally not necessary for (1.3.25) to hold. However, for
nonnegative Q, condition (1.3.33) is equivalent to (1.3.27).

Theorem 1 is easily carried over to the two-weight setting.

Theorem 2. Let W1,W2 ≥ 0 be locally integrable weight functions on R+

such that, respectively,
∫ a

0

W1(x)1−p′
dx < +∞ and

∫ a

0

W2(x)1−p dx < +∞
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for every a > 0. Then the two-weight bilinear inequality

∣∣∣∣
∫ ∞

0

u(x)v(x)Q(x) dx
∣∣∣∣ ≤ const

(∫ ∞

0

|u′(x)|pW1(x) dx
)1/p

×
(∫ ∞

0

∣∣v′(x)
∣∣p′

W2(x) dx
)1/p′

(1.3.34)

holds for all u, v ∈ C∞
0 (R+) if and only if the following pair of conditions

hold:

sup
a>0

(∫ a

0

W1(x)1−p′
dx
)p−1 ∫ ∞

a

∣∣Γ (x)
∣∣pW2(x)1−p dx <∞ (1.3.35)

and

sup
a>0

(∫ a

0

W2(x)1−p dx
)p′ −1 ∫ ∞

a

∣∣Γ (x)
∣∣p′

W1(x)1−p dx <∞, (1.3.36)

where Γ (x) =
∫∞
x
Q(t) dt.

For functions defined on the interval (0, 1), Theorem 2 can be recast in a
similar way.

Theorem 3. The inequality
∣∣∣∣
∫ 1

0

u(x)v(x)Q(x) dx
∣∣∣∣ ≤ const

∥∥u′(x)
∥∥
Lp(0,1)

∥∥v′(x)
∥∥
Lp′ (0,1)

(1.3.37)

holds for all u, v ∈ C∞(0, 1) such that u(0) = 0, v(0) = 0 if and only if Q can
be represented in the form Q = Γ ′, where

sup
a>0

ap−1

∫ 1

0

∣∣Γ (x)
∣∣p∗

dx <∞ (1.3.38)

as a→ 0+. The corresponding compactness criterion holds with the preceding
condition replaced by

lim sup
a→0+

ap
∗ −1

∫ 1

0

∣∣Γ (x)
∣∣p∗

dx = 0.

For functions with zero boundary values at both endpoints, one only has
to add similar conditions at a = 1.

We now state the analog of Theorem 1 on the whole line R for the Sobolev
space W 1

p (R) which consists of absolutely continuous functions u : R → C

such that
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‖u‖W 1
p (R) =

[∫
R

(∣∣u(x)∣∣p +
∣∣u′(x)

∣∣p) dx
]1/p

<∞.

Theorem 4. Let 1 < p <∞, and p∗ = max(p, p′). The inequality
∣∣∣∣
∫

R

u(x)v(x)Q(x) dx
∣∣∣∣ ≤ const ‖u‖W 1

p (R)‖v‖W 1
p′ (R) (1.3.39)

holds for all u, v ∈ C∞
0 (R), if and only if Q can be represented in the form

Q = Γ ′ + Γ0, where Γ and Γ0 satisfy the following conditions:

sup
a>0

∫ a+1

0

∣∣Γ (x)
∣∣p∗

dx <∞, sup
a>0

∫ a+1

0

∣∣Γ0(x)
∣∣ dx <∞. (1.3.40)

The proofs of Theorems 3 and 4 are similar to the proof of Theorem 1.
The usual approach to inequality (1.3.25), in the case where Q is real

valued, is to represent it in the form Q = Q+ − Q−, where Q+ and Q−
are, respectively, the positive and negative parts of Q, and then treat them
separately. However, this procedure ignores a possible cancellation between
Q+ and Q− and diminishes the class of admissible potentials Q.

The following examples demonstrate the difference between sharp results
which follow from Theorem 1, and the usual approach where Q+ and Q− are
treated separately.

Example 1. Let

Q(x) =
sinx
x1+ε

, ε > 0.

Then

Γ (x) =
∫ +∞

x

sin t
t1+ε

dt =
cosx
x1+ε

+O
(

1
x2+ε

)
as x→ +∞.

As x → 0+, clearly, Γ (x) = O(1) for ε < 1, Γ (x) = O(log x) for ε = 1, and
Γ (x) = O(x1−ε) for ε > 1. From this it is easy to see that (1.3.27) is valid if and
only if 0 ≤ ε ≤ 2, and hence by Theorem 1, L : L̊1

p(R+) → L−1
p (R+) is bounded

for 1 < p <∞. Moreover, the multiplication operator Q : L̊1
p(R+) → L−1

p (R+)
is compact if and only if 0 < ε < 2.

Note that the same Theorem 1 applied separately to Q+ and Q− gives a
satisfactory result only for 1 ≤ ε ≤ 2.

In the next example, Q is a charge on R+, and the condition imposed on
Q depends explicitly on p.

Example 2. Let

Q =
∞∑
j=1

cj(δj − δj+1),
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where δa is a unit point mass at x = a. Then clearly

Γ (x) =
∞∑
j=1

cjχ(j,j+1)(x).

It follows that (1.3.25) holds if and only if

sup
n≥1

np∗ −1
∞∑

j=n

|cj |p
∗
<∞.

In particular, for 1 < r ≤ 2, let cj = j−1/r if j = 2m, and cj = 0 otherwise.
Then L : L̊1

p(R+) → L−1
p (R+) if and only if r ≤ p ≤ r/(r − 1). Note that in

this example condition (1.3.27) fails for all r > 1.

1.3.5 Three Inequalities for Functions on (0, ∞)

Lemma 1. If f is a nonnegative nonincreasing function on (0,∞) and p ≥ 1,
then ∫ ∞

0

[
f(x)

]p d
(
xp
)
≤
(∫ ∞

0

f(x) dx
)p

. (1.3.41)

Proof. Obviously,

p

∫ ∞

0

[
xf(x)

]p−1
f(x) dx ≤ p

∫ ∞

0

[∫ x

0

f(t) dt
]p−1

f(x) dx

=
(∫ ∞

0

f(x) dx
)p

.

The result follows.

Lemma 2. If f(x) ≥ 0, then

[∫ ∞

0

f(x) dx
]aμ+bλ

≤ c(a, b, λ, μ)
[∫ ∞

0

xa−1−λf(x)a dx
]μ[∫ ∞

0

xb−1+μf(x)b dx
]λ
,

(1.3.42)

where a > 1, b > 1, 0 < λ < a, 0 < μ < b.

Proof. Obviously,
∫ ∞

0

f(x) dx =
∫ ∞

0

x(a−1−λ)/af(x)
dx

x(a−1−λ)/a(1 + x)

+
∫ ∞

0

x(b−1+μ)/bf(x)
dx

x(b−1+μ)/b(1 + x−1)
.
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By Hölder’s inequality

∫ ∞

0

x(a−1−λ)/af(x)
dx

x(a−1−λ)/a(1 + x)
≤ L

(∫ ∞

0

xa−1−λf(x)a dx
)1/a

,

∫ ∞

0

x(b−1+μ)/bf(x)
dx

x(b−1+μ)/b(1 + x−1)
≤M

(∫ ∞

0

xb−1+μf(x)b dx
)1/b

,

where

L =
(∫ ∞

0

dx
x(a−1−λ)/(a−1)(1 + x)a/(a−1)

)(a−1)/a

,

M =
(∫ ∞

0

dx
x(b−1+μ)/(b−1)(1 + x−1)b/(b−1)

)(b−1)/b

.

Hence
∫ ∞

0

f(x) dx ≤ L
(∫ ∞

0

xa−1−λf(x)a dx
)1/a

+M
(∫ ∞

0

xb−1+μf(x)b dx
)1/b

.

Replacing f(x) by f(z/�), where � > 0, and setting z = �x, we obtain

�−1

∫ ∞

0

f(z/�) dz ≤ L�(λ−a)/a

(∫ ∞

0

za−1−λf(z/�)a dz
)1/a

+M�−(μ+b)/b

(∫ ∞

0

zb−1+μf(z/�)b dz
)1/b

.

Thus for all measurable nonnegative functions on (0,∞) and for any � > 0,

∫ ∞

0

ϕ(z) dz ≤ L�λ/a
(∫ ∞

0

za−1−λϕ(z)a dz
)1/a

+M�−μ/b

(∫ ∞

0

zb+μ−1ϕ(z)b dz
)1/b

.

Taking the minimum of the right-hand side over �, we obtain (1.3.42). �

Lemma 3. If f is a nonnegative nonincreasing function on (0,∞) and
p ≥ 1, then

(p− 1)p−1

pp
sup
x>0

xpf(x) ≤ sup
x>0

xp−1

∫ ∞

x

f(t) dt. (1.3.43)

The characteristic function of the interval (0, 1) turns (1.3.43) into an equal-
ity.

Proof. Let c be an arbitrary positive number. Since f does not increase,
we have
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(
p

p− 1
c

)p

f

(
p

p− 1
c

)
≤ pp

(p− 1)p−1
cp−1

∫ cp/(p−1)

c

f(t) dt

≤ pp

(p− 1)p−1
sup
x>0

xp−1

∫ ∞

x

f(t) dt.

Setting x = p
p−1 c, we arrive at (1.3.43).

If f is equal to unity for 0 < x < 1 and to zero for x ≥ 1, then

sup
x
xp−1

∫ ∞

x

f(t) dt = sup
0≤x≤1

xp−1(1 − x)

=
(p− 1)p−1

pp
=

(p− 1)p−1

pp
sup
x>0

xpf(x).

The lemma is proved. �

Remark. If f is an arbitrary nonnegative measurable function on (0,∞),
then the inequality, opposite to (1.3.43), holds:

sup
x
xp−1

∫ ∞

x

f(t) dt ≤ 1
p− 1

sup
x
xpf(x), (1.3.44)

the equality being attained for f(x) = x−p.
In fact,

xp−1

∫ ∞

x

f(t) dt ≤ xp−1

∫ ∞

x

dt
tp

sup
x
xpf(x) =

1
p− 1

sup
x
xpf(x).

1.3.6 Estimates for Differentiable Nonnegative Functions of One
Variable

Let ω be a strictly increasing continuous function on [0,∞) such that ω(0) = 0
and ω(x) → ∞ as x → ∞. By ω−1 we mean the inverse of ω. We introduce
the functions

Tω(v;x) = sup
y∈R

|v(x) − v(y)|
ω(|x− y|) (1.3.45)

and

T±
ω (v;x) = sup

τ>0

|v(x± τ) − v(x)|
ω(τ)

.

Lemma. Let f be an absolutely continuous nonnegative function on R and
let

ψ(t) =
∫ t

0

ω−1(y) dy. (1.3.46)

Then for almost all x ∈ suppf
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∣∣f ′(x)
∣∣ ≤ T±

ω (f ′;x)ψ−1

(
f(x)

T±
ω (f ′;x)

)
, (1.3.47)

where ψ−1 is the inverse of ψ and the sign + or − is taken if f ′(x) ≤ 0 or
f ′(x) ≥ 0, respectively.

Proof. It suffices to consider the case f ′(x) ≤ 0. Let x ∈ R be fixed. For
any t ≥ 0 we have

f(x+ t) = f(x) +
∫ t

0

f ′(x+ τ) dτ

= f(x) + f ′(x)t+
∫ t

0

f ′(x+ τ) − f ′(x)
ω(τ)

ω(τ) dτ.

Since f is nonnegative it follows that

0 ≤ f(x) −
∣∣f ′(x)

∣∣t+ T+
ω (f ′;x)

∫ t

0

ω(τ) dτ. (1.3.48)

The right-hand side attains its minimal value at

t∗ = ω−1

(
|f ′(x)|
T+
ω (f ′;x)

)
.

Therefore by (1.3.48)

0 ≤ f(x) −
∣∣f ′(x)

∣∣ω−1

(
|f ′(x)|
T+
ω (f ′;x)

)
+ T+

ω (f ′;x)
∫ ω−1

0

(
|f ′(x)|
T+
ω (f ′;x)

)
ω(τ) dτ

= f(x) − T+
ω (f ′;x)

∫ ω−1( |f ′(x)|
T

+
ω (f ′;x)

)

0

τ dω(τ),

which is equivalent to (1.3.47). �

Theorem. Let f be an absolutely continuous nonnegative function on R.
Then for all x ∈ supp f

∣∣f ′(x)
∣∣ ≤ Tω(f ′;x)ψ−1

(
f(x)

Tω(f ′;x)

)
, (1.3.49)

where ψ−1 is the inverse of (1.3.46). This inequality with x = 0 becomes an
equality for the function

f(x) = ψ(1) − x+
∫ x

0

ω(τ) dτ. (1.3.50)

Proof. The estimate (1.3.49) follows from (1.3.47) if we notice that
T±
ω (v;x) ≤ Tω(v;x) and that the function
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t→ 1
t

∫ t

0

ω−1(y) dy, t > 0, (1.3.51)

is increasing.
To show the sharpness of inequality (1.3.49) we first notice that

Tω(f ′; 0) = 1. Further, the left-hand side of (1.3.49) is |f ′(0)| = 1 and its
right-hand side is

ψ−1
(
f(0)

)
= ψ−1

(
ψ(1)

)
= 1.

Thus, the equality sign is attained in (1.3.49) with x = 0 for f defined by
(1.3.50). The proof is complete. �

For the particular case ω(t) = tα we immediately have:
Corollary. Let f be a differentiable nonnegative function on R. Then for

all x ∈ R and α > 0

∣∣f ′(x)
∣∣α+1 ≤

(
α+ 1
α

)α(
f(x)

)α sup
y∈R

|f ′(x) − f ′(y)|
|x− y|α . (1.3.52)

The inequality (1.3.52) with x = 0 becomes an equality for the function

f(x) =
xα+1 + α
α+ 1

− x. (1.3.53)

Remark 1. We introduce the seminorm

〈v〉ω = sup
x,y∈R

|v(x) − v(y)|
ω(|x− y|) .

Since Tω(f ′;x) ≤ 〈f ′〉ω, it follows from the above Theorem that

∣∣f ′(x)
∣∣ ≤ 〈f ′〉ωψ−1

(
f(x)
〈f ′〉ω

)
. (1.3.54)

If ω is concave then this inequality with x = 0 becomes an equality for the
function (1.3.50). In fact, it suffices to show that 〈f ′〉ω = 1. In view of the
concavity of ω

〈f ′〉ω = sup
x,y∈R

|ω(x) − ω(y)|
ω(|x− y|) = sup

x>y

ω(x) − ω(y)
ω(x− y) ≤ 1.

On the other hand, the last ratio equals 1 for y = 0.
For the particular case ω(x) = xα, α ∈ (0, 1], this gives a rougher variant

of (1.3.52)

∣∣f ′(x)
∣∣α+1 ≤

(
α+ 1
α

)α(
f(x)

)α sup
x,y∈R

|f ′(x) − f ′(y)|
|x− y|α , (1.3.55)
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where the constant factor is still sharp since (1.3.55) with x = 0 becomes an
equality for the function (1.3.53).

Remark 2. Taking α = 1 in (1.3.55) we immediately arrive at the classical
inequality ∣∣f ′(x)

∣∣2 ≤ 2f(x) sup |f ′ ′|. (1.3.56)

We can easily improve (1.3.56) using (1.3.52) and the right and left maximal
functions defined by

M+ϕ(x) = sup
τ>0

1
τ

∫ x+τ

x

∣∣ϕ(y)
∣∣ dy, (1.3.57)

M−ϕ(x) = sup
τ>0

1
τ

∫ x

x−τ

∣∣ϕ(y)
∣∣ dy. (1.3.58)

Clearly,
τ−1

∣∣f ′(x± τ) − f ′(x)
∣∣ ≤ (M±f

′ ′)(x), τ > 0.

Hence by (1.3.52) with α = 1 we have the estimate

∣∣f ′(x)
∣∣2 ≤ 2f(x)(M±f

′ ′)(x), (1.3.59)

where the sign + or − is taken if f ′(x) ≤ 0 or f ′(x) ≥ 0, respectively. By
Corollary the constant 2 in (1.3.59) is the best.

1.3.7 Comments to Sect. 1.3

Concerning Sect. 1.3.1 we mention the following partial generalization of
(1.3.1) with a sharp constant where the role of F is played by the Riemann–
Liouville integrals of any positive order l:

Fl(x) =
1
Γ (l)

∫ x

0

(x− t)l−1f(t) dt (1.3.60)

and
Fl(x) =

1
Γ (l)

∫ ∞

x

(t− x)l−1f(t) dt, (1.3.61)

where f ∈ L1(R+, loc) and f ≥ 0.

Theorem. (Section 329 in Hardy, Littlewood, and Pólya [351]) Let p > 1
and l > 0. If Fl is defined by (1.3.60), then

∫ ∞

0

F p
l

dx
xlp

<

(
Γ (1− 1

p )

Γ (l + 1 − 1
p )

)p ∫ ∞

0

fp dx,

except for the case when f vanishes almost everywhere.
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If Fl is defined by (1.3.61), then
∫ ∞

0

F p
l dx <

(
Γ ( 1

p )

Γ (l + 1
p )

)p ∫ ∞

0

(
xlf
)p dx,

except for the case when f vanishes almost everywhere. In both inequalities
the constants are sharp.

There are a number of papers where particular cases of the theorems in
Sects. 1.3.2 and 1.3.3 are considered. The first criterion of such a type was
obtained by Kac and Krein [409] who dealt with the inequality (1.3.8) for q =
p = 2. For p = q, Theorems 1.3.2/1 and 1.3.2/2 are due to Muckenhoupt [620].
A different proof of Theorem 1.3.2/2 in the case p = q = 2 can be found in
Bobkov and Götze [115]. The generalizations for p �= q presented in Sects. 1.3.2
and 1.3.3 were obtained by Rosin and the author (see Maz’ya [552]). The case
p < q was independently investigated by Kokilashvili [438]. A new proof for
the case 0 < q < p was given in Sinnamon and Stepanov [702] where the
case p = 1 is included. For the history of Hardy’s inequality (1.3.1) and its
extensions see the book by Kufner, Maligranda, and Persson [468].

Stepanov found necessary and sufficient conditions on the weight functions
u and v subject to the inequality

∫ ∞

0

∣∣f(x)u(x)∣∣p dx ≤ C
∫ ∞

0

∣∣f (k)(x)v(x)
∣∣p dx,

where k ≥ 1 and f vanishes together with all its derivatives up to order k− 1
at x = 0 or at infinity, [725, 726].

The material of Sect. 1.3.4 is borrowed from the article [593] by Maz’ya
and Verbitsky.

Inequality (1.3.41) is proved in the paper by Hardy, Littlewood, and
Pólya [350] and (1.3.42) is presented in the book [351] by the same authors.
Levin [490] found the best constant in (1.3.42):

c(a, b, λ, μ) =
(

1
(as)s(bt)t

[
Γ ( s

1−s−t )Γ ( t
1−s−t )

(λ+ μ)Γ ( s+t
1−s−t )

]α)aμ+bλ

,

where s = μ/(aμ+ bλ) and t = λ/(aμ+ bλ). Lemma 1.3.5/3 was published in
the author’s book [552].

The results in Sect. 1.3.6 were obtained by Maz’ya and Kufner [571]. His-
torical remarks on multiplicative inequalities for differentiable functions are
made in Sect. 13.5 of the book by Maz’ya and Shaposhnikova [579].

1.4 Embedding Theorems of Sobolev Type

This section deals with a generalization of the Sobolev embedding theorem.
The heart of this result will be obtained as a corollary of estimates, in which
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the norms in the space of functions, integrable with power p with respect to
an arbitrary measure, are majorized by the norms in Sobolev spaces. First we
shall consider functions defined on R

n and then we shall proceed to the case
of a bounded domain.

1.4.1 D.R. Adams’ Theorem on Riesz Potentials

Let μ be a measure in R
n, i.e., a nonnegative countably additive set function,

defined on a Borel σ algebra of R
n. Let Lq(Rn, μ) = Lq(μ) denote the space

of functions on R
n, which are integrable with power q with respect to μ. We

put

‖u‖Lq(μ) =
(∫

|u|q dμ
)1/q

.

The space Lq(Ω,μ), where μ is a measure on an open set Ω, is defined in
an analogous manner.

To prove the basic result of this section, we need the classical Marcinkiewicz
interpolation theorem, which is presented here without proof (cf. for example,
Stein’s book [724]).

Suppose p0, p1, q0, and q1 are real numbers, 1 ≤ pi ≤ qi < ∞, p0 < p1,
and q0 �= q1. Let μ be a measure in R

n and let T be an additive operator
defined on D , its values being μ-measurable functions.

The operator T is said to be of weak type (pi, qi) if there exists a constant
Ai such that for any f ∈ D and α > 0,

μ
({
x :
∣∣(Tf)(x)∣∣ > α}) ≤ (α−1Ai‖f‖Lpi

)qi
.

Theorem 1. Let T be an operator of the weak types (p0, q0) and (p1, q1).
If 0 < θ < 1 and

1
p

=
1 − θ
p0

+
θ

p1
,

1
q

=
1− θ
q0

+
θ

q1
,

then, for all f ∈ D ,

‖Tf‖Lq(μ) ≤ cA 1−θ
0 A θ

1 ‖f‖Lp ,

and hence, T can be extended onto Lp(Rn) as a continuous operator: Lp →
Lq(μ). Here c = c(p1, p2, q1, q2, θ) is a constant independent of μ, T , and f .

Now, we proceed to the statement and proof of the basic theorem of this
section.

Theorem 2. Let l > 0, 1 < p < q <∞, and lp < n. The Riesz potential

(Ilf)(x) =
∫

Rn

|x− y|l−nf(y) dy
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maps Lp continuously into Lq(μ) if and only if the function

M (x) = sup
�>0

�−sμ
(
B(x, �)

)
,

where s = q(n
p − l), is bounded, that is, μ(B(x, �)) ≤ const �q(

n
p −l).

Proof. Sufficiency. We show that

tμ(Lt)1/q ≤ v1/p
′

n

pq

(n− pl)(q − p) sup M (x)1/q‖f‖Lp , (1.4.1)

where
p′ =

p

p− 1
, Lt =

{
y :
(
Il|f |

)
(y) > t

}
, t > 0.

Let μt be the restriction of μ to Lt and let r be a positive number, which
will be specified later. Clearly,

tμ(Lt) = t

∫
Rn

dμt(y) ≤
∫

Rn

(
Il|f |

)
(y) dμt(y)

=
∫

Rn

∣∣f(x)∣∣
∫

Rn

|x− y|l−n dμt(y) dx.

By Lemma 1.2.3, the interior integral with respect to y can be expressed in
the form

∫ ∞

0

μt

({
y : |x− y|l−n ≥ τ

})
dτ = −

∫ ∞

0

μt

(
B(x, ρ)

)
d
(
ρl−n

)
.

(The minus sign appears since l < n and therefore ρ = ∞ corresponds to
τ = 0 and vice versa.) Thus,

tμ(Lt) ≤ (n− l)
∫ ∞

0

∫
Rn

∣∣f(x)∣∣μt

(
B(x, ρ)

)
dxρl−n−1 dρ

= (n− l)
∫ r

0

(· · · )ρl−n−1 dρ+ (n− l)
∫ ∞

r

(· · · )ρl−n−1 dρ = A1 +A2,

where r is an arbitrary positive number.
Using the obvious inequality

μt

(
B(x, �)

)
≤
(
μt

(
B(x, �)

))1/p′

M (x)1/p�s/p,

we obtain

A1 ≤ (n− 1) sup M (x)1/p‖f‖Lp

∫ r

0

(∫
Rn

μt

(
B(x, �)

)
dx
)1/p′

�l−n−1+s/p d�.
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Since ∫
Rn

μt

(
B(x, �)

)
dx = vn�

nμ(Lt),

we have

A1 ≤
p(n− l)
pl − n+ s

v1/p
′

n sup M (x)1/p‖f‖Lpμ(Lt)1/p
′
rl−(n−s)/p.

Similarly,

A2 ≤ (n− 1)‖f‖Lpμ(Lt)1/p
∫ ∞

r

(∫
Rn

μt

(
B(x, �)

)
dx
)1/p′

�l−n−1 d�

=
p(n− l)
n− pl v

1/p′

n ‖f‖Lpμ(Lt)rl−n/p.

Hence,

tμ(Lt)1/p ≤ ‖f‖Lpv
1/p′

n (n− l)p
(

sup M (x)1/p

p l − n− s rl−(n−s)/p +
μ(Lt)1/p

n− p l rl−n/p

)
.

The right-hand side attains a minimum value at

rs = μ(Lt)/ sup M (x),

and this value is equal to

p(n− l)s
(n− pl)(p l − n+ s)

v1/p
′

n ‖f‖Lp sup M (x)1/qμ(Lt)1/p−1/q.

Thus, (1.4.1) is proved.
Applying interpolation Theorem 1, we find that the operator Il : Lp →

Lq(μ) is continuous and

‖Ilf‖Lp(μ) ≤ c sup M (x)1/q‖f‖Lp . (1.4.2)

Necessity. Let
‖Ilf‖Lq(μ) ≤ C‖f‖Lp . (1.4.3)

Let f denote the characteristic function of the ball B(x, �). Then, for z ∈
B(x, �),

(Ilf)(z) ≥ (2�)l−n

∫
B(x,�)

dy = vn2l−n�l.

This and (1.4.3) imply
(
μ
(
B(x, �)

))1/q ≤ 2n−lv−1/p′

n C�−l+n/p.

The theorem is proved. �

From Theorem 2 and the integral representation (1.1.10) we obtain the
following criterion.
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Corollary. Let 1 < p < q <∞ and n > p l.
1. For all u ∈ D ,

‖u‖Lq(μ) ≤ C‖∇lu‖Lp , (1.4.4)

where
Cq ≤ c1 sup

x;�
�(l−n/p)qμ

[
B(x, �)

]
.

2. If (1.4.4) holds for all u ∈ D , then

Cq ≥ c2 sup
x;�
�(l−n/p)qμ

[
B(x, �)

]
.

Proof. The first statement follows from Theorem 2 and the integral repre-
sentation (1.1.10). The second assertion can be justified by setting

u(y) = η
(
�−1(y − x)

)
, (1.4.5)

where η ∈ D(B2) and η = 1 on B1, into (1.4.4). �

1.4.2 Estimate for the Norm in Lq(Rn, μ) by the Integral of the
Modulus of the Gradient

In the next theorem we meet for the first time the phenomenon of equivalence
of integral and isoperimetric inequalities:

Theorem 1. 1. Let

sup
{g}

μ(g)1/q

s(∂g)
<∞, (1.4.6)

where q ≥ 1 and {g} is a collection of subsets of an open set Ω, ḡ ⊂ Ω, with
compact closures and bounded by C∞ manifolds. Then for all u ∈ D(Ω)

‖u‖Lq(Ω,μ) ≤ C‖∇u‖L1(Ω), (1.4.7)

where

C ≤ sup
{g}

μ(g)1/q

s(∂g)
. (1.4.8)

2. Suppose that for all u ∈ D(Ω) the inequality (1.4.7) holds. Then

C ≥ sup
{g}

μ(g)1/q

s(∂g)
. (1.4.9)

Proof. 1. By Lemma 1.2.3

‖u‖Lq(Ω,μ) =
(∫ ∞

0

μ(Lt) d
(
tq
))1/q

, (1.4.10)
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where Lt = {x : |u(x)| > t}. Since μ(Lt) does not increase, (1.3.41) implies

‖u‖Lq(Ω,μ) ≤
∫ ∞

0

μ(Lt)1/q dt ≤ sup
{g}

μ(g)1/q

s(∂g)

∫ ∞

0

s(∂Lt) dt.

Here we used Corollary 1.2.2, according to which almost all sets Lt are
bounded by smooth manifolds. By Theorem 1.2.4, the last integral coincides
with ‖∇u‖L1(Ω).

2. Let g be an arbitrary set in {g} and let d(x) = dist(x, g), gt = {x :
d(x) < t}. Into (1.4.6), we substitute the function uε(x) = α[d(x)], where
α(d) is a nondecreasing C∞ function on [0,1], equal to one for d = 0 and to
zero for d > ε, ε > 0. According to Theorem 1.2.4,

∫
Ω

|∇uε| dx =
∫ ε

0

α′(t)s(∂gt) dt.

Since s(∂gt) → s(∂g) as t→ 0, we have
∫
Ω

|∇uε| dx→ s(∂g). (1.4.11)

On the other hand,
‖uε‖Lq(Ω,μ) ≥ μ(g)1/q. (1.4.12)

Combining (1.4.11) and (1.4.12) with (1.4.7), we obtain

μ(g)1/q ≤ Cs(∂g),

which completes the proof. �

From Theorem 1 and the classical isoperimetric inequality

mn(g)(n−1)/n ≤ n−1v−1/n
n s(∂g) (1.4.13)

(cf. Lyusternik [507], Schmidt [693], Hadwiger [334], and others), it follows
that for all u ∈ D(Ω)

‖u‖Ln/(n−1) ≤ n−1v−1/n
n ‖∇u‖L1 , (1.4.14)

with the best constant.
In the case n > p ≥ 1 we replace u by |u|p(n−1)/(n−p) in (1.4.14) and then

estimate the right-hand side by Hölder’s inequality. We have

‖u‖p(n−1)(n−p)
Lpn/(n−p)

≤ p(n− 1)
n(n− p)v

−1/n
n

∥∥|u|n(p−1)/(n−p)∇u
∥∥
L1

≤ p(n− 1)
n(n− p)v

−1/n
n ‖u‖n(p−1)/(n−p)

Lpn/(n−p)
‖∇u‖Lp .
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Consequently,

‖u‖Lpn/(n−p) ≤
p(n− 1)
n(n− p)v

−1/n
n ‖∇u‖Lp .

This along with
∣∣∇|∇l−ku|

∣∣ ≤ n1/2|∇l−k+1u|, k = 1, . . . , l − 1,

yields

‖∇l−ku‖Lpn/(n−kp) ≤
p(n− 1)n−1/2

n− kp v−1/n
n ‖∇l−k+1u‖Lpn/(n−(k−1)p) , (1.4.15)

where kp < n. Putting k = 1, 2, . . . , l in (1.4.15) and then multiplying all
inequalities obtained, we arrive at the next corollary.

Corollary. If n > lp, p ≥ 1, then for all u ∈ D

‖u‖Lpn/(n−lp) ≤
(

n− 1

n1/2v
1/n
n

)l
Γ (n/p− l)
Γ (n/p)

‖∇lu‖Lp . (1.4.16)

Thus we obtained the Sobolev inequality for (p > 1) and the Gagliardo–
Nirenberg inequality (p = 1) with an explicit (but not the best possible for
p > 1, l ≥ 1 or for p ≥ 1, l > 1) constant. In the case l = 1 the best constant
is known (2.3.1).

The following extension of Theorem 1 is proved in the same way, and more
general facts of a similar nature will be studied in Sect. 2.1.

Theorem 1′. The best constant C in the inequality

(∫
Ω

|u|q dμ
)1/q

≤ C‖Φ∇u‖L1(Ω),

where μ ≥ 0, q ≥ 1, Φ ∈ C(Ω), Φ ≥ 0, and u is an arbitrary function in
C∞

0 (Ω), is equal to

sup
{g}

μ(g)1/q∫
∂g
Φ(x) ds

.

Here {g} is the same as in Theorem 1.

The next theorem shows that in the case Ω = R
n the condition (1.4.6)

can be replaced by the equivalent one

sup
x;�
�(1−n)qμ

(
B�(x)

)
<∞. (1.4.17)

Theorem 2. 1. If (1.4.17) holds, then (1.4.7) holds for all u ∈ D(Rn)
with q ≥ 1 and
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Cq ≤ cq sup
x;�
�(1−n)qμ

(
B�(x)

)
, (1.4.18)

where c depends only on n.
2. If (1.4.7) holds for all u ∈ D(Rn), then

Cq ≥ (nvn)−q sup
x;�
�(1−n)qμ

(
B�(x)

)
. (1.4.19)

Proof. Let {B(xj , �j)} be the covering of g constructed in Theorem 1.2.1/2.
By the obvious inequality

(∑
j

aj

)1/q

≤
∑
j

a
1/q
j ,

where aj ≥ 0, q ≥ 1, we have

μ(g) ≤
∑
j

μ
(
B(xj , �j)

)
≤
[∑

j

μ
(
B(xj , �j)

)1/q]q

≤ sup
x;�
�(1−n)qμ

(
B(x, �)

)(∑
j

�n−1
j

)q

.

This and (1.2.1) imply

μ(g) ≤ cq sup
x;�
�(1−n)qμ

(
B(x, �)

)
s(∂g),

which along with Theorem 1 yields (1.4.7).
The inequality (1.4.19) is an obvious corollary of (1.4.9). The theorem is

proved. �

1.4.3 Estimate for the Norm in Lq(Rn, μ) by the Integral of the
Modulus of the lth Order Gradient

Lemma. Let μ be a measure on R
n, n > l, 1 ≤ q < (n− l + 1)(n− l)−1 and

τ−1 = 1− n−1(q − 1)(n− l). Further, let

(I1μ)(x) =
∫

Rn

|x− y|1−n dμ(y).

Then for all x ∈ R
n and � > 0

�l−1−n‖I1μ‖Lτ (B(x,�)) ≤ c sup
x∈Rn,r>0

r(l−n)qμ
(
B(x, r)

)
.

Proof. Without loss of generality we may put x = 0. By Minkowski’s
inequality,
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(∫
|x|≤�

(∫
|y|<2�

dμ(y)
|x− y|n−1

)τ

dx
)1/τ

≤
∫

|y|<2�

(∫
|x|≤�

dx
|x− y|(n−1)τ

)1/τ

dμ(y). (1.4.20)

Since (n− 1)τ < n, we have
∫

|x|≤�

dx
|x− y|(n−1)τ

≤ c�n−τ(n−1).

Hence the right-hand side in (1.4.20) does not exceed c�nτ −1−n+1μ(B(2�)).
Consequently,

�l−n−1

(∫
|x|≤�

(∫
|y|<2�

dμ(y)
|x− y|n−1

)τ

dx
)1/τ

≤ c�(l−n)qμ
(
B(2�)

)
.

On the other hand,

(∫
|x|<�

(∫
|y|≥2�

dμ(y)
|x− y|n−1

)τ

dx
)1/τ

≤ c�n/τ

∫
|y|≥2�

dμ(y)
|y|n−1

.

The last integral is equal to

(n− 1)
∫ ∞

2�

μ
(
B(r)\B(2�)

)
r−n dr,

and therefore it is majorized by

c�q(n−l)−n+1 sup
0<r<∞

r(l−n)qμ
(
B(r)

)
.

The result follows. �

Theorem. Let μ be a measure on R
n and let l ≤ n, q ≥ 1. The inequality

‖u‖Lq(μ) ≤ C‖∇lu‖L1 , u ∈ D , (1.4.21)

holds if and only if

K = sup
x∈Rn,�>0

�l−nμ
(
B(x, �)

)1/q
<∞. (1.4.22)

Moreover, K is equivalent to the best constant C in (1.4.21).

Proof. The estimate C ≥ cK is obvious. We prove the opposite one. In
the case l = n it follows from the identity

u(x) =
∫ x1

− ∞
· · ·
∫ xn

− ∞

∂nu

∂x1 · · · ∂xn
dx1, . . . , dxn, u ∈ D . (1.4.23)
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Let l < n. For l = 1 the result follows by Theorem 1.4.2/2. First consider the
case l > 1, q > n/(n− 1). By Corollary 1.4.1

‖u‖Lq(μ) ≤ cK ‖∇l−1u‖Ln/(n−1) .

By (1.4.14), we obtain that the right-hand side does not exceed cK ‖∇lu‖L1 .
Now let l > 1, q ≤ n/(n− 1). We use induction on the number of deriva-

tives. Suppose the assertion holds for derivatives of orders 2, . . . , l− 1. By the
integral representation (1.1.10),
∫

|u|q dμ(x) ≤ c0
∫ ∣∣∣∣
∫

(ξ − x)∇ξ|u(ξ)|q
|ξ − x|n dξ

∣∣∣∣ ≤ c0q
∫

|∇u||u|q−1I1μdξ.

Hence ∫
|u|q dμ(x) ≤ c‖u‖q−1

Ln/(n−1)

∥∥|∇u|Ilμ∥∥Lτ
,

where τ−1 = 1−(q−1)(n−l)n−1. By (1.4.16) the first norm on the right-hand
side is majorized by

c sup
x∈Rn,�>0

�l−1−n‖Ilμ‖Lτ (B(x,�))‖∇lu‖L1 ,

which follows by the induction hypothesis. Since q ≤ n(n − 1)−1 then q <
(n− l + 1)(n− l)−1 and we may use the Lemma. Thus, the sufficiency of the
condition (1.4.22) as well as the estimate C ≤ cK are proved. The necessity
of (1.4.22) and the estimate C ≥ cK follow by the insertion of the test
function (1.4.5) into (1.4.21). This completes the proof.

1.4.4 Corollaries of Previous Results

The following assertion combines and complements Corollary 1.4.1 and The-
orem 1.4.3.

Theorem 1. Let either k < l, p(l − k) < n, 1 ≤ p < q <∞ or l − k = n,
p = 1 ≤ q ≤ ∞. The best constant in

‖∇ku‖Lq(μ) ≤ C‖∇lu‖Lp , u ∈ D
(
R

n
)
, (1.4.24)

is equivalent to
K = sup

x;�
�l−k−np−1[

μ
(
B(x; �)

)]1/q
.

Proof. The estimate C ≤ cK is proved in Corollary 1.4.1 and in Theo-
rem 1.4.3. Inserting

u(y) = (x1 − y1)kη
(
x− y
�

)
,

where � > 0 and η ∈ D(B2), η = 1 on B1, into (1.4.24), we obtain the lower
bound for C.
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The next assertion is the analog of Theorem 1 for the space V l
p .

Theorem 2. Let the conditions of Theorem 1 relating the values of p, q,
l, k, and n hold. The best constant in

‖∇ku‖Lq(μ) ≤ C‖u‖V l
p
, u ∈ D ,

is equivalent to

K1 = sup
x;�∈(0,1)

�l−k−np−1[
μ
(
B(x, �)

)]1/q
. (1.4.25)

Proof. First we derive the upper bound for C. Let the cubes Qj form the
coordinate net in R

n with step 1 and let 2Qj be concentric homothetic cubes
with edge length 2. By {ηj} we denote a partition of unity subordinate to the
covering {2Qj} and such that |∇mηj | ≤ c(m) for all j. Here c(m) is a positive
number and m is an integer. Since the multiplicity of the covering {2Qj} is
finite and depends on n only, it follows that

∫
|∇ku|q dμ ≤

∫ (∑
j

∣∣∇k(ηju)
∣∣
)q

dμ ≤ c
∑
j

∫ ∣∣∇k(ηju)
∣∣q dμ.

Applying Theorem 1 to each summand of the last sum, we obtain

∥∥∇k(ηju)
∥∥
Lq(μ)

≤ c, sup
x;�
�l−k−np−1[

μ
(
2Qj ∩B(x, �)

)]1/q∥∥∇l(ηju)
∥∥
Lp
.

Consequently,
‖∇ku‖Lp(μ) ≤ cK1‖u‖V l

p
,

where K1 is the constant defined by (1.4.25).
The lower bound for C can be obtained in the same way as in Theorem 1.

1.4.5 Generalized Sobolev Theorem

Theorem. Let Ω be a domain in R
n with compact closure and let it be the

union of a finite number of domains of the class EV l
p . (In particular, according

to Sect. 1.1.9 and the Stein extension theorem, mentioned in Sect. 1.1.17, this
assumption holds if Ω has the cone property.)

Further, let μ be a measure on Ω satisfying

sup
x∈Rn,�>0

�−sμ
(
Ω ∩B(x, �)

)
<∞, (1.4.26)

where s > 0 (for example, if s is an integer, then μ can be s-dimensional
Lebesgue measure on Ω ∩ R

s).
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Then, for any u ∈ C∞(Ω) ∩ V l
p(Ω),

k∑
j=0

‖∇ju‖Lq(Ω,μ) ≤ C‖u‖V l
p(Ω), (1.4.27)

where C is a constant independent of u, and the parameters q, s, p, l, and k
satisfy the inequalities

(a) p > 1, 0 < n− p(l − k) < s ≤ n, q ≤ sp(n− p(l − k))−1;
(b) p = 1, 0 < n− l + k ≤ s ≤ n, q ≤ s(n− l + k)−1;
(c) p > 1, n = p(l − k), s ≤ n, q is any positive number.

If either of the conditions holds:
(d) p > 1, n < p(l − k);
(e) p = 1, n ≤ l − k;

then
k∑

j=0

sup
Ω

|∇ju| ≤ C‖u‖V l
p(Ω). (1.4.28)

If Ω belongs to the class EV l
p (for example, Ω is in C0,1), then in case

(d) the Theorem can be refined as follows.
(f) If p ≥ 1, (l − k − 1)p < n < (l − k)p and λ = l − k − n/p, then for all

u ∈ V l
p (Ω) ∩ C∞(Ω)

sup
x,x+h∈Ω, h 
=0

|∇ku(x+ h) −∇ku(x)|
|h|λ ≤ C‖u‖V l

p(Ω). (1.4.29)

(g) If (l − k − 1)p = n, then inequality (1.4.29) holds for all 0 < λ < 1 and
u ∈ V l

p (Ω) ∩ C∞(Ω).

Proof. First we note that in cases (c) and (g) the result follows from (e)
and (f), respectively, since V l

p1
(Ω) ⊂ V l

p2
(Ω) for p1 > p2.

It is sufficient to prove (1.4.27) and (1.4.28) for domains of the class EV l
p .

Since for such a domain there exists an extension operator V l
p (Ω) → V l

p (Rn),
we can limit ourselves to consideration of the case Ω = R

n. To obtain (1.4.27)
in cases (a) and (b) we refer to Theorem 1.4.4/2.

Let (d) hold. It is sufficient to prove (1.4.28) for functions in V l
p(Rn)

with supports in a ball. Then (1.4.28) results from the integral representa-
tion (1.1.10) and Hölder’s inequality.

In case (e) the estimate (1.4.28) follows directly from (1.4.23).
Let (f) hold. Clearly, it is sufficient to assume that k = 0. Since Ω ∈ EV l

p ,
then, as before, we may put Ω = R

n. Furthermore, one can assume without
loss of generality that |h| < 1/4 and that u(y) = 0 outside the ball B(x, 1).
By (1.1.10)

u(x) =
∑

|α|=l

∫
Rn

Kα(x− y)Dαu(y) dy,
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where |Kα(z)| ≤ c|z|l−n and∣∣Kα(z + h) −Kα(z)
∣∣ ≤ c|h||z|l−1−n for |z| ≥ 3|h|.

Therefore, ∣∣u(x+ h) − u(x)
∣∣

≤ c
∫

|x−y|≤4|h|

|∇lu(y)|
|x− y|n−l

dy

+ c|h|
∫

|x−y|≥4|h|

|∇lu(y)|
|x− y|n−l+1

dy. (1.4.30)

It remains to apply Hölder’s inequality to both integrals on the right-hand
side. The theorem is proved.

Remark 1. All the relations between n, p, l, k, and λ in cases (d)–(g) of
the Theorem are the best possible. This fact can be verified using examples
of functions xk1 log | log |x||, |x|α.

Remark 2. From the Theorem it follows that V l
p (Ω) is continuously em-

bedded into V k
q (Ω), q = np(n − p(l − k))−1 for n > p(l − k), p ≥ 1, if Ω is

bounded and has the cone property. In the case n = p(l − k) the same holds
for any q < ∞. Also note that for this critical dimension there is no embed-
ding of V l

p (Ω)∩Ck−1,1(Ω) into Ck(Ω). The corresponding counterexample is
provided by the function

u(x) = x1 sin log log
e

|x| ,

defined on the unit ball.
In the cases p(l−k) > n and p = 1, l−k ≥ n the space V l

p(Ω) is embedded
into Ck(Ω).

Remark 3. If Ω ∈ C 0,1, then under the conditions (f) and (g) the space
V l
p(Ω) is embedded into the space, obtained by the completion of C∞(Ω̄) with

respect to the norm

k∑
j=0

‖∇ju‖L∞(Ω) + sup
x,y∈Ω,x 
=y

|∇ku(x) −∇ku(y)|
ψ(|x− y|) ,

where

ψ(t) =

{
tλ for λ ∈ (0, 1),
t(1 + | log t|)(p−1)/p for λ = 1,

(if λ = 1, the right-hand side in (1.4.30) is majorized by c|h| · | log |h||
p−1

p ×
‖∇lu‖Lp with the aid of Hölder’s inequality). The exponent (p−1)/p is sharp
for λ = 1, which can be checked by using the trial function B1/4(0) � x �→
xk+1

1 (− log |x|)ν with ν ∈ (0, (p− 1)/p), l − k − n/p = 1.
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From conditions (a), (b), and (c) it follows that for integer s the restriction
operator

C∞(Ω) ∩ V l
p (Ω) � u→ u|Rs ∩Ω , (1.4.31)

can be uniquely extended to a linear operator V l
p (Ω) → V k

q (Rs ∩Ω).
Using Lemma 1.1.11 we may rewrite (1.4.27) as

k∑
j=0

∥∥∇j(u−Π)
∥∥
Lq(Ω,μ)

≤ C‖∇lu‖Lp(Ω),

where Π is the polynomial (1.1.12). This enables us to introduce a continuous
restriction operator L̇l

p → V k
p (Rs ∩ Ω)/Pl−1 to R

s ∩ Ω for μ = ms. Analo-
gously, we may establish that in cases (d) and (e) and (f) and (g) the space
L̇l

p(Ω) is continuously embedded into Ck(Ω̄)/Pl−1 and into Ck,λ(Ω̄)/Pl−1,
respectively.

In conclusion we note that the Theorem of the present subsection refines
Theorem 1.1.2 on local properties of functions in Ll

p(Ω), where Ω is an arbi-
trary open subset of R

n.

1.4.6 Compactness Theorems

The embedding and restriction operators mentioned in Remark 1.4.5/2, which
are continuous by Theorem 1.4.5, turn out to be compact for certain values of
p, l, q, n, and s. This result will be proved at the end of the present subsection.

Lemma. Any bounded subset of the space of restrictions of the functions
in V l

p (Rn) to a bounded domain Ω is relatively compact in V l−1
p (Ω).

Proof. It suffices to limit consideration to the case l = 1. Let f be a
summable nonnegative function on [0, a+ δ], where a > 0, δ > 0. Then

∫ a

0

dt
∫ t+δ

t

f(τ) dτ ≤ δ
∫ a+δ

0

f(t) dt. (1.4.32)

In fact, the integral on the left-hand side is
∫ a

0

dt
∫ δ

0

f(τ + t) dτ =
∫ δ

0

dτ
∫ a+τ

τ

f(t) dt ≤ δ
∫ a+δ

0

f(t) dt.

Now let u ∈ C∞
0 (Rn). Obviously, for all h ∈ R

n,
∫
Ω

∣∣u(x+ h) − u(x)
∣∣p dx ≤

∫
Ω

(∫
σx,h

|∇u| dl
)p

dx,

where σx,h = [x, x+ h]. Hence
∫
Ω

∣∣u(x+ h) − u(x)
∣∣p dx ≤ |h|p−1

∫
Ω

∫
σx,h

|∇u|p dl dx.
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Applying (1.4.32) with δ = |h| to the last integral, we obtain

(∫
Ω

∣∣u(x+ h) − u(x)
∣∣p dx

)1/p

≤ |h|‖∇u‖Lp(Rn).

It remains to note that by Riesz’s theorem, a set of functions, defined on a
bounded open domain Ω, is compact in Lp(Ω), if it is bounded in Lp(Ω) and

∫
Ω

∣∣u(x+ h) − u(x)
∣∣p dx→ 0,

uniformly as |h| → 0, where h is an arbitrary vector in R
n. This completes

the proof. �

Theorem 1. Let a bounded domain Ω ⊂ R
n be the union of a finite

number of domains in EV l
p (for example, Ω has the cone property owing to

Lemma 1.1.9/1). Let μ be a nonnegative measure in R
n with support in Ω.

Further, let k < l, p(l− k) < n, and either 1 ≤ p < q <∞ or 1 = p < q <∞.
Then any subset of the space C∞(Ω̄), bounded in V l

p(Ω), is relatively com-
pact in the metric

k∑
j=0

‖∇ju‖Lq(Ω̄,μ), (1.4.33)

if and only if
lim
�→0

sup
x∈Rn

�q(l−k−n/p)μ
(
B(x, �)

)
= 0. (1.4.34)

Proof. Sufficiency. We may assume from the very beginning that Ω ∈ EV l
p .

Then it suffices to prove that any subset of the space C∞(Rn) ∩ W l
p(Rn),

bounded in W l
p(R

n) = V l
p (Rn), is relatively compact in the metric (1.4.33).

According to (1.4.34), given any ε > 0, there exists a number δ such that

�q(1−k−n/p) sup
x
μ
(
B(x, �)

)
< ε

for � ≤ δ. We construct a covering {Bi} of Ω̄ by balls with diameter δ ≤ 1,
the multiplicity of the covering being bounded by a constant which depends
on n. Let μi be the restriction of μ to Bi and let {ηi} be a partition of unity
subordinate to the covering {Bi}. Using Theorem 1.4.4/1, we obtain

∫
Bi

k∑
j=0

∣∣∇j(uηi)
∣∣q dμi ≤ c sup

�;x
�q(l−k−n/p)μi

(
B(x, �)

)
‖uηi‖qV l

p(Bi)

≤ cε
l∑

j=0

(
δp(j−l)

∫
Bi

|∇ju|p dx
)q/p

.

Summing over i, we arrive at
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∫
Ω̄

k∑
j=0

|∇ju|q dμ ≤ cε‖∇lu‖qLp(Rn) + C(ε)‖u‖q
V l−1

p (
⋃

i Bi)
.

It remains to note that, by the Lemma, any bounded set in V l
p (Rn) is compact

in V l−1
p (

⋃
i Bi).

Necessity. Let us take the origin of Cartesian coordinates to be an arbitrary
point O ∈ R

n. Let η denote a function in D(B2�) which is equal to unity on
B�, � < 1, and such that |∇jη| ≤ c�−j , j = 1, 2, . . . .

Note that μ has no point charges by (1.4.34) and the inequality p(l−k) < n.
From the relative compactness of the set {u ∈ C∞(Ω̄) : ‖u‖V l

p(Rn) ≤ 1} in the
metric (1.4.27) it follows that given any ε > 0, any function of this set and
any point O we have ∫

B2�

|∇ku|q dμ ≤ ε

for some �. Inserting the function

u(x) =
xk1η(x)

‖xk1η‖V l
p(Rn)

,

into the last inequality, we obtain

(k!)qμ(B�) ≤ ε‖xk1η‖
q
V l

p(B2�)
≤ cε�q(n/p−l+k).

The result follows. �

Theorem 2. Let a bounded domain Ω ⊂ R
n be the union of a finite

number of domains in EV l
p . Then for l > k ≥ 0, p ≥ 1 we have:

(a) If s is a positive integer and n > (l − k)p, then the restriction opera-
tor (1.4.31) is compact as an operator, mapping V l

p (Ω) into V k
q (Ω ∩ R

s) for
n− (l − k)p < s ≤ n and q < sp(n− (l − k)p)−1.

(b) If s is a positive integer and n = (l − k)p, then the operator (1.4.31)
is compact as an operator, mapping V l

p (Ω) into V k
q (Ω ∩ R

s) for any q ≥ 1,
s ≤ n.

(c) If n < (l − k)p, then the embedding of V l
p(Ω) into the space Ck(Ω)

equipped with the norm
k∑

j=0

sup
Ω

|∇ju|

is compact.

Proof. Since V l
p1

(Ω) ⊂ V l
p2

(Ω) for p1 > p2, then (b) follows from (a). In
turn, (a) is a corollary of Theorem 1.

To obtain (c) it suffices to prove the compactness of the unit ball in V l
p(Rn)

with respect to the metric of the space Ck(G), where (l − k)p > n and G is
any bounded domain. Let x ∈ Ḡ and � > 0. By Sobolev’s estimate (1.4.28)
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k∑
j=0

sup
B(x,1)

|∇ju| ≤ C‖u‖V l
p(B(x,1)).

Applying a dilation with coefficient �, we obtain

k∑
j=0

�j sup
B(x,�)

|∇ju| ≤ c
l∑

i=0

�i−n/p‖∇iu‖Lp(B(x,�)).

Therefore, for j = 0, . . . , k

sup
B(x,�)

|∇ju| ≤ c�l−j−n/p‖∇lu‖Lp(B(x,�)) + C(�)‖u‖V l−1
p (B(x,�))

and thus

k∑
j=0

sup
Ḡ

|∇ju| ≤ c �l−k−n/p‖u‖V l
p(Rn) + C(�)‖u‖V l−1

p (G�),

where G� is the � neighborhood of Ḡ. Since � is an arbitrarily small number,
it follows by the Lemma that the unit ball in V l

p (Rn) is compact in V l−1
p (G�).

Thus (c) is proved. �

1.4.7 Multiplicative Inequalities

Most of this subsection is dedicated to a necessary and sufficient condition for
the validity of the inequality

‖∇ku‖Lq(μ) ≤ C‖∇lu‖τLp
‖u‖1−τ

Lp
. (1.4.35)

Lemma. Let μ be a measure in R
n with support in B� = {x : |x| < �}

and such that
K = sup

x;r
r−sμ

(
B(x, r)

)
<∞ (1.4.36)

for some s ∈ [0, n]. Further, let p ≥ 1, let k and l be integers k < l, and let
s > n− p(l − k) if p > 1, s ≥ n− l + k if p = 1.

Then, for all v ∈ C(B̄�) and for q satisfying the inequalities l− k− n/p+
s/q > 0, q ≥ p, we have

‖∇kv‖Lq(μ,B�) ≤ cK1/q�s/q−n/p−k
(
�l‖∇lv‖Lp(B�) + ‖v‖Lp(B�)

)
. (1.4.37)

Proof. According to Sect. 1.1.17, any function w ∈ C∞(B̄1) can be ex-
tended to a function w ∈ Cl

0(B2) satisfying the inequality

‖∇lw‖Lp(B2) ≤ c‖w‖V l
p(B1).
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Since V l
p (B1) = W l

p(B1) (see Corollary 1.1.11), the last estimate is equivalent
to

‖∇lw‖Lp(B2) ≤ c
(
‖∇lw‖Lp(B1) + ‖w‖Lp(B1)

)
.

Thus, applying a dilation, we obtain that the function v, mentioned in the
statement of the Lemma, admits an extension v ∈ Cl

0(B2�) such that

‖∇lv‖Lp(B2�) ≤ c
(
‖∇lv‖Lp(B�) + �−1‖v‖Lp(B�)

)
. (1.4.38)

Let (l − k)p < n, p > 1 or l − k ≤ n, p = 1. By Theorem 1.4.4/1 we obtain

‖∇kv‖Lt(μ,B2�) ≤ cK1/t‖∇lv‖Lp(B2�), (1.4.39)

where t = ps/(n− p(l − k)).
In the case (l − k)p = n, p > 1, we let p1 denote a number in [1, p),

sufficiently close to p. We put t = p1s/(n−p1(l−k)). Then, by Corollary 1.4.1,

‖∇kv‖Lt(μ,B2�) ≤ cK1/t‖∇lv‖Lp1 (B2�)

≤ cK1/t�n/p1−n/p‖∇lv‖Lp(B2�). (1.4.40)

In the case (l − k)p > n, p ≥ 1 we put t = ∞. By Sobolev’s theorem

‖∇kv‖Lt(μ,B2�) ≤ c�l−k−n/p‖∇lv‖Lp(B2�). (1.4.41)

Combining (1.4.39)–(1.4.41), we obtain

‖∇kv‖Lt(μ,B2�) ≤ cK1/t�l−k−n/p+s/t‖∇lv‖Lp(B2�). (1.4.42)

By Hölder’s inequality,

‖∇ku‖Lq(μ,B�) ≤
[
μ(B�)

]1/q−1/t‖∇kv‖Lt(μ,B�)

≤ K1/q−1/t�s(1/q−1/t)‖∇kv‖Lt(μ,B�),

which along with (1.4.42) gives

‖∇kv‖Lt(μ,B2�) ≤ cK1/q�s/q+l−k−n/p‖∇lv‖Lp(B2�).

Using (1.4.38), we complete the proof. �

Theorem. 1. Let μ be a measure in R
n which satisfies the condition

(1.4.36) for some s ∈ [0, n]. Let p ≥ 1 and let k, l be integers, 0 ≤ k ≤ l − 1;
s > n − p(l − k) if p > 1 and s ≥ n − l + k if p = 1. Then, for all u ∈ D ,
the estimate (1.4.35) holds, where C ≤ cK1/q, n/p − l + k < s/q, q ≥ p and
τ = (k − s/q + n/p)/l.

2. If (1.4.35) is valid for all u ∈ D , then C ≥ cK1/q.
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Proof. According to the Lemma, for all x ∈ R
n and � > 0,

‖∇ku‖Lq(μ,B(x,�))

≤ cK1/q�s/q−n/p−k
(
�l‖∇lu‖Lp(B(x,�)) + ‖u‖Lp(B(x,�))

)
. (1.4.43)

We fix an arbitrary �0 > 0. If the first term on the right-hand side of (1.4.43)
exceeds the second for � = �0, then we cover a point x ∈ suppμ by the ball
B(x, �). Otherwise we increase � until the first term becomes equal to the
second. Then the point x is covered by the ball B(x, �), where

� = ‖u‖1/l
Lp(B(x,�))‖∇lu‖−1/l

Lp(B(x,�)).

In both cases

‖∇ku‖qLq(μ,B(x,�)) ≤ cK
(
�
s−q(n/p−l+k)
0 ‖∇lu‖qLp(B(x,�))

+ ‖∇lu‖qτLp(B(x,�))‖u‖
q(1−τ)
Lp(B(x,�))

)
. (1.4.44)

According to Theorem 1.2.1/1, we can select a subcovering {B(i)}i≥1 of
finite multiplicity, depending only on n, from the covering {B(x, �)} of suppμ.
Summing (1.4.44) over all balls B(i) and noting that

∑
i

aαi b
β
i ≤

(∑
i

aα+β
i

)α/(α+β)(∑
i

bα+β
i

)β/(α+β)

≤
(∑

i

ai

)α(∑
i

bi

)β

,

where ai, bi, α, and β are positive numbers α+ β ≥ 1, we arrive at

‖∇kv‖qLq(μ) ≤ cK(�q(n/p−l+k)
0

(∑
i

‖∇lu‖pLp(B(i))

)q/p

+
(∑

i

‖∇lu‖pLp(B(i))

)τq/p(∑
i

‖u‖p
Lp(B(i))

)(1−τ)q/p

.

Since the multiplicity of the covering {B(i)} depends only on n, the right-hand
side is majorized by

cK
(
�
s−q(n/p−l+k)
0 ‖∇lu‖qLq

+ ‖∇lu‖τqLp
‖u‖(1−τ)q

Lp

)
.

Passing to the limit as �0 → 0, we complete the proof of case 1.
To prove case 2 it is sufficient to insert the function u�(x) = (y1 − x1)k ×

ϕ(�−1(x − y)), where ϕ ∈ D(B2), ϕ = 1 on B1, into (1.4.35). The result
follows. �
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Corollary 1. 1. Let μ be a measure in R
n such that

K1 = sup
x∈Rn,r∈(0,1)

r−sμ
(
B(x, r)

)
<∞, (1.4.45)

for some s ∈ [0, n]. Further let p ≥ 1, let k and l be integers 0 ≤ k ≤ l − 1;
s > n− p(l − k) if p > 1 and s ≥ n− l + k if p = 1. Then, for all u ∈ D ,

‖∇ku‖Lq(μ) ≤ C1‖u‖τV l
p
‖u‖1−τ

Lp
, (1.4.46)

where C1 ≤ cK1/q
1 , n/p− l + k < s/q, q ≥ p, and τ = (k − s/p+ n/p)/l.

2. If (1.4.46) is valid for all u ∈ D , then C1 ≥ cK1/q
1 .

Proof. Let {Q(i)} denote a sequence of closed cubes with edge length 1
which forms a coordinate grid in R

n. Let O(i) be the center of the cube Q(i),
O(0) = O, and let 2Q(i) be the concentric homothetic cube with edge length 2.
We put ηi(x) = η(x− O(i)),where η ∈ C∞

0 (2Q(0)), η = 1 on Q(0).
Applying the Theorem of the present subsection to the function uηi and

to the measure e→ μ(e ∩ Q(i)), we obtain

∥∥∇k(uηi)
∥∥p
Lq(μ)

≤ cKp/q
1

∥∥∇l(uηi)
∥∥pτ
Lp
‖uη1‖p(1−τ)

Lp
.

Summing over i and using the inequality

(∑
ai

)p/q
≤
∑

a
p/q
i ,

where ai ≥ 0, we arrive at (1.4.46).
The second assertion follows by insertion of the function u�, defined at the

end of the proof of the Theorem, into (1.4.46).

The next assertion follows immediately from Corollary 1.

Corollary 2. Suppose there exists an extension operator which maps
V l
p (Ω) continuously into V l

p (Rn) and Lp(Ω) into Lp(Rn) (for instance, Ω
is a bounded domain of the class C0,1). Further, let μ be a measure in Ω̄
satisfying (1.4.45), where s is a number subject to the same inequalities as in
Corollary 1. Then for all u ∈ Cl(Ω)

‖∇ku‖Lq(μ,Ω̄) ≤ C‖u‖τV l
p(Ω)‖u‖

1−τ
Lp(Ω), (1.4.47)

where n/p− l + k < s/q, q ≥ p ≥ 1 and τ = (k − s/q + n/p)/l.
2. If for all u ∈ Cl(Ω̄) the estimate (1.4.47) holds, then the measure μ with

support in Ω̄ satisfies (1.4.45).
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1.4.8 Comments to Sect. 1.4

Theorem 1.4.1/2 is due to D.R. Adams [2, 3]. The proof given above is bor-
rowed from the paper by D.R. Adams [3]. The following analog of Corol-
lary 1.4.1 was obtained by Maz’ya and Preobrazhenski [577] and will be proved
in Sect. 11.9.

If 1 < p < q, lp = n, then the best constant C in

‖u‖Lq(μ) ≤ C‖u‖W l
p
, u ∈ C∞

0

is equivalent to

sup
x∈Rn,r∈(0,1)

(
log

2
r

) p−1
p [
μ
(
Br(x)

)]1/q
.

For μ = ms, i.e., for the s-dimensional Lebesgue measure in R
s, inequal-

ity (1.4.4) was proved by Sobolev [712] in the case s = n and by Il’in [394] in
the case s < n. They used the integral representation (1.1.10) and the mul-
tidimensional generalization of the following Hardy–Littlwood theorem (cf.
Hardy, Littlewood, and Pólya [351]).

If 1 < p < q <∞ and μ = 1− p−1 + q−1, then the operator |x|−μ ∗ f with
f : R

1 → R
1 maps Lp(R1) continuously into Lq(R1).

For one particular case, Lieb [496, 497] found an explicit expression for the
norm of the operator |x|−μ ∗ f , μ ∈ (0, n), acting on functions of n variables.
His result can be written as the inequality

∣∣∣∣
∫

Rn

∫
Rn

f(x)g(y)
|x− y|μ dxdy

∣∣∣∣

≤ π 1
2
Γ ((n− μ)/2)
Γ (n− μ/2)

(
Γ (n/2)
Γ (n)

)μ−n
n

‖f‖L 2n
2n−μ

‖g‖L 2n
2n−μ

, (1.4.48)

with the equality if and only if f and g are proportional to the function
(|x− x0|2 + a2)(μ−2n)/2, where a ∈ R and x0 ∈ R

n.

Theorems 1.4.2/1 and 1.4.2/2 are due to the author [543, 548]. Inequality

(∫ ∣∣u(x)∣∣n/(n−1) dx
)(n−1)/n

≤ Cn

∫ ∣∣∇u(x)∣∣ dx (1.4.49)

was proved independently by Gagliardo [299] and Nirenberg [641] using the
same method, without discussion of the best value of Cn.

The proof based on the classical isoperimetric inequality (1.4.13) in R
n,

which gives the sharp constant (see (1.4.14)), was proposed simultaneously
and independently by Federer and Fleming [273] and by Maz’ya [527].

Briefly, the proof by Gagliardo [299] and Nirenberg [640] runs as follows.
One notes that
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∣∣u(x)∣∣ ≤ 2−1

∫
R

∣∣∣∣ ∂u∂yi (x1, . . . , xi−1, yi, xi+1, . . . , xn)
∣∣∣∣ dyi

for 1 ≤ i ≤ n and for all u ∈ C∞
0 . This yields

∣∣u(x)∣∣n/(n−1) ≤ 2n/(1−n)

( ∏
1≤i≤n

∫
R

∣∣∣∣ ∂u∂yi
∣∣∣∣ dyi

)1/(n−1)

.

Integrating successively with respect to x1, x2, and so on, and using the gen-
eralized Hölder inequality

∣∣∣∣
∫
f1 · · · fn−1 dμ

∣∣∣∣ ≤
∏

1≤j≤n−1

‖fj‖Lpj
(μ)

with p1 = p2 = · · · = pn−1 = n − 1 after every integration, we arrive at the
inequality

‖u‖Ln/(n−1) ≤ 2−1

( ∏
1≤i≤n

∫
Rn

∣∣∣∣ ∂u∂xi
∣∣∣∣ dx

)1/n

. (1.4.50)

(Note that (1.4.50) is equivalent to the isoperimetric inequality

(
mn(g)

)n−1 ≤ 2−1
∏

1≤i≤n

∫
∂g

∣∣cos(ν, xi)
∣∣ ds,

which can be proved by a straightforward modification of the proof of Theo-
rem 1.4.2/1.)

By the inequality between the geometric and arithmetic means, we obtain
the estimate

‖u‖Ln/(n−1) ≤ (2n)−1

∫
Rn

∑
1≤i≤n

∣∣∣∣ ∂u∂xi
∣∣∣∣ dx. (1.4.51)

Its optimality is checked by a sequence of mollifications of the characteristic
function of the cube {x : 0 ≤ xi ≤ 1}.

Obviously, (1.4.51) implies (1.4.49) with Cn = (2n1/2)−1, but this value of
Cn is not the best possible.

It is worth mentioning that Gagliardo’s paper [299] contains a more general
argument based on the same idea which leads to the embedding of W l

p(Ω) to
Lq(Ωs), where Ωs is an s-dimensional surface situated in Ω̄.

Gromov [325] gave a proof of (1.4.49) where the integration is taken over
a normed n-dimensional space X. The value Cn = n−1 in Gromov’s proof
is the best possible provided the unit ball in X has volume 1. This proof is
based on the so-called increasing triangular mappings which were apparently
introduced to Convex Geometry by Knothe [437], who used them to obtain
some generalizations of the geometric Brunn–Minkowski inequality. Such a
mapping transports a given probability measure on the Euclidean space to
another one, and under mild regularity assumptions, it is defined in a unique



1.4 Embedding Theorems of Sobolev Type 85

way. These mappings have a simple description in terms of conditional prob-
abilities, and were apparently known in Probability Theory before Knothe’s
work.

In time it became clear that triangular mappings may be used to obtain
various geometric and analytic inequalities. Bourgain [137] applied them to
prove Khinchin-type (i.e., reverse Hölder) inequalities for polynomials of a
bounded degree over high-dimensional convex bodies, with constants that are
dimension free.

There is a discussion of this method in Bobkov [111, 112], where triangular
mappings were used to study geometric inequalities of dilation type.

Using wavelet decompositions, weak estimates, and interpolation, Cohen,
DeVore, Petrushev, and Xu [208] for n = 2, and Cohen, Meyer and Oru [209]
for n ≥ 2, obtained the following improvement of (1.4.49):

‖u‖L n
n−1

≤ C‖∇u‖(n−1)/n
L1

‖u‖1/n
B , (1.4.52)

where B is the distributional Besov space B1−n
∞,∞. One equivalent norm in

B1−n
∞,∞,

f → sup
t>0

t(n−1)/2‖Ptf‖L∞ ,

where Pt is the heat semigroup on R
n, was used by Ledoux [485] in his direct

semigroup argument leading to (1.4.52).
Another powerful method for proving Sobolev-type inequalities is based

upon symmetrization of functions (it will be demonstrated in Sects. 2.3.5
and 2.3.8) was developed in different directions during the last 40 years. In
particular, it led to generalizations and refinements of those inequalities for
the so-called rearrangement invariant spaces: Klimov [426, 427, 430]; Mossino
[619]; Kolyada [443, 444], Talenti [742, 743]; Klimov and Panasenko [436];
Edmunds, Kerman, and Pick [253]; Bastero, M. Milman, and Ruiz [76]; M.
Milman and Pustylnik [607]; Cianchi [197]; Kerman and Pick [418, 419]; Mar-
tin and M. Milman [518–522]; Martin, M. Milman, and Pustylnik [524]; Pick
[659, 660]; Cianchi, Kerman, and Pick [205]; and Cianchi and Pick [207], et
al.

Using symmetrization methods, Martin and M. Milman [517] showed that
for α < 0, and f ∈ (W 1

1 +W 1
∞) ∩Bα

∞,∞,

f∗ ∗(s) ≤ c(n, α)
(
|∇f |∗ ∗(s)

) |α|
1+|α| ‖f‖

1
1+|α|
Bα

∞,∞
,

where h∗ ∗(t) = 1
t

∫ t

0
h∗(s) ds. This gives another approach to (1.4.52) and

other inequalities of a similar nature.
Although the constant in (1.4.14) is the best possible, it can be improved

by restricting the class of admissible functions in this inequality. For example,
since for any N -gon ΩN ⊂ R

2 the isoperimetric inequality
[
s(∂ΩN )

]2 ≥ (4/N) tan(π/N)m2(ΩN )
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is valid (see [714]) then duplicating the proof of Theorem 1.4.2/1 we obtain
the following assertion.

Let uN be a function on R
2 with compact support, whose graph is a polygon

with N sides. Then

(4/N) tan(π/N)
∫

R2
|uN |2 dx ≤

(∫
R2

|∇uN | dx
)2

.

Lemma 1.4.3 is a special case of a result due to D.R. Adams [2]. Theo-
rem 1.4.3 was proved by the author [551].

Theorem 1.4.5 for μ = ms is the classical Sobolev theorem (see Sobolev
[712, 713]) with supplements due to Il’in [394], Gagliardo [299], Niren-
berg [640], and Morrey [612]. Here we stated this theorem in the form pre-
sented by Gagliardo [299].

The continuity of functions in W 1
p (Ω) for p > 2, n = 2, was proved by

Tonelli [754].
To Remark 1.4.5 we add that if n = p(l − k), l > k, p > 1, the inequality

∫
Ω

exp
(
c
|∇ku(x)|
‖u‖V l

p(Ω)

)p/(p−1)

dx ≤ c0 (1.4.53)

holds with positive constants c and c0, as shown for the first time by Yudovich
in 1961 [809]. (See also Pohozhaev [662] and Trudinger [762]. Concerning the
best value of c0 in inequalities of type (1.4.53) see Comments to Chap. 11.)

The estimate (1.4.32) is contained in the paper by Morrey [612]. Lem-
ma 1.4.6 is the classical lemma due to Rellich [672]. Theorem 1.4.6/2 was
proved by Kondrashov [447] for p > 1 and by Gagliardo [299] for p = 1.

In connection with the estimate (1.4.35) we note that multiplicative in-
equalities of the form

‖∇ju‖Lq ≤ c‖∇lu‖τLp
‖u‖1−τ

Lr

and their modifications are well known (see Il’in [393] and Ehrling [257]).
Their general form is due to Gagliardo [300] and Nirenberg [640] (see also
Solonnikov [717]). The papers by Gagliardo [300] and Nirenberg [640] contain
the following theorem.

Theorem 1. Let Ω be a bounded domain having the cone property and let

〈〈u〉〉σ =
(∫

Ω

|u|σ dx
)1/σ

for σ > 0. Then

〈〈∇ju〉〉q ≤ c
(
〈〈∇lu〉〉p + 〈〈u〉〉r

)τ 〈〈u〉〉1−τ
r , (1.4.54)

where p ≥ 1, 1/q = j/n+ τ(1/p− 1/n) + (1 − τ)/r for all τ ∈ [j/l, 1] unless
1 < p < ∞ and l − j − n/p is a nonnegative integer when (1.4.54) holds for
τ ∈ [j/l, 1).
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In the paper by Nirenberg [641] the stated result is supplemented by the
following assertion.

Theorem 2. Let σ < 0, s = [−n/σ], −α = s+ n/σ and let

〈〈u〉〉σ = sup |∇su| for α = 0, 〈〈u〉〉s = [∇su]α for α > 0,

where
[f ]α = sup

x 
=y
|x− y|−α

∣∣f(x) − f(y)∣∣.
Further, let 1/r = −β/n, β > 0. Then (1.4.54) holds for β ≤ j < l and for
all τ ∈ [(j − β)/(l − β), 1], except the case mentioned in Theorem 1.

The proof is reduced to derivation of the inequality
∫

I

∣∣u(i)
∣∣q dx ≤ c

(∫
I

∣∣u(l)
∣∣p dx+ [u]pβ

)
[u]q−p

β

for functions of the variable x on a unit interval I .

1.5 More on Extension of Functions in Sobolev Spaces

1.5.1 Survey of Results and Examples of Domains

In Sect. 1.1.17, we introduced the class EV l
p of domains in R

n for which there
exists a linear continuous extension operator E : V l

p (Ω) → V l
p (Rn). There we

noted that the class EV l
p contains Lipschitz graph domains.

Vodop’yanov, Gol’dshtein, and Latfullin [779] proved that a simply con-
nected plane domain belongs to the class EV 1

2 if and only if its boundary is a
quasicircle, i.e., the image of a circle under a quasiconformal mapping of the
plane onto itself. By Ahlfors’ theorem [30] (see also Rickman [678]) the last
condition is equivalent to the inequality

|x− z| ≤ c|x− y|, c = const, (1.5.1)

where x, y are arbitrary points of ∂Ω and z is an arbitrary point on that
subarc of ∂Ω which joins x and y and has the smaller diameter.

We give an example of a quasicircle of infinite length.

Example 1. Let Q be the square {(x1, x2); 0 < xi < 1, i = 1, 2}. We divide
the sides of the square Q into three equal parts and construct the squares
Qi1 , i1 = 1, . . . , 4, Qi1 ∩ Q = ∅, on the middle segments. Proceeding in the
same manner with each Qi1 , we obtain the squares Qi1,i2 , i2 = 1, . . . , 4 with
edge length 3−2. Repeating the procedure, we construct a sequence of squares
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Fig. 6.

{Qi1,i2,...,ik} (k = 1, 2, . . . ; ik = 1, . . . , 4), whose union with Q is denoted by Ω
(see Fig. 6). Clearly,

m1(∂Ω) = 4
∞∑

k=1

3k−1(2/3)k = ∞.

Let x, y ∈ ∂Ω. It suffices to consider the case x ∈ ∂Qi1,...,ik and y ∈
∂Qj1,...,jm where i1 = j1, . . . , il = jl, il+1 �= jl+1. Then |x − y| ≥ c13−l and
any point z in (1.5.1) satisfies the inequality |x − y| ≤ c23−l. Thus, ∂Ω is a
quasicircle.

A domain in R
2 which is bounded by a quasicircle belongs to the class

EV l
p for all p ∈ [1,∞), l = 1, 2, . . . (cf. Gol’dshtein and Vodop’yanov [320]

for l = 1, Jones [404] for l ≥ 1). In the just-mentioned paper by Jones, a
class of n-dimensional domains in EV l

p is described. It is larger than C0,1 and
coincides with the class of quasidisks for n = 2. Gol’dshtein [313] showed that
the simultaneous inclusion of a plane simply connected domain Ω and the
domain R

2\Ω in EV l
p implies that ∂Ω is a quasicircle.

Is the last property true under the single condition Ω ∈ EV 1
p for some

p �= 2? In other words, are quasidisks the only plane simply connected domains
contained in EV l

p , p �= 2? This question is discussed in the present subsection.
We give two examples which speak in favor of an affirmative answer. The

first shows that “cusps” directed onto the exterior of a domain do not allow
us to construct an extension operator.

Example 2. Let Ω = {(x1, x2) : 0 < x1 < 1, 0 < x2 < xα1 } where α > 1.
Suppose Ω ∈ EV l

p . Then V l
p(Ω) ⊂ V l−1

q (Ω) for 1 ≤ p < 2, q = 2p/(2 − p);
V l

2 (Ω) ⊂ V l−1
q (Ω) for any q < ∞ and V l

q (Ω) ⊂ Cl−1,1−2/p(Ω̄) for p > 2.
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Let u(x) = xl−β
1 . If β < (α + 1)/p, then u ∈ V l

p (Ω). Under the additional
condition that β is close to (α + 1)/p the function u does not belong to
V l−1
q (Ω) (p < 2, q = 2p/(2 − p) or p = 2, q is a large number) and does not

belong to Cl−1,1−1/p(Ω̄) (p > 2). Thus, Ω /∈ EV l
p .

The following example excludes domains with inward cusps at the bound-
ary from EV l

p , p > 1. It shows, incidentally, that the union of two domains in
EV l

p is not always in the same class.

Example 3. Let Ω be the domain considered above. We shall prove that
R

2\Ω̄ /∈ EV l
p . We introduce polar coordinates (r, θ) with origin x = 0 so

that the ray θ = 0 is directed along the halfaxis x1 > 0, x2 = 0. We put
u(x) = rl−βψ(θ)η(x). Here, β satisfies the inequality β < 2/p and is close to
2/p; η ∈ C∞

0 (R2), η(x) = 1 for r < 1 and ψ is a smooth function on (0, 2π],
ψ(θ) = 1 for small values of θ > 0 and ψ(θ) = 0 for θ ∈ [π, 2π]. Let v ∈ V l

p (R2)
be an extension of u ∈ V l

p (R2\Ω̄). Since for small positive values of x1

∂l−1v

∂xl−1
1

(
x1, x

α
1

)
≥ cx1−β

1 ,
∂l−1v

∂xl−1
1

(x1, 0) = 0,

it follows that
∫
Ω

∣∣∣∣ ∂lv

∂xl−1
1 ∂x2

∣∣∣∣
p

dx ≥
∫ δ

0

(∫ xα
1

0

∣∣∣∣ ∂lv

∂xl−1
1 ∂x2

∣∣∣∣dx2

)p dx1

x
α(p−1)
1

≥
∫ δ

0

∣∣∣∣∂
l−1v

∂xl−1
1

(
x1, x

α
1

)∣∣∣∣
p dx1

x
α(p−1)
1

≥ c

∫ δ

0

x
1−pβ−(α−1)(p−1)
1 dx1 = ∞

if p > 1. The latter contradicts the inclusion v ∈ EV l
p(Ω). Thus R

2\Ω̄ /∈ EV l
p

for p > 1. Nevertheless, we shall show that R
2\Ω̄ ∈ EV 1

1 . Let u ∈ V 1
1 (R2\Ω̄).

Suppose for a moment that u = 0 for x1 > 1/2.
We put u−(x) = u(x1,−x2) and u+(x) = u(x1, 2xα1 − x2) for x ∈ Ω. It is

clear that ∥∥u−∥∥
V 1
1 (Ω)

+
∥∥u+

∥∥
V 1
1 (Ω)

≤ c‖u‖V 1
1 (R2\Ω̄).

The function v, defined in R
2 by

v(x) =

{
u(x), x /∈ Ω,
u−(x) + x2x

−α
1 (u+(x) − u−(x)), x ∈ Ω,

is absolutely continuous on almost all straight lines parallel to coordinate axes.
Also,

‖∇v‖L1(Ω) ≤
∥∥∇u−∥∥

L1(Ω)
+
∥∥∇u+

∥∥
L1(Ω)

+ c
∥∥x−α

1

(
u+ − u−)∥∥

L1(Ω)
.
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Since
∣∣u+(x) − u−(x)

∣∣ ≤ ∣∣u+(x) − u
(
x1, x

α
1

)∣∣+ ∣∣u(x1, x
α
1

)
− u(x1, 0)

∣∣
+
∣∣u(x1, 0) − u−(x)

∣∣,
we have

∥∥x−α
1

(
u+ − u−)∥∥

L1(Ω)

≤
∥∥∥∥x−α

1

∫ xα
1

1

∣∣u+
t (x1, t)

∣∣ dt
∥∥∥∥
L1(Ω)

+
∥∥x−α

1

(
u
(
x1, x

α
1

)
− u(x1, 0)

)∥∥
L1(Ω)

+
∥∥∥∥x−α

1

∫ xα
1

0

∣∣u−
t (x1, t)

∣∣ dt
∥∥∥∥
L1(Ω)

≤
∥∥u+

∥∥
V 1
1 (Ω)

+
∥∥u−∥∥

V 1
1 (Ω)

+
∫ 1

0

∣∣u(x1, x
α
1

)
− u(x1, 0)

∣∣ dx1.

Clearly, the last integral does not exceed c‖u‖V 1
1 (R2\Ω̄). We put E0u = v. Thus

we have
‖E0u‖V 1

1 (R2) ≤ c‖u‖V 1
1 (R2\Ω̄).

In the general case we introduce a truncating function η ∈ C∞(R1) equal to
unity on (−∞, 1/3] and to zero on [1/2,+∞). Further, let Ω1 = Ω ∩ {1/3 <
x1 < 1}. The required extension operator E : V 1

1 (R2\Ω̄) → V 1
1 (R2) is defined

by
E u = E0(ηu) + E1

(
(1 − η)u

)
,

where E1 : V 1
1 (R2\Ω̄1) → V 1

1 (R2) is a linear continuous extension operator.
In general, for p ∈ [1,∞), l = 1, 2, . . . , Poborchi and the author proved

[576, Chap. 5] the existence of a linear bounded extension operator mapping
V l
p (R2\Ω̄) into the space V l

p (R2, σ) with the weighted norm

(∫
R2

l∑
s=0

|∇su|pσ dx

)1/p

, 1 ≤ p <∞,

where σ is a function which is equal to unity outside Ω and coincides
with x

(α−1)(lp−1)
1 on Ω. Moreover, if there exists an extension operator:

V l
p (R2\Ω̄) → V l

p (R2;σ) and the weight σ is nonnegative, depends only on
x1 on Ω and increases then

σ(x) ≤ c x(α−1)(lp−1)
1 , c = const,

for x ∈ Ω and for small enough x1.
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1.5.2 Domains in EV 1
p which Are Not Quasidisks

The examples in Sect. 1.5.1 suggest that the class of Jordan curves that bound
domains in EV l

p consists of quasicircles only. However, we shall show that this
conjecture is false.

Theorem. There exists a domain Ω ⊂ R
2 with compact closure and Jor-

dan boundary such that :
(α) ∂Ω is not a quasicircle.
(β) ∂Ω is of finite length and Lipschitz in the neighborhood of all but one

of its points.
(γ) Ω belongs to EV 1

p for p ∈ [1, 2).
(δ) R

2\Ω̄ belongs to EV 1
p for p > 2.

(From the aforementioned theorem by Gol’dshtein [313] and from the con-
ditions (α), (γ), and (δ) we obtain in addition that Ω /∈ EV 1

p for p ≥ 2 and
R

2\Ω̄ /∈ EV 1
p for p ∈ [1, 2].)

Before we prove this theorem we recall a well-known inequality that will
be used later.

Lemma 1. Let Ω be a sector defined in polar coordinates by the inequalities
0 < θ < α and 0 < r < a. Let u ∈W 1

p (Ω), u|r=a = 0 for p > 2. Then
∥∥∥∥ur
∥∥∥∥
Lp(Ω)

≤ p

|2 − p| ‖∇u‖Lp(Ω). (1.5.2)

This estimate is an immediate corollary of the following particular case of
Hardy’s inequality:

∫ a

0

|u|pr1−p dr ≤ pp

|2− p|p
∫ a

0

|u′|pr dr

(cf. Sect. 1.3).

Proof of Theorem. Figure 7 presents a domain Ω satisfying the conditions
(α)–(δ). The corresponding upper and lower “teeth” come close so rapidly
that (1.5.1) does not hold. So ∂Ω is a quasicircle. The “teeth” almost do not
change their form and decrease in geometric progression, so (β) holds.

Now we verify (γ). Let G be the difference of the rectangle R = {−1/3 <
x1 < 1, 0 < x2 < 1/3} and the union T of the sequence of isosceles right
triangles {tk}k≥0 (cf. Fig. 8). The hypotenuse of tk is the segment [2−k−1, 2−k].

Lemma 2. There exists a linear continuous extension operator E1 :
V 1
p (G) → V 1

p (R), 1 ≤ p < 2, such that E1u = 0 almost everywhere on the
interval x2 = 0, 0 < x1 < 1.

Proof. Since “the saw” {x ∈ ∂T, x2 > 0} is a curve of the class C 0,1

there exists a linear continuous extension operator V 1
p (G) → V 1

p (R). Let v be
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Fig. 7.

Fig. 8.

an extension of u ∈ V 1
p (G). We introduce a truncating function θ which is

equal to unity on G and to zero almost everywhere on the interval x2 = 0,
0 < x1 < 1. Namely, we put θ = θk on the triangle tk, where

θk =

{
4
π arctan x2

x1−2−k−1 for 2−k−1 < x1 < 3 · 2−k−2,
4
π arctan x2

2−k −x1
for 3 · 2−k−2 < x1 < 2−k.

Clearly,
|∇θk| ≤ c

(
d−1
k + d−1

k+1

)
(1.5.3)

on tk, where dk(x) is the distance from x to the point x2 = 0, x1 = 2−k.
The required extension of u is θv. To prove this we need to verify the

inequality ∥∥∇(θv)
∥∥
Lp(T )

≤ c‖∇v‖V 1
p (R). (1.5.4)

We have ∥∥∇(θv)
∥∥
Lp(T )

≤ ‖∇v‖Lp(T ) + ‖v∇θ‖Lp(T ).

By (1.5.3),

‖v∇θ‖pLp(T ) ≤ c
∑
k≥0

(∥∥d−1
k v

∥∥p
Lp(t+k )

+
∥∥d−1

k+1v
∥∥p
Lp(t−

k )

)
,



1.5 More on Extension of Functions in Sobolev Spaces 93

where t+k and t−
k are the right and left halves of tk. Since 1 ≤ p < 2, then
∥∥d−1

k v
∥∥
Lp(t+k )

≤ c
(
‖∇v‖Lp(t+k ) + 2k‖v‖Lp(t+k )

)
.

The same estimate holds for ‖d−1
k+1v‖Lp(t−

k ). Consequently,

‖v∇θ‖pLp(T ) ≤ c
(
‖∇v‖pLp(T ) +

∥∥∥∥ v|x|
∥∥∥∥
p

Lp(T )

)
.

Applying Lemma 1, we obtain
∥∥∥∥ v|x|

∥∥∥∥
Lp(R)

≤ c‖v‖V 1
p (R).

Thus, (1.5.4) as well as Lemma 1 are proved. �

Clearly, the domain Ω+ = {x ∈ Ω : x2 > 0} (cf. Fig. 8) can be mapped
onto the domain G in Lemma 2 by a quasi-isometric mapping. Therefore,
any function in V 1

p (Ω+) has a norm-preserving extension onto the upper-
halfplane that vanishes on the halfaxis Ox1. Applying the same reasoning to
Ω− = Ω\Ω̄+, we conclude that (γ) holds.

Now we verify (δ). Let S = {x : 0 < x1 < 1, 0 < x2 < x1/3}. Let σk,
k = 0, 1, . . . , denote the components of the set S\T (cf. Fig. 8), and let γ
denote the union γk ∪ γk+1 of legs of the triangle σk. Further, let Ṽ 1

p (T ) be
the space of functions u ∈ V 1

p (T ) that satisfy the following condition. The
limit values of u out of the triangles tk and tk+1 coincide in their common
vertex for k = 0, 1, . . . . We equip Ṽ 1

p (T ) with the norm of V 1
p (T ).

Clearly, (δ) follows immediately from the next lemma.

Lemma 3. There exists a linear continuous extension operator E2 :
Ṽ 1
p (T ) → V 1

p (S) with p ∈ (2,∞).

Proof. Consider the rectangle Q = {(x, y) : 0 < x < a, 0 < y < b} with
vertices O, A = (a, 0), B = (0, b), and C = (a, b). Let the function w ∈ V l

p ,
p > 2, be defined on the triangle OAC and let w(0) = 0.

We shall show that there exists a linear extension operator w → f ∈ V l
p (Q)

such that f(0, y) = 0 for y ∈ (0, b) and

‖f‖L∞(Q) ≤ ‖w‖L∞(OAC),

‖∇f‖Lp(Q) ≤ c‖∇w‖Lp(OAC).

Here, c is a constant which depends only on a/b and p. Clearly, we may assume
that Q is a square. We construct an even extension of w across the diagonal
OC to the triangle OBC. By η we denote a smooth function of the polar angle
such that η(θ) = 1 for θ < π/4 and η(π/2) = 0. Since w(0) = 0, it follows by
Lemma 1 that

‖r−1w‖Lp(Q) ≤ c‖∇w‖Lp(Q),
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where r is the distance to the point O. Hence f = ηw is the required extension.
Using the described procedure, we can construct an extension vk of u ∈

Ṽ 1
p (T ) to the triangle σk such that vk(2−k, y) = u(2−k, 0) and

‖vk‖L∞(σk) ≤ ‖u‖L∞(tk ∪tk+1),

‖∇vk‖Lp(σk) ≤ c, ‖∇u‖Lp(tk ∪tk+1),

where k = 1, 2, . . . . For k = 0 we obtain an extension v0 of u to the triangle
σ0 satisfying similar inequalities, where tk ∪ tk+1 is replaced by t0.

We define an extension of u to S by v = u on T , v = vk on σk. Clearly,

‖∇v‖Lp(S) + ‖v‖L∞(S) ≤ c
(
‖∇u‖Lp(T ) + ‖u‖L∞(T )

)
. (1.5.5)

From the integral representation (1.1.8) it follows that

osc
tk

u ≤ c
∫
tk

∣∣∇u(y)∣∣ dy
|x− y| .

Consequently,
osc
tk

u ≤ c2−k(1−2/p)‖∇u‖Lp(tk).

Thus the right-hand side in (1.5.5) is equivalent to the norm in Ṽ 1
p (T ). The

lemma is proved. �

1.5.3 Extension with Zero Boundary Data

Let G and Ω be bounded domains in R
n, Ω ∈ EV l

p . Let V̊ l
p (G) denote the

completion of D(G) with respect to the norm in V l
p(G). If Ω̄ ⊂ G then,

multiplying the operator E : V l
p(G) → V l

p (Rn) by a truncating function η ∈
D(G), η = 1 on Ω, we obviously obtain a linear continuous operator E̊ :
V l
p (Ω) → V̊ l

p (G). If Ω ⊂ G and the boundaries ∂G, ∂Ω have a nonempty
intersection, then proving the existence of E̊ becomes a nontrivial problem.
Making no attempt at a detailed study, we shall illustrate possibilities arising
here by an example borrowed from the paper by Havin and the author [568].
In that paper, the above-formulated problem appeared in connection with
certain problems of approximation in the mean by analytic functions.

Let Ω and G be plane domains such that Ω ∈ EV 1
p and Ω ⊂ G, and let the

origin be the only common point of intersection of the disk BR = {�eiθ : 0 ≤
� < R} with G\Ω̄ (see Fig. 9). If R is sufficiently small, then BR ∩ (G\Ω̄) is
the union of two disjoint domains ω1 and ω2. We assume that the intersection
of any circle |z| = �, � ∈ (0, R), with each domain ωj (j = 1, 2) is a single
arc. Let this arc be given by the equation z = �eiθ with θ ∈ (αj(�), βj(�)),
where αj and βj are functions satisfying a Lipschitz condition on [0, R], and let
�eiαj(�) ∈ ∂Ω, �eiβj(�) ∈ ∂G. Further, let ∂j(�) = βj(�)−αj(�), lj(�) = �δj(�).
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Fig. 9.

Theorem. The following properties are equivalent.
(1) The function u ∈ L1

p(Ω) can be extended to a function in V̊ 1
p (G).

(2) ∫ R

0

|u(�eiαj(�))|p
[lj(�)]p−1

d� <∞. (1.5.6)

(Here u(�eiαj(�)) is the boundary value of u at the point �eiαj(�) ∈ ∂Ω. This
boundary value exists almost everywhere on ∂Ω.)

Proof. Since Ω ∈ EV 1
p , then to prove that (2) implies (1) we may assume

that u has already been extended to a function in V 1
p (B), where B is a disk

containing Ḡ.
Let η satisfy a Lipschitz condition on the exterior of |z| = R, η = 0 on

R
2\G, η = 1 on Ω and η(�eiθ) = 1− (θ − αj(�))/δj(�) for �eiθ ∈ ωj , j = 1, 2.

Clearly, for θ ∈ (αj(�), βj(�)),

∣∣u(�eiθ
)
− u
(
�eiαj(�)

)∣∣ ≤
∫ βj(�)

αj(�)

∣∣∣∣∂u∂θ
(
�eiθ

)∣∣∣∣ dθ

≤ �

∫ βj(�)

αj(�)

∣∣(∇u)(�eiθ
)∣∣dθ

≤ �
[
δj(�)

](p−1)/p
(∫ βj(�)

αj(�)

∣∣(∇u)(�eiθ
)∣∣p dθ

)1/p

. (1.5.7)

Thus
∫
ωj

|u(�eiθ)|p
[lj(�)]p

�d�dθ ≤ c
(
‖∇u‖pLp(ωj)

+
∫ R

0

|u(�eiαj(�))|p
[lj(�)]p−1

d�
)
.
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We can easily deduce that the preceding inequality implies uη ∈ V̊ 1
p (G).

If u ∈ V̊ 1
p (G) then by (1.5.7)

∫ R

0

|u(�eiαj(�))|p
[lj(�)]p−1

d� ≤ ‖∇u‖pLp(ωj)
.

Since lj(�) ≤ 2π�, it follows that the condition (1.5.6) with p ≥ 2 cannot
be valid for all u ∈ V 1

p (Ω) and hence the operator E̊ does not exist. The
same holds for 1 ≤ p < 2 provided lj(�) = O(�1+ε), ε > 0. In fact, the
function u ∈ V 1

p (Ω), defined near 0 by the equality u(�eiθ) = �1+δ−2/p with
0 < δ < ε(p− 1)/p does not satisfy (1.5.6).

Now let 1 ≤ p < 2 and lj(�) ≥ c �, c > 0. Using an estimate similar
to (1.5.7), we arrive at

∫ R

0

∣∣u(�eiαj(�)
)∣∣p d�
�p−1

≤ c
(
‖∇u‖pLp(ωj)

+
∥∥�−1u

∥∥p
Lp(ωj)

)
,

which together with Hardy’s inequality (1.5.2) shows that (1.5.6) is valid for
all u ∈ V 1

p (Ω). Consequently, for p ∈ [1, 2) and lj(�) ≥ c � the operator E̊
exists. �

1.5.4 Comments to Sect. 1.5

P. Jones [404] introduced a class of so-called (ε, δ) domains and showed that
these domains belong to EV l

p for p ∈ [1,∞] and l = 1, 2, . . . . For ε ∈ (0,∞),
δ ∈ (0,∞], Ω ⊂ R

n is an (ε, δ) domain if any points x, y ∈ Ω with |x− y| < δ
can be joined by a rectifiable arc γ ⊂ Ω such that

�(γ) ≤ |x− y|/ε, dist(z, ∂Ω) ≥ ε |x− z||y − z|/|x− y|,

where �(γ) is the length of γ and z ∈ γ an arbitrary point. It should be
noted that Jones’ bounded extension operator V l

p (Ω) → V l
p (Rn) depends on

l (while that of Stein does not). Any domain in C0,1 with compact closure
is an (ε, δ) domain for some ε, δ and for n = 2 the class of simply connected
(ε, δ) domains coincides with the class of quasidisks [404]. It is interesting
to observe that multidimensional domains with isolated inward cusps satisfy
Jones’ theorem and hence lie in EV l

p for all p ≥ 1 and l = 1, 2, . . . (cf.
Example 1.5.1/3). Fain [267] and Shvartsman [698] extended Jones’ theorem
to anisotropic Sobolev spaces, and Chua [188] extended the result of Jones
to weighted Sobolev spaces. We also mention here the paper by Rogers [680],
where a bounded extension operator V l

p(Ω) → V l
p (Rn), independent of l, p

was constructed for an (ε, δ) domain.
Romanov [681] showed that the role of the critical value 2 in Theorem 1.5.2

is related to the particular domain dealt with in this theorem. He constructed
a planar fractal domain Ω such that Ω ∈ EV 1

p for p ∈ [1, q) and Ω /∈ EV 1
p
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for p ≥ q. In [803], S. Yang constructed an example of a homeomorphism of
R

n such that the image of R
n
+ is in EV 1

p for all p > 1, but does not satisfy P.
Jones’ condition [404]. In particular, it is not a quasidisk if n = 2.

P. Shvartsman [700] described a class of EW l
p domains Ω ⊂ R

n whenever
p > n. Suppose that there exist constants C and θ such that the following
condition is satisfied: for every x, y ∈ Ω such that |x − y| ≤ θ, there exists a
rectifiable curve γ ⊂ Ω joining x to y such that

∫
γ

dist(z, ∂Ω)
1−n
p−1 ds(z) ≤ C|x− y|

p−n
p−1 . (1.5.8)

Then Ω is an EW l
q domain for every l ≥ 1 and every q ≥ p.

For l = 1 and q > p this result was proved by Koskela [454].
Buckley and Koskela [148] showed that if a finitely connected bounded do-

main Ω ⊂ R
2 is a EW 1

p domain for some p > 2, then there exists a constant
C > 0 such that for every x, y ∈ Ω there exists a rectifiable curve γ ⊂ Ω
satisfying inequality (1.5.8) (with n = 2). Combining this result with Shvarts-
man’s theorem [700] one obtains the following fact. Let 2 < p <∞ and let Ω
be a finitely connected bounded planar domain. Then Ω is an EW 1

p domain
if and only if for every x, y ∈ Ω there exists a rectifiable curve γ ⊂ Ω joining
x to y such that

∫
γ

dist(z, ∂Ω)
1

1−p ds(z) ≤ C|x− y|
p−2
p−1 , (1.5.9)

with some C > 0.

Here we mention some results by Poborchi and the author [575] on the
extension of Sobolev functions from cusp domains. A typical domain with the
vertex of an outward cusp on the boundary is

Ω =
{
x = (y, z) ∈ R

n : z ∈ (0, 1), |y| < ϕ(z)
}
, n ≥ 2,

where ϕ is an increasing Lipschitz continuous function on [0, 1] such that
ϕ(0) = limz→0 ϕ

′(z) = 0. Cusp domains are generally not in EV l
p , but it is

possible to extend the elements of V l
p(Ω) to some weighted Sobolev space on

R
n.

Let σ be a bounded nonnegative measurable function on R
n, which is

separated away from zero on the exterior of any ball centered at the origin.
By V l

p,σ(Rn) we mean the weighted Sobolev space with norm

‖u‖V l
p,σ(Rn) =

l∑
k=0

‖σ∇ku‖Lp(Rn).

Clearly this weighted space is wider than V l
p (Rn). The following assertion

gives precise conditions on the weight σ.
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Let Ω have an outward cusp as above. In order that there exist a linear
continuous extension operator V l

p (Ω) → V l
p,σ(Rn) it is sufficient and if σ(x)

depends only on |x| and is nondecreasing in the vicinity of the origin, then it
is also necessary that

σ(x) ≤
{
c(ϕ(|x|)/|x|))min{l,(n−1)/p} if lp �= n− 1,
c(ϕ(|x|)

|x| )l| log(ϕ(|x|)
|x| )|(1−p)/p if lp = n− 1,

in a neighborhood of the origin, where c is a positive constant independent
of x.

Let p ∈ (1,∞) and l = 1, 2, . . . . We now give sharp conditions on the
exponent q ∈ [1, p) such that there is a linear continuous extension operator
V l
p (Ω) → V l

q (Rn) for the same Ω. This extension operator exists if and only
if ∫ 1

0

(
tβ

ϕ(t)

)n/(β−1) dt
t
<∞,

where
1/q − 1/p = l(β − 1)/

(
β(n− 1) + 1

)
for lq < n− 1

and
1/q − 1/p = (n− 1)(β − 1)/np for lq > n− 1.

In the case lq = n − 1 the factor | log(ϕ(t)/t)|γ should be included into the
integrand above with

γ = (1 − 1/q)/(1/p− 1/q), β = (np− q)/
(
q(n− 1)

)
.

Example. Power cusp. Let ϕ(z) = c zλ, λ > 1. A linear continuous exten-
sion operator V l

p (Ω) → V l
q (Rn) for q < p exists in the following cases.

1◦ lq < n− 1 and

q−1 > p−1 + l(λ− 1)/
(
1 + λ(n− 1)

)
.

2◦ lq = n− 1 and either the same inequality as in 1◦ holds or

q−1 = p−1 + l(λ− 1)/
(
1 + λ(n− 1)

)
with 2q−1 < 1 + p−1.

3◦ lq > n− 1 and q−1 > p−1(1 + (λ− 1)(n− 1)/n).
Various results on extensions of functions in W l

p(Ω), with deterioration of
the class can be found in Burenkov’s survey [156]. Finally we note that prop-
erties of extension domains for functions with bounded variation are discussed
in Chap. 9 of the present book.
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1.6 Inequalities for Functions with Zero Incomplete
Cauchy Data

Consider the following question. Are any restrictions on Ω necessary for
Sobolev’s inequalities to be valid for functions in W l

p(Ω) that vanish at ∂Ω
along with their derivatives up to the order k−1 for some k ≤ l? To be precise,
we mean functions in the space V l

p(Ω) ∩ W̊ k
p (Ω).

Obviously, no requirements on Ω are needed for k = l. In the following,
we show that the same is true if k satisfies the inequality 2k ≥ l. This result
cannot be refined, for in the case 2k < l some conditions must be imposed.

The validity of Sobolev’s inequalities for l ≤ 2k follows from the integral
representation for differentiable functions in an arbitrary bounded domain,
which is derived in Sect. 1.6.2. The necessity of requirements on ∂Ω in the
case l > 2k is shown by an example (cf. Sect. 1.6.4).

1.6.1 Integral Representation for Functions of One Independent
Variable

Lemma. Let k and l be integers 1 < l ≤ 2k and let z ∈ W l
1(a, b) ∩ V̊ k

1 (a, b).
Then

z(l−1)(t) =
∫ b

a

K (t, τ)z(l)(τ) dτ, (1.6.1)

where

K (t, τ) =

{
Π2[l/2]−1( 2τ −a−b

b−a ) for t > τ,
Π2[l/2]−1(a+b−2τ

b−a ) for t < τ,

and Π2i−1 is a polynomial of degree 2i− 1, defined by

Π2i−1(s) +Π2i−1(−s) = 1

and the boundary conditions

Π2i−1(−1) = · · · = Π
(i−1)
2i−1 (−1) = 0.

Proof. Let l be even, l = 2q. Consider the boundary value problem

y(2q)(x) = f(x), y(j)(±1) = 0, j = 0, 1, . . . , q − 1, (1.6.2)

on the interval [−1, 1]. Let g(x, s) denote the Green function of this problem.
Clearly, g(−x,−s) = g(x, s) and g(x, s) is a polynomial of degree 2q − 1 in x
and s for x > s and x < s. First, let x > s. The derivative ∂2q−1g(x, s)/∂x2q−1

does not depend on x; it is a polynomial of degree 2q−1 in s and satisfies the
boundary conditions (1.6.2) at the point s = −1. We denote this polynomial
by Π2q−1(s).
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In the case x > s, i.e., −x < −s, we have

∂2q−1

∂x2q−1
g(x, s) =

∂2q−1

∂x2q−1

[
g(−x,−s)

]
= −Π2q−1(−s).

Hence, differentiating the equality

y(x) =
∫ 1

−1

g(x, s)y(2q)(s) ds,

we obtain

y(2q−1)(x) =
∫ x

−1

Π2q−1(s)y(2q)(s) ds−
∫ 1

x

Π2q−1(−s)y(2q)(s) ds.

Passing to the variables t, τ via

x =
2t− a− b
b− a , s =

2τ − a− b
b− a ,

and setting z(t) = y(x), z(τ) = y(s), we arrive at

z(2q−1)(t) =
∫ t

a

Π2q−1

(
2τ − a− b
b− a

)
z(2q)(τ) dτ

−
∫ b

t

Π2q−1

(
a+ b− 2τ
b− a

)
z(2q)(τ) dτ. (1.6.3)

The lemma is proved for l = 2q. In the case l = 2q+1 we express (z′)(2q−1)

in terms of (z′)(2q) by the formula just derived. This concludes the proof of
the lemma. �

Remark. For i = 1, 2, 3, the polynomials Π2i−1 are

Π1(s) =
1
2
(s+ 1), Π3(s) =

1
4
(2 − s)(s+ 1)2,

Π5(s) =
1
16

(3s2 − 9s+ 8)(s+ 1)3.

1.6.2 Integral Representation for Functions of Several Variables
with Zero Incomplete Cauchy Data

The basic result of this section is contained in the following theorem.

Theorem. Let l be a positive integer, l ≤ 2k, and let u ∈ Ll
1(Ω)∩ V̊ k

1 (Ω).
Then for almost all x ∈ Ω

Dγu(x) =
∑

{β:|β|=l}

∫
Ω

Kβ,γ(x, y)Dβu(y)
dy

|x− y|n−1
. (1.6.4)
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Here, γ is an arbitrary multi-index of order l − 1 and Kβ,γ is a measurable
function on Ω×Ω such that |Kβ,γ(x, y)| ≤ c, where c is a constant depending
only on n, l, k.

Proof. First suppose that u is infinitely differentiable on an open set ω,
ω̄ ⊂ Ω. Let L be an arbitrary ray, drawn from the point x; let θ be a unit
vector with origin at x and directed along L, y = x+ τθ, τ ∈ R

1. Further, let
π(x, θ) be the first point of intersection of L with ∂Ω. We also introduce the
notation

b(x, θ) =
∣∣π(x, θ) − x

∣∣, a(x, θ) = −b(x,−θ).

Since u ∈ V̊ k
1 (Ω) and ∇lu ∈ L1(Ω), the function
[
a(x, θ), b(x, θ)

]
� τ → z(τ) = u(x+ τθ),

satisfies the conditions of Lemma 1.6.1 for almost all θ in the (n − 1)-
dimensional unit sphere Sn−1. So, from (1.6.3) it follows that

z(l−1)(0) =
∫ 0

a(x,θ)

Π2[l/2]−1

(
2τ − a(x, θ) − b(x, θ)
b(x, θ) − a(x, θ)

)
z(l)(τ) dτ

−
∫ b(x,θ)

0

Π2[l/2]−1

(
a(x, θ) + b(x, θ) − 2τ
b(x, θ) − a(x, θ)

)
z(l)(τ) dτ. (1.6.5)

We note that

z(l−1)(0) =
∑

{ν:|ν|=l−1}

(l − 1)!
ν!

θνDνu(x).

Let γ be any multi-index of order l − 1 and let {Pγ(θ)} be the system of all
homogeneous polynomials of degree l− 1 in the variables θ1, . . . , θn such that

∫
Sn−1

Pγ(θ)θν dsθ = δγν .

Before proceeding to further transformations we note that the function
(x, θ) → |π(x, θ)−x| can be considered as the limit of a sequence of measurable
functions on Ω×Sn−1 if Ω is approximated by an increasing nested sequence
of polyhedrons. Hence, a and b are measurable functions.

Let r = |y−x|, i.e., τ = r, if τ > 0 and τ = −r, if τ < 0. We multiply (1.6.5)
by Pγ(θ) and integrate over Sn−1. Then

(l − 1)!
γ!

Dγu(x)

= −
∫
Sn−1

Pγ(θ) dsθ
∫ b(x,θ)

0

Π2[l/2]−1

(
a(x, θ) + b(x, θ) − 2r
b(x, θ) − a(x, θ)

)
∂lu(r, θ)
∂rl

dr

+

∫
Sn−1

Pγ(θ) dsθ

∫ −a(x,θ)

0

(−1)lΠ2[l/2]−1

(
− 2r + a(x, θ) + b(x, θ)

b(x, θ) − a(x, θ)

)
∂lu(r, −θ)

∂rl
dr.
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Replacing θ by −θ in the second term and noting that a(x, θ) = −b(x,−θ)
and Pγ(θ) = (−1)l−1Pγ(−θ), we find that the first and the second terms are
equal, i.e., Dγu(x) is equal to

−2γ!
(l − 1)!

∫
Sn−1

Pγ(θ) dsθ

×
∫ b(x,θ)

0

Π2[l/2]−1

(
a(x, θ) + b(x, θ) − 2r
b(x, θ) − a(x, θ)

)
∂lu(r, θ)
∂rl

dr

= −2lγ!
∫
Ω(x)

Pγ(θ)Π2[l/2]−1

(
a(x, θ) + b(x, θ) − 2r
b(x, θ) − a(x, θ)

)

×
∑

{β:|β|=l}

θβ

β!
Dβu(y)

dy
rn−1

,

where Ω(x) = {y ∈ Ω : θ ∈ Sn−1, r < b(x, θ)}. Let Kβ,γ(x, ·) denote the
function

y → −2 lγ!
β!

Pγ(θ)Π2[l/2]−1

(
b(x, θ) − b(x,−θ) − 2r
b(x, θ) + b(x,−θ)

)
θβ

extended to Ω\Ω(x) by zero. Then (1.6.4) follows for x ∈ ω.
Now we remove the assumption that u is smooth on ω. Let u satisfy the

condition of the theorem. Clearly, u can be approximated in the seminorm
‖∇lu‖L(Ω) by the functions that are smooth on ω̄ and which coincide with
u near ∂Ω. This and the continuity of the integral operator with the kernel
|x − y|1−nKβ,γ(x, y), mapping L(Ω) into L(ω), imply (1.6.4) for almost all
x ∈ ω. Since ω is arbitrary, the theorem is proved. �

1.6.3 Embedding Theorems for Functions with Zero Incomplete
Cauchy Data

Now we proceed to applications of Theorem 1.6.2.

Theorem 1. Let m, l, k be integers, 0 ≤ m < l ≤ 2k. Let p ≥ 1 and let
u ∈W l

p(Ω) ∩ V̊ k
1 (Ω) for n < p(l−m). Then u ∈ Cm(Ω), ∇mu ∈ L∞(Ω) and

‖∇mu‖L∞(Ω) ≤ cdl−m−n/p‖∇lu‖Lp(Ω), (1.6.6)

where d is the diameter of Ω.
The embedding operator of W l

p(Ω) ∩ V̊ k
1 (Ω) into V m

∞ (Ω) is compact.
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Proof. It is sufficient to assume d = 1. Iterating (1.6.4), we obtain the
following representation for Dγu, |γ| = m < l,

Dγu(x) =
∫
Ω

∑
{β:|β|=l}

Qβγ(x, y)Dβu(y) dy, (1.6.7)

where Qβγ = O(rl−m−n+1), if n �= l−m and Qβγ = O(log 2r−1), if n = l−m.
Applying Hölder’s inequality to (1.6.7), we obtain (1.6.6). Since any func-

tion in V l
p(Ω) can be approximated in the V l

p (Ω) norm by functions that
coincide with u near ∂Ω and are smooth in ω̄, we see that ∇mu is continu-
ous in Ω. Here, as in the proof of Theorem 1.6.2, ω is an arbitrary open set,
ω̄ ⊂ Ω. Thus, (1.6.6) is derived.

We can construct a covering {B(i)} of R
n by balls with diameter δ, with

a multiplicity not exceeding some constant which depends only on n. Let
Ωi = Ω ∩ B(i) and let {ηi} be a smooth partition of unity subordinate to
{B(i)} such that ∇jηi = O(δ−j). By (1.6.6),

‖∇mu‖L∞(Ω) ≤ cmax
i

∥∥∇m(ηiu)
∥∥
L∞(Ωi)

≤ c δl−m−n/p‖∇lu‖Lp(Ω) + c(δ)‖u‖V l−p
p (Ω).

It remains to note that, by virtue of (1.6.7), any bounded subspace of V l
p (Ω)∩

V̊ k
1 (Ω) is compact in V l−1

p (Ω). The theorem is proved. �

Further applications of the integral representation (1.6.4) are connected
with the results of Sect. 1.4.

Let m and l be integers, 0 ≤ m < l, p > 1 and let μ be a measure in Ω
such that

μ
(
B�(x) ∩Ω

)
≤ K�s, K = const, 0 < s ≤ n, (1.6.8)

for any ball B�(x).
Let ω be an open set, ω̄ ⊂ Ω, n > p(l − m) > n − s and q =

ps(n−p(l−m))−1. Further, let Lq(ω, μ) be the space of functions on ω which
are integrable with respect to μ and Lq(Ω,μ, loc) =

⋂
ω Lq(ω, μ). By Theo-

rem 1.4.5 there exists a unique linear mapping γ : V l−m
p (Ω) → Lq(Ω,μ, loc)

such that:
(i) if v ∈ V l−m

p (Ω) and v is smooth on ω̄, then γv = v on ω̄;
(ii) the operator γ : V l−m

p (Ω) → Lq(ω, μ) is continuous for an arbitrary
set ω.

Theorem 2. Let m, l, k be integers, 0 ≤ m < l ≤ 2k, p > 1, s >
n − p(l −m) > 0 and let μ be a measure in Ω, satisfying (1.6.8). Then, for
any u ∈ Ll

p(Ω) ∩ V̊ k
1 (Ω),
∥∥γ(∇mu)

∥∥
Lq(Ω,μ)

≤ cK1/q‖∇lu‖Lp(Ω), (1.6.9)

where q = ps(n− p(l −m))−1.
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The proof follows immediately from the integral representation (1.6.7) and
Theorem 1.4.5.

Theorem 3. Let m, l, k, p, q, and s be the same as in Theorem 2 and let
μ be a measure in Ω satisfying the condition

lim
�→0

sup
x∈Rn

�−sμ
(
B�(x) ∩Ω

)
= 0. (1.6.10)

Then the operator γ∇m : W l
p(Ω) ∩ V̊ k

1 (Ω) → Lq(Ω,μ) is compact.

Proof. Given any ε > 0 there exists a number δ > 0 such that

�−s sup
x
μ
(
B�(x) ∩Ω

)
< ε

for � ≤ δ. We shall use the notation ηi, Ωi, introduced in the proof of Theo-
rem 1. Clearly,

∫
Ω

|γ∇mu|q dμ ≤ c
∑
i

∫
Ωi

∣∣γ∇m(ηiu)
∣∣q dμ.

This inequality and Theorem 2 imply

‖γ∇mu‖Lq(Ω,μ) ≤ cε‖∇lu‖Lp(Ω) + C(ε)‖u‖V l−1
p (Ω).

It remains to use the fact that a unit ball in W l
p(Ω) ∩ V̊ k

1 (Ω) is compact in
V l−1
p (Ω). �

Remark 1. From Corollary 11.8 and Theorem 11.9.1/4 it follows that Theo-
rems 2 and 3 remain valid for n = p(l−m) if the conditions (1.6.8) and (1.6.10)
are replaced by

μ
(
B�(x) ∩Ω

)
≤ K| log �|q(1−p)/p, 0 < � <

1
2
,

lim
�→0

sup
x∈Rn

| log �|q(p−1)/pμ
(
B�(x) ∩Ω

)
= 0,

where q > p > 1.

Remark 2. Sometimes assertions similar to Theorems 1, 2, and 3 can be
refined via the replacement of ‖∇lu‖Lp(Ω) by ‖(−Δ)l/2u‖Lp(Ω), where Δ is
the Laplace operator. Namely, for any bounded domain Ω and any function
u ∈ V̊ 1

2 (Ω) such that Δu ∈ Lp(Ω), 2p > n, we have

‖u‖L∞(Ω) ≤ c(diamΩ)2−n/p‖Δu‖Lp(Ω).

This inequality results from an obvious estimate for the Green function of the
Dirichlet problem for the Laplace operator, which in turn follows from the
maximum principle.
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Analogous estimates can be derived from pointwise estimates for the Green
function Gm(x, s) of the Dirichlet problem for the m-harmonic operator in an
n-dimensional domain (see Maz’ya [550, 558, 559]). For instance, for n =
5, 6, 7, m = 2 or n = 2m+ 1, 2m+ 2, m > 2, we have

∣∣Gm(x, s)
∣∣ ≤ c|x− s|2m−n, c = c(m,n).

This along with Theorem 1.4.1/2 implies

‖γu‖Lq(Ω,μ) ≤ CK1/q
∥∥Δmu

∥∥
Lp(Ω)

,

where u ∈ V̊ m
2 (Ω); n > 2mp, p > 1 and μ is a measure in Ω satisfying (1.6.8).

1.6.4 Necessity of the Condition l ≤ 2k

Here we show that the condition l ≤ 2k cannot be weakened in the theorems
of the preceding section. We present an example of a domain Ω ⊂ R

n for
which V l

p (Ω) ∩ V̊ k
p (Ω), l < 2k, is not embedded into L∞(Ω) for pl > n > 2pk

and is not embedded into Lpn/(n−pl)(Ω) for n > pl.
Consider the function

vδ(x) =
(
1 − δ−2|x|2

)k
,

in the ball Bδ(0). Since vδ vanishes on ∂Bδ(0) along with its derivatives up
to order k − 1, then |∇mvδ| ≤ cδ−kεk−m for k ≥ m in an ε neighborhood of
∂Bδ(0). It is also clear that |∇mvδ| = O(δ−m) in Bδ(0) and that |∇mvδ| = 0
for m ≥ 2k + 1.

We denote by P and Q the lower and upper points at which the axis 0xn
intersects ∂Bδ(0), and construct the balls Bε(P ), Bε(Q), ε < δ/2. Let η be a
smooth function on R

n vanishing on B1/2(0) and equal to unity on R
n\B1(0).

On Bδ(0) we introduce the function

w(x) = vδ(x)η
(
ε−1(x− P )

)
η
(
ε−1(x−Q)

)
,

and estimate its derivatives. On the exterior of the balls Bε(P ), Bε(Q) we
have

|∇jw| = 0 for j > 2k, |∇jw| = O
(
δ−j
)

for j ≤ 2k.

Also,

|∇jw| ≤ c
min{j,2k}∑

m=0

εm−j |∇mvδ|

on Bε(P ) ∪Bε(Q). Hence

|∇jw| ≤ cδ−kεk−j , j = 0, 1, . . . , l,

on Bε(P ) ∪Bε(Q). This implies
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Fig. 10.

‖∇jw‖pLp(Bδ(0)) ≤ cδ
−pkεp(k−j)+n for j > 2k.

Similarly, since n > pk, we obtain that

‖∇jw‖pLp(Bδ(0)) ≤ c
(
δn−pj + δ−pkεp(k−j)+n

)
≤ c1δn−pj for j ≤ 2k.

Therefore
‖w‖p

V l
p(Bδ(0))

≤ c
(
δn−2pk + δ−pkεn−p(l−k)

)
.

We set ε = δα, where α is a number satisfying the inequalities

pk

n− p(l − k) < α <
n− pk

n− p(l − k) , α > 1.

Then
‖w‖p

V l
p(Bδ(0))

≤ c δβ ,

where β = α(n− p(l − k)) − pk > 0.
Consider the domain (Fig. 10) which is the union of balls Bi with radii

δi and centers Oi, joined by cylindrical necks Ci of arbitrary height and with
cross-section diameter ε1 = δαi . In each ball Bi we specify wi as described
previously and extend wi by zero to Ω\Bi. Then we put
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u(x) =
∞∑
i=1

hiwi(x), x ∈ Ω, (1.6.11)

where {hi} is the sequence of numbers such that

∞∑
i=1

|hi|pδβi <∞. (1.6.12)

This condition means that u ∈ V l
p (Ω). The partial sums of the series (1.6.11)

are functions in V̊ k
p (Ω), and so u ∈ V̊ k

p (Ω). Since wi = 1 in the center of Bi,
we have

‖u‖L∞(Ω) ≥ sup
i
|hi|.

Clearly, the series (1.6.12) can converge as hi →∞. Therefore, V l
p(Ω)∩V̊ k

p (Ω)
is not embedded into L∞(Ω).

In the case n > pl we put |hi|p = δlp−n
i . Then

‖u‖qLq(Ω) ≥ c
∞∑
i=1

|hi|qδni = c

∞∑
i=1

1,

with q = pn/(n− lp). On the other hand,

‖u‖p
V l

p(Ω)
≤ c

∞∑
i=1

δγi ,

where γ = (α − 1)(n − p(l − k)) > 0. So, if {δi} is a decreasing geometric
progression, then u ∈ V l

p (Ω) ∩ V̊ k
p (Ω), whereas u /∈ Lq(Ω).

The restrictions on Ω under which the Sobolev theorems hold for the space
V l
p(Ω) ∩ V̊ k

p (Ω), 2k < l, will be considered in Sect. 7.6.6.

1.6.5 Comments to Sect. 1.6

The content of the present section is borrowed from the author’s paper [553].

1.7 Density of Bounded Functions in Sobolev Spaces

1.7.1 Lemma on Approximation of Functions in L1
p(Ω)

Lemma. If v ∈ L1
p(Ω) then the sequence of functions

v(m)(x) =

{
min{v(x),m} if v(x) ≥ 0,
max{v(x),−m} if v(x) ≤ 0,

(m = 1, 2, . . . , ) converges to v in L1
p(Ω).
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The same is true for the sequence

v(m)(x) =

⎧⎪⎨
⎪⎩
v(x) −m−1 if v(x) ≥ m−1,

0 if |v(x)| < m−1,

v(x) +m−1 if v(x) ≤ −m−1.

Proof. Since functions in L1
p(Ω) are absolutely continuous on almost all

lines parallel to coordinate axes (Theorem 1.1.3/1), we have, almost every-
where in Ω,

∇v(m) = χ(m)∇v,
where χ(m) is the characteristic function of the set {x : |v(x)| < m−1}. There-
fore ∫

Ω

∣∣∇(v − v(m))
∣∣p dx =

∫
Ω

|∇v|p
(
1 − χ(m)

)p dx.

The convergence to zero of the last integral follows from the monotone con-
vergence theorem.

The proof for the sequence v(m) is similar. �

1.7.2 Functions with Bounded Gradients Are Not Always Dense
in L1

p(Ω)

Lemma 1.7.1 says that the set of bounded functions is dense in L1
p(Ω) when-

ever p ∈ [1,∞). The following example shows that this set cannot be generally
replaced by L1

∞(Ω).

Example. Let p ∈ (2,∞) and {ai}i≥1, {εi}i≥1 be two sequences of positive
numbers satisfying

a1 + ε1 < 1, ai+1 + εi+1 < ai, i ≥ 1, lim ai = 0,

and ∑
i≥1

a1−p
i εi <∞. (1.7.1)

The planar domain Ω is the union of the square Ω1 = (−1, 0) × (0, 1), the
triangle

Ω2 =
{
(x, y) ∈ R

2 : x ∈ (0, 1), y ∈ (0, x)
}
,

and the passages
{
(x, y) : y ∈ (ai, ai + εi), 0 ≤ x ≤ y

}
, i = 1, 2, . . .

(see Fig. 11). Let u be defined on Ω by u(x, y) = i− 1 if (x, y) ∈ Ωi, i = 1, 2,
and u(x, y) = x/y if (x, y) ∈ Ω \ (Ω1 ∪Ω2).

Then u ∈ L1
p(Ω) because of (1.7.1) (in fact u ∈ C(Ω) ∩ L∞(Ω) ∩ L1

p(Ω)).
We shall show that u cannot be approximated by functions in L1

∞(Ω) in the
metric of the space L1

p(Ω).
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Fig. 11.

Let v ∈ L1
∞(Ω) be an arbitrary function. This function coincides with a

function in C(Ω) a.e. on Ω. Moreover, by Sobolev’s embedding theorem, there
is a constant K > 0, independent of u and v, such that

‖v‖L∞(Ω1) + ‖v − 1‖L∞(Ω2) ≤ K‖v − u‖L1
p(Ω). (1.7.2)

Using the absolute continuity of v on almost all line segments [(0, y), (y, y)]
with

y ∈
⋃
i≥1

(ai, ai + εi), (1.7.3)

we obtain

∣∣v(y, y) − v(0, y)∣∣ =
∣∣∣∣
∫ y

0

∂v

∂x
(x, y) dx

∣∣∣∣ ≤ y‖∇v‖L∞(Ω).

Thus ∣∣v(y, y) − v(0, y)∣∣ ≤ 1/2

for sufficiently small y satisfying (1.7.3). Hence the left-hand side of (1.7.2) is
not less than 1/2, and the quantity ‖u−v‖L1

p(Ω) cannot be less than (2K)−1.

1.7.3 A Planar Bounded Domain for Which L2
1(Ω) ∩ L∞(Ω) Is Not

Dense in L2
1(Ω)

According to Lemma 1.7.1, the subspace of bounded functions is dense in
L1

p(Ω) for an arbitrary domain if p ∈ [1,∞). It turns out that this property
cannot be generally extended to Sobolev spaces of higher orders. In this section
we give an example of a bounded domain Ω ⊂ R

2 and a function f ∈ L2
2(Ω)

such that f does not belong to the closure of L2
1(Ω) ∩ Lq(Ω) in the norm of

L2
1(Ω) with arbitrary q > 0. In particular, this implies that L2

p(Ω)∩Lq(Ω) is
not dense in L2

p(Ω) for p ≤ 2.
First we establish an auxiliary assertion. Below we identify functions in

L2
1 with their continuous representatives.
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Lemma. Let G be a planar subdomain of the disk BR, starshaped with
respect to the disk Br. Then the following estimate holds for all f ∈ L2

1(G):
∣∣f(z1) − f(z2)∣∣ ≤ c(‖∇2f‖L1(G) + |z1 − z2|r−1−2/q‖f‖Lq(G)

)
, (1.7.4)

where z1, z2 ∈ Ḡ, and the constant c depends only on q and the ratio R/r.

Proof. It will suffice to consider the case r = 1 and then use a similarity
transformation. In view of Lemma 1.1.11 there is a linear function � such that

‖f − �‖L1(G) ≤ c ‖∇2f‖L1(G).

Hence by the Sobolev embedding L2
1(G) ⊂ C(Ḡ) we obtain two estimates

∣∣(f − �)(z1) − (f − �)(z2)
∣∣ ≤ c‖∇2f‖L1(G),

‖�‖Lmin{1,q}(G) ≤ c
(
‖∇2f‖L1(G) + ‖f‖Lq(G)

)
.

Now (1.7.4) follows from the obvious inequality
∣∣�(z1) − �(z2)∣∣ ≤ c|z1 − z2|‖�‖Lmin{1,q}(G).

This concludes the proof of the lemma. �
We turn to the required example. Let {δi}i≥0, {hi}i≥0 be two sequences

of positive numbers satisfying δi < 2−i−2 and

hi ≤ exp
(
− (1 + i)2/δ2i

)
, i ≥ 0, (1.7.5)

lim
i→∞

δi2ib = 0 for all b > 0. (1.7.6)

Next, let {Δi}i≥0 be the sequence of open isosceles right triangles with hy-
potenuses of length 21−i, placed on the lines y = Hi, where

Hj = 21−j +
∑
s≥j

(hs − δs), j = 0, 1, . . . .

We assume that all vertices of right angles lie on the axis Oy under the
hypotenuses. Let Γi denote the intersection of ∂Δi with the halfplane y ≥
Hi+1 +hi. Clearly the distance between Γi and Γi+1 is hi. By Ω we mean the
complement of

⋃
i≥0 Γi to the rectangle {(x, y) ∈ R

2 : |x| < 1, 0 < y < H0},
(see Figs. 12 and 13).

Let η ∈ C∞
0 (−1, 1) and η(t) = 1 for |t| ≤ 1/2. We now define f on Ω as

follows. For any strip

Πi =
{
(x, y) ∈ Ω : Hi+1 < y < Hi

}
, i ≥ 0,

f is given on Πi ∩Ω by

f(x, y) = signx
(

1 +
(|x| − δi)
δi log hi

log
(
|x| − δi + hi

)
η
(
2i+1x

))
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Fig. 12.

Fig. 13.

for (x, y) /∈ Δi, |x| > δi, and f(x, y) = x/δi for the remaining points of Πi.
Clearly Πi ∩ supp(∇2f) is placed in the set

{
(x, y) ∈ Πi \Δi : δi ≤ |x| ≤ 2−i−1

}
.

Furthermore, the following estimate holds for (x, y) ∈ Πi

|∇2f | ≤ c
max{2i(i+ 1), (|x| − δi + hi)−1}

δi| log hi|

(here and in the following in this section c is a positive constant independent
of i). Hence

‖∇2f‖2
L2(Ω) =

∑
i≥0

‖∇2f‖2
L2(Πi)

≤ c
∑
i≥0

| log hi| + (i+ 1)2

(δi log hi)2
,

which is dominated by c
∑

i≥1 i
−2 due to (1.7.5).
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We now prove by contradiction that f does not belong to the closure of
L2

1(Ω) ∩ Lq(Ω) in the norm of L2
1(Ω). Let

Ω0 = Ω \
(⋃

i≥1

Δ̄i

)
.

Since Ω0 has the cone property, Sobolev’s theorem says that the space L2
1(Ω0)

is embedded into C(Ω0) ∩ L∞(Ω0), and

‖u‖L∞(Ω0) ≤ K‖u‖L2
1(Ω), K = const > 0, (1.7.7)

for all u ∈ L2
1(Ω). Suppose that there exists a function g ∈ L2

1(Ω) ∩ Lq(Ω)
subject to

‖f − g‖L2
1(Ω) ≤ (2K)−1.

Put A∓
i = (∓δi, Hi+1+hi), i ≥ 0. Since f(A−

i ) = −1, f(A+
i ) = 1, the estimate

∣∣g(A+
i

)
− g
(
A−

i

)∣∣ ≥ 1

is valid in view of (1.7.7) On the other hand, an application of the above
lemma gives

c
∣∣g(A+

i

)
− g
(
A−

i

)∣∣ ≤ ‖∇2g‖L1(Δi ∩Πi) + 2i+1+2i/qδi ‖g‖Lq(Δi ∩Πi).

This inequality in conjunction with (1.7.6) implies that

lim
i→∞

∣∣g(A+
i

)
− g
(
A−

i

)∣∣ = 0,

and we arrive at the required contradiction.

1.7.4 Density of Bounded Functions in L2
p(Ω) for Paraboloids in

R
n

We have seen in the preceding section that bounded domains with a non-
smooth boundary may fail to have the property that the set L2

p(Ω) ∩ L∞(Ω)
is dense in L2

p(Ω). It turns out that for unbounded domains this property may
fail even when Ω is very simple with smooth boundary.

Let f be a function in C1([0,∞)) such that f is positive on (0,∞), |f ′(t)| ≤
const and f(t) → ∞ as t→ ∞. If f(0) = f ′(0) = 0, we impose an additional
condition f ′(t) > 0 in the vicinity of t = 0. Let

Ω =
{
(x, t) ∈ R

n : 0 < t <∞, |x| < f(t)
}

(see Fig. 14). We call this domain an n-dimensional paraboloid.
In this section c denotes various positive constants depending only on p,

n, and f . The following assertion gives a necessary and sufficient condition
for the space L2

p(Ω) ∩ L∞(Ω) to be dense in L2
p(Ω).
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Fig. 14.

Theorem. The space L2
p(Ω) ∩ L∞(Ω) is dense in L2

p(Ω), 1 < p < ∞, if
and only if ∫ ∞

1

f(t)
1−n
p−1 dt = ∞. (1.7.8)

(Clearly (1.7.8) holds for p > n.)

The proof of this theorem will be given at the end of the section. First we
establish three auxiliary assertions.

Lemma 1. Let u ∈ L2
p(Ω) ∩ L∞(Ω),

ΓT =
{
(x, t) ∈ Ω : t = T

}
,

ΩT =
{
(x, t) : 0 < t < T, |x| < f(t)

}
,

and
w(T ) = f(T )1−n

∫
ΓT

∂u

∂t
dx.

Then for all T > 0

∣∣w(T )
∣∣ ≤ c

(∫ ∞

T

f(t)
1−n
p−1 dt

)(p−1)/p(∫
Ω\ΩT

|∇2u|p dxdt
)1/p

. (1.7.9)

Proof. We may assume that
∫ ∞

1

f(t)
1−n
p−1 dt <∞. (1.7.10)

Since
w(T ) =

∫
|ξ|<1

∂u

∂t

(
f(t)ξ, t

)∣∣
t=T

dξ,

we have for S > T
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w(S) − w(T )

=
∫ S

T

dt
∫

|ξ|<1

∂

∂t

(
ut
(
f(t)ξ, t

))
dξ

=
∫ S

T

dt
∫

|ξ|<1

(
∂2u

∂t2
(
f(t)ξ, t

)
+ f ′(t)ξ

(
∇x
∂u

∂t

)(
f(t)ξ, t

))
dξ.

By Hölder’s inequality
∣∣w(T ) − w(S)

∣∣
≤ c
(∫ S

T

f(t)
1−n
p−1 dt

)(p−1)/p(∫ S

T

dt
∫

|x|<f(t)

∣∣(∇2u)(x, t)
∣∣p dx

)1/p

.

Thus, the limit d = limt→∞ w(t) exists and it suffices to deduce d = 0 to prove
(1.7.9). Consider the function ū on (0,∞) defined by

ū(t) = f(t)1−n

∫
|x|<f(t)

u(x, t) dx =
∫

|ξ|<1

u
(
f(t)ξ, t

)
dξ.

Putting v(ξ, t) = u(f(t)ξ, t), we find

dū
dt

= w(t) +
f ′(t)
f(t)

∫
|ξ|<1

ξ(∇ξv)(ξ, t) dξ. (1.7.11)

Furthermore,
∫

|ξ|<1

ξ∇ξv dξ = (1 − n)
∫

|ξ|<1

v dξ +
∫

|ξ|=1

v dsξ,

where dsξ is the area element on the sphere |ξ| = 1. Since v is bounded, the
second term on the right in (1.7.11) tends to zero as t → ∞. So we have
limt→∞ ū′(t) = d and d = 0 as long as ū ∈ L∞(0,∞). This completes the
proof of Lemma 1. �

Lemma 2. Let (1.7.8) hold and let

F (ϕ) =
∫ ∞

0

(
|ϕ′|p + fp|ϕ′ ′|p

)
fn−1 dt. (1.7.12)

Then inf F (ϕ) = 0, where the infimum is taken over the set
{
ϕ : ϕ ∈ C∞(R1), ϕ(t) = 1 for t ≤ 1, ϕ(t) = 0 for large positive t

}
. (1.7.13)

Proof. First let p > n. Since f(t) ≤ ct for large t, it will suffice to prove
the equality

inf
∫ ∞

1

(
|ϕ′|p + tp|ϕ′ ′|p

)
tn−1 dt = 0. (1.7.14)
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Consider the function η ∈ C∞(R1), η(t) = 1 for t ≤ 1, η(t) = 0 for t > 2. By
setting ϕ(t) = η(t/N), N = 1, 2, . . . , we obtain (1.7.14).

Let p ≤ n. Since

f |ϕ′ ′| ≤ c
(
|ϕ′| +

∣∣(f n−1
p−1 ϕ′)′∣∣),

the functional (1.7.12) is majorized by

c

∫ ∞

1

(∣∣f n−1
p−1 ϕ′∣∣p +

∣∣f n−1
p−1
(
f

n−1
p−1 ϕ′)′∣∣p) dt

f
n−1
p−1

, (1.7.15)

on the set (1.7.13). After passing to the new variable τ = τ(t) given by

τ =
∫ t

1

f(λ)
1−n
p−1 dλ,

the integral in (1.7.15) takes the form

G(ψ) =
∫ ∞

0

(
|ψ′|p + |ψ′ ′|p

)
dτ, ψ(τ) = ϕ(t).

It remains to observe that G(ψN ) → 0, where ψN (τ) = η(τ/τ(N)), N =
1, 2, . . . , and η is the function introduced previously. This concludes the proof
of the lemma. �

The proof of the preceding lemma enables us to state the following asser-
tion.

Corollary. If (1.7.8) holds, then there exists a minimizing sequence
{ϕN}N≥1 for functional (1.7.12) such that ϕN ∈ C∞(R1), ϕN (t) = 1 for
t ≤ N,ϕN (t) = 0 for large positive t.

Lemma 3. Let u ∈ L2
p(Ω). For any ε > 0 there exist a linear function �

and a function v ∈ L2
p(Ω) such that v(x, t) = �(x, t) for large t and

‖u− v‖L2
p(Ω) < ε.

Proof. Let
GN =

{
(x, t) ∈ Ω : N < t < N + f(N)

}
.

By Lemma 1.1.11, there is a linear function �N satisfying
∥∥∇(u−�N )

∥∥
Lp(GN )

+f(N)−1‖u−�N‖Lp(GN ) ≤ c f(N)‖∇2u‖Lp(GN ). (1.7.16)

We put

ηN (t) = η
(
1 + (t−N)/f(N)

)
, vN = (u− �N )ηN + �N ,

where η is the function introduced in the proof of Lemma 2. Clearly vN = u
for t ≤ N and vN = �N for t ≥ N + f(N). Next,
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c
∥∥∇2(u− vN )

∥∥
Lp(Ω)

≤
∥∥(1 − ηN )∇2u

∥∥
Lp(Ω)

+
∥∥∣∣∇(u− �N )

∣∣|∇ηN |∥∥Lp(Ω)

+
∥∥(u− �N )|∇2ηN |

∥∥
Lp(Ω)

.

Since
|∇ηN | ≤ cf(N)−1, ‖∇2ηN‖ ≤ cf(N)−2,

and in view of (1.7.16), it follows that∥∥∇2(u− vN )
∥∥
Lp(Ω)

≤ c‖∇2u‖Lp(Ω\ΩN ).

The last norm tends to zero as N → ∞, and we can set v = vN for sufficiently
large N . This establishes Lemma 3.

Proof of Theorem. Let (1.7.10) hold. We check that L2
p(Ω)∩L∞(Ω) is not

dense in L2
p(Ω). Let uν ∈ L2

p(Ω) ∩ L∞(Ω) and uν → t in the norm of L2
p(Ω).

By Lemma 1∣∣∣∣
∫
ΓT

∂uν
∂t

dx
∣∣∣∣ ≤ c(n, p, f, T )‖∇2uν‖Lp(Ω) = o(1) as ν → ∞. (1.7.17)

We have uν → t in L2
p(Ω2 \ Ω̄1). Since Ω2 \ Ω̄1 ∈ C0,1, the spaces L2

p and V 2
p

coincide for this domain. Thus, by Sobolev’s theorem,∫
ΓT

∂uν
∂t

dx→ mn−1ΓT as ν →∞

for almost all T ∈ (1, 2). However, this contradicts (1.7.17).
Suppose (1.7.8) is valid. It will be shown that an arbitrary function u ∈

L2
p(Ω) can be approximated by functions in L2

p(Ω) ∩ L∞(Ω). According to
Lemma 3, it is sufficient to assume that u = w+�, where � is a linear function
and w(x, t) = 0 for large t. Since any domain ΩT is of class C, Theorem 1.1.6/2
applies, and w can be approximated in L2

p(Ω) by functions in C∞(Ω̄) with
bounded supports. It remains to approximate the functions t, x1, . . . , xn−1.

Let {ϕN} be the sequence from the Corollary preceding Lemma 3. We set

vN (x, t) = N +
∫ t

N

ϕN (s) ds for t > N

and vN (x, t) = t for t ≤ N . Clearly vN ∈ L2
p(Ω) ∩ L∞(Ω) and

∥∥∇2(t− vN )
∥∥p
Lp(Ω)

= c

∫ ∞

0

∣∣ϕ′
N (t)

∣∣pf(t)n−1 dt = o(1) as N →∞.

To approximate xj , 1 ≤ j ≤ n− 1, we put wN (x, t) = xjϕN (t). Then

∥∥∇2(xj − wN )
∥∥p
Lp(Ω)

≤ c
∫ ∞

0

(
|ϕ′

N |p + fp|ϕ′ ′
N |p
)
fn−1 dt,

and a reference to the Corollary completes the proof. �
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1.7.5 Comments to Sect. 1.7

Lemma 1.7.1 is due to Deny and Lions [234]. In connection with the contents
of Sect. 1.7.2, we need two definitions. Let C∞

b (Ω) denote the set of functions
in C∞(Ω) with bounded gradients of all orders. A bounded domain Ω ⊂ R

n

has the interior segment property if to every x ∈ ∂Ω there correspond a
number r > 0 and a nonzero vector y ∈ R

n such that z + ty ∈ Ω provided
0 ≤ t ≤ 1 and z ∈ Ω ∩ Br(x). (Clearly domains of class C have the interior
segment property.)

If Ω ⊂ R
2 is a bounded domain that is either starshaped with respect to a

point or satisfies the interior segment condition, then C∞
b (Ω) is dense in V l

p (Ω)
for p ∈ [1,∞) and l = 1, 2, . . . . This theorem is due to Smith, Stanoyevitch,
and Stegenga [707]. In particular, it gives sufficient conditions for the space
V l
p(Ω) ∩ L∞(Ω) to be dense in V l

p (Ω), Ω ⊂ R
2. The just-mentioned result

fails for multidimensional domains.
Example 1.7.2, borrowed from Sect. 2.2 of the book by Maz’ya and

Poborchi [576], is analogous to Example 7.1 in the paper by Smith, Stanoye-
vitch, and Stegenga [707], which was constructed to show that the space
C∞

b (Ω) is not always dense in W 1
p (Ω) (see also O’Farrell [643]).

The contents of Sects. 1.7.3 and 1.7.4 are taken from the paper by Maz’ya
and Netrusov [572].

1.8 Maximal Algebra in W l
p(Ω)

1.8.1 Main Result

Let A be a subset of a Banach function space. The set A is called an algebra
with respect to multiplication if there is a constant c > 0 such that the
inclusions u ∈ A, v ∈ A imply uv ∈ A and ‖uv‖ ≤ c‖u‖‖v‖.

Note that the space W l
p = W l

p(R
n) is not an algebra when lp ≤ n, p > 1 or

l < n, p = 1. Indeed, if W l
p were an algebra, the following inequalities would

occur: ∥∥uN∥∥1/N

Lp
≤
∥∥uN∥∥1/N

W l
p
≤ c ‖u‖W l

p
,

where u is an arbitrary function in W l
p and N = 1, 2, . . . . By letting N →∞,

we can obtain
‖u‖L∞ ≤ c‖u‖W l

p
.

Clearly, the last inequality is not true for the values p, l mentioned earlier.
Thus, W l

p is generally not an algebra with respect to pointwise multiplication.
However, it is possible to describe the maximal algebra contained in W l

p.
Namely, the following assertion holds.

Theorem. The subspace W l
p ∩ L∞ with the norm ‖ · ‖W l

p
+ ‖ · ‖L∞ is the

maximal algebra contained in W l
p. In particular, the space W l

p is an algebra if
lp > n, p > 1 or if l ≥ n, p = 1.
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We need an auxiliary multiplicative inequality to prove this theorem.

Lemma 1. Let 1 ≤ p ≤ ∞ and l ≥ 2 be an integer. For any u ∈W l
p ∩L∞

and any j = 1, . . . , l − 1, the estimate

‖∇ju‖Llp/j
≤ c‖u‖1−j/l

L∞
‖u‖j/l

W l
p

(1.8.1)

holds with c independent of u.
We shall deduce Lemma 1 with the aid of another auxiliary inequality.

Lemma 2. If u ∈ C∞
0 (Rn), p ∈ [1,∞), 1 ≤ q ≤ ∞, and 2r−1 = p−1 + q−1,

then
‖∇u‖Lr ≤ c‖∇2u‖1/2

Lp
‖u‖1/2

Lq
,

where c is a positive constant depending only on n.

Proof. It is sufficient to assume p > 1 and q <∞. Then the extreme cases
p = 1 or q = ∞ follow by letting p tend to 1 or q tend to ∞.

We remark that the required inequality is a consequence of the one-
dimensional estimate

∫
|u′|r dx ≤ cr0

(∫
|u′ ′|p dx

) r
2p
(∫

|u|q dx
) r

2q

(1.8.2)

with 2r−1 = p−1 + q−1 and c0 an absolute constant (the integration is taken
over R

1). Once this estimate has been established, the result follows by inte-
grating with respect to the other variables and by applying Hölder’s inequality.

Note that for any u ∈ C∞
0 (R1)

2c1‖u′‖Lr(i) ≤ |i|1+r−1−p−1
‖u′ ′‖Lp(i) + |i|p

−1−r−1−1‖u‖Lq(i), (1.8.3)

where c1 is an absolute positive constant, i an interval, and |i| its length. The
last estimate follows from (1.1.18) and the Hölder inequality.

Inequality (1.8.2) is a consequence of the estimate

c1‖u′‖Lr(Δ) ≤ ‖u′ ′‖1/2
Lp

‖u‖1/2
Lq
, (1.8.4)

where Δ is an arbitrary interval in R
1 of finite length. The last is verified as

follows.
Fix a positive integer k and introduce the closed interval i of length |Δ|/k

with the same left point as Δ. Let us consider inequality (1.8.3) for this
interval i. If the first summand on the right of the inequality is greater than
the second, we put i1 = i. In this case

cr1

∫
i1

|u′|r dx ≤
(
|Δ|
k

)1+r−r/p(∫
R1

|u′ ′|p dx
) r

p

. (1.8.5)

Suppose the first term on the right of (1.8.3) is less than the second. We then
increase the interval i leaving the left end point fixed until these two terms are
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equal (clearly, the equality must take place for some i with |i| < ∞ because
1 + r−1 − p−1 > 0). Let i1 denote the resulting interval. Then

cr1

∫
i1

|u′|r dx ≤
(∫

i1

|u′ ′|p dx
) r

2p
(∫

i1

|u|q dx
) r

2q

. (1.8.6)

Putting the end point of i1 to be the initial point of the next interval, repeat
this process with the same k. We stop it when the closed finite intervals
i1, i2, . . . (each of length at least |Δ|/k) form a covering of the intervalΔ. Note
that the covering {i1, i2, . . . } contains at most k elements, each is supporting
estimates (1.8.5) or (1.8.6) (with i1 replaced by is). Adding these estimates
and applying Hölder’s inequality, one arrives at

cr1

∫
Δ

|u′|r dx ≤ k

(
|Δ|
k

)1+r−r/p(∫
|u′ ′|p dx

) r
p

+
(∫

|u′ ′|p dx
) r

2p
(∫

|u|q dx
) r

2q

.

Now (1.8.4) follows by letting k → ∞ because 1 + r − r/p > 1. The proof of
Lemma 2 is complete. �

Proof of Lemma 1. It is sufficient to assume p <∞. First let u ∈ C∞
0 (Rn).

If aj = ‖∇ju‖pl/j , Lemma 2 implies a2
j ≤ caj−1aj+1 for j = 1, . . . , l − 1. By

induction on l, we obtain aj ≤ ca
1−j/l
0 a

j/l
l , and Lemma 1 is established for

smooth functions u with compact support.
Turning to the general case u ∈ W l

p ∩ L∞, we first assume that suppu is
bounded and consider a mollification uh of u with radius h. Since ‖uh‖∞ ≤
c‖u‖∞ and by Lemma 1 applied to uh we obtain

‖∇juh‖Llp/j
≤ c ‖uh‖j/lW l

p
‖u‖1−j/l

L∞
.

Now passage to the limit as h → 0 gives the required inequality for u with
bounded support.

To conclude the proof of the lemma, we remove the assumption on the
boundedness of suppu. To this end we introduce a cutoff function η ∈ C∞

0 (B2)
such that 0 ≤ η ≤ 1 and η|B1 = 1. Let ηk(x) = η(x/k), k = 1, 2, . . . . An
application of Lemma 1 to the function uηk yields

‖∇ju‖Llp/j(Bk) ≤ c‖uηk‖j/lW l
p
‖u‖1−j/l

L∞
.

It remains to pass to the limit as k →∞ to establish Lemma 1 in the general
case. �

We now give a proof of the theorem stated previously.

Proof of Theorem. Let A be an algebra contained in W l
p.
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As we have already seen at the beginning of the section A ⊂ L∞ ∩W l
p.

To show that the space A = L∞ ∩W l
p is an algebra, we let u, v ∈ A be

arbitrary. Then

∥∥∇l(uv)
∥∥
Lp

≤ c

l∑
k=0

∥∥|∇ku| · |∇l−kv|
∥∥
Lp

≤ c

l∑
k=0

‖∇ku‖Llp/k
‖∇l−kv‖Llp/(l−k)

by Hölder’s inequality. It follows from Lemma 1 that

∥∥∇l(uv)
∥∥
Lp

≤ c
l∑

k=0

‖u‖(l−k)/l
L∞

‖∇lu‖k/lLp
‖v‖k/lL∞

‖∇lv‖(l−k)/l
Lp

,

and hence
∥∥∇l(uv)

∥∥
Lp

≤ c
(
‖u‖L∞‖∇lv‖Lp + ‖v‖L∞‖∇lu‖Lp

)
, (1.8.7)

which does not exceed c‖u‖A‖v‖A. Thus, A is an algebra and hence the space
W l

p ∩ L∞ is the maximal algebra contained in W l
p.

If lp > n, p > 1 or l ≥ n, p = 1, then W l
p ⊂ L∞ by Sobolev’s embedding

theorem, and the space W l
p is an algebra for these p and l. This concludes the

proof. �

Let Ω be a domain in R
n. We may ask whether the space W l

p(Ω)∩L∞(Ω)
is an algebra with respect to pointwise multiplication. Clearly, for l = 1 the
answer is affirmative. Since Stein’s extension operator from a domain Ω ∈ C0,1

is continuous as an operator

W l
p(Ω) ∩ L∞(Ω) →W l

p

(
R

n
)
∩ L∞

(
R

n
)
,

the above question has the affirmative answer for finite sums of domains in
C0,1. For example, Ω can be a bounded domain having the cone property.
However, it turns out that the space W l

p(Ω) ∩ L∞(Ω) is generally not an
algebra.

1.8.2 The Space W 2
2 (Ω) ∩ L∞(Ω) Is Not Always a Banach Algebra

Here we give an example of a bounded planar domain Ω such that W 2
2 (Ω) ∩

L∞(Ω) is not an algebra.

Let Ω be the union of the rectangle P = {(x, y) : x ∈ (0, 2), y ∈ (0, 1)},
the squares Pk with edge length 2−k and the passages Sk of height 2−k and
of width 2−αk, k = 1, 2, . . . , α > 1 (see Figs. 15 and 16). Define u = 0 on P ,
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Fig. 15. Fig. 16.

u(x, y) = 23k/2(y− 1)2 on Sk, k = 1, 2, . . . , and u(x, y) = 2k/2(2(y− 1)− 2−k)
on Pk for k ≥ 1. Straightforward calculations show that

‖∇2u‖2
L2(Sk) = 22+(2−α)k, |u| ≤ 3,

∥∥∇2

(
u2
)∥∥

L2(Pk)
= 8.

Thus, if α > 2, then u ∈W 2
2 (Ω) ∩ L∞(Ω), but u2 /∈W 2

2 (Ω).

1.8.3 Comments to Sect. 1.8

A general form of the inequality obtained in Lemma 1.8.1/1 is due to Gagliardo
[300] and Nirenberg [640]. The proof of Lemma 1.8.1/2 follows the paper
by Nirenberg [640] where it was also shown that L∞ ∩ W l

p is an algebra.
A counterexample in Sect. 1.8.2 is taken from the paper by Maz’ya and
Netrusov [572].
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Inequalities for Functions Vanishing
at the Boundary

The present chapter deals with the necessary and sufficient conditions for the
validity of certain estimates for the norm ‖u‖Lq(Ω,μ), where u ∈ D(Ω) and μ
is a measure in Ω. Here we consider inequalities with the integral

∫
Ω

[
Φ(x,∇u)

]p dx,

on the right-hand side. The function Φ(x, ξ), defined for x ∈ Ω and ξ ∈ R
n, is

positive homogeneous of degree one in ξ. The conditions are stated in terms
of isoperimetric (for p = 1 in Sect. 2.1) and isocapacitary (for p ≥ 1, in
Sects. 2.2–2.4) inequalities. For example, we give a complete answer to the
question of validity of the inequality

‖u‖Lq(Ω,μ) ≤ C
(∫

Ω

[
Φ(x,∇u)

]p dx
)1/p

,

both for q ≥ p ≥ 1 and 0 < q < p, p ≥ 1. In particular, in the first case there
hold sharp inequalities for the best constant C

β1/p ≤ C ≤ p(p− 1)(1−p)/pβ1/p,

where

β = sup
F ⊂Ω

μ(F )p/q

(p, Φ)-cap(F,Ω)
,

with the so-called (p, Φ)-capacity of a compact subset of Ω in the denomi-
nator. Actually, this is a special case of a more general assertion concerning
Birnbaum–Orlicz spaces.

Among other definitive results we obtain criteria for the validity of multi-
plicative inequalities of the form

‖u‖Lp(Ω,μ) ≤ C
∥∥Φ(·,∇u)

∥∥δ
Lp(Ω)

‖u‖1−δ
Lr(Ω,ν)

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 2, c© Springer-Verlag Berlin Heidelberg 2011
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as well as the necessary and sufficient conditions for compactness of related
embedding operators.

In Sect. 2.5 we give applications of the results in Sect. 2.4 to the spec-
tral theory of the multidimensional Schrödinger operator with a nonpositive
potential. Here the necessary and sufficient conditions ensuring the positiv-
ity and semiboundedness of this operator, discreteness, and finiteness of its
negative spectrum are obtained.

Certain properties of quadratic forms of the type
∫

Rn

aij(x)
∂u

∂xi

∂u

∂xj
dx

are studied in Sects. 2.6.1 and 2.6.2. Finally, Sects. 2.7 and 2.8 are devoted to
sharp constants in some multidimensional inequalities of the Hardy type.

2.1 Conditions for Validity of Integral Inequalities
(the Case p = 1)

2.1.1 Criterion Formulated in Terms of Arbitrary Admissible Sets

A bounded open set g ⊂ R
n will be called admissible if ḡ ⊂ Ω and ∂g is a C∞

manifold. In Chaps. 5–7 this definition will be replaced by a broader one.
Let N (x) denote the unit normal to the boundary of the admissible set

g at a point x that is directed toward the interior of g. Let Φ(x, ξ) be a
continuous function on Ω×R

n that is nonnegative and positive homogeneous
of the first degree with respect to ξ. We introduce the weighted area of ∂g

σ(∂g) =
∫
∂g

Φ
(
x,N (x)

)
ds(x). (2.1.1)

Let μ and ν be measures in Ω and ωn = s(∂B1).
The following theorem contains a necessary and sufficient condition for

the validity of the multiplicative inequality :

‖u‖Lq(Ω,μ) ≤ C
∥∥Φ(·,∇u)

∥∥δ
L1(Ω)

‖u‖1−δ
Lr(Ω,ν) (2.1.2)

for all u ∈ D(Ω). This result will be proved using the same arguments as in
Theorem 1.4.2/1.

Theorem. 1. If for all admissible sets

μ(g)1/q ≤ ασ(∂g)δν(g)(1−δ)/r, (2.1.3)

where α = const > 0, δ ∈ [0, 1], r, q > 0, δ + (1 − δ)r−1 ≥ q−1, then (2.1.2)
holds for all u ∈ D(Ω) with C ≤ αrδ(rδ + 1 − δ)−δ−(1−δ)/r.
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2. If (2.1.2) holds for all u ∈ D(Ω) with q > 0, δ ∈ [0, 1], then (2.1.3)
holds for all admissible sets g and α ≤ C.

Proof. 1. First we note that by Theorem 1.2.4
∫
Ω

Φ(x,∇u) dx =
∫

{x:|∇u|>0}
Φ

(
x,

∇u
|∇u|

)
|∇u| dx

=
∫ ∞

0

dt
∫

Et

Φ

(
x,

∇u
|∇u|

)
ds =

∫ ∞

0

σ(∂Lt) dt. (2.1.4)

Here we used the fact that |∇u| �= 0 on Et = {x : |u(x)| = t} for almost
all t and that for such t the sets Lt = {x : |u(x)| > t} are bounded by C∞

manifolds. By Lemma 1.2.3

‖u‖Lq(Ω,μ) =
(∫ ∞

0

μ(Lt) d
(
tq
))1/q

.

Since μ(Lt) is a nonincreasing function, then, applying (1.3.41), we obtain

‖u‖Lq(Ω,μ) ≤
(∫ ∞

0

μ(Lt)γ/q d
(
tγ
))1/γ

,

where γ = r(rδ+1−δ)−1, γ ≤ q. Using the fact that the sets Lt are admissible
for almost all t, from (2.1.3) we obtain

‖u‖Lq(Ω,μ) ≤ γ1/γα

(∫ ∞

0

σ(∂Lt)γδν(Lt)γ(1−δ)/rtγ−1 dt
)1/γ

.

Since γδ + γ(1− δ)/r = 1, then by Hölder’s inequality

‖u‖Lq(Ω,μ) ≤ γ1/γα

(∫ ∞

0

σ(∂Lt) dt
)δ(∫ ∞

0

ν(Lt)tr−1 dt
)(1−δ)/r

,

which by virtue of (2.1.4) and Lemma 1.2.3 is equivalent to (2.1.2).
2. Let g be any admissible subset of Ω and let d(x) = dist(x,Rn\g),

gt = {x ∈ Ω, d(x) > t}. Let α denote a nondecreasing function, infinitely
differentiable on [0,∞), equal to unity for d ≥ 2ε and to zero for d ≤ ε, where
ε is a sufficiently small positive number. Then we substitute uε(x) = α[d(x)]
into (2.1.2).

By Theorem 1.2.4,
∫
Ω

Φ(x,∇uε) dx =
∫ 2ε

0

α′(t)
∫
∂gt

Φ
(
x,N (x)

)
ds(x),

where N (x) is the normal at x ∈ ∂gt directed toward the interior of gt. Since
∫
∂gt

Φ
(
x,N (x)

)
ds(x) t→0−−−→σ(∂g),
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we obtain ∫
Ω

Φ(x,∇uε) dx ε→0−−−→ σ(∂g).

Let K be a compactum in g such that dist(K, ∂g) > 2ε. Then uε(x) = 1
on K and

‖uε‖Lq(Ω,μ) ≥ μ(K)1/q.

Using 0 ≤ uε(x) ≤ 1 and supp uε ⊂ g, we see that

‖uε‖Lr(Ω,ν) ≤ ν(g)1/r.

Now from (2.1.2) we obtain

μ(g)1/q = sup
K⊂g

μ(K)1/q ≤ Cσ(∂g)δν(g)(1−δ)/r.

The result follows. ��

2.1.2 Criterion Formulated in Terms of Balls for Ω = R
n

In the case Φ(x, ξ) = |ξ|, Ω = R
n, ν = mn it follows from (2.1.2) that for all

balls B�(x)
μ
(
B�(x)

)1/q ≤ A�δ(n−1)+(1−δ)n/r. (2.1.5)

With minor modification in the proof of Theorem 1.4.2/2 we arrive at the
converse assertion.

Theorem. If (2.1.5) holds with δ ∈ [0, 1]; q, r > 0, δ + (1 − δ)/r ≥ 1/q
for all balls B�(x), then

‖u‖Lq(μ) ≤ C
∥∥Φ(·,∇u)

∥∥δ
L1
‖u‖(1−δ)

Lr
(2.1.6)

holds for all u ∈ D(Rn) with C ≤ cA.

Proof. As already shown in the proof of Theorem 1.2.1/2, for any bounded
open set g with a smooth boundary there exists a sequence {B�i(xi)}i≥1 of
disjoint balls with the properties

(α) g ⊂
⋃
i≥1

B3�i(xi),

(β) 2mn

(
q ∩B�i(xi)

)
= vn�

n
i ,

(γ) s(∂g) ≥ c
∑
i≥1

�n−1
i .

From (2.1.5) it follows that

μ(g) ≤
∑
i≥1

μ
(
B3�i(xi)

)
≤ Aq

∑
i≥1

(3�i)q[δ(n−1)+(1−δ)n/r]. (2.1.7)
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Since qδ + (1 − δ)n/r ≥ 1, it follows from (2.1.7) that

μ(g) ≤ cAq

(∑
i≥1

�
q δ(n−1)+(1−δ)n/r

qδ+(1−δ)n/r

i

)qδ+(1−δ)n/r

,

which by Hölder’s inequality does not exceed

cAq

(∑
i≥1

�n−1
i

)qδ(∑
i≥1

�ni

)(1−δ)q/r

.

To conclude the proof it remains to apply Theorem 2.1.1. ��

2.1.3 Inequality Involving the Norms in Lq(Ω, μ) and Lr(Ω, ν)
(Case p = 1)

The next theorem is proved analogously to Theorem 2.1.1.

Theorem. 1. If for all admissible sets g ⊂ Ω

μ(g)1/q ≤ ασ(∂g) + βν(g)1/r, (2.1.8)

where α ≥ 0, β ≥ 0, q ≥ 1 ≥ r, then

‖u‖Lq(Ω,μ) ≤ α
∥∥Φ(x,∇u)

∥∥
L(Ω)

+ β‖u‖Lr(Ω,ν) (2.1.9)

holds for all u ∈ D(Ω).
2. If (2.1.9) holds for all u ∈ D(Ω), then (2.1.8) holds for all admissible

sets g.

2.1.4 Case q ∈ (0, 1)

Here we deal with the inequality

‖u‖Lq(Ω,μ) ≤ C
∥∥Φ(·,∇u)

∥∥
L1(Ω)

(2.1.10)

for u ∈ C∞
0 (Ω). As a particular case of (2.1.9), we obtain from Theorem 2.1.3

that (2.1.10) holds with q ≥ 1 if and only if for all admissible sets g

μ(g)1/q ≤ ασ(∂g) (2.1.11)

and α is the best value of C.
We shall show that (2.1.10) can be completely characterized also for q ∈

(0, 1). Let us start with the basic properties of the so-called nonincreasing
rearrangement of a function.

Let u be a function in Ω measurable with respect to the measure μ. We
associate with u its nonincreasing rearrangement u∗

μ on (0,∞), which is in-
troduced by
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u∗
μ(t) = inf

{
s > 0 : μ(Ls) ≤ t

}
, (2.1.12)

where Ls = {x ∈ Ω : |u(x)| > s}.
Clearly u∗

μ is nonnegative and nonincreasing on (0,∞). We also have
u∗
μ(t) = 0 for t ≥ μ(Ω). Furthermore, it follows from the definition of u∗

that
u∗
μ

(
μ(Ls)

)
≤ s (2.1.13)

and
μ(Lu∗(t)) ≤ t, (2.1.14)

the last because the function s→ μ(Ls) is continuous from the right.
The nonincreasing rearrangement of a function has the following important

property.

Lemma 1. If q ∈ (0,∞), then
∫
Ω

∣∣u(x)∣∣q dμ =
∫ ∞

0

(
u∗
μ(t)

)q dt.

Proof. The required equality is a consequence of the formula
∫
Ω

∣∣u(x)∣∣q dμ =
∫ ∞

0

μ(Lt) d
(
tq
)

and the identity
m1

(
L ∗

s

)
= μ(Ls), s ∈ (0,∞) (2.1.15)

in which L ∗
s = {t > 0 : u∗

μ(t) > s}. To check (2.1.15) we first note that

m1

(
L ∗

s

)
= sup

{
t > 0 : u∗

μ(t) > s
}

(2.1.16)

by the monotonicity of u∗
μ. Hence, (2.1.13) yields

m1

(
L ∗

s

)
≤ μ(Ls).

For the inverse inequality, let ε > 0 and t = m1(L ∗
s ) + ε. Then (2.1.16)

implies u∗
μ(t) ≤ s and therefore

m1

(
L ∗

s

)
≤ μ(Lu∗

μ(t)) ≤ t

by (2.1.14). Thus μ(Ls) ≤ m1(L ∗
s ) and (2.1.15) follows.

Definition. Let C (�) denote the infimum σ(∂g) for all admissible sets
such that μ(g) ≥ �, where σ(∂g) is the weighted area defined by (2.1.1).

Theorem. Let Ω be a domain in R
n and 0 < q < 1.

(i) (Sufficiency) If
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D :=
∫ μ(Ω)

0

(
s1/q

C (s)

) q
1−q ds

s
<∞, (2.1.17)

then (2.1.10) holds for all u ∈ C∞(Ω). The constant C satisfies the inequality
C ≤ c1(q)D(1−q)/q.

(ii) (Necessity) If there is a constant C > 0 such that (2.1.10) holds for all
u ∈ C∞(Ω), then (2.1.17) holds and C ≥ c2(q)D(1−q)/q.

Proof. (Sufficiency) Note that (2.1.17) implies μ(Ω) <∞ and that C is a
positive function. By monotonicity of μ(Lt), one obtains

∫
Ω

|u|q dμ =
∞∑

j=− ∞

∫ 2j+1

2j

μ(Lt) d
(
tq
)

≤
∞∑

j=− ∞
μj

(
2q(j+1) − 2qj

)
,

where μj = μ(L2j ). We claim that the estimate

m∑
j=r

μj

(
2q(j+1) − 2qj

)
≤ cD1−q

∥∥Φ(·,∇u)
∥∥q
Lq(Ω)

(2.1.18)

is true for any integers r, m, and r < m. Once (2.1.18) has been proved,
(2.1.17) follows by letting m→∞ and r → −∞ in (2.1.18). Clearly, the sum
on the left in (2.1.18) is not greater than

μm2q(m+1) +
m∑

j=1+r

(μj−1 − μj)2jq. (2.1.19)

Let Sr,m denote the sum over 1 + r ≤ j ≤ m. Hölder’s inequality implies

Sr,m ≤
[

m∑
j=1+r

2jC (μj−1)

]q{ m∑
j=1+r

(μj−1 − μj)1/(1−q)

C (μj−1)1/(1−q)

}1−q

. (2.1.20)

We have
(μj−1 − μj)1/(1−q) ≤ μ1/(1−q)

j−1 − μ1/(1−q)
j .

Hence, by the monotonicity of C , the sum in curly braces is dominated by

m∑
j=1+r

∫ μj−1

μj

C (t)q/(q−1) d
(
t1/(1−q)

)
,

which does not exceed D/(1 − q). By (2.1.4) the sum in square brackets in
(2.1.20) is not greater than
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2
∞∑

j=− ∞

∫
L2j−1 \L2j

Φ(x,∇u) dx.

Thus
m∑

j=1+r

(μj−1 − μj)2qj ≤ cD1−q
∥∥Φ(·,∇u)

∥∥q
L1(Ω)

.

To conclude the proof of (2.1.18), we show that the first term in (2.1.19) is
also dominated by the right part of (2.1.18). Indeed, if μm > 0, then

μm2mq ≤
(
2mC (μm)

)q((
μm/C (μm)

)q/(1−q)
μm

)1−q

≤ c
∥∥Φ(·,∇u)

∥∥q
L1(Ω)

(∫ μm

0

(
t

C (t)

)q/(1−q)

dt
)1−q

.

The sufficiency of (2.1.17) follows.
We turn to the necessity of (2.1.17). We shall use the following two auxil-

iary assertions.

Lemma 2. Let u ∈ C0,1
0 (Ω). There exists a sequence {uν}ν≥1 of functions

uν ∈ D(Ω) such that
∫
Ω

Φ
(
x,∇

(
uν(x) − u(x)

))
dx→ 0 as ν →∞. (2.1.21)

Proof. Let uν = Mν−1u, where Mε stands for a mollification with radius
ε. Let U be a neighborhood of supp u, Ū ⊂ Ω.

Clearly, supp uν is situated in U for all sufficiently large ν. Since Φ ∈
C(Ω × Sn−1) and u ∈ C(0,1)

0 (Ω), it follows that

Φ
(
x,∇

(
uν(x) − u(x)

))
= Φ

(
x,

∇(uν(x) − u(x))
|∇(uν(x) − u(x))|

)∣∣∇(uν(x) − u(x)
)∣∣,

if ∇uν(x) �= ∇u(x). Therefore, the left-hand side in (2.1.21) does not exceed

max
Ū×Sn−1

Φ

∫
Ω

∣∣∇(uν(x) − u(x))∣∣ dx→ 0 as ν →∞.

The proof is complete. ��

Lemma 3. Let {v1, . . . , vN} be a finite collection of functions in the space
C(Ω) ∩ L1

p(Ω), p ∈ [1,∞). Then, for x ∈ Ω, the function

x �→ v(x) = max
{
v1(x), . . . , vN (x)

}

belongs to the same space and
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∥∥Φ(·,∇v)
∥∥
L1(Ω)

≤
N∑
i=1

∥∥Φ(·,∇vi)
∥∥
L1(Ω)

. (2.1.22)

Proof. An induction argument reduces consideration to the case N = 2.
Here

v(x) = max
{
v1(x), v2(x)

}
.

The left-hand side in (2.1.22) is equal to
∫
v1≥v2

Φ(x,∇v1) dx+
∫
v1<v2

Φ(x,∇v2) dx,

which implies (2.1.22) for N = 2. ��

Continuation of the proof of Theorem. (Necessity) First we remark that
the claim implies μ(Ω) <∞ and that C (t) > 0 for all t ∈ (0, μ(Ω)]. Let j be
any integer satisfying 2j ≤ μ(Ω). Then there exists a subset gj of Ω such that

μ(gj) ≥ 2j , and σ(Ω ∩ gj) ≤ 2C
(
2j
)
.

By the definition of C and by (2.1.4) there is a function uj ∈ C∞(Ω) subject
to uj ≥ 1 on gj , uj = 0 on ∂Ω and

∫
Ω

Φ(x,∇uj) dx ≤ 4C
(
2j
)
.

Let s be the integer for which 2s < μ(Ω) < 2s+1. For any integer r < s, we
introduce the Lipschitz function

fr,s(x) = max
r≤j≤s

βjuj(x), x ∈ Ω,

where
βj =

(
2j/C

(
2j
))1/(1−q)

.

By Lemmas 2 and 3

∥∥Φ(·,∇fr,s)
∥∥
L1(Ω)

≤ c
s∑

j=r

βj
∥∥Φ(·,∇uj)

∥∥
L1(Ω)

,

and one obtains the following upper bound:

∥∥Φ(·,∇fr,s)
∥∥
L1(Ω)

≤ c
s∑

j=r

βjC
(
2j
)
. (2.1.23)

We now derive a lower bound for the norm of fr,s in Lq(Ω,μ). Since
fr,s(x) ≥ βj for x ∈ gj , r ≤ j ≤ s, and μ(gj) ≥ 2j , the inequality
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μ
({
x ∈ Ω :

∣∣fr,s(x)∣∣ > r}) < 2j

implies r ≥ βj . Hence

f∗
r,s(t) ≥ βj for t ∈

(
0, 2j

)
, r ≤ j ≤ s,

where f∗
r,s is the nonincreasing rearrangement of fr,s. Then

∫ μ(Ω)

0

(
f∗
r,s(t)

)q dt ≥
s∑

j=r

∫ 2j

2j−1

(
f∗
r,s

)q dt ≥
s∑

j=r

βq
j 2

j−1,

which implies

‖fr,s‖qLq(Ω,μ) ≥
s∑

j=r

βq
j 2

j−1. (2.1.24)

Next we note that by Lemma 2 if inequality (2.1.10) holds for all u ∈ C∞
0 (Ω),

then it holds for all Lipschitz u with compact supports in Ω. In particular,

‖fr,s‖Lq(Ω,μ) ≤ C
∥∥Φ(·,∇fr,s)

∥∥
L1(Ω)

.

Now (2.1.23) and (2.1.24) in combination with the last inequality give

C ≥ c
(
∑s

j=r β
q
j 2

j)1/q∑s
j=r βj(2j)

= c

(
s∑

j=r

2j/(1−q)

(C (2j))q/(1−q)

)(1−q)/q

.

By letting r → −∞ and by the monotonicity of C , we obtain

C ≥ c
(

s∑
j=− ∞

(
2j

C (t)

) q
1−q

2j

) 1−q
q

≥ c
(∫ μ(Ω)

0

(
t

C (t)

) q
1−q

dt

) 1−q
q

.

This completes the proof of the Theorem. ��

2.1.5 Inequality (2.1.10) Containing Particular Measures

We give two examples that illustrate applications of the inequality (2.1.10).

Example 1. Let Ω = R
n, R

n−1 = {x ∈ R
n, xn = 0}, μ(A) = mn−1(A ∩

R
n−1), where A is any Borel subset of R

n. Obviously,

μ(g) ≤ 1
2
s(∂g)

and hence
‖u‖L1(Rn−1) ≤

1
2
‖∇u‖L1(Rn)

for all u ∈ D(Rn).
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Example 2. Let A be any Borel subset of R
n with mn(A) <∞ and let

μ(A) =
∫
A

|x|−α dx,

where α ∈ [0, 1]. Further, let Br be a ball centered at the origin, whose n-
dimensional measure equals mn(A). In other words,

r =
(
n

ωn
mn(A)

)1/n

.

Obviously,
∫
A

|x|−α dx ≤
∫
A∩Br

|x|−α dx+ r−αmn(Br\A) ≤
∫
Br

|x|−α dx.

So

μ(A)(n−1)/(n−α) ≤ (n− α)(1−n)/(n−α)ωα(n−1)/n(n−α)
n

[
nmn(A)

](n−1)/n
.

Let g be any admissible set in R
n. By virtue of the isoperimetric inequality

[
nmn(g)

](n−1)/n ≤ ω−1/n
n s(∂g),

we have

μ(g)(n−1)/(n−α) ≤ (n− α)(1−n)/(n−α)ω(α−1)/(n−α)
n s(∂g).

This inequality becomes an equality if g is a ball. Therefore

sup
{g}

μ(g)(n−1)/(n−α)

s(∂g)
= (n− α)(1−n)/(n−α)ω(α−1)/(n−α)

n

and for all u ∈ D(Rn)

(∫
Rn

∣∣u(x)∣∣(n−α)/(n−1)|x|−α dx
)(n−1)/(n−α)

≤ (n− α)(1−n)/(n−α)ω(α−1)/(n−α)
n ‖∇u‖L1(Rn) (2.1.25)

with the best possible constant.

2.1.6 Power Weight Norm of the Gradient on the Right-Hand Side

In this subsection we denote by z = (x, y) and ζ = (ξ, η) points in R
n+m with

x, ξ ∈ R
n, y, η ∈ R

m, m,n > 0. Further, let B(d)
r (q) be the d-dimensional ball

with center q ∈ R
d.
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Lemma 1. Let g be an open subset of R
n+m with compact closure and

smooth boundary ∂g, which satisfies
∫
B

(n+m)
r (z)∩g

|η|α dζ
/∫

B
(n+m)
r (z)

|η|α dζ =
1
2
, (2.1.26)

where α > −m for m > 1 and 0 ≥ α > −1 for m = 1. Then
∫
B

(n+m)
r (z)∩∂g

|η|α ds(ζ) ≥ crn+m−1
(
r + |y|

)α
, (2.1.27)

where s is the (n+m− 1)-dimensional area.

The proof is based on the next lemma.

Lemma 2. Let α > −m for m > 1 and 0 ≥ α > −1 for m = 1. Then for

any v ∈ C∞(B(n+m)
r ) there exists a constant V such that

∫
B

(n+m)
r

∣∣v(ζ) − V ∣∣|η|α dζ ≤ cr
∫
B

(n+m)
r

∣∣∇v(ζ)∣∣|η|α dζ. (2.1.28)

Proof. It suffices to derive (2.1.28) for r = 1. We put B(n+m)
1 = B and

B
(m)
1 × B(n)

1 = Q. Let R(ζ) denote the distance of a point ζ ∈ ∂Q from the
origin, i.e., R(ζ) = (1+ |ζ|2)1/2 for |η| = 1, |ξ| < 1 and R(ζ) = (1+ |η|2)1/2 for
|ζ| = 1, |η| < 1. Taking into account that B is the quasi-isometric image of Q
under the mapping ζ → ζ/R(ζ), we may deduce (2.1.28) from the inequality

∫
Q

∣∣v(ζ) − V ∣∣|η|α dζ ≤ c
∫
Q

∣∣∇v(ζ)∣∣|η|α dζ, (2.1.29)

which will be established now. Since (m + α)|η|α = div(|η|αη), then, after
integration by parts in the left-hand side of (2.1.29), we find that it does not
exceed

(m+ α)−α

(∫
Q

|∇v||η|α+1 dξ +
∫
B

(n)
1

dξ
∫
∂B

(m)
1

∣∣v(ζ) − V ∣∣ ds(η)
)
. (2.1.30)

For the sake of brevity we put T = B
(n)
1 × (B(m)

1 \B(m)
1/2 ). Let m > 1. The

second summand in (2.1.30) is not greater than

c

∫
T

|∇v| dζ + c
∫
T

|v − V | dζ.

By Lemma 1.1.11, the last assertion and (2.1.30) imply (2.1.29), where V
is the mean value of v in T . (Here it is essential that T is a domain for m > 1.)

If m = 1 then T has two components T+ = B
(n)
1 × (1/2, 1) and T− =

B
(n)
1 × (−1,−1/2). Using the same argument as in the case m > 1, we obtain
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∫
B

(n)
1

∣∣v(ξ,±1) − V±
∣∣dξ ≤ c

∫
T±

∣∣∇v(ζ)∣∣ dζ ≤ c
∫
Q

∣∣∇v(ζ)∣∣|η|α dζ,

where V± are the mean values of v in T±. It remains to note that

|V+ − V−| ≤ c
∫
B

(n)
1

dξ
∫ 1

−1

∣∣∣∣∂v∂η
∣∣∣∣ dη ≤ c

∫
Q

∣∣∇v(ζ)∣∣|η|α dζ,

provided α ≤ 0. So for m = 1 we also have (2.1.29) with V replaced by V+ or
V−. This concludes the proof of the lemma. ��

Proof of Lemma 1. For the sake of brevity let B = B
(n+m)
r (z). In (2.1.28)

we replace v by a mollification of the characteristic function χ� of the set g
with radius �. Then the left-hand side in (2.1.28) is bounded from below by
the sum

|1 − V |
∫
e1

|η|α dζ + |V |
∫
e0

|η|α dζ,

where ei = {ζ ∈ B : χ�(ζ) = i}, i = 0, 1.
Let ε be a sufficiently small positive number. By (2.1.26)

(
1
2
− ε
)(

|1 − V | + |V |
) ∫

B

|η|α dζ ≤ cr
∫
B

|η|α
∣∣∇χ�(ζ)

∣∣ dζ
for sufficiently small values of �. Consequently,

1
2

∫
B

|η|α dζ ≤ cr lim sup
�→+0

∫
B

|η|α
∣∣∇χ�(ζ)

∣∣ dζ = cr

∫
B∩∂g

|η|α ds(ζ).

It remains to note that ∫
B

|η|α dζ ≥ crm+n
(
r + |y|

)α
.

The lemma is proved. ��

Remark 1. Lemma 1 fails for m = 1, α > 0. In fact, let g = {ζ ∈ R
n+1 :

η > ε or 0 > η > −ε}, where ε = const > 0. Obviously, (2.1.26) holds for
this g. However, ∫

B
(n+1)
r ∩∂g

|η|α ds(ζ) ≤ cεα,

which contradicts (2.1.27).

Theorem 1. Let ν be a measure in R
n+m, q ≥ 1, α > −m. The best

constant in

‖u‖Lq(Rn+m,ν) ≤ C
∫

Rn+m

|y|α|∇zu| dz, u ∈ C∞
0

(
R

n+m
)
, (2.1.31)

is equivalent to
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K = sup
z;�

(
�+ |y|

)−α
�1−n−m

[
ν
(
B(n+m)

� (z)
)]1/q

. (2.1.32)

Proof. 1. First, let m > 1 or 0 ≥ α > −1, m = 1. According to Theo-
rem 2.1.3

C = sup
g

[ν(g)]1/q∫
∂g
|y|α ds(z)

,

where g is an arbitrary subset of R
n+m with a compact closure and smooth

boundary. We show that for each g there exists a covering by a sequence of
balls Bn+m

�i
(zi), i = 1, 2, . . . , such that

∑
i

�n+m−1
i

(
�i + |yi|

)α ≤ c
∫
∂g

|y|α ds(z).

Each point z ∈ g is the center of a ball B(n+m)
r (z) for which (2.1.26) is valid.

In fact, the ratio in the left-hand side of (2.1.26) is a continuous function in
r that equals unity for small values of r and converges to zero as r → ∞. By
Theorem 1.2.1 there exists a sequence of disjoint balls B(n+m)

ri (zi) such that

g ⊂
∞⋃
i=1

B
(n+m)
3ri

(zi).

According to Lemma 1,
∫
B

(n+m)
ri (zi)∩∂g

|y|α ds(z) ≥ crn+m−1
i

(
ri + |yi|

)α
.

Thus {B(n+m)
3ri

(zi)}i≥1 is the required covering.
Obviously,

ν(g) ≤
∑
i

ν
(
B

(n+m)
3ri

(zi)
)
≤
(∑

i

[
ν
(
B

(n+m)
3ri

(zi)
)]1/q)q

≤ cKq

(∑
i

rn+m−1
i

(
ri + |yi|

)α)q

≤
(
cK

∫
∂g

|y|α ds(z)
)q

.

Therefore C ≤ cK for m > 1 and for m = 1, 0 ≥ α > −1.
2. Now let m = 1, α > 0. We construct a covering of the set {ζ : η = 0}

by balls Bj with radii �j , equal to the distance of Bj from the hyperplane
{ζ : ξ = 0}. We assume that this covering has finite multiplicity. By {ϕj} we
denote a partition of unity subordinate to {Bj} and such that |∇ϕj | ≤ c/�j
(see Stein [724], Chap. VI, §1.). Using the present theorem for the case α = 0,
which has already been considered (or equivalently, using Theorem 1.4.2/2),
we arrive at
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‖ϕju‖Lq(Rn+1,ν) ≤ c sup
�;z
�−n

[
νj
(
B(n+1)

� (z)
)]1/q∥∥∇(ϕju)

∥∥
L1(Rn+1)

,

where νj is the restriction of ν to Bj . It is clear that

sup
�;z
�−n

[
νj
(
B(n+1)

� (z)
)]1/q ≤ c sup

�≤�j ,z∈Bj

�−n
[
ν
(
B(n+1)

� (z)
)]1/q

.

Therefore,

‖ϕju‖Lq(Rn+1,ν)

≤ c sup
�≤�j ,z∈Bj

(�+ �j)−α�−n
[
ν
(
B(n+1)

� (z)
)]1/q ∫

Rn+1

∣∣∇(ϕju)
∣∣|η|α dζ.

Summing over j and using (2.1.29), we obtain

‖u‖Lq(Rn+1,ν) ≤ cK
(∫

Rn+1
|∇u||η|α dζ +

∫
Rn+1

|u||η|α−1 dζ
)
.

Since
∫

Rn+1
|u||η|α−1 dζ ≤ α−1

∫
Rn+1

|∇u||η|α dζ

for α > 0, then C ≤ cK for m = 1, α > 0.
3. To prove the reverse estimate, in (2.1.31) we put U(ζ) = ϕ(�−1(ζ − z)),

where ϕ ∈ C∞
0 (B(n+m)

2 ), ϕ = 1 on B(n+m)
1 . Since

∫
B

(n+m)
2� (z)

|η|α|∇ζu| dζ ≤ c�−1

∫
B

(n+m)
2� (z)

|η|α dζ ≤ c�n+m−1
(
�+ |y|

)α
,

the result follows. ��

Corollary. Let ν be a measure in R
n, q ≥ 1, α > −m. Then the best

constant in (2.1.31) is equivalent to

sup
x∈Rn,�>0

�1−m−n−α
[
ν
(
B(n)

� (x)
)]1/q

.

For the proof it suffices to note that K, defined in (2.1.32), is equivalent
to the preceding supremum if supp ν ⊂ R

n.

Remark 2. The part of the proof of Theorem 1 for the case m = 1, α > 0
is also suitable for m > 1, α > 1 −m since for these values of α and for all
u ∈ C∞

0 (Rn+m) we have
∫

Rn+m

|u||η|α−1 dζ ≤ (α+m− 1)−1

∫
Rn+m

|∇u||η|α dζ. (2.1.33)

This implies that the best constant C in (2.1.31) is equivalent to
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K1 = sup
z∈Rn+m;�<|y|/2

|y|−α�1−n−m
[
ν
(
B(n+m)

� (z)
)]1/q

for m ≥ 1, α > 1 −m.
Since (2.1.33) is also valid for α < 1−m with the coefficient (1−m−α)−1

if u vanishes near the subspace η = 0, then following the arguments of the
second and third parts of the proof of Theorem 1 with obvious changes, we
arrive at the next theorem.

Theorem 2. Let ν be a measure in {ζ ∈ R
n+m : η �= 0}, q ≥ 1, α < 1−m.

Then the best constant in (2.1.31), where u ∈ C∞
0 ({ζ : η �= 0}), is equivalent

to K1.

2.1.7 Inequalities of Hardy–Sobolev Type as Corollaries of
Theorem 2.1.6/1

Here we derive certain inequalities for weighted norms which often occur in
applications. Particular cases of them are the Hardy inequality

∥∥|x|−lu
∥∥
Lp(Rn)

≤ c‖∇lu‖Lp(Rn)

and the Sobolev inequality

‖u‖Lpn/(n−lp)(Rn) ≤ c‖∇lu‖Lp(Rn),

where lp < n and u ∈ D(Rn). We retain the notation introduced in Sect.
2.1.5.

Corollary 1. Let

1 ≤ q ≤ (m+ n)/(m+ n− 1), β = α− 1 +
q − 1
q

(m+ n) > −m
q
.

Then ∥∥|y|βu∥∥
Lq(Rn+m)

≤ c
∥∥|y|α∇u∥∥

L1(Rn+m)
(2.1.34)

for u ∈ D(Rn+m).

Proof. According to Theorem 2.1.6/1 it suffices to establish the uniform
boundedness of the value

(
�+ |y|

)−α
�1−n−m

(∫
|z−ζ|<�

|η|βq dζ
)1/q

with respect to � and z. Obviously, it does not exceed

c
(
�+ |y|

)−α
�1−n−m+n/q

(∫
|η−y|<�

|η|βq dη
)1/q

.
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This value is not greater than c|y|β−α�1−(m+n)(q−1)/q for � ≤ c|y| and
c�β−α+1−(m+n)(q−1)/q for � > c|y|. The result follows. ��

In (2.1.34) let us replace q−1, α, and β by 1− p−1 + q−1, α+ (1− p)−1qβ,
and((1−p−1)q+1)β, respectively, and u by |u|s with s = (p−1)qp−1+1. Then
applying Hölder’s inequality with exponents p and p/(p− 1) to its right-hand
side we obtain the following assertion.

Corollary 2. Let m + n > p ≥ 1, p ≤ q ≤ p(n +m)(n +m − p)−1, and
β = α− 1 + (n+m)(1/p− 1/q) > −m/q. Then

∥∥|y|βu∥∥
Lq(Rn+m)

≤ c
∥∥|y|α∇u∥∥

Lp(Rn+m)
(2.1.35)

for all u ∈ D(Rn+m).

For p = 2, α = 1 − m/2, n > 0, the substitution of u(z) = |y|−αv(z)
into (2.1.35) leads to the next corollary.

Corollary 3. Let m + n > 2, 2 < q ≤ 2(n + m)/(n + m − 2), and
γ = −1 + (n+m)(2−1 − q−1). Then

∥∥|y|γv∥∥2

Lq(Rn+m)
≤ c
(∫

Rn+m

(∇v)2 dz − (m− 2)2

4

∫
Rn+m

v2

|y|2 dz
)

(2.1.36)

for all v ∈ D(Rn+m), subject to the condition v(x, 0) = 0 in the case m = 1.

In particular, the exponent γ vanishes for q = 2(m+ n)/(m+ n− 2) and
we obtain

c‖v‖2
L 2(m+n)

m+n−2
(Rn+m) +

(m− 2)2

4

∫
Rn+m

v2

|y|2 dz ≤
∫

Rn+m

(∇v)2 dz, (2.1.37)

which is a refinement of both the Sobolev and the Hardy inequalities, the
latter having the best constant.

To conclude this subsection we present a generalization of (2.1.35) for
derivatives of arbitrary integer order l.

Corollary 4. Let m+ n > lp, 1 ≤ p ≤ q ≤ p(m+ n− lp)−1(m+ n), and
β = α− l + (m+ n)(p−1 − q−1) > −mq−1. Then

∥∥y|βu|∥∥
Lq(Rn+m)

≤ c
∥∥|y|α∇lu

∥∥
Lp(Rn+m)

(2.1.38)

for u ∈ D(Rn+m).

Proof. Let pj = p(n +m)(n +m − p(l − j))−1. Successively applying the
inequalities ∥∥|y|βu∥∥

Lq(Rn+m)
≤ c
∥∥|y|α∇u∥∥

Lp1 (Rn+m)
,

∥∥|y|α∇ju
∥∥
Lpj

(Rn+m)
≤ c
∥∥|y|α∇j+1u

∥∥
Lpj+1(Rn+m)

, 1 ≤ j < l,



140 2 Inequalities for Functions Vanishing at the Boundary

which follow from (2.1.35), we arrive at (2.1.38). ��

Inequality (2.1.38) and its particular cases (2.1.34) and (2.1.35) obviously
fail for α = l+nq−1−(m+n)p−1. Nevertheless for this critical α we can obtain
similar inequalities that are also invariant under similarity transformations in
R

n+m by changing the weight function on the left-hand side.

2.1.8 Comments to Sect. 2.1

The results of Sects. 2.1.1–2.1.3 and 2.1.5 are borrowed from the author’s
paper [543] (see also [552]).

Properties of the weighted area minimizing function C introduced in Def-
inition 2.1.4 were studied under the assumption that Φ(x, ξ) does not depend
on x and is convex. In particular, the sharp generalized isoperimetric inequal-
ity ∫

∂g

Φ
(
N (x)

)
ds(x) ≥ nκ

1/n
n mn(g) (2.1.39)

holds for all admissible sets g ⊂ R
n. Here κn is the volume of the set {ξ ∈

R
n : Ψ(ξ) ≤ 1} with

Ψ(ξ) = sup
x 
=0

(x, ξ)Rn

Φ(x)

(see Busemann [158] and Burago, Zalgaller [151]). The surfaces minimizing
the integrals of the form

∫
∂g

Φ
(
N (x)

)
ds(x)

over all sets g with a fixed volume, called Wulff shapes, appeared in 1901 (see
Wulff [798]). The Wulff shape is called the crystal of the function Φ, which in
its turn is called crystalline if its crystal is polyhedral (see, in particular, J.E.
Taylor [745] for a theory of crystalline integrands as well as the bibliography).

The sharp constant

Cα =
(
α+ 1
α+ 2

)α+1
α+2
(

2
∫ π

0

(sin t)α dt
)− 1

α+2

, α ≥ 0,

in the weighted isoperimetric inequality

m2(g)
α+1
α+2 ≤ Cα

∫
∂g

(
N 2

1 + |x|2αN 2
2

)1/2 ds,

where (N1,N2) = N was found by Monti and Morbidelli [611], which is
equivalent to the sharp integral inequality

‖u‖Lα+2
α+1

(R2) ≤ Cα

∫
R2

((
∂u

∂x

)2

+ |x|2α
(
∂u

∂y

)2)1/2

dx



2.2 (p, Φ)-Capacity 141

for all u ∈ C∞
0 (R2).

Theorem 2.1.4 is borrowed from Maz’ya [560], its proof being a modifica-
tion of that in Maz’ya and Netrusov [572] relating to the case p > 1. For the
contents of Sect. 2.1.6 see Sect. 2.1.5 in the author’s book [556].

Obviously, in Theorem 2.1.6/1 the role of |y| can be played by the dis-
tance to the m-dimensional Lipschitz manifold F supporting the measure ν.
Horiuchi [383] proved the sufficiency in Theorem 2.1.6/1 for an absolutely
continuous measure ν and for a more general class of sets F depending on
the behavior as ε→ 0 of the n-dimensional Lebesgue measure of the tubular
neighborhood of F , {z ∈ R

n+m : dist(z, F ) < ε}.
The contents of Sect. 2.1.7 were published in [556], Sect. 2.1.6, for the first

time. Estimates similar to (2.1.38) are generally well known (except, probably,
for certain values of the parameters p, q, l, and α) but they were established
by other methods (see Il’in [395]). The multiplicative inequality

∥∥|x|γu∥∥
Lr(Rn)

≤ C
∥∥|x|α|∇u|∥∥a

Lp(Rn)

∥∥|x|βu∥∥1−a

Lq(Rn)

was studied in detail by Caffarelli, Kohn, and Nirenberg [162]. Lin [498] has
generalized their results to include derivatives of any order.

The inequality (2.1.36) was proved by Maz’ya [556], Sect. 2.1.6. Tertikas
and Tintarev [749] (see also Tintarev and Fieseler [753], Sect. 5.6, as well
as Benguria, Frank, and Loss [83]) studied the existence and nonexistence
of optimizers in (2.1.37) and found sharp constants in some cases. In one
particular instance of (2.1.36), the sharp value of c will be given in Sect. 2.7.1.
In [277], Filippas, Maz’ya, and Tertikas showed that for any convex domains
Ω ⊂ R

n the inequality

∫
Ω

|∇u|2 dx− 1
4

∫
u2

d2
dx ≥ c(Ω)

(∫
Ω

|u| 2n
n−2 dx

)n−2
n

holds where u ∈ C∞
0 (Ω) and d = dist(x, ∂Ω). See Comments to Sect. 2.7 for

other contributions to this area.

2.2 (p, Φ)-Capacity

2.2.1 Definition and Properties of the (p, Φ)-Capacity

Let e be a compactum in Ω ⊂ R
n and let Φ be the function specified in Sect.

2.1.1. The number

inf
{∫

Ω

[
Φ(x,∇u)

]p dx : u ∈ N(e,Ω)
}
,

where p ≥ 1, is called the (p, Φ)-capacity of e relative to Ω and is denoted by
(p, Φ)-cap(e,Ω). Here
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N(e,Ω) =
{
u ∈ D(Ω) : u ≥ 1 on e

}
.

If Ω = R
n, we omit Ω in the notations (p,Ω)-cap(e,Ω), N(e,Ω), and so

on.
In the case Φ(x, ξ) = |ξ|, we shall speak of the p-capacity of a compactum

e relative to Ω and we shall use the notation capp(e,Ω).
We present several properties of the (p, Φ)-capacity.
(i) For compact sets K ⊂ Ω, F ⊂ Ω, the inclusion K ⊂ F implies

(p, Φ)-cap(K,Ω) ≤ (p, Φ)-cap(F,Ω).

This is an obvious consequence of the definition of capacity. From the same
definition it follows that the (p, Φ)-capacity of F relative toΩ does not increase
under extension of Ω.

(ii) The equality

(p, Φ)-cap(e,Ω) = inf
{∫

Ω

[
Φ(x,∇u)

]p dx : u ∈ P(e,Ω)
}
, (2.2.1)

where P(e,Ω) = {u : u ∈ D(Ω), u = 1 in a neighborhood of e, 0 ≤ u ≤ 1 in
R

n} is valid.

Proof. Since N(e,Ω) ⊂ P(e,Ω) it is sufficient to estimate (p, Φ)-cap(e,Ω)
from below. Let ε ∈ (0, 1) and let f ∈ N(e,Ω) be such that

∫
Ω

[
Φ(x,∇f)

]p dx ≤ (p, Φ)-cap(e,Ω) + ε.

Let {λm(t)}m≥1 denote a sequence of functions in C∞(R1) satisfying the
conditions 0 ≤ λ′

m(t) ≤ 1 + m−1, λm(t) = 0 in a neighborhood of (−∞, 0]
and λm(t) = 1 in a neighborhood of [1,∞), 0 ≤ λm(t) ≤ 1 for all t. Since
λm(f(x)) ∈ P(e,Ω), then

inf
{∫

Ω

[
Φ(x,∇u)

]p dx : u ∈ P(e,Ω)
}
≤
∫
Ω

[
λ′
m

(
f(x)

)]p[
Φ
(
x,∇f(x)

)]p dx.

Passing to the limit as m→∞, we obtain

inf
{∫

Ω

[
Φ(x,∇u)

]p dx : u ∈ P(e,Ω)
}

≤
∫
Ω

[
Φ(x,∇f)

]p dx ≤ (p, Φ)-cap(e,Ω) + ε. ��

(iii) For any compactum e ⊂ Ω and ε > 0 there exists a neighborhood G
such that

(p, Φ)-cap(K,Ω) ≤ (p, Φ)-cap(e,Ω) + ε

for all compact sets K, e ⊂ K ⊂ G.
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Proof. From (2.2.1) it follows that there exists a u ∈ P(e,Ω) such that
∫
Ω

[
Φ(x,∇u)

]p dx ≤ (p, Φ)-cap(e,Ω) + ε.

Let G denote a neighborhood of e in which u = 1. It remains to note that

(p, Φ)-cap(K,Ω) ≤
∫
Ω

[
Φ(x,∇u)

]p dx

for any compactum K, e ⊂ K ⊂ G. ��

The next property is proved analogously.
(iv) For any compactum e ⊂ Ω and any ε > 0 there exists an open set ω,

ω̄ ⊂ Ω, such that

(p, Φ)-cap(e, ω) ≤ (p, Φ)-cap(e,Ω) + ε.

(v) The Choquet inequality

(p, Φ)-cap(K ∪ F,Ω) + (p, Φ)-cap(K ∩ F,Ω)
≤ (p, Φ)-cap(K,Ω) + (p, Φ)-cap(F,Ω)

holds for any compact sets K, F ⊂ Ω.

Proof. Let u and v be arbitrary functions in P(K,Ω) and P(F,Ω), re-
spectively. We put ϕ = max(u, v), ψ = min(u, v). Obviously, ϕ and ψ have
compact supports and satisfy the Lipschitz condition in Ω, ϕ = 1 in the
neighborhood of K ∪ F and ψ = 1 in a neighborhood of K ∩ F . Since the set
{x : u(x) �= v(x)} is the union of open sets on which either u > v or u < v,
and since ∇u(x) = ∇v(x) almost everywhere on {x : u(x) = v(x)}, then

∫
Ω

[
Φ(x,∇ϕ)

]p dx+
∫
Ω

[
Φ(x,∇ψ)

]p dx

=
∫
Ω

[
Φ(x,∇u)

]p dx+
∫
Ω

[
Φ(x,∇v)

]p dx.

Hence, having noted that mollifications of the functions ϕ and ψ belong
to P(K ∪ F,Ω) and P(K ∩ F,Ω), respectively, we obtain the required
inequality. ��

A function of compact sets that satisfies conditions (i), (iii), and (v) is
called a Choquet capacity .

Let E be an arbitrary subset of Ω. The number (p, Φ)-cap(E,Ω) =
sup{K}(p, Φ)-cap(K,Ω), where {K} is a collection of compact sets contained
in E, is called the (p, Φ) capacity of E relative to Ω. The number

inf
{G}

(p, Φ)-cap(G,Ω),
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where {G} is the collection of all open subsets of Ω containing E, is called the
outer capacity (p, Φ)-cap(E,Ω) of E ⊂ Ω. A set E is called (p, Φ) capacitable
if

(p, Φ)-cap(E,Ω) = (p, Φ)-cap(E,Ω).

From these definitions it follows that any open subset of Ω is (p, Φ) ca-
pacitable. If e is a compactum in Ω, then by property (iii), given ε > 0, there
exists an open set G such that

(p, Φ)-cap(G,Ω) ≤ (p, Φ)-cap(e,Ω) + ε.

Consequently, all compact subsets of Ω are (p, Φ) capacitable.
From the general theory of Choquet capacities it follows that analytic sets,

and in particular, Borel sets are (p, Φ) capacitable (see Choquet [186]).

2.2.2 Expression for the (p, Φ)-Capacity Containing an Integral
over Level Surfaces

Lemma 1. For any compactum F ⊂ Ω the (p, Φ)-capacity (for p > 1) can be
defined by

(p, Φ)-cap(F,Ω) = inf
u∈N(F,Ω)

{∫ 1

0

dτ
(
∫

Eτ
[Φ(x,∇u)]p ds

|∇u| )
1/(p−1)

}1−p

, (2.2.2)

where Et = {x : |u(x)| = t}.

We introduce the following notation: Λ is the set of nondecreasing functions
λ ∈ C∞(R1), which satisfy the conditions λ(t) = 0 for t ≤ 0, λ(t) = 1 for
t ≥ 1, supp λ′ ⊂ (0, 1); Λ1 is the set of nondecreasing functions that are
absolutely continuous on R

1 and satisfy the conditions λ(t) = 0 for t ≤ 0,
λ(t) = 1 for t ≥ 1, λ′(t) is bounded.

To prove Lemma 1 we shall use the following auxiliary assertion.

Lemma 2. Let g be a nonnegative function that is integrable on [0, 1].
Then

inf
λ∈Λ

∫ 1

0

(λ′)pg dt =
(∫ 1

0

dt
g1/(p−1)

)1−p

. (2.2.3)

Proof. First we note that by Hölder’s inequality

1 =
∫ 1

0

λ′ dt ≤
(∫ 1

0

(λ′)pg dt
)1/p(∫ 1

0

dt
g1/(p−1)

)1−1/p

,

and hence the left-hand side of (2.2.3) is not smaller than the right.
Let λ ∈ Λ1, ζν(t) = λ′(t) for t ∈ [ν−1, 1 − ν−1], supp ζν ⊂ [ν−1, 1 − ν−1],

ν = 1, 2, . . . . We set
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ην(t) = ζν(t)
(∫ 1

0

ζν dτ
)−1

.

Since the sequence ην converges to λ′ on (0,1) and is bounded, it follows by
Lebesgue’s theorem that

∫ 1

0

ηpνg dτ →
∫ 1

0

(λ′)pg dτ.

Mollifying ην , we obtain the sequence {γν}, γν ∈ C∞(R1), supp γν ⊂ (0, 1),
∫ 1

0

γν dτ = 1,
∫ 1

0

γpνg dτ →
∫ 1

0

(λ′)pg dτ.

Setting

λν(t) =
∫ t

0

γν dτ,

we obtain a sequence of functions in Λ such that
∫ 1

0

(λ′
ν)pg dτ →

∫ 1

0

(λ′)pg dτ.

Hence,

inf
Λ

∫ 1

0

(λ′)pg dτ = inf
Λ1

∫ 1

0

(λ′)pg dτ. (2.2.4)

Let

Mε =
{
t : g(t) ≥ ε

}
, λ0(t) =

∫ t

0

η dτ,

where η(t) = 0 on R
1\Mε and

η(t) = g(t)1/(1−p)

(∫
Mε

g1/(1−p) dτ
)−1

for t ∈Mε.

Obviously, λ0 ∈ Λ1, and
∫ 1

0

(λ′
0)

pg dτ =
(∫

Mε

g1/(1−p) dτ
)1−p

.

By (2.2.4) the left-hand side of (2.2.3) does not exceed
(∫

Mε

g1/(1−p) dτ
)1−p

.

We complete the proof by passing to the limit as ε→ 0. ��

Proof of Lemma 1. Let u ∈ N(F,Ω), λ ∈ Λ. From the definition of capacity
and Theorem 1.2.4 we obtain
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(p, Φ)-cap(F,Ω) =
∫
Ω

[
λ′(u)Φ(x,∇u)

]p dx =
∫ 1

0

(λ′)pg dt,

where
g(t) =

∫
Et

[
Φ(x,∇u)

]p ds
|∇u| . (2.2.5)

By Lemma 2

(p, Φ)-cap(F,Ω) ≤
(∫ 1

0

g1/(1−p) dτ
)1−p

.

To prove the opposite inequality it is enough to note that

∫
Ω

[
Φ(x,∇u)

]p dx ≥
∫ 1

0

g dτ ≥
(∫ 1

0

g1/(1−p) dτ
)1−p

.

The lemma is proved. ��

Recalling the property (2.2.1) of the (p, Φ)-capacity, note that, in passing,
we have proved here also the following lemma.

Lemma 3. For any compactum F ⊂ Ω the (p, Φ)-capacity (p > 1) can be
defined as

(p, Φ)-cap(F,Ω) = inf
u∈P(F,Ω)

{∫ 1

0

dt
(
∫

Et
[Φ(x,∇u)]p ds

|∇u| )
1/(p−1)

}1−p

.

2.2.3 Lower Estimates for the (p, Φ)-Capacity

Lemma. For any u ∈ D(Ω) and almost all t ≥ 0,

[
σ(∂Lt)

]p/(p−1) ≤
[
− d

dt
mn(Lt)

](∫
∂Lt

[
Φ(x,∇u)

]p ds
|∇u|

)1/(p−1)

, (2.2.6)

where, as usual, Lt = {x ∈ Ω : |u(x)| > t}.

Proof. By Hölder’s inequality, for almost all t and T , t < T ,

(∫
Lt \LT

|u|p−1Φ(x,∇u) dx
)p/(p−1)

≤
∫

Lt \LT

|u|p dx
(∫

Lt \LT

[
Φ(x,∇u)

]p dx
)1/(p−1)

.

Using Theorem 1.2.4, we obtain
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(∫ T

t

τp−1σ(∂Lτ ) dτ
)p/(p−1)

≤
∫

Lt \LT

|u|p dx
(∫ T

t

dτ
∫

Eτ

[
Φ(x,∇u)

]p ds
|∇u|

)1/(p−1)

.

We divide both sides of the preceding inequality by (T−t)p/(p−1) and estimate
the first factor on the right-hand side

(
1

T − t

∫ T

t

τp−1σ(∂Lτ ) dτ
)p/(p−1)

≤ T pmn(Lt\LT )
T − t

(
1

T − t

∫ T

t

dτ
∫
∂Lτ

[
Φ(x,∇u)

]p ds
|∇u|

)1/(p−1)

.

Passing to the limit as T → t, we obtain (2.2.6) for almost all t > 0. The
lemma is proved. ��

From Lemma 2.2.2/3 and from the Lemma of the present subsection we
immediately obtain the following corollary.

Corollary 1. The inequality

(p, Φ)-cap(F,Ω) ≥ inf
u∈P(F,Ω)

{
−
∫ 1

0

d
dτ
mn(Lτ )

dτ
[σ(∂Lτ )]p/(p−1)

}1−p

(2.2.7)

holds.

Definition. In what follows we use the function C introduced in Defini-
tion 2.1.4 assuming μ = mn, that is, C stands for the infimum σ(∂g) for all
admissible sets such that mn(g) ≥ �. Then from (2.2.7) we obtain the next
corollary, containing the so-called isocapacitary inequalities.

Corollary 2. The inequality

(p, Φ)-cap(F,Ω) ≥
(∫ mn(Ω)

mn(F )

d�
[C (�)]p/(p−1)

)1−p

(2.2.8)

is valid.

By virtue of the classical isoperimetric inequality

s(∂g) ≥ n(n−1)/nω1/n
n

[
mn(g)

](n−1)/n
, (2.2.9)

in the case Φ(x, ξ) = |ξ| we have

C (�) = n(n−1)/nω1/n
n �(n−1)/n.

Therefore,
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capp(F,Ω) ≥ ωp/n
n n(n−p)/n

∣∣∣∣p− np− 1

∣∣∣∣
p−1∣∣mn(Ω)(p−n)/n(p−1)

−mn(F )(p−n)/n(p−1)
∣∣1−p (2.2.10)

for p �= n and

capp(F,Ω) ≥ nn−1ωn

(
log

mn(Ω)
mn(F )

)1−n

(2.2.11)

for p = n.
In particular, for n > p,

capp(F ) ≥ ωp/n
n n(n−p)/n

(
n− p
p− 1

)p−1

mn(F )(n−p)/n. (2.2.12)

2.2.4 p-Capacity of a Ball

We show that the estimates (2.2.10) and (2.2.11) become equalities if Ω and
F are concentric balls of radii R and r, R > r, i.e.,

capp(F,Ω) = ωn

(
|n− p|
p− 1

)p−1∣∣R(p−n)/(p−1) − r(p−n)/(p−1)
∣∣1−p (2.2.13)

for n �= p and

capn(F,Ω) = ωn

(
log

R

r

)1−n

(2.2.14)

for n = p.
Let the centers of the balls Ω and F coincide with the origin O of spherical

coordinates (�, ω), |ω| = 1. Obviously,

capp(F,Ω) ≥ inf
u∈N(F,Ω)

∫
∂B1

dω
∫ R

r

∣∣∣∣∂u∂�
∣∣∣∣
p

�n−1 d�

≥
∫
∂B1

dω inf
u∈N(F,Ω)

∫ R

r

∣∣∣∣∂u∂�
∣∣∣∣
p

�n−1 d�.

