

Python’s	Companion
	

The	Most	Complete	Step-by-Step	Guide	to	Python
Programming

	

	

Joe	Thompson’s	Books
	

	

To	learn	Windows	10	Step-By-Step	<Click	Here>

https://www.amazon.com/dp/B01BBDSQGE

	

	

To	learn	Excel	2016	Step-by-Step	<Click	Here>
	

https://www.amazon.com/EXCEL-2016-COMPANION-SCREENSHOTS-LEARN-ebook/dp/B01LXJD7ZM/ref=sr_1_6?s=digital-text&ie=UTF8&qid=1476499765&sr=1-6&keywords=excel+2016

Table	Of	Contents
	

Introduction

An	Overview	of	Python

	

Step	1:	Installing	Python

Installing	Python	in	Windows

Which	version	should	I	use?

Installing	Python	in	Mac

Running	the	Installation	file

Starting	Python

IDLE	versus	the	command	line	interface	(CLI)

IDLE

The	Command	Line	Interface	(CLI)

Different	ways	to	access	Python’s	command	line

If	you’re	using	Windows

If	you’re	using	GNU/Linux,	UNIX,	and	Mac	OS	systems

	

Step	2:	Working	with	IDLE

The	Python	Shell

The	File	Menu

The	Edit	menu

The	Shell	Menu

The	Debug	Menu

The	Options	Menu

The	Window	Menu

The	Help	Menu

Writing	your	First	Python	Program

Accessing	Python’s	File	Editor

Typing	your	code

Saving	the	File

Running	the	Application

Exiting	Python

	

Step	3:	Python	Files	and	Directories

The	mkdir()	Method

The	chdir()	Method

The	getcwd()	Method

The	rmdir()	Method

	

Step	4:	Python	Basic	Syntax

Python	Keywords	(Python	Reserve	words)

Python’s	Identifiers

Five	rules	for	writing	identifiers

A	Class	Identifier

Naming	Global	Variables

Naming	Classes

Naming	Instance	Variables

Naming	Modules	and	Packages

Naming	Functions

Naming	Arguments

Naming	Constants

Using	Quotation	Marks

Statements

Multi-line	statements

Indentation

Comments

Docstring

	

Step	5:	Variables	and	Python	Data	Types

Variables

Memory	Location

Multiple	assignments	in	one	statement

Assignment	of	a	common	value	to	several	variables	in	a	single	statement

Data	Types

Boolean	Data	Type

	

Step	6:	Number	Data	Types

Integers	(int)

Normal	integers

Octal	literal	(base	8)

Hexadecimal	literal	(base	16)

Binary	literal	(base	2)

Converting	Integers	to	their	String	Equivalent

integer	to	octal	literal

integer	to	hexadecimal	literal

integer	to	binary	literal

Floating-Point	Numbers	(Floats)

Complex	Numbers

Converting	From	One	Numeric	Type	to	Another

To	convert	a	float	to	a	plain	integer

To	convert	an	integer	to	a	floating-point	number

To	convert	an	integer	to	a	complex	number

To	convert	a	float	to	a	complex	number

To	convert	a	numeric	expression	(x,	y)	to	a	complex	number	with	a	real	number	and	imaginary	number

Numbers	and	Arithmetic	Operators

Addition	(+)

Subtraction		(-)

Multiplication	(*)

Division	(/)

Exponent	(**)

Modulos	(%)

Relational	or	Comparison	Operators

Assignment	Operators

=	Operator

add	and	+=

subtract	and	-=

multiply	and	*=

divide	and	/=

modulos	and	%=

floor	division	and	//=

Bill	Calculator

Built-in	Functions	Commonly	Used	with	Numbers

abs(x)

max()

min()

round()

Math	Methods

Math.ceil(x)

Math.floor(x)

Math.fabs()

Math.pow()

Math.sqrt()

Math.log()

	

Step	7:	Strings

Accessing	Characters	in	a	String

String	Indexing

The	Len()	Function

Slicing	Strings

Concatenating	Strings

Repeating	a	String

Using	the	upper()	and	lower()	functions	on	a	string

Using	the	str()	function

Python	String	Methods

The	replace()	method

Case	Methods	with	String

Upper()

Lower()

Swapcase()

Title()

Count()	method

The	find()	method

Isalpha()

Isalnum()

Isidentifier()

The	join()	method

Lstrip()	method

Rstrip()	method

Strip([chars])

Rfind()	method

Index()	method

Rindex()	method

Zfill()	method

Rjust()	method

Ljust()	method

Center()	method

Endswith()	method

Startswith()	method

Iterating	Through	a	String

	

Step	8:	Output	Formatting

The	print()	function

Using	the		str.format()	method	to	format	string	objects

Other	Formatting	Options

‘<’

‘>’

‘^’

‘0’

‘=’

	

Step	9:	Lists

Accessing	Elements	on	a	List

Indexing

Negative	Indexing

Slcing	Lists

Adding	Elements	to	a	List

Changing	Elements	of	a	List

Concatenating	and	Repeating	Lists

Inserting	Item(s)

Removing	or	Deleting	Items	from	a	List

Sorting	Items	on	a	List

Using	the	count()	Method	on	Lists

Testing	for	Membership	on	a	List

Using	Built-in	Functions	with	List

Len()

Max()

Min()

Sum()

Sorted()

List()

Enumerate()

List	Comprehension

	

Step	10:	Tuples

How	to	Create	a	Tuple

Accessing	Tuple	Elements

Indexing

Negative	Indexing

Slicing	a	Tuple

Changing,	Reassigning,	and	Deleting	Tuples

Replacing	a	Tuple

Reassigning	a	Tuple

Deleting	a	Tuple

Tuple	Membership	Test

Python	Tuple	Methods

Count(x)

Index(x)

Built-in	Functions	with	Tuples

Len()

Max()

Min()

Sorted()

Sum()

Tuple()

Enumerate()

Iterating	through	a	Tuple

Tuples	vs.	Lists

	

Step	11:	Sets

Creating	a	Set

Changing	Elements	on	a	Set

Removing	Set	Elements

Set	Operations

Set	Union

Set	Intersection

Set	Difference

Set	Symmetric	Difference

Set	Membership	Test

Using	Built-in	Functions	with	Set

Len()

Max()

Min()

Sorted()

Sum()

Enumerate()

Iterating	Through	Sets

Frozenset

	

Step	12:	Dictionary

Accessing	Elements	on	a	Dictionary

Adding	and	Modifying	Entries	to	a	Dictionary

Removing	or	Deleting	Elements	from	a	Dictionary

The	pop()method

The	popitem()	method

The	clear()	method

Other	Python	Dictionary	Methods

Update(other)

Item()	method

Values()	method

Keys()	method

Setdefault()	method

Copy()	method

The	fromkeys()	method

Dictionary	Membership	Test

Iterating	Through	a	Dictionary

Using	Built-in	Functions	with	Dictionary

Lens()

Sorted()

Creating	a	Dictionary	with	the	dict()	function

Dictionary	Comprehension

	

Step	13:Python	Operators

Arithmetic	Operators

Assignment	Operators

Relational	or	Comparison	Operators

Logical	Operators

Identity	Operators

Membership	Operators

Bitwise	Operators

Understanding	the	Base	2	Number	System

Precedence	of	Operators

	

Step	14:Built-in	Functions

The	range()	function

The	input()	Function

Password	Verification	Program

Using	input()	to	add	elements	to	a	List

The	print()	Function

abs()

max()

min()

type()

	

Step	15:	Conditional	Statements

if	statements

if…else	statements

if…elif…else	statements

nested	if…elif…else	statements

	

Step	16:	Python	Loops

The	for	Loop

For	Loop	with	string:

For	Loop	with	list

for	loop	with	a	tuple

Using	for	loop	with	the	range()	function

The	While	Loop

Break	Statement

Continue	Statement

Pass	Statement

Looping	Techniques

Infinite	loops	(while	loop)

Loops	with	top	condition	(while	loop)

Loops	with	middle	condition

Loops	with	condition	at	the	end

	

Step	17:	User-Defined	Functions

1.	def	keyword

2.	function	name

3.	parameters

4.	colon	(:)

5.	docstring

6.	statement(s)

7.	return	statement

Calling	a	Function

Using	functions	to	call	another	function

Program	to	Compute	for	Weighted	Average

Anonymous	Functions

Lambda	functions	with	map()

Lambda	functions	with	filter()

Recursive	Functions

Scope	and	Lifetime	of	a	Variable

	

Step	18:	Python	Modules

Importing	a	Module

Python’s	Math	Module

Displaying	the	Contents	of	a	Module

Getting	more	information	about	a	module	and	its	function

The	Random	Module

Usage	of	Random	Module

Random	Functions

Universal	Imports

Importing	Several	Modules	at	Once

	

Step	19:	Date	and	Time

Formatted	Time

Getting	Monthly	Calendar

The	Time	Module

The	Calendar	Module

calendar.firstweekday()

calendar.isleap(year)

calendar.leapdays(y1,	y2)

calendar.month(year,	month,	w=2,	l=1)

calendar.monthcalendar(year,	month)

calendar.monthrange(year,	month)

calendar.prmonth(year,	month,	w=2,	l=1)

calendar.setfirstweekday(weekday)

calendar.weekday(year,	month,	day)

Datetime

	

Step	20:	Namespaces

Scope

	

Step	21:	Classes	and	Object-Oriented	Programming

Defining	a	Class

Creating	an	Object

The	__init__()	method

Instance	Variables

Adding	an	attribute

Deleting	Objects	and	Attributes

Modifying	Variables	within	the	Class

Inheritance

Multiple	Inheritance

Multilevel	Inheritance

	

Step	22:	Python	Iterators

Creating	a	Python	Iterator

	

Step	23:	Python	Generators

	

Step	24:	Files

The	File	Object	Attributes

File	Operations

The	Open()	function

Writing	to	a	File

Closing	a	File

Opening,	Writing	to,	and	Closing	a	Text	File

Reading	a	Python	File

The	readlines()	method

Line	by	Line	Reading	of	Text	Files	with	the	‘while’	loop

Line	by	Line	Reading	of	Text	Files	using	an	Iterator

The	‘with	statement’

Appending	Data	to	a	File

Renaming	a	File

The	rename()	method

Deleting	a	File

Binary	Files

File	Methods

File.writer(str)

File.writelines(sequence)

File.readline(size)

File.readlines()

File	Positions:				file.tell()	and	file.seek

File.tell()

File.seek()

File.read(n)

File.truncate([size])

File.flush()

File.close()

File.isatty()

File.fileno()

	

Step	25:	Handling	Errors	or	Exceptions

Syntax	Errors

Runtime	Errors

Built-in	Exceptions

Catching	Exceptions

try	and	except

try…finally

Python	Cheat	Sheets

Variable	Assignment

Accessing	Variable	Values

Python	Operators

Arithmetic	Operators

Assignment	Operators

Relational	Operators

Logical	Operators

Identity	Operators

Membership	Operators

Bitwise	Operators

Strings

Lists

Tuple

Dictionary

Sets

Loops

Conditional	Statements

if…else

if…elif…else

Built-in	Functions

User-Defined	Functions

Classes

Files

Text	File	Opening	Modes

Binary	File	Opening	Mode

File	Operations

Date	and	Time

Python	Modules

	

Help!

Google

FAQ

IRC	(Internet	Relay	Chat)

	

Other	Best	Selling	Books	You	Might	Like!

Conclusion

	

Copyright
©2016	Joe	Thompson	-	All	rights	reserved.

This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	 and	 issue	 covered.	 The	 publication	 is	 sold	with	 the	 idea	 that	 the	 publisher	 is	 not
required	 to	 render	 accounting,	 officially	 permitted,	 or	 otherwise,	 qualified	 services.	 If
advice	is	necessary,	 legal	or	professional,	a	practiced	individual	 in	 the	profession	should
be	ordered.

-	 From	 a	 Declaration	 of	 Principles	 which	 was	 accepted	 and	 approved	 equally	 by	 a
Committee	 of	 the	 American	 Bar	 Association	 and	 a	 Committee	 of	 Publishers	 and
Associations.

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	a	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	 the	solitary	and	utter	responsibility	of	 the	recipient	reader.
Under	 no	 circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the
publisher	 for	 any	 reparation,	 damages,	 or	monetary	 loss	 due	 to	 the	 information	 herein,
either	directly	or	indirectly.

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.
The	presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All	 trademarks	 and	 brands
within	 this	 book	 are	 for	 clarifying	 purposes	 only	 and	 are	 the	 owned	 by	 the	 owners
themselves,	not	affiliated	with	this	document.

Disclaimer

Although	the	author	has	made	every	effort	to	ensure	that	the	information	in	this	book	was
correct	 at	press	 time,	 the	author	do	not	 assume	and	hereby	disclaim	any	 liability	 to	any
part	for	any	loss,	damage,	or	disruption	caused	by	errors	or	omissions,	whether	such	errors
or	omissions	result	from	negligence,	accident	or	any	other	cause.

Introduction
	

I	 want	 to	 thank	 you	 and	 congratulate	 you	 for	 downloading	 the	 book,	 “Python’s
Companion”.
	

This	 book	 contains	 proven	 steps	 and	 strategies	 to	 help	 beginners	 learn	 Python
Programming	quickly	and	easily.	 It	 is	designed	 to	be	a	practical,	 step-by-step	 tutorial	of
essential	 Python	 programming	 concepts	 for	 self-learners	 from	 beginner	 to	 intermediate
level.
	

It	uses	a	straightforward	approach	 that	 focuses	on	 imparting	 the	 important	 ideas	without
the	heavy	programming	jargon.	Python,	after	all,	 is	a	 language	with	simple	and	easy-to-
learn	syntax.
	

The	book	features	various	Python	programs	as	examples	as	well	as	a	concise	explanation
of	the	different	aspects	of	Python	Programming.	By	the	time	you	finish	the	book,	you	will
be	equipped	with	the	necessary	skills	to	create	useful	and	practical	codes	on	your	own.
	

IMPORTANT
Although	we	have	made	this	book	as	easy	as	possible	to	use,	you	might	find	yourself	stuck
at	some	point.	When	programming,	you	might,	for	example,	get	the	“Error”	message	and
not	know	what	to	do.	The	last	Chapter	focuses	on	helping	you	solve	these	issues.	Do	not
hesitate	to	use	it	and	NEVER	give	up!
	

	

If	you	happened	to	like	my	book	please	leave	me	a	quick	review	on	Amazon.		I	personally
read	every	single	comment	on	 the	site.	Your	 feedback	 is	very	 important	 to	me	as	 it	will
help	improve	the	book	and	ensure	your	satisfaction.
	

Thanks	again	for	downloading	this	book.	I	hope	you	enjoy	it!
	

	

	

	

	

	

	

An	Overview	of	Python
	

Python	was	 developed	 by	Guido	 van	 Rossum	 at	 the	 National	 Research	 Institute	 in	 the
Netherlands	in	the	late	80s.	Its	first	version	was	officially	released	in	1991.	He	derived	its
core	syntax	from	the	ABC	language,	borrowed	heavily	from	C,	and	borrowed	partly	from
other	languages	such	as	C++,	Modula-3,	Unix	shell,	SmallTalk,	and	Algol-68.

Python	 is	 a	 high-level,	 object-oriented,	 interactive,	 interpreted,	 and	 general-purpose
programming	language.

A	 high	 level	 scripting	 language,	 Python	 codes	 are	 designed	 to	 be	 highly	 readable.	 Its
programs	 are	written	 in	 nearly	 regular	 English	 and	 are	 neatly	 indented.	 It	 uses	 English
keywords,	concise	codes,	and	simple	syntax.

It	is	a	multi-paradigm	programming	language	that	supports	structured,	functional,	aspect-
oriented,	and	object-oriented	programming	methods.

Python	is	an	object-oriented	programming	language.	It	emphasizes	the	use	of	objects	over
functions	in	contrast	with	languages	that	are	procedure-oriented.	It	supports	user-defined
classes,	inheritance,	multiple	inheritance,	and	methods	binding	at	runtime.

Python	 is	 interactive.	 You	 can	 write	 your	 program	 directly	 on	 the	 Python	 prompt	 and
generate	immediate	feedback.	You	can	use	the	prompt	to	test	bits	of	codes.

Python	 is	 both	 a	 compiled	 and	 interpreted	 language.	 Python	 is	 an	 interpreted	 language
because	it	has	to	convert	codes	into	machine-readable	byte	codes	before	it	can	run	them.	It
is	 also	 a	 compiled	 language	 because	 behind	 the	 scenes,	 Python	 is	 implemented	 with	 a
combination	 of	 an	 interpreter	 and	 bytecode	 compiler.	 It	 performs	 the	 compilation
implicitly	 as	 it	 loads	 the	 modules.	 In	 addition,	 some	 standard	 processes	 require	 the
availability	of	the	compiler	at	runtime.	

Python	 is	 a	 powerful	 and	 flexible	 language.	 You	 can	 use	 it	 to	 automate	 and	 simplify
complicated	tasks	at	work	or	at	home.	You	can	develop	large	web	applications,	GUIs,	and
interesting	games	with	it.

One	 of	 the	main	 reasons	 for	 Python’s	 popularity	 is	 its	 extensive	 standard	 library	which
contains	 more	 than	 a	 hundred	 modules.	 Users	 can	 access	 these	 modules	 easily	 with	 a
simple	 import	 statement.	The	most	commonly	used	ones	 include	network	programming,
internet	 protocols	 such	 as	 HTTP,	 SMTP,	 and	 FTP,	 mathematical	 functions,	 random
functions,	 regular	 expression	 matching,	 operating	 systems,	 threads,	 networking
programming,	GUI	toolkit,	HTML	parsing,	XML	processing,	and	email	handling.

Although	it	borrows	heavily	from	C,	Python	differs	in	two	major	areas	with	C:	the	use	of
indentation	to	structure	blocks	of	codes	and	the	use	of	dynamic	typing.

In	 C,	 statements	 are	 grouped	with	 the	 use	 of	 curly	 braces	 and	 a	 trailing	 semicolon.	 In
Python,	statements	are	organized	into	a	block	with	the	use	of	indentation.

In	 C,	 variables	 are	 declared	 and	 assigned	 a	 specific	 type	 before	 they	 can	 be	 used	 in	 a
program.	In	Python,	variables	are	just	names	that	point	to	objects	stored	in	memory.	They
need	 not	 be	 declared	 before	 they	 are	 assigned.	 They	 can	 be	 reassigned	 and	 they	 can

change	types	anywhere	in	the	program.

Other	 features	 that	contribute	 to	 its	popularity	are	 its	 support	 for	garbage	collection	and
easy	integration	with	other	languages	such	as	C,	C++,	Java,	CORBA,	ActiveX,	and	COM.

Because	of	its	readability	and	the	use	of	plain	English	in	most	of	its	construction,	Python
is	an	easy-to-learn	language	for	many	people.	While	some	background	in	programming	is
desirable,	you	don’t	need	 it	 to	 learn	Python.	The	 language	 is	so	easy	 to	 learn	 that	many
experts	recommend	Python	to	students	and	beginners	who	are	learning	to	program	for	the
first	 time.	Python	 is,	 in	 fact,	 for	 those	who	are	new	 to	programming	who	want	 to	make
powerful	and	useful	programs	within	a	short	span	of	time.

This	book	is	organized	as	a	step-by-step	material	to	learning	Python.	Each	step	is	designed
to	build	the	required	skills	to	progress	to	the	more	advanced	topics	in	its	study.
	

	

	

Step	1:	Installing	Python
	

Python	is	an	open-source	programming	language	which	can	be	freely	downloaded	in	the
website	of	Python	Software	Foundation.
	

Installing	Python	in	Windows
To	 install	Python	 in	Windows,	you	must	 first	download	 the	 installation	package	of	your
preferred	version.	This	is	the	link	to	the	different	installation	packages	for	Windows.
	

https://www.python.org/downloads/
	

On	the	landing	page,	you	will	be	asked	to	select	the	version	you	want	to	download.	There
are	TWO	HIGHLIGHTED	VERSIONS:
	

1.	 the	latest	version	of	Python	3,	Python	3.5.1
2.	 the	latest	version	of	Python	2,	Python	2.7.11.

	

	
If	you’re	looking	for	an	older	release,	scroll	further	down	the	page	to	find	links	to	other	versions.

	

Which	version	should	I	use?
Python	2	is	the	older	version	and	was	published	in	late	2000.	Python	3	was	released	in	late
2008	to	address	and	amend	intrinsic	design	flaws	of	previous	versions	of	the	language.	It
is	regarded	as	the	future	of	Python	and	is	the	version	of	the	language	that	is	currently	in
development.	 If	you	want	 to	 read	more	about	 it’s	differences	and	which	one	you	should
use	you	can	read	about	it	on	<Wiki.Python>.

https://www.python.org/downloads/
https://wiki.python.org/moin/Python2orPython3

	

	

PLEASE	NOTE
This	book	uses	version	3.5.2	of	Python.

Installing	Python	in	Mac
If	you’re	using	a	Mac,	you	can	download	the	installation	package	from	this	link:
	

https://www.python.org/downloads/mac-osx/
	

Running	the	Installation	file
After	 completing	 the	 download	 step,	 you	 can	 install	 Python	 by	 clicking	 on	 the
downloaded	 .exe	 file.	 Setup	 is	 automatic.	 Standard	 installation	 includes	 IDLE,	 pip,	 and
documentation.
	

Starting	Python
IDLE	 is	the	integrated	environment	that	you	can	use	to	write	and	run	your	programs	in.
Both	IDLE	and	command	line	interface	is	installed	when	you	install	Python.
	

	

	

https://www.python.org/downloads/mac-osx/

Figure	 1.	 Once	 you	 install	 Python	 into	 your	 computer	 both	 IDLE	 and	 command	 line
interface	are	installed.
	

IDLE	versus	the	command	line	interface	(CLI)
IDLE
IDLE	offers	a	more	advanced	interface	with	many	options	for	working	with	Python.	You
can	use	it	in	the	same	way	that	you	would	use	a	command	line	and	more.	As	an	integrated
environment,	it	offers	its	own	text	editor	which	is	easily	accessible	by	clicking	on	a	menu
item.	Moreover,	 it	 has	 editing	 options	 which	 make	 writing	 programs	 or	 simply	 typing
codes	more	efficient.
	

Figure	2.	IDLE’	s	interface.

The	Command	Line	Interface	(CLI)
The	command	line	is	useful	for	trying	out	lines	of	codes.
	

Figure	3.	CLI’s	interface.
	

Different	ways	to	access	Python’s	command	line
There	 are	 different	ways	 to	 access	 Python’s	 command	line	 or	 IDLE	depending	 on	 the
operating	system	installed	on	your	machine:

	

If	you’re	using	Windows
You	can	start	the	Python	command	line	by	clicking	on	its	icon	or	menu	item	on	the	Start
menu.
	

You	may	also	go	to	the	folder	containing	the	shortcut	or	the	installed	files	and	click	on	the
Python	command	line.
	

If	you’re	using	GNU/Linux,	UNIX,	and	Mac	OS	systems
You	have	to	run	the	Terminal	Tool	and	enter	the	Python	command	to	start	your	session.
	

	

	

Step	2:		Working	with	IDLE
	

	

IDLE,	an	integrated	development	environment	(IDE),	was	created	for	use	with	Python.	It
is	 bundled	 with	 and	 installed	 alongside	 the	 Python	 interpreter.	 IDLE	 offers	 a	 simple
graphical	 user	 interface	 with	 helpful	 features	 that	 make	 program	 development	 more
convenient	and	intuitive.			
	

IDLE	 is	an	efficient,	powerful,	 and	 flexible	platform	 for	exploring,	 testing,	writing,	 and
implementing	your	programs	in	Python.
	

In	interactive	mode,	Python	evaluates	every	expression	entered	as	it	simultaneously	runs
statements	 stored	 in	 active	 memory.	 It	 then	 provides	 instant	 feedback.	 The	 interactive
mode	allows	you	 test	 run	 lines	or	pieces	of	codes	before	you	actually	use	 them	 in	your
program.	Use	it	as	your	playground	in	your	study	of	Python’s	syntax.
	

In	the	script	mode,	the	interpreter	runs	scripts	or	codes	saved	with	a	.py	file	extension.	The
script	mode	is	also	called	the	normal	mode.
	

Following	are	the	most	important	features	of	IDLE:
	

Python	Shell
multiple-window	text	editor
auto-completion
smart	indent
syntax	highlighting
integrated	debugger

	

The	Python	Shell
The	Python	 Shell	 offers	 users	 an	 efficient	 and	 user-friendly	 interface	 with	 an	 easy-to-
navigate	drop	down	menu	and	useful	editing	features.	The	Python	Shell	provides	so	much
more	functionality	than	the	command	line	interface.	You	can	use	it	to	run	your	programs
as	well	as	work	interactively	with	Python.	Simply	type	an	expression	or	statement	on	the
>>>	 prompt	 and	 press	 enter.	 You	 can	 easily	 scroll	 back,	 review	 previous	 command
entered,	and	copy	paste	previous	statement	to	the	current	prompt	to	run	it	again	or	make
necessary	modifications	before	running	the	code	again.
	

Python	Shell	main	menu	shows	the	following	options:

	

	

	

Figure	4.	Python	Shell’s	main	menu	includes:	File,	Edit,	Shell,	Debug,	Options,	Window
and	Help.
	

Just	to	get	a	feel	of	the	Python	Shell	and	the	IDLE	environment,	use	the	print()	function
to	instruct	the	interpreter	to	output	“Hello,	World!”	on	your	monitor.
	

After	the	>>>	prompt,	type	the	expression:
	

print(“Hello,	World!”)
	

PLEASE	NOTE
A	prompt	 is	 a	 text	 or	 a	 symbol	 used	 to	 represent	 the	 system’s	 readiness	 to	 perform	 the
next	command.	The	symbols	“>>>>”	means	the		computer	is	waiting	for	a	new	input.
	

As	you	press	ENTER,	Python	reads,	interprets,	and	outputs	Hello,	World!	onscreen:
	

>>>	print(“Hello,	World!”)

Hello,	World!

>>>	print

>>>
	

Now,	do	away	with	the	print()	statement	and	just	type	“Hello,	World!”	on	the	>>>	prompt.
Watch	how	Python	returns	the	string:
	

>>>“Hello,	World!”

‘Hello,	World!’

>>>
	

The	 Python	 Shell	 isn’t	 just	 a	 place	 for	 trying	 out	 your	 codes.	 It	 is	 a	 place	 for	 solving
mathematical	expressions	as	well.	Python	supports	basic	arithmetic	operators	and	you	can
invoke	 them	right	at	 the	>>>	prompt.	Just	 type	 the	expression	and	press	ENTER.	Try	 it
out:
	

>>>12	*	12												#12	times	12

144
	

>>>	82/4												#82	divided	by	4

20.5
	

>>>3**3												#3	raised	to	the	3rd	power

27

>>>
	

PLEASE	NOTE
The	sentences	on	the	right	with	the	“#”(#12	times	12,	#82	divided	by	4	and	#3	raised	to
the	 3rd	 power),	 are	 not	 part	 of	 the	 expression.	 They	 are	 ways	 for	me	 to	 better	 explain
Python’s	expressions.

The	File	Menu
The	File	menu	provides	basic	options	for	creating	a	new	file,	opening	and	saving	a	file	or
module,	browsing	class	and	path,	accessing	recent	files,	printing	the	window,	and	exiting
Python	Shell.
	

Figure	5.	Here	are	the	options	available	once	you	press	on	the	File	Menu.
	

Clicking	on	the	“New	File”	option	(see	figure	5)	opens	a	 text	editor	 that	you	can	use	 to
type,	 modify,	 save,	 and	 run	 your	 program.	 Your	 program’s	 output	 is	 displayed	 on	 the
Python	Shell.	Python’s	built-in	text	editor	is	a	basic	one	with	many	useful	features	and	a
menu	that	almost	mimics	that	of	the	Python	Shell.	It	offers	the	following	menu	options:
	

Figure	6.	Once	you	select	“New	File”,	the	menu	option	offers;	File,	Edit,	Format,	Options,
Window	and	Help.
	

Take	note	 that	 the	 above	menu	options	 lack	 the	Shell	 and	Debug	options	 found	 in
Python	Shell.	 It	 has,	 however,	 the	Format	 and	Run	options	which	 are	 not	 found	 in	 the
Python	Shell.
	

The	 Format	 menu	 offers	 useful	 options	 for	 indenting/dedenting,	 toggling/untoggling
comments,	 setting	 tabs	 and	 indent	 width,	 paragraph	 formatting,	 and	 stripping	 trailing
whitespace.
	

The	 Run	 menu	 offers	 options	 for	 checking	 and	 running	 your	 module.	 The	 output	 is
displayed	on	the	Python	Shell.
	

The	other	options,	namely	File,	Edit,	Options,	Windows,	 and	Help,	offer	practically	 the
same	features	that	you	can	find	on	Python	Shell.
	

The	Edit	menu
Python	Shell’s	Edit	menu	provides	practical	options	for	copying,	cutting,	pasting,	undoing,
redoing,	selecting,	searching	for	and/or	replacing	a	word	on	a	file.
	

The	Shell	Menu
The	Shell	menu	provides	options	for	restarting	the	Shell	and	viewing	the	most	recent	Shell
restart.
	

The	Debug	Menu
The	Debug	menu	opens	 the	Debugger	and	 the	Stack	Viewer.	 It	can	be	used	 to	 trace	 the
line	when	Python	raises	an	error.	Clicking	on	the	Debugger	opens	an	interactive	window
that	will	allow	users	to	step	through	a	running	program.
	

The	Options	Menu
The	 Options	 menu	 opens	 various	 preferences	 for	 configuring	 the	 font,	 tabs/indentation
width,	keys,	highlighting,	and	other	general	options	in	Python	Shell.
	

The	Window	Menu
The	Window	 menu	 offers	 options	 for	 adjusting	 zoom	 height	 and	 for	 moving	 between
Python	Shell	and	open	text	editor	windows.
	

The	Help	Menu
The	Help	menu	provides	access	to	Python’s	documentation	and	help	files.
	

Writing	your	First	Python	Program
	

	

Now	 that	 you’re	more	 or	 less	 familiar	with	 Python’s	working	 environment,	 it’s	 time	 to
create	your	first	program	with	IDLE.	You	can	use	another	text	editor,	but	for	simplicity,
you	can	use	Python	Shell’s	built-in	 file	editor.	This	 is	where	you’ll	be	 typing	your	 first
program.	When	you’re	done,	you	can	save	the	file	in	a	specific	directory	on	your	hard	disk
or	in	another	storage	device.
	

Accessing	Python’s	File	Editor
To	open	a	new	file	editor	window	on	the	Python	Shell:
	

Click	on	File	->Choose	New	File
	

Python’s	file	editor	is	a	typical	text	editor	with	basic	editing	and	formatting	options.
	

Typing	your	code
You	can	start	working	on	your	first	program	by	typing	statements	or	commands	on	the	file
editor.
	

For	this	purpose,	you	can	type	the	universal	program	“Hello,	World!”
	

Type	the	following	on	the	text	editor:
	

>>>print(“Hello,	World!”)

>>>

Saving	the	File
Saving	the	file	prepares	it	for	further	processing	by	Python.	It	also	allows	you	to	work	on
your	application	on	a	piece	meal	basis.	You	can	store	the	file	for	future	use	or	editing	once

it’s	saved	on	your	storage	device.	To	save	the	file:
	

Click	on	File	->Choose	“Save	as”
	

The	default	installation	folder	for	saving	a	program	is	Python’s	installation	folder.	You	can
change	this	to	your	preferred	file	destination	folder.	Saving	your	file	is	important	because
you	can’t	possibly	run	your	code	without	saving	it.	Python	programs	automatically	get	a
.py	extension	in	IDLE.	For	instance,	if	you	save	your	file	in	Python	Shell’s	text	editor,	you
can	 name	 your	 program	 as:	 MyFirstProgram	 and	 Python	 will	 save	 it	 as
MyFirstProgram.py.
	

Running	the	Application
The	most	basic	level	of	a	program’s	success	is	for	it	to	be	run	without	error	or	exceptions
by	Python.	When	you	run	a	program,	you	are	instructing	Python	to	interpret	and	execute
your	saved	code.
	

To	run	your	program,	click	on	the	Run	menu	in	the	text	editor.	You’ll	have	these	options:
	

Python	Shell

Check	Module

Run	Module
	

To	run	your	application,	choose	Run	Module.	If	there	are	no	errors,	the	Python	Shell	will
display	something	like	this:
	

	

If	there	are	errors,	Python	will	display	the	error	message	on	the	Python	Shell.
	

	

Exiting	Python
To	exit	from	IDLE’s	Python	Shell,	you	can	type	exit()	or	quit()	and	press	enter	or	simply
type	ctrl-d.
	

If	you’ve	chosen	to	access	the	command	line	in	the	Power	Shell	instead	of	IDLE,	you	can
type	either	exit()	or	quit()	and	press	enter.
	

	

	

Step	3:		Python	Files	and	Directories
	

Programs	and	other	data	are	 saved	 in	 files	 for	 future	access	and	use.	Files	are	 stored	 in
different	 directories	 and	 should	 be	 accessed	 accordingly.	 Python	 handles	 files	 and
directories	with	its	os	module.	The	os	module	contains	many	useful	methods	that	will
help	users	create,	change,	or	remove	directories.

The	mkdir()	Method
The	mkdir()	method	is	used	to	create	new	directories	in	the	present	directory.	It	requires
one	argument:	the	name	of	the	directory	you	want	to	create.
	

The	syntax	is:
	

	
os.mkdir(“newdir”)	

	

For	example,	if	you	want	to	create	a	new	directory	“trial”,	you	can	use	the	following	code:
	

>>>import	os
	

PLEASE	NOTE
Don’t	 worry	 if	 you	 do	 not	 understand	 this	 part	 yet.	 If	 you	 are	 completely	 new	 to
programming	you	can	 skip	 this	part	 for	now	and	move	 to	Step	5.	The	code	“import”	 is
used	to	import	a	module.	We	will	later	discuss	how	to	import	a	module	in	Step	18.
	

Now	create	a	directory	“trial”:

	

>>>os.mkdir(“trial”)

>>>
	

	

The	chdir()	Method
You	will	want	to	change	the	current	directory	if	you	need	to	work	on	a	file	that	is	stored	in
another	directory.	The	chdir()	Method	can	be	used	 to	change	 the	present	directory.	This
method	takes	only	one	argument	and	has	the	following	syntax:
	

	

os.chdir(“newdir”)	

	

For	 example,	 if	 you’re	 current	 directory	 is	 Python/sciapp	 and	 you	 want	 to	 change	 to
another	directory,	Python/mathapp,	here	is	how	you	will	use	os.chdir():
	

>>>import	os

Change	a	directory	to	“/Python/mathapp”:
	

>>>os.chdir(“/Python/mathapp”)

>>>
	

The	getcwd()	Method
The	current	working	directory	is	the	directory	that	Python	constantly	holds	in	memory.	It
is	an	ever	present	property.	When	you	issue	commands	like	‘import	file.txt’,	Python	will
search	for	the	file	in	this	directory.	To	display	the	current	working	directory,	you	can	use
the	os	module’s	getcwd()	method	with	the	syntax:
	

	

os.getcwd()	

	

Example:
	

>>>import	os
	

This	gives	the	location	of	current	working	directory:
	

>>>os.getcwd()

>>>
	

The	rmdir()	Method
The	rmdir()	method	can	be	used	to	delete	the	directory.	It	takes	one	argument:	the	name	of
the	directory	to	be	deleted.
	

Before	you	can	remove	a	directory,	all	contents	should	first	be	removed.
	

The	syntax	for	rmdir()	method	is:
	

	

os.rmdir(‘dirname’)	

	

Take	note	that	the	full	name	of	the	directory	should	be	provided.	If	not,	the	interpreter	will
search	for	the	directory	in	the	current	working	directory.
	

Here’s	an	example	of	its	usage:
	

>>>import	os
	

Now	remove	the	“/pyprog/mathapp”	directory:
	

>>>os.rmdir(“/pyprog/mathapp”)

>>>
	

	

	

Step4:	Python	Basic	Syntax
	

	

In	order	for	the	Python	interpreter	to	process	and	execute	your	instructions	properly,	you
must	write	your	code	in	the	format	that	it	can	understand.	In	programming,	syntax	refers
to	 the	set	of	rules	 that	define	 the	correct	 form,	combination,	and	sequence	of	words	and
symbols.
	

PLEASE	NOTE
An	interpreter	is	a	program	that	reads	and	executes	codes.	Python	is	a	great	example	of	an
interpreter.
	

Python	Keywords	(Python	Reserve	words)
Keywords	 are	words	 that	 Python	 reserves	 for	 defining	 the	 syntax	 and	 structure	of	 the
Python	 language.	 Hence,	 you	 can’t	 use	 them	 as	 a	 regular	 identifier	 when	 naming
variables,	functions,	objects,	classes,	and	similar	items	or	processes.	Take	note	of	these	33
keywords	and	avoid	using	them	as	identifier	to	avoid	errors	or	exceptions:
	

	

and	

	

or	

	

not	

	

assert	

	

yield	

	

except	

	

break	

	

continue	

	

pass	

	

class	

	

def	

	

del	

	

finally	

	

global	

	

nonlocal	

	

if	

	

elif	

	

else	

	

import	

	

lambda	

	

from	

	 	 	

in	 is	 try	

	

True	

	

False	

	

None	

	

while	

	

for	

	

return	

	

with	

	

raise	

	

as	

	

PLEASE	NOTE
All	 the	keywords	except	True,	False	and	None	 are	 in	 lowercase	 and	 they	must	be
written	as	it	is.	
Keyword	are	case	sensitive.

Python’s	Identifiers
An	 identifier	 is	 a	 name	 given	 to	 a	 variable,	 class,	 function,	 string,	 list,	 dictionary,
module,	and	other	objects.	In	python,	it	helps	differentiating	one	entity	from	another.
	

	

PLEASE	NOTE
These	entities	(variable,	class,	function,	string,	list,	dictionary,	modules	and	objects)	will
be	later	explained	in	this	book.

Variables:	Step	5

Class:	Step	21

Five	rules	for	writing	identifiers
	
1.	 Identifiers	can	be	a	combination	of	letters	in	lowercase	(a	to	z)	or	uppercase	(A	to	Z)

or	digits	(0	to	9)	or	an	underscore	(_).	Here	are	some	examples:

	
C
c
my_variable,
my_var9
UPPERCASE
lowercase
UPPERCASE_WITH_UNDERSCORES
lowercase_with_underscores

CamelCase	or	CapWords
mixedCase

	

2.	 An	identifier	cannot	start	with	a	digit.	

For	example:
1lowercase	is	invalide	but	lowercase1	is	accepted.

	

3.	 Keywords	cannot	be	used	as	identifiers.

	

4.	 Identifier	may	not	contain	special	symbols	like	!,	@,	#,	$,	%	etc

	

5.	 Identifier	can	be	of	any	length.

	

	

Avoid	using	the	letters	“O”	(uppercase),	“l”	(lowercase	letter	l),	or	“I”	(uppercase	letter	I)
as	a	single	letter	identifier	as	they	may	cause	unnecessary	confusion	with	the	numbers	0
(zero)	and	1	(one)	in	some	fonts.
	

An	 identifier	 may	 consist	 of	 several	 words	 but	 for	 better	 readability,	 use	 a	 single
underscore	to	separate	each	unit.
	

Examples:
	

my_secret_variable
	

my_great_function

A	Class	Identifier
A	class	 identifier	may	be	a	CamelCase	name,	 that	 is,	a	name	consisting	of	 two	or	more
words	 which	 all	 start	 in	 capital	 letters	 and	 are	 joined	 together	 without	 underscores	 or
spaces.
	

Examples:
	

MyFamousCollection

	

TheFabulousList
	

Abbreviations	 in	 CamelCase	 names	 should	 be	 capitalized.	 For	 example:
HTTPServerError.
	

You	cannot	use	keywords	as	identifier.	However,	you	may	use	a	trailing	underscore	to
distinguish	the	name	from	a	keyword.
	

Example:
	

class_

Naming	Global	Variables
A	global	variable	name	should	be	written	in	lowercase.	A	global	variable	name	consisting
of	two	or	more	words	should	be	separated	by	an	underscore.
	

The	following	naming	conventions	are	specific	to	each	object	in	Python.	Read	them	and
use	them	as	reference	as	you	go	through	each	lesson.
	

Naming	Classes
Apply	the	UpperCaseCamelCase	convention	when	naming	a	class.	In	general,	built-in
classes	are	usually	written	in	lowercase.	Exception	classes	normally	end	in	“Error”.
	

Naming	Instance	Variables
An	underscore	should	separate	instance	variables	consisting	of	several	words.	Variable
names	should	be	written	in	lower	case.	A	non-public	instance	variable	identifier	starts	with
one	underscore.	An	instance	name	that	requires	mangling	starts	with	two	underscores.
	

Naming	Modules	and	Packages
Names	for	modules	should	be	all	in	lower	case.	Preferably,	module	names	should	be	short
one-word	names.	Although	it	is	discouraged,	multiple	words	may	be	used	if	required	for
better	readability.	They	should	be	separated	by	a	single	underscore.
	

Naming	Functions
A	function	name	should	consist	of	letters	in	lowercase.	When	using	multiple	words	as
function	name,	they	should	be	separated	by	underscores	to	enhance	readability.

	

Naming	Arguments
You	should	always	use	the	word	“self”	as	the	first	argument	in	an	instance	method	and
“cls”	as	the	first	argument	in	a	class	method.
	

It	is	generally	preferable	to	use	a	single	trailing	underscore	over	an	abbreviation	or	name
corruption	when	you	want	to	distinguish	an	argument’s	name	from	a	reserved	keyword.
	

Naming	Constants
Constants	are	written	in	all	uppercase	letters	with	underscores	to	separate	multiple-word
names.
	

Examples:
	

TOTAL
	

MAX_OVERFLOW
	

Using	Quotation	Marks
Quotation	marks	are	used	to	indicate	string	literals.	You	can	use	single	(΄),	double	(“),	or
triple	(”’)	quotes	but	you	must	observe	consistency	by	using	the	same	quotation	marks	to
begin	and	end	the	string.
	

Examples:
	

‘Joshua’
	

“occupation”
	

”‘age:”’
	

‘These	are	your	options’
	

Statements
Statements	are	expressions	that	you	write	within	a	program	which	are,	in	turn,	read	and

executed	by	the	Python	interpreter.	Python	supports	statements	such	as	if	statement,	for
statement,	while	statement,	break	statement,	and	assignment	statements.
	

Multi-line	statements
Statements	may	sometimes	be	too	long	to	fit	in	a	single	line	and	are	thus	written	across
several	lines.	To	implicitly	tell	Python	that	a	multiple	line	expression	is	a	single	statement,
you	can	enclose	it	in	braces{},	brackets[],	or	parentheses	().
	

Example	#1:
	

my_alphabet_letters	=	(“a”,	“b”,	“c”,	“d”,	“e”,

												“f”,	“g”,	“h”,“i”,	“j”,
“k”,	“l”,		“m”,	“n”,	“o”,	“p”)

	

Example	#2:
	

my_colors	=	[“blue”,	“red”,	“yellow”,

“green”,	“orange”,	“violet”,
“pink”,	“black”,	“white”]

	

	

The	above	structure	illustrates	the	implicit	way	to	let	Python	know	that	it	should	expect	a
multiple-line	statement.	To	explicitly	indicate	continuation,	you	can	use	a	backslash	(\)	at
the	end	of	each	line:
	

my_alphabet_letters	=	(“a”,	“b”,	“c”,	“d”,	“e”,	\

																		“f”,	“g”,	“h”,	“i”,	“j”,		\
																													“k”,	“l”,		“m”,	“n”,	“o”,	“p”

	

Indentation
Python	programs	are	structured	 through	white	spaces	or	 indentation.	Hence,	 if	you	have
been	 using	 Java,	 C,	 or	 C++	 for	 a	 while,	 you’ll	 never	 see	 the	 familiar	 curly	 braces	 {}
around	 block	 codes.	 White	 spaces	 make	 Python	 programs	 look	 more	 organized	 and
readable.	In	Python,	a	block	starts	from	the	same	distance	to	the	right	and	ends	on	the	first
unindented	line.	Starting	a	nested	block	is	as	easy	as	indenting	further	to	the	right.
	

By	convention,	 programmers	use	 four	white	 spaces	 instead	of	 tabs	 to	 indent	 a	 block	of

code.	While	 this	 level	 of	 indentation	 is	 not	 strictly	 imposed	 in	 Python,	 consistency	 of
indentation	within	the	block	code	is	required	if	you	want	your	program	to	run	as	expected.
	

To	illustrate	how	indentation	is	implemented,	take	a	look	at	this	program	segment:
	

	

def	tool_rental_fees	(days):	

	

					fees	=	10	*	days

	

					if	days	>=	7:

	

									fees	-=	10

	

					elif	days	>=	3:

	

									fees	-=	5

	

					return	fees

	

Comments
Comments	 are	 notes	 written	 within	 programs	 to	 describe	 a	 step,	 process,	 or	 to	 just
basically	include	important	information.	Comments	provide	documentation	to	your	work
and	are	useful	during	review	or	program	revisit.	It	will	make	work	a	lot	easier	for	you	and
other	programmers	to	evaluate	the	program	months	or	years	down	the	line.	A	comment	is
introduced	by	a	hash	(#)	symbol	which	tells	the	interpreter	to	ignore	the	line	and	proceed
to	the	next	statement.
	

#print	out	a	welcome	greeting

>>>print(‘Welcome	to	Happy	Coders	Club!’)

>>>
	

For	long	comments	that	span	over	several	lines,	you	can	wrap	the	connected	lines	together
with	a	hash	(#)	symbol	at	the	beginning	of	each	line:

	

#This	long	comment	is	necessary

#and	it	extends

#to	three	lines
	

Alternatively,	you	can	use	triple	quotes	at	the	start	and	end	of	a	multiple-line	comment.
	

“““This	is	an	alternative

way	of	writing

multi-line	comments”””
	

Docstring
A	 documentation	 string	 or	 docstring	 is	 used	 for	 documenting	 what	 a	 class	 or	 function
does.		You	will	find	a	docstring	summary	at	the	top	of	a	block	of	code	that	defines	a	class,
method,	 function,	 or	 module.	 Docstrings	 are	 typically	 phrases	 that	 start	 with	 a	 capital
letter	 and	end	with	 a	period.	They	may	 span	over	 several	 lines	 and	are	 enclosed	within
triple	double	quotes	(”””).	A	docstring	starts	with	a	one-line	summary	which	is	written	like
an	imperative	statement.
	

Examples:
	

def	triple_value(num):

				“““Function	to	get	thrice	the	value	of	a	number.”””

				return	3*num
	

	

class	Documentation(object):
	

				“““Explain	class	docstring.
	

A	class	uses	a	distinct	whitespace	convention	in	multi-line	docstrings	where	a

blank	line	appears	before	the	opening	quote	and	after	the	closing	statement.

The	closing	quote	is	placed	right	after	the	blank	line.
	

”””

Step	5:	Variables	and	Python	Data	Types
	

Variables
	

	A	variable	is	a	reserved	memory	location	that	can	be	used	to	store	values.	This
means	that	when	you	create	a	variable	you	reserve	some	space	in	the	memory.

	

Whenever	 you	 create	 a	 variable,	 you	 are	 allocating	 space	 in	 a	 computer’s	 memory,	 a
storage	that	can	hold	values.	Variables	are	given	distinct	names	to	identify	their	memory
locations.	These	 names	 are	 then	 used	 as	 a	 reference	 to	 instruct	 the	 computer	 to	 access,
edit,	save,	or	retrieve	stored	data.
	

Variable	 creation	 and	management	 is	 a	 lot	more	 flexible	 and	 straightforward	 in	 Python
than	 in	 most	 other	 languages.	 You	 can	 easily	 create	 or	 declare	 a	 variable	 by	 using	 a
syntactically	appropriate	name	and	assigning	a	value	 to	 it	using	 the	assignment	operator
(=).	You	need	not	even	inform	Python	that	you	want	a	variable	to	contain	a	specific	type
of	data.	Python	automatically	identifies	the	data	type	based	on	the	values	you	assign	to	the
variable.
	

Study	these	examples	of	variable	assignment	statements:
	

	
employee	=		

	
“Jonathan	Brown”	

	
average_score	=		

	
“80.5”	

	
counter	=		

	
“18”	

	
comment	=		

	
“That	input	is	incorrect.”	

	

	

	

The	 left	operands	 (in	grey)	are	 the	names	of	 the	variables	while	 the	 right	operands	 (in
blue)	refer	to	the	value	assigned	to	the	variable.	The	use	of	the	assignment	operator	tells
Python	 that	 a	 variable	 is	 assigned	 to	 store	 a	 particular	 value.	Hence,	 in	 the	 assignment
statement	 “average	 score	 =	 80.50”,	 you	 are	 basically	 telling	 Python	 that	 the	 variable
‘average	score’	is	set	to	‘80.50’.	Python,	in	this	case,	knows	that	you	are	using	the	variable
‘average	score’	to	store	a	floating	point	number	and	there’s	absolutely	no	need	to	declare
that	this	variable	is	going	to	hold	a	float.

