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Foreword

GEORGE CHRISTOU

Indiana University, Bloomington

I am no doubt representative of a large number of current inorganic chemists in having
obtained my undergraduate and postgraduate degrees in the 1970s. It was during
this period that I began my continuing love affair with this subject, and the fact that
it happened while I was a student in an organic laboratory is beside the point. I was
always enchanted by the more physical aspects of inorganic chemistry; while being
captivated from an early stage by the synthetic side, and the measure of creation with
a small c that it entails, I nevertheless found the application of various theoretical,
spectroscopic and physicochemical techniques to inorganic compounds to be fascinating,
stimulating, educational and downright exciting. The various bonding theories, for
example, and their use to explain or interpret spectroscopic observations were more or
less universally accepted as belonging within the realm of inorganic chemistry, and
textbooks of the day had whole sections on bonding theories, magnetism, kinetics,
electron-transfer mechanisms and so on. However, things changed, and subsequent
inorganic chemistry teaching texts tended to emphasize the more synthetic and
descriptive side of the field. There are a number of reasons for this, and they no doubt
include the rise of diamagnetic organometallic chemistry as the dominant subdiscipline
within inorganic chemistry and its relative narrowness vis-d-vis physical methods
required for its prosecution.

These days inorganic chemistry is again changing dramatically with the resurgence
of coordination chemistry, fuelled by the increasing importance of metals in biology
and medicine and the new and explosive thrusts into inorganic materials encompassing
a wide variety of types and areas of application, of which high-temperature super-
conductors, molecular ferromagnets and metallomesogens are merely the tip-of-the-
iceberg. Modern-day, neo-coordination chemistry is thus a much broader discipline and
one that now demands greater knowledge and expertise in a much larger range of
theoretical or spectroscopic techniques and physicochemical methods, and to a higher
level of sophistication.

At Indiana University, as at most universities I am sure, we have assigned a high
priority to modifying our inorganic chemistry curriculum to accurately reflect the
changing nature of the field and to better prepare our students for the demands on
them of the new century. The general paucity of suitable texts directed towards the
inorganic chemistry student is a problem. There are, of course, many advanced texts
available for consultation but, on the theoretical/physical side at least, these are
frequently directed at the more quantum mechanically and mathematically competent
reader. In my experience as an instructor, the average student of inorganic chemistry
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picking up an advanced text on magnetochemistry, for example, will probably not
survive the initial jump into the deep waters of quantum mechanics.

This present work by Sid Kettle represents a wonderful bridge for the student. It is
designed as an intermediate-level text that can serve both as a user-friendly introduction
to a large number of topics and techniques of importance to the student of coordination
and physical inorganic chemistry, and also as a springboard to more advanced texts and
studies. It is written in a style that is appropriate for a teaching text, anticipating
and answering the questions that students will typically have on encountering the topic
for the first time, and introduces a large number of theoretical, spectroscopic and
physicochemical techniques without sacrificing the more classical content of a coordi-
nation chemistry text. In this regard, it is a wonderful hybrid of the classic and modern
aspects of coordination and physical inorganic chemistry and is consequently an
admirable text for the student of this area.



Preface

Some twenty years ago, theoretical aspects of inorganic chemistry formed a major
component of any inorganic textbook. Today, this component is much less evident. No
doubt, this shift in emphasis is a proper response both to the undue weight then given
to theoretical aspects and to the developments that have taken place elsewhere in the
subject. However, in the interval there have been theoretical developments that deserve
a place; further, it has probably become more difficult for the interested student to
access the older work. There seemed to me to be a real need for an easy-to-read, and
so largely non-mathematical, text that would bridge the gap between the relatively
low-level treatments currently available and the research level paper, review, monograph
or text. The present book was written with the object of providing a bridge for this
gap. Although the motivation for writing it is seen in its theoretical content, it was
recognized that there are advantages in placing this in a broader context. So, what has
resulted is a book which contains an overview of the relatively traditional and
elementary along with contemporary research areas, wherever possible viewed from an
integrated theoretical perspective. Because a text on physical inorganic chemistry can
easily become a series of apparently disconnected topics, I have given the subject a
focus, that of coordination chemistry, and have included chapters which should enable
the book to double as a text in that area. To keep the size of the book manageable, to
recognize that it is aimed at the intermediate stage reader, and because the topic is
covered so extensively elsewhere, I have assumed a knowledge of the most elementary
aspects of bonding theory.

In a book such as this it is impossible to avoid cross-references between chapters.
However, it is equally difficult to ensure that such cross-references supply the answers
expected of them. I have therefore attempted to make each chapter as free-standing as
possible and have used the resulting duplications as a mechanism for deepening the
discussion. This strategy can produce its own problems as well as benefits; I hope that
the index will provide direction to sufficient additional material to deal with the
problems!

1 am indebted to many institutions which provided the hospitality that enabled most
of the book to be written—Chalmers University and the University of Gothenburg,
Sweden; the Royal Military College, Kingston, Canada; the University of Turin, Italy;
the University of Nairobi, Kenya; Tokyo Institute of Technology, Japan; the University
of Szeged, Hungary and Northwestern University, USA. Of the numerous individuals
who have provided helpful comments on sections of the book, and often offered material
for inclusion, I am grateful to Professor R. Archer and his students at the University
of Massachusetts, Amherst, USA, who made many detailed comments on an early
edition of the text, to Professor K. Burger of the University of Szeged, Hungary—his
contributions were very helpful—and to Dr. S. Cotton, who was a constant fund of
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comment and information. I am particularly indebted to the Rev. Dr. lain Paul who,
in his own inimitable manner, worked through every sentence and made a multitude
of suggestions for improvement and clarification. Defects, errors and omissions, of
course, are my own responsibility.

S.F.A.K.
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FIg. 1.1 The structure of the coordination
compound formed between boron trifluoride
and trimethylamine.

Introduction

Textbooks on physical inorganic chemistry can, during their preparation,
easily evolve into compilations of apparently unrelated topics. In writing the
present book, therefore, it was decided to circumvent this problem by
adopting a single, unifying theme: coordination chemistry. The benefit of this
approach is that the theme spans almost all aspects of physical inorganic
chemistry; furthermore, the resulting book also doubles up as a text on
coordination chemistry itself. In achieving this duality, some of the material
present might appear out of place in a book devoted to physical inorganic
chemistry alone. However, it is probably no bad thing that, for example, in
addition to a discussion about the chemical bonding within a particular
exotic species, reference can also be found to its preparation. Since, then, the
theme of this book is that of coordination compounds (or, as they are often
called, coordination complexes), our first task is to define the term coordination
compound. This is not straightforward, for the use of the term is determined
as much by history and tradition as by chemistry. In practice, however,
confusion seldom arises. Let us consider an example.

When boron trifluoride, a gas, is passed into trimethylamine, a liquid,
a highly exothermic reaction occurs and a creamy-white solid separates.
This solid has been shown to be a 1:1 adduct of the two reactants, of which
the molecules have the structure shown in Fig. 1.1, the boron atom of
the boron trifluoride being bonded to the nitrogen atom of the trimethyl-
amine. The adduct, resulting from the combination of two independently
stable molecules, is an example of a coordination compound. An electron
count shows that the boron atom in boron trifluoride possesses an empty
valence shell orbital, whilst the nitrogen of the trimethylamine has two
valence shell electrons in an orbital not involved in bonding. It is believed
that the bond between the boron and nitrogen atoms in the complex results
from the donation of these nitrogen lone pair electrons into the empty
boron orbital, so that they are shared by both atoms. Coordination
compounds in which such electron-transfer appears to be largely respons-
ible for the bonding are sometimes also called donor-acceptor complexes,
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although it is to be emphasized that, once formed, there is no difference
in kind between these and ordinary covalent bonds; the difference is in
our approach to them. In the boron trifluoride—trimethylamine adduct,
the nitrogen atom of the trimethylamine molecule is said to be coordinated
to the boron atom. That is, the electron donor is said to be coordinated
to the electron acceptor. A coordinating group (usually called a ligand—it
is ligated, ‘tied to’, the electron acceptor) need not be a molecule and need
not be uncharged. For example, boron trifluoride reacts with ammonium
fluoride to give the salt NH,[BF,] which contains the complex anion
[BF,]~. Here we adopt the convention of placing the complex species of
interest within square brackets, a convention that will almost invariably be
adopted in this book. In the [BF,]™ anion the boron atom is tetrahedrally
surrounded by ligands, just as it is to a first approximation in [BF;-NMe,]
(Fig. 1.1). Notice that, for non-transition metals and metalloids, complex
formation is associated with a change (usually an increase) in the number
of groups to which the central atom is attached. Boron trifluoride, BF;, is
not normally thought of as a complex, but its adduct with trimethylamine
certainly is.

Most workers regard both trimethylamine and the fluorides as ligands
in the adduct (a pattern that has just been followed). It would be a logical
deduction from the picture just presented to conclude that the maximum
number of ligands which can be added to form a complex is determined
by the number of empty valence shell orbitals on the acceptor atom. Whilst
this is generally true, an indication of the difficulty of rigorously defining
‘a complex’ is given by the fact that, in practice, the criterion of change in
number of bonded atoms outweighs all others for these elements. Thus,
phosphorus pentachloride exists in the gas phase as discrete PCls mole-
cules. The solid, however, is an ionic lattice, containing [PCl,]J* and
[PClg]~ ions. These two species are usually classed as complex ions,
although the molecule in the gas phase is not.

The detailed geometry of a complex molecule is not simply a combina-
tion of the geometries of its components. In the trimethylamine-boron
trifluoride adduct, for instance, the B-F bond length is 1.39 A and the F-B-F
bond angle 170° compared with 1.30 A and 120° in the isolated BF; molecule.
Similarly, the geometry of the bound trimethylamine fragment differs from
that of the free amine. Information about the bonding within a complex may,
in favourable cases, be obtained by a detailed consideration of these bond
length and angle changes.! It is not surprising, then, that a recurrent
theme throughout this book will be the relationship between molecular

1 But there are traps for the unwary. In the simpler compound H,B-NH, it was found
that a discrepancy exists between the B-N bond length determined by X-ray crystallography
(1.564A) and by microwave spectroscopy (1.672A). Some detailed theoretical calculations
have been carried out on the problem and have shown that the energy difference between
these two bond lengths is rather small for the isolated molecule. Simulation of the molecular
environment showed that the longer bond length in the crystal almost certainly arises from
environmental effects and therefore carries no great bonding significance—except that over
a short range the total bonding energy is rather insensitive to the precise internuclear distance.
A second trap arises from the observation that the (stabilization) energies of complex
formation increase in the order BBr; > BCl, > BF;, an observation that has been related
to n bonding between boron and the halogens (being greatest for the bromide). In fact,
accurate calculations have shown that the difference in stabilities results from variations in
the simple donor—acceptor bonding described in the text.
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geometry and electronic structure, the link between the two commonly being
provided by group theory.

Complexes are formed by both transition metal and non-transition
elements. Indeed, at the present time all compounds of transition metal
ions, with very few exceptions, are regarded as complexes. However, despite
the argument given above, the simple donor—acceptor bond approach does
not seem immediately applicable to coordination complexes of the transi-
tion metals, since the molecular geometry does not depend greatly on the
number of valence shell electrons—and, so, on the number of empty
orbitals. As will be seen in Chapter 7, in the simplest model of the bonding
in transition metal complexes electron donation is not even considered to
be involved, a molecule being regarded as held together by electrostatic
attraction between a central transition metal cation and the surrounding
anions or dipolar ligands. However, in more sophisticated discussions of
the bonding (Chapters 6 and 10) the donor—acceptor concept is largely
reinstated for these compounds. So we may conveniently (but not always
correctly) regard a coordination compound as composed of (a) an electron
donor (ligand or Lewis base), an individual atom or molecule which possesses
non-bonding lone-pair electrons but no low-lying empty orbitals; and (b) an
electron acceptor (metal atom, cation or Lewis acid) which possesses a
low-lying empty orbital. As in many other areas of chemistry, we shall often
be particularly concerned with the pair of electrons that occupy the highest
occupied molecular orbital (the HOMO) of the electron donor. This is
matched by an interest in the lowest unoccupied molecular orbital of the
electron acceptor (the LUMO).2 The donor atom of a ligand is usually of
relatively high electronegativity and the acceptor atom is either a metal or
metalloid element.

Chapters 2-4 are full of examples of ligands and coordination com-
pounds and the reader can gain an impression of the field by quickly
thumbing through them. The field is not as complicated as it may appear,
although it will rapidly become evident that at the present time some rather
unusual organic molecules are increasingly being used as ligands and that
neither the methods of preparation nor the molecular geometries formed
need be quite as simple as for the examples given above. Indeed, part of
the current fascination of the subject lies in the elegance of many of the
complexes which are currently being studied. Complexes in which the metal
atom is totally encapsulated, as in the sepulchrates; those in which it is at
the centre of a crown (crown ether complexes, for instance); those in which
it is surrounded by two ligands which interleave each other (complexes of
catenands); those in which it is at the centre of a stockade-like ligand
(picket-fence complexes) and so on. By such means it is proving possible
to design highly metal-specific ligands, which offer the prospect of selective
ion extraction from, for example, low-grade ores or recycled materials.
The future importance of such possibilities in the face of ever-declining
natural resources can scarcely be overestimated. Similarly, the use of such
complexes in small-molecule activation will surely be of vital importance—
for instance, in the fixation of gaseous nitrogen and the synthetic use of
hydrocarbon species which would otherwise be used as fuels.

2 Because the basics of the subject were developed before use of the HOMO and LUMO
terminology became widespread these labels are scarcely to be found in the relevant literature.
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Inevitably, current research tends to focus on the unusual and the exotic
and so, since a book such as this attempts to reflect something of current
work, tends to make the subject appear less straightforward than it really
is. Perhaps it is helpful to recognize that even at a simple level, problems
of definition can occur. Thus, an uncharged compound containing a main
group metal or metalloid element bonded to a methyl group is not usually
viewed as a complex in which CH; functions as a ligand, although the
CH,; group is isoelectronic with ammonia, a molecule which is frequently a
ligand. So, compounds such as Zn(C,H;), and Si(CH;), would not usually
be considered complexes. However, successes in the synthesis of transition
metal-methyl compounds means that there has been a change in attitude
and that these, too, are now regarded as complexes containing the CH,
group as ligand. The question of whether they should be considered
as complexes of CH3 is not usually regarded as of great importance. A
similar ambiguity is that although the manganate ion MnO2~ would be
considered a coordination complex (of Mn®* and O?7) the sulfate anion
SO2~ would not. Evidently, we have reached the point at which history
and tradition, as well as utility, colour the definition of a coordination
compound.

The father of modern coordination chemistry was Alfred Werner, who
was born in 1866 and lived most of his life in Ziirich. At the time it was
known that the oxidation of cobalt(II) (cobaltous) salts made alkaline with
aqueous ammonia led to the formation of cobalt(III) (cobaltic) salts
containing up to six ammonia molecules per cobalt atom. These ammonia
molecules were evidently strongly bonded because very extreme conditions—
boiling sulfuric acid, for example—were needed to separate them from the
cobalt. There had been considerable speculation about the cobalt-ammonia
bonding and structures such as

NH5—Cl

Co—NHgz-NH3-NH3-NH,—Cl

NH,—Cl
which today look quite ridiculous (although based on the not unreasonable
hypothesis that, like carbon, nitrogen can form linear chains) had been
proposed for the cobalt(III) salt CoNgH,Cl; (which we would now write
as [Co(NH3)¢]Cl;). Werner’s greatest contribution to coordination chem-
istry came in a flash of inspiration (in 1893, at two o’clock in the
morning) when he recognized that the number of groups attached to an
atom (something that he referred to as its secondary valency) need not
equal its oxidation number (he called it primary valency). Further, he
speculated that for any element, primary and secondary valencies could
vary independently of each other. The chemistry of the cobalt(III)- ammonia
adducts could be rationalized if in them cobalt had a primary valency of
three, as in CoCls, but a secondary valency of six, as in [Co(NH;)¢]Cl;. The
term secondary valence has now been replaced by coordination number and
primary valency by oxidation state but Werner’s ideas otherwise stand largely
unchanged.

Subsequently, Werner and his students obtained a vast body of experi-
mental evidence, all supporting his basic ideas. They further showed that
in the complexes they were studying the six coordinated ligands were



Fig. 1.2 An octahedral complex MLg where M
is represented by the central white atom and
the ligands L each by a shaded atom. A regular
octahedron—one is shown in Fig. 1.3—has
eight faces (each an equilateral triangle) and six
equivalent vertices. In an octahedral complex
the ligands are placed at the vertices. In Fig.
1.2, and in similar diagrams throughout this
book, the perspective is exaggerated (the
central four ligands lie at the comers of a
square) and all ligand atoms are the same size.
In this example, all six ligands are identical.
Even if they are not, provided the geometrical
arrangement shown in Fig. 1.2 is more-or-less
maintained, the complex is still referred to as
octahedral. As molecular symmetry is important
for the arguments to be presented in many of
the following chapters, it will often prove
convenient to emphasize this by including in
structural diagrams, lines which remind the
reader of the molecular symmetry. Commonly,
such lines will link ligands together and, clearly,
should not be interpreted as bonds between
ligands.

FIg. 1.3 An octahedron, a regular figure in
which all vertices are equivalent, as are all
faces and all edges.
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arranged octahedrally about the central atom (Figs. 1.2 and 1.3). Werner
was awarded the Nobel prize for chemistry for this work in 1913. Some
measure of his stature and work is provided by the fact that in one field
(that of polynuclear cobaltammine complexes) there has, to this day, been
scarcely any addition to the list of compounds he prepared.

Most textbooks discuss transition metal complexes separately from
those of the main group elements. There is, in fact, much in common
between the two classes and, whenever possible, we shall treat them as one.
However, complexes of the transition metal ions may possess an incomplete
shell of d electrons which necessitate separate discussion. This character-
istic makes it particularly useful to determine the magnetic and spectral
properties of members of this class of complexes and the exploration of
these properties will require separate chapters devoted to them. In a similar
way, complexes of the lanthanide and actinide elements, with, typically, an
incomplete shell of f electrons tucked rather well inside the atom and away
from the ligands—and so behaving rather as if they 'are in an isolated
atom—require their own discussion.

The water-soluble ionic species of transition elements such as chromium,
manganese, iron and copper seem to exist in aqueous solution as, for
example, [Cr(H,0)¢]**, [Mn(H,0)¢]** and [Fe(H,0)¢]**. That is, it is
more accurate to talk of ‘the aqueous chemistry of the [Cr(H,0)¢]** ion’
than of ‘the aqueous chemistry of the Cr** ion’. Similarly, in solid FeCl,,
the iron atoms are not attached to three chlorines but, octahedrally, to six
(each chlorine is bonded to two iron atoms). We have already encountered
the fact that solid PClys is really [PCl,]J*[PCl¢]~. The lesson to be
learnt from all this is that coordination compounds are much more
common than one might at first think. The colour of many gemstones and
minerals, the chemistry carried out within an oil refinery, element deficiency
diseases in animals, the reprocessing of nuclear fuel rods, the manufacture
of integrated circuits, the chlorophyll in plants, the colours of a television
screen—all involve complexes, though we shall not be able to cover all
of these diverse topics in the present book. Although the first example we
gave in this chapter portrayed complexes as being formed between indepen-
dently stable species, and this is often the case, there are also many
fascinating examples of molecules which are only stable when they exist
as part of a complex; even independently stable species have their chemical
as well as their physical properties drastically changed as a result of
coordination.

In summary, there is no precise and time-constant definition of a
coordination compound—at one extreme methane could be regarded as
one—and the usage of the term is extended to all compounds to which
some of the concepts developed in the following chapters can usefully be
applied. Indeed, one could argue that the value of the concept lies in its
flexibility and adaptability so that the absence of a fixed and agreed
definition is no handicap. We shall find that the study of coordination
compounds excludes few elements—the sodium ion forms complexes—and
overlaps with biochemistry and organic chemistry. Further, it will involve
some fairly detailed theoretical interpretations, although in this book the
powerful but surprisingly simple concepts of symmetry are used to reduce
theoretical complexities to a minimum.
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Further reading

Most inorganic texts published before the mid-1950s give
historical overviews of the development of coordination chem-
istry. The language used sometimes seems strange in terms of
modern usage and should not be allowed to distract the reader
unduly. A browse through the older books in a good library
should be adequate; as an indication of the variety available
the following are worthy of mention:

® Modern Aspects of Inorganic Chemistry H. J. Eméleus and
J. S. Anderson, Routledge and Kegan Paul, London, 1938/
1952.

® The Chemistry of the Coordination Compounds J. C. Bailar
(ed.), Reinhold, New York, 1956.

® An Introduction to the Chemistry of Complex Compounds
A. A. Grinberg, 1951, English translation by J. R. Leach,
Pergamon, Oxford, 1962.

For the person interested in exploring the historical aspect
in depth, one book is essential reading. This is Werner Centen-

nial, published in 1967 by the American Chemical Society as
No. 62 in their Advances in Chemistry series (R. F. Gould,
editor). This book contains over 40 chapters on historical and
current (in 1967) chemistry, including chapters devoted to the
Werner-Jorgensen controversy (the nitrogen-chain structure
for cobaltammines was originally proposed by Blomstrand and
Jorgensen, who was his student at the time), polynuclear
complexes of Co'"' ammines and so on.

A useful source is Volume 1 of Comprehensive Coordina-
tion Chemistry G. Wilkinson, R. D. Gillard and J. A. McClev-
erty (eds.), Pergamon Press, Oxford, 1987. Chapter 1.1 is
‘General Historical Survey to 1930’ by G. B. Kauffman and
Chapter 1.2 is ‘Development of Coordination Chemistry since
1930’ by J. C. Bailar Jr. Although they are frequently too
specialized to warrant inclusion as further reading in the
following chapters, the contents of the volumes of Comprehen-
sive Coordination Chemistry provide a wealth of information
on the details of coordination chemistry. The volumes as-
sume, however, knowledge of the basic language and concepts
of the subject, such as can be gained from the following
chapters.

Question

1.1 In the book Principles of Chemistry published in English
in 1881 Mendeleeff wrote:

‘The admixture of ammonium chloride prevents the precipitation of
cobalt salts by ammonia, and then, if ammonia be added, a brown
solution is obtained from which potassium hydroxide does not separate

cobaltous oxide. Peculiar compounds are produced in this solu-
tion.’

At about the same time, of course, Werner’s work was provid-
ing an understanding of these peculiar compounds. Write a
one-page letter to Mendeleeff on behalf of Werner outlining
the key points in Werner’s understanding.




Typical ligands, typical
complexes

2.1 Classical ligands, classical complexes

As was seen in the previous chapter, ligands are atoms or molecules which,
at least formally, may be regarded as containing electrons which can be
donated to an atom which functions as an electron acceptor. The presence
of such a pair of electrons is a necessary, but not a sufficient, condition.
Thus, the halide anions are typical simple ligands but halogen compounds
such as CH;Cl or CgHsF are very seldom ligands, although the halogen
atoms in them still possesses electron pairs which could be donated. The
reason lies, at least in part, in the high electronegativity of the halogens.
When the halogen possesses a negative charge there is little energetic cost in
reducing this charge, a cost that can be paid for by the exothermicity of the
bond formed. When the halogen is uncharged, the energetic cost of it
becoming positively charged (as it would if it donated electrons) is too great.
However, electronegativity cannot be the sole reason because, as we shell
see, organic oxides and sulfides form many complexes—and yet the electro-
negativity of oxygen is greater than that of chlorine. An illustration
of the complexing ability of ethers, for example, which is more spectacular
than dangerous—although appropriate precautions should be taken—is
to add a drop of diethylether, Et,0, to tin(IV) chloride (stannic chloride, a
liquid). The solid complex [SnCl,(Et,0),] is instantly formed. The heat of
reaction is sufficiently great to boil off some of the diethylether, sending
clouds of the white complex into the air. As evident from the previous
chapter, ammonia and related compounds such as trimethylamine form
many complexes. Organophosphorus ligands are also widely used in synthetic
chemistry and we shall meet them in the contexts of organometallic
chemistry (that of complexes in which a ligand which would be regarded
as part of organic chemistry is bonded through carbon to a metal) and
catalysis, in particular.
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Table 2.1 Some classical ligands which are common in the complexes of either
transition metal and/or main group elements. The names given follow the rules
to be detailed in Chapter 3. Note that some species are shown twice, when they
can coordinate in more than one way. Note, too, that some ions shown once
can, in fact, coordinate in more than one way; examples are provided by CN~, S,03"
and OCN™

Ligand Name

Donor atoms from group 17(7) F~ fluoro

of the periodic table Cl~ chloro
Br~ bromo
1~ iodo

Donor atoms from group 16(6) 02~ OX0

of the periodic table OH™ hydroxo
03~ peroxo
c03%- carbonato
CH5COZ acetato
ONO~ nitrito
S03” sulfato
S0%- sulfito
S,03" thiosulfito
s$2- thio
CH5S™ methyithio
H,0 aqua
CH30H methanol

(NH;),CS  thiourea
(C,Hs),0  diethylether

Donor atoms from group 15(5) CN~ cyano
of the periodic table OCN~ cyanato
SCN~™ thiocyanato (note, bonded through N)
NOZ nitro
N3 azido
NH3 ammine?

CH3NH, methylamine
N(CH3)3 trimethylamine
CgHsN pyridine (usually abbreviated as py)

2 Note the spelling, ‘mm’, not ‘m’.

A list of some simple and common ligands is given in Table 2.1. The
entries in this table are confined to classical ligands, such as could well
have been studied by Werner. There are other ligands, many also simple
and common but non-classical—such as the organophosphines, which will
be covered shortly. Inevitably, the distinction we are making is an arbitrary
one. In Table 2.2 are listed representative examples of complexes formed
by some of the ligands in Table 2.1. The detailed molecular geometries of
the complexes in Table 2.2 will not be discussed because for many of them
there are ambiguities. These problems will be dealt with in Chapter 3,
where many of the examples given in Table 2.2 will reappear.

Complexes of most of the ligands that have so far been mentioned have
been studied for almost a century. Although one might expect the field to
be exhausted, each year there are a few new surprises: the discovery of a
method for the easy preparation of complexes of a metal in a valence state



Table 2.2 Some of the complexes
formed by some of the ligands in
Table 2.1. This table endeavours to
demonstrate that any one metal may
well form complexes with different
numbers of ligands and that many
complexes are not monomeric (there
are sulfur and iodine bridging atoms

in the two cases not explicitly
detailed). Note that when two different
complexes contain the same number
of ligands it does not necessarily
mean that the geometrical
arrangements of the ligands is the
same in the two cases. Note, too, that
the attempt to show variety means
that this table does not properly
reflect the fact that the majority of
complexes contain metal ions bonded
to six ligands

[Co(NCS)4 12~
[Co(CN)s 1~
[Co(NG,)s 13"

[Co(NH3)sN3 12+
3+

(NH3)4Co Co(NH3),
NH,
[Cr0, 1%~
[Cr(SCN)g 13~
[Mo(CN)g]3~
[M0,S,(CN)g 1%~
[CuCl, ]2~
[CuCls 3~
[Fe(H,0)63*
[PtCl (py)2]
[Pt(NH3),(OH), ]
[AI(OH)(H,0)s]?*
[TiCl4(Et,0),]
[SnCls]™

[AuF, 1~

[z, 13-

[BeF, ]2~
[SbBre]~
[Agls]?™

that was previously regarded as difficult, or the preparation and character-
ization of a complex which was previously believed not to exist. In this
field, however, the main work that is still to be done is not that of
preparation, but rather work at a deeper level, deeper perhaps than the
fields covered in this book. For instance, in the solid state, how does a
complex ion interact with its environment? How are these interactions
changed with different counterions; to what extent are the properties that
we observe those of complex plus environment and different from those of
the isolated complex itself? Why, for instance, does the [Ni(CN)s]*~ anion
have two different geometries in the crystals of one of its salts? There has
been some considerable interest generated by the recent discovery that some
anions which have always been regarded as having very little tendency to
coordinate can actually do so—perhaps the best example is provided by the
anion [B(C¢Hjs),] ™. The current thrust of preparative work exploits the fact
that several donor atoms, oxygen and nitrogen in particular, can be strung
together with a web of carbon (and sometimes boron or phosphorus) atoms.
An almost infinite variety of exotic ligands becomes possible. This field has
many attractions. By choosing the ligand to be one with a rather rigid
backbone it is possible to impose an unusual coordination geometry on a
metal atom. A very popular strategy at the present time is to chose a ligand
which has very bulky, and so sterically demanding, substituent groups. In
the complexes it forms there simply is not enough space to fit very many
ligands around the central atom and so a low coordination number or
unusual geometry results. It is found that metal ions in unusual coordination
geometries often have unusual reactions and/or properties and this makes
them of particular interest. Thus, with suitable choice of ligand it is possible
to make volatile compounds of sodium! Alternatively, by careful tuning of
the ligand geometry it may be possible to make it highly specific for a
particular metal. This produces visions of metal recovery from low-grade ore
and even gold from sea water (such schemes tend to fail because the cost of
the ligand and its recovery for reuse exceeds the value of the metal obtained).

Next, it may be possible to produce a ligand which closely mimics, in
its geometry and composition, that of one found in nature in a complex
of biological importance. The biological compound is almost certainly only
available in small quantities, difficult to purify and unstable under most
laboratory conditions. Working with a model compound is much easier than
working with the real thing! This topic will be covered in much more detail
in Chapter 16.

There is one further advantage to working with ligands containing more
than one donor atom. This is that the (thermodynamic) stability of a
complex in which two or more donor atoms are part of the same ligand
molecule often appears much greater than if the same atoms were in
separate ligand molecules. There has been much debate on the origin of
this co-called chelate effect. Chemists like to use their imaginations and to
compare a metal ion held between two donor atoms on a ligand with a
crab holding its prey in its claws—hence chelate (Greek chelos—a claw).
It is common to talk of chelating ligands and of chelate complexes.
Complexes are often conveniently divided into two classes, labile and inert.
In the former, consisting of most complexes of main group metals and many
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of the more familiar transition metals, ligands are readily replaced. In the
latter, for example complexes of Cr'™ and Co', ligand replacement is very
slow except under forcing conditions. The chelate effect is a phenomenon
which increases the inertness of complexes (which may mean making a
complex less labile). We shall return to the chelate and related effects in
Section 5.5. At this point all that will be added is a word of caution:
although the occurrence of a chelate effect is common it is not invariably
present. So, organic isocyanides, RNC, form many complexes (bonding to
the metal through the terminal C). The R-N-C sequence remains essentially
linear in complexes and the metal atom also bonds colinearly. The result
is that if a bidentate organic ligand containing two RNC groups is
synthesized then there has to be a sizeable number of carbon atoms (seven
CH, units, for instance) between the two —NC groups if they are both to
coordinate to the same metal atom and thus form a chelate. This means
a 12-membered ring system and, as will become evident in Chapter 5,
12-membered rings show no hint of a chelate effect.

In Table 2.3 are listed some of the more common, classical, polydentate
ligands. Again, imagination. The ligand is now pictured as biting, and thus
holding onto, the metal with several teeth (bidentate! = two donor atoms,
tridentate = three donor atoms). The (minimum) distance between two
donor atoms in a bidentate ligand is sometimes referred to as the bite of
the ligand and the angle subtended at the metal atom the bite angle. In
Table 2.4 are detailed a selection of some of the more exotic ligand species
under current study. The systematic names of these molecules are usually
so horrendous that trivial, often physically descriptive, names are preferred.
Typical examples are picket fence, crown and tripod, some of which are given
in Table 2.4. Table 2.5 shows a selection of the complexes formed by the
ligands contained in the previous two tables.

2.2 Novel ligands, novel complexes

Since the 1950s it has been clear that the simple ‘lone electron pair donor’
picture of a ligand and ‘lone electron pair acceptor’ picture of a metal in a
complex is inadequate. This is nowhere clearer than in the field of organo-
metallic chemistry, where a host of organic molecules, in which all of the
valence electrons are involved in bonding within the organic molecule, form
complexes with metal atoms. Notice the use of the word atom—the metal
is commonly, formally, zero-valent in these compounds and so any simple
electrostatic model for ligand—metal bonding which might be applied to their
classical counterparts seems rather implausible. The same conclusion is also
forced upon us by the nature of the ligands commonly involved—molecules
such as hydrocarbons, carbon monoxide and all sorts of unexpected species,
even, on rare occasions, the H, molecule. However, it is also clear that there
are links with the more classical complexes—with ligands such as the halides,
sulfides and organic phosphines, being common to both sets. As is so often
the case, there is a continuous gradation. We have looked at the classical case

! The current recommendation is that the word bidentate be replaced by didentate but
this recommendation has yet to gain general acceptance.
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Table 2.3 Some common polydentate ligands® (charges on anions are omitted)

Name
Bidentate® ligands

Acetylacetonato or 2,4-pentanedionato

2,2"-Bipyridine

Oxalato

Ethylenediamine or 1,2-ethanediamine

o-Phenylenenebis(dimethylarsine) or

1,2-phenylenebis(dimethyarsine)

Glycinato

8-Hydroxyquinolinato

1,10-Phenanthroline

Dimethylglyoximato or 2,3-butanedione dioximato
(see Table 2.5)

Common abbreviation

acac

2,2"-bpy

often written as bpy

ox

en

diars

gly

oxinate

phen

dmg

Structure
H
|
c
CHz=—C",~=~"C=—CH3
[
0 0
N
N\ /N
0
\
=4
o \)/o
CHa=CHy
NH, NH,
As (CH.
\(\ 3)2
e
As (CH3)2
0
Vi
CHz-C
/ 0\
NI{i /0
N
\
0 =
N\ /N
CH3 CHa
N/
C—C

(continued)
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Table 2.3 (continued)

Name Common abbreviation Structure

Tridentate® ligands

2,2',6",2"-Terpyridyl terpy
NH
CHy | ~CH,
CHy CH»
Diethylenetriamine dien N{1 N
2 2
c“"ﬂ‘
2
CH—*E—>
2
1,2,3-Triaminopropane tap CHp=N""
Hz
Tetradentate® ligands _CHa—CHy
/NH\ /N\H
Triethylenetetraamine trien CHz CHz
CH\zf \ _CHz
NHz NH
_——N—2CH,
/
/CH; ?HZ* \‘l:Hi‘
CH,
CH. = NH.
Tris(2-aminoethyl)amine tren r‘l‘ﬁ: \2NI/-|(, 2
__—N—CH,
Hy ™/
/c 2 cnz* Ne=o0
o= T .1
L\
Nitrilotriacetato NTA °
Phy A N hs Phy
Tris(2-diphenylarsineophenyl)arsine QAS
AN

As Ph,
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Table 2.3 (continued)
Name Common abbreviation Structure

p; porphyrins are usually
labelled according to their

Porphyrino substituents - thus, tpp =
tetraphenylporphyrin, see
Table 2.4.
Phthalocyanino pc

O~

Hexadentate® ligand

CH, (I:H,
Ethylenediaminetetraacetato EDTA - rll— CHy——CH,—N—>
CH, CH,

0=C—0—+> =0—C=0

2 This notation is probably self-explanatory because of the examples given. If not, it is described towards the end of Section 3.1.

in some detail if not depth (that will come in the next few chapters). What
of the complexes formed by non-classical ligands and, in particular, what is
the ligand—metal bonding involved? The answer to this question has become
so important in inorganic chemistry that an outline answer will be given
here, although it will have to be refined later. The pattern is illustrated by
a discussion of the carbon monoxide molecule and the way that it bonds
to a transition metal; with not much modification a general picture emerges.
At the heart of it is the simultaneous—and interdependent— coexistence of
two distinct bonding mechanisms.

At first sight one might well expect CO to bond to a metal through its
oxygen atom—this oxygen has a lone pair of ¢ electrons and oxygen donors
form many complexes; we would expect the oxygen to be more negatively
charged than the carbon because of the difference in their electronegativities.
Although oxygen-bonded CO complexes are known, the almost invariant
mode of bonding of CO to a transition metal is through the carbon atom.
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Table 2.4 Some more exotic polydentate ligands

[
e

Dibenzo-18-crown-6
A crown ether with 18 atoms in the ring of which 6 are oxygens

/_\ A picket-fence porphyrin
° N
(— D )
CVY) A
0 W j

vl £ 7

A cryptand (= Greek hidden); the 2s indicate the number of

oxygens in each N---N chain The sepulchrate ligand, which is hexadentate (the top
and bottom nitrogens do not normally coordinate)

top
Tetraphenylporphyrin
Bipyridyl groups grafted onto a cyclic hexamine
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A basket-handle porphyrin
porphy When three bipyridine ligands are capped (twice) by a triamine

the cage ligand that results can complex three metal atoms
simultaneously (in this example the 'caps' are, essentially,
the ligand tren, tris(2-aminoethyl)amine)

Table 2.5 Selection of complexes formed by some polydentate ligands

0—H"0
CHQC’N/——7N~C/CH3
M 0/1'7‘ Shi ax
! CHF™ S == \N/ TSCHs
|
0 Hm— o/
The square planar complex [Ni(dmg),]): note
The general structure of [M(bidentate)s]™ complexes where the interligand hydrogen bonds (also
(bidentate) is one of the bidentate ligands of Table 2.3 indicated in Table 2.3)
0 2+
LI
[ + oy 97 \
\\c -|-cu, /2
| /\ o?, \;/_ CH
J 0 \Mg/ I 2
\ e 0~ | SN—CH,
K \ 4 \
C = CHy
N 71 CHy
0 0 o o/

U

The Mg2* EDTA complex

The K* complex of dibenzo-18-crown-6

(continued)
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¢ tg\/)j

[o]
e
Q O Rb* 2,2,2-cryptate: oxygen and
nitrogen donor atoms are shown,
black dots indicate CH2 groups

N 3+

Table 2.5 (continued)

N\
The Cof complex of tpp: one of two 2co
equivalent structures (cannonical N

forms) of the ligand is shown ka N

[Co(sepulchrate)]3*

2+
The crystal structure of the M = Ag* species Cu?* phthalocyanin: a complex which

with this ligand has been determined is used as a blue pigment

There is also a lone pair of ¢ electrons on the carbon which is larger, and
so more available for bonding, than that on the oxygen. This, then, is the
first member of the bonding partnership, a perfectly normal ¢ donation from
carbon to the metal. But, given that a carbon atom is involved and that
carbon atoms seldom act as ligands in classical complexes unless there is a
negative charge around (as in CN ), it would be surprising if this ¢ donation
above were to lead to a strong bond. It needs reinforcing. The CO molecule
is well able to provide this reinforcement because not only is the lone pair
o orbital larger on carbon than on oxygen, so too are the lobes of the orbitals



Fig. 2.1 (a) The ¢ donation OC — metal: here,
the transition metal d,. orbital is shown as the
acceptor but it could be some mixture of s, p,
and d,.. Note that there is lone-pair o electron
density on both O and C. That on C is the larger
and so has the greater overlap with the empty
metal orbital. In this, and all other figures in
this chapter, filled orbitals are shaded; the
phases of orbitals are given explicitly. (b) The ©
back-donation metal — CO: the metal orbital is
almost pure d, the CO orbital is an empty
antibonding = orbital. Note that for a linear
triatomic OCM system there is second,
equivalent, interaction to that shown above

(it is like that shown but rotated 90° about the
OCM axis and so is located above and below
the plane of the paper).

(b)

FIg. 2.2 (a) The o donation C,H, n — metal
empty orbital. (b) The = back-donation
metal - C,H, = antibonding orbital.
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(b)

which are the antibonding counterparts of the C=O n bonding orbitals. In
CO itself, of course, these orbitals are unoccupied but that is no reason for
ignoring them in complexes. They are LUMOs and a lesson which has
been well learnt in recent years is that LUMOs are seldom disinterested
spectators—they commonly play a key role in determining the outcome
of chemical reactions (and that means that they get involved in the bonding
somewhere along the way). It is therefore not surprising to learn that there
is both experimental and theoretical evidence that electron donation from
transition metal d orbitals to the CO n antibonding orbitals is of vital
importance in the M—CO bonding. That is, the metal to carbon bonding
consists of two parts; ¢ electron donation from the carbon to the transition
metal and 7 electron back-donation from the transition metal to the carbon
atom. This bonding is pictured in Fig. 2.1. Either bonding mechanism, on
its own, would lead to charge buildup on the metal (o) or the carbon (7);
by acting together, the resultant charge buildup is small and each charge
transfer can proceed further than would be possible in the absence of the
other. One talks of synergic bonding (synergismus is Greek for ‘working
together’).

Whenever one learns that a ligand bonds strongly to a transition metal
ion but much more weakly to a main group element, the involvement of
some n-mediated back-bonding synergic mechanism is likely. Indeed, such
ligands are usually referred to as n bonding ligands, not only because of
the existence of this mechanism but also because of its constancy, the
bonding always involving ligand empty n orbitals of one sort or another.
In contrast, there can be more variability in the ¢-bonding mechanism.
Thus, for the latter the electrons involved can be those that are associated
with a chemical bond rather than with a particular atom. An excellent
example is provided by the ethene (ethylene) molecule, C,H,. Its mechan-
ism of bonding (the usual pattern of ¢ donation and 7 acceptance) is shown
in Fig. 2.2. The orientation of the bonded molecule is such that it is clear
that its orbital involved in ¢ bonding is the C=C © bonding orbital (which,
of course, is occupied). The 7 antibonding orbital is also that associated
with the C=C 7 bond (and which, of course, is empty in the isolated ethene
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Table 2.6 Some of the relatively simple
ligands which occur in the organometallic
chemistry of transition metals. Ligands
such as CO frequently occur along with
such ligands

RoC = CH, RC=CR

'

Alkenes Alkynes

/< A\

But-1,3-diene (cis-butadiene)

1,5-Cyclooctadiene (cod)

P
CH3 /T CHa

The allyl group, a 3-electron donor;
alternatively, it may be helpful to think
of it as (allyl)”, a 4-electron donor

Benzene

QO

The cyclopentadienyl group CsHs,
usually written Cp. It is a 5-electron
donor (some prefer to regard it as
CsHs and as a 6-electron donor)

molecule). If ethene seems strange as a ligand it is salutary to learn that the
first compound containing ethene n-bonded to a metal was prepared
(largely accidentally) by Zeise, a Danish chemist, in 1827. One of the two
compounds he prepared, K[Pt(C,H,)Cl;], bears his name to this day—it
is almost invariably referred to as Zeise’s salt.

