D 100611 (Pages : 3) Name.....................................

Reg. No..................................

SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024 1105

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admissions onwards)

Time : Two Hours and a Half Maximum Marks : 80

Section A

Questions 1—15. *Answer any number of questions. Each carry* 2 *marks. Maximum marks* 20.

- 1. State discontinuity criterion. Hence show that the signum function is not continuous at $x = 0$. **1105 1105 1106 110**
- 2. State maximum-minimum theroem.
- 3. Show that $f(x) = \frac{1}{x}$ $=\frac{1}{x}$ is uniformly continuous on $[a, \infty)$ where $a > 0$.
- 4. Define Riemann integral of a function *f* on an integral [*a*, *b*].
- 5. If f and g are in R[a, b] and if $f(x) \leq g(x)$ for all x in [a, b] then show that $\int f \leq \int g$. *b b a a* ∫ ∫ *f g* ≤
- 6. State Lebesgue's integrability criterion.
- 7. If f and g belong to $R[a, b]$ then the product fg belongs to $R[a, b]$.
- 8. Show that $\lim \frac{\sin(nx+n)}{n} = 0$ for $x \in \mathbb{R}$. *n* $\frac{(n+1)}{n} = 0$ for $x \in \mathbb{R}$
- 9. Discuss the uniform convergence of $f_n(x) = \frac{x}{x}$ $=\frac{\pi}{n}$ on A = [0, 1]. 1. If *T* and *g* belong to $\kappa |a, b$ i then the product *Ig* belongs to $\kappa |a, b|$.

8. Show that $\lim_{n} \frac{\sin(nx + n)}{n} = 0$ for $x \in \mathbb{R}$.

9. Discuss the uniform convergence of $f_n(x) = \frac{x}{n}$ on $A = [0, 1]$.

10. Evaluate
	- 10. Evaluate $\lim_{x \to \infty} (e^{-nx})$ for $x \in \mathbb{R}, x \ge 0$.
	- 11. Define absolute convergence of series of functions.
	- 12. Evaluate $\int e^x dx$. −∞ ∫
	- 13. Find the principal value of $\int \frac{dx}{x^2+1}$. 1 *dx x* ∞ −∞ ∫ +

Turn over

2 **D 100611**

14. Show that
$$
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
$$
.

15. Define Beta fucntion. St B (*p, q*) = B (*q*, *p*).

Section B

Questions 16—23. *Answer any number of questions. Each carry* 5 *marks. Maximum marks* 35.

16. Let $A = \{x \in \mathbb{R} | x > 0\}$. Define *h* on A by $h(x) = 0$ if $x \in A$ is irrational and $h(x) = \frac{1}{x}$ if $x \in A$ $=\frac{1}{n}$ if $x \in A$ is **472337**
 1
 1 $\left(\frac{1}{2}\right) = \sqrt{\pi}$.
 10 100611
 10 100511

rational with $x = \frac{m}{m}, m, n$ *n* $=\frac{m}{2}, m, n \in \mathbb{N}$ have no common factor except 1. Then show that *h* is continuous at every irrational number in A and discontinuous at every rational number in A. 16. Let $A = \{x \in \mathbb{R} | x > 0\}$. Define *h* on *A* by $h(x) = 0$ if $x \in A$ is irrational and $h(x) = \frac{1}{n}$ if x rational with $x = \frac{m}{n}$, $m, n \in \mathbb{N}$ have no common factor except 1. Then show the solution of $x = \frac{m}{n}$

