D 100617	(Pages : 2)	Name
		Reg. No

SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MTS 6B 14 (E01)—GRAPH THEORY

(2019 Admission onwards)

Time: Two Hours

Maximum Marks: 60

Section A (Short Answer Type Questions)

Answer any number of questions.

Each question carries 2 marks. Maximum marks 20.

- 1. Find the number of edges of $k_{2,3}$.
- 2. Draw the graph K_5 –{e}.
- 3. Define degree of a vertex. Explain with example.
- 4. Let G be a simple graph in which there is no pair of adjacent edges. What can you say about the degree of the vertices in G? Justify.
- 5. Give an example of a self-complementary graph with five vertices.
- 6. Let G be a simple graph with n vertices and \overline{G} be its complement. Prove that, for each vertex V in G, $d_{\overline{G}}(v) + d_{\overline{G}}(v) = n 1$.
- 7. A connected graph G has 21 vertices, what is the minimum possible number of edges in G.
- 8. Define diameter of a graph G. Which simple graphs have diameter 1?
- 9. When can you say that the wheel graph W_n , $n \ge 4$ is Euler? Justify.
- 10. Define Jordan curve. Give an example.
- 11. Define Spanning tree. State Cayleys theorem in spanning trees.
- 12. Let G be a Hamiltonian graph. Show that G does not have a cut vertex.

Section B (Paragraph/Problem Type Questions)

Answer any number of questions.

Each question carries 5 marks. Maximum marks 30.

- 13. Prove that k_5 , the complete graph on five vertices, is non-planar.
- 14. Let G be a planar graph with less than 12 vertices. Prove that G has a vertex V with $d(v) \le 4$.

Turn over

D 100617

- 15. Explain Konigsberg bridge problem.
- 16. Let G be a graph in which the degree of every vertex is at least two then prove that G contains a cycle.
- 17. Prove that a vertex V of a tree T is a cut vertex if and only if d(v) > 1.
- 18. Let G be a connected graph, then G is a tree if and only if every edge of G is a bridge.
- 19. Given any two vertices u and v of a graph G, prove that every u-v walk contains u-v path.

Section C (Essay Type Questions)

Answer any **one** questions. The question carries 10 marks.

- 20. Let G be a non-empty graph with at least two vertices. Then prove that G is bipartite if and only if it has no odd cycle.
- 21. Prove that if T is a tree with n vertices then it has precisely n-1 edges.

 $(1 \times 10 = 10 \text{ marks})$

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2023

(CBCSS-UG)

Mathematics

MTS 6B 14 (E01)—GRAPH THEORY

(2019 Admission onwards)

Time: Two Hours

Maximum Marks: 60

Section A (Short Answer Questions)

Each question carries 2 marks. A maximum of 20 marks can be earned from this section.

- 1. Find the number of edges of K_7 .
- 2. Draw the graph $K_{3,3} \{V\}$ where V is a Vertex in $K_{3,3}$.
- 3. Define K-regular graph. Give an example.
- 4. Define union of two graphs G_1 and G_2 .
- 5. Let G be a simple graph with n vertices and \overline{G} be its complement. Prove that, for each vertex V in G, $d_G(V) + d_{\overline{G}}(V) = n 1$.
- 6. Define the adjacency matrix of a graph G with n vertices.
- 7. A connected graph G has 17 edges, what is the maximum possible number of vertices in G?
- 8. Let

Find all bridges in G.

Turn over

C 40608

- 9. When can you say that the complete graph $K_n, n \ge 3$ is Euler? Justify.
- 10. Define critical planar graphs. Which complete graph \mathbf{K}_n are critical planar ?
- 11. State Cayley's theorem on spanning trees.
- 12. When can you say that a graph G is maximal non-Hamiltonian.

(Ceiling marks = 20 marks)

Section B (Paragraph/Problem Type Questions)

Each question carries 5 marks. A maximum of 30 marks can be earned from this section.

- 13. Prove that the complete bipartite graph $K_{3,3}$ is non-planar.
- 14. Let G be a simple planar graph with less than 12 vertices. Prove that G has a vertex V with $d(v) \le 4$.
- 15. Prove that, in any graph G there is an even number of odd vertices.
- 16. Prove that for any connected graph G, rad $G \leq \text{diam } G \leq 2$. rad G.
- 17. Let u and v be distinct vertices of a tree 7. then prove that theme is precisely one path from u to v.
- 18. Prove that a simple graph G is Hamiltonian if and only if its closure c(G) is Hamiltonian.
- 19. Let G be a graph in which the degree of every vertex is at least two. Then prove that G contains a cycle.

(Ceiling marks = 30 marks)

Section C (Essay Type Questions)

Answer any **one** question. The question carries 10 marks.

- 20. Explain the Konigsberg bridge problem. Give the graph theory model for this problem. Also state the respective theorem to solve this problem.
- 21. Let G be a graph with n vertices. Then prove that the following statements are equivalent:
 - (i) G is a tree.
 - (ii) G is acyclic graph with n-1 edges.
 - (iii) G is a connected graph with n-1 edges.

 $(1 \times 10 = 10 \text{ marks})$

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS-UG)

Mathematics

MTS 6B 14 (E01)—GRAPH THEORY

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Find number of edges of $k_{m,n}$.
- 2. Draw the graph $K_6 \{v\}$ where v is any vertex in K_6 .
- 3. Draw a 4-regular graph with ten vertices.
- 4. Define intersection of two graphs.
- 5. Let G be a simple graph in which there is no pair of adjacent edges. What can you say about the degree of the vertices in G? Justify.
- 6. Draw the graph K_{2,3,3}.
- 7. Define eccentricity and radius.
- 8. Draw Peterson graph and find a trial of length 5.
- 9. When can you say that the complete graph kn, $n \ge 3$ is Euler? Justify.
- 10. Prove that any subgraph of a planar graph is planar.
- 11. Find K (G) for the graph.

12. How many different Hamiltonian cycles does K_n have ?

 $(8 \times 3 = 24 \text{ marks})$

Turn over

2 C 20650

Section B (Paragraph/Problem Type Questions)

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. If G is a simple planar graph then prove that G has a vertex *v* of degree less than 6.
- 14. Prove that the complete bipartite graph $k_{3,3}$ is non-planar.
- 15. Let G be a graph with n vertices, where $n \ge 2$. Then prove that G has at least two vertices which are not cut vertices.
- 16. Explain the Konigsberg bridge problem.
- 17. Prove that G is connected if and only if it has a spanning tree.
- 18. Let G be a graph with n vertices. Then prove that G is a tree if and only if G is a connected graph with n-1 edges.
- 19. Define (i) adjacency matrix of a graph G; (ii) incidence matrix of a graph G. Find the adjacency and incidence matrix of the following graph G.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type Questions)

Answer any **one** question. The question carries 11 marks.

- 20. Prove the following:
 - (i) A connected graph G has an Euler tail if and only if it is atmost two odd vertices.
 - (ii) A simple graph G is Hamiltonian if and only if it closure c (G) is Hamiltonian.
- 21. Prove that, a non-empty graph with atleast two vertices is bipartite if and only if it has no odd cycle.

 $(1 \times 11 = 11 \text{ marks})$