In Table 2.6 are listed a few of the simpler = bonding ligands and in
Table 2.7 some of the species in which they are found. The bonding in
these compounds will be covered in more detail in Chapter 10, but, for the
moment, one important point suffices. This arises from the fact that the o
donor-n acceptor model of ligand—metal bonding involves different metal
orbitals. It must, because, seen from the ligand, the metal ¢ and = orbitals
have different nodality. This will be true for each n bonding ligand in the
compound. The maximum number of such ligands which can be attached
will be limited by the availability of suitable metal orbitals—either empty
orbitals into which to donate or filled orbitals from which to accept.
Eventually, we will run out of metal orbitals. Now, the valence shell orbitals
of the (transition) metal are nd, (n+1)s and (n + 1)p (for first row
elements 3d, 4s and 4p). This is a total of S + 1 + 3 = 9 orbitals so it seems
likely that 18 electrons will be the maximum that will be involved in
bonding, one way or another. It is not clear whether or not this hand-waving
argument is generally valid; what is clear is that the vast majority of
complexes of m bonding ligands obey the so-called ‘18-electron rule’. A
book-keeping exercise of the number of electrons associated with the metal
in the final complex (be they metal-originating or ligand-originating) usually
leads to the number 18. In Table 2.8 this is demonstrated for some of the
complexes of Table 2.7, but, to maintain a balance, two exceptions are
included.

The choice of ligands in Table 2.6 has been made rather selectively.
Although at the present time it would be difficult to find examples similar
to the exotic ligands of Table 2.4, there are many unusual ligands that
could have been included in Table 2.6. Thus, not all of the ligands in
low-valence state complexes are independently stable molecules. For example,
complexes in which cyclobutadiene (C,H,) is coordinated to a transition
metal are commercially available, yet organic chemists have sought for
generations to prepare this molecule. Further, in a sense, it would have been
useful to have included many of the ligands in Table 2.6 several times over.
This is because many of the ligands listed can bond in several different ways,
each way giving rise to different complexes. In that a classic ligand such as
Cl~ can bond not only to one but also to two metal ions (a bridging chloride
ligand) or to three which lie at the corners of a triangle (a face-bonding
chloride ligand) it is not surprising that a ligand such as CO should do the
same. How CO differs is that, much more than Cl~, it seems to form an
almost continuous range of intermediate bonding patterns between these
three main types. A ligand such as CsHs may have one, two, three, four or
five of its carbons bonded to a transition metal; when there are five they
may not all be equally bonded, and so on. Again, the range is enormous.
The existence of such a range strongly suggests that the energy differences
between the various arrangements may be small. It seems that this, indeed,
is so. There are several possible consequences. First, the thermal vibrations
of the molecule may contain sufficient energy to enable such a ligand to hop
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Table 2.7 Examples of complexes formed by some of the ligands in Table 2.6 and related ligands

The most famous complex of
cyclopentadiene, ferrocene

@

blfe
Dibenzenechromium; the corresponding (2)
cation [Cr(CgHg)2]" was made in 1919 but
not recognized as such
0
Cr
i | D
CHoPh
A complex of a cyclopentadiene derivative. (3)
P(CgHs)3 is a ligand that plays a similar H
role to CO
|
Fe
CO/ l N PPh.
co 3
4
@ o
|
Two of the compounds Fe(CO)s
formed by reaction of Fe(CO)s (5)
with alkynes

Fe(CO)3
Some more exotic complexes
which, despite appearances,
are not significantly different
in kind from those above.

HsC CH3
[o] %I% (0]
H3C ’ CH3

(these bonds are shown large
dotted) and to a carbon atom.

A fulvalene complex (6) m
(CO)2Ru Ru(CO),
A diphenylethyne
(diphenylacetylene) complex ]
i: N =0
€ o
S C _C
1,/ 40
_co” |\ 7c ~
c7/ c )
-/
0" c¢c |
/ 0
0 (o]
A flyover complex in which a 8 H
single hydrocarbon ligand e _ CMes
straddles two cobalt atoms [:_.\ H
which are bonded to each H—cf ‘%c e
other. Each cobalt is also N
bonded to an allyl group ¢ \f .. co
N

A bisallyl palladium complex

1,5-Cyclooctadiene (cod)
complex of platinum(II)

Cr(CO)3 Cr(CO)3
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Table 2.8 Electron counts of complexes (1-10) in Table 2.7. Although it is some-
times convenient to assign a formal charge to the metal when making these
counts, experience is that fewer mistakes are made if metal atoms are treated
as uncharged, if at all possible. This in turn means that ligands must also normally
be regarded as uncharged. So, C5Hs is a five-electron donor. Note that, although
in the text there is talk of two metal-CO bonding mechanisms, it is only the o
donation from the carbon of the CO that increases the number of electrons
formally associated with the metal. So, CO and ligands such as phosphines which
are believed to behave similarly, are regarded as two-electron donors

Complex Metal Formal Number Ligands Number Total
charge of metal of ligand electrons
valence electrons m+ )/
electrons o
(m)
1) Fe 0 8 2 CgHg 2x5 18
(@ cr 0 6 2 CgHg 2x6 18
(3) Fe 0 8 CsHsR 4
2CO 2x2 18
P(CeHs)3 2
@ Fe 0 8 CsH,0 4 } 18
3COo 3x2
5) Fe 0 8 CeMe,0 4 } 18
3Co 3x3
(6) Consider each Ru separately: the Ru—Ru bond means that each Ru gains one electron

@

8)

(9)

(20)

from the other for electron counting purposes:

Ru 0 8 CsH4R 5
Ru—Ru 1 18
2COo 2x2

Either the diphenylethyne (diphenylacetylene) ligand may be regarded as donating two
n electrons to each Co, or as forming two C—Co bonds (and thus contributing two
electrons also). Again, the metal-metal bond contributes one electron to the electron
count of each metal. Consider each Co separately:

Co 0 9 Co(CeHs), 2
Co—Co 1 18
3COo 3x2

Here, counting Co as Co® means that the allyl group is a three-electron donor. The
cobalt-carbon and cobalt-cobalt bonds each contribute one additional electron to each
cobalt:

Co 0 9 C3H,RRR” 3
Co—Co 1
CoC 1 18
3C0 3x2
Again, is it simplest if the pattern adopted in (8) is followed:
Pd 0 10 2 C3H4R 2x3 16

This is an example of a complex which does not follow the 18-electron rule; square
planar complexes of d® ions usually deviate, giving 16 instead.

In this final example it is difficult to avoid a formal charge on the metal because to
work with Pt° would mean working with Br rather than Br~:

Pt 2+ 10 cod 2x2}
2Br- 2x2

Another d® square planar complex that does not follow the 18-electron rule.

16
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from one arrangement to another, perhaps equivalent to the first but perhaps
not, at quite a high frequency. Such molecular gymnastics of so-called
fluxional species have been the subject of extensive study, most notably by
NMR. This is a topic which will be covered in Section 14.8.

Second, in a chemical reaction it may happen that the most stable
orientation of a ligand in the starting material is not the most stable over
some parts of the reaction pathway, nor, perhaps, in the reaction product.
The third point stems from the second. When attached to a transition
metal, a ligand may be stable in a range of convoluted geometric orientations
that are not readily available to it as a free ligand. This may well mean that
some new, otherwise impossible, reaction pathways become available. Fur-
ther, their availability and nature are likely to be influenced by the other
ligands present, both for bonding and steric reasons. The consequence is that
the use of transition metal complexes in catalytic reactions has been an
enormous field of study, one in which it is of interest to study large numbers
of closely related compounds. With just the right, carefully tuned, catalytic
molecule one may hit the jackpot and become able to turn an otherwise
useless byproduct into a highly valuable compound! At a more realistic level,
organometallic compounds are the catalysts in several important industrial
processes. They do have a problem, though. If they involve an expensive
metal, platinum for instance, should catalyst recovery be difficult or incom-
plete, the cost of replacement catalyst may make uneconomic an otherwise
viable process. This is just one reason that heterogeneous catalysts—involving
surface complexes—are more important than homogeneous—involving dis-
solved complexes—unless the metal involved in the homogeneous catalysis
is cheap, the products volatile—and so easily separated—or the products
obtained of particular value. There will be more on this topic in Chapter 15.

2.3 Some final comments

The object of the present chapter has been that of introducing the reader to
something of the breadth of complexes which are there to be studied, without
going into great detail at any point. In such a survey it is difficult to avoid
neglect of the majority, but commonplace, and instead to emphasize the
novel. Some final comments will help to complete the picture without unduly
distorting it.

First, so far in this book we have given the impression that coordination
compounds are obtained by reaction between a ligand or ligands and a
metal ion or compound. We shall see in Chapter 4 that, whilst this is
commonly the case, alternatives are possible. In particular, a ligand coor-
dinated to a metal may undergo an organic-chemistry-type reaction with
another (organic) molecule, leading to an extension of the ligand with,
often, an increase in the number of atoms of the—enlarged—ligand coor-
dinated. Alternatively, two ligands independently bonded to the metal
may be linked by a similar reaction. Such reactions, in which ligands which
are held anchored to a metal ion undergo ligand-extending reactions at a
site remote from the metal ion, are called template reactions. Although this
particular discussion is relevant to classical complexes, it probably is even
more important for organometallics. In the early years of organometallic
chemistry it was commonplace to take a transition metal carbonyl such
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as Fe(CO)s2 with some likely-looking organic compound—an alkene or
alkyne derivative, for instance—and to heat them together in an autoclave
for hours. Unholy mixtures of fascinating compounds resulted, some of which
have not been properly studied to this day. It is likely that the novel ligands
found in most, if not all, of the products resulted from template-type
building-up reactions involving organic molecules (and often CO, too)
coordinated to the metal. However, their formation is seldom regarded as
providing examples of template reactions. Template syntheses are planned
and usually of high yield; in contrast, the stabilization of an organic molecule
in a speculatively prepared complex is often adventitious and each compound
represents a minor component in a complicated reaction product mixture.

Secondly, we have tried to keep our examples simple, although hinting
at the existence of some points of a greater complexity. Thus, in recent
years there has been enormous study of compounds containing many metal
atoms, linked directly to each other, linked indirectly through ligands, or
both. So wide has this field become that there is real discussion about
whether or not compounds with perhaps 40 or 50 metal atoms or more,
directly bonded one to another, should be treated as fragments of a metal
as much as chemical molecules. Metal clusters will be the subject of Chapter
15 and metals in Chapter 17.

Finally, whilst the ideas about bonding in complexes so far presented
have been rather simple, it has already become clear that there are aspects
of real molecules that they do not even begin to cover. Chemists tend to
start with the usual and common and wonder what happens when new
constraints are added. A popular, and fruitful, line of current enquiry has
already been mentioned. What happens if groups attached to the ligating
atom are made very bulky? Will the increase in steric interactions lead to
a weaker metal-ligand bonding (which could mean interesting properties)
or to a low coordination number (which could also mean interesting
properties)? Generally speaking, the answer to both these questions is ‘yes’
and so a need has developed to quantify in some way the steric demands
imposed by individual ligands—and none of the simple bonding theories
so far mentioned addresses this question. This point will be returned to in
Chapter 5 where an angle, the cone angle, will be described, which provides
a measure of steric effects® in some complexes, at least. The molecular
modelling to be described in Chapter 13 is one technique which aims to
give an accurate description of steric effects.

2 Note that, although this compound is a complex, the rule that complexes are written
in square brackets is often applied rather sloppily in organometallic chemistry.
3 See C. A. Tolman, Chem. Rev. (1977) 77, 313.

Further reading

Much of the further reading suggested for Chapter 1 is
relevant for Chapter 2 also, although to include transition

The contents of this chapter have been rather broad-brush, metal organometallic chemistry, the browse through the intro-
stretching from the traditional through to the contemporary. ductory coordination chemistry section in general inorganic
Further reading in this vein can be obtained by thumbing texts will need to cover texts published from the 1960s through
through any contemporary text in inorganic chemistry or, to  to the early 1980s. More recent texts tend to include material
come really up-to-date, any current issue of any journal relevant to the later chapters of the present book but which

devoted to inorganic chemistry.

has only briefly been alluded to in Chapter 2.



Behind the content of this chapter, but not discussed within
it, is the way that the information was obtained. Sometimes,
there is a helpful story to be told. Two that may be mentioned
are the discovery of the first complex containing coordinated
N,: ‘The Discovery of [Ru(NH;);N,]**’ by C. V. Senoff,
J. Chem. Educ. (1990) 67, 368 and, rather older, the nature
of the species giving rise to the intense blood-red colour
obtained when thiocyanate, SCN ™, ions are added to iron(III)
solutions, ‘The nature of iron(III) thiocyanate in solution’ by
S. Z. Lewin and R. S. Wagner, J. Chem. Educ. (1953) 30, 445.
Although both make reference to ideas developed later in
this book, this problem should not unduly inhibit under-
standing.

There are many sources of information on the exotic
ligands discussed in the text. Samples which give easy-to-read
insights are:
¢ ‘Coordination Chemistry of Alkali and Alkaline-earth cat-

ions with Macrocyclic ligands’ by B. Dietrich, J. Chem.
Educ. (1985) 62, 854.
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¢ ‘Powerful new metal chelating agents developed’ in Chem.
Eng. News (August 1st 1988) 21.

‘Molecules with Large Cavities in Supramolecular Chem-
istry’ by C. Seel and F. Vogtle, Angew. Chem., Int. Ed. (1992)
31, 528.

‘Calixranes—supramolecular pursuits’ by A. McKervey and
V. Bohmer, Chemistry in Britain (1992) 724.

‘The Specification of Bonding Cavities in Macrocyclic Lig-
ands’ by K. Hendrick and P. A. Tasker, Prog. Inorg. Chem.
(1985) 33, 1.

Supramolecular Chemistry, an Introduction by F. Vogtle, J.
Wiley, Chichester, 1991.

A Nobel lecture by the major authority in the area, which
spans a wide range of topics from the history of the subject
through to its applications in catalysis, photochemistry and
biochemistry is ‘Supramolecular Chemistry—Scope and Per-
spectives, Molecules, Supramolecules and Molecular Devices’
by J-M. Lehn, Angew. Chem., Int. Ed. (1988) 27, 89.

Questions

2.1 Use Table 2.2 to compile a list of atoms (which may be
part of a polyatomic ligand) which coordinate to metal ions
and relate the list to the region of the periodic table where
the atoms fall. If in doubt about whether an atom can
be a ligand, the answer is almost certainly ‘yes’, although even
so the final list will be far from comprehensive.

2.2 Unlike Table 2.2, Table 2.3 contains no examples of
ligands in which a halogen atom is the donor atom. Suggest
a reason why such species are rare.

2.3 Although Table 2.2 contains examples of ligands in which
nitrogen or arsenic are donor atoms there are no examples
which contain phosphorus. Suggest a few possible phosphorus-
containing ligands (if you wish, some of the ligands in Table
2.2 might be appropriately modified).

2.4 Using the ligands in Table 2.4 as a guide, suggest probable
structures for:

® 15-crown-5

® 18-crown-6
® 21-crown-7
¢ dibenzo-12-crown-4.

2.5 Cryptand ligands have been prepared in which up to
half of the oxygens in 2,22-crypt (Table 2.4) have been
replaced by either S or NCH,. Suggest some ligands of this
type which might well have been studied.

2.6 Sclect any three of the complexes shown in Table 2.7
and carry out a valence electron count on them. Compare
your results with those given in Table 2.8 (if any of the last
three complexes in Table 2.7 were chosen some thought will
be needed in using Table 2.8).

2.7 As Table 2.6 hints, complexes are known in which 1,5-
cyclooctadiene (cod) bonds through both of its double bonds
to a single metal atom. It may be that Fig. 2.2 can be
applied to each double bond separately. Equally, it could be
argued that although this approach may be valid for the =
back-bonding, it is inadequate for the ¢ donation from the
cod. Suggest a reason for this reservation.




Nomenclature, geometrical
structure and isomerism of
coordination compounds

3.1 Nomenclature

In order to facilitate communication between chemists it is desirable that a
convention for naming coordination compounds be followed. This section
contains an outline of the system suggested by a Nomenclature Committee
of the International Union of Pure and Applied Chemistry (IUPAC).!
Although this convention is commonly adopted—the Russian literature
contains some variants and each language uses its own words, or spelling
(as in ‘sulphate’ and ‘sulfate’ for UK and USA, respectively, although the
UK has recently agreed to adopt the American version)—it is often simpler
to give a structural formula, e.g. [Co(NH,),CI(NO,)]*, than to write the
name in full and this will frequently be done in the following chapters. Apart
from this device for side-stepping the problem, in this book we generally
follow the most recent IUPAC recommendations except for those which
have yet to gain general acceptance.

The IUPAC system has both advantages and disadvantages. One major
advantage is that the most recent recommendations are just that, recom-

1 Perhaps the most generally available complete system is the American version because it
is contained in the Handbook of Chemistry and Physics published annually by the CRC
Press and which can be found in most libraries. Inevitably, there is a time lag before the most
recent recommendations appear so it is as well to check on this. The greatest detail and the
most current recommendations have been published in Nomenclature of Inorganic Chemistry,
Recommendations 1990 (IUPAC) ed. G. J. Leigh, Blackwell, Oxford and it is these that have
been followed in the present text. At the same time as the IUPAC book appeared so, too, did
another, Inorganic Chemical Nomenclature by W. H. Powell and W. C. Fernelius, published by
the American Chemical Society (the publication is the outcome of the deliberations of this
Society’s nomenclature committee), 1990. Whilst there are minor points of disagreement with
the IUPAC book, with its greater emphasis on the notations that will be found in the older
literature, the ACS publication may be seen as an acceptable complement to it.



Nomenclature | 25
mendations. Previously, they had been ‘rules’, a situation that led one
group of writers to comment ‘such rules often represent a compromise of
conflicting views and may not be completely acceptable (or convenient) to
all’. In what follows, in the spirit in which they are presented, the current
recommendations are not regarded as above criticism.

Having mentioned one advantage, let us get the disadvantages out of
the way. Names are often quite long, and involve numbers, brackets,
subscripts, superscripts and Greek letters. When reading a name all of these
details have to be remembered because it is not until the name is completed
that one can really start building up the complex. The name of the metal
is given at the end, whereas the thinking of most chemists starts with the
metal. It is not surprising that ‘nickel tetracarbonyl’ is in much more
common usage than the IUPAC name ‘tetracarbonylnickel(0)’. So, whilst
the IUPAC notation is that generally encountered in the scientific litera-
ture, when chemists talk to each other they either greatly simplify it or use
one that has grown up in their specialist field. It is therefore only to be
expected that trivial names persist, so, although one should talk of the
hexacyanoferrate(II) and hexacyanoferrate(III) anions, most workers bow
to common usage and continue to speak of them as ferrocyanide and
ferricyanide, respectively. The practice of naming what has at some time
or other proved an important coordination compound after the person who
first prepared it is widely followed, thus: NH,[Cr(NH,),(NCS),], Rein-
ecke’s salt; [Pt(NH,),][PtCl,], Magnus’s green salt; [IrCOCI(P(C¢Hs)s),],
Vaska’s compound; [RhCI(P(C¢Hjs);)5], Wilkinson’s compound and, one
met in Chapter 2 K[Pt(C,H,)Cl;], Zeise’s salt. A system which has
mercifully disappeared, but which will be found in the very old literature,
is that of naming a compound according to the colour of the corresponding
cobalt(III) complex (no matter the colour of the complex itself!). Thus,
’purpureo’ salts meant ions with the general formula [M(NH;);CI]"*.

The following rules summarize the more important recommendations
of the IUPAC committee and contained in their 1990 publication. It should
be recognized that when these differ from the previous rules the earlier
version is the one likely to be met by the reader—the new recommendations
are only just being accepted and used.

Although in writing the formula of a complex the central atom is given
first, in the corresponding name it is given last, thus [Fe(CN)s]3~, hexa-
cyanoferrate(I1I). For anionic complexes the characteristic ending is “ate’
(as hexacyanoferrate(IlI)), but for neutral or cationic complexes the name
of the central element (normally a metal) is not modified: [Fe(H,0)s]",
hexaaquairon(II). A distinction is made for anionic complexes so that the
corresponding acids can be systematically named, the characteristic ending
for the acid being ‘“-ic’, as for H,[Fe(CN)4], hexacyanoferric(1l) acid. As
indicated in these examples, the formal oxidation state of the central atom
(Werner’s primary valency) is indicated by a Roman numeral in paren-
theses after the name of the complex, but with no space between them. A
formal oxidation state of zero is indicated by (0) and a negative state by
a minus sign, e.g. (—1).

The name of the complex species is written as one word. Ligands which
may be regarded as carrying a negative charge (CI~, SOZ™ etc.) all end in
-0’ (chloro, sulfato etc.). Whereas, previously, the negatively charged
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ligands preceded uncharged ligands, now ligands are listed in alphabetical
order, without regard to charge. Prefixes such as di-, tri-, bis-, tris- (see
later) are disregarded in determining the alphabetical order. Previously,
ligands in each class (anionic, neutral) were written in order of increasing
complexity. A problem with an alphabetical order arises when different
languages are used—the name can become language dependent. In prac-
tice, since English has become the international language of science, the
problem is not severe.

A different pattern is recommended for writing the formulae of com-
pounds. The central atom is written first (in contrast to its name, where it
comes last), followed by the anionic ligands in alphabetical order and then
the neutral ligands, again in alphabetical order. Polyatomic ligands are
enclosed in parenthesis (otherwise there could sometimes be confusion
about which atom belongs to which ligand). This latter rule also applies
when abbreviated symbols are used for ligands (e.g. (py) for pyridine). Some
ligands have names dictated by common usage: H,O aqua, CO carbonyl,
NH; ammine, NO nitrosyl. Some names which have been used in the past
are no longer recommended. One is aquo (which has been replaced by
aqua), another is mercapto for (SH)™. In future sulfanido should be used
instead, but it remains to be seen whether this gains common acceptance.
Other names can beg questions. Thus, when an H atom coordinates it is
regarded as H™, and so named hydrido, even if there is experimental
evidence that the ligand behaves chemically more as H* than as H™. When
there are several different possible attachment modes of a ligand, for simple
cases the attached ligand can be indicated by a bond:

(-ONO)~, nitrito-0; (-NQ,) ~, nitrito-N

(although nitro is also acceptable for this ligand, N-coordinated).

For more complicated ligands a Greek kappa (k) is placed before the
coordinated atoms(s). Thus, although one would normally write thio-
cyanato-N for (-NCS)~, it could be called thiocyanato-xN. Similarly,
(-SCN)~ could be called either thiocyanato-S or thiocyanato-xS. Ligands
which commonly coordinate to one coordination position but can do so
in more than one way, and we have just met two simple examples, are
called ambidentate ligands—more examples of the use of the word dentate
will be given shortly; it was first mentioned in Chapter 2. Ligands which
bond to more than one coordination site and can do so in more than one
way are termed flexidentate. When several identical ligands are coordinated
to the same central atom, two cases arise. If the ligand is simple and with
a simple name, the number of ligands is indicated by the appropriate prefix:
di-, tri, tetra-, penta-, or hexa-. Several examples of this usage have already
been given. When the ligand is so complicated that it has a polysyllabic
name—perhaps already including one of the above prefixes—or ambiguity
might arise for some other reason, the name is enclosed in parentheses and
the number of ligands present indicated by the prefix bis-, tris-, tetrakis-,
pentakis-, or hexakis-. Examples are ethylenediamine,? NH,~CH,~CH -
NH,, which gives rise to the complex tris(ethylenediamine)nickel(II),

2 The correct name for this ligand is 1,2-diaminoethane, a name which is being increasingly
used. However, in the literature and in texts ethylenediamine is the name which is usually
encountered and for this reason is used in the present book also.



Fig. 3.1 The complex [Rh4(CO)4(p4-P(CeH14)
(u-P(CgHy4)2)4]. The rhodium atoms are
indicated in black. The carbon atom of each
cyclohexyl group, CgH,,, that is attached to P is
the only one shown and is drawn as an open
circle.
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[Ni(en);]** (en is the usual abbreviation for ethylenediamine), and tri-
phenylphosphine, P(C4Hjs),, in the complex [NiCl,(P(C¢H5);),], dichloro-
bis(triphenylphosphine)nickel(II). A name which is increasingly being used
to describe complexes in which all the ligands are identical is to say that they
are isoleptic. So, [Ni(en);]%* is an isoleptic complex but [Ni(P(C¢H3)5),Cl;]
is not.

Bridging groups attached to two distinct coordination centres are indicated
by the prefix y (mu):

NH2 4+
VAN
(NH3) 4Co Co(NH3z) 4
NO,
u-amido-u-nitrobis(tetraamminecobalt(lIl))

When more than two metal atoms are spanned by a single ligand then
the number of centres spanned is indicated by a subscript: us, gy, us
(although the reader should be warned that some authors prefer to use
superscripts: u3, u%, etc.). In such cases, since each metal usually has its
own set of ligands, the formal name can stretch over several lines and, not
surprisingly, its use is avoided; a formula is given instead. So, the molecule
shown in Fig. 3.1, in which P(C¢H,,), groups bridge four Rh(CO) units
which themselves lie at the corners of a square, the whole being capped
by a P(C¢H, ;) group, is written [Rhy(CO)4(ps-P(CeH ) (u-P(CH1)2)4],
although, written like this, the 1:1 relationship between the Rh and CO is
not explicitly stated. Note that us appear in sequence of decreasing suffix
values, although when a ligand is both bridging and non-bridging the
non-bridging is listed first (e.g. C1~ as both bridging and terminal ligand).
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H\c C/H
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Fig. 3.2 Altemative symbolic representations of
the bonding between C,H, and Fe(CO); groups.
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o
N\ %Y

In (a) the delocalized nature of the 7 electron
system of the C4H, group is emphasized. In (b)
the n* aspect of the bonding is made evident.

Table 3.1 Anions and their names
when acting as ligands

Free anion

Amide (NH3)
Azide (N3)

Bromide (Br™)
Carbonate (C03")
Cyanate (CNO™)
Fluoride (F™)
Hydroxide (OH™)

Nitrite (NO2)

Oxide (027)
Thiocyanate (SCN)~

Coordinated anion

amido (or azanido)
nitrido (azido will also
be met)

bromo

carbonato

cyanato

fluoro (not fluo)
hydroxo (or hydroxido
or hydroxy)

nitro or nitrito-N

(see text)

oxo (or oxido)
thiocyanato-N
(N-bonded),
thiocyanato-S
(S-bonded)

Not only can a ligand be attached to more than one metal atom, a given
ligand may be bonded through several atoms to a single metal. This is
described by the prefix 1 (eta), with a superscript to indicate the number
of atoms bonded. One talks of the hapticity (Greek: hapto to fasten) of the
ligand, thus: n' monohapto, 2 dihapto, ° pentahapto etc. This nomen-
clature is particularly important in organometallic chemistry, where, as
mentioned in Chapter 2, a given ligand may often coordinate in a variety
of ways and jump from one mode to another. So, the compound in Fig.
3.2 is tricarbonyl(*-cyclobutadienyl)iron(O). Although its name would
lead one to adopt the representation shown in Fig. 3.2(b), for simplicity
that given in Fig. 3.2(a) is usually preferred, unless a specific point has to
be made (for instance, if, in a reaction, one of the four Fe-C bonds breaks).
A detailed discussion of the bonding in such compounds will be given in
Chapter 10. The above paragraphs have been written with the intention
of providing a comprehensive overview, not detail. The latter is contained
in Tables 3.1-3.3 which give specifics and examples.

Names such as those we have given above indicate the ligands attached
to a central metal atom but do not detail the positions of the ligands
relative to one another. If this information is important and has to be
included, an extension of the nomenclature is necessary. It often happens
that the prefixes cis or trans are adequate, as in the complex cis-dichloro-
di(pyridine) platinum(II) in which the platinum and the four atoms co-
ordinated to it are coplanar:

cl py
N,
Pt
VAN
cl py

(py = pyridine)

The most recent IUPAC recommendations on this point represent a
considerable departure from those previously made. We first outline the
new and then review the old, for as already mentioned, it is the latter which
will be encountered in all but the most recent literature and texts.

Table 3.2 Examples of the nomenclature of simple coordination compounds. Some
of these examples contain, and adequately define, points not explicitly covered in the
text

Compound Nomenclature

K [ReFg] potassium octafluororhenate (note: only ‘potassium’)

[Cu(NH3),]S0, tetraamminecobalt(ll) sulfate (note: ‘aa’ and ‘mm’)

[CuCl,(py),] dichlorobispyridinecopper(ll) (note: bipyridine is the present name for the
2,2"-bipyridine ligand—see Table 2.3. More strictly, and as in the text,
di(pyridine) should be used to give dichlorodi(pyridine)copper(ll). How-
ever, in the spoken language an ambiguity can arise)

[HE(C2Hs),] diethylmercury(ll)

[Ni(PPh3)4] tetra(triphenylphosphine) nickel(0)

[Ru(NH3)5(N2)]2‘ pentaamminedinitrogenruthenium(ll) (note: similarly, O, is dioxygen, but
beware confusion with O3, superoxo and 03, peroxo)

Ko[FeCly] potassium tetrachloroferrate(ll)

(NH4)2[SnClg] ammonium hexachlorostannate(IV)




N

@ =NO>~
O =NH3

(b) O

Fig. 3.3 (a) The complex
(OC-6-22)-triamminotrinitrocobalt(ll))—this is
commonly referred to as the fac (facial) isomer,
i.e. fac-triamminotrinitrocobalt(lll). (b) The
complex (OC-6-21)-triamminotrinitrocobalt(ll))—
this isomer is commonly referred to as the mer
(meridional) isomer.
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Table 3.3 The nomenclature of compounds containing bridging groups
Cl
\c|/

[(NH3)2]Pt Pt(NH3)2]Cl>

di-u-chloro-bis[diammineplatinum(11)] chloride
0—0 3
NH3)4Co, Co(NH ClO.
(NH3)4 \NHz/ (NH3)a | (ClO4)3

p-amino-u-peroxo-bis[tetraamminecobalt(111)] perchlorate

Z()\‘ /CO\ /CO
Fe\ /Fe
0

)

oc C
bis[carbonyl(m:arbonyl)ns-cycIopentadienyliron(O)]
(one could add trans at the front as the cis form also exists)

JCH ol i
o { —pd_ a
cH, o’ a

-allylpalladium(indi-u-chlorodichloroaluminium(IiT)

Each symmetry-distinguishable geometry about the central metal is
given a so-called polyhedral symbol. The symbol is based on the name for
the geometry and these are discussed later in this chapter: OC for octahedral,
T for tetrahedron, SP for square planar, SPY for square pyramid and TBPY
for trigonal bipyramid are the most important. Some of the others are
contained in Question 3.9. Because there are cases where ambiguity would
otherwise arise, the coordination number is given immediately after the
polyhedral symbol: OC-6, T-4, SP-4, SPY-5, TPBY-5. Then, ligating atoms
are assigned a priority, the highest atomic number having highest priority,
the lowest atomic number the lowest. When the ligating atoms are identical
but with different substituents, the same rule is applied to the substituents.
So,-NO; has a higher priority than -NHj, but -OH ™ has a higher priority
than either. Consider complexes with the two geometries shown in Fig. 3.3.
They are distinguished as follows (the general case is similar). Consider the
ligand of highest priority (add the words ‘which lies on the axis of highest
rotational symmetry’ if ambiguity persists). Write down the priority number
of the ligand trans to it. Here, -NOj is of highest priority and has priority
number 1 and -NH; has priority number 2 (had the complex contained
—OH"™ these two numbers would have been 2 and 3). So, both the isomers,
so far, have the symbol (OC-6-2). This is because for that in Fig. 3.3(b), of
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Front face

Back
face

6

Fig. 3.4 Ligand numbering system for an
octahedral complex, indicating how the
numbering is related to the selection of two
opposite faces of the octahedron.

the two axes containing —-NO;, the rules require that we choose that axis
for which the priority number difference is a maximum. We now move to
the plane perpendicular to the axis already chosen and again select the ligand
of highest priority number. We again write down the priority number of the
ligand trans to it. So, the two isomers above become (OC-6-22) and
(OC-6-21), respectively, and they are distinguished. This completes the
process so that the isomer in Fig. 3.3(a) is called:

(0C-6-22)-triamminetrinitrocobalt(1ll)

Optical isomers are not distinguished by the notation so far presented but
it can be extended to cover this requirement.

In the past, the system adopted has been to number the coordination
positions. The numbering system adopted for square planar complexes was

1

|
4—M-2

|

3

so that an alternative to cis-dichlorodi(pyridine)platinum(II) is 1,2-di-
chlorodi(pyridine)platinum(II). Notice the brackets around (pyridine). This
practice is recommended and in the present case serves to remove any
confusion with the ligand 2,2"-bipyridine (previously dipyridine). For octa-
hedral complexes the cis and trans nomenclature is often simplest, but
for complicated cases the numbering systems shown in Fig. 3.4 has been
adopted. The ligands which are at the corners of the front face of the
octahedron are cyclically numbered 1 — 3 and those on the back face
numbered 4 — 6. There are just two ways of arranging two sets of three
identical ligands, [ML;L3], in an octahedral complex. When identical
ligands lie at the corners of a face of the octahedron, one has what
traditionally has been called the facial—denoted fac—arrangement (Fig.
3.3(a)). When the three identical ligands lie on a plane that bisects the
octahedron, the meridional—denoted mer—arrangement results (Fig. 3.3(b)).

As has been recognized, two atoms of the same ligand may coordinate
to the same metal, leading to the formation of a ring structure. As
mentioned in Chapter 2, the formation of such rings by coordination is
termed chelation and the ligand is called a chelating ligand. Historically,
the language used to describe chelates depended on which side of the
Atlantic you lived. Traditionally, Americans talked of bidentate, tridentate,
tetradentate, pentadentate and hexadentate, the whole class being called
polydentate ligands (ligands attached by a single atom being monodentate).
British textbooks preferred bidentate, terdentate, quadridentate, quique-
dentate and sexadentate, calling the whole set multidentate ligands; single
atom attachment being unidentate. However, the latest IUPAC recom-
mendations are for didentate, tridentate, tetradentate and so on. Whether
didentate will replace the one name common to both American and British
notations—bidentate—remains to be seen. In this book the American
usage will be followed, this being the more commonly met. (This notation
was used in Table 2.3.) A ligand which coordinates four atoms to each of
two metals is called bisquadridentate, thus combining both notations, and
so on. Note that a polydentate ligand is not necessarily a chelating ligand
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Fig. 3.5 When cobalt(ll) salts dissolve in water
they commonly give pale pink solutions,
normally associated with the octahedral
hexaaqua species (a). Addition of concentrated
hydrochloric acid gives a deeper, beautiful blue
colour, ‘cobalt blue’, normally associated with
the tetrahedral tetrachloro species (b). In fact,
the colours are perhaps more associated with
the two different geometries than
ligands—replacing an H,0 by CI~ in (a), for
example, does not greatly change the observed
colour of the solution.
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(although commonly it is), because the coordinating atoms of the ligand
may be so arranged that they cannot be coordinated to the same metal
atom. So, a polydentate ligand it is not necessarily a chelating one. The
example of multidentate isocyanide ligands, which have to be rather special
if they are to coordinate to a single metal atom, was mentioned in Section
2.1.

Ligands, and polydentate ligands in particular, can be rather com-
plicated. To simplify the description of complexes involving such ligands,
abbreviated forms of the ligands’ names are used—we have already used
en as a shorthand for ethylenediamine and py for pyridine. Although there
are JUPAC recommendations, these are not always followed and, in
practice, there is only an approximate system of standard abbreviations.
Fortunately, it is normal for authors of papers to define the abbreviations
they use, so little confusion arises. A representative selection of such ligands
was given in Table 2.3 together with commonly used abbreviations.

There are two other areas covered in this book for which notations are
needed. These are in the fields of cluster compounds and of bioinorganic
chemistry. Both commonly involve very complicated molecules and
attempts to produce systematic names such as those met in this chapter can
defeat the whole purpose—to make communication easy. In both cases it
is difficult to separate the notations currently used from developments in
our understanding of the topic. Discussions of nomenclature will therefore
be given in Chapters 15 and 16 rather than introduced here.

So far our concern has been entirely with a ligand and its attachment
to a metal atom. It has been assumed that we could ignore atoms of the
ligand that are not bonded to the metal. In some cases this is not justified.
The reason is that, for chelates in particular, there is more than one
geometric arrangement possible for the ligand atoms between those bonded
to the metal. The subject of the conformation of chelate rings and the
consequences of the various conformations has been much studied. It is
an interesting and elegant subject area; a brief introduction to it is given
in Appendix 1.

3.2 Coordination numbers

Werner was the first to recognize that one characteristic of a coordination
compound is the number of ligands directly bonded to the central atom.
He called this number the secondary valency of the central atom, but this
usage has not persisted and it is now called the coordination number. The
coordination number need not have a unique value for a particular metal
ion. For example, in pink cobalt(II) chloride it is six and in the blue form
it is four (see Fig. 3.5). In particular, when a coordination compound is
participating in a reaction in which one ligand is being replaced by another,
there is overwhelming evidence that the coordination number in the
reaction intermediate is different from that in either the initial or product
compound.

Coordination number is more than just a convenient method of classifying
coordination compounds—complexes of a given transition metal ion with
the same coordination number often also have closely related magnetic
properties and electronic spectra. In later chapters of this book, these
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properties are discussed in some detail. In the present section are described
some of the geometrical arrangements of ligands which have been found for
various coordination numbers and examples of each are given.
First, however, we set the scene by noting that the frequency of occurrence
of coordination numbers for some ions of the first transition metal series is
roughly as follows:

chromium(lll)  6(oct) » 5, others very rare

iron(l1) 6(oct) > 4(tet) >5x 7
cobalt(ll) 6(oct) > 4(tet) > 5 > 4(planar)
cobalt(lll) 6(oct) >> 5> 4

nickel(ll) 6(oct) > 4(planar) > 4(tet) x 5

copper(ll) 6(oct)t > 4(planar) > 5t ~ 4(tet)t
T usually distorted

Although not exhaustive, this series illustrates the fact that there is no fixed
coordination number for any ion. It cannot be emphasized too strongly
that the empirical formula of a compound often has little connection with
either the coordination number or geometry of any complex species it
describes—this recognition was Werner’s breakthrough.

3.2.1 Complexes with coordination numbers one, two
or three

Coordination numbers of one, two and three are rare. Although it is
possible to conceive of complexes with coordination number one— presum-
ably a very bulky ligand with only one coordinating atom tucked well into
its centre might form such complexes—it is only recently that two have been
reported. The compounds are actually organometallic complexes of copper
and silver with a ligand which has three phenyl groups symmetrically
attached to a central phenyl, which is bonded to the metal through another
carbon of the phenyl ring: 2,4,6-triphenylphenylcopper and -silver.

The best-known example of coordination number two is the complex
ion formed when silver salts dissolve in aqueous ammonia, [Ag(NH3;),]*.
This, like all other known cases of this coordination number, is linear,
[H3;N-Ag-NH;]" although it should be possible to obtain bent examples,
perhaps when two different but sterically-demanding ligands are involved.
Other complexes of this coordination number, which is almost entirely
confined to copper(I), silver(I), gold(I), and mercury(II), are [CuCl,]~ and
[Hg(CN),]. One way of reducing the coordination below the normal for
a particular metal ion is to choose ligands that are so bulky that they block
the entry of further ligands. So, the ligand P(C¢Hj); causes zerovalent
Pt—usually either three- or four-coordinate—to have coordination num-
ber two in Pt(P(CsHjs)s),, where the P-Pt—P sequence is linear.

Examples of coordination number three are few, the [Hgl;]~ anion
perhaps being one of the best characterized. In this anion the iodide ions
are arranged at the corners of a slightly distorted equilateral triangle which
has the mercury atom at its centre. In the anion [Sn,Fs]~ two SnF, units
are bridged by the fifth F, leading to a (distorted) three-coordinated
structure around each tin atom. Examples of three-coordination in transi-



Flg. 3.6 The complex formed between
dibenzo-18-crown-6-KCl, a complex of
potassium, and AgCl which contains an
[AgCl;]?~ anion. The potassium atoms are
shown bonded to the oxygens of the crown
ether, the other atoms are carbons. The
ellipsoids give an indication of the vibrations of
individual atoms. If the ellipsoids associated
with the chlorine atoms, for example, were very
large (which they are not) one might have
doubts about whether the equilibrium geometry
of [AgCl; 1%~ is equilateral triangular
(reproduced courtesy of Prof. S. Jagner).
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tion metal chemistry are the iron(III) complex [Fe(N(SiMe,),);]—the
chromium compound is similar—and the complex formed when copper(I)
halides dissolve in aqueous solutions of thiourea, [Cu(SC(NH,),);]. Although
these mostly involve a planar coordination around the metal ion, in some
examples the metal ion is slightly out of the plane.

The [AgCl;]*~ anion has recently been found to have a perfectly planar,
equilateral Dy, structure. It provides an example of how large ligands can
lead to interesting structures. The anion occurs in the complex dibenzo-
18-crown-6-KCl- AgCl (the ligand is that shown in Table 2.4). In the crystal
the ligand complexes the potassium, the resulting complex resembling a
slightly buckled wheel with the potassium at its centre. Perpendicular to
the wheel is a Cl~ of the [AgCl;]?>~ anion, coordinated to the potassium.
As a result, three of the wheels surround the anion (Fig. 3.6); presumably
steric interactions between the wheels impose the threefold symmetry in
which the bulk of the wheels prevents any other ligand having access to
the silver ion and thus increasing its coordination number.
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FIg. 3.7 At least in principle, by a smooth,
coupled motion of all ligands (that motion
indicated by the arrows) it is possible to change
a square planar complex into a tetrahedral one.
It is therefore not surprising to find that
complexes with intermediate geometries do
indeed exist.

3.2.2 Complexes with coordination number four

A tetrahedral arrangement of ligands is commonly exhibited by complexes
with coordination number four. It is found for both transition metal and
non-transition elements; for the latter it is rather common. In Chapter 1
the two species [BF;-(NMe;)] and [BF,]~ were mentioned, in both of
which the boron is tetrahedrally coordinated; other examples amongst
main group elements are the [BeF,]*~, [ZnCl,]?>", and [Cd(CN),]*~
anions. Complexes of transition metals in their higher oxidation states are
often tetrahedral and often also anionic—TiCl,, [CrO,]*~ and [MnO,]*"~
are examples—but the same geometry is found for other valence states
also. Transition metal chlorides, for instance, quite often give tetrahedral
anionic species when dissolved in concentrated hydrochloric acid: iron(III)
chloride gives the yellow ion [FeCl,]~ and cobalt(II) chloride gives the
well-known blue ion [CoCl,]%".

