THIRD SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 3C 03—MATHEMATICS—3

(2019—2022 Admissions)

Time: Two Hours

Maximum: 60 Marks

Part A

All questions can be attended. Each question carries 2 marks. Overall Ceiling is 20.

- 1. If $r(t) = \cos 2t \ i + \sin t \ j$. Find r'(0).
- 2. Find the curvature of a circle of radius a.
- 3. Describe the level surfaces of the function $F(x, y, z) = \frac{(xr + y^2)}{z}$.
- 4. If $F = (x^2y^3 z^4)i + 4x^5y^2z j + y^4z^6 k$, find div (curl F).
- 5. Evaluate $\int xy^2 dy$ on the quarter-circle C defined by $x = 4 \cos t$, $y = 4 \sin t$, $0 \le t \le \frac{\pi}{2}$.
- 6. Find $\int_C y dx + x dy$ on the curves $y = \sqrt{x}$ between (0,0) and between (1,1).
- 7. Convert $(6, \pi/4, \pi/3)$ in spherical coordinates to rectangular co-ordinates.
- 8. Find the values of $\ln(-1, -i)$.
- 9. Prove that $\sinh z = \sinh x \cos y + i \cosh x \sin y$.

Turn over

2

D 51761

- 10. Evaluate $\int (z+3) dz$, where C is x = 2t, y = 4t 1, $1 \le t \le 3$.
- 11. Evaluate $\oint_{C} z^3 1 + 3i dz$, where C is the circle |z| = 1.
- 12. State Cauchys Integral Formula.

Part B

All questions can be attended. Each question carries 5 marks. Overall Ceiling is 30.

- 13. Find an equation of the tangent plane to the graph of $\frac{1}{2}x^2 + \frac{1}{2}y^2 z = 4$ at (1, -1, 5).
- 14. Find the maximum value of the directional derivative of $F(x, y, z) = xy^2 4x^2y + z^2$ at (1, -1, 2) in the direction of 6i + 2j + 3k.
- 15. Find the moment of inertia about the y-axis of the thin homogeneous disk $x^2 + y^2 = r^2$ of mass m. Given $\rho(x, y) = \frac{m}{\pi r^2}$.
- 16. Find the volume of the solid that is under the hemisphere $z = \sqrt{1 x^2 y^2}$ and above the region bounded by the graph of the circle $x^2 + y^2 y = 0$. $V = \iint_R \sqrt{1 x^2 y^2} dA$.
- 17. (a) Verify that the function $u(x, y) = x^3 3xy^2 5y$ is harmonic in the entire complex plane.
 - (b) Find the harmonic conjugate function of *u*.
- 18. Solve the equation $\cos z = 10$.
- 19. Evaluate $\oint_{\mathcal{C}} \frac{dz}{z^2 + 1}$ where \mathcal{C} is the circle |z| = 3.

Part C

Answer any **one** question. The question carries 10 marks.

- 20. Verify Stokes theorem. Assume that the surface S is oriented upward. Given F = z i + x j + y k; S that portion of the plane 2x + y + 2z = 6 in the first octant.
- 21. Let D be the region bounded by the hemisphere $x^2 + y^2 + (z-1)^2 = 9$, $1 \le z \le 4$, and the plane z = 1. Verify the divergence theorem if F = xi + yj + (z-1)k.

 $(1 \times 10 = 10 \text{ marks})$

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2022

Mathematics

MTS 3C 03—MATHEMATICS - 3

(2019 Admission Onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Maximum 20 marks.

1. Find the derivative of the vector function $\vec{r}(t) = \sin t \ \hat{i} - e^{-t} \hat{j} + (3t^3 - 4)\hat{k}$.

2. If
$$z = 4x^3y^2 - 6x^2 + y^2 + 5$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

3. If
$$f(x,y) = e^{xy}$$
, find $\nabla f(x,y)$.

4. Find the level curve of $f(x,y) = y^2 - x^2$ passing through the point (-1, 2).

5. Find div
$$\vec{F}$$
 for $\vec{F} = (x^2y^3 - z^4)\hat{i} + 4x^5y^2z\hat{j} - y^4z^6\hat{k}$.

6. Evaluate
$$\int_{1}^{3} \int_{1}^{1} (2x-4) dx$$
.

- 7. State Stoke's theorem.
- 8. Find the Jacobian of $x = r \cos \theta$, $y = r \sin \theta$.
- 9. Express 1 + i in polar form.
- 10. Evaluate $\lim_{z \to i} \frac{z^4 1}{z i}$.

