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Abstract

The stochastic dynamics of interest rates is a crucial element in modern term

structure theories and in the pricing of the various interest rate options which

are embedded in bond issues today. International studies show that no model

of these dynamics is valid world-wide.

This paper studies the dynamics of the short term interest rate in India (the call

market rate) and shows that it follows a mean reverting dynamics with a

volatility which is independent of the level of interest rates (conforming to the

model proposed by Brennan and Schwartz, 1979). This finding has important

implications for the theory of the term structure of interest rates. In particular

the Cox-Ingersoll-Ross theory of the term structure is strongly rejected in

India.

The normal rate of interest to which the short term rate mean-reverts is itself

shown to be changing over time. The Kalman filtering methodology shows that

the normal rate too follows a mean reverting process with a much slower speed

of adjustment.

A companion paper (Varma, 1996b) translates these findings into a

methodology for pricing interest rate options in India and presents applications

of the  proposed methodology.
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The Stochastic Dynamics of the Short Term Interest Rate in India

Introduction

For the last few years, India has been preparing for the introduction of full fledged markets for

stock and stock index options. While these markets have yet to see the light of day, options on

interest rates have become increasingly important in the country’s fledgling debt market.

Though there is no trading in interest rate options per se, there has been a lot of activity in the

issue of bonds with various embedded interest rate options. The pricing of the embedded call

and put options, is essential to arrive at a rational valuation of these bonds.

Valuation of options on bonds is considerably more complex than the pricing of options on

stocks and stock indices mainly because of the vastly greater complexity of the bond price

dynamics as compared to the dynamics of stock prices. The probability distribution of stock

prices closely resembles a log-normal distribution generated by a random walk. In other

words, the distribution of short term stock market returns approximates the familiar bell-

shaped normal distribution. The famous Black-Scholes option pricing formula (Black and

Scholes, 1973) for valuing options on stocks is based on this distribution and is known to

perform quite well in practice.

Bond prices, on the other hand, do not follow a random walk at all. In fact, as the bond

approaches maturity, its price approaches the redemption value and all uncertainty rapidly

disappears. (A random walk has been compared to the walking of a drunkard; the bond then is

a drunkard who becomes increasingly sober as the maturity approaches!). To value options on

bonds (or options embedded in them), it is, therefore, usual to regard the interest rate rather

than the bond price as the underlying variable. However, the dynamics of interest rates are not

straightforward either (see, for example, Malkiel, 1966). Interest rates do not follow a simple

random walk, but exhibit the well known phenomenon of mean reversion. This phenomenon

refers to the tendency of interest rates to revert to a normal rate over the long run. Whenever

the interest rate drifts too far away from the normal rate, it is pulled back towards it. It is also

well known that interest rates are more volatile when rates are high than when they are low.

(To pursue our previous analogy, the drunkard’s swagger increases sharply when he drifts
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towards the left hand side of the road and is less pronounced when he drifts towards the other

end.)

A stochastic model of all this complex dynamics of the interest rate process thus becomes a

pre-requisite for the valuation of interest rate options. Researchers around the world have

expended a great deal of effort on this task. Unfortunately, no single model appears to be valid

in all countries of the world. A recent study (Tse, 1995) of eight different models in eleven

countries found that no model was valid in all countries. Each of the three most popular

models found applicability in some countries, but each was rejected in half the countries. This

means that we cannot simply pick up one of the models developed elsewhere in the world and

apply it to India. It is necessary to study the dynamics of interest rates in India and determine

the model which best fits the Indian experience.

Data and Methodology

Data

Interest rates in India have been freed only recently and therefore we do not have a long

stretch of historical data to study the dynamics of interest rates. Moreover, the low level of

development of Indian debt markets means that many of the bonds are highly illiquid and there

is a paucity of reliable price and yield data at regular intervals. After careful examination of

various alternatives, it appears quite clear that the inter-bank call market rate is the only free-

market interest rate for which reliable quotations based on actual trades are available on a

daily or weekly basis. The call market does have the disadvantage that it is restricted to the

banks. (A limited number of other institutions can participate as lenders, but not borrowers).