The four-coordinate arrangement in which the ligands lie at the vertices
of a square (square planar complexes) is almost entirely confined to
transition metal complexes (but XeF, also has this structure), where it is
common and dominant for ions of the second and third transition series
having d® configurations—rhodium(I), iridium(I), palladium(II), platinum(II)
and gold(III). Examples are the [PtCl,]?>~, [PdCl,]%>~ and [AuF,]" anions.
Nickel(II), also a d® ion, is interesting in that it forms both tetrahedral and
square planar complexes. (The red precipitate obtained in the gravimetric
analysis of nickel salts and made by adding dimethylglyoxime to nickel(II)
solution is a planar complex of Ni". Square planar complexes of this ion are
often yellow, orange, brown or red.)

As Fig. 3.7 shows, it is possible in principle, if not in practice, to distort
a tetrahedral arrangement of ligands so that they eventually assume the
square planar structure, and vice versa. This suggests that complexes may
exist with structures which are neither tetrahedral nor square planar, but
intermediate between the two. Indeed, such is the case with the [CuCl,]?~
anion, made by dissolving CuCl, in concentrated hydrochloric acid. How-
ever, caution is needed because symmetry arguments can be invoked



Fig. 3.8 The mode of fourfold coordination
(C,,) which seems to be related to the trigonal
bipyramidal mode of five-coordination (Fig.
3.9(a)). The distortion of the ligands away from
colinearity can be understood in terms of
VSEPR theory (Appendix 2).

(b)

Flg. 3.9 (a) Trigonal bipyramidal (D) and
(b) square pyramidal (C,,) modes of
five-coordination.
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which suggest that tetrahedral =square planar interconversions are
unlikely.

A related, but rather different, structure (Fig. 3.8%) is found for some
main group compounds, for example [SbCl,]~ and [AsCl,]~. The co-
ordination geometry here may be regarded as derived from trigonal bi-
pyramidal five-coordination (Fig. 3.9 and Section 3.2.3) by omitting one
of the three equatorial ligands. It has been suggested that the empty
coordination position of the trigonal bipyramid is not really vacant but is
occupied by a non-bonding lone pair of electrons of the central atom
(Sb, As).

This does not exhaust the list of possible four-coordinate geometries. A
trigonal monopyramidal, Cs,, arrangement is known when it is imposed
by the ligand. So, complexes of M™ (M = Ti, V, Cr, Mn and Fe) are known
for the ligand R3N, where R—is (t-BuMe,Si)NCH,CH,-, all four nitrogens
being coordinated. The three bulky (t-BuMe,Si) groups block the second
axial position; the formal negative charge carried by the N in R— means
that the complexes, [R;NM], are electrically neutral and so offer little
attraction for most ligands. Ligand-induced geometries exist for the other
coordination geometries that now follow but, in general, will not be
included in the discussion.

3.2.3 Complexes with coordination number five

Many examples of five-coordination have been found and it is now clear
that this coordination number is much more common than was once
supposed. Although in practice they are usually found to be distorted, there
are two idealized five-coordinate structures, the trigonal bipyramidal and
the square pyramidal arrangements (Fig. 3.9). These structures are ener-
getically similar and there seems to be no general way of anticipating which
is adopted by a particular complex.* Indeed, it is possible that the structure
is determined by intermolecular forces within the crystal (almost all struc-
tures have been determined in the solid state). In some five-coordinate
compounds it has been shown that there is a facile interchange of ligands
between the non-equivalent sites in either structure. The most probable
mechanism for this is shown in Fig. 3.10(a, b). Only relatively small angular
displacements are needed to interconvert the square pyramid and the trigonal
bipyramid, and alternation between the two would lead to the observed
interchange of ligand positions. Moreover, geometries between the two
extremes are possible and are those commonly observed, particularly for
complexes containing chelating ligands.

The interconversion shown in Fig. 3.10 is called a Berry pseudorotation—
Berry because this is the name of the person who first suggested the
mechanism and pseudorotation for the reason shown in Fig. 3.10(c,d).
Whereas the top half of the figure shows the motions required to turn a

3 The caption to this figure makes use of group theoretical notation. The reader who is
unfamiliar with this notation should at least read Appendix 3, which includes an outline of
it, at this point..

4 Two partial exceptions should be noted. First, transition metal complexes containing
strongly 7-bonding ligands tend to adopt the trigonal bipyramidal configuration. Secondly, it
is possible to make approximate predictions for main group complexes, although a delicate
interplay of factors is involved.
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FIg. 3.10 The synchronous ligand motion
which serves to tum (a) a trigonal bipyramidal
into a square pyramidal complex and (b) a
square pyramidal complex into a trigonal
bipyramidal one. If a complex undergoes the
displacement shown in (a) but does not
become locked into the square pyramidal
geometry (c) then, as the ligands continue their
original motion a trigonal bipyramidal geometry
is reattained (d). Comparison of the geometries
in (@) and (d) might lead an observer to think
that (a) has been rotated to give (d), although
of course it has not. For this reason the
sequence is called pseudorotation.
Pseudorotation serves to interchange axial and
equatorial ligands of a trigonal bipyramidal
complex.

(a (b)

© (d)

pentagonal bipyramid into a square pyramid and vice versa, the bottom
half shows what happens if the amplitude of the vibration shown in the
top left hand corner is so great that the atoms carry on beyond the square
pyramid arrangement to give another trigonal bipyramid. A casual observer,
knowing nothing of the square pyramidal intermediate and seeing only the
before (a) and after (d) arrangements, might well conclude that the original
molecule had simply been rotated to give the final one. Of course, no
rotation has occurred, it just looks as if one has. Hence the use of the word
pseudorotation. Other mechanisms, some rather ingenious, have been pro-
posed as involved in equational—axial interconversions in trigonal bipyram-
idal complexes but the Berry mechanism is believed to be the most
important. Indeed, it has become quite common in crystallographic work
in which the structure of a five-coordinate complex is reported, for the
authors to comment on the position on the Berry reaction pathway that
their particular complex occupies.

The small energy difference between the two modes of five-coordination
is demonstrated in the crystal structure of the compound
[Cr(en);][Ni(CN)s]1.5H,0, where there are two distinct types of
[Ni(CN)s]*~ anions, one square pyramidal and the other approximately
trigonal bipyramidal. Were one form to be appreciably more stable than
the other, then that would be the only one present in the crystal. Although
it was not evident from the crystal structure work, it seems that the 1.5H,0
play a key role presumably by hydrogen bonding to the anions; on
dehydration of the compound there is spectroscopic evidence that all
the anions become square pyramidal.

Examples of trigonal bipyramidal structures are the [Co(NCCH,)s1*
and [Cu(bpy),I]* cations. In the latter, one nitrogen of each bipyridyl is
in an axial position. Anionic examples are [CuCl;]®*~, [SnCls]™ and
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Fig. 3.11 The C,;, geometry of the complex
anion [Cu,Clg]?~.

[Pt(SnCl,)s]*~. The latter, with Pt-Sn bonds, is formed when acidic tin(II)
chloride solution is added to many platinum salts.

Some main group halides have trigonal bipyramidal structures but care
is needed—structures may well differ from gas to solid (with solutions being
different again). PFs and SbCly retain the structure in gas and solution
but PCls in the solid is better described as [PCl,]*[PCl¢]~; SbCls remains
a trigonal bipyramid in the solid; NbCls, TaCls and MoCls exist as dimers
in the solid state, the two chlorine bridges making each metal atom
six-coordinate.

Perhaps the best-known example of square pyramidal coordination is
the compound bisacetylacetonatovanadyl, [VO(acac),], where acac is acetyl-
acetone® (CH;—CO-CH,~CO-CHy,) less one of the central (acidic) hydro-
gens, and in which the oxygen atom directly bound to the vanadium
occupies the unique position. In one salt of the [Cu,Cl4]*>" anion, bridges
between adjacent anions lead to a square pyramidal configuration about
each copper atom (Fig. 3.11); compare this example with [CuCls]3"~
mentioned above. Among the main group elements, the [SbCl;]?~ anion
provides an example of square pyramidal coordination.

A feature of square pyramidal structures is that there is the possibility
of an additional ligand occupying the vacant axial site to produce a
six-coordinate complex. Some of the small variations that have been
observed in the electronic spectrum of [VO(acac),] in different solvents
are believed to be caused by a solvent molecule being weakly bound at
the sixth coordination position. There is evidence that good donor solvents
sometimes also introduce a ligating atom cis to the vanadyl oxygen.

3 The correct name for this ligand is pentane-2,4-dionate, a name that is being increasingly
used. However, in the literature and most texts the name acetylacetone is the one which will
be encountered and for this reason is the one used in this book.

¢ Note the use of the ending yl in vanadyl. The vanadyl cation is VO?*; the vanadium
and oxygen are strongly bonded. The fact that this bond remains intact through most
reactions and that we are dealing with a cation containing oxygen bonded to a metal is
indicated by the yl. Another example is uranyl, UO%*. These two ions are sometimes quoted
as examples of one- and two-coordination, respectively (see Section 3.2).
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)

C3

FIg. 3.12 An octahedral complex. Distorted

octahedral complexes are usually described by
an axis along which a compression, elongation
or other change may be regarded as occurring.
Possibilities are a tetragonal distortion (along a
C, axis), a trigonal distortion (along a C3) and,
more rare, a digonal distortion (along a C,).

Fig. 3.13 An example of a molecule showing
the trigonal prismatic mode of six-coordination.

3.2.4 Complexes with coordination number six

The majority of coordination compounds that one encounters are six-
coordinate, the structure adopted being that of a regular or slightly
distorted octahedron (Fig. 3.12). It is important to recognize that the
octahedral geometry is found for complexes of both transition metal and
main group elements (although much less common for the later lanthanides
and actinides). The emphasis which will be placed on transition metal
complexes in some of the following chapters may tend to obscure this fact.
Examples of octahedral complexes of main group elements are [Al(acac)s],
[InCl¢]*~ and [PCl¢] ™.

An alternative but rare form of six-coordination is the trigonal pyramidal
arrangement which is found in some sulfur ligand complexes such as
[Re(S;C,Ph,);] (Fig. 3.13). The most noteworthy example of this form
of six-coordination is the compound [W(CH;)¢]; in that all complexes
[M(NH;)¢]** are octahedral it seems that hexamethyltungsten must have
a trigonal pyramidal, Ds,, arrangement for electronic reasons. These are
not at present understood, although it may be that the discussion below
on the bonding in molecules with cubic eight-coordination hints at the
explanation. This form of six-coordination is also the configuration about
the metal atoms in MoS, and WS, (the crystals of these compounds
contain layer lattices and not discrete molecules).

/ S—C— CGHS
s /
CegHs —C
Rel ) _C—CeHs
S

~
- C—CgHs
CgHs—C / 6

\c—cﬁHs

Another possible six-coordinate arrangement is that of six ligands at
the corners of a regular hexagon with the metal atom at the centre. It has
been found, but only when the geometry is imposed by the structure of
the ligand as for the K* at the centre of the 2-dibenzo-18-crown-6 ligand
in Fig. 3.6.

3.2.5 Complexes with coordination number seven

There are three main structures adopted by complexes with coordination
number seven; as is commonly the case with the higher coordination
numbers there appears to be no great energy different between them. In
the salt Na,[ZrF,], the anion has the structure of a pentagonal bipyramid
(Fig. 3.14), but in (NH,);[ZrF,], it has the structure shown in Fig. 3.15,
in which a seventh ligand caps one rectangular face of what would
otherwise be an approximately trigonal pyramidal six-coordinate complex.
No doubt the hydrogen bonding in the ammonium salt is a factor contribut-
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Fig. 3.14 The pentagonal bipyramidal (1:5:1,
Ds;,) mode of seven-coordination.

Fig. 3.17 The square antiprismatic (D,,) mode
of eight-coordination.
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ing to the difference in geometry,” just as in the case of the [Ni(CN)s]3~
anion discussed above. The anion [NbOF4]>~, which is isoelectronic with
[ZrF,]?*, adopts the third mode of seven-coordination, shown in Fig. 3.16.
This is derived from an approximately octahedral six-coordinate arrange-
ment by an additional ligand capping one face.

A nomenclature which is sometimes used to distinguish these three forms
of seven-coordination is to proceed down the axes indicated by arrows in
Figs. 3.14-3.16 (these are the axes of highest symmetry) and to list the
number of ligands lying in planes perpendicular to those axes. In this
nomenclature the geometries are called the 1:5:1 (Fig. 3.14), 1:4:2 (Fig.
3.15) and 1:3:3 (Fig. 3.16) modes of seven-coordination.

\
— o/

Fig. 3.15 The one-face centred trigonal Fig. 3.16 The one-face centred octahedral
prismatic (1:4:2, C,,) mode of (1:3:3, C3,) mode of seven-coordination.
seven-coordination.

3.2.6 Complexes with coordination number eight

There are two common arrangements of eight ligands about a central
atom, the square antiprismatic and the dodecahedral arrangements. Con-
sider an array of eight ligands at the corners of a square-based box (not
necessarily a cube). If the top set is rotated by 45° about the four-fold
rotation axis a square antiprism results (Fig. 3.17). Dodecahedral coordina-
tion is more difficult to describe. Consider two pieces of cardboard cut and
marked as shown in Fig. 3.18(a). If these are interleaved as shown in Fig.
3.18(b), the eight points lie at the corners of a dodecahedron (Fig. 3.18(c)).
(A dodecahedron has twelve faces and eight vertices—if you are in doubt,
make a model and count them.) There appears to be little energetic
difference between the two structures so, whilst [Zr(acac),] is square
antiprismatic, [Zr(ox),]*”, involving the oxalate anion C,027, is dodeca-
hedral. Similarly, the [Mo(CN)g]*~ anion may have either arrangement
in the crystal, the shape adopted varying with the cation. Other examples

7 It is interesting that the salt (NH,);(HfF;) is actually (NH,),[HfF,] + NH,F; this is one
of the few clear-cut distinctions between the chemistries of zirconium and hafnium—the
zirconium compound contains the [ZrF,]~ anion.
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Fig. 3.18 The dodecahedral (D,4) mode of
eight-coordination (a dodecahedron is perhaps
best thought of as a solid figure with 12 faces,
which can be, but are not required to be,
equilateral triangular). The arrangement is
shown in (c)—note the approximate pentagon
subtended by this projection of the five ‘outer’
ligands. The arrangement is best understood by
its construction from two pieces of card (a),
interleaved as in (b). The diagram (c) is drawn
such that one of the planes in (b) is
approximately in the plane of the paper.

FIg. 3.19 By an appropriate concerted motion
of the ligands, a cubic arrangement can be
converted into (a) a square antiprism or (b) a
dodecahedron. A cubic intermediate therefore
offers one explanation of the interconversion
between square antiprismatic and dodecahedral
arrangements (this interconversion seems to
occur rather readily).

of square antiprismatic coordination are the [TaF;]®>~ and [ReF;]?~ anions.
Typically, bidentate ligands with relatively short separations between the
two coordinating atoms, i.e. with a short bite, form dodecahedral complexes.
Examples are [Co(NOs),]?>”, in which two oxygens from each nitrate
coordinate to give four-membered rings, and [Cr(O,),]®~ in which both
atoms of the peroxy O2~ anions coordinate to give three-membered
rings.

Both the dodecahedron and square antiprism may be regarded as
distortions of a cubic arrangement of ligands (Fig. 3.19). They are favoured
because a cubic configuration would involve greater interligand steric

--
~_
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Fig. 3.20 The ideal hexagonal bipyramidal
(Dgn) mode of eight-coordination.
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Fig. 3.21 The three-face centred trigonal
prismatic (Ds,) mode of nine-coordination.
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interactions. However, a similar argument favours the octahedron as opposed
to a trigonal prism (for six-coordination) and yet the latter arrangement has
been found. This suggests that the cubic eight-coordination should exist. In
fact, it has been found for the [PaFz]®~ anion in Na;PaFy, as well as in
[UFg]®~ and [NpFg]®~. Comparison of the symmetries of the antiprismatic
and cubic geometries suggests that the involvement of f orbitals in the
bonding is required for the cubic arrangement to be stabilized.®

Another form of eight-coordination, largely confined to the actinide series,
is the hexagonal bipyramidal arrangement of ligands (Fig. 3.20). The ideal
geometry has not yet been observed. When the distance between adjacent
pairs of the six equivalent ligands are equal then the hexagon is found to be
puckered. If the hexagon is planar then these distances are alternately
long and short. The two axial ligands are usually oxygen atoms which are
strongly bonded to the central metal, as in the trisacetatouranyl, commonly
called uranylacetate, anion, [UO,(acetate);]~. A pattern closer to the ideal
is found in some complexes containing crown ethers. For instance, in its
18-crown-6 complex the K* ion is surrounded by a near-regular hexagon of
oxygens; additional ligands can be accommodated above and below this
hexagon to give eight-coordination.

3.2.7 Complexes with coordination number nine

A spectacular example of nine-coordination is that of the [ReHy]?~ anion.
This has the structure commonly found for nine-coordination, a trigonal
prismatic arrangement of six ligands, each of the three rectangular faces
of the prism being capped by an additional ligand (Fig. 3.21). Many
hydrated salts of the lanthanide elements (for example [Nd(H,0)4]%%)
adopt this coordination. It is also found for salts such as PbCl, and UCI,
in their extended lattices.

3.2.8 Complexes of higher coordination number

Although examples exist, coordination numbers of 10 and above are
relatively rare. Further, it seems that the concept of coordination geometry
becomes less applicable. The reason is that, whilst idealized geometries can
be identified, most real structures show distortions and there may be some
arbitrariness about which of the ideal structures the distorted structure is
derived from. Examples of idealised coordination geometries are given in
Figs. 3.22 (coordination number 10), 3.23 (coordination number 11) and
3.24 (coordination number 12). The captions to these figures describe the
construction of the polyhedra.

8 Because it is the fluoride ligand which is involved we confine our discussion to & bonding.
In the square antiprism (D,,;), the set of eight ligand ¢ orbitals spans the irreducible
representations 4, + B, + E; + E; + E;—a set which matches the s, p and d orbitals on
the central metal: s(4,); p.(Ba); Px, Dy(E1); dyy, diaj2(E3); sy, d,.(E;). In the cube (0,) the
eight ligand ¢ orbitals span A, + Ty, + A, + Ty,. Only if an f orbital is included is this
set spanned by the orbitals of the metal atom: s(4,,); d,,, dy,, 4, (T2);5 fay2(A2g); Pas By Po(Ta)-
In neither set is the metal d,: involved in the ¢ bonding; in the cube, d,:_,: is not involved
either.
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Fig. 3.24 There are several modes of
12-coordination, all of high symmetry (although
no complex containing the twelve monodentate
ligands needed to give these symmetries is
known). That shown is the cuboctahedron (0.
It is best known as the cubic close packing
arrangement in metals. The solid figure may be
regarded as derived from the octahedron (Fig.
3.12). The equilateral triangular face evident in
the cuboctahedron is derived from a face of the
parent octahedron, but is smaller. This is
because a square face has been obtained by
cutting the solid octahedron perpendicular to
each fourfold axis to give the cuboctahedron.
This has the effect of removing the comers of
the octahedron face, so that the comers of the
triangular faces of the cuboctahedron are at the
mid-points of faces of the parent octahedron.

N

-

/

Fig. 3.22 One mode of 10-coordination—the
bicapped square antiprism (D,,). The two
capping ligands are those at the top and
bottom of the diagram. At the present time no
complex is known which contains ten
monodentate ligands.

o

Fig. 3.23 Eleven-coordination is very rare. One
possible mode of coordination is the all-face
capped trigonal prism (D). This differs from
Fig. 3.21 by the addition of ligands at the top
and bottom of the figure.

3.3 What determines coordination number
and geometry?

So far in this chapter the question posed by the title of this section has
largely been ignored. Rather, an attempt has been made to assemble the
available data in a reasonably compact and accurate form. However, what
has been said so far gives us little confidence in our ability to answer it.
The question implicitly separates out the central atom and the ligands
bonded to it from more remote atoms. Yet in our discussion of two- and
three-coordination we met cases where remote steric effects clearly seem
to be of dominant importance. Similarly, in our discussion of five-coordina-
tion we suggested that in one case hydrogen-bonding involving non-
coordinated water molecules plays a determining role. Clearly, what is
involved is a delicate balancing of interactions, some of which may not
be immediately obvious. For instance, in forming an aqua complex in
aqueous solution, there is a cost in removing each coordinated water
molecule from the bulk solvent which has to be included somewhere in
the balance sheet.

Part of the difficulty with the question is an assumption about the form
of the answer. We are conditioned to seek an answer in a simple language
involving orbitals, their overlap, their bonding and repulsion. We look for
an answer in terms of individual electrons, or at least individual one-
electron orbitals. Unfortunately, these are approximations. In reality the
behaviour of all of the electrons within a molecule is indivisible. We shall,
at several points in this book, arrive at the conclusion that an orbital model
may well not be capable of providing an answer to a question. One has
to carry out detailed and accurate calculations for a variety of geometries
and compare the results. Whilst such calculations are available for lighter
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(with not too many electrons) main group elements, calculations on transition
metal compounds are less accurate.

In Appendix 2 is outlined the most popular and successful simple model
for predicting molecular geometry of main group compounds, the valence
shell electron pair repulsion (VSEPR) model. However, alongside it are
presented the results of some detailed calculations which prompt the
comment ‘the VSEPR model usually makes correct predictions, but there
is no simple reason why’. The problem of the bonding in transition metal
complexes will be the subject of models presented in Chapters 6, 7 and 10,
this last chapter reviews the current situation. At this point it is sufficient
to comment that the most useful applications of current simple theory are
those that start with the observed structure and work from there. In the
opinion of the author, the general answer to the question posed at the
head of this section is that we really do not know.

3.4 Isomerism in coordination compounds

The evidence used by Werner to conclude that six-coordinate complexes
are almost invariably octahedral was obtained from a study of the isomerism
of these compounds. Although it is a topic that sometimes excites consider-
able attention, as when recently a new form of isomerism was suggested (see
below), there are few studies in inorganic chemistry nowadays of isomerism
per se (except optical isomerism). Nonetheless, it remains an important
aspect of the chemistry of coordination compounds because ligand inter-
change often occurs readily in solution. That is, when a pure complex is
dissolved, the solution may contain a variety of compounds, including
isomers of the original solid-state structure. To work intelligently, one must
be aware of what may have happened so that a scheme can be devised to
check out the possibilities, should it be necessary. Hence, in the following
pages the various forms of isomerism which have been recognized for
octahedral complexes are outlined. It should be remembered that the
categories are not mutually exclusive and that two or more of the classes
we define may have to be invoked to describe fully the isomerism between
two given compounds. The differences between isomers are evident crystallo-
graphically and, usually, spectroscopically. In some cases analytical differ-
ences may also exist.

3.4.1 Conformation isomerism

This is a simple form of isomerism in which the isomers have different
stereochemistries but are otherwise identical, e.g. trans planar and tetra-
hedral NiCl,(Ph,PCH,PPh,), (cf. Fig. 3.7). Its occurrence is confined to
relatively few metal ions, usually those with a d® configuration.

The flurry of recent interest in isomerism arose because of the suggested
existence of an isomerism related to conformation isomerism, a isomerism
which is variously called distortional isomerism or bond-stretch isomerism.
The suggestion was made that a bond length in a given complex could
have either of two very different values. This could arise, for instance, if
there were two different bonding interactions, each leading to stability at
a different internuclear distance. What was the ground state at one distance



44 | Nomenclature, geometrical structure and isomerism of coordination compounds

would correspond to a low lying excited state at the other, and vice
versa. Although it was at first found that the suggested example, in the
compound [Mo(O)Cl,(PMe,Ph),], was erroneous (one crystal structure
determination was on an impure crystal and gave misleading results), it
has stimulated great interest in the possible existence of this form of
isomerism. A subsequent reinvestigation has revealed two (pure!) crystal
forms of the compound in which the rather asymmetrical phosphine ligands
adopt rather different conformations. The Mo—O bond length is 1.663 A
in one isomer and 1.682A in the other. There are different bond lengths
but the name distortional isomerism, the original one, perhaps is the more
appropriate if the phenomenon is regarded as a form of conformational
isomerism. However, there are some clearly established examples of bond
length differences in some dimeric ruthenium complexes such as [1°-
Cp*RuCl(u-Cl)], in which Cp* is the sterically demanding ligand Cs(CHs,)s;
apart from its steric effects, which are currently giving rise to considerable
study,? it behaves like CsHs. In these, one isomer is diamagnetic, has no
unpaired electrons, and has a Ru-Ru separation of 2.9 A. The other isomer
is paramagnetic, it has unpaired electrons, and a Ru-Ru distance of 3.8 A.
However, because of the magnetic differences between the two isomers,
they are perhaps better regarded as spin isomers, a type which will be
described later.

3.4.2 Geometrical isomerism

This form of isomer has already been met when discussing nomenclature;
cis and trans isomers are examples of geometrical isomers. Interconversion
between two geometric isomers is often an important step in mechanisms
postulated as those by which coordination compounds catalyse reactions,
particularly those involving unsaturated organic molecules.

3.4.3 Coordination position isomerism

In this form of isomerism the distribution of ligands between two coordina-
tion centres differs; an example is shown below.

OH 38+ OH 8+
/ O\ VRN
(NH3) ,Co Co(NH3),Cl, and  CI(NH3)3Co Co(NH3) 5Cl
OH OH

Note that each of these two cations exists in a number of isomeric forms.
The reader may find it a useful exercise to draw pictures of all of the forms
and to enquire into the isomeric relationship between pairs.

3.4.4 Coordination isomerism

This may occur only when the cation and anion of a salt are both complex,

9 Similarly, transition metal complexes of the pentaphenylcyclopentadienyl ligand have
been studied. Unfortunately, they tend to be rather insoluble, a clear disadvantage. It is likely
that the addition of alkyl groups to the phenyl rings would increase the solubility of the
complexes formed. However, if such substitution is not symmetrical then further complica-
tions ensue. The recent synthesis of complexes of the penta-p-tolylcyclopentadienyl ligand
suggests that this may become a much studied ligand in the future.
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the two isomers differing in the distribution of ligands between the cation
and anion:

[Co(NHg)6][Cr(ox)s]  and  [Cr(NH3)g][Co(0X)3]
The same metal may be the coordination centre in both cation and anion:

[Cr(NH3)6I[CHSCN)g]  and  [Cr(NH3) 4(SCN), J[Cr(NH3) 5 (SCN) ]

3.4.5 lonization isomerism

Two coordination compounds which differ in the distribution of ions
between those directly coordinated and counterions present in the crystal
structure are called ionization isomers:

[Co(NH3)5Br1SO, and [Co(NH3)5(S0,)]1Br

The difference between these isomers is analytically apparent—an aqueous
solution of the first gives an immediate precipitate with barium chloride
solution and the second with silver nitrate.

3.4.6 Hydrate isomerism

Hydrate isomerism is similar to ionization isomerism except that it really
only applies to crystals. An uncharged ligand changes from being co-
ordinated to being in the crystal but uncoordinated whilst another ligand
moves in the opposite sense. Although the uncharged ligand need not be
a water molecule, in practice it almost always is (and hence the term
hydrate isomerism), for example

[Cr(H,0)61Cl;,  [Cr(H,0)5CIICL,-H,0  and  [Cr(H,0),4Cl,1CI-2H,0

3.4.7 Linkage isomerism

In our discussion on nomenclature the problem that some ligands may
coordinate in two or more ways was encountered. As has been mentioned,
such ligands are sometimes called ambidentate ligands. Corresponding to
this is the phenomenon of linkage isomerism, for example

[Cr(H,0)5(SCN)]2*  and  [Cr(H,0)5(NCS)]2*
[Co(NH3)5(NG,)]2*  and  [Co(NH3)s(ONO)]2*
[Co(NH3)5(SS05)]*  and  [Co(NH3)5(0S0,S)]1*

3.4.8 Polymerization isomerism

Strictly speaking, polymerization isomerism, in which n varies in the
complex [ML,,], (the Ls need not all be identical), is not isomerism. It is
included in this list because it represents an additional way in which an
empirical formula may give incomplete information about the nature of
complex. For example, all members of the following series are polymeriza-
tion isomers of [Co(NH3);(NO,)s],.
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)

Cl
Fig. 3.25 The bidentate ligands are shown
here very schematically. If in one complex they
represent a particular ligand but in another
complex an isomeric ligand, then the two
complexes provide an example of ligand
isomerism.

[Co(NH3) 3(NG,) 5] n=
[Co(NH3)¢J[CO(NO, )6 ] n=
[Co(NH3) 4(NO;)2J[Co(NH3) 2 (NOy) 4] n =

[Co(NH3)g][Co(NH3),(NOy) 415 n=
[CO(NH3)4(N02)2]3[C0(N02)5] n=

1
2
2
[Co(NH3) 5(NO,)][Co(NH3) 2 (NG,) 412 n=3
4
4
[Co(NH3)5(NO,) 6]3[Co(NOL)s ] n=5

3.4.9 Ligand isomerism

If two ligands are isomers, the corresponding complexes are isomers also;
for example

CH,—CH—CHj3 and CH,—CH,—CH,
NH, NH, NH, NH,
propylenediamine trimethylenediamine
(pn) (tn)

are isomers, both of which form complexes of the type shown in Fig. 3.25
(where a convenient representation has been adopted for the two isomeric
ligands which shows only the coordinated atoms). In this situation, the
two isomers, indistinguishable by elemental analysis, are termed ligand
isomers.

A special form of ligand isomerism arises when two different sites in a
ligand can be protonated. If only one proton is added then two different
species result, sometimes called protonation isomers. They are important
because both in the case that the proton is replaced by a metal and in the
case that the unprotonated site coordinates, different complexes result.
Such differences are important in some biochemical systems.

A special case of ligand isomerism also arises when the ligands are
optical isomers—enantiomorphs—of each other. One interesting problem
is the extent to which electron absorption bands, which, as a first approxima-
tion, are supposed to be localized on a transition metal ion, acquire optical
activity because of the activity of a coordinated ligand. An example of this
is provided by the ligand mentioned above, propylenediamine (pn) which
exists in optically isomeric forms.

3.4.10 Optical isomerism

A molecule is optically active when it cannot be superimposed on its
mirror image. Although this condition is met by an octahedral complex such
as ML,L,L.L,L,L; itis rare indeed to be able to resolve such a complex. In
practice, optical activity is largely confined to octahedral complexes of
chelating ligands. Optical activity has also been observed for chelated
tetrahedral and square planar complexes but only rarely. It is necessary
for the chelated complex to be stable kinetically; to permit resolution,
it must retain its configuration for at least a matter of minutes. This con-
fines attention to complexes of a few ions, of which cobalt(III), chromium(III)
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FIg. 3.26 The complex [Co(en);]1°* and
cis-[Co(en),L,]* (L = anion~). The two n+

molecules represented in this figure for each

species are mirror images which cannot be n+
superimposed. en en
L L—
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and rhodium(III) are examples. Although the optical activity of complexes
of many polydentate chelating ligands has been studied, for simplicity our
discussion will be confined to the bidentate case.

Two classes of optically active complexes formed by bidentate chelating
ligands which have been the subject of much work are [M(L,);] and
cis-[M(L,),L5], where (L,) is a bidentate ligand and L’ a monodentate.
Figure 3.26 shows the pairs of isomers for M = Co and L, = ethylene-
diamine (en). At this point the discussion contained in Appendix 1 becomes
relevant, because amongst the molecules considered there are the [M(L,)3].

If a compound is optically active it cannot crystallize in a centrosymmet-
ric space group (the action of a centre of symmetry serves to convert one
optical isomer into the other). A consequence is that in X-ray diffraction crys-
tallographic studies, pairs of related diffracted beams (h, k, l and —h, —k, —I),
which in a centrosymmetric crystal would have identical intensities, no longer
do so. An analysis of the difference in intensities in such pairs provides
the absolute configuration of the optically active species.

3.4.11 Structural and fluxional isomerism

For simplicity, almost all of the forms of isomerism discussed above
concerned classical octahedral complexes. It was implicitly assumed that
each complex has a single structure and that this structure does not change
with time. Other forms of isomerism are recognized if we remove one
or both of these restrictions. For instance, in Section 3.2.3, we met the
fact that the anion [Ni(CN)s]®~ can exist in two different geometries,
trigonal bipyramidal and square pyramidal (a phenomenon which is usually
classified under the heading of structural isomerism). A rather more extreme
example is provided by Co,(CO)g of which at least two forms coexist in
solution:
co

(C0)3Co/

N Co(CO) 3 and (C0O) 4,€0—Co(CO) 4
co

NS



48 | Nomenclature, geometrical structure and isomerism of coordination compounds

Fig. 3.27 Potential energy profiles in
75-CsHsMn(CO);. Consider a microscopic
probe, shown at the right hand side of the
dotted circle surrounding the manganese atom.
If the molecule is held rigid and the probe
rotated around the dotted circle, the top end of
the probe will experience five bumps per circuit
and the bottom end will experience three. That
is, the 1°-CsHs and Mn(CO); units generate
fivefold and threefold potentials, respectively.
Now forget the probe and consider just one
carbon atom of the CgHg ring as the ring is
rotated against a rigid Mn(CO); unit. The carbon
atom will experience three bumps per circuit.
So too will each of the other four carbon atoms
in the CgHs ring. But the geometry is such that,
although all of these bumps will be equal, none
will coincide. That is, in a complete circuit there
will be a total of 5 x 3 = 15 bumps, a 15-fold
potential.

Fivefold

Threefold o% C\\\

v

Indeed, the ability to undergo such molecular gymnastics is a character-
istic of many organometallic compounds, particularly of transition metals.
As another example consider the compound 7°-CsHs;Mn(CO)s, shown in
Fig. 3.27. Here, the 7°-CsHsMn unit has a local fivefold rotational axis
and the Mn(CO); unit a local threefold. Bringing the two together, one
has a 5 x 3 = 15-fold rotational barrier. The logic behind this arithmetic is
contained in the answer to Question 3.1. However, a 15-fold rotational
barrier means 360°/15 = 24° between equivalent potentials—and so just
12° between maxima and minima in the potential surface. This is also
illustrated in Fig. 3.27. Apart from the fact that for such a small angle the
difference between maxima and minima must be small, the atoms involved
are big relative to the corrugations of the potential energy surface. Not
surprisingly, if the molecule is labelled in some way (perhaps by inclusion
of a 13C in the CsH; and another in the (CO),) it is found that rotation
of the two halves of the molecule relative to each other is rather free. It is
often convenient to think of the rotation as confined to the CsHs system,
particularly when the ring is less symmetrically bonded than in our
example, because the rotation then makes the time average of all ring
positions identical. One talks of ring whizzers, evocative of a firework
display—chemists have a sense of humour too. The collective name given
to such interchange phenomena is to talk of fluxionality and of fluxional
molecules. We shall meet them again in Chapter 14.

3.4.12 Spin isomerism

As will be seen in Chapter 7, octahedral complexes of Fe'! can exist in one
of two spin states, high spin and low spin. As will be explained in that
chapter, the difference can be attributed to different magnitudes of splitting,
A, between two sets of d orbitals:
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high spin low spin
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In some complexes, usually of Fe™ but also for other ions, most notably

Fe" and Co'", it seems that the magnitude of the splitting A is such that
both forms occur; spin isomers coexist in the same sample An example is
provided by the octahedral complex [Fe(S,CNMe,);], where the N,N-
dimethyldithiocarbonate ligand is

CH, S
N N
N—C (

SN
CH, S
Here, one has to be careful because spin isomerism behaviour in solution
may well be different to that in the solid state. In the solid state the individual
magnetic ions couple weakly together but often sufficiently strongly for the
phenomenon to have a cooperative aspect and to show hysteresis; the
stronger the cooperativity the more abrupt the transition. The spin-crossover
may be induced not only thermally but also by application of pressure, for
small structural changes accompany the spin change.

For both of the last two classes of isomerism we have detailed—fluxional
and spin isomerism—the lifetime of individual isomers may be rather short.
Spin isomers, for instance, typically live for about 10”7 s (but see Section
3.4.1 and the Further Reading at the end of this chapter). Some would
argue that classical isomerism refers only to species capable of physical
separation, and so of long lifetime. However, with the increasing use of
methods which explore short lifetimes—NMR and EPR, particularly, in
the present context—it seems sensible to ignore this limitation.

Further reading

Other discussions exist, for instance, 11-coordination in W. O.
Milligan, D. F. Mullica, H. O. Perkins D. A. Grossie and

Progr. Inorg. Chem. has featured a number of articles devoted ~ C. K. C. Lok, Inorg. Chim. Acta (1984) 86, 33.

to specific coordination numbers. They are:

Isomerism in general has been reviewed in ‘The isomerism
of complex compounds’ R. G. Wilkins and M. J. G. Williams

® 4- and S-coordination M. C. Favas and D. L. Kepert 27,
325

R. R. Holmes 32, 119
J. S. Wood 16, 227
D. L. Kepert 23, 1
M. G. B. Drew 23, 67
D. L. Kepert 25, 41

e 7-and 8-coordination  S. J. Lippard 21, 91
D. L. Kepert 24, 179
S. J. Lippard 8, 109

e S-coordination
e 5-coordination
e 6-coordination
e 7-coordination
e 7-coordination

e 8-coordination
e 8-coordination

in Modern Coordination Chemistry, R. G. Wilkins and J. Lewis
(eds.), Interscience, New York, 1960. Although old, this remains
a useful review.

The fact that spin equilibria (spin isomerism) has been the
subject of much recent work is indicated by the almost
simultaneous appearance of three reviews on the subject:

‘Dynamics of spin equilibria in metal complexes’ by J. K.
Beattie in Adv. Inorg. Chem. (1988) 32, 1; ‘Static and dynamic
effects in spin equilibrium systems’ by M. Bacci, Coord. Chem.
Rev. (1988) 86, 245; and *Spin equilibria in iron(II) complexes’
by H. Toftlund, Coord. Chem. Rev. (1989) 94, 67. See also
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Section 9.12. Sometimes it is possible to photoexcite a molecule
to the less stable spin state, whereupon it may be stable for
weeks! An example, which shows how the methods introduced
in later chapters of this book may be used to investigate such
systems, is in a paper by Gutlich and Poganiuch in Angew.
Chem., Int. Ed. (1991) 30, 975.

A modern general review on isomerism is to be found in
an article by J. C. Bailar in ‘Coord. Chem. Rev.’ (1990) 100, 1.

For those interested in learning more of the bond-stretch
isomer story there is detailed review by V. C. Gibson and M.
McPartlin in J. Chem. Soc., Dalton Trans. (1992) 947 and a
shorter one by J. M. Mayer, Angew. Chem., Int. Ed. (1992) 31,
286. Both became slightly out of date because of another
article: A. P. Bashall, S. W. A. Bligh, A. J. Edwards, V. C.
Gibson, M. McPartlin and O. B. Robinson Angew. Chem., Int.
Ed. (1992) 31, 1607. Even more recent is ‘Bond Stretch Isomers:
Fact not Fiction’ by P. Giitlich, H.A. Goodwin and D. N.

Hendrickson Angew. Chem., Int. Ed. (1994) 33, 425 (discusses
the isomerization in the context of spin-crossovers and ‘show
that it is a reality’). A paper that looks back at the origins of
the controversy, and comes up with the suprising answer
contained in its title, is ‘Studies of Distortional Isomers. 2.
Evidence That Green [LWOCI,]PF; is a Ternary Mixture’
by P. J. Desrochers, K. W. Nebesny, M. J. LaBarre, M. A.
Bruck, G. F. Neilson, R. P. Sperline, J. H. Enemark, G. Backes
and K. Wieghardt Inorg. Chem. (1994) 33, 15; see also the
footnote on page 2.

A useful source is Volume 1 of Comprehensive Coordination
Chemistry G. Wilkinson, R. D. Gillard and J. A. McCleverty
(eds.), Pergamon Press, Oxford, 1987, and in particular Chap-
ters 2 (‘Coordination Numbers and Geometries’ by D. L. Kepert),
3 (‘Nomenclature of Coordination Compounds’ by T. E. Sloan)
and 5 (‘Isomerism in Coordination Chemistry’ by J. MacB.
Harrowfield and S. B. Wild).

Questions

3.1 Give systematic names for the complexes listed in Table
2.2 (in some cases, because full structural details are not given
in the table, there will be some ambiguity about the correct
name).

3.2 Use a piece of paper to cover up the formulae in Table
3.2 leaving just the names visible. Write down the correspond-
ing formulae and check your answers by removing the paper.
Repeat the exercise, this time covering up the names and
attempting to write them out.

3.3 Repeat the exercise of Question 3.2, this time using
Table 3.3.

3.4 When VCl, is dissolved in acetonitrile (CH;CN), there
is evidence that above 50 °C two non-ionic monomeric octa-
hedral complexes co-exist. Suggest reasonable structures for
these two complexes.

3.5 Figure 3.26 shows cis-[Co(en),L,]* (L is anionic) as
an example of a complex which can be optically active. Could
either (a) trans-[Co(en),L,]* or (b) [Co(NH,),L,]" be optic-
ally active?

3.6 If you were given the task of attempting to prepare a
complex with an unusual coordination number, which coor-
dination numbers should you seek to avoid, and why?

3.7 You are asked to attempt to prepare as many isomers
as possible of [Co(NH;)BrCl(en)],SO,. As a first step, pre-
pare as complete a list as possible of these isomers.

3.8 The discussion in the text concerned the combination
of a fivefold and threefold rotation. As a simpler example
show that in the molecule [(py)Ni(CO),], in which the pyridine
is bonded to the nickel through its nitrogen atom, the twofold
rotational symmetry of the py—Ni unit combines with the
threefold rotational symmetry of the Ni(CO), to give a sixfold
rotational barrier. Hint: draw each of the six equivalent
arrangements; invent a system of labelling which enables
equivalent arrangements to be distinguished.

3.9. The author of this book believes that a better (including
a language-independent) polyhedral system than that recom-
mended by IUPAC would be to give a point group (symmetry)
symbol followed by the coordination number. There follow
two lists, one in the author’s and, in a different sequence, one
of the corresponding IUPAC symbols. None of the latter have
been used in the present chapter, although all of the poly-
hedra have been mentioned. Pair off corresponding symbols.
This problem should give more familiarity with both the
polyhedra and the use of point group notation.