Turn over

11. Evaluate
$$\oint_C \frac{e^z}{z-3} dz$$
 where C is $|z|=1$.

12. Evaluate
$$\oint_C \overline{z} dz$$
 where C is $x = t, y = t^2, 0 \le t \le 1$.

Section B

2

Answer any number of questions.

Maximum 30 marks.

13. Use chain rule to find
$$\frac{\partial z}{\partial u}$$
 at $(\pi,1)$ for $z = x^2 - y^2 \tan x$, where $x = \frac{u}{v}$, $y = uv$.

14. Find an equation of the tangent plane to the graph of
$$z = \frac{x^2}{2} + \frac{y^2}{2} + 4$$
 at $(1, -1, 5)$.

15. Show that
$$\int_{C} (y^2 - 6xy + 6) dx + (2xy - 3x^2) dy$$
 is independent of any path C between (-1, 0) and

(3, 4). Hence evaluate
$$\int_{(-1,0)}^{(3,4)} \left(y^2 - 6xy + 6\right) dx + \left(2xy - 3x^2\right) dy$$
.

16. Change the order of integration and hence evaluate
$$\int_{0}^{44} \frac{x}{x^2 + y^2} dx dy$$
.

17. Show that
$$u(x,y) = x^3 - 3xy^2 - 5y$$
 is harmonic. Find the harmonic conjugate of u .

18. Evaluate
$$\int_{C} z^2 dz$$
 where C is the line $x = 2y$ from $z = 0$ to $z = 2 + i$.

19. Evaluate
$$\oint_C \frac{z+1}{z^4+4z^3} dz$$
 where C is $|z| = 1$.

Section C

Answer any one question.

Maximum 10 marks.

- 20. Use Green's theorem to evaluate $\oint_C (x^5 + 3y) dx + (2x e^{y^3}) dy$ where C is the circle $(x-1)^2 + (y-5)^2 = 4$.
- 21. Find the volume bounded by the cylinder $x^2 + y^2 = 4$, the plane y + z = 3 and z = 0.

 $(1 \times 10 = 10 \text{ marks})$

D 12034	(Pages: 3)	Name
		Rog No

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Mathematics

MTS 3C 03—MATHEMATICS - 3

(2019-2020 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

1. Evaluate
$$\int_{0}^{1} \left(t\hat{i} + 3t^{2}\hat{j} + 4t^{3}\hat{k}\right) dt.$$

- 2. The position of a moving particle is $\bar{r}(t) = t^2\hat{i} + t\hat{j} + t^3\hat{k}$. Find velocity and acceleration of the particle at t = 2.
- 3. If $z = e^{-y} \cos x$ find $\frac{\partial^2 z}{\partial x \partial y}$.
- 4. Find the level surface of $F(x, y, z) = x^2 + y^2 + z^2$ passing through (1, 1, 1).
- 5. Evaluate $\oint_C x dx$, where C is the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.
- 6. Show that $\operatorname{curl} \vec{r} = \vec{0}$.
- 7. State Green's theorem in the plane.
- 8. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} xyz \, dx \, dy \, dz.$
- 9. Write the equation of the circle with centre (1, 2) and radius 4 in the complex plane.