The inner integral attains its infimum at the function

[r,R] ∈ �→ v(�) =

⎧⎨
⎩

R(p−n)/(p−1)−�(p−n)/(p−1)

R(p−n)/(p−1)−r(p−n)/(p−1) for p �= n,

log(�R−1)
log(rR−1) for p = n.

This implies the required lower estimates for the p-capacity. The substitution
of v(�) into the integral

∫
Ω
|∇u|p dx leads to (2.2.13) and (2.2.14).

In particular, the p-capacity of the n-dimensional ball Br relative to R
n is

equal to ωn(n−p
p−1 )p−1rn−p for n > p and to zero for n ≤ p. Since the p-capacity

is a monotone set function, then for any compactum p-cap(F,Rn) = 0, if
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n ≤ p. In the case p ≤ n the capacity of a point relative to any open set Ω,
containing this point, equals zero. If p > n, then the p-capacity of the center
of the ball BR relative to BR equals ωn(p−n

p−1 )p−1Rn−p. Therefore, in the last
case, the p-capacity of any compactum relative to any bounded open set that
contains this compactum is positive.

2.2.5 (p, Φ)-Capacity for p = 1

Lemma. For any compactum F ⊂ Ω

(1, Φ)-cap(F,Ω) = inf σ(∂g),

where the infimum is taken over all admissible sets g in Ω containing F .

Proof. Let u ∈ N(F,Ω). Applying Theorem 1.2.4, we obtain
∫
Ω

Φ(x,∇u) dx =
∫ 1

0

σ(∂Lt) dt ≥ inf
g⊃F

σ(∂g).

This implies the lower estimate for the capacity.
Let g be an admissible set containing F . The function uε(x) = α(d(x))

defined in the proof of the second part of Theorem 2.1.1 belongs to N(F,Ω)
for sufficiently small ε > 0. So

(1, Φ)-cap(F,Ω) ≤
∫
Ω

Φ(x,∇uε) dx.

In the proof of the second part of Theorem 2.1.1, it was shown that the pre-
ceding integral converges to σ(∂g), which yields the required upper estimate
for the capacity. The lemma is proved. ��

2.2.6 The Measure mn−1 and 2-Capacity

Lemma. If B(n−1)
� is an (n− 1)-dimensional ball in R

n, n > 2, then

cap2

(
B(n−1)

� ,Rn
)

=
ωn

cn
�n−2, (2.2.15)

where c3 = π
3 , c4 = 1, and cn = (n − 4)!!/(n − 3)!! for odd n ≥ 5 and

cn = π
2 (n− 4)!!/(n− 3)!! for even n ≥ 6.

Proof. We introduce ellipsoidal coordinates in R
n: x1 = � sinhψ cos θ1,

xj = � coshψ sin θ1, . . . , sin θj−1 cos θj , j = 2, . . . , n − 1, xn = � coshψ sin θ1,
. . . , sin θn−1. A standard calculation leads to the formulas

dx = �n
(
cosh2 ψ − sin2 θ1

)
(coshψ)n−2 dψ dω,

(∇u)2 = �−2

(
∂u

∂ψ

)2(
cosh2 ψ − sin2 θ1

)−1 + · · · ,
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where dω is the surface element of the unit ball in R
n and the dots denote a

positive quadratic form of all first derivatives of u except ∂u/∂ψ. The equation
of the ball B(n−1)

� in the new coordinates is ψ = 0. Therefore

cap2

(
B(n−1)

� ,Rn
)
≥ �n−2

∫
|ω|=1

(
inf

{u}

∫ ∞

0

(
∂u

∂ψ

)2

(coshψ)n−2 dψ
)

dω,

where {u} is a set of smooth functions on [0,∞) with compact supports. The
infimum on the right-hand side is equal to

(∫ ∞

0

dψ
(coshψ)n−2

)−1

= c−1
n .

This value is attained at the function

v =
∫ ∞

ψ

dτ
(cosh τ)n−2

(∫ ∞

0

dτ
(cosh τ)n−2

)−1

,

which equals unity on B(n−1)
� and decreases sufficiently rapidly at infinity.

Substituting v into the Dirichlet integral, we obtain

cap2

(
B(n−1)

� ,Rn
)
≤ ωn�

n−2

∫ ∞

0

(
∂v

∂ψ

)2

(coshψ)n−2 dψ =
ωn

cn
�n−2.

This proves the lemma. ��

We now recall the definition of the symmetrization of a compact set K in
R

n relative to the (n− s)-dimensional subspace R
n−s.

Let any point x ∈ R
n be denoted by (y, z), where y ∈ R

n−s, z ∈ R
s. The

imageK∗ of the compact setK under symmetrization relative to the subspace
z = 0 is defined by the following conditions:

1. The set K∗ is symmetric relative to z = 0.
2. Any s-dimensional subspace, parallel to the subspace y = 0 and crossing

either K or K∗ also intersects the other one and the Lebesgue measures of
both cross sections are equal.

3. The intersection of K∗ with any s-dimensional subspace, which is par-
allel to the subspace y = 0, is a ball in R

s centered at the hyperplane z = 0.
Below we follow Pólya and Szegö [666] who established that the 2-capacity

does not increase under the symmetrization relative to R
n−1. Let π be an

(n− 1)-dimensional hyperplane and let PrπF be the projection of F onto π.
We choose π so thatmn−1(Prπ F ) attains its maximum value. We symmetrize
F relative to π and obtain a compactum that is also symmetrized relative to a
straight line perpendicular to π. So we obtain a body whose capacity does not
exceed 2-cap F and whose intersection with π is an (n− 1)-dimensional ball
with volume mn−1(PrπF ). Thus the (n− 1)-dimensional ball has the largest
area of orthogonal projections onto an (n − 1)-dimensional plane among all
compacta with fixed 2-capacity.
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This and the Lemma imply the isocapacitary inequality
[
mn−1

(
F ∩ R

n−1
)](n−2)/(n−1)

≤
(
ωn−1

n− 1

)(n−2)/(n−1)
cn
ωn

cap2

(
F ,Rn

)
, (2.2.16)

where cn is the constant defined in the Lemma.

2.2.7 Comments to Sect. 2.2

The capacity generated by the integral
∫
Ω

f(x, u,∇u) dx

was introduced by Choquet [186] where it served as an illustration of general
capacity theory. Here the presentation follows the author’s paper [543].

Lemma 2.2.2/1 for p = 2, Φ(x, ξ) = |ξ| is the so-called Dirichlet principle
with prescribed level surfaces verified in the book by Pólya and Szegö [666]
under rigid assumptions on level surfaces of the function u. As for the gen-
eral case, their proof can be viewed as a convincing heuristic argument. The
same book also contains isocapacitary inequalities, which are special cases of
(2.2.10) and (2.2.11).

Lemma 2.2.3, leading to lower estimates for the capacity, was published
for Φ(x, ξ) = |ξ| in 1969 by the author [538] and later by Talenti in [741],
p. 709.

Properties of symmetrization are studied in the books by Pólya and
Szegö [666] and by Hadwiger [334] et al. See, for instance, the book by
Hayman [357] where the circular symmetrization and the symmetrization
with respect to a straight line in R

2 are considered. Nevertheless, Hayman’s
proofs can be easily generalized to the n-dimensional case. Lemma 2.2.5 is a
straightforward generalization of a similar assertion due to Fleming [281] on
1-capacity.

In the early 1960s the p-capacity was used by the author to obtain the nec-
essary and sufficient conditions for the validity of continuity and compactness
properties of Sobolev-type embedding operators [527, 528, 530, 531].

Afterward various generalizations of the p-capacity proved to be useful in
the theory of function spaces and nonlinear elliptic equations. A Muckenhoupt
Ap-weighted capacity was studied in detail by Heinonen, Kilpeläinen, and
Martio [375] and Nieminen [636] et al. A general capacity theory for monotone
operators

W 1
p � u→ −div

(
a(x,Du)

)
∈
(
W 1

p

)∗

was developed by Dal Maso and Skrypnik [220], whose results were extended
to pseudomonotone operators by Casado-Dı́az [174]. Biroli [104] studied the
p-capacity related to the norm
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(
m∑
i=1

∫
Ω

|Xiu|p dx+
∫
Ω

|u|p dx

)1/p

,

where Xi are vector fields subject to Hörmander’s condition: They and their
commutators up to some order span at every point all R

n. Properties of a
capacity generated by the Sobolev space W 1

p(·) with the variable exponent p :
R

n → (1,∞) were investigated by Harjulehto, Hästö, Koskenoja, and Varonen
[353]. Another relevant area of research is the p-capacity on metric spaces with
a measure (see, for instance, Kinnunen and Martio [425] and Gol’dshtein,
Troyanov [317]), in particular, on the Carnot group and Heisenberg group
(see Heinonen and Holopainen [374]).

A generalization of the inequality (2.2.8) was obtained by E. Milman [603]
in a more general framework of measure metric spaces for the case Φ(x, ξ) =
|ξ|. Similarly to Sect. 2.3.8, if we introduce the p-capacity minimizing function

νp(t) = inf capp(F,Ω),

where the infimum is taken over compacta F ⊂ Ω with mn(F ) ≥ t, then for
any p1 ≥ p0 ≥ 1

1
νp1(t)

≤
( q0
q1
− 1)p1/q0

(1 − q1
q0

)p1/q1

(∫ mn(Ω)

t

ds
(s− t)q1/q0νp0(s)q1/p0

)p1/q1

, (2.2.17)

where qi = pi/(pi−1) denote the corresponding conjugate exponents. Clearly
(2.2.17) coincides with (2.2.8) when p0 = 1 by Lemma 2.2.5.

Under an appropriate curvature lower bound on the underlying space, it
was also shown in [603, 605] that (2.2.17) may, in fact, be reversed, to within
numeric constants. An application of this fact was given by E. Milman [604]
to the stability of the first positive eigenvalue of the Neumann Laplacian on
convex domains, with respect to perturbation of the domain.

2.3 Conditions for Validity of Integral Inequalities
(the Case p > 1)

2.3.1 The (p, Φ)-Capacitary Inequality

Let u ∈ D(Ω) and let g be the function defined by (2.2.5) with p > 1. Further,
let

T
def= sup

{
t > 0 : (p, Φ)-cap(Nt, Ω) > 0

}
> 0, (2.3.1)

where Nt = {x ∈ Ω : |u(x)| ≥ t}. From (2.3.1) it follows that

ψ(t) def=
∫ t

0

dτ
[g(τ)]1/(p−1)

≤ ∞ (2.3.2)
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for 0 < t < T . In fact, let

v(x) = t−2
[
u(x)

]2
.

Since v ∈ N(Nt, Ω), then from Lemma 2.2.2/1 and (2.3.1) we obtain
∫ 1

0

(∫
{x:v(x)=τ }

[
Φ(x,∇v)

]p ds
|∇v|

)1/(1−p)

dτ

≤
[
(p, Φ)-cap(Nt, Ω)

]1/(1−p)
<∞,

and it remains to note that
∫ 1

0

dτ
g(τ)1/(p−1)

=
∫ 1

0

(∫
{x:v(x)=τ }

[
Φ(x,∇v)

]p ds
|∇v|

)1/(p−1)

dτ.

Since by Theorem 1.2.4
∫ ∞

0

g(τ) dτ =
∫
Ω

[
Φ(x,∇u)

]p dx <∞,

it follows that g(t) < ∞ for almost all t > 0 and the function ψ(t) is strictly
monotonic. Consequently, on the interval [0, ψ(T )) the function t(ψ), which is
the inverse of ψ(t), exists.

Lemma. Let u be a function in D(Ω) satisfying condition (2.3.1). Then
the function t(ψ) is absolutely continuous on any segment [0, ψ(T − δ)], where
δ ∈ (0, T ), and ∫

Ω

[
Φ(x,∇u)

]p dx ≥
∫ ψ(t)

0

[
t′(ψ)

]p dψ. (2.3.3)

If T = max |u|, then we may write the equality sign in (2.3.3).

Proof. Let 0 = ψ0 < ψ1 < · · · < ψm = ψ(T − δ) be an arbitrary partition
of the segment [0, ψ(T − δ)]. By Hölder’s inequality,

[t(ψk+1) − t(ψk)]p

(ψk+1 − ψk)p−1
=

[t(ψk+1) − t(ψk)]p

[
∫ t(ψk+1)

t(ψk)
g(τ)1/(1−p) dτ ]p−1

≤
∫ t(ψk+1)

t(ψk)

g(τ) dτ,

and consequently,

m−1∑
k=0

[t(ψk+1) − t(ψk)]p

(ψk+1 − ψk)p−1
≤

m−1∑
k=0

∫ t(ψk+1)

t(ψk)

g(τ) dτ

=
∫ T −δ

0

g(τ) dτ ≤
∫
Ω

[
Φ(x,∇u)

]p dx. (2.3.4)

The last inequality follows from Theorem 1.2.4. By (2.3.4) and F. Riesz’s
theorem (see Natanson [627]), the function t(ψ) is absolutely continuous and
its derivative belongs to Lp(0, ψ(T − δ)). By Theorem 1.2.4,
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∫
Ω

[
Φ(x,∇u)

]p dx ≥ lim
δ→+0

∫ T −δ

0

g(τ) dτ. (2.3.5)

Since t(ψ) is a monotonic absolutely continuous function, we can make the
change of variable τ = t(ψ) in the last integral. Then

∫ T −δ

0

g(τ) dτ =
∫ ψ(T −δ)

0

t′(ψ)g(ψ) dψ =
∫ ψ(T −δ)

0

[
t′(ψ)

]p dψ,

which, along with (2.3.5), completes the proof. ��

Theorem. (Capacitary Inequality) Let u ∈ D(Ω). Then for p ≥ 1,
∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)
≤ pp

(p− 1)p−1

∫
Ω

[
Φ(x,∇u)

]p dx. (2.3.6)

For p = 1 the coefficient in front of the integral on the right-hand side
of (2.3.6) is equal to one. The constant pp(p− 1)1−p is optimal.

Proof. To prove (2.3.6) it is sufficient to assume that the number T , defined
in (2.3.1), is positive. Since by Lemma 2.2.5

(1, Φ)-cap(Nt, Ω) ≤ σ(∂Lt)

for almost all t > 0, we see that (2.3.6) follows from (2.1.4) for p = 1.
Consider the case p > 1. Let ψ(t) be a function defined by (2.3.2) and let

t(ψ) be the inverse of ψ(t). We make the change of variable

∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

=
∫ T

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

=
∫ ψ(T )

0

(p, Φ)-cap(Nt(ψ), Ω) d
(
t(ψ)p

)
.

Setting v = t−2u2, ξ = t−2τ2 in (2.3.2), we obtain

ψ(t) =
∫ 1

0

(∫
{x:v(x)=ξ}

[
Φ(x,∇v)

]p ds
|∇v|

)1/(1−p)

dξ. (2.3.7)

Since v ∈ N(Nt, Ω), then by Lemma 2.2.2/1 the right-hand side of (2.3.7)
does not exceed [

(p, Φ)-cap(Nt(ψ), Ω)
]1/(1−p)

.

Consequently,

∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)
≤
∫ ψ(T )

0

d[t(ψ)]p

ψp−1
= p

∫ ψ(T )

0

[
t(ψ)
ψ

]p−1

t′(ψ) dψ.

Applying the Hölder inequality and the Hardy inequality
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∫ ψ(T )

0

[t(ψ)]p

ψp
dψ ≤

(
p

p− 1

)p ∫ ψ(T )

0

[
t′(ψ)

]p dψ, (2.3.8)

we arrive at
∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)
≤ pp

(p− 1)p−1

∫ ψ(T )

0

[
t′(ψ)

]p dψ,

which together with Lemma 2.3.1 yields (2.3.6).
To show that the constant factor in the right-hand side of (2.3.6) is sharp,

it suffices to put Φ(x, y) = |y| and u(x) = f(|x|). Then (2.2.13) and (2.3.6)
imply

|n− p|p
(p− 1)p−1

∫ ∞

0

|f(r)|p
rp

rn−1 dr ≤ pp

(p− 1)p−1

∫ ∞

0

∣∣f ′(r)
∣∣prn−1 dr,

which is a particular case of the sharp Hardy inequality (1.3.1). �

Remark 1. The inequality
∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)
≤ C

∫
Ω

[
Φ(x,∇u)

]p dx, (2.3.9)

with a cruder constant than in (2.3.6) can be proved more simply in the
following way. By the monotonicity of capacity, the integral in the left-hand
side does not exceed

Ξ
def=
(
2p − 1

) +∞∑
j=− ∞

2pj(p, Φ)-cap(N2j , Ω).

Let λε ∈ C∞(R1), λε(t) = 1 for t ≥ 1, λε(t) = 0 for t ≤ 0, 0 ≤ λ′
ε(t) ≤ 1 + ε,

and let
uj(x) = λε

(
21−j

∣∣u(x)∣∣− 1
)
.

Since uj ∈ N(N2j , Ω), we have

Ξ ≤ 2p−1
∞∑

j=− ∞
2pj

∫
N2j−1 \N2j

[
Φ(x,∇uj)

]p dx

≤ 22p−1
∞∑

j=− ∞

∫
N2j−1 \N2j

[
λ′
ε

(
21−j |u| − 1

)]p[
Φ(x,∇u)

]p dx

≤ (1 + ε)p22p−1

∫
Ω

[
Φ(x,∇u)

]p dx.

Letting ε tend to zero, we obtain (2.3.9) with the constant C = 22p−1, which
completes the proof.

Remark 2. In fact, the inequality just obtained is equivalent to the following
one stronger than (2.3.9) (modulo the best constant)
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∫ ∞

0

(p, φ)-cap(N2t,Lt) d
(
tp
)
≤ c

∫
Ω

[
Φ(x,∇u)

]p dx. (2.3.10)

Such conductor inequalities will be considered in Chap. 3.

2.3.2 Capacity Minimizing Function and Its Applications

Definition. Let νp(t) denote

inf(p, Φ)-cap(ḡ, Ω),

where the infimum is taken over all admissible sets g with

μ(g) ≥ t.

Note that by Lemma 2.2.5

ν1(t) = C (t),

where C is the weighted area minimizing function introduced in Defini-
tion 2.1.4.

The following application of the capacity minimizing function νp is imme-
diately deduced from the capacitary inequality (2.3.6)

∫ ∞

0

νp
(
μ(Nt)

)
d
(
tp
)
≤ C

∫ [
Φ(x,∇u)

]p dx, (2.3.11)

where C ≥ pp(p−1)1−p. Conversely, minimizing the integral in the right-hand
side over P(F,Ω), we see that (2.3.11) gives the isocapacitary inequality

νp
(
μ(F )

)
≤ C(p, Φ)-cap(F,Ω).

If for instance, μ = mn, then (2.2.8) leads to the estimate

∫ ∞

0

(∫ mn(Ω)

mn(Nt)

dρ
[C (ρ)]p/(p−1)

)1−p

d
(
tp
)
≤ pp

(p− 1)p−1

∫
Ω

[
Φ(x,∇u)

]p dx.

(2.3.12)
In particular, being set into (2.3.6) with p = n and Φ(x, ξ) = |ξ|, the isoca-
pacitary inequality (2.2.11) implies

∫ ∞

0

(
log

mn(Ω)
mn(Nt)

)1−n

d
(
tn
)
≤ n

(n− 1)nωn

∫
Ω

|∇u|n dx, (2.3.13)

for all u ∈ C∞
0 (Ω), where C = n(n− 1)1−nω−1

n .
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Clearly, the inequality (2.3.11) and its special cases (2.3.12) and (2.3.13)
can be written in terms of the nonincreasing rearrangement u∗

μ of u introduced
by (2.1.12):

∫ mn(Ω)

0

[
u∗
μ(s)

]p dνp(s) ≤ C
∫
Ω

[
Φ(x,∇u)

]p dx,

where C is the same as in (2.3.11). In particular, (2.3.13) takes the form
∫ mn(Ω)

0

[
u∗
mn

(s)
]n ds

(log mn(Ω)
s )n

≤ C
∫
Ω

|∇u|n dx (2.3.14)

for all u ∈ C∞
0 (Ω).

2.3.3 Estimate for a Norm in a Birnbaum–Orlicz Space

We recall the definition of a Birnbaum–Orlicz space (see Birnbaum and Orlicz
[103], Krasnosel’skǐı and Rutickǐı [463], and Rao and Ren [671]).

On the axis −∞ < u <∞, let the function M(u) admit the representation

M(u) =
∫ |u|

0

ϕ(t) dt,

where ϕ(t) is a nondecreasing function, positive for t > 0, and continuous
from the right for t ≥ 0, satisfying the conditions ϕ(0) = 0, ϕ→∞ as t→∞.
Such functions M are sometimes called Young functions. Further, let

ψ(s) = sup
{
t : ϕ(t) ≤ s

}
,

be the right inverse of ϕ(t). The function

P (u) =
∫ |u|

0

ψ(s) ds

is called the complementary function to M(u).
Let LM (Ω,μ) denote the space of μ-measurable functions for which

‖u‖LM (Ω,μ) = sup
{∣∣∣∣
∫
Ω

uv dμ
∣∣∣∣ :
∫
Ω

P (v) dμ ≤ 1
}
<∞.

In particular, if M(u) = q−1|u|q, q > 1, then P (u) = (q′)−1|u|q′
, q′ =

q(q − 1)−1 and
‖u‖LM (Ω,μ) = (q′)1/q

′
‖u‖Lq(Ω,μ).

The norm in LM (Ω,μ) of the characteristic function χE of the set E is

‖χE‖LM (Ω,μ) = μ(E)P−1

(
1

μ(E)

)
,
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where P−1 is the inverse of the restriction of P to [0,∞).
In fact, if v = P−1(1/μ(E))χE , then

∫
Ω

P (v) dμ = 1,

and the definition of the norm in LM (Ω,μ) implies

‖χE‖LM (Ω,μ) ≥
∫
Ω

χEv dμ = μ(E)P−1
(
1/μ(E)

)
.

On the other hand, by Jensen’s inequality,
∫
Ω

χEv dμ ≤ μ(E)P−1

(
1

μ(E)

∫
E

P (v) dμ
)
,

and if we assume that ∫
Ω

P (v) dμ ≤ 1,

then the definition of the norm in LM (Ω,μ) yields

‖χE‖LM (Ω,μ) ≤ μ(E)P−1
(
1/μ(E)

)
.

Although formally M(t) = |t| does not satisfy the definition of the Birnbaum–
Orlicz space, all the subsequent results concerning LM (Ω,μ) include this case
provided we put P−1(t) = 1. Then we have LM (Ω,μ) = L1(Ω,μ).

Theorem. 1. If there exists a constant β such that for any compactum
F ⊂ Ω

μ(F )P−1
(
1/μ(F )

)
≤ β(p, Φ)-cap(F,Ω) (2.3.15)

with p ≥ 1, then for all u ∈ D(Ω),

∥∥|u|p∥∥
LM (Ω,μ)

≤ C
∫
Ω

[
Φ(x,∇u)

]p dx, (2.3.16)

where C ≤ pp(p− 1)1−pβ.
2. If (2.3.16) is valid for any u ∈ D(Ω), then (2.3.15) holds for all com-

pacta F ⊂ Ω with β ≤ C.

Proof. 1. From Lemma 1.2.3 and the definition of the norm in LM (Ω,μ)
we obtain

∥∥|u|p∥∥
LM (Ω,μ)

= sup
{∫ ∞

0

∫
Nτ

v dμd
(
τp
)

:
∫
Ω

P (v) dμ ≤ 1
}

≤
∫ ∞

0

sup
{∫

Ω

χNτ v dμ :
∫
Ω

P (v) dμ ≤ 1
}

d
(
τp
)

=
∫ ∞

0

‖χNτ ‖Lm(Ω,μ) d
(
τp
)
.
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Consequently,
∥∥|u|p∥∥

LM (Ω,μ)
≤
∫ ∞

0

μ(Nτ )P−1
(
1/μ(Nτ )

)
d
(
τp
)
.

Using (2.3.15) and Theorem 2.3.1, we obtain
∥∥|u|p∥∥

LM (Ω,μ)
≤ β

∫ ∞

0

(p, Φ)-cap(Nτ , Ω) d
(
τp
)

≤ ppβ

(p− 1)p−1

∫
Ω

[
Φ(x,∇u)

]p dx.

2. Let u be any function in N(F,Ω). By (2.3.16),

‖χF ‖LM (Ω,μ) ≤ C
∫
Ω

[
Φ(x,∇u)

]p dx.

Minimizing the right-hand side over the set N(F,Ω), we obtain (2.3.15). The
theorem is proved. ��

Remark 1. Obviously the isocapacitary inequality (2.3.15) can be written
in terms of the capacity minimizing function νp as follows:

sP
(
s−1
)
≤ β νp(s).

Remark 2. Let Φ(x, y) be a function satisfying the conditions stated in
Sect. 2.1.1 and let the function Ψ(x, u, y) : Ω × R

1 × R
n → R

1, satisfy:
(i) the Caratheodory conditions: i.e., Ψ is measurable in x for all x, y, and

continuous in x and y for almost all x.
(ii) The inequality

Ψ(x, u, y) ≥
[
Φ(x, y)

]p
holds.

(iii) For all u ∈ D(Ω)

lim inf
λ→+∞

λ−p

∫
Ω

Ψ(x, λu, λ∇u) dx ≤ K
∫
Ω

[
Φ(x,∇u)

]p dx.

Then (2.3.16) in the Theorem can be replaced by the following more general
estimate: ∥∥|u|p∥∥

LM (Ω,μ)
≤ C

∫
Ω

Ψ(x, u,∇u) dx. (2.3.17)

As an illustration, note that Theorem 2.1.1 shows the equivalence of the in-
equality

‖u‖Lq(μ) ≤
∫
Ω

√
1 + (∇u)2 dx,

where u ∈ D(Ω) and q ≥ 1, and the isoperimetric inequality μ(g)1/q ≤ σ(∂g).
Here, to prove the necessity of (2.3.15) for (2.3.17), we must set u = λv,

where v ∈ N(F,Ω), in (2.3.17) and then pass to the limit as λ → ∞. An
analogous remark can be made regarding Theorems 2.1.1, 2.1.2, and others.
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2.3.4 Sobolev Type Inequality as Corollary of Theorem 2.3.3

Theorem 2.3.3 contains the following assertion, which is of interest in itself.

Corollary. 1. If there exists a constant β such that for any compactum
F ⊂ Ω

μ(F )αp ≤ β(p, Φ)-cap(F,Ω), (2.3.18)

where p ≥ 1, α > 0, αp ≤ 1, then for all u ∈ D(Ω)

‖u‖pLq(Ω,μ) ≤ C
∫
Ω

[
Φ(x,∇u)

]p dx, (2.3.19)

where q = α−1 and C ≤ pp(p− 1)1−pβ.
2. If (2.3.19) holds for any u ∈ D(Ω) and if the constant C does not

depend on u, then (2.3.18) is valid for all compacta F ⊂ Ω with α = q−1 and
β ≤ C.

Remark. Obviously, the isocapacitary inequality (2.3.18) is equivalent to
the weak-type integral inequality

sup
t>0

(
tμ(Lt)1/q

)
≤ C1/p

∥∥Φ(·,∇u)
∥∥
Lp(Ω)

(2.3.20)

with Lt = {x : |u(x)| > t} and this, along with the Corollary, can be inter-
preted as the equivalence of the weak and the strong Sobolev-type estimates
(2.3.20) and (2.3.19).

2.3.5 Best Constant in the Sobolev Inequality (p > 1)

From the previous corollary and the isoperimetric inequality (2.2.12) we obtain
the Sobolev (p > 1)-Gagliardo (p = 1) inequality

‖u‖Lpn/(n−p) ≤ C‖∇u‖Lp , (2.3.21)

where n > p ≥ 1, u ∈ D(Rn) and

C = p(n− p)(1−p)/pω−1/n
n n(p−n)/pn.

The value of the constant C in (2.3.21) is sharp only for p = 1 (cf. The-
orem 1.4.2/1). To obtain the best constant one can proceed in the following
way.

By Lemma 2.3.1

∫ ψ(max |u|)

0

[
t′(ψ)

]p dψ =
∫

Rn

|∇u|p dx.

Putting
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ψ =
p− 1

ω
1/(p−1)
n (n− p)

r(n−p)/(1−p), t(ψ) = γ(r),

and assuming t(ψ) = const for ψ ≥ ψ(max |u|), we obtain

ωn

∫ ∞

0

∣∣γ′(r)
∣∣prn−1 dr =

∫
Rn

|∇u|p dx.

Furthermore, by Lemma 1.2.3,

∫
Rn

|u|pn/(n−p) dx =
∫ max |u|

0

mn(Nt) d
(
tpn/(n−p)

)
.

The definition of the function ψ(t), Lemma 2.2.3, and the isoperimetric in-
equality (2.2.9) imply

ψ(t) ≤ ω1/(1−p)
n

p− 1
n− p

[
n

ωn
mn(Nt)

](n−p)/n(1−p)

.

Consequently,
mn(Nt(ψ)) ≤ ωnn

−1rn

and ∫
Rn

|u|pn/(n−p) dx ≤ ωn

n

∫ ∞

0

rn d
[
γ(r)pn/(n−p)

]
.

Since ∫ ∞

0

∣∣γ′(r)
∣∣prn−1 dr <∞,

it follows that γ(r)r(n−p)/p → 0 as r → ∞. After integration by parts, we
obtain ∫

Rn

|u|pn/(n−p) dx ≤ ωn

∫ ∞

0

[
γ(r)

]pn/(n−p)
rn−1 dr.

Thus,

sup
u∈D

‖u‖Lpn/(n−p)

‖∇u‖Lp

= ω−1/n
n sup

{γ}

(
∫∞
0

[γ(r)]pn/(n−p)rn−1 dr)(n−p)/pn

(
∫∞
0

|γ′(r)|prn−1 dr)1/p
, (2.3.22)

where {γ} is the set of all nonincreasing nonnegative functions on [0,∞) such
that γ(r)r(n−p)/p → 0 as r → ∞. Thus, we reduced the question of the best
constant in (2.3.21) to a one-dimensional variational problem that was solved
explicitly by Bliss [109] as early as 1930 by classical methods of the calculus
of variations. Paradoxically, the best constant in the Sobolev inequality had
been obtained earlier than the inequality itself appeared. The sharp upper
bound in (2.3.22) is attained at any function of the form

γ(r) =
(
a+ brp/(p−1)

)1−n/p
, a, b = const > 0,
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and equals

n−1/p

(
p− 1
n− p

)(p−1)/p[
p− 1
p

B

(
n

p
,
n(p− 1)

p

)]−1/n

.

Finally, the sharp constant in (2.3.21) is given by

C = π−1/2n−1/p

(
p− 1
n− p

)(p−1)/p{
Γ (1 + n/2)Γ (n)

Γ (n/p)Γ (1 + n− n/p)

}1/n

, (2.3.23)

and the equality sign can be written in (2.3.21) if

u(x) =
[
a+ b|x|p/(p−1)

]1−n/p
, (2.3.24)

where a and b are positive constants (although u does not belong to D it can
be approximated by functions in D in the norm ‖∇u‖Lp(Rn)).

2.3.6 Multiplicative Inequality (the Case p ≥ 1)

The following theorem describes conditions for the equivalence of the general-
ized Sobolev-type inequality (2.3.19) and a multiplicative integral inequality.

We denote by β the best constant in the isocapacitary inequality (2.3.18).

Theorem. 1. For any compactum F ⊂ Ω let the inequality (2.3.18) hold
with p ≥ 1, α > 0. Further, let q be a positive number satisfying one of the
conditions (i) q ≤ q∗ = α−1, for αp ≤ 1, or (ii) q < q∗ = α−1, for αp > 1.

Then the inequality

‖u‖Lq(Ω,μ) ≤ C
(∫

Ω

[
Φ(x,∇u)

]p dx
)(1−κ)/p

‖u‖κ

Lr(Ω,μ) (2.3.25)

holds for any u ∈ D(Ω), where r ∈ (0, q), κ = r(q∗ − q)/q(q∗ − r), C ≤
cβ(1−κ)/p.

2. Let p ≥ 1, 0 < q∗ < ∞, r ∈ (0, q∗] and for some q ∈ (0, q∗] and any
u ∈ D(Ω) let the inequality (2.3.25) hold with κ = r(q∗ − q)/q(q∗ − r) and a
constant C independent of u.

Then (2.3.18) holds for all compacta F ⊂ Ω with α = (q∗)−1 and β ≤
cCp/(1−κ).

Proof. 1. Let αp ≤ 1. By Hölder’s inequality,
∫
Ω

|u|q dμ =
∫
Ω

|u|q
∗(q−r)/(q∗ −r)|u|r(q

∗ −q)/(q∗ −r) dμ

≤
(∫

Ω

|u|q
∗
dμ
)(q−r)/(q∗ −r)(∫

Ω

|u|r dμ
)(q∗ −q)/(q∗ −r)

,

or equivalently,
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‖u‖Lq(Ω,μ) ≤ ‖u‖1−κ

Lq∗ (Ω,μ)‖u‖
κ

Lr(Ω,μ).

Estimating the first factor by (2.3.19), we obtain (2.3.25) for αp ≤ 1. Let
αp > 1. By Lemma 1.2.3,

∫
Ω

|u|q dμ = q

∫ ∞

0

μ(Nt)tq−1 dt.

To the last integral we apply inequality (1.3.42), where x = tq, f(x) = μ(Nt),
b = p(q∗)−1 > 1, a > 1 is an arbitrary number, λ = a(q − r)q−1, μ =
p(q∗ − q)/q∗q

∫ ∞

0

μ(Nt)tq−1 dt ≤ c

(∫ ∞

0

[
μ(Nt)

]a
tar−1 dt

)(q∗ −q)/a(q∗ −r)

×
(∫ ∞

0

[
μ(Nt)

]p/q∗

tp−1 dt
)q∗(q−r)/p(q∗ −r)

.

Since a > 1 and μ(Nt) does not increase, we can apply (1.3.41) to the first
factor in the following way:

∫ ∞

0

[
μ(Nt)

]a
tar−1 dt ≤ c

(∫ ∞

0

μ(Nt)tr−1 dt
)a

.

Thus,

‖u‖Lq(Ω,μ) ≤ c
(∫ ∞

0

[
μ(Nt)

]p/q∗

tp−1 dt
)(1−κ)/p

‖u‖κ

Lr(Ω,μ).

From condition (2.3.18) and Theorem 2.3.1 we obtain
∫ ∞

0

[
μ(Nt)

]p/q∗

tp−1 dt ≤ cβ
∫
Ω

[
Φ(x,∇u)

]p dx.

The proof of the first part of the theorem is complete.
2. Let G be a bounded open set Ḡ ⊂ Ω. We fix a number δ > 0 and we

put

βδ = sup
μ(F )pα

(p, Φ)-cap(F,G)

on the set of all compacta F in G satisfying the condition (p, Φ)-cap(F,G) ≥ δ.
(If (p, Φ)-cap(F,G) = 0 for any compactum F ⊂ G, then the substitution of
an arbitrary u ∈ N(F,G) into (2.3.25) immediately leads to μ = 0.) Obviously,

βδ ≤ δ−1μ(G)pα <∞.

Let v be an arbitrary function in N(F,G) and let γ = max(pr−1, q∗r−1).
We substitute the function u = vγ into (2.3.25). Then
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μ(F )1/q ≤ cC
(∫

Ω

vp(γ−1)
[
Φ(x,∇v)

]p dx
)(1−κ)/p∥∥vγ∥∥κ

Lr(Ω,μ)
. (2.3.26)

Let ψ(t) be the function defined in (2.3.2), where u is replaced by v. In our
case T = max v = 1. Clearly,

∫
G

vγr dμ =
∫ ∞

0

μ
(
Nt

)
d(tγr) =

∫ 1

0

μ(Nt)
[
ψ(t)

]q∗/p′ d(tγr)
[ψ(t)]q∗/p′ ,

where Nt = {x ∈ G : v(x) ≥ t}. Since Nt ⊃ F , we have by Lemma 2.2.2/3

μ(Nt)ψ(t)q
∗/p′

≤ μ(Nt)
[(p, Φ)-cap(Nt, G)]q∗/p

≤ βq∗/p
δ .

Hence ∫
G

vγr ≤ βq∗/p
δ

∫ 1

0

[
ψ(t)

]−q∗/p′

d
(
tγr
)
.

Since [ψ(t)]−q∗/p′
is a nonincreasing function, from (1.3.41) we obtain

∫
G

vγr dμ ≤ β
q∗/p
δ

(∫ 1

0

[
ψ(t)

]q∗(1−p)/γr d
(
tp
))γr/p

≤ β
q∗/p
δ ψ(1)(γr−q∗)/p′

(∫ 1

0

d(tp)
[ψ(t)]p−1

)γr/p

.

Setting t = t(ψ) in the last integral and applying the inequality (2.3.8) and
Lemma 2.3.1, we obtain

∫ ψ(1)

0

d[t(ψ)]p

ψp−1
≤ c

∫ ψ(1)

0

[
t′(ψ)

]p dψ = c

∫
G

[
Φ(x,∇v)

]p dx.

Thus,

‖vγ‖Lr(Ω,μ) ≤ cβ
q∗/pr
δ ψ(1)(γr−q∗)/rp′

(∫
G

[
Φ(x,∇v)

]p dx
)γ/p

≤ cβ
q∗/pr
δ

[
(p, Φ)-cap(F,G)

](q∗ −γr)/rp
(∫

G

[
Φ(x,∇v)

]p dx
)γ/p

.

(2.3.27)

The last inequality follows from the estimate

[
ψ(1)

]p−1 ≤
[
(p, Φ)-cap(F,G)

]−1

(see Lemma 2.2.2/3). Since 0 ≤ v ≤ 1 and γ ≥ 1, from (2.3.26) and (2.3.27)
it follows that
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μ(F )1/q ≤ cCβq∗
κ/pr

δ

[
(p, Φ)-cap(F,G)

]κ(q∗ −γr)/rp

×
(∫

G

[
Φ(x,∇v)

]p dx
)[1+κ(γ−1)]/p

.

Minimizing ∫
G

[
Φ(x,∇v)

]p dx

on the set P(F,G), we obtain

μ(F )1/q ≤ cCβ
q∗

κ/pr
δ

[
(p, Φ)-cap(F,G)

]1/p+κ(q∗ −r)/pr

= cCβ
q∗

κ/pr
δ

[
(p, Φ)-cap(F,G)

]q∗/qp
.

Hence
μ(F )p/q

∗
≤ cCqp/q∗

β
(q∗ −q)/(q∗ −r)
δ (p, Φ)-cap(F,G).

Consequently,
βδ ≤ cCpq(q∗ −r)/q∗(q−r) = cCp/(1−κ).

Since βδ is majorized by a constant that depends neither on δ nor G, using the
property (iv) of the (p, Φ)-capacity we obtain β ≤ cCp/(1−κ). The theorem is
proved. ��

Remark. The theorem just proved shows, in particular, the equivalence of
the multiplicative inequality (2.3.25) and the Sobolev-type inequality (2.3.19).

2.3.7 Estimate for the Norm in Lq(Ω, μ) with q < p (First
Necessary and Sufficient Condition)

A characterization of (2.3.19) with q ≥ p was stated in Corollary 2.3.4. Now we
obtain a condition for the validity of (2.3.19), which is sufficient if p > q > 0
and necessary if p > q ≥ 1.

Definition. Let S = {gj}∞
j=− ∞ be any sequence of admissible subsets of

Ω with ḡi ⊂ gi+1. We put μi = μ(gi), γi = (p, Φ)-cap(ḡi, gi+1), and

κ = sup
{S}

[ ∞∑
i=− ∞

(
μ
p/q
i

γi

)q/(p−q)
](p−q)/q

. (2.3.28)

(The terms of the form 0/0 are considered to be zeros.)

Theorem. (i) If κ <∞, then

‖u‖pLq(Ω,μ) ≤ C
∫
Ω

[
Φ(x,∇u)

]p dx, (2.3.29)

where u ∈ D(Ω) and p > q > 0, C ≤ cκ.
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(ii) If there exists a constant C such that (2.3.29) holds for all u ∈ D(Ω)
with p > q ≥ 1, then κ ≤ cC.

Proof. (i) Let tj = 2−j + εj , j = 0,±1,±2, . . . , where εj is a decreasing
sequence of positive numbers satisfying εj2j → 0 as j → ±∞. We assume
further that the sets Ltj are admissible. Obviously,

‖u‖qLq(Ω,μ) =
∞∑

j=− ∞

∫ tj−1

tj

μ(Lt) d
(
tq
)
≤ c

∞∑
j=− ∞

2−qjμ(Ltj ).

Let gj = Ltj . We rewrite the last sum as

c

∞∑
j=− ∞

(
μ
p/q
j

γj

)q/p(
2−pjγj

)q/p

and apply Hölder’s inequality. Then

‖u‖qLq(Ω,μ) ≤ cκ
q/p

( ∞∑
j=− ∞

2−pjγj

)q/p

.

Let λε ∈ C∞(R1), λε(t) = 1 for t ≥ 1, λε(t) = 0 for t ≤ 0, 0 ≤ λ′
ε(t) ≤ 1 + ε,

(ε > 0) and let

uj(x) = λε

[
|u(x)| − tj+1

tj − tj+1

]
.

Since uj ∈ N(ḡj , gj+1), it follows that

∞∑
j=− ∞

2−pjγj ≤ c

∞∑
j=− ∞

(tj − tj+1)p
∫
gj+1\gj

[
Φ(x,∇uj)

]p dx

= c
∞∑

j=− ∞

∫
gj+1\gj

[
λ′
ε

(
u− tj+1

tj − tj+1

)]p[
Φ(x,∇u)

]p dx.

Letting ε tend to zero, we obtain

∞∑
j=− ∞

2−pjγj ≤ c
∫
Ω

[
Φ(x,∇u)

]p dx. (2.3.30)

(ii) We introduce the sequence

S = {gj}∞
j=− ∞

and put τN+1 = 0 and

τk =
N∑

j=k

(
μj

γj

)1/(p−q)
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for k = −N,−N+1, . . . , 0, . . . , N−1, N . By uk we denote an arbitrary function
in P(ḡk, gk+1) and define the function

uk = (τk − τk+1)uk + τk+1 on gk+1\gk,

u = τ−N on g−N , u = 0 on Ω\gN+1.

Since u ∈ D(Ω), it satisfies (2.3.29). Obviously,

∫
Ω

uq dμ = v
∫∞
0
μ(Lt) d

(
tq
)

=
N∑

k=−N

∫ τk

τk+1

μ(Lt) d
(
tq
)
≥

N∑
k=−N

μk

(
τ qk − τ qk+1

)
.

Therefore, (2.3.29) and the inequality (τk − τk+1)q ≤ (τ qk − τ qk+1) implies

[
N∑

k=−N

μk(τk − τk+1)q
]p/q

≤ C

N∑
k=−N

∫
gk+1\gk

[
Φ(x,∇uk)

]p dx

= C

N∑
k=−N

(τk − τk+1)p
∫
gk+1\gk

[
Φ(x,∇uk)

]p dx.

Since uk is an auxiliary function in P(ḡk, gk+1), it follows by minimizing the
last sum that

[
N∑

k=−N

μ(τk − τk+1)q
]p/q

≤ C
N∑

k=−N

(τk − τk+1)pγk.

Putting here

τk − τk+1 = μ
1/(p−q)
k γ

1/(q−p)
k ,

we arrive at the result

∣∣∣∣∣
N∑

k=−N

(
μ
p/q
k γk

)q/(p−q)

∣∣∣∣∣
(p−q)/q

≤ C.
��

2.3.8 Estimate for the Norm in Lq(Ω, μ) with q < p (Second
Necessary and Sufficient Condition)

Lemma. Let g1, g2, and g3 be admissible subsets of Ω such that ḡ1 ⊂ g2,
ḡ2 ⊂ g3. We set

γij = (p, Φ)-cap(ḡi, gj),
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where i < j. Then

γ
−1/(p−1)
12 + γ−1/(p−1)

23 ≤ γ−1/(p−1)
13 .

Proof. Let ε be any positive number. We choose functions uk ∈ P(ḡk, gk+1),
k = 1, 2, so that

γ
−1/(p−1)
k,k+1 ≤

∫ 1

0

[∫
E k

τ

[
Φ(x,∇uk)

]p ds
|∇uk|

]−1/(p−1)

dτ + ε,

where E k
τ = {x : uk(x) = τ}. We put u(x) = 1

2u2(x) for x ∈ g3\g2 and
u(x) = (u1(x) + 1)/2 for x ∈ g2. Then

∫ 1

0

[∫
E 1

τ

[
Φ(x,∇u1)

]p ds
|∇u1|

]1/(1−p)

dτ

=
∫ 1

1/2

[∫
Eτ

[
Φ(x,∇u)

]p ds
|∇u|

]1/(1−p)

dτ,

∫ 1

0

[∫
E 2

τ

[
Φ(x,∇u2)

]p ds
|∇u2|

]1/(1−p)

dτ

=
∫ 1/2

0

[∫
Eτ

[
Φ(x,∇u)

]p ds
|∇u|

]1/(1−p)

dτ,

where Eτ = {x : u(x) = τ}. Therefore,

γ
1/(1−p)
12 + γ1/(1−p)

23 ≤
∫ 1

0

(∫
Eτ

[
Φ(x,∇u)

]p ds
|∇u|

)1/(1−p)

dτ + 2ε.

Since u ∈ P(ḡ1, g3), by Lemma 2.2.2/3 the right-hand side of the last inequal-
ity does not exceed γ1/(1−p)

13 + 2ε. The lemma is proved. ��

Let νp be the capacity minimizing function introduced in Definition 2.3.2.
It can be easily checked that condition (2.3.15) is equivalent to

βνp(t) ≥ tP−1(1/t)

and condition (2.3.18) to
βνp(t) ≥ tαp.

The theorem of the present subsection yields the following necessary and
sufficient condition for the validity of (2.3.29) with p > q > 0:

K =
∫ μ(Ω)

0

[
τ

νp(τ)

]q/(p−q)

dτ <∞. (2.3.31)
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Theorem. Let p > q > 0, p > 1.
1. If K <∞, then (2.3.29) holds for all u ∈ D(Ω) with C ≤ cK(p−q)/q.
2. If (2.3.29) holds with C <∞, then (2.3.31) is valid with K(p−q)/q ≤ cC.

Proof. 1. By Theorem 2.3.7 it suffices to prove the inequality

sup
{S}

∞∑
j=− ∞

(
μ
p/q
j

γj

)q/(p−q)

≤ p

p− q

∫ μ(Ω)

0

[
τ

νp(τ)

]q/(p−q)

dτ, (2.3.32)

where the notation of Sect. 2.3.7 is retained.
Let the integral in the right-hand side converge, let N be a positive integer,

and let Γj = (p, Φ)-cap(ḡj , gN+1) for j ≤ N , ΓN+1 = ∞. By the Lemma,

γ
1/(1−p)
j ≤ Γ 1/(1−p)

j − Γ 1/(1−p)
j+1 , j ≤ N.

Since q(p− 1)/(p− q) ≥ 1, then

|a− b|q(p−1)/(p−q) ≤
∣∣aq(p−1)/(p−q) − bq(p−1)/(p−q)

∣∣
and hence

γ
−q/(p−q)
j ≤ Γ−q/(p−q)

j − Γ−q/(p−q)
j+1 .

This implies

σN
def=

N∑
j=−N

(
μ
p/q
j

γj

)q/(p−q)

≤
N∑

j=−N

μ
p/(p−q)
j

(
Γ

−q/(p−q)
j − Γ−q/(p−q)

j+1

)

≤
N∑

j=−N+1

(
μ
p/(p−q)
j − μp/(p−q)

j−1

)
Γ

−q/(p−q)
j + μp/(p−q)

−N Γ
−q/(p−q)

−N .

It is clear that Γj ≥ (p, Φ)-cap(ḡj , Ω) ≥ νp(μj). Since the function νp does not
decrease then

μ
p/(p−q)
−N

[
νp(μ−N )

]q/(p−q) ≤
∫ μ−N

0

d(τp/(p−q))
[νp(τ)]q/(p−q)

.

Similarly,

(
μ
p/(p−q)
j − μp/(p−q)

j−1

)[
νp(μj)

]q/(p−q) ≤
∫ μj

μj−1

d(τp/(p−q))
[νp(τ)]q/(p−q)

.

Consequently,

σN ≤
∫ μN

0

[
νp(τ)

]q/(q−p) d
(
τp/(p−q)

)
.

The result follows.
2. With a μ-measurable function f we connect its nonincreasing rearrange-

ment
f∗
μ(t) = inf

{
s : μ

{
x ∈ Ω : f(x) ≥ s

}
≤ t
}
. (2.3.33)
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By Lemma 2.1.4/1

‖f‖Lq(Ω,μ) =
(∫ μ(Ω)

0

(
f∗
μ(t)

)q dt
)1/q

, 0 < q <∞. (2.3.34)

We note that the inequality (2.3.29) implies that μ(Ω) < ∞ and that
νp(t) > 0 for all t ∈ (0, μ(Ω)]. Let l be any integer satisfying 2l ≤ μ(Ω). We
introduce an admissible subset gl of Ω such that

μ(ḡl) ≥ 2l, (p, Φ)-cap(gl, Ω) ≤ 2νp
(
2l
)
.

By ul we denote a function in P(ḡl, Ω) satisfying
∫
Ω

[
Φ(x,∇ul)

]p dx ≤ 4νp
(
2l
)
. (2.3.35)

Let s be the integer for which 2s ≤ μ(Ω) < 2s+1. We define the function in
C0,1

0 (Ω)
fr,s(x) = sup

r≤l≤s
βlul(x), x ∈ Ω,

where r < s and the values βl are defined by

βl =
(

2l

νp(2l)

)1/(p−q)

.

By Lemma 2.1.4/2 and by Lemma 2.1.4/3 with Φp instead of Φ we have

∫
Ω

[
Φ(x,∇fr,s)

]p dx ≤
s∑

l=r

βp
l

∫
Ω

[
Φ(x,∇ul)

]p dx.

By (2.3.35) the right-hand side is majorized by

c

s∑
l=r

βp
l νp
(
2l
)
.

Now we obtain a lower estimate for the norm of fr,s in Lq(Ω,μ). Since
fr,s(x) ≥ βl on the set gl, r ≤ l ≤ s, and μ(ḡl) ≥ 2l, the inequality

μ
({
x ∈ Ω :

∣∣fr,s(x)∣∣ > τ}) < 2l

implies τ ≥ βl. Hence

f∗
r,s(t) ≥ βl for t ∈

(
0, 2l

)
, r ≤ l ≤ s. (2.3.36)

By (2.3.34) and (2.3.36)

‖fr,s‖qLq(Ω,μ) =
∫ μ(Ω)

0

(
(fr,s)∗

μ(t)
)q dt ≥ c

s∑
l=r

(
(fr,s)∗

μ(2l)
)q2l ≥ c

s∑
l=r

βq
l 2

l.
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Therefore,

B := sup
‖u‖Lq(Ω,μ)

(
∫
Ω

[Φ(x,∇u)]p dx)1/p
≥ c

(
∑s

l=r β
q
l 2

l)1/q

(
∑s

l=r β
p
l νp(2l))1/p

= c

(
s∑

l=r

2lp/(p−q)

νp(2l)q/(p−q)

)1/q−1/p

.

With r → −∞ we obtain

B ≥
(

s∑
l=− ∞

2lp/(p−q)

νp(2l)q/(p−q)

)1/q−1/p

≥ c
(∫ 2s−1

0

s∑
l=− ∞

tp/(p−q)

(νp(t))q/(p−q)

dt
t

)1/q−1/p

.

Hence by monotonicity of νp we obtain

B ≥ c
(∫ μ(Ω)

0

tp/(p−q)

(νp(t))q/(p−q)

dt
t

)1/q−1/p

.

The proof is complete. ��

We give a sufficient condition for inequality (2.3.29) with μ = mn formu-
lated in terms of the weighted isoperimetric function C introduced in Defini-
tion 2.2.3.

Corollary. If p > q > 0, p > 1, and

∫ mn(Ω)

0

(∫ mn(Ω)

t

d�
(C (�))p/(p−1)

) q(p−1)
p−q

t
q

p−q dt <∞,

then (2.3.29) with μ = mn and any u ∈ D(Ω) holds.

Proof. The result follows directly from the last Theorem and Corol-
lary 2.7.2. ��

2.3.9 Inequality with the Norms in Lq(Ω, μ) and Lr(Ω, ν)
(the Case p ≥ 1)

The next theorem gives conditions for the validity of the inequality

‖u‖pLq(Ω,μ) ≤ C
(∫

Ω

[
Φ(x,∇u)

]p dx+ ‖u‖pLr(Ω,ν)

)
(2.3.37)

for all u ∈ D(Ω) with q ≥ p ≥ r, p > 1 (compare with Theorem 2.1.3).
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Theorem. Inequality (2.3.37) holds if and only if

μ(g)p/q ≤ cC
[
(p, Φ)-cap(ḡ,G ) +

[
ν(G )

]p/r] (2.3.38)

for all admissible sets g and G with ḡ ⊂ G .

Proof. Sufficiency. By Lemma 1.2.3 and inequality (1.3.41),

‖u‖pLq(Ω,μ) =
[∫ ∞

0

μ(Lt) d
(
tq
)]p/q

≤
∫ ∞

0

[
μ(Lt)

]p/q d
(
tp
)
≤ c

∞∑
j=− ∞

2−pjμ(gj)p/q,

where gj = Ltj and {tj} is the sequence of levels defined in the proof of
part (i) of Theorem 2.3.7. We set γj = (p, Φ)-cap(ḡj , gj+1) and using the
condition (2.3.38), we arrive at the inequality:

‖u‖pLq(Ω,μ) ≤ cC
[ ∞∑

j=− ∞
2−pjγj +

∞∑
j=− ∞

2−pjν(gj)p/r
]
. (2.3.39)

We can estimate the first sum on the right-hand side of this inequality by
means of (2.3.30). The second sum does not exceed

c

∫ ∞

0

[
ν(Lt)

]p/r d
(
tp
)
≤ c
(∫ ∞

0

ν(Lt) d
(
tr
))p/r

= c‖u‖pLr(Ω,ν).

Necessity. Let g and G be admissible and let ḡ ⊂ G . We substitute any
function u ∈ P(ḡ,G ) into (2.3.37). Then

μ(g)p/q ≤ C
[∫

Ω

[
Φ(x,∇u)

]p dx+ ν(G )p/r
]
.

Minimizing the first term on the right of the set P(ḡ, G), we obtain (2.3.38).
��

Remark. Obviously, a sufficient condition for the validity of (2.3.37) is the
inequality

μ(g)p/q ≤ C1

[
(p, Φ)-cap(g,Ω) + ν(g)p/r

]
, (2.3.40)

which is simpler than (2.3.38). In contrast to (2.3.37) it contains only one set g.
However, as the following example shows, the last condition is not necessary.

Let Ω = R
3, q = p = r = 2, Φ(x, y) = |y|, and let the measures μ and ν

be defined as follows:

μ(A) =
∞∑

k=0

s(A ∩ ∂B2k),

ν(A) =
∞∑

k=0

s(A ∩ ∂B2k+1),
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where A is any Borel subset of R
3 and s is a two-dimensional Hausdorff

measure. The condition (2.3.40) is not fulfilled for these measures and the
2-capacity. Indeed, for the sets gk = B2k+1\B̄2k −1, k = 2, 3, . . . , we have
μ(gk) = π4k+1, ν(gk) = 0, 2-cap(gk,R3) = 4π(2k + 1).

We shall show that (2.3.37) is true. Let u ∈ D(R3) and let (�, ω) be
spherical coordinates with center O. Obviously,

[
u
(
2k, ω

)]2 ≤ 2
∫ 2k+1

2k

(
∂u

∂�
(�, ω)

)2

d�+ 2
[
u
(
2k + 1, ω

)]2
.

Hence

4k

∫
∂B1

[
u
(
2k, ω

)]2 dω ≤ 2
∫
B2k+1\B2k

(
∂u

∂�

)2

dx+2·4k

∫
∂B1

[
u
(
2k+1, ω

)]2 dω.

Summing over k, we obtain
∫

R3
u2 dμ ≤ c

(∫
R3

|∇u|2 dx+
∫

R3
u2 dν

)
.

The proof is complete.

2.3.10 Estimate with a Charge σ on the Left-Hand Side

The following assertion yields a condition close in a certain sense to being
necessary and sufficient for the validity of the inequality

∫
Ω

|u|p dσ ≤ c
∫
Ω

[
Φ(x,∇u)

]p dx, u ∈ D(Ω), (2.3.41)

where σ is an arbitrary charge in Ω, not a nonnegative measure as in Theo-
rem 2.3.6. (Theorem 2.1.3 contains a stronger result for p = 1.)

Theorem. Let σ+ and σ− be the positive and negative parts of the
charge σ.

1. If for some ε ∈ (0, 1) and for all admissible sets g and G with ḡ ⊂ G we
have the inequality

σ−(g) ≤ Cε(p, Φ)-cap(ḡ, G) + (1 − ε)σ−(G), (2.3.42)

where Cε = const, then (2.3.41) is valid with C ≤ cCε.
2. If for all u ∈ D(Ω) inequality (2.3.41) holds, then

σ+(g) ≤ C(p, Φ)-cap(ḡ,G ) + σ−(G ) (2.3.43)

for all admissible sets g and G , ḡ ⊂ G .

Proof. Let δ = (1− ε)−1/2p and gj = Lδj , j = 0,±1, . . . . By Lemma 1.2.3,
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‖u‖pLp(Ω,σ+) =
∫ ∞

0

σ+(Lt) d
(
tp
)

=
∞∑

j=− ∞

∫ δj+1

δj

σ+(Lt) d
(
tp
)

≤
∞∑

j=− ∞
σ+(Lδj )

(
δ(j+1)p − δjp

)
.

This and (2.3.42) imply

‖u‖pLp(Ω,σ+) ≤ Cε

∞∑
j=− ∞

(p, Φ)-cap(L̄δj ,Lδj−1)
(
δ(j+1)p − δjp

)

+ (1 − ε)
∞∑

j=− ∞
σ−(Lδj−1)

(
δ(j+1)p − δjp

)
. (2.3.44)

Using the same arguments as in the derivation of (2.3.30), we obtain that
the first sum in (2.3.44) does not exceed

(δp − 1)δp

(δ − 1)p

∫
Ω

[
Φ(x,∇u)

]p dx.

Since σ−(Lt) is a nondecreasing function, then

(
δ(j−1)p − δ(j−2)p

)
σ−(Lδj−1) ≤

∫ δj−1

δj−2
σ−(Lt) d

(
tp
)

and hence
∞∑

j=− ∞
σ−(Lδj−1)

(
δ(j+1)p − δjp

)
≤ δ2p

∫ ∞

0

σ−(Lt) d
(
tp
)
.

Thus

‖u‖pLp(Ω,σ+) ≤ Cε
(δp − 1)δp

(δ − 1)p

∫
Ω

[
Φ(x,∇u)

]p dx+ δ2p(1 − ε)‖u‖pLp(Ω,σ+).

It remains to note that δ2p(1 − ε) = 1.
2. The proof of the second part of the theorem is the same as that of

necessity in Theorem 2.3.9. The theorem is proved. ��

2.3.11 Multiplicative Inequality with the Norms in Lq(Ω, μ) and
Lr(Ω, ν) (Case p ≥ 1)

The following assertion gives a necessary and sufficient condition for the va-
lidity of the multiplicative inequality

‖u‖pLq(Ω,μ) ≤ C
{∫

Ω

[
Φ(x,∇u)

]p dx
}δ

‖u‖p(1−δ)
Lr(Ω,ν) (2.3.45)
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for p ≥ 1 (cf. Theorem 2.1.1).

Theorem. 1. Let g and G be any admissible sets such that ḡ ⊂ G . If a
constant α exists such that

μ(g)p/q ≤ α
[
(p, Φ)-cap(ḡ,G )

]δ
ν(G )(1−δ)p/r, (2.3.46)

then (2.3.45) holds for all functions u ∈ D(Ω) with C ≤ cα, 1/q ≤ (1−δ)/r+
δ/p, r, q > 0.

2. If (2.3.45) is true for all u ∈ D(Ω), then (2.3.46) holds for all admissible
sets g and G such that ḡ ⊂ G . The constant α in (2.3.46) satisfies α ≤ C.

Proof. 1. By Lemma 1.2.3 and inequality (1.3.41),

‖u‖Lq(Ω,μ) =
[∫ ∞

0

μ(Lτ ) d
(
τ q
)]1/q

≤ γ1/γ

[∫ ∞

0

μ(Lτ )γ/qτγ−1 dτ
]1/γ

,

where γ = pr[p(1 − δ) + δr]−1, γ ≤ q. Consequently,

‖u‖pLq(Ω,μ) ≤ c

[ ∞∑
j=− ∞

2−γjμ(gj)γ/q
]p/γ

≤ cα

{ ∞∑
j=− ∞

2−γj
[
(p, Φ)-cap(ḡj , gj+1)

]δγ/p
ν(gj+1)(1−δ)γ/r

}p/γ

,

where gj = Ltj and {tj} is the sequence of levels defined in the proof of the
first part of Theorem 2.3.7. Hence,

‖u‖pLq(Ω,μ) ≤ cα

[ ∞∑
j=− ∞

2−pj(p, Φ)-cap(ḡj , gj+1)

]δ

×
[ ∞∑

j=− ∞
2−rjν(gj+1)

](1−δ)p/r

. (2.3.47)

By (2.3.30),
∞∑

j=− ∞
2−pj(p, Φ)-cap(ḡj , gj+1) ≤ c

∫
Ω

[
Φ(x,∇u)

]p dx.

Obviously, the second sum in (2.3.47) does not exceed c‖u‖rLr(Ω,ν). Thus
(2.3.45) follows.

2. Let g and G be admissible sets with ḡ ⊂ G . We substitute any function
u ∈ P(ḡ,G ) into (2.3.45). Then

μ(g)p/q ≤ C
[∫

Ω

[
Φ(x,∇u)

]p dx
]δ
ν(G )(1−δ)p/r,

which yields (2.3.46). The theorem is proved. ��



176 2 Inequalities for Functions Vanishing at the Boundary

2.3.12 On Nash and Moser Multiplicative Inequalities

An important role in Nash’s classical work on local regularity of solutions to
second-order parabolic equations in divergence form with measurable bounded
coefficients [625] is played by the multiplicative inequality

(∫
Rn

u2 dx
)1+2/n

≤ C
∫

Rn

|∇u|2 dx
(∫

Rn

|u| dx
)4/n

, u ∈ C∞
0 . (2.3.48)

Another inequality of a similar nature

‖u‖1+2/n
L2+4/n

≤ c‖u‖2/n
L2

‖∇u‖L2 , u ∈ C∞
0 , (2.3.49)

was used by Moser in his proof of the Harnack inequality for solutions of
second-order elliptic equations with measurable bounded coefficients in diver-
gence form [617].

These two inequalities are contained as very particular cases in the
Gagliardo–Nirenberg inequality for all u ∈ C∞

0 (Rn)

‖∇ju‖Lq ≤ c‖∇lu‖αLp
‖u‖1−α

Lr
, (2.3.50)

where 1 ≤ p, r ≤ ∞, 0 ≤ j < l, j/l ≤ α,≤ 1, and

1
q

=
j

n
+ α

(
1
p
− l

n

)
+

1 − α
r

.

If 1 < p <∞ and l− j−n/p is a nonnegative integer then (2.3.50) holds only
for α ∈ [j/n, 1) (see Gagliardo [299] and Nirenberg [640]).

If n > 2, the Nash and Moser inequalities follow directly by the Hölder
inequality from the Sobolev inequality

‖u‖L2n/(n−2) ≤ c‖∇u‖L2 , u ∈ C∞
0 . (2.3.51)

We know by the second part of Theorem 2.3.6 that conversely, (2.3.48) and
(2.3.49) imply (2.3.51). The just-mentioned theorem does not contain (2.3.48)
and (2.3.49) for n = 2, which formally corresponds to the exceptional case
α = 0. However, we show here that both (2.3.48) and (2.3.49) with n = 2,
and even the more general inequality

∫
Rn

|u|q dx ≤ c
(∫

Rn

|∇u|n dx
) q−r

n
∫

Rn

|u|r dx, (2.3.52)

where q ≥ r > 0 can be deduced from Theorem 2.3.11. In fact, by this theorem,
(2.3.52) holds if and only if

mn(g) ≤ const
(
capn(ḡ, G)

) q−r
n mn(G), (2.3.53)
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where g and G are arbitrary bounded open sets with smooth boundaries,
ḡ ⊂ G, and capn is the n capacity of ḡ with respect to G. By the isocapacitary
inequality (2.2.11),

capn(ḡ, G) ≥ nn−1ωn

(
log

mn(G)
mn(g)

)1−n

.

Hence (2.3.53) is a consequence of the boundedness of the function

(0, 1) � x→ x

(
log

1
x

) (q−r)(n−1)
n

,

which, in its turn, implies the multiplicative inequality (2.3.52). ��

The original proof of (2.3.52) (see Nirenberg [640], p. 129) is as follows.
First, one notes that it suffices to obtain (2.3.52) for large q. Then (2.3.52) re-
sults by putting |u|q(1−n)/n instead of u into (1.4.49) and using an appropriate
Hölder’s inequality.

Extensions of Nash’s inequality (2.3.48) to weighted inequalities with in-
definite weights on the left-hand side were obtained by Maz’ya and Verbitsky
[594] with simultaneously necessary and sufficient conditions on the weights.

2.3.13 Comments to Sect. 2.3

The basic results of Sects. 2.3.1–2.3.4 were obtained by the author in [531,
534] for p = 2, Φ(x, ξ) = |ξ|, M(u) = |u|, and in [543] for the general case.
Some of these results were repeated by Stredulinsky [729]. We shall return to
capacitary inequalities similar to (2.3.6) in Chaps. 3 and 11. The inequality
(2.3.14) can be found also in Brezis and Wainger [146] and Hansson [348].

Regarding the criterion in Sect. 2.3.3, see Comments to Sect. 2.4, where
other optimal embeddings of Birnbaum–Orlicz–Sobolev spaces into C and
Birnbaum–Orlicz spaces are discussed.

Inequality (2.3.21) is (up to a constant) the Sobolev (p > 1)-Gagliardo–
Nirenberg (p = 1) inequality. The best constant for the case p = 1 (see (1.4.14))
was found independently by Federer and Fleming [273] and by the author [527]
using the same method.

The best constant for p > 1, presented in Sect. 2.3.5 was obtained by
Aubin [55] and Talenti [740] (the case n = 3, p = 2 was considered earlier
by Rosen [682]), whose proofs are a combination of symmetrization and the
one-dimensional Bliss inequality [109] (see Sect. 2.3.5). The uniqueness of the
Bliss optimizer was proved by Gidas, Ni, and Nirenberg [307].

A different approach leading to the best constant in the Sobolev inequality,
which is based on the geometric Brunn–Minkowski–Lyusternik inequality, was
proposed in Bobkov and Ledoux [118].
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The extremals exhibited in (2.3.24) of the Sobolev inequality (2.3.21) in
the whole of R

n, with sharp constant C, are the only ones—see Cordero-
Erausquin, Nazaret, and Villani [212] who used the mass transportation tech-
niques referred to in Comments to Sect. 1.4. Strengthened, quantitative ver-
sions of this inequality are also available. They involve a remainder term
depending on the distance of the function u from the family of extremals. The
first result in this connection was established by Bianchi and Egnell [96] for
p = 2. The case when p = 1 was considered in Cianchi [199] and sharpened
in Fusco, Maggi, and Pratelli [296] as far as the exponent in the remainder
term is concerned. The general case when 1 < p < n is the object of Cianchi,
Fusco, Maggi, and Pratelli [204]. Related results for p > n are contained in
Cianchi [202].

In [811], Zhang proved an improvement of the inequality (1.4.14), called
the L1 affine Sobolev inequality,

∫
Sn−1

‖∇uf‖−n
L1

dsu ≤ n
(

ωn

2ωn−1

)n

‖f‖−n
L n

n−1
, (2.3.54)

where ∇uf is the partial derivative of f in direction u, dsu is the surface mea-
sure on Sn−1 and the constant factor on the right-hand side is sharp. Modi-
fications of (2.3.54) for the Lp-gradient norm with p > 1 and for the Lorentz
and Birnbaum–Orlicz settings are due to Zhang [811]; Lutwak, D. Yang, and
Zhang [510]; Haberl and Schuster [333]; Werner and Ye [794]; and Cianchi,
Lutwak, D. Yang, and Zhang [206].

A Sobolev-type trace inequality, which attracted much attention, is the
following trace inequality:

‖f‖L p(n−1)
n−p

(∂Rn
+) ≤ Kn,p‖∇f‖Lp(Rn

+), (2.3.55)

where n > p > 1. In the case p = 2, Beckner [78] and Escobar [259], using
different approaches, found the best value of Kn,2. Xiao [799] generalized their
result to the inequality

‖f‖L 2(n−1)
n−1−2α

(∂Rn
+) ≤ C(n, α)

∫
Rn

+

∣∣∇f(x)∣∣2x1−2α
n dx, (2.3.56)

showing that

C(n, α) =
(

21−4α

παΓ (2(1− α))

)(
Γ ((n− 1 − 2α)/2)
Γ ((n− 1 + 2α)/2)

)(
Γ (n− 1)

Γ ((n− 1)/2)

) 2α
n−1

.

An idea in [799] is that it suffices to prove (2.3.56) for solutions of the
Euler equation

div
(
x1−2α
n ∇u

)
= 0 on R

n
+.

Then by the Fourier transform with respect to x′ = (x1, . . . , xn−1) the integral
on the right-hand side of (2.3.56) takes the form
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const
∥∥(−Δx′ )α/2u

∥∥2

L2(Rn−1)
,

and the reference to the Lieb formula (1.4.48) gives the above value of C(n, α).
More recently, Nazaret proved, by using the mass transportation method

mentioned in Comments to Sect. 1.4, that the only minimizer in (2.3.55) has
the form

const
(
(xn + λ)2 + |x|2

) p−n
2(p−1) ,

where λ = const > 0. Sharp Sobolev-type inequalities proved to be crucial in
the study of partial differential equations and nowadays there is extensive lit-
erature dealing with them. To the works mentioned earlier we add the papers:
Gidas, Ni, and Nirenberg [307]; Lieb [496]; Lions [501]; Han [335]; Beckner [78,
79]; Adimurthi and Yadava [29]; Hebey and Vaugon [362, 363]; Hebey [359];
Druet and Hebey [243]; Lieb and Loss [497]; Del Pino and Dolbeault [231];
Bonder, Rossi, and Ferreira [125]; Biezuner [99]; Ghoussoub and Kang [306];
Dem’yanov and A. Nazarov [233]; Bonder and Saintier [126]; et al.

The study of minimizers in the theory of Sobolev spaces based on the so-
called concentration compactness is one of the topics in the book by Tintarev
and Fieseler [753] where relevant historical information can be found as well.

The material of Sects. 2.3.6–2.3.11 is due to the author [543]. The suffi-
ciency in Theorem 2.3.8 can be found in Maz’ya [543] and the necessity is due
to Maz’ya and Netrusov [572].

The equivalence of the Nash and Moser inequalities (2.3.48) and (2.3.49)
for n > 2 and Sobolev’s inequality (2.3.51) is an obvious consequence of
Theorem 2.3.6, which was proved by the author [543] (see also [552], Satz 4.3).
This equivalence was rediscovered in the 1990s by Bakry, Coulhon, Ledoux,
and Saloff-Coste [64] (see also Sect. 3.2 in the book by Saloff-Coste [687]) and
by Delin [232]. The best constant in (2.3.48) was found by Carlen and Loss
[167]:

C = 2n−1+2/n(1 + n/2)1+n/2z−1
n ω−2/n

n ,

where zn is the smallest positive root of the equation

(1 + n/2)J(n−2)/2(z) + zJ ′
(n−2)/2(z) = 0.

The existence of the optimizer is proved in Tintarev and Fieseler [753], 10.3.

2.4 Continuity and Compactness of Embedding
Operators of L̊1

p(Ω) and W̊ 1
p (Ω) into Birnbaum–Orlicz

Spaces

Let L̊l
p(Ω) and W̊ l

p(Ω) be completions of D(Ω) with respect to the norms
‖∇lu‖Lp(Ω) and ‖∇lu‖Lp(Ω) + ‖u‖Lp(Ω).

Let μ be a measure in Ω. By LM (Ω,μ) we denote the Birnbaum–Orlicz
space generated by a convex function M , and by P we mean the complemen-
tary function of M (see Sect. 2.3.3).
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The present section deals with some consequences of Theorem 2.3.3, con-
taining the necessary and sufficient conditions for boundedness and compact-
ness of embedding operators which map L̊1

p(Ω) and W̊ 1
p (Ω) into the space

Lp,M (Ω,μ) with the norm ‖|u|p‖1/p
LM (Ω,μ), where μ is a measure in Ω. In the

case p = 2, M(t) = |t| these results will be used in Sect. 2.5 in the study of
the Dirichlet problem for the Schrödinger operator.

2.4.1 Conditions for Boundedness of Embedding Operators

With each compactum F ⊂ Ω we associate the number

πp,M (F,Ω) =

{
μ(F )P −1(1/μ(F ))

capp(F,Ω) for capp(F,Ω) > 0,
0 for capp(F,Ω) = 0.

In the case p = 2, M(t) = |t|, we shall use the notation π(F,Ω) instead of
πp,M (F,Ω).

The following assertion is a particular case of Theorem 2.3.3.

Theorem 1. 1. Suppose that

πp,M (F,Ω) ≤ β

for any compactum F ⊂ Ω. Then, for all u ∈ D(Ω),

∥∥|u|p∥∥
LM (Ω,μ)

≤ C
∫
Ω

|∇u|p dx, (2.4.1)

where C ≤ pp(p− 1)1−pβ.
2. If (2.4.1) is valid for all u ∈ D(Ω), then πp,M (F,Ω) ≤ C for all com-

pacta F ⊂ Ω.

Using this assertion we shall prove the following theorem.

Theorem 2. The inequality

∥∥|u|∥∥p
LM (Ω,μ)

≤ C
∫
Ω

(
|∇u|p + |u|p

)
dx, (2.4.2)

where p < n is valid for all u ∈ D(Ω) if and only if, for some δ > 0,

sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
<∞, (2.4.3)

where, as usual, F is a compact subset of Ω.

Proof. Sufficiency. We construct a cubic grid in R
n with edge length cδ,

where c is a sufficiently small number depending only on n. With each cube
Qi of the grid we associate a concentric cube 2Qi with double the edge length
and with faces parallel to those of Qi. We denote an arbitrary function in
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D(Ω) by u. Let ηi be an infinitely differentiable function in R
n that is equal

to unity in Qi, to zero outside 2Qi, and such that |∇ηi| ≤ c0/δ.
By Theorem 1,
∥∥|uηi|p∥∥LM (Ω,μ)

≤ c sup
{
μ(F )P−1(1/μ(F ))
capp(F, 2Qi ∩Ω)

: F ⊂ 2Qi ∩Ω
}∫

2Qi ∩Ω

∣∣∇(uηi)
∣∣p dx

≤ c sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}∫
2Qi ∩Ω

∣∣∇(uηi)
∣∣p dx.

Summing over i and noting that

∥∥|u|p∥∥
LM (Ω,μ)

≤
∥∥∥∥
∑
i

|uηi|p
∥∥∥∥

LM (Ω,μ)

≤
∑
i

∥∥|uηi|p∥∥LM (Ω,μ)
,

we obtain the required inequality
∥∥|u|p∥∥

LM (Ω,μ)
≤ c sup

{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}

×
∫
Ω

(
|∇u|p + δ−p|u|p

)
dx. (2.4.4)

Necessity. Let F be any compactum in Ω and let diam(F ) ≤ δ < 1. We
include F inside two open concentric balls B and 2B with diameters δ and 2δ,
respectively. Then we substitute an arbitrary u ∈ P(F, 2B ∩Ω) into (2.4.2).

Since u = 1 on F , then by (2.4.2)

‖χF ‖LM (Ω,μ) ≤ C
(∫

2B

|∇u|p dx+
∫

2B

|u|p dx
)
.

Consequently,

μ(F )P−1
(
1/μ(F )

)
≤ C

(
1 + cδp

) ∫
2B

|∇u|p dx.

Minimizing the last integral over the set P(F, 2B ∩Ω) we obtain

μ(F )P−1
(
1/μ(F )

)
≤ C

(
1 + cδp

)
capp(F, 2B ∩Ω).

It remains to note that since p < n, it follows that

capp(F, 2B ∩Ω) ≤ c capp(F,Ω), (2.4.5)

where c depends only on n and p.
In fact, if u ∈ N(F,Ω) and η ∈ D(2B), η = 1 on B, |∇η| ≤ cδ, then

uη ∈ N(F,Ω ∩ 2B) and hence
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capp(F, 2B ∩Ω) ≤
∫
Ω∩2B

∣∣∇(uη)
∣∣p dx

≤ c

(∫
2B

|∇u|p dx+ δ−p

∫
2B

|u|p dx
)

≤ c

(∫
Ω

|∇u|p dx+ ‖u‖pLpn/(n−p)(Ω)

)
.

This and the Sobolev theorem imply (2.4.5). The theorem is proved. ��

2.4.2 Criteria for Compactness

The following two theorems give the necessary and sufficient conditions for
the compactness of embedding operators that map L̊1

p(Ω) and W̊ 1
p (Ω) into

Lp,M (Ω,μ).

Theorem 1. The conditions

lim
δ→0

sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
= 0 (2.4.6)

and
lim
�→∞

sup
{
πp,M (F,Ω) : F ⊂ Ω\B�

}
= 0 (2.4.7)

are necessary and sufficient for any set of functions in D(Ω), bounded in
L̊1

p(Ω) (p < n), to be relatively compact in Lp,M (Ω,μ).

Theorem 2. The condition (2.4.6) and

lim
�→∞

sup{πp,M (F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ 1} = 0 (2.4.8)

are necessary and sufficient for any set of functions in D(Ω), bounded in
W̊ 1

p (Ω) (p < n), to be relatively compact in Lp,M (Ω,μ).

To prove Theorems 1 and 2 we start with the following auxiliary assertion.

Lemma. Let μ(�) be the restriction of μ to the ball B�. For an arbi-
trary set, bounded in L̊1

p(Ω) or in W̊ 1
p (Ω), p < n, to be relatively compact

in Lp,M (Ω,μ(�)) for all � > 0, it is necessary and sufficient that

lim
δ→0

sup
{
πp,M (F,Ω) : F ⊂ B� ∩Ω, diam(F ) ≤ δ

}
= 0, (2.4.9)

for any � > 0.

Proof. Sufficiency. Since capacity does not increase under the extension
of Ω, we see that for any compactum F ⊂ B� ∩Ω,

πp,M (F,B� ∩Ω) ≤ πp,M (F,Ω).
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This along with (2.4.9) implies

lim
δ→0

sup
{
πp,M (F,B� ∩Ω) : F ⊂ B� ∩Ω, diam(F ) ≤ δ

}
= 0

for all � > 0. This equality, together with (2.4.4), where the role of Ω is played
by B2� ∩Ω, yields

∥∥|u|p∥∥
LM (Ω,μ(2�))

≤ ε
∫
B2� ∩Ω

|∇u|p dx+ C1(ε)
∫
B2� ∩Ω

|u|p dx

for any ε > 0 and for all u ∈ D(B2� ∩ Ω). Replacing u by uη, where η is a
truncating function, equal to unity on B� and to zero outside B2�, we obtain

∥∥|u|p∥∥
LM (Ω,μ(�))

≤ ε
∫
Ω

|∇u|p dx+ C2(ε)
∫
B2� ∩Ω

|u|p dx. (2.4.10)

It remains to note that in the case p < n any set, bounded in L̊1
p(Ω) (and

a fortiori in W̊ 1
p (Ω)), is compact in Lp(B� ∩Ω) for any � > 0. The sufficiency

of (2.4.8) is proved.
Necessity. Let F ⊂ B� ∩Ω be a compactum and let diam(F ) ≤ δ < 1. We

include F inside concentric balls B and 2B with radii δ and 2δ, respectively. By
u we denote an arbitrary function in P(F, 2B ∩Ω). Since any set of functions
in D(Ω), bounded in W̊ 1

p (Ω), is relatively compact in Lp,M (Ω,μ(�)), then for
all v ∈ D(Ω)

∥∥χB |v|p
∥∥

LM (Ω,μ(�))
≤ ε(δ)

∫
Ω

(
|∇v|p + |v|p

)
dx,

where χB is the characteristic function of B and ε(δ) → 0 as δ → 0. To prove
this inequality we must note that Theorem 2.4.1/2, applied to the measure
μ(�), implies μ(�)(2B) → 0 as δ → 0. Since u equals zero outside 2B ∩ Ω we
have ∫

Ω

|u|p dx ≤ cδp
∫
Ω

|∇u|p dx.

Therefore,

μ(F )P−1
(
1/μ(F )

)
≤
(
1 + cδp

)
ε(δ)

∫
2B

|∇u|p dx.

Minimizing the last integral over P(F, 2B∩Ω) and using (2.4.5), we arrive at

πp,M (F,Ω) ≤
(
1 + cδp

)
ε(δ).

The necessity of (2.4.9) follows. The lemma is proved. ��

Proof of Theorem 1. Sufficiency. Let ζ ∈ C∞(Rn), 0 ≤ ζ ≤ 1, |∇ζ| ≤ c�−1,
ζ = 0 in a neighborhood of B�/2, ζ = 1 outside B�. It is clear that
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∥∥|u|p∥∥1/p

LM (Ω,μ)
≤
∥∥(1 − ζ)p|u|p∥∥1/p

LM (Ω,μ)
+
∥∥ζp|u|p∥∥1/p

LM (Ω,μ)

≤
∥∥|u|p∥∥1/p

LM (Ω,μ(�))
+
∥∥|ζu|p∥∥1/p

LM (Ω,μ)
. (2.4.11)

By the first part of Theorem 2.4.1/1, applied to the set Ω\B̄�/2, by (2.4.7)
and the inequality

πp,M (F,Ω\B̄�/2) ≤ πp,M (F,Ω),

given any ε, there exists a number � > 0 such that
∥∥|ζu|p∥∥1/p

LM (Ω,μ)
≤ ε
∥∥∇(ζu)

∥∥
Lp(Ω)

.

Since |∇ζ| ≤ c�−1 ≤ c|x|−1 and
∥∥|x|−1u

∥∥
Lp(Ω)

≤ c‖∇u‖Lp(Ω),

we have ∥∥|ζu|p∥∥1/p

LM (Ω,μ)
≤ cε‖∇u‖Lp(Ω).

The last inequality along with (2.4.11) implies
∥∥|u|p∥∥1/p

LM (Ω,μ)
≤
∥∥|u|p∥∥1/p

LM (Ω,μ(�))
+ cε‖∇u‖Lp(Ω). (2.4.12)

Obviously, (2.4.6) implies (2.4.9). Therefore, the lemma guarantees that any
set of functions in D(Ω), bounded in L̊1

p(Ω), is compact in Lp,M (Ω,μ(�)). This
together with (2.4.12) completes the proof of the first part of the theorem.

Necessity. Let F be a compactum in Ω with diam(F ) ≤ δ < 1. Duplicating
the proof of necessity in the Lemma and replacing μ(�) there by μ, we arrive
at the inequality πp,M (F,Ω) ≤ (1 + cδp)ε(δ) and hence at (2.4.6).

Now let F ⊂ Ω\B̄�. Using the compactness in Lp,M (Ω,μ) of any set of
functions in D(Ω), which are bounded in L̊1

p(Ω), we obtain

∥∥χΩ\B�
|u|p

∥∥1/p

LM (Ω,μ)
≤ ε�‖∇u‖Lp(Ω),

where ε� → 0 as �→ 0 and u is an arbitrary function in D(Ω). In particular,
the last inequality holds for any u ∈ P(F,Ω) and therefore

μ(F )P−1
(
1/μ(F )

)
≤ εp�‖∇u‖

p
Lp(Ω).

Minimizing the right-hand side over the set P(F,Ω), we arrive at (2.4.7). The
theorem is proved. ��

Proof of Theorem 2. We shall use the same notation as in the proof of
Theorem 1.

Sufficiency. From (2.4.4), where δ = 1 and Ω is replaced by Ω\B̄�/2,
together with (2.4.8), it follows that given any ε > 0, there exists a � > 0 such
that
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∥∥|ζu|p∥∥1/p

LM (Ω,μ)
≤ ε
(∥∥∇(uζ)

∥∥
Lp(Ω)

+ ‖ζu‖Lp(Ω)

)
.

This together with (2.4.11) yields
∥∥|u|p∥∥1/p

LM (Ω,μ)
≤
∥∥|u|p∥∥1/p

LM (Ω,μ(�))
+ cε‖u‖W 1

p (Ω).

The remainder of the proof is the same as the proof of sufficiency in the
preceding theorem.

Necessity. The condition (2.4.6) can be derived in the same way as in the
proof of necessity in Theorem 1.

Let F ⊂ Ω\B̄�, � > 8, diam(F ) ≤ 1. From the compactness in Lp,M (Ω,μ)
of any set of functions in D(Ω), bounded in W̊ 1

p (Ω), it follows that
∥∥χΩ\B�/2

|u|p
∥∥

LM (Ω,μ)
≤ ε�‖u‖pW 1

p (Ω),

where ε� → 0 as �→ ∞ and u is an arbitrary function in D(Ω). We include
F inside concentric balls B and 2B with radii 1 and 2 and let u denote any
function in P(F, 2B∩Ω). Using the same argument as in the proof of necessity
in the Lemma we arrive at

πp,M (F,Ω) ≤ (1 + c)ε�,

which is equivalent to (2.4.8). The theorem is proved. ��

Remark. Let us compare (2.4.6) and (2.4.9). Clearly, (2.4.9) results from
(2.4.6). The following example shows that the converse assertion is not valid.
Consider a sequence of unit balls B(ν) (ν = 1, 2, . . . ), with dist (B(ν),B(μ)) ≥
1 for μ �= ν. Let Ω = R

n and

μ(F ) =
∫
F

p(x) dx,

where

p(x) =
{
�−2+ν−1

for x ∈ B(ν),
0 for x /∈

⋃∞
ν=1 B(ν).

Here � is the distance of x from the center of B(ν).
We shall show that the measure μ satisfies the condition (2.4.9) with p = 2,

M(t) = t. First of all we note that for any compactum F ⊂ B(ν)

μ(F ) =
∫
F

�−2+1/ν dx ≤
∫
∂B1

∫ r(F )

0

�n−3+1/ν d�dω,

where

r(F ) =
[
n

ω
mn(F )

]1/n
.

To estimate cap(F ), i.e., cap2(F,Rn), we apply the isoperimetric inequal-
ity (2.2.12)
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ω−1
n (n− 2)−1 cap(F ) ≥

[
n

ωn
mn(F )

](n−2)/n

=
[
r(F )

]n−2
.

Now

π
(
F,Rn

)
≤ r(F )1/ν

(n− 2)(n− 2 + 1/ν)
,

and (2.4.9) follows.
If F is the ball {x : � ≤ δ}, we have

π
(
F,Rn

)
=

δ1/ν

(n− 2)(n− 2 + 1/ν)
.

Consequently,

sup
{
π
(
F,Rn

)
: F ⊂ R

n, diam(F ) ≤ 2δ
}

≥ lim
ν→∞

δ1/ν

(n− 2)(n− 2 + 1/ν)
= (n− 2)−2

and (2.4.6) is not valid.

2.4.3 Comments to Sect. 2.4

The material of this section is borrowed from Sect. 2.5 of the author’s book
[552]. Sharp embeddings of Birnbaum–Orlicz–Sobolev spaces of order one into
the space L∞(Ω) will be considered in Chap. 7 of the present book (see also
Maz’ya [528, 545]).

An optimal Sobolev embedding theorem in Birnbaum–Orlicz spaces was
established by Cianchi in [194], and in alternative equivalent form, in [195].
A basic version of this result states that if Ω is an open set in R

n with finite
measure, M is any Young function, and Mn is the Young function given by

Mn(t) = M
(
H−1(t)

)
for t > 0,

where

H(s) =
(∫ s

0

(
t

M(t)

) 1
n−1

dt
)n−1

n

for s ≥ 0,

then there exists a constant C, depending on n, such that

‖u‖LMn (Ω) ≤ C‖∇u‖LM (Ω)

for every weakly differentiable function u vanishing, in the appropriate sense,
on ∂Ω. Moreover, the Birnbaum–Orlicz space LMn(Ω) is optimal. Analogous
results for functions that need not vanish on ∂Ω, and for domains Ω with
infinite measure [194]. The case of higher-order derivatives was dealt with by
Cianchi in [200].
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Some necessary and sufficient conditions for embeddings of Sobolev-type
spaces into Birnbaum–Orlicz spaces will be treated in Chap. 11 of this book.

Analog of certain results in the present section were obtained by Klimov
[431–435] for the so-called ideal function spaces, for which the multiplication
by any function α with |α(x)| ≤ 1 a.e. is contractive.

A few words on the so-called logarithmic Sobolev inequalities. Let μ be a
measure in Ω, μ(Ω) = 1, p ≥ 1 and let νp be the capacity minimizing function
generated by μ (see Definition 2.3.2). The inequality

exp
(
−
∫
Ω

log+ 1
|u| dμ

)
≤ 4‖∇u‖Lp(Ω) exp

(
−1
p

∫ 1

0

log νp(s) ds
)

(2.4.13)

for all u ∈ L̊1
p(Ω) was proved in 1968 by Maz’ya and Havin [568]. It shows, in

particular, that ∫ 1

0

νp(s) ds = +∞

implies ∫ 1

0

log+ 1
|u| dμ = +∞

for all u ∈ L1
p(Ω). This fact allows for certain applications of (2.4.13) to

complex function theory [568] (see also Sect. 14.3 of the present book for
another logarithmic inequality of a similar nature).

Inequality (2.4.13) is completely different from the logarithmic Sobolev
inequality obtained in 1978 by Weissler [793],

exp
(

4
n

∫
Rn

|u|2 log |u| dx
)
≤ 2
πen

∫
Rn

|∇u|2 dx,

where ‖u‖L2(Rn) = 1, which is equivalent (see Beckner and Pearson [81]) to
the well-known Gross inequality of 1975 [327],

∫
Rn

u2 log
(
u2
/∫

Rn

u2 dμ
)

dμ ≤ C
∫

Rn

|∇u|2 dμ, (2.4.14)

where
dμ = (2π)−n/2 exp

(
−|x|2/2

)
dx.

Various extensions, proofs, and applications of (2.4.14) were the subject of
many studies: R.A. Adams [24]; Stroock and Zegarlinski [730]; Holley and
Stroock [381]; Davies [222]; Zegarlinski [810]; Beckner [77, 80]; Gross [328];
Aida, Masuda, and Shigekawa [32]; Aida and Stroock [33]; Bakry [63]; Bakry,
Ledoux, and Qian [65]; Chen [185]; F.-Y. Wang [787–790]; Bodineau and Helf-
fer [121]; Bobkov and Götze [114]; Ledoux [483–485]; Yosida [808]; Guionnet
and Zegarlinski [330]; Xiao [799]; Lugiewicz and Zegarlinski [509]; Otto and
Reznikoff [655]; Inglis and Papageorgiou [398]; Cianchi and Pick [207]; Martin
and M. Milman [521]; et al.
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2.5 Structure of the Negative Spectrum of the
Multidimensional Schrödinger Operator

In this section we show how the method and results of Sect. 2.4 can be applied
to the spectral theory of the Schrödinger operator.

2.5.1 Preliminaries and Notation

We start with some definitions from the theory of quadratic forms in a Hilbert
space H. Let L be a dense linear subset of H and let S[u, u] be a quadratic
form defined on L . If there exists a constant γ such that for all u ∈ L

S[u, u] ≥ γ‖u‖2
H , (2.5.1)

then the form S is called semibounded from below. The largest constant γ
in (2.5.1) is called the greatest lower bound of the form S and is denoted by
γ(S). If γ(S) > 0, then S is called positive definite. For such a form the set L
is a pre-Hilbert space with the inner product S[u, u]. If L is a Hilbert space
the form S is called closed. If any Cauchy sequence in the metric S[u, u]1/2

that converges to zero in H also converges to zero in the metric S[u, u]1/2,
then S is said to be closable. Completing L and extending S by continuity
onto the completion L̄ , we obtain the closure S̄ of the form S.

Now, suppose that the form S is only semibounded from below. We do not
assume γ(S) > 0. Then for any c > −γ(S) the form

S[u, u] + c[u, u] (2.5.2)

is positive definite. By definition, S is closable if the form (2.5.2) is closable
for some, and therefore for any, c > γ(S). The form S + cE− cE is called the
closure S̄ of S.

It is well known and can be easily checked that a semibounded closable
form generates a unique self-adjoint operator S̃, for which

(S̃u, u) = S[u, u] for all u ∈ L .

Let Ω be an open subset of R
n, n > 2, and let h be a positive number.

We shall consider the quadratic form

Sh[u, u] = h

∫
Ω

|∇u|2 dx−
∫

|u|2 dμ(x)

defined on D(Ω).
We shall study the operator S̃h generated by the form Sh[u, u] under the

condition that the latter is closable. If the measure μ is absolutely continuous
with respect to the Lebesgue measure mn and the derivative p = dμ/dmn is
locally square integrable, then the operator S̃h is the Friedrichs extension of
the Schrödinger operator −hΔ− p(x).
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In this section, when speaking of capacity, we mean the 2-capacity and use
the notation cap.

Before we proceed to the study of the operator S̃h we formulate two lemmas
on estimates for capacity that will be used later. For the proofs of these lemmas
see the end of the section.

Lemma 1. Let F be a compactum in Ω ∩Br. Then for R > r

cap(F,Br ∩Ω) ≤
{

(1 + 2r
R−r log Re1/2

r ) cap(F,Ω) for n = 3,

(1 + 2
n−3

r
R−r ) cap(F,Ω) for n > 3.

Lemma 2. Let F be a compactum in Ω\B̄R. Then for r < R

cap(F,Ω\B̄r) ≤
(

1 +
1

n− 2
r

R− r

)
cap(F,Ω).

All the facts concerning the operator S̃h will be formulated in terms of the
function

π(F,Ω) =

{
μ(F )

cap(F,Ω) for cap(F,Ω) > 0,
0 for cap(F,Ω) = 0,

which is a particular case of the function πp,M (F,Ω), introduced in Sect. 2.4,
for M(t) = |t|, p = 2.

2.5.2 Positivity of the Form S1[u, u]

The following assertion is a particular case of Theorem 2.4.1/1.

Theorem. 1. If for any compactum F ⊂ Ω

π(F,Ω) ≤ β, (2.5.3)

then for all u ∈ D(Ω)
∫
Ω

|u|2μ(dx) ≤ C
∫
Ω

|∇u|2 dx, (2.5.4)

where C ≤ 4β.
2. If (2.5.4) holds for all u ∈ D(Ω), then for any compactum F ⊂ Ω

π(F,Ω) ≤ C. (2.5.5)

Corollary. If

sup
F ⊂Ω

π(F,Ω) <
1
4
,
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then the form S1[u, u] is positive, closable in L2(Ω), and hence it generates a
self-adjoint positive operator S̃1 in L2(Ω).

Proof. The positiveness of S1[u, u] follows from the Theorem. Moreover,
inequality (2.5.4) implies

S1[u, u] ≥
[
1− 4 sup

F ⊂Ω
π(F,Ω)

] ∫
Ω

|∇u|2 dx. (2.5.6)

Let {uν}ν≥1, uν ∈ D(Ω), be a Cauchy sequence in the metric S1[u, u]1/2

and let uν converge to zero in L2(Ω). Then by (2.5.6), uν converges to zero
in L̊1

2(Ω) and it is a Cauchy sequence in L2(Ω,μ). Since
∫
Ω

|uν |2 dμ ≤ 4 sup
F ⊂Ω

π(F,Ω)
∫
Ω

|∇uν |2 dx,

then uν → 0 in L2(Ω,μ). Thus, S1[uν , uν ] → 0 and therefore the form S1[u, u]
is closable in L2(Ω). The corollary is proved. ��

We note that close necessary and sufficient conditions for the validity of
the inequality

∫
Ω

|u|2 dσ ≤ C
∫
Ω

|∇u|2 dx, u ∈ D(Ω),

where σ is an arbitrary charge in Ω, are contained in Theorem 2.3.10 for
Φ(x, y) = |y|, p = 2. The conditions in question coincide for σ ≥ 0. They
become the condition sup{π(F,Ω) : F ⊂ Ω} < ∞, which follows from the
Theorem.

2.5.3 Semiboundedness of the Schrödinger Operator

Theorem. 1. If

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
<

1
4
, (2.5.7)

then the form S1[u, u] is semibounded from below and closable in L2(Ω).
2. If the form S1[u, u] is semibounded from below in L2(Ω), then

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1. (2.5.8)

Proof. 1. If Π is a sufficiently large integer, then there exists δ > 0 such
that

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 1
Π + 2

)n

. (2.5.9)
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We construct a cubic grid in R
n with edge length H = δ/(Π + 2)

√
n.

We include each cube Qi of the grid inside concentric cubes Q
(1)
i and Q

(2)
i

with faces parallel to those of Qi. Let the edge lengths of Q
(1)
i and Q

(2)
i be

(Π + 1)H and (Π + 2)H, respectively. Since diam(Q(2)
i ) = δ then for any

compactum F ⊂ Q
(2)
i ∩Ω

π
(
F,Ω ∩ Q

(2)
i

)
≤ π(F,Ω) ≤ 1

4

(
Π − 1
Π + 2

)n

. (2.5.10)

Let u denote an arbitrary function in D(Ω) and let η denote an infinitely
differentiable function on R

n which is equal to unity in Q
(1)
i and to zero

outside Q
(2)
i . By (2.5.10) and Theorem 2.5.2 we have

∫
Q

(2)
i

|uη|2 dμ ≤
(
Π − 1
Π + 2

)n ∫
Q

(2)
i

∣∣∇(uη)
∣∣2 dx.

This implies
∫

Q
(1)
i

|u|2 dμ ≤
(
Π − 1
Π + 2

)n ∫
Q

(2)
i

(
|∇u|2 +

c1
H2

|u|2
)

dx.

Summing over i and noting that the multiplicity of the covering {Q(2)
i }

does not exceed (Π + 2)n and that of {Q(2)
i } is not less than Πn, we obtain

∫
Ω

|u|2 dμ ≤
(
1 −Π−n

) ∫
Ω

(
|∇u|2 + c

Π2

δ2
|u|2
)

dx. (2.5.11)

Thus, the form S1[u, u] is semibounded. Moreover, if K is a sufficiently
large constant, then

S1[u, u] +K
∫
Ω

|u|2 dx ≥ ε
∫
Ω

|∇u|2 dx, ε > 0.

Further, using the same argument as in the proof of Corollary 2.5.2, we can
easily deduce that the form S1[u, u] is closable in L2(Ω).

2. Let F be an arbitrary compactum in Ω with diam(F ) ≤ δ < 1. We
enclose F in a ball B with radius δ and construct the concentric ball B′ with
radius δ1/2.

We denote an arbitrary function in P(F,B′ ∩ Ω) by u. In virtue of the
semiboundedness of the form S1[u, u] there exists a constant K such that

∫
B′
u2 dμ ≤

∫
B′

(∇u)2 dx+K
∫
B′
u2 dx.

Obviously, the right-hand side of this inequality does not exceed
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(
1 +Kλ−1δ

) ∫
B′ ∩Ω

(∇u)2 dx,

where λ is the first eigenvalue of the Dirichlet problem for the Laplace operator
in the unit ball.

Minimizing the Dirichlet integral and taking into account that u = 1 on F ,
we obtain

μ(F ) ≤
(
1 +Kλ−1δ

)
cap(F,B′ ∩Ω).

By Lemma 2.5.1,

cap(F,B′ ∩Ω) ≤
(
1 + o(1)

)
cap(F,Ω),

where o(1) → 0 as δ → 0. Hence

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1 + o(1).

It remains to pass to the limit as δ → 0. The theorem is proved. ��

The two assertions stated in the following are obvious corollaries of the
Theorem. The second is a special case of Theorem 2.4.1/2.

Corollary 1. The condition

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
= 0 (2.5.12)

is necessary and sufficient for the semiboundedness of the form Sh[u, u] in
L2(Ω) for all h > 0.

Corollary 2. The inequality
∫
Ω

|u|2 dμ ≤ C
∫
Ω

(
|∇u|2 + |u|2

)
dx,

where u is an arbitrary function in D(Ω) and C is a constant independent
of u, is valid if and only if

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
<∞ (2.5.13)

for some δ > 0.

We shall give an example that illustrates an application of Theorem 2.5.2
and the theorem of the present subsection to the Schrödinger operator gener-
ated by a singular measure.

Example. Let M be a plane Borel subset of R
3. We define the measure

μ(F ) = m2(F ∩M) for any compactum F ⊂ R
3. (In the sense of distribution

theory the potential p(x) is equal to the Dirac δ function concentrated on the
plane set M .) Then
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π
(
F,R3

)
=
m2(F ∩M)

cap(F )
≤ m2(F ∩M)

cap(F ∩M)
.

Since
cap(F ∩M) ≥ 8π−1/2

[
m2(F ∩M)

]1/2
(cf. (2.2.16)), we have

π
(
F,R3

)
≤ π1/2

8
[
m2(F ∩M)

]1/2
. (2.5.14)

By Theorem 2.5.2 the form

S1[u, u] =
∫

R3
|∇u|2 dx−

∫
M

|u|2m2(dx)

is positive if m2(M) ≤ 4π−1. Using Corollary 1, from (2.5.14) we obtain that
the form Sh[u, u] is semibounded and closable in L2(R3) for all h > 0 for any
plane set M .

2.5.4 Discreteness of the Negative Spectrum

Let � be a fixed positive number and let μ(�) be the restriction of a measure
μ to the ball B� = {x : |x| < �}. Further, let μ� = μ− μ(�).

To exclude the influence of singularities of the measure μ, which are located
at a finite distance, we shall assume that any subset of D(Ω), bounded in
W̊ 1

2 (Ω) (or in L̊1
2(Ω)), is compact in L2(μ(�)). In Lemma 2.4.2 it is shown

that this condition is equivalent to

lim
δ→0

sup
{
π(F,Ω) : F ⊂ B� ∩Ω, diam(F ) ≤ δ

}
= 0 (2.5.15)

for any � > 0.
Now we formulate two well-known general assertions that will be used in

the following.

Lemma 1. (Friedrichs [292]). Let A[u, u] be a closed quadratic form in a
Hilbert space H with the domain D[A], γ(A) being its positive greatest lower
bound. Further, let B[u, u] be a real form, compact in D[A]. Then the form
A− B is semibounded from below in H and closed in D[A], and its spectrum
is discrete to the left of γ(A).

Lemma 2. (Glazman [309]). For the negative spectrum of a self-adjoint
operator A to be infinite it is necessary and sufficient that there exists a linear
manifold of infinite dimension on which (Au, u) < 0.

Now we proceed to the study of conditions for the spectrum of the
Schrödinger operator to be discrete.

Theorem. Let the condition (2.5.15) hold.
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1. If

lim
δ→∞

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
<

1
4
, (2.5.16)

then the form S1[u, u] is semibounded from below closable in L2(Ω), and the
negative spectrum of the operator S̃1 is discrete.

2. If the form S1[u, u] is semibounded from below and closable in L2(Ω),
and the negative spectrum of the operator S̃1 is discrete, then

lim
δ→∞

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
≤ 1. (2.5.17)

Proof. 1. We show that the form S1[u, u] is semibounded from below and
closable in L2(Ω), and that for any positive γ the spectrum of the operator
S̃1+2γI is discrete to the left of γ. This will yield the first part of the theorem.

By (2.5.16), there exists a sufficiently large integer Π such that

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 2
Π + 2

)n

for all δ > 0.
Given any δ, we can find a sufficiently large number � = �(δ) so that

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 1
Π + 2

)n

.

Hence

sup
{
μ(�)(F )

cap(F,Ω)
: F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 1
Π + 2

)n

.

If we replace μ(�) here by μ, then we obtain the condition (2.5.9), which was
used in the first part of Theorem 2.5.3 for the proof of inequality (2.5.11). We
rewrite that inequality, replacing μ by μ(�):

∫
Ω

|u|2 dμ(�) ≤
(
1 −Π−n

) ∫
Ω

(
|∇u|2 + c

Π2

δ2
|u|2
)

dx. (2.5.18)

Let γ denote an arbitrary positive number. We specify δ > 0 by the equal-
ity cΠ2(1 −Π−n)δ−2 = γ and find � corresponding to δ. Then

∫
Ω

|u|2 dμ(�) ≤
(
1 −Π−n

) ∫
Ω

|∇u|2 dx+ γ
∫
Ω

|u|2 dx.

Hence the form

A[u, u] =
∫
Ω

|∇u|2 −
∫
Ω

|u|2 dμ(�) + 2γ
∫
Ω

|u|2 dx,
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majorizes

Π−n

∫
Ω

|∇u|2 dx+ γ
∫
Ω

|u|2 dx.

This means that the formA[u, u] has a positive lower bound γ and is closable in
L2(Ω). Let Ā[u, u] denote the closure of the form A[u, u]. Clearly, the domain
of the form Ā[u, u] coincides with W̊ 1

2 (Ω).
By (2.5.15) and Corollary 2.5.3/2, the form

B[u, u] =
∫
Ω

|u|2 dμ(�)

is continuous in W 1
2 (Ω) and is closable in W̊ 1

2 (Ω). Lemma 2.4.2 ensures the
compactness of the form B̄[u, u] in W̊ 1

2 (Ω). It remains to apply Lemma 1 to
Ā[u, u] and B̄[u, u].

2. Suppose that

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam ≤ δ

}
> 1 + α, α > 0,

for some δ. Then there exists a sequence of compacta Fν with diam(Fν) ≤ δ,
which tends to infinity and satisfies

μ(Fν) > (1 + α) cap(Fν , Ω). (2.5.19)

We include Fν in a ball B(ν)
δ with radius δ. Let B(ν)

� denote a concentric ball
with a sufficiently large radius � that will be specified later. Without loss of
generality, we may obviously assume that the balls B(ν)

� are disjoint.
By Lemma 2.5.1/1,

cap
(
Fν , B

(ν)
� ∩Ω

)
≤
(
1 + ε(�)

)
cap(Fν , Ω),

where ε(�) → 0 as �→∞. This and (2.5.19) imply

μ(Fν) > K cap
(
Fν , B

(ν)
� ∩Ω

)
, (2.5.20)

where
K =

1 + α
1 + ε(�)

.

Let � be chosen so that the constant K exceeds 1. By (2.5.20) there exists a
function uν in P(Fν , B

(ν)
� ∩Ω) such that∫
B

(ν)
�

u2
ν dμ > K

∫
B

(ν)
�

(∇uν)2 dx.

Hence
S1[uν , uν ] < −(K − 1)

λ

�2

∫
Ω

u2
ν dx,

where λ is the first eigenvalue of the Dirichlet problem for the Laplace operator
in the unit ball.

Now, Lemma 2 implies that the spectrum of the operator S̃1 has a limit
point to the left of −(K − 1)λ�−2. So we arrive at a contradiction. ��
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2.5.5 Discreteness of the Negative Spectrum of the Operator S̃h

for all h

The following assertion contains a necessary and sufficient condition for the
discreteness of the negative spectrum of the operator S̃h for all h > 0. We
note that although the measure μ in Theorem 2.5.4 is supposed to have no
strong singularities at a finite distance (condition (2.5.17)), the corresponding
criterion for the family of all operators {S̃h}h>0 is obtained for an arbitrary
nonnegative measure.

Corollary. The conditions

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
= 0 (2.5.21)

and
lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ 1

}
= 0 (2.5.22)

are necessary and sufficient for the semiboundedness of the form Sh[u, u] in
L2(Ω) and for the discreteness of the negative spectrum of the operator S̃h for
all h > 0.

We also note that the semiboundedness of the form Sh[u, u] for all h > 0
implies that Sh[u, u] is closable in L2(Ω) for all h > 0.

Proof. Sufficiency. We introduce the notation

l(δ) = lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
.

First we note that (2.5.21) implies (2.5.15). Therefore, according to Theo-
rem 2.5.4, the condition l(δ) ≡ 0, combined with (2.5.21), is sufficient for the
semiboundedness of the form Sh[u, u] and for the discreteness of the negative
spectrum of the operator S̃h for all h > 0.

To prove the sufficiency of the conditions l(1) = 0 and (2.5.21) we represent
an arbitrary compactum F with diam(F ) ≤ δ′, δ′ > δ, as the union

⋃N
ν=1 Fν ,

where diam(Fν) ≤ δ and N depends only on δ′/δ and n. Since cap(F,Ω) is a
nondecreasing function of F , then

μ(F )
cap(F,Ω)

≤
N∑

ν=1

μ(Fν)
cap(Fν , Ω)

.

This and the monotonicity of l(δ) immediately imply l(δ) ≤ l(δ′) ≤ Nl(δ),
which proves the equivalence of the conditions l(δ) ≡ 0 and l(1) = 0.

Necessity. If the form Sh[u, u] is semibounded for all h > 0, then by Corol-
lary 2.5.3/1 the condition (2.5.21) holds together with (2.5.15). Under (2.5.15)
Theorem 2.5.4 implies the necessity of l(δ) ≡ 0 which is equivalent to l(1) = 0.
The corollary is proved. ��
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2.5.6 Finiteness of the Negative Spectrum

Theorem. Suppose that the condition (2.5.15) holds.
1. If

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
<

1
4
, (2.5.23)

then the form S1[u, u] is semibounded from below and closable in L2(Ω), and
the negative spectrum of the operator S̃1 is finite.

2. If the form S1[u, u] is semibounded from below and closable in L2(Ω),
and the negative spectrum of the operator S̃1 is finite, then

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
≤ 1. (2.5.24)

Proof. 1. Since for any compactum F ⊂ Ω

μ(F )
cap(F,Ω)

≤ μ(F\B�)
cap(F\B�, Ω)

+
μ(F ∩ B̄�)

cap(F ∩ B̄�, Ω)
, (2.5.25)

conditions (2.5.15) and (2.5.23) imply

lim
δ→0

{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
<

1
4
.

According to the last inequality and Theorem 2.5.3, the form S1[u, u] is
semibounded and closable in L2(Ω). From (2.5.11) it follows that the metric

C

∫
Ω

|u|2 dx+ S1[u, u]

is equivalent to the metric of the space W̊ 1
2 (Ω) for C large enough.

Turning to condition (2.5.23), we note that there exists a positive constant
α such that

sup
{
π(F,Ω) : F ⊂ Ω,F ⊂ Ω\B�0

}
<

1
4
− α

for sufficiently large �0. Hence

sup
{
μ(�0)(F )
cap(F,Ω)

: F ⊂ Ω
}
<

1
4
− α,

and by Theorem 2.5.2 the form

(1 − 4α)
∫
Ω

|∇u|2 dx−
∫
Ω

|u|2μ(�0)(dx)

is positive. Therefore for any u ∈ D(Ω)
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S1[u, u] ≥ 4α
∫
Ω

|∇u|2 dx−
∫
Ω

|u|2μ(�0)(dx).

We estimate the right-hand side by inequality (2.4.10) with ε = 2α, p = 2,
M(t) = |t|:

S1[u, u] ≥ 2α
∫
Ω

|∇u|2 dx−K
∫
B2�0 ∩Ω

|u|2 dx. (2.5.26)

Passing to the closure of the form S1[u, u], we obtain (2.5.26) for all u ∈
W̊ 1

2 (Ω).
Since any set, bounded in L̊1

2(Ω), is compact in the metric
(∫

B� ∩Ω

|u|2 dx
)1/2

for any � > 0, the form

2α
∫
Ω

|u|2 dx−K
∫
B2�0 ∩Ω

|u|2 dx,

is nonnegative up to a finite-dimensional manifold. Taking (2.5.26) into ac-
count, we may say the same for the form S1[u, u]. Now the result follows from
Lemma 2.5.4/2.

2. Suppose

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
> 1 + α,

where α > 0.
Let {�k}k≥1 denote an increasing sequence of positive numbers such that

�k�
−1
k+1

k→∞−−−−→ 0. (2.5.27)

We construct the subsequence {�kν}ν≥1, defined as follows: Let k1 = 1. We
find a compactum F1, contained in Ω\B̄�k1

, such that π(F1, Ω) > 1 + α.
Further we select k2 to be so large that F1 is contained in B�k2

. Let F2 denote
a compactum in Ω\B�k2+1 such that π(F2, Ω) > 1 + α. If numbers k1, . . . , kν
and compacta F1, . . . , Fν have already been chosen, then kν+1 is defined by
the condition Fν ⊂ B�kν+1

. The set Fν+1 ⊂ Ω\B�kν+1+1 must be chosen to
satisfy the inequality

π(Fν+1, Ω) > 1 + α.

Thus we obtained a sequence of compacta Fν ⊂ Ω with Fν in the spherical
layer B�kν+1

\B̄�kν+1 and subject to the condition

μ(Fν) > (1 + α) cap(Fν , Ω). (2.5.28)

We introduce the notation Rν = B�kν+1+1\B̄�kν
. By Lemma 2.5.1/2, where

r = �kν and R = �kν+1,
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cap(Fν , Ω ∩Rν) ≤
(

1 + (n− 2)−1 �kν

�kν+1 − �kν

)
cap(Fν , Ω ∩B�kν+1+1),

which along with condition (2.5.27) implies

cap(Fν , Ω ∩Rν) ≤
[
1 + o(1)

]
cap(Fν , Ω ∩B�kν+1+1). (2.5.29)

From Lemma 2.5.1/1 with r = �kν+1 and R = �kν+1+1 it follows that

cap(Fν , Ω ∩B�kν+1+1) ≤
[
1 + o(1)

]
cap(Fν , Ω).

According to (2.5.29),

cap(Fν , Ω ∩Rν) ≤
[
1 + o(1)

]
cap(Fν , Ω).

Hence by (2.5.28), for sufficiently large ν,

μ(Fν) > (1 + α′) cap(Fν , Ω ∩Rν),

where α′ is a positive constant.
Now we can find a sequence of functions uν ∈ P(Fν , Ω ∩Rν) such that

∫
Rν ∩Ω

u2
νμ(dx) > (1 + α′)

∫
Rν ∩Ω

(∇uν)2 dx,

which yields the inequality S1[uν , uν ] < 0. It remains to note that the supports
of the functions uν are disjoint and therefore the last inequality holds for all
linear combinations of uν . This and Lemma 2.5.4/2 imply that the negative
spectrum of the operator S1 is infinite. The theorem is proved. ��

2.5.7 Infiniteness and Finiteness of the Negative Spectrum of the
Operator S̃h for all h

We shall find criteria for the infiniteness and for the finiteness of the negative
spectrum of the operator S̃h for all h. We underline that here, as in the proof
of the discreteness criterion in Corollary 2.5.5, we obtain the necessary and
sufficient conditions without additional assumptions on the measure μ.

Corollary 1. Conditions (2.5.21) and

sup
{
π(F,Ω) : F ⊂ Ω

}
= ∞ (2.5.30)

are necessary and sufficient for the semiboundedness of the form Sh[u, u] in
L2(Ω) and for the infiniteness of the spectrum of the operator S̃h for all h > 0.

Proof. By Corollary 2.5.3/1, (2.5.21) is equivalent to the semiboundedness
of the form Sh[u, u] for all h > 0.

We must prove that the criterion
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lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
= ∞, (2.5.31)

which follows from Theorem 2.5.6, is equivalent to (2.5.30). Obviously, (2.5.30)
is a consequence of (2.5.31). Assume that the condition (2.5.30) is valid. Taking
into account (2.5.21), we obtain

sup
{
π(F,Ω) : F ⊂ B� ∩Ω

}
<∞

for any �. On the other hand, (2.5.30) implies

lim
�→∞

sup
{
π(F,Ω) : F ⊂ B� ∩Ω

}
= ∞.

We choose a sequence �ν → ∞ such that

sup
{
π(F,Ω) : F ⊂ B�ν+1 ∩Ω

}
> 2 sup

{
π(F,Ω) : F ⊂ B�ν ∩Ω

}
.

From this and inequality (2.5.25) we obtain

sup
{
π(F,Ω) : F ⊂ R�ν ,�ν+1 ∩Ω

}
≥ sup

{
π(F,Ω) : F ⊂ B�ν ∩Ω

}
,

where R�,�′ = B�′\B̄�. Hence

sup
{
π(F,Ω) : F ⊂ R�ν ,�ν+1 ∩Ω

} ν→∞−−−−→∞,

and the result follows. ��

Corollary 2. Conditions (2.5.21) and

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
= 0 (2.5.32)

are necessary and sufficient for the semiboundedness of S̃h and for the finite-
ness of the negative spectrum of S̃h for all h > 0.

The necessity and sufficiency of conditions (2.5.21) and (2.5.32) immedi-
ately follow from Theorem 2.5.6.

2.5.8 Proofs of Lemmas 2.5.1/1 and 2.5.1/2

The following facts are well known (cf. Landkof [477]). For n ≥ 3 and for any
open set Ω ⊂ R

n there exists a unique Green function G(x, y) of the Dirichlet
problem for the Laplace operator.

Let μ be a nonnegative measure in Ω. Let V μ denote the Green potential
of the measure μ, i.e.,

V μ(x) =
∫
Ω

G(x, y)μ(dy).
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Obviously, V μ is a harmonic function outside the support of the measure μ.
There exists a unique capacitary distribution of a compactum F with respect
to Ω, i.e., a measure μF , supported on F , such that V μF (x) ≤ 1 in Ω and

μF (F ) = (n− 2)−1ω−1
n cap(F,Ω).

The potential V μF is called the capacitary potential of F relative to Ω. If F is
the closure of an open set with C∞-smooth boundary, then V μF is a smooth
function in Ω\F , equal to unity on F , and continuous in Ω.

Proof of Lemma 2.5.1/1. Using the continuity of the capacity from the
right, we can easily reduce the proof for an arbitrary compactum to the con-
sideration of a compactum F ⊂ Br ∩ Ω, which is the closure of an open set
with a C∞-smooth boundary.

Let V μF denote the capacitary potential of F relative to Ω and let η
denote a continuous piecewise linear function, equal to unity on [0, r], and to
zero outside [0, R].

The function u(x) = η(|x|)V μF (x) can be approximated in L̊1
2(Ω∩BR) by

functions in N(F,BR ∩Ω). Hence

cap(F,BR ∩Ω) ≤
∫
BR ∩Ω

|∇u|2 dx. (2.5.33)

We extend V μF to be zero outside Ω. It is readily checked that
∫
BR ∩Ω

|∇u|2 dx =
∫
BR

∣∣∇V μF
∣∣2η2 dx+A+B, (2.5.34)

where

A =
1

R− r

∫
∂Br

(
V μF

)2
s(dx),

B =
n− 1

(R− r)2
∫
BR \Br

(
V μF

)2R− |x|
|x| dx.

Obviously, ∫
Ω

∣∣∇V μF
∣∣2η2 dx ≤ cap(F,Ω). (2.5.35)

Now we note that∫
∂B�

V μF s(dx) =
∫
F

μF (dy)
∫
∂B�

G(x, y)s(dx) ≤
∫
F

μF (dy)
∫
∂B�

s(dx)
|x− y|n−2

.

The integral over ∂B� is a single-layer potential and it is equal to a constant
on ∂B�. Hence, for y ∈ B�,

∫
∂B�

s(dx)
|x− y|n−2

= ωn�.
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Thus ∫
∂B�

V μF s(dx) ≤ (n− 2)−1� cap(F,Ω). (2.5.36)

The following inequality is a direct consequence of the maximum principle

V μF (x) ≤ rn−2

|x|n−2
for |x| ≥ r.

Now, the bound for A is

A ≤ (R− r)−1

∫
∂Br

V μF s(dx) ≤ r

(n− 2)(R− r) cap(F,Ω). (2.5.37)

We introduce spherical coordinates (�, ω) in the integral B. Then

B =
n− 1

(R− r)2
∫ R

r

�n−2(R− �) d�
∫
∂B�

(
V μF

)2
ω(dx).

Hence

B ≤ (n− 1)rn−2

R− r

∫ R

r

d�
∫
∂B�

V μF ω(dx).

Using (2.5.36), we obtain

B ≤ n− 1
n− 2

rn−2

R− r

∫ R

r

�2−n d� cap(F,Ω),

which along with (2.5.33)–(2.5.35) and (2.5.37) gives the final result. ��

Proof of Lemma 2.5.1/2. The general case can be easily reduced to the
consideration of a compactum F ⊂ Ω\B̄R, which is the closure of an open
set with a smooth boundary. Let V μF denote the capacitary potential of F
relative to Ω, extended by zero outside Ω.

The function

u(x) =

⎧⎪⎨
⎪⎩
V μF (x) for x ∈ Ω\BR,

R(|x|−r)
|x|(R−r)V

μF (x) for x ∈ Ω ∩ (BR\Br),

0 for x ∈ Ω ∩Br,

can be approximated in L̊1
2(Ω\B̄r) by the functions in N(F,Ω\B̄r). Therefore,

cap(F,Ω\B̄r) ≤
∫
Ω\B̄r

(∇u)2 dx.

This implies

cap(F,Ω\B̄r) ≤
∫
Ω

(
∇V μF

)2 dx+
r

R(R− r)

∫
∂BR

(V μF )2s(dx). (2.5.38)



2.5 Structure of the Negative Spectrum of the Multidimensional 203

Since V μF ≤ 1 and
∫
∂BR

V μF s(dx) ≤ (n− 2)−1R cap(F,Ω)

(cf. (2.5.36)), it follows that

r

R(R− r)

∫
∂Br

(
V μF

)2
s(dx) ≤ r

R− r (n− 2)−1 cap(F,Ω),

which together with (2.5.38) completes the proof. ��

2.5.9 Comments to Sect. 2.5

The presentation follows the author’s paper [534] and the main results were
announced in Maz’ya [531]. A number of results on the spectrum of the
Schrödinger operator are presented in the monograph by Glazman [309] who
used the so-called splitting method. Birman [100, 101] established some impor-
tant results in the perturbation theory of quadratic forms in Hilbert spaces.
In particular, he proved that the discreteness (the finiteness) of the negative
spectrum of the operator Sh = −hΔ − p(x) in R

n for p(x) ≥ 0 and for all
h > 0 is equivalent to the compactness of the embedding of W 1

2 (Rn)(L̊1
2(R

n))
into the space with the norm

(∫
Rn

|u|2p(x) dx
)1/2

.

Using such criteria, Birman derived the necessary or sufficient conditions for
the discreteness, finiteness, or infiniteness of the negative spectrum of Sh for
all h > 0. The statement of these conditions makes no use of the capacity. The
results of Birman’s paper [101] were developed in the author’s paper [534] the
content of which is followed here.

The theorems of Sect. 2.5 turned out to be useful in the study of the asymp-
totic behavior of eigenvalues of the Dirichlet problem for the Schrödinger op-
erator. Rozenblum [683] considered the operator H = −Δ+ q(x) in R

n with
q = q+ − q−, where q− ∈ Ln/2,loc, n ≥ 3. We state one of his results. Let a
cubic grid be constructed in R

n with d as the edge length of each cube and
let F (d) be the union of those cubes Q of the grid that satisfies the condition

sup
{∫

E
q−(x) dx
cap(E)

: E ⊂ 2Q

}
> γ,

where 2Q is the concentric homothetic cube having edge length 2d, γ = γ(n)
is a large enough number.

Then, for λ > 0, the number N (−λ,H) of eigenvalues of H that are less
than −λ satisfies the inequality
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N (−λ,H) ≤ c1
∫
F (c2λ1/2)

(
c3λ− q(x)

)n/2

+
dx,

where c1, c2, and c3 are certain constants depending only on n.
In the case Ω = R

n by Theorem 2.5.2, the inequality (2.5.4) with Ω = R
n

holds if and only if

sup
F

μ(F )
cap(F )

<∞,

where F is an arbitrary compact set in R
n. For the same case, other criteria

for the validity of (2.5.4) are known. The following one is due to Kerman and
Sawyer [420] (see Theorem 11.5/1 of the present book):

For every open ball B in R
n,∫

B

∫
B

dμ(x) dμ(y)
|x− y|n−2

≤ cμ(B).

Another two criteria for (2.5.4) were obtained by Maz’ya and Verbitsky [591]:

(i) The pointwise inequality

I1(I1μ)2(x) ≤ cI1(μ)(x) <∞ a.e.

holds, where I1 stands for the Riesz potential of order 1, i.e., I1μ = |x|1−n "μ.

(ii) For every compact set F ⊂ R
n,∫

F

(I1μ)2 dx ≤ c cap(F ).

One more condition necessary and sufficient for (2.5.4) was found by Ver-
bitsky [775]:

For every dyadic cube P in R
n,

∑
Q⊂P

[
μ(Q)

|Q|1−1/n

]2
|Q| ≤ cμ(P ),

where the sum is taken over all dyadic cubes Q contained in P and c does not
depend on P .

We now state the main result of the paper [592] by the author and Ver-
bitsky, characterizing arbitrary complex-valued distributions V subject to the
inequality ∣∣∣∣

∫
Rn

|u|2V dx
∣∣∣∣ ≤ c

∫
Rn

|∇u|2 dx for all u ∈ D . (2.5.39)

This characterization reduces the case of distributional potentials V to that
of nonnegative absolutely continuous weights. (Cf. Sect. 1.3.4, where similar
statements are established for functions of one variable.)
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Theorem. Let V ∈ D ′, n > 2. Then the inequality (2.5.39) holds, if and
only if there is a vector field Γ ∈ L2(Rn, loc) such that V = divΓ and

∫
Rn

∣∣u(x)∣∣2∣∣Γ(x)
∣∣2 dx ≤ C

∫
Rn

∣∣∇u(x)∣∣2 dx

for all u ∈ D . The vector field Γ can be chosen in the form Γ = ∇Δ−1V .

2.6 Properties of Sobolev Spaces Generated by
Quadratic Forms with Variable Coefficients

2.6.1 Degenerate Quadratic Form

In the preceding sections of the present chapter we showed that rather gen-
eral inequalities, containing the integral

∫
Ω

[Φ(x,∇u)]p dx, are equivalent to
isocapacitary inequalities that relate (p, Φ)-capacity and measures. Although
such criteria are of primary interest, we should note that their verification in
particular cases is often difficult. Even for rather simple quadratic forms

[
Φ(x, ξ)

]2 =
n∑

i,j=1

aij(x)ξiξj ,

the estimates for the corresponding capacities by measures are unknown.
Thus, the general necessary and sufficient conditions obtained in the

present chapter cannot diminish the value of straightforward methods of inves-
tigation of integral inequalities without using capacity. In the present section
this will be illustrated, using as an example the quadratic form

[
Φ(x, ξ)

]2 =
(
|xn| + |x′|2

)
ξ2n + |ξ′|2,

where x′ = (x1, . . . , xn−1), ξ′ = (ξ1, . . . , ξn−1).
By Corollary 2.3.4, the inequality

∫
Rn−1

[
u(x′, 0)

]2 dx′ ≤ c
∫

Rn

[
Φ(x,∇u)

]2 dx (2.6.1)

holds for all u ∈ D(Rn) if and only if

mn−1

(
{x ∈ g, xn = 0}

)
≤ c(2, Φ)-cap(g)

for any admissible set g. A straightforward proof of the preceding isoperimetric
inequality is unknown to the author. Nevertheless, the estimate (2.6.1) is true
and will be proved in the sequel.
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Theorem 1. Let

[
Φ(x,∇u)

]2 =
(
|xn| + |x′|2

)
(∂u/∂xn)2 +

n−1∑
i=1

(∂u/∂xi)2.

Then (2.6.1) is valid for all u ∈ D(Rn).

Proof. Let the integral in the right-hand side of (2.6.1) be denoted by Q(u).
For any δ ∈ (0, 1/2) we have

∫
Rn−1

∣∣u(x′, 0)
∣∣2 dx′ ≤ 2

∫
Rn

(|xn|+ |x′|2)1/2
|xn|(1−δ)/2|x′|δ

∣∣∣∣u ∂u∂xn
∣∣∣∣ dx

≤ 2
[
Q(u)

]1/2(∫
Rn

|xn|δ−1|x′|−2δ|u|2 dx
)1/2

. (2.6.2)

To give a bound for the last integral we use the following well-known gener-
alization of the Hardy–Littlewood inequality:

∫
Rn−1

(∫
Rn−1

f(y) dy
|x′ − y|n−1−δ

)2 dx′

|x′|2δ ≤ c
∫

Rn−1

[
f(y)

]2 dy. (2.6.3)

(For the proof of this estimate see Lizorkin [505]. It can also be derived as a
corollary to Theorem 1.4.1/2.) Since the convolution with the kernel |x′|δ+1−n

corresponds to the multiplication by |ξ′|−δ of the Fourier transform, (2.6.3)
can be written as∫

Rn−1
|u|2|x′|−2δ dx′ ≤ c

∫
Rn−1

[
(−Δx′ )δ/2u

]2 dx′,

where (−Δx′ )δ/2 is the fractional power of the Laplace operator. Now we find
that the right-hand side in (2.6.2) does not exceed

c

(
Q(u) +

∫
Rn

|xn|δ−1
[
(−Δx′ )δ/2u

]2 dx
)
. (2.6.4)

From the almost obvious estimate∫ ∞

0

g2tδ−1 dt ≤ c
(∫ ∞

0

(g′)2t dt+
∫ ∞

0

g2 dt
)
,

it follows that

|ξ′|2δ
∫

Rn

∣∣(Fx′ →ξ′u)(ξ′, xn)
∣∣2|xn|δ−1 dxn

≤ c
(∫

R1

∣∣∣∣
(
Fx′ →ξ′

∂u

∂xn

)
(ξ′, xn)

∣∣∣∣
2

|xn| dxn

+ |ξ′|2
∫

R1

∣∣(Fx′ →ξ′u)(ξ′, xn)
∣∣2 dxn

)
,
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where Fx′ →ξ′ is the Fourier transform in R
n−1. So the second integral in (2.6.4)

does not exceed
c

∫
Rn

(
|xn|(∂u/∂xn)2 + (∇x′u)2

)
dx.

The result follows. ��

The next assertion shows that Theorem 1 is exact in a certain sense.

Theorem 2. The space of restrictions to R
n−1 = {x ∈ R

n : xn = 0} of
functions in the set {u ∈ D(Rn) : Q(u) + ‖u‖2

L2(Rn) ≤ 1} is not relatively

compact in L2(B
(n−1)
1 ), where B(n−1)

� = {x′ ∈ R
n−1 : |x′| < �}.

Proof. Let ϕ denote a function in C∞
0 (B(n−1)

1 ) such that ϕ(y) = ϕ(−y),
‖ϕ‖L2(Rn−1) = 1 and introduce the sequence {ϕm}∞

m=1 defined by ϕm(y) =
m(n−1)/2ϕ(my). Since this sequence is normalized and weakly convergent to
zero in L2(B

(n−1)
1 ), it contains no subsequences converging in L2(B

(n−1)
1 ).

Further, let {vm}∞
m=1 be the sequence of functions in R

n defined by

vm(x) = F−1
η′ →x′ exp

{
−〈η〉2|xn|

}
Fx′ →η′ϕm,

where η ∈ R
n−1, 〈η〉 = (|η|2 + 1)1/2.

Consider the quadratic form

T (u) =
∫

Rn

[(
|xn| + |x′|2

)∣∣∣∣ ∂u∂xn
∣∣∣∣
2

+ |∇x′u|2 + |u|2
]

dx.

It is clear that

T (u) = (2π)1−n

∫
Rn

(
|xn|

∣∣∣∣∂Fu∂t
∣∣∣∣
2

+
∣∣∣∣ ∂∂t∇ηFu

∣∣∣∣
2

+ 〈η〉2|Fu|2
)

dη dxn.

Differentiating the function T (vm), we obtain from the last equality that
T (vm) does not exceed

c

∫
Rn

[(
1 + 〈η〉2|xn| + 〈η〉4|xn|3

)
〈η〉2|Fϕm|2 + 〈η〉4|∇Fϕm|2

]

× exp
(
−2〈η〉2|xn|

)
dη dxn.

Thus we obtain

T (vm) ≤ c

∫
Rn−1

(
〈η〉2|∇Fϕm|2 + |Fϕm|2

)
dη

= c1

(
n−1∑
i=1

‖xiϕm‖2
W 1

2 (Rn−1) + ‖ϕm‖2
L2(Rn−1)

)
≤ const.

Let ψ ∈ C∞
0 (B(n−1)

2 ), ψ = 1 on B(n−1)
1 . It is clear that (vmψ)|Rn−1 = ϕm

and T (vmψ) ≤ const. The sequence {vmψ/(T (vmψ))1/2}∞
m=1 is the required

counterexample. The theorem is proved. ��
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2.6.2 Completion in the Metric of a Generalized Dirichlet Integral

Consider the quadratic form

S[u, u] =
∫

Rn

(
aij(x)

∂u

∂xi

∂u

∂xj
+ u2

)
dx,

where ‖aij(x)‖ni,j=1 is a uniformly positive definite matrix, whose elements
aij(x) are smooth real functions.

Let the completion of C0,1
0 with respect to the norm (S[u, u])1/2 be denoted

by H̊(S). Further, we introduce the space H(S) obtained as the completion
with respect to this norm of the set of functions in C0,1 with the finite integral
S[u, u].

If the elements of the matrix ‖aij‖ni,j=1 are bounded functions, then
H̊(S) = W̊ 1

2 , H(S) = W 1
2 and both spaces, obviously, coincide. It is also

known that H̊(S) = H(S) if the functions aij do not grow too rapidly at
infinity. Here we consider the problem of the coincidence of H̊(S) and H(S)
in the general case.

Definition. Let E ⊂ R
n. In the present subsection the set E is said to

have finite H(S) capacity if there exists a function u ∈ C0,1 ∩ H(S) that is
equal to 1 on E.

Theorem 1. The spaces H̊(S) and H(S) coincide if and only if, for an
arbitrary domain G with finite H(S) capacity, there exists a sequence of func-
tions {ϕm}m≥1 in C0,1

0 that converges in measure to unity on G and is such
that

lim
m→∞

∫
G

aij(x)
∂ϕm

∂xi

∂ϕm

∂xj
dx = 0. (2.6.5)

Before we proceed to the proof, we note that if G is a bounded domain then
the sequence {ϕm}m≥1 always exists. We can put ϕm = ϕ where ϕ ∈ C0,1

0 ,
ϕ = 1 on G.

Proof. Sufficiency. We show that any function u ∈ C0,1 ∩ H(S) can be
approximated in H(S) by functions in H̊(S). Without loss of generality we
may assume that u ≥ 0.

First, we note that if t > 0 then Lt = {x : u(x) > t} is a set of finite
H(S) capacity. In fact, the function v(x) = t−1 min{u(x), t} equals unity on
Lt, satisfies a Lipschitz condition, and S[v, v] ≤ t−2S[u, u] <∞.

From the Lebesgue theorem it follows that the sequences min{u,m}, (u−
m−1)+, m = 1, 2, . . . , converge to u in H(S) (see Sect. 5.1.2). So we may
assume from the very beginning that u is bounded and vanishes on the exterior
of a bounded set G of finite H(S) capacity.

We denote the complements of the set G by Gj and then define the se-
quence
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u(m)(x) =

{
u(x) for x ∈

⋃
j≤mGj ,

0 for x ∈ R
n\
⋃

j≤mGj ,

j = 1, 2, . . . . It is clear that u(m) → u in H(S) as m → ∞. Since each u(m)

vanishes on the exterior of a finite number of domains, we may assume without
loss of generality that G is a domain.

Let {ϕm} be the sequence of functions specified for the domain G in the
statement of the theorem. Replacing {ϕm} by the sequence {ψm}, defined by
|ψm| = min{2, |ϕm|}, sgn ψm = sgn ϕm, we obtain a bounded sequence with
the same properties. Obviously, ψmu ∈ H̊(S) and ψmu→ u in L2. Moreover,

∫
Rn

aij
∂

∂xi
(u− uψm)

∂

∂xj
(u− uψm) dx

≤ 2
∫
G

(1 − ψm)2aij
∂u

∂xi

∂u

∂xj
dx+ 2

∫
G

u2aij
∂ψm

∂xi

∂ψm

∂xj
dx. (2.6.6)

Since the sequence

(1 − ψm)2
∑
i,j

aij
∂u

∂xi

∂u

∂xj
,

converges to zero in G with respect to the measure mn and is majorized by
the integrable function

9
∑
i,j

aij
∂u

∂xi

∂u

∂xj
,

the first integral on the right in (2.6.6) converges to zero. The convergence
to zero of the second integral follows from the boundedness of u and equal-
ity (2.6.5). Thus uψm → u in H(S). The required approximation is con-
structed.

Necessity. Let G be an arbitrary domain in R
n with finite H(S) capacity.

Let u denote a function in C0,1 ∩H(S), which is equal to unity on G. Since
H(S) and H̊(S) coincide u can be approximated in H(S) by the sequence
{ϕm}m≥1 contained in C0,1

0 . Noting that u = 1 on G and ϕm → u in L2(G),
we obtain that ϕm → 1 in G in measure. Furthermore,

∫
G

aij
∂ϕm

∂xi

∂ϕm

∂xj
dx =

∫
G

aij
∂

∂xi
(u− ϕm)

∂

∂xj
(u− ϕm) dx m→∞−−−−→ 0.

So the theorem is proved. ��

Although the above result is not very descriptive, it facilitates verification
of concrete conditions for coincidence or noncoincidence of H(S) and H̊(S).
We now present some of them.

Theorem 2. (cf. Maz’ya [536]). The spaces H(S) and H̊(S) coincide pro-
vided n = 1 or n = 2.
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Proof. Taking into account Theorem 1 and the discussion that follows its
statement, we arrive at the equality H(S) = H̊(S) if we show that any domain
G with finite H(S) capacity is bounded. The case n = 1 is obvious. Let n = 2
and u ∈ C0,1 ∩H(S), u = 1 on G.

Let O and P denote arbitrary points in G and let the axis Ox2 be directed
from O to P . Then

S[u, u] ≥ c
∫ |P |

0

dx2

∫
R1

((
∂u

∂x1

)2

+ u2

)
dx1 ≥ c1

∫ |P |

0

max
x1

[
u(x1, x2)

]2 dx2.

Taking into account that G is a domain and u = 1 on G we arrive at

max
x1

[
u(x1, x2)

]2 ≥ 1.

Therefore diam(G) ≤ cS[u, u], which completes the proof. ��

The following assertion shows that for n ≥ 3 the form S[u, u] must be sub-
jected to certain conditions by necessity. The result is due to Uraltseva [769].
Our proof, though different, is based on the same idea.

Theorem 3. Let n > 2. Then there exists a form S[u, u] for which H(S) �=
H̊(S).

Proof. 1. Consider the domain G = {x : 0 < xn < ∞, |x′| < f(xn)}
where x′ = (x1, . . . , xn−1) and f is a positive decreasing function in C∞[0,∞),
f(0) < 1. For x /∈ G we put aij(x) = δji .

For arbitrary functions aij on G, for any u ∈ C0,1, u = 1 on G, we have
S[u, u] = ‖u‖2

W 1
2
. This implies that G is a domain with finite H(S) capacity

if and only if cap(G) < ∞ (here, as before, cap is the Wiener capacity, i.e.,
2-cap). Clearly,

cap(G) ≤
∞∑
j=0

cap
(
{x ∈ G : j ≤ xn ≤ j + 1}

)

≤
∞∑
j=0

cap
(
{x : |x′| ≤ f(j), j ≤ xn ≤ j + 1}

)
.

This and the well-known estimates for the capacity of the cylinder (cf. Land-
kof [477] or Proposition 13.1.3/1 of the present book) yield

cap(G) ≤ c

∞∑
j=0

[
f(j)

]n−3 for n > 3,

cap(G) ≤ c

∞∑
j=0

∣∣log f(j)
∣∣−1 for n = 3.

Therefore G is a domain with finite H(S) capacity provided
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∫ ∞

0

[
f(t)

]n−3 dt <∞ for n > 3,
∫ ∞

0

∣∣log f(t)
∣∣−1 dt <∞ for n = 3.

2. In the interior of G we define the quadratic form aij(x)ξiξj by

aij(x)ξiξj = ξ2 +
(
g(xn)
f(xn)

)n−1

η(x)

(
f ′(xn)

n−1∑
i=1

xiξi + ξn

)2

,

where η ∈ C∞
0 (G), 0 ≤ η ≤ 1, η(x) = 1 on the set {x : 1 < xn < ∞, |x′| <

1
2f(xn)}, and g is an arbitrary positive function on [0,∞) satisfying the con-
dition ∫ ∞

0

[
g(t)

]1−n dt <∞.

Using the change of variable xn = yn, xi = f(yn)yi, 1 ≤ i ≤ n−1, we map
G onto the cylinder {y : 0 < yn <∞, |y′| < 1}. Obviously,

∫
G

(
g(xn)
f(xn)

)n−1

η(x)

(
f ′(xn)

n−1∑
i=1

xi
∂ϕ

∂xi
+
∂ϕ

∂xn

)2

dx

≥
∫
C

[
g(yn)

]n−1
(
∂ϕ

∂yn

)2

dy,

where C = {y : 1 < yn <∞, |y′| < 1
2}. Applying the Cauchy inequality to the

last integral we obtain
∫ ∞

1

[
g(t)

]1−n dt
∫
G

aij
∂ϕ

∂xi

∂ϕ

∂xj
dx ≥

∫
|y′ |≤1/2

(∫ ∞

1

∣∣∣∣ ∂ϕ∂yn
∣∣∣∣dyn

)2

dy′.

If ϕ ∈ C0,1
0 then the right-hand side exceeds∫

|y′ |<1/2

max
1<yn<∞

[
ϕ(y′, yn)

]2 dy′ ≥
∫
C1

ϕ2 dy,

where C1 = {y ∈ C : yn < 2}. Passing to the variables x1, . . . , xn on the right,
we arrive at∫ ∞

1

[
g(t)

]1−n dt
∫
G

aij
∂ϕ

∂xi

∂ϕ

∂xj
dx ≥

∫
G1

ϕ2 dx
[f(xn)]n−1

,

where G1 = {x : |x′| < 1
2f(xn), 1 < xn < 2}. Thus, for any sequence {ϕm}m≥1

of functions in C0,1
0 converging in measure to unity in G we have

lim inf
m→∞

∫
G

aij∂ϕm/∂xi · ∂ϕm/∂xj dx > 0.

To conclude the proof, it remains to make use of Theorem 1. ��
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Theorem 3 has an interesting application to the problem of the self-
adjointness of an elliptic operator in L2(Rn), n ≥ 3 (cf. Uraltseva [769]).
Let the operator

u→ S0u = − ∂

∂xi

(
aij(x)

∂u

∂xj

)
+ u

be defined on C∞
0 . If ‖aij‖ni,j=1 is the matrix constructed in Theorem 3, then

H(S) = H̊(S) and hence there exists a function w ∈ H(S), which does not
vanish identically and is orthogonal to any v ∈ C∞

0 in H(S), i.e.,

0 =
∫

Rn

(
aij
∂w

∂xi

∂v

∂xj
+ wv

)
dx =

∫
Rn

wS0v dx.

Therefore the range of the closure S̄0 does not coincide with L2. If S̄0 is self-
adjoint then w ∈ Dom(S̄0) and S̄0w = 0. This obviously implies w = 0. We
arrived at a contradiction, which means that S̄0 is not self-adjoint. Thus, the
condition of the uniform positive definiteness of the matrix ‖aij‖ni,j=1 alone is
insufficient for the self-adjointness of S̄0.

2.6.3 Comments to Sect. 2.6

The results of Sect. 2.6.1 are due to the author [556], Sect. 2.6. We note that
the proof of Theorem 2.6.1/2 implies nondiscreteness of the spectrum of the
Steklov problem

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xj

)
+ a(x)u = 0 in Ω,

n∑
i,j=1

aij cos(ν, xj)
∂u

∂xi
= λu on ∂Ω,

under the condition that ∂Ω is characteristic at least at one point. Here ν
is a normal to ∂Ω and the matrix ‖aij‖ni,j=1 is nonnegative a(x) > 0. The
coefficients aij , a, and the surface ∂Ω are assumed to be smooth.

In conclusion, we note that the topic of Sect. 2.6.2 was also considered in
the paper by S. Laptev [482] who studied the form

S[u, u] =
∫

Rn

(
α(x)(∇u)2 + u2

)
dx,

where α(x) ≥ const > 0. He presented an example of a function α for which
H(S) �= H̊(S) and showed that H(S) and H̊(S) coincide in each of the follow-
ing three cases: (i) α is a nondecreasing function in |x|, (ii) α(x) = O(|x|2+1),
and (iii) n = 3 and α depends only on |x|.
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2.7 Dilation Invariant Sharp Hardy’s Inequalities

2.7.1 Hardy’s Inequality with Sharp Sobolev Remainder Term

Here we find the best value of C for a particular case of the inequality
∫

Rn
+

|∇v|2 dx ≥ 1
4

∫
Rn

+

|v|2
x2
n

dx+ C‖xγnv‖2
Lq(Rn

+), (2.7.1)

which is equivalent to (2.1.36) with m = 1.

Theorem. For all u ∈ C∞(Rn
+), u = 0 on R

n−1, the sharp inequality

∫
Rn

+

|∇u|2 dx ≥ 1
4

∫
Rn

+

|u|2
x2
n

dx

+
πn/(n+1)(n2 − 1)

4(Γ (n
2 + 1))2/(n+1)

∥∥x−1/(n+1)
n u

∥∥2

L 2(n+1)
n−1

(Rn
+)

(2.7.2)

holds.

Proof. We start with the Sobolev inequality
∫

Rn+1
|∇w|2 dz ≥ Sn+1‖w‖2

L 2(n+1)
n−1

(Rn+1) (2.7.3)

with the best constant

Sn+1 =
π(n+2)/(n+1)(n2 − 1)

4n/(n+1)(Γ (n
2 + 1))2/(n+1)

(2.7.4)

(see (2.3.23)).
Let us introduce the cylindrical coordinates (r, ϕ, x′), where r ≥ 0, ϕ ∈

[0, 2π), and x′ ∈ R
n−1. Assuming that w does not depend on ϕ, we write

(2.7.3) in the form

2π
∫

Rn−1

∫ ∞

0

(∣∣∣∣∂w∂r
∣∣∣∣
2

+ |∇x′w|2
)
r dr dx′

≥ (2π)(n−1)/(n+1)Sn+1

(∫
Rn−1

∫ ∞

0

|w|2(n+1)/(n−1)r dr dx′
)(n−1)/(n+1)

.

Replacing r by xn, we obtain

∫
Rn

+

|∇w|2xn dx ≥ (2π)−2/(n+1)Sn+1

(∫
Rn

+

|w|2(n+1)/(n−1)xn dx
)(n−1)/(n+1)

.

It remains to set here w = x
1/2
n v and to use (2.7.4). ��
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2.7.2 Two-Weight Hardy’s Inequalities

As usual, here and elsewhere R
n
+ = {x = (x1, . . . , xn) ∈ R

n, xn > 0} and
C∞

0 (Rn
+) and C∞

0 (Rn
+) stand for the spaces of infinitely differentiable functions

with compact support in R
n
+ and R

n
+, respectively.

Theorem 1. The inequality
∫

Rn
+

|u(x)|p
(x2

n−1 + x2
n)1/2

≤ (2p)p
∫

Rn
+

xp−1
n

∣∣∇u(x)∣∣p dx (2.7.5)

holds for all u ∈ C∞
0 (Rn

+).

Proof. We put �2 = x2
n−1 + x2

n and denote the integrals on the left- and
right-hand sides by I and J , respectively. Integrating by parts, we obtain

I = −p
∫

Rn

xn�
−1|u|p−1 sgnu

∂u

∂xn
dx+

∫
Rn

x2
n�

−3|u|p dx.

We denote two summands in the right-hand side by I1 and I2. Clearly, by
Hölder’s inequality we have |I1| ≤ (p−1)/pJ 1/p. To obtain a bound for I2

we introduce cylindrical coordinates (z, �, θ) with z ∈ R
n−2, xn−1 + ixn =

� exp(iθ). Then

I2 = −p
∫

Rn−2
dz
∫ π

0

sin2 θ dθ
∫ ∞

0

|u|p−1 sgnu
∂u

∂�
�d� ≤ �I (p−1)/pJ 1/p.

Thus I ≤ 2pI (p−1)/pJ 1/p and (2.7.5) follows. ��

In this section we are concerned with generalizations of the inequality
∫

Rn
+

xn|∇u|2 dx ≥ Λ
∫

Rn
+

|u|2
(x2

n−1 + x2
n)1/2

dx, u ∈ C∞
0 (Rn

+). (2.7.6)

By substituting u(x) = x
−1/2
n v(x) into (2.7.6), one arrives at the improved

Hardy inequality
∫

Rn
+

|∇v|2 dx− 1
4

∫
Rn

+

|v|2 dx
x2
n

≥ Λ
∫

Rn
+

|v|2 dx
xn(x2

n−1 + x2
n)1/2

(2.7.7)

for all v ∈ C∞
0 (Rn

+).
More generally, replacing u by x−1/2

n v(x) in the next theorem, we find a
condition on the function q that is necessary and sufficient for the inequality

∫
Rn

+

|∇v|2 dx− 1
4

∫
Rn

+

|v|2 dx
x2
n

≥ C
∫

Rn
+

q

(
xn

(x2
n−1 + x2

n)1/2

)
|v|2 dx

xn(x2
n−1 + x2

n)1/2
, (2.7.8)
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where v is an arbitrary function in C∞
0 (Rn

+). This condition implies, in par-
ticular, that the right-hand side of (2.7.7) can be replaced by

C

∫
Rn

+

|v|2 dx
x2
n(1 − log xn

(x2
n−1+x2

n)1/2 )2
.

Theorem 2. (i) Let q denote a locally integrable nonnegative function on
(0, 1). The best constant in the inequality
∫

Rn
+

xn|∇u|2 dx ≥ C
∫

Rn
+

q

(
xn

(x2
n−1 + x2

n)1/2

)
|u|2

(x2
n−1 + x2

n)1/2
dx, (2.7.9)

for all u ∈ C∞
0 (Rn

+), is given by

λ := inf

∫ π/2

0
(|y′(ϕ)|2 + 1

4 |y(ϕ)|2) sinϕdϕ∫ π/2

0
|y(ϕ)|2q(sinϕ) dϕ

, (2.7.10)

where the infimum is taken over all smooth functions on [0, π/2].
(ii) Inequalities (2.7.9) and (2.7.8) with a positive C hold if and only if

sup
t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ <∞. (2.7.11)

Moreover,

λ ∼
(

sup
t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ
)−1

, (2.7.12)

where a ∼ b means that c1a ≤ b ≤ c2a with absolute positive constants c1 and
c2.

Proof. (i) Let U ∈ C∞
0 (R2

+), ζ ∈ C∞
0 (Rn−2), x′ = (x1, . . . , xn−2), and let

N = const > 0. Putting

u(x) = N (2−n)/2ζ
(
N−1x′)U(xn−1, xn)

into (2.7.9) and passing to the limit asN →∞, we see that (2.7.9) is equivalent
to the inequality

∫
R2

+

x2

(
|Ux1 |2 + |Ux2 |2

)
dx1 dx2

≥ C
∫

R2
+

q

(
x2

(x2
1 + x2

2)1/2

)
|U |2 dx1 dx2

(x2
1 + x2

2)1/2
, (2.7.13)

where U ∈ C∞
0 (R2

+). Let (ρ, ϕ) be the polar coordinates of the point (x1, x2) ∈
R

2
+. Then (2.7.13) can be written as
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∫ ∞

0

∫ π

0

(
|Uρ|2 + ρ−2|Uϕ|2

)
sinϕdϕρ2 dρ ≥ C

∫ ∞

0

∫ π

0

|U |2q(sinϕ) dϕdρ.

By the substitution
U(ρ, ϕ) = ρ−1/2v(ρ, ϕ)

the left-hand side becomes
∫ ∞

0

∫ π

0

(
|ρvρ|2 + |vϕ|2 +

1
4
|v|2
)

sinϕdϕ
dρ
ρ

−Re
∫ π

0

∫ ∞

0

vvρ dρ sinϕdϕ. (2.7.14)

Since v(0) = 0, the second term in (2.7.14) vanishes. Therefore, (2.7.13) can
be written in the form

∫ ∞

0

∫ π

0

(
|ρvρ|2 + |vϕ|2 +

1
4
|v|2
)

sinϕdϕ
dρ
ρ

≥ C
∫ ∞

0

∫ π

0

|v|2q(sinϕ) dϕ
dρ
ρ
. (2.7.15)

Now, the definition (2.7.10) of λ shows that (2.7.9) holds with C = λ.
To show the optimality of this value of C, put t = log ρ and v(ρ, ϕ) =

w(t, ϕ). Then (2.7.9) is equivalent to
∫

R1

∫ π

0

(
|wt|2 + |wϕ|2 +

1
4
|w|2

)
sinϕdϕdt

≥ C
∫

R1

∫ π

0

|w|2q(sinϕ) dϕdt. (2.7.16)

Applying the Fourier transform w(t, ϕ) → ŵ(s, ϕ), we obtain
∫

R1

∫ π

0

(
|ŵϕ|2 +

(
|s|2 +

1
4

)
|ŵ|2

)
sinϕdϕds

≥ C
∫

R1

∫ π

0

|ŵ|2q(sinϕ) dϕds. (2.7.17)

Putting here
ŵ(s, ϕ) = ε−1/2η(s/ε)y(ϕ),

where η ∈ C∞
0 (R1), ‖η‖L2(R1) = 1, and y is a function on C∞([0, π]), and

passing to the limit as ε→ 0, we arrive at the estimate
∫ π

0

(∣∣y′(ϕ)
∣∣2 +

1
4

∣∣y(ϕ)
∣∣2
)

sinϕdϕ ≥ C
∫ π

0

∣∣y(ϕ)
∣∣2q(sinϕ) dϕ, (2.7.18)

where π can be changed for π/2 by symmetry. This together with (2.7.10)
implies Λ ≤ λ. The proof of (i) is complete.
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(ii) Introducing the new variable ξ = log cot ϕ
2 , we write (2.7.10) as

λ = inf
z

∫∞
0

(|z′(ξ)|2 + |z(ξ)|2
4(cosh ξ)2 ) dξ∫∞

0
|z(ξ)|2q( 1

cosh ξ ) dξ
cosh ξ

. (2.7.19)

Since ∣∣z(0)
∣∣2 ≤ 2

∫ 1

0

(∣∣z′(ξ)
∣∣2 +

∣∣z(ξ)∣∣2) dξ

and
∫ ∞

0

∣∣z(ξ)∣∣2 e2ξ

(1 + e2ξ)2
dξ

≤ 2
∫ ∞

0

∣∣z(ξ) − z(0)
∣∣2 dξ
ξ2

+ 2
∣∣z(0)

∣∣2 ∫ ∞

0

e2ξ

(1 + e2ξ)2
dξ

≤ 8
∫ ∞

0

∣∣z′(ξ)
∣∣2 dξ +

∣∣z(0)
∣∣2

it follows from (2.7.19) that

λ ∼ inf
z

∫∞
0

|z′(ξ)|2 dξ + |z(0)|2∫∞
0

|z(ξ)|2q( 1
cosh ξ ) dξ

cosh ξ

. (2.7.20)

Setting z(ξ) = 1 and z(ξ) = min{η−1ξ, 1} for all positive ξ and fixed η > 0
into the ratio of quadratic forms in (2.7.20), we deduce that

λ ≤ min
{(∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1

,

(
sup
η>0

η

∫ ∞

η

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1}
.

Hence,

λ ≤ c
(

sup
t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ
)−1

.

To obtain the converse estimate, note that
∫ ∞

0

∣∣z(ξ)∣∣2 q
(

1
cosh ξ

)
dξ

cosh ξ

≤ 2
∣∣z(0)

∣∣2 ∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ
+ 2

∫ ∞

0

∣∣z(ξ) − z(0)
∣∣2q
(

1
cosh ξ

)
dξ

cosh ξ
.

The second term in the right-hand side is dominated by

8 sup
η>0

(
η

∫ ∞

η

q

(
1

cosh ξ

)
dξ

cosh ξ

)∫ ∞

0

∣∣z′(ξ)
∣∣2 dξ

(see Sect. 1.3.2). Therefore,
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∫ ∞

0

∣∣z(ξ)∣∣2q
(

1
cosh ξ

)
dξ

cosh ξ

≤ 8 max
{∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ
, sup

η>0
η

∫ ∞

η

q

(
1

coshσ

)
dσ

coshσ

}

×
(∫ ∞

0

∣∣z′(ξ)
∣∣2 dξ +

∣∣z(0)
∣∣2
)
,

which together with (2.7.20) leads to the lower estimate

λ ≥ min
{(∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1

,

(
sup
η>0

η

∫ ∞

η

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1}
.

Hence,

λ ≥ c
(

sup
t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ
)−1

.

The proof of (ii) is complete. ��

Since (2.7.11) holds for q(t) = t−1(1− log t)−2, Theorem 2(ii) leads to the
following assertion.

Corollary 1. There exists an absolute constant C > 0 such that the in-
equality

∫
Rn

+

|∇v|2 dx− 1
4

∫
Rn

+

|v|2 dx
x2
n

≥ C
∫

Rn
+

|v|2 dx
x2
n(1 − log xn

(x2
n−1+x2

n)1/2 )2
(2.7.21)

holds for all v ∈ C∞
0 (Rn

+). The best value of C is equal to

λ := inf

∫ π

0
[|y′(ϕ)|2 + 1

4 |y(ϕ)|2] sinϕdϕ∫ π

0
|y(ϕ)|2(sinϕ)−1(1 − log sinϕ)−2 dϕ

, (2.7.22)

where the infimum is taken over all smooth functions on [0, π/2]. By numerical
approximation, λ = 0.16, . . . .

A particular case of Theorem 2 corresponding to q = 1 is the following
assertion.

Corollary 2. The sharp value of Λ in (2.7.6) and (2.7.7) is equal to

λ := inf

∫ π

0
[|y′(ϕ)|2 + 1

4 |y(ϕ)|2] sinϕdϕ∫ π

0
|y(ϕ)|2 dϕ

, (2.7.23)

where the infimum is taken over all smooth functions on [0, π]. By numerical
approximation, λ = 0.1564, . . ..
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Remark 1. Let us consider the Friedrichs extension L̃ of the operator

L : z → −
(
(sinϕ)z′)′ +

sinϕ
4
z, (2.7.24)

defined on smooth functions on [0, π]. It is a simple exercise to show that the
energy space of L̃ is compactly embedded into L2(0, π). Hence, the spectrum
of L̃ is discrete and λ defined by (2.7.23) is the smallest eigenvalue of L̃.

Remark 2. The argument used in the proof of Theorem 2(i) with obvious
changes enables one to obtain the following more general fact. Let P and Q
be measurable nonnegative functions in R

n, positive homogeneous of degrees
2μ and 2μ− 2, respectively. The sharp value of C in

∫
Rn

P (x)|∇u|2 dx ≥ C
∫

Rn

Q(x)|u|2 dx, u ∈ C∞
0

(
R

n
)
, (2.7.25)

is equal to

λ := inf

∫
Sn−1 P (ω)(|∇ωY |2 + (μ− 1 + n

2 )2|Y |2) dsω∫
Sn−1 Q(ω)|Y |2 dsω

,

where the infimum is taken over all smooth functions on the unit sphere Sn−1.

2.7.3 Comments to Sect. 2.7

The material of this subsection is borrowed from Maz’ya and Shaposhnikova
[587]. In Sect. 2.7.1 we are concerned with the inequality (2.7.1) which is a
special case of (2.1.36). Another inequality of a similar nature, whose general-
izations are dealt with in Sect. 2.7.2, is (2.7.7). It is equivalent to (2.7.6) and
was obtained in 1972 by the author, proving to be useful in the study of the
generic case of degeneration in the oblique derivative problem for second-order
elliptic differential operators [541].

Without the second term on the right-hand sides of (2.7.1) and (2.7.7),
these inequalities reduce to the classical Hardy inequality with the sharp
constant 1/4. An interesting feature of (2.7.1) and (2.7.7) is their dilation
invariance. The value Λ = 1/16 in (2.7.7) obtained in Maz’ya [541] is not
the best possible. Tidblom replaced it by 1/8 in [752]. As a corollary of The-
orem 2.7.2/2, we find an expression for the optimal value of Λ (see Corol-
lary 2.7.2/2).

Sharp constants in Hardy-type inequalities as well as variants, extensions,
and refinements of (2.7.1) and (2.7.7), usually called Hardy’s inequalities with
remainder term, became a theme of many subsequent studies (Davies [225,
226]; Brezis and Marcus [142]; Brezis and Vázquez [145]; Matskewich and
Sobolevskii [526]; Sobolevskii [715]; Davies and Hinz [227]; Marcus, Mizel,
and Pinchover [516]; Laptev and Weidl [481]; Weidl [792]; Yafaev [801];
Brezis, Marcus, and Shafrir [143]; Vázquez and Zuazua [773]; Eilertsen [256];
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Adimurthi [26]; Adimurthi, Chaudhuri, and Ramaswamy [27]; Filippas and
Tertikas [278]; M. Hoffman-Ostenhof, T. Hoffman-Ostenhof, and Laptev [380];
Barbatis, Filippas, and Tertikas [73, 74]; Balinsky [67]; Barbatis, Filippas,
and Tertikas [72]; Chaudhuri [178]; Z.-Q. Wang and Meijun [791]; Balinsky,
Laptev, and A. Sobolev [68]; Dávila and Dupaigne [228]; Dolbeault, Este-
ban, Loss, and Vega [237]; Filippas, Maz’ya, and Tertikas [275–277]; Gazzola,
Grunau, and Mitidieri [303]; Tidblom [751, 752]; Colin [211]; Edmunds and
Hurri-Syrjänen [252]; Galaktionov [301, 302]; Samko [689]; Yaotian and Zhi-
hui [804]; Adimurthi, Grossi, and Santra [28]; Alvino, Ferone, and Trombetti
[42]; Barbatis [70, 71]; Brandolini, Chiacchio, and Trombetti [140]; Dou, Niu,
and Yuan [241]; Evans and Lewis [264]; Tertikas and Tintarev [749]; Tertikas
and Zographopoulos [750]; Benguria, Frank, and Loss [83]; Bosi, Dolbeault,
and Esteban [127]; Frank and Seiringer [289, 290]; Frank, Lieb, and Seiringer
[288]; A. Laptev and A. Sobolev [480]; Cianchi and Ferone [203]; Kombe and
Özaydin [446]; Filippas, Tertikas, and Tidblom [279]; Pinchover and Tintarev
[661]; Avkhadiev and Laptev [58] et al.).

2.8 Sharp Hardy–Leray Inequality for Axisymmetric
Divergence-Free Fields

2.8.1 Statement of Results

Let u denote a C∞
0 (Rn) vector field in R

n. The following n-dimensional gen-
eralization of the one-dimensional Hardy inequality,

∫
Rn

|u|2
|x|2 dx ≤ 4

(n− 2)2

∫
Rn

|∇u|2 dx (2.8.1)

appears for n = 3 in the pioneering paper by Leray on the Navier–Stokes
equations [487]. The constant factor on the right-hand side is sharp. Since one
frequently deals with divergence-free fields in hydrodynamics, it is natural to
ask whether this restriction can improve the constant in (2.8.1).

We show in the present section that this is the case indeed if n > 2 and the
vector field u is axisymmetric by proving that the aforementioned constant
can be replaced by the (smaller) optimal value

4
(n− 2)2

(
1 − 8

(n+ 2)2

)
, (2.8.2)

which, in particular, evaluates to 68/25 in three dimensions. This result is a
special case of a more general one concerning a divergence-free improvement
of the multidimensional sharp Hardy inequality

∫
Rn

|x|2γ−2|u|2 dx ≤ 4
(2γ + n− 2)2

∫
Rn

|x|2γ |∇u|2 dx. (2.8.3)
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Let φ be a point on the (n−2)-dimensional unit sphere Sn−2 with spherical
coordinates {θj}j=1,...,n−3 and φ, where θj ∈ (0, π) and ϕ ∈ [0, 2π). A point
x ∈ R

n is represented as a triple (ρ, θ,φ), where ρ > 0 and θ ∈ [0, π]. Corre-
spondingly, we write u = (uρ, uθ,uφ) with uφ = (uθn−3 , . . . , uθ1 , uφ).

The condition of axial symmetry means that u depends only on ρ and θ.
For higher dimensions, our result is as follows.

Theorem 1. Let γ �= 1 − n/2, n > 2, and let u be an axisymmetric
divergence-free vector field in C∞

0 (Rn). We assume that u(0) = 0 for γ <
1− n/2. Then

∫
Rn

|x|2γ−2|u|2 dx ≤ Cn,γ

∫
Rn

|x|2γ |∇u|2 dx (2.8.4)

with the best value of Cn,γ given by

Cn,γ =
4

(2γ + n− 2)2

(
1 − 2

n+ 1 + (γ − n/2)2

)
, (2.8.5)

for γ ≤ 1, and by

C−1
n,γ =

(
n

2
+ γ − 1

)2

+ min
{
n− 1, 2 + min

x≥0

(
x+

4(n− 1)(γ − 1)
x+ n− 1 + (γ − n/2)2

)}
(2.8.6)

for γ > 1.

The two minima in (2.8.6) can be calculated in closed form, but their
expressions for arbitrary dimensions turn out to be unwieldy and we omit
them.

However, the formula for C3,γ is simple.

Corollary. For n = 3 inequality (2.8.4) holds with the best constant

C3,γ =

{
4

(2γ+1)2 ·
2+(γ−3/2)2

4+(γ−3/2)2 for γ ≤ 1,
4

8+(1+2γ)2 for γ > 1.
(2.8.7)

For n = 2, we obtain the sharp constant in (2.8.4) without axial symmetry
of the vector field.

Theorem 2. Let γ �= 0, n = 2, and let u be a divergence-free vector field
in C∞

0 (R2). We assume that u(0) = 0 for γ < 0. Then inequality (2.8.4) holds
with the best constant

C2,γ =

{
γ−2 1+(1−γ)2

3+(1−γ)2 for γ ∈ [−
√

3− 1,
√

3− 1],

(γ2 + 1)−1 otherwise.
(2.8.8)
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2.8.2 Proof of Theorem 1

In the spherical coordinates introduced previously, we have

div u = ρ1−n ∂

∂ρ

(
ρn−1uρ

)
+ ρ−1(sin θ)2−n ∂

∂θ

(
(sin θ)n−2uθ

)

+
n−3∑
k=1

(ρ sin θ sin θn−3 · · · sin θk+1)−1(sin θk)−k ∂

∂θk

(
(sin θk)kuθk

)

+ (ρ sin θ sin θn−3 · · · sin θ1)−1 ∂uϕ
∂ϕ

. (2.8.9)

Since the components uϕ and uθk
, k = 1, . . . , n− 3, depend only on ρ and θ,

(2.8.9) becomes

div u = ρ1−n ∂

∂ρ

(
ρn−1uρ(ρ, θ)

)
+ ρ−1(sin θ)2−n ∂

∂θ

(
(sin θ)n−2uθ(ρ, θ)

)

+
n−3∑
k=1

k(sin θn−3 · · · sin θk+1)−1 cot θk
uθk

(ρ, θ)
ρ sin θ

. (2.8.10)

By the linear independence of the functions

1, (sin θn−3 · · · sin θk+1)−1 cot θk, k = 1, . . . , n− 3,

the divergence-free condition is equivalent to the collection of n− 2 identities

ρ
∂uρ
∂ρ

+ (n− 1)uρ +
(
∂

∂θ
+ (n− 2) cot θ

)
uθ = 0, (2.8.11)

uθk
= 0, k = 1, . . . , n− 3. (2.8.12)

If the right-hand side of (2.8.4) diverges, there is nothing to prove. Oth-
erwise, the matrix ∇u is O(|x|m), with m > −γ − n/2, as x → 0. Since
u(0) = 0, we have u(x) = O(|x|m+1) ensuring the convergence of the integral
on the left-hand side of (2.8.4). We introduce the vector field

v(x) = u(x)|x|γ−1+n/2. (2.8.13)

The inequality (2.8.4) becomes

(
1
Cn,γ

−
(
n

2
+ γ − 1

)2)∫
R

n

|v|2
|x|n dx ≤

∫
R

n

|∇v|2
|x|n−2

dx. (2.8.14)

The condition div u = 0 is equivalent to

ρdivv =
(
n− 2

2
+ γ
)
vρ. (2.8.15)
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To simplify the exposition, we assume first that vϕ = 0. Now, (2.8.15) can
be written as

ρ
∂vρ
∂ρ

+
(
n

2
− γ
)
vρ + Dvθ = 0, (2.8.16)

where
D :=

∂

∂θ
+ (n− 2) cot θ. (2.8.17)

Note that D is the adjoint of −∂/∂θ with respect to the scalar product
∫ π

0

f(θ)g(θ)(sin θ)n−2 dθ.

A straightforward, though lengthy calculation yields

ρ2|∇v|2 = ρ2
(
∂vρ
∂ρ

)2

+ ρ2
(
∂vθ
∂ρ

)2

+
(
∂vρ
∂θ

)2

+
(
∂vθ
∂θ

)2

+ v2θ + (n− 1)v2ρ + (n− 2)(cot θ)2v2θ + 2
(
vρDvθ − vθ

∂vρ
∂θ

)
.

(2.8.18)

Hence

ρ2
∫
Sn−1

|∇v|2 ds =
∫
Sn−1

{
ρ2
(
∂vρ
∂ρ

)2

+
(
∂vθ
∂θ

)2

+ ρ2
(
∂vθ
∂ρ

)2

+
(
∂vρ
∂θ

)2

+ v2θ + (n− 1)v2ρ + (n− 2)(cot θ)2v2θ + 4vρDvθ
}

ds.

(2.8.19)

Changing the variable ρ to t = log ρ and applying the Fourier transform with
respect to t,

v(t, θ) �→ w(λ, θ),

we derive
∫

Rn

|∇v|2
|x|n−2

dx =
∫

R

∫
Sn−1

{(
l2 + n− 1

)
|wρ|2 +

(
l2 − n+ 3

)
|wθ|2

+
∣∣∣∣∂wρ

∂θ

∣∣∣∣
2

+
∣∣∣∣∂wθ

∂θ

∣∣∣∣
2

+ (n− 2)(sin θ)−2|wθ|2

+ 4�(wρDwθ)
}

dsdλ (2.8.20)

and ∫
Rn

|v|2
|x|n dx =

∫
R

∫
Sn−1

|w|2 dsdλ. (2.8.21)

From (2.8.15), we obtain
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wρ = − Dwθ

iλ+ n/2− γ , (2.8.22)

which implies

|wρ|2 =
|Dwθ|2

λ2 + (n/2 − γ)2 (2.8.23)

and

�(wρDwθ) = − (n/2 − γ)|Dwθ|2
λ2 + (n/2 − γ)2 . (2.8.24)

Introducing this into (2.8.20), we arrive at the identity
∫

Rn

|∇v|2
|x|n−2

dx =
∫ ∞

0

∫
Sn−1

{(
λ2 + n− 1

) |Dwθ|2
λ2 + (n/2 − γ)2

+
(
λ2 − n+ 3

)
|wθ|2 +

∣∣∣∣∂wθ

∂θ

∣∣∣∣
2

+ (n− 2)(sin θ)−2|wθ|2

+
1

λ2 + (n/2 − γ)2

∣∣∣∣ ∂∂θDwθ

∣∣∣∣
2

− 4
(
n

2
− γ
)

|Dwθ|2
λ2 + (n/2 − γ)2

}
dsdλ.

We simplify the right-hand side to obtain
∫

Rn

|∇v|2
|x|n−2

dx =
∫ ∞

0

∫
Sn−1

{(
−n− 1 + λ2 + 4γ
λ2 + (n/2 − γ)2 + 1

)
|Dwθ|2

+
(
λ2 − n+ 3

)
|wθ|2 +

1
λ2 + (n/2− γ)2

∣∣∣∣ ∂∂θDwθ

∣∣∣∣
2}

dsdλ.

(2.8.25)

On the other hand, by (2.8.21) and (2.8.22)
∫

Rn

|v|2
|x|n−2

dx =
∫ ∞

0

∫
Sn−1

(
|Dwθ|2

λ2 + (n/2 − γ)2 + |wθ|2
)

dsdλ. (2.8.26)

Defining the self-adjoint operator

T := − ∂

∂θ
D, (2.8.27)

or equivalently,

T = −δθ +
n− 2

(sin θ)2
, (2.8.28)

where δθ is the θ part of the Laplace–Beltrami operator on Sn−1, we write
(2.8.25) and (2.8.26) as

∫
Rn

|∇v|2
|x|n−2

dx =
∫

R

∫
Sn−1

Q(λ,wθ) dsdλ (2.8.29)
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and ∫
Rn

|v|2
|x|n dx =

∫
R

∫
Sn−1

q(λ,wθ) dsdλ, (2.8.30)

respectively, where Q and q are sesquilinear forms in wθ, defined by

Q(λ,wθ) =
(
−n− 1 + λ2 + 4γ
λ2 + (n/2 − γ)2 + 1

)
Twθ · wθ

+
(
λ2 − n+ 3

)
|wθ|2 +

1
λ2 + (n/2 − γ)2 |Twθ|2

and
q(λ,wθ) =

Twθ · wθ

λ2 + (n/2 − γ)2 + |wθ|2. (2.8.31)

The eigenvalues of T are αν = ν(ν + n − 2), ν ∈ Z
+. Representing wθ as

an expansion in eigenfunctions of T , we find

inf
wθ

∫
R

∫
Sn−1 Q(λ,wθ) dsdλ∫

R

∫
Sn−1 q(λ,wθ) dsdλ

= inf
λ∈R

inf
ν∈N

( −n−1+λ2+4γ
λ2+(n/2−γ)2 + 1)αν + λ2 − n+ 3 + α2

ν

λ2+(n/2−γ)2

αν

λ2+(n/2−γ)2+1

. (2.8.32)

Thus our minimization problem reduces to finding

inf
x≥0

inf
ν∈N

f(x, αν , γ), (2.8.33)

where

f(x, αν , γ) = x− n+ 3 + αν

(
1 − 16(1 − γ)

4x+ 4αν + (n− 2γ)2

)
. (2.8.34)

Since γ ≤ 1, it is clear that f is increasing in x, so the value (2.8.33) is equal
to

inf
ν∈N

f(0, αν , γ) = inf
ν∈N

(
3− n+ αν

(
1 − 16(1− γ)

4αν + (n− 2γ)2

))
. (2.8.35)

We have
∂

∂αν
f(0, αν , γ) = 1 − 16(1− γ)(n− 2γ)

(4αν + (n− 2γ)2)2
. (2.8.36)

Noting that

4αν + (n− 2γ)2 ≥ 4(n− 1) + (n− 2γ)2 ≥ 4
√
n− 1(n− 2γ), (2.8.37)

we see that
∂

∂αν
f(0, αν , γ) ≥ 1 − 1 − γ

(n− 1)(n− 2γ)
> 0. (2.8.38)
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Thus the minimum of f(0, αν , γ) is attained at α1 = n− 1 and equals

3 − n+ (n− 1)
(

1 − 16(1− γ)
4(n− 1) + (n− 2γ)2

)
=

2(γ − 1 + n/2)2

n− 1 + (γ − n/2)2
. (2.8.39)

This completes the proof for the case vϕ = 0.
If we drop the assumption vϕ = 0, then, to the integrand on the right-hand

side of (2.8.19), we should add the terms

ρ2
(
∂vϕ
∂ρ

)2

+
(
∂vϕ
∂θ

)2

+ (sin θ sin θn−3 · · · sin θ1)−2v2ϕ. (2.8.40)

The expression in (2.8.40) equals

ρ2
∣∣∇(vϕeiϕ

)∣∣2. (2.8.41)

As a result, the right-hand side of (2.8.29) is augmented by
∫

R

∫
Sn−1

R(λ,wϕ) dsdλ, (2.8.42)

where
R(λ,wϕ) = λ2|wϕ|2 +

∣∣∇ω

(
wϕeiϕ

)∣∣2 (2.8.43)

with ω = (θ, θn−3, . . . , ϕ). Hence,

inf
v

∫
Rn

|∇v|2
|x|n−2 dx∫

Rn

|v|2
|x|n dx

= inf
wθ,wϕ

∫
R

∫
Sn−1(Q(λ,wθ) +R(λ,wϕ)) dsdλ∫

R

∫
Sn−1(q(λ,wθ) + |wϕ|2) dsdλ

. (2.8.44)

Using the fact that wθ and wϕ are independent, the right-hand side is the
minimum of (2.8.32) and

inf
wϕ

∫
R

∫
Sn−1 R(λ,wϕ) dsdλ∫

R

∫
Sn−1 |wϕ|2 dsdλ

. (2.8.45)

Since wϕeiϕ is orthogonal to one on Sn−1, we have
∫
Sn−1

∣∣∇ω

(
wϕeiϕ

)∣∣2 ds ≥ (n− 1)
∫
Sn−1

|wϕ|2 ds. (2.8.46)

Hence the infimum in (2.8.45) is at most n − 1, which exceeds the value in
(2.8.39). The result follows for γ ≤ 1.

For γ > 1 the proof is similar. Differentiation of f in αν gives

1 +
16(γ − 1)((n− 2γ)2 + 4x)
(4x+ 4αν + (n− 2γ)2)2

, (2.8.47)

which is positive. Hence the role of the value (2.8.39) is played by the smallest
value of f(·, n− 1, γ) on R

+. Therefore,
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inf
v

∫
Rn

|∇v|2
|x|n−2 dx∫

Rn

|v|2
|x|n dx

= 2 + min
x≥0

(
x+

4(n− 1)(γ − 1)
x+ n− 1 + (γ − n/2)2

)
. (2.8.48)

The proof is complete. ��

Proof of Corollary 1. We need to consider only γ > 1. It follows directly
from (2.8.6) that

C−1
3,γ =

(
3
2

+ γ − 1
)2

+ 2,

which gives the result.

Remark. Using (2.8.22), we see that a minimizing sequence {vk}k≥1,
which shows the sharpness of inequality (2.8.4) with the constant (2.8.5),
can be obtained by taking vk = (vρ,k, vθ,k,0) with the Fourier transform
wk = (wρ,k, wθ,k,0) chosen as follows:

wθ,k(λ, θ) = hk(λ) sin θ, wρ,k(λ, θ) =
1 − n

iλ+ n/2 − γ hk(λ) cos θ. (2.8.49)

The sequence {|hk|2}k≥1 converges in distributions to the delta function at
λ = 0. The minimizing sequence that gives the value (2.8.7) of C3,γ is

wθ,k(λ, 0) = 0, wρ,k(λ, θ) = 0, and wφ,k(λ, θ) = hk(λ) sin θ,

where {|hk|2}k≥1 is as previously.

2.8.3 Proof of Theorem 2

The calculations are similar but simpler than those in the previous section.
We start with the substitution v(x) = u(x)|x|2γ and write (2.8.14) in the form

1
C2,γ

= γ2 + inf
v

∫
R2 |∇v|2 dx∫

R2 |v|2|x|−2 dx
. (2.8.50)

In polar coordinates ρ and ϕ, with ϕ ∈ [0, 2π), we have
∫

R2
|∇v|2 dx =

∫
R2

{
|∇vρ|2+|∇vϕ|2+ρ−2

(
v2ρ + v2ϕ−4vρ(∂ϕvϕ)

)}
dx. (2.8.51)

Changing the variable ρ to t = log ρ and applying the Fourier transform
v(ρ, ϕ) → w(λ, ϕ), we obtain that the right-hand side is

∫
R

∫ 2π

0

{(
λ2 + 1

)(
|wρ|2 + |wϕ|2

)
+ |∂ϕwϕ|2

+ |∂ϕwρ|2 − 4(∂ϕwϕ)wρ

}
dϕdλ. (2.8.52)

The divergence-free condition for u becomes
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wρ = − ∂ϕwϕ

iλ+ 1 − γ , (2.8.53)

which yields
∫

R2
|∇v|2 dx =

∫
R

∫ 2π

0

{(
λ2 + 4γ − 3
λ2 + (1 − γ)2 + 1

)
|∂ϕwϕ|2

+
|∂2

ϕwϕ|2

λ2 + (1 − γ)2 +
(
λ2 + 1

)
|wϕ|2

}
dϕdλ. (2.8.54)

Analogously,
∫

R2
|v|2|x|−2 dx =

∫
R

∫ 2π

0

(
|wρ|2 + |wϕ|2

)
dϕdλ

=
∫

R

∫ 2π

0

(
|∂ϕwϕ|2

λ2 + (1 − γ)2 + |wϕ|2
)

dϕdλ. (2.8.55)

Therefore, by (2.8.50)

1
C2,γ

= γ2 + inf
x≥0

inf
ν∈N∪0

f(x, ν, γ), (2.8.56)

where

f(x, ν, γ) = x+ 1 + ν
(

1 − 4(1 − γ)
x+ ν + (1 − γ)2

)
. (2.8.57)

Let first γ ≤ 1. Then f is increasing in x, which implies f(x, ν, γ) ≥
f(0, ν, γ). Since the derivative

∂

∂ν
f(0, ν, γ) = 1 − 4(1− γ)3

(ν + (1 − γ)2)2 , (2.8.58)

is positive for ν ≥ 2, we need to compare only the values f(0, 0, γ), f(0, 1, γ),
and f(0, 2, γ). An elementary calculation shows that both f(0, 0, γ) and
f(0, 2, γ) exceed f(0, 1, γ) for γ �∈ (−1 −

√
3,−1 +

√
3).

Let now γ > 1. We have

∂

∂ν
f(x, ν, γ) = 1 +

4(γ − 1)(x+ (1− γ)2)
(x+ ν + (1 − γ2))2

> 0 (2.8.59)

and therefore f(x, ν, γ) ≥ f(x, 0, γ) = x + 1 ≥ 1. The proof of Theorem 2 is
complete. ��

Remark. Minimizing sequences that give C2,γ in (2.8.8) can be chosen as
follows:

wρ,k(λ, ϕ) = 0, wϕ,k(λ, ϕ) = hk(λ),

for γ �∈ (−1 −
√

3,−1 +
√

3), and
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wρ,k =
hk(λ) sin(ϕ− ϕ0)

iλ+ 1 − γ , wϕ,k = hk(λ) cos(ϕ− ϕ0),

when γ ∈ (−1−
√

3,−1+
√

3), for any constant ϕ0. Here {|hk|2}k≥1 converges
in distributions to the delta function at 0.

Corollary. Let γ �= 0. Denote by ψ a real-valued scalar function in
C∞

0 (R2) and assume, in addition, that ∇ψ(0) = 0 if γ < 0. Then the sharp
inequality
∫

R2
|∇ψ|2|x|2(γ−1) dx ≤ C2,γ

∫
R2

(
ψ2

x1x1
+ 2ψ2

x1x2
+ ψ2

x2x2

)
|x|2γ dx (2.8.60)

holds with C2,γ given in (2.8.8).

Indeed, for n = 2, inequality (2.8.4) becomes (2.8.60) if ψ is interpreted as
a stream function of the vector field u, i.e., u = ∇× ψ.

2.8.4 Comments to Sect. 2.8

The results of this section are borrowed from the paper by Costin and Maz’ya
[214]. In [715], Sobolevskii stated that the sharp constant in Hardy’s inequality
for arbitrary solenoidal vector functions in a convex domain coincides with the
same constant in the classical one-dimensional case.
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Conductor and Capacitary Inequalities
with Applications to Sobolev-Type
Embeddings

3.1 Introduction

Let Ω be an open set in R
n and let μ and ν be locally finite, nonzero Borel

measures on Ω. We also use the following notation: l is a positive integer,
1 ≤ p ≤ ∞, q > 0, dx is an element of the Lebesgue measure mn on R

n, and
f is an arbitrary function in C∞

0 (Ω), i.e., an infinitely differentiable function
with compact support in Ω. By Lt we mean the set {x ∈ Ω : |f(x)| > t},
where t > 0. We shall use the equivalence relation a ∼ b to denote that the
ratio a/b admits upper and lower bounds by positive constants depending
only on n, l, p, and q.

This chapter is a continuation of the previous one. We shall discuss the
conductor inequality

∫ ∞

0

capp(Lat,Lt) d
(
tp
)
≤ c(a, p)

∫
Ω

| grad f |p dx, (3.1.1)

where a = const > 1 and capp is the p-capacity of Lat with respect to Lt, or
in other words, the p conductivity of the conductor L\Lat. (This inequality
was only mentioned in Sect. 2.3.1.)

By monotonicity of capp the conductor inequality (3.1.1) implies the ca-
pacitary inequality

∫ ∞

0

capp(Lt, Ω) d
(
tp
)
≤ C(p)

∫
Ω

| grad f |p dx, (3.1.2)

which was also proved in Theorem 2.3.1 with the best constant

C(p) = pp(p− 1)1−p. (3.1.3)

Note that the left-hand side in (3.1.2) can be zero for all f ∈ C∞
0 (Ω).

(This happens if and only if either p > n and Ω = R
n, or p = n and the

complement of Ω has zero n capacity.) At the same time, the left-hand side in

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 3, c© Springer-Verlag Berlin Heidelberg 2011
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(3.1.1) is always positive if f �= 0. The layer cake texture of the left-hand side
in the conductor inequality (3.1.1) admits significant corollaries that cannot be
directly deduced from the inequality (3.1.2). For instance, as a straightforward
consequence of (3.1.1) and the isocapacitary inequality (2.2.11), one deduces

∫ ∞

0

d(tn)

(log mn(Lt)
mn(Lat)

)n−1
≤ c(a)

∫
Ω

| grad f |n dx, (3.1.4)

where n > 1 and a > 1. Note that (3.1.4) is stronger than the well-known
inequality ∫ ∞

0

d(tn)

(log mn(Ω)
mn(Lt)

)n−1
≤ c

∫
Ω

| grad f |n dx, (3.1.5)

(see Maz’ya [543], Hansson [348], and Brezis and Wainger [146]) which is
informative only if the volume of Ω is finite.

In the case p �= n and p > 1, another straightforward consequence of (3.1.1)
with a similar flavor is the following improvement of the classical Sobolev
inequality:
∫ ∞

0

∣∣mn(Lt)
p−n

n(p−1) −mn(Lat)
p−n

n(p−1)
∣∣1−p d

(
tp
)
≤ c(p, a)

∫
Ω

| grad f |p dx.

(3.1.6)
An immediate application of the conductor inequality (3.1.1) that seems to

be unattainable with the help of the capacitary inequality (3.1.2) is a necessary
and sufficient condition for the two-measure Sobolev-type inequality

(∫
Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

∣∣Φ(x, grad f)
∣∣p dx+

∫
Ω

|f |p dν
)1/p

, (3.1.7)

where q ≥ p, μ, and ν are locally finite Radon measures on Ω, and the
function Ω × R

n � (x, y) → Φ(x, y) is positively homogeneous in y of degree
1 (see Theorem 2.3.9). The just-mentioned characterization is formulated in
terms of the conductivity generated by the integral∫

Ω

∣∣Φ(x, grad f)
∣∣p dx. (3.1.8)

In the one-dimensional case and when Φ(x, grad f) = |f ′|, the conductivity
is calculated explicitly (see Lemma 2.2.2/2) and this characterization takes the
following simple form:

μ
(
σd(x)

)p/q ≤ const
(
τ1−p + ν

(
σd+τ (x)

))
, (3.1.9)

where σd(x) denotes any open interval (x− d, x+ d), such that σd+τ (x) ⊂ Ω.
In the present chapter, we deal mostly with applications of conductor in-

equalities to two-measure Sobolev-type embeddings that seem to be unattain-
able with the help of capacitary inequalities. In particular, we sometimes as-
sume that n = 1 and we study inequalities of the type
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(∫
Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

∣∣f (l)
∣∣p dx+

∫
Ω

|f |p dν
)1/p

, (3.1.10)

and their analogs involving a fractional Sobolev norm.
We conclude the Introduction with a brief outline of the contents of the

chapter. In Sect. 3.2 we discuss the inequalities (3.1.4) and (3.1.5). A proof
of (3.1.1) is given in Sect. 3.3. In Sects. 3.4 and 3.5 we characterize the in-
equality (3.1.7) and give a criterion for its multiplicative analog. A necessary
and sufficient condition for the compactness and two-sided estimates of the
essential norm of the embedding operator associated with (3.1.7) are obtained
in Sect. 3.6.

In Sect. 3.7 we give a necessary and sufficient condition for the inequality

(∫
Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

∣∣f ′ ′(x)
∣∣p dx+

∫
Ω

|f |p dν
)1/p

(3.1.11)

with 1 < p ≤ q <∞, restricted to nonnegative functions f ∈ C∞
0 (Ω). This is

the estimate
μ
(
σd(x)

)p/q ≤ const
(
τ1−2p + ν

(
σd+τ (x)

))
, (3.1.12)

valid for all intervals σd+τ (x) ⊂ Ω. A simple example shows that (3.1.12)
does not guarantee (3.1.11) for all f ∈ C∞

0 (Ω). We also give counterexamples
showing that the necessary condition for (3.1.10)

μ
(
σd(x)

)p/q ≤ const
(
τ1−lp + ν

(
σd+τ (x)

))
(3.1.13)

is not sufficient if l ≥ 3.
Section 3.8 is dedicated to multidimensional (p, l)-conductivity inequalities

for fractional Sobolev Lp norms of order l in (0, 1) and (1, 2). The section is
concluded with the necessary and sufficient conditions for two-measure mul-
tidimensional inequalities of type (3.1.7) involving fractional norms.

3.2 Comparison of Inequalities (3.1.4) and (3.1.5)

Inequalities (3.1.4) and (3.1.5) follow directly from (3.1.1) combined with the
isocapacitary inequality (2.2.11).

Let us compare the integrals on the left-hand sides of (3.1.4) and (3.1.5):
∫ ∞

0

d(tn)

(log mn(Lt)
mn(Lat)

)n−1
, (3.2.1)

and ∫ ∞

0

d(tn)

(log mn(Ω)
mn(Lt)

)n−1
, (3.2.2)
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where mn(Ω) < ∞. Clearly, the first of them exceeds the second. However,
the convergence of the second integral does not imply the convergence of the
first. In fact, let Br = {x ∈ R

n : |x| < r}, Ω = B2 and

f(x) =

{
5 − |x| for 0 ≤ |x| < 1,
2 − |x| for 1 ≤ |x| < 2.

(3.2.3)

We have

Lt =

⎧⎪⎨
⎪⎩
B2−t for 0 ≤ t < 1,
B1 for 1 ≤ t ≤ 4,
B5−t for 4 < t ≤ 5.

Let 1 < a < 4. Then both sets Lt and Lat for 1 < t < 4a−1 coincide with
the ball B1 which makes (3.2.1) divergent whereas integral (3.2.2) is finite.
Furthermore, integral (3.2.1) is convergent for a ≥ 4.

Therefore, inequality (3.1.4) is strictly better than (3.1.5), even for do-
mains Ω of finite volume. We see also that the convergence of integral (3.2.1)
for a bounded function f may depend on the value of a.

The same argument shows that inequality (3.1.6) with any f ∈ C∞
0 (Ω)

and 1 < p < n, i.e.,
∫ ∞

0

d(tp)
( 1

mn(Lat)
n−p

n(p−1)
− 1

mn(Lt)
n−p

n(p−1)
)p−1

≤ c
∫
Ω

| grad f |p dx, (3.2.4)

improves the Lorentz space L np
n−p ,p(Ω) inequality

∫ ∞

0

(
mn(Lt)

)n−p
n d

(
tp
)
≤ c

∫
Ω

| grad f |p dx,

which results from the capacitary inequality (2.3.6) and is stronger, in its
turn, than the Sobolev estimate for the norm ‖f‖L pn

n−p

.

In conclusion, we add that the convergence of the integral on the left-hand
side of (3.2.4) may depend on the choice of a, as shown by the function (3.2.3).

3.3 Conductor Inequality (3.1.1)

Let g and G denote arbitrary bounded open sets in R
n subject to ḡ ⊂ G, Ḡ ⊂

Ω. We introduce the p conductivity of the conductor G\ḡ (in other terms, the
relative p-capacity of the set ḡ with respect to G) as

capp(ḡ, G) = inf
{∫

Ω

∣∣gradϕ(x)
∣∣p dx : ϕ ∈ C∞

0 (G), 0 ≤ ϕ ≤ 1 on G

and ϕ = 1 on a neighborhood of ḡ
}
. (3.3.1)
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This infimum does not change if the class of admissible functions ϕ is enlarged
to {

ϕ ∈ C∞(Ω) : ϕ ≥ 1 on g, ϕ ≤ 0 on Ω\G
}

(3.3.2)

(see Sect. 2.2.1).
Now we derive a generalization of the conductor inequality (3.1.1).

Proposition. For all f ∈ C∞
0 (Ω) and for an arbitrary a > 1 inequality

(3.1.1) holds with

c(a, p) =
p log a

(a− 1)p
.

Proof. We show first that the function t → capp(Lat,Lt) is measurable.
Let us introduce the open set S := {t > 0 : | grad f | > 0 on ∂Lt} whose com-
plement has zero one-dimensional Lebesgue measure by the Morse theorem.
Let t0 ∈ S. Given an arbitrary ε > 0, there exists a function ϕ ∈ C∞

0 (Lt0),
ϕ = 1 on a neighborhood Lat0 , and such that

‖ gradϕ‖pLp
≤ capp(Lat0 ,Lt0) + ε.

Since t0 ∈ S we deduce from (3.3.1) that for all sufficiently small δ > 0

‖ gradϕ‖pLp
≥ capp(La(t0−δ),Lt0+δ).

Therefore,
capp(La(t0±δ),Lt0±δ) ≤ capp(Lat0 ,Lt0) + ε,

which means that the function t → capp(Lat,Lt) is upper semicontinuous
on S. The measurability of this function follows.

Let ϕ denote a locally integrable function on (0,∞) such that there exist
the limits ϕ(0) and ϕ(∞). Then there holds the identity

∫ ∞

0

(
ϕ(t) − ϕ(at)

)dt
t

=
(
ϕ(0) − ϕ(∞)

)
log a. (3.3.3)

Setting here

ϕ(t) :=
∫

Lt

| grad f |p dx,

we obtain ∫
Ω

| grad f |p dx ≥ 1
log a

∫ ∞

0

∫
Lt \ Lat

| grad f |p dx
dt
t
.

By (3.3.1) the right-hand side exceeds

(a− 1)p

p log a

∫ ∞

0

capp(Lat,Lt) d
(
tp
)
,

and (3.1.1) follows. ��
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3.4 Applications of the Conductor Inequality (3.1.1)

The following lemma, which can be easily obtained from (3.1.1), is a particular
case of Theorem 2.3.9.

Lemma 1. Let 1 ≤ p ≤ q. The inequality
(∫

Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

| grad f |p dx+
∫
Ω

|f |p dν
)1/p

(3.4.1)

holds for all f ∈ C∞
0 (Ω) if and only if there exists a constant K > 0 such that

for all open bounded sets g and G, subject to ḡ ⊂ G, Ḡ ⊂ Ω, the inequality

μ(g)1/q ≤ K
(
capp(ḡ, G) + ν(G)

)1/p (3.4.2)

holds.

From this lemma, we shall deduce a sufficient condition for (3.4.1) which
does not involve the p conductivity.

Corollary. Let n < p ≤ q. If for all bounded open sets g and G in R
n

such that ḡ ⊂ G, Ḡ ⊂ Ω, we have

μ(g)1/q ≤ K
(
dist(∂g, ∂G)n−p + ν(G)

)1/p
, (3.4.3)

then (3.4.1) holds for all f ∈ C∞
0 (Ω).

Proof. Let ϕ be an arbitrary admissible function in (3.3.1). By Sobolev’s
theorem 1.1.10/1, for all y ∈ g and z ∈ Ω\G

1 ≤
(
ϕ(y) − ϕ(z)

)p ≤ c|y − z|n−p

∫
Ω

∣∣gradϕ(x)
∣∣p dx,

which implies (
dist(∂g, ∂G)

)n−p ≤ c capp(ḡ, G).

It remains to refer to Lemma 1. ��

Let us see how criterion (3.1.9) follows from Lemma 1.

Theorem 1. Let n = 1 and 1 ≤ p ≤ q < ∞. The inequality (3.4.1) holds
for all f ∈ C∞

0 (Ω) if and only if condition (3.1.9) is satisfied.

Proof. Let g0 = (a, b), G0 = (A,B), and A < a < b < B. It is an easy
exercise to show that

capp(ḡ0, G0) = (a−A)1−p + (B − b)1−p. (3.4.4)

(For the proof of a more general formula for a weighted p conductivity see
Lemma 2.2.2/2.) Hence, by setting g = σd(x) and G = σd+τ (x) into (3.4.2),
we obtain
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μ
(
σd(x)

)1/q ≤ K(2τ1−p + ν
(
σd+τ (x)

))1/p
,

which implies the necessity of (3.1.9). To prove the sufficiency we need to
obtain (3.4.2) for all admissible sets g and G. Let G be the union of nonover-
lapping intervals Gi and let gi = Gi ∩ g. Denote by hi the smallest interval
containing gi and by τi the minimal distance from hi to R\Gi. By definition
(3.3.1) in the one-dimensional case, we have

capp(ḡi, Gi) = capp(h̄i, Gi)

and
capp(ḡ, G) =

∑
i

capp(ḡi, Gi).

Hence, and by (3.4.4) applied to the intervals hi and Gi,

capp(ḡ, G) ≥
∑
i

τ1−p
i . (3.4.5)

Using (3.1.9), we obtain

μ(gi)1/q ≤ μ(hi)1/q ≤ A
(
τ1−p
i + ν(Gi)

)1/q
,

where A is a positive constant independent of g and G. Since q ≥ p, we have

μ(g)p/q ≤
∑
i

μ(gi)p/q,

which, together with (3.4.5), implies

μ(g)p/q ≤ Ap
∑
i

(
τ1−p
i + ν(Gi)

)
≤ Ap

(
capp(ḡ, G) + ν(G)

)
.

The result follows from Lemma 1. ��

Remark 1. A possible modification of Theorem 3.4 concerns the Birnbaum–
Orlicz space LM (μ), where M is an arbitrary convex function on (0,∞),
M(+0) = 0. Let P denote the complementary convex function to M . One
can easily deduce from Theorems 2.3.3 (compare with Theorem 3.4) that the
condition

μ
(
σd(x)

)
P−1

(
1

μ(σd(x))

)
≤ const

(
τ1−p + ν

(
σd+τ (x)

))1/p

is necessary and sufficient for the inequality
∫ ∞

0

μ(Lτ )P−1

(
1

μ(Lτ )

)
d
(
τp
)
≤ c
(∫

Ω

|f ′|p dx+
∫
Ω

|f |p dν
)

as well as for the inequality
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∥∥|u|p∥∥
LM (μ)

≤ c
(∫

Ω

|f ′|p dx+
∫
Ω

|f |p dν
)
.

It is well known that the weight w in the integral
∫
Ω

∣∣f ′(x)
∣∣pw(x) dx

can be removed by the change of the variable x

ξ =
∫

dx
w(x)1/(p−1)

.

Therefore, Theorem 3.4 leads to a criterion for the three-weight inequality
(∫

Ω

|f |q dμ
)1/q

≤
(∫

Ω

|f ′|p dλ+
∫
Ω

|f |p dν
)1/p

,

where λ is a nonnegative measure. Note that the singular part of λ does not
influence the validity of the last inequality (compare with Muckenhoupt [620]
and Sect. 1.3.2).

Remark 2. Let n = 1. With p ∈ (1,∞) and the measure ν, we associate a
function R of an interval σd(x) by the equality

R
(
σd(x)

)
= sup

{
τ : τ1−p > ν

(
σd+τ (x)

)}
(3.4.6)

with σd+τ (x) ⊂ Ω as everywhere. Clearly,

R
(
σd(x)

)1−p ≤ inf
{
τ : τ1−p + ν

(
σd+τ (x)

)}
≤ 2R

(
σd(x)

)1−p
, (3.4.7)

which shows that criterion (3.1.9) can be written as

sup
σd(x)⊂Ω

R
(
σd(x)

)(p−1)/p
μ
(
σd(x)

)1/q
<∞.

Remark 3. According to Theorem 2.1.3, inequality (3.4.1) with p = 1, q ≥ 1
is equivalent to the inequality

μ(g)1/q ≤ C
(
2 + ν(g)

)
,

where g is an arbitrary interval and C is the same constant as in (3.4.1).

Similarly to (3.4.1) with n = 1, we can characterize the inequality

(∫
Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

|f ′|p dx
)δ/p(∫

Ω

|f |r dν
)(1−δ)/r

(3.4.8)

by using the following particular case of Theorem 2.3.11.
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Lemma 2. Let n ≥ 1, p ≥ 1, and δ ∈ [0, 1]. If the inequality

(∫
Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

| grad f |p dx
)δ/p(∫

Ω

|f |r dν
)(1−δ)/r

, (3.4.9)

is valid for all f ∈ C∞
0 (Ω) and some positive r and q, then there exists a

constant α such that for all open bounded subsets g and G of Ω such that
ḡ ⊂ G, Ḡ ⊂ Ω, there holds the inequality

μ(g)p/q ≤ α capp(ḡ, G)δν(G)(1−δ)p/r. (3.4.10)

If (3.4.10) holds for all g and G as above, then (3.4.9) is valid for all
functions f ∈ C∞

0 (Ω) with 1/q ≤ (1 − δ)/r + δ/p.

Arguing as in the proof of Theorem 3.4, we arrive at the following criterion
for (3.4.8).

Theorem 2. Let n = 1, p ≥ 1, and δ ∈ [0, 1]. If the inequality (3.4.8) holds
for all f ∈ C∞

0 (Ω) and some positive r and q, then there exists a constant
β > 0 such that

μ
(
σd(x)

)1/q ≤ β

τ δ(p−1)/p
ν
(
σd+τ (x)

)(1−δ)/r (3.4.11)

for all x ∈ Ω, d > 0 and τ > 0 such that σd+τ (x) ⊂ Ω. Conversely, if (3.4.11)
is true for some positive r and q such that 1/q ≤ (1− δ)/r+ δ/p, then (3.4.8)
holds.

Note that for p = 1 condition (3.4.11) is simplified:

μ
(
σd(x)

)r/q(1−δ) ≤ const ν
(
σd(x)

)
.

For the particular case μ = ν, inequality (3.4.8) admits the following
simpler characterization that results from Theorem 2.3.6.

Theorem 3. 1. Let n = 1 and let for all x ∈ Ω, d > 0 and τ > 0 such
that σd+τ (x) ⊂ Ω, there holds

μ
(
σd(x)

)α ≤ const τ (1−p)/p, (3.4.12)

where p ≥ 1 and α > 0. Furthermore, let q be a positive number satisfying
one of the conditions (i) q ≤ α−1 if αp ≤ 1 or (ii) q < α−1 if αp > 1. Then
the inequality

(∫
Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

|f ′|p dx
)δ/p(∫

Ω

|f |r dμ
)(1−δ)/r

(3.4.13)

with r ∈ (0, q) and δ = (q−r)/(1−αr)q is valid for any function f ∈ C∞
0 (Ω).
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2. Conversely, let p ≥ 1, α > 0 and r ∈ (0, α−1]. Furthermore, let the
inequality (3.4.13) with δ = (q−r)/(1−αr)q hold for any function f ∈ C∞

0 (Ω).
Then (3.4.12) holds for all x and d such that σd+τ (x) ⊂ Ω.

Remark 4. By Theorem 3 the multiplicative inequality (3.4.13) is equiva-
lent to (∫

Ω

|f |q dμ
)1/q

≤ C
(∫

Ω

|f ′|p dx
)1/p

with p ≤ q.

The next assertion concerning an arbitrary charge λ (not a nonnegative
measure as elsewhere) follows directly from Theorem 2.3.8.

Theorem 4. Let λ+ and λ− denote the positive and negative parts of the
charge λ, respectively.

(i) If for a certain ε ∈ (0, 1) and for any x ∈ Ω, d > 0, τ > 0, such that
σd+τ (x) ⊂ Ω, there holds

λ+
(
σd(x)

)
≤ Cετ

1−p + (1 − ε)λ−(σd+τ (x)
)
,

where p > 1, then for all f ∈ C∞
0 (Ω)

∫
Ω

|f |p dλ ≤ C
∫
Ω

|f ′|p dx. (3.4.14)

(ii) If (3.4.14) is true for any x ∈ Ω, d > 0, τ > 0 such that σd+τ (x) ⊂ Ω,
then

λ+
(
σd(x)

)
≤ Cτ1−p + λ−(σd+τ (x)

)
. (3.4.15)

Example. We show that (3.4.15) is not sufficient for (3.4.14). Let λ+ and
λ− be the Dirac measures concentrated at the points 0 and 1, respectively.
We introduce the sequence of piecewise linear functions {ϕm}∞

m=1 on R by

ϕm(x) = 0 for |x| > mp/(p−1),

ϕm(0) = 1, ϕm(1) = 1 −m−1.

Then∫
R

|ϕm|p dλ =
p

m

(
1 + o(1)

)
and

∫
R

|ϕ′
m|p dx ∼ m−p as m→∞,

and therefore (3.4.14) fails. However, (3.4.15) holds with C = 1. To check this,
we need to consider only the case λ+(σd(x)) = 1 and λ−(σd+τ (x)) = 0, when
clearly τ ≤ 1 and τ1−p ≥ 1.
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3.5 p-Capacity Depending on ν and Its Applications to
a Conductor Inequality and Inequality (3.4.1)

Let n ≥ 1 and let K denote a compact subset of Ω. We introduce a relative
p-capacity of K with respect to Ω, depending on the measure ν, by

capp(K,Ω, ν) = inf
(
‖ gradϕ‖pLp

+
∫
Ω

|ϕ|p dν
)
, (3.5.1)

where the infimum is extended over all functions ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 1

on K. Arguing as in Sect. 2.3.1, one can show that the infimum in (3.5.1) will
be the same if the set of admissible functions is replaced by {ϕ ∈ C∞

0 (Ω) :
ϕ = 1 on K, 0 ≤ ϕ ≤ 1 on Ω}.

Making small changes in the proof of Proposition 3.3, one arrives at the
inequality

∫ ∞

0

capp(Lat,Lt, ν) d
(
tp
)
≤ c(p)

(
‖ grad f‖pLp

+
∫
Ω

|f |p dμ
)
,

where a = const > 1 and f ∈ C∞
0 (Ω). By this inequality one can easily obtain

the following condition, necessary and sufficient for (3.4.1) with q ≥ p:

μ(g)p/q ≤ const capp(g,Ω, ν) (3.5.2)

for all bounded open sets g with ḡ ⊂ Ω.
The next lemma shows directly that (3.5.2) is equivalent to (3.4.2).

Lemma. There holds the equivalence relation

capp(K,Ω, ν) ∼ inf
G

(
capp(K,G) + ν(G)

)
, (3.5.3)

where the infimum is taken over all bounded open sets G such that K ⊂ G
and Ḡ ⊂ Ω.

Proof. Let ε > 0, f ∈ C∞
0 (Ω), f = 1 on K, 0 ≤ f ≤ 1 on Ω, and let

capp(K,Ω, ν) + ε ≥ ‖ grad f‖pLp
+
∫
Ω

|f |p dν.

Then

capp(K,Ω, ν) + ε

≥
∞∑

k=0

2−p(k+1)

∫
L2−k−1 \ L2−k

∣∣grad
(
2k+1f − 1

)∣∣p dx+
∫ 1

0

ν(Lt) d
(
tp
)

≥ c
∞∑

k=0

2−pk
(
capp(L2−k ,L2−k−1) + ν(L2−k−1)

)
.
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Since capp(L2−k ,L2−k−1) ≥ capp(K,L2−k−1), it follows that

capp(K,Ω, ν) + ε ≥ c inf
G

(
capp(K,G) + ν(G)

)
.