D2 Cy-2 TP-3  PBPY-7
Dy-3 Cs-3  TPRS-7 HBPY-8
Dg7 Car7  TPY-3 A2

C,-7 0,8 OCF-7 SAPR-8
D,8 D, 8 DD8 CUS8
Der-8 L-2




Preparation of coordination
compounds

4.1 Introduction

This chapter reviews the most common methods by which coordination
compounds are prepared. However, current research is almost invariably
aimed at producing the unusual and exotic, not the common. So, a
contemporary research journal would describe methods rather less simple
than most of those covered here. A flavour of the current has therefore been
included, although the reader is unlikely to meet some of the compounds
outside the research laboratory. In the reactions described in this chapter,
there are two important variables—coordination number and oxidation
number (the latter is often called the valence state). In principle, either may
increase, decrease or remain unchanged in a reaction, and the reader may
find it helpful to classify the preparative methods described according to
changes in these two numbers. In practice it is not always possible to be
certain of either without more information than that contained within a
chemical equation or chemical formula. A ligand which is potentially triden-
tate may, for example, act as a bidentate ligand and so the coordination number
differs from that expected. Similarly, is the complex ion [Co(NH,);NO]?*
a complex of cobalt(II) or one of cobalt(III)? It depends on whether you
believe that the NO is better represented as NO* (where, in the complex, the
odd electron is paired with a cobalt electron) or as NO ™. This problem of
formal valence states will reappear later in this chapter and again in
Chapter 6.

Complications apart, reactions in which the coordination number of an
electron acceptor is increased are called addition reactions, and when it is
unchanged they are called substitution reactions. The coordination number
decreases for dissociation reactions. Reactions involving valence state changes
are called oxidation or reduction reactions, as appropriate.

An important classification of complexes depends on the speed with which



52 | Preparation of coordination compounds

they undergo substitution reactions. When excess of aqueous ammonia is
added to a solution of copper(Il) sulfate in water the change in colour
from pale to deep blue is almost instantaneous, because an ammine complex
is formed very rapidly (in this reaction ammonia replaces some of the water
molecules coordinated to the copper(II) ion). This is an example of the
generalization that copper(II) forms kinetically labile complexes. On the
other hand, it takes hours (or even days at room temperature) to replace
water molecules coordinated to a chromium(III) ion by other ligands. Again
we can generalize: chromium(III) forms kinetically inert complexes. It is
important to recognize the distinction between kinetic and thermodynamic
stability at this point. The thermodynamic stability of a complex (which will
be discussed at length in the next chapter) refers to the concentrations of
complex species and ligands at equilibrium. Kinetic stability refers to the
speed at which equilibrium conditions are reached. As one would expect, the
preparations of kinetically inert and labile complexes present quite different
problems. In general, the ions of the second- and third-row transition
elements usually form kinetically inert complexes. With the exception of
chromium(III) and cobalt(III), the common ions of first-row transition
elements usually form kinetically labile complexes. Metallic main group
elements usually form labile complexes.

Complexes involving low valence states, organometallic complexes for
instance, are usually inert. However, inertness relates to kinetics and kinetics
depend on mechanism. An organometallic compound which normally reacts
slowly may spontaneously catch fire, or, less dramatically, rapidly oxidize,
if exposed to air. Not surprisingly, special inert atmosphere techniques have
to be used in preparing such compounds. Gaseous oxygen, of course, is a
diradical, with two unpaired electrons, and so it is not unexpected that it
should react rather differently to many other potential reactants.

4.2 Preparative methods

It is difficult to present reaction techniques in an order which is obviously
logical and sequential. In the following pages the pattern usually adopted is
to move from the simple to the complicated, although simplicity has its own
complications. So, the first reaction considered is a simple gas-phase reaction
between molecules, but one for which a quite complicated glass vacuum line
would be needed. The reaction between aqueous Cu'" and aqueous ammonia,
considered later, can be carried out using a couple of test tubes, but is
chemically quite complex.

4.2.1 Simple addition reactions

The most direct method of preparing [BF;(NH;)] is by gas-phase addition,
in which a carefully controlled flow of each of the gaseous reactants is led
into a large evacuated flask, where the product deposits as a white powder:

BF; + NHz —~ [BF;(NHa)]

When one reactant is a liquid and the other a gas at room temperature, a
different technique is usually followed. In the preparation of [BF;(OEt,)],
for instance, the diethylether and boron trifluoride, stored in separate bulbs
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on a vacuum line, are condensed separately into an evacuated flask cooled
in liquid nitrogen. When the flask is warmed slowly, a controlled reaction
takes place:

BF; + Et,0 — [BF;(OEt,)]

Reactions between liquids or solids are best carried out by mixing solutions
of them in a readily removable inert solvent, e.g.

40-60 °C bp

SnCl; + 2NMe; trans[SnCl4(NMe3), ]

petroleum ether
If at all possible, the presence of a solid reactant should be avoided unless
it is one of those reactions in which an otherwise insoluble compound
dissolves in the presence of a complexing agent. Many of these reactions
occur with no change in valence state, as when silver chloride dissolves in
aqueous ammonia:

AgCI(s) + 2NH3(aq) — [Ag(NH3),]7 (aq) + CI~ (aq)

or when the gelatinous precipitates formed on adding alkali metal cyanides
to aqueous solutions of many metal ions, dissolve in excess cyanide, for
instance

Zn(CN),(s) + 2CN~(aq) — [Zn(CN),12" (aq)

Solids may dissolve in complexing agents with a change in valence state (so
itis debatable whether such reactions should be classified as simple addition).
In the case of the dissolution of metallic silver or gold in water in the
presence of cyanide ion, the oxygen of the air acts as the oxidizing agent:

2M(s) + 4CN(aq) + 30, + H,0 — [M(CN,)]™ + 20H™ (M = Ag or Au)

More commonly, however, the oxidizing agent is carefully chosen, as when
the sparingly soluble PbCl, dissolves in aqueous hydrochloric acid through
which chlorine is bubbled:

PBCly(s) + 2HCI(aq) + Cly(g) — H,[PbClg]

The product of this reaction is relatively unstable, decomposing by the
reverse of the formation reaction. A trick which is widely used in such cases
is to add a large, poorly polarizing counterion (a cation such as pyridinium,
CsHsNH™, added as the chloride, in the present case). One then obtains
either a precipitate or crystals in which the unstable cation or anion is less
prone to decompose. Other counterions which are commonly used in this
way are [As(C¢H;5),]1%, (--C4Hg);NH*, [Co(NH,)6]%Y, [B(C¢Hs),]™ and
[Cr(SCN)4]®~. There have even been attempts to place this on a quantitative
footing by defining size and shape parameters for such species.

An example of a reaction, involving a solid, which would be avoided if
at all possible is the apparently simple reaction

NH,4F(s) + BF;(g) — NH,4[BF,1(s)

because it is difficult to ensure that reaction is complete. Further, purification
of the product may be difficult; however, a large number of anionic complexes
of formula [MX,]™", where X is a halogen (usually F or Cl), have been
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made in this way, for example
2KCI + TiCl, — Ko [TiClg]

The important factor is whether the product forms an impenetrable layer
around the crystals of the solid reactant.

As one would expect, good examples of simple addition reactions of
transition metal complexes are confined to those ions which readily change
their coordination number. Copper(II) provides many examples provided
that excess of incoming ligand is used so that a mixture of products is
avoided. An example is provided by the addition of pyridine to [Cu(acac),],
a four-coordinate complex becoming five-coordinate:

[Cu(acac),] + py — [Cu(acac), (py)]

As kinetic studies show (Chapter 14), many reactions in solution proceed
through a reaction intermediate in which the solvent is coordinated.
What may, on paper, appear to be an addition reaction may in fact be a
ligand substitution reaction.

4.2.2 Substitution reactions

The majority of complexes, both of transition and non-transition elements,
may be prepared by substitution reactions. The mechanisms of some of these
reactions have been extensively investigated and will be discussed in Chapter
14. Although the coordination number of the atom at the coordination centre
in both reactant and product species is the same in these reactions, it must
be emphasized that only limited information can be inferred about the
reaction mechanism from a study of the products of a reaction. In particular,
phrases such as ‘the ligand A displaces ligand B’ should be avoided in
detailed discussions unless the reaction has been properly investigated. For
the non-transition elements in particular, where substitution reactions
usually proceed if thermodynamically favourable, a study of these reactions
enables both qualitative and quantitative assessments to be made of the
relative strength of donor—acceptor bonds. Thus, because ammonia displaces
diethylether from BF;-OEt,, even in ether solution, to give crystals of
BF;-NHj; it has been concluded that the B-N bond is stronger than the
B-O bond, although this argument is open to the objection that if BF;-NH
has a high lattice energy, perhaps because of hydrogen bonding, then it could
be this fact that leads to the formation of BF;-NHj; rather than a higher
B-N bond strength.

As noted earlier, there is an experimental distinction between the substitu-
tion reactions of labile and inert complexes. The formation of labile
complexes is virtually instantaneous upon mixing of the reactants, so that
there are few practical difficulties in their preparation, but three points must
be remembered. First, for classical, Werner-type, complexes it is found in
practice that it is difficult to prepare such complexes with several different
non-ionic ligands bonded to the same metal atom, although it is much easier
to prepare complexes in which an anionic species is coordinated together
with a neutral ligand. Secondly, although it may be possible to isolate and
characterize a solid complex, quite a different complex may be the pre-
dominant species in solution. So, the blue complex Cs,[CoCl,] crystallizes



Preparative methods | 55
from pink aqueous solutions containing octahedral Co" and CsCl. The third
point, that some complex ions display incongruent solubility, as will be seen,
is related to the second.

If an aqueous solution containing iron(II) sulfate and ammonium sulfate
in a 1:1 molar ratio is allowed to crystallize, then a compound which
historically is variously known as Mohr’s salt and as ferrous ammon-
ium sulfate, [Fe(H,0)]SO,(NH,),SO,, is obtained. Mohr’s salt is said to
show congruent solubility. On the other hand, if an aqueous solution
containing a 2:1 molar ratio of potassium chloride and copper(II) chloride
crystallizes, crystals of potassium chloride are obtained first. Only later does
the complex K,[Cu(H,0),Cl,] crystallize. Similarly, attempts to recrystal-
lize the salt will lead to the initial deposition of potassium chloride. The
complex is said to display incongruent solubility; it can only be obtained
from aqueous solutions containing excess of copper(1l) chloride. A system
which displays incongruent solubility at one temperature may display
congruent solubility at another.

Examples of the formation of complex ions by substitution reactions
of labile complexes are the following.

1. The action of excess of ammonia on aqueous solutions of copper(Il) salts:
[Cu(H,0),]%* + 4NHs(aq) — [Cu(NH3),1%* + 4H,0

Although this equation! shows the complete substitution of coordinated water
by ammonia all such reactions occur in steps and the species [Cu(H,0),]**,
[Cu(H,0);NH;]1**, [Cu(H,0),(NH;),]**, [Cu(H,O)(NHj);1**, and
[Cu(NH;),]?* are all present in the solution, although the concentrations of
some are low. By a suitable choice of concentration (using stability-constant
data of the sort discussed in Chapter 5) it is possible to ensure that the
concentration of one particular component, [Cu(H,0),(NH;),]1%* say, is a
maximum in the solution. However, it does not follow that if crystallization is
induced (for example, by adding ethanol to the solution and so decreasing
the solubility of the complex species) the complex which crystallizes will
contain the [Cu(H,0),(NH;),]?* cation. There are many labile complexes
which may be studied readily in solution but which are very difficult to
obtain in the solid state. The converse is also true. Copper(I) bromide reacts
in ethanol with Br~ to give solutions in which only the [CuBr,] "~ anion has
been identified. From such solutions, crystals of salts containing anions such
as [Cu,Brs]** and [Cu,Br¢]?~, as well as [CuBr,] ", have been obtained.
When a salt such as [N(CH;),]5[Cu,Br] is dissolved in nitromethane, the
dominant species in solution is again [CuBr,]".

2. The reaction between aqueous solutions of thiourea and lead nitrate:
[Pb(H,0)6]2* + BSC(NH,), — [PB(SCINH,),)6]2* + 6H,0

The lead(II) ion in aqueous solutions exchanges water between its coordina-
tion sphere and the bulk very rapidly but is probably best regarded as six-
coordinate (although some evidence indicates that the coordination number

1 A common coordination geometry for the copper(Il) ion is to be surrounded by four ligands
in a plane which, together with two ligands one above and one below this plane but further
from the copper atom, form a tetragonally distorted octahedron. In this discussion these two,
more weakly bonded, ligands have been neglected.
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may be as high as eight). However, an aqueous solution of lead nitrate, say,
may also contain polymeric species and the reaction given above is, therefore,
oversimplified both for this reason and because it makes no mention of
species intermediate between [Pb(H,0)¢]?* and [Pb(SC(NH,),)¢]**.

3. If an uncharged complex is prepared in aqueous solution from ijonic
species it is often precipitated from aqueous solution and, unless highly
polymeric, may usually be recrystallized from organic solvents, e.g.

[Fe(H,0)g13*; + 3acac™ — [Fe(acac);] + 6H,0

insoluble
in water

Some examples of preparations involving substitution reactions of inert
complexes are given below.

1. The oxidation of (labile) cobalt(II) salts in aqueous solution containing
both ammonia and ammonium carbonate by air bubbled through the
mixture leads to the formation of the (inert) [Co(NH;)5(CO;)]* cation. It
is only on heating with aqueous ammonium hydrogen fluoride solution at
90 °C for 1h that this is converted into the [Co(NH;)sF]?* cation:

[Co(NH3)5C031* + 2HF — [Co(NHg)sF]2* + F~ + CO, + H,0

The species [Co(NH;)sH,0]1** is almost certainly an intermediate in the
reaction. Surprisingly, cobalt(III) complexes containing coordinated carbon-
ate ion lose CO, rather easily—they fizz when dilute acid is poured onto
them—but this reaction does not involve breaking the Co—O bond; isotopic
studies show that the oxygen atom in the final Co-OH, bond is the same as
that in the original Co—OCO,.

Reactions of Co™ complexes played a key role in the development of
coordination chemistry and so mention of a few more of these reactions is
appropriate. In the preparation of Co™ salts from Co", the composition of
the reaction mixture, the choice of oxidant (H,0,, PbO,, perhaps charcoal
being added as a catalyst) and temperature are the key variables. A molar
ratio Co":NH,CI:NH;:NaNO, of 1:1:2:3 with air as the oxidant at room
temperature gives mer-[Co(NH;);(NO,);] as the major product. Notwith-
standing what has been said above, this is the product most soluble in water
(presumably the ligands strongly hydrogen bond with the water) and is
thus separated. [Co(NH;)3(NO,),] reacts at room temperature with concen-
trated hydrochloric acid over a day with evolution of brown fumes of
nitrogen oxides to give [Co(NH;);(H,0)Cl,]1*. This, in turn, reacts with
ice-cold aqueous ammonia over about 2h to give a dimeric compound
containing three hydroxyl bridges:

OH 3+

7 N\
(NHs)3Co—OH—Co(NHs)5

/
OH

The contrast between these reactions and those of labile complexes, where
reaction is complete almost as soon as the reactants are mixed, is very
evident.
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2. Potassium hexanitritocobalt(III), potassium cobaltinitrite, reacts with an
aqueous solution of ethylenediamine fairly rapidly at ca 70 °C to give
cis-dinitrobis(ethylenediamine)cobalt(I1I):

[Co(NO,)s13~ + 2en — cis-[Co(en),(NG,),1* + 4NO;

In this reaction the complex [Co(en)(NO,),]” is presumably an inter-
mediate. However, the solid obtained by removing the solvent from a
solution in which the major component is cis-[Co(en),(NO,),]* will also
consist largely of this complex ion, because it is kinetically inert.

In the preparation of some complexes, particularly organometallic com-
plexes, the presence of water must be avoided. An important example from
classical coordination chemistry is that the action of ammonia (either as a
gas or in solution) on hydrated chromium(III) salts—those commercially
available—leads to the precipitation of insoluble hydroxy complexes and not
to the formation of [Cr(NH;)¢]**. This complex is prepared by reaction
between liquid ammonia and anhydrous chromium(III) chloride.

A variety of methods have been developed for the preparation of such
anhydrous chlorides. Reaction of the heated metal with chlorine is one
obvious procedure, but is difficult to control. Better is removal of water from
the hydrated salt by chemical reaction on heating with thionyl chloride
(unpleasant), dimethyoxypropane or triethylorthoformate:

H,0 + SOC, - SO, + 2HC
H,0 + (CH30),C(CH3), — 2CHZ0H + (CH3),CO
H,0 + (CoH50)3CH  — 2C,HgOH + HC(0)OC,Hs

Probably most useful is reaction of a metal oxide with a chlorinated
hydrocarbon; the high boiling hexachloropropene, C(Cl),C(CI)CCl,, is
favoured, the terminal —CCl; becoming “COCI in the reaction.

Important though anhydrous halides are in synthetic coordination chem-
istry, they suffer from one disadvantage. They tend to have low solubilities
and to react slowly. In such cases, an alternative is to form a complex which,
whilst stable, is one from which the ligands are readily displaced. For
instance, if triethylorthoformate is used as a dehydrating agent with ethanol
as a solvent, complexes such as [Mg(C,H;OH)¢]**, [Co(C,HsOH)g]**
and [Ni(C,H;OH)¢]?*, from which the ligands are readily displaced, are
obtained. A ligand which has become increasingly popular for this purpose
since it became commercially available is the trifluoromethansulphonate
anion, CF;-SOj3, more usually called triflate (hence triflic acid and, as a
ligand, triflato). The pure acid itself is very corrosive and care has to be
taken in its use. However, it is probably much less dangerous than the
perchlorate anion which was previously similarly used, for the latter has a
well-known tendency to destroy apparatus and to remove parts of the
anatomy—perchlorates are prone to explode. Although substitution of
CF;-SOj into Co™ is slow; the preparation of cis-[Co(en),(OSO,CF;),]*
from from [Co(en),Cl,]* requires use of triflic acid at 100 °C for 3 h, the
triflato ligand is readily displaced by reaction with a replacement ligand
in a relatively inert solvent such as acetone. Anhydrous metal triflates may,
usually with advantage, replace anhydrous metal chlorides in organometallic



58 | Preparation of coordination compounds
chemistry. These compounds may be made, for example, by refluxing the
anhydrous chloride with triflic acid.
We have now moved to the area of coordination chemistry in which water
is to be avoided as a solvent. This is a general area with many facets.
Examples of the preparation of complexes by substitution reactions in
non-aqueous media are the following.

1. Potassium thiocyanate melts at 173 °C and may be used as a solvent at
temperatures above this. For example, in this medium, water is readily
displaced from the [Cr(H,0)¢]** ion:

[Cr(H,0)6]13* + BNCS ™ [Cr(NCS)g]3~ + 6H,0

—_—
molten KNCS
2. As has been seen, refluxing thionyl chloride reacts with water and may
be used to prepare anhydrous metal chlorides from the hydrates. Addition-
ally, it is a suitable solvent for the preparation of the chloro anions of

metals:

- SOCl; . )
2NEt,Cl + NiCl, o (NEt4),[NiCl4]

At high temperatures thionyl chloride slowly decomposes to give chlorine
and this reduces its usefulness as a solvent because the chlorine may become
a reactant.

3. Most salts are converted by bromine trifluoride into the highest fluoride
of the element, or, if an alkali metal salt is present, into a fluoro anion. It is
so powerful a fluorinating agent that it will even react with metals and alloys.
For example, with a 1:1 alloy of silver and gold,

BIFs
AgAu(alloy) ———— Ag[AuF,]

4. As will be discussed in more detail in Chapter 15, there are three distinct
bonding mechanisms which contribute to the metal-metal bonding in
[Cl,Re-ReCl,]*7, o, @ and & (the chlorines are all terminal and eclipsed),
and so it is an anion of particular interest. It is readily prepared from the
commercially available ReCl;, which consists of molecules containing a
triangle of rhenium atoms, by fusion in molten (220 °C) diethylammonium
chloride:

2Re;Clg + 6(CyHs);NH,Cl — 3[(C,Hg),NH, ], [Re,Clg]

4.2.3 Oxidation-reduction reactions

As has been seen, inert complexes of the transition metals may be inter-
converted by substitution reactions, but such methods cannot generally be
relied upon and it is preferable to prepare inert complexes by a different
method. The chosen method is to take a compound containing the metal in
a different oxidation state and oxidize or reduce it, as appropriate, in the
presence of the selected coordinating ligand. This technique is used extensively
in the preparation of oxalato complexes of chromium(III). Other chromium-
(IITI) complexes are prepared by the oxidation of chromium(II) salts.
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The success of this general preparative method rests on two factors. First,
although the product is an inert complex, the starting material is one which is
relatively labile. Other things being equal, concentrations used in the
preparation approximate to those which maximize the concentration of a
complex species identical in composition with the desired product but
differing from it in charge. Electron addition or removal (i.e. reduction or
oxidation) then gives the product. Secondly, as has been mentioned earlier,
there will be several labile complexes in equilibria, each of which can undergo
oxidation (or reduction) to give an inert product. In general, the product
actually obtained will be derived from that labile complex which is the most
readily oxidized (or reduced).

Examples of complexes prepared by oxidation-reduction
reactions

1. Some examples of complexes of cobalt(III) prepared by oxidation—
reduction reactions have been given earlier, as part of the description of the
substitution reactions of the inert compounds formed. However, the prepara-
tion of what may be regarded as the parent complex, hexaamminecobalt(IIT)
chloride, was not described. As Werner found, this is made by hydrogen
peroxide oxidation of an aqueous solution of cobalt(IT) chloride made
alkaline with ammonia in the presence of ammonium chloride:

charcoal
2[Co(H,0)61Cl, + 2NH,Cl + 10NH; + Hy0, ——— 2[Co(NH3)g1Cl5 + 14H,0

This reaction is catalysed by the presence of charcoal; in its absence the
product consists largely of pentaamminecobalt(IIT) complexes, the sixth
coordination site being occupied by either H,O or Cl~. The function of the
charcoal is not known with certainty but it is believed that it may act by
donating an electron to a pentaamminecobalt(I1I) ion, converting it momen-
tarily into a labile pentaamminecobalt(II) species into which a further
ammonia molecule substitutes.

2. An aqueous solution of oxalic acid and potassium oxalate reduces
potassium dichromate to the trisoxalatochromium(I1I) anion:

KaCr0; + TH,C,0, + 2K,C,0, — 2K5[Cr(C,0,)5] + 6CO, + 7H,0

3. Complexes containing manganese in less-common formal valence states
may be made either by reduction of the permanganate anion, [MnO,]~, or
by oxidation of the hexaquamanganese(Il) cation. Sometimes, as in the
preparation of the [MnF5(H,0)]?" anion, containing manganese(III), the
two are combined:

8[Mn(H,0)61%* + 2[Mn0,1~ + 25HF; — 10[MnF;(H,0)1?~ + 9H* + 46H,0

In this example is seen another reason for using an oxidation—reduction
reaction for the preparation of a complex, the non-availability of suitable
precursors in which a metal is in the desired valence state.

Systems in which a series of complex ions of identical stoichiometry are
interrelated by a series of one-electron oxidations or reductions have been
extensively studied. The existence of such a related series is conveniently



60 | Preparation of coordination compounds
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Fig. 4.1 The square planar complex nickel(ll)
bis(stilbenedithiolate).

Fig. 4.2 Example of oxidative addition—
to give Vaska’s compound,
trans-[Ir(PPh3), (CO)CI].

Fig. 4.3 Series of d® configurations, showing
the tendency to undergo oxidative addition.

investigated by electrochemical methods, of which one is polarography,? the
half-wave potentials obtained suggesting suitable chemical oxidizing or
reducing agents for the bulk preparation of the species. An alternative
technique is to carry out the oxidations or reduction electrolytically,
preferably at a potential which is held constant despite fluctuations in
current. This technique is called controlled potential electrolysis; some related
techniques will be considered in more detail in Chapter 12. The method can
throw up some interesting problems. For example, it has been shown
polarographically that the square planar complex of nickel given in Fig.
4.1, undergoes reduction to give the species [Ni(S,C,(C¢Hs),),]1~ and
[Ni(S,C,(C¢Hs),),1?>~. There has been considerable discussion of the
valence state of the metal atom in these and similar complexes. Is it the metal
or is it the ligand which is being reduced, or is it both? It seems that the
electrons added in the reduction are delocalized over the whole complex (the
stilbenedithiolate ligand is planar and has a delocalized © system) and
so it becomes difficult to define the valency state of either the metal or ligand.
Such problems will be considered in more depth in Chapter 6.

Although in the above discussion it has been clear that there can be a
change of coordination number associated with a change of valence state—
tetrahedral chromium and manganese in [Cr,0,]2~ and [MnO,]~ becom-
ing octahedral in complexes of the trivalent metals—there was no clear link
between the two changes. However, there exist many reactions where there
is such a link, one that is easy to see. As has been mentioned, square planar
complexes tend to be formed by transition metal ions with the d® configura-
tion. There exists a whole series of reactions of such complexes in which the
metal is, formally, oxidized by two units, and so becomes d°, and, simulta-
neously, increases its coordination number by two, becoming octahedral.
The linking of these two changes is signalled by the name given to this
type of reaction—oxidative addition reactions. A typical example involves
Vaska’s compound trans-[Ir(PPh;),(CO)CI1] (Fig. 4.2).

Molecules such as H,, O, and SO, can replace HBr in this reaction, to
give complexes which readily lose these molecules again. The tendency to
undergo oxidative addition reactions increases, roughly, from top right to
bottom left in the d® series (Fig. 4.3).

2 In polarography the potential between two electrodes in a solution is continuously varied
and the consequent variation in current recorded. At certain potentials electrolytic reduction
of species in solution occurs and the current rises. Because the cathode is very small (either a
flow of mercury drops through a capillary or a thin platinum wire) the increase in current
is diffusion-limited (and so concentration-dependent) and a characteristic step-like plot of
current against voltage results, one step for each reduction process. The voltage corresponding
to the mid-point of the riser part of a step is a characteristic of the reduction process and is
termed the half-wave potential. The height of each step is a measure of the concentration of the
corresponding species in solution.
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Inevitably, oxidative addition reactions are not confined to these elements,
these valence states or, indeed, to these geometries but it is for them that
this type of reaction is most important.

Reactions which are, effectively, the reverse of oxidative addition also
occur. Not surprisingly, they are known as reductive elimination reactions.
The decomposition of complexes of Vaska’s compound with molecules such
as H, and O,, mentioned above, provide obvious examples. Another is
provided by elimination of CH, from some phosphite ester complexes of
cobalt containing H and CH3 as ligands, in which the cobalt may formally
be regarded as changing from d’, Co" to d°, Co®:

cis-[H(CH3)Co(P(OMe)3),4] — CH, + [Co(P(OMe)3),]

4.2.4 Thermal dissociation reactions

By controlled heating, some complexes can be degraded to others, a volatile
compound being expelled. For example, when it is heated, ordinary blue
copper(II) sulfate loses water in a stepwise manner until above ca 220 °C
the anhydrous sulfate is left. The first water molecule to be lost comes from
the lattice; subsequent ones come from the coordination sphere of the Cu"
and are replaced by sulfate oxygens:

96.5 °C 102°C
CuS0,-5H,0 ——» CuS0,-4H,0 —— CuS0,-3H,0
115°C 220°C
— 5 CuS0,-H,0 ——» CuS0,

Many other complexes behave similarly and heating (usually under vacuum)
to a carefully controlled temperature is a useful preparative method.
Hydrogen halide elimination, for example, is a reaction which occurs readily
for almost any complex which has the electron-donor atom attached to a
hydrogen (e.g. H,O, ROH, NH;, R,NH) and the electron acceptor attached
to a halogen (e.g. BF;, SnBr,, FeCl;). So, in the preparation of a complex
such as the first given in this chapter, [BF;(NH;)], the product readily
eliminates hydrogen fluoride to give a series of compounds and ultimately
the polymeric solid BN. Another very common thermal reaction is the
expulsion of one or more neutral ligands (as in the case of copper(ll)
sulfate), with a consequent reduction in the apparent coordination number
of the central atom. In fact, quite often, some previously monodentate ligand
(generally an anion) becomes either bidentate or a group that bridges two
metal atoms (the acetate and halide anions, respectively, exemplify these two
cases). Another possibility is that an anion, initially non-coordinated,
becomes attached to the metal. The actual coordination number of the
central atom is seldom reduced. Examples have already been given in Section
3.4.6.

Heating to a relatively high temperature can lead to the complete
dissociation of the complex species. For example

K[BF,] — BF; + KF
and
BrF,[RuFs] — BrF; + RuFg

In the absence of some other suitable cationic species, complex fluorides
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containing the [BrF,]* cation are formed when transition metals are
dissolved in BrF;. Thermal decomposition of these salts is a convenient way
of making small quantities of many fluorides.
Another example of a complex prepared by a thermal dissociation
reaction is the preparation of cis-[Cr(en),Cl,]* by heating [Cr(en);]Clj:

210°C
[Cr(en);]Cl; —— cis-[Cr(en),Cl,]Cl + en

The temperature of reaction has to be carefully controlled to achieve
maximum yields; the reaction is complete in 2-3 h. In an analogous reaction
trans-[Cr(en),(SCN),]SCN is prepared by heating [Cr(en);](SCN); to
130 °C.

Two experimental techniques have been much used to study the prepara-
tion of complexes by the thermal dissociation reactions.

Differential thermal analysis (DTA)

Two cells, one containing the complex under study and the other a similar
amount of a thermally stable material, are slowly heated, each receiving an
identical amount of thermal energy. The temperature difference between the
two cells is measured and remains essentially zero until thermal dissociation
of the complex occurs. Both the temperature (at a particular pressure, usually
atmospheric) and enthalpy of dissociation may be obtained by this technique.

Thermogravimetric analysis (TGA)

The weight of a complex is measured as its temperature is raised. When
thermal dissociation occurs the weight loss due to any volatile ligand expelled
is measured. The empirical formula of the product may usually be deduced
if the identity of the ligand expelled is known. Both dissociation pressure
and temperature are recorded as they are, of course, interrelated.

4.2.5 Preparations in the absence of oxygen

It has been seen earlier that it may be necessary to work in the absence of
water to prepare some complexes. An even wider range becomes accessible
if we work in the absence of air—much of the field of organometallic
chemistry, for example. Not that it is impossible to prepare organometallic
compounds in the presence of air—Zeise’s salt K[PtCl;(C,H,)]H,O, the
first organometallic compound made, was prepared with no attempt to
exclude air. However, it must be admitted that in this preparation the ethene
itself serves to provide an inert atmosphere. Nowadays, it is prepared by
bubbling ethene through a solution containing [PtCl,]>" in strong hydro-
chloric acid (best with a trace of Sn" as catalyst) for a few hours. Rather
similar is the cyclooctene, CgH,,, complex which serves as a precursor for
many complexes of rhodium(I), [RhCI(CgH,,),],, made by allowing com-
mercial hydrated RhCl, to stand for a week with cyclooctene in 2-propanol
(which is oxidized to acetone in the reaction) in a flask filled with nitrogen.
Such one-step reactions are the exception rather than the rule. More
commonly, it is necessary to carry out a series of successive reactions and
procedures, such as refluxing, distilling, crystallization, filtration and washing
in an inert atmosphere. The most evident way of doing this is to work in an
inert-atmosphere filled glove box using conventional apparatus. This is both
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possible and common, but the volume of a typical box is such that it is rather
difficult to reduce and maintain the oxygen concentration at an acceptable
level. There exist sophisticated boxes with recirculation of the inert gas
through oxygen-removing trains and entrance ports which can be thoroughly
evacuated, but they are very expensive. At the other extreme, it has been
pointed out that it is possible to work with a cheap transparent plastic glove,
in which the fingers are used to store and mix reagents, nitrogen being passed
in through the sealed-off wrist.

Many workers make use of so-called Schlenk tube techniques. This is the
name given to a whole series of simple, but versatile, devices that enable
reactions to be carried out in an essentially closed apparatus of low volume.
Examples include the use of septum caps (those used to close the vials
containing materials used for medical injections). Solvents can be taken in
and out of the apparatus using hypodermic needles; nitrogen can be passed
in through such a needle and allowed to escape through another; on removal
of all needles the apparatus is automatically sealed. Filter sticks are
used—glass tubes with a glass sinter sealed halfway down. If one is on top
of the solution to be filtered, inversion of the apparatus (perhaps with gentle
use of nitrogen gas pressure) leads to filtration. Solids can be placed in a
limb of a tube which has a bend of ca. 90° in its middle and which is held
with the angle at the top. When the solid is needed for reaction then, if the
solid is in the left-hand limb, rotation by 180° about the right-hand limb
causes the contents of the two limbs to mix. Tubes are interconnected by
taps (often greaseless) so that alternative routes exist for gas and/or liquid
flow and add to the versatility.

An example of a series of reactions involving Schlenk tubes is the
preparation of (CH3)NGaH ;. GaCls is dissolved in diethylether and slowly
added to a slurry of LiH in diethylether through a greaseless valve. After
reaction, the product is filtered through a filter stick. To the filtrate
(Li[GaH,] in diethylether) is added [(CH;);NH]CI by the rotating arm
technique. After vacuum removal of the solvent, the product is separated by
vacuum sublimation from the reaction mixture.

Reactions involving metals, either bulk or, more commonly, finely divided,
are an entry point for organometallic complexes of transition metals.
Examples of direct reaction of a metal are

Ni 4+ 4CO — Ni(CO),
and

Fe + 5CO — Fe(CO)g

It should be noted that classical complexes of low-valence states can also be
prepared from metals; thus, the simplest starting point for the preparation
of pure complexes of chromium(II) is by the action of an oxygen-free acid
on the pure metal in a inert atmosphere. More commonly, however, a
reduction reaction is used in the preparation of organometallic complexes
because in them the metal is usually in a low formal oxidation state.
Examples of reduction reactions include those in which gaseous carbon
monoxide is both reducing agent and reactant. For instance, when CO is
passed over solid RhCl; at about 100° C, the chlorine-bridged dimer



64 | Preparation of coordination compounds

[Rh(CO),Cl1], sublimes into the cold parts of the reaction vessel:
2RhCl3 + 6CO — [Rh(CO),ClI], + 2COCl,

This process can be carried further, in which the product reacts with carbon
monoxide in hexane in the presence of a mild alkali:

2[RN(CO),ClI], + 6CO + 2H, — Rh,4(CO)y, + 2C0, + 4HCI

The product is a black crystalline material. The molecules consist of a
tetrahedron of rhodium atoms, each rhodium atom being bonded to the
other three rhodiums and to three CO ligands, [Rh(CO);], (this compound
will be the subject of discussion in Chapter 15).

This same pattern was noted earlier, when describing the preparation of
Cr'™ complexes from chromates: that, if at all possible, a ligand is also
used as reducing agent. Other examples are the reaction of rhodium
trichloride with triphenylphosphine in hot ethanol to give Wilkinson’s
compound, [RhCI(P(C¢H5)3)3]:

RhCl + 4P(CgHs)s — [RACI(P(CgHs)3)s] + CloP(CsHs)s

This product is important in organic chemistry because it reversibly absorbs
H, under normal laboratory conditions and catalyses the hydrogenation of
alkenes and alkynes. Another example is the reduction of the [OsClg]?~
anion, which is commercially available, with hydrazine hydrate, a liquid,
without additional solvent, to give complexes with one and two coordinated
N, molecules:

5(NH,4), [0sClg] + 13NH,NH,H,0 —
A[0s(NHs)5(N,)ICl, + cis-[0s(NHg) 4 (N,),1Cl, + 20HCI + 13H,0

A very important compound in Ni® chemistry is bis(1,5-cyclooctadiene)-
nickel(0) for the ligands are readily displaced. It is made by the reduction
of [Ni(acac),] by an aluminium alkyl, usually Al,Ets, in the presence of
1,5-cyclooctadiene using toluene as a solvent. The reaction occurs at room
temperature or below, the product precipitating. An example of the use of
this compound in synthesis is in the preparation of Ni(PPh;),; the latter is
formed at room temperature or below by the addition of triphenylphosphine
in hexane.

As this last synthesis illustrates, the majority of reactions of transition
metal organometallic compounds involve a starting material which is already
in a low-valence state. As another example, hexacarbonylchromium reacts
with arenes in a high-boiling solvent to give complexes with a n-bonded
benzene ring:

Cr(CO)g + CgHg — [Cr(CO)3(CgHg)] + 3CO

It is often a characteristic of organometallic reactions that they lead to a
wide variety of products. For example, Co,(CO)g reacts with CS, to
give about 20 identified products; Fe(CO)s reacts with diphenylethyne,
(C¢H;5)C=C(C4H3), to give about the same number. In such cases chromato-
graphic methods are used to separate the individual component products.
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Main group organometallics are usually prepared from the corresponding
Grignard, lithium or mercury organic species,

EtMgBr
[SnCl,(Et,0),] —— SnEt,
Et,0
2Al + 3HgEt, — Al,Etg + 3Hg

and similar methods are used for some transition metal compounds; the
product in the example below is only stable at low temperatures:

3LiMe + WClg » WMeg

(it is found to be important to use a 3:1 reactant ratio; the yield is only ca.
50%). Closely related are reactions in which a hydrocarbon, such as
cyclopentadiene, CsHg, which has an acidic hydrogen (loss of a proton gives
the CsHy anion, with an aromatic n system), reacts either with a metal or
strong alkali to give the anion. This is then commonly reacted with a metal
halide or metal halide complex:

THF
2C5Hg + 2K ———— 2KCsHg + H,
4KC4Cs + UCH, — U(CgHs), + 4KCI

Sometimes, the steps are contained within one reaction mixture, as in the
preparation of ferrocene:

2KOH + 2C5Hg + FeCl,-4H,0 — Fe(CgHs), + 2KCl + 6H,0

4.2.6 Reactions of coordinated ligands

It is almost a tautology to say that substitution reactions of inert complexes
proceed slowly at room temperature; however, there are exceptions. For
example, as has been mentioned, addition of acid to the [Co(NH;)sCO;]*
cation leads to the rapid evolution of carbon dioxide and formation of the
complex ion [Co(NH;)sOH,]13". Indeed, a whole series of facile interconver-
sions exists between species containing Co-OH,, Co—OH, Co—CO;, Co-SOs3,
Co-NO,, and similar bonds. The explanation for this non-typical behaviour
is that in none of these reactions is a Co—O bond broken (although, because
they are commonly written as above, it is not immediately obvious that all
of them contain Co—O bonds). Note that the NO; anion may also bond
through the nitrogen (see Section 3.4). It was mentioned earlier that in the
reaction of [Co(NH;)sOCO,]* with acids, it is the O-C bond that is broken,
not the Co—O. Another reaction of the same type is:

HNO2
[Cr(NHg)g(H,0)]3* ———— [Cr(NH3),(ON0)]2*

and a rather unusual reaction which proceeds in aqueous solution is

H20
[CoNH3)sNCS]?* ——— [Co(NHy)]**
(the mechanism of this reaction does not seem to be known).
So far we have considered only reactions of an atom directly bonded to
a transition metal. There has been much work on the more remote
modification of a ligand. One relatively simple complex which has been the
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FIg. 4.4 Bromination of the ligand in
trisacetylacetonatochromium(lll).
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subject of extensive study is trisacetylacetonatochromium(III). The action of
bromine in acetic acid leads to bromination of the acetylacetone ring (Fig.
4.4).

It is reported that the N-halosuccinimides are the best agents for
halogenating coordinated acetylacetonate rings. All the available evidence
indicates that it is the coordinated ligand which reacts, and not any free
ligand in equilibrium with it. Examples of other groups which have been
used to replace the active hydrogen atoms in metal acetylacetonates are
-NO,, -NH,, -N7, -CHO, -COCH, and -SCl.

An important group of reactions of coordinated ligands which does
involve the metal-ligand bond are the so-called insertion reactions. They are
often of importance in the catalysis of organic reactions by transition metal
complexes, although insertion reactions have a history dating back to the
mid-19th century in the reaction

SbElg + 2C,H, — ClzS(CHCHCI),
More relevant to the present topic is the reaction
CH3Mn(CO)5 + CO — CH3C(0)Mn(CO)s

Isotopic and kinetic evidence have demonstrated unambiguously that the
CO which enters the Mn—CH bond is one of those already attached to the
manganese; there is an equilibrium:

CH3Mn(CO)5 == CH5~COMN(CO)

Another important, but often difficult to prove, example is the insertion of
an alkene into a M-H bond to give an alkyl:

CH,=CH,
M—H — M-CH,~CHj

Such reactions of coordinated ligands are important in the organometallic
chemistry of transition elements; they may proceed in the opposite direction,
an alkene hydride being formed from an alkyl. A trick widely adopted to
prevent this reverse reaction is to replace the f hydrogens by alkyl
groups or the f carbon by a silicon (with alkyl groups attached).

Another example is provided by the attack of alkoxide ions on coordin-
ated CO to give M—CO,R groups:

[Ir(CO)53(P(CgHs)3)2]* + CH30™ — [Ir(CO),(CO,CH3)(P(CgHs)3)2]

Often, insertion reactions involve, formally, H* or H™ and may be difficult to
distinguish from alkene insertion reactions of the type given above. Examples



Fig. 4.5 Protonation of a g-allylic complex.

Fig. 4.6 Reaction of coordinated ligands to
prepare cobalt supulchrate.

Fig. 4.7 Condensation of an amine and a
carbonyl to form an imine.
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are given, firstly, by the reaction of the cobalticinium cation with (boro)-
hydride,

[(7°-CsHs),C0]" + H™ — [(#°-CsHs)Coln*-CsHg)]

and, secondly, the protonation of g-allylic complexes (Fig. 4.5).

+
H CH3

\C/
H+
CsHsMo—CH;—CH=CHy; — CsHsMo — CHa
(CO)3 (CO)3

A quite different, but very important, class of reaction of coordinated
ligands is in the synthesis of new coordinated ligands. An excellent example
is provided by the synthesis of cobalt sepulchrate (cf. Table 2.5) from
[Co(en);]** by the action of formaldehyde and ammonia in a basic medium
(aqueous lithium carbonate), the reaction taking about 2 h to reach com-
pletion at room temperature (Fig. 4.6). The reaction occurs without rupture
of the Co-N bonds. It seems that nucleophiles with the same Cj,, local
symmetry as ammonia may replace it in this synthesis—so CH,-NO, leads
to cages with =C-NO, apices; the NO, group can be reduced, opening the

N 3+

3+ r[ w

N, N\ /N . N, N\ /N
( Q:o > + BCH0 + 2NH3 Li2CO3 < Q:o >

XN\ XN\

NN\XN N N'N\N N
)

v = —CHy;—CHy—
way to an extensive study of the chemistry of one group of coordinated
ligands. Syntheses of the type just described are often called template
reactions for an obvious reason—the metal together with the ligands already
in place form a template for the ligand to be created.

