(Pages : 3)

Nar	ne			•••••	•••••
-----	----	--	--	-------	-------

Reg. No.....

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2024

Mathematics

MAT 2C 02-MATHEMATICS-2

(2019 Admissions Only)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum marks : 20.

- 1. Describe the set of points P whose polar coordinates (r, θ) satisfy $0 \le r \le 2$ and $0 \le \theta < r$.
- 2. Differentiate : (a) $(\tan 3x)/(1 + \sin^2 x)$; (b) $1 \csc^2 5x$.
- 3. Show that $e^x = \cosh x + \sinh x$.
- 4. Find $\int_{1}^{b} \frac{1}{x^4} dx$. What happens as *b* goes to infinity ?
- 5. State the comparison test for integrals.
- 6. Briefly explain Taylor's and Maclaurin's series.
- 7. Write down the criteria for checking whether a given subset W is a subspace of a vector space V.
- 8. Define linear independence.
- 9. State a condition for the consistency of the matrix equation AX = B.
- 10. Find the inverse of $A = \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$.
- 11. Define the adjoint of an $n \times n$ matrix.
- 12. State Cayley Hamilton theorem.

Turn over

2

Section B

Answer any number of questions. Each question carries 5 marks. Maximum marks : 30.

- 13. Convert from cartesian to polar co-ordinates : (2, -4) ; and from polar to cartesian coordinates : $(6, -\pi/8)$.
- 14. Calculate : (a) $\frac{d}{dx}\sinh^{-1}(3x)$; and (b) $\frac{d}{dx}$ [sinh⁻¹ (3 tanh 3x)].
- 15. (a) For which values of the exponent *r* is $\int_{1}^{\infty} x^{r} dx$ convergent?
 - (b) Find $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.
- 16. Let $f(x) = \cos x$. Evaluate $\int_0^{\pi/2} \cos x \, dx$. by the method of Riemann sums, taking 10 equally spaced points : $x_0 = 0$, $x_1 = \pi/20$, $x_2 = 2\pi/20$, ..., $x_{10} = 10\pi/20 = \pi/2$ and $c_i = x_i$. Compare the answer with the actual value.
- 17. Define a vector space.
- 18. Reduce to echelon form the augmented matrix :

 $\begin{pmatrix} 2 & 6 & 1 & 7 \\ 1 & 2 & -1 & -1 \\ 5 & 7 & -4 & 9 \end{pmatrix}.$

19. Find the inverse of $A = \begin{pmatrix} 2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}$.

Section C

Answer any **one** question. The question carries 10 marks. Maximum 10 marks.

20. Describe Newton's Method for solving f(x) = 0.

Use Newton's method to find the first few approximations to a solution of the equation $x^2 = 4$, taking $x_0 = 1$.

- 21. (a) Describe Gram Schmidt Process in \mathbb{R}^2 and \mathbb{R}^3 .
 - (b) Orthonormalize $\mathbf{B} = \{u_1, u_2\}$, where $u_1 = \langle 3, 1 \rangle$, $u_2 = \langle 1, 1 \rangle$.
 - (c) Orthonormalize $u_1 = \langle 1, 1, 1 \rangle$, $u_2 = \langle 1, 2, 2 \rangle$, $u_3 = \langle 1, 1, 0 \rangle$.

D 103771

(Pages : 3)

Name.	•••••	•••••	•••••
Rog N	Jo		

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2024

Mathematics

MAT 2C 02-MATHEMATICS-2

(2020-2023 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20.

- 1. Find the cartesian co-ordinates of $(r, \theta) = (6, -\pi/8)$.
- 2. Let $y = x^3 + 2$. Find $\frac{dx}{dy}$ when y = 3.
- 3. Compute $\int \coth x \, dx$.
- 4. Find $\lim_{n \to \infty} \left(\frac{n^2 + 1}{3n^2 + n} \right)$.

5. Sum the series
$$\sum_{i=0}^{\infty} \frac{3^i - 2^i}{6^i}$$

6. Show that
$$\sum_{i=1}^{\infty} \frac{2}{4+i}$$
 diverges.

Turn over

7. Verify that the basis $B = \left\{ \left\langle \frac{12}{13}, \frac{5}{13} \right\rangle, \left\langle \frac{5}{13}, \frac{-12}{13} \right\rangle \right\}$ is an orthonormal basis for \mathbb{R}^2 .