The estimate
capp(K,Ω, ν) ≤ capp(K,G) + ν(G)

is obvious. The result follows. ��

We introduce the capacity minimizing function

Sp(t) = inf capp(g,Ω, ν),

where the infimum is taken over all bounded open sets g, ḡ ⊂ Ω, satisfying
μ(g) > t. By the last lemma,

Sp(t) ∼ inf
g,G

(
capp(g,G) + ν(G)

)

with the infimum extended over open sets g and G such that ḡ ⊂ G, Ḡ ⊂ Ω,
and μ(g) > t. Obviously, the condition (3.5.2) is equivalent to

sup
tp/q

Sp(t)
<∞.

Making trivial changes in the proof of Theorem 2.3.8, we arrive at the
condition, necessary and sufficient for (3.4.1) with 0 < q < p, p ≥ 1:

∫ ∞

0

(
tp/q

Sp(t)

)q/(p−q) dt
t
<∞. (3.5.4)

It follows from the proof of Theorem 3.4/1 that in the one-dimensional
case there holds the equivalence relation

Sp(t) ∼ inf
{
τ : τ1−p + ν

(
σd+τ (x)

)}

with the infimum taken over all x, d, and τ such that σd+τ (x) ⊂ Ω and

μ
(
σd(x)

)
> t. (3.5.5)

By (3.4.7),
Sp(t) ∼ inf R

(
σd(x)

)1−p
,

where the infimum is taken over all intervals σd(x), σd(x) ⊂ Ω, satisfying
(3.5.5).
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3.6 Compactness and Essential Norm

We define the space W̊1
p(ν) as the closure of C∞

0 (Ω) with respect to the norm

‖f‖
W̊1

p(ν) =
(∫

Ω

∣∣f ′(x)
∣∣p dx+

∫
Ω

∣∣f(x)∣∣p dν
)1/p

.

The condition (3.1.9) is a criterion of boundedness for the embedding operator

Ip,q : W̊
1
p(ν) → Lq(μ)

for q ≥ p ≥ 1.
In this section we establish a compactness criterion for Ip,q with q ≥ p ≥ 1

and obtain sharp two-sided estimates for the essential norm of Ip,q. We recall
that the essential norm of a bounded linear operator A acting from X into Y ,
where X and Y are linear normed spaces, is defined by

ess ‖A‖ = inf
T
‖A− T‖,

with the infimum taken over all compact operators T : X → Y .

Theorem 1. If q ≥ p ≥ 1, then the operator Ip,q is compact if and only if

lim
M→∞

sup
x,τ,d

μ(σd(x) \ [−M,M ])1/q

{τ1−p + ν(σd+τ (x))}1/p
= 0. (3.6.1)

Proof. Sufficiency. Let μ′ stand for the restriction of μ to the segment
[−M,M ] and let μM = μ− μ′

M . We define the embedding operators

IM : W̊
1
p(ν) → Lq(μM ) and I ′

M : W̊
1
p(ν) → Lq(μ′

M ),

as well as the embedding operators

iM : Lq(μM ) → Lq(μ) and i′
M : Lq(μ′

M ) → Lq(μ).

We have
Ip,q = iM ◦ IM + i′

M ◦ I ′
M . (3.6.2)

We prove that I ′
M is compact. Consider the embedding operators

ICM : W̊
1
p(ν) → C

(
[−M,M ]

)
,

iCM : C
(
[−M,M ]

)
→ Lq(μ′

M ),

where C([−M,M ]) is the space of continuous functions with the usual norm.
Clearly, I ′

M = iCM ◦ ICM . Since ICM is compact for any M > 0 by the Arzela



244 3 Conductor and Capacitary Inequalities

theorem, the operator I ′
M is compact as well. The condition ‖IM‖ → 0 as

M →∞ is equivalent to (3.6.1) owing to Theorem 3.4/1.
Necessity. Let Ip,q be compact and let B denote the unit ball in W̊1

p(ν).
The set Ip,qB is relatively compact in Lq(μ). Therefore, for any ε > 0 there
exists a finite ε-net {fj}Nj=1 ⊂ Ip,qB = B for the set Ip,qB. Given any fj ,
there exists a number Mj(ε) such that

∫
|x|>Mj(ε)

∣∣fj(x)∣∣q dμ(x) < εq.

Let M(ε) be equal to supjMj(ε). Then for any f ∈ B and for some i ∈ {1, N}
we have
(∫

Ω

∣∣f(x)∣∣q dμM(ε)(x)
)1/q

≤ ‖f − fj‖Lq(μ) +
(∫

Ω

∣∣fj(x)∣∣q dμMj(ε)(x)
)1/q

< 2ε.

Hence inequality (3.1.10) holds, where l = 1, μM(ε) and 2ε instead of μ and C.
Now (3.6.1) follows from the necessity part in Theorem 3.4/1. ��

Theorem 2. Let q ≥ p ≥ 1 and

E(μ, ν) := lim
M→∞

sup
x,τ,d

μ(σd(x) \ [−M,M ])1/q

{τ1−p + ν(σd+τ (x))}1/p
.

There exist positive constants c1 and c2 such that

c1E(μ, ν) ≤ ess ‖Ip,q‖ ≤ c2E(μ, ν). (3.6.3)

Proof. We use the same notation as in the previous theorem. The up-
per bound in (3.6.3) is a consequence of the sufficiency part in the proof of
Theorem 3.4/1.

Let T be any compact operator: W̊1
p(ν) → Lq(μ) and let ε be any positive

number. We choose T to satisfy

ess ‖Ip,q‖ ≥ ‖Ip,q − T‖ − ε. (3.6.4)

There exists a positive M(ε) such that for any f ∈ B
∫
Ω

∣∣Tf(x)∣∣q dμM(ε)(x) < εq. (3.6.5)

We introduce the truncation operator τM : Lq(μ) → Lq(μM ) by

(τMf)(x) =

{
0, |x| < M,
f(x), |x| ≥M.
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Using (3.6.4) and (3.6.5), we obtain

ess ‖Ip,q‖ ≥ ‖IM(ε) − τM(ε) ◦ T‖ − ε ≥ ‖IM(ε)‖ − 2ε.

By Theorem 3.6,

‖IM(ε)‖ ≥ c sup
x,τ,d

μM(ε)(σd(x))1/q

{τ1−p + ν(σd+τ (x))}1/p
≥ c1E(μ, ν).

The result follows. ��

3.7 Inequality (3.1.10) with Integer l ≥ 2

Let us deduce a characterization of inequality (3.1.11) for nonnegative func-
tions.

Theorem. Let n = 1 and 1 < p ≤ q < ∞. The inequality (3.1.11) holds
for all f ∈ C∞

0 (Ω) and f ≥ 0 on Ω if and only if there exists a constant
K > 0 such that

μ
(
σd(x)

)1/q ≤ K(τ1−2p + ν
(
σd+τ (x)

))1/p
, (3.7.1)

for all x ∈ Ω, d > 0 and τ > 0 satisfying σd+τ (x) ⊂ Ω.

Proof. To prove the necessity, we set a function f in (3.1.11), which is
subject to f ∈ C∞

0 (Ω), f = 1 on σd(x), f = 0 outside σd+τ (x), and 0 ≤
f(x) ≤ 1 on Ω. Then

μ
(
σd(x)

)1/q ≤ C
(∫

σd+τ (x)\σd(x)

∣∣f ′ ′(y)
∣∣p dy + ν

(
σd+τ (x)

))1/p

.

Clearly, f can be chosen on σd+τ (x)\σd(x) so that the integral on the right
does not exceed c(p)r1−2p. The estimate (3.7.1) follows.

For the proof of sufficiency we need the following lemma.

Lemma. If f ∈ D(R), f ≥ 0, then f1/2 ∈ L1
2p(R) and

∫
R

|f ′|2p
fp

dt ≤
(

2p− 1
p− 1

)p ∫
R

|f ′ ′|p dt, (3.7.2)

where the integration is taken over the support of f . The constant factor on
the right-hand side is optimal.

Proof. Obviously, for ε > 0,
∫

R

|f ′|2p
(f + ε)p

dt =
1

1 − p

∫
R

|f ′|2p−2f ′((f + ε)1−p
)′ dt.
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Integrating by parts, we obtain
∫

R

|f ′|2p
(f + ε)p

dt =
2p− 1
p− 1

∫
R

|f ′|2(p−1)

(f + ε)p−1
f ′ ′ dt

≤ 2p− 1
p− 1

(∫
R

|f ′ ′|p dt
)1/p(∫

R

|f ′|2p
(f + ε)p

dt
)(p−1)/p

.

Therefore ∫
R

|f ′|2p
(f + ε)p

dt ≤
(

2p− 1
p− 1

)p ∫
R

|f ′ ′|p dt.

It remains to pass to the limit as ε→ +0.
Let fε(x) = ‖x‖ε+2−1/pη(x), where ε > 0, η ∈ C∞

0 (R) and η = 1 near the
origin. Putting the family {fε} into (3.7.2) we see that the constant factor on
the right-hand side of (3.7.2) is sharp. The lemma is proved. ��

Let us turn to the proof of sufficiency of (3.7.1). Let f ∈ C∞
0 (Ω) satisfy

supp f ⊂ Ω and f ≥ 0. Then u = f1/2 satisfies

(∫ b

a

|u|2q dμ
)1/2q

≤ cK1/2

(∫ b

a

|u′|2p dx+
∫ b

a

|u|2p dν
)1/2p

by Theorem 3.4/1. This inequality, along with (3.7.2) gives (3.1.11). ��

The proof of the following conductor inequality, involving nonnegative
functions, is based upon the smooth level truncation and the last lemma.

Proposition. Let n ≥ 1, f ∈ C∞
0 (Ω), f ≥ 0, a = const > 1, and p > 1.

Then
∫ ∞

0

cap+
p,2(Lat,Lt) d

(
tp
)
≤ c(p, a)

∫
Ω

| grad2 f |p dx, (3.7.3)

where grad2 = {∂2/∂xi∂xj}ni,j=1 and

cap+
p,2(ḡ, G) = inf

{∫
G

∣∣grad2 ϕ(x)
∣∣p dx : ϕ ∈ C∞

0 (G), 1 ≥ ϕ ≥ 0 on G,

ϕ = 1 in a neighborhood of ḡ
}
. (3.7.4)

(Concerning the measurability of the function t→ cap+
p,2(Lat,Lt) see the

beginning of the proof of Proposition 3.3.)

Proof. Let H ∈ C2(R),

H(x) =

{
0 for x < ε,
1 for x > 1 − ε,
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where ε is an arbitrary number in (0, 1). By (3.7.4),

cap+
p,2(Lat,Lt) ≤

∫
Ω

∣∣∣∣grad2

(
H

(
f(x) − t
(a− 1)t

))∣∣∣∣
p

dx

≤ c(a)
tp

∫
Lt \Lat

(
| grad f |2p

fp
+ | grad2 f |p

)
dx.

Hence the left-hand side in (3.7.3) is dominated by

pc(a)
∫ ∞

0

∫
Lt \Lat

(
| grad f |2p

fp
+ | grad2 f |p

)
dx

dt
t
.

Owing to (3.3.3), this can be written as

pc(a) log a
∫
Ω

(
| grad f |2p

fp
+ | grad2 f |p

)
dx,

which does not exceed the right-hand side of inequality (3.7.3) in view of
(3.7.2). The result follows. ��

Remark. A direct generalization of this proof for derivatives of higher than
second order is impossible since there is no analog of the inequality (3.7.2) for
higher derivatives. In fact, the example of a function R

1 � t → u ∈ C∞
0 (R1),

u ≥ 0, coinciding with t2 for |t| < 1, shows that the finiteness of the norm
‖u(l)‖Lp(R1) does not imply the finiteness of the integral

∫
R1

∣∣u(j)(t)
∣∣pl/ju(t)p(j−l)/j dt

for l > 2.
Nevertheless, in Sect. 11.2.1 it will be shown that “the smooth truncation”

can be used in the proof of a capacitary inequality for Ω = R
n and any integer

l > 0 being applied not to an arbitrary nonnegative function but to a potential
with nonnegative density.

Example 1. Let us show that condition (3.7.1) is not sufficient for (3.1.11)
with p = 1. Let ν be Dirac’s measure concentrated at x = 0 and let dμ(x) =
(1 + x2)−1 dx. Obviously, condition (3.7.1) holds. We construct a sequence
of nonnegative functions ηm ∈ C∞

0 (R),m = 1, 2, . . . , defined by ηm(x) =
ϕm(x − m − 1), where ϕm is a smooth, nonnegative, even function on R,
vanishing for x ≥ m + 1 and such that ϕm(x) = m + 1 − x for 1 ≤ x ≤ m.
Then ηm(0) = 0,

∫
R

|η′ ′
m| dx = const,

∫
R

ηqm dμ→∞,

i.e., inequality (3.1.11) with p = 1 fails.
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Example 2. We shall check that (3.7.1) does not suffice for (3.1.11) to be
valid for all f ∈ C∞

0 (R) if p ≥ 1. Let ν and μ be Dirac’s measures concentrated
at 0 and 1, respectively. Consider the function ϕ0 ∈ C∞

0 (R) such that ϕ0(x) =
x for x ∈ [−1, 1]. We set ϕm(x) = ϕ0(x/m). Then

(∫
R

|ϕm|q dμ
)1/q

= m−1,

(∫
R

|ϕ′ ′
m|p dx

)1/p

= cm−2+1/p,

and (3.1.11) fails for p > 1. The case p = 1 was treated in Example 1.

Example 3. Now we consider the case of the derivative of order l ≥ 3 in
inequality (3.1.10) for all f ∈ C∞

0 (Ω) such that f(x) ≥ 0 on Ω. By the obvious
relation

inf
{∫ b

a

∣∣f (l)(x)
∣∣p dx : f ∈ C∞[a, b], f(x) ≥ 0, f(a) = 0, f(b) = 1

}

= cl,p(b− a)1−lp,

we obtain the following necessary condition for (3.1.10)

sup
x∈Ω,d>0

μ
(
σd(x)

)1/q( inf
σd+τ (x)⊂Ω

(
τ1−pl + ν

(
σd+τ (x)

)))−1/p

<∞. (3.7.5)

We shall verify that this condition is not sufficient for (3.1.10) when l ≥ 3 and
p ≥ 1.

Suppose first that p > 1. Let ν and μ be Dirac’s measures concentrated
at 0 and 1, respectively. Then (3.7.5) holds. Let ϕ0 be a nonnegative function
in C∞

0 (R) such that ϕ0(x) = x2 for |x| ≤ 1. We put ϕm(x) = ϕ0(x/m),
m = 1, 2, . . . . Then

∫
R

|ϕm|q dμ = m−2q,

∫
R

∣∣ϕ(l)(x)
∣∣p dx = cm1−pl,

and inequality (3.1.10) fails.
Consider the remaining case l = 3, p = 1. Let ν be Dirac’s measure at O.

Then (3.7.1) has the form

sup
x

(
1 + x2

)
μ
(
(x,∞)

)1/q
< const.

For dμ(x) = (1 + |x|)−2q−1 the last condition holds.
We introduce the sequence {Γm(x)}m≥1 by

Γm(x) =
∫ x

0

ηm(t) dt for |x| ≤ 2m+ 2,

where ηm is the same as in Example 2. For |x| ≥ 2m+2 we define Γm so that
Γm ≥ 0 and



3.8 Two-Weight Inequalities Involving Fractional Sobolev Norms 249

sup
m

∫ ∞

2m+2

∣∣Γ (3)
m (t)

∣∣ dt <∞.

We see that
∫

R

∣∣Γ (3)
m

∣∣ dt =
∫ 2m+2

− ∞
|ϕ′ ′

m| dt+
∫ ∞

2m+2

∣∣Γ (3)
m

∣∣ dt <∞,

and inequality (3.1.10) with p = 1, l = 3 does not hold.

3.8 Two-Weight Inequalities Involving Fractional
Sobolev Norms

Consider the inequality

(∫
Rn

|f |q dμ
)1/q

≤ c
(
〈f〉pp,l +

∫
Rn

|f |p dν
)1/p

, (3.8.1)

where f ∈ C∞
0 (Rn), p ≥ 1, 0 < l < 1, and

〈f〉pp,l =
∫

Rn

∫
Rn

|f(x) − f(y)|p
|x− y|n+pl

dxdy.

As is well known (Uspenskǐı [770]), any smooth extension of f onto R
n+1

admits the estimate

〈f〉pp,l ≤ c
∫

Rn+1
|xn+1|p(1−l)−1| gradF |p dxdxn+1, (3.8.2)

and there exists a linear extension operator f → F ∈ C∞(Rn+1), where F
decays to 0 at infinity and such that

∫
Rn+1

|xn+1|p(1−l)−1| gradF |p dxdxn+1 ≤ c〈f〉pp,l. (3.8.3)

The same argument as in Proposition 3.3 leads to a conductor inequality,
similar to (3.1.1), for the integral

∫
Rn+1

|xn+1|p(1−l)−1| gradF |p dxdxn+1, (3.8.4)

with the left-hand side involving the conductivity generated by (3.8.4) (com-
pare with (3.3.1)).

Minimizing (3.8.4) over all extensions of f and using (3.8.2) and (3.8.3),
we arrive at the fractional conductor inequality

∫ ∞

0

capp,l(Lat,Lt) d
(
tp
)
≤ c(l, p, a)〈f〉pp,l, (3.8.5)
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where a > 1 and
capp,l(ḡ, G) = inf〈ϕ〉pp,l, (3.8.6)

with the infimum taken over all ϕ ∈ C∞
0 (G) subject to ϕ = 1 on ḡ, ϕ = 0

outside G, and 1 ≥ ϕ ≥ 0 on G. This infimum does not change if one requires
ϕ ∈ C∞

0 (Rn), ϕ ≥ 1 on ḡ, and ϕ ≤ 0 outside G.
By (3.8.5) we obtain the following criterion for (3.8.1).

Theorem 1. Let 1 ≤ p ≤ q. Inequality (3.8.1) holds for all f ∈ C∞
0 (Rn)

if and only if there exists a constant K such that for all open bounded sets g
and G subject to ḡ ⊂ G there holds

μ(g)1/q ≤ K
(
capp,l(ḡ, G) + ν(G)

)1/p
. (3.8.7)

Remark. The last criterion can be simplified for p = 1, q ≥ 1, as follows:

μ(g)1/q ≤ K
(∫

g

∫
Rn \g

dxdy
|x− y|n−pl

+ ν(g)
)

for all open bounded sets g. In fact, the necessity results by setting the char-
acteristic function of g into (3.8.1). The sufficiency follows from

〈u〉1,l = 2
∫ ∫

|u(x)|≤|u(y)|

∫ |u(y)|

|u(x)|
dt

dxdy
|x− y|n+l

= 2
∫ ∞

0

∫
Lt

∫
Rn \ Lt

dxdy
|x− y|n+l

dt

combined with (3.8.7) where p = 1.

We turn to the inequality

(∫
Rn

|f |q dμ
)1/q

≤ c
(
〈grad f〉pp,1+l +

∫
Rn

|f |p dν
)1/p

, (3.8.8)

where f ∈ C∞
0 (Rn), f ≥ 0, and 0 < l < 1.

Lemma 1. Let f be a nonnegative function on R with absolutely continu-
ous f ′. Suppose the weight function w belongs to the Muckenhoupt class Ap,
p ∈ (1,∞). Then

∥∥∥∥ (f ′)2

f

∥∥∥∥
Lp(w dx)

≤ c‖f ′ ′w‖Lp(w dx). (3.8.9)

Proof. Since M±g ≤ 2Mg, where Mg is the centered maximal function
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(Mg)(x) = sup
τ>0

1
2τ

∫ x+τ

x−τ

∣∣g(y)∣∣ dy

and M± are one-sided maximal functions introduced in (1.3.57) and (1.3.58),
the result follows from (1.3.59) and the weighted norm inequality for the
maximal function due to Muckenhoupt [621]. ��

Corollary 1. Let the conditions in Lemma 1 hold and let Φ ∈ C2(R) be
such that

sup
t>0

∣∣ti−1Φ(i)
∣∣ <∞, i = 1, 2.

Then ∥∥(Φ(f)
)′ ′∥∥

Lp(w dx)
≤ c‖f ′ ′‖Lp(w dx).

Lemma 2. Let F ∈ C∞(Rn+1) and F ≥ 0. Then there exists a positive
constant c = c(n, p, l) such that

∫
Rn+1

|xn+1|p(1−l)−1 | gradF |2p
F p

dxdxn+1

≤ c
∫

Rn+1
|xn+1|p(1−l)−1| grad2 F |p dxdxn+1. (3.8.10)

Proof. The inequality (3.8.10) with (∂F/∂x1, . . . , ∂F/∂xn) instead of
gradF on the left-hand side follows immediately from (3.7.2). To estimate the
integral involving only the derivative ∂F/∂xn+1 we need the next inequality
for nonnegative functions of one variable:

∫
R

|t|p(1−l)−1 |f ′(t)|2p
f(t)p

dt ≤ c
∫

R

|t|p(1−l)−1
∣∣f ′ ′(t)

∣∣p dt, (3.8.11)

which is a particular case of Lemma 1 since the weight |t|p(1−l)−1 belongs to
the Muckenhoupt class Ap. ��

We state a direct corollary of Lemma 2.

Corollary 2. Let F be the same as in Lemma 2 and let h be a function
in C1,1(0,∞) such that C := sup{t > 0 : |h′(t)| + |t||h′ ′(t)| <∞}. Then
∥∥|xn+1|1−l−1/p grad2 h(F )

∥∥
Lp(Rn+1)

≤ cC
∥∥|xn+1|1−l−1/p grad2 F

∥∥
Lp(Rn+1)

.

Let f ∈ C∞
0 (Rn), f ≥ 0. The standard extension operator with nonnega-

tive radial kernel gives a nonnegative extension F ∈ C∞(Rn+1) of f satisfying
∥∥|xn+1|1−l−1/p grad2 F

∥∥
Lp(Rn+1)

≤ c〈f〉p,1+l.
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Therefore, arguing as in the proof of Proposition 3.7 and using the last in-
equality and the trace inequality (3.8.2), we arrive at the conductor inequality

∫ ∞

0

cap+
p,1+l(Lat,Lt) d

(
tp
)
≤ c(l, p, a)〈f〉pp,1+l, (3.8.12)

where

cap+
p,1+l(ḡ, G) = inf

{
〈ϕ〉pp,1+l : ϕ ∈ C∞

0 (G), 1 ≥ ϕ ≥ 0 on G,

and ϕ = 1 on a neighborhood of ḡ
}
.

Using (3.8.12), we arrive at the following criterion.

Theorem 2. Let 1 ≤ p ≤ q. The inequality

(∫
Rn

|f |q dμ
)1/q

≤ c
(
〈f〉pp,1+l +

∫
Rn

|f |p dν
)1/p

holds for all nonnegative f ∈ C∞
0 (Rn) if and only if there exists a constant K

such that
μ(g)1/q ≤ K

(
cap+

p,1+l(ḡ, G) + ν(G)
)1/p

for all open bounded sets g and G subject to ḡ ⊂ G.

3.9 Comments to Chap. 3

The material of this chapter is mostly borrowed from the author’s paper [562].
(For p = 2 inequality (3.1.2) with C(2) = 4 was used without explicit formu-
lation already in [531, 534], and [543].)

Capacitary inequality (3.1.2) and its various extensions are of independent
interest and have numerous applications to the theory of Sobolev spaces, linear
and nonlinear partial differential equations, calculus of variations, theories of
Dirichlet forms, and also in Probability Theory, especially in connection with
multidimensional concentration phenomena and the problems on the conver-
gence of Markov semigroups, and so on (see Maz’ya [543, 551]; D.R. Adams [5];
Dahlberg [219]; Hansson [348]; Kolsrud [441, 442]; Netrusov [631]; Rao [670];
D.R. Adams and Pierre [18]; Kaimanovich [410]; Maz’ya and Netrusov [572];
Vondraček [783]; D.R. Adams and Hedberg [15]; Amghibech [44]; Aikawa [36];
Verbitsky [774, 775]; Hansson, Maz’ya, and Verbitsky [349]; Grigor’yan [324];
Takeda [739]; Fitzsimmons [280]; Haj�lasz [341]; Fukushima and Uemura [294,
295]; Adams and Xiao [20, 21]; Ben Amor [82]; M. Chen [183, 184]; Barthe,
Cattiaux, and Roberto [75]; Maz’ya and Verbitsky [594]; Xiao [800]; Cattiaux,
Gentil, and Guillin [177]; Phuc and Verbitsky [658]; Bobkov and Zegarlinski
[120]; et al.).

It is, perhaps, worth mentioning that the proof of (3.1.1) is so simple and
generic that it works in a much more general frame of analysis on manifolds
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and metric spaces (see Grigor’yan [324], Haj�lasz [341], et al.). We shall discuss
such generalizations in the next chapter.

Inequality (3.1.10) and its applications were the subject of extensive work.
See, for example, books by Maz’ya [556]; Mynbaev and Otelbaev [622]; Opic
and Kufner [646]; Davies [224]; Kufner and Persson [469]; Kufner, Maligranda,
and Persson [468]; papers by Muckenhoupt [620]; Maz’ya [543]; Otelbaev [653];
Oinarov [644]; Davies [226]; Nasyrova and Stepanov [626]; Chua and Wheeden
[190]; Maz’ya and Verbitsky [593]; Stepanov and Ushakova [727]; Prokhorov
and Stepanov [667]; and references therein.

Inequality (3.1.1) was generalized to Sobolev–Lorentz spaces by Costea
and Maz’ya [213] as follows:
∫ ∞

0

capp,q(Lat,Lt) d
(
tp
)
≤ c(a, p, q)‖∇f‖pLp,q(Ω,mn,Rn) when 1 ≤ q ≤ p

and
∫ ∞

0

capp,q(Lat,Lt)q/p d
(
tq
)
≤ c(a, p, q)‖∇f‖qLp,q(Ω,mn,Rn) when p < q <∞

with capp,q standing for the capacity generated by the Sobolev–Lorentz norm.
In [213] one can find generalizations of other results in Sect. 3.1 to the context
of Sobolev–Lorentz spaces.
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Generalizations for Functions on Manifolds
and Topological Spaces

4.1 Introduction

The results and arguments in Chaps. 2 and 3 based upon isoperimetric and
isocapacitary inequalities for sets in the Euclidean space can be readily ex-
tended to much more general situtations; the present chapter only touches
such opportunities.

Applications to estimates of the principal eigenvalue of the Dirichlet
Laplacian on a Riemannian manifold are presented in Sects. 4.2 and 4.3.
In Sects. 4.4–4.6 we derive some conductor inequalities for functions defined
on a locally compact Hausdorff space X . It is worth mentioning that, unlike
the Sobolev inequalities, the conductor inequalities do not depend on the di-
mension of X . Furthermore, with a lower estimate for the p-conductivity by
a certain measure on X , one can readily deduce the Sobolev–Lorentz type
inequalities involving this measure.

In Sect. 4.4 we are interested in conductor inequalities for the Dirichlet-
type integral ∫

X
Fp[f ], (4.1.1)

where Fp is a measure-valued operator acting on a function f and satisfying
locality and contractivity conditions. A prototype of (4.1.1) is the functional∫

Ω

∣∣Φ(x, grad f)
∣∣p dx+

∫
Ω

|f |p dν, (4.1.2)

with a function y → Φ(x, y), positively homogeneous of order 1.
In Theorem 4.4 we obtain the conductor inequality

M−1

(∫ ∞

0

M
(
tp capp(Lat,Lt)

)dt
t

)
≤ c(a, p)

∫
X
Fp[f ]; (4.1.3)

here and elsewhere Lt = {x ∈ X : |f(x)| > t}, M is a positive convex function
on (0,∞), M(+0) = 0, and M−1 stands for the inverse of M . By capp we
mean the p-capacity generated by the operator Fp.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 4, c© Springer-Verlag Berlin Heidelberg 2011
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In Sect. 4.5 we derive the conductor inequality

(∫ ∞

0

(
capp,Γ (Lat,Lt)

)q/p d
(
tq
))p/q

≤ c(a, p, q)〈f〉pp,Γ , (4.1.4)

where q ≥ p ≥ 1,

〈f〉pp,Γ :=
(∫

X

∫
X

∣∣f(x) − f(y)∣∣pΓ (dx× dy)
)1/p

, (4.1.5)

and capp,Γ is the relative p-capacity corresponding to the seminorm (4.1.5).
We apply (4.1.4) to obtain a necessary and sufficient condition for a two-
measure Sobolev inequality involving 〈f〉pp,Γ .

In Sect. 4.6 we handle variants of the sharp capacitary inequality (2.3.6).
We show in Theorem 4.6/2 that a fairly general capacitary inequality is a
direct consequence of a one-dimensional inequality for functions with the first
derivative in Lp(0,∞). A corollary of this result is the following inequality
with the best constant, complementing (2.3.6):

(∫
Ω

capp(Lt, Ω)q/p d
(
tq
))1/q

≤
(

Γ ( pq
q−p )

Γ ( q
q−p )Γ (p q−1

q−p )

)1/p−1/q(∫
Ω

| grad f |p dx
)1/p

, (4.1.6)

where q > p ≥ 1. Combined with the isocapacitary inequality, (4.1.6) with
q = pn/(n− p), n > p, immediately gives the classical Sobolev estimate

(∫
Ω

|f |
pn

n−p dx
)1−p/n

≤ c
∫
Ω

| grad f |p dx (4.1.7)

with the best constant (see Sect. 2.3.5).
Another example of the application of Theorem 4.6/2 is the inequality

sup
∫ ∞

0

exp
(
−c capp(Lt, Ω)1/(1−p)

)
d exp

(
ctp/(p−1)

)
<∞, (4.1.8)

where c = const, the supremum is taken over all f ∈ C∞
0 (Ω) subject to

‖ grad f‖Lp(Ω) ≤ 1.
Inequality (4.1.8) with p = n is stronger than the sharp form of the Yu-

dovich inequality [809] due to Moser [618], which immediately follows from
(4.1.8) and an isocapacitary inequality. Yudovich’s inequality was rediscovered
by Pohozhaev [662] and Trudinger [764].

A capacitary improvement of the Faber–Krahn isoperimetric property of
the first eigenvalue of the Dirichlet problem for the Laplacian on a Riemannian
manifold is given in Sect. 4.7. Finally, in Sect. 4.8 the capacitary inequality
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(4.1.6) is used to obtain a sharp constant in the Sobolev-type two-weighted
Il’in’s inequality

(∫
Rn

∣∣u(x)∣∣ (n−b)p
(n−p−a)

dx
|x|b

)n−p−a
n−b

≤ Cp,a,b
(∫

Rn

∣∣∇u(x)∣∣p dx
|x|a

) 1
p

for all u ∈ C∞
0 (Rn).

4.2 Integral Inequalities for Functions on Riemannian
Manifolds

Until now, and mostly in the sequel, we restrict our attention to Sobolev
spaces in subdomains of R

n. However, the methods of proof of many of the
previous results do not use in a specific way the properties of the Euclidean
space. Let us turn, for instance, to Corollary 2.3.4.

The assumption Ω ⊂ R
n is not essential for its proof: The capacitary

inequality (2.3.6) is also valid for functions on a Riemannian manifold, while
the rest of the argument has a general character. Let Ω be an open subset
of a Riemannian manifold Rn and let μ = mn be the n-dimensional measure
on subsets of Rn. Then by virtue of Theorem 2.3.3 we have the following
two-sided estimate:

inf
{F }

[capp(F,Ω)]1/p

[mn(F )]1/q
≥ inf

u∈C∞
0 (Ω)

‖ gradu‖Lp(Ω)

‖u‖Lp(Ω)

≥ (p− 1)(p−1)/p

p
inf

{F }

[capp(F,Ω)]1/p

[mn(F )]1/q
, (4.2.1)

where {F} is the family of all compact subsets of Ω. Generally speaking, we
preserve the notation introduced in this chapter for the Euclidean case.

Let C be a function on (0,mn(Ω)) such that for any open set g with
compact closure ḡ ⊂ Ω and the smooth boundary one has the isoperimetric
inequality

s(∂g) ≥ C
(
mn(g)

)
. (4.2.2)

Then, in view of (2.2.8), the following isocapacitary inequality holds:

capp(F,Ω) ≥
(∫ mn(Ω)

mn(F )

dv
[C (v)]p/(p−1)

)1−p

,

and consequently,

inf
u∈C∞

0 (Ω)

‖ gradu‖pLp(Ω)

‖u‖pLp(Ω)

≥ (p− 1)p−1p−p

sup0<t<mn(Ω)(t(
∫mn(Ω)

t
dv

[C (v)]p/(p−1) )p−1)
. (4.2.3)
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Choosing for C a power function we derive the estimate

inf
u∈C∞

0 (Ω)

‖ gradu‖pLp(Ω)

‖u‖pLp(Ω)

≥ p−p

(
inf

{g}

s(∂g)
mn(g)

)p

. (4.2.4)

In the case p = 2 the left-hand side of the last inequality coincides with the
first eigenvalue Λ(Ω) of Dirichlet’s problem for the Laplace operator on Rn.
Estimates of eigenvalues for the Dirichlet and Neumann problem by geometric
characteristics of the manifold have been the subject of many investigations
(see Berger, Gauduchon, and Mazet [85]; Yau [805]; Chavel [179]; Donnelly
[238, 239]; Escobar [258]; Chung, Grigor’yan, and Yau [191]; Nadirashvili [623];
et al.). A significant role here was played by Cheeger’s inequality from 1970
[181]

Λ(Ω) ≥ 1
4

(
inf

{g}

s(∂g)
mn(g)

)2

, (4.2.5)

which coincides with (4.2.4) if p = 2. The constant 1/4 in (4.2.5) cannot be
improved (Buser [159]).1 The earlier proof of (4.2.4) shows that Cheeger’s
inequality is a consequence of the estimate

Λ(Ω) ≥ 1
4

inf
F ⊂Ω

cap(F,Ω)
mn(F )

, (4.2.6)

which was established by the author in 1962. Inequality (4.2.3) for p = 2 can
be written as

1
Λ(Ω)

≤ 4 sup
0<t<mn(Ω)

(
t

∫ mn(Ω)

t

dv
[C (v)]2

)
. (4.2.7)

Specializing the function C in (4.2.2), one can derive from it strengthenings
of known lower bounds for the eigenvalue Λ(Ω).

Let us now turn to an example. Let Ω be a subdomain of a two-dimensional
Riemannian manifold R2, whose Gauss curvature K does not exceed −α2 on
Ω, α= const > 0. Let us show that

1
Λ(Ω)

≤ 4
α2

(
1 −

(
1 + α2m2(Ω)/4

)−1/2)
. (4.2.8)

This is a sharpening of the inequality of McKean [595], C (Ω) ≥ α2/4, which
follows from (4.2.5). Indeed, as is known, in the hypothesis K ≤ −α2 inequal-
ity (4.2.2) is fulfilled with C (v) = (4πv + α2v2)1/2 (Burago–Zalgaller [151]).
Plugging this function into (4.2.7), we find

1 Cheeger’s paper from 1970 is actually about the first eigenvalue of the Neumann
(and not the Dirichlet) Laplacian, but the Dirichlet case is only simpler, Buser’s
example shows that the constant 1/4 in Cheeger’s inequality cannot be improved in
both the Dirichlet and no-boundary cases.
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1
Λ(Ω)

≤ 4
α2

max
0<t<A

(
t log

A(t+ 1)
(A+ 1)t

)
=

4
α2
Ψ−1

(
A

A+ 1

)
,

where A = α2m2(Ω)/4π, Ψ(y) = ye1−y, 0 ≤ y ≤ 1, Ψ−1 being the inverse
of Ψ . Now (4.2.8) follows from the obvious inequality Ψ−1(s) ≤ 1− (1− s)1/2.

Analogous considerations can be done also in connection with other inte-
gral inequalities for functions on a domain on a Riemannian manifold. Then
the powers of integrability do not depend only on the amount of irregularity
of the boundary, but also on the geometry of the manifold. As before, the
properties of the embedding operator are fixed by the constants in the corre-
sponding inequalities between measures and capacities, so the main difficulty
consists of the verification of these inequalities.

Recently this theme has been given considerable attention thanks to the
applications to physics and geometry. Let us turn to some such results.

As the isoperimetric inequality (1.4.13) is also true for subsets of the
Lobachevskǐı space H n of constant negative curvature, the estimate (1.4.14)
with an exact constant remains in force for functions on H n.

For subsets g of a smooth k-dimensional submanifold of R
n without bound-

ary the following inequality holds:

v(g) ≤ ck
(
s(∂g) +Q(g)

)k/(k−1)
, (4.2.9)

where v and s are the k-dimensional volume and the (k− 1)-dimensional area
and Q the absolute integral mean curvature (Michael and Simon [600]). As
a particular case of Theorem 2.1.3 we find that the isoperimetric inequality
(4.2.9) is equivalent to the integral inequality

(∫
Rn

|u|k/(k−1) dv
)(k−1)/k

≤ ck
(∫

Rn

| gradu| dv +
∫

Rn

|uH| dv
)
, (4.2.10)

where H is the mean curvature. If Rn is a manifold with boundary ∂Rn, then
one must add to the right-hand side of (4.2.10) the norm of the trace of u in
L1(∂Rn). The constant ck depends only on k.

Let us remark that an isoperimetric inequality of the type (4.2.9) and
the corresponding embedding theorem have likewise been proved for objects
generalizing k-dimensional surfaces in R

n such as currents and varifolds (cf.
Burago and Zalgaller [151], Sect. 7.4).

Inequality (4.2.9) (and therefore also its consequence (4.2.10)) can be ex-
tended to manifolds M smoothly embedded in an n-dimensional Riemannian
manifold Rn (Hoffmann and Spruck [379]). Then some natural geometrical
restrictions arise, which are connected with the volume of M, the injectivity
radius of Rn, and its sectional curvature.

The question of exact constants in inequalities of Sobolev type for func-
tions on a Riemannian manifold have been studied by Aubin. He proved, in
particular, that for any compact two-dimensional Riemannian manifold R2

there exists a constant A(p) such that for all u ∈W 1
p (R2), 1 ≤ p ≤ 2, one has
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‖u‖L2p/(2−p)(R2) ≤ K(2, p)‖ gradu‖Lp(R2) +A(p)‖u‖Lp(R2), (4.2.11)

where K(n, p) is the best constant in (2.3.21), as given in (2.3.23). For man-
ifolds of arbitrary dimension one does not have very complete results. There
the necessity follows naturally from attempts to solve special nonlinear elliptic
equations on Riemannian manifolds, for example, in connection with the well-
known Yamabe problem concerning the conformal equivalence of an arbitrary
Riemannian metric with a metric of constant scalar curvature. The issue is to
find a number λ such that the equation

4
n− 1
n− 2

Δu+Ru = λu(n+2)/(n−2) (4.2.12)

has positive solution on a Riemannian manifold (M, g) of dimension n ≥ 3.
Here R = R(x) is the scalar curvature defined by the metric g and λ the
constant scalar curvature of the conformal metric. Yamabe’s paper [802] de-
voted to this problem contains an error. It was found by Trudinger [763] who
corrected it in the case of nonnegative scalar curvature. The next step was
done by Aubin [56]. He stated his results in terms of the best constant of a
certain inequality of Sobolev type. The nonlinear spectral problem (4.2.12)
can be associated with a variational problem where one looks for the infimum
J of the functional

∫
M

(
| gradu|2 +

n− 2
4(n− 1)

Ru2

)
ds/‖u‖2

L2n/(n−2)(M),

defined in the space W 1
2 (M). Aubin proved that J ≤ [K(n, 2)]−2 and that

Yamabe’s problem is positively solved if this inequality is sharp.
Let us further remark that for the n-dimensional ball S of unit measure

Aubin proved the inequality

‖u‖2
L2n/(n−2)(S) ≤

[
K(n, 2)

]2‖ gradu‖2
L2(S) + ‖u‖2

L2(S),

with an exact constant for both terms in the right-hand side. In 1986 Gil-
Medrano [308] gave a partial solution to Yamabe’s problem for compact n-
dimensional locally conformally flat manifolds with positive scalar curvature
and infinite fundamental group, proving the inequality J < [K(n, 2)]−2. The
complete solution of Yamabe’s problem was achieved by Schoen [694]. Escobar
[260] contributed by solving this problem for manifolds with a boundary. The
work on Yamabe’s problem was an important step in the study of nonlinear
partial differential equations on Riemannian manifolds.

We mentioned only a few early results to give the flavor of a very large
area developed during the last 40 years in geometric analysis. Numerous stud-
ies showed the usefulness of isoperimetric inequalities, and to a smaller de-
gree of isocapacitary inequalities, in the theory of Sobolev spaces and dif-
ferential equations on manifolds, graphs, and Markov chains. Without aim-
ing at completeness, we mention the monographs by Aubin [57]; Varopoulos,
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Saloff-Coste, and Coulhon [772]; Hebey [360]; Chavel [180]; and Saloff-Coste
[687]. Considerable attention was paid to extensions for the so-called sub-
Riemannian differential geometry, in particular to the analysis on Carnot and
Heisenberg groups (see Capogna, Danielli, Pauls, and Tyson [166]).

4.3 The First Dirichlet–Laplace Eigenvalue and
Isoperimetric Constant

In this section we show by a counterexample that the fundamental eigenvalue
of the Dirichlet Laplacian is not equivalent to an isoperimetric constant, called,
as a rule, Cheeger’s constant, in contrast with an isocapacitary constant2 (see
(4.2.1)). This equivalence, even uniform with respect to the dimension, holds
for domains whose boundaries have nonnegative mean curvature, as proved
recently by E. Milman (oral communication), but as we shall see, it fails even
in the class of domains starshaped with respect to a ball.

Let Ω be a subdomain of an n-dimensional Riemannian manifold Rn and
let Λ(Ω) be the first eigenvalue of the Dirichlet problem for the Laplace op-
erator −Δ in Ω, or more generally, the upper lower bound of the spectrum of
this operator

Λ(Ω) = inf
u∈C∞

0 (Ω)

‖∇u‖2
L2(Ω)

‖u‖2
L2(Ω)

. (4.3.1)

By Corollary 2.3.4, Λ(Ω) admits the two-sided estimate

1
4
Γ (Ω) ≤ Λ(Ω) ≤ Γ (Ω) (4.3.2)

with

Γ (Ω) := inf
{F }

cap(F ;Ω)
mn(F )

.

By Theorem 2.1.3, the set function

γ(Ω) = inf
u∈C∞

0 (Ω)

‖∇u‖L1(Ω)

‖u‖L1(Ω)
(4.3.3)

admits the geometric representation

γ(Ω) = inf
{g}

s(∂g)
mn(g)

, (4.3.4)

where g is an arbitrary open subset of Rn with compact closure g in Ω and
smooth boundary ∂g, and s is the (n − 1)-dimensional Hausdorff measure.
Obviously, for all u ∈ C∞

0 (Ω),
2 By the equivalence of the set functions a and b, defined on subsets of R

n, we mean
here the existence of positive constants c1 and c2 depending only on n and such that
c1a ≤ b ≤ c2a.
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γ(Ω) ≤
∫
Ω
|∇(u2)| dx∫
Ω
u2 dx

≤ 2
‖∇u‖L2(Ω)

‖u‖L2(Ω)
.

Hence
γ(Ω)2 ≤ 4Λ(Ω), (4.3.5)

which shows, together with (4.3.2) and (4.3.3), that

γ(Ω)2 ≤ 4Γ (Ω). (4.3.6)

Note that (4.3.5) is nothing but (4.2.6), and we arrived at it in a much sim-
pler way than in Sect. 4.2. One can ask whether an upper bound for Γ (Ω)
formulated in terms of γ(Ω) exists.

By the following counterexample we show that the answer is negative for
domains in R

n starshaped with respect to balls.

Example. Let Ω be a subdomain of the n-dimensional unit ball B, star-
shaped with respect to a concentric ball Bρ = {x : |x| < ρ}. Here we check
that the inequality opposite to (4.3.6),

γ(Ω)2 ≥ CΓ (Ω), (4.3.7)

is impossible with C independent of ρ. Moreover, we shall construct a sequence
of domains {ΩN}n≥1 situated in B and such that:

(i) ΩN is starshaped with respect to a ball B(0, ρN ), where ρN → 0,
(ii) Γ (ΩN ) →∞,
(iii) γ(ΩN ) ≤ c, where c depends only on n.

Let N stand for a sufficiently large integer number. By {ωj}N
n−1

j=1 we de-
note a collection of points on the unit sphere Sn−1 placed uniformly in the
sense that the distance from every point ωj to the set of other points of the
collection lies between c1N−1 and c2N−1, where c1 and c2 are positive con-
stants, depending only on n. Consider a closed rotational cone Cj with the
axis Oωj and the vertex at the distance c0N−1 from O, where c0 is an abso-
lute constant large enough. The opening of Cj will be independent of j and
denoted by εN . Let εN = o(N

1−n
n−2 ). Clearly, the complement of Cj is visible

from a sufficiently small ball B(0, ρN ). Therefore, the domain

ΩN := B\
⋃

j
Cj

is starshaped with respect to B(0, ρN ) (see Fig. 17).
We shall find the limit of γ(ΩN ) as N → ∞ as well as a lower estimate

for Γ (ΩN ). Clearly, γ(ΩN ) ≥ γ(B) = n. Furthermore, by (4.3.4),

γ(ΩN ) ≤ s(∂ΩN )
mn(ΩN )

=
s(∂B) + s(

⋃
j(B ∩ ∂Cj))

mn(B) −mn(
⋃

j(B ∩ Cj))

≤ ωn + c1εn−1
N Nn−1

ωn/n− c2εn−2
N Nn−1

,
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Fig. 17. The boundary of the subdomain ΩN of the unit ball is the union of many
thin conic surfaces and a spherical part.

and therefore,
lim

N→∞
γ(ΩN ) = n.

To estimate Γ (ΩN ) from below, we construct a covering of B by the balls
Bk := B(xk, 4c0N−1), whose multiplicity does not exceed a constant depend-
ing only on n. Let |xk| ≥ c0N−1. Theorem 14.1.2, to be proved later, implies

cNn cap(Bk\ΩN )
∫

Bk

u2 dx ≤
∫

Bk

|∇u|2 dx (4.3.8)

for all u ∈ C∞
0 (ΩN ), and the result will stem from a proper lower bound for

cap(Bk\ΩN ).
First, let us consider n = 3. Clearly, Bk\ΩN contains a right rotational

cylinder Tk with height c0N−1 and diameter of the base εNN−1. Now, by
Proposition 13.1.3/1 to appear in Chap. 13,

cap(Tk) ≥ cN−1| log εN |−1.

This estimate in combination with (4.3.8) gives

cN2| log εN |−1

∫
Bk

u2 dx ≤
∫

Bk

|∇u|2 dx. (4.3.9)

Choosing εN = exp(−N) and summing (4.3.9) over all balls Bk, we obtain
λ(ΩN ) ≥ cN . Hence λ(ΩN ) → ∞ where as γ(ΩN ) ≤ c. Thus, in particular,
there is no inequality

(
inf

{g}

s(∂g)
m3(g)

)2

≥ C inf
{F }

cap(F ;Ω)
m3(F )

,

and equivalently,
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(
inf

{g}

s(∂g)
m3(g)

)2

≥ CΛ(Ω)

with constant factors C independent of the radius ρ.
For dimensions greater than three, the very end of the argument remains

intact, but the estimation of cap(Bk\ΩN ) becomes a bit more complicated
and the choice of εN will be different.

Let αBk stand for the ball concentric with Bk and dilated with coefficient
α. We introduce the set sk = {j : Cj ∩ 1

2Bk �= ∅}. With every j in sk we
associate a right rotational cylinder Tj coaxial with the cone Cj and situated
in Cj ∩ 1

2Bk. The height of Tj will be equal to c0N−1 and the diameter of
the base equal to εN |xk|. We define a cutoff function ηj , equal to 1 on the
εN |xk|-neighborhood of Tj , zero outside the 2εN |xk|-neighborhood of Tj , and
satisfying the estimate ∣∣∇ηj(x)∣∣ ≤ cδ(x)−1,

where δ(x) is the distance from x to the intersection of Tj with the axis of Cj .
By Pk we denote the equilibrium potential of Bk\ΩN . We have

∑
j∈sk

cap(Cj ∩ Bk) ≤
∑
j∈sk

∫
Rn

∣∣∇(Pkηj)
∣∣2 dx

≤ c
(∫

Rn

|∇Pk|2 dx+
∫

Rn

P2
kδ

−2 dx
)
.

Changing the constant c, one can majorize the last integral by the previous
one due to Hardy’s inequality. Hence,

cap(Bk\ΩN ) ≥ c
∑
j∈sk

cap(Tj). (4.3.10)

By Proposition 13.1.3/1 to be proved in the sequel,

cap(Tj) ≥ c
(
εN |xk|

)n−3
N−1.

Furthermore, it is visible that the number of integers in sk is between two
multiples of |xk|1−n. Now, by (4.3.10)

cap(Bk\ΩN ) ≥ c|xk|1−n
(
εN |xk|

)n−3
N−1

and by (4.3.8)

cNn−1|xk|−2εn−3
N

∫
Bk

u2 dx ≤
∫

Bk

|∇u|2 dx. (4.3.11)

Since |xk| ≤ 1, it follows by summation of (4.3.11) over k that

λ(ΩN ) ≥ cεn−3
N Nn−1.

Putting, for instance,
εN = N (1−n)/(n−5/2),

we see that Γ (ΩN ) → ∞, and the desired counterexample is constructed for
n > 3.
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4.4 Conductor Inequalities for a Dirichlet-Type Integral
with a Locality Property

Let X denote a locally compact Hausdorff space and let C(X ) stand for the
space of continuous real-valued functions given on X . By C0(X ) we denote
the set of functions f ∈ C(X ) with compact supports in X .

We introduce an operator Fp defined on a subset dom(Fp) of C(X ) and
taking values in the cone of nonnegative locally finite Borel measures on X .
We suppose that 1 ∈ dom(Fp) and Fp is positively homogeneous of order
p ≥ 1, i.e., for every real α, f ∈ dom(Fp) implies αf ∈ dom(Fp) and

Fp[αf ] = |α|pFp[f ]. (4.4.1)

It is also assumed that Fp is contractive, that is, λ(f) ∈ dom(Fp) and

Fp

[
λ(f)

]
≤ Fp[f ], (4.4.2)

for all f ∈ dom(Fp), where λ is an arbitrary real-valued Lipschitz function
on the line R such that |λ′| ≤ 1 and λ(0) = 0. We suppose that the following
locality condition holds:

f(x) = c ∈ R on a compact set C =⇒
∫

C
Fp[f ] =

∫
C
Fp[c]. (4.4.3)

An example of the measure satisfying conditions (4.4.1)–(4.4.3) is given
by (4.1.2), where ν = 0 and

Ω × R
n � (x, z) → Φ(x, z) ∈ R (4.4.4)

is a continuous function, positively homogeneous of degree 1 with respect to
z. One can take the space of locally Lipschitz functions on Ω as dom(Fp).

Let g and G denote open sets in X such that the closure ḡ is a compact
subset of G. We introduce the p-conductivity of the conductor G\g (in other
terms, the relative p-capacity of the set ḡ with respect to G) as

capp(ḡ, G) = inf
{∫

X
Fp[ϕ] : ϕ ∈ dom(Fp), 0 ≤ ϕ ≤ 1 on G

and ϕ = 1 on a neighborhood of g
}
. (4.4.5)

Using the truncation

λ(ξ) = min
{

(ξ − ε)+
1 − ε , 1

}
,

with ε ∈ (0, 1) and ξ ∈ R, we see that the infimum in (4.4.5) does not change
if the class of admissible functions ϕ is enlarged to
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{
ϕ ∈ dom(Fp) ∩ C0(X ) : ϕ ≥ 1 on g, ϕ ≤ 0 on X\G

}
(4.4.6)

(compare with Sect. 2.2.1).

Lemma. Let f ∈ dom(Fp) ∩ C0(X ), a = const > 1, Lt = {x ∈ X :
|f(x)| > t}. Then the function t→ capp(Lat,Lt) is upper semicontinuous.

Proof. It follows from (4.4.3) that
∫

X
Fp[f ] =

∫
suppf

Fp[f ] <∞. (4.4.7)

Let t0 > 0 and ε > 0. There exist open sets g and G such that

Lat ⊂ g, g ⊂ G, G ⊂ Lt. (4.4.8)

It follows from the definition of capp that for all compact sets C ⊂ g

capp(C,G) ≤ capp(Lat0 ,Lt0) + ε (4.4.9)

(compare with Sect. 2.2.1). By (4.4.8),

max
{
f(x) : x ∈ g

}
< at0 and min

{
f(x) : x ∈ G

}
> t0.

We denote
δ1 = t0 − a−1 max

{
f(x) : x ∈ g

}
and

δ2 = min
{
f(x) : x ∈ G

}
−t0.

Then
La(t0−δ) ⊂ g and G ⊂ Lt0+δ

for every δ ∈ (0,min{δ1, δ2}). Putting C = La(t0−δ) in (4.4.9) and recalling
that capp decreases with enlargement of the conductor, we obtain

capp(La(t0−δ),Lt0+δ) ≤ capp(Lat0 ,Lt0) + ε. (4.4.10)

Using the monotonicity of capp again, we deduce from (4.4.10) that

capp(Lat,Lt) ≤ capp(Lat0 ,Lt0) + ε

for every t sufficiently close to t0. In other words, the function t →
capp(Lat,Lt) is upper semicontinuous. The result follows. ��

We prove a general conductor inequality in the integral form for the func-
tional (4.1.1).

Theorem. Let M denote an increasing convex (not necessarily strictly
convex) function given on [0,∞), M(0) = 0. Then the inequality (4.1.3) holds
for all f ∈ dom(Fp) ∩ C0(X ) and for an arbitrary a > 1.
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Proof. We have

capp(Lat,Lt) ≤
∫

X
Fp[ϕ]

for every ϕ ∈ dom(Fp) ∩ C0(X ) satisfying

ϕ = 1 on Lat, ϕ = 0 on X\Lt, and 0 ≤ ϕ ≤ 1 on X .

By the homogeneity of Fp and by (4.4.3),

tp capp(Lat,Lt) ≤
∫

Lt

Fp[tϕ].

We set here

ϕ(x) =
Λt(f(x))
(a− 1)t

,

where
Λt(ξ) = min

{
(|ξ| − t)+, (a− 1)t

}
, ξ ∈ R, (4.4.11)

with ξ+ = (|ξ| + ξ)/2. By Λt = const on Lat and by (4.4.3) we have

tp capp(Lat,Lt) ≤
1

(a− 1)p

∫
Lt \ Lat

Fp

[
Λt(f)

]
.

Since the mapping ξ → Λt(ξ) is contractive and since the function t →∫
Lt
Fp[f ] has, at most, a countable set of discontinuities, it follows that

tp capp(Lat,Lt) ≤
1

(a− 1)p

∫
Lt \ Lat

Fp[f ] + tp
∫

Lat

Fp[1], (4.4.12)

for almost every t > 0. Hence,
∫ ∞

0

M
(
tp capp(Lat,Lt)

)dt
t

≤
∫ ∞

0

M

(
1

(a− 1)p

∫
Lt \ Lat

Fp[f ] + tp
∫

Lat

Fp[1]
)

dt
t

≤ 1
2

∫ ∞

0

M

(
2

(a− 1)p

∫
Lt \ Lat

Fp[f ]
)

dt
t

+
1
2

∫ ∞

0

M

(
2tp
∫

Lat

Fp[1]
)

dt
t
. (4.4.13)

Let γ denote a locally integrable function on (0,∞) such that there exist
the limits γ(0) and γ(∞). Then the identity

∫ ∞

0

(
γ(t) − γ(at)

)dt
t

=
(
γ(0) − γ(∞)

)
log a, (4.4.14)

holds. Setting here
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γ(t) := M

(
1

(a− 1)p

∫
Lt

Fp[f ]
)
,

and using the convexity of M , we obtain
∫ ∞

0

M

(
2

(a− 1)p

∫
Lt \ Lat

Fp[f ]
)

dt
t

≤
∫ ∞

0

{
M

(
2

(a− 1)p

∫
Lt

Fp[f ]
)
−M

(
2

(a− 1)p

∫
Lat

Fp[f ]
)}

dt
t

= log a,M
(

2
(a− 1)p

∫
X
Fp[f ]

)
. (4.4.15)

By convexity of M ,
∫ ∞

0

M

(
2tp
∫

Lat

Fp[1]
)

dt
t

≤ 2
∫ ∞

0

M ′
(

2tp
∫

Lat

Fp[1]
)
tp−1

∫
Lat

Fp[1] dt

≤ 2
∫ ∞

0

M ′
(

2p
∫ t

0

τp−1

∫
Laτ

Fp[1] dτ
)
tp−1

∫
Lat

Fp[1] dt

=
1
p
M

(
2p
∫ ∞

0

τp−1

∫
Laτ

Fp[1] dτ
)
. (4.4.16)

Clearly,
∫ ∞

0

τp−1

∫
Laτ

Fp[1] dτ =
(
ap − 1

) ∫ ∞

0

τp−1

∫
Lτ \ Laτ

Fp[1] dτ. (4.4.17)

Using the truncation

λ(ξ) =

{
|ξ| for |ξ| > aτ,
aτ for |ξ| ≤ aτ

together with (4.4.2), we deduce from (4.4.17) and (4.4.14) that
∫ ∞

0

τp−1

∫
Laτ

Fp[1] dτ ≤ ap − 1
ap

∫ ∞

0

∫
Lτ \ Laτ

Fp[f ]
dτ
τ

= log a
ap − 1
ap

∫
X
Fp[f ].

Combining this with (4.4.16), we arrive at
∫ ∞

0

M

(
2tp
∫

Lat

Fp[1]
)

dt
t
≤ 1
p
M

(
2p log a

ap − 1
ap

∫
X
Fp[f ]

)
.

Adding (4.4.15) and the last inequality, we deduce from (4.4.13) that
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∫ ∞

0

M
(
tp capp(Lat,Lt)

)dt
t

≤ 1
2

log aM
(

2
(a− 1)p

∫
X
Fp[f ]

)
+

1
2p
M

(
2p log a

ap − 1
ap

∫
X
Fp[f ]

)
,

and (4.1.3) follows. ��

Remark 1. Suppose that (4.4.3) is replaced by the following more restrictive
locality condition:

f(x) = const on a compact set C =⇒
∫

C
Fp[f ] = 0, (4.4.18)

which holds, for example, if the measure ν in (4.1.2) is zero. Then the above
proof becomes simpler. In fact, we can replace (4.4.13) by

∫ ∞

0

M
(
tp capp(Lat,Lt)

)dt
t
≤
∫ ∞

0

M

(
1

(a− 1)p

∫
Lt \ Lat

Fp[f ]
)
.

Estimating the right-hand side by (4.4.15) we obtain the inequality
∫ ∞

0

M
(
tp capp(Lat,Lt)

)dt
t
≤ log aM

(
1

(a− 1)p

∫
X
Fp[f ]

)
. (4.4.19)

The next assertion follows directly from (4.1.3) and (4.4.19) by setting
M(ξ) = ξq/p for ξ ≥ 0.

Corollary 1. Let q ≥ p and let Fp satisfy the locality condition (4.4.3).
Then for all f ∈ dom(Fp) ∩ C0(X ) and for an arbitrary a > 1

(∫ ∞

0

(
capp(Lat,Lt)

)q/p d
(
tq
))1/q

≤ C
(∫

X
Fp[f ]

)1/p

. (4.4.20)

If additionally Fp is subject to (4.4.18), then one can choose

C =
(q log a)1/q

a− 1
.

Remark 2. Let Fp satisfy (4.4.18). Then for every sequence {tk}∞
k=− ∞ such

that 0 < tk < tk+1,

tk → 0 as k → −∞ and tk → ∞ as k → ∞,

the following discrete conductor inequality holds:

∞∑
k=− ∞

(tk+1 − tk)p capp(Ltk+1 ,Ltk
) ≤ Fp[f ]. (4.4.21)
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Putting tk = ak, where a > 1, we see that

∞∑
k=− ∞

apk capp(Lak+1 ,Lak) ≤ (a− 1)−pFp[f ]. (4.4.22)

Using Lemma 4.4 and monotonicity properties of the conductivity, we
check that (4.4.22) is equivalent to (4.4.20) with q = p modulo the value of
the coefficient c.

The capacitary inequality

(∫ ∞

0

(
capp(Lt,X )

)q/p d
(
tq
))1/q

≤ C
(∫

X
Fp[f ]

)1/p

(4.4.23)

results directly from (4.4.20).
An immediate consequence of (4.4.23) is the following criterion for the

Sobolev-type inequality:

‖f‖Lq(μ) ≤ C
(∫

X
Fp[f ]

)1/p

, (4.4.24)

where μ is a locally finite Radon measure on X , q ≥ p, and f is an arbitrary
function in dom(Fp) ∩ C0(X ).

Corollary 2. Inequality (4.4.24) holds if and only if

sup
μ(g)p/q

capp(g,X )
<∞. (4.4.25)

Proof. The necessity of (4.4.25) is obvious and its sufficiency follows from
the well-known and easily checked inequality

(∫ ∞

0

μ(Lt) d
(
tq
))1/q

≤
(∫ ∞

0

μ(Lt)p/q d
(
tp
))1/p

,

where q ≥ p ≥ 1 (see Hardy, Littlewood, and Pólya [350]).

4.5 Conductor Inequality for a Dirichlet-Type Integral
without Locality Conditions

Here the notations X and Lip0(X ) have the same meaning as in Sect. 4.4.
Let × stand for the Cartesian product of sets and let Γ denote a nonnegative
symmetric Radon measure on X 2 := X ×X , locally finite outside the diagonal
{(x, y) ∈ X 2 : x = y}. We shall derive a conductor inequality for the seminorm
(4.1.4) where f is an arbitrary function in C0(X ) such that
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〈f〉p,Γ <∞. (4.5.1)

Clearly, the seminorm 〈λ(f)〉p,Γ is contractive, that is,
〈
λ(f)

〉
p,Γ

≤ 〈f〉p,Γ ,

with the same λ as in (4.4.2).
Let, as before, g and G denote open sets in X such that g is a compact sub-

set of G. Similarly to Sect. 4.4, we introduce the conductivity of the conductor
G\g, in other terms, the capacity of ḡ with respect to G:

capp,Γ (ḡ, G) = inf{〈f〉pp,Γ : ϕ ∈ C0(X ), 0 ≤ ϕ ≤ 1 on G

and ϕ = 1 on a neighborhood of g}.

It is straightforward that this infimum does not change if the class of ad-
missible functions ϕ is replaced with (4.4.6) (compare with the definition of
capp(g,G) in Sect. 4.4).

Theorem. For all f ∈ C0(X ), for all q ≥ p ≥ 1, and for an arbitrary
a > 1 the conductor inequality (4.1.4) holds.

Proof. The measurability of the function t → capp,Γ (Lat,Lt) is proved
word for word as in Lemma 4.4.

Clearly,
(a− 1)ptp capp,Γ (Lat,Lt) ≤

〈
Λt(f)

〉p
p,Γ

(4.5.2)

with Λt defined by (4.4.11). Let Kt denote the conductor Lt\Lat. Since

S2 ⊂ (S × T ) ∪ (T × S) ∪ (S\T )2

for all sets S and T and since Γ is symmetric, it follows that

(a− 1)ptp capp,Γ (Lat,Lt)

≤
(

2
∫
Kt × X

+
∫

(X \Kt)2

)∣∣Λt

(
f(x)

)
− Λt

(
f(y)

)∣∣pΓ (dx× dy)

≤ 2
∫
Kt × X

∣∣f(x) − f(y)∣∣pΓ (dx× dy) + 2(a− 1)ptpΓ
(
Lat × (X\Lt)

)
.

(4.5.3)

By Minkowski’s inequality,

(a− 1)p
(∫ ∞

0

(
capp,Γ (Lat,Lt)

)q/p
tq−1 dt

)p/q

≤ A+B,

where

A = 2
(∫ ∞

0

(∫
Kt × X

∣∣f(x) − f(y)∣∣pΓ (dx× dy)
)q/p dt

t

)p/q
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and

B = 2(a− 1)p
(∫ ∞

0

Γ
(
Lat × (X\Lt)

)q/p
tq−1 dt

)p/q

.

Since q ≥ p, we have

A ≤ a
(∫ ∞

0

γ(t) − γ(at)
t

dt
)p/q

,

where

γ(t) =
(∫

Lt × X

∣∣f(x) − f(y)∣∣pΓ (dx× dy)
)p/q

.

Using (4.4.14), we obtain

A ≤ 2(log a)p/q〈f〉pp. (4.5.4)

Let us estimate B. Clearly,

B = 2(a− 1)p
(∫ ∞

0

(∫
X 2

κ(x,Lat)κ(y,X\Lt)Γ (dx× dy)
)q/p

tq−1 dt
)p/q

,

where κ(·, S) is the characteristic function of a set S. By Minkowski’s inequal-
ity,

B ≤ 2(a− 1)p
∫

X 2

(∫ ∞

0

κ(x,Lat)κ(y,X\Lt)tq−1 dt
)p/q

Γ (dx× dy)

=
2(a− 1)p

qp/qap

∫
X 2

(∣∣f(x)∣∣q − aq∣∣f(y)∣∣q)p/q
+
Γ (dx× dy).

Obviously, the inequality |f(x)| ≥ a|f(y)| implies

∣∣f(x)∣∣q − aq∣∣f(y)∣∣q ≤ ∣∣f(x)∣∣q ≤ aq

(a− 1)q
(∣∣f(x)∣∣− |f(y)|

)q
+
.

Hence
B ≤ q−p〈f〉pp.

Adding this estimate with (4.5.4), we arrive at (4.1.4) with

c(a, p, q) =
1 + 2(q log a)p/q

(a− 1)pqp/q
.

The proof is complete. ��

To show the usefulness of inequality (4.1.4), we give a criterion of a two-
weight Sobolev-type inequality involving the seminorm 〈f〉p,Γ .

Corollary. Let q ≥ p ≥ 1, q ≥ r > 0, and let μ and ν be locally finite
nonnegative Radon measures on X . The inequality
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∫
X
|f |q dμ ≤ C

(
〈f〉qp,Γ +

(∫
X
|f |r dν

)q/r)
(4.5.5)

holds for every f ∈ dom(Fp) ∩ C0(X ) if and only if all bounded open sets g
and G in X such that g ⊂ G satisfy the inequality

μ(g) ≤ Q
(
capp,Γ (g,G)q/p + ν(G)q/r

)
. (4.5.6)

The best constants C and Q in (4.5.5) and (4.5.6) are related by Q ≤ C ≤
c(p, q)Q.

Proof. The necessity of (4.5.6) and the estimate G ≤ C are obtained by
putting an arbitrary function f ∈ dom(Fp) ∩ C0(X ) subject to f = 1 on g,
f = 0 on X\G, 0 ≤ f ≤ 1, into (4.5.5).

The sufficiency of (4.5.6) results by the following argument:
∫

X
|f |q dμ =

∫ ∞

0

μ(Lt) d
(
tq
)

≤ Q
(∫ ∞

0

capp,Γ (Lat,Lt)q/p d
(
tq
)

+
∫ ∞

0

ν(Lt)q/r d
(
tq
))

≤ Q
(
c(a, p, q)q/p〈f〉qp,Γ +

∫
X
|f |r dν

)q/r

,

where c(a, p, q) is the same constant as in (4.1.4). The proof is complete. ��

Remark. Using the obvious identity

〈
|f |
〉
1,Γ

=
∫ ∞

0

Γ (Lt × X\Lt) dt,

instead of the conductor inequality (4.1.4), we deduce with the same argument
that the inequality

(∫
X
|f |q dμ

)1/q

≤ C
(
〈f〉1,Γ +

∫
X
|f | dν

)
, (4.5.7)

with q ≥ 1 holds if and only if, for all bounded open sets g,

μ(g)1/q ≤ C
(
Γ
(
g × (X\g)

)
+ ν(g)

)
,

with the same value of C as in (4.5.7).

4.6 Sharp Capacitary Inequalities and Their Applications

Let Ω denote an open set in R
n and let the function

Ω × R
n � (x, z) → Φ(x, z) ∈ R
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be a continuous function, positively homogeneous of degree 1 with respect to
z. Clearly, the measure

Fp[f ] :=
∣∣Φ(x, grad f(x)

)∣∣p dx

satisfies (4.4.1), (4.4.2), and (4.4.18). Hence, (4.4.20) implies the inequality

(∫ ∞

0

(
capp(Lt,X )

)q/p d
(
tq
))1/q

≤ C
(∫

X

∣∣Φ(x, grad f(x)
)∣∣p dx

)1/p

,

(4.6.1)
where capp is the p-capacity corresponding to the integral (3.1.8), C = const >
0, and f is an arbitrary function in C∞

0 (Ω). The next assertion gives the sharp
value of C for q > p. In the case q = p the sharp value of C is given by (2.3.6)
and is obtained by the same argument.

Theorem 1. Inequality (4.6.1) with q > p holds with

C =
(

Γ ( pq
q−p )

Γ ( q
q−p )Γ (p q−1

q−p )

)1/p−1/q

. (4.6.2)

This value of C is sharp if Φ(x, y) = |y| and if either Ω is a ball or Ω = R
n.

Proof. Let

ψ(t) =
∫ ∞

t

(∫
|f(x)|=τ

∣∣Φ(x,N(x)
)∣∣p∣∣grad f(x)

∣∣p−1 ds(x)
)1/(1−p)

dτ

with ds standing for the surface element and N(x) denoting the normal vector
at x directed inward Lτ . Further, let t(ψ) denote the inverse function of ψ(t).
Then ∫

Ω

∣∣Φ(x, grad f(x)
)∣∣p dx =

∫ ∞

0

∣∣t′(ψ)
∣∣p dψ (4.6.3)

(see Lemma 2.3.1 for more details). By Bliss’s inequality [109]

(∫ ∞

0

t(ψ)q
dψ

ψ1+q(p−1)/p

)1/q

≤
(

p

q(p− 1)

)1/q

C

(∫ ∞

0

∣∣t′(ψ)
∣∣p dψ

)1/p

(4.6.4)
with C as in (4.6.2), and by (4.6.3) this is equivalent to

(∫ ∞

0

d(t(ψ)q)
ψq(p−1)/p

)1/q

≤ C
(∫

Ω

∣∣Φ(x, grad f(x)
)∣∣p dx

)1/p

.

To obtain (4.6.1) with C given by (4.6.2) it remains to note that

capp(Lt) ≤
1

ψ(t)p−1
(4.6.5)
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(see Lemma 2.2.2/1). The constant (4.6.2) is the best possible since (4.6.5)
becomes equality for radial functions. ��

Following Definition 2.1.4, we introduce the weighted perimeter minimizing
function σ on (0,∞) by

C (m) := inf
∫
∂g

∣∣Φ(x,N(x)
)∣∣ ds(x), (4.6.6)

where the infimum is extended over all bounded open sets g with smooth
boundaries subject to

mn(g) ≥ m.
According to Corollary 2.2.3/2, the following isocapacitary inequality holds:

capp(g,G) ≥
(∫ mn(G)

mn(g)

dm
C (m)p′

)1−p

. (4.6.7)

Therefore, (4.6.1) leads to

Corollary 1. For, all f ∈ C∞
0 (Ω),

(∫ ∞

0

(∫ mn(Ω)

mn(Lt)

dm
C (m)p′

)−q/p′

d
(
tq
))1/q

≤ C
(∫

Ω

∣∣Φ(x, grad f(x)
)∣∣p dx

)1/p

(4.6.8)

with q > p and C defined by (4.6.2). For p = 1 the last inequality should be
replaced by

(∫ ∞

0

C
(
mn(Lt)

)q d
(
tq
))1/q

≤
∫
Ω

∣∣Φ(x, grad f(x)
)∣∣ dx (4.6.9)

with q ≥ 1.

In addition, this corollary, combined with the isoperimetric inequality

s(∂g) ≥ n1/n′
ω1/n
n mn(g)1/n

′
,

immediately gives the following well-known sharp result.

Corollary 2. (See (1.4.14) for p = 1 and Sect. 2.3.5 for p > 1) Let
n > p ≥ 1 and q = pn(n−p)−1. Then every f ∈ C∞

0 (Rn) satisfies the Sobolev
inequality (4.1.7) with the best constant

c = π−1/2n−1/2

(
p− 1
n− p

)1/p′(
Γ (n)Γ (1 + n/2)

Γ (n/p)Γ (1 + n− n/p)

)1/n

.
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The next assertion resulting from (4.6.3) and (4.6.5) shows that a quite
general capacitary inequality is a consequence of a certain inequality for func-
tions of one variable.

Theorem 2. Let α and β be positive nondecreasing functions on (0,∞)
such that

sup
∫ ∞

0

β
(
ψ1−p

)
d
(
α
(
t(ψ)

))
<∞ (4.6.10)

with the supremum taken over all absolutely continuous functions [0,∞) �
ψ → t(ψ) ≥ 0 subject to t(0) = 0 and

∫ ∞

0

∣∣t′(ψ)
∣∣p dψ ≤ 1. (4.6.11)

Then
sup

∫ ∞

0

β
(
capp(Lt, Ω)

)
dα(t) <∞ (4.6.12)

with the supremum extended over all f subject to
∫
Ω

∣∣Φ(x, grad f(x)
)∣∣p dx ≤ 1. (4.6.13)

The least upper bounds (4.6.10) and (4.6.12) coincide.

In fact, the above Theorem 1 is a particular case of Theorem 2 correspond-
ing to the choice

α(t) = tq and β(ξ) = ξq/p.

The next result is another consequence of Theorem 2.

Theorem 3. For every c > 0

sup
∫ ∞

0

exp
(

−c
capp(Lt, Ω)1/(p−1)

)
d
(
exp
(
ctp

′))
<∞, (4.6.14)

where the supremum is taken over all f ∈ C∞
0 (Ω) subject to (4.6.13) and

p′ = p/(p− 1), p > 1.

Proof. It follows from a theorem by Jodeit [402] that

sup
∫ ∞

0

exp
(
t(ψ)p

′
− ψ

)
dψ <∞ (4.6.15)

with the supremum taken over all absolutely continuous functions [0,∞) �
ψ → t(ψ) ≥ 0 subject to t(0) = 0 and (4.6.11). Hence, for every c > 0,

sup
∫ ∞

0

exp
(
ct(ψ)p

′
− cψ

)
dψ <∞.



4.6 Sharp Capacitary Inequalities and Their Applications 277

It remains to refer to Theorem 4.6/2 with

α(t) = exp
(
ctp

′)
and β(ξ) = exp

(
−cξ1/(1−p)

)
.

A direct consequence of Theorem 3 and the isocapacitary inequality
(2.3.17) is the following result by Moser.

Corollary 3. (Moser [618]) Let mn(Ω) <∞ and let

{f} :=
{
f ∈ C∞

0 (Ω) : ‖ grad f‖Ln(Ω) ≤ 1
}
.

Then
sup

{f}

∫
Ω

exp
(
nω1/(n−1)

n

∣∣f(x)∣∣n′)
dx <∞.

Proof. The first inequality (2.2.11) can be written as

mn(g) ≤ mn(G) exp
(
−nω1/(n−1)

n capn(g,G)1/(1−n)
)
.

Hence, putting c = nω
1/(n−1)
n and p = n in (4.6.14), we obtain

∫ ∞

0

mn(Lt) d exp
(
nω1/(n−1)

n tn
′)
<∞.

The result follows. ��

One needs no changes in proofs to see that the main results of this section,
Theorems 1–3, hold if Ω is an open subset of a Riemannian manifold Rn and
grad f is the Riemannian gradient. As an application, we obtain another Moser
inequality [618].

Corollary 4. Let Ω be a proper subdomain of the unit sphere S2 and let
{f} be defined as in Corollary 3. Then

sup
{f}

∫
Ω

exp
(
4πf2(ω)

)
dsω <∞.

Proof. By Theorem 3 with c = 4π we have the capacitary integral inequal-
ity

sup
{f}

∫ ∞

0

exp
(

−4π
cap2(Lt, Ω)

)
d
(
exp
(
4πt2

))
<∞. (4.6.16)

The classical isoperimetric inequality on S2

s(∂g)2 ≥ m2(g)
(
4π −m2(g)

)
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(see Rado [668]), combined with (4.6.7) implies the isocapacitary inequality

cap2(ḡ, G) ≥ 4π
(

log
m2(G)(4π −m2(g))
m2(g)(4π −m2(G))

)−1

.

Setting here G = Ω, g = Lt, and using (4.6.16), we complete the proof. ��

Remark. We can go even further, extending the previous results to the
measure-valued operator Fp[f ] in Sect. 4.4 subject to the condition

Fp

[
λ(f)

]
=
∣∣λ′(f)

∣∣pFp[f ], (4.6.17)

with the same λ as in (4.4.2). In fact, (4.6.17) implies
∫

X
Fp[f ] =

∫ ∞

0

∣∣t′(ψ)
∣∣p dψ, (4.6.18)

where t(ψ) is the inverse of the function

ψ(t) =
∫ ∞

t

∣∣∣∣ d
dτ

Fp[f ](Lτ )
∣∣∣∣
1/(1−p)

dτ.

Identity (4.6.18) is the core of the proof of the results in the present section.

4.7 Capacitary Improvement of the Faber–Krahn
Inequality

By the Faber [265]–Krahn [462] inequality for the Dirichlet–Laplace eigenval-
ues, the ball has the minimum eigenvalue among all domains in R

n with the
same volume.

Here we obtain a capacitary version of this inequality valid for any open
subset of an arbitrary Riemannian manifold. We state and prove the main
result of this section.

Theorem 1. Let R > 0, u ∈ C∞
0 (Ω), and Nt = {x ∈ Ω : |u(x)| ≥ t}. If

n > 2, then

(
j(n−2)/2

R

)2

mn(BR)
∫ ∞

0

(
cap(Nt;Ω)

cap(BR) + cap(Nt;Ω)

) n
n−2

d
(
t2
)

≤ ‖∇u‖2
L2(Ω), (4.7.1)

where cap is the 2-capacity and jν is the first positive root of the Bessel func-
tion Jν . If n = 2, then

πj20

∫ ∞

0

exp
(

−4π
cap(Nt;Ω)

)
d
(
t2
)
≤ ‖∇u‖2

L2(Ω). (4.7.2)
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Proof. Let w be an arbitrary absolutely continuous function on (0,R], such
that w(R) = 0. The inequality

(
j(n−2)/2

R

)2 ∫ R

0

w(ρ)2ρn−1 dρ ≤
∫ R

0

w′(ρ)2ρn−1 dρ, (4.7.3)

where n > 2, is equivalent to the fact that the first eigenvalue of the Dirichlet–
Laplace operator in the unit ball B equals j2(n−2)/2. Similarly, the inequality

(
j0
R

)2 ∫ R

0

w(ρ)2ρdρ ≤
∫ R

0

w′(ρ)2ρdρ, (4.7.4)

is associated with n = 2.
In the case n > 2, we introduce the new variables

ψ =
ρ2−n −R2−n

(n− 2)ωn
, t(ψ) = w

(
ρ(ψ)

)
,

and write (4.7.3) in the form

(
ωnj(n−2)/2R−1

)2 ∫ ∞

0

t(ψ)2 dψ
((n− 2)ωnψ + R2−n)2(n−1)/(n−2)

≤
∫ ∞

0

t′(ψ)2 dψ. (4.7.5)

Similarly, for n = 2, putting

ψ = (2π)−1 log
R
ρ
, t(ψ) = w

(
ρ(ψ)

)
,

we write (4.7.4) as

(2πj0)2
∫ ∞

0

t(ψ)2 exp(−4πψ) dψ ≤
∫ ∞

0

t′(ψ)2 dψ. (4.7.6)

Note that the function t in (4.7.5) and (4.7.6) is subject to the boundary
condition t(0) = 0. We write (4.7.5) and (4.7.6) as

n−1ωn

(
j(n−2)/2

R

)2 ∫ ∞

0

dt(ψ)2

((n− 2)ωnψ + R2−n)n/(n−2)

≤
∫ ∞

0

t′(ψ)2 dψ (4.7.7)

and
πj20

∫ ∞

0

exp(−4πψ) dt(ψ)2 ≤
∫ ∞

0

t′(ψ)2 dψ. (4.7.8)

Now, as in Sect. 2.3.1, we introduce the function
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ψ(t) =
∫ t

0

dτ∫
|u|=τ

|∇u| ds (4.7.9)

as well as its inverse ψ → t(ψ), and replace the integral on the right-hand side
of (4.7.7) and (4.7.8) by ‖∇u‖2

L2(Ω). It remains to note that

ψ(t) ≤
(
cap(Nt;Ω)

)−1 (4.7.10)

by Lemma 2.2.2/1.
Let us use the area minimizing function of Ω

λ(v) = inf s(∂g), (4.7.11)

where the infimum is extended over all sets g with smooth boundaries and
compact closures g ⊂ Ω, subject to the inequality mn(g) ≥ v. This function
is a particular case of the function C from Definition 2.1.4, corresponding to
Φ(x, ξ) = |ξ|. The function λ appears in the isocapacitary inequality

cap(F ;Ω) ≥
(∫ mn(Ω)

mn(F )

dv
λ(v)2

)−1

(see Corollary 2.2.3/2). Therefore, (4.7.1), (4.7.2), and the identity

cap(BR) = (n− 2)ωnRn−2,

lead to the following Lorentz-type estimates.

Corollary 2. If n > 2 and R > 0, then, for all u ∈ C∞
0 (Ω),

(
j(n−2)/2

R

)2

mn(BR)
∫ ∞

0

(
cap(BR)

∫ mn(Ω)

mn(Nt)

dv
λ(v)2

+ 1
) n

2−n

d
(
t2
)

≤ ‖∇u‖2
L2(Ω). (4.7.12)

If n = 2, then, for all u ∈ C∞
0 (Ω),

πj20

∫ ∞

0

exp
(
−4π

∫ mn(Ω)

mn(Nt)

dv
λ(v)2

)
d
(
t2
)
≤ ‖∇u‖2

L2(Ω). (4.7.13)

Remark. Since
λ(v) ≥ n

n−1
n ω

1
n
n v

n−1
n , (4.7.14)

by the classical isoperimetric inequality for R
n, the estimates (4.7.12) and

(4.7.13) imply the Faber–Krahn property

Λ(Ω) ≥
(
j(n−2)/2

R

)2

for any n-dimensional Euclidean domain Ω with mn(Ω) = n−1ωnRn.
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Theorem 1 is a very special case of the following general assertion.

Theorem 2. Let M be a decreasing nonnegative function on [0,∞) and
let q > 0 and p ≥ 1. Suppose that for all absolutely continuous functions
ψ → t(ψ) on [0,∞), the inequality

(
−
∫ ∞

0

∣∣t(ψ)
∣∣q dM(ψ)

)1/q

≤
(∫ ∞

0

∣∣t′(ψ)
∣∣p dψ

)1/p

(4.7.15)

holds. Then, for all u ∈ C∞
0 (Ω),

(∫ ∞

0

M
((

capp(Nt;Ω)
)1/(1−p)) d

(
tq
))1/q

≤ ‖∇u‖Lp(Ω), (4.7.16)

where capp is the p-capacity defined by

capp(F ;Ω) = inf
{∫

Ω

|∇u|p dx : u ∈ C∞
0 (Ω), u ≥ 1 on F

}
. (4.7.17)

Proof. The role of the function ψ given by (4.7.9) is played in the present
proof by

ψ(t) =
∫ t

0

dτ
(
∫

|u|=τ
|∇u|p−1 ds)1/(p−1)

. (4.7.18)

We write the left-hand side of (4.7.15) in the form

(∫ ∞

0

M(ψ) d
(
t(ψ)

)q)1/q

and use the monotonicity of M and the inequality

ψ ≤
(
capp(Nt(ψ);Ω)

)1/(1−p) (4.7.19)

proved in Lemma 2.2.2/1. It remains to apply (4.7.15) and the identity
∫ ∞

0

∣∣f ′(ψ)
∣∣p dψ =

∫
Ω

|∇u|p dx (4.7.20)

found in Lemma 2.3.1. ��

Using the area minimizing function λ defined by (4.7.11) and the estimate

capp(F ;Ω) ≥
(∫ mn(Ω)

mn(F )

dv
λ(v)p/(p−1)

)1−p

(4.7.21)

(see Corollary 2.2.3/2), we obtain the following from Theorem 2.
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Corollary 2. Let μ, p, and q be the same as in Theorem 2 and let (4.7.15)
hold. Then

(∫ ∞

0

M
(∫ mn(Ω)

mn(Nt)

dv
λ(v)p/(p−1)

)
d
(
tq
))1/q

≤ ‖∇u‖Lp(Ω) (4.7.22)

for all u ∈ C∞
0 (Ω).

Clearly, (4.7.22) is a generalization of the estimates (4.7.12) and (4.7.13)
which were obtained for p = 2 with a particular choice of μ. Another obvious
remark is that (4.7.15), where M is defined on the interval 0 < t < mn(Ω) by

M
(∫ mn(Ω)

t

dv
λ(v)p/(p−1)

)
= Λp,qt

with a constant Λp,q depending on mn(Ω), implies the inequality

Λ1/q
p,q ‖u‖Lq(Ω) ≤ ‖∇u‖Lp(Ω), (4.7.23)

for all u ∈ C∞
0 (Ω).

4.8 Two-Weight Sobolev Inequality with Sharp Constant

Let the measure μb be defined by

μb(K) =
∫
K

dx
|x|b (4.8.1)

for any compact set K in R
n. In this section we obtain the best constant in

the inequality

‖u‖Lτ,q(μb) ≤ C
(∫

Rn

∣∣∇u(x)∣∣p dx
|x|a

)1/p

,

where the left-hand side is the quasinorm in the Lorentz space Lτ,q(μb), i.e.,

‖u‖Lτ,q(μb) =
(∫ ∞

0

(
μb

{
x :
∣∣u(x)∣∣ ≥ t})q/τ d

(
tq
))1/q

.

As a particular case of this result we obtain the best constant in the Hardy-
Sobolev inequality

(∫
Rn

∣∣u(x)∣∣q dx
|x|b

)1/q

≤ C
(∫

Rn

∣∣∇u(x)∣∣p dx
|x|a

)1/p

. (4.8.2)

Let Ω denote an open set in R
n and let p ∈ [1,∞). By (p, a)-capacity of a

compact set K ⊂ Ω we mean the set function
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capp,a(K,Ω) = inf
{∫

Ω

|∇u|p|x|−a dx : u ∈ C∞
0 (Ω), u ≥ 1 on K

}
.

In the case a = 0, Ω = R
n we write simply capp(K).

The following inequality is a particular case of a more general one obtained
in Theorem 4.6/1, where Ω is an open subset of an arbitrary Riemannian
manifold and |Φ(x,∇u(x))| plays the role of |∇u(x)||x|−a/p.

Let q ≥ p ≥ 1 and let Ω be an open set in R
n. Then for an arbitrary

u ∈ C∞
0 (Ω),

(∫ ∞

0

(
capp,a(Lt, Ω)

)q/p d
(
tq
))1/q

≤ Ap,q

(∫
Ω

∣∣∇u(x)∣∣p|x|−a dx
)1/p

,

(4.8.3)
where

Ap,q =
(

Γ ( pq
q−p )

Γ ( q
q−p )Γ (p q−1

q−p )

)1/p−1/q

(4.8.4)

for q > p and
Ap,p = p(p− 1)(1−p)/p. (4.8.5)

The sharpness of this constant is checked by a sequence of radial functions
in C∞

0 (Ω). Moreover, there exists a radial optimizer vanishing at infinity, if
Ω = R

n.
Being combined with the isocapacitary inequality

μ(K)γ ≤ Λp,γ capp,a(K,Ω), (4.8.6)

where μ is a Radon measure in Ω, (4.8.3) implies the estimate

(∫ ∞

0

(
μ(Lt)

)γq/p d
(
tq
))1/q

≤ Ap,qΛ
1/p
p,γ

(∫
Ω

∣∣∇u(x)∣∣p|x|−a dx
)1/p

(4.8.7)

for all u ∈ C∞
0 (Ω).

This estimate of u in the Lorentz space Lp/γ,q(μ) becomes the estimate in
Lq(μ) for γ = p/q

‖u‖Lq(μ) ≤ Ap,qΛ
1/p
p,γ

(∫
Ω

∣∣∇u(x)∣∣p|x|−a dx
)1/p

.

In the next assertion we find the best value of Λp,γ in (4.8.6) for the
measure μ = μb defined by (4.8.1).

Lemma. Let

1 ≤ p < n, 0 ≤ a < n− p, and a+ p ≥ b ≥ an

n− p . (4.8.8)

Then
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(∫
Rn

dx
|x|b

)n−p−a
n−b

≤
(

p− 1
n− p− a

)p−1
ω

b−p−a
n−b

n

(n− b)
n−p−a

n−b

capp,a(K). (4.8.9)

The value of the constant factor in front of the capacity is sharp and the
equality in (4.8.9) is attained at any ball centered at the origin.

Proof. Introducing spherical coordinates (r, ω) with r > 0 and ω ∈ Sn−1,
we have

capp,a(K) = inf
u|K ≥1

∫
Sn−1

∫ ∞

0

(∣∣∣∣∂u∂r
∣∣∣∣
2

+
1
r2
|∇ωu|2

) p
2

rn−1−a dr dsω. (4.8.10)

Let us put here r = ρ1/κ , where

κ =
n− p− a
n− p ,

and y = (ρ, ω). The mapping (r, ω) → (ρ, ω) will be denoted by σ. Then
(4.8.10) takes the form

capp,a(K) = κ
p−1 inf

v

∫
Rn

(∣∣∣∣∂u∂ρ
∣∣∣∣
2

+ (κρ)−2|∇ωu|2
) p

2

dy, (4.8.11)

where the infimum is taken over all v = u ◦ σ−1. Since 0 ≤ κ ≤ 1 owing to
the conditions p < n, 0 < a < n− p, and a ≥ 0, inequality (4.8.11) implies

capp,a(K) ≥ κ
p−1 inf

v

∫
Rn

|∇u|p dy ≥ κ
p−1 capp

(
σ(K)

)
, (4.8.12)

which together with the isocapacitary property of capp (see (2.2.12)) leads to
the estimate

capp

(
σ(K)

)
≥
(
n− p
p− 1

)p−1

ω
p
n
n n

n−p
n

(
mn

(
σ(K)

))n−p
n . (4.8.13)

Clearly,

μb(K) =
1
κ

∫
σ(K)

dy
|y|α

with

α = n− n− b
κ

=
b(n− p) − an
n− p− a ≥ 0. (4.8.14)

Furthermore, one can easily check that

μb(K) ≤ n1− α
n

n− b ω
α
n
n

(
mn

(
σ(K)

))1− α
n (4.8.15)

(see, for instance, Example 2.1.5/2). Combining (4.8.15) with (4.8.13), we find
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(
μb(K)

)n−p−a
n−b ≤

(
p− 1
n− p

)p−1
ω

b−p−a
n−b

n

(n− b)
n−p−a

n−b

capp

(
σ(K)

)
, (4.8.16)

which together with (4.8.12) completes the proof of (4.8.9). ��

The main result of this section is as follows.

Theorem. Let conditions (4.8.8) hold and let q ≥ p. Then for all u ∈
C∞

0 (Rn)

(∫ ∞

0

(
μb(Lt)

) (n−p−a)q
(n−b)p d

(
tq
)) 1

q

≤ Cp,q,a,b
(∫

Rn

∣∣∇u(x)∣∣p dx
|x|a

) 1
p

, (4.8.17)

where

Cp,q,a,b =
(

Γ ( pq
q−p )

Γ ( q
q−p )Γ (p q−1

q−p )

) 1
p − 1

q
(

p− 1
n− p− a

)1− 1
p

×
(

Γ (n
2 )

2π
n
2 (n− b)

n−p−a
p+a−b

) p+a−b
(n−b)p

. (4.8.18)

The constant (4.8.18) is the best possible that can be shown by constructing a
radial optimizing sequence in C∞

0 (Rn).

Proof. Inequality (4.8.17) is obtained by the substitution of (4.8.4) and
(4.8.9) into (4.8.7). The sharpness of (4.8.18) follows from the sharpness of
the constant Ap,q in (4.8.3) and from the fact that the isocapacitary inequality
(4.8.9) becomes equality for balls. ��

The last theorem contains the best constant in the Il’in inequality (4.8.2)
as a particular case q = (n−b)p/(n−p−a). We formulate this as the following
assertion.

Corollary. Let conditions (4.8.8) hold. Then for all u ∈ C∞
0 (Rn)

(∫
Rn

∣∣u(x)∣∣ (n−b)p
(n−p−a)

dx
|x|b

)n−p−a
n−b

≤ Cp,a,b
(∫

Rn

∣∣∇u(x)∣∣p dx
|x|a

) 1
p

, (4.8.19)

where

Cp,a,b =
(

p− 1
n− p− a

)1− 1
p
(

Γ (n
2 )

2π
n
2 (n− b)

n−p−a
p+a−b

) p+a−b
(n−b)p

×
(

Γ (p(n−b)
p−b )

Γ (n−b
p−b )Γ (1 + (n−b)(p−1)

p−b )

) p−b
p(n−b)

.

This constant is the best possible, which can be shown by constructing a radial
optimizing sequence in C∞

0 (Rn).
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4.9 Comments to Chap. 4

Sections 4.2, 4.3. We follow the articles by Maz’ya [557] and [564]. In the
class of convex domains Ω ⊂ R

n, it was shown by B. Klartag and E. Mil-
man (oral communication) that the Faber–Krahn inequality admits a match-
ing converse inequality for some linear image T (Ω) of Ω (having the same
measure). Specifically, there exists a numerical constant C > 0, such that if
mn(Ω) = n−1ωnR

n, then

Λ
(
T (Ω)

)
≤ C

(
log(1 + n)

)2(j(n−2)/2

R

)2

.

Sections 4.4–4.6. Here we follow the author’s article [561]. Various as-
pects of the theory of Sobolev spaces of the first order on metric spaces with
a measure were studied in numerous papers, to name only a few: Korevaar
and Schoen [452]; Biroli and Mosco [105]; Haj�lasz [338]; Kinnunen and Martio
[425]; Cheeger [182]; Franchi, Haj�lasz, and Koskela [287]; Kilpeläinen, Kin-
nunen, and Martio [421]; Shanmugalingam [696]; Koskela [456]; Björn, Mac-
Manus, and Shanmugalingam [106]; Heinonen [373]; Gol’dshtein and Troyanov
[318]; Ambrosio and Tilli [43]; Ostrovskii [650]; Haj�lasz, Koskela, and Tuomi-
nen [345]; and Kinnunen and Korte [423].

In connection with the capacitary improvement (4.6.14) of Moser’s in-
equality we note that Hudson and Leckband [387] established the existence of
an extremal in Jodeit’s inequality (4.6.15).

Section 4.7. Theorem 4.7/1 was proved in Maz’ya [564].
Section 4.8. The material of this section is borrowed from the paper by

Maz’ya and Shaposhnikova [587].
Inequality (4.8.2) was first proved by Il’in in 1961 ([395], Theorem 1.4)

without discussion of the value of C. For certain values of parameters the
best constant C was found in Chua and Wheeden [190] (p = 2), in Maz’ya
[543], Sect. 2 (p = 1, a = 0), in Glazer, Martin, Grosse, and Thirring [310]
(p = 2, n = 3, a = 0), Lieb [496] (p = 2, n ≥ 3, a = 0), in Chou and Chu [187]
(p = 2, q ≥ 2), and in A. Nazarov [628] (1 < p < n, a = 0), where different
methods were used.
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Integrability of Functions in the Space L1
1(Ω)

Now we turn to embedding theorems for functions with unrestricted boundary
values. The present chapter contains conditions on Ω that are necessary and
sufficient for the embedding operator L1

1(Ω) → Lq(Ω) to be continuous or
compact. These criteria are intimately connected with relative isoperimetric
inequalities and isoperimetric functions. In Sect. 5.2 we consider the cases
q ≥ 1 and 0 < q < 1 separately.

In more detail, by a relative isoperimetric inequality we mean the inequal-
ity of the form

mn(G )α ≤ const s(∂iG ), α > 0, (5.0.1)

connecting the volume of “admissible” subsets G of Ω with the area of the
surfaces ∂iG = Ω ∩ ∂G . The sets G should satisfy an additional requirement
mn(G ) ≤ M , where M ∈ (0,mn(Ω)). By Theorem 5.2.3, the above isoperi-
metric inequality with α ≤ 1 holds if and only if the embedding operator
L1

1(Ω) → L1/α(Ω) is continuous. The sets Ω satisfying (5.0.1) are said to
belong to the class Jα. They can be characterized by the inequality

lim inf
μ→+0

μ−αλM (μ) > 0,

where λM is an isoperimetric (in other words, area minimizing function) of Ω,
i.e., the least upper bound of the numbers s(∂iG ) over all sets G subject to
μ ≤ mn(G ) ≤ M . The embedding L1

1(Ω) → L1/α(Ω) for α > 1 proves to be
continuous if and only if Ω belongs to the class Hα defined by the inequality

∫ M

0

(
sα

λM (s)

) 1
α−1 ds

s
<∞.

To find more visible sufficient conditions on the domain ensuring Sobolev
embeddings, we use the so-called subareal mappings in Sect. 5.3. Those are
mappings of one domain onto another that do not increase s(∂iG ) up to a
constant factor.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 5, c© Springer-Verlag Berlin Heidelberg 2011
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A particular irregular domain that was considered by Nikodým in 1933 as
a counterexample to the Poincaré inequality is discussed in Sect. 5.4.

In Sect. 5.5 we show that the embedding L1
1(Ω) ⊂ Lq(Ω) is always compact

if 0 < q < 1 and it is compact for q ≥ 1 if and only if

lim
μ→+0

μ1/qλM (μ) = ∞.

It might be natural to expect that a weakening of the assumptions on
the domain in embedding theorems of the Sobolev type can be compensated
by supplementary assumptions on the boundary behavior of the function.
The question of the influence of such assumptions on Sobolev-type inequal-
ities is considered in Sect. 5.6. Let the space W 1

p,r(Ω, ∂Ω) be the comple-
tion of L1

p(Ω) ∩ C∞(Ω) ∩ C(Ω̄) equipped with the norm (
∫
Ω
|∇u|p dx)1/p +

(
∫
∂Ω

|u|r ds)1/r.
We show in Theorem 5.6.3 that W 1

1,r(Ω, ∂Ω) is continuously embedded
into Lq(Ω) with q ≥ 1, r ≤ q, if and only if

mn(G )1/q ≤ C
[
s(∂iG ) + s(∂eG )1/r

]

for every admissible G ⊂ Ω, where ∂eG = ∂G ∩∂Ω. Here the sharp inequality

‖u‖Ln/(n−1)(Ω) ≤
[Γ (1 + n/2)]1/n

n
√
π

(
‖∇u‖L(Ω) + ‖u‖L(∂Ω)

)
,

valid for an arbitrary bounded set Ω and u ∈W 1
1,1(Ω, ∂Ω), can be found.

5.1 Preliminaries

5.1.1 Notation

In this chapter, as well as in Chaps. 6 and 7, we shall use the symbols intro-
duced in Sect. 1.1.1 and the following notation.

A bounded open subset G of the set Ω is called admissible if Ω ∩ ∂G is
a manifold of the class C∞ (this term was understood in a more restrictive
sense in Chap. 2).

Let Ē be the closure of the set E ⊂ R
n and let ∂E be the boundary of E.

Further, let closΩ E be the closure of E in Ω and let ∂iE be the inner part of
∂E with respect to Ω, i.e., ∂iE = Ω ∩ ∂E.

We put Ω� = Ω∩B�, u+ = max{u, 0}, u− = u+−u, Et = {x : |u(x)| = t},
Lt = {x : |u(x)| > t}, Nt = {x : |u(x)| ≥ t}.

As before, we shall write

‖u‖Lq(Ω) =
(∫

Ω

|u|q dx
)1/q

.
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This notation also will be used for q ∈ (0, 1) when the right-hand side is a
pseudonorm. (We recall that a linear space is called pseudonormed if there is
a functional ‖x‖ ≥ 0, defined on its elements, which satisfies the conditions
1. if ‖x‖ = 0, then x = 0; 2. ‖αx‖ = |α| ‖x‖, where α ∈ R

1; 3. if ‖xm‖ → 0,
‖ym‖ → 0, then ‖xm +ym‖ → 0.) Clearly, in the case 0 < q < 1 the functional

�(u, v) =
∫
Ω

|u− v|q dx

satisfies the axioms of a metric.
Let C0,1(Ω) denote the space of functions that satisfy a Lipschitz condition

on any compact subset of Ω.
If Ω is a domain, we endow the space Ll

p(Ω), p ≥ 1, l = 1, 2, . . . (cf.
Sect. 1.1.2) with the norm

‖∇lu‖Lp(Ω) + ‖u‖Lp(ω),

where ω is an open nonempty set with compact closure ω̄ ⊂ Ω. From (1.1.13)
it follows that varying ω leads to an equivalent norm.

Further, let W l
p,r(Ω) = Ll

p(Ω) ∩ Lr(Ω) be the space equipped with the
norm for r ≥ 1 and with the psuedonorm for r ∈ (0, 1) as follows:

‖u‖W l
p,r(Ω) = ‖∇lu‖Lp(Ω) + ‖u‖Lr(Ω).

In accordance with Sect. 1.1.4, W l
p,p(Ω) = W l

p(Ω). By Theorems 1.1.5/1
and 1.1.5/2, the sets Ll

p(Ω)∩C∞(Ω) and W l
p(Ω)∩C∞(Ω) are dense in Ll

p(Ω)
and W l

p(Ω), respectively.

5.1.2 Lemmas on Approximation of Functions in W 1
p,r(Ω) and

L1
p(Ω)

Lemma 1. The set of functions in L1
p(Ω) ∩ C∞(Ω) ∩ L∞(Ω) (p ≥ 1) with

bounded supports is dense in W 1
p,r(Ω) (∞ > r > 0).

Proof. Let v ∈ W 1
p,r(Ω). We use the sequences v(m) and v(m) introduced

in Lemma 1.7.1. Since v(m) → v and v(m) → v in W 1
p,r(Ω), the set of bounded

functions v ∈ L1
p(Ω) with mn(supp v) < ∞ is dense in W 1

p,r(Ω). Suppose v
satisfies these conditions. We define the sequence

vm(x) = η
(
m−1x

)
v(x), m = 1, 2, . . . ,

where η ∈ C∞
0 (B2), η = 1 on B1. Obviously,

‖vm − v‖W 1
p,r(Ω) ≤ c‖∇v‖Lp(Ω\Bm) + cm−1‖v‖L∞(Ω)

[
mn(supp v)

]1/p
+ ‖v‖Lr(Ω\Bm) → 0,
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as m → ∞. To approximate each vm by smooth functions it is sufficient
to use a partition of unity and mollifying operators (cf. the proof of Theo-
rem 1.1.5/1). �

From Lemma 1 we obtain the following corollary.

Corollary. If Ω is domain with finite volume, then the set of functions in
L1

p(Ω) ∩ C∞(Ω) ∩ L∞(Ω) with bounded supports is dense in L1
p(Ω).

Lemma 2. Let G be an open subset of Ω and let u ∈ C0,1 ∩L1
p(Ω), u = 0

outside G. Then there exists a sequence of functions in L1
p(Ω) ∩ C∞(Ω) that

also vanish outside G which converges to u in L1
p(Ω).

Proof. Since u can be approximated in L1
p(Ω) by the sequence u(m) defined

in Lemma 1.7.1, we may assume that u = 0 outside some open set g ⊂ G with
closΩ g ⊂ G.

We let {B(k)} denote a locally finite covering of g by open balls B(k),
B(k) ⊂ G and then we repeat the proof of Theorem 1.1.5/1. The lemma is
proved. �

Remark. If we assume that the function u referred to in the statement
of Lemma 2 is continuous on Ω̄, we may also assume the functions of an
approximating sequence to have the same property (cf. Remark 1.1.5).

If, in addition to the condition of Lemma 2, u ∈ Lr(Ω) then the approxi-
mating sequence can be taken to be convergent in W 1

p,r(Ω).
Both of these assertions are immediate corollaries of Lemma 2 and are

proved similarly.

5.2 Classes of Sets Jα, Hα and the Embedding
L1

1(Ω) ⊂ Lq(Ω)

5.2.1 Classes Jα

Definition. A bounded domain Ω belongs to the class Jα(α ≥ n−1
n ) if there

exists a constant M ∈ (0,mn(Ω)) such that

Aα(M) def= sup
{G }

mn(G )α

s(∂iG )
<∞, (5.2.1)

where {G } is a collection of admissible subsets of Ω with mn(G ) ≤ M and s
is the (n− 1)-dimensional area.

The condition (5.2.1) gives a local characterization of the boundary of Ω.
We briefly comment on this property. If Ω is a domain with sufficiently smooth
boundary then it can be easily seen that the (n− 1)-dimensional area of the
surface ∂G ∩ ∂Ω is bounded from below (up to a constant factor) by the area
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of ∂iG = Ω ∩ ∂G for any G of sufficiently small volume. So by the classical
isoperimetric inequality we have the relative isoperimetric inequality

mn(G )(n−1)/n ≤ const ·s(∂iG )

and hence Ω belongs to the class J(n−1)/n. If ∂Ω has cusps directed into
Ω, then it is intuitively clear that the last inequality still holds. If a cusp is
directed outward from the domain then there exists a sequence of sets Gν ⊂ Ω
for which

lim
ν→∞

mn(Gν)(n−1)/n

s(∂iGν)
= ∞.

Along with this property the domain may satisfy (5.2.1) for some α > (n −
1)/n. The exponent α characterizes the degree of sharpness of a cusp.

In what follows we shall see that it is relative (with respect to Ω) isoperi-
metric inequalities of the type (5.2.1) (and more complicated ones) that de-
termine the order of integrability of functions in Sobolev spaces.

Lemma 1. Let Ω be an open unit ball and let g be an open subset of Ω
such that ∂ig is a manifold of the class C0,1. Then

min
{
mn(g),mn(Ω\g)

}
≤ vn

2
v
n/(1−n)
n−1 s(∂ig)n/(n−1). (5.2.2)

The constant in (5.2.2) is the best possible. More generally, the minimum
value of s(∂ig) over all sets g with mn(g) = const < vn/2, is attained at the
ball which is orthogonal to ∂Ω.

Proof. It is sufficient to assume that 2mn(g) < vn. Applying the spherical
symmetrization of g with respect to a ray l that emanates from the center of
the ball Ω, we obtain a set f ⊂ Ω symmetric with respect to l and such that

mn(f) = mn(g), s(∂if) ≤ s(∂ig).

(The spherical symmetrization with respect to a ray is defined similarly to the
symmetrization with respect to an (n − s)-dimensional subspace introduced
in Sect. 2.3.4; we just need to replace the s-dimensional subspaces orthogonal
to R

n−s by (n− 1)-dimensional spheres centered at the origin of the ray.)
Let b be a ball such that b∩∂Ω = ∂f ∩∂Ω and mn(b∩Ω) = mn(f). Since

mn

[
f ∪ (b\Ω)

]
= mn(b),

then by the isoperimetric property of the ball we have

s(Ω ∩ ∂b) ≤ s(∂if).

An elementary calculation shows that the minimum value of s(Ω ∩ ∂b)
over all balls with mn(Ω ∩ b) = const < 1

2mn(Ω) is attained at the ball which
is orthogonal to ∂Ω.
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It can be easily checked that the function

s(Ω ∩ ∂b�)
[mn(Ω ∩ b�)](n−1)/n

,

where b� is a ball with radius �, orthogonal to Ω and such that mn(b� ∩Ω) <
1
2mn(Ω), decreases. The proof is complete. �

The next corollary follows immediately from Lemma 1.

Corollary 1. If Ω is an n-dimensional ball, then Ω ∈ J(n−1)/n and

A(n−1)/n

(
1
2
mn(Ω)

)
= v−1

n−1(vn/2)(n−1)/n,

where vs is the volume of the s-dimensional unit ball.

Corollary 2. A bounded domain starshaped with respect to a ball belongs
to the class J(n−1)/n.

Proof. According to Lemma 1.1.8, the set Ω̄ is the quasi-isometric image
of a ball. This along with Lemma 1 implies

mn(g)(n−1)/n ≤ C(M)s(∂ig) (5.2.3)

for any constant M ∈ (0,mn(Ω)) and for all open sets g ⊂ Ω such that ∂ig
is a manifold of the class C0,1 and mn(g) ≤ M . Here C(M) is a constant
independent of g. The corollary is proved. �

Remark. The condition (5.2.1) does not hold for α < (n − 1)/n since in
this case

lim
�→0

mn(B�)α

s(∂B�)
= c lim

�→0
�1−n+nα = ∞.

We give an example of a domain that does not belong to the class Jα for
any α.

Example. Consider the domain Ω depicted in Fig. 18. For the sequence of
subsets Qm (m = 2, 4, . . . , ), we have

m2(Qm) = m−4, s(∂iQm) = m−2m,

m2(Qm)α

s(∂iQm)
= m2m−4α m→∞−−−−→∞,

and hence Ω /∈ Jα.
Lemma 2. If a bounded open set is the union of a finite number of open

sets of the class Jα then it also belongs to Jα.

Proof. Let Ω = Ω1 ∪ Ω2, Ωk ∈ Jα(k = 1, 2), and let M = min{M1,M2}
where M1 and M2 are constants for Ω1 and Ω2 in the definition of the class
Jα. Let G denote an admissible subset of Ω with mn(G ) ≤M .



5.2 Classes of Sets Jα, Hα and the Embedding L1
1(Ω) ⊂ Lq(Ω) 293

Fig. 18.

Since
mn(G ) ≤ mn(G ∩Ω1) +mn(G ∩Ω2)

and s(Ω ∩ ∂G ) ≥ s(Ωk ∩ ∂G ), then

mn(G )α

s(Ω ∩ ∂G )
≤ c

2∑
k=1

mn(Ωk ∩ G )α

s(Ωk ∩ ∂G )
. �

This along with Lemma 1.1.9/1 and Corollary 5.2.1/2 implies the next
corollary.

Corollary 3. A bounded domain having the cone property belongs to the
class J(n−1)/n.

5.2.2 Technical Lemma

The following assertion will be used in Sect. 5.2.3.

Lemma. Let G be an admissible subset of Ω such that s(∂iG ) <∞. Then
there exists a sequence of functions {wm}m≥1 with the properties:

1. wm ∈ C0,1(Ω),
2. wm = 0 in Ω\G ,
3. wm ∈ [0, 1] in Ω,
4. for any compactum e ⊂ G there exists a natural number m(e), such that
wm(x) = 1 for x ∈ e and m ≥ m(e),

5. limm→∞ sup
∫
Ω
|∇wm| dx = s(∂iG ).
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Proof. Let ω be a bounded open set, ω̄ ⊂ Ω, s[(Ω\ω)∩ ∂G ] < m−1. There
exists a small positive number ε = ε(m) such that for some locally finite (in Ω)
covering of (Ω\ω) ∩ ∂G by open balls Bi with radii ri < ε the inequality

∑
i

rn−1
i < 2m−1, (5.2.4)

holds. Obviously, we may assume that each ball Bi intersects (Ω\ω) ∩ ∂G .
We introduce the notation 2Bi is the ball with radius 2 ri concentric with

Bi;C1 =
⋃

i Bi, C2 =
⋃

i 2Bi; �(x) = dist(x, ∂iG ).
Let g = {x : x ∈ G , �(x) < δ} where δ = δ(m) is a small number, δ ∈ (0, ε),

such that g ∩ ∂ω is contained in C1 (this can be achieved since the covering
{Bi} is locally finite in Ω).

We construct a function v(x), which is equal to zero in Ω\G , to δ−1�(x)
for x ∈ g ∩ ω, and to unity on the remaining portion of Ω. This function is
discontinuous on the sets (Ω\ω)∩∂G and g∩∂ω. We eliminate this defect by
using a truncating function η(x) that is defined as follows.

Let ηi ∈ C0,1(Rn), ηi = 1 outside 2Bi, η = 0 in Bi, 0 ≤ ηi ≤ 1, |∇ηi| ≤ r−1
i

in 2Bi, and η(x) = infi{ηi(x)}.
Obviously, η ∈ C0,1(Ω), η = 0 in C1, η = 1 outside C2. Consider the

function wm = ηv, which equals zero in C1 ∩ Ω and hence vanishes in the
neighborhood of the set of discontinuities of v. Clearly,

∫
Ω

|∇wm| dx =
∫
Ω\C1

∣∣∇(ηv)
∣∣ dx ≤

∫
Ω\C1

|∇η| dx+
∫
Ω\C1

|∇v| dx.

We note that∫
Ω\C1

|∇η| dx ≤
∑
i

∫
Ω\C1

|∇ηi| dx ≤
∑
i

∫
2Bi

|∇ηi| dx ≤ c
∑
i

rn−1
i .

Here and henceforth in this lemma c is a constant that depends only on n.
The preceding inequalities along with (5.2.4) imply

∫
Ω\C1

|∇η| dx ≤ cm−1.

Further, since by Theorem 1.2.4
∫
Ω\C1

|∇v| dx ≤ δ−1

∫
g∩ω

|∇�| dx = δ−1

∫ δ

0

s(Γτ ) dτ,

where Γτ = {x ∈ ω ∩ g : �(x) = τ}, it follows for sufficiently small δ = δ(m)
that ∫

Ω\C1

|∇v| dx ≤ s(∂iG ) + cm−1.

Finally we have
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∫
Ω

|∇wm| dx ≤ s(∂iG ) + cm−1.

The function wm is equal to zero outside G and to unity outside an ε-
neighborhood of Ω ∩ ∂G . The lemma is proved. �

5.2.3 Embedding L1
1(Ω) ⊂ Lq(Ω)

Let G be an open subset of Ω and let

A
(α)
G

def= sup
[mn(G )]α

s(∂iG )
, (5.2.5)

where the supremum is taken over all admissible sets G with closΩ G ⊂ G.

Lemma 1. 1. If A
(α)
G < ∞, α ≤ 1, then for all functions u ∈ C0,1(Ω) ∩

L1
1(Ω), equal to zero outside G,

‖u‖Lq(Ω) ≤ C‖∇u‖L1(Ω), (5.2.6)

where q = α−1 and C ≤ A
(α)
G .

2. If for all functions u ∈ C0,1(Ω) ∩ L1
1(Ω), equal to zero outside G, in-

equality (5.2.6) holds, then C ≥ A
(α)
G .

Proof. 1. By Lemma 5.1.2/2, it is sufficient to prove (5.2.6) for functions
u ∈ C∞(Ω) ∩ L1

1(Ω) that are equal to zero outside G.
Since

‖u‖qLq(Ω) =
∫ ∞

0

mn(Nt) d
(
tq
)
,

(1.3.5) implies

‖u‖Lq(Ω) ≤
∫ ∞

0

mn(Nt)1/q dt.

Now we note that, for almost all t > 0,

mn(Nt)1/q ≤ A
(α)
G s(Et).

From this inequality and Theorem 1.2.4 we obtain

‖u‖Lq(Ω) ≤ A
(α)
G

∫ ∞

0

s(Et) dt = A
(α)
G ‖∇u‖L1(Ω).

2. Let G be an admissible subset of G with closΩ G ⊂ G. We insert the se-
quence {wm}m ≥ 1 specified in Lemma 5.2.2 into (5.2.6). For any compactum
e ⊂ G we have (∫

e

|wm|q dx
)1/q

≤ Cs(∂iG )

and hence mn(G )1/q ≤ Cs(∂iG ). The lemma is proved. �
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For any domain Ω with finite volume we put

Aα = Aα

(
1
2
mn(Ω)

)
.

Theorem. Let Ω be a domain with mn(Ω) <∞.
1. If Ω ∈ Jα, where α ∈ [(n− 1)/n, 1], then, for all u ∈ L1

1(Ω),

inf
c∈R1

‖u− c‖Lq(Ω) ≤ C‖∇u‖L1(Ω), (5.2.7)

where q = α−1 and C ≤ Aα.
2. If for all u ∈ L1

1(Ω) inequality (5.2.7) is true, then Ω ∈ Jα with
α = q−1 and 2(q−1)/qC ≥ Aα for q > 1, C ≥ Aα for 0 < q ≤ 1.

Proof. 1. By Corollary 5.1.2, it is sufficient to obtain (5.2.7) for functions
u ∈ L1

1(Ω)∩L∞(Ω)∩C∞(Ω) with bounded supports. Let τ denote a number
such that

2mn

({
x : u(x) ≥ τ

})
≥ mn(Ω),

2mn

({
x : u(x) > τ

})
≤ mn(Ω).

According to Lemma 1,

(∫
Ω

(u− τ)q+ dx
)1/q

≤ Aα

∫
{x:u(x)>τ }

|∇u| dx

and (∫
Ω

(τ − u)q+ dx
)1/q

≤ Aα

∫
{x:u(x)<τ }

|∇u| dx,

which completes the proof of the first part of the theorem.
2. For all u ∈ L1

1(Ω), let inequality (5.2.7) hold and let G be any admissible
subset of Ω with 2mn(G ) ≤ mn(Ω). We insert the sequence {wm} specified
in Lemma 5.2.2 into (5.2.7). For any compactum e ⊂ G we have

inf
c∈R1

(∫
e

|1 − c|q dx+
∫
Ω\G

|c|q dx
)1/q

≤ Cs(∂iG )

and consequently,

min
c

(
|1 − c|qmn(G ) + |c|qmn(Ω\G )

)1/q ≤ Cs(∂iG ).

The minimum value of the left-hand side with q > 1 is attained at

c =
mn(G )1/(q−1)

mn(G )1/(q−1) +mn(Ω\G )1/(q−1)
.
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Hence
[mn(G )mn(Ω\G )]1/q

[mn(G )1/(q−1) +mn(Ω\G )1/(q−1)](q−1)/q
≤ Cs(∂iG ).

Taking into account the condition 2mn(G ) ≤ mn(Ω), we obtain

mn(G )1/q ≤ 2(q−1)/qCs(∂iG ).

The case 0 < q ≤ 1 is treated similarly. The theorem is proved. �

Lemma 2. Let Ω be a domain with mn(Ω) < ∞. The space L1
p(Ω) is

embedded into Lq(Ω) (p ≥ 1, q > 0) if and only if

inf
c∈R1

‖u− c‖Lq(Ω) ≤ C‖∇u‖Lp(Ω) (5.2.8)

for all u ∈ L1
p(Ω).

Proof. Necessity. Let Z be the subspace of functions equal to a constant
on Ω and let Ẇ 1

p,q(Ω) be the factor space W 1
p,q(Ω)/Z , equipped with the

norm
inf
c∈Z

‖u− c‖Lq(Ω) + ‖∇u‖Lp(Ω).

Let E denote the identity mapping of Ẇ 1
p,q into L̇1

q(Ω). This mapping is linear,
continuous, and one to one. Since L1

q(Ω) ⊂ Lq(Ω), we see that E is surjective.
By the Banach theorem (cf. Bourbaki [128], I, 3, 3), E is an isomorphism and
hence (5.2.8) holds.

Sufficiency. Let (5.2.8) be true. We must show that E is surjective.
By (5.2.8), the image of Ẇ 1

p,q(Ω) is closed in L1
p(Ω). So it is sufficient to

take into account that, by Corollary 5.1.2, the space Ẇ 1
p,q(Ω) considered as a

subspace of L̇1
p(Ω) is dense in L̇1

p(Ω). The lemma is proved. �

Theorem and Lemma 2 immediately imply the next corollary.

Corollary. If Ω is a domain with mn(Ω) < ∞ then L1
1(Ω) is embedded

into Lq(Ω), q ≥ 1, if and only if

sup
mn(G )1/q

s(∂iG )
<∞,

where the supremum is taken over all admissible subsets G of Ω with mn(G ) ≤
1
2mn(Ω).

Remark. Since a planar domain Ω bounded by a quasicircle belongs to
the class EV 1

1 (cf. Sect. 1.4.8), the embedding L1
1(Ω) ⊂ L2(Ω) holds. The last

assertion along with Lemma 5.2.1/2 and the just-formulated Corollary implies
that the union of a finite number of quasidisks belongs to the class J1/2.
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5.2.4 Area Minimizing Function λM and Embedding of L1
1(Ω) into

Lq(Ω)

Definition. Let M ∈ (0,mn(Ω)). By λM (μ) we denote the greatest lower
bound of the numbers s(∂iG ) considered over all admissible sets G ⊂ Ω that
satisfy the condition μ ≤ mn(G ) ≤M .

Obviously, λM (μ) is nondecreasing in μ and nonincreasing in M .
We can give an equivalent definition of the class Jα in terms of the func-

tion λM . Namely, Ω ∈ Jα if and only if

lim inf
μ→+0

μ−αλM (μ) > 0. (5.2.9)

Lemma. If M ∈ (0,mn(Ω)) and Ω is a domain with finite volume, then

λM (μ) > 0 for all μ ∈ (0,M ].

Proof. Let 0 < μ ≤ min{M,mn(Ω) −M} and let ω be a domain with a
smooth boundary such that ω̄ ⊂ Ω and 2mn(Ω\ω) < μ. If G is an admissible
subset of Ω, M ≥ mn(G ) ≥ μ, then obviously,

2mn(G ∩ ω) ≥ μ and 2mn(ω\G ) ≥ mn(Ω)−M ≥ μ.

Since ∂ω is a smooth surface, we have

inf
c∈R1

‖u− c‖L(ω) ≤ C(ω)‖∇u‖L(ω)

for all u ∈ L1
1(ω). Hence, according to the second part of Theorem 5.2.3,

min
{
mn(G ∩ ω),mn(ω\G )

}
≤ C(ω)s(ω ∩ ∂G )

for any admissible subset G of Ω. Thus,

μ ≤ C(ω)s(Ω ∩ ∂G )

and therefore λM (μ) > 0 for small values of μ. Since λM (μ) is nondecreasing
in μ, we conclude that λM (μ) > 0 for all μ ∈ (0,M ]. The lemma is proved.�

It can be easily seen that the condition of the connectedness of Ω as well
as the condition mn(Ω) <∞ are essential for the validity of the lemma.

From the lemma we immediately obtain the next corollary.

Corollary. If Ω is a domain of the class Jα and mn(Ω) < ∞, then the
value

sup
{
mn(G )α/s(∂iG ) : G is an admissible subset of Ω, mn(G ) ≤M

}

is finite for arbitrary constant M ∈ (0,mn(Ω)).
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In what follows we shall write λ(μ) instead of λmn(Ω)/2(μ). The next cri-
terion is proved exactly in the same way as Theorem 2.1.4.

Theorem. Let Ω be a domain with mn(Ω) <∞.
1. If

Bα :=
∫ mn(Ω)/2

0

(
sα

λ(s)

) 1
α−1 ds

s
<∞, (5.2.10)

then (5.2.7) holds for all u ∈ L1
1(Ω) with q = 1/α and C ≤ cBα−1

α .
2. If there is a constant C such that (5.2.7) holds with q < 1 for all

u ∈ L1
1(Ω), then (5.2.10) holds with α = q−1 and C ≥ cBα−1

α .

It can be easily verified by the previous Lemma that (5.2.10) holds simul-
taneously with the condition

∫ M

0

(
sα

λM (s)

) 1
α−1 ds

s
<∞

for every M in (0,mn(Ω)).

We shall say that domains satisfying (5.2.10) belong to the class Hα.

5.2.5 Example of a Domain in J1

We shall show that the union of Ω of the squares Qm = {(x, y) : 2−m−1 ≤
x ≤ 3 ·2−m−2, 0 < y < 2−m−2} and the rectangles Rm = {(x, y) : 3 ·2−m−2 <
x < 2−m, 0 < y < 1} (m = 0, 1, . . .) (Fig. 19) belongs to the class J1 and
does not belong to Jα for α < 1.

Let T be the triangle {(x, y) : 0 < y < x/3, 0 < x < 1} contained in Ω.
Further let v = u on Ω\T and v = 3yx−1u on T . Clearly,

Fig. 19.
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‖v‖L(Ω) ≤
∥∥∥∥∂v∂y

∥∥∥∥
L(Ω)

≤
∥∥∥∥∂u∂y

∥∥∥∥
L(Ω)

+ c
∥∥∥∥ur
∥∥∥∥
L(T )

,

where r = (x2 + y2)1/2. Consequently,

‖u‖L(Ω) ≤ ‖∇u‖L(Ω) + c
∥∥∥∥ur
∥∥∥∥
L(T )

.

Since by the obvious inequality
∫ 1

0

∣∣w(r)
∣∣ dr ≤

∫ 1

0

∣∣w′(r)
∣∣r dr, w(1) = 0,

L1
1(Ω) is embedded into the space with the norm ‖r−1u‖L(T ), it follows

that L1
1(Ω) ⊂ L(Ω). Applying Lemma 5.2.3/2 we obtain Ω ∈ J1. On

the other hand, the rectangles Gm = Rm ∩ {(x, y) : y > 2−m−1} satisfy
limm2(Gm)/s(∂iGm) = 1. Therefore c1μ ≤ λ(μ) ≤ c2μ for small values of μ.
Hence L1

1(Ω) is embedded into L1(Ω) and is not embedded into Lq(Ω) with
q > 1.

5.3 Subareal Mappings and the Classes Jα and Hα

In this section we introduce and study properties of “subareal” mappings
of a domain, i.e., the mappings that do not essentially enlarge the (n − 1)-
dimensional area of surfaces. We shall use these mappings to verify the con-
ditions for concrete domains to be in Jα and Hα.

5.3.1 Subareal Mappings

Consider a locally quasi-isometric mapping

Ω � x→ ξ ∈ R
n.

Let ξA denote the image of an arbitrary set A ⊂ Ω under the mapping ξ.
Let ξ′

x be the matrix (∂ξi/∂xk)ni,k=1 and let det ξ′
x be the Jacobian of ξ. The

notations x′
ξ and detx′

ξ have a similar meaning.

Definition. The mapping ξ is called subareal if there exists a constant k
such that

s(ξ∂iG ) ≤ ks(∂iG ) (5.3.1)

for any admissible subset G of Ω.

Lemma 1. The mapping ξ is a subareal if and only if

|detx′
ξ| ≥ k‖x′

ξ‖, (5.3.2)

for almost all x ∈ Ω, where ‖ · ‖ is the norm of a matrix.
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To prove this lemma we need the following assertion.

Lemma 2. Let u ∈ C∞(Ω) ∩ L1
1(Ω) and let E be any measurable subset

of Ω. In order that ∫
E

|∇xu| dx ≥ k
∫
ξE

|∇ξu| dξ (5.3.3)

with a constant k independent of u and E, it is necessary and sufficient for
the mapping ξ to satisfy (5.3.2). Moreover, (5.3.2) follows from the validity
of (5.3.3) for any ball in Ω.

Proof. The sufficiency results immediately from (5.3.2) along with

∫
ξE

|∇ξu| dξ =
∫
E

∣∣∣∣∣
n∑

i=1

∂u

∂xi
∇ξxi

∣∣∣∣∣| det ξ′
x| dx

=
∫
E

|∇xu|
∣∣(x′

ξ)
∗α
∣∣| detx′

ξ|−1 dx,

where α = |∇xu|−1∇xu and ( )∗ stands for the transposed matrix.
Necessity. We fix a unit vector α and consider the ball B�(x0) ⊂ Ω. We

put u(x) = αx. By virtue of (5.3.3)
∫
B�(x0)

dx ≥ k
∫
ξB�(x0)

|∇ξu| dξ = k

∫
B�(x0)

∣∣(x′
ξ)

∗α
∣∣| detx′

ξ|−1 dx.

Passing to the limit as � → 0 and using the fact that α is arbitrary, we
obtain (5.3.3) for almost all x0 ∈ Ω. The lemma is proved. �

Proof of Lemma 1. Sufficiency. Let G be an arbitrary admissible sub-
set of Ω. We choose an arbitrary point y ∈ ∂iG . Let Uy be a neighbor-
hood of y so small that the set Uy ∩ G is represented by the inequality
xn ≤ f(x1, . . . , xn−1) in some Cartesian coordinate system with an infinitely
differentiable f .

Let δ be a fixed small positive number. Let Vε denote the set of points
x ∈ Uy defined by the equation xn = ε+ f(x1, . . . , xn−1) where ε ∈ [0, δ]. We
put

uδ(x) =

⎧⎪⎨
⎪⎩

1 for xn < f(x1, . . . , xn−1),
1− εδ−1 for x ∈ Vε,

0 for xn ≥ f(x1, . . . , xn−1) + δ.

Obviously, uδ(x) is a Lipschitz function. By (5.3.2) and Lemma 2,
∫

Uy

|∇xuδ| dx ≥ k
∫
ξUy

|∇ξuδ| dξ.

Using Theorem 1.2.4, we can rewrite the last inequality as
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δ−1

∫ δ

0

s(Vε) dε ≥ kδ−1

∫ δ

0

s(ξVε) dε.

Since s(Vε) is continuous, we have

s(V0) ≥ k lim inf
δ→0

δ−1

∫ δ

0

s(ξVε) dε.

Taking into account the lower semicontinuity of the area, we obtain

s(V0) ≥ ks(ξV0).

The latter implies (5.3.1) since y is an arbitrary point.
Necessity. Let ξ be a subareal mapping of Ω. Consider an arbitrary

u ∈ C∞(Ω) ∩ L1
1(Ω). According to Theorem 1.2.2, the level sets of |u| are

smooth manifolds for almost all t > 0. Let B be an arbitrary ball in Ω. By
Theorem 1.2.4,

∫
B

|∇xu| dx =
∫ ∞

0

s(B ∩ Et) dt,
∫
ξB

|∇ξu| dξ =
∫ ∞

0

s(ξB ∩ ξEt) dt.

By the definition of subareal mappings, s(Et) ≥ ks(ξEt). Consequently, (5.3.3)
holds. Now it remains to refer to Lemma 2. Lemma 1 is proved. �

5.3.2 Estimate for the Function λ in Terms of Subareal Mappings

The following theorem yields lower bounds for the function λ, introduced at
the end of Sect. 5.2.4.

Theorem. Let Ω be a domain with finite volume for which there exists a
subareal mapping onto a bounded domain ξΩ starshaped with respect to a ball.

We put

π(μ) = inf
{G }

∫
G

| det ξ′
x| dx,

where the infimum is taken over all admissible subsets G of Ω such that

μ ≤ mn(G ) ≤ 1
2
mn(Ω).

Then there exists a constant Q such that

Qλ(μ) ≥ π(μ)(n−1)/n. (5.3.4)

Proof. Let G be an admissible subset of Ω with mn(G ) < 1
2mn(Ω). We

put
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M = sup
{G }

mn(ξG ).

Since | det ξ′
x| ≥ const > 0 on any compact subset of Ω, it follows that

M < mn(ξΩ). Taking into account the fact that ξΩ is starshaped with respect
to a ball and the fact that ξG is a manifold of the class C0,1, by (5.2.2) we
obtain [

mn(ξG )
](n−1)/n ≤ Cs

(
ξ(∂iG )

)
.

The latter along with (5.3.1) implies

[
mn(ξG )

](n−1)/n ≤ Cks(∂iG ).

Thus, if mn(G ) ≥ μ, then

π(μ)(n−1)/n ≤
[
mn(ξG )

](n−1)/n ≤ Ckλ(μ).

The theorem is proved. �

5.3.3 Estimates for the Function λ for Special Domains

We give some applications of Theorem 5.3.2.

Example 1. Consider the domain

Ω =

{
x ∈ R

n :

(
n−1∑
i=1

x2
i

)1/2

< f(xn), 0 < xn < a

}
,

where f is a nonnegative convex function with f ′(a − 0) < ∞ and f(0) = 0
(cf. Fig. 20).

We show that the function λ(μ) specified for Ω satisfies

k
[
f
(
α(μ)

)]n−1 ≤ λ(μ) ≤
[
f
(
α(μ)

)]n−1
, (5.3.5)

where k ∈ (0, 1) and α(μ) is defined by

μ = vn−1

∫ α(μ)

0

[
f(τ)

]n−1 dτ.

Proof. Consider the domain Gt = Ω ∩ {x : 0 < xn < t}, where t is subject
to the condition

mn(Gt) = vn−1

∫ t

0

[
f(τ)

]n−1 dτ ≤ 1
2
mn(Ω).

Obviously,
s(Ω ∩ ∂Gt) = vn−1

[
f(t)

]n−1
.
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Fig. 20.

Since by the definition of λ(μ), λ[mn(Gt)] ≤ s(Ω ∩ ∂Gt), the right-hand side
of (5.3.5) is proved.

The mapping x → ξ = (x1, . . . , xn−1, f(xn)) maps Ω onto the truncated
cone

ξΩ =

{
ξ :

n−1∑
i=1

ξ2i < ξ
2
n, 0 < ξn < f(a)

}
.

The condition (5.3.2) is equivalent to the boundedness of f ′. Hence the map-
ping x→ ξ is subareal.

It remains to give the lower bound for the function π(μ) defined in The-
orem 5.3.2. Since the Jacobian of the mapping x → ξ is equal to f ′(xn), we
must estimate the integral ∫

G

f ′(xn) dx, (5.3.6)

from below, provided 1
2mn(Ω) > mn(G ) ≥ μ. Since f ′ is nondecreasing, the

integral (5.3.6) attains its minimum value at the set Gα(μ). Therefore,
∫

G

f ′(xn) dx ≥
∫ α(μ)

0

f ′(c) dc
∫

|x′ |≤f(c)

dx′ =
vn−1

n

[
f
(
α(μ)

)]n
.

Thus
π(μ) ≥ n−1vn−1

[
f
(
α(μ)

)]n
.

Applying Theorem 5.3.2 to the last inequality we obtain the left-hand side
of (5.3.5). The proof is complete. �
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Fig. 21.

For the domain

Ω =

{
x :

n−1∑
i=1

x2
i < x

2β
n , 0 < xn < a

}
, β ≥ 1,

from (5.3.5) it immediately follows that

c1μ
α ≤ λ(μ) ≤ c2μα, α =

β(n− 1)
β(n− 1) + 1

, (5.3.7)

for small values of μ. Consequently, Ω ∈ J β(n−1)
β(n−1)+1

and Ω /∈ Jα for α <
β(n−1)

β(n−1)+1 .

Example 2. Consider the domain

Ω =

{
x : 0 < xn <∞,

(
n−1∑
i=1

x2
i

)1/2

< f(xn)

}
,

where f is the nonnegative convex function with f ′(+0) > −∞ and
f(+∞) = 0 (cf. Fig. 21). Suppose mn(Ω) <∞, i.e.,

∫ ∞

0

[
f(t)

]n−1 dt <∞.

We can show that

k
[
f
(
α(μ)

)]n−1 ≤ λ(μ) ≤
[
f
(
α(μ)

)]n−1
, (5.3.8)
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where k ∈ (0, 1) and α(μ) is defined by

μ = vn−1

∫ ∞

α(μ)

[
f(t)

]n−1 dt.

The proof is the same as in the previous example. The role of the auxiliary
subareal mapping is played by

x→ ξ =
(
x1, . . . , xn−1,−f(xn)

)

onto the truncated cone
{
ξ :

n−1∑
i=1

ξ2i < ξ
2
n, 0 > ξn > −f(0)

}
.

By (5.3.8) and Theorem 5.2.4, Ω ∈ Hα, α > 1, i.e., L1
1(Ω) is embedded

into Lq(Ω), q = 1/α, if and only if

∫ ∞

1

f(t)(n−1)(1+ α
α−1 ) dt

(
∫∞
t
f(τ)n−1 dτ)

α
α−1

<∞. (5.3.9)

In particular, for the domain

Ω =
{
x : x2

1 + · · · + x2
n−1 < (1 + xn)−2β , 0 < xn <∞

}
, β(n− 1) > 1,

we have

c1μ
α ≤ λ(μ) ≤ c2μα, α =

β(n− 1)
β(n− 1) − 1

, (5.3.10)

for small μ, i.e., Ω ∈ J β(n−1)
β(n−1)−1

and Ω /∈ Jα for α < β(n−1)
β(n−1)−1 .

Example 3. Consider the plane spiral domain Ω (cf. Fig. 22) defined in
polar coordinates by

1− ε1(θ) > � > 1 − ε2(θ), 0 < θ <∞.

Here 0 < ε2(θ + 2π) < ε1(θ) < ε2(θ) < 1, ε1, ε2 are functions satisfying
a uniform Lipschitz condition on [0,∞) and such that ε2 − ε1 is convex on
[0,∞). Further, we suppose that the area of Ω is finite, i.e.,

∫ ∞

0

(
ε2(θ) − ε1(θ)

)
dθ <∞.

Applying Theorem 5.3.2 to the subareal mapping ξ

ξ1 = 1− �− 1
2
[
ε1(θ) + ε2(θ)

]
, ξ2 =

1
2
[
ε2(θ) − ε1(θ)

]
,

of Ω onto the triangle
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Fig. 22.

|ξ1| < ξ2, 0 < ξ2 <
1
2
[
ε2(θ) − ε1(θ)

]
,

and using the same arguments as in Example 1, we obtain

c1
[
ε2
(
θ(μ)

)
− ε1

(
θ(μ)

)]
≤ λ(μ) ≤ c2

[
ε2
(
θ(μ)

)
− ε1

(
θ(μ)

)]
, (5.3.11)

where θ(μ) is the function defined by

μ =
∫∫

{�eiθ ∈Ω:θ>θ(μ)}
�d�dθ. (5.3.12)

In particular, for the domain
{
�eiθ : 1−(8+θ)1−β > � > 1−(8+θ)1−β−c(8+θ)−β , 0 < θ <∞

}
, (5.3.13)

where 0 < c < 2π(β − 1), β > 1, we have c1μα ≤ λ(μ) ≤ c2μ
α with α =

β/(β − 1) for small μ. Thus, the domain (5.3.13) belongs to Jβ/(β−1).
A more complicated example of a domain in Jα, α > 1, is considered in

the following section.

Remark. Incidentally, if x→ ξ is a subareal mapping of Ω onto a bounded
starshaped domain, then, obviously, L1

1(Ω) is embedded into the space with
the norm (∫

Ω

|u|n/(n−1)| det ξ′
x| dx

)(n−1)/n

.

In particular, for domains in Examples 1 and 2 we have

L1
1(Ω) ⊂ Ln/(n−1)

(
Ω,
∣∣f ′(xn)

∣∣ dx).
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This is an illustration of the natural idea that the limit exponent n/
(n−1) is also preserved for “bad” domains if we consider a weighed Lebesgue
measure, degenerating at “bad” boundary points, instead of mn.

In connection with this remark we note that, although the present chapter
deals with the problem of the integrability of functions in L1

1(Ω) with respect
to Lebesgue measure, the proofs from Sect. 5.2.3 do not change essentially
after replacing Lq(Ω) by the space Lq(Ω,μ), where μ is an arbitrary measure
in Ω (cf. Chap. 2).

5.4 Two-Sided Estimates for the Function λ for the
Domain in Nikodým’s Example

In this section we consider the domainΩ specified in Example 1.1.4/1 provided
εm = δ(2−m−1), where δ is a Lipschitz function on [0,1] such that δ(2t) ∼ δ(t).
We shall show that λ(μ) ∼ δ(μ).

Lemma. If G is an admissible subset of Ω, G ∩ C = ∅, then

s(∂iG ) ≥ kδ
(
m2(G )

)
, k = const > 0. (5.4.1)

Proof. Let Gm = (Am ∪ Bm) ∩ G . Let N denote the smallest number for
which

s(∂iGN ) ≥ δ
(
2−N−1

)
.

This and the obvious inequality m2(Gm) ≤ 2−m−1 imply that

δ

[
m2

( ⋃
m≥N

Gm

)]
≤ δ
(
2−N

)
≤ ks(∂iG ). (5.4.2)

Since
s(∂iGm) < δ

(
2−m−1

)
for all m < N , then Am∪Bm does not contain components of ∂iG , connecting
the polygonal line abcd with the segment ef (cf. Fig. 23). So for m < N

2s(∂iGm) ≥ s(∂eGm),

where ∂eA = ∂A\∂iA. From this along with the isoperimetric inequality

s(∂Gm)2 ≥ 4πm2(Gm)

we obtain
m2(Gm)1/2 ≤ cs(∂iGm). (5.4.3)
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Fig. 23.

Summing (5.4.3) over m and using the inequality

(∑
m

am

)1/2

≤
∑
m

a1/2
m ,

with positive am, we obtain
[
m2

( ⋃
m<N

Gm

)]1/2
≤ cs(∂iG ). (5.4.4)

Combining (5.4.2) with (5.4.4), we arrive at the required estimate.

Proposition. The function λ satisfies

k1δ(μ) ≤ λ(μ) ≤ k2δ(μ),

where k1 and k2 are positive constants.

Proof. From (5.4.1) and Theorem 1.2.4 it follows that

k

∫ ∞

0

δ
(
m2(Nt)

)
dt ≤

∫
Ω

|∇u| dx (5.4.5)

for all u ∈ C∞(Ω) that vanish on C. From Lemma 5.1.2/2 we obtain that this
inequality is valid for all u ∈ C0,1(Ω), u = 0 on C.

Now let u be an arbitrary function in C0,1(Ω) and let η be a continuous
piecewise linear function on [0,1] equal to zero on [0, 1/3] and to unity on
(2/3,1). We put
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u(1)(x, y) = u(x, y)η(y),
u(2)(x, y) = u(x, y)

(
1− η(y)

)
.

Since |u| ≤ |u(1)| + |u(2)|, we have

Nt ⊂ N
(1)

t/2 ∪ N
(2)

t/2

and hence
m2(Nt) ≤ m2

(
N

(1)
t/2

)
+m2

(
N

(2)
t/2

)
.

Taking into account the condition δ ∈ C0,1[0, 1], we obtain

δ
(
m2(Nt)

)
≤ δ
(
m2

(
N

(1)
t/2

))
+ δ
(
m2

(
N

(2)
t/2

))
.

This and (5.4.5) applied to u(1) yield
∫ ∞

0

δ
(
m2(Nt)

)
dt ≤ K

(∫∫
Ω

∣∣∇u(1)
∣∣dxdy +

∫∫
Ω

∣∣u(2)
∣∣ dxdy

)
.

Here the right-hand side does not exceed

K

(∫
Ω

|∇u| dxdy +
∫∫

ω

|u| dxdy
)
, (5.4.6)

where ω = Ω ∩ {(x, y) : |y| < 2/3}.
We give a bound for the integral over ω in (5.4.6). Let (x, y) ∈ ω and let

(x, z) ∈ C. Obviously

∣∣u(x, y)∣∣ ≤ ∣∣u(x, z)∣∣+
∫ ∣∣∇u(x, ȳ)∣∣ dȳ,

where the integration is taken over a vertical segment, contained in Ω and
passing through (x, 0). After integration over x, y, z we obtain

∫∫
ω

|u| dxdy ≤ c
(∫∫

C

|u| dxdy +
∫∫

Ω

|∇u| dxdy
)
.

Thus
∫ ∞

0

δ
(
m2(Nt)

)
dt ≤ K

(∫∫
Ω

|∇u| dxdy +
∫∫

C

|u| dxdy
)
.

The rectangle C belongs to the class J1/2. Therefore, if u = 0 on a subset
of Ω with area not less than 1

2m2(Ω), then
∫∫

C

|u| dxdy ≤ K
∫∫

C

|∇u| dxdy.

Consequently,
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∫ ∞

0

δ
(
m2(Nt)

)
dt ≤ K

∫∫
C

|∇u| dxdy. (5.4.7)

Inserting the sequence {wm}, constructed in Lemma 5.2.2, into (5.4.7), we ob-
tain (5.4.1) for any admissible set with an area that does not exceed 1

2mn(Ω).
Thus, the lower bound for λ(μ) is obtained.

To derive the estimate λ(μ) ≤ cδ(μ) it is sufficient to note that the sequence
{Gm}m≥1, where Gm is the interior of Am ∪Bm, satisfies

s(∂iGm) = δ
(
2−m−1

)
,

1
3
δ
(
2−m−1

)
≤ m2(Gm) ≤ 2

3
δ
(
2−m−1

)
.

The proposition is proved. �

Obviously, the Nikodým domain Ω belongs to Jα(α ≥ 1) if and only if

lim inf
t→+0

t−αδ(t) > 0. (5.4.8)

Similarly, Ω ∈ Hα, α > 1, i.e., L1
1(Ω) ⊂ L1/α(Ω) if and only if

∫ 1

0

(
sα

δ(s)

) 1
α−1 ds

s
<∞.

We shall return to the domain considered here in Sect. 6.5.

5.5 Compactness of the Embedding L1
1(Ω) ⊂ Lq(Ω)

(q ≥ 1)

5.5.1 Class J̊α

Definition. The set Ω belongs to the class J̊α, α > (n− 1)/n, if

lim
μ→0

sup
mn(G )α

s(∂iG )
= 0, (5.5.1)

where the supremum is taken over all admissible subsets G of Ω such that
mn(G ) ≤ μ.

Remark 1. It is clear that (5.5.1) is equivalent to

lim
μ→0

μ−αλM (μ) = ∞, (5.5.2)

where M is a fixed number in (0,mn(Ω)).

Remark 2. The exponent α in the definition of the class J̊α exceeds (n−
1)/n since in the case α = (n− 1)/n we have

[
mn(B�)

](n−1)/n = const ·s(∂B�).
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5.5.2 Compactness Criterion

Theorem. Let mn(Ω) < ∞ and let Ω be a domain. For the compactness of
the embedding L1

1(Ω) ⊂ Lq(Ω), where n/(n− 1) > q ≥ 1, it is necessary and
sufficient that Ω belong to J̊α with α = q−1.

Proof. Sufficiency. Let u be an arbitrary function in L1
1(Ω) ∩ L∞(Ω) ∩

C∞(Ω) with bounded support. By Corollary 5.1.2 the set of such functions is
dense in L1

1(Ω). Obviously,
∫
Ω

|u|q dx ≤ c

(∫
Nτ

|u|q dx+ τ qmn(Ω)
)

≤ c1

(∫
Ω

(
|u| − τ

)q
+

dx+ τ qmn(Ω)
)

for τ ≥ 0. Let τ be such that

mn(Nτ ) ≥ μ, mn(Lτ ) ≤ μ,

where μ is an arbitrary number in (0,M ] and M is the constant in the defi-
nition of Jα.

Using Lemma 5.2.3/1, we obtain
∫
Ω

(
|u| − τ

)q
+

dx ≤ μ

[λM (μ)]q

(∫
Ω

|∇u| dx
)q

. (5.5.3)

Let ω be a bounded set with smooth boundary such that

ω̄ ⊂ Ω, 2mn(Ω\ω) < μ.

Since mn(Nτ ) ≥ μ, we have 2mn(Ω ∩ Nτ ) ≥ μ. Consequently,
∫
ω

|u|q dx ≥ 2−1μτ q.

Thus,

c‖u‖Lq(Ω) ≤
μ1/q

λM (μ)

∫
Ω

|∇u| dx+
[
mn(Ω)
μ

]1/q
‖u‖Lq(ω). (5.5.4)

Let {uk}k≥1 be a sequence satisfying

‖∇uk‖L(Ω) + ‖uk‖L(ω) ≤ 1.

Since the boundary of ω is smooth, the embedding operator L1
1(ω) → Lq(ω)

is compact and we may suppose that {uk}k≥1 is a Cauchy sequence in Lq(ω).
By (5.5.4),
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c‖um − ul‖Lq(Ω) ≤ 2
μ1/q

λM (μ)
+
[
mn(Ω)
μ

]1/q
‖um − ul‖Lq(ω)

and hence

c lim sup
m,l→∞

‖um − ul‖Lq(Ω) ≤ 2
μ1/q

λM (μ)
.

It remains to pass to the limit in the right-hand side as μ → +0 and
take (5.5.2) into account.

Necessity. Let the embedding L1
1(Ω) ⊂ Lq(Ω) be compact. Then L1

1(Ω) ⊂
L1(Ω) and elements of a unit ball in W 1

1 (Ω) have absolutely equicontinuous
norms in Lq(Ω). Hence, for all u ∈ L1

1(Ω)

(∫
G

|u|q dx
)1/q

≤ ε(μ)
∫
Ω

(
|∇u| + |u|

)
dx, (5.5.5)

where G is an arbitrary admissible subset of Ω whose measure does not exceed
μ and ε(μ) converges to zero as μ→ +0.

We insert the sequence {wm} constructed in Lemma 5.2.2 into (5.5.5).
Then, for any compactum K ⊂ G ,

mn(K)1/q ≤ cε(μ)
(
s(∂iG ) +mn(G )

)
,

and hence
mn(G )1/q ≤ c1ε(μ)s(∂iG ).

The theorem is proved. �

Remark. One can prove, in a similar way, that the compactness of the
embedding L1

1(Ω) into Lq(Ω), q < 1, holds if and only if Ω ∈ H1/q, i.e., the
embedding L1

1(Ω) ⊂ Lq(Ω), q > 1, is compact and continuous simultaneously.
The role of the inequality (5.5.3) in the proof of the statement should be

played by the estimate

∫
Ω

(
|u| − τ

)q
+

dx ≤ c
(∫ M

0

(
μ

1
q

λM (μ)

) q
1−q dμ

μ

)1−q(∫
Ω

|∇u| dx
)q

,

which can be obtained by obvious changes in the proof of Theorem 2.3.8.

Example. The condition (5.5.1) for the domain

Ω =
{
x = (x′, xn), x′ = (x1, . . . , xn−1) : |x′| < f(xn), 0 < xn < a

}

(cf. Example 5.3.3/1) is equivalent to

lim
x→0

(∫ x

0

[
f(τ)

]n−1 dτ
)α[

f(x)
]1−n = 0. (5.5.6)

Since
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∫ x

0

[
f(t)

]n−1 dτ ≤
[
f(x)

]n−1
x,

we see that (5.5.6) holds if

lim
x→0

xα
[
f(x)

](n−1)(α−1) = 0

(in particular, (5.5.6) always holds for α = 1).
By the last Remark, the condition (5.3.11) is the equivalent to the com-

pactness of the embedding L1
1(Ω) into Lq(Ω), q > 1, for the infinite funnel in

Example 5.3.3/2.

5.6 Embedding W 1
1,r(Ω, ∂Ω) ⊂ Lq(Ω)

5.6.1 Class Kα,β

Let r > 0, u ∈ C(Ω̄) and

‖u‖Lr(∂Ω) =
(∫

∂Ω

|u|r ds
)1/r

,

where s is the (n−1)-dimensional Hausdorff measure. If r ≥ 1, then ‖u‖Lr(∂Ω)

is a norm and it is a pseudonorm for r ∈ (0, 1) (cf. Sect. 5.1.1).

Definition 1. We denote by W 1
p,r(Ω, ∂Ω) the completion of the set of

functions in L1
p(Ω) ∩C∞(Ω) ∩C(Ω̄) with respect to the norm (pseudonorm)

‖∇u‖Lp(Ω) + ‖u‖Lr(∂Ω).

In this section we study the conditions for the embedding W 1
1,r(Ω, ∂Ω) ⊂

Lq(Ω). Contrary to Sobolev’s theorem for domains of the class C0,1, the norm
in Lr(∂Ω) does not always play the role of a “weak perturbation” for the
L1(Ω)-norm of the gradient in the inequality

‖u‖Lq(Ω) ≤ c
(
‖∇u‖L1(Ω) + ‖u‖Lr(∂Ω)

)
. (5.6.1)

In the case of a “bad” boundary the exponent q may depend on the order of
integrability of the function on the boundary.

In particular, we shall see that functions in W 1
1,r(Ω, ∂Ω) are integrable

with power q = n/(n− 1) in Ω, if r = 1 and Ω is an arbitrary open set.

Definition 2. An open set Ω belongs to the class Kα,β , if there exists a
constant E such that

[
mn(g)

]α ≤ E
[
s(∂ig) + s(∂eg)β

]
(5.6.2)

for any admissible set g ⊂ Ω (here ∂eg = ∂g ∩ ∂Ω).
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5.6.2 Examples of Sets in Kα,β

Example 1. An arbitrary open set Ω belongs to the class K(n−1)/n,1 since
the condition (5.6.2) for α = (n − 1)/n, β = 1 is the classical isoperimetric
inequality [

mn(g)
](n−1)/n ≤ [Γ (1 + n/2)]1/n

n
√
π

s(∂g) (5.6.3)

(cf. Sect. 9.1.5 and Remark 9.2.2).

Proposition. If Ω ∈ Kα,1, where α ≥ (n− 1)/n then Ω ∈ Kαβ,β, where
β is an arbitrary number in [(n− 1)/nα, 1].

Proof. From (5.6.3) and
[
mn(g)

]α ≤ E s(∂g), (5.6.4)

it follows that
[
mn(g)

]αβ ≤ cE θs(∂g) with β = θ + (1 − θ)(n− 1)/nα

for any θ ∈ [0, 1]. If s(∂eg) ≤ s(∂ig), then

[
mn(g)

]αβ ≤ 2cE θs(∂ig). (5.6.5)

Otherwise, if s(∂eg) > s(∂ig), then (5.6.4) yields

[
mn(g)

]αβ ≤ E β
[
s(∂g)

]β
. (5.6.6)

Combining (5.6.5) with (5.6.6), we complete the proof.

Example 2. We show that the plane domain

Ω =
{
(x, y) : 0 < x <∞, 0 < y < (1 + x)γ−1

}
,

where 0 < γ ≤ 1, belongs to K1/γ,1 and by the Proposition, Ω ∈ Kβ/γ,β ,
where β is an arbitrary number in [γ/2, 1].

Let g be an arbitrary admissible subset of Ω. Obviously,

s(∂g) ≥ s(Pr
Ox
g), (5.6.7)

where s is the length and PrOx is the orthogonal projection onto the axis Ox.
Since γ ≤ 1, we have
∫

PrOx g

(1 + x)γ−1 dx ≤
∫ s(PrOx g)

0

(1 + x)γ−1 dx = γ−1
[(
s(Pr

Ox
g) + 1

)γ − 1
]

≤ γ−1
[
s(Pr

Ox
g)
]γ
.

Consequently,
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(∫
PrOx g

(1 + x)γ−1 dx
)1/γ

≤ γ−1/γs(∂g). (5.6.8)

Taking into account that

m2(g) ≤
∫

PrOx g

(1 + x)γ−1 dx,

from (5.6.8) we obtain

m2(g)1/γ ≤ γ−1/γs(∂g), (5.6.9)

which means that Ω ∈ K1/γ,1.

Example 3. We shall show that any set Ω in Jα with finite volume belongs
to the class Kα,β , where β is an arbitrary positive number.

For any admissible subset g of Ω satisfying the condition mn(g) ≤ M we
have

mn(g)α ≤ A(M)s(∂ig). (5.6.10)

Let mn(g) > M and

2αns(∂eg) < M (n−1)/n, where αn =
[Γ (1 + n/2)]1/n

n
√
π

. (5.6.11)

By the isoperimetric inequality (5.6.3),

M (n−1)/n ≤ mn(g)(n−1)/n ≤ αn

(
s(∂ig) + s(∂eg)

)

and hence
M (n−1)/n ≤ 2αns(∂ig).

This implies
mn(g)α ≤ mn(Ω)α2αnM

(1−n)/ns(∂ig). (5.6.12)

If (5.6.11) is not valid, then

mn(g)α ≤ mn(Ω)α(2αn)βs(∂eg)β . (5.6.13)

From (5.6.10), (5.6.12), and (5.6.13) it follows that Ω belongs to Kα,β .

5.6.3 Continuity of the Embedding Operator W 1
1,r(Ω, ∂Ω) → Lq(Ω)

Theorem. If Ω ∈ Kα,β, where α ≤ 1, β ≥ α, then (5.6.1) holds for all
u ∈W 1

1,1/β(Ω, ∂Ω) with q = 1/α, r = 1/β.

Proof. Consider the case 1 > β ≥ α. Let u be an arbitrary function in
C∞(Ω)∩C(Ω̄) with bounded support. From Lemma 1.2.3 and Lemma 1.3.5/1
we obtain that
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‖u‖L1/α(Ω) ≤
(∫ ∞

0

mn(Nt)α/β d
(
t1/β

))β

. (5.6.14)

We introduce the set

At =
{
t : s(Et) ≤ s( ¯Nt ∩ ∂Ω)β

}

and represent the integral above in the form
∫
At

+
∫
CAt

,

where CAt is the complement of At with respect to the positive halfaxis. We
give a bound for the integral

I1 =
∫
At

mn(Nt)α/β d
(
t1/β

)
.

Since Ω ∈ Kα,β , then

mn(Nt)α ≤ 2E s( ¯Nt ∩ ∂Ω)β

for almost all t ∈ At and hence

I1 ≤ (2E )1/β
∫
At

s( ¯Nt ∩ ∂Ω) d
(
t1/β

)
≤ (2E )1/β

∫
∂Ω

|u|1/β ds. (5.6.15)

Now we consider the integral

I2 =
∫
CAt

[
mn(Nt)

]α/β d
(
t1/β

)
.

Obviously,

I2 ≤ β−1

∫ ∞

0

[
mn(Nt)

]α dt sup
τ ∈CAt

(
τ
[
mn(Nτ )

]α)(1−β)/β
.

By (5.6.2), [
mn(Nτ )

]α ≤ 2E s(Eτ )

for τ ∈ CAt, and hence

I2 ≤ 2E β−1

∫ ∞

0

s(Et) dt sup
τ>0

(
τ
[
mn(Nτ )

]α)(1−β)/β
.

The preceding inequality and Theorem 1.2.4 yield

I2 ≤ 2E β−1‖∇u‖L1(Ω)‖u‖(1−β)/β
L1/α(Ω). (5.6.16)

From (5.6.14)–(5.6.16) it follows that
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‖u‖L1/α(Ω) ≤ cE
(
‖∇u‖βL1(Ω)‖u‖

1−β
L1/α(Ω) + ‖u‖L1/β(∂Ω)

)
.

Now consider the case β ≥ 1. The condition Ω ∈ Kα,β implies
∫ ∞

0

[
mn(Nτ )

]α dt ≤ E

(∫ ∞

0

s(Et) dt+
∫ ∞

0

[
s( ¯Nt ∩ ∂Ω)

]β dt
)
. (5.6.17)

Applying Lemma 1.2.3 and Lemma 1.3.5/1, we obtain

∫
Ω

|u|1/α dx ≤
(∫ ∞

0

[
mn(Nt)

]α dt
)1/α

,

(∫ ∞

0

[
s( ¯Nt ∩ ∂Ω)

]β dt
)1/β

≤
∫ ∞

0

s( ¯Nt ∩ ∂Ω) d
(
t1/β

)
=
∫
∂Ω

|u|1/β ds.

These estimates together with (5.6.17) lead to

‖u‖L1/α(Ω) ≤ E
(
‖∇u‖L1(Ω) + ‖u‖L1/β(∂Ω)

)
. (5.6.18)

This concludes the proof. �

We give an example that shows that the Theorem is not true if Ω ∈ Kα,β ,
α > β, and r = 1/β.

Example. In Example 5.6.2/2 we showed that the domain

Ω =
{
(x, y) : 0 < x <∞, 0 < y < (1 + x)2β−1

}

belongs to the class K1/2,β with β ∈ (0, 1/2). Consider the sequence of func-
tions

Ω � (x, y) → um(x, y) = (1 + x)−κm , κm > β.

Each of these functions obviously belongs to W 1
1,1/β(Ω, ∂Ω) since it can be

approximated in the norm of the space mentioned after multiplication by an
“expanding” sequence of truncating functions. We have

‖um‖L2(Ω) = 2−1/2(κm − β)−1/2, ‖∇um‖L(Ω) = κm/(κm − 2β + 1),

‖um‖L1/β(∂Ω) > β
β(κm − β)−β .

For u = um and κm → β + 0 the left-hand side of the inequality

‖u‖L2(Ω) ≤ C
(
‖∇u‖L(Ω) + ‖u‖L1/β(∂Ω)

)

grows more rapidly than its right-hand side and hence (5.6.1) is not true for
q = α−1, r = β−1.

Remark. A review of the proof of the previous Theorem shows that the
theorem also remains valid for β < α, provided (5.6.1) in its statement is
replaced by
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‖u‖Lq(Ω) ≤ C
(
‖∇u‖L(Ω) +

∫ ∞

0

[
s( ¯Nt ∩ ∂Ω)

]1/r dt
)
. (5.6.19)

Corollary. The inequality

‖u‖Ln/(n−1)(Ω) ≤
[Γ (1 + n/2)]1/n

n
√
π

(
‖∇u‖L(Ω) + ‖u‖L(∂Ω)

)
, (5.6.20)

holds for an arbitrary bounded set Ω and u ∈ W 1
1,1(Ω, ∂Ω). The constant

in (5.6.20) is the best possible.

The proof follows immediately from the isoperimetric inequality (5.6.14)
and (5.6.18). That the constant is exact was already remarked in Sect. 1.4.2,
where the inequality (1.4.14) was derived.

5.7 Comments to Chap. 5

A substantial part of the results presented in this chapter were stated in the
author’s paper [547].

Section 5.2. Lemma 5.2.1/1 was proved by Burago and the author [151].
Other results of this section (except Lemma 5.2.3/2) are due to the author.

The Poincaré-type inequality (5.2.7) with q = n/(n − 1) was deduced
from the isoperimetric inequality (5.2.1), where α = (n − 1)/n and M =
1
2mn(Ω), simultaneously and independently from the author by Fleming and
Rishel [282].

For the further development of the idea concerning the relation between in-
tegral and geometrical inequalities see Miranda [608], Burago and Maz’ya [150]
(the integrability of traces on ∂Ω of functions in BV (Ω), and so on; these re-
sults are presented in Chap. 9), Federer [271, 272] (embedding theorems for
currents), Klimov [428–430, 433] (embedding theorems involving Birnbaum–
Orlicz and rearrangement invariant spaces), Michael and Simon [600], Hoffman
and Spruck [379], Aubin [55] (the Sobolev–Gagliardo inequalities for functions
on manifolds), Otsuki [654], Martin and M. Milman [523] (embedding theo-
rems involving rearrangement invariant spaces). Lemma 5.2.3/2 was proved
by Deny and J.L. Lions [234].

The following optimal result was obtained by Cianchi in [193].

Theorem. Let n ≥ 2 and q ∈ (0, n/(n− 1)]. Let Ω be the unit ball in R
n.

Then

‖u− uΩ‖Lq(Ω) ≤
v
1/q
n

2vn−1
‖∇u‖L1(Ω) (5.7.1)

for u ∈ L1
1(Ω), where uΩ denotes the mean value of u over Ω. The constant

v
1/q
n (2vn−1)−1 is sharp.
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Although the constant v1/qn (2vn−1)−1 is sharp in (5.7.1), it is not achieved.
It is actually achieved when u equals the characteristic function of a half-ball
in a version of (5.7.1) for functions of bounded variation, where ‖∇u‖L1(Ω) is
replaced by the total variation of the distributional gradient of u (see Chap. 9).

The fact that among all subsets of the Euclidean ball of a given measure,
the ones minimizing the surface area in the interior of the ball are exactly
spherical caps perpendicular to the boundary, is due to Burago and Maz’ya
[150] (see also Almgren [40] and Bokowski and Sperner [124]). Cianchi noted
in [193] that for the unit ball in R

n symmetrization arguments as in the proof
of Lemma 5.2.1/1 and basic calculus give the formula

λvn/2(s) = B
(
A−1(s)

)
for s ∈ [0, vn/2],

where

A(θ) = vn−1

(∫ θ

0

(sin t)n dt+ (tan θ)n
∫ π/2

θ

(cos t)n dt
)

for θ ∈ [0, π/2]

and

B(θ) = (n− 1)vn−1(tan θ)n−1

∫ π/2

θ

(cos t)n−2 dt for θ ∈ [0, π/2].

Isoperimetric inequalities in the form (5.2.2) with optimal constants for
special convex sets Ω in the plane are discussed in Cianchi [192]. The case
when Ω is an n-dimensional convex cone is considered in P.-L. Lions and
Pacella [502].

Except for the methods of obtaining Sobolev-type inequalities mentioned
in the Comments to Sect. 1.4, there is another powerful approach to reduce
many multidimensional geometric and analytic inequalities to specific prob-
lems in dimension one, called the localization technique. It was proposed in
1960 by Payne and Weinberger [656] and developed in 1990s by Lovász and
Simonovits [508], together with Kannan in [413]. Localization technique was
also used by Gromov and V. Milman [326] to recover the isoperimetric theorem
on the sphere.

The advantage of localization over triangular mappings is that it often
leads to optimal results. For example, localization easily reduces the Gaussian
isoperimetric inequality to dimension one, which was demonstrated in Bobkov
[110]. More generally, with this technique one may obtain sharp dilation-type
inequalities for convex domains and so-called convex probability measures
(cf. F. Nazarov, Sodin, and Volberg [629], Bobkov and F. Nazarov [119]). An-
other interesting line of applications is Sobolev-type inequalities (cf. Kannan,
Lov’asz, and Simonovits [413], Bobkov [113]).

Here is a statement from Bobkov [113] that refines one of main results in
Kannan, Lov’asz, and Simonovits [413]. Let Ω ⊂ R

n be a bounded convex
domain with, for definiteness, volume one. The best constant in the Poincaré-
type inequality
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∫
Ω

|u− uΩ | dx ≤ A
∫
Ω

|∇u| dx (5.7.2)

in the class of all smooth functions u satisfies

A ≤ C
[∫

Ω

|x|4 dx−
(∫

Ω

|x|2 dx
)2]1/4

, (5.7.3)

where C is an absolute constant. In the case of the Euclidean ball centered
at the origin and of radius of order

√
n, as n → ∞, so that it has volume

equal to 1, we have that the right-hand side is of order 1. This follows also
from (5.7.1) with q = 1. The localization method was further developed in
Fradelizi and Guédon [283, 284]. We also mention that the value 2−1 diamΩ
of the constant A in (5.7.2) for a convex domain, which is the best constant
formulated in terms of diameter, was found by Acosta and Durán [1].

Membership of two-dimensional domains with Hölder continuous bound-
ary in the classes Jα, with α depending on the Hölder exponent, was estab-
lished by Cianchi in [192]. The case of n-dimensional domains with boundaries
enjoying more general regularity properties was considered by Labutin in [471].
As Buckley and Koskela showed in [147], bounded planar Jordan domains are
in the class J1/2 only if they are Jordan domains. By Bojarski [122] this
condition is also sufficient.

Section 5.3. The contents of this section are borrowed from the au-
thor’s paper [538], where subareal mappings that preserve the space L1

1(Ω),
were considered in particular. Since then various properties of homeomor-
phisms of Euclidean domains generating a bounded composition operator
of Sobolev spaces were studied. Without aiming at completeness we men-
tion the works by Vodop’yanov and Gol’dshtein [778]; Maz’ya and Shaposh-
nikova [578, Sect. 9.4], [588]; Holopainen and Rickman [382]; Ukhlov [767];
[768], Gol’dshtein and Gurov [314]; Gol’dshtein, Gurov, and Romanov [315];
Vodop’yanov [777]; Haj�lasz [340]; Kauhanen, Koskela, and Malý [417]; Troy-
anov and Vodop’yanov [761]; Hencl, Koskela, and Malý [377]; and Hencl and
Koskela [376], Gol’dshtein and Ukhlov [319].

A different direction is taken by a theory of the so-called Sobolev map-
pings of Riemannian manifolds and metric spaces. This vast and diverse area,
important for applications to geometry, physics, elasticity etc. is outside the
scope of the present book.

Section 5.4. The estimates for the relative isoperimetric function λ are
presented in Maz’ya [552].

Section 5.5. The results of this section are borrowed from [547].
Section 5.6. The contents of this section are taken from the author’s the-

sis [529]. The inequality (5.6.20) can be found in Maz’ya [538]. This inequality
proved to be useful in the theory of the Robin boundary value problem for
arbitrary domains developed by Daners [221].
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Integrability of Functions in the Space L1
p(Ω)

Here we continue our study of integral inequalities for functions with unre-
stricted boundary values started in the previous chapter. For the embedding
operator L1

p(Ω) → Lq(Ω), p ≥ 1, we find necessary and sufficient conditions
on Ω ensuring the continuity of this operator (Sects. 6.2–6.4). To get criteria,
analogous to those obtained in Sect. 2.2, for the space L1

p(Ω), we introduce
classes of sets defined with the aid of the so-called p-conductivity, which plays
the same role as p-capacity in Chap. 2. Geometrical conditions formulated in
terms of the isoperimetric inequalities prove to be only sufficient if p > 1.

We give some details. Let G be a bounded open subset of Ω and let F be
a relatively closed subset of G. The difference K = G\F is called a conductor
and its p-conductivity cp(K) is defined as inf ‖∇f‖pLp(Ω) extended over Lips-
chitz functions f such that f ≥ 1 on F and f ≤ 0 on Ω\G. The infimum of
cp(K) taken over all conductors K with mn(F ) ≥ t and mn(G) ≤ M , where
M ∈ (0,mn(Ω)), is called the p-conductivity minimizing function νM,p(t). We
say that Ω belongs to the class Ip,α if

νM,p(t) ≥ const tαp,

with t ∈ (0,M ]. For p = 1 this class coincides with the class Jα introduced
in Chap. 5. By one of the results in the present chapter, Theorem 6.3.3, the
inclusion Ω ∈ Ip,α implies the inequality of the form

‖u‖Lq(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Ls(Ω)

)1−κ‖u‖κ

Lr(Ω),

where q ≤ 1/α if pα < 1 and q < 1/α if pα > 1. Conversely, the last
multiplicative inequality with q < 1/α ensures the inclusion Ω ∈ Ip,α (see
Theorem 6.3.3 for other assumptions about p, q, s, and κ). By this result and
by Theorem 6.4.2 the inequality

‖u‖L1/α(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Ls(Ω)

)
holds with s < 1/α if and only if Ω ∈ Ip,α in the case αp ≤ 1 and Ω ∈ Hp,α

in the case αp > 1. The class Hp,α is defined by the condition

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 6, c© Springer-Verlag Berlin Heidelberg 2011
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∫ M

0

[
ταp

νM,p(τ)

]1/(αp−1) dτ
τ
<∞

in Sect. 6.4.2.
As stated in Proposition 6.3.5/1, the p-conductivity minimizing function

admits the lower estimate in terms of the area minimizing function

νM,p(t) ≥
(∫ M

t

[
λM (σ)

]p/(1−p) dσ
)1−p

,

which shows, for instance, that Jα+(p−1)/p ⊂ Ip,α. The failure of the converse
inclusion is illustrated in Sect. 6.5, where we find equivalent lower and upper
estimates for the p-conductivity minimizing function for the Nikodým domain
already dealt with in Sect. 5.4.

Some generalizations of the criteria mentioned are discussed in Sect. 6.6
and then, in Sect. 6.7, the necessary and sufficient conditions for integral
inequalities involving domains of infinite volume are found. Next, in Sect. 6.8
we characterize the domains for which the embedding L1

p(Ω) ⊂ Lq(Ω) is
compact. Sufficient conditions on Ω for the boundedness and compactness of
the embedding operator Ll

p(Ω) → Lq(Ω), l ≥ 1, following from the previous
results are obtained in Sect. 6.9. We present applications to the Neumann and
other boundary value problems for strongly elliptic operators giving criteria of
their solvability and discreteness of spectrum in Sects. 6.10 and 6.11. Another
topic of Sect. 6.11 concerns inequalities containing integrals over the boundary,
which extend those in Sect. 5.6 to the case p > 1. Here we prove that the
refined Friedrichs-type inequality

‖u‖Lq(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Lr(∂Ω)

)

holds with n > p, (n−p)r ≤ p(n−1), r ≥ 1, and q = rn/(n−1) for an arbitrary
open set Ω with finite volume and show that the exponent q = rn/(n− 1) is
critical provided no regularity assumptions on the domain are made.

6.1 Conductivity

6.1.1 Equivalence of Certain Definitions of Conductivity

Let Ω be an open set in R
n. Let F and G denote bounded closed (in Ω) and

open subsets of Ω, respectively, F ⊂ G.
As we mentioned in the introduction to this chapter, the set K = G\F is

called a conductor . In what follows UΩ(K) is the class of functions f ∈ C0,1(Ω)
with f(x) ≥ 1 for x ∈ F and f(x) ≤ 0 for x ∈ Ω\G. The value

cp(K) = inf
{∫

Ω

|∇f |p dx : f ∈ UΩ(K)
}

is called the p-conductivity of the conductor K.
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Lemma 1. Let VΩ(K) denote the class of functions {f ∈ C∞(Ω) :
f(x) = 1 for x ∈ F, f(x) = 0 for x ∈ Ω\G}. Then

cp(K) = inf
{∫

Ω

|∇f |p dx : f ∈ VΩ(K)
}
.

Proof. Since UΩ(K) ⊃ VΩ(K), it suffices to obtain only the lower bound
for cp(K). Let ε ∈ (0, 1) and let f ∈ UΩ(K) be such that

∫
Ω

|∇f |p dx ≤ cp(K) + ε.

We put ψ = (1 + ε)2f − ε and ϕ = min(ψ+, 1). Then

‖∇ψ‖Lp(Ω) ≤
(
cp(K) + ε

)1/p(1 + ε)2. (6.1.1)

We introduce some notation: Φ1 = {x : ϕ = 1}, Φ2 = {x : ϕ = 0}, and
Q = {x : 1 > ϕ(x) > 0}. Since Q = {x : (1 + ε)−1 > f > ε(1 + ε)−2}, we have
closΩQ ⊂ K.

We construct a locally finite (in Ω) covering of the set closΩ Q by open
balls B0,i, i = 1, 2, . . . . Let A0 denote the union of these balls. By the inclusion
closΩ Q ⊂ K we can choose the covering to satisfy closΩ A0 ⊂ K. Next we
construct locally finite (in Ω) coverings of the sets Φk\A0 (k = 1, 2) by open
balls Bk,i such that the closures in Ω of the sets Ak =

⋃
i Bk,i (k = 1, 2)

are disjoint with closΩ Q. The latter is possible since (Φk\A0)∩ closΩ Q = ∅.
Clearly, F ⊂ A1 and (Ω\G) ⊂ A2.

Let αk,i ∈ D(Bk,i), k = 0, 1, 2; i = 1, 2, . . . , and let

2∑
k=0

∞∑
i=1

αk,i = 1 in Ω.

For any i = 1, 2, . . . , we introduce a function βi ∈ D(B0,i) such that
∥∥∇(α0,iϕ− βi)

∥∥
Lp(Ω)

≤ εi.

Next we put v0,i = βi, v1,i = α1,i, v2,i = 0,

u =
2∑

k=0

∞∑
i=1

vk,i. (6.1.2)

The function u is infinitely differentiable in Ω since each point of Ω is con-
tained only in a finite number of balls Bk,i and therefore (6.1.2) has a finite
number of summands. Obviously,

∥∥∇(ϕ− ψ)
∥∥
Lp(Ω)

≤
2∑

k=0

∞∑
i=1

∥∥∇(αk,iϕ− vk,i)
∥∥
Lp(Ω)

.
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Since ϕ = 1 on B1,i, v1,i = α1,i and ϕ = 0 on B2,i, v2,i = 0, it follows that

∥∥∇(ϕ− u)
∥∥
Lp(Ω)

≤
∞∑
i=1

∥∥∇(α0,iϕ− βi)
∥∥
Lp(Ω)

≤ ε/(1 − ε). (6.1.3)

Using F ⊂ A1 and F ∩A0 = ∅ we have v0,i = βi = 0, v2,i = 0, v1,i = α1,i,
α0,i = 0, α2,i = 0 on F . Therefore

u =
∞∑
i=1

v1,i =
2∑

k=0

∞∑
i=1

αk,i = 1 on F.

Also, vk,i = 0 on Ω\G and hence u = 0 on the same set. Thus, u ∈ VΩ(K).

Finally, by (6.1.1) and (6.1.3),

‖∇u‖Lp(Ω) ≤ (1 + ε)2
(
cp(K) + ε

)1/p + ε(1 − ε)−1,

which completes the proof. �
Let TΩ(K) = {f ∈ VΩ(K) : 0 ≤ f(x) ≤ 1on K}.

Henceforth, the following modification of Lemma 1 will be useful.

Lemma 2. The equality

cp(K) = inf
{∫

Ω

|∇f |p dx : f ∈ TΩ(K)
}

is valid.

Proof. Since TΩ(K) ⊂ VΩ(K), it suffices to obtain only the lower bound
for cp(K). Let ε > 0, λε ∈ C∞(−∞,+∞), λε(t) = 1 for t ≥ 1, λε(t) = 0 for
t ≤ 0, 0 ≤ λ′

ε(t) ≤ 1 + ε. Further, let ϕ ∈ VΩ(K). We introduce the function
f = λε(ϕ) ∈ TΩ(K). Obviously,

∫
Ω

|∇f |p dx =
∫
Ω

[
λ′
ε(ϕ)

]p|∇ϕ|p dx ≤ (1 + ε)p
∫
Ω

|∇ϕ|p dx

and consequently,

inf
{∫

Ω

|∇f |p dx : f ∈ TΩ(K)
}
≤ cp(K).

The result follows.

6.1.2 Some Properties of Conductivity

We shall comment on some simple properties of p-conductivity.
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Consider two conductors K = G\F and K ′ = G′\F ′ contained in Ω. We
say that K ′ is a part of K(K ′ ⊂ K) if F ⊂ F ′ ⊂ G′ ⊂ G.

The definition of p-conductivity immediately implies the following propo-
sition.

Proposition 1. If K ′ ⊂ K, then

cp(K) ≤ cp(K ′).

Proposition 2. Given any ε > 0 and any conductor K with finite p-
conductivity, we can construct a conductor K ′ ⊂ K such that

ε ≥ cp(K ′) − cp(K) ≥ 0. (6.1.4)

The conductor K ′ can be chosen so that ∂iF ′ and ∂iG′ are C∞-manifolds.

Proof. The right inequality follows from Proposition 1.
Let a function f ∈ UΩ(K) satisfy

cp(K) + ε/2 >
∫
Ω

|∇f |p dx (6.1.5)

and let

2δ = 1−
[
ε+ 2cp(K)
2ε+ 2cp(K)

]1/p
.

We may assume that the sets {x ∈ Ω : f(x) = 1− δ} and {x ∈ Ω : f(x) = δ}
are C∞-manifolds since otherwise δ can be replaced by an arbitrarily close
number having the aforementioned property. We construct the conductor K ′

as follows: K ′ = G′\F ′, where F ′ = {x ∈ Ω : f(x) ≥ 1 − δ}, G′ = {x ∈ Ω :
f(x) > δ}. Then (6.1.5) implies

cp(K) + ε/2
(1 − 2δ)p

>

∫
Ω

∣∣∣∣∇
(
f(x) − δ
1 − 2δ

)∣∣∣∣
p

dx.

The function (1− 2δ)−1(f − δ) is contained in UΩ(K ′). Hence

cp(K) + ε/2
(1 − 2δ)p

≥ cp(K ′),

which is equivalent to the left inequality in (6.1.4).
The proposition is proved. �

Proposition 3. Let K1 = G1\F1 and K2 = G2\F2 be any conductors
in Ω. Then

cp(K∪) + cp(K∩) ≤ cp(K1) + cp(K2), (6.1.6)

where K∪ = (G1 ∪G2)\(F1 ∪ F2), K∩ = (G1 ∩G2)\(F1 ∩ F2).
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Proof. Let ε be an arbitrary positive number and let f1, f2 be functions
in UΩ(K1), UΩ(K2), respectively, satisfying

∫
Ki

|∇fi|p dx < cp(Ki) + ε. (6.1.7)

We introduce the functions

M = sup{f1, f2}, m = inf{f1, f2}.

It is clear that M and m satisfy the Lipschitz condition in Ω and that M ≥ 1
on F1 ∪ F2, M ≤ 0 on Ω\(G1 ∪G2), as well as m ≥ 1 on F1 ∩ F2, m ≤ 0 on
Ω\(G1 ∩G2). Besides,

∫
K∪

|∇M |p dx+
∫
K∩

|∇m|p dx =
2∑

i=1

∫
Ki

|∇fi|p dx.

This along with (6.1.7) and Lemma 6.1.1/1 implies (6.1.6). �

6.1.3 Dirichlet Principle with Prescribed Level Surfaces and Its
Corollaries

The proofs of the following Lemmas 1 and 2 and Corollaries 1 and 2 do not dif-
fer from the proofs of similar assertions on the (p, Φ)-capacity in Sects. 2.2.1–
2.2.3.

Lemma 1. For any conductor K in Ω with finite p-conductivity we have

cp(K) = inf
f∈VΩ(K)

(∫ 1

0

‖∇f‖−1
Lp−1(Eτ ) dτ

)1−p

, (6.1.8)

where Eτ = {x ∈ Ω : f(x) = τ}.

Lemma 2. Let f be in C∞(Ω) ∩ L1
p(Ω). Then, for almost all t,

[
s(Et)

]p/(p−1)‖∇f‖−1
Lp−1(Et)

≤ − d
dt
[
mn(Lt)

]
, (6.1.9)

where Lt = {x : f(x) > t}.

Corollary 1. For any conductor K in Ω the inequality

cp(K) ≥ inf
{(

−
∫ 1

0

d
dt
mn(Lt)

dt
[s(Et)]p/(p−1)

)1−p

: f ∈ VΩ(K)
}

(6.1.10)

holds.

Corollary 2. Let F be an open set closed in Ω and let G, H be bounded
open subsets of Ω such that
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F ⊂ G, closΩ G ⊂ H.

The conductors

K(1) = G\F, K(2) = H\ closΩ G, K(3) = H\F,

satisfy the inequality

[
cp
(
K(1)

)]−1/(p−1) +
[
cp
(
K(2)

)]−1/(p−1) ≤
[
cp
(
K(3)

)]−1/(p−1)
. (6.1.11)

We present one more property of the p-conductivity, which is proved sim-
ilarly to Theorem 2.3.1.

Lemma 3. Let u ∈ C0,1(Ω), u = 0 on the exterior of an open bounded set
G ⊂ Ω and let Kt be the conductor G\Nt. Then, for p ≥ 1,

∫ ∞

0

cp(Kt) d
(
tp
)
≤ pp

(p− 1)p−1

∫
Ω

|∇u|p dx. (6.1.12)

(For p = 1 the coefficient in front of the second integral in (6.1.12) is equal to
unity.)

6.2 Multiplicative Inequality for Functions Which Vanish
on a Subset of Ω

In this section we find a necessary and sufficient condition for the validity of
the inequality

‖u‖Lq(Ω) ≤ C‖∇u‖1−κ

Lp(Ω)‖u‖
κ

Lr(Ω) (6.2.1)

for all functions that vanish on some subset of Ω.
Let G be an open bounded subset of Ω. For p > 1 we put

A
(p,α)
G = sup

{F }

[mn(F )]α

[cp(G\F )]1/p
,

where {F} is the collection of closed (in Ω) subsets of G with cp(G\F ) > 0.

Let A
(1,α)
G denote the value A

(α)
G introduced in Sect. 5.2.3, i.e.,

A
(1,α)
G = sup

{G }

[mn(G )]α

s(∂iG )
,

where {G } is the collection of admissible subsets of G.
The following assertion is a generalization of Lemma 5.2.3/1 (the case

q∗ ≥ p = 1).
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Lemma. Let p ≥ 1 and let G be an open bounded subset of Ω.
1. If A

(p,α)
G <∞ and the numbers q, α, p satisfy either one of the following

conditions:

(i) q ≤ q∗ = α−1 for αp ≤ 1,
(ii) q < q∗ = α−1 for αp > 1,

then for all functions u ∈ C0,1(Ω) which vanish on the exterior of G, the
inequality (6.2.1) holds with r ∈ (0, q), κ = r(q∗ − q)/q(q∗ − r), and C ≤
c(A(p,α)

G )1−κ.
2. Let q∗ > 0, r ∈ (0, q∗) and for some q ∈ (0, q∗] and for any function

u ∈ C0,1(Ω) which vanishes on the exterior of G, let the inequality (6.2.1) be
valid with κ = r(q∗ − q)/q(q∗ − r) and with a constant C that is independent
of u.

Then C ≥ c(A(p,α)
G )1−κ.

Proof. 1. Duplicating the proof of the first part of Theorem 2.3.6 (for
μ = mn), we arrive at

‖u‖Lq(Ω) ≤ c
(∫ ∞

0

[
mn(Nt)

]pα
tp−1 dt

)(1−κ)/p

‖u‖κ

Lr(Ω). (6.2.2)

For p > 1 this implies

‖u‖Lq(Ω) ≤ c
(
A

(p,α)
G

)1−κ

(∫ ∞

0

cp(Kt)tp−1 dt
)(1−κ)/p

‖u‖κ

Lr(Ω),

where Kt is the conductor G\Nt. Now the result follows from Lemma 6.1.3/3.
In the case p = 1 inequality (6.2.1) results from (6.2.2) along with

Lemma 5.1.2/2 and the formula
∫
Ω

|∇u| dx =
∫ ∞

0

s(Et) dt (6.2.3)

(cf. Theorem 1.2.4).
2. Let p > 1. We fix a small positive number δ > 0 and put

βδ = sup
[mn(F )]pα

cp(G\F )

on the set of all F ⊂ G with cp(G\F ) ≥ δ. (The substitution of an arbitrary
function in TΩ(G\F ) into (6.2.1) implies

[
cp(G\F )

]1−κ ≥ C−p
[
mn(F )

]p/q[
mn(G)

]−κp/r
,

which means that the collection of sets F , contained in G and satisfying
the inequality cp(G\F ) ≥ δ, is not empty.) Obviously, βδ ≤ δ−1mn(G)pα.
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Further, we must duplicate the proof of the second part of Theorem 2.3.6
with Lemma 2.2.2/1 replaced by Lemma 6.1.3/1 and with (p, Φ)-cap(F,Ω)
replaced by cp(G\F ). Then we arrive at βδ ≤ cCp(1−κ), which, since δ is
arbitrary, implies C ≥ c(A(p,α)

G )1−κ for p > 1.
Consider the case p = 1. Let G be any admissible subset of G. We insert

the sequence of functions {wm}m≥1 specified in Lemma 5.2.2 into (6.2.1).
Then [

s(∂iG )
]1−κ ≥ C−1

[
mn(e)

]1/q[
mn(G )

]−κ/r
,

which, since e is arbitrary, yields

s(∂iG ) ≥ C−1
[
mn(G )

]α
.

The lemma is proved. �

Corollary. If p1 > p ≥ 1 and α1−p−1
1 = α−p−1, then A

(p1,α1)
G ≤ cA(p,α)

G .

Proof. We put |u|q1/q with q1 > q, q−1
1 − p−1

1 = q−1 − p−1 in place of u
in (6.2.1). Then

‖u‖q1/qLq1 (Ω) ≤ c
(
q1
q

)1−κ(
A

(p,α)
G

)1−κ∥∥|u|(q1−q)/q∇u
∥∥1−κ

Lp(Ω)
‖u‖κq1/q

Lr1 (Ω), (6.2.4)

where r1 = rq1/q. Applying the Hölder inequality, we obtain
∫
Ω

|u|p(q1−q)/q|∇u|p dx

≤
(∫

Ω

|u|(q1−q)pp1/(p1−p)q dx
)(p1−p)/p1

(∫
Ω

|∇u|p1 dx
)p/p1

= ‖u‖(p1−p)q1/p1

Lq1 (Ω) ‖∇u‖pLp1 (Ω).

The preceding inequality and (6.2.4) imply

‖u‖Lq1 (Ω) ≤ c
(
A

(p,α)
G

)1−κ1‖∇u‖1−κ1
Lp1 (Ω)‖u‖

κ1
Lr1 (Ω),

where κ1 = r1(q∗
1 − q1)/q1(q∗

1 − r1), q∗
1 = α−1

1 . Using the second part of the
above Lemma we obtain that A

(p1,α1)
G ≤ cA(p,α)

G . The corollary is proved. �

6.3 Classes of Sets Ip,α

6.3.1 Definition and Simple Properties of Ip,α

Definition 1. A domain Ω belongs to the class Ip,α(p ≥ 1, α > 0) if there
exists a constant M ∈ (0,mn(Ω)) such that
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Ap,α(M) def= sup
{K}

[mn(F )]α

[cp(K)]1/p
<∞, (6.3.1)

where {K} is the collection of conductors K = G\F in Ω with positive p-
conductivity and such that mn(G) ≤M .

Proposition 6.1.2/2 implies that mn(F ) = 0 for any conductor K = G\F
with zero p-conductivity provided Ω ∈ Ip,α.

Remark. The class Ip,α is empty for α < (n − p)/np, n > p since in this
case cp(B2r\B̄r) = const rn−p and therefore

[mn(Br)]α

[cp(B2r\B̄r)]1/p
= const rn(α−(n−p)/np) → ∞ as r → 0.

Proposition 1. If a domain Ω is the union of a finite number of domains
in Ip,α, then Ω is in the same class.

Proof. Let Ω = Ω1 ∪ Ω2, Ωi ∈ Ip,α, i = 1, 2. Then there exist constants
M1, M2 such that

[
mn(Fi)

]α ≤ A
(i)
p,α(Mi)

[
cp(Ki)

]1/p
for any conductor Ki = Gi\Fi in Ωi with mn(Gi) ≤Mi.

Put M = min{M1,M2} and let K denote a conductor G\F with
mn(G) ≤M . Further let Gi = G ∩ Ωi, Ki = Gi\Fi. If cp(K1) = 0, then
mn(F1) = 0 and hence mn(F ) = mn(F2). Therefore,

[
mn(F )

]α ≤ A
(2)
p,α(M2)

[
cp(K2)

]1/p ≤ A
(2)
p,α(M2)

[
cp(K)

]1/p
.

In the case cp(Ki) > 0, i = 1, 2, we have

[mn(F )]α

[cp(K)]1/p
≤ c
(

[mn(F1)]α

[cp(K1)]1/p
+

[mn(F2)]α

[cp(K2)]1/p

)
≤ c

2∑
i=1

A
(i)
p,α(Mi).

The proposition is proved. �

Definition 2. We say that K is an admissible conductor if K =
G \ closΩ g, where G and g are admissible subsets of Ω (cf. the definition
at the beginning of Sect. 5.1.1).

Proposition 2. We have

Ap,α(M) = sup
{K }

[mn(g)]α

[cp(K )]1/p
, (6.3.2)

where {K } is the collection of admissible conductors K = G \ closΩ g with
positive p-conductivity and with mn(G ) ≤ M . (Hence we may restrict our-
selves to admissible conductors in the definition of the class Ip,α.)
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Proof. We prove the inequality

Ap,α(M) ≤ sup
{K }

[mn(g)]α

[cp(K )]1/p
. (6.3.3)

The reverse inequality is obvious. Let K be any conductor in Definition 1.
Given any ε > 0 we can find an admissible conductor K = G \ closΩ g,
K ⊂ K, such that cp(K) ≥ (1 − ε)cp(K ) (cf. Proposition 6.1.2/2). It is
clear that mn(G ) ≤M and

[mn(F )]α

[cp(K)]1/p
≤ [mn(g)]α

(1 − ε)1/p[cp(K )]1/p
,

which immediately implies (6.3.3). �

6.3.2 Identity of the Classes I1,α and Jα

Lemma. The classes I1,α and Jα coincide and

A1,α(M) = sup
{G }

[mn(G )]α

s(∂iG )
, (6.3.4)

where {G } is the collection of admissible subsets of Ω with mn(G ) ≤M .

Proof. Let G be an admissible subset of Ω with mn(G ) ≤ M and let
{wm}m≥1 be the sequence of functions specified in Lemma 5.2.2. The prop-
erties of {wm} imply s(∂iG ) ≥ c1(G \e) for any compactum e contained in G .
If Ω ∈ I1,α, then [mn(e)]α ≤ A1,α(M) s(∂iG ) and hence

[
mn(G )

]α = sup
e⊂G

[
mn(e)

]α ≤ A1,α(M) s(∂iG ).

SupposeΩ ∈ Jα. LetK be an arbitrary conductorG\F withmn(G) ≤M .
By (6.2.3) for any f ∈ TΩ(K) we obtain
∫
Ω

|∇f | dx ≥ inf
{G }

{
s(∂iG ) : G ⊃ G ⊃ F

}
≥ inf

{G }

s(∂iG )
[mn(G )]α

[
mn(F )

]α
. (6.3.5)

By Lemma 6.1.1/2 we have

inf
{∫

|∇f | dx : f ∈ TΩ(K)
}

= c1(K),

so (6.3.5) implies

A1,α(M) ≤ sup
{G }

[mn(G )]α

s(∂iG )
.

The result follows. �
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6.3.3 Necessary and Sufficient Condition for the Validity
of a Multiplicative Inequality for Functions in W 1

p,s(Ω)

Lemmas 6.2 and 6.3.2 imply the following obvious assertion.

Corollary. 1. Let Ap,α(M) <∞ for some M ∈ (0,mn(Ω)).
Then for all u ∈ C0,1(Ω) with mn(suppu) ≤ M the inequality (6.2.1)

holds with r ∈ (0, q), κ = r(q∗ − q)/q(q∗ − r), q being the number specified in
Lemma 6.2 and C ≤ c[Ap,α(M)]1−κ.

2. If (6.2.1) holds for all u ∈ C0,1(Ω) with mn(suppu) ≤ M < mn(Ω),
then C ≥ c[Ap,α(M)]1−κ.

The introduction of the classes Ip,α is justified by the following theorem.

Theorem. 1. Let Ω ∈ Ip,α and let q be a positive number satisfying either
one of the conditions: (i) either q ≤ q∗ = α−1 for p ≤ q∗, or (ii) q < q∗ for
p > q∗.

Then for any u ∈W 1
p,s(Ω) we have

‖u‖Lq(Ω) ≤
(
C1‖∇u‖Lp(Ω) + C2‖u‖Ls(Ω)

)1−κ‖u‖κ

Lr(Ω), (6.3.6)

where s < q∗, r < q, κ = r(q∗ − q)/q(q∗ − r), C2 = cM (s−q∗)/sq∗
, and

C1 ≤ cAp,α(M).
2. Let q∗ > 0 and for some q ∈ (0, q∗] and all u ∈W 1

p,s(Ω), let (6.3.6) hold
with 0 < s < q∗, 0 < r < q∗, κ = r(q∗ − q)/q(q∗ − r).

Then Ω ∈ Ip,α with α = 1/q∗. Moreover, if the constant M in the defi-
nition of the class Ip,α is specified by M = cC

sq∗/(s−q∗)
2 , where c is a small

enough positive constant depending only on p, q∗, s, then C1 ≥ cAp,α(M).

Proof. 1. By Lemma 6.1.1/1, it suffices to obtain (6.3.6) for functions u ∈
L1

p(Ω) ∩ L∞(Ω) ∩C∞(Ω) with bounded supports. Let T = inf{t : mn(Nt) <
M}. Clearly, mn(Lt) ≤M ≤ mn(Nt). Further we note that
∫
Ω

|u|q dx ≤
∫
Ω\NT

|u|q dx+ cT qmn(NT ) + c
∫

NT

(
|u| − T

)q dx. (6.3.7)

To get a bound for the first summand on the right we rewrite it as follows:
∫
Ω\NT

|u|q dx =
∫
Ω\NT

|u|q
∗(q−r)/(q∗ −r)|u|r(q

∗ −q)/(q∗ −r) dx,

and use the Hölder inequality

∫
Ω\NT

|u|q dx ≤
(∫

Ω\NT

|u|q
∗
dx
)(q−r)/(q∗ −r)(∫

Ω\NT

|u|r dx
)(q∗ −q)/(q∗ −r)

.

Since u < T on Ω\NT , the right-hand side of the last estimate does not exceed
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T (q∗ −s)(q−r)/(q∗ −r)

(∫
Ω\NT

|u|s dx
)(q−r)/(q∗ −r)

×
(∫

Ω\NT

|u|r dx
)(q∗ −q)/(q∗ −r)

.

This implies

∫
Ω\NT

|u|q dx ≤ M (s−q∗)(q−r)/s(q∗ −r)

(∫
Ω\NT

|u|r dx
)(q∗ −q)/(q∗ −r)

×
(∫

NT

|u|s dx
)(q∗ −s)(q−r)/s(q∗ −r)

×
(∫

Ω\NT

|u|s dx
)(q−r)/(q∗ −r)

≤ M (s−q∗)(q−r)/s(q∗ −r)

(∫
Ω

|u|s dx
)q∗(q−r)/s(q∗ −r)

×
(∫

Ω

|u|r dx
)(q∗ −q)/(q∗ −r)

. (6.3.8)

Next we estimate the second summand on the right in (6.3.7). Since |u(x)| ≥ T
on NT and mn(NT ) ≥M , we obtain

T qmn(NT ) ≤ M (s−q∗)(q−r)/s(q∗ −r)

(∫
NT

|u|s dx
)q∗(q−r)/s(q∗ −r)

×
(∫

Nt

|u|r dx
)(q∗ −q)/(q∗ −r)

.

Combining this inequality with (6.3.8) and (6.3.7) we arrive at

‖u‖Lq(Ω) ≤ c
∥∥(|u| − T )+∥∥

Lq(Ω)
+ cM (1−κ)(s−q∗)/sq∗

‖u‖1−κ

Ls(Ω)‖u‖
κ

Lr(Ω).

It remains to apply the first part of the Corollary to (|u| − T )+.
2. Let M be an arbitrary constant satisfying

2c0M1/s−1/q∗
C2 < 1,

where c0 is a constant that depends only on s, p, q, q∗, r to be specified at
the end of the proof.

Let δ denote a small enough positive number; byK we mean the conductor
G\F in Ω with mn(G) ≤ M , cp(K) ≥ δ. Further we introduce the function
βδ = sup[mn(G)]p/q/cp(K) where the supremum is taken over the above set
of conductors. It is clear that βδ <∞ and



336 6 Integrability of Functions in the Space L1
p(Ω)

Ap,α(M) = lim
δ→+0

β
1/p
δ . (6.3.9)

Since s < q∗, for any u ∈ TΩ(K), we have

‖u‖Ls(Ω) ≤ c

(
sup

0<t<1

[mn(Nt)]1/q
∗

[cp(G\Nt)]1/p
‖∇u‖Lp(Ω)

)q∗(s−t)/s(q∗ −t)

× ‖u‖r(q
∗ −s)/s(q∗ −t)

Lt(Ω) ,

where t < s (cf. the proof of the first part of Lemma 6.2).
Now we note that [mn(Nt)]p/q

∗ ≤ βδcp(G\Nt) since cp(G\Nt) ≥
cp(K) ≥ δ. Besides,

‖u‖Lt(Ω) ≤M1/t−1/s‖u‖Ls(Ω).

Consequently,
‖u‖Ls(Ω) ≤ cM1/s−1/qβ

1/p
δ ‖∇u‖Lp(Ω).

Using the preceding estimate, from (6.3.6) we obtain
[
mn(F )

]1/q ≤ (C1 + cβ1/p
δ M1/s−1/q∗

C2

)1−κ‖∇u‖1−κ

Lp(Ω)‖u‖
κ

Lr(Ω).

Further, we must duplicate the proof of the second part of Theorem 2.3.6
with Lemma 2.2.2/3 replaced by Lemma 6.1.3/1 and with (p, Φ)-cap(F,G)
replaced by cp(K). As a result we obtain

β
1/p
δ ≤ c

(
C1 + β1/p

δ M1/s−1/q∗
C2

)
.

This inequality and the definition of the constant M imply

βδ(M) ≤ (2c0C1)p.

It remains to make use of (6.3.9). This completes the proof. �

6.3.4 Criterion for the Embedding W 1
p,s(Ω) ⊂ Lq∗(Ω), p ≤ q∗

An important particular case of Theorem 6.3.3 is the following criterion for
the embedding of W 1

p,s(Ω) into Lq∗ (Ω).

Corollary. 1. If Ω ∈ Ip,α, q∗ ≥ p and s < q∗, then for any u ∈W 1
p,s(Ω)

‖u‖Lq∗ (Ω) ≤ C1‖∇u‖Lp(Ω) + c2‖u‖Ls(Ω), (6.3.10)

where C1 ≤ cAp,1/q∗ (M) and C2 = cM (s−q∗)/sq∗
.

2. Let for all u ∈ W 1
p,s(Ω) the inequality (6.3.10) hold, where 0 < s < q∗.

Then Ω ∈ Ip,1/q∗ and if the constant M in the definition of the class Ip,1/q∗

is defined by M ≤ cC
q∗/(s−q∗)
2 with sufficiently small c = c(q∗, s), then C1 ≥

cAp,1/q∗ (M).
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6.3.5 Function νM,p and the Relationship of the Classes Ip,α

and Jα

Definition. Let νM,p(t) be the infimum of cp(K) taken over the collection of
all conductors K = G\F with mn(F ) ≥ t, mn(G) ≤M .

By an argument similar to that in the proof of Proposition 6.3.1/2 we
can prove that we may restrict ourselves to admissible conductors in this
definition.

Inequality (6.1.10) immediately implies the following assertion on the con-
nection of νM,p with the isoperimetric function λM introduced in Sect. 5.2.4.

Proposition 1. The inequality

νM,p(t) ≥
(∫ M

t

[
λM (σ)

]p/(1−p) dσ
)1−p

(6.3.11)

holds.

Obviously, for p ≥ 1

Ap,α(M) = sup
0<t≤M

tα
[
νM,p(t)

]−1/p
. (6.3.12)

Hence Ω ∈ Ip,α if and only if

lim inf
t→+0

t−αpνM,p(t) > 0. (6.3.13)

We have noted already in Sect. 5.2.4 that Ω ∈ Jα = I1,α if and only if

lim inf
t→+0

t−αλM (t) > 0.

Proposition 2. If Ω ∈ Jα+(p−1)/p, then Ω ∈ Ip,α and

Ap,α(M) ≤
(
p− 1
pα

)(p−1)/p

A1,α+(p−1)/p(M). (6.3.14)

Proof. From (6.3.11) we obtain

νM,p(t) ≥
[
A1,α+(p−1)/p(M)

]−p
(∫ M

t

σ−(pα+p−1)/(p−1)dσ
)1−p

>

(
pα

p− 1

)p−1[
A1,α+(p−1)/p(M)

]−p
tαp.

The result follows. �

Remark. By Corollary 6.2, the class Ip,α is a part of the class Ip1,α1 and
Ap1,α1(M) ≤ cAp,α(M) provided p1 > p ≥ 1 and α1 − p−1

1 = α− p−1.
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6.3.6 Estimates for the Conductivity Minimizing Function νM,p

for Certain Domains

We consider some domains for which explicit two-sided estimates for νM,p are
valid.

Example 1. Let Ω be the domain {x : |x′| < f(xn), 0 < xn < a} considered
at the beginning of Sect. 5.3.3.

We show that

kp
(∫ α(M)

α(μ)

[
f(τ)

](1−n)/(p−1) dτ
)1−p

≤ νM,p(μ) ≤
(∫ α(M)

α(μ)

[
f(τ)

](1−n)/(p−1) dτ
)1−p

, (6.3.15)

where k is the constant in the inequality (6.3.5) that depends on M and the
function α is specified by

μ = vn−1

∫ α(μ)

0

[
f(τ)

]n−1 dτ.

Consider the conductor Kμ,M = Gα(M)\ closΩ Gα(μ), where Gα = {x ∈ Ω :
0 < xn < α}. Let the function u be defined by u(x) = 0 outside Gα(M),
u(x) = 1 on Gα(μ), and

u(x) =
∫ α(M)

xn

dτ
[f(τ)](n−1)/(p−1)

(∫ α(M)

α(μ)

dτ
[f(τ)](n−1)/(p−1)

)−1

on Gα(M)\Gα(μ). Clearly, u is contained in UΩ(Kμ,M ). Hence, inserting u into
the integral ∫

Ω

|∇u|p dx,

we obtain

cp(Kμ,M ) ≤
(∫ α(M)

α(μ)

[
f(τ)

](1−n)/(p−1) dτ
)1−p

. (6.3.16)

Taking into account the definition of νM,p(μ), we arrive at the right inequal-
ity (6.3.15).

Substituting the left inequality (5.3.5) into (6.3.11), we obtain the required
lower bound for νM,p.

From (6.3.15) we obtain that Ω ∈ Ip,α if and only if

lim sup
x→+0

(∫ x

0

[
f(τ)

]n−1 dτ
)αp/(p−1) ∫ a

x

[
f(τ)

](1−n)/(p−1) dτ <∞.
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In particular, for the domain

Ω(λ) =
{
x :
(
x2

1 + · · · + x2
n−1

)1/2
< axλn, 0 < xn < 1

}
(6.3.17)

with λ > (p− 1)/(n− 1), for small t we have

ctαp ≤ νM,p(t) ≤ c′tαp,

where α = [λ(n − 1) + 1 − p]/p[λ(n − 1) + 1]. Thus the domain (6.3.17) is
contained in Ip,α for pα < 1.

Example 2. Let Ω be the domain in Example 5.3.3/2. Using the esti-
mates (5.3.8) for λM and following the same discussion as in Example 1 we
obtain

kp
(∫ α(μ)

α(M)

[
f(τ)

](1−n)/(p−1) dτ
)1−p

≤ νM,p(μ) ≤
(∫ α(μ)

α(M)

[
f(τ)

](1−n)/(p−1)
dτ

)1−p

. (6.3.18)

Consequently, Ω ∈ Ip,α if and only if

lim sup
x→+∞

(∫ ∞

x

[
f(τ)

]n−1 dτ
)αp/(p−1) ∫ x

0

[
f(τ)

](1−n)/(p−1) dτ <∞.

In particular, for the domain
{
x : x2

1 + · · · + x2
n−1 < (1 + xn)−2β , 0 < xn <∞

}
with β(n− 1) > 1 we have

ctαp ≤ νM,p(t) ≤ c′tαp for small t,

provided αp = [β(n− 1) − 1 + p][β(n− 1) − 1]−1. Here αp > 1.
For the domain

{
x : x2

1 + · · · + x2
n−1 < e

−cxn , 0 < xn <∞
}
, c = const > 0,

by (6.3.18) we obtain
cμ ≤ νM,p(μ) ≤ c′μ,

and hence this domain is in Ip,1/p.

Example 3. Let Ω be the spiral domain considered in Example 5.3.3/3.
Proposition 6.3.5/1 along with the lower bound (5.3.11) for λ yields the fol-
lowing lower bound for νM,p(t):

νM,p(t) ≥ C(1)
M

(∫ θ(t)

θ(M)

[
δ(θ)

]−1/(p−1) dθ
)1−p

, (6.3.19)

where θ(t) is specified by (5.3.12) and δ = ε2 − ε1.
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To derive a similar upper bound consider the conductorGθ(t)\ closΩ Gθ(M),
where Gθ = {�eiϕ ∈ Ω : 0 < ϕ < θ} and the function u defined by

u = 0 outside Gθ(t), u = 1 on Gθ(M),

u(θ) =
∫ θ

θ(M)

[
δ(ϕ)

]1/(1−p) dϕ
(∫ θ(t)

θ(M)

[
δ(ϕ)

]1/(1−p) dϕ
)−1

on Gθ(t)\Ḡθ(M).

It is clear that

cp
[
Gθ(t)\ closΩ Gθ(M)

]
≤
∫∫

Gθ(t)\Gθ(M)

∣∣�−1u′(ϕ)
∣∣p�d�dϕ

≤ C
(2)
M

(∫ θ(t)

θ(M)

[
δ(ϕ)

]1/(1−p) dϕ
)1−p

.

This and (6.3.19) imply

C
(1)
M

(∫ θ(t)

θ(M)

[
δ(ϕ)

]1/(1−p) dϕ
)1−p

≤ νM,p(t) ≤ C(2)
M

(∫ θ(t)

θ(M)

[
δ(ϕ)

]1/(1−p) dϕ
)1−p

. (6.3.20)

In particular, for the domain
{
�eiϕ : 1−(8+θ)1−β > � > 1−(8+θ)1−β−c(8+θ)−β , 0 < θ <∞

}
(6.3.21)

with 0 < c < 2π(β − 1), β > 1, we have ctαp ≤ νM,p(t) ≤ c′tαp for small t,
where α = (β − 1 + p)/p(β − 1). Thus (6.3.21) is a bounded domain in the
class Ip,α for pα > 1.

Example 4. We show that the adjoining nonintersecting cylinders

Gj =
{
x : |xn − αj | < aj , x2

1 + · · · + x2
n−1 < b

2
j

}

with
∑

j ajb
n−1
j < ∞ (cf. Fig. 23) form a domain which is not in Ip,1/p if

lim supj→∞ aj = ∞. Let

Fj =
{
x ∈ Gj : |xn − αj | ≤ aj/2

}

and let η ∈ C∞
0 ([0, 1]), η(t) = 1 for 0 ≤ t < 1

2 . We insert the function
η(|xn − aj |/aj) into the norm ‖∇u‖Lp(Gj). Then

cp(Gj\Fj) ≤ ca−p
j mn(Fj).