	

Memory	Location
To	check	the	memory	location	of	the	above	variables,	you’ll	use	the	id()	operator.
	

But	first,	open	you	IDLE	and	type	the	variables	and	their	values	showed	above.
	

Figure	7.	Here	are	the	variable	assignments	statements.
	

Now	you	can	type	these	assignments:
	

>>>id(employee)
	

>>>id(score)
	

>>>id(counter)
	

>>>id(comment)
	

	

Once	 you	 type	 your	 assigments	 and	 press	 ENTER,	 Python	 will	 give	 you	 the	 memory
location:
	

	

Figure	8.	Below	each	assignment,	in	blue,	you	can	see	the	memory	location.
	

Multiple	assignments	in	one	statement
Python	accepts	multiple	assignments	in	one	statement	with	this	syntax:
	

	
x,	y,	z	=	a,	b,	c	

	

	

Multiple	 variable	 assignments	 follow	 positional	 order.	 To	 illustrate,	 assign	 a	 string,	 a
float,	and	an	integer	to	the	variables	‘name’,	‘rating’,	and	‘rank’:
	

IMPORTANT	DEFINITIONS
	

String:	A	string	is	a	list	of	characters	in	order.	It	can	be	a	letter,	a	number,	a	space,	or	a
backslash.	There	are	no	limits	to	the	number	of	characters	you	can	have	in	a	string	.	You
can	even	have	a	string	that	has	0	characters,	which	is	usually	called	“the	empty	string.”.	To
tell	Python	you	are	using	a	string	you	must	use	single	quotes	 (‘),	double	quotes	 (“)	and
triple	quotes(“””).
	

Example:	employee=	“Jonathan	Brown”.	The	string	here	is	Jonathan	Brown.
	

Integer	:	These	are	positive	or	negative	whole	numbers	(they	don’t	include	any	decimal
points).	This	will	be	discussed	later	in	Step	6.

	

Example:	3	is	an	integer	but	2.5	is	not	an	integer.
	

Float	:	These	are	real	numbers	and	are	written	with	a	decimal	point	dividing	the	integer
and	fractional	parts.	This	will	be	discussed	later	in	Step	6.
	

Example:	63.9	is	a	float
	

	

>>>name,rank,rating=“Johnston”,89.5,26

>>>
	

Now,	use	the	print	function	to	see	the	values	stored	in	the	above	variables:
	

>>>print(name)
	

>>>print(rating)
	

>>>print(rank)
	

Here	is	what	you	will	get:
	

	

In	the	above	example,	the	variable	‘name’	holds	the	string	“Johnston”,	while	the	variables

‘rating’	and	‘rank’	hold	the	integer	26	and	the	float	89.5	respectively.
	

Assignment	 of	 a	 common	 value	 to	 several	 variables	 in	 a
single	statement
	

Python	allows	the	assignment	of	a	common	value	to	several	variables	in	a	single	statement
with	the	syntax:
	

	

x	=	y	=	z	=	“apple”	

	

The	statement	assigns	the	string	“apple”	to	variables	x,	y,	and	z	at	the	same	time.
	

To	check	if	the	variables	x,	y,	and	z	actually	pertain	to	one	and	the	same	memory	location,
use	the	id()	operator:
	

>>>id(x)
	

>>>	id(y)
	

>>>id(z)
	

Figure	 9.	 In	 this	 example	 you	 can	 see	 that	 the	 3	 variables	 pertain	 to	 the	 same	memory
location	63519840.
	

Just	as	easily	as	you	have	created	and	assigned	values	to	a	variable,	you	can	change	the
value	and	corresponding	data	type	stored	in	it	in	a	simple	reassignment	process.
	

To	illustrate,	create	a	variable	named	‘counter’	and	assign	the	value	of	50,	an	integer.	
	

>>>counter	=	50
	

To	 increase	 the	 value	 stored	 in	 the	 variable	 by	 30,	 enter	 this	 statement	 on	 the	 Python
prompt:
	

>>>counter	+=	30
	

To	see	how	Python	interprets	your	statement,	use	the	print	function	to	see	the	value	stored
in	the	variable	‘counter’:
	

>>>print(counter)
	

You	should	see	this	value	on	the	succeeding	line:
	

80
	

Figure	10.	Once	you	have	typed	your	statements,	you	should	get	80	as	a	result.
	

	

The	above	example	showed	that	you	can	easily	replace	the	value	stored	in	a	variable	with
a	single	statement.	The	following	example	will	demonstrate	 that	you	can	also	reassign	a
variable	to	store	a	value	with	a	different	data	type	with	a	simple	reassignment	statement.
Assuming	you	now	want	the	variable	‘counter’	to	hold	the	string	“upper	limit”,	just	type
the	regular	assignment	statement	you	have	learned	earlier:
	

>>>counter	=	“upper	limit”
	

Now,	 use	 the	 print	 function	 to	 see	 how	 it	 has	 affected	 the	 value	 stored	 in	 the	 variable
‘counter’:
	

>>>print(counter)
	

The	output	should	show:
	

upper	limit
	

Figure	11.	As	you	can	see	the	output	is	upper	limit.
	

Data	Types
Programming	 involves	 a	 lot	 of	 data	 processing	 work.	 Data	 types	 allow	 programming
languages	to	organize	different	kinds	of	data.	Python	has	several	native	data	types:
	

Booleans	(will	be	explained	in	this	Chapter)
Number	will	be	explained	in	Step	6)
String	(will	be	explained	in	Step	7)
List	(will	be	explained	in	Step	9)
Tuple	(will	be	explained	in	Step	10)
Sets	(will	be	explained	in	Step	11)
Dictionary	(will	be	explained	in	Step	12)
Bytes	and	byte	arrays	(will	be	explained	in	Step	24)

	

Every	value	 in	Python	 is	an	object	with	a	data	type.	Hence,	you’ll	 find	data	 types	 like
function,	module,	method,	file,	class,	and	compiled	code.
	

Boolean	Data	Type
There	 are	 two	 built-in	 Boolean	 data	 types:	 True	 or	 False.	 These	 values	 are	 used	 in
conditional	 expressions,	 comparisons,	 and	 in	 structures	 that	 require	 representation	 for
truth	or	falsity.
	

To	 show	 how	 Boolean	 data	 types	 work,	 create	 three	 variables	 that	 will	 hold	 Boolean
values	resulting	from	the	assigned	expressions.
	

>>>	bool_a	=	(12	>=	4)												

>>>	bool_b	=	(12	==	4*4)												

>>>	bool_c	=	(18	!=	2*9)												
	

Use	the	print	function	to	see	the	values	stored	in	each	variable:

>>>print(bool_a,	bool_b,	bool_c)
	

You	should	now	get	:	True	False	False.	(see	figure	12	below)
	

Figure	12.
	

	

	

	

	

	

Step	6:	Number	Data	Types
	

There	 are	 3	 numeric	 data	 types	 in	 Python	 3:	 integers,	 floating	 point	 numbers,	 and
complex	numbers.	Python	can	tell	if	the	number	is	an	integer	or	a	float	by	the	presence	or
absence	of	a	decimal	point.	It	recognizes	a	complex	number	by	its	standard	form	a	+	bJ.
Hence,	it’s	not	necessary	to	declare	a	number	as	a	specific	type.
	

Integers	(int)
Integers	 are	 whole	 numbers	 with	 no	 fractional	 parts	 and	 decimal	 point.	 They	 can	 be
positive,	 negative,	 or	 zero.	 Integers	 can	 have	 unlimited	 size	 in	 Python	 3	 and	 are	 only
limited	by	 the	 available	memory	on	your	 computer.	Python	 supports	 normal	 integers	 as
well	as	octal,	hexadecimal,	and	binary	literals:
	

Normal	integers						
Examples:
44

4500

-32

0

96784502850283491
	

Octal	literal	(base	8)
An	octal	literal	is	a	number	with	a	prefix	of	0O	or	00	(zero	and	uppercase	letter	O	or	lower
case	letter	o).
	

Examples:
	

>>>	ol	=	0O40

>>>print(ol)

32

>>>
	

Enter	0O40	on	the	Python	prompt	to	get	the	same	integer	equivalent:

>>>0O40

32

>>>
	

	

Hexadecimal	literal	(base	16)
A	hexadecimal	literal	is	a	number	with	a	prefix	0X	or	0x	(zero	and	uppercase	or	lowercase
letter	x).
	

Example:
	

>>>hl	=	0XA0F

>>>print(hl)

2575

>>>
	

>>>	0XA0F

2575

>>>
	

	

Binary	literal	(base	2)
Binary	literals	are	indicated	by	the	prefix	0b	(zero	and	uppercase	or	lowercase	letter	b).
	

Example:
	

>>>	bl	=	0b101010

>>>	print(bl)

42

>>>
	

>>>0b101010

42

>>>

Converting	Integers	to	their	String	Equivalent
With	the	functions	oct(),	hex(),	and	bin(),	You	can	easily	convert	an	integer	to	its	string
equivalent	as	needed.
	

To	illustrate,	convert	the	integer	45	to	its	octal,	hexadecimal,	and	binary	literal	using	the
appropriate	built-in	functions:
	

	

integer	to	octal	literal
	

>>>	oct(45)

‘0o55’

>>>

Figure	 13.	 In	 this	 example,	 we	 have	 converted	 the	 integer	 45	 into	 it’s	 octal	 literal
equivalent	O055.

integer	to	hexadecimal	literal
	

>>>hex(45)

‘0x2d’

>>>
	

Figure	14.In	this	example,	we	have	converted	the	integer	45	into	it’s	hexadecimal	literal

equivalent	Ox2d.

integer	to	binary	literal
	

>>>bin(45)

‘0b101101’

>>>

Figure	 15.	 In	 this	 example,	 we	 have	 converted	 the	 integer	 45	 into	 it’s	 binary	 literal
equivalent	Ob101101.
	

Floating-Point	Numbers	(Floats)
Floating-point	numbers	are	real	numbers	with	a	decimal	point.
	

Examples:
	

0.50,

42.50

10500.40

2.5
	

	

Alternatively,	floats	may	be	expressed	in	scientific	notation	using	the	letter	“e”	to	indicate
the	10th	power.
	

>>>	3.5e5

350000.0

>>>
	

>>>	1.2e4

12000.0

>>>
	

PLEASE	NOTE
The	 letter	 “E”	 or	 “E	 notation”	 is	 used	 to	 express	 very	 large	 and	 very	 small	 results	 in
scientific	notation.	Because	exponents	like	1023	cannot	always	be	conveniently	displayed,
the	 letter	E	or	e	 is	used	 to	represent	10	 to	 the	power	of.	So	 in	 the	example	above	3.5e5
means	3.5	x	105).						
	

	

Complex	Numbers
	

Complex	numbers	are	pairs	of	real	and	imaginary	numbers.	It	takes	the	form	‘a	+	bJ’	or
‘a	+	bj’	where	the	left	operand	is	a	real	number	while	the	right	operand	is	a	float	(b)	and
an	imaginary	number	(J).	The	upper	or	lower	case	letter	Jj	refers	to	the	square	root	of	-1,
an	imaginary	number.	
	

	

	Real	Number(a)

	

	Float	(b)	and	an	Imaginary	Number	(J).

	

a	+		

	

bJ	

	

	a	+	

	

bj	

	

Example:
	

>>>	abc	=	2	+	4j

>>>	xyz	=	1	-	2j

>>>	abcxyz	=	abc	+	xyz
	

>>>print(abcxyz)

(3+2j)

>>>

	

	

PLEASE	NOTE
A	real	number	is	a	value	that	represents	a	quantity	along	a	line.	The	real	numbers	include
all	the	rational	numbers,	such	as	the	integer	−3	and	the	fraction	2/3,	and	all	the	irrational
numbers,	such	as	√2.

An	 imaginary	 number	 is	 a	 complex	 number	 that	 can	 be	 written	 as	 a	 real
number	multiplied	by	the	imaginary	unit	i.
	

Converting	From	One	Numeric	Type	to	Another
While	Python	is	capable	of	converting	mixed	number	types	in	an	expression	to	a	common
type,	 you	 may	 need	 to	 explicitly	 convert	 one	 type	 to	 another	 to	 comply	 with	 the
requirements	of	a	function	parameter	or	an	operator.	You	can	coerce	Python	to	do	this	by
using	the	appropriate	keyword	and	parameter	(the	number	to	be	converted).
	

To	convert	a	float	to	a	plain	integer
	

Type	int(x)												

>>>int(97.50)

97

>>>

To	convert	an	integer	to	a	floating-point	number
	

Type	float(x)

>>>float(567)

567.0

>>>

To	convert	an	integer	to	a	complex	number
	

Type	complex(x)

>>>complex(34)

(34+0j)

>>>

To	convert	a	float	to	a	complex	number
	

Type	complex(x)

>>>complex(34.5)

(34.5+0j)

>>>

To	 convert	 a	numeric	 expression	 (x,y)	 to	 a	 complex	number	with	 a	 real
number	and	imaginary	number
	

Type	complex(x,y)

>>>complex(4,7)

(4+7j)

>>>
	

Take	note	that	you	cannot	convert	a	complex	number	to	an	integer.
	

Python	has	many	built-in	 operators	 that	 programmers	 can	 use	 to	manipulate	 and	utilize
numeric	data	type.

Numbers	and	Arithmetic	Operators
Python’s	 arithmetic	 operators	 allow	 programmers	 to	 create	 useful	 applications	 and
automate	daily	tasks.	Python	supports	7	arithmetic	operators:
	

	

Addition	

	

+	

	

Subtraction	

	

-	

	 	

Multiplication	 *	

	

Division	

	

/	

	

Exponent	

	

**	

	

Modulos	

	

%	

	

Floor	Division	

	

//	

	

Addition	(+)						
	

The	addition	operator	adds	the	operands	on	either	side	of	the	operator:
	

>>>20	+	14

34

>>>45.8	+	50.3

96.1

>>>2	+	3.5

5.5

>>>	(2	+	3j)	+	(3	-	4j)

(5-1j)
	

Subtraction		(-)
	

The	subtraction	operator	subtracts	the	value	of	the	right	operand	from	the	value	of	the	left
operand:
	

>>>50	-	7

43

>>>75.4	-	2.50

72.9
	

>>>	6	-	3.4

2.6

>>>	(5	+	2j)	-	(4	-	6j)

(1+8j)

>>>

Multiplication	(*)
	

The	multiplication	operator	multiplies	the	operands	on	either	side	of	the	operator:
	

>>>4	*	3

12

>>>	8.4	*	2.5

21.0

>>>	8	*	2.5

20.0

>>>

Division	(/)
	

The	 division	 operator	 divides	 the	 value	 of	 the	 left	 operand	 with	 the	 value	 of	 the	 right
operand:
	

>>>	32/8

4.0

>>>	4.5	/	1.5

3.0

>>>	27.5	/	3.2

8.59375

>>>
	

Take	note	 that	 the	division	operator	 always	 returns	a	 float	by	default	 regardless	 of	 the
data	type	of	the	operands.	If	you	want	your	quotient	to	be	in	integer	format,	you	can	type
int()	and	enclose	the	mathematical	expression.
	

For	example:
	

>>>	int(32/8)

4

>>>	int(4.5/1.5)

3

>>>	int(27.5/3.2)

8

>>>

You	can	apply	the	same	principle	to	the	other	arithmetic	operations	if	you	want	Python	to
return	 a	 data	 type	 other	 than	 the	 default	 numeric	 type.	 For	 instance,	 if	 you	 need	 the
expression	to	output	an	integer	after	entering	an	integer*float	expression	which	results	to	a
float,	you	can	coerce	Python	to	return	an	integer	with	int().	On	the	other	hand,	if	you	want
Python	 to	 return	 a	 float,	 you	 can	 use	 float()	 and	 place	 the	 expression	 inside	 the
parenthesis.

Exponent	(**)
	

The	exponent	operator	raises	the	first	operand	to	the	power	indicated	by	the	right	operand:
	

>>>	3	**	4

81

>>>4.5	**	3

91.125

>>>

Modulos	(%)
	

The	modulos	operator	(%)	returns	 the	remainder	after	dividing	 the	 left	operand	with	 the
right	operand.
	

>>>	32%7

4

>>>	16.5%4.5

3.0

>>>	4%2.5

1.5

>>>

Relational	or	Comparison	Operators
	

Comparison	operators	evaluate	the	expression	and	return	either	True	or	False	to	describe
the	relation	of	the	left	and	right	operands.
	

Python	supports	the	following	relational	operators:
	

	

is	less	than	

	

<	

	

is	greater	than	

	

>	

	

is	less	than	or	equal	to	

	

<=	

	

is	greater	than	or	equal	to	

	

>=	

	

is	equal	to	

	

==	

	

is	not	equal	to	

	

!=	

	

	

Examples:
	

>>>	15	==	3*2*2

False

>>>4*2<=5*3+2

True

>>>	15	!=	3*5

False

>>>	(8*4)>	24

True

>>>	10	<	(2*12)

True

>>>25	>=	(60*2)

False

>>>

Assignment	Operators
Assignment	operators	are	used	to	assign	values	to	variables.
	

=	Operator
	

The	=	operator	assigns	the	value	of	the	right	operand	to	the	left	operand.
	

Examples:
	

>>>x	=	2	*	4

>>>y	=	2

>>>xy	=	x	+	y

>>>a,	b,	c	=	10,	30.5,	15

>>>a	=	b	=	c	=	100
	

add	and	+=
	

The	add	and	(+=)	operator	adds	the	value	of	the	left	and	right	operands	then	assigns	the
sum	to	the	left	operand.	It	takes	the	format	x+=a	and	its	equivalent	to	the	expression	x	=
x+a.
	

Examples:
	

>>>	x	=	12

>>>y	=	5

>>>	y+=12

>>>print(y)

17

>>>
	

>>>	a	=	7

>>>	b	=	0

>>>	b	+=	a

>>>print(b)

7

>>>
	

>>>	b	=	0

>>>	b	+=	5

>>>print(b)

5

>>>

subtract	and	-=
	

The	subtract	and	(-=)	operator	first	subtracts	the	value	of	the	right	number	from	the	left,
and	 then	 assigns	 the	 difference	 to	 the	 left	 number.	 It	 is	 expressed	 as	 x	 -=	 a	 and	 its
equivalent	expression	is	x	=	x-a.
	

Examples:
	

>>>a	=	15

>>>b	=	13

>>>a	-=	b

>>>print(a)

2
	
	

>>>	counter	=	10

>>>	counter	-=	5

>>>print(counter)

5

	

	

>>>	counter	=	0

>>>	counter	-=	10

>>>print(counter)

-10
	

multiply	and	*=
	

The	 multiply	 and	 	 (*=)	 operator	 takes	 the	 product	 of	 the	 left	 and	 right	 operands	 and
assigns	 the	value	 to	 the	 left	operand.	 It	 is	expressed	as	x*=a	which	 is	equivalent	 to	x	=
x*a.
	

Examples:
	

>>>	x	=	15

>>>	y	=	3

>>>	x	*=	y

>>>print(x)

45
	

>>>	multiplier	=	3

>>>	multiplier	*=	5

>>>print(multiplier)

15
	

divide	and	/=
	

The	divide	and	(/=)	operator	first	divides	the	value	of	the	left	operand	with	the	right	then
assigns	the	result	to	the	left	operand.	It	is	expressed	with	x	/=	a	which	is	equivalent	to	the
expression	x	=	x/a.
	

Examples:
	

>>>	a	=	15

>>>	xyz	=	45

>>>	xyz	/=	a

>>>print(xyz)

3.0
	

	

>>>	amount	=	12

>>>	amount	/=	5

>>>print(amount)

2.4
	

modulos	and	%=
	

The	modulos	and	(%=)	operator	initially	divides	the	left	operand	with	the	right	and	then
assigns	the	remainder	to	the	left	operand.	It	is	expressed	as	x	%=	a	which	is	equivalent	to
the	expression	x	=	x	%	a.
	

Examples:
	

>>>	x	=	12

>>>	y	=	5

>>>	x	%=	y

>>>print(x)

2
	

>>>	rem	=	30

>>>	rem	%=	12

>>>print(rem)

6
	

floor	division	and	//=
	

The	floor	division	and	(//=)	operator	first	performs	a	floor	division	on	the	left	operand	then
assigns	 the	 result	 to	 the	 left	operand.	 It	 is	 expressed	as	x//=a	which	 is	 equivalent	 to	 the

expression	x	=	x//a.
	

Examples:
	

>>>	a	=	30

>>>	b	=	14

>>>a	//=	b

>>>print(a)

2
	

>>>	floor	=	15

>>>floor	//=	4

>>>print(floor)

3
	

	

Bill	Calculator
	

	

Now	that	you’re	familiar	with	variables	and	arithmetic	operators,	you’re	ready	to	create	a
simple	 program	 that	will	 help	 you	 automate	 the	 task	 of	 computing	 for	 your	restaurant
bill.	Assuming	your	total	bill	covers	the	basic	meal	cost,	sales	tax,	and	tip,	you	will	need
the	following	information	to	start	working	on	your	program.
	

	
basic	meal	cost	

	
?	

	
sales	tax	rate	

	
7%	of	basic	meal	cost	

	
tip	

	
20%	of	the	sum	of	the	basic	meal	cost	and	sales	tax	

	

	

First,	you’ll	have	to	set	up	the	variables	to	store	the	required	data.
	

meal	=	45

sales_tax	=	7/100									

tip	=	20/100												
	

	

Since	the	tip	is	based	on	the	combined	amount	of	the	basic	meal	cost	and	sales	tax,	you’ll
have	to	pass	the	total	to	a	variable	by	creating	a	new	variable	or	simply	reassigning	meal
to	hold	the	new	value.	Assuming	you	have	decided	to	simply	reassign	meal,	you	can	use
the	‘add	and’	operator	to	compute	for	the	total	value	of	the	basic	meal	cost	and	sales	tax.
	

meal	+=	meal	*	sales_tax
	

Now	that	the	variable	meal	contains	the	combined	value	of	the	meal	and	sales	tax,	you’re
ready	 to	 compute	 for	 the	 tip.	You	 can	 create	 a	 new	 variable,	 bill,	 to	 store	 the	 total	 bill
amount.
	

bill	=	meal	+	meal	*	tip
	

Here	is	the	code	for	your	bill	calculator:
	

meal	=	45

sales_tax	=		7/	100

tip	=	20	/	100

meal	+=	meal	*	sales_tax

bill	=	meal	+	meal	*	tip
	

REMEMBER
As	explained	in	Step	2,	in	order	to	create	a	program	you	must;	open	IDLE	->	click	File	->
New	File	->	copy	the	code	for	your	bill	calculator	specified	above	->	go	to	File	->	Save	As
->	save	the	program	as	calculator.py	or	any	other	name	you	want	->	click	Run	->	click	on
Run	Module.
	

To	get	the	total	bill	amount,	just	type	the	word	bill	on	the	command	prompt:

>>>	bill

57.78

>>>
	

Figure	16.	Type	the	word	bill	to	get	the	total	bill	amount.

Built-in	Functions	Commonly	Used	with	Numbers
abs(x)												
Returns	the	absolute	value	of	a	given	number
	

>>>abs(-4)

4
	

max()																		
Returns	the	largest	in	the	given	arguments.	The	syntax	is:
	

	

max(x,	y,	z)	

	

>>>	max(34,	76,	5,	-187,	95)

95
	

>>>print	(“Maximum	(50,	100,	150,	200)	:	“,	max(50,	100,	150,	200))

Maximum	(50,	100,	150,	200)	:		200

>>>

min()																		
Returns	the	smallest	argument.	The	syntax	is:
	

	

min(x,	y,	z)	

	

>>>min(65,	32,	65.5,	-4,	0)

-4

>>>

round()						
Returns	a	rounded	number	.	The	syntaxis:
	

	

round(x[,n])	

	

x	is	the	number	to	be	rounded

n	is	the	number	of	digits	from	the	decimal	point
	

>>>round(104.987543,	2)

104.99

>>>round(99.01934567,	5)

99.01935

>>>
	

When	the	number	of	decimal	places	is	not	given,	it	defaults	to	zero.

>>>round(99.012345)

99

>>>

Math	Methods
The	following	math	methods	are	accessible	after	importing	the	math	module.
	

PLEASE	NOTE
Modules	and	how	to	import	them	will	be	explained	later	in	Step	18.
	

To	import	math:
	

>>>import	math

Math.ceil(x)
Returns	the	smallest	integer	which	is	not	less	than	the	given	number.
	

Examples:
	

>>>import	math

>>>	math.ceil(98.75)

99

>>>	math.ceil(154.01)

155

>>>	math.ceil(math.pi)

4

>>>

Math.floor(x)
Returns	the	largest	integer	which	is	not	greater	than	the	given	number.
	

Examples:
	

>>>import	math

>>>	math.floor(98.01)

98

>>>	math.floor(13.99)

13

>>>	math.floor(math.pi)

3

>>>

Math.fabs()
Returns	the	absolute	value	of	a	given	number.
	

The	fabs()	method	works	similarly	as	the	function	abs()	with	some	differences:
	

fabs()	works	 only	 on	 integers	 and	 floats	while	 abs()	works	 on	 integer,	 	 floats,	 and
complex	numbers
fabs()	returns	a	float	while	abs()	returns	an	integer
fabs()	is	imported	from	the	math	module	while	abs()	is	a	built-in	function

	

Examples:
	

>>>import	math

>>>	math.fabs(-12)

12.0

>>>	math.fabs(15.0)

15.0

>>>

Math.pow()
Returns	the	value	of	xy.
	

Examples:
	

>>>import	math

>>>math.pow(5,	2)

25.0

>>>	math.pow(2,	3)

8.0

>>>	math.pow(3,	0)

1.0

>>>

Math.sqrt()
Returns	the	square	root	of	a	number	which	is	larger	than	zero.
	

>>>import	math

>>>	math.sqrt(16)

4.0

>>>	math.sqrt(25.0)

5.0

>>>
	

Math.log()
Returns	natural	logarithm	of	numbers	greater	than	zero.
	

>>>import	math

>>>	math.log(100.12)

4.6063694665635735

>>>	math.log(math.pi)

1.1447298858494002

>>>

	

Step	7:	Strings
	

A	string	is	an	ordered	series	of	Unicode	characters	which	may	be	a	combination	of	one	or
more	letters,	numbers,	and	special	characters.	It	is	an	immutable	data	type	which	only
means	that	once	it	is	created,	you	can	no	longer	change	it.
	

To	create	a	string,	you	must	enclose	it	in	either	single	or	double	quotes	and	assign	it	to	a
variable.	For	example:
	

>>>string_one	=	‘a	string	inside	single	quotes’

>>>string_double	=	“a	string	enclosed	in	double	quotes”
	

When	you	enclose	a	string	which	contains	a	single	quote	or	an	apostrophe	 inside	single
quotes,	you	will	have	to	escape	the	single	quote	or	apostrophe	by	placing	a	backslash	(\)
before	it.
	

For	example,	to	create	the	string,	‘I	don’t	see	a	single	quote’:
	

>>>	string_single	=	‘I	don't	see	a	single	quote.’

>>>
	

When	you	use	the	print	function	to	print	string_single,	your	output	should	be:
	

>>>print(string_single)

I	don’t	see	a	single	quote.

>>>
	

Similarly,	you	will	have	to	escape	a	double	quote	with	a	backslash	(\)	when	the	string	is
enclosed	in	double	quotes.
	

Hence,	to	create	the	string	=	“He	said:	“You	have	been	nominated	as	honorary	president	of
the	Mouse	Clickers	Club.””:
	

>>>string_two	=	“He	said:	"You	have	been	nominated	as	honorary	president	of	the	Mouse
Clickers	Club.	"”

>>>

	

>>>print(string_two)

He	said:	“You	have	been	nominated	as	honorary	president	of	the	Mouse	Clickers	Club.	“

>>>
	

Likewise,	a	backslash	within	a	string	should	be	escaped	with	another	backlash.
	

>>>	string_wow	=	“This	is	how	you	can	escape	a	backlash	\.”
	

>>>print(string_wow)

This	is	how	you	can	escape	a	backlash	.

>>>

Accessing	Characters	in	a	String
You	can	access	individual	characters	in	a	string	through	indexing	and	a	range	of	characters
by	slicing.
	

String	Indexing
	

The	 initial	 character	 in	 a	 string	 takes	 zero	 as	 its	 index	 number	 and	 the
succeeding	characters	take	1,	2,	3…	and	so	on	as	index	numbers.

	

To	access	the	string	backwards,	the	last	character	takes	-1	as	its	index.

	

A	space	is	also	considered	a	character.

	

	

To	illustrate	indexing	in	strings,	define	a	variable	named	“string_var”	and	assign	the	string
“Python	String”	with	the	statement:
	

>>>string_var	=	“Python	String”
	

	
Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	

7	

	

8	

	

9	

	

10	

	

11	

	

12	

	
String	

	

P	

	

y	

	

t	

	

h	

	

o	

	

n	

	

		

	

S		

	

t	

	

r	

	

i	

	

n	

	

g	

	
Index	#	

	

-13	

	

-12	

	

-11	

	

-10	

	

-9	

	

-8	

	

-7	

	

-6	

	

-5	

	

-4	

	

-3	

	

-2	

	

-1	

	

	

Example	#1:
	

To	 access	 the	 first	 character	 on	 the	 variable	 string_var	 (the	 first	 character	 of	 Python
String	is	“P”),	enter	the	variable	name	“string_var”	and	enclose	the	integer	zero	(0)	inside
the	index	operator	or	square	brackets	[].
	

>>>	string_var[0]

‘P’

>>>

Figure	16.	In	this	example,	the	first	character	of	the	string	“Python	String”	is	“P”.	Since
the	first	character	 takes	zero	as	 it’s	 index	number,	Python	gives	you	 the	 letter	“P”	as	an
answer.
	

Example	#2:
	

To	access	the	character	on	index	8,	simply	enclose	8	inside	the	square	brackets:
	

>>>	string_var[8]

‘t’

>>>
	

Figure	17.	Since	 “t”	 takes	8	 as	 it’s	 index	number,	Python	gives	you	 the	 letter	 “t”	 as	 an
answer.
	

Example	#3:
	

To	access	the	character	on	index	6,	an	empty	space:
	

>>>	string_var[6]

‘	‘

>>>
	

Figure	18.	Since	an	empty	 space	 takes	6	as	 it’s	 index	number,	Python	gives	you	 	 ‘	 ‘	 (a
space)	as	an	answer.
	

Example	#	4:
	

To	access	the	last	character	of	the	string,	you	can	use	negative	indexing	in	which	the	last
character	takes	the	-1	index.
	

>>>string_var[-1]

‘g’

>>>

	

A	string	is	an	ordered	list,	so	you	can	expect	that	the	penultimate	letter	takes	the	-2	index
and	so	on.
	

Hence,	-5	index	is:
	

>>>	string_var[-5]

‘t’

>>>

The	Len()	Function
There	 is	a	more	sophisticated	way	of	accessing	the	 last	character	and	it	will	prove	more
useful	when	you’re	writing	more	complicated	programs:	the	len()	function.
	

The	 len()	 function	 is	 used	 to	 determine	 the	 size	 of	 a	 string,	 that	 is,	 the	 number	 of
characters	in	a	string.
	

For	example,	to	get	the	size	of	the	variable	‘string_var’,	you’ll	use	the	syntax:
	

>>>len(string_var)

13

>>>
	

Figure	19.	By	using	the	len()	function,	Python	is	able	to	calculate	the	number	of	characters
in	your	string	“Python	String”.	Do	not	forget	that	Python	calculates	a	space	as	a	character.
Thus	you	get	13	characters.
	

Since	the	last	character	in	the	string	takes	an	index	which	is	one	less	than	the	size	of	the
string,	 you	 can	 access	 the	 last	 character	 by	 subtracting	 1	 from	 the	 output	 of	 the	 len()
function.

	

To	illustrate,	type	the	following	on	the	command	prompt:
	

>>>	string_var[len(string_var)-1]

‘g’

>>>
	

Some	important	notes	about	accessing	strings	through	indexing:
	

Always	use	an	integer	to	access	a	character	to	avoid	getting	TypeError.
Attempting	to	access	a	character	which	is	out	of	index	range	will	result	to

an	IndexError.

Slicing	Strings
You	can	access	a	range	of	characters	in	a	string	or	create	substrings	using	the	range	slice
[:]	 operator.	 	To	do	 this	 interactively	 on	 a	 random	 string,	 simply	 type	 the	 string	within
single	or	double	quotes	and	indicate	two	indices	within	square	brackets.	A	colon	is	used	to
separate	the	two	indices.	The	slice	operator	will	give	you	a	string	starting	with	S[A]	and
ending	with	S[B-1].
	

The	syntax	is:		S[A:B-1]
	

S:	The	string	you	wish	to	use

A:	The	starting	character	of	the	substring	you	want	to	create

B:	The	ending	character	of	the	substring	you	want	to	create
	

Examples	#1:
	

>>>“String	Slicer	“[2:12]

‘ring	Slice’

>>>
	

	
Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	

7	

	

8	

	

9	

	

10	

	

11	

	

12	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

String	 S	 t	 r	 i	 n	 g	 		 S		 l	 i	 c	 e	 r	

	
Index	#	

	

-13	

	

-12	

	

-11	

	

-10	

	

-9	

	

-8	

	

-7	

	

-6	

	

-5	

	

-4	

	

-3	

	

-2	

	

-1	

	

	

Figure	 20.	 In	 this	 example,	we	want	 to	 create	 a	 substring	 using	 the	 range	 of	 characters
from	“r”	to	“e”.
	

Let’s	use	the	syntax	S[A:B-1]	to	understand	this	command;
	

S:	refers	to	the	string	“String	Slicer”.
A:	2	is	the	index	number	which	is	associated	with	the	letter	“r”.
B-1:	12-1=	11	is	the	index	number	which	is	associated	with	the	letter	“	e”

	

Therefore,	 the	 command	 says	 that	 we	 are	 looking	 for	 a	 substring	 which	 includes	 the
characters	 from	 “r”	 to	 “e”	 in	 the	 “String	 Slicer”	 string.	 Therefore,	 the	 answer	 is	 “ring
Slice”.
	

Example	#2:
	

>>>“Programmer”[3:8]

‘gramm’

>>>
	

	
Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	

7	

	

8	

	

9	

	
String	

	

P	

	

r	

	

o	

	

g	

	

r	

	

a	

	

m	

	

m	

	

e	

	

r	

	
Index	#	

	

-10	

	

-9	

	

-8	

	

-7	

	

-6	

	

-5	

	

-4	

	

-3	

	

-2	

	

-1	

	

You	can	also	slice	a	string	stored	in	a	variable	by	performing	the	slicing	notation	on	the
variable	using	the	following	statements:
	

Example	#3:
	

>>>my_var	=	“Python	Statement”

>>>	my_var[0:12]

‘Python	State’

>>>
	

	

Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	

7	

	

8	

	

9	

	

10	

	

11	

	

12	

	

13	

	

14	

	

15	

	

String	

	

P	

	

y	

	

t	

	

h	

	

o	

	

n	
	
		

	

S	

	

t	

	

a	

	

t	

	

e	

	

m	

	

e	

	

n	

	

t	

	

Index	#	

	

-16	

	

-15	

	

-14	

	

-12	

	

-12	

	

-11	

	

-10	

	

-9	

	

-8	

	

-7	

	

-6	

	

-5	

	

-4	

	

-3	

	

-2	

	

-1	

	

Example	#	4:
	

>>>my_var	=	“Python	Statement”

>>>	my_var[7:11]

‘Stat’

>>>
	

When	slicing	or	creating	a	substring,	you	can	drop	the	first	number	if	the	starting	character
of	the	substring	is	the	same	as	the	initial	character	of	the	original	string.
	

For	example:
	

>>>	test_var	=	“appendix”

>>>test_var	[:6]

‘append’

>>>
	

	

Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	

7	

	

String	

	

a	

	

p	

	

p	

	

e	

	

n	

	

d	

	

i	

	

x	

	

Index	#	

	

-8	

	

-7	

	

-6	

	

-5	

	

-4	

	

-3	

	

-2	

	

-1	

	

In	this	example;
The	starting	character	is	“a”,	as	is	the	first	letter	in	“appendix”.
The	 starting	character	of	 the	 substring	 is	 also	“a”.	Therefore,	we	can	drop	 the	 first
number.	In	fact,	instead	of	writing	test_var[0:6]	you	can	simply	write	test_var[:6].

	

Similarly,	 if	 your	 substring	 ends	 on	 the	 last	 character	 of	 the	 string,	 you	 can	 drop	 the
second	index	to	tell	Python	that	your	substring	ends	on	the	final	character	of	the	original
string.
	

>>>	test_var	=	“appendix”

>>>test_var[3:]

‘endix’

>>>

Concatenating	Strings
Several	strings	can	be	combined	into	one	large	string	using	the	+	operator.	For	example,
to	concatenate	the	strings	“I”,	“know”,	“how”,	“to”,	“write”,	“programs	“,	“in”,	“Python”,
you	can	type:
	

>>>“I”	+	“know”	+	“how”	+	“to”	+	“write”	+	“programs”	+	“in”	+	“Python.”

>>>
	

You	should	get	this	output:
	

‘IknowhowtowriteprogramsinPython.’
	

Likewise,	you	can	concatenate	strings	stored	in	two	or	more	variables.	For	example:
	

>>>	string_one	=	“program”

>>>	string_two	=	“is”

>>>	string_three	=	“worth	watching”

>>>	print(“An	excellent	“+string_one[:7]	+”	“+	string_two	+	”	“	+	string_three	+“.”)

>>>
	

When	you	run	the	program	(when	you	press	enter),	the	output	will	be:
	

An	excellent	program	is	worth	watching.
	

Take	note	that	since	a	string	is	immutable,	the	acts	of	slicing	and	concatenating	a	string	do
not	affect	the	value	stored	in	the	variable.
	

For	 example,	 assign	 the	 string	 “concatenate”	 to	 the	 variable	 same_string	 and	 slice	 it	 to
return	the	characters	from	index	4	to	6:
	

>>>	same_string	=	“concatenate”

>>>	same_string[4:7]

‘ate’

>>>
	

Now,	print	the	value	on	the	variable	same_string:
	

>>>print(same_string)

concatenate

>>>
	

Notice	how	the	slicing	did	not	affect	the	original	string	at	all.

Repeating	a	String
To	 repeat	 a	 string	 or	 its	 concatenation,	 you’ll	 use	 the	 operator	 *and	 a	 number.	 This
instructs	Python	to	repeat	the	string	a	certain	number	of	times.

	

For	example,	if	you	want	to	repeat	the	string	*<>*	five	times,	you	can	type	the	string	on
the	command	prompt	and	specify	the	number	of	times	it	should	be	repeated	with	*5.
	

>>>“*<>*”	*5
	

Here’s	the	output:
	

>>>‘*<>**<>**<>**<>**<>*’
	

You	can	store	 the	above	string	 in	a	variable	and	apply	 the	*	operator	on	 the	variable	 to
achieve	the	same	result:
	

>>>sign_string	=	“*<>*”

>>>sign_string	*	5

‘*<>**<>**<>**<>**<>*’

>>>
	

Using	the	upper()	and	lower()functions	on	a	string
The	upper()	 and	 lower()	 functions	can	be	used	 to	print	 the	entire	 string	 in	uppercase	or
lowercase.
	

To	illustrate,	define	a	new	variable	‘smart_var’	and	use	it	to	store	the	string	“Europe”.
	

>>>smart_var	=	“Europe”
	

To	print	the	entire	string	in	uppercase	letters,	simply	type:
	

>>>print(smart_var.upper())
	

The	screen	should	display	this	output:
	

EUROPE
	

To	turn	things	around,	print	the	entire	string	on	lowercase	by	typing:

	

>>>print(smart_var.lower())
	

You’ll	get	the	output:
	

europe
	

The	 use	 of	 the	 upper()	 and	 lower()	 functions	 does	 not	 change	 the	 string	 stored	 at
smart_var.	You	can	prove	this	by	entering	the	command:
	

>>>print	(smart_var)

Europe

Using	the	str()	function
You	 may	 sometimes	 need	 to	 print	 non-string	 characters	 as	 string	 characters.	 For
example,a	program	may	require	you	to	print	a	string	along	with	integers	or	other	number
types.	 Python’s	 str()	 functionallows	 the	 non-string	 character	 to	 be	 converted	 to	 string
characters.
	

To	 illustrate,	you	can	create	a	variable	 to	store	 the	 integer	246.The	variable	can	 then	be
used	as	parameter	for	the	str()	function.
	

>>>my_number	=	246

>>>str(my_number)

‘246’

>>>
	

To	print	the	string	“My	employee	number	is	246”,	you	can	type	the	following:
	

>>>my_number	=	246

>>>	print(“My	employee	number	is	”	+	str(my_number))

My	employee	number	is	246

>>>

Python	String	Methods
There	 are	 several	 Python	 methods	 that	 can	 be	 used	 with	 string	 to	 support	 various
operations:

The	replace()	method
The	replace()	method	replaces	a	substring	within	an	existing	string	with	a	new	substring.
Since	you	can’t	actually	change	 the	string	on	account	of	 its	 immutable	nature,	 replacing
values	necessitates	the	creation	of	a	new	string.
	

The	syntax	for	the	replace()	method	is:
	

	
	

source_string.replace(old_substring,	new_substring,	[count])	

		

	

Source_string:	The	string	you	want	to	perform	the	replacement	in.
	

Old_substring:	The	existing	substring	in	the	source	string	you	want	to	replace.
	

The	new_substring:	The	old_substring	will	be	replaced	by	new_substring.
	

Count:	 This	 count	 is	 an	 optional	 parameter.	 This	 specifies	 the	 maximum	 number	 of
replacements.	 If	 not	 provided,	 the	 replace	 Python	 method	 will	 replace	 all	 occurrences.
Also,	the	replacements	start	from	the	left	if	the	count	parameter	is	specified.
	

For	example:
	

Let	say	you	want	 to	replace	all	occurrences	of	 the	substring	‘flower’,	with	 the	substring
‘bug’:
	

>>>	x	=	“I	saw	a	yellow	flower	in	the	garden,	a	yellow	flower.”

>>>	y	=	x.replace(‘flower’,	‘bug’)

>>>print(y)

I	saw	a	yellow	bug	in	the	garden,	a	yellow	bug.

>>>
	

Now	let	say	you	want	to	replace	only	the	first	occurrence	of	the	substring,	you	can	supply
a	third	argument,	1:

	

>>>	x	=	“I	saw	a	yellow	flower	in	the	garden,	a	yellow	flower.”

>>>	y	=	x.replace(‘flower’,	‘bug’,	1)

>>>print(y)

I	saw	a	yellow	bug	in	the	garden,	a	yellow	flower.

>>>

Case	Methods	with	String
There	are	four	case	methods	that	can	be	used	with	a	string:	upper(),	lower(),	swapcase(),
and	title().	These	methods	return	a	specific	view	but	does	not	change	the	string	itself.

Upper()
	

The	upper()	method	returns	a	view	of	an	entire	string	in	uppercase	letters.
	

>>>	a	=	“garden”

>>>	b	=	“a	lovely	garden”

>>>	a.upper()

‘GARDEN’

>>>	b.upper()

‘A	LOVELY	GARDEN’

>>>

Lower()
	

The	lower()	method	returns	a	view	of	an	entire	string	in	lowercase	letters.
	

>>>	x	=	“HAPPY”

>>>	y	=	“A	HAPPY	PLACE”

>>>	x.lower()

‘happy’

>>>	y.lower()

‘a	happy	place’

>>>

Swapcase()
	

The	swapcase()	method	returns	a	view	where	the	lowercase	letters	are	in	uppercase	and
viceversa.
	

>>>	a	=	‘Garden’

>>>	b	=	‘A	Lovely	Garden’

>>>	a.swapcase()

‘gARDEN’

>>>	b.swapcase()

‘a	lOVELY	gARDEN’

>>>

Title()
	

The	 title()	method	returns	a	view	where	 the	 first	character	of	 the	string	 is	capitalized
and	the	rest	are	in	lowercase.
	

>>>	x	=	“HAPPY”

>>>	y	=	“A	HAPPY	PLACE”

>>>	x.title()

‘Happy’

>>>	y.title()

‘A	Happy	Place’

>>>

Count()	method
	

This	 method	 is	 used	 to	 sum	 up	 the	 occurrence	 of	 a	 given	 character	 or	 series	 of
characters	in	a	string.	It	can	be	used	to	count	words	which	are	treated	as	a	sequence	of
character.
	

For	example:
	

>>>	s	=	“It	is	not	what	you	think	it	is	but	it	is	good	enough	for	this	purpose.”

>>>	s.count(‘is’)

4

>>>	s.count(‘t’)

8

>>>	s.count(‘it’)

2

>>>	s.count(‘not’)

1

>>>
	

As	you	can	see	in	this	example,	the	occurrence	“is”	is	found	4	times	in	this	string.
	

	

The	find()	method
	

The	find()	method	is	used	to	search	for	a	given	character	or	a	sequence	of	characters
in	a	string.
	

Example	#1:
	

>>>	s	=	“A	string	is	an	immutable	character	or	series	of	characters.”

>>>	s.find(“string”)

2

>>>
	

	
Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	

7	

	
String	

	

A	
	
		

	

s	

	

t	

	

r	

	

i	

	

n	

	

g	

	
Index	#	

	
-8	

	
-7	

	
-6	

	
-5	

	
-4	

	
-3	

	
-2	

	
-1	

	

	

On	 the	 above	 example,	 the	 find()	 method	 returned	 ‘2’	 which	 is	 the	 index	 of	 the	 first
character	of	the	string	‘string’.
	

Example	#2:
	

On	the	following	example,	find()	returns	‘5’,	the	index	of	the	first	occurrence	of	the	string
‘i’.
	

>>>	s	=	“A	string	is	an	immutable	character	or	series	of	characters.”

>>>	s.find(‘i’)

5

>>>
	

Example	#3:
	

There	 are	 several	 i’s	 in	 the	 string	 and	 if	 you’re	 looking	 for	 the	 next	 ‘i’,	 you’ll	 have	 to
supply	a	second	argument	which	should	correspond	with	the	index	immediately	following
index	‘5’	above.	This	tells	the	interpreter	to	start	searching	from	the	given	index	going
to	the	right.	Hence:
	

>>>	s	=	“A	string	is	an	immutable	character	or	series	of	characters.”

>>>	s.find(‘i’,	6)

9

>>>
	

Example	#4:
	

The	 search	 found	 the	 second	 occurrence	 of	 letter	 ‘i’	 at	 index	 9.	 Besides	 specifying	 an
argument	for	the	starting	range,	you	can	also	provide	an	argument	to	indicate	the	end	to
the	 search	 operation.	 You	 can	 do	 it	 backwards	 by	 applying	 negative	 indexing.	 For
example,	if	you	want	to	find	the	third	occurrence	of	the	letter	‘i’,	you	can	give	the	index
‘10’	as	a	second	argument	and	provide	an	end	to	the	search	range	with	a	third	argument,
-10.
	

>>>	s	=	“A	string	is	an	immutable	character	or	series	of	characters.”

>>>	s.find(‘i’,	10,	-10)

15

>>>
	

Isalpha()
	

The	 method	 isalpha()	 returns	 True	 if	 all	 characters	 of	 a	 non-empty	 string	 are
alphabeticand	there	is	at	least	one	character	and	False	if	otherwise.
	

>>>	s	=	(“programs”)

>>>	s.isalpha()

True

>>>	print(s.isalpha())

True

>>>	b	=	(“programming	1	and	2”)

>>>	b.isalpha()

False

>>>
	

As	you	can	see	the	first	2	strings	had	only	alphabetic	characters	(only	letters)	whereas	the
3rd	string	had	both	alphabetic	and	numeric	(letters	and	numbers)	characters.

Isalnum()
	

The	 method	 isalnum()	 returns	 True	 if	 ALL	 the	 characters	 of	 a	 non-empty	 string	 are
alphanumeric	and	False	if	otherwise
	

Example	#1:
	

>>>	b	=	“Programmer2”

>>>	b.isalnum()

True

>>>
	

Example	#2:
	

>>>	a	=	“Programmer	1”

>>>	a.isalnum()

False

>>>
	

As	 you	 can	 see,	 in	 the	 first	 example	 all	 characters	 are	 alphanumeric	 (characters	which
include	both	numbers	and	letters).	However,	the	second	example	includes	letters,	numbers
and	a	space	between	“programmer”	and	“1”.	This	is	why	Python	returns	False.
	

Isidentifier()
The	isidentifier()	method	tests	for	the	validity	of	a	given	string	as	an	identifier	and	returns
True	if	valid	or	False	if	otherwise.
	

REMEMBER
As	explained	in	Step	4,	a	Python	identifier	is	a	name	used	to	identify	a	variable,	function,
class,	 module	 or	 other	 object.	 An	 identifier	 starts	 with	 a	 letter	 A	 to	 Z	 or	 a	 to	 z	 or	 an
underscore	(_)	followed	by	zero	or	more	letters,	underscores	and	digits	(0	to	9).
	

Example	#1:
	

>>>	a	=	“program”

>>>	a.isidentifier()

True

>>>
	

Example	#2:
	

>>>	b	=	“2program”

>>>	b.isidentifier()

False

>>>
	

Example	#3:
	

>>>	c	=	“program_one”

>>>	c.isidentifier()

True

>>>
	

Example	#	4:
	

>>>	d	=	“This	is	a	string.”

