D 103062	(Pages : 4)	Name
		Rog No

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2024

Mathematics

MTS 4B 04—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer Type Question)

All questions can be attended. Each question carries 2 marks. Overall ceiling 25.

- 1. Give an example of a system of linear equation with the following properties:
 - (i) Unique solution
 - (ii) Infinite number of solutions
- 2. Solve the system x + y = 2, x y = 0 by using any method.
- 3. Give an example to show that the matrix multiplication is need not be commutative.
- 4. Find the row reduced echelon form of

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$

- 5. Let $W = \{(x, y, z) : x + y + z = 0\}$. Show that W is subspace of \mathbb{R}^3 .
- 6. Show that $\{(1,0),(0,1)\}$ spans \mathbb{R}^2 .
- 7. Define Wronskian. Find the Wronskian of $\sin 5x$ and $\cos 5x$.
- 8. Define linearly independent set. Give an example.
- 9. Define row space and column space of a matrix.

D 103062

10. Find the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$
.

11. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$, that projects onto the *x*-axis in the *xy*-plane is not one-one.

2

- 12. Find the eigen values of $\begin{bmatrix} 3 & 0 \\ 8 & 1 \end{bmatrix}$.
- 13. Define similar matrices. Show that if A and B are similar the determinant is equal.

14. Let
$$\mathbf{u} = \mathbf{U} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\mathbf{v} = \mathbf{V} = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$. Evaluate $\langle \mathbf{u}, \mathbf{v} \rangle$, where, $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{U}, \mathbf{V} \rangle = trace(\mathbf{U}^{\mathrm{T}} \mathbf{V})$.

15. Define orthogonal matrix. Show that
$$\begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
 is orthogonal.

(Ceiling 25 Marks)

Section B (Paragraph/Problem Type Questions)

All questions can be attended. Each question carries 5 marks. Overall Ceiling 35.

16. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, find, det (A) , A^{-1} , A^{-2} , A^{-3} and A^{-5} .

17. Using row reduction, evaluate the determinant of:

$$\begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}.$$

- 18. Determine the set $\{6, 3\sin^2 x, 2\cos^2 x\}$ is independent or not.
- 19. Show that the matrices

$$\mathbf{M}_1 = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \, \mathbf{M}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}; \, \mathbf{M}_3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix}, \, \mathbf{M}_4 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}.$$

Form a basis for the vector space \boldsymbol{M}_{22} of 2 \times 2 matrices.

20. Find a basis for row space of the matrix

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}.$$

- 21. Describe the null space of the matrix $\begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix}$.
- 22. Define inner product. Consider P_2 with the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x) q(x) dx$. Verify that x and x^2 are orthogonal with respective above inner product.
- 23. Let f = f(x) and g = g(x) be two functions on C[a, b]. Show that $\langle f, g \rangle = \int_a^b f(x) f(x) dx$ defines an inner product on C[a, b].

(Ceiling 35 Marks)

D 103062

Section C (Essay Type Question)

4

Answer any **two** questions.

Each question carries 10 marks.

24. (a) For what values of b_1 , b_2 and b_3 the following system of equations are consistent?

$$x_1 + x_2 + 2x_3 = b_1$$

$$x_1 + 0x_2 + x_3 = b_2$$

$$2x_1 + x_2 + 3x_3 = b_3.$$

- (b) Let A and B are symmetric matrices of same size. Then show that the followings.
 - (i) A^T is symmetric
 - (ii) A + B and A B are symmetric
 - (iii) kA is symmetric, where k is any scalar.
- 25. Let $u = \{1, 2, -1\}, v = \{6, 4, 2\}$ in \mathbb{R}^3 .
 - (a) Show that $w = \{9, 2, 7\}$ is in the linear combination of u and v.
 - (b) Show that $w = \{4, -1, 8\}$ is not in the linear combination of u and v.
- 26. Consider the matrix,

$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ -3 & 1 & 5 & 2 \\ -2 & 3 & 9 & 2 \end{bmatrix}$$

- (a) Verify that $rank(A) = rank(A^T)$.
- (b) Verify dimension theorem for the matrix A.
- 27. Find an orthogonal matrix P that diagonalizes:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}.$$

 $(2 \times 10 = 20 \text{ marks})$

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Mathematics

MTS 4B 04—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer type Question)

Each question carries 2 marks.
All questions can be attended.
Overall ceiling 25.

- 1. Give an example of a system of linear equation with the following properties:
 - (i) Unique solution; and
 - (ii) No solution.
- 2. For any 2×2 matrices, A and B, prove that

$$trace(A + B) = trace(A) + trace(B)$$
.