Thus
lim inf
μ→0

μ−1νM,p(μ) = 0.
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Fig. 23.

6.4 Embedding W 1
p,s(Ω) ⊂ Lq∗(Ω) for q∗ < p

6.4.1 Estimate for the Norm in Lq∗(Ω) with q∗ < p for Functions
which Vanish on a Subset of Ω

If Ω ∈ Ip,α with αp ≤ 1, we have by Theorem 6.3.3 that the embedding
operator of W 1

p,s(Ω) into Lq∗ (Ω) with q∗ = α−1 is bounded. The following
example shows that inequality (6.3.6) with the limit exponent q = q∗ = α−1

may fail provided αp > 1 (or equivalently, provided p > q∗).

Example. Consider the plane domain

Ω =
{
(x1, x2) : |x1| < (1 + x2)−β , 0 < x2 <∞

}

with β > 1. In Example 6.3.6/2 it was established that this domain is in the
class Ip, 1/p+1/(β−1). We show that inequality (6.3.6) is not valid for

q = q∗ = p(β − 1)/(p+ β − 1).

The sequence of functions um(x1, x2) = (1+x2)γm with γm < 1+(β−1)/p,
m = 1, 2, . . . , satisfies
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‖u‖q
∗

Lq∗ (Ω) = 2
[
1 + (β − 1)/p

]
/
[
β − 1− p(γm − 1)

]
,

‖∇um‖pLp(Ω) = 2γm/
[
β − 1 − p(γm − 1)

]
, ‖um‖sLs(Ω) = 2/(β − 1 − γms).

Since s < q∗ < p, the left-hand side in (6.3.6), written for um, tends to infinity
asm→∞ more rapidly than the right-hand side. Thus the inclusion Ω ∈ Ip,α

with p > q∗ = α−1 is necessary, but not sufficient for the validity of (6.3.6)
with the limit exponent q = q∗. A necessary and sufficient condition will be
given in Theorem 6.4.2.

Let G be a bounded open subset of Ω and let ν(p)
G (t) denote the infimum of

cp(K) taken over the collection of all conductors K = G\F with mn(F ) ≥ t.
We put

B
(p,α)
G =

{∫ mn(G)

0

[
τ

ν
(p)
G (τ)

]1/(αp−1)

dτ
}α−1/p

, (6.4.1)

where αp > 1, p ≥ 1.

Lemma. 1. Let B
(p,α)
G <∞. Then the inequality

‖u‖Lq∗ (Ω) ≤ C‖∇u‖Lp(Ω) (6.4.2)

holds for all u ∈ C0,1(Ω) which vanish outside G, with q∗ = α−1, αp > 1 and
C ≤ cB(p,α)

G .
2. If (6.4.2) is valid for all u ∈ C0,1(Ω) which vanish outside G, with some

q∗ ∈ [1, p), then C ≥ cB(p,α)
G .

Proof differs only by obvious details from that of Theorem 2.3.8.

6.4.2 Class Hp,α and the Embedding W 1
p,s(Ω) ⊂ Lq∗(Ω) for

0 < q∗ < p

In this subsection we introduce the classes of sets which are adequate for
stating a necessary and sufficient condition for the embedding W 1

p,s(Ω) ⊂
Lq∗ (Ω) with 0 < q∗ < p.

Let αp > 1. We put

Bp,α(M) =
(∫ M

0

[
τ

νM,p(τ)

]1/(αp−1)

dτ
)α−1/p

, (6.4.3)

where M is a constant in (0,mn(Ω)).

Definition. The set Ω belongs to the class Hp,α provided Bp,α(M) <∞
for some M ∈ (0,mn(Ω)).

The next corollary immediately follows from Lemma 6.4.1.

Corollary 1. 1. Let αp > 1 and Bp,α(M) <∞. Then for all u ∈ C0,1(Ω)
such that mn(suppu) ≤M we have (6.4.2) with q∗ = α−1 and C ≤ cBp,α(M).
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2. If (6.4.2) holds for all u ∈ C0,1(Ω) with mn(suppu) ≤ M then C ≥
cBp,α(M).

Duplicating with obvious simplifications the proof of Theorem 6.3.3, we
obtain the following theorem from Corollary 1.

Theorem. 1. Let αp > 1 and Ω ∈ Hp,α. Then

‖u‖Lq∗ (Ω) ≤ C1‖∇u‖Lp(Ω) + C2‖u‖Ls(Ω) (6.4.4)

for all u ∈W 1
p,s(Ω) with q∗ = α−1, s < q∗,

C2 = cM (s−q∗)/sq∗
, C1 ≤ cBp,α(M).

2. Let (6.4.4) hold for all u ∈ W 1
p,s(Ω) with 1 ≤ q∗ < p, s < q∗. Then

Ω ∈ Hp,α. Moreover, if M in the definition of Hp,α is specified by M =
cC

sq∗/(s−q∗)
2 , where c is a small enough positive constant that depends only on

p, q∗, s, then C1 ≥ cBp,α(M).

Corollary 2. If p1 > p ≥ 1 and α1 − p−1
1 = α − p−1, then B

(p1,α1)
G ≤

cB
(p,α)
G for any G. (Consequently, Bp1,α1(M) ≤ cBp,α(M) and Hp,α ⊂

Hp1,α1 .)

This assertion can be proved in the same way as Corollary 6.2.

6.4.3 Embedding L1
p(Ω) ⊂ Lq∗(Ω) for a Domain with Finite

Volume

We present a necessary and sufficient condition for the validity of the Poincaré-
type inequality

inf
c∈R1

‖u− c‖Lq∗ (Ω) ≤ C‖∇u‖Lp(Ω), (6.4.5)

provided Ω is a domain with mn(Ω) <∞.
By Lemma 5.2.3/2 the embedding L1

p(Ω) ⊂ Lq∗ (Ω) (p ≥ 1, q∗ ≥ 1) and
inequality (6.4.5) are equivalent. The case mn(Ω) = ∞ will be considered
in 6.7.5.

Theorem 1. Let Ω be a domain with finite volume.
1. If Ap,α( 1

2mn(Ω)) < ∞ for αp ≤ 1 or Bp,α( 1
2mn(Ω)) < ∞ for αp > 1,

then (6.4.5) holds for all u ∈ L1
p(Ω) with q∗ = α−1, C ≤ cAp,α( 1

2mn(Ω)) for
αp ≤ 1 and C ≤ cBp,α( 1

2mn(Ω)) for αp > 1.
2. If there exists a constant C such that (6.4.5) holds for all u ∈ L1

p(Ω) with
q∗ ≥ 1, then C ≥ cAp,α( 1

2mn(Ω)) for α−1 = q∗ ≥ p and C ≥ cBp,α( 1
2mn(Ω))

for α−1 = q∗ < p.

Proof. The proof of sufficiency follows the same argument as in the
proof of Theorem 5.2.3 except that we must apply Corollary 6.3.3 instead
of Lemma 5.2.3/1 for αp ≥ 1 and Corollary 6.4.2/1 for αp < 1.
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Necessity. Let u be an arbitrary function in C0,1(Ω) ∩ L1
p(Ω) with

mn(suppu) ≤ 1
2
mn(Ω). (6.4.6)

There exists a number c0 such that

‖u− c0‖Lq∗ (Ω) = inf
c∈R1

‖u− c‖Lq∗ (Ω). (6.4.7)

The latter and (6.4.5) imply
∫

suppu

|u− c0|q
∗
dx+ |c0|q

∗
mn(Ω\ suppu) ≤ Cq∗

‖∇u‖q
∗

Lp(Ω).

Therefore
1
2
mn(Ω)|c0|q

∗
≤ Cq∗

‖∇u‖q
∗

Lp(Ω).

Since
‖u‖Lq∗ (Ω) ≤ |c0|

[
mn(Ω)

]1/q∗

+ ‖u− c0‖Lq∗ (Ω),

making use of (6.4.5) and (6.4.7), we obtain

‖u‖Lq∗ (Ω) ≤ cC‖∇u‖Lp(Ω)

for all u ∈ C0,1(Ω) satisfying (6.4.6). A reference to Corollaries 6.3.3
and 6.4.2/1 completes the proof. �

Theorem 2. Let Ω be a domain with finite volume. The space L1
p(Ω) is

embedded into Lq∗ (Ω) if and only if Ω ∈ Ip,1/q∗ for p ≤ q∗ and Ω ∈ Hp,1/q∗

for p > q∗ > 0.

Proof. The necessity follows from Lemma 5.2.3/2 and Theorem 1. To
prove the sufficiency we must show that (6.4.5) is valid provided Ap,α(M)
and Bp,α(M) are finite for some M ∈ (0, 1

2mn(Ω)). Let u ∈ L1
p(Ω) ∩C0,1(Ω)

and T = inf{t : mn(Nt) ≤M}. We note that
∫
Ω

|u|q
∗
dx ≤ c

[∫
Ω

(
|u| − T

)q∗

+
dx+ T q∗

M

]
.

Using Corollaries 6.3.3 and 6.4.2/1, we obtain

‖u‖Lq∗ (Ω) ≤ C‖∇u‖Lp(Ω) + cTM1/q,

where C is a constant independent of u. Let ω denote a bounded subdomain
of Ω with smooth boundary such that mn(Ω\ω) < M/2. Obviously,

∫
ω

|u|p dx ≥
∫
ω∩NT

|u|p dx ≥ 1
2
T pM.

Therefore
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‖u‖Lq∗ (Ω) ≤ C‖∇u‖Lp(Ω) + cM1/q∗ −1/p‖u‖Lp(ω). (6.4.8)

Since ω satisfies
inf
c∈R1

‖u− c‖Lp(ω) ≤ K‖∇u‖Lp(Ω),

then (6.4.8) implies (6.4.5) for Ω. �

6.4.4 Sufficient Condition for Belonging to Hp,α

Here we give the following sufficient condition for a set to belong to Hp,α:

∫ M

0

[
τ

λM (τ)

]p/(αp−1)

dτ <∞. (6.4.9)

Proposition. If αp > 1, α ≤ 1, then

Bp,α(M) ≤ (p− 1)(p−1)/p

{∫ M

0

[
τ

λM (τ)

]p/(αp−1)

dτ
}α−1/p

. (6.4.10)

Proof. By (6.4.3) and the inequality (6.3.11) we have

[
Bp,α(M)

]p/(αp−1) ≤
∫ M

0

τ1/(αp−1)

[∫ M

τ

[
λM (σ)

]p/(1−p) dσ
](p−1)/(αp−1)

dτ.

To find a bound for the right-hand side we apply (1.3.1) in the form
∫ M

0

τ−r

(∫ M

τ

f(σ) dσ
)q

dτ ≤
(

q

1 − r

)q ∫ M

0

τ q−r
[
f(τ)

]q dτ, (6.4.11)

where f(τ) ≥ 0, r < 1, q > 1. Putting r = (1 − αp)−1, q = (p − 1)/(αp − 1)
in (6.4.11), we arrive at (6.4.10). �

6.4.5 Necessary Conditions for Belonging to the Classes Ip,α and
Hp,α

Using definitions of Ip,α and Hp,α we obtain some necessary conditions for
Ω to be contained in these classes.

Proposition 1. Let O be an arbitrary point in Ω̄ and let s(t) be the area
of the intersection of Ω with the sphere ∂Bt centered at O.

If Ω ∈ Ip,α then

(∫ r

0

s(t) dt
)αp/(p−1) ∫ �

r

dt
[s(t)]1/(p−1)

≤ const

for sufficiently small � and for r < �.
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Proof. If Ω ∈ Ip,α, then obviously

[
mn(Ωr)

]α ≤ const
[
cp(Ω�\ closΩ Ωr)

]1/p
, (6.4.12)

for small enough � and r < �. Let u = 1 in Ωr, u = 0 outside Ω� and

u(x) =
∫ �

|x|

dt
[s(t)]1/(p−1)

(∫ �

r

dt
[s(t)]1/(p−1)

)−1

, x ∈ Ω�\Ωr.

Inserting u into the definition of p-conductivity, we obtain

cp(Ω�\ closΩ Ωr) ≤
(∫ �

r

dt
[s(t)]1/(p−1)

)1−p

, (6.4.13)

which together with (6.4.12) completes the proof. �

The proof of the following assertion is similar.

Proposition 2. If mn(Ω) <∞ and Ω ∈ Ip,α, then

(∫ ∞

r

s(t) dt
)αp/(p−1) ∫ r

�

dt
[s(t)]1/(p−1)

≤ const (6.4.14)

for large enough � and for r > �.

Corollary. If Ω is an unbounded domain with mn(Ω) <∞ and Ω ∈ Ip,α,
then αp ≥ 1.

Proof. By the Hölder inequality for r > � we have

r − � =
∫ r

�

[
s(t)

]1/p dt
[s(t)]1/p

≤
(∫ r

�

s(t) dt
)1/p(∫ r

�

dt

[s(t)]1/(p−1)

)(p−1)/p

.

Therefore, (6.4.14) implies

r − � ≤ const
(
∫ r

�
s(t) dt)1/p

(
∫∞
r
s(t) dt)α

.

Let the sequence {�j} be specified by
∫ ∞

�j

s(t) dt = 2−j .

Then

�j − �j−1 ≤ const
(
∫ �j

�j−1
s(t) dt)1/p

(
∫∞
�j
s(t) dt)α

= const
(
2α−1/p

)j
.

If αp < 1, then the series
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∑
j

(�j − �j−1)

converges, which contradicts the assumption that Ω is unbounded. The result
follows. �

Since the conditionΩ ∈ Ip,1/q is necessary for the continuity of the embed-
ding operator L1

p(Ω) → Lq(Ω), it follows by the Corollary that the embedding
L1

p(Ω) ⊂ Lq(Ω) for an unbounded domain Ω with finite volume implies p ≥ q.
Next we present a necessary condition for Ω to belong to Hp,α stated in

terms of the function s introduced in Proposition 1.

Proposition 3. If mn(Ω) <∞ and Ω ∈ Hp,α, αp > 1, then

∫ ∞

c

(∫ �

c

dt

[s(t)]1/(p−1)

) p−1
αp−1

(∫ ∞

�

s(t) dt
) 1

αp−1

s(�) d� <∞,

where c is a positive constant.

The result follows from Definitions 6.3.5 and 6.4.2 combined with (6.4.13).

6.4.6 Examples of Domains in Hp,α

Example 1. By Definition 6.4.2 and the two-sided estimate (6.3.18) the domain
Ω considered in Example 6.3.6/2 is contained in Hp,α if and only if

∫ ∞

0

[(∫ x

0

ds

f(s)
n−1
p−1

)p−1 ∫ ∞

x

[
f(s)

]n−1 ds
]1/(αp−1)[

f(x)
]n−1 dx <∞.

(6.4.15)
By Proposition 6.4.4 and the left estimate (6.3.18) we obtain the sufficient
condition for Ω ⊂ Hp,α

∫ ∞

0

(∫ ∞

x

[
f(t)

]n−1 dt
)p/(αp−1)[

f(x)
](n−1)β dx <∞, (6.4.16)

where

β =
(α− 1)p− 1
αp− 1

.

Assuming that for large x
∫ ∞

x

[
f(s)

]n−1 ds ≤ cx
[
f(x)

]n−1
, (6.4.17)

we see that (6.4.16) follows from the condition
∫ ∞

0

xp/αp−1
[
f(x)

]n−1 dx <∞. (6.4.18)
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On the other hand, the inequality

f(2x) ≥ cf(x) for large x (6.4.19)

and the monotonicity of f show that (6.4.15) implies (6.4.18). Hence, (6.4.18)
is equivalent to the inclusion Ω ⊂ Hp,α under the additional requirements
(6.4.17) and (6.4.19).

Example 2. Consider the spiral Ω in Examples 5.3.3/3 and 6.3.6/3. We
assume in addition that

δ(2θ) ≥ cδ(θ),
∫ ∞

θ

δ(ϕ) dϕ ≤ cθδ(θ)

for large θ. Then, using the same argument as in Example 1 we can show that
Ω ∈ Hp,α if and only if

∫ ∞

0

δ(ϕ)ϕp/(αp−1) dϕ <∞. (6.4.20)

A more complicated example of a domain contained in Hp,α will be given
in Sect. 6.5.

6.4.7 Other Descriptions of the Classes Ip,α and Hp,α

We show that the class of conductors K = G\F used in Definition 6.3.1/1 of
Ip,α can be reduced.

Theorem 1. Let Ω be bounded domain and let ω be a fixed open set with
ω̄ ⊂ Ω. The domain Ω belongs to Ip,α (p ≥ 1, α ≥ p−1 − n−1) if and only if

sup
{F }

[mn(F )]α

[cp(G\F )]1/p
<∞, (6.4.21)

where G = Ω\ω̄ and {F} is the collection of closed (in Ω) subsets of G.

Proof. Let S(ω) denote the left-hand side in (6.4.21). The necessity
of (6.4.21) is obvious since

S(ω) ≤ Ap,α

(
mn(Ω\ω̄)

)
.

We prove the sufficiency. Let D be a domain with smooth boundary and
such that ω̄ ⊂ D ⊂ D̄ ⊂ Ω. Further, let η be a smooth function, η = 1 on
Ω\D, η = 0 on ω and 0 ≤ η ≤ 1.

For any u ∈ L1
p(Ω) we have

∫ ∞

0

[
mn

({
x :
(
η|u|

)
(x) ≥ t

})]αp d
(
tp
)
≤
[
S(ω)

]p ∫ ∞

0

cp
(
K

(1)
t

)
d
(
tp
)
,
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where K(1)
t is the conductor (Ω\ω̄)\{x ∈ Ω : (η|u|)(x) ≥ t}. The preceding

inequality and Lemma 6.1.3/3 imply
∫ ∞

0

[
mn

({
x :
(
η|u|

)
(x) ≥ t

})]αp d
(
tp
)

≤ c
[
S(ω)

]p ∫
Ω

∣∣∇(η|u|)∣∣p dx

+ c
∫ ∞

0

mn

({
x :
(
1− η(x)

)∣∣u(x)∣∣ ≥ t}) d
(
tp
)
. (6.4.22)

Since supp(1 − η)|u| ⊂ D̄ and D has a smooth boundary, we have
[
mn

({
x :
(
1 − η(x)

)∣∣u(x)∣∣ ≥ t})]α ≤ const cp
(
K

(2)
t

)
,

where K(2)
t is the conductor D\{x : (1−η(x))|u(x)| ≥ t}. Hence from (6.4.22)

and Lemma 6.1.3/3 we obtain
∫ ∞

0

[
mn

({
x :
∣∣u(x)∣∣ ≥ t})]αp d

(
tp
)

≤ const
(∫

Ω

∣∣∇(η|u|)∣∣p dx+
∫
Ω

∣∣∇((1 − η)|u|)∣∣p dx
)

≤ const
(∫

Ω

|∇u|p dx+
∫
D

|u|p dx
)
.

Let M = 1
2mn(D) and mn(suppu) ≤M . Then

∫
D

|u|p dx ≤ const
∫
D

|∇u|p dx,

and thus∫ ∞

0

[
mn

({
x :
∣∣u(x)∣∣ ≥ t})]αp d(tp) ≤ const

∫
Ω

|∇u|p dx. (6.4.23)

Consider the conductor K∗ = G∗\F ∗ in Ω subject to the condition
mn(G∗) ≤M . We insert u ∈ TΩ(K∗) into (6.4.23). Then we arrive at

[
mn

(
F ∗)]αp ≤ const cp

(
K∗),

which is equivalent to the inclusion Ω ∈ Ip,α. �

Remark. The assertion we just proved remains valid for p = 1 provided
S(ω) designates the supremum of [mn(g)]α/s(∂ig) taken over all admissible
sets g contained in Ω with closΩ g ⊂ Ω\ω̄.

Following the same argument as in the proof of Theorem 1, we can establish
that the inclusion Ω ∈ Hp,α is equivalent to the finiteness of B

(p,α)
G where

G = Ω\ω̄ (cf. Sect. 6.4.1).
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We can give a different description of the class Ip,α for αp < 1 replacing
G by Ω�(x) = Ω ∩B�(x), x ∈ ∂Ω. Namely, we introduce the function

[0, 1] � �→ ap,α(�) = sup
x∈∂Ω

sup
{F }

[mn(F )]α

[cp(Ω�(x)\F )]1/p
,

where {F} is the collection of closed (in Ω) subsets of Ω�(x).

Theorem 2. Let Ω be a bounded domain and let αp < 1. Then Ω ∈ Ip,α

if and only if ap,α(�) <∞ for some �.

Proof. Necessity does not require proof. Let ap,α(�) <∞. We construct a
finite covering of Ω̄ by open balls with radius � and take a partition of unity
{ηi} subordinate to it. By Lemma 6.2

‖u ηi‖Lq∗ (Ω) ≤ cap,α(�)
∥∥∇(uηi)

∥∥
Lp(Ω)

,

where q∗ = α−1. Summing over i, we conclude that W 1
p (Ω) ⊂ Lq∗ (Ω). Con-

sequently, by Theorem 6.3.3 (part 2)) Ω ∈ Ip,α. �

6.4.8 Integral Inequalities for Domains with Power Cusps

Let us consider in more detail the domain

Ω(λ) =
{
x = (x′, xn) : |x′| < axλn, 0 < xn < 1

}
,

presented in Example 6.3.6/1. There we showed that Ω(λ) ∈ Ip,α provided
n > p, λ > (p − 1)/(n − 1), and α = [λ(n − 1) + 1 − p]/p[λ(n − 1) + 1].
By Theorem 6.4.3/2, the latter is equivalent to the inclusion L1

p(Ω(λ)) ⊂
Lq∗ (Ω(λ)) with q∗ = p[λ(n − 1) + 1]/[λ(n − 1) + 1 − p]. Although here the
exponent q∗ is the best possible, it is natural to try to refine the stated result
by using spaces with weighted norms (cf. Remark 5.3.3).

Let

‖u‖Lr(σ,Ω(λ)) =
(∫

Ω(λ)

∣∣u(x)∣∣rxrσn dx
)1/r

.

The coordinate transformation κ : x → ξ defined by ξi = xi, 1 ≤ i ≤ n − 1,
ξn = xλn, maps Ω(λ) onto Ω(1). Since Ω(1) is a domain of the class C0,1, it
easily follows from Corollary 2.1.7/2 that

‖v‖Lq(β,Ω(1)) ≤ c
(
‖∇v‖Lp(α,Ω(1)) + ‖v‖L1(κ(ω))

)
,

where n > p ≥ 1, p ≤ q ≤ pn/(n− p), β = α− 1 + n(p−1 − q−1) > −n/q and
ω is nonempty domain, ω̄ ⊂ Ω(λ). Returning to the variable x, we obtain

‖u‖Lq(λβ+(λ−1)/q,Ω(λ))

≤ c
(
‖∇x′u‖Lp(αλ+(λ−1)/p,Ω(λ)) + ‖∂u/∂xn‖Lp(αλ−(λ−1)(p−1)/p,Ω(λ))

+ ‖u‖L1(ω)

)
,
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where ∇x′ = (∂/∂x1, . . . , ∂xn−1). Putting α = (λ− 1)(p− 1)/λp, we have

‖u‖Lq(λβ+(λ−1)/q,Ω(λ)) ≤ c
(
‖∇x′u‖Lp(λ−1,Ω(λ))

+ ‖∂u/∂xn‖Lp(Ω(λ)) + ‖u‖L1(ω)

)
. (6.4.24)

Choosing q to eliminate the weight on the left-hand side, we arrive at

‖u‖Lq∗ (Ω(λ)) ≤ c
(
‖∇x′u‖Lp(λ−1,Ω(λ)) + ‖∂u/∂xn‖Lp(Ω(λ)) + ‖u‖L1(ω)

)
,

where, as before, q∗ = p[λ(n − 1) + 1]/[λ(n − 1) + 1 − p]. Since λ > 1, the
preceding result is better than the embedding L1

p(Ω
(λ)) ⊂ Lq∗ (Ω(λ)).

For λ > 1 we can take q to be the limit exponent pn/(n− p) in Sobolev’s
theorem. Then (6.4.24) becomes

‖u‖Lpn/(n−p)((λ−1)(n−1)/n,Ω(λ))

≤ c
(
‖∇x′u‖Lp(λ−1,Ω(λ)) + ‖∂u/∂xn‖Lp(Ω(λ)) + ‖u‖L1(ω)

)
,

which, in particular, guarantees the inclusion L1
p(Ω) ⊂ Lpn/(n−p)((λ− 1)(n−

1)/n,Ω(λ)). We can readily check by the example of the function xτn with
τ = 1 + ε − [λ(n − 1) + 1]/p (ε is a small positive number) that the power
exponent of the weight is exact.

In conclusion we remark that one can obtain an integral representation
similar to (1.1.8) for the domain Ω(λ).

By (1.1.8), for any v ∈ C1(Ω(1)) ∩ L1
1(Ω

(1)) we have

v(ξ) =
∫
Ω(1)

ϕ(η)v(η) dη +
n∑

i=1

∫
Ω(1)

fi(ξ, η)
|ξ − η|n−1

∂v

∂ηi
(η) dη,

where ϕ ∈ D(Ω(1)) and fi ∈ L∞(Ω(1)×Ω(1)). Therefore the function u = v◦κ

has the integral representation

u(x) =
∫
Ω(λ)

Φ(y)u(y) dy

+
n−1∑
i=1

∫
Ω(λ)

Fi(x, y)yλ−1
n

(|x′ − y′|2 + (xλn − yλn)2)(n−1)/2

∂u

∂yi
(y) dy

+
∫
Ω(λ)

Fn(x, y)
(|x′ − y′|2 + (xλn − yλn)2)(n−1)/2

∂u

∂yn
(y) dy, (6.4.25)

where Φ ∈ D(Ω(λ)) and Fi ∈ L∞(Ω(λ) × Ω(λ)). It is easily seen that we can
take u to be an arbitrary function in C1(Ω(λ)). Since by Theorem 1.1.6/1 the
space C1(Ω̄(λ)) is dense in L1

1(Ω
(λ)) we conclude that (6.4.25) is valid for all

u ∈ L1
1(Ω

(λ)).
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6.5 More on the Nikodým Example

In this section we consider the domain described in Example 1.1.4/1 with
εm = δ(2−m−1) where δ is a nondecreasing function such that 2δ(t) < t. Here
we show in particular that the convergence of the integral

∫ 1

0

[
t

δ(t)

]1/(αp−1)

dt (6.5.1)

is necessary and sufficient for Ω to belong to Hp,α, for αp > 1.

Lemma. (The Inverse Minkowski Inequality) If gm are nonnegative mea-
surable functions on [0, 1], then

{∫ 1

0

dt
[
∑

m gm(t)]1/(p−1)

}1−p

≥
∑
m

{∫ 1

0

dt
[gm(t)]1/(p−1)

}1−p

. (6.5.2)

Proof. Let λ be an absolutely continuous nondecreasing function on [0,1]
with λ(0) = 0 and λ(1) = 1. We put g(t) =

∑
m gm(t). Then

∫ 1

0

(λ′)pg dt =
∑
m

∫ 1

0

(λ′)pgm dt.

By Hölder’s inequality

∑
m

∫ 1

0

(λ′)pgm dt ≥
∑
m

(
∫ 1

0
λ′ dt)p

(
∫ 1

0
g
1/(1−p)
m dt)p−1

=
∑
m

(∫ 1

0

dt

g
1/(p−1)
m

)1−p

.

Finally, by Lemma 2.2.2/2,

inf
λ

∫ 1

0

(λ′)pg dt =
{∫ 1

0

dt

g1/(p−1)

}1−p

.

Hence (6.5.2) holds. �

Next we prove that Ω ∈ Hp,α provided (6.5.1) is finite. Consider an ar-
bitrary nonnegative function u ∈ L1

p(Ω) that is infinitely differentiable in
Am ∪Bm for any m and that vanishes in the rectangle C.

We fix an arbitrary number m and note that each level set E
(m)
t = {(x, y) :

u(x, y) = t}∩ (Am∪Bm) consists of a finite number of smooth homeomorphic
images of a circle and simple arcs with end points on ∂(Am ∪Bm)\{y = 2/3}
for almost all levels t ∈ (0,∞) (cf. Corollary 1.2.2). Henceforth we shall always
consider only such levels.

If t satisfies
s
(
E

(m)
t

)
≥ 2−m−3, (6.5.3)

then
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m2

(
N

(m)
t

)
≤ 1

3
[
1 + 2m+1δ

(
2−m−1

)]
2−m−1 < s

(
E

(m)
t

)
, (6.5.4)

where N
(m)

t = {(x, y) : u ≥ t} ∩ (Am ∪ Bm). Let Bm denote the collection
of all levels t for which (6.5.3) holds. We show that for t /∈ Bm one of the
following three cases occurs:

s
(
E

(m)
t

)
≥ δ
(
2−m−1

)
, (6.5.5)

m2

(
N

(m)
t

)
≤ kδ

(
2−m−1

)
, (6.5.6)

where k is a constant depending on integral (6.5.1);

s
(
E

(m)
t

)
≥ δ
(
2−m−1

)
, (6.5.7)

m2

(
L

(m)
t

)
≤ kδ

(
2−m−1

)
, (6.5.8)

where L
(m)
t = (Am ∪Bm)\N (m)

t ;

s
(
E

(m)
t

)
< δ
(
2−m−1

)
, (6.5.9)

m2

(
N

(m)
t

)
≤ ks

(
E

(m)
t

)
. (6.5.10)

We note that there are no components of E
(m)
t joining cd and ef since

t /∈ Bm (cf. Fig. 24). Besides, the set E
(m)
t (t > 0) is disjoint with the line

y = 2
3 because u = 0 in C.

(a) Suppose that (6.5.5) is valid. Let Ẽ
(m)
t denote the upper component of

E
(m)
t which joins the polygonal line abc with fe. The set Ẽ

(m)
t divides Am∪Bm

Fig. 24.
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into components; the component containing de will be denoted by Dm. Since
t /∈ Bm it follows that Ẽ

(m)
t is placed below the line y = 2

3 + 2−m and hence

m2

(
N

(m)
t \Dm

)
≤
(

2−2m−1 +
1
3
δ
(
2−m−1

))
,

m2

(
L

(m)
t \Dm

)
≤
(

2−2m−1 +
1
3
δ
(
2−m−1

))
.

Taking into account that δ increases and 2δ(t) < t, we obtain

∫ 2−m−1

0

[
t

δ(t)

]γ
dt ≥ 2γ−1

∫ 2−m−1

0

t dt
δ(t)

≥ 2γ−2 2−2(m+1)

δ(2−m−1)
(6.5.11)

with γ = (αp− 1)−1. Consequently,

m2

(
N

(m)
t \Dm

)
≤ k1δ

(
2−m−1

)
, m2

(
L

(m)
t \Dm

)
≤ k1δ

(
2−m−1

)
,

(6.5.12)
where

k1 =
1
3

+ 2γ−1

∫ 1

0

(
t\δ(t)

)γ dt.

The set E
(m)
t \Dm divides Ω\Dm into components. Let D̃m denote one of

them with the boundary containing Ẽ
(m)
t and the end points of the segment

de. Suppose D̃m ⊂ L
(m)
t . We estimate m2(N

(m)
t ∩Dm). First we note that

N
(m)

t ∩Dm is bounded by the components of E
(m)
t which (with the exception

of Ẽ
(m)
t ) are either closed in Am ∪ Bm or join points of the polygonal lines

abcde or def . This implies

s
(
∂(Am ∪Bm) ∩ N

(m)
t ∩Dm

)
≤ 2s

(
E

(m)
t ∩Dm

)
.

Using the isoperimetric inequality, we obtain

[
m2

(
N

(m)
t ∩Dm

)]1/2 ≤ 3
2
√
π
s
(
E

(m)
t ∩Dm

)
. (6.5.13)

Since t /∈ Bm, the latter and (6.5.11) yield

m2

(
N

(m)
t ∩Dm

)
≤ 9

4π
2−2(m+1) ≤ 9 · 22−γ

4π
δ
(
2−m−1

) ∫ 1

0

(
t

δ(t)

)γ

dt,

which together with (6.5.12) leads to (6.5.6).
(b) Inequality (6.5.8) can be derived in the same way provided that D̃m ⊂

N
(m)

t .
(c) Suppose that (6.5.9) holds. Then E

(m)
t does not contain components

which join abcd and ef . Following the same argument as in the derivation
of (6.5.13), we obtain
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[
m2

(
N

(m)
t

)]1/2 ≤ 3
2
√
π
s
(
E

(m)
t

)
.

The last inequality and (6.5.9) imply (6.5.10).
Thus, one of the following cases is possible: either (6.5.10) is valid,

or (6.5.5) and (6.5.6), or (6.5.7) and (6.5.8). Let B′
m denote the set of levels

t for which (6.5.10) is valid. Let B′ ′
m and B′ ′ ′

m be the sets of levels satisfy-
ing (6.5.5), (6.5.6) or (6.5.7), (6.5.8), respectively.

Let ψm(t) be defined by

ψm(t) =
∫ t

0

(∫
E

(m)
t

|∇u|p−1 ds
)1/(1−p)

.

We have

ψm(t) ≤ −
∫ t

0

d
dτ
[
m2

(
N (m)

τ

)] dτ

[s(E (m)
τ )]p/(p−1)

(cf. Corollary 6.1.3/1). We express the integral on the right-hand side as the
sum ∫

B′
m

+
∫

B′ ′
m

+
∫

B′ ′ ′
m

.

By (6.5.10),
∫

B′
m

≤
∫ 1

0

d
dτ
[
m2

(
N (m)

τ

)] dτ

[m2(N
(m)

τ )]p/(p−1)
≤ p− 1

[m2(N
(m)

t )]1/(p−1)
.

Using (6.5.5) and (6.5.6), we obtain
∫

B′ ′
m

≤
[
δ
(
2−m−1

)]p/(1−p) sup
τ ∈B′ ′

m

m2

(
N (m)

τ

)
≤ k

[
δ
(
2−m−1

)]1/(1−p)
.

We note that
− d

dτ
m2

(
N (m)

τ

)
=

d
dτ
m2

(
L (m)

τ

)
,

and use (6.5.7) and (6.5.8). Then
∫

B′ ′ ′
m

≤
∫

B′ ′
m

d
dt
m2

(
L (m)

τ

) dτ

[s(E (m)
τ )]p/(p−1)

sup
τ ∈B′ ′ ′

m

m2

(
L

(m)
t

)

≤ k
[
δ
(
2−m−1

)]1/(1−p)
.

Consequently,

ψm(t) ≤ 2k
[
δ
(
2−m−1

)]1/(1−p) +
[
m2

(
N

(m)
t

)]1/(1−p)
. (6.5.14)

Let l denote the smallest number for which

m2

(
N

(l)
t

)
≥ (2c)1−pδ

(
2−l−1

)
.
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Then (6.5.14) implies

ψl(t) ≤ 4k
[
δ
(
2−l−1

)]1/(1−p)
. (6.5.15)

Next, taking into account that

m2

(
N

(m)
t

)
<

1
3
· 2−m,

we obtain

δ

[
3
4
m2

( ∞⋃
m=l

N
(m)

t

)]
≤ δ
(
2−l−1

)
,

which together with (6.5.15) yields

δ

[
3
4
m2

( ∞⋃
m=l

N
(m)

t

)]
≤
[
4k/ψl(t)

]p−1
. (6.5.16)

Since
m2

(
N

(m)
t

)
< (2c)1−pδ

(
2−m−1

)
for m < l, by (6.5.14) we have

ψm(t) ≤ 2
[
m2

(
N

(m)
t

)]1/(1−p)
,

for m < l. Consequently,

m2

(
l−1⋃
m=1

N
(m)

t

)
≤ 2p−1

l−1∑
m=1

[
ψm(t)

]1−p
,

and thus

δ

[
m2

(
l−1⋃
m=1

N
(m)

t

)]
≤ 2p−2

l−1∑
m=1

[
ψm(t)

]1−p
, (6.5.17)

because δ(t) < t/2. If

m2

(
l−1⋃
m=1

N
(m)

t

)
<

3
4
m2

( ∞⋃
m=l

N
(m)

t

)
, (6.5.18)

then by (6.5.16)

δ

[
3
8
m2(Nt)

]
≤
[
4k/ψl(t)

]p−1
.

Otherwise, if the reverse of (6.5.18) is valid, then by (6.5.17)

δ

[
3
8
m2(Nt)

]
≤ 2p−2

l−1∑
m=1

[
ψm(t)

]1−p
.
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Thus, we always have

δ

[
3
8
m2(Nt)

]
≤ k′

∞∑
m=1

[
ψm(t)

]1−p
, (6.5.19)

where k′ is the maximum of (4k)p−1 and 2p−2.
Let ψ(t) be defined by

ψ(t) =
∫ t

0

(∫
Eτ

|∇u|p−1 ds
)1/(1−p)

dτ.

Since by Lemma [
ψ(t)

]1−p ≥
∑
m≥1

[
ψm(t)

]1−p
,

(6.5.19) implies

δ

[
3
8
m2(Nt)

]
≤ k′[ψ(t)

]1−p
. (6.5.20)

Let F be an arbitrary subset of G = Ω\C̄ closed in Ω and let u be an
arbitrary function in VΩ(K), K = G\F . By (6.5.20) we have

δ

[
3
8
m2(F )

]
≤ k′[ψ(1)

]1−p
,

which together with Lemma 6.1.3/1 yields

δ

[
3
8
m2(F )

]
≤ k′cp(K).

Consequently,

δ

(
3
8
t

)
≤ k′ν

(p)
G (t), (6.5.21)

where ν(p)
G is the function introduced in Sect. 6.4.1.

Taking into account the convergence of the integral (6.5.1) as well as
Lemma 6.4.1, from (6.5.21) we obtain that there exists a constant Q such
that

‖u‖Lq(Ω) ≤ Q‖∇u‖Lp(Ω) (6.5.22)

for all u ∈ C0,1(Ω) which vanish in C with q = α−1.
Now let u be an arbitrary function in C0,1(Ω) and let η be continuous in Ω,

vanishing in C, equal to unity in
⋃

m≥1Am and linear in Bm (m = 1, 2, . . . ).
Then

‖u‖Lq(Ω) ≤ ‖uη‖Lq(Ω\C) + ‖u‖Lq(Ω\
⋃

m≥1 Am). (6.5.23)

Using (6.5.22), we obtain
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‖uη‖Lq(Ω\C) ≤ Q1

(
‖∇u‖Lp(Ω) + ‖u‖Lp(

⋃
m≥1 Bm)

)
.

The latter and (6.5.23) imply

‖u‖Lq(Ω) ≤ Q2

(
‖∇u‖Lp(Ω) + ‖u‖Lp(Ω\ ∪m≥1Am)

)
. (6.5.24)

We estimate the second norm on the right in (6.5.24). Let (x, y) ∈ Ω\∪m≥1Am

and (x, z) ∈ C. Obviously,

∣∣u(x, y)∣∣p ≤ Q3

(∣∣u(x, z)∣∣p +
∫ ∣∣∇u(x, ȳ)∣∣p dȳ

)
,

where the integral is taken over the vertical segment contained in Ω and
passing through the point (x, 0). Integrating in x, y and z, we obtain
∫∫

Ω\
⋃

m≥1 Am

|u|p dxdy ≤ Q4

(∫∫
C

|u|p dxdy +
∫∫

Ω\
⋃

m≥1 Am

|∇u|p dxdy
)
.

Therefore,
‖u‖Lq(Ω) ≤ Q5

(
‖∇u‖Lp(Ω) + ‖u‖Lp(C)

)
.

Hence

inf
c∈R1

‖u− c‖Lq(Ω) ≤ Q5

(
‖∇u‖Lp(Ω) + inf

c∈R1
‖u− c‖Lp(C)

)
.

Using the Poincaré inequality for the rectangle C, we obtain

inf
c∈R1

‖u− c‖Lq(Ω) ≤ Q6‖∇u‖Lp(Ω),

which according to Theorem 6.4.3/2 is equivalent to Ω ∈ Hp,α with α = q−1.
Next we show that the convergence of the integral (6.5.1) is necessary for

Ω to be contained in Hp,α. Let

∫ 1

0

[
t/δ(t)

]γ dt = ∞,

where γ = q/(p− q), q = α−1. Then

∑
m≥1

λγ+1
m

δ(λm)
= ∞, (6.5.25)

where λm = 2−m−1. Consider a continuous function um in Ω vanishing in C,
linear in Bm and equal to

[
λm/δ(λm)

](γ+1)/p
,

in Am, m ≥ 1. For vN =
∑

1≤m≤N um we have
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∫∫
Ω

v
pγ/(γ+1)
N dxdy ≥ 1

3

N∑
m=1

upγ/(γ+1)
m λm =

N∑
m=1

λγ+1
m

[
δ(λm)

]−γ
.

On the other hand,

∫∫
Ω

|∇vN |p dxdy = 3p
N∑

m=1

upmδ(λm) = 3p
N∑

m=1

λγ+1
m

[
δ(λm)

]−γ
.

If Ω is contained in Hp,α, then for all u ∈ C0,1(Ω) vanishing in C

‖u‖pLpγ/(γ+1)(Ω) ≤ Q
∫∫

Ω

|∇u|p dxdy, (6.5.26)

where Q does not depend on u. From (6.5.26) we obtain

(
N∑

m=1

λγ+1
m

[δ(λm)]γ

)(γ+1)/γ

≤ Q
N∑

m=1

λγ+1
m

[δ(λm)]γ
.

Hence
N∑

m=1

λγ+1
m

[δ(λm)]γ
≤ Qγ ,

which contradicts (6.5.25).

Remark 1. From (6.5.2) and Lemma 6.1.3/2 it follows that
∫ ∞

0

δ

(
3
8
m2(Nt)

)
d
(
tp
)
≤ Q

∫∫
Ω

|∇u|p dxdy (6.5.27)

for all u ∈ C∞(Ω), u = 0 in C. Further let δ ∈ C0,1[0, 1] and δ(2t) ≤ const δ(t).
Then, following the same argument as in the proof of Proposition 5.4,
from (6.5.2) we obtain νp(t) ≥ kδ(t). The reverse estimate follows by con-
sidering the sequence of conductors {Gm\Fm} where Gm is the interior of
Am ∪ Bm and Fm = closΩ Am. In fact, for a piecewise linear function um
which vanishes in C and is equal to 1 in Am we have

cp(Gm\Fm) ≤
∫∫

Ω

|∇um|p dxdy = 3pδ
(
2−m−1

)
≤ kδ

(
m2(F )

)
.

Thus, for the Nikodým domain and for any p ≥ 1,

νp(t) ∼ δ(t), (6.5.28)

and so Ω ∈ Ip,α if and only if

lim inf
t→+0

t−αpδ(t) > 0 (6.5.29)
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(since δ(t) ≤ t then αp ≥ 1). Similarly, Ω ∈ Hp,α if and only if
∫ 1

0

[
τ

δ(τ)

]1/(αp−1)

dτ <∞.

Remark 2. The domain considered in the present section is interesting
in the following respect. While the conditions for the domains in the exam-
ples of Section 6.3.6 to belong to Jα+1−1/p and Ip,α coincide (i.e., Propo-
sition 6.3.5/2 is exact), the Nikodým domain is simultaneously contained in
Jp,α and Ip,α by virtue of (6.5.29). This means that if, for example, δ(t) = tβ ,
β > 1, then the sufficient conditions for the embedding L1

p(Ω) ⊂ Lq(Ω)
(p > 1) being formulated in terms of the function λ, give an incorrect value
of the limit exponent q∗ = p/(1 + p(β − 1)).

The actual maximal value of q∗, obtained here by the direct estimate of
νp is equal to p/β.

6.6 Some Generalizations

The spaces Ls(Ω), Lr(Ω), and Lq(Ω) can be replaced by the spaces Ls(Ω, σ),
Lr(Ω, σ), and Lq(Ω, σ) of functions that are integrable of order s, r, q, re-
spectively, with respect to the measure σ in Ω; we just need to replace the
Lebesgue measure by σ in the corresponding necessary and sufficient condi-
tions. As an example, we pause for a moment to present a generalization of
Lemma 6.2.

Let G be an open bounded subset of Ω. For p > 1 we put

A
(p,α)
G,σ = sup

{F }

[σ(F )]α

[cp(G\F )]1/p
,

where {F} is the collection of subsets of G which are closed in Ω. Further, let

A
(1,α)
G,σ = sup

{g}

[σ(g)]α

s(∂ig)
,

where {g} is the collection of admissible subsets of G. Thus by definition,
A

(p,α)
G,mn

= A
(p,α)
G .

Theorem. Let p ≥ 1 and let G be an open bounded subset of Ω.
1. If A

(p,α)
G,σ <∞ and the numbers q, α, p are related by any of the following

conditions:
(i) q ≤ q∗ = α−1 for αp ≤ 1, (ii) q < q∗ = α−1 for αp > 1, then, for all

u ∈ C0,1(Ω) vanishing outside G, we have

‖u‖Lq(Ω,σ) ≤ C‖∇u‖1−κ

Lp(Ω)‖u‖
κ

Lr(Ω,σ), (6.6.1)

with r ∈ (0, q), κ = r(q∗ − q)/(q∗ − r)q, C ≤ c[A(p,α)
G,σ ]1−κ.
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2. Let q∗ > 0, r ∈ (0, q∗) and let (6.5.1) hold for some q ∈ (0, q∗) and for
any u ∈ C0,1(Ω) vanishing outside G with κ = r(q∗ − q)/(q∗ − r)q and with
a constant C independent of u. Then C ≥ c [A(p,α)

G,σ ]1−κ.

The proof does not differ from that of Lemma 6.2. �

Next we present a sufficient condition for the finiteness of A
(p,γ)
G,σ .

Proposition. We have

A
(p,γ)
G,σ ≤ c

(
A

(p,β)
G

)1−γ/α(
A

(1,α)
G,σ

)γ/α
, (6.6.2)

where γ = αβp(p− 1 + pβ)−1.

Proof. Let K = G\F and let u be any function in VΩ(K). We put

ψ(t) =
∫ t

0

(∫
Eτ

|∇u|p−1 ds
)1/(1−p)

dτ.

The definition of A
(p,β)
G and (6.1.8) imply

ψ(t) ≤
[
cp(G\Nt)

]1/(1−p) ≤
(
A

(p,β)
G

[
mn(Nt)

]−β)p/(p−1)
, (6.6.3)

where t ∈ [0, 1). Thus, if A
(p,β)
G < ∞ then ψ(t) is finite and hence absolutely

continuous on any segment [0, 1 − ε], ε > 0. Let t(ψ) be the inverse of ψ(t).
Since the function ψ → σ(Nt(ψ)) does not increase, by Lemma 1.3.5/3 we
have

ψα/γ
[
σ(Nt(ψ))

]αp/(p−1) ≤ c sup
ψ
ψ(p−1)/pβ

∫ ψ(1−ε)

ψ

[
σ(Nt(ψ))

]αp/(p−1) dψ,

for t(ψ) ∈ [0, 1− ε]. The right-hand side is equal to

c sup
t∈[0,1−ε]

[
ψ(t)

](p−1)/pβ
∫ 1−ε

t

[σ(Nτ )]αp/(p−1) dτ
‖∇u‖Lp−1(Eτ )

.

(The change of variable ψ = ψ(t) is possible since ψ(t) is absolutely continuous
on [0, 1 − ε].) The latter, (6.6.3) and Lemma 6.1.3/2 imply

ψα/γ
[
σ(Nt(ψ))

]αp/(p−1)

≤ c
(
A

(p,β)
G

)1/β sup
t∈[0,1−ε]

1
mn(Nt)

×
∫ 1−ε

t

(
[σ(Nτ )]α

s(Eτ )

)p/(p−1)(
− d

dτ
mn(Nτ )

)
dτ. (6.6.4)

Taking into account that
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[
σ(Nτ )

]α ≤ A
(1,α)
G,σ s(Eτ )

for almost all τ ∈ (0, 1), from (6.6.4) we obtain

[
ψ(t)

]α/γ[
σ(Nt)

]αp/(p−1) ≤ c
(
A

(p,β)
G

)1/β(
A

(1,α)
G,σ

)p/(p−1)

× sup
t∈[0,1−ε]

1
mn(Nt)

∫ 1−ε

t

(
− d

dτ
mn(Nτ )

)
dτ

≤ c
(
A

(p,β)
G

)1/β(
A

(1,α)
G,σ

)p/(p−1)
.

Passing to the limit as t→ 1 − 0 we arrive at

[
σ(F )

]γ ≤ c
(
A

(p,β)
G

)1−σ/α(
A

(1,α)
G,σ

)γ/α[
ψ(1)

](1−p)/p
.

Minimizing the right-hand side over VΩ(K), we obtain

[
σ(F )

]γ ≤ c
(
A

(p,β)
G

)1−γ/α(
A

(1,α)
G,σ

)γ/α[
cp(G\F )

]1/p
.

The result follows. �

Now we give an example of the application of the preceding proposition in
a concrete situation.

Example. Let
Ω =

{
x : |x′| < xλn, 0 < xn <∞

}
,

where λ > 1, x′ = (x1, . . . , xn−1) and let G = {x ∈ Ω : 0 < xn < 1}.
Here the role of the measure σ is played by the (n− 1)-dimensional measure
s on the set Π = {x ∈ Ω : x1 = 0}. We show that A

(p,γ)
G,s is finite and

the value of γ is the best possible provided λ(n − 1) + 1 > p ≥ 1 and γ =
(λ(n− 1) + 1 − p)/(λ(n− 2) + 1).

First let p = 1. It was shown in Example 5.3.3/1 that the mapping

x→ ξ = (x1, . . . , xn−1, x
λ
n),

of Ω onto the cone ξΩ = {ξ : |ξ′| < ξn, 0 < ξn <∞} is subareal. Hence

s(∂ig) ≥ cs(∂iξg) (6.6.5)

for any admissible set g with closΩ g ⊂ G. Since ξΩ is a cone and ξΠ is its
cross section by a hyperplane, by Theorem 1.4.5 we have

‖u‖L(ξΠ) ≤ c‖∇ξu‖L(ξΩ) (6.6.6)

for all u ∈ L1
p(ξΩ) that vanish outside ξG. Therefore,

c s(∂iξg) ≥ s(ξΠ ∩ ξg). (6.6.7)
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(The latter estimate results from the substitution of the sequence {wm} con-
structed in Lemma 5.2.2 into (6.6.6).)

It is clear that

s(ξΠ ∩ ξg) = λ

∫
Π∩g

xλ−1
n dx2, . . . , dxn. (6.6.8)

Since λ > 1, the infimum of the integral on the right in (6.6.8), taken over all
setsΠ∩g with the fixed measure s(Π∩g), is attained at {x ∈ Π : 0 < xn < a},
where a is the number defined by

vn−2

(
λ(n− 2) + 1

)−1
aλ(n−2)+1 = s(Π ∩ g).

Therefore,
s(ξΠ ∩ ξg) ≥ c

[
s(Π ∩ g)

]λ(n−1)/(λ(n−2)+1)
,

which together with (6.6.5) and (6.6.7) yields

s(∂ig) ≥ c
[
s(Π ∩ g)

]α
,

where α = λ(n − 1)/(λ(n − 2) + 1). Thus, A
(1,α)
G,s < ∞. On the other hand,

since Ω ∈ Ip,β with β = (λ(n − 1) + 1 − p)p/(λ(n − 1) + 1) (cf. (6.3.16)), it
follows that A

(α,β)
G <∞. Now (6.6.2) implies A

(p,γ)
G,s <∞ with

γ =
λ(n− 1)

λ(n− 2) + 1
.
λ(n− 1) + 1 − p
p(λ(n− 1) + 1)

p

(
p− 1 +

λ(n− 1) + 1 − p
λ(n− 1) + 1

)−1

=
λ(n− 1) + 1 − p
p(λ(n− 2) + 1)

.

This value of γ is the best possible, which may be verified using the sequence
Fm = {x ∈ Ω : 0 < xn < m−1}, m = 1, 2, . . . . In fact,

cp(G\Fm) ≤ c
(∫ 1

m−1
τλ(1−n)/(p−1) dτ

)1−p

≤ cmp−1−λ(n−1),

(cf. (6.3.16)) and s(Fm ∩Π) = cm−1−λ(n−2). Thus the estimate

[
s(Fm ∩Π)

]γ ≤ const
[
cp(G\Fm)

]1/p

implies γ ≥ (λ(n− 1) + 1 − p)/p(λ(n− 2) + 1).

In conclusion we consider briefly some other generalizations of the previous
results.

Following Chap. 2 with a minor modification in the proofs, we can gener-
alize the results of the present chapter and Chap. 5 to encompass functions
with the finite integral
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∫
Ω

[
Φ(x,∇u)

]p dx,

and even those satisfying the following more general condition:
∫
Ω

Ψ(x, u,∇u) dx <∞

(cf. Remark 2.3.3/2).
Another possible generalization, which needs no essential changes in the

proofs, is the replacement of Lq(Ω) by a Birnbaum–Orlicz space (cf. Theo-
rem 2.3.3).

6.7 Inclusion W 1
p,r(Ω) ⊂ Lq(Ω) (r > q) for Domains with

Infinite Volume

6.7.1 Classes
∞

Jα and
∞

Ip,α

The classes Jα, Ip,α introduced previously characterize local properties of
the domain. In the present section we are interested in the structure of domains
at infinity.

Consider, for example, the unbounded plane domain

Ω =
{
(x, y) : 0 < x <∞, |y| < x1/2

}
.

We have
‖u‖L2(Ω) ≤ C

(
‖∇u‖L1(Ω) + ‖u‖Lr(Ω)

)
, (6.7.1)

where r is an arbitrary positive number that does not exceed 2.
This inequality can be proved in the following way. Let Qm,n be an ar-

bitrary square of the integral coordinate grid. Each of the domains Ωm,n =
Ω ∩ Qm,n can be mapped onto Q0,0 by a quasi-isometric mapping so that
the Lipschitz constants of the mapping functions are uniformly bounded and
the Jacobian determinants are uniformly separated from zero. This and The-
orem 1.4.5 imply the sequence of inequalities

∫
Ωm,n

u2 dx ≤ c
(
‖∇u‖2

L1(Ωm,n) + ‖u‖2
Lr(Ωm,n)

)

with constant c independent of m, n. Summing over m,n and using

(∑
i

a
1/α
i

)1/α

≤
∑
i

ai

with α ≥ 1, ai > 0 we arrive at (6.7.1).
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The condition r ≤ 2 is essential for the validity of (6.7.1). In fact, for
u(x, y) = (x + 1)−γ with 3r/2 < γ < 3

4 , 2 < r < 3, the right-hand side
in (6.7.1) is finite whereas u /∈ L2(Ω).

In a sense the estimate (6.7.1) is unsatisfactory: The norm Lr(Ω) is not
weaker than that in L2(Ω) (contrary to the case mn(Ω) < ∞). If we discuss
the rate of decrease of a function at infinity then the finiteness of the norm in
Lr(Ω) (r < 2) is a more restrictive condition than that of the norm in L2(Ω).

So we may pose the following question. Let mn(Ω) = ∞. What is the
space Lq(Ω) containing W 1

p,r(Ω) for large r?
To this end we introduce classes similar to Jα, Ip,α.

Definition 1. The set Ω is contained in the class
∞

Jα if there exists a
constant M > 0 such that

sup
{g}

[mn(g)]α

s(∂ig)
<∞, (6.7.2)

where the supremum is taken over all admissible sets g ⊂ Ω withmn(g) ≥M .

We note, for the time being without proof, that the domain Ω inside the
parabola, mentioned at the beginning of this section, is in the class

∞
J1/3 and

that
‖u‖L3(Ω) ≤ C

(
‖∇u‖L1(Ω) + ‖u‖Lr(Ω)

)
(6.7.3)

for any r ≥ 3. The exponent 3 on the left-hand side of the above inequality
cannot be reduced.

Let F be a bounded subset of Ω closed in Ω and let ΩR = Ω ∩ BR. By
the p-capacity of F relative to Ω we mean the limit of cp(ΩR\F ) as R→∞.
We denote it by p-capΩ(F ).

Definition 2. The domain Ω is contained in the class
∞

Ip,α, if there exists
a constant M > 0 such that

∞
Ap,α(M) def= sup

{F }

[mn(F )]α

[p-capΩ(F )]1/p
<∞. (6.7.4)

Here the supremum is taken over all F with mn(F ) ≥M , p-capΩ(F ) > 0.

Similarly to Lemma 6.3.2, we can prove that the classes
∞

I1,α and
∞

Jα

coincide and that
∞
A1,α(M) = sup

{g}

[mn(g)]α

s(∂ig)
,

where {g} has the same meaning as in (6.7.2).

Proposition 1. The class
∞

Jp,α is empty provided α > 1/p− 1/n.

Proof. Let Ω ∈
∞

Ip,α. If � is a large enough positive number such that
mn(Ω�) ≥M and R > �, then by (6.7.4)
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[
mn(Ω�)

]α ≤ K
[
cp(ΩR\ closΩ Ω�)

]1/p
, K = const.

Let u(x) = η(|x|) where η is a piecewise linear continuous function which
vanishes for t > R and is equal to unity for t < �. Since u ∈ UΩ(ΩR\ closΩ Ω�),
we have

cp(ΩR\ closΩ Ω�) ≤ (R− �)−pmn(ΩR\Ω�).

Consequently,

R− � ≤ K
[
mn(ΩR) −mn(Ω�)

]1/p[
mn(Ω�)

]−α
.

We define a sequence of numbers {�j}j≥1 by mn(Ω�j ) = 2jM . Then �j+1 −
�j ≤ K2j(p−1−α). Summing, we get �j ≤ �1 + cK2j(p−1−α), which together
with the definition of the sequence {�j} yields

�j ≤ �1 + cK
(
mn(Ω�j )

)p−1−α
.

Since �j →∞ then α < p−1. Further we have

�j ≤ �1 + cK
(
vn�

n
j

)p−1−α

and hence α ≤ p−1 − n−1. The result follows. �

Let F be a bounded subset of Ω closed in Ω and let ΛF (σ) = inf s(∂ig)
with the infimum taken over all admissible subsets g of Ω which contain F
and with mn(g) ≥ σ.

An immediate corollary of inequality (6.1.10) is the next proposition.

Proposition 2. The inequality

p-capΩ(F ) ≥
(∫ ∞

mn(F )

[
ΛF (σ)

]−p/(p−1) dσ
)1−p

(6.7.5)

is valid.

Proposition 3. If Ω ∈
∞

Jα+(p−1)/p, then Ω ∈
∞

Ip,α and

∞
Ap,α(M) ≤

(
p− 1
pα

)(p−1)/p
∞
A1,α+(p−1)/p(M). (6.7.6)

Proof. If mn(F ) ≥M then by (6.7.5) we obtain

p-capΩ(F ) ≥
[∞
A1,α+(p−1)/p(M)

]−p
(∫ ∞

mn(F )

σ−(α+1−1/p)p/(p−1) dσ
)1−p

,

which is equivalent to (6.7.6).
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6.7.2 Embedding W 1
p,r(Ω) ⊂ Lq(Ω) (r > q)

The proof of the following theorem concerning the embedding of the space
W 1

p,r(Ω) = L1
p(Ω) ∩ Lr(Ω) into Lq(Ω) is carried out by an argument similar

to that used to prove Theorem 6.3.3. We give it for the reader’s convenience
since it differs in details.

Theorem. 1. If Ω ∈
∞

Ip,α and r > q = α−1, then for any u ∈W 1
p,r(Ω)

‖u‖Lq(Ω) ≤ C1‖∇u‖Lp(Ω) + C2‖u‖Lr(Ω), (6.7.7)

where
C2 = M (r−q)/rq, C1 ≤ p(p− 1)(1−p)/p

∞
Ap,α(M).

2. If (6.7.7) holds with r > q then Ω ∈
∞

Ip,α with α = q−1. Moreover,
M (r−q)/rq = ε−1C2,

∞
Ap,α(M) ≤ (1 − ε)−1C1, where ε is an arbitrary number

in (0, 1).

Proof. 1. By Lemma 5.1.2/2 it suffices to prove (6.7.7) for functions in
C∞(Ω) with supports in ΩR for some R < ∞. We choose a number T such
that

mn(LT ) ≤M ≤ mn(NT ).

It can be readily checked that
∫
Ω

|u|q dx =
∫

LT

|u|q dx+
∫ T

0

mn(Nt\LT ) d
(
tp
)
. (6.7.8)

The first summand on the right is estimated by Hölder’s inequality

∫
LT

|u|q dx ≤M1−q/r

(∫
Ω

|u|r dx
)q/r

.

By (1.3.41), the second integral in (6.7.8) does not exceed

{∫ T

0

[
mn(Nt\LT )

]p/q d
(
tp
)}q/p

.

Therefore,

‖u‖Lq(Ω) ≤M1/q−1/r‖u‖Lr(Ω) +
{∫ T

0

[
mn(Nt)

]p/q d
(
tp
)}1/p

.

Since mn(Nt) ≥M for t ∈ (0, T ), it follows that

[
mn(Nt)

]1/q ≤ ∞
Ap,α(M)

[
p-capΩ(Nt)

]1/p ≤ ∞
Ap,α(M)

[
cp(ΩR\Nt)

]1/p
.

(6.7.9)
Applying (6.7.9) and Lemma 6.1.3/2, we obtain
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‖u‖Lq(M) ≤ M1/q−1/r‖u‖Lr(Ω) +
∞
Ap,α(M)

[∫ ∞

0

cp(ΩR\Nt) d
(
tp
)]1/p

≤ M1/q−1/r‖u‖Lr(Ω) +
∞
Ap,α(M)

p

(p− 1)(p−1)/p
‖∇u‖Lp(Ω).

2. We put M = (C2ε
−1)rq/(r−q) and consider an arbitrary bounded F ⊂ Ω

closed in Ω with mn(F ) ≥M . Let u be any function in C0,1(Ω) that vanishes
outside some ball and is equal to unity on F . It is clear that

∫
Ω

|u|r dx =
∫ 1

0

mn(Nt) d
(
tr
)
.

Since mn(Nt) does not increase and q < r, by (1.3.41) we have
∫
Ω

|u|r dx ≤
(∫ 1

0

[
mn(Nt)

]q/r d
(
tq
))r/q

.

Taking into account that mn(Nt) ≥ mn(F ) ≥M , we obtain

‖u‖Lr(Ω) ≤M1/r−1/q

(∫ 1

0

mn(Nt) d
(
tq
))r/q

= εC−1
2 ‖u‖Lq(Ω).

Now, (6.7.7) and the preceding inequality imply that

‖u‖Lq(Ω) ≤ C1(1 − ε)−1‖∇u‖Lp(Ω).

Having in mind that u = 1 on F and minimizing ‖∇u‖Lp(Ω), we finally obtain

[
mn(F )

]1/q ≤ C1(1 − ε)−1
[
p-capΩ(F )

]1/p
.

The theorem is proved. �

The first part of the Theorem and Proposition 6.7.1/3 imply the next
corollary.

Corollary. If Ω ∈
∞

Jα, α ≤ 1, p ≥ 1, r > q, p(1 − α) < 1, q = p/[1 −
p(1 − α)] then (6.7.7) is valid for any u ∈W 1

p,r(Ω).

6.7.3 Example of a Domain in the Class
∞
Ip,α

Example. Consider the “paraboloid”

Ω =
{
x ∈ R

n : x2
1 + · · · + x2

n−1 < ax
2β
n , 0 < xn <∞

}
, (6.7.10)

where 1 > β > 0 and a = const > 0 (Fig. 25).
First we show that

0 < lim
M→∞

sup
[mn(g)]α

s(∂ig)
<∞, (6.7.11)



6.7 Inclusion W 1
p,r(Ω) ⊂ Lq(Ω) (r > q) for Domains with Infinite Volume 369

Fig. 25.

where the supremum is taken over all admissible subsets g of the domain Ω
with mn(g) ≥M and α = β(n−1)/(β(n−1)+1). Taking the symmetrization
of g with respect to the ray Oxn and repeating the proof of Lemma 5.2.1/1
we obtain that the ball B, orthogonal to ∂Ω, has the smallest area ∂ig among
all sets g with the fixed volume M . After a routine calculation we obtain

lim
M→∞

[mn(B)]α

s(∂iB)
=

(1 − α)α

v1−α
n−1

.

So (6.7.11) follows.
Thus, Ω ∈

∞
Jβ(n−1)/(β(n−1)+1) and by Corollary 6.7.2 and the second

part of Theorem 6.7.2 we have Ω ∈
∞

Ip,α with p < β(n − 1) + 1 and α =
p−1 − (β(n− 1) + 1)−1. We show that this value of α is the largest possible.
In fact, let Ω(X ) = {x ∈ Ω : xn ≤ X }. It is clear that

p-capΩ

(
Ω(X )

)
≤
∫
Ω\Ω(X )

∣∣∇[(X /xn)β(n−1)
]∣∣p dx = cX β(n−1)+1−p

and hence

[mn(Ω(X ))]α

[p-capΩ(Ω(X ))]1/p
≥ cX [β(n−1)+1](α−γ) X →∞−−−−→∞

for α > p−1 − [β(n− 1) + 1]−1 = γ.
Thus, for the domain (6.7.10) and for β(n − 1) > p − 1 ≥ 0, the inequal-

ity (6.7.7) holds with r > q = [β(n− 1) + 1]p/[β(n− 1) + 1− p]. This value of
q cannot be reduced. We note that it exceeds the limit exponent np/(n − p)
in the Sobolev theorem for β < 1.
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6.7.4 Space
(0)

L1
p (Ω) and Its Embedding into Lq(Ω)

Let
(0)

L1
p(Ω) denote the completion of the set of functions in C∞(Ω)∩L1

p(Ω) with
bounded supports with respect to the norm ‖∇u‖Lp(Ω). (Here and elsewhere
in this section mn(Ω) = ∞.)

According to Lemma 5.1.2/2, the space
(0)

L1
p(Ω) coincides with the comple-

tion of W 1
p,r(Ω) (r is an arbitrary positive number) with respect to the norm

‖∇u‖Lp(Ω).
Removing the conditions mn(g) ≥ M , mn(F ) ≥ M in the definitions of

the classes
∞

Jα,
∞

Ip,α (i.e., putting M = 0) we obtain the definitions of the
classes

∞
Jα(0),

∞
Ip,α(0).

Remark 6.3.1 implies α ≥ 1/p−1/n provided n ≥ p and Ω ∈
∞

Ip,α. On the
other hand, according to Proposition 6.6, α ≤ 1/p− 1/n. Thus, only the class

∞
Ip, 1/p−1/n(0) is not empty. (For example, the domain (6.7.10) with β = 1
and the space R

n are contained in this class.)
Taking the latter into account and mimicking the proof of Theorem 2.3.3

with minor modifications, we arrive at the following theorem.

Theorem. The inequality

‖u‖Lq(Ω) ≤ C‖∇u‖Lp(Ω), p ≥ 1 (6.7.12)

is valid for all u ∈
(0)

L1
p(Ω) if and only if n > p, q = pn/(n − p) and Ω ∈

∞
Ip,1/p−1/n(0).

The best constant in (6.7.12) satisfies
∞
Ap,1/p−1/n(0) ≤ C ≤ p(p− 1)(1−p)/p

∞
Ap,1/p−1/n(0).

Remark. We note that the inclusion Ω ∈
∞

Ip,1/p−1/n(0), n > p, does not
imply the Poincaré-type inequality

inf
c∈R1

‖u− c‖Lpn/(n−p)(Ω) ≤ C‖∇u‖Lp(Ω), u ∈ L1
p(Ω). (6.7.13)

In fact, consider the domain in Fig. 26, which is the union of the two cones
{x : |x′| < xn + 1} and {x : |x′| < 1 − xn}, x′ = (x1, . . . , xn−1). Each of the
cones is in the class

∞
Ip,1/p−1/n(0). Hence their union Ω is in the same class

(cf. Proposition 6.3.1/1). However, the left-hand side in (6.7.13) is infinite for
a smooth function that is odd in xn, vanishes for 0 < xn < 1 and is equal to
unity for xn > 2, and which, obviously, belongs to L1

p(Ω).

At the same time, by the Theorem, the inclusion Ω ∈
∞

Ip,1/p−1/n(0) is
equivalent to the inequality
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Fig. 26.

‖u‖Lpn/(n−p)(Ω) ≤ C‖∇u‖Lp(Ω), u ∈W 1
p,pn/(n−p)(Ω). (6.7.14)

In particular, from this it follows that (6.7.13) implies Ω ∈
∞

Ip,1/p−1/n(0).
The preceding Theorem shows as well that the norm in Lpn/(n−p)(Ω) can-

not be replaced by the norm in Lq(Ω) with q �= pn/(n− p) in (6.7.13).

6.7.5 Poincaré-Type Inequality for Domains with Infinite Volume

The following assertion gives a description of domains for which (6.7.13) is
valid.

Here (and only here) we shall assume that the condition of boundedness
of the sets G and F is omitted in the definition of p-conductivity.

Theorem. Let mn(Ω) = ∞. The inequality (6.7.13) holds for all u ∈
L1

p(Ω), p ≥ 1, if and only if Ω is a connected open set in
∞

Ip,1/p−1/n(0) and

the finiteness of the p-conductivity of the conductor
K = G\F in Ω implies either mn(F ) <∞ or mn(Ω\G) <∞.

(6.7.15)

For p = 1 the condition (6.7.12) is equivalent to the following:

if G is an open subset of Ω such that ∂iG is a smooth
manifold and s(∂iG) <∞ then either mn(G) <∞ or mn(Ω\G) <∞.

(6.7.16)

(We recall that
∞

Ip,1−1/n(0) =
∞

J1−1/n(0).)

Proof. The necessity of the inclusion Ω ∈
∞

Ip,1/p−1/n(0) was noted at the
end of Remark 6.7.4. The necessity of the connectedness of Ω is obvious.
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We prove that (6.7.13) implies (6.7.15). Let v be an arbitrary function
in UΩ(K), where K is the conductor G\F with cp(K) < ∞. We put u =
max{0,min{v, 1}} in (6.7.13). Then

[
|c|qmn(Ω\G) + |1 − c|qmn(F )

]1/q ≤ C‖∇u‖Lp(Ω)

with q = pn/(n− p). Therefore, either mn(Ω\G) <∞ or mn(F ) <∞.
Now let p = 1. We prove the necessity of (6.7.16). First we note that the

condition that G is bounded was not used in the proof of Lemma 5.2.2. Let G
be an open subset of Ω such that ∂iG is smooth manifold and s(∂iG) < ∞.
We insert any function wm from the sequence constructed in Lemma 5.2.2
in (6.7.13) in place of u. Then, starting with some indexm, for any compactum
e ⊂ G, we have

(
|cm|n/(n−1)mn(Ω\G) + |1− cm|n/(n−1)mn(e)

)(n−1)/n ≤ C‖∇wm‖L1(Ω),

where cm = const. Since

lim sup
m→∞

‖∇wm‖L1(Ω) = s(∂iG) <∞,

we have either mn(Ω\G) <∞, or cm = 0 and

[
mn(e)

](n−1)/n ≤ Cs(∂iG).

Consequently, (6.7.16) holds.
The sufficiency is proved in several steps.

Lemma 1. 1. Let Ω ∈
∞

Ip,q(0) with q = pn/(n− p), n > p. Then

[
mn(F )

]1−p/n ≤ const cp(K), (6.7.17)

holds for all conductors K = G\F , where G is an open subset of Ω and F is
a subset of Ω with finite volume, closed in Ω.

2. Let Ω ∈
∞

J1−1/n(0). Then

[
mn(G)

]1−1/n ≤ const s(∂iG) (6.7.18)

holds for all open sets G ⊂ Ω such that ∂iG is a smooth manifold and
mn(G) <∞.

Proof. 1. Since Ω ∈
∞

Ip,q(0), it follows that

[
mn(H)

]1−p/n ≤ const cp(G\H)

for any bounded set H ⊂ F that is closed in Ω. Now (6.7.17) follows from
cp(G\H) ≤ cp(G\F ) and mn(F ) = supH mn(H).
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2. Let Ω ∈
∞

J1−1/n(0), mn(G) <∞, s(∂iG) <∞. We note that we did not
use the boundedness of G in the proof of Lemma 5.2.2 and insert the sequence
constructed in this lemma into (6.7.14). Passing to the limit as m → ∞, we
obtain [

mn(e)
]1−1/n ≤ const s(∂iG)

for any compactum e ⊂ G. �

Lemma 2. 1. If Ω ∈
∞

Ip,q(0) with q = pn/(n − p), n > p, and (6.7.15)
holds, then for any u ∈ C∞(Ω) ∩ L1

p(Ω) there exists a unique number c such
that

mn

({
x :
∣∣u(x) − c∣∣ ≥ ε}) <∞ for all ε > 0. (6.7.19)

2. The same is true for p = 1 provided Ω ∈
∞

J1−1/n(0) and (6.7.16) holds.

Proof. 1. We introduce the sets At = {x : u(x) > t}, Bt = {x : u(x) ≥ t},
Ct = Ω\At, Dt = Ω\Bt and put

c = inf
{
t : mn(At) <∞

}
. (6.7.20)

Suppose that c = +∞. Then mn(At) = ∞ for all t ∈ R
1 and mn(Ct) <∞ for

all t by
(T − t)pcp(At\BT ) ≤ ‖∇u‖pLp(Ω) (6.7.21)

and (6.7.12). According to (6.7.17), we have

[
mn(Ct)

]1−p/n ≤ const cp(DT \Ct) (6.7.22)

for all T > t. Since

(T − t)pcp(DT \Ct) ≤ ‖∇u‖pLp(Ω),

the right-hand side in (6.7.22) tends to zero as T → +∞. Consequently,
mn(Ct) = 0 for all t and c < +∞.

Now let c = −∞. Then mn(At) < ∞ for all t ∈ R
1. Applying (6.7.17) to

the conductor At\BT with T > t, we arrive at

[
mn(BT )

]1−p/n ≤ const cp(At\BT ).

Since by (6.7.21) the right-hand side tends to zero as t → −∞, we see that
mn(BT ) = 0 for all T . Thus c > −∞.

Now we prove (6.7.19). From definition (6.7.20) it follows that

mn

(
{x : u− c ≥ ε}

)
<∞ (6.7.23)

for ε > 0. On other hand, (6.7.20) gives mn({x : u− c ≥ −ε/2}) = ∞.
Since the p-conductivity of the conductor Ac−ε/2\Bc−ε is finite

(cf. (6.7.21)), by (6.7.15) we have
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mn

(
{x : u < c− ε}

)
<∞. (6.7.24)

Inequalities (6.7.23) and (6.7.24) are equivalent to (6.7.19). The uniqueness
of the constant c is an obvious corollary of the condition (6.7.15) and the
finiteness of the conductivity of any conductor At\BT , t > T . The first part
of the Lemma is proved.

2. Now let p = 1. The identity
∫
Ω

|∇u| dx =
∫ +∞

− ∞
s(∂At) dt, u ∈ C∞(Ω) ∩ L1

1(Ω)

implies
s(∂At) <∞ for almost all t (6.7.25)

and
lim inf
t→ − ∞

s(∂At) = lim inf
t→+∞

s(∂At) = 0. (6.7.26)

Further, it suffices to duplicate the argument in the proof of the first part of
the Theorem using (6.7.25) in place of the finiteness of the conductivity of the
conductor At\BT = DT \Ct, and (6.7.26) in place of the convergence to zero
of cp(At\BT ) as t→ +∞ or T → −∞. The lemma is proved. �

We complete the proof of sufficiency in the Theorem. Let u ∈ C∞(Ω) ∩
L1

p(Ω). According to Lemma 6.1.1/1 we may in addition assume that u ∈
L∞(Ω).

We put

uε(x) =

⎧⎪⎨
⎪⎩
u(x) − c− ε if u(x) > c+ ε,
0 if |u(x) − c| ≤ ε,
u(x) − c+ ε if u(x) < c− ε,

where c is the constant specified in Lemma 2. From (6.7.19) and the bound-
edness of u it follows that u ∈ Lpn/(n−p)(Ω). Hence uε can be inserted
into (6.7.14). Passing to the limit as ε → +0, we arrive at (6.7.13). The
theorem is proved. �

6.8 Compactness of the Embedding L1
p(Ω) ⊂ Lq(Ω)

In this section we obtain the necessary and sufficient conditions for the sets
bounded in L1

p(Ω) to be compact in Lq(Ω). Here Ω is a domain with finite
volume.

6.8.1 Class I̊p,α

As before, by Ap,α(M) we mean the constant in the definition of the class
Ip,α.
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Definition. The domain Ω is contained in the class I̊p,α provided that
Ap,α(M) → 0 as M → 0.

The equality (6.3.4) implies that Ω ∈ I̊1,α if and only if

lim
M→0

sup
{g:mn(g)≤M}

[mn(g)]α

s(∂ig)
= 0 (6.8.1)

(as before, here g designates an admissible subset of Ω).
The value of α in the definition of I̊p,α exceeds 1/p− 1/n since

cp(B2�\B̄�) = const �n−p

and hence
[mn(B�)]1/p−1/n

[cp(B2�\B̄�)]1/p
= const > 0.

6.8.2 Compactness Criteria

Theorem 1. Let mn(Ω) <∞. The embedding operator of L1
p(Ω) into Lq∗ (Ω),

1 < p ≤ q∗ < ∞, is compact if and only if Ω ∈ I̊p,α for pα ≤ 1, where
α−1 = q∗.

Proof. Sufficiency. Let u be an arbitrary function in C∞(Ω) ∩ L1
p(Ω) ∩

L∞(Ω) with bounded support. (By Corollary 5.1.2, the set of such functions
is dense in L1

p(Ω).) Let

T = inf
{
t : mn(Nt) ≤M

}
.

Obviously,

‖u‖Lq∗ (Ω) ≤ c
(∥∥(|u| − T )

+

∥∥
Lq∗ (Ω)

+ T
[
mn(Ω)

]1/q∗)
.

By Corollary 6.3.3 we have
∥∥(|u| − T )

+

∥∥
Lq∗ (Ω)

≤ δ(M)‖∇u‖Lp(Ω),

where δ(M) = cAp,α(M).
Let ΩM denote a bounded subdomain of Ω with C0,1 boundary and with

mn(Ω\ΩM ) < M/2. Since mn(NT ) ≥ M , it follows that mn(NT ∩ ΩM ) ≥
M/2. Consequently,

‖u‖Lr(ΩM ) ≥ 2−1/rTM1/r

and we arrive at

‖u‖Lq∗ (Ω) ≤ cδ(M)‖∇u‖Lp(Ω) + cM−1/r
[
mn(Ω)

]1/q∗

‖u‖Lr(ΩM ). (6.8.2)

By Corollary 5.1.2 the latter is valid for all u ∈ L1
p(Ω).
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Since ΩM is a domain with a smooth boundary and compact closure, the
embedding operator of L1

p(ΩM ) into Lr(ΩM ) is compact. Let {um}m≥1 with
‖um‖L1

p(Ω) = 1 be a Cauchy sequence in Lr(ΩM ). Then (6.8.2) implies

‖um − ul‖Lq∗ (Ω) ≤ cδ(M) + cM−1/r
[
mn(Ω)

]1/q∗

‖um − u‖Lr(ΩM ). (6.8.3)

Given any ε > 0 we can find an M such that c δ(M) < ε/2. Next we choose
a large enough number Nε so that the second term in (6.8.3) does not exceed
ε/2 for m, l > Nε. Then ‖um − ul‖Lq∗ (Ω) < ε for m, l > Nε and hence {um}
is a Cauchy sequence in Lq∗ (Ω).

Necessity. Suppose the embedding operator of L1
p(Ω) into Lq∗ (Ω) is com-

pact. Then the elements of the unit sphere in L1
p(Ω) have absolutely equicon-

tinuous norms in Lq∗ (Ω). Thus, for all u ∈ L1
p(Ω),

‖u‖Lq∗ (G) ≤ ε(M)
(
‖∇u‖Lp(Ω) + ‖u‖L1(ω)

)
,

where ω is a bounded subdomain of Ω, ω̄ ⊂ Ω, G is an arbitrary open subset
of Ω with mn(G) ≤M and ε(M) tends to zero as M → 0.

Suppose that the function u ∈ L1
p(Ω) vanishes outside G. Then

‖u‖Lq∗ (Ω) ≤ ε(M)
[
1 − ε(M)M1−1/q∗]−1‖∇u‖Lp(Ω).

It remains to use the second part of Corollary 6.3.3. The theorem is proved.�

Theorem 2. Let mn(Ω) < ∞. The embedding operator of L1
p(Ω) into

Lq∗ (Ω), p > 1, 0 < q∗ < p, is compact if and only if it is bounded, i.e.,
Ω ∈ Hp,α, where α−1 = q∗.

Proof. Let Ω ∈ Hp,α. Then Bp,α( 1
2mn(Ω)) < ∞ and since νM,p(t) ≥

νmn(Ω)/2(t) for t < M we have Bp,α(M) → 0 as M → 0. It remains to notice
that the proof of sufficiency in Theorem 1 together with Corollary 6.4.2/1
imply (6.8.3) with δ(M) = cBp,α(M). The proof is complete. �

6.8.3 Sufficient Conditions for Compactness of the Embedding
L1

p(Ω) ⊂ Lq∗(Ω)

The inequality
Ap1,α1(M) ≤ cAp,α(M)

with p1 > p ≥ 1, α1 − p−1
1 = α− p−1 implies the embedding

I̊p,α ⊂ I̊p1,α1 .

In particular,
J̊α+1−p−1

def= I̊1,α+1−p−1 ⊂ I̊p,α.

The preceding leads to the following corollary.
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Corollary 1. If Ω ⊂ J̊α and p(1−α) < 1, 1 ≤ p ≤ q∗ = p/[1 + p(1−α)]
then the embedding operator of L1

p(Ω) into Lq∗ (Ω) is compact.

By Proposition 6.4.4 the requirement

∫ M

0

(
τ

λM (τ)

)p/(αp−1)

dτ <∞ (6.8.4)

implies Bp,α(M) → 0 as M → 0. Therefore we have the next statement.

Corollary 2. If the integral (6.8.4) converges, then the embedding operator
of L1

p(Ω) into Lq∗ (Ω) (q∗ = α−1, αp > 1) is compact.

Corollaries 1 and 2 immediately imply the following rougher assertion.

Corollary 3. If Ω ∈ Jα and p(1−α) ≤ 1, p ≥ 1, 1 ≤ q < p/[1+p(α−1)]
then the embedding operator of L1

p(Ω) into Lq(Ω) is compact.

Clearly, the space L1
p(Ω) can be replaced by W 1

p,r(Ω) with r ≤ q∗ in
Theorems 6.8.2/1 and 6.8.2/2 and Corollaries 1–3.

6.8.4 Compactness Theorem for an Arbitrary Domain with Finite
Volume

The positiveness of the function λM (cf. Lemma 5.2.4) and the estimate
(6.3.11) imply νM,p(t) > 0 for t > 0. Hence there exists a nondecreasing
positive continuous function ϕ on (0,mn(Ω)] such that ϕ(t)/νM,p(t) tends to
zero as t→ +0.

Theorem. Let Ω be an arbitrary domain with finite volume. Then from
any bounded sequence in L1

p(Ω) we can select a subsequence {um}m≥1 with
∫ ∞

0

ϕ
[
mn

{
x :
∣∣um(x) − uk(x)

∣∣ ≥ t}] d(tp) m,k→∞−−−−−→ 0

and therefore any bounded subset of L1
p(Ω) is compact in an n-dimensional

Lebesgue measure.

Proof. Let u be a function in C∞(Ω) ∩ L1
p(Ω) ∩ L∞(Ω) with bounded

support. Obviously,
∫ ∞

0

ϕ
[
mn(Nt)

]
d
(
tp
)
≤
∫ ∞

T

ϕ
[
mn(Nt)

]
d
(
tp
)

+ T pϕ
[
mn(Ω)

]
. (6.8.5)

Here T = inf{t : mn(Nt) ≤ μ}, where μ is a sufficiently small positive number
that is independent of u. The right-hand side in (6.8.5) does not exceed

sup
0<τ ≤μ

ϕ(τ)
νM,p(τ)

∫ ∞

T

cp(LT \Nt) d
(
tp
)

+ cϕ
[
mn(Ω)

]
μ−p

(∫
Ωμ

|u| dx
)p

,
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where Ωμ is the domain specified in the proof of Theorem 6.8.2 with M
replaced by μ. By Lemma 6.1.3/3 we have

∫ ∞

0

ϕ
[
mn(Nt)

]
d
(
tp
)
≤ sup

0≤τ ≤μ

ϕ(τ)
νM,p(τ)

‖∇u‖pLp(Ω)

+ cϕ
[
mn(Ω)

]
μ−p‖u‖pL(Ωμ). (6.8.6)

By Corollary 5.1.2, the last inequality extends to encompass all functions in
L1

p(Ω). It remains to apply the arguments used at the end of the proof of
sufficiency in Theorem 6.8.2/1.

6.8.5 Examples of Domains in the class I̊p,α

Example 1. The estimates (6.3.15) imply that the domain

Ω =
{
x : (x2

1 + · · · + x2
n−1)

1/2 < f(xn), 0 < xn < a
}
,

in Example 6.3.6/1 is contained in I̊p,α if and only if

lim
x→+0

(∫ x

0

[
f(t)

]n−1 dt
)αp/(p−1) ∫ a

x

[
f(t)

](1−n)/(p−1) dt = 0.

By (5.3.5) and Corollary 6.8.3/1, a sufficient condition for Ω to belong to
I̊p,α is

lim
x→+0

[
f(x)

]1−n
(∫ x

0

[
f(t)

]n−1 dt
)α+1−1/p

= 0. (6.8.7)

Since f does not decrease, we see that (6.8.7) holds for αp = 1 and also for
αp < 1 provided limx→+0 x

σf(x) = 0, σ = (pα+ p− 1)/(n− 1)(αp− 1).
Example 2. The domain Ω = {x : 0 < xn < ∞, (x2

1 + · · · + x2
n−1)

1/2 <

f(xn)} in Example 6.3.6/2 is contained in I̊p,α if and only if

lim
x→+∞

(∫ +∞

x

[
f(τ)

]n−1 dτ
)αp/(p−1) ∫ x

0

[
f(τ)

](1−n)/(p−1) dτ = 0 (6.8.8)

(cf. estimates (6.3.18)). By (5.3.8) and (6.3.11) the last equality holds if

lim
x→+∞

[
f(x)

]1−n
(∫ ∞

x

[
f(τ)

]n−1 dτ
)α+1−1/p

= 0. (6.8.9)

In particular, Ω ∈ I̊p,1/p provided

f(τ) = e−β(τ), β′(τ) → +∞ as τ → +∞.

In the case f(τ) = e−cτ , the domain under consideration is contained in Ip,1/p

and does not belong to I̊p,1/p.
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Similarly, a necessary and sufficient condition for the spiral in Exam-
ples 5.3.3/3 and 6.3.6/3 to be in I̊p,1/p is that

lim
θ→+∞

(∫ ∞

θ

δ(ϕ) dϕ
)αp/(p−1) ∫ θ

0

[
δ(ϕ)

]1/(1−p) dϕ = 0.

A simpler sufficient condition is that

(∫ +∞

θ

δ(ϕ) dϕ
)α+1−1/p

= o
(
δ(θ)

)
as θ → +∞.

In particular, Ω ∈ I̊p,1/p if δ(ϕ) = e−β(ϕ), β′(ϕ) → +∞ as ϕ → +∞, and
Ω ∈ Ip,1/p\I̊p,1/p if δ(ϕ) = e−cϕ.

6.9 Embedding Ll
p(Ω) ⊂ Lq(Ω)

We present sufficient conditions for the boundedness and compactness of the
embedding operator of Ll

p(Ω) into Lq∗ (Ω), which are simple corollaries of
Theorems 6.3.3 and 6.4.2.

Theorem 1. If Ω ∈ Ip,α, 1−1/l < pα ≤ 1 or Ω ∈ Hp,α, pα > 1 then the
embedding operator of Ll

p(Ω) into Lq∗ (Ω), q∗ = p/(1 − l + plα) is bounded.

The proof is by induction on the number of derivatives l. In addition, we
must use the embeddings

Ip,α ⊂ Ip1,α1 , Hp,α ⊂ Hp1,α1 ,

with p1 > p ≥ 1, α1 − p−1
1 = α− p−1 (cf. Corollaries 6.2 and 6.4.2/2).

In particular, Theorem 1 guarantees the continuity of the embedding op-
erator of Ll

p(Ω) (lp < n) into Lq∗ (Ω) with the same q∗ = pn/(n − lp) as in
the Sobolev theorem for domains of the class Ip,1/p−1/n.

Theorem 1 and Proposition 6.3.5/2 imply the following corollary.

Corollary 1. Let Ω ∈ Jα, 1 − 1/n ≤ α ≤ 1, lp(1 − α) ≤ 1. Then
Ll

p(Ω) ⊂ Lq∗ (Ω) where q∗ = p/(1 − p l(1 − α)) for p l(1 − α) < 1 and q∗ is
arbitrary for pl(1−α) = 1. (Then the exponent q∗ = pn/(n−pl) corresponds
to α = 1 − 1/n.)

Example 1. Since the domain

Ω(λ) =
{
x : x2

1 + · · · + x2
n−1 < x

2λ
n , 0 < xn < 1

}
, λ ≥ 1,

belongs to the class Jα with α = λ(n−1)/(λ(n−1)+1), (cf. Example 5.3.3/1),
we have Ll

p(Ω
(λ)) ⊂ Lq∗ (Ω(λ)), where 1 + λ(n− 1) > pl and
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q∗ = p
(
λ(n− 1) + 1

)
/
(
1 + λ(n− 1) − pl

)
. (6.9.1)

The example of the function u(x) = xνn with ν = l + ε− (1 + λ(n− 1))/p
(ε is small positive number) shows that the exponent q∗ cannot be increased.

Similarly to Theorem 1 we obtain the following theorem stating some
conditions for the compactness of the embedding Ll

p(Ω) ⊂ Lq∗ (Ω) for domains
with finite measure mn.

Theorem 2. If Ω ∈ I̊p,α, 1 − 1/l < pα ≤ 1, or Ω ∈ Hp,α, pα > 1,
then the embedding operator of Ll

p(Ω) into Lq∗ (Ω), q∗ = p/(1− pl(1−α)), is
compact.

This theorem and Corollary 6.8.3/1 imply the next statement.

Corollary 2. If mn(Ω) < ∞ and Ω ∈ J̊α where 1 − 1/n < α ≤ 1,
lp(1 − α) < 1, then the embedding operator of Ll

p(Ω) into Lq(Ω), q < p/(1 −
pl(1 − α)), is compact.

From this we immediately obtain the following coarser sufficient conditions
formulated in terms of Jα.

Corollary 3. If mn(Ω) <∞ and Ω ∈ Jα, 1−1/n ≤ α ≤ 1, lp(1−α) ≤ 1,
then the embedding operator of L1

p(Ω) into Lq(Ω), q < p/(1 − pl(1 − α)) is
compact.

Example 2. Consider the domain in Example 1. By Corollary 3 the em-
bedding operator of Ll

p(Ω
(λ)) into Lq(Ω(λ)) is compact if

q < p
(
λ(n− 1) + 1

)
/
(
1 + λ(n− 1) − pl

)
(6.9.2)

(we suppose 1 + λ(n − 1) ≥ p l). We cannot put the equality sign in (6.9.2).
In fact, let η ∈ C∞

0 (0, 3), η = 1 on (1, 2). Obviously, the family of functions
{uε}ε>0, where

uε(x) = εl−(λ(n−1)+1)/pη(x/ε),

is bounded in Ll
p(Ω(λ)), but not compact in Lq∗ (Ω(λ)) with q∗ specified

by (6.9.1).

6.10 Applications to the Neumann Problem for Strongly
Elliptic Operators

Here we present some applications of the previous results to the study of the
solvability and the discreteness of the spectrum of the Neumann problem in
domains with irregular boundaries.
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6.10.1 Second-Order Operators

Let Ω be a domain with finite volume in R
n and let aij (i, j = 1, . . . , n) be real

measurable functions in Ω, aij = aji. Suppose that there exists a constant
c ≥ 1 such that

c−1|ξ|2 ≤ aijξiξj ≤ c|ξ|2

for almost all x ∈ Ω and for all vectors ξ = (ξ1, . . . , ξn).
We define the operator Aq, 1 ≤ q < ∞ of the Neumann problem for the

differential operator

u→ − ∂

∂xi

(
aij

∂u

∂xj

)

by the following conditions: 1. u ∈W 1
2,q(Ω), Aqu ∈ Lq′ (Ω), 1/q′ + 1/q = 1; 2.

for all v ∈W l
2,q(Ω) the equality

∫
Ω

vAqu dx =
∫
Ω

aij
∂u

∂xi

∂v

∂xj
dx (6.10.1)

is valid. The mapping u → Aqu is closed. It is clear that the range R(Aq) is
contained in the set Lq′ (Ω) � 1 of functions in Lq′ (Ω) that are orthogonal to
unity in Ω.

Lemma. R(Aq) = Lq′ (Ω) � 1 if and only if for all v ∈ W 1
2,q(Ω) the

“generalized Poincaré inequality”

inf
c∈R1

‖v − c‖Lq(Ω) ≤ k‖∇v‖L2(Ω) (6.10.2)

holds.

Proof. Sufficiency. By Lemma 5.1.2/2, the set W 1
2,q(Ω) is dense in L1

2(Ω).
Thus, if (6.10.2) holds for all v ∈W 1

2,q(Ω) then it also holds for all v ∈ L1
2(Ω).

Therefore, the functional v →
∫
Ω
vf dx is bounded in L1

2(Ω) and can be
expressed in the form

∫
Ω

aij(∂v/∂xj)(∂u/∂xi) dx, u ∈ L1
2(Ω), (6.10.3)

for an arbitrary function f ∈ Lq′ (Ω). Since by (6.10.2) L1
2(Ω) ⊂ Lq(Ω), then

u ∈W 1
2,q(Ω) and hence Aqu = f .

Necessity. Let f ∈ Lq′ (Ω) � 1, v ∈ L1
2(Ω) ∩ Lq(Ω), ‖∇v‖L2(Ω) = 1. Since

R(Aq) = Lq′ (Ω) � 1, the functional

f → v(f) =
∫
Ω

fv dx,

defined on Lq′ � 1, can be expressed in the form (6.10.3). Therefore, |v(f)| ≤
C‖∇u‖L2(Ω) and the functionals v(f) are bounded for each f ∈ Lq′ (Ω). Thus,
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they are totally bounded, i.e., (6.10.2) holds for all v ∈ W 1
2,q(Ω). The lemma

is proved. �

Theorems 6.3.3, 6.4.2 and the above lemma imply the following criterion
for the solvability of the problem Aqu = f for all f ∈ Lq′ (Ω) � 1.

Theorem 1. R(Aq) = Lq′ (Ω) � 1 if and only if Ω ∈ I2,1/q for q ≥ 2 and
Ω ∈ H2,1/q for q ≤ 2.

Let a be a real function in L∞(Ω) such that a(x) ≥ const > 0 for almost
all x ∈ Ω. Then the operator u → Aqu + au has the same domain as Aq.
Consider the Neumann problem Aqu + au = f where f ∈ Lq′ (Ω). If q′ ≥ 2
then its solvability is a trivial consequence of the continuity of the functional∫
Ω
fv dx in the space W 1

2 (Ω) with the inner product
∫
Ω

(
aij(∂v/∂xj)(∂u/∂xi) + avu

)
dx.

If q′ < 2 then a necessary and sufficient condition for solvability is

‖v‖Lq(Ω) ≤ C‖v‖W 1
2 (Ω)

for all v ∈W 1
2 (Ω).

The preceding theorem and Theorem 6.3.3 directly imply the next result.

Theorem 2. R(Aq + aI) = Lq′ (Ω) with q′ < 2 if and only if Ω ∈ I2,1/q.

By Rellich’s lemma the problem of requirements on Ω for the discreteness
of the spectrum of the operator A def= A2 is equivalent to the study of the com-
pactness of the embedding W 1

2 (Ω) ⊂ L2(Ω). Therefore, from Theorem 6.8.2
we immediately obtain the following criterion.

Theorem 3. The spectrum of the operator A is discrete if and only if
Ω ∈ I̊2,1/2.

Sufficient conditions for a set to be in I2,1/q, H2,1/q, I̊2,1/2 as well as
examples of domains belonging to these classes were presented in previous
sections of this chapter.

6.10.2 Neumann Problem for Operators of Arbitrary Order

In this subsection we limit consideration to strongly elliptic operators with
the range in L2(Ω).

Let Ω be a bounded subdomain of R
n. Let i, j denote multi-indices of

order not higher than l, l ≥ 1, and let aij denote bounded complex-valued
measurable functions in Ω.

Suppose that for all u ∈ Ll
2(Ω)
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Re
∫
Ω

∑
|i|=|j|=l

aijD
iuDju dx ≥ C‖∇lu‖2

L2(Ω), (6.10.4)

whereDi = {∂|i|/∂xi11 , . . . , ∂x
in
n }. Let the operatorA of the Neumann problem

for the differential operator

u→ (−1)l
∑

|i|=|j|=l

Di
(
aijD

ju
)

be defined by the following conditions: 1. u ∈ W l
2(Ω), Au ∈ L2(Ω), 2. for all

v ∈W l
2(Ω) ∫

Ω

v̄Au dx =
∫
Ω

∑
|i|=|j|=l

aijD
juDiv dx.

It is clear that the range R(A) is contained in the orthogonal complement
L2(Ω) � Pl−1 where Pl−1 is the space of polynomials of degree not higher
than l − 1.

If for all v ∈ Ll
2(Ω)

inf
Π∈Pl−1

‖v −Π‖L2(Ω) ≤ k‖∇lv‖L2(Ω), (6.10.5)

then R(A) = L2(Ω) � Pl−1 (cf. Lions and Magenes [500], 9.1, Chap. 2). By
a simple argument using induction on the number of derivatives, we show
that (6.10.5) follows from the Poincaré inequality

inf
c∈R1

‖u− c‖L2(Ω) ≤ k‖∇v‖L2(Ω).

Thus we have the following assertion.

Theorem 1. If Ω ∈ I2,1/2 then R(A) = L2(Ω)�Pl−1; i.e., the Neumann
problem Au = f is solvable for all f ∈ L2(Ω) � Pl−1.

We can pose the Neumann problem for the more general operator

u→ (−1)l
∑

|i|,|j|≤l

Di
(
aijD

ju
)

in a similar way. We define the operator B of this problem by the conditions:
1. u ∈ V l

2 (Ω), Bu ∈ L2(Ω); 2. for all v ∈ V l
2 (Ω)

∫
Ω

v̄Bu dx =
∫
Ω

∑
|i|,|j|≤l

aijD
juDiv dx. (6.10.6)

Theorem 2. If Ω ∈ I̊2,1/2 then R(B + λI) = L2(Ω) for sufficiently
large values of Reλ. Moreover, the operator (B + λI)−1 : L2(Ω) → V l

2 (Ω) is
compact.
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To prove the theorem we need the following lemma.

Lemma. If Ω ∈ I̊2,1/2, then, for all u ∈W l
2(Ω) and for any ε > 0,

l−1∑
k=0

‖∇ku‖L2(Ω) ≤ ε‖∇lu‖L2(Ω) + C(ε)‖u‖L2(Ω). (6.10.7)

Proof. By (6.8.2) we have

‖u‖L2(Ω) ≤ cA2,1/2(M)‖∇u‖L2(Ω) + c
(
mn(Ω)
M

)1/2

‖u‖L2(ΩM ),

where ΩM is a subdomain of Ω with boundary of the class C1 and such that
2mn(Ω\ΩM ) < M . Therefore

‖∇ku‖L2(Ω) ≤ cA2,1/2(M)‖∇k+1u‖L2(Ω) + c
(
mn(Ω)
M

)1/2

‖∇ku‖L2(ΩM )

for all k = 0, 1, . . . , l − 1. Since the boundary of ΩM is in C1, it follows that

‖∇ku‖L2(ΩM ) ≤ ε‖∇k+1u‖L2(ΩM ) + C(0)(ε)‖u‖L2(ΩM )

for all ε > 0. Therefore

‖∇ku‖L2(Ω) ≤ cA2,1/2(M)‖∇k+1u‖L2(Ω) + C(1)(M)‖u‖L2(ΩM ).

Applying this inequality with indices k, k + 1, . . . , l − 1, we obtain

‖∇ku‖L2(Ω) ≤ c
[
A2,1/2(M)

]l−k‖∇lu‖L2(Ω) + C(2)(M)‖u‖L2(ΩM ).

It remains to note that A2,1/2(M) → 0 as M → 0. The lemma is proved. �
We established, incidentally, that (6.10.7) is valid for some ε > 0 provided

Ω ∈ I2,1/2, i.e., A2,1/2(M) <∞.

Proof of Theorem 2. By (6.10.4) we have

Re
∫
Ω

∑
|i|,|j|≤l

aijD
iuDju dx ≥ C‖∇lu‖2

L2(Ω) − C1

l−1∑
k=0

‖∇ku‖2
L2(Ω).

Applying (6.10.7) with ε = C/2C1 we obtain

Re
∫
Ω

( ∑
|i|,|j|≤l

aijD
iuDju+ λ|u|2

)
dx

≥ 1
2
C1‖∇lu‖2

L2(Ω) + (Reλ− C2)‖u‖2
L2(Ω).
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Thus the “coercive inequality”

l∑
k=0

‖∇ku‖2
L2(Ω) ≤ const Re

∫
Ω

( ∑
|i|,|j|≤l

aijD
iuDju+ λ|u|2

)
dx

holds for Reλ > C2. This implies (cf., for instance, Lions and Magenes [500],
Chap. 2, 9.1) the unique solvability of the equation Bu + λu = f for all
f ∈ L2(Ω). The compactness of (B + λI)−1 results from Theorem 6.9/2. The
proof is complete. �

6.10.3 Neumann Problem for a Special Domain

The monograph by Courant and Hilbert [216] contains the following example
of a domain for which the Poincaré inequality is false.

Let Ω be the union of the square

Q =
{
(x, y) : 0 < x < 2, −1 < y < 1

}

and the sequence of symmetrically situated squares Qm, Q−m, m = 1, 2, . . . ,
connected with Q by the necks Sm, S−m (Fig. 27). Let the side lengths of the
squares Qm, Q−m as well as the heights of the necks be equal to εm = 2−m.
Let the widths of the necks be εαm.

In this subsection we show that the Poincaré inequality holds only for
α ≤ 3 and the Rellich lemma holds only for α < 3. Hence the Neumann
problem considered in Sect. 6.10.1 is solvable in L1

2(Ω) for any right-hand
side in L1

2(Ω) � 1 if and only if α ≤ 3 and the spectrum of this problem is
discrete if and only if α < 3.

We introduce the sequence of functions {um}m≥1 defined by um = ±ε−1
m

on Q±m, um(x, y) = ε−2
m (y∓1) on S±m, um = 0 outside Sm∪S−m∪Qm∪Q−m.

This sequence satisfies
∫∫

Ω

um dxdy = 0,
∫∫

Ω

(∇um)2 dxdy = 2εα−3
m ,

∫∫
Ω

u2
m dxdy > 2.

Thus the Poincaré inequality is false for Ω if α > 3 and the embedding
operator of W 1

2 (Ω) into L2(Ω) is not compact if α ≥ 3.
Consider a nonnegative function u equal to zero outside Qm ∪ Sm (m is a

fixed natural number) and infinitely differentiable in Qm ∪ Sm. We introduce
the notation

Et =
{
(x, y) : u = t

}
, Ht =

{
(x, y) : u < t

}
, Nt =

{
(x, y) : u ≥ t

}
.

If t ∈ (0,∞) satisfies
s(Et) ≥ 2−(α+1)m/2, (6.10.8)

then
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Fig. 27.

m2(Nt) ≤ c2−(3−α)m/2s(Et). (6.10.9)

The set of levels t for which (6.10.8) is valid will be denoted by P. Duplicating
with minor modification the arguments presented in Sect. 4.5, we can show
that one of the following cases occurs for t ∈ CP:

s(Et) ≥ 2−αm, (6.10.10)
m2(Nt) < c2−(1+α)m; (6.10.11)
s(Et) ≥ 2−αm, (6.10.12)
m2(Ht) < c2−(1+α)m; (6.10.13)
s(Et) < 2−αm, (6.10.14)
m2(Nt) ≤ c2−(3−α)m/2s(Et). (6.10.15)

This implies that the set of all levels t (up to a set of measure zero) can be
represented as the union R′ ∪ R′ ′ ∪ R′ ′ ′ where R′ is the set of those t for
which (6.10.14) and (6.10.15) are valid, R′ and R′ ′ ′ are the set of levels for
which (6.10.10) and (6.10.11) and (6.10.12) and (6.10.13) hold, respectively.

The function

t→ ψ(t) =
∫ t

0

(∫
Eτ

|∇u| ds
)−1

dτ
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admits the estimate

ψ(t) ≤ −
∫ t

0

d
dτ
m2(Nτ )

dτ
[s(Eτ )]2

(cf. Lemma 6.1.3/2). We express the right-hand side as the sum
∫

R′
+
∫

R′ ′
+
∫

R′ ′ ′
.

The inequality (6.10.15) implies
∫

R′
≤ −c2−(3−α)m

∫ t

0

[
m2(Nτ )

]−2 d
dτ
m2(Nτ ) dτ ≤ c2−(3−α)m/m2(Nt).

Using (6.10.10) and (6.10.11), we obtain
∫

R′ ′
≤ 2αm sup

τ ∈R′ ′
m2(Nτ ) dτ ≤ 2(α−1)m.

Similarly, by (6.10.12) and (6.10.13),
∫

R′ ′ ′
≤ 2αm sup

τ ∈R′ ′ ′
m2(Nτ ) ≤ 2(α−1)m.

Consequently,

ψ(t) ≤ c
(

2(α−1)m +
2−(3−α)m

m2(Nt)

)
. (6.10.16)

Since m2(Nt) ≤ 2−2m, (6.10.16) yields

m2(Nt)ψ(t) ≤ c2−(3−α)m. (6.10.17)

Therefore,
∫∫

Qm ∪Sm

u2 dxdy = 2
∫ ∞

0

tt′
ψm2(Nt(ψ)) dψ ≤ c2−(3−α)m

∫ ∞

0

tt′
ψ

dψ
ψ
.

The integral on the right-hand side does not exceed

(∫ ∞

0

t2
dψ
ψ2

)1/2(∫ ∞

0

(t′
ψ)2 dψ

)1/2

≤ 2
∫ ∞

0

(t′
ψ)2 dψ

= 2
∫∫

Qm ∪Sm

(∇u)2 dxdy.

Hence ∫∫
Qm ∪Sm

u2 dxdy ≤ c2−(3−α)m

∫∫
Qm ∪Sm

(∇u)2 dxdy. (6.10.18)
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It is clear that this inequality is valid for any function u ∈ L1
2(Ω) that is

equal to zero outside Qm ∪ Sm and that a similar estimate holds for negative
indices m.

Now let v be an arbitrary function in L1
2(Ω) and let η be a “truncating”

function equal to zero in Q, to unity in Qm and in Q−m, and linear in Sm

and S−m (m = 1, 2, . . . ). Then
∫∫

Ω

v2 dxdy ≤
∑

|k|≥N

(∫∫
Qk ∪Sk

(vη)2 dxdy +
∫∫

Sk

v2 dxdy
)

+
∫∫

ΩN

v2 dxdy, (6.10.19)

where ΩN = Ω
⋃

|k|≥N (Qk ∪ Sk) and N is an arbitrary positive integer.
From (6.10.18) we obtain

∫∫
Qm ∪Sm

(vη)2 dxdy

≤ c2−(3−α)m

[∫∫
Qm ∪Sm

(∇v)2 dxdy + 22m

∫∫
Sm

v2 dxdy
]
. (6.10.20)

We estimate the second integral on the right. We can easily check that
∫∫

Sm

|v| dxdy ≤ 2−m

∫∫
Sm

|∇v| dxdy + 2−m

∫
∂Sm ∩∂Q

|v| dx.

Hence ∫∫
Sm

v2 dxdy ≤ 1
2

∫∫
Sm

v2 dxdy + 2−2m−1

∫∫
Sm

(∇v)2 dxdy

+ 2−m

∫
∂Sm ∪∂Q

v2 dx.

Since s(∂Sm ∩ ∂Q) = 2−αm, by Hölder’s inequality,
∫∫

Sm

v2 dxdy ≤ c2−2m

∫∫
Sm

(∇v)2 dxdy

+ c2−2m‖v‖2
L2α/(α−1)(∂Sm ∩∂Q). (6.10.21)

Therefore (6.10.20) implies
∫∫

Qm ∪Sm

(vη)2 dxdy

≤ c2−(3−α)m

[∫∫
Qm ∪Sm

(∇v)2 dxdy + ‖v‖2
L2α/(α−1)(∂Sm ∩∂Q)

]
.

(6.10.22)
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Using (6.10.21) and (6.10.22), from (6.10.19) we obtain
∫∫

Ω

v2 dxdy ≤ c2−(3−α)N
∑

|k|≥N

[∫∫
Qk ∪Sk

(∇v)2 dxdy

+ ‖v‖2
L2α/(α−1)(∂Sk ∩∂Q)

]
+
∫∫

ΩN

v2 dxdy.

Again, by Hölder’s inequality,
∑

|k|≥N

‖v‖2
L2α/(α−1)(∂Sk ∩∂Q)

≤
∑

|k|≥N

2−(α−1)|k|/2‖v‖2
L4α/(α−1)(∂Sk ∩∂Q)

≤
( ∑

|k|≥N

2− |k|(α−1)α/(α+1)

)(α+1)/2α

×
( ∑

|k|≥N

∫
∂Sk ∩∂Q

|v|4α/(α−1) dx
)(α−1)/2α

≤ c‖v‖2
L4α/(α−1)(∂Q).

Thus ∫∫
Ω

v2 dxdy ≤ c2−(3−α)N

∫∫
Ω

(∇v)2 dxdy + c‖v‖2
L4α/(α−1)(∂Q)

+ c‖v‖2
L2(ΩN ). (6.10.23)

Since for any r ∈ (1,∞)

‖v‖Lr(∂Q) ≤ c
(
‖∇v‖L2(Ω) + ‖v‖L2(Ω)

)
,

(6.10.23) yields

‖v‖L2(Ω) ≤ c 2−(3−α)N/2‖∇v‖L2(Ω) + c‖v‖L2(ΩN ). (6.10.24)

The boundary of ΩN is of the class C0,1, and so the embedding operator of
W 1

2 (ΩN ) into L2(ΩN ) is compact. This and (6.10.24) imply the compactness
of the embedding operator of W 1

2 (Ω) into L2(Ω) for α < 3. Finally, for α ≤ 3
from (6.10.24) we get the Poincaré inequality

inf
γ∈R1

‖v − γ‖L2(Ω) ≤ c
(
‖∇v‖L2(Ω) + inf

γ∈R1
‖v − γ‖L2(Ω1)

)
≤ c ‖∇v‖L2(Ω).

6.10.4 Counterexample to Inequality (6.10.7)

We shall show that the validity of inequality (6.10.7) for some ε > 0 does not
imply its validity for all ε > 0.
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Let Ω be the domain considered in Sect. 6.10.3. Suppose the width of the
necks Sm and S−m is equal to 2−3m. In Sect. 6.10.3 we showed that in this
case Ω ∈ I2,1/2. So (6.10.7) holds for some ε > 0.

Consider the sequence of functions {um}m≥1 defined by um = 0 outside
Qm ∪ Sm, um(x, y) = 4m(y − 1)2 on Sm, um(x, y) = 2m+1(y − 1) − 1 in Qm.
We can easily see that

∫∫
Ω

|∇um|2 dxdy ≤ 4
(
1 + 4−m

)
,

∫∫
Ω

|∇2um|2 dxdy = 4,
∫∫

Ω

u2
m dxdy ≥ 4−m.

By (6.10.7) with l = 2 we have

2
(
1 + 4−m

)1/2 ≤ 2ε+ k(ε)2−m, m = 1, 2, . . . ,

which fails for some ε > 0.

6.11 Inequalities Containing Integrals over the Boundary

6.11.1 Embedding W 1
p,r(Ω, ∂Ω) ⊂ Lq(Ω)

The content of the present subsection is related to that of Sect. 5.6 where
the case p = 1 is considered. The space W 1

p,r(Ω, ∂Ω) and the class Kα,β are
defined in Sect. 5.6.1.

Theorem 5.6.3 implies the following sufficient condition for the continuity
of the embedding W 1

p,r(Ω, ∂Ω) ⊂ Lq(Ω) for p > 1.

Theorem 1. If Ω ∈ Kα,β with α ≤ 1, p(1 − α) < 1, β ≥ α then for all
u ∈W 1

p,r(Ω, ∂Ω)
‖u‖Lq(Ω) ≤ c‖u‖W 1

p,r(Ω,∂Ω), (6.11.1)

where q = p/(1 − p(1 − α)), r = pα/β(1 − p(1 − α)).

Proof. By Theorem 5.6.3 for all v ∈ C∞(Ω)∩C(Ω̄) with bounded supports
we have

(∫
Ω

|v|1/α dx
)α

≤ C
(
‖∇v‖L(Ω) +

(∫
∂Ω

|v|1/β ds
)β)

.

We put v = |u|qα and see that by Hölder’s inequality

∫
Ω

|u|(p−1)/(1−p(1−α))|∇u| dx ≤ ‖∇u‖Lp(Ω)

(∫
Ω

|u|p/(1−p(1−α)) dx
)1−1/p

.

Hence
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‖u‖Lq(Ω) ≤ C1

(
‖∇u‖1/pα−1/α+1

Lp(Ω) ‖u‖(p−1)/pα
Lq(Ω) + ‖u‖Lr(∂Ω)

)
,

and (6.11.1) follows. �

Since any set Ω is contained in K1−1/n,1, we obtain the following corollary.

Corollary 1. The inequality

‖u‖Lpn/(n−p)(Ω) ≤ c
(
‖∇u‖Lp(Ω) + ‖u‖Lp(n−1)/(n−p)(∂Ω)

)
(6.11.2)

holds for all W 1
p,p(n−1)/(n−p)(Ω, ∂Ω) with p < n for an arbitrary open set Ω.

Replacing u by |u|r and applying Hölder’s inequality in (5.6.20) we arrive
at the next assertion.

Corollary 2. The following refined Friedrichs type inequality

‖u‖Lq(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Lr(∂Ω)

)
(6.11.3)

holds for (n− p)r ≤ p(n− 1), r ≥ 1, q = rn/(n− 1) for an arbitrary open set
Ω with finite volume.

We show that the exponent q = rn/(n− 1) on the left in (6.11.3) cannot
be improved provided Ω is not subject to additional conditions.

Example. Let the domain Ω be the union of the semiball B− = {x :
xn < 0, |x| < 1}, the sequence of balls Bm (m = 1, 2, . . . , ) and thin pipes Cm

connecting Bm with B− (Fig. 28). Let �m be the radius of the ball Bm and
let hm be the height of Cm. Let um denote a piecewise linear function equal
to unity in Bm and to zero outside Bm ∪ Cm. Suppose that there exists a
constant Q such that

‖um‖Lq(Ω) ≤ Q
(
‖∇um‖Lp(Ω) + ‖um‖Lr(∂Ω)

)

Fig. 28.
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for all um. This implies the estimate

[
mn(Bm)

]1/q ≤ Q(h−1
m

[
mn(Cm)

]1/p +
[
s(∂Bm ∪ ∂Cm)

]1/r)
.

Since the first term on the right can be made arbitrarily small by diminishing
the width of Cm, it follows that �n/q

m = O(�(n−1)/r
m ). Hence q ≤ rn/(n− 1).

To formulate a necessary and sufficient condition for the validity of (6.11.1)
we need the following modification of the p-conductivity.

Let K be a conductor in Ω. We put

c̃p(K) = inf
{∫

Ω

|∇f |p dx : f ∈ C∞(Ω)∩C(Ω̄), f ≥ 1 on F, f ≤ 0 on Ω\G
}
.

(6.11.4)
Similarly to Lemma 6.1.1/2 we can prove that c̃p(K) can be expressed as

follows:

c̃p(K) = inf
{∫

Ω

|∇f |p dx : f ∈ C∞(Ω)∩C(Ω̄), f = 1 on F, f = 0 on Ω\G
}
.

(6.11.5)
Theorem 2. A necessary and sufficient condition for the validity of

(6.11.1) with p > 1, q ≥ p ≥ r is

[
mn(F )

]1/q ≤ const
([
c̃p(K)

]1/p +
[
s(∂eG)

]1/r)
,

where K is any conductor G\F in Ω.

This assertion can be proved similarly to Theorem 2.3.9.

The same argument as in the proof of Theorem 6.8.2/1 leads to the fol-
lowing criterion for compactness.

Theorem 3. A necessary and sufficient condition for compactness of the
embedding operator of W 1

p,r(Ω, ∂Ω) into Lq(Ω) with mn(Ω) < ∞ and q ≥
p ≥ r is

lim
M→0

sup
{

[mn(F )]1/q

[c̃p(K)]1/p + [s(∂eG)]1/r
: mn(G) ≤M

}
= 0. (6.11.6)

This and Corollary 2 imply the following assertion.

Corollary 3. Let (n − p)r ≤ p(n − 1), r ≥ 1, q < rn/(n − 1). Then the
embedding operator of W 1

p,r(Ω, ∂Ω) into Lq(Ω) is compact for arbitrary open
set Ω with finite volume.

The example of the present subsection shows that there exist domains
with finite volume for which the embedding W 1

p,r(Ω, ∂Ω) ⊂ Lrn/(n−1)(Ω) is
not compact.
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6.11.2 Classes I (n−1)
p,α and J (n−1)

α

Definition 1. Let W̃ 1
p (Ω) be the completion of the set of functions in C∞(Ω)∩

C(Ω̄) with bounded supports with respect to the norm in W 1
p (Ω).

Definition 2. We say that Ω is contained in the the class I
(n−1)
p,α , p ≥ 1,

α ≥ (n− p)/p(n− 1), if there exists a constant R > 0 such that

Mp,α(R) def= sup
[s(∂eF )]α

[c̃p(K)]1/p
<∞.

Here ∂eF = ∂F ∩∂Ω and the supremum is taken over the set of all conductors
K = G\F in Ω with G = Ω ∩BR(x), x ∈ ∂Ω.

The restriction α ≥ (n−p)/p(n−1) is due to the fact that the class I
(n−1)
p,α

contains only sets Ω with boundary having the (n−1)-dimensional Hausdorff
measure zero provided α < (n− p)/p(n− 1).

Proposition 1. If α < (n − p)/p(n − 1), then either Mp,α(R) = ∞
identically, or s(∂Ω) = 0.

Proof. Let Ω ∈ I
(n−1)
p,α , s(∂Ω) > 0 and let ε be a small enough positive

number. We construct a covering of ∂Ω by open balls Brj (xj) with rj < ε
and ∑

j

rn−1
j ≤ cs(∂Ω).

Then ∑
j

rn−1
j ≤ c

∑
j

s
(
Brj (xj) ∩ ∂Ω

)
,

and hence, for at least one ball, we have

rn−1
j ≤ cs

(
Brj (xj) ∩ ∂Ω

)
. (6.11.7)

Consider the conductor Kj = Gj\Fj where Gj = Ω ∩B2rj (xj) and Fj = Ω ∩
Brj (xj). Since cp(Kj) ≤ p-cap(Brj (xj), B2rj (xj)) = c rn−p

j (cf. Sect. 2.2.4), by

definition of the class I
(n−1)
p,α and by estimate (6.11.7) we obtain r(n−1)pα

j ≤
const rn−p

j . Noting that rj < ε and ε is small, we obtain (n − 1)pα ≥ n − p.
The proposition is proved. �

Definition 3. The set Ω is contained in the class J
(n−1)
α if there exists

a constant M ∈ (0,mn(Ω)) such that

Rα(M)

def= sup
{

[s(∂eg)]α

s(∂ig)
: g is an admissible subset of Ω with mn(g) ≤M

}

is finite.
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We introduce the function

Pp,α(M) = sup
[s(∂eF )]α

[c̃p(K)]1/p
,

where the supremum is taken over the collection of all conductors K = G\F
in Ω with mn(G) ≤M .

In the same way as we proved Proposition 6.6 we can prove the following
assertion.

Proposition 2. The inequality

Pp,γ(M) ≤ c
[
Ap,β(M)

]1−γ/α[
Rα(M)

]γ/α

holds for γ = αβp/(p − 1 + pβ), where Ap,β is the function in the definition
of the class Ip,β (cf. Sect. 6.3.1).

From this proposition it follows that

J (n−1)
α ∩ Ip,β ⊂ I (n−1)

p,γ . (6.11.8)

6.11.3 Examples of Domains in I (n−1)
p,α and J (n−1)

α

Example 1. Let x′ = (x1, . . . , xn−1) and let

Ω =
{
x : x′ ∈ R

n−1, −∞ < xn < |x′|−λ
}
, 0 < λ < n− 2.

Let g also denote an arbitrary admissible subset of Ω with s(∂ig) < 1. We
have

s(∂eg) =
∫

Pr(∂eg)

(
1 + λ2|x′|−2(λ+1)

)1/2 dx′,

where Pr is the orthogonal projection mapping onto the plane xn = 0. It is
clear that the supremum of the integral

∫
E

(
1 + λ2|x′|−2(λ+1)

)1/2 dx′,

taken over all subsets E of the plane xn = 0 with a fixed (n− 1)-dimensional
measure, is attained at the (n − 1)-dimensional ball centered at the origin.
Therefore

s(∂eg) ≤ c
∫ �

0

rn−2
(
1 + λ2r−2(λ+1)

)1/2 dr,

where
� =

[
v−1
n−1s

(
Pr(∂eg)

)]1/(n−1)
.

This implies
s(∂eg) ≤ cs

(
Pr(∂eg)

)(n−2−λ)/(n−1)
.
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However, since
s
(
Pr(∂eg)

)
≤ s(∂ig),

we have [
s(∂eg)

](n−1)/(n−2−λ) ≤ cs(∂ig).

In Example 6.3.6/2 we showed that Ω is contained in Ip,β with β =
(n − 1 + (p − 1)λ)/(n − 1 − λ)p. Using (6.11.8) we obtain that Ω ∈ I

(n−1)
p,γ

with γ = (n− 1 + (p− 1)λ)/p(n− 2 − λ).
This value of γ is the best possible which is checked using the sequence

of conductors Km = Gm\Fm, where Gm = {x ∈ Ω : 0 < xn < 2m−1} and
Fm = {x ∈ Ω : 0 < xn < m−1} (cf. Example 6.6).

Example 2. A similar argument shows that the set

Ω =
{
x : |x′| < xλn, 0 < xn <∞

}

with λ ≥ 1 is contained in J
(n−1)
λ(n−1)/(λ(n−2)+1). Since by Example 6.3.6/1,

Ω ∈ Ip,β with β = (λ(n − 1) + 1 − p)/p(λ(n − 1) + 1), we see that (6.11.8)
implies Ω ∈ I

(n−1)
p,γ with γ = (λ(n− 1) + 1 − p)/p(λ(n− 2) + 1).

6.11.4 Estimates for the Norm in Lq(∂Ω)

Theorem 1. Let s(∂Ω) <∞.
1. If Ω ∈ I

(n−1)
p,α with αp ≤ 1, then for all functions u ∈ C∞(Ω) ∩ C(Ω̄)

with bounded supports the inequality

‖u‖Lq(∂Ω) ≤ C‖u‖W 1
p (Ω) (6.11.9)

holds with q = α−1 and with constant C that is independent of u.
2. If for the same set of functions u inequality (6.11.9) holds with 1/q ≥

(n− p)/p(n− 1), then Ω ∈ I
(n−1)
p,1/q .

Proof. 1. We construct a covering of ∂Ω by equal open balls BR(xi),
xi ∈ ∂Ω, such that the multiplicity of the covering is finite and depends
only on n. Let {ηi} be a partition of unity subordinate to this covering with
|∇ηi| ≤ cR−1.

Duplicating with obvious modifications the proof of Theorem 2.3.3, we
obtain

‖uηi‖qLq(∂Ω) ≤ c sup
F ⊂Ω∩BR(xi)

s(∂eF )
[c̃p(G\F )]q/p

∥∥∇(uηi)
∥∥q
Lp(Ω)

,

where G = Ω ∩BR(xi). Summing over i, we arrive at

‖u‖Lq(∂Ω) ≤ cMp,1/q(R)
(
‖∇u‖Lp(Ω) +R−1‖u‖Lp(Ω)

)
. (6.11.10)
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2. We show that Pp,1/q(M) is bounded for some small M > 0.
Consider an arbitrary conductor K = G\F in Ω with mn(G) ≤M , where

M is a constant which will be chosen at the end of the proof.
We insert any function f of the class specified in (6.11.5) into (6.11.9).

Then

‖f‖Lq(∂Ω) ≤ C
(
‖∇f‖Lp(Ω) + ‖f‖Lp(Ω)

)
≤ C

(
‖∇f‖Lp(Ω) +M1/p−(n−1)/nq‖f‖Lqn/(n−1)(Ω)

)
. (6.11.11)

By Corollary 6.11.1/1

‖f‖Lqn/(n−1)(Ω) ≤ C
(
‖∇f‖Lp(Ω) + ‖f‖Lq(∂Ω)

)
. (6.11.12)

The inequalities (6.11.11) and (6.11.12) imply

‖f‖Lq(∂Ω) ≤ C
(
‖∇f‖Lp(Ω) +M1/p−(n−1)/nq‖f‖Lq(∂Ω)

)
.

If from the very beginning the constant M is chosen to be so small that

2CM1/p−(n−1)/nq < 1,

then
‖f‖Lq(∂Ω) ≤ 2C‖∇f‖Lp(Ω).

Minimizing the right-hand side, we obtain

[
s(∂eF )

]1/q ≤ 2C
[
c̃p(K)

]1/p
.

The proof of Theorem 1 implies the following assertion.

Corollary. Let s(∂Ω) <∞ and pα ≤ 1. The class I
(n−1)
p,α can be defined

by the condition Pp,α(M) is finite for some M > 0.

Theorem 2. Let s(∂Ω) <∞, mn(Ω) <∞.
1. If Ω ∈ I

(n−1)
p,α , pα < 1, then for all functions u ∈ C∞(Ω) ∩C(Ω̄) with

bounded supports the inequality

‖u‖Lq(∂Ω) ≤ C‖u‖W 1
p,p(Ω,∂Ω) (6.11.13)

holds with q = α−1 and with a constant C independent of u.
2. If for any u of the same class (6.11.13) holds with q > p then Ω ∈

I
(n−1)
p,α , α = q−1.

The first part of the theorem follows from (6.11.3) and Theorem 1, the
proof of the second part is similar to that of the second part of Theorem 1.�

Theorem 3. Let Ω be a domain with s(∂Ω) < ∞, mn(Ω) < ∞ and let
q ≥ p. The inequality
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inf
c∈R1

‖u− c‖Lq(∂Ω) ≤ C‖∇u‖Lp(Ω) (6.11.14)

holds for any function u in C∞(Ω) ∩ C(Ω̄) with bounded support and with
q ≥ p if only if Ω ∈ I

(n−1)
p,1/q .

Proof. Sufficiency. Let K = G\F , mn(G) ≤M . By Theorem 6.11.1/2 and
Corollary 6.11.1/3 we have

mn(F ) ≤ const
(
c̃p(K) + s(∂eG)

)
.

This and the corollary of the present subsection imply

mn(F ) ≤ const c̃p(K).

In other words, Ω is contained in Ip,1/p. By Theorem 6.4.3/2 and
Lemma 5.2.3/1, for all u ∈ L1

p(Ω), we have

inf
c∈R1

‖u− c‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

It remains to refer to Theorem 1.
Necessity. Substituting any function f of the class specified in (6.11.5)

into (6.11.14), we obtain

min
c∈R1

{
|1 − c|qs(∂eF ) + |c|qs(∂Ω\∂eG)

}
≤ Cq[c̃p(K)]q/p.

This leads to the estimate

s(∂eF )s(∂Ω\∂eG)
{[s(∂eF )]1/(q−1) + [s(∂Ω\∂eG)]1/(q−1)}q−1

≤ Cq
[
c̃p(K)

]q/p
.

Therefore,
s(∂eF ) ≤ 2q−1Cq

[
c̃p(K)

]q/p
provided 2s(∂eG) ≤ s(∂Ω). It remains to take any ball of sufficiently small
radius with center at ∂Ω as G. The theorem is proved. �

6.11.5 Class I̊ (n−1)
p,α and Compactness Theorems

Definition. The set Ω is contained in the class I̊
(n−1)
p,α if

lim
R→0

Mp,α(R) = 0,

where Mp,α(R) is the same as in Proposition 6.11.2/1.
In the proof of Proposition 6.11.2/1 we showed that α > (n− p)/p(n− 1)

provided s(∂Ω) > 0 and the class I̊
(n−1)
p,α is not empty.
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Example. Consider the domains

Ω1 =
{
x : |x′| < 1, 1 < xn < |x′|−λ

}
, 0 < λ < n− 2,

Ω2 =
{
x : |x′| < xλn, 0 < xn < 1

}
, λ ≥ 1.

In Examples 6.11.3/1 and 6.11.3/2 we actually showed that Ω1 ∈ I
(n−1)
p,γ1

and Ω2 ∈ I
(n−1)
p,γ2 , where γ1 = (n − 1 + (p − 1)λ)/(n − 2 − λ)p and γ2 =

(λ(n− 1) + 1 − p)/(λ(n− 2) + 1)p as well as that Ωi /∈ I̊p,γ1 . Consequently,
Ωi ∈ I̊p,αi (i = 1, 2) if and only if αi > γi.

Theorem 1. Let s(∂Ω) < ∞ and mn(Ω) < ∞. The set of functions
in C∞(Ω) ∩ C(Ω̄) having bounded supports and contained in the unit ball
of the space W 1

p (Ω) is relatively compact in Lq(∂Ω), q ≥ p, if and only if

Ω ∈ I̊
(n−1)
p,1/q .

Proof. Sufficiency. Let Ω ∈ I̊
(n−1)
p,1/q , q ≥ p. If ‖u‖W 1

p (Ω) ≤ 1, by Theo-
rem 6.11.4/1 we have

‖∇u‖Lp(Ω) + ‖u‖Lp(∂Ω) ≤ const.

By Corollary 6.11.1/3 the embedding operator of W 1
p,p(Ω, ∂Ω) into Lp(Ω) is

compact and the unit ball in W 1
p (Ω) is a compact subset of Lp(Ω).

Given any positive number ε we can find an R such that Mp,1/q(R) < ε.
Hence, by (6.11.10), for all u ∈ C∞(Ω) ∩ C(Ω) with bounded supports we
have

‖u‖Lq(∂Ω) ≤ ε‖∇u‖Lp(Ω) + C(ε)‖u‖Lp(Ω).

Now the result follows by a standard argument.
Necessity. Let Θ be the set of functions specified in the statement of the

theorem. Since the traces on ∂Ω of functions in Θ form a compact subset of
Lq(∂Ω), given any ε > 0, we can find an R such that

(∫
BR(x)∩∂Ω

|u|q ds
)1/q

≤ ε

for all u ∈ Θ and for all balls BR(x). Let u be an arbitrary function in
C∞(Ω) ∩ C(Ω̄) with support in BR(x). We have

‖u‖Lp(BR(x)∩∂Ω) ≤ ε
(
‖∇u‖Lp(Ω) + ‖u‖Lp(Ω)

)
.

Since by Corollary 6.11.1/2

‖u‖Lp(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖Lp(∂Ω)

)
,

it follows that
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(∫
BR(x)∩∂Ω

|u|q ds
)1/q

≤ εC
(
‖∇u‖Lp(Ω) +

(∫
BR(x)∩∂Ω

|u|p ds
)1/p)

.

Thus, if ε is small enough, then
(∫

BR(x)∩∂Ω

|u|q ds
)1/q

≤ 2εC‖∇u‖Lp(Ω).

Let K be the conductor (BR(x) ∩ Ω)\F . Substituting any function f of
the class specified by the formula (6.11.5) into the latter inequality, we obtain

[
s(∂eF )

]1/q ≤ 2εC
[
c̃p(K)

]1/p
. �

While proving Theorem 1, we also obtained the following result.

Theorem 2. Let s(∂Ω) < ∞ and mn(Ω) < ∞. The set of functions in
C∞ ∩ C(Ω̄) having bounded supports and contained in the unit ball of the
space W 1

p,p(Ω, ∂Ω) is relatively compact in Lq(∂Ω), q ≥ p, if and only if

Ω ∈ I̊
(n−1)
p,1/q .

6.11.6 Criteria of Solvability of Boundary Value Problems for
Second-Order Elliptic Equations

In Sect. 6.10.1 we established necessary and sufficient conditions for the solv-
ability of the Neumann problem with homogeneous boundary data for uni-
formly elliptic second-order equations in the energy space as well as criteria
for the discreteness of the spectrum of this problem. The theorems of the
present section enable us to obtain similar results for the problem

Lu ≡ − ∂

∂xi

(
aij

∂u

∂xj

)
+ au = f in Ω,

Mu ≡ aij
∂u

∂xi
cos(ν, xj) + bu = ϕ on ∂Ω,

(6.11.15)

where ν is an outward normal to ∂Ω. Here a and b are real functions, a ∈
L∞(Ω), b ∈ L∞(∂Ω) and aij = aji.

In what follows we assume that s(∂Ω) <∞, mn(Ω) <∞ and that either
both a and b are separated from zero and positive or they vanish identically.
We assume for the moment that f ∈ L1(Ω) and ϕ ∈ L1(∂Ω). The exact
formulation of the problem is as follows.

We require a function in W 1
2 (Ω, ∂Ω) such that

∫
Ω

(
aij

∂u

∂xj

∂v

∂xi
+ auv

)
dx+

∫
∂Ω

buv ds =
∫
Ω

fv dx+
∫
∂Ω

ϕv ds, (6.11.16)

where v is an arbitrary function in C(Ω̄)∩W 1
2 (Ω, ∂Ω) with bounded support.
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This formulation is correct since by definition of the space W 1
2 (Ω, ∂Ω)

and (6.11.3) the integrals on the left in (6.11.16) converge.
The case b = 0, ϕ = 0 was studied in Sect. 6.10.1. The same argument as

in Sect. 6.10.1 together with Theorems 6.11.1/1–6.11.1/3, 6.11.4/1–6.11.4/3,
6.11.5/1, and 6.11.5/2 leads to the following result.

Theorem 1. 1. If a = 0, b = 0, f = 0, q′ = q/(q − 1) ≤ 2, then the
problem (6.11.15) is solvable for all ϕ ∈ Lq′ (∂Ω), orthogonal to unity on ∂Ω,
if and only if Ω ∈ I

(n−1)
2,1/q .

2. If inf a > 0, b = 0 and f = 0 then the problem (6.11.15) is solvable for
all ϕ ∈ Lq′ (∂Ω), q′ ≤ 2 if and only if Ω ∈ I

(n−1)
2,1/q .

3. If a = 0, inf b > 0 and f = 0 then the problem (6.11.15) is solvable for
all ϕ ∈ L2(∂Ω) for an arbitrary Ω. Under the same assumptions on a, b, and
f a necessary and sufficient condition for the solvability of (6.11.15) for all
ϕ ∈ Lq′ (∂Ω), q′ < 2, is the inclusion Ω ∈ I

(n−1)
2,1/q .

In each of these cases the solution of (6.11.15) is contained inW 1
2,q(Ω, ∂Ω).

4. Let ϕ = 0 and inf b > 0. The problem (6.11.15) is solvable for all
f ∈ Lq′ (Ω), q′ ≥ 2n/(n+1), for an arbitrary set Ω. A necessary and sufficient
condition for the solvability of this problem for all f ∈ Lq′ (Ω), q′ < 2n/(n+1),
is the condition of Theorem 6.11.1/2 with p = r = 2.

Theorem 2. 1. Under the assumptions 1–3 of the previous theorem, a
necessary and sufficient condition for the compactness of the inverse operator

Lq(∂Ω) →W 1
2,2(Ω, ∂Ω), q ≤ 2,

of the problem (6.11.15) is Ω ∈ I̊
(n−1)
2,1/q .

2. If the assumption 4 of Theorem 1 is valid, the inverse operator

Lq(∂Ω) →W 1
2,2(Ω, ∂Ω)

of the problem (6.11.6) is compact for any set Ω provided q′ > 2n/(n+ 1).
A necessary and sufficient condition for the compactness of this operator

for q′ ≤ 2n/(n+ 1) is the condition of Theorem 6.11.1/3 with p = r = 2.

In the case q = 2, Theorem 2 yields necessary and sufficient conditions for
the discreteness of the spectrum of the problems

Lu = 0 in Ω, Mu = λu on ∂Ω,
Lu = λu in Ω, Mu = 0 on ∂Ω.

An extension of the results in the present subsection to the mixed boundary
problem

Lu = f on Ω\E, Mu = ϕ on ∂Ω\E, u = 0 on E,

where E is a subset of Ω̄, is a simple exercise.
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6.12 Comments to Chap. 6

Section 6.1. Conductivity (i.e., 2-conductivity) was studied by Pólya and
Szegö [666]. This notion was applied to embedding theorems by the au-
thor [528]. Here the presentation follows the author’s paper [547].

Sections 6.2–6.4. The content of these sections except Sect. 6.4.5 and
6.4.7 is taken from the author’s paper [547].

In the paper by Amick [45] the decomposition of the space [L2(Ω)]N into
two orthogonal subspaces of solenoidal vector fields and of gradients of func-
tions inW 1

2 (Ω) are studied. This decomposition plays an important role in the
mathematical theory of viscous fluids (cf. Ladyzhenskaya [474]). According to
the Amick theorem [45], this decomposition is possible for a bounded domain
Ω if and only if the spaces W 1

2 (Ω) and L1
2(Ω) coincide. By Theorem 6.4.3/2 of

the present book, the last property is equivalent to the inclusion Ω ∈ I2,1/2.
In connection with Corollary 6.3.4 we note that Buckley and Koskela [147]

proved that L1
p(Ω) ⊂ L2p/(2−p)(Ω), 2 > p ≥ 1, where Ω is a bounded simply

connected domain, only if Ω is a John domain. The sufficiency of the last
condition is due to Bojarski [122]. In other words, Ω ∈ I2,2p/(2−p) if and only
if Ω is a John domain.

Section 6.5. The result of this section for p = 2 was obtained by the
author [537].

Section 6.6 was first published in the author’s book [552].
Section 6.7. Most of this section (6.7.1–6.7.4 except Proposition 6.7.1/1)

is borrowed from the author’s paper [547]. Proposition 6.7.1/1 as well as the
content of Section 6.7.5 follow the author’s book [552].

Sections 6.8–6.9 are part of the author’s paper [547].
Section 6.10 is partly contained in the author’s paper [537]. Sec-

tions 6.10.2 and 6.10.4 were published in the author’s book [552]. The equiv-
alence of the Poincaré inequality and the solvability of the Neumann problem
is well known. The same pertains to the interconnection of conditions for the
discreteness of the spectrum and the theorems on compactness (cf. Deny and
Lions [234], Nečas [630], Lions and Magenes [500], and others).

Section 6.11 is borrowed from the author’s book [552]. Payne and Wein-
berger [656] showed that the optimal constant C in the Poincaré inequality
(6.11.14) with p = q = 2 and for convex domains, formulated in terms of diam-
eter is equal to π−1 diamΩ. A sharp form of Corollary 6.11.1/1 with optimal
constants multiplying the quantities ‖∇u‖Lp(Ω) and ‖u‖Lp(n−1)/(n−p)(∂Ω) has
recently been established in Maggi and Villani [512]. The conductivity c̃2 was
applied to boundary value problems for the Laplacian in very general domains
by Arendt and Warma [51], Biegert and Warma [97, 98] et al. (In these papers
the set function c̃2 is called relative capacity.)

There are a number of papers, where for special classes of domains (with-
out the cone property or unbounded), manifolds, and metric spaces, the-
orems on the continuity and the compactness of the embedding operator
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W l
p(Ω) → Lq(Ω), as well as necessary conditions for these properties are

proved: J.-L. Lions [499]; Stampacchia [719]; Björup [108]; Campanato [165];
Globenko [311]; Andersson [48, 49]; Hurd [388]; R.A. Adams [22, 23]; Ed-
munds [247]; Fraenkel [285]; Reshetnyak [676]; Gol’dshtein and Reshetnyak
[316]; Jerison [401]; Hurri [389, 390]; Martio [525]; Egnell, Pacella, and Tri-
carico [254]; Evans and Harris [262]; Hurri-Syrjänen [391, 392]; Chua [189];
Evans and Harris [263]; Smith and Stegenga [708]; Stanoyevitch [721]; Stanoye-
vitch and Stegenga [722, 723]; Buckley and Koskela [147]; Maheux and Saloff-
Coste [513]; Koskela and Stanoyevitch [460]; Labutin [470, 471, 473]; Haj�lasz
and Koskela [343]; Ross [684]; Kilpeläinen and Malý [422]; Besov [90–92]; Ed-
munds and Hurri-Syrjänen [251]; Haj�lasz [341]; Burenkov and Davies [157];
Koskela, Onninen. and Tyson [459]; Koskela and Onninen [458]; R.A. Adams
and Fournier [25]; Coulhon and Koskela [215]; Harjulehto and Hästö [352];
Maz’ya and Poborchi [574–576]; Björn and Shanmugalingam [107]; Martin
and M. Milman [523]; et al.

Let, for example, Ω be a cusp domain of the form

Ω =
{
x = (y, z) ∈ R

n : z ∈ (0, 1), |y| < ϕ(z)
}
, n ≥ 2,

where ϕ is an increasing Lipschitz continuous function on [0, 1] such that
ϕ(0) = limz→0 ϕ

′(z) = 0. Poborchi and the author showed [449] that for 1 <
p ≤ q <∞, l = 1, 2, . . . , the space W l

p(Ω) is continuously embedded in Lq(Ω)
if and only if the quantities A0, A1 are finite, where Aγ = supz∈(0,1)Aγ(z),

Aγ(z) =
(∫ z

0

(z − t)q(l−1)(1−γ)ϕ(t)n−1 dt
) 1

q

×
(∫ 1

z

ϕ(t)
n−1
1−p (t− z)

p(l−1)γ
p−1 dt

) p−1
p

.

This embedding is compact if and only if limz→+0A0(z) = limz→+0A1(z) = 0.
The continuity of the embedding operator:

W l
1(Ω) → Lq(Ω), 1 ≤ q <∞,

is equivalent to the inequality sup{A(z) : z ∈ (0, 1)} <∞ with

A(z) = ϕ(z)1−n

(∫ z

0

(z − t)(l−1)qϕ(t)n−1 dt
)1/q

and its compactness to limz→+0A(z) = 0.
Furthermore, the inequality

∫ 1

0

z(l−1)p/(p−1)

ϕ(z)(n−1)/(p−1)
dz <∞, p ∈ (1,∞)
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is necessary and sufficient for the continuity of the embedding W l
p(Ω) →

C(Ω) ∩ L∞(Ω), and this embedding is automatically compact. The space
W l

1(Ω) is continuously embedded in C(Ω) ∩ L∞(Ω) if and only if

sup
{
zl−1ϕ(z)1−n : z ∈ (0, 1)

}
<∞,

and this embedding is compact if and only if

lim
z→+0

zl−1ϕ(z)1−n = 0.

Recently a great deal of attention has been paid to the Sobolev-type em-
beddings for the so-called λ-John domains.

Let λ ≥ 1. A bounded domain Ω ⊂ R
n is λ-John, if there is a constant

C > 0 and a distinguished point x0 ∈ Ω such that every x ∈ Ω can be joined
to x0 by a rectifiable arc γ ⊂ Ω along which

dist(y, ∂Ω) ≥ C
∣∣γ(x, y)∣∣λ, y ∈ γ,

where |γ(x, y)| is the length of the portion of γ joining x to y. Clearly the
class of λ-John domains increases with λ and coincides with the class of John
domains for λ = 1.

Haj�lasz and Koskela [344] found an exact exponent q for p = 1 and “almost
exact” q for p > 1 providing the continuity of the embedding L1

p(Ω) ⊂ Lq(Ω)
for a λ-John domain. This embedding with exact exponent q was established
by Kilpeläinen and Malý [422]. It was shown in the last work that for a λ-John
domain the following estimate holds:

inf
t∈(− ∞,+∞)

(∫
Ω

|u− t|q�(x)a dx
)1/q

≤ C
(∫

Ω

|∇u|p�(x)bdx
)1/p

,

C = const,

where

�(x) = dist(x, ∂Ω), b ≥ 1 − n, a > −n,
1 ≤ p ≤ q <∞, q(n− p) ≤ np,
(n+ a)q−1 ≥

(
λ(n+ b− 1) + 1

)
p−1 − 1,

and u is an arbitrary function on Ω, such that �b/p∇u ∈ Lp(Ω).
This result was generalized by Besov [91] to weighted Sobolev spaces of

any order. In particular, Besov [91] proved the continuity of the embedding
Ll

p(Ω) ⊂ Lq(Ω), where Ω ⊂ R
n is a λ-John domain,

1 < p < q <∞, l −
(
1 + λ(n− 1)

)
/p+ n/q ≥ 0.

The exponent q cannot be made greater (see Labutin [473]).
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Embeddings of the “anisotropic” space W l
p(Ω) for special classes of do-

mains are considered in the book by Besov, Il’in, and Nikolsky ([94], Sect. 12,
Chap. 3), and in the papers by Besov [88, 89] and Trushin [765, 766].

An interesting approach to the study of boundary value problems and
Sobolev spaces for domains with fractal boundaries was proposed by Davies
[223]. He showed that properties of functions due to the irregularities of the
boundary are the same as those due to the singularities of the coefficients
of some Riemannian metrics on the unit ball. For instance, there exists a
Lipschitz equivalence between the Koch snowflake domain with the Euclidean
metric and the unit disk D with the metric

ds2 =
(
1 − |x|

)−2γ(dx2
1 + dx2

2

)
,

where
dim(∂D) = (1 − γ)−1 =

log 4
log 3

(see Theorem 5.1 in [223]).
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Continuity and Boundedness of Functions
in Sobolev Spaces

If a domainΩ has the cone property, then by the Sobolev theorem any function
u in W l

p(Ω), pl > n, coincides almost everywhere with a continuous function
in Ω, and

‖u‖L∞(Ω) ≤ C‖u‖W l
p(Ω),

where the constant C does not depend on u.
A simple example of the function u(x) = xμ1 , μ > 0, defined on the plane

domain Ω = {x : 0 < x1 < 1, 0 < x2 < xν1}, ν > 1, shows that the cone
property is essential for the validity of Sobolev’s theorem. We can naturally
expect that for sets with “bad” boundaries the embedding W l

p(Ω) ⊂ L∞(Ω)∩
C(Ω) is valid in some cases under stronger requirements on p and l.

In this chapter we study the classes of domains Ω for which the embedding
operator ofW l

p(Ω) into L∞(Ω)∩C(Ω) is bounded or compact. Some theorems
we prove give necessary and sufficient conditions ensuring the continuity of
these operators and related integral inequalities (see Sects. 7.1–7.3). These
criteria are formulated in terms of the p-conductivity.

To be more precise, let y ∈ Ω and let Ω�(y) be the intersection of Ω with
the ball B�(y). For any conductor of the form Ω�(y)\{y} we introduce the
function

γp(�) = inf
y∈Ω

cp
(
Ω�(y)\{y}

)

and show that the embedding operatorW 1
p (Ω) → C(Ω)∩L∞(Ω) is continuous

if and only if γp(�) is not identically zero.
Inequalities for functions with derivatives in Birnbaum–Orlicz spaces in

nonsmooth domains are studied in Sect. 7.4. Compactness of the embedding
W 1

p (Ω) ⊂ C(Ω) ∩ L∞(Ω) is fully characterized in Sect. 7.5 by the condition
lim γp(�) = ∞ as �→ +0. In that section we show by a counterexample that
one should not expect that for domains with bad boundaries the simultaneous
fulfillment of both continuity and compactness of this embedding operator
always takes place.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 7, c© Springer-Verlag Berlin Heidelberg 2011
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More visible sufficient conditions for continuity and compactness of the
above-mentioned embedding operator, given in terms of the isoperimetric
function λ(μ), can be found in Sects. 7.1 and 7.5.

The continuity and compactness criteria are generalized to Sobolev spaces
of an arbitrary integer order in Sect. 7.6 with the help of the so-called (p, l)-
conductivity.

7.1 The Embedding W 1
p (Ω) ⊂ C(Ω) ∩ L∞(Ω)

7.1.1 Criteria for Continuity of Embedding Operators of W 1
p (Ω)

and L1
p(Ω) into C(Ω) ∩ L∞(Ω)

Let y be an arbitrary point in the domain Ω and let � > 0.
Here and in the next two subsections we consider only conductors of the

form Ω�(y)\{y}. Further, we introduce the function

γp(�) = inf
y∈Ω

cp
(
Ω�(y)\{y}

)
, p > n, (7.1.1)

on (0,+∞), where cp is the p-conductivity introduced in Chap. 6. Obviously,
γp does not increase and vanishes for � > diam(Ω). The condition p > n in the
definition of γp is justified by the fact that the infimum on the right in (7.1.1)
equals zero for p ≤ n by (2.2.13).

Noting that the function u(x) = (1−�−1|x−y|)+ is contained in the class
UΩ(Ω�(y)\{y}) we obtain γp(�) ≤ c�n−p.

Theorem 1. The embedding operator of W 1
p (Ω) into C(Ω) ∩ L∞(Ω) is

bounded if and only if γp �≡ 0.

Proof. Sufficiency. Let u be any function in C∞(Ω)∩W 1
p (Ω) and let y be

a point in Ω such that u(y) �= 0. Let R denote a positive number for which
γp(R) > 0 and let � denote an arbitrary number in (0, R]. We put

v(x) = η
(
(x− y)/�

)
u(x)/u(y),

where η ∈ C∞
0 (B1), η(0) = 1. Since v(y) = 1 and v(x) = 0 outside Ω�(y), we

have
cp
(
Ω�(y)\{y}

)
≤
∫
Ω

|∇v|p dx,

and therefore

∣∣u(y)∣∣pcp(Ωp(y)\{y}
)
≤ c
(∫

Ω�(y)

|∇u|p dx+ �−p

∫
Ω�(y)

|u|p dx
)
. (7.1.2)

Thus the sufficiency of γp �≡ 0 follows.
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Necessity. For all u ∈W 1
p (Ω), let

‖u‖L∞(Ω) ≤ C‖u‖W 1
p (Ω). (7.1.3)

Inserting an arbitrary u ∈ TΩ(Ω�(y)\{y}) into (7.1.3) we obtain

1 ≤ C
(
‖∇u‖Lp(Ω) + v1/pn �n/p

)
.

If � is small enough then

(2C)−p ≤
∫
Ω

|∇u|p dx.

Minimizing the preceding integral over TΩ(Ω�(y)\{y}) we obtain

cp
(
Ω�(y)\{y}

)
≥ (2C)−p.

The theorem is proved. �

The next assertion similar to Theorem 1 holds for the space L1
p(Ω).

Theorem 2. Let mn(Ω) < ∞. The embedding operator of L1
p(Ω) into

C(Ω) ∩ L∞(Ω) is bounded if and only if γp �≡ 0.

Proof. We only need to prove the sufficiency of γp �≡ 0. By virtue of
Lemma 5.1.2/2 we need to derive the inequality

‖u‖L∞(Ω) ≤ C‖u‖L1
p(Ω) (7.1.4)

for functions in L1
p(Ω) ∩ L∞(Ω). Let ω denote a bounded set with ω̄ ⊂ Ω.

The estimate (7.1.3) implies

‖u‖L∞(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖L∞(Ω)

(
mn(Ω\ω)

)1/p)
.

Choosing ω to satisfy 2C(mn(Ω\ω))1/p < 1, we arrive at (7.1.4). The theorem
is proved. �

Remark 1. Let L̃l
p(Ω) and W̃ l

p(Ω) denote the completions of the spaces
C∞(Ω) ∩ C(Ω̄) ∩ Ll

p(Ω) and C∞(Ω) ∩ C(Ω̄) ∩ W l
p(Ω) with respect to the

norms in Ll
p(Ω) and W l

p(Ω).
If we replace γp(�) in Theorems 1 and 2 by

γ̃p(�) = inf
y∈Ω

c̃p
(
Ω�(y)\{y}

)
,

where c̃p is the p-conductivity defined by (6.11.5), then we obtain analogous
assertions for the spaces W̃ l

p(Ω) and L̃l
p(Ω).

The following theorem contains two-sided estimates for the constants in
inequality (7.1.5).
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Let σp(μ) denote the infimum of cp(K) taken over the set of conductors
K = G\F in Ω with mn(G) ≤ μ.

Since cp(K) is a nondecreasing function of F , we may assume F to be a
point.

Theorem 3. 1. If σp(μ) �= 0 for some μ < mn(Ω), then for all u ∈
L1

p(Ω) ∩ Lq(Ω), p > n, 0 < q <∞,

‖u‖L∞(Ω) ≤ k1‖∇u‖Lp(Ω) + k2‖u‖Lq(Ω), (7.1.5)

where k1 ≤ [σp(μ)]−1/p, k2 ≤ μ−1/q.
2. If for any u ∈ L1

p(Ω) ∩ Lq(Ω) inequality (7.1.5) holds, then σp(μ) ≥
(2k1)−p with μ = (2k2)−q.

Proof. 1. It suffices to derive (7.1.5) for all functions in C∞(Ω)∩L1
p(Ω)∩

Lq(Ω). We choose a positive number t such that

mn

(
{x :

∣∣u(x)∣∣ > t}) ≤ μ, mn

({
x :
∣∣u(x)∣∣ ≥ t}) ≥ μ.

Let T > t and {x : |u(x)| ≥ T} �= ∅. By the definition of p-conductivity, for
the conductor

Kt,T =
{
x :
∣∣u(x)∣∣ > t}\{x :

∣∣u(x)∣∣ ≥ T}
we have

(T − t)pcp(Kt,T ) ≤
∫
Ω

∣∣∇|u|
∣∣p dx =

∫
Ω

|∇u|p dx.

Consequently,

(T − t)pσp(μ) ≤
∫
Ω

|∇u|p dx.

Hence
T ≤

[
σp(μ)

]−1/p‖∇u‖Lp(Ω) + μ−1/q‖u‖Lq({x:|u(x)|≥t})

and (7.1.5) follows.
2. Suppose (7.1.5) is valid. We put μ = (2k2)−q and consider an arbitrary

conductor K = G\F with mn(G) ≤ μ. Let {um} be a sequence of functions
in TΩ(K) such that

‖∇um‖pLp(Ω) → cp(K).

Clearly,

k2‖um‖Lq(Ω) ≤ k2
[
mn(G)

]1/q ≤ k2μ1/q =
1
2
.

Moreover, by (7.1.5) we have

1 ≤ 2k1‖∇um‖Lp(K) → 2k1
[
cp(K)

]1/p
.

Consequently, σp(μ) ≥ (2k1)−p. The theorem is proved. �

Remark 2. Theorems 1 and 3 imply that the conditions γp ≡ 0 and σp ≡ 0
are equivalent.
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7.1.2 Sufficient Condition in Terms of the Isoperimetric Function
for the Embedding W 1

p (Ω) ⊂ C(Ω) ∩ L∞(Ω)

From Corollary 6.1.3/2 and the definition of the functions σp and λM it im-
mediately follows that

σp(μ) ≥
(∫ μ

0

dτ
[λM (τ)]p/(p−1)

)1−p

, (7.1.6)

where μ ≤ M , which together with Theorem 7.1.1/3 yields the following
sufficient condition for the embedding W 1

p (Ω) ⊂ C(Ω) ∩ L∞(Ω).

Theorem. If for some M < mn(Ω)

∫ M

0

dμ
[λM (μ)]p/(p−1)

<∞, (7.1.7)

then the embedding operator of W 1
p (Ω) into C(Ω) ∩ L∞(Ω) is bounded.

This implies the following obvious corollary.

Corollary. If Ω ∈ Jα and p(1 − α) > 1, then the embedding operator of
W 1

p (Ω) into C(Ω) ∩ L∞(Ω) is bounded.

Example. Consider the domain

Ω =
{
x : (x2

1 + · · · + x2
n−1)

1/2 < f(xn), 0 < xn < a
}
, (7.1.8)

in Example 5.3.3/1. From (5.3.5) it follows that the convergence of the inte-
gral (7.1.7) is equivalent to the condition

∫ a

0

dτ
[f(τ)](n−1)/(p−1)

<∞. (7.1.9)

We show that σp(μ) ≡ 0, i.e., W 1
p (Ω) is not embedded in C(Ω) ∩ L∞(Ω)

if (7.1.9) fails. Let

F = Ω ∩ {0 < xn ≤ ε}, G = Ω ∩ {x : 0 < xn < δ},

where δ > ε and K is the conductor G\F . We introduce the function u ∈
UΩ(K) which vanishes outside G, and is equal to unity on F and to

∫ δ

xn

dξ
[f(ξ)](n−1)/(p−1)

(∫ δ

ε

dξ
[f(ξ)](n−1)/(p−1)

)−1

on G\F . Obviously,

cp(K) ≤
∫
Ω

|∇u|p dx = c

(∫ δ

ε

dξ
[f(ξ)](n−1)/(p−1)

)1−p

. (7.1.10)
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Therefore, cp(K) → 0 as ε→ 0 and hence σp ≡ 0 provided (7.1.9) diverges.
If f(τ) = cτβ , β ≥ 1, then Ω is contained in Jα with α = β(n−1)/(β(n−

1)+1) (cf., for instance, Example 5.3.3/1) and consequentlyW 1
p (Ω) ⊂ C(Ω)∩

L∞(Ω) for p > 1 + β(n− 1).
The condition (7.1.9) implies that the embedding operator of W 1

p (Ω) into
C(Ω)∩L∞(Ω) is bounded for all p > n if for small τ the function f is defined
as

f(τ) = τh
(
log(1/τ)

)
,

where h(s) → 0 and s−1 log h(s) → 0 as s → +∞. (Of course, this domain
does not have the cone property.)

If for any point P in Ω we can construct a “quasiconic body” situated in
Ω and specified in some coordinate system with the origin at P by (7.1.8)
where f is subject to (7.1.9), then, obviously, γp(�) �≡ 0 and the embedding
operator of W 1

p (Ω) into C(Ω) ∩ L∞(Ω) is bounded.

7.1.3 Isoperimetric Function and a Brezis–Gallouët–Wainger-Type
Inequality

Theorem. Let Ω be a domain with mn(Ω) <∞ and let

∫ mn(Ω)/2

0

dμ
[λ(μ)]p′ <∞,

where p+ p′ = pp′ and λ(μ) denotes λM (μ) for M = mn(Ω)/2. Furthermore,
let for some r ∈ (1, p)

∫ mn(Ω)/2

0

dμ
[λ(μ)]r′ = ∞.

Then for any ε ∈ (0,mn(Ω)/2) and u ∈ L1
p(Ω)

osc
Ω
u ≤ c(p, r)

{(∫ ε

0

dμ
[λ(μ)]p′

)1/p′

‖∇u‖Lp(Ω)

+
(∫ mn(Ω)/2

ε

dμ

[λ(μ)]r′

)1/r′

‖∇u‖Lr(Ω)

}
. (7.1.11)

Proof. Let the numbers T and t be chosen so that

mn

{
x : u(x) > T

}
≤ mn(Ω)/2 ≤ mn

{
x : u(x) ≥ T

}
,

mn

{
x : u(x) > t

}
≤ ε ≤ mn

{
x : u(x) ≥ t

}
.

Furthermore, let S := ess supΩ u. Then



7.1 The Embedding W 1
p (Ω) ⊂ C(Ω) ∩ L∞(Ω) 411

(S − t)pcp(Kt,S) ≤
∫

|∇u|p dx

and
(t− T )rcr(KT,t) ≤

∫
|∇u|r dx.

Now it follows from Corollary 6.1.3/2, that

cp(Kt,S) ≥
(∫ ε

0

dμ
[λ(μ)]p′

)1−p

and

cr(KT,t) ≥
(∫ mn(Ω)/2

ε

dμ
[λ(μ)]r′

)1−r

.

This leads to the estimate

ess sup
Ω

u− T ≤
(∫ ε

0

dμ
[λ(μ)]p′

)1/p′

‖∇u‖Lp(u≥T )

+
(∫ mn(Ω)/2

ε

dμ
[λ(μ)]r′

)1/r′

‖∇u‖Lr(u≥T ).

An analogous estimate for T − ess infΩ u is proved in the same way. Adding
both estimates we arrive at (7.1.11). �

We specify this theorem for domains in the class J1/r′ .

Corollary. Let p > r > 1, mn(Ω) <∞ and let Ω ∈ J1/r′ , i.e.,

λ(μ) ≥ Cμ1/r′
.

Then

osc
Ω
u ≤ c0

(
ε(p−r)/pr‖∇u‖Lp(Ω) +

(
log

mn(Ω)
2ε

)1/r′

‖∇u‖Lr(Ω)

)
, (7.1.12)

where ε ∈ (0,mn(Ω)/2) and c0 depends only on C, p, and r.

Remark. Minimizing the right-hand side of (7.1.12) in ε we see that

osc
Ω
u ≤ c1

(
1 +

∣∣log
(
c2‖∇u‖Lp(Ω)

)∣∣)1/r′

, (7.1.13)

provided
‖∇u‖Lr(Ω) = 1.

For the cusp (7.1.8) with f(xn) = xβn, β > 1, we have by (5.3.7) that

λ(μ) ∼ μβ(n−1)/(β(n−1)+1),

and we may take r = β(n− 1) + 1.
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This example can be used to show that the exponent 1/r′ of the power of
the logarithm in (7.1.12) is sharp by setting

u(x) =
log(xn + δ)−1

(log δ−1)1/[1+β(n−1)]

with a small δ > 0 into (7.1.12).

7.2 Multiplicative Estimate for Modulus of a Function
in W 1

p (Ω)

7.2.1 Conditions for Validity of a Multiplicative Inequality

It is well known that the estimate

‖u‖L∞(Ω) ≤ C‖u‖n/p
W 1

p (Ω)‖u‖
1−n/p
Lp(Ω) (7.2.1)

holds for p > n provided the domain Ω has the cone property. This is a par-
ticular case of the general multiplicative Gagliardo–Nirenberg inequalities (cf.
Sects. 1.4.7, 1.4.8). The following theorem contains a necessary and sufficient
condition for validity of the estimate

‖u‖L∞(Ω) ≤ C‖u‖1/(r+1)
W 1

p (Ω) ‖u‖
r/(r+1)
Lp(Ω) , (7.2.2)

where r is a positive number.

Theorem. If for some r > 0

lim inf
μ→+0

μrσp(μ) > 0, (7.2.3)

then (7.2.2) holds for all u ∈W 1
p (Ω).

Conversely, if (7.2.2) holds for all u ∈W 1
p (Ω), then Ω satisfies (7.2.3).

Proof. Sufficiency. By (7.2.3) there exists a constant M such that

μrσp(μ) ≥ κ = const > 0

for μ ∈ (0,M ]. Therefore, by Theorem 7.1.1/3,

‖u‖L∞(Ω) ≤ μr/p
κ

−1/p‖∇u‖Lp(Ω) + μ−1/p‖u‖Lp(Ω). (7.2.4)

The minimum value of the right-hand side over μ is attained for

μ∗ =
(
κ

1/pr−1‖u‖Lp(Ω)/‖∇u‖Lp(Ω)

)p/(r+1)

and it is equal to
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cκ−1/p(r+1)‖∇u‖1/(r+1)
Lp(Ω) ‖u‖r/(r+1)

Lp(Ω) .

If μ∗ ≤M then (7.2.2) follows. If μ∗ > M , then

κ
1/pr−1‖u‖Lp(Ω) ≥M1+1/r‖∇u‖Lp(Ω),

and (7.2.4) implies

‖u‖L∞(Ω) ≤ c1κ
−1/p(r+1)‖∇u‖1/(r+1)

Lp(Ω) ‖u‖r/(r+1)
Lp(Ω) + cM−1/p‖u‖Lp(Ω).

The inequality (7.2.2) is proved.
Necessity. We put M = (2Cr+1)−p/(r+1). We may assume that the con-

stant C in (7.2.2) is so large that M < mn(Ω). Consider an arbitrary conduc-
tor K = G\F with mn(G) ≤ μ ≤ M . From (7.2.2), for any u ∈ TΩ(K), we
have

1 ≤ Cμ1/p(r+1)
(
‖∇u‖Lp(Ω) +M1/p

)1/(r+1)
.

Therefore, 2Cr+1μr/p‖∇u‖Lp(Ω) ≥ 1. Minimizing the left-hand side over
TΩ(K) we obtain (

2Cr+1
)p
μrσp(μ) ≥ 1.

The theorem is proved. �

Theorems 1 and 7.1.2 imply the following sufficient condition for the va-
lidity of inequality (7.2.2).

Corollary. If Ω ∈ Jα with 1 > α ≥ 1 − 1/n and p(1 − α) > 1, then for
any u ∈W 1

p (Ω) inequality (7.2.2) is valid with r = p(1 − α) − 1.

Proof. Since Ω ∈ Jα, then λM (μ) ≥ CMμ
α for μ < M where CM is a

positive constant. This and (7.1.6) imply

σp(μ) ≥ Cp
M

(
1 − pα/(p− 1)

)p−1
μ1−p(1−α).

The result follows.

Example. For f(xn) = c xβn, β ≥ 1, the domain (7.1.8) is in the class
Jβ(n−1)/(β(n−1)+1) and hence by the Corollary inequality (7.2.2) is valid for
p > 1 + β(n − 1) with r = (p − 1 − β(n − 1))/(1 + β(n − 1)). This exponent
is the best possible since (7.1.6) implies

σp
(
δβ(n−1)+1

)
≤ c1

(∫ cδ

0

ξ−β(n−1)/(p−1) dξ
)1−p

= c2δ
1+β(n−1)−p,

where δ is any sufficiently small positive number.
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7.2.2 Multiplicative Inequality in the Limit Case r = (p − n)/n

Inequality (7.2.2) becomes (7.2.1) for r = (p− n)/n. In this particular case a
necessary and sufficient condition can be expressed in terms of the function
γp defined by (7.1.1).

Theorem. The inequality (7.2.1) holds for all u ∈W 1
p (Ω) if and only if

lim inf
�→+0

�p−nγp(�) > 0. (7.2.5)

Proof. Sufficiency. Let r be so small that �p−nγp(�) > δ > 0 for � < r. By
virtue of (7.1.2) we have

cδ1/p‖u‖L∞(Ω) ≤ �1−n/p‖∇u‖Lp(Ω) + �−n/p‖u‖Lp(Ω) (7.2.6)

for � ≤ r with c > 0. The minimum of the right-hand side in (7.2.6) over
� > 0 is attained at

�∗ = n(p− n)−1‖u‖Lp(Ω)/‖∇u‖Lp(Ω)

and is equal to
c‖∇u‖n/p

Lp(Ω)‖u‖
1−n/p
Lp(Ω) .

If �∗ ≤ r then (7.2.1) follows. If �∗ > r then

‖u‖Lp(Ω) ≥ (p− n)r n−1‖∇u‖Lp(Ω)

and (7.2.6) implies

cδ1/p‖u‖L∞(Ω) ≤ ‖∇u‖n/p
Lp(Ω)‖u‖

1−n/p
Lp(Ω) + r−n/p‖u‖Lp(Ω).

Thus the sufficiency of the condition (7.2.5) is proved.
Necessity. We insert an arbitrary u ∈ TΩ(Ω�(y)\{y}) into (7.2.1). Since

‖u‖pLp(Ω) ≤ c�
n, ‖u‖pW 1

p (Ω) ≤ c
(
cp
(
Ω�(y)\{y}

)
+ �n

)
,

by (7.2.1) we have

C−p ≤ c
(
cp
(
Ω�(y)\{y}

)
+ �n

)n/p
�n(p−n)/p.

Consequently,
C−p2/n ≤ c

(
�p−nγp(�) + �p

)
.

It remains to pass to the lower limit as �→ +0. �

In the next proposition we give a sufficient condition for (7.2.6) which
generalizes the cone property. Let y ∈ Ω and let S�(y) denote the “sector”
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Fig. 29.

{x : |x− y| < �, |x− y|−1(x− y) ∈ ω(y)}, where ω(y) is a measurable subset
of the (n− 1)-dimensional unit sphere.

Proposition. Suppose that there exist positive constants R and δ such
that any point y in the set Ω can be placed at the vertex of the sector SR(y)
contained in Ω, satisfying the condition s(ω(y)) > δ. Then (7.2.5) holds.

Proof. Let 0 < � < R and let (r, θ) be spherical coordinates centered at y.
Obviously,

cp
(
Ω�(y)\{y}

)
≥ inf

∫
S�(y)

|∇u|p dx,

where the infimum is taken over all functions u ∈ C0,1(S�(y)) with u(y) = 1,
u(�, θ) = 0 for θ ∈ ω(y). It remains to note that

∫
S�(y)

|∇u|p dx ≥
∫
ω(y)

dθ
∫ �

0

∣∣∣∣∂u∂r
∣∣∣∣
p

rn−1 dr

≥
∫
ω(y)

dθ
∣∣∣∣
∫ �

0

∂u

∂r
dr
∣∣∣∣
p(∫ �

0

r(1−n)/(p−1) dr
)1−p

>

(
p− n
p− 1

)p−1

δ�n−p. �

We shall consider a domain that does not satisfy the condition of Propo-
sition and for which (7.2.5) is nevertheless true.

Example. Let Ω be the domain in Fig. 29. Further, let δm = 2−m, Qm =
{x : δm+1 < |x| < δm}∩Ω, y ∈ Qm. Let u denote a function in TΩ(Ω�(y)\{y})
such that ∫

Ω

|∇u|p dx ≤ cp
(
Ω�(y)\{y}

)
+ ε, ε > 0.
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We note that

∣∣u(ξ) − u(η)∣∣p ≤ c|ξ − η|p−2

∫
Qj

|∇u|p dx, (7.2.7)

for any points ξ, η ∈ Qj , j = 1, 2, . . . . (This estimate is invariant with respect
to a similarity transformation and so it suffices to limit consideration to Q1.
However, inequality (7.2.7) for Q1 is contained in Theorem 1.4.5, part (f).)
We begin with the case � < δm when Qm ∩ ∂B�(y) �= ∅. Let j = m, ξ = y
and η ∈ Qm ∩ ∂B�(y) in (7.2.7). Then

1 ≤ c�p−2
(
cp
(
Ω�(y)\{y}

)
+ ε
)
.

Next suppose � ≥ δm. For all ξ ∈ Qj ∩ {x = (x1, x2) : x2 < 0} we have

∣∣u(ξ) − u(0)
∣∣p ≤ c|ξ|p−2

∫
Ω

|∇u|p dx.

Using (7.2.7), we find that the last inequality holds for all ξ ∈ Qj . Conse-
quently, (

osc
Ω2�(0)

u
)p

≤ c�p−2

∫
Ω

|∇u|p dx.

Noting that Ω2�(0) ⊃ Ω�(y), we finally obtain

1 =
(

osc
Ω�(y)

u
)p

≤ c�p−2
(
cp
(
Ω�(y)\{y}

)
+ ε
)
.

7.3 Continuity Modulus of Functions in L1
p(Ω)

The following assertion is an obvious corollary of the definition of p-conductiv-
ity.

Theorem. Let mn(Ω) <∞, Λ be a nondecreasing continuous function on
[0,∞) and let u be an arbitrary function in L1

p(Ω). In order that for almost
all x, y ∈ Ω the inequality

∣∣u(x) − u(y)∣∣ ≤ Λ(|x− y|)‖∇u‖Lp(Ω) (7.3.1)

be valid it is necessary and sufficient that

cp(K) ≥
[
Λ
(
dist(∂iF, ∂iG)

)]−p (7.3.2)

for any conductor K = G\F .

Since the conductivity is a nonincreasing function of G and nondecreasing
function of F , the last condition is equivalent to
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cp
[(
Ω\{x}

)
\{y}

]
≥
[
Λ
(
|x− y|

)]−p
, x, y ∈ Ω. (7.3.3)

We say that the class u̇ = {u+ const} is contained in the space CΛ(Ω) if

sup
x,y∈Ω

|u(x) − u(y)|
Λ(|x− y|) <∞.

Thus the embedding operator of L̇1
p(Ω) into CΛ(Ω) is continuous if and

only if (7.3.3) holds.

Example. Further in this section we consider the domain Ω already studied
in Examples 5.3.3/1, 5.5.2, 6.3.6/1, and 7.1.2. Here we show that for this
domain the embedding operator of L1

p(Ω) into CΛ(Ω) is continuous if and
only if

Λ(t) ≥ k
(∫ t

0

dξ
[f(ξ)](n−1)/(p−1)

)1−1/p

, k = const > 0. (7.3.4)

Proof. Necessity. We insert the function u equal to unity for xn < ε, to
zero for xn > t and to

∫ t

xn

dξ
[f(ξ)](n−1)/(p−1)

(∫ t

ε

dξ
[f(ξ)](n−1)/(p−1)

)−1

for ε ≤ xn ≤ t into (7.3.1). (Here ε > 0 and t ∈ (ε, a).) Then

1 ≤ vn−1

[
Λ(t)

]p(∫ t

ε

dξ
[f(ξ)](n−1)/(p−1)

)p−1

,

which becomes (7.3.4) as ε→ +0.
The sufficiency of (7.3.4) is a simple corollary of the inequality

∣∣u(x) − u(0)
∣∣ ≤ k

(∫ xn

0

dξ
[f(ξ)](n−1)/(p−1)

)1−1/p

‖∇u‖Lp(Ω). (7.3.5)

(We note that Theorem 1.1.6/1 implies the density of C∞(Ω̄) in L1
p(Ω) for

the domain Ω under consideration.)
To prove (7.3.5), we need the following lemma.

Lemma. Let

Ωb =
{
x = (x′, xn) : |x′| < f(xn), 0 < xn < b

}

and let u be a function in C∞(Ω̄b) with u(0) = 0 and u(x) ≥ 1 for xn = b.
Then ∫

Ωb

|∇u|p dx ≥ k
(∫ b

0

dξ
[f(ξ)](n−1)/(p−1)

)1−p

. (7.3.6)



418 7 Continuity and Boundedness of Functions in Sobolev Spaces

Proof. It suffices to establish (7.3.6) under the assumption that u = 0 for
xn < ε, u = 1 for xn > b− ε where ε is a small positive number. Then

∫
Ωb

|∇u|p dx ≥ cp(Kε),

where Kε = Gε\Fε, Fε = closΩ Ωε, Gε = Ωb−ε. To estimate cp(Kε) from
below we make use of (7.1.6) and (5.3.5). These inequalities are applicable
despite the fact that the measure of the set Gε is large. In fact, extending f
to [b, 2b] we obtain the enlarged domain Ω2b such that 2mn(Gε) ≤ mn(Ω2b)
with no modification of the conductor Kε. We have

cp(Kε) ≥ k
(∫ b−ε

ε

dξ
[f(ξ)](n−1)/(p−1)

)1−p

, (7.3.7)

which together with (7.3.6) completes the proof of the lemma. �

Proof of the inequality (7.3.5). First we note that smooth functions in the
closure of the domain

gx =
{
y ∈ Ω : xn −

[
2f ′(a)

]−1
f(xn) < yn < xn, xn < a

}

satisfy the inequality
∣∣u(z) − u(y)∣∣ ≤ C|z − y|1−n/p‖∇u‖Lp(gx), (7.3.8)

where z, y are arbitrary points in gx and C is a constant that is independent
of x. The latter is a corollary of the Sobolev theorem on the embedding of L1

p

into C1−n/p for domains with smooth boundaries.
Let u ∈ C∞(Ω̄a), u(0) = 0, u(x) = 1 at some x ∈ Ω̄a. By (7.3.8),

C
[
f(xn)

]n−p max
y∈ḡx

∣∣1 − u(y)∣∣p ≤
∫
Ωa

|∇u|p dx.

Therefore, ∫
Ωa

|∇u|p dx ≥ Cxn−p
n ,

provided 2 minu < 1 in gx. This and the obvious estimate

(∫ xn

0

dξ
[f(ξ)](n−1)/(p−1)

)p−1

≥ k
(∫ xn

0

ξ(1−n)/(p−1) dξ
)p−1

= k1x
p−n
n

imply (7.3.5).
Next we assume that 2u(y) ≥ 1 for all y ∈ gx. Then the function 2u

satisfies the conditions of the Lemma with

b = xn −
[
2f ′(a)

]−1
f(xn),
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and thus
∫
Ωa

|∇u|p dx ≥ k

(∫ b

0

dξ
[f(ξ)](n−1)/(p−1)

)1−p

≥ k

(∫ xn

0

dξ
[f(ξ)](n−1)/(p−1)

)1−p

.

Inequality (7.3.5) follows. �

7.4 Boundedness of Functions with Derivatives
in Birnbaum–Orlicz Spaces

Most of the results of the previous sections in this chapter can be generalized
to the space of functions with finite integral

∫
Ω

Φ
(
|∇u|

)
dx, (7.4.1)

where Φ is a convex function. For this purpose we must introduce the conduc-
tivity generated by the integral (7.4.1).

Here we consider only a sufficient condition for the boundedness of func-
tions with finite integral (7.3.1) which is formulated in terms of the function λ.
We also state some corollaries of this condition.

Lemma. If u ∈ C∞(Ω), then, for almost all t,
∫

Et

ds

|∇u| = − d
dt
mn(Lt), (7.4.2)

where Et = {x : u(x) = t} and Lt = {x : u(x) > t}.

Proof. The equality (7.4.2) follows from the identity
∫
τ ≥u>t

dx =
∫ τ

t

dξ
∫

Eξ

ds
|∇u| ,

which in turn results from Theorem 1.2.4. �

Theorem. Let Φ be a convex nonnegative function with Φ(0) = 0 and let
Ψ be the complementary function of Φ (cf. Sect. 2.3.3). If Ω has finite volume
and ∫ mn(Ω)/2

0

Ψ(1/λ(μ)) dμ <∞, (7.4.3)

then any function u ∈ C∞(Ω) with the finite integral (7.4.1) is bounded.
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Proof. Let τ denote a number such that

2mn(Nτ ) ≥ mn(Ω), 2mn(Lτ ) ≤ mn(Ω),

where Nτ = {x : u(x) ≥ τ}. We introduce the notation

m(t) = mn(Lt), h(t) = s(Et).

By the inequality αβ ≤ Φ(α) + Ψ(β) with α, β > 0, for u(x) ≥ τ we have

u(x) − τ =
∫ u(x)

τ

h(t)
m′(t)

m′(t)
h(t)

dt

≤ −
∫ u(x)

τ

Φ

(
h(t)

−m′(t)

)
m′(t) dt−

∫ u(x)

τ

Ψ

(
1
h(t)

)
m′(t) dt.

Using (7.4.2) together with Jensen’s inequality, we obtain

−Φ
(

h(t)
−m′(t)

)
m′(t) = Φ

[
1∫

Et

ds
|∇u|

∫
Et

|∇u| ds
|∇u|

] ∫
Et

dt
|∇u|

≤
∫

Et

Φ
(
|∇u|

) ds
|∇u| .

Consequently,

(
u(x) − τ

)
+
≤
∫

Nτ

Φ
(
|∇u|

)
dx+

∫ mn(Ω)/2

0

Ψ
(
1/λ(μ)

)
dμ.

A similar estimate is valid for (τ − u(x))+. Therefore, u is bounded and

oscu ≤
∫
Ω

Φ
(
|∇u|

)
dx+ 2

∫ mn(Ω)/2

0

Ψ
(
1/λ(μ)

)
dμ. �

Corollary. If Ω ∈ Jα, α < 1, and
∫ ∞

1

Ψ(t)t−1−1/α dt <∞,

then any function u ∈ C∞(Ω) with the finite integral (7.4.1) is bounded.
In particular, u ∈ L∞(Ω) if

∫
Ω

|∇u|1/(1−α)

(
m∏

k=1

logk
+ |∇u|

)α/(1−α)(
logm+1

+ |∇u|
)r dx <∞, (7.4.4)

where m ≥ 0, r > α/(1−α) and logk
+ is the k-times iterated log+. (For m = 0

the expression in the first parentheses in (7.4.4) is absent.)



7.4 Boundedness of Functions with Derivatives in Birnbaum–Orlicz Spaces 421

Proof. The first assertion follows from the theorem just proved and from
the definition of Jα.

To prove the second assertion we must use the fact that the convex function

Ψ(t) = αt1/α

(
m∏

k=1

logk t

)−1(
logm+1 t

)−r(1−α)/α

is equivalent to the complementary function of

(1 − α)t1/(1−α)

(
m∏

k=1

logk t

)α/(1−α)(
logm+1 t

)r

for large t (see Krasnosel’skǐı and Rutickǐı [168]). �

The Sobolev theorem on the embedding W 1
p (Ω) ⊂ C(Ω) ∩ L∞(Ω) for

p > n can be refined for domains having the cone property on the basis of
the previous Corollary. Namely, if Ω ∈ J1−1/n, then the continuity and the
boundedness of functions in Ω result from the convergence of the integral

∫
Ω

|∇u|n
(

m∏
k=1

logk
+ |∇u|

)n−1(
logm+1

+ |∇u|
)n−1+ε dx, ε > 0.

We shall show that one cannot put r = α/(1 − α) in (7.4.4).

Example. Consider the domain Ω in Examples 5.3.3/1 and 5.5.2. By
(5.3.5), the condition (7.4.3) is equivalent to

∫ 1

0

Ψ
([
f(τ)

]1−n)[
f(τ)

]n−1 dτ <∞.

Let f(τ) = c τβ , β ≥ 1. As already noted, Ω ∈ Jα with α = β(n −
1)/(β(n − 1) + 1). The function u(x) = logm+3

+ x−1
n , m ≥ 0, is unbounded

in Ω. On the other hand, for small xn > 0 we have

|∇u|β(n−1)+1

(
m+1∏
k=1

logk
+ |∇u|

)β(n−1)

≤ cx−β(n−1)−1
n

(
log x−1

n

)−1(log2 x−1
n

)−1 · · ·

×
(
logm+1 x−1

n

)−1(logm+2 x−1
n

)−β(n−1)−1
.

Therefore,

∫
Ω

|∇u|1/(1−α)

(
m+1∏
k=1

logk
+ |∇u|

)α/(1−α)

dx <∞.
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7.5 Compactness of the Embedding
W 1

p (Ω) ⊂ C(Ω) ∩ L∞(Ω)

7.5.1 Compactness Criterion

Let γp be the function defined by (7.1.1) and let Ω be a domain with finite
volume.

Theorem. The condition

lim
�→+0

γp(�) = ∞ (7.5.1)

is necessary and sufficient for the compactness of the embedding operator of
W 1

p (Ω) into C(Ω) ∩ L∞(Ω).

Proof. Sufficiency. From (7.1.2) for small � > 0 it follows that

‖u‖pL∞(Ω) ≤ c
[
γp(�)

]−1‖∇u‖pLp(Ω) + C(�)‖u‖pLp(Ω),

where C(�) <∞ for each � > 0. We fix a small number � > 0 and we denote
an open set such that ω̄� ⊂ Ω, 2C(�)mn(Ω\ω�) < 1 by ω�. Then

‖u‖pL∞(Ω) ≤ 2c
[
γp(�)

]−1‖∇u‖pLp(Ω) + 2C(�)‖u‖pLp(ω�).

Consider the unit ball in W 1
p (Ω) and select a sequence {um} in this ball

that converges in Lp(ω�). Then

lim sup
k,l→∞

‖uk − ul‖pL∞(Ω) ≤ 2c
[
γp(�)

]−1
. (7.5.2)

Taking into account that γp(�) →∞ as �→ 0 and passing to the subsequence
{umk

}, we obtain a sequence convergent in L∞(Ω) ∩ C(Ω).
Necessity. Let the embedding operator of W 1

p (Ω) into C(Ω) ∩ L∞(Ω) be
compact and let

γp(�) = inf
y∈Ω

cp
(
Ω�(y)\{y}

)
< A. (7.5.3)

We construct a sequence �k that converges to zero and a sequence of points
yk ∈ Ω such that

cp
(
Ω�k

(yk)\{yk}
)
< A, k = 1, 2, . . . . (7.5.4)

Since
lim
�→o

cp
(
B�(y)\{y}

)
= ∞

for p > n (cf. Sect. 2.2.4), the limit points of the sequence {yk} are located
on ∂Ω. From (7.5.4) it follows that there exists a sequence of functions uk ∈
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TΩ(Ω�k
(yk)\{yk}) with ∫

Ω

|∇uk|p dx < A.

Since 0 ≤ uk ≤ 1, this sequence is bounded in W 1
p (Ω) and hence it is

compact in C(Ω)∩L∞(Ω). Therefore, given any ε > 0 we can find a number
N such that ‖um − uk‖L∞(Ω) < ε for all m, k ≥ N . In particular, |uN (yN ) −
uk(yN )| < ε for all k > N . On the other hand, since yN is not a limit point of
{yk} and uk(x) = 0 outside Ω�k

, uN (yN ) = 1, we have |uN (yN )−uk(yN )| = 1
for sufficiently large k. Thus assumption (7.5.3) is false. The theorem is proved.

�

Remark. Replacing γp(�) by γ̃p(�) defined in Remark 7.1.1/1 in the last
theorem, we obtain a necessary and sufficient condition for the compact-
ness of the embedding W̃ 1

p (Ω) ⊂ C(Ω̄). We actually proved in the theorem
that (7.5.1) is necessary and sufficient for the compactness of the embedding
L1

p(Ω) ⊂ C(Ω) ∩ L∞(Ω).

7.5.2 Sufficient Condition for the Compactness in Terms of the
Isoperimetric Function

Theorem. If the integral (7.1.7) converges for some M , then the embedding
operator of W 1

p (Ω) into C(Ω) ∩ L∞(Ω) is compact.

Proof. The definition of the function σp implies

cp
(
Ω�(y)\{y}

)
≥ σp

(
mn

(
Ω�(y)

))

for all y ∈ Ω. This and (7.1.6) yield

cp
(
Ω�(y)\{y}

)
≥
(∫ mn(Ω�(y))

0

dτ
[λM (τ)]p/(p−1)

)1−p

.

Since mn(Ω�(y)) ≤ vn�n, from the definition of γp we obtain

γp(�) ≥
(∫ vn�n

0

dτ
[λM (τ)]p/(p−1)

)1−p

.

Now the required assertion follows from Theorem 7.5.1.

Example. In Example 7.1.2 we noted that for

Ω =
{
x : |x′| < f(xn), 0 < xn < a

}

condition (7.1.7) is equivalent to convergence of the integral (7.1.9). Therefore
for such Ω the embedding operator of W 1

p (Ω) into C(Ω)∩L∞(Ω) is compact
if and only if (7.1.9) holds.
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7.5.3 Domain for Which the Embedding Operator of W 1
p (Ω) into

C(Ω) ∩ L∞(Ω) is Bounded but not Compact

The embedding operator of W 1
p (Ω) into C(Ω) ∩ L∞(Ω) is simultaneously

bounded and compact for the domain in Example 7.5.2. By Theorems 1.4.5
and 1.4.6/2 this is also valid if Ω has the cone property.

The situation can be different with domains having “bad” boundaries.
As an example we shall consider a domain for which the function γp is not
identically zero and is bounded. Theorems 7.1.2 and 7.5.1 imply that for such
a domain the embedding operator of W 1

p (Ω) into C(Ω) ∩ L∞(Ω) is bounded
without being compact.

Example. First we show that the domain depicted in Fig. 30 satisfies
γp(�) �≡ 0 for p > 2. Consider the conductor Ω�(y)\{y} where � is small
enough and y ∈ Ω. If y ∈ Q then

cp
(
Q�(y)\{y}

)
≥ c�2−p,

where Q�(y) = B�(y) ∩Q (cf. Proposition 7.2.2) and hence

cp
(
Ω�(y)\{y}

)
≥ c�2−p. (7.5.5)

Let y be in the rectangle Rm and let G = B�(y) ∩ (Q ∪ Rm). By the
definition of p-conductivity,

cp
(
Ω�(y)\{y}

)
≥ cp

(
G\{y}

)
. (7.5.6)

Take an arbitrary function u ∈ TΩ(G\{y}). Let

Nt =
{
x ∈ Ω : u(x) ≥ t

}
, Et =

{
x ∈ Ω : u(x) = t

}
.

We only need to consider those levels t for which Et is a smooth curve. If
m2(Nt) ≥ 2εp

′

m, where p′ = p/(p− 1), then

m2(Nt ∩Q) ≥ εp
′

m ≥ m2(Nt ∩Rm).

Since Q ∈ J1/2, in the case m2(Nt) ≥ 2εp
′

m we have

[
s(Et)

]2 ≥ cm2(Nt ∩Q) ≥ 1
2
cm2(Nt). (7.5.7)

Let m2(Nt) < 2εp
′

m. If the set Et contains a component connecting points
of the polygonal lines abc and def (Fig. 31), then we can easily see that
2s(Et) ≥ s(∂Ω ∩ ¯Nt) and by the isoperimetric inequality we have

2π1/2
[
m2(Nt)

]1/2 ≤ s(∂Ω ∩ ¯Nt) + s(Et) ≤ 3s(Et). (7.5.8)

Thus either
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Fig. 30. Fig. 31.

s(Et) ≥ εm or
[
m2(Nt)

]1/2 ≤ c0s(Et)

provided m2(Nt) < 2εp
′

m.
Next we proceed to the estimate of cp(G\{y}). By Corollary 6.1.3 we

obtain

cp
(
G\{y}

)
≥ inf

[
−
∫ 1

0

d
dt
m2(Nt)

dt
[s(Et)]p

′

]1−p

. (7.5.9)

We express the integral on the right-hand side of (7.5.9) as the sum of integrals
over the sets A1, A2, A3, where

A1 =
{
t : m2(Nt) ≥ 2εp

′

m

}
,

A2 =
{
t : s(Et) ≥ εm

}
\A1,

A3 =
{
t :
[
m2(Nt)

]1/2 ≤ c0s(Et)
}
\A1.

From (7.5.7) it follows that

∫
A1

≤
(
c

2

)p/2[
−
∫ 1

0

d
dt
m2(Nt)

dt
[m2(Nt)]p

′/2

]
≤ c1

[
m2(G)

](p−2)/2(p−1)
.

The integral over A2 admits the obvious estimate
∫
A2

≤ εp/(1−p)
m

[
−
∫
A2

d
dt
m2(Nt) dt

]
≤ 2,

and the integral over A3 is estimated by (7.5.8) as follows:
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∫
A3

≤
(

3
2
√
π

)p′[
−
∫ 1

0

d
dt
m2(Nt)

dt
[m2(Nt)]p

′/2

]
≤ c2

[
m2(G)

](p−2)/2(p−1)
.

The last three inequalities and (7.5.9) lead to cp(G\{y}) ≥ const, which to-
gether with (7.5.6) and (7.5.5) yield the required result.

We show that the embedding operator of W 1
p (Ω) into C(Ω) ∩ L∞(Ω)

is not compact. We define the sequence of functions {um}m≥1 as follows:
um(x1, x2) = ε

1/(1−p)
m (x2−1) if (x1, x2) ∈ Rm, um(x1, x2) = 0 if (x1, x2) ∈ Q.

These functions are uniformly bounded in W 1
p (Ω) since

‖∇um‖Lp(Ω) = 1, ‖um‖Lp(Ω) = cε1/(p−1)
m .

However, ‖um − uk‖L∞(Ω) = 2 for m �= k and the sequence {um} is not
compact in C(Ω) ∩ L∞(Ω).

7.6 Generalizations to Sobolev Spaces of an Arbitrary
Integer Order

7.6.1 The (p, l)-Conductivity

Let G be an open subset of the set Ω and let F be a subset of G that is closed
in Ω. We define the (p, l)-conductivity of the conductor G\F by

cp,l(G\F ) = inf ‖∇lu‖pLp(Ω), (7.6.1)

where the infimum is taken over all functions u ∈ C∞(Ω) that are equal to
zero on Ω\G and to unity on F .

Proposition 1. If pl > n, p > 1, or l ≥ n, p = 1, then

cp,l(BR\B̄�) ∼ Rn−pl (7.6.2)

for R > 2�.

Proof. If R = 1, then (7.6.2) follows from the Sobolev inequality

‖u‖L∞(B1) ≤ c‖∇lu‖Lp(B1), u ∈ C∞
0 (B1).

The general case can be reduced to R = 1 by a similarity transformation.

Proposition 2. If n = pl and p > 1, then

cp,l(BR\B̄�) ∼
(

log
R

�

)1−p

(7.6.3)

for R > 2�.
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We shall establish (7.6.3) in the proof of Proposition 13.1.2/2 in the fol-
lowing.

Proposition 3. If pl ≤ n, p > 1 or l < n, p = 1, then for R > 2�,

cp,l(BR\B̄�) ∼ �n−pl. (7.6.4)

Proof. It is clear that

cp,l
(
R

n\B̄�

)
≤ cp,l(BR\B̄�) ≤ cp,l(B2�\B�).

It suffices to show that the rightmost and the leftmost of these functions are
equivalent to �n−pl. A similarity transformation reduces the proof to the case
� = 1 where the required assertion follows from the Sobolev inequality

‖u‖Lpn/(n−pl) ≤ c‖∇lu‖Lp , u ∈ C∞
0 . �

In the present section we shall consider only conductors of the form G\{y}
with y ∈ G. Propositions 2 and 3 along with the definition of the (p, l)-
conductivity imply that cp,l(G\{y}) is identically zero provided pl ≤ n, p > 1
or l < n, p = 1. By Proposition 1,

cp,l
(
B�(y)\{y}

)
= c�n−pl, c = const > 0,

for pl > n, p > 1 or for l ≥ n, p = 1.

7.6.2 Embedding Ll
p(Ω) ⊂ C(Ω) ∩ L∞(Ω)

Theorem. Let Ω be a domain in R
n. The embedding operator of Ll

p(Ω) into
C(Ω) ∩ L∞(Ω) is continuous if and only if

inf
y∈Ω\ω̄

cp,l
(
(Ω\ω̄)\{y}

)
> 0 (7.6.5)

for some open set ω with compact closure ω̄ ⊂ Ω.

Proof. Sufficiency. Let ω′ be a bounded open set with smooth boundary
and such that ω̄ ⊂ ω′, ω′ ⊂ Ω. Let η denote a function in C∞(Ω) which is
equal to unity outside ω′ and to zero on ω. Further, let u be any function in
C∞(Ω) ∩ Ll

p(Ω).
We fix an arbitrary point y ∈ Ω\ω′ for which u(y) �= 0 and put v(x) =

η(x)u(x)/u(y), x ∈ Ω. Since v(y) = 1 and v(x) = 0 outside the set G = Ω\ω̄,
we have

cp,l
(
G\{y}

)
≤ ‖∇lv‖pLp(Ω).

Therefore,
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∣∣u(y)∣∣pcp,l(G\{y}) ≤ c
l∑

k=0

∥∥∇l(uη)
∥∥p
Lp(Ω)

≤ c‖∇lu‖pLp(Ω) + C‖u‖p
W l−1

p (ω′)
.

Thus

sup
Ω\ω′

|u|p ≤ c
(

inf
y∈G

cp,l
(
G\{y}

))−1(
‖∇lu‖pLp(Ω) + C‖u‖p

W l−1
p (ω′)

)
. (7.6.6)

The estimate for |u| in ω′ follows from the Sobolev theorem on the embedding
of W l

p into C for domains with smooth boundaries.
Necessity. Let the inequality

sup
Ω

|u| ≤ C
(
‖∇lu‖Lp(Ω) + ‖u‖Lp(ω)

)
(7.6.7)

hold for all u ∈ C∞(Ω) ∩ Ll
p(Ω), where ω is a domain with compact closure

ω̄, ω̄ ⊂ Ω. Consider any conductor G\{y} where G = Ω\ω̄ and y ∈ G. The
insertion of an arbitrary function u ∈ C∞(Ω) ∩ L1

p(Ω), equal to unity at y
and to zero outside G, into (7.6.7) yields

1 ≤ sup
Ω

|u| ≤ c‖∇u‖Lp(Ω).

Minimizing the last norm, we obtain cp,l(G\{y}) ≥ C−p. �

7.6.3 Embedding V l
p(Ω) ⊂ C(Ω) ∩ L∞(Ω)

Now we present a direct extension of Theorem 7.1.2 to the space V l
p (Ω).

Let y ∈ Ω and let � be a positive number. Consider the conductor
Ω�(y)\{y}. Further, let pl > n or l = n, p = 1 and

c∗
p,l

(
Ω�(y)\{y}

)
= inf

l∑
k=1

‖∇ku‖pLp(Ω), (7.6.8)

where the infimum is taken over all infinitely differentiable functions in the
class V l

p (Ω) that are equal to zero in Ω\B�(y) and to one at y.

Theorem. The embedding operator of V l
p (Ω) into C(Ω) ∩ L∞(Ω) is con-

tinuous if and only if
inf
y∈Ω

c∗
p,l

(
Ω�(y)\{y}

)
�≡ 0. (7.6.9)

Proof. Sufficiency. Let u be an arbitrary function in C∞(Ω) ∩ V l
p(Ω) and

let y ∈ Ω be such that u(y) �= 0. Further, let

inf
y∈Ω

c∗
p,l

(
Ω�(y)\{y}

)
> 0
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for some � and let η ∈ C∞
0 (B1). Consider the function

v(x) = η
(
(x− y)/�

)
u(x)/u(y).

Since v(y) = 1 and v(x) = 0 outside Ω�(y), we have

c∗
p,l

(
Ω�(y)\{y}

)
≤

l∑
k=1

�p(k−l)‖∇kv‖pLp(Ω).

Consequently,

∣∣u(y)∣∣p inf
y∈Ω

c∗
p,l

(
Ω�(y)\{y}

)
≤ c

l∑
k=0

�p(k−l)‖∇ku‖pLp(Ω).

Necessity. For all infinitely differentiable functions in V l
p (Ω), let the in-

equality

sup
Ω

|u| ≤ C
l∑

k=0

‖∇ku‖Lp(Ω) (7.6.10)

hold. Consider any conductor Ω�(y)\{y} with y ∈ Ω. We insert an arbitrary
function in the definition of c∗

p,l(Ω�(y)\{y}) into (7.6.10). Obviously,

‖u‖Lp(Ω) ≤
(
vn�

n
)1/p sup

Ω�(y)

|u|.

Therefore, if � < v−1/n
n (2C)−p/n, then

sup
Ω�(y)

|u| ≤ 2C
l∑

k=1

‖∇ku‖Lp(Ω�(y))

and thus

1 ≤ 2C
l∑

k=1

‖∇ku‖Lp(Ω�(y)).

Minimizing the right-hand side over VΩ(Ω�(y)\{y}) we obtain

c∗
p,l

(
Ω�(y)\{y}

)
≥ cC−p.

The theorem is proved. �

7.6.4 Compactness of the Embedding Ll
p(Ω) ⊂ C(Ω) ∩ L∞(Ω)

Now we present a necessary and sufficient condition for the compactness of
the embedding Ll

p(Ω) ⊂ C(Ω) ∩ L∞(Ω).
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Theorem. Let mn(Ω) < ∞. The embedding operator of Ll
p(Ω) into

C(Ω) ∩ L∞(Ω) is compact if and only if

lim
ν→∞

inf
y∈Gν

cp,l
(
Gν\{y}

)
= ∞ (7.6.11)

for some monotone sequence of bounded open sets {ων}ν≥1 such that ω̄ν ⊂ Ω
and ων → Ω. Here Gν = Ω\ω̄ν .

Proof. Sufficiency. Let ω′
ν be an open set with ω̄ν ⊂ ω′

ν , ω′
ν ⊂ Ω. By (7.6.6)

we have

sup
Ω

|u|p ≤ c
(

inf
y∈Gν

cp,l
(
Gν\{y}

))−1(
‖∇lu‖pLp(Ω) + C‖u‖p

W l−1
p (ω′

ν)

)
+ sup

ω′
ν

|u|p.

It remains to use the compactness of the embedding of Ll
p(Ω) into W l−1

p (ω′
ν)

and into C(ω′
ν) along with (7.6.11) (see the proof of sufficiency in Theo-

rem 7.5.1).
Necessity. Suppose that

lim
ν→∞

inf
y∈Gν

cp,l
(
Gν\{y}

)
< A = const (7.6.12)

for an increasing sequence of open sets {ων}ν≥1. We endow Ll
p(Ω) with the

norm
‖u‖Ll

p(Ω) = ‖∇lu‖Lp(Ω) + ‖u‖Lp(ω1).

By (7.6.12) there exist sequences {yν} and {uν}, uν ∈ VΩ(Gν\{yν}), such
that ‖∇luν‖Lp(Ω) < A

1/p. Since the sequence {uν}ν≥1 is compact in C(Ω) ∩
L∞(Ω), given ε > 0, there exists a number N such that supΩ |uμ − uν | < ε
for a μ, ν > N . Using uν(yν) = 1, we obtain

∣∣uμ(yν) − 1
∣∣ < ε, μ, ν > N. (7.6.13)

Further, since ωμ ↑ Ω, the point yν is contained in ωμ for a fixed ν > N and
for all large enough μ. Therefore, uμ(yν) = 0 which contradicts (7.6.13). The
theorem is proved. �

We note that we derived (7.6.11) in the proof of necessity for any mono-
tonic sequence of bounded open sets ων with ω̄ν ⊂ Ω,

⋃
ν ων = Ω.

7.6.5 Sufficient Conditions for the Continuity and the Compactness
of the Embedding Ll

p(Ω) ⊂ C(Ω) ∩ L∞(Ω)

We present a sufficient condition for the boundedness and the compactness of
the embedding operator of Ll

p(Ω) into C(Ω)∩L∞(Ω) which generalizes (7.1.7).

Theorem 1. Let mn(Ω) < ∞, p ≥ 1, l, and let l be a positive integer.
Also let Ω ∈ Jα, where 1 > α > (n− 1)/n and pl(1 − α) > 1. Then
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‖u‖L∞(Ω) ≤ C‖u‖Ll
p(Ω), (7.6.14)

and the embedding operator of Ll
p(Ω) into C(Ω) ∩ L∞(Ω) is compact.

Proof. By Theorem 7.1.2/1,

‖u‖L∞(Ω) ≤ C
(
‖∇u‖Lpl(Ω) + ‖u‖Lp(ω)

)
, (7.6.15)

where ω is an open set, ω̄ ⊂ Ω and C is a constant independent of u. Since
p(l−1)(1−α) < 1 and pl = p/[1−p(l−1)(1−α)], we have by Corollary 6.9/1
that

n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpl(Ω)

≤ C
n∑

i=1

(∥∥∥∥∇l−1
∂u

∂xi

∥∥∥∥
Lp(Ω)

+
∥∥∥∥ ∂u∂xi

∥∥∥∥
Lp(ω)

)

≤ C1

(
‖∇lu‖Lp(Ω) + ‖u‖Lp(ω)

)
. (7.6.16)

Combining (7.6.15) and (7.6.16) we arrive at (7.6.14).
The compactness of the embedding Ll

p(Ω) ⊂ C(Ω) ∩ L∞(Ω) follows
from (7.6.16) and Theorem 7.5.2 in which p is replaced by p l and the condi-
tion (7.1.7) is replaced by Ω ∈ Jα.

Theorem 2. If Ω is a domain with finite volume contained in Jα with
1 > α > (n− 1)/n and p l(1 − α) > 1, then for all u ∈W l

p(Ω)

‖u‖L∞(Ω) ≤ C‖u‖1/(r+1)

W l
p(Ω)

‖u‖r/(r+1)
Lp(Ω) , r = pl(1 − α) − 1.

For the proof it suffices to use Corollary 7.2.1 with p replaced by p l and
then to apply (7.6.16).

Example. (Cusp) Let Ω be the domain in Examples 5.3.3/1 and 7.1.2 with
f(τ) = cτβ , β ≥ 1. Then the condition Ω ∈ Jα in Theorem 1 is equivalent
to pl > β(n − 1) + 1 and therefore the embedding operator of Ll

p(Ω) into
C(Ω) ∩ L∞(Ω) is compact provided p l > β(n− 1) + 1. If the inequality sign
is replaced here by equality then the operator fails to be bounded. In fact,
the function u(x) = log | log xn| is not in L∞(Ω) and belongs to Ll

p(Ω) for
p l = β(n− 1) + 1.

In Maz’ya and Poborchi [575] one can find the following more general and
exhaustive result concerning the same cuspidal domain with Lipschitz and
increasing f on [0, 1], such that

f(0) = lim
x→0

f ′(x) = 0.

If p ∈ (1,∞) and l = 1, 2, . . . , then the continuity of the embedding
operator W l

p(Ω) → C(Ω) ∩ L∞(Ω) is equivalent to
∫ 1

0

t(l−1)p/(p−1)

f(t)(n−1)/(p−1)
dt <∞. (7.6.17)
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This embedding operator is compact. The space W l
1(Ω) is embedded into

C(Ω) ∩ L∞(Ω) if and only if

sup
{

tl−1

f(t)n−1
: t ∈ (0, 1)

}
<∞,

and the compactness of the same embedding operator is equivalent to

lim
t→0

tl−1

f(t)n−1
= 0.

7.6.6 Embedding Operators for the Space W l
p(Ω) ∩ W̊ k

p (Ω), l > 2k

In Sect. 1.6 we showed that for l ≤ 2k the space W l
p(Ω)∩ W̊ k

p (Ω) satisfies the
Sobolev-type theorems for arbitrary bounded domains. Here we consider the
case l > 2k where, according to Sect. 1.6.4, some additional requirements on
Ω are necessary.

By Corollary 6.9/1 and Theorem 7.6.5/2, the inclusion Ω ∈ Jα with
(n − 1)/n ≤ α < 1 implies the compactness of the embedding W l

p(Ω) ⊂
Wm

q (Ω) where q−1 = p−1−(l−m)(1−α) if 1 > p(l−m)(1−α), q is an arbitrary
positive number if 1 = p(l −m)(1 − α) and q = ∞ if 1 < p(l −m)(1 − α).

In the following we show that in the casem ≥ 2k the preceding result is also
the best possible for the space W l

p(Ω) ∩ W̊ k
p (Ω). We present an example of a

domain Ω ∈ Jα for which the continuity of the embeddingW l
p(Ω)∩W̊ k

p (Ω) ⊂
Wm

q (Ω) implies the inequality q−1 ≥ p−1 − (l −m)(1 − α).
Let Ω be the union of the semi-ball B− = {x = (y, z) : z < 0, |x| < 2} and

the sequence of disjoint semi-ellipsoids

e+i =
{
x = (y, z) : z > 0, δ−2γ

i z2 + δ−2
i |y −Oi|2 < 1

}
,

where 0 < y < 1, δi = 2−i−1, |O −Oi| = 3 · 2−i (see Fig. 32).
In e+i we define the function

wi(x) =
(
1 − δ−2γ

i z2 − δ−2
i |y −Oi|2

)k
η
(
z/δγ

)
,

where η is a smooth function on (0,+∞), η(z) = 0 near z = 0 and η = 1 on
the half-axis (1

2 ,+∞). We assume that each wi, i = 1, 2, . . . , is extended to
Ω\e+i .

We can easily check that

‖∇swi‖Lq(Ω) ∼

⎧⎨
⎩
δ

−s+(n−1+γ)/q
i , s < 2k,

δ
2k(γ−1)−sγ+(n−1+γ)/q
i , s ≥ 2k.

Let the space W l
p(Ω) ∩ W̊ k

p (Ω) be continuously embedded into Wm
q (Ω), m ≥

2k. Then
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Fig. 32.

‖∇mwi‖Lq(Ω) ≤ C‖wi‖W l
p(Ω),

or equivalently,
δ
γ(m−l)+(1/p−1/q)(n−1+γ)
i ≥ cC−1.

Consequently, 1/q ≥ 1/p− (l −m)(1 − α) for α = (n− 1)/(n− 1 + γ).
Next we show that Ω ∈ Jα. We introduce the sets

e+ =
{
ξ = (η, ζ) ∈ R

n : ζ > 0, ζ2 + η2 < 1
}
,

γ+ = e+ ∩
{
ξ : ζ < δ1−γ

i

}
.