Nevertheless, the experience in India has been that the call market rate has a pervasive

influence on all interest rates in the country. It would not be at all wrong to say that the call

market is the true benchmark rate of interest in the Indian economy. This paper, therefore,

proceeds to study the dynamics of the call market interest rate.
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The call market rate fluctuates on a minute to minute basis and is quoted in all business

newspapers everyday. Unlike in the case of stock prices, however, it makes very little sense to

use the closing quotation of the day as the call market interest rate. This is because the bulk of

the call market transactions take place in the first hour or so, and later quotations are typically

based on very thin volumes. It would not at all be appropriate to rely on these stray late

afternoon transactions. For this reason, this paper relies on the weighted average rate

published by the Reserve Bank of India (RBI). Since this is arrived at by weighting the interest

rate in each transaction by the actual volume of the transaction, this weighted average is more

representative of the interest rate prevalent in the economy. These weighted average rates are

published by the RBI on a weekly basis. This data was collected for the calendar years 1993,

1994 and 1995 from various issues of the Reserve Bank of India  Bulletin as well as its weekly

statistical supplement. The decision not to go back beyond 1/1/1993 was taken to avoid any

contamination by the effect of the security scam and its immediate aftermath.

Methodology

As already pointed out, as many as eight alternative models of interest rate dynamics have

been proposed in the literature. However, as pointed out by Chan(1992) and Tse(1995), all the

important alternative models (in their discrete time versions) are special cases of the following

equation:

∆ t t-1 t-1 tr  =   +  r  +  (r ) uα β σ γ (1)

where tr  is the interest rate at time t, ∆ t t t -1r  =  r  -  r  is the change in the interest rate

during time period t, α  and β  are parameters which specify the deterministic drift of the

interest rate process, γ  and σ  are parameters  which specify the variance of the random

disturbance, tu  is a mean zero, unit variance disturbance which is assumed to be independently

(normally) distributed. Eq (1) can be regarded as the discrete time approximation to the

corresponding continuous time diffusion equation (dr =  a +  b r +  r dzσ γ ) when the time

period t is short. In this study, the time period is, indeed, quite short - a week.
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By fixing the values of one or more of the parameters in Eq (1), we can obtain (the discrete

time versions of) virtually all the important models of interest rate dynamics that have been

proposed in the literature:

• Merton (1973), β  = γ  = 0

• Vasicek (1977), γ  = 0

• Dothan (1978), α  = β  = 0, γ  = 1

• Brennan and Schwartz (1979), γ  = 1

• Cox, Ingersoll and Ross (1980), α  = β  = 0, γ  = 1.5

• Cox, Ingersoll and Ross (1985), γ  = 0.5

• Geometric Brownian Motion, α  = 0, γ  = 1

• Constant Elasticity of Variance, α  = 0

 

 The mean reversion phenomenon implies that α  is positive and β  is negative, in which case,

Eq (1) can be rewritten in the intuitively more meaningful form:

 ∆ t t -1 t-1 tr  =   (  -  r ) +  ( r ) uκ µ σ γ (2)

 where κ  = -β  represents the “speed of adjustment” and µ  = -α / β  is the “normal rate of

interest” to which interest rates revert. A κ  of 1 represents full adjustment in the sense that a

deviation from the normal rate of interest is fully corrected the next period while κ  equal to 0

(α  = β  = 0 in terms of Eq (1)) represents no mean reversion at all.

 In both Eq (1) and Eq (2), γ  (which is usually required to be non negative) captures the

tendency of interest rates to fluctuate more when rates are high than when they are low. The

higher γ  is, the greater this tendency; a γ  of zero indicates the complete absence of any such

tendency; in other words, the standard deviation of the changes in interest rates is independent
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of the level of the rates. In the finance literature, greater importance is attached to the standard

deviation of the relative changes in interest rates, or, in the continuos time limit, the standard

deviation of the logarithm of interest rates; this quantity is referred to as the volatility of

interest rates. A γ  of 1.0 indicates that the volatility of the interest rate is independent of its

level. A γ  above unity indicates that the volatility rises with the level of interest rates. A γ

below unity indicates that the volatility falls as the level of interest rates rises.

 Since all the important models proposed in the literature are obtained by fixing the values of

one or more of the parameters in Eq (1), these models can be regarded as hypotheses about

the values of the parameters in this equation. Under the assumption that the disturbance term

is normally distributed, it is possible to estimate Eq (1) by the method of maximum likelihood.

The hypotheses implied by the various competing models can be tested by estimating the

restricted models also by maximum likelihood and using the likelihood ratio test. Chan (1992)

has proposed the generalized method of moments as an alternative to the maximum likelihood

method to avoid distributional assumptions. But the main purpose of studying interest rate

dynamics is to help in option pricing, where the distributional assumption of normality is

usually made. Maximum likelihood, therefore, presents itself as the method of choice.