- 17. Let I be an interval and $f: I \to \mathbb{R}$ be a continuous function on I then show that $f(I)$ is an interval.
- 18. If $f \in \mathbb{R} [a, b]$ then show that *f* is bounded on [*a*, *b*].
- 19. Show that if $\phi : [a, b] \to \mathbb{R}$ is a step function then $\phi \in \mathbb{R}[a, b]$.
- 20. Evaluate $\lim \frac{x^2 + nx}{x}$, $x \in \mathbb{R}$. *n* $+ nx$, $x \in \mathbb{R}$. Is the convergence uniform on \mathbb{R} ?
- 21. Let (f_n) be a sequence of bounded functions on $A \subseteq \mathbb{R}$. Then show that (f_n) converges uniformly on A to a bounded function *f* iff for each $\varepsilon > 0$ there is a number H(ε) in N such that for all $m, n \geq H(\varepsilon)$ then $||f_m - f_n||_A \leq \varepsilon$. 21. Let (f_n) be a sequence of bounded tunctions on $A \subseteq \mathbb{R}$. Then

uniformly on A to a bounded function f iff for each $\varepsilon > 0$ there

that for all $m, n \ge H(\varepsilon)$ then $||f_m - f_n||_A \le \varepsilon$.

22. Discuss the convergence of

22. Discuss the convergence of
$$
\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx.
$$

23. Define Beta function and show that $\frac{2}{\sin^2 p-1}$ 0.000 $\frac{2p-1}{p}$ 0 $\forall p > 0, q > 0, B(p,q) = 2 \int_{0}^{\pi/2} \sin^{2p-1} \theta \cos^{2p-1} \theta d\theta.$

Section C

Questions 24—27. *Answer any* **two** *questions. Each carry* 10 *marks.*

- 24. (a) Show that if *f* and *g* are uniformly continuous on $A \subseteq \mathbb{R}$ and they are bounded on A then their product *fg* is also uniformly continuous.
	- (b) Show that $f(x) = \sqrt{x}$ is uniformly continuous on $[a, \infty)$ where $a > 0$.

3 **D 100611**

- 25. Suppose f and g are in R $[a, b]$. Then
- (a) if $k \in \mathbb{R}$, show that $kf \in \mathcal{R}[a, b]$ and $\int kf = k \int f$. *b b a a* ∫ $kf = k \int$ *f* **1105**

(b)
$$
f+g \in \mathcal{R}[a,b]
$$
 and $\int_a^b f+g = \int_a^b f+\int_a^b g$.

26. Discuss the pointwise and uniform convergence of :

(a)
$$
f_n(x) = \frac{\sin(nx+n)}{n}
$$
 for $x \in \mathbb{R}$.
\n(b) $g_n(x) = \frac{x^2 + nx}{n}$ for $x \in \mathbb{R}$.
\n27. Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.
\n(2 × 10 = 20 n)

(b)
$$
g_n(x) = \frac{x^2 + nx}{n}
$$
 for $x \in \mathbb{R}$.

27. Show that $\int e^{-x^2} dx = \sqrt{\pi}$. ∞
∫ a⁻ −∞ $\int e^{-x^2} dx = \sqrt{\pi}$

 $(2 \times 10 = 20 \text{ marks})$

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2023 1105

(CBCSS–UG)

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admission onwards)

Time : Two Hours and a Half Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 *marks. Maximum marks* 25*.*

- 1. State sequential criterian for continuity.
- 2. Show that the sine function is continuous on $\mathbb R$.
- 3. Define Lipchitz function. If $f : A \to \mathbb{R}$ is a Lipschitz function then show that *f* is uniformly continuous on A. **1105**
 1105
- 4. Define tagged partition.
- 5. Show that every constant function on $[a,b]$ is in $\mathbb{R}[a,b]$.
- 6. State Cauchy's criterion for Riemann integrability.
- 7. Let F, G be differentiable on $[a,b]$ and let $f = F'$ and $g = G'$ belong to ℝ[a,b], then show that

$$
\int_a^b f \, \mathbf{G} = \left[\mathbf{F} \mathbf{G} \right]_a^b - \int_a^b \mathbf{F} \, g \, .
$$

- 8. Show that $\lim_{n \to \infty} \left(\frac{x}{n} \right) = 0$ for $x \in \mathbb{R}$. $\left(\frac{x}{n}\right) = 0$ for $x \in \mathbb{R}$ 8. Show that $\lim_{a} \left(\frac{x}{n}\right) = 0$ for $x \in \mathbb{R}$.