Turn over

10. Find the value of i^{2i} .

- 11. Evaluate $\oint_{C} \frac{Ze^{z}}{(z-3)} dz$, where C is |z| = 2.
- 12. Evaluate $\oint_{C} \frac{dz}{z}$, where C is |z| = 1.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Use chain rule to find $\frac{dw}{dx}$ at (0,1, 2) for w = xy + yz; $x = \cos x$, $y \sin x$, $z = e^x$.
- 14. Find the directional derivative of $f(x,y) = \sqrt{x^2y + 2y^2z}$ at (-2,2,1) in the direction of the negative *z*-axis.
- 15. Find the area lying between the parabola $y = 4x x^2$ and the line y = x using double integrals.
- 16. Use polar coordinates to evaluate $\int_{0}^{2} \int_{x}^{\sqrt{8-x^2}} \frac{1}{5+x^2+y^2} \, dy \, dx.$
- 17. Show that $f(z) = (2x^2 + y) + i(y^2 x)$ is not analytic at any point.
- 18. Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C is the circle |z-2|=2.
- 19. Evaluate $\int \operatorname{Re} z \, dz$ along a line segment from z = 0 to z = 1 + 2i.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question. The question carries 11 marks.

- 20. Let $\vec{F}(x,y,z) = z\hat{j} + z\hat{k}$ represents the flow of a liquid. Find the flux of \vec{F} through the surface S given by that portion of the plane z = 6 3x 2y in the first octant oriented upward.
- 21. Use triple integrals to find the volume of the solid with in the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.

 $(1 \times 11 = 11 \text{ marks})$

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2020

Mathematics

MTS 3C 03-MATHEMATICS - 3

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least eight questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

1. If
$$\overline{r}(t) = 2\cos t \hat{i} + 6\sin t \hat{j}$$
, find $\frac{d\overline{r}}{dt}$ at $t = \frac{\pi}{2}$.

2. Find the curvature of a circle whose radius is 2.

3. If
$$z = e^x \sin(xy)$$
, find $\frac{\partial^2 z}{\partial y^2}$.

- 4. Find the gradient of $f(x,y,z) = xy^2 + 3x^2 z^3$ at (1, 1, 1).
- 5. Show that div $\vec{r} = 3$.

6. Evaluate
$$\int_{2}^{4} \int_{1}^{3} (40 - 2xy) dx dy$$
.

- 7. Use double integrals to find the area of the plane region enclose by the curves $y \sin x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{4}$.
- 8. Find the Jacobian of $u = \frac{y}{x^2}$, v = xy.
- 9. Sketch the graph of the region |z-2i|=2.
- 10. Write the real and imaginary part of $f(z) = \sin z$.

- 11. Evaluate $\oint_C \frac{z^2}{z-1} dz$, where C is |z| = 2.
- 12. Evaluate $\int_{C}^{z} dz$ where C is given by $x = t^2$, y = t from $0 \le t \le 1$.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Find the directional derivative of $F(x,y,z) = xy^2 4x^2y + z^2$ at (1,-1,2) in the direction of $6\hat{i} + 2\hat{j} + 3\hat{k}$.
- 14. Find an equation of the tangent plane to the graph of $x^2 4y^2 + z^2 = 16$ at (2, 1, 4).
- 15. Use Green's theorem to evaluate $\oint_C (x^2 y^2) dx + (2y x) dy$, where C consists of the boundary of the region in the first quadrant that is bounded by $y = x^2$ and $y = x^3$.
- 16. Change the order of integration and hence evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx.$
- 17. Use divergence theorem to evaluate $\iint_{S} (\vec{F} \cdot \hat{n}) dS$ where $\vec{F} = xy \hat{i} + y^2 z \hat{j} + z^3 \hat{k}$ and S is the unit cube defined by $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- 18. Evaluate $\oint_C \left(z + \frac{1}{z}\right) dz$, where C is the unit circle |z| = 1.
- 19. Evaluate $\oint_{C} \frac{z^4 3z^2 + 6}{(z+i)^3} dz$, where C is |z| = 2.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question. The question carries 11 marks.

- 20. Use Stoke's theorem to evaluate $\oint z dx + x dy + y dz$, where C is the trace of the cylinder
- $x^2 + y^2 = 1$ in the plane y + z = 2 counter clockwise as viewed from above. 21. Find the volume of the solid in the first octant bounded by the graphs of $z = 1 - y^2$, y = 2x and

x = 3.

 $(1 \times 11 = 11 \text{ marks})$