8. Find the rank of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 4 \\ 1 & 4 & 1 \end{bmatrix}$.

9. Evaluate determinant of A =
$$\begin{vmatrix} 2 & 4 & 7 \\ 6 & 0 & 3 \\ 1 & 5 & 3 \end{vmatrix}$$

10. Find the value of x such that the matrix $A = \begin{bmatrix} 4 & -3 \\ x & -4 \end{bmatrix}$ is its own inverse.

11. Find the eigenvalues of A =
$$\begin{vmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{vmatrix}$$

12. Verify that the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ satisfies its characteristic equation.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

13. Find the length of the graph of $f(x) = (x-1)^{3/2} + 2$ on [1, 2].

14. Find the area of the surface obtained by revolving the graph of x^3 on [0,1] about the x-axis.

15. Show that the improper integral $\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} dx$ is convergent.

16. Let $f(x) = \cos x$. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x \, dx$ by the Simpson's rule, taking 10 equally spaced points.

3

- 17. Let $u_1 = \langle 1, -1, 1, -1 \rangle$, $u_2 = \langle 1, 3, 0, -1 \rangle$ be the vectors span a subspace W of \mathbb{R}^4 . Use the Gram-Schmidt orthogonalization process to construct a orthonormal basis for the subspace W.
- 18. Find nontrivial solution for the homogeneous system of equations

$$2x_1 - 4x_2 + 3x_3 = 0$$

$$x_1 + x_2 - 2x_3 = 0.$$

19. Find the inverse of A = $\begin{bmatrix} 2 & 0 & 1 \\ -2 & 3 & 4 \\ -5 & 5 & 6 \end{bmatrix}$.

Section C

Answer any **one** questions. The question carries 10 marks.

20. Use Gaussian elimination or Gauss-Jordan elimination to solve

 $2x_1 + x_2 + x_3 = 3$ $3x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 2x_2 + 2x_3 + 3x_4 = 3$ $4x_1 + 5x_2 - 2x_3 + x_4 = 16.$

21. Determine whether the matrix $A = \begin{bmatrix} 9 & 1 & 1 \\ 1 & 9 & 1 \\ 1 & 1 & 9 \end{bmatrix}$ is diagonalizable. If so, find the matrix P that

diagonalizes A and the diagonal matrix D such that $D = P^T AP$.

 $(1 \times 10 = 10 \text{ marks})$

(Pages : 3)

Nar	ne			•••••	•••••
-----	----	--	--	-------	-------

Reg. No.....

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2024

Mathematics

MAT 2C 02-MATHEMATICS-2

(2019 Admissions Only)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum marks : 20.

- 1. Describe the set of points P whose polar coordinates (r, θ) satisfy $0 \le r \le 2$ and $0 \le \theta < r$.
- 2. Differentiate : (a) $(\tan 3x)/(1 + \sin^2 x)$; (b) $1 \csc^2 5x$.
- 3. Show that $e^x = \cosh x + \sinh x$.
- 4. Find $\int_{1}^{b} \frac{1}{x^4} dx$. What happens as *b* goes to infinity ?
- 5. State the comparison test for integrals.
- 6. Briefly explain Taylor's and Maclaurin's series.
- 7. Write down the criteria for checking whether a given subset W is a subspace of a vector space V.
- 8. Define linear independence.
- 9. State a condition for the consistency of the matrix equation AX = B.
- 10. Find the inverse of $A = \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$.
- 11. Define the adjoint of an $n \times n$ matrix.
- 12. State Cayley Hamilton theorem.

Turn over

2

Section B

Answer any number of questions. Each question carries 5 marks. Maximum marks : 30.