>>>d.isidentifier()

False

>>>
	

The	join()	method
The	 join()	method	 returns	 a	 string	 in	which	 the	 string	 elements	 of	 sequence	 have	 been
joined	by	str	separator.	The	first	string	or	sequence	of	strings	can	be	used	as	a	separator	as
it	is	displayed	as	a	trailing	character	after	each	character	in	the	given	sequence.
	

The	syntax	is:
	

	

str.join(sequence)	

	

Sequence:This	is	a	sequence	of	the	elements	to	be	joined.
	

Here	is	a	sample	code	showing	the	usage	of	the	join()method:
	

sep	=	“**”;												#	separator

seq	=	(“p”,	“r”,	“o”,	“g”,	“r”,	“a”,	“m”,	“m”,	“e”,	“r”)	#	sequence	of	strings

print(sep.join(seq))
	

If	you	run	the	code,	this	should	be	your	output:
	

p**r**o**g**r**a**m**m**e**r
	

REMEMBER

Read	Step	2	to	know	how	to	run	a	program.

The	characters	in	red	are	not	part	of	the	coding,	they	are	simply	comments.	To	read	more
about	comments	go	to	Step	4.
	

Lstrip()	method
The	 lstrip	method	 returns	 a	 copy	of	 a	 string	 from	which	 all	 leading	characters	or	white
spaces	on	the	LEFT	side	of	the	string	have	been	removed.
	

The	syntax	for	the	lstrip	method	is:
	

	

str.lstrip([chars])	

	

Chars:	You	can	supply	what	chars	(characters)	have	to	be	trimmed.
	

The	parameter	allows	you	to	instruct	Python	what	character(s)	should	be	trimmed.
	

Example	#	1:
	

>>>str	=	“					this	is	a	string	with	too	many	whitespaces”;

>>>str.lstrip()

‘this	is	a	string	with	too	many	whitespaces’

>>>
	

Take	note	that	this	does	not	affect	or	trim	the	original	string:
	

>>>str

‘					this	is	string	with	too	many	whitespaces’

>>>
	

Example	#	2:
	

>>>	b	=	“******A	special	symbol	is	supposed	to	introduce	this	string.*****”

>>>	b.lstrip(‘*’)

‘A	special	symbol	is	supposed	to	introduce	this	string.*****’

>>>
	

If	there	is	a	leading	whitespace	and	character	that	you	want	to	remove	at	the	same	time,
Python	 removes	 the	 leading	 whitespace	 even	 if	 you	 only	 specify	 the	 character	 as	 a
parameter.
	

For	example:
	

>>>	b	=	“******A	special	symbol	is	supposed	to	introduce	this	string.*****”

>>>	b.lstrip(‘*’)

‘A	special	symbol	is	supposed	to	introduce	this	string.*****’

>>>	c	=	“				******A	special	symbol	is	supposed	to	introduce	this	string.*****”

>>>	b.lstrip(‘*’)

‘A	special	symbol	is	supposed	to	introduce	this	string.*****’
	

To	use	the	print	function()	with	the	lstrip()	method:
	

>>>	x	=	“$$$$Money	is	not	the	most	important	thing	in	this	world.”

>>>	print(x.lstrip(‘$’))

Money	is	not	the	most	important	thing	in	this	world.

>>>
	

Rstrip()	method
The	rstrip()	method	returns	a	string	copy	of	a	string	in	which	all	trailing	characters	on	the
RIGHT	side	of	the	string	have	been	removed.	By	default,	it	strips	the	whitespaces	at	the
end	of	a	string,	but	you	can	supply	the	character	you	want	to	be	trimmed	as	a	parameter.
	

The	syntax	is:
	

	

str.rstrip([chars])	

	

Chars:	You	can	supply	what	chars	(characters)	have	to	be	trimmed.

	

Example	#1:
	

>>>	s	=	“					This	is	an	example	of	a	string.				“

>>>	s.rstrip()

‘					This	is	an	example	of	a	string.’

>>>
	

As	 you	 can	 see,	 Python	 has	 removed	 the	 whitespace	 at	 the	 end	 of	 the	 string.	 That	 is
because	we	have	not	provided	an	argument	and	Python	striped	the	whitespace	at	the	end
of	the	string	by	default.
	

Example	#2:
	

>>>s	=	“This	is	an	example	of	a	string”

>>>s.rstrip(“g”)

>>>‘This	is	an	example	of	a	strin’

>>>
	

Here,	we	have	remove	“g”	from	the	end	of	the	string.	This	is	because	I	have	provided	the
letter	“g”	as	the	argument.
	

Strip([chars])
The	strip()	method	does	both	lstrip()	and	rstrip()	on	a	string	and	returns	a	copy	of	a	string
in	which	both	leading	and	trailing	characters	have	been	removed.
	

Example	#1:
	

>>>	s	=	“						This	string	is	in	the	middle	of	unnecessary	whitespaces.						“

>>>	s.strip()

‘This	string	is	in	the	middle	of	unnecessary	whitespaces.’

>>>
	

Example	#2:
	

>>>	y	=	“****I’m	better	off	without	these	symbols.*****”

>>>	y.strip(‘*’)

“I’m	better	off	without	these	symbols.”

>>>
	

To	use	the	strip()	method	with	the	print()	function:
	

>>>	y	=	“****I’m	better	off	without	these	symbols.*****”

>>>	y.strip(‘*’)

“I’m	better	off	without	these	symbols.”

>>>	print(y.strip(‘*’))

I’m	better	off	without	these	symbols.

>>>
	

Rfind()	method
Searches	for	the	occurrence	of	a	given	substring
	

The	rfind()	method	returns	the	index	of	a	given	substring’s	last	occurrence	 in	 the	string
and	returns	-1	 if	 the	substring	is	not	found.	It	allows	a	start	and	end	index	arguments	 to
limit	the	search	range.
	

This	is	the	syntax	for	rfind:
	

	

str.rfind(str,	beg=0	end=len(string))	

	

str:	The	string	to	be	searched

beg:	This	parameter	is	optional.	This	is	the	starting	index	with	a	default	of	zero.

end:	This	parameter	is	optional.	This	 is	 the	ending	index	equal	by	default	 to	 the	string’s
length.
	

	

Example	#1:
	

>>>	str1	=	“Programming	is	a	skill	that	can	be	learned	by	anyone.”

>>>str2	=	“skill”

>>>	str1.rfind(str2)

17

>>>
	

Python	tells	you	that	the	substring	“skill”	is	found	on	the17th	index	number.
	

Example	#2:
	

>>>	str1	=	“Programming	is	a	skill	that	can	be	learned	by	anyone.”

>>>str2	=	“skill”

>>>	str1.rfind(str2,	0,	30)

17

>>>
	

Example	#3:
	

>>>	str1	=	“Programming	is	a	skill	that	can	be	learned	by	anyone.”

>>>str2	=	“skill”

>>>	str1.rfind(“be”,	0,	len(str1))

32

>>>
	

To	use	the	print()	function	with	rfind():
	

>>>	str1	=	“Programming	is	a	skill	that	can	be	learned	by	anyone.”

>>>str2	=	“skill”

>>>print(str1.rfind(str2,	0,	25))

17

>>>
	

Index()	method

Checks	 the	 occurrence	 of	 a	 given	 substring,	 returns	 index	 of	 the	 first
occurrence.
	

The	index()	method	checks	the	occurrence	of	a	given	substring	in	a	string	and	returns	the
index	of	the	first	occurrence.	It	raises	a	ValueError	if	the	substring	is	not	found.
	

Its	syntax	is:
	

	

str.index(str2,	beg=0	end=len(string))	

	

str:	The	string	to	be	searched

beg:	This	parameter	is	optional.	This	is	the	starting	index	with	a	default	of	zero.

end:	This	parameter	is	optional.	This	 is	 the	ending	index	equal	by	default	 to	 the	string’s
length.
	

Examples:
	

In	this	example,	you’re	going	to	instruct	Python	to	search	for	the	substring	‘exam’	without
range	parameters.	The	substring	occurs	twice	in	the	string	but	the	interpreter	returns	only
its	first	occurrence:
	

Example	#1:
	

>>>	str1	=	“This	is	a	good	example	of	a	practical	programming	examination.”

>>>	str2	=	“exam”

>>>	str1.index(str2)

15

>>>
	

Assuming	you	want	to	find	the	index	of	the	next	occurrence,	then	you’ll	have	to	provide
a	second	parameter	to	specify	the	starting	index	of	the	search.	In	this	situation,	since	the
initial	occurrence	of	‘exam’	is	on	index	15,	you’ll	have	to	start	the	search	at	index	16.
	

Example	#2:

	

>>>	str1	=	“This	is	a	good	example	of	a	practical	programming	examination.”

>>>	str2	=	“exam”

>>>	str1.index(str2,	16)

50

>>>
	

Example	#3:
	

>>>	str1	=	“This	is	a	good	example	of	a	practical	programming	examination.”

>>>	str1.index(“ing”)

46

>>>
	

Example	#4:
	

>>>	str1	=	“This	is	a	good	example	of	a	practical	programming	examination.”

>>>	print(str1.index(“am”,	47,	len(str1)))

52

>>>
	

Python	raises	a	ValueError	if	a	substring	is	not	found:
	

>>>	str1	=	“This	is	a	good	example	of	a	practical	programming	examination.”

>>>	str1.index(“bring”,5,	len(str1))

Traceback	(most	recent	call	last):

		File	“<pyshell#30>”,	line	1,	in	<module>

				str1.index(“bring”,	5,	len(str1))

ValueError:	substring	not	found

>>>

Rindex()	method
Searches	for	the	occurrence	of	a	substring,	returns	the	 index	 	of	the	 last
occurrence.

	

This	method	returns	the	index	of	a	substring’s	last	occurrence	in	a	given	string	or	raises	a
ValueError	if	the	substring	is	not	found.
	

Its	syntax	is:
	

	

str.rindex(str,	beg=0	end=len(string))	

	

str:	This	specifies	the	string	to	be	searched.

len:	This	is	ending	index,	by	default	its	equal	to	the	length	of	the	string.

beg:	This	parameter	is	optional.	This	is	the	starting	index,	by	default	its	0

end:	This	parameter	is	optional.	This	 is	 the	ending	index	equal	by	default	 to	 the	string’s
length.
	

Examples:
	

>>>	str1	=	“Programming	is	a	challenging	and	rewarding	job.”

>>>	str2	=	“ing”
	

To	find	the	last	occurrence	of	the	substring	“ing”:
	

>>>	str1.rfind(str2)

39

>>>
	

To	 tell	 Python	 to	 search	 the	 string	 for	 its	 second	 occurrence	 backwards,	 provide	 the
index	immediately	before	the	first	occurrence	as	the	end	parameter	for	rfind():
	

>>>	str1	=	“Programming	is	a	challenging	and	rewarding	job.”

>>>	str2	=	“ing”

>>>	str1.rfind(str2,	0,	38)

25

>>>

	

Finally,	to	find	the	3rd	occurrence	of	the	substring	‘ing’,	supply	24	as	the	ending	index:
	

>>>	str1	=	“Programming	is	a	challenging	and	rewarding	job.”

>>>	str2	=	“ing”

>>>	str1.rfind(str2,	0,	24)

8

>>>
	

You	will	get	the	same	output	if	you	use	the	find()	method	instead:
	

>>>	str1	=	“Programming	is	a	challenging	and	rewarding	job.”

>>>	str2	=	“ing”

>>>str1.find(str2)

8

>>>
	

Zfill()	method
Returns	a	string	with	leading	zeroes	within	a	specified	width.
	

The	zfill()	method	returns	a	string	filled	with	leading	zeros	in	the	given	width.
	

This	is	the	syntax	for	zfil:
	

	

str.zfill(width)	

	

width:	Refers	to	the	total	width	of	the	string.
	

Examples	#1:
	

>>>	str	=	‘A03456’

>>>str.zfill(10)

‘0000A03456’

>>>
	

Example	#2:
	

>>>	str	=	“A	string	may	not	be	changed	once	it	is	created.”

>>>	str.zfill(60)

‘0000000000000A	string	may	not	be	changed	once	it	is	created.’

>>>

Rjust()	method
Returns	a	right-justified	string	within	a	specified	width.
	

The	method	returns	a	right-justified	string	based	on	the	given	width.	It	allows	optional
fill	characters	with	space	as	default	and	returns	the	original	string	if	the	width	is	less	than
its	length.	Padding	is	done	using	the	specified	fillchar	(default	is	a	space)
	

The	syntax	is:
	

	

str.rjust(width[,	fillchar])	

	

width:	This	is	the	string	length	in	total	after	padding.

fillchar:	This	is	the	filler	character,	default	is	a	space.
	

Example	#1:
	

>>>	str	=	“Right	justifying	a	string	is	sometimes	necessary.”

>>>str.rjust(70)

‘																																										Right	justifying	a	string	is	sometimes	necessary.’

>>>
	

In	this	example,	the	original	string	is	49	index	position	long.	Here,	we	do	not	specify	the
fillchar,	 therefore	 space	 is	 used	 as	 default.The	Rjust	method	 adds	 the	 amount	 of	 spaces
needed	to	get	the	string	70	index	position	long	(it	added	21	spaces).

	

Example	#2:
	

>>>str	=	“Right	justifying	a	string	is	sometimes	necessary.”

>>>str.rjust(70,	‘*’)

‘*********************Right	justifying	a	string	is	sometimes	necessary.’

>>>
	

In	this	example,	 the	original	string	was	49	index	position	long.	The	Rjust	method	added
the	amount	of	“*”	needed	to	getthe	string	70	index	position	long	(it	added	21	“*”).
	

Example	#3:
	

>>>str	=	“Right	justifying	a	string	is	sometimes	necessary.”

>>>print(str.rjust(55,	‘#‘))

######Right	justifying	a	string	is	sometimes	necessary.

>>>
	

Example	#4:
	

However,	if	you	specify	a	width	that	is	less	than	the		length	of	the	string,	Python	simply
returns	the	original	string:
	

>>>str	=	“Right	justifying	a	string	is	sometimes	necessary.”

>>>print(str.rjust(30,	‘^’))

Right	justifying	a	string	is	sometimes	necessary.

>>>

Ljust()	method
Returns	a	left-justified	string	within	a	specified	width.
	

The	 ljust()	 returns	 a	 left-justified	 string	 based	 on	 the	 given	 width.	 It	 allows	 optional
padding	 characters	with	 space	 as	 default	 and	 returns	 the	 original	 string	 if	 the	 specified
width	is	less	than	the	actual	width	of	the	string.
	

The	syntax	is:
	

	

str.ljust(width[,	fillchar])	

	

width:	This	is	the	string	length	in	total	after	padding.

fillchar:	This	is	the	filler	character,	default	is	a	space.
	

Example	#1:
	

>>>str	=	“Left	justifying	a	string	is	cool.”

>>>str.ljust(45)

‘Left	justifying	a	string	is	cool.														‘

>>>
	

Example	#2:
	

>>>str	=	“Left	justifying	a	string	is	cool.”

>>>str.ljust(50,	‘*’)

‘Left	justifying	a	string	is	cool.*******************’

>>>
	

Example	#3:
	

Python	 simply	 returns	 the	 original	 string	 if	 the	 specified	 width	 is	 less	 than	 the	 actual
length	of	the	string:
	

>>>str	=	“Left	justifying	a	string	is	cool.”

>>>str.ljust(25,	‘*’)

‘Left	justifying	a	string	is	cool.’

>>>

Center()	method
Returns	a	center-justified	string	within	a	specified	width.

	

The	center()	method	returns	a	center-justified	string	based	on	a	specified	width.	It	allows
optional	padding	characters	with	space	as	the	default	filler.
	

The	syntax	is:
	

	

str.center(width[,	fillchar])	

	

width:	This	is	the	string	length	in	total	after	padding.

fillchar:	This	is	the	filler	character,	default	is	a	space.
	

Example	#1:
	

>>>str=“Center-justifying	highlights	the	importance	of	a	string”

>>>str.center(65)

‘					Center-justifying	highlights	the	importance	of	a	string.				‘

>>>
	

Example	#2:
	

>>>str=“Center-justifying	highlights	the	importance	of	a	string”

>>>str.center(65,	‘*’)

‘*****Center-justifying	highlights	the	importance	of	a	string.****’

>>>
	

Example	#3:
	

>>>str=“Center-justifying	highlights	the	importance	of	a	string”

>>>print(str.center(65,	‘^’))

^^^^^Center-justifying	highlights	the	importance	of	a	string.^^^^

>>>
	

Example	#4:
	

If	 you	 specify	 a	width	which	 is	 less	 than	 the	 actual	 length	of	 the	 string,	Python	merely
returns	the	original	string:
	

>>>str=“Center-justifying	highlights	the	importance	of	a	string”

>>>str.center(40,	‘*’)

‘Center-justifying	highlights	the	importance	of	a	string.’

>>>
	

Endswith()	method
Checks	if	the	string	ends	in	a	given	suffix.
	

The	 endswith()	method	 returns	True	 if	 the	 string’s	 ending	matches	 the	 given	 suffix	 or
returns	False	 if	otherwise.	The	method	allows	 the	optional	 limitation	of	matching	 range
with	restricting	start	and	end	indices.
	

The	syntax	is:
	

	

str.endswith(suffix[,	start[,	end]])	

	

suffix:	This	could	be	a	string	or	could	also	be	a	tuple	of	suffixes	to	look	for.

start:	The	slice	begins	from	here.

end:	The	slice	ends	here.
	

Example	#1:
	

>>>str	=	“A	string	is	a	sequence	of	characters,	right?”

>>>	suffix	=	“right?”

>>>str.endswith(“right?”)

True

>>>
	

Example	#2:
	

>>>str	=	“A	string	is	a	sequence	of	characters,	right?”

>>>	suffix	=	“sequence”

>>>str.endswith(suffix,	0,	22)

True

>>>
	

Example	#3:
	

>>>str	=	“A	string	is	a	sequence	of	characters,	right?”

>>>	suffix	=	“sequence”

>>>str.endswith(suffix,	0,	11)

False

>>>
	

Startswith()	method
Checks	if	the	string	ends	in	a	given	suffix.
	

The	 startswith()	method	 returns	True	 if	 the	 string’s	 prefix	matches	 the	 given	 prefix	 or
returns	False	 if	otherwise.	The	method	allows	 the	optional	 limitation	of	matching	 range
with	restricting	start	and	end	indices.
	

The	syntax	is:
	

	

str.startswith(suffix[,	start[,	end]])	

	

suffix:	This	could	be	a	string	or	could	also	be	a	tuple	of	suffixes	to	look	for.

start:	The	slice	begins	from	here.

end:	The	slice	ends	here.
	

Example	#1:

	

>>>str	=	“Strings	are	immutable	but	not	invincible.”

>>>	prefix	=	“Strings”

>>>str.startswith(prefix)

True

>>>
	

Example	#2:
	

>>>str	=	“Strings	are	immutable	but	not	invincible.”

>>>prefix	=	“String”

>>>str.startswith(prefix)

True

>>>
	

Example	#3:
	

>>>str	=	“Strings	are	immutable	but	not	invincible.”

>>>	prefix	=	“S”

>>>str.startswith(prefix,	3,	22)

False

>>>
	

Iterating	Through	a	String
	

You	can	use	a	‘for	loop’	to	iterate	through	a	string.	For	example,	to	count	the	number	of
occurrence	of	the	letter	‘o’	in	a	given	string,	you	can	create	a	simple	loop:
	

count	=	0

for	letter	in‘Python	Programming’:

if(letter	==	‘o’):

								count	+=	1
	

print(count,	“letters	found”)
	

When	you	run	the	program,	you	should	get	this	output:
	

2	letters	found

>>>
	

IMPORTANT
In	Step	16,	we	will	study	loops	more	extensively.	A	loop	is	a	control	structure	that	allows
the	repetitive	execution	of	a	statement	or	group	of	statements.	Loops	facilitate	complicated
execution	paths.
	

	

	

Step	8:	Output	Formatting
	

	

Python	 offers	many	 built-in	 functions	 that	 can	 be	 used	 interactively	 at	 the	 prompt.	The
print()	 function	 is	 one	 of	 the	 functions	 that	 you	 will	 use	 in	 common,	 everyday
programming	 life.	There	 are	 several	 formatting	 options	 that	 you	 can	 use	with	 print()	 to
produce	more	readable	and	interesting	output	than	values	separated	by	space.
	

An	output	may	be	directed	 to	 the	 screen	or	 file.	You	now	know	 that	you	can	use	either
expression	statements	or	the	print()	function	to	display	output	on	the	screen.	Another	way
to	write	values	 to	a	 file	 is	with	 the	write()	method	which	will	be	discussed	 later	 in	 the
book.
	

The	print()	function
The	print()	function	displays	data	on	the	default	output	device,	the	screen.
	

The	following	expressions	demonstrate	the	standard	usage	of	the	print()	function:
	

Example	1:
	

>>>print(‘Programming	is	a	challenging	and	rewarding	activity.’)

Programming	is	a	challenging	and	rewarding	activty.

>>>
	

Example	2:
	

>>>	x	=	100

>>>print(‘The	value	of	a	is’,	x)

The	value	of	a	is	100

>>>
	

Example	3:
	

>>>	x	=	3	*	2

>>>	y	=	4	*	4

>>>	xy	=	x	+	y

>>>print(xy)

22

>>>
	

Using	the		str.format()	method	to	format	string	objects
The	 str.format()	 method	 is	 used	 to	 format	 string	 objects	 and	 produce
more	readable	output	in	Python.
	

This	section	will	show	the	different	ways	you	can	use	the	format()	method	to	control	your
output.
	

The	 first	 example	 uses	 curly	 braces	 {}	 as	 place	 holders	 for	 the	 values	 supplied	 as
arguments	in	the	str.format	expression.	
	

Example	#1:
	

>>>	a=‘Programming	is	a	challenging	and	{}	activity.’

>>>	a.format(‘rewarding’)

‘Programming	is	a	challenging	and	rewarding	activity.’

>>>
	

By	default,	values	are	displayed	in	the	order	in	which	they	are	positioned	as	arguments	in
the	 format()	 expression.	 If	 this	 is	 your	 preferred	 arrangement,	 you	 can	 tell	 Python	 to
output	the	default	order	by	referencing	to	the	values	with	empty	curly	braces	in	the	print
parameter.
	

Example	#2:
	

>>>	x=	‘The	value	of	a	is	{},	b	is	{},	and	c	is	{}.’

>>>	x.format(‘50’,‘55’,‘100’)

‘The	value	of	a	is	50,	b	is	55,	and	c	is	100.’

>>>
	

Example	3	:
	

>>>	a	=	50;	b	=	55;	c	=	100

>>>print(‘The	value	of	a	is	{},	b	is	{},	and	c	is	{}.’.format(a,	b,	c))

The	value	of	a	is	50,	b	is	55,	and	c	is	100.

>>>
	

However,	 if	 you	 want	 the	 values	 to	 appear	 in	 an	 order	 that	 is	 different	 from	 their
positional	 arrangement,	 you	 will	 have	 to	 specify	 their	 index	 inside	 the	 curly	 braces.
Indexing	starts	from	zero.	Hence,	the	first	value	has	index	o,	the	second	one	has	index	1,
and	so	on.
	

Example	#1:
	

>>>	x=	‘The	value	of	a	is	{2},	b	is	{0},	and	c	is	{1}.’

>>>	x.format(‘50’,‘55’,‘100’)

‘The	value	of	a	is	100,	b	is	50,	and	c	is	55.’

>>>
	

	
Index	#	

	
0	

	
1	

	
2	

	
Value	

	
50	

	
55	

	
100	

	

	

Example	#2:
	

>>>a	=	50;	b	=	55;	c	=	100

>>>print(‘The	value	of	c	is	{2},	a	is	{0},	and	b	is	{1}.’.format(a,	b,	c))

The	value	of	c	is	100,	a	is	50,	and	b	is	55.

>>>
	

Python	3.5	still	supports	string	formatting	using	the	sprint()	style	used	in	C	programming.
Hence,	you	can	still	use	the	following	formatting	structure:
	

Example	#3:
	

>>>print(‘Item	No.:		%8d,	Price	per	piece:		%8.2f’%	(2546,	155.6287))

Item	No.:						2546,	Price	per	piece:				155.63

>>>
	

The	 first	 value	was	 formatted	 to	 print	 an	 integer	with	 a	 space	 of	 8	 digits	 (%8d)	 so	 the
output	shows	4	leading	spaces	to	match	the	actual	4	digits	usage	of	the	given	value,	2546.	
The	second	value	was	formatted	to	print	a	float	with	8	digits	and	2	decimal	places.	Since
the	 value	 given	 only	 took	 up	 3	 digits,	 5	 leading	 spaces	 were	 added	 to	 the	 output.	 In
addition,	the	4	decimal	places	were	rounded	off	to	two.
	

The	above	print	statement	uses	the	string	modulo%	operator.	You	can	translate	the	same
statement	 into	 Python	 3’s	 string	 format	 method	 by	 using	 curly	 braces	 and	 positional
arguments.	 Here’s	 how	 your	 code	 will	 look	 like	 when	 you	 use	 the	 format()	 method
instead	of	the	string	modulo	%	operator.
	

>>>print(‘Item	No.:		{0:8d},	Price	per	piece:		{1:8.2f}’.format(2546,	155.6287))

Item	No.:						2546,	Price	per	piece:				155.63

>>>
	

Take	note	that	this	time,	you	have	to	supply	the	index	of	the	value	inside	the	curly	braces
along	with	the	numeric	format.
	

You	can	produce	the	same	output	by	using	keyword	parameters	instead	of	the	index:
	

print(‘Item	No.:		{x:6d},	Price	per	piece:		{y:7.2f}’.format(x=9875,	y=167.9685))
	

Other	Formatting	Options
	

The	string	format	method	can	also	be	used	with	formatting	options	such	as	zero-padding
and	data	justification.	Here	are	the	options	supported	by	Python	3:

‘<’
Left	justifies	the	value	within	the	specified	space.
	

Example	#1:

	

>>>“{0:<35s}	{1:6.2f}”.format(‘Pepperoni	and	Cheese’,	7.99)

‘Pepperoni	and	Cheese																		7.99’

>>>
	

In	the	above	example,	you	provided	35	spaces	for	the	first	value	and	instructed	Python	to
print	a	left-justified	value	within	the	given	space.
	

Here	are	examples	of	left-justified	formatting	with	the	print	function:
	

Example	#2:
	

>>>print(“{x:<25s}	{y:6.2f}”.format(x=‘Ham	and	Cheese’,	y=4.75))

Ham	and	Cheese														4.75

>>>
	

Example	#3:
	

>>>	a	=	‘Black	Forest’

>>>	a1	=	4.99

>>>	b	=	‘Double	Dutch’

>>>	b1	=	4.50

>>>print(“The	 price	 of	 {0:<25s}	 is	 {1:6.2f}	 while	 the	 price	 of	 {2:<25s}	 is	 {3:6.2f}	
“.format(a,	a1,	b,	b1))

The	price	of	Black	Forest														is			4.99	while	the	price	of	Double	Dutch														is		
4.50	

>>>
	

‘>’
Right-justifies	the	value	within	the	given	space.
	

Example	#1:
	

>>>“{0:>20s}	{1:7.2f}”.format(‘Ham	and	Cheese:’,	4.99)

‘					Ham	and	Cheese:				4.99’

>>>
	

Example	#2:
	

>>>print(“There	are	{b:5d}	bottles	of	{a:>18s}	on	stock.”.format(a=‘Ginger	Beer’,	b=3))

There	are					3	bottles	of								Ginger	Beer	on	stock.

>>>
	

‘^’
Center-justifies	the	value	within	the	given	space.
	

Example	#1:
	

>>>“{0:^18s}	{1:6.2f}	{2:^15s}”.format(‘Elbow	Catch:’,6.99,	‘per	piece’)

‘			Elbow	Catch:						6.99				per	piece

>>>
	

Example	#2:
	

>>>print(“The	 average	 price	 of	 a	 {c:^8s}	 of	 {a:^18s}	 is	 {b:5.2f}.”.format(a=‘pizza’,
b=2.50,	c=‘slice’))

The	average	price	of	a		slice			of							pizza								is		2.50.

>>>
	

‘0’
Enables	padding	of	 leading	 zero(s)	 for	numbers	when	placed	before	 the
width	field.
	

The	number	of	leading	zeros	to	be	added	to	the	numeric	value	will	be	based	on	the	number
of	digits	 allocated	 for	 the	numeric	 field	and	 the	number	of	digits	 taken	up	by	 the	value
given.
	

Example	#1:

	

>>>print(“The	code	for	Butterfly	Hinge	is	{:06d}.”.format(5482))

The	code	for	Butterfly	Hinge	is	005482.

>>>
	

Example	#2:
	

>>>	print(“The	code	for	Elbow	Catch	is	{:08d}.”.format(12))

The	code	for	Elbow	Catch	is	00000012.

>>>
	

‘=’
Forces	sign	placement	before	zero-padding.
	

Example:
	

>>>print(“Elbow	Catch	has	a	stock	of	{0:=08d}	{1:^8s}.”.format(-8,	‘pieces’))

Elbow	Catch	has	a	stock	of	-0000008		pieces	.

>>>
	

	

	

Step	9:	Lists
	

Python	 supports	 sequence	 data	 types	 that	 allow	 operations	 such	 as	 indexing,	 slicing,
multiplying,	 adding,	 removing,	 and	membership	 checking.	 List	 is	 one	 of	 the	 most
commonly-used	sequences	and	it	is	a	most	flexible	type.	Basically,	a	list	can	contain	any
type	 (string,	 float,	 integer,	 etc.)and	 number	 of	 items.	 It	 can	 hold	 one	 data	 type	 or	 a
combination	 of	 several	 data	 types.	 It	 can	 even	 hold	 a	 list	 as	 an	 item.	A	 list	 is	mutable.
Hence	you	can	add,	delete,	or	modify	its	elements.
	

Creating	a	list	is	as	easy	as	defining	a	variable	to	hold	an	ordered	series	of	items	separated
by	a	comma.	This	time,	you	will	use	a	square	bracket	to	enclose	the	items.
	

You	can	create	an	empty	list	with	this	syntax:
	

	

my_list	=	[]	

	

You	can	build	a	list	by	assigning	items	to	it	using	the	following	syntax:
	

my_list	=	[item1,	item2,	item3,	item4]
	

Here	are	examples	of	lists:
	

List	with	integers

num_list	=	[0,	5,	10,	15,	50,	14]																								
	

List	with	strings

string_list	=	[“cat”,	“dog”,	“lion”,	“tiger”,	“zebra”]						
	

List	with	mixed	data	types						

mixed_list	=	[18,	“console”,	35.5]						
	

List	with	nested	list																		

nested_list	=	[“keyboard”,	8.5,	6,	[5,	1,	3,	4,	5.5,	2]]						

	

Accessing	Elements	on	a	List
	

There	are	several	ways	to	access	elements	on	a	list:

Indexing
	

Just	like	strings,	you	can	access	items	on	a	list	with	the	index	operator	[].	The	first	item
has	 an	 index	 of	 zero	 (0).	 Remember	 to	 always	 use	 an	 integer	 when	 indexing	 to	 avoid
TypeError.	Attempting	to	access	a	list	element	that	is	beyond	the	index	range	will	result	to
an	IndexError.
	

Example	#1:
	

>>>school_list	=	[“Biology”,	“English”,	“Chemistry”,	“Sociology”,	“Algebra”]

>>>school_list[0]

‘Biology’

>>>
	

	

Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

String	

	

Biology	

	

English	

	

Chemistry	

	

Sociology	

	

Algebra	

	

Example	#2:
	

>>>school_list	=	[“Biology”,	“English”,	“Chemistry”,	“Sociology”,	“Algebra”]

>>>school_list[0][5]

‘g’

>>>
	

	

Index	#	

	

0	

	

1	

	

2	

	

3	

	

4	

	

5	

	

6	

	 	 	 	 	 	 	 	

String	 B	 I	 O	 L	 O	 G	 Y	

	

Example	#3:
	

>>>school_list	=	[“Biology”,	“English”,	“Chemistry”,	“Sociology”,	“Algebra”]

>>>	school_list[3]

‘Sociology’

>>>
	

To	access	nested	list,	you	will	use	nested	indexing.
	

>>>nested_list	=	[“code”,	4,	[1,	3,	5,	7,	9]]

>>>	nested_list[0]

‘code’

>>>	nested_list[0][1]

‘0’

>>>	nested_list[0][3]

‘e’

>>>	nested_list[2]

[1,	3,	5,	7,	9]

>>>	nested_list[1]

4

>>>	nested_list[2][0]

1

>>>	nested_list[2][3]

7

>>>

Negative	Indexing
Python	supports	negative	indexing	for	sequence	types	like	lists.	The	last	item	on	the	list
takes	the	-1	index,	the	second	to	the	last	item	has	the	-2	index,	and	so	on.
	

Example:
	

>>>	quick_list	=	[“s”,	“h”,	“o”,	“r”,	“t”,	“c”,	“u”,	“t”]

>>>	quick_list[-1]

‘t’

>>>	quick_list[-3]

‘c’

>>>	quick_list[-7]

‘h’
	

	

String	

	

s	

	

h	

	

o	

	

r	

	

t	

	

c	

	

u	

	

t	

	

Index	#	

	

-8	

	

-7	

	

-6	

	

-5	

	

-4	

	

-3	

	

-2	

	

-1	

	

Slcing	Lists
	

The	slicing	operator,	the	colon	(:),	is	used	to	access	a	range	of	elements	on	lists.
	

REMEMBER
As	explained	in	Step	7,	the	syntax	for	slicing	a	string	is	S[A:B-1]

S:	The	string	you	wish	to	use

A:	The	starting	character	of	the	substring	you	want	to	create

B:	The	ending	character	of	the	substring	you	want	to	create
	

Example	#1:
	

>>>	hw_list	=	[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>	hw_list[0:5]																		

[‘H’,	‘e’,	‘l’,	‘l’,	‘o’]

>>>
	

Example	2:
	

>>>	hw_list	=	[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>	hw_list[5:]																		

[‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>
	

Example	#3:
	

>>>	hw_list	=	[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>	hw_list[3:6]																		

[‘l’,	‘o’,	‘W’]

>>>
	

Example	#4:
	

>>>	hw_list	=	[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>	hw_list[:-4]																		

[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’]

>>>
	

Example	#5:
	

>>>	hw_list	=	[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>	hw_list[:]																		

[‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’]

>>>

Adding	Elements	to	a	List
Lists	are	mutable	and	you	can	easily	add	an	element	or	a	range	of	elements	on	a	list	with
the	append()	or	extend()	method.
	

The	append()	method	 is	used	 to	add	a	 single	 item	while	 the	extend()	method	 is	used	 to
append	two	or	more	items.	Both	methods	are	used	to	add	items	at	the	end	of	the	original
list.
	
Append()	metod

	

The	syntax	for	the	append()	method	is:
	

	

list.appendix(obj)	

	

obj:	This	is	the	object	to	be	appended	in	the	list.

Example:
	

>>>even	=	[2,	4,	6,	8,	10,	12]												

>>>	even.append(14)																		

>>>	even

[2,	4,	6,	8,	10,	12,	14]

>>>
	

Here	we	have	added	14	to	the	even	list.
	
Extend()	method

	

The	syntax	for	the	extend()	method	is:
	

	

list.extend(seq)	

	

seq:	This	is	the	list	of	elements.
	

Example:
	

>>>even	=	[2,	4,	6,	8,	10,	12]

>>>even.extend([16,	18,	20,	22])												

>>>	even

[2,	4,	6,	8,	10,	12,	14,	16,	18,	20,	22]

>>>

	

Here	we	have	added	a	list	of	number	to	the	even	list.

Changing	Elements	of	a	List
You	 can	 change	 an	 item	or	 a	 range	 of	 items	 on	 the	 list	with	 the	 use	 of	 the	 assignment
operator	(=)	and	the	indexing	operator	[].
	

For	 example,	 assuming	 that	 someone	made	 an	 encoding	mistake	 and	 came	 up	with	 the
following	list	of	even	numbers:
	

>>>even	=	[1,	3,	5,	7,	9,	12]
	

To	rectify	the	mistake	in	the	values	entered,	you	can	change	the	first	item	on	the	list	with:
	

>>>	even[0]	=	2
	

Now,	type	“even”	to	view	the	updated	list:
	

>>>	even

[2,	3,	5,	7,	9,	12]
	

Changing	the	values	individually	will	take	time.	You	can	instead	specify	an	index	range	to
change	several	values	at	once:
	

>>>even	=	[1,	3,	5,	7,	9,	12]

>>>	even[1:5]	=	[4,	6,	8,	10]
	

Type	even	to	see	the	updated	even	list:
	

>>>	even

[2,	4,	6,	8,	10,	12]

>>>

Concatenating	and	Repeating	Lists
It	is	possible	to	combine	two	lists	in	Python	with	the	+	operator.	In	addition,	you	can	use
the	*operator	to	repeat	a	list	a	certain	number	of	times.
	

Combine	two	lists	in	Python	with	the	+	operator

	

Example	#1:
	

>>>	animals	=	[‘dog’,	‘cat’,	‘giraffe’,	‘bear’]

>>>	babies	=	[‘puppy’,	‘kitten’,	‘calf’,	‘cub’]

>>>	animals	+	babies

[‘dog’,	‘cat’,	‘giraffe’,	‘bear’,	‘puppy’,	‘kitten’,	‘calf’,	‘cub’]

>>>animals	+	babies	+	animals

[‘dog’,	‘cat’,	‘giraffe’,	‘bear’,	‘puppy’,	‘kitten’,	‘calf’,	‘cub’,	‘dog’,	‘cat’,	‘giraffe’,	‘bear’]

>>>
	

Example	#2:
	

>>>	vowels	=	[‘a’,	‘e’,	‘i’,	‘o’,	‘u’]

>>>	vowels	+	[1,	2,	3,	4,	5]

[‘a’,	‘e’,	‘i’,	‘o’,	‘u’,	1,	2,	3,	4,	5]

>>>
	
To	repeat	a	string	with	the	*	operator

	

Example	#1:
	

>>>	[‘do’,	‘re’,	‘mi’]*3

[‘do’,	‘re’,	‘mi’,	‘do’,	‘re’,	‘mi’,	‘do’,	‘re’,	‘mi’]

>>>
	

Example	#2:
	

>>>abc	=	[‘a’,	‘b’,	‘c’]*4

>>>	abc

[‘a’,	‘b’,	‘c’,	‘a’,	‘b’,	‘c’,	‘a’,	‘b’,	‘c’,	‘a’,	‘b’,	‘c’]

>>>

Inserting	Item(s)

Earlier,	 you	have	 learned	how	 to	 add	 item(s)	 to	 a	 list	with	 append()	 and	extend().	Both
methods	 added	 items	 to	 the	 end	 of	 the	 original	 list.	 This	 time,	 you	will	 learn	 how	 to
insert	an	item	on	your	desired	location	with	the	insert()	method.
	
The	insert()	method

	

Here’s	the	syntaxfor	the	insert()	method:
	

	

list.insert(index,	obj)	

	

index:	This	is	the	Index	where	the	object	obj	need	to	be	inserted.

obj:	This	is	the	Object	to	be	inserted	into	the	given	list.
	

	

For	example,	here’s	a	list	called	numbers:
	

>>>	numbers	=	[1,	2,	4,	8,	9,10]
	

You	want	to	insert	number	3	right	after	number	2	and	it	will	take	index	2.	Hence,	you	will
have	to	enter	this	expression:
	

>>>	numbers.insert(2,3)												
	

To	view	the	updated	list,	type	numbers	on	the	Python	prompt:
	

>>>	numbers

[1,	2,	3,	4,	8,	9,	10]

>>>
	

If	you	want	the	numbers	list	to	contain	a	sequential	list	of	numbers	from	1	to	9,	you	can
insert	a	range	of	items	into	the	empty	slice	of	the	list.	
	

To	complete	the	numbers	list,	you	will	have	to	squeeze	in	the	numbers	5,	6,	and	7.
	

>>>numbers[4:3]	=	(5,	6,	7)
	

The	 above	 expression	 makes	 use	 of	 the	 slicing	 operator	 where	 the	 first	 number	 is	 the
intended	index(4)	of	the	first	item	to	be	inserted	and	the	second	number	is	the	numbers	of
items	(3)	you	want	to	insert.
	

Here’s	the	updated	numbers	list:
	

>>>numbers

[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

>>>

Removing	or	Deleting	Items	from	a	List
To	remove	an	item	from	a	list,	you	can	use	either	the	remove()	or	the	pop()	method.	The
remove()	method	removes	the	specified	item	while	the	pop()	method	removes	an	item	at
the	specified	index.	To	empty	a	list,	you	can	use	the	clear()	method.
	
The	remove()	method

	

Here’s	the	syntax	for	the	remove()	method:
	

	

my_list.remove(obj)	

	

obj:	This	is	the	Object	to	be	removed	from	the	given	list.
	

To	illustrate,	create	a	list	called	numbers:
	

>>>	numbers	=	[1,	3,	5,	6.5,	7,	7.5,	9]
	

Assuming	you	want	the	list	numbers	to	contain	only	integer	values,	you	can	use	remove()
to	remove	the	floats,	6.5	and	7.5,	one	by	one.
	

>>>numbers.remove(6.5)

>>>numbers.remove(7.5)

>>>	numbers

[1,	3,	5,	7,	9]

>>>
	
The	pop()	method

	

The	pop()	method	is	used	to	remove	the	item	associated	with	the	given	index.	If	the	index
is	not	given,	it	removes	and	returns	the	last	element	on	the	list.
	

Here’s	the	syntax:
	

	

list_name.pop(index)	

index:	This	is	the	Index	where	the	item	need	to	be	removed.
	

To	see	how	the	pop()	method	works,	create	list	called	my_list:
	

>>>my_list	=	[“apples”,	“oranges”,	“yellow”,	“peach”,	“pear”]
	

You	can	easily	see	that	there’s	an	odd	item	on	my_list,	the	color	“yellow”	and	it	is	located
on	index	2.	You	can	use	the	pop()	method	to	remove	this	specific	item:
	

>>>	my_list.pop(2)

‘yellow’

>>>
	

To	view	the	updated	my_list:
	

>>>	my_list

[‘apples’,	‘oranges’,	‘peach’,	‘pear’]

>>>
	

Now	use	the	pop()	method	but	don’t	specify	an	index:
	

>>>	my_list.pop()

‘pear’

>>>
	

The	pop()	method		just	removed	and	returned	the	last	item	on	the	list.	Here’s	the	updated
my_list:
	

>>>my_list

[‘apples’,	‘oranges’,	‘peach’]

>>>
	
The	clear()	method

	

You	may	 also	 prefer	 to	 just	 empty	 your	 list.	 You	 can	 do	 this	 with	 the	 clear()	 method.
Here’s	the	syntax:
	

	

list_name.clear()	

	

Hence,	to	clear	my_list:
	

>>>my_list	=	[“apples”,	“oranges”,	“yellow”,	“peach”,	“pear”]

>>>my_list.clear()

>>>	my_list

[]

>>>
	
Using	the	keyword	del

	

You	can	also	use	the	keyword	del	to	delete	one	or	more	items	or	even	the	entire	list.
	

REMEMBER
To	see	the	list	of	keywords	used	in	Python	you	can	go	back	to	Step	4.
	

To	delete	one	item,	the	syntax	is:
	

	

del	list_name[]	

	

Example:
	

>>>	my_list	=	[“L”,	“I”,	“A”,	“B”,	“I”,	“L”,	“I”,	“T”,	“Y”]

>>>del	my_list[0]												#delete	the	first	item

>>>	my_list

[‘I’,	‘A’,	‘B’,	‘I’,	‘L’,	‘I’,	‘T’,	‘Y’]

>>>
	

To	delete	a	range	of	items,	the	syntax	is:							
	

	

del	list_name[:]	

	

Example:
	

>>>	my_list	=	[“L”,	“I”,	“A”,	“B”,	“I”,	“L”,	“I”,	“T”,	“Y”]

>>>del	my_list[1:6]												#delete	multiple	items	from	index	1	to	6

>>>	my_list

[‘L’,	‘I’,	‘T’,	‘Y’]

>>>
	

Yet	 another	 way	 to	 let	 Python	 know	 that	 you	 want	 to	 delete	 a	 range	 of	 items	 is	 by
assigning	an	empty	list	to	the	slice	of	items	you	want	to	delete.
	

To	demonstrate,	create	my_list:
	

>>>	my_list	=	[1,	2,	3,	4,	“O”,	“D”,	“D”,	5,	6,	7,	8]
	

Now,	delete	the	strings	on	index	4	to	6	by	replacing	it	with	an	empty	list:
	

>>>	my_list[4:7]	=	[]
	

Here’s	the	updated	my_list:
	

>>>	my_list

[1,	2,	3,	4,	5,	6,	7,	8]

>>>
	

You	can	delete	the	entire	items	on	the	list	by	replacing	the	entire	range	of	items	with	an
empty	space:
	

>>>	my_list	=	[1,	2,	3,	4,	“O”,	“D”,	“D”,	5,	6,	7,	8]

>>>	my_list[:]	=	[]

>>>	my_list

[]

>>>

Sorting	Items	on	a	List
	
The	sort()	method

The	sort()	method	is	used	to	sort	items	of	similar	data	type	within	the	list.	It	sorts	the	items
in	an	ascending	order.
	

The	syntax	is:
	

	

list.sort()	

	

Example	#1:
	

>>>	list_1	=	[1,	7,	4,	9.5,	3,	6.5,	15,	0]
	

Now,	use	the	sort	method	and	print	the	list:
	

>>>	list_1.sort()

>>>print(list_1)

[0,	1,	3,	4,	6.5,	7,	9.5,	15]

>>>
	

Example	#2:
	

>>>	list_2	=	[“blue”,	“yellow”,	“green”,	“orange”,	“red”,	“purple”,	“white”]

>>>	list_2.sort()

>>>print(list_2)

[‘blue’,	‘green’,	‘orange’,	‘purple’,	‘red’,	‘white’,	‘yellow’]

>>>
	
The	reverse()	method

The	items	in	list_1	and	list_2	are	now	arranged	in	ascending	order.	To	arrange	the	items	in
the	reverse	or	descending	order,	you	can	use	Python’s	reverse	method.
	

The	syntax	is:
	

	

list.reverse()	

	

Now,	apply	the	reverse()	method	to	list_1	and	list_2:
	

>>>list_1.reverse()

>>>print(list_1)

[0,	15,	6.5,	3,	9.5,	4,	7,	1]

>>>list_2.reverse()

>>>print(list_2)

[‘yellow’,	‘white’,	‘red’,	‘purple’,	‘orange’,	‘green’,	‘blue’]

>>>
	

Take	 note	 that	 the	 sort()	 method	 is	 only	 applicable	 to	 lists	 containing	 items	 of	 similar
types.	Python	will	 flash	a	TypeError:unorderable	 types	 if	you	 try	 to	 sort	 a	mixed	 list	of
strings	and	integers.

Using	the	count()	Method	on	Lists
	
The	count()	method

The	count()	method	counts	of	how	many	times	an	object	occurs	in	a	list.
	

The	syntax	is:
	

	

list.count(obj)	

	

obj:	This	is	the	object	to	be	counted	in	the	list.
	

Examples:
	

>>>	my_numbers	=	[4,	3,	2,	9,	3,	5,	4,	9,	3]

>>>	my_numbers.count(3)

3

>>>	my_numbers.count(4)

2

>>>	my_numbers.count(9)

2

>>>	my_numbers.count(2)

1

>>>

Testing	for	Membership	on	a	List
	

Membership	operators	can	be	used	 to	 test	 if	 an	object	 is	 stored	on	a	 list.	There	are	 two
types	of	membership	operators:	“in”	and	“not	in”.	Python	returns	either	True	or	False	after
evaluating	the	expression.
	
Using	the	“in”	and	“not	in”	operators

	

Example	with	integers:
	

>>>	my_numbers	=	[1,	9,	38,	15,	4,	20,	7,	10]						

>>>	7	in	my_numbers

True

>>>	35	in	my_numbers

False

>>>	15	not	in	my_numbers

False

>>>	50	not	in	my_numbers

True

>>>
	

Example	with	letters:
	

>>>	my_letters	=	[“a”,	“e”,	“x”,	“z”,	“b”,	“d”,	“h”,	“f”]

>>>	“a”	in	my_letters

True

>>>“v”	in	my_letters

False

>>>	“v”	not	in	my_letters

True

>>>	“f”	not	in	my_letters

False

>>>

Using	Built-in	Functions	with	List
	

Python’s	built-in	functions	such	as	min(),	max(),	len(),	and	sorted()	can	be	used	with	list	to
obtain	needed	value	and	execute	various	tasks.
	

The	following	are	built-in	functions	that	are	most	commonly	applied	to	lists:

Len()
Returns	the	number	of	items	on	a	list.
	

Example:						

	

>>>my_list	=	[0,	5,	10,	15,	20,	25]

>>>len(my_list)

6

>>>

Max()
Returns	the	largest	item	on	a	list.
	

Example:
	

>>>	my_list	=	[0,	5,	10,	15,	20,	25]

>>>max(my_list)

25

>>>

Min()
Returns	the	smallest	item	on	a	list.
	