Since the embedding operator of W 1
1 (e+) into Ls(e+) with s = 1/α is contin-

uous, for all v ∈W 1
1 (e+) we have

‖v‖L2(e+) ≤ c
(
‖∇v‖L1(e+) + δγ−1

i ‖v‖L1(γ∗)

)
.

Let u ∈W 1
1 (Ω). Applying the last inequality to the function v(ζ) = u(δiη+

Oi, δ
γ
i ζ), we obtain

‖u‖L1(e
+
i ) ≤ c

(
‖∇u‖L1(e

+
i ) + δ−1

i ‖u‖L1(γ
+
i )

)
,

where γ+
i = {x ∈ e+i : z < δi}. Consequently

‖u‖Ls(Ω) ≤ c
( ∞∑

i=1

δ−1
i ‖u‖L1(γ

+
i ) + ‖∇u‖L1(Ω) + ‖u‖L1(B−)

)
. (7.6.18)

Let γ−
i denote the mirror image of γ+

i with respect to the plane z = 0. It is
clear that

δ−1
i

∫
γ+

i

|u| dx ≤
∫
γ+

i ∪γ−
i

|∇u| dx+ δ−1
i

∫
γ−

i

|u| dx.

This and (7.6.18) imply
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‖u‖Ls(Ω) ≤ c
(
‖∇u‖L1(Ω) +

∫
B−

|u|dx|x|

)
.

Since the second term on the right does not exceed c‖u‖W 1
1 (B−) we have

inf
c∈R1

‖u− c‖Ls(Ω) ≤ c‖∇u‖L1(Ω)

and the inclusion Ω ∈ Jα follows from Theorem 5.2.3.

7.7 Comments to Chap. 7

Most of the results of this chapter were announced in Maz’ya [528] and pub-
lished with proofs in [543].

The p-conductivity criterion of the embedding

W 1
p (Ω) ⊂ C(Ω) ∩ L∞(Ω) (7.7.1)

in Theorem 7.1.1/1 was used by Labutin [473] to obtain the following necessary
and sufficient conditions on functions G on R such that G ◦ u ∈ W 1

p (Ω) for
all u ∈W 1

p (Ω):

(i) G′ ∈ L∞(R) if the embedding (7.7.1) fails,
(ii) G′ ∈ L∞(R, loc) if the embedding (7.7.1) holds.

In the case r = n/(n − 1), if the boundary is Lipschitz, the inequality
(7.1.13) is a particular case of the Brezis–Gallouët–Wainger inequality [141],
[146], which has important applications to the theory of nonlinear evolution
equations (see for instance, Chap. 13 in M.E. Taylor [747], Brezis and Gallouët
[141], et al.).

Buckley and Koskela [148] showed that the inequality (7.3.1) with Λ(t) =
t1−2/p, p > 2, is equivalent to (1.5.9).
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Localization Moduli of Sobolev Embeddings
for General Domains

In the present chapter we study noncompact embeddings

Ep,q(Ω) : L1
p(Ω) → Lq(Ω),

where Ω is a connected open set in R
n, n > 1, and 1 ≤ p ≤ q < ∞. In

the opposite case p > q, the boundedness of Ep,q implies compactness (see
Remark 5.5.2 and Theorem 6.8.2/2), which makes this case of no interest for
us in this chapter. Here we define new measures of noncompactness of Ep,q

and characterize their mutual relations as well as their relations with “local”
isoperimetric and isoconductivity constants. To describe our results we need
to introduce some notation that will be frequently used in this chapter.

We supply L1
p(Ω) with the norm

‖u‖L1
p(Ω) = ‖∇u‖Lp(Ω) + ‖u‖Lp(ω),

where ∇ stands for the gradient and ω is a nonempty open set with compact
closure ω ⊂ Ω. It is standard that a change of ω leads to an equivalent norm
in L1

p(Ω). In this chapter we often omit Ω in notations of spaces and norms
if it causes no ambiguity.

Among other things, we study the essential norm of the embedding oper-
ator Ep,q : L1

p → Lq, i.e., the number

ess‖Ep,q‖ = inf ‖Ep,q − T‖L1
p →Lq

,

where the infimum is taken over all compact operators T : L1
p → Lq.

Another characteristic of Ep,q to be dealt with later in this chapter is
defined by

C(Ep,q) = inf C,

where C is a positive constant such that there exist ρ > 0 andK > 0 subjected
to the inequality

‖u‖Lq(Ω) ≤ C‖u‖L1
p(Ω) +K‖u‖L1(Ωρ) for all u ∈ L1

p (8.0.1)

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 8, c© Springer-Verlag Berlin Heidelberg 2011
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with
Ωρ =

{
x ∈ Ω : dist(x, ∂Ω) > ρ

}
.

Together with the norm ‖Ep,q‖ of the embedding operator Ep,q, its es-
sential norm ess‖Ep,q‖ and the number C(Ep,q), we shall make use of two
numbers M1(Ep,q) and M2(Ep,q). The first of them is defined by

M1(Ep,q) = lim
s→0

sup
{‖u‖Lq

‖u‖L1
p

: u ∈ L1
p, u = 0 on Ωs

}
.

The definition of M2 is as follows:

M2(Ep,q) = lim
�→0

sup
x∈∂Ω

sup
{‖u‖Lq

‖u‖L1
p

: u ∈ L1
p, suppu ⊂ B(x, �)

}
,

where B(x, �) is the open ball with radius � centered at x.
These two characteristics of Ep,q differ in the ways of localization of the

functions involved and it seems appropriate to call M1 and M2 the localization
moduli of the embedding Ep,q.

In Sect. 8.1 we show that

ess‖Ep,q‖ = C(Ep,q) = M1(Ep,q) (8.0.2)

provided 1 ≤ p ≤ q < pn/(n− p) if n > p and 1 ≤ q < ∞ for p ≥ n. We
also prove that the three quantities in (8.0.2) are equal to M2(Ep,q) under
the additional assumption p < q. The last fact fails if p = q as shown in an
example of a domain Ω for which M2(Ep,q) = 0 and

‖Ep,p‖ = ess‖Ep,p‖ = M1(Ep,p) = C(Ep,p) = ∞

(see Sect. 8.2).
In Sect. 8.3, we assume that Ω is a bounded C1 domain and that q =

pn/(n− p), and n > p ≥ 1. In this case we find an explicit value for

C(Ep,q) = M1(Ep,q) = M2(Ep,q).

The results obtained in Sect. 8.1 are readily extended in Sect. 8.4 to the
embedding of L1

p(Ω) to the space Lq(Ω,μ), where μ is a Radon measure.
Next, we turn to domains with a power cusp on the boundary and find

explicit formulas for the measures of noncompactness under consideration
and apply these results to the Neumann problem for a particular Schrödinger
operator (Sects. 8.5 and 8.6).

In the final section we show relations between our measures of noncom-
pactness and local isoconductivity and isoperimetric constants. In particular,
we obtain

ess‖E1,q‖ = C(E1,q) = M1(E1,q) = M2(E1,q) = lim
s→0

sup
g⊂Ω\Ωs

(mn(g))1/q

Hn−1(Ω ∩ ∂g) ,
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where 1 < q < n/(n− 1), g is a relatively closed subset of Ω such that Ω ∩ ∂g
is a smooth surface, and Hn−1 is the (n− 1)-dimensional area. This together
with the results from Sect. 8.5 yields explicit values of the local isoperimetric
constants for power cusps.

8.1 Localization Moduli and Their Properties

Let us discuss relations between the moduli. First of all, obviously,

M1(Ep,q) ≥ M2(Ep,q). (8.1.1)

Lemma 1. Let Ω be a domain in R
n with mn(Ω) < ∞. Suppose that

1 ≤ p < ∞ and 1 ≤ q < ∞. Then for any u ∈ L1
p(Ω) the following estimate

holds:

‖u‖Lq(Ω) ≤
(
M1(Ep,q) + ε

)
‖u‖L1

p(Ω) + C(ε)‖u‖Lmax{q,p}(ωε), (8.1.2)

where ε is an arbitrary positive number, C(ε) is a positive function of ε, and
ωε is an open set with smooth boundary and compact closure ωε ⊂ Ω.

Proof. Let η denote a smooth function on R
+, such that 0 ≤ η ≤ 1 and

η(t) = 0 for t ∈ (0, 1) and η(t) = 1 for t ≥ 2. By d(x) we denote the distance
from x ∈ Ω to ∂Ω. Let us introduce the cutoff function Hs(x) = η(d(x)/s).
We write

‖u‖Lq ≤ ‖Hsu‖Lq +
∥∥(1 −Hs)u

∥∥
Lq
,

and note that the second term does not exceed

sup
{‖v‖Lq(Ω)

‖v‖L1
p(Ω)

: v ∈ L1
p(Ω), supp v ⊂ Ω \Ω2s

}∥∥(1 −Hs)u
∥∥
L1

p
.

Hence, for sufficiently small s = s(ε)

‖u‖Lq ≤
(
M1(Ep,q) + ε

)(
‖u‖L1

p
+ ‖u∇Hs‖Lp

)
+ ‖Hsu‖Lq .

Since the supports of Hs and its derivatives are in Ωs the result follows. �

Corollary. Let Ω be a domain in R
n with mn(Ω) < ∞. Suppose that

1 ≤ p <∞ and 1 ≤ q <∞. Then

M1

(
Ep,q(Ω)

)
<∞,

if and only if
‖Ep,q‖L1

p(Ω)→Lq(Ω) <∞.

Proof. By Lemma 1, M1(Ep,q(Ω)) < ∞ implies ‖Ep,q‖L1
p(Ω)→Lq(Ω) < ∞.

The converse is obvious. �

Lemma 2. Let Ω be a domain in R
n with mn(Ω) <∞.
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(i) If 1 ≤ q <∞ and 1 ≤ p <∞, then

M1(Ep,q) ≤ ess‖Ep,q‖.

(ii) Let 1 ≤ q < pn/(n− p) if 1 ≤ p < n and 1 ≤ q <∞ if n ≤ p <∞. Then

ess‖Ep,q‖ ≤ M1(Ep,q).

Proof. (i) By F we denote an operator of finite rank acting from L1
p(Ω)

into Lq(Ω) and given by

Fu =
∑

1≤j≤N

cj(u)ϕj ,

where ϕj ∈ Lq(Ω) and cj are continuous functionals on L1
p(Ω). Let ε > 0. We

choose the operator F to satisfy

ε+ ess‖Ep,q‖ ≥ ‖Ep,q − F‖. (8.1.3)

Without loss of generality, we can assume that the functions ϕj have compact
supports in Ω. Hence, there exists a positive s(ε) such that Fu = 0 on Ω\Ωs(ε)

for all u ∈ L1
p(Ω). Let s ∈ (0, s(ε)). By (8.1.3), for all u ∈ L1

p(Ω) vanishing on
Ωs,

ε+ ess‖Ep,q‖ ≥
‖u‖Lq(Ω\Ωs(ε))

‖u‖L1
p(Ω)

=
‖u‖Lq(Ω)

‖u‖L1
p(Ω)

.

The required lower estimate for ess‖Ep,q‖ follows from the definition of
M1(Ep,q).

(ii) Let ε be an arbitrary positive number and let s > 0 be so small that

sup
{‖v‖Lq(Ω)

‖v‖L1
p(Ω)

: v ∈ L1
p(Ω), v = 0 on Ωs

}
≤ M1(Ep,q) + ε.

We introduce a domain ω with smooth boundary and compact closure ω,
ω ⊂ Ω, such that mn(Ω \ ω) = δmn(Ω \ Ωs) with any chosen δ ∈ (0, 1).
By χω we denote the characteristic function of ω. By the compactness of the
embedding L1

p(Ω) → Lq(ω) we have

ess‖Ep,q‖ ≤ sup
u∈L1

p

‖u− χωu‖Lq(Ω)

‖u‖L1
p(Ω)

= sup
u∈L1

p

‖u‖Lq(Ω\ω)

‖u‖L1
p(Ω)

. (8.1.4)

It is obvious that for any positive T

|u| ≤ min
{
T, |u|

}
+
(
|u| − T

)
+
,

where f+ means the nonnegative part of f . This implies
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‖u‖Lq(Ω\ω) ≤
∥∥min

{
T, |u|

}∥∥
Lq(Ω\ω)

+
∥∥(|u| − T )

+

∥∥
Lq(Ω\ω)

. (8.1.5)

We use the notation Lt = {x : |u(x)| > t} and choose T as

T = inf{t > 0 : mnLt < mn(Ω \Ωs)}.

Then, for q <∞,
∥∥min

{
T, |u|

}∥∥
Lq(Ω\ω)

≤ Tmn(Ω \ ω)1/q

=
(
δmn(Ω \Ωs)

)1/q
T ≤ δ1/q‖u‖Lq(Ω).

Hence,

sup
u∈L1

p(Ω)

‖min{T, |u|}‖Lq(Ω\ω)

‖u‖L1
p(Ω)

≤ δ1/q‖Ep,q‖.

Combining this inequality with (8.1.4) and (8.1.5), we arrive at

ess‖Ep,q‖ ≤ sup
u∈L1

p(Ω)

‖(|u| − T )+‖Lq(Ω\ω)

‖u‖L1
p(Ω)

+ δ1/q‖Ep,q‖.

Let σ be an arbitrary positive number and let Hσ be the function intro-
duced in the proof of Lemma 1. Then

∥∥(|u| − T )
+

∥∥
Lq(Ω)

≤
∥∥(|u| − T )

+
(1 −Hσ)

∥∥
Lq(Ω)

+
∥∥(|u| − T )

+
Hσ

∥∥
Lq(Ω)

. (8.1.6)

To estimate the first term on the right-hand side, we take σ so small that

sup
{‖v‖Lq(Ω)

‖v‖L1
p(Ω)

: v ∈ L1
p(Ω); v = 0 on Ω2σ

}
≤ M1(Ep,q) + ε.

We normalize u by ‖u‖L1
p(Ω) = 1. Then

∥∥(|u| − T )
+
(1 −Hσ)

∥∥
Lq(Ω)

≤
(
M1(Ep,q) + ε

)(
1 +

∥∥(|u| − T )
+
∇Hσ

∥∥
Lp(Ω)

)
. (8.1.7)

Combining (8.1.6) and (8.1.7), we see that
∥∥(u− T )+

∥∥
Lq(Ω)

≤
(
M1(Ep,q) + ε

)
+ C(Ω)

(
‖u‖Lq(LT ∩Ωσ) + ‖u‖Lp(LT ∩Ωσ)

)
(8.1.8)

with a constant C(Ω) depending only on Ω, σ, p, and q but not on s. Using
the compactness of the restriction operator L1

p(Ω) → Lmax{p,q}(Ωσ) and the
equality mnLT ≤ mn(Ω \Ωs), we conclude that the two norms on the right-
hand side of (8.1.8) tend to zero as s→ 0. Therefore
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lim sup
s→0

∥∥(|u| − T )
+

∥∥
Lq(Ω)

≤ M1(Ep,q) + ε

and hence
ess‖Ep,q‖ ≤ M1(Ep,q) + ε+ δ1/q‖Ep,q‖.

The proof is completed by using the arbitrariness of ε and δ. �

Theorem 1. Let Ω be a domain in R
n with mn(Ω) < ∞. Suppose that

1 ≤ p ≤ q < pn/(n− p) if 1 ≤ p < n and 1 ≤ q <∞ if n ≤ p <∞. Then

ess‖Ep,q‖ = C(Ep,q) = M1(Ep,q).

Proof. In the case q < pn/(n− p), n > p and q arbitrary when p ≥ n the
trace map from L1

p(Ω) into Lmax {p,q}(ωδ) is compact. Then from Lions and
Magenes [500, Theorem 16.4] it follows that

‖u‖Lmax(p,q)(ωδ) ≤ ε‖u‖L1
p(Ω) + C(ε)‖u‖L1(ωδ),

where ε > 0 is an arbitrary small number. This together with (8.1.2) allows
us to obtain

C(Ep,q) ≤ M1(Ep,q).

Let ε > 0 be an arbitrary positive number. Then

‖u‖Lq(Ω) ≤
(
C(Ep,q) + ε

)
‖u‖L1

p(Ω) + c(ε)‖u‖L1(Ωs(ε))

and hence
M1(Ep,q) ≤ C(Ep,q) + ε. �

We shall see that, in dealing with M2(Ep,q), we must distinguish between
the cases p < q and p = q.

Theorem 2. Let Ω be a domain in R
n with mn(Ω) < ∞ and 1 ≤ p <

q < ∞. Suppose that q < pn/(n − p) for p < n and 1 ≤ q < ∞ for p ≥ n.
Then

ess‖Ep,q‖ = C(Ep,q) = M1(Ep,q) = M2(Ep,q).

Proof. By (8.1.1) and Theorem 1 it is sufficient to assume that
M2(Ep,q) <∞ and to prove the inequality

M2(Ep,q) ≥ C(Ep,q).

Fix ρ > 0 and let {Bi}i≥1 be an open covering of Ω \Ωρ/2 by balls of ra-
dius ρ centered at ∂Ω. Also let the multiplicity of the covering be finite and
depend only on n. Obviously the collection {Bi}i≥1 supplemented by the set
Ωρ/2 forms an open covering of Ω which has a finite multiplicity as well. We
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introduce a family of nonnegative functions {ηi}i≥0, such that η0 ∈ C∞
0 (Ωρ/2)

and ηi ∈ C∞
0 (Bi) for i ≥ 1, and

∑
i≥0

ηi(x)p = 1 on Ω. (8.1.9)

The estimates to be obtained in what follows will be first proved for an arbi-
trary function u ∈ L1

p(Ω) ∩ L∞(Ω). Since L1
p(Ω) ∩ L∞(Ω) by Lemma 1.7.1,

these estimates remain valid for u ∈ L1
p(Ω).

Clearly,

‖u‖pLq(Ω) =
∥∥∥∥
∑
i≥0

|ηiu|p
∥∥∥∥
Lq/p(Ω)

≤
∑
i≥0

∥∥|ηiu|p∥∥Lq/p(Ω)

=
∑
i≥0

‖ηiu‖pLq(Ω). (8.1.10)

Given ε > 0 and sufficiently small ρ, we have

sup
i≥1

sup
{‖v‖Lq(Ω)

‖v‖L1
p(Ω)

: v ∈ L1
p(Ω), v = 0 on Ω \ Bi

}
≤ M2(Ep,q) + ε.

Therefore, the right-hand side in (8.1.10) does not exceed

(
M2(Ep,q) + ε

)p∑
i≥1

‖ηiu‖pL1
p(Ω) + ‖η0u‖pLq(Ω).

Using the elementary inequality

(a+ b)p ≤ (1 + ε)ap + c(ε)bp (8.1.11)

for positive a and b, we see that

‖u‖pLq(Ω) ≤
(
M2(Ep,q) + ε

)p{(1 + ε)
∑
i≥1

‖ηi∇u‖pLp(Ω)

+ C(ε, ρ)‖u‖pLp(Ω)

}
+ ‖η0u‖pLq(Ω). (8.1.12)

We note further that by (8.1.9) the sum over i ≥ 1 in (8.1.12) does not exceed
‖∇u‖pLp(Ω). Since q−1 > p−1 − n−1 and the support of η0 is separated from
∂Ω, it follows that by the compactness of the restriction mapping L1

p(Ω) into
Lq(Ωρ/2) we have the estimate

‖η0u‖Lq(Ω) ≤ δ‖η0u‖L1
p(Ω) + c(δ, ρ)‖η0u‖L1(Ω), (8.1.13)

where δ is an arbitrary small number.
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Let τ be a positive number independent of ρ. Since q > p, we conclude
that

‖u‖Lp(Ω) ≤
(
mn(Ω \Ωτ )

)p−1−q−1

‖u‖Lq(Ω\Ωτ ) + ‖u‖Lp(Ωτ ) (8.1.14)

and
‖u‖Lp(Ωτ ) ≤ ε‖u‖L1

p(Ω) + c(ε, τ)‖u‖L1(Ωτ ). (8.1.15)

Choosing τ and δ sufficiently small and using (8.1.12)–(8.1.15) we arrive
at the inequality

‖u‖Lq(Ω) ≤
(
M2(Ep,q) + cε

)
‖u‖L1

p(Ω) + c(ε)‖u‖L1(Ωτ )

with a constant c independent of ε and u. This completes the proof. �

8.2 Counterexample for the Case p = q

In the next example, we show that the condition p < q in Theorem 8.1/2
cannot be removed. To be more precise, for any p ∈ (1,∞) we construct a
planar domain for which

‖Ep,p‖ = ess‖Ep,p‖ = M1(Ep,p) = C(Ep,p) = ∞

and M2(Ep,p) = 0.

Example. (See Fig. 33) Let Ω ⊂ R
2 be the union of rectangles

Ai = (0, 1/2]× (a2i−2, a2i), i > 0,
B0 = [3/2, 2)× (0, a1),
Bi = [3/2, 2)× (a2i−1, a2i+1), i > 0,
Ci = [1/2, 3/2]× (ai−1, ai), i > 0,

where

a0 = 0 and ai =
i∑

n=1

n−p for i > 0.

Clearly, m2(Ω) <∞. For each integer j > 0 we define the continuous function
fj(x) as a function that is zero on

(⋃
n≤j

An

)
∪
(⋃

n≤j

Bn

)
∪
( ⋃

n<2j

Cn

)
,

fj(x) = i and fj(x) = i + 1 on Aj+i and Bj+i, respectively, and linear on
C2j+i with |∇fj | = 1 for i ≥ 0. The graph of each function fj(x) has the
shape of a staircase with slope 1 on C2j+i, and landings on Aj+i and Bj+i for
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Fig. 33.

i > 0. By a simple computation we obtain ‖∇fj‖Lp <∞ and ‖fj‖Lp = ∞ for
each j > 0 that implies M1(Ep,p) = ∞. Furthermore, by Theorem 8.1/2 we
have C(Ep,p) = ess‖Ep,p‖ = ∞.

It remains to show that M2(Ep,p) = 0. Let x ∈ ∂Ω and ρ < 1/4. ByQ(x, ρ)
we denote the square (x− ρ, x+ ρ)2. By the definition of Ω one obtains that
Ω ∩Q(x, ρ) is a union of open disjoint sets {Ii}, where Ii is either a rectangle
or the union of three rectangles.

For f ∈ L1
p(Ω) with supp f ⊂ Ω ∩Q(x, ρ), we have

∫
Ii

∣∣f(x)∣∣p dx ≤ (cρ)p
∫
Ii

∣∣∇f(x)∣∣p dx.

Summing over {Ii}, we arrive at

(∫
∪Ii

∣∣f(x)∣∣p dx
)1/p

≤ cρ
(∫

∪Ii

∣∣∇f(x)∣∣p dx
)1/p

and then

sup
{‖u‖Lp

‖u‖L1
p

: u ∈ L1
p(Ω), supp u ⊂ Q(x, ρ)

}
≤ cρ

for every x ∈ ∂Ω. This implies M2(Ep,p) = 0.
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8.3 Critical Sobolev Exponent

Here we show that all our measures of noncompactness can be found explic-
itly if ∂Ω has a continuous normal and q is the critical Sobolev exponent
pn/(n− p).

Theorem. Let n > p ≥ 1 and let Ω be a bounded C1 domain. Then

C(Ep, pn
n−p

) = M1(Ep, pn
n−p

) = M2(Ep, pn
n−p

) = 21/nc(p, n),

where

c(p, n) = π−1/2n−1/p

(
p− 1
n− p

)1−1/p(
Γ (n)Γ (1 + n/2)

Γ (n/p)Γ (1 + n− n/p)

)1/n

is the best constant in the Sobolev inequality

‖u‖L pn
n−p

(Rn) ≤ c‖∇u‖Lp(Rn). (8.3.1)

Proof. Let ζ be a radial function in C∞
0 (Rn), ε > 0 and ζε(x) = ζ(x/ε). By

O we denote an arbitrary point at ∂Ω and we put ζε,O(x) := ζε(x −O) into
the inequality (8.0.1). We use q∗ to denote pn/(n− p). Using the definition of
C(Ep,q), we obtain

lim sup
ε→0

‖ζε,O‖Lq∗ (Ω)

‖∇ζε,O‖Lp(Ω)
≤ C(Ep,q∗ ).

We note the existence of the limit

lim
ε→0

‖ζε,O‖Lq∗ (Ω)

‖∇ζε,O‖Lp(Ω)
=

‖ζ‖Lq∗ (Rn
+)

‖∇ζ‖Lp(Rn
+)

=
21/n−1/p‖ζ‖Lq∗ (Rn)

2−1/p‖∇ζ‖Lp(Rn)

.

To obtain the lower estimate for C(Ep,q∗ ) one needs only to recall that the best
constant in (8.3.1) is attained for a radial function when p > 1 and obtained
as a limit by a sequence of radial functions for p = 1.

Let us turn to the upper estimate for C(Ep,q∗ ). We construct a finite open
covering of Ω by balls Bi of radius ρ with a finite multiplicity depending only
on n. Let either Bi ⊂ Ω or the center of Bi be placed on ∂Ω. We introduce a
family of nonnegative functions {ηi} such that ηi ∈ C∞

0 (Bi) and
∑
i

ηi(x)p = 1 on Ω.

Obviously,

‖u‖pLq∗ (Ω) =
∥∥∥∥
∑
i

|ηiu|p
∥∥∥∥
Lq∗ /p(Ω)

≤
∑
i

∥∥|ηiu|p∥∥Lq∗ /p(Ω)
=
∑
i

‖ηiu‖pLq∗ (Ω). (8.3.2)
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If Bi ⊂ Ω, then
‖ηiu‖Lq∗ (Ω) ≤ c(p, n)

∥∥∇(ηiu)
∥∥
Lp(Ω)

.

Let ε be an arbitrary positive number. Since ρ is sufficiently small and the
domain is in the class C1, one can easily show that

‖ηiu‖Lq∗ (Ω) ≤
(
21/nc(p, n) + ε

)∥∥∇(ηiu)
∥∥
Lp(Ω)

for the ball Bi centered at a point at ∂Ω. By using (8.1.11), we see that
∑
i

∥∥∇(ηiu)
∥∥p
Lp(Ω)

≤
∑
i

(
‖ηi∇u‖pLp(Ω) + ‖u∇ηi‖pLp(Ω)

)

≤ (1 + ε)
∑
i

‖ηi∇u‖pLp(Ω)

+ C(ε)
∑
i

‖u∇ηi‖pLp(Ω). (8.3.3)

We note that the first sum on the right-hand side of (8.3.3) is equal to
‖∇u‖pLp(Ω). Now, it follows from (8.3.2) that

‖u‖pLq∗ (Ω) ≤
(
21/nc(p, n) + ε

)p

×
(

(1 + ε)‖∇u‖pLp(Ω) + C(ε)
∑
i

‖u∇ηi‖pLp(Ω)

)
. (8.3.4)

Furthermore the second sum in the right-hand side of (8.3.4) can be majorized
by C(ε, ρ)‖u‖pLp(Ω), and then

‖u‖pLq∗ (Ω) ≤
(
21/nc(p, n) + ε

)p((1 + ε)‖∇u‖pLp(Ω) + C(ε, ρ)‖u‖pLp(Ω)

)
.

Since the embedding Ep,p(Ω) is compact, it follows from Lions and Magenes
[500, Theorem 16.4] that

‖u‖p
Lp

q∗ (Ω)
≤
(
21/nc(p, n) + ε

)p
×
(
(1 + ε)‖∇u‖pLp(Ω) +

(
ε‖u‖L1

p(Ω) + C(ε, �, τ)‖u‖L1(Ωτ )

)p)
.

Using (8.1.11) once more, we arrive at (8.0.1). Hence

C(Ep,q∗ ) ≤ 21/nc(p, n),

which, in combination with the lower estimate for C(Ep,q∗ ), shows that

C(Ep,q∗ ) = 21/nc(p, n). (8.3.5)

Putting an arbitrary u ∈ L1
p(Ω) vanishing outside Ω \Ωs into (8.0.1) and

taking the limit as s→ 0, we conclude that
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C(Ep,q∗ ) ≥ M1(Ep,q∗ ). (8.3.6)

Now, let u ∈ L1
p(Ω), u = 0 outside the ball B(x0, ρ) with x0 ∈ ∂Ω and

sufficiently small ρ. One can easily construct an extension ũ of u onto the
whole ball B(x0, ρ) so that

‖u‖Lq∗ (Ω)

‖u‖L1
p(Ω)

≥ 21/n(1 − ε)
‖ũ‖Lq∗ (B(x,ρ))

‖ũ‖L1
p(B(x,ρ))

.

Choosing u in a such way that its extension ũ is an almost optimizing function
from the Sobolev inequality (8.3.1), we arrive at

‖u‖Lq∗ (Ω)

‖u‖L1
p(Ω)

≥ 21/nc(p, n)(1 − 2ε),

and the definition of M2 yields

M2(Ep,q∗ ) ≥ 21/nc(p, n). (8.3.7)

Combining (8.3.5)–(8.3.7) and the inequality M2 ≤ M1, we complete the
proof. �

8.4 Generalization

The previous results hold in a more general situation when there is a compact
subset of ∂Ω that is responsible for the loss of compactness of Ep,q and the
norm in the target space involves a measure.

Let K be a compact subset of ∂Ω and let ∂Ω \K be locally Lipschitz (i.e.,
each point of ∂Ω \ K has a neighborhood U ⊂ R

n such that there exists a
quasi-isometric transformation which maps U ∩Ω onto a cube). Define

ΩK
s =

{
x ∈ Ω : dist(x,K) > s

}
.

It is obvious that for each s > 0, the embedding

L1
p

(
ΩK

s

)
→ Lq

(
ΩK

s

)
is compact

if and only if the embedding

L1
p(Ωs) → Lq(Ωs) is compact. (8.4.1)

Let μ be a measure on Ω. We define the embedding operator

Ep,q(μ) : L1
p(Ω) → Lq(Ω,μ),

where
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Lq(Ω,μ) =
{
u : ‖u‖Lq,μ =

(∫
Ω

|u|q dμ
)1/q

<∞
}
.

We say that the measure μ is admissible with respect to K if for every s > 0
the trace operator L1

p(Ω
K
s ) → Lq(ΩK

s , μ) is compact.
Let us note that for 1 < p < q < ∞ and p < n the admissibility of μ is

equivalent to
lim
ρ→0

sup
x∈ΩK

s

ρq(p−n)/pμ
(
B(x, ρ)

)
= 0

(see Theorem 1.4.6/1). In the case 1 < p = n < q < ∞ the admissibility is
equivalent to

lim
ρ→0

sup
x∈ΩK

s

| log ρ|q(p−1)/pμ
(
B(x, ρ)

)
= 0

by Theorem 11.9.1/4, which will be proved in the sequel.
We introduce the following modified versions of the localization moduli

dealt with previously:

M1

(
Ep,q(μ),K

)
= lim

s→0
sup
{‖u‖Lq,μ

‖u‖L1
p

: u ∈ L1
p(Ω), v = 0 on Ω \ΩK

s

}

and

M2

(
Ep,q(μ),K

)
= lim

�→0
sup
x∈K

sup
{‖u‖Lq,μ

‖u‖L1
p

: u ∈ L1
p(Ω), supp u ⊂ B(x, �)

}
.

In the proofs of Theorem 8.1/1 and Theorem 8.1/2, we replace Ωs,
Lq(Ω), M1(Ep,q), and M2(Ep,q) by ΩK

s , Lq(Ω,μ), M1(Ep,q(μ),K), and
M2(Ep,q(μ),K), respectively. Then we use (8.4.1) and the definition of the
admissible measure μ to obtain the following theorem.

Theorem. Let K be a compact subset of ∂Ω such that ∂Ω \K is locally
Lipschitz, and let μ be an admissible measure with respect to K.

(i) Let 1 ≤ p ≤ q < pn/(n− p) for n > p and let 1 ≤ q <∞ for p ≥ n. Then

ess
∥∥Ep,q(μ)

∥∥ = C
(
Ep,q(μ)

)
= M1

(
Ep,q(μ),K

)
.

(ii) Let 1 ≤ p < q < pn/(n− p) for n > p and let 1 ≤ q <∞ for p ≥ n. Then

ess
∥∥Ep,q(μ)

∥∥ = C
(
Ep,q(μ)

)
= M1

(
Ep,q(μ),K

)
= M2

(
Ep,q(μ),K

)
.

8.5 Measures of Noncompactness for Power Cusp-Shaped
Domains

In this section we find explicit values of the measures of noncompactness of
the embedding Ep,q for power cusp-shaped domains.
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Let ω be a bounded Lipschitz domain in R
n−1. Consider the β-cusp

Ω =
{
x = (x′, xn) ∈ R

n : x′ ∈ xβnω, xn ∈ (0, 1)
}
,

where β > 1.

Theorem. Let Ω be the β-cusp with β > 1. Let p ∈ [1,∞) and γ ∈ R.
We introduce the measure dμ = x−γ

n dx and set

q =
(β(n− 1) + 1− γ)p
β(n− 1) + 1 − p . (8.5.1)

(i) Let

−p(β − 1)(n− 1)
n− p < γ < p for 1 < p < n,

or
γ < p < β(n− 1) + 1 for n ≤ p.

Then

ess
∥∥Ep,q(μ)

∥∥ = C
(
Ep,q(μ)

)
= M1

(
Ep,q(μ)

)
= M2

(
Ep,q(μ)

)

=
(
mn−1(ω)

) p−q
pq

(
β(n− 1) + 1− p

p− 1

) 1
p − 1

q −1(
p

q(p− 1)

) 1
q

×
(

Γ ( pq
q−p )

Γ ( q
q−p )Γ (p q−1

q−p )

) q−p
pq

.

(ii) Let 1 < p < 1 + β(n− 1) and γ = p. Then

ess
∥∥Ep,p(μ)

∥∥ = C
(
Ep,p(μ)

)
= M1

(
Ep,p(μ)

)
= M2

(
Ep,p(μ)

)
= p
(
β(n− 1) + 1 − p

)−1
.

(iii) Let p = 1 and 1 − β < γ < 1. Then

ess
∥∥E1,q(μ)

∥∥ = C
(
E1,q(μ)

)
= M1

(
E1,q(μ)

)

= M2

(
E1,q(μ)

)
=
(
mn−1(ω)

) 1−q
q
(
β(n− 1) + 1 − γ

)−1/q
,

where q is given by (8.5.1) with p = 1.

Proof. (i) By definition of M2 we have

M2

(
Ep,q(μ)

)
≥
(
mn−1(ω)

) p−q
pq lim

γ→0
Kp,q(ρ, β, γ),

where

Kp,q(ρ, β, γ) := sup
(
∫ ρ

0
|v(t)|qtβ(n−1)−γ dt)1/q

(
∫ ρ

0
|v′(t)|ptβ(n−1) dt)1/p

,
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the supremum being taken over Lipschitz functions on [0, ρ] vanishing at ρ.
Making the substitution t = τ/λ, with λ > 0, we derive

Kp,q(ρ, β, γ) = sup
(
∫ λρ

0
|v(τ)|qτβ(n−1)−γ dτ)1/q

(
∫ λρ

0
|v′(τ)|pτβ(n−1) dτ)1/p

,

where the supremum is taken over all Lipschitz functions on [0, λρ] vanishing
at λρ. This implies that Kp,q(ρ, β, γ) is constant in ρ and then

Kp,q(ρ, β, γ) = sup
(
∫∞
0

|v(t)|qtβ(n−1)−γ dt)1/q

(
∫∞
0

|v′(t)|ptβ(n−1) dt)1/p
,

where the supremum is extended over all Lipschitz functions with compact
support on [0,∞). By substitution of t = τ c, where c = (1− p)(β(n− 1)+1−
p)−1, we obtain

Kp,q(ρ, β, γ)

=
(
β(n− 1) + 1 − p

p− 1

) q−p
pq −1

sup
(
∫∞
0

|v(τ)|qτ (β(n−1)−γ+1)c−1 dτ)
1
q

(
∫∞
0

|v′(τ)|p dτ)
1
p

,

where the supremum is taken over all Lipschitz functions with compact sup-
port on [0,∞). Since

(
β(n− 1) − γ + 1

)
c− 1 = −1 − q(p− 1)

p
,

it follows by Bliss’s inequality (4.6.4) that

Kp,q(ρ, β, γ)

=
(
β(n− 1) + 1− p

p− 1

) q−p
pq −1(

p

q(p− 1)

) 1
q
(

Γ ( pq
q−p )

Γ ( q
q−p )Γ (p q−1

q−p )

) q−p
pq

,

which gives the required lower estimate for the essential norm of Ep,q(μ).
We now derive an upper bound for the essential norm of Ep,q(μ). Let us

introduce the mean value of u over the cross section {(x′, xn) : x′ ∈ xβnω} by

u(xn) :=
1

mn−1ω

∫
Rn−1

χω(z)u
(
xβnz, xn

)
dz. (8.5.2)

Let u ∈ L1
p(Ω). By the triangle inequality

‖u‖Lq(Ω,μ) ≤ ‖u‖Lq(Ω,μ) + ‖u− u‖Lq(Ω,μ). (8.5.3)



450 8 Localization Moduli of Sobolev Embeddings for General Domains

We estimate the first term on the right-hand side

‖u‖Lq(Ω,μ) =
(∫ 1

0

∫
xβ

nω

∣∣u(xn)
∣∣q dx′x−γ

n dxn

)1/q

= (mn−1ω)1/q
(∫ 1

0

∣∣u(xn)
∣∣qxβ(n−1)−γ

n dxn

)1/q

≤ Kp,q(1, β, γ)(mn−1ω)1/q
(∫ 1

0

∣∣(u)′(xn)
∣∣pxβ(n−1)

n dxn

)1/p

.

(8.5.4)

Since

(u)′(xn) =
∂

∂xn

(
1

mn−1ω

∫
Rn−1

χω(z)u
(
zxβn, xn

)
dz
)

=
1

mn−1ω

∫
Rn−1

χω(z)
(
∂nu+ βxβ−1

n (z,∇x′ )u
)(
zxβn, xn

)
dz,

it follows that
∣∣(u)′(xn)

∣∣ ≤ ∣∣(∂nu)(xn)
∣∣+ (diamω)βxβ−1

n

∣∣(∇x′u)(xn)
∣∣.

Using the last inequality, we obtain

(∫ ρ

0

∣∣(u)′(x)
∣∣pxβ(n−1) dx

)1/p

≤
(∫ ρ

0

∣∣(∂nu)(x)∣∣pxβ(n−1) dx
)1/p

+ (diamω)βρβ−1

(∫ ρ

0

∣∣(∇x′u)(x)
∣∣pxβ(n−1) dx

)1/p

. (8.5.5)

Since
(∫ ρ

0

∣∣v(xn)
∣∣pxβ(n−1)

n dxn

)1/p

≤ (mn−1ω)−1/p

(∫ ρ

0

∫
xβ

nω

|v|p dx′ dxn

)1/p

, (8.5.6)

we have for sufficiently small ρ

(∫ ρ

0

∣∣(u)′(xn)
∣∣pxβ(n−1)

n dxn

)1/p

≤ (mn−1ω)−1/p‖∇u‖Lp(Ω0
ρ), (8.5.7)

where Ω0
ρ = {x ∈ Ω : xn < ρ}. Then, for every ε > 0, there exists a sufficiently

small ρ > 0 such that
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‖u‖Lq(Ω0
ρ,μ) ≤

(
Kp,q(1, β, γ)(mn−1ω)

p−q
pq + ε

)
‖∇u‖Lp(Ω0

ρ). (8.5.8)

Let us estimate the second term on the right-hand side of (8.5.3). Consider
a sequence {zk}k≥0 given by

z0 ≤ 1, zk+1 + zβk+1 = zk, k ≥ 0.

One can easily verify that zk ↘ 0, zk+1z
−1
k → 1. Moreover zβk+1z

−β
k → 1.

Choosing z0 to be sufficiently small, we obtain zk+1/2 < zk < 2zk+1, k ≥ 1.
Let us set

Ck =
{
x = (x′, xn) ∈ R

n : xn ∈ (zk+1, zk), x′ ∈ xβnω
}
, k ≥ 1.

It follows from the construction of Ck that

‖u− u‖Lq(Ck,μ) ≤ 2γ/qz
−γ/q
k ‖u− u‖Lq(Ck). (8.5.9)

We obtain by Sobolev’s theorem that

‖u− u‖Lq(Ck) ≤ cz
βn( 1

q − 1
p )

k

(
‖u− u‖Lp(Ck) + zβk

∥∥∇(u− u)
∥∥
Lp(Ck)

)
, (8.5.10)

where c depends on ω, n, p, q and is independent of k.
By the Poincaré inequality we have

∫
xβ

nω

∣∣u(x′, xn) − u(x′, xn)
∣∣p dx′ ≤ cxβp

n

∫
xβ

nω

∣∣∇x′u(x′, xn)
∣∣p dx

for almost all xn ∈ (0, 1). Hence it follows from (8.5.10) and the previous
inequality that

‖u− u‖Lq(Ck) ≤ c z
β(1− n

p + n
q )

k

(
‖∇u‖Lp(Ck) + ‖∇u‖Lp(Ck)

)
. (8.5.11)

We deduce from (8.5.7) that

‖∇u‖Lp(Ck) = ‖∂nu‖Lp(Ck) ≤ ‖∇u‖Lp(Ck). (8.5.12)

Combining (8.5.9), (8.5.11), and (8.5.12) implies

‖u− u‖Lq(Ck,μ) ≤ cz
− γ

q +β(1− n
p + n

q )

k ‖∇u‖Lp(Ck). (8.5.13)

Using (8.5.13) and the inequality

(∑
k

aqk

)1/q

≤
(∑

k

apk

)1/p

, ak ≥ 0, q ≥ p,

we conclude
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( ∞∑
k=l

‖u− u‖qLq(Ck,μ)

)1/q

≤ c
( ∞∑

k=l

z
[− γ

q +β(1− n
p + n

q )]p

k ‖∇u‖pLp(Ck)

)1/p

.

Since −γ
q +β(1− n

p + n
q ) > 0, it follows that for every ε > 0 there exists ρ > 0

such that
‖u− u‖Lq(Ω0

ρ,μ) ≤ ε‖∇u‖Lp(Ω0
ρ). (8.5.14)

Combining (8.5.3), (8.5.8), and (8.5.14) gives the upper estimate for the es-
sential norm of Ep,q(μ).

(ii) Let us recall the Hardy inequality
∫ ∞

0

(∫ ∞

x

f(t) dt
)p

xβ(n−1)−p dx

≤
(

p

β(n− 1) + 1 − p

)p ∫ ∞

0

fp(x)xβ(n−1) dx, (8.5.15)

where [p/(β(n − 1) + 1 − p)]p is the best constant. Then replacing Bliss’s
inequality in (i) by Hardy’s inequality (8.5.15) with appropriate changes in
the proof of (i), we obtain (ii).

(iii) As in (ii) we replace Bliss’s inequality by Hardy’s inequality

(∫ ∞

0

(∫ ∞

x

f(t) dt
)q

xβ(n−1)−γ dx
)1/q

≤ c
∫ ∞

0

f(x)xβ(n−1) dx,

with the best constant

c =
(
β(n− 1) + 1 − γ

)−1/q
,

and repeat the proof of (i). �

8.6 Finiteness of the Negative Spectrum of a Schrödinger
Operator on β-Cusp Domains

Let Ω ⊂ R
n be the β-cusp domain with β > 1. In this section we study the

Neumann problem for the Schrödinger operator

−ΔNu−
α

x2
n

u = f in Ω,

∂u

∂ν
= 0 on ∂Ω \ {0},

(8.6.1)

where α = const > 0 and ν is a normal. The corresponding quadratic form is
given by

Aα(u, u) =
∫
Ω

|∇u|2 dx− α
∫
Ω

|u|2
x2
n

dx. (8.6.2)
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We need the following Hardy-type inequality for functions in Ω.

Lemma. If u ∈ L1
2(Ω) and u = 0 for xn = 1, then
∫
Ω

|u|2x−2
n dx ≤ c

∫
Ω

|∇u|2 dx. (8.6.3)

Proof. Let X = (s, t), where s ∈ R
n−1, t ∈ (0,∞) and

s = x−β
n x′, t = (β − 1)−1

(
x1−β
n − 1

)
.

The change of variable x → X maps Ω onto the half-cylinder {X : s ∈ ω,
t > 0}. Put v(X) = u(x). Since

|∇xu| ∼ |∇Xv|xn(t)−β

and the Jacobian |Dx/DX| is equal to c xn(t)βn, the desired inequality (8.6.3)
takes the form

∫
Ω

∫ ∞

0

∣∣v(s, t)∣∣2xn(t)−2+nβ dt ds

≤ c
∫
Ω

∫ ∞

0

|∇Xv|2xn(t)(n−2)β dt ds. (8.6.4)

Setting here xn(t) = (1+(β−1)t)−1/(β−1), we see that (8.6.4) is a consequence
of the one-dimensional Hardy-type inequality

∫ ∞

0

|w|2(1 + t)− nβ−2
β−1 dt ≤ c

∫ ∞

0

(w′)2(1 + t)− (n−2)β
β−1 dt

with w(0) = 0, which follows from Theorem 1.3.2/1. �

As in Sect. 8.5, we denote dμ = x−2
n dx. Since, by the lemma just proved,

the space L1
2(Ω) is continuously embedded into L2(Ω,μ) when β > 1, Aα is

well defined on L1
2(Ω).

We start by showing the semiboundedness of Aα which guarantees the
existence of the Friedrichs extension of (8.6.1).

Theorem 1. Aα is semibounded if and only if α ≤ [(β(n− 1) − 1)/2]2.

Proof. Let u be the mean value of u over the cross section (see (8.5.2)),
then by the triangle inequality

‖u‖L2(Ω,μ) ≤ ‖u‖L2(Ω,μ) + ‖u− u‖L2(Ω,μ). (8.6.5)

Combining (8.5.4), (8.5.5), and (8.5.6) (with p = q = 2 and γ = −2), we
obtain
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‖u‖L2(Ω0
ρ,μ) ≤ ess

∥∥E2,2(μ)
∥∥(‖∂nu‖L2(Ω0

ρ)

+ (diamω)βρβ−1‖∇x′u‖L2(Ω0
ρ)

)
, (8.6.6)

where Ω0
ρ = {x = (x′, xn) ∈ R

n : x ∈ Ω and xn < ρ}.
Let us estimate the second term on the right-hand side of (8.6.5)

‖u− u‖2
L2(Ω0

ρ,μ) =
∫ ρ

0

∫
xβ

nω

∣∣u(x′, xn) − u(xn)
∣∣2 dx′ dxn

x2
n

.

Using the Poincaré inequality on the cross line, we see that

‖u− u‖2
L2(Ω0

ρ,μ) ≤
(
mn−1(ω)

)2 ∫ ρ

0

∫
xβ

nω

∣∣∇x′u(x′, xn)
∣∣2x2β−2

n dx′ dxn

≤ ρ2β−2
(
mn−1(ω)

)2‖∇x′u‖2
L2(Ω0

ρ).

Therefore, by (8.6.5) and (8.6.6), we obtain

‖u‖L2(Ω0
ρ,μ) ≤ ess‖E2,2(μ)‖‖∇u‖L2(Ω0

ρ)

for sufficiently small ρ > 0.
Then

‖u‖2
L2(Ω,μ) ≤ ‖u‖2

L2(Ω0
ρ,μ) + ‖u‖2

L2(Ω\Ω0
ρ,μ)

≤
(
ess
∥∥E2,2(μ)

∥∥)2‖∇u‖2
L2(Ω0

ρ) + c(ρ)‖u‖2
L2(Ω\Ω0

ρ)

≤
(
2/
(
β(n− 1) − 1

))2‖∇u‖2
L2(Ω0

ρ) + c(ρ)‖u‖2
L2(Ω), (8.6.7)

which gives the semiboundedness for α ≤ [(β(n− 1) − 1)/2]2.
Let α > [(β(n − 1) − 1)/2]2. We set d = α − [(β(n − 1) − 1)/2]2 > 0. It

follows from Theorem 8.5 that

lim
�→0

sup
{ ∫ |u|2

x2
n

dx∫
|∇u|2 dx

: u ∈ L1
p(Ω), supp u ⊂ Ω0

ρ

}
=
[
2/
(
β(n− 1) − 1

)]2
.

Then there exists a sequence of functions {ui}∞
i=1 such that supp ui ⊂ Ω0

1/i

and (
α− d

2

)∫
Ω

|ui|2
x2
n

dx >
∫
Ω

|∇ui|2 dx.

Hence,
∫
Ω

|∇ui|2 dx− α
∫
Ω

|ui|2
x2
n

dx < −d
2

∫
Ω

|ui|2
x2
n

dx

≤ − i
2d

2

∫
Ω

|ui|2 dx.

Therefore Aα is not semibounded when α > [(β(n− 1) − 1)/2]2. �
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The next theorem gives a condition for finiteness of the negative spectrum
of Aα.

Theorem 2. If α < [(β(n− 1)− 1)/2]2, then the negative spectrum of Aα

is finite.

Proof. Let α < [(β(n− 1)− 1)/2]2 and M be a linear infinite-dimensional
manifold in L1

2(Ω). Take

ε <
1 − α[2/(β(n− 1) − 1)]2

(2 + 2α)
. (8.6.8)

It follows from (8.6.7) that

‖u‖2
L2(Ω,μ) ≤

(
2/
(
β(n− 1) − 1

))2‖∇u‖2
L2(Ω0

ρ) + c(ρ)‖u‖2
L2(Ω\Ω0

ρ)

for sufficiently small ρ > 0, where Ω0
ρ = {x = (x′, xn) ∈ R

n : x ∈ Ω and
xn < ρ}.

Since the restriction L1
2(Ω) → L2(Ω \Ω0

ρ) is compact, there exists a finite
rank operator F : L1

2(Ω) → L2(Ω \Ω0
ρ), for which

‖u− Fu‖L2(Ω\Ω0
ρ) ≤

(
ε

c(ρ)

)1/2

‖u‖L1
2(Ω).

Note that

‖u‖2
L2(Ω,μ) ≤

(
2/
(
β(n− 1) − 1

))2‖∇u‖2
L2(Ω0

ρ)

+ c(ρ)
((

ε

c(ρ)

)1/2

‖u‖L1
2(Ω) + ‖Fu‖L2(Ω\Ω0

ρ)

)2

.

Let M⊥ ⊂M be defined by

M⊥ := {u : Fu = 0 and u ∈M}.

Then M⊥ is a linear infinite-dimensional manifold in L1
2(Ω) and for every

u ∈M⊥ we have

‖u‖2
L2(Ω,μ) ≤

(
2/
(
β(n− 1) − 1

))2‖∇u‖2
L2(Ω0

ρ) + ε‖u‖2
L1

2(Ω)

≤
[(

2/
(
β(n− 1) − 1

))2 + 2ε
]
‖∇u‖2

L2(Ω) + 2ε‖u‖2
L2(Ω). (8.6.9)

Combining (8.6.2), (8.6.8), and (8.6.9), we obtain for each u ∈M⊥ ⊂M

Aα(u, u) =
∫
Ω

|∇u|2 dx− α
∫
Ω

|u|2
x2
n

dx

≥
[(

2/
(
β(n− 1) − 1

))2 + 2ε
]−1

∫
Ω

|u|2
x2
n

dx− α
∫
Ω

|u|2
x2
n

dx

− 2ε
[(

2/
(
β(n− 1) − 1

))2 + 2ε
]−1

∫
Ω

|u|2 dx > 0.
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Therefore, there does not exist a linear manifold of infinite dimension on which
Aα(u, u) < 0. This together with Lemma 2.5.4/2 completes the proof. �

8.7 Relations of Measures of Noncompactness with Local
Isoconductivity and Isoperimetric Constants

Let E and F denote arbitrary relatively closed disjoint subsets of Ω. We use
the p-conductivity of the conductor K = (Ω\F )\E, that is,

cp(K) = inf
{
‖∇u‖pLp

: u ≥ 1 on E and

u = 0 on F, u is locally Lipschitz in Ω
}

(this definition is equivalent to the one given in Sect. 6.1.1) and we define the
local isoconductivity constants

S(p, q, μ,Ω) = lim
s→0

sup
{

(μ(E))1/q

(cp((Ω\Ωs)\E))1/p
: E ⊂ Ω \Ωs

}

and

S̃(p, q, μ,Ω) = lim
ρ→0

sup
x∈∂Ω

sup
{

(μ(E))1/q

(cp((Ω ∩B(x, �))\E))1/p
: E ⊂ Ω ∩B(x, ρ)

}
.

Theorem 1. Let 1 ≤ p ≤ q < pn/(n − p) if n > p and 1 ≤ q < ∞ if
p ≥ n. Then

S(p, q, μ,Ω) ≤ ess
∥∥Ep,q(μ)

∥∥ ≤ K(p, q)S(p, q, μ,Ω). (8.7.1)

If additionally p < q, then

S̃(p, q, μ,Ω) ≤ ess
∥∥Ep,q(μ)

∥∥ ≤ K(p, q)S̃(p, q, μ,Ω), (8.7.2)

where

K(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

(
Γ ( pq

q−p )

Γ ( q
q−p )Γ (p q−1

q−p )
)(q−p)/pq, when 1 < p < q;

(p− 1)(1−p)/p, when 1 < p = q;
1, when 1 = p ≤ q.

Proof. The left-hand side inequality in (8.7.1) follows immediately from
the definition of M1.

The right-hand side inequality in (8.7.1) is a consequence of the conductor
inequality

(∫ ∞

0

(
cp
(
(Ω\F )\Nt

))q/p d(tq)
)1/q

≤ K(p, q)
(∫

Ω

|∇u|p dx
)1/p

,
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where u = 0 on F which is a relatively compact subset of Ω (see Lemma
6.1.3/3). The inequality (8.7.2) follows by the same arguments when M1 is
replaced by M2. �

In the case p = 1 the p-capacity can be replaced by the (n−1)-dimensional
area Hn−1. By g we denote relatively closed subsets of Ω such that Ω ∩ ∂g
are smooth surfaces. We introduce the local isoperimetric constants

T (q, μ,Ω) = lim
s→0

sup
{

(μ(g))1/q

Hn−1(Ω ∩ ∂g) : g ⊂ Ω \Ωs

}

and

T̃ (q, μ,Ω) = lim
s→0

sup
x∈∂Ω

sup
{

(μ(g))1/q

Hn−1(Ω ∩ ∂g) : g ⊂ Ω ∩B(x, ρ)
}
.

Theorem 2. If 1 < q < n/(n− 1), then

T (q, μ,Ω) = T̃ (q, μ,Ω) = ess
∥∥E1,q(μ)

∥∥,
and if q = 1, then

T (q, μ,Ω) = ess
∥∥E1,q(μ)

∥∥.

Proof. It follows from Lemma 5.2.3/1 that M1(E1,q) = T (q,Ω), which
together with Theorem 8.1/1 completes the proof. �

In view of Theorem 8.1/1 and Theorem 8.1/2, the role of the essential norm
of Ep,q(μ) can be played by M1(Ep,q(μ)) and C(Ep,q(μ)) and additionally by
M2(Ep,q(μ)) when p < q.

The following corollary, which is an immediate consequence of Theorem 8.5
(iii) and the previous theorem, gives explicit values of the local isoperimetric
constants for power cusps.

Corollary. Let Ω ⊂ R
n be the β-cusp domain with β > 1 and γ ∈

(1 − β, 1). We introduce the measure dμ = x−γ
n dx and set

q =
β(n− 1) + 1− γ

β(n− 1)
.

Then
T (q, μ,Ω) =

(
mn−1(ω)

) 1−q
q
(
β(n− 1) + 1 − γ

)−1/q
.

8.8 Comments to Chap. 8

The material of this chapter is borrowed from the paper by Lang and Maz’ya
[478]. Lemma 8.6 is a particular case of Lemma 5.1.3/3 in Maz’ya and Poborchi
[576].
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Various characteristics of noncompact embeddings such as essential norms,
limits of the approximation numbers, certain measures of noncompactness,
and the constants in the Poincaré-type inequalities, were investigated by Am-
ick [45], Edmunds and Evans [248], Evans and Harris [261] (see Edmunds
and Evans [249] and [250] for a detailed account of this development), and
Yerzakova [806, 807].



9

Space of Functions of Bounded Variation

In the 1960s the family of spaces of differentiable functions was joined by
the space BV (Ω) of functions whose derivatives are measures in the open set
Ω ⊂ R

n. This space turned out to be useful in geometric measure theory, the
calculus of variations, and the theory of quasilinear partial differential equa-
tions. In the present chapter we study the connection between the properties
of functions in BV (Ω) and geometric characteristics of the boundary of Ω.

Sections 9.1 and 9.2 contain well-known basic facts of the theory of BV (Ω).
In Sect. 9.3 we find requirements on Ω in terms of relative isoperimetric in-
equalities that are necessary and sufficient for any function in BV (Ω) to admit
an extension to R

n in the class BV (Ω) and for the boundedness of the exten-
sion operator. Some explicit formulas for the norm of the optimal extension
operator are found in Sect. 9.4.

We define the notion of a trace on the boundary for a function in BV (Ω)
and give conditions for the integrability of the trace (Sects. 9.5 and 9.6). Some
results on the relation between the relative isoperimetric inequalities and the
integral inequalities (of the embedding theorem type) for BV (Ω) similar to
those in Chap. 5 are established in Sect. 9.5. We also consider conditions for
the validity of the Gauss–Green formula for functions in BV (Ω) (Sect. 9.6).

9.1 Properties of the Set Perimeter and Functions
in BV (Ω)

9.1.1 Definitions of the Space BV (Ω) and of the Relative
Perimeter

The space of functions u that are locally integrable in Ω, whose gradients
∇Ωu (in the sense of distribution theory) are charges in Ω, is called the space
BV (Ω). We denote the variation of the charge over the whole domain Ω by
‖u‖BV (Ω). The perimeter of a set E relative to Ω is defined by

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 9, c© Springer-Verlag Berlin Heidelberg 2011
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PΩ(E ) = ‖χE ∩Ω‖BV (Ω), (9.1.1)

where χA is the characteristic function of the set A . (We put PΩ(E ) = ∞
provided χE ∩Ω /∈ BV (Ω).)

We introduce the perimeter of E relative to the closed set CΩ = R
n\Ω.

Namely, PCΩ(E ) = infG⊃CΩ PG(E ), where G is an open set.
If PRn(E ) <∞, then obviously

PΩ(E ) = var∇RnχE (Ω), PCΩ(E ) = var∇RnχE (CΩ),
PΩ(E ) + PCΩ(E ) = PRn(E ).

(9.1.2)

We also note that
PΩ(E1) = PΩ(E2) (9.1.3)

if E1 ∩Ω = E2 ∩Ω.
Henceforth, in the cases where it causes no ambiguity, we write ∇u instead

of ∇Ωu, ∇Rnu and P (E ) instead of PRn(E ).

9.1.2 Approximation of Functions in BV (Ω)

The definition of the mollification operator Mh (cf. Sect. 1.1.3) immediately
implies the following lemma.

Lemma 1. If u ∈ BV (Ω) and G is an open subset of Ω with [G]h ⊂ Ω,
where [G]h is the h-neighborhood of G, then

‖∇Mhu‖L1(Ω) ≤ var∇u
(
[G]h

)
. (9.1.4)

Lemma 2. If ui ∈ BV (Ω) and ui → u in L(Ω, loc), then

‖u‖BV (Ω) ≤ lim inf
i→∞

‖ui‖BV (Ω). (9.1.5)

Proof. It suffices to consider the case

lim inf
i→∞

‖ui‖BV (Ω) <∞.

For any vector-function ϕ with components in D(Ω) we have
∫
Ω

ϕ∇ui dx = −
∫
Ω

ui divϕdx→ −
∫
Ω

u divϕdx. (9.1.6)

Therefore, ∣∣∣∣
∫
Ω

u divϕdx
∣∣∣∣ ≤ sup |ϕ| lim inf

i→∞
‖ui‖BV (Ω),

i.e., ∇Ωu is a charge and inequality (9.1.5) holds.
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By definition, the sequence {μk}k≥1 of finite charges converges to a charge
μ locally weakly in Ω if, for any function ϕ ∈ C(Ω) with compact support,

lim
k→∞

∫
Ω

ϕμk (dx) =
∫
Ω

ϕμ (dx).

Lemma 3. If ui ∈ BV (Ω), ui → u in L1(Ω, loc), and supi ‖u‖BV (Ω) <∞,
then

∇Ωui
loc. weak.−−−−−−→ ∇Ωu.

Proof. By Lemma 2 we have u ∈ BV (Ω). It remains to refer to (9.1.6) and
to use the density of D(Ω) in the space of continuous functions with compact
supports in Ω. ��

Theorem. Let u ∈ BV (Ω). Then there exists a sequence of functions
{um}m≥1 in C∞(Ω) such that um → u in L1(Ω, loc) and

lim
m→∞

∫
Ω

|∇um| dx = ‖u‖BV (Ω).

If, in addition, u ∈ L1(Ω) then um → u in L1(Ω).

Proof. Let {Ωi}i≥0 be a sequence of open sets with compact closures Ω̄i ⊂
Ωi+1 and such that

⋃
iΩi = Ω, Ω0 = ∅. We choose Ωi so that

var∇u
(⋃

i

∂Ωi

)
= 0.

This can be done, for instance, in the following way. Let {Ω′
i} be an arbitrary

sequence of open sets with compact closures such that
⋃

iΩ
′
i = Ω, Ω̄′

i ⊂ Ω,
∂Ω′

i∩∂Ω′
j = ∅ for i �= j, ∂Ω′

i ∈ C∞. Let Ωt
i denote the t-neighborhood of Ω′

i.
For small t the surface ∂Ωt

i is smooth. The set of t for which var∇u(∂Ωt
i ) �=

0 is finite or countable as the collection of jumps of a monotonic function.
Therefore, for any i we can find an arbitrarily small number ti such that
var∇u(∂Ωti

i ) = 0. It remains to put Ωi = Ωti
i .

We fix a positive integer m and choose bounded open sets Di, Gi such
that Gi ⊃ D̄i ⊃ (Ω̄i+1\Ωi) and

∑
i

var∇u
(
Gi\(Ω̄i+1\Ωi)

)
< m−1.

Let {αi} be a partition of unity subordinate to the covering {Di} of Ω.
We can find small numbers hi > 0 so that Ḡi ⊂ [Di]hi and

‖u− Mhiu‖L1(Di) max |∇αi| ≤ m−12−i. (9.1.7)

We put um =
∑
αiMhiu. Then um → u in L1(Ω, loc). Also,



462 9 Space of Functions of Bounded Variation

‖∇um‖L1(Ω) ≤
∑
i

‖αi∇Mhiu‖L1(Ω) +
∥∥∥∥
∑
i

Mhiu∇αi

∥∥∥∥
L1(Ω)

. (9.1.8)

Since suppαi ⊂ Di, by Lemma 1 the first term does not exceed
∑
i

‖∇Mhiu‖L1(Di) ≤
∑
i

var∇u(Gi) ≤
∑
i

var∇u(Ω) +m−1.

By the equality
∑

i∇αi = 0 and (9.1.7), for the second summand on the right
in (9.1.8) we have

∥∥∥∥
∑
i

Mhiu∇αi

∥∥∥∥
L1(Ω)

=
∥∥∥∥
∑
i

(Mhiu− u)∇αi

∥∥∥∥
L1(Ω)

≤
∑
i

‖Mhiu− u‖L1(Di) max
D̄i

|∇αi|

≤
∞∑
i=1

m−12−i = m−1.

Consequently,
‖∇um‖L1(Ω) ≤ var∇u(Ω) + 2m−1

and
lim sup
m→∞

‖∇um‖L1(Ω) ≤ var∇u(Ω).

The result follows from the last inequality together with Lemma 2. ��

Corollary. If u ∈ BV (Ω), then the functions u+, u−, and |u| are also
contained in BV (Ω) and

∥∥u+
∥∥
BV (Ω)

+
∥∥u−∥∥

BV (Ω)
= ‖u‖BV (Ω) ≥

∥∥|u|∥∥
BV (Ω)

. (9.1.9)

In fact, let {um} be the sequence of functions in C∞(Ω) introduced in the
Theorem. Then u+

m → u+, u−
m → u− in L1(Ω, loc) and

∥∥u+
m

∥∥
BV (Ω)

+
∥∥u−

m

∥∥
BV (Ω)

=
∥∥|um|∥∥BV (Ω)

= ‖um‖BV (Ω). (9.1.10)

This and Lemma 9.1.2/1 imply
∥∥u+

∥∥
BV (Ω)

+
∥∥u−∥∥

BV (Ω)
≤ ‖u‖BV (Ω). (9.1.11)

Consequently, u+, u− ∈ BV (Ω). The reverse inequality of (9.1.11) is obvious.
Passing to the limit in (9.1.10), we arrive at the inequality in (9.1.9).
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9.1.3 Approximation of Sets with Finite Perimeter

By definition, the sequence {Ei} of sets Ei ⊂ Ω converges to E ⊂ Ω if χEi →
χE in L1(Ω, loc).

Lemmas 9.1.2/2 and 9.1.2/3 imply the next assertions.

Lemma 1. If Ek → E , then PΩ(E ) ≤ lim infk→∞ PΩ(Ek) and if
supk PΩ(Ek) <∞, then

∇ΩχEk

loc. weak.−−−−−−→ ∇ΩχE .

Lemma 2. Let u ∈ L1(Ω) and let χE be the characteristic function of the
set E ⊂ Ω. Further let ‖χE − u‖L1(Ω) ≤ ε. Then for any t ∈ [γ, 1− γ], γ > 0,
the inequality

‖χE − χNt‖L1(Ω) ≤ εγ−1

holds where Nt = {x : u(x) ≥ t}.

Proof. Obviously,

ε ≥ ‖χE−u‖L1(E \Nt)+‖u−χE ‖L1(Nt \E ) ≥
∫

E \Nt

(
1−u(x)

)
dx+

∫
Nt \E

u(x) dx.

Since u(x) < t for x ∈ E \Nt and u(x) ≥ t for x ∈ Nt\E , we obtain

ε ≥ (1 − t)mn(E \Nt) + tmn(Nt\E ) ≥ γ‖χE − χNt‖L1(Ω). ��

Theorem. For any measurable set E ⊂ Ω having finite measure mn there
exists a sequence of sets Ei ⊂ Ω for which ∂Ei\∂Ω is a C∞-smooth submani-
fold of R

n (however, not compact, in general). Moreover, χEi → χE in L1(Ω)
and PΩ(Ei) → PΩ(E ).

Proof. If P (E ) = ∞, then the result follows. Let P (E ) <∞. Let um denote
the sequence constructed in Theorem 9.1.2 for u = χE . Since 0 ≤ χE ≤ 1, the
definition of um implies 0 ≤ um ≤ 1. Therefore, by Theorem 1.2.4 we have

‖∇um‖L1(Ω) =
∫ 1

0

s
(
E

(m)
t

)
dt, (9.1.12)

where E
(m)
t = {x : um(x) = t}. The sets E

(m)
t are C∞-manifolds for almost all

t ∈ (0, 1) (see Corollary 1.2.2). In what follows we consider only such levels t.
Let ε > 0. We choose m = m(ε) to be so large that

‖χE − um‖L1(Ω) < ε.

Then by Lemma 1,
‖χE − χ

N
(m)

t
‖L1(Ω) ≤ ε1/2, (9.1.13)
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where N
(m)

t = {x : um(t) ≥ t} and t ∈ [ε1/2, 1 − ε1/2]. Furthermore, for any
m there exists a t = tm ∈ (ε1/2, 1 − ε1/2) such that

(
1 − 2ε1/2

)
s
(
E

(m)
tm

)
≤
∫ 1

0

s
(
E

(m)
t

)
dt. (9.1.14)

Inequalities (9.1.13) and (9.1.14), together with the equality

PΩ(E ) = lim
m→∞

∫ 1

0

s
(
E

(m)
t

)
dt,

which follows from (9.1.12) and Theorem 9.1.2, imply χ
N

(m)
tm

→ χE in L1(Ω)
and

lim sup
ε→0

s
(
E

(m)
tm

)
≤ PΩ(E ). ��

Remark. If E is a set with compact closure Ē ⊂ Ω, then the smooth
manifolds constructed in the preceding theorem are compact.

9.1.4 Compactness of the Family of Sets with Uniformly Bounded
Relative Perimeters

Theorem. The collection of sets Eα ⊂ Ω with uniformly bounded relative
perimeters PΩ(Eα) is compact.

Proof. By Theorem 9.1.2, for any Eα there exists a sequence uαm that
converges to χEα in L1(Ω, loc) and is such that

lim
m→∞

‖∇uαm‖L1(Ω) = PΩ(Eα).

Lemma 1.4.6 implies that the family {uαm} is compact in L1(ω) where ω is an
arbitrary open set with compact closure ω̄ ⊂ Ω and with a smooth boundary.
Therefore, the family {χEα} is compact in L1(ω). ��

9.1.5 Isoperimetric Inequality

Theorem. If E is a measurable subset of R
n and mn(Ω) <∞, then

mn(E )(n−1)/n ≤ n−1v−1/n
n P (E ). (9.1.15)

Proof. It suffices to consider the case P (E ) <∞. By Theorem 9.1.3 there
exists a sequence of open sets Ei with C∞-smooth boundaries ∂Ei such that
mn(Ei) → mn(E ) and s(∂Ei) → P (E ), where s is the (n − 1)-dimensional
area. Inequality (9.1.15) is valid for the sets Ei (cf. Lyusternik [507] et al.).
Passing to the limit we arrive at (9.1.15).
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9.1.6 Integral Formula for the Norm in BV (Ω)

Lemma. If u1and u2 are nonnegative functions in L1(Ω) then
∫
Ω

|u1 − u2| dx =
∫ ∞

0

mn

((
L 1

t \L 2
t

)
∪
(
L 2

t \L 1
t

))
dt,

where L i
t = {x : x ∈ Ω, ui(x) > t}.

Proof. It is clear that
∫
Ω

|u1 − u2| dx =
∫
A

(u1 − u2) dx+
∫
Ω\A

(u2 − u1) dx = I1 + I2,

where A = {x ∈ Ω : u1 > u2}. By Lemma 1.2.3,

I1 =
∫ ∞

0

mn

(
L 1

t ∩A
)
dt−

∫ ∞

0

mn

(
L 2

t ∩A
)
dt.

We note that u1(x) > u2(x) if x ∈ L 1
t \L 2

t . Therefore, (L 1
t \L 2

t ) ∩ A =
L 1

t \L 2
t and, similarly, (L 2

t \L 1
t ) ∩ (Ω\A) = L 2

t \L 1
t . Hence

I1 =
∫ ∞

0

mn

(
L 1

t \L 2
t

)
dt.

In the same way we obtain

I2 =
∫ ∞

0

mn

(
L 2

t \L 1
t

)
dt.

This completes the proof. ��

Theorem. For any function u that is locally integrable in Ω we have

‖u‖BV (Ω) =
∫ +∞

− ∞
PΩ(Lt) dt, (9.1.16)

where Lt = {x : u(x) > t}.

Proof. By Corollary 9.1.2 we may assume u ≥ 0. According to Lemma 1.2.3,
for any smooth vector-function ϕ with compact support in Ω,

∫
Ω

u divϕdx =
∫ ∞

0

dt
(∫

Ω

χLt divϕdx
)
.

Therefore, ∣∣∣∣
∫
Ω

u divϕdx
∣∣∣∣ ≤ max |ϕ|

∞

∗

∫

0

PΩ(Lt) dt,
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where
∗

∫
is the lower Lebesgue integral. Hence

‖u‖BV (Ω) ≤
∞

∗

∫

0

PΩ(Lt) dt. (9.1.17)

If ‖u‖BV (Ω) = ∞ then (9.1.16) follows. Let u ∈ BV (Ω). Consider the
sequence {um} constructed in the proof of Theorem 9.1.2. Note that um ≥ 0.
Let {ωi} be a sequence of open sets ωi with compact closures ω̄i ⊂ Ω and
such that

⋃
i ωi = Ω. Since um → u in L1(Ω, loc), by the Lemma we obtain

∫
ωi

|um − u| dx =
∫ ∞

0

mn

(((
L m

t \Lt

)
∪
(
Lt\L m

t

))
∩ ωi

)
dt→ 0,

where L m
t = {x ∈ Ω : um(x) > t}. Therefore, for almost all t and for all i,

mn

(((
L m

t \Lt

)
∪
(
Lt\L m

t

))
∩ ωi

) m→∞−−−−→ 0.

The latter means that L m
t → Lt for almost all t. Hence by Lemma 9.1.3/1

we have
∞

∗∫

0

PΩ(Lt) ≤
∞

∗∫

0

lim inf
m→∞

PΩ

(
L m

t

)
dt ≤ lim inf

m→∞

∞
∗∫

0

PΩ

(
L m

t

)
dt,

where
∗∫

is the upper Lebesgue integral. According to (1.2.6), the last inte-

gral is equal to ‖∇um‖L1(Ω) and thus

∞
∗∫

0

PΩ(Lt) dt ≤ lim inf
m→∞

‖∇um‖L1(Ω) = ‖u‖BV (Ω),

which together with (9.1.17) completes the proof. ��

9.1.7 Embedding BV (Ω) ⊂ Lq(Ω)

The contents of this subsection are closely connected with Chap. 5. First we
note that by Theorem 9.1.2 the inequality

inf
c∈R1

‖u− c‖Lq(Ω) ≤ C‖∇u‖L1(Ω), u ∈ L1(Ω),

implies
inf
c∈R1

‖u− c‖Lq(Ω) ≤ C‖u‖BV (Ω), u ∈ BV (Ω).

Therefore, for the domain Ω with finite volume, by Theorem 5.2.3 the last
inequality (for q ≥ 1) holds for u ∈ BV (Ω) if and only if Ω ∈ Jα, α = q−1.
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In the same way we can establish theorems similar to Theorem 5.5.2/1
and 6.3.3 for the space BV (Ω). By Theorem 9.1.3 the definitions of the classes
Jα and J̊α can be formulated in terms of the ratio

[
mn(E )

]α
/PΩ(E ),

where E is a measurable subset of Ω. The area minimizing function λM in-
troduced in Sect. 5.2.4 can be defined as the infimum of the numbers PΩ(E )
taken over the collection of measurable sets E ⊂ Ω with μ ≤ mn(E ) ≤M .

Further we note that by Lemma 5.2.1/1 for the unit ball Ω and for any
E ⊂ Ω, the inequality

min
{
mn(E ),mn(Ω\E )

}
≤ 1

2
vnv

n/(1−n)
n−1

[
PΩ(E )

]n/(n−1)
, (9.1.18)

holds with the best possible constant.

9.2 Gauss–Green Formula for Lipschitz Functions

9.2.1 Normal in the Sense of Federer and Reduced Boundary

For fixed x, ν ∈ R
n, ν �= 0 we put

A+ =
{
y : (y − x)ν > 0

}
, A− =

{
y : (y − x)ν < 0

}
,

A0 =
{
y : (y − x)ν = 0

}
.

Definition 1. The unit vector ν is called the (outward) normal in the
sense of Federer to the set E at the point x if

lim
�→0

�−nmn

(
E ∩B�(x) ∩A+

)
= 0,

lim
�→0

�−nmn

(
CE ∩B�(x) ∩A−) = 0.

(9.2.1)

Definition 2. The set of those points x ∈ ∂E for which normals to E exist
is called the reduced boundary ∂∗E of E .

9.2.2 Gauss–Green Formula

The remainder of Sect. 9.2 contains the proof of the following assertion.

Theorem 1. If P (E ) <∞, then the set ∂∗E is measurable with respect to
s and var∇χE . Moreover, var∇χE (∂E \∂∗E ) = 0 and, for any B ⊂ ∂∗E ,

∇χE (B) = −
∫

B

ν(x)s(dx), var∇χE (B) = s(B). (9.2.2)
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These formulas immediately imply the next assertion.

Theorem 2. (The Gauss–Green formula). If P (E ) <∞ and u is a Lips-
chitz function in R

n with compact support, then
∫

E

∇u(x) dx =
∫
∂∗E

u(x)ν(x)s(dx). (9.2.3)

It suffices to prove (9.2.3) for smooth functions. By the definition of ∇χE

we have ∫
Rn

χE∇u dx = −
∫

Rn

u∇χE (dx),

which together with (9.2.2) implies the result. �

Remark. In particular, from Theorem 1 it follows that P (E ) ≤ s(∂E ). The
case P (E ) < s(∂E ) is not excluded. Moreover, the perimeter can be finite
whereas s(∂E ) = ∞. As an example, it suffices to consider the plane disk B1

from which a sequence of segments of infinite total length has been removed.
In this case ∂∗E = ∂B1.

9.2.3 Several Auxiliary Assertions

Lemma 1. Let the vector charge μ concentrated on E ⊂ R
nsatisfy the condi-

tion |μ(E )| = varμ(E ). Then μ = aϕ where a is a constant vector and ϕ is a
scalar nonnegative measure.

Proof. Since the charge μ is absolutely continuous with respect to ν = varμ
then the derivative dμ/dν = f = (f1, . . . , fn) exists ν almost everywhere. The
equality |μ(E )| = varμ(E ) implies that |f | < 1 is impossible on a set of
positive measure ν. In fact, then we have |μ(E)| < varμ(E) for some E with
ν(E) > 0. Since |μ(E \E)| ≤ varμ(E \E) then

∣∣μ(E )
∣∣ ≤ ∣∣μ(E)

∣∣+ ∣∣μ(E \E)
∣∣ < varμ(E) + varμ(E \E) = varμ(E ),

and we arrive at a contradiction. Since |f | ≤ 1 ν almost everywhere, it follows
that |f | = 1 ν almost everywhere and since |dμi/dν| ≤ 1, we have

μi(E ) =
∫

dμi

dν
dν

by the absolute continuity of μi with respect to ν. Therefore,

∣∣μ(E )
∣∣ =

[∑
i

μi(E )2
]1/2

=
[∑

i

(∫
E

dμi

dν
dν
)2]1/2

=
[∑

i

(∫
fi dν

)2]1/2
.

The condition ν(E ) = |μ(E )| means that the Minkowski inequality
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[∑
i

(∫
fi dν

)2]1/2
≤
∫ (∑

i

f2
i

)1/2

dν

holds with the equality sign. Then the functions x→ fi(x) do not change sign
and are proportional with coefficients independent of x for ν almost all x. ��

Lemma 2. If P (E ) < ∞ and the equality ∇χE = aϕ is valid in the ball
B�, where a is a constant vector and ϕ is a scalar measure, then, up to a set
of the measure mn zero, we have

B� ∩ E =
{
x ∈ B� : (x− y)a > 0

}
,

where y is a point in B�.

Proof. We may assume that a = (1, 0, . . . , 0). Mollifying χE with radius ε,
we obtain

∂

∂x1
MεχE ≥ 0,

∂

∂xi
MεχE = 0 (i = 2, . . . ,m),

in the ball B�−ε. Hence the function MεχE does not depend on x2, . . . , xn
and does not decrease in x1 in B�−ε. Therefore, the same is true for the limit
function χE . ��

Lemma 3. If P (E ) <∞, then, for almost all � > 0,

∇B�χE (B�) = −1
�

∫
E ∩∂B�

xds(x).

Proof. For all � > 0 except, at most, a countable set we have
var∇χE (∂B�) = 0. Suppose � is not contained in that exceptional set. Let
ηε(t) denote a piecewise linear continuous function on (0,∞), equal to 1 for
t ≤ � and vanishing for t > �+ ε, ε > 0.

Since ∫
Rn

χE (x)
[
ηε
(
|x|
)]

dx = −
∫

Rn

ηε
(
|x|
)
∇χE (dx),

we have

1
ε

∫
B�+ε \B�

χE (x)
x

|x| dx = −∇χE (B�) −
∫
B�+ε \B�

ηε
(
|x|
)
∇χE (dx). (9.2.4)

By virtue of var∇χE (∂B�) = 0, the last integral converges to zero as
ε→ +0. The left-hand side of (9.2.4) has the limit equal to

�−1

∫
∂B�

xs(dx)

for almost all �. The result follows. ��
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Lemma 4. If P (E ) < ∞, then P (E ∩ Br(x)) < ∞ for any x ∈ R
n and

for almost all r > 0. Moreover,

P
(
E ∩Br(x)

)
= PBr(x)(E ) + s

(
E ∩ ∂Br(x)

)
.

Proof. We assume that x is located at the origin. By Theorem 9.1.3, there
exists a sequence of polyhedra Πi such that Πi → E and P (Πi) → P (E ).
Using the Fubini theorem, we obtain s(Πi ∩ ∂Br) → s(E ∩ ∂Br) for almost
all r > 0. Then

lim sup
i→∞

P (Πi ∩Br) ≤ lim
i→∞

P (Πi) + lim
i→∞

s(Πi ∩ ∂Br) = P (E ) + s(E ∩ ∂Br)

and thus P (E ∩ Br) < ∞. By Lemma 9.1.3/1, there exists a sequence of
polyhedra {Πi} such that

∇χΠi ∩Br → ∇χE ∩Br , ∇χΠi → ∇χE . (9.2.5)

Let the number r satisfy the equality

lim sup
i→∞

var∇χΠi(∂Br) = 0

(which can fail only for a countable set of values r). Then (9.2.5) implies

∇BrχΠi → ∇BrχE . (9.2.6)

By the convergence s(Πi ∩ ∂Br) → s(E ∩ ∂Br) we find that the set functions
μi defined by

μi(B) =
∫
∂Br

χB∩Πiν ds,

where ν is the outward normal to Br, weakly converge to μ, where

μ(B) =
∫
∂Br

χB∩E ν ds.

Obviously, ∇χΠi ∩Br = ∇BrχΠi + μi. Passing here to the limit and taking
into account (9.2.5), (9.2.6), and the weak convergence of μi to μ, we arrive
at ∇χE ∩Br = ∇BrχE + μ. Since the set function ∇BrχE is supported on Br

and suppμ ⊂ ∂Br, the result follows from the last identity. ��

9.2.4 Study of the Set N

Let N denote the set of points x ∈ ∂E that satisfy the following conditions:

(a) var∇χE (B�(x)) > 0 for all � > 0,
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(b) the limit

ξ = lim
�→0

∇χE (B�(x))
var∇χE (B�(x))

exists and |ξ| = 1.
We note that the vector ξ(x) exists and that |ξ(x)| = 1 almost everywhere

with respect to the measure var∇χE . Moreover,

∇χE (B) =
∫

B∩N

ξ(x) varχE (dx). (9.2.7)

Lemma. If P (E ) <∞ and x ∈ N , then

lim inf
�→0

�−nmn

(
E ∩B�(x)

)
> 0, (9.2.8)

lim inf
�→0

�−nmn

(
CE ∩B�(x)

)
> 0, (9.2.9)

lim sup
�→0

�1−nPB�(x)(E ) <∞. (9.2.10)

Proof. By definition of ξ,

PB�(x)(E ) = var∇χE

(
B�(x)

)
≤ 2
∣∣∇χE

(
B�(x)

)∣∣
for sufficiently small �. By Lemma 9.2.3/3 the right-hand side of this inequality
does not exceed 2s(E ∩ ∂B�(x)). Using Lemma 9.2.3/1, we have

P
(
E ∩B�(x)

)
= PB�(x)(E ) + s

(
E ∩ ∂B�(x)

)
.

Hence
P
(
E ∩B�(x)

)
≤ 3s

(
E ∩ ∂B�(x)

)
. (9.2.11)

This estimate, together with the isoperimetric inequality (9.1.15), shows that

mn

(
E ∩B�(x)

)(n−1)/n ≤ c d
d�
mn

(
E ∩B�(x)

)
(9.2.12)

for sufficiently small �. The property (a) of the set N and Lemma 9.2.3/4
imply P (E ∩B�(x)) > 0; therefore,

mn

(
E ∩B�(x)

)
> 0.

Since the function �→ mn(E ∩B�(x)) is absolutely continuous, it follows
from (9.2.12) that c1�n ≤ mn(E ∩B�(x)) for almost all �.

It is clear that the last inequality is actually true for all �. Thus (9.2.8)
follows. Replacing E by CE in the previous argument we arrive at (9.2.9).

From (9.2.11) we have

P
(
E ∩B�(x)

)
≤ c�n−1
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for almost all �, which together with Lemma 9.2.3/1 yields

PB�(x)(E ) ≤ c�n−1

for all �. ��

Theorem. If P (E ) < ∞ and x ∈ N , then the normal ν at x exists and
ν = ξ. Moreover, for any ε > 0

lim
�→0

�1−n var∇χE

(
B�(x) ∩

[
A0
]
�ε

)
= vn−1, (9.2.13)

where A0 = {y : (y − x)ν = 0} and [ ]ε is the ε-neighborhood.

Proof. It suffices to check that any sequence � > 0 contains a subse-
quence such that equalities (9.2.1) and (9.2.13) are valid. Let δE denote
the set obtained from E by the similarity transformation with center x
and coefficient δ. We may assume that x is located at the origin. Clearly,
PB�(E ) = �n−1PB1(�

−1E ). By the Lemma the relative perimeters PB1(�
−1E )

are uniformly bounded. Consequently, by Theorem 9.1.4, there exists a se-
quence �i > 0 such that the sequence of sets B1 ∩ �−1

i E converges to some set
D. Moreover, Lemma 9.1.3/1 yields

∇B1χ�−1
i E → ∇B1χD.

Thus, for all r ∈ (0, 1) except, at most, a countable set we have

∇B1χ�−1
i E (Br) = ∇χ�−1

i E (Br)
i→∞−−−→ ∇χD(Br). (9.2.14)

By definition of the set N we obtain

lim
i→∞

|∇χ�−1
i E (Br)|

var∇χ�−1
i E (Br)

= lim
i→∞

|∇χE (B�ir)|
var∇χE (B�ir)

= 1.

Comparing the latter equalities with (9.2.14) and taking into account the
semicontinuity of the variation under the weak convergence we obtain
∣∣∇χD(Br)

∣∣ = lim
i→∞

∣∣∇χ�−1
i E (Br)

∣∣ = lim
i→∞

var∇χ�−1
i E (Br) ≥ var∇χD(Br).

(9.2.15)
Hence, by virtue of Lemmas 9.2.3/1 and 9.2.3/2, we conclude that the set
D ∩Br coincides with {y ∈ Br : yν < b} up to the set of measure mn zero.

We show that b = 0. In fact, if b < 0 then

0 = mn(D ∩B|b|) = lim
i→∞

mn

(
�−1
i E ∩B|b|

)
= lim

i→∞
�−1
i mn(E ∩B|b|),

which contradicts (9.2.8). Similarly, b > 0 contradicts (9.2.9). From the con-
vergence

Br ∩ �−1
i E → Br ∩D = Br ∩A−,
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it follows that equalities of the form (9.2.1) are valid for the sequence {�ir},
where {�i} is a subsequence of any given sequence �→ 0 and r is arbitrarily
close to unity. Hence (9.2.1) is true.

It remains to prove (9.2.13). We choose a subsequence �i such that

var∇χ�−1
i E → μ,

where μ satisfies the inequality

μ(B) ≥ var∇χD(B)

for any B ⊂ B1. Furthermore, (9.2.15) implies the existence of numbers r < 1,
arbitrarily close to unity, such that

μ(Br) =
∣∣∇χD(Br)

∣∣ ≤ var∇χD(Br).

Therefore, μ = var∇χD. Now, for almost all ε > 0 and r ∈ (0, 1), we have

lim
i→∞

(�ir)1−n var∇χE

(
B�ir ∩

[
A0
]
�iε

)
= lim

i→∞
var∇χ�−1

i E

(
Br ∩

[
A0
]
ε

)

= var∇χD

(
Br ∩

[
A0
]
ε

)
= rn−1vn−1,

and (9.2.13) follows. ��

9.2.5 Relations Between var∇χE and s on ∂E

Theorem 9.2.4 implies ∂∗E ⊃ N . Moreover, since var∇χE (Rn\N) = 0, it fol-
lows that var∇χE (Rn\∂∗E ) = 0 and thus the sets N and ∂∗E are measurable
relative to var∇χE .

Next we need the following well-known general assertion.

Lemma 1. Let μ be a measure in R
n and let, for all points x in the

μ-measurable set B, the following inequality hold:

lim sup
�→0

�1−nμ
(
B�(x)

)
≥ β > 0,

where β does not depend on x. Then βs(B) ≤ c(n)μ(B).

Proof. For any ε > 0 there exists an open set G such that

μ(G\B) + μ(B\G) < ε.

By the definition of the Hausdorff measure s, given ε > 0, there exists a δ > 0
such that

s(G) ≤ c1(n)
∑

�n−1
i + ε, (9.2.16)

for any covering of G by balls B�i with �i < δ. For any x ∈ B ∩ G consider
the family of balls B�(x) ⊂ G, 3� < δ, such that
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�1−nμ
(
B�(x)

)
≥ β/2. (9.2.17)

By Theorem 1.2.1/1, there exists a sequence of mutually disjoint balls B�i(xi)
satisfying the condition

⋃
iB3�i(xi) ⊃ B ∩G. Then

∑
μ
(
B�i(xi)

)
≤ μ(G) ≤ μ(B) + ε.

By (9.2.16) and (9.2.17) we have

s(G) ≤ c1(n)
∑

(3�i)n−1 + ε ≤ c2(n)
∑

�n−1
i + ε

≤ c2(n)β−1
∑

μ
(
B�i(xi)

)
+ ε ≤ c3(n)β−1

(
μ(B) + ε

)
+ ε. ��

Definition 9.2.1/1 and the Fubini theorem imply the following lemma.

Lemma 2. If P (E ) <∞ and x ∈ ∂∗E , then

lim inf
�→0

�1−ns
(
E ∩ ∂B�(x) ∩A+

)
= 0,

where the lower limit is taken over any subset of measure 1 in the interval
0 < � < 1.

Lemma 3. If P (E ) <∞ and x ∈ ∂∗E , then

lim sup
�→0

�1−n var∇χE

(
B�(x)

)
≥ vn−1.

Proof. Let Q be a subset of the interval 0 < � < 1 on which the identity
in Lemma 9.2.3/1 is valid. By Lemmas 9.2.3/3 and 2 we have

lim sup
�→∞

�1−n var∇χE

(
B�(x)

)

≥ lim sup
�→0

�1−n
∣∣∇χE

(
B�(x)

)∣∣ ≥ lim sup
Q��→0

�−n

∣∣∣∣
∫

E ∩∂B�(x)

xds
∣∣∣∣

= lim
�→0

�−n

∣∣∣∣
∫
A− ∩∂B�(x)

xds
∣∣∣∣ = vn−1.

The result follows. ��

Taking into account the equality var∇χE (∂∗E \N) = 0, from Lemmas 1
and 3 we obtain the next assertion.

Lemma 4. If P (E ) <∞, then s(∂∗E \N) = 0.

Now to prove Theorem 9.2.2/1 it suffices to verify that the vector measures
ν ds and var∇χE (dx) coincide on N .

Lemma 5. Let P (E ) <∞ and let the set B∩N be measurable relative to
var∇χE . Then s(B) ≥ var∇χE (B).
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Proof. The function

x→ f�(x) = v−1
n−1�

1−n var∇χE

(
B�(x)

)

is lower semicontinuous. This is a consequence of the relation

B�(x)\B�(x1) → ∅ as x1 → x.

Therefore, f�(x) is measurable. Let �i → 0. By Theorem 9.2.4, the sequence
f�i converges to f(x) ≡ 1 on N . By the Egorov theorem, for any ε > 0
there exists a set Nε ⊂ N such that var∇χE (Nε) < ε and the sequence f�i

converges uniformly on N\Nε. Therefore there exists a δ > 0 such that

var∇χE

(
Br(x)

)
≤ (1 + ε)vn−1r

n−1, (9.2.18)

for all x ∈ N\Nε and r ∈ (0, δ).
By definition of the measure s, there exists a finite covering of N\Nε by

balls Bri(xi) with ri < δ, such that

(1 + ε)s
(
B ∩ (N\Nε)

)
≥ vn−1

∑
rn−1
i .

This and (9.2.18) imply

var∇χE (B) ≤ ε+ var∇χE

(
B ∩ (N\Nε)

)
≤ ε+

∑
i

var∇χE

(
Bri(x)

)
≤ ε+ (1 + ε)vn−1

∑
i

rn−1
i

≤ ε+ (1 + ε)2s
(
B ∩ (N\Nε)

)
≤ ε+ (1 + ε)2s(B).

The result follows since ε is arbitrary. ��

The next assertion is a modification of the classical Vitali–Carathéodory
covering theorem.

Lemma 6. Let μ be a finite measure in R
n concentrated on a set E .

Further, let M be a family of closed balls having the following property: For
each point x ∈ E there exists a δ(x) > 0 such that Br(x) ∈ M for all r < δ(x)
and

αrk < μ
(
Br(x)

)
≤ βrk (9.2.19)

for some k > 0, where Br(x) is any ball in M and α, β are positive constants
independent of r and x. Then there exists, at most, a countable family of
mutually disjoint balls B(i) ∈ M such that μ(E \

⋃
i B(i)) = 0.

Proof. We fix a number a > 1 and construct a sequence of balls B(i) ∈ M in
the following way. Suppose that B(1), . . . ,B(j−1) have already been specified.
Then we choose B(j) to satisfy

B(j) ∩ B(i) = ∅ for i < j,

aμ
(
B(j)

)
≥ sup

{
μ
(
Br(x)

)
: Br(x) ∩ B(i) = ∅, 1 ≤ i < j

}
.
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If the process breaks at some point j then E ⊂
⋃j

i=1 B(i) and the lemma is
proved. ��

Suppose the sequence {B(i)} is infinite. Let C (i) denote the closed ball
concentric to B(i) with radius Ri = Qri where ri is the radius of B(i) and the
constant Q ∈ (1,∞) will be specified later. Note that from the very beginning
we could have constructed the sequence {B(i)} so that C (i) is contained in
M simultaneously with B(i).

We show that

E ⊂ E ∩
[(

j−1⋃
i=1

B(i)

)
∪
( ∞⋃

i=j

C (i)

)]
(9.2.20)

for some Q and for all j. In fact, let x ∈ E \
⋃j−1

i=1 B(i). Then there exists
a ball B ∈ M centered at x such that B ∩ B(i) = ∅ for i < j. Note that
we have B ∩ B(p) �= ∅ for some p ≥ j. Indeed, if B ∩ B(p) = ∅ for all p
then the constructed sequence {B(i)} satisfies μ(B) ≤ aμ(B(p)). Since the
balls B(p) are mutually disjoint, the last inequality contradicts finiteness of
the measure μ.

Let the number p be such that B ∩B(i) = ∅ for i < p and B ∩B(p) �= ∅.
Inequalities μ(B) ≤ aμ(B(p)) and (9.2.19) imply the estimates

αrk ≤ μ(B) ≤ αμ
(
B(p)

)
≤ αβrkp ,

where r is the radius of B. Since the balls B and B(p) are disjoint, the distance
between their centers satisfies

d ≤ r + rp ≤ rp
(
1 + (aβ/α)1/k

)
.

Let the constant Q be equal to 1 + (aβ/α)1/k. Then d ≤ Rp and hence
x ∈ C (p). The inclusion (9.2.20) follows.

It remains to note that

μ

(
E \

j−1⋃
i=1

B(i)

)
≤

∞∑
i=j

μ
(
C (i)

)
≤ β

∞∑
i=j

Rk
i ≤ βQk

∞∑
i=j

rki ≤ βQk

α

∞∑
i=j

μ
(
B(i)

)
.

Since the series
∑∞

i=1 μ(B
(i)) converges, we have

μ

(
E \

j−1⋃
i=1

B(i)

)
→ 0 as j →∞.

Lemma 7. If P (E ) <∞ and B is a subset of N , measurable with respect
to var∇χE , then B is s-measurable and

s(B) ≤ var∇χE (B). (9.2.21)
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Proof. By Theorem 9.2.4, for any ε ∈ (0, 1) the measure μ = var∇χE

satisfies the conditions of Lemma 6 with α = vn−1(1 − ε), β = vn−1(1 + ε),
k = n− 1.

By the definition of the Hausdorff measure, given any ε, there exists a
δ > 0 such that

s(B) ≤ vn−1

∑
rn−1
i + ε

for any finite covering of B by balls Bri(xi) with ri < δ.
Let {B(i)} be the sequence of closed balls in Lemma 6. We assume their

radii to be less than δ. We choose a finite subsequence {B(i)}qi=1 such that

μ

(
B\

q⋃
i=1

B(i)

)
< ε.

As was shown in the proof of Lemma 1, there exists a finite collection of
disjoint open balls C (j) with radii �j < δ such that μ(

⋃
j C (j)) < ε and the

concentric balls 3C (j) with radii 3�j form a covering of B\
⋃

i≤q B(i). Thus

⋃
j

3C (j) ∪
(⋃

i≤q

B(i)

)
⊃ B.

Now we have

s(B) ≤ vn−1

(
3
∑
j

�n−1
j +

∑
i≤q

rn−1
i

)
+ ε,

where ri is the radius of B(i). Hence

s(B) ≤ (1 + ε)
[
c
∑
j

μ
(
B(j)

)
+
∑
i≤q

μ
(
C (i)

)]
+ ε ≤ (1 + ε)

(
cε+ μ(B)

)
+ ε,

and (9.2.21) follows because ε is arbitrary.
Since inequality (9.2.21) is valid for all μ-measurable sets, this implies that

B is s-measurable. ��

Combining Lemmas 4, 5, and 7, we complete the proof of Theorem 9.2.2/1.

9.3 Extension of Functions in BV (Ω) onto R
n

With any set E ⊂ Ω we associate the value

τΩ(E ) = inf
B∩Ω=E

PCΩ(B).

Theorem. (a) If for any function u ∈ BV (Ω) there exists an extension
û ∈ BV (Rn) such that
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‖û‖
BV
(

Rn
) ≤ C‖u‖BV (Ω), (9.3.1)

where C is a constant independent of u, then

τΩ(E ) ≤ (C − 1)PΩ(E ) (9.3.2)

for any set E ⊂ Ω.
(b) Conversely, if for any E ⊂ Ω the inequality (9.3.2) holds with a con-

stant C independent of E , then for any u ∈ BV (Ω) there exists an extension
û ∈ BV (Rn) for which (9.3.1) is true.

9.3.1 Proof of Necessity of (9.3.2)

The inequality (9.3.2) is trivial provided PΩ(E ) = ∞. Let PΩ(E ) < ∞. By
hypothesis there exists an extension χ̂E of the characteristic function χE such
that

‖χ̂E ‖
BV
(

Rn
) ≤ CPΩ(E ).

This and formula (9.1.16) imply

CPΩ(E ) ≥
∫ ∞

− ∞
PRn

(
{x : χ̂E > t}

)
dt ≥

∫ 1

0

PRn

(
{x : χ̂E > t}

)
dt.

Since {x : χ̂E (x) > t} ∩Ω = E for t ∈ (0, 1), by (9.1.2) and (9.1.3) we obtain

CPΩ(E ) ≥ inf
B∩Ω=E

PRn(B)

≥ inf
B∩Ω=E

PΩ(B) + inf
B∩Ω=E

PCΩ(B) ≥ PΩ(E ) + τΩ(E ).

Hence (9.3.2) follows.

9.3.2 Three Lemmas on PCΩ(E )

To prove the sufficiency of (9.3.2) we need the following three auxiliary asser-
tions.

Lemma 1. If B ⊂ Ω, τΩ(B) < ∞, and PΩ(B) < ∞, then there exists a
set E ⊂ R

n such that E ∩Ω = B and

PCΩ(E ) = τΩ(B). (9.3.3)

Proof. Let {Ei} be a sequence of subsets of R
n such that Ei ∩Ω = B and

lim
i→∞

PCΩ(Ei) = τΩ(B). (9.3.4)
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By (9.3.4), supi PCΩ(Ei) < ∞ and since PΩ(Ei) = PΩ(B) < ∞, we have
supi PRn(Ei) < ∞. Hence from Theorem 9.1.4 it follows that there exists a
subsequence (for which we retain the notation {Ei}) that converges to some
set E . By Lemma 9.1.3/1,

P (E ) ≤ lim inf
i→∞

P (Ei).

Taking into account that E ∩Ω = B as well as equalities (9.1.2) and (9.1.3),
we obtain

PCΩ(E ) ≤ lim
i→∞

PCΩ(Ei) = τΩ(B). (9.3.5)

Comparing (9.3.5) with the definition of τΩ(B), we arrive at (9.3.3). ��

Lemma 2. Let E1, E2 be measurable subsets of R
n. Then

PCΩ(E1 ∩ E2) + PCΩ(E1 ∪ E2) ≤ PCΩ(E1) + PCΩ(E2). (9.3.6)

Proof. Let G be an open set, G ⊃ CΩ. Then by (9.1.16)

PG(E1) + PG(E2) ≥
∥∥(χE1 + χE2)

∥∥
BV (G)

=
∫ ∞

− ∞
PG

(
{x : χE1 + χE2 > t}

)
dt

=
∫ 1

0

PG

(
{x : χE1 + χE2 > t}

)
dt

+
∫ 2

1

PG

(
{x : χE1 + χE2 > t}

)
dt

= PG(E1 ∪ E2) + PG(E1 ∩ E2). (9.3.7)

Consider the sequence of open sets Gi such that Gi+1 ⊂ Gi and
⋂

iGi = CΩ.
Since

PCΩ(Ek) = lim
i→∞

PGi(Ek), k = 1, 2,

applying (9.3.7), we obtain (9.3.6). ��

Lemma 3. Let PCΩ(Ek) <∞, k = 1, 2. We put Bk = Ek ∩Ω. Then

PCΩ(E1 ∩ E2) = PCΩ(E1), PCΩ(E1 ∪ E2) = PCΩ(E2),

provided B1 ⊂ B2 and

PCΩ(Ek) = τΩ(Bk), k = 1, 2. (9.3.8)

Proof. Since E1 ∩ E2 ∩Ω = B1 and (E1 ∪ E2) ∩Ω = B2, by the definition
of τΩ we have
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τΩ(B1) ≤ PCΩ(E1 ∩ E2), τΩ(B2) ≤ PCΩ(E1 ∪ E2). (9.3.9)

Using (9.3.8) we can rewrite (9.3.6) as

PCΩ(E1 ∩ E2) + PCΩ(E1 ∪ E2) ≤ τΩ(B1) + τΩ(B2),

which together with (9.3.9) proves the lemma. ��

9.3.3 Proof of Sufficiency of (9.3.2)

1◦. Plan of Proof. Starting from Nt = {x : u(x) ≥ t} we construct the
family of sets Bt satisfying the conditions Bt ∩Ω = Nt, PCΩ(Bt) = τΩ(Nt),
Bt ⊂ Bτ for t > τ .

We first construct Bt for a countable set {ti}, which is everywhere dense
on (−∞,∞) (item 2◦) and then for all other t (item 3◦). Finally, in item 4◦ we
introduce the function û(x) = sup{t : x ∈ Bt} and prove that û(x) satisfies
the conditions of Theorem 9.3.

2◦. Since u ∈ BV (Ω) then for almost all t we have PΩ(Nt) < ∞ by
formula (9.1.16). Therefore, we can choose a countable set {ti}, ti �= tj for
i �= j, which is everywhere dense on (−∞,∞) and satisfies PΩ(Nti) < ∞.
From (9.3.2) it follows that τΩ(Nti) <∞.

We construct a sequence of sets Bti , i = 1, 2, . . . , such that

(a) Bti ∩Ω = Nti ,

(b) PCΩ(Bti) = τΩ(Nti),
(c) Bti ⊂ Btj , ti > tj .

By Lemma 9.3.2/1 there exists a set Bt1 satisfying the conditions (a)–(b).
Suppose the sets Bt1 , . . . ,Btn have already been constructed so that the con-
ditions (a)–(c) are fulfilled for i, j = 1, . . . , n − 1. By Lemma 9.3.2/1 there
exists a set B(n) satisfying (a) and (b). Let t∗ be the largest of those numbers
ti, i = 1, . . . , n − 1, for which ti < tn and let t∗ be the smallest of those
numbers ti, i = 1, . . . , n− 1, for which tn < ti. We put

Btn =
(
B

(n) ∩ Bt∗

)
∪ Bt∗ .

It is clear that Bt∗ ⊃ Btn ⊃ Bt∗ . Hence Btn ⊂ Bti for tn > ti and Btn ⊃ Bti

for tn < ti, i = 1, . . . , n− 1. Since

B
(n) ∩Ω = Ntn , Bt∗ ∩Ω = Nt∗ ⊃ Ntn , Bt∗ ∩Ω = Nt∗ ⊂ Ntn ,

we have Btn ∩Ω = Ntn . Applying Lemma 9.3.2/3 to the sets B(n), Bt∗ , and
then to the sets B(n) ∩ Bt∗ , Bt∗ , we obtain

PCΩ(Btn) = τΩ(Ntn).

Thus the collection of sets Bt1 , . . . ,Btn satisfies the conditions (a)–(c) for
i, j = 1, . . . , n.
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3◦. Let t /∈ {ti}. From the set {ti} we select two monotone sequences {αi},
{βi} such that αi < t < βi and limi→∞ αi = limi→∞ βi = t.

By Lemma 9.3.2/1, there exists a set B
(0)
t such that B

(0)
t ∩ Ω = Nt and

PCΩ(B(0)
t ) = τΩ(Nt). Consider the sequence of sets B

(k)
t = B

(0)
t ∩ Bαk

, k =
1, 2, . . . . It is clear that B

(k)
t ∩Ω = Nt, B

(k+1)
t ⊂ B

(k)
t . Using Lemma 9.3.2/3,

have PCΩ(B(k)
t ) = τΩ(Nt). We introduce the notation

B̃t =
∞⋂

k=1

B
(k)
t .

Since B
(k)
t → B̃t as k →∞, we see that

PCΩ(B̃t) ≤ lim inf
k→∞

PCΩ

(
B

(k)
t

)
= τΩ(Nt).

On the other hand, B̃t ∩ Ω = Nt. Therefore τΩ(Nt) ≤ PCΩ(B̃t). Thus
PCΩ(B̃t) = τΩ(Nt).

Next consider the sequence of sets C
(k)
t = B̃t ∪ Bβk

, k = 1, 2, . . . . In the
same way as when we considered the sets B

(k)
t we conclude that the set

Bt =
∞⋃

k=1

C
(k)
t ,

is measurable and satisfies the conditions

1. Bt ∩Ω = Nt, 2. PCΩ(Bt) = τΩ(Nt), 3. Bβi ⊂ Bt ⊂ Bαi ,

i = 1, 2, . . . . Now let t, τ be arbitrary numbers, t < τ . Then condition 3
implies that Bt ⊃ Bτ .

4◦. Consider the function û defined by û(x) = sup{t : x ∈ Bt}. We put

At =
{
x : û(x) ≥ t

}
, Ct =

{
x : û(x) > t

}
.

Obviously, At ⊃ Bt ⊃ Ct. The sets At\Ct are mutually disjoint for different t
and hence mn(At\Ct) = 0 for almost all t. Thus the sets At, Ct are measurable
for almost all t. Moreover,

PRn(At) = PRn(Bt) = PRn(Ct).

We prove that û is locally integrable. It is well known that the inequality
(
mn(E )

)(n−1)/n ≤ C(R, ε)PBR
(E ) (9.3.10)

is valid for the subset E of the ball BR such that mn(E ) < mn(BR) − ε.
(In particular, this follows from Lemma 5.2.1/1.) Let the closed ball Bδ be
contained in Ω and let BR ⊃ Bδ. Then (9.3.10) implies
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mn(E ) ≤ C(R, δ)
[
PBR

(E ) +mn(E ∩Bδ)
]

≤ C(R, δ)
[
PRn(E ) +mn(E ∩Bδ)

]
for any set E ⊂ BR. Putting E = Bt∩BR for t ≥ 0 and E = BR\Bt for t < 0
in the latter inequality and using PCΩ(Bt) = τΩ(Nt) and estimate (9.3.2),
we obtain

mn(Bt ∩BR) ≤ C(R, δ)
[
CPΩ(Nt) +mn(Nt ∩Bδ)

]
, t ≥ 0,

mn(BR\Bt) ≤ C(R, δ)
[
CPΩ(Nt) +mn

(
(Ω\Nt) ∩Bδ

)]
, t < 0.

Taking into account that mn(Bt) = mn(At) for almost all t, from the latter
two inequalities we obtain

∫ ∞

0

mn(At ∩BR) dt+
∫ 0

− ∞
mn(BR\At) dt

≤ C(R, δ)
[
C

∫ ∞

− ∞
PΩ(Nt) dt+

∫ ∞

0

mn(Nt ∩Bδ) dt

+
∫ ∞

0

mn(Bδ\Nt) dt
]
,

which is equivalent to∫
BR

|û| dx ≤ C(R, δ)
[
C‖u‖BV (Ω) +

∫
Bδ

|u| dx
]
,

whence the local integrability of û follows. Applying (9.1.16), (9.3.2), and
recalling that PRn(Ct) = PRn(Bt) for almost all t, we obtain

‖û‖
BV
(

Rn
) =

∫ ∞

− ∞
PRn(Ct) dt =

∫ ∞

− ∞

[
PΩ(Bt) + PCΩ(Bt)

]
dt

=
∫ ∞

− ∞

[
PΩ(Nt) + τΩ(Nt)

]
dt ≤ C

∫ ∞

− ∞
PΩ(Nt) dt = C‖u‖BV (Ω),

i.e., û ∈ BV (Rn) and (9.3.1) is valid.

9.3.4 Equivalent Statement of Theorem 9.3

Theorem 9.3 can be rephrased in terms of the extension operator AΩ : u→ û,
which associates with each u ∈ BV (Ω) its extension û ∈ BV (Rn).

We put

‖AΩ‖ = sup
{‖û‖BV (Rn)

‖u‖BV (Ω)
: u ∈ BV (Ω)

}
,

and denote by |Ω| the infimum of those numbers k for which τΩ(E ) ≤ kPΩ(E )
for all E ⊂ Ω. Now we have the following theorem.

Theorem. The operator AΩ exists and is bounded if and only if |Ω| <∞.
Moreover, ‖AΩ‖ ≥ 1 + |Ω| for any extension operator AΩ and there exists an
operator AΩ with ‖AΩ‖ = 1 + |Ω|.
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9.3.5 One More Extension Theorem

The condition (9.3.2) in Theorem 9.3 is of a global nature. For example,
nonconnected sets Ω do not satisfy it.

This impediment may be removed if we make the requirements on the
extension operator less restrictive. Specifically, the following theorem holds.

Theorem. Let Ω be a bounded open set. For any function u ∈ BV (Ω) to
have an extension û ∈ BV (Rn) with

‖û‖BV (Rn) ≤ K
(
‖u‖BV (Ω) + ‖u‖L1(Ω)

)
, (9.3.11)

where K is independent of u, it is necessary and sufficient that there exists a
δ > 0 such that τΩ(E ) ≤ CPΩ(E ) for any E ⊂ Ω with a diameter less than
δ, the constant C being independent of E .

Proof. Necessity. Let E ⊂ Ω and let χE be the characteristic function of
E while χ̂E is an extension of χE satisfying (9.3.11). We have

K
(
PΩ(E ) +mn(E )

)
≥ ‖χ̂E ‖BV (Rn) ≥

∫ 1

0

P
(
{x : χ̂E > t}

)
dt.

Since {x : χ̂E > t} ∩Ω = E for t ∈ (0, 1), it follows that

K
(
PΩ(E ) +mn(E )

)
≥ inf

B∩Ω=E
P (B).

By the inclusion E ⊂ B, the latter estimate and the isoperimetric inequal-
ity (9.1.15) imply

K
(
PΩ(E ) +mn(E )

)
≥ nv1/nn

(
mn(E )

)(n−1)/n
. (9.3.12)

We put δ = n/(2K). Then from (9.3.12) under the condition diam E < δ it
follows that mn(E ) ≤ PΩ(E ). Therefore,

2KPΩ(E ) ≥ inf
B∩Ω=E

P (B) ≥ τΩ(E ).

Sufficiency. Consider the partition of unity αi(x), i = 1, . . . , ν, such that
ν⋃

i=1

suppαi ⊃ Ω̄, diam suppαi < δ,

and |gradαi| ≤ d = const. Let u ∈ BV (Ω). We put ϕi = uαi and
Nt = {x : |ϕi| ≥ t}. Since for all t �= 0 we have diamNt < δ then
τΩ(Nt) ≤ CPΩ(Nt). Therefore, following the same argument as in the proof
of sufficiency in Theorem 9.3 we obtain the function ϕ̂i ∈ BV (Rn) such that
ϕ̂i = ϕi in Ω and

‖ϕ̂i‖BV (Rn) ≤ (C + 1)‖ϕi‖BV (Ω) ≤ (C + 1)
(
‖u‖BV (Ω) + d‖u‖L1(Ω)

)
.

We put û =
∑
ϕ̂i. It is clear that û = u in Ω and

‖û‖BV (Rn) ≤ ν(C + 1)
(
‖u‖BV (Ω) + d‖u‖L1(Ω)

)
. ��
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9.4 Exact Constants for Certain Convex Domains

By Theorem 9.3 the norm of the extension operator BV (Ω) → BV (Rn) is
expressed by the exact constant in the isoperimetric inequality (9.3.2). This
constant can be found in some particular cases. For plane convex domains it
has a simple geometrical interpretation (cf. Corollary 9.4.4/2). The constant
is also easily calculated if Ω is an n-dimensional ball.

9.4.1 Lemmas on Approximations by Polyhedra

Lemma 1. Let Ω be a bounded convex domain in R
n and let E ⊂ Ω,

PRn(E ) <∞. Then there exists a sequence of polyhedra Πk such that Πk → E
and

lim
k→∞

PΩ(Πk) = PΩ(E ), lim
k→∞

PCΩ(Πk) = PCΩ(E ). (9.4.1)

Proof. Let Ωε be the domain obtained from Ω by the similarity transfor-
mation with coefficient 1 + ε and with the center at a fixed point of Ω. We
denote the image of E under the same transformation by Eε. It is clear that

PΩε(Eε) = (1 + ε)n−1PΩ(E ), PCΩε(Eε) = (1 + ε)n−1PCΩ(E ).

Hence we can easily obtain that

lim
ε→0

PΩ(Eε) = PΩ(E ), lim
ε→0

PCΩ(Eε) = PCΩ(E ). (9.4.2)

In fact, (1 + ε)n−1PΩ(E ) ≥ PΩ(Eε) and consequently

PΩ(E ) ≥ lim inf
ε→0

PΩ(Eε) ≥ PΩ(E ).

The latter inequality is a corollary of Lemma 9.1.3/1. Since

PΩ(E ) + PCΩ(E ) = P (E ), PΩ(Eε) + PCΩ(Eε) = P (Eε),

the first inequality (9.4.2) implies the second. For almost all ε we have

var∇χEε(∂Ω) = 0. (9.4.3)

Let ε be subject to (9.4.3). By Theorem 9.1.3 there exists a sequence of poly-
hedra Πk,ε such that Πk,ε → Eε, P (Πk,ε) → P (Eε) as k → ∞. This and
Lemma 9.1.2/3 yield

var∇χΠk,ε

weakly−−−−→ var∇χEε .

By (9.4.3) we have
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lim
k→∞

sup var∇χΠk,ε
(∂Ω) ≤ var∇χEε(∂Ω) = 0,

and therefore,

lim
k→∞

PΩ(Πk,ε) = PΩ(Eε), lim
k→∞

PCΩ(Πk,ε) = PCΩ(Eε). (9.4.4)

We choose a sequence of numbers εi that satisfy (9.4.3), such that εi → 0 as
i→∞. Then (9.4.2) and (9.4.4) imply

lim
i→∞

lim
k→∞

PΩ(Πk,εi) = PΩ(E ),

lim
i→∞

lim
k→∞

PCΩ(Πk,εi) = PCΩ(E ).

This concludes the proof. ��

In the following we shall use the following elementary assertion.

Lemma 2. Let Ω be a bounded convex domain in R
n and let Π be a finite

polyhedron. Then s(∂Π ∩ CΩ) ≥ s(∂Ω ∩Π).

Lemma 3. Let Ω be a bounded convex domain in R
n and let E ⊂ Ω,

PΩ(E ) <∞. Then there exists a sequence of polyhedra Πk such that Πk → E
and

lim
k→∞

PΩ(Πk ∩Ω) = PΩ(E ), lim
k→∞

PCΩ(Πk ∩Ω) = PCΩ(E ).

Proof. By Lemma 1, there exists a sequence of polyhedra Πk, Πk → E ,
satisfying (9.4.1). It is clear that PΩ(Πk ∩ Ω) = PΩ(Πk). According to
Lemma 9.3.2/3 we have

PCΩ(Πk ∩Ω) ≤ PCΩ(Πk).

Therefore,

lim
k→∞

PCΩ(Πk ∩Ω) ≤ lim
k→∞

PCΩ(Πk) = PCΩ(E ), (9.4.5)

lim
k→∞

PΩ(Πk ∩Ω) = lim
k→∞

PΩ(Πk) = PΩ(E ). (9.4.6)

Since Πk ∩Ω → E , we obtain

PRn(E ) ≤ lim
k→∞

PRn(Πk ∩Ω). (9.4.7)

From (9.4.6) and (9.4.7) we conclude that

PCΩ(E ) ≤ lim
k→∞

PCΩ(Πk ∩Ω),

which together with (9.4.5) completes the proof. ��
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9.4.2 Property of PCΩ

Lemma. Let P (Ω) < ∞ and suppose a normal to Ω exists s-almost every-
where on ∂Ω. Then, for any set E ⊂ Ω,

PCΩ(E ) + PCΩ(Ω\E ) = s(∂Ω).

Proof. By the equality χΩ = χE + χΩ\E we have

var∇χΩ(CΩ) ≤ var∇χE (CΩ) + var∇χΩ\E (CΩ) = PCΩ(E ) + PCΩ(Ω\E ).

Since a normal to Ω exists s-almost everywhere on ∂Ω, by Theorem 9.2.2/1
we obtain

var∇χΩ(CΩ) = PRn(Ω) = s(∂Ω).

Consequently,
s(∂Ω) ≤ PCΩ(E ) + PCΩ(Ω\E ).

We prove the reverse inequality. Let A∗, B∗ denote the reduced boundaries of
the sets E and Ω\E , respectively. The sets A∗ and B∗ are s-measurable (cf.
Theorem 9.2.2/1). We note that the sets A∗ ∩∂∗Ω and B∗ ∩∂∗Ω are disjoint.
In fact, suppose there exists a point x ∈ ∂∗Ω common to A∗ and B∗. Then
the volume densities of E and Ω\E at the point x are equal to 1/2. This is
impossible because x ∈ ∂∗Ω. Consequently,

s
(
A

∗ ∩ ∂∗Ω
)

+ s
(
B

∗ ∩ ∂∗Ω
)
≤ s(∂Ω).

It remains to use the equalities

s
(
A

∗ ∩ ∂∗Ω
)

= s
(
A

∗ ∩ ∂Ω
)

= PCΩ(E ),

s
(
B

∗ ∩ ∂∗Ω
)

= s
(
B

∗ ∩ ∂Ω
)

= PCΩ(Ω\E )

(cf. Theorem 9.2.2/1). The lemma is proved. ��

9.4.3 Expression for the Set Function τΩ(E ) for a Convex Domain

Theorem. If Ω is a bounded convex domain in R
n, then the equality

τΩ(E ) = min
[
PCΩ(E ), PCΩ(Ω\E )

]
(9.4.8)

holds for any set E ⊂ Ω with P (E ) <∞.

Proof. For the sake of definiteness, let

PCΩ(E ) ≤ PCΩ(Ω\E ).

Let the set B be such that B ∩ Ω = E , PCΩ(B) = τΩ(E ). Assume for the
moment that mn(B) <∞.
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By Lemma 9.4.1/1, we can find a sequence of polyhedra Πk, Πk → B such
that

lim
k→∞

PΩ(Πk) = PΩ(B), lim
k→∞

PCΩ(Πk) = PCΩ(B). (9.4.9)

Since mn(B) < ∞, the polyhedra Πk are finite. By Lemma 9.4.1/2 we have
PCΩ(Πk ∩Ω) ≤ PCΩ(Πk). This and (9.4.9) yield

lim sup
k→∞

PCΩ(Πk ∩Ω) ≤ PCΩ(B). (9.4.10)

Using Πk ∩Ω → B ∩Ω, we obtain

P (B ∩Ω) ≤ lim inf
k→∞

P (Πk ∩Ω),

which together with (9.4.9) implies

PCΩ(E ) = PCΩ(B ∩Ω) ≤ lim inf
k→∞

PCΩ(Πk ∩Ω).

Hence from (9.4.10) it follows that PCΩ(E ) ≤ PCΩ(B) = τΩ(E ). Thus
PCΩ(E ) = τΩ(E ).

Now let mn(B) = ∞. Since PCΩ(B) < ∞, we have mn(CB) < ∞
(cf. (9.1.18)). Further we note that

PCΩ(CB) = PCΩ(B) = τΩ(E ) = τΩ(Ω\E ).

Hence, according to what we proved earlier, τΩ(Ω\E ) = PCΩ(Ω\E ) and there-
fore, by (9.4.8),

τΩ(E ) = PCΩ(Ω\E ) ≥ PCΩ(E ).

Since, obviously, τΩ(E ) ≤ PCΩ(E ), we conclude that τΩ(E ) = PCΩ(E ). ��

9.4.4 The Function |Ω| for a Convex Domain

Corollary 1. Let Ω be a bounded convex domain. Then

|Ω| = inf
{
k : PCΩ(E ) ≤ kPΩ(E )

}
,

where E is any subset of Ω with PCΩ(E ) ≤ 1
2s(∂Ω).

The result follows immediately from Theorem 9.4.3 and Lemma 9.4.2.

Corollary 2. Let Ω be a bounded convex domain in R
2. Then

|Ω| = 1
2h
s(∂Ω),

where h is the minimum length of those lines whose end points separate ∂Ω
into arcs of equal length.
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Proof. We take an arbitrary ε > 0. Let E be a measurable subset of Ω
such that

PΩ(E ) > 0, PCΩ(E ) <
1
2
s(∂Ω), and |Ω| − PCΩ(E )

PΩ(E )
< ε

(cf. Corollary 1). By Lemma 9.4.1/3, we can find a polyhedron Π such that

|Ω| − PCΩ(Π ∩Ω)
PΩ(Π)

< 2ε.

Let A and B be the set of points of the intersection of ∂Ω with some com-
ponent of the boundary of Π. Points A and B can be chosen so that the
segment of the component of ∂Π being considered, bounded by points A and
B, lies entirely in Ω. The segment AB divides Ω into two sets Q and Q′. Let
PCΩ(Q) ≤ PCΩ(Q′). It is clear that

PCΩ(Q)/AB ≥ PCΩ(Π ∩Ω)/PΩ(Π)

and therefore

|Ω| − PCΩ(Q)
AB

< 2ε. (9.4.11)

If PCΩ(Q) = PCΩ(Q′) then (9.4.11) implies the required assertion by virtue
of the inequality AB ≥ h and the fact that ε is arbitrary.

Let PCΩ(Q) < PCΩ(Q′). We shift the segment AB parallel to itself to a
new position A′B′(A′ ∈ ∂Ω,B′ ∈ ∂Ω) so that PCΩ(Q1) = PCΩ(Q′

1) where
Q1 and Q′

1 are the domains into which the segment A′B′ divides Ω.
Elementary calculations show that

PCΩ(Q1)/A′B′ ≥ PCΩ(Q)/AB,

which together with (9.4.11) proves the corollary. ��

Lemma. Let Ω be the unit ball in R
n. Then

inf
{
PCΩ(E ) : E ⊂ Ω,PΩ(E ) = p = const ≤ ωn

}

equals the area of the spherical part of the boundary of the spherical segment
whose base has area p.

Proof. Let E ⊂ Ω, PΩ(E ) = p. By Lemma 9.4.1/3 there exists a sequence
of polyhedra Πk, Πk → E , such that

PΩ(Πk) → p, PCΩ(Πk ∩Ω) → PCΩ(E ).

We perform the spherical symmetrization of Πk ∩ Ω relative to some ray
l with origin at the center of Ω. We obtain the set Π ′

k, symmetric relative to
l, with a piecewise smooth boundary and such that
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PΩ(Π ′
k) ≤ PΩ(Πk), PCΩ(Π ′

k) = PCΩ(Πk ∩Ω).

We denote the spherical segment whose spherical part of the boundary is
∂Π ′

k ∩ ∂Ω by Qk. It is clear that

PΩ(Qk) ≤ PΩ(Π ′
k), PCΩ(Qk) = PCΩ(Π ′

k).

Hence the result follows. ��

The next assertions can be obtained from the Lemma by simple calcula-
tions.

Corollary 3. (a) If Ω is the unit ball in R
n then

|Ω| = ωn/2πvn−1.

(b) If Ω is the unit ball in R
3 then, for any E ⊂ Ω,

4πPΩ(E ) ≥ PCΩ(E )
(
4π − PCΩ(E )

)
.

(c) If Ω is the unit disk then, for any E ⊂ Ω,

PΩ(E ) ≥ 2 sin
(

1
2
PCΩ(E )

)
.

9.5 Rough Trace of Functions in BV (Ω) and Certain
Integral Inequalities

9.5.1 Definition of the Rough Trace and Its Properties

On the reduced boundary of Ω we define the rough trace u∗ of a function
u ∈ BV (Ω). We put

u∗(x) = sup
{
t : P (Nt) <∞, x ∈ ∂∗Nt

}
,

where x ∈ ∂∗Ω and Nt = {x ∈ Ω : u(x) ≥ t}. (The supremum of the empty
set is assumed to be −∞.)

It is clear that if u has a limit value at a point x ∈ ∂∗Ω then

u∗(x) = lim
y→x

u(y).

Lemma 1. Let s(∂Ω) <∞. Then PΩ(E ) <∞ implies P (E ) <∞ for any
E ⊂ Ω.

Proof. Since s(∂Ω) is finite, we can construct a sequence of polyhedra
Πk, Πk ⊂ Ω, such that s(∂Πk) ≤ K < ∞. Since PΩ(E ) < ∞, we have
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PΩ(E ∩Πk) ≤ K1 <∞. Moreover, E ∩Πk → E . Hence the result follows by
Lemma 9.1.3/1. ��

Corollary 1. If s(∂Ω) <∞ and u ∈ BV (Ω), then P (Nt) <∞ for almost
all t.

Lemma 2. Let s(∂Ω) < ∞ and u ∈ BV (Ω). Then the rough trace u∗ is
s-measurable on ∂∗Ω and

s
({
x ∈ ∂∗Ω : u∗(x) ≥ t

})
= s
(
∂∗Ω ∩ ∂∗Nt

)
(9.5.1)

for almost all t.

In fact, instead of (9.5.1) we prove that, for all t ∈ R except for a countable
subset,

s
({
x ∈ ∂∗Ω : u∗(x) ≥ t

}
Δ∂∗Nt

)
= 0,

where AΔB = (A \ B)
⋂

(B \ A ).

Proof. Denote Bt = {x ∈ ∂∗Ω : u∗(x) ≥ t}, Yt = ∂∗Nt, and Xt = Bt \ Yt.
One can see that Yt ⊂ Bt. Thus, it remains to prove that s(Xt) = 0.

The sets Yt are measurable and the sets Xt are disjoint. It is clear that the
inclusions Yt0 ⊃ Yt1 and Yt0 ∪Xt0 ⊃ Yt1 ∪Xt1 hold for t0 < t1, which implies
Yt0 ⊃ Xt1 . Thus (⋂

t<t1

Yt

)
\ Yt1 ⊃ Xt1 .

On the other hand, the sets (∩t<t1Yt)\Yt1 are measurable and disjoint. There-
fore s((

⋂
t<t1

Yt) \ Yt1) = 0 for almost all t1 ∈ R. This implies that the sets
Xt (being subsets of measure zero sets) are measurable and of measure zero
for almost all t ∈ R. Thereby the sets Bt are measurable. ��

For a set E ⊂ Ω, denote by Θx(E ) its relative density at the point x; i.e,

Θx(E ) = lim
�→0

mn(E
⋂
B(x, �))

mn(Ω
⋂
B(x, �))

.

In the most interesting case x ∈ ∂∗Ω, we have

Θx(E ) = 2v−1
n lim

�→0
�−nmn

(
E ∩B(x, �)

)
.

Upper and lower relative densities Θ̄x(E ) and Θx(E ) are defined similarly.

Lemma 3. Let P (Ω) < ∞, E ⊂ Ω, PΩ(E ) < ∞. Then the density of E
is equal either 0 or 1 for s-almost all x ∈ ∂∗Ω.

Proof. It is clear that Θx(E ) = 1 for x ∈ ∂∗Ω
⋂
∂∗E and Θx(E ) = 0 for

x ∈ ∂∗Ω\∂∗E . We put

Ck =
{
x : x ∈ ∂∗Ω,

1
k
< Θ̄x(E ) < 1

}
, k = 2, 3, . . . .
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It remains to prove that s(Ck) = 0, k = 2, 3, . . . . Using the inclusion Ck ⊂
∂∗Ω, for x ∈ Ck we deduce

Θ̄x(E ) =
2
vn

lim sup
�→0

mn

(
E
⋂
B�(x)

)
≥ k−1. (9.5.2)

By Lemma 1 we have P (E ) <∞. Therefore, (9.1.18) implies

mn

(
E
⋂
B�(x)

)
≤ C

[
var∇RnχE

(
B�(x)

)]n/(n−1)
.

Comparing this with (9.5.2), we obtain

lim sup
�→0

�1−n var∇χE

(
B�(x)

)
≥
(
vn

2kC

)(n−1)/n

. (9.5.3)

Since Ck

⋂
∂∗E = ∅, we have var∇χE (Ck) = 0. Thus (9.5.3) along with

Lemma 9.2.5/1 yields s(Ck) = 0 and the result follows. ��

Lemma 4. For any u ∈ BV (Ω) and almost all x ∈ ∂∗Ω

−u∗(x) = (−u)∗(x). (9.5.4)

Proof. This result is equivalent to the fact that for almost all x ∈ ∂∗Ω

sup
{
t : x ∈ ∂∗Nt

}
= inf

{
t : x ∈ ∂∗(Ω \ Nt)

}
.

This equality means that

sup
{
t : ΘNt(x) = 1

}
= inf

{
t : Θ(Ω\Nt)(x) = 1

}
.

In its turn, this is equivalent to the equality

sup
{
t : ΘNt(x) = 1

}
= inf

{
t : ΘNt(x) = 0

}
.

Denote by L and R the left and the right terms of the last equality. It is easy to
see that ΘNt(x) is a nonincreasing function on t. So L ≤ R. Consider the set of
points x such that L(x) < R(x). It suffices to prove that the s-measure of this
set is zero. Let {ti}∞

i=1 be a countable set dense in R such that P (Eti) < ∞.
If L(x) < R(x), then there exists ti such that L(x) < ti < R(x). Now our
statement follows from the equality s{x ∈ ∂∗Ω : 0 < ΘNt(x) < 1} = 0. ��

Corollary 2. For any u ∈ BV (Ω) and for almost all x ∈ ∂∗Ω

(
u∗)+ =

(
u+
)∗
,

(
u∗)− =

(
u−)∗

, (9.5.5)

and as a result u∗ = (u+)∗ − (u−)∗.

Proof. The first equality is obvious. The second one follows from Lemma
4. Indeed, (u−)∗ = ((−u)+)∗ = ((−u)∗)+ = (−u∗)+ = (u∗)−.
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9.5.2 Integrability of the Rough Trace

Theorem. Suppose that P (Ω) < ∞ and that a normal to Ω exists s-almost
everywhere on ∂Ω. In order for any u ∈ BV (Ω)

inf
c

∫
∂Ω

∣∣u∗ − c
∣∣s(dx) ≤ k‖u‖BV (Ω), (9.5.6)

where k is independent of u, it is necessary and sufficient that the inequality

min
{
PCΩ(E ), PCΩ(Ω\E )

}
≤ kPΩ(E ) (9.5.7)

holds for any E ⊂ Ω.

Proof. Necessity. Let E ⊂ Ω, PΩ(E ) < ∞. By Lemma 9.5.1/1 we have
P (E ) <∞. Let χE be the characteristic function of the set E . Then

inf
c

∫
∂Ω

∣∣χ∗
E (x) − c

∣∣s(dx)
= min

c

{
|1 − c|s

(
∂∗E ∩ ∂∗Ω

)
+ |c|s

(
∂∗Ω\∂∗E

)}
= min

{
s
(
∂∗E ∩ ∂∗Ω

)
, s
(
∂∗Ω\∂∗E

)}
= min

{
PCΩ(E ), PCΩ(Ω\E )

}
.

(The preceding equality is valid since, by hypothesis, s(∂Ω\∂∗Ω) = 0.)
On the other hand, ‖χE ‖BV (Ω) = PΩ(E ). Applying (9.5.6), we arrive

at (9.5.7).
Sufficiency. Let u ∈ BV (Ω). It is clear that s(∂Ω∩∂∗Nt) is a nonincreasing

function of t. In fact, let x ∈ ∂∗Ω ∩ ∂∗Nt and let τ < t. We have

1 = lim
�→0

2vn�−nmn(Ω ∩B�) ≥ lim
�→0

2vn�−nmn(Nτ ∩B�)

≥ lim
�→0

2vn�−nmn(Nt ∩B�) = 1,

i.e., x ∈ ∂∗Ω ∩ ∂∗Nτ .
Similarly, s(∂Ω\∂∗Nt) is a nondecreasing function of t. From (9.1.16) we

obtain

k‖u‖BV (Ω) = k

∫ ∞

− ∞
PΩ(Nt) dt ≥

∫ ∞

− ∞
min

{
s
(
∂Ω ∩ ∂∗Nt

)
, s
(
∂Ω\∂∗Nt

)}
dt.

Putting

t0 = sup
{
t : P (Nt) <∞, s

(
∂Ω ∩ ∂∗Nt

)
≥ s
(
∂Ω\∂∗Nt

)}
,

we obtain
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k‖u‖BV (Ω) ≥
∫ ∞

t0

s
(
∂Ω ∩ ∂∗Nt

)
dt+

∫ t0

− ∞
s
(
∂Ω\∂∗Nt

)
dt

=
∫ ∞

t0

s
({
x : u∗(x) ≥ t

})
dt+

∫ t0

− ∞
s
({
x : u∗(x) ≤ t

})
dt

=
∫
∂Ω

[
u∗(x) − t0

]+
s(dx) +

∫
∂Ω

[
u∗(x) − t0

]−
s(dx)

=
∫
∂Ω

∣∣u∗(x) − t0
∣∣s(dx).

Consequently,

k‖u‖BV (Ω) ≥ inf
c

∫
∂Ω

∣∣u∗ − c
∣∣s(dx),

which completes the proof. ��

From Corollary 9.4.4/1 we obtain that the best constant in (9.5.8) is equal
to |Ω| provided Ω is a convex domain. In particular, for a plane convex domain
this constant coincides with the ratio of 1

2s(∂Ω) to the length of the smallest
chord dividing ∂Ω into arcs of equal length (Corollary 9.4.4/2). According to
Corollary 9.4.4/3, the best constant in (9.5.6) equals ωn/2vn−1 for the unit
ball.

9.5.3 Exact Constants in Certain Integral Estimates for the Rough
Trace

Definition 1. Let A ⊂ Ω̄. Let τ (α)
A denote the infimum of those k for which

[PCΩ(E )]α ≤ kPΩ(E ) holds for all E ⊂ Ω that satisfy

mn(E ∩ A ) + s
(
A ∩ ∂∗E

)
= 0. (9.5.8)

Theorem. Let P (Ω) < ∞ and suppose a normal to Ω exists s-almost
everywhere on Ω. Then, for any function u ∈ BV (Ω) such that u(A ∩Ω) = 0
and u∗(A ∩ ∂∗Ω) = 0, the inequality

∫
∂Ω

∣∣u∗∣∣s(dx) ≤ ζ(1)A ‖u‖BV (Ω) (9.5.9)

holds. Moreover, the constant ζ(1)A is exact.

Proof. We have
∫
∂Ω

∣∣u∗∣∣s(dx) =
∫ ∞

0

s
({
x : u∗ ≥ t

})
dt+

∫ ∞

0

s
({
x : −u∗ ≥ t

})
dt.

By (9.1.16), the first integral on the right is equal to
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∫ ∞

0

s
(
∂∗Nt ∩ ∂∗Ω

)
dt =

∫ ∞

0

PCΩ(Nt) dt.

Note that mn(A ∩Nt) + s(A ∩ ∂∗Nt) = 0 for almost all t. Consequently, by
the definition of ζ(1)A ,

∫ ∞

0

s
({
x : u∗ ≥ t

})
dt ≤

∫ ∞

0

PCΩ(Nt) dt ≤ ζ(1)A

∫ ∞

0

PΩ(Nt) dt.

Similarly we have
∫ ∞

0

s
({
x : −u∗ ≥ t

})
dt ≤

∫ 0

− ∞
PCΩ(Ω\Nt) dt ≤ ζ(1)A

∫ 0

− ∞
PΩ(Nt) dt.

Finally, ∫
∂Ω

∣∣u∗∣∣s(dx) ≤ ζ(1)A ‖u‖BV (Ω).

To see the sharpness of the constant ζ(1)A it suffices to put u = χE

into (9.5.9), where E is a set satisfying (9.5.8). ��

Definition 2. We introduce the function

ζα(S) = sup
{

[PCΩ(E )]α

PΩ(E )
: E ⊂ Ω,PΩ(E ) > 0, PCΩ(E ) ≤ S

}
.

The preceding theorem implies the following obvious corollary.

Corollary. Suppose that P (Ω) < ∞ and that a normal to Ω exists s-
almost everywhere on ∂Ω. Then for any u ∈ BV (Ω) with s({x : u∗(x) �=
0}) ≤ S the inequality

∫
∂Ω

∣∣u∗∣∣s(dx) ≤ ζ1(S)‖u‖BV (Ω)

holds. Moreover, the constant ζ1(S) is exact.

From Lemma 9.4.4 it follows that for a ball the function ζ1(S) coincides
with the ratio of S to the area of the base of the spherical segment whose
spherical part of the boundary has the area S.

In particular, ζ1(S) = S/(2 sin(S/2)) for n = 2 and ζ1(S) = 4π/(4π − S)
for n = 3.

Lemma. Let Ω be a domain with P (Ω) < ∞ and suppose that a normal
to Ω exists s-almost everywhere on ∂Ω. Then

η(S) def= inf
{
PΩ(E ) : E ⊂ Ω,PCΩ(E ) ≥ S, PCΩ(Ω\E ) ≥ S

}
> 0.

Proof. Let {Ei} be the minimizing sequence for η(S). If
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lim inf
i→∞

min
{
mnEi,mn(Ω\Ei)

}
> 0,

then the result follows from Theorem 9.1.3 and Lemma 5.2.4. Let this lower
limit be equal to zero and, for the sake of definiteness, let mnEi → 0. Then
mn(Ω\Ei) → mn(Ω). By Lemma 9.1.3/1 we obtain

lim inf
i→∞

P (Ω\Ei) ≤ P (Ω) = s(∂Ω)

and by Lemma 9.4.2,

s(∂Ω) = PCΩ(Ei) + PCΩ(Ω\Ei).

Moreover, we always have

P (Ω\Ei) = PΩ(Ω\Ei) + PCΩ(Ω\Ei).

Thus, for any ε > 0 and for large enough i, we obtain

PΩ(Ω\Ei) ≥ PCΩ(Ei) − ε ≥ S − ε,

i.e., inf PΩ(Ω\E ) ≥ S. The lemma is proved. ��

We can easily see that the function η introduced in the preceding lemma
is connected with ζα by the inequality

ζα(S) = Sα/η(S).

The same lemma immediately implies that ζα(S) is finite for all S ∈
(0, s(∂Ω)) provided Ω is a domain with P (Ω) = s(∂Ω) <∞ and ζα(S) <∞
for some S < s(∂Ω).

Hence from Theorem 9.5.2 we conclude that (9.5.6) holds if and only if
ζi(S) <∞ for some S ∈ (0, s(∂Ω)).

9.5.4 More on Integrability of the Rough Trace

Theorem. Let P (Ω) < ∞ and suppose that a normal to Ω exists s-almost
everywhere on ∂Ω. For any function u ∈ BV (Ω) to satisfy the inequality

∥∥u∗∥∥
L(∂Ω)

≤ k
(
‖u‖BV (Ω) + ‖u‖L1(Ω)

)
, (9.5.10)

where the constant k is independent of u, it is necessary and sufficient that
there exist a δ > 0 such that for each measurable set E ⊂ Ω with diameter
less than δ the inequality

PCΩ(E ) ≤ k1PΩ(E ) (9.5.11)

holds where k1 is a constant independent of E .
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Proof. The necessity of (9.5.11) easily follows by the insertion of u =
χE into (9.5.10) and then by application of the isoperimetric inequality. The
sufficiency results from Theorem 9.5.3 if we use a partition of unity (cf. the
proof of Theorem 9.2.2/2). ��

Remark. If each of the sets Ω1, Ω2 satisfies the hypothesis of the preceding
theorem then their union has the same property.

The proof follows from formula (9.3.6).

9.5.5 Extension of a Function in BV (Ω) to CΩ by a Constant

In the present subsection we assume that P (Ω) <∞ and s(∂Ω\∂∗Ω) = 0.
We introduce the notation uc(x) = u(x) for x ∈ Ω, uc(x) = c for x ∈ CΩ

where c ∈ R
1.

Lemma. The equality

‖uc‖BV (Rn) = ‖u‖BV (Ω) +
∥∥u∗ − c

∥∥
L1(∂Ω)

(9.5.12)

holds.

Proof. We have

‖uc‖BV (Rn) =
∫ ∞

0

P
(
{x : |uc − c| > t}

)
dt

=
∫ ∞

0

PΩ

(
{x : |u− c| > t}

)
dt

+
∫ ∞

0

PCΩ

(
{x : |u− c| > t}

)
dt. (9.5.13)

It is clear that ∫ ∞

0

PΩ

(
{x : |u− c| > t}

)
dt = ‖u‖BV (Ω). (9.5.14)

Further, since s(∂Ω\∂∗Ω) = 0, we see that
∫ ∞

0

PCΩ

(
{x : |u− c| > t}

)
dt

=
∫ ∞

0

s
({
x : (u− c)∗ > t

})
dt+

∫ 0

− ∞
s
({
x : (u− c)∗ < t

})
dt

=
∫
∂Ω

∣∣(u− c)∗∣∣s(dx) =
∫
∂Ω

|u∗ − c|s(dx),

which together with (9.5.13) and (9.5.14) implies (9.5.12). ��

Let BV̊ (Ω) denote the subset BV (Ω) which contains functions with
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‖u0‖BV (Rn) = ‖u‖BV (Ω).

Then from (9.5.12) it follows that u ∈ BV̊ (Ω) if and only if u∗ = 0 for the
class of domains under consideration. Thus the elements of the quotient-space
BV (Ω)/BV̊ (Ω) are classes of functions that have the rough traces u∗.

Formula (9.5.12) and Theorem 9.5.2 imply the next assertion.

Corollary 1. If, for any E ⊂ Ω,

min
{
PCΩ(E ), PCΩ(Ω\E )

}
≤ kPΩ(E ), (9.5.15)

where k is a constant that is independent of E , then there exists a c such that

‖uc‖BV (Rn) ≤ (k + 1)‖u‖BV (Ω). (9.5.16)

Conversely, if for each u ∈ BV (Ω) there exists a c such that (9.5.16) holds
with k independent of u, then (9.5.15) holds for any E ⊂ Ω.

Corollary 2. For the inequality

‖u0‖BV (Rn) ≤ k
(
‖u‖BV (Ω) + ‖u‖L1(Ω)

)
, (9.5.17)

where k is independent of u, to hold for any u ∈ BV (Ω), it is necessary and
sufficient that there exists a δ > 0 such that for any measurable set E ⊂ Ω with
diamE < δ the inequality PCΩ(E ) ≤ k1PΩ(E ) holds where k1 is independent
of E .

Proof. The necessity follows immediately from (9.5.12) and the isoperi-
metric inequality. The sufficiency results from (9.5.12) and Theorem 9.5.4.

��

Inequality (9.3.6) implies the following corollary.

Corollary 3. If each of the sets Ω1, Ω2 satisfies the hypothesis of Corol-
lary 2, then their union has the same property.

In particular, this implies that any function in BV (Ω) can be extended by
zero to the whole space so that (9.5.17) is valid for domains Ω that are finite
unions of domains in C0,1.

9.5.6 Multiplicative Estimates for the Rough Trace

Let P (Ω) <∞ and suppose a normal to Ω exists s-almost everywhere on ∂Ω.
Let A denote a subset of Ω̄; by ζ(α)

A , ζα(S) we mean the functions introduced
in Definitions 9.5.3/1 and 9.5.3/2.

The following assertion supplements Theorem 9.5.3.

Theorem. 1. If ζ(1/q
∗)

A < ∞, where q∗ ≤ 1, then, for any u ∈ BV (Ω)
such that
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u(x) = 0 for x ∈ A ∩Ω, u∗(x) = 0 for x ∈ A ∩ ∂∗Ω, (9.5.18)

the inequality ∥∥u∗∥∥
Lq(∂Ω)

≤ C‖u‖1−κ

BV (Ω)

∥∥u∗∥∥κ

Lt(∂Ω)
(9.5.19)

holds where 0 < t < q < q∗,

κ =
t(q∗ − q)
q(q∗ − t) , (9.5.20)

and Cq(q∗ −t)/q∗(q−t) ≤ cζ(1/q
∗)

A .
2. If for all u ∈ BV (Ω) satisfying (9.5.18) the inequality (9.5.19) holds

with κ specified by (9.5.20) and with q∗ > q, q∗ > t, then

ζ
(1/q∗)
A ≤ Cq(q∗ −t)/q∗(q−t).

Proof. 1. Following the same line of reasoning as in the proof of Theo-
rem 9.5.3, we obtain

∫ ∞

0

[
s(Γτ )

]1/q∗

dτ ≤ ζ(1/q
∗)

A ‖u‖BV (Ω), (9.5.21)

where Γτ = {x ∈ ∂Ω : |u∗(x)| ≥ τ}.
In Lemma 1.3.5/2 we put ξ = tq, f(ξ) = s(Γτ ), b = 1/q∗, a ∈ (1,∞),

λ = a(q − t)/q, and μ = (q∗ − q)/q∗q. Then

∫ ∞

0

s(Γτ )τ q−1 dτ ≤ c

(∫ ∞

0

[
s(Γτ )

]a
τat−1 dτ

)(q∗ −q)/q(q∗ −t)

(9.5.22)

×
(∫ ∞

0

[
s(Γτ )

]1/q∗

dτ
)q∗(q−t)/(q∗ −t)

.

Since a > 1 and the function s(Γτ ) does not increase, Lemma 1.3.5/1 can be
applied to the first factor. Then we have

∫ ∞

0

[
s(Γτ )

]a
τat−1 dτ ≤ c

(∫ ∞

0

s(Γτ )τ t−1 dτ
)a

= c

(∫
∂Ω

∣∣u∗(x)
∣∣ts(dx)

)a

. (9.5.23)

Combining (9.5.21)–(9.5.23) we arrive at item 1 of the theorem.
2. The lower bound for the constant C results by insertion of χE , where

E satisfies (9.5.8), into (9.5.19). ��

Let us consider two domains for which we can obtain exact conditions for
the boundedness of the function ζ(α)

A .
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Example 1. Let x = (x′, xn), x′ ∈ R
n−1 and let

Ω =
{
x : 1 < xn < |x′|−β , |x′| < 1

}
, 0 < β < n− 2.

Further let A = {x : xn = 1, |x′| < 1}. We show that ζ(α)
A < ∞ for α =

(n − 1)/(n − 2 − β). (Using the sequence of sets Em = {x ∈ Ω : xn > m},
m = 1, 2, . . . , we can prove that this α is the best possible.)

Although Ω is not convex we can apply to it the proof of Lemma 9.3.2/3.
Therefore, it suffices to verify the estimate

[
PΩ(E )

](n−1)/(n−2−β) ≤ cPΩ(E ) (9.5.24)

for any set E that is the intersection of a polyhedron with Ω, E ∩ A =
∅. Since (9.5.24) has already been obtained in Example 6.11.3/1, the result
follows.

Example 2. Using the same argument and referring to Example 6.11.3/2,
we can show that for

Ω =
{
x : |x′| < xβn, 0 < xn < 1

}
, β ≥ 1,

and for A = {x : |x′| < 1, xn = 1} the value ζ(α)
A is finite for α = β(n −

1)/(β(n− 2) + 1) and that α is the best as possible.

The theorem of the present subsection implies that boundedness of the
value ζ1/q∗ (S) is necessary and sufficient for the validity of (9.5.19) for any
function u ∈ BV (Ω) with s({x : u∗(x) �= 0}) ≤ S (cf. Corollary 9.5.3). Hence
we easily conclude that the boundedness of ζ1/q∗ (S) for some S < P (Ω) is
necessary and sufficient for the validity of the inequality

∥∥u∗∥∥
Lq(∂Ω)

≤
(
C1‖u‖BV (Ω) + C2

∥∥u∗∥∥
Lr(∂Ω)

)1−κ
∥∥u∗∥∥κ

Lt(∂Ω)
, (9.5.25)

where u is any function in BV (Ω), r < q∗ and q∗, q, t, κ are the same as in
the theorem of the present subsection (cf. Theorem 6.3.3).

9.5.7 Estimate for the Norm in Ln/(n−1)(Ω) of a Function in
BV (Ω) with Integrable Rough Trace

To conclude this section we prove an assertion similar to Corollary 5.6.3.

Theorem. Suppose that P (Ω) <∞ and that a normal to Ω exists s-almost
everywhere on ∂Ω. Then for any u ∈ BV (Ω) the inequality

‖u‖Ln/(n−1)(Ω) ≤ nv−1/n
n

(
‖u‖BV (Ω) +

∥∥u∗∥∥
L1(∂Ω)

)
(9.5.26)

is valid. Moreover, the constant nv−1/n
n is exact.
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Proof. By (5.6.14) we have

‖u‖Ln/(n−1)(Ω) ≤
∫ ∞

0

[
mn(Nt)

](n−1)/n dt+
∫ 0

− ∞

[
mn(Ω\Nt)

](n−1)/n dt,

(9.5.27)
where Nt = {x : u(x) ≥ t}. By the isoperimetric inequality (9.1.15) we obtain
[
mn(Nt)

](n−1)/n ≤ nv−1/n
n P (Nt) = nv−1/n

n

[
PΩ(Nt) + s

(
∂∗Nt ∩ ∂∗Ω

)]
.

Since s(∂∗Nt ∩ ∂∗Ω) = s({x : u∗ ≥ t}) for almost all t (Lemma 9.5.1/2), we
see that∫ ∞

0

[
mn(Nt)

](n−1)/n dt ≤ nv−1/n
n

[∫ ∞

0

PΩ(Nt) dt+
∫ ∞

0

s
({
x : u∗ ≥ t

})
dt
]
.

Taking into account that PCΩ(Nt) + PCΩ(Ω\Nt) = P (Ω) by Lemma 9.4.2,
we similarly obtain that

∫ 0

− ∞

[
mn(Ω\Nt)

](n−1)/n dt

≤ nv−1/n
n

[∫ 0

− ∞
PΩ(Nt) dt+

∫ 0

− ∞
s
({
x : u∗ ≤ t

})
dt
]
.

Consequently,
[∫

Ω

|u|n/(n−1) dx
](n−1)/n

≤ nv−1/n
n

{∫ ∞

− ∞
PΩ(Nt) dt+

∫ ∞

0

s
({
x :
∣∣u∗∣∣ ≥ t}) dt

}

= nv−1/n
n

(
‖u‖BV (Ω) +

∫
∂Ω

∣∣u∗∣∣s(dx)
)
.

The sharpness of the constant in (9.5.26) is a corollary of the fact that (9.5.26)
becomes an equality for u = χB� where B� is a ball in Ω. ��

Similarly to the preceding theorem, we can generalize Theorem 5.6.3 to
functions in BV (Ω).

9.6 Traces of Functions in BV (Ω) on the Boundary and
Gauss–Green Formula

9.6.1 Definition of the Trace

Let Ω be an open set in R
n and let the function u be integrable in a neigh-

borhood of a point x ∈ ∂Ω. The upper and the lower traces of the functions
u at the point x are the numbers
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ū(x) = lim sup
�→0

1
mn(B�(x) ∩Ω)

∫
B�(x)∩Ω

u(y) dy,

u(x) = lim inf
�→0

1
mn(B�(x) ∩Ω)

∫
B�(x)∩Ω

u(y) dy,

respectively.
If ū(x) = u(x), this common value is called the trace ũ(x) of the function

u at the point x ∈ ∂Ω.

9.6.2 Coincidence of the Trace and the Rough Trace

Lemma. Let u ∈ BV (Ω), u ≥ 0 and let
∫
∂∗Ω

u∗(x)s(dx) <∞.

Then for any x ∈ ∂∗Ω the inequality

u(x) ≥ u∗(x) (9.6.1)

holds.

Proof. By Theorem 9.5.7, the function u is integrable in Ω and hence the
function u(x) is defined.

Inequality (9.6.1) is trivial provided u∗(x) = 0. Suppose 0 < u∗(x) < ∞.
We take an arbitrary ε > 0 and choose t to satisfy 0 < u∗(x) − t < ε and
PΩ(Nt) <∞. Then x ∈ ∂∗Nt where Nt = {y : u(y) ≥ t}.

It is clear that the normal to Nt at the point x coincides with the normal
to Ω. Consequently, we can find r0(x) > 0 such that

1− ε < mn(Nt ∩Br(x))
mn(Ω ∩Br(x))

≤ 1 (9.6.2)

for 0 < r < r0(x). Since
∫
Br(x)∩Ω

u(y) dy =
∫ ∞

0

mn

(
Nτ ∩Br(x)

)
dτ,

(9.6.2) implies

1
mn(Br ∩Ω)

∫
Br ∩Ω

u(y) dy ≥ 1
mn(Br ∩Ω)

∫ t

0

mn(Nτ ∩Br) dτ

≥ t
mn(Nt ∩Br)
mn(Ω ∩Br)

≥ (1 − ε)t,

which proves (9.6.1) for u∗(x) <∞.
In the case u∗(x) = ∞ the arguments are similar. ��
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Theorem. Let P (Ω) <∞ and suppose that a normal to Ω exists s-almost
everywhere on ∂Ω. If u ∈ BV (Ω) and

∫
∂Ω

∣∣u∗∣∣s(dx) <∞,

then the trace ũ of the function u exists s-almost everywhere on ∂Ω and
coincides with the rough trace u∗.

Proof. By Theorem 9.5.7, the function u is integrable in Ω and conse-
quently, the upper and lower traces ū and u are defined.

First, consider the case of a nonnegative function u. Then by Lemma,
u(x) ≥ u∗(x) for all x ∈ ∂∗Ω. Next we prove that the inequality ū(x) ≤ u∗(x)
holds for s-almost all x ∈ ∂Ω, if u ≥ 0. Suppose that

s
({
x ∈ ∂∗Ω : ū(x) > u∗(x)

})
> 0.

Then there exists a c > 0 such that s(Q) > 0 where Q = {x : x ∈ ∂∗Ω, ū(x) >
u∗(x) + c}. Recalling the definition of ū(x), for x ∈ Q we have

c+ u∗(x) ≤ lim sup
�→0

1
mn(B�(x) ∩Ω)

∫ ∞

0

mn

(
Nt ∩B�(x)

)
dt.

Since x ∈ ∂∗Ω, we see that

lim
�→0

2
vn�n

mn

(
Ω ∩B�(x)

)
= 1. (9.6.3)

Therefore,

c+ u∗(x) ≤ 2
vn

lim
�→0

�−n

∫ ∞

0

mn

(
Nt ∩B�(x)

)
dt

≤
(

2
vn

)(n−1)/n

lim
�→0

�1−n

∫ ∞

0

[
mn

(
Nt ∩B�(x)

)](n−1)/n dt.

(9.6.4)

The equality (9.6.3) implies

mn

(
Nt ∩B�(x)

)
≤ α� min

{
mn

(
Nt ∩B�(x)

)
,mn

(
B�(x)\Nt

)}
,

where α� does not depend on t and α� → 1 as � → 0. Applying the relative
isoperimetric inequality (9.1.18), we obtain

[
mn

(
Nt ∩B�(x)

)]n−1
n ≤ α

n−1
n

�

(
vn
2

)n−1
n

v−1
n−1 var∇χNt

(
B�(x)

)
. (9.6.5)

Noting that



9.6 Traces of Functions in BV (Ω) on the Boundary and Gauss–Green 503

var∇χNt(B�) = var∇χNt(B� ∩Ω) + s
(
∂∗Ω ∩ ∂∗Nt

)
,

and integrating (9.6.5) with respect to t, we obtain
∫ ∞

0

[
mn

(
Nt ∩B�(x)

)](n−1)/n dt

≤ α
n−1

n
n

(
vn
2

)n−1
n

v−1
n−1

{∫ ∞

0

var∇χNt

(
B�(x) ∩Ω

)
dt

+
∫ ∞

0

s
(
∂∗Ω ∩ ∂∗Nt

)
dt
}

= α
n−1

n
�

(
vn
2

)n−1
n

v−1
n−1

{
var∇u

(
B�(x)

)
+
∫
∂∗Ω∩B�(x)

u∗(y)s(dy)
}
.

(9.6.6)

Comparing (9.6.4) and (9.6.6) and taking into account that α� → 1 as �→ 0
we obtain

c+ u∗(x) ≤ v−1
n−1

{
lim sup

�→0
�1−n var∇u

(
B�(x)

)

+ lim sup
�→0

�1−n

∫
∂∗Ω∩B�(x)

u∗(y)s(dy)
}
. (9.6.7)

By (9.2.13),
lim
�→0

�1−n var∇χΩ

(
B�(x)

)
= vn−1

for s-almost all x ∈ ∂∗Ω. On the other hand, var∇χΩ(B�) = s(∂∗Ω ∩ B�).
Therefore, for s-almost all x ∈ Q inequality (9.6.7) can be rewritten in the
form

c+ u∗(x) ≤ v−1
n−1 lim sup

�→0
�1−n var∇u

(
B�(x)

)

+ lim sup
�→0

1
s(∂∗Ω ∩B�(x))

∫
∂∗Ω∩B�(x)

u∗(y)s(dy). (9.6.8)

The integral

I(E ) =
∫

E

u∗(y)s(dy)

is absolutely continuous relative to the measure s(E ). Thus the derivative

dI
ds

(x) = lim
�→0

1
s(∂∗Ω ∩B�(x))

∫
∂∗Ω∩B�(x)

u∗(y)s(dy) = u∗(x)

exists for s-almost all x ∈ ∂∗Ω (see, for instance, Hahn and Rosenthal [336],
p. 290). Therefore, for s-almost all x ∈ Q the inequality (9.6.8) can be rewrit-
ten as
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cvn−1 ≤ lim sup
�→0

�1−n var∇u
(
B�(x)

)
. (9.6.9)

Since var∇u(Rn) <∞ and var∇u(Q) = 0, Lemma 9.2.5/1 and (9.6.9) imply
s(Q) = 0. The assertion is proved.

Now let u be an arbitrary function in BV (Ω). Then the functions

u+ =
1
2
(
u+ |u|

)
, u− =

1
2
(
|u| − u

)
,

are also in BV (Ω). By what we proved previously, the equalities

ũ+(x) =
(
u+(x)

)∗
, ũ−(x) =

(
u−(x)

)∗
, (9.6.10)

hold for s-almost everywhere on ∂∗Ω. Consequently, the trace ũ of the function
u exists s-almost everywhere on ∂∗Ω. Moreover,

ũ(x) = ũ+(x) − ũ−(x). (9.6.11)

Further, by (9.5.5) we have

u∗(x) =
(
u+(x)

)∗ −
(
u−(x)

)∗
. (9.6.12)

Comparing equalities (9.6.10)–(9.6.12), we conclude that ũ(x) = u∗(x). ��

9.6.3 Trace of the Characteristic Function

The hypothesis of Theorem 9.6.2 may be weakened for the characteristic func-
tion. Namely, the following lemma holds.

Lemma. Let P (Ω) <∞, E ⊂ Ω, and PΩ(E ) <∞. Then the trace of χ̃E

of the function χE exists and coincides with (χE )∗ for s-almost all x ∈ ∂∗Ω.

It is just a reformulation of Lemma 9.5.1/3.

9.6.4 Integrability of the Trace of a Function in BV (Ω)

Theorem. Let P (Ω) < ∞ and suppose that a normal to Ω exists s-almost
everywhere on ∂Ω. Then:

1. If for any measurable set E the inequality

min
{
PCΩ(E ), PCΩ(Ω\E )

}
≤ kPΩ(E ), (9.6.13)

where k is independent of E , is valid, then the trace ũ exists for any u ∈
BV (Ω). Moreover,

inf
c

∫
∂Ω

|ũ− c|s(dx) ≤ k‖u‖BV (Ω). (9.6.14)
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2. If the inequality (9.6.14), with a constant k independent of u, holds for
any u ∈ BV (Ω) having a trace ũ on ∂Ω then, for any measurable set E ⊂ Ω,
the estimate (9.6.13) is true.

Proof. 1. By Theorem 9.5.2, the rough trace of u is integrable on ∂Ω.
Consequently, by Theorem 9.6.2, s-almost everywhere on ∂Ω there exists the
trace ũ which coincides with u∗. Therefore (9.5.6) implies (9.6.14).

2. Let E be the measurable subset of Ω with PΩ(E ) <∞. By Lemma 9.6.3
the trace χ̃E of the function χE exists s-almost everywhere and equals χ∗

E .
Thus, by inserting u = χE into (9.6.14), we obtain

inf
∫
∂Ω

∣∣χ∗
E − c

∣∣s(dx) ≤ kPΩ(E ),

which is equivalent to (9.6.13) (compare with the proof of necessity in Theo-
rem 9.5.2). The theorem is proved. ��

9.6.5 Gauss–Green Formula for Functions in BV (Ω)

Lemma. For any function u ∈ BV (Ω) and any measurable set B ⊂ Ω the
equality

∇u(B) =
∫ ∞

− ∞
∇χNt(B) dt (9.6.15)

holds where Nt = {x : u(x) ≥ t}.

Proof. It suffices to prove (9.6.15) for u ≥ 0. Let ϕ be an infinitely differ-
entiable function with compact support in Ω. Then

−
∫
Ω

ϕ∇u(dx) =
∫
Ω

u∇ϕ(dx) =
∫
Ω

∫ ∞

0

χNt(x) dt∇ϕ(dx).

By the Fubini theorem, the double integral equals
∫ ∞

0

dt
∫
Ω

χNt(x)∇ϕ(dx).

Moreover, we note that
∫
Ω

ϕ∇u(dx) =
∫ ∞

0

∫
Ω

ϕ∇χNt(dx) =
∫
Ω

ϕdx
∫ ∞

0

∇χNt dt (9.6.16)

for almost all t. Here we may reverse the order of integration since the equal-
ity (9.1.16) implies the finiteness of the integral

∫ ∞

0

dt
∫
Ω

|ϕ| var∇χNt(dx).

Thus (9.6.15) immediately results from (9.6.16). ��
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Theorem. (The Gauss–Green Formula). Let P (Ω) <∞ and suppose that
a normal to Ω exists s-almost everywhere on ∂Ω. Then for any function
u ∈ BV (Ω) whose rough trace is integrable on the boundary of Ω, the equality

∇v(Ω) =
∫
∂Ω

u∗(x)ν(x)s(dx)

holds where ν(x) is the normal to Ω at the point x.

Proof. Since ∇χE (Rn) = 0 for any set E with P (E ) < ∞, by the Lemma
we have

∇u(Ω) =
∫ ∞

− ∞
∇χNt(Ω) dt =

∫ ∞

− ∞
∇χNt

(
∂Ω ∩ ∂∗Nt

)
dt.

Using s(∂Ω\∂∗Ω) = 0 and the coincidence of the normal to Nt with that to
Ω on ∂∗Ω ∩ ∂∗Nt, we obtain

∇χNt

(
∂Ω ∩ ∂∗Nt

)
=
∫
∂∗Ω∩∂∗Nt

ν(x)s(dx) = ∇χΩ

(
∂∗Nt

)
.

Thus

∇u(Ω) =
∫ ∞

0

∇χΩ

(
∂∗Nt

)
dt+

∫ 0

− ∞
∇χΩ

(
∂∗Nt

)
dt

=
∫ ∞

0

∇χΩ

(
∂∗Nt

)
dt−

∫ 0

− ∞
∇χΩ

(
∂∗Ω\∂∗Nt

)
dt

=
∫ ∞

0

∇χΩ

({
x : u∗ ≥ t

})
dt−

∫ 0

− ∞
∇χΩ

({
x : u∗ ≤ t

})
dt

=
∫
∂Ω

u∗∇χΩ(dx) =
∫
∂Ω

u∗(x)ν(x)s(dx).

The theorem is proved. ��

The example of the disk with a slit{
z = �eiθ : 0 < � < 1, 0 < θ < 2π

}
and of the function u(z) = θ shows that the condition s(∂Ω\∂∗Ω) = 0 cannot
be omitted under our definition of the trace.

The last theorem and Theorem 9.6.2 immediately imply the following
corollary.

Corollary. Let P (Ω) <∞, s(∂Ω\∂∗Ω) = 0. If for any E ⊂ Ω
min

{
PCΩ(E ), PCΩ(Ω\E )

}
≤ kPΩ(E ),

where k is independent of E , then the trace ũ(x) exists for any u ∈ BV (Ω)
and the Gauss–Green formula

∇u(Ω) =
∫
∂Ω

ũ(x)ν(x)s(dx)

holds.
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9.7 Comments to Chap. 9

This chapter was written together with Yu.D. Burago.
The first two sections contain well-known facts from the theory of sets

with finite perimeter and from the theory of functions in BV . The foundation
of this theory was laid by Caccioppoli [160, 161] and De Giorgi [229, 230]. Its
further development is due to Krickeberg [464], Fleming [281], Fleming and
Rishel [282], and others. The results in Sects. 9.1.3–9.1.5 are due (up to the
presentation) to De Giorgi [229, 230]. Theorem 9.1.2 is a modification of a
result by Krickeberg [464]. Formula (9.1.16) in 9.1.6 was obtained by Fleming
and Rishel [282].

The results of Sect. 9.2 were established by De Giorgi [230] and supple-
mented by Federer [268].

At the present time the theory of sets with a finite perimeter can be con-
sidered as a part of the theory of integral currents (cf. Federer [271], part 4.5).

Sections 9.3–9.6 contain an expanded presentation of the paper by Burago
and Maz’ya [150].

Bokowski and Sperner [124] obtained the estimates for the functions η(S)
and λM for convex domains by the radii of inscribed and circumscribed balls.

For various facts concerning isoperimetric inequalities see the book by
Burago and Zalgaller [151] and the review paper by Osserman [648].

Souček [718] studied the properties of functions whose derivatives of order
l are charges.

In connection with the contents of the present chapter see also the paper
by Volpert [781].

The following observation concerns the integrability of the trace of a func-
tion in BV (Ω).

The requirement (9.6.13) has a global character: It is not satisfied, for
example, by any nonconnected set Ω. This is essential because it is a question
of inequality (9.6.14). If we, however, put (9.6.14) in the following (equivalent,
provided Ω is connected) form

∫
∂Ω

|ũ|s(dx) ≤ const ‖u‖BV (Ω),

then the role of inequality (9.6.13) is taken by the local requirement

sup
x∈Ω

lim
ρ→+0

sup
{
PCΩ(E)
PΩ(E)

: E ⊂ Ω ∩B(x, �)
}
<∞. (9.7.1)

The following result on continuation to the boundary of the domain was es-
tablished by Anzellotti and Giaquinta [50]:

If condition (9.7.1) is fulfilled, then for any function ϕ ∈ L1(∂∗Ω) there
exists a function u ∈ W 1

1 (Ω) whose trace on ∂∗Ω equals ϕ and we have the
inequality

‖u‖W 1
1 (Ω) ≤ C‖ϕ‖L1(∂∗Ω),
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where C depends on Ω but not on ϕ.
Thus, for domains Ω subject to condition (9.7.1) the spaces of traces of

∂∗Ω of functions in BV (Ω) and W 1
1 (Ω) coincide with L1(∂∗Ω).

Recently the basic results of Sects. 9.5 and 9.6 were extended by Burago
and Kosovsky [149]: They assumed that ∂Ω is a (n− 1)-rectifiable set instead
of our conditions that P (Ω) < ∞ and normals in the sense of Federer exist
a.e. on ∂Ω. It means that now the results of Sects. 9.5 and 9.6 are extended,
in particular, to the class of domains with cuts, important for applications.

Baldi and Montefalcone [66] generalized the extension criterion (9.3.2) to
a certain class of metric spaces.

A few words about the extension criterion (9.3.2). Roughly speaking,
τΩ(E) may be viewed as the area of soap film placed on the exterior of Ω and
suspended on that part of the boundary of E which belongs to ∂Ω. Therefore
(9.3.2) has a simple geometric meaning. Let l be an arbitrary closed contour
on the boundary of a three-dimensional body Ω and let se and si be the areas
of the films, suspended on l and positioned, respectively, outside and inside
Ω. Condition (9.3.2) means that the ratio se/si is bounded irrespective of l.
If n = 2 then it is a question of the ratio between the distance between two
arbitrary points of ∂Ω measured outside and inside Ω. This heuristic observa-
tion was rigorously justified by Koskela, Miranda, and Shanmugalingam [457]
for a bounded simply connected domain Ω ⊂ R

2. They showed that Ω is a
BV-extension domain if and only if there exists a constant C > 0 such that
for all x, y ∈ R

2\Ω there is a rectifiable curve γ ⊂ R
2\Ω connecting x and y

with length
l(γ) ≤ C|x− y|.

In other words, Ω is a BV -extension domain if and only if the complement of
Ω is quasiconvex. A corollary of this result is the necessity of quasiconvexity
for Ω to be a W 1

1 -extension domain, and it is conjectured in [457] that the
same necessary condition holds for all W 1

p -extension Jordan domains in R
2

with an arbitrary p ∈ [1, 2].

Fig. 34.
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A necessary and sufficient condition for the extension of functions in
W 1

p (Ω), p �= 2, to R
n without changing the class is not known. It is easy

to guess the following not very visual condition, which is a direct analog of
the Burago–Maz’ya criterion (9.3.2) for the extension of functions in BV (Ω).
For each conductor K(i) in Ω there exists a conductor K(e) in R

n\Ω̄ abutting
to it (cf. Fig. 34) such that

cp
(
K(e)

)
≤ cp

(
K(i)

)
.

It cannot be excluded that this requirement is indeed sufficient, but this has
not been proved.



10

Certain Function Spaces, Capacities,
and Potentials

Section 10.1 is of an auxiliary nature. Here we collect (mostly without proofs)
the results of function theory that are applied later or related to the facts
used in the sequel. First we discuss the theorems on spaces of functions hav-
ing “derivatives of arbitrary positive order” (Sect. 10.1). The theory of these
spaces is essentially presented in monographs (cf. Stein [724]; Peetre [657];
Nikolsky [639]; Besov, Il’in, and Nikolsky [94]; Triebel [755, 756]; and Runst
and Sickel [685]) though in some cases the reader interested in the proofs will
have to refer to the original papers.

Section 10.2 is concerned with the Bourgain, Brezis, and Mironescu theo-
rem on the asymptotic behavior of the norm of the Sobolev-type embedding
operator Ws

p → Lpn/(n−sp) as s ↑ 1 and s ↑ n/p. Their result is extended to
all values of s ∈ (0, 1) and is supplied with an elementary proof. The relation

lim
s↓0

∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+sp

dxdy = 2p−1ωn‖u‖pLp(Rn)

is proved.
In Sect. 10.3 we prove the multiplicative Gagliardo–Nirenberg-type in-

equality

‖u‖W θs
p/θ

≤ c(n)
(

p

p− 1

)θ(1 − s
1 − θ

)θ/p

‖u‖θW s
p
‖u‖1−θ

L∞
,

where 0 < θ < 1, 0 < s < 1, 1 < p < ∞, and ‖u‖W s
p

is the seminorm in
the fractional Sobolev space Ws

p(Rn) and show that the dependence of the
constant factor in the right-hand side on each of the parameters s, θ, and p
is precise in a sense.

In Sect. 10.4, dealing with properties of capacities and nonlinear potentials,
we restrict ourselves to the formulation of the results.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 10, c© Springer-Verlag Berlin Heidelberg 2011
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512 10 Certain Function Spaces, Capacities, and Potentials

10.1 Spaces of Functions Differentiable of Arbitrary
Positive Order

10.1.1 Spaces wl
p, W l

p, bl
p, Bl

p for l > 0

For p ≥ 1 and integer l > 0, let wl
p denote the completion of the space D with

respect to the norm ‖∇lu‖Lp . For p ≥ 1 and noninteger l, we define wl
p as the

completion of D with respect to the norm
(∫

‖Δyu‖p
w

[l]
p

|y|−n−p{l} dy
)1/p

. (10.1.1)

Here and elsewhere Δyu(x) = u(x+ y)− u(x), [l] and {l} are the integer and
fractional parts of l, respectively.

Replacing the norm (10.1.1) by the norm

‖u‖bl
p

=
(∫

‖Δ2
yu‖

p
Lp
|y|−n−pl dy

)1/p

, 0 < l ≤ 1, (10.1.2)

in the previous definition, we obtain the space blp (here Δ2
yu(x) = u(x+ y) −

2u(x) + u(x− y)). For l > 1 we put ‖u‖bl
p

= ‖∇u‖bl−1
p

.
Further, letW l

p and Bl
p be the complements of D with respect to the norms

‖u‖wl
p

+ ‖u‖Lp and ‖u‖bl
p

+ ‖u‖Lp .
For fractional l the norms in wl

p and blp, as well as the norms in W l
p and

Bl
p, are equivalent. In fact, the identity

2
(
u(x+ h) − u(x)

)
= −

[
u(x+ 2h) − 2u(x+ h) + u(x)

]
+
[
u(x+ 2h) − u(x)

]

implies the estimates
(
2 − 2l

)
Hlu ≤ Glu ≤

(
2− 2l

)
Hlu, 0 < l < 1,

where

(Hlu)(x) =
(∫ ∣∣(Δyu)(x)

∣∣p|y|−n−pl dy
)1/p

,

(Glu)(x) =
(∫ ∣∣(Δ2

yu
)
(x)
∣∣p|y|−n−pl dy

)1/p

.

The utility of the defined spaces is mostly owing to the following trace
theorem.

Theorem 1. For p ∈ [1,∞), l > 0, m = 1, 2, . . . , we have

‖u‖bl
p(Rn) ∼ inf

{U}

∥∥|y|m− {l} −p−1
∇m+[l]U

∥∥
Lp(Rn+1)

, (10.1.3)
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where U ∈ D(Rn+1) is an arbitrary extension of u ∈ D(Rn) to the space
R

n+1 = {(x, y) : x ∈ R
n, y ∈ R

1}.

Proof. We restrict ourselves to the derivation of (10.1.3) for 0 < l ≤ 1,
m = 2.

Let U ∈ D(Rn+1), u = U |Rn . We put Δ̄(2)
t u(x, t) = u(x, 2t) − 2u(x, t) +

u(x, 0). It can be easily seen that

Δ̄
(2)
t u(x, t) =

∫ t

0

(t− τ) d2

dτ2

[
u(x, t+ τ) + u(x, t− τ)

]
dτ. (10.1.4)

We can also readily check that

Δ̄
(2)
t u(x, 0) = −2Δ̄(2)

|h|u
(
x, |h|

)
+ 2Δ(2)

h u
(
x, |h|

)
−Δ(2)

h u
(
x, 2|h|

)
+ Δ̄(2)

|h|u
(
x+ h, |h|

)
+ Δ̄(2)

|h|u
(
x− h, |h|

)
. (10.1.5)

We consider only the first and the second summands since the others can be
estimated in a similar way. By (10.1.4) we obtain

∥∥Δ̄(2)
|h|u

(
·, |h|

)∥∥
Lp(Rn)

≤ 2
∫ 2|h|

0

y

∥∥∥∥ d2

dy2
U(x, y)

∥∥∥∥
Lp(Rn)

dy.

Therefore (for l ∈ (0, 1], p ≥ 1),
∫

Rn

∥∥Δ̄(2)
|h|u

(
·, |h|

)∥∥p
Lp(Rn)

dh
|h|n+pl

≤ c
∫ ∞

0

(∫ 2�

0

y

∥∥∥∥d2U

dy2
(·, y)

∥∥∥∥
Lp(Rn)

dy
)p d�
�1+pl

≤ c
∫ ∞

0

y(2−l)p−1

∥∥∥∥d2U

dy2
(·, y)

∥∥∥∥
p

Lp(Rn)

dy. (10.1.6)

Next we proceed to the second item in (10.1.5). We have

Δ
(2)
h u

(
x, |h|

)
=
∫ 1

0

(1 − λ) d2

dλ2

[
u
(
x+ λh, |h|

)
+ u
(
x− λh, |h|

)]
dλ.

By the Minkowski inequality
∥∥Δ(2)

h u
(
·, |h|

)∥∥
Lp(Rn)

≤ c|h|2
∥∥∇2,xu

(
·, |h|

)∥∥
Lp(Rn)

.

Hence∫
Rn

∥∥Δ(2)
h u

(
·, |h|

)∥∥p
Lp(Rn)

dh
|h|n+pl

≤ c
∫ ∞

0

y(2−l)p−1
∥∥∇2,xU(·, y)

∥∥p
Lp(Rn)

dy,

which together with (10.1.6) yields the upper bound for the norm ‖u‖bl
p
. We

proceed to the lower estimate.
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Let u ∈ D(Rn) and let Π be the extension operator to the space R
n+1 =

{X = (x, y) : x ∈ R
n, y ∈ R

1} defined by

(Πu)(X) = y−n

∫
Rn

π

(
ξ − x
y

)
u(ξ) dξ, (10.1.7)

where
π ∈ C∞

0 (B1),
∫

Rn

π(x) dx = 1, π(x) = π(−x).

Using the evenness of the function π, for |α| = 2 we obtain

(
Dα

xΠu
)
(X) = y−n−2

∫
Rn

(
Dαπ

)(ξ − x
y

)
u(ξ) dξ

=
1
2
y−n−2

∫
Rn

(
Dαπ

)
(h/y)Δ(2)

h u(x) dh,

where, as before, Δ(2)
h u(x) = u(x+h)−2u(x)+u(x−h). Therefore for |α| = 2

we have ∣∣(Dα
xΠu

)
(X)

∣∣ ≤ cy−n−2

∫
By

∣∣Δ(2)
h u(x)

∣∣ dh.
Since

2(Πu)(X) = y−n

∫
π(h/y)Δ(2)

y u(x) dh+ 2u(x),

it follows that ∣∣∣∣
(

d2

dy2
Πu

)
(X)

∣∣∣∣ ≤ cy−n−2

∫
By

∣∣Δ(2)
h u(x)

∣∣ dh.

We can easily check that the same estimate is also true for |∂2Π/∂xi∂y|. So
the second derivatives of u are bounded and∫ ∞

0

y−1+p(2−l)
∥∥(∇2Πu)(·, y)

∥∥p
Lp(Rn)

dy

≤
∫ ∞

0

y−1+p(l+n)

∥∥∥∥
∫
By

∣∣Δ(2)
y u(·)

∣∣ dh
∥∥∥∥
p

Lp(Rn)

dy. (10.1.8)

By the Minkowski inequality the right-hand side does not exceed

c

∫ ∞

0

y−1−pl−n

(∫
By

∥∥Δ(2)
h u(·)

∥∥
Lp(Rn)

dh
)p

dy

≤ c
∫

Rn

∥∥Δ(2)
h u(·)

∥∥p
Lp(Rn)

∫ ∞

|h|
y−1−pl−n dy dh

= c

∫
Rn

∥∥Δ(2)
h u(·)

∥∥p
Lp(Rn)

|h|−n−pl dh,

and the required lower estimate for the norm ‖u‖bl
p

follows.
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Next we show that the function Πu can be approximated by the sequence
of extensions Uk ∈ D(Rn+1) of the function u in the metric

∥∥|y|2−l−p−1
∇2U

∥∥
Lp(Rn+1)

.

Let ηk(X) = η(X/k) where η ∈ D(Rn+1), η = 1 for |X| < k and k = 1, 2 . . . .
Since (DαΠu)(X) = O((|X| + 1)−n− |α|) for 0 < |α| ≤ 2 then ∇2(Πu −
ηkΠu) = O((|X| + 1)−n−2). Furthermore,

supp(Πu− ηkΠu) ⊂
{
X ∈ R

n+1 : |X| > k
}
.

Consequently,
∥∥|y|2−l−p−1

∇2(Πu− ηkΠu)
∥∥
Lp(Rn+1)

= O
(
k−l−n+n/p

)
= o(1)

as k →∞. It remains to approximate each of the functions ηkΠu by a sequence
of mollifications. �

Similarly we can show the following analogous assertion for the space
Bl

p(R
n).

Theorem 2. For p ∈ [1,∞), l > 0, m = 1, 2, . . . , we have

‖u‖Bl
p(Rn) ∼ inf

{U}

(∥∥|y|m− {l} −p−1
∇m+[l]U

∥∥
Lp(Rn+1)

+ ‖U‖Lp(Rn+1)

)
.

Theorems 1 and 2 have a long history. For p = 2, {l} = m − 1
2 they were

established by Aronszajn [52], Babich and Slobodeckǐı [60], Slobodeckǐı [704],
and Freud and Králik [291]. The particular case n = p = 2, m = l = 1 is
actually contained in the papers by Douglas [242], 1931, and Beurling [95],
1940. The generalization for p �= 2 is due to Gagliardo [298] for l = 1 −
1/p. Theorems 1 and 2 were proved, in a form similar to that above, by
Uspenskǐı [770] (cf. also Lizorkin [504]).

A theory of spaces with “weighted” norms is discussed in the books by
Triebel [756], Kufner [465], and in the survey by Besov, Il’in, Kudryavtsev,
Lizorkin, and Nikolsky [93].

In conclusion we state the following trace theorem for functions in
w1

1(R
n+1), W 1

1 (Rn+1) restricted to R
n.

Theorem 3. We have

‖u‖L1(Rn) ∼ inf
{U}

‖∇U‖L1(Rn+1) ∼ inf
{U}

‖U‖W 1
1 (Rn+1),

where u ∈ D(Rn) and {U} is the collection of all extensions of u to R
n+1,

U ∈ D(Rn+1).

This assertion is proved in the paper by Gagliardo [298] (cf. also the book
by Besov, Il’in, and Nikolsky [94]). For a more recent development of trace
theorems see the Comments to the present chapter.
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10.1.2 Riesz and Bessel Potential Spaces

With each function u ∈ D = D(Rn), we associate its Fourier transform

û(ξ) = Fu(ξ) = (2π)−n/2

∫
eixξu(x) dx.

The same notation will be retained for the Fourier transform of the distri-
bution u contained in the space D ′ dual of D . We denote the convolution of
distributions by a star, ∗.

The scales of “fractional” spaces different from the spaces introduced in
Sect. 10.1.1 are defined by means of the operators

(−Δ)l/2 = F−1|ξ|lF, (−Δ + 1)l/2 = F−1
(
1 + |ξ|2

)l/2
F,

where Δ is the Laplace operator.
Namely, let hlp and H l

p (1 < p < ∞, l > 0) denote the completion of the
space D with respect to the norms

‖u‖hl
p

=
∥∥(−Δ)l/2u

∥∥
Lp
, ‖u‖Hl

p
=
∥∥(−Δ+ 1)l/2u

∥∥
Lp
.

The following assertion is the Mikhlin theorem on Fourier integral multi-
pliers [601].

Theorem 1. Let the function Φ defined on R
n\{0} have the derivatives

∂kΦ(λ)/∂λj1 , . . . , ∂λjk
, where 0 ≤ k ≤ n and 1 ≤ j1 < j2 < · · · < jk ≤ n.

Further let

|λ|k
∣∣∣∣ ∂kΦ(λ)
∂λj1 , . . . , ∂λjk

∣∣∣∣ ≤M = const .

Then for all u ∈ Lp

∥∥F−1ΦFu
∥∥
Lp

≤ cM‖u‖Lp , 1 < p <∞,

where c is a constant that depends only on n and p.

Corollary 1. Let l = 1, 2, . . . , then there exist positive numbers c and C
that depend only on n, p, l, such that

c
∥∥(−Δ)l/2u

∥∥
Lp

≤ ‖∇lu‖Lp ≤ C
∥∥(−Δ)l/2u

∥∥
Lp

(10.1.9)

for all u ∈ D .

Proof. Let α be a multi-index with |α| = l. Then

F−1ξαFu = F−1ξα|ξ|−l|ξ|lFu.

The function ξα|ξ|−l satisfies the hypothesis of Theorem 1, which leads to the
rightmost estimate in (10.1.9). On the other hand,
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|ξ|l = |ξ|2l|ξ|−l =
(∑

|α|=l

cαξ
αξα

)
|ξ|−l,

where cα = l!/α!, so

F−1|ξ|lFu =
∑

|α|=l

cαF
−1 ξ

α

|ξ|l ξ
αFu.

Again, applying Theorem 1, we obtain the leftmost estimate in (10.1.9).

The following corollary has a similar proof.

Corollary 2. Let l = 1, 2, . . . . There exist positive numbers c and C that
depend only on n, p, l such that

c‖u‖W l
p
≤
∥∥(−Δ+ 1)l/2u

∥∥
Lp

≤ C‖u‖W l
p

for all u ∈ D .

Thus, wl
p = hlp and W l

p = H l
p provided p > 1 and l is an integer.

For the proof of the following theorem see the paper by Havin and
Maz’ya [567].

Theorem 2. Let pl < n, p > 1. Then u ∈ hlp if and only if

u = (−Δ)−l/2f ≡ c|x|l−n ∗ f,

where f ∈ Lp.

A similar well-known assertion for the space H l
p is contained in the follow-

ing theorem.

Theorem 3. The function u belongs in H l
p, p > 1, if and only if

u = (−Δ+ 1)−l/2f ≡ Gl ∗ f,

where f ∈ Lp,
Gl(x) = c|x|(l−n)/2K(n−l)/2

(
|x|
)
> 0,

Kν is the modified Bessel function of the third kind.

For |x| ≤ 1 the estimates

Gl(x) ≤

⎧⎪⎨
⎪⎩
c|x|l−n, 0 < l < n,
c log(2/|x|), l = n,

c, l > n,

hold. If |x| ≥ 1, then
Gl(x) ≤ c|x|(l−n−1)/2e− |x|.
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The integral operators

f
Il−→ |x|l−n ∗ f, f

Jl−→ Gl ∗ f,

are called the Riesz potential and the Bessel potential, respectively. Thus
Theorems 2 and 3 state that each element of the space hlp(pl < n) (H l

p) is the
Riesz (Bessel) potential with density in Lp.

Next we formulate the theorem due to Strichartz [728] on equivalent norms
in the spaces hlp and H l

p.

Theorem 4. Let {l} > 0 and let

(D{l}v)(x) =
(∫ ∞

0

[∫
|θ|<1

∣∣v(x+ θy)− v(x)
∣∣ dθ
]2
y−1−2{l} dy

)1/2

. (10.1.10)

Then
‖u‖hl

p
∼ ‖D{l}∇[l]u‖Lp , (10.1.11)

‖u‖Hl
p
∼ ‖D{l}∇[l]u‖Lp + ‖u‖Lp . (10.1.12)

Two-sided estimates for the Lp-norm of a function u on R
1 by its har-

monic extension to R
1 × (0,∞) are due to Littlewood, Paley, Zygmund, and

Marcinkiewicz. Let the Littlewood–Paley function g(u) be defined by

[
g(u)

]
(x) =

(∫ ∞

0

∣∣∇U(x, y)
∣∣2y dy

)1/2

,

where U(x, y) is the Poisson integral of u. The basic result here is the equiv-
alence of the norms ‖u‖Lp(R1) and ‖g(u)‖Lp(R1), 1 < p < ∞. In the book by
Stein [724] this equivalence is proved for R

n.
The next theorem by Shaposhnikova [697], similar to Theorems 10.1.1/1

and 10.1.1/2, contains a characterization of hlp(R
n) in terms of extensions to

R
n+k.

Theorem 5. The norm of u ∈ D(Rn) in hlp(Rn), 0 < l < 1 is equivalent
to

inf
{U}

{∫
Rn

(∫
Rk

|y|2−2l−k|∇U |2 dy
)p/2

dx
}1/p

,

where the infimum is taken over all extensions U ∈ D(Rn+k) of u to R
n+k =

{(x, y) : x ∈ R
n, y ∈ R

k}.
Similarly,

‖u‖Hl
p
∼ inf

{U}

{∫
Rn

(∫
Rk

|y|2−2l−k
(
|∇U |2 + |U |2

)
dy
)p/2

dx
}1/p

.
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10.1.3 Other Properties of the Introduced Function Spaces

The following two theorems, whose proofs can be found in the books by
Stein [724], Peetre [657], Nikolsky [639], and Triebel [756], are classical facts
of the theory of the spaces blp, Bl

p, hlp, and H l
p.

Theorem 1. If 2 ≤ p < ∞ then hlp ⊂ blp, H
l
p ⊂ Bl

p. If 1 < p < 2 then
blp ⊂ hlp, Bl

p ⊂ H l
p.

Theorem 2. (i) If p ∈ (1,∞), l > 0, then

‖u‖bl
p(Rn) ∼ inf

{U}
‖U‖

h
l+1/p
p (Rn+1)

.

Here and in (ii) the notation {U} has the same meaning as in Theor-
em 10.1.1/1.

(ii) If p ∈ [1,∞), l > 0 then

‖u‖bl
p(Rn) ∼ inf

{U}
‖U‖

b
l+1/p
p (Rn+1)

.

In items (i) and (ii) one can replace b and h by B and H, respectively.

A far-reaching generalization of relations (i) and (ii) is given in the article
by Jonsson and Wallin [407] where functions in Bl

p on the so-called d-sets F
are extended to R

n. The latter sets are defined by the relation

Hd

(
F ∩B(x, �)

)
∼ �d,

which is valid for all x ∈ F and � < δ, where Hd is d-dimensional Hausdorff
measure (cf. Sect. 1.2.4).

Henceforth we denote by μB the ball with radius μr, concentric with the
ball B of radius r. Similarly, with the cube Q with edge length d we associate
the concentric cube μQ with sides parallel to those of Q and with edge length
μd.

Next we state the theorem that is easily derived from (10.1.12) (cf.
Strichartz [728]) for the spaces H l

p, {l} > 0. For W l
p and Bl

p it is a simple
corollary of the definitions of these spaces.

Theorem 3. Let {B(j)}j≥0 be a covering of R
n by unit balls that has a

finite multiplicity depending only on n. Further, let O(j) be the center of B(j),
O(0) = O, and let ηj(x) = η(x−O(j)) where η ∈ C∞

0 (2B(0)), η = 1 on B(0).
Then

‖u‖Sl
p
∼
(∑

j≥0

‖uηj‖psl
p

)1/p

, (10.1.13)

where Sl
p = H l

p, W
l
p or Bl

p and slp = hlp, w
l
p or blp, respectively.

We can easily check that for any v ∈ C∞
0 (B1) the inequality
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‖v‖Lp ≤ c‖v‖sl
p
, (10.1.14)

holds. Therefore the norm ‖uηj‖sl
p

in (10.1.13) can be replaced by the equiv-
alent norm ‖uηj‖Sl

p
.

When dealing with the embedding of a Banach space X into another
Banach space Y (notation: X ⊂ Y ) we always mean a continuous embedding.

Theorem 4. 1. If l = 1, 2, . . . , then bl1 ⊂ wl
1.

2. If p > 1, l > λ ≥ 0, n > (l − λ)p and l − n/p = λ− n/π then hlp ⊂ hλπ.
3. If p ≥ 1, l > λ > 0, n > (l − λ)p, and l − n/p = λ− n/π then blp ⊂ bλπ.
4. If p ≥ 1, l > 0, n > lp, and 1/π = 1/p− l/n then blp ⊂ Lπ.
5. If l = 1, 2, . . . , n ≥ l − λ and l − n = λ− n/π then wl

1 ⊂ bλπ.
Replacing the letters b, h, w by B, H, and W in items 1–5 we also obtain

true assertions.
6. If p > 1, l > λ ≥ 0, n = (l − λ)p, then H l

p ⊂ Hλ
π for any π ∈ (1,∞). If

p > 1, lp > n, then H l
p ⊂ L∞ ∩ C.

7. If p > 1, l > λ > 0, n = (l − λ)p, then Bl
p ⊂ Bλ

π for any π ∈ (1,∞).
8. If p > 1, l > 0, n = lp, then Bl

p ⊂ Lπ for any π ∈ (1,∞).
9. If p > 1, lp > n, then Bl

p ⊂ L∞ ∩ C.

Various proofs of assertions 1–4 and 6–9 can be found in the monographs
mentioned at the beginning of the present subsection. The proof of assertion
5 is due to Solonnikov [717]. The embedding in 2 is an immediate corol-
lary of the continuity of the operator (−Δ)(λ−l)/2 : Lp → Lπ established by
Sobolev [712]. Item 1 follows from the inequalities

‖∇lu‖L1(Rn) ≤ c1‖∇l+1U‖L1(Rn+1) ≤ c2‖y∇l+2U‖L1(Rn+1)

and from Theorem 10.1.1/1. (Here U ∈ D(Rn+1) is an arbitrary extension of
the function u ∈ D(Rn).) The same theorem together with the inequality

∥∥|y|1− {λ} −1/π∇[λ]+1U
∥∥
Lπ(Rn+1)

≤ c
∥∥|y|− {l}∇[l]+1U

∥∥
L1(Rn+1)

,

which results from Corollary 2.1.7/4, leads to (3) for p = 1. The same result
for p > 1 follows from the embedding

hl+1/p
p

(
R

n+1
)
⊂ hλ+1/π

π

(
R

n+1
)

(cf. item 2 above and part (i) of Theorem 2).
The corresponding assertions for the spaces H l

p and Bl
p can be obtained

in a similar way. The embedding in item 6 easily follows from the definition
of the Bessel potential. The properties in items 7 and 9 result from item 6
applied to the space H l+1/p

p (Rn+1), and item 8 is a corollary of item 7.
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10.2 Bourgain, Brezis, and Mironescu Theorem
Concerning Limiting Embeddings of Fractional
Sobolev Spaces

10.2.1 Introduction

Let s ∈ (0, 1) and let p ≥ 1. We introduce the space W̊s
p(Rn) as the completion

of C∞
0 (Rn) in the norm

(∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+sp

dxdy
)1/p

.

We also need the space Ws,p
⊥ (Q) of functions defined on the cube Q = {x ∈

R
n : |xi| < 1/2, 1 ≤ i ≤ n}, which are orthogonal to 1 and have the finite

norm (∫
Q

∫
Q

|u(x) − u(y)|p
|x− y|n+sp

dxdy
)1/p

.

The main result of the recent article by Bourgain, Brezis, and Mironescu
[139] is the inequality

‖u‖pLq(Q) ≤ c(n)
1 − s

(n− sp)p−1
‖u‖pW s,p

⊥ (Q)
, (10.2.1)

where u ∈ Ws,p
⊥ (Q), 1/2 ≤ s < 1, sp < n, q = pn/(n− sp), and c(n) depends

only on n.
Figuring out a similar estimate for functions in W̊s

p(Rn), valid for the whole
interval 0 < s < 1, one can anticipate the appearance of the factor s(1 − s)
in the right-hand side since the norm in W̊s

p(Rn) blows up both as s ↑ 1 and
s ↓ 0. The following theorem shows that this is really the case.

Theorem. Let n ≥ 1, p ≥ 1, 0 < s < 1, and sp < n. Then, for an
arbitrary function u ∈ W̊s

p(Rn), there holds

‖u‖pLq(Rn) ≤ c(n, p)
s(1 − s)

(n− sp)p−1
‖u‖pW̊ s

p(Rn)
, (10.2.2)

where q = pn/(n− sp) and c(n, p) is a function of n and p.

From this theorem, one can derive inequality (10.2.1) for all s ∈ (0, 1)
with a constant c depending both on n and p (Corollary 10.2.2/1). In the
case s ≥ 1/2 considered in [139], one has 1 < p < 2n and therefore the
dependence of the constant c on p can be eliminated. Thus, we arrive at the
Bourgain–Brezis–Mironescu result and extend it to the values s < 1/2.

The proof given in [139] relies upon some advanced harmonic analysis
and is quite complicated. Our proof of (10.2.2) is straightforward and rather
simple. It is based upon an estimate of the best constant in a Hardy-type
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inequality for the norm in W̊s
p(Rn), which is obtained in Theorem 10.2.2 and

is of independent interest.
In Theorem 10.2.4 we derive a formula for lims↓0 s‖u‖pW̊ s

p(Rn)
that comple-

ments an analogous formula for lims↑1(1 − s)‖u‖pW̊ s
p(Rn)

found in [138].

10.2.2 Hardy-Type Inequalities

Theorem. Let n ≥ 1, p ≥ 1, 0 < s < 1, and sp < n. Then, for an arbitrary
function u ∈ W̊s

p(Rn),

∫
Rn

∣∣u(x)∣∣p dx
|x|sp ≤ c(n, p) s(1 − s)

(n− sp)p ‖u‖
p

W̊ s
p(Rn)

. (10.2.3)

Proof. Let
ψ(h) = ω−1

n n(n+ 1)
(
1 − |h|

)
+
,

where h ∈ R
n and the subscript plus stands for the nonnegative part of a

real-valued function. We introduce the standard extension of u onto R
n+1
+ =

{(x, z) : x ∈ R
n, z > 0}

U(x, z) :=
∫

Rn

ψ(h)u(x+ zh) dh.

A routine majoration implies

∣∣∇U(x, z)
∣∣ ≤ n(n+ 1)(n+ 2)

zωn

∫
|h|<1

∣∣u(x+ zh) − u(x)
∣∣ dh.

Hence, and by Hölder’s inequality, one has
∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz

≤ n

ωn
(n+ 1)p(n+ 2)p

∫ ∞

0

z−1−ps

×
∫

|h|<1

∫
Rn

∣∣u(x+ zh) − u(x)
∣∣p dxdh dz. (10.2.4)

Setting η = zh and changing the order of integration, one can rewrite (10.2.4)
as

∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz

≤ n(n+ 1)p(n+ 2)p

ωn(sp+ n)

∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+sp

dxdy. (10.2.5)
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By Hardy’s inequality

∫ |x|

0

z−1−sp

∣∣∣∣
∫ z

0

ϕ(τ) dτ
∣∣∣∣
p

dz ≤ s−p

∫ |x|

0

z−1+p(1−s)
∣∣ϕ(z)

∣∣p dz,

one has

|u(x)|p
|x|sp = p(1 − s)

∫ |x|

0

z−1+p(1−s) dz
|u(x)|p
|x|p

≤ p(1 − s)
∫ |x|

0

z−1−sp dz
(∫ z

0

(∣∣∣∣∂U∂τ (x, τ)
∣∣∣∣+ |U(x, τ)|

|x|

)
dτ
)p

≤ p(1 − s)
sp

∫ |x|

0

z−1+p(1−s)

(∣∣∣∣∂U∂z (x, z)
∣∣∣∣+ |U(x, z)|

|x|

)p

dz.

Now, the integration over R
n and Minkowski’s inequality imply

∫
Rn

|u(x)|p
|x|sp dx

≤ p(1 − s)
sp

((∫
Rn

∫ ∞

0

z−1+p(1−s)

∣∣∣∣∂U∂z (x, z)
∣∣∣∣
p

dz dx
)1/p

+A
)p

, (10.2.6)

where

A :=
(∫

Rn

∫ |x|

0

z−1+p(1−s)|x|−p
∣∣U(x, z)

∣∣p dz dx
)1/p

.

Clearly,

Ap ≤ 2p/2

∫
Rn

dx
∫ ∞

0

z−1+p(1−s) |U(x, z)|p
(x2 + z2)p/2

dz dx,

which does not exceed

2p/2

∫
Sn

+

(cos θ)−1+p(1−s)

∫ ∞

0

|U |pρn−1−sp dρdσ, (10.2.7)

where ρ = (x2 + z2)1/2, cos θ = z/ρ, dσ is an element of the surface area on
the unit sphere Sn and Sn

+ is the upper half of Sn. Using Hardy’s inequality

∫ ∞

0

|U |pρn−1−sp dρ ≤
(

p

n− sp

)p ∫ ∞

0

∣∣∣∣∂U∂ρ
∣∣∣∣
p

ρn−1+p(1−s) dρ,

one arrives at the estimate

Ap ≤
(

21/2p

n− sp

)p ∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz.

Combining this with (10.2.6), one obtains
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∫
Rn

|u(x)|p
|x|sp dx ≤ p(1 − s)

sp

(
1 +

21/2p

n− sp

)p

×
∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz,

which, along with (10.2.5), gives
∫

Rn

|u(x)|p
|x|sp dx ≤ (1 − s)

(n− sp)p
p(n+ 2p)3p

ωnsp
‖u‖pW̊ s

p(Rn)
. (10.2.8)

To justify (10.2.3) we need to improve (10.2.8) for small values of s. Clearly,

ωn

2spsp

∫
Rn

|u(x)|p
|x|sp dx =

∫
Rn

∫
|x−y|>2|x|

dy
|x− y|n+sp

∣∣u(x)∣∣p dx.

Since |x− y| > 2|x| implies 2|y|/3 < |x− y| < 2|y|, we obtain
(
ωn

2spsp

∫
Rn

|u(x)|p
|x|sp dx

)1/p

≤
(∫

Rn

∫
|x−y|>|x|

|u(x) − u(y)|p
|x− y|n+sp

dxdy
)1/p

+
(
ωn

3sp − 1
2spsp

∫
Rn

|u(y)|p
|y|sp dy

)1/p

.

Hence,
(
ωn

2spsp

)1/p(
1 −

(
3sp − 1

)1/p)(∫
Rn

|u(x)|p
|x|sp dx

)1/p

≤ 2−1/p‖u‖W̊ s
p(Rn).

Let δ be an arbitrary number in (0, 1). If s ≤ (4p)−1δp, we conclude
∫

Rn

|u(x)|p
|x|sp dx ≤ 2sp−1sp

ωn(1 − δ)p ‖u‖
p

W̊ s
p(Rn)

. (10.2.9)

Setting δ = 2−1 and comparing this inequality with (10.2.8), we arrive at
(10.2.3) with

c(n, p) = ω−1
n (n+ 2p)3ppp+22(n+1)(n+2).

The proof is complete. �
From Theorem 10.2.2, we shall deduce an inequality, analogous to (10.2.3),

for functions defined on the cube Q. Unlike (10.2.3), this inequality contains
no factor s on the right-hand side, which is not surprising because, for smooth
u, the norm ‖u‖W s,p

⊥ (Q) tends to a finite limit as s ↓ 0.

Corollary 1. Let n ≥ 1, p ≥ 1, 0 < s < 1, and sp < n. Then any function
u ∈ Ws,p

⊥ (Q) satisfies
∫
Q

∣∣u(x)∣∣p dx
|x|sp ≤ c(n, p) 1− s

(n− sp)p ‖u‖
p
W s,p

⊥ (Q)
. (10.2.10)
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Proof. Let us preserve the notation u for the extension by a reflection of
u ∈ Ws,p

⊥ (Q) to the cube 3Q, where aQ stands for the cube obtained from Q
by dilation with the coefficient a. We choose a cutoff function η, equal to 1
on Q and vanishing outside 2Q, say, η(x) =

∏n
i=1 min{1, 2(1 − xi)+}. By the

previous Theorem, it is enough to prove that

‖ηu‖pW̊ s
p(Rn)

≤ s−1c(n, p)‖u‖pW s,p
⊥ (Q)

. (10.2.11)

Clearly, the norm in the left-hand side is majorized by

(∫
3Q

∫
3Q

|u(x) − u(y)|p
|x− y|n+sp

dx η(y)p dy
)1/p

+
(∫

3Q

∫
3Q

|η(x) − η(y)|p
|x− y|n+sp

dx|u(y)|p dy
)1/p

+
(

2
∫

3Q

∫
Rn \3Q

dy
|x− y|n+sp

∣∣(ηu)(x)∣∣p dx
)1/p

.

The first term does not exceed 6n/p‖u‖W s,p
⊥ (Q); the second term is not greater

than

2n1/2

(∫
3Q

∫
3Q

dx
|x− y|n−p(1−s)

∣∣u(y)∣∣p dy
)1/p

≤ n32+n/p

(
ωn

p(1 − s)

)1/p

‖u‖Lp(Q),

and the third one is dominated by

(
2
∫

2Q

∫
|x−y|>1/2

dy
|x− y|n+sp

∣∣u(x)∣∣p dx
)1/p

≤
(

2n+1+p

sp

)1/p

‖u‖Lp(Q).

Adding these estimates, one obtains

‖ηu‖W s,p
0 (Rn) ≤ 6n/p‖u‖W̊ s

p(Q)

+ n32+n/pp−1/p
(
s−1/p + (1 − s)−1/p

)
‖u‖Lp(Q).

(10.2.12)

We preserve the notation u for the mirror extension of u onto R
n. Recalling

that u⊥1 on Q, we have
∫
Q

∣∣u(x)∣∣p dx ≤
∫
Q

∫
Q

∣∣u(x) − u(y)∣∣p dxdy

≤
∫

2Q

dh
∫
Q

∣∣u(x+ h) − u(x)
∣∣p dx. (10.2.13)
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Let U be the extension of u to R
n+1
+ . For any z > 0 and h ∈ 2Q

∥∥u(· + h) − u(·)∥∥
Lp(Q)

≤
∥∥∥∥
∫ z

0

∂U

∂τ
(· + h, τ) dτ

∥∥∥∥
Lp(Q)

+
∥∥∥∥
∫ z

0

∂U

∂τ
(·, τ) dτ

∥∥∥∥
Lp(Q)

+
∥∥U(· + h, z) − U(·, z)

∥∥
Lp(Q)

≤ 2
∫ z

0

∥∥∥∥∂U∂τ (·, τ)
∥∥∥∥
Lp(3Q)

dτ +
∥∥U(· + h, z) − U(·, z)

∥∥
Lp(Q)

.

Hence

p−1/p(1 − s)−1/p|h|1−s
∥∥u(· + h) − u(·)∥∥

Lp(Q)

=
(∫ |h|

0

∥∥u(· + h) − u(·)∥∥p
Lp(Q)

z−1+p(1−s) dz
)1/p

≤ α+ β, (10.2.14)

where

αp =
(
2|h|

)p ∫ |h|

0

(∫ z

0

∥∥∥∥∂U∂τ (·, τ)
∥∥∥∥
Lp(3Q)

dτ
)p

z−1−ps dz

and

βp =
∫ |h|

0

∥∥U(· + h, z) − U(·, z)
∥∥p
Lp(Q)

z−1+p(1−s) dz.

Using Hardy’s inequality already referred to at the beginning of the proof of
the previous Theorem, we arrive at

αp ≤
(

2|h|
s

)p ∫ |h|

0

∥∥∥∥∂U∂z (·, z)
∥∥∥∥
p

Lp(3Q)

z−1+p(1−s) dz.

The trivial inequality
∫
Q

∣∣U(x+ h, z) − U(x, z)
∣∣p dx ≤ |h|p

∫
3nQ

∣∣∇U(x, z)
∣∣p dx

implies

βp ≤ |h|p
∫ |h|

0

∥∥∇U(·, z)
∥∥p
Lp(3nQ)

z−1+p(1−s) dz.

We put the just-obtained estimates for α and β into (10.2.14) and deduce
∥∥u(·+ h) − u(·)∥∥p

Lp(Q)

≤ p(1 − s)
(

2
s

+ 1
)p

|h|ps
∫ |h|

0

∥∥∇U(·, z)
∥∥p
Lp(2nQ)

z−1+p(1−s) dz.
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Noting that |h| ≤
√
n for h ∈ 2Q, we find

|h|−ps
∥∥u(· + h) − u(·)∥∥p

Lp(Q)

≤ p(1 − s)
(

2
s

+ 1
)p ∫ √

n

0

∫
3nQ

∣∣∇U(x, z)
∣∣p dxz−1+p(1−s) dz.