- 13. Convert from cartesian to polar co-ordinates : (2, -4) ; and from polar to cartesian coordinates : $(6, -\pi/8)$.
- 14. Calculate : (a) $\frac{d}{dx}\sinh^{-1}(3x)$; and (b) $\frac{d}{dx}$ [sinh⁻¹ (3 tanh 3x)].
- 15. (a) For which values of the exponent *r* is $\int_{1}^{\infty} x^{r} dx$ convergent?
 - (b) Find $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.
- 16. Let $f(x) = \cos x$. Evaluate $\int_0^{\pi/2} \cos x \, dx$. by the method of Riemann sums, taking 10 equally spaced points : $x_0 = 0$, $x_1 = \pi/20$, $x_2 = 2\pi/20$, ..., $x_{10} = 10\pi/20 = \pi/2$ and $c_i = x_i$. Compare the answer with the actual value.
- 17. Define a vector space.
- 18. Reduce to echelon form the augmented matrix :

 $\begin{pmatrix} 2 & 6 & 1 & 7 \\ 1 & 2 & -1 & -1 \\ 5 & 7 & -4 & 9 \end{pmatrix}.$

19. Find the inverse of $A = \begin{pmatrix} 2 & 2 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}$.

Section C

Answer any **one** question. The question carries 10 marks. Maximum 10 marks.

20. Describe Newton's Method for solving f(x) = 0.

Use Newton's method to find the first few approximations to a solution of the equation $x^2 = 4$, taking $x_0 = 1$.

- 21. (a) Describe Gram Schmidt Process in \mathbb{R}^2 and \mathbb{R}^3 .
 - (b) Orthonormalize $\mathbf{B} = \{u_1, u_2\}$, where $u_1 = \langle 3, 1 \rangle$, $u_2 = \langle 1, 1 \rangle$.
 - (c) Orthonormalize $u_1 = \langle 1, 1, 1 \rangle$, $u_2 = \langle 1, 2, 2 \rangle$, $u_3 = \langle 1, 1, 0 \rangle$.

Namo	e	••••••	 •••••	
Reg.	No		 	

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Mathematics

MTS 2C 02—MATHEMATICS—2

(2020-2022 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum marks that can be earned from this Section is 20.

- 1. Sketch the set of points whose polar co-ordinates (r, θ) satisfy the conditions 0 < r < 4 and $-\pi/2 < \theta < \pi/2$.
- 2. Let $f(x) = x^2 + 2x + 3$. Restrict f to a suitable interval so that it has an inverse. Find the inverse $f^{-1}(x)$ of the given function.
- 3. Find the slope of the line tangent to the graph of $r = \cos(3\theta)$ at $\theta = \pi/3$.
- 4. Prove $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$.
- 5. Show that determinant of a square matrix A is the product of its eigenvalues
- 6. Find $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ using the notion of improper integrals.
- 7. Evaluate $\lim_{n \to \infty} \frac{n^2 + 1}{3n^2 + n}$.
- 8. Define rank of a matrix.

Turn over

9. Find A² using Cayley-Hamilton theorem, if A = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

10. When will you say that a series $\sum_{n=1}^{\infty} a_n$ an converges to the sum *s*.

- 11. Use Doolittle's method to find an LU-factorization of B = $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}$.
- 12. Selecting a proper test of convergence, decide whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2 \ln n}$ converges or diverges.

 $\mathbf{2}$

Section **B**

Answer any number questions from this section. Each question carries 5 marks. Maximum that can be earned from this Section is 30.

13. Find the maxima and minima of $f(\theta) = 1 + 2\cos(\theta)$. Sketch the graph of $r = 1 + 2\cos\theta$ in the *xy*-plane.

14. Find :

- (a) $\frac{d}{dx}\left(\sinh^{-1}\left(3x\right)\right)$; and
- (b) $\int \sinh^{-1}(3x) dx$.
- 15. Prove that the length of the parabola $y = x^2$ from x = 0 to x = 1 is $\frac{1}{2} \left[\sqrt{5} + \frac{1}{2} \ln \left(2 + \sqrt{5} \right) \right]$.
- 16. A bouncing ball loses half of its energy on each bounce. The height reached on each bounce is proportional to the energy. Suppose that the ball is dropped vertically from a height of one meter. How far does it travel ?

17. Find the Taylor's series expansion for $\ln x$ around x = 1.

- 18. Find the rank of the matrix A + 3I where A = $\begin{bmatrix} 0 & 1 & 1 & 7 \\ 1 & 0 & 1 & -3 \\ 4 & 1 & 0 & 3 \\ 4 & 1 & 0 & 3 \end{bmatrix}$
- 19. The set $B = \{u_1, u_2, u_3\}$, where $u_1 = \langle 1, 1, 1 \rangle$, $u_2 = \langle 1, 2, 2 \rangle$, $u_3 = \langle 1, 1, 0 \rangle$ is a basis for \mathbb{R}^3 . Transform B into an orthonormal basis.