Example:
	

>>>	my_list	=	[0,	5,	10,	15,	20,	25]

>>>min(my_list)

0

>>>

Sum()
Returns	the	total	of	all	items	on	a	list
	

Example:
	

>>>	my_numbers	=	[5,	10,	20,	15,	25]

>>>sum(my_numbers)

75

>>>

Sorted()
Returns	a	sorted	list	(but	the	list	itself	is	not	sorted).
	

Example:
	

>>>	odd	=	[1,	9,	15,	11,	3,	7]

>>>sorted(odd)

[1,	3,	7,	9,	11,	15]

>>>
	

To	view	the	actual	list,	type	odd	on	the	prompt:

>>>	odd

[1,	9,	15,	11,	3,	7]

>>>

List()
Convert	iterables	(tuple,	set,	dictionary)	to	a	list.
	

PLEASE	NOTE
We	will	later	discuss	tuple,	set	and	dictionary	in	Step	10,	11	and	12.
	
To	convert	a	string	to	a	list

	

Example	#1:
	

>>>list(“Programmer”)

[‘P’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’]

>>>
	

Example	#2:
	

>>>string_new	=	(“Programmer”)

>>>list(string_new)

[‘P’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’]

>>>
	
To	convert	a	dictionary	to	a	list

	

Example	#1:
	

>>>list({“Name”:	“John”,	“Age”:24,	“Occupation”:“employee”})

[‘Occupation’,	‘Name’,	‘Age’]

>>>

Example	#2:
	

>>>	my_dict	=	{“Name”:“Randy”,	“Age”:	17,	“Rating”:	90}

>>>list(my_dict)

[‘Age’,	‘Rating’,	‘Name’]

>>>
	
To	convert	a	tuple	to	a	list:

	

Example	#1:
	

>>>list((“stocks”,	“bonds”,	“currency”,	“coins”))

[‘stocks’,	‘bonds’,	‘currency’,	‘coins’]

>>>
	

Example	#2:
	

>>>	my_tuple	=	(“budget”,	2016,	“projection”,	2017,	“hedging”,	“research”)

>>>	list(my_tuple)

[‘budget’,	2016,	‘projection’,	2017,	‘hedging’,	‘research’]

>>>

Enumerate()
Returns	an	enumerate	object	which	contains	the	value	and	index	of	all	list
elements	as	tuple.
	

>>>	new_list	=	[2,	4,	6,	8,	10,	12,	14,	16]

>>>enumerate(new_list)

<enumerate	object	at	0x039865D0>

>>>

List	Comprehension
List	comprehension	is	a	concise	way	of	creating	a	new	list	from	an	existing	list.	It	consists
of	an	expression	and	a	‘for	statement’	enclosed	in	square	brackets.	To	illustrate,	here	is	an
example	of	creating	a	list	where	each	item	is	an	increasing	power	of	3.
	

>>>	pow3	=	[3	**	y	for	y	in	range(15)]

>>>	pow3

[1,	3,	9,	27,	81,	243,	729,	2187,	6561,	19683,	59049,	177147,	531441,	1594323,	4782969]

>>>
	

The	above	code	is	equivalent	to:
	

>>>pow3	=	[]

>>>for	y	in	range(15):

			pow3.append(3	**	x)
	

A	list	comprehension	may	have	more	‘for’	or	‘if’	statements.	An	if	statement	can	be	used
to	filter	out	elements	for	a	new	list.	
	

Example	#1:
	

>>>	pow3	=	[3	**	x	for	x	in	range(15)	if	x	>	5]

>>>	pow3

[729,	2187,	6561,	19683,	59049,	177147,	531441,	1594323,	4782969]

>>>
	

Example	#2:
	

>>>	even	=	[x	for	x	in	range(18)	if	x	%	2	==	0]

>>>	even

[0,	2,	4,	6,	8,	10,	12,	14,	16]

>>>
	

Example	#3:
	

>>>	odd	=	[y	for	y	in	range(18)	if	y	%	2	==	1]

>>>	odd

[1,	3,	5,	7,	9,	11,	13,	15,	17]

>>>
	

	

Step	10:	Tuples
	

A	tuple	is	a	sequence	type	that	contains	an	ordered	collection	of	objects.	A	tuple,	unlike	a
list,	is	immutable;	you	won’t	be	able	to	change	its	elements	once	it	is	created.	A	tuple	can
hold	 items	 of	 different	 types	 and	 can	 have	 as	 many	 elements	 as	 you	 want	 subject	 to
availability	of	memory.
	

Besides	being	immutable,	you	can	tell	a	tuple	apart	from	a	list	by	the	use	of	parentheses
instead	of	square	brackets.	The	use	of	parentheses,	however,	is	optional.	You	can	create	a
tuple	 without	 them.	 A	 tuple	 can	 store	 items	 of	 different	 types	 as	 well	 as	 contain	 any
number	of	objects.

How	to	Create	a	Tuple
To	create	 a	 tuple,	 you	 can	place	 the	 items	within	 parentheses	 and	 separate	 them	with	 a
comma.
	

Example	of	a	numeric	tuple
mytuple_x	=	(10,	9,	8,	7,	6,	5,	4,	3,	2,	1)						

Example	of	a	mixed-type	tuple
mytuple_y	=	(“soprano”,	10,	4.3)						
	

Example	of	a	string	tuple												
mytuple_z	=	(“b”,	“Jon”,	“library”)												
	

It’s	likewise	possible	to	create	a	nested	tuple:
	

my_tuple4	=	(“Python”,	(5,	15,	20),	[2,	1,	4])
	

You	can	create	a	 tuple	with	only	one	 item	but	 since	 this	will	 look	 like	 a	 string,	you’ll
have	to	place	a	comma	after	the	item	to	tell	Python	that	it	is	a	tuple.
	

my_tuple5	=	(“program”,)
	

You	may	also	create	an	empty	tuple:
	

my_tuple	=	()

	

You	can	create	a	tuple	without	the	parentheses:
	

numbers	=	5,	3,	4,	0,	9
	

	

	

Accessing	Tuple	Elements
There	are	different	ways	to	access	items	in	a	tuple.

Indexing
If	 you	 know	 how	 to	 access	 elements	 in	 a	 list	 through	 indexing,	 you	 can	 use	 the	 same
procedure	to	access	items	in	a	tuple.	The	index	operator	indicates	the	index	of	the	element
you	want	 to	 access.	 The	 first	 element	 is	 on	 index	 zero.	 Accessing	 an	 item	 outside	 the
scope	of	the	indexed	elements	will	generate	an	IndexError.	In	addition,	accessing	an	index
with	a	non-integer	numeric	type	will	raise	a	NameError.	
	

To	illustrate	how	tuples	work,	create	my_tuple	with	strings	as	elements.
	

>>>	my_tuple	=	(‘p’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’)

>>>
	

To	access	the	first	element	on	the	tuple:
	

>>>	my_tuple[0]

‘p’

>>>
	

To	access	the	8th	element:

>>>	my_tuple[7]

‘m’

>>>
	

To	access	the	6th	element:

>>>	my_tuple[5]

‘a’

>>>

Negative	Indexing
As	it	is	a	sequence	type,	Python	allows	negative	indexing	on	tuples.	The	last	element	has
-1	index,	the	penultimate	element	has	-2	index,	and	so	on.
	

>>>	my_tuple	=	(‘p’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’)

>>>	my_tuple[-1]

‘r’

>>>my_tuple[-7]

‘g’

>>>

Slicing	a	Tuple
If	 you	want	 to	 access	 several	 items	 at	 the	 same	 time,	 you	will	 have	 to	 use	 the	 slicing
operator,	the	colon	(:).	By	now,	you	must	be	very	familiar	with	how	slicing	works.
	

To	see	how	you	can	slice	a	range	of	items	from	a	tuple,	create	new_tuple:
	

>>>new_tuple	=	(‘i’,	‘m’,	‘m’,	‘u’,	‘t’,	‘a’,	‘b’,	‘l’,	‘e’)

>>>
	

To	access	the	elements	on	the	4th	to	the	6th	index:
	

>>>	new_tuple[4:7]						

(‘t’,	‘a’,	‘b’)																		

>>>
	

4	is	the	index	of	the	first	item	and	7	is	the	index	of	the		first	item	to	be	excluded.
	

To	access	tuple	elements	from	index	2	to	the	end:
	

>>>	new_tuple[2:]

(‘m’,	‘u’,	‘t’,	‘a’,	‘b’,	‘l’,	‘e’)

>>>
	

To	access	tuple	items	from	the	beginning	to	the	3rd	index:
	

>>>	new_tuple[:4]

(‘i’,	‘m’,	‘m’,	‘u’)

>>>

Changing,	Reassigning,	and	Deleting	Tuples
A	tuple	isimmutable	so	you	cannot	alter	its	elements.	However,	if	it	contains	an	element
which	is	a	mutable	data	type,	you	can	actually	modify	this	particular	element.	This	is	true
in	situations	where	one	of	the	elements	is	a	list.	In	such	cases,	you	can	modify	the	nested
items	within	the	list	element.
	

>>>	my_tuple	=	(‘a’,	5,	3.5,	[‘P’,	‘y’,	‘t’,	‘h’,	‘o’,	‘n’])

>>>

Replacing	a	Tuple
To	replace	the	item	on	index	2	of	the	list	which	is	on	index	3	of	my_tuple:
	

>>>my_tuple[3][2]	=	‘x’

>>>
	

3	is	the	index	of	the	list,	2	is	the	index.

>>>	my_tuple																								

(‘a’,	5,	3.5,	[‘P’,	‘y’,	‘x’,	‘h’,	‘o’,	‘n’])

>>>
	

While	 you	may	 not	 replace	 or	modify	 other	 data	 types,	 you	 can	 reassign	 a	 tuple	 to	 an
entirely	different	set	of	values	or	elements.

Reassigning	a	Tuple
To	reassign	a	tuple,	you	can	just	list	a	different	set	of	elements	and	assign	it	to	the	tuple.
To	reassign	new_tuple:
	

>>>	my_tuple	=	(‘c’,	‘o’,	‘d’,	‘e’,	‘r’)

>>>

Deleting	a	Tuple
To	delete	a	tuple	and	all	the	items	stored	in	it,	you	will	use	the	keyword	del.

	

The	syntax	is:
	

	

del	tuple_name	

	

Hence,	to	delete	new_tuple:
	

>>>del	my_tuple

Tuple	Membership	Test
To	test	if	a	tuple	contains	a	specific	item,	you	can	use	the	membership	operators	‘in’	and
‘not	in’
	

>>>	our_tuple	=	(‘p’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’)

>>>‘g’in	our_tuple

True

>>>‘l’in	our_tuple

False

>>>‘e’not	in	our_tuple

False

>>>‘x’not	in‘our_tuple’

True

>>>
	

Python	Tuple	Methods
Only	two	Python	methods	work	with	tuples:

Count(x)
Returns	the	number	of	elements	which	is	equal	to	the	given	element.
	

The	syntax	is:
	

	

mytuple.count(a)	

	

Example:
	

>>>	new_tuple	=	(“p”,	“r”,	“o”,	“g”,	“r”,	“a”,	“m”,	“m”,	“e”,	“r”)

>>>	new_tuple.count(‘m’)

2

>>>	new_tuple.count(‘r’)

3

>>>	new_tuple.count(‘x’)

0

>>>

Index(x)
Returns	the	index	of	the	first	element	which	is	equal	to	the	given	element.
	

The	syntax	is:
	

	

mytuple.index(a)	

	

Example:
	

>>>	new_tuple	=	(“p”,	“r”,	“o”,	“g”,	“r”,	“a”,	“m”,	“m”,	“e”,	“r”)

>>>	new_tuple.index(‘m’)

6

>>>	new_tuple.index(‘r’)

1

>>>	new_tuple.index(‘g’)

3

>>>

Built-in	Functions	with	Tuples

Several	built-in	functions	are	often	used	with	tuple	to	carry	out	specific	tasks.	Here	are	the
functions	that	you	can	use	with	a	tuple:

Len()
Returns	the	number	of	elements	on	a	tuple.
	

>>>	tuple_one	=	(‘cat’,	‘dog’,	‘lion’,	‘elephant’,	‘zebra’)

>>>len(tuple_one)

5

>>>

Max()
Returns	the	largest	element	0n	a	tuple.
	

>>>	numbers_tuple	=	(1,	5,	7,	9,	10,	12)

>>>max(numbers_tuple)

12

>>>
	

When	 a	 tuple	 holds	 items	 of	 purely	 string	 data	 type,	 max()	 evaluates	 the	 items
alphabetically	and	returns	the	last	item.
	

>>>	my_tuple	=	(‘car’,	‘zebra’,	‘book’,	‘hat’,	‘shop’,	‘art’)

>>>max(my_tuple)

‘zebra’

>>>
	

Using	max()	on	tuples	with	mixed	data	types	(string		and	numbers)	will	raise	a	TypeError
due	to	the	use	of	unorderable	types.

Min()
Returns	the	smallest	element	on	a	tuple.
	

>>>	numbers_tuple	=	(1,	5,	7,	9,	10,	12)

>>>min(numbers_tuple)

1

>>>
	

When	 used	 	 on	 a	 tuple	 that	 contains	 purely	 string	 data	 type	 min()	 evaluates	 the	 items
alphabetically	and	returns	the	first	item.
	

>>>	my_tuple	=	(‘car’,	‘zebra’,	‘book’,	‘hat’,	‘shop’,	‘art’)

>>>	min(my_tuple)

‘art’

>>>

Sorted()
Returns	a	sorted	list	but	does	not	sort	the	tuple	itself.
	

>>>	my_tuple	=	(‘dog’,	‘bird’,	‘ant’,	‘cat’,	‘elephant’)

>>>	sorted(my_tuple)

[‘ant’,	‘bird’,	‘cat’,	‘dog’,	‘elephant’]

>>>
	

The	order	of	elements	inside	the	my_tuple,	however,	remains	the	same:

>>>	my_tuple

(‘dog’,	‘bird’,	‘ant’,	‘cat’,	‘elephant’)

>>>

Sum()
Returns	the	total	of	all	items	on	a	tuple.
	

>>>	my_tuple	=	(5,	10,	15,	20,	25,	30)

>>>sum(my_tuple)

105

>>>

Tuple()
Converts	iterables	like	string,	list,	dictionary,	or	set	to	a	tuple.
	
How	to	convert	a	string	to	a	tuple

	

Example	#1:
	

>>>tuple(“Programmer”)

(‘P’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’)

>>>
	

Example	#2:
	

>>>	my_string	=	(“Hello	World”)

>>>tuple(my_string)

(‘H’,	‘e’,	‘l’,	‘l’,	‘o’,	‘	‘,	‘W’,	‘o’,	‘r’,	‘l’,	‘d’)

>>>
	
How	to	convert	a	dictionary	to	a	tuple

	

Example	#1:
	

>>>tuple({‘Name’:‘Joshua’,	‘Animal’:‘elephant’,	‘Color’:	‘blue’,	‘Age’:22})

(‘Age’,	‘Color’,	‘Name’,	‘Animal’)

>>>
	

Example	#2:
	

>>>	my_dict	=	{‘Name’:‘Jack’,	‘Area’:‘Florida’,	‘subscription’:‘premium’}

>>>	tuple(my_dict)

(‘Name’,	‘Area’,	‘subscription’)

>>>
	
How	to	convert	a	list	to	a	tuple

	

Example	#1:
	

>>>tuple([‘red’,	‘blue’,	‘yellow’,	‘green’,	‘orange’,	‘violet’])

(‘red’,	‘blue’,	‘yellow’,	‘green’,	‘orange’,	‘violet’)

>>>
	

Example	#2:
	

>>>	my_list	=	[‘interest’,	‘rate’,	‘principal’,	‘discount’,	‘rollover’]

>>>tuple(my_list)

(‘interest’,	‘rate’,	‘principal’,	‘discount’,	‘rollover’)

>>>

Enumerate()
Returns	an	enumerate	object	containing	the	value	and	index	of	all	 tuple
elements	as		pairs.
	

>>>	my_tuple	=	(1,	3,	5,	7,	9,	11,	13,	15)

>>>enumerate(my_tuple)

<enumerate	object	at	0x03237698>

>>>

Iterating	through	a	Tuple
You	can	iterate	through	each	item	in	a	tuple	with	the	‘for’	loop.
	

>>>	for	fruit	in	(‘apple’,	‘peach’,	‘pineapple’,	‘banana’,	‘orange’):

print(“I	love	”	+	fruit)
	

I	love	apple

I	love	peach

I	love	pineapple

I	love	banana

I	love	orange

Tuples	vs.	Lists
	

Except	for	the	symbols	used	to	enclose	their	elements	and	the	fact	that	one	is	mutable	and
the	other	is	not,	tuples	and	lists	are	similar	in	many	respects.	You	will	likely	use	a	tuple	to
hold	elements	which	are	of	different	data	types	while	you	will	prefer	a	list	when	working
on	elements	of	similar	data	types.

	

There	are	good	reasons	to	choose	tuple	over	a	list	to	handle	your	data.
	

The	 immutable	 nature	 of	 tuples	 results	 in	 faster	 iteration	 which	 can	 help	 improve	 a
program’s	performance.
	

Immutable	 tuple	elements	can	be	used	as	dictionary	keys,	something	that	 is	not	possible
with	a	list.
	

Implementing	unchangeable	data	as	a	tuple	will	ensure	that	it	will	stay	write-protected.
	

Step	11:		Sets
	

A	 set	 is	 an	 unordered	 group	 of	 unique	 elements.	 Although	 a	 set	 itself	 is	mutable,	 its
elements	must	be	 immutable.	 	Sets	are	used	 to	carry	out	math	operations	 involving	sets
such	as	intersection,	union,	or	symmetric	difference.

Creating	a	Set
You	can	create	a	set	by	enclosing	all	elements	in	curly	braces	{}	or	by	using	set(),	one	of
Python’s	built-in	functions.	A	set	can	hold	items	of	different	data	types	such	as	float,	tuple,
string,	or	integer.	It	cannot,	however,	hold	a	mutable	element	such	as	a	dictionary,	list,	or
set.	 Sets	 can	 hold	 any	 number	 of	 items.	A	 comma	 is	 used	 to	 separate	 items	 from	 each
other.
	

An	example	of	s	set	of	integers:
	

>>>my_set	=	{1,	4,	6,	8,	9,	10}
	

An	example	of	a	set	of	strings:
												

>>>my_set	=	{‘a’,	‘e’,	‘i’,	‘o’,	‘u’}
	

An	example	of	a	set	of	mixed	data	types:
>>>	my_set	=	{5.0,	“Python”,	(5,	4,	2),	6}
	

An	example	of	a	set	created	from	a	list:
	

>>>set([5,4,3,	1])																														

{1,	3,	4,	5}

>>>
	

A	set’s	elements	cannot	have	a	duplicate.	When	you	create	a	set,	Python	evaluates	if	there
are	duplicates	and	drops	the	duplicate	item.
	

Example	#1:
	

>>>	my_set	=	{‘apple’,	‘peach’,	‘grape’,	‘apple’,	‘strawberry’,	‘grape’}

>>>my_set

{‘peach’,	‘grape’,	‘apple’,	‘strawberry’}

>>>
	

Example	#2:
>>>{1,	3,	5,	9,	1,	4,	3}

{1,	3,	4,	5,	9}

>>>
	

>>>set([‘a’,	‘c’,	‘d’,	‘a’,	‘g’,	‘h’,	‘d’])

{‘a’,	‘c’,	‘h’,	‘g’,	‘d’}

>>>
	

To	create	an	empty	set,	you	will	have	to	use	the	set()	function	without	an	argument.	You
cannot	use	empty	curly	braces	as	this	is	the	syntax	for	creating	an	empty	dictionary.
	

>>>	my_set	=	set()

>>>type(my_set)

<class	‘set’>

>>>

Changing	Elements	on	a	Set
Sets	 are	 mutable	 so	 you	 can	 change	 their	 elements.	 Because	 sets	 are	 unordered,	 you
cannot	access	or	change	an	 item	or	 items	 through	 indexing	or	 slicing	 like	what	you	did
earlier	 with	 strings	 and	 lists.	 You	 can,	 however,	 change	 the	 elements	 of	 a	 set	 with	 the
methods	add()	 or	update().	 The	method	 add()	 appends	 a	 single	 element	 to	 a	 set	while
update()	 adds	 multiple	 elements.	 Strings,	 lists,	 tuples,	 or	 other	 sets	 can	 be	 used	 as
argument	when	you	use	the	update()	method.
	

Example	#1:
	

>>>	my_set	=	{2,	4,	6,	8,	10}

>>>	my_set.add(12)

>>>	my_set

{2,	4,	6,	8,	10,	12}

>>>
	

Example	#2:
	

>>>	my_set	=	{2,	4,	6,	8,	10}

>>>	my_set.update([14,	16,	18,	20])

>>>	my_set

{2,	4,	6,	8,	10,	12,	14,	16,	18,	20}

>>>
	

Example	#3:
	

>>>	my_set	=	{2,	4,	6,	8,	10}

>>>	my_set.update(‘a’,	‘b’)

>>>	my_set

{2,	‘a’,	4,	6,	8,	10,	‘b’}

>>>

Removing	Set	Elements
	

The	remove()	and	discard()	methods	can	be	used	 to	 remove	a	specific	 item	from	a	set.
The	only	difference	between	the	two	methods	is	their	response	to	a	non-existent	argument.
The	use	of	the	remove()	method	raises	an	error	when	the	item	given	as	argument	does	not
exist.		With	discard(),	the	set	simply	remains	unchanged.
	

Example	#1:
	

>>>	my_set	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’}

>>>	my_set.discard(‘c’)

>>>	my_set

{‘b’,	‘e’,	‘f’,	‘g’,	‘a’,	‘d’}

>>>
	

Example	#2:

	

>>>	my_set	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’}

>>>	my_set.remove(‘f’)

>>>	my_set

{‘e’,	‘d’,	‘b’,	‘c’,	‘a’,	‘g’}

>>>
	

Here	is	how	Python	responds	when	you	use	discard()	with	an	item	which	is	not	foundon
the	set:
	

>>>	my_set	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’}

>>>	my_set.discard(‘x’)																		

>>>	my_set																														

{‘g’,	‘d’,	‘e’,	‘c’,	‘a’,	‘f’,	‘b’}

>>>
	

The	elements	on	the	set	were	unchanged	and	no	error	was	raised.
	

On	 the	other	hand,	 remove()	will	 raise	 a	Key	Error	 if	 the	 item	given	as	 an	 argument	 is
non-existent:
	

>>>	my_set	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’,	‘g’}

>>>	my_set.remove(‘x’)

Traceback	(most	recent	call	last):

		File	“<pyshell#21>”,	line	1,	in	<module>

				my_set.remove(‘x’)

KeyError:	‘x’

>>>
	

The	pop()	method	is	likewise	used	to	remove	and	return	an	item	on	a	set.	Since	the	set	is
unordered,	you	cannot	possibly	control	which	item	will	be	popped.	Selection	is	arbitrary.
	

>>>	my_set	=	{‘a’,	‘e’,	‘i’,	‘o’,	‘u’}

>>>	my_set.pop()

‘o’

>>>	my_set

{‘e’,	‘a’,	‘i’,	‘u’}

>>>
	

Finally,	you	can	use	the	clear()	method	to	remove	all	elements	on	a	set.
	

>>>	my_set	=	{‘a’,	‘e’,	‘i’,	‘o’,	‘u’}

>>>	my_set.clear()

>>>	my_set

set()

>>>

Set	Operations
	

You	 can	 use	 sets	 to	 perform	 various	 set	 operations.	 To	 do	 this,	 you	 will	 use	 different
Python	operators	or	methods.

Set	Union
	

A	union	of	two	sets	refers	to	a	set	that	contains	all	elements	from	the	given	sets.	You	can
use	 the	 |	 operator	 or	 the	 union()	 method	 to	 perform	 the	 operation.	 The	 result	 is	 a
combination	of	all	elements	which	are	returned	in	an	ascending	order.
	

Example	with	the	|	operator:
	

>>>	X	=	{1,	3,	5,	7,	9,	11,	13}

>>>	Y	=	{2,	4,	6,	8,	10,	12,	14}

>>>	X	|	Y

{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14}

>>>
	

Example	with	the	union()	method:
>>>	X	=	{1,	3,	5,	7,	9,	11,	13}

>>>	Y	=	{2,	4,	6,	8,	10,	12,	14}

>>>	X.union(Y)

{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14}

>>>
	

Or
	

>>>	X	=	{1,	3,	5,	7,	9,	11,	13}

>>>	Y	=	{2,	4,	6,	8,	10,	12,	14}

>>>	Y.union(X)

{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14}

>>>

Set	Intersection
	

The	 intersection	of	 two	sets	 refers	 to	 the	set	of	common	elements	between	 them.	 It	 is
performed	with	either	the	&	operator	or	the	intersection()	method.	Both	return	a	set	with
elements	that	are	arranged	in	ascending	order:
	

Example	with	the	&	operator:
	

>>>	x	=	{1,	3,	5,	7,	2,	4,	6}

>>>	y	=	{2,	4,	5,	7,	2,	0,	9}

>>>	x	&	y

{2,	4,	5,	7}

>>>
	

Example	with	the	intersection()	method:
	

>>>	x	=	{1,	3,	5,	7,	2,	4,	6}

>>>	y	=	{2,	4,	5,	7,	2,	0,	9}

>>>	x.intersection(y)

{2,	4,	5,	7}

>>>	y.intersection(x)

{2,	4,	5,	7}

>>>

Set	Difference
	

Set	difference	refers	to	a	set	of	elements	that	are	found	in	one	set	but	not	in	the	other	set.
For	instance,	the	difference	of	X	and	Y		(X	–	Y)	is	a	set	of	elements	that	can	be	found	in	X
but	not	in	Y.	Conversely,	the	difference	of	Y	and	X	(Y	–	X)	is	a	set	of	elements	that	are
found	 in	 Y	 but	 not	 in	 X.	 The	 set	 difference	 operation	 is	 performed	 with	 either	 the	 –
operator	or	the	difference()	method.
	

Examples	with	the	-	operator:
	

>>>	x	=	{1,	2,	3,	5,	7,	9}

>>>	y	=	{2,	8,	9,	5,	2,	1}

>>>	x	-	y

{3,	7}

>>>	y	-	x

{8}

>>>
	

Examples	with	the	difference()	method:
	

>>>	x	=	{1,	2,	3,	5,	7,	9}

>>>	y	=	{2,	8,	9,	5,	2,	1}

>>>	x.difference(y)

{3,	7}

>>>	y.difference(x)

{8}

>>>

Set	Symmetric	Difference
	

The	 symmetric	 difference	 between	 two	 sets	 refers	 to	 the	 set	 of	 elements	 that	 are	 not
common	 in	 both	 sets.	 It	 is	 performed	 with	 either	 the	 ^	 operator	 or	 the
symmetric_difference()	method.
	

Example	with	the	^	operator:
	

>>>	a	=	{1,	3,	5,	4,	6,	8}

>>>	b	=	{5,	2,	6,	1,	8,	10}

>>>	a	^	b

{2,	3,	4,	10}

>>>
	

Examples	with	the	symmetric_difference()	method:
	

>>>	a	=	{1,	3,	5,	4,	6,	8}

>>>	b	=	{5,	2,	6,	1,	8,	10}

>>>	a.symmetric_difference(b)

{2,	3,	4,	10}

>>>	b.symmetric_difference(a)

{2,	3,	4,	10}

>>>

Set	Membership	Test
	

The	membership	test	operators(the	“in”	and	“not	in”	operators)	can	be	used	to	test	 the
existence	or	non-existence	of	an	item	on	a	set.
	

For	example:
	

>>>	my_set	=	{‘land’,	‘sea’,	‘air’,	‘ocean’,	‘river’}

>>>‘sea’in	my_set

True

>>>‘river’not	in	my_set

False

>>>

Using	Built-in	Functions	with	Set
There	are	several	Python	functions	that	are	often	used	with	set	to	carry	out	various	tasks.

Len()
Returns	the	number	of	elements	on	a	set.
	

>>>my_set	=	{1,	‘a‘,	2,	‘b‘,	3,	‘c’}

>>>len(my_set)

6

>>>

Max()
Returns	the	largest	element	on	a	set.
	

>>>my_set	=	{1,2,3,4,5}

>>>max(my_set)

5

>>>
	

On	a	set	of	strings,	max()	returns	the	last	item	alphabetical-wise.
	

>>>	b	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’}

>>>max(b)

‘e’

>>>

Min()
Returns	the	smallest	element	on	a	set.
	

>>>	a	=	{2,	1,	5,	8,	9,	20}

>>>min(a)

1

>>>
	

>>>	b	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’}

>>>min(b)

‘a’

>>>

Sorted()
Returns	a	sorted	list	of	set	elements	but	does	not	actually	sort	the	set.

	

>>>	my_set	=	{‘red’,	‘blue’,	‘yellow’,	‘green’,	‘violet’}

>>>sorted(my_set)

[‘blue’,	‘green’,	‘red’,	‘violet’,	‘yellow’]

>>>
	

Using	sorted()	does	not	affect	the	actual	order	of	the	elements	on	the	set:
	

>>>	my_set

{‘violet’,	‘green’,	‘yellow’,	‘red’,	‘blue’}

>>>

Sum()
Returns	the	total	of	all	items	on	a	set.
	

>>>	a	=	{3,	1,	7,	2,	4,	10}

>>>sum(a)

27

>>>

Enumerate()
Returns	an	enumerate	object	which	contains	the	value	and	index	of	all	set
elements	as	a	pair.
	

>>>	my_set	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’}

>>>enumerate(my_set)

<enumerate	object	at	0x02D9A760>

>>>

Iterating	Through	Sets
	

You	can	iterate	through	every	element	on	a	set	with	a	‘for	loop’.
	

for	letter	in	set(‘programmer’):

print(letter)
	

g

m

r

p

a

e

o

Frozenset
	

A	frozenset	takes	the	characteristics	of	a	set	but	has	immutable	elements.	Once	assigned,
you	can	no	longer	change	its	elements.	A	frozenset	relates	to	a	set	as	a	tuple	relates	to	a
list.	Frozensets,	unlike	sets,	are	hashable	and	can	 thus	be	used	as	dictionary	keys.	Their
immutable	 nature	 does	 not	 allow	 the	 use	 of	 Python	methods	 that	 add	 or	 remove	 items
within	the	frozenset.
	

>>>	x	=	frozenset	([9,	7,	5,	3,	1])

>>>	y	=	frozenset	([6,	5,	1,	10,	2])

>>>	x.difference(y)

frozenset({9,	3,	7})

>>>	x	|	y

frozenset({1,	2,	3,	5,	6,	7,	9,	10})

>>>	x.isdisjoint(y)

False

>>>
	

	

Step	12:	Dictionary
	

A	dictionary	 is	an	unordered	collection	of	key-value	pairs	which	 are	 separated	by	a
colon	and	enclosed	within	curly	braces	{}.	A	dictionary	may	contain	any	data	type	and	is
mutable.	 Its	keys,	however,	are	 immutable	and	can	only	be	a	string,	 tuple,	or	a	number.
Values	stored	on	a	dictionary	can	only	be	accessed	through	the	keys.
	

A	dictionary	is	used	as	a	container	for	storing,	managing,	and	retrieving	data	in	key-value
format	 found	 in	 phone	 books,	 menus,	 or	 directories.	 Python	 provides	 a	 number	 of
operators	that	can	be	used	to	perform	different	tasks	with	a	dictionary.
	

A	basic	dictionary	has	this	structure:
	

d	=	{key_1:y,	key_2:1.5,	key_3:xyz,	key_4:7.55}
	

You	can	create	an	empty	dictionary	with	this	syntax:
	

d	=	{}

Accessing	Elements	on	a	Dictionary
Since	a	dictionary	is	an	unordered	data	type,	you	can’t	use	indexing	to	access	values.	You
will	 instead	 use	 its	 keys.	 To	 access	 data,	 you	 can	 either	 place	 the	 keys[]inside	 square
brackets	or	use	the	get()	method.
	

To	access	date	by	using	keys:
	

>>>	my_dict	=	{‘Name’:‘Mark’,	‘Age’:	24,	‘Ranking’:	‘5th’,	‘Average’:89.5}

>>>my_dict[‘Name’]

‘Mark’

>>>	my_dict[‘Ranking’]

‘5th’

>>>
	

Here	we	have	accessed	the	data	for	they	keys	Name	and	Ranking.
	

In	this	example;

	

my_dict	is	the	dictionary
Name,	Age,	Ranking	and	Average	are	keys
Mark,	24,	5th	and	89.5	are	values	(data)
There	are	4	key-value	pairs:

Name:Mark
Age:24
Ranking:5th
Average:89.5

	

To	access	the	same	values	with	the	get()	method:
	

>>>	my_dict	=	{‘Name’:‘Mark’,	‘Age’:	24,	‘Ranking’:	‘5th’,	‘Average’:89.5}

>>>	my_dict.get(‘Name’)

‘Mark’

>>>	my_dict.get(‘Average’)

89.5

>>>

Adding	and	Modifying	Entries	to	a	Dictionary
You	can	easily	add	new	items	or	modify	 the	value	of	existing	keys	with	 the	assignment
operator	=.	When	you	assign	a	key:value	pair	to	a	dictionary,	Python	checks	whether	the
key	already	exists	on	the	dictionary	or	not.	If	there	is	a	similar	key,	the	value	simply	gets
updated.	If	it’s	a	unique	key,	then	the	key:value	pair	is	added	to	the	dictionary.
	

The	syntax	for	adding	a	new	entry	to	a	dictionary	is:
	

	

dict_name[key]	=	b		

						

For	example,	using	the	same	dictionary	above,	you	can	add	a	new	key-value	pair,	status:
regular:
	

>>>	my_dict	=	{‘Name’:‘Mark’,	‘Age’:	24,	‘Ranking’:	‘5th’,	‘Average’:89.5}

>>>	my_dict[‘status’]	=	‘regular’

>>>

	

To	check	the	updated	dictionary:
	

>>>	my_dict

{‘Name’:	‘Mark’,	‘status’:	‘regular’,	‘Ranking’:	‘5th’,	‘Age’:	24,	‘Average’:	89.5}

>>>
	

To	modify	a	value	stored	in	a	dictionary	key,	you	can	assign	a	new	value	to	the	key	using
the	assignment	operator.	For	example,	you	can	change	the	value	of	the	Ranking	from	5th

to	3rd	with:
	

>>>	my_dict	=	{‘Name’:‘Mark’,	‘Age’:	24,	‘Ranking’:	‘5th’,	‘Average’:89.5}

>>>	my_dict[‘Ranking’]	=	‘3rd’

>>>	my_dict

>>>{‘Ranking’:	‘3rd’,	‘Name’:	‘Mark’,	‘Average’:	89.5,	‘Age’:	24}

>>>

Removing	or	Deleting	Elements	from	a	Dictionary
To	 remove	 a	 key:	 value	 pair	 from	 a	 dictionary,	 you	 can	 use	 the	 pop()	method	 which
removes	the	pair	and	returns	the	value	of	the	given	key.

The	pop()method
For	example:
	

>>>my_dict	=	{‘ocean’:	‘Pacific	Ocean’,	‘Sea’:	‘Baltic	Sea’,	‘river’:‘Danube’,	‘swamp’:
‘The	Everglades’}

>>>
	

To	remove	the	key	‘river’	and	its	value:
	

>>>my_dict.pop(‘river’)

‘Danube’

>>>
	

Here’s	the	updated	my_dict:
	

>>>	my_dict

{‘Sea’:	‘Baltic	Sea’,	‘swamp’:	‘The	Everglades’,	‘ocean’:	‘Pacific	Ocean’}

>>>

The	popitem()	method
The	popitem()	method	is	another	way	of	removing	key:	value	pairs	on	a	dictionary.	This
method	takes	no	argument	and	removes	and	returns	an	arbitrary	pair	from	the	dictionary.
	

For	 example,	when	 you	 use	 dict.popitem()	 on	my_dict,	 you’ll	 have	 no	 control	 over	 the
value	it	will	remove:
	

>>>my_dict	=	{‘ocean’:	‘Pacific	Ocean’,	‘Sea’:	‘Baltic	Sea’,	‘river’:‘Danube’,	‘swamp’:
‘The	Everglades’}

>>>	my_dict.popitem()

(‘swamp’,	‘The	Everglades’)

>>>
	

Here’s	what’s	left	of	my_dict:
	

>>>	my_dict

{‘ocean’:	‘Pacific	Ocean’,	‘river’:	‘Danube’,	‘Sea’:	‘Baltic	Sea’}

>>>
	

	

The	clear()	method
Only	two	key:	value	pairs	remain	in	my_dict.	To	remove	the	remaining	pairs	at	once,	you
can	use	the	clear()	method:
	

>>>	my_dict.clear()

>>>
	

You	now	have	an	empty	dictionary:
	

>>>	my_dict

{}

>>>

	

To	delete	the	my_dict	dictionary,	you	will	use	the	del	keyword:
	

>>>del	my_dict

>>>
	

If	you	try	to	access	my_dict	again,	Python	will	raise	a	NameError:
	

>>>	my_dict

Traceback	(most	recent	call	last):

		File	“<pyshell#11>”,	line	1,	in	<module>

				my_dict

NameError:	name	‘my_dict’	is	not	defined

>>>

Other	Python	Dictionary	Methods
Earlier,	you	have	learned	methods	that	can	be	used	to	add,	change,	remove,	or	clear	keys
and	values	on	a	dictionary.	There	are	other	methods	that	you	can	use	to	perform	various
tasks	in	Python.

Update(other)
Updates	a	dictionary	with	key-value	pairs	from	another	dictionary.
	

The	update(other)	method	updates	a	dictionary	with	a	set	of	key-value	pairs	from	another
dictionary.	 It	merges	 the	 key	 value	 pairs	 of	 one	 dictionary	 into	 another	 and	 allows	 the
values	of	the	other	dictionary	to	overwrite	the	values	of	the	current	dictionary	in	situations
where	a	common	key()	exists.
	

For	example:
	

>>>	dict_1	=	{‘First	Name’:‘Chuck’,	‘Age’:	27,	‘Branch’:‘Chicago’}

>>>dict_2	=	{‘Last	Name’:	‘Davidson’,	‘Position’:	‘Supervisor’,	‘Branch’:‘New	York’}

>>>	dict_1.update(dict_2)
	

The	key:value	pairs	of	dict_2	have	now	been	merged	with	dict_1:
	

>>>	dict_1

{‘Age’:	 27,	 ‘Position’:	 ‘Supervisor’,	 ‘First	 Name’:	 ‘Chuck’,	 ‘Last	 Name’:	 ‘Davidson’,
‘Branch’:	‘New	York’}

>>>
	

Take	note	that	there	is	one	common	key	between	dict_1	and	dict_2,	the	Branch.	Hence,	the
value	of	dict_2,	New	York,	replaced	the	original	value	on	dict_1,	Chicago.
	

Since	only	 the	dict_1	dictionary	was	updated,	 the	key-value	pairs	of	dict_2	 remains	 the
same:
	

>>>	dict_2

{‘Position’:	‘Supervisor’,	‘Branch’:	‘New	York’,	‘Last	Name’:	‘Davidson’}

>>>

Item()	method
Returns	list	of	a	dictionary’s	key-value	pairs.
	

The	syntax	is:
	

	

dict.items()	

	

>>>	x	=	{1:“abc”,	2:“def”,	3:“ghi”,	4:“jkl”}

>>>	x.items()

dict_items([(1,	‘abc’),	(2,	‘def’),	(3,	‘ghi’),	(4,	‘jkl’)])

>>>

Values()	method
Returns	a	list	of	dictionary	values.
	

The	syntax	is:
	

	

dict.values()	

	

>>>	y	=	{1:“xyz”,2:“aeiou”,	3:“uvw”,	4:“rst”}

>>>	y.values()

dict_values([‘xyz’,	‘aeiou’,	‘uvw’,	‘rst’])

>>>

Keys()	method
Returns	a	list	of	dictionary	keys.
	

The	syntax	is:
	

	

dict.keys()	

	

>>>	dict_one	=	{‘animal’:	‘tiger’,	‘age’:4,	‘location’:‘Cage	5’}

>>>	dict_one.keys()

dict_keys([‘animal’,	‘location’,	‘age’])

>>>

Setdefault()	method
Searches	for	a	given	key	in	a	dictionary	and	returns	the	value	if	found.
	

If	not,	it	returns	the	given	default	value.
	

The	syntax	for	this	method	is:
	

	

dict.setdefault(key,	default=None)	

	

>>>	my_dict	=	{‘a’:‘car’,	‘b’:‘van’,	‘c’:‘yacth’,	‘d’:‘bus’}

>>>	my_dict.setdefault(‘c’,	None)

‘yacth’

>>>	my_dict.setdefault(‘f’,	None)

>>>

Copy()	method
Returns	a	shallow	copy	of	a	dictionary.
	

The	copy()	method	performs	a	shallow	copy	of	a	dictionary	where	every	key-value	pair	is
duplicated.	The	method	 allows	users	 to	modify	 the	dictionary	 copy	without	 altering	 the
original	file.
	

To	 illustrate,	 here	 is	 a	 series	 of	 statements	 showing	 how	 the	 copy	 method	 is	 used	 to
produce	a	shallow	copy	of	the	original	dictionary.
	

Here	is	the	original	dictionary:
	

>>>my_dict1	=	{“apples”:	10,	“oranges”:	5,	“grapefruit”:	7,	“strawberry”:	12}

>>>
	

Now	you	can	create	a	copy	of	my_dict:

>>>my_dict2	=	my_dict1.copy()

>>>
	

A	dictionary	copy	is	a	new	file	which	is	independent	of	the	original	dictionary	from	which
it	was	generated.	Hence,	any	changes	you	make	to	the	new	dictionary	will	have	no	effect
at	all	on	the	original	dictionary.
	

Now,	modify	the	dictionary	copy:
	

>>>my_dict2[“oranges”]	=	50

>>>my_dict2[“apples”]	=	5

>>>
	

Now,	print	my_dict1	and	my_dict2:
	

>>>print(my_dict1)

>>>print(my_dict2)

>>>
	

Your	screen	will	display	these	details:
	

{‘oranges’:	5,	‘grapefruit’:	7,	‘apples’:	10,	‘strawberry’:	12}

{‘oranges’:	50,	‘apples’:	5,	‘grapefruit’:	7,	‘strawberry’:	12}

The	fromkeys()	method
Takes	 items	 on	 a	 sequence	 and	 uses	 them	 as	 keys	 to	 build	 a	 new
dictionary.
	

The	fromkeys()	method	takes	a	sequence	of	items	and	uses	them	as	keys	to	create	a	new
dictionary.	It	allows	a	second	argument	through	which	you	can	provide	a	value	that	will	be
attached	to	the	keys	on	the	new	dictionary.
	

Here	is	the	list	that	will	be	used	as	keys:
	

>>>keys	=	[“monitor”,	“CPU”,	“mouse”,	“keyboard”,		“speaker”]

>>>
	

Now,	create	a	new	dictionary	from	keys:
	

>>>new_dict	=	dict.fromkeys(keys,	10)

>>>
	

Display	the	key-value	pairs	of	the	new	dictionary:
	

>>>print(new_dict)
	

	

This	will	be	the	output	on	your	screen:
	

{‘keyboard’:	10,	‘speaker’:	10,	‘monitor’:	10,	‘CPU’:	10,	‘mouse’:	10}

>>>

Dictionary	Membership	Test
You	can	use	 the	membership	operators	 ‘in’	and	‘not	 in’	 to	check	whether	a	specific	key
exists	 or	 not	 on	 the	 dictionary.	 Take	 note	 that	 this	 test	 is	 only	 for	 dictionary	 keys,	 not
values.

	

Examples:
	

>>>even	=	{2:‘GRQ‘,	4:‘XYZ’,	6:‘DEF’,	8:‘GHI’,	10:‘JKL’}

>>>2	in	even

True

>>>	12	in	even

False

>>>	8	not	in	even

False

>>>	14	not	in	even

True

>>>

Iterating	Through	a	Dictionary
You	can	use	the	‘for’	lop	to	iterate	through	a	dictionary.	For	example:
	

for	n	in	numbers:

print(numbers[n])
	

2

10

8

6

4

Using	Built-in	Functions	with	Dictionary
Python	has	several	built-in	functions	that	can	be	used	with	dictionary	to	perform	various
tasks.

Lens()
Returns	the	number	of	items	on	a	dictionary.
	

>>>dict_one	=	{“a”:“Requirements”,	“b”:“Name”,	“c”:“Age”,	“d”:“Grade”}

>>>len(dict_one)

4

>>>

Sorted()
Returns	a	sorted	view	of	dictionary	keys	but	does	not	sort	the	dictionary
itself.
	

>>>	my_dict	=	{“color”:“silver”,	“year	model”:	2012,	“warehouse”:“used”}

>>>sorted(my_dict)

[‘color’,	‘warehouse’,	‘year	model’]

>>>	my_dict

{‘color’:	‘silver’,	‘year	model’:	2012,	‘warehouse’:	‘used’}

>>>

Creating	a	Dictionary	with	the	dict()	function
Another	 way	 of	 creating	 a	 dictionary	 is	 with	 dict(),	 a	 built-in	 function.	 The	 function
allows	programmers	to	create	a	dictionary	out	of	a	list	of	tuple	pairs.	Each	pair	will	have
two	elements	that	can	be	used	as	a	key	and	a	value.
	

First,	create	a	list	of	tuple	pairs	that	are	key-value	pairs.

>>>pairs	=	[(“cat”,	“kitten”),	(“dog”,	“puppy”),	(“lamb”,	“ewe”),	(“lion”,	“cub”)]

>>>
	

Then,	convert	a	list	to	a	dictionary.

>>>dict(pairs)

{‘dog’:	‘puppy’,	‘lion’:	‘cub’,	‘cat’:	‘kitten’,	‘lamb’:	‘ewe’}

>>>

Dictionary	Comprehension
Dictionary	comprehension	 is	 a	 concise	way	of	 creating	a	new	dictionary	 from	a	Python
iterable.	 It	 consists	 of	 a	 key-value	 expression	 and	 a	 ‘for	 statement’	 enclosed	 in	 curly
braces	{}.	Following	is	an	example	that	shows	how	you	can	build	a	dictionary	with	key-
value	pairs	of	a	range	of	numbers	and	their		square	value:
	

>>>	squares	=	{x:	x**2	for	x	in	range(10)}

>>>	squares

{0:	0,	1:	1,	2:	4,	3:	9,	4:	16,	5:	25,	6:	36,	7:	49,	8:	64,	9:	81}

>>>
	

A	 dictionary	 comprehension	 mayhold	 more	 than	 one	 conditional	 statement	 (for	 or	 if
statements).	 In	 the	above	 statement,	 an	 ‘if	 statement’	may	be	added	 to	 filter	out	desired
items	to	build	a	new	dictionary.	Following	are	some	examples:
	

Example	#1:
	

>>>	even_squares	=	{x:	x**2	for	x	in	range(12)	if	x%2	==	0}

>>>	even_squares

{0:	0,	2:	4,	4:	16,	6:	36,	8:	64,	10:	100}

>>>
	

Example	#2:
	

>>>odd_squares	=	{x:	x**2	for	x	in	range(13)	if	x%2	==	1}

>>>	odd_squares

{1:	1,	3:	9,	5:	25,	7:	49,	9:	81,	11:	121}

>>>
	

	

Step	13:						Python	Operators
	

Operators	are	special	symbols	that	indicate	the	implementation	of	a	specific	process.	They
are	used	to	evaluate,	manipulate,	assign,	or	perform	mathematical	or		logical	operations	on
different	data	types.	Python	supports	different	types	of	operators:
	

Arithmetic	Operators
Assignment	Operators
Relational	Operators
Logical	Operators
Identity	Operators
Membership	Operators
Bitwise	Operators

Arithmetic	Operators
Arithmetic	operators	are	used	to	perform	basic	mathematical	operations	on	numeric	data
types:
	

	

+	

	

Addition	

	

Adds	the	value	of	operands	on	either	side	of	the	operator	.

	Example:		2	+	8									returns	10

	

-	

	

Subtraction	

	

Subtracts	the	right	operand	from	the	left	operand.	

	

	Example:	10	–	2								returns	2

	

*	

	

Multiplication	

	

Multiplies	the	value	of	the	left	and	right	operands.	

	

	Example:	3	*	4											returns	12

	

/	

	

Division	

	

Divides	the	left	operand	with	the	value	of	the	right	operand.	

	

	Example:	20	/	5									returns	4

	

	

**	

	

Exponent	

Performs	exponential	calculation.	

	

	Example:	2	**	3			(two	raised	to	the	power	of	3)	returns	8

	

%
	

	

Modulos	

	

Returns	the	remainder	after	dividing	the	left	operand	with	the	value	of
the	right	operand.	

	

	Example:	13	%	3							returns	1

	

//	

	

Floor
Division	

	

Divides	the	left	operand	with	the	right	operand	and	returns	a	quotient
stripped	of	decimal	numbers.	

	

	Example:	13	//	3							returns	4

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Assignment	Operators
Assignment	operators	are	used	to	assign	values	to	variables.
	

	 	

Operators	 Function	

	

=	

	

	Assigns	the	value	of	the	right	operand	to	the	left	operand.	

