D 100611

(Pages: 3)

Name.....

Reg. No.....

SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admissions onwards)

Time: Two Hours and a Half

Maximum Marks: 80

Section A

Questions 1—15. Answer any number of questions. Each carry 2 marks. Maximum marks 20.

- 1. State discontinuity criterion. Hence show that the signum function is not continuous at x = 0.
- 2. State maximum-minimum theroem.
- 3. Show that $f(x) = \frac{1}{x}$ is uniformly continuous on $[a, \infty)$ where a > 0.
- 4. Define Riemann integral of a function f on an integral [a, b].
- 5. If f and g are in R[a, b] and if $f(x) \le g(x)$ for all x in [a, b] then show that $\int_a^b f \le \int_a^b g$.
- 6. State Lebesgue's integrability criterion.
- 7. If f and g belong to R[a, b] then the product fg belongs to R[a, b].
- 8. Show that $\lim \frac{\sin(nx+n)}{n} = 0$ for $x \in \mathbb{R}$.
- 9. Discuss the uniform convergence of $f_n(x) = \frac{x}{n}$ on A = [0, 1].
- 10. Evaluate $\lim (e^{-nx})$ for $x \in \mathbb{R}$, $x \ge 0$.
- 11. Define absolute convergence of series of functions.
- 12. Evaluate $\int_{-\infty}^{0} e^x dx$.
- 13. Find the principal value of $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$.

Turn over

2 **D 100611**

14. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

15. Define Beta fucntion. St B (p, q) = B(q, p).

Section B

Questions 16—23. Answer any number of questions. Each carry 5 marks. Maximum marks 35.

- 16. Let $A = \{x \in \mathbb{R} | x > 0\}$. Define h on A by h(x) = 0 if $x \in A$ is irrational and $h(x) = \frac{1}{n}$ if $x \in A$ is rational with $x = \frac{m}{n}$, $m, n \in \mathbb{N}$ have no common factor except 1. Then show that h is continuous at every irrational number in A and discontinuous at every rational number in A.
- 17. Let I be an interval and $f: I \to \mathbb{R}$ be a continuous function on I then show that f(I) is an interval.
- 18. If $f \in \mathbb{R}$ [a,b] then show that f is bounded on [a,b].
- 19. Show that if $\phi:[a,b] \to \mathbb{R}$ is a step function then $\phi \in \mathbb{R}[a,b]$.
- 20. Evaluate $\lim \frac{x^2 + nx}{n}$, $x \in \mathbb{R}$. Is the convergence uniform on \mathbb{R} ?
- 21. Let (f_n) be a sequence of bounded functions on $A \subseteq \mathbb{R}$. Then show that (f_n) converges uniformly on A to a bounded function f iff for each $\varepsilon > 0$ there is a number $H(\varepsilon)$ in \mathbb{N} such that for all $m, n \ge H(\varepsilon)$ then $||f_m f_n||_A \le \varepsilon$.
- 22. Discuss the convergence of $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$.
- 23. Define Beta function and show that $\forall p > 0, q > 0, B(p,q) = 2 \int_{0}^{\pi/2} \sin^{2p-1}\theta \cos^{2p-1}\theta d\theta$.

Section C

Questions 24—27. Answer any **two** questions. Each carry 10 marks.

- 24. (a) Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$ and they are bounded on A then their product fg is also uniformly continuous.
 - (b) Show that $f(x) = \sqrt{x}$ is uniformly continuous on $[a, \infty)$ where a > 0.

D 100611

- 25. Suppose f and g are in R [a, b]. Then
 - (a) if $k \in \mathbb{R}$, show that $kf \in \mathcal{R}[a,b]$ and $\int_a^b kf = k \int_a^b f$.
 - (b) $f+g \in \mathcal{R}[a,b]$ and $\int_a^b f+g = \int_a^b f + \int_a^b g$.
- 26. Discuss the pointwise and uniform convergence of:
 - (a) $f_n(x) = \frac{\sin(nx+n)}{n}$ for $x \in \mathbb{R}$.
 - (b) $g_n(x) = \frac{x^2 + nx}{n}$ for $x \in \mathbb{R}$.
- 27. Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$

 $(2 \times 10 = 20 \text{ marks})$

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2023

(CBCSS-UG)

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum marks 25.