Section C

Answer **one** question from this section. The question carries 10 marks. Maximum that can be earned from this Section is 10.

- 20. (a) Find the surface area of a sphere of radius r using the method of integration.
 - (b) Use Simpson's rule of integration to evaluate $\int_{0}^{1} \frac{dx}{x^2+1}$ and hence find an approximate value

for π .

21. (a) If consistent solve the system using Gauss-Jordan elimination :

 $2x_1 + x_2 + x_3 = 3$ $3x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 2x_2 + 2x_3 + 3x_4 = 3$ $4x_1 + 5x_2 - 2x_3 + x_4 = 16.$

(b) Diagonalize the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

 $(1 \times 10 = 10 \text{ marks})$

C 23880

(Pages: 3)

Nam	e	 	 	
Rog	N			

SECOND SEMESTER (CBCSS-UG) DEGREE EXAMINATION APRIL 2022

Mathematics

MAT 2C 02-MATHEMATICS-II

(2020 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum 20 marks.

- 1. Find the inverse of the function $f(x) = \sqrt{3x 2}$.
- 2. Find the Cartesian form of the polar equation $r = \frac{2}{\sin \theta 2\cos \theta}$.
- 3. Find the slope of the line tangent to the graph of $r = \cos 3\theta$ at $(r, \theta) = (-1, \pi/3)$.
- 4. Show that $\lim_{n \to \infty} \frac{2n+1}{n} = 2$.
- 5. Find $\frac{dy}{dx}$, where $y = x \sinh x \cosh x$.
- 6. Find the norm of the vector $\langle 3, 4, 0, 1, -1 \rangle$. Also normalize the vector.
- 7. Compute $\|\cos x\|$ in C $[0, 2\pi]$.
- 8. Using Maclaurin's series find the expansion of $\sin x$.
- 9. Find the determinant of the matrix $C = \begin{bmatrix} 3 & 4 & 8 \\ 2 & -4 & -18 \\ -4 & 7 & 27 \end{bmatrix}$.

Turn over

262388

10. Let I be an identity matrix of order $n \times n$. Show that I is an orthogonal matrix.

11. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ find A^3 using Cayley Hamilton theorem.

12. Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -6 \\ 2 & 2 \end{bmatrix}$.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 30 marks.

- 13. Find the length of the curve $y = (x/2)^{2/3}$ from y = 0 to y = 2.
- 14. Find $(f^{-1})'(2)$, if $f(x) = x^5 + x$.
- 15. Find the length of the curve $r = a \sin^2\left(\frac{\theta}{2}\right), 0 \le \theta \le \pi, a > 0.$
- 16. Evaluate $\int_{0}^{1} e^{-x^{2}} dx$ by means of Trapezoidal rule with n = 10.
- 17. Using Maclaurin's series expand $\tan^{-1} x$. Hence deduce the Gregory series :
 - $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- 18. $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, where $\mathbf{u}_1 = \langle 2, -1, 1 \rangle$, $\mathbf{u}_2 = \langle 1, 5, 1 \rangle$, $\mathbf{u}_3 = \langle 0, 1, 2 \rangle$, is a basis for \mathbb{R}^2 . Transform it into an orthonormal basis $B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

19. Find the inverse of $\begin{bmatrix} 2 & 3 & -4 \\ 0 & -4 & 2 \\ 1 & -1 & 5 \end{bmatrix}$ if it exists.

3

Section C

Answer any **one** question. Each question carries 10 marks. Maximum 10 marks.

- 20. (a) Find the area of the region that lies inside the circle r = 1 and outside the cardioid $r = 1 \cos \theta$.
 - (b) For which values of *r* is $\int_{0}^{1} x^{r} dx$ convergent ? Justify your answer.
- 21. (a) Solve the system of equations :

 $\begin{array}{rl} x_1-2x_2+x_5-x_6+x_7&=0\\ x_3-x_4&+x_5-2x_6+3x_7=0\\ &x_1-x_5+2x_6=0\\ &2x_1-3x_4+x_5=0. \end{array}$

(b) Diagonalize the matrix $A = \begin{bmatrix} 10 & 3 \\ 4 & 6 \end{bmatrix}$.