	

	Examples:		a	=	“xyz”						x	=	130				y	=	[2,	3,	5,	7,	8]

	

+=	add	and	

	

Adds	the	left	and	right	operands	and	assigns	the	value	to	the	left	operand,
works	like	x	=	x	+	a	

	

	Examples:		x	+=	8,	adder	+=	4	

	

-=	 subtract
and	

	

Subtracts	the	right	operand	from	the	left	operand	and	assigns	the	difference
to	the	left	operand,	works	like	x	=	x	-8	

	

	Examples:	x	-=	4,			counter	-=	6

	

*=	 multiply
and	

	

multiplies	 the	 left	 and	 right	 operands	 and	 assigns	 the	 product	 to	 the	 left
operand,	works	like	x	=	x	*	2	

	

Examples:	x	*=	4,	product	*=	5	

	

/=	 divide
and	

	

Divides	the	left	operand	with	the	value	of	the	right	operand	and	assigns	the
result	to	the	left	operand,	works	like	x	=	x	/	4	

	

Examples:	x	/=	4,	counter	/=	2		

	

**=
exponent	

	

Performs	exponential	operation	on	the	left	operand	and	assigns	the	value	to
the	left	operand,	works	like	x	=	x**2	

	

Examples:	x	**=	3,	double	**=	2	

	

	

Performs	floor	division	on	the	left	operand	and	assigns	the	value	to	the	left
operand,	works	like	x	=	x//2	

//=	 floor
division	and	 	

Examples:	x	//=	3,	amount	//=	2	

	

	

	

	

	

	

	

	

Relational	or	Comparison	Operators
Relational	operators	evaluate	 the	given	comparison	expression	and	return	 the	relation	of
left	and	right	operands	as	either	True	or	False.
	

Python	supports	the	following	relational	or	comparison	operators:
	

	

Operators	

	

Meaning	

	

<		

	

is	less	than	

	

>		

	

is	greater	than	

	

<=	

	

is	less	than	or	equal	to	

	

>=	

	

is	greater	than	or	equal	to	

	

==	

	

is	equal	to	

	

!=	

	

is	not	equal	to	

Logical	Operators

There	are	three	types	of	logical	operators	in	Python:
	

or	

and

not
	

Python	evaluates	expressions	with	logical	operators	in	this	manner:
	

	

x	 or
y	

	

If	the	first	argument	(x)	is	true,	it	returns	True.	If	x	is	false,	it	evaluates	the	second
argument,	y,	and	returns	the	result.	

	

x	and
y	

	

If	x	is	true,	it	evaluates	y.	If	y	is	false,	it	returns	False.	If	x	is	false,	it	returns	False.		

	

not
x	

	

It	returns	True	if	x	is	false	and	False	if	x	is	true.	

	

Examples:
	

>>>(12>9)	or	(2<8)

True

>>>	(12	>	28)	or	(5	<	7)

True

>>>	(8>2)	and	(6>15)

False

>>>	(6	==2*	3)	and	(10	<	5	**3)

True

>>>not	(3	*	5	>	4)

False

>>>not	(5>	2**4)

True

>>>

Identity	Operators
	

Identity	operators	are	used	to	verify	if	two	objects	are	stored	in	the	same	memory	location.
Python	has	two	identity	operators:
	

	
Operators	

	
Description	

	
is	

	
Returns	 True	 if	 the	 variables	 on	 the	 left	 and	 right	 side	 of	 the
operator	refer	to	the	same	object;	returns	False	if	otherwise.	

	
is	not	

	
Returns	 False	 if	 the	 variables	 on	 the	 left	 and	 right	 side	 of	 the
operator	refer	to	the	same	object;	returns	True	if	otherwise.		

	

To	illustrate	how	identity	operators	work,	type	the	following	expressions	on	the	text	editor
then	save	and	run	the	program:
	

>>>x	=	10

>>>y	=	10

>>>a	=	“Programs”

>>>b	=	“Programs”

>>>x1	=	[4,	6,	8]

>>>y1	=	[4,	6,	8]

>>>z1	=	[4,	5,	8]

>>>print(x	is	y)

>>>print(a	is	not	b)

>>>print(x1	is	y1)

>>>print(x1	is	not	y1)

>>>print(x1	is	z1)

>>>
	

You	screen	would	display	the	following	results:
	

True

False

False

True

False
	

Variables	x	and	y	hold	integers	of	the	same	value.	They	are,	therefore,	both	identical	and
equal.	Hence,	the	‘is’	id	operator	returned	True.
	

Variables	a	and	b	contains	the	same	string	and	data	type	and	are	identical.	Hence,	the	‘is
not’	operator	returned	False.
	

The	variables	x1	and	y1	refer	 to	a	 list.	Although	they	have	the	same	value,	 they	are	not
identical	 because	 the	 lists	 are	 mutable	 and	 are	 stored	 in	 different	 memory	 locations.
Hence,	 the	use	of	 the	 id	operator	 ‘is’	 returned	False.	Conversely,	 the	use	of	 the	 ‘is	not’
operator	on	x1	and	y1	returned	True.		Using	the	‘is’	operator	on	variables	x1	and	z1	would
naturally	result	to	False	because	not	only	are	they	mutable	data	types;	they	actually	hold
different	items.

Membership	Operators
Python’s	membership	operators	are	used	to	test	for	the	occurrence	or	non-occurrence	of	a
variable	or	value	 in	a	 sequence	which	can	be	a	 string,	 tuple,	 list,	or	 a	dictionary.	 In	 the
case	of	a	dictionary,	you	can	only	test	for	the	occurrence	of	a	key	but	not	its	value.	There
are	two	types	of	membership	operators	in	Python:
	

	

Operators	

	

Description	

	

in	

	

Returns	True	if	the	specified	variable	or	value	is	found	on	a	given	sequence;
returns	False	if	otherwise	

	

not	in	

	

Returns	 True	 if	 the	 specified	 variable	 or	 value	 is	 not	 found	 on	 a	 given
sequence;	returns	False	if	otherwise.	

	

To	illustrate,	type	the	following	on	the	text	editor	and	run	the	code:
	

>>>my_string	=	‘Membership	operators	can	be	used	with	a	string.’

>>>my_dict	=	{“animal”	:	‘elephant’,	“size”	:	‘large’,	“color”	:	‘gray’	}

>>>print(‘p’in	my_string)

>>>print(‘membership’in	my_string)

>>>print(‘x’	not	in	my_string)

>>>print(‘color’in	my_dict)

>>>print(“animal”	not	in	my_dict)

>>>print(‘elephant’in	my_dict)

>>>
	

You	will	get	these	results:
	

True												

False

True

True

False

False
	

There	is	a	‘p’	in	my_string,	so	the	interpreter	returned	True.	In	fact,	there	are	two	p’s.	In
the	second	print	statement,	the	interpreter	returned	false	because	there	is	no	‘membership’
substring	in	my_string.	What	you	have	is	‘Membership’.	Remember	that	Python	is	a	case-
sensitive	language.	There	is	a	‘color’	key	in	my_dict	so	Python	returned	True.	There	is	a
key	named	‘animal’	so	it	returned	False	when	the	‘is	not’	operator	was	used.	On	the	last
print	 statement,	 ‘elephant’	 is	 a	 value,	 not	 a	 key	 on	 the	 my_dict	 dictionary.	 Hence,	 the
interpreter	returned	False.

Bitwise	Operators
In	computers,	a	series	of	zeros	and	ones	called	bits	represent	numbers.	Bitwise	operators
work	 on	 operands	 like	 they	 are	 strings	 of	 binary	 digits.	 They	 are	 used	 to	 directly
manipulate	bits.

Understanding	the	Base	2	Number	System
In	normal	life,	counting	is	done	in	base	1o.	This	means	that	for	every	number,	each	place
can	contain	one	of	ten	values	from	zero	to	nine	and	that	you	carry	over	to	the	next	place
when	 it	goes	higher	 than	nine.	 In	binary,	 counting	 is	done	 in	base	 two	where	a	number
place	can	hold	either	zero	or	one.	Like	the	counting	pattern	in	base	1o,	you	carry	over	to
the	next	place	every	time	the	count	goes	over	one.	
	

For	example,	the	numbers	0	and	1	are	represented	similarly	in	base	10	and	base	2.	In	base
2,	however,	you	have	 to	carry	over	and	add	1	 to	 the	next	number	place	when	 the	count
exceeds	1.	Hence,	in	base2,	number	2	is	represented	as	‘10’	and	3	is	‘11’.	When	you	go	on

to	4,	you	have	to	carry	over	to	the	next	number	place.	Hence,	4	is	represented	as	‘1o0’	in
base	2.
	

In	base	10,	a	decimal	place	denotes	a	power	of	ten.	In	base	2,	each	place	represents	a	bit	or
a	power	of	two.	The	1’s	bit	(rightmost	bit)	denotes	‘two	to	the	zero	power’	while	the	2’s
bit	(next	bit)	denotes	‘two	to	the	first	power’.	The	succeeding	bits	are	4,	8,	16,	and	so	on.
	

In	Python,	numbers	are	written	in	binary	format	with	the	prefix	0b.	To	print	an	integer	in
its	 binary	 format,	 you	 can	 use	 the	 bin()	 function	 which	 takes	 integer	 as	 argument	 and
returns	it	as	a	string.	Once	you	use	the	bin()	on	a	number,	you	can	no	longer	work	on	it	as
a	number.
	

	

Here	are	the	bitwise	operators	in	Python:
	

	

&	

	

Bitwise	AND	

	

|	

	

Bitwise	OR	

	

^	

	

Bitwise	XOR	

	

~	

	

Bitwise	NOT	

	

<<	

	

Bitwise	left	shift	

	

>>	

	

Bitwise	right	shift	

	

Examples:
	

Assuming	x	=	12	(1100	in	binary)	and	y	=	5	(101	in	binary):
	
&						Bitwise	AND	

	

>>>	x	=	12

>>>y	=	5

>>>	x	&	y

4

>>>bin(4)

‘0b100’

>>>
	

Take	note	that	whether	you	use	the	integer	or	the	binary	format	(with	0b	prefix)	in	values
that	you	assign	 to	 the	variables	x	and	y,	Python	will	 return	an	 integer	when	you	use	 the
bitwise	operators	on	the	variables.
	
|						Bitwise	OR

	

>>>	x	=	12

>>>y	=	5

>>>x	|	y

13

>>>bin(13)

‘0b1101’

>>>
	
^						Bitwise	XOR

	

>>>	x	=	12

>>>y	=	5

>>>	x	^	y

9

>>>bin(9)

‘0b1001’

>>>
	
~						Bitwise	NOT

>>>	x	=	12

>>>y	=	5

>>>	~	x

-13

>>>bin(-13)

‘-0b1101’

>>>	~	y

-6

>>>bin(-6)

‘-0b110’

>>>
	
<<						Bitwise	left	shift

	

>>>	x	=	12

>>>y	=	5

>>>	x	<<	2

48

>>>bin(48)

‘0b110000’

>>>	y	<<	2

20

>>>bin(20)

‘0b10100’

>>>
	

	
>>	Bitwise	right	shift

	

>>>	x	=	12

>>>y	=	5

>>>	x	>>	2

3

>>>bin(3)

‘0b11’

>>>y	>>	2

1

>>>bin(1)

‘0b1’

>>>

Precedence	of	Operators
Operator	 precedence	 impacts	 how	 Python	 evaluates	 expressions.	 For	 example,	 in
evaluating	the	expression	x	=	20	–	5	*	3,	the	value	of	5	instead	of	45	will	be	stored	to	the
variable	 x.	 This	 is	 because	 the	multiplication	 operation	 5	 *	 3	 has	 precedence	 over	 the
subtraction	operation	20	-	5.	In	the	following	table,	operators	are	arranged	in	the	order	of
precedence	from	the	highest	to	the	lowest:
	

	

Description	

	

Operators	

	

Exponentiation	

	

**	

	

Complement,	unary	plus,	and	minus	

	

~	+	-	

	

Multiplication,	division,	modulo,	and	floor	division	

	

	*	/		%		//

	

addition	and	subtraction	

	

+	-	

	

Right	and	left	bitwise	shift	

	

>>,	<<	

	

Bitwise	‘AND’	

	

&	

	

Regular	`OR’	and	Bitwise	exclusive	‘OR’	

	

|	^	

	

Comparison	operators	

	

	>,	<,	>=,		<=

	

Equality	operators	

	

==	,	!=	

	

Assignment	operators	

	

=,	+=,	-=,	*-,	/=,	%=	//=	**=	

	

Identity	Operators	

	

is,	is	not	

	

Membership	operators	

	

in,	not	in	

	

Logical	operators	

	

OR,	AND,	NOT	

	

	

	

	

	

Step	14:						Built-in	Functions
	

Python	 comes	 with	 several	 built-in	 functions	 that	 you	 can	 readily	 use	 to	 create	 useful
programs.	You	have	learned	some	of	them	in	earlier	lessons.	In	this	section,	you	will	learn
the	most	commonly	used	functions.
	

Here	is	a	tabulation	of	all	built-in	functions	in	Python	3:
	

	

	

abs()	

	

all()	

	

ascii()	

	

any()	

	

bin()	

	

bool()	

	

bytes()	

	

bytearray()	

	

callable()	

	

chr()	

	

compile()	

	

classmethod()	

	

complex()	

	

delattr()	

	

dir()	

	

dict()	

	

divmod()	

	

enumerate()	

	

exec()	

	

eval()	

	

filter()	

	

format()	

	

float()	

	

frozenset()	

	

global()	

	

getattr()	

	

hasattr()	

	

hash()	

	

hex()	

	

help()	

	

__import__()	

	

id()	

	

input()	

	

int()	

	

issubclass()	

	

isinstance()	

	

iter()	

	

list()	

	

len()	

	

locals()	

	

max()	

	

map()	

	

min()	

	

memoryview()	

	

next()	

	

object()	

	

open()	

	

oct()	

	

ord()	

	

print()	

	

pow()	

	

property()	

	

repr()	

	

range()	

	

round()	

	

reversed()	

	

set()	

	

slice()	

	

setattr()	

	

sorted()	

	

str()	

	

sum()	

	

staticmethod()	

	

super()	

	

type()	

	

tuple()	

	

vars()	

	

zip()	

	

The	range()	function
The	 range()	 function	 is	 used	 to	 create	 lists	 that	 contain	 arithmetic	 progressions.	 This
versatile	function	is	most	frequently	used	in	for	loops.	The	syntax	is	range(start,	end,	step)
where	all	arguments	are	plain	integers.	When	only	one	argument	is	given,	Python	ascribes
it	as	the	‘end’	argument.	Omission	of	the	start	argument	sets	the	start	at	the	default	value
of	zero.	Omission	of	the	step	argument	sets	progression	to	the	default	value	of	1.
	

The	range	expression	generates	an	iterator	which	progresses	a	set	of	integers	from	a	given
or	default	starting	value	to	an	ending	value.
	

To	illustrate	how	this	function	works,	type	range(10)	on	the	command	line:
	

>>>range(10)

range(0,	10)

>>>
	

Since	both	the	start	and	progression	values	were	omitted,	the	list	of	numbers	starts	at	the
default	value	of	zero	and	the	step	is	set	to	the	default	value	of	1.
	

To	see	the	list	of	numbers	on	the	given	range,	you	will	use	the	expression	list(range(n)).
	

>>>list	(range(10))

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

>>>
	

Notice	that	the	range	displayed	ended	in	an	integer	(9)	which	is	one	less	than	the	ending
argument	(10)	of	the	range	expression.
	

Here	is	a	range	expression	with	3	arguments:
	

>>>range(2,	34,	2)

range(2,	34,	2)

>>>
	

>>>list	(range(2,	34,	2))

[2,	4,	6,	8,	10,	12,	14,	16,	18,	20,	22,	24,	26,	28,	30,	32]

>>>
	

Take	note	that	the	list	generated	ended	at	an	integer	(32)	which	is	two	(the	step	argument)
less	than	the	ending	argument	(34).
	

Other	examples:
	

>>>range(0,	-14,	-1)

range(0,	-14,	-1)

>>>	list	(range(0,	-14,	-1))

[0,	-1,	-2,	-3,	-4,	-5,	-6,	-7,	-8,	-9,	-10,	-11,	-12,	-13]

>>>	list(range(1,0))

[]

>>>list(range(0,	30,	5))

[0,	5,	10,	15,	20,	25]

>>>

The	input()	Function
Most	programs	require	the	user’s	input	to	work.	Input	can	come	from	a	variety	of	sources
such	 as	 keyboard,	 mouse	 clicks,	 the	 internet,	 database,	 or	 external	 storage	 with	 the

keyboard	 as	 the	most	 commonly	used	 channel.	 Python’s	 input()	 function	handles	 users’
response	through	the	keyboard.	
	

The	 input()	 function	 has	 an	 optional	 parameter,	 a	 prompt	 string.	 Once	 the	 function	 is
called,	the	prompt	string	is	displayed	onscreen	as	the	program	awaits	user’s	input.	Python
returns	the	user’s	response	as	a	string.
	

To	 illustrate,	 here	 is	 a	 program	 snippet	 that	 collects	 keyboard	 input	 for	 first	 name,	 last
name,	and	occupation:
	

name1	=	input(‘Please	enter	your	first	name:	‘)

name2	=	input(‘Please	enter	your	last	name:	‘)

print(‘Good	day,	‘	+	name1	+	‘	‘	+	name2	+	‘!’)

occupation	=	input(‘What	is	your	occupation?	‘)

print(‘So	you	are	a/an	‘	+	occupation	+	‘,	‘	+	name1	+	‘.’	+	‘	Great!’)
	

When	you	run	the	program,	the	first	prompt	string	will	be	displayed	onscreen	as:
	

Please	enter	your	first	name:
	

At	 this	 point,	 the	 program	 is	 waiting	 for	 the	 user’s	 response	 and	 does	 nothing	 until	 a
keyboard	 input	 is	 received.	 Type	 ‘Kurt’.	 The	 program	 will	 return	 the	 response
immediately	after	the	prompt	string:
	

Please	enter	your	first	name:	Kurt
	

After	displaying	‘Kurt’,	the	user’s	response,	the	program	now	proceeds	to	display	the	next
prompt	string:
	

Please	enter	your	last	name:
	

Type	the	name	‘Johnson’	as	your	response	to	the	prompt.
	

Immediately	 after	 returning‘Johnson’,	 the	 program	 will	 execute	 the	 next	 line,	 a	 print
statement.	It	will	then	display	the	next	prompt	string.
	

Good	day,	Kurt	Johnson!

What	is	your	occupation?
	

Type	the	word	student	in	response	to	the	prompt,	as	in	the	following:
	

What	is	your	occupation?	student
	

After	returning	‘student’,	the	program	will	process	the	next	line,	another	print	statement:
	

So	you	are	a/an	student,	Kurt.	Great!
	

After	the	program’s	execution,	this	is	what	you	will	see	on	your	monitor:
	

Please	enter	your	first	name:	Kurt

Please	enter	your	last	name:	Johnson

Good	day,	Kurt	Johnson!

What	is	your	occupation?	student

So	you	are	a/an	student,	Kurt.	Great!
	

	

When	writing	your	own	program,	make	sure	that	you	provide	white	spaces	in	appropriate
places.	 This	 is	 important	 for	 better	 readability.	 You	 wouldn’t	 want	 the	 user’s	 input	 to
crowd	the	prompt	string	so	you	have	to	provide	a	space	before	the	closing	quotation	mark.
For	 instance,	 if	 you	 fail	 to	 allocate	 white	 spaces	 in	 the	 above	 example,	 the	 whole
interaction	will	look	like	this:
	

Please	enter	your	first	name:Kurt

Please	enter	your	last	name:Johnson

Good	day,KurtJohnson!

What	is	your	occupation?student

So	you	are	a/anstudent,Kurt.Great!
	

Password	Verification	Program
This	simple	program	will	put	together	what	you	have	learned	about	input(),	dictionary,	and
print().
	

Likewise,	it	will	introduce	you	to	an	if…else	code	block,	one	of	the	conditional	structures
supported	by	Python.
	

An	 if…else	 block	 first	 evaluates	 the	 expression	 given	 in	 the	 ‘if’	 statement.	 If	 the	 test
condition	is	True,	the	statement(s)	in	the	‘if’	body	is	executed.	If	False,	the	statement(s)	in
the	‘else’	block	is	executed.
	

This	 program	 makes	 use	 of	 a	 dictionary	 to	 store	 key:value	 pairs	 of	 usernames	 and
password.	It	uses	the	input()	function	to	obtain	the	username	then	applies	the	membership
test	to	check	if	the	response	matches	with	one	of	the	keys	in	the	dictionary.	If	yes,	then	the
program	uses	the	get()	method	to	retrieve	the	value	stored	in	the	given	key	and	stores	the
value	 in	 the	variable	pword.	 It	 then	prompts	 the	user	 to	enter	a	password	and	stores	 the
response	in	the	variable	password.	Next,	the	program	tests	if	pword	is	equal	to	pword	and
prints	a	‘Thank	you!’	string	if	equal.	If	not,	it	prints	a	string	that	asks	the	user	to	try	again.
	

The	‘else’	statement	at	the	end	of	the	program	is	executed	if	the	given	username	does	not
match	any	of	the	keys	in	the	dictionary.
	

	

usernames	=	{‘Adrian’:‘123456’,	‘John’:‘GVEST’,	‘Richard’:‘REJ321’,	‘Caleb’:‘875’}	

	

		

	

user	=	input(“Please	enter	your	username:	“)	

	

if	user	in	usernames:	

	

						pword	=	usernames.get(user)

	

						password	=	input(“Please	enter	your	password:	“)

	

						if	password	==	pword:

	

										print(‘Thank	you!’)

	

						else:

	

										print(‘You	entered	an	incorrect	password.	Please	try	again.’)

	
		

	

else:	

	

					print(‘You	are	not	a	registered	user.’)

	

If	you	run	the	program,	you	may	see	the	following	results:
	

Please	enter	your	username:	Adrian

Please	enter	your	password:	123456

Thank	you!

>>>
	

Please	enter	your	username:	Caleb

Please	enter	your	password:	QED

You	entered	an	incorrect	password.	Please	try	again.

>>>
	

Please	enter	your	username:	Michelle

You	are	not	a	registered	user.

>>>

Using	input()	to	add	elements	to	a	List
This	program	uses	 input	 to	append	 the	user’s	 response	 to	an	existing	 list	 then	prints	 the
updated	number	of	members	and	the	items	stored	on	the	updated	list.
	

	

members	=	[“Marc”,	“Jane”,	“Joshua”,	“Kian”,	“May”,	“Jessica”]	

	

name	=	input(“Please	enter	your	name:	“)	

	

print(“Thanks	for	joining	the	Student	Organization,	”	+	name	+	“!”)	

	

members.append(name)	

	

total	=	len(members)	

	

totalstr	=	str(total)	

	

print(“There	are	now	”	+	totalstr	+	”	members:	“)	

	

print(members)	

	

	

Run	the	program.	At	the	prompt	for	name,	enter	Jasmine.
	

Here	is	what	Python	returns:
	

Please	enter	your	name:	Jasmine

Thanks	for	joining	the	Student	Organization,	Jasmine!

There	are	now	7	members:

[‘Marc’,	‘Jane’,	‘Joshua’,	‘Kian’,	‘May’,	‘Jessica’,	‘Jasmine’]

>>>
	

A	program	that	sorts	on	ascending	basis	words	from	a	string	entered	by	a	user:
	

First,	ask	the	user	to	enter	a	string:

str	=	input(“Enter	a	sentence:	“)
	

Then	split	the	string	to	form	a	list	of	words:

words	=	str.split()
	

Then	sort	the	list:

words.sort()
	

Then	print	the	sorted	list:

for	x	in	words:

			print(x)
	

Run	the	program	and	enter	a	sentence	after	the	string	prompt.
	

Enter	a	sentence:	Python	has	many	useful	string	methods.
	

	

After	evaluating	the	string	entered,	Python	displays	each	word	in	the	sentence	as	a	list	of
words:
	

Python

has

many

methods.

string

useful

>>>

The	print()	Function

For	the	interpreter	to	recognize	the	print	function,	you	have	to	enclose	the	print	parameters
inside	parentheses.
	

Examples:
	

>>>	print(“This	is	the	print	function.”)

This	is	the	print	function.

>>>	print(15)

15

>>>print(3**3)

27

>>>
	

Python	can	print	multiple	values	within	the	parentheses.	The	values	must	be	separated	by
a	comma.
	

To	illustrate,	here	are	three	variable	assignment	statements:
	

>>>a	=	“employee”

>>>b	=	“age”

>>>c	=	25

>>>print(“requirements	:	“,	a,	b,	c)
	

Here’s	the	output:
	

requirements	:		employee	age	25

abs()
The	abs()	 function	 returns	 the	absolute	value	of	 integers	or	 floats.	The	value	 returned	 is
always	a	positive	number.
	

Examples:
	

>>>abs(-18)

18

>>>	abs(30)

30

>>>abs(-88.5)

88.5

>>>
	

The	abs()	function	returns	the	magnitude	when	the	arguments	used	are	complex	numbers.
	

>>>abs(2	+	2j)

2.8284271247461903

>>>abs(1	-	3j)

3.1622776601683795

>>>

max()
The	max()	function	returns	the	largest	value	among	two	or	more	numeric	type	data	given
as	arguments.
	

Examples:
	

>>>max(-100,	4,	25,	17)

25

>>>max(2o,	-50,	5,	-70)

20

>>>

min()
The	min()	function	returns	the	least	value	among	two	or	more	numeric	data	types	given	as
arguments.
	

Examples:
	

>>>min(10,	-60,	5,	0)

-60

>>>min(4,	0,	65,	1)

0

>>>

type()
The	type()	function	returns	the	data	type	of	the	given	argument.
	

Examples:
	

>>>type(“Python	is	a	powerful	programming	language.”)

<class	‘str’>

>>>type(25)

<class	‘int’>

>>>type(40.5)

<class	‘float’>

>>>type(2	+3j)

<class	‘complex’>

>>>
	

	

	

	

Step	15:		Conditional	Statements
	

Decision	making	 structures	 are	 necessary	 in	 situations	when	you	want	 your	 program	 to
perform	an	action	or	a	calculation	only	when	a	certain	condition	is	met.	Decision	making
constructs	 begin	 with	 a	 Boolean	 expression,	 an	 expression	 that	 returns	 either	 True	 or
False.	 The	 response	 will	 be	 used	 as	 a	 basis	 for	 determining	 how	 the	 program	 flows.
Python	supports	the	following	conditional	statements:
	

if	statements

if	else	statements

elif	statements

else

nested	if…elif…else	statements

if	statements
An	 if	 statement	 stars	with	 a	Boolean	 expression	 followed	 by	 a	 statement	 or	 a	 group	 of
statements	 that	 tells	 what	 action	 should	 be	 done	 if	 the	 test	 expression	 is	 True.	 An	 if
statement	uses	the	following	syntax:
	

	

if	expression:	

	

					statement(s)

	

Python	 evaluates	 the	 ‘if’	 expression	 and	 executes	 the	 body	 of	 the	 program	 only	 if	 the
evaluation	is	True.	You	must	take	note	of	the	indentation	of	the	statements	on	the	body	of
the	if	expression.	The	first	unindented	line	indicates	the	end	of	an	if	block.
	

To	 illustrate,	here’s	a	program	 that	collects	keyboard	 input	and	uses	 the	 response	as	 the
basis	for	succeeding	actions.
	

This	 program	 asks	 the	 user	 to	 enter	 a	 vowel	 and	 prints	 a	 string	 if	 the	 input	meets	 the
condition.																														
	

	

vowels	=	[‘A’,	‘E’,	‘I’,	‘O’,	‘U’,	‘a’,	‘e’,‘i’,	‘o’,	‘u’]	

	

		

	

letter	=	input(“Enter	a	vowel:	“)	

	

if	letter	in	vowels:	

	

					print(“Thank	you,	you	may	use	this	computer.”)

	

print(“You	may	only	enter	one	of	the	vowels	to	proceed.”)	

	

Here’s	the	output	when	you	enter	a	vowel	in	response	to	the	prompt:
	

Enter	a	vowel:	o

Thank	you,	you	may	use	this	computer.

You	may	only	enter	one	of	the	vowels	to	proceed.

>>>
	

Assuming	you	enter	the	consonant	H,	here’s	what	the	output	would	be:
	

Enter	a	vowel:	H

You	may	only	enter	one	of	the	vowels	to	proceed.

if…else	statements
An	if…else	statement	block	first	evaluates	the	‘if	expression’.	If	the	test	condition	is	True,
Python	 executes	 the	 statements	 in	 the	 body	 of	 the	 ‘if	 statement’.	 Otherwise,	 if	 the
condition	is	False,	Python	executes	the	statements	in	the	else	block.
	

An	if…else	statement	has	the	following	syntax:
	

	

if	test	expression:	

	

					statement(s)

	

else:	

	

					statement(s)

	

To	illustrate,	here’s	a	program	which	uses	the	‘if..else’	structure:
	

This	program	checks	if	a	food	order	is	on	stock	and	prints	appropriate	string
	

	

stock	=	[hamburger’,	‘pizza’,	‘hotdog’,	‘barbeque’]	

	

		

	

order	=	input(“Please	enter	your	order:	“)	

	

if	order	in	stock:	

	

					print(“Thank	you.	Your	order	will	be	served	in	5	minutes.”)

	

else:	

	

					print(“Sorry,	we	don’t	serve	”	+	order	+	”	at	the	moment.”

	

	

If	you	run	the	program	and	enter	pizza	at	the	prompt,	here’s	what	it	does:
	

Please	enter	your	order:	pizza

Thank	you.	Your	order	will	be	served	in	5	minutes.

	

Run	the	program	again.	This	time,	enter	something	that’s	not	on	stock,	‘ice	cream’.
	

	

Here’s	the	output:
	

Please	enter	your	order:	ice	cream

Sorry,	we	don’t	serve	ice	cream	at	the	moment.

if…elif…else	statements
An	elif	(else	if)	statement	can	be	used	when	there	is	a	need	to	check	or	evaluate	multiple
expressions.	An	if…elif…else	structure	first	checks	if	the	‘if	statement’	is	True.
	

If	true,	then	Python	executes	the	statements	in	the	if	block.	If	False,	it	tests	the	condition
in	the	elif	block.	If	the	elif	statement	is	evaluated	as	True,	Python	executes	the	statements
in	the	elif	block.	Otherwise,	control	passes	to	the	else	block.	An	if	block	can	have	as	many
elif	blocks	as	needed	but	it	can	only	have	one	else	block.
	

An	if…elif…else	statement	has	the	following	syntax:
	

	

if	expression:	

	

					if	block

	

elif	expression:	

	

					elif	block

	

else:		

	

					else	block

	

To	illustrate,	here	is	a	simple	program	with	an	if…elif..else	structure:

	

This	program	checks	if	a	food	order	is	in	the	list	of	foods	that	can	be	served	in	5

Minutes.	If	not,	it	checks	if	the	food	order	is	in	the	list	of	foods	that	can	be	served	in	15
minutes.	 If	 the	 food	 is	 not	 found	 in	 either	 list	 of	 foods,	 program	 prints	 an	 appropriate
statement.
	

	

stock1	=	[‘hamburger’,	‘pizza’,	‘hotdog’,	‘barbeque’]	

	

stock2	=	[‘Fried	Chicken’,	‘French	Fries’,	‘Chips’,	‘Apple	Pie’]	

	
		

	

order	=	input(“Please	enter	your	order:	“)	

	

if	order	in	stock1:	

	

					print(“Thank	you.	Your	order	will	be	served	in	5	minutes.”)

	

elif	order	in	stock2:	

	

					print(“Are	you	willing	to	wait?	Your	order	will	be	served	in	15	minutes.”)

	

else:	

	

					print(“Sorry,	we	don’t	serve	”	+	order	+	”	at	the	moment.”)													

	

	

If	you	run	the	program	and	enter	‘hamburger’,	here’s	what	the	program	does:
	

Please	enter	your	order:	hamburger

Thank	you.	Your	order	will	be	served	in	5	minutes.

	

Run	the	program	again	and	enter	‘Fried	Chicken’,	an	item	in	the	list	stock2:
	

Please	enter	your	order:	Fried	Chicken

Are	you	willing	to	wait?	Your	order	will	be	served	in	15	minutes.
	

If	you	run	 the	program	again	and	enter	a	 food	 item	that’s	not	on	either	 list,	Mango	Pie,
here’s	what	the	output	would	be:
	

Please	enter	your	order:	Mango	Pie

Sorry,	we	don’t	serve	Mango	Pie	at	the	moment.

nested	if…elif…else	statements
In	programming,	nesting	is	the	practice	of	organizing	information,	sequence,	loop,	or	logic
structures	 in	 layers.	Python	allows	conditional	 statements	 to	contain	another	 conditional
statement.	This	structure	is	found	in	nested	if…elif…else	statements.	Nested	conditional
statements	are	used	whenever	there	is	a	need	to	check	for	another	condition	after	the	first
condition	has	been	evaluated	as	True.	Nesting	can	go	as	deep	as	you	would	want	it	to	go.
	

An	if…elif…else	statement	has	the	following	syntax:
	

	

if	test_expression1:	

	

				if	test_expression1-a:

	

							statement_block1-a

	

				elif	test_expression1-b:

	

							statement_block1-b

	

				else

	

							statement_block1-c

	

elif	test_expression2:	

	

				statement_block2

	

else:	

	

				statement_block3

	

	

To	illustrate,	here	is	a	program	that	uses	the	if…elif…else	block:
	

This	program	asks	for	the	user’s	age	and	prints	appropriate	string	based	on	the		response.
	

	

num	=	int(input(“Enter	your	age:	“))	

	

if	num	>=	20:	

	

					if	num	>=	60:

	

									print(“Please	register	with	the	Seniors	Club.”)

	

					elif	num	>=	36:

	

									print(“You	belong	to	the	MiddleAgers	Club.”)

	

					else:

	

									print(“Please	register	with	the	Young	Adults	Club.”)

	

elif	num	>	12:		

	

					print(“You	belong	to	the	Youth	Club.”)

	

else:	

	

					print	(“Sorry,	you	are	too	young	to	be	a	member.”)

	
		

	

Here’s	how	the	program	responds:
	

Enter	your	age:	65

Please	register	with	the	Seniors	Club.
	

Enter	your	age:	36

You	belong	to	the	MiddleAgers	Club.
	

Enter	your	age:	22

Please	register	with	the	Young	Adults	Club.
	

Enter	your	age:	13

You	belong	to	the	Youth	Club.
	

Enter	your	age:	12

Sorry,	you	are	too	young	to	be	a	member.

	

Step	16:Python	Loops
	

	

A	loop	is	a	control	structure	that	allows	the	repetitive	execution	of	a	statement	or	group	of
statements.	Loops	facilitate	complicated	execution	paths.

The	for	Loop
The	‘for	loop’	is	used	to	iterate	over	elements	of	sequential	data	types	such	as	lists,	strings,
or	tuples.
	

Its	syntax	is:
	

	

for	val	in	sequence:	

	

					statement(s)

	

In	the	for	statement,	the	variable	‘val’stores	the	value	of	each	item	on	the	sequence	with
every	iteration.	The	loop	goes	on	until	all	elements	are	exhausted.
	

Examples:
For	Loop	with	string:
	

>>>for	letter	in‘programming’:						

print(‘<’,	letter,	‘>’)
	

Here’s	what	you	will	see	on	your	screen:
	

<	p	>

<	r	>

<	o	>

<	g	>

<	r	>

<	a	>

<	m	>

<	m	>

<	i	>

<	n	>

<	g	>

>>>

For	Loop	with	list
	

	

weather	=	[‘sunny’,	‘windy’,	‘rainy’,	‘stormy’,	‘snowy’]	

	

		

	

for	item	in	weather:	

	

					print(“It’s	a”,	item,	“day!”)

	

		

	

print(“Dress	appropriately!”)	

	

This	is	the	output	when	you	run	the	loop:
	

It’s	a	sunny	day!

It’s	a	windy	day!

It’s	a	rainy	day!

It’s	a	stormy	day!

It’s	a	snowy	day!

Dress	appropriately!

>>>

for	loop	with	a	tuple
	

	

color	=	(‘red’,	‘blue’,	‘pink’,	‘green’,	‘yellow’)	

	

		

	

for	x	in	color:	

	

					print(“I’m	wearing	a”,	x,	“shirt!”)

	

		

	

print(“Multi-colored	shirts	are	cool!”)	

	

This	is	the	output	when	you	run	the	loop:
	

I’m	wearing	a	red	shirt!

I’m	wearing	a	blue	shirt!

I’m	wearing	a	pink	shirt!

I’m	wearing	a	green	shirt!

I’m	wearing	a	yellow	shirt!

Multi-colored	shirts	are	cool!

>>>
	

	

Here	is	a	 loop	that	evaluates	whether	a	number	 is	even	or	odd.	It	prints	 the	number	and
state	if	it	is	an	even	or	odd	number.
	

	

numbers	=	[10,	99,	3,	28,	41,	40,	5,	9,	66]	

	

		

	

for	n	in	numbers:	

	

					if	n	%	2	==	0:

	

									print(n,	“is	an	even	number.”)

	

					else:

	

									print(n,	“is	an	odd	number.”)

	

10	is	an	even	number.

99	is	an	odd	number.

3	is	an	odd	number.

28	is	an	even	number.

41	is	an	odd	number.

40	is	an	even	number.

5	is	an	odd	number.

9	is	an	odd	number.

66	is	an	even	number.

>>>
	

Using	for	loop	with	the	range()	function
The	range()	function	can	be	used	to	provide	the	numbers	required	by	a	loop.	For	example,
if	you	need	the	sum	of	1	plus	all	the	numbers	form	1	up	to	15:
	

	

x	=	15	

	

		

	

total	=	0	

	

for	number	in	range(1,	x+1):	

	

					total	+=	number

	

		

	

print(“Sum	of	1	and	numbers	from	1	to	%d:	%d”	%	(x,	total))	

	

When	you	run	the	program,	you	will	have	this	output:
	

Sum	of	1	and	numbers	from	1	to	15:	120

>>>

The	While	Loop
	

The	 ‘while	 loop”	 is	 used	when	you	need	 to	 repeatedly	 execute	 a	 statement	 or	 group	of
statements	 while	 the	 test	 condition	 is	 True.	When	 the	 test	 condition	 is	 no	 longer	 true,
program	control	passes	to	the	line	after	the	loop.
	

A	while	loop	has	this	syntax:
	

	

while	condition	

	

					statement(s)

	

Here	is	a	program	that	adds	number	up	to	num	where	num	is	entered	by	the	user.	The	total
=	1+2+3+4…	up	to	the	supplied	number.
	

Example:
	

	

number	=	int(input(“Enter	a	number:	“))	

	

		
	
		

	
		

	

#initialize	total	and	counter	

	

total	=	0	
	
		

	
		

	

c	=	1	
	
		

	
		

	

		
	
		

	
		

	

while	c	<=	number:	
	
		

	

					total	=	total	+	c
	
		

	

					c	+=	1			
	
		

	

		
	
		

	
		

	

#print	the	total	
	
		

	

print(“The	total	is:	“,	total)	

	

	

Enter	a	number:	5												

The	total	is:		15

>>>

Break	Statement
A	break	statement	ends	the	present	loop	and	instructs	Python	to	execute	the	first	statement

next	 to	 the	 loop.	 In	 nested	 loops,	 a	 break	 statement	 terminates	 the	 innermost	 loop	 and
instructs	 the	 interpreter	 to	 execute	 the	 line	 that	 follows	 the	 terminated	 block.	 A	 break
statement	is	commonly	used	to	prevent	the	execution	of	the	‘else	statement’.	It	is	used	to
end	the	current	iteration	or	the	entire	loop	regardless	of	the	test	condition	or	when	external
conditions	require	immediate	exit	from	the	loop.
	

	

The	syntax	of	the	break	statement	is:
	

	

break	

	

Here	is	a	loop	that	ends	once	it	reaches	the	word	‘sloth’:
	

	

animals	=	[‘lion’,	‘tiger’,	‘monkey’,	‘bear’,	‘sloth’,	‘elephant’]	

	

		

	

	for	name	in	animals:				

	

				if	name	==	‘sloth’:

	

							break

	

				print(‘Cool	animal:’,	name)

	

print(“Amazing	animals!”)	

	

	

Run	the	module	to	see	this	output:
	

Cool	animal:	lion

Cool	animal:	tiger

Cool	animal:	monkey

Cool	animal:	bear

Amazing	animals!

>>>

Continue	Statement
The	 continue	 statement	 skips	 remaining	 statement(s)	 in	 the	 present	 iteration	 and	 directs
the	program	to	the	next	iteration.
	

The	syntax	is:
	

	

continue	

	

The	break	statement	in	the	previous	example	may	be	replaced	with	the	continue	statement:
	

	

animals	=	[‘lion’,	‘tiger’,	‘monkey’,	‘bear’,	‘sloth’,	‘elephant’]	

	

		

	

	for	name	in	animals:				

	

				if	name	==	‘sloth’:

	

							continue

	

				print(‘Cool	animal:’,	name)

	

print(“Amazing	animals!”)	

	

	

Here’s	the	output:
	

Cool	animal:	lion

Cool	animal:	tiger

Cool	animal:	monkey

Cool	animal:	bear

Cool	animal:	elephant

Amazing	animals!

>>>
	

	

Pass	Statement
A	pass	is	a	null	operation	in	Python.	The	interpreter	reads	and	executes	the	pass	statement
but	 returns	 nothing.	 A	 pass	 statement	 is	 commonly	 used	 as	 a	 place	 holder	 whenever
Python’s	syntax	requires	a	 line	 that	you	can’t	provide	at	 the	moment.	 It	 is	used	 to	mark
codes	that	will	eventually	be	written.
	

The	syntax	is:
	

	

pass	

	

Examples:
	

Pass	in	an	emptycode	block:

for	l	in	my_list:

				pass
	

Pass	in	an	empty	function	block:

def	my_function(a):						

				pass

Pass	as	placeholder	in	an	incomplete	class	block:

class	Jobs:

				pass

Looping	Techniques
The	‘for	loop’	and	the	‘while	loop’	can	be	combined	with	loop	control	statements	to	create
various	loop	forms.

Infinite	loops	(while	loop)
The	infinite	loop	is	formed	with	the	while	statement.	You’ll	get	an	infinite	loop	when	the
specified	test	condition	is	always	True.	Following	is	an	example	of	an	infinite	loop.	The
program	imports	the	math	module	and	uses	the	square	root	method	on	the	given	number.
To	leave	the	loop,	you	will	have	to	press	Ctrl-c.
	

IMPORTANT
We	will	discuss	importing	math	modules	in	Step	18.
	

	

	

import	math	

	

		

	

while	True:	

	

				num	=	int(input(“Enter	a	number:	“))

	

				print(“The	square	root	of”	,num,	“is”,	math.sqrt(num))

	

Here’s	the	output:
	

Enter	a	number:	9

The	square	root	of	9	is	3.0

Enter	a	number:	4

The	square	root	of	4	is	2.0

Enter	a	number:	8

The	square	root	of	8	is	2.8284271247461903

Enter	a	number:	49

The	square	root	of	49	is	7.0

Enter	a	number:

>>>
	

Because	the	condition	will	always	be	True,	the	while	loop	will	continue	to	execute	and	ask
the	user	to	enter	a	number.

Loops	with	top	condition	(while	loop)
A	while	 loop	with	 a	 condition	placed	 at	 the	 top	 is	 a	 standard	while	 loop	with	no	break
statements.	 The	 loop	 ends	 when	 the	 condition	 becomes	 False.	 Here	 is	 a	 program	 that
illustrates	this	form	of	while	loop:
	

	

x	=	int(input(“Enter	a	number:	“))	

	

		

	

#initialize	total	and	counter	

	

total	=	0	

	

count	=	1	

	

		

	

while	count	<=	x:	

	

				total	=	total	+	count

	

				count	=	count	+	1				#	updates	counter

	

		

	

#	prints	the	total	

	

print(“The	total	is”,total)	

	

Here’s	the	output	when	you	enter	the	numbers	4	and	7:
	

Enter	a	number:	4

The	total	is	10

>>>
	

Enter	a	number:	7

The	total	is	28

>>>

Loops	with	middle	condition
This	loop	is	usually	implemented	with	an	infinite	loop	and	a	conditional	break	in	between
the	loop’s	body.

This	program	takes	input	from	user	until	the	desired	input	is	entered.
	

	

letters	=	“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz”	

	

		

	

#	infinite	loop	

	

while	True:	

	

				l	=	input(“Enter	a	letter:	“)

	

				#	condition	in	the	middle

	

				if	l	in	letters:

	

								break

	

				print(“That	is	not	a	letter.	Please	try	again!”)

	

		

	

print(“Perfect!”)	

	

	

Run	the	program	and	try	entering	a	number.	The	program	will	run	infinitely	if	you	insist
on	entering	a	number.
	

Enter	a	letter:	5

That	is	not	a	letter.	Please	try	again!

Enter	a	letter:	3

That	is	not	a	letter.	Please	try	again!

>>>
	

Enter	a	letter	and	the	break	statement	will	be	executed.	Program	flow	will	continue	to	the
next	line,	a	print	statement.
	

Enter	a	letter:	a

Perfect!

>>>

Loops	with	condition	at	the	end
In	this	looping	technique,	the	loop’s	body	is	run	at	least	once.	It	can	be	run	with	an	infinite
loop	and	a	conditional	break	at	the	bottom.
	

Here’s	a	program	to	illustrate	this	type	of	loop:

	

This	program	chooses	a	random	number	until	the	user	opts	to	exit,	it	imports	the	random
module	and	uses	the	randint()	method.
	

	

import	random	

	

		

	

while	True:	

	

				input(“Press	enter	to	draw	a	number	“)

	

				#	get	a	number	between	1	to	20

	

				number	=	random.randint(1,20)

	

				print(“You	got”,number)

	

				choice	=	input(“Do	you	want	to	play	again?(y/n)	“)

	

		

	

				if	choice	==	‘n’:

	

								break

	

When	you	run	the	program,	the	loop	goes	on	infinitely	until	you	press	‘n’	which	leads	to	a
break	statement	that	ends	the	loop.	
	

Press	enter	to	draw	a	number

You	got	6

Do	you	want	to	play	again?(y/n)	y

Press	enter	to	draw	a	number

You	got	10

Do	you	want	to	play	again?(y/n)	y

Press	enter	to	draw	a	number

You	got	9

Do	you	want	to	play	again?(y/n)	n

>>>
	

	

	

Step	17:			User-Defined	Functions
	

	

A	function	is	a	block	of	organized	and	related	statements	that	is	used	to	perform	a	specific
task.	It	is	a	structuring	element	that	allows	a	code	to	be	used	repeatedly	in	different	parts
of	 a	 program.	 Using	 functions	 enhances	 program	 readability	 and	 comprehensibility.
Functions	help	make	programming	more	efficient	by	minimizing	repetitions	and	breaking
down	long	and	complex	programs	into	smaller	and	manageable	segments.
	

Functions	 are	 also	 called	 methods,	 procedures,	 subprograms,	 routines,	 or	 subroutines.
There	are	 two	 types	of	 functions	 in	Python:	built-in	and	user-defined.	Built-in	 functions
are	 those	 that	 are	 provided	 by	 Python	 and	 are	 immediately	 available.	 User-defined
functions	are	created	by	users	according	to	Python’s	syntax.
	

A	function	is	defined	with	the	syntax:
	

	

def	function_name(parameters):	

	

				“““docstring”””

	

				function	body

	

Here’s	an	example	of	a	function:
	

>>>def	greet(name):

			“““Greets	the	person

			passed	as	argument”””

print(“Hello,	”	+	name	+	“.	Good	day!”)

>>>
	

It’s	a	good	practice	to	name	your	function	according	to	the	work	they	perform.
	

A	block	of	code	that	defines	a	function	consists	of	the	following	parts:

1.	def	keyword						
The	 keyword	 ‘def’	 defines	 and	 names	 the	 function	 and	 indicates	 the	 beginning	 of	 the
function	header.

2.	function	name						
A	 function	 is	 identified	 by	 a	 unique	 name	 that	 is	 given	 to	 it	 in	 the	 function	 header
statement.	Function-naming	follows	the	rules	set	for	writing	identifiers.
	

	

3.	parameters						
Parameters	 (argument)	 are	 optional	 and	 are	 used	 to	 pass	 values	 to	 functions.	 They	 are
written	inside	parentheses.
	

4.	colon	(:)												
A	colon	marks	the	end	of	function	headers.
	

5.	docstring						
A	documentation	string	or	docstring	 is	an	optional	component	 that	 is	commonly	used	 to
describe	what	 the	 function	does.	 It	 is	written	on	 the	 line	next	 to	 the	 function	header.	A
docstring	can	span	up	to	several	lines	and	are	enclosed	in	triple	quotes.	You	can	access	the
docstring	with:	function_name.__doc__.
	

For	example,	this	function	has	a	two-line	docstring	enclosed	in	triple	quotes:
	

>>>def	greet(name):

			“““Greets	the	person

			passed	as	argument”””

print(“Hello,	”	+	name	+	“.	Good	day!”)