- 1. State sequential criterian for continuity.
- 2. Show that the sine function is continuous on $\mathbb R$.
- 3. Define Lipschitz function. If $f: A \to \mathbb{R}$ is a Lipschitz function then show that f is uniformly continuous on A.
- 4. Define tagged partition.
- 5. Show that every constant function on [a,b] is in $\mathbb{R}[a,b]$.
- 6. State Cauchy's criterion for Riemann integrability.
- 7. Let F, G be differentiable on [a,b] and let f = F' and g = G' belong to $\mathbb{R}[a,b]$, then show that

$$\int_{a}^{b} f G = [FG]_{a}^{b} - \int_{a}^{b} F g.$$

- 8. Show that $\lim \left(\frac{x}{n}\right) = 0$ for $x \in \mathbb{R}$.
- 9. Define uniform convergence of a sequence of functions.
- 10. State bounded convergence theorem.
- 11. State Weirstrass M-test for the uniform convergence of series of functions.
- 12. Evaluate $\int_{1}^{\infty} \frac{dx}{x^2 + 1}$.

Turn over

13. Find the principal value of
$$\int_{-2}^{3} \frac{dx}{(x-1)^3}$$
.

14. Discuss the absolute convergence of
$$\int_{0}^{\infty} \frac{\sin x}{n+1} dx$$
 for $n\pi \le x \le (n+1)\pi$, $n = 0, 1, 2, ...$

15. If
$$\int_0^b \frac{dx}{1+ax} = \frac{1}{a} \ln(1+ab)$$
. Evaluate $\int_0^b \frac{xdx}{(1+ax)^2}$.

Section B

Questions 16–23, answer any number of questions. Each question carries 5 marks. Maximum marks 35.

16. State and prove Boundedness theorem for continuous function.

17. Show that
$$f(x) = \frac{1}{1+x^2}$$
, $x \in \mathbb{R}$ is uniformly continuous in \mathbb{R} .

- 18. State and prove Squeeze theorem for Riemann integrable functions.
- 19. If $f \in \mathbb{R}[a,b]$ and f is continuous at a point $c \in [a,b]$. Then show that the indefinite integral $F(z) = \int_a^z f$ for $z \in [a,b]$ is differentiable at c and F'(c) = f(c).
- 20. Show that a sequence (f_n) of bounded functions on $A \subset \mathbb{R}$ converges uniformly on A to f iff $\|f_n f\|\|n \to 0$.

21. Discuss the convergence of
$$f_n(x) = \frac{x^n}{n+x^n}$$
, $x \ge 0$. Is the convergence uniform on $[0,\infty]$.

22. Evaluate
$$\int_{-1}^{1} \frac{dx}{x^2 - 1}$$
.

23. Show that
$$r \neq q \in \mathbb{R}$$
, $\int_{1}^{\infty} x^{q} e^{-x} dx$ converges.

Section C

Questions 24–27, answer any **two** questions. Each question carries 10 marks.

- 24. State and prove Maximum Minimum Theorem.
- 25. State and prove Cauchy's criterion of Riemann integrability.
- 26. Let (f_n) be a sequence of functions in $\mathbb{R}[a,b]$ and suppose that (f_n) converges uniformly on [a,b] to f. Then show that $f \in \mathbb{R}[a,b]$.
- 27. Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ exists and converges to a finite real value and that this integral does not converge absolutely.

 $(2 \times 10 = 20 \text{ marks})$

C 20645	(Pages : 3)	Name
		Reg. No.