A rather important group of complexes which may also be made by
template synthesis are those of imines. Imines are formed by condensation
of an amine and a carbonyl (Fig. 4.7). The amine can be coordinated to a
metal and the above reaction still proceeds, the amine (or, more usually,
diamine) remaining coordinated. Typical is the reaction between bisethylene-
diaminenickel(II) chloride and acetylacetone. An aqueous solution of the
mixture, to which a few drops of pyridine have been added, is refluxed

\
C=0+Hy—NR" ——=  C=NR"
R R
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FIg. 4.8 Reaction between
bisethylenediaminenickel(ll) chloride and
acetylacetone.
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for 2 h to give the product. The reaction is probably between [Ni(en),(py),]**
and the acetylacetone (Fig. 4.8). Template syntheses are finding particular
applicability to the synthesis of large, sometimes complicated, ligands. The
improvement in yield of ligand, compared with an organic synthesis in the
absence of metal, is sometimes quite spectacular.

Many reactions are known in which the presence of a metal ion influences
the products of a reaction and the explanation for this may well lie in the
different reactions of free and coordinated ligands. Peptide chemistry is one
field in which this may prove to be of great importance.

4.2.7 The trans effect

The ligand arrangement around an atom after a substitution reaction may
or may not be similar to that of the starting material, even for inert
complexes. An example of such a change is provided by the formation of
trans-[Cr(en),(NCS),]* on heating [Cr(en);]** with solid ammonium
thiocyanate at 130 °C. Similarly, cis-[Co(NH;),(H,O)CI]SO, is converted
into trans-[Co(NH,3),Cl,]JHSO, by the action of a mixture concentrated
hydrochloric and sulfuric acids at room temperature.

The chemistry of platinum(II) and, to a lesser extent, those of Pd" and
Au'™ (all three form d® square planar complexes) is therefore noteworthy in
that the major product of a substitution reaction can be predicted with
confidence. This is because the lability of a ligand bonded to platinum(II)
is largely determined by the group which is trans to it and not by
the nature of the ligand itself. Although this trans effect is not fully
understood its operation is reasonably reliable and renders the synthesis of
platinum(II) complexes, in particular, a class on its own. The stereochemistry
of the products of reactions of platinum(II) complexes can often be varied
by altering the order of reagent addition. An example of this is provided by
the synthesis of cis- and trans-[Pt(NH;)(NO,)Cl,]~ starting from [PtCl,]*~
(Fig. 4.9).

Ligands can be arranged in a series depending on the relative magnitude
of the trans effect which they exert. In view of the above discussion, it would
be expected that different sources would agree on the sequence of ligands
which corresponds to increasing trans effect. In fact, there is little unanimity,
some lists appearing quite aberrant. The following sequence, however, is
largely accepted:

F~"~OH™ <NHz<py<Cl~ <Br  <I” <-SCN~ = -NO; < thiourea
<PR3x~AsR3 @ H™ <COxCN~™ = C,H,

One can see from this list the difficulty of proposing a general explanation



Fig. 4.9 The sequence of reagent addition can
be altered to selectively provide cis and trans
products from the same starting complex.
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Cl————«l Cl—————NO3
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TNH3
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trans

for the trans effect. Almost all those ligands exerting a strong trans effect are
n bonding, but a 7 bonding explanation does not explain the position of H ™~
(a polarization model, based on the unique characteristics of the H atom is
usually added to cover this). However, there seems no explanation of why
the effect is largely confined to Pt", perhaps along with Pd" and Au™—
certainly, neither the 7 bonding nor the polarization model is metal-specific.
It could be that the notion that the trans effect is largely confined to Pt" is
incorrect; it is just that other elements have not been so extensively studied.
Although this point has substance as far as Au™ and Pd" are concerned, it
does not seem to have general validity. Above all, it must be remembered
that the trans effect is a kinetic effect, associated with bond breaking and
formation. It could be more a phenomenon of the reaction pathway (an
activated complex pathway, an activated complex or transition state) than
the ground state. In Chapter 14 the kinetics of the reactions of square planar
Pt" complexes will be the subject of some discussion, a discussion that will
include the trans effect.

4.2.8 Other methods of preparing coordination
compounds

The title of this section rather overstates its contents. One could write
endlessly on the subject. Rather, its purpose is to emphasize the variety of
techniques available but which have not been mentioned elsewhere in this
chapter. Ways of avoiding decomposition or, rather, reaction, in the presence
of oxygen and water have been mentioned. No less important is the ability
to avoid thermal decomposition. There are two related techniques available
here. In both, reactants are cocondensed on a cold surface, cooled to anything
from the temperature of liquid helium upwards. If the spectroscopic prop-
erties of the unstable species are the point of interest then the reactants are
condensed along with an inert diluent, typically a noble gas such as argon,
to give the product in a matrix of the noble gas—the so called matrix-
isolation technique. If the preparation of large quantities is of more interest
then no matrix is used. Typically, metal atoms are evaporated into the high
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vacuum chamber that holds the cooled surface, typically cooled with liquid
nitrogen. Many heating techniques—resistive heating, induction heating,
laser ablation are a few—may be used to generate the metal atoms. Along
with the metal, but perhaps in alternate pulses, are condensed the chosen
ligand(s). By such techniques tin carbonyls, compounds unstable at tempera-
tures well below room temperature, have been prepared and characterized.
Paradoxically enough, such metal atom synthesis methods can also provide
a convenient high yield route to compounds which are stable at room
temperature; commercial equipment is available for those wishing to work
on a large scale. A simple version is also available for use in student
laboratories. It is methods such as these which are being used to prepare
fullerene, Cg,, and related species. This soccer-ball-like molecule can encap-
sulate some ions—Sr?* and La®* are two examples—if suitable sources for
them are present in the carbon rods from which the fullerene is prepared
(they are evaporated by an electric arc struck between them to give a low
yield of fullerenes). The bonding is these so-called endohedral molecules is
discussed in Chapter 10.

Photochemical methods, usually irradiation with ultraviolet light from a
mercury discharge lamp, but sometimes visible light too, have long been used
in the preparation of coordination compounds. They depend on the fact that
the chemistry of an electronically excited molecule is different from that of
the same molecule in its electronic ground state. However, this can only
be exploited synthetically if the excited state lives long enough for chemistry
to be performed on it—and most excited states have very short lifetimes
because excited molecules give up their extra energy to other molecules in
a wide variety of processes. It is likely, therefore, that the success of
photochemical methods depends, in part, upon there being an insulated step
down the ladder of energy changes that lead to deactivation; a level of long
lifetime, from which deactivation is slow. Such levels exist—lasers depend
on them for their action—but it is difficult to predict them and so to predict
whether photochemical methods will lead to new compounds or just to the
destruction of those already present. One compound which is always made
photochemically is the carbonyl Fe,(CO),, by the reaction

hv
2Fe(C0)s —— Fe,(CO)g + CO

In recent years it has become clear that there exist complexes which
contain the H, molecule as a ligand; not two separated H atoms, but H,.
One method by which such complexes might be prepared is by the action
of H, on suitable coordination compounds. Unfortunately, there is a
problem—the solubility of H, in most solvents is rather low, so high
pressures of H, are needed. Not surprisingly, most workers would prefer to
work with low pressures of H, than with high. It is here that the ingenuity
of experimentalists becomes apparent. Supercritical fluids have properties
which in some ways resemble those of liquids. For example, they can act as
solvents for coordination compounds, and in some ways they resemble gases
in that they are miscible with gases, usually over the entire concentration
range. Here, then, is a solution to the problem—study the reaction of
coordination compounds with H, using supercritical fluids as solvents. The
pressures needed to maintain suprecriticality are often modest—a few tens of
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atmospheres for carbon dioxide or xenon, for instance. At the time of writing,
this is an area in its infancy but it could lead to important new developments
in the preparation of coordination compounds.2

Finally, the solid state. The preparation of solid state compounds by high
temperature synthesis is a long established method. Unfortunately, the
available techniques have been rather limited—grind the reactants together
to a fine powder, heat, regrind, reheat and so on until uniformity is
reached—is a typical procedure. But interest in the solid state is growing
rapidly. For instance, some simple inorganic materials show long-range
structural correlations which are difficult to understand or reproduce (for
instance, despite the simple picture presented in most introductory inorganic
textbooks, ZnS has been found to crystallize in several hundred different,
but related, crystal structures, although there is no known method of
controlling which form is produced). Again, the discovery of ceramic
high-temperature superconductors, (a topic which is dealt with in Appendix
10) incorporating Cu™, a rather unusual valence state, has sparked off a
search for similar novel properties of solid state materials containing metal
ions in unusual valence states.

There have been developments in synthetic methods. First, related to the
‘heat and grind’ method, gel/colloid methods of producing reaction pre-
cursors are giving much more control and more reproducibility of the final
product. Secondly, hydrothermal methods are finding utility. In these,
reactions are carried out at high temperature and pressure conditions
in the presence of a solvent (not necessarily water, although this has been
most commonly used). For instance, Fe"Fe}'Fg- H,O was prepared in this

way using liquid HF as a solvent.

2 See M. Poliakoff, S. M. Howdle and S. G. Kazarian, Angew. Chem., Int. Ed. (1995), 34, 1275.
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Questions

4.1 The cation [Mo(H,0)s]** can be prepared by dissolving
K;3[MoClg] in 0.5 M p-toluenesulphonic acid (which behaves
similarly to the triflic acid discussed in the text) and allowing
the solution to stand at room temperature in the absence of O,,
for a day. Suggest why this sequence is more successful than
the action of H,O on K;[MoClg].

4.2 Heating cis-[Co(en),C1,]Cl in triflic acid, CF;SO;H (TH),
at 100 °C for 3 h gives cis-[Co(en),T,]T. Surprisingly, it was
found that trans-[Co(en),Cl1,]Cl also gives the cis product
when heated with TH. Suggest a possible synthetic exploitation
of this observation.

4.3 In the preparation of the complexes Cr(CO);X (X = sul-
fur donor ligand) the recommended method is to UV-irradiate
a solution of Cr(CO), in THF (tetrahydrofuran) in an oxygen-
free apparatus to give the complex [Cr(CO)s(THF)]. This is
followed by reaction with the ligand X. Direct reaction between
Cr(CO)¢ and X generally leads to sulfur-bridged complexes.
Explain the thinking behind this route to Cr(CO);X.

4.4 One procedure for the preparation of Ir,(CO),, is to start
with commercially available Na,[IrCl¢] in ethanol and reduce
it to the [IrClg]*~ ion with I". Gaseous CO is then passed
into the solution, and together with the addition of solid
K,CO;, leads to the product, a black solid. Give a retrospective
rationale of this sequence.




Stability of coordination
compounds

5.1 Introduction

The statement that a compound is stable is rather loose, for several different
interpretations may be placed upon it. Used without qualification it means
that the compound exists and, under suitable conditions, may be stored for
a long period of time. However, a statement such as ‘a compound is stable
in water’ may mean one of two things, either that there is no reaction with
water which would lead to a lower free energy of the system (thermodynamic
stability) or that, although a reaction would lead to a more stable system,
there is no available mechanism by which the reaction can occur (kinetic
stability). For example, there may not be enough energy available to break
a strong bond, although once broken it could be replaced by an even stronger
one. As we have seen, boron trifluoride forms a stable complex with
trimethylamine, [BF;(N(CH3),)]. A similar complex is formed with trisilyl-
amine, [BF;(N(SiH;);)], which is thermodynamically unstable with respect
to the reaction

[BF3(N(SiH3)3)] — (BF,)N(SiH3), + SiHzF

The complex [BF;(N(SiH;);)] can be prepared and stored at low tempera-
tures (= — 80 °C) since the decomposition then proceeds very slowly—at this
temperature the complex is kinetically fairly stable. At room temperature
the complex is kinetically unstable and the rate of decomposition is much
greater. This is the key distinction made in Chapter 4 between kinetically
inert and kinetically labile complexes. There it was pointed out that the species
which crystallizes from a solution of a mixture of related labile complexes
depends not only on the cation and ligand concentration but also on the
solvent and crystallization temperature. Although it may be a relatively
minor component in the solution, the least soluble complex is probably the
one which crystallizes. In the solution there is a series of equilibria such that,



74 | Stability of coordination compounds

if one component crystallizes, the concentrations of the others also change.
This chapter is devoted to a discussion of the stability constants which
characterize such equilibria.

5.2 Stability constants

When a complex is formed by the reaction®

M+La2ML
the equilibrium constant K, for the complex containing a single ligand will
be
_ [ML]

M1

where, for the moment, activity coefficients of unity have been assumed. If
ML adds a further molecule of L,

1

ML+ LML,

then the equilibrium constant for the complex containing two ligand
molecules is

ML;]

27 MO

In general, the equilibrium constant for the formation of the complex ML,
from ML, _, will be

K= ML,]
[ML, -1 ][]

The equilibrium constants K, K, ..., K, are known as stepwise formation
constants. Alternatively, one may consider the equilibrium constant for the
overall reaction

M +nL=2ML,
as
ML)
o MI[L"

B, is known as the nth overall formation constant. B, is related to the stepwise
formation constants K, ..., K, by

Ba=Ky x Ky x -+ x K,
That is
pn=HKl
=1

1 Throughout this chapter we shall often not specify the charges on the species in reactions
or equilibria. Square brackets are used to indicate both the concentrations of complex species
and the species themselves. It will be clear from the context which is intended.
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Table 5.1 Typical stability constant data for monodentate ligands. All values are logarithmic so, for the Sn?*/Cl~ system,

log K, = 1.51
Metal ion

Sn2 +

Ligand

cr-
cr-

NH; (30 °C)
NH (30 “C)
i

-

CN-

ON-

Stability constants

K, = 151
K, = 6.1
K, = 2.67
K, = 3.99
K, = 5.52
K, =198
Be =24
Bs =31

K, =0.73 Ky=—0.21 K,= —0.55

K, = 4.6 Ky = 2.4 Ky =26 Ks=—21 Kg=—2.1

K, = 2.12 Ky = 1.61 K, = 1.07 Ks = 0.63 Ks= —009 fs=8.01
K,=334  K,=273 K, =1.97

fo =9.04 Bs=11.64 B, =13.4 Bs = 14.7 fs = 15.5

po =3.15 Bs =3.81 Ba=3.75 s =3.81

These data refer to 25 “C unless otherwise stated and to zero ionic strength. As a comparison, the data for Ni2*/NH; (30 °C) in 2 M NH,NO; are:

K, =2.78

Ky=227 Ky3=165 K, =131 Kg=0.65 Ke=0.08

Notice, particularly, the effect of the change on Kg. The entries included in this table have been chosen to illustrate the variety of formats that are
encountered and yet to be internally self-explanatory. As an example, the statement that K; = 1.51 for the Sn2*/CI- system is to be interpreted as

[SnCI*]

=105 = 32,6 Lmol~*
[sn?*][C17]

There are the same number of overall formation constants as stepwise
formation constants:

b1 =Ky; B =Ky X Ky; Bz =Ky x Ky x K3 etc.

Some typical stability constants are given in Table 5.1. A point to
remember is that when values of K,,, K, , etc. are similar then an equilibrium
solution will contain mixtures of the complexes (the Pb2* /I~ case in Table
5.1); when K,, K, values are very different then it is possible to obtain
solutions containing, essentially, only a single complex. Generally speaking,
K, > K, > K; etc. but, as Table 5.1 illustrates, exceptions occur. So, notice
in this table the expression of the fact that the common anionic chloro
complex of Pd2* is [PdCl,]?".

5.3 Determination of stability constants

In order to determine the values of n formation constants, n + 2 independent
concentration measurements are needed. These can then be used to obtain
the concentrations of the n species ML, ML,, ..., ML, and also those of M
and L. Two pieces of information are at once available; we (should!) know
the quantities of M and L (or alternative starting materials) used in the
measurement. This means that n additional pieces of information are needed.
If it is certain that only one complex, of known empirical formula, is formed,
then a measurement of the concentration of the uncomplexed M or L is
sufficient to determine the formation constant. This measurement can be
made in many ways: by polarographic or emf methods (if a suitable reversible
electrode exists), by pH measurements (if the acid dissociation constant of
HL is known) and by many other techniques, including the whole galaxy of
spectroscopic methods. A recent source book for stability constant data (that
by Connors, see Further Reading) distinguishes over 30 methods.
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Fig. 5.1 The experimental sequence is shown
by the solid circles on the titration curve. A
protonated ligand is titrated against NaOH to a
suitable pH. Metal ion is added (indicated by
[M3J) and the titration continued until the same
pH is regained.

For the more general case where more than one formation constant is to
be determined, the problem is usually more difficult. For inert complexes it
may be possible to separate, and separately obtain the concentrations of,
the various complex species. In this way Bjerrum was able to determine the
six stability constants within the [Cr(H,0)¢]**, [Cr(H,0);SCN]?*, ...,
[Cr(SCN)¢]®~ series. However, this is a potentially unreliable method and
has been little used. Some methods of tackling the general problem will now
be indicated. The variants are many for this is a field in which considerable
ingenuity has been used in the design of experiments and in the analysis of
experimental data. As an example consider a ligand for which the species
H,L, HL™ and L?~ all exist. The metal ion M and protons may be regarded
as being in competition for L. If we titrate H,L against standard NaOH
solution we obtain a pH-volume curve of the form shown dotted in the
upper part of Fig. 5.1. Now add a known amount of M. Some H* will be
displaced. If the mixture is again titrated with NaOH the curve shown dotted
in the lower part of Figure 5.1 is obtained. Compare the titres [NaOH],
and [NaOH], at the same pH (shown dashed in Fig. 5.1). Now, the H*
liberated by the added M is dependent on the amount of ligand bound to
M, ligand which was previously protonated, the average number of H* ions
per ligand being ny (ny = 2 for H,L). We have

[H* ion liberated] = [L bound to M] x ny, = [NaOH], — [NaOH],

So,

— [NaOH
[L bound to M] = [NaOH]Z—[a]_l

Ny
Define 71 as the average number of ligand molecules bound to M, so
he [L bound to M] _ [NaOH], — [NaOH],
M] ny[M]
all the quantities in the right hand side expression are known.

pH —
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By such measurements the average number of ligand molecules complexed

with each metal atom, 7, is obtained. Although it is always true that i

indicates the most abundant species, i.e. i = 3 means that the concentration

of ML; is a maximum provided that equilibrium has been established, it

does not immediately tell us anything about the other species. However,

measurements on a variety of solutions with different 77 can. We first note

that 7 is related to the composition of the mixture of complex ions by the
equation

N

1ML + 2[ML] + -~ + N[MLy]  n=

M]+ [ML] + [ML2] + -+ + [MLy] M1,

n[ML,]
1

3

where the complex species are ML, ML,, ..., MLy and [M], is the total
concentration of metal ion, complexed and uncomplexed, in the solution.
Now,

N N
Mle= ¥ [ML,]=[M]+ 3 [ML,]
and
[ML,] = B,[MI[L]"

so, substituting for [M], and [ML,] in the equation above,

N N
i Zo nB,[MILL]" Zo np,[L]"
5= n= __n=

N N
M] + ;0 BIMIL])" 1+ ;0 Bn[L1"

If a series of solutions, with varying 7, is prepared and [L] measured in each,
then values of §,,n =1, 2,..., N, must be chosen so that the above equality
holds. This may be done, for example, by plotting i against [L] and
determining the fs by an iterative, best fit, method, most readily carried out
using a computer. A large number of programs exist; a book detailing many
of them is referenced at the end of this chapter. One further point: do not be
deceived by the fact that there is no explicit dependence of 7 on [M] in the
above expression. [L] is the free ligand concentration and its value is
dependent on [M].

If it is easier to measure [M] than [L], a different but related relationship
is used. We know that

[MJe _ [M] + [ML] + [ML] + - + [MLy]
M) M)

1
=™ ([M] + By IMILL] + Bo[MI[LI? + - - + ByIMI[L]™)

=1+ pa[L] + Bo[L)% + -+ - + Bu[LIY

that is,

M1, N
—t-1 "
M + Zo Bn[1]
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If both [M] and [L] can be measured, keeping [M], constant, but changing
the total ligand concentration for each measurement, this relationship leads
to a set of simultaneous equation in the fs (one equation for each
measurement) which provide a quick way of determining f values. Alterna-
tively, if [L] is made large, so that [L] » [M], it is essentially constant. By
varying [M], and measuring [M], the s may similarly be found.

A variety of optical methods is used to determine both complex formation
and stability constants. Job’s method of continuous variations is the best
known. A wavelength is chosen at which the complex in question absorbs
(usually in the visible or near-ultraviolet region). Several solutions are
examined, for all of which ([M], + [L],) is a constant, C, although each has
different values for [M], and [L],. Here, [L], is the total concentration of
ligand, free and complexed. Some measure of the intensity of absorption
(absorbance or optical density) is plotted against composition (usually
against the ratio [L],/([M], + [L],); that is, against [L],/C, a ratio we shall
call . As a simple example of the application of this method consider the
case where only a single complex is formed. If a single complex is formed
then we have an equilibrium

M + L e M,

Initial concentration (1-aC aC 0

Final concentration 1l-a—yC (x—n)C 3C
where, as follows from the definition of «,, «C is the initial concentration of
the ligand L, yC is the final concentration of the complex species ML, and
n is a fixed (but unknown) number, although we expect it to be an integer.
Explicitly, the equilibrium concentrations are

Ml=(1—a—yC

[L] = (@ —nyC

[ML,] =+C = B,[M][L]"
The values of [M], [L] and [ML,] all change with «; we wish to find the

relationship that holds when [ML,] is a maximum. To do this we differen-
tiate each of the above equations with respect to «. We obtain

oy _
de

atl _ e
do
d[ML,]

dx=

-C

M d[L
mu“(m aMI | P9 ]>
do do

To find the maximum in [ML,] we set the last equation to zero and
substitute the first two. The result is

[L1(—C) + [M](nC) =0

Introducing the explicit expressions for the concentrations [L] and [M] we
obtain

—(omax — M) + N1 — 2y —7) =0



Fig. 5.2 The Job's plot obtained when only one
complex species, ML,, is formed between M
and L.
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Absorbance —>

L | 1
00 0.2 04 06 08 1.0 [M]

10 08 06 04 02 00 [L]

that is,

n
1+n

Amax =
It follows that since a is known (from the composition with which the
solution was made up) then, if the visible or ultraviolet wavelength chosen
corresponds to absorption by the complex, then n can be determined from
the maximum in plot of absorbance against a. Conversely, if the absorption
at the chosen value is primarily due to either M or L, the minimum of the
absorbance versus a plot gives n. Figure 5.2 shows a typical Job’s plot for
a ML, complex (¢, = %). The rounding at the peak is due to the fact that
we have chosen to show the case of a not-very stable complex. The more
stable the complex the less rounded the peak; indeed, in favourable cases
the peak shape may be used to determine 8,. When more than one complex
is formed there will usually be a corresponding number of peaks in a Job’s
plot, but stability constants may only be determined from such a plot under
very special circumstances.

There is another method for the determination of stability constants
which, although not much used for this purpose, is of some value in reaction
kinetics as a method of estimating rate constants which cannot be measured
readily (see Chapter 14). Suppose the reaction

ML, + L > ML,y
proceeds by a one-step process. The rate of the formation of ML, is
k¢[ML,][L], where k; is the rate constant of this forward reaction. The
corresponding backward reaction is

ML,sq = ML, + L

and the rate of disappeance of ML, ., is k,[ML,, ], where k, is the rate
constant of the backward reaction. At equilibrium,

kML J[L] = Ky [MLy 44]
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Therefore,

Moad _,  _k
M arta n+1 = 7
ML, J0L) K

That is, if the rate constants k; and k, can be independently determined, the
corresponding stepwise stability constant is given by their quotient.

So far, activity coefficients of unity have been assumed, but they seldom
have this value. Consequently, the stability constants determined above
are not constants at all, but are a function of concentration. The simplest
way out of this difficulty is to determine the stability constants over a range
of reactant concentrations and then extrapolate to zero concentration (where
activity coefficients are unity). K, and f§, at zero concentration are true
thermodynamic equilibrium constants and are distinguished by the super-
script T, thus TK, and 7B, (although, to avoid complexity early in the
chapter, they were not designated as such in Table 5.1). More commonly,
activity coefficients are kept essentially constant by carrying out measure-
ments in the presence of a backing electrolyte which keeps the ionic strength
of the medium constant. Stability constants obtained in this way are
proportional to the thermodynamic stability constants, the constant of
proportionality being a function of the activity coefficients of the species
involved in the complex. Such stability constants are referred to as stoichio-
metric stability constants. Strictly, it is the determination of these which we
have discussed—they are given the symbols K, and f, which we have been
using.

5.4 Stability correlations

Two schemes have been proposed which systematize the available stability
constant data. In addition to data contained in the compilations given at
the end of this chapter, more qualitative evidence, based for example on the
results of displacement reactions, has been included in arriving at the
generalizations. Historically, the first scheme is that due to Chatt and
Ahrland who pointed out that electron acceptors may be placed in one of
three classes. Class-a metals, the most numerous, form more stable complexes
with ligands in which the coordinating atom is a first-row element (N, O,
F) than with those of an analogous ligand in which the donor is a second-row
element (P, S, Cl). Class-b has the relative stabilities reversed. It is not difficult
to extend the stability relationships to include heavier donor atoms. Class-a
behaviour is, then, typified by a stability order

F->»Cl">Br >1I~
O0»S>Se>Te
and

N> P> As > Sb > Bi

Class-b behaviour is rather more complicated and is typified by relative
stability constants in the order

F-«Cl” <Br~ <I™
O«S=x~Sex~xTe



Table 5.2 Classification of acceptor
species (after Ahrland, Chatt and Davies)

Class-a behaviour

H, the alkali and alkaline earth metals, the
elements Sc — Cr, Al - Cl, Zn - Br, In, Sb
and |, the lanthanides and actinides

Class-b behaviour
Rh, Pd, Ag, Ir, Au and Hg

Borderline behaviour
The elements Mn — Cu, Tl —» Po, Mo, Te,
Ru, W, Re, Os and Cd
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and
N « P> As > Sb > Bi

In addition, there is a third class of electron acceptor for which the stability
constants do not display either class-a or -b behaviour uniquely. The
class-a/class-b classification of some metal ions is given in Table 5.2 (normal
valence states are assumed).

Although not included within the above classification, there are some
other useful gradations which have been noted and are conveniently included
at this point. For a given ligand, corresponding stability constants of
complexes of bivalent ions of the first transition series are usually in the
natural order (sometimes called the Irving-Williams order):

Mn" < Fe" < Co" < Ni" < cu" > zn"

Copper(II) does not coordinate a fifth and sixth ligand particularly strongly,
and this order is incorrect for stability constants relating to CuLs and CuLg
complexes. Complexes of chelating ligands also tend not to follow this order.

For non-transition metal ions complex stability decreases roughly in the
order of ionic potential (or polarizing power), which is defined as (formal
charge)/(ionic radius). Thus, corresponding stability constants decrease in
the order

Li* >Na* >K* >Rb* >Cs*
Mg?* > Ca?* > Sr2* > Ba?* > Ra?*

and
AB* > Sc3* > Y3t > a3t

provided that the ligand is not changed from one ion to the next and subject
to the absence of size-matching conditions that will be discussed later in this
chapter. Similarly, for approximately constant ionic radius, the stability
constants are in the order of decreasing charge, thus,

Th** > Y3* > Ca?* > Na*
and
La®* > Sr?* > K*

Although the formal charge on an ion is a well-defined quantity, the actual
charge (which is not so well defined) may differ significantly from it—we
shall meet this point again in Section 7.5. Further, the concept of ionic radius
is also somewhat elusive. If determined from crystal structures—so that, for
example, the radius of CI™ is given by the point of minimum electron density
along the Na*—Cl~ axis in NaCl—then it is not a quantity which is
constant because it varies somewhat with the crystal structure chosen to
measure it. In retrospect, it is perhaps surprising that the above inequalities
hold as well as they do!

The second and more recent approach which has been used to classify
metal ion-ligand interactions is based on the concept of hard and soft acids
and bases, often denoted HSAB. Hard metal ions are those which parallel
the proton in their attachment to ligands, are small, often of high charge
and have no valence shell electrons that are easily distorted or removed. Soft
metal ions are large, of low charge or have valence shell electrons which are
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easily distorted or removed. They bond strongly to highly polarizable
ligands—which often have a very small proton affinity. Similarly, ligands are
divided into those that are non-polarizable (hard) and those that are
polarizable (soft). Remembering the Lewis definition of acids and bases as
electron acceptors and electron donors respectively, the cations are classified
as either soft or hard acids, whilst the ligands are classified as either soft or
hard bases—hence, HSAB. An important empirical generalization is that the
most stable complexes are those of soft acids with soft bases and of hard
acids with hard bases.

This approach has the advantage that it is not restricted to complexes of
transition metal ions. Indeed, it may be applied to a wide range of chemical
equilibria and systemizes a great deal of chemical intuition. A particularly
useful concept is that of symbiosis. A cation which is classified as a relatively
hard acid (or, indeed, which is regarded as borderline) is made softer by the
coordination of a soft ligand (or harder by the coordination of a hard ligand)
and so it is more likely to add further soft (or hard) ligands. For the
non-transition elements in particular, the principle of hard or soft acids and
bases systematizes stability data in a useful way. In Table 5.3 some metal
ions and ligands are classified as hard or soft. Generally, ligands in which
the coordinating atom has a high electronegativity are hard bases; those in
which it has a low electronegativity are soft.

Recent work? has made the connection between electronegativity and
the hard-soft/acid—base concept clearer and has served to give the latter

Table 5.3 Classification of some (formally) ionic species as hard and soft acids and
bases (after Pearson)

Hard acids H* Li* Na* K*
Be?* Mg?* Ca?* SRt Mn2*
A|3+ Sc3+ Gaa+ |n3+ Laa+
cr3+ C03+ Fea+ Cea+
Si** Tt ZAt ThA*
vO?* VO3* Mo03*
Soft acids Cu* Ag* Au* TI* Hg*
Cd2+ Hg2+ Pd2+ Pt2+
TR+
Ptd+
Borderline Zn?* Sn2* Pb2*
Fe2* Co?* Ni?* cCcu?* Ru?* 0s?* Sb3** Bt Rh3* 1Pt
Hardbases H,0 R,0 ROH NH; RNH,
OH~ OR™ ClO; NO3; CH; CO3
S03~ C03”
P03~
Soft bases R,S RSH P3P R3As
RS I” SCN™ CN~  H~ R~
S303”
Borderline CI~  Br~ N3 NO; SO3~

2 R. G. Pearson, J. Chem. Ed. (1987) 64, 561 and Inorg. Chem. (1988) 27, 734.



FIg. 5.3 The plot used to define the
electronegativity and hardness of the species
M"* in terms of / and A. See the text for a full
discussion.
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Number of electrons —>

concept a quantitative basis. This work starts from a rather different
direction to that given above but, in the end, arrives at the same point.
Consider Fig. 5.3. This figure shows a plot of the total energy of an atom
(or molecule). If we start with M"* (the central point on the graph) then
the energy change to give M”* 1™ is the ionization potential of M"*; this
we will call 1. Similarly, the energy change to give M®~ V% is the electron
affinity of M"* (it is the negative of the ionization potential of M®~1+),
Call this A. Following Mulliken’s definition of electronegativity, we equate
(I + A)/2 with the electronegativity of M"*. From Fig. 5.3 we see that if the
curve joining M”* D+ and M®~D* were a straight line then (I + 4)/2 would
be the slope of that straight line. To a first approximation, (I + 4)/2, the
electronegativity of M"*, is the slope of the curve at M"*. However, the
curvature of the plot, the deviation from a straight line, is measured by the
difference between I and A.

The approximate curvature at M"*, (I — A4)/2, may be taken as a measure
of the hardness of M"*. Physically, this definition relates hardness to a
resistance to deformation of charge. Hard metal ions are those for which it
costs a great deal to change electron densities. Unfortunately, this model
cannot immediately be extended to all ligands; for anions, in particular,
electron affinities are unknown. In such cases it seems that use of data for
corresponding neutral species gives reasonable results. In Table 5.4 are given
values of absolute hardness for typical metal and ligands.

At several points in this book there are mentioned the consequences
of particular HOMO-LUMO (highest occupied molecular orbital-lowest
unoccupied molecular orbital) energy separation patterns. The present
discussion provides another. Hard ions or molecules have a large HOMO-
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Table 5.4 Absolute hardness values for common metals and ligands

Species lonization Electron Absolute hardness,
potential, / affinity, A -4
Cations
Na* 47.29 5.14 21.08
K* 31.63 4.34 13.64
Cu* 20.29 7.73 6.28
Cu?* 36.83 20.29 8.27
Ag* 21.49 7.58 6.96
Mg2* 81.14 15.04 32.55
Ca?* 50.91 11.87 19.52
cre+ 30.96 16.50 7.23
cr+ 49.1 30.96 9.1
Mn2* 33.67 15.64 9.02
Mn3* 51.2 33.67 8.8
Co?* 51.3 17.06 8.22
Co3* 51.3 33.50 8.9
Pd2* 32.93 19.43 6.75
Pd?* 31.94 18.76 8.46
Ligands
co 14.0 —1.8 7.9
PF, 12.3 -1.0 6.7
CoH, 10.5 -1.8 6.7
CsHgN 9.3 -0.6 5.0
C,C, 11.4 -2.6 7.0
H,0 12.6 -6.4 9.5
(CH3),S 8.7 -3.3 6.0
NH, 10.7 -5.6 8.2
Fa 17.42 3.40 7.01
cr? 13.01 3.62 4.70
Br2 11.84 3.36 4.24

@ Data for atoms; taken as models for the corresponding anions.

LUMO separation; soft ions or molecules have a small HOMO-LUMO
difference—this is just another, orbital, interpretation of the quantity (I — A4).
With these recent developments, it seems that the concept of hardness and
softness will increasingly replace the older class-a/b distinctions. However,
the latter nomenclature is widespread in the chemical literature and likely
to remain so for some time. Indeed, the a/b distinction separates species that,
from Table 5.3, show relatively small differences in hardness and so, perhaps,
the notation will remain useful.

5.5 Statistical and chelate effects

The variations in stability constants which have been discussed so far in this
chapter are typically rather large. Superimposed on them are some smaller
but systematic variations which also merit attention.

Most stability constant measurements are made in aqueous solutions
at a constant ionic strength. The species we have called M must, in reality,
be a complex mixture of species. The majority will probably be [M(H,0),]**,
where n may well be four or six although larger numbers also occur. Other
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species present will include foreign anions—ones not involved in the reaction,
but arising from the salt used to maintain a constant ionic strength—and
some of these might well be coordinated to M. The addition reaction

ML, + L > ML, 4

should more properly be written as a substitution reaction (L' is usually
H,O but in this section is to be generally taken to mean ‘solvent molecule’):

MU, L, + L= MUy _g Loy + L

In this reaction it has been assumed that the number of ligands around M
is constant, and equal to (m + n). If we let this number (usually four or six)
be N, then the reaction may be written as

ML;V—nLn +L- MLI’V—n—lLrH-l +U

As has been seen in Table 5.1, it is commonly found that for a given M and
L there is a decrease in successive formation constants, K, K, ... or f, 8,
... This is largely a statistical effect. It is easier to attach L to ML} than to
MLjy_,L because there are N reaction sites on the former but only
N — 1 on the latter (replacement of L in MLy_,L by L gives an identical
molecule).

Consider the equilibrium:

MUV—nLn +Lle ML;\l—n—an+1 +U

The rate of formation of MLy_,_,L, ., is, for a simple one-step reaction,
ki[MLy_,L,J[L]. If the statistical effect is the only one which varies as n
changes, the forward rate constant will vary with n in proportion to the
number of reaction sites, that is, the number of L’ ligands in MLy _,L,. We
therefore rewrite the above rate as ki(N — n)[MLy_,][L], where k{ is
expected to be constant for all values of (N — n). Similarly, for the rate of
disappearance of MLy _,_ L, ., k,[MLy_,_ L, ,]J[L], the backward reac-
tion rate constant, k, will vary with n in proportion to the number of L
ligands in MLy _,_,L, . Hence, in the above cases k, = kj(n + 1), where
ky is constant for all values of (n + 1). It follows that
ke KN —n)

Ko.og=at=t "7
"k kb + 1)

In a similar way it is found that

kN —n+ 1
K, = £( +1)
kyn
The ratio between successive formation constants
Kosx n(N —n)
K, (+DIN-n+1)

The value of this expression for N =6 and n =1 — 6 are compared with
the experimental data for the Ni?*/NH; system (where L' is H,0) in Table
5.5. The agreement is far from exact, but the predictions are of the correct
order of magnitude. The experimental ratios are, as is commonly the
case, rather smaller than those predicted statistically.
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Table 5.5 Statistical predictions and experimental ratios for the equilibrium con-
stants of the system

[Ni(H;0)6 - (NHa), 12" + NH; == [Ni(H; )5 (NHa), 312 + H;0

Ratio n Experimental ratio Statistical
(data from Table 5.1) prediction®

Ko /Ky 1 0.28 0.42

K3/Ky 2 0.31 0.53

Ka/Ks 3 0.29 0.56

Ks/Ka 4 0.36 0.53

Ke/Ks 5 0.19 0.42

Ky —
2 Calculated using —-2 = _n6-n
K, (n+1)7—n)

Table 5.6 Comparative stability of the Ni>*/NHz and NiZ* /en

systems

Equilibrium? log K
Non-chelated complex

Ni2* + 2NHz = [Ni(NH3),12* 5.05
[Ni(NH3),12* + 2NHg = [Ni(NH3),]12* 2.96
[Ni(NH3),12* + 2NHgz = [Ni(NH3)g]12* 0.73
Chelated complex

Ni2* + en = [Ni(en)]2* 7.51
[Ni(en)]2* + en = [Ni(en), 12" 6.35
[Ni(en),12* + en = [Ni(en)3]%* 4.32

2 Coordinated water is omitted for simplicity.

When a N-H bond in a ligand such as ammonia is replaced by a N-alkyl
bond, the corresponding stability constants of complexes are usually lowered.
This may be due partly to increased steric interaction in complexes of the
substituted ligand, but the observation that the stability constants of
complexes with sulfur-containing ligands are usually H,S < RSH < R,S—
that is, in the opposite order—suggests that other factors also operate
(for example, both the energy and the shape of the lone-pair-containing
orbital(s) of the coordinating atom will change slightly on substitution). Even
so, it might reasonably be expected that complexes of a bidentate ligand
such as ethylenediamine (NH,-CH,-CH,-NH,) are less stable than the
corresponding complex with two ammonia molecules. Quite the opposite is
true. Complexes containing chelate rings are usually more stable than similar
complexes without rings. This is termed the chelate effect, and is illustrated
in Table 5.6; it was first met in Section 2.1. The origin of this effect has been
the subject of some controversy. There have been those who have argued
that the effect does not exist (despite the experimental observation that a
ligand such as en seems invariably to displace NH3; that bpy (2,2'-bipyridine)
replaces py; that oxalate displaces acetate and so on). The problem is a
fascinating one; it relates to the fact that quantities such as K; and K, etc.
have units (mol~! L) so that in comparing an equilibrium involving 2NH,
with one involving en, the corresponding fs have different units (mol~* L?
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and mol ~! L, respectively). How does one compare quantities with different
units? This is not the end. When we write RT In K (as we shall do shortly)
we have to recognize that we can only take the logarithm of a number.
Where have the units of K gone? The answer here is that we really evaluate
RT In(K/1), where the 1 refers to a standard state which has the same units
as K. This leads to a discussion of the characteristics of the standard
state and this, in turn, to the recognition that there are three different
concentration scales in use: molarity, molality and mole fraction. These
concentration scales are not directly proportional to each other so that, for
example, it is theoretically possible for a given solution to have activity
coefficients of unity on one scale but not on the others. The chelate effect is
not enormous and so it is not surprising that such fine points can assume
undue prominence and that controversy and apparent misunderstanding
exist! A very readable account of the general problem can be found in
Chapter 2 of the book by Connors and in the articles given at the end of
the chapter. Fortunately, we can side-step most of the pit-falls and learn
more about the chelate effect from a more detailed analysis of stability
constant data. To do this, we note the relationships

—RTInK = AG® = AH® — TAS®

which show that the chelate effect could originate in either the heat term,
AH®, the entropy term, AS°, or both.

To proceed further, we could analyse the equilibrium constants in Table
5.6, in pairs, using these thermodynamic relationships. We can simplify
matters by considering, instead, the equilibrium

[M(NH3),]2* + en = [M(NH3),(en)]2* + 2NHj

Available data at 298 K for M = Ni" and Zn" (remembering that AS° is
quoted in terms of J mol ™! K ™!, whilst AH® and AG° are given in kJ mol~?)

are

lon AG° AH® AS°® —TAS® (k) mol~2)
Nit —3.4 -20 4.8 —14

zn" —15 0.1 5.3 —1.6

These results are qualitatively general: the chelate effect is largely an entropy
effect; for non-transition metal ions the heat term is particularly small.
There are two important contributions to the AH® term when it makes
a significant contribution. First, when two monodentate anionic ligands
are brought together to occupy adjacent coordination sites in a complex,
there will be an electrostatic repulsion between them against which work
has to be done. The same is true for uncharged monodentate ligands because
such ligands are always dipolar. For chelating ligands the coordinating
centres do not have to be brought together and most of this repulsive
energy is ‘built in’ (it makes a contribution to the enthalpy of formation of
the ligand). That is, in the above equilibrium this contribution to the heat
term would be expected to favour chelated species because the oriented
ammonia molecules repel each other. The second, more variable, contribu-
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tion to the AH® term comes from solvation energies. Each of the species in
the equilibrium will be solvated (by hydrogen bonding, for example). Further,
there will be anions closely associated with the cationic species. We shall see
in Chapter 14 that there is kinetic evidence that counterions, although not
directly bonded to the coordination centre—they are not in the first
coordination sphere—are often present in an outer sphere (the so-called
second coordination sphere). It does not seem possible to predict, in general,
whether this term makes a positive or negative contribution to AH®, but it
appears to make a positive contribution when the coordination centre is a
main group element.