- 3. Define all subspaces of the vector space \mathbb{R}^3 over \mathbb{R} .
- 4. Define linear combination of vectors in a vector space. Write (2,3) as the linear combination of (1,0) and (0,1).
- 5. Define basis of a vector space. Write a basis of P_n , where P_n is the polynomials of degree less than or equal to n.
- 6. Consider the basis $B = \{u_1, u_2\}$ and $B' = \{u'_1, u'_2\}$ of \mathbb{R}^2 , where $u_1 = (1, 0)$, $u_2 = (0, 1)$, $u'_1 = (1, 1)$ and $u'_2 = (2, 1)$. Find the transformation matrix from $B' \to B$.
- 7. Let $W = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. Find the dimension of W.

- 8. Give an example of an infinite dimensional vector space.
- 9. Define rank and nullity of a matrix.
- 10. Find the image of x = (1, 1) under the rotation of $\frac{\pi}{6}$, about the origin.
- 11. Define eigen values and eigen vectors of a matrix.
- 12. Find the egien values of $\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 2/3 & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$.
- 13. If λ is the eigen values of a matrix A, show that λ^n is the eigen values of A^{n} .
- 14. Show that (1,1) and (1,-1) are orthogonal vectors with respective the Euclidean inner product.
- 15. Let W be the subspace spanned by the orhonornal vector $v_1 = (0, 1, 0)$. Find the orthogonal projection of u = (1, 1, 1) on W.

(Ceiling 25 marks)

Section B (Paragraph/Problem Type Questions)

Each question carries 5 marks.

All questions can be attended.

Overall Ceiling 35.

16. Solve the following linear system by Gauss-Elimination method,

$$x_1 + x_2 + 2x_3 = 8$$

 $-x_1 - 2x_2 + 3x_3 = 1$
 $3x_1 - 7x_2 + 4x_3 = 10$.

17. Prove that, if A and B are invertible matrices of same size, then AB is invertible $\operatorname{and}\left(AB\right)^{-1}=B^{-1}A^{-1}.$

- 18. Show that the set $\{(1,1,2),(1,0,1),(2,1,3)\}$ spans \mathbb{R}^3 .
- 19. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations

$$w_1 = 2x_1 + x_2$$

$$w_2 = 3x_1 + 4x_2$$

is one-one, and find $\,\mathbf{T}^{-1}\left(w_{1},w_{2}\right).$

- 20. Let T be the operator which is the reflection about the xz plane in \mathbb{R}^3 . Find the matrix of T with respective the standard basis.
- 21. Find the rank and nullity of the matrix

$$\begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}.$$

22. Find the bases of the eigen spaces of the matrix

$$\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

23. Show that a square matrix A is invertible if and only if 0 is not and eigen value of A.

(Ceiling 35 marks)

Section C (Essay Type Question)

Answer any **two** questions.

Each question carries 10 marks.

24. (a) Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

- (b) Define the followings with examples:
 - (i) Diagonal matrices;
 - (ii) Lower triangular matrices;
 - (iii) Upper triangular matrices;
 - (iv) Symmetric matrices; and
 - (v) Singular matrices.

25. Let
$$v_1 = \{1, 2, 1\}, v_2 = \{2, 9, 0\}$$
 and $v_3 = \{3, 3, 4\}$.

- (a) Show that $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .
- (b) Find the co-ordinate vector of v = (5, -1, 9) relative to the basis $\{v_1, v_2, v_3\}$.
- 26. Consider the following linear system:

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}.$$

- (a) Show that the above system is consistent.
- (b) Solve the above system of linear equations.
- 27. (a) Define similar matrices.
 - (b) Show that the following matrix is not diagonazible:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}.$$

 $(2 \times 10 = 20 \text{ marks})$

C 21545	(Pages : 4)	Name
		Reg. No

FOURTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2022

Mathematics

MTS 4B 04—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer Type Questions)

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

1. Show that the linear system of equations 4x - 2y = 1 has infinitely many solutions.

$$16x - 8y = 4$$

2. Write any two facts about row echelon forms and reduced row echelon forms.

3. Express the linear system $4x_1 - 3x_3 + x_4 = 1$ $5x_1 + x_2 - 8x_4 = 3$ $2x_1 - 5x_2 + 9x_3 - x_4 = 0$ $3x_2 - x_3 + 7x_4 = 2$

in the form AX = B.