9. Define uniform convergence of a sequence of functions.

10. State bounded convergence theorem.

11. State Weirstrass M-test for the uniform convergence of series of f
	- 9. Define uniform convergence of a sequence of functions.
	- 10. State bounded convergence theorem.
	- 11. State Weirstrass M-test for the uniform convergence of series of functions.

12. Evaluate
$$
\int_{1}^{\infty} \frac{dx}{x^2+1}.
$$

Turn over

2 **C 40602**

13. Find the principal value of $\int_{-2}^{1} \frac{x-1}{(x-1)^3} dx$ 3 3 2 . 1 *dx* $\int_{-2}^{2} \frac{a}{(x - a)^{2}}$

14. Discuss the absolute convergence of 0 sin 1 $\frac{x}{f}$ dx *n* ∞ $\int_{0}^{5} \frac{\sin x}{n+1} dx$ for $n\pi \leq x \leq (n+1)\pi, n = 0,1,2,...$ **313075**

2

pal value of $\int_{-2}^{3} \frac{dx}{(x-1)^3}$

colute convergence of $\int_{0}^{2} \frac{\sin x}{n+1} dx$ for $n\pi \le x \le (n+1) \pi$, $n = 0,1,2,...$
\nn(1+ab). Evaluate $\int_{0}^{b} \frac{xdx}{(1+ax)^2}$

Section B

Questions 16-23, answer any number

15. If
$$
\int_{0}^{b} \frac{dx}{1+ax} = \frac{1}{a} \ln(1+ab)
$$
. Evaluate
$$
\int_{0}^{b} \frac{xdx}{(1+ax)^{2}}
$$

Section B

.

Questions 16–23, *answer any number of questions. Each question carries* 5 *marks. Maximum marks* 35*.*

- 16. State and prove Boundedness theorem for continuous function.
- 17. Show that $f(x) = \frac{1}{1+x^2}$, 1 $f(x) = \frac{1}{x}$, x *x* $=\frac{1}{\alpha}$, $x \in$ $\frac{1}{1+x^2}$, $x \in \mathbb{R}$ is uniformly continuous in \mathbb{R} .
- 18. State and prove Squeeze theorem for Riemann integrable functions.
- 19. If $f \in \mathbb{R}[a,b]$ and f is continuous at a point $c \in [a,b]$. Then show that the indefinite integral

$$
F(z) = \int_{a}^{z} f \text{ for } z \in [a, b] \text{ is differentiable at } c \text{ and } F'(c) = f(c).
$$

- 20. Show that a sequence (f_n) of bounded functions on $A \subset \mathbb{R}$ converges uniformly on A to f iff $\|f_n - f\| \leq 0$. **1105**
 1105
- 21. Discuss the convergence of $f_n(x) = \frac{x^n}{n}$, $x \ge 0$ $n(x) = \frac{1}{n + x^n}$ $f_n(x) = \frac{x^n}{x^n}$, x $n + x$ $=\frac{x}{x}, x \ge$ $\frac{\alpha}{1+x^n}$, $x \ge 0$. Is the convergence uniform on $[0,\infty]$. $||f_n - f||n \to 0.$

21. Discuss the convergence of $f_n(x) = \frac{x^n}{n + x^n}$, $x \ge 0$. Is the convergence

22. Evaluate $\int_{-1}^{1} \frac{dx}{x^2 - 1}$.

23. Show that $x \neq q \in \mathbb{R}$, $\int_{1}^{\infty} x^q e^{-x} dx$ converges.

313075

22. Evaluate 1 2 1 . 1 *dx* $\int \frac{dx}{x^2}$

23. Show that 1 $r \ q \in \mathbb{R}, \int_{0}^{\infty} x^q \ e^{-x} \ dx$ converges.

3 **C 40602**

Section C

Questions 24–27, *answer any* **two** *questions. Each question carries* 10 *marks.*

- 24. State and prove Maximum Minimum Theorem.
- 25. State and prove Cauchy's criterion of Riemann integrability.
- 26. Let (f_n) be a sequence of functions in $\mathbb{R}[a,b]$ and suppose that (f_n) converges uniformly on $[a,b]$ to *f*. Then show that $f \in \mathbb{R}[a,b]$. **1105**
- 27. Show that 0 $\frac{\sin x}{x}$ *dx x* ∞ $\int \frac{\sin x}{x} dx$ exists and converges to a finite real value and that this integral does not 27. Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ exists and converges to a finite real value and that this integral do
converge absolutely.
(2 × 10 = 20 r

converge absolutely.