The entropy effect is readily understood. An increase of randomness
is associated with a concomitant increase in entropy. A complex molecule
has a lower entropy than its separated and therefore independent com-
ponents. In the equilibrium above there is a 50% increase in the number of
independent molecules in the right-hand side compared with the left and,
so, the right-hand side is favoured. Another aspect of the entropy effect is
the following. When one end, and only one end, of an ethylenediamine
molecule is coordinated, the effective concentration of the other end in the
system, and the probability that it will coordinate, is high, because it is
constrained to stay close to the cation. This means that it is easier to form
a chelate ring than to coordinate two independent molecules because the
two acts of coordination are related for the former, whilst for the latter they
are entirely independent of each other. All these, then, are potential
contributors to the chelate effect. They are difficult to relate to the kinetic
data on the effect. These show that it occurs because the ring opening
is slower than expected for the dissociation of the first of two independent
ligands, not because the formation of the ring is faster (it is the ratio of these
two that is the equilibrium constant K). It is understandable that the topic
continues to be the subject of debate.

The chelate effect varies with the size of the ring formed on coordination. It
is usually a maximum for five-membered rings and only slightly smaller for
six-membered rings. It is not difficult to see one reason why this should be.
For an octahedral complex, the angle subtended by a chelate ring at the
metal, no matter the size of the ring, will be close to 90°. For simplicity, we
fix it at this value. What will be the bond angles at the other atoms in the
ring? Assuming planar rings, the average values will be:

Ring size Average angle
4 90°
5 112°
6 126°
7 135°

So, if in a saturated ring system, such as that formed by en, the five-membered
ring system will have angles that are closest to the natural, tetrahedral, value
(109.5°). Similarly, for a ring that is conjugated, as in acac™, which may be
drawn as shown in Fig. 5.4, the six-membered ring has an angle closest to
the natural trigonal value of 120°. Of course, ring puckering can and does
occur, but can only be of a large magnitude at a cost of either steric



Fig. 5.4 (a) Two equivalent resonance hybrids
(canonical forms) of coordinated acac.
However, the conjugated nature of the system
is more commonly represented as shown in
(b).
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interactions between rings or loss of conjugation within a ring. Further, the
stabilization of six-membered chelate rings is not confined to conjugated
systems, although the chelate stabilization of non-conjugated systems is
usually greater for five-membered rings, where comparison is possible.
Clearly, this discussion of the chelate effect could be elaborated considerably.
What of polydentate ligands? This is a topic very relevant to the ligands
encountered in the complexes of bioinorganic chemistry and discussion of it
will be deferred until Chapter 16.

Although complexes with rings of size other than five or six members
have been synthesized they show little sign of the chelate effect. This is partly
because of the reduced effective concentration of the other end of the ligand
for larger chelating molecules and because of the increase in work against
electrostatic forces needed to bring the coordinating atoms together. Further,
as has been mentioned, another potentially destabilizing influence for
larger-membered rings is the relative difficulty of finding a sterically non-
crowded ring configuration. The relationship between the geometry of free
and coordinated multidentate ligands is currently the subject of research,
particularly for the large ligands that occur in bioinorganic complexes
(Chapter 16); it also finds a faint echo in Appendix 1. It is clear that ligand
geometry is an important factor in determining the relative stabilities of
complexes formed by such ligands. For instance, a coordinated ligand will
normally be less flexible than the free ligand. This loss of motional freedom
will be reflected in AS values and, thus, in the stability of the coordination
compound. We shall return to this point in Chapter 16.

5.6 Solid complexes

In this chapter our concern has been with equilibria in solution. As has
already been noted, it is sometimes possible to study a complex in solution
but not to obtain it in the solid state or vice versa. Why should stability be
related to phase in this way? It is because an additional energy factor is
involved, the relative lattice energies of the crystals which might be formed
on crystallization. Usually, the crystal form with the highest lattice energy
will be obtained (this will be the least soluble complex). For an ionic complex
species the lattice energy of a crystal will depend on the counterion
with which it crystallizes. Lattice energies are a maximum when the cation
and anion are of similar charge and size (and, usually, of the same hardness
or softness). This suggests a method by which crystals containing an elusive
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complex may be obtained and, as we saw in Chapter 4, accounts for the
widespread use in preparative complex chemistry of such species as [PF¢] ™,
[B(C¢Hs),] ™, [NEt,]*, and [As(C¢Hs),]". Such symmetrical cations and
anions have, however, one disadvantage. Because of their potentially high
symmetry (O, or T,), they are somewhat spherical and have an unpleasant
tendency to adopt a disordered arrangement in a crystal, making structure
determination more difficult. This is one reason for the apparently perverse
habit of preparing compounds in which the symmetry of such counterions
is reduced by, for example, replacing one of the four phenyl groups in
[As(C¢Hs),]* with an ethyl to give [As(C¢Hs)s(Et)]"

5.7 Steric effects

As has been indicated above, steric effects can play a part in determining
the stability of complexes. Indeed, this has become an area of much research.
If a very bulky ligand coordinates it may well form a weak bond, in which
case molecules containing it may well be rather reactive. If, on the other
hand, despite its bulk it coordinates strongly, then it may well cause the
bonding of other ligands to be weaker than normal. Again, an enhanced
reactivity is likely. Enhanced reactivity, particularly in the field of catalysis,
in which, often, a ligand dissociates from a metal ion at one point in the
mechanistic sequences and recoordinates at another, is always interesting.
A question at once arises: can we classify steric effect? The answer is that we
can, to some extent. Before attempting this, however, there is an important
point which has to be made. Consider a ligand such as ammonia but consider
it as a free molecule. The energy required to make it rotate, to spin, about
its threefold axis is low—it falls in the microwave region of the spectrum.
When the ammonia molecule is coordinated to a metal this rotation becomes
less free—it may well become a libration, in which it oscillates about its
threefold axis as a solid unit but does not overcome the barrier preventing
it reaching an equivalent position—but it is still of low energy. Everything
depends on the thermal energy available compared to the barrier height. At
room temperature the NH; groups in ammine complexes are commonly in
a state of large-amplitude oscillation, if not almost free rotation. This is
important because it means that the ‘bumps’ on the ammonia molecule—the
hydrogen atoms—may well behave as rather smeared out as far as steric
effects are concerned. It may not be too bad an approximation to regard
each ligand as effectively acting as a circular cone, with its apex at the metal
atom. This immediately leads us to some qualitative predictions. As far as
steric effects are concerned, we would expect the linear M-N=C=S and
M-N=C=Se systems to be more stable than their bent isomeric counterparts

M—S M—Se
N\
c c
N\ AN

N N

A case where this may well be evident is in the square planar complex formed
between the tridentate ligand diethylenetriamine, NH,-CH,-CH,-NH-
CH,—CH,-NH,, dien, and palladium(II), [Pd(dien)(SeCN)]. In this complex
the SeCN ™ anion is coordinated through Se and is bent. When the terminal



Steric effects | 91

Flg. 5.5 The definition of the cone angle for a
symmetrical phosphine, PR3. It is necessary, of
course, to define the cone angle with respect to
the metal atom to which the phosphine is
coordinated. It is assumed in the definition that
this atom is 2.28 A from the phosphorus. For a
different coordinated atom a different
metal-ligand separation would have to be
assumed.

Table 5.7 Cone angles for some simple systems, see Fig. 5.5
(ligand charges are not shown

Ligand Cone angle Ligand Cone angle
(degrees) (degrees)

H 75 PH3 87

Me 90 PF3 104

F 92 P(OMe); 1072

CO, CN, Ny, NO x95 P(OEt)3 1082

Cl, Et 102 PMes 118

Br, CgHs 105 PCl3 124

| 107 PEt, 132

i-Pr 114 PPhg 145

t-Bu 126 P(i-Pr)5 160

CsHs 136 P(t-Bu)s 182

2 In obtaining these values, Tolman used a conformation which has yet to be

observed.

NH, groups of the dien ligand are replaced by NEt, groups, the SeCN~
anion is coordinated through nitrogen and is linear. Steric effects seem to
be the factor causing the change. Can the effect be treated in a reasonably
quantitative manner? The answer is yes. By a study both of crystal structures
and of molecular models, Tolman® has compiled data for steric effects,
described in terms of cone angles, defined as in Fig. 5.5, for a large number
of ligands, particularly for those in which phosphorus is the donor atom. A
selection of his data is reproduced in Table 5.7. There have been many
variants in this field—the use of X-ray data to determine cone angles, the
use of detailed theoretical calculations, methods of averaging when very
different substituents are present, particularly on a phosphorus atom, and
so on. Generally, these other approaches lead to cone angles which are
somewhat smaller than those given by Tolman.

A rather different form of size effect occurs for those ligands which are
cage-like and which largely envelop a cation at their centre. For these, it is
the matching of the size of the central cavity of the ligand to the size of the
cation which determines stability. In Chapter 3 the cryptand ligands were
mentioned; these are shown again in Fig. 5.6. They are given shorthand
names which simply list the number of oxygen atoms in each bridge between
the two nitrogen atoms. Also in Fig. 5.6 are given the approximate radius
of a hypothetical spherical cavity at the centre of each ligand. These values
are to be compared with the approximate ionic radii of the alkali metal
cations, as determined experimentally by X-ray data diffraction,* of Li*
0.76 A, Na* 1.02A, K* 1.38A, Rb* 1.52A and Cs* 1.67A. The relative
stabilities of the alkali metal cryptand complexes are

[211] L* >Na*

[221] Li* <Na*>K*>Rb*
[222] Na* <K* >Rb*

[322] Rb* < Cs*

3 C. A. Tolman, Chem. Rev. (1977) 77, 313.
4 Data from R. D. Shannon, Acta Cryst. (1976) A32, 751.
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Fig. 5.6 Four cryptand ligands. The three
numbers within the square brackets correspond
to the three chains linking the two nitrogen
atoms and give, in descending numerical order,
the number of oxygen atoms in these chains.
Below each ligand designation is given the
approximate size of the cavity within that ligand
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The correspondence between the best cavity-size to cation-size match and
maximum stability is perfect. Not surprisingly, this interpretation of stability
constant data for encapsulating ligands is being widely applied, not least to
some antibiotics and biological molecules which are involved in the transport
of Na* and K™ in living systems. It is also being applied to ligands which
surround a molecule without totally encapsulating it—for instance, ligands
that surround a metal, holding it in a square planar environment. Again, such
species have biological analogues, to which we shall return in Chapter 16.

5.8 Conclusions

Although in this chapter many aspects of stability have been discussed, there
are many others that have not. It is now accepted that for some ligands,
metal-ligand double bonding occurs.? Just how are bond order and stability
related? Is the distinction between inert and labile transition metal complexes
related in any way to the d-electron configuration of the transition metal
(we shall have more to say about this in Chapter 14)? In addition to the
kinetic trans effect, discussed at the end of Chapter 4, there is a static trans
effect, sometimes called the trans influence. In this, a metal-ligand bond

5 See W. A. Nugent and J. M. Mayer, Metal-Ligand multiple bonds, Wiley, New York, 1988.
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length, vibrational frequency or some other characteristic of the metal-ligand
bond, is influenced by the ligand trans to it. So, in [OsNCIs]?~, in which
the Os-N bond is short and usually regarded as a multiple bond, the Os—Cl
bond trans to the nitrogen is over 10% longer than that cis. What is the
consequence of the trans influence on stability? In the case quoted, it seems
that the chlorine trans to nitrogen is kinetically the more labile. The
observations and consequent questions are almost endless; for some, incom-
plete answers exist; for others, nothing. We note that although several aspects
of the stability of coordination compounds have been discussed in this
chapter we have avoided the most fundamental question of all: why is one
particular complex more stable than another? What is the fundamental
explanation for class-a and -b behaviour (or for the hard and soft distinc-
tion)? As has been seen earlier, an answer to this last question is emerging,
but it is still incomplete. It is now generally accepted that the interaction of
the orbitals of the two atoms to be bonded is the most important factor.
This interaction depends on the matching of the orbitals—orbitals of similar
energies often also have similar sizes—but it is not a simple matter because
several orbitals or sets of orbitals of different energies and sizes on each atom
are involved. Our discussion of LUMO-HOMO effects in the context of
hard and soft ligands probably points the way ahead. Some aspects of this
will be considered in more detail in Chapter 10. However, at the present
time it does not seem possible to give more than a semiquantitative general

answer to such questions.

Further reading

Stability constant data are to be found in some early, pioneer-
ing, compilations:

® Stability Constants of metal-ion complexes, Special Publica-
tion No. 17, The Chemical Society, Burlington House, Lon-
don, 1964.

® Stability Constants of metal—ion complexes, Supplement, Spec-
ial Publication No. 25, The Chemical Society, Burlington
House, London, 1971.

® Stability Constants of metal-ion complexes Part A (Inorganic
Ligands), Pergamon Press, Oxford, 1982.

® Stability Constants of metal-ion complexes Part B (Organic
Ligands), Pergamon Press, Oxford, 1979.

All four of the above volumes are needed as data are not
repeated unless new measurements are reported. The first two
volumes give the more detailed and helpful description of the
use of the tables.

A continuing compilation is that of A. E. Martell and R. M.
Smith, Critical Stability Constants, Plenum, New York, Vols.
1-6 (1974, 1975, 1976, 1977, 1982 and 1989).

Related, and similarly arranged, thermodynamic data are
to be found in J. J. Christensen and R. M. Izatt, Handbook of
Metal-Ligand Heats, Marcel Dekker, New York, 1979.

A database is A. E. Martell and R. M. Smith, Critical

Stability Constants Database, NIST, Gaithersburg, MD, USA,
1993.

Very useful is Determination and Use of Stability Constants,
2nd edn, VCH, New York, 1992.

Computer methods for the interpretation of experimental
data are described in Computational Methods for the Deter-
mination of Formation Constants, D. J. Leggett (ed.), Plenum,
New York, 1985.

With a content covering a much wider area than the
subject of this chapter, but with much relevant material,
particularly on measurement methods, is K. A. Connors, Bind-
ing Constants, Wiley, New York, 1987.

Graphical representations of data related to those discussed
in this chapter will be found in J. Kragten, Atlas of Metal-
Ligand Equilibria in Aqueous Solution, E. Horwood, Chichester,
1978.

An easy-to-read and enlightening article is ‘A comparison
of different experimental techniques for the determination of
the stabilities of polyether, crown ether and cryptand com-
plexes in solution’, H.-J. Buschmann, Inorg. Chim. Acta (1992)
195, 51.

Other relevant articles:

* ‘Potentiometry revisited: The Determination of Thermody-
namic Equilibria in Complex Multicomponent Systems’,
A. E. Martell and R. J. Motekaitis, Coord. Chem. Rev. (1990),
100, 323.
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e ‘Steric Effects of Phosphorus Ligands’, C. A. Tolman, Chem.

Rev. (1977), 77, 313.

‘Ligand Interactions in Crowded Molecules’, H. C. Clark and

M. J. Hampden-Smith, Coord. Chem. Rev. (1987) 79, 229.

‘Ligand Steric Properties’, T. L. Brown and K. J. Lee, Coord.

Chem. Rev. (1993) 128, 89.

‘The Specification of Bonding Cavities in Macrocylic Lig-

ands’, K. Hendrick, P. A. Tasker and C. F. Linday, Prog.

Inorg. Chem. (1985) 33, 1.

‘The Chelate Effect Redefined’, J. J. R. Frausto da Silva,

J. Chem. Educ. (1983) 60, 390.

® ‘Misunderstandings over the Chelate Effect’, D. Munro,
Chem. in Britain (1977) 100.

* ‘Hard and Soft Acids and Bases—the Evolution of a Chem-
ical Concept’, R. G. Pearson, Coord. Chem. Rev. (1990), 100,
403.

® ‘Absolute Electronegativity and Hardness’, R. G. Pearson,
Chem. in Britain (1991) 444.

® ‘Molecular Organization, Portal to Supramolecular Chem-
istry. Structural Analysis of the Factors Associated with
Molecular Organization in Coordination and Inclusion
Chemistry, including the Coordination Template Effect’,
D. H. Busch and N. A. Stephenson, Coord. Chem. Rev. (1990)
100, 119.

Questions

5.1 In Fig. 3.27 was shown an example of a compound with
a low barrier to internal rotation. There are many similar
compounds, some of which spontaneously ignite when exposed
to air. Comment on the applicability of the terms kinetic
stability and thermodynamic stability to such species.

5.2 (Note that in this question square brackets indicate con-
centrations.) The consequences of the addition of base to
aqueous Cr'" was followed for four years. [Cry(OH),]**
maximized after a few days whilst [Cry(OH),]** increased
throughout the period. [Cr,(OH)¢]®* was constant after a few
months. Comment on these observations in the light of the
reported K, values:

_ [Cr, (OH),1"*
[Cr(OH);1* [Cr, _4(OH), 1"~ D+
108 Kzp = 5.1; 10g Kag = 6.9; 10g Ky = 5.2

Kan

5.3 Use the data in Fig. 5.2 to show that, as claimed in the
caption, it represents the formation of the ML, complex.

5.4 The experimental data used in Table 5.5 are those for
zero ionic strength in Table 5.1. Calculate the corresponding
experimental data for 2 M NH,NO; (given in the caption to
Table 5.1). Comment on the relative agreement of the two sets
of experimental data with experiment.

5.5 Compare Tables 5.2 and 5.3 and thus comment on the
question of whether the class-a and -b, and hard and soft
classifications are simply restatement of the same experimental
observations.

5.6 Use Table 54 to associate numbers with the broad
divisions given in Table 5.3 (for instance, what is the range of
absolute hardness values that corresponds to hard?).
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Fig. 6.1 (a) An octahedron. (b) An octahedral
complex. The perspective adopted here is the
same as that for (a), and was chosen to make
(a) as easy as possible to visualize. The way
that an octahedral complex is drawn will vary,
the perspective adopted depending on the point
under discussion.

Molecular orbital theory of
transition metal complexes

6.1 Introduction

The traditional approach to the electronic structure of transition metal
complexes (which is the subject of the next chapter) is to assume that the
only effect of the ligands is to produce an electrostatic field which relieves
the degeneracy of the d orbitals of the central metal ion. The most serious
defect of this model is that it does not recognize the existence of overlap,
and hence the existence of specific bonding interactions, between the ligands
and the metal orbitals. Yet calculations which assume reasonable sizes for
the orbitals (together with a considerable body of physical evidence which
will be reviewed in Chapter 12) point to the existence of overlap. How should
this be taken account of? The simplest answer is to be found in the
application of symmetry ideas to the problem, and this is the subject of this
chapter. In it the reader will be assumed to have some familiarity with the
basics of group theory. Appendix 3 gives an introduction to the subject; the
following lines are intended to provide a brief overview of aspects needed
to make a start on the present chapter.

It is convenient to focus the discussion on octahedral complexes (Fig. 6.1).
These are molecules with high symmetry, possessing, for example, fourfold
rotation axes, threefold rotation axes, twofold rotation axes, mirror planes,
and a centre of symmetry (Fig. 6.2). Symbols such as a,, (‘aye one gee’), ¢,
and t,, are used to distinguish the behaviour of different orbitals or sets of
orbitals under the various operations associated with the rotation axes, mirror
planes etc. of the octahedron. Note the shift from ‘symmetry elements’ (such
as rotation axes, mirror planes) Fig. 6.2, to ‘symmetry operations’—the act
of rotating, reflecting etc. In group theory one is concerned with symmetry
operations, rather than with symmetry elements. Lower case symbols are
used to denote orbitals or, more generally, wavefunctions. So, a point to
which we shall return, an s orbital of an atom at a centre of an octahedral
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Fig. 6.2 Some of the symmetry elements of an
octahedron. The symbols used are those
standard in chemical applications of group
theory (see below). Where there is a number in
brackets it indicates the total number of
elements of that type.

C4: fourfold rotation axis

C3: threefold rotation axis

C,: twofold rotation axis

iz centre of inversion

ay,: (horizontal) mirror plane. Each of these
planes contains two C, axes

a4: (dihedral) mirror plane. In the octahedron
each of these planes contains two C, and
two C; axes

Each C4 and C; axis has two symmetry
operations associated with them (the C, axis
also has a coincident C,). Not shown in the
diagram is the ‘leave alone, do nothing’
operation. This is called the identity operation
and is denoted by E. Although there is only one
E (C,) operation there is an infinite number of
C, axes.

complex is referred to as an a,, orbital. The symbol a, (and b, when it is
met), with any suffixes or primes, indicates an orbital which is singly
degenerate. Similarly e, with or without suffixes or primes, indicates a pair
of degenerate orbitals.! Finally, ¢ indicates a set of three degenerate orbitals.
The subscripts g and u indicate behaviour under the operation of inversion
in the centre of symmetry. An orbital of 4,, symmetry (an a,, orbital) is
turned into itself under inversion (g = gerade, German for even); something
of A,, symmetry (an a,, orbital) is turned into the negative of itself, hence u
(ungerade, odd). Other subscripts (and/or primes where these appear) serve
only to distinguish general symmetry properties. So the symbols t,, and ¢,
represent two sets of triply degenerate orbitals, all centrosymmetric, but the
members of one set behave differently from the members of the other under
some symmetry operations. Although the same symbols may be applied to
molecules of different symmetries there need be no obvious logical connec-
tion between them. Symmetry symbols and symmetry, reasonably, go
together. A change of symmetry probably means a change of symbols. For
example, although the s and three p orbitals of a metal atom at the centre
of an octahedral complex are labelled a,, and ¢,,, in a tetrahedral complex
the labels are a, and t¢,.

In a non-linear polyatomic system one cannot, strictly, talk of ¢, 7 and
¢ interactions. (Draw a ¢ bond involving the s and p orbitals of two atoms
and then allow a third, non-colinear, atom to participate. The interactions
between an orbital of this third atom with those forming the ¢ bond will
not be purely o unless the orbital on the third atom is a pure s orbital). For
simplicity, in the discussion that follows, ligand-ligand overlap will be
neglected (although some workers hold that this is of importance) and only
ligand—metal interactions considered. This means that problems associated
with the presence of third atoms can be neglected and a molecule is regarded

! The fact that some orbitals are members of degenerate sets will be taken for granted in
the present chapter. In the following chapter it will be necessary to explore this degeneracy in
much more detail and so a detailed discussion is deferred until then.
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as held together by a network of diatomic interactions. From the point of
view of the metal in a complex, each individual interaction may then be
classified as either ¢ or n (when bonding is to another metal atom 4 bonding
may have to be included, as will be seen in Chapter 15). We start by
considering octahedral complexes in some detail and, first of all, the
metal-ligand ¢ bonding in them.

6.2 Octahedral complexes
6.2.1 Metal-ligand ¢ interactions

The interactions between the six ligand o orbitals, one orbital on each ligand
and pointing towards the metal, and the valence shell orbitals of the metal
atom in an octahedral complex are the subject of this section. The case of
a complex formed by a metal ion of the first transition series will be the one
considered, so that the relevant valence shell orbitals of the metal are the
3d, the 4s, and the 4p. The ligand ¢ orbitals are all formally occupied by
two electrons, which, in the simple picture of Chapter 1, one might regard
as being donated to empty orbitals on the transition metal ion. Such
a—uvalence bond—picture of the bonding is that presented by Pauling in his
classic text The Nature of the Chemical Bond where the empty orbitals
considered were d?sp® metal orbital hybrids. Although there is increasing
attention being paid to the valence bond model, we use a molecular orbital
approach because this enables us more readily to exploit the octahedral
symmetry of the molecule. Indeed, the context of the present chapter is largely
symmetry-determined. The reader may easily see this by briefly comparing
the content of the present chapter with that of Chapter 10. In Chapter 10
symmetry will be exploited as far as possible but that chapter also covers
situations in which the symmetry is too low to be of any real assistance. The
application of symmetry in the present chapter is at once a strength and a
weakness; it enables an elegant and enlightening discussion but the study of
real-life molecules often requires the content of Chapter 10.

The major impact of symmetry on the present discussion arises from the
fact that only orbitals of the same symmetry type have non-zero overlap
integrals (this is demonstrated in outline in Appendix 3). That is, if there are
two sets of orbitals of E;, symmetry, (one on the ligands, the other on the
metal), they will in general be non-orthogonal (i.e.have a non-zero overlap
integral) and therefore interact. On the other hand both will have a zero
overlap integral with all orbitals of 4,,,T,,,T,, and all other symmetry
species, wherever these are located in the molecule, and will not interact with
them. Not surprisingly, this fact enormously simplifies the problem. First
then, we classify all the orbitals under consideration according to their
symmetries. It is convenient to start by classifying the valence shell atomic
orbitals of the central metal atom. It is an excellent exercise to demonstrate
that the symmetry labels that follow correctly describe the transformation
properties of the metal orbitals. This is an easy task for those with some
experience of group theory; the inexperienced should immediately read
Appendix 3.2 Key is the character table of the octahedral group O, given in

2 A detailed derivation is given in the literature in a paper that contains much other material
relevant to the present chapter; see S.F.A. Kettle, J. Chem. Educ. (1966) 43, 21.
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Fig. 6.3 The metal s orbital.

Table 6.1 The O character table

0 E 6C, 3C, 6C, 8Cs
A 1 1 1 1 1
Ay 1 -1 1 -1 1
E 2 0 2 0o -1
T, 3 1 -1 -1 0
T, 3 -1 -1 1

abbreviated form in Table 6.1 and also in Appendix 3 (Table A3.3). Because
the 4s orbital (Fig. 6.3) of the central metal is turned into itself by all the
operations of the group—multiplied by 1—its behaviour is described by the
A, irreducible representation of Table 6.1. In the full octahedral group
O, (which, unlike the group O, contains the operation of inversion in a centre
of symmetry), the label describing the behaviour of the 4s orbital is 4,, (note
that an equivalent way of talking about an orbital labelled a,, is to say that
it ‘is of A, symmetry’ or that ‘it transforms as 4,,). In similar fashion, the
set of three 4p orbitals (Fig. 6.4) have T, symmetry (T, in Table 6.1). Finally,
the five 3d orbitals split into two sets, of E, (Fig. 6.5) and T,, (Fig. 6.6)
symmetries (E and T, in Table 6.1). This latter splitting, which is denoted
A, is of crucial importance to the understanding of the properties of transition
metal complexes. One considerable attraction of crystal field theory, the
subject of the next chapter, is that it gives a very simple physical explanation
of this splitting. In the present context it is perhaps most easily regarded as
a splitting which is group-theoretically allowed and so, presumably, may
well exist. As the chapter develops we shall find good reasons for the
splitting.

Evidently, the next step is to classify the ligand orbitals according to their
symmetry types. Two problems arise. First, for a regular octahedral complex,
all six ligand orbitals look alike—how then can they be classified differently?
Second, a characteristic of a symmetry-classified set is that all of those
symmetry operations which send an octahedron into itself send one member
of the set into itself, another member or a mixture of members of the set.
The reader who is not familiar with this pattern is asked to take it on trust
for the moment. It will be demonstrated in the next chapter in showing the
degeneracy of the metal d,._ . and d,. orbitals in an octahedral crystal field
(Section 7.3); alternatively, Appendix 4 is dedicated to the problem. As these
symmetry operations send one ligand ¢ orbital into another, why do these
orbitals not already constitute a set? The answer is, they do. However, this
set can be broken down into smaller sets and it is to these latter that
symmetry labels are attached.? In these sets the individuality of the ligand
o orbitals is lost. We talk of the wavefunctions of various sets of ligand
orbitals rather than of the wavefunctions corresponding to individual ligand

3 Appendix 6 shows how these subsets may be obtained.
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Fig. 6.4 The metal p,, p, and p, orbitals.
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FIg. 6.6 The metal do_, and d.. orbitals orbitals. The members of the symmetry-classifiable sets are linear combina-
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tions of the ligand ¢ orbitals and are often referred to either as ‘ligand group
orbitals’ or ‘symmetry-adapted combinations’. The step of moving from the
individual ligand ¢ orbitals to their symmetry-adapted combinations in-
volves the use of group theoretical procedures. The derivation is not difficult
but it is lengthy and so would be out of place in the present section. It is
given in Appendix 6, where several different ways of tackling the problem
will be found. The explicit form of these ligand group orbitals is given in
Table 6.2. The individual ¢ orbitals are identified by the labels o, — g4 as
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FIg. 6.7 The numbering system adopted for
the ligand ¢ orbitals in an octahedral complex
(cf. Fig. 3.4).

Table 6.2 Ligand ¢ group orbitals of six octahedrally-orientated
ligands

Symmetry Ligand group orbitals

1
asg —= (04 + 03 + 03 + 04 + 05 + 0)

B

1
— (01 — 0g)
J2
1
tyy —\/—5(52—54)
1
— (03 — 05)
NZ
30y — 03 + 04 — 05)
e 1
g —— (20, + 20 — 0, — 03 — 04 — 05)
J12
z
A
!
M
3 2
-~ T
X y

shown in Fig. 6.7, the labels being chosen in conformity with the convention
given in Fig. 3.4. As mentioned earlier, in the explicit forms given in Table
6.2 it has been assumed that the ligand o orbitals do not overlap each other,
although non-zero ligand-ligand overlap integrals would only affect the
normalization factors (the numerical coefficients at the front of each
expression) given in the table, not the general form of the combinations.
The ligand o group orbitals listed in Table 6.2 are of 4,,, E, and T,,
symmetries and each set will overlap with metal orbitals of the same
symmetries, so that the 4s(a,,), 4p(t,,) and 3d(e,) orbitals of the metal will
be involved in ¢ bonding. Of the valence shell orbitals of the metal atom
only the 3d(,,) orbitals are not involved in this bonding. The interactions
of 4,,, T, and E, symmetries are shown pictorially in Figs. 6.8-6.10, where
it can be seen that there is the expected close matching between ligand group
orbitals and the corresponding metal orbitals. If symmetry had not been
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Fig. 6.8 The metal-ligand ¢ bonding in an
octahedral complex involving orbitals of A,
symmetry. The metal s orbital is shown at the
centre.

FIg. 6.9 The metal-ligand ¢ bonding in an
octahedral complex involving orbitals of T,
symmetry. In this figure the interaction involving
the metal p, orbital is shown; there are similar
interactions involving p, and p,.

(a) €g (dyz - y2)

Fig. 6.10 The interaction (a) between metal
dyz 2 and (b) d,» orbitals and the
corresponding ligand group orbitals.
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applied to the o bonding problem then we would have had to consider the
interaction between the six ligand ¢ orbitals and nine metal orbitals, with
no means of knowing in advance that three of the 3d are not involved in
this ¢ bonding. In contrast, not only does the symmetry break the problem
up into subproblems—the A4,,, E, and T,,— but for each degenerate case,
E, and T},, only one member of each set need be considered (by symmetry,
consideration of any other member must lead to the same result). That is,
for each of the three subproblems only the interaction between a single metal
orbital and a (delocalized) ligand orbital has to be treated. For simple models
the calculations really can be done on the back of an envelope! Fig. 6.11
shows, schematically, the energy level pattern obtained as a result of these
o interactions. It includes metal and ligand electrons; the detailed problem
of how to include those originating on the metal will be a major concern of
Chapters 7 and 8. Note, particularly, the splitting A in Fig. 6.11. Many
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4s —-——-&
eg(2) \
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S ———————————————
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v os—
eg+ tog
Metal orbitals Molecular orbitals Ligand orbitals

FiIg. 6.11 A schematic molecular orbital energy
level scheme for an octahedral complex of a
first row transition metal ion (only ¢ interactions
are included). The ligand orbitals are shown
occupied; the metal d orbitals are partially filled.
The example shown is appropriate to a d” ion in
a strong-field (low-spin) complex. The full
meaning of these latter terms will only become
evident in Chapter 7. The numbers in
parenthesis follow the established convention of
counting from the bottom up. So, the bottom
aygis a14(1), the next a;4(2).

research groups have tried to carry out reasonably accurate calculations
aimed, in part, at obtaining molecular orbital energy level schemes (such as
that in Fig. 6.11) accurately, although this is a difficult task. It in this
endeavour that many of the methods to be discussed in Section 10.3.2 were
developed.

Figure 6.11 indicates that the idea that the ligands function as electron
donors is correct. Electrons which, before the interactions were ‘switched
on’, were in pure ligand orbitals are really in delocalized molecular orbitals
which take them onto the metal atom—the electron density on the metal
atom is increased as a result of the covalency. The consequences of this for
the concept of formal valence states will be discussed later. The most
important feature of Fig. 6.11 is the fact that the two lowest unoccupied
orbital sets are, in order, t,, and e,(2) (this latter being weakly o antibonding).
So far, no metal electrons have formally been included and so these
unoccupied orbitals have to accommodate them. Of course, the number of
electrons occupying these orbitals is the same as the number present in the
valence shell orbitals of the metal before the metal-ligand interaction was
switched on; the d electrons of the uncomplexed metal ion may be regarded
as being distributed between the t,, and e,(2) molecular orbitals. This is a
situation which will be explored in the next chapter where care will be taken
to state that A, the label given to the energy separation between a lower t,,
and an upper e, set, is an experimental quantity. What the next chapter will



Fig. 6.12 Ligand = orbitals in an octahedral
complex. The arrow heads represent the lobe of
each orbital which has positive phase. Although,
for generality, these orbitals are referred to as
=, those actually drawn are pure p orbitals. All p
orbitals are labelled according to octahedral
axes using the outlining notation given at the
foot of the diagram.
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not show is the way that the ¢, set is antibonding. The present discussion
also leads us to recognize that metal electrons in the e,(2) orbitals are to
some extent delocalized over the ligands. In Chapter 12 experimental
evidence will be adduced in support of this conclusion.

6.2.2 Metal-ligand & interactions

So far we have only considered ¢ bonding in an octahedral complex. What
of m bonding? It appears to be generally true in chemistry that = is rather
weaker than ¢ bonding. Thus, there is no compound known in which it has
been established that, in the ground state, there is a = bond but no ¢ bond.
On the other hand, the vast majority of molecules have at least one ¢ bond
with, apparently, no associated m bond. Consequently, for our purposes, it
can reasonably be assumed that the effects of 7 bonding will be to modify,
but probably not drastically alter, Fig. 6.11.

Our basic approach to the treatment of = bonding is similar to that of ¢
bonding. It is convenient to assume that the ligands involved are simple,
something like a halide or cyanide anion (cases which will be explicitly
explored later). It follows that each ligand has two orbitals available for n
bonding on each ligand—ligand p, orbitals or (ligand) molecular orbitals
with the same symmetry characteristics as the corresponding p, orbitals.
That is, they have their maximum amplitude perpendicular to the metal-
ligand axis and this axis lies in a nodal plane of the ligand n orbitals (Fig.
6.12).

As there are two such orbitals on each ligand, there is a total of 12 in an
octahedral ML4 complex. Again, group theory can be applied to obtain the

Tex Tigy
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FIg. 6.13 (a) One of the three ligand = group
orbitals of T, symmetry. Notice that of the 12
7 ligand orbitals only four are involved in this
particular combination. The remaining eight
similarly divide into two sets of four, with no
member common to any two sets. A similar
pattern holds for all the other = combinations
shown in the following figures. (b) One of the
three ligand = group orbitals of T,, symmetry. As
for all other = combinations in adjacent figures,
the combination shown is the first listed in the
appropriate section of Table 6.3.

Table 6.3 = ligand group orbitals for
the six ligands in octahedral complexes
(a definition of the labels is given in
Fig. 6.12)

Symmetry Ligand group orbital
3(Mpy + Mgy + Mgy + Tsz)
tyy 3y + Moy + Mgy + Tay)

3(nyy + Mz, + Mgy + T5,)

F(np — Mgy — Ty + Tsy)
tig 3(May — Moy — gy + Maz)
%("u - Mg, — Mgy + M)

{ 3 (M + Mgy = Tax — Tig)

tog %("u + Mgz — Mg — Tax)

1
3 (May + Moz — Mgy — Msz)

3(ny, — Mg, + Mgy — Mgy)
(Mg — Ty + g — Max)

1
3(nyy — gy + Mgy — Ts)

—T3y

(@ ®
®
- ~
Taz | 4 | =\ M5z
\ \ !
/ -
/ M /N
M3z — )Y N LA ) T2z
\ /
/7 N\ / N\
[ [
\_/ \_/
(b) L]

symmetry-adapted combinations. The symmetry-adapted combinations con-
sist of four sets with three ligand group orbitals in each set. The sets have
Ty, Ty, Ty, and T,, symmetries; explicit expressions for them are given in
Table 6.3 using the ligand n orbitals labelled as shown in Fig. 6.12. The
derivation of the explicit forms of these functions is somewhat lengthy and
is not given in this book; the procedure follows that given in Appendix 6; a
detailed but simple treatment is given elsewhere.* There are no metal orbitals
of T, and T,, symmetries within our chosen valence set (although, just for
the record, one set of metal f orbitals transforms as T, and one set of metal
g orbitals as T,,). The ligand = group orbitals of T, and T,, symmetries are
therefore carried over, unmodified, into the full molecular orbital description.
A representative example of each is shown in Fig. 6.13. We are left with T,
and T,, sets. The T, set will interact with the metal p orbitals (also of T},
symmetry), but it is simpler to think of their effect on the occupied T,, ¢
molecular orbitals in Fig. 6.11 and to consider two cases.

Case 1: The ligand = orbitals are occupied

In this case, illustrated in Figs. 6.14 and 6.15(c), it follows that the T,
symmetry ligand © orbitals are also occupied. Interaction with the ¢,,(1)
molecular orbitals of Fig. 6.11 will raise or lower this latter set depending
on whether its energy is higher or lower than that of the ligand =n(T},,) set.
As long as we retain two occupied t,,, sets the orbital occupancy is unaffected

4 Appendix 4 in Symmetry and Structure, 2nd edn., by S. F. A. Kettle, Wiley (Chichester and
New York) 1995. Note that the atom labelling pattern used in this text differs from that in the
present.



Fig. 6.14 A ligand 7 group orbital of Ty,
symmetry and the molecular orbital of Fig. 6.9
with which it interacts (that involving the metal
p, orbital).
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by this interaction and, because the t,, — e,(2) separation is our concern, for
this case we may forget the ¢,, orbitals and their interactions.

Case 2: The ligand = orbitals are unoccupied
In this case it follows that the ligand 7 combinations of T,, symmetry are
also unoccupied. Interaction between the ligand n and (occupied) ¢,,(1) sets
of Fig. 6.11 will result in a repulsion between the two and the ¢,,(1) set will
be stabilized somewhat but the orbital occupancy will remain unchanged.
This is illustrated in Figure 6.15(b). We could, as a separate case, consider
the interaction between the t,,(2) molecular orbital set of Fig. 6.11 and the
ligand =(t,,) set. Again, this would only be necessary if the interaction leads
to one of the orbital sets becoming occupied. In fact, there is no recognized
case in which the ligand =(t,,) set, whether occupied or not, needs to be
considered.

We are left with the ligand = set of T,, symmetry. This set may interact
with the metal t,, orbitals (d,,, d,,, d,.) which, so far, have been non-bonding
because there is no ligand ¢ combination of T,, symmetry. The consequences

|

(@)

Unoccupied
ligand & tq,,

(b)

Fig. 6.15 The interaction between the lowest
t,,, orbitals of Fig. 6.11(a) with (b) an
unoccupied ligand 7(t,,,) set and (c) an
occupied ligand =(t,,) set. Largely ignored in
the text is the t,,,(2) set of Fig. 6.11;
corresponding arguments can be developed,
with similar conclusions, for this set.

t1y (2)
——
———
tiy Occupied
= ligand 7 t1,,

(©)
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Metal

tog (1) 20 bonding only 6 bonding only

tog
Ligand
6 + © bonding

(b)

Fig. 6.16 (a) The interaction between a metal
tpg Orbital (d,y) and the corresponding ligand ©
combinations. Overlapping lobes are joined by
lines. (b) The consequences when the ligand
7(tyg) are low lying (and occupied); A is
decreased. (c) The consequences when the
ligand 7(t,) are high lying (and empty); A is
increased.

Metal

6 + 7 bonding

©

of interaction between the ligand n(t,,) orbitals and the metal t,, orbitals
shown in Fig. 6.11 depend upon which of the two t,, sets is higher in energy.
The alternative situations are shown in Fig. 6.16. If the ligand = set is the
higher in energy then the metal t,, set is pushed down; if the ligand = set is
the lower, the metal set is raised in energy. As Fig. 6.16 shows, these
movements have a direct effect on the t,, — e,(2) splitting. That is, the
magnitude of A depends, in part, on 7 bonding. It is believed that the halide
anions provide examples of the situation shown in Fig. 6.16(b). For these
ligands, two of the filled p orbitals in their valence shell will be the orbitals
involved in 7 bonding and interaction with them will raise the energy of the
metal t,, orbitals making the latter weakly antibonding. This explains,
partially at least, why complexes containing halide anions as ligands have
relatively small values of A (see Table 7.1). In contrast, the cyanide anion is
associated with large values of A. The cyanide anion possesses two sets of ©
orbitals both of which will interact with the metal orbitals. The effect of the
occupied C=N" 7 bonding orbitals will be similar to that of the occupied 7
orbitals of the halides. However, these 7 orbitals have energies well removed
from those of the metal d orbitals and so their effect is small. Much more
important are the empty C=N~ 7 antibonding orbitals, which behave as
shown in Fig. 6.16(c). Interaction with the metal t,, orbitals stabilizes the
latter (which become weakly m bonding) and so increases the metal



Fig. 6.17 Metal d orbitals in a tetrahedral

complex.

Fig. 6.18 The relationship between a cube and
a tetrahedron.
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t,, — ,(2) separation of Fig. 6.11. This behaviour is clearly consistent with
the observation that the cyanide anion gives rise to large values of A; it exerts
a very large ligand field. In Chapter 10 we will see that the carbon monoxide
ligand behaves similarly.

Finally, a cautionary note. There is theoretical evidence, despite all that
has been said in this chapter, that in a complex such as [Cr(CN)g]®~ the d
electrons are not in the highest occupied orbitals. Rather, that all the CN~
n occupied and, indeed, the CN~ ¢ bonding orbitals, all occupied, have
higher energies.® The reason for this apparently ridiculous behaviour is to be
found in a phenomenon which so often wrecks our simple pictures—electron
repulsion within the molecule. How can there be filled orbitals above
partially occupied ones? The increase in electron repulsion energy in taking
an electron from a (delocalized and therefore diffuse) 7 occupied or ¢ bonding
orbital and putting it into a (largely localized and a therefore concentrated)
metal d orbital ‘costs’ more than the energy gained from moving the electron
into what is a more stable orbital. The holes in the d orbitals are protected!
Fortunately, this complication turns out to be unimportant for the discussion
in this chapter. It doesn’t really matter too much where the d orbitals are
relative to the ligand orbitals. As has been commented ‘if one is only
interested in the energy pattern, ligand field theory remains a reliable guide’.
Since virtually all of the measurements made on transition metal complexes
are concerned with the detailed energy pattern, all is well. The reader who
is either unhappy with this situation or is so interested in it that they wish
to learn more, should turn to Section 10.7 where it is encountered again, in
the context of ferrocene, and discussed in more detail. In Section 12.7
measurements that go beyond energy patterns will be described and com-
pared with theory, whereupon the relative energies of the ligand orbitals will
become of importance.