(10.2.15)

Now, let U be the same extension of u onto R
n+1
+ as in the beginning of

the proof of Theorem 10.2.2. Repeating with obvious changes the standard
argument in the proof of the previous Theorem, which leads to (10.2.5), we
conclude that the integral over (0,

√
n)×3nQ in the right-hand side of (10.2.15)

is majorized by

c0

∫ √
n

0

∫
|χ|<1

∫
3nQ

∣∣u(x+ zχ) − u(x)
∣∣p dxdχ z−1−ps dz

≤ c0
n+ ps

∫
|η|<

√
n

|η|−n−ps

∫
3nQ

∣∣u(x+ η) − u(x)
∣∣p dxdη,

where
c0 =

n

ωn
(n+ 1)p(n+ 2)p.

Therefore,

|h|−ps
∥∥u(· + h) − u(·)∥∥p

Lp(Q)

≤ c03n+2pn2n 1 − s
sp

∫
Q

∫
Q

|u(x) − u(y)|p
|x− y|n+ps

dxdy. (10.2.16)

Let s > 1/2. It follows from (10.2.13) that
∫
Q

∣∣u(x)∣∣p dx ≤ n(n+ps)/2

∫
Q

∫
Q

|u(x) − u(y)|p
|x− y|n+ps

dxdy.

This inequality together with (10.2.16) shows that for all s ∈ (0, 1)

‖u‖Lp(Q) ≤ (4n)4n(1 − s)1/p‖u‖W s,p
⊥ (Q).

Combining this inequality with (10.2.12), we arrive at (10.2.11) and hence
complete the proof. �

Corollary 2. Let 0 < s < 1 and p ≥ 1. Then there holds

sup |h|−s
∥∥u(· + h) − u(·)∥∥

Lq(Q)
≤ c(n, p)(1 − s)1/p‖u‖W s,p

⊥ (Q).

Proof. The result follows from the well-known embedding Bs
p(Q) ⊂

Bs
p,∞(Q) if s ≤ 1/2 and from (10.2.16) if s > 1/2. �
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10.2.3 Sobolev Embeddings

Proof of Theorem 10.2.1. It is well known that the fractional Sobolev norm of
order s ∈ (0, 1) is nonincreasing with respect to the symmetric rearrangement
of functions decaying to zero at infinity (see Wik [796], Almgren and Lieb
[41], Theorem 9.2, and Cianchi [196]). Let v(|x|) denote the rearrangement of
|u(x)|. Then

‖u||Lq(Rn) =
(
ωn

n

∫ ∞

0

v(r)q d
(
rn
))1/q

, (10.2.17)

where ωn is the area of the unit sphere ∂B1. Recalling that an arbitrary
nonnegative nonincreasing function f on the semi-axis (0,∞) satisfies

∫ ∞

0

f(t)λ d
(
tλ
)
≤ λ

∫ ∞

0

(∫ t

0

f(τ) dτ
)λ−1

f(t) dt =
(∫ ∞

0

f(t) dt
)λ

, λ ≥ 1

(see Hardy, Littlewood and Pólya [350]), one finds that the right-hand side in
(10.2.17) does not exceed

(
ωn

n

)1/q(∫ ∞

0

v(r)p d
(
rn−sp

))1/p

=
(n− sp)1/p

n1/qω
s/n
n

(∫
Rn

v
(
|x|
)p dx
|x|sp

)1/p

.

We now see that (10.2.2) results from inequality (10.2.3). �
Corollary. Let n ≥ 1, p ≥ 1, 0 < s < 1, and sp < n. Then any function

u ∈ Ws,p
⊥ (Q) satisfies

‖u‖pLq(Q) ≤ c(n, p)
1 − s

(n− sp)p−1
‖u‖pW s,p

⊥ (Q)
.

Proof. Let η be the same cutoff function as in Corollary 10.2.2/1. The
result follows by combining inequality (10.2.11) with Theorem 10.2.1, where
u is replaced by ηu.

10.2.4 Asymptotics of the Norm in W̊s
p(Rn) as s ↓ 0

Theorem. For any function u ∈
⋃

0<s<1 W̊s
p(Rn), there exists the limit

lim
s↓0
s‖u‖pW̊ s

p(Rn)
= 2p−1ωn‖u‖pLp(Rn).

Proof. Since δ can be chosen arbitrarily small, inequality (10.2.9) implies

lim inf
s↓0

s‖u‖pW̊ s
p(Rn)

≥ 2p−1ωn‖u‖pLp(Rn). (10.2.18)
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Let us majorize the upper limit. By (10.2.18), it suffices to assume that u ∈
Lp(Rn). Clearly,

s‖u‖pW̊ s
p(Rn)

≤ 2
{(

s

∫
Rn

∫
|y|≥2|x|

dy
|x− y|n+sp

∣∣u(x)Rn
∣∣p dx

)1/p

.

+
(
s

∫
Rn

∣∣u(y)∣∣p
∫

|y|≥2|x|

dxdy
|x− y|n+sp

)1/p}p

+ 2s
∫

Rn

∫
|x|<|y|<2|x|

|u(x) − u(y)|p
|x− y|n+sp

dxdy.

The first term in braces does not exceed
(
s

∫
Rn

∫
|y|≥|x|

dy
|x− y|n+sp

∣∣u(x)∣∣p dx
)1/p

=
ω

1/p
n

p1/p

(∫
Rn

|u(x)|p
|x|sp dx

)1/p

,

hence its lim sups↓0 is dominated by ω1/p
n p−1/p‖u‖Lp(Rn). The second term in

braces is not greater than

s1/p
(

2n+sp

∫
Rn

|u(y)|p
|y|n+sp

dy
∫

|x|<|y|/2
dx
)1/p

= 2s

(
s

p
ωn

)1/p(∫
Rn

|u(y)|p
|y|sp dy

)1/p

,

so it tends to zero as s ↓ 0.
We claim that

lim sup
s↓0

s

∫
Rn

∫
|x|<|y|<2|x|

|u(x) − u(y)|p
|x− y|n+sp

dxdy = 0. (10.2.19)

By assumption of the Theorem, u ∈ W̊τ
p (Rn) for a certain τ ∈ (0, 1). Let N

be an arbitrary number greater than 1 and let s < τ . We have

2s
∫

Rn

∫
|x|<|y|<2|x|

|u(x) − u(y)|p
|x− y|n+sp

dxdy

≤ 2sNp(τ −s)

∫
Rn

∫
|x|<|y|<2|x|

|x−y| ≤N

|u(x) − u(y)|p
|x− y|n+τp

dxdy

+ 2s
∫

Rn

∫
|x|<|y|<2|x|

|x−y|>N

|u(x) − u(y)|p
|x− y|n+sp

dxdy.

The first term on the right-hand side tends to zero as s ↓ 0 and the second
one does not exceed

2p+1s

∫
|x|>N/3

∫
|x−y|>N

dy
|x− y|n+sp

∣∣u(x)∣∣p dx ≤ c(n, p)
∫

|x|>N/3

∣∣u(x)∣∣p dx,

which is arbitrarily small if N is sufficiently large. The proof is complete. �
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Remark. Since the proof of the Theorem just proved holds for vector-valued
functions, one can write

lim
s↓0
s

∫
Rn

∫
Rn

|∇u(x) −∇u(y)|p
|x− y|n+sp

dxdy = 2p−1ωn

∫
Rn

∣∣∇u(x)∣∣p dx, (10.2.20)

for any function u such that

∇u ∈
⋃

0<s<1

W̊s
p

(
R

n
)
.

Formula (10.2.20) complements the following relation that was established in
Bourgain, Brezis, and Mironescu [138]:

lim
s↑1

(1 − s)
∫

Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+sp

dxdy

=
∫
∂B1

| cos θ|p dσ
∫

Rn

∣∣∇u(x)∣∣p dx, (10.2.21)

where θ is the angle deviation from the vertical.

10.3 On the Brezis and Mironescu Conjecture
Concerning a Gagliardo–Nirenberg Inequality
for Fractional Sobolev Norms

10.3.1 Introduction

Let s ∈ (0, 1) and let 1 < p ≤ ∞. We introduce the space Ws
p(Rn) of functions

in R
n with the finite seminorm

‖u‖W s
p

=
(∫

Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+sp

dxdy
)1/p

.

The relation (10.2.21) motivated Brezis and Mironescu to conjecture the fol-
lowing Gagliardo–Nirenberg-type inequality:

‖u‖W s/2
2p

≤ c(n, p)(1 − s)1/2p‖u‖1/2
W s

p
‖u‖1/2

L∞
(10.3.1)

(see [144], Remark 5). In [144] one can also read, “It would be of interest to
establish

‖u‖W θs
p/θ

≤ c‖u‖θW s
p
‖u‖1−θ

L∞
, 0 < θ < 1, (10.3.2)

with control of the constant c, in particular when s ↑ 1”.
In the next subsection we prove that (10.3.2) holds with

c = c(n, p, θ)(1 − s)θ/p,
which, obviously, contains inequality (10.3.1) predicted by Brezis and Mirones-
cu. Our proof is straightforward and rather elementary. In concluding Re-
marks 1 and 2 we show that the dependence of c on each of the parameters
s, θ, and p is sharp in a certain sense.
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10.3.2 Main Theorem

Theorem. For all u ∈ Ws
p ∩ L∞ there holds the inequality

‖u‖W θs
p/θ

≤ c(n)
(

p

p− 1

)θ(1 − s
1 − θ

)θ/p

‖u‖θW s
p
‖u‖1−θ

L∞
, (10.3.3)

where 0 < s < 1, 1 < p <∞, and 0 < θ < 1.

Proof. Clearly,

‖u‖W θs
p/θ

≤ max
{
2θ/p, 21−θ

}
‖u‖1−θ

L∞
‖u‖θW s

p
. (10.3.4)

Hence it suffices to prove (10.3.3) only for s ≥ 1/2.
Let Br(x) = {ξ ∈ R

n : |ξ − x| < r} and Br(0) = Br. We introduce the
mean value ux,y of u over the ball Bx,y := B|x−y|/2((x+ y)/2). Since

∣∣u(x) − u(y)∣∣p/θ ≤ 2−1+p/θ
(
|u(x) − ux,y|p/θ +

∣∣ux,y − u(y)∣∣p/θ),
it follows that

‖u‖W θs
p/θ

≤ 2
(∫

Rn

D(x)p/θ dx
)θ/p

, (10.3.5)

where

D(x) =
(∫

Rn

|u(x) − ux,y|p/θ
|x− y|n+ps

dy
)θ/p

.

We note that
∫

|x−y|>δ

|u(x) − ux,y|p/θ
|x− y|n+ps

dy ≤ 2p/θωn

ps
‖u‖p/θL∞

δ−ps. (10.3.6)

Let U be an arbitrary extension of u onto R
n+1
+ = {(x, z) : x ∈ R

n, z > 0}
such that ∇U ∈ L1(Rn+1

+ , loc). By Ux,y(z) we denote the mean value of U(·, z)
in Bx,y. Using the identity

|x− y|(1−s)p = p(1 − s)
∫ |x−y|

0

z−1+p(1−s) dz,

we find
∫

|x−y|<δ

|u(x) − ux,y|p/θ
|x− y|n+ps

dy

= p1/θ(1 − s)1/θ
∫

|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)
∣∣u(x) − ux,y∣∣p dz

)1/θ

× dy
|x− y|n+ps+(1−s)p/θ

≤ 3−1+p/θp1/θ(1 − s)1/θ(J1 + J2 + J3), (10.3.7)
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where

J1 :=
∫

|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)
∣∣u(x) − U(x, z)

∣∣p dz
)1/θ

× dy
|x− y|n+ps+(1−s)p/θ

,

J2 :=
∫

|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)|Ux,y(z) − ux,y|p dz
)1/θ

× dy
|x− y|n+ps+(1−s)p/θ

,

and

J3 :=
∫

|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)
∣∣U(x, z) − Ux,y(z)

∣∣p dz
)1/θ

× dy
|x− y|n+ps+(1−s)p/θ

.

Clearly,

J1 ≤
∫

|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)

(∫ z

0

∣∣∣∣∂U(x, t)
∂t

∣∣∣∣ dt
)p

dz
)1/θ

× dy
|x− y|n+ps+(1−s)p/θ

≤
∫

|x−y|<δ

(∫ |x−y|

0

z−1−ps

(∫ z

0

∣∣∣∣∂U(x, t)
∂t

∣∣∣∣ dt
)p

dz
)1/θ

× dy
|x− y|n−ps(1−θ)/θ

.

By Hardy’s inequality
∫ a

0

z−1−sp

∣∣∣∣
∫ z

0

ϕ(t) dt
∣∣∣∣
p

dz ≤ s−p

∫ a

0

z−1+p(1−s)
∣∣ϕ(z)

∣∣p dz,

one has

J1 ≤ s−p/θ

∫
|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)

∣∣∣∣∂U(x, z)
∂z

∣∣∣∣
p

dz
)1/θ dy

|x− y|n−ps(1−θ)/θ

≤ θωn

sp/θps(1 − θ)

(∫ ∞

0

z−1+p(1−s)

∣∣∣∣∂U(x, z)
∂z

∣∣∣∣
p

dz
)1/θ

δps(1−θ)/θ. (10.3.8)
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Duplicating the same argument, we conclude that J2 does not exceed

s−p/θ

∫
|x−y|<δ

dy
|x− y|n−ps(1−θ)/θ

(∫ |x−y|

0

z−1+p(1−s)

∣∣∣∣∂Ux,y(z)
∂z

∣∣∣∣
p

dz
)1/θ

.

(10.3.9)

Let M denote the n-dimensional Hardy–Littlewood maximal operator

(Mf)(x) = sup
r>0

1
|Br|

∫
Br(x)

∣∣f(ξ)∣∣ dξ.

Using the obvious inequality
∣∣∣∣∂Ux,y(z)

∂z

∣∣∣∣ ≤
(
M∂U

∂z

)
(x, z),

we find from (10.3.9)

J2 ≤
θωn

sp/θps(1 − θ)

(∫ ∞

0

z−1+p(1−s)

(
M∂U

∂z

)p

dz
)1/θ

δps(1−θ)/θ. (10.3.10)

To estimate J3 we use the Sobolev-type integral representation in the form
given in Akilov and Kantorovich [38], Chap. 10, Sect. 3

U(x, z) − Ux,y(z) =
n∑

k=1

∫
Bx,y

bk(ξ, x)
|x− ξ|n−1

∂U(ξ, z)
∂ξk

dξ, (10.3.11)

where bk(ξ, x) are continuous functions for x �= ξ admitting the estimate

∣∣bk(ξ, x)∣∣ ≤ |x− y|n
n|Bx,y|

.

Clearly, (10.3.11) implies the estimate

∣∣U(x, z) − Ux,y(z)
∣∣ ≤ 2nn1/2

ωn

∫
Br(x)

|∇ξU(ξ, z)|
|x− ξ|n−1

dξ,

where r = |x− y|. Integrating by parts we find
∫
Br(x)

|∇ξU(ξ, z)|
|x− ξ|n−1

dξ

= r1−n

∫
Br(x)

∣∣∇ξU(ξ, z)
∣∣ dξ + (n− 1)

∫ r

0

ds
sn

∫
Bs(x)

∣∣∇ξU(ξ, z)
∣∣ dξ

≤ n|x− y|
(
M|∇U |

)
(x, z).
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Therefore,

J3 ≤
(

2nn3/2

ωn

)p/θ ∫
|x−y|<δ

(∫ |x−y|

0

z−1+p(1−s)
(
M|∇U |

)p dz
)1/θ

× dy
|x− y|n−ps(1−θ)/θ

≤ (2nn3/2)p/θθ

ω
(p−θ)/θ
n ps(1 − θ)

(∫ ∞

0

z−1+p(1−s)
(
M|∇U |

)p dz
)1/θ

× δps(1−θ)/θ. (10.3.12)

Here and in the sequel, for the sake of brevity, by M|∇U | we mean (M|∇U |)(x,
z). Putting estimates (10.3.8), (10.3.10), and (10.3.12) into (10.3.7), we arrive
at

∫
|x−y|<δ

|u(x) − ux,y|p/θ
|x− y|n+ps

dy

≤ c(n) (1 − s)1/θ
1− θ

(∫ ∞

0

z−1+p(1−s)
(
M|∇U |

)p dz
)1/θ

δps(1−θ)/θ.

This estimate together with (10.3.6) implies that D(x) is majorized by

c(n)
(
‖u‖L∞δ

−θs +
(

1 − s
1 − θ

)1/p(∫ ∞

0

z−1+p(1−s)
(
M|∇U |

)p dz
)1/p

δs(1−θ)

)
.

Minimizing the right-hand side, we conclude that

D(x) ≤ c(n)
(

1 − s
1 − θ

)θ/p

‖u‖1−θ
L∞

(∫ ∞

0

z−1+p(1−s)
(
M|∇U |

)p dz
)θ/p

.

Hence and by (10.3.5)

‖u‖W θs
p/θ

≤ c(n)
(

1 − s
1 − θ

)θ/p

‖u‖1−θ
L∞

×
(∫

Rn

∫ ∞

0

z−1+p(1−s)
(
M|∇U |

)p dz dx
)θ/p

.

Since
‖Mu‖Lp ≤ n8np

ωn(p− 1)
‖u‖Lp

(see Iwaniec [399], Sect. 2.5), it follows that the norm ‖u‖W θs
p/θ

does not exceed

c(n)
(

p

p− 1

)θ(1 − s
1 − θ

∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz
)θ/p

‖u‖1−θ
L∞
.

(10.3.13)
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Now we define U by the formula

U(x, z) :=
∫

Rn

ψ(h)u(x+ zh) dh, (10.3.14)

where
ψ(h) = ωnn(n+ 1)

(
1− |h|

)
+
,

with the subscript plus standing for the nonnegative part of a real-valued
function. It follows directly from (10.3.14) that

∣∣∇U(x, z)
∣∣ ≤ n(n+ 1)(n+ 2)

zωn

∫
|h|<1

∣∣u(x+ zh) − u(x)
∣∣ dh.

Hence and by Hölder’s inequality
∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz

≤ n

ωn
(n+ 1)p(n+ 2)p

∫ ∞

0

z−1−ps

∫
|h|<1

∫
Rn

×
∣∣u(x+ zh) − u(x)

∣∣p dxdh dz. (10.3.15)

We have
∫ ∞

0

z−1−ps

∫
|h|<1

∣∣u(x+ zh) − u(x)
∣∣p dh dz

=
∫ ∞

0

z−1−ps−n

∫ z

0

ρn−1 dρ
∫
∂B1

∣∣u(x+ ρθ) − u(x)
∣∣p dθ

= (ps+ n)−1

∫ ∞

0

ρ−ps−1 dρ
∫
∂B1

∣∣u(x+ ρθ) − u(x)
∣∣p dθ.

Thus,
∫ ∞

0

∫
Rn

z−1+p(1−s)
∣∣∇U(x, z)

∣∣p dxdz ≤ n(n+ 1)p(n+ 2)p

ωn(ps+ n)
‖u‖pW s

p
. (10.3.16)

Combining (10.3.16) with (10.3.13) we complete the proof.

Remark 1. Let

‖u‖W1
p

=
(∫

Rn

∣∣∇u(x)∣∣p dx
)1/p

.

As a particular case of a more general inequality, Brezis and Mironescu [144]
obtained the inequality

‖u‖W θ
p/θ

≤ c‖∇u‖θLp
‖u‖1−θ

L∞
, 0 < θ < 1.
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They commented on this in the following way: “We do not know any elemen-
tary (i.e., without the Littlewood-Paley machinery) proof of (10.3.2) when
s = 1.” Obviously, the earlier proof of (10.3.3), complemented by the refer-
ence to formula (10.2.21), provides an elementary proof of the inequality

(1 − θ)θ/p‖u‖W θ
p/θ

≤ c(n, p)‖∇u‖θLp
‖u‖1−θ

L∞
.

The factor (1 − θ)θ/p controls the blow-up of the norm in Wθ
p/θ as θ ↑ 1.

Remark 2. Note that passing to the limit as p → ∞ in both sides of
(10.3.3) one obtains inequality (10.3.2) with p = ∞ and with a certain finite
constant c. Let us consider the case p→ 1 when the constant factor in (10.3.3)
tends to infinity. It follows from (10.3.3) that the best value of c(n, p, θ) in the
inequality

‖u‖W θs
p/θ

≤ c(n, p, θ)(1 − s)θ/p‖u‖θW s
p
‖u‖1−θ

L∞
, (10.3.17)

admits the upper estimate

lim sup
p↓1

(p− 1)θc(n, p, θ) ≤ c(n)(1 − θ)−θ. (10.3.18)

Now we obtain the analogous lower estimate

lim inf
p↓1

(p− 1)θc(n, p, θ) ≥ 1. (10.3.19)

In fact, the characteristic function χ of the ball B1 belongs to Ws
p and Wθs

p/θ

if and only if sp < 1, and there holds

‖χ‖W θs
p/θ

= ‖χ‖θW s
p
.

Putting u = χ into (10.3.17), where s = p−1 − ε with an arbitrarily small
ε > 0, we obtain

1 ≤ c(n, p, θ)
(
(p− 1)/p

)θ/p
,

which implies (10.3.19). Thus, the growth O((p − 1)−θ) of the constant in
(10.3.3) as p ↓ 1 is the best possible.

10.4 Some Facts from Nonlinear Potential Theory

10.4.1 Capacity cap(e, Sl
p) and Its Properties

With each function space Sl
p = H l

p,W
l
p, B

l
p, h

l
p, w

l
p, and blp introduced in

Sect. 10.1, we associate a set function called the capacity. Namely, for any
compactum e ⊂ R

n we put

cap
(
e, Sl

p

)
= inf

{
‖u‖p

Sl
p

: u ∈ C∞
0 , u ≥ 1 on e

}
.



10.4 Some Facts from Nonlinear Potential Theory 537

If E is an arbitrary subset of R
n, then we call the numbers

cap
(
E,Sl

p

)
= sup

{
cap(e, Sl

p) : e ⊂ E, e is a compactum
}
,

cap
(
E,Sl

p

)
= inf

{
cap
(
G,Sl

p

)
: G ⊃ E,G is an open set

}
,

the inner and outer capacities of E, respectively.
Theorem 10.1.3/3 implies the relation

cap
(
e, Sl

p

)
∼
∑
i≥0

cap
(
e ∩ B(i), Sl

p

)
, (10.4.1)

where {B(i)} is the sequence of balls introduced in Theorem 10.1.3/3. Similar
quasi-additivity relations for capacities were studied by D.R. Adams [6] and
Aikawa [34, 35].

We state certain well-known properties of the capacity cap(·, Sl
p), where

Sl
p = H l

p or hlp, p > 1 (cf. Reshetnyak [674], Meyers [596], Maz’ya and
Havin [567]).

1. If the set e ⊂ R
n is compact then for each ε > 0 there exists an open

set G ⊂ R
n such that G ⊃ e and

cap
(
e′, Sl

p

)
< cap

(
e, Sl

p

)
+ ε,

where e′ is an arbitrary compact subset of G.
2. If the set e ⊂ R

n is compact, then

cap
(
e, Sl

p

)
= cap

(
e, Sl

p

)
.

3. If E1 ⊂ E2 ⊂ R
n then

cap
(
E1, S

l
p

)
≤ cap

(
E2, S

l
p

)
, cap

(
E1, S

l
p

)
≤ cap

(
E2, S

l
p

)
.

4. If {Ek}∞
k=1 is a sequence of sets in R

n and E =
⋃

k Ek, then

cap
(
E,Sl

p

)
≤

∞∑
k=1

cap
(
Ek, S

l
p

)
.

It is well known that any analytic (in particular, any Borel) set E ⊂
R

n is measurable with respect to the capacity cap(·, Sl
p) (i.e., cap(E,Sl

p) =
cap(E,Sl

p)) (cf. Meyers [596], Maz’ya and Havin [567]).
We introduce one more capacity

ck,p(E) = inf
{
‖f‖pLp

: f ∈ Lp, f ≥ 0 and
∫
k
(
|x− y|

)
f(y) dy ≥ 1 for all x ∈ E

}
,
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where k is a positive decreasing continuous function on the half-axis (0,+∞)
(cf. Meyers [596]).

We list some connections between the two capacities.
(i) If Sl

p = H l
p or hlp and k is the Bessel or Riesz kernel, then

ck,p(E) = c cap
(
E,Sl

p

)
.

(ii) If diamE ≤ 1 and pl < n, then

cap
(
E,H l

p

)
∼ cap

(
E, hlp

)
(10.4.2)

(cf. Adams and Meyers [16]). Relations similar to (10.4.2) are also valid for
other pairs of spaces, e.g., Bl

p, b
l
p and W l

p, w
l
p.

(iii) If 1 < p <∞, then

cap
(
E,H l

p

)
∼ cap

(
E,Bl

p

)

(see Proposition 4.4.4 in D.R. Adams and Hedberg [15]).
(iv) If E ⊂ R

n, l > 0, 1 < p <∞ then

cap
(
E,Bl

p

(
R

n
))

∼ cap
(
E,H l+1/p

p

(
R

n+1
))

∼ cap
(
E,Bl+1/p

p

(
R

n+1
))

(cf. Sjödin [703]).
(v) Let m, l > 0, 1 < p, and q <∞. For E ⊂ R

n the inequality

[
cap
(
E, hmq

)]n−lp ≤ c
[
cap
(
E, hlp

)]n−mq
, mq < lp < n,

is valid.
(vi) If, in addition, E ⊂ B1, then

[
cap
(
E,Hm

q

)]n−lp ≤ c
[
cap
(
E,H l

p

)]n−mq
, mq < lp < n,[

log
c0

cap(E,Hm
q )

]1−p

≤ c cap
(
E,H l

p

)
, mq < lp = n,

[
cap
(
E,Hm

q

)]p−1 ≤ c
[
cap
(
E,H l

p

)]q−1
, mq = lp = n, p ≤ q.

Putting E = Br, we conclude that all power exponents here are exact.
Items (v) and (vi) are due to Adams and Hedberg [14].

10.4.2 Nonlinear Potentials

Nonlinear potentials were introduced in the article by Maz’ya and Havin [566]
and their theory has turned out to be a useful tool in various areas. It was
developed in the papers by Maz’ya and Havin [567], D.R. Adams and Mey-
ers [17], Hedberg and Wolff [372], D.R. Adams [9], et al. The reader interested
in a detailed exposition of the nonlinear potential theory can find it in the



10.4 Some Facts from Nonlinear Potential Theory 539

comprehensive monograph by D.R. Adams and Hedberg [15]. Here we collect
some facts from this theory.

Let p ∈ (1,∞), n > pl. Each nonnegative measure μ given on the Borel
σ-algebra of the space R

n generates the function Up,lμ defined on R
n by

(Up,lμ)(x) =
∫

Rn

|x− y|l−n

(∫
Rn

|z − y|l−n dμ(z)
)1/(p−1)

dy, (10.4.3)

or equivalently,
Up,lμ = Il(Ilμ)p

′ −1, p+ p′ = pp′.

For p = 2, by changing the order of integration in (10.4.3) and taking into
account the composition formula

∫
|y − z|l−n|y − x|l−n dy = const |z − x|2l−n,

(cf. Landkof [477]), we obtain

(U2,lμ)(x) = c

∫
dμ(z)

|z − x|n−2l
.

The function U2,lμ is the Riesz potential of order 2l (for l = 1 it is the New-
ton potential). Similarly, Up,lμ is called the nonlinear Riesz potential ((p, l)-
potential).

The nonlinear Bessel potential is defined as

Vp,lμ = Jl(Jlμ)p
′ −1.

The potentials Up,lμ and Vp,lμ satisfy the following rough maximum prin-
ciple for nonlinear potentials.

Proposition 1. Let Pμ be one of the potentials Up,lμ or Vp,lμ. Then there
exists a constant M that depends only on n, p, and l, such that

(Pμ)(x) ≤ M sup
{
(Pμ)(x) : x ∈ suppμ

}
.

This assertion was proved in the papers by Maz’ya and Havin [567] and
D.R. Adams and Meyers [16]. It is well known that we can take M = 1 for
p = 2, l ≤ 1 (cf. Landkof [477]). In general, this is impossible even for p = 2
(cf. Landkof [477]).

The next assertion contains basic properties of the so-called (p, l)-capacit-
ary measure (cf. Meyers [596], Maz’ya and Havin [567]).

Proposition 2. Let E be a subset of R
n. If cap(E, hlp) < ∞, then there

exists a unique measure μE with the following properties:

1. ‖IlμE‖p/(p−1)
Lp/(p−1)

= cap(E, hlp);
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2. (Up,lμE)(x) ≥ 1 for (p, l)-quasi all x ∈ E (the notion “(p, l)-quasi every-
where” means everywhere except for a set of zero outer capacity cap(·, hlp));

3. suppμE ⊂ Ē;
4. μE(Ē) = cap(E, hlp);
5. (Up,lμE)(x) ≤ 1 for all x ∈ suppμE.

The measure μE is called the capacitary measure of E and Up,lμE is called
the capacitary potential of E. The last proposition remains valid after the
replacement of hlp by H l

p, of Up,lμ by Vp,lμ, and of Il by Jl. Besides, we note
that the capacity cap(e, Sl

p) (for Sl
p = hlp or H l

p) can be defined as

cap
(
e, Sl

p

)
= sup

x∈e

{
μ(e) : suppμ ⊂ e, (Pμ)(x) ≤ 1

}
, (10.4.4)

where P = Up,l or Vp,l (cf. Maz’ya and Havin [567]). Next we present some
pointwise estimates for (p, l)-potentials that are obvious in the linear case and
nontrivial in the nonlinear case.

Proposition 3. (Maz’ya and Havin [567] and D.R. Adams [4]).
(i) If 2 − l/n < p < n/l, then

(Vp,lμ)(x) ≤ c
∫ ∞

0

(
μ(B(x, �))
�n−lp

)1/(p−1)

e−c0�
d�
�
. (10.4.5)

(ii) If p > 1 and ϕ(�) = supx μ(B(x, �)), then

(Vp,lμ)(x) ≤ c
∫ ∞

0

(
ϕ(�)
�n−lp

)1/(p−1)

e−c0�
d�
�
. (10.4.6)

The same estimates, without the factor e−c0�, are valid for the potential
Up,lμ.

It is almost obvious that the following estimate, opposite to (10.4.5),

(Vp,lμ)(x) ≥ c
∫ ∞

0

(
μ(B(x, �))
�n−lp

)1/(p−1)

e−c0�
d�
�
, (10.4.7)

holds for all p ∈ (1,∞), l > 0, whereas (10.4.5) is not true for p ≤ 2 − l/n.
Wolff showed (cf. Hedberg and Wolff [372]) that for pl < n the inequality

‖Ilμ‖p/(p−1)
Lp/(p−1)

≤ c
∫
Wp,lμdμ, (10.4.8)

where

(Wp,lμ)(x) =
∫ ∞

0

(
μ(B(x, �))
�n−lp

)1/(p−1)
d�

�

is valid. The analogous inequality for Bessel potentials is
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‖Jlμ‖p/(p−1)
Lp/(p−1)

≤ c
∫
Sp,lμdμ, (10.4.9)

where pl ≤ n and

(Sp,lμ)(x) =
∫ ∞

0

(
μ(B(x, �))
�n−lp

)1/(p−1)

e−c0�
d�
�
. (10.4.10)

The estimates converse to (10.4.8) and (10.4.9) follow immediately from
(10.4.7).

Remark. The failure of the inequality (10.4.5) for p ≤ 2−l/n caused serious
difficulties in attempts at a satisfactory generalization of the basic facts of the
classical potential theory to the nonlinear case.

Using inequalities (10.4.8) and (10.4.9) Hedberg (cf. the previously men-
tioned paper by Hedberg and Wolff) managed to surmount this difficulty by
virtue of an analog of the nonlinear potential theory in which the roles of
Up,lμ and Vp,lμ are played by certain nonlinear potentials that are equivalent
toWp,lμ and Sp,lμ (see also D.R. Adams and Hedberg [15], Sects. 4.4 and 4.5).

Upper pointwise estimates similar to (10.4.5) are obtained for the case
1 < p ≤ 2−l/n under the additional assumption that the potential is bounded.
Namely, the following proposition is true.

Proposition 4. (D.R. Adams and Meyers [16]).
(i) If 1 < p < 2 − l/n and (Up,lμ)(x) ≤ K for all x ∈ R

n, then

(Up,lμ)(x) ≤ cKγ

∫ ∞

0

(
μ(B(x, �))
�n−lp

)(n−1)/(n−lp) d�
�
, (10.4.11)

where γ = ((2 − p)n− l)/(n− lp).
(ii) If p = 2 − l/n and (Up,lμ)(x) ≤ K for all x ∈ R

n, then

(Up,lμ)(x) ≤ c
∫ ∞

0

(
μ(B(x, �))
�n−lp

log
(
cKp−1 �n−lp

μ(B(x, �))

))p′ −1 d�
�
. (10.4.12)

(The condition (Up,lμ)(x) ≤ K for all x ∈ R
n implies the estimate

μ
(
B(x, �)

)
≤ e−1aKp−1�n−lp.)

10.4.3 Metric Properties of Capacity

The following relations are useful (cf. Meyers [596]).
If pl < n and 0 < � < 1, then

cap(B�, H
l
p) ∼ �n−pl. (10.4.13)
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If pl < n and 0 < � <∞, then

cap
(
B�, h

l
p

)
= c�n−pl. (10.4.14)

For pl = n, 0 < � ≤ 1 we have

cap
(
B�, H

l
p

)
∼ (log 2/�)1−p. (10.4.15)

If p l > n, then cap({x}, H l
p) > 0. Thus, only the empty set has zero capacity

if pl > n.
The following equivalence relations for the capacity of a parallelepiped

were obtained by D.R. Adams [7].

Proposition 1. Let 0 < a1 ≤ a2 ≤ · · · ≤ an, a = (a1, a2, . . . , an) and let
Q(a) = {x ∈ R

n : |xj | ≤ aj , j = 1, . . . , n}.
(i) If k − 1 < lp < k, k = 1, . . . , n, then

cap
(
Q(a), hlp

)
∼ ak−lp

k

n∏
j=k+1

aj .

(Here the product equals unity provided k = n.)
(ii) If lp = k, k = 1, 2, . . . , n− 1, then

cap
(
Q(a), hlp

)
∼ min

{(
log

ak+1

ak

)1−p

, 1
} n∏

j=k+1

aj .

Similar two-sided estimates hold for cap(Q(a), H l
p).

If T is a quasi-isometric mapping of R
n onto itself, then cap(TE, Sl

p) ∼
cap(E,Sl

p), where Sl
p = H l

p or hlp. This is a simple corollary of (10.4.4).
Meyers [597] showed that cap(PE, Sl

p) ≤ cap(E,Sl
p) provided P is a pro-

jection R
n → R

k, k < n, and Sl
p = H l

p or hlp.
For any set E ⊂ R

n and for a nondecreasing positive function ϕ on [0,∞)
we define the Hausdorff ϕ-measure

H(E,ϕ) = lim
ε→+0

inf
{B(i)}

∑
i

ϕ(ri),

where {B(i)} is any covering of the set E by open balls B(i) with radii ri < ε.
If ϕ(t) = tq, then d is called the dimension of the Hausdorff measure. The d-
dimensional Hausdorff measure Hd(E) is equal to vdH(E, td) (cf. Sect. 1.2.4).
For d = n the measureHn coincides with the n-dimensional Lebesgue measure
mn.

The following propositions contain noncoinciding, but in a certain sense,
exact necessary and sufficient conditions for positiveness of the capacity for-
mulated in terms of the Hausdorff measures.
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Proposition 2. Let 1 < p ≤ n/l and let ϕ be a nonnegative nondecreasing
function on [0,∞) with ϕ(0) = 0 and

∫ ∞

0

(
ϕ(t)
tn−pl

)1/(p−1) dt
t
<∞. (10.4.16)

Then for any Borel set E in R
n with positive Hausdorff ϕ-measure we have

cap
(
E,H l

p

)
> 0.

(The last fact is a corollary of (10.4.6); cf. Maz’ya and Havin [567].)

Proposition 3. Let E be a Borel set in R
n.

1. If n > pl and Hn−pl(E) <∞, then cap(E,Sl
p) = 0, where Sl

p = hlp or H l
p.

2. If n = pl and H(E,ϕ) <∞, where ϕ(r) = | log r|1−p, then cap(E,H l
p) = 0

(cf. Meyers [597], Maz’ya and Havin [567]).

Next we present one more sufficient condition for the vanishing of
cap(E,H l

p) (Maz’ya and Havin [567]).

Proposition 4. Let N be a measurable nonnegative function on [0,∞).
Suppose, for any positive r, the set E can be covered by at most N (r) closed
balls whose radii do not exceed r.

If ∫
0

[
N (r)

]1/(1−p)
r(n−pl)/(1−p)−1 dr = ∞,

then cap(E,H l
p) = 0.

Using Propositions 2 and 4, we can give a complete description of the
n-dimensional Cantor sets E with positive cap(E,H l

p).
Let L = {lj}∞

j=1 be a decreasing sequence of positive numbers such that
2lj+1 < lj (j = 1, 2, . . . , ) and let Δ1 be a closed interval with length l1. Let e1
denote a set contained inΔ1, which equals the union of two closed intervalsΔ2

andΔ3 with length l2 and which contains both ends of the interval Δ1. We put
E1 = e1 × e1 × · · · × e1︸ ︷︷ ︸

n-times

. Next we repeat the procedure with the intervals Δ2

and Δ3 (here the role of l2 passes to l3) and thus obtain four closed intervals
with length l3. Let their union be denoted by e2; E2 = e2 × e2 × · · · × e2︸ ︷︷ ︸

n-times

and

so on.
We put

E(L ) =
∞⋂
j=1

Ej .

Proposition 5. (Maz’ya and Havin [567]). The following properties are
equivalent:
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(i) cap(E(L ), H l
p) > 0;

(ii)
∑
j≥1

2jn/(1−p)l
(n−p l)/(1−p)
j <∞ for n > pl;

∑
j≥1

2jn/(1−p) log
lj
lj+1

<∞ for n = pl.

Sharp results on metric properties of capacities generated by the Besov
spaces Bl

p,q, 0 < p < ∞, 0 < q ≤ ∞, 0 < lp < n, were obtained by Netrusov
in [633].

10.4.4 Refined Functions

The function ϕ in H l
p is called refined or (p, l)-refined if there exists a sequence

of functions {ϕm}m≥1 in D that converges to ϕ in H l
p and such that for each

ε > 0 there exists an open set ω with cap(ω,H l
p) < ε and ϕm → ϕ uniformly

on R
n\ω.

Another (equivalent) definition is as follows: The function ϕ ∈ H l
p is called

refined if for each ε > 0 there exists an open set ω such that cap(ω,H l
p) < ε

and the restriction of ϕ to R
n\ω is continuous.

We list the basic properties of refined functions.
(i) If ϕ ∈ H l

p then there exists a refined function ϕ̃ that coincides with ϕ
almost everywhere (with respect to n-dimensional Lebesgue measure) in R

n.
(ii) If ϕ1 and ϕ2 are refined functions that coincide almost everywhere

(with respect to n-dimensional Lebesgue measure), then ϕ1 and ϕ2 coincide
quasi-everywhere.

(iii) Each sequence of refined functions in H l
p that converges to a refined

function ϕ in H l
p contains a subsequence that converges to ϕ quasi-everywhere.

For the proofs of these assertions see the paper by Havin and the au-
thor [567], where references to the earlier literature are given.

For pl > n these properties become trivial since H l
p ⊂ C.

The following result due to Bagby and Ziemer [62] shows that a function
in H l

p coincides with a function in Cm (m ≤ l) outside some set that is small
with respect to the corresponding capacity.

Proposition. Let u ∈ H l
p, 1 < p <∞ and let m be an integer 0 ≤ m ≤ l.

Then for each ε > 0 there exists a function uε ∈ Cm and an open set ω such
that cap(ω,H l−m

p ) < ε and u(x) = uε(x) for all x ∈ R
n\ω.

Swanson proved that every function in the Bessel potential space H l
p may

be approximated in capacity and norm by smooth functions in Cm,λ, 0 <
m+ λ < l [734].

In conclusion we add to the previously mentioned literature on nonlinear
potentials the lectures by D.R. Adams [8], which also contain a survey of some
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other problems that we do not touch upon here, and also D.R. Adams’ very
interesting reminiscences [12].

10.5 Comments to Chap. 10

Section 10.1. Besides the literature cited in Sect. 10.1, in which embed-
ding, trace, and extension theorems are established for various fractional-
order and more general spaces, we also cite (with no intention of claim-
ing completeness) the papers by Solonnikov [716]; Besov [87]; Golovkin and
Solonnikov [323]; Aronszajn, Mulla, and Szeptycki [53]; Taibleson [737, 738];
Golovkin [321, 322]; Volevič and Panejah [782]; Il’in [396, 397]; Burenkov [152,
153]; Kudryavtsev [467]; the first chapter of the book by Hörmander [384]; and
the book by Gel’man and the author [305].

Here we mention some works dedicated to trace and extension theorems for
Besov and Sobolev spaces. The following result concerning the case 0 < p <∞
can be found in Jawerth [400] and Sect. 2.7 in Triebel’s book [757].

Theorem. The trace operator Bs
p,q(R

n) → B
s−1/p
p,q (Rn−1) is continuous

if s > 1/p, p ≥ 1 and for s > 1 − n + n/p, p < 1. Moreover, this operator
has a right inverse that is bounded from B

s−1/p
p,q (Rn−1) to Bs

p,q(R
n) for every

s ∈ R.

The borderline case s = 1 − n + n/p, 0 < p < 1, was studied by Johnsen
[403].

A. Jonsson [405] (see also A. Jonsson and H. Wallin [408]) obtained gener-
alizations of Theorems 10.1.1/1 and 10.1.1/2 for traces on the so-called d-sets
in R

n, i.e., the sets that support a measure μ subject to μ(B(x, r)) ∼ rd.
Explicit formulas for linear continuous extension operators Bs

p,q(Ω) →
Bs

p,q(R
n) and F s

p,q(Ω) → F s
p,q(R

n), where B and F stand for Besov and
Triebel–Lizorkin spaces, 0 < p < ∞, 0 < q ≤ ∞, and Ω is a Lipschitz
domain, are given by Rychkov [686].

A description of the traces of the functions in W 1
p (Ω) to the boundary of

a cusp domain was given by Poborchi and the author ([576], Chap. 7). Let
Ω be a domain in R

n and p ∈ [1,∞). By TW 1
p (Ω) we mean the space of the

traces u|∂Ω of the functions u ∈W 1
p (Ω). The norm in this space is defined by

‖f‖TW 1
p (Ω) = inf

{
‖u‖W 1

p (Ω) : u ∈W 1
p (Ω), u|∂Ω = f

}
.

According to Gagliardo’s theorem, TW 1
p (Ω) = W

1−1/p
p (∂Ω) for p ∈ (1,∞)

and TW 1
1 (Ω) = L1(∂Ω) if Ω is a bounded Lipschitz domain. When Ω has

cusps on the boundary, Gagliardo’s theorem generally fails. Consider a typical
domain with an outward cusp

Ω =
{
x = (y, z) ∈ R

n : z ∈ (0, 1), |y| < ϕ(z)
}
, n > 2,
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where ϕ is an increasing Lipschitz continuous function on [0, 1] such that
ϕ(0) = limz→0 ϕ

′(z) = 0.
It turns out that the boundary values of functions in W 1

p (Ω) and in
W 1

p (Rn \Ω) can be characterized in terms of the finiteness of the norm

〈f〉p,∂Ω =
(∫

∂Ω

∣∣f(x)∣∣pq(x) dsx

+
∫ ∫

∂Ω×∂Ω

∣∣f(x) − f(ξ)∣∣pQ(x, ξ) dsx dsξ

)1/p

,

where q andQ are nonnegative weight functions and dsx, dsξ the area elements
on ∂Ω.

Let p ∈ (1,∞) and let f be a function on ∂Ω vanishing outside a small
neighborhood of the origin. Then f belongs to TW 1

p (Ω) if and only if 〈f〉p,∂Ω <
∞, where x = (y, z), ξ = (η, ζ), 0 ≤ q(x) ≤ constϕ′(z),

Q(x, ξ) =

{
|x− ξ|2−n−p if |z − ζ| < ϕ(z) + ϕ(ζ), z, ζ ∈ (0, 1),
0 otherwise.

In addition, the norm 〈f〉p,∂Ω is equivalent to ‖f‖TW 1
p (Ω).

A necessary and sufficient condition for f to belong to TW 1
p (Rn \ Ω) is

that 〈f〉p,∂Ω <∞ with

q(x) =

⎧⎪⎨
⎪⎩
ϕ(z)1−p for 1 < p < n− 1,
(ϕ(z)| log(ϕ(z)/z)|)1−p for p = n− 1,
ϕ(z)2−n for p > n− 1,

and Q(x, ξ) �= 0 only if z, ζ ∈ (0, 1). For these pairs x, ξ ∈ ∂Ω, Q is defined as
follows. If p < n− 1, then

Q(x, ξ) = |x− ξ|2−n−p.

In the cases p ≥ n− 1 and |x− ξ| < ϕ(z) + ϕ(ζ) the weight Q is determined
by the same formula. Finally, if |x− ξ| ≥ ϕ(z) + ϕ(ζ), then

Q(x, ξ) =
(ϕ(z) + ϕ(ζ))2(1−p)

|x− ξ|

(
log
(

1 +
|x− ξ|

ϕ(z) + ϕ(ζ)

))−p

, p = n− 1,

and
Q(x, ξ) = |x− ξ|n−p−2

(
ϕ(z)ϕ(ζ)

)2−n
, p > n− 1.

The norm 〈f〉p,∂Ω with these weights q,Q is equivalent to ‖f‖TW 1
p (Rn \Ω).

If p = n − 1, some additional restrictions are imposed on ϕ (not excluding
power cusps). A function f defined on ∂Ω and vanishing outside a small
neighborhood of the origin is in TW 1

1 (Ω) if and only if 〈f〉1,∂Ω <∞ with
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0 ≤ q(x) ≤ constϕ′(z),

Q(x, ξ) =

{
(ϕ(z) + ϕ(ζ))1−n for z, ζ ∈ (0, 1), |z − ζ| < ϕ(z) + ϕ(ζ),
0 otherwise.

Furthermore, the norms ‖f‖TW 1
1 (Rn \Ω) and 〈f〉1,∂Ω are equivalent.

The characterization of the space TW 1
1 (Rn\Ω) is the same as for Lipschitz

domains
TW 1

1

(
R

n \Ω
)

= L1(∂Ω).

In all the cases mentioned previously there exists a bounded extension
operator

TW 1
p (Ω) →W 1

p (Ω) and TW 1
p

(
R

n \Ω
)
→W 1

p

(
R

n \Ω
)
.

This operator is linear for p > 1 and nonlinear for p = 1. One can easily
obtain from the previous results that the space TW 1

p (Rn \Ω) is continuously
embedded into TW 1

p (Ω) for p ∈ [1,∞), n > 2. Hence the space of the traces
on ∂Ω of the functions in W 1

p (Rn) coincides with TW 1
p (Rn \Ω).

Shvartsman [699] described the restrictions of the space W 1
p (Rn), p > n,

to an arbitrary closed subset S ⊂ R
n via certain doubling measures supported

on S. Observe that Dyn’kin [245, 246] conjectured that every compact set
S ⊂ R

n carries a nontrivial doubling measure μ. He constructed a doubling
measure on every compact set S ⊂ R that satisfies a certain “porosity” condi-
tion. Dyn’kin’s conjecture was subsequently proved by Volberg and Konyagin
[780]. Moreover, Volberg and Konyagin showed that every compact set in R

n

carries a nontrivial measure μ satisfying the following condition: There exists
a constant C = Cμ > 0 such that, for all x ∈ S, 0 < r ≤ 1 and 1 ≤ k ≤ 1/r,
we have μ(B(x, kr)) ≤ Cμk

nμ(B(x, r)). Using their argument, Luukkainen
and Saksman [511] extended this result to all closed subsets of R

n. Jonsson
[406] showed that it may also be assumed that μ(B(x, 1)) ∼ 1 for all x ∈ S.

Jonsson and Wallin [405, 408] obtained generalizations of Theorems 1 and
2 for the family of d-sets in R

n, 0 < n− d < p, 1 < p <∞.
Let

ρS(x, y) := inf
{
diamB : B is a ball, B � x, y, 1

15
B ⊂ R

n\S
}
, x, y ∈ S.

Shvartsman [699] proved that for every function f ∈ C(S) its trace norm in
W 1

p (Rn)|S , p > n, i.e., the quantity

‖f‖W 1
p (Rn)|S

:= inf
{
‖F‖W 1

p (Rn) : F ∈W 1
p (Rn) and continuous, F |S = f

}
can be calculated as follows:

‖f‖W 1
p (Rn)|S

∼ ‖f‖Lp(μ) + sup
0<t≤1

(∫∫
|x−y|<t

|f(x) − f(y)|p
tp−nμ(B(x, t))2

dμ(x) dμ(y)
) 1

p

+
(∫∫

ρS(x,y)<1

|f(x) − f(y)|p
ρS(x, y)p−nμ(B(x, ρS(x, y)))2

dμ(x) dμ(y)
) 1

p

.
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Sections 10.2 and 10.3. For the historical background we refer to the
introductions to these sections. The material is borrowed from the papers by
Maz’ya and Shaposhnikova [584, 585]. Results related to (10.2.3) and (10.3.1)
were subsequently obtained by Kolyada and Lerner [445], M. Milman [606],
and Karadzhov, M. Milman, and Xiao [414].

Section 10.4. The references are given in the text. Here we mention
additionally the paper by Maz’ya and Havin [569], where several applications
of the (p, l)-capacity and nonlinear potentials to the theory of exceptional
sets are considered (the uniqueness and approximation of analytic functions,
convergence of Fourier series, and removal of singularities of analytic and
polyharmonic functions). Properties of capacities in Birnbaum–Orlicz spaces
were studied by Aissaoui and Benkirane [37].



11

Capacitary and Trace Inequalities for Functions
in R

n with Derivatives of an Arbitrary Order

11.1 Description of Results

According to Corollary 2.3.4, for q ≥ p > 1, the inequality

‖u‖Lq(Rn,μ) ≤ A‖∇u‖Lp(Rn), u ∈ C∞
0 , (11.1.1)

follows from the isocapacitary inequality

(
μ(E)

)p/q ≤ p−p(p− 1)p−1Ap cap
(
E,w1

p

)
.

Here and henceforth E is an arbitrary Borel set in R
n and w1

p is the completion
of C∞

0 with respect to the norm ‖∇u‖Lp .
On the other hand, if (11.1.1) is valid for any u ∈ C∞

0 , then

(
μ(E)

)p/q ≤ Ap cap
(
E,w1

p

)

for all E ⊂ R
n.

The present chapter contains similar results in which the role of w1
p is

played by the spaces H l
p, h

l
p, W

l
p, w

l
p, B

l
p, and blp.

Namely, let Sl
p be any one of these spaces. Then the best constant in

∥∥u‖Lq(μ) ≤ A‖u‖Sl
p
, u ∈ C∞

0 , (11.1.2)

where q ≥ p, is equivalent to the best constant in the “isoperimetric” inequal-
ity (

μ(E)
)p/q ≤ B cap

(
E,Sl

p

)
. (11.1.3)

The estimate A ≥ B immediately follows from the definition of capacity.
The reverse estimate is a deeper fact, its proof being based on the capacitary
inequality ∫ ∞

0

cap
(
Nt, S

l
p

)
tp−1 dt ≤ C‖u‖p

Sl
p
, (11.1.4)

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 11, c© Springer-Verlag Berlin Heidelberg 2011
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where u ∈ Sl
p, Nt = {x : |u(x)| ≥ t} and C is a constant independent of u. We

dealt with inequalities of a similar nature in the previous chapter, but only in
the case l ≤ 2. In Sect. 11.2 we present two proofs of inequality (11.1.4) with
l ∈ (0,∞) and different fields of application and in Sect. 1.3 we discuss criteria
for the validity of embedding theorems formulated in terms of isocapacitary
inequalities. Section 1.4 is dedicated to a counterexample showing that the
capacitary inequality for the norm in L2

2(Ω) may fail for some domain.
We might ask if it is possible to replace arbitrary sets E in (11.1.3) by

balls. From the D.R. Adams Theorem 1.4.1 it follows that this is so for the
Riesz potential space Sl

p = hlp, pl < n. The condition given by D.R. Adams is

μ
(
B(x, �)

)
≤ C�s, (11.1.5)

where s = q(n/p− l) and B(x, �) is any ball with center x and radius �.
Thus, inequality (11.1.5) with q > p implies the isoperimetric inequal-

ity (11.1.3) for any set E.
In Sect. 11.7 we give a direct proof of more general assertions of this kind.

Namely, for any ball B(x, r), let

μ
(
B(x, r)

)
≤ Φ

(
cap
(
Br, h

l
p

))
, (11.1.6)

where Br = B(0, r), Φ is an increasing function subject to some additional
requirements and μ is a measure in R

n. Then for all Borel sets E ⊂ R
n

μ(E) ≤ cΦ
(
c cap

(
E, hlp

))
. (11.1.7)

By this theorem along with the equivalence of (11.1.2) and (11.1.3), we
show in Sect. 11.8 that inequalities similar to (11.1.6) are necessary and suf-
ficient for the validity of estimates for traces of Riesz and Bessel potentials
in Birnbaum–Orlicz spaces LM (μ) and, in particular, in Lq(μ). Besides, this
gives a new proof of the aforementioned D.R. Adams theorem where no in-
terpolation is used. Another corollary, of interest in its own right, claims that
the inequality

‖u‖Lq(μ) ≤ c‖u‖Hl
p
,

where q > p > 1, lp = n is fulfilled if and only if

μ
(
B(x, r)

)
≤ c| log r|−q/p′

for all balls B(x, r) with radii r ∈ (0, 1
2 ).

Next we state some other results relating the conditions for (11.1.2).
(a) If Sl

p = H l
p, pl < n, q > p, then (11.1.2) is valid simultaneously

with (11.1.5), where 0 < � < 1 (see Sect. 11.8).
(b) In the case pl > n a necessary and sufficient condition for (11.1.2) with

Sl
p = H l

p is
sup
{
μ
(
B(x, 1)

)
: x ∈ R

n
}
<∞

(see Sect. 11.8).
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(c) For q = p, condition (11.1.5) is not sufficient for (11.1.2) (cf. Remark
11.8/2). So in this case, which is probably the most important for applications,
we have to deal with a less explicit isocapacitary condition (11.1.3). However,
there are ball and pointwise criteria for (11.1.2) with q = p due to Kerman
and Sawyer and Maz’ya and Verbitsky. They are treated in Sect. 1.5.

(d) In Sect. 11.6 we give the following necessary and sufficient condition
for the validity of (11.1.2) provided that p > 1 and p > q > 0:

∫ ∞

0

(
t

κ(t)

)q/(p−q)

dt <∞,

where κ(t) = inf{cap(F, Sl
p) : μ(F ) ≥ t} (cf. Theorem 11.6.1/1). A noncapac-

itary criterion for (11.1.2), where p > q, obtained by Cascante, Ortega, and
Verbitsky, is formulated in the same Sect. 1.6.

(e) In the case pl > n, p > q a necessary and sufficient condition for (11.1.2)
can be written in the essentially simpler form∑

i

(
μ
(
Q(i)

))p/(p−q)
<∞,

where {Q(i)} is the sequence of closed cubes with edge length 1, which forms
the coordinate grid in R

n (cf. Sect. 11.6.2).
(f) We note also that in the case q = 1, p > 1, the inequality (11.1.2) with

Sl
p = hlp or Sl

p = H l
p is equivalent to the inclusion Ilμ ∈ Lp′ or Jlμ ∈ Lp′ ,

respectively (here Il and Jl are the Riesz and the Bessel potentials) (cf. Sect.
11.6.2).

(g) In Sect. 11.10 we consider the case p = 1. For Sl
1 = bl1 in addition to

Theorem 1.4.3 it is shown that (11.1.2) holds simultaneously with (11.1.5),
where p = 1, q ≥ 1. If Sl

1 = Bl
1, we have to add the condition � ∈ (0, 1)

in (11.1.5). We recall that according to Theorem 1.4.3 the same pertains to
the cases sl1 = wl

1, S
l
1 = W l

1.
(h) Using the interpretation of blp and Bl

p, p > 1 as the trace spaces of the
corresponding potential spaces, we obtain theorems on blp and Bl

p from the
theorems concerning hlp and H l

p (cf. Remark 11.8/3).
Section 11.9 contains some applications of the results obtained in

Sects. 11.2–11.7. In particular, we present necessary and sufficient conditions
for the compactness of the embedding operator of H l

p into Lq(μ). In Sect. 11.9
we also state some corollaries to previous theorems. They concern the negative
spectrum of the operator (−Δ)l − p(x), p(x) ≥ 0, x ∈ R

n.
Integral inequalities with certain seminorms of a function, involving arbi-

trary measures, on the left-hand side and the L1 norm of the gradient on the
right-hand side are characterized in Sect. 11.10. The concluding Sect. 11.11 is
devoted to the study of the inequality(∫

Ω

∫
Ω

∣∣u(x) − u(y)∣∣qμ(dx, dy)
)1/q

≤ C‖∇u‖Lp(Ω),

with q ≥ p > 1.
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11.2 Capacitary Inequality of an Arbitrary Order

11.2.1 A Proof Based on the Smooth Truncation of a Potential

We use the Hardy–Littlewood maximal operator M defined by

(Mg)(x) = sup
r>0

1
mnBr

∫
B(x,r)

∣∣g(ξ)∣∣ dξ. (11.2.1)

Lemma 1. (Hedberg [365]) Let f be a nonnegative function and let Iα be
the Riesz potential of order α. For all α and β such that 0 < α < β < n and
almost all x ∈ R

n there holds the inequality

(Iαf)(x) ≤ c
(
(Iβf)(x)

)α/β((Mf)(x)
)1−α/β

, 0 < α < β < n. (11.2.2)

Proof. Let t be an arbitrary positive number to be chosen later. We make
use of the equality
∫
Bt(x)

f(y) dy
|x− y|n−α

= (n− α)
∫ t

0

∫
Bs(x)

f(y) dy
ds

sn−α+1
+ tα−n

∫
Bt(x)

f(y) dy,

(11.2.3)
which is readily checked by changing the order of integration on the right-hand
side. Hence ∫

Bt(x)

f(y) dy
|x− y|n−α

≤ ctα(Mf)(x). (11.2.4)

Clearly we have
∫

Rn \Bt(x)

f(y) dy
|x− y|n−α

≤ tα−β

∫
Rn \Bt(x)

f(y) dy
|x− y|n−β

≤ tα−β(Iβf)(x). (11.2.5)

Adding this inequality and (11.2.3), we obtain

(Iαf)(x) ≤ ctα(Mf)(x) + tα−β(Iβf)(x).

Minimization of the right-hand side in t completes the proof. ��

Lemma 2. Let l be an integer, 0 < l < n, Ilf = |x|l−n ∗ f , where f ≥ 0
and let F be a function in Cl(0,∞) such that

tk−1
∣∣F (k)(t)

∣∣ ≤ Q, k = 0, . . . , l.

Then ∣∣∇lF (Ilf)
∣∣ ≤ cQ(Mf + |∇lIlf |

)
almost everywhere in R

n.
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Proof. We have

∣∣∇lF (u)
∣∣ ≤ c

l∑
k=1

∣∣F (k)(u)
∣∣ ∑
j1+···+jk=l

|∇j1u| · · · |∇jk
u|

≤ cQ

l∑
k=1

∑
j1+···+jk=l

|∇j1u|
u1−j1/l

· · · |∇jk
u|

u1−jk/l
.

Since |∇u| ≤ Il−sf , it follows that

∣∣∇lF (u)
∣∣ ≤ cQ

(
|∇lIlf |+

l∑
k=1

∑′

j1+···+jk=l

Il−j1f · · · Il−jk
f

(Ilf)1−j1/l · · · (Ilf)1−jk/l

)
,

where the sum
∑′ is taken over all collections of numbers j1, . . . , jk less than l.

The result follows from (11.2.2). ��

Let w be a nonnegative function in R
n satisfying the Muckenhoupt condi-

tion

sup
Q

(
1

mnQ

∫
Q
wp dx

)(
1

mnQ

∫
Q
w−p′

dx
)p−1

<∞, (11.2.6)

where the supremum is taken over all cubes Q. This condition ensures the
continuity of the operators M and ∇lIl in the space of functions ϕ with the
finite norm ‖wϕ‖Lp (cf. Muckenhoupt [621], Coifman and Fefferman [210]).

Theorem. Let p > 1, l = 1, 2, . . . , lp < n. Inequality (11.1.4), where Sl
p is

the completion of C∞
0 with respect to the norm ‖w∇lu‖Lp , holds.

Proof. Let u ∈ C∞
0 (Rn), u = Ilf , v = Il|f |. We can easily see that v ∈

Cl(Rn) and v(x) = O(|x|l−n) as |x| → ∞. Since v(x) ≥ |u(x)|, putting tj =
2−j (j = 0,±1, . . . ,), we have

∫ ∞

0

cap
(
Nt, S

l
p

)
d
(
tp
)
≤ c

∞∑
j=− ∞

2−pjγj , (11.2.7)

where γj = cap({x : v(x) ≥ tj}, Sl
p).

We shall use an operator of “smooth level truncation.” Let α ∈ [0, 1] be a
nondecreasing function, vanishing near 0, and equal to one in a neighborhood
of 1, and let us introduce the function f ∈ C∞((0,∞)) given on [tj+1, tj ] by

F (u) = tj+1 + α
(
(u− tj+1)/(tj − tj+1)

)
(tj − tj+1).

Then we obtain by definition of the capacity that

2−pjγj ≤ c
∥∥F (v)

∥∥p
Sl

p
,

which implies
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+∞∑
j=− ∞

2−pjγj ≤ c
∥∥F (v)

∥∥p
Sl

p
.

By Lemma 2, the preceding norm is majorized by

c
(∥∥wM|f |

∥∥
Lp

+
∥∥w∇lIl|f |

∥∥
Lp

)
. (11.2.8)

Since the weight function w satisfies (11.2.6), we can use the boundedness of
the operators M and ∇lIl in the weighted Lp to show that the sum (11.2.8)
does not exceed

c‖wf‖Lp = c1
∥∥w(−Δ)lIlu

∥∥
Lp

≤ c‖w∇lu‖Lp .

The theorem is proved. ��

Corollary. Inequality (11.1.4) holds, where Sl
p = blp, p > 1, l > 0.

Proof. Let U be an arbitrary extension of u ∈ C∞
0 (Rn) to the space R

n+1 =
{X = (xn, xn+1) : x ∈ R

n, xn+1 ∈ R
1}. According to Theorem 10.1.1/1,

‖u‖bl
p(Rn) ∼ inf

{U}
‖U‖

L̊
[l]+1
p (Rn+1,x

1−[l]−1/p
n+1 )

,

where L̊k
p(R

n+1, w) is the completion of C∞
0 (Rn+1) with respect to the norm

‖w∇ku‖Lp(Rn+1). Consequently,

cap
(
e, blp

(
R

n
))

∼ cap
(
e, L[l]+1

p

(
R

n+1, x
1− {l} −1/p
n+1

))
.

We can easily check that the function X → w(X ) = x
1−[l]−1/p
n+1 satis-

fies (11.2.6). Therefore, the last theorem yields
∫ ∞

0

cap
(
Nt, b

l
p

(
R

n
))

d
(
tp
)
≤ c‖U‖p

L
[l]+1
p (Rn+1,x

1−[l]−1/p
n+1 )

.

We complete the proof by minimizing the right-hand side over all extensions
of u to R

n+1. ��

11.2.2 A Proof Based on the Maximum Principle for Nonlinear
Potentials

Let Kμ be the linear Bessel or Riesz potential of order l with density μ and let
K(Kμ)p

′ −1 be the nonlinear potential generated by K. Further, let M denote
the constant in the rough maximum principle for the potential K(Kμ)p

′ −1

(cf. Proposition 10.4.2/1).

Theorem. Inequality
∫ ∞

0

cap
(
Nt, S

l
p

)
tp−1 dt ≤ C‖u‖p

Sl
p

(11.2.9)
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holds, where Sl
p is either H l

p or hlp (pl < n). The best constant C in (11.2.9)
satisfies

C ≤ (p′)p−1
M if p ≥ 2,

C ≤ (p′)pp−1
M

p−1 if p < 2.
(11.2.10)

(Note that for p = 2 both estimates give C ≤ 2M.)

Proof. For the sake of brevity, let c(t) = cap(Nt, S
l
p). It suffices to assume

u = Kf , f ≥ 0, f ∈ Lp. Let μt denote the capacitary measure of Nt (cf.
Proposition 10.4.2/2).

We choose a finite number N of arbitrary values t1, . . . , tN satisfying 0 <
t1 <, . . . , < tN and introduce the step function σN on (0,∞) by

σN =

⎧⎪⎨
⎪⎩

0 for t ∈ (0, t1),
tj for tj ≤ t < tj+1, j = 1, . . . , N − 1,
tN for t ≥ tN .

Now the sum ∑
1≤j≤N−1

f(tj)(tj+1 − tj),

where f is a function defined on (0,∞), can be written as the Stieltjes integral
∫ ∞

0

f(t) dσN (t).

To obtain (11.2.9), it suffices to prove the inequality
∫ ∞

0

c(t)tp−1 dσN (t) ≤ C‖u‖p
Sl

p
, (11.2.11)

with a constant C subject to (11.2.10). The left-hand side in the last inequality
does not exceed

∫ ∞

0

∫
Kf dμt t

p−2 dσN (t) =
∫
f dx

∫ ∞

0

Kμtt
p−2 dσN (t),

which is majorized by

‖f‖Lp

∥∥∥∥
∫ ∞

0

tp−2Kμt dσN (t)
∥∥∥∥
Lp′

.

Thus, to get the result it suffices to obtain the estimate

∫ (∫ ∞

0

tp−2Kμt dσN (t)
)p′

dx ≤ Cp′ −1

∫ ∞

0

c(t)tp−1 dσN (t). (11.2.12)

First, we note that by the maximum principle
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∫
(Kμτ )p

′ −1Kμt dx ≤ Mc(t) (11.2.13)

for all τ ∈ (0,∞). Next, we consider separately the cases p ≥ 2 and p < 2.
Let p ≥ 2. The left-hand side in (11.2.12) can be written as

p′
∫∫ ∞

0

Kμτ

(∫ ∞

τ

Kμtt
p−2 dσN (t)

)p′ −1

τp−2 dσN (τ) dx.

By virtue of the Hölder inequality this expression is majorized by

p′
(∫∫ ∞

0

τp−1(Kμτ )p
′
dσN (τ) dx

)2−p′

×
(∫∫ ∞

0

(Kμτ )p
′ −1

∫ ∞

τ

Kμtt
p−2 dσN (t) dσN (τ) dx

)p′ −1

,

which by (11.2.13) does not exceed

p′
M

p′ −1

(∫ ∞

0

‖Kμt‖p
′

Lp′ t
p−1 dσN (t)

)2−p′(∫ ∞

0

c(t)tp−1 dσN (t)
)p′ −1

.

Thus (11.2.11) follows for p ≥ 2.
Let p < 2. The left-hand side in (11.2.12) is equal to

p′
∫∫ ∞

0

Kμtt
p−2 dσN (t)

(∫ t

0

Kμτ τ
p−2 dσN (τ)

)p′ −1

dx.

Hence, by Minkowski’s inequality, it is majorized by

p′
∫ ∞

0

(∫ t

0

(∫
(Kμτ )p

′ −1Kμt dx
)p−1

τp−2 dσN (τ)
)p′ −1

tp−2 dσN (t).

Estimating this value by (11.2.13), we obtain that it is majorized by

p′
M

∫ ∞

0

c(t)
(∫ t

0

τp−2 dτ
)p′ −1

tp−2 dσN (t),

and (11.2.11) follows for p < 2. ��

11.3 Conditions for the Validity of Embedding Theorems
in Terms of Isocapacitary Inequalities

We state the generalization of Theorem 2.3.3 to the case of Bessel and Riesz
potential spaces in R

n. We omit the proof since it duplicates that of Theo-
rem 2.3.3.
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Theorem. The best constant in the inequality
∥∥|u|p∥∥

LM (μ)
≤ A‖u‖p

Sl
p
, (11.3.1)

where Sl
p = hlp for pl < n or Sl

p = H l
p for pl ≤ n, p ∈ (1,∞), is equivalent to

B = sup
{
μ(E)N−1(1/μ(E))

cap(E,Sl
p)

: E ⊂ R
n, cap

(
E,Sl

p

)
> 0
}
.

Namely, B ≤ A ≤ pBC, where C is the constant in (11.1.4) (cf. Theo-
rem 11.2.2).

This assertion immediately implies the following corollary.

Corollary. The best constant Cp,q in

‖u‖Lq(μ) ≤ Cp,q‖u‖Sl
p
, (11.3.2)

where q ≥ p > 1 and Sl
p is one of the spaces in the preceding theorem, satisfies

Bp,q ≤ Cp,q ≤ Bp,q(pC)1/p.

Here

Bp,q = sup
{
μ(E)p/q

cap(E,Sl
p)

: E ⊂ R
n, cap

(
E,Sl

p

)
> 0
}

and C is the constant in (11.1.4).

A theorem due to D.R. Adams [5] states that inequality (11.3.2) with
q = p > 1, lp < n, and Sl

p = hlp holds if and only if, for all compact sets
e ⊂ R

n,
‖Ilμe‖p

′

Lp′ ≤ const μ(e), (11.3.3)

where μe is the restriction of the measure μ to e.
This result follows from the preceding corollary and the next proposition.

Proposition 1. Let p ∈ (1,∞), lp < n. Then we have the relation Q ∼ R
where

Q = sup
e

μ(e)
cap(e, hlp)

, R = sup
e

‖Ilμe‖pLp′

[μ(e)]p−1
,

and the suprema are taken over all compacta e in R
n.

Proof. For any u ∈ C∞
0 , u ≥ 1 on e, we obtain

μ(e) ≤
∫
u(x) dμe(x) ≤

∥∥(−Δ)−l/2μe

∥∥
Lp′

∥∥(−Δ)l/2u
∥∥
Lp
,

which can be rewritten as
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μ(e) ≤ c‖Ilμe‖Lp′ ‖u‖hl
p
.

Taking the minimum of the right-hand side over all functions u, we obtain

μ(e) ≤ cR1/pμ(e)1/p
′[

cap
(
e, hlp

)]1/p
.

On the other hand, by the Corollary,
∫

|u|p dμ ≤ cQ‖u‖p
hl

p
.

Therefore, ∣∣∣∣
∫
u dμe

∣∣∣∣
p

≤ cQμ(e)p−1
∥∥(−Δ)l/2u

∥∥p
Lp′
,

which yields
‖Ilμe‖Lp′ ≤ cQ1/pμ(e)1/p

′
.

Thus h ≤ cQ. The proof is complete. ��

In the same way, we can obtain the relation

sup
e

μ(e)
cap(e,H l

p)
∼ sup

e

‖Jlμe‖pLp′

[μ(e)]p−1
,

where e is either an arbitrary compactum in R
n or a compactum with a

diameter not exceeding unity.
An important refinement of Proposition 1 due to Kerman and Sawyer [420]

will be considered in Sect. 11.5.
To conclude the present section, we note that with the same arguments as

in the proof of Proposition 1 together with Theorem 11.2.1 we arrive at the
following proposition.

Proposition 2. Let p > 1, l = 1, 2, . . . , lp < n and let w be a nonnega-
tive function that satisfies the Muckenhoupt condition (11.2.6). Then the best
constant Cp in

‖u‖Lp(μ) ≤ Cp‖w∇lu‖Lp , u ∈ C∞
0 ,

satisfies the relation

Cp ∼ sup
e

‖ 1
w Ilμe‖pLp′

[μ(e)]p−1
,

where e is an arbitrary compactum in R
n.

11.4 Counterexample to the Capacitary Inequality for
the Norm in L2

2(Ω)

Let Ω be a domain in R
n and let ω denote a subdomain of Ω with compact

closure in Ω. In this section we use the norm
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‖u‖L1
p(Ω) = ‖u‖Lp(ω) + ‖∇lu‖Lp(Ω).

Let F be a relatively closed subset of Ω. By the capacity of F generated by
the space Ll

p(Ω) we mean the set function

cap
(
F ;Ll

p(Ω)
)

= inf
{
‖u‖p

Ll
p(Ω)

: u ∈ C∞(Ω), u|F ≥ 1
}
.

Let μ be a Borel measure on Ω, p ∈ (1,∞), and suppose that the trace
inequality

‖u‖Lp(Ω,μ) ≤ C‖u‖Ll
p(Ω), C = const,

holds for all u ∈ C∞(Ω). Then the isocapacitary inequality

μ(F ) ≤ D cap
(
F ;Ll

p(Ω)
)
, D = const, (11.4.1)

easily follows from the definition of cap(F ;Ll
p(Ω)) for any relatively closed

F ⊂ Ω with D = Cp. One can readily show that (11.4.1) is also sufficient for
the trace inequality to be valid for all u ∈ C∞(Ω) if the capacitary inequality

∫ ∞

0

cap
({
x ∈ Ω :

∣∣u(x)∣∣ ≥ t};Ll
p(Ω)

)
d
(
tp
)
≤ c‖u‖p

Ll
p(Ω)

, (11.4.2)

has been established for all u ∈ C∞(Ω). Indeed, in view of Lemma 1.2.3 we
have ∫

Ω

∣∣u(x)∣∣pdμ =
∫ ∞

0

μ(Nt)d
(
tp
)
,

where
Nt =

{
x ∈ Ω : |u(x)| ≥ t

}
.

By applying the above isocapacitary inequality with respect to F = Nt and
using the (11.4.2), one obtains the trace inequality with Cp = cD.

We now remark that the isocapacitary inequality really holds true for
l = 1, 2, p ∈ (1,∞) and “nice” domains Ω, say, Ω ∈ C0,1. In this case it is
a consequence of Stein’s extension theorem and the validity of the capacitary
inequality for the norm in W l

p(R
n), (see Sect. 10.2).

First, we note that if p ∈ [1,∞), the capacitary inequality (11.4.2) holds
for the norm in L1

p(Ω) without restrictions on Ω.

Theorem. Let Ω be a domain in R
n. If u ∈ C∞(Ω)∩L1

p(Ω), 1 ≤ p <∞,
then ∫ ∞

0

cap
(
Nt;L1

p(Ω)
)
d
(
tp
)
≤ c(p)‖u‖pL1

p(Ω).

Proof. Since cap(Nt;L1
p(Ω)) is a nonincreasing function of t, the integral

on the left-hand side of the required inequality does not exceed

S =
(
2p − 1

) ∞∑
j=− ∞

2pj cap
(
N2j ;L1

p(Ω)
)
.
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Given any ε ∈ (0, 1), let λε be a function in C∞(R1) such that 0 ≤ λε ≤ 1, 0 ≤
λ′
ε ≤ 1+ε, λε = 0 in a neighborhood of (−∞, 0] and λε = 1 in a neighborhood

of [1,∞). Putting
uj(x) = λε

(
21−j

∣∣u(x)∣∣− 1
)
,

we observe that uj ∈ C∞(Ω), uj(x) = 1 for x ∈ N2j , supp uj ⊂ N2j−1 . Hence

S ≤ 2p−1
(
2p − 1

)
(S1 + S2),

where

S1 =
∞∑

j=− ∞
2pj

∫
N2j−1 \N2j

|∇uj |p dx,

S2 =
∞∑

j=− ∞
2pj

∫
ω∩N2j−1

|uj |p dx.

Clearly |∇uj | ≤ (1 + ε)21−j |∇u|, and

S1 ≤ c
∞∑

j=− ∞

∫
N2j−1 \N2j

|∇u|p dx = c‖∇u‖pLp(Ω),

with c = (1 + ε)p2p.
To bound the sum S2, we note that |uj | ≤ 1 and that the function (0,∞) �

t �→ mn(ω ∩ Nt) is nonincreasing. Therefore, the general term of the sum is
not greater than

2p
(
1 − 2−p

)−1
∫ 2j−1

2j−2
mn(ω ∩ Nt) d

(
tp
)
.

Thus
2−p

(
1− 2−p

)
S2 ≤

∫ ∞

0

mn(ω ∩ Nt) d
(
tp
)

=
∫
ω

∣∣u(x)∣∣p dx.

Here Lemma 1.2.3 with μ = mn|ω has been used at the last step. By letting ε
tend to zero, we arrive at the required capacitary inequality with c = 23p−1.

��

In this section we show that the capacitary inequality for the norm in
Ll

p(Ω) fails for l > 1 unless some restrictions are imposed on Ω. We describe
a bounded domain Ω ⊂ R

2 and a Borel measure μ on Ω such that there is no
constant C > 0 for which the trace inequality

‖u‖L2(Ω,μ) ≤ C‖u‖L2
2(Ω)

holds for all u ∈ C∞(Ω) in spite of the fact that the inequality

μ(F ) ≤ const cap
(
F ;L2

2(Ω)
)

(11.4.3)

is true for all sets F ⊂ Ω closed in Ω. According to what was said previously,
the capacitary inequality in L2

2(Ω) fails for the same domain.
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Before we proceed to the construction of Ω, we prove two auxiliary asser-
tions. In this section c designates various absolute positive constants.

Lemma 1. Let

Tε =
{
(x, y) ∈ R

2 : |x| < y < ε
}

and let u ∈W 2
2 (Tδ), where 0 < 2ε < δ ≤ 1. Then

‖∇u‖L2(Tε) ≤ cε| log ε|1/2
(
δ−2‖u‖L2(Tδ) + ‖∇2u‖L2(Tδ)

)
.

Proof. It will suffice to consider the case δ = 1. Here the required estimate
is a consequence of the inequality

‖v‖L2(Tε) ≤ cε| log ε|1/2‖∇v‖L2(T1),

where v ∈ W 1
2 (T1), v(x, y) = 0 for r = (x2 + y2)1/2 ≥ 1. Passing to the polar

coordinates (x, y) = (r, θ), we observe that

v(r, θ)2 =
(∫ 1

r

v�(�, θ) d�
)2

≤ | log r|
∫ 1

0

v�(�, θ)2�d�,

if r ∈ (0, 1), θ ∈ (π/4, 3π/4). Thus,

‖v‖2
L2(Tε) ≤

∫ 3π/4

π/4

dθ
∫ ε

√
2

0

r| log r| dr
∫ 1

0

v�(�, θ)2�d�,

and the result follows. ��

Lemma 2. Let 0 < 2ε < δ ≤ 1 and suppose that u ∈W 2
2 (Tδ) satisfies

‖∇2u‖L2(Tδ) ≤ 1, ‖u‖L∞(Tε) ≤ 1, ‖∇u‖L2(Tε) ≤ ε| log ε|1/2.

Then ∣∣u(x, y)∣∣ ≤ c(1 + y| log ε|1/2
)

for all (x, y) ∈ Tδ.

Proof. There exists a linear function �(x, y) = ax + by + d such that the
generalized Poincaré inequality

δ−2‖u− �‖L2(Tδ) + δ−1
∥∥∇(u− �)

∥∥
L2(Tδ)

≤ c‖∇2u‖L2(Tδ)

is valid. Therefore, by the Sobolev embedding and Lemma 1

‖u− �‖L∞(Tδ) ≤ cδ,
∥∥∇(u− �)

∥∥
L2(Tε)

≤ cε| log ε|1/2. (11.4.4)

By the assumptions of the lemma, we obtain
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Fig. 35.

Fig. 36.

‖�‖L∞(Tε) ≤ c, ‖∇�‖L2(Tε) ≤ cε| log ε|1/2.

In other words,
|a|+ |b| ≤ c| log ε|1/2, |d| ≤ c.

By using (11.4.4), we arrive at the desired estimate thus concluding the proof.
��

We now turn to the counterexample. Let {σi}i≥1 be a sequence of open
nonoverlapping intervals of length 21−i lying in interval (0,4) of the real axis.
For definiteness, σi are supposed to concentrate near the origin, i.e., for any
small ε > 0, interval (ε, 4) contains only a finite number of σi. By {Δi}i≥1

we denote the sequence of open right isosceles triangles situated over the axis
Ox with hypotenuses σi.

Let δi be the triangle symmetric to Δi with respect to the line y = 2−i−εi,
εi ∈ (0, 2−i) being specified in the following. Furthermore, let R = [−1, 4] ×
[−1, 0]. We define Ω to be the interior of the union of R and all the triangles
Δi and δi (see Figs. 35 and 36).

To introduce the measure μ, we use the points
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Aij =
(
γi, 2−i − εi + 2jhi

)
, j = 1, 2, . . . , 2i; i = 1, 2, . . . ,

where γi is the abscissa of the middle point of σi,

hi = | log2 εi|−1/2, log2 | log2 εi| = 2i+2.

Let F be an arbitrary Borel subset of Ω and χF its characteristic function.
The required measure μ is defined by

μ(F ) =
∑
i≥1

2i∑
j=1

2−2j−i/2χF (Aij).

Let us verify (11.4.3). To be more specific, we introduce the norm in L2
2(Ω)

by
‖u‖L2

2(Ω) = ‖∇2u‖L2(Ω) + ‖u‖L2((−1,4)×(−1,0)).

We deduce (11.4.3) by using the estimate

cap
(
{Aij};L2

2(Ω)
)
≥ c2−2j , j = 1, 2, . . . , 2i, (11.4.5)

which will be checked later. Let F be a relatively closed subset of Ω and let
m(F ) be the minimum value of j such that there exists a point Aij in the
set F . Put m(F ) = ∞ if there are no points Aij in F . Then (11.4.5) and the
definition of μ imply

cap
(
F ;L2

2(Ω)
)
≥ c2−2m, μ(F ) ≤ c2−2m.

Hence μ satisfies (11.4.3).
Inequality (11.4.5) is a consequence of the estimate

∣∣u(Aij)
∣∣ ≤ c2j ,

where u is an arbitrary function in L2
2(Ω) normalized by ‖u‖L2

2(Ω) = 1. Let G
be the interior of the union R

⋃∞
i=1Δi. Clearly, G ⊂ Ω and G possesses the

cone property. By Lemma 1 and the Sobolev embedding L2
2(G) ⊂ L∞(G), we

have
‖∇u‖L2(ti) ≤ cεi| log εi|1/2, ‖u‖L∞(ti) ≤ c,

where ti = δi∩Δi. Next, Lemma 2 applied to the triangles δi and δi∩{(x, y) :
y < 2−i − εi} yields

∣∣u(x, y)∣∣ ≤ c(1 +
∣∣y − 2−i + 2εi

∣∣| log εi|1/2
)
,

for all (x, y) ∈ δi. Since the ordinate of the point Aij is 2−i − εi + 2jhi,
inequality |u(Aij)| ≤ c2j follows.

We now define a function f such that

f ∈ L2
2(Ω) ∩ C(Ω), f �∈ L2(Ω,μ).
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Put f(x, y) = 0 for y ≤ 0 and

f(x, y) = 2−i/4hiη
(
2iy
)(
y + εi − 2−i

)
log2

(
2−i − y

)
,

on the set
τi =

{
(x, y) ∈ Δi : y ≤ 2−i − εi

}
,

where η ∈ C∞(0,∞), η(t) = 0 for t ≤ 1/4, η(t) = 1 for t ≥ 1/2. The linear
extension of this function f to the set {(x, y) ∈ δi, y > 2−i − εi} will be also
denoted by f , i.e.,

f(x, y) = −2−i/4h−1
i

(
y − 2−i + εi

)

for (x, y) ∈ δi, y > 2−i − εi. Clearly supp ∇2f is placed in the set ∪i≥1τ i.
Furthermore, the estimate

|∇2f | ≤ c2−i/4hi max
{
2ii,

(
2−i − y

)−1}

holds for (x, y) ∈ Δi. Therefore

‖∇2f‖2
L2(Ω) =

∑
i≥1

‖∇2f‖2
L2(Δi)

≤ c
∑
i≥1

2−i/2h2
i

(
i2 + | log2 εi|

)
≤ c

∑
i≥1

2−i/2 <∞

and f ∈ L2
2(Ω). At the same time

‖f‖2
L2(Ω,μ) =

∑
i≥1

2i∑
j=1

2−i/2−2jf(Aij)2 =
∑
i≥1

1 = ∞.

The result follows. ��

11.5 Ball and Pointwise Criteria

It was shown by Kerman and Sawyer [420] (see also Sawyer [691]) that it is
enough to assume in (11.3.3) with Sl

p = hlp that E = B, where B = B(x, r) is
a ball (or cube) in R

n.

Theorem 1. Let p > 1 and 0 < l < n. The trace inequality (11.3.3) holds
if and only if ∫

B

[
Il(χB dμ)

]p′

dx ≤ Cμ(B) (11.5.1)

for every ball B.

The following criterion for (11.3.3) with Sl
p = hlp formulated in purely

pointwise form was obtained by Maz’ya and Verbitsky [591].
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Theorem 2. Let 1 < p < ∞ and let 0 < l < n. Let μ be a nonnegative
Borel measure on R

n. Then the following statements are equivalent.
(i) The trace inequality (11.3.3) or, equivalently

‖Ilf‖Lp(dμ) ≤ C‖f‖Lp (11.5.2)

holds for all f ∈ Lp(Rn).
(ii) Ilμ <∞ a.e. and

Il
[
(Ilμ)p

′]
(x) ≤ CIlμ(x) a.e. (11.5.3)

(iii) The trace inequality (11.5.2) holds with μ replaced by the absolutely
continuous measure dν = (Ilμ)p

′
dx, or, equivalently,

ν(E) =
∫
E

(Ilμ)p
′
dx ≤ C cap

(
E;hlp

)
, (11.5.4)

where C is a constant which is independent of a compact set E.

Both Theorems 1 and 2 will be proved in the present section.
We shall need the following “integration by parts” lemma which is an

analog of the elementary inequality
( ∞∑

k=1

ak

)p

≤ p
∞∑

k=1

ak

( ∞∑
j=k

aj

)p−1

,

where 1 ≤ p < ∞ and {ak} is a sequence of nonnegative numbers. A simi-
lar statement for more general integral operators is proved in Verbitsky and
Wheeden [776]. (See also Kalton and Verbitsky [412] where a discrete analog
with sharp constants is used.)

Lemma. Let 0 < l < n and 1 ≤ p <∞. Let μ be a positive Borel measure
on R

n and let f ∈ L1
loc(dμ), f ≥ 0. Suppose that Il(f dμ)(x) <∞. Then

[
Il(f dμ)(x)

]p ≤ CIl[f(Il(f dμ)
)p−1 dμ

]
(x), (11.5.5)

where C is a constant that depends only on μ, p, and n.

Proof. For convenience we ignore the normalization constant cn in the
definition of Il and denote by C constants that depend only on l, n, and p.
For a fixed x ∈ R

n such that A = Il(f dμ)(x) <∞, we set

B = Il
[
f
(
Iμ(f dμ)

)p−1 dμ
]
(x).

Then (11.5.5) may be rewritten as Ap ≤ CB.
We first consider the more difficult case 1 < p ≤ 2. Clearly

Ap =
∫

Rn

f(y)
|x− y|n−l

[∫
Rn

f(z)
|x− z|n−l

dμ(z)
]p−1

dμ(y) ≤ I + II ,
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where

I =
∫

Rn

f(y)
|x− y|n−l

[∫
{z:|y−z|≤2|x−z|}

f(z)
|x− z|n−l

dμ(z)
]p−1

dμ(y)

and

II =
∫

Rn

f(y)
|x− y|n−l

[∫
{z:|y−z|>2|x−z|}

f(z)
|x− z|n−l

dμ(z)
]p−1

dμ(y).

To estimate I, notice that in the inside integral we have

|x− z|l−n ≤ C|y − z|l−n.

Hence

I ≤ C
∫

Rn

f(y)
|x− y|n−l

[∫
Rn

f(z)
|y − z|n−l

dμ(z)
]p−1

dμ(y) = CB.

We estimate II using Hölder’s inequality with exponents 1/(p− 1) and
1/(2− p), which gives II ≤ A2−pIII p−1, where by Fubini’s theorem,

III =
∫

Rn

f(y)
|x− y|n−l

[∫
{z:|y−z|>2|x−z|}

f(z)
|x− z|n−l

dμ(z)
]

dμ(y)

=
∫

Rn

f(z)
|x− z|n−l

[∫
{y:|y−z|>2|x−z|}

f(y)
|x− y|n−l

dμ(y)
]

dμ(z).

We now estimate the function in square brackets on the right-hand side, which
we denote by

G(z) =
∫

{y:|y−z|>2|x−z|}

f(y)
|x− y|n−l

dμ(y).

Obviously, G(z) ≤ A. On the other hand, G(z) ≤ CIl(f dμ)(z). Indeed, by
the triangle inequality,

{
y : |y − z| > 2|x− z|

}
⊂
{
y : |y − z| ≤ 2|x− y|

}

and hence

G(z) ≤
∫

{y:|y−z|≤2|x−y|}

f(y)
|x− y|n−l

dμ(y) ≤ CIl(f dμ)(z).

Combining the preceding inequalities, we get

G(z) ≤ CA2−p
[
Il(f dμ)(z)

]p−1
.

From this it follows that III ≤ CA2−pB, and thus

II ≤ A2−pIII p−1 ≤ CAp(2−p)Bp−1.
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Combining the estimates for I and II , we obtain

Ap ≤ CB + CAp(2−p)Bp−1,

which yields Ap ≤ CB for 1 < p ≤ 2.
We now show that the inequality Ap ≤ CB for p > 2 follows from the case

p = 2 considered previously. By Hölder’s inequality with exponents p− 1 and
(p− 1)/(p− 2) we have

A2 =
[
Il(f dμ)(x)

]2 ≤ CIl[f(Il(f dμ)
)
dμ
]

≤ C
[
Il
[
f
(
Il(f dμ)

)]p−1 dμ
] 1

p−1
[
Il(f dμ)

] p−1
p−2 = CB

1
p−1A

p−2
p−1 ,

which clearly implies Ap ≤ CB. The proof of the Lemma is complete. ��

Remark. It is easy to see that the above Lemma is true without the re-
striction Il(f dμ)(x) <∞, i.e., the right-hand side of (11.5.5) is infinite if the
same is true for the left-hand side (see Verbitsky and Wheeden [776]).

We now show that the pointwise condition

Il
[
(Ilμ)p

′]
(x) ≤ cIlμ(x) <∞ a.e. (11.5.6)

implies both of the trace inequalities

‖Ilf‖Lp(dμ) ≤ C‖f‖Lp , ∀f ∈ Lp

(
R

n
)

(11.5.7)

and
‖Ilf‖Lp(dν) ≤ C‖f‖Lp , ∀f ∈ Lp

(
R

n
)
, (11.5.8)

where ν is defined by
dν = (Ilμ)p

′
dx. (11.5.9)

Proposition 1. Let 1 < p <∞. Let μ be a positive Borel measure on R
n

and let ν be defined by (11.5.9). Suppose that the pointwise condition (11.5.6)
holds. Then both (11.5.7) and (11.5.8) hold.

Proof. Without loss of generality we may assume that f ≥ 0, and that f
is uniformly bounded and compactly supported. By the above Lemma with
dμ = dx and Fubini’s theorem,

‖Ilf‖pLp(dμ) ≤ C
∫

Rn

Il
[
f(Ilf)p−1

]
dμ = C

∫
Rn

f(Ilf)p−1(Ilμ) dx.

Here C is the constant in (2.1) that depends only on p, l, and n. From this,
by Hölder’s inequality, we get

‖Ilf‖pLp(dμ) ≤ C‖f‖Lp‖Ilf‖
p−1
Lp(dν). (11.5.10)

The preceding inequality shows that (11.5.8)⇒(11.5.7) for any μ.
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Repeating the above argument with ν in place of μ, we obtain

‖Ilf‖pLp(dν) ≤ C‖f‖Lp‖Ilf‖
p−1
Lp(dν1)

, (11.5.11)

where by (11.5.6)

dν1 = (Ilν)p
′
dx =

[
Il(Ilμ)p

′]p′

dx ≤ cp
′
dν.

Here c is the constant in (11.5.5). Hence by (11.5.11) and the preceding esti-
mate

‖Ilf‖pLp(dν) ≤ C‖f‖Lp‖Ilf‖
p−1
Lp(dν). (11.5.12)

Assuming that ‖Ilf‖Lp(dν) <∞, we get

‖Ilf‖Lp(dν) ≤ C‖f‖Lp ,

which proves (11.5.8). Now (11.5.10) combined with the preceding estimate
yields (11.5.7).

It remains to check that ‖Ilf‖Lp(dν) < ∞, which follows easily from
(11.5.6) and the assumption that f is bounded and compactly supported.
Indeed, by (11.5.6) Ilμ <∞ a.e., which implies that Ilμ is locally integrable.
Since Iαf is obviously bounded, it follows that

‖Ilf‖pLp(dν) =
∫

Rn

(Ilf)p(Ilμ)p
′
dx ≤ C

∫
Rn

Ilf(Ilμ)p
′
dx

= C

∫
Rn

fIl
[
(Ilμ)p

′]
dx ≤ C

∫
Rn

fIlμdx <∞.
��

Proposition 2. Let 1 < p <∞. Let μ be a positive Borel measure on R
n.

Then the pointwise condition (11.5.6) is equivalent to the Kerman–Sawyer
condition ∫

B

[
Il(χB dμ)

]p′

dx ≤ Cμ(B) (11.5.13)

for every ball B = B(x, r).

Proof. By Proposition 1 it follows that the pointwise condition (11.5.6)
implies the trace inequality (11.5.7). By duality, (11.5.7) is equivalent to the
inequality

∥∥Il(g dμ)
∥∥
Lp′

≤ C‖g‖Lp′ (dμ), ∀g ∈ Lp′ (dμ). (11.5.14)

Letting g = χB , B = B(x, r), we see that (11.5.13) holds.
To prove the converse, we shall show that (11.5.13) implies

ν
(
B(x, r)

)
=
∫
B(x,r)

(Ilμ)p
′
dx ≤ Crn

∫ ∞

r

μ(B(x, t))
tn

dt
t

(11.5.15)
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for every ball B(x, r), which readily gives (11.5.6).
Note that, clearly,

Il(χB(x,r) dμ) ≥ Cμ(B(x, r))
rn−l

χB(x,r), (11.5.16)

and hence it follows from (11.5.13) that

μ
(
B(x, r)

)
≤ Crn−lp. (11.5.17)

In particular, the right-hand side of (11.5.15) is finite and hence Ilμ <∞ a.e.
The proof of (11.5.15) is based on the decomposition dμ = dμ1 + dμ2,

where

dμ1(x) = χB(x,2r) dμ(x) and dμ2(x) = (1 − χB(x,2r)) dμ(x).

For y ∈ B(x, r),
Ilμ2(y) ≤ CIlμ2(x),

where C depends only on l and n. Hence by (11.5.13) and the preceding
estimate,

ν
(
B(x, r)

)
=
∫
B(x,r)

(Ilμ)p
′
dy ≤ C

∫
B(x,r)

(Ilμ1)p
′
dy + C

∫
B(x,r)

(Ilμ2)p
′
dy

≤ Cμ
(
B(x, 2r)

)
+ Crn

[
Ilμ2(x)

]p′

.

Clearly,

[
Ilμ2(x)

]p′

= C

[∫ ∞

2r

μ(B(x, t))
tn−l

dt
t

]p′

= Cp′
∫ ∞

2r

μ(B(x, t))
tn−l

(∫ ∞

t

μ(B(x, s))
sn−l

ds
s

)p′ −1 dt
t
.

Now by (11.5.16) it follows that μ(B(x, s)) ≤ Csn−lp, and hence
(∫ ∞

t

μ(B(x, s))
sn−l

ds
s

)p′ −1

≤ Ct−l.

From this we obtain
[
Ilμ2(x)

]p′

≤ C
∫ ∞

2r

μ(B(x, t))
tn

dt
t
.

Combining these estimates, we get

ν
(
B(x, r)

)
≤ Cμ

(
B(x, 2r)

)
+ Crn

∫ ∞

2r

μ(B(x, t))
tn

dt
t

≤ Crn
∫ ∞

r

μ(B(x, t))
tn

dt
t
.

This proves (11.5.15).
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To obtain (11.5.6), we notice that by (11.5.15) and Fubini’s theorem,

Ilν(x) = C

∫ ∞

0

ν(B(x, r))
rn−l

dr
r

≤ C
∫ ∞

0

rl
∫ ∞

r

μ(B(x, t))
tn

dt
t

dr
r

= C

∫ ∞

0

μ(B(x, t))
tn

(∫ t

0

rl
dr
r

)
dt
t

= C

∫ ∞

0

μ(B(x, t))
tn−l

dt
t

= CIlμ(x).

Hence
Ilν(x) = Il

[
(Ilμ)p

′]
(x) ≤ CIlμ(x) <∞ a.e. ��

We now are in a position to complete the proof of Theorems 11.5/1 and
11.5/2.

By Proposition 1 it follows that (11.5.6)⇒(11.5.7) and (11.5.8). As was
observed in the proof of Proposition 11.5/1, it follows from Lemma 11.5 that
(11.5.8)⇒(11.5.7). Since (11.5.7)⇒(11.5.13) and (11.5.13)⇔(11.5.6) by Propo-
sition 1, we have shown that the following conditions are equivalent:

(11.5.7) ⇔ (11.5.8) ⇔ (11.5.6) ⇔ (11.5.13).

The proofs of Theorems 1 and 2 are complete. ��

11.6 Conditions for Embedding into Lq(μ) for p > q > 0

In the present section we discuss the necessary and sufficient conditions for
the validity of (11.3.2) for p > q > 0, p > 1.

11.6.1 Criterion in Terms of the Capacity Minimizing Function

Theorem 1. Let p ∈ (1,∞), 0 < q < p, l > 0. The inequality

‖u‖Lq(Rn,μ) ≤ Cp,q‖u‖Sl
p
, (11.6.1)

where Sl
p is the same as in Theorem 11.3, holds for all u ∈ C∞

0 (Rn) if and
only if

Dp,q =
∫ μ(Rn)

0

(
tp/q

κ(t)

) q
p−q dt

t
<∞,

where

κ(t) = inf
{
cap
(
F, Sl

p

)
: F is a compactum in R

n, μ(F ) ≥ t
}
,

t ∈
(
0, μ
(
R

n
))
.
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Proof. Sufficiency. We prove the inequality

‖u‖Lq(μ) ≤ (4pC)1/p
(

p

p− q

∫ μ(Rn)

0

(
t

κ(t)

)q/(p−q)

dt
)(p−q)/pq

‖u‖Sl
p
.

(11.6.2)
Let S be any sequence of open sets {gj}+∞

j=− ∞ such that ḡj+1 ⊂ gj . We put
μj = μ(gj), γj = cap(gj , Sl

p) and

Dp,q = sup
{S}

(
+∞∑

j=− ∞

(
(μj − μj+1)1/q

γ1/p

)pq/(p−q)
)(p−q)/pq

.

We show that the best constant in (11.6.1) satisfies

Cp,q ≤ (4pC)1/pDp,q, (11.6.3)

where C is the constant in (11.1.4).
Let f ∈ C∞

0 , f ≥ 0, u = Kf , gj = {x : (Kf)(x) > αj}, where α > 1.
Obviously,

‖u‖qLq(μ) ≤
∑
j

αq(j+1)
[
μ(gj) − μ(gj+1)

]
=
∑
j

αq(j+1)μj − μj+1

γ
q/p
j

γ
q/p
j .

By Hölder’s inequality the last sum does not exceed

Dq
p,q

(∑
j

αp(j+1)γj

)q/p

.

Next we note that

∑
j

αp(j+1)γj ≤
pα2p

αp − 1

∑
j

∫ αj

αj−1
cap
(
Nt, S

l
p

)
tp−1 dt.

Putting αp = 2 in this inequality, we obtain
∑
j

αp(j+1)γj ≤ 4p
∫ ∞

0

cap
(
Nt, S

l
p

)
tp−1 dt.

Consequently,
‖u‖Lq(μ) ≤ (4pC)1/pDp,q‖u‖Sl

p
, (11.6.4)

and (11.6.3) follows.
The inequality (11.6.2) results immediately from (11.6.4) and the estimates

∑
j

(
(μj − μj+1)p/q

γj

)q/(p−q)

≤
∑
j

μ
p/(p−q)
j − μp/(p−q)

j+1

γ
q/(p−q)
j

≤
∫ μ(Rn)

0

d(tp/(p−q))
(κ(t))q/(p−q)

.
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The proof of sufficiency is complete.
Necessity. First we remark that (11.6.1) implies κ(t) > 0 for t > 0. Let j

be any integer satisfying 2j < μ(Rn). Then there exists a compact set Fj ⊂ R
n

such that
μ(Fj) ≥ 2j , cap

(
Fj , S

l
p

)
≤ 2κ

(
2j
)
.

Let ϕj be a function for which

χFj ≤ Kl ∗ ϕj , ϕj ≥ 0, ‖ϕj‖pLp(Rn) ≤ 4κ
(
2j
)
,

where Kl is either the Riesz or the Bessel kernel.
Suppose that s is the integer for which 2s < μ(Rn) ≤ 2s+1 if μ(Rn) is

finite and s is an arbitrary integer otherwise. Let r < s be another integer
and let

ϕr,s = max
r≤j≤s

βjϕj , βj =
(
2j/κ

(
2j
))1/(p−q)

.

Furthermore, we put
fr,s = Kl ∗ ϕr,s.

Clearly,

‖fr,s‖pSl
p

= ‖ϕr,s‖pLp
≤

s∑
j=r

βp
j ‖ϕj‖pLp

≤ 4
s∑

j=r

βp
j κ
(
2j
)
.

To obtain a lower bound for the norm of fr,s in Lq(Rn, μ), we introduce
the nonincreasing rearrangement (fr,s)∗ of fr,s

(fr,s)∗(t) = inf
{
τ > 0 : μ

({
|fr,s| > τ

})
≤ t
}
, t ∈

(
0, μ
(
R

n
))
.

Since fr,s|Fj ≥ βj and μ(Fj) ≥ 2j , the inequality

μ
({
|fr,s| > τ

})
< 2j

implies τ ≥ βj . Hence

f∗
r,s(t) ≥ βj for t ∈

(
0, 2j

)
, r ≤ j ≤ s,

which gives

‖fr,s‖qLq(Rn,μ) =
∫ μ(Rn)

0

(
f∗
r,s(t)

)q dt ≥
s∑

j=r

∫ 2j

2j−1

(
f∗
r,s(t)

)q dt ≥
s∑

j=r

βq
j 2

j−1.

Next, we note that if (11.6.1) is valid for all u ∈ C∞
0 (Rn), then (11.6.1) is

valid for all u ∈ Sl
p. In particular, for u = fr,s one obtains

Cp,q ≥ c
(
∑s

j=r β
q
j 2

j)1/q

(
∑s

j=r β
p
j κ(2j))1/p

= c

(
s∑

j=r

2pj/(p−q)

(κ(2j))q/(p−q)

)1/q−1/p

.
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Letting r → −∞ and using the monotonicity of κ, we have

Cp,q ≥ c
(

s∑
j=− ∞

(
2j

κ(2j)

) q
p−q

2j

)1/q−1/p

≥ c
(∫ 2s

0

(
t

κ(t)

) q
p−q

dt
)1/q−1/p

with c independent of s. Letting s → ∞, we arrive at the estimate Cp,q ≥
cD

1/q−1/p
p,q for μ(Rn) = ∞. In the case of finite μ(Rn) we have

∫ μ(Rn)

2s

(
t/κ(t)

)q/(p−q) dt

≤ 2
∫ 2s

2s−1

(
2t/κ(2t)

)q/(p−q) dt ≤ c
∫ 2s

2s−1

(
t/κ(t)

)q/(p−q) dt,

and again the inequality Cp,q ≥ cD1/q−1/p
p,q is true. The proof is complete. ��

The proof of sufficiency implies the following assertion.

Corollary. Let the assumptions of the above theorem be fulfilled. If A is a
Borel subset of R

n, then
(∫

A

|u|q dμ
)1/q

≤ c
(∫ μ(A)

0

(
tp/q

κ(t)

) q
p−q dt

t

)(p−q)/pq

‖u‖Sl
p

for all u ∈ C∞
0 (Rn) with c depending only on p, q.

Proof. Let μA be the restriction of μ to the set A. Then it is readily seen
that κμ(t) ≤ κμA

(t). The result follows by applying the sufficiency statement
of the theorem with respect to the measure μA on R

n. ��

The following criterion of the inequality

‖u‖Lq(μ) ≤ c‖u‖hl
p
, (11.6.5)

with q < p, whose statement involves no capacity, was established by Cas-
cante, Ortega, and Verbitsky [175] for q > 1 and by Verbitsky [775] for q > 0
(see [176]).

This criterion is formulated in terms of the nonlinear potential

(Wl,pμ)(x) =
∫ ∞

0

[
μ(B(x, r))
rn−lp

]p′ −1 dr
r
,

which appeared in Maz’ya and Havin [567] and was used by Wolff in [372] in
his proof of inequality (10.4.8).

Theorem 2. Let 0 < q < p < ∞ and 0 < l < n. Then the inequality
(11.6.5) holds if and only if∫ (

Wl,pμ(x)
) q(p−1)

p−q dμ(x) <∞.
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11.6.2 Two Simple Cases

For pl > n the necessary and sufficient condition for the validity of (11.3.2),
where Sl

p = H l
p, W l

p or Bl
p, can be written in the following simple way.

Theorem 1. If pl > n, p > q and Cp,q is the best constant in (11.3.2),
then

Cp,q ∼
(∑

i≥0

μ
(
Q(i)

)p/(p−q)
)(p−q)/pq

, (11.6.6)

where {Q(i)} is the sequence of closed cubes with edge length 1 forming the
coordinate grid in R

n.

Proof. Let O(i) be the center of Q(i), O(0) = O, and let 2Q(i) be the
concentric cube of Q(i) with edges parallel to those of Q(0) and having edge
length 2. We put ηi(x) = η(x − O(i)), where η ∈ C∞

0 (2Q(0)), η = 1 on Q(0).
We have

‖u‖qLq(μ) ≤
∑
i≥0

‖u‖q
C(Q(i))

μ
(
Q(i)

)

≤
(∑

i≥0

μ
(
Q(i)

)p/(p−q)
)1−q/p(∑

i≥0

‖u‖p
C(Q(i))

)q/p

. (11.6.7)

Next we note that for pl > n

‖u‖
C(Q(i))

≤ ‖uηi‖Sl
p
, (11.6.8)

where Sl
p = hlp, w

l
p or blp (cf. (10.1.14) and items 6 and 9 of Theorem 10.1.3/4).

Now (10.1.14), (11.6.7), and (11.6.8) imply the upper bound for Cp,q.
To obtain the lower bound for Cp,q it suffices to insert the function

uN (x) =
N∑
i=0

μ
(
Q(i)

)
ηi(x), N = 1, 2, . . . ,

into (11.3.2). This concludes the proof. ��

The constant Cp,q can be easily calculated for q = 1.

Theorem 2. Let Sl
p be either H l

p or hlp. Then

Cp,1 = ‖Kμ‖Lp′ ,

where Kμ is either the Riesz or the Bessel potential.

Proof. Let |u| ≤ Kf , f ≥ 0 and ‖f‖Lp = ‖u‖Sl
p
. We have

∫
|u| dμ ≤

∫
fKμdx ≤ ‖f‖Lp‖Kμ‖Lp′ ,

which gives Cp,1 ≤ ‖Kμ‖Lp′ . The reverse inequality follows by the substitution
of u = K(Kμ)1/(p−1) into (11.3.2) with q = 1. ��
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11.7 Cartan-Type Theorem and Estimates for Capacities

In this section we establish the equivalence of inequalities of the type (11.1.6)
and (11.1.7). This follows from a theorem giving an estimate for the set where
the functions Wp,lμ and Sp,lμ, introduced in Sect. 10.4.2, majorize a given
value. Such estimates were first obtained for harmonic functions by Cartan
[172] (cf. also Nevanlinna [635]). For linear Riesz potentials they are given in
Landkof [477].

The same scheme is used here for the nonlinear case.

Lemma. Let 1 < p ≤ n/l and let μ be finite measure in R
n. Let ϕ denote

an increasing function on [0,+∞) with ϕ(0) = 0, ϕ(r) = ϕ(r0) = μ(Rn)
for r > r0. Further let D be the set {x ∈ R

n : (Pμ)(x) > Y [ϕ]}, where
Pμ = Wp,lμ for pl > n, Pμ = Sp,lμ for pl = n, and

Y [ϕ] =

{∫∞
0

( ϕ(r)
rn−lp )p−1 dr

r for 1 < p < n/l,∫∞
0

(ϕ(r))p
′ −1e−brr−1 dr for p = n/l.

Then D can be the covered by a sequence of balls of radii rk ≤ r0 such that
∑
k

ϕ(rk) ≤ cμ
(
R

n
)
. (11.7.1)

Proof. First, consider the case 1 < p < n/l. Let x ∈ D. Suppose
μ(B(x, r)) ≤ ϕ(r) for all r > 0. Then

(Wp,lμ)(x) =
∫ ∞

0

(
μ(B(x, r))
rn−lp

)p′ −1 dr
r

≤
∫ ∞

0

(
ϕ(r)
rn−lp

)p′ −1 dr
r
.

The latter means that x /∈ D. This contradiction shows that given any x ∈ D
there exists an r = r(x) ∈ (0, r0) such that ϕ(r) < μ(B(x, r)) ≤ μ(Rn).
Applying Theorem 1.2.1/1 we select a covering {B(xk, rk)}, k = 1, 2, . . . , of
D with finite multiplicity c = c(n) in the union of balls {B(xk, r(x))}, x ∈ D.
It is clear that

∑
k

ϕ(rk) <
∑
k

μ
(
B(xk, rk)

)
≤ cμ

(
R

n
)
,

and the result follows for 1 < p < n/l. For p = n/l the proof is the same. ��

In the next theorem we denote by Φ a nonnegative increasing function on
[0,+∞) such that tΦ(t−1) decreases and tends to zero as t→∞. Further, for
all u > 0, let ∫ +∞

u

Ψ(t)t−1 dt ≤ cΨ(u), (11.7.2)

where
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Ψ(v) =
{

(vΦ(v−1))p
′ −1 for 1 < p < n/l,

v(Φ(v1−p))p
′ −1 for p = n/l.

Theorem. Let p ∈ (1, n/l] and let μ be a finite measure in R
n. Further

let m be a positive number such that

mp−1 > μ
(
R

n
)

for p = n/l.

Then the set G = {x ∈ R
n : (Pμ)(x) > m} can be covered by a sequence of

balls {B(xk, rk)} with
∑
k

Φ
(
cap
(
Brk

, Sl
p

))
< cΦ

(
cm1−pμ

(
R

n
))
. (11.7.3)

Here Sl
p = hlp for lp < n and Sl

p = H l
p for lp = n.

Proof. Let κ = cap(B1, h
l
p) for n > lp. For n = lp we define κ as

κ = min
{
t : cap

(
Br, H

l
p

)
≤ t| log r|1−p, r < e−1

}
.

Further let Q = μ(Rn). In the Lemma we put ϕ(r) = Q for r > r0 and

ϕ(r) =
{
QΦ(κrn−lp)/Φ(κrn−lp

0 ) if pl < n, r ≤ r0,
QΦ(κ| log r|1−p)/Φ(κ| log r0|1−p) if pl = n, r ≤ r0.

Here and henceforth r0 is a number that will be specified later to satisfy the
inequality m > Y [ϕ] (the number Y [ϕ] was defined in the Lemma).

1. Let 1 < p < n/l. We have

Y [ϕ] =
∫ r0

0

(
ϕ(r)
rn−lp

)p′ −1 dr
r

+Qp′ −1 p− 1
n− lpr

(n−lp)/(1−p)
0 .

We show that the integral on the right does not exceed

cQp′ −1r
(n−lp)/(1−p)
0 .

This is equivalent to the inequality

(
Φ
(
κrn−lp

0

))1−p′
∫ r0

0

(
Φ(κrn−lp)
rn−lp

)p′ −1 dr
r

≤ cr(n−lp)/(1−p)
0 .

Putting κrpl−n = t, κrpl−n
0 = t0, we rewrite the latter as

∫ ∞

t0

(
tΦ
(
t−1
))p′ −1

t−1 dt ≤ c
(
t0Φ
(
t−1
0

))p′ −1
,

which is fulfilled by virtue of (11.7.2). Thus
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Y [ϕ] < cQp′ −1r
(n−lp)/(1−p)
0 ,

and the inequality Y [ϕ] < m is satisfied provided we put

rn−lp
0 =

(
cm−1

)p−1
Q.

We introduce the setD = {x ∈ R
n : (Pμ)(x) > Y [ϕ]}, which is open by the

lower semicontinuity of Pμ. Since m > cY [ϕ] then G ⊂ D. Let {B(xk, rk)} be
the sequence of balls constructed in the Lemma for the set D by the function
ϕ specified here. Inequality (11.7.1) can be rewritten as

∑
k

Φ
(
κrn−lp

k

)
≤ cΦ

(
cm1−pQ

)
.

Thus we obtain the covering of G by balls {B(xk, rk)} satisfying (11.7.3).
2. Let p = n/l and let r0 < 1/e. We have

Y [ϕ] =
∫ r0

0

(
ϕ(r)

)p′ −1e−crr−1 dr +Qp′ −1

∫ ∞

r0

e−crr−1 dr. (11.7.4)

The second integral is majorized by
∫ ∞

r0

e−brr−1 dr <
∫ 1

r0

r−1 dr +
∫ ∞

1

e−cr dr ≤
(
1 + c−1e−c

)
| log r0|.

We show that the first integral on the right in (11.7.4) does not exceed cQp′ −1×
| log r0|. In other words, we prove that

(
Φ
(
κ| log r0|1−p

))1−p′
∫ r0

0

(
Φ
(
κ| log r|1−p

))p′ −1 dr
r
< c| log r0|.

Putting κ| log r| = t, κ| log r0| = t0, we rewrite the preceding inequality as
∫ ∞

t0

(
Φ
(
t1−p

))p′ −1 dt ≤ ct0
(
Φ
(
t1−p
0

))p′ −1
,

which holds by (11.7.2). Therefore there exists a constant c ∈ (1,∞) such that

Y [ϕ] < cQp′ −1| log r0|.

Thus the inequality Y [ϕ] < m is satisfied provided we set

| log r0|1−p =
(
cm−1

)p−1
Q.

The completion of the proof follows the same line of reasoning as for p ∈
(1, n/l). ��

Remark 1. The proof of the theorem shows that in the case pl = n we can
take the radii of the balls, covering G, to be less than 1/e.
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Corollary 1. Let 1 < p ≤ n/l and let Φ be the function defined just before
the last theorem. Further let K be a compactum in R

n with cap(K,Sl
p) > 0

where Sl
p = hlp for pl < n and Sl

p = H l
p for pl = n. Then there exists a

covering of K by balls B(xk, rk) such that
∑
k

Φ
(
cap
(
Brk

, Sl
p

))
< cΦ

(
c cap

(
K,Sl

p

))
, (11.7.5)

where c is a constant that depends on n, p, l, and on the function Φ. In the
case pl = n we may assume that rk ≤ e−1.

Proof. We limit consideration to the case pl < n. For pl = n the argument
is the same. We need nonlinear potentials Vp,lμ defined by (4.4.4) in the
book by D.R. Adams and Hedberg [15]. (They used the notation Vμ

l,p.) These
potentials are comparable withWp,lμ defined in Sect. 10.4 (see (4.5.3) in [15]).

We put

C(K) = inf
{∫

Vp,lμdμ : Vp,lμ ≥ 1 (p, l)-quasi everywhere on K
}
.

By (10.4.8) the capacities C(K) and cap(K,hlp) are equivalent. In the
paper by Hedberg and Wolff [372] it was shown that the extremal measure
μK for the previous variational problem exists and that C(K) = μK(K).
We introduce the set Gε = {x ∈ R

n : Vp,lμK(x) ≥ 1 − ε}, where ε > 0.
Since Vp,lμK(x) ≥ 1 for (p, l)-quasi-every x ∈ K, then E ⊂ Gε ∪ E0 where
cap(E0, h

l
p) = 0.

By the Theorem there exists a covering of Gε by balls B(xj , rj) for
which (11.7.3) is valid with m = 1−ε and μ(Rn) = cap(K,hlp). Since Ψ(t)/t is
integrable on [1,+∞), the function ϕ(r) = Φ(cap(Br, h

l
p)) satisfies (10.4.16).

This and Proposition 10.4.3/2 imply that the set E0 has zero Hausdorff ϕ-
measure. Therefore, E0 can be covered by balls B(yi, �i) so that

∑
i

Φ
(
cap
(
B�i , h

l
p

))
< ε.

The balls B(xj , rj) and B(yi, �i) form the required covering. ��

Corollary 2. Let p ∈ (1, n/l] and let Sl
p = hlp for lp < n, Sl

p = H l
p for

lp = n. Further, let Φ be the function defined just before the Theorem. If a
measure μ is such that

μ
(
B(x, �)

)
≤ Φ

(
c cap

(
B�, S

l
p

))
, (11.7.6)

then, for any Borel set E with the finite capacity cap(E,Sl
p), the inequality

μ(E) ≤ cΦ
(
c cap

(
E,Sl

p

))
, (11.7.7)

where c is a constant that depends on n, p, l, and Φ is valid.
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Proof. It suffices to derive (11.7.7) for a compactum E. According to Corol-
lary 1 there exists a covering of E by balls B(xk, rk) satisfying (11.7.5). Using
the additivity of μ as well as estimate (11.7.6), we obtain

μ(E) ≤ μ

(⋃
k

B(xk, rk)
)
≤
∑
k

μ
(
B(xk, rk)

)

≤
∑
k

Φ
(
c cap

(
Brk

, Sl
p

))
< cΦ

(
c cap

(
E,Sl

p

))
.

The result follows. ��

Remark 2. According to (10.4.2) we have the equivalence cap(E,H l
p) ∼

cap(E, hlp) if diam E ≤ 1. Therefore under the additional requirement
diamE ≤ 1 we may also put Sl

p = H l
p in Corollary 2 for pl < n.

To prove this assertion we need to verify that the measure R
n ⊃ A →

μ1(A) = μ(A ∩ E) satisfies (11.7.6).
Let diam E ≤ 1 and, for all r ∈ (0, 1), let

μ
(
B(x, r)

)
≤ Φ

(
cap
(
Br, H

l
p

))
. (11.7.8)

For r < 1 we have

μ1

(
B(x, r)

)
= μ

(
B(x, r) ∩ E

)
≤ μ

(
B(x, r)

)
≤ Φ

(
cap
(
Br, H

l
p

))
≤ Φ

(
c cap

(
Br, h

l
p

))
.

In the case r ≥ 1
μ1

(
B(x, r)

)
≤ μ

(
B(y, 1)

)
for any y ∈ E. Hence, using (11.7.8) and the monotonicity of the capacity, we
obtain

μ1

(
B(x, r)

)
≤ Φ

(
cap
(
B1, H

l
p

))
≤ Φ

(
c cap

(
Br, h

l
p

))
.

Thus the measure μ1 satisfies (11.7.6).

11.8 Embedding Theorems for the Space Sl
p (Conditions

in Terms of Balls, p > 1)

Theorem. Let M be a convex function and let N be the complementary func-
tion of M . Further let Φ be the inverse function of t → tN−1(1/t) subject to
condition (11.7.2). Then:

(α) The best constant A in (11.3.1) with Sl
p = hlp, lp < n, is equivalent to

C1 = sup
{
�lp−nμ

(
B(x, �)

)
N−1

(
1/μ

(
B(x, �)

))
: x ∈ R

n, � > 0
}
.

(β) The best constant A in (11.3.1) with Sl
p = H l

p is equivalent to
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C2 = sup
{
�lp−nμ

(
B(x, �)

)
N−1

(
1/μ

(
B(x, �)

))
: x ∈ R

n, 0 < � < 1
}

if pl < n and to

C3 = sup
{
| log �|p−1μ

(
B(x, �)

)
N−1

(
1/μ

(
B(x, �)

))
: x ∈ R

n, 0 < � <
1
2

}

if pl = n.

The proof immediately follows from Theorem 11.3 and the equivalence
B ∼ Cj , j = 1, 2, 3, obtained in Corollary 11.7/2 and Remark 11.7/2.

Remark 1. We can easily see that in the case pl > n the constant A
in (11.3.1) with Sl

p = H l
p is equivalent to

C4 = sup
{
μ
(
B(x, 1)

)
N−1

(
1/μ

(
B(x, 1)

))
: x ∈ R

n
}
.

Indeed, let {η(j)} be a partition of unity subordinate to a covering of R
n

by unit balls {B(j)} with finite multiplicity. From the definition of the norm
in LM (μ) and the Sobolev theorem on embedding H l

p into L∞ we obtain

∥∥|u|p∥∥
LM (μ)

≤ c
∑
j

∥∥∣∣uη(j)
∣∣p∥∥

LM (μ)

≤ c1
∑
j

∥∥χ(·,B(j)
)∥∥

LM (μ)

∥∥uη(j)
∥∥p
Hl

p
≤ c1C4

∑
j

∥∥uη(j)
∥∥p
Hl

p
.

The last sum does not exceed c‖u‖p
Hl

p
(cf. Theorem 10.1.3/3). Hence A ≤ c2C4.

The opposite estimate follows from (11.3.1) by the substitution of the function
η ∈ C∞

0 (B(x, 2)), η = 1 on B(x, 1).

Now the D.R. Adams Theorem 1.4.1 follows from (α) of the previous
theorem where M(t) = tq/p, q > p.

Remark 2. We show that the condition (11.1.5) with s = n − pl is not
sufficient for (11.1.2) to hold in the case q = p. Let q = p, n > pl. We choose
a Borel set E with finite positive (n − pl)-dimensional Hausdorff measure.
We can take E to be closed and bounded (since any Borel set of positive
Hausdorff measure contains a bounded subset having the same property). By
the Frostman theorem (see Carleson [168], Theorem 1, Ch. 2) there exists a
measure μ �= 0 with support in E such that

μ
(
B(x, �)

)
≤ c�n−pl, (11.8.1)

where c is a constant that is independent of x and �. By Proposition 10.4.3/3,
cap(E,H l

p) = 0. On the other hand, from (11.1.2) it follows that μ(E) ≤
A cap(E,H l

p) and hence μ(E) = 0. This contradiction shows that (11.1.2)
fails although (11.8.1) holds.
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SettingM(t) = tq/p in the previous theorem, we obtain the following result
for the case lp = n.

Corollary 1. If lp = n, q > p > 1 then the exact constant A in

‖u‖Lq(μ) ≤ A‖u‖Hl
p

(11.8.2)

is equivalent to

C5 = sup
{
| log �|p−1

[
μ
(
B(x, �)

)]p/q : x ∈ R
n, 0 < � <

1
2

}
.

From the theorem of the present section we easily obtain the following
assertion relating the case lp = n, M(t) = exp(tp

′ −1) − 1 and measure μ of
“power type”.

Corollary 2. The inequality
∥∥|u|p∥∥

L
exp(tp′ −1−1)

≤ A‖u‖p
Sl

p

holds if and only if for 0 < � ≤ 1

μ
(
B(x, �)

)
≤ c�β ,

with a certain β > 0.

Proof. Since N ′(t) = (log t)p−1(1 + o(1)) as t → ∞ we have Φ−1(t) =
tN−1(1/t) = (log t)1−p(1 + o(1)). Hence, logΦ(t) = −tp′ −1(1 + o(1)). Obvi-
ously, Φ satisfies the condition (11.7.2). Now it remains to use cap(B�, H

l
p) ∼

| log �|1−p with � ∈ (0, 1
2 ) and to apply the Theorem. The proof is complete. ��

Remark 3. Since Bl
p(R

n) is the space of traces on R
n of functions in

H
l+1/p
p (Rn+1), the Theorem and Corollary 1 still hold if the space H l

p(Rn) is
replaced by Bl

p(R
n).

Remark 4. We can obtain assertions similar to the Theorem and Corollar-
ies 1 and 2 by replacing u by ∇ku in the left-hand sides of inequalities (11.3.1)
and (11.8.2). For example, the generalization of Corollary 1 runs as follows.

If (l − k)p = n, q > p > 1 then the best constant in

‖∇ku‖Lq(μ) ≤ A‖u‖Hl
p

(11.8.3)

is equivalent to C5.
The estimate A ≤ cC5 needs no additional arguments. To prove the reverse

inequality we place the origin at an arbitrary point of the space and put

u(x) = xk1ζ

(
log |x|
log �

)
,
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where � ∈ (0, 1
2 ) and ζ ∈ C∞(R1), ζ(t) = 1 for t > 1, ζ(t) = 0 for t <

1
2 into (11.8.3). It is clear that supp u ⊂ B�1/2 Using standard but rather
cumbersome estimates we can show that, for |x| < 1

2 ,

(Dlu)(x) ≤ c|x|−n/p
∣∣log |x|

∣∣−1
,

where Dlu is the Strichartz function (10.1.10) for {l} > 0 and Dlu = |∇lu|
for {l} = 0. Hence from Theorem 10.1.2/4 we have

‖u‖p
Hl

p
≤ c| log �|1−p.

On the other hand,
‖∇ku‖qLq(μ) ≥ k!μ(B�).

Consequently, A ≥ cC5.

11.9 Applications

11.9.1 Compactness Criteria

The theorems proved in the present chapter imply necessary and sufficient
conditions for compactness of embedding operators of the spaces H l

p, hlp,
W l

p, w
l
p, B

l
p, and blp into Lq(μ). The proof of these results follows by stan-

dard arguments (compare with Theorems 2.4.2/1 and 2.4.2/2), so we restrict
ourselves to the next four statements. The first two theorems are based on
Corollary 11.3.

Theorem 1. Let p > 1, pl < n and let slp be any one of the spaces hlp, w
l
p,

blp. Any set of functions in C∞
0 , bounded in slp, is relatively compact in Lq(μ)

if and only if

lim
δ→0

sup
{

μ(e)
cap(e, slp)

: e ⊂ R
n, diam e ≤ δ

}
= 0, (11.9.1)

lim
�→∞

sup
{

μ(e)
cap(e, slp)

: e ⊂ R
n\B�

}
= 0, (11.9.2)

where B� = {x : |x| < �}.

Theorem 2. Let p > 1, pl ≤ n, and let Sl
p be any of the spaces H l

p, W
l
p,

and Bl
p. A set of functions in C∞

0 , bounded in Sl
p, is relatively compact in

Lq(μ) if and only if condition (11.9.1) holds and

lim
�→∞

sup
{

μ(e)
cap(e, Sl

p)
: e ⊂ R

n\B�, diam e ≤ 1
}

= 0. (11.9.3)
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Theorems 3 and 4 below follow from Theorem 11.8 and Corollary 11.8/1,
respectively.

Theorem 3. Let p ≥ 1, l > 0, pl < n. Further let 1 ≤ q <∞ if p = 1 and
p < q <∞ if p > 1. Then the set {u ∈ C∞

0 : ‖u‖W l
p
≤ 1} is relatively compact

in Lq(μ) if and only if

(i) lim
δ→+0

sup
x;�∈(0,δ)

�l−n/p
[
μ
(
B(x, �)

)]1/q = 0,

(ii) lim
|x|→∞

sup
�∈(0,1)

�l−n/p
[
μ
(
B(x, �)

)]1/q = 0.

Theorem 4. Let p > 1, l > 0, pl = n and q > p. Then the set {u ∈ C∞
0 :

‖u‖W l
p
≤ 1} is relatively compact in Lq(μ) if and only if

(i) lim
δ→0

sup
x;�∈(0,δ)

| log �|1−1/p
[
μ
(
B(x, �)

)]1/q = 0,

(ii) lim
|x|→∞

sup
2�<1

| log �|1−1/p
[
μ
(
B(x, �)

)]1/q = 0.

11.9.2 Equivalence of Continuity and Compactness of the
Embedding Hl

p ⊂ Lq(μ) for p > q

Here we prove the following assertion.

Theorem. Let 1 < p <∞, 0 < q < p and l > 0. Suppose that μ is a finite
Borel measure on R

n. Then the compactness of the trace operator H l
p → Lq(μ)

is equivalent to its continuity and to the inequality Dp,q < ∞, where Dp,q is
defined in Theorem 11.6.1/1.

This theorem will be obtained as a consequence of the compactness prop-
erties of the convolution maps which are studied in the present subsection.
We consider integral convolution operators of the form f �→ K ∗ f , where

(K ∗ f)(x) =
∫

Rn

K(x− y)f(y) dy

and K is the kernel of convolution. In the following we abbreviate ‖·‖Lp(Rn) =
‖ · ‖p, Lp(Rn) = Lp. It will be shown that under some conditions on K and μ
the continuity of the convolution map Lp → Lq(μ) implies its compactness.

Lemma 1. Let p ∈ (1,∞) and K ∈ Lp′ , p′ = p/(p − 1). Suppose that μ
is a finite Borel measure on R

n having bounded support. Then the operator
Lp � f �→ K ∗ f ∈ Lq(μ) is compact for any q ∈ (0,∞).

Proof. An application of Hölder’s inequality yields
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‖u‖∞ ≤ ‖K‖p′‖f‖p, u = K ∗ f.

Furthermore
∣∣u(x+ h) − u(x)

∣∣ ≤ ∥∥K(· + h) −K(·)
∥∥
p′‖f‖p

for any x, h ∈ R
n. Hence it follows that the elements of the set {K ∗ f :

‖f‖p ≤ 1} are uniformly bounded and equicontinuous on R
n. Since the sup-

port of μ is bounded, the required result is a consequence of the Arzela–Ascoli
compactness theorem. ��

We continue the analysis of compactness properties of convolution opera-
tors with the following lemma.

Lemma 2. Let K be a nonnegative function in L1 whose support has
a finite volume. Suppose μ is a finite Borel measure on R

n with bounded
support. If p ∈ (1,∞), 0 < q < p, then the continuity of convolution operator
Lp � f �→ K ∗ f ∈ Lq(μ) implies its compactness.

Proof. Given ε > 0, put Kε(x) = K(x) if K(x) ≤ ε−1 and Kε(x) = 0
otherwise. LetK(ε) = K−Kε. According to Lemma 1, the operator f �→ Kε∗f
is compact as an operator Lp → Lq(μ).

Suppose the map f �→ K ∗ f ∈ Lq(μ) is not compact. Then the norm of
the operator

f �→ Kεf = K(ε) ∗ f ∈ Lq(μ)

is bounded below uniformly with respect to ε ∈ (0,∞). Thus, there is a
constant c0 > 0 such that for any ε > 0 there exists a function f (ε) ∈ Lp

satisfying ∥∥f (ε)
∥∥
p
≤ 1,

∥∥K(ε) ∗ f (ε)
∥∥
Lq(μ)

≥ c0.

Since the operator Kε : Lp → Lq(μ) is continuous, we can assume without
loss of generality that f (ε) is a nonnegative continuous function on R

n with
compact support.

Put ε1 = 1, f1 = f (ε1). Since limδ→+0 ‖K(δ)‖1 = 0 and

sup
x∈Rn

∣∣(K(δ) ∗ f1
)
(x)
∣∣≤ ∥∥K(δ)

∥∥
1
‖f1‖∞,

it follows that ‖K(δ) ∗ f1‖Lq(μ) → 0 as δ → 0. Hence there is a number
ε2 ∈ (0, ε1) for which

∥∥(K(ε1) −K(ε2)
)
∗ f1

∥∥
Lq(μ)

≥ c0/2.

Letting f2 = f (ε2) and arguing as before, one can select ε3 ∈ (0, ε2) subject
to ∥∥(K(ε2) −K(ε3)

)
∗ f2

∥∥
Lq(μ)

≥ c0/2.
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Continuing this process, we construct a decreasing sequence {εi}i≥1 of positive
numbers and a sequence {fi}i≥1 ⊂ C0(Rn) such that ‖fi‖p ≤ 1, fi ≥ 0 and

‖hi‖Lq(μ) ≥ c0/2, i = 1, 2, . . . ,

where hi = (K(εi) −K(εi+1)) ∗ fi ≥ 0. For m = 1, 2, . . . define

gm(x) = m−1/p max
1≤i≤m

fi(x).

Then

‖gm‖p ≤ m−1/p

∥∥∥∥∥
(

m∑
i=1

fp
i

)1/p∥∥∥∥∥
p

≤ 1

and also

‖K ∗ gm‖Lq(μ) ≥ m−1/p

∥∥∥∥∥
m∑
i=1

hi

∥∥∥∥∥
Lq(μ)

.

Since (
m∑
i=1

hi

)q

≥ min
{
1,mq−1

} m∑
i=1

hqi , q > 0,

we have

‖K ∗ gm‖Lq(μ) ≥ m−1/p min
{
1,m1−1/q

}( m∑
i=1

‖hi‖qLq(μ)

)1/q

and hence
‖K ∗ gm‖Lq(μ) ≥

c0
2

min
{
m1/q−1/p,m1−1/p

}
.

However, the expression on the right is unbounded as m → ∞, and this
contradicts the continuity of the operator f �→ K ∗ f ∈ Lq(μ). Lemma 2 is
proved. ��

Proof of Theorem. Let Bk be the ball of radius k centered at the origin,
k = 1, 2, . . . . Let μk denote the restriction of μ to Bk. Clearly, for any l > 0
the Bessel kernel can be expressed as the sum of two nonnegative kernels, one
of which has compact support and belongs to L1 while the other is in Lr for
all r > 0. According to the previous lemmas any subset of C∞

0 (Rn), bounded
in H l

p, is relatively compact in Lq(μk). Furthermore, by Corollary 11.6.1
(∫

Rn \Bk

|u|q dμ
)1/q

≤ c(p, q)
(∫ μ(Rn \Bk)

0

(
t

κ(t)

)q/(p−q)

dt
)1/q−1/p

‖u‖Hl
p

for all u ∈ C∞
0 (Rn). Thus for the same u we have

‖u‖Lq(μ) ≤ δk‖u‖Hl
p

+ const‖u‖Lq(μk), k = 1, 2, . . . ,

where δk is a sequence of positive numbers converging to zero. By using the
last estimate and a diagonal method, one can select from any sequence in
C∞

0 (Rn), bounded in H l
p, a subsequence convergent in Lq(μ). ��
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11.9.3 Applications to the Theory of Elliptic Operators

Corollary 11.3 has immediate applications to the spectral theory of elliptic
operators. Let

Sh = h(−Δ)l − p(x), x ∈ R
n,

where p ≥ 0 and h is a positive number. The results in Sect. 2.5 concerning the
Schrödinger operator −hΔ− p(x) have natural analogs for the operators Sh.
Duplicating with minor modifications the proofs of Theorems 2.5.3–2.5.6 and
other assertions in Sect. 2.5, we can derive conditions for the semiboundedness
of the operator Sh as well as conditions for the discreteness, finiteness, or in-
finiteness of the negative part of its spectrum. Here we present the statements
of two typical theorems of this kind.

Theorem 1. Let n > 2l and let M denote the constant in the rough
maximum principle for the Riesz potential of order 2l.

1. If

lim
δ→0

sup
{∫

e
p(x) dx

cap(e, hl2)
: diam e ≤ δ

}
< (4M)−1,

then the operator S1 is semibounded.
2. If the operator S1 is semibounded, then

lim
δ→0

sup
{∫

e
p(x) dx

cap(e, hl2)
: diam e ≤ δ

}
≤ 1.

Theorem 2. Let n > 2l. The conditions

lim
δ→0

sup
{∫

e
p(x) dx

cap(e, hl2)
: diam e ≤ δ

}
= 0,

lim
�→∞

sup
{∫

e
p(x) dx

cap(e, hl2)
: e ⊂ R

n\B�, diam e ≤ 1
}

= 0,

are necessary and sufficient for the semiboundedness of the operator Sh and
for the discreteness of its negative spectrum for all h > 0.

11.9.4 Criteria for the Rellich–Kato Inequality

By the basic Rellich–Kato theorem [673], [415], the self-adjointness of −Δ+V
in L2(Rn) is guaranteed by the inequality

‖V u‖L2(Rn) ≤ a‖Δu‖L2(Rn) + b‖u‖L2(Rn), (11.9.4)

where a < 1 and u is an arbitrary function in C∞
0 (Rn).

Let n ≤ 3. The Sobolev embeddingW 2
2 (Rn) ⊂ L∞(Rn) and an appropriate

choice of the test function in (11.9.4) show that (11.9.4) holds if and only if
there is a sufficiently small constant c(n) such that
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sup
x∈Rn

∫
B1(x)

∣∣V (y)
∣∣2 dy ≤ c(n). (11.9.5)

Here and elsewhere Br(x) = {y ∈ R
n : |y− x| < r}. This class of potentials is

known as Stummel’s class Sn, which is defined also for higher dimensions by

lim
r↓0

(
sup
x

∫
Br(x)

|x− y|4−n
∣∣V (y)

∣∣2 dy
)

= 0 for n ≥ 5,

lim
r↓0

(
sup
x

∫
Br(x)

log
(
|x− y|−1

)∣∣V (y)
∣∣2 dy

)
= 0 for n = 4

(see Stummel [731]). Although the condition V ∈ Sn is sufficient for (11.9.4)
for every n, it does not seem quite natural for n ≥ 4. As a matter of fact,
it excludes the simple potential V (x) = c|x|−2 obviously satisfying (11.9.4) if
the factor c is small enough.

If n ≥ 5, a characterization of (11.9.4) (modulo best constants) results
directly from a necessary and sufficient condition for the inequality

‖V u‖L2(Rn) ≤ C‖Δu‖L2(Rn), u ∈ C∞
0

(
R

n
)
,

contained in Theorem 11.9.3/1: The Rellich-Kato condition (11.9.4) holds in
the case n ≥ 4 if and only if there is a sufficiently small c(n) subject to

sup
{e:diam e≤1}

∫
F
|V (y)|2 dy

cap(e, h2
2)

≤ c(n) (11.9.6)

(the values of c(n) in the sufficiency and necessity parts are different). For
2m = n one should add ‖u‖2

L2(Rn) to the last integral.
The condition

sup
{e:diam e≤δ}

∫
F
|V (y)|2 dy

cap(e, h2
2)

→ 0 as δ → 0 (11.9.7)

is necessary and sufficient for (11.9.4) to hold with an arbitrary a and b = b(a).
An obvious necessary condition for (11.9.4) is
{

supr≤1,x∈Rn r4−n
∫
Br(x)

|V (y)|2 dy ≤ c(n) for n ≥ 5,

supr≤1,x∈Rn(log 2
r )−1

∫
Br(x)

|V (y)|2 dy ≤ c(n) for n = 4,
(11.9.8)

where c(n) is sufficiently small. Standard lower estimates of cap2 by mn com-
bined with the criterion (11.9.6) give the sufficient condition
{

sup{e:diam e≤1}(mne)(4−n)/n
∫
e
|V (y)|2 dy ≤ c(n) for n ≥ 5,

sup{e:diam e≤1}(log vn

mne )−1
∫
e
|V (y)|2 dy ≤ c(n) for n = 4.

(11.9.9)

Though sharp and looking similar, (11.9.8) and (11.9.9) are not equivalent.
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Finally, we observe that the inequality

‖V u‖L2(Rn) ≤ C‖Δu‖τL2(Rn)‖u‖1−τ
L2(Rn)

holds for a certain τ ∈ (0, 1) and every u ∈ C∞
0 (Rn) if and only if for all

r ∈ (0, 1)

sup
x

∫
Br(x)

∣∣V (y)
∣∣2 dy ≤ Crn−4τ

(see Theorem 1.4.7).

11.10 Embedding Theorems for p = 1

11.10.1 Integrability with Respect to a Measure

The aim of the present subsection is to prove the following theorem which
complements Theorem 1.4.3.

Theorem 1. Let k be a nonnegative integer, 0 < l − k ≤ n, 1 ≤ q < ∞.
Then the best constant A in

‖∇ku‖Lq(Rn,μ) ≤ A‖u‖bl
1

(11.10.1)

is equivalent to
K = sup

x,�>0
�l−k−nμ

(
B(x, �)

)1/q
.

Proof. (α) We show that A ≥ cK. We put u(ξ) = (x1 − ξ1)kϕ(�−1(x− ξ)),
where ϕ ∈ C∞

0 (B2), ϕ = 1 on B1, into (11.10.1). Since

‖∇ku‖qLq(Rn,μ) ≥ k!μ
(
B(x, �)

)
, (11.10.2)

‖u‖bl
1

= c�n−l+k, (11.10.3)

then A ≥ cK.
(β) We prove that A ≤ cK. Let q > 1. By Theorem 11.8 and Remark

11.8/2 we have

‖∇ku‖Lq(Rn,μ) ≤ c sup
x,�

μ(B(x, �))1/q

�k−(l−n+n/t)+n/t
‖u‖

b
l−n−n/t
t

,

where t is a number sufficiently close to unity, t > 1. It remains to apply items
(iii) and (iv) of Theorem 10.1.3/4.

Next we show that A ≤ cK for q = 1. It suffices to consider the case k = 0.
Let l ∈ (0, 1). According to Corollary 2.1.6,

‖u‖L1(Rn,μ) ≤ cK
∫

Rn+1

∣∣y|−l|∇U(z)
∣∣ dz,
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where U ∈ C∞
0 (Rn+1) is an arbitrary extension of a function u to R

n+1.
Taking into account the relation

‖u‖bl
1
∼ inf

U

∫
Rn+1

|y|−l
∣∣∇U(z)

∣∣ dz
contained in Theorem 10.1.1/1, we arrive at A ≤ cK.

If l = 1, then by Theorem 1.4.3

‖u‖L1(Rn,μ) ≤ cK‖∇2U(z)‖L(Rn+1).

Minimizing the right-hand side over all U we conclude that A ≤ cK for the
space b11.

Suppose the estimate A ≤ cK is established for l ∈ (N − 2, N − 1), where
N is an integer N ≥ 2. We prove it for all l ∈ (N − 1, N ]. We have∫

|u| dμ(x) = c

∫ ∣∣∣∣
∫

(ξ − x)∇ξu(ξ)
|ξ − x|n dξ

∣∣∣∣ dμ(x) ≤ c
∫

|∇u|I1μdx,

where I1μ = |x|1−n ∗ μ. By the induction hypothesis, the latter integral does
not exceed

c sup
x,r

(
rl−1−n

∫
B(x,r)

I1μ(ξ) dξ
)
‖∇u‖bl−1

1
.

By Lemma 1.4.3 with q = 1 the last supremum is majorized by cK. The
theorem is proved. ��

Remark 1. We substitute the function u defined by u(x) = η(x/�) where
η ∈ C∞

0 (Rn), � > 0, into (11.10.1). Let �→∞. Then (11.10.1) is not fulfilled
for l − k > n provided μ �= 0.

For l− k = n, q <∞ inequality (11.10.1) holds if and only if μ(Rn) <∞.

Theorem 2. Let 0 < k < l, l − k ≤ n, 1 ≤ q < ∞. The best constant C0

in
‖∇ku‖Lq(Rn,μ) ≤ C0‖u‖Bl

1
(11.10.4)

is equivalent to
K0 = sup

x;�∈(0,1)

�l−k−nμ
(
B(x, �)

)1/q
.

Proof. The estimate C0 ≥ cK0 follows in the same way as C ≥ cK in
Theorem 1. To prove the reverse inequality we use the partition of unity
{ϕj}j≥1 subordinate to the covering of R

n by open balls with centers at the
nodes of a sufficiently fine coordinate grid and apply Theorem 1 to the norm
‖∇k(ϕju)‖Lq(Rn,μj) where μj is the restriction of μ to the support of ϕj . Then∫

|∇ku|q dμ ≤ c
∑
j

∫ ∣∣∇k(ϕju)
∣∣q dμj

≤ cKq
0

∑
j

‖ϕju‖ql

bl
1
≤ cKq

0

(∑
j

‖ϕju‖bl
1

)q

.
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(Here we made use of the inequality
∑
aqi ≤ (

∑
ai)q, where ai ≥ 0, q ≥ 1.)

Now a reference to Theorem 10.1.3/3 completes the proof. ��

Remark 2. For l−k ≥ n the best constant in (11.10.4) is equivalent to one
of the following values:

sup
x∈Rn

[
μ
(
B(x, 1)

)]1/q if q ≥ 1,

(∑
i≥0

μ
(
Q(i)

)(1−q)−1
)(1−q)q−1

if 0 < q < 1,

where {Q(i)} is the same sequence as in Theorem 11.6.2/1. The proof is con-
tained in Remark 11.8/1 and Theorem 11.6.2/1.

11.10.2 Criterion for an Upper Estimate of a Difference Seminorm
(the Case p = 1)

Let us consider the seminorm

〈u〉q,μ =
(∫

Ω

∫
Ω

∣∣u(x) − u(y)∣∣qμ(dx, dy)
)1/q

, (11.10.5)

where Ω is an open subset of a Riemannian manifold and μ is a nonnegative
measure on Ω × Ω, locally finite outside the diagonal {(x, y) : x = y}. By
definition, the product 0 · ∞ equals zero.

In this section, first, we characterize both μ and Ω subject to the inequality

〈u〉q,μ ≤ C‖∇u‖L1(Ω), (11.10.6)

where q ≥ 1 and u is an arbitrary function in C∞(Ω). We show that (11.10.6)
is equivalent to a somewhat unusual relative isoperimetric inequality.

Theorem. Inequality (11.10.6) holds for all u ∈ C∞(Ω) with q ≥ 1 if and
only if for any open subset g of Ω, such that Ω ∩ ∂g is smooth, the relative
isoperimateric inequality

(
μ(g,Ω\ḡ) + μ(Ω\ḡ, g)

)1/q ≤ Cs(Ω ∩ ∂g) (11.10.7)

holds with the same value of C as in (11.10.6).

Proof. Sufficiency. Denote by u+ and u− the positive and negative parts
of u, so that u = u+ − u−. We notice that

〈u〉q,μ ≤ 〈u+〉q,μ + 〈u−〉q,μ (11.10.8)

and ∫
Ω

|∇u| dx =
∫
Ω

|∇u+| dx+
∫
Ω

|∇u−| dx. (11.10.9)
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First, we obtain (11.10.6) separately for u = u+ and u = u−. Let a > b and
let χt(a, b) = 1 if a > t > b and χt(a, b) = 0 otherwise.

Clearly,

〈u〉q,μ =
(∫

Ω

∫
Ω

∣∣∣∣
∫ u(y)

u(x)

dt
∣∣∣∣
q

μ(dx, dy)
)1/q

=
(∫

Ω

∫
Ω

∣∣∣∣
∫ ∞

0

(
χt

(
u(x), u(y)

)
+ χt

(
u(y), u(x)

))
dt
∣∣∣∣
q

μ(dx, dy)
)1/q

.

By Minkowski’s inequality,

〈u〉q,μ ≤
∫ ∞

0

(∫
Ω

∫
Ω

(
χt

(
u(x), u(y)

)
+ χt

(
u(y), u(x)

))q
μ(dx, dy)

)1/q

dt

=
∫ ∞

0

(∫
Ω

∫
Ω

(
χt

(
u(x), u(y)

)
+ χt

(
u(y), u(x)

))
μ(dx, dy)

)1/q

dt

=
∫ ∞

0

(
μ(Lt, Ω\Nt) + μ(Ω\Nt,Lt)

)1/q dt,

where Lt = {x ∈ Ω : u(x) > t} and Nt = {x ∈ Ω : u(x) ≥ t}.
By (11.10.7) and the co-area formula (1.2.6), the last integral does not

exceed
C

∫ ∞

0

s
({
x ∈ Ω : u(x) = t

})
dt = C

∫
Ω

∣∣∇u(x)∣∣ dx.
Therefore,

〈u±〉q,μ ≤ C
∫
Ω

∣∣∇u±(x)
∣∣ dx,

and the reference to (11.10.8) and (11.10.9) completes the proof of sufficiency.
Necessity. Let {wm} be the sequence of locally Lipschitz functions in Ω

constructed in Lemma 5.2.2 with the following properties:

1. wm(x) = 0 in Ω\g,
2. wm(x) ∈ [0, 1] in Ω,
3. for any compactum K ⊂ g there exists an integer N(e) such that wm(x) =

1 for x ∈ K and m ≥ N(e),
4. the limit relation holds

lim sup
m→∞

∫
Ω

∣∣∇wm(x)
∣∣ dx = s(Ω ∩ ∂g).

By Theorem 1.1.5/1, the inequality (11.10.6) holds for all locally Lipschitz
functions. Therefore,

〈wm〉q,μ ≤ C‖∇wm‖L1(Ω), (11.10.10)

and by property 4,
lim sup
m→∞

〈wm〉q,μ ≤ Cs(Ω ∩ ∂g). (11.10.11)
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Further,

〈wm〉qq,μ =
∫
x∈g

∫
y∈Ω\g

wm(x)qμ(dx, dy)

+
∫
x∈Ω\g

∫
y∈g

wm(y)qμ(dx, dy)

+
∫
g

∫
g

∣∣wm(x) − wm(y)
∣∣qμ(dx, dy),

which implies

〈wm〉qq,μ ≥
∫
g

wm(x)qμ(dx,Ω\ḡ) +
∫
g

wm(y)qμ(Ω\ḡ, dy).

This, along with property 3, leads to

lim inf
m→∞

〈wm〉qq,μ ≥ μ(g,Ω\ḡ) + μ(Ω\g, ḡ).

Combining this relation with (11.10.10) and (11.10.11), we arrive at (11.10.7).
��

Corollary 1. (One-Dimensional Case). Let

Ω = (α, β), where −∞ ≤ α < β ≤ ∞.

The inequality
(∫

Ω

∫
Ω

∣∣u(x) − u(y)∣∣qμ(dx, dy)
)1/q

≤ C
∫
Ω

∣∣u′(x)
∣∣ dx (11.10.12)

with q ≥ 1 holds for all u ∈ C∞(Ω) if and only if
(
μ(I,Ω\Ī) + μ(Ω\Ī , I)

)1/q ≤ 2C (11.10.13)

for all open intervals I such that Ī ⊂ Ω, and
(
μ(I,Ω\Ī) + μ(Ω\Ī , I)

)1/q ≤ C (11.10.14)

for all open intervals I ⊂ Ω such that Ī contains one of the end points of Ω.

Proof. Necessity follows directly from (11.10.7) by setting g = I. Let us
check the sufficiency of (11.10.13). Represent an arbitrary open set g of Ω
as the union on nonoverlapping open intervals Ik. Then by (11.10.13) and
(11.10.14)

(
μ(g,Ω\ḡ) + μ(Ω\ḡ, g)

)1/q

=
(∑

k

(
μ(Ik, Ω\ḡ) + μ(Ω\ḡ, Ik)

))1/q

≤
∑
k

(
μ(Ik, Ω\ḡ) + μ(Ω\ḡ, Ik)

)1/q ≤ C∑
k

s(Ω ∩ ∂Ik),
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which is the same as (11.10.7). The result follows from the Theorem. ��

Remark 1. Suppose that the class of admissible functions in the Theorem
is diminished by the requirement u = 0 in a neighborhood of a closed subset
F of Ω̄. Then the same proof leads to the same criterion (11.10.7) with the
only difference that the admissible sets g should be at a positive distance
from F . For the example F = ∂Ω, i.e., for the inequality (11.10.6) with any
u ∈ C∞

0 (Ω), the necessary and sufficient condition (11.10.7) becomes the
isoperimetric inequality

(
μ(g,Ω\ḡ) + μ(Ω\ḡ, g)

)1/q ≤ Cs(∂g) (11.10.15)

for all open sets g with a smooth boundary and compact closure ḡ ⊂ Ω. If,
in particular, in Corollary 1, the criterion of the validity of (11.10.12) for all
u ∈ C∞

0 (Ω) is the inequality (11.10.13) for every interval I, Ī ⊂ Ω. In the
case u = 0 near one of the end points Ω = (α, β), one should require both
(11.10.13) and (11.10.14), but the intervals I should be at a positive distance
from that end point.

Needless to say, the condition (11.10.7) is simplified as follows for a sym-
metric measure μ, i.e., under the assumption μ(E ,F) = μ(F , E):

μ(g,Ω\ḡ)1/q ≤ 2−1/qCs(Ω ∩ ∂g),

for the same open sets g as in the Theorem.

Remark 2. The integration domain Ω×Ω in (11.10.5) excludes inequalities
for integrals taken over ∂Ω. This can be easily avoided assuming additionally
that μ is defined on compact subsets of Ω̄ × Ω̄ and that u ∈ C(Ω̄) ∩ C∞(Ω).
Then, with the same proof, one obtains the corresponding criterion, similar
to (11.10.7): (

μ(ḡ, Ω̄\ḡ) + μ(Ω̄\ḡ, ḡ)
)1/q ≤ Cs(Ω ∩ ∂g).

As an application, consider the inequality
∫
∂Ω

∫
∂Ω

∣∣u(x) − u(y)∣∣s(dx)s(dy) ≤ C
∫
Ω

|∇u| dx, (11.10.16)

which holds if and only if

s(∂Ω ∩ ∂g)s(∂Ω\∂g) ≤ 2−1Cs(Ω ∩ ∂g), (11.10.17)

for the same sets g as in the Theorem.
By Corollary 9.4.4/3,
(i) If Ω is the unit ball in R

3, then

4πs(Ω ∩ ∂g) ≥ s(∂Ω ∩ ∂g)s(∂Ω\∂g),

and
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(ii) If Ω is the unit disk on the plane, then

s(Ω ∩ ∂g) ≥ 2 sin
(

1
2
s(∂Ω ∩ ∂g)

)
.

Moreover, the last two inequalities are sharp. Hence, the inequality (11.10.16)
holds with the best constant C = 8π if Ω = B. In case (ii),

s(Ω ∩ ∂g) ≥ 2−1 min
0≤ϕ≤π

sinϕ
ϕ(π − ϕ)

s(∂Ω ∩ ∂g)s(∂Ω\∂g).

Since the last minimum equals π−1, it follows that the best value of C in the
inequality (11.10.16) for the unit disk is 4π.

Example. We deal with functions in R
n and prove the inequality

(∫
Rn

∫
Rn

|u(x) − u(y)|q
|x− y|n+αq

dxdy
)1/q

≤ C
∫

Rn

|∇u| dx, (11.10.18)

where u ∈ C∞
0 (Rn), n > 1, 0 < α < 1, and q = n/(n− 1 + α).

Let us introduce the set function

g → i(g) :=
∫
g

∫
Rn \g

dxdy
|x− y|n+αq .

By the Theorem we only need to prove the isoperimetric inequality

(
i(g)
) n−1

n−αq ≤ c(α, n)s(∂g), (11.10.19)

for q = n/(n − 1 + α). Let Δ be the Laplace operator in R
n. If u = rλ, we

may write

Δu =
1

rn−1

(
rn−1ur

)
r

= λ(λ+ n− 2)rλ−2.

Setting λ = 2 − n− αq, we arrive at

Δy|x− y|2−n−αq = (n− 2 + αq)|x− y|−n−αq.

Using (1.4.13) and Example 2.1.5/2, we obtain

i(g) =
1

αq(n− 2 + αq)

∫
g

∫
Rn \g

Δy|x− y|2−n−αq dy dx

=
1

αq(n− 2 + αq)

∫
g

∫
∂g

∂

∂νy
|x− y|2−n−αq dy dx

≤ 1
αq

∫
∂g

∫
g

|x− y|n−1+αq dxdsy

≤ nv
1− 1−αq

n
n

αq(1 − αq) (mng)
1−αq

n s(∂g) ≤ (nvn)1− 1−αq
n−1

αq(1 − αq) s(∂g)
1+ 1−αq

n−1 .
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Since

1 − αq =
(n− 1)(1 − α)
n− 1 + α

,

inequality (11.10.19) follows.

Remark 3. Inequality (11.10.18) can be interpreted as the embedding

L̊1
1

(
R

n
)
⊂ W̊α

q

(
R

n
)
,

where L̊1
1(R

n) is the completion of the space C∞
0 (Rn) in the norm ‖∇u‖L1(Rn)

and W̊α
q (Rn) is the completion of C∞

0 (Rn) in the fractional Sobolev norm

(∫
Rn

∫
Rn

|u(x) − u(y)|q
|x− y|n+αq

dxdy
)1/q

.

We can simplify the criteria (11.10.7) for Ω = R
n, replacing arbitrary sets

g by arbitrary balls B(x, ρ) similarly to Theorem 1.4.2/2, where the norm

‖u‖Lq(μ) =
(∫

Rn

|u|q dμ
)1/q

is treated in place of 〈u〉q,μ. Unfortunately, the best constant in the sufficiency
part will be lost.

Corollary 2. (i) If q ≥ 1 and

sup
x∈Rn,ρ>0

ρ(1−n)q
(
μ
(
B(x, ρ),Rn\B(x, ρ)

)
+ μ

(
R

n\B(x, ρ), B(x, ρ)
))
<∞,

(11.10.20)
then the inequality

(∫
Rn

∫
Rn

∣∣u(x) − u(y)∣∣qμ(dx, dy)
)1/q

≤ C‖∇u‖L1(Rn) (11.10.21)

holds for all u ∈ C∞(Rn) and

Cq ≤ cq sup
x∈Rn,ρ>0

ρ(1−n)q
(
μ
(
B(x, ρ),Rn\B(x, ρ)

)
+ μ

(
R

n\B(x, ρ), B(x, ρ)
))
,

(11.10.22)
where c depends only on n.

(ii) If (11.10.21) holds for all u ∈ C∞(Rn), then

Cq ≥ ω−q
n sup

x∈Rn,ρ>0
ρ(1−n)q

(
μ
(
B(x, ρ),Rn\B(x, ρ)

)

+ μ
(
R

n\B(x, ρ), B(x, ρ)
))
.
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Proof. Let g be an arbitrary open set in R
n with smooth boundary and

let {B(xj , ρj)} be a covering of g subject to
∑
j

ρn−1
j ≤ cs(∂g), (11.10.23)

where c depends only on n (see Theorem 1.2.2/2). Then

μ
(
g,Rn\g

)
≤
∑
j

μ
(
B(xj , ρj),Rn\g

)
≤
(∑

j

μ
(
B(xj , ρj),Rn\g

)1/q)q

≤
(∑

j

μ
(
B(xj , ρj),Rn\B(xj , ρj)

)1/q)q

≤ (cB)q
(∑

j

ρn−1
j

)q

,

where B is the value of the supremum in (11.10.20). This and (11.10.23) imply

μ
(
g,B(xj , ρj)

)
≤
(
cBs(∂g)

)q
.

Similarly
μ
(
R

n\g, g
)
≤
(
cBs(∂g)

)q
,

and the result follows from the Theorem.
The assertion (ii) stems from (11.10.7) by setting g = B(x, ρ). ��

11.10.3 Embedding into a Riesz Potential Space

It is possible to obtain a similar criterion for the embedding

L̊1
1 ⊂ R̊α

q (μ), (11.10.24)

where 0 < α < 1, q ≥ 1 and Rα
q (μ) is the completion of the space C∞

0 in the
norm

〈u〉Rα
q (μ) =

∥∥∥∥
∫

Rn

∇u(y)
|x− y|n+α−1

dy
∥∥∥∥
Lq(μ)

, q ≥ 1,

where μ is a measure in R
n.

In the case q > 1 and μ = mesn this norm is equivalent to the norm
∥∥(−Δ)α/2u

∥∥
Lq

in the space of Riesz potentials of order α with densities in Lq. We shall see
that embedding (11.10.24) is equivalent to the isoperimetric inequality of a
new type.

Theorem. Let q ≥ 1 and 0 < α < 1. The inequality

〈u〉Rα
q (μ) ≤ C

∫
Rn

Φ|∇u| dx, (11.10.25)
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where Φ is a continuous nonnegative function, holds for all u ∈ C∞
0 if and only

if, for any bounded open g ∈ R
n with smooth boundary ∂g, the isoperimetric

inequality holds:
∥∥∥∥
∫
∂g

νy dsy
|x− y|n+α−1

∥∥∥∥
Lq(μ)

≤ C
∫
∂g

Φ(x) dsx. (11.10.26)

Proof. Necessity of (11.10.26) follows by the substitution of a mollification of

a characteristic function of g into (11.10.26).
Let us prove the sufficiency. By the co-area formula,

〈u〉Rα
q (μ) =

∥∥∥∥
∫ ∞

− ∞
dt
∫
Et

νy dsy
|x− y|n+α−1

∥∥∥∥
Lq(μ)

.

Hence it follows from Minkowski’s inequality and (11.10.26) that

〈u〉Rα
q (μ) ≤

∫ ∞

− ∞

∥∥∥∥
∫
Et

νy dsy
|x− y|n+α−1

∥∥∥∥
Lq(μ)

dt

≤ C
∫ ∞

− ∞

∫
Et

Φ(x) dsx dt = C

∫
Rn

Φ|∇u| dx.

The result follows. ��

Remark. The set of the inequalities of type (11.10.27) is not void. Let us
show, for example, that for

q =
n

n− 1 − α, n ≥ 2, 0 < α < 1,

there holds the isoperimetric inequality
∥∥∥∥
∫
∂g

νy dsy
|x− y|n+α−1

∥∥∥∥
Lq

≤ c(n, α)s(∂g). (11.10.27)

In fact, since q ≤ 2, we have the well-known inequality

‖u‖hα
q
≤ c‖u‖bα

q
;

the norm in bαq on the right-hand side does not exceed c‖∇u‖L1 and it remains
to refer to Theorem 11.10.3.

11.11 Criteria for an Upper Estimate of a Difference
Seminorm (the Case p > 1)

11.11.1 Case q > p

Now we deal with the inequality
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〈u〉q,μ ≤ C‖∇u‖Lp(Ω), (11.11.1)

where q > p > 1, and show that it is equivalent to a certain isocapacitary
inequality.

The capacity to appear in the present context is defined as follows. Let F1

and F2 be nonoverlapping subsets of Ω, closed in Ω. The p-capacity of the
pair (F1, F2) with respect to Ω is given by

capp(F1, F2;Ω) = inf
{u}

∫
Ω

∣∣∇u(x)∣∣p dx,

where {u} is the set of all u ∈ C∞(Ω), such that u ≥ 1 on F1 and u ≤ 0
on F2. Obviously, this capacity does not change if F1 and F2 change places.
In fact, capp(F1, F2;Ω) is nothing but the p-conductivity of the conductor
K = (Ω\F1)\F2 (see Sect. 6.1.1). We use the new notation only in this section
to emphasize the symmetric dependence of the following geometric criteria on
two sets F1 and F2.

Furthermore, if F is a closed set in R
n and F ⊂ G, where G is an open

set, such that Ḡ ⊂ Ω, then capp(F,Ω\G;Ω) coincides with the p-capacity
capp(F ;G) defined in Sect. 2.2.1.

Theorem. Inequality (11.11.1) with p ∈ (1, q) holds for all u ∈ C∞(Ω) if
and only if for any pair (F1, F2) of nonoverlapping sets, closed in Ω,

μ(F1, F2)p/q ≤ B capp(F1, F2;Ω), (11.11.2)

where c1C ≤ B ≤ c2C with positive c1 and c2 depending only on p and q.
In the sufficiency part we may assume that F1 and F2 are sets with smooth
Ω ∩ ∂Fi.

In the proof of this theorem, we use the inequality

(∫
R+

∣∣f(ψ)
∣∣qψ−1−q/p′

dψ
)1/q

≤ c‖f ′‖Lp(R+) (11.11.3)

(see (4.6.7)) and the inequality

(∫
R+

∫
R+

|f(ψ)− f(φ)|q
|ψ − φ|2+q/p′ dφ dψ

)1/q

≤ c‖f ′‖Lp(R+), (11.11.4)

where q > p > 1, p′ = p/(p − 1) and f is an arbitrary absolutely continuous
function on R̄+.

A short argument leading to (11.11.4) is as follows. Clearly, (11.11.4) re-
sults from the same inequality with R in place of R+, which follows, in its
turn, from the estimate

‖f‖
B

1−(q−p)/pq
q (R)

≤ c‖f‖W 1
p (R) (11.11.5)
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by dilation with a coefficient λ and the limit passage as λ→ 0+. (The standard
notations B andW for Besov and Sobolev spaces with nonhomogeneous norms
are used in (11.11.5).) To obtain (11.11.5), we recall the well-known Sobolev-
type inequality

‖h‖Lp′ (R) ≤ c‖h‖B(q−p)/pq

q′ (R)
,

(see Theorem 4′, Sect. 5.1 of Stein [724]) and put h = (−Δ+ 1)−1/2f , which
shows that

‖f‖W −1
p′ (R) ≤ c‖f‖B−1+(q−p)/pq

q′ (R)
. (11.11.6)

By duality, (11.11.6) is equivalent to (11.11.5).
With (11.11.4) at hand, we return to the Theorem.

Proof. Sufficiency. Arguing as at the beginning of the proof of Theorem
11.10.2, we see that it suffices to prove (11.11.1) for a nonnegative u. By the
definition of the Lebesgue integral∫

Ω

u dν =
∫

R+

ν(Nτ ) dτ =
∫

R+

ν(Lτ ) dτ,

where ν is a measure, and therefore
∫
Ω

P (u) dν =
∫

R+

ν(Nτ ) dP (τ), (11.11.7)

where P is a nondecreasing function on R+. Putting here u = 1/v and Q(τ) =
P (τ−1), we deduce

∫
Ω

Q(u) du = −
∫

R+

ν(Ω\Lτ ) dQ(τ), (11.11.8)

where Q is nonincreasing. We obtain∫
Ω

∫
Ω

∣∣u(x) − u(y)∣∣qμ(dx, dy)
=
∫
Ω

∫
Ω

(
u(x) − u(y)

)q
+
μ(dx, dy)

+
∫
Ω

∫
Ω

(
u(y) − u(x)

)q
+
μ(dx, dy)

=
∫
Ω

∫
Ω

(
u(x) − u(y)

)q
+

(
μ(dx, dy) + μ(dy, dx)

)
.

By (11.11.7) and (11.11.8), the last double integral is equal to

q

∫
R+

∫
Ω

(
t− u(y)

)q−1

+

(
μ(Nτ , dy) + μ(dy,Nτ )

)
dτ

= q(q − 1)
∫

R+

∫
R+

(τ − σ)q−2
+

(
μ(Nτ , Ω\Lσ) + μ(Ω\Lσ,Nτ )

)
dτ dσ.
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Now, (11.11.2) implies

〈u〉qq,μ ≤ 2q(q − 1)B
∫

R+

∫
R+

(τ − σ)q−2
+ cap(Nτ , Ω\Lσ;Ω) dτ dσ,

and using the function ψ → t(ψ), the inverse of (4.7.18), we arrive at the
inequality

〈u〉qq,μ ≤ 2q(q − 1)Bq/p

×
∫

R+

∫ ψ

0

(
t(ψ) − t(φ)

)q−2(cap(Nt(ψ), Ω\Lt(φ);Ω)
)q/p

× t′(φ)t′(ψ) dφ dψ.

By Lemma 2.2.2/1, for ψ > φ

cap(Nt(ψ), Ω\Lt(φ);Ω) ≤ (ψ − φ)1−p,

and therefore,

〈u〉qq,μ ≤ 2q(q − 1)Bq/p

×
∫

R+

∫ ψ

0

(ψ − φ)−q/p′(
t(ψ) − t(φ)

)q−2
t′(φ)t′(ψ) dφ dψ. (11.11.9)

Integrating by parts twice on the right-hand side of (11.11.9), we obtain

〈u〉qq,μ ≤ 2Bq/p q

p′

((
q

p′ + 1
)∫

R+

∫ ψ

0

(t(ψ) − t(φ))q
(ψ − φ)2+q/p′ dφ dψ

+
∫

R+

ψ−q/p′
t(ψ)q−1t′(ψ) dψ

)

= Bq/p q

p′

((
q

p′ + 1
)∫

R+

∫
R+

|t(ψ)− t(φ)|q
|ψ − φ|2+q/p′ dφ dψ

+
1
p′

∫
R+

t(ψ)qψ−1−q/p′
dψ
)
.

Hence, we deduce from (11.11.3) and (11.11.4) that

〈u〉q,μ ≤ cB1/p‖t′‖Lp(R+), (11.11.10)

where c depends only on p and q. It remains to refer to (4.6.6).

Necessity. Let F1 and F2 be subsets of Ω, closed in Ω. We take an arbitrary
function u ∈ C∞(Ω), such that u ≥ 1 on F1 and u ≤ 0 on F2, and put it into
(11.11.1). Then

μ(F1, F2;Ω)p/q ≤
(∫

F1

∫
F2

∣∣u(x) − u(y)∣∣qμ(dx, dy)
)1/q

≤ C
∫
Ω

|∇u|p dx.
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It remains to minimize the right-hand side to obtain

μ(F1, F2;Ω)p/q ≤ C capp(F1, F2;Ω).

The result follows. ��

A direct consequence of the Theorem and the isocapacitary inequality for
capp(F ;G) (see (2.2.10) and (2.2.11)) is the following sufficient condition for
(11.11.1) formulated in terms of the n-dimensional Lebesgue measure:

μ(F,Ω\G) ≤ c
(

log
mn(G)
mn(F )

)q(1−n)/n

if p = n, (11.11.11)

and

μ(F,Ω\G) ≤ c
∣∣mn(G)(p−n)/n(p−1) −mn(F )(p−n)/n(p−1)

∣∣1−p
, (11.11.12)

if p �= n. Choosing two concentric balls situated in Ω as the sets F1 and Ω\F2

in (11.11.2) and using the explicit formulas for the p-capacity of spherical con-
densers (see Sect. 2.2.4) we see that the inequalities (11.11.11) and (11.11.12),
with concentric balls F and G placed in Ω, are necessary for (11.11.1).

In the one-dimensional case the Theorem can be written in a much simpler
form.

Corollary. Let

Ω = (α, β), −∞ ≤ α < β ≤ ∞.

The inequality

(∫
Ω

∫
Ω

∣∣u(x) − u(y)∣∣qμ(dx, dy)
)1/q

≤ C
(∫

Ω

∣∣u′(x)
∣∣p dx

)1/p

, (11.11.13)

holds for every u ∈ C∞(Ω) if and only if, for all pairs of intervals I and J of
the three types

I = [x− d, x+ d] and J = (x− d− r, x+ d+ r),

I = (α, x] and J = (α, x+ r), (11.11.14)

I = [x, β] and J = (x− r, β), (11.11.15)

where d and r are positive and J ⊂ Ω, we have

r(p−1)/p
(
μ(I,Ω\J)

)1/q ≤ B, (11.11.16)

where B does not depend on I and J .

Proof. The necessity of (11.11.16) follows directly from that in the Theorem
and the inequality
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capp(I,Ω\J ;Ω) ≤ 2r1−p

(see Lemma 2.2.2/2).
Let us prove the sufficiency. By G1 we mean an open subset of Ω such that

F1 ⊂ G1 and Ḡ1 ⊂ Ω\F2. Connected components of Ω\F2 will be denoted by
Jk. Let Jk contain the closed convex hull Ĩk of those connected components
of G1 which are situated in Jk.

Then

μ(F1, F2)p/q ≤ μ(G1, F2)p/q ≤
(∑

k

μ(Ĩk, Ω\Jk)
)p/q

≤
∑
k

μ(Ĩk, Ω\Jk)p/q,

and since by (11.11.16)

μ(Ĩk, Ω\Jk)p/q ≤ Bp
(
dist{Ĩk,R\Jk}

)1−p
,

we obtain

μ(F1, F2)p/q ≤ Bp
∑
k

(
dist{Ĩk,R\Jk}

)1−p
. (11.11.17)

Consider an arbitrary function u ∈ C∞(Ω), such that u = 1 on G1 and
u = 0 on F2. Clearly, u = 0 on ∂Jk. We have∫

Ω

|u′|p dx ≥
∑
k

∫
Jk

|u′|p dx ≥
∑
k

∫
Jk

|ũ′
k|p dx, (11.11.18)

where ũk = u on Jk\Ĩk, ũk = 1 on Ĩk, and ũk = 0 on ∂Jk. Hence∫
Ω

|u′|p dx ≥
∑
k

(
dist{Ĩk,R\Jk}

)1−p
.

Comparing this estimate with (11.11.17), we arrive at∫
Ω

|u′|p dx ≥ μ(F1, F2)p/q,

and minimizing the integral in the left-hand side over all functions u, we obtain
(11.11.2). ��

Remark. It is straightforward but somewhat cumbersome to obtain a
more general criterion by replacing the seminorm on the right-hand side of
(11.11.13) with (∫

Ω

∣∣u′(x)
∣∣pσ(dx)

)1/p

, (11.11.19)

where σ is a measure in Ω. In fact, one can replace σ by its absolutely contin-
uous part (dσ∗/dx) dx and further, roughly speaking, the criterion will follow
from the Corollary by the change of variable x→ ξ, where

dξ =
(
dσ∗/dx

)1/(1−p) dx.

Restricting myself to this hint, the author leaves the details to the interested
reader.



11.11 Criteria for an Upper Estimate of a Difference Seminorm 603

11.11.2 Capacitary Sufficient Condition in the Case q = p

In the marginal case q = p the condition (11.11.2) in Theorem 11.11.1, being
necessary, is not generally sufficient. In fact, let n = 1, Ω = R, and

μ(dx, dy) =
dxdy

|x− y|p+1
.

Then as shown in the proof of Corollary 11.10.2/2, (11.11.2) is equivalent to
(11.11.16), and (11.11.16) holds since

μ(I,R\J) =
∫

|t−x|<d

dt
∫

|τ −x|>d+r

dτ
|t− τ |p+1

=
∫

|t|<d

dt
∫

|τ |>d+r

dτ
|t− τ |p+1

≤ cr1−p,

and the same estimate holds for I and J defined by (11.11.14) and (11.11.15).
On the other hand, (11.10.15) fails because

∫
R

∫
R

|u(x) − u(y)|p
|x− y|p+1

dxdy = ∞

for every nonconstant function u.
In the next theorem we give a sufficient condition for (11.11.1) with q =

p > 1 formulated in terms of an isocapacitary inequality.

Theorem. Given p ∈ (1,∞) and a positive, vanishing at infinity, nonin-
creasing absolutely continuous function ν on R+, such that

S := sup
τ>0

(∫ τ

0

∣∣ν′(σ)
∣∣1/(1−p) dσ

σ

)p−1 ∫ ∞

τ

∣∣ν′(σ)
∣∣dσ
σ
<∞.

Suppose that
μ(F1, F2) ≤ ν

((
capp(F1, F2;Ω)

)1−p) (11.11.20)

for all nonoverlapping sets F1 and F2 closed in Ω. Assume also that

K :=
∫ ∞

0

∣∣ν′(σ)
∣∣σp−1 dσ <∞. (11.11.21)

Then

〈u〉p,μ ≤ 21/pp

(
S

(p− 1)p−1

)1/pp′

K1/p‖∇u‖Lp(Ω) (11.11.22)

for all u ∈ C∞(Ω).

Proof. We assume that ∇u ∈ Lp(Ω) and the integral in (11.11.22) involving
derivatives of ν is convergent. Arguing as in the proof of Theorem 11.11.1 and
using (11.11.20) instead of (11.11.2), we obtain
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〈u〉pp,μ ≤ 2p(p− 1)
∫ ∞

0

∫ ∞

φ

ν(ψ − φ)
(
t(ψ) − t(φ)

)p−2
t′(ψ) dψt′(φ) dφ.

(11.11.23)
Owing to (11.11.21), we can integrate by parts in the inner integral in
(11.11.23) and obtain

〈u〉pp,μ ≤ 2p
∫ ∞

0

∫ ∞

φ

∣∣ν′(ψ − φ)
∣∣(t(ψ) − t(φ)

)p−1 dψ t′(φ) dφ

= 2p
∫ ∞

0

∫ ψ

0

∣∣ν′(ψ − φ)
∣∣(t(ψ) − t(φ)

)p−1
t′(φ) dφ dψ.

By Hölders inequality

〈u〉pp,μ ≤ 2p
∫ ∞

0

A(φ)1/p
′
B1/p dφ, (11.11.24)

where

A =
∫ ψ

0

|ν′(ψ − φ)|
ψ − φ

(
t(ψ)− t(φ)

)p dφ

and

B =
∫ ψ

0

∣∣ν′(ψ − φ)
∣∣(ψ − φ)p−1

∣∣t′(ψ)
∣∣p dφ.

Using Theorem 1.3.2/1 concerning a two-weight Hardy inequality, we obtain

A ≤ pp

(p− 1)p−1
SB,

which together with (11.11.24) gives

〈u〉pp,μ ≤ 2pp(p− 1)(1−p)/p′
S1/p′

∫ ∞

0

∫ φ

0

∣∣ν′(ψ − φ)
∣∣(ψ − φ)p−1

∣∣t′(ψ)
∣∣p dφ dψ.

Changing the order of integration, we arrive at

〈u〉p,μ ≤ 21/pp
(
(p− 1)1−pS

)1/pp′

K1/p‖t′‖Lp(R+).

It remains to apply (4.6.6).

Remark 1. If the requirement

u = 0 on a neighborhood of a closed subset E of Ω̄

is added in the formulations of Theorems 11.11.1 and the theorem just proved,
the same proofs give conditions for the validity of (11.11.1), similar to (11.11.2)
and (11.11.16). The only new feature is the restriction

Ω ∩ ∂(Ω\F2) is at a positive distance from E.
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In the important particular case E = ∂Ω, which corresponds to zero Dirichlet
data on ∂Ω, the conditions (11.11.2) and (11.11.20) become

μ(F,Ω\G)p/q ≤ B capp(F ;G) (11.11.25)

and
μ(F,Ω\G) ≤ ν

((
capp(F ;G)

)1−p)
, (11.11.26)

respectively, where F is closed and G is open, G ⊃ F , and the closure of G is
compact and situated in Ω. The capacity capp(F ;G) is defined with Ω = G
in Sect. 2.3.1.

Using lower estimates for the p-capacity in terms of area minimizing func-
tions, one obtains sufficient conditions from (11.11.2), (11.11.16), (11.11.25),
and (11.11.26) formulated in terms of the area minimizing function C , intro-
duced in Definition 2.1.4, with Φ(·, v) = v. For example, by (11.11.25) and
(11.11.26), inequalities (11.11.2) and (11.11.20) hold for all u ∈ C∞

0 (Ω) if,
respectively,

μ(F,Ω\G)p/q ≤ B
(∫ mn(Ω\G)

mn(F )

dv
C (v)p/(p−1)

)

and

μ(F,Ω\G) ≤ ν
(∫ mn(Ω\G)

mn(F )

dv
C (v)p/(p−1)

)
,

where F and G are the same as in (11.11.25) and (11.11.26).
By obvious modifications of the proof of sufficiency in Corollary 11.10.2,

one deduces the following assertion from the Theorem in this subsection.

Corollary. (One-Dimensional Case) With the notation used in Corol-
lary 11.11.1, suppose that

μ(I,Ω\J) ≤ ν(r).

Then there exists a positive constant c depending only on p and such that

〈u〉p,μ ≤ cS1/pp′
K1/p‖u′‖Lp(Ω)

for all u ∈ C∞(Ω).

Remark 2. Let us show that the condition K < ∞, which appeared in
the Theorem of this subsection, is sharp. Suppose that there exists a positive
constant C independent of u and such that

∫
R

∫
R

∣∣u(t) − u(τ)∣∣pν′ ′(t− ν) dt dτ ≤ C
∫

R

∣∣u′(t)
∣∣p dt, (11.11.27)

where ν is a convex function in C2(R). We take an arbitrary N > 0 and put
u(t) = min{|t|, N} into (11.11.27). Then
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∫ N/2

0

∫ N

τ

(t− τ)pν′ ′(t− τ) dt dτ ≤ 2CN,

and setting here t = τ + s, we obtain

1
2
pN

∫ N/2

0

sp−1
∣∣ν′(s)

∣∣ ds ≤ p
∫ N/2

0

∫ N−τ

0

sp−1
∣∣ν′(s)

∣∣ dsdτ ≤ 2CN.

Hence K ≤ 4p−1C.

Remark 3. It seems appropriate, in conclusion, to say a few words about
the lower estimate for the difference seminorm 〈u〉p,μ, similar to the classical
Sobolev inequality (∫

Ω

|u|qν(dx)
)1/q

≤ C〈u〉p,μ, (11.11.28)

where Ω is a subdomain of a Riemannian manifold, μ and ν are measures in
Ω×Ω and Ω, respectively, and u is an arbitrary function in C∞

0 (Ω). Suppose
that q ≥ p ≥ 1. Then a condition, necessary and sufficient for (11.11.28), is
the isocapacitary inequality

sup
{F }

ν(F )p/q

capp,μ(F ;Ω)
<∞, (11.11.29)

where F is an arbitrary compact set in Ω and the capacity is defined by

capp,μ(F ;Ω) = inf
{
〈u〉pp,μ : u ∈ C∞

0 (Ω), u ≥ 1 on F
}
.

The necessity of (11.11.28) is obvious and the sufficiency results directly
from the inequality ∫ ∞

0

capp,μ(Nt;Ω) d
(
tp
)
≤ c(p)〈u〉pp,μ (11.11.30)

(see (4.1.5)).
Although providing a universal characterization of (11.11.28), the condi-

tion (11.11.29) does not seem satisfactory when dealing with concrete mea-
sures and domains. This is related even to the one-dimensional case (cf. Prob-
lem 2 in Kufner, Maligranda, and Persson [468]). As an example of a more
visible criterion, consider the measure μ on R

n × R
n given by

μ(dx, dy) = |x− y|−n−pα dxdy, (11.11.31)

with 0 < α < 1 and αp < n. This measure generates a seminorm in the
homogeneous Besov space bαp (Rn). With this particular choice of μ, we have
by Theorem 11.10.1/1 and Remark 11.8/3 that (11.11.28) holds with q > p > 1
and q ≥ p = 1 if and only if

sup
x∈Rn,ρ>0

ν(B(x, ρ))p/q

ρn−pα
<∞. (11.11.32)

The inequality (11.11.32) is the same as (11.11.29) with F = B(x, ρ) and μ is
defined in (11.11.31).
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11.12 Comments to Chap. 11

Section 11.2. Inequalities similar to (11.1.4) were proved in the author’s
paper [543], where (11.1.4) (and even a stronger estimate in which the role of
the capacity of the set Qt is played by the capacity of the condenser Qt\Q2t)
were derived for l = 1 and l = 2. In the more difficult case l = 2, the
proof was based on the procedure of “smooth truncation” of the potential
near equipotential surfaces (see Proposition 3.7). By combining this procedure
with the Hedberg inequality (11.2.2). D.R. Adams [5] established (11.1.4)
for the Sobolev space W l

p for any integer l. The proof of D.R. Adams is
presented in Sect. 11.2.1. The same tools together with Theorem 10.1.1/1 on
traces of functions in the weighted Sobolev space were used by the author to
derive (11.1.4) for functions inW l

p for all p > 1, l > 0. This implies the validity
of (11.1.4) for the Bessel potential space H l

p for all fractional l > 0 but only
for p ≥ 2. The latter restriction was removed by Dahlberg [219] whose proof
is also based on “smooth truncation” and on subtle estimates for potentials
with nonnegative density. Hansson [347, 348] found a new proof of (11.1.4) for
spaces of potentials that uses no truncation. Hansson’s approach is suitable for
a wide class of potentials with general kernels. In Sect. 11.2.2 we presented the
author’s proof (cf. [554]) of inequality (11.1.4) based on Hansson’s idea [347],
but apparently simpler. In [20] D.R. Adams and Xiao proved the inequalities

∫ ∞

θ

cap
(
Nt, b

l
p,q

)
dtp ≤ C‖u‖p

bl
p,q
, 1 < q ≤ p <∞,

∫ ∞

0

(
cap
(
Nt, b

l
p,q

))q/p dtq ≤ C‖u‖q
bl

p,q
, 1 < p ≤ q <∞,

where cap is the capacity associated with the space blp,q(R
n). The case q = p

is due to Maz’ya [548] and the case 1 ≤ p ≤ q < ∞ was considered by Wu
[797].

Section 11.3. The equivalence of (11.1.1) and an isocapacitary inequality
was discovered by the author in 1962 for the particular case p = q = 2, l = 1
(cf. Maz’ya [531, 534]). Results of this kind were later obtained in the papers
by Maz’ya [543, 548], D.R. Adams [5], Maz’ya and Preobrazhenski [577], and
others.

Section 11.4. The counterexample to the isocapacitary inequality in the
norm L2

2(Ω) is taken from the paper by Maz’ya and Netrusov [572].
Section 11.5. We follow the survey-article [775] by Verbitsky.
Section 11.6. The capacitary characterization of the embedding in the

case q > p > 0 in Sect. 11.6.1 is due to the author [556] and the author and
Netrusov [572].

Sections 11.7–11.8. The presentation mostly follows the paper by the
author and Preobrazhenski [577]. In comparison with this paper the require-
ments on the function Φ are made less restrictive for 1 < p < 2 − l/n by
virtue of the results due to Hedberg and Wolff [372], which appeared later.
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Remark 11.8/2 proved by D.R. Adams [5] and Corollary 11.8/2 was estab-
lished earlier by D.R. Adams [2] by a different method.

Inequalities related to Corollary 11.8/2, with sharp constants are available.
In fact, Cianchi [201] obtained the following far-reaching result concerning the
Yudovich inequality (see the Comments to Sect. 1.4).

Theorem. Let Ω be an open bounded subset of R
n, n ≥ 2. Let μ be a

positive Borel measure on Ω such that

sup
{
�−βμ

(
B(x, �) ∩Ω

)
: x ∈ R

n, 0 < � < 1
}
<∞ (11.12.1)

for some β ∈ (0, n]. Then there exists a constant C = C(Ω,μ) such that

∫
Ω

exp
(
nv

1
n
n β

n−1
n |u(x)|

‖∇u‖Ln(Ω)

) n
n−1

dμ(x) ≤ C (11.12.2)

for every u ∈ D(Ω). The constant nv
1
n
n β

n−1
n in (11.12.2) is sharp, i.e.,

(11.12.2) fails if nv
1
n
n β

n−1
n is replaced by any larger constant, whenever there

exist x0 ∈ Ω and ρ1, C1 > 0 such that

�−βμ
(
B(x, �) ∩Ω

)
≥ C1, 0 < � ≤ �1. (11.12.3)

The case when μ is the Lebesgue measure in this theorem was established
by Moser [618] and extended to the space of Bessel potentials and to higher
derivatives of integer order by D.R. Adams [11]. The existence of an optimizer
was proved in the planar case by Carleson and Chang [169]. The general case of
an arbitrary μ can be found in Cianchi [201], where inequalities for functions
not necessarily vanishing on the boundary are taken into account (see also
Cianchi [198]). In particular, trace inequalities on ∂Ω of Moser’s type are
obtained in [201]. Note that a general optimal capacitary inequality implying
Moser’s result can be found in Sect. 4.6 (see also Maz’ya [561]). An extension
of the Yudovich inequality to the case when the derivatives belong to the
Lorentz spaces Ln,q, where 1 < q ≤ n is due to Hudson and Leckband [386].

Capacitary inequalities were used by Schechter in the study of estimates
of the form

M−1
0

(∫
M0(u) dμ(x)

)
≤ CM−1

(∫
M
(
(1 −Δ)mu

)
dν(x)

)

for u ∈ C∞(Rn), where M0, M are convex functions and μ, ν are measures
[692].

Section 11.9. Here various applications of the results obtained in Chap. 11
are given. Section 11.9.2 is borrowed from Maza’ya and Poborchi [576],
Sect. 8.6.

Theorems of the present chapter were applied to the problem of the de-
scription of classes of multipliers in various spaces of differentiable functions
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(see the book by Maz’ya and Shaposhnikova [588]). Here we restrict ourselves
to mentioning just a few results.

By multipliers acting from a function space S1 into another one S2 we
mean functions such that multiplication by them sends S1 into S2. Thus, with
the two spaces S1 and S2 we associate a third one, the space of multipliers
M(S1 → S2). If S1 = S2 = S we will employ the notation M(S).

The norm of the operator of multiplication by the multiplier γ is taken as
the norm of γ in M(S1 → S2).

We list some equivalent normings of multipliers in pairs of Sobolev spaces.
Let m > l, mp < n, and further, either q > p > 1 or q ≥ p = 1. Then

‖γ‖
M(Wm

p (Rn)→W l
q

(
Rn
)
)

∼ sup
x∈Rn;0<r<1

(
rm−n/p‖ gradl γ‖Lq(Br(x)) + ‖γ‖L1(B1(x))

)
. (11.12.4)

For the formulation of an analogous result for q = p > 1, we require the
capacity cl,p, as introduced in Sect. 10.4.1.

If m > l and p > 1, then

‖γ‖M(Wm
p (Rn)→W l

p(Rn))

∼ sup
{e⊂Rn,diam e≤1}

‖ gradl γ‖Lp(e)

[cm,p(e)]1/p
+ sup

x∈Rn

‖γ‖L1(B1(x)). (11.12.5)

For m = l the second term to the right in relations (11.12.4) and (11.12.5)
has to be replaced by ‖γ‖L∞(Rn).

If mp = n then the first term to the right in (11.12.4) takes the form

sup
x∈Rn;0<r<1

| log 2/r|(p−1)/p‖ gradl γ‖Lq(Br(x)),

and if mp > n the space M(Wm
p (Rn) → W l

q(Rn)) coincides with the space
W l

q(R
n, unif) of functions with the finite norm

sup
x∈Rn

‖γ‖W l
q(B1(x)).

Multipliers have a number of useful properties. For instance, the traces of mul-
tipliers are multipliers of traces. More exactly, each function inMW l−1/p

p (∂Ω)
can be continued toΩ as a function inMW l

p(Ω) (we assume that the boundary
of Ω is smooth). The converse statement, that traces of functions in MW l

p(Ω)

belong to MW l−1/p
p (∂Ω), is trivial.

Sections 11.10 and 11.11. The results of these sections are due to the
author [551, 560, 564].
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Pointwise Interpolation Inequalities
for Derivatives and Potentials

In the present chapter we consider various pointwise interpolation inequalities
for derivatives of integer and fractional order and apply them to some weighted
integral inequalities. In Sect. 12.1 we prove, among others, the estimate

MIzf(x) ≤ c
(
MIζf(x)

)�z/�ζ(Mf(x)
)1− �z/�ζ (12.0.1)

for all x ∈ R
n and 0 < �z < �ζ < n. Here Iz is the Riesz potential and

M is the Hardy–Littlewood maximal operator. As an application we easily
derive weighted multiplicative inequalities of the Gagliardo–Nirenberg type
for complex powers of −Δ and 1−Δ.

Section 12.2 is mostly dedicated to the proof of the following sharp in-
equality and its corollaries

∣∣∇u(x)∣∣ ≤ n(n+ 1)Dω(∇u;x)Φ
(

M�u(x)
nDω(∇u;x)

)
, (12.0.2)

where

Dω(v;x) = sup
r>0

1
ω(r)

∣∣∣∣v(x) −
∫
−

∂Br(x)

v(y) dsy

∣∣∣∣, (12.0.3)

M� is the maximal operator defined by

M�f(x) = sup
r>0

∣∣∣∣
∫
−

Br(x)

y − x
|y − x|f(y) dy

∣∣∣∣, (12.0.4)

and Φ is a certain strictly increasing function generated by the continuity
modulus ω. The barred integral stands for the mean value. A simple corollary
of (12.0.2) is the inequality

∣∣u′(x)
∣∣2 ≤ 8

3
(
M�u

)
(x)
(
M�u′ ′)(x) (12.0.5)

with the best constant.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 12, c© Springer-Verlag Berlin Heidelberg 2011
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One of the results in Sect. 12.3 is the estimate

(Dp,αu)(x) ≤ c
((
M
∣∣u− u(x)∣∣p)(x))(1−α)/p((M|∇u|q

)
(x)
)α/q

, (12.0.6)

where 0 < α < 1, p ∈ [1,∞), q ≥ max{1, pn/(n+ p)}, and

(Dp,αu)(x) =
(∫

Rn

|u(y) − u(x)|p
|y − x|n+αp

dy
)1/p

.

Section 12.3 also contains simple proofs of weighted norm multiplicative in-
equalities of the Gagliardo–Nirenberg type for integer and fractional deriva-
tives based on pointwise interpolation inequalities.

We conclude this chapter showing in Sect. 12.4 that (12.0.6) is useful in the
question of continuity of the composition operator u → f(u) in a fractional
Sobolev space.

12.1 Pointwise Interpolation Inequalities for Riesz and
Bessel Potentials

12.1.1 Estimate for the Maximal Operator of a Convolution

Lemma. Let k be a nonnegative, nonincreasing function in L1(0,∞) and let
g ∈ L1(Rn, loc). Assume that Mg(x) <∞ for some x ∈ R

n. Then the integral

(Kg)(x) =
∫

Rn

k
(
|y − x|

)
g(y) dy,

is absolutely convergent and

MKg(x) ≤ 2n+1

∫
Rn

k
(
|ξ|
)
dξ Mg(x)

Proof. Let x = 0 and r ∈ (0,∞). We have
∫
−

Br

∣∣(Kg)(y)∣∣ dy ≤ 2n

∫
−

B2r

∣∣g(z)∣∣
∫
Br(z)

k
(
|y|
)
dy dz

+
∫
−

Br

∫
Rn \B2r

k
(
|z − y|

)∣∣g(z)∣∣ dz dy. (12.1.1)

The first term on the right in (12.1.1) is majorized by

2n

∫
Rn

k
(
|y|
)
dy
∫
−

B2r

∣∣g(z)∣∣ dz. (12.1.2)

Since in the second term |z−y| ≥ |z|−r ≥ |z|/2, we have k(|z−y|) ≤ k(|z|/2)
and it follows that this term does not exceed
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∫
Rn

k
(
|z|/2

)∣∣g(z)∣∣ dz
=
∫ ∞

0

∫
B2t

∣∣g(ξ)∣∣ dξ ∣∣dk(t)∣∣ ≤ 2nvn

∫ ∞

0

tn
∣∣dk(t)∣∣Mg(0)

= 2n

∫
Rn

k
(
|ξ|
)
dξMg(0).

This together with (12.1.2) completes the proof. ��

12.1.2 Pointwise Interpolation Inequality for Riesz Potentials

Let z be a complex number with �z < n. The Riesz potential Iz is defined by

Izf(x) = c

∫
Rn

f(y)
|y − x|n−z

dy,

where the constant c is chosen in such a way that Iz = (−Δ)−z/2, i.e.,

Izf(x) = F−1
ξ→x|ξ|

−zFx→ξf,

with F denoting the Fourier transform in R
n.

Theorem. Let f ∈ L1,loc(Rn) and let 0 < �z < �ζ < n. Then

MIzf(x) ≤ c
(
MIζf(x)

)�z/�ζ(Mf(x)
)1− �z/�ζ

. (12.1.3)

Proof. We introduce a function χ in the Schwartz space S such that Fχ = 1
in a neighborhood of the origin, and the functions

P (x) = c1 F
−1
ξ→x

(
|ξ|ζ−zFχ(ξ)

)
, (12.1.4)

Q(x) = c2 F
−1
ξ→x

(
|ξ|−z

(
1− Fχ(ξ)

))
. (12.1.5)

It is then evident that

Izf(0) = P ∗ Iζf(0) +Q ∗ f(0). (12.1.6)

Let m be a positive integer such that

0 < m−�ζ + �z ≤ 1.

Since
P (x) = c

∑
|α|=m

m!
α!
∂αx

∫
Rn

χ(y)∂αx |x− y|2m−n−ζ+z dy,

where ∂x is the gradient, we have
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∣∣P (x)
∣∣ ≤ c(|x| + 1

)−n− �ζ+�z
.

Therefore, P ∈ L1(Rn) and by Lemma 12.1.1,

M(P ∗ Iζf)(0) ≤ cMIζf(0). (12.1.7)

We observe that the function |ξ|−z(1 − Fχ(ξ)) is smooth, so for |y| ≥ 1
and for sufficiently large N

∣∣Q(y)
∣∣ ≤ c(N)|y|−N .

For |y| < 1 ∣∣Q(y)
∣∣ ≤ c|y|−n+�z +

∣∣Izχ(y)
∣∣.

Since the second term on the right is bounded, the last two estimates imply
Q ∈ L1(Rn). By Lemma 12.1.1,

M(Q ∗ f)(0) ≤ cMf(0).

Combining this with (12.1.7) and (12.1.6), we find

MIzf(0) ≤ c
(
MIζf(0) + Mf(0)

)
.

The dilation y → y/t with an arbitrary t > 0 implies

MIzf(0) ≤ c
(
t�(z−ζ)MIζf(0) + t�zMf(0)

)
,

and it remains to minimize the right-hand side in t. ��

12.1.3 Estimates for |J−wχρ|

Let z be a complex number. The Bessel potential Jz is defined by Jz =
(−Δ+ 1)−z/2, i.e.,

Jzf(x) = F−1
ξ→x

(
1 + |ξ|2

)−z/2
Fx→ξf.

Another formula for Jz is

Jzf(x) = c

∫
Rn

Gz(x− y)f(y) dy, (12.1.8)

where
Gz(x) = c|x|(z−n)/2K(n−z)/2

(
|x|
)
.

Kν is the modified Bessel function of the third kind. We formulate some
estimates of the kernel Gz used in the following (see Aronszajn [53]).

For |x| ≤ 1 one has

∣∣∇kGz(x)
∣∣ ≤

{
c log(2/|x|) for z = n+ k, k even,
c(|x|�z−n−k + 1) for other values of z.

(12.1.9)
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Further, for |x| > 1
∣∣∇kGz(x)

∣∣ ≤ c|x|(�z−n−1)/2e− |x|. (12.1.10)

As in Sect. 12.1.2, by χ we denote a function in the Schwartz space S such
that Fχ = 1 in B1. We put

χρ(x) = (mnBρ)−1χ(x/ρ).

Lemma. The following inequalities are valid:
∣∣(−Δ+ 1)w/2χρ(x)

∣∣

≤

⎧⎪⎨
⎪⎩
cL|x|−L for |x| > 1 and arbitrary L > 0,
c((|x| + ρ)−n− �w + 1) for |x| ≤ 1 and w �= −n,
c| log(2|x|+ ρ)| for |x| ≤ 1 and w = −n.

(In the trivial case of even positive w sharper estimates hold.)

Proof. For |x| > 1 and arbitrarily large L we have

|x|2L
∣∣(−Δ+ 1)w/2χρ(x)

∣∣
=
∣∣F−1

ξ→x(−Δξ)L
(
ξ2 + 1

)w/2
Fx→ξχρ

∣∣

≤ c
∫

Rn

2L∑
k=0

∣∣∇k,ξ

(
ξ2 + 1

)w/2∣∣|∇2L−k,ξFx→ξχρ| dξ. (12.1.11)

By using Fx→ξχρ = (Fχ)(ρξ) we find

|∇2L−kFx→ξχρ| ≤
cLρ

2L−k

(ρ|ξ| + 1)N
,

where N is an arbitrarily large positive number. Therefore, the integral on
the right in (12.1.11) is majorized by

c

2L∑
k=0

ρ2L−k

∫
Rn \B1/ρ

(
|ξ| + 1

)�w−k(
ρ|ξ| + 1

)−N dξ

+ c
∫
B1/ρ

(
|ξ| + 1

)�(ζ−z)−2L(
ρ|ξ| + 1

)−N dξ ≤ cρ2L− �(ζ−z)−n + c.

Hence ∣∣(−Δ+ 1)w/2χρ(x)
∣∣ ≤ c|x|−2L for |x| > 1. (12.1.12)

For |x| < ρ
∣∣(−Δ+ 1)w/2χρ(x)

∣∣
≤ c
(∫

Rn \B1/ρ

|ξ|�w
(
ρ|ξ|
)−L dξ + ρ− �w

∫
B1/ρ

dξ
)
≤ cρ−n− �w. (12.1.13)
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It remains to estimate the left-hand side of (12.1.13) for ρ < |x| < 1. We
start with �w ≤ 0. The case w = 0 is trivial. If w �= 0 we write

(−Δ+ 1)wχρ(x) =
∫

Rn

G−w(x− y)χρ(y) dy. (12.1.14)

We divide the integration domain into B2(x) and R
n\B2(x). By (12.1.10) the

integral over R
n\B2(x) is dominated by

cρ−n

∫
Rn \B2(x)

|x− y|−N

(
ρ

|y|

)L

dy ≤ cρL−n

∫
Rn \B1

dy
|y|N+L

.

The estimates of the integral over B2(x) are also straightforward. Let, for
example, �w > −n. By (12.1.9) the integral in question is majorized by

cρ−n

∫
B3

|x− y|−n− �w

(
ρ

|y|+ ρ

)L

dy

≤ cρL−n

∫
B3\B2|x|

dy
|y|n+�w+L

+ c
ρL−n

|x|L
∫
B2|x| \B|x|/2

|x− y|−n− �w dy

+ cρL−n|x|−n− �w

∫
B|x|/2

dy
(|y| + ρ)L

≤ c|x|−n− �w.

Setting s = [�w] > 0 and t = {�w} we proceed by induction in s. Let the
required estimates be proved for [�w] < s. We use the identity

(−Δ+1)
s+t
2 = (−Δ)s+1(−Δ+1)

t−s
2 −1+

s∑
k=0

(−1)s−k

(
s+ 1
k

)
(−Δ+1)k−1+ t−s

2 ,

which can be verified directly. By induction hypothesis the functions

(−Δ+ 1)k−1+ t−s
2 +i�w

have the majorant c|x|−n−s−t for ρ < |x| < 1. Hence we are left with estimat-
ing the function

(−Δ)s+1(−Δ+ 1)
t−s
2 −1+i�wχρ(x)

= c
∑

|α|=s+1

(s+ 1)!
α!

∫
Rn

∂αy χρ(y)∂αxG2+2s−w(x− y) dy. (12.1.15)

We introduce a cutoff function κ ∈ C∞
0 (B4\B1/4), κ = 1 on B2\B1/2.

Suppose n + t > 1. The remaining case n = 1, t = 0 will be dealt with
separately. Integrating by parts, we have
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∣∣∣∣
∫

Rn

(
1 − κ

(
y

|x|

))
∂αy χρ(y)∂αxG2+2s−w(x− y) dy

∣∣∣∣

≤ c
s+1∑
k=0

∫
Rn

∣∣χρ(y)
∣∣
∣∣∣∣∇k,y

(
1 − κ

(
y

|x|

))∣∣∣∣
∣∣∇2s+2−kG2+2s−w(x− y)

∣∣ dy.
(12.1.16)

By (12.1.9) and (12.1.10) for k ≤ s+ 1
∣∣∇2s+2−kG2+2s−w(x− y)

∣∣ ≤ c|x− y|−n−s−t+k. (12.1.17)

(Note that −n− s− t+ k is negative since n+ t > 1.) Hence the sum on the
right-hand side of (12.1.16) is majorized by

c

(∫
B|x|/2∪(Rn \B2|x|)

∣∣χρ(y)
∣∣|x− y|−n−s−t dy

+
s+1∑
k=1

|x|−k

(∫
B4|x| \B2|x|

+
∫
B|x|/2\B|x|/4

)∣∣χρ(y)
∣∣|x− y|−n−s−t+k dy

)
.

(12.1.18)

Clearly, ∫
B|x|/2

∣∣χρ(y)
∣∣|x− y|−n−s−t dy ≤ c|x|−n−s−t

and ∫
Rn \B2|x|

∣∣χρ(y)
∣∣|x− y|−n−s−t dy ≤ cL

(
ρ

|x|

)L

|x|−n−s−t.

Similarly, the integrals over B4|x|\B2|x| and B|x|/2\B|x|/4 in (12.1.18) are es-
timated by

cL

(
ρ

|x|

)L

|x|−n−s−t+k.

Thus∣∣∣∣
∫

Rn

(
1− κ

(
y

|x|

))
∂αy χρ(y)∂αxG2+2s−w(x− y) dy

∣∣∣∣ ≤ c|x|−n−s−t. (12.1.19)

To estimate ∣∣∣∣
∫

Rn

κ

(
y

|x|

)
∂αy χρ(y)∂αxG2+2s−w(x− y) dy

∣∣∣∣ (12.1.20)

we use (12.1.17) for k = s+1 and obtain that for any sufficiently large K > 0
(12.1.20) does not exceed
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cKρ
−n−s−1

(
ρ

|x|

)K ∫
B4|x| \B|x|/4

|x− y|1−t−n dy

≤ cK
(
ρ

|x|

)K−n−s−1

|x|−t−n−s.

Combining this with (12.1.19), we find

∣∣(−Δ)s+1(−Δ+ 1)
t−s
2 −1+i�wχρ(x)

∣∣ ≤ cL|x|−n−s−t

(
ρ

|x|

)L

for ρ < |x| < 1. Thus, for n+ t > 1 the result follows.
Let n = 1, t = 0. As before, we have to estimate the function (12.1.15),

that is, the integral
∫

R1
∂s+1
y χρ(y)∂s+1

x G2+s(x− y) dy

=
∫

R1

(
1 − κ

(
y

|x|

))
∂syχρ(y)∂s+2

x G2+s(x− y) dy

+
∫

R1
κ

(
y

|x|

)
∂syχρ(y)∂s+2

x G2+s(x− y) dy. (12.1.21)

The first integral on the right does not exceed

c

s∑
k=0

∫
R1

∣∣χρ(y)
∣∣
∣∣∣∣∂ky
(

1− κ
(
y

|x|

))∣∣∣∣
∣∣∂2s+2−k

x G2+s(x− y)
∣∣ dy.

In view of (12.1.17) the argument previously used to estimate the right-hand
side of (12.1.16) gives the majorant c|x|−1−s for the last sum.

We pass to the second integral on the right in (12.1.21). Restricting our-
selves to x > 0 without loss of generality, we can rewrite it as

∫ 4x

x/4

(
κ

(
y

x

)
∂syχρ(y) − κ(1)∂sxχρ(x)

)
∂s+2
x Gs+2(x− y) dy

+ κ(1)∂sxχρ(x)
∫ 3x/4

−3x

∂s+2
t Gs+2(t) dt. (12.1.22)

It is enough to assume that s is odd. We have

∂s+2
t Gs+2(t) = const t−1 +O(1) as t→ 0,

because ξs+2(ξ2 + 1)−(s+2)/2 is asymptotically equal to sgn ξ as |ξ| → ∞.
Therefore, the second term in (12.1.22) does not exceed cLx−1−s(ρ/x)L−1−s

and the first one is dominated by
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c

∫ 4x

x/4

|κ( y
x )∂syχρ(y) − κ(1)∂sxχρ(x)|

|x− y| dy

≤ cx sup
(x/4,4x)

∣∣∣∣∂y
(
κ

(
y

x

)
∂syχρ(y)

)∣∣∣∣ ≤ cLx−1−s

(
ρ

x

)L

.

Thus the second integral on the right-hand side of (12.1.21) has the majo-
rant cL|x|−1−s(ρ/x)L. Hence the function (12.1.21) is dominated by c|x|−1−s,
which completes the proof. ��

12.1.4 Estimates for |J−w(δ − χρ)|

Lemma. (i) For an arbitrarily large L there exists a constant cL such that
for |x| > ρ

∣∣(−Δ+ 1)w/2(δ − χρ)(x)
∣∣ ≤ cL

(
ρ

|x|

)L

ρ−n− �w.

Here and elsewhere δ stands for the Dirac function.
(ii) There exists a constant c such that for |x| < ρ

∣∣(−Δ+ 1)w/2(δ − χρ)(x)
∣∣ ≤

⎧⎪⎨
⎪⎩
c|x|− �w−n for �w ≥ −n, w �= −n,
c log(2ρ|x|−1) for w = −n,
cρ− �w−n for �w < −n.

Proof. (i) We need to estimate the absolute value of

ϕρ(x) = F−1
ξ→x

((
ξ2 + 1

)w/2(1 − (Fχ)(ρξ)
))
.

Let |x| > ρ and let N be a sufficiently large, positive integer. We have

|x|2N
∣∣ϕρ(x)

∣∣ ≤
∫

Rn

∣∣ΔN
ξ

((
ξ2 + 1

)w/2(1− (Fχ)(ρξ)
))∣∣ dξ

≤ c

∫
Rn

2N∑
k=0

∣∣∇k,ξ

(
1− (Fχ)(ρξ)

)∣∣ dξ
(ξ2 + 1)(2N−k− �w)/2

.