>>>
	

To	access	the	docstring,	print	the	__doc__	attribute	of	the	function	‘greet’.
	

>>>	print(greet.__doc__)

Greets	the	person

			passed	as	argument

>>>
	

Likewise,	you	can	access	the	string	through	the	>>>	prompt:

>>>	greet.__doc__

‘Greets	the	person\n			passed	as	argument’

>>>

6.	statement(s)						
A	function’s	body	consists	of	one	or	more	valid	 statements.	Multiple	 statements	use	 the
same	indentation	to	form	a	block.
	

7.	return	statement						
A	return	statement	 is	used	 to	 return	a	value	from	a	function.	 If	a	 return	statement	 is	not
given	inside	a	function,	the	function	will	return	the	object	‘None’.
	

Here	is	the	syntax	for	the	return	statement:
	

	
return	[expression_list]	

	

This	function	lacks	a	return	statement.	Hence,	it	returns	‘None’.
	

>>>def	greet(name):

			“““Greets	the	person

			passed	as	argument”””

print(“Hello,	”	+	name	+	“.	Good	day!”)

>>>print(greet(“John”))

Hello,	John.	Good	day!

None

>>>
	

Here’s	a	function	with	a	return	statement:
	

	

def	absolute_value(number):	

	

				“““Returns	the	absolute	value	of

	

							a	number	entered	by	user”””

	

				if	number	>=	0:

	

								return	number

	

				else:

	

								return	-number

	

		

	

print(absolute_value(12))	

	

print(absolute_value(-100))	

	

print(absolute_value(-50))	

	

	

When	 you	 run	 the	 program,	 the	 function	 will	 return	 the	 absolute	 value	 of	 the	 given
integers:
	

12

100

50

>>>
	

Here	is	a	function	with	a	parameter	and	return,	a	function	that	evaluates	if	a	given	number

is	an	even	number.	It	is	a	function	which	returns	the	number	if	even,	otherwise,	function
returns	a	string	and	None.
	

def	even_numbers(number):

			if	number	%	2	==	0:

							return	number

			else:

							print(“Sorry,that’s	not	an	even	number.”)
	

print(even_numbers(22))

22
	

print(even_numbers(13))

Sorry,	that’s	not	an	even	number.

None
	

print(even_numbers(14))

14
	

Here	is	a	simple	function:
	

	

def	people_id(name):	

	

				“““This	function	greets	the	person	named	as	parameter.”””

	

				print	(“Hi,	”	+	name	+	“,	Welcome	and	enjoy	your	stay!	Good	day!”)

	

		

	

print(people_id(‘Sean’))	

	

print(people_id(‘Kirsten’))	

	

print(people_id(‘Dax’))	

	

When	you	run	the	program,	you	will	get	this:
	

Hi,	Sean,	Welcome	and	enjoy	your	stay!	Good	day!

None

Hi,	Kirsten,	Welcome	and	enjoy	your	stay!	Good	day!

None

Hi,	Dax,	Welcome	and	enjoy	your	stay!	Good	day!

None

>>>
	

A	function	with	an	if-elif-else	statement:
	

	

def	member_check(x):	

	

					if	x.lower()	==	“y”:

	

									return(“Thanks	for	your	loyalty!”)

	

					elif	y.lower()	==	(“n”):

	

									return(“Please	complete	membership	forms.”)

	

					else:

	

									return(“Please	check	your	response.”)

	

		

	

print(member_check(“y”))	

	

print(member_check(“n”))	

	

print(member_check(“x”))	

	

Here’s	the	output:
	

Thanks	for	your	loyalty!

Please	complete	membership	forms.

Please	check	your	response.

>>>

Calling	a	Function
Once	it	 is	defined,	you	can	call	a	function	in	different	ways.	You	can	call	 it	 through	the
>>>	prompt,	through	another	function,	or	through	a	program.
	

The	simplest	way	to	call	a	function	is	through	the	>>>	prompt.	You	can	do	this	by	typing
the	function	name	and	providing	the	parameters.
	

For	example,	create	a	simple	function	that	prints	a	passed	string:
	

>>>def	stringprinter(str):						

print(str)

return;
	

At	the	prompt,	call	the	stringprinter	function	and	supply	the	arguments:
	

>>>stringprinter(“I’m	working	but	the	stringprinter	called	me!”)

I’m	working	but	the	stringprinter	called	me!

>>>

Using	functions	to	call	another	function
In	Python,	functions	can	call	another	function.

	

For	example:
	

School_sum	calls	the	class_sum	function:
	

	

def	class_sum(num):	

	

					return	num	*	3

	

		

	

def	school_sum(m):	

	

					return	class_sum(m)	+	3

	

		

	

print(school_sum(5))	

	

print(school_sum(8))	

	

print(school_sum(15))	

	

Output:

17												

27												

47												

>>>

Program	to	Compute	for	Weighted	Average
Students’	 periodic	 or	 final	 grades	 are	 generally	 computed	 using	 the	 weighted	 average

method	where	 each	 criteria	 for	 grading	 is	 given	 a	 certain	 percentage	 or	weight.	 In	 this
program,	the	function	get_average	calls	on	another	function,	‘average’,	to	compute	for	the
average	 grade	 on	 each	 grading	 criteria.	 It	 then	 applies	 a	 given	 percentage	 (in	 decimal
format)	against	the	average	grade	for	each	criteria	and	returns	the	total	value.	Finally,	the
program	prints	the	weighted	average	for	each	student.
	

	

Mark	=	{	

	

					“Name”:	“Mark	Spark”,

	

					“Quizzes”:	[89.0,	95.0,	78.0,	90.0],

	

					“Homework”:	[89.0,	60.0,	98.0],

	

					“Recitation”:	[89.0,90.0,	88.0],

	

					“Tests”:	[85.0,	92.0]

	

}	

	

Selen	=	{	

	

					“Name”:	“Selen	Jobs”,

	

					“Quizzes”:	[98.0,	100.0,	95.0,	100.0],

	

					“Homework”:	[85.0,	84.0,	90.0],

	

					“Recitation”:	[87.0,	89.0,	90.0],

	

					“Tests”:	[90.0,	97.0]

	

}	

	

Shane	=	{	

	

					“Name”:	“Shane	Taylor”,

	

					“Quizzes”:	[75.0,	87.0,	95.0,	84.0],

	

					“Homework”:	[92.0,	74.0,	99.0],

	

					“Recitation”:	[80.0,	83.0,	84.0],

	

					“Tests”:	[98.0,	100.0]

	

}	

	

		

	

		

	

def	average(numbers):	

	

					total=sum(numbers)

	

					result=total/len(numbers)

	

					return	result

	
		

	

def	get_average(student):	

	

					Quizzes	=	average(student[“Quizzes”])

	

					Homework	=	average(student[“Homework”])

	

					Recitation	=	average(student[“Recitation”])

	

					Tests	=	average(student[“Tests”])

	

					print(student[“Name”])

	

					return	.2*Quizzes	+	.1*Homework	+	.3*Recitation	+	.4*Tests

	

		

	

print(get_average(Mark))	

	

print(get_average(Selen))	

	

print(get_average(Shane))	

	

The	output	would	be:
	

Mark	Spark

87.93333333333334

Selen	Jobs

92.28333333333333

Shane	Taylor

90.18333333333334

>>>

Anonymous	Functions
While	 you	 would	 normally	 define	 a	 function	 with	 the	 def	 keyword	 and	 a	 name,
anonymous	 functions	 are	 defined	 with	 the	 lambda	 keyword	 and	 without	 a	 name.	 An
anonymous	function	is	variably	called	a	lambda	function.
	

A	lambda	function	has	this	syntax:
	

	

lambda	arguments:	expression	

	

	

A	 lambda	 function	 can	 take	 as	many	 arguments	 as	 you	want	 but	 it	 can	 only	 have	 one
expression.	 That	 single	 expression	 is	 evaluated	 then	 returned.	 You	 can	 use	 a	 lambda
function	anywhere	a	function	object	is	needed.
	

Here	is	an	example	of	a	program	that	uses	the	lambda	function	that	squares	the	value	of
input:
	

	

squared	=	lambda	x:	x	**	2	

	

		

	

print(squared(10))	

	

Output	will	be:

100

>>>
	

In	 the	 above	 sample	 program,	 lambda	 x:	 x	 **	 2	 is	 the	 lambda	 function	where	 x	 is	 the
argument	 and	 x	 **	 2	 is	 the	 expression	 that	 the	 interpreter	 evaluates	 and	 returns.	 The
identifier	‘squared’	holds	the	function	object	returned	by	the	expression.	
	

The	statement	which	assigns	the	lambda	expression	to	‘squared’	is	almost	like	defining	a

function	named	squared	with	the	following	statements:
	

def	squared(x):

			return	x	**	2
	

Lambda	functions	are	commonly	used	when	a	nameless	 function	 is	 required	on	a	short-
term	 basis.	 In	 Python,	 lambda	 functions	 are	 generally	 used	 as	 arguments	 to	 other
functions.	It	is	used	with	built-in	functions	such	as	map()	and	filter().

Lambda	functions	with	map()
	

Python’s	map()	 function	 takes	 in	 a	 list	 and	 another	 function.	 The	 function	 argument	 is
called	with	all	elements	in	the	list	and	returns	a	new	list	containing	elements	returned	from
each	element	in	the	original	list.
	

Here	is	an	example	showing	how	the	map()	function	is	used	with	the	lambda	function	to
get	the	squared	value	of	every	integer	in	the	list.
	

	

num_list	=	[1,	3,	5,	7,	9,	11,	8,	6,	4,	2]	

	

		

	

squared_list	=	list(map(lambda	x:	x	**	2	,	num_list))	

	

print(squared_list)	

	

The	output	will	be:
	

[1,	9,	25,	49,	81,	121,	64,	36,	16,	4]

>>>

Lambda	functions	with	filter()
	

Python’s	filter()	function	takes	in	a	list	and	another	function	as	parameters.	The	function
argument	is	called	with	all	elements	in	the	list	and	returns	a	new	list	containing	elements

returned	from	each	element	in	the	original	list	that	evaluates	to	True.
	

Here	is	an	example	of	 the	usage	of	 the	filter()	 function	in	a	program	that	filters	out	odd
number	from	a	specified	list:
	

	

num_list	=	[12,	4,	1,	8,	9,	6,	11,	5,	2,	20]	

	

		

	

odd_list	=	list(filter(lambda	x:	(x	%	2	!=	0)	,	num_list))	

	

print(odd_list)	

	

The	output	will	be:
	

[1,	9,	11,	5]

>>>

Recursive	Functions
Recursion	 is	a	programming	construct	where	 the	 function	calls	 itself	 at	 least	once	 in	 its
body.	 The	 value	 returned	 is	 usually	 the	 return	 value	 of	 the	 function	 call.	 A	 recursive
function	is	a	function	that	calls	itself.
	

While	recursion	is	often	associated	with	infinity,	a	recursive	function	has	to	terminate	in
order	to	be	used.	A	recursive	function	can	be	brought	to	an	end	by	downsizing	the	solution
with	 every	 recursive	 call	 as	 it	 moves	 gradually	 to	 a	 base	 case.	 The	 base	 case	 is	 the
condition	where	a	problem	can	finally	be	solved	without	recursion.	Recursion	can	result	to
an	infinite	loop	if	the	base	case	is	not	reached	in	the	function	calls.
	

The	use	of	recursive	function	is	illustrated	in	the	computation	of	the	factorial	of	a	number.
A	number’s	factorial	refers	to	the	product	of	all	integers	from	1	to	the	given	integer.	For
example,	 to	 find	 the	 factorial	 of	 5	 (written	 as	 5!):	 1*2*3*4*5	 =	 	 120.	 The	 problem	 is
solved	by	multiplying	the	value	returned	from	the	previous	multiplication	operation	with
the	current	integer	until	it	reaches	5.
	

Factorial	is	implemented	in	Python	using	the	following	code:

	

	

def	factorial(num):	

	

					if	num	==	1:

	

									return	1

	

					else:

	

									return	num	*	factorial(num-1)

	

Run	the	program	and	use	the	print	function	to	find	the	factorial	for	the	numbers	5	and	7:
	

>>>print(factorial(5))

120

>>>print(factorial(7))

5040

>>>

Scope	and	Lifetime	of	a	Variable
A	variable’s	 scope	 refers	 to	 the	part	 of	 a	program	where	 it	 is	 recognized.	Variables	 and
parameters	defined	within	a	function	has	a	scope	that	is	limited	within	the	said	function.	A
variable’s	 lifetime	 is	 the	period	 throughout	which	 it	 exists	 in	memory.	The	 lifetime	of	a
variable	 within	 a	 function	 coincides	 with	 the	 function’s	 execution.	 Such	 variable	 is
destroyed	 once	 the	 return	 is	 reached.	 A	 function	 does	 not	 have	 a	 recollection	 of	 a
variable’s	previous	values.
	

	

	

	

Step	18:	Python	Modules
	

Any	file	that	contains	proper	Python	code	and	has	the	.py	extension	can	be	called	a	Python
module.	 Modules	 contain	 statements	 and	 definitions.	 They	 usually	 contain	 arbitrary
objects	 such	 as	 classes,	 functions,	 files,	 attributes,	 and	 common	 Python	 statements	 like
those	 that	 initialize	 the	 module.	 These	 objects	 can	 be	 accessed	 by	 importing	 them.
Modules	help	break	down	large	programs	into	manageable	files.	They	also	promote	code
reusability.	You	can,	in	fact,	gather	the	most	frequently	used	functions,	save	them	in	one
module,	and	import	them	in	your	other	programs.
	

Modules	 are	 known	 by	 their	 main	 filename,	 that	 is,	 without	 the	 .py	 extension.	 For
example,	create	a	module	and	save	it	as	multiplier.py.
	

def	multiply	(a,	b):

product	=	a	*	b

			return	product
	

The	module	will	then	be	known	as	multiplier.

Importing	a	Module
Importing	a	module	allows	us	to	access	the	objects,	statements,	and	definitions	it	contains.
There	are	different	ways	to	import	a	module.
	

Through	a	dot	(.)	operator
	

For	 example,	 if	 you	 want	 to	 reuse	 the	 multiplier	 module,	 you	 can	 use	 the	 following
statements:
	

>>>import	multiplier

>>>	multiplier.multiply	(5,	3)

15

>>>

Python’s	Math	Module
Importing	 the	 math	 module	 allows	 Python	 users	 to	 access	 attributes	 and	 mathematical
functions	and	constants	such	as	sin()	and	cosine()	functions,	pi,	and	square	root.	One	you
import	 the	 math	 module,	 you	 can	 simply	 place	 math	 and	 a	 dot	 before	 the	 attribute	 or
function.

	

To	import	the	math	module:
	

>>>import	math

>>>
	

The	above	statement	is	an	example	of	a	generic	import	where	you	only	import	the	module
without	 specifying	 a	 function.	 The	 statement	 gives	 you	 access	 to	math	module’s	 entire
definition.
	

To	import	specific	math	definitions,	attributes,	or	functions,	you	will	just	simply	type	them
after	math	and	a	dot.	For	example:
	

>>>math.pi

3.141592653589793

>>>	math.sqrt(100)

10.0

>>>	math.gcd(16,	8)

8

>>>	math.fabs(-12)

14.0

>>>
	

If	you	just	need	a	specific	function,	for	instance,	square	root,	it	will	be	tiring	to	repeatedly
type	math.sqrt()	every	time	you	want	to	obtain	the	square	root	of	a	number.	To	avoid	this,
you	can	do	a	function	import	with	this	syntax:
	

	

>>>	from	module	import	function	

	

For	example,	to	import	only	the	square	root	function:
	

	

>>>	from	math	import	sqrt	

	

From	here,	you	only	need	to	type	sqrt()	and	the	number:
	

>>>	sqrt	(25)

5.0

>>>	sqrt	(100)

10.0

>>>	sqrt	(81)

9.0

>>>
	

Displaying	the	Contents	of	a	Module
To	list	the	methods	and	attributes	of	a	module	after	importing	it,	you	can	use	the	built-in
function	dir()		and	supply	the	module’s	name	as	argument.
	

For	example,	to	view	the	contents	of	the	user-defined	multiplier	module:
	

>>>import	multiplier

>>>dir	(multiplier)

[‘__builtins__’,	 ‘__cached__’,	 ‘__doc__’,	 ‘__file__’,	 ‘__loader__’,	 ‘__name__’,
‘__package__’,	‘__spec__’,	‘multiply’]

>>>
	

The	math	module	contains	many	useful	functions.	To	print	the	entire	content	of	the	math
module,	you	can	use	the	following	code:
	

	

	import	math											

	

everything	=	dir(math)		

	

	print	(everything)						

	

	

This	is	what	you	would	see	on	your	screen	after	running	the	code:
	

[‘__doc__’,	‘__loader__’,	‘__name__’,	‘__package__’,	‘__spec__’,	‘acos’,	‘acosh’,	‘asin’,
‘asinh’,	‘atan’,	‘atan2’,	‘atanh’,	‘ceil’,	‘copysign’,	‘cos’,	‘cosh’,	‘degrees’,	‘e’,	‘erf’,	‘erfc’,
‘exp’,	 ‘expm1’,	 ‘fabs’,	 ‘factorial’,	 ‘floor’,	 ‘fmod’,	 ‘frexp’,	 ‘fsum’,	 ‘gamma’,	 ‘gcd’,
‘hypot’,	 ‘inf’,	 ‘isclose’,	 ‘isfinite’,	 ‘isinf’,	 ‘isnan’,	 ‘ldexp’,	 ‘lgamma’,	 ‘log’,	 ‘log10’,
‘log1p’,	 ‘log2’,	 ‘modf’,	 ‘nan’,	 ‘pi’,	 ‘pow’,	 ‘radians’,	 ‘sin’,	 ‘sinh’,	 ‘sqrt’,	 ‘tan’,	 ‘tanh’,
‘trunc’]

>>>

Getting	more	information	about	a	module	and	its	function
You	can	use	the	help()	function	to	view	more	information	about	a	module	or		its	specific
function.
	

For	instance,	if	you	want	to	read	Python’s	help	documentation	for	the	math	function	sqrt,
you	can	use	the	following	statements:
	

>>>import	math

>>>help(math.sqrt)
	

Once	you	press	enter,	Python	will	show	you	this:
	

Help	on	built-in	function	sqrt	in	module	math:
	

sqrt(…)

				sqrt(x)
	

				Return	the	square	root	of	x.
	

>>>

The	Random	Module
	

By	 importing	 the	 random	 module,	 you	 will	 have	 access	 to	 several	 functions	 that	 are
commonly	used	in	games.

Usage	of	Random	Module

The	 random	module	 is	commonly	used	when	you	want	a	program	 to	produce	a	 random
number	 on	 a	 specified	 range.	 It	 is	 used	 when	 the	 program	 requires	 the	 user	 to	 pick	 a
random	element	from	a	list,	roll	a	dice,	pick	a	card,	flip	a	coin,	and	similar	games.

Random	Functions
Random	provides	the	following	useful	functions:
	
1.	Randint

	

The	randint()	 function	 is	used	 to	generate	a	random	integer	and	accepts	 two	parameters.
The	first	one	is	the	lowest	number	and	the	second	one	is	the	highest	number.	For	example,
to	generate	any	integer	from	1	to	6:
	

>>>import	random

>>>print	(random.randint(1,	6))
	

The	output	will	be	any	one	of	the	integers	1,	2,	3,	4,	5	0r	6.
	

Here	is	another	example:
	

>>>import	random

>>>print(random.randint(0,	100))

96

>>>
	
2.	Choice

	

The	choice()	function	generates	a	random	value	from	a	sequence.
	

The	syntax	is:
	

	

random.choice([‘cat’,	‘dog’,	‘parrot’]).	

	

This	function	is	most	commonly	used	to	pick	a	random	item	from	a	list.
	

	

import	random	

	

my_list	=	[2,	3,	4,	5,	6,	7,	8,	9,	10,	“Ace”,	“Jack”,	“Queen”,	“King”]	

	

random.choice(my_list)	

	

	

print(random.choice(my_list))	

	

print(random.choice(my_list))	

	

print(random.choice(my_list))	

	

Run	the	program	and	y0u	might	get	the	following	random	output:

4

Queen

2

>>>
	
3.	Shuffle

	

The	shuffle()	function	sorts	the	elements	on	a	list	so	that	they	will	be	arranged	in	random
order.
	

The	syntax	is:
	

	

random.shuffle(list)	

	

Here’s	an	example:
	

from	random	import	shuffle

a	=	[[x]	for	x	in	range(15)]

shuffle(a)
	

If	you	run	the	program	and	print	a:
	

>>>print(a)

[[14],	[5],	[10],	[7],	[11],	[13],	[0],	[2],	[9],	[1],	[6],	[12],	[3],	[4],	[8]]

>>>
	

Since	 numbers	 are	 shuffled	 on	 a	 random	 basis,	 you	 will	 most	 probably	 get	 a	 different
result	every	time	you	use	the	print	statement.
	

Here’s	another	example	of	using	shuffle():
	

	

import	random	

	

my_list	=	[‘P’,	‘r’,	‘o’,	‘g’,	‘r’,	‘a’,	‘m’,	‘m’,	‘e’,	‘r’]	

	

random.shuffle(my_list)	

	

		

	

print(my_list)	

	

Here’s	one	possible	output:
	

[‘r’,	‘e’,	‘g’,	‘a’,	‘m’,	‘m’,	‘P’,	‘r’,	‘r’,	‘o’]

>>>
	
4.	Randrange

	

The	randrange()	function	generates	a	random	element	from	a	specified	range.
	

The	syntax	is:
	

	

random.randrange(start,	stop[,	step])	

	

Here	is	an	example:
	

	

import	random	

	

for	x	in	range(5):	

	

					print(random.randrange(0,	50,	2))

	

Run	the	program	and	you’ll	get	5	random	numbers:
	

12

42

48

28

0

>>>

Universal	Imports
Instead	of	 importing	specific	object(s),	 it’s	possible	 to	 import	everything	from	a	module
by	using	an	asterisk	*	in	the	import	statement.	This	is	called	universal	import.
	

For	example:
	

>>>	from	math	import	*

>>>	sin(4.01)	+	tan(cos(3.1))	+	e

0.40053169581643777

>>>
	

While	it	may	seem	convenient	to	just	import	everything	instead	of	explicitly	importing	a
certain	function,	universal	import	is	not	recommended	except	when	using	the	Python	Shell
interactively.	One	 reason	 is	 the	possibility	of	 running	 several	 functions	with	 exactly	 the
same	 name.	 If	 you	 import	 with	 an	 asterisk	 *,	 you	 might	 risk	 running	 functions	 with
obscure	origin	because	you	won’t	know	which	module	they	came	from.

Importing	Several	Modules	at	Once
You	can	import	several	modules	in	one	import	statement	by	separating	module	names	with
commas.	For	example:
	

>>>import	math,	multiplier

>>>
	

When	importing	a	module,	you	can	change	the	name	of	the	namespace	with:
	

	

import	module	as	module2	

	

For	example:
	

>>>	import	math	as	mathematics

>>>print(mathematics.sqrt(25))

5.0

>>>import	multiplier	as	multi

>>>print(“The	product	of	12	and	3	is	“,	multi.multiply(12,	3))

The	product	of	12	and	3	is		36

>>>
	

	

Step	19:			Date	and	Time
	

Most	 programs	 require	 date	 and	 time	 data	 to	 operate.	 Python	 has	 time	 and	 calendar
modules	that	can	be	used	to	track	times	and	dates	in	programs.
	

To	access	functions	in	the	time	module,	you	have	to	import	the	module	with:
	

	

import	time	

	

Many	time	functions	return	a	time	value	as	a	tuple	of	9	integers.	The	functions	strptime(),
and	gmtime()	also	provide	attribute	names	for	each	field.
	

For	example,	if	you	print	time.localtime()	function	with:
	

>>>import	time

>>>print(time.localtime())
	

You’ll	get	an	output	in	a	tuple	format:
	

time.struct_time(tm_year=2016,	 tm_mon=6,	 tm_mday=29,	 tm_hour=23,	 tm_min=51,
tm_sec=29,	tm_wday=2,	tm_yday=181,	tm_isdst=0)

>>>
	

The	 above	 time	 tuple	 represents	 the	 struct_time	 structure	 which	 has	 the	 following
attributes:
	

	

Index	

	

Attributes	

	

Fields	

	

Values	

	

0	

	

tm_year	

	

4-digit	year	

	

2016	

	

1	

	

tm_mon	

	

month	

	

1	to	12	

	

2	

	

tm_mday	

	

day	

	

1	to	31	

	

3	

	

tm_hour=23	

	

hour	

	

0	to	23	

	

4	

	

tm_min=51	

	

minute	

	

0	to	59	

	

5	

	

tm_sec	

	

second	

	

0	to	61	

	

6	

	

tm_wday	

	

	day	of		the	week

	

0	to	6	(0	is	Monday)	

	

7	

	

tm_yday	

	

day	of	the	year	

	

1	to	366	

	

8	

	

tm_isdst	

	

Daylight	savings	

	

0,	1,	-1	

	

	

	

	

	

	

Formatted	Time
You	can	format	time	in	many	different	ways	with	the	print	function.	There	are	also	several
ways	to	get	readable	time	format	in	Python.	A	simple	way	to	get	time	is	with	the	asctime()
function.	Here’s	an	example:
	

>>>import	time

>>>	time_now	=	time.asctime(time.localtime())

>>>	print	(“Current	date	and	time	is:”,	time_now)
	

The	output	will	be	in	the	following	format:
	

Current	date	and	time	is:	Fri	Oct		7	01:35:51	2016

>>>

Getting	Monthly	Calendar
The	calendar	module	provides	several	methods	that	allow	users	to	obtain	and	manipulate
monthly	and	yearly	calendars.
	

To	access	these	methods,	you	have	to	import	the	calendar	module:
	

import	calendar
	

For	example,	 to	get	 the	calendar	for	 the	month	of	July,	2016,	you	can	use	 the	following
statements:
	

>>>import	calendar

>>>July_cal	=	calendar.month(2016,	7)

>>>print	(“Calendar	for	the	month	of:”)

>>>print	(July_cal)
	

You’ll	get	the	following:
	

Calendar	for	the	month	of:

					July	2016

Mo	Tu	We	Th	Fr		Sa		Su

																												1			2				3

		4				5					6				7				8			9		10

11		12				13		14		15		16	17

18	19				20	21		22	23	24

25	26		27		28		29	30	31

>>>
	

	

The	Time	Module
Python’s	time	module	provides	functions	that	allow	users	to	work	with	time	and	convert
between	representations.	Following	is	a	list	of	available	methods:
	

	

time.altzone	

	

time.asctime	

	

time.clock	

	

time.ctime	

	

time.gmtime	

	

time.localtime	

	

time.mktime	

	

time.sleep	

	

time.strftime(fmt[,	tuppletime])	

	

time.strptime(string[,	format	=	“%a	%b	%d	%H:%M:%S	%Y”])	

	

time.time	

	

time.tzset	

	

The	Calendar	Module
The	calendar	module	provides	functions	related	to	a	calendar	including	print	functions	that
output	a	calendar	for	a	specified	year	or	month.
	

Br	 default,	 calendar	 has	Monday	 as	 the	 first	 day	 of	 the	week.	You	 can	 change	 this	 by
calling	the	calendar.setfirstweekday()	function.
	

The	calendar	module	offers	the	following	functions:
	

calendar.calendar(year,	w=2,	l=1,	c=6)
	

The	calendar.calendar()	function	returns	a	multiline	string	of	calendar	for	a	given	year.
	

calendar.calendar(2016,	w=2,	l=1,	c=6)
	

calendar.firstweekday()
The	function	returns	the	setting	for	the	first	weekday	of	the	week.	The	default	starting	day
is	Monday	which	is	equivalent	to	o.
	

>>>import	calendar

>>>calendar.firstweekday()

0

>>>

calendar.isleap(year)
This	 function	evaluates	 if	 the	given	year	 is	 a	 leap	year.	 If	yes,	 it	 returns	True.	 If	not,	 it
returns	False.
	

>>>import	calendar

>>>	calendar.isleap(2016)

True

>>>	calendar.isleap(2014)

False

>>>

calendar.leapdays(y1,	y2)
This	function	returns	the	sum	of	leap	days	within	a	given	range.
	

>>>import	calendar

>>>	calendar.leapdays(2010,	2016)

1

>>>

calendar.month(year,	month,	w=2,	l=1)
This	 function	 returns	 a	multiline	 string	 of	 calendar	 for	 a	 given	month	 of	 the	 year.	 The
value	 of	w	 indicates	 the	width	 (in	 characters)	 of	 the	 dates	while	 l	 specifies	 the	 allotted
lines	for	each	week.
	

>>>import	calendar

>>>calendar.month(2016,	7,	w=2,	l=1)

>>>‘					July	2016\nMo	Tu	We	Th	Fr	Sa	Su\n													1		2		3\n	4		5		6		7		8		9	10\n11	12	13
14	15	16	17\n18	19	20	21	22	23	24\n25	26	27	28	29	30	31\n’

>>>
	

Use	the	print	function	to	get	a	calendar	for	the	month	in	a	more	user-friendly	format.
	

>>>print(calendar.month(2016,	7,	w=2,	l=1))

				July	2016

Mo	Tu	We	Th	Fr	Sa	Su

													1		2		3

4		5		6		7		8		9	10

11	12	13	14	15	16	17

18	19	20	21	22	23	24

25	26	27	28	29	30	31

>>>

calendar.monthcalendar(year,	month)
This	 function	 returns	 a	 list	 with	 sublists	 of	 integer	 elements.	 Each	 sublist	 represents	 a
week.	Days	outside	of	the	given	month	are	represented	as	zero.	Days	of	the	month	are	set
as	numbers	corresponding	to	their	day-of-month.
	

>>>import	calendar

>>>calendar.monthcalendar(2016,	7)

[[0,	0,	0,	0,	1,	2,	3],	[4,	5,	6,	7,	8,	9,	10],	[11,	12,	13,	14,	15,	16,	17],	[18,	19,	20,	21,	22,
23,	24],	[25,	26,	27,	28,	29,	30,	31]]

>>>

calendar.monthrange(year,	month)
This	function	returns	two	integers.	The	first	integer	denotes	the	weekday	code	(o	to	6)	for
the	first	day	of	the	month	in	a	given	year.	The	second	indicates	the	number	of	days	in	the

specified	month	(1	to	31).
	

>>>import	calendar

>>>calendar.monthrange(2016,	7)

(4,	31)

>>>

calendar.prmonth(year,	month,	w=2,	l=1)
It	 returns	 a	 calendar	 for	 the	 month	 like	 what	 you’ll	 see	 if	 you	 use	 print
(calendar.month(year,month,w,l)).
	

calendar.setfirstweekday(weekday)
Sets	the	first	day	of	the	week	using	a	weekday	code	that	represents	the	days	from	Monday
(0)	to	Sunday	(6).
	

calendar.weekday(year,	month,	day)
This	 function	provides	 the	weekday	 code	 for	 a	 specified	 date.	The	parameters	 are	 year,
month	(1	to	12	for	the	12	months	of	the	year),	and	day	(o	to	6	from	Monday	onwards).
	

>>>import	calendar

>>>	calendar.weekday(2016,6,30)

3

>>>

Datetime
Python	has	another	method,	datetime(),	 that	you	can	use	 to	 retrieve	current	 system	date
and	time.	Before	you	can	use	it,	you’ll	have	to	import	the	module	datetime.now().
	

For	example,	enter	the	following	on	the	>>>prompt:
	

>>>from	datetime	import	datetime

>>>datetime.now()

datetime.datetime(2016,	7,	8,	2,	35,	38,	337769)

>>>
	

In	order	 to	 convert	 the	date	 and	 time	 information	 into	 a	more	 readable	 format,	 you	can

import	‘strftime’	from	Python’s	standard	library	with	these	statements:
	

>>>from	time	import	strftime

>>>strftime(“%Y-%m-%d	%H:%M:%S”)
	

Here’s	the	result:
	

‘2016-07-08	02:35:02’
	

	

	

Step	20:	Namespaces
	

A	name	or	identifier	is	a	way	of	identifying	and	accessing	objects.	For	instance,	when	you
enter	an	assignment	statement	like	x	=	5,	5	is	the	object	stored	in	memory	while	x	is	the
name	that	we	use	to	refer	to	the	object.	You	can	get	the	memory	address	of	some	objects
by	using	id(),	a	built-in	function.
	

For	example:
	

>>>	x	=	5

>>>id(x)

1518352208

>>>	id(5)

1518352208

>>>
	

The	above	results	with	the	id()	functions	tells	you	that	x	and	5	refer	to	the	same	object.
	

Here	are	other	expressions	that	can	tell	how	Python	responds	to	reassignments:
	

The	use	of	id()	function	provides	the	RAM	address	of	x.
	

>>>	x	=5

>>>id(x)

1518352208

>>>
	

Here,	x	gets	reassigned	and	holds	the	value	of	5	+	7.	It	is	now	in	another	memory	location:
	

>>>	x	=	5	+	7

>>>	id(x)

1518352320

>>>
	

Finally,	5	is	assigned	to	‘y’.	Take	note	that	using	id()	on	both	the	name	and	object	returns
the	 same	memory	 location	 of	 the	 object	 5,	 that	 is,	 at	 1518352208.	 This	makes	 Python
programming	efficient	since	you	won’t	have	to	create	duplicate	copies	of	the	object.	
	

	

>>>y	=	5

>>>	id(5)

1518352208

>>>	id(y)

1518352208

>>>
	

Since	a	function	is	also	an	object,	you	can	use	a	name	to	refer	to	it.	You	will	then	use	the
function’s	name	to	call	it.
	

For	example:
	

	

def	greetings():	

	

					print(“Good	Morning!”)

	

		

	

x	=	greetings	

	

Run	the	program	and	use	x()	to	call	the	function	x.
	

>>>	x()

Good	Morning!

>>>
	

Now	that	you	have	a	better	idea	about	names	and	what	you	can	use	them	for,	you’re	ready
to	learn	the	concept	of	namespaces.	A	namespace	is	basically	a	collection	of	names.	It	is	a

mapping	 of	 every	 name	 that	 has	 been	 defined	 to	 corresponding	 objects.	 For	 instance,
Python	aut0matically	creates	a	namespace	 that	has	all	 the	built-in	names	when	you	start
the	interpreter.	Hence,	built-in	functions	are	always	available.	Each	Python	module	creates
a	global	namespace	 for	 itself.	A	module	can	have	several	classes	and	 functions.	A	 local
namespace	is	created	every	time	a	function	is	called.

Scope
Although	namespaces	have	distinct	names,	it	is	not	always	possible	to	access	all	of	them
from	 just	 about	 anywhere	 in	 the	 program.	 There	 is	 such	 a	 thing	 as	 scope,	 a	 program
component	that	allows	users	to	access	a	namespace	directly	without	a	prefix.	There	are	at
least	3	nested	scopes:
	

the	current	function’s	scope	with	local	names
the	module’s	scope	with	global	names
the	outermost	scope	with	built-in	names

	

Every	time	a	reference	is	made	inside	a	function,	the	interpreter	searches	for	the	name	in
the	 following	 hierarchy:	 1.	 local	 namespace	 2.	 global	 namespace	 and	 3.	 built-in
namespace.
	

Here	is	an	example	showing	how	scope	and	namespace	works	in	Python:
	

	

def	main_function():	

	

					x	=	50

	

					def	sub_func():

	

									y	=	15

	

		

	

z	=	5	

	

In	 the	above	code,	 the	variable	x	 is	within	 the	 local	namespace	of	main_function().	The

variable	y	is	in	the	local	namespace	of	sub_function,	a	nested	function.	The	variable	z,	on
the	other	hand,	is	in	the	global	namespace.
	

Inside	the	main_function,	x	is	a	local	variable,	y	is	nonlocal,	while	z	is	global.	When	in	the
main_function,	you	can	read	and	assign	new	values	to	x,	a	local	variable	but	you	can	only
read	the	variable	y	from	sub_function.	If	you	try	to	reassign	y	to	a	new	value,	that	will	be
stored	 in	 the	 local	 namespace	 you’re	 in,	 the	 main_function,	 and	 will	 be	 an	 entirely
different	variable	from	the	variable	y	in	the	sub_function.
	

The	 same	 thing	 happens	 if	 you	 try	 to	 reassign	 z,	 the	 global	 variable,	 inside	 the
main_function.	 If	 you	want	 all	 references	 and	 assignments	 to	 go	 to	 the	 global	 variable,
you	have	to	declare	it	as	global	with	the	expression	‘global	z’.
	

To	 illustrate,	 here	 is	 a	 program	 that	 uses	 and	 accesses	 the	 variable	 z	 in	 three	 different
namespaces:
	

	

def	main_function():	

	

					z	=	10

	

					def	sub_function():

	

									z	=	20

	

									print(‘z	=’,z)

	

		

	

					sub_function()

	

					print(‘z	=’,z)

	
		

	

z	=	33	

	

main_function()	

	

print(‘z	=’,z)	

	

If	you	run	this	program,	the	output	will	be:
	

z	=	20

z	=	10

z	=	33

>>>
	

	

Here’s	a	program	where	all	references	and	assignments	go	to	the	global	variable	z:
	

	

def	main_function():	

	

					global	z

	

					z	=	10

	

					def	sub_function():

	

									global	z

	

									z	=	20

	

									print(‘z	=’,z)

	

		

	

					sub_function()

	

					print(‘z	=’,z)

	
		

	

z	=	33	

	

main_function()	

	

print(‘z	=’,z)	

	

The	output	will	show	the	value	assigned	to	z	as	a	global	variable	in	the	nested	function:
	

z	=	20

z	=	20

z	=	20

>>>
	

Step	 21:	 Classes	 and	 Object-Oriented
Programming
	

	

Python	 is	 an	 object-oriented	 programming	 language.	 This	 means	 that	 it	 emphasizes
working	with	 data	 structures	 called	 objects.	 This	 is	 in	 contrast	 with	 procedure-oriented
languages	which	are	focused	on	functions.
	

An	object	can	refer	 to	anything	that	could	be	named	such	as	functions,	 integers,	strings,
floats,	 classes,	methods,	 and	 files.	 It	 is	 a	 collection	of	data	 and	 the	methods	 that	utilize
data.	 Objects	 are	 flexible	 structures	 that	 can	 be	 used	 in	 different	 ways.	 They	 can	 be
assigned	to	variables,	dictionaries,	lists,	tuples,	or	sets.	They	can	be	passed	as	arguments.
	

A	class	is	a	data	type	just	like	a	list,	string,	dictionary,	float,	or	an	integer.	When	you	create
an	object	out	of	the	class	data	type,	the	object	is	called	an	instance	of	a	class.
	

In	Python,	everything	is	an	object	—	and	that	includes	classes	and	types.	Both	classes	and
types	 belong	 to	 the	 data	 type	 ‘type’.	 	 The	 data	 value	 that	 you	 store	 inside	 an	 object	 is
called	an	attribute	while	 the	functions	associated	with	it	are	called	methods.	A	class	 is	a
way	 of	 creating,	 organizing,	 and	 managing	 objects	 with	 like	 attributes	 and	 methods.
Designing	 an	 object	 requires	 planning	 and	 decision-making	 on	 what	 the	 objects	 will
represent	and	how	you	can	group	things	together.
	

Defining	a	Class
To	 define	 a	 class,	 you	 will	 use	 the	 keyword	 class	 followed	 by	 a	 class	 identifier	 and	 a
colon.	 If	 the	 new	 class	 is	 a	 child	 class,	 you’ll	 have	 to	 enclose	 a	 parent	 class	 inside	 the
parentheses.	 A	 class	 name	 starts	 in	 uppercase	 by	 convention.	 The	 class	 definition	 is
usually	followed	by	a	docstring	which	provides	a	short	description	of	the	class.
	

	

This	is	an	example	of	a	simple	class	definition:
	

class	Members:

				I	created	a	new	class.

				pass
	

	

This	is	an	example	of	a	definition	of	a	class	that	takes	an	object:
	

class	Employees	(object)

I	have	just	defined	a	class	with	an	object.

				pass
	

	

The	docstring	of	a	class	can	be	accessed	with:
	

ClassName.__doc__.
	

	

When	you	use	the	keyword	‘class’	to	define	a	class,	this	tells	Python	to	create	a	new	class
object	 with	 the	 same	 name.	 Defining	 a	 class	 creates	 a	 namespace	 that	 contains	 the
definition	 of	 all	 the	 attributes	 of	 the	 class,	 including	 special	 attributes	 that	 start	 with
double	underscores.	This	object	can	then	be	used	to	access	the	attributes	of	the	class	and	to
create	or	instantiate	new	objects	of	the	class.
	

For	example,	create	a	new	class	named	MyClass:
	

	

class	MyClass:	

	

					“This	is	a	new	class.”

	

					b	=	12

	

					def	greet	(self):

	

									print	(‘Good	morning!’)

	

To	access	the	attributes	of	MyClass:
	

>>>	MyClass.b

12

>>>	MyClass.greet

<function	MyClass.greet	at	0x02CA5D20>

>>>	MyClass.__doc__

‘This	is	a	new	class.’

>>>

Creating	an	Object
The	class	object	can	be	used	to	create	instances	of	the	new	class.	Creating	an	object	is	no
different	 from	 making	 a	 function	 call	 at	 the	 >>>	 prompt.	 For	 example,	 the	 following
statement	creates	an	instance	object	called	obj:
	

	

>>>obj	=	MyClass()	

	

To	access	the	attributes	of	an	object,	you	can	use	the	object	name	as	prefix	before	the	dot.
An	 object’s	 attribute	 is	 either	 method	 or	 data.	 An	 object’s	 method	 refers	 to	 the
corresponding	 functions	 of	 the	 class.	 A	 function	 object	 defines	 a	 method	 for	 objects
created	from	a	class.	For	example,	create	a	class	named	NewClass:
	

	

class	NewClass:	

	

					“This	is	a	new	class.”

	

					x	=	5

	

					def	func	(self):

	

									print(“I’m	a	function	object.”)

	

To	access	the	function	attribute	of	NewClass:
	

>>>	NewClass.func

<function	NewClass.func	at	0x02BB5D20>

>>>
	

Create	a	new	object	from	NewClass:
	

>>>obj	=	NewClass()
	

NewClass.func,	a	class	attribute,	 is	a	 function	object	because	 it	defines	a	method	for	all
object	created	from	NewClass.	Hence,	obj.func	is	a	method	object.
	

>>>	obj.func

<bound	method	NewClass.func	of	<__main__.NewClass	object	at	0x02BB1C10>>

>>>
	

You	probably	notice	 the	parameter	 ‘self’	 in	 function	definition	 inside	classes.	Yet,	when
the	method	obj.func	was	called	without	an	argument,	Python	went	on	with	the	process	and
did	not	raise	an	error.	That	is	because	the	object	itself	is	passed	as	the	first	argument.	In
Python,	 when	 an	 object	 calls	 its	 method,	 the	 object	 automatically	 becomes	 the	 first
argument.	By	convention,	it	is	called	‘self’.	You	can	use	any	name	but	for	uniformity,	it	is
best	to	stick	with	the	convention.	If	you	need	to	place	more	arguments,	you	have	to	place
‘self’	as	the	first	argument.

The	__init__()	method
The	__init__()	method	is	a	class	constructor	which	is	used	to	initialize	the	object	it	creates.
Whenever	a	new	instance	of	the	class	is	created,	Python	calls	on	this	initialization	method,
a	special	method	with	double	underscores	prefix.	The	method	takes	at	least	one	argument,
the	‘self’,	to	identify	each	object	being	created.	
	

Examples:
	

class	Achievers:

				def	__init__(self)	:
	

	

class	Achievers	(object):

				def	__init__(self,	name,	salary)	:

A	method	is	a	function	used	in	a	class.	Hence,	the	__init__()	function	is	called	a	method
when	it	is	used	to	initialize	objects	of	a	class.

Instance	Variables
Instance	 variables	 are	 used	 to	 link	 all	 instantiated	 objects	 within	 the	 class.	 They	 are
required	 if	 you	 have	 to	 use	 multiple	 arguments	 other	 than	 ‘self’	 in	 the	 initialization
method.
	

For	example:
	

	

class	Employees:	

	

					“Common	base	for	all	employees.”

	

					counter	=	0

	

					def	__init__(self,	name,	position,	salary)	:

	

									self.name	=	name

	

									self.position	=	position

	

									self.salary	=	salary

	

	

The	class	definition	code	block	states	that	whenever	an	instance	of	the	Employees	class	is
created,	 each	 employee	will	 have	 a	 copy	 of	 the	 variables	 initialized	 using	 the	 __init__
method.
	

You	can	instantiate	members	of	the	class	Employees	with	these	statements:
	

>>>emp_1	=	Employees	(“Chuck”,	“supervisor”,	“5000.00”)

>>>emp_2	=	Employees	(“Kurt”,	“encoder”,	“3500.00”)

>>>emp_3	=	Employees	(“Charlie”,	“proofreader”,	“4000.00”)
	

Now,	 use	 the	 print	 function	 to	 see	 the	 connection	 between	 the	 initialized	 variables	 and
members’	variables:
	

>>>print(emp_1.name,	emp_1.position,	emp_1.salary)

>>>print(emp_2.name,	emp_2.position,	emp_2.salary)

>>>print(emp_3.name,	emp_3.position,	emp_3.salary)
	

You	should	see	the	following	output:
	

Chuck	supervisor	5000.00

Kurt	encoder	3500.00

Charlie	proofreader	4000.00
	

	

Following	 is	 a	 longer	 code	 that	 illustrates	 class	 definition	 and	 the	 use	 of	 the	 datetime
module:
	

	

import	datetime		

	

		

	

class	Member:	

	

		

	

					def	__init__(self,	firstname,	surname,	birthdate,	country,	email,	telephone):

	

									self.firstname	=	firstname

	

									self.surname	=	surname

	

									self.birthdate	=	birthdate

	

									self.country	=	country

	

									self.email	=	email

	

									self.telephone	=	telephone

	

		

	

					def	age(self):

	

									now	=	datetime.date.today()

	

									age	=	now.year	-	self.birthdate.year

	

									if	now	<	datetime.date(now.year,	self.birthdate.month,	self.birthdate.day):

	

													age	-=	1

	

									return	age

	

		

	

member1	=	Member(

	

					“Jessica”,

	

					“Law”,

	

					datetime.date(1995,	6,	1),	#	year,	month,	day

	

					“United	States”,

	

					“jane.law@yow.com”,

	

					“811	432	0867”

	

)	

	

		

	

member2	=	Member(

	

					“Martin”,

	

					“Donz”,

	

					datetime.date(1991,	8,	16),	#	year,	month,	day

	

					“Canada”,

	

					“martindonz@jobs.com”,

	

					“580	324	7111”

	

)	

	

		

	

		

	

print(member1.firstname)	

	

print(member1.surname)	

	

print(member1.birthdate)	

	

print(member1.country)	

	

print(member1.email)	

	

print(member1.telephone)	

	

print(member1.age())	

	

		

	

print(member2.firstname)	

	

print(member2.surname)	

	

print(member2.birthdate)	

	

print(member2.country)	

	

print(member2.email)	

	

print(member2.telephone)	

	

print(member2.age())	

	

Run	the	code	and	you’ll	see	the	following	output	onscreen:
	

Jessica

Law

1995-06-01

United	States

jane.law@yow.com

811	432	0867

21
	

Martin

Donz

1991-08-16

Canada

martindonz@jobs.com

580	324	7111

24
	

	

You	 will	 notice	 that	 two	 functions	 were	 defined	 inside	 the	Member	 class	 body.	 These
functions	are	the	object’s	methods.
	

The	first	is	a	special	method,	__init__().		Whenever	you	call	the	class	object,	it	creates	a
new	instance	of	the	class	and	Python	immediately	executes	the	__init__()	method	on	the
new	object.	The	__init__	method	is	used	to	pass	on	to	the	new	object	and	to	set	it	up	with
all	the	data	and	parameters	that	you	have	specified.	The	second	method,	the	‘age’	method,
calculates	the	member’s	age	with	the	use	of	current	date	and	the	birthdate.
	

Take	 note	 that	 the	 	 __init__	 function	 creates	 attributes	 and	 sets	 them	 according	 to	 the
values	 passed	 in	 as	 parameters.	 Although	 it’s	 not	 compulsory,	 the	 attributes	 and
parameters	are	usually	given	the	same	name.

Adding	an	attribute
It	is	possible	to	add	an	attribute	outside	of	the	__init__	function.
	

To	illustrate,	here	is	a	program	that	has	two	numbers	as	class	attributes:
	

	

class	NumberPairs:	

	

					def	__init__(self,	first	=	0,	second	=	0):

	

									self.first	=	first

	

									self.second	=	second

	

		

	

					def	display_data(self):

	

									print(“The	first	number	is	{0}	and	the	second	number	is	{1}.”.format(self.first,
self.second))

	

	

The	following	program	runs	will	show	some	class	behaviors:
	

To	create	object	‘a’	with	2	arguments:
	

>>>	a	=	NumberPairs	(3,	10)

>>>	a.display_data()

The	first	number	is	3	and	the	second	number	is	10

>>>
	

This	one	will	create	object	‘b’	with	only	one	number,	6,		as	argument:
	

>>>	b	=	NumberPairs(6)

>>>	b.display_data()

The	first	number	is	6	and	the	second	number	is	0.