6.3 Tetrahedral complexes

In this and the next section the bonding in complexes with other-than-
octahedral stereochemistries are considered. That the d orbitals split into ¢,
and e sets in tetrahedral complexes may be seen from Fig. 6.17. The key is
to recognize that a tetrahedron is closely related to a cube. If, starting from
one vertex, lines are drawn across the face diagonals of a cube to connect
with the opposite vertices and the process continued, then a tetrahedron
results (Fig. 6.18). If Cartesian axes are drawn as in Fig. 6.17 then
X =y =z so that d,,, d,, and d,, must be degenerate. The degeneracy of
d,2_,2 and d,. follows just as it did for octahedral complexes (for a detailed
justification, see Section 7.3 and/or Appendix 4). The other metal orbitals
in the valence shell are 4s(a,) and 4p,, 4p,, 4p,(t,), again considering a
first-row transition element. It is a simple exercise in group theory to show
that the four ligand ¢ orbitals give A, and T, symmetry-adapted combina-
tions. The ligand group orbitals may be obtained by the methods of
Appendix 6 (for the third method described there, also use the operations

5 There are many papers in the literature which indicate this. See, for example: Vanquicken-
borne et al,, Inorg. Chem. (1984) 23, 1677; Excited States and Reactive Intermediates, ACS
Symposium Series 307 (1986) 2; and Inorg. Chem. (1991) 30, 2978.
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FIg. 6.19 The labels used in the text for the
ligand o orbitals of a tetrahedral complex.

FIg. 6.20 (a) Interaction of the ligand a, group
orbital of Table 6.3 with the metal s orbital.

(b) Interaction of the first ligand t, ¢ group
orbital listed in Table 6.4 with the
corresponding metal p orbital.

Table 6.4 Ligand group orbitals of ¢ symmetry in a tetrahedral
complex; the labels used are those of Fig. 6.19

Symmetry Ligand group orbital
a, 3o, + 0y + 05+ 0y)

301+ 0, — 03— 0,)
t (01— 03 — 03 + 04

3(0y — 0, + 03— a4)

E, 8C; and 3C,). Using the orbital labels shown in Fig. 6.19, the 4, and T,
ligand group orbitals are given in Table 6.4 and pictured in Fig. 6.20, a figure
which also shows the metal orbitals of the same symmetries.

As before, only orbitals of the same symmetry species may interact with
each other. The A, interactions are straightforward but the T, more
complicated than the corresponding octahedral case because both metal sets
4p,, 4p,, 4p, and 3d,,, 3d,,, 3d,, have T, symmetry and so interact with
the ligand orbitals of this symmetry. It does not appear possible to make a
general statement about the details of the outcome of the T, interactions but
that given in Fig. 6.21 is about as close as one can get. Figure 6.21 gives a
schematic ¢ bonding-only molecular orbital diagram for a tetrahedral
complex. As we shall see in the next chapter, just as in octahedral complexes,
the more stable d orbital set according to crystal-field theory, that of e
symmetry, is not involved in ¢ bonding but the less stable, the t,, is involved.

Many tetrahedral complexes involve the oxide anion as a ligand (e.g. the
MO}~ anions commonly known as permanganate, chromate, and ferrate)
and contain a metal atom in a high formal valence state. Since oxygen
is usually regarded as forming two covalent bonds and because a high metal
charge will favour ligand-to-metal charge migration, it can be anticipated
that = bonding may well be of potential importance for such tetrahedral
complexes. Unfortunately, the consequences of 7 bonding are not as clear-cut
as for octahedral complexes. An important difference between octahedral
and tetrahedral complexes is that the latter do not have a centre of symmetry.
Such a centre of symmetry separates the p orbitals from the d orbitals on
the metal (the ps are ungerade and the ds are gerade) and no centrosymmetric
ligand field can mix them. A tetrahedral ligand field can mix ps and ds on
the metal and there is good evidence that such mixing occurs—it will be met
in Chapter 8.

The n bonding problem in tetrahedral molecules starts difficult and
remains so throughout. It is not a trivial task to demonstrate that the ligand
7 orbital symmetry-adapted combinations are of T; + T, + E symmetries.
To show this it is important to chose the orientation of the ligand = orbitals
carefully if the task is to be made (relatively) easy. Guidance is given in Fig.
6.22. Appendix 4, and the character of —1 described at the end, may well
be needed also. The next step, that of the generation of the ligand group
orbitals, is not trivial.® The explicit expressions for the ligand group orbitals

6 A fairly simple derivation is given in detail in S. F. A. Kettle, Symmetry and Structure, 2nd
edn., Wiley, Chichester, 1995, Appendix 4.



Fig. 6.21 A schematic molecular orbital energy
level diagram for tetrahedral complexes with
only ¢ interactions included. The ligand ¢
electrons are stabilized by interaction with the
corresponding metal orbitals. The (three)
electrons originally in the metal d orbitals
correspond with those distributed between the
e(1) and t,(2) molecular orbitals.

Fig. 6.22 A symbolic representation of the
ligand = orbitals in a tetrahedral complex. On
each ligand there are two = orbitals and these
may be regarded as lying in a plane
perpendicular to the local ligand-metal axis (at
each ligand this plane is represented by a circle
which, however, may appear as an ellipse
because of the perspective). At each ligand a
orbital is labelled =, if it lies in a plane
containing the z axis and =, if it is
perpendicular to this plane.
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Metal obitals Ligand o obitals

SN
~

T3v

T3h

are given in Table 6.5 using the notation of Fig. 6.22 and illustrated in Figs.
6.23-6.25, the relevant metal orbitals being included in the e and ¢, cases.
For tetrahedral complexes n bonding involves all of the metal d orbitals, not
just one set (as in the octahedral case), and it is not possible to give a simple
diagram analogous to Fig. 6.16. Both the t,(2) and e levels of Fig. 6.21 will
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Flig. 6.23 Ligand = group orbitals of E
symmetry: (a) that which overlaps with the
metal d.; (b) that which overlaps with the
metal d,z_ 2. The pattern of overlaps in this
diagram is worthy of careful study.

N

d

A

Fig. 6.24 A ligand 7 group orbital of Ty
symmetry. This orbital has the same symmetry
properties as a rotation about the z axis. It is
the fact that the ligand = orbitals have been
chosen to be oriented with respect to the z
axes (see caption to Fig. 6.22) that makes this
orbital, mathematically and pictorially,
particularly simple. Its two partners in Table
6.5 have the same symmetry properties as
rotations about the x and y axes, respectively.

! _J\ @_

(@) (o)

Table 6.5 = ligand group orbitals of a tetrahedral complex.
Figure 6.22 gives a definition of the orbitals

Symmetry Ligand group orbital

{ 3(myy + Moy — Ty — Tay)
3(man + 7ian — an — Tan)

3(Tan + Tion + Tap + Tan)

1
—— (Mgp — Map + /(Mg —
4 202 3h an + +/3(Myy — M)

1
m (man — 7ion + +/3(Mzy — 7ay))

3 (Mg + Ty + Mgy + Tay)

1
——(/3(Myp — Top) — May + May)
t 2\/2(\/ (Tan — Ton 3v + Tay

1
m(x/g("ah — Mgp) — My + 72y)

change with © bonding and it is not possible to discuss the behaviour of
their separation, A, in general terms although it is quite clear that A,
will be sensitive to n bonding. However, both e and t, n interactions are
likely to be either both bonding or both antibonding so that the difference
between the e and t,(2) orbital energy changes may be small and this may
mean that = bonding has a relatively small effect on A,,.

A schematic molecular orbital pattern for a tetrahedral complex with a
significant = bonding contribution is shown in Fig. 6.26. It is emphasized
that the relative energies shown for the molecular orbitals in this figure are
to be regarded as highly flexible.

6.4 Complexes of other geometries

Apart from one example, other geometries will not be discussed in detail
because there are none for which we could arrive at firm general conclusions.
Instead, in Table 6.6 are listed the symmetries of the ¢ and = ligand group
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orbitals for common geometries and compared with the symmetries of the
orbitals comprising the valence set of the transition metal ion. This table is

group theoretical in origin and is designed to enable the reader to develop

a qualitative bonding argument for almost any complex with up to eight

ligands with any significant symmetry (if a molecule is only slightly distorted

m from a high symmetry it often pays to pretend that there is no distortion at
M

all, as a first approximation). The reader who is unhappy about the plethora
of labels in Table 6.6 need not be too concerned—these labels can be regarded
as simply indicating what interactions can occur—labels have to be identical
for an interaction to be possible; there is no vital need to enquire into their
N\~ deeper (group theoretical) significance.
As an example of the use of Table 6.6 its application to a trigonal
bipyramidal complex of Ds, symmetry (Fig. 6.27) will be outlined. First, it
_ has to be recognized that our discussion of octahedral (0,) and tetrahedral
(T,) complexes will be of little direct use in discussing ML; (Ds,) complexes.
Fig. 6.25 A ligand 7 group orbital of T, Had we been concerned with complexes with either six or four ligands,
symmetry together with the metal p, with which . . . .
it overlaps. The dominant orbital overlaps are h.owever, it might well have bgen a good idea to start from the ar.)proprlate
indicated. The form of this ligand group orbital high symmetry case, as mentioned above. As Table 6.6 shows, in a MLg
is particularly simple for the reason given in the  complex the metal d orbitals split up into three sets, d,. has A} symmetry,
caption to Fig. 6.24. Note carefully the phases , .
of the overlap—they are ot incorrect! d,2_,> and d,,, together, are of E symmetry whilst d,, and dzf, together,
have E” symmetry. The somewhat surprising fact that d,._ . pairs with d,

t2 (4)

Fig. 6.26 A schematic molecular orbital energy
level diagram for a tetrahedral transition metal
complex in which both ¢ and = interactions are
important.

Ligand &t
e+t + 1)

Ligand o
(a1 + 1)

Flg. 6.27 A trigonal bipyramidal MLg complex.
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Table 6.6 The symmetries of ligand ¢, = and metal orbitals for common geometries

Molecular geometry

Octahedral, MLg
Tetrahedral, ML,
trans-Octahedral, ML, M5

Square planar, ML,

Octahedral with a bidentate
chelating ligand, M(L,)3

Trigonal bipyramidal, MLg
All cis-octahedral, MLzL3

Tetrahedral MLgL’

One face centred octahedral,
MLgLsL”

Square based pyramidal,
ML, L

Octahedral, MLgL’ or
trans-ML,L'L"

cis-Octahedral
Tetrahedral ML, L,

Square face-centred trigonal
prism, ML, L,L"

Dodecahedral, MLg

Square antiprism, MLg

Symmetry Symmetries of metal orbitals
symbol

s Pz Px Py dz’ dx’ -y? dxy

N J %/_/ —
V
0, a4 tiy €g -
— J
Y H_j

Ty a t e
Dy, ag a,, e, ag big bog
Dy, asg ay, e, ag big bog
Dy a, a, e a, e
Ds, EN EX e’ a; e’
Cay a a € a a, az
Cy, a, a, e a, a, a,
Cs, a, a, e a, a; a,
Cay a a € a by b,
Cay a; a, e a; b, b,
Cay a, a by b, a; a a
Cov a; a, by by a a; az
Ca a a by b, a a az
Dy a b, € a by b,
Dy EN b, e a, e,

and not d,. is easily explained—it is a general rule that the axis of highest
symmetry is (almost”) always chosen as the z axis, so here we choose the
threefold rotation axis; for an octahedron the z axis was a C, and for a
tetrahedron an S,.

The next step is to include, qualitatively, & bonding in the picture. The
five ligand group o orbitals are of 24} + A’ + E’ symmetries. They can easily
be obtained by the methods of Appendix 6 (treat non-equivalent ligands
separately) and are pictured in Fig. 6.28. From this figure it is evident that

7 When working with an icosahedral molecule such as [B,,H,,]?~ or Cs, life is much easier if
a C, (rather than a Cj) axis is chosen as z because x and y can then also be orientated along
C,s and the three coordinate axes are symmetry-related. With z chosen to lie along a Cs axis
the three coordinate axes are not symmetry-related.



Complexes of other geometries | 113

Symmetries of the ligand orbitals Comments
d, d 4 n
Y-—4 \
tog ajgt+egtty tig + iy + g+t
t2 ath e+ttt bg/bag; byy/by, POSSibly exchanged
€y 28,4 +ay, +bygt+ €y Ayg + bog + @z, + by, + 264 + 2€,
€g ajg+bygtey, 8y¢ +bog + a3, + by, +eg+ 6y )
e a; +by +2e 2a, + 2a, + 4e \
e 2a) +a +¢€ a, +as + 2e’ + 2e”
Ve he threefold axis is the z
e 2a, +2e 2a, + 2a, + 4e the )
axis
e 2a, +e a, +a, +3e
e 3a, +2e 2a, + 2a, + Se )
e 2a, +b, +e a; +by +a, + b, + 3e \
e 3a, +b, +e€ a, +by +a, +b, +4e
b, by 3a, + by +a, + by 2a, + 4b, + 2a, + 4b,
b, b,y 2a; + by + b, 2a, + 2b, + 2a, + 2b, b, and b, may be interchanged by some
authors
b, by 3a,; +2b, +a, + b, 3a, + 4b, + 3a, + 4b,
—
e 2a, +2b, + 2e 2a, + 2b, + 2a, + 2b, + 4e
€3 a; +by+e;+e;+e; al+b1+az+b2+2e1+2e2+2e3j

both of the a} ligand orbitals may interact with the same metal a) orbital.
The relative importance of the two interactions will depend on the geometry
of the complex—which of the (two) axial and the (three) equatorial ligands
are the closer to the metal? Usually, the equatorial. The problem is made
more complicated, of course, by the presence of two metal orbitals which
are A}, because, in addition to d,., the metal s orbital has this symmetry.
Although by no means always justified by detailed calculations, it is often
convenient to take sum and difference of the d,. and s orbitals. This leads
to one metal A} s—d mixed orbital largely, if not exclusively, interacting with
the axial ligands and one with the equatorial, thereby simplifying the
problem. The metal p, orbital has 4’ symmetry and so interacts uniquely
with the ligand group orbital of this symmetry.
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The two ligand ¢ orbitals of A,” symmetry:

Q ]
< =

may each interact with either or both of the metal orbitals of A," symmetry:

eSS

Similarly, the ligand Ay” o orbital interacts with the metal p, orbital

ol al

and the ligand e orbitals interact with metal py and py orbitals:

WL
= with

Fig. 6.28 5 bonding in a Dy, complex.



Fig. 6.28 continued.
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<

with

Finally, there are both d orbital and p orbital sets of E’ symmetry (the d
we have discussed above, the p are p, and p,). Again, the general outcome
is not clear. Nonetheless, we can make an educated guess. Although there
is no required relationship, we can actually relate the trigonal bipyramidal
problem to that of the octahedron, discussed earlier. If, for each, we separate
out two axial ligands, then in the trigonal bipyramidal they are partnered
by three equivalent coplanar ligands, in the octahedron by four. Perhaps the
outcome in the two cases is not too dissimilar. If this is so, it would be
concluded that the a} (d;z) and e’ (d,=_,. and d,,) orbitals are actually ¢
antibonding. The metal d orbitals of E” symmetry, d,, and d,,, are
non-bonding. When 7 bonding is included, the ligand orbitals a3, a3, 2¢’ and
2e” are added to the problem (Table 6.6). They will not be discussed in detail;
we merely note that the a orbitals are only involved in ¢ bonding, the ¢”
only in 7 bonding and the ¢’ in both ¢ and n bonding. The appearance of
two orbitals of a symmetry species (24}, 2e}, 2¢”) in the above discussion
need cause no concern. They arise because the axial and equatorial ligands
are not symmetry related and so contribute additively. The way they were
handled for the 2aj case illustrates the general approach—include them all
together, the actual number of them is not important.

6.5 Formal oxidation states

In crystal field theory a complex ion is assumed to be composed of a cation,
M"*, surrounded by, but not overlapping with, a number of ligands. What
is the effect of covalency on the electronic nature of the cation? Let us
consider two octahedral complex ions, one of Fe3* (d°), the other of Fe2*
(d®), both assumed to have as many unpaired electrons as is reasonably
possible, and with identical ligands. Figure 6.29 gives schematic molecular
orbital energy level diagrams for the two complexes. The electrons in the
a; (1), t;,(1), and lower e, (1) orbitals originated on the ligands but in the
complex ions, occupy molecular orbitals and are therefore delocalized onto
the cation to some extent.

Because of its higher charge and smaller size, the polarizing power of the
Fe** cation would be expected to be greater than that of Fe?* so that the
transfer of electron density from the ligands to the cation would be expected
to be greater for Fe** than for Fe*. Let us suppose that an effective transfer
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Fig. 6.29 Schematic molecular orbital energy
level diagrams for high spin Fe* (d°) and Fe?*
(d®) octahedral complexes.

— e —‘*+_' tog (1)

v m— iGN v — —TE

— e
— (@) —0H—— tu(@)

— —H—— a1 (D)

Fe3* complex (high spin) Fe2* complex (high spin)

of two electrons occurs for the former and one for the latter (we choose
integers for simplicity and ignore the rather difficult problem of how to
calculate the number of electrons transferred). The resultant charges on the
two cations are therefore both +1 ((+3 —2) and (+2 — 1)) although
we started with one Fe>* and one Fe?* complex. The charges we assumed,
3+ and 2+, are free-ion charges. One expects that the magnitude of an
actual charge will always be less than the absolute magnitude of a free-ion
charge, for both ligands and cations. This, of course, is a restatement of
Pauling’s electroneutrality principle. Contemporary calculations indicate
that whilst the actual charge of a Fe** ion is likely to be rather greater than
that on a Fe?™ ion if the ligands are identical, the difference between them
is only of the order of one-third of an electron. The actual charges themselves
would be of the order of unity (positive). It is not surprising, therefore, that
the use of free-ion charges and valence states, will sometimes prove difficult.
In a transition metal complex containing H as a ligand, should this
be regarded as H* or H™? The charge on the metal depends on which we
choose. In practice, the problem could either be sidestepped or worked the
other way round—a formal charge first assigned to the metal from which
the, equally formal, charge to be allocated to the H ligand would be deduced.
Alternatively, the problem could be resolved by appeal to chemistry—does
the H ligand behave more like H* or H™ in its reactions? In transition metal
chemistry the answer is quite often H™ because transition metal hydrides
are more characteristically reducing agents than acids. Although the charges
indicated by the symbols Fe?* and Fe®* are misleading, this representation
is far from valueless. In particular, these charges lead to a correct count of
the number of electrons in the t,, and upper e, orbitals such as in Fig. 6.11.
It is essential to get this number right if we are to be able to correctly interpret
the physical and chemical properties of a complex. The usual compromise
adopted is to refer to iron(III) and iron(II), as has usually been done
throughout this book, rather than Fe** and Fe?*, thereby avoiding the
difficult problem of the actual charge distribution within the molecule. At
some points in the text, usually for emphasis or to facilitate electron counting,
there has been a reversion to the Fe** and Fe?* convention.

It is common practice to assign a charge to species such as [Fe(H,0)¢]*".
This assumes that there is no covalent interaction between the complex ion



FIg. 6.30 Electron density difference map for
the [Co(NO,)¢]3 ™ ion in the CoN, plane.
Within a solid contour the electron density has
been depleted and within a dotted contour it
has increased. Adapted and reproduced with
permission from S. Ohba, K. Toriumi, S. Sato
and Y. Saito, Acta Cryst. (1978) B34, 3535.
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and surrounding molecules. For example, it is assumed that in aqueous
solution [Fe(H,0)¢]** either does not hydrogen bond with the solvent or
that any hydrogen bonding does not affect the electron distribution within
the complex ion. When attention is focused on the metal ion in these species,
this approximation introduces no difficulties. For quantitative work on the
interaction of a complex ion with its environment—and such an interaction
can be of vital importance in bioinorganic chemistry—it might become sen-
sible to further modify the nomenclature and to call this species [Fe(H,0)¢]"
or something similar.

6.6 Experimental

The content of this chapter has been theoretical and so an experimental
section seems somewhat out of place. Yet it is not, for experimental evidence
from a variety of sources is becoming available which helps pin-point the
strengths and weaknesses of the discussion. The focus is on X-ray and
neutron diffraction data. Although in X-ray crystallography it is usual to
assume that atoms are spherical (so that it is assumed that on each atom in
a crystal there is a spherical distribution of electron density and it is this
which is responsible for diffracting X-rays), the precision of current apparatus
and techniques, at their best, is such that deviations from spherical can be
measured. In Fig. 6.30 are shown these deviations for the cobalt ion and
four coplanar NOj ligands in the complex ion [Co(NO,)s]*”. In this
complex the cobalt(III) has a t5,eJ configuration and the consequences
of this are evident in Fig. 6.30—there is a depletion of electron density in
the ‘e, region’, i.e. along metal-ligand bonds, and buildup in the ‘z,, regions’,
i.e. between metal-ligand bonds, just as expected. The reader may also note
a buildup of electron density near the N atom of the Co—N bonds; even the
N-O bonding electrons are visible. This result is typical of X-ray electron
density difference measurements. They support the general picture presented
both in this chapter and in Chapter 7.
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Fig. 6.31 Spin density distribution in the
[Cr(CN)g]®~ anion in the CrC, plane. The solid
contour defines a region of spin-up electron
density and the dotted contour of spin-down.
This diagram is from a model of the
experimental data which over-sharpens some
features so that fine detail is not reliable.
Adapted and reproduced with permission from
B. B. Figgis, S. B. Forsyth and P. A. Reynolds,
Inorg. Chem. (1987) 26, 101.

In most neutron diffraction experiments, it is (loosely put) the conse-
quences of neutrons bouncing off nuclei that are measured. Electrons are
not involved. However, this last statement is not always true. Neutrons,
like electrons, have a spin of 4 and so, like electrons, behave a bit like tiny
bar magnets, an analogy that will be pursued in Chapters 8 and 11. This
means that, experimentally, one can sort, and work with, neutrons either
with spin up or with spin down. If such a beam of polarized neutrons
impinges on a crystal containing unpaired electrons then the associated
electron magnets will interact with the neutron magnets. If the electron spins,
the electron magnets, are at least partially orientated by application of a
magnetic field the electron—neutron interaction will depend on whether the
neutron magnets are up or down. The crystals of many transition metal
complexes contain unpaired electrons and diffraction measurements made
with polarized neutrons enable unpaired electron density distributions to be
measured. The [Cr(CN)¢]®~ anion has a *4,,(t3,) ground state, is of high
symmetry (the detailed geometrical structure of many ligands is such that
their complexes can never be truly octahedral), and is of particular interest
because of the expected involvement of chromium to CN ™ z bonding. Figure
6.31 shows the experimental spin density distribution in this anion. Most
obviously and surprisingly, it contains both spin up and down densities.
Ignoring this problem for the moment it is noticeable that the spin up density
on the chromium is essentially where we expect it to be—in the t,, orbitals,
between the metal-ligand axes. Further, some of this electron density has
been transferred to a 7 orbital on the nitrogen, in accord with our 7 bonding
model. So far, so good, but what of the negative spin density? It is
energetically favoured for the three electrons in the t,, shell to have
their spins parallel—as will be seen in the next chapter, we have a “4,,
ground state. One talks of ‘the (electron) exchange stabilization’. Why
should this privilege of exchange between parallel spins be restricted to the
chromium t,, electrons? In fact, other electrons can participate. In particular,
in the lone pair on the carbon of CN~, the two electrons are not uniformly
distributed in space. The one with spin up tends to be closer to the chromium
t,, electrons with spin up—this is exchange-preferred. There are two conse-
quences. First, these ligand electrons appear somewhat merged with the
chromium t,, electrons in Fig. 6.31. Second, they leave behind a balancing
down spin density in a ¢ orbital on the carbon atom, thus accounting for
the experimental result.

Where does all this leave the model developed in this chapter? Clearly,
basically correct (if one is prepared to accept that the wrong placement of
ligand orbital energy levels is unimportant) but unable to account for fine
details such as unpaired spin distributions (the total uneven spin density on
each carbon in [Cr(CN)¢]*~ amounts to about 0.1 electron). How can the
model be improved? The explanation given for the observation of an uneven
spin density depended on, loosely, how one electron behaved consequent on
the behaviour of another. The model presented in this chapter is a one-
electron model; electrons were talked of as individuals. In order to explain
fine details this one-electron model is inadequate, two-electron correlations
have to be included in our treatment, the second time in this chapter that
this conclusion has been deduced. This is not the last time that we shall find
a need to explicitly include electron correlation. At this point all that needs
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to be added is that theoretical models which include electron correlation
not only predict, qualitatively, the presence of uneven spin densities in
[Cr(CN)¢]®~ but also give quantitative data that are not too far from the
experimental observations. However, the routine and accurate inclusion
of correlation effects in calculations on transition metal compounds remains
an elusive goal. It is the subject of much current theoretical research. It
highlights the difference in difficulty presented by accurate calculations on
transition metal compounds and organic molecules—for the latter, the
inclusion of correlation is essentially a solved problem. As seen earlier, at
the end of Section 6.2, inclusion of electron correlation in calculations on
transition metal complexes may mean orbital energy level patterns rather

different from those given by calculations which exclude it.

Further reading

Most contemporary texts in inorganic chemistry include a
treatment of the material in this chapter, although in less detail
and depth. They may be useful, however, in painting a broad-
brush picture. Other treatments tend to be rather mathematical
and to give at least as much emphasis to crystal field theory
as to molecular orbital (or to their combination, ligand field
theory); some older works remain the easiest to follow. Exam-
ples are:

1. A classic text, Introduction to Ligand Field Theory C. J. Ball-
hausen, McGraw Hill, New York, 1962; the reader of the
present book may well find it easiest to skip the first few
chapters of Ballhausen at a first reading.

2. Other texts or compilations—again, some selectivity will be

needed.

(@) Introduction to Ligand Fields, B. J. Figgis, Wiley, New
York, 1966.

(b) Some Aspects of Crystal Field Theory, T. M. Dunn, R. S.
McClure and R. G. Pearson, Harper and Row, New York,
1966.

(¢) Modern Coordination Chemistry, J. Lewis and R. G. Wil-
kins, Interscience, New York, 1960.

Recent theoretical work is, largely readably, illustrated in
The Challenge of d and f Electrons, D. R. Salahub and M. C.
Zerner (eds.), Symposium Series 394, American Chemical Soci-
ety, 1989.

Electron density distributions in inorganic compounds are
reviewed by K. Toriumi and Y. Saito in Adv. Inorg. Chem.
Radiochem. (1984) 27, 27.

A good introduction to spin density distributions—which
concludes that long range effects may well be important—
is ‘The Magnetization Density of Hexacyanoferrate(III) Ion
Measured by Polarized Neutron Diffraction in Cs,KFe(CN)g’
by C. A. Daul, P. Day, B. N. Figgis, H. U. Giidel, F. Herrin,
A. Ludi and P. A. Reynolds, Proc. Roy. Soc. Lond. (19-
88) 4419, 205.

A very worthwhile article which emphasizes that main
group and transition metal ions have much in common is ‘The
Roles of d Electrons in Transition Metal Chemistry: a New
Emphasis’ by M. Gerloch, Coord. Chem. Rev. (1990) 99, 117.

Questions

6.1 Use Table 6.1 and Fig. 6.2 to show that the following
metal orbitals have the symmetries indicated

S I ayy

P oty

d @ e+t
Table 6.1 does not enable the g and u suffixes to be determined.
The answer to this problem is worked out in detail in the

reference at the foot of page 97; the solution in this reference
includes the suffixes.

6.2 Rehearse the arguments which lead to the conclusion
that only interactions of T,, symmetry need to be considered
when the problem of 7 bonding in octahedral complexes is
studied.

6.3 Although both octahedral and tetrahedral complexes are
cubic (x = y = z), it is possible to be much more specific about
the effects of metal-ligand bonding in the former. Why?

6.4 Show that the five M—L ¢ bonding orbitals in a ML,
trigonal bipyramidal complex have 247 + A4} + E’ symmetries.
For this problem the character table of the D,, point group is
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6.5 As indicated in the text, Fig. 6.30 shows a depletion

needed:
of electron density along the Co—N axis; it is to be noted that

Dan £ 20 3C, o 2 i this depletion is close to the Co (as expected). However,
A 1 1 1 1 1 1 close to the N there _is a .buildup of electron density.
A, 1 1 1 1 1 ) Suggest reasons for this buildup.

E’ 2 -1 o 2 -1 o

Ay 1 1 1 -1 -1 -1

A3 1 1 -1 -1 -1

E” 2 -1 0 -2 1




Crystal field theory of
transition metal complexes

7.1 Introduction

Although little use is made now of the theory presented in this chapter,
it contains the basis of all of those that are used. It provides the foundation,
particularly for the understanding of spectral and magnetic properties; all
else is elaboration and refinement. A knowledge of simple crystal field theory
is therefore essential to an understanding of the key properties of transition
metal complexes and particularly those covered in Chapters 8 and 9. This
chapter deals exclusively with transition metal complexes. In one or more
of their valence states, the ions of transition metals have their d orbitals
incompletely filled with electrons. As a result, their complexes have character-
istics not shared by complexes of the main group elements. It is the details
of the description of these incompletely filled shells which is our present
concern,; this is in contrast to the discussion of the previous chapter where
the topic was scarcely addressed. Ions of the lanthanides and actinides
elements have incompletely filled f orbitals and so necessitate a separate
discussion which will be given in Chapter 11.

In 1929 Bethe published a paper in which he considered the effect of
taking an isolated cation, such as Na*, and placing it in the lattice
of an ionic crystal, such as NaCl. In particular, he was interested in what
happens to the energy levels of the free ion when it is placed in the
electrostatic field existing within the crystal, the so-called crystal field. The
energy levels of a free ion show a considerable degeneracy, particularly if
one is prepared to ignore effects which cause only small splittings. That is,
in the free ion there exist sets of wavefunctions, each member of any set being
quite independent of all other wavefunctions (i.e. orthogonal to them), yet
all members of any one set correspond to the same energy. What happens
to these ions when placed in an ionic crystal? Do the wavefunctions which
in the free ion had the same energy still all have the same energy in the
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crystal? Bethe showed that in some cases the free ion degeneracy is retained
and in others it is lost, the crucial factors being the geometry of the crystalline
environment and the term ('S, 3P, 2D, 'F etc.) of the wavefunctions of
the free ion.

Two years later, in 1931, Garrick demonstrated that a simple ionic model
gives heats of formation for transition metal complexes which are in
remarkably good agreement with the experimental values. That is, these
complexes behave as if the bonding between the central metal ion and the
surrounding ligands is purely electrostatic, just as in a simple picture of the
bonding in NaCl. If this is so, then Bethe’s work may be applied to complexes
as well as to ionic crystals and the energy levels of the central metal ion
related to those of the same ion in the gaseous state. All that is needed is a
suitable quantitative calculation to obtain the energy level splittings due to
the crystal field. This approach to the electronic structure of transition metal
complexes is known as crystal field theory and it is the subject of the present
chapter.

7.2 Symmetry and crystal field theory

Almost all the material of the present chapter arises from the symmetry
of the molecules considered. This symmetry finds expression in the subject
of group theory and, as in the previous chapter, to follow the arguments
we use the reader will need to be reasonably conversant with group-
theoretical jargon. The reader who needs a refresher course on the subject,
or perhaps somewhere in the depths of this chapter becomes uncertain of
their command, is reminded that there is a brief review of the essentials in
Appendix 3, although this is not to be regarded as a substitute for a proper
study.! Some of the language that will be used is reviewed in the next few
paragraphs and, as in the previous chapter, the discussion will be confined
to octahedral complexes.

In the present chapter the symbols A4,,, A,,, E,, T;, and T, will be
encountered with a spin state designated, for example, ZEy (‘doublet ee gee’)
and °T,,. The lower-case symbols used in Chapter 6 are also of frequent use,
$0, ay,, €,, t,, etc. These symbols may also have superscripts. We shall refer
to 13,, (‘tee two gee two’), for example when talking about two electrons in
a set of t,, orbitals (other books may refer to this as (tzg)z). Symbols such
as 13, or (t,,)* indicate that the set of three orbitals labelled ¢,, are occupied
by three electrons. This usage follows the similar use of s, p and, very
important for this chapter, d to indicate an orbital occupancy. One talks of
sp(=s'p!), d% d3, d®p? and so on as configurations (appropriate to an
isolated atom). In just the same way, symbols such as t3,, t3,, and t},e} refer
to electron configurations in (for the examples given) octahedral (O,)
symmetry.

It often happens that, for isolated atoms, one wishes to discuss all the
electrons—or, certainly, the outermost ones—collectively rather than as
individuals. One then refers to states or terms and uses uppercase symbols.

! The present author has written a, hopefully, easy to read and follow, non-mathematical
text on group theory called Symmetry and Structure, 2nd edn., published by Wiley, Chichester,
1995.
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The difference between these names is rather subtle and different usages are
met. The most common is that in which the detailed mathematical specifi-
cation decreases in the order state > level > term. So, in most of our
discussion we will talk of terms, although the repeated use of this word may
give rise to some ugly language and although in some papers and texts the
word state is used almost interchangeably with it. After a phenomenon
known as spin—orbit coupling has been included we will talk of levels and
if we wish to be even more detailed and talk about an individual wave-
function, we will use the name state. Care must be taken to avoid confusing
this use of state with phrases such as ‘the ground state’ and ‘an excited state’.
For our present purposes the important thing to note is that under the
rotational operations of an octahedron? any S term has the same symmetry
as an s orbital, a P term the same symmetry properties as a set of three p
orbitals and so on. Key, however, is the fact that whilst a solitary electron
in a set of p orbitals gives a P term, it transpires that two electrons in the
d orbitals can give one also, as can three d electrons. We talk of ‘the P term
arising from the p' configuration’, or ‘the P term arising from the d?
configuration’ and so on. A crucial factor turns out to be the number of
unpaired electrons, n, associated with each term and this is indicated by the
number (n + 1) as a superscript thus: 2P, *D and so on. If the choice of
(n + 1) seems odd—perhaps n seems more sensible—reflect on the fact when
n =1, that is, when there is just one unpaired electron, this electron can
have spin up or down—there are two, (n + 1), different spin possibilities.
Although it is usual to arrive at symbols such as *P by feeding electrons into
orbitals, the absence of any specific reference to these orbitals in the final
symbol suggests that they are merely a convenient vehicle, and not essential.
This is the case. Symbols such as P and 3P, like their lower case counterparts,
are a consequence of the (rotational) symmetry of a sphere. Indeed, the
symbols S, P, D, etc. are the labels of irreducible representations of the
relevant spherical group.

Although an octahedron has a much lower symmetry than a sphere it
would be reasonable to expect that many-electron wavefunctions would be
handled similarly. This is so—symbols such as *T,, *E, and '4,,, like t,,,
e, and a,, orbitals, imply, respectively, triple, double and single orbital
degeneracy. In each case they are associated with a spin degeneracy which,
in each of these three examples, is identical to the spatial degeneracy.
However the two vary independently and so symbols such as 2T,!,, 3Ey and
©A,, are perfectly reasonable.

7.3 Crystal field splittings

In crystal field theory a complex is regarded as consisting of a central
metal cation surrounded by ionic or dipolar ligands which are electrostatically
attracted to the cation. The bonding within the complex arises from the
electrostatic attraction between the nucleus of the metal cation and the
electrons of the ligands. The interaction between the electrons of the cation
and those of the ligands is entirely repulsive. These repulsions will be central

2 In the previous chapter, the extension to include operations such as reflection and inversion
was indicated; a similar discussion will appear later in this chapter.
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‘

Flg. 7.1 An octahedral complex. In this chapter
the way that an octahedral complex is drawn
will vary, the perspective adopted depending on
the point under discussion. Frequently, lines will
be drawn which represent the edges of the
octahedron rather than chemical bonds.

FIg. 7.2 A metal s orbital in an octahedral
complex.
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to the content of this chapter, for they are largely responsible for the energy
level splittings which were the subject of Bethe’s paper. As we will see, group
theory tells us to expect these splittings (this is what Bethe showed). However,
group theory tells us nothing about the magnitude or even the sign of the
splittings. We need a specific model to do this and the simplest is the crystal
field model. Actually, if we try to get numbers out of the model which can
then be compared with experiment we find that the model is not a very good
one. This is one aspect which has led to the development of the more
realistic model of Chapter 6. However, historically, virtually the entire detail
of the theory of transition metal ions was developed using the crystal field
model. The trick is never to use the model to get numbers. Rather, it is used
to focus our attention on energy differences and the relationships between
them. Experimental data are then used to obtain the numbers! It is this,
together with the fact that (as we shall see) the results are largely symmetry-
determined that lead to the utilization of the method. Consider the octahedral
complex shown in Fig. 7.1. What will be the effect of the crystal field on a
single s electron of the central metal ion (Fig. 7.2)? The ligand—metal electron
repulsion which we have associated with the crystal field will raise the energy
of the s electron (or an S term), but as there is no orbital degeneracy, no
orbital splitting can result. Next, what will be the effect of the crystal field
on a single p electron (or a P term) of the metal ion? As is evident from
Fig. 7.3 all the p orbitals are equally affected by the crystal field and so, no
matter which of them the p electron occupies, the repulsion is the same. That
is, the p orbitals (or the components of a P term) remain triply degenerate
in an octahedral crystalline field.

The case of a single d electron (or a D term) is both more difficult and
more interesting. All five d orbitals are not spatially equivalent. Three, d,,,
d,. and d,,, are evidently equivalent for they are equivalently situated with
respect to the ligands (Fig. 7.4) and may be interchanged by simply
interchanging the labelling of the Cartesian coordinate axes. The other two
d orbitals, d,._ . and d,., are not equivalent, although they both have their
maximum amplitudes along the Cartesian coordinates axes (Fig. 7.5). Inter-
change of the labels associated with each of these axes has the effect not of
interchanging the orbitals but of generating new orbitals. So, starting with
the coordinate system of Fig. 7.5 the interchange x — z —» y — x gives us

=N=al
yX &‘)

Py Pz

Fig. 7.3 A set of metal p orbitals in an octahedral crystal field. Because the coordinate axes of the octahedron are equivalent so too are the p orbitals.

They remain triply degenerate.
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Fig. 7.4 The d,,, d,, and d,, metal orbitals in an octahedral crystal field. Because they are all equivalent (they can be interconverted by rotating
around the threefold axis approximately perpendicular to the plane of the paper) they remain triply degenerate.

Fig. 7.5 The d,._,. and d. orbitals in an
octahedral crystal field. Although they look very
different, the fact that they can be mixed by an
axis relabelling shows that they are a
degenerate pair (see the text and Fig. 7.6).

Fig. 7.6 When the octahedral axes of Fig. 7.5
are relabelled
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then the orbitals d,. and d, - .- are obtained. It
may help to see this if both of the octahedra
drawn are mentally rotated by 120° anticlockwise
so that the axes return to the positions they
have in Fig. 7.5. Since nothing else has been
added or removed, the orbitals d,. and d,_,z

must be mixtures of the original d,. and d2_ ..
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Fig. 7.6 in which these same d orbitals are now labelled d,. and d,._,.. We
have not invented something new; the ‘new’ orbitals are simply mixtures of
the ‘old’. The fact that it is possible to mix two orbitals by such a trivial
operation as relabelling the axes shows that the two orbitals are degenerate.
If they were not, the mixed orbitals would have different energies from those
of the starting pair, and it is obviously ridiculous that the energies should
be a function of the labelling of the axis system. In Appendix 4 it is shown
in a more formal way that the new d orbitals are simply mixtures of the old
ones, d,- and d,._ .. We conclude that the d orbitals (or a D term) split into
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Fig. 7.7 In an octahedral crystal field the f
orbitals of a metal atom split into two sets

which are triply degenerate and one orbital

which is singly degenerate.
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two sets, a set of three degenerate orbitals and a set of two degenerate
orbitals. The relative energies of these two sets will be discussed shortly.

Finally, we consider the effect of an octahedral crystal field on a single f
electron (or an F term). Fig. 7.7 pictures the seven f orbitals in an octahedral
environment. The lobes of three, f.s, f;; and f,; point along axes. Three,
o2 —y2) fxp2—22) @and {2 _ 2) have lobes located in coordinate planes (for the
f.x2-,2) orbital shown in Fig. 7.7 these are the zx and yz planes). The last,
f,,z» has lobes pointing between all coordinate axes. Clearly in an octahedral
crystal field the f orbital sevenfold degeneracy is lost to give two sets of triply
degenerate orbitals and one singly degenerate orbital.

So far it has been shown that sets of d and f orbitals (and therefore D
and F terms) split into subsets in an octahedral crystal field but nothing has
been said about the relative energies of these subsets. For the moment, the
discussion will be restricted to orbitals because it is easy to give pictures
of them. In subsequent sections the discussion will be extended to the
corresponding terms. In preparation for this extension, it would be helpful
if the reader has some idea of their derivation so that he or she is fully aware,
for example, that an F state means seven spatial (as opposed to spin)
functions, just like a set of f orbitals. One of the simplest ways of appreciating
this is through the Russell-Saunders coupling scheme, that which is adopted
to obtain the explicit functions themselves. This scheme is outlined in
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(a)

Flg. 7.8 The combined repulsive and splitting
effect of an octahedral crystal field on the
energies of (a) a set of metal d orbitals and
(b) a set of f orbitals.

Appendix 5; part of it is also given in Section 11.3 which contains an example
worked through in outline. If difficulty is encountered as the argument
develops over the following pages, these resources should provide help.

Consider the d orbitals shown in Figs. 7.4 and 7.5. The more stable set
is that in which an electron experiences least repulsion—destabilization—from
the electrons on the ligands. Evidently, this set is that composed of d,,, d,,
and d,,, because this set keeps the d electrons away from the ligand electrons,
at least when the ligands are represented as point charges. This set has T,,
symmetry and we shall refer to these orbitals as ‘the t,, orbitals’ or ‘the t,,
set’. The less stable set, the ‘e, orbitals’ or ‘e, set’, consists of d, and d . _ ..