C 23879

(Pages: 3)

Nam	e	•••••	•••••	 •••••	•••••
Reg.	No			 	

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2022

Mathematics

MAT 2C 02-MATHEMATICS-2

(2019 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum Marks 20.

1. State inverse function test. Verify that $f(x) = x^2 + x$ has an inverse if *f* is defined on $\left|\frac{-1}{2}, \infty\right|$.

2. Find the slope of the line tangent to the graph of $r = 3\cos^2 2\theta$ at $\theta = \frac{\pi}{6}$.

- 3. Compute $\int \frac{\sinh x dx}{1 + \cosh^2 x}$.
- 4. Prove that $\tanh^{-1} x = \frac{1}{2} \ln \left[\frac{1+x}{1-x} \right], -1 < x < 1.$
- 5. For which values of the exponent $r ext{ is } \int_{1}^{\infty} x^{r} dx$ convergent?
- 6. State Simpson's rule.

7. Sum the series
$$\sum_{i=0}^{\infty} \frac{3^i - 2^i}{6i}$$
.

Turn over

262262

- 8. State alternating series test and test the convergence for the series $\sum_{i=1}^{\infty} \frac{(-i)^i}{(1+i)^2}$
- 9. Prove that the vectors $w_1 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), w_2 = \left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$ and $w_3 = \left(0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ are orthonormal vectors.
- 10. Determine whether the set of all functions f with f(1) = 0 is a subspace of $C(-\infty, \infty)$.
- 11. Find the inverse of A = $\begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}$.
- 12. Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} -1 & 2 \\ -7 & 8 \end{pmatrix}$.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum Marks 30.

- 13. Find the length of the graph of $f(x) = (x-1)^{\frac{3}{2}} + 2$ on [0, 2].
- 14. Find the area of the surface obtained by revolving the graph of x^3 on [0, 1].
- 15. State ratio test for the power series. For which $x \operatorname{does} \sum_{n=0}^{\infty} \frac{i}{i+1} x^i$ converge.
- 16. Find the Maclaurin series for $f(x) = \sin x$.
- 17. Use Grami-Schmidt orthonormalization process to transform the basis $\{u_1, u_2, u_3\}$ for \mathbb{R}^3 into an orthonormal basis B' = $\{w_1, w_2, w_3\}$, where $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 2)$ and $u_3 = (1, 1, 0)$.

262262

18. State Cayley's theorem and using this theorem find the inverse of A = $\begin{pmatrix} -2 & 4 \\ -1 & 3 \end{pmatrix}$.

19. Diagonalize A =
$$\begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$
.

Section C

Answer any **one** question. Each question carries 10 marks. Maximum Marks 10.

- 20. (a) Find the area enclosed by the cardiod $r = 1 + \cos \theta$.
 - (b) Using LU factorization to solve the system linear equations AX = B where A = $\begin{pmatrix} 2 & -2 \\ 1 & 2 \end{pmatrix}$, B = $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and X = $\begin{pmatrix} x \\ y \end{pmatrix}$.
- 21. (a) Calculate $\sin\left(\frac{\pi}{4} + 0.06\right)$ to whithin 0.0001 by using Taylor series about $x_0 = \frac{\pi}{4}$.
 - (b) Determine whether the vectors $u_1 = (1, -1, 3, -1)$, $u_2 = (1, -1, 4, 2)$ and $u_3 = (1, -1, 5, 7)$ are linearly dependent or independent.

 $(1 \times 10 = 10 \text{ marks})$

C 22093

(**Pages : 3**)

Name..... Reg. No.....