 Results and Conclusion

 The maximum likelihood estimate of Eq (1) is as follows:

 α  = 1.331, β  = -0.124, γ  = 0.824, σ  = 0.476

 implying estimates of κ  = 0.124 and µ  = 10.737 in Eq (2).

 Coming to the various restricted models, the Brennan Schwartz model could not be rejected at

even the 10% level while all the other alternatives could be rejected at the 1% level or better:

• Merton (1973), β  = γ  = 0, rejected at the 0.01% level, chi-square (2 df) = 65.742,
P < 0.0001.
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• Vasicek (1977), γ  = 0, rejected at the 0.01% level, chi-square (1 df) = 52.738,
P < 0.0001.

• Dothan (1978), α  = β  = 0, γ  = 1, rejected at the 1% level, chi-square (3 df) = 13.742,
P = 0.004.

• Brennan and Schwartz (1979), γ  = 1, cannot be rejected at even the 10 % level, chi-
square (1 df) = 2.26, P = 0.129.

• Cox, Ingersoll and Ross (1980), α  = β  = 0, γ  = 1.5, rejected at the 0.01% level, chi-
square (3 df) = 1216, P < 0.0001.

• Cox, Ingersoll and Ross (1985), γ  = 0.5, rejected at the 1% level, chi-square (1 df) =
8.072, P = 0.005.

• Geometric Brownian Motion, α  = 0, γ  = 1, rejected at the 1% level, chi-square
(2 df) = 11.342, P = 0.004.

• Constant Elasticity of Variance, α  = 0, rejected at the 1% level, chi-square (1 df) = 7.742,
P = 0.006.

 

 It is interesting to observe that the Cox, Ingersoll and Ross (1985) square-root process which

is quite popular both as a theory of the term structure of interest rates and as an options

pricing model, is strongly rejected in the Indian context in favour of the Brennan-Schwartz

model. Internationally, the Tse (1995) study showed that Brennan-Schwartz was applicable in

Holland, France, Australia, Belgium, Germany and Japan while being rejected in the US,

Canada, Switzerland, UK and Italy.

 Since the Brennan-Schwartz model has been seen to be applicable in India, all further analysis

in this paper uses this model rather than the more general Eq (1). The estimate for the

Brennan-Schwartz model is as follows:

 κ  = 0.126, µ  = 10.710 and σ  = 0.326.
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 The estimates for κ  and µ  are practically the same as in the unrestricted model while the

estimate of σ  adjusts downward to account for the higher value of γ . The interpretation of

the parameter estimates is as follows. The estimate of µ  means that the normal rate of interest

is about 10.7%. Whenever the interest rate drifts above this level, it gets pulled down, and

whenever it drifts below this level it gets pulled up. As stated earlier, κ  is the speed of

adjustment which tells us how rapidly the interest rate returns to its normal level after a

disturbance. The estimated value of 0.126 for this speed of adjustment implies that only about

12.6% of a disturbance is eliminated in one week and that it would take 8 weeks for the

disturbance to be completely eliminated. The parameter σ  in the Brennan-Schwartz model is

the volatility of interest rates. The high value for this parameter (weekly volatility of 32%

corresponding to an annualized volatility of over 200%) is in line with the widespread

perception that call rates in India are highly volatile. 

 Dynamics of the Normal Rate of Interest

 It is known from international experience that even the normal interest rate does not remain

unchanged for long periods of time. It too may change, but far more slowly than the actual

interest rate itself. To test for this possibility, the sample period of three years was divided into

three sub-periods of one calendar year each and the Brennan-Schwartz model was re-

estimated with the normal interest rate µ  allowed to take different values in each year.  The

estimated normal rates were 6.95%, 8.58% and 15.82% for 1993, 1994 and 1995 respectively.

The likelihood ratio test indicates that the hypothesis that the normal rate was the same in all

three years can be rejected at the 5% level (chi-square with 2 df = 7.118, P = 0.028).

 Very clearly, therefore, a realistic model of interest rate dynamics in India must allow the

normal rate of interest to vary. Ideally, the normal rate must be allowed to vary gradually

rather than jump abruptly from one level to another every year. In other words we would like

to model the interest rate dynamics as follows:
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 ∆ t t t -1 t-1 tr  =   (  -  r ) +   r  uκ µ σ (3)

 ∆ t t -1 t -1 t =  (  -  ) +    vµ ϕ µ µ ω µ (4)

 

 Eq (3) differs from Eq (2) only in that γ  is set equal to unity (as required by the Brennan-

Schwartz model) and in that a time varying normal rate of interest tµ  replaces the fixed rate

µ . Eq (4) models the evolution of the normal rate using dynamics similar to that of the actual

rate itself. The normal rate tµ  itself is allowed to mean-revert to a grand normal rate µ  with a

speed of adjustment ϕ . The disturbance term tv  is assumed to be independently (normally)

distributed with zero mean and unit variance. Therefore,  the parameter ω  is the volatility of

the normal rate.