 $(2 \times 10 = 20 \text{ marks})$

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022 1105

(CBCSS–UG)

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admissions)

Time : Two Hours and a Half Maximum : 80 Marks

Section A

Answer at least **ten** *questions. Each question carries* 3 *marks. All questions can be attended. Overall Ceiling* 30.

- 1. Define continuity of a function. Show that the constant function $f(x) = b$ is continuous on $\mathbb R$.
- 2. State Boundedness theorem. Is boundedness of the interval, a necessary condition in the theorem ? Justify with an example.
- 3. If $f : A \to IR$ is uniformly continuous on $A \subseteq \mathbb{R}$ and (x_n) is a Cauchy sequence in A. Then show that $f(x_n)$ is a Caychy sequence in $\mathbb R$. $\begin{tabular}{ll} \bf Section A \\ & \tt Answer~at~least~ten~questions. \\ & \tt RateA~questions. \\ & \tt RateA~questions. \\ & \tt All~questions~can~be~attend. \\ & \tt Output[] \bf 200. \end{tabular}$ 11 Define continuity of a function. Show that the constant function $f(x)=b$ is continuous on 2. State Boundedness theorem. Is boundedness of
- 4. Define Riemann sum of a function $f:[a,b] \to \mathbb{R}$.
- 5. Suppose *f* and *g* are in $\mathbb{R}[a, b]$ then show that $f + g$ is in $\mathbb{R}[a, b]$.
- 6. State squeeze theorem for Riemann integrable functions.
- 7. If *f* belong to $\mathbb{R}[a, b]$, then show that its absolute value $|f|$ is in $\mathbb{R}[a, b]$.
- 8. Define pointwise convergence of a sequence (f_n) of functions.
- 9. Discuss the uniform convergence of $f_n(x) = x^n$ on $(-1,1]$.
- 10. If $h_n(x) = 2nxe^{-nx^2}$ for $x \in [0,1], n \in \mathbb{N}$ and $h(x) = 0$ for all $x \in [0,1]$, then show that : 7. If f belong to $\mathbb{R}[a, b]$, then show that its absolute value $|f|$ is in

8. Define pointwise convergence of a sequence (f_n) of functions.

9. Discuss the uniform convergence of $f_n(x) = x^n$ on $(-1,1]$.

10. If $h_n(x) =$

$$
\lim_{\substack{h\\0}} \int_0^1 h_n(x) dx \neq \int_0^1 h(x) dx.
$$

11. State Cauchy criteria for uniform convergence series of functions.

Turn over

- 12. Evaluate 0 3 1 *dx* $\frac{3}{-1} \sqrt[3]{x}$ $\int \frac{dx}{3\sqrt{x}}$.
- 13. What is Cauchy principle value. Find the principal value of $\int_{-1}^{1} x$ $\int \frac{dx}{x}$.
- 14. State Leibniz rule for differentiation of Ramann integrals.
- 15. State that $\lceil (p+1) \rceil = p \lceil p \rceil$ for $p > 0$.

 $(10 \times 3 = 30 \text{ marks})$

Section B

1

dx

1

Answer at least **five** *questions. Each question carries* 6 *marks. All questions can be attended. Overall Ceiling* 30. **1205**
 220645
 1205
 1005
 1005
 1005
 1005
 1005
 1005
 1005
 10

16. Show that the Dirichlet's function :

 $f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$ *x f x x* $=\bigg\{$ $\begin{cases} 0 \text{ if x is irrational} \end{cases}$ is not continuous at any point of $\mathbb R$.