SECOND SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2022

Mathematics

MTS 2C 01—MATHEMATICS—2

(2021 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Find the inverse of $f(x) = \frac{2x-3}{5x-7}$, where the domain of f excludes $x = \frac{7}{5}$.
- 2. Find the Cartesian form of the polar equation $r = \sin 2\theta$.
- 3. Express the number $\operatorname{coth}^{-1}(5/4)$ in terms of natural logarithms.
- 4. Prove that $tanh^2x + sech^2 x = 1$.
- 5. Show that the series $1 + \frac{1}{2} + \frac{1}{2^2} + \cdots$ converges and also find its sum.
- 6. Find the norm of the vector (3, 4, 0, 1, -1). Also normalize the vector.
- 7. Determine the radius of convergence of $\sum_{k=0}^{\infty} \frac{k^5}{(k+1)!} x^k$.
- 8. Find a basis and then give the dimension of solution space of.
- 9. Find the inner product of the vectors $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 0, -2, 1 \rangle$ in \mathbb{R}^3 . Are the vectors orthogonal ?

10. Show that $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ is an orthogonal matrix.

Turn over

11. If $A = \begin{bmatrix} 10 & 3 \\ 4 & 6 \end{bmatrix}$ find A^3 using Cayley Hamilton theorem.

12. Find the inverse of the 2 × 2 matrix $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$.

 $(8 \times 3 = 24 \text{ marks})$

Section B

 $\mathbf{2}$

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Find the length of the graph of $f(x) = (x-1)^{3/2} + 2$ on [1, 2].
- 14. Diagonalize the matrix $A = \begin{bmatrix} 1 & -6 \\ 2 & 2 \end{bmatrix}$.
- 15. Find the length of the perimeter of the cardioid $r = a(1 + \cos \theta)$.
- 16. Find an approximation value of $\int_{0}^{1} x^{2} dx$ by Simpson's rule with n = 10.
- 17. Expand log x in ascending powers of x 1 as for the term containing $(x 1)^4$.
- 18. $B_1 = \{u_1, u_2, u_3\}$, where $u_1 = \langle 2, -1, 1 \rangle$, $u_2 = \langle 1, 5, 1 \rangle$, $u_3 = \langle 0, 1, 2 \rangle$, is a basis for \mathbb{R}^2 . Transform it into an orthonormal basis $B_2 = \{w_1, w_2, w_3\}$.

19. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing it to the echelon form.

 $(5 \times 5 = 25 \text{ marks})$

C 22093

3

Section C

Answer any **one** question. The question carries 11 marks.

- 20. (a) Find the area of the region shared by the circles r = 1 and $r = 2 \sin \theta$.
 - (b) Show that the set $B = \{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ is a basis for \mathbb{R}^3 .
- 21. (a) Using Gauss-Jordan elimination method, solve the system of equations :

(b) Find the eigen values of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$.

 $(1 \times 11 = 11 \text{ marks})$

C 4388-B

(Pages: 3)

Nam	e	•••••	•••••	 •••••	•••••
Reg.	No			 	

SECOND SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2021

Mathematics

MAT 2C 02-MATHEMATICS-2

(2020 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 2. Find the Cartesian form of the polar equation $r = \frac{8}{1-2\cos\theta}$
- 3. Find the slope of the line tangent to the graph of $r = 3\cos^2 2\theta$ at $\theta = \pi/6$.
- 4. Evaluate $\int \sinh^2 x dx$.
- 5. Show that $\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$
- 6. Test the convergence of the series $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} \frac{1}{\sqrt{8}} + \frac{1}{\sqrt{16}} \dots$
- 7. Compute $\|\cos x\|$ in $C[0,2\pi]$.
- 8. Examine whether the set of vectors $u_1 = \langle 1,2,3 \rangle$, $u_2 = \langle 2,4,3 \rangle$, and $u_3 = \langle 3,2,1 \rangle$ is linearly independent or not.
- 9. Find the eigenvalues of the matrix $A = \begin{vmatrix} 3 & 4 \\ -1 & 7 \end{vmatrix}$.
- 10. Find the determinant of the matrix $C = \begin{bmatrix} -1 & 2 & 9 \\ 2 & -4 & -18 \\ 5 & 7 & 27 \end{bmatrix}$.