 This formulation assumes thatγ  is equal to unity not only in Eq (3), but also in Eq (4). It is

possible instead to let γ  be a free parameter in Eq (4) to be estimated from the data, but there

are strong reasons for not doing so. First, ifγ  is not equal to unity in Eq (4), then the normal

rate would have a level dependent volatility. From Eq (3) and Eq (4), it is clear that a

disturbance in the normal rate would transmit itself to the actual short term rate itself over a

period of time. The volatility of the actual rate would therefore depend on the level of the

normal rate. Since the actual rate mean-reverts to the normal rate, the levels of these two rates

are correlated and the net result should be a level dependent volatility of the actual rate itself

(γ  not equal to unity) in Eq (2). Hence having accepted the hypothesis that γ  is equal to

unity in Eq (2), we have to make the same assumption in Eq (4).  Quite apart from this

theoretical argument, it is doubtful whether the short sample period would be sufficient to

estimate a second-moment parameter likeγ  with any degree of precision in Eq (4) since the

normal rate changes far more slowly than the actual rate.
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 The pair of equations (Eq (3) and Eq (4)) lends itself to estimation by the method of Kalman

filtering and maximum likelihood (see, for example, Chow, 1984 or Harvey, 1989). The

Kalman filtering model is usually formulated as follows:

 

t t t t

t t -1 t

t
2

t

t
2

t

y  =  x  +  

 =   +  M  +  

( ) =  

( ) =  P

β ε
β α β η
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η σ ξ

VAR

VAR

2

2

(5)

 

 where y is the dependent variable, x a row vector of k independent variables including possibly

the constant term, β  a time varying column vector of k regression coefficients, and the

subscript t denotes time which runs from 1 to T.

 Under the assumption that ε and η are normally distributed and serially uncorrelated, Eq (5)

can be estimated recursively as follows for fixed α , M, P and σ  starting from an initial

estimate of β  and its variance σ 2R:
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 The estimation begins by computing the prior estimates denoted by the subscript t|t-1 which is

the estimate at time t using the data only up to time t-1. We then look at the data at time t,

compute the one step prediction error and revise the estimates to get the posterior estimates

denoted by the subscript t|t which is the estimate at time t using the data up to time t. We then

move on to the next time period. The reader is referred to Chow (1984) or Harvey (1989) for

the methodology for obtaining an initial estimate of k|kβ  and k|kR  where k is the number of

independent variables.

 In this entire process, the “hyper-parameters” α , M, P and σ  were kept fixed. To estimate

these hyper-parameters, we resort to the method of maximum likelihood. Under the further

assumption that the x vector does not include any lagged dependent variables, the one step

prediction error, u, in Eq (6) is normally distributed and serially uncorrelated. The likelihood

function can be easily derived based on this fact. The concentrated likelihood function after

eliminating σ  is given by:

 log constant log log* L =   -  
1

2
(T - k) w u  -  

1

2
 w

t=k+1

T

t t
2

t=k+1

T

tΣ Σ (7)

 The maximum likelihood estimates of the hyper-parameters,α , M and P, are obtained by

maximizing the above log likelihood with respect to these parameters. A numerical non-linear

maximization procedure must be used for this purpose. The maximum likelihood estimate of

the hyper-parameterσ  is given by:

 2

t =  k +  1

T

t
2 =  

1

T  -  k
  uσ Σ (8)

 

 To apply the above Kalman filtering model to our model, the natural approach would be to set

 t t t -1 t t -1 t -1y  =  r  -  r ,  x = [1  r ],   =  [   - ]β κ µ κ
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 and so forth. The difficulty with this straight forward approach is that x includes lagged

dependent variables rendering the likelihood function (Eq (7)) invalid. To side-step this

difficulty, we make use of the fact that the coefficient of the lagged dependent variable is

constant and the time varying coefficient applies only to the constant term. We do not

therefore need the Kalman filter to estimate the coefficient of the lagged dependent variable

which can be treated as another hyper-parameter in the filtering process. The revised

formulation is

 
t t t -1 t-1 t t t -1

t t -1 t t -1

y  =  r  -  r  +  r ,  x = 1,   =  ,  M =  1 -  ,   =  

 =  r ,   =  P

κ β κ µ φ α κµφ

ζ ξ µ ω� , = 2

 where, in the variance term, ξ t , we have replaced the unobserved t -1µ  by its estimate t -1
�µ .