>>>
	

Notice	 that	 it	 took	 the	 supplied	 argument	 as	 the	 first	 number	 and	 zero	 as	 the	 default
argument	for	the	second	number.
	

If		you	want	to	add	a	new	attribute	to	the	object	‘b’,	you	can	easily	do	so	with	the	syntax
‘obj.attr	=	value’.
	

>>>b.attr	=	16
	

To	display	the	values	of	the	number	pair	and	the	new	attribute:
	

>>>b.first,	b.second,	b.attr

(6,	0,	16)

>>>
	

The	change	only	affected	the	object	b	and	not	a.	Hence:
	

>>>	a.attr
	

Attempting	to	access	the	non-existent	object	a.attr	will	raise	the	AttributeError:
	

Traceback	(most	recent	call	last):

		File	“<pyshell#7>”,	line	1,	in	<module>

				a.attr

AttributeError:	‘NumberPairs’	object	has	no	attribute	‘attr’

Deleting	Objects	and	Attributes
An	object’s	attribute	can	be	deleted	with	the	use	of	the	keyword	del.	The	syntax	is:
	

	

del	obj.attribute	

	

To	illustrate,	create	a	new	object	‘pairs2’	under	the	class	‘NumberPairs’:

	

>>>	pairs2	=NumberPairs(5,	10)
	

To	delete	pairs2:
	

>>>del	pairs2.second

If	you	try	to	call	the	function	display_data	on	pairs2,	Python	will	throw	an	AttributeError:
	

>>>	pairs2.display_data()

Traceback	(most	recent	call	last):

…

AttributeError:	‘NumberPairs’	object	has	no	attribute	‘second’
	

The	same	thing	happens	when	you	delete	the	function	display_data:
	

>>>	del	NumberPairs.display_data

>>>	a.display_data()

Traceback	(most	recent	call	last):

		File	“<pyshell#4>”,	line	1,	in	<module>

				a.display_data()

NameError:	name	‘a’	is	not	defined

>>>
	

To	delete	the	object	itself,	you	will	this	syntax:
	

	

del	object	

	

	

Using	the	above	example,	you	can	delete	object	‘a’	with:
	

>>>del	a

>>>

	

While	 the	 above	 statements	 may	 sound	 so	 simple,	 what	 happens	 internally	 is	 more
complicated.	When	you	create	an	instance	object	with	c	=	NumberPairs(16,	7),	the	name	c
binds	with	the	object	in	memory.	When	you	issue	the	command	del	c,	the	relationship	is
broken	 and	 the	 name	 c	 is	 removed	 from	 its	 corresponding	 namespace.	 The	 object,
however,	remains	in	memory.	It	is	automatically	destroyed	later	if	it	not	referenced	to	by
another	name.	This	process	is	commonly	known	as		‘garbage	collection’.
	

Modifying	Variables	within	the	Class
It	is	quite	possible	to	modify	variables	belonging	to	the	same	class.	This	feature	becomes
handy	when	 you	 have	 to	 change	 the	 value	 that	 a	 variable	 stores	 based	 on	what	 occurs
inside	a	class	method.
	

To	illustrate,	this	program	shows	how	the	value	stored	in	the	variable	‘condition’	changed
from	‘new’	to	‘used’	as	the	program	is	executed:
	

	

	

When	you	run	the	program,	you	will	have	the	following	output:
	

This	is	a	silver	Ecolux	Natural	dryer.

new

used

>>>

Inheritance
Inheritance	is	a	programming	structure	that	allows	a	new	class	to	inherit	the	attributes	of

an	 existing	 class.	 The	 new	 class	 is	 called	 the	 child	 class,	 subclass,	 or	 the	 derived	 class
while	the	class	it	inherits	from	is	the	parent	class,	superclass,	or	base	class.	Inheritance	is
an	important	feature	because	it	promotes	code	reusability	and	efficiency.	If	you	have,	for
example,	 an	 existing	 class	 that	 delivers	 what	 your	 program	 requires,	 you	 can	 create	 a
subclass	 that	will	 take	most	of	what	 the	existing	class	does,	enhance	its	functionality,	or
perhaps	partially	override	some	class	behavior	to	make	it	a	perfect	fit	for	your	purpose.
	

To	define	a	class	that	will	inherit	all	functions	and	variables	from	a	parent	class,	you	will
use	the	syntax:
	

	

class	ChildClass(ParentClass):	

	

To	illustrate,	here’s	a	program	that	creates	a	new	class	Students:
	

	

class	Students(object):	

	

					“common	base	for	all	members”

	

					def	__init__(self,	name,	average,	level):

	

									self.name	=	name

	

									self.average	=	average

	

									self.level	=	level

	
		

	

stud1	=	Students(“Michelle	Kern”,	88.3,	“Senior”)	

	

	stud2	=	Students(“Jennifer	Pauper”,	93.5,		“Junior”)

	

	stud3	=	Students(“Dwight	Jack”,	90.0,		“Junior”)

	

		

	

print(stud1.name,	stud1.average,	stud1.level)	

	

print(stud2.name,	stud2.average,	stud2.level)	

	

print(stud3.name,	stud3.average,	stud3.level)	

	

When	you	run	the	program,	you’ll	get	the	following	output:
	

Michelle	Kern	88.3	Senior

Jennifer	Pauper	93.5	Junior

Dwight	Jack	90.0	Junior

>>>
	

Assuming	you	want	to	create	a	new	class,	Graduates,	which	will	inherit	from	the	Students
class	and	use	a	new	attribute,	grad_year,	here’s	how	your	program	might	look:
	

	

class	Graduates(Students):	

	

					“common	base	for	Graduates	members”

	

					def	__init__	(self,	name,	average,	level,	grad_year):

	

									Students.__init__(self,	name,	average,	level)

	

									self.grad_year	=	grad_year

	

		

	

		

	

mem1	=	Graduates(“Randy	Doves”,	88.2,	“graduate”,	“2015”)	

	

mem2	=	Graduates(“Dani	Konz”,	85.0,	“graduate”,	“2014”)	

	

mem3	=	Graduates(“Ashley	Jones”,	89.5,	“graduate”,	“2016”)	

	

		

	

print(mem1.name,	mem1.average,	mem1.level,	mem1.grad_year)	

	

print(mem2.name,	mem2.average,	mem2.level,	mem2.grad_year)	

	

	print(mem3.name,	mem3.average,	mem3.level,	mem3.grad_year)

	

	

When	you	run	the	program,	you	would	have	the	output:
	

Randy	Doves	88.2	graduate	2015

Dani	Konz	85.0	graduate	2014

Ashley	Jones	89.5	graduate	2016

>>>

Multiple	Inheritance
The	above	section	discussed	the	concept	of	single	inheritance	where	a	child	class	inherits
from	a	single	parent	class.	Python	also	supports	multiple	inheritance.	Multiple	inheritance
is	a	programming	 feature	which	allows	one	class	 to	 inherit	methods	and	attributes	 from
two	or	more	parent	 class.	Python	offers	 a	well-structured	 and	 sophisticated	 approach	 to
multiple	inheritance.
	

The	syntax	for	a	class	definition	where	there	are	more	than	one	parent	class	is:
	

	

class	MultiDerivedClassName	(ParentClass1,	ParentClass2,
ParentClass3,	…):
pass	

	
		

	

Multilevel	Inheritance
A	multi-level	 inheritance	 allows	 a	 new	 class	 to	 inherit	 from	a	 derived	 class.	 In	Python,
multilevel	 inheritance	 can	 go	 as	 deep	 as	 you	want	 it	 to	 go.	 Following	 is	 the	 syntax	 for
multi-level	inheritance:
	

	

class	Base:	

	

					pass

	

		

	

class	Derived_1(Base):	

	

					pass

	

		

	

class	Derived_2(Derived_1):	

	

					pass

	

		

	

class	Derived_3(Derived_2)	

	

		

	

	

Step	22:	Python	Iterators
	

An	iterator	is	any	Python	objectwhichcan	be	iterated	onto	return	data	on	a	per	itembasis.
Python	iterators	can	be	found	in	many	places.	They	are	implemented	in	comprehensions,
‘for’	 loops,	 and	 generators	 but	 are	 not	 readily	 seen	 in	 plain	 sight.	 Iterator	 objects	must
performthemethods	__iter__()	and	__next__().
	

In	general,	 built-in	Python	containers	 like	 string,	 list,	 and	 tupleare	 iterable	because	 they
can	 be	 used	 to	 produce	 an	 iterator.	 The	 function	 iter()	 is	 used	 to	 return	 an	 iterator	 by
calling	 the	 __iter_()	 method.	 The	 function	 next()	 is	 then	 used	 to	 iterate	 through	 each
element.	The	StopIteration	exception	is	raised	whenever	the	end	is	reached.
	

To	illustrate:
	

First	define	num_list:
	

>>>num_list	=	[5,	8,	2,	4]
	

Then	use	iter()	to	generate	an	iterator:
	

>>>num_iter	=	iter(num_list)
	

Then,	view	the	date	type	of	num_iter:
	

>>>num_iter

<list_iterator	object	at	0x03300F30>
	

Now,	iterate	through	num_list:
	

>>>next(num_iter)

5

>>>next(num_iter)

8

>>>next(num_iter)

2

>>>next(num_iter)

4

>>>
	

You	can	get	similar	results	by	using	theexpression	‘obj.__next__()’.	To	illustrate,	create	a
new	iterator,	new_iter	to	iterate	through	the	num_list:
	

>>>num_list	=	[5,	8,	2,	4]

>>>	new_iter	=	iter(num_list)
	

Then,	view	the	data	type	of	new_iter:
	

>>>new_iter

<list_iterator	object	at	0x03A50FD0>

>>>
	

Finally,	iterate	through	each	item	in	the	list:
	

>>>	new_iter.__next__()

5

>>>	new_iter.__next__()

8

>>>	new_iter.__next__()

2

>>>new_iter.__next__()

4

>>>
	

Iterating	through	containers	need	not	always	be	as	tedious.	The	use	of	the	‘for	loop’,	offers
a	more	sophisticated	way	to	iterate	automatically	through	an	object.
	

For	example:
	

>>>for	item	in	num_list:

print	(item)
	

5

8

2

4
	

The	use	of	 the	‘for	 loop’	 in	 the	above	example	makes	 iteration	a	simple	 task.	Internally,
however,	a	‘for	loop’	is	executed	as	an	infinite	loop	with	try	and	except	statements.	The
following	example	will	illustrate	how	Python	executes	a	‘for	loop’.
	

This	is	the	statement	you	would	normally	see:
	

for	item	in	x_iterable:
	

Internally,	Python	implements	the	above	statement	block	as	an	infinite	while	loop:
	

iterator_object	=	iter	(x_iterable)
	

while	True:

				try:

item	=	next(iterator_object)

				except	StopIteration:

								break
	

Behind	 the	 scenes,	 the	 ‘for	 loop’	 calls	 iter()	 on	 x_iterable	 to	 create	 an	 iteratorobject.In
addition,	 the	next()	function	is	used	within	 the	‘while’	structure	 to	return	the	succeeding
item.	 After	 exhausting	 all	 items,	 Python	 will	 raise	 a	 StopIteration	 exception	 which
indicates	the	end	of	the	loop.	The	StopIteration	is	the	only	exception	that	can	terminate	the
loop.	All	other	exceptions	are	ignored.

Creating	a	Python	Iterator
	

To	build	an	 iterator,	you	need	 to	execute	 the	 iterator	protocol,	namely,	 the__iter__()	and
__next__()	methods.
	

The	method	__iter__()	is	used	to	return	an	iterator	object.	The	__next__()	method	is	then

called	to	return	the	next	element	in	the	series.	Once	the	end	is	reached	and	in	succeeding
calls	for	the	next	item,	the	method	shouldprompt	a	StopIteration	message.
	

To	illustrate,	here	is	a	class	that	will	implement	an	iterator	of	multiples	of	3:
	

	

	

Here	is	an	iterator	that	will	iterate	through	the	multiples	of	three:
	

>>>x	=	MultThree(6)

>>>	n	=	iter(x)

>>>next(n)

1

>>>next(n)

3

>>>next(n)

9

>>>next(n)

27

>>>next(n)

81

>>>next(n)

243

>>>next(n)

729

>>>next(n)

Traceback	(most	recent	call	last):

		File	“<pyshell#9>”,	line	1,	in<module>

				next(i)

	 	 File	 “C:/AppData/Local/Programs/Python/Python35-32/Mult_Three.py“,	 line	 18,	 in
__next__

raise	StopIteration

StopIteration
	

	

	

Step	23:	Python	Generators
	

Building	 your	 own	 iterator	 can	 be	 a	 tedious	 and	 lengthy	 process.	 You	 will	 have	 to
implement	a	class	with	the	iterator	protocol	and	raise	StopIteration	when	you’ve	come	to
the	end	of	the	file.	This	counter	intuitive	steps	can	be	avoided	when	you	use	generators.
	

A	Python	generator	is	a	much	simpler	way	of	buildingan	iterator.	By	returning	an	object
that	 you	 can	 iterate	 over,	 a	 generator	 automatically	 manages	 the	 processes	 required	 to
create	an	iterator.
	

Python	generatorsare	functionswith	a	yield	statement.	To	create	a	generator	function,	you
have	to	define	it	in	the	same	way	that	you	would	define	a	regular	function.	The	inclusion
of	at	least	one	yield	statement	makes	a	function	a	generator	function.	A	yield	expression
temporarily	 halts	 a	 function	 as	 it	 retains	 local	 variables	 and	 goes	 on	 to	 implement
successive	calls.
	

To	illustrate,	here	is	a	generator	function	that	contains	multiple	yield	statements:
	

	

def	gen_function():	

	

					“““define	generator	function”””

	

					x	=	5

	

					print(“This	is	the	initial	value.”)

	

					#	The	gen_function	has	multiple	yield	expressions

	

					yield	x

	

		

	

					x	+=	5

	

					print(“This	is	the	second	value.”)

	

					yield	x

	

		

	

					x	+=	5

	

					print(“This	is	the	final	value.”)

	

					yield	x

	

This	is	how	the	code	will	go	when	you	run	it	interactively:
	

First,	the	function	does	not	execute	instantl:
	

>>>g	=	gen_function()
	

You	can	use	next()	to	iterate	through	the	elements:
	

>>>next(g)

This	is	the	initial	value.

5
	

Local	variables	are	retained	between	consecutive	calls:
	

>>>	next(g)

This	is	the	second	value.

10

>>>next(g)

This	is	the	last	value.

15

>>>
	

Once	the	function	ends,	it	raises	StopIteration	automatically	on	subsequent	calls.
	

You	will	 notice	 that	 unlike	 normal	 functions	where	 local	 variables	 are	 destroyed	 as	 the
function	returns,	the	local	variables	in	a	generator	function	are	retained	between	calls.	In
addition,	you	can	only	iterate	over	a	generator	object	once.	You	will	have	to	define	a	new
generator	object	if	you	want	to	restart	 the	iteration	process.	That	is,	you’ll	make	another
assignment	such	as	x	=	gen_function.
	

	

	

Step	24:			Files
	

File	is	a	named	disk	location	which	is	used	to	store	related	data.	You	will	usually	want	to
reuse	your	data	 in	 the	future	and	to	do	so,	you	have	 to	store	 them	in	memory	through	a
file.	In	Python,	file	management	is	done	using	a	file	object.

The	File	Object	Attributes
A	file	object	 from	an	opened	 file	 can	provide	 a	number	of	 important	 information	 about
that	file.
	

Here	are	the	attributes	associated	to	the	file	object:
	

	

Attribute	

	

Returns:	

	

file.name	

	

the	name	of	the	file	

	

file.mode	

	

the	access	mode	used	to	open	the	file	

	

file.closed	

	

True	if	close,	False	if	open	

	

For	example:
	

	

label	=	open(“names.txt”,	“w”)	

	

print	(“Filename:	“,	label.name)	

	

print	(“Closed	or	Not	:	“,	label.closed)	

	

print	(“Opening	Mode	:	“,	label.mode)	

	

label.close()	

	

You	will	get	the	output:
	

Filename:		names.txt

Closed	or	Not	:		False

Opening	Mode	:		w

>>>

File	Operations
There	are	4	basic	file-related	operations	in	Python:
	

opening	a	file
reading	from	a	file
writing	to	a	file
closing	a	file

The	Open()	function
The	open()	function	facilitates	the	opening	of	a	file	for	reading,	writing	or	both.	It	creates
a	file	object,	also	called	a	handle,	that	you	can	use	to	call	other	methods	that	can	be	used
with	the	function.	Its	syntax	is:
	

	

file	object=open(filename	[,	access_mode][,	buffering])	

	

The	filename	is	the	string	that	represents	the	name	of	the	file	that	you	want	to	access.
	

The	access	mode	is	an	optional	parameter	that	allows	you	to	indicate	the	mode	in	which
you	want	to	access	the	file.	Options	include	read,	write,	or	append.	You	can	also	specify
whether	 you	want	 the	 file	 to	 be	 opened	 in	 either	 binary	 or	 text	mode.	 	 The	 text	mode
supports	working	with	 strings	while	 the	binary	mode	 returns	bytes	and	allows	access	 to
non-text	files	such	as	images	or	exe	files.	The	default	access	modes	are	read	mode	and	text
mode:
	

Buffering	allows	users	to	specify	their	preferred	buffering.	No	buffering	takes	place	when
the	value	is	at	zero.	When	the	buffering	value	is	one,	line	buffering	is	done	as	you	access
files.	When	the	value	is	greater	than	one,	the	buffering	process	is	implemented	according
to	the	given	buffer	size.	A	negative	value	tells	Python	to	implement	the	system	default.

	

The	following	modes	are	available	when	accessing	files	in	Python:
	

Modes	for	Accessing	Files	in	Text	Format
	

	

r	

	

Read	mode	(default):	opens	a	file	for	reading.	

	

w	

	

	Write	museode:	overwrites	an	existing	file	or	creates	a	new	file	if	the	file	does		not
exist.

	

r+	

	

Read	and	write	mode.	

	

w+	

	

Read	and	write	mode:	overwrites	an	existing	file	or	creates	a	new	one	if	the	file	does
not	exist.	

	

a	

	

Append	mode:	adds	data	at	the	end	of	the	file,	creates	a	new	file	if	the	file	does	not
exist.	

	

a+	

	

Read	and	append	mode:	adds	data	at	the	end	of	the	file,	creates	a	new	file	if	the	file
does	not	exist.	

	

x	

	

Opens	file	for	exclusive	creation,	fails	if	the	file	already	exists.	

	

Modes	for	Accessing	Files	in	Binary	Format:
	

	
rb+	

	
Read	and	write	mode.	

	
wb+	

	
Read	and	write	mode:	overwrites	an	existing	file	or	creates	a	new	file	if
the	file	does	not	exist.	

	
ab+	

	
Read	and	append	mode:	adds	data	at	the	end	of	the	file	or	create	a	new
file	if	the	file	does	not	exist.	

	

Examples:
	

Open	file	in	read	mode,	the	default	mode:
	

>>>f	=	open(“access.txt”)
	

Open	file	in	write	mode:
	

>>>f	=	open(“access.txt”,‘w’)	
	

Writing	to	a	File
If	you	want	to	modify	or	write	something	into	a	file,	you	have	to	open	the	file	in	append
mode,	 write	 mode,	 or	 in	 exclusive	 creation	 mode.	 You	 should	 exercise	 caution	 when
choosing	 the	mode	 as	 specifying	 a	wrong	mode	 can	 easily	 cause	your	 file	 and	 the	data
stored	to	be	erased	or	overwritten.
	

Closing	a	File
When	you’re	done	with	your	work,	it’s	important	to	close	your	files	properly	to	free	up	the
resources	used	and	to	avoid	accidental	deletion	or	modification.	Closing	your	file	properly
is	a	way	of	telling	Python	that	you’re	done	with	your	editing	or	writing	work	and	that	it	is
time	to	write	data	to	your	file.
	

Here	is	the	syntax	for	opening	and	closing	a	file:
	

	

fileobject	=	open(“trial.txt”,encoding	=	‘utf-8’)	#	open	trial.txt	file	

	

fileobject.close()	

	

Opening,	Writing	to,	and	Closing	a	Text	File
The	following	activity	will	 illustrate	Python’s	file	management	system.	To	start,	create	a
new	file	with	the	statement:
	

>>>f	=	open(“newfile.txt”,	“w”)												

>>>f.close()

>>>
	

By	opening	the	file	“newfile.txt”	in	“w”	(write)	mode,	you	are	telling	Python	to	overwrite
any	 data	 stored	 in	 the	 file,	 if	 any.	 This	 also	means	 that	 you’ll	 be	 starting	 over	with	 an
empty	file.	The	file	was	closed	properly	using	the	close()	method.
	

To	build	your	file,	open	the	newfile.txt	again	using	“w”	mode:
	

>>>f	=	open(“newfile.txt”,“w”)								
	

Use	the	write()	method	to	write	the	following	strings	on	the	file:
	

>>>	f.write(“A	file	can	hold	important	information.”)

38

>>>	f.write(“You	can	use	it	to	tell	people	about	your	program.”)

49

>>>	f.write(“Files	are	objects,	too,	and	you	can	use	them	in	your	programs.”)

62

>>>	f.write(“It	can	hold	different	types	of	information		-	abc,	123,	1.2,	4.5,	&*$#”)

70

>>>
	

Take	note	that	the	Python	Shell	returns	a	number	every	time	you	enter	a	statement	with	the
write()	method.	The	number	refers	to	the	number	of	characters	written	to	a	file.
	

When	you’re	done	writing	to	the	file,	don’t	forget	to	close	the	file	with	the	close()	method:
	

f.close()

Reading	a	Python	File
There	are	several	ways	to	read	a	text	file	in	Python.	Here	are	the	most	common	ones:
	

with	the	readlines()	method
with	‘while’	statement
with	an	iterator

with	the	‘with	statement’

The	readlines()	method
The	readlines()	method	is	an	easy	way	to	read	and	parse	each	line	in	a	text	file.	You	have
to	use	the	readlines()	method	on	the	file	object	 to	tell	Python	to	read	the	entire	text	file.
After	 that,	 you’ll	 create	 a	 variable	 to	 store	 all	 lines	 from	 the	 text	 file.	To	view	 the	 file,
you’ll	either	use	the	print()	function	on	the	variable	or	simply	type	the	variable	name	on
the	 >>>	 prompt	 to	 view	 the	 lines.	 To	 illustrate,	 you	 can	 open	 the	 newfile.txt	 you	 have
written	previously:
	

Open	the	‘newfile.txt’	on	a	read	only	mode:
	

>>>f	=	open(‘newfile.txt’,	“r”)
	

Create	a	variable,	‘lines’	that	will	store	text	lines	from	the	readlines()	method:
	

>>>lines	=	f.readlines()
	

Type	lines	to	view	the	contents	of	the	text	file:
	

>>>	lines

[‘A	file	can	hold	important	information.’]

>>>
	

Don’t	forget	to	close	the	file:
	

>>>f.close()

>>>
	

You	probably	noticed	that	the	write()	method	does	not	use	line	breaks	and	simply	writes
whatever	you	type	and	enter.	Hence,	what	you	got	in	the	above	example	is	a	paragraph.	If
you	want	 to	write	your	strings	on	a	 line	by	 line	basis,	you	 	can	 try	encoding	a	new	line
character,	“\n”	at	the	end	of	each	string.	For	example:
	

>>>	f.write(“I	want	this	string	to	be	an	independent	statement.\n”)

>>>
	

The	readlines()	method	is	a	simple	an	great	way	to	go	over	the	lines	of	a	small	text	file.
When	 it	 comes,	 however,	 to	 reading	 large	 files,	 you’re	 bound	 to	 experience	 issues	 on
memory	efficiency.	Large	 text	 files	 are	better	handled	by	methods	 that	 facilitate	 line	by
line	reading.	There	are	two	ways	to	do	this:	by	using	the	while	loop	and	the	for	loop.
	

To	illustrate	both	methods,	you	need	to	create	a	text	file	that	will	store	data	on	a	per	line
basis	using	a	new	line	character	at	the	end	of	a	string.
	

Create	a	new	file	‘linefile’	on	write	mode:
	

>>>	f	=	open(“linefile”,	“w”)
	

Write	line	by	line	strings	on	the	file:
	

>>>	f.write(“This	is	a	new	text	file.\n”)

25

>>>	f.write(“It	holds	several	lines	of	strings.\n”)

35

>>>	f.write(“Writing	them	line	by	line	makes	file	operations	more	efficient.\n”)

64

>>>	f.write(“Did	you	notice	the	integer	returned	as	you	enter	a	line?\n”)

57

>>>
	

Close	the	file:
	

>>>	f.close()

Line	by	Line	Reading	of	Text	Files	with	the	‘while’	loop
Here	is	a	simple	loop	that	you	can	use	to	read	a	Python	file	on	a	per	line	basis:
	

Open	the	linefile.txt	on	read	only	mode:
	

f	=	open(‘linefile.txt’,	‘)

line	=	f.readline()
	

Keep	reading	line	one	at	a	time	until	file	is	empty:
	

while	line:

				print	line

				line	=	f.readline()

f.close()
	

When	you	run	the	program,	here’s	what	you	should	see	on	the	Python	Shell:
	

This	is	a	new	text	file.
	

It	holds	several	lines	of	strings.
	

Writing	them	line	by	line	makes	file	operations	more	efficient.
	

Did	you	notice	the	integer	returned	as	you	enter	a	line?
	

Line	by	Line	Reading	of	Text	Files	using	an	Iterator
Another	way	to	read	Python	text	files	one	line	at	a	time	is	with	the	use	of	an	iterator.	Here
is	a	‘for’	loop	to	iterate	through	the	linefile.text	you	have	used	earlier:
	

f	=	open(‘linefile.txt’)

for	line	in	iter(f):

				print	line

f.close()
	

The	Python	Shell	should	display	the	lines	one	by	one:
	

This	is	a	new	text	file.
	

It	holds	several	lines	of	strings.
	

Writing	them	line	by	line	makes	file	operations	more	efficient.
	

Did	you	notice	the	integer	returned	as	you	enter	a	line?

The	‘with	statement’
	

The	‘with	statement’	can	be	used	to	read	through	the	lines	of	a	file.	The	‘with	structure’	
allows	you	 to	open	a	 file	 safely	 and	 let	Python	close	 it	 automatically	without	using	 the
file.close()	method.
	

Example:
	

The	following	code	creates	newfile.txt	in	write	mode,	writes	4	lines	of	text,	and	closes	the
file:
	

fileobject	=	open(“newfile.txt”,	‘w’)

fileobject.write(“A	file	can	store	text	and	images.”)

fileobject.write(“You	can	open	an	image	file	with	the	binary	mode.”)

fileobject.write(“Binary	stream	objects	lack	encoding	attribute.”)

fileobject.write(“Files	contain	bytes.”)

fileobject.close()
	

To	read	each	line	in	the	file	using	the	‘with	pattern’,	you	can	use	the	following	statements:
	

line_num	=	0

with	open(‘newfile.txt’,	‘r’)	as	f_file:

				for	line	in	f_file:																																														

								line_num	+=	1

								print(‘{:>3}	{}’.format(line_num,	line.rstrip()))									
	

	

The	‘with	pattern’	makes	use	of	the	‘for	loop’	to	read	the	files	line	by	line.	This	shows	that
the	file	object	is	an	iterator	that	can	produce	a	line	when	you	require	a	value.	The		‘line’
variable	holds	the	entire	line	content	including	carriage	returns.	
	

You	can	use	the	format()	string	method	with	the	print()	function	if	you	want	your	program
to	print	out	each	 line	and	 the	corresponding	 line	number.	You	can	even	specify	how	the
line	 number	 should	 appear	 by	 using	 format	 specifiers.	 In	 the	 above	 code,	 the	 specifier	
{:>3}	tells	Python	to	print	the	argument	(line_num	for	line	number)	right-justified	inside	3

spaces.	 The	 rstrip()	 method	 is	 used	 to	 remove	 trailing	 whitespaces	 as	 well	 as	 carriage
return	characters.
	

If	you	run	the	program,	here’s	what	the	output	would	be:
	

		1	A	file	can	store	text	and	images.

		2	You	can	open	an	image	file	with	the	binary	mode.

		3	Binary	stream	objects	lack	encoding	attribute.

		4	Files	contain	bytes.

Appending	Data	to	a	File
To	append	data	to	the	file	“linefile.txt”,	you	have	to	reopen	the	file	on	append	mode	with
‘a’:
	

f	=	open(“linefile.txt”,“a”)	#opens	the	“linefile.txt”	file
f.write(“Did	you	guess	how	easy	it	is	to	append	data	to	a	saved	text	file?\n”)

f.write(“Appending	data	to	a	file	is	as	easy	as	replacing	“w”	with	an	“a”\n.”)

f.close()
	

Apply	the	iterator	above	to	see	what’s	on	linefile.txt:
	

f	=	open(‘linefile.txt’)

for	x	in	iter(f):

				print(x)

f.close()
	

	

You	should	see	the	updated	linefile.txt:
	

This	is	a	new	text	file.
	

It	holds	several	lines	of	strings.
	

Writing	them	line	by	line	makes	file	operations	more	efficient.
	

Did	you	notice	the	integer	returned	as	you	enter	a	line?

	

Did	you	guess	how	easy	it	is	to	append	data	to	a	saved	text	file?
	

Appending	data	to	a	file	is	as	easy	as	replacing	“w”	with	an	“a”.
	

Renaming	a	File
Python’s	 os	 module	 offers	 some	 methods	 that	 can	 be	 used	 to	 perform	 various	 file
operations	such	as	deleting	and	renaming	files.
	

Before	you	can	use	the	os	module,	you’ll	need	to	import	it	with	the	syntax:
	

import	os
	

Importing	the	os	module	gives	you	access	to	a	range	of	useful	methods.

The	rename()	method
The	rename()	method	is	used	to	rename	an	existing	file.	It	takes	two	arguments	and	uses
the	following	syntax:
	

	

os.rename(current_filename,	new_filename)	

	

	

Example:
	

import	os
	

#Rename	a	file	from	file1.txt	to	file2.txt

os.rename(“file1.txt”,	“file.txt”)

Deleting	a	File
To	delete	an	existing	file,	you	can	use	the	remove()	method	which,	like	rename(),	can	be
called	 from	 the	 os	module.	 The	 remove()	method	 takes	 only	 one	 argument	 and	 has	 the
following	syntax:
	

	

os.remove(file_name)	

	

Example:
	

import	os
	

#	Delete	file2.txt

os.remove(“file2.txt”)
	

Binary	Files
Files	are	not	limited	to	text.	They	may	also	contain	images	or	binary	files.
	

To	open	binary	files,	you	will	use	 the	same	syntax	you	use	for	opening	text	files	except
that	this	time,	you	have	to	use	the	binary	mode	which	is	denoted	by	the	letter	‘b’.
	

For	example,	to	open	an	image	stored	in	drive	c:
	

>>>mypict	=	open(‘c:/doggie.jpg’,	‘rb’)			
	

The	 file	 object	 of	 a	 file	 opened	 in	 binary	mode	 possess	most	 of	 the	 attributes	 of	 a	 file
object	created	from	opening	a	text	file.	It	has	the	mode	and	name	attributes.	Unlike	a	text
file,	 however,	 it	 has	no	encoding	attribute.	That’s	because	binary	 files,	 unlike	 text	 files,
require	no	conversion.	What	you	save	 into	 it	 is	exactly	what	you	will	get.With	a	binary
file,	you	will	be	reading	bytes,	in	contrast	to	reading	strings	in	a	text	file.	Python	will	raise
an	AttributeError	if	you	try	to	use	a	non-existent	encoding	attribute.
	

The	following	examples	will	illustrate	the	attributes	of	a	binary	file:
	

>>>	mypict.name

c:/doggie.jpg’
	

>>>	mypict.mode

‘rb’
	

When	you	use	the	read()	method	in	binary	mode,	any	number	you	put	in	as	a	parameter

will	refer	to	the	amount	of	bytes	that	would	be	read.
	

To	illustrate,	this	statement	opens	an	image	file	beach.jpg	in	binary	read	mode	and	creates
a	file	object	mypict:
	

>>>	mypict	=	open(‘c:/beach.jpg’,	‘rb’)			
	

The	next	statement	uses	the	read()	method	on	mypict	and	supplies	5	as	argument.
	

>>>	info	=	mypict.read(5)
	

To	access	the	data	stored	in	info:
	

>>>	info

b’\xff\xd8\xff\xe0\x00’
	

	

Use	type	to	see	the	data	type	stored	in	info:

>>>	type(info)

<class	‘bytes’>
	

	

The	tell()	method	returns	the	number	of	bytes	that	has	been	read.	Since	you	have	specified
5	bytes	to	read,	Python	returns	the	same	number	of	bytes.
	

>>>	mypict.tell()

5
	

>>>	mypict.seek(0)

0
	

	

To	read	the	entire	image	file,	use	the	read()	method	on	mypict	with	no	arguments:
	

>>>	info	=	mypict.read()

	

	

You	can	enter	info	on	the	>>>prompt	to	view	the	contents	of	the	entire	file	but	that	will
probably	be	a	pageful	of	strange	letter	combinations.	Instead,	you	can	use	len()	to	see	the
total	number	of	bytes	read	and	stored	in	the	variable	info:
	

>>>	len(info)

3893
	

File	Methods
Python	has	several	file	methods	that	can	be	used	to	handle	files.	The	most	commonly	used
methods	are	summarized	below:

File.writer(str)
Writes	stringo	to	a	file
The	syntax	is:			
	

	

fileobject.write(str)	

Example:
	

>>>	fileobj	=	open(“my_file.txt”,	“w”)

>>>	fileobj.write(“I	am	a	new	member.\n”)

19

>>>	fileobj.close()

File.writelines(sequence)
Writes	a	sequence	of	strings
	

The	syntax	is:		
	

	

fileobject.writelines(sequence)	

	

Example:
	

#This	program	opens	the	my_file.txt	and	appends	a	sequence	of	strings.
	

fileobj	=	open(“my_file.txt”,	“r+”)

print	(“Filename:	“,	fileobj.name)
	

sequence	=	[“The	club	now	has	100	members.\n”,	“I	am	the	100th	member.”]
	

#Write	sequence	at	the	end	of	my_file.txt

fileobj.seek(0,	2)

lines	=	fileobj.writelines(sequence)
	

#	Read	the	updated	file	from	the	start.

fileobj.seek(0,0)

for	index	in	range(3):

			lines	=	next(fileobj)

			print(“Line	No	%d	-	%s”	%	(index,	lines))
	

#	Close	file

fileobj.close()
	

This	will	be	the	output:
	

Filename:		my_file.txt

Line	No	0	-	I	am	a	new	member.
	

Line	No	1	-	The	club	now	has	100	members.
	

Line	No	2	-	I	am	the	100th	member.
	

File.readline(size)
Reads	an	entire	line	from	file
	

Thesyntax	is:			
	

	

fileobject.readline(size)	

	

Size	is	an	optional	parameter	that	you	can	use	if	you	want	to	specify	the	number	of	bytes
that	should	be	read.
	

Example:
	

Assuming	 that	 you	 have	 created	 a	 text	 file	 named	 alphabet.txt	 and	 that	 you	 have
performed	a	write	operation	on	the	file	to	write	several	lines:
	

>>>	fileobj	=	open(“alphabet.txt”,	“w”)

>>>	fileobj.write(“There	are	26	letters	in	the	alphabet.\n”)

38

>>>	fileobj.write(“A	is	the	first	letter	of	the	alphabet.\n”)

39

>>>	fileobj.write(“There	are	5	vowels	and	21	consonants.\n”)

38

>>>	fileobj.write(“Z	is	the	last	letter.\n”)

22

>>>	fileobj.close()
	

The	following	program	will	read	lines	from	the	file:
	

#	Open	a	file.

fileobj	=	open(“alphabet.txt”,	“r+”)

print	(“Filename:	“,	fileobj.name)
	

lines	=	fileobj.readline()

print	(“Read	Line:	%s”	%	(lines))
	

lines	=	fileobj.readline(14)

print	(“Read	Line:	%s”	%	(lines))
	

lines	=	fileobj.readline()

print	(“Read	Line:	%s”	%	(lines))
	

lines	=	fileobj.readline(18)

print	(“Read	Line:	%s”	%	(lines))
	

#	Close	file

fileobj.close()
	

	

The	output	will	be:
	

Filename:		alphabet.txt

Read	Line:	There	are	26	letters	in	the	alphabet.
	

Read	Line:	A	is	the	first

Read	Line:		letter	of	the	alphabet.
	

Read	Line:	There	are	5	vowels
	

File.readlines()
Reads	until	end-of-file	using	readline()
	

The	syntax	is:	
	

	

fileobject.readlines(sizehint)	

	

The	readlines()	method	returns	a	list	that	contains	the	lines.	By	default,	it	reads	until	EOF
but	it	has	an	optional	argument,	sizehint,	that	can	be	used	to	instruct	Python	to	read	whole
lines	approximating	the	given	sizehint	bytes.	It	returns	an	empty	string	when	the	EOF	is
reached	immediately.

	

Example:
	

The	file	myfile.txt	contains	the	following	lines:
	

A	dictionary	is	mutable.

A	tuple	is	immutable.

A	string	is	immutable.

A	list	is	mutable.

Strings,	lists,	and	tuples	are	sequence	types.
	

	

This	program	will	show	how	the	method	readlines()	is	used:
	

#	Open	myfile

fileobject	=	open(“myfile.txt”,	“r+”)

print	(“Filename:	“,	fileobject.name)
	

lines	=	fileobject.readlines(2)

print	(“Read	Line:	%s”	%	(lines))
	

lines	=	fileobject.readlines()

print	(“Read	Line:	%s”	%	(lines))
	

#	Close	file

fileobject.close()
	

	

Here’s	the	result	when	you	run	the	code:
	

Filename:		myfile.txt

Read	Line:	[‘A	dictionary	is	mutable.\n’]

Read	Line:	 [‘A	 tuple	 is	 immutable.\n’,	 ‘A	 string	 is	 immutable.\n’,	 ‘A	 list	 is	mutable\n’,
‘Strings,	lists,	and	tuples	are	sequence	types.\n’]

	

	

Here’s	 what	 happens	 when	 you	 tweak	 the	 code	 and	 use	 an	 argument	 on	 the	 first
readlines():
	

	

#	Open	myfile

fileobject	=	open(“myfile.txt”,	“r+”)

print	(“Filename:	“,	fileobject.name)
	

lines	=	fileobject.readlines()

print	(“Read	Line:	%s”	%	(lines))
	

lines	=	fileobject.readlines(3)

print	(“Read	Line:	%s”	%	(lines))
	

The	output	would	be:
	

Filename:		myfile.txt

Read	 Line:	 [‘A	 dictionary	 is	 mutable.\n’,	 ‘A	 tuple	 is	 immutable.\n’,	 ‘A	 string	 is
immutable.\n’,	‘A	list	is	mutable\n’,	‘Strings,	lists,	and	tuples	are	sequence	types.\n’]

Read	Line:	[]
	

File	Positions:				file.tell()	and	file.seek
File.tell()
Returns	present	position	of	file	pointer
	

The	syntaxis:
	

	

fileobject.tell()	

	

Example:
	

The	alphabet.txt	file	described	in	the	preceding	example	contains	the	following	lines:
	

There	are	26	letters	in	the	alphabet.

A	is	the	first	letter	of	the	alphabet.

There	are	5	vowels	and	21	consonants.

Z	is	the	last	letter.
	

The	following	program	illustrates	the	usage	of	the	tell()	method:
	

fileobj	=	open(“alphabet.txt”,	“r+”)

print(“Filename:	“,	fileobj.name)
	

lines	=	fileobj.readline()

print(“Read	Line:	%s”	%	(lines))
	

pos	=	fileobj.tell()

print(“Current	Position:	”	,pos)
	

#	Close	file

fileobj.close
	

Here’s	the	output:
	

Filename:		alphabet.txt

Read	Line:	There	are	26	letters	in	the	alphabet.
	

Current	Position:		39
	

File.seek()
Sets	file’s	current	locatopm	at	offset
	

The	syntaxis:											
	

	

fileobject.seek(offset[,	from])	

	

offset												
	

position	of	file	read/write	pointer
	

from
	

From	 is	 an	 optional	 parameter	 which	 has	 zero(0)	 as	 default.	 There	 are	 three	 possible
values	for	whence:
	

0	–	absolute	file	positioning

1	–	seek	relative	to	current	position

2	–	seek	relative	to	the	end	of	the	file
	

Take	note	that	if	you	open	a	file	for	appending	with	either	‘a’	or	‘a+’,	any	seek()	operation
is	nullified	on	the	next	write	operation.	If	you	open	a	file	for	writing	in	append	mode	with
‘a’,	the	method	is	not	operable.	On	the	other	hand,	if	you	open	a	file	in	text	mode	with	‘t’,
the	only	valid	offsets	are	those	returned	by	tell().
	

The	seek()method	returns	none.
	

Example:
	

The	following	lines	are	stored	in	newfile.txt:
	

This	is	line	1	of	5.

This	is	line	2	of	5.

This	is	line	3	of	5.

This	is	line	4	of	5.

This	is	line	5	of	5.
	

This	program	illustrates	the	usage	of	seek():
	

#	Open	a	file

fileobj	=	open(“newfile.txt”,	“r+”)

print	(“Filename:	“,	fileobj.name)
	

lines	=	fileobj.readlines()

print	(“Read	Line:	%s”	%	(lines))
	

#	Set	the	pointer	to	the	start	of	the	file

fileobj.seek(0,	0)

lines	=	fileobj.readline()

print	(“Read	Line:	%s”	%	(lines))
	

#	Close	file

fileobj.close()
	

	

Run	the	program	and	you	will	get	these	results:
	

Filename:		newfile.txt

Read	Line:	[‘This	is	line	1	of	5.\n’,	‘This	is	line	2	of	5.\n’,	‘This	is	line	3	of	5.\n’,	‘This	is
line	4	of	5.\n’,	‘This	is	line	5	of	5.\n’]

Read	Line:	This	is	line	1	of	5.
	

File.read(n)
Reads	size	bytes	from	a	file
	

The	syntax	is:	
	

	

fileobject.read(size)		

	

Size	is	the	number	of	bytes	that	will	be	read.
	

Example:

	

The	file	myfile.txt	contains	the	following	lines:
	

A	string	is	a	sequence.

Strings	and	tuples	are	immutable.

A	list	is	a	mutable	sequence.

Python	offers	many	file	methods.

The	os	module	has	useful	methods	for	directories.
	

This	program	shows	how	the	read()	method	is	used	to	display	piecemeal	string:
	

#	Open	a	file

fileobj	=	open(“myfile.txt”,	“r+”)

print	(“Filename:	“,	fileobj.name)
	

	

lines	=	fileobj.read(35)

print	(“Read	Line:	%s”	%	(lines))
	

#	Close	file

fileobj.close()
	

	

Run	the	program	and	you’ll	get	the	following	results:
	

Filename:		myfile.txt

Read	Line:	A	string	is	a	sequence.

Strings	and
	

File.truncate([size])
Resizes	the	file
	

The	syntaxis:
	

	

fileObject.truncate([size])	

	

The	 truncate()	method	 truncates	 the	size	of	 the	file.	 It	has	an	optional	argument	 for	size
which,	if	given,	will	be	used	as	the	basis	for	truncating	the	file.	If	size	is	not	provided,	the
default	 is	 the	 current	 position.	 The	 truncate()	method	will	 not	work	 for	 files	which	 are
opened	in	‘read	only’	mode.
	

Example:
	

This	example	makes	use	of	the	file	linefile.txt	which	contains	the	following	lines:
	

This	is	the	first	line.

The	second	line	is	longer	than	the	first	line.

This	is	the	third	line.

The	fourth	line	is	not	important.

This	is	the	fifth	line	and	it	is	the	longest	line	of	all.
	

This	code	will	show	how	the	truncate()	method	is	used:
	

fileobject	=	open(“linefile.txt”,	“r+”)

print	(“Filename:	“,	fileobject.name)
	

lines	=	fileobject.readline()

print	(“Read	Line:	%s”	%	(lines))
	

fileobject.truncate()

lines	=	fileobject.readlines()

print	(“Read	Line:	%s”	%	(lines))
	

#	Close	file

fileobject.close()
	

This	would	be	the	output:

	

Filename:		linefile.txt

Read	Line:	This	is	the	first

Read	Line:	[]
	

File.flush()
Flushed	the	internal	buffer
	

The	syntax	is:
	

	

fileobject.flush()	

	

This	program	illustrates	the	use	of	the	flush()	method:
	

#	Open	a	file

fileobject	=	open(“onefile.txt”,	“wb”)

print	(“Filename:	“,	fileobject.name)
	

#	The	method()	returns	none	but	can	be	called	with	the	read	operations

fileobject.flush()
	

#	Close	file

fileobject.close()
	

	

This	is	what	the	output	will	be:
	

Filename:		onefile.txt
	

File.close()
Closes	an	open	file
	

The	syntax	is:
	

	

fileobject.close()	

	

The	following	illustrates	the	use	of	the	close()	method:
	

#	Open	a	file

fileobject	=	open(“myfile.txt”,	“wb”)

print	(“Filename:	“,	fileobject.name)
	

#	Close	file

fileobject.close()
	

File.isatty()
Returns	True	it	file	if	attached	to	a	try	to	a	tty	or	similar	device	and	False
if	otherwise.
	

The	syntax	is:
	

	

fileobject.isatty()	

	

Example:
	

This	code	illustrates	the	usage	of	the	file.isatty()	method:
	

#	Open	a	file

fileobject	=	open(“myfile.txt”,	“wb”)

print	(“Filename:	“,	fileobject.name)
	

val	=	fileobject.isatty()

print	(“Return	value	:	“,	val)

	

#	Close	file

fileobject.close()
	

Since	the	file	is	not	attached	to	any	tty	or	tty-like	device,	the	output	will	be:
	

Filename:		myfile.txt

Return	value	:		False
	

File.fileno()
Returns	integer	file	descriptor
	

The	operating	system	keeps	tab	of	all	opened	files	by	creating	a	unique	entry	to	represent
each	file.	These	entries	are	called	file	descriptors	and	are	represented	by	integers.
	

The	syntax	is:	
	

	

fileobject.fileno()	

	

Example:
	

#	Open	a	file

fileobject	=	open(“myfile.txt”,	“wb”)

print	(“Filename:	“,	fileobject.name)
	

filenum	=	fileobject.fileno()

print	(“File	Descriptor:	“,	filenum)
	

#	Close	file

fileobject.close()
	

This	results	to	the	following:
	

Filename:		myfile.txt

File	Descriptor:		3
	

file.readable()												returns	True	if	file	is	readable

file.writable()												returns	True	if	file	is	writable

file.detach()																		separates	and	returns	binary	buffer	from	TextIOBase
	

	

Step	25:	Handling	Errors	or	Exceptions
	

Errors	are	quite	common	in	programming	and	they	fall	into	two	major	types:	syntax	errors
and	runtime	errors.
	

Syntax	Errors
Errors	caused	by	non-compliance	with	the	language	structure	or	syntax	are	called	syntax
or	parsing	errors.
	

These	are	the	common	syntax	errors:
	

misspelled	keywords
incorrect	indentation
omission	of	a	required	keyword	or	symbol
placement	of	keywords	in	wrong	places
an	empty	block

	

Examples:
	

if	num	>=	100						#a	colon	is	required	in	if	statements

				print	(“You	passed	the	exam!”)
	

for	n	in	num[4,	19,	25,	50,	26,	75]						#print	statement	should	have	been	indented

if	x	==	50:																								#because	it	is	inside	the	if	block

print(“Enter	a	password!”)
	

	

Runtime	Errors
Errors	that	occur	during	runtime	are	called	exceptions.	If		unsolved,	a	runtime	error	may
cause	 a	 program	 to	 crash	 or	 terminate	 unexpectedly.	 Common	 runtime	 errors	 include
IndexError	 (for	 index	 which	 is	 out	 of	 range),	 KeyError	 (when	 key	 is	 not	 found)	 or
ImportError	(for	missing	import	module).	Python	creates	an	exception	object	every	time	it
encounters	an	exception	and	displays	a	traceback	to	the	error	if	it’s	not	managed.
	

	

Here	are	examples	of	exceptions:
	

accessing	a	non-existent	file
using	an	identifier	that	has	not	been	defined
performing	operations	on	incompatible	data	types
division	by	zero
accessing	a	non-existent	element	on	a	dictionary,	list,	or	tuple

	

Built-in	Exceptions
Python	 has	 several	 built-in	 exceptions	 and	 they	 are	 raised	 whenever	 a	 runtime	 error
occurs:
	

Built-in	Exception												Raised	when:
	

IndexError																		a	specified	index	is	out	of	range

KeyError																		a	dictionary	key	is	not	found

ZeroDivisionError												the	divisor	is	zero

IndentationError												indentation	is	not	correct

EOFerror																		the	input()	function	reaches	end-of-file	condition

ImportError																		imported	module	is	not	available

AssertionError												assert	statement	fails

NameError																		a	variable	is	not	found	in	local/global	scope

FloatingPointError												floating	point	operator	fails

UnicodeError												a	Unicode-related	encoding/decoding	error	occurs

AttributeError												an	attribute	or	a	reference	assignment	fails

Catching	Exceptions
There	are	different	ways	to	catch	and	manage	an	exception	in	Python:

try	and	except
	

One	way	of	managing	a	Python	exception	is	by	using	“try	and	except	statements”.	Critical
parts	of	the	program	that	are	likely	to	cause	exceptions	are	placed	within	the	‘try’	clause
while	the	exception	code	is	given	inside	the	‘except’	clause.
	