Turn over

C 4388-B

11. Show that $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ is an orthogonal matrix.

12. Find the eigen values of the matrix $A = \begin{bmatrix} 10 & 3 \\ 4 & 6 \end{bmatrix}$.

 $(8 \times 3 = 24 \text{ marks})$

Section B

 $\mathbf{2}$

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} 1, 0 \le x \le 1$.
- 14. Find the equation of the tangent line when t = 1 for the curve $x = t^4 + 2\sqrt{t}$, $y = \sin(t\pi)$.
- 15. Find the length of the perimeter of the cardioid $r = a(1 \cos \theta)$.
- 16. Use the Trapezoidal rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$. Compare the estimate with the exact value of the integral.
- 17. Using Maclaurin's series expand $\tan^{-1} x$. Hence deduce the Gregory series $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- 18. Show that the set $B = \{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ is a basis for R^3 .
- 19. Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 3 & -1 & 4 \end{bmatrix}$.

 $(5 \times 5 = 25 \text{ marks})$

C 4388-B

3

Section C

Answer any **one** question. The question carries 11 marks.

20. (a) Evaluate $\int_{1}^{\infty} \frac{\ln x}{x^2} dx$, if it exists.

- (b) Find the area of the region shared by the cardioids $r = 2(1 + \cos \theta)$ and $r = 2(1 \cos \theta)$.
- 21. (a) Solve:

$$\begin{split} & x_1+x_2+x_3+x_4=0\\ & x_1+3x_2+2x_3+4x_4=0\\ & 2x_1+x_3-x_4=0. \end{split}$$

(b) Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -6 \\ 2 & 2 \end{bmatrix}$.

 $(1 \times 11 = 11 \text{ marks})$

C 4388

(Pages: 3)

Nam	e	•••••	•••••		•••••	•••••
Reg.	No			•••••		•••••

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 2C 02—MATHEMATICS—2

(2019 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Compute the derivative of \sqrt{x} using inverse function rule. Evaluate the derivative at x = 2.
- 2. Convert the relation $r = 1 + 2 \cos \theta$ to Cartesian co-ordinates.
- 3. Compute $\int \cosh^2 x \, dx$.
- 4. Find $\frac{d}{dx} \cosh^{-1} \sqrt{x^2 + 1}, x \neq 0.$
- 5. Find $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.
- 6. Show that $\int_0^\infty \frac{\sin x}{(1+x^2)} dx$ converges.
- 7. A bouncing ball loses half of its energy on each bounce. The height reached on each bounce is proportional to the energy. Suppose that the ball is dropped vertically from a height of one meter. How far does it travel ?

Turn over

- 8. State Ratio comparison test and show that $\sum_{i=1}^{\infty} \frac{2}{4+i}$ diverges.
- 9. Prove that the vectors $w_1 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), w_2 = \left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right) \text{ and } w_3 = \left(0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ are

 $\mathbf{2}$

orthonormal vectors.

- 10. Define basis of a vector space. Give a basis for vector space P_n of all polynomial of degree less than or equal to n.
- 11. Find the inverse of $A = \begin{pmatrix} 1 & 8 \\ 2 & 10 \end{pmatrix}$.
- 12. Find the eigenvalues and eigenvectors of A = $\begin{pmatrix} 3 & 4 \\ -1 & 7 \end{pmatrix}$.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Let $f(x) = x^2 + 2x + 3$. Restrict *f* to a suitable interval so that it has an inverse. Find the inverse function and sketch its graph.
- 14. Find the length of the graph of $f(x) = (x-1)^{3/2} + 2 \operatorname{on}[0, 2]$.
- 15. State root test and test the convergence for the series $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$.
- 16. For which x does the series $\sum_{n=0}^{\infty} \frac{4^n}{\sqrt{2n+5}} (x+5)^n$ converge.

- 17. Let $u_1 = (1, 1, 1), u_2 = (1, 2, 2)$ and $u_3 = (1, 1, 0)$ be basis of \mathbb{R}^3 . Using Gram Schimdt process find an orthonormal basis of \mathbb{R}^3 .
- 18. Compute A^m for $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.
- 19. Identify the conic whose equation is $2x^2 + 4xy y^2 = 1$.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question. The question carries 11 marks.

- 20. (a) Find the area of the surface obtained by revolving the graph $y = x^2$ about the y-axis for $1 \le x \le 2$.
 - (b) Determine whether the set of vectors $u_1 = (1, 2, 3)$, $u_2 = (1, 0, 1)$ and $u_3 = (1, -1, 5)$ is linearly dependent or linearly independent.
- 21. (a) Find the terms through cubic order in the Taylor series for $\frac{1}{1+x^2}$ at $x_0 = 1$.
 - (b) Find an LU factorization of A = $\begin{pmatrix} -1 & 2 & -4 \\ 2 & -5 & 10 \\ 3 & 1 & 6 \end{pmatrix}$.