This formulation evidently satisfies the assumptions of the Kalman filter model; the normality

and serial independence of  ε and η follow from the normality and serial independence of

u and ν  in Eq (3) and Eq (4).

 As already indicated, the parameterκ  is treated as a hyper-parameter and is estimated by

maximum likelihood along with the other hyper-parameters α , M, P and σ . The actual

parameters of interest in our original pair of equations (Eq (3) and Eq (4)) can then be

computed as follows:

 φ µ α κφ =  1 -  M,    =  / .

 

 Applying this estimation process leads to the following estimates:

 ϕ  = 0.0392, µ  = 12.12, ω  = 0.190, κ  = 0.718 and σ  = 0.2376.

 The hypothesis that ϕ  = 0 can be rejected at the 10% level and is at the borderline of rejection

at the 5% level(chi-square with 1 df = 3.534, P = 0.057). However, if ϕ  = 0 is regarded as a

boundary of the parameter space (i.e., if negative values of ϕ  are not allowed), then the chi-
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square test has to be modified using the Chernoff correction (see, for example, Chow, 1984 or

Harvey, 1989); in such a case, the hypothesis is comfortably rejected at the 5% level (equal

mixture of chi-squares with 0 and 1 df = 3.534, P = 0.028). The hypothesis that ϕ  =  1 can be

rejected at 1% level (chi-square with 1 df = 8.014, P < 0.005). The hypothesis that ω  = 0

(i.e., that the normal rate is actually constant) can be rejected at the 0.1% level (chi-square

with 1 df = 11.498, P < 0.001). Of course, the chi-square test needs to be corrected in this

case (in fact, even the Chernoff correction is not enough), but the effect of this correction

would only be to reject the hypothesis even more strongly.

 Though the hypothesis of no mean reversion in the normal rate (ϕ  = 0) is rejected only

weakly (border line of rejection at the 5% level), it is certainly desirable on theoretical grounds

to include the mean reversion in the model specification. In fact, it appears clear that the short

sample is the principal reason for the failure to reject lack of mean reversion more strongly.

Since the speed of the mean reversion is very slow (ϕ  = 0.0392 implies that a disturbance in

the normal rate would take about half a year to correct), a sample size considerably longer

than 3 years would be needed to establish mean reversion more firmly.

 Implications for Term Structure of Volatility

 The term structure of volatility plays an important role in modern option pricing theory (Heath

et al, 1992) and is an important input into many models for pricing interest rate options. (Just

as the term structure of interest rates gives the yields for various maturities, the term structure

of volatility gives the volatilities of interest rates at various maturities). Though ideally, the

term structure ought to be estimated from historical data, this may not be a feasible

proposition in India given the lack of reliable data going sufficiently long back in time.

Estimating the term structure of volatility directly from the estimated interest rate dynamics

may be an attractive alternative. The dynamics of interest rates as it emerges from this study is

perhaps too complex to admit of any simple closed form solution for the term structure of
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volatility. The methodology of Monte Carlo simulation can however be adopted to estimate

the term structure of volatility from the estimated dynamics as discussed in Varma (1996a).

 Conclusion

 The following important conclusions emerge from this study:

• The short term interest rate in India (the call market rate) follows a mean reverting
dynamics with a volatility which is independent of the level of interest rates (conforming to
the model proposed by Brennan-Schwartz).

• This finding has important implications for the theory of the term structure of interest
rates. In particular the Cox-Ingersoll-Ross theory of the term structure is strongly rejected
in India.

• The normal rate of interest to which the short term rate mean-reverts is itself changing
over time. It too follows a mean reverting process with a much slower speed of
adjustment.

The principal applications of these findings is in the field of option pricing. The dynamics of

the short rate rule out some of the well known models of option pricing including Cox-

Ingersoll-Ross. A companion paper (Varma, 1996b), argues that the Black-Derman-Toy

model (Black et al. 1994) is the most attractive model for pricing interest rate options under

Indian conditions.

The findings of this study are also extremely useful in estimating the term structure of volatility

in India. Many popular option pricing models (including Black-Derman-Toy) require the term

structure of volatility as one of the inputs to the model. Varma (1996a) shows how the

estimated dynamics of interest rates reported in this paper can be used to estimate the term

structure of volatility by using Monte Carlo simulation.
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