In a similar way it can be seen that the relative stabilities of the f orbitals
(Fig. 7.7) is: fy,; (a,,), most stable; {2 2, {212y and f,a ) (15,), inter-
mediate stability; {s, f,s and s (t,,), least stable. The splitting patterns for d
and f orbitals are shown in Fig. 7.8% We shall return to the f orbital splitting
but for the moment confine ourselves to the d orbital case. The vast majority
of experimental data on transition metal complexes gives information on the
splitting between the d orbitals but not on their absolute displacements from
the free ion energy. It is therefore convenient to delete this unknown quantity
from the diagrams and to regard the free ion energy as lying at the centre
of gravity of the energies of the split orbitals (Fig. 7.9). The splitting between
the t,, and e, sets of d electrons we shall call A (some authors prefer to call
it 10 Dq). For elements of the first transition series A has a value of around
10000 cm~!; for dispositive transition metal ions its value is usually
5000-15000 cm~*; and for tripositive ions 10000-30000 cm ™. Its value
increases roughly in proportion to the cation charge, depends markedly on
the ligands and, to a smaller extent on the metal (within any one transition
series). A complex of the second or third transition series has a value of A
which is up to twice that of the corresponding first row complex.

The modified d orbital splitting pattern showing only the crystal field
effect given in Fig. 7.9 defines the splitting which is crucial to our discussion.
However, the argument we used to derive the splitting used plausibility in
place of mathematics so we cannot be absolutely confident of the results.
Ultimately, the justification for the splitting in Fig. 7.9 is experimental so

3 Beware the assumption that this diagram, although correct, may be used to explain the

properties of ions containing unpaired f electrons. The situation is more complicated, as will
become evident in Chapter 11.
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FIg. 7.9 The d orbital splitting in an octahedral
crystal field after the repulsion term common to
both sets has been deleted. The unsplit d
orbitals are at the centre of gravity of the split
sets.

Fig. 7.10 The high spin (small A) and low spin
(large A) possibilities for d*~d” octahedral
complexes.
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that A is to be regarded as an experimental quantity. This is why we prefer
A to 10 Dq to describe the overall splitting—the D and q in 10 Dq relate to
specific mathematical functions in crystal field theory.

One immediate consequence of the splitting of d orbitals into ¢,, and e,
sets must be recognized. When there are between four and seven d electrons
present there exist two quite different low-energy ways of allocating these
electrons to the t,, and e, orbitals. These are shown in Fig. 7.10. There is a
competition between the tendency of the electrons to stay as far apart
as possible—they repel each other—and the preference to occupy the
lowest-energy empty orbitals (remember that there is no covalency in
our model—pairing electrons brings no bonding stabilization). The high spin
arrangement is the one in which the interelectron repulsion between the d
electrons is smallest—the electrons are spatially less concentrated—and the
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interelectron exchange stabilization is greatest (which is also why the
‘maximum number of spins parallel’ arrangement is of lowest energy). There
also exists the low spin arrangement which differs from the high spin in that
one or more electrons have been transferred from the less stable e, to the
more stable t,, orbitals. Each electron so transferred contributes a crystal
field stabilization of A to the system, but only at the cost of an increase in
the electron repulsion destabilization and a decrease in the exchange
stabilization (the latter, together, are often called the pairing energy). For
any one transition metal ion with from four to seven d electrons the vital
factor determining whether a particular complex is of the high or low spin
type is the magnitude of A. The change from one type to the other is
discontinuous; for other d" configurations there may be related, but less
dramatic, continuous changes associated with the transition from high
to low type. We may note at this point that the two types of complex
display quite different spectral and magnetic properties. For example, the
[Fe(CN)¢]*~ ion, which is a low spin complex of Fe' a d® ion, is yellow
and has no unpaired electrons. The [Fe(H,0)4]** ion, a high spin complex
of Fe' is pale blue* and is paramagnetic, with four unpaired electrons. It is
easy to show the difference in the number of unpaired electrons. If finely
ground crystals of K,;Fe(CN)g and then of FeSO,-7H,O are separately
dropped onto the poles of a strong magnet the latter show a definite tendency
to stick, whereas the former do not (neither stick to unmagnetized steel). This
different behaviour leads to an interest in the magnetic properties of
transition metal complexes and this forms the subject of Chapter 9.

In the crystal field model, the ligands are approximated by point charges
or dipoles, the value of A for a particular complex depending on the
magnitude of both this charge and that on the metal. This suggests that it
should be possible to place ligands in order of increasing effective charge
and, therefore, of increasing A. Further, this order should be the same for
all metals. Such an order of ligands was discovered by Tsuchida before the
advent of crystal field theory, and is called the spectrochemical series. As its
name implies the series was discovered as a result of a study of the (visible
region) spectra of transition metal complexes. It is therefore particularly
relevant to the content of Chapter 8, which deals with these spectra. An
abbreviated spectrochemical series, in order of increasing A, is:

I” <Br~ < SCN~ (S-bonded) < CI~ < F~ < OH™ < H,0 < SCN~ (N-bonded)
< NHz ~ py < SO3~ < bpy < NO5 (N-bonded) < CN~

A similar series exists for the variation with metal ion in which it is seen,
as already mentioned, that A increases with the formal charge on the ion
and down the periodic table:

Mn" < Ni" < Co" < Fe"' < V"' < Fe" < o' < VM < Co' < Mn" < Rh'"
<PdV < 1M < PtV

Despite the above argument, the former series should not be regarded as a
series in which the charge on the ligand increases from left to right. Other
factors are involved, as was evident from the discussion in Chapter 6.

* It commonly appears green, but this is caused by contamination with a small amount of
the yellow [Fe(H,0),]*".
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Table 7.1 M and L, values for
octahedral complexes

Metal

Mnlll
Ni"
co"
Fe"
cu"
V|I
Fe"
cr
V|||
colll
Ti”l
Mnlll
Mn'
Rhlll
Irlll
P(IV

2 For each donor atom; multiply by 2 for the bidentate

ligand.

m

Ligand

L

1.27
1.33
1.50
1.57
1.67
1.72
2.08
2.38°
2.50
2.83

These two series can be brought together for octahedral complexes,
including those which contain a mixture of ligands (here we anticipate
the ‘rule of average environment’, to be described in Section 8.9). Using Table
7.1, one simply forms the product

MY nL, x 108
!

to predict a value for A (cm™~?'). Here M and L, are taken from Table 7.1
and n; is the number of ligands of type [ associated with L, in the
complex (for genuine octahedral complexes n; = 6). This procedure has been
the subject of some controversy in the literature, but the fact is that it works
remarkably well.

We now return to the problem we met at the beginning of the chapter.
What are the energy levels of a transition metal ion in an octahedral crystal
field? There are alternative approaches to this problem depending on whether
one is interested in a high or a low spin complex. Before embarking on this
discussion, a limitation in our definition must be recognized. We have talked
of high and low spin complexes, but recognized that this distinction is only
applicable to ions with between four and seven d electrons. Clearly, the
magnitude of A can vary in a similar way for the other d electron
configurations, it is just that its variation does not have such evident
consequences. When we wish to talk of the entire set of d electron cases,
d'-d® we shall talk, instead, of weak field (small A) and strong field (large
A) complexes although, in fact, these terms are not even synonymous with
high spin and low spin for the d*~d” cases (the relationship will be made
clear later). The two cases will be considered separately and followed by a
discussion of the real-life case, in which the crystal field is of a strength
intermediate between those appropriate to the two extremes.

7.4 Weak field complexes

Weak field complexes are those for which the crystal splitting A, is smaller
than the electron-repulsion and -exchange energies. This at once indicates a
suitable theoretical approach to a discussion of their electronic structure. In
a general discussion of the energy levels of a free atom or ion one usually
considers the various interactions in order of importance. The most important
is the attraction between an electron and the nucleus. Next, the effects of
interelectron repulsion (this includes the exchange energy) are considered,
then the coupling between the spin and orbital motion of the electron
(spin—orbit coupling) and so on.

There would be no need to preserve this pecking order if each step in the
calculation were carried out exactly for both the ground and all excited states
of the atom—and this is what one would hope to achieve if a computer were
used to attack the problem. However, a deeper understanding is obtained
by following an algebraic approach. Here, each step usually involves
approximations and is only carried out for the ground and a few low-lying
excited states. Consequently, the step-wise procedure becomes necessary to
ensure that the properties of the ground state and terms immediately above
it in energy are described with fair accuracy.
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In crystal field theory the central atom of a complex is regarded as a free
ion subject to an additional perturbation due to its environment. Evidently,
this additional perturbation must be introduced at the correct point in a
calculation and, for weak field complexes, this is after the effects of electron
repulsion have been dealt with. That is, when the calculation has reached
the stage of the classification of terms, such as 2D, 3F, 'S, and so on. At this
point a very important characteristic has emerged. The most stable electron
arrangement in the free ion, which will be preserved in weak field complexes,
is one in which electron-electron repulsion is a minimum. The electrons are
as far apart as is possible. This will be when they occupy different orbitals
as much as is possible and this, in turn, means that the term of highest spatial
(orbital) and spin multiplicity will be the ground state. In this section we
shall therefore principally be interested in such terms. However, the way also
has to be prepared for the strong field case and this will necessitate
consideration of other, excited state, terms. Most important will be those of
the same spin degeneracy as the ground state, for some of the physical
observables associated with transition metal complexes—colour, for instance
—can only be understood if they are included.

As has been pointed out, the spatial degeneracy implied by labels such
as P, D, F, G,... (3,5, 7 and 9, respectively) arise from the high rotational
symmetry of a sphere. In the O, symmetry of an octahedral complex, the
central metal atom, instead of an environment with spherical symmetry, is
in one with only 24 rotational operations (cf. Fig. 6.2). This reduction in
symmetry means that there will also be a reduction in spatial degeneracy.
What we must now do, then, is determine how, for example, the 21
wavefunctions of the term which is the ground state of the free ion d?
configuration, *F, (three spin wavefunctions each combined with any one of
seven spatial wave functions) split under the influence of the crystal field.
This, of course, is where we came in at the beginning of the chapter and is
the topic which was the subject of Bethe’s paper. We ignore the spin
degeneracy (because the effects of a crystal field are the same whether an
electron spin is up or down; the crystal field may only have a small indirect
effect on the spin degeneracy through the coupling which exists between the
spin and orbital motions of an electron). We are left with the problem of
the F term and, as has already been pointed out, the splitting of an F term
parallels the splittings of f orbitals so that we conclude that the F term is
split into three substates, two of which are triply degenerate. It has already
been seen that a set of f orbitals split up into ¢,,, t,, and a,, subsets. Similarly,
an F term splits up into either T,,, T,,, and 4,, or T,,, T,, and A4,, subsets.
Which of these is correct is determined by the g or u nature of the
configuration from which the F term is derived. Because f orbitals are u in
character the 2F term corresponding to an f! configuration splits up into
*T1u» *Tyu, and 24,, components. Similarly, the *F term derived from the
d? configuration splits into *T,,, *T,, and *4,, components because the d
orbitals are g in character. Note a clever, but potentially misleading, trick
here: the group of all rotations of a sphere does not include the operation
of inversion in a centre of symmetry, i, and so the labels, S, P, D, . .. tell us
nothing about behaviour under this operation. As a result, we are able to
apply them equally to g and u functions but as soon as a centre of symmetry
is encountered (as in 0,) we have to check whether we are dealing with g
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(a) (b)

Fig. 7.11 (a) Ground and (b) excited states
derived from the d* configuration in an
octahedral crystal field.

Table 7.2 Crystal field components of the ground and some excited terms of d”
(n = 1-9) configurations

Configuration Free ion Crystal field subterms  Important Crystal
ground term excited term  field term

d; ;o Tyg + °Eg

d F 3Tyg + 3Tog + gy 3p 3T

@ F g + “Tog + *Agg P “Tig

a* °D STpg + °Eg

d5 Ss 1

d® D *T,q + °E,

d7 aE 4-,-1g + 4T2g + 4A2g 4p 3.,.1g

@ 3F 3Tig + g + Agg P g

d® &) Tog + %E4

or u functions. In this chapter our concern is only with the crystal field
splitting of terms derived from d”" configurations and because all d orbitals
are centrosymmetric, we shall encounter only g suffixes.

Table 7.2 gives the behaviour for all of the transition metal ions (d'-d®
configurations); it lists ground terms and, where the information is needed
later, the behaviour of the lowest excited state. Two points should be noted
in connection with this table. First, that only S, P, D, and F terms occur;
for each the splitting is similar to that of the corresponding orbitals. Secondly,
the table has some symmetry. Apart from the first column, the bottom half
is the mirror image of the top half. These two features combine to simplify
the remainder of our discussion of weak field complexes. The ground and
excited terms of transition metal ions have been introduced in Table 7.2
without any justification apart from that in Appendix 5. Such a justification
will be needed for the f electron systems in Chapter 11. The reader who
is unhappy with the present ex cathedra presentation should read Section
11.6 where the procedure is detailed; they may be fortified by the knowledge
that d electron systems are easier than their f electron counterparts! The
crystal field splittings given in Table 7.2 follow from the discussion earlier
in this chapter.

We turn now to the problem of the relative energies of the crystal-field
components listed in Table 7.2. Consider the D terms, which give T,, and
E, components. Which component is the more stable and by how much? It
will be taken for granted that it is an experimental fact that the five d orbitals
split as shown in Fig. 7.9 the splitting being denoted by A. Consider the
d! case, Fig. 7.11. Here, the ground state will be that in which the electron
occupies the lowest, t,,, orbitals. Just as a d' configuration gives rise to a
2D term so, too, t}, configuration (which is what we have here) gives rise to
a ’T,, term. Similarly, the (excited) e} configuration gives rise to a 2E, term.
We conclude that, for the d! case, the ZT“ term is the more stable because
it means that the solitary d electron is in the t,, orbitals. The (excited)
2E, term is generated from it by excitation of an electron from the t,, orbitals
to the ¢, orbitals. This, by definition, requires an energy A, so we conclude
that the T, and 2E, terms are also separated by the energy A.

Two points should be noted. First, a detailed argument is required to
relate the splitting of orbital energies to the splitting of term energies.
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Fig. 7.12 (a) Ground and (b) an excited state
with the same spin multiplicity, derived from the
d* configuration in an octahedral crystal field. In
the ground state there is a hole in the €
orbitals; in the excited state the hole is in the
t,€ orbitals.
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Fig. 7.13 (a) Ground and (b) lowest excited
state of the same spin multiplicity, derived from
the d® configuration in an octahedral crystal
field.
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Fig. 7.14 (a) Ground and (b) excited state
derived from the d° configuration in an
octahedral crystal field.
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This caution is necessary because, as will be seen in the following paragraph,
the fact that t,, orbitals are more stable then e, does not imply that
T,, terms are necessarily more stable than E,. Second, nine more electrons
could be accommodated in the orbitals of Fig. 7.11. The other positions are
vacant or, as it is more usually put, occupied by holes. A filled shell of
electrons has spherical symmetry; so too does a half-filled shell, provided
that no orbital of the shell is doubly occupied. The complement of a shell
half-filled with electrons is a half shell of holes which, therefore, also has
spherical symmetry. As has been indicated, our discussion is symmetry-
derived and something of spherical symmetry (more precisely, something
which is totally symmetric) never changes symmetry arguments and makes
a constant contribution to energies (this is the reason that inner-shell
electrons can be ignored). It follows that when we have a half shell of
electrons or, equivalently, holes, this half shell may be neglected. This is
illustrated in the next paragraph, which develops the electron-hole relation-
ship.

We consider the d' case in which the t,, orbital is the one occupied. There
are two ways of describing the situation in which the t,, orbitals are occupied
by a single electron. We may say that the situation differs from spherical
symmetry either by the presence of a t,, electron or by the presence of two
holes in the e, set and two holes in the t,, set—that is, a hole is missing in
the ¢, set. Obviously, it makes no sense to use the hole description for d*(t3,)
case but sometimes it is useful to talk in terms of holes. Such a case is
provided by the ground state °D term of the d* configuration. The quintet
spin state means that all four of the d electrons have parallel spin, as shown
in Fig. 7.12. The electron distribution differs from spherical symmetry by the
presence of four electrons, or, what is equivalent, by the presence of one
hole. Just as it was sensible to discuss the d' case in terms of one electron
rather that four holes, so it is sensible to discuss the d* case in terms of one
hole rather than four electrons. The most stable situation is that in which
the hole is in the e, orbitals. The ground term is therefore °E,. At an energy
A above the ground state is the T, term, in which the hole is in the ta,
orbitals. In the d* case, therefore, the splitting of the E, and T, levels is the
inverse of that in the d! case. It is worthwhile emphasizing again that, as
has just been seen, the fact that ¢,, orbitals are more stable than e, does not
mean that T,, terms are automatically more stable that E,.

In the 5D term arising from the d® configuration the orbital occupation
is as shown in Fig. 7.13. It differs from spherical symmetry by the presence
of a single electron, which is most stable when in the t,, orbitals. The splitting
therefore follows the d' case, the °T,, term being more stable than the °E,
term by an energy A. Similarly, the 2D term arising from the d° configuration
differs from spherical symmetry by the presence of a hole in the e, orbitals
in the ground state, as shown in Fig. 7.14. The ground state is therefore
of *E, symmetry and the excited state, at an energy of A above, is of ’T,,
symmetry.

Why is the hole formalism so useful? When a set of 7,, orbitals contains
a single electron a T,, term results. What if it contains two electrons; does
this also result in a T,, term? The answer, as we shall see later, is that it
does, but other possibilities also exist (in the same way that a d? configuration
gives rise to other than D terms). Similarly, if we evaluate the terms arising
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from the t3,e} configuration (using methods to be described later) we find
a multitude of them. Some terms correspond to singlet spin terms, others to
triplets and one to a quintuplet. If we are interested in the splitting of the
D term (the ground state of the free ion d* configuration) we are only
interested in the spin quintuplet, and work is obviously involved in sorting
it out from the others. The hole formalism does this work for us. Similarly,
if we wish to write down an explicit expression for the wavefunctions of the
5D term arising from the d* configuration it is much easier to write down a
wavefunction appropriate to the single hole than to write down a (product)
wave function appropriate to the four electrons. However, care is needed in
the use of these pseudowavefunctions because holes behave differently from
electrons. For example, it was argued earlier that metal electrons are repelled
by the ligand field. It follows that, in contrast, holes are attracted by a ligand
field.

The lowest term arising from the d* configuration of a free metal ion is
*F. It has already been shown that this gives *T,,, *T,, and *4,, components
in a ligand field. What is their relative ordering? Following our discussion
of the splitting of f orbitals in a crystalline field we might anticipate that the
T,, term would be of intermediate stability and, following our discussion of
the splitting of D terms, expect that T, and A4,, would alternate as the ground
state for the d*, d” and d® weak field cases. Detailed calculations confirm
both of these predictions. Although it is beyond the scope of this book to
give the detailed calculations,® this ordering of terms will be justified, and
values for the relative energies of the components obtained, in Section 7.5.
Having done this, the subject becomes easier because the splittings of all
other F terms follow from the fact that for the 3F term derived from the d?
configuration the T, term is lowest and >4, the highest. This will now be
done fairly briefly; the task will be made easier by anticipating the results
we shall later derive for the orbital occupancies associated with each term.
This derivation will also help to deepen the understanding of the following
results. At this point, remember that all starts from the d? case and follows
either directly (d7), or by the hole—electron analogy (d* and d®). For d” and
d®, the spherical symmetry of a half-filled shell is also involved.

In the (°T,,) ground term derived from the *F term of the d? configuration
we will find that there are two electrons in the ¢, orbitals.® For the *F term
arising from the d* case, the “T,g term derived from it in an octahedral crystal
field corresponds to the presence of two holes in the t,, orbitals and so is
an excited state (Figs. 7.15 and 7.16); the “Azy state is the ground state in
this case. Note the switch from electrons to holes in the last two sentences
and the consequent change of ground state into excited state when referring
to the “T,, term. For the *F term of the d” configuration the ground state
is “Tlg; the configuration differs from spherical symmetry by the presence of
two electrons in the t,, orbitals (Fig. 7.17) and so the splitting parallels the
d? case (the spin states differ, of course, but this is irrelevant). The *F term

5 A reasonably simple treatment is given in Valence Theory by J. N. Murrell, S. F. A. Kettle
and J. Tedder, Wiley, London (1965) Chapter 13.

6 This statement is not quite correct, as we shall see at the end of Section 7.5. Similarly,
errors are contained in the statements on the d3, d7 and d® configurations. These errors are
made in the interest of linguistic and conceptual simplicity and in no way invalidate the general
argument.
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Fig. 7.15 (a) Ground and (b, c) two excited
state configurations of a d? ion in an octahedral
crystal field. The triple orbital degeneracy of the
3T, ground state may be associated with the
three possible orbital sites for the hole in (a).

Fig. 7.16 (a) Ground and (b, c) two excited
state configurations of a d° ion in an octahedral
crystal field. Note that there is only one
distinguishable way of arranging the electrons in
the three orbitals in the ground state—and so
the ground state is orbitally non-degenerate.

FIg. 7.17 (a) Ground and (b, ¢) two excited
state configurations of a d’ ion in an octahedral
crystal field.

Fig. 7.18 (a) Ground and (b, ¢) two excited
state configurations of a d® ion in an octahedral
crystal field.
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derived from the d® configuration gives rise to an excited *T,, term (Fig.
7.18), two holes occupying the t,, orbitals, and a >4,, ground state,
paralleling the d® case—and so the opposite splitting pattern to d>—
remember that holes and electrons behave in opposite ways in crystal fields.

The only other weak-field case which remains to be discussed is that of
the ®S ground state of the d° configuration. This ground state is orbitally
non-degenerate and so no crystal field splitting can occur. The behaviour of
this ®S term parallels that of an s orbital and becomes ®A4,, in an octahedral
crystal field.

So far the P excited states of the d2, d3, d”, and d® configuration which
were given in Table 7.2 have not been mentioned. These excited states give
rise to a Ty, term which is of the same spin multiplicity as the T, term
derived from the corresponding free-ion F ground term, the energy of which
has just been discussed. These two T,, terms, being of the same spin
multiplicity and orbital symmetry, may interact under the influence of the
crystal field. In the limit of a very weak crystal field—and such a field is our
present concern—this interaction is correspondingly weak and may be
ignored. Attention is drawn to it at this point as it is referred to in Sections
7.5 and 7.6.
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The arguments of this section are summarized by showing in Fig. 7.19
the splittings, in the weak field limit, of the ground state free-ion terms listed
in Table 7.2. The behaviour shown is simple—the energies are a linear
function of A (introduction of the additional T,, levels mentioned above,
will, when we include them, introduce a curvature into the T, behaviour).
So far, the actual energies for the components of split D terms are the only
ones to have been discussed; although F terms have been considered in
outline, the energies of their components in an octahedral crystal field have
not been obtained—this will be done later.

7.5 Strong field complexes

Strong field complexes are distinguished from weak field complexes because
their crystal field splitting energy, A, is greater than the energies associated
with electron pairing. In an actual calculation this means that instead of
finding the terms arising from a d" configuration—otherwise the first step
in a step-wise, pecking order, calculation—one first applies the crystal field
perturbation. This divides the d orbitals into e, and t,, sets. A d" configuration
splits up into sets which differ in the occupancy of the t,, and e, orbitals. So,
for example, the d? configuration splits into three sets t3,, t3,e; and eZ. A
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Table 7.3 Strong-field substates for
d” configurations

d"
dl
d2
d3
dA
d5
d®
d7
d8
d9

Strong field configurations

e

By theei, €

By, e, tiged, €3

B, Bged, 563, thge}, e
Bgr theeq, 3563, t5ge7, theeg
Bg. t5eeq, el B, Goey
Beet, Bee], 3063, 5505
Bge3, Beed, tzgeg

Beed, Beeg

complete list of these substates is given in Table 7.3 which possesses
the same sort of symmetry as Table 7.2. The number of substates listed for
a d" configuration is the same as that for a d'°™" configuration although
inspection shows clear differences in orbital occupancies. These differences
are only apparent. The reader should easily be able to show that, if the hole
formalism is used for one of them, the difference between them disappears.
For the d® configuration, for example, the hole formalism leads to tgy, tiyey‘
and ef hole configurations, the same as the electron configurations listed
for the d? configuration in Table 7.3. The relative energies of the terms given
in Table 7.3 are readily evaluated; in evaluating them the advantage of
arbitrarily placing the energy of the d orbitals of the free ion at the centre
of gravity of those of the complexed ion will be seen. With this convention,
it is obvious (Fig. 7.9) that the t,, orbitals are stabilized by 2 A and the e,
orbitals destabilized by 2 A. Following the usual sign convention, the energy
of the t,, orbitals is —% 2 Aand thatof thee, orbitals 2 A. That is, each electron
in a t,, orbital comnbutes —2%A, and each e]ectron in an e, orbital 2 A,
to the total d orbital energy. As an example of the appllcatlon of this,
consider the t},, tj,e) and e’ configurations derived from d?. These have
energies, respectively, of 2(—2A) = —%A (—=2A+2A)=1A,and22A) =
£ A; three levels, each A away from its neighbour(s).

This is a convenient point at which to begin to introduce some diagrams
to which our discussion is leading. The beginnings of the diagram relevant
to the d? configuration is given in Fig. 7.20. The weak field limit (A = 0) is
represented by the left hand vertical line on which will be seen two of the
labels which featured in the discussion of the weak field case, F and P. At
the right hand edge of the diagram (A infinite) will be seen—a bit buried—
the energies of the three strong-field configurations arising from the d?
configuration in the octahedral case (13, at —% A, t3,e} at § A and e at § A).
The second of these configurations differs from the first in that it has one
fewer t,, electrons and one more e,. The third differs from the second in the
same way. Now the energy required to move an electron from a t,, orbital
to an e, is A (this is the definition of A). It follows that in Fig. 7.20 the three
configurations are equally spaced (by A) along the right-hand vertical axis.
Along the horizontal axis A runs from 0 to oo, as in Fig. 7.20, and this entire
range is included in the figure. It follows that the A scale must be nonlinear.
Nonetheless, it will be assumed to be linear near the weak field and strong
field axes and that the non-linearity is somehow accommodated in-between.
As Fig. 7.20 shows, the discussion so far has left us in a rather difficult
position. At the weak field limit we know the symmetries of the crystal field
terms but only for one, the *T,, arising from the free ion *P term (usually
denoted 3T,g(P)) do we know an energy. Because the 3P term does not split
in a crystal field, the energy of the *T,,(P) term is independent of A. The
energy is therefore shown as a horizontal line at the weak ﬁeld limit. In the
strong field limit we know energies; all terms arlsmg from the e configuration
have an energy of § A, all arising from t3,e) have an energy of A and all
arising from 13, have an energy of —% A. In FIE 7.20 lines of the appropnate
slope have been drawn at the strong field limit but we neither know the
symmetry labels to be attached to these lines nor, indeed, whether each line
represents more than one energy level. Our next task is to tackle this latter
problem; once this is done we shall be able to complete Fig. 7.20.
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Fig. 7.20 The weak and strong field limits for
the d? configuration in an octahedral crystal field.
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By the end of the discussion of weak field complexes the effects of both
the (weak) crystal field and electron repulsion had been included. To be
consistent we must consider the effects of electron repulsion in strong field
complexes, and this we now do. Electron repulsion causes some arrangements
of electrons within an unfilled shell to be more stable than others—those
arrangements in which unpaired electrons are kept farthest apart and have
parallel spins will be the most stable (Hund’s rules). That is, in a free
atom or ion, electron repulsion causes the terms arising from a configuration
to have different energies, as we have seen. Similarly, in a crystal field, the
terms arising from a configuration like t3, will, in general, have different
energies because of electron repulsion. How does one determine the terms
arising from such a configuration? What are the relative energies of these
terms? We shall answer these questions by looking at the group theory of the
problem. Results that are qualitatively correct will be obtained, with no need
to evaluate a single integral.

Table 7.41s a table of direct products; its derivation is included in Appendix
3. This table is important, for it is used whenever one is simultaneously
interested in two similar quantities associated with an octahedral molecule;
for example, if we are interested in the symmetry properties of two electrons
as a pair rather than as individuals. Similarly, this table will be used to
discuss spectra, for which the ground and excited states of a molecule have
to be considered simultaneously. Table 7.4 does not give g and u suffixes;
they could have been included, but this would have made the table four
times larger with no increase in real content. The way that these suffixes may
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Table 7.4 The O, direct product table (§ x §=u xu=g; g x U =)

0, Ay A, E T T,

A, Ay A, E T, T

A, A, Ay E T T,

E E E AL +A +E L+T L+0h

T T T L +T, A+E+T +T, AL+E+T +T,
T, T, T, TL+T, A+E+T +T, A+E+T +T,

be added will be shown shortly but first the meaning of the entries in Table
7.4 must be explained.

As our immediate aim is to complete Fig. 7.20 our discussion will be
confined to the d* case. Consider first the t3,e} configuration.The first
electron may be fed into any one of three t,, orbitals and the second into
any one of two e,. That is, there are 3 x 2 =6 ways of feeding the two
electrons in; there are six orbitally-different wavefunctions. Table 7.4 shows
that the direct product of ¢, (extreme left-hand column) with e (top row)
written T, x E, is equal to T, + T, or, including g suffixes in an obviously
sensible way, T,, x E, = T,, + T,, (note that T,, x E, or T,, x E, would
have given T,, + T,,). The other possibility, T,, x E,, would also have
given Ty, +T,, (g xg=uxu=g; ux g=gxu=u). The sum of the
degeneracies implied in T,, and T,, (3 + 3 = 6) is the same as the number
of orbital wavefunctions arising from the t} e, configuration (3 x 2 = 6). It
will not surprise the reader to learn that these six tj,e, two-electron
wavefunctions divide into two sets of three each, one set of T}, symmetry
and one set of T,, symmetry. That is, the configuration t;e; gives rise to T,
and T,, terms. This is no accident—it is a group theoretical requirement and
would be just as valid in a different context (molecular vibrations, for
instance, if we simultaneously excite T,, and E, molecular vibrations of an
octahedral complex the molecule could end up in either a—vibrational—T,,
or T,, state). So far, the spin of the electrons has not been mentioned. Because
in the 3 e, configuration the two electrons always occupy different orbitals,
there are no constraints and all paired (singlet) and parallel (triplet) spin
arrangements are compatible with all the orbital symmetries that arise. We
conclude that the t},e, configuration gives rise to *T,,, *T,,, 'T,, and 'T,,
terms. This means that the line at the strong field limit in Fig. 7.20 with
slope 1 A is a superposition of lines corresponding to these four terms.
However, because Fig. 7.20 is only concerned with triplet spin terms, only
the labels °T;, and *T,, have to be added to this line in Fig. 7.20.
As a check on the answer that has been obtained it is helpful to count
wavefunctions. Previously, we only counted orbital functions; what if we
include spin? Now, there are six different ways of putting an electron into
the t,, orbitals (three orbitals, two spins) and four ways of putting one
into the e, a total of 24 different ways of putting in the two electrons;
that is, there are 24 different wavefunctions. This is just the number implied
by Ty, + *T,, + 'Ty, + 'Ty, (9 + 9 + 3 + 3). The counts agree, as they
have to.

We now consider the e configuration, associated with the strong field
line of slope ¢A in Fig. 7.20. The first electron can be fed into the
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e, orbitals in any one of four ways (two orbitals, two spins). The second
cannot be in the same orbital with the same spin as the first and so the
number of distinct two-electron wavefunctions is 4(4 x 3) = 6. The 4 arises
from the word distinct: for instance, the 4 x 3 includes both (1) and un
yet these are not distinct; we have counted everything twice. As Table 7.4
shows, the direct product E,x E, = 4,, + A4,, + E,. We know that the ¢
configuration must give rise to at least one spin triplet (because we can put
one electron into each e, orbital and they can be put in with parallel spin).
But, as Fig. 7.20 shows, i the weak ﬁeld limit there is no 3Aly or *E, term,
only Azg We conclude that the e configuration gives rise to the terms
Ay, + Azg 1E This conclusion can be checked by counting the number
of two-electron wavefunctions implicit in these terms. Itis 1 + 3 + 2 =6, in
agreement with the number obtained at the beginning of this paragraph.
Since we are only interested in mp]el spin terms, the label Az,, may now
be added to the line of slope ¢ A in the strong field limit of Flg 7.20.
Nollce an important distinction between the treatment of the tzyey and the
e (and, in the next paragraph, the t2) configurations. For the tzyeg case the
spin and orbital motions of the electrons were treated independently—a term
of given orbital symmetry appeared both as spin singlet and as spin triplet.
When the two electrons are in the same orbital set this independence
disappears; a term of given orbital symmetry appears as either a spin singlet
or as a spin triplet, never both. This apparently arbitrary distinction actually
arises from the fact that the (spin plus orbital) wavefunctions have to be
antisymmetric (go into themselves multiplied by a factor of —1) on
interchange of two electrons in the same orbital set. The connection between
the requirement and the consequence is not immediately obvious but can be
expressed group theoretically by an extension of the concept of the direct
product beyond that used in this chapter.

We now turn to the t3, configuration but we already know what we expect
to find—those terms which appear at the weak field side of Fig. 7.20 and
which have not yet been obtained. That is, we are looking for a *T,, term,
the only spin triplet unaccounted for. As Table 7.4 shows, the direct product
Ty, xTyy=A,,+E, +T,, +T,, Weexpect that the addition of spin labels
will lead to 'A,, + 'E, + *T,, + 'T,,. Is this correct? A partial check can
be made by counting two-electron wavefunctions. The configuration 3,
implies 3(6 x 5) = 15 two-electron wavefunctions. This is the number implicit
in'd,, +'E, + T, + 'Ty, (1 + 2+ 9 + 3 = 15). It is reasonable then, to
add the label 3Tlg to the line of slope —%A at the strong field limit
of Fig. 7.20.

All that we need to complete Fig. 7.20 is a knowledge of the relative
energies (i.e. the A dependence) of the 3A2g + 3T,y + 3T2g components
of the *F term in the weak field limit. This is easy. We know the energies of
the *4,, and °T,, states in the strong field limit; they are $A and 1A,
respectively. There is no reason why these A dependencies should change as
A decreases and so we conclude that these values are also their energies in
the weak field limit. All that remains is to obtain the energy of the *T,, term
arising from the *F term (usually denoted 3T, (F)). We might be tempted
to simply look at the 3T1g term arising from the tiy strong field configuration
and conclude that the answer is —% A. However, a little thought will indicate
that caution is needed. The *T,,(P) term does not depend on A in the weak
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field limit but has to correlate with the *T,, term arising from the t},e;
configuration, a term which has an energy of £ A (this has to correlate because
if it did not the non-crossing rule—the rule that the energy levels of terms
of the same symmetry and spin degeneracy do not cross—would be violated).
So, the term 3T, ,(P) changes its dependence on A as A itself changes—and
this is caused by the presence of the second 3T19 term, with which it
interacts—and it is this latter that we are interested in. The moral is: be
careful when there is more than one term of a given symmetry and spin
multiplicity. Actually, it is not difficult to calculate the energy of the *T,,(F)
term. Note that it is the splitting of the F weak field term that gives
*4,, + Ty, + °T,, terms. The word splitting implies that the energies of the
components sum to that of the *F term; their A dependencies sum to zero.
Denoting the energy of the *T, (F) term by &(T},,), taking care to weight each
energy by the number of wavefunctions with this energy, we have

Bx8A +Ox M) +©OxEA=0

That s, £(T,,) = —2 A; our caution was justified—in the weak field limit the
*T,,(F) term does not have the same energy as in the strong field limit. The
two energies differ by —% A, equal and magnitude but opposite in sign to
the difference between the energies of the 3T19(P) term in the same limits.
The crystal field has caused the two T, terms to interact; they ‘push’ each
other apart by equal and opposite amounts. Figure 7.20 can now be
completed. The final version is shown in Fig. 7.21 which embodies all the
content of the above discussion. One final point. As befits the above
discussion, in this figure straight lines are drawn representing *4,, and *T,,
terms connecting the weak and strong field limits. Given what was said
earlier about the non-linear scale of the A axis in this figure, such straight
lines cannot be justified. The moral is clear: Fig. 7.21, and related ones which
will be presented shortly, are of pedagogical use only. However, they serve as
an excellent introduction to related diagrams (Tanabe—Sugano diagrams)
which have well-defined energy scales.

The discussion so far almost, but not quite, enables an extension to all
d" systems either by the electron—hole parallel, by neglect of half-filled shells,
or both. The omissions can be dealt with by arguments paralleling that which
follows for the 3, configuration, a configuration which poses a problem.
The most obvious way of obtaining the orbital terms arising from this
configuration is to simply take each of the orbital terms arising from the 3,
configuration and combine each with a further t,, orbital function. That is,
to form the triple direct product T,, x T,, x T,, or, equivalently, consider
the sum of direct products

(Arg X Tog) + (Eg X Tog) + (Tyg X Tog) + (Tog X Tpg)

This would be wrong. Some of the spin singlet wavefunctions of the T3,
configuration represent two electrons occupying the same orbital. To form
direct products blindly would, for some of the three-electron wavefunctions,
be to allocate all three electrons to one orbital! The simplest way to avoid
this problem and obtain the correct answer is as follows. In the °T,, term
of the 13, configuration we know that the electrons have parallel spins and
so must occupy different orbitals (because of the Pauli exclusion principle).
Adding a third t,, electron can never give us three electrons in one orbital.
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Fig. 7.22 (a) The three orbital arrangements
associated with the triple orbital degeneracy of
the 3T, ground state of the d? (t3,)
configuration (cf. Fig. 7.15). (b) The seven
different orbital arrangements corresponding to
the t-;'g configuration may be derived from those
of the t3, as indicated. It will be noticed that
there are three arrows connecting with the top
line of (b). One spin arrangement associated
with this top line is *all spins parallel'—*A,. The
other two must be spin doublets, which,
together with the six below, give a total of
eight spin doublet functions, corresponding to
the 2E, + 2Ty, + 2T, terms (cf. Table 7.5).
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Figure 7.22 gives diagrammatic representations of the T,, orbital wave-
functions (spin is not specified). Also in Fig. 7.22 are shown all the possible
ways of orbitally allocating electrons in 3, configuration, again without
specifying spin. It is easy to see that all of the ¢3, arrangements may be
obtained from those of the orbital components of the 3T1y term. This suggests
that the direct product T,, x T,, will give us the symmetries of all the sets
of l%u three-electron wavefunctions. This is so; from Table 7.4 it is seen that
they are A,,, E,, T,, and T,,. The spin multiplicities of these terms now have
to be added. It is easy to see that only one spin quartet term can exist and that
this is orbitally singly degenerate—there is only one way of allocating three
electrons with « spin to the three t,, orbitals. The other terms must therefore
be doublets; that is, we have “A,,, E,, °T,, and *T,,. Again, the total
degeneracy (4 + 4 + 6 + 6 = 20) equals the number of distinguishable and
allowed ways of feeding three electrons into the t,, orbitals:

(6 x5 x4) - 20
(1x2x3)
Similar arguments may be applied to all the other configurations which arise,
although when either or both of the t,, and e, shells are more than half full
it is convenient to work in terms of holes. The results, of course, are the
same as those for the similar electron configurations, both for space and
spin. Results are collected together in Table 7.5 which may appear frightening
in its complexity. Fortunately, Hund’s rule applies to each configuration and
we shall usually be interested only in the most stable terms, those of highest

spin multiplicity, of each configuration.
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Table 7.5 Terms arising from t7,eZ configurations

Number of Configuration Terms arising
d electrons
1,9 tog t3q€5 Ty
€ Bge3 g
2,8 g t4eel g g 'Eg 'Tog
5 o3 3 3 1 1
g€y 1368 Tg “Togr "Thg "Tog
e Bge3 %hsg, Argr Eg
3,7 B g5 YAogs gy Tig, “Tog
2 4 3 4 4 2 2 2 2 2
t2ge§ tggeg 4T1g, 7;2&, Alzg, Azgr 2°Eg, 2T, 2°Tyg
t¢€g 3465 Tig) 2°Tig 27Ty
e t54eq 2E,
4,6 te tBeed g Argr 'Eg Ty
Beee g€} %Eg: “Prg, “Pog, 2°6g, 2Ty, 2%Tag, Ay, Mgy,
1By, 2'Tyy, 2Ty,
Bee7 g0 o Angs *Egr 3Ty 29T, 25, YA,

3315,5, e 3T

tZEeg tggeg Tig: 3T2g1 1T1gv 17-2g
1

e e Asg

5 3 tre€s 27,
g€y g€} “Tig “Togs *Asg, zAggv 2ng, szlgv szzg )
B,e2 A, gy “Togs 2°Egs “Tog “Togs 2%Asg, g,

2 2 2
3%Eg, 4°Tyy, 47T

In the preceding paragraphs, our concern has largely been with the
d? case. The results obtained for this configuration may readily be extended
to other cases; this extension is given in the next section. The present section
is concluded by enquiring into the d orbital occupancy when a weak field
d? ion is in its ground state (the d” case is similar). The energy of the 3T1y
ground term, —2A, must correspond to an electron distribution of %
electrons in the t,, orbitals and 4 in the e, orbitals:

E@x —20+Ex2N=-3A

If talking in terms of fractions of electrons seems strange, remember that
these fractions refer to the probability distribution of the electron density.
Physically, because electron repulsion is larger than the crystal field in weak
field complexes, this repulsion forces some electron density into the e,
orbitals.

7.6 Intermediate field complexes

In the vast majority of transition metal complexes the energies associated
with electron repulsion and the crystal field are of the same order of
magnitude. This means that neither the weak field limit (electron repulsion >
crystal field) nor the strong field limit (crystal field > electron repulsion) are
met with in practice. There is no separate theory for the intermediate, real
life, region. It is approached from either the strong or the weak field end,
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whichever seems the more appropriate. For d*~d” complexes the choice is
dictated by the distinction used when introducing high and low spin
complexes—by the number of unpaired electrons present on the metal ion.

The qualitative behaviour of the energy levels in the intermediate-field
region can readily be obtained from a knowledge of the energy levels in the
weak and strong field limits. When discussing strong field complexes every
possible term arising from every possible configuration was considered.
However, for weak field complexes only the terms arising from the lowest
free ion term were included in the discussion. To give a complete treatment
of the intermediate field region the weak field treatment must be extended
to include the terms arising from all of the other free ion terms. This
information is given in Table 7.6, which also includes the splittings of those
terms which we have already considered in detail. The terms arising from
d" configurations are listed in Table 7.7.

The relative energies of the components of free-ion terms in a crystal field
may be obtained by the methods which have already been described or by
others which are related to them. Two problems arise. First, as has already
been noted, for a given d”" configuration there is usuall<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>