 $(1 \times 11 = 11 \text{ marks})$

(Pages : 2)

Name.....

Reg. No.....

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Mathematics

MAT 2C 02-MATHEMATICS-II

(2019 Admissions)

Time : Two Hours

Maximum : 60 Marks

sectors of meaning prospersions in a sector of the sector of the

and the back of the second

Section A

Answer any number of questions. Each question carries 2 marks. Maximum 20 marks.

- 1. If $f(x) = x^3 + 2x + 1$, show that f has an inverse on [0, 2], Find the derivative of the inverse function at y = 4.
- 2. Calculate the slope of the line tangent to $r = f(\theta)$ at (r, θ) if f has a local maximum there.
- 3. Prove that $\tanh^2 x + \operatorname{sech}^2 x = 1$.
- 4. Find $\int \frac{dx}{\sqrt{4+x^2}}$.

5. Show that $\int_{0}^{\infty} \frac{dx}{\sqrt{1+x^8}}$ is convergent, by comparison with $\frac{1}{x^4}$.

- 6. Find $\lim_{n\to\infty}\left(\frac{n^2+1}{3n^2+n}\right)$.
- 7. Sum the series $\sum_{i=1}^{\infty} \left(\frac{7}{8}\right)^i$.
- 8. State integral test and show that $\sum_{m=2}^{\infty} \frac{1}{m(\ln m)^2}$ converges.
- 9. Define dimension of a vector space. Find the dimension of the vector space P_n of all polynomial of degree less than or equal to n.
- 10. Determine whether the set of all functions f with f(1) = 0 is a subspace of the vector space $C(-\infty,\infty)$.

11. Use inverse of coefficient matrix to solve the system :

 $2x_1 - 9x_2 = 15$ $3x_1 + 6x_2 = 16$

12. Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 30 marks.

- 13. Polygonal line joining the points (2, 0), (4, 4), (7, 5) and (8, 3) is revolved about the x-axis. Find the area of the resulting surface of revolution.
- 14. Find the length of the cardiod $r = 1 + \cos \theta$, $0 \le \pi \le 2\pi$.
- 15. Find the power series of the form $\sum_{i=0}^{\infty} a_i x^i$ for $\frac{23-7x}{(3-x)(4-x)}$. Also find the radius of convergence.
- 16. Evaluate $\lim_{x\to\infty} \frac{\sin x x}{x^3}$ using a Macluarin's series.
- 17. Use Gram Schmidt orthonormalization process to transform the basis $\{u_1, u_2, u_3\}$ for \mathbb{R}^3 into an orthonormal basis $B' = \{w_1, w_2, w_3\}$, where $u_1 = (1, 1, 0), u_2 = (1, 2, 2)$ and $u_3 = (2, 2, 1)$.

we then the age is been with the

18. Compute A^m for $A = \begin{pmatrix} 8 & 5 \\ 4 & 0 \end{pmatrix}$.

19. Find LU factorization of $A = \begin{pmatrix} 2 & -8 \\ 3 & 0 \end{pmatrix}$.

Section C

Answer any **one** question. The question carries 10 marks. Maximum 10 Marks.

- 20. (a) Find the area enclosed by the cardiod $r = 1 + \cos \theta$.
 - (b) Calculate $\sin\left(\frac{\pi}{4} + 0.06\right)$ to within 0.0001 by using Taylor's series about $x_0 = \frac{\pi}{4}$.

21. (a) Use an LU factorization to evaluate the determinant of $A = \begin{pmatrix} -1 & 2 & -4 \\ 2 & -5 & 10 \\ 2 & 1 & 6 \end{pmatrix}$.

(b) Find the rank of A = $\begin{pmatrix} 1 & 1 & -1 & 3 \\ 2 & -2 & 6 & 8 \\ 3 & 5 & -7 & 8 \end{pmatrix}$.

 $(1 \times 10 = 10 \text{ marks})$