Since Fχ = 1 in a neighborhood of the origin,

|x|2N
∣∣ϕρ(x)

∣∣ ≤ c
∫

Rn

2N∑
k=0

ρk dξ
(ξ2 + ρ)2N−k− �w

= cρ2N−n− �w,

which gives the result.
(ii) Now let |x| < ρ. In the case �w ≥ −n, w �= −n the assertion follows

from (12.1.9) and Lemma 12.1.3. Setting Ξ = ρξ and X = x/ρ we obtain
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ϕρ(x) = ρ−w−nF−1
Ξ→X

((
Ξ2 + ρ2

)w/2(1 − (Fχ)(Ξ)
))
.

In the case �w < −n
∣∣ϕρ(x)

∣∣ ≤ cρ− �w−n

∫
Rn

(
Ξ2 + 1

)�w/2 dΞ = cρ− �w−n.

In the remaining case �w = −n we notice that for Ξ ⊂ supp(1 − Fχ)

(
Ξ2 + ρ2

)w/2 =
(
Ξ2 + 1

)w/2 +O
(
|Ξ|+ 1

)−n−1
,

uniformly with respect to ρ ∈ (0, 1). Consequently,

ϕρ(x) = ρ−w−nF−1
Ξ→X

((
Ξ2 + 1

)w/2(1 − (Fχ)(Ξ)
)

+O(1)
)

and therefore ∣∣ϕρ(x)
∣∣ ≤ ∣∣G−w(X)

∣∣+ ∣∣J−wχρ(X)
∣∣.

The second term on the right is bounded uniformly with respect to ρ ∈ (0, 1)
and the first term is O(log(2|X|−1)) if w = −n, and is bounded if �w = −n,
"w �= 0. Hence ϕρ(x) admits the required estimates for |x| < ρ. ��

12.1.5 Pointwise Interpolation Inequality for Bessel Potentials

Theorem. Let f ∈ L1(Rn, loc) and let 0 < �z < �ζ. Then

MJzf(x) ≤ c
(
MJζf(x)

)�z/�ζ(Mf(x)
)1− �z/�ζ (12.1.23)

for all x ∈ R
n.

Proof. We introduce the functions

Pρ = (−Δ+ 1)(ζ−z)/2χρ, (12.1.24)
Qρ = Jz(δ − χρ), (12.1.25)

where ρ ∈ (0, 1). Clearly,

Jzf = Pρ ∗ Jζf +Qρ ∗ f. (12.1.26)

We claim that∫
−

Br

∣∣(Pρ ∗ Jζf)(y)
∣∣ dy ≤ cρ− �(ζ−z)MJζf(0) (12.1.27)

for all r > 0 and ρ ∈ (0, 1). In fact,
∫

Rn

∣∣Pρ

(
|t|
)∣∣dt ≤ c

(∫
Rn

dξ
(|ξ| + 1)L

+
∫

Rn

dξ
(|ξ| + ρ)n+�(ζ−z)

)
≤ cρ− �(ζ−z).
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Hence (12.1.27) follows from Lemma 12.1.1.
By Lemma 12.1.1,

∣∣Qρ(x)
∣∣ ≤

{
cρ�z−n(ρ/|x|)n+1 for |x| > ρ,
c|x|�z−n for |x| < ρ.

Therefore ∫
Rn

∣∣Qρ(x)
∣∣ dx ≤ cρ�z

and by Lemma 12.1.1
∫
−

Br

∣∣(Qρ ∗ f)(y)
∣∣ dy ≤ cρ�zMf(0). (12.1.28)

Combining this with (12.1.27), we arrive at

MJzf(0) ≤ c
(
ρ− �(ζ−z)MJζf(0) + ρ�zMf(0)

)
(12.1.29)

for all ρ ∈ (0, 1). If

MJζf(0) <
�z

�(ζ − z)Mf(0),

then the minimum of the right-hand side of (12.1.29) on (0, 1] is attained at

ρ =
(
�(ζ − z)MJζf(0)

�zMf(0)

)1/�ζ

∈ (0, 1)

and is equal to
c
(
MJζf(0)

)�z/�ζ(Mf(0)
)1− �z/�ζ

,

which gives (12.1.23). If

MJζf(0) ≥ �z
�(ζ − z)Mf(0),

we have by (12.1.29)

MJzf(0) ≤ c
(
MJζf(0) + Mf(0)

)
≤ c1MJζf(0).

Since by Lemma 12.1.1
MJζf(0) ≤ cMf(0),

we arrive at (12.1.23). The proof is complete. ��

Remark 1. Inequality (12.1.3) can be deduced from (12.1.23) by dilation
x → x/ε and by passage to the limit as ε → 0. However, we included an
independent proof of (12.1.3) because it is simpler than that of (12.1.23).
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Remark 2. If "z = 0 and f ≥ 0, one has

MIzf(x) ≤ cIzf(x) and MJzf(x) ≤ cJzf(x)

(see, in particular, Lemma 12.1.1). This means that for real z, ζ, and nonneg-
ative f inequalities (12.1.3) and (12.1.23) are equivalent to Hedberg’s inequal-
ities (cf. [365] and [15], Sect. 3.1), which contains no operator M in front of
the potentials.

Obvious changes in the proofs of Theorems 12.1.2 and 12.1.5 give the
following generalization of (12.1.3) and (12.1.23).

Proposition. Let f ∈ L1
loc(R

n).
(i) If k < �ζ < n then for all x ∈ R

n

(M∇kIζf)(x) ≤ c
(
(MIζf)(x)

)1−k/�ζ((Mf)(x)
)k/�ζ

. (12.1.30)

(ii) If k < �ζ then for all x ∈ R
n

(M∇kJζf)(x) ≤ c
(
(MJζf)(x)

)1−k/�ζ((Mf)(x)
)k/�ζ

. (12.1.31)

12.1.6 Pointwise Estimates Involving M∇ku and Δlu

Here we obtain two multiplicative inequalities involving integer powers of the
Laplacian.

Corollary. Let k and l be positive integers. Then for all x ∈ R
n

(M∇ku)(x) ≤
(
(Mu)(x)

)1− k
2l
((
MΔlu

)
(x)
) k

2l , k < 2l, (12.1.32)

(M∇ku)(x) ≤
((
Mu

)
(x)
)1− k

2l+1
((
M∇Δlu

)
(x)
) k

2l+1 , k < 2l+1. (12.1.33)

Proof. Setting ζ = l and u = Jlf in (12.1.31), we arrive at

(M∇ku)(x) ≤
(
(Mu)(x)

)1− k
l
((
M(−Δ+ 1)l/2u

)
(x)
) k

l .

Now (12.1.32) follows by the dilation x → xε and passage to the limit as
ε→ 0.

By (12.1.32) with k replaced by k − 1 we have

(
M∇k−1

∂u

∂xi

)
(x) ≤

((
M ∂u

∂xi

)
(x)
)1− k−1

2l ((
M∇Δlu

)
(x)
) k−1

2l , (12.1.34)

where i = 1, 2, . . . , n. Using (12.1.32) once more with k = l = 1 we obtain
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(
M ∂u

∂xi

)
(x) ≤ c

(
(Mu)(x)

)1/2((MΔu)(x)
)1/2

. (12.1.35)

To estimate MΔu we write ∇u = v and note that by (12.1.32)

(M div v)(x) ≤ c
(
(Mv)(x)

)1− 1
2l
(
(MΔlv)(x)

) 1
2l ,

which implies

(MΔu)(x) ≤ c
(
(M∇u)(x)

)1− 1
2l
((
M∇Δlu

)
(x)
) 1

2l .

Combining this inequality with (12.1.35) we find

(M∇u)(x) ≤ c
(
(Mu)(x)

) 2l
2l+1

((
M∇Δlu

)
(x)
) 1

2l+1 ,

which together with (12.3.13) completes the proof of (12.1.33). ��

12.1.7 Application: Weighted Norm Interpolation Inequalities for
Potentials

Let w be a nonnegative measurable function on R
n. By Lp(w dx) we mean

the space of measurable functions f with the finite norm

‖f‖Lp(w dx) =
(∫

Rn

∣∣f(x)∣∣pw(x) dx
)1/p

. (12.1.36)

Proposition. Let 1 < q <∞, 1 < p <∞, and let

1
s

=
(

1 − �z
�ζ

)
1
p

+
�z
�ζ

1
q
.

Further, let the weight function w belong to the Muckenhoupt class Amin{q,p}.
Then

‖Izf‖Ls(w dx) ≤ c‖Iζf‖�z/�ζ
Lq(w dx)‖f‖

1− �z/�ζ
Lp(w dx) , 0 < �z < �ζ < n, (12.1.37)

‖Jzf‖Ls(w dx) ≤ c‖Jζf‖�z/�ζ
Lq(w dx)‖f‖

1− �z/�ζ
Lp(w dx) , 0 < �z < �ζ. (12.1.38)

Proof. By Theorem 12.1.2

‖Izf‖Ls(w dx) ≤ c
(∫

Rn

(
MIζf(x)

)s�z/�ζ(Mf(x)
)s(1− �z/�ζ)

w(x) dx
)1/s

,

which by Hölder’s inequality is majorized by

c‖MIζf‖�z/�ζ
Lq(w dx)‖Mf‖1− �z/�ζ

Lp(w dx) .

It remains to refer to the Muckenhoupt theorem on the boundednesss of the
operator M in Lσ(w dx) for 1 < σ <∞. Inequality (12.1.37) is proved.

Duplicating the same arguments and using Theorem 12.1.5 one arrives at
(12.1.38). ��
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12.2 Sharp Pointwise Inequalities for ∇u

12.2.1 The Case of Nonnegative Functions

Let v be a function in R
n and let the function Tω(∇f ;x) be defined by (1.3.45),

where R is replaced by R
n. We start with the following almost obvious mul-

tidimensional corollary of the one-dimensional estimate (1.3.47).

Theorem. Let f be a differentiable nonnegative function on R
n. Then for

all x ∈ supp f ∣∣∇f(x)∣∣ ≤ Tω(∇f ;x)ψ−1

(
f(x)

Tω(∇f ;x)

)
, (12.2.1)

where ψ−1 is the inverse of (1.3.46). If ω is concave, then this inequality with
x = 0 becomes an equality for

f(x) = ψ(1)− xn +
∫ xn

0

ω(τ) dτ.

Proof. Let h(t) = f(x + tex), where ex is a unit vector parallel to the
gradient direction of f at the point x and t ∈ R. Theorem 1.3.6 applied to h
yields ∣∣h′(t)

∣∣ ≤ Tω(h′;x)ψ−1

(
h(t)

Tω(h′;x)

)
.

The estimate (12.2.1) follows if we notice that the function (1.3.51) is increas-
ing.

The sharpness of inequality (12.2.1) is proved in the same way as in The-
orem 1.3.6. ��

Remark. The last theorem obviously implies the following n-dimensional
generalization of (1.3.52):

∣∣∇f(x)∣∣α+1 ≤
(
α+ 1
α

)α(
f(x)

)α sup
y∈Rn

|∇f(x) −∇f(y)|
|x− y|α , (12.2.2)

where α > 0. The equality sign in (12.2.2) with x = 0 is attained at

f(x) =
xα+1
n + α
α+ 1

− xn.

12.2.2 Functions with Unrestricted Sign. Main Result

Let M� be the maximal operator defined by (12.0.4) where u is a locally
integrable function on R

n, n ≥ 1, Br(x) is the ball {y ∈ R
n : |x − y| < r},
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and the bar stands for the mean value of the integral. Clearly, M�u(x) does
not exceed the sharp maximal function of Fefferman and Stein [274]:

M u(x) = sup
r>0

∫
−

Br(x)

∣∣∣∣u(y) −
∫
−

Br(x)

u(z) dz
∣∣∣∣ dy.

We write Br instead of Br(0) and use the notation |B1| = mn(B1) and
|Sn−1| = s(∂B1). We introduce the mean value of the vector-valued func-
tion v : R

n → R
n over the sphere ∂Br(x) as follows:

Av(x; r) =
∫
−

∂Br(x)

v(y) dsy, (12.2.3)

and set

Dω(v;x) = sup
r>0

|v(x) −Av(x; r)|
ω(r)

. (12.2.4)

In particular, for a function v of one variable we have

Dω(v;x) = sup
r>0

|2v(x) − v(x+ r) − v(x− r)|
2ω(r)

.

In what follows, we assume that ω is a continuous nondecreasing function
on [0,∞) such that ω(0) = 0 and ω(∞) = ∞.

The objective of this section is the next result.

Theorem. Let the function

Ω(t) :=
∫ 1

0

(1 − n+ nσ)σn−1ω(σt) dσ (12.2.5)

be strictly increasing on [0,∞) and let Ω−1 be the inverse function for Ω.
Further let

Ψ(t) =
∫ t

0

Ω−1(τ) dτ.

Then for any u ∈ C1(Rn)

∣∣∇u(x)∣∣ ≤ n(n+ 1)Dω(∇u;x)Ψ−1

(
M�u(x)

nDω(∇u;x)

)
, (12.2.6)

where Ψ−1 is the inverse function for Ψ .
Let ω ∈ C1(0,∞). Suppose the function tω

′
(t) is nondecreasing on (0,∞)

and that, for n > 1, the function tΩ
′
(t) is nondecreasing on (0,∞). Let R be

a unique root of the equation
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n(n+ 1)Ω(t) = 1. (12.2.7)

Inequality (12.2.6) with x = 0 becomes an equality for the function

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn(1 − n
∫ 1

0
σn−1ω(σ|x|) dσ) for 0 ≤ |x| ≤ R,

0 for |x| ≥ (n+ 1)R,
nxn

|x| ((n+ 1)R− |x|)
∫ 1

0
((n+ 1)σ − n)σn−1ω(σ (n+1)R− |x|

n ) dσ

for R < |x| < (n+ 1)R.
(12.2.8)

12.2.3 Proof of Inequality (12.2.6)

It suffices to prove (12.2.6) for x = 0. We have∫
B1

(
∇u(0) −∇u(y)

)(
1 − |y|

)
dy

=
1

n(n+ 1)
∇u(0)

∣∣Sn−1
∣∣−
∫
B1

u(y)
y

|y| dy. (12.2.9)

Hence,

|B1|
n+ 1

∇u(0) =
∫
B1

u(y)
y

|y| dy

+
∣∣Sn−1

∣∣
∫ 1

0

rn−1(1 − r)
(
∇u(0) −A∇u(0; r)

)
dr. (12.2.10)

After the scaling y → y/t, r → r/t, equality (12.2.10) becomes

|B1|
n+ 1

t∇u(0) =
1
tn

∫
Bt

u(y)
y

|y| dy

+
∣∣Sn−1

∣∣ 1
tn

∫ t

0

rn−1(t− r)
(
∇u(0) −Au(0; r)

)
dr. (12.2.11)

This implies

∣∣∇u(0)
∣∣ ≤ n+ 1

t
M�u(0) +

n(n+ 1)
tn+1

Dω(∇u; 0)
∫ t

0

rn−1(t− r)ω(r) dr,

which can be written as

0 ≤ −t
∣∣∇u(0)

∣∣+ (n+ 1)M�u(0) + n(n+ 1)Dω(∇u; 0)
∫ t

0

Ω(τ) dτ. (12.2.12)

Since Ω is strictly increasing, it follows that the right-hand side in (12.2.12)
attains its minimum value at

t∗ = Ω−1

(
|∇u(0)|

n(n+ 1)Dω(∇u; 0)

)
. (12.2.13)
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Thus, by (12.2.5) one has

0 ≤ (n+ 1)M�u(0) −
∣∣∇u(0)

∣∣Ω−1

(
|∇u(0)|

n(n+ 1)Dω(∇u; 0)

)

+ n(n+ 1)Dω(∇u; 0)
∫ Ω−1( | ∇u(0)|

n(n+1)Dω(∇u;0) )

0

Ω(τ) dτ

= (n+ 1)M�u(0) − n(n+ 1)Dω(∇u; 0)
∫ Ω−1( | ∇u(0)|

n(n+1)Dω(∇u;0) )

0

xdΩ(x).

Therefore,

M�u(0) ≥ nDω(∇u; 0)
∫ | ∇u(0)|

n(n+1)Dω(∇u;0)

0

Ω−1(τ) dτ,

which is equivalent to (12.2.6).

12.2.4 Proof of Sharpness

Let us prove first that (12.2.7) has a unique root. Note that Ω(0) = 0 by
(12.2.5). Since tΩ′(t) is nondecreasing, one has Ω(∞) = ∞. It remains to
show that Ω′(t) > 0 for t > 0. To this end, we only need to check that
tΩ′(t)|t=0 = 0. Since the function (12.2.5) can be written as

Ω(t) =
n

tn+1

∫ t

0

τnω(τ) dτ − n− 1
tn

∫ t

0

τn−1ω(τ) dτ, (12.2.14)

we see that

n

∫ t

0

Ω(τ) dτ − 1
tn

∫ t

0

τnω(τ) dτ

=
n

tn−1

∫ t

0

τn−1ω(τ) dτ − n+ 1
tn

∫ t

0

τnω(τ) dτ. (12.2.15)

Hence,

1
tn

∫ t

0

τnω(τ) dτ − (n− 1)
∫ t

0

Ω(τ) dτ = tΩ(t) (12.2.16)

and thus

tΩ′(t) = ω(t)− n

tn+1

∫ t

0

τnω(τ) dτ − nΩ(t). (12.2.17)

The last relation, combined with ω(0) = Ω(0) = 0, shows that tΩ′(t) vanishes
at t = 0.
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Let us now prove that u defined by (12.2.8) is in C1(Rn). We claim that u is
continuous on the sphere |x| = R together with its first partial derivatives. We
use spherical coordinates to write xn = r cos θ. Denote the function u(x)/ cos θ
by u1(r) for 0 ≤ |x| ≤ R and by u2(r) for R < |x| < (n+ 1)R, i.e.,

u1(r) = r − n

rn−1

∫ r

0

tn−1ω(t) dt (12.2.18)

and

u2(r) = n2

(
n+ 1
κnr

∫ κr

0

tnω(t) dt− n

κn−1
r

∫ κr

0

tn−1ω(t) dt
)
, (12.2.19)

where
κr = n−1

(
(n+ 1)R− r

)
. (12.2.20)

Clearly,

u2(R) = n2

(
n+ 1
Rn

∫ R

0

tnω(t) dt− n

Rn−1

∫ R

0

tn−1ω(t) dt
)
. (12.2.21)

By (12.2.14) we can write

u2(R) = n

(
(n+ 1)RΩ(R) − 1

Rn−1

∫ R

0

tn−1ω(t) dt
)
.

It follows from (12.2.7) and (12.2.18) that the right-hand side is equal to
u1(R). Let us show that

u′
2(R) = u′

1(R). (12.2.22)

From (12.2.18) we obtain

u′
1(r) = 1 +

n(n− 1)
rn

∫ r

0

tn−1ω(t) dt− nω(r). (12.2.23)

By (12.2.19)

u′
2(r) = n2

(
n+ 1
κn+1
r

∫ κr

0

tnω(t) dt− n− 1
κnr

∫ κr

0

tn−1ω(t) dt− ω(κr)
n

)
.

(12.2.24)
Therefore,

u′
2(R) = n2

(
n+ 1
Rn+1

∫ R

o

tnω(t) dt− n− 1
Rn

∫ R

0

tn−1ω(t) dt− ω(R)
n

)
,

which by (12.2.14) can be rewritten as

u′
2(R) = n(n+ 1)Ω(R) +

n(n− 1)
Rn

∫ R

0

tn−1ω(t) dt− nω(R).
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Using (12.2.7) and (12.2.23) we arrive at (12.2.22). It remains to note that by
(12.2.19) and (12.2.24)

u2

(
(n+ 1)R

)
= 0, u′

2

(
(n+ 1)R

)
= 0.

Hence, u is in C1(Rn).
Our next goal is to show that

M�u(0) =
R

n+ 1
− n

∫ R

0

Ω(t) dt. (12.2.25)

Let us find the maxima of the function

r →Mru :=
1

|Br|

∣∣∣∣
∫
Br

y

|y|u(y) dy
∣∣∣∣ (12.2.26)

on [0, R] and [R, (n+1)R] separately. Recall that, for 0 ≤ |x| ≤ R, the function
u can be written as cos θ u1(r), where u1 is defined by (12.2.18). It is clear
that the function (12.2.26) is equal to

2|Sn−2|
|B1|rn

(∫ r

0

ρn dρ
∫ π/2

0

(cos θ)2(sin θ)n−2 dθ

− n
∫ r

0

∫ ρ

0

tn−1ω(t) dt dρ
∫ π/2

0

(cos θ)2(sin θ)n−2 dθ
)
.

Since

2
∣∣Sn−2

∣∣
∫ π/2

0

(cos θ)2(sin θ)n−2 dθ = n−1
∣∣Sn−1

∣∣, (12.2.27)

it follows that

Mru =
r

n+ 1
− n

rn

∫ r

0

∫ ρ

0

tn−1ω(t) dt dρ

=
r

n+ 1
− n

(
1

rn−1

∫ r

0

τn−1ω(τ) dτ − 1
rn

∫ r

0

τnω(τ) dτ
)
,

and by (12.2.16) we arrive at

Mru =
r

n+ 1
− n

∫ r

0

Ω(t) dt. (12.2.28)

As was proved above, Ω′(t) > 0 for t > 0. Therefore,

max
0≤r≤R

Mru = MRu. (12.2.29)

We prove that
max

R≤r≤(n+1)R
Mru = MRu. (12.2.30)
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By (12.2.26) one has

Mru =
1

|B1|rn

(
|B1|Rn

(
R

n+ 1
− n

∫ R

0

Ω(t) dt
)

+ 2
∣∣Sn−2

∣∣
∫ π/2

0

(cos θ)2(sin θ)n−2 dθ
∫ r

R

u2(ρ)ρn−1 dρ
)
.

In view of (12.2.27) we obtain

Mru = r−n

(
Rn

(
R

n+ 1
− n

∫ R

0

Ω(t) dt
)

+
∫ r

R

u2(ρ)ρn−1 dρ
)
.

Hence and by (12.2.28), to prove (12.2.30) we need to show that the function

G(r) :=
(
rn −Rn

)( R

n+ 1
− n

∫ R

0

Ω(t) dt
)
−
∫ r

R

u2(ρ)ρn−1 dρ (12.2.31)

is nonnegative on the interval [R, (n+ 1)R]. Clearly,

G′(r) = nrn−1

(
R

n+ 1
− n

∫ R

0

Ω(t) dt− 1
n
u2(r)

)
.

Note that by (12.2.19) and (12.2.14)

− 1
n
u2(r) = n

(∫ κr

0

Ω(t) dt− κrΩ(κr)
)

= −n
∫ κr

0

tΩ′(t) dt. (12.2.32)

Integrating by parts and using (12.2.7), we find

G′(r) = nrn−1

(
n

∫ R

0

tΩ′(t) dt− n
∫ κr

0

tΩ′(t) dt
)
≥ 0.

Hence and by G(R) = 0, one has G(r) ≥ 0 for R ≥ r ≥ (n + 1)R. Thus,
(12.2.25) holds.

Let us now justify the relation

sup
r>0

|∇u(0) −A∇u(0; r)|
ω(r)

= 1, (12.2.33)

where A is defined by (12.2.3). Let 0 ≤ r ≤ R. It follows from (12.2.8) that

∂u

∂xn
= 1 − n

rn

∫ r

0

tn−1ω(t) dt− (cos θ)2
(
nω(r) − n2

rn

∫ r

0

tn−1ω(t) dt
)
,

(12.2.34)
which together with (12.2.27), implies

A
∂u

∂xn
(0; r) = 1 − ω(r).
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Hence,
∂u

∂xn
(0) −A ∂u

∂xn
(0; r) = ω(r).

Combining this fact with the formulas

∂u

∂xk
(0) = 0, A

∂u

∂xk
(0; r) = 0, k = 1, . . . , n− 1,

we obtain
|∇u(0) −A∇u(0; r)|

ω(r)
= 1 for 0 ≤ r ≤ R. (12.2.35)

We now claim that

ω(κr) ≤
∂u

∂xn
(0) −A ∂u

∂xn
(0; r) ≤ ω(r) for R ≤ r ≤ (n+ 1)R. (12.2.36)

Note that
∂u

∂xn
=

1
r
u2(r) − (cos θ)2

(
u2(r)
r

− u′
2(r)

)
,

where u2 is given by (12.2.19). In view of (12.2.27) one has

A
∂u

∂xn
(0; r) =

n− 1
n

u2(r)
r

+
1
n
u′

2(r). (12.2.37)

By (12.2.19) and (12.2.24),

A
∂u

∂xn
(0; r) =

n(n− 1)
r

(
n+ 1
κnr

∫ κr

0

tnω(t) dt− n

κn−1
r

∫ κr

0

tn−1ω(t) dt
)

+ n
(
n+ 1
κn+1
r

∫ κr

0

tnω(t) dt− n− 1
κnr

∫ κr

0

tn−1ω(t) dt
)
− ω(κr).

(12.2.38)

Next observe that

n+ 1
κnr

∫ κr

0

tnω(t) dt− n

κn−1
r

∫ κr

0

tn−1ω(t) dt

=
∫ κr

0

(
1− t

κr

)(
t

κr

)n−1

tω′(t) dt ≥ 0,

because ω is nondecreasing. This, together with (12.2.38) and the inequality
r ≥ κr, yields

A
∂u

∂xn
(0; r) ≤ n(n+1)

(
n

κn+1
r

∫ κr

0

tnω(t) dt−n− 1
κnr

∫ κr

0

tn−1ω(t) dt
)
−ω(κr).

By (12.2.14), this inequality can be written as
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A
∂u

∂xn
(0; r) ≤ n(n+ 1)Ω(κr) − ω(κr). (12.2.39)

Since Ω1 is strictly increasing and κr < R, it follows that

A
∂u

∂xn
(0; r) ≤ n(n+ 1)Ω(R) − ω(κr).

We now use the identity

n(n+ 1)Ω(R) = 1 =
∂u

∂xn
(0)

to obtain
A
∂u

∂xn
(0; r) ≤ ∂u

∂xn
(0) − ω(κr),

which implies the left inequality in (12.2.36).
To prove the right inequality in (12.2.36), we note that, by (12.2.15), re-

lation (12.2.38) can be rewritten as

A
∂u

∂xn
(0; r) =

n(n− 1)
r

(
1
κnr

∫ κr

0

tnω(t) dt− n
∫ κr

0

Ω(t) dt
)

+
n

κn+1
r

∫ κr

0

tnω(t) dt+ nΩ(κr) − ω(κr). (12.2.40)

Let
B(r) := rω(r) − r + rA

∂u

∂xn
(0; r). (12.2.41)

The right inequality in (12.2.36) is equivalent to the inequality B(r) ≥ 0 for
all values of r in [R, (n+ 1)R]. By (12.2.40) we have

B(r) := rω(r) − r + n(n− 1)
(

1
κnr

∫ κr

0

tnω(t) dt− n
∫ κr

0

Ω(t) dt
)

+ r
(

n

κn+1
r

∫ κr

0

tnω(t) dt+ nΩ(κr) − ω(κr)
)
. (12.2.42)

Using the relations κR = R and n(n+ 1)Ω(R) = 1, we obtain

B(R) =
n2

Rn

∫ R

0

tnω(t) dt− n2(n− 1)
∫ R

0

Ω(t) dt− n

n+ 1
R. (12.2.43)

We note that relation (12.2.43), together with (12.2.16) for t = R, gives
B(R) = 0.

The next step is to show that B′(r) ≥ 0 for r ∈ [R, (n+ 1)R]. Combining
(12.2.37) and (12.2.32), we see that

A
∂u

∂xn
(0; r) =

n(n− 1)
r

∫ κr

0

tΩ′(t) dt− κrΩ′(κr),
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which together with (12.2.41), gives

B(r) = rω(r) − r + n(n− 1)
∫ κr

0

tΩ′(t) dt− rκrΩ′(κr).

Clearly,

B′(r) =
(
rω(r)

)′ − 1 − nκrΩ′(κr) +
r

n

(
tΩ′(t)

)′
∣∣∣∣
t=κr

. (12.2.44)

For n = 1, by (12.2.17) and (12.2.14), one has

tΩ′(t) = ω(t) − 2
t2

∫ t

0

τω(τ) dτ =
1
t2

∫ t

0

τ2ω′(τ) dτ.

Since tω′(t) is nondecreasing, it follows that
(
t−2

∫ t

0

τ2ω′(τ) dτ
)′

≥ 0.

Thus, tΩ′(t) is also nondecreasing for n = 1. Hence, and by assumption of the
theorem, both the functions tΩ′(t) and t ω′(t) are nondecreasing for n ≥ 1.
Therefore, the last term on the right-hand side in (12.2.44) is nonnegative and
κrΩ

′(κr) ≤ RΩ′(R) for r ≥ R. Thus,

B′(r) ≥ ω(R) +Rω′(R) − 1 − nRΩ′(R) (12.2.45)

for r ∈ [R, (n+1)R]. Owing to relation (12.2.17) for t = R, the last inequality
can be rewritten as

B′(r) ≥ Rω′(R) − (n− 1)ω(R) +
n2

Rn+1

∫ R

0

tnω(t) dt− 1
n+ 1

. (12.2.46)

By (12.2.14) for t = R, relation (12.2.46) gives

B′(r) ≥ Rω′(R) − (n− 1)ω(R) +
n(n− 1)
Rn

∫ R

0

tn−1ω(t) dt.

Integrating by parts on the right-hand side, we obtain

B′(r) ≥ Rω′(R) − n− 1
Rn

∫ R

0

tnω′(t) dt ≥ 1
Rn

∫ R

0

tn
(
tω′(t)

)′ dt.

Since the function tω′(t) is nondecreasing, it follows that the right-hand side
is nonnegative. This implies the right inequality (12.2.36), and together with
(12.2.35), leads to (12.2.33).

Finally, we must show that inequality (12.2.6) with x = 0 becomes an
equality for u given by (12.2.12). It follows from (12.2.7) and (12.2.25) that
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n

∫ 1
n(n+1)

0

Ω−1(τ) dτ

= n

∫ R

0

t dΩ(t) = n

(
RΩ(R) −

∫ R

0

Ω(t) dt
)

=
R

n+ 1
− n

∫ R

0

Ω(t) dt = M�u(0).

By (12.2.33), the right-hand side of (12.2.6) is equal to

n(n+ 1)Ψ−1

(
Ψ

(
1

n(n+ 1)

))
= 1.

The proof is complete.

12.2.5 Particular Case ω(r) = rα, α > 0

Setting ω(r) = rα with α > 0 in Theorem 12.2.2 and using the notation

Dα(∇u;x) = sup
r>0

|∇u(x) −A∇u(x; r)|
rα

,

we obtain the following corollary to Theorem 12.2.2.

Corollary 1. Let u ∈ C1(Rn), and let α > 0. Then inequality

∣∣∇u(x)∣∣ ≤ C1

(
M�u(x)

) α
α+1

(
sup
r>0

|∇u(x) −A∇u(x; r)|
rα

) 1
α+1

(12.2.47)

holds with the best constant

C1 = (n+ 1)
α+ 1
α

(
αn

(n+ α)(n+ α+ 1)

) 1
α+1

. (12.2.48)

Inequality (12.2.47) with x = 0 becomes an equality for the function

u(x) =

⎧⎪⎨
⎪⎩
xn(1 − n

n+α |x|α) for 0 ≤ |x| ≤ R,
αn1−α((n+1)R− |x|)α+1

(n+α)(n+α+1)
xn

|x| for R < |x| < (n+ 1)R,

0 for |x| ≥ (n+ 1)R,

where

R =
(

(n+ α)(n+ α+ 1)
(α+ 1)n(n+ 1)

) 1
α

.

Corollary 2. (Local version of Corollary 12.2.5.) Let M̃� denote the mod-
ified maximal operator given by
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M̃�u(x) = sup
0<r<1

∣∣∣∣
∫
−

Br(x)

y − x
|y − x|u(y) dy

∣∣∣∣
and let

D̃α(∇u;x) = sup
0<r<1

|∇u(x) −A∇u(x; r)|
rα

.

Then, for any α > 0, the inequality

∣∣∇u(x)∣∣ ≤ (C1

(
D̃α(∇u;x)

) 1
α+1 + C2

(
M̃�u(x)

) 1
α+1
)(
M̃�u(x)

) α
α+1 (12.2.49)

holds with the best constants C1 defined by (12.2.48) and C2 = n+ 1.

Proof. It suffices to set x = 0. It follows from (12.2.11) that

∣∣∇u(0)
∣∣ ≤ (n+ 1)

(
M̃�u(0)t−1 +

n

(n+ α)(n+ α+ 1)
D̃α(∇u; 0)tα

)
.

The right-hand side attains its minimum value either at

t =
(

(n+ α)(n+ α+ 1)
αn

M̃�u(0)
D̃α(∇u; 0)

) 1
α+1

< 1

or at t = 1. Thus we arrive at the following alternatives: either

M̃�u(0) ≤ αn

(n+ α)(n+ α+ 1)
D̃α(∇u; 0)

and ∣∣∇u(0)
∣∣ ≤ C1

(
M̃�u(0)

) α
α+1
(
D̃α(∇u; 0)

) 1
α+1 , (12.2.50)

with C1 defined by (12.2.48), or

M̃�u(0) ≥ αn

(n+ α)(n+ α+ 1)
D̃α(∇u; 0)

and

∣∣∇u(0)
∣∣ ≤

(
C1

α+ 1
(
D̃α(∇u; 0)

) 1
α+1 + C2

(
M̃�u(0)

) 1
α+1

)(
M̃�u(0)

) α
α+1 .

(12.2.51)
Inequalities (12.2.50) and (12.2.51) imply (12.2.49).

To show that the constant C1 is sharp, we make the dilation x → δx,
0 < δ < 1, in (12.2.49). Then

∣∣∇u(x)∣∣ ≤ (C1

(
Dα(∇u;x)

) 1
α+1 + C2δ

(
M�u(x)

) 1
α+1
)(
M�u(x)

) α
α+1 .

Passing to the limit as δ → 0, we arrive at (12.2.49) with the best con-
stant C1.
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To prove that the constant C2 is sharp, we set u(x) = xn. Then (12.2.49)
becomes ∣∣∇u(x)∣∣ ≤ (n+ 1)M̃�u(x). (12.2.52)

Clearly,

M̃�u(0) = sup
0<r<1

∣∣∣∣
∫
−

Br

x

|x|xn dx
∣∣∣∣ = sup

0<r<1

∫
−

Br

x2
n

|x| dx

= sup
0<r<1

2n|Sn−2|
|Sn−1|rn

∫ π/2

0

(cos θ)2(sin θ)n−2 dθ
∫ r

0

ρn dρ,

which together with (12.2.27) implies

M̃�u(0) = (n+ 1)−1.

Thus inequality (12.2.52) with x = 0 becomes an equality. This completes the
proof of the corollary. ��

12.2.6 One-Dimensional Case

For n = 1 the operator (12.2.4) becomes

Dω(u′;x) = sup
r>0

|2u′(x) − u′(x+ r) − u′(x− r)|
2ω(r)

and M� is defined by

M�u(x) = sup
r>0

1
2r

∣∣∣∣
∫ x+r

x−r

sign(y − x)u(y) dy
∣∣∣∣. (12.2.53)

The next corollary immediately follows from Theorem 12.2.2.

Corollary 1. Let u ∈ C1(R). Then the inequality

∣∣u′(x)
∣∣ ≤ 2Dω(u′;x)Ψ−1

(
M�u

Dω(u′;x)

)
(12.2.54)

holds, where Ψ−1 is the inverse function for

Ψ(t) =
∫ t

0

Ω−1(τ) dτ,

with Ω−1 standing for the inverse function for

Ω(t) =
∫ 1

0

σω(σt) dσ.

Suppose tω′(t) is nondecreasing on (0,∞). Then inequality (12.2.54) with
x = 0 becomes an equality for the odd function u given on the semi-axis x ≥ 0
by the formula
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u(x) =

⎧⎪⎨
⎪⎩
x(1 −

∫ 1

0
ω(σx) dσ) for 0 ≤ x ≤ R,

(2R− x)
∫ 1

0
(2σ − 1)ω(σ(2R− x)) dσ for R < x < 2R,

0 for x ≥ 2R,

where R is a unique root of the equation 2Ω(t) = 1.
Set

Tω(u′;x) = sup
y∈R

|u′(x) − u′(y)|
ω(|x− y|)

and note that Dω(u′;x) ≤ Tω(u′;x). Moreover, if u is odd, then Dω(u′; 0) =
Tω(u′; 0). Therefore, Corollary 12.2.6 implies the following assertion.

Corollary 2. Let u ∈ C1(R). Then

∣∣u′(x)
∣∣ ≤ 2 Tω(u′;x)Ψ−1

(
M�u

Tω(u′;x)

)
. (12.2.55)

Inequality (12.2.55) becomes an equality for the same function as in Corollary
12.2.6. As in Corollary 12.2.6, we here assume that rω′(r) is nondecreasing
on (0,∞).

In the special case ω(t) = tα, α > 0, Corollaries 12.2.6 and 12.2.6 can be
stated as follows.

Corollary 3. Let u ∈ C1(R), and let α > 0. The inequality

∣∣u′(x)
∣∣ ≤ C1

(
M�u(x)

) α
α+1

(
sup
r>0

|2u′(x) − u′(x+ r) − u′(x− r)|
rα

) 1
α+1

(12.2.56)
holds with the best constant

C1 =
(

2(α+ 1)
α(α+ 2)

1
α

) α
α+1

. (12.2.57)

Inequality (12.2.56) becomes an equality for the odd function u whose val-
ues for x ≥ 0 are given by

u(x) =

⎧⎪⎨
⎪⎩

(α+ 1)x− xα+1 for 0 ≤ x ≤ (α+2
2 )1/α,

α
α+2 (2(α+2

2 )1/α − x)α+1 for (α+2
2 )1/α < x < 2(α+2

2 )1/α,
0 for x ≥ 2(α+2

2 )1/α.
(12.2.58)

Note that the sharp estimate (12.0.5) is a particular case of (12.2.56) for
α = 1. It implies a rougher, but nevertheless sharp estimate

∣∣u′(x)
∣∣2 ≤ 8

3
(
M�u

)
(x)‖u′ ′‖L∞
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with the equality sign for x = 0 provided by the function (12.2.58) with α = 1.
Taking into account that the second difference at 0 for an odd function

(12.2.58) is twice as big as the corresponding first difference, we arrive at the
following assertion.

Corollary 4. Let u ∈ C1(R), and let α > 0. Then

∣∣u′(x)
∣∣α+1 ≤ 2α+1

α+ 2

(
α+ 1
α

)α(
M�u(x)

)α sup
y∈R

|u′(y) − u′(x)|
|y − x|α , (12.2.59)

which becomes an equality for the same function as in Corollary 12.2.6.

12.3 Pointwise Interpolation Inequalities Involving
“Fractional Derivatives”

Let m be positive and a noninteger with [m] and {m} denoting its integer and
fractional parts. We introduce the operator Dp,m

(Dp,mu)(x) =
(∫

Rn

∣∣∇[m]u(x) −∇[m]u(y)
∣∣p|x− y|−n−p{m} dy

)1/p

.

Sometimes, we call Dp,mu the fractional derivative of u of order m. In
Sect. 12.3.1 we derive pointwise interpolation inequalities with Dp,mu in their
right-hand sides.

12.3.1 Inequalities with Fractional Derivatives on the Right-Hand
Sides

Theorem. (i) Let k and l be integer, and let m be noninteger, 0 ≤ l ≤ k < m.
Then ∣∣∇ku(x)

∣∣ ≤ c((M∇lu)(x)
)m−k

m−l
(
(Dp,mu)(x)

) k−l
m−l (12.3.1)

for almost all x ∈ R
n.

(ii) Let k and m be integer, and let l be noninteger, 0 < l < k ≤ m. Then

∣∣∇ku(x)
∣∣ ≤ c((Dp,lu)(x)

)m−k
m−l

(
(M∇mu)(x)

) k−l
m−l (12.3.2)

for almost all x ∈ R
n.

(iii) Let k be integer, and let l and m be noninteger, 0 < l < k < m. Then

∣∣∇ku(x)
∣∣ ≤ c((Dp,lu)(x)

)m−k
m−l

(
(Dp,mu)(x)

) k−l
m−l (12.3.3)

for almost all x ∈ R
n.

Proof. (i) It suffices to prove inequality (12.3.1) for l = 0 and x = 0. Let η
be a function in the ball B1 with Lipschitz derivatives of order m− 2, which
vanishes on ∂B1 together with all these derivatives. Also let
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∫
B1

η(y) dy = 1.

Let t be an arbitrary positive number to be chosen later. We shall use the
Sobolev integral representation

v(0) =
∑

|β|<[m]−k

t−n

∫
Bt

(−y)β
β!

∂βv(y)η(y/t) dy + (−1)[m]−k
(
[m]− k

)

×
∑

|α|=[m]−k

∫
Bt

yα

α!
∂αv(y)

∫ ∞

|y|/t
η

(
ρ
y

|y|

)
ρn−1 dρ

dy
|y|n (12.3.4)

(see Sect. 1.1.10).
By setting here v = ∂γu with an arbitrary multi-index γ of order k and

integrating by parts in the first integral, we arrive at the identity

∂γu(0) = (−1)kt−n

∫
Bt

u(y)
∑

|β|<[m]−k

1
β!
∂β+γ

(
yβη(y/t)

)
dy

+
∑

|α|=[m]−k

(−1)[m]−k
(
[m] − k

)

×
∫
Bt

yα

α!
∂α+γu(y)

∫ ∞

|y|/t
η

(
ρ
y

|y|

)
ρn−1 dρ

dy
|y|n . (12.3.5)

Hence, for k < [m] we have

∣∣∇ku(0)
∣∣ ≤ c

(
t−kMu(0) + t[m]−k

∣∣∇[m]u(0)
∣∣

+
∫
Bt

|∇[m]u(y) −∇[m]u(0)|
|y|n−[m]+k

dy
)
. (12.3.6)

Hölder’s inequality implies
∫
Bt

|∇[m]u(y) −∇[m]u(0)|
|y|n−[m]+k

dy ≤ ctm−k(Dp,mu)(0). (12.3.7)

Let γ be an arbitrary multi-index of order [m]. The identity

∂γu(0) = t−n

∫
Bt

η

(
y

t

)
∂γu(y) dy + t−n

∫
Bt

η

(
y

t

)[
∂γu(0) − ∂γ(y)

]
dy

implies

∣∣∇[m]u(0)
∣∣ ≤ t−n−[m]

∣∣∣∣
∫
Bt

u(y)(∇[m]η)
(
y

t

)
dy
∣∣∣∣

+ t{m}
(∫

Bt

∣∣η(y)∣∣q|y|( n
p +{m})q dy

)1/q

(Dp,mu)(0), (12.3.8)
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where p−1 + q−1 = 1. Combining (12.3.7)–(12.3.8) we arrive at
∣∣∇ku(0)

∣∣ ≤ c(t−k(Mu)(0) + tm−k(Dp,mu)(0)
)
.

Minimizing the right-hand side in t we complete the proof of (i).
(ii) It is sufficient to take l ∈ (0, 1) and x = 0. Since the function

∂β+γ(yβη(y)) in (12.3.5) is orthogonal to 1 in L2(B1), it follows from (12.3.5)
that

∣∣∇ku(0)
∣∣ ≤ c

(
t−n−k

∫
Bt

∣∣u(y) − u(0)
∣∣ dy +

∫
Bt

|∇mu(y)|
|y|n−m+k

dy
)
. (12.3.9)

If m− k ≥ n, the second integral does not exceed

tm−k−n

∫
Bt

∣∣∇mu(y)
∣∣ dy.

In the case m− k < n the same integral is estimated by (11.2.3)
∫
Bt

∣∣∇mu(y)
∣∣ dy
|y|n−m+k

≤ n

m− k t
m−k sup

τ ≤t
τ−n

∫
Bτ

∣∣∇mu(y)
∣∣ dy. (12.3.10)

Hence, and by Hölder’s inequality, applied to the first integral in (12.3.9) we
have ∣∣∇ku(0)

∣∣ ≤ c(t−kDp,lu(0) + tm−kM∇m(x)
)
.

The result follows. ��

(iii) By (12.3.9) with m replaced by [m]

∣∣∇ku(0)
∣∣ ≤ c

(
tl−kDp,lu(0) + t[m]−k

∣∣∇[m]u(0)
∣∣

+
∫
Bt

|∇[m]u(y) −∇[m]u(0)|
|y|n−[m]+k

dy
)
.

By (12.3.7) the third term on the right does not exceed

tm−kDp,mu(0).

Now we note that (12.3.8) implies
∣∣∇[m]u(0)

∣∣ ≤ c(tl−[m]Dp,lu(0) + t{m}Dp,mu(0)
)
.

Hence ∣∣∇ku(0)
∣∣ ≤ c(t−kDp,lu(0) + tm−kDp,mu(0)

)
.

The result follows.
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12.3.2 Inequality with a Fractional Derivative Operator on the
Left-Hand Side

Theorem. Let 0 < α < 1 and let p ∈ [1,∞). Then

(Dp,αu)(x) ≤ c
((
M
∣∣u− u(x)∣∣p)(x))(1−α)/p((M|∇u|q

)
(x)
)α/q

, (12.3.11)

where q ≥ max{1, pn/(n+ p)}.

Proof. Let first p ≥ n/(n− 1). Then q = pn/(n+ p). Let t be an arbitrary
positive number to be chosen later. By Sobolev’s embedding theorem

(∫
Bt(x)

|u(y) − u(x)|p
|y − x|n+αp

dy
)1/p

≤ c1
(∫

Bt(x)

∣∣∣∣∇y

(
u(y) − u(x)
|y − x|α+n/p

)∣∣∣∣
q

dy
)1/q

+ c2t−1

(∫
Bt(x)

|u(y) − u(x)|q
|y − x|(α+n/p)q

dy
)1/q

.

The right-hand side of this inequality does not exceed

c1

(∫
Bt(x)

|∇u(y)|q dy
|y − x|(α+n/p)q

)1/q

+ c2

(∫
Bt(x)

|u(y) − u(x)|q
|y − x|(α+1+n/p)q

dy
)1/q

,

which by Hardy’s inequality is dominated by

c

(∫
Bt(x)

|∇u(y)|q dy
|y − x|(α+n/p)q

)1/q

.

Estimating this by (11.2.3) we arrive at the inequality

(∫
Bt(x)

|u(y) − u(x)|p
|y − x|n+αp

dy
)1/p

≤ ct1−α
((
M|∇u|q

)
(x)
)1/q

. (12.3.12)

Now let p ∈ [1, n/(n−1)) and let β ∈ (n−1+α, n). By Hölder’s inequality
with exponents n/(n− 1)p and n/(n− (n− 1)p) we have

∫
Bt(x)

|u(y) − u(x)|p
|y − x|n+αp

dy

≤
(∫

Bt(x)

(
|u(y) − u(x)|
|y − x|β

) n
n−1

dy
) (n−1)p

n

×
(∫

Bt(x)

dy

|y − x|
(n+p(α−β))n

n−(n−1)p

)1− (n−1)p
n

.
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The right-hand side is equal to

ctp(β−α−n+1)

(∫
Bt(x)

(
|u(y) − u(x)|
|y − x|β

) n
n−1

dy
) (n−1)p

n

,

which by the Gagliardo–Nirenberg inequality does not exceed

ctp(β−α−n+1)

(∫
Bt(x)

∣∣∣∣∇y

(
u(y) − u(x)
|y − x|β

)∣∣∣∣ dy + t−1

∫
Bt(x)

|u(y) − u(x)|
|y − x|β dy

)p

≤ ctp(β−α−n+1)

(∫
Bt(x)

|∇u(y)|
|y − x|β dy +

∫
Bt(x)

|u(y) − u(x)|
|y − x|β+1

dy
)p

.

By Hardy’s inequality the second integral on the right is dominated by the
first one. Hence and by (11.2.3) we obtain

∫
Bt(x)

|u(y) − u(x)|p
|y − x|n+αp

dy ≤ ctp(β−α−n+1)

(∫
Bt(x)

|∇u(y)|
|y − x|β dy

)p

≤ ctp(1−α)
((
M|∇u|

)
(x)
)p
. (12.3.13)

Unifying this with (12.3.12), we find
∫
Bt(x)

|u(y) − u(x)|p
|y − x|n+αp

dy ≤ ctp(1−α)
((
M|∇u|q

)
(x)
)p/q

, (12.3.14)

where q = max{1, pn/(n + p)}. For any nonnegative f and any a > 0 there
holds the inequality

∫
Rn \Bt(x)

f(y) dy
|y − x|n+a

≤ ct−a(Mf)(x), (12.3.15)

which follows from the readily checked identity
∫

Rn \Bt(x)

f(y) dy
|x− y|n+a

= (n+ a)
∫ ∞

t

∫
Bs(x)

f(y) dy
ds

sn+a+1
− t−a−n

∫
Bt(x)

f(y) dy. (12.3.16)

(see Hedberg [365]). By (12.3.15)
∫

Rn \Bt(x)

|u(y) − u(x)|p
|y − x|n+αp

dy ≤ ct−pα
(
M
∣∣u− u(x)∣∣p)(x). (12.3.17)

Summing up (12.3.14) and (12.3.17) we arrive at

(
(Dp,αu)(x)

)p ≤ c(tp(1−α)
((
M|∇u|q

)
(x)
)p/q + t−pα

(
M
∣∣u− u(x)∣∣p)(x)).

Minimizing the right-hand side in t > 0 we complete the proof. ��
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12.3.3 Application: Weighted Gagliardo–Nirenberg-Type
Inequalities for Derivatives

Proposition. Let 1 < q <∞, 1 < p <∞, and let

1
s

=
k

m

1
p

+
(

1− k

m

)
1
q
.

(i) Let k be an integer and let l and m be noninteger, 0 < l < k < m. Then
for any nonnegative measurable w

‖∇ku‖Ls(w dx) ≤ c‖Dp,lu‖
m−k
m−l

Lq(w dx)‖Dp,mu‖
k−l
m−l

Lp(w dx). (12.3.18)

(ii) Let k and l be integers and let m be noninteger, 0 ≤ l ≤ k < m. Further
let w ∈ Aq. Then

‖∇ku‖Ls(w dx) ≤ c‖∇lu‖
m−k
m−l

Lq(w dx)‖Dp,mu‖
k−l
m−l

Lp(w dx). (12.3.19)

(iii) Let k and m be integers and let l be noninteger, 0 < l < k ≤ m. Further
let w ∈ Ap. Then

‖∇ku‖Ls(w dx) ≤ c‖Dp,lu‖
m−k
m−l

Lq(w dx)‖∇mu‖
k−l
m−l

Lp(w dx). (12.3.20)

Proof. We use the same argument as in the proof of Proposition 12.1.7.
Inequality (12.3.18) follows from (12.3.3) and Hölder’s inequality. To show
(12.3.19) we notice that by (12.3.1) its right-hand side does not exceed

c

(∫
Rn

(
M∇lu(x)

)sm−k
m−l

(
Dp,mu(x)

)s k−l
m−lw(x) dx

)1/s

,

which by Hölder’s inequality is majorized by

c‖M∇lu‖
m−k
m−l

Lq(w dx)‖Dp,mu‖
k−l
m−l

Lp(w dx),

and it remains to refer to the Muckenhoupt theorem on the boundedness of
the operator M in Lσ(w dx)), 1 < σ < ∞. Inequality (12.3.20) is proved in
the same way. ��

12.4 Application of (12.3.11) to Composition Operator
in Fractional Sobolev Spaces

12.4.1 Introduction

In this section we use the space Ws
p of distributions with the finite norm
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‖u‖W s
p

= ‖∇[s]u‖W {s}
p
,

where {s} > 0 and

‖v‖W {s}
p

=
(∫

Rn

∫
Rn

|v(x) − v(y)|p
|x− y|n+{s}p

dxdy
)1/p

.

The application mentioned in the title of this section is as follows.

Theorem. Let p ≥ 1 and let s be noninteger, 1 < s < ∞. For ev-
ery complex-valued function f defined on R and such that f(0) = 0 and
f ′, . . . , f ([s]+1) ∈ L∞(R) there holds

∥∥f(u)∥∥W s
p(Rn)

≤ c
[s]+1∑
l=1

∥∥f (l)
∥∥
L∞(R)

(
‖u‖W s

p(Rn) + ‖∇u‖sLps(Rn)

)
, (12.4.1)

where c is a constant independent of f and u.
If additionally, f ([s]+1) ∈ C(R) then the map

Ws
p

(
R

n
)
∩W 1

sp

(
R

n
)
� u→ f(u) ∈ Ws

p

(
R

n
)

(12.4.2)

is continuous.

We formulate a particular case of the inequality (12.3.11), which is used
in the proof of this theorem.

Corollary. Suppose α ∈ (0, 1), p ≥ 1, and u ∈ W 1
p (Rn, loc). Then for

almost all x ∈ R
n

(Dp,αu)(x) ≤ c
((
M
∣∣u− u(x)∣∣p)(x))(1−α)/p((M|∇u|p

)
(x)
)α/p

, (12.4.3)

where M is the Hardy–Littlewood maximal operator.
Another ingredient in the proof of the theorem is the Gagliardo–Nirenberg-

type inequality

‖∇ku‖Lps/k(Rn) ≤ c‖∇u‖
s−k
s−1

Lps(Rn)‖Dp,su‖
k−1
s−1

Lp(Rn), (12.4.4)

where 1 ≤ k < s, s is noninteger, and p ≥ 1.
A short argument leading to (12.4.4) is by the pointwise inequality

∣∣∇ku(x)
∣∣ ≤ c((M|∇u|

)
(x)
) s−k

s−1
(
(Dp,su)(x)

) k−1
s−1 . (12.4.5)

In fact, one uses (12.4.5) to majorize the Lps/k-norm of |∇ku| and applies
Hölder’s inequality with exponents

(s− 1)k/(s− k) and (s− 1)k/(k − 1)s

together with the boundedness of M in Lps(Rn). Inequality (12.4.5) was
proved in Sect. 12.3.1.
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12.4.2 Proof of Inequality (12.4.1)

Since f(0) = 0, we have
∥∥f(u)∥∥

Lp(Rn)
≤ ‖f ′‖L∞(R)‖u‖Lp(Rn). (12.4.6)

By the Leibnitz rule,

∥∥Dp,sf(u)
∥∥
Lp(Rn)

≤ c
[s]∑
l=1

∑
|α1|+...+|αl |=[s]

|αi | ≥1

∥∥∥∥∥Dp,{s}

(
f (l)(u)

l∏
i=1

∂αiu

)∥∥∥∥∥
Lp(Rn)

.

(12.4.7)
We continue by putting

v = f (l)(u) and w =
l∏

i=1

∂αiu

in the obvious inequality
∥∥Dp,{s}(vw)

∥∥
Lp(Rn)

≤ ‖vDp,{s}w‖Lp(Rn) + ‖wDp,{s}v‖Lp(Rn) (12.4.8)

and arrive at

∥∥Dp,sf(u)
∥∥
Lp(Rn)

≤ c
[s]∑
l=1

∑
|α1|+...+|αl |=[s]

|αi | ≥1

(∥∥∥∥∥
l∏

i=1

∂αiu ·Dp,{s}f
(l)(u)

∥∥∥∥∥
Lp(Rn)

+
∥∥f (l)

∥∥
L∞(R)

∥∥∥∥∥Dp,{s}

(
l∏

i=1

∂αiu

)∥∥∥∥∥
Lp(Rn)

)
. (12.4.9)

We set

Il :=

∥∥∥∥∥
l∏

i=1

∂αiu ·Dp,{s}f
(l)(u)

∥∥∥∥∥
Lp(Rn)

. (12.4.10)

By inequality (12.4.3) with f (l)(u) in place of u,

Dp,{s}f
(l)(u)(x) ≤ c

∥∥f (l)
∥∥1− {s}
L∞(R)

((
M
∣∣∇f (l)(u)

∣∣p)(x)){s}/p

≤ c
∥∥f (l)

∥∥1− {s}
L∞(R)

∥∥f (l+1)
∥∥{s}
L∞(R)

((
M|∇u|p

)
(x)
){s}/p

.

Hence, using Hölder’s inequality with exponents s/{s}, s/|αi|, i = 1, . . . , l, we
find

Il ≤ c
∥∥f (l)

∥∥1− {s}
L∞(R)

∥∥f (l+1)
∥∥{s}
L∞(R)

×
l∏

i=1

∥∥∂αiu
∥∥
L ps

|αi |
(Rn)

∥∥M|∇u|p
∥∥{s}/p

Ls(Rn)
. (12.4.11)
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Since M is bounded in Ls(Rn), the last factor on the right is majorized by
c‖∇u‖{s}

Lps(R
n
)
. By (12.4.4) the product

∏l
i=1 in (12.4.11) does not exceed

c

l∏
i=1

‖∇u‖
s− |αi |

s−1

Lps(Rn)‖Dp,su‖
|αi | −1

s−1

Lp(Rn)

= c‖∇u‖
sl−[s]
s−1

Lps(Rn)‖Dp,su‖
[s]−l
s−1

Lp(Rn). (12.4.12)

Hence and by (12.4.11)

Il ≤ c
∥∥f (l)

∥∥1− {s}
L∞(R)

∥∥f (l+1)
∥∥{s}
L∞(R)

‖∇u‖
s(l−1+{s})

s−1

Lps(Rn) ‖Dp,su‖
[s]−l
s−1

Lp(Rn). (12.4.13)

Let

Jl :=

∥∥∥∥∥Dp,{s}

(
l∏

i=1

∂αiu

)∥∥∥∥∥
Lp(Rn)

. (12.4.14)

Clearly,
J1 ≤ ‖Dp,su‖Lp(Rn). (12.4.15)

Now let l > 1. By (12.4.8),

Jl ≤
∥∥∥∥∥

l∏
i=2

∂αiu ·Dp,{s}∂
α1u

∥∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥∂α1u ·Dp,{s}

(
l∏

i=2

∂αiu

)∥∥∥∥∥
Lp(Rn)

.

(12.4.16)

Applying first the inequality (12.4.3) and then Hölder’s inequality with expo-
nents

s/|αi|, 2 ≤ i ≤ l, s/|α1|
(
1 − {s}

)
, and s/

(
1 + |α1|

)
{s},

we find
∥∥∥∥∥

l∏
i=2

∂αiu ·Dp,{s}∂
α1u

∥∥∥∥∥
Lp(Rn)

≤ c
∥∥∥∥∥

l∏
i=2

∂αiu ·
(
M
∣∣∂α1u

∣∣p)(1− {s})/p(M∣∣∇∂|α1u
∣∣p){s}/p

∥∥∥∥∥
Lp(Rn)

≤ c
l∏

i=2

∥∥∂αiu
∥∥
L ps

|αi |
(Rn)

∥∥M∣∣∂α1u
∣∣p∥∥ 1− {s}

p

L s
|α1|

(Rn)

∥∥M∣∣∇∂α1u
∣∣p∥∥ {s}

p

L s
1+|α1|

(Rn).

Hence, noting that s > 1 + |α1| and using the boundedness of M in Lq(Rn)
with q > 1, we obtain that the first term on the right-hand side of (12.4.16)
is dominated by
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c

l∏
i=2

∥∥∂αiu
∥∥
L ps

|αi |
(Rn)

∥∥∂α1u
∥∥1− {s}
L ps

|α1|
(Rn)

∥∥∇∂α1u
∥∥{s}
L ps

1+|α1|
(Rn)

. (12.4.17)

By (12.4.4) this does not exceed

c‖∇u‖
s(l−1)

s−1

Lps(Rn)‖Dp,su‖
s−l
s−1

Lp(Rn). (12.4.18)

We estimate the second term in the right-hand side of (12.4.16). By
(12.4.3),
∥∥∥∥∥∂α1u ·Dp,{s}

(
l∏

i=2

∂αiu

)∥∥∥∥∥
Lp(Rn)

≤ c
∥∥∥∥∥∂α1u

(
M
∣∣∣∣∣

l∏
i=2

∂αiu

∣∣∣∣∣
p)(1− {s})/p(

M
∣∣∣∣∣∇
(

l∏
i=2

∂αiu

)∣∣∣∣∣
p){s}/p∥∥∥∥∥

Lp(Rn)

,

which by Hölder’s inequality with exponents

s/|α1|, s/
(
[s] − |α1|

)(
1− {s}

)
, and s/

(
1 + [s] − |α1|

)
{s},

is majorized by

c
∥∥∂α1u

∥∥
L ps

|α1|
(Rn)

∥∥∥∥∥M
l∏

i=2

∣∣∂αiu
∣∣p
∥∥∥∥∥

(1− {s})/p

L s
[s]− |α1|

(Rn)

∥∥∥∥∥M
∣∣∣∣∣∇

l∏
i=2

∂αiu

∣∣∣∣∣
p∥∥∥∥∥

{s}/p

L s
1+[s]− |α1|

(Rn)

.

Using the Lq-boundedness of M with

q = s/
(
[s] − |α1|

)
and q = s/

(
1 + [s] − |α1|

)
,

we conclude that
∥∥∥∥∥∂α1u ·Dp,{s}

(
l∏

i=2

∂αiu

)∥∥∥∥∥
Lp(Rn)

≤ c
∥∥∂α1u

∥∥
L ps

|α1|
(Rn)

∥∥∥∥∥
l∏

i=2

∂αiu

∥∥∥∥∥
1− {s}

L ps
[s]− |α1|

(Rn)

∥∥∥∥∥∇
l∏

i=2

∂αiu

∥∥∥∥∥
{s}

L ps
1+[s]− |α1|

(Rn)

.

(12.4.19)

By Hölder’s inequality with exponents ([s] − |α1|)/|αi|, 2 ≤ i ≤ l, the second
norm on the right-hand side of (12.4.19) does not exceed

c

l∏
i=2

∥∥∂αiu
∥∥
L ps

|αi |
(Rn)

. (12.4.20)
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Again by Hölder’s inequality, now with exponents
(
1 + [s] − |α1|

)
/|αj |, 2 ≤ j ≤ l, j �= i, and

(
1 + [s] − |α1|

)
/
(
1 + |αi|

)
,

the third norm on the right-hand side of (12.4.19) is dominated by

l∑
i=2

l∏
j=2
j �=i

∥∥∂αju
∥∥
L ps

|αj |
(Rn)

∥∥∇∂αiu
∥∥
L ps

1+|αi |
(Rn)

. (12.4.21)

Combining (12.4.19)–(12.4.21) with (12.4.4) we find that the left-hand side
of (12.4.19) does not exceed (12.4.18). Thus, (12.4.18) is a majorant for the
second term in (12.4.16). Hence and by (12.4.15),

Jl ≤ c‖∇u‖
s(l−1)

s−1

Lps(Rn)‖Dp,su‖
s−l
s−1

Lp(Rn), 1 ≤ l ≤ [s]. (12.4.22)

Inserting (12.4.13) and (12.4.22) into (12.4.9) we arrive at

∥∥Dp,sf(u)
∥∥
Lp(Rn)

≤ c
[s]+1∑
l=1

∥∥f (l)
∥∥
L∞(R)

(
‖Dp,su‖Lp(Rn) + ‖∇u‖sLps(Rn)

)
.

Hence and by (12.4.6) the proof of (12.4.1) is complete.

12.4.3 Continuity of the Map (12.4.2)

Let uν → u in Ws
p(Rn) ∩ L1

sp(R
n). Since

∥∥f (l)(uν) − f (l)(u)
∥∥
Lp(Rn)

≤ c
∥∥f (l+1)

∥∥
L∞(R)

‖uν − u‖Lp(Rn)

for l = 0, . . . , [s], we have

f (l)(uν) → f (l)(u) in Lp

(
R

n
)
. (12.4.23)

We shall prove that
∥∥Dp,s

(
f(uν) − f(u)

)∥∥
Lp(Rn)

→ 0. (12.4.24)

Let α be a multi-index of order |α| = [s]. By the Leibnitz rule,

∂α
(
f(u)− f(uν)

)
=

[s]∑
l=1

∑
c(l, α1, . . . , αl)

×
(
f (l)(u)

l∏
i=1

∂αiu− f (l)(uν)
l∏

i=1

∂αiuν

)
,
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where the second sum is taken over all l-tuples of multi-indices {α1, . . . , αl}
such that α1 + · · · + αl = α and |αi| ≥ 1. We rewrite the difference

f (l)(u)
l∏

i=1

∂αiu− f (l)(uν)
l∏

i=1

∂αiuν (12.4.25)

using the identity

l∏
i=0

ai −
l∏

i=0

bi =
l∑

k=0

b0, . . . , bk−1(ak − bk)ak+1, . . . , al, (12.4.26)

where the products of either bi or ai are missing if k = 0 or k = l, respectively.
Setting

a0 = f (l)(u), ai = ∂αiu, b0 = f (l)(uν), bi = ∂αiuν , 1 ≤ i ≤ l,

in (12.4.26), we find that (12.4.25) is equal to

(
f (l)(u) − f (l)(uν)

) l∏
i=1

∂αiu+ f (l)(uν)
l∑

k=1

k−1∏
i=1

∂αiuν∂
αk(u− uν)

l∏
i=k+1

∂αiu.

Consequently,
∥∥Dp,{s}

(
∇[s]

(
f(u) − f(uν)

))∥∥
Lp(Rn)

≤ c
[s]∑
l=1

∑
|α1|+...+|αl |=[s]

|αi | ≥1

(∥∥∥∥∥Dp,{s}

((
f (l)(u) − f (l)(uν)

) l∏
i=1

∂αiu

)∥∥∥∥∥
Lp(Rn)

+
l∑

k=1

∥∥∥∥∥Dp,{s}

(
f (l)(uν)

k−1∏
i=1

∂αiuν∂
αk(u− uν)

l∏
i=k+1

∂αiu

)∥∥∥∥∥
Lp(Rn)

)
.

(12.4.27)

By (12.4.22), (12.4.23) and the boundedness of derivatives of f we can
apply the Lebesgue dominated convergence theorem to conclude that

∥∥∥∥∥
(
f (l)(u) − f (l)(uν)

)
Dp,{s}

(
l∏

i=1

∂αiu

)∥∥∥∥∥
Lp(Rn)

→ 0. (12.4.28)

Using (12.4.3) with u replaced by f (l)(u) − f (l)(uν) and employing Hölder’s
inequality with exponents s/|αi|, 1 ≤ i ≤ l, and s/{s}, we obtain
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∥∥∥∥∥
l∏

i=1

∂αiu ·Dp,{s}
(
f (l)(u) − f (l)(uν)

)∥∥∥∥∥
Lp(Rn)

≤ c
∥∥∥∥∥

l∏
i=1

∂αiu ·
(
M
∣∣f (l)(u) − f (l)(uν)

∣∣p) 1− {s}
p

×
(
M
∣∣∇(f (l)(u) − f (l)(uν)

)∣∣p) {s}
p

∥∥∥∥∥
Lp(Rn)

≤ c‖f (l)‖1− {s}
L∞(R)

l∏
i=1

∥∥∂αiu
∥∥
L ps

|αi |
(Rn)

∥∥M∣∣∇(f (l)(u) − f (l)(uν)
)∣∣p∥∥ {s}

p

Ls(Rn).

The boundedness of M in Ls(Rn) implies that the left-hand side of the last
inequality is dominated by

c
∥∥f (l)

∥∥1− {s}
L∞(R)

l∏
i=1

∥∥∂αiu
∥∥
L ps

|αi |
(Rn)

∥∥∇(f (l)(u) − f (l)(uν)
)∥∥{s}

Lps(Rn)
. (12.4.29)

By (12.4.4), the product
∏l

i=1 has the majorant (12.4.12). Obviously,
∥∥∇(f (l)(u) − f (l)(uν)

)∥∥
Lps(Rn)

≤ c
(∥∥f (l)

∥∥
L∞(R)

∥∥∇(u− uν)
∥∥
Lps(Rn)

+
∥∥(f (l+1)(u) − f (l+1)(uν)

)
∇u
∥∥
Lps(Rn)

)
.

Hence and by Lebesgue’s dominated convergence theorem
∥∥∥∥∥

l∏
i=1

∂αiu ·Dp,{s}
(
f (l)(u) − f (l)(uν)

)∥∥∥∥∥
Lp(Rn)

→ 0.

This together with (12.4.28) implies that the first term in brackets in the
right-hand side of (12.4.27) tends to zero.

We now show that∥∥∥∥∥f (l)(uν)Dp,{s}

(
k−1∏
i=1

∂αiuν · ∂αk(uν − u) ·
l∏

j=k+1

∂αju

)∥∥∥∥∥
Lp(Rn)

→ 0 (12.4.30)

for any k = 1, . . . , l. Here the products

k−1∏
i=1

∂αiuν and
l∏

j=k+1

∂αju

are missing for k = 1 and k = l, respectively. Clearly, (12.4.30) holds for l = 1.
Let l > 1. By (12.4.8), the left-hand side in (12.4.30) is majorized by
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∥∥f (l)
∥∥
L∞(R)

(∥∥∥∥∥
k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju ·Dp,{s}
(
∂αk(uν − u)

)∥∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥∂αk(uν − u) ·Dp,{s}

(
k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju

)∥∥∥∥∥
Lp(Rn)

)
. (12.4.31)

Applying inequality (12.4.3), we find that the first term in brackets in (12.4.31)
does not exceed

c

∥∥∥∥∥
k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju ·
(
M
∣∣∂αk(uν − u)

∣∣p) 1− {s}
p

×
(
M
∣∣∇∂αk(uν − u)

∣∣p) {s}
p

∥∥∥∥∥
Lp(Rn)

. (12.4.32)

Hölder’s inequality with exponents

s

|αi|
, 1 ≤ i ≤ k − 1,

s

|αj |
, k + 1 ≤ j ≤ l,

s

|αk|(1 − {s}) ,
s

(1 + |αk|){s}
,

as well as the boundedness of M in Lq(Rn) with q = s/|αk| and q = s/(1 +
|αk|) yield that (12.4.32) is dominated by

c

k−1∏
i=1

∥∥∂αiuν
∥∥
L ps

|αi |
(Rn)

l∏
j=k+1

∥∥∂αju
∥∥
L ps

|αj |
(Rn)

×
∥∥∂αk(uν − u)

∥∥1− {s}
L ps

|αk |
(Rn)

∥∥∇∂αk(uν − u)
∥∥{s}
L ps

1+|αk |
(Rn)

. (12.4.33)

By (12.4.4) applied to each factor we see that (12.4.33) and therefore the first
term in brackets in (12.4.31) tends to zero.

Making use of inequality (12.4.3) once more, we obtain that the second
term in brackets in (12.4.31) is majorized by

c

∥∥∥∥∥∂αk(uν − u)
(
M
∣∣∣∣∣
k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju

∣∣∣∣∣
p) 1− {s}

p

×
(
M
∣∣∣∣∣∇
(

k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju

)∣∣∣∣∣
p) {s}

p
∥∥∥∥∥
Lp(Rn)

. (12.4.34)

Applying Hölder’s inequality with exponents

s

|αk|
,

s

([s] − |αk|)(1 − {s}) ,
s

(1 + [s] − |αk|){s}
,
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and using the Lq-boundedness of M for q = s/([s]−|αk|) and q = s/(1+[s]−
|αk|), we find that (12.4.34) does not exceed

cN
1− {s}
1 N

{s}
2

∥∥∂αk(uν − u)
∥∥
L ps

|αk |
(Rn)

, (12.4.35)

where

N1 :=

∥∥∥∥∥
k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju

∥∥∥∥∥
L ps

[s]− |αk |
(Rn)

and

N2 :=

∥∥∥∥∥∇
(

k−1∏
i=1

∂αiuν ·
l∏

j=k+1

∂αju

)∥∥∥∥∥
L ps

1+[s]− |αk |
(Rn)

.

By (12.4.4), ∥∥∂αk(uν − u)
∥∥
L ps

|αk |
(Rn)

→ 0.

It remains to show the boundedness of N1 and N2. Using Hölder’s inequality
with exponents

[s] − |αk|
|αi|

, 1 ≤ i ≤ k − 1, and
[s] − |αk|

|αj |
, k + 1 ≤ j ≤ l,

we find

N1 ≤ c
k−1∏
i=1

∥∥∂αiuν
∥∥
L ps

|αi |
(Rn)

l∏
j=k+1

∥∥∂αju
∥∥
L ps

|αj |
(Rn)

,

which is bounded owing to (12.4.4). Again by Hölder’s inequality, now with
exponents

1 + [s] − |αk|
|αi|

, 1 ≤ i ≤ k − 1, i �= r,
1 + [s] − |αk|

1 + |αr|
,

and
1 + [s] − |αk|

|αj |
, k + 1 ≤ j ≤ l, j �= r,

1 + [s] − |αk|
1 + |αr|

,

we find that N2 is majorized by

c

(
k−1∑
r=1

k−1∏
i=1
i �=r

∥∥∂αiuν
∥∥
L ps

|αi |
(Rn)

∥∥∇∂αruν
∥∥
L ps

1+|αr |
(Rn)

l∏
j=k+1

∥∥∂αju
∥∥
L ps

|αj |
(Rn)

+
l∑

r=k+1

k−1∏
i=1

∥∥∂αiuν
∥∥
L ps

|αi |
(Rn)

×
l∏

j=k+1
j �=r

∥∥∂αju
∥∥
L ps

|αj |
(Rn)

∥∥∇∂αru
∥∥
L ps

1+|αr |
(Rn)

)
.

By (12.4.4) every norm on the right is bounded. The proof is complete.
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12.5 Comments to Chap. 12

First pointwise multiplicative inequalities for Riesz potentials are due to Hed-
berg: Lemma 11.2.1/1 was proved in [365] (see also [15], Sect. 3.1). A version
of inequalities (11.2.4) and (11.2.5) appeared already in [364], Lemma 2.

Bojarski and Haj�lasz noticed in [123], 1993, that Hedberg’s inequality
(11.2.4) combined with the classical Sobolev representation theorem gives the
pointwise estimate

∣∣f(x) − f(y)∣∣ ≤ ((M|∇f |
)
(x) +

(
M|∇f |

)
(y)
)
|x− y| (12.5.1)

as well as its generalizations to gradients of higher order. Inequality (12.5.1)
influenced the development of analysis on arbitrary metric measure spaces
(see, for example, Haj�lasz [337, 338, 342], Haj�lasz and Koskela [344]).

Hedberg’s Lemma 11.2.1/1 was generalized in Mircea and Szeptycki [609]
to potentials with kernels k satisfying the homogeneity condition k(tx) =
t−αnk(x) for all t > 0 and x ∈ R

n \ {0}. The result is the following. Let
Iu(x) = k ∗ u(x) and let M be the maximal operator defined by

Mu(x) = sup
t>0

1
vol(tX)

∫
tX

∣∣u(x− y)∣∣ dy,

where X = {x ∈ R
n \ {0} : |K(x)| ≥ 1} ∪ {0}. Then

∣∣Iu(x)∣∣ ≤ A(Mu(x))1−(1−α)p‖u‖(1−α)p
Lp

for any u ∈ Lp and almost all x ∈ R
n with the best constant

A =
1

(1 − α)p

(
αp

1 − (1 − α)p
vol(X)

)α

.

Section 12.1. Lemma in Sect. 12.1.1 is a refinement of Stein’s estimate

k " u ≤ c‖k‖L1Mu

(see [724] Theorem 2, Chap. 3, Sect. 2.29). It was proved by Maz’ya and Sha-
poshnikova in [581]. Interpolation inequalities for Riesz and Bessel potentials
of complex order (Theorems 12.1.2 and 12.1.5) were obtained in [581].

Section 12.2. Theorem 12.2.1 is proved in the paper by Kufner and
Maz’ya [571]. Other results in this section were obtained in Maz’ya and Sha-
poshnikova [586] where, together with Dω(v, x), the nonlinear operator

Dω(v;x) = sup
r>0

1
ω(r)

∣∣∣∣v(x) −
∫
−

Br(x)

v(y) dy
∣∣∣∣

was considered and a sharp analog of inequality (12.0.2) involving Dω was
obtained. In the case ω(r) = rα, α > 0, one has the following result.
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Proposition. Let u ∈ C1(Rn), and let α > 0. Then the inequality

∣∣∇u(x)∣∣ ≤ C2

(
M�u(x)

) α
α+1

(
sup
r>0

r−α

∣∣∣∣∇u(x) −
∫
−

Br(x)

∇u(y) dy
∣∣∣∣
) 1

α+1

(12.5.2)
holds with the best constant

C2 = (n+ 1)
α+ 1
α

(
α

n+ α+ 1

) 1
α+1

. (12.5.3)

Inequality (12.5.2) with x = 0 becomes an equality for the odd function given
for x ≥ 0 by the formula

u(x) =

⎧⎪⎨
⎪⎩
xn(1 − |x|α) for 0 ≤ |x| ≤ R,
αn−α

n+α+1 ((n+ 1)R− |x|)α+1 xn

|x| for R < |x| < (n+ 1)R,
0 for |x| ≥ (n+ 1)R,

where

R =
(

n+ α+ 1
(α+ 1)(n+ 1)

) 1
α

.

Note that for n = 1 estimate (12.5.2) takes the form

∣∣u′(x)
∣∣ ≤ C2

(
M�u(x)

) α
α+1

(
sup
r>0

‖u′(x) − u(x+r)+u(x−r)
2r ‖

rα

) 1
α+1

(12.5.4)

(compare with (12.2.56)) with the best constant

C2 =
2(α+ 1)

α

(
α

α+ 2

) 1
α+1

. (12.5.5)

We note that the operator

(Tαu)(x) = sup
y∈Rn

|u(y) − u(x)|
|y − x|α

has been extensively studied (see, e.g., Carton-Lebrun and Heinig [173]).
Section 12.3. The paper by Ka�lamajska [411] is dedicated to some inte-

gral representation formulas for differentiable functions and pointwise inter-
polation inequalities on bounded domains with the operator M both on the
right- and left-hand sides. Ka�lamajska proved, in particular, that if

lim
R→∞

R−k

∫
BrR(aR)

∣∣u(x)∣∣ dx = 0, where a ∈ R
n and r > 0,

then, for any polynomial P of degree less than j,
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M∇ku(x) ≤
(
M
(
u(x) − P (x)

)) j−k
j
(
M∇ju(x)

) k
j .

Interpolation inequalities for ∇ku and Dp,mu collected in Theorem 12.3.1 are
borrowed from Maz’ya and Shaposhnikova [580]. A slightly weaker version of
Theorem 12.3.2 can be found in [583].

In [582] the interpolation inequality

∣∣∇ku(x)
∣∣ ≤ c((Mu)(x)

)1− k
r
(
(Sru)(x)

) k
r , 0 < k < r, {r} > 0,

involving the Strichartz function

(Sru)(x) =
(∫ ∞

0

(∫
By

∣∣∇[r]u(x+ h) −∇[r]u(x)
∣∣ dh

)2 dy
y1+2{r}+2n

) 1
2

,

was proved and used to obtain a description of the maximal algebra embedded
in the space of multipliers between Bessel potential spaces.

Section 12.4. Inequality (12.4.1), with Bessel potential space Hs
p(Rn),

p ∈ (1,∞), and s > 0, instead of Ws
p(Rn), was obtained by D.R. Adams and

Frazier [13].
For p > 1, a theorem on the boundedness and continuity of the operator

(12.4.2) was proved by Brezis and Mironescu [144]. As they say, their proof is
quite involved being based on a “microscopic” improvement of the Gagliardo–
Nirenberg inequality, in the Triebel–Lizorkin scale, namely Ws

p∩L∞ ⊂ F σ
q,ν for

every ν and on an important estimate on products of functions in the Triebel–
Lizorkin spaces, due to Runst and Sickel [685]. To this Brezis and Mironescu
added: “It would be interesting to find a more elementary argument which
avoids this excursion into F s

p,q scale.”
In the present section, which follows the paper by Maz’ya and Shaposh-

nikova [583], such an elementary argument, which includes p = 1, is given.
The problem of the description of functions of one real variable acting by
composition on spaces on the Sobolev type, dealt with here, was the subject
of numerous studies: Dahlberg [218]; Marcus and Mizel [515]; Bourdaud [129–
132]; Bourdaud and Meyer [135]; D.R. Adams and Frazier [13]; Bourdaud and
M. Kateb [134]; Oswald [651]; Bourdaud and D. Kateb [133]; Runst and Sickel
[685]; Labutin [472]; Bourdaud, Moussai, and Sickel [136]; et al.
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A Variant of Capacity

In Sect. 10.4.1 we introduced the capacity cap(e, Sl
p) of a compactum e ⊂ R

n

for any one of the spaces Sl
p = H l

p, h
l
p, B

l
p, and so on. In other words, we

considered the set function

cap
(
e, Sl

p

)
= inf

{
‖u‖p

Sl
p

: u ∈ N(e)
}
,

where N(e) = {u ∈ D : u ≥ 1 on e}.
Replacing N(e) by

M(e,Ω) =
{
u ∈ C∞

0 (Ω) : u = 1 in a neighborhood of e
}
,

we obtain another set function that appears to be useful in various applica-
tions. This new set function will also be called the capacity. It will be denoted
by Cap(e, Sl

p(Ω)).
Having in mind further applications we restrict ourselves to the capacities

Cap generated by the spaces L̊l
p(Ω) and W l

p, l = 1, 2, . . . . Various estimates
for these capacities are collected in Sect. 13.1. Section 13.2 deals briefly with
the so-called (p, l)-polar sets in R

n and in Sect. 13.3 we show the equivalence
of Cap(e, L̊l

p) and cap(e, L̊l
p) for p > 1.

Finally, in Sect. 13.4 an example of application of Cap to the problem of
removable singularities of polyharmonic functions is given.

13.1 Capacity Cap

13.1.1 Simple Properties of Cap(e, L̊l
p(Ω))

The inner and outer capacities of an arbitrary subset of the set Ω are defined
by

Cap
(
E, L̊l

p(Ω)
)

= sup
e⊂E

Cap
(
e, L̊l

p(Ω)
)
,

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 13, c© Springer-Verlag Berlin Heidelberg 2011
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Cap
(
E, L̊l

p(Ω)
)

= inf
G⊃E

Cap
(
G, L̊l

p(Ω)
)
,

respectively. Here e is an arbitrary compact subset of E and G is an arbitrary
open subset of Ω containing E. If the inner and outer capacities coincide,
their common value is called the capacity of the set E and is denoted by
Cap(E, L̊l

p(Ω)). Henceforth when speaking of the (p, l)-capacity we shall mean
this set function.

The definition of the capacity Cap(e, L̊l
p(Ω)) immediately implies the fol-

lowing two properties.
Monotonicity. If e1 ⊂ e2 and Ω1 ⊃ Ω2, then

Cap
(
e1, L̊

l
p(Ω1)

)
≤ Cap

(
e2, L̊

l
p(Ω2)

)
.

Right continuity. For each ε > 0 there exists a neighborhood ω of the
compactum e with ω̄ ⊂ Ω such that for an arbitrary compactum e′ with
e ⊂ e′ ⊂ ω we have

Cap
(
e′, L̊l

p(Ω)
)
≤ Cap

(
e, L̊l

p(Ω)
)

+ ε.

The following three propositions establish the simplest connections be-
tween the capacities Cap(·, S1) and Cap(·, S2).

Proposition 1. Let ω and Ω be open sets in R
n with D = diamΩ < ∞

and ω̄ ⊂ Ω. Then for any compactum e ⊂ ω, located at the distance Δe from
∂ω, the inequality

Cap
(
e, L̊l

p(ω)
)
≤ c
(
D

Δe

)lp

Cap
(
e, L̊l

p(Ω)
)

is valid.

Proof. Let u ∈ M(e,Ω) and let α ∈ C∞
0 (ω), α = 1 in a neighborhood of e

and |∇iα(x)| ≤ cΔ−i
e , i = 1, 2, . . . (cf. Stein [724], §2, Chap. 6). Then

Cap
(
e, L̊l

p(ω)
)
≤
∥∥∇l(αu)

∥∥p
Lp(Ω)

≤ c
l∑

j=0

Δ(j−l)p
e

∥∥∇ju
∥∥p
Lp(Ω)

.

It remains to make use of the Friedrichs inequality

‖∇ju‖Lp(Ω) ≤ cDl−j‖∇lu‖Lp(Ω).

The proof is complete. ��

The following proposition can be proved in a similar way.

Proposition 2. Let e ⊂ Ω, D = diamΩ, Δe = dist{e, ∂Ω}.Then

c1 min
{
1,Δlp

e

}
≤

Cap(e,W l
p)

Cap(e, L̊l
p(Ω))

≤ c2 max
{
1, Dlp

}
,

where W l
p = W l

p(R
n).
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An immediate corollary of the embedding L̊l
p(Rn) ⊂ L̊m

q (Rn) for appro-
priate values of p, l, q, and m is the following.

Proposition 3. Let n > lp, p > 1 or n ≥ l, p = 1. If e ⊂ Br, then

Cap
(
e, L̊l

p(B2r)
)
≤ cCap

(
e, L̊l

p

)
, (13.1.1)

where c = c(n, p, l).

Proof. Let u ∈ M(e), α ∈ M(B̄r, B2r). We have

∥∥∇l(αu)
∥∥
Lp(B2r)

≤ c
l∑

j=0

‖∇ju‖Lp(B2r) ≤ c1
l∑

j=0

‖∇ju‖Lqj
≤ c2‖∇lu‖Lp ,

where qj = pn(n− (l − j)p)−1. ��

Next we present two lower bounds for Cap(e, L̊l
p(Ω)).

Proposition 4. Let e ⊂ Ω ∩ R
s, s ≤ n. Then

Cap
(
e, L̊l

p(Ω)
)
≥ c (mse)p/q,

where q = ps/(n− lp) for p > 1, s > n− lp > 0, or s ≥ n− l ≥ 0 for p = 1.
The constant c depends only on n, p, l, and q.

For the proof it suffices to apply the inequality

‖u‖Lq(Rs) ≤ c ‖∇lu‖Lp(Rn)

to an arbitrary u ∈ M(e,Ω). ��

Proposition 5. If Ω is an open set, e is a compactum in Ω and

de = min
x∈e

max
y∈∂Ω

|x− y|,

then
Cap

(
e, L̊l

p(Ω)
)
≥ c dn−p l

e , (13.1.2)

where p l > n, p > 1 or l ≥ n, p = 1.

Proof. For any u ∈ M(e,Ω) and a certain x ∈ e we have

1 =
∣∣u(x)∣∣p ≤ c dpl−n

e

∫
|y−x|<de

|∇lu|p dy, x ∈ e.

Therefore, 1 ≤ c d l−n/p
e ‖∇lu‖Lp(Ω). The result follows. ��

Corollary. Let p l > n, p > 1 or l ≥ n, p = 1 and let x0 be a point in B�.
Then

Cap
(
x0, L̊

l
p(B2�)

)
∼ �n−lp. (13.1.3)

Proof. The lower estimate for the capacity follows from Proposition 5
and the upper estimate results from substituting the function u(x) = η((x−
x0)�−1), where η ∈ C∞

0 (B1), into the norm ‖∇lu‖Lp(B2�). ��
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13.1.2 Capacity of a Continuum

Proposition 1. Let n > lp > n − 1, p ≥ 1 and let e be a continuum with
diameter d. Then

Cap
(
e, L̊l

p

)
∼ dn−lp. (13.1.4)

Proof. We include e in the ball B̄d with radius d and we denote the con-
centric ball with radius 2d by B2d. Using the monotonicity of the capacity, we
obtain

Cap
(
e, L̊l

p

)
≤ Cap

(
B̄d, L̊

l
p

)
= c dn−lp.

Let O and P be points in e with |O−P | = d. Let the axis Oxn be directed
from O to P . We introduce the notation

x = (x′, xn), x′ = (x1, . . . , xn−1), e(t) = e ∩ {x : xn = t},

B
(n−1)
2d (t) = B2d ∩ {x : xn = t}, ∇′

l =
{
∂l/∂xα1

1 , . . . , ∂x
αn−1
n−1

}
,

α1 + · · · + αn−1 = l.

For any u ∈ M(e,B2d) we have

∫
B2d

|∇lu|p dx ≥
∫ d

0

dt
∫
B

(n−1)
2d (t)

|∇′
lu|p dx′

≥
∫ d

0

Cap
[
e(t), L̊l

p

(
B

(n−1)
2d (t)

)]
dt.

Since e(t) �= ∅, e(t) ⊂ B̄d, and p l > n− 1, it follows that

Cap
(
e(t), L̊l

p

(
B

(n−1)
2d (t)

))
≥ c dn−1−lp.

Minimizing ‖∇lu‖pLp(B2d) over the set M(e,B2d), we obtain

Cap
(
e, L̊l

p(B2d)
)
≥ c dn−lp.

To complete the proof it remains to use estimate (11.1.1). ��

Proposition 2. If n = lp, p > 1, then for any continuum e with diameter
d, 2d < D, the equivalence

Cap
(
e, L̊l

p(BD)
)
∼
(

log
D

d

)1−p

(13.1.5)

holds. Here BD is the open ball with radius D and with center O ∈ e.

Proof. First we derive the upper bound for the capacity. Let the function
v be defined on BD\Bd as follows:
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v(x) =
[
log

D

d

]−1

log
D

|x| .

Let α denote a function in C∞[0, 1] equal to zero near t = 0, to unity near
t = 1 and such that 0 ≤ α(t) ≤ 1. Further let u(x) = α[v(x)] for x ∈ BD\Bd,
u(x) = 1 in Bd and u(x) = 0 outside BD. It is clear that u ∈ M(Bd, BD).
Also, we can easily see that

∣∣∇lu(x)
∣∣ ≤ c

[
log

D

d

]−1

|x|−l

on BD\Bd. This implies

Cap
(
B̄d, L̊

l
p(BD)

)
≤
∫
BD

∣∣∇lu(x)
∣∣p dx

≤ c

[
log

D

d

]−p ∫
BD \Bd

|x|−lp dx = c

[
log

D

d

]1−p

.

We proceed to the lower bound for the capacity. Let P and Q be points in
e with |P −Q| = d. By (r, ω) we denote the spherical coordinates of a point in
the coordinate system with origin Q, r > 0, ω ∈ ∂B1(Q). Let u be a function
in M(e,B2D(Q)) such that

∫
B2D(Q)

|∇lu|p dx ≤ γ − ε,

where
γ = Cap

(
e, L̊l

p

(
B2D(Q)

))
≤ Cap

(
e, L̊l

p(BD)
)

and ε is a small positive number. We introduce the function

U(r) =
∥∥u(r, ·)∥∥

Lp(∂B1(Q))
.

Since u = 1 at least one point of the sphere {x : |x − Q| = r}, where r < d
and p l > n− 1, we have

∣∣1 − U(r)
∣∣ ≤ c∥∥u(r, ·) − U(r)

∥∥
W l

p(∂B1(Q))
.

Hence
∣∣∣∣1 − 2d−1

∫ d

d/2

U(r) dr
∣∣∣∣ ≤ c

l∑
j=1

dj−1‖∇ju‖Lp(Bd(Q)\Bd/2(Q)). (13.1.6)

Using (l − 1)p < n, we obtain
∫
B2D(Q)

r(j−1)p|∇ju|p dx ≤ c
∫
B2D(Q)

|∇lu|p dx, 1 ≤ j < l. (13.1.7)
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Therefore, the right-hand side in (13.1.6) does not exceed

c ‖∇lu‖Lp(B2D(Q)) ≤ c0(γ − ε).

If γ ≥ (2c0)−1, then the required estimate follows. Let γ < (2 c0)−1. Hence
∫ d

d/2

U(r) dr > d/4,

and U(r0) > 1
2 for some r0 ∈ (d/2, d). Using (13.1.7) once more, we conclude

that

γ − ε ≥ c
∫
∂B1(Q)

dω
∫ 2D

d

|r∇u|p dr
r
− ε.

By the Hölder inequality we have

γ − ε ≥ c

∫ 2D

r0

∣∣rU ′(r)
∣∣p dr
r
− ε ≥ c

(
log

2D
d

)1−p∣∣∣∣
∫ 2D

r0

U ′(r) dr
∣∣∣∣
p

= c

(
log

2D
d

)1−p

U(r0)p ≥ 2−pc

(
log

D

d

)1−p

.

The result follows. ��

13.1.3 Capacity of a Bounded Cylinder

Proposition 1. Let Cδ,d be the cylinder
{
x : (x′, xn) : |x′| ≤ δ, |xn| ≤ d/2

}
,

where 0 < 2δ < d and Q2d = {x : |xi| < d}. Then

Cap
(
Cδ,d, L̊

l
p(Q2d)

)
∼
{
dδn−p l−1 for n− 1 > pl,
d(log d

δ )1−p for n− 1 = pl.

Proof. Let u ∈ M(Cδ,d, Q2d). Obviously,

∫
Q2d

|∇lu|p dx ≥
∫ d/2

−d/2

dxn
∫
Q

(n−1)
2d

|∇′
lu|p dx′, (13.1.8)

where ∇′
l = {∂l/∂xα1

1 , . . . , ∂x
αn−1
n−1 }, α1 + · · · + αn−1 = l, and Q(n−1)

2d = {x′ :
|xi| < d, i = 1, . . . , n− 1}. The inner integral on the right in (13.1.8) exceeds

Cap
(
B

(n−1)
δ , L̊l

p

(
B(n−1)

�

))
,

where B(n−1)
� is the (n−1)-dimensional ball {x : |x′| < �} and � = 2(n−1)1/2d.

Hence from Propositions 13.1.2/1 and 13.1.2/2 it follows that the integral
under consideration majorizes c δn−p l−1 for n− 1 > p l and c (log d/δ)1−p for
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n−1 = p l. Minimizing the left-hand side of (13.1.8) over the set M(Cδ,d, Q2d),
we obtain the required lower estimate for the capacity.

We proceed to the upper bound. Let x′ → u(x′) be a smooth function
with support in the ball B(n−1)

d that is equal to unity in a neighborhood
of the ball B(n−1)

δ . Further, we introduce the function ηd(x) = η(x/d), where
η ∈ M(Q̄1, Q2). Since the function x→ ηd(x)u(x′) is in the class M(Cδ,d, Q2d),
we have

Cap
(
Cδ,d, L̊

l
p(Q2d)

)
≤
∫
Q2d

∣∣∇l(uηd)
∣∣p dx

≤ c d

l∑
k=0

d−pk

∫
B

(n−1)
d

|∇l−ku|p dx′

≤ c1d

∫
B

(n−1)
d

|∇lu|p dx′.

Minimizing the latter integral and using Propositions 13.1.2/1 and 13.1.2/2,
we arrive at the required estimate. ��

13.1.4 Sets of Zero Capacity Cap(·, W l
p)

The definition of the capacity Cap(·, L̊l
p(Ω)) and Proposition 13.1.1/2 imply

that Cap(e,W l
p) = 0 if and only if there exists a bounded open set Ω con-

taining e such that Cap(e, L̊l
p(Ω)) = 0. The choice of Ω is not essential by

Proposition 13.1.1/2.
From Corollary 13.1.1, for lp > n, p > 1 and for l ≥ n, p = 1, we obtain

that the equality Cap(e,W l
p) = 0 is valid only if e = ∅.

Proposition 13.1.1/3 shows that in any one of the cases n > lp, p > 1 or
n ≥ l, p = 1 the equalities Cap(e,W l

p) = 0 and Cap(e, L̊l
p) = 0 are equivalent.

Corollary 13.1.1 and Propositions 13.1.2/1 and 13.1.2/2 imply that no similar
property is true for n ≤ lp, p > 1. To be precise, Cap(e, L̊l

p) = 0 for any
compactum e provided n ≤ lp, p > 1.

13.2 On (p, l)-Polar Sets

Let W−l
p′ denote the space of linear continuous functionals T : u → (u, T ) on

W l
p.
The set E ⊂ R

n is called a (p, l)-polar set if zero is the only element in
W−l

p′ with support in E.

Theorem 1. The space D(Ω) is dense in W l
p if and only if CΩ is a

(p, l)-polar set.
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Proof. 1. Suppose D(Ω) is not dense in W l
p. Then there exists a nonzero

functional T ∈ W−l
p′ , equal to zero on D(Ω), i.e., with support in CΩ. (Here

we make use of the following corollary of the Hahn–Banach theorem. Let M
be a linear set in the Banach space B and let x0 be an element of B situated
at a positive distance from M . Then there exists a nonzero functional T ∈ B∗

such that (x, T ) = 0 for all x ∈ M .) Consequently, CΩ is not a (p, l)-polar
set.

2. Suppose D(Ω) is dense inW l
p. For any functional T ∈W−l

p′ with support
in CΩ we have

(u, T ) = 0

for all u ∈ D(Ω). Therefore, the last equality is valid for all u ∈ W l
p and so

T = 0. Thus, CΩ is a (p, l)-polar set. ��

Theorem 2. The set E is (p, l)-polar if and only if Cap(E,W l
p) = 0.

Proof. 1. Let Cap(E,W l
p) = 0 and T ∈W−l

p′ , suppT ⊂ E. Without loss of
generality we may assume that supp T is a compactum (otherwise we could
take αT with α ∈ D instead of T ). We take an arbitrary ϕ ∈ D and a sequence
{um}m≥1 of functions in D which equal unity in a neighborhood of supp T
and tend to zero in W l

p. Since ϕ(1−um) = 0 in a neighborhood of T , we have
(ϕ, T ) = (ϕum, T ). The right-hand side converges to zero as m → ∞; hence
(ϕ, T ) = 0 for all ϕ ∈ D . Since D is dense in W l

p, we conclude that T = 0.
2. Let E be a (p, l)-polar set. Then any compactum K in E is also a (p, l)-

polar set, and D(Rn\K) is dense in W l
p. Let v ∈ M(K). By the density of

D(Rn\K) in W l
p, there exists a sequence vm ∈ D(Rn\K) that converges to

v in W l
p. Every function vm − v equals unity near K, has compact support,

and ‖vm − v‖W l
p
→ 0 as m → ∞. Therefore, Cap(K,W l

p) = 0. The proof is
complete. ��

Taking into account the just proved assertion we can give an equivalent
formulation of Theorem 1.

Theorem 3. The space D(Ω) is dense in W l
p if and only if

Cap
(
CΩ,W l

p

)
= 0.

13.3 Equivalence of Two Capacities

We compare the capacities Cap(e, L̊1
p) and cap(e, L̊1

p), p ≥ 1. Obviously, the
first capacity majorizes the second. One can easily check that the converse
inequality also holds. In fact, for the function vε = min{(1 − ε)−1u, 1} there
exists a sequence in M(e) that converges to vε in L̊l

p for an arbitrary number
ε ∈ (0, 1) and a function u ∈ N(e). Therefore,



13.3 Equivalence of Two Capacities 665

Cap
(
e, L̊1

p

)
≤
∫

|∇vε|p dx ≤ (1 − ε)−p

∫
|∇u|p dx

and so Cap(e, L̊1
p) ≤ cap(e, L̊1

p). Thus the capacities Cap(e, L̊1
p) and cap(e, L̊1

p)
coincide.

Since the truncation along the level surfaces does not keep functions in the
spaces L̊l

p and W l
p for l > 1, the previous argument is not applicable to the

proof of equivalence of the capacities Cap and cap, generated by these spaces.
Nevertheless, in the present section we show that the equivalence occurs for
p > 1.

Theorem 1. Let p > 1, n > p l, l = 1, 2, . . . . Then

cap
(
e, L̊l

p

)
≤ Cap

(
e, L̊l

p

)
≤ c cap

(
e, L̊l

p

)
(13.3.1)

for any compactum e.

Proof. The left inequality results from the inclusion M(e) ⊂ N(e). We
proceed to the upper bound for Cap. Let G denote a bounded open set such
that G ⊃ e and

cap
(
Ḡ, Ll

p

)
≤ cap

(
e, L̊l

p

)
+ ε.

Let U be the (p, l)-capacitary potential of the set Ḡ (cf. Sect. 10.4.2). By
Proposition 10.4.2/2, the inequality U ≥ 1 is valid (p, l)-quasi-everywhere in
Ḡ, and therefore, quasi-everywhere in some neighborhood of the compactum e.
We apply the mollification with radius m−1, m = 1, 2, . . . , to U and multiply
the result by the truncating function ηm, ηm(x) = η(x/m) where η ∈ C∞

0 ,
η(0) = 1. Thus we obtain a sequence of functions {Um}m≥1 in C∞

0 such that
0 ≤ Um ≤ c in R

n, Um ≥ 1 in a neighborhood of e and

lim
m→∞

‖∇lUm‖pLp
≤ cap

(
e, L̊l

p

)
+ ε. (13.3.2)

(The inequality Um ≤ c follows from Proposition 10.4.2/1.)
We introduce the function

w = 1−
[
(1− Um)+

]l+1
,

which obviously has compact support and is in Cl. Also,

‖∇lw‖Lp ≤
∥∥∇l

[
(1 − Um)l+1

]∥∥
Lp
.

Applying (1.8.7), we obtain

‖∇lw‖Lp ≤ c ‖∇lUm‖Lp .

It remains to make use of inequality (13.3.2). ��

The following theorem has a similar proof.
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Theorem 2. Let p > 1, l = 1, 2, . . . . Then

cap
(
e,W l

p

)
≤ Cap

(
e,W l

p

)
≤ c cap

(
e,W l

p

)
(13.3.3)

for any compactum e.

Corollary 1. Let p > 1, l = 1, 2, . . . , and let e be a closed subset of the
cube Q̃d = {x : 2|xi| ≤ d}. Then

cap
(
e, L̊l

p(Q2d)
)
≤ Cap

(
e, L̊l

p(Q2d)
)
≤ c cap

(
e, L̊l

p(Q2d)
)
. (13.3.4)

Proof. It suffices to derive (13.3.4) for d = 1. The left inequality is trivial;
the right one follows from Proposition 13.1.1/2 and Theorem 1. ��

Remark. The proofs of Theorems 1 and 2 and of Corollary 1 do not change
provided we replace the class M(e,Ω) in the definition of the capacity Cap
by the smaller one

P(e,Ω) =
{
u ∈ C∞

0 (Ω) : u = 1 in a neighborhood of e, 0 ≤ u ≤ 1
}
.

Corollary 2. Let p > 1, l = 1, 2, . . . , and let e1, e2 be compacta in Q̃d.
Then

Cap
(
e1 ∪ e2, L̊l

p(Q2d)
)
≤ c∗

2∑
i=1

Cap
(
ei, L̊

l
p(Q2d)

)
, (13.3.5)

where c∗ is a constant that depends only on n, p, and l.

Proof. Let ui ∈ P(ei, Q2d), i = 1, 2, and let

‖∇lui‖pLp
≤ c cap

(
ei, L̊

l
p(Q2d)

)
+ ε (13.3.6)

(cf. preceding Remark). The function u = u1 + u2 is contained in C∞
0 (Q2d)

and satisfies the inequality u ≥ 1 on e1∪e2. Hence from Corollary 1 we obtain

Cap
(
e1 ∪ e2, L̊l

p(Q2d)
)
≤ c cap

(
e1 ∪ e2, L̊l

p(Q2d)
)

≤ c ‖∇lu‖pLp
≤ 2p−1c

2∑
i=1

‖∇lui‖pLp
,

which together with (13.3.6) leads to (13.3.5). ��

13.4 Removable Singularities of l-Harmonic Functions
in Lm

2

Let F be a compactum in the open unit ball B. Here we show that the
capacity Cap enables one to characterize removable singularity sets for l-
harmonic functions in Lm

2 (B). For other results of such a kind see Maz’ya and
Havin [569].
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Proposition. Let l and m be integers, l ≥ m ≥ 0. Every function u ∈
Lm

2 (B) satisfying the equation

Δlu = 0 on B\F

is a solution of the same equation on B if and only if

Cap
(
F, L̊2l−m

2 (B)
)

= 0. (13.4.1)

Proof. Sufficiency. Let (13.4.1) hold. For every v ∈ D(B\F )
∫
B

Δlu · v dx = 0.

Hence ∑
{α:|α|=m}

m!
α!

∫
B

Dαu ·DαΔl−mv dx = 0. (13.4.2)

Since the norm ∥∥Δl−mv
∥∥
L̊m

2 (B)
(13.4.3)

is equivalent to the norm in L̊2l−m
2 (B), it follows from Theorems 13.2/1 and

13.2/2 that D(B\F ) is dense in D(B) in the sense of the norm (13.4.3).
Therefore, using the inclusion u ∈ Lm

2 (B), we obtain (13.4.2) for all v ∈ D(B),
which is equivalent to Δlu = 0 on B.

Necessity. Let u denote the function in L̊2l−m
2 (B) providing the infimum

of the functional
∑

{α:|α|=2l−m}

(2l −m)!
α!

∫
B

(
Dαϕ

)2 dx

defined on the set of ϕ in M(F,B). For every v ∈ D(B\F )

∑
{α:|α|=2l−m}

(2l −m)!
α!

∫
B

Dαu ·Dαv dx = 0. (13.4.4)

Hence
Δ2l−mu = 0 on B\F,

which can be written as

Δl
(
Δl−mu

)
= 0 on B\F. (13.4.5)

The function Δl−mu belongs to Lm
2 (B\F ). Furthermore, by (13.4.5) it is l-

harmonic on B\F and we deduce from the necessity assumption that

Δl
(
Δl−mu

)
= 0 on B,

i.e., u is (2l−m)-harmonic on B. Since u was chosen as a function in L̊2l−m
2 (B),

we see that u = 0 on B. Hence (13.4.1) holds. ��
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13.5 Comments to Chap. 13

Section 13.1. The polyharmonic capacity Cap(e, L̊l
2(Ω)) was introduced by

the author [533]. The content of this section follows, to a large extent, the
author’s paper [544].

Section 13.2. The definition of a (2, l)-polar set is borrowed from the
paper by Hörmander and Lions [385]. The results of this section are due to
Littman [503]. For Theorem 13.2/2 see the earlier paper by Grushin [329].

Section 13.3. The equivalence of the capacities Cap(e, L̊l
p) and cap(e, L̊l

p)
was established by the author [539, 542] for integer l. For fractional l the
equivalence of the corresponding capacities is proved by D.R. Adams and
Polking [19].

Section 13.4. This application of the polyharmonic capacity to descrip-
tion of removable singularities of polyharmonic functions was not published.
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Integral Inequality for Functions on a Cube

Let Qd be an n-dimensional cube with edge length d and with sides parallel
to coordinate axes. Let p ≥ 1 and k, l be integers, 0 ≤ k ≤ l. We denote a
function in W l

p(Qd), p ≥ 1, by u.
The inequality

‖u‖Lq(Qd) ≤ C
l∑

j=k+1

dj−1‖∇ju‖Lp(Qd) (14.0.1)

with q in the same interval as in the Sobolev embedding theorem often turns
out to be useful. This inequality occurs repeatedly in the following chapters.
Obviously, (14.0.1) is not valid for all u ∈W l

p(Qd), but it holds provided u is
subject to additional requirements.

In the present chapter we establish two-sided estimates for the best con-
stant C in (14.0.1). In Sects. 14.1 and 14.2 we mainly consider the case of u
vanishing near a compactum e ⊂ Q̄d and k = 0. The existence of C is equiv-
alent to the positiveness of the (p, l)-capacity of e. For a (p, l)-negligible set
e, upper and lower bounds for C are stated in terms of this capacity. If q ≥ p
and e is (p, l)-essential, i.e., its capacity is comparable with the capacity of
the cube, then C is estimated by the so-called (p, l)-inner diameter.

In Sect. 14.3 the function u is a priori contained in an arbitrary linear
subset C of the space W l

p(Qd). There we present a generalization of the basic
theorem in Sect. 14.1 and give applications for particular classes C. In this
connection we have to introduce some functions of the class C that play a role
similar to that of the (p, l)-capacity.

In conclusion we note that the statements as well as the proofs of results in
the present chapter remain valid after replacing the cube Qd by an arbitrary
bounded Lipschitz domain with diameter d.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 14, c© Springer-Verlag Berlin Heidelberg 2011
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14.1 Connection Between the Best Constant and
Capacity (Case k = 1)

14.1.1 Definition of a (p, l)-Negligible Set

Definition. Let e be a compact subset of the cube Q̄d. In either of the cases
n ≥ pl, p > 1 or n > l, p = 1 we say that e is a (p, l)-negligible subset of Qd if

Cap
(
e, L̊l

p(Q2d)
)
≤ γdn−pl, (14.1.1)

where γ is a sufficiently small constant that depends only on n, p, and l. For
the purposes of the present chapter we can take γ to be an arbitrary positive
number satisfying the inequality

γ ≤ 4−pn. (14.1.2)

If (14.1.1) fails, then, by definition, e is a (p, l)-essential subset of Q̄d. For
n < pl, p > l or for n ≤ l, p = 1 only the empty set is called (p, l)-negligible.
The collection of all (p, l)-negligible subsets of the cube Q̄d will be denoted
by N (Qd).

14.1.2 Main Theorem

Let ūQd
denote the mean value of u on the cube Qd, i.e.,

ūQd
=
[
mn(Qd)

]−1
∫
Qd

u dx.

In what follows, by c, c1, and c2 we mean positive constants depending only
on n, p, l, k, and q.

We introduce the seminorm

u p,l,Qd
=

l∑
j=1

dj−l‖∇ju‖Lp(Qd).

Theorem. Let e be a closed subset of the cube Q̄d.
1. For all u ∈ C∞(Q̄d) with dist(suppu, e) > 0 the inequality

‖u‖Lq(Qd) ≤ C u p,l,Qd
, (14.1.3)

where q ∈ [1, pn(n−pl)−1] for n > pl, p ≥ 1, and q ∈ [1,∞) for n = pl, p > 1,
holds. Moreover, the constant C admits the estimate

C−p ≥ c1d−np/q Cap
(
e, L̊l

p(Q2d)
)
. (14.1.4)

2. For functions u ∈ C∞(Q̄d) with dist(suppu, e) > 0, let

‖u‖Lq(Qd/2) ≤ C u p,l,Qd
, (14.1.5)

where e ∈ N (Qd) and q satisfies the same conditions as in item 1. Then

C−p ≤ c2d−np/q Cap
(
e, L̊l

p(Q2d)
)
. (14.1.6)
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For the proof of this theorem we need the two-sided estimate for Cap.

Lemma. Let e be a compactum in Q̄1. There exists a constant c such that

c−1 Cap
(
e, L̊l

p(Q2)
)
≤ inf

{
‖1 − u‖p

V l
p(Q1)

: u ∈ C∞(Q̄1), dist(suppu, e) > 0
}

≤ cCap
(
e, L̊l

p(Q2)
)
. (14.1.7)

Proof. To obtain the left estimate we need the following well-known as-
sertion (cf. Theorem 1.1.17).

There exists a linear continuous mapping

A : Ck−1,1(Q̄d) → Ck−1,1(Q̄2d), k = 1, 2, . . . ,

such that (i) Av = v on Q̄d, (ii) if dist(supp v, e) > 0, then dist(suppAv, e) >
0, and (iii)

‖∇iAv‖Lp(Q2d) ≤ c‖∇iv‖Lp(Qd), i = 0, 1, . . . , l, 1 ≤ p ≤ ∞. (14.1.8)

Let v = A(1− u). Let η denote a function in D(Q2) that is equal to unity
in a neighborhood of the cube Q1. Then

Cap(e,Q2) ≤ c
∫
Q2

∣∣∇l(ηv)
∣∣p dx ≤ c‖v‖p

V l
p(Q2)

. (14.1.9)

Now the left estimate in (14.1.7) follows from (14.1.8) and (14.1.9).
Next we derive the rightmost estimate in (14.1.7). Let w ∈ M(e,Q2). Then

‖w‖p
V l

p(Q1)
≤ c

l∑
k=0

‖∇kw‖pLp(Q2)
≤ c‖∇lw‖pLp(Q2)

.

Minimizing the last norm over the set M(e,Q2) we obtain

‖w‖p
V l

p(Q1)
≤ cCap

(
e, L̊l

p(Q2)
)
.

We complete the proof of the Lemma by minimizing the left-hand side. �

Proof of the theorem. It suffices to consider only the case d = 1 and then
use a similarity transformation.

1. Let N = ‖u‖Lp(Q1). Since dist(suppu, e) > 0, it follows by the Lemma
that

Cap
(
e, L̊l

p(Q2)
)
≤ c
∥∥1−N−1u

∥∥p
V l

p (Q1)
= cN−p u p

p,l,Q1
+ c
∥∥1−N−1u

∥∥p
Lp(Q1)

,

i.e.,
Np Cap

(
e, L̊l

p(Q2)
)
≤ c u p

p,l,Q1
+ c‖N − u‖pLp(Q1)

. (14.1.10)
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Without loss of generality, we may assume that ūQ1 ≥ 0. Then

|N − ūQ1 | = ‖u‖Lp(Q1) − ‖ūQ1‖Lp(Q1) ≤ ‖u− ūQ1‖Lp(Q1).

Consequently,

‖N − u‖Lp(Q1) ≤ ‖N − ūQ1‖Lp(Q1) + ‖u− ūQ1‖Lp(Q1)

≤ 2‖u− ūQ1‖Lp(Q1). (14.1.11)

By (14.1.10), (14.1.11), and the Poincaré inequality

‖u− ūQ1‖Lp(Q1) ≤ c‖∇u‖Lp(Q1)

we obtain
Cap

(
e, L̊l

p(Q2)
)
‖u‖pLp(Q1)

≤ c u p
p,l,Q1

.

From the Sobolev embedding theorem and the preceding inequality we con-
clude that

‖u‖pLq(Q1)
≤ c
(
u p

p,l,Q1
+ ‖u‖pLp(Q1)

)
≤ c
{
1 +

[
Cap

(
e, L̊l

p(Q2)
)]−1}

u p
p,l,Q1

.

Thus the first item of the theorem follows.
2. For pl > n, p > 1 or for l ≥ n, p = 1 the assertion is trivial. Consider

the other values of p and l. Let ψ ∈ M(e,Q2) be such that

‖∇lψ‖pLp(Q2)
≤ Cap

(
e, L̊l

p(Q2)
)

+ ε, (14.1.12)

and let u = 1 − ψ. Applying the inequality

‖∇jψ‖Lp(Q2) ≤ c‖∇lψ‖Lp(Q2), j = 1, . . . , l − 1,

we obtain
u p,l,Q1 = ψ p,l,Q1 ≤ c‖∇lψ‖Lp(Q2).

Hence from (14.1.12) it follows that

‖u‖Lp(Q1/2) ≤ cC
[
Cap

(
e, L̊l

p(Q2)
)

+ ε
]1/p

.

By Hölder’s inequality we have

1− ψ̄Q1/2 = ūQ1/2 ≤ cC
[
Cap

(
e, L̊l

p(Q2)
)]1/p

. (14.1.13)

It remains to show that the mean value of ψ on Q1/2 is small. Noting that

∫ 1

−1

|w| dt ≤
∫ 1

−1

|t||w′| dt ≤
∫ 1

−1

|w′| dt

for any function w ∈ C1[−1, 1] satisfying w(−1) = w(1) = 0, we obtain
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∫
Q1/2

ψ dx ≤
∫
Q2

|ψ| dx ≤
∫
Q2

∣∣∣∣ ∂ψ∂x1

∣∣∣∣ dx ≤
∫
Q2

∣∣∣∣∂
2ψ

∂x2
1

∣∣∣∣ dx

≤ · · · ≤
∫
Q2

∣∣∣∣∂
lψ

∂xl1

∣∣∣∣ dx ≤ 2(p−1)n/p‖∇lψ‖Lp(Q2). (14.1.14)

Therefore,
ψ̄Q1/2 ≤ 2(2p−1)n/p

[
Cap

(
e, L̊l

p(Q2)
)

+ ε
]1/p

.

This and (14.1.1) and (14.1.2) imply

ψ̄Q1/2 ≤ 2−n/p,

which together with (14.1.13) completes the proof of the second part of the
theorem. �

14.1.3 Variant of Theorem 14.1.2 and Its Corollaries

In the following theorem, which will be used in Chap. 16, we prove an assertion
similar to the first part of Theorem 14.1.2 and relating it to a wider class of
functions. The parameters p, l, and q are the same as in Theorem 14.1.2.

Theorem. Let e be a closed subset of Q̄d and let δ be a number in the
interval (0, 1). Then for all functions in the set{

u ∈ C∞(Q̄d) : ūQd
≥ 0, u(x) ≤ δd−n/p‖u‖Lp(Qd) for all x ∈ e

}
,

inequality (14.1.3) is valid and

C−p ≥ c(1− δ)pd−np/q cap
(
e, L̊l

p(Q2d)
)
.

Proof. Duplicating the proof of Lemma 14.1.2, we obtain

c−1 cap
(
e, L̊l

p(Q2)
)
≤ inf

{
‖1− u‖p

V l
p(Q1)

: u ∈ C∞(Q̄1), u ≤ 0 on e
}

≤ c cap
(
e, L̊l

p(Q2)
)
.

Further, we note that the inequality 1−N−1u ≥ 1 − δ on e implies

(1 − δ)p cap
(
e, L̊l

p(Q2)
)
≤ c
∥∥1 −N−1u

∥∥p
V l

p(Q2)

and we follow the argument of the proof of the first part of Theorem 14.1.2.�

Corollary 1. Let e be a closed subset of Q̄d. Then the inequality

‖u‖pLq(Qd) ≤ c

(
dp−n+np/q‖∇u‖pLp(Qd)

+
dnp/q

cap(e, L̊l
p(Q2d))

‖∇lu‖pLp(Qd)

)
(14.1.15)

is valid for all functions u ∈ C∞(Q̄d) that vanish on e.
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Proof. It suffices to put d = 1. Let

P (u) =
∑

0≤β<l

xβ
∫
Q1

ϕβ(y)u(y) dy

be the polynomial in the generalized Poincaré inequality for the cube Q1 (see
Lemma 1.1.11). Further let S(u) = P (u)−

∫
Q1
ϕ0(y)u(y) dy. Since all functions

ϕβ are orthogonal to unity for |β| > 0, then
∣∣S(u)

∣∣ ≤ c‖∇u‖Lp(Q1). (14.1.16)

It suffices to obtain (14.1.15) under the assumption

‖∇u‖Lp(Q1) ≤ δ‖u‖Lp(Q1),

where δ = δ(n, p, l) is a small constant. Then the function v = u − S(u)
satisfies the inequality ∣∣v(x)∣∣ ≤ cδ‖v‖Lp(Q1)

on e. We can assume that v̄Q1 ≥ 0. Applying the theorem in the present
section to the function v, we arrive at

‖v‖pLq(Q1)
≤ c

cap(e, L̊l
p(Q2))

l∑
j=1

‖∇jv‖pLp(Q1)
.

Hence from Lemma 1.1.11 we obtain

∥∥u− S(u)
∥∥p
Lq(Q1)

≤ c

cap(e, L̊l
p(Q2))

l∑
j=1

∥∥∇j

(
u− P (u)

)∥∥p
Lp(Q1)

≤ c

cap(e, L̊l
p(Q2))

‖∇lu‖pLp(Q1)
.

Now a reference to (14.1.16) completes the proof. �
Corollary 14.1.3 implies the following assertion.

Corollary 2. Let e be a closed subset of Q̄d. The inequality

‖u‖pLq(Qd) ≤ c
(
dpk−n+np/q‖∇ku‖pLp(Qd)

+
dnp/q

cap(e, L̊l−k+1
p (Q2d))

‖∇lu‖pLp(Qd)

)
(14.1.17)

holds for all functions u ∈ C∞(Q̄d) vanishing on e along with all derivatives
up to order k, k < l.

Proof. It suffices to derive (14.1.17) for q = p and d = 1. By Corollary 1,
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‖∇ju‖pLp(Q1)
≤ c
(
‖∇j+1u‖pLp(Q1)

+
1

cap(e, L̊l−j
p (Q1))

‖∇lu‖pLp(Q1)

)

for j = 0, 1, . . . , k − 1. Therefore

‖u‖pLp(Q1)
≤ c
(
‖∇ku‖pLp(Q1)

+
k−1∑
j=0

1

cap(e, Ll−j
p (Q1))

‖∇lu‖pLp(Q1)

)
.

Since
cap
(
e, Ll−j

p (Q1)
)
≥ cap

(
e, Ll−k+1

p (Q1)
)

for j = 0, . . . , k − 1, the result follows. �

Remark 1. By Corollary 13.3/1, for p > 1 we can replace cap by Cap in
the statements of Theorem and Corollaries 1 and 2.

Remark 2. From Proposition 13.1.1/3 it follows that we can replace cap(e,
L̊l

p(Q2d)) by cap(e, L̊l
p(Rn)) in the statements of the Theorem and Corollary 1

for n > lp. A similar remark applies to Corollary 2 in the case n > p(l−k+1).

Remark 3. Proposition 10.4.2/2 and the properties of (p, l)-refined func-
tions (see 10.4.4) imply that in the definition of the capacity cap(E, hlp) of a
Borel set we can minimize the norm ‖u‖hl

p
over all (p, l)-refined functions in

hlp satisfying the inequality u(x) ≥ 1 for (p, l)-quasi-every x ∈ E. Therefore, in
the theorem of the present subsection, we can deal with (p, l)-refined functions
in V l

p (Qd) for which the inequality

u(x) ≤ δd−n/p‖u‖Lp(Qd)

is valid (p, l)-quasi everywhere on the Borel set E ⊂ Q̄d. Similarly, in Corol-
lary 1 we can consider a Borel set E ⊂ Q̄d and (p, l)-refined functions in
V l
p(Qd) equal to zero quasi-everywhere on E. The class of functions in Corol-

lary 2 can also be enlarged if we consider the class Ck(E) of refined functions
u ∈ V l

p (Qd) such that Dαu(x) = 0 for (p, l − |α|)-quasi all x ∈ E and for all
multi-indices of order |α| ≤ k.

14.2 Connection Between Best Constant and the
(p, l)-Inner Diameter (Case k = 1)

14.2.1 Set Function λl
p,q(G)

Definition. With any open set G ⊂ Qd we associate the number

λlp,q(G) = inf
u p

p,l,Qd

‖u‖pLp(Qd)

,
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where p ≥ 1 and the infimum is taken over all functions u ∈ C∞(Q̄d) vanishing
in a neighborhood of Qd\G.

By Theorem 14.1.2, if Qd\G is a (p, l)-negligible subset of Q̄d, then

λlp,q(G) ∼ d−np/q Cap
(
Qd\G, L̊l

p(Q2d)
)
.

This relation fails without the condition of smallness on Cap(Qd\G, L̊l
p(Q2d)).

In fact, if G is “small,” then the value λlp,q(G) becomes large (for instance, we
can easily check that λlp,q(G) ∼ εn−pl−np/q provided G is a cube with small
edge length ε) whereas

cap
(
Qd\G, L̊l

p(Q2d)
)
≤ cdn−pl.

In the present section we give a description of the set function λlp,q(G) for
q ≥ p ≥ 1 in certain new terms connected with the (p, l)-capacity under the
condition that Qd\G /∈ N (Qd).

14.2.2 Definition of the (p, l)-Inner Diameter

We fix the cube Qd and we denote by Qδ an arbitrary cube in Qd with edge
length δ and with sides parallel to those of Qd.

Definition. Let G be an open subset of Qd. The supremum of δ for which
the set {Qδ : Qδ\G ∈ N (Qδ)} is not empty will be called the (p, l)-inner
(cubic) diameter of G relative to Qd and denoted by Dp,l(G,Qd). In the case
Qd = R

n we shall use the notation Dp,l(G) and call it the (p, l)-inner (cubic)
diameter of G. Obviously, Dp,l(G,Qd) = d provided Qd\G is a (p, l)-negligible
subset of Q̄d.

Let n < pl, p > 1 or n = l, p = 1. By definition, for such p and l, all
the sets except the empty set are (p, l)-essential. Therefore, for any open set
G ⊂ Qd, the (p, l)-inner (cubic) diameter Dp,l(G,Qd) coincides with the inner
(cubic) diameter D(G), i.e., with the supremum of edge lengths of cubes Qδ

inscribed in G.

14.2.3 Estimates for the Best Constant in (14.1.3) by the
(p, l)-Inner Diameter

The following theorem contains two-sided estimates for λlp,q(G) for q ≥ p ≥ 1.

Theorem 1. Let G be an open subset of Qd such that Qd\G is a (p, l)-
essential subset of Q̄d.

1. For all functions u ∈ C∞(Q̄d) vanishing in a neighborhood of Qd\G
inequality (14.1.3) is valid with q ≥ p ≥ 1 and

C ≤ c1
[
Dp,l(G,Qd)

]l−n(p−1−q−1)
. (14.2.1)
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2. If for all functions u ∈ C∞(Q̄d) that vanish in a neighborhood of the set
Qd\G inequality (14.1.3) holds, then

C ≥ c2
[
Dp,l(G,Qd)

]l−n(p−1−q−1)
. (14.2.2)

Proof. 1. Assume for the moment that Dp,l(G,Qd) < d. We denote an
arbitrary number in (Dp,l(G,Qd), d] by δ. The definition of the (p, l)-inner
diameter implies that, for any cube Q̄δ, the set e = Qδ\G is a (p, l)-essential
subset, i.e.,

cap
(
Qδ ∩ e, L̊l

p(Q2δ)
)
> γδn−pl. (14.2.3)

(Here and in what follows Qcδ is the open cube with edge length cδ whose
center coincides with that of Qδ and whose sides are parallel to the sides of
Qδ.) In the case Dp,l(G,Qd) = d we put δ = d. Then (14.2.3) is also valid
since, by hypothesis, e is a (p, l)-essential subset of the cube Q̄δ = Q̄d.

According to the first part of Theorem 14.1.2 and inequality (14.2.3), we
have

‖u‖pLq(Qδ) ≤
cδnp/q

cap(Qδ ∩ e, L̊l
p(Q2δ))

u p
p,l,Qδ

≤ cδlp−n(1−p/q) u p
p,l,Qδ

. (14.2.4)

We construct a covering of Qd by cubes Qδ whose multiplicity does not exceed
some number that depends only on n. Next we sum (14.2.4) over all cubes of
the covering. Then

‖u‖pLp(Qd) ≤ cδ
lp

l∑
j=1

δp(j−l)‖∇ju‖pLp(Qd). (14.2.5)

Using a well-known multiplicative inequality, we obtain

‖∇jv‖Lp(Qd) ≤ c‖v‖1−j/l
Lp(Qd)

(
l∑

i=0

di−l‖∇iv‖Lp(Qd)

)j/l

(14.2.6)

(cf. Lemma 1.4.7). Putting v = u− ūQd
in (14.2.6) and applying the Poincaré

inequality
‖u− ūQd

‖Lp(Qd) ≤ cd‖∇u‖Lp(Qd),

we obtain
‖∇ju‖Lp(Qd) ≤ c‖u‖1−j/l

Lp(Qd) u
j/l
p,l,Qd

.

Hence from (14.2.5) with q = p we obtain

1 ≤ c
l∑

j=1

(
δl

u p,l,Qd

‖u‖Lp(Qd)

)pj/l

.



678 14 Integral Inequality for Functions on a Cube

Therefore,
‖u‖Lp(Qd) ≤ cδl u p,l,Qd

, (14.2.7)

and the first part of the theorem follows for q = p. Let q > p. Summing the
inequality

‖u‖pLp(Qδ) ≤ cδ
lp−n(1−p/q)

(
‖∇lu‖pLp(Qd) + δ−pl‖u‖pLp(Qd)

)
over all cubes of the covering {Qδ} and making use of the inequality (

∑
ai)ε ≤∑

aεi , where ai > 0, 0 < ε < 1, we conclude that

‖u‖pLp(Qd) ≤ cδ
lp−n(1−p/q)

(
‖∇lu‖pLp(Qd) + δ−l‖u‖pLp(Qd)

)
.

It remains to apply inequality (14.2.7).
2. Let 0 < δ < Dp,l(G,Qd) and let Q̄δ be a cube having a (p, l)-negligible

intersection with Qd\G. Let η denote a function in C∞(Qδ) that vanishes
near ∂Qδ, is equal to unity on the cube Qδ/2, and satisfies |∇jη| ≤ cδ−j ,
j = 1, 2, . . . . If v is an arbitrary function in C∞(Q̄δ) that vanishes near
Qd\G then the function u = ηv extended by zero on the exterior of Qδ

satisfies (14.1.5) by the hypothesis of the theorem. Therefore

‖v‖Lp(Qδ/2) ≤ C
l∑

j=1

∥∥∇j(ηv)
∥∥
Lp(Qδ)

≤ cC
l∑

j=1

j∑
k=0

δk−j‖∇kv‖Lp(Qδ)

≤ cC
(
v p,l,Qδ

+ δ−l‖v‖Lp(Qδ)

)
.

This and the estimate

‖v‖Lp(Qδ) ≤ c
(
δ‖∇v‖Lp(Qδ) + cδn(p−1−q−1)‖v‖Lq(Qδ/2)

)
yield

‖v‖Lp(Qδ/2) ≤ c
′C
(
v p,l,Qδ

+ δ−l+n(p−1−q−1)‖v‖Lq(Qδ/2)

)
. (14.2.8)

We may assume that 2c′Cδ−l+n(p−1−q−1) < 1 since the reverse inequality is
the required inequality (14.2.3). Then by (14.2.8)

‖v‖Lq(Qδ/2) ≤ 2c′C v p,l,Qδ
,

and (14.2.2) follows from the second part of Theorem 14.1.2 applied to the
cube Qδ. The proof is complete. �

In each of the cases pl > n, p > 1 and l = n, p = 1, Theorem 1 can be
stated in terms of the inner diameter D(G). To be precise, we formulate the
following statement.

Theorem 2. Let G be an arbitrary open subset of Qd, G �= Qd and let the
numbers n, p, and l satisfy either of the conditions pl > n, p > 1 or l = n,
p = 1. Further, let C be the best constant in (14.1.3) with q ∈ [p,∞). Then

C ∼ D(G)l−n(p−1−q−1). (14.2.9)



14.3 Estimates for the Best Constant C in the General Case 679

14.3 Estimates for the Best Constant C in the General
Case

Let C denote an arbitrary linear subset of the space W l
p(Qd). Our goal is the

study of the inequality

‖u‖Lq(Qd) ≤ C
l∑

j=k+1

dj−l‖∇ju‖Lp(Qd), (14.3.1)

where u ∈ C and q, p, and l are the same as in Theorem 14.1.2. The norm on
the right in (14.3.1) can be replaced by an equivalent one retaining only the
summands corresponding to j = l and j = k + 1.

14.3.1 Necessary and Sufficient Condition for Validity of the Basic
Inequality

Let C̄ be the closure of C in the metric of the space V l
p (Qd) and let Pk be the

set of polynomials Π of degree k ≤ l − 1, normalized by

d−n

∫
Qd

|Π|p dx = 1. (14.3.2)

Theorem. The inequality (14.3.1) holds if and only if Pk ∩ C̄ = ∅.

Proof. The necessity of this condition is obvious. We will prove the suffi-
ciency.

If Pk ∩ C̄ = ∅ then in C̄ we can introduce the norm

u C =
l∑

j=k+1

dj−1‖∇ju‖Lp(Qd),

which makes it a Banach space. Let I be the identity mapping from C̄ into
Lp(Qd). Since C̄ ⊂ V l

p (Qd) ⊂ Lq(Qd), we see that I is defined on C̄. We will
show that it is closed. Let |um|C → 0 and ‖um − u‖Lq(Qd) → 0 as m → ∞.
Then there exists a sequence of polynomials {Πm}m≥1 of a degree not higher
than k such that um −Πm → 0 in Lq(Qd). Consequently, u = limΠm in the
space V l

p (Qd) and since Pk ∩ C̄ = ∅ then u = 0. Thus I is closed. Now from
the Banach theorem it follows that E is continuous, that is, (14.3.1) holds.
The theorem is proved. �

Example. Consider the class Cr(E) (r = 0, . . . , l − 1, E is a Borel subset
of Q̄d) of (p, l − j)-refined functions u ∈ V l

p (Qd), p > 1, such that ∇ju = 0
(p, l − j)-quasi-everywhere on E, j = 0, . . . , r.

Since any sequence of (p, l)-refined functions that converges in V l
p(Qd) con-

tains a subsequence that converges (p, l)-quasi-everywhere (cf. Sect. 10.4.4),
it follows that Cr(E) is a closed subset of V l

p (Qd).
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Thus, by the Theorem, inequality (14.3.1) is valid for all u ∈ Cr(E) if and
only if Pk does not contain a polynomial Π such that ∇jΠ = 0 (p, l − j)-
quasi-everywhere on E, j = 0, . . . , r.

14.3.2 Polynomial Capacities of Function Classes

Let Π be a polynomial in Pk and let

cap
(
C, Π, L̊l

p(Q2d)
)

= inf
∫
Q2d

|∇lu|p dx,

where the infimum is taken over all functions u ∈ L̊l
p(Q2d) such that the

restriction of u − Π to Q̄d is contained in a linear subset C of the space
V l
p (Qd).

With C we associate l capacities

CAPk

(
C, L̊l

p(Q2d)
)

= inf
{Π:Π∈Pk }

cap
(
C, Π, L̊l

p(Q2d)
)
,

k = 0, . . . , l − 1. In other words,

CAPk

(
C, L̊l

p(Q2d)
)

= inf
{Π,u}

∫
Q2d

|∇lu|p dx, (14.3.3)

where the infimum is taken over all pairs {Π,u} such that Π ∈ Pk, u|Q̄d
∈ C

and Π − u ∈ L̊l
p(Q2d).

It is clear that CAPk(C, L̊l
p(Q2d)) does not increase as k increases. The

following inequality holds:

CAPk

(
C, L̊l

p(Q2d)
)
≤ cdn−pl. (14.3.4)

In fact, let η ∈ M(Q̄1, Q2) and let ηd(x) = η(x/d). Since 1 ∈ Pk and the
restriction of the function 1−ηd toQd equals zero, the pair {1, ηd} is admissible
for the problem (14.3.3). This implies (14.3.4).

We introduce the norm

‖u‖V l
p(Qd) =

l∑
j=0

dj−l‖∇ju‖Lp(Qd).

The next assertion is similar to Lemma 14.1.2.

Lemma. The capacity CAPk(C, L̊l
p(Qd)) is equivalent to the following ca-

pacity of the class C:
inf ‖Π − u‖p

V l
p(Qd)

, (14.3.5)

where the infimum is taken over all pairs {Π,u} such that Π ∈ Pk, Π − u ∈
V l
p (Qd), u ∈ C.
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Proof. We have

CAPk

(
C, L̊l

p(Q2d)
)
≤
∫
Q2d

∣∣∇l

(
ηd(Π −Au)

)∣∣p dx,

where A is the extension operator in Lemma 14.1.2. Obviously, the right-hand
side does not exceed c‖Π−Au‖p

V l
p(Qd)

. From (14.1.8) it follows that AΠ = Π.
Therefore, using (14.1.8) once more, we obtain

CAPk

(
C, L̊l

p(Q2d)
)
≤ c‖Π − u‖p

V l
p(Qd)

.

Minimizing the right-hand side, we arrive at the required upper bound for
CAPk.

We now prove the lower estimate. Since (Π − u)|Qd
can be extended to a

function in L̊l
p(Q2d), the classes of admissible functions in the definitions of

both capacities under consideration are simultaneously empty or nonempty.
Let Π ∈ Pk, v ∈ L̊l

p(Q2d), (Π − v)|Q̄d
∈ C. Then the capacity (14.3.5) does

not exceed
‖v‖V l

p(Qd) ≤ c‖∇lv‖Lp(Q2d).

The lemma is proved. �

14.3.3 Estimates for the Best Constant C in the Basic Inequality

From Theorem 14.3.1 it follows that (14.3.1) holds if and only if

CAPk

(
C, L̊l

p(Q2d)
)
> 0.

The next theorem yields two-sided estimates for the best constant C in (14.3.1)
expressed in terms of the capacity CAPk(C, L̊l

p(Q2d)).

Theorem. 1. If CAPk(C, L̊l
p(Q2d)) > 0 then, for all u ∈ C, the inequal-

ity (14.3.1) holds with

C ≤ cdn/q
[
CAPk

(
C, L̊l

p(Q2d)
)]−1/p

. (14.3.6)

2. If (14.3.1) holds for all u ∈ C and if

CAPk

(
C, L̊l

p(Q2d)
)
≤ c0dn−pl,

where c0 is a small enough constant that depends only on n, p, l, and k, then

C ≥ cdn/q
[
CAPk

(
C, L̊l

p(Q2d)
)]−1/p

. (14.3.7)

Proof. 1. Let u ∈ C be normalized by

‖u‖Lp(Qd) = dn/p, (14.3.8)
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and let Π be any polynomial in Pk. According to Lemma 14.3.2 we have

[
CAPk

(
C, L̊l

p(Q2d)
)]1/p ≤ c

k∑
i=0

di−l
∥∥∇i(Π − u)

∥∥
Lp(Qd)

+ c
l∑

i=k+1

di−l‖∇iu‖Lp(Qd). (14.3.9)

Hence from the inequality

‖∇iv‖Lp(Qd) ≤ cdl−i‖∇lv‖Lp(Qd) + cd−i‖v‖Lp(Qd),

we obtain that the first sum in (14.3.9) does not exceed

cd−l‖Π − u‖Lp(Qd) + c‖∇lu‖Lp(Qd).

Therefore
[
CAPk

(
C, L̊l

p(Q2d)
)]1/p

≤ cd−l‖Π − u‖Lp(Qd) + c
l∑

i=k+1

di−l‖∇iu‖Lp(Qd). (14.3.10)

For each u ∈ V l
p (Qd) there exists a polynomial π of degree less than k + 1

such that
‖π − u‖Lp(Qd) ≤ c′dk+1‖∇k+1u‖Lp(Qd). (14.3.11)

First suppose that

‖∇k+1u‖Lp(Qd) > (2c′)−1dn/p−k−1.

Then, by (14.3.4) we have

[
CAPk

(
C, L̊l

p(Q2d)
)]1/p ≤ cdk−l+1‖∇k+1u‖Lp(Qd). (14.3.12)

Now let
‖∇k+1u‖Lp(Qd) ≤ (2c′)−1dn/p−k−1.

From (14.3.11) we obtain

‖π − u‖Lp(Qd) ≤ 2−1dn/p = 2−1‖u‖Lp(Qd)

and consequently

2−1dn/p ≤ ‖π‖Lp(Qd) ≤ 3 · 2−1dn/p. (14.3.13)

We put
Π = dn/p‖π‖−1

Lp(Qd)π.
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Then (14.3.13) implies

‖Π − u‖Lp(Qd) ≤ 2
∥∥π − dn/p‖π‖Lp(Qd)u

∥∥
Lp(Qd)

.

Obviously, the right-hand side does not exceed

2‖π − u‖Lp(Qd) + 2‖u‖Lp(Qd)

∣∣dn/p‖π‖Lp(Qd) − 1
∣∣

= 2‖π − u‖Lp(Qd) + 2
∣∣‖π‖Lp(Qd) − ‖u‖Lp(Qd)

∣∣ ≤ 4‖π − u‖Lp(Qd).

Using (14.3.11), we obtain

‖Π − u‖Lp(Qd) ≤ 4c′dk+1‖∇k+1u‖Lp(Qd),

which together with (14.3.10) and (14.3.12) implies the estimate

[
CAPk

(
C, L̊l

p(Q2d)
)]1/p ≤ c

l∑
i=k+1

di−l‖∇iu‖Lp(Qd) (14.3.14)

for all u ∈ C, normalized by (14.3.8).
From the Sobolev embedding theorem and (14.3.4) we obtain

‖u‖Lp(Qd) ≤ cdk+1+n(p−1−q−1)‖∇k+1u‖Lp(Qd) + cdn(q−1−p−1)‖u‖Lp(Qd)

≤ cdk−l+nq−1+1
[
CAPk

(
C, L̊l

p(Q2d)
)]−1/p‖∇k+1u‖Lp(Qd)

+ cdn(q−1−p−1)‖u‖Lp(Qd),

which together with (14.3.14) yields (14.3.1) with the constant C satisfy-
ing (14.3.6).

2. Let ε be an arbitrary positive number, Π ∈ Pk, ψ ∈ L̊l
p(Q2d), (Π −

ψ)|Qd
∈ C and let

∫
Q2d

|∇lψ|p dx ≤ CAPk

(
C, L̊l

p(Q2d)
)

+ εdn−lp.

Since the restriction of ψ −Π to Q̄d is contained in C, by the hypothesis of
the theorem we have

‖ψ −Π‖Lq(Qd) ≤ C
l∑

j=k+1

dj−l‖∇jψ‖Lp(Qd). (14.3.15)

The right-hand side does not exceed

cC‖∇lψ‖Lp(Qd) ≤ cC
(
CAPk

(
C, L̊l

p(Q2d)
)

+ εdn−lp
)1/p

because ψ ∈ L̊l
p(Q2d). Similarly,
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‖ψ‖Lq(Qd) ≤ cdl+n(q−1−p−1)‖∇lψ‖Lp(Q2d) ≤ c(c0 + ε)1/pdn/p.

Thus
‖ψ −Π‖Lq(Qd) ≥ ‖Π‖Lq(Qd) − c(c0 + ε)1/pdn/q

and by (14.3.15)

‖ψ‖Lq(Qd) ≤ c(c0+ε)1/pdn/q+cC
(
CAPk

(
C, L̊l

p(Q2d)
)
+εdn−lp

)1/p
. (14.3.16)

Now we note that

‖Π‖Lp(Qd) ≤ cdn(p−1−q−1)‖Π‖Lq(Qd).

The preceding estimate follows from the Hölder inequality for p ≤ q. In the
case p > q it results as follows:

‖Π‖Lp(Qd) ≤ c
(
dk+1‖∇k+1Π‖Lp(Qd) + dn(p−1−q−1)‖Π‖Lq(Qd)

)
= cdn(p−1−q−1)‖Π‖Lq(Qd).

Since Π ∈ Pk, we have ‖Π‖Lp(Qd) = dn/p. Therefore ‖Π‖Lq(Qd) ≥ cdn/q.
Using the smallness of the constant c0, we arrive at (14.3.7). The theorem is
proved. �

14.3.4 Class C0(e) and Capacity Capk(e, L̊l
p(Q2d))

The rest of the section deals with the class

C0(e) =
{
u ∈ C∞(Q̄d) : dist(suppu, e) > 0

}
, (14.3.17)

where e is compact subset of the cube Q̄d.
We introduce the following set function:

Capk

(
e, L̊l

p(Q2d)
)

= inf
Π∈Pk

inf
{f}

∫
Q2d

|∇lf |p dx, (14.3.18)

where p ≥ 1 and {f} is a collection of functions in L̊l
p(Q2d) such that f = Π

in a neighborhood of e where Π ∈ Pk.
Since P0 = {±1}, we have

Cap0

(
e, L̊l

p(Q2d)
)

= Cap
(
e, L̊l

p(Q2d)
)
.

We show that the capacities Capk(e, L̊l
p(Q2d)) and CAPk(C0(e), L̊l

p(Q2d)) are
equivalent.

Lemma. The following inequalities are valid:

CAPk

(
C0(e), L̊l

p(Q2d)
)
≤ Capk

(
e, L̊l

p(Q2d)
)

≤ cCAPk

(
C0(e), L̊l

p(Q2d)
)
.
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Proof. The upper estimate for the CAPk inequality is an obvious corollary
of the definitions of the two capacities.

We shall prove the lower estimate. Let Π ∈ Pk, u ∈ C0(e), let A be the
extension operator in Lemma 14.1.2, and let ηd be the function used in the
proof of inequality (14.3.4). From property (ii) of the operator A it follows
that ηd(Π − Au) is contained in the class {f} introduced in the definition of
Capk(e, L̊l

p(Q2d)). Therefore

Capk

(
e, L̊l

p(Q2d)
)
≤
∥∥ηd(Π −Au)

∥∥p
Ll

p(Q2d)
≤ c‖Π −Au‖p

V l
p(Q2d)

.

Taking into account the equality AΠ = Π and the estimate (14.1.8) for the
function v = Π − u we complete the proof by reference to Lemma 14.3.2. �

From Theorem 14.3.1, applied to the class C0(e), and from the preced-
ing lemma there immediately follows an assertion that coincides with Theo-
rem 14.1.2 for k = 0.

Corollary. 1. If Capk(e, L̊l
p(Q2d)) > 0, then, for all u ∈ C0(e), the in-

equality (14.3.1) holds and

C ≤ cdn/p
[
Capk

(
e, L̊l

p(Q2d)
)]−1/p

.

2. If (14.3.1) holds for all u ∈ C0(e) and if

Capk

(
e, L̊l

p(Q2d)
)
≤ c0dn−pl,

where c0 is small enough constant that depends only on n, p, and l, then

C ≥ cdn/q
[
Capk

(
e, L̊l

p(Q2d)
)]−1/p

.

14.3.5 Lower Bound for Capk

We derive a lower bound for the capacity Capk(e, L̊l
p(Q2d)) by the capacity

Cap(e, L̊l−k
p (Q2d)).

Proposition. The following inequality holds:

Capk

(
e, L̊l

p(Q2d)
)
≥ cd−kp Cap

(
e, L̊l−k

p (Q2d)
)
. (14.3.19)

Proof. It suffices to consider the case d = 1. From the inequality

‖∇lv‖Lp(Q2) ≥ c‖∇l−kv‖Lp(Q2), v ∈ L̊l
p(Q2),

we obtain
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Cap
(
e, L̊l

p(Q2)
)
≥ cCap

(
e, L̊l−k

p (Q2)
)
. (14.3.20)

Let Π ∈ Pk and let f be a function in L̊l
p(Q2d) such that f = Π in a

neighborhood of e. Obviously, the difference ∂Π/∂xi−∂f/∂xi is contained in
C0(e) for all i = 1, . . . , n. For some i, let

‖∂Π/∂xi‖Lp(Q2) ≥ ε, (14.3.21)

where ε is a positive number (that depends only on k, l, or n) which will be
specified later. Then

‖∇lf‖pLp(Q2)
≥
∥∥∥∥∇l−1

∂f

∂xi

∥∥∥∥
p

Lp(Q2)

≥ εpCapk−1

(
e, L̊l−1

p (Q2)
)
. (14.3.22)

If for all i = 1, . . . , n the inequality (14.3.21) fails, the condition ‖Π‖Lp(Q1) = 1
implies ∣∣∣∣Π(x)

∣∣− 1
∣∣ ≤ cε, x ∈ Q2.

We can take ε = (2c)−1. Since Π = f on e, we have |f(x)| ≥ 1
2 , x ∈ e, and

hence
‖∇lf‖pLp(Q2)

≥ 2−p Cap
(
e, L̊l

p(Q2)
)
.

The preceding result and (14.3.22) yield

Capk

(
e, L̊l

p(Q2)
)
≥ cmin

{
Capk−1

(
e, L̊l−1

p (Q2)
)
,Cap

(
e, L̊l

p(Q2)
)}
.

Applying (14.3.20), we complete the proof. �

We present an example of a set for which

Cap1

(
e, L̊2

2(Q2)
)

= 0 and Cap
(
e, L̊2

2(Q2)
)
> 0.

Example. Let n = 3, p = 2, l = 2, and let e be the center of the cube
Q1 = {x : |xi| < 1

2}. Since by the Sobolev embedding theorem

∣∣u(e)∣∣2 ≤ c
∫
Q2

|∇2u|2 dx

for all u ∈ D(Q2), it follows that Cap(e, L̊2
2(Q2)) ≥ c−1 > 0.

We show that Cap1(e, L̊2
2(Q2)) = 0. Let Π = 2

√
3x. Obviously, Π ∈ P1.

Let ηε denote a function in M(Q̄ε, Q2ε) such that |∇jηε| ≤ cε−j . The function
Πηε coincides with Π in a neighborhood of e. Hence

Cap1

(
e, L̊2

2(Q2)
)
≤
∫
Q2

∣∣∇2(Πηε)
∣∣2 dx.

On the other hand, the last integral is O(ε). Thus Cap1(e, L̊2
2(Q2)) = 0.
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Remark. In connection with the previous example consider the quadratic
forms

S1(u, u) =
∫
Q1

[
3∑

i,j=1

(
∂2u

∂xi∂xj

)2

+
3∑

i,j=1

(
∂u

∂xi

)2
]

dx,

S2(u, u) =
∫
Q1

3∑
i,j=1

(
∂2u

∂xi∂xj

)2

dx,

defined on functions u ∈ C∞(Q̄1) that vanish near the center of the cube
Q1. The forms generate the operators Δ2 − Δ and Δ2 with the Neumann
boundary data on ∂Q1 and with the complementary condition u = 0 at the
point e. Corollary 14.3.4 and the above example imply that the first operator
is positive definite and that the second is not.

In general, for p = 2, the basic results of the present section can be refor-
mulated as necessary and sufficient conditions for positive definiteness and as
two-sided estimates for the first eigenvalue of the elliptic operator generated
by the quadratic form S(u, u). This form is given on a linear subset C of the
space V l

2 (Q1) and satisfies the “coerciveness” condition

c1

l∑
j=k+1

‖∇ju‖2
L2(Q1)

≤ S(u, u) ≤ c2
l∑

j=k+1

‖∇ju‖2
L2(Q1)

for all u ∈ C.

14.3.6 Estimates for the Best Constant in the Case of Small
(p, l)-Inner Diameter

Here we show that the best constant in (14.3.1) (for q ≥ p ≥ 1 and C = C0(e))
is equivalent to some power of the (p, l)-inner diameter of Q̄d\e provided this
diameter is small.

Lemma. Let G be an open subset of the cube Qd such that

Dp,l(G,Qd) ≤ c0d, (14.3.23)

where c0 is a small enough constant that depends only on n, p, and l. Then, for
all functions u ∈ C∞(Q̄d) vanishing in a neighborhood of Q̄d\G, the inequality

‖∇ju‖Lp(Qd) ≤ c
[
Dp,l(G,Qd)

]l−j‖∇lu‖Lp(Qd) (14.3.24)

holds, where j = 0, 1, . . . , l − 1.

Proof. It suffices to assume that d = 1 and l > 1. We put D = Dp,l(G,Q1).
Since δ < 1, it follows that Qd\G /∈ N (Q1). Therefore, by Theorems 14.2.3/1
and 14.2.3/2, we have
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‖u‖Lp(Q1) ≤ cDl
l∑

j=1

‖∇ju‖Lp(Q1).

Hence from the inequality

‖∇ju‖Lp(Q1) ≤ c
(
‖∇lu‖Lp(Q1) + ‖u‖Lp(Q1)

)
,

we obtain that

‖u‖Lp(Q1) ≤ cDl
(
‖∇lu‖Lp(Q1) + ‖u‖Lp(Q1)

)
.

Thus, (14.3.24) follows for j = 0.
To obtain the estimate for ‖∇ju‖Lp(Q1) with j ≥ 1 we can use the inequal-

ity
‖∇ju‖Lp(Q1) ≤ c

(
‖∇lu‖Lp(Q1) + ‖u‖Lp(Q1)

)j/l‖u‖(l−j)/l
Lp(Q1)

.

The lemma is proved. �

Theorem. Let q be the same number as in Theorem 14.1.2 and let con-
dition (14.3.23) hold. Then for all functions u ∈ C∞(Q̄d) that vanish in a
neighborhood of Q̄d\G the inequality

‖u‖Lq(Qd) ≤ C
l∑

j=k+1

dj−1‖∇ju‖Lp(Qd), (14.3.25)

where k = 0, 1, . . . , l − 1 holds. The best constant in (14.3.25) satisfies the
inequalities

c1
[
Dp,l(G,Qd)

]l−n(p−1−q−1) ≤ C ≤ c2
[
Dp,l(G,Qd)

]l−n(p−1−q−1)
. (14.3.26)

(In the case n < pl, p > 1 or n = l, p = 1 the value Dp,l(G,Qd) can be
replaced by inner diameter D(G,Qd) in (14.3.25) and (14.3.26).)

Proof. The right estimate in (14.3.26) follows from (14.2.1) and the pre-
vious lemma, and the left estimate is contained in the second part of Theo-
rem 14.2.3/1 and in Theorem 14.2.3/2. �

Remark. The smallness of the (p, l)-inner diameter is crucial for the validity
of the Theorem. In fact, let G be the cube Q1 ⊂ R

3 with center excluded.
Then d = 1, D(G) = 1

2 , whereas, according to Remark 14.3.5, the inequality

‖u‖L2(Q1) ≤ C‖∇2u‖L2(Q1) (14.3.27)

is not true. (This can be seen directly by insertion of the function u(x) =
x1ζ(x/ε), where ε > 0, ζ = 0 on B1(0), ζ = 1 outside B2(0) into (14.3.27).)



14.3 Estimates for the Best Constant C in the General Case 689

14.3.7 A Logarithmic Sobolev Inequality with Application to the
Uniqueness Theorem for Analytic Functions in the Class
L1

p(U)

From the inequality (14.1.3) we can deduce an estimate for the integral of the
logarithm of the modulus of a function in L1

p that characterizes the smallness
of the set of zeros of this function that suffices for this integral to be finite
(see Maz’ya and Havin [569]).

Let E be Borel set in R
n−1 = {x = (x′, xn) ∈ R

n : xn = 0} and let {B}
be a collection of n-dimensional open balls with centers in R

n−1. We denote
the concentric ball with doubled radius by 2B. Let

s(B) = mn−1

(
R

n−1 ∩ B
)
,

c(E ∩ B) = cap
(
E ∩ B, W̊ 1

2 (2B)
)
,

S =
∑

{B}
s(B).

We denote the number of different balls B that contain a point x by χ.

Lemma. Let ϕ be a (p, l)-refined function in the class L1
p(
⋃

B) that van-
ishes on E ∩G. Then

1
S

∫
∪(B∩Rn−1)

log
∣∣ϕ(x′)

∣∣χ(x′) dx′

≤ 1
pS

∑
{B}

s(B) log
s(B)

c(E ∩ B)

+
1
p

log
[
c

S

∫
∪B

|∇ϕ|pχdx
]
, (14.3.28)

where c = c(n, p), p ≥ 1.

Proof. If (X , Σ, μ) is a measure space with finite μ and f is a nonnegative
function defined on X and measurable with respect to the σ-algebra Σ , then
for any p > 0

exp
(

1
μ(X )

∫
X

log f dμ
)
≤
(

1
μ(X )

∫
X

fp dμ
)1/p

. (14.3.29)

Therefore
1

s(B)

∫
B∩Rn−1

log |ϕ| dx′ ≤ 1
p

log
(

1
s(B)

∫
B∩Rn−1

|ϕ|p dx′
)
,

where the ball B is arbitrary. Now we note that, for p ≥ 1,

1
s(B)

∫
B∩Rn−1

|ϕ|p dx′

≤ c
(

1
mn(B)

∫
B

|ϕ|p dx+
1

cap(B, W̊ 1
p (2B))

∫
B

|∇ϕ|p dx
)
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and use (14.1.3) and Remark 14.1.3/3. We have

1
mn(B)

∫
B

|ϕ|p dx ≤ c

c(E ∩ B)

∫
B

|∇ϕ|p dx.

Then
1

s(B)

∫
B∩Rn−1

|ϕ|p dx′ ≤ c

c(E ∩ B)

∫
B

|∇ϕ|p dx

and consequently,∫
⋃

(B∩Rn−1)

log |ϕ|χdx′

=
∑

{B}

∫
B∩Rn−1

log |ϕ| dx′

≤ 1
p

∑
{B}

[
s(B) log

S(B)
c(E ∩ B)

]
+

1
p

∑
{B}

[
s(B) log

(
c

s(B)

∫
B

|∇ϕ|p dx
)]
.

Applying (14.3.29) to the last sum we arrive at the required estimate. �

By virtue of (14.3.28) we can prove the uniqueness theorem for analytic
functions of the class Ll

p in the unit disk U (see the paper by Havin and the
author [569], where this problem is considered in detail and where a bibliog-
raphy is given).

Let A be the set of all functions analytic in the disk U and let X ∈ A. We
say that a set E, contained in the interval (0, 2π), is the uniqueness set for
X if each function f ∈ X with limr→1−0 f(reiθ) = 0 for any θ ∈ E vanishes
identically on U .

Let E be a Borel set in the interval (0, 2π) and let {δ} be the set of
pairwise, disjoint open intervals δ ⊂ (0, 2π). Denote the length of δ by l(δ),
the disk with diameter δ by B, and the concentric disk with doubled radius
by 2B. We also use the notation c(E ∩ δ) = cap(E ∩ δ, W̊ 1

p (2B)).
Let E satisfy the condition

∑
l(δ) log

l(δ)
c(E ∩ δ) = −∞ (14.3.30)

and let an analytic function f ∈ L1
p(U) satisfy limr→1−0 f(reiθ) = 0 for any

θ ∈ E.
From (14.3.28) it follows that∫ ∞

0

log
(

lim
r→1−0

∣∣f(reiθ)
∣∣) dθ = −∞

(see Havin and Maz’ya [569]) which together with the well-known uniqueness
theorem for analytic functions of the Hardy class H1 shows that f(z) = 0 for
all z ∈ U . Thus E is the uniqueness set for L1

p(U).
Since c(E ∩ δ) ∼ 1 for p > 2, then in this case we can omit c(E ∩ δ)

in (14.3.30). For p < 2 we can replace cap(E ∩ δ,W 1
p (R2)) by cap(E ∩ δ).
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14.4 Comments to Chap. 14

Section 14.1. Theorem 14.1.2 is due to the author [533] for p = 2 (see
also Maz’ya [544] for the case p ≥ 1). Similar results were rediscovered by
Donoghue [240], Polking [665], and R.A. Adams [23].

Inequality (14.1.17) and the particular case (14.1.15) of it, which refines
the first part of Theorem 14.1.2, was established by Hedberg [368] for p > 1
who used a different method for which the restriction p �= 1 is important. In
10.1.3 these results follow from Theorem 14.1.3, which was implicitly proved
in the author’s paper [544]. We note that our proof is also valid for the case
p = 1.

Inequality (14.1.17) plays an important role in the aforementioned paper
by Hedberg where the well-known problem of spectral synthesis in Sobolev
spaces is solved (see [369] for the history of this problem). The basic result of
Hedberg runs as follows.

Let u ∈ W l
p(R

n), p > 1, and let m be a positive integer. Let K be a
closed subset of R

n and Dαu|K = 0 for all α with 0 ≤ |α| ≤ l − 1. Then
u ∈ W̊ l

p(Rn\K), i.e., there exist functions um ∈ C∞
0 (Rn\K) such that

lim
m→∞

‖u− um‖W l
p(Rn) = 0.

An obvious corollary to this theorem is the following uniqueness theorem
for the Dirichlet problem (see Hedberg [368]).

Let Ω ⊂ R
n be an open bounded set in R

n and let u be a solution of
Δlu = 0 in Ω in the space Wm

2 (Rn) satisfying Dαu|∂Ω = 0, 0 ≤ |α| ≤ l − 1.
Then u = 0 in Ω.

The existence of the spectral synthesis in the Sobolev space W l
p(Rn) was

proved by a different method by Netrusov [634] who also solved the problem
for a wide class of function spaces including Besov and Lizorkin-Triebel spaces
[632]. The above-mentioned results by Netrusov with complete proofs can be
found in the books by D.R. Adams and Hedberg [15] and by Hedberg and
Netrusov [371].

The following characterization of the space W̊ l
p(Ω) was given by Swanson

and Ziemer [736].

Theorem. Let l be a positive integer, let 1 < p <∞, and let f ∈ W̊ l
p(Ω).

If Ω ⊂ R
n is an arbitrary open set, then f ∈ W̊ l

p(Ω) if and only if

lim
r→0

1
rn

∫
B(x,r)∩Ω

∣∣∇kf(y)
∣∣ dy = 0

for (l − k)-quasi-every x ∈ R
n\Ω and for all integer k, 0 ≤ k ≤ l − 1.

Section 14.2. A set function similar to λl2,2 was introduced and applied
to the investigation of the uniqueness conditions for the solution of the first
boundary value problem by Kondratiev [448, 449]. In these papers it is called
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the capacity Cn
l,d. The connection of λlp,q with the (p, l)-inner diameter was

studied by the author [546].
Section 14.3. The results of this section (except Proposition 14.3.5 and

those of Sect. 10.3.6) are borrowed from the author’s paper [544].
Proposition 14.3.5 was published in the author’s book [555]. This propo-

sition together with Corollary 14.3.4 shows that the constant C in Corol-
lary 14.3.4 satisfies the inequality

C ≤ cdk+n/q
[
Cap

(
e, L̊l−k

p (Q2d)
)]−1/p

,

which was obtained earlier by a direct method in the paper by Hedberg [367]
(compare with the stronger inequality (14.1.17) that was discussed in the
comments to Sect. 14.1).

In connection with the content of the present chapter we mention the paper
by Meyers [598] in which the inequality

‖u− Lu‖Wk
p (Ω) ≤ C‖∇k+1u‖W l−k−1

p (Ω), u ∈W l
p(Ω),

where L is a projection mapping W l
p(Ω) → Pk and Ω is a Lipschitz domain,

is studied.
A certain family of “polynomial (p, l)-capacities” similar to cap(C0(e), Π,

L̊l
p(Q2d)) was used by Bagby [61] in the study of approximation in Lp by solu-

tions of elliptic equations. Nyström obtained a lower estimate for CAPl−1 by
the Bessel (p, l)-capacity assuming that the set e preserves Markov’s inequality
[642].

We conclude this chapter by mentioning the problem of characterization
of sets of uniqueness for Sobolev spaces, by considering the particular case
of W l

p, p > 1. By the set of uniqueness we mean a set E ⊂ R
n enjoying the

following property. From the condition u ∈ W l
p, u(x) = 0 for all x ∈ R

n\E,
outside a suitable subset of zero (p, l)-capacity follows that u = 0.

A description of the set of uniqueness in W l
p in the Theorem below was

given by Hedberg [366]. The first result of this kind, for the space W 1/2
2 on

the circle, was obtained in 1950 by Ahlfors and Beurling [31].

Theorem. Let E be a Borel subset of R
n and let cl,p stand for the capacity

generated by the space W l
p. The following conditions are equivalent :

(i) E is the uniqueness set for W l
p;

(ii) cl,p(G\E) = cl,p(G) for each open set G;
(iii) for almost all x

lim sup
�→0

�−ncp,l(B�\E) > 0.

If lp > n then E is a uniqueness set for W l
p if and only if it does not have

inner points.



15

Embedding of the Space L̊l
p(Ω) into Other

Function Spaces

15.1 Preliminaries

If n > pl, p > 1, or n ≥ l, p = 1, then by Sobolev’s theorem the mapping
L̊l

p(Ω) � u → u ∈ Lq(Ω), where q = pn/(n − pl), is continuous. We can
easily show that this operator is one to one. In fact, let zero be the image
of u ∈ L̊l

p(Ω) in Lq(Ω) and let a sequence {um}m≥1 of functions in D(Ω)
converge to u in Ll

p(Ω). Then for all multi-indices α with |α| = l and for all
ϕ ∈ D(Ω)

lim
m→∞

∫
Ω

ϕDαum dx = lim
m→∞

(−1)l
∫
Ω

umD
αϕdx = 0.

Since the sequence Dαum converges in Lp(Ω), it tends to zero.
The above considerations show that each element of L̊l

p(Ω) (for n > p l,
p > 1 or n ≥ l, p = 1) can be identified with a function in Lq(Ω) and the
identity mapping

L̊l
p(Ω) � u→ u ∈ Lq(Ω)

is one to one, linear, and continuous (i.e., it is a topological embedding).
If n ≤ lp, p > 1 or n < l, p = 1 and if

‖u‖Lq(Ω) ≤ C‖∇lu‖Lp(Ω)

for some q > 0 with a constant C independent of u ∈ D(Ω), then we arrive
at the same conclusion. However, for these values of n, l, and p the above in-
equality for the norms does not hold for all domains and moreover, in general,
L̊l

p(Ω) is not necessarily embedded into the space of distributions D ′(Ω).
The theorems of the present chapter contain necessary and sufficient con-

ditions for the topological embedding of L̊l
p(Ω) into D ′(Ω), Lq(Ω, loc), and

Lq(Ω) (Sects. 15.1–15.5). In Sect. 15.6 we obtain criteria for the compactness
of the embedding L̊l

p(Ω) ⊂ Lq(Ω). In Sect. 15.7 results of the previous sec-
tions are applied to the study of the first boundary value problem for linear
elliptic equations of order 2 l, and in Sect. 15.8 we consider applications to the
Dirichlet and Neumann problems for quasilinear elliptic equations.

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 15, c© Springer-Verlag Berlin Heidelberg 2011
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15.2 Embedding L̊l
p(Ω) ⊂ D ′(Ω)

The aim of the present section is to prove the following assertion.

Theorem. The space L̊l
p(Ω) (1 ≤ p < ∞) is topologically embedded into

D ′(Ω) if and only if any one of the following conditions holds:
1. n > pl, p > 1 or n ≥ l, p = 1;
2. CΩ is not (p, n/p)-polar if n = p l, p > 1;
3. CΩ is not empty if n < p l and n/p is not integer ;
4. CΩ is not (p, n/p)-polar or it is not contained in an (n−1)-dimensional

hyperplane if n < pl and n/p is integer.

Taking into account Theorem 13.2/2, we may read “the set of zero inner
(p, n/p)-capacity” for “the (p, n/p)-polar set” in the last theorem.

15.2.1 Auxiliary Assertions

Lemma 1. The space L̊l
p(Ω) is topologically embedded into D ′(Ω) if and only

if, for any ψ ∈ D(Ω), the functional

D(Ω) � u→
∫
Ω

uψ dx ≡ (u, ψ) ∈ D ′(Ω) (15.2.1)

is continuous with respect to the norm ‖∇lu‖Lp(Ω).

Proof. 1. If L̊l
p ⊂ D ′(Ω), then any sequence um ∈ D ′(Ω) that is a Cauchy

sequence in the norm ‖∇lu‖Lp(Ω) converges in D ′(Ω). Consequently, the func-
tional (u, ψ) is continuous.

2. Let the functional (u, ψ) be continuous in the norm ‖∇lu‖Lp(Ω). Then
the mapping (15.2.1) can be continuously extended to L̊l

p(Ω). It remains to
show that the resulting mapping is one to one. Let um be a Cauchy sequence
in L̊l

p(Ω) that converges to zero in D ′(Ω). Obviously, for all ϕ ∈ D(Ω) and
all multi-indices α with |α| = l we have

∫
Ω

ϕDαum dx = (−1)l
∫
Ω

umD
αϕdx→ 0.

Since the sequence Dαum converges in Lp(Ω), it tends to zero. �

The just-proved lemma can be reformulated as follows.

Corollary. The space L̊l
p(Ω) is embedded into D ′(Ω) if and only if
∣∣(u, ψ)

∣∣ ≤ K‖∇lu‖Lp(Rn) (15.2.2)

for any ψ ∈ D(Ω) and for all u ∈ D(Ω).

Lemma 2. The space L̊l
p is embedded into D ′(Ω) if and only if for any

ψ ∈ D(Ω) there exists a distribution T ∈ D ′(Ω) supported in CΩ such that
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∣∣(u, ψ − T )
∣∣ ≤ K‖∇lu‖Lp(Rn), u ∈ D(Rn). (15.2.3)

Proof. Necessity. Let L̊l
p(Ω) ⊂ D ′(Ω). Then by the previous corollary

inequality (15.2.2) is valid for all u ∈ D(Ω). The space D(Ω) can be identified
with the subspace D(Rn) by zero extension to CΩ. By the Hahn–Banach
theorem, functional (15.2.1) can be extended to a functional u → (u, s) on
D(Rn) that is continuous with respect to the norm ‖∇lu‖Lp(Rn), i.e., to a
functional satisfying ∣∣(u, s)∣∣ ≤ K‖∇lu‖Lp(Rn), (15.2.4)

where K does not depend on u. Since s = ψ on Ω, the support of the distri-
bution T = ψ− s is contained in CΩ. The estimates (15.2.3) and (15.2.4) are
equivalent.

Sufficiency. Suppose (15.2.3) is valid. Then the functional D(Rn) � u →
(u, s) with s = ψ − T is continuous with respect to the norm ‖∇lu‖Lp(Rn)

on D(Rn) and hence on D(Ω) where it coincides with (15.2.1). It remains to
refer to the Corollary. �

Lemma 3. Let n ≤ p l for p > 1 or n < l for p = 1. If for any ψ ∈ D(Ω)
there exists a distribution T ∈ W−l

p′ (Rn) with compact support in CΩ such
that (

xβ , ψ − T
)

= 0 (15.2.5)

for all multi-indices β with |β| ≤ k = [l − n/p], then the space L̊l
p(Ω) is

embedded into D ′(Ω).

Proof. Let B� be the ball {x : |x| < �} containing the supports of ψ and T .
We show that (15.2.3) is valid for all u ∈ D(Rn). Indeed, for any polynomial
P of a degree not higher than k we have

∣∣(u, ψ − T )
∣∣ = ∣∣(u− P, ψ − T )

∣∣ = ∣∣((u− P )η, ψ − T
)∣∣,

where η ∈ D(B2�), η = 1 in B�. Let K = ‖ψ − T‖W −l
p′ (Rn). Then

∣∣(u, ψ − T )
∣∣ ≤ K∥∥(u− P )η

∥∥
W l

p(Rn)
≤ C

(
‖∇lu‖Lp(Rn) + ‖u− P‖Lp(B2�)

)
.

Applying the inequality

inf
Pk

‖u− P‖Lp(B2�) ≤ C‖∇k+1u‖Lp(B2�),

where Pk is the set of all polynomials of a degree not higher than k, as well
as the inequalities

‖∇k+1u‖Lp(B2�) ≤ C‖∇k+1u‖Lq(B2�) ≤ c‖∇lu‖Lp(Rn),

where q = pn[n− p(l− k− 1)]−1, we arrive at (15.2.3). The lemma is proved.
�
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15.2.2 Case Ω = R
n

Lemma. Let n ≤ lp for p > 1 or n < l for p = 1 and let α be a multi-index
of order |α| ≤ 1− n/p. Then there exists a sequence of functions uν ∈ D(Rn)
such that uν → xα in D ′(Rn) and uν → 0 in L̊l

p(R
n).

Proof. Let η be an infinitely differentiable function on (0,∞) that is equal
to unity in a neighborhood of [0, 1] and to zero in a neighborhood of [2,∞)
and let |α| < l − n/p. On the one hand, clearly, the sequence

uν(x) = xαη
(
ν−1|x|

)

converges to xα in D ′(Ω). On the other hand,

‖∇luν‖Lp(Rn) ≤ const νn/p+|α|−l ν→∞−−−−→ 0.

Let |α| = l − n/p. We put

vν(x) =
1

log ν
log

ν2

|x|

for x ∈ Bν2\Bν = {x : ν2 > |x| ≥ ν} (ν > 2). By ϕ(t) we denote a function
in C∞[0, 1] equal to zero near t = 0 and to unity near t = 1. Further, let
wν(x) = ϕ[vν(x)] for x ∈ Bν2\Bν , wν(x) = 1 in Bν and wν(x) = 0 outside
Bν2 . On the one hand, it is clear that uν(x) = xαwν(x) converges to xα in
D ′(Rn). On the other hand, since

∣∣∇jwν(x)
∣∣ ≤ const(log ν)−1|x|−j

for j > 0, we have

‖∇luν‖Lp(Rn) ≤ const(log ν)−1

(∫
Bν2 \Bν

|x|(|α|−l)p dx
)1/p

= const(log ν)1/p−1 ν→∞−−−−→ 0.

�
Theorem. The space L̊l

p(Rn) is embedded into D ′(Rn) if and only if either
n > lp, p > 1, or n ≥ l, p = 1.

The necessity follows immediately from the Lemma and the sufficiency
results from the estimate

‖u‖Lpn/(n−lp)(Ω) ≤ c(n, l, p)‖∇lu‖Lp(Ω)

and the proof of the one-to-one correspondence presented in Sect. 15.1. �

Corollary. The space L̊l
p(Ω) is embedded into D ′(Ω) for any open set Ω

if and only if n > lp, p > 1 or n ≥ l, p = 1.
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Proof. The necessity was proved in the preceding theorem. Extending any
u ∈ D(Ω) by zero to CΩ, we obtain the embedding D(Ω) ⊂ D(Rn) and hence
the embedding D ′(Rn) ⊂ D ′(Ω). Therefore,

L̊l
p(Ω) ⊂ L̊l

p(R
n) ⊂ D ′(Rn) ⊂ D ′(Ω).

Here and henceforth ⊂ means a topological embedding. �

15.2.3 Case n = p l, p > 1

Lemma. If a closed set E is not a (p, l)-polar set, then there exists a distri-
bution T ∈W−l

p′ (Rn) with compact support in E such that (1, T ) = 1.

Proof. Since E is not (p, l)-polar, there exists a distribution S ∈W−l
p′ (Rn),

S �= 0 with support in E. Let the function T = ϕS satisfy (ϕ, S) = 1.
Obviously, the distribution T = ϕS satisfies the requirements of the lemma.

�

Theorem. Let n = lp, p > 1. In order that L̊l
p(Ω) ⊂ D ′(Ω) it is necessary

and sufficient that CΩ is not a (p, n/p)-polar set.

Proof. Necessity. From Lemma 15.2.2 it follows that, if the function ψ ∈
D(Ω) with (1, ψ) �= 0 is arbitrary, then the inequality

∣∣(u, ψ)
∣∣ ≤ C‖∇lu‖Lp(Rn)

cannot be valid for all u ∈ D(Rn). Since L̊l
p(Ω) ⊂ D ′(Ω), there exists a

distribution T ∈ D ′(Rn) such that supp T ⊂ CΩ and
∣∣(u, ψ − T )

∣∣ ≤ c‖∇lu‖Lp(Rn)

for all u ∈ D(Rn) (see Lemma 15.2.1/2). Obviously, T �= 0. Moreover,
∣∣(u, T )

∣∣ ≤ c‖∇lu‖Lp(Rn) +
∣∣(u, ψ)

∣∣ ≤ c‖u‖W l
p(Rn),

i.e., T ∈W−l
p′ (Rn). Thus CΩ is not a (p, n/p)-polar set.

Sufficiency. Since CΩ is not a (p, n/p)-polar set, there exists a distribu-
tion T0 ∈ W−l

p′ (Rn) with compact support in CΩ such that (1, T0) = 1. Let
ψ ∈ D(Ω). We put T = (ψ, 1)T0. Since (1, ψ − T ) = 0, then, according to
Lemma 15.2.1/3 (where k = 0), L̊l

p(Ω) ⊂ D ′(Ω). The theorem is proved. �

15.2.4 Case n < p l and Noninteger n/p

Theorem. If n < pl and if n/p is noninteger then the condition CΩ �= ∅ is
necessary and sufficient for the embedding L̊l

p(Ω) ⊂ D(Ω).
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Proof. Necessity. If CΩ = ∅, then by Theorem 15.2.2 the space L̊l
p(Ω) is

not embedded into D ′(Ω).
Sufficiency. Let CΩ �= ∅. We may assume 0 ∈ CΩ. We put

T =
∑

|α|≤k

(−1)α
(ψ, xα)
α!

Dαδ(x),

where δ is the Dirac delta-function, D is the usual gradient, k = [l − n/p],
and ψ ∈ D(Ω). Since k < l − n/p, we have Dαδ ∈ W−l

p′ (Rn) for |α| ≤ k and
T ∈ W−l

p′ (Rn). Besides, obviously, (xβ , ψ − T ) = 0 for |β| ≤ k. It remains to
make use of Lemma 15.2.1/3. The theorem is proved. �

15.2.5 Case n < pl, 1 < p < ∞, and Integer n/p

Theorem. Let n/p be an integer, n < pl, 1 < p < ∞. The space L̊l
p(Ω) is

embedded into D ′(Ω) if and only if CΩ is not a (p, n/p)-polar set and is not
contained in a (n− 1)-dimensional hyperplane.

Proof. We put k = l − n/p.
Sufficiency. (a) Suppose the CΩ is not a (p, n/p)-polar set. Then by

Lemma 15.2.3 there exists a distribution T0 ∈ W k−l
p′ (Rn) with compact sup-

port in CΩ such that (1, T0) = 1. We put

T =
∑

|α|≤k

aα(−1)|α|DαT0.

Obviously, T is a distribution in W−l
p′ (Rn) with compact support in CΩ.

It remains to show that given any ψ ∈ D(Ω) we can find numbers aα so
that (15.2.5) holds for all multi-indices β with |β| ≤ k. In other words, the
linear algebraic system

∑
|α|≤k

aα
(
DαT0, x

β
)

=
(
ψ, xβ

)
, |β| ≤ k,

must be solvable. Since (DγT0, 1) = 0 for |γ| > 0, this system can be rewritten
in the form ∑

α≤β

aα
β!

(β − α)!
(
T0, x

β−α
)

=
(
ψ, xβ

)
. (15.2.6)

The matrix of system (15.2.6) is triangular with nonzero elements on the main
diagonal (it consists of the numbers β!(T0, 1) = β!). Thus (15.2.6) is solvable.

(b) Suppose CΩ is not in an (n−1)-dimensional hyperplane. Suppose also
that the points 0, a1, . . . , an are situated in CΩ and are affinely independent.
Further, let ψ ∈ D(Ω). We introduce the distribution
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T = P0(−i∇)δ(x) +
n∑

j=1

Pj(−i∇)δ(x− aj),

where P0, P1, . . . , Pn are homogeneous polynomials of degrees not higher than
k − 1. Since p(l − k + 1) > n, we have T ∈W−l

p′ (Rn).
We choose polynomials P0, P1, . . . , Pn so that (15.2.5) holds. Let Q(ξ)

and R(ξ) be the sums of terms of a degree not higher than k in the Taylor
expansions of the Fourier transforms T̂ (ξ) and ψ̂(ξ), respectively. We denote
the homogeneous part of R(ξ) of degree k by r(ξ). It is clear that

T̂ (ξ) = P0(ξ) +
n∑

j=1

Pj(ξ) exp
(
−i〈aj , ξ〉

)
,

Q(ξ) =
n∑

j=0

Pj(ξ) − i
n∑

j=1

〈aj , ξ〉Pj(ξ).

Since the forms 〈aj , ξ〉 are independent, we can choose P1, . . . , Pn so that

−i
n∑

j=1

〈aj , ξ〉Pj(ξ) = r(ξ).

We define the polynomial P0 by P0 = −(P1 + · · ·+Pn)+R− r (obviously, the
degree of P0 is less than k). Thus Q(ξ) = R(ξ), which is equivalent to (15.2.5).

Necessity. Let L̊l
p(Ω) ⊂ D ′(Ω) and let CΩ ⊂ R

n−1 (for definiteness we
put R

n−1 = {x : x1 = 0}). We show that CΩ is not a (p, n/p)-polar set. By
Lemma 15.2.1/2 for any ψ ∈ D(Ω) there exists a distribution T with support
in CΩ such that (15.2.3) holds. Since CΩ ⊂ R

n−1, it follows that

T =
l∑

j=0

(
1
i

∂

∂x1

)j

δ(x1) × Sj(x2, . . . , xn) =
l∑

j=0

Tj ,

where Sj ∈ D ′(Rn−1), supp Sj ⊂ CΩ (cf. L. Schwartz [695]). We show that
Tj �= 0 and Tj ∈W−l

p′ (Rn). We have

T̂ (ξ) =
l∑

j=0

ξj1Ŝj(ξ2, . . . , ξn) =
l∑

j=0

T̂j(ξ).

Let β0, . . . , βl be distinct numbers in (0, 1). According to the Lagrange inter-
polation formula there exist constants γ0, . . . , γl such that ak =

∑l
j=0 γjP (βj)

for any polynomial P (t) = a0 + a1t + · · · + alt
l. In particular, if P (t) = tk,

then

1 =
l∑

j=0

γjβ
k
j . (15.2.7)
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For the polynomial

T̂ (tξ1, ξ2, . . . , ξn) =
l∑

j=0

ξj1Ŝj(ξ2, . . . , ξn)tj ,

we have

ξk1 Ŝk(ξ2, . . . , ξn) =
l∑

j=0

γj T̂ (βjξ1, ξ2, . . . , ξn).

Consequently,

Tk =
(

1
i

∂

∂x1

)k

δ(x1) × Sk(x2, . . . , xn)

=
l∑

j=0

γj
βj
T

(
x1

βj
, x2, . . . , xn

)
.

We define the function

ψk =
l∑

j=0

γj
βj
ψ

(
x1

βj
, x2, . . . , xn

)
. (15.2.8)

Inequality (15.2.3) for ψ − T implies
∣∣(u, ψk − Tk)

∣∣ ≤ K‖∇lu‖Lp(Rn) (15.2.9)

for all u ∈ D(Rn). We may assume that the function ψ ∈ D(Rn) satisfies
(ψ, xk1) = 1. This along with (15.2.7) and (15.2.8) yields (ψk, x

k
1) = 1. Suppose

that Tk = 0. Then for all u ∈ D(Rn)
∣∣(u, ψk)

∣∣ ≤ K‖∇lu‖Lp(Rn).

Hence by this and Lemma 15.2.2 we obtain (ψk, x
k
1) = 0. Thus Tk �= 0, or

equivalently, Sk �= 0. Since ϕ ∈ D(Rn), (15.2.9) implies Tk ∈W−l
p′ (Rn).

Next we show that δ(x1) × Sk ∈ W k−l
p′ (Rn). It is well known (see, for

instance, Stein [724], §4, Chap. 6) that for any collection of functions gj ∈
W l−j

p (Rn) (j = 0, 1, . . . , l − 1) there exists a function Φ ∈ W l
p(R

n) such that
∂jΦ/∂xj = gj for x ∈ R

n−1 and

‖Φ‖W l
p(Rn) ≤ K

l−1∑
j=0

‖gj‖W l−j
p (Rn).

Let gj = 0 for j �= k and gk = u, where u is an arbitrary function in
W l−k

p (Rn). Then
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(
u, δ(x1) × Sk

)
=
(
Φ,

(
1
i

∂

∂x1

)k

δ(x1) × Sk

)
= (Φ, Tk).

Since Tk ∈W−l
p′ (Rn), applying the above assertion, we get

∣∣(u, δ(x1) × Sk

)∣∣ ≤ K‖Φ‖W l
p(Rn) ≤ K‖u‖W l−k

p (Rn).

Thus δ(x1)×Sk ∈W−n/p
p′ (Rn) and CΩ is not a (p, n/p)-polar set. The theorem

is proved. �

Thus, the proof of Theorem 15.2 is complete. �

15.3 Embedding L̊l
p(Ω) ⊂ Lq(Ω, loc)

The following assertion shows that Theorem 15.2 contains the necessary and
sufficient conditions for the embedding L̊l

p(Ω) ⊂ Lq(Ω, loc).

Theorem. Let n ≤ p l for p > 1 or n < l for p = 1. If the space L̊l
p(Ω)

is embedded into D ′(Ω), then it is also embedded into Lq(Ω, loc) for n = p l,
where q is any positive number, and into C(Ω) for n < pl.

Proof. Let G be a domain in R
n with compact closure and smooth bound-

ary G ∩ Ω �= ∅. First we show that there exists a family of functions
ϕα ∈ D(G ∩ Ω), |α| = l − 1, such that the matrix ‖(ϕα, x

β)‖ is not degener-
ate. Let ϕ be any function in D(G ∩ Ω) with (ϕ, 1) �= 0 and let ϕα = Dαϕ.
Obviously, for α > β we have

(
ϕα, x

β
)

= (−1)|α|(ϕ,Dαxβ
)

= 0,

and the matrix ‖(ϕα, x
β)‖ is triangular. Since the main diagonal terms are

(−1)|α|α!(ϕ, 1) �= 0, the determinant is not zero and the existence of the
functions ϕα follows.

Since L̊l
p(Ω) ⊂ D ′(Ω), by Corollary 15.2.1 we have

∣∣(ϕα, u)
∣∣ ≤ K‖∇lu‖Lp(Ω), (15.3.1)

where K is a constant independent of u. By the Sobolev embedding theorem

‖u‖Lq(G) ≤ K
(
‖∇lu‖Lp(G) +

∑
|α|=l−1

∣∣(ϕα, u)
∣∣
)

for all u ∈ D(Ω), which together with (15.3.1) yields

‖u‖Lq(G) ≤ K‖∇lu‖Lp(Ω).
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In the same way as in Sect. 15.1 we can prove that the mapping L̊l
p(Ω) � u→

u ∈ Lq(Ω, loc) is one to one. The theorem is proved. �

Next we present two corollaries to Theorem 14.1.2 that complement the
theorem of this section.

Corollary 1. Let n = p l, p > 1, and let Qd be a cube for which

Cap(Q̄d\Ω, L̊l
p(Q2d)) > 0.

Then, for all u ∈ D(Ω),

‖u‖pLq(Qd) ≤ C‖∇lu‖pLp(Ω), (15.3.2)

where C ≤ c dnp/q[Cap(Q̄d\Ω, L̊l
p(Q2d))]−1.

Proof. By Theorem 14.1.2,

‖u‖pLq(Qd) ≤ c d
np/q

[
Cap

(
Q̄d\Ω, L̊l

p(Q2d)
)]−1

u p
p,l,Q2d

. (15.3.3)

Since
‖∇ju‖Lp(Q2d) ≤ c d l−j‖∇ju‖Lqj

(Ω) ≤ c d l−j‖∇lu‖Lq(Ω)

for j ≥ 1, qj = pn[n− p(l − j)]−1, we have

u p,l,Q2d
≤ c ‖∇lu‖Lp(Ω),

which together with (15.3.3) yields (15.3.2). �

Corollary 2. 1. If p l > n, n/p is an integer, and Cap(Q̄d\Ω, L̊n/p
p (Q2d)) >

0, then, for all u ∈ D(Ω),

max
Q̄d

|u|p ≤ C‖∇lu‖pLp(Ω), (15.3.4)

where C ≤ c dlp−n[Cap(Q̄d\Ω, L̊n/p
p (Q2d))]−1.

2. If p l > n, n/p is not an integer, and Q̄d\Ω �= ∅, then (15.3.4) is valid
for all u ∈ D(Ω) with C ≤ c dlp−n.

Proof. 1. Let kp = n, q > n. Using the Sobolev theorem, we obtain

max
Q̄d

|u| ≤ c d l−k−1 max
Q̄d

|∇l−k−1u| ≤ c d l−k−n/q‖∇l−ku‖Lq(Qd). (15.3.5)

By (15.3.2), with l replaced by k and u replaced by ∇l−ku, we have

‖∇l−ku‖Lp(Qd) ≤ c dn/p
[
Cap

(
Q̄d\Ω, L̊k

p(Q2d)
)]−1/p‖∇lu‖Lp(Ω).

This and (15.3.5) imply (15.3.4).
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2. Let j be an integer such that l − p−1n < j < l − p−1n + 1. Since
p(l − j) < n, then

‖∇ju‖Lq(Ω) ≤ C‖∇lu‖Lp(Ω),

where q = pn[n− (l − j)p]−1. The condition p(l − j + 1) > n is equivalent to
q > n. Therefore

max
Q̄d

|∇j−1u| ≤ cd1−q−1n‖∇ju‖Lq(Qd) ≤ cd−p−1+l−j+1‖∇lu‖Lp(Ω).

Hence, from this and

max
Q̄d

|u| ≤ c dj−1 max
Q̄d

|∇j−1u|

we obtain (15.3.4). The corollary is proved. �

15.4 Embedding L̊l
p(Ω) ⊂ Lq(Ω) (the Case p ≤ q)

In this section we find the necessary and sufficient conditions for the validity
of the inequality

‖u‖Lq(Ω) ≤ C‖∇lu‖Lp(Ω), (15.4.1)

where u is an arbitrary function in D(Ω). The results we present here can be
deduced (although only for p > 1) from the more general theorems proved
in Section 16.2 where the space L̊l

p(Ω, ν) is studied. However, the separate
exposition seems reasonable because of the importance of this particular case,
the possibility of including p = 1 and the simpler statements.

15.4.1 A Condition in Terms of the (p, l)-Inner Diameter

If we put d = ∞ in the proofs of Theorems 14.2.3/1 and 14.2.3/2, then we
arrive at the following theorem.

Theorem. Let q satisfy any one of the conditions:
(i) q ∈ [p, np(n− p l)−1] if p ≥ 1, n > pl;
(ii) q ∈ [p,∞) if p > 1, n = pl;
(iii) q ∈ [p,∞] if pl > n, p > 1 or l = n, p = 1.

Then:
The inequality (15.4.1) holds if and only if
(α) Dp,l(Ω) <∞ for n > pl, p ≥ 1 or n = pl, p > 1;
(β) D(Ω) <∞ for n < pl, p > 1 or n = l, p = 1.

The best constant C in (15.4.1) satisfies

C ∼
{

[Dp,l(Ω)]l−n(p−1−q−1) in case (α),
[D(Ω)]l−n(p−1−q−1) in case (β).

(15.4.2)
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15.4.2 A Condition in Terms of Capacity

By the Sobolev embedding theorem, the inequality (15.4.1) is valid for any
set Ω provided q = pn(n− pl)−l, n > pl, or q = ∞, p = 1, l = n. Therefore it
remains to consider only the cases q < pn(n− pl)−1 for n = pl and q ≤ ∞ for
n < pl, p ≥ 1.

We present a necessary and sufficient condition for the validity of (15.4.1)
stated in different terms and resulting from Theorem 14.1.2/1.

Theorem 1. Let q be the same as in Theorem 15.4.1/1. The inequal-
ity (15.4.1) is valid if and only if

inf Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
> 0 (15.4.3)

for some d > 0. Here the infimum is taken over all cubes Qd with edge length
d and with sides parallel to coordinate axes.

Proof. Sufficiency. We construct the cubic grid with edge length d. Suppose

dlp−n Cap(Q̄d\Ω, L̊l
p(Q2d)) ≥ κ > 0

for any cube of the grid. By Theorem 14.1.2, we have

‖u‖pLp(Qd) ≤ cκ
−1

l∑
k=1

dpk‖∇ku‖pLp(Qd).

Summing over all cubes of the grid, we obtain

‖u‖pLp(Ω) ≤ cκ
−1

l∑
k=1

dpk‖∇ku‖pLp(Ω).

To estimate the right-hand side we use the inequality

‖∇ku‖Lp(Ω) ≤ c‖∇lu‖k/lLp(Ω)‖u‖
1−k/l
Lp(Ω). (15.4.4)

Then

‖u‖pLp(Ω) ≤ c
l∑

k=1

(
dplκ−l/k‖∇lu‖pLp(Ω)

)k/l‖u‖p(1−k/l)
Lp(Ω) . (15.4.5)

Since
Cap

(
Q̄d\Ω, L̊l

p(Q2d)
)
≤ cdn−pl,

it follows that κ ≤ c and hence the right-hand side in (15.4.5) does not exceed

2−1‖u‖pLp(Ω) + cdplκ−l‖∇lu‖pLp(Ω).

Thus
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‖u‖pLp(Ω) ≤ cd
pl

κ
−l‖∇lu‖pLp(Ω). (15.4.6)

We now prove (15.4.2) for q > p. By Theorem 14.1.2

‖u‖pLp(Qd) ≤ cd
np/q

κ
−1

l∑
j=1

dpj−n

∫
Qd

|∇ju|p dx.

Summing over all cubes Qd and using the inequality
(∑

i

ai

)ε

≤
∑
i

aεi , ai ≥ 0, 0 < ε ≤ 1,

we obtain

‖u‖pLq(Ω) ≤ cκ
−1dnp/q

l∑
j=1

dpj−n

∫
Ω

|∇ju|p dx.

Now (15.4.4) yields

‖u‖pLq(Ω) ≤ cκ
−1dnp/q

l∑
j=1

dpj−n‖∇lu‖pj/lLp(Ω)‖u‖
p(1−j/l)
Lp(Ω) .

Applying (15.4.6), we finally obtain

‖u‖pLp(Ω) ≤ cκ
−ldnp/q+pl−n‖∇lu‖pLq(Ω). (15.4.7)

Necessity. Let Qd be an arbitrary cube with edge length d and let u be an
arbitrary function in C∞(Q̄d) such that dist(Q̄d\Ω, supp u) > 0. Replacing u
to be a function η in (15.4.1), where η ∈ D(Qd), η = 1 on Qd/2, |∇jη| ≤ c d−j ,
we obtain

‖u‖Lp(Qd/2) ≤ C‖∇l(uη)‖Lp(Qd).

Hence

‖u‖Lq(Qd/2) ≤ cC
l∑

j=0

dj−l‖∇ju‖Lp(Qd).

Applying the well-known inequality

‖u‖Lp(Qd) ≤ cd‖∇u‖Lp(Qd) + c‖u‖Lp(Qd/2)

and the Hölder inequality we obtain

‖u‖Lq(Qd/2) ≤ cC
l∑

j=1

dj−l‖∇ju‖Lp(Qd) + cCd−l+n(q−p)/pq‖u‖Lq(Qd/2).

Thus for d, so large that 2cC d−l+n(q−p)/pq < 1, we have
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‖u‖Lq(Qd/2) ≤ cC
l∑

j=1

dj−1‖∇ju‖Lp(Qd).

Since
‖u‖Lq(Qd) ≤ cdn(p−q)/pq+1‖∇u‖Lp(Qd) + c‖u‖Lq(Qd/2),

we obtain

‖u‖Lq(Qd) ≤ c
(
C + dl+n(p−q)/pq

) l∑
j=1

dj−l‖∇ju‖Lp(Qd).

By the second part of Theorem 14.1.2, we have either

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
≥ γdn−pl,

where γ satisfies inequality (14.1.2), or

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
≥ cdnp/q

(
C + dl+n(p−q)/pq

)−p
.

The theorem is proved. �

Theorem 1 can be rephrased as follows.

Theorem 2. One of the following conditions is necessary and sufficient
for the validity of (15.4.1),

1. For some d > 0,

inf
Qd

Cap
(
Q̄d\Ω, L̊l

p

(
R

n
))
> 0 if n > pl.

2. For some d > 0,

inf
Qd

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
> 0 if n = pl, p > 1.

3. The domain Ω does not contain arbitrarily large cubes if (i) n < pl,
p > 1, (ii) n ≤ l, p = 1, (iii) n = p l and CΩ is connected.

Proof. Part 1 follows from Theorem 1 and Proposition 13.1.1/3, part 2 is
contained in Theorem 1. For n < pl the condition

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
≥ cdn−pl

is equivalent to Q̄d\Ω �= ∅, which proves part 3 for n �= pl, p > 1.
Let n = pl, p > 1 and let CΩ be connected. If Ω contains arbitrarily

large cubes, then obviously, (15.4.3) does not hold. Suppose that cubes of an
arbitrary size cannot be placed in Ω and that the number d0 is so large that
any cube Qd with d > d0 has a nonempty intersection with Ω. Then in R

n\Ω
there exists a continuum that contains points in Qd and in R

n\Q2d. It remains
to apply Proposition 13.1.2/1. This concludes the proof. �
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We present an example of an unbounded domain for which the hypotheses
of the Theorem are valid.

Example. In each cube Q
(i)
1 , i ≥ 1, of the coordinate grid with edge length

1 we select a closed subset ei lying in an s-dimensional plane s > n− pl ≥ 0.
Let infmsei ≥ const > 0.

We denote the complement of the set
⋃

i ei by Ω. By Proposition 13.1.1/4
we have

Cap
(
ei, L̊

l
p(Q

(i)
2 )
)
≥ const > 0

for any cube Q
(i)
2 . Hence (15.4.1) holds for Ω.

15.5 Embedding L̊l
p(Ω) ⊂ Lq(Ω) (the Case p > q ≥ 1)

15.5.1 Definitions and Lemmas

We continue to study inequality (15.4.1). Here we obtain a necessary and
sufficient condition for q ∈ [1, p). Contrary to the case q ≥ p considered
previously, this condition does not depend on q. It means that up to a “small
error” the set Ω is the union of cubes Q(i) with a finite multiplicity of the
intersection and with edge lengths {di}i≥1 satisfying

∞∑
i=1

d
n+lpq/(p−q)
i <∞. (15.5.1)

The “smallness” is described in terms of the capacity

Capl−1

(
e, L̊l

p(Q2d)
)

= inf
Π∈Pl−1

inf
{u}

∫
Q2d

|∇lu|p dx

introduced in 14.3.4. We recall that Pl−1 is the set of polynomials of a degree
not higher than l − 1 normalized by the equality

d−n

∫
Qd

|Π|p dx = 1,

and {u} is the set of functions in L̊l
p(Q2d), equal to polynomials Π ∈ Pl−1 in

a neighborhood of a compactum e ⊂ Q̄d.
We shall use the following assertion that is a particular case (k = l− 1) of

Corollary 14.3.4.

Lemma 1. 1. Let e be a compact subset of the cube Q̄d with

Capl−1

(
e, L̊l

p(Q2d)
)
> 0.

Then
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‖u‖Lq(Qd) ≤ A‖∇lu‖Lp(Qd)

for any function u ∈ C∞(Qd) that vanishes in a neighborhood of e. Here
1 ≤ q ≤ pn(n − pl)−1 for n > pl; 1 ≤ q < ∞ for n = pl, 1 ≤ q ≤ ∞ for
n < pl, and

A ≤ cdn/q
[
Capl−1

(
e, L̊l

p(Q2d)
)]−1/p

.

2. If (15.4.1) holds for any function u ∈ C∞(Q̄d) that vanishes in a neigh-
borhood of the compactum e ⊂ Q̄d and if

Capl−1

(
e, L̊l

p(Q2d)
)
≤ c0dn−pl,

where c0 is a small enough constant, then

A ≥ cdn/p
[
Capl−1

(
e, L̊l

p(Q2d)
)]−1/p

.

Definition 1. Let γ be a sufficiently small constant depending only on n,
p, l. A compact subset e of a cube Q̄d is said to be (p, l, l − 1)-negligible if

Capl−1

(
e, L̊l

p(Q2d)
)
< γdn−pl. (15.5.2)

Otherwise e is called (p, l, l − 1)-essential.
The collection of (p, l, l − 1)-negligible subsets of the cube Q̄d is denoted

by Nl−1(Qd).

Lemma 2. Let 1 ≤ q ≤ p and let (15.4.1) hold for any u ∈ C∞
0 (Ω). Then

there exists a constant c that depends only on n, p, q, and l, and is such that
Qd\Ω is a (p, l, l− 1)-essential subset of Qd for any cube Qd with edge length
d satisfying

d ≥ cCpq/(n(p−q)+lpq).

Proof. Consider a function u ∈ C∞(Q̄d) with dist(suppu, Q̄d\Ω) > 0. Let
η ∈ C∞

0 (Q1), η = 1 on Q1/2 and let ηd = η(x/d).
The insertion of the function uηd into (15.4.1) yields

‖u‖Lq(Qd/2) ≤ ‖uηd‖Lq(Qd) ≤ C‖∇l(uηd)‖Lp(Qd)

≤ cC
(
‖∇lu‖Lp(Qd) + d−l‖u‖Lp(Qd)

)
.

Hence from the inequality

‖u‖Lp(Qd) ≤ cdl‖∇lu‖Lp(Qd) + cdn(q−p)/pq‖u‖Lq(Qd/2) (15.5.3)

(see, for instance, Lemma 1.1.11) we obtain

‖u‖Lq(Qd/2) ≤ c0C
(
‖∇lu‖Lp(Qd) + dn(q−p)/pq−l‖u‖Lq(Qd/2)

)
.
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Consequently,
‖u‖Lq(Qd/2) ≤ 2c0C‖∇lu‖Lp(Qd)

for 2c0Cdn(q−p)/pq−l < 1. On the other hand, (15.5.3) and the Hölder inequal-
ity imply

‖u‖Lp(Qd) ≤ dn(p−q)/pq‖u‖Lp(Qd)

≤ c
(
dn(p−q)/pq+l‖∇lu‖Lp(Qd) + ‖u‖Lq(Qd/2)

)
.

Therefore
‖u‖Lq(Qd) ≤ c1

(
dn(p−q)/pq+l + C

)
‖∇lu‖Lp(Qd)

for 2c0 Cdn(p−q)/pq−l < 1. Suppose, in addition, that dn(p−q)/pq+l > C. Then

‖u‖Lq(Qd) ≤ 2c1dn(p−q)/pq+l‖∇lu‖Lp(Qd). (15.5.4)

If Q̄d\Ω /∈ Nl−1(Qd), we have nothing to prove. Otherwise, by part 2 of
Lemma 1, inequality (15.5.4) implies

cdn/q
[
Capl−1

(
Q̄d\Ω, L̊l

p(Q2d)
)]−1/p ≤ 2c1dn(p−q)/pq+l,

or equivalently,

Capl−1

(
Q̄d\Ω, L̊l

p(Q2d)
)
≥
(
c

2c1

)p

dn−pl.

We may always assume that γ ≤ (c/(2 c1))p. Therefore Q̄d\Ω /∈ Nl−1(Qd).
The proof is complete. �

Definition 2. The cube QD = QD(x) with center x ∈ Ω is called critical
if

D = sup
{
d : Q̄d\Ω ∈ Nl−1(Qd)

}
.

Lemma 2 implies the following assertion.

Corollary. Let 1 ≤ q < p and let (15.4.1) hold for any u ∈ C∞
0 (Ω). Then

for any x ∈ Ω there exists a critical cube QD(x).

In what follows Q(i) is an open cube with edges parallel to the coordinate
axes and with edge lengths di, i = 1, 2, . . . . Further, let cQ(i) be a concentric
cube with edge length cdi and with sides parallel to those of the cube Q(i).
Let μ denote a positive constant that depends only on n.

Definition 3. A covering {Q(i)}i≥1 of a set Ω is in the class Cl,p,q if:
1. P(i)\Ω ∈ Nl−1(P(i)), where P(i) = μQ(i);
2. P(i) ∩ P(j) = ∅ for i �= j;
3. the multiplicity of the covering {Q(i)} does not exceed a constant that

depends only on n;
4. Q(i)\Ω /∈ Nl−1(Q(i));
5. the series (15.5.1) converges.
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15.5.2 Basic Result

Theorem. Let 1 ≤ q < p. The inequality (15.4.1) holds for all u ∈ L̊l
p(Ω) if

and only if there exists a covering of Ω in Cl,p,q.

Proof. Necessity. Let x ∈ Ω, Qd = Qd(x) and let D be the edge length of
the critical cube centered at x. We put

g(d) = dpl−n Capl−1

(
Q̄d\Ω, L̊l

p(Q2d)
)
.

Let d denote a number in the interval [D, 2D] such that g(d) ≥ γ where γ is
the constant in (15.5.2). Further, let M be the collection of cubes {Qd}x∈Ω .

We show that series (15.5.1) converges for any sequence {Q(i)} of disjoint
cubes in M . By Lemma 15.5.1/1, given an arbitrary number εi > 0, there
exists a function vi ∈ C∞(Q(i)) with dist(supp vi,Q(i)\Ω) > 0 such that
∫

Q(i)
|∇lvi|p dx ≤

[
cd−n

i Capl−1

(
Q(i)\Ω, L̊l

p

(
2Q(i)

))
+ εi

] ∫
Q(i)

|vi|p dx.

We assume that εi = γd−pl
i . Then, by (15.5.2),

∫
Q(i)

|∇lvi|p dx ≤ cγd−pl
i

∫
Q(i)

|vi|p dx. (15.5.5)

Estimating the right-hand side by the inequality

‖vi‖Lp(Q(i)) ≤ c dli‖∇lvi‖Lp(Q(i)) + cdn(p−q)/pq
i ‖vi‖Lp( 1

2 Q(i)) (15.5.6)

(see Lemma 1.1.11) and using the smallness of the constant γ, we arrive at
the estimate ∫

Q(i)
|∇lvi|p dx ≤ cdn(p−q)/q−pl

i ‖vi‖pLq( 1
2 Q(i))

. (15.5.7)

Let ζi ∈ D(Q(i)), ζi = 1 in 1
2Q(i), |∇kζi| ≤ cd−k

i , k = 1, 2, . . . . We introduce
the function ui = ζivi. It is clear that

‖∇lui‖Lp(Q(i)) ≤ c

l∑
k=0

dk−l‖∇kvi‖Lp(Q(i))

≤ c
(
‖∇lvi‖Lp(Q(i)) + d−l‖vi‖Lp(Q(i))

)
.

Applying (15.5.6), we obtain

‖∇lui‖Lp(Q(i)) ≤ c‖∇lvi‖Lp(Q(i)) + cdn(q−p)/pq−l‖vi‖Lp( 1
2 Q(i)).

This and (15.5.7) imply

‖∇lui‖Lp(Q(i)) ≤ cd
n(q−p)/pq−l
i ‖ui‖Lq(Q(i)). (15.5.8)
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By the hypothesis of the theorem, (15.4.1) holds for any u ∈ D(Ω). We
normalize ui by

‖ui‖Lq(Q(i)) = d
n/q−pl/(q−p)
i (15.5.9)

and put u =
∑N

i=1 ui into (15.4.1). Then

(
N∑
i=1

‖ui‖qLq(Q(i))

)p/q

=
(∫

Ω

|u|q dx
)p/q

≤ Cp
N∑
i=1

∫
Q(i)

|∇lui|p dx.

By (15.5.8) we have

(
N∑
i=1

‖ui‖qLq(Q(i))

)p/q

≤ cCp
N∑
i=1

d
n(q−p)/q−pl
i ‖ui‖pLq(Q(i))

,

which together with (15.5.9) yields

(
N∑
i=1

d
n−p lq/(q−p)
i

)(p−q)/q

≤ cCp.

Thus the series (15.5.1) converges.
According to Theorem 1.2.1, there exists a sequence of cubes {Q(i)}i≥1 ⊂

M that forms a covering of Ω of finite multiplicity with μQ(i) ∩ μQ(j) = ∅,
i �= j. The convergence of series (15.5.1) was proved previously (the arguments
should be applied to the sequence of mutually disjoint cubes μQ(i)). Therefore
{Q(i)}i≥1 is a covering in the class Cl,p,q.

Sufficiency. Let u ∈ C∞
0 (Ω) and let {Q(i)}i≥1 be a covering of Ω in the

class Cl,p,q. Obviously,
∫
Ω

|u|q dx ≤
∑
i≥1

λ
q/p
i λ

−q/p
i

∫
Q(i)

|u|q dx,

where λi = d
−pn/q
i Capl−1(Q(i)\Ω, L̊l

p(2Q(i))). Applying the Hölder inequal-
ity, we obtain

∫
Ω

|u|q dx ≤
(∑

i≥1

λ
q/(p−q)
i

)(p−q)/q[∑
i≥1

λi

(∫
Q(i)

|u|q dx
)p/q]q/p

.

By Lemma 15.5.1/1,

c λi

(∫
Q(i)

|u|q dx
)p/q

≤
∫

Q(i)
|∇lu|p dx.
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This implies

∫
Ω

|u|q dx ≤ c
(∑

i≥1

λ
q/(p−q)
i

)(p−q)/p(∫
Ω

|∇lu|p dx
)q/p

,

and since Q(i)\Ω /∈ N (Q(i)), we conclude that

‖u‖Lq(Ω) ≤ c
(∑

i≥1

d
n+lpq/(p−q)
i

)(p−q)/pq

‖∇lu‖Lp(Ω). (15.5.10)

This completes the proof. �

In the proof of necessity we incidentally obtained the following necessary
condition for the validity (15.4.1).

Proposition. Let {Q(i)}i≥1 be a sequence of disjoint cubes in Ω. Then
the divergence of the series (15.5.1) is necessary for the validity of (15.4.1)
with q < p.

15.5.3 Embedding L̊l
p(Ω) ⊂ Lq(Ω) for an “Infinite Funnel”

Example. Consider the domain

Ω =
{
x = (x′, xn) : x′ = (x1, . . . , xn−1), xn > 0, |x′| < ϕ(xn)

}
,

where ϕ is a bounded decreasing function.
We shall show that (15.4.1) with p > q ≥ 1 holds if and only if

∫ ∞

0

[
ϕ(t)

]α dt <∞, (15.5.11)

where α = n− 1 + lp q/(p− q).

Proof. Let {ai} and {bi} be two number sequences defined as follows:

a0 = 0; ai+1 − ai = 2ϕ(ai), i ≥ 1,

b0 = 0; bi+1 − bi =
2√
n− 1

ϕ(bi), i ≥ 1.

Clearly ai, bi → 0 as i→ ∞, and the differences ai+1 − ai, bi+1 − bi decrease.
Define two sequences of cubes as follows:

Q
(i)
ext =

{
ai < xn < ai+1, 2|xν | < ai+1 − ai, 1 ≤ v ≤ n− 1

}
,

Q
(i)
int =

{
bi < xn < bi+1, 2|xν | < bi+1 − bi, 1 ≤ ν ≤ n− 1

}

(see Fig. 37). The cubes Q
(i)
ext cover Ω. All (n− 1)-dimensional faces of Q

(i)
ext

except for two of them are contained in R
n\Ω and
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Fig. 37.