- 4. Let $V = R^2$ and define addition and scalar multiplication as follows. For $\overline{u} = (u_1, u_2), \overline{v} = (v_1, v_2),$ $\overline{u} + \overline{v} = (u_1 + v_1, u_2 + v_2)$ and for a real number $k, k\overline{u} = (ku_1, 0)$. For $\overline{u} = (1, 1)$ and $\overline{v} = (-3, 5)$ find $\overline{u} + \overline{v}$ and for k = 5, find $k\overline{u}$. Also show that one axiom for vector space is not satisfied.
- 5. Define basis for a vector space.
- 6. How will you relate the dimension of a finite dimensional vector space to the dimension of its subspace. Give two facts.
- 7. Give a solution to the change of basis problem.
- 8. When you can say that a system of linear equation Ax = b is consistent. What is meant by a particular solution of the consistent system Ax = b.
- 9. Find the rank of a 5×7 matrix A for which Ax = 0 has a two-dimensional solution space.

- 10. If $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation. Then define its kernel ker (T_A) and Range of (T_A) . What is ker (T_A) in terms of null-space of A.
- 11. Discuss the geometric effect on the unit square of multiplication by a diagonal matrix $A = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$.
- 12. Confirm by multiplication that x is an eigen vector of A and find the corresponding eigen value, if $A = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix} \text{ and } x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$
- 13. Let \mathbb{R}^2 have the weighted Euclidean inner product $\langle u,v \rangle = 2u_1v_1 + 3u_2v_2$. For u = (1,1), v = (3,2), compute d(u,v).
- 14. If u and v are orthogonal vectors in a real inner product space, then show that $\|u+v\|^2 = \|u\|^2 + \|v\|^2$.
- 15. State four properties of orthogonal matrices.

 $(10 \times 3 = 30 \text{ marks})$

Section B (Paragraph/ Problem Type Questions)

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

16. Suppose that the augmented matrix for a linear system has been reduced to the row echelon form

as
$$\begin{bmatrix} 1 & 0 & 8 & -5 & 6 \\ 0 & 1 & 4 & -9 & 3 \\ 0 & 0 & 1 & 1 & 2 \end{bmatrix}$$
 solve the system.

- 17. If A is an invertible matrix, then show that A^T is also invertible and $\left(A^T\right)^{-1} = \left(A^{-1}\right)^T$.
- 18. Let V be a vector space and \overline{u} , a vector in V and k a scalar. Then show that (i) $O\overline{u} = 0$; (ii) $(-1)\overline{u} = -\overline{u}$.

- 19. If $S = [v_1, v_2, \dots, v_n]$ is a basis for a vector space V, then show that every vector v in V can be expressed in form $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$ in exactly one way. What are the co-ordinates of V relative to the basis S?
- 20. Consider the basis $B = [u_1, u_2]$ and $B' = [u_1, u_2]$ for R^2 , where $u_1 = (2, 2)$ $u_2 = (4, -1)$ $u_1' = (1, 3)$ $u_2' = (-1, -1)$.
 - (a) Find the transition matrix from B to B.
 - (b) Find the transition matrix from B to B.
- 21. If A is a matrix with n columns, then define rank A, nullity of A and establish a relationship between them.
- 22. Define eigen space corresponding to an eigen value λ of a square matrix A. Also find eigen value and bases for the eigen space of the matrix $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$.
- 23. Use the Gram-Schmidt process for an orthonormal basis corresponding to the basis vectors $u_1 = (1,1,1), u_2 = (0,1,1)$ and $u_3 = (0,0,1)$.

 $(5 \times 6 = 30 \text{ marks})$

Section C (Essay Type Questions)

Answer any **two** questions. Each question carries 10 marks.

- 24. Show that the following statements are equivalent for an $n \times n$ matrix A:
 - (a) A is invertible.
 - (b) Ax = 0 has only the trivial solution.
 - (c) The reduced row echelon form of A is I_n .
 - (d) A is expressible as a product of elementary matrices.
- 25. (a) Define Wronskian of the functions $f_1 = f_1(x), f_2 = f_2(x) \dots f_n = f_n(x)$ which are n-1 times differentiable in $(-\infty, \infty)$. Use this to show that $f_1 = x$ and $f_2 = \sin x$ are linearly independent vectors in $c^{\infty}(-\infty, \infty)$.
 - (b) Show that the vectors $v_1 = (1,2,1), v_2 = (2,9,0)$ and $v_3(3,3,4)$ form a basis for \mathbb{R}^3 .

26. (a) If A is the matrix
$$\begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix}$$
, then find a basis for the row space consisting on entirely

row vectors from A.