- 17. State and prove Bolzano intermediate value theorem.
- 18. Show that the following functions are not uniformly continuous on the given sets :

(a)
$$
f(x) = x^2
$$
 on A = [0, ∞].

(b)
$$
g(x) = \sin \frac{1}{x} \text{ on } B = (0, \infty)
$$
.

- 19. If $f : [a,b] \to \mathbb{R}$ is continuous on $[a,b]$, then show that $f \in \mathbb{R}[a,b]$.
- 20. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f : A \to \mathbb{R}$. Then show that *f* is continuous on A. **1105**
 1105
- 21. Let $f_n: [0,1] \to \mathbb{R}$ be defined for $n \ge 2$ by :

20. Let
$$
(f_n)
$$
 be a sequence of continuous functions on a set A ⊆ ℝ and uniformly on A to a function $f : A \to \mathbb{R}$. Then show that f is contin
\n21. Let $f_n : [0,1] \to IR$ be defined for $n \ge 2$ by :
\n
$$
\int_0^{2x} f_n(x) =\begin{cases}\nn^2x, & n \ge 2 \le \frac{1}{n} \\
-n^2(x-2/n), & n \le x \le \frac{2}{n} \\
0, & n \le x \le 1.\n\end{cases}
$$
\nShow that the limit function is Riemann integrable. Verify whether

Show that the limit function is Riemann integrable. Verify whether $\lim_{n \to \infty} \int f_n(x) dx = \int f(x) dx$ 1 1 0 0 $\lim \int f_n(x) = \int f(x) dx$.

 $(5 \times 6 = 30 \text{ marks})$

3 **C 20645**

93808

\n22. Given
$$
\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy = \pi
$$
, find the value of
$$
\int_0^{\infty} e^{-x^2} dx = \sqrt{\frac{\pi}{2}}
$$
.

\n23. Show that $\forall p > 0, q > 0$ $B(p,q) = \frac{\sqrt{pq}}{\sqrt{pq}}$.

\nSection C

\nAnswer any two questions. Each question carries 10 marks.

\n24. State and prove Location of roots theorem.

\n25. State and prove Additivity theorem.

23. Show that
$$
\forall p > 0, q > 0
$$
 B $(p,q) = \frac{|p|q}{\Gamma(p+q)}$.

Section C

Answer any **two** *questions. Each question carries* 10 *marks.*

- 24. State and prove Location of roots theorem.
- 25. State and prove Additivity theorem.
- 26. Evaluate (a) $\lim_{n \to \infty} \frac{x}{1+x^n}$ for $x \in \mathbb{R}, x \ge 0$. *n n* $\frac{x^n}{x^n}$ for $x \in \mathbb{R}, x$ *x* $\in \mathbb{R}, x \geq$ $\frac{x^n}{1+x^n}$ for $x \in \mathbb{R}, x \ge 0$. (b) $\lim \frac{\sin nx}{1+nx}$ for $x \in \mathbb{R}, x \ge 0$. 1 $\frac{nx}{x}$ for $x \in \mathbb{R}, x$ *nx* $\in \mathbb{R}, x \geq$ $\frac{11}{x+nx}$ for $x \in \mathbb{R}$ 24. State and prove Location of roots theorem.

25. State and prove Additivity theorem.

26. Evaluate (a) $\lim \frac{x^n}{1+x^n}$ for $x \in \mathbb{R}, x \ge 0$. (b) $\lim \frac{\sin nx}{1+nx}$ for $x \in \mathbb{R}, x \ge 0$.

Discuss about their uniform convergen

Discuss about their uniform convergence.

27. (a) Show that
$$
\forall q > -1, \int_{0}^{1} x^q e^{-x} dx
$$
 converges.

(b) Show that
$$
\forall q \le -1, \int_0^1 x^q e^{-x} dx
$$
 diverges.

 $(2 \times 10 = 20 \text{ marks})$