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS-UG)

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Define continuity of a function. Show that the constant function f(x) = b is continuous on \mathbb{R} .
- 2. State Boundedness theorem. Is boundedness of the interval, a necessary condition in the theorem? Justify with an example.
- 3. If $f: A \to IR$ is uniformly continuous on $A \subseteq \mathbb{R}$ and (x_n) is a Cauchy sequence in A. Then show that $f(x_n)$ is a Caychy sequence in \mathbb{R} .
- 4. Define Riemann sum of a function $f:[a,b] \to \mathbb{R}$.
- 5. Suppose f and g are in $\mathbb{R}[a,b]$ then show that f+g is in $\mathbb{R}[a,b]$.
- 6. State squeeze theorem for Riemann integrable functions.
- 7. If f belong to $\mathbb{R}[a,b]$, then show that its absolute value |f| is in $\mathbb{R}[a,b]$.
- 8. Define pointwise convergence of a sequence (f_n) of functions.
- 9. Discuss the uniform convergence of $f_n(x) = x^n$ on (-1,1].
- 10. If $h_n(x) = 2nxe^{-nx^2}$ for $x \in [0,1], n \in \mathbb{N}$ and h(x) = 0 for all $x \in [0,1]$, then show that :

$$\lim_{n \to \infty} \int_{0}^{1} h_{n}(x) dx \neq \int_{0}^{1} h(x) dx.$$

11. State Cauchy criteria for uniform convergence series of functions.

Turn over

- 12. Evaluate $\int_{-1}^{0} \frac{dx}{\sqrt[3]{x}}$.
- 13. What is Cauchy principle value. Find the principal value of $\int_{-1}^{1} \frac{dx}{x}$.
- 14. State Leibniz rule for differentiation of Ramann integrals.
- 15. State that $\lceil (p+1) = p \rceil p$ for p > 0.

 $(10 \times 3 = 30 \text{ marks})$

Section B

2

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

16. Show that the Dirichlet's function:

 $f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases} \text{ is not continuous at any point of } \mathbb{R}.$

- 17. State and prove Bolzano intermediate value theorem.
- 18. Show that the following functions are not uniformly continuous on the given sets:

(a)
$$f(x) = x^2 \text{ on } A = [0, \infty].$$

(b)
$$g(x) = \sin \frac{1}{x}$$
 on $B = (0, \infty)$.

- 19. If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then show that $f \in \mathbb{R}[a,b]$.
- 20. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f: A \to \mathbb{R}$. Then show that f is continuous on A.
- 21. Let $f_n:[0,1] \to IR$ be defined for $n \ge 2$ by :

$$f_n(x) = \begin{cases} n^2 x & , 0 \le x \le \frac{1}{n} \\ -n^2 (x - 2/n), \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & , \frac{2}{n} \le x \le 1. \end{cases}$$

Show that the limit function is Riemann integrable. Verify whether $\lim_{x \to 0}^{1} f_n(x) = \int_{0}^{1} f(x) dx$.

22. Given
$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy = \pi$$
, find the value of $\int_{0}^{\infty} e^{-x^2} dx = \sqrt{\frac{\pi}{2}}$.

23. Show that
$$\forall p > 0, q > 0$$
 B $(p,q) = \frac{\lceil p \rceil \rceil q}{\lceil (p+q) \rceil}$.

 $(5 \times 6 = 30 \text{ marks})$

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. State and prove Location of roots theorem.
- 25. State and prove Additivity theorem.

26. Evaluate (a)
$$\lim \frac{x^n}{1+x^n}$$
 for $x \in \mathbb{R}, x \ge 0$. (b) $\lim \frac{\sin nx}{1+nx}$ for $x \in \mathbb{R}, x \ge 0$.

Discuss about their uniform convergence.

27. (a) Show that
$$\forall q > -1, \int_{0}^{1} x^{q} e^{-x} dx$$
 converges.

(b) Show that
$$\forall q \leq -1, \int_{0}^{1} x^{q} e^{-x} dx$$
 diverges.

 $(2 \times 10 = 20 \text{ marks})$