For	example:

	

try:

				num	=	int(input(“Please	enter	a	number	between	0	and	15:	“))

				print(“You	entered	%d.”	%	num)

except	ValueError:

				print(“That’s	not	a	number!	Please	try	again.”)
	

	

Python	will	try	to	execute	all	statements	in	the	‘try’	block.	If	a	ValueError	is	encountered,
control	immediately	passes	to	the	‘except’	block.	Any	unprocessed	statement	in	the	‘try’
block	 will	 be	 ignored.	 In	 this	 case,	 a	 ValueError	 exception	 was	 given	 to	 handle	 non-
numeric	responses.

try…finally
	

A	try	statement	can	also	include	a	“finally”	clause.	The	“finally”	clause	is	always	executed
regardless	of	the	actions	done	about	the	program	error.	It	is	also	used	to	clean	and	release
external	resources.
	

try:

				num	=	int(input(“Please	enter	a	number	between	0	and	15:	“))

				print(“You	entered		%d.”	%	num)

except	ValueError:

				print(“That’s	not	a	number!	Please	try	again.”)

else:

				print((“That	will	be	your	meal	stub	number.”)

finally:

				print((“Great!	Don’t	forget	to	claim	your	meals.”)
	

	

	

	

	

Python	Cheat	Sheets
	

To	help	with	your	learning	you	can	download	and	print	this	Cheat	Sheet	from	our	website.
We	offer	two	different	ways	to	download	it;
	

You	can	open	it	through	Microsoft	Word,	edit	it	as	you	wish	and	print	it.
Or	you	can	also	download	it	as	it	is	and	print	it.

	

To	do	 so,	 simply	go	 to	our	website	 at	www.jthompsonbooks.com	->	Bonus	 ->	Python’s
Companion.	You	can	also	<click	here>	to	be	automatically	directed	to	it.	Our	website	will
ask	you	for	a	password.
	

The	password	is:
#ilovepython
	

Please	note	that	the	password	is	in	1	word	in	lowercase.
	

Variable	Assignment
	

	

	string	=	“string”

	

	integer	=	1

	

	list	=	[item1,	item2,	item3,	…]

	

	tuple	=	(item1,	item2,	item3,	…)

	

	dictionary	=	{	key1	:	value1,	key2	:	value2,	key3	:	value3	…	}

	

	mutli_line_string	=	“““	multi-line	string”””

http://www.jthompsonbooks.com
http://www.jthompsonbooks.com/bonus/pythons-companion/

	

	unicode_string	=	“unicode	string”

	

	class_instance	=	ClassName	(init_args)

	

Accessing	Variable	Values
	

value	=	string[start:end]		

	

	example:	“string”[1:4]	→	“tri”

	

value	=	dictionary[key]	

	

example:	my_dict[key1]	

	

value	=	dictionary.get(key,	default_value)	

	

value	=	list[start:end]		

	

	example:	[2,	7,	5,	8][1:2]	→	[7]

	

value	=	list[index]		

	

	example:	[4,	9,	6,	8][1]	→	9

	

value	=	ClassName.class_variable	

	

example:	MyClass.age	

	

value	=	class_instance.function(args)	

	

value	=	class_instance.instance_variable	

Python	Operators
Arithmetic	Operators
	

Addition	

	

x	=	a	+	b	

	

	5	+	10		→	15

	

Subtraction	

	

x	=	a	–	b	

	

	15	–	10	→	5

	

Multiplication	

	

x	=	a	*	b	

	

	5	*	10	→	50

	

Division	

	

x	=	a	/	b		

	

	15	/	3	→	5

	

Modulos	

	

x	=	a	%	b		

	

	11	%	3	→	2

	

Floor	Divison	

	

x	=	a	//	b	

	

	11	//	3	→	3

	

Assignment	Operators												

	

=	

	

assignment	

	

Assigns	 the	 value	 of	 the	 right	 operand	 to
the	left	operand.	

	

c	=	a	+	b	assigns	value	of	a
+	b	into	c	

	

+=	

	

add	and	

	

It	 adds	 right	 operand	 to	 the	 left	 operand
and	assign	the	result	to	left	operand	

	

c	+=	a	is	equivalent	to	c	=	c
+	a	

	

-=	

	

subtract
and	

	

It	 subtracts	 right	 operand	 from	 the	 left
operand	 and	 assign	 the	 result	 to	 left
operand	

	

c	-=	a	is	equivalent	to	c	=	c	-
a	

	

*=	

	

multiply
and	

	

It	 multiplies	 right	 operand	 with	 the	 left
operand	 and	 assign	 the	 result	 to	 left
operand	

	

c	*=	a	is	equivalent	to	c	=	c
*	a	

	

/=	

	

divide	and		

	

It	 divides	 left	 operand	 with	 the	 right
operand	 and	 assign	 the	 result	 to	 left
operand	

	

c	/=	a	is	equivalent	to	c	=	c	/
ac	/=	a	is	equivalent	to	c	=	c
/	a	

	

**
=	

	

exponent
and		

	

Performs	 exponential	 (power)	 calculation
on	 operators	 and	 assign	 value	 to	 the	 left
operand	

	

c	**=	a	is	equivalent	to	c	=	c
**	a	

	

//=	

	

floor
division		

	

It	performs	floor	division	on	operators	and
assign	value	to	the	left	operand	

	

c	//=	a	is	equivalent	to	c	=	c
//	a	

	 	 	

	

%=	

Modulus
and	

It	 takes	 modulus	 using	 two	 operands	 and
assign	the	result	to	left	operand	

c	%=	a	is	equivalent	to	c	=	c
%	a	

	

Relational	Operators
	

2	<	10	
	

is	less	than	
	

5	>	3		
	

is	greater	than	
	

4	<=	2+2	
	

is	less	than	or	equal	to	
	

2	*	5	>=	2	*	3	
	

is	greater	than	or	equal	to	
	

10	==2	*	5		
	

is	equal	to	
	

18	!=	2	*	6	
	

is	not	equal	to	
	

Logical	Operators
	

	or	

	

	(12	>	9)	or	(15	<	10)→		True

	

	(4	>	14)	or	(8	<	5)	→		False

	

and	
	
	(10	>	2)	and	(15	>	5)	→		True

	

	(5	>	2)	and	(12	>	20)	→		False

	

not	

	

	not	(6	>	3	**	5)	→		True

	

	not	(6	<	4	**	4)	→		False

	

Identity	Operators
	

Verifies	if		the	left	and	right	operands	refer	to	the	same	memory	location:
	

	

is	

	

a	=	8,	b	=	8	

	

	a	is	b	→		True

	

is	not	

	

x	=	5,	y	=	10	

	

	a	is	not	b	→		True

	

Membership	Operators
	

Checks	if	a	given	value	occurs	in	a	sequence:

	
in		

	
x	=	[“a”,	“b”,	“c”,	“d”,	“e”]	

	
	“b”	in	x	→		True

	
not	in	

	
x	=	“immutable”	

	
	‘u’	not	in	x	→		True

	

Bitwise	Operators
	

Assuming	x	=	15	and	y	=	10	
	

		

	
&	

	
Bitwise	AND	

	
	x	&	y	→	10

	
	bin(10)	→	‘0b1010’

	
|	

	
Bitwise	OR	

	
	x	|	y	→	15

	
	bin(15)	→	‘0b1111’

	
^	

	
Bitwise	XOR	

	
	x	^	y	→	5

	
bin(5)	

	
	→	‘0b101’

	
~	

	
Bitwise	NOT	

	
	~	x	→	-16

	
	bin(-16)	→		‘-0b10000’

	
<<	

	
Bitwise	left	shift	

	
	x	<<	2		→	60

	
	bin(60)		→		‘0b111100’

	
>>	

	
Bitwise	right	shift	

	
	y	>>	2	→	2

	
	bin(2)	→	‘0b10’

	

Strings
	

s	=	‘new	string’	

	

Creates	‘new	string’	in	single	quotes.	

	

s	=	“new	string”	

	

Creates	“new	string”	in	double	quotes.	

	

s	=	“““Hello,	world”””	

	

Creates	a	string	“““Hello,world”””	in	triple	quotes.	

	

y=x.replace(“old”,“new”,1)	

	

Replaces	1	st	occurrence	of	“old”	string	with	“new	string”.

	 	

n	=	len(str)	 Stores	the	length	(no.	Of	characters)	of	a	string	to	n.	

	

“abc”	in	str		

	

Checks	if	a	given	substring	exists	in	a	string	.	

	

	 “%s%s”	 %	 (“prog”,
“ram”)		

	

	→	‘program’

	

print(“string”)	

	

	→	string

	

str.split(“delim”,	limit)		

	

	“a/t”.split(“/”)	→	[‘a’,	‘t’]

	

str.upper()	

	

Returns	a	view	of	a	string	in	uppercase.	

	

str.lower()	

	

Returns	a	view	of	a	string	in	lower	case.	

	

str.title()	

	

Returns	a	view	of	a	string	where	the	first	letter	of	every	word
is	capitalized,	the	rest	are	in	lowercase.	

	

str.count(“a”)	

	

Sum	the	occurrence	of	a	character	or	series	of	character	in	a
string.	

	

str.find(“abc”)	

	

Searches	 for	 a	 character	 or	 series	 of	 characters,	 returns	 the
index	number.	

	

str.isalpha()	

	

Checks	if	a	string	is	alphabetic.	

	

str.isalnum()	

	

Checks	if	a	string	is	alphanumeric.	

	

str.isidentifier()	

	

Checks	if	a	string	is	a	valid	identifier.	

	

str1.join(seq)	

	

Concatenates	a	string	with	a	sequence	of	string.	

	

	

str.lstrip()	

Returns	 the	 string	 without	 leading	 characters	 or
whitespaces.	

	

str.rstrip()	

	

Returns	 the	 string	 without	 trailing	 characters	 or
whitespaces.	

	

str.strip()	

	

Returns	the	string	without	leading	and	trailing	characters	or
whitespaces.	

	

str1.index(str2,	beg,	end)	

	

Checks	 the	 occurrence	 of	 a	 given	 substring	 and	 returns	 its
index.	

	

str1.rindex(str2,	beg,	end)	

	

Searches	 for	 the	 last	 occurrence	 of	 a	 given	 substring	 and
returns	its	index.	

	

str.zfill(width)	

	

Returns	a	string	with	leading	zeros	within	the	given	width.	

	

str.rjust(width[,	fillchar])	

	

Returns	 right-justified	 string	 within	 a	 given	 width,	 has
optional	fill	character.	

	

str.ljust(width[,	fillchar])	

	

Returns	 left-justified	 string	 within	 a	 given	 width,	 takes
optional	fill	character.	

	

str.center(width[,	fillchar])		

	

Returns	 center-justified	 string	 within	 a	 given	 width,	 takes
optional	fill	character.	

	

str.endswith(“suffix”)	

	

Checks	whether	a	string	ends	in	a	given	suffix.	

	

str.startswith(“prefix”)		

	

Checks	whether	a	string	ends	in	a	given	prefix.	

	

string1	+	string2	

	

	“prog”	+	“ram”	→	‘program’

	

Lists
	

	L	=	[“a”,		1,	“X”,	4.5,]
	

list	creation	
	

	L[0]																																	
	

access	the	first	element	
	

	L[0:2]																														
	

access	the	first	two	elements	
	

	L[-4:]																															
	

access	the	last	four	elements	
	

	L[1:4]	=	[“e”,	10,	“o”]			
	

replace	elements	on	index	1	to	3	with	given	values	
	

	del	L[3]																											
	

remove	list	element	on	given	index	
	

len(L)	
	

returns	the	number	of	items	on	a	list	
	

max(L)	
	

returns	the	largest	item	on	a	list	
	

min(L)	
	

returns	the	smallest	item	on	a	list	
	

sum(L)	
	

returns	the	total	value	on	list	
	

list()	
	

converts	an	iterable	to	a	list	
	

	L.append(a)																			
	

adds	a	given	value	to	list	L	
	

	L.extend(L2)																		
	

adds	elements	in	L2	to	L,	same	as	L3	=	L	+	L2		
	

L.remove(a)	
	

a	is	a	value	you	want	to	remove	from	list	L	
	

L.sort()	
	

sort	a	list	containing	elements	of	the	same	type	

	
L.count(“e”)	

	
searches	 for	 a	 value	 and	 returns	 number	 of
occurrence	

	
L.reverse()	

	
sorts	a	list	in	the	reverse	(descending)	order	

	
	L.pop()																												

	
simple	stack,	removes	the	last	element	

	
	L.index(a)																							

	
index	of	first	occurrence	of	a	given	value	

	 	

	a	in	L																															 membership	test:	does	L	contain	a?	True	or	False	
	

	[x*3	for	x	in	L	if	x>4]			
	

list	comprehension	
	

Tuple
	

x	=	1,	2,	3,	4,	5		

	

x	=	(1,	2,	3,	4,	5)	

	

x	=	(1,	2,	4,	“a”,	“b”,	“c”)	

	

x	=	(“book”,	(1,	3,	40),	[8,	4,	7])	

	

x	=	(“student”,)	

	

x	=	()	
	
		

	

1,	2,	3,	4,	5	=	x	

	

x[3]	

	

#	access	element	on	index	3	

	

x[4:7]	

	

#	access	element	on	indices	4	to	6	

	

del	x	

	

#	delete	tuple	x	

	

‘g’	in	my_tuple	

	

#	membership	test,	returns	True	or	False	

	

mytuple.count(a)	

	

returns	the	number	of	elements	equal	to	given	value	

	

mytuple.index(a)	

	

returns	index	of	the	first	element	equal	to	given	value	

	

len(mytuple)	

	

returns	the	number	of	elements	in	a	tuple	

	

max(mytuple)	

	

returns	the	largest	element	in	a	tuple	

	

min(mytuple)	

	

returns	the	smallest	element	in	a	tuple	

	

sorted(mytuple)	

	

returns	a	view	of	a	sorted	tuple	

	

sum(mytuple)	

	

returns	the	total	of	all	items	in	a	tuple	

	

tuple()	

	

converts	an	iterable	to	a	tuple	

	

Dictionary
	

	D	=	{‘key1’:	15,	‘key2’:	‘xyz’,	‘key3’:	78.50
}						

	

creates	a	dictionary	

	

D	 =	 dict(‘key1’=15,	 ‘key2’=‘xyz’,
‘key3’=78.50)		

	

creates	a	dictionary	

	

D	=	{}	

	

creates	an	empty	dictionary	

	

keys	=	(‘x’,	‘y’,	‘z’)	

	

dict2	=	dict(pairs)	

	

creates	dict2	from	a	list	of	tuple	key-value
pairs	

	

	D	=	dict.fromkeys(keys)					

	

create	new	dictionary	with	no	values	

	

	for	k	in	D:	print(k)																					

	

iterates	over	dictionary	keys	

	

my_dict[‘Age’]	

	

accesses	the	value	of	the	given	key	

	

my_dict.get(‘Name’)	

	

uses	the	get()	method	to	access	a	value	

	

my_dict[‘Age’]	=	24	

	

adds	a	new	key	and	value	to	a	dictionary	

	

my_dict[‘Age’]	=	20	

	

modifies	the	value	of	a	given	key	

	

my_dict.pop(‘Name’)	

	

removes	the	given	key	and	its	value		

	

my_dict.popitem()	

	

method	 that	 removes	 a	 random	 key-value
pair	

	

my_dict.clear()	

	

removes	 all	 key-value	 pairs	 from
dictionary	

	

del	my_dict	

	

deletes	a	dictionary	

	

dict1.update(dict2)	

	

updates	 dict1	 with	 key-value	 pairs	 from
dict2	

	

dict.items()	

	

returns	 a	 list	 of	 a	 dictionary’s	 key-value
pairs	

	

dict.values()	

	

returns	a	list	of	all	dictionary	values	

	

dict.keys()	

	

returns	a	list	of	dictionary	keys	

	

dict.setdefault(‘a’,	None)	

	

searches	for	a	given	value	in	dictionary	

	

dict_2	=	dict_1.copy()	

	

creates	a	copy	of	dict_1	dictionary	

	

squares={x:x*3	for	x	in	range(5)}	

	

dictionary	comprehension	

	

newdict	=	dict.fromkeys(L,	3)	

	

takes	 items	 in	 sequence	 and	 uses	 them	 as
keys	

	

3	in	a_dict	

	

dictionary	membership	test	

	

len(a_dict)	

	

returns	the	number	of	items	in	a	dictionary	

	

	for	x	in	dict.values():	print(x)						

	

prints	values	

	

	for	x,	y	in	dict.items():																			

	

key-value	tuples	

	

	list(dict.keys())																																

	

dictionary	keys	in	list	form	

	

	sorted(dict.keys())																										

	

sorted	dictionary	keys	in	list	form	

	

Sets
	

my_set	=	{2,	4,	6,	8,	10}	

	

my_set	=	{‘x’,	‘y’,	‘z’,	a’,	‘e’}	

	

my_set	=	set()	

	

my_set	=	{10.0,	“Python”,	(9,	7,	5),	5}	

	

	Set_a	=	{2,	4,	6}					List_1	=	[2,	5,	4,	1,	6]			S	=	set(List_1)										#	set	([1,2,4,5,6])

	 	

set([5,4,3,	1])	 creates	set	from	a	list	

	

my_set.add(12)	

	

adds	an	element	to	a	set	

	

my_set.update([1,	3,	5])	

	

my_set.discard	(‘x’)	

	

removes	an	element	from	a	set	

	

my_set.remove	(‘f’)	

	

removes	an	element	from	a	set	

	

my_set.pop()	

	

removes	a	random	item	and	returns	it	

	

my_set.clear()	

	

removes	all	elements	of	a	set	

	

X	|	Y	

	

union:	combines	the	elements	of	X	and	Y	

	

X.union(Y)	

	

combines	the	elements	of	X	and	(

	

x	&	y	

	

intersection:	combines	common	elements	of	X	and	Y	

	

x.intersection(y)	

	

method	that	combines	common	elements	of	X	and	Y	

	

x	–	y	

	

difference:	set	of	elements	found	in	x	but	not	in	y	

	

x.difference(y)	

	

returns	a	set	of	elements	found	in	x	but	not	in	y	

	

x	^	y	

	

set	of	elements	that	are	not	common	in	x	and	y	

	

b.symmetric_difference(a)	

	 	

‘s’	in	my_set	 set	membership	test	

	

len(my_set)	

	

returns	the	number	of	elements	on	a	set	

	

max(my_set)	

	

returns	the	largest	element	on	a	set	

	

min(my_set)	

	

returns	the	largest	element	on	a	set	

	

sorted(my_set)	

	

returns	a	sorted	view	of	a	set	

	

sum()	

	

returns	the	total	of	all	items	in	a	set	

	

Loops
	

	for	num	in	range(4):										

	

#	4	numbers	starting	from	zero:	0,1,2,3	

	

	for	num	in	range(0,	10,	3):			

	

	#	start,	end,	progression:		0,3,6,9		

	

	for	num	in	range(0,	9):									

	

	#	start,	end:		0,1,2,3,4,5,6,7,8

	

for	a,	z	in	dict.letters():	

	

	#	dict[key1]	=	50		dict[key2]	=	100

	

					print(“dict[{}]={}”.format(a,z))				

	

num_list	=	[2,	4,	6,	8]	

	

	for	a,	z	in	zip(List_1,	List_2):																	

	

#	return	tuple	pairs	

	

	for	index,	value	in	enumerate(num_list):	

	

#	index,	value	

	 	

	for	x	in	sorted(set(num_list)):			 #	set	sorted	from	num_list	

	

for	val	in	reversed(num_list):	

	

#	reverse	sort	of	num_list	

	

Conditional	Statements
if…else
	

if	a	>	90:	

	

					print(“Good	job!”)

	

else:	

	

					print(“Please	try	again!”)

	

if…elif…else
	

if	x	>	20:	

	

					print(“Sorry,	you	have	exceeded	the	limit.”)

	

elif	x	>	12:	

	

					print(“You	have	a	chance	to	join	the	jackpot	round.”)

	

else:	

	

					print(“You	may	roll	the	dice	again.”)

	

Built-in	Functions
	

range(n1,	n2,	step)	
	

creates	a	list	with	arithmetic	progression	
	

input()	
	

x	=	input(“Enter	a	number:	“)	takes	user’s	input	
	

print(x)	
	

prints	the	given	value	
	

abs(n)	
	

returns	absolute	value	of	integers	or	floats	
	

max(x)	
	

returns	the	largest	value	among	two	or	more	numeric	data	
	

min(x)	
	

returns	the	smallest	value	among	two	or	more	numeric	data	
	

type()	
	

returns	the	data	type	of	given	argument	
	

User-Defined	Functions
To	define	a	function

def	function(parameters):												def	adder(num):

“““docstring”””																		”““Function	that	adds	numbers”””						

function	body																						function	body
	

Classes
To	define	a	class:

class	ClassName:

“““This	is	a	new	class.”””

b	=	“apple”

def	greet(self):

print(‘Hello,	World!’)
	

To	access	ClassName’s	attributes:

ClassName.b						→	“apple”

ClassName.greet		→<function	ClassName.greet	at	0x02AD5D20>

ClassName.__doc__			→				‘This	is	a	new	class.’
	

	

To	create	an	object	from	ClassName:

obj	=	ClassName()

Files
f	=	open(“trial.txt”,	“w”)													#	open	options:	r	,	r+,	rb,	rb+,	w,	wb

f.write(“I’m	a	string.\n”)

f.close()																														

L	=	open(“trial.txt”).readlines()						#	returns	list	of	lines

for	line	in	open(“trial.txt”):	print(line,	end=””)
	

Text	File	Opening	Modes
	

r		

	

Default	mode,	read	mode.	

	

w	

	

Write	mode,	creates	new	file	or	overwrites	existing	file.	

	

r+	

	

Read	and	write	mode.	

	

w+	

	

Read	and	write	mode,	creates	new	file	or	overwrites	existing	file.	

	

a	

	

	Append	mode:	if		the	file	exists,	it	adds	at	the	end	of	the	file;	if	file	does	not	exist,	it
creates	a	new	file.

	

a+	

	

Read	and	append	mode:	if	the	file	exists,	it	reads	and	appends	data	at	the	end	of	the
file;	if	file	does	not	exist,	it	creates	a	new	file.	

	

x	

	

Opens	file	for	exclusive	creation,	fails	if	the	file	already	exists.	

	

Binary	File	Opening	Mode
	

rb+	

	

Binary	format	read	and	write	mode:	file	pointer	is	located	at	the	start	of	the	file.	

	

wb+	

	

Binary	format	write	mode:	overwrites	an	existing	file,	creates	a	new	file	if	non-
existent.	

	

ab+	

	

Binary	format	read	and	append	mode:	if	the	file	exists,	it	adds	data	at	the	end	of	the
file;	if	the	file	does	not	exist,	it	creates	a	new	file.	

	

File	Operations
	

fileobj	=	open(“myfile”,
“w”)	

	
creates	fileobj,	opens	myfile	on	write	mode	

	
fileobj.write(“string”)	

	
writes	‘string’	to	file	

	
fileobj.writelines(“I	am
me./n”)	

	
writes	a	sequence	of	strings		

	
fileobj.readline()	

	
reads	an	entire	line,	takes	an	optional	argument	for
byte	size	

	
fileobj.readlines()	

	
reads	all	lines	until	EOF,	takes	an	optional	sizehint
argument	

	
fileobj.tell()	

	
returns	the	position	of	the	file	pointer	

	
fileobj.seek(offset[from])	

	
sets	file	pointer’s	current	position	at	offset	

	
fileobj.read(n)	

	
reads	size	bytes	from	file	

	
fileobj.truncate(size)	

	
truncates	the	file,	takes	an	optional	agreement	for
size		

	
	fileobj.flush()		

	
flushes	the	internal	buffer	

	
fileobj.close()	

	
closes	an	open	file	

	
fileobj.isatty()	

	
checks	if	file	is	attached	to	a	tty	device	

	
fileobj.fileno()	

	
return	an	integer	file	descriptor	

	

Date	and	Time
import	time
	

formatted	time:

time_now=time.asctime(time.localtime(time.time()))

→			Thu	Jun	30	01:22:15	2016

from	datetime	import	datetime		

datetime.now()

from	time	import	strftime

strftime(“%Y-%m-%d	%H:%M:%S”)						→	‘2016-07-08	02:35:02’

Python	Modules
	

import	module	

	

Imports	a	Python	module.	

	

import	math	

	

Imports	the	math	module.	

	

math.sqrt(n)	

	

	Math.sqrt(100)	→	25

	

math.gcd(n1,	n2)	

	

	Math.gcd(12,	14)	→	2

	

math.fabs(n)	

	

	Math.fabs(-15)	→	15.0

	

import	random	

	

Imports	Python’s	random	module.	

	

	random.randint(1,	12)													returns	a	random	integer	from	1	to	12.

	

	random.choice([‘a’,	1,	2])Returns	a	random	value	from	a	given	list.

	

random.shuffle(([1,	2,	3])	

	

Rort	and	arranges	items	in	a	list	in	a	random
order	

	 	

import	time	 Imports	Python’s	time	module.	

	

time.localtime()	

	

Returns	time	in	tuple	format.	

	

import	calendar	

	

Imports	Python’s	calendar	module.	

	

	calendar.month(2016,	7)							Imports	calendar	for	July	2016.

	

calendar.calendar(year,	w=2,	l=1,	c=6)
	

	

Imports	calendar	for	the	year.	

	

calendar.firstweekday()	

	

Sets	first	day	of	the	week,	default	is	Monday.	

	

Help!
	

Oh	no,	you’re	stuck!	Chances	are	that	someone	else	had	the	same	problem	you’re	having
and	 has	 written	 about	 it	 online.	 Here	 are	 some	 great	 ressources	 you	 can	 use	 to	 find
answers	to	your	questions.
	

Google
You	can	simply	google	the	exact	error	message	you	are	getting.	For	example:
	

>>>	a.attr
	

Attempting	to	access	the	non-existent	object	a.attr	will	raise	the	AttributeError:
	

Traceback	(most	recent	call	last):

		File	“<pyshell#7>”,	line	1,	in	<module>

				a.attr

AttributeError:	‘NumberPairs’	object	has	no	attribute	‘attr’
	

Simply	google	“Attribute	Error”	to	find	ways	to	resolve	the	issue.
	

FAQ
	

Python.org	offers	many	answers	 to	many	common	general	questions.	To	read	about
Python	Frequently	Asked	Questions	<click	here>.

	

Stack	Overflow	(www.stackoverflow.com)	is	one	of	 the	most	popular	question-and-
answers	 sites	 for	 programmers.	 Some	members	 post	 their	 questions	when	 they	 are
stuck	and	others	try	to	help	them	with	answers.

	

IRC	(Internet	Relay	Chat)
	

If	 you	 are	 stuck	 and	 searching	 online	 isn’t	 proving	 helpful,	 then	 you	might	 try	 asking
someone	 in	 an	 IRC	 channel.	 IRC	 is	 a	 chat	 system	 where	 people	 around	 the	 world
communicate	 live.	 You	 can	 create	 your	 own	 account	 by	 going	 to

https://docs.python.org/3/faq/index.html
http://www.stackoverflow.com

www.webchat.freenode.net.	 To	 join	 the	 main	 Python	 channel,	 you	 must	 enter	 /join
#python	in	the	input	box.
	

	

	

	

	

	

http://www.webchat.freenode.net

Other	Best	Selling	Books	You	Might	Like!
	

	

	

Read	this	Step	by	Step	book	to	easily	understand	Excel	2016	in	no	time!	Click	<here>	 to
see	my	book	and	click	on	it’s	cover	to	see	the	first	pages!

https://www.amazon.com/dp/B01LXJD7ZM

	

Read	this	Step	by	Step	book	to	easily	understand	Windows	10	in	no	time!	Click	<here>	to
see	my	book	and	click	on	it’s	cover	to	see	the	first	pages!
	

https://www.amazon.com/WINDOWS-10-COMPANION-COMPLETE-MICROSOFT-ebook/dp/B01BBDSQGE/ref=sr_1_29?s=digital-text&ie=UTF8&qid=1476394111&sr=1-29&keywords=WINDOWS+10

	
	

Conclusion
	

Thank	you	again	for	downloading	this	book!	
	

I	 hope	 that	 this	 book	 was	 able	 to	 help	 you	 to	 learn	 the	 fundamentals	 of	 Python
programming	 quickly	 and	 easily.	 By	 now,	 I	 know	 that	 you	 can	 make	 useful,	 practical
programs	that	will	automate	many	of	your	daily	tasks	at	work	and	at	home.
	

The	next	step	is	to	take	up	advanced	Python	programming	courses	that	can	help	you	create
more	powerful	programs.
	

If	you	happened	to	like	my	book	please	leave	me	a	quick	review	on	Amazon.		I	personally
read	every	single	comment	on	 the	site.	Your	feedback	 is	very	 important	 to	me	as	 it	will
help	improve	the	book	and	ensure	your	satisfaction.
	

Thank	you!
	

Joe	Thompson

Table	of	Contents
Introduction

An	Overview	of	Python

Step	1:	Installing	Python

Installing	Python	in	Windows

Which	version	should	I	use?

Installing	Python	in	Mac

Running	the	Installation	file

Starting	Python

IDLE	versus	the	command	line	interface	(CLI)

IDLE

The	Command	Line	Interface	(CLI)

Different	ways	to	access	Python’s	command	line

If	you’re	using	Windows

If	you’re	using	GNU/Linux,	UNIX,	and	Mac	OS	systems

Step	2:	Working	with	IDLE

The	Python	Shell

The	File	Menu

The	Edit	menu

The	Shell	Menu

The	Debug	Menu

The	Options	Menu

The	Window	Menu

The	Help	Menu

Writing	your	First	Python	Program

Accessing	Python’s	File	Editor

Typing	your	code

Saving	the	File

Running	the	Application

Exiting	Python

Step	3:	Python	Files	and	Directories

The	mkdir()	Method

The	chdir()	Method

The	getcwd()	Method

The	rmdir()	Method

Step	4:	Python	Basic	Syntax

Python	Keywords	(Python	Reserve	words)

Python’s	Identifiers

Five	rules	for	writing	identifiers

A	Class	Identifier

Naming	Global	Variables

Naming	Classes

Naming	Instance	Variables

Naming	Modules	and	Packages

Naming	Functions

Naming	Arguments

Naming	Constants

Using	Quotation	Marks

Statements

Multi-line	statements

Indentation

Comments

Docstring

Step	5:	Variables	and	Python	Data	Types

Variables

Memory	Location

Multiple	assignments	in	one	statement

Assignment	of	a	common	value	to	several	variables	in	a	single	statement

Data	Types

Boolean	Data	Type

Step	6:	Number	Data	Types

Integers	(int)

Normal	integers

Octal	literal	(base	8)

Hexadecimal	literal	(base	16)

Binary	literal	(base	2)

Converting	Integers	to	their	String	Equivalent

integer	to	octal	literal

integer	to	hexadecimal	literal

integer	to	binary	literal

Floating-Point	Numbers	(Floats)

Complex	Numbers

Converting	From	One	Numeric	Type	to	Another

To	convert	a	float	to	a	plain	integer

To	convert	an	integer	to	a	floating-point	number

To	convert	an	integer	to	a	complex	number

To	convert	a	float	to	a	complex	number

To	 convert	 a	 numeric	 expression	 (x,	 y)	 to	 a	 complex	 number	 with	 a	 real	 number	 and
imaginary	number

Numbers	and	Arithmetic	Operators

Addition	(+)

Subtraction	(-)

Multiplication	(*)

Division	(/)

Exponent	(**)

Modulos	(%)

Relational	or	Comparison	Operators

Assignment	Operators

=	Operator

add	and	+=

subtract	and	-=

multiply	and	*=

divide	and	/=

modulos	and	%=

floor	division	and	//=

Bill	Calculator

Built-in	Functions	Commonly	Used	with	Numbers

abs(x)

max()

min()

round()

Math	Methods

Math.ceil(x)

Math.floor(x)

Math.fabs()

Math.pow()

Math.sqrt()

Math.log()

Step	7:	Strings

Accessing	Characters	in	a	String

String	Indexing

The	Len()	Function

Slicing	Strings

Concatenating	Strings

Repeating	a	String

Using	the	upper()	and	lower()	functions	on	a	string

Using	the	str()	function

Python	String	Methods

The	replace()	method

Case	Methods	with	String

Upper()

Lower()

Swapcase()

Title()

Count()	method

The	find()	method

Isalpha()

Isalnum()

Isidentifier()

The	join()	method

Lstrip()	method

Rstrip()	method

Strip([chars])

Rfind()	method

Index()	method

Rindex()	method

Zfill()	method

Rjust()	method

Ljust()	method

Center()	method

Endswith()	method

Startswith()	method

Iterating	Through	a	String

Step	8:	Output	Formatting

The	print()	function

Using	the	str.format()	method	to	format	string	objects

Other	Formatting	Options

‘<’

‘>’

‘^’

‘0’

‘=’

Step	9:	Lists

Accessing	Elements	on	a	List

Indexing

Negative	Indexing

Slcing	Lists

Adding	Elements	to	a	List

Changing	Elements	of	a	List

Concatenating	and	Repeating	Lists

Inserting	Item(s)

Removing	or	Deleting	Items	from	a	List

Sorting	Items	on	a	List

Using	the	count()	Method	on	Lists

Testing	for	Membership	on	a	List

Using	Built-in	Functions	with	List

Len()

Max()

Min()

Sum()

Sorted()

List()

Enumerate()

List	Comprehension

Step	10:	Tuples

How	to	Create	a	Tuple

Accessing	Tuple	Elements

Indexing

Negative	Indexing

Slicing	a	Tuple

Changing,	Reassigning,	and	Deleting	Tuples

Replacing	a	Tuple

Reassigning	a	Tuple

Deleting	a	Tuple

Tuple	Membership	Test

Python	Tuple	Methods

Count(x)

Index(x)

Built-in	Functions	with	Tuples

Len()

Max()

Min()

Sorted()

Sum()

Tuple()

Enumerate()

Iterating	through	a	Tuple

Tuples	vs.	Lists

Step	11:	Sets

Creating	a	Set

Changing	Elements	on	a	Set

Removing	Set	Elements

Set	Operations

Set	Union

Set	Intersection

Set	Difference

Set	Symmetric	Difference

Set	Membership	Test

Using	Built-in	Functions	with	Set

Len()

Max()

Min()

Sorted()

Sum()

Enumerate()

Iterating	Through	Sets

Frozenset

Step	12:	Dictionary

Accessing	Elements	on	a	Dictionary

Adding	and	Modifying	Entries	to	a	Dictionary

Removing	or	Deleting	Elements	from	a	Dictionary

The	pop()method

The	popitem()	method

The	clear()	method

Other	Python	Dictionary	Methods

Update(other)

Item()	method

Values()	method

Keys()	method

Setdefault()	method

Copy()	method

The	fromkeys()	method

Dictionary	Membership	Test

Iterating	Through	a	Dictionary

Using	Built-in	Functions	with	Dictionary

Lens()

Sorted()

Creating	a	Dictionary	with	the	dict()	function

Dictionary	Comprehension

Step	13:Python	Operators

Arithmetic	Operators

Assignment	Operators

Relational	or	Comparison	Operators

Logical	Operators

Identity	Operators

Membership	Operators

Bitwise	Operators

Understanding	the	Base	2	Number	System

Precedence	of	Operators

Step	14:Built-in	Functions

The	range()	function

The	input()	Function

Password	Verification	Program

Using	input()	to	add	elements	to	a	List

The	print()	Function

abs()

max()

min()

type()

Step	15:	Conditional	Statements

if	statements

if…else	statements

if…elif…else	statements

nested	if…elif…else	statements

Step	16:	Python	Loops

The	for	Loop

For	Loop	with	string:

For	Loop	with	list

for	loop	with	a	tuple

Using	for	loop	with	the	range()	function

The	While	Loop

Break	Statement

Continue	Statement

Pass	Statement

Looping	Techniques

Infinite	loops	(while	loop)

Loops	with	top	condition	(while	loop)

Loops	with	middle	condition

Loops	with	condition	at	the	end

Step	17:	User-Defined	Functions

1.	def	keyword

2.	function	name

3.	parameters

4.	colon	(:)

5.	docstring

6.	statement(s)

7.	return	statement

Calling	a	Function

Using	functions	to	call	another	function

Program	to	Compute	for	Weighted	Average

Anonymous	Functions

Lambda	functions	with	map()

Lambda	functions	with	filter()

Recursive	Functions

Scope	and	Lifetime	of	a	Variable

Step	18:	Python	Modules

Importing	a	Module

Python’s	Math	Module

Displaying	the	Contents	of	a	Module

Getting	more	information	about	a	module	and	its	function

The	Random	Module

Usage	of	Random	Module

Random	Functions

Universal	Imports

Importing	Several	Modules	at	Once

Step	19:	Date	and	Time

Formatted	Time

Getting	Monthly	Calendar

The	Time	Module

The	Calendar	Module

calendar.firstweekday()

calendar.isleap(year)

calendar.leapdays(y1,	y2)

calendar.month(year,	month,	w=2,	l=1)

calendar.monthcalendar(year,	month)

calendar.monthrange(year,	month)

calendar.prmonth(year,	month,	w=2,	l=1)

calendar.setfirstweekday(weekday)

calendar.weekday(year,	month,	day)

Datetime

Step	20:	Namespaces

Scope

Step	21:	Classes	and	Object-Oriented	Programming

Defining	a	Class

Creating	an	Object

The	__init__()	method

Instance	Variables

Adding	an	attribute

Deleting	Objects	and	Attributes

Modifying	Variables	within	the	Class

Inheritance

Multiple	Inheritance

Multilevel	Inheritance

Step	22:	Python	Iterators

Creating	a	Python	Iterator

Step	23:	Python	Generators

Step	24:	Files

The	File	Object	Attributes

File	Operations

The	Open()	function

Writing	to	a	File

Closing	a	File

Opening,	Writing	to,	and	Closing	a	Text	File

Reading	a	Python	File

The	readlines()	method

Line	by	Line	Reading	of	Text	Files	with	the	‘while’	loop

Line	by	Line	Reading	of	Text	Files	using	an	Iterator

The	‘with	statement’

Appending	Data	to	a	File

Renaming	a	File

The	rename()	method

Deleting	a	File

Binary	Files

File	Methods

File.writer(str)

File.writelines(sequence)

File.readline(size)

File.readlines()

File	Positions:	file.tell()	and	file.seek

File.tell()

File.seek()

File.read(n)

File.truncate([size])

File.flush()

File.close()

File.isatty()

File.fileno()

Step	25:	Handling	Errors	or	Exceptions

Syntax	Errors

Runtime	Errors

Built-in	Exceptions

Catching	Exceptions

try	and	except

try…finally

Python	Cheat	Sheets

Variable	Assignment

Accessing	Variable	Values

Python	Operators

Arithmetic	Operators

Assignment	Operators

Relational	Operators

Logical	Operators

Identity	Operators

Membership	Operators

Bitwise	Operators

Strings

Lists

Tuple

Dictionary

Sets

Loops

Conditional	Statements

if…else

if…elif…else

Built-in	Functions

User-Defined	Functions

Classes

Files

Text	File	Opening	Modes

Binary	File	Opening	Mode

File	Operations

Date	and	Time

Python	Modules

Help!

Google

FAQ

IRC	(Internet	Relay	Chat)

Other	Best	Selling	Books	You	Might	Like!

Conclusion

	Introduction
	An Overview of Python
	Step 1: Installing Python
	Installing Python in Windows
	Which version should I use?
	Installing Python in Mac
	Running the Installation file
	Starting Python
	IDLE versus the command line interface (CLI)
	IDLE
	The Command Line Interface (CLI)
	Different ways to access Python’s command line
	If you’re using Windows
	If you’re using GNU/Linux, UNIX, and Mac OS systems
	Step 2: Working with IDLE
	The Python Shell
	The File Menu
	The Edit menu
	The Shell Menu
	The Debug Menu
	The Options Menu
	The Window Menu
	The Help Menu
	Writing your First Python Program
	Accessing Python’s File Editor
	Typing your code
	Saving the File
	Running the Application
	Exiting Python
	Step 3: Python Files and Directories
	The mkdir() Method
	The chdir() Method
	The getcwd() Method
	The rmdir() Method
	Step 4: Python Basic Syntax
	Python Keywords (Python Reserve words)
	Python’s Identifiers
	Five rules for writing identifiers
	A Class Identifier
	Naming Global Variables
	Naming Classes
	Naming Instance Variables
	Naming Modules and Packages
	Naming Functions
	Naming Arguments
	Naming Constants
	Using Quotation Marks
	Statements
	Multi-line statements
	Indentation
	Comments
	Docstring
	Step 5: Variables and Python Data Types
	Variables
	Memory Location
	Multiple assignments in one statement
	Assignment of a common value to several variables in a single statement
	Data Types
	Boolean Data Type
	Step 6: Number Data Types
	Integers (int)
	Normal integers
	Octal literal (base 8)
	Hexadecimal literal (base 16)
	Binary literal (base 2)
	Converting Integers to their String Equivalent
	integer to octal literal
	integer to hexadecimal literal
	integer to binary literal
	Floating-Point Numbers (Floats)
	Complex Numbers
	Converting From One Numeric Type to Another
	To convert a float to a plain integer
	To convert an integer to a floating-point number
	To convert an integer to a complex number
	To convert a float to a complex number
	To convert a numeric expression (x, y) to a complex number with a real number and imaginary number
	Numbers and Arithmetic Operators
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Exponent (**)
	Modulos (%)
	Relational or Comparison Operators
	Assignment Operators
	= Operator
	add and +=
	subtract and -=
	multiply and *=
	divide and /=
	modulos and %=
	floor division and //=
	Bill Calculator
	Built-in Functions Commonly Used with Numbers
	abs(x)
	max()
	min()
	round()
	Math Methods
	Math.ceil(x)
	Math.floor(x)
	Math.fabs()
	Math.pow()
	Math.sqrt()
	Math.log()
	Step 7: Strings
	Accessing Characters in a String
	String Indexing
	The Len() Function
	Slicing Strings
	Concatenating Strings
	Repeating a String
	Using the upper() and lower() functions on a string
	Using the str() function
	Python String Methods
	The replace() method
	Case Methods with String
	Upper()
	Lower()
	Swapcase()
	Title()
	Count() method
	The find() method
	Isalpha()
	Isalnum()
	Isidentifier()
	The join() method
	Lstrip() method
	Rstrip() method
	Strip([chars])
	Rfind() method
	Index() method
	Rindex() method
	Zfill() method
	Rjust() method
	Ljust() method
	Center() method
	Endswith() method
	Startswith() method
	Iterating Through a String
	Step 8: Output Formatting
	The print() function
	Using the str.format() method to format string objects
	Other Formatting Options
	'<'
	'>'
	'^'
	'0'
	'='
	Step 9: Lists
	Accessing Elements on a List
	Indexing
	Negative Indexing
	Slcing Lists
	Adding Elements to a List
	Changing Elements of a List
	Concatenating and Repeating Lists
	Inserting Item(s)
	Removing or Deleting Items from a List
	Sorting Items on a List
	Using the count() Method on Lists
	Testing for Membership on a List
	Using Built-in Functions with List
	Len()
	Max()
	Min()
	Sum()
	Sorted()
	List()
	Enumerate()
	List Comprehension
	Step 10: Tuples
	How to Create a Tuple
	Accessing Tuple Elements
	Indexing
	Negative Indexing
	Slicing a Tuple
	Changing, Reassigning, and Deleting Tuples
	Replacing a Tuple
	Reassigning a Tuple
	Deleting a Tuple
	Tuple Membership Test
	Python Tuple Methods
	Count(x)
	Index(x)
	Built-in Functions with Tuples
	Len()
	Max()
	Min()
	Sorted()
	Sum()
	Tuple()
	Enumerate()
	Iterating through a Tuple
	Tuples vs. Lists
	Step 11: Sets
	Creating a Set
	Changing Elements on a Set
	Removing Set Elements
	Set Operations
	Set Union
	Set Intersection
	Set Difference
	Set Symmetric Difference
	Set Membership Test
	Using Built-in Functions with Set
	Len()
	Max()
	Min()
	Sorted()
	Sum()
	Enumerate()
	Iterating Through Sets
	Frozenset
	Step 12: Dictionary
	Accessing Elements on a Dictionary
	Adding and Modifying Entries to a Dictionary
	Removing or Deleting Elements from a Dictionary
	The pop()method
	The popitem() method
	The clear() method
	Other Python Dictionary Methods
	Update(other)
	Item() method
	Values() method
	Keys() method
	Setdefault() method
	Copy() method
	The fromkeys() method
	Dictionary Membership Test
	Iterating Through a Dictionary
	Using Built-in Functions with Dictionary
	Lens()
	Sorted()
	Creating a Dictionary with the dict() function
	Dictionary Comprehension
	Step 13:Python Operators
	Arithmetic Operators
	Assignment Operators
	Relational or Comparison Operators
	Logical Operators
	Identity Operators
	Membership Operators
	Bitwise Operators
	Understanding the Base 2 Number System
	Precedence of Operators
	Step 14:Built-in Functions
	The range() function
	The input() Function
	Password Verification Program
	Using input() to add elements to a List
	The print() Function
	abs()
	max()
	min()
	type()
	Step 15: Conditional Statements
	if statements
	if…else statements
	if…elif…else statements
	nested if…elif…else statements
	Step 16: Python Loops
	The for Loop
	For Loop with string:
	For Loop with list
	for loop with a tuple
	Using for loop with the range() function
	The While Loop
	Break Statement
	Continue Statement
	Pass Statement
	Looping Techniques
	Infinite loops (while loop)
	Loops with top condition (while loop)
	Loops with middle condition
	Loops with condition at the end
	Step 17: User-Defined Functions
	1. def keyword
	2. function name
	3. parameters
	4. colon (:)
	5. docstring
	6. statement(s)
	7. return statement
	Calling a Function
	Using functions to call another function
	Program to Compute for Weighted Average
	Anonymous Functions
	Lambda functions with map()
	Lambda functions with filter()
	Recursive Functions
	Scope and Lifetime of a Variable
	Step 18: Python Modules
	Importing a Module
	Python’s Math Module
	Displaying the Contents of a Module
	Getting more information about a module and its function
	The Random Module
	Usage of Random Module
	Random Functions
	Universal Imports
	Importing Several Modules at Once
	Step 19: Date and Time
	Formatted Time
	Getting Monthly Calendar
	The Time Module
	The Calendar Module
	calendar.firstweekday()
	calendar.isleap(year)
	calendar.leapdays(y1, y2)
	calendar.month(year, month, w=2, l=1)
	calendar.monthcalendar(year, month)
	calendar.monthrange(year, month)
	calendar.prmonth(year, month, w=2, l=1)
	calendar.setfirstweekday(weekday)
	calendar.weekday(year, month, day)
	Datetime
	Step 20: Namespaces
	Scope
	Step 21: Classes and Object-Oriented Programming
	Defining a Class
	Creating an Object
	The __init__() method
	Instance Variables
	Adding an attribute
	Deleting Objects and Attributes
	Modifying Variables within the Class
	Inheritance
	Multiple Inheritance
	Multilevel Inheritance
	Step 22: Python Iterators
	Creating a Python Iterator
	Step 23: Python Generators
	Step 24: Files
	The File Object Attributes
	File Operations
	The Open() function
	Writing to a File
	Closing a File
	Opening, Writing to, and Closing a Text File
	Reading a Python File
	The readlines() method
	Line by Line Reading of Text Files with the ‘while’ loop
	Line by Line Reading of Text Files using an Iterator
	The ‘with statement’
	Appending Data to a File
	Renaming a File
	The rename() method
	Deleting a File
	Binary Files
	File Methods
	File.writer(str)
	File.writelines(sequence)
	File.readline(size)
	File.readlines()
	File Positions: file.tell() and file.seek
	File.tell()
	File.seek()
	File.read(n)
	File.truncate([size])
	File.flush()
	File.close()
	File.isatty()
	File.fileno()
	Step 25: Handling Errors or Exceptions
	Syntax Errors
	Runtime Errors
	Built-in Exceptions
	Catching Exceptions
	try and except
	try...finally
	Python Cheat Sheets
	Variable Assignment
	Accessing Variable Values
	Python Operators
	Arithmetic Operators
	Assignment Operators
	Relational Operators
	Logical Operators
	Identity Operators
	Membership Operators
	Bitwise Operators
	Strings
	Lists
	Tuple
	Dictionary
	Sets
	Loops
	Conditional Statements
	if…else
	if…elif…else
	Built-in Functions
	User-Defined Functions
	Classes
	Files
	Text File Opening Modes
	Binary File Opening Mode
	File Operations
	Date and Time
	Python Modules
	Help!
	Google
	FAQ
	IRC (Internet Relay Chat)
	Other Best Selling Books You Might Like!
	Conclusion