- (b) Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ that first rotates a vector counter clockwise about z-axis through an angle θ , reflects the resulting vector about yz plane and then projects that vector orthogonally onto the xy plane.
- 27. (a) On P₂, polynomial in [-1,1], define innerproduct as $< p,q> = \int\limits_{-1}^{1} p(x)q(x)dx$. Find $\|p\|,\|q\|$ and < p,q> for p=x and $q=x^2$.
 - (b) If A is an $n \times n$ matrix with real entries, show that A is orthogonally diagonalizable if and only if A has an orthonormal set of n eigenvectors.

 $(2 \times 10 = 20 \text{ marks})$

(Pages: 4)

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MTS 4B 04—LINEAR ALGEBRA

Time: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer Type Questions)

Answer at least ten questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Describe different possibilities for solution (x, y) of a system linear equations in the xy plane. What are consistent system?
- 2. Suppose that the augmented matrix for a linear system has been reduced to the row echelon form

as
$$\begin{bmatrix} 1 & -3 & 4 & 7 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$
 solve the system.

- 3. Define trace of a square matric. Find the trace of the matrix $A = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$
- 4. Show that the standard unit vectors

$$e_1 = \big(1,0,....0\big), e_2 = \big(0,1,0....0\big), e_3 = \big(0,0,1,0....0\big).....e_n = \big(0,0.....1\big) \, \text{span } \mathbb{R}^n.$$

- 5. Find the co-ordinate vector of w = (1,0) relative to the basis $s = [\overline{u}_1, \overline{u}_2]$ of \mathbb{R}^2 , where $\overline{u}_1 = (1,-1)$ and $\overline{u}_2 = (1,1)$.
- 6. Write two important facts about the vectors in a finite dimensional vector space V.

7. Consider the bases $B = [\bar{u}_1, \bar{u}_2]$ and $B' = [\bar{u}_1', \bar{u}_2']$ where

$$\overline{u}_1 = (1,0), \overline{u}_2 = (0,1), \overline{u}_1' = (1,1), \overline{u}_1' = (2,1). \text{ Find the transition matrix } P_{B' \to B} \text{ from } B' \text{ to } B.$$

- 8. Define row spaces and null spaces an $m \times n$ matrix.
- 9. If $R = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the row reduced echelon form of a 3 × 3 matrix A, then verify the rank-

nullity formula.

- 10. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates vectors through an angle θ is one-one.
- 11. Find the image of the line y = 4x under multiplication by the matrix $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$.
- 12. Confirm by multiplication that x is an eigen vector of A and find the corresponding eigen value if $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- 13. Let A be an $n \times n$ matrix. Define inner product on \mathbb{R}^n generated by A. Also write the generating matrix of the weighted Euclidear inner product $\langle u, v \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$.
- 14. If u, v are vectors in a real inner product space V, then show that $||u+v|| \le ||u|| + ||v||$.
- 15. If A is an $n \times n$ orthogonal matrix, then show that ||Ax|| = ||x|| for all x in \mathbb{R}^n .

 $(10 \times 3 = 30 \text{ marks})$

Section B (Paragraph/Problem Type Questions)

Answer at least five questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Describe Column Row Expansion method for finding the product AB for two matrices A and B. Use this to find the product $AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \\ -3 & 5 & 1 \end{bmatrix}$.
- 17. If A is an invertible matrix, then show that A^{T} is also invertible and $(AT)^{-1} = (A^{-1})^{T}$.
- 18. Consider the vectors u = (1, 2, -1) and v = (6, 4, 2) in \mathbb{R}^3 . Show that w = (9, 2, 7) is a linear combination of u and v and that w' = (4, -1, 8) is not a linear combination of u and v.
- 19. If $s = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V, then show that every vector v in V can be expressed in form $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$ in exactly one way. What are the co-ordinates of v relative to the basis s.
- 20. If A is a matrix with n columns, then define rank of A and show that rank (A) + nullity (A) = n.
- 21. Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ that first rotates a vector counter clockwise about z-axis through an angle θ , then reflects the resulting vector about yz plane and then projects that vector orthogonally onto the xy plane.
- 22. Define eigen space corresponding to an eigen value λ of a square matrix A. Also find eigen value and bases for the eigen space of the matrix $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$.
- 23. If w is a sub-space of real inner product space v, then show that:
 - (a) w^{\perp} is subspace of v.
 - (b) $w \cap w^{\perp} = \{0\}.$

 $(5 \times 6 = 30 \text{ marks})$