Cap
(
Q

(i)
ext\Ω, L̊1

p

(
2Q

(i)
ext

))
≥ c(bi+1 − bi)n−p.

This along with Proposition 14.3.5 implies that Q
(i)
ext\Ω is a (p, l, l−1)-essential

subset of Q
(i)
ext.

We suppose that the integral (15.5.11) converges and show the convergence
of the series (15.5.1). In fact,

∞∑
i=0

(ai+1 − ai)α+1 ≤
∞∑
i=1

(ai+1 − ai)α(ai − ai−1) + aα+1
1

=
∞∑
i−1

[
ϕ(ai)

]α(ai − ai−1) +
[
ϕ(0)

]α+1
.

Since ϕ does not increase, we have

[
ϕ(ai)

]α(ai − ai−1) ≤
∫ ai

ai−1

[
ϕ(t)

]α dt.

Hence
∞∑
i=0

(ai+1 − ai)α+1 ≤
[
ϕ(0)

]α+1 +
∫ ∞

0

2
[
ϕ(t)

]α dt,

and the sufficient condition in Theorem 15.5.2 follows.
We prove the necessity of (15.5.11). Suppose that

∫ ∞

0

[
ϕ(t)

]α dt = ∞,

and let the series (15.5.1) converge for any sequence of disjoint cubes in Ω.
By monotonicity of ϕ we have
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∞∑
i=1

(bi − bi−1)α+1 ≥
∞∑
i=1

(bi − bi−1)α(bi+1 − bi)

=
∞∑
i=1

[
ϕ(bi)

]α(bi+1 − bi) ≥
∞∑
i=1

∫ bi+1

bi

[
ϕ(t)

]α dt.

Consequently the series (15.5.1) diverges for the sequence of cubes Q
(i)
int. Thus

we arrived at a contradiction. It remains to apply Proposition 15.5.2.

15.6 Compactness of the Embedding L̊l
p(Ω) ⊂ Lq(Ω)

In this section we obtain the necessary and sufficient conditions for the com-
pactness of the embedding operator of L̊l

p(Ω) into Lq(Ω) with p, q ≥ 1.

15.6.1 Case p ≤ q

Theorem. The set

F =
{
u ∈ D(Ω) : ‖∇lu‖Lp(Ω) ≤ 1

}
,

is relatively compact in Lq(Ω) if and only if one of the following conditions
holds:

1. For any d > 0

lim
�→∞

inf
Qd ⊂Rn \B�

Cap
(
Q̄d\Ω, L̊l

p(Ω)
)
> kdn−pl (15.6.1)

if n > p l. Here k is a positive constant that is independent of d.
2. For any d > 0

lim
�→∞

inf
Qd ⊂Rn \B�

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
> k (15.6.2)

if n = pl.
3. The set Ω does not contain an infinite sequence of disjoint cubes if

pl > n or pl = n and the set R
n\Ω is connected.

Proof. Sufficiency. First we note that by Propositions 13.1.1/3, 13.1.2/1,
and Corollary 13.1.1 the conditions of the theorem are equivalent to

lim
�→∞

inf
Qd ⊂Rn \B�

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
> kdn−pl (15.6.3)

(cf. the proof of Theorem 15.4.2/1). This and the first part of Theorem 15.4.2/1
imply (15.4.1) for all u ∈ D(Ω) and hence the boundedness of F in W l

p(Ω).

Since any bounded subset of W l
p(Ω) is compact in Lq(Ω\B�), it suffices

to prove the inequality
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‖u‖Lq(Ω\B�) ≤ ε‖u‖W l
p(Ω) (15.6.4)

with arbitrary positive ε and sufficiently large �.
Let η ∈ C∞(Rn), η = 0 in B1/2, η = 1 outside B1, and η�(x) = η(x/�).

We denote by d a small number that depends on ε and which will be specified
later. By (15.6.3), there exists a sufficiently large radius �(d) such that

dpl−n Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
> kdn−p l

for � > �(d) and for all cubes Qd ⊂ R
n\B�/4. Hence, by (15.4.1) with Ω

replaced by Ω\B�/2, we have

‖uη�‖Lq(Ω\B�/2) ≤ ck
−ldlp−n+np/q‖∇l(uη�)‖Lp(Ω\B�/2).

We could choose d beforehand to satisfy

c k−ldlp−n+np/q < ε.

Then

‖u‖Lq(Ω\B�) ≤ cε
l∑

j=0

�j−l‖∇ju‖Lp(Ω) ≤ cε‖u‖W l
p(Ω),

which completes the proof of the first part of the theorem.
Necessity. Let ε be any positive number. Suppose the set F is relatively

compact in Lq(Ω). Then there exists a number � = �(ε) so large that

‖u‖Lq(Ω) ≤ ε‖∇lu‖Lp(Ω)

for all u ∈ D(Ω\B̄�). Let Qd denote any cube with edge length d situated
outside the ball B�. In the proof of the second part of Theorem 15.4.2/1 it
was shown that either

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
≥ γdn−pl,

where γ is a constant satisfying (14.1.2), or

Cap
(
Q̄d\Ω, L̊l

p(Q2d)
)
≥ cdnp/q

(
ε+ dl+n(p−q)/pq

)−p
.

The theorem is proved. �

15.6.2 Case p > q

The following assertion shows that the embedding operator of L̊l
p(Ω) into

Lq(Ω) is compact and continuous simultaneously for p > q ≥ 1.

Theorem. The set

F =
{
u ∈ D(Ω) : ‖∇lu‖Lp(Ω) ≤ 1

}
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is relatively compact in Lq(Ω), 1 ≤ q < p if and only if there exists a covering
of Ω in the class Cl,p,q.

Proof. The necessity follows immediately from Theorem 15.5.2. We prove
the sufficiency. Let {Q(i)}i≥1 be a covering of Ω in the class Cl,p,q, let di be
the edge length of Q(i), let ε be a positive number, and let N be an integer
so large that ∑

i≥N+1

d
n+lpq/(p−q)
i < εpq/(p−q). (15.6.5)

We denote the radius of a ball B� = {x : |x| < �} such that B�/4 contains the
cubes Q(1), . . . ,Q(N) by �. By (15.5.10) we obtain

‖uη�‖Lq(Ω\B�/2) ≤ c
( ∑

i≥N+1

d
n+lpq/(p−q)
i

)(p−q)/pq∥∥∇l(uη�)
∥∥
Lp(Ω\B�/2)

,

where η� is the same function as in the proof of Theorem 15.6.1. This
and (15.6.5) immediately imply that

‖u‖Lq(Ω\B�) ≤ ε‖∇lu‖Lp(Ω) + c(�)‖u‖W l−1
p (Ω∩(B� \B�/2))

.

Now the result follows from the compactness of the embedding of L̊l
p(Ω) ∩

Lq(Ω) into W l−1
p (Ω ∩ (B�\B�/2)). �

15.7 Application to the Dirichlet Problem for a Strongly
Elliptic Operator

Let l be a positive integer and let i, j be multi-indices of orders |i|, |j| ≤ l.
Let aij be bounded measurable functions in Ω such that aij = aji for any
pair (i, j). Suppose

∑
|i|=|j|=l

aij(x)ζiζ̄j ≥ γ
∑

|j|=l

|ζj |2, γ = const > 0, (15.7.1)

for all complex numbers ζi, |i| = l, and for almost all x ∈ Ω.
We define the quadratic form

A(T, T ) =
∫
Ω

∑
|i|=|j|=l

aijD
iTDjT dx

on the space Ll
2(Ω). Obviously, the seminorms A(T, T )1/2 and ‖∇lT‖L2(Ω)

are equivalent.
In the following we apply the results of the previous sections to the study

of the Dirichlet problem for the operator

Au = (−1)l
∑

|i|=|j|=l

Dj
(
aijD

iu
)
.
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15.7.1 Dirichlet Problem with Nonhomogeneous Boundary Data

Lemma. Let L̊l
2(Ω) be a subspace of D ′(Ω). Then any function T ∈ Ll

2(Ω)
can be expressed in the form

T = u+ h, (15.7.2)

where u ∈ L̊l
2(Ω), h ∈ Ll

2(Ω) and Ah = 0 (in the sense of distributions).

Proof. We equip L̊l
2(Ω) with the norm [A(u, u)]1/2. Let T = ui + hi (i =

1, 2) be two decompositions of the form (15.7.2). Since A(h1 − h2) = 0 and
(u1−u2) ∈ L̊l

2(Ω), it follows that A(u1−u2, h1−h2) = 0. Consequently, A(u1−
u2, u1 − u2) = 0 and u1 = u2. The uniqueness of the representation (15.7.2)
is proved.

The space Ll
2(Ω) becomes the Hilbert space provided we equip it with any

of the inner products

AN (T,G) = A(T,G) +N−1(T,G)L2(ω), N = 1, 2, . . . ,

where ω is a nonempty open bounded set, ω̄ ⊂ Ω. Let uN denote the projection
of the function T ∈ Ll

2(Ω) onto L̊l
2(Ω) in the space Ll

2(Ω) with the norm
[AN (G,G)]1/2 (by hypothesis, L̊l

2(Ω) is a subspace of Ll
2(Ω)). Then, for any

ϕ ∈ L̊l
2(Ω),

AN (T − uN , ϕ) = 0. (15.7.3)

In Sect. 15.3 we noted that the embedding L̊l
2(Ω) ⊂ D ′(Ω) implies the

embedding L̊l
2(Ω) ⊂ L2(Ω, loc), an, hence, the estimate

‖uN‖2
L2(ω) ≤ CA(uN , uN ),

where C is a constant that is independent of uN . This and the obvious in-
equality A(uN , uN ) ≤ AN (T, T ) show that the sequence uN converges weakly
in L̊l

2(Ω) and in L2(Ω) to some u ∈ L̊l
2(Ω). Passing to the limit in (15.7.3)

we obtain that h = T − u satisfies A(h, ϕ) = 0, where ϕ is any function in
L̊l

2(Ω). The lemma is proved. �

The representation (15.7.2) enables one to find the solution of the equation
Ah = 0 which “has the same boundary values as T along with its derivatives of
order up to l−1,” i.e., to solve the Dirichlet problem for the equation Ah = 0.
Therefore, the conditions for the embedding L̊l

2(Ω) ⊂ D ′(Ω) in Theorem 15.2
imply criteria for the solvability of the Dirichlet problem formulated in terms
of the (2, l)-capacity. Namely, we have the following statement.

Theorem. For any function T ∈ Ll
2(Ω) to be represented in the form

(15.7.2) it is necessary and sufficient that any one of the following conditions
be valid: 1. n > 2l; 2. CΩ �= ∅ for odd n, n < 2l; 3. CΩ is a set of the
positive (2, n/2)-capacity for n = 2l; and 4. CΩ is not contained in an (n−1)-
dimensional hyperplane or is a set of positive (2, n/2)-capacity for even n <
2l.
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15.7.2 Dirichlet Problem with Homogeneous Boundary Data

The results of Sects. 15.4 and 15.5 give conditions for the unique solvability
in L̊l

2(Ω) of the first boundary value problem for the equation Au = f with
f ∈ Lr(Ω).

We first formulate the problem. Let f be a given function in Lq′ (Ω), q′ =
q(q − 1)−1, 1 < q ≤ ∞. We require a distribution T ∈ L̊l

2(Ω) that satisfies
AT = f .

The following fact is well known.

Lemma. The above Dirichlet problem is solvable for any f ∈ Lq′ (Ω) if
and only if

‖u‖Lq(Ω) ≤ C‖∇lu‖L2(Ω) (15.7.4)

for all u ∈ D(Ω).

Proof. Sufficiency. Since
∣∣(f, u)∣∣ ≤ ‖f‖Lq′ (Ω)‖u‖Lq(Ω) ≤ C‖f‖Lq′ (Ω)‖∇lu‖L2(Ω)

for all u ∈ D(Ω), the functional (f, u) defined on the linear set D(Ω), which
is dense in Ll

2(Ω), is bounded in L̊l
2(Ω). Hence, by the Riesz theorem, there

exists T ∈ L̊l
2(Ω) such that

(f, u) = A(T, u)

for all u ∈ D(Ω). This is equivalent to AT = f .
Necessity. Any u ∈ D(Ω) with ‖u‖Ll

2(Ω) = 1 generates the functional
(v, f), defined on Lq′ (Ω). Since to any f ∈ Lq′ (Ω) there corresponds a solution
Tf of the Dirichlet problem,

∣∣(v, f)∣∣ ≤ ‖∇lTf‖L2(Ω).

Consequently, the functionals (v, f) are bounded for any f ∈ Lq′ (Ω). Hence
the norms of (v, f) are totally bounded, which is equivalent to (15.7.4). The
lemma is proved. �

Inequality (15.7.4) cannot be valid for all u with the same constant if
either q ≥ 2n(n − 2 l)−1, n > 2 l, or if q = ∞, n = 2 l. On the other hand,
for q = 2n(n− 2 l)−1, n > 2 l, (15.7.4) holds for an arbitrary domain Ω. The
other cases were studied in Sects. 15.4 and 15.5. For q ≥ 2, Theorem 15.4.2/1
together with the preceding lemma leads to the following statement.

Theorem 1. The Dirichlet problem in question is solvable in L̊l
2(Ω) for

all f ∈ Lq′ (Ω) (2 ≥ q′ > 2n/(n + 2l), n ≥ 2l and for 2 ≥ q′ ≥ 1, n < 2l) if
and only if one of the following conditions is valid:

1. There exists a constant d > 0 such that

inf
Qd

Cap
(
Q̄d\Ω, L̊l

2

)
> 0 for n > 2l.
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2. There exists a constant d > 0 such that

inf
Qd

Cap
(
Q̄d\Ω, L̊l

2(Q2d)
)
> 0 for n = 2l.

3. The domain Ω does not contain arbitrarily large cubes if n < 2 l or if
n = 2 l and R

n\Ω is connected.

For q < 2, Theorem 15.5.2 and the Lemma imply the following theorem.

Theorem 2. The Dirichlet problem for the equation AT = f is solvable
in L̊l

2(Ω) for all f ∈ Lq′ (Ω), 1 < q < 2, if and only if there exists a covering
of the set Ω belonging to the class Cl,2,q and having a finite multiplicity.

15.7.3 Discreteness of the Spectrum of the Dirichlet Problem

The quadratic form A(u, u) generates a selfadjoint operator A in L2(Ω). By
the well-known Rellich theorem, a necessary and sufficient condition for the
discreteness of the spectrum of this operator is the compactness of the em-
bedding L̊l

2(Ω) ⊂ L2(Ω). So Theorem 15.6.1 implies the following criterion
for the discreteness of the spectrum of A stated in terms of the (2, l)-capacity.

Theorem. The spectrum of the operator A is discrete if and only if one
of the following conditions is valid:

1. For any constant d > 0

lim
�→∞

inf
Qd ⊂Rn \B�

Cap
(
Q̄d\Ω,Ll

2

)
> kdn−2l

if n > 2l.
Here and in what follows k is a positive number which does not exceed d.
2. For any d > 0

lim
�→∞

inf
Qd ⊂Rn \B�

Cap
(
Q̄d\Ω, L̊l

2(Q2d)
)
> k

if n = 2l.
3. The domain Ω does not contain an infinite sequence of disjoint congru-

ent cubes if n < 2l, or if n = 2l and R
n\Ω is connected.

15.7.4 Dirichlet Problem for a Nonselfadjoint Operator

Consider the quadratic form

B(u, u) =
∫
Ω

∑
|i|,|j|≤l

aij(x)DiuDju dx,

where i, j are n-dimensional multi-indices.
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We state the Dirichlet problem with homogeneous boundary data for the
operator

Bu =
∑

|i|,|j|≤l

(−1)|j|Dj(aij(x)Diu)

in the following way. Let f be a continuous functional on W̊ l
2(Ω). We require

an element in W̊ l
2(Ω) such that

B(u, ϕ) = (ϕ, f), (15.7.5)

where the function ϕ ∈ W̊ l
2(Ω) is arbitrary.

The next assertion is a particular case of a well-known theorem of Hilbert
space theory (see, for instance, Lions and Magenes [500], Chap. 2, §9.1).

Lemma. If
‖ϕ‖2

W l
2(Ω) ≤ C|B(ϕ,ϕ)|

for all ϕ ∈ W̊ l
2(Ω), then the Dirichlet problem (15.7.5) is uniquely solvable.

Let Γ denote a positive constant such that

Re
∑

|i|,|j|≤l,
|i|+|j|<2l

aijζiζj ≥ −Γ
(∑

|i|≤l

|ζi|2
)1/2(∑

|j|<l

|ζj |2
)1/2

for all complex numbers ζi, |i| ≤ l, and introduce the set function

λΩ = inf
{
‖∇lu‖2

L2(Ω) : ‖u‖L2(Ω) = 1, u ∈ L̊l
2(Ω)

}
.

Theorem. Let

D2,l(Ω) < c0γ/Γ if n ≥ 2l,
D(Ω) < c0γ/Γ if n < 2l,

where D2,l(Ω) is the (2, l) inner diameter of Ω, D(Ω) is the inner diameter
of Ω, γ is the constant in (15.7.1), and c0 is a constant that depends only on
n, l. Then the Dirichlet problem (15.7.5) is uniquely solvable.

Proof. Obviously,

A(u, u) − Re B(u, u) ≤ Γ
(

l∑
k=0

‖∇ku‖2
L2(Ω)

)1/2( l−1∑
k=0

‖∇ku‖2
L2(Ω)

)1/2

.

Using the inequality

‖∇ku‖L2(Ω) ≤ c‖∇lu‖k/lL2(Ω)‖u‖
1−k/l
L2(Ω), u ∈ L̊l

2(Ω),

we obtain
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A(u, u) − Re B(u, u) ≤ γ

2
‖∇lu‖2

L2(Ω) +
cΓ 2l

γ2l−1
‖u‖2

L2(Ω).

Consequently,

Re B(u, u) ≥ γ

4
‖∇u‖2

L2(Ω) +
(
λΩ
γ

4
− cΓ 2l

γ2l−1

)
‖u‖2

L2(Ω). (15.7.6)

It remains to note that by Theorem 15.4.1

λΩ ∼
{
D2,l(Ω)−2l if n ≥ 2l,
D(Ω)−2l if n < 2l.

The theorem is proved.

Thus the Dirichlet problem (15.7.5) is uniquely solvable for domains with
small (2, l) inner diameter for n ≥ 2l or with small inner diameter for n < 2l.

15.8 Applications to the Theory of Quasilinear Elliptic
Equations

In the present section we apply capacitary criteria for integral inequalities
obtained in the previous and present chapters to the Dirichlet and Neumann
problems for quasilinear elliptic equations of the type treated by Leray and
Lions in [488]. We show in Sect. 15.8.1 that the inequality (15.4.1) is necessary
and sufficient for the solvability of the Dirichlet problem with zero boundary
data. It is assumed that the right-hand side of the equation is integrable with
some power. Combined with the results of Sect. 15.4, this criterion provides
explicit conditions for the solvability of the boundary value problem given in
terms of the (p, l)-capacity. The corresponding result for linear elliptic equa-
tions was obtained in Sect. 15.7.

In Sect. 15.8.3 we prove the uniqueness theorem for the bounded solution
of the Dirichlet problem vanishing outside certain compact subsets of the
boundary with zero (p, l)-capacity. A similar result concerning the Neumann
problem for quasilinear second-order equations is derived in Sect. 15.8.4.

Let Ω be an unbounded open subset of R
n. Here we use the notations

‖u‖p = ‖u‖Lp(Ω) and Qd = {x : 2|xi| < d, i = 1, . . . , n}. When the domain
of the integration is not indicated, it is assumed to be Ω. In this section we
suppose that 1 < p <∞.

15.8.1 Solvability of the Dirichlet Problem for Quasilinear
Equations in Unbounded Domains

Consider the equation
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Au ≡ (−1)lDα
(
aα(x,∇lu)

)
= f(x), x ∈ Ω, (15.8.1)

where f is integrable in Ω, α is a multi-index of order l, and Dα =
∂l/∂xα1

1 , . . . , ∂x
αn
n .

Suppose that the functions aα are continuous in all variables, but x for
almost all x ∈ Ω and measurable with respect to x for all other variables.
Besides, we assume that for any vector v = {vα}

aα(x, v)vα ≥ |v|p,
∑
α

∣∣aα(x, v)
∣∣ ≤ λ|v|p−1 (15.8.2)

with some p > 1. Further, we impose the “monotonicity condition”
[
aα(x, v) − aα(x,w)

]
(vα − wα) > 0 (15.8.3)

for w �= v.
We show that the Dirichlet problem for (15.8.1) is solvable for all f ∈

Lq′ (Ω) if and only if
‖v‖q ≤ C‖∇lv‖p (15.8.4)

with q ≥ 1 holds for all v ∈ C∞
0 (Ω).

We say that u ∈ L̊l
p(Ω) ∩ L(Ω, loc) is a solution of the Dirichlet problem

Au = f in Ω, u = 0 on ∂Ω, (15.8.5)

if ∫
aα(x,∇lu)Dαϕdx =

∫
fϕdx (15.8.6)

for all ϕ ∈ C∞
0 (Ω).

Lemma 1. Suppose that (15.8.4) for some q ≥ 1 and for all v ∈ C∞
0 (Ω).

Then, for any f ∈ Lq′ (Ω) there exists a unique solution of (15.8.5).

Proof. Let {Ωk} be an expanding sequence of bounded open sets such
that Ω̄k ⊂ Ωk+1 and

⋃
k Ωk = Ω. We introduce a sequence {uk} of solutions

of the problem

Auk = 0 in Ωk, uk = 0 on ∂Ωk. (15.8.7)

Such solutions exist by the Leray–Lions theorem (see [488]). Since uk ∈
L̊l

p(Ωk), we have
∫
aα(x,∇luk)Dαuk dx =

∫
fuk dx (15.8.8)

with uk extended by zero outside Ωk. Hence

‖∇luk‖p−1
p ≤ C‖f‖q′ , ‖uk‖p−1

q ≤ Cp‖f‖q′ . (15.8.9)
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Let {vk} be a subsequence of {uk} weakly converging both in L̊l
p(Ω) and

in Lq(Ω). If u is the weak limit of {vk}, it follows that

lim
k→∞

∫
aα(x,∇lu)

(
Dαvk −Dαu

)
dx = 0. (15.8.10)

By (15.8.8), ∫
aα(x,∇lvk)Dαvk dx→

∫
fu dx. (15.8.11)

Let wm ∈ C∞
0 (Ω), wm → u in Ll

p(Ω). Since suppwm ⊂ Ωk for a fixed m and
sufficiently large k, we obtain

∫
aα(x,∇lvk)Dαu dx =

∫
aα(x,∇lvk)Dα(u− wm) dx+

∫
fωm dx.

This and (15.8.8) imply

lim sup
k→∞

∣∣∣∣
∫
aα(x,∇lvk)Dαu dx−

∫
fu dx

∣∣∣∣
≤ cλ lim sup

k→∞
‖∇lvk‖p−1

p

∥∥∇l(u− wm)
∥∥
p

+
∣∣∣∣
∫
f(u− wm)dx

∣∣∣∣
≤ ‖f‖q′

(
cλC

∥∥∇l(u− wm)
∥∥
p

+ ‖u− wm‖q
)
.

Thus ∫
aα(x,∇lvk)Dαu dx→

∫
fu dx,

which together with (15.8.10) and (15.8.11) gives

Jk =
∫ (
aα(x,∇lvk) − aα(x,∇lu)

)(
Dαvk −Dαu

)
dx→ 0.

Next we take a subsequence {wk} of the sequence {vk} such that

lim
k→∞

[
aα
(
x,∇lwk(x)

)
− aα

(
x,∇lu(x)

)](
Dαwk(x) −Dαu(x)

)
= 0 (15.8.12)

for almost all x ∈ Ω. Let x be a point where (15.8.12) holds, let ξ∗ be the
limit of ∇lwk(x), and ξ = ∇lu(x). We show that |ξ∗| <∞. In fact,

(
aα(x,∇lwk) − aα(x,∇lu)

)(
Dαwk −Dαu

)
≥ aα(x,∇lwk)Dαwk − c

(
|∇lwk|p−1 + |∇lwk| + 1

)
.

Under the assumption ξ∗ = ∞ we find

aα
(
x,∇lwk(x)

)
Dαwk(x) →∞,

which contradicts (15.8.12). Since aα(x, y) is continuous in y, we have [aα(x,
ξ∗) − aα(x, ξ)](ξ∗ − ξ) = 0. Therefore, ξ∗ = ξ, that is,
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∇lwk(x) → ∇lu(x), aα
(
x,∇lwk(x)

)
→ aα

(
x,∇lu(x)

)
,

almost everywhere. Next we use the following simple property (see Leray and
Lions [488]): If gk, g ∈ Lp(Ω), ‖gk‖p ≤ c and gk → g almost everywhere in
Ω, it follows that gk → g weakly in Lp(Ω). This implies that aα(x,∇lwk) →
aα(x,∇lu) weakly in Lp(Ω). Hence

∫
aα(x,∇lu)Dαw dx = lim

k→∞

∫
aα(x,∇lwk)Dαw dx

for any w ∈ C∞
0 (Ω). Taking into account that supp w ⊂ Ωk for large enough

k, we see that ∫
aα(x,∇lwk)Dαw dx =

∫
fw dx.

Thus, u is a solution of the equation Au = f .
Let u1,u2 be two solutions of the problem (15.8.5). Since (u1−u2) ∈ L̊l

p(Ω),
we have ∫

aα(x,∇lui)Dα(u1 − u2) dx =
∫
f(u1 − u2) dx

with i = 1, 2 and therefore,
∫ [
aα(x,∇lu1) − aα(x,∇lu2)

](
Dαu1 −Dαu2

)
dx = 0.

This and (15.8.3) imply that u1 = u2 almost everywhere in Ω. The Lemma is
proved.

Now we prove a converse assertion.

Lemma 2. If (15.8.5) is solvable for any f ∈ Lq′ (Ω), then (15.8.4) holds
for all v ∈ C∞

0 (Ω).1

Proof. Let v ∈ C∞
0 (Ω) with ‖v‖L̊l

p(Ω) = 1. The functional

v(f) =
∫
fv dx,

defined on Lq′ (Ω), can be written in the form

v(f) =
∫
aα(x,∇lu)Dαv dx,

where u ∈ L̊l
p(Ω) ∩ L(Ω, loc). Hence

∣∣v(f)∣∣ ≤ c λ‖∇lu‖p−1
p ,

and the functionals v(f) are bounded for each f ∈ Lp(Ω). Therefore, the
norms of v(f) are uniformly bounded and (15.8.4) holds.
1 Note that Lemma 2 holds without the condition (15.8.3).
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Combining Lemmas 1 and 2 with Theorem 14.1.2, we arrive at the follow-
ing assertion.

Theorem. Let q ∈ [p, pn/(n− pl)] for n ≥ pl, and q ∈ [p,∞] for n > pl.
The problem (15.8.5) is solvable for any f ∈ Lq′ (Ω) if and only if Ω satisfies
one of the conditions:
1. For certain d > 0 and n > pl

inf
Qd

Cap
(
Q̄d ∩ CΩ, L̊l

p

)
> 0

with the infimum here and below taken over all cubes Qd with edge length d.
2. For certain d > 0 and n = pl

inf
Qd

Cap
(
Q̄d ∩ CΩ, L̊l

p(Q2d)
)
> 0.

3. The set Ω does not contain large cubes if n < pl and the complement of
Ω is connected if n = pl.

15.8.2 A Weighted Multiplicative Inequality

The goal of this subsection is to prove the following auxiliary fact.

Proposition. Let ω be an open subset of R
n and let u and z be functions

in Ll
p(ω) ∩ L∞(ω) such that the product uz has a compact support. Then

∥∥zm∇mu
∥∥

pl
m

≤ c‖u‖1− m
l∞
∥∥zl∇lu

∥∥m
l

p
+ c‖u‖∞‖∇z‖mpl , (15.8.13)

where m = 1, 2, . . . , l− 1, and c is a constant depending only on m, l, and p.

The proof is based on the next two lemmas.

Lemma 1. Let a0, a1, . . . , al, A be nonnegative numbers satisfying the
inequality

ak ≤ C1

(
a
1/2
k−1a

1/2
k + ak−1A

)
(15.8.14)

for k = 1, 2, . . . , l. Then

ak ≤ C2

(
a
1/(k+1)
0 a

k
k+1
k+1 + a0A

k
)

(15.8.15)

and therefore,

ak ≤ C3

(
a

l−k
k

0 a
k
l

l + a0A
k
)
. (15.8.16)

Here C1, C2, and C3 are constants depending on l.

Proof. The result follows by induction.

Lemma 2. For all functions v and z given on R and such that v′ and
z are absolutely continuous, and the support of vz is compact, the following
inequality holds:



726 15 Embedding of the Space L̊l
p(Ω) into Other Function Spaces

〈
v′|z|γ

〉
q
γ

≤ C
(〈
v′ ′|z|γ+1

〉1/2
q

γ+1
+
〈
v|z|γ−1

〉
q

γ+1
〈z′〉q

)
, (15.8.17)

where 〈·〉p is the norm in Lp(R), γ ≥ 1, q > γ + 1, and C is a constant
depending only on γ and q.

Proof. It may be assumed that
〈
v′ ′|z|γ+1

〉
q

γ+1
<∞.

We introduce the notation

b0 =
∫

|v|
q

γ−1 |z|q dx, b1 =
∫

|v′|
q
γ |z|q dx,

b2 =
∫

|v′ ′|
q

γ+1 |z|q dx, b =
∫

|z′|q dx.

(The integration is carried out over R.)

We first examine the case q < 2γ. Let δ = q(2γ−q)
2γ(γ−1) , and let ε be an arbitrary

positive number. By the Hölder inequality

b1 =
∫ (

|v|+ ε
)δ |v′|

q
γ

(|v| + ε)δ |z|
q dx

≤
(∫ (

|v| + ε
) q

γ−1 |z|q dx
)1− q

2γ
(∫ |v′|2|z|q

(|v|+ ε)
2γ−q
γ−1

dx
) q

2γ

. (15.8.18)

Integrating by parts, we find that the last integral is not greater than

c

∫ (
|v| + ε

)1− 2γ−q
γ−1 |v′ ′||z|q dx+ c

∫ (
|v| + ε

)1− 2γ−q
γ−1 |v′||z′||z|q−1 dx.

We denote these integrals by i1 and i2 and estimate them with the aid of the
Hölder inequality:

i1 ≤
(∫

|v′ ′|
q

γ+1 |z|q dx
) γ+1

q
(∫ (

|v|+ ε
) q

γ−1 |z|q dx
) q−γ−1

q
ε→0−−−→ b

γ+1
q

2 b
1− γ

q

0 ,

i2 ≤
(∫

|v′|
q
γ |z|q dx

) γ
q
(∫ (

|v|+ ε
) q

γ−1 |z|q dx
) q−γ−1

q

×
(∫

|z′|q dx
) 1

q
ε→0−−−→ b

γ
q

1 b
1− γ+1

q

0 b
1
q ,

and these estimates combined with (15.8.18) imply the estimate (15.8.17).
Let q ≥ 2γ. After integration by parts in b1 we obtain

b1 ≤ c
∫

|vv′ ′||v′|
q
γ −2|z|q dx+ c

∫
|v||v′|

q
γ−1 |z′||z|q−1 dx.
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We apply the triple Hölder inequality with exponents p1 = q
q−2γ , p2 = q

γ−1 ,
and p3 = q

γ+1 to the first integral on the right-hand side. We estimate the
second integral by means of the same inequality with exponents p1 = q

q−γ ,
p2 = q

γ−1 , and p3 = q. Then

b1 ≤ c
(
b
1− 2γ

q

1 b
γ−1

q

0 b
γ+1

q

2 + b
1− γ

q

1 b
γ−1

q
o b

1
q
)
.

This proves the lemma. �

Now we are in a position to justify (15.8.13).

Proof of Proposition. Let q > m+ 1. By Lemma 2 we have

∥∥zm∇mu
∥∥

q
m

≤ c
∥∥zm+1∇m+1u

∥∥ 1
2

q
m+1

∥∥zm−1∇m−1u
∥∥ 1

2
q

m−1

+ c
∥∥zm−1∇m−1u

∥∥
q

m−1
‖∇z‖q. (15.8.19)

Hence, by Lemma 1 we arrive at (15.8.13). �

15.8.3 Uniqueness of a Solution to the Dirichlet Problem with an
Exceptional Set for Equations of Arbitrary Order

Let Ω be a bounded open set in R
n with smooth boundary ∂Ω and let e be

a compact subset of ∂Ω. We say that a function u given on Ω belongs to the
space Ll

p(Ω, e, loc) if, for any open set ω ⊂ Ω with ω̄ ∩ e = ∅, u ∈ Ll
p(ω, loc).

Let L̊l
p(Ω, e, loc) be the set of functions u in Ll

p(Ω, e, loc) such that for any
open set ω ⊂ Ω with ω̄ ∩ e = ∅, u is a W l

p(Ω)-limit of a sequence of functions
in W l

p(Ω) vanishing near ∂ω ∩ ∂Ω.

Lemma 1. Let ξ ∈ M(e,Rn) and let u ∈ L̊l
p(Ω, e, loc) ∩ L∞(Ω). Then

c
∥∥(1 − ξ)m∇mu

∥∥
pl
m

≤ ‖u‖1− m
l∞
∥∥(1− ξ)l∇lu

∥∥m
l

p
+ ‖u‖∞‖∇lξ‖

m
l
p (15.8.20)

with m = 1, . . . , l − 1. Here and elsewhere in this subsection by c we mean
positive constants depending only on p, m, and l.

Proof. The result follows from (15.8.13) combined with the Gagliardo–
Nirenberg inequality (1.8.1), where j = m and u = ξ. �

We say that u is a bounded solution of the Dirichlet problem for (15.8.1)
with an exceptional compact set e ⊂ ∂Ω if u ∈ L̊l

p(Ω, e, loc)∩L∞(Ω) and, for
all ϕ ∈ L̊l

p(Ω) ∩ L∞(Ω) vanishing in a neighborhood of e,
∫
aα(x,∇lu)Dαϕdx =

∫
fϕdx, f ∈ L1(Ω). (15.8.21)
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Lemma 2. Let ξ ∈ P(e,Rn), where P is the class of functions introduced
in Remark 13.3. Also let u be a solution of the Dirichlet problem with an
exceptional set e such that u ∈ L̊l

p(Ω, e, loc) ∩ L∞(Ω). Then

c
∥∥(1 − ξ)l∇lu

∥∥
p
≤ ‖u‖∞‖∇lξ‖p + ‖u‖1/p

∞ ‖f‖1/p
1 , (15.8.22)

where c is a positive constant independent of u and ξ.

Proof. Let z = 1 − ξ. Setting ϕ = uzlp in (15.8.21), we find
∫
zlpaα(x,∇lu)Dαu dx

= −
∫
aα(x,∇lu)

∑
α≥β>0

α!
(α− β)!β!

Dα−βuDβ
(
zlp
)
dx

+
∫
fzlpu dx,

which together with (15.8.2) implies

c

∫
zlp|∇lu|p dx ≤

∫
|∇lu|p−1

l∑
k=1

|∇l−ku|
∣∣∇k

(
zlp
)∣∣dx+ ‖u‖∞‖f‖1.

Applying the Hölder inequality on the right-hand side, we obtain

c
∥∥zl∇lu

∥∥
p
≤
∥∥∥∥∥

l∑
k=1

zl−k|∇l−ku|
k∑

i=1

zk−i
∏

∑i
j=1 mj=k

|∇mjξ|
∥∥∥∥∥
p

+A,

where Ap = ‖u‖∞‖f‖1. The first term on the right-hand side does not exceed

c
l∑

k=1

∥∥zl−k∇l−ku
∥∥

pl
l−k

k∑
i=1

∏
∑i

j=1 mj=k

‖∇mjξ‖ lp
mj

.

By the Gagliardo–Nirenberg inequality (1.8.1) with j replaced by mj and
u by ξ we find

c
∥∥zl∇lu

∥∥
p
≤

l∑
k=1

‖∇lξ‖
k
l
p

∥∥zl−k∇l−ku
∥∥

pl
l−k

+A.

Using (15.8.20) with m = l − k, we arrive at

c
∥∥zl∇l−ku

∥∥
p
≤

l∑
k=1

‖∇lξ‖
k
l
p ‖u‖

k
l∞
∥∥zl∇lu

∥∥1− k
l

p

+ ‖u‖∞‖∇lξ‖p +A
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≤ ε
∥∥zl∇lu

∥∥
p

+ cε‖u‖∞‖∇lξ‖p +A

for all ε > 0. The estimate (15.8.22) is proved. �

Lemma 3. If e is a compact (p, l)-polar subset of ∂Ω and Π is a polyno-
mial of degree at most l − 1 from L̊l

p(Ω, e, loc) ∩ L∞(Ω), then Π ≡ 0.

Proof. Let Ω̄ ⊂ Qd. Since Cap(e, L̊l
p(Q2d)) = 0, it follows that cap(e,

L̊1
p(Q2d)) = 0. Let ε > 0 and let g be an open set such that e ⊂ g ⊂ Q2d

and Cap(g, L̊1
p(Q2d)) < ε. We cover ∂Ω\g by a finite number of open cubes qi

with qi∩e = ∅. By the monotonicity and semiadditivity of the (p, 1)-capacity
we have∑

i

cap
(
qi ∩ ∂Ω, L̊1

p(Q2d)
)

≥ cap
(
(∂Ω)\g, L̊1

p(Q2d)
)

≥ cap
(
∂Ω, L̊1

p(Q2d)
)
− cap

(
g, L̊1

p(Q2d)
)
≥ cap

(
∂Ω, L̊1

p(Q2d)
)
− ε

with a sufficiently small ε > 0. Therefore, there exists an open cube Qδ such
that

Q̄δ ∩ e = ∅, cap
(
Q̄δ ∩ ∂Ω, L̊1

p(Q2d)
)
> 0.

Let {um} be a sequence of functions in C∞(Q̄δ) vanishing in a neighborhood
of Q̄δ\Ω and converging to Π in W l

p(Qδ ∩Ω). Clearly,

‖∇lum‖Lp(Qδ) = ‖∇lum‖Lp(Qδ ∩Ω) → 0

as m → ∞. By Corollary 14.3.4 and Theorem 14.1.2 we have um → 1 in
Lp(Qδ ∩Ω). Hence Π = 0 on Qd ∩Ω and thus Π = 0 everywhere. �

Theorem. The Dirichlet problem for the equation (15.8.1) with an excep-
tional (p, l)-polar set has at most one bounded solution.

Proof. Let Ω̄ ⊃ Qd and let u and v be two bounded solutions of the
Dirichlet problem. Further, let z = 1 − ξ with ξ ∈ P(e,Q2d) (see Remark
13.3). Then

∫ [
aα(x,∇lu) − aα(x,∇lv)

]
Dα
(
zlp(u− v)

)
dx = 0

and hence

J
def=
∫
zlp
[
aα(x,∇lu) − aα(x,∇lv)

]
Dα(u− v) dx

= −
∫ [
aα(x,∇lu) − aα(x,∇lv)

]

×
∑

α≥β>0

α!
(α− β)!β!

Dα−β(u− v)Dβ
(
zlp
)
dx.
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This implies the inequality

J ≤ c
∑
α

(∥∥zl(p−1)aα(x,∇lu)
∥∥
p′ +

∥∥zl(p−1)aα(x,∇lv)
∥∥
p′

)

×
l∑

k=1

‖∇lξ‖
k
l
p

∥∥zl−k∇l−k(u− v)
∥∥

pl
l−k

.

By Lemma 1 we obtain

J ≤ c
(
‖zl∇lu‖p−1

p +
∥∥zl∇lv

∥∥p−1

p

) l∑
k=1

‖∇lξ‖
k
l
p

[
‖u− v‖

k
l∞
∥∥zl∇l(u− v)

∥∥1− k
l

p

+ ‖u− v‖∞‖∇lξ‖
1− k

l
p

]
.

Combining the condition u, v ∈ L∞(Ω) with Lemma 2, we see that the right-
hand side of the last inequality does not exceed F (‖∇lξ‖p)‖∇lξ‖1/l

p , where F
is a continuous function on [0,+∞). Let {ξk} be a sequence of functions in
P(e,Q2d) with ‖∇lξk‖Lp(Q2d) → 0. Then

lim
k→∞

∫
(1 − ξk)lp

[
aα(x,∇lu) − aα(x,∇lv)

]
Dα(u− v) dx = 0.

Since ξk → 0 in measure, it follows that
∫ [
aα(x,∇lu) − aα(x,∇lv)

]
Dα(u− v) dx = 0

and hence ∇l(u− v) = 0. Thus we find that u− v is a polynomial of a degree
at most l − 1 and therefore, by Lemma 3, u = v. The theorem is proved.

15.8.4 Uniqueness of a Solution to the Neumann Problem for
Quasilinear Second-Order Equation

Let Ω be an open bounded set in R
n. Consider the second-order equation

(15.8.1), that is, the equation

− ∂

∂xi

(
ai(x,∇u)

)
= f, f ∈ L(Ω), (15.8.23)

with coefficients satisfying (15.8.2) and (15.8.3).
Let e be a closed subset of ∂Ω. We say that a function u ∈ L1

p(Ω, e, loc) is a
bounded solution of the Neumann problem for (15.8.23) with the exceptional
set e if u ∈ L∞(Ω) and for all ϕ ∈ L1

p(Ω)∩L∞(Ω) vanishing in a neighborhood
of e, ∫

ai(x,∇u)
∂ϕ

∂xi
dx =

∫
fϕdx. (15.8.24)
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Lemma. Let z ∈ C∞(Rn), z ≥ 0, and let z = 0 in a neighborhood of
e ⊂ ∂Ω. For any bounded solution of the Neumann problem for (15.8.23) with
the exceptional set e the inequality

∫
zp|∇u|p dx ≤ c oscu‖z‖p∞‖f‖1 + c(oscu)p‖∇z‖pp (15.8.25)

holds.

Proof. We put
ϕ = zp(u− C), C = const,

in (15.8.24). Then
∫
zpai(x,∇u)

∂u

∂xi
dx

≤ ‖u− C‖∞‖z‖p∞‖f‖1 + p‖u− C‖∞

∫
zp−1

∣∣∣∣ai(x,∇u) ∂z∂xi
∣∣∣∣dx.

The result follows by (15.8.2) and Hölder’s inequality.

Corollary. Let e be a closed (p, 1)-polar subset of ∂Ω and let u be a
bounded solution of the Neumann problem for (15.8.23) with the exceptional
set e. Then u ∈ L1

p(Ω).

Proof. Let Ω̄ ⊂ Qd and let {ξk} be a sequence of functions in P(e,Q2d)
with ‖ξk‖Lp(Q2d) → 0. By (15.8.25) with z = 1 − ξk we have

lim sup
k→∞

∫
(1 − ξk)p|∇u|p dx ≤ c oscu‖f‖1.

Since ξk → 0 in measure, we conclude that
∫

|∇u|p dx ≤ c oscu‖f‖1. (15.8.26)

The corollary is proved.

Theorem 1. The difference of any two bounded solutions of the Neumann
problem for (15.8.23) with an exceptional (p, 1)-polar set is a constant.

Proof. Let u and v be two solutions. For any z in C∞(Rn), z ≥ 0, vanishing
in a neighborhood of e, we have

∫ [
ai(x,∇u) − ai(x,∇v)

] ∂
∂xi

[
(u− v)zp

]
dx = 0.

Hence ∫
zp
[
ai(x,∇u) − ai(x,∇v)

] ∂
∂xi

(u− v) dx
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≤ p‖u− v‖∞‖
[
ai(x,∇u) − ai(x,∇v)

]
zp−1‖p′‖∇z‖p

≤ p‖u− v‖∞
(
‖z∇u‖p−1

p + ‖z∇v‖p−1
p

)
‖∇z‖p. (15.8.27)

Let Ω̄ ⊃ Qd and let {zk} be a sequence of functions in P(e,Q2d) with
‖∇zk‖Lp(Qd) → 0. Passing to the limit in (15.8.27) and using (15.8.26), we
arrive at ∫ [

ai(x,∇u) − ai(x,∇v)
] ∂
∂xi

(u− v) dx = 0.

Thus u− v = const.

Definition. Let e be a compact subset of ∂Ω. By W̊ 1
p (Ω, e) we denote

the completion in W 1
p (Ω) of the set of functions in W 1

p (Ω) vanishing in a
neighborhood of e.

The next theorem also concerns (15.8.23). Under an additional assumption
on ∂Ω we prove the necessity of the (p, 1)-polarity of e.

Theorem 2. Let Ω be the image of a cube under a bi-Lipschitz mapping.
If the Neumann problem for (15.8.23) with an exceptional set e has the only
bounded solution u ≡ const, then e is a (p, 1)-polar set.

Proof. Let Ω̄ ⊂ Qd. Suppose that cap(e, L̊1
p(Qd)) > 0. We introduce two

compact sets e1 and e2 with

e1 ∩ e2 = ∅, ei ⊂ e, cap
(
ei, L̊

1
p(Qd)

)
> 0 (i = 1, 2).

(The existence of such sets easily follows from the semi-additivity of the (p, 1)-
capacity.) Let ω be a neighborhood of e with the properties ω̄ ⊂ Qd and
e2∩ ω̄ = ∅ and let h ∈ P(e, ω). By the Leray–Lions theorem (see [488]), there
exists u ∈W 1

p (Ω) with u− h ∈ W̊ 1
p (Ω, e1 ∪ e2), such that

∫
ai(x,∇u)

∂ϕ

∂xi
dx = 0 (15.8.28)

for all ϕ ∈ W̊ 1
p (Ω, e1 ∪ e2). Since the functions in W 1

p (Ω) are absolutely con-
tinuous on almost all straight lines parallel to the coordinate axes, it can be
easily shown that both (u − 1)+ and u− belong to W̊ 1

p (Ω, e1 ∪ e2). Plugging
them into (15.8.28) as ϕ and using (15.8.2), we find that 0 ≤ u ≤ 1 almost
everywhere in Ω. Together with (15.8.28) this implies that u is a bounded
solution of the Neumann problem with the exceptional set e1 ∪ e2 ⊂ e.

It remains to prove that u1 is a constant. Since u ∈ W̊ 1
p (Ω, e2) and

cap(e2, L̊1
p(Qd)) > 0 it follows from Theorem 14.1.2 that

‖u‖p ≤ C‖∇u‖p.

Hence there exists a constant C1 independent of u such that

‖u‖W 1
p (Ω) ≤ C1‖∇u‖p.
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The assumption that Ω is a Lipschitz image of a cube implies the existence
of an extension v of u onto Qd with the properties v − h ∈ W̊ 1

p (Qd, e1) and

‖∇v‖Lp(Qd) ≤ C2‖u‖W 1
p (Ω).

Therefore,

0 < cap
(
e1, L̊

1
p(Qd)

)
≤ ‖∇v‖pLp(Qd) ≤ (C1C2)p‖∇u‖pp

and u = const. The theorem is proved.

15.9 Comments to Chap. 15

Sections 15.1, 15.2. In [234] Deny and Lions studied the orthogonal projec-
tion method with respect to the Dirichlet problem for the Laplace operator.
In particular, they gave the following description of the sets Ω satisfying
L̊1

2(Ω) ⊂ D ′(Ω). This embedding occurs for n ≥ 3 for arbitrary set Ω, for
n = 2 if the 2-capacity of CΩ is positive and for n = 1 if CΩ �= ∅.

For integers l the problem of the embedding L̊l
2(Ω) ⊂ D ′(Ω) was solved

by Hörmander and Lions [385]. Their result was formulated in terms of (2, l)-
polarity. In the author’s paper [535] it was noted that the conditions of the
Hörmander and Lions theorem can be restated in terms of the l-harmonic
capacity.

Our proof of Theorem 15.2 follows the paper by Khvoles and the au-
thor [570], where the next result is obtained.

Let p > 1, l > 0 and let h̊lp(Ω) be the completion of D(Ω) with respect to
the norm ‖(−Δ)l/2u‖Lp(Rn) (in particular, h̊lp(Ω) = L̊l

p(Ω) for integer l).

Theorem. The space h̊lp(Ω) is embedded into D ′(Ω) if and only if one of
the following conditions is valid:

1. n > pl; 2. cap(CΩ,H l
p) > 0, if n = pl; 3. CΩ �= ∅ if n < p l and

l − n/p is noninteger; 4. either cap(CΩ,Hn/p
p ) > 0 or CΩ does not lie in a

(n− 1)-dimensional hyperplane, if n < pl, l − n/p is noninteger.

Sections 15.3–15.6. The results of these sections are due to the au-
thor [544, 546, 549]. A proof of Theorem 15.4.2/1, based upon polynomial
capacities in Chap. 14, was proposed by Wannebo [784].

A topic close to the theme of this chapter, but not treated here, is the
question of the validity of the Hardy-type inequality
∫
Ω

∣∣u(x)∣∣p dx
[dist(x, ∂Ω)]p

≤ cp
∫
Ω

∣∣∇u(x)∣∣p dx for all u ∈ C∞
0 (Ω), (15.9.1)

and its generalizations, under minimal restrictions on Ω. Let, for brevity,
d = dist(x, ∂Ω). Corollary 2.3.4 shows that (15.9.1) holds if and only if for all
compact subsets F of Ω
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∫
F

dx
dp

≤ const capp(F,Ω). (15.9.2)

Moreover, the best constant cp in (15.9.1) satisfies

(p− 1)p−1

pp
≤ sup

F

∫
F
d−p dx

capp(F,Ω)
≤ cp.

Since (15.9.1) results from the inequality
∫
Ω

|u|dx
dp

≤ c0
∫
Ω

|∇u| dx
dp−1

,

by changing u for |v|p−1v, the following sufficient condition for (15.9.1) is
a consequence of Theorem 2.1.3. For all bounded open sets g with smooth
boundaries and closures ḡ ⊂ Ω, the weighted isoperimetric inequality holds:

∫
g

dx
dp

≤ c0
∫
∂g

ds
dp−1

,

and the best constant in (15.9.1) is subject to the inequality

cp ≤ pp sup
g

∫
g
d−p dx∫

∂g
d1−p ds

.

A different approach to the characterization of (15.9.1) for general domains
was initiated by Ancona [47] and developed by Lewis [493]. They proved
(15.9.1) for the so-called uniformly p-thick domains, which means that for
every x ∈ CΩ and for all � > 0

capp

(
B̄(x, �)\Ω,B(x, 2�)

)
≥ const capp

(
B̄(x, �), B(x, 2�)

)
.

Due to Ancona (n = 2) and Lewis (n ≥ 2), the uniform thickness condition is
equivalent to (15.9.1) in the critical case p = n.

A comprehensive survey of further development of this area, together with
new results, can be found in Kinnunen and Korte [424]. We only give a list of
publications related to the topic: Mikkonen [602]; Wannebo [784–786]; Haj�lasz
[339]; Sugawa [732]; Björn, MacManus, and Shanmugalingam [106]; Calude
and Pavlov [164]; Korte and Shanmugalingam [453]; Laptev and A. Sobolev
[480]; et al. To this we add that in [785], Wannebo studied the generalized
Hardy inequality

m∑
k=0

∫
|∇ku|p dt−(m−k)p dx ≤ c

∫
|∇mu|p dt dx,

where u ∈ C∞
0 (Ω) and t is less than some small positive number. He obtained

a sufficient condition on Ω formulated in terms of the polynomial capacity
Capm−1.
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For Hardy inequalities of type (15.9.1) of fractional order α ∈ (0, 1) we
refer to Rafeiro and Samko [669]. The authors show that such an inequality
holds under the additional assumption

inf
x∈∂Ω

mn

(
B(x, r) \Ω

)
≥ Crn

if and only if a certain property of Ω (related to a property of χΩ to be a
pointwise multiplier in the space of the Riesz potentials of order α) holds.

Sections 15.7–15.8. The presented scheme of applications of integral
inequalities to boundary value problems in variational form is well known
(see, for instance, Deny and Lions [234], Lions and Magenes [500], Leray and
Lions [488]). The results in these sections are due to the author.

The criterion for the discreteness of the spectrum of the Dirichlet prob-
lem for the Laplace operator (Theorem 15.7.3 for l = 1) was found by
Molchanov [610]. It was improved by the author and Shubin in [590] (see
Chapter 18 of the present book). For any integer l, Theorem 15.7.3 was proved
by the author [533]. Similar results for more general operators are presented
in Sect. 16.5.

The unique solvability of the Dirichlet problem for the operator B (see
Sect. 15.7.4) in domains with small (2, l) inner diameter (which is under-
stood in a sense different from ours) was shown by Kondratiev [448, 449]
(see the Comments to Sect. 14.2). Among other applications of the results of
Chap. 14 to the theory of elliptic equations we list the following: theorems
of the Phragmèn–Lindelöf type for elliptic equations of arbitrary order (see
Landis [476]), estimates for eigenvalues of the operator of the Dirichlet prob-
lem in an unbounded domain (see Rozenblum [683] and Otelbaev [652, 653]),
necessary and sufficient conditions for the Wiener regularity of a boundary
point with respect to higher-order elliptic equations (see Maz’ya [559]).

Applications of the results of Chaps. 14 and 15 to the quasilinear elliptic
equations given in Sect. 15.8 are due to the author [540].

The weighted multiplicative inequality (15.8.13) was proved in Maz’ya
[542].
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Embedding L̊l
p(Ω, ν) ⊂ W m

r (Ω)

In this chapter we denote by L̊l
p(Ω, ν) the completion of D(Ω) with respect

to the metric
‖∇lu‖Lp(Ω) + ‖u‖Lp(Ω,ν),

where p > 1, Ω is an open set in R
n and ν is a measure in Ω.

For instance, in Sect. 16.2 we show that the space D(Ω) equipped with
the norm L̊l

p(R
n, ν) is continuously embedded into Lp(Rn) if and only if

inf
{e}
ν(Qd\e) ≥ const > 0 (16.0.1)

for any cube Qd with sufficiently large edge length d. Here {e} is the collection
of all subsets of the cube Qd with small enough capacity cap(e, L̊l

p(Q2d)). The
corresponding embedding operator is compact if and only if condition (16.0.1)
holds and inf{e} ν(Qd\e) tends to infinity as the cube Qd tends to infinity
(Sect. 16.3).

In Sect. 16.4 we study the closability of certain embedding operators. One
of the theorems in this section asserts that the identity operator defined on
D(Ω) and acting from Lp(Ω, ν) into L̊l

p(Ω) is closable if and only if the mea-
sure ν is absolutely continuous with respect to the (p, l)-capacity. In Sect. 16.5
the previously proved criteria are reformulated for p = 2 as necessary and suf-
ficient conditions for the positive definiteness and for the discreteness of the
spectrum of the selfadjoint elliptic operator generated by the quadratic form

∫
Ω

∑
|α|=|β|=l

aαβ(x)DαuDβu dx+
∫
Ω

|u|2 dν, u ∈ D(Ω).

16.1 Auxiliary Assertions

Lemma 1. For any u ∈ C∞(Q̄d) we have

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 16, c© Springer-Verlag Berlin Heidelberg 2011

737

http://dx.doi.org/10.1007/978-3-642-15564-2_16
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‖u‖pLp(Qd) ≤ cλ
−1dpl u p

p,l,Qd
+

cdn

inf ν(Qd\e)
‖u‖pLp(Qd,ν), (16.1.1)

where ν is a measure in Qd, the infimum is taken over all compacta e ⊂ Q̄d

with cap(e, L̊l
p(Q2d)) ≤ λdn−pl (λ is an arbitrary constant), and the seminorm

· p,l,Qd
is that introduced in 14.1.2.

Proof. We assume that the average value ūQd
of the function u in Qd is

nonnegative and put

2τ = d−n/p‖u‖Lp(Qd), eτ =
{
x ∈ Q̄d : u(x) ≤ τ

}
.

Obviously,
‖u‖Lp(Qd) ≤ ‖u− τ‖Lp(Qd) + τdn/p

and hence
‖u‖Lp(Qd) ≤ 2‖u− τ‖Lp(Qd). (16.1.2)

First consider the case cap(eτ , L̊l
p(Q2d)) > λdn−pl. If ūQd

≥ τ , then ap-
plying Theorem 14.1.3 to the function u− τ and using (16.1.2) we deduce the
estimate

‖u‖pLp(Qd) ≤ cλ
−1dpl u p

p,l,Qd
. (16.1.3)

Further, if ūQd
< τ , then by virtue of the inequality

‖u− ūQd
‖Lp(Qd) ≤ cd‖∇u‖Lp(Qd),

we obtain

‖u‖Lp(Qd) ≤ 2
(
‖u‖Lp(Qd) − ūQd

dn/p
)
≤ 2cd‖∇u‖Lp(Qd).

(Here we used the fact that ūQd
≥ 0.) So, for cap(eτ , L̊l

p(Q2d)) > λdn−pl the
estimate (16.1.3) is valid. In the case cap(eτ , L̊l

p(Q2d)) ≤ λdn−pl we have

‖u‖pLp(Qd) = 2pdnτp ≤ 2pdn

ν(Qd\eτ )

∫
Qd \eτ

|u|p dν ≤ 2pdn

inf ν(Qd\e)
‖u‖pLp(Qd,ν).

This and (16.1.3) imply (16.1.1). �

Lemma 2. Let E be a compact subset of Q̄d with

cap
(
E, L̊l

p(Q2d)
)
< μdn−pl, (16.1.4)

where μ is a sufficiently small positive constant which depends only on n, p,
and l. Then

inf
u∈C∞

0 (Qd \e)

‖u‖L̊l
p(Rn,ν)

‖u‖Lp(Rn)
≤ c
(
d−l + dn/pν(Qd\e)1/p

)
. (16.1.5)
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Proof. Clearly, it suffices to consider the case d = 1. By Remark 13.3 there
exists a ϕ ∈ P(e,Q2) such that 0 ≤ ϕ ≤ 1 and

‖∇lϕ‖Lp(Rn) ≤ c0μ1/p. (16.1.6)

Let ω be an arbitrary function in C∞
0 (Q1) that is equal to unity on Q1/2 and

satisfies 0 ≤ ω ≤ 1. For the function u = ω(1 − ϕ), which is obviously in
C∞

0 (Q1\E), we obtain
∫
Q1

|u|p dν ≤ ν(Q1\E), (16.1.7)

‖∇lu‖Lp(Rn) ≤ c
(
‖∇lω‖Lp(Rn) + ‖∇l(ωϕ)‖Lp(Rn)

)
≤ c1 + c2‖∇lϕ‖Lp(Rn) ≤ c1 + c0c2μ1/p. (16.1.8)

We obtain the following lower bound for the norm of u in Lp:

‖u‖Lp(Rn) ≥ ‖ω‖Lp(Rn) − ‖ϕ‖Lp(Rn)

≥ 2−n/p − ‖∇lϕ‖Lp(Rn) sup
u∈C∞

0 (Q2)

‖u‖Lp(Rn)

‖∇lu‖Lp(Rn)
.

This and (16.1.6) along with the smallness of μ imply ‖u‖Lp(Rn) ≥ 2−1−n/p.
Combining this estimate with (16.1.7) and (16.1.8) we arrive at (16.1.5). The
lemma is proved. �

From the proof of Lemma 2 it follows that μ can be subjected to the
inequality

μ ≤ 2−n−pc−p
0 inf

u∈C∞
0 (Q2)

‖∇lu‖Lp(Rn)

‖u‖pLp(Rn)

, (16.1.9)

where c0 is the constant in (16.1.6).
In what follows in this chapter, the subsets of Qd that satisfy the inequality

Cap
(
e, L̊l

p(Q2d)
)
≤ γdn−pl,

where n ≥ pl, γ = μc−1
∗ , c∗ is the constant in (13.3.5), will be called (p, l)-

negligible (cf. Definition 14.1.1). As before for pl > n, by definition, the only
(p, l)-negligible set is the empty one.

Similar to Chap. 14, the collection of all (p, l)-negligible closed subsets of
the cube Q̄d will be denoted by N (Qd).

16.2 Continuity of the Embedding Operator
L̊l

p(Ω, ν) → W m
r (Ω)

Let Ω be an arbitrary open set R
n and let ν be a measure in Ω. We denote by

FΩ the set of all cubes Q̄d whose intersections with R
n\Ω are (p, l)-negligible.
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We introduce the number

D = Dp,l(ν,Ω) = sup
Q̄d ∈FΩ

{
d : dn−pl ≥ inf

e∈N (Qd)
ν(Q̄d\e)

}
. (16.2.1)

Obviously,D is a nondecreasing function of the set Ω. For ν = 0 the numberD
coincides with the (p, l) inner diameter of the set Ω, introduced in Sect. 14.2.

Theorem 1. Let 0 ≤ m ≤ l, p ≤ r <∞, l −m > n/p− n/r. Then
(a) The inequality

‖u‖Wm
r (Rn) ≤ C‖u‖L̊l

p(Ω,ν) (16.2.2)

is valid for all u ∈ C∞
0 (Ω) if and only if there exist positive constants d and

k such that
ν(Q̄d\E) ≥ k (16.2.3)

for all cubes Q̄d in FΩ and for all compacta E in N (Qd).
(b) The best constant in (16.2.2) satisfies the estimates

c−1C ≤ Dl−n(1/p−1/r) max
{
D−m, 1

}
≤ cC. (16.2.4)

Proof. We begin with the right inequality in (16.2.4) and with the necessity
of condition (16.2.3). From the definition of D it follows that for any ε > 0
there exists a cube Q̄d ∈ FΩ with

dn−pl ≥ inf
e∈N (Qd)

ν(Q̄d\e)

and with D ≥ d ≥ D − ε if D <∞, d > ε−1 if D = ∞.
Let e ∈ N (Qd). According to Corollary 13.3/2 the set E = e ∪ (Q̄d\Ω)

satisfies (16.1.4). By Lemma 16.1/2 we can find a function u ∈ C∞
0 (Qd\E)

such that

‖u‖L̊l
p(Ω,ν) ≤ c1

(
d−pl + d−nν(Q̄d\E)

)1/p‖u‖Lp(Qd)

≤ c2d
−l‖u‖Lp(Qd). (16.2.5)

Making use of the obvious inequalities

‖u‖Lp(Qd) ≤ c3 min
{
dn/p−n/r‖u‖Lr(Qd), d

n/p−n/r+m‖∇mu‖Lr(Rn)

}
≤ c4d

n/p−n/r min
{
1, dm

}
‖u‖Wm

r (Rn),

from (16.2.5) we obtain

‖u‖L̊l
p(Ω,ν) ≤ c5d

−l+n/p−n/r min
{
1, dm

}
‖u‖Wm

r (Rn).

Since ε is arbitrarily small, the right inequality in (16.2.4) is proved.
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If (16.2.2) holds then the right-hand side of (16.2.4) together with l > n/p−
n/r imply D <∞. In this case, for d = 2D and k = dn−pl we have (16.2.3).

Now we shall prove the sufficiency of (16.2.3) and the left inequality
in (16.2.4). Cover R

n by the cubic grid {Q̄d} where d is chosen to sat-
isfy (16.2.3). If the cube Qd has a (p, l)-essential intersection with R

n\Ω then,
by Theorem 14.1.2,

‖u‖pLp(Qd) ≤ cd
pl u p

p,l,Qd
.

On the other hand, if Q̄d\Ω /∈ N (Qd) then by Lemma 16.1/1

‖u‖pLp(Qd) ≤ cd
pl u p

p,l,Qd
+ ck−1dn‖u‖pLp(Qd,ν). (16.2.6)

Summing over all cubes of the grid, we obtain

‖u‖pLp(Ω) ≤ c
l∑

j=1

dpj‖∇ju‖pLp(Ω) + ck−1dn‖u‖pLp(Ω,ν). (16.2.7)

Applying (15.4.4) and Hölder’s inequality from (16.2.7) we obtain

‖u‖pLp(Ω) ≤ cd
pl‖∇lu‖pLp(Ω) + ck−1dn‖u‖pLp(Ω,ν). (16.2.8)

Since the embedding operator of W l
p into Wm

r is continuous, the sufficiency
of (16.2.3) is proved.

Let
R = max

{
d,
(
dnk−1

)1/pl}
.

Then by (16.2.8) we have

‖u‖Lp ≤ cRl‖u‖L̊l
p(Ω,ν),

which implies the following estimate for the best constant C in (16.2.2):

C ≤ c sup
u∈D

‖∇mu‖Lr + ‖u‖Lr

‖∇lu‖Lp +R−l‖u‖Lp

.

Replace u(x/R) by u. Then

C ≤ c sup
u∈D

R−m+n/r‖∇mu‖Lr +Rn/r‖u‖Lr

Rn/p−l(‖∇lu‖Lp + ‖u‖Lp)

≤ cRl−n/p+n/r max
{
R−m, 1

}
sup
u∈D

‖u‖Wm
r

‖u‖W l
p

. (16.2.9)

We may assume that D < ∞. The definition of D implies the validity
of (16.2.3) for d = 2D, k = dn−pl. Inserting λ = 2D into (16.2.9) we ar-
rive at the left inequality in (16.2.4). The theorem is proved. �
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Since for pl > n the only negligible set is the empty set, Theorem 1 can,
in this case, be restated in the following equivalent formulation without the
notion of capacity.

Theorem 2. Let pl > n, 0 ≤ m ≤ l, p ≤ r <∞, and l −m > n/p− n/r.
Then:

(a) Inequality (16.2.2) holds for all u ∈ D(Ω) if and only if the estimate
ν(Qd) > k is valid for some d > 0, k > 0 for all cubes Qd with Q̄d ⊂ Ω.

(b) The best constant C in (16.2.2) satisfies (16.2.4) with

D = Dp,l(ν,Ω) = sup
Q̄d ⊂Ω

{
d : dn−pl ≥ ν(Q̄d)

}
. (16.2.10)

Part (a) of Theorem 1 can also be simplified for pl = n when R
n\Ω is

connected.

Theorem 3. Let pl = n and let R
n\Ω be connected. Inequality (16.2.2) is

valid for all u ∈ D(Ω) if and only if there exist constants d > 0, k > 0 such
that (16.2.3) holds for all cubes Qd with Q̄d ⊂ Ω and for all (p, l)-negligible
compacta F ⊂ Q̄d.

Proof. We need only establish the sufficiency since the necessity is con-
tained in Theorem 1.

Let Q̄d be a cube of the coordinate grid having a nonempty intersection
with R

n\Ω. Then Q2d contains a continuum in R
n\Ω with a length not less

than d. So according to Proposition 13.1.2/2 we have

cap
(
Q̄2d\Ω, L̊l

p(Q4d)
)
≥ c.

This and Theorem 14.1.2 imply

‖u‖pLp(Qd) ≤ cd
pl u p

p,l,Qd
, u ∈ D(Ω). (16.2.11)

The latter estimate, applied to each cube Q̄d that intersects R
n\Ω, together

with inequality (16.2.6) for cubes Q̄d ⊂ Ω leads to (16.2.7). The further argu-
ments are just the same as in the proof of the sufficiency of condition (16.2.3)
in Theorem 1. The theorem is proved. �

16.3 Compactness of the Embedding Operator
L̊l

p(Ω, ν) → W m
r (Ω)

16.3.1 Essential Norm of the Embedding Operator

Let E be the identity mapping of the space C∞
0 (Ω) considered as an operator

from L̊l
p(Ω, ν) into Wm

r (Rn).
With E we associate its essential norm, i.e., the value
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� = �p,l,m = inf
{T }

‖E − T‖, (16.3.1)

where {T} is the set of all compact operators

L̊l
p(Ω, ν) →Wm

r (Rn).

Theorem. Let 0 ≤ m < l, p ≤ r <∞, l −m > n/p− n/r. Then:
(a) � <∞ if and only if D = Dp,l(ν,Ω) <∞;
(b) there exists a constant c > 1 such that

c−1� ≤
∞
Dl−n/p+n/r max

{∞
D−m, 1

}
≤ c� (16.3.2)

with
∞
D =

∞
Dp,l(ν,Ω) = lim

N→∞
Dp,l(ν,Ω\Q̄N ), (16.3.3)

where QN is a cube with center 0 and edge length N .

Proof. Part (a) follows from Theorem 16.2/1. We prove the left-hand
side of (16.3.2). Let TN be the operator of multiplication by η(N−1x),
N = 1, 2, . . . , where η ∈ C∞

0 (Q2) η = 1 on Q1. By Theorem 16.2/1, for
any u ∈ C∞

0 (Q2) we have

c−1‖u‖L̊l
p(Ω,ν) ≤ ‖∇lu‖Lp +D−l‖u‖Lp + ‖u‖Lp(Ω,ν) ≤ c‖u‖L̊l

p(Ω,ν). (16.3.4)

Hence if N ≥ D then

‖TN‖L̊l
p(Ω,ν)→L̊l

p(Ω,ν) ≤ c. (16.3.5)

From (16.3.4) and the well-known compactness theorem it follows that the
mapping TN : L̊l

p(Ω, ν) → Wm
r is compact. Applying Theorem 16.2/1 to the

set Ω\Q̄N we obtain for any u ∈ C∞
0 (Ω) that

∥∥(E − TN )
∥∥
Wm

r
≤ cDl−n/p+n/r

N max
{
D−m

N , 1
}∥∥(E − TN )u

∥∥
Ll

p(Ω,ν)
,

where DN = Dp,l(ν,Ω\Q̄N ). Hence, using (16.3.5) and passing to the limit as
N → ∞, we arrive at the left inequality in (16.3.2).

We prove the right inequality in (16.3.2). We may assume that
∞
D �= 0.

Obviously D1 ≥ D2 ≥ · · · ≥
∞
D. Using the same arguments as in the proof of

the right inequality (16.3.4), for any large enough number N we construct a
function uN ∈ C∞

0 (Ω\Q̄N ) with the diameter of the support not exceeding
2

∞
D and such that

‖uN‖L̊l
p(Ω,ν) ≤ c

∞
D−l, ‖uN‖Lp = 1. (16.3.6)

Obviously,
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‖uN‖Lp =
∞
Dn/p‖G∞

D
uN‖Lp

≤ c1
∞
Dn/p min{‖G∞

D
un‖Lr , ‖∇mG∞

D
uN‖Lr}, (16.3.7)

where Ga is the operator defined by (Gau)(x) = u(ax). We choose a sequence
{Ni}i≥1 so that the distance between the supports of uNi and uNj (i �= j) is
more than 2

√
n

∞
D. From (16.3.6) and (16.3.7) we obtain

1 ≤ c2
∞
Dn/p min

{∥∥G∞
D

(uNj − uNi)
∥∥
Lr
,
∥∥∇mG∞

D
(uNi − uNj )

∥∥
Lr

}
≤ c3

∞
Dn/p−n/r min

{∞
Dm, 1

}
‖uNi − uNj‖Wm

r
. (16.3.8)

We denote an arbitrary compact operator by T : L̊l
p(Ω, ν) → Wm

r . Pass-
ing, if necessary, to a subsequence we may assume that the sequence {TuNi}
converges in Wm

r . Further,
∥∥(E − T )(uNi − uNj )

∥∥
Wm

r
≥ ‖uNi − uNj‖Wm

r
−
∥∥T (uNi − uNj )

∥∥
Wm

r
,

which along with (16.3.8) shows that

c5 lim sup
Ni,Nj →∞

∥∥(E − T )(uNi − uNj )
∥∥
Wm

r
≥

∞
Dl−n/p+n/r max

{∞
D−m, 1

}
.

This and (16.3.6) imply

c6‖E − T‖L̊l
p(Ω,ν)→Wm

r
≥

∞
Dl−n/p+n/r max

{∞
D−m, 1

}
.

The proof is complete. �

16.3.2 Criteria for Compactness

From Theorem 16.3.1 we immediately obtain the following criterion.

Theorem 1. Let 0 ≤ m ≤ l, p ≤ r <∞, and l−m > n(p−1 − r−1). Then
the set

F =
{
u ∈ D(Ω) : ‖u‖L̊l

p(Ω,ν) ≤ 1
}

is relatively compact in Wm
r if and only if D = Dp,l(ν,Ω) <∞ and

lim
N→∞

Dp,l(ν,Ω\Q̄N ) = 0.

The preceding theorem admits the equivalent formulation.

Theorem 2. Let 0 ≤ m ≤ l, p ≤ r <∞, l−m > n(p−1 − r−1). Then the
set F is relatively compact in Wm

r if and only if :
(a) there exist positive constants d0 and k such that inequality (16.2.3) is

valid for any cube Qd0 with Q̄d0 ⊂ FΩ and for any compactum E ∈ N (Qd0);
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(b) we have
inf

e∈N (Qd)
ν(Q̄d\e) → ∞ (16.3.9)

as the cube Qd, Q̄d ⊂ FΩ, tends to infinity, where d is an arbitrary positive
number.

Proof. Necessity. Inequality (16.2.3) follows from Theorem 16.2/1. If
(16.3.9) is not valid then there exists a sequence of cubes {Q(i)}i≥1, with
a limit point at infinity and satisfying the conditions (i) the set {di} of the
edge lengths of the cubes Q(i) is bounded, (ii) the inequality

inf
e∈N (Q(i))

ν
(
Q(i)\e

)
< c0

holds. This and Lemma 16.1/2 imply that we can find a sequence of functions
{ui}i≥1 in D(Ω) with

diam suppui ≤ c, dist(suppui, suppuj) ≥ c > 0, i �= j,

‖ui‖L̊l
p(Ω,ν) ≤ c, ‖ui‖Wm

r
≥ c1, ‖ui‖Lp ≥ c2 > 0.

Sufficiency. Let conditions (16.2.3) and (16.3.9) be valid. By Theor-
em 16.2/1 and (16.2.3) the value Dp,l(ν,Ω) is finite. Now (16.3.9) and (16.2.8)
yield

lim
N→∞

sup
u∈C∞

0 (Ω\Q̄N )

‖u‖Wm
r
/‖u‖L̊l

p(Ω,ν) = 0.

This and the right inequality (16.2.4) applied to Ω\Q̄N imply

lim
N→∞

Dp,l(ν,Ω\Q̄N ) = 0.

Hence, F is relatively compact in Wm
r by virtue of Theorem 1. The proof is

complete. �

Clearly, in the case pl > n Theorem 2 can be stated as follows.

Theorem 3. Let pl > n, 0 ≤ m < l, p ≤ r < ∞, and l − m > n/p −
n/r. The set F is relatively compact in Wm

r if and only if the condition of
Theorem 16.2/1 holds and if

ν(Qd) →∞ (16.3.10)

as the cube Qd with Q̄d ⊂ Ω tends to infinity.

In the case pl = n under the hypothesis of the connectedness of R
n\Ω the

statement of Theorem 2 can be simplified in the following way.

Theorem 4. Let pl = n, 0 ≤ m < l, p ≤ r < ∞, m < n/r, and suppose
the complement of Ω is connected. Then F is relatively compact in Wm

r if and
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only if the condition of Theorem 16.2/3 holds and (16.3.9) is valid as the cube
Qd, Q̄d ⊂ Ω, tends to infinity.

Proof. Taking into account Theorem 2 we can limit ourselves to prov-
ing sufficiency. According to the Gagliardo–Nirenberg theorem (see Theo-
rem 1.4.7),

‖∇ku‖Lr ≤ c‖∇lu‖βLp
‖u‖1−β

Lp
,

where 0 ≤ k ≤ l and β = l−1(n/p− n/r + k). Hence, it suffices to obtain the
relative compactness of F in Lp. By Theorem 16.2/3, F is bounded in W l

p(Rn)
and consequently it is relatively compact in Lp(B�) for any � ∈ (0,∞). It
remains to show that for any ε we can find a � = �(ε) such that

‖u‖Lp(Rn \B�) ≤ ε. (16.3.11)

Put dl = ε in (16.1.1) and choose � = �(ε) so that for any cube Q̄d ⊂ Ω that
intersects R

n\B� we have

inf
e∈N (Qd)

ν(Q̄d\e) ≥ ε−pdn.

Then for such cubes

‖u‖Lp(Qd) ≤ cε
(
u p,l,Qd

+ ‖u‖Lp(Qd,ν)

)
. (16.3.12)

For all Q̄d that intersect both R
n\Ω and R

n\B� the estimate

‖u‖Lp(Qd) ≤ cε u p,l,Qd
(16.3.13)

holds by (16.2.11). We take the pth power of (16.3.12) and of (16.3.13) and
then sum them over all cubes of the coordinate grid with edge length d which
have a nonempty intersection with R

n\B�. This implies (16.3.11). The theo-
rem is proved. �

16.4 Closability of Embedding Operators

Let ν be a measure in R
n. We call it (p, l) absolutely continuous if the equality

cap(B,W l
p) = 0, where B is a Borel set, implies ν(B) = 0.

For instance, by Proposition 10.4.3/2 the Hausdorff ϕ-measure is (p, l)
absolutely continuous provided the integral (10.4.16) converges.

Let E be the identity operator defined on D(Ω), which maps Lp(Ω) into
L̊l

p(Ω, ν).

Theorem 1. Let n ≥ pl, p > 1. The operator E is closable if and only if
the measure ν is (p, l) absolutely continuous.

Proof. Sufficiency. Suppose a sequence of functions {uk}k≥1 in D(Ω) con-
verges to zero in Lp(Ω) and that it is a Cauchy sequence in L̊l

p(Ω, ν). Further,
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let Dαuk → vα in Lp(Ω) for any multi-index α with |α| = l. Then for all
ϕ ∈ D(Ω)

(−1)|α|
∫
Ω

vαϕdx = lim
k→∞

∫
Ω

ukD
αϕdx = 0

and vα = 0 almost everywhere in Ω. Consequently, uk → 0 in W̊ l
p(Ω). The

sequence {uk} contains a subsequence {wk} that converges to zero (p, l)-quasi-
everywhere (see 10.4.4). The (p, l)-absolute continuity of the measure ν implies
wk → 0 ν-almost everywhere. Since {uk} is a Cauchy sequence in Lp(Ω, ν)
then uk → 0 in the same space.

Necessity. Suppose there exists a Borel set B ⊂ Ω with cap(B,W l
p) = 0

and ν(B) > 0. Let F denote a compact subset of B satisfying 2ν(F ) > ν(B).
Further let {ωk}k≥0 be a sequence of open sets with the properties 1. F ⊂
ω̄k+1 ⊂ ωk ⊂ Ω, 2. cap(ω̄k,W

l
p) → 0, and 3. ν(ωk) → ν(F ). We introduce the

capacitary measure μk and the capacitary Bessel potential wk = Vp,lμk of the
set ω̄k (see Proposition 10.4.2/2).

We show that wk → 0 in the space C(e) where e is any compactum that
does not intersect F . Let δ = dist(e, F ) and let k be a number satisfying
2 dist(e, ω̄k) > δ. We set

gk(y) =
[∫

Gl(y − z) dμk(z)
]1/(p−1)

,

(see the definition of the Bessel potential in 10.1.2). If 4|x − y| < δ then
4|z − y| ≥ δ for all z ∈ ω̄k and consequently

gk(y) ≤ c(δ)
[
μk(ω̄k)

]1/(p−1) = c(δ)
[
cap
(
ω̄k,W

l
p

)]1/(p−1)
.

Therefore,
∫

4|x−y|≤δ

Gl(x− y)gk(y) dy ≤ c1(δ)
[
cap
(
ω̄k,W

l
p

)]1/(p−1)
.

On the other hand,
∫

4|x−y|>δ

Gl(x− y)gk(y) dy ≤ c2(δ)‖gk‖Lp = c2(δ)
[
cap
(
ω̄k,W

l
p

)]1/(p−1)
.

These estimates and the equality

wk(x) =
∫
Gl(x− y)gk(y) dy

imply wk → 0 in C(e).
The arguments used in the proof of Theorem 13.3/1 show that the func-

tions vk = 1 − [(1 − wk)+]l satisfy

‖vk‖W l
p
≤ c‖wk‖W l

p
. (16.4.1)
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Moreover, it is clear that vk = 1 in a neighborhood of F , 0 ≤ vk ≤ 1 in R
n

and that the sequence {vk} converges uniformly to zero on any compactum
that does not intersect F .

Let uk denote a mollification of vk with small enough radius. Using the
equality lim cap(ω̄k,W

l
p) = 0 and the estimate (16.3.9) we obtain ‖uk‖W l

p
→ 0.

Let η be any function in P(F,Ω) with support S. Clearly, ηuk = 1 in a
neighborhood of F and ‖ηuk‖W l

p
→ 0. We show that ηuk is a Cauchy sequence

in Lp(Ω, ν). Let ε be an arbitrary positive number and let M be so large that
ν(ωM\F ) < ε. We choose an integer N to satisfy

∣∣uk(x)∣∣p ≤ ε/ν(S), x ∈ S\ωM

for k > N . Hence, for any k, l > N , we obtain
∫
Ω

∣∣η(uk − ul)∣∣p dν ≤ c
(∫

S\ωM

|uk − ul|p dν +
∫
ωM \F

|uk − ul|p dν
)
< cε.

Therefore ηuk is a Cauchy sequence in Lp(Ω, ν). Since uk = 1 on F then

‖ηuk‖pLp(Ω,ν) ≥ ν(F ) > 0.

The existence of such a sequence contradicts the closability of the operator E .
The theorem is proved. �

In the case pl > n the operator E is always closable, which trivially follows
from the Sobolev theorem on the embedding W l

p(Ω) ⊂ C(Ω).

Theorem 2. The identity operator defined on D(Ω), which maps W̊ l
p(Ω)

into Lp(Ω, ν), is closable if and only if the measure ν is (p, l) absolutely con-
tinuous.

Proof. Sufficiency. Let {uk}k≥1, uk ∈ D(Ω) be a Cauchy sequence in
Lp(Ω, ν) that converges to zero in W̊ l

p(Ω). Then it converges to zero in
Lp(Ω, ν) by the previous theorem.

Necessity. Suppose there exists a Borel set B with cap(B,W l
p) = 0 and

ν(B) > 0. Under this condition, in Theorem 1 we constructed a sequence of
functions uk ∈ D(Ω), which is a Cauchy sequence in Lp(Ω, ν) that converges
to zero in W̊ l

p(Ω) and does not converge to zero in Lp(Ω, ν). The result follows.
�

Theorem 3. 1. The identity operator defined on D(Ω), which maps L̊l
p(Ω)

into Lp(Ω, ν) (lp < n), is closable if and only if the measure ν is (p, l) abso-
lutely continuous.

2. The same holds for n = pl provided R
n\Ω is a set of positive (p, l)-

capacity.

Proof. 1. Sufficiency. Let a sequence of functions uk in D(Ω) be a Cauchy
sequence in Lp(Ω, ν) that converges to zero in L̊l

p(Ω). Since lp < n, we have
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the embedding L̊l
p(Ω) ⊂ Lq(Ω), q = pn(n−pl)−1 and hence {uk} converges to

zero in n-dimensional Lebesgue measure. Further, using the same approach as
in the proof of sufficiency in Theorem 1, from {uk} we can select a subsequence
{wk} that converges to zero ν almost everywhere.

Necessity follows from Theorem 2.
2. The case n = pl is considered in the same way, making use of the

embedding L̊l
p(Ω) ⊂ Lq(Ω, loc) (see Sect. 15.3). �

16.5 Application: Positive Definiteness and Discreteness
of the Spectrum of a Strongly Elliptic Operator

We define two quadratic forms

A(u, u) =
∑

|α|=|β|=l

∫
Ω

aαβ(x)DαuDβ ū dx,

B(u, u) = A(u, u) +
∫
Ω

|u|2 dν,

where u ∈ D(Ω), aαβ are measurable functions and ν is a measure in Ω.
Suppose

κ1‖∇lu‖2
L2(Ω) ≤ A(u, u) ≤ κ2‖∇lu‖2

L2(Ω)

for all u ∈ D(Ω).
By definition the form B is closable in L2(Ω) if any Cauchy sequence um ∈

D(Ω) that converges to zero in L2(Ω) in the norm (B(u, u))1/2 converges to
zero in the norm (B(u, u))1/2.

This condition implies the existence of the unique selfadjoint operator B
in L2(Ω) with

(u,Bv) = B(u, v) for all u, v ∈ D(Ω).

Clearly, the closability of the form B is necessary for the existence of B.
By Theorem 16.4/1, B is closable in L2(Ω) if and only if the measure ν is

(p, l) absolutely continuous. We shall assume that ν has this property.
The next assertion is a particular case of Theorem 16.2/1.

Theorem 1. 1. The operator B is positive definite if and only if

ν(Qd\F ) ≥ k (16.5.1)

for all cubes Q̄d having (2, l)-negligible intersection with R
n\Ω and for all

(2, l)-negligible compacta F ⊂ Q̄d with certain d > 0, k > 0.
2. The lower bound Λ of the spectrum of the operator B satisfies

c1κ1D
−2l ≤ Λ ≤ c2κ2D

−2l, (16.5.2)

where c1 and c2 are constants that depend only on n and l and D is defined
by (16.2.1) with p = 2.
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Corollary 1. 1. For 2l > n a necessary and sufficient condition for the
positive definiteness of B is the inequality ν(Qd) ≥ k, where d and k are
certain positive constants and Q̄d is any cube in Ω.

2. The lower bound Λ of the spectrum of B satisfies (16.5.2) with D defined
by (16.2.10) for p = 2.

Corollary 2. If 2l = n and the set R
n\Ω is connected, then a neces-

sary and sufficient condition for the positive definiteness of B is the valid-
ity of (16.5.1) for all cubes Q̄d ⊂ Ω and for all (2, n/2)-negligible compacta
F ⊂ Q̄d with certain d > 0 and k > 0.

This corollary is a special case of Theorem 16.2/3.

Theorem 2. The lower bound Γ of points of condensation of the spectrum
of B satisfies

c1κ1

∞
D−2l ≤ Γ ≤ c2κ2

∞
D−2l, (16.5.3)

where
∞
D is defined by (16.3.3) with p = 2.

Proof. Let � be the number defined by (16.3.1) for p = 2. By Theo-
rem 16.3.1 it suffices to prove that Γ = �−2. From Theorems 16.3.1 and 1
it follows that Γ = 0 if and only if � = ∞. So we may suppose Γ �= 0 and
� �= ∞.

We introduce the family {Eλ} of orthogonal projective operators that form
a resolution of the identity generated by the selfadjoint operator B in L2(Ω).
Then

λ−1
B(u, u) ≥

∥∥(E − Eλ)u
∥∥2

L2(Ω)
. (16.5.4)

Since the projective operator Eλ is finite-dimensional for λ < Γ , then (16.5.4)
and the definition of � imply Γ ≤ �−2.

For any ε, 0 < ε < Γ , in L2(Ω) there exists an orthogonal and normalized
infinite sequence of functions {ϕi}i≥1 such that (Bϕi, ϕj) = 0 for i �= j and
Γ − ε ≤ (Bϕi, ϕj) ≤ Γ + ε.

Let T be an arbitrary compact operator mapping L̊l
2(Ω, ν) into L2(Ω). We

have that
‖(E − T )(ϕi − ϕj)‖L2(Ω)

‖ϕi − ϕj‖L̊l
2(Ω,ν)

≥
‖ϕi − ϕj‖L2(Ω) − ‖T (ϕi − ϕj)‖L2(Ω)

(B(ϕi − ϕj), ϕi − ϕj)1/2

=
(‖ϕi‖2

L2(Ω) + ‖ϕj‖2
L2(Ω))

1/2 − ‖T (ϕi − ϕj)‖L2(Ω)

[(Bϕi, ϕi) + (Bϕj , ϕj)]1/2

≥ (Γ + ε)−1/2 − 2−1/2(Γ − ε)−1/2
∥∥T (ϕi − ϕj)

∥∥
L2(Ω)

.

The upper limit of the right-hand side as i, j →∞ equals (Γ + ε)−1/2. So by
the arbitrariness of ε and the definition of � we obtain �2 ≥ Γ−1. The theorem
is proved. �
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The preceding result implies the next theorem.

Theorem 3. The spectrum of the operator B is discrete if and only if
∞
D = 0.

This theorem is equivalent to the following assertion.

Theorem 4. The spectrum of the operator B is discrete if and only if

inf
F ∈N (Qd)

ν(Q̄d\F ) →∞ (16.5.5)

as the cube Q̄d (d is an arbitrary positive number), having a (2, l)-negligible
intersection with R

n\Ω, tends to infinity.

For 2l > n this criterion can be reformulated as follows.

Theorem 5. Let 2l > n. The operator B has a discrete spectrum if and
only if

ν(Q̄d) →∞
as the cube Q̄d ⊂ Ω, where d > 0, tends to infinity.

Theorem 16.3.2/4 implies the following result.

Theorem 6. Let 2l = n and let R
n\Ω be connected. The operator B has

a discrete spectrum if and only if (16.5.5) holds as the cube Q̄d ⊂ Ω, where
d > 0, tends to infinity.

16.6 Comments to Chap. 16

In 1934, K. Friedrichs [292] proved that the spectrum of the Schrödinger
operator −Δ + V in L2(Rn) with a locally integrable potential V is discrete
provided V (x) → +∞ as |x| → ∞ (see also Berezin and Shubin [84]). On the
other hand, if we assume that V is semibounded in the following, then the
discreteness of spectrum easily implies that for every d > 0

∫
Qd

V (x) dx→ +∞ as Qd →∞, (16.6.1)

where Qd is an open cube with the edge length d and with the edges parallel
to coordinate axes, Qd → ∞ means that the cube Qd goes to infinity (with
fixed d). This was first noticed by A.M. Molchanov in 1953 (see [610]) who
also showed that this condition is, in fact, necessary and sufficient in the case
n = 1, but not sufficient for n ≥ 2. Moreover, in the same paper Molchanov
discovered a modification of condition (16.6.1) that is fully equivalent to the
discreteness of the spectrum in the case n ≥ 2. In other words, he found a
criterion for the compactness of the embedding L̊1

2(Ω, ν) into L2(Ω), where
ν = V dx. Molchanov’s test states that for every d > 0
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p(Ω, ν) ⊂ W m

r (Ω)

inf
F

∫
Qd \F

V (x) dx→ +∞ as Qd →∞, (16.6.2)

where the infimum is taken over all compact subsets F of the closure Q̄d which
are called negligible. The negligibility of F in the sense of Molchanov means
that

cap(F ) ≤ γ cap(Qd), (16.6.3)

where cap is the harmonic capacity and γ > 0 is a sufficiently small constant.
More precisely, Molchanov proved that we can take γ = cn where for n ≥ 3

cn = (4n)−4n
(
cap(Q1)

)−1
. (16.6.4)

The notion of negligibility will be studied in detail in Chap. 18 following the
article by Maz’ya and Shubin [590].

The results of the present chapter develop the result by Molchanov [610]
for the case of higher derivatives. Such criteria were obtained for the space
L̊l

2(Ω, ν) with 2l > n (when there is no need for a capacity) by Birman and
Pavlov [102]. In the case q ≥ p > 1, l = 1, 2, . . . , the necessary and sufficient
conditions for the boundedness and compactness of the embedding operator of
L̊l

p(Ω, ν) into Lq(Ω) were established by the author [544]. Two-sided estimates
for the norm and for the essential norm of this operator are due to the author
and Otelbaev [573], where the space with the norm

∥∥(−Δ)l/2u
∥∥
Lp(Ω)

+ ‖u‖Lp(Ω,ν)

is considered (l is any positive number). The embedding theorems for more
general spaces with weighted norms were obtained by Olěı nik and Pavlov [645],
Lizorkin and Otelbaev [506], and Otelbaev [653]. The function

Dp,l(x) = sup
{
d : dn−pl ≥ inf

e∈N (Qd(x))
ν
(
Qd(x)\e

)}
,

(compare with (16.2.1)) was used by Otelbaev [652] in the derivation of bounds
for the Kolmogorov diameter of the unit ball in L̊l

p(Ω, ν) measured in Lp(Ω).
We present his result.

The Kolmogorov diameter of a set M in a Banach space B is defined to
be the number

dk(M,B) =

{
inf{Lk } supf∈M infg∈Lk

‖f − g‖B, k = 1, 2, . . . ,
supf∈M ‖f‖B, k = 0,

where {Lk} is the set of subspaces of B with dimLk ≤ k.

Theorem. (Otelbaev [652].) Let M be the unit ball in the space L̊l
p(Ω, ν)

and let N(λ) be the number of Kolmogorov diameters of M in Lp(Ω) which
exceed λ−1, λ > 0. Then
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c−1N(cλ) ≤ λ−n/lmn

{
x : Dp,l(x) ≥ λ1/l

}
≤ cN

(
c−1λ

)
,

where c does not depend on Ω, ν, and λ.

By definition, the embedding operator of L̊l
p(Ω, ν) into Lp(Ω) is in the

class lθ if
∞∑

k=0

[
dk
(
M,Lp(Ω)

)]θ
<∞.

The just-stated Otelbaev theorem shows that the embedding operator un-
der consideration is in the class lθ if and only if θl > n and

∫
Ω

[
Dp,l(x)

]lθ−n dx <∞.

An immediate application of these results are two-sided estimates for the
eigenvalues of the Dirichlet problem for the operator (−Δ)l/2 + ν and the
conditions for the nuclearity of the resolvent of this operator.

In conclusion we mention the article [39] by Alekseev and Oleinik, where
two-sided estimates for Kolmogorov diameters of the unit ball of L̊l

p(Ω) in the
space Lp(μ,Ω) for pl > n and arbitrary measure μ are found.
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Approximation in Weighted Sobolev Spaces

17.1 Main Results and Applications

For p ≥ 1 we define Lm,p(Rn) as the set of distributions u on R
n such that

‖u‖m,p =

(
m∑

k=1

∫ ∣∣∇ku(x)
∣∣p dx

)1/p

<∞.

Here ∇ku denotes the vector (Dαu)|α|=k, L̊m,p(Rn) is the completion of
C∞

0 (Rn) with respect to the Lm,p seminorm. Now let Ω ⊂ R
n be an open

set and let μ be a nontrivial positive Radon measure on Ω. We will study the
space Hm,p

μ (Ω), defined as the completion of Lp(μ)∩Lm,p(Rn)∩C∞
0 (Ω) with

respect to the norm

‖u‖m,p;μ = ‖u‖Lp(μ) + ‖u‖m,p.

The closure of C∞
0 (Ω) in Hm,p

μ (Ω) is denoted H̊m,p
μ (Ω). Note that if p < n

then by Sobolev’s inequality the elements in L̊m,p can be identified with func-
tions in Lp∗ , where p∗ = np

n−p . If a domain in the notations of a space is

not indicated it is assumed to be R
n. The elements in H̊m,p

μ (Ω) are naturally
identified with elements in L̊m,p. Note also that Lm,p ⊂ Lp(Rn, loc).

The theorem to be proved in this chapter is the following. (See Sect. 17.2
for definitions of the capacities Bm,p and Hn−m

1 used in the following.)

Theorem. Let μ be a nontrivial positive Radon measure concentrated on
Ω ⊂ R

n and let C denote Bm,p for p > 1 and Hn−m
1 for p = 1. Then

(i) H̊m,p
μ (Ω) = Hm,p

μ (Ω) if either p ≥ n or p < n and C(Ωc) = ∞.

Suppose now that p < n and C(Ωc) < ∞. Then H̊m,p
μ (Ω) = Hm,p

μ (Ω) if
and only if

(ii) μ(Ω) = ∞, when either m ≥ n, p = 1 or mp > n, p > 1;
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(iii) μ(F c) = ∞ for every closed set F ⊂ R
n satisfying C(F ) < ∞, when

either 1 < p ≤ n
m or m < n, p = 1.

Remark. When 1 < p < n, mp > n or 1 = p < n, m ≥ n the condition
C(Ωc) <∞ is just a complicated way of saying that Ωc should be bounded.

Among other results of this chapter there is the following criterion obtained
in Sect. 17.3. The identity operator defined on C∞

0 (Ω) and mapping L1(Ω)
into the completion of C∞

0 (Ω) with respect to the norm
∫

|∇mu(x)| dx+
∫

|u| dμ

is closable if and only if μ is absolutely continuous with respect to the Hausdorff
capacity Hn−m

1 . Similar facts for p > 1 were established in Sect. 16.4.

To show the usefulness of the above Theorem we give its applications to
the problem of equality of the minimal and maximal Dirichlet Schrödinger
forms and to the question of selfadjointness of a differential operator.

Consider the quadratic form

Q[u, u] =
∫
Ω

|∇u|2 dx+
∫
Ω

|u|2 μ(dx). (17.1.1)

The closure of Q defined on the set
{
u ∈ C∞(Rn) : suppu ⊂ Ω,Q[u, u] <∞

}
,

which may contain functions with noncompact support, will be denoted by
Qmax. Another quadratic form Qmin is introduced as the closure of Q defined
on C∞

0 (Ω).
The following necessary and sufficient condition for this equality results

directly from the above theorem, where cap stands for the 2-capacity with
respect to R

n.

Proposition 1. (i) If either n ≤ 2 or n > 2 and cap(Rn\Ω) = ∞, then
Qmax = Qmin.

(ii) Suppose that n > 2 and cap(Rn\Ω) < ∞. Then Qmax = Qmin if and
only if

μ(Ω\F ) = ∞ for every closed set F ⊂ Ω with cap(F ) <∞. (17.1.2)

Note that the equality Qmax = Qmin is equivalent to (17.1.2) in the par-
ticular case Ω = R

n.
The next example, which illustrates a possible shape of a set with infinite

capacity, was treated at the end of the proof of Theorem 2.6.2/3.
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Example. Consider the domain Ω complementing the infinite funnel
{
x = (x′, xn) : xn ≥ 0, |x′| ≤ f(xn)

}
,

where f is a continuous and decreasing function on [0,∞) subject to f(t) ≤
cf(2t). It was shown in the proof of Theorem 2.6.2/3 that cap(Rn\Ω) < ∞
if and only if the function f(t)n−2 for n > 3 and the function (log(t/f(t)))−1

for n = 3 are integrable on (1,∞).

Now we turn to another application of the Theorem concerning the ques-
tion of selfadjointness.

Proposition 2. Let ρ ∈ L1(Rn, loc), n ≥ 3, be a positive function, locally
bounded away from zero, and let the operator A = −�−1Δ be defined on
C∞

0 (Rn).
A necessary condition for A to be essentially selfadjoint in L2(�) is that

∫
F c

ρ(x) dx = ∞

whenever F is a closed set such that cap(F ) <∞.

Proof. Suppose ρ does not satisfy the condition in the theorem. Then
by Theorem 17.1 and the Hahn-Banach theorem there is a nonzero function
u ∈ H1,2

ρ (Rn) such that
∫
u(x)v(x)ρ(x) dx+

∫
∇u(x) · ∇v(x) dx = 0

for all v ∈ H̊1,2
ρ (Rn) ⊃ D(Ā), where Ā is the closure of A. Thus

(u, v + Āv)L2(ρ) = 0

and so u ∈ D((I + A)∗) = D(A∗) and u + A∗u = 0. Now suppose Ā = A∗.
Then u ∈ D(Ā) and hence

∫ ∣∣u(x)∣∣2ρ(x) dx+
∫ ∣∣∇u(x)∣∣2 dx = 0,

which implies that u = 0. This contradiction shows that Ā is not selfadjoint.
�

17.2 Capacities

We will denote different constants, not depending on the essential functions
or variables considered, by A. The ball with radius r and centered at x will be
denoted by B(x, r). If x = 0 we will write only B(r). The annulus B(R)\B(r)
is denoted by A(R, r).
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We start by listing the convolution kernels needed in the following:
Bessel kernels Gα, Riesz kernels Iα, and the truncated Bessel kernels Gα;1

defined by
Gα;1(x) = θ(x)Gα(x),

where θ ∈ C∞
0 (B(1))+ is an arbitrary but fixed function such that θ = 1 on

B( 1
2 ). For α ≥ 1 we define

Kα = I1 ∗Gα−1.

It is easy to see, analogously to the cases with Riesz or Bessel potentials,
that, for 1 < p < n, Lm,p

0 = {Km ∗ f : f ∈ Lp}.
Each of these kernels gives rise to the corresponding capacities as follows.

Definition. For E ⊂ R
n and p > 1 we define

Bα,p(E) = inf
{
‖f‖pp : f ∈ L+

p , Gα ∗ f ≥ 1 on E
}
,

Rα,p(E) = inf
{
‖f‖pp : f ∈ L+

p , Iα ∗ f ≥ 1 on E
}
,

Cα,p(E) = inf
{
‖f‖pp : f ∈ L+

p , Kα ∗ f ≥ 1 on E
}
,

and
Bα,p;1(E) = inf

{
‖f‖pp : f ∈ L+

p , Gα;1 ∗ f ≥ 1 on E
}
.

It was proved by D.R. Adams [6] that Bα,p and Rα,p are finite simultane-
ously, although not comparable, for 1 < p < n

α . It is not hard to see from the
proof that Cα,p and Bα,p are finite at the same time for 1 < p < n. The set
functions Bα,p and Bα,p;1 are comparable. See D.R. Adams and Hedberg [15]
for the proof of this fact. We need the following lemma, which, for technical
convenience, is the reason for introducing the truncated Bessel kernel.

Lemma 1. Let p > 1. If F ⊂ R
n is closed then

Bα,p;1(F ) = inf
{
‖f‖pp : f ∈ L+

p , C
∞ � Gα;1 ∗ f ≥ 1 on F

}
.

Proof. We may assume Bα,p;1(F ) finite. Let A0 = B(1) and Aj =
B(j + 1)\B(j) for j ≥ 1. It was proved by D.R. Adams [6] that

∞∑
j=1

Bα,p(F ∩Aj) ≤ ABα,p(F ).

Hence
∞∑
j=1

Ba,p;1(F ∩Aj) <∞. (17.2.1)

Now choose fj ∈ Lp
+ such that
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‖fj‖pp ≤ 2−j +Bα,p;1(F ∩Aj) and Gα;1 ∗ fj ≥ 1

on a neighborhood of F ∩Aj . This can be done since Gα;1 ∗ fj is lower semi-
continuous. It is seen from the definition of Bα,p;1 that we may assume that
supp fj ⊂ A′

j where we denote E′ = {x : dist(x,E) ≤ 1}. By mollification we
obtain functions gj ∈ C∞

0 (A′ ′
j )+ such that

‖gj‖pp ≤ A
(
2−j +Bα,p;1(F ∩Aj)

)

and Gα;1 ∗ gj ≥ 1 on F ∩ Aj . Consequently, if we set g =
∑∞

j=M gj for some
M to be specified later we get Gα;1 ∗ g ≥ 1 on F\B(M). Also, since the sum
defining g is uniformly locally finite, it follows that Gα;1 ∗ g ∈ C∞ and

‖g‖pp ≤ A
∞∑

j=M

‖gj‖pp ≤ A
∞∑

j=M

(
2−j +Bα,p;1(F ∩Aj)

)
. (17.2.2)

Now let ε > 0. By (17.2.1) and (17.2.2) we get ‖g‖p < ε if M is large enough.
By the same argument with lower semicontinuity and mollification we can
find a function h ∈ C∞

0 (Rn)+ such that

‖h‖p ≤ Bα,p;1

(
F ∩B(M)

)1/p + ε and Gα;1 ∗ h ≥ 1 on F ∩B(M).

Setting f = g + h we obtain

‖f‖p ≤ Bα,p;1(F )1/p + 2ε and C∞ � Gα;1 ∗ f ≥ 1 on F.

Since ε was arbitrary, the proof is complete. �
For p = 1 the appropriate capacities are Hausdorff capacities defined as

follows.

Definition 3. Let 0 ≤ d < n. Then, for subsets E of R
n, we define

Hd
ρ (E) = inf

∞∑
i=1

rdi ,

where the infimum is taken over all countable coverings
⋃∞

i=1B(xi, ri) ⊃ E,
with ri ≤ ρ. For d < 0 we define Hd

ρ (E) = H0
ρ(E).

The following lemma is immediate except for (iii) which is a variant of the
well-known Frostman lemma [293].

Lemma 2. Let 0 < d < n. Then:

(i) Hd
∞(E) ≤ Hd

1 (E) ≤ AHd
∞(E) + A(Hd

∞(E))n/d. In particular Hd
∞ and

Hd
1 are finite at the same time.

(ii)
∑∞

j=0H
d
1 (E∩Aj) ≤ AHd

1 (E), where Aj is as in the proof of Lemma 17.2.
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(iii) Hd
1 (E) is comparable to sup{μ(E) : μ(B(x, r)) ≤ rd, r ≤ 1, x ∈ R

n},
where μ is a positive measure, for Borel sets E.

Lemma 3. Let m be an integer, 0 < m < n. Then for closed sets F ⊂ R
n,

Hn−m
1 (F ) is comparable to

inf
{
‖ϕ‖1 + ‖∇mϕ‖1 : ϕ ∈ C∞, 0 ≤ ϕ ≤ 1, ϕ = 1 on a neighborhood of F

}
.

Proof. Suppose ϕ ∈ C∞, ϕ = 1 on a neighborhood of F and ‖ϕ‖1 +
‖∇mϕ‖1 < ∞. If μ is a positive measure supported by F then by Theorem
1.4.2/2 we have

μ(F ) ≤
∫
ϕdμ ≤ A sup

x:0<r≤1

μ(B(x, r))
rn−m

(
‖ϕ‖1 + ‖∇mϕ‖1

)
.

Taking the supremum over μ with

sup
x;0<r≤1

μ(B(x, r))
rn−m

≤ 1,

we get by Lemma 2(iii) that Hn−m
1 (F ) ≤ A(‖ϕ‖1 + ‖∇mϕ‖1), which proves

one direction of the lemma.
To prove the other direction suppose first that F is compact. Cover F by

balls B(xi, ri), ri ≤ 1, 1 ≤ i ≤ s, such that

s∑
i=1

rn−m
i ≤ Hn−m

1 (F ) + ε,

where ε > 0. By Lemma 3.1 of Harvey and Polking [356] there are functions
ψi ∈ C∞

0 (B(xi, 2ri)), 1 ≤ i ≤ s, such that |Dαψi| ≤ Aαr
− |α|
i and such that

ϕ =
∑s

i=1 ψi satisfies ϕ = 1 on a neighborhood of F . We get

‖ϕ‖1 + ‖∇mϕ‖1 ≤
s∑

i=1

∫
B(xi,2ri)

(∣∣ψi(x)
∣∣+ ∣∣∇mψi(x)

∣∣) dx

≤ A
s∑

i=1

(
rni + rn−m

i

)
≤ AHn−m

1 (F ) +Aε.

Since ε is arbitrary we are done in the case where F is compact.
For the general case we introduce a partition of unity 1 =

∑∞
j=0 ζj , where

0 ≤ ζj ≤ 1, ζj = 1 on a neighborhood of A2j , supp ζj ⊂ A′
2j and |∇kζj | ≤ A

for 1 ≤ k ≤ m. Here Aj and A′
j are as in the proof of Lemma 1. Now choose

functions ϕj corresponding to the sets F ∩A′
2j according to the construction

for compact sets in a way that

‖ϕj‖1 + ‖∇mϕj‖1 ≤ AHn−m
1 (F ∩A′

2j) + 2−jε,
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where ε > 0. Letting ϕ =
∑∞

j=0 ζjϕj we obtain, using Leibniz’s rule and
Lemma 2(ii),

‖ϕ‖1 + ‖∇mϕ‖1

≤ A
∞∑
j=0

m∑
k=0

∫
A′

2j

∣∣∇kϕ(x)
∣∣ dx

≤ A
∞∑
j=0

∫ (∣∣ϕj(x)
∣∣+ ∣∣∇mϕj(x)

∣∣) dx ≤
∞∑
j=0

(
Hn−m

1 (F ∩A′
2j) + 2−jε

)

≤ 2ε+A
∞∑
j=0

Hn−m
1 (F ∩Aj) ≤ 2ε+AHn−m

1 (F ).

Since ε is arbitrary the lemma follows. �

17.3 Applications of Lemma 17.2/3

We record here some generalizations, depending on Lemma 17.2/3, to the case
p = 1 of some results in Chap. 16. As before let μ be a positive Radon measure
concentrated on Ω ⊂ R

n and let W , X, and Y be the completions of C∞
0 (Ω)

with respect to the norms

‖u‖W =
∫ ∣∣u(x)∣∣ dx+

∫ ∣∣∇mu(x)
∣∣ dx,

‖u‖X =
∫ ∣∣u(x)∣∣ dμ+

∫ ∣∣∇mu(x)
∣∣ dx,

and
‖u‖Y =

∫ ∣∣∇mu(x)
∣∣ dx,

respectively. Then we have the following theorems.

Theorem 1. The identity operator defined on C∞
0 (Ω) and mapping L1(Ω)

into X is closable if and only if μ is absolutely continuous with respect to
Hn−m

1 .

Theorem 2. The identity operator defined on C∞
0 (Ω) and mapping W

into L1(μ) is closable if and only if μ is absolutely continuous with respect to
Hn−m

1 .

Theorem 3. Let m ≤ n. Then the identity operator defined on C∞
0 (Ω)

and mapping Y into L1(μ) is closable if and only if μ is absolutely continuous
with respect to Hn−m

1 .

Remark. Note that for m ≥ n and for m = n, respectively, the above
condition on absolute continuity is vacuous so the operators are always clos-
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able. In the proof of Theorem 1 below “quasi-everywhere” can be read as
“everywhere” in this case.

For the proofs we will need two lemmas, where a function u is called Hd
1 -

quasicontinuous if it is defined Hd
1 -quasi-everywhere and if for every ε > 0

there is an open set G such that .u|Gc is continuous and Hd
1 (G) < ε.

Lemma 1. Suppose that uj ∈ C∞
0 (Ω) and that ‖uj+1−uj‖W < 4−j. Then

uj converges Hn−m
1 -quasi-everywhere to an Hn−m

1 -quasicontinuous function.

Proof. Let μ be a positive Radon measure such that μ(B(x, r)) ≤ rn−m

for all x ∈ R
n and all r ≤ 1. Then by Theorem 1.4.3 we have

∫
|uj+1 − uj | dμ ≤ A 4−j .

By monotone convergence, ũ(x) = limj→∞ uj(x) exists a.e. with respect to μ.
Now, let

F =
{
x : ũ(x) is defined

}
and

Ej =
{
x ∈ F : |ũ(x) − uj(x)| ≥ 2−j

}
.

Then, by part (iii) of Lemma 17.2/2, Hn−m
1 (F c) = 0. Also,

μ(Ej) ≤ A2j

∫
|ũ− uj | dμ ≤ A2−j ,

so Hn−m
1 (Ej) ≤ A2−j . Let Fk =

⋃∞
j−k Ej . Then Hn−m

1 (Fk) ≤ A2−k. Thus,
given ε > 0, we may choose k and an open set Gk with Hn−m

1 (Gk) < ε such
that Fk ∪ F c ⊂ Gk. Since uj → ũ uniformly on Gc

k, the lemma is proved. �

Lemma 2. Suppose that u is Hd
1 -quasicontinuous and that E = {x :

u(x) �= 0} is a Borel set with mn(E) = 0. Then Hd
1 (E) = 0.

Proof. Suppose that Hd
1 (E) = c > 0. There is an open set G with Hd

1 (G) <
ε such that u|Gc is continuous. We do not specify ε here because the choice
of it depends on a certain constant, appearing later in the proof. However, ε
is a fixed positive number less than c.

Let K ⊂ E\G be a compact set such that Hd
1 (K) > c − ε and set Kj =

{x : dist(x,K) ≤ 1
j }. By Lemma 17.2/2, part (iii), we can choose measures

μj supported by Kj such that

sup
x;0<r≤1

μj(B(x, r))
rd

≤ A

and μj(Kj) = Hd
1 (Kj).

Define φj(x) = jnφ(jx), where φ ∈ C∞
0 (B(1)) is a function such that

0 ≤ φ ≤ A and
∫
φ = 1. Set νj = φj ∗ μj . Then we have



17.3 Applications of Lemma 17.2/3 763

φj ∗ μj(y) =
∫
φj(y − t) dμj(t) ≤ Ajnμj

(
B

(
y,

1
j

))
≤ Ajn−d.

Thus, for r ≤ 1
j

νj(B(x, r))
rd

≤ A(jr)n−d ≤ A.

For 1
j ≤ r ≤ 1 we have

νj(B(x, r))
rd

≤ 1
rd

∫
χB(x,r)(y)

∫
φj(y − t) dμj(t) dy

=
1
rd

∫
χB(x,r) ∗ φj(t) dμj(t) ≤

1
rd

∫
χB(x,r+ 1

j )(t) dμj(t)

≤ A
μj(B(x, r + 1

j ))

(r + 1
j )d

≤ A.

Thus we obtain

sup
x;0<r≤1

νj(B(x, r))
rd

≤ A.

Also,

νj(Rn) =
∫∫

φj(x− y) dμj(y) dx

=
∫∫

φj(x− y) dxdμj(y)

= μj(Kj) = Hd
1 (Kj) ≥ Hd

1 (K) ≥ c− ε.

Let K∗
j = supp νj . Then, since mn(E) = 0, we get

Hd
1

(
K∗

j \E
)
≥ A−1νj

(
Ec
)

= A−1νj
(
R

n
)
≥ A−1(c− ε).

Now we are in the position to specify ε: Take any positive ε satisfying A−1(c−
ε) > ε. Then we obtain

Hd
1

(
K∗

j \E
)
> Hd

1 (G).

Hence there are points xj ∈ K∗
j ∩Ec∩Gc. We may assume that xj converges to

some point x0. Since xj ∈ K∗
j there are points yj ∈ K such that |xj −yj | < 2

j .
Then yj → x0 so, in particular, x0 ∈ K. By the continuity of u on Gc we
obtain that 0 = u(xj) → u(x0) �= 0. From this contradiction we conclude that
Hd

1 (E) = 0 and the lemma is proved. �

Proof of Theorem 1. We start with the sufficiency part. Suppose {uj} ⊂
C∞

0 (Ω) is a Cauchy sequence in X, converging to zero in L1(Ω). Then Dαuj
converges in L1(Ω) for |α| = m and since obviously Dαuj → 0 as distributions
we get Dαuj → 0 in L1(Ω). Hence, passing to a subsequence, we may assume
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that uj converges Hn−m
1 -quasi-everywhere by Lemma 1. Also, by Lemma 1

we get that, Hn−m
1 -quasi-everywhere, uj → 0. Thus uj → 0 a.e. with respect

to the measure μ, and since {uj} is a Cauchy sequence in L1(μ), we obtain
uj → 0 in X.

For the necessity part suppose F ⊂ Ω is a compact set satisfying
Hn−m

1 (F ) = 0 and μ(F ) > 0. Let Gj ⊃ F be shrinking open sets such
that Hn−m

1 (Ḡj) → 0 and μ(Gj\F ) → 0 as j → ∞. Then, by Lemma 17.2/3,
we can find ϕj ∈ C∞

0 (Ω) such that ϕj = 1 on Gj and

‖ϕj‖1 + ‖∇mϕj‖1 → 0.

Moreover, by construction, ϕj → 0 uniformly outside every neighborhood of
F and there is a compact set K ⊂ Ω such that supp ϕj ⊂ K for all j. Now let
ε > 0 and choose j so that μ(Gj\F ) < ε/4. Then, for i and k large enough,

∫
Ω

|ϕi − ϕk| dμ ≤
∫
K\Gj

|ϕi − ϕk| dμ+ 2μ(Gj\F ) <
ε

2
+
ε

2
= ε.

Hence {ϕj} is a Cauchy sequence in X, converging to zero in L1(Ω). However,
since

‖ϕj‖L1(μ) ≥ μ(F ) > 0,

we cannot have ϕj → 0 in X. This proves the necessity part. �

The proofs of Theorems 2 and 3 follow the same lines as the proofs of the
analogous facts in Sect. 16.4, making use of the proof of Theorem 1.

Using Lemma 17.2/3 we can also obtain the necessary and sufficient condi-
tions for continuity and compactness of the embedding of X into the Sobolev
space W k,q(Rn). To state these theorems we need first some definitions. Let
m < n. Then a set F ⊂ B(x, r) is called (m, 1)-negligible if

Hn−m
∞ (F ) ≤ γrn−m,

where γ is a sufficiently small constant, depending only on m and n. For
m ≥ n only the empty set is called (m, 1)-negligible.

Let F (Ω) be the family of all balls B(x, r) such that B(x, r)\Ω is (m, 1)-
negligible. Then we define

D1,m(μ,Ω) = sup
{
r;B(x, r) ∈ F (Ω), inf μ

(
B(x, r)\F

)
≤ rn−m

}
,

where the infimum is taken over all (m, 1)-negligible closed sets F ⊂ B(x, r).
We then have the following two theorems.

Theorem 4. Let 0 ≤ k ≤ m, 1 ≤ q <∞ and m− k > n(1 − 1/q). Then

‖u‖q + ‖∇ku‖q ≤ A‖u‖X

for all u ∈ C∞
0 (Ω) if and only if there are positive constants r and a such that
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μ
(
B(x, r)\F

)
≥ a

for all balls B(x, r) ∈ F (Ω) and all (m, 1)-negligible sets F ⊂ B(x, r). The
best constant A is comparable to

Dm−n(1−1/q) max
{
D−k, 1

}
,

where D = D1,m(μ,Ω).

Theorem 5. Let 0 ≤ k ≤ m, 1 ≤ q <∞, and m− k > n(1 − 1/q). Then
X is compactly embedded into W k

q (Rn) if and only if D1,m(μ,Ω) <∞ and

lim
R→∞

D1,m

(
μ,Ω\B(R)

)
= 0.

The proofs of these statements are the same as those of the corresponding
theorems for p > 1 in Sects. 16.2–16.3, relying now on Lemma 17.2/3.

17.4 Proof of Theorem 17.1

We will need some basic results on the function spaces Lm,p and L̊m,p. We
state first a lemma of the Hardy type (see Sect. 1.3.1).

Lemma 1.

(i) If 1 ≤ p < n and u ∈ L̊1,p(Rn) then
∫ |u(x)|p

|x|p dx ≤ A
∫ ∣∣∇u(x)∣∣p dx.

(ii) If p > n and u ∈ L1,p(Rn) then
∫
B(1)c

|u(x)|p
|x|p dx ≤ A

(∫
B(1)

∣∣u(x)∣∣p dx+
∫ ∣∣∇u(x)∣∣p dx

)
.

(iii) If p = n and u ∈ L1,p(Rn) then
∫
B(2)c

|u(x)|p
(|x| log |x|)p dx ≤ A

(∫
B(2)

∣∣u(x)∣∣p dx+
∫ ∣∣∇u(x)∣∣p dx

)
.

Lemma 2. Let 1 ≤ p ≤ n. Then for each u ∈ Lm,p(Rn) there is a unique
constant c such that u− c ∈ L̊m,p(Rn).

We turn now to the proof of Theorem 17.1, divided into four cases starting
with the main one.

The case 1 ≤ p ≤ n
m or p = 1, m < n. We start by proving the sufficiency

part. Suppose that μ satisfies the condition in the theorem. We will show then
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that C∞
Ω ∩Hm,p

μ ⊂ L̊m,p. Let u ∈ C∞
Ω ∩Hm,p

μ and suppose that c �= 0, where
u− c ∈ L̊m,p. We can assume that c > 0. Let

F =
{
x :
∣∣u(x) − c∣∣ ≥ c

2

}

and suppose first that p > 1. Then u− c can be written u− c = Km ∗ f where
f ∈ Lp and we get

Cm,p(F ) ≤ Cm,p

({
x : Km ∗ |f | ≥ c

2

})
≤ 2p

cp
‖f‖pp <∞.

If p = 1 then in the same way as in the proof of Lemma 17.2/3

Hn−m
∞ (F ) ≤ A

∫ ∣∣∇m

(
u(x) − c

)∣∣dx <∞.

On the other hand, since |u| ≥ c
2 on F c, we have

μ(F c) ≤
(

2
c

)p ∫
|u|p dμ <∞.

This contradicts the condition on μ, hence c = 0. It follows that u ∈ L̊m,p.
Note that since Ωc ⊂ F we must have c = 0 if C(Ωc) = ∞, without using any
condition on μ.

Now let ηR ∈ C∞
0 (B(2R)) satisfy 0 ≤ ηR ≤ 1, ηR = 1 on B(R) and

|∇kηR| ≤ AR−k for k ≤ m. Then for R ≥ 1 we get

‖u− uηR‖pm,p

≤
∑

1≤l+k≤m

∫ ∣∣∇ku(x)
∣∣p∣∣∇l(1 − ηR)(x)

∣∣p dx

≤ A
m∑

k=1

∫
B(R)c

∣∣∇ku(x)
∣∣p dx+A

∑
1≤l+k≤m

l≥1

R−lp

∫
A(2R,R)

∣∣∇ku(x)
∣∣p dx

≤ A
m∑

k=1

∫
B(R)c

∣∣∇ku(x)
∣∣p dx+AR−p

∫
A(2R,R)

∣∣u(x)∣∣p dx.

Thus ηRu→ u in Lm,p as R→∞ by Lemma 1(i). Also
∫

|ηRu− u|p dμ ≤
∫
B(R)c

|u|p dμ→ 0

as R → ∞ since u ∈ Hm,p
μ (Ω). It follows that u ∈ H̊m,p

μ (Ω), i.e., C∞
Ω ∩

Hm,p
μ (Ω) ⊂ H̊m,p

μ (Ω) and hence Hm,p
μ (Ω) = H̊m,p

μ (Ω).
We now turn to the necessity part. Suppose that Hm,p

μ (Ω) = H̊m,p
μ (Ω)

and that F is a closed set such that Bm,p(F ) <∞ and μ(F c) <∞ where now
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p > 1. Assume also that Bm,p(Ωc) < ∞. Then there is an open set G ⊃ Ωc

such that Bm,p(Ḡ) < ∞. By Lemma 17.2/1 we can find f ∈ L+
p such that

Gm;1 ∗ f ∈ C∞ and Gm;1 ∗ f ≥ 1 on F ∪ Ḡ. Now let T be a smooth function
on R+ such that T (t) = 1 if t ≥ 1 and

sup
t>0

∣∣tk−1T (k)(t)
∣∣ <∞ for 0 ≤ k ≤ m.

Then by Lemma 17.2/1, which works also for the truncated kernel, there is a
function g ∈ Lp such that T ◦ (Gm;1 ∗ f) = Gm;1 ∗ g and ‖g‖p ≤ A‖f‖p. We
set u = 1 − Gm;1 ∗ g. Then u ∈ C∞

Ω ∩ Lm,p, but by Lemma 17.4, u /∈ L̊m,p

since Gm;1 ∗ g ∈ L̊m,p. Moreover
∫

|u|p dμ =
∫
F c

|u|p dμ ≤ μ
(
F c
)
<∞

by assumption on F , so u ∈ Hm,p
μ (Ω)\H̊m,p

μ (Ω). This contradiction shows
that μ must satisfy the condition in the theorem.

For p = 1 we use instead u = 1 − ϕ, where ϕ is the function constructed
in Lemma 17.2/3, satisfying ϕ = 1 on a neighborhood of F ∪ Ḡ. Since

∫ ∣∣ϕ(x)
∣∣ dx+

∫ ∣∣∇mϕ(x)
∣∣ dx <∞,

it follows easily, using the previous multiplier ηR, that ϕ ∈ L̊m,1. Hence u /∈
H̊m,1

μ (Ω). But ∫
|u| dμ ≤ μ

(
F c
)
<∞ so u ∈ Hm,1

μ ,

and we have again obtained a contradiction.
The case 1 < p < n, mp > n or 1 = p < n, m ≥ n. For the sufficiency we

again decompose u = v + c where v ∈ L̊m,p. Using Sobolev’s inequality

sup
B(x,1)

|v| ≤ A
(∫

B(x,1)

∣∣v(y)∣∣p∗

dy
)1/p∗

+A
(∫

B(x,1)

∣∣∇mv(y)
∣∣p dy

)1/p

for every x ∈ R
n, we see that v(y) → 0 uniformly as |x| → ∞. Thus, if c �= 0,

we can find R such that |v| ≤ |c|
2 on B(R)c. Then, if μ is not finite,

∫
|u|p dμ ≥

(
|c|
2

)p

μ
(
B(R)c

)
= ∞,

and we have a contradiction. Thus c = 0 and we can proceed as in the first case,
again using Lemma 1(i). Note that if Ωc is unbounded it follows immediately
that c = 0, without any condition on μ since v = c on Ωc.

For the necessity we observe that if Ωc is bounded then there is u ∈ C∞
Ω

such that u(x) = 1 for large |x|. Then u ∈ Lm,p\L̊m,p, since u /∈ Lp∗ . If μ is
finite we get u ∈ Hm,p

μ (Ω)\H̊m,p
μ (Ω) and we are done.
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The case p > n is proved as previously, now invoking Lemma 1(ii).
The case p = n is proved by Lemma 1(iii), this time using the multiplier

ηR(x) = χ

(
1

logR
log

R2

|x|

)
,

where χ is a smooth function satisfying χ(t) = 0 for t ≤ 1
4 and χ(t) = 1 for

t ≥ 3
4 . This completes the proof. �

Remark. The same question of the density of test functions can be asked
about the more general norm

‖u‖ = ‖u‖Lp(μ) +
m∑
k=l

‖∇ku‖p,

where m ≥ l ≥ 2. In the case lp ≥ n approximation is always possible. This
is proved in the same way as in the present chapter, using only somewhat
different Hardy inequalities. In the general case it is easy to give an implicit
necessary and sufficient condition. Namely, with obvious notation, H l,m,p

μ =
H̊ l,m,p

μ if and only if

u ∈ H̊ l,m,p
μ , P ∈ Pl−1,

∫
|u− P |p dμ <∞ ⇒ P = 0.

However, it is not clear whether this condition can be stated in a more trans-
parent way in the spirit of Theorem 17.1, for example, in terms of the poly-
nomial capacities dealt with in Sect. 14.3.

17.5 Comments to Chap. 17

In this chapter we follow the article by Carlsson and the author [171].
Section 17.1. The question as to when the equality Qmax = Qmin holds

was raised by Kato [416]. Simon studied a similar question concerning the
magnetic Schrödinger operator in R

n [701]. Proposition 17.1/2 improves the
condition

∫
�(x) dx = ∞, necessary for the essential selfadjointness of the

operator A, which was obtained by Eidus [255].
Section 17.2. Lemma 17.2/3 was partly proved by D.R. Adams [10].
Section 17.3. Lemmas 17.3/1 and 17.3/2 were proved in Carlsson [170].
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Spectrum of the Schrödinger Operator
and the Dirichlet Laplacian

Consider the Schrödinger operator −Δ + V in L2(Rn) with a potential V ,
locally integrable and semibounded below. As we mentioned in Sect. 16.6,
Molchanov’s criterion (16.6.2) involves the so-called negligible sets F , that is,
sets of sufficiently small harmonic capacity.

In Sects. 18.2–18.3 we show that the constant cn given by (16.6.4) can be
replaced by an arbitrary constant γ, 0 < γ < 1. We even establish a stronger
result allowing negligibility conditions with γ depending on d and completely
describe all admissible functions γ. More precisely, in the necessary condition
for the discreteness of spectrum we allow arbitrary functions γ : (0,+∞) →
(0, 1). If γ(d) = O(d2) in the negligibility condition (16.6.3), then it fails to
be sufficient, i.e., it may happen that it is satisfied but the spectrum is not
discrete (Sect. 18.4). However, we show that in the sufficient condition we
can admit arbitrary functions γ with values in (0, 1), defined for d > 0 in a
neighborhood of d = 0 and satisfying

lim sup
d↓0

d−2γ(d) = +∞. (18.0.1)

All such relations involving functions γ : (0,+∞) → (0, 1), are necessary
and sufficient for the discreteness of spectrum. Therefore two conditions with
different functions γ are equivalent, which is far from being obvious a priori.
This equivalence means the following striking effect: If (16.6.2) holds for very
small sets F , then it also holds for sets F which almost fill the corresponding
cubes.

Another important question is whether the operator −Δ+ V with V ≥ 0
is strictly positive, i.e., the spectrum is separated from zero. Unlike the dis-
creteness of spectrum conditions, it is the large values of d that are relevant
here. The following necessary and sufficient condition for the strict positivity
was obtained in Sect. 16.5: There exist positive constants d and κ such that
for all cubes Qd

inf
F

∫
Qd \F

V (x) dx ≥ κ,

V. Maz’ya, Sobolev Spaces,
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2 18, c© Springer-Verlag Berlin Heidelberg 2011

769

http://dx.doi.org/10.1007/978-3-642-15564-2_18


770 18 Spectrum of the Schrödinger Operator and the Dirichlet Laplacian

where the infimum is taken over all compact sets F ⊂ Q̄d that are negligible
in the sense of Molchanov. We prove in Sect. 18.5 that here again an arbitrary
constant γ ∈ (0, 1) in the negligibility condition is admissible.

The above-mentioned results are proved in a more general context. The
family of cubes Qd is replaced by a family of arbitrary bodies homothetic to a
standard bounded domain which is starshaped with respect to a ball. Instead
of locally integrable potentials V ≥ 0 we consider positive measures. We also
include operators in arbitrary open subsets of R

n with the Dirichlet boundary
conditions.

The goal of the last Sect. 18.7 is to obtain explicit lower and upper esti-
mates of the first eigenvalue of the Laplacian with Dirichlet data formulated
in terms of a capacitary inner radius.

18.1 Main Results on the Schrödinger Operator

Let V be a positive Radon measure in an open set Ω ⊂ R
n, n ≥ 2. We will

consider the Schrödinger operator, which is formally given by an expression
−Δ+ V. It is defined in L2(Ω) by the quadratic form

hV(u, u) =
∫
Ω

|∇u|2 dx+
∫
Ω

|u|2V(dx), u ∈ C∞
0 (Ω). (18.1.1)

For the associated operator to be well defined we need a closed quadratic
form. The form above is closable in L2(Ω) if and only if V is (2, 1) absolutely
continuous (see Sect. 16.4). In the present chapter we will always assume that
this condition is satisfied. The operator, associated with the closure of the
form (18.1.1), will be denoted HV.

In particular, we can consider an absolutely continuous measure V which
has a density V ≥ 0, V ∈ L1(Rn, loc), with respect to the Lebesgue measure
dx. Such a measure will be absolutely continuous with respect to the capacity
as well.

Instead of the cubes Qd a more general family of test bodies will be used.
Let us start with a standard open set G ⊂ R

n. We assume that G satisfies the
following conditions:

(a) G is bounded and starshaped with respect to an open ball Bρ(0) of radius
ρ > 0, with the center at 0 ∈ R

n;
(b) diam(G) = 1.

The first condition means that G is starshaped with respect to every point
of Bρ(0). It implies that G can be presented in the form

G =
{
x : x = rω, |ω| = 1, 0 ≤ r < r(ω)

}
, (18.1.2)

where ω �→ r(ω) ∈ (0,+∞) is a Lipschitz function on the unit sphere
Sn−1 ⊂ R

n (see Lemma 1.1.8). Condition (b) is imposed for the convenience
of formulations.
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For any positive d > 0 denote by Gd(0) the body {x | d−1x ∈ G} which is
homothetic to G with coefficient d and with the center of homothety at 0. We
will denote by Gd a body that is obtained from Gd(0) by a parallel translation:
Gd(y) = y+Gd(0) where y is an arbitrary vector in R

n. The notation Gd →∞
means that the distance from Gd to 0 goes to infinity.

Definition. Let γ ∈ (0, 1). The negligibility class Nγ(Gd;Ω) consists of
all compact sets F ⊂ Ḡd satisfying the following conditions:

Ḡd \Ω ⊂ F ⊂ Ḡd (18.1.3)

and
cap(F ) ≤ γ cap(Ḡd). (18.1.4)

The notation cap will be introduced in Sect. 18.2.
Now we formulate our main result about the discreteness of spectrum.

Theorem 1. (i) (Necessity) Let the spectrum of HV be discrete. Then for
every function γ : (0,+∞) → (0, 1) and every d > 0

inf
F ∈Nγ(d)(Gd,Ω)

V(Ḡd \ F ) → +∞ as Gd →∞. (18.1.5)

(ii) (Sufficiency) Let a function d �→ γ(d) ∈ (0, 1) be defined for d > 0 in a
neighborhood of 0, and satisfy (18.0.1). Assume that there exists d0 > 0 such
that (18.1.5) holds for every d ∈ (0, d0). Then the spectrum of HV in L2(Ω)
is discrete.

Let us make some comments about this theorem.

Remark 1. It suffices for the discreteness of spectrum of HV that the con-
dition (18.1.5) holds only for a sequence of d’s, i.e., d ∈ {d1, d2, . . . , }, dk → 0
and d−2

k γ(dk) → +∞ as k → +∞.

Remark 2. As we will see in the proof, in the sufficiency part the condition
(18.1.5) can be replaced by a weaker requirement: There exist c > 0 and
d0 > 0 such that for every d ∈ (0, d0) there exists R > 0 such that

d−n inf
F ∈Nγ(d)(Gd,Ω)

V(Ḡd \ F ) ≥ c d−2γ(d) (18.1.6)

whenever Ḡd∩(Ω\BR(0)) �= ∅ (i.e., for distant bodies Gd having nonempty in-
tersection with Ω). Moreover, it suffices that the condition (18.1.6) is satisfied
for a sequence d = dk satisfying the condition formulated in Remark 1.

Note that unlike (18.1.5), the condition (18.1.6) does not require that the
left-hand side goes to +∞ as Gd → ∞. What is actually required is that the
left-hand side has a certain lower bound, depending on d for arbitrarily small
d > 0 and distant test bodies Gd. Nevertheless, the conditions (18.1.5) and
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(18.1.6) are equivalent because each of them is equivalent to the discreteness
of spectrum.

Remark 3. If we take γ = const ∈ (0, 1), then Theorem 1 gives Molchanov’s
result, but with the constant γ = cn replaced by an arbitrary constant γ ∈
(0, 1).

Remark 4. For any two functions γ1, γ2 : (0,+∞) → (0, 1) satisfying the
requirement (18.0.1), the conditions (18.1.5) are equivalent, and so are the
conditions (18.1.6), because any of these conditions is equivalent to the dis-
creteness of spectrum.

It follows that the conditions (18.1.5) for different constants γ ∈ (0, 1) are
equivalent. In the particular case, when the measure V is absolutely continuous
with respect to the Lebesgue measure, we see that the conditions (16.6.2) with
different constants γ ∈ (0, 1) are equivalent.

Remark 5. The previous results are new even for the operator H0 = −Δ
in L2(Ω) (but for an arbitrary open set Ω ⊂ R

n with the Dirichlet boundary
conditions on ∂Ω). In this case the discreteness of spectrum is completely
determined by the geometry of Ω. Namely, for the discreteness of spectrum of
H0 in L2(Ω) it is necessary and sufficient that there exists d0 > 0 such that
for every d ∈ (0, d0)

lim inf
Gd →∞

cap(Ḡd \Ω) ≥ γ(d) cap(Ḡd), (18.1.7)

where d �→ γ(d) ∈ (0, 1) is a function, which is defined in a neighborhood
of 0 and satisfies (18.0.1). The conditions (18.1.7) with different functions γ,
satisfying the previous conditions, are equivalent. This is a nontrivial property
of capacity. It is necessary for the discreteness of spectrum that (18.1.7) holds
for every function γ : (0,+∞) → (0, 1) and every d > 0, but this condition
may not be sufficient if γ does not satisfy (18.0.1) (see Theorem 2 below).

The following result demonstrates that the condition (18.0.1) is precise.

Theorem 2. Assume that γ(d) = O(d2) as d → 0. Then there exists
an open set Ω ⊂ R

n and d0 > 0 such that for every d ∈ (0, d0) the condi-
tion (18.1.7) is satisfied, but the spectrum of −Δ in L2(Ω) with the Dirichlet
boundary conditions is not discrete.

Now we will state our positivity result. We will say that the operator HV

is strictly positive if its spectrum does not contain 0. Equivalently, we can say
that the spectrum is separated from 0. Since HV is defined by the quadratic
form (18.1.1), the strict positivity is equivalent to the existence of λ > 0 such
that

hV(u, u) ≥ λ‖u‖2
L2(Ω), u ∈ C∞

0 (Ω). (18.1.8)

Theorem 3. (i) (Necessity) Suppose that HV is strictly positive, so that
(18.1.8) is satisfied with a constant λ > 0. Let us take an arbitrary γ ∈ (0, 1).
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Then there exist d0 > 0 and κ > 0 such that

d−n inf
F ∈Nγ(Gd,Ω)

V(Ḡd \ F ) ≥ κ (18.1.9)

for every d > d0 and every Gd.
(ii) (Sufficiency) Assume that there exist d > 0, κ > 0, and γ ∈ (0, 1),

such that (18.1.9) is satisfied for every Gd. Then the operator HV is strictly
positive.

Instead of all bodies Gd it is sufficient to take only the ones from a finite
multiplicity covering (or tiling) of R

n.

Remark 6. Considering the Dirichlet Laplacian H0 = −Δ in L2(Ω) we see
from Theorem 3 that for any choice of a constant γ ∈ (0, 1) and a standard
body G, the strict positivity of H0 is equivalent to the following condition:

∃ d > 0, such that cap
(
Ḡd ∩ (Rn \Ω)

)
≥ γ cap(Ḡd) for all Gd. (18.1.10)

In particular, it follows that for two different γ’s these conditions are equiva-
lent.

18.2 Discreteness of Spectrum: Necessity

In this section we prove the necessity part (i) of Theorem 18.1/1. We will start
by recalling some definitions and introducing the necessary notations.

If F is a compact subset in an open set D ⊂ R
n, then the harmonic

capacity of F with respect to D is defined as

cap(F,D) = inf
{∫

R
n

∣∣∇u(x)∣∣2 dx : u ∈ C0,1
0 (D), u|F = 1

}
, (18.2.1)

which is nothing but 2-cap(F,Ω).
We will write Bd for a ball Bd(z) with unspecified center z. Let us use

the notation cap(F ) for cap(F,Rn) if F ⊂ R
n, n ≥ 3, and for cap(F,B2d) if

F ⊂ B̄d ⊂ R
2, where the disks Bd and B2d have the same center. The choice

of these disks will usually be clear from the context, otherwise we will specify
them explicitly.

Note that the infimum does not change if we restrict ourselves to the
Lipschitz functions u such that 0 ≤ u ≤ 1 everywhere (see Sect. 2.2.1).

We will also need the potential theoretic definition of the harmonic capac-
ity cap(F ) for a compact set F ⊂ B̄d. For n ≥ 3 it is as follows:

cap(F ) = sup
{
μ(F ) :

∫
F

E(x− y) dμ(y) ≤ 1 on R
n \ F

}
, (18.2.2)

where the supremum is taken over all positive finite Radon measures μ on F
and E = En is the standard fundamental solution of −Δ in R

n, i.e.,
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E(x) =
1

(n− 2)ωn
|x|2−n, (18.2.3)

with ωn being the area of the unit sphere Sn−1 ⊂ R
n. If n = 2, then

cap(F ) = sup
{
μ(F ) :

∫
F

G(x, y) dμ(y) ≤ 1 on B2d \ F
}
, (18.2.4)

where G is the Green function of the Dirichlet problem for −Δ in B2d, i.e.,

−ΔG(· − y) = δ(· − y), y ∈ B2d,

G(·, y)|∂B2d
= 0 for all y ∈ B2d. The maximizing measure in (18.2.2) or in

(18.2.4) exists and is unique. We will denote it μF and call it the equilibrium
measure. Note that

cap(F ) = μF (F ) = μF

(
R

n
)

= 〈μF , 1〉. (18.2.5)

The corresponding potential will be denoted PF , so

PF (x) =
∫
F

E(x− y) dμF (y), x ∈ R
n \ F, n ≥ 3,

PF (x) =
∫
F

G(x, y) dμF (y), x ∈ B2d \ F, n = 2.

We will call PF the equilibrium potential or capacitary potential. We will ex-
tend it to F by setting PF (x) = 1 for all x ∈ F . It follows from the maximum
principle that 0 ≤ PF ≤ 1 everywhere in R

n if n ≥ 3 (and in B2d if n = 2).
In the case when F is the closure of an open subset with a smooth bound-

ary, u = PF is the unique minimizer for the Dirichlet integral in (18.2.1) where
we should take D = R

n if n ≥ 3 and D = B2d if n = 2. In particular,
∫

|∇PF |2 dx = cap(F ), (18.2.6)

where the integration is taken over R
n (or R

n \ F ) if n ≥ 3 and over B2d (or
B2d \ F ) if n = 2.

The following lemma provides an auxiliary estimate which is needed for
the proof.

Lemma 1. Assume that G has a C∞ boundary, and P is the equilibrium
potential of Ḡd. Then

∫
∂Gd

|∇P |2 ds ≤ nLρ−1d−1 cap(Ḡd), (18.2.7)

where the gradient ∇P in the left-hand side is taken along the exterior of Ḡd,
ds is the (n− 1)-dimensional volume element on ∂Gd. The positive constants
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ρ, L are geometric characteristics of the standard body G (they depend on the
choice of G only, but not on d): ρ was introduced at the beginning of Sect. 18.1,
and

L =
[

inf
x∈∂G

νr(x)
]−1

, (18.2.8)

where νr(x) = x
|x| · ν(x), ν(x) is the unit normal vector to ∂G at x which is

directed to the exterior of Ḡ.

Proof. It suffices to consider Gd = Gd(0). For simplicity we will write G
instead of Gd(0) in this proof, until the size becomes relevant.

We will first consider the case n ≥ 3. Note that ΔP = 0 on R
n \ Ḡ. Also

P = 1 on Ḡ, so, in fact, |∇P | = |∂P/∂ν|. Using the Green formula, we obtain

0 =
∫

Rn \ Ḡ
ΔP · ∂P

∂r
dx =

∫
Rn \ Ḡ

ΔP

(
x

|x| · ∇P
)

dx

= −
∫

Rn \ Ḡ
∇P · ∇

(
x

|x| · ∇P
)

dx−
∫
∂G

∂P

∂ν

(
x

|x| · ∇P
)

ds

= −
∑
i,j

∫
Rn \ Ḡ

∂P

∂xj
· ∂

∂xj

(
xi
|x| ·

∂P

∂xi

)
dx−

∫
∂G

∂P

∂ν
· ∂P
∂r

ds

= −
∑
i,j

∫
Rn \ Ḡ

∂P

∂xj
· δij|x| ·

∂P

∂xi
dx+

∑
i,j

∫
Rn \ Ḡ

xixj
|x|3 · ∂P

∂xi
· ∂P
∂xj

dx

−
∑
i,j

∫
Rn \ Ḡ

xi
|x| ·

∂P

∂xj
· ∂2P

∂xi∂xj
dx−

∫
∂G

∂P

∂ν
· ∂P
∂r

ds

= −
∫

Rn \ Ḡ

1
|x| |∇P |

2 dx+
∫

Rn \ Ḡ

1
|x|

∣∣∣∣∂P∂r
∣∣∣∣
2

dx

− 1
2

∑
i

∫
Rn \ Ḡ

xi
|x| ·

∂

∂xi
|∇P |2 dx−

∫
∂G

|∇P |2νr ds.

Integrating by parts in the last integral over R
n\Ḡ, we see that it equals

1
2

∑
i

∫
Rn \ Ḡ

∂

∂xi

(
xi
|x|

)
· |∇P |2 dx+

1
2

∑
i

∫
∂G

xi
|x| |∇P |

2νi ds

=
n− 1

2

∫
Rn \ Ḡ

1
|x| |∇P |

2 dx+
1
2

∫
∂G

|∇P |2νr ds,

where νi is the ith component of ν. Returning to the calculation above, we
obtain

0 =
n− 3

2

∫
Rn \ Ḡ

1
|x| |∇P |

2 dx+
∫

Rn \ Ḡ

1
|x|

∣∣∣∣∂P∂r
∣∣∣∣
2

dx

− 1
2

∫
∂G

|∇P |2νr ds. (18.2.9)
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It follows that ∫
∂G

|∇P |2νr ds ≤ (n− 1)
∫

Rn \ Ḡ

1
|x| |∇P |

2 dx.

Recalling that G = Gd(0), we observe that |x|−1 ≤ (ρd)−1. Now using (18.2.6),
we obtain the desired estimate (18.2.7) for n ≥ 3 (with n− 1 instead of n).

Let us consider the case n = 2. Then, by definition, the equilibrium po-
tential P for G = Gd(0) is defined in the ball B2d(0). It satisfies ΔP = 0
in B2d(0) \ Ḡ and the boundary conditions P |∂G = 1, P |∂B2d(0) = 0. Let us
first modify the previous calculations by taking the integrals over Bδ(0) \ Ḡ
(instead of R

n\Ḡ), where d < δ < 2d. We will get additional boundary terms
with the integration over ∂Bδ(0). Instead of (18.2.9) we will obtain

0 = −1
2

∫
Bδ(0)\ Ḡ

1
|x| |∇P |

2 dx+
∫
Bδ(0)\ Ḡ

1
|x|

∣∣∣∣∂P∂r
∣∣∣∣
2

dx

− 1
2

∫
∂G

|∇P |2νr ds+
1
2

∫
∂Bδ(0)

[
2
∣∣∣∣∂P∂r

∣∣∣∣
2

− |∇P |2
]

ds.

Therefore,
∫
∂G

|∇P |2νr ds ≤
∫
Bδ(0)\ Ḡ

1
|x| |∇P |

2 dx+
∫
∂Bδ(0)

[
2
∣∣∣∣∂P∂r

∣∣∣∣
2

− |∇P |2
]

ds

≤ 1
ρ d

∫
B2d(0)\ Ḡ

|∇P |2 dx+
∫
∂Bδ(0)

|∇P |2 ds.

Now let us integrate both sides with respect to δ over the interval [d, 2d] and
divide the result by d (i.e., take the average over all δ). Then the left-hand
side and the first term in the right-hand side do not change, while the last
term becomes d−1 times the volume integral with respect to the Lebesgue
measure over B2d(0)\Bd(0). By (18.2.6) the right-hand side can be estimated
by (1 + ρ)(ρd)−1 cap(Ḡd). Since 0 < ρ ≤ 1, we get the estimate (18.2.7) for
n = 2. ��

Proof of Theorem 18.1/1, part (i). (a) We use the same notations as pre-
viously. Let us fix d > 0, take Gd = Gd(z), and assume that G has a C∞

boundary. Let us take a compact set F ⊂ R
n with the following properties:

(i) F is the closure of an open set with a C∞ boundary;
(ii) Ḡd \Ω � F ⊂ B3d/2(z);
(iii) cap(F ) ≤ γ cap(Ḡd) with 0 < γ < 1.

Let us recall that the notation Ḡd\Ω � F means that Ḡd\Ω is contained in the
interior of F . This implies that V(Ḡd \F ) < +∞. The inclusion F ⊂ B3d/2(z)
and the inequality (iii) hold, in particular, for compact sets F which are small
neighborhoods (with smooth boundaries) of negligible compact subsets of Ḡd,
and it is exactly such F ’s that we have in mind.
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We shall refer to the sets F satisfying conditions (i)–(iii) above as regular
ones.

Let P and PF denote the equilibrium potentials of Ḡd and F , respectively.
The equilibrium measure μḠ d

has its support in ∂Gd and has density −∂P/∂ν
with respect to the (n − 1)-dimensional Riemannian measure ds on ∂Gd. So
for n ≥ 3 we have

P (y) = −
∫
∂Gd

E(x− y)∂P
∂ν

(x) dsx, y ∈ R
n;

−
∫
∂Gd

∂P

∂ν
(x) dsx = cap(Ḡd);

P (y) = 1 for all y ∈ Gd, 0 ≤ P (y) ≤ 1 for all y ∈ R
n.

(If n = 2, then the same holds only with y ∈ B2d and with the fundamental
solution E replaced by the Green function G.) It follows that

−
∫
∂Gd

PF
∂P

∂ν
ds = −

∫
F

∫
∂Gd

E(x− y)∂P
∂ν

(x) dsx dμF (y) ≤ μF (F ) = cap(F ).

Therefore,

cap(Ḡd) − cap(F ) ≤ −
∫
∂Gd

(1 − PF )
∂P

∂ν
ds,

and, using Lemma 1, we obtain

(
cap(Ḡd) − cap(F )

)2 ≤
(∫

∂Gd

(1 − PF )
∂P

∂ν
ds
)2

≤ ‖1 − PF ‖2
L2(∂Gd)‖∇P‖2

L2(∂Gd)

≤ nL(ρd)−1 cap(Gd)‖1 − PF ‖2
L2(∂Gd), (18.2.10)

where L is defined by (18.2.8).

(b) Our next goal will be to estimate the norm ‖1−PF ‖L2(∂Gd) in (18.2.10)
by the norm of the same function in L2(Gd). We will use the polar coordinates
(r, ω) as in (18.1.2), so in particular ∂Gd is presented as the set {r(ω)ω| ω ∈
Sn−1}, where r : Sn−1 → (0,+∞) is a Lipschitz function (C∞ as long as we
assume the boundary ∂G to be C∞). Assuming that v ∈ C0,1(Ḡd), we can
write

∫
∂Gd

|v|2 ds =
∫
Sn−1

|v|2 r(ω)n−1

νr
dω

≤ L
∫
Sn−1

∣∣v(r(ω), ω
)∣∣2r(ω)n−1 dω, (18.2.11)

where dω is the standard (n− 1)-dimensional volume element on Sn−1.
Using the inequality
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∣∣f(ε)∣∣2 ≤ 2ε
∫ ε

0

∣∣f ′(t)
∣∣2 dt+

2
ε

∫ ε

0

∣∣f(t)∣∣2 dt, f ∈ C0,1
(
[0, ε]

)
, ε > 0,

we obtain
∣∣v(r(ω), ω

)∣∣2

≤ 2εr(ω)
∫ r(ω)

(1−ε)r(ω)

∣∣v′
ρ(ρ, ω)

∣∣2 dρ+
2

εr(ω)

∫ r(ω)

(1−ε)r(ω)

∣∣v(ρ, ω)
∣∣2 dρ

≤ 2εr(ω)
[(1 − ε)r(ω)]n−1

∫ r(ω)

(1−ε)r(ω)

∣∣v′
ρ(ρ, ω)

∣∣2ρn−1 dρ

+
2

εr(ω)[(1 − ε)r(ω)]n−1

∫ r(ω)

(1−ε)r(ω)

∣∣v(ρ, ω)
∣∣2ρn−1 dρ.

It follows that the integral in the right-hand side of (18.2.11) is estimated by

∫
Sn−1

2εr(ω) dω
(1 − ε)n−1

∫ r(ω)

(1−ε)r(ω)

∣∣v′
ρ(ρ, ω)

∣∣2ρn−1 dρ

+
∫
Sn−1

2 dω
ε(1 − ε)n−1r(ω)

∣∣v(ρ, ω)
∣∣2ρn−1 dρ.

Taking ε ≤ 1/2, we can majorize this by

2nεd

∫
Ḡd

|∇v|2 dx+
2n

ερd

∫
Ḡd

|v|2 dx,

where ρ ∈ (0, 1] is the constant from the description of G in Sect. 18.1. Re-
calling (18.2.11), we see that the resulting estimate has the form

∫
∂Gd

|v|2 ds ≤ 2nLεd

∫
Ḡd

|∇v|2 dx+
2nL

ερd

∫
Ḡd

|v|2 dx.

Now, taking v = 1 − PF , we obtain
∫
∂Gd

(1 − PF )2 ds ≤ 2nLεd cap(F ) +
2nL

ερd

∫
Ḡd

(1 − PF )2 dx.

Using this estimate in (18.2.10), we obtain

(
cap(Ḡd) − cap(F )

)2

≤ ρ−1n2nL2 cap(Ḡd)
(
ε cap(F ) +

1
ερd2

∫
Gd

(1 − PF )2 dx
)
. (18.2.12)

(c) Now let us consider G, which is starshaped with respect to a ball, but
does not necessarily have a C∞ boundary. In this case we can approximate
the function r(ω) (see Sect. 18.1) from above by a decreasing sequence of
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C∞ functions rk(ω) (e.g., we can apply a standard mollifying procedure to
r(ω) + 1/k), so that for the corresponding bodies G(k) the constants Lk are
uniformly bounded. It is clear that in this case we will also have ρk ≥ ρ, and
cap(Ḡ(k)

d ) → cap(Ḡd). So we can pass to the limit in (18.2.12) as k → +∞ and
conclude that it holds for an arbitrary G (which is starshaped with respect to
a ball). But for the moment we still retain the regularity condition on F .

(d) Let us define

L =
{
u : u ∈ C∞

0 (Ω), hV(u, u) + ‖u‖2
L2(Ω) ≤ 1

}
, (18.2.13)

where hV is defined by (18.1.1). By a standard functional analysis argument
the spectrum of HV is discrete if and only if L is precompact in L2(Ω), which,
in turn, holds if and only if for every η > 0 there exists R > 0 such that

∫
Ω\BR(0)

|u|2 dx ≤ η for every u ∈ L. (18.2.14)

Equivalently, we can write that
∫
Ω\BR(0)

|u|2 dx ≤ η
[∫

Ω

|∇u|2 dx+
∫
Ω

|u|2V(dx)
]
, (18.2.15)

for every u ∈ C∞
0 (Ω).

Therefore, it follows from the discreteness of spectrum of HV that for every
η > 0 there exists R > 0 such that for every Gd with Ḡd ∩ (Rn \ BR(0)) �= ∅

and every u ∈ C∞
0 (Gd ∩Ω)

∫
Gd

|u|2 dx ≤ η
(∫

Gd

|∇u|2 dx+
∫

Ḡd

|u|2V(dx)
)
. (18.2.16)

In other words, η = η(Gd) → 0 as Gd → ∞ for the best constant in (18.2.16).
(Note that η(Gd)−1 is the bottom of the Dirichlet spectrum of HV in Gd ∩Ω.)

Since 1 − PF = 0 on F (hence in a neighborhood of Ḡd \Ω), we can take
u = χσ(1− PF ), where σ ∈ (0, 1) to be chosen later, χσ ∈ C∞

0 (Gd) is a cutoff
function satisfying 0 ≤ χσ ≤ 1, χσ = 1 on G(1−σ)d, and |∇χσ| ≤ Cd−1 with
C = C(G). Then, using integration by parts and the equation ΔPF = 0 on
G \ F , we obtain

∫
Gd

|∇u|2 dx =
∫

Gd

(
|∇χσ|2(1 − PF )2 −∇

(
χ2
σ

)
· (1− PF )∇PF

+ χ2
σ|∇PF |2

)
dx

=
∫

Gd

|∇χσ|2(1 − PF )2 dx ≤ C2(σd)−2

∫
Gd

(1 − PF )2 dx.

Therefore, from (18.2.16)
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∫
Gd

|u|2 dx ≤ η
[
C2(σd)−2

∫
Gd

(1 − PF )2 dx+ V(Ḡd \ F )
]
,

hence∫
G(1−σ)d

(1 − PF )2 dx ≤ η
[
C2(σd)−2

∫
Gd

(1 − PF )2 dx+ V(Ḡd \ F )
]
.

Now, applying the obvious estimate
∫

Gd

(1 − PF )2 dx ≤
∫

G(1−σ)d

(1 − PF )2 dx+mn(Gd \ G(1−σ)d)

≤
∫

G(1−σ)d

(1 − PF )2 dx+ C1σd
n

with C1 = C1(G), we see that
∫

Gd

(1 − PF )2 dx ≤ η
[
C2(σd)−2

∫
Ḡd

(1 − PF )2 dx+ V(Ḡd \ F )
]

+ C1σd
n,

hence ∫
Gd

(1 − PF )2 dx ≤ 2ηV(Ḡd \ F ) + 2C1σd
n, (18.2.17)

provided
ηC2(σd)−2 ≤ 1/2. (18.2.18)

Returning to (18.2.12) and using (18.2.17) we obtain
(

1 − cap(F )
cap(Ḡd)

)2

≤ C2

[
ε+ ε−1d−n

∫
Gd

(1 − PF )2 dx
]

≤ C2

[
ε+ 2C1σε

−1 + 2ε−1d−nηV(Ḡd \ F )
]
, (18.2.19)

where C2 = C2(G). Without loss of generality we will assume that C2 ≥ 1/2.
Recalling that cap(F ) ≤ γ cap(Ḡd), we can replace the ratio cap(F )/ cap(Ḡd)
in the left-hand side by γ. Now let us choose

ε =
(1 − γ)2

4C2
, σ =

ε(1 − γ)2
8C1

=
(1 − γ)4
32C1C2

. (18.2.20)

Then ε ≤ 1/2 and for every fixed γ ∈ (0, 1) and d > 0 the condition (18.2.18)
will be satisfied for distant bodies Gd because η = η(Gd) → 0 as Gd → ∞.
(More precisely, there exists R = R(γ, d) > 0, such that (18.2.18) holds for
every Gd such that Gd ∩ (Rn \BR(0)) �= ∅.)

If ε and σ are chosen according to (18.2.20), then (18.2.19) becomes

d−n
V(Ḡd \ F ) ≥ (16C2η)−1(1 − γ)4, (18.2.21)

which holds for distant bodies Gd if γ ∈ (0, 1) and d > 0 are arbitrarily fixed.
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(e) Up to this moment we worked with “regular” sets F — see conditions
(i)–(iii) in part (a) of this proof. Now we can get rid of the regularity require-
ments (i) and (ii), retaining (iii). So let us assume that F is a compact set,
Ḡd \Ω ⊂ F ⊂ Ḡd and cap(F ) ≤ γ cap(Ḡd) with γ ∈ (0, 1). Let us construct a
sequence of compact sets Fk � F , k = 1, 2, . . . , such that every Fk is regular,

F1 � F2 � . . . , and
∞⋂

k=1

Fk = F.

We have then cap(Fk) → cap(F ) as k → +∞ due to the well-known continuity
property of the capacity (see, e.g., Sect. 2.2.1). According to the previous steps
of this proof, the inequality (18.2.21) holds for distant Gd’s if we replace F
by Fk and γ by γk = cap(Fk)/ cap(Ḡd). Since the measure V is positive, the
resulting inequality will still hold if we replace V(Ḡd\Fk) by V(Ḡd\F ). Taking
limit as k → +∞, we obtain that (18.2.21) holds with γ′ = cap(F )/ cap(Ḡd)
instead of γ. Since γ′ ≤ γ, (18.2.21) immediately follows for arbitrary compact
F such that Ḡd \Ω ⊂ F ⊂ Ḡd and cap(F ) ≤ γ cap(Ḡd) with γ ∈ (0, 1).

(f) Let us fix G and take the infimum over all negligible F ’s (i.e., compact
sets F , such that Ḡd \Ω ⊂ F ⊂ Ḡd and cap(F ) ≤ γ cap(Ḡd)) in the right-hand
side of (18.2.21). We then get for distant Gd’s

d−n inf
F ∈Nγ(Gd,Ω)

V(Ḡd \ F ) ≥ (16C2η)−1(1 − γ)4. (18.2.22)

Now let us recall that the discreteness of spectrum is equivalent to the con-
dition η = η(Gd) → 0 as Gd → ∞ (with any fixed d > 0). If this is the case,
then it is clear from (18.2.22) that for every fixed γ ∈ (0, 1) and d > 0, the
left-hand side of (18.2.22) tends to +∞ as Gd → ∞. This concludes the proof
of part (i) of Theorem 18.1/1. ��

18.3 Discreteness of Spectrum: Sufficiency

In this section we will establish the sufficiency part of Theorem 18.1/1.

Let us recall the Poincaré inequality

‖u− ū‖2
L2(Gd) ≤ A(G)d2

∫
Gd

∣∣∇u(x)∣∣2 dx, u ∈ C0,1(Gd),

where Gd ⊂ R
n was described in Sect. 18.1,

ū =
1

|Gd|

∫
Gd

u(x) dx

is the mean value of u on Gd, |Gd| is the Lebesgue volume of Gd, and A(G) > 0
is independent of d.
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The following Lemma slightly generalizes (to an arbitrary body G) a par-
ticular case of the first part of Theorem 14.1.2 with essentially the same proof.

Lemma 1. There exists C(G) > 0 such that the following inequality holds
for every function u ∈ C0,1(Ḡd) which vanishes on a compact set F ⊂ Ḡd (but
is not identically 0 on Ḡd):

cap(F ) ≤
C(G)

∫
Gd

|∇u(x)|2 dx

|Gd|−1
∫

Gd
|u(x)|2 dx

. (18.3.1)

The next lemma is an obvious adaptation of Lemma 16.1 to general test
bodies Gd (instead of cubes Qd). In its proof Lemma 1 should be used.

Lemma 2. Let V be a positive Radon measure in Ω. There exists C2(G) > 0
such that for every γ ∈ (0, 1) and u ∈ C0,1(Ḡd) with u = 0 in a neighborhood
of Ḡd \Ω,
∫

Gd

|u|2 dx ≤ C2(G)d2

γ

∫
Gd

|∇u|2 dx+
C2(G)dn

Vγ(Gd, Ω)

∫
Ḡd

|u|2V(dx), (18.3.2)

where
Vγ(Gd, Ω) = inf

F ∈Nγ(Gd,Ω)
V(Gd \ F ). (18.3.3)

(Here the negligibility class Nγ(Gd, Ω) was introduced in Definition 18.1.)

Now we move to the proof of the sufficiency part in Theorem 18.1/1.
We start with the following proposition, which gives a general (albeit com-

plicated) sufficient condition for the discreteness of spectrum.

Proposition 1. Given an operator HV, let us assume that the following con-
dition is satisfied: there exists η0 > 0 such that for every η ∈ (0, η0) we can find
d = d(η) > 0 and R = R(η) > 0, so that if Gd satisfies Ḡd ∩ (Ω \BR(0)) �= ∅,
then there exists γ = γ(Gd, η) ∈ (0, 1) such that

γd−2 ≥ η−1 and d−n
Vγ(Gd, Ω) ≥ η−1. (18.3.4)

Then the spectrum of HV is discrete.

Proof. Recall that the discreteness of spectrum is equivalent to the follow-
ing condition: For every η > 0 there exists R > 0 such that (18.2.15) holds
for every u ∈ C∞

0 (Ω). This will be true if we establish that for every η > 0
there exist R > 0 and d > 0 such that

∫
Gd

|u|2 dx ≤ η
[∫

Gd

|∇u|2 dx+
∫

Ḡd

|u|2V(dx)
]

(18.3.5)

for all Gd such that Ḡd ∩ (Ω \ BR(0)) �= ∅ and for all u ∈ C∞(Ḡd), such
that u = 0 in a neighborhood of Ḡd \Ω. Indeed, assume that (18.3.5) is true.
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Let us take a covering of R
n by bodies Ḡd so that it has a finite multiplicity

m = m(G) (i.e., at most m bodies Ḡd can have a nonempty intersection).
Then, taking u ∈ C∞

0 (Ω) and summing up the estimates (18.3.5) over all
bodies Gd with Ḡd ∩ (Ω \ BR(0)) �= ∅, we obtain (18.2.15) (hence (18.2.14))
with mη instead of η.

Now Lemma 18.3/2 and the assumptions (18.3.4) immediately imply
(18.3.5) (with η replaced by C2(G)η). ��

Instead of requiring that the conditions of Proposition 1 are satisfied for
all η ∈ (0, η0), it suffices to require it for a monotone sequence ηk → +0. We
can also assume that d(ηk) → 0 as k → +∞. Then, passing to a subsequence,
we can assume that the sequence {d(ηk)} is strictly decreasing. Keeping this
in mind, we can replace the dependence d = d(η) by the inverse dependence
η = g(d), so that g(d) > 0 and g(d) → 0 as d → +0 (and here we can
also restrict ourselves to a sequence dk → +0). This leads to the following,
essentially equivalent, but more convenient reformulation of Proposition 1.

Proposition 2. Given an operator HV, assume that the following condi-
tion is satisfied: There exists d0 > 0 such that for every d ∈ (0, d0) we can
find R = R(d) > 0 and γ = γ(d) ∈ (0, 1), so that if Ḡd ∩ (Ω \ BR(0)) �= ∅,
then

d−2γ ≥ g(d)−1 and d−n
Vγ(Gd, Ω) ≥ g(d)−1, (18.3.6)

where g(d) > 0 and g(d) → 0 as d→ +0. Then the spectrum of HV is discrete.

Proof of Theorem 18.1/1, part (ii). Instead of (ii) in Theorem 18.1/1 it
suffices to prove the (stronger) statement formulated in Remark 18.1/4. So
suppose that ∃ d0 > 0, ∃c > 0, ∀d ∈ (0, d0), ∃R = R(d) > 0, ∃γ(d) ∈ (0, 1),
satisfying (18.0.1), such that (18.1.6) holds for all Gd with Ḡd∩(Ω\BR(0)) �= ∅.

Since the left-hand side of (18.1.6) is exactly d−n
Vγ(d)(Gd, Ω), we see that

(18.1.6) can be rewritten in the form

d−n
Vγ(Gd, Ω) ≥ cd−2γ(d),

hence we can apply Proposition 18.3 with g(d) = c−1d2γ(d)−1 to conclude
that the spectrum of HV is discrete. ��

18.4 A Sufficiency Example

In this section we prove Theorem 18.1/2. We shall construct a domain Ω ⊂
R

n, such that the condition (18.1.7) is satisfied with γ(d) = Cd2 (with an
arbitrarily large C > 0), and yet the spectrum of −Δ in L2(Ω) (with the
Dirichlet boundary condition) is not discrete. This will prove Theorem 18.1/2
showing that the condition (18.0.1) is precise. We assume that n ≥ 3.

Let us use the following notations:
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• L(j) is the spherical layer {x ∈ R
n : log j ≤ |x| ≤ log(j + 1)}. Its width is

log(j+1)− log j which is < j−1 for all j and equivalent to j−1 for large j.
• {Q(j)

k }k≥1 is a collection of closed cubes that form a tiling of R
n and have

edge length ε(n) j−1, where ε(n) is a sufficiently small constant depending
on n (to be adjusted later).

• x
(j)
k is the center of Q(j)

k .
• {B(j)

k }k≥1 is the collection of closed balls centered at x(j)
k with radii ρj

given by
ωn(n− 2) ρn−2

j = C
(
ε(n)/j

)n
,

where ωn is the area of the unit sphere Sn−1 ⊂ R
n and C is an arbitrary

constant. The last equality can be written as

cap
(
B

(j)
k

)
= CmnQ

(j)
k . (18.4.1)

Among the balls B(j)
k we select a subcollection which consists of the balls

with the additional property B(j)
k ⊂ L(j). We shall refer to these balls as

selected ones and denote selected balls by B̃(j)
k . By an abuse of notation

we do not introduce a special letter for the subscripts of the selected balls.
We also denote by Q̃(j)

k the corresponding cubes Q(j)
k , so that

Q̃
(j)
k = Q

(j)
k ⊃ B̃(j)

k .

• Λ(j) =
⋃

k≥1 B̃
(j)
k ⊂ L(j).

• Ω is the complement of
⋃

j≥1 Λ
(j).

• Br(P ) is the closed ball with radius r ≤ 1 centered at a point P . We shall
make a more precise choice of r later.

Proposition 1. The spectrum of −Δ in Ω (with the Dirichlet boundary
condition) is not discrete.

Proof. Let j ≥ 7 and P ∈ L(j), i.e.,

log j ≤ |P | ≤ log(j + 1).

Note that the ball Br(P ) is a subset of the spherical layer
⋃

l≥s≥m L
(s) if and

only if
logm ≤ |P | − r and |P | + r ≤ log(l + 1).

Therefore, if
logm ≤ log j − r

and
log(j + 1) + r ≤ log(l + 1),

then Br(P ) ⊂
⋃

l≥s≥m L
(s). The last two inequalities can be written as
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m ≤ j e−r and j + 1 ≤ (l + 1)e−r. (18.4.2)

If we take, for example,

m = [j/3] and l = 3j,

then, by the inequality j ≥ 7, we deduce that

Br(P ) ⊂
⋃

[j/3]≤s≤3j

L(s). (18.4.3)

Using (18.4.2), the definition of Ω and subadditivity of capacity, we obtain

cap
(
Br(P ) \Ω

)
= cap

(
Br(P ) ∩

(⋃
s≥1

Λ(s)

))

≤
∑

[j/3]≤s≤3j

∑
k≥1

cap
(
Br(P ) ∩ B̃(s)

k

)

≤ C
∑

[j/3]≤s≤3j

∑
{k:Br(P )∩Q̃

(s)
k 
=∅ }

mn Q̃
(s)
k .

We see that the multiplicity of the covering of Br(P ) by the cubes Q̃(s)
k ,

participating in the last sum, is at most 2, provided ε(n) is chosen sufficiently
small. Hence,

cap
(
Br(P ) \Ω

)
≤ c(n)Crn. (18.4.4)

On the other hand, we know that the discreteness of spectrum guarantees
that for every r > 0

lim inf
|P |→∞

cap
(
Br(P ) \Ω

)
≥ γ(n) rn−2,

where γ(n) is a constant depending only on n (cf. Remark 18.1/7). For suffi-
ciently small r > 0 this contradicts (18.4.4). ��

Proposition 2. The domain Ω satisfies

lim inf
|P |→∞

cap
(
Br(P ) \Ω

)
≥ δ(n)C rn, (18.4.5)

where δ(n) > 0 depends only on n.

Proof. Let μ(s)
k be the capacitary measure on ∂B̃(s)

k (extended by zero to
R

n \ ∂B̃(s)
k ), and let ε1(n) denote a sufficiently small constant to be chosen

later. We introduce the measure

μ = ε1(n)
∑
k,s

μ
(s)
k ,
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where the summation here and in the following is taken over k, s which cor-
respond to the selected balls B̃(s)

k . Taking P ∈ L(j), let us show that
∫
Br/2(P )

E(x− y) dμ(y) ≤ 1 on R
n, (18.4.6)

where E(x) is given by (18.2.3). It suffices to verify (18.4.6) for x ∈ Br(P )
because for x ∈ R

n \Br(P ) this will follow from the maximum principle.
Obviously, the potential in (18.4.6) does not exceed

∑
{s,k:B̃

(s)
k ∩Br/2(P ) 
=∅}

ε1(n)
∫
∂B̃

(s)
k

E(x− y) dμ(s)
k (y).

We divide this sum into two parts
∑′ and

∑′ ′, the first sum being extended
over all points x(s)

k with the distance ≤ j−1 from x. Recalling that x ∈ Br(P )
and using (18.4.3), we see that the number of such points does not exceed a
certain constant c1(n). We define the constant ε1(n) by

ε1(n) =
(
2c1(n)

)−1
.

Since μ(s)
k is the capacitary measure, we have

∑
′ · · · ≤ ε1(n) c1(n) = 1/2.

Furthermore, by (18.4.1)

∑
′ ′ · · · ≤ c2(n)

∑
′ ′ cap(B̃(s)

k )

|x− x(s)
k |n−2

= c2(n)C
∑

′ ′ mn Q̃
(s)
k

|x− x(s)
k |n−2

≤ c3(n) C
∫
Br(P )

dy
|x− y|n−2

< c4(n) C r2.

We can assume that
r ≤ (2c4(n)C)−1/2,

which implies
∑′ ′ ≤ 1/2. Therefore (18.4.6) holds.

It follows that for large |P | (i.e., for P with |P | ≥ R = R(r) > 0), or
equivalently, for large j, we have

cap
(
Br(P ) \Ω

)
≥

∑
{s,k:B̃

(s)
k ⊂Br/2(P )}

ε1(n)μ
(s)
k

(
∂B̃

(s)
k

)

= ε1(n)
∑

{s,k:B̃
(s)
k ⊂Br/2(P )}

cap
(
B̃

(s)
k

)

= ε1(n) C
∑

{s,k:B̃
(s)
k ⊂Br/2(P )}

mnQ
(s)
k ≥ δ(n) C rn.
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This ends the proof of Proposition 2, hence of Theorem 18.1/2. ��

Remark. Slightly modifying the previous construction, we provide an ex-
ample of an operator H = −Δ+ V (x) with V ∈ C∞(Rn), n ≥ 3, V ≥ 0, such
that the corresponding measure V dx satisfies (18.1.5) with γ(d) = Cd2 and
an arbitrarily large C > 0, but the spectrum of H in L2(Rn) is not discrete. So
the condition (18.0.1) is precise even in the case of the Schrödinger operators
with C∞ potentials.

18.5 Positivity of HV

In this section we prove Theorem 18.1/3.

Proof of Theorem 18.1/3 (Necessity). Let us assume that the operator HV

is strictly positive. This implies that the estimate (18.2.16) holds with some
η > 0 for every Gd (with an arbitrary d > 0) and every u ∈ C∞

0 (Gd ∩Ω). But
then we can use the arguments of Sect. 18.2 which lead to (18.2.22), provided
(18.2.18) is satisfied. It will be satisfied if d is chosen sufficiently large. ��

Proof of Theorem 18.1/3 (Sufficiency). Let us assume that there exist
d > 0, κ > 0 and γ ∈ (0, 1) such that for every Gd the estimate (18.1.9) holds.
Then by Lemma 18.3/2, for every Gd and every u ∈ C∞(Ḡd), such that u = 0
in a neighborhood of Ḡd \Ω, we have

∫
Gd

|u|2 dx ≤ C2(G)d2

γ

∫
Gd

|∇u|2 dx+
C2(G)dn

κ

∫
Ḡd

|u|2V(dx).

Let us take a covering of R
n of finite multiplicity N by bodies Ḡd. It follows

that for every u ∈ C∞
0 (Ω)

∫
Ω

|u|2 dx ≤ NC2(G)d2 max
{

1
γ
,
dn−2

κ

}(∫
Ω

|∇u|2 dx+
∫
Ω

|u|2V(dx)
)
,

which proves positivity of HV. ��

18.6 Structure of the Essential Spectrum of HV

Lemma. If the spectrum of HV is not purely discrete, the essential spectrum
of HV extends to infinity. Moreover, if 0 belongs to the essential spectrum of
HV, then this spectrum coincides with [0,∞).

Proof. Let Λ be the bottom of the essential spectrum. Then there exists a
sequence of real-valued functions {ϕν}ν≥1 in C∞

0 (Ω) subject to the conditions

‖ϕν‖L2(Ω) = 1, ϕν → 0 weakly in L2(Ω), (18.6.1)
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∥∥(HV − Λ)ϕν

∥∥
L2(Ω)

→ 0. (18.6.2)

We set

uν = ϕνexp
(
i(α− Λ)1/2

n∑
k=1

xk

)
,

where α > Λ. We see that uν satisfies (18.6.1) and that

∥∥(HV − α)uν
∥∥2

L2(Ω)
=
∥∥(HV − Λ)ϕν

∥∥2

L2(Ω)
+ 4(α− Λ)

∥∥∥∥∥
n∑

k=1

∂ϕν/∂xk

∥∥∥∥∥
2

L2(Ω)

.

Since the right-hand side does not exceed
∥∥(HV − Λ)ϕν

∥∥2

L2(Ω)
+ 4n(α− Λ)Q[ϕν , ϕν ],

we have
∥∥(HV − α)uν

∥∥2

L2(Ω)
≤
∥∥(HV − Λ)ϕν

∥∥2

L2(Ω)
+ 4n(α− Λ)

∥∥(HV − Λ)ϕν

∥∥
L2(Ω)

+ 4nΛ(α− Λ).

By (18.6.2)
lim sup
ν→∞

∥∥(HV − α)uν
∥∥
L2(Ω)

≤ ρ(α),

where ρ(α) = 2(nΛ(α−Λ))1/2. It follows that any segment [α−ρ(α), α+ρ(α)]
contains points of the essential spectrum. If, in particular, Λ = 0 then every
positive α belongs to the essential spectrum. ��

In concert with this lemma the pairs (Ω,V) can be divided into three
nonoverlapping classes.

(i) The first class includes (Ω,V) such that the spectrum of HV is
discrete.

(ii) The pair (Ω,V) belongs to the second class if the essential spectrum
of HV is unbounded and strictly positive.

(iii) Finally, (Ω,V) is of the third class if the essential spectrum of HV

coincides with [0,∞).

By Theorem 18.1, condition (i) is equivalent to (18.1.5) and (ii) holds if
and only if (18.1.9) is valid. Finally, (iii) is equivalent to the failure of (18.1.7)
by Theorem 18.1/3 and Lemma. In other words, (iii) holds if and only if

lim inf
Gd →∞

inf
F ∈Nγ(d)(Gd,Ω)

V(Ḡd \ F ) = 0

for every d > 0.
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18.7 Two-Sided Estimates of the First Eigenvalue of the
Dirichlet Laplacian

18.7.1 Main Result

Let us consider an open set Ω ⊂ R
n, n > 2 and denote the bottom of the

spectrum of its minus Dirichlet Laplacian (−Δ)Dir by Λ(Ω), i.e.,

Λ(Ω) = inf
u∈C∞

0 (Ω)

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

. (18.7.1)

Obviously, Ω′ ⊂ Ω implies Λ(Ω) ≤ Λ(Ω′). In particular, if Br is an open
ball of radius r, such that Br ⊂ Ω, then Λ(Ω) ≤ Λ(Br) = Cnr

−2 where
Cn = Λ(B1). It follows that for the interior radius of Ω, which is defined as

rΩ = sup{r : ∃Br ⊂ Ω},

we have
Λ(Ω) ≤ Cnr

−2
Ω .

However, this estimate is not good for unbounded domains or domains with
complicated boundaries. For instance, a similar estimate for Λ(Ω) from below
does not hold for the complement Ω of any Cartesian coordinate grid in R

n

when Λ(Ω) = 0 and rΩ <∞.
The way to improve this estimate is to relax (as in Sect. 15.4) the require-

ment for Br to be completely inside Ω by allowing some part of Br, which
has a “small” harmonic capacity, to stick out of Ω. Namely, let us take an ar-
bitrary γ ∈ (0, 1) and call a compact set F ⊂ B̄r negligible (or more precisely,
γ-negligible) if

cap(F ) ≤ γ cap(B̄r). (18.7.2)

(Here cap(F ) denotes the Wiener (harmonic) capacity of F , cap(F ; L̊1
2(R

n)).)
Now write

rΩ,γ = sup{r : ∃Br, B̄r \Ω is γ-negligible}.

This is the interior capacitary radius.

Theorem. Let us fix γ ∈ (0, 1). Then there exist c = c(γ, n) > 0 and
C = C(γ, n) > 0, such that for every open set Ω ⊂ R

n

cr−2
Ω,γ ≤ Λ(Ω) ≤ Cr−2

Ω,γ . (18.7.3)

Explicit values of constants c = c(γ, n) and C = C(γ, n) are provided in
(18.7.22) and (18.7.38), respectively.

Let us formulate some corollaries of this theorem.

Corollary 1. Λ(Ω) > 0 if and only if rΩ,γ <∞.
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This corollary gives a necessary and sufficient condition of strict positivity
of the operator (−Δ)Dir in Ω.

Since the condition Λ(Ω) > 0 does not contain γ, we immediately obtain
the following corollary.

Corollary 2. Conditions rΩ,γ < ∞, taken for different γ’s, are equiva-
lent.

Writing F = R
n \ Ω (which can be an arbitrary closed subset in R

n), we
obtain from the previous corollary (comparing γ = 0.01 and γ = 0.99):

Corollary 3. Let F be a closed subset in R
n, which has the following

property: There exists r > 0 such that

cap(F ∩ B̄r) ≥ 0.01 cap(B̄r)

for all Br. Then there exists r1 > 0 such that

cap(F ∩ B̄r1) ≥ 0.99 cap(B̄r1)

for all Br1 .

The inequalities (18.7.3) for sufficiently small γ > 0 were established in
Chaps. 14 and 15. The Theorem provides a substantial improvement, in par-
ticular, allowing Corollaries 2 and 3 and providing explicit values of the con-
stants.

18.7.2 Lower Bound

In this section we will establish the lower bound for Λ(Ω) from Theorem
18.7.1, which is an easier part of this theorem. The key part of the lower
bound proof is presented in the following lemma, which is a particular case of
a more general Theorem 14.1.2, part 1, though without an explicit constant,
which we provide to specify explicit constants in Theorem 18.7.1.

Lemma 1. The following inequality holds for every complex-valued func-
tion u ∈ C0,1(B̄r) which vanishes on a compact set F ⊂ B̄r (but is not
identically 0 on B̄r):

cap(F ) ≤
Cn

∫
Br

|∇u(x)|2 dx

r−n
∫
Br

|u(x)|2 dx
, (18.7.4)

where

Cn = 4ωn

(
1 − 2

n2

)
. (18.7.5)

Beginning of Proof. A. Clearly, it is sufficient to consider the ball Br cen-
tered at 0, and real-valued functions u ∈ C0,1(B̄r). By scaling we see that it
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suffices to consider the case r = 1. (The corresponding estimate for an arbi-
trary r > 0 follows from the one with r = 1 with the same constant Cn.) So
we need to prove the estimate

∫
B1

|u|2 dx ≤ Cn

cap(F )

∫
B1

|∇u|2 dx, (18.7.6)

where F is a compact subset of B̄1, u ∈ C0,1(B̄1), and u|F = 0.
Consider the function U ∈ C0,1(Rn)

U(x) =

{
1− |u(x)|, if |x| ≤ 1,
|x|2−n(1 − |u(|x|−2x)|), if |x| ≥ 1,

i.e., U extends 1 − |u| to {x : |x| ≥ 1} as the Kelvin transform of 1 − |u|.
Clearly, U |F = 1, |∇U | = |∇u| almost everywhere in B1, U(x) = O(|x|2−n)
and |∇U(x)| = O(|x|1−n) as |x| → ∞. It follows that U can serve as a test
function in (18.2.1), i.e.,

cap(F ) ≤
∫
R

n
|∇U |2 dx. (18.7.7)

Using the harmonicity of |x|2−n and the Green–Stokes formula, we obtain by
a straightforward calculation
∫
R

n
|∇U |2 dx = 2

∫
B1

|∇u|2 dx+ (n− 2)
∫
∂B1

(
1 −

∣∣u(ω)
∣∣)2 dω, (18.7.8)

where dω means the area element on ∂B1.

B. For a function v on ∂B1 define its average

v̄ =
∫
−

∂B1

v dω =
1
ωn

∫
∂B1

v dω.

To continue the proof of Lemma 1, we will need the following elementary
Poincaré-type trace inequality.

Lemma 2. For any v ∈ C0,1(B1),
∫
∂B1

|v − v̄|2 dω ≤
∫
B1

|∇v|2 dx. (18.7.9)

Proof of Lemma 2. It suffices to prove it for real-valued functions v. Let
us expand v in spherical functions. Let

{Yk,l | l = 0, 1, . . . , nk, k = 0, 1, . . . , }
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be an orthonormal basis in L2(∂B1) which consists of eigenfunctions of the
(negative) Laplace–Beltrami operator Δω on ∂B1, so that the eigenfunctions
Yk,l = Yk,l(ω) with a fixed k have the same eigenvalue −k(k+n−2) (which has
multiplicity nk+1). Note that the zero eigenvalue (corresponding to k = 0) has
multiplicity 1 and Y0,0 = const = ω

−1/2
n for the corresponding eigenfunction.

Writing x = rω, where r = |x|, ω = x/|x|, we can present v in the form

v(x) = v(r, ω) =
∑
k,l

vk,l(r)Yk,l(ω). (18.7.10)

Then ∫
B1

∣∣v(x)∣∣2 dx =
∑
k,l

∫ 1

0

∣∣vk,l(r)∣∣2rn−1 dr (18.7.11)

and ∫
∂B1

∣∣v(ω)
∣∣2 dω =

∑
k,l

∣∣vk,l(1)
∣∣2. (18.7.12)

It follows that ∫
∂B1

∣∣v(ω) − v̄
∣∣2 dω =

∑
{k,l:k≥1}

∣∣vk,l(1)
∣∣2. (18.7.13)

Taking into account that

|∇v|2 =
∣∣∣∣∂v∂r

∣∣∣∣
2

+ r−2|∇ωv|2,

where ∇ω means the gradient along the unit sphere with variable ω and fixed r,
we also get

∫
B1

|∇v|2 dx =
∑
k,l

∫ 1

0

(∣∣v′
k,l(r)

∣∣2 +
k(k + n− 2)

r2
∣∣vk,l(r)∣∣2

)
rn−1 dr.

(18.7.14)
Comparing (18.7.13) and (18.7.14), and taking into account that k(k+n− 2)
increases with k, we see that it suffices to establish that the inequality

∣∣g(1)
∣∣2 ≤

∫ 1

0

(∣∣g′(r)
∣∣2 +

n− 1
r2

∣∣g(r)∣∣2
)
rn−1 dr

holds for any real-valued function g ∈ C0,1([0, 1]). To this end write

g(1)2 =
∫ 1

0

(
rn−2g2

)′ dr =
∫ 1

0

[
2rn−2g′g + (n− 2)rn−3g2

]
dr

≤
∫ 1

0

[
rn−1g′2 + (n− 1)rn−3g2

]
dr =

∫ 1

0

(
g′2 +

n− 1
r2

g2
)
rn−1 dr,

which proves Lemma 2. ��
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Proof of Lemma 1 (continuation). C. Let us normalize u by requiring |u| = 1,
i.e., average of |u| over ∂B1 equals 1. Then by Lemma 2

∫
∂B1

(
1 − |u|

)2 dω ≤
∫
B1

|∇u|2 dx.

Combining this with (18.7.7) and (18.7.8), we obtain

cap(F ) ≤ n
∫
B1

|∇u|2 dx.

Removing the restriction |u| = 1, we can conclude that for any u ∈ C0,1(B1)

(∫
−

∂B1

|u| dω
)2

≤ n

cap(F )

∫
B1

|∇u|2 dx. (18.7.15)

Note that for any real-valued function v ∈ C0,1(B1)
∫
−

∂B1

|v − v̄|2 dω =
∫
−

∂B1

|v|2 dω − v̄2,

hence, using (18.7.9), we get
∫
−

∂B1

|v|2 dω = v̄2 +
∫
−

∂B1

|v − v̄|2 dω ≤ v̄2 +
1
ωn

∫
B1

|∇v|2 dx.

Applying this to v = |u| and using (18.7.15), we obtain
∫
∂B1

|u|2 dω ≤
(

1 +
nωn

cap(F )

)∫
B1

|∇u|2 dx. (18.7.16)

D. Note that our goal is an estimate that is similar to (18.7.16), but with
the integral over ∂B1 in the left-hand side replaced by the integral over B1.
To this end we again use the expansion (18.7.10) of v = |u| over spherical
functions, and the identities (18.7.11), (18.7.12), and (18.7.14). Let us take a
real-valued function g ∈ C0,1([0, 1]) and write

Q =
∫ 1

0

g2(r)rn−1 dr.

Integrating by parts, we obtain

Q = − 2
n

∫ 1

0

gg′rn dr +
1
n
g2(1).

Using the inequality 2ab ≤ εa2 +ε−1b2, where a, b ∈ R, ε > 0, and taking into
account that r ≤ 1, we obtain
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Q ≤ 1
n

∫ 1

0

(
εg2(r) +

1
ε
g′2(r)

)
rn−1 dr +

1
n
g2(1)

=
ε

n
Q+

1
nε

∫ 1

0

g′2(r)rn−1 dr +
1
n
g2(1),

hence for any ε ∈ (0, n)

Q ≤ 1
(n− ε)ε

∫ 1

0

g′2(r)rn−1 dr +
1

n− εg
2(1).

Taking ε = n/2, we obtain

Q ≤ 4
n2

∫ 1

0

g′2(r)rn−1 dr +
2
n
g2(1). (18.7.17)

Now we can argue as in the proof of Lemma 2, expanding v = |u| over spherical
harmonics Yk,l. Then the desired inequality follows from the inequalities for
the coefficients vk,l = vk,l(r), with the strongest one corresponding to the
case k = 0 (unlike k = 1 in Lemma 2). Then using the inequality (18.7.17)
for g = v0,0 we obtain

∫
B1

|u|2 dx ≤ 4
n2

∫
B1

|∇u|2 dx+
2
n

∫
∂B1

|u|2 dω. (18.7.18)

Using (18.7.16), we deduce from (18.7.18)
∫
B1

|u|2 dx ≤
[

4
n2

+
2
n

(
1 +

nωn

cap(F )

)]∫
B1

|∇u|2 dx. (18.7.19)

Taking into account the inequality

cap(F ) ≤ cap(B̄1) = (n− 2)ωn,

we can estimate the constant in front of the integral in the right-hand side of
(18.7.19) as follows:

4
n2

+
2
n

(
1 +

nωn

cap(F )

)
≤ 4ωn

cap(F )

(
1 − 2

n2

)
,

which ends the proof of Lemma 1. ��

The lower bound in (18.7.3) is given by the following lemma.

Lemma 3. There exists c = c(γ, n) > 0 such that for all open sets Ω ⊂ R
n

Λ(Ω) ≥ c r−2
Ω,γ . (18.7.20)
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Proof. Let us fix γ ∈ (0, 1) and choose any r > rΩ,γ . Then any ball B̄r has
a nonnegligible intersection with R

n \Ω, i.e.,

cap(B̄r \Ω) ≥ γ cap(B̄r).

Since any u ∈ C∞
0 (Ω) vanishes on B̄r \ Ω, it follows from Lemma 1 that for

any such u
∫
B̄r

|u|2 dx ≤ Cn

r−n cap (B̄r \Ω)

∫
B̄r

|∇u|2 dx ≤ Cn

r−nγ cap (B̄r)

∫
B̄r

|∇u|2 dx.

Taking into account that cap(B̄r) = cap(B̄1)rn−2, we obtain
∫
B̄r

|u|2 dx ≤ Cnr
2

γ cap(B̄1)

∫
B̄r

|∇u|2 dx.

Now let us choose a covering of R
n by balls B̄r = B̄

(k)
r , k = 1, 2, . . . , so that

the multiplicity of this covering is at most N = N(n). For example, we can
make

N(n) ≤ n logn+ n log(log n) + 5n, n ≥ 2, (18.7.21)

which holds also for the smallest multiplicity of coverings of R
n by translations

of any convex body (see Theorem 3.2 in Rogers [679]).
Then summing up the previous estimates over all balls in this covering,

we see that
∫
R

n
|u|2 dx ≤

∑
k

∫
B̄

(k)
r

|u|2 dx ≤ Cnr
2

γ cap(B̄1)

∑
k

∫
B̄

(k)
r

|∇u|2 dx

≤ CnNr
2

γ cap(B̄1)

∫
R

n
|∇u|2 dx.

Recalling (18.7.1), we see that

Λ(Ω) ≥ cr−2,

with

c = c(γ, n) =
γ cap(B̄1)
CnN

=
γn2(n− 2)
4(n2 − 2)N

. (18.7.22)

Taking the limit as r ↓ rΩ,γ , we obtain (18.7.20) with the same c. ��

18.7.3 Upper Bound

We divide the proof of the upper bound into parts.
1. According to (18.7.1), to get an upper bound for Λ(Ω) it is enough to

take any test function u ∈ C∞
0 (Ω) and write
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Λ(Ω) ≤
∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

. (18.7.23)

For simplicity of notations we shall write Λ instead of Λ(Ω) everywhere in
this section. The inequality (18.7.23) can be written as follows:

∫
Ω

|u|2 dx ≤ Λ−1

∫
Ω

|∇u|2 dx. (18.7.24)

By approximation, it suffices to take u ∈ C0,1
0 (Ω) or even u ∈ L̊1

2(Ω).
In particular, choosing a ball Br, we can take

u ∈ C0,1
0 (Ω ∩Br) = C0,1

0 (Ω) ∩ C0,1
0 (Br). (18.7.25)

Let us take a compact set F ⊂ B̄3r/2, such that F is the closure of an open set
with a smooth boundary. (In this section we will call such sets regular subsets
of B̄3r/2.) Denote by PF its capacitary potential (see Sect. 18.2). Regularity
of F implies that PF ∈ C0,1(Rn). By definition PF = 1 on F , so 1 − PF = 0
on F . Let us also assume that

IntF ⊃ B̄r \Ω,

where IntF means the set of all interior points of F . Then 1 − PF = 0 in a
neighborhood of B̄r \ Ω. Therefore, multiplying 1 − PF by a cutoff function
η ∈ C∞

0 (Br), we will get a function u = η(1−PF ), satisfying the requirement
(18.7.25), hence fit to be a test function in (18.7.23).

In the future we will also assume that the cutoff function η ∈ C∞
0 (Br) has

the properties

0 ≤ η ≤ 1 on Br, η = 1 on B(1−κ)r, |∇η| ≤ 2(κr)−1 on Br,

where 0 < κ < 1 and the balls Br and B(1−κ)r are supposed to have the same
center. Using integration by parts and the equation ΔPF = 0 on Br \ F , we
obtain for the test function u = η(1 − PF )
∫
Br

|∇u|2 dx =
∫
Br

(
|∇η|2(1 − PF )2 −∇

(
η2
)
· (1 − PF )∇PF + η2|∇PF |2

)
dx

=
∫
Br

|∇η|2(1 − PF )2 dx ≤ 4(κr)−2

∫
Br

(1 − PF )2 dx.

Therefore, from (18.7.24) we obtain
∫
Br

|u|2 dx ≤ Λ−14(κr)−2

∫
Br

(1 − PF )2 dx.

Since 0 ≤ PF ≤ 1, the last integral in the right-hand side is estimated by

mn(Br) = n−1ωnr
n.
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Therefore, ∫
Br

|u|2 dx ≤ 4n−1ωnΛ
−1κ−2rn−2.

Restricting the integral in the left-hand side to B(1−κ)r, we obtain
∫
B(1−κ)r

(1 − PF )2 dx ≤ 4n−1ωnΛ
−1κ−2rn−2. (18.7.26)

2. Now we need to provide an appropriate lower bound for the left-hand
side of (18.7.26). To this end we first restrict the integration to the spherical
layer

Sr1,r2 = Br2 \Br1 ,

where 0 < r1 < r2 < r. In the sequel we shall take

r1 = (1 − 2κ)r, r2 = (1 − κ)r, (18.7.27)

where 0 < κ < 1/2, though it is convenient to write some formulas in a greater
generality. Let us denote the volume of the layer Sr1,r2 by |Sr1,r2 |, i.e.,

|Sr1,r2 | = mnSr1,r2 = n−1ωn

(
rn2 − rn1

)
.

We also need the notation∫
−

Sr1,r2

f(x) dx =
1

|Sr1,r2 |

∫
Sr1,r2

f(x) dx

for the average of a positive function f over Sr1,r2 . In particular, restricting
the integration in (18.7.26) to Sr1,r2 (with r1, r2 as in (18.7.27)) and dividing
by |Sr1,r2 |, we obtain

∫
−

Sr1,r2

(1 − PF )2 dx ≤ 4Λ−1κ−2rn−2

rn2 − rn1
.

Hence, by the Cauchy–Schwarz inequality,
[
1−

∫
−

Sr1,r2

PF dx
]2

=
[∫
−

Sr1,r2

(1 − PF ) dx
]2

≤ 4Λ−1κ−2rn−2

rn2 − rn1
. (18.7.28)

To simplify the right-hand side, let us estimate (rn2 − rn1 )−1 from above. We
see that

rn2 − rn1 = (r2 − r1)
(
rn−1
2 + rn−2

2 r1 + · · ·+ rn−1
1

)
≥ nκrrn−1

1 = nκrn(1 − 2κ)n−1 ≥ nκrn
[
1 − 2(n− 1)κ

]
.

Now note that
1

1 − 2(n− 1)κ
≤ 1 + 4(n− 1)κ,
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provided

0 < κ ≤ 1
4(n− 1)

. (18.7.29)

Under this condition it follows that
1

rn2 − rn1
≤ n−1κ−1r−n

[
1 + 4(n− 1)κ

]
, (18.7.30)

and (18.7.28) takes the form
[
1 −

∫
−

Sr1,r2

PF dx
]2

≤ 4n−1κ−3
[
1 + 4(n− 1)κ

]
Λ−1r−2. (18.7.31)

3. For simplicity of notation and without loss of generality we may assume
that the ball Br is centered at 0 ∈ R

n (and so are smaller balls and spherical
layers).

To provide a lower bound for the left-hand side of (18.7.31), we will give
an upper bound for the average of PF . According to the definition of PF and
notations from Sect. 18.7.1, we can write∫

−
Sr1,r2

PF dx =
∫
−

Sr1,r2

(∫
F

E(x− y) dμF (y)
)

dx

=
∫
F

(∫
−

Sr1,r2

E(x− y) dx
)

dμF (y). (18.7.32)

The inner integral on the right-hand side can be explicitly calculated as the
potential of a uniformly charged spherical layer with total charge 1. The result
of this calculation is |Sr1,r2 |−1Vr1,r2(y), where

Vr1,r2(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r2
2 −r2

1
2(n−2) , if |y| ≤ r1,

− |y|2
2n + r2

2
2(n−2) −

rn
1

n(n−2)|y|n−2 , if r1 ≤ |y| ≤ r2,
rn
2 −rn

1
n(n−2)|y|n−2 , if |y| ≥ r2.

(18.7.33)

The function y �→ Vr1,r2(y) belongs to C1(Rn) and is spherically symmetric; it
tends to 0 as |y| → ∞; it is harmonic in R

n \ Sr1,r2 and satisfies the equation
ΔVr1,r2 = −1 in Sr1,r2 . These properties uniquely define the function Vr1,r2 .
Differentiating it with respect to |y|, we easily see that it is decreasing with
respect to |y|, hence its maximum is at y = 0 (hence given by the first row in
(18.7.33)). So we obtain, using (18.7.30),∫

−
Sr1,r2

E(x− y) dx ≤ |Sr1,r2 |−1Vr1,r2(0) =
n(r22 − r21)

2(n− 2)ωn(rn2 − rn1 )

=
nκr(r1 + r2)

2(n− 2)ωn(rn2 − rn1 )
≤ nr2κ(1 − κ)

(n− 2)ωn(rn2 − rn1 )

≤ (1 − κ)[1 + 4(n− 1)κ]
(n− 2)ωnrn−2

≤ 1 + (4n− 5)κ
(n− 2)ωnrn−2

.
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Finally, using the equality cap(Br) = (n− 2)ωnr
n−2, we obtain

∫
−

Sr1,r2

E(x− y) dx ≤ 1 + (4n− 5)κ
cap(B̄r)

, (18.7.34)

provided r1, r2 chosen as in (18.7.27) and (18.7.29) is satisfied.
4. Using (18.7.34) in (18.7.32) and taking into account (18.2.5), we obtain
∫
−

Sr1,r2

PF (x) dx ≤ 1 + (4n− 5)κ
cap(B̄r)

∫
F

dμF (y)

=
[
1 + (4n− 5)κ

] cap(F )
cap(B̄r)

≤
[
1 + (4n− 5)κ

]
γ, (18.7.35)

provided F is γ-negligible. (i.e., satisfies (18.7.2)). Taking into account
(18.7.29), we can set

κ = min
{

1
4(n− 1)

,
1 − γ

2(4n− 5)γ

}
, (18.7.36)

so that (18.7.29) is satisfied, and besides,

[
1 + (4n− 5)κ

]
γ ≤ 1 + γ

2
= 1 − 1 − γ

2
,

so that (18.7.35) becomes
∫
−

Sr1,r2

PF (x) dx ≤ 1 − 1 − γ
2

.

Taking this into account in (18.7.31) and using (18.7.29), we obtain

(1 − γ)2
4

≤ 4n−1κ−3
[
1 + 4(n− 1)κ

]
Λ−1r−2 ≤ 8n−1κ−3Λ−1r−2,

hence
Λ ≤ 32(1− γ)−2κ−3r−2. (18.7.37)

We are now ready to prove Theorem 18.7.1.
The lower bound for Λ was established in Lemma 18.7.2/3. We obtained

the estimate (18.7.37) under the condition that there exist γ ∈ (0, 1), a ball
Br, and a regular compact set F ⊂ B̄3r/2 (here the balls Br and B3r/2 have
the same center), such that F is γ-negligible and its interior includes B̄r \Ω.
(The estimate then holds with κ = κ(γ, n) given by (18.7.36).) It follows, in
particular, that B̄r \Ω is γ-negligible.

Conversely, if B̄r \Ω is γ-negligible, then we can approximate it by regular
compact sets Fk, k = 1, 2, . . . , such that IntFk ⊃ B̄r \Ω, IntFk ⊃ Fk+1, and
B̄r \Ω is the intersection of all Fk’s. Then
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lim
k→∞

cap(Fk) = cap(B̄r \Ω)

by the continuity property of the capacity (see Sect. 2.2.1). In this case, for
any ε > 0 the sets Fk will be (γ + ε)-negligible for sufficiently large k. It
follows that the estimate (18.7.37) will hold if we only know that there exists
a ball Br such that B̄r \Ω is γ-negligible. Then the estimate still holds if we
replace r by the least upper bound of the radii of such balls, which is exactly
the interior capacitary radius rΩ,γ . This proves the upper bound in (18.7.3)
with

C(γ, n) = 32(1 − γ)−2κ−3, (18.7.38)

where κ is defined by (18.7.36). ��

18.7.4 Comments to Chap. 18

Sections 18.1–18.5. The material is borrowed from the article by Maz’ya
and Shubin [590], which improves the results of Sect. 18.4 for the particular
case p = 2, l = 1.

Section 18.2. A survey of the necessary and sufficient conditions ensuring
various spectral properties of the Schrödinger operator can be found in [563].
M.E. Taylor gave an alternative formulation of the discreteness of spectrum
criterion formulated in terms of the so-called scattering length [748].

The necessary and sufficient conditions for the discreteness and strict pos-
itivity of magnetic Schrödinger operators with a positive scalar potential

−
n∑

j=1

(
∂

∂xj
+ iaj

)2

+ V

are obtained by Kondratiev, Maz’ya, and Shubin in [450] and [451].
Section 18.6. Lemma 18.6 is due to Glazman [309].
Section 18.7. We follow the article [589] by Maz’ya and Shubin which

improves the results of Sect. 15.4 for the particular case p = 2, l = 1. A variant
of Lemma 18.7.2/1 was obtained by Maz’ya [532] as early as in 1963.

Lieb [495] used geometric arguments to establish a lower bound for Λ(Ω)
which is similar to (18.7.20), but with capacity replaced by the Lebesgue
measure. Such lower bounds can be also deduced from Theorem 18.7.1 if we
use isoperimetric inequalities between the capacity and Lebesgue measure

mnF ≤ An

(
cap(F )

)n/(n−2)
, (18.7.39)

with the equality for balls (see, e.g., [666] or Sects. 2.2.3 and 2.2.4 in [556]),
so

An = (mnB1)
[
cap(B1)

]−n/(n−2) = n−1(n− 2)−n/(n−2)ω−2/(n−2)
n .

Namely, let us write for any α ∈ (0, 1)
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r
(mn)
Ω,α = sup

{
r : ∃Br,mn(Br \Ω) ≤ αmnBr

}
.

Then (18.7.39) implies that

r
(mn)
Ω,α ≥ rΩ,γ provided α = γn/(n−2).

Therefore, we obtain for every α ∈ (0, 1)

Λ(Ω) ≥ c(γ, n)
(
r
(mn)
Ω,α

)−2
, where γ = α(n−2)/n.

Here c(γ, n) is given by (18.7.22). This is exactly Lieb’s inequality (1.2) in
[495], though with a different constant.

There are numerous results that give lower bounds for Λ(Ω). We will
mention only a few. The Faber–Krahn inequality ([265, 462, 666]) gives a
lower bound of Λ(Ω) in terms of the area of Ω ⊂ R

2. Under miscellaneous
topological and geometric restrictions on Ω, the interior radius was shown
to provide a lower bound (hence a two-sided estimate) for Λ(Ω) in the case
n = 2 by Hayman [358], Osserman [647–649], M. E. Taylor [746], Croke [217],
Bañuelos and Carroll [69], and also in the case n ≥ 3 ([358, 649]). The following
two-sided estimate for Λ(Ω) was established by the author in [531, 534] (see
Sects. 2.4 and 4.3 of this book),

1
4

inf
F

cap(F,Ω)
mn(F )

≤ Λ(Ω) ≤ inf
cap(F,Ω)
mn(F )

,

where the infimum is taken over all compact sets F ⊂ Ω.
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325. Gromov, M.: Isoperimetric inequalities in Riemannian manifolds,
Asymptotic Theory of Finite-Dimensional Normed Spaces, Milman, V.
D., Schechtman, G. (Eds.), Lect. Notes Math. 1200, Springer, Berlin,
1986. With an appendix by M. Gromov.

326. Gromov, M., Milman, V. D.: Generalization of the spherical isoperimet-
ric inequality to uniformly convex Banach spaces, Compos. Math. 62
(1987), 263–282.

327. Gross, L.: Logarithmic Sobolev inequalities, Am. J. Math. 97 (1975),
no. 4, 1061–1083.

328. Gross, L.: Logarithmic Sobolev inequalities and contractivity properties
of semigroups, Lect. Notes Math. Springer, Berlin, 1993, 54–88.

329. Grushin, V. V.: A problem for the entire space for a certain class of
partial differential equations, Dokl. Akad. Nauk SSSR 146 (1962), 1251–
1254 (in Russian). English translation: Sov. Math. Dokl. 3 (1962), 1467–
1470.

330. Guionnet, A., Zegarlinski, B.: Lectures on logarithmic Sobolev in-
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346. Haj�lasz, P., Malý, J.: Approximation in Sobolev spaces of nonlinear
expressions involving the gradient, Ark. Mat. 40 (2002), 245–274.

347. Hansson, K.: On a maximal imbedding theorem of Sobolev type and
spectra of Schrödinger operators. Linköping Studies in Science and Tech-
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353. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: Sobolev capacity
on the space W 1,p(·)(Rn), J. Funct. Spaces Appl. 1 (2003), no. 1, 17–33.

354. Haroske, D., Runst, T., Schmeisser, H.-J.: Function spaces, differential
operators and nonlinear analysis, The Hans Triebel Anniversary Vol-
ume, Proceedings of the 5th International Conference Held in Teistun-
gen, 2001.

355. Haroske, D. D., Triebel, H.: Distributions, Sobolev Spaces and Elliptic
Equations, EMS Textbooks in Mathematics, European Mathematical
Society, Zürich, 2008.
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421. Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero
boundary values on metric spaces, Potential Anal. 12 (2000), 233–247.
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469. Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type, World

Scientific, Singapore, 2003.
470. Labutin, D. A.: Integral representations of functions and embeddings

of Sobolev spaces on cuspidal domains, Mat. Zametki 61 (1997), no. 2,
201–219 (in Russian). English translation: Math. Notes 61 (1997), 164–
179.

471. Labutin, D. A.: Embedding of Sobolev spaces on Hölder domains, Proc.
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58 (in Russian). English translation: Trans. Mosc. Math. Soc. 31 (1974)
30–54.

477. Landkof, N. S.: Foundations of Modern Potential Theory, Nauka,
Moscow, 1966 (in Russian). English edition: Springer, Berlin, 1972.

478. Lang, J., Maz’ya, V.: Essential norms and localization moduli of Sobolev
embeddings for general domains, J. Lond. Math. Soc. 78 (2008), no. 2,
373–391.

479. Laptev, A. (Ed.): Around the Research of Vladimir Maz’ya I, Interna-
tional Math. Series 11, Springer, Berlin, 2010.



References 829

480. Laptev, A., Sobolev, A. V.: Hardy inequalities for simply connected
planar domains, Am. Math. Soc. Transl., Ser. 2, Adv. Math. Sci., 225,
(2008), 133–140.

481. Laptev, A., Weidl, T.: Hardy inequalities for magnetic Dirichlet forms,
Mathematical Results in Quantum Mechanics (Prague, 1998), Oper.
Theory Adv. Appl. 108, Birkhäuser, Basel, 1999, 299–305.
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703. Sjödin, T.: Capacities of compact sets in linear subspaces of R
n, Pac. J.

Math. 78 (1978), 261–266.
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Ė . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.3
S̃h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1
M . . . . . . . . . . . . . . . . . . . . . . . . 3.8; 10.3.2
Ep,q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Aα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.6
∇Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1
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Väisälä, 32, 845
Varonen, 152, 822
Varopoulos, 260, 845
Vaugon, 179, 822
Vázquez, 219, 810, 845

Vega, 220, 815
Verbitsky, 1, 54, 63, 177, 204, 252,

253, 551, 564, 565, 567, 573, 607,
812, 821, 825, 835, 839, 845

Villani, 178, 401, 814, 830
Vodop’yanov, 87, 88, 321, 820, 844,

845
Volberg, 320, 547, 837, 845
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