FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Physics/Applied Physics

PHY 5B 06/APH 5B 06—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

The symbols used in this question paper have their usual meanings.

Section A (Short Answer Type)

Answer all questions in two **or** three sentences. Each correct answer carries a maximum 2 marks.

- 1. What is an algorithm? Write an algorithm to read two numbers and print their sum.
- 2. What are the different data types in python?
- 3. How to add comments in python. What is the importance of comments in programming?
- 4. What is a tuple'? How is it different from 'list'.
- 5. Write down Newton-Raphson formula.
- 6. What is the significance of computers in numerical simulations?
- 7. Write down the output of the following:
 - (a) 3.4//3.
 - (b) 3.4 % 3.
- 8. How do you create a two dimensional array using Numpy? Give an example.
- 9. Write the output of the following commands
 - (a) print("hello", "world", sep="---").
 - (b) x=2; x+=2; print(x).
- 10. Write a program, using a function to read a velocity in kilometers per hour and print it in meters per second.

- 11. Write a program to create a one dimensional array of numbers from 0 to 9 using numpy.
- 12. Write down the commands for labeling axes and choosing line styles in plots using Matplotlib.

(Ceiling - 20)

Section B (Paragraph / Problem Type)

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks).

- 13. Write a program to draw the position time graph for a freely falling object.
- 14. Find the real root of the equation $x^3 x 11 = 0$ by using the bisection method.
- 15. Apply Runge Kutta method to find an approximate value of y(0.2) = 0, given y' = x + y and y(0) = 1.
- 16. Write a python program to read two 3×3 matrices and print the matrix product of them. Write a program using Numpy for the same.
- 17. Write a program to solve $y' = \cos(x)$, given y(0) = 0. Add code to plot the solution.
- 18. Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ using Simpson's rule.
- 19. Write a program to graphically simulate the radioactive decay of an element where initial quantity and half life is given.

(Ceiling - 30)

Section C (Essay Type)

Essays - Answer in about two pages, any one question.

The question carries 10 marks.

20. Explain Newton's interpolation formula. The population of a town in the census is as given below. Estimate the population for the year 1965 using Newton's forward interpolation formula.

 Year
 : 1961
 1971
 1981
 1991
 2001

 Population
 : 46
 66
 81
 93
 101

21. Given $\frac{dy}{dx} = x^2 - y$, y(0) = 1, find y(0.1) correct to 3 decimal places using Euler method and modified euler method. Write programs for both the methods.

 $(1 \times 10 = 10 \text{ marks})$

FIFTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2023

Physics/Applied Physics

PHY 5B 06/APH 5B 06—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type)

Answer **all** questions in two or three sentences, each correct answer carries a maximum of 2 marks.

- 1. Differentiate between compilers and interpreters.
- 2. What are modules?
- 3. Define slicing operation in a list with one example.
- 4. Write a python program to calculate circumference of a circle.
- 5. Write the syntax of linspace function in numpy module.
- 6. What are vectorized functions?
- 7. Write down Newton Raphson formula.
- 8. Write down Forward difference table.
- 9. Discuss Modified Euler's method.
- 10. Discuss the significance of computer in numerical methods.
- 11. What are polar plots?
- 12. Discuss the accuracy consideration in simulation.

(Ceiling 20)

Section B (Paragraph / Problem type)

Answer **all** questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks.

- 13. Find the real root of the equation $f(x) = x^3 x 1 = 0$ using bisection method.
- 14. Discuss Simpsons 1/3 rule.
- 15. Write a note on conditional execution in python.
- 16. Write a program to print the multiplication table of 8.

- 17. Write down the functions used for finding cross and dot products in python. Write a program to demonstrate the dot and cross products.
- 18. Write a python program to simulate motion of a body dropped into a highly viscous medium.
- 19. Write a note on graphical simulation; take radioactive decay as an example.

(Ceiling 30)

Section C (Essay type)

Answer in about two page, any **one** question, The correct answer carries 10 marks.

- 20. What do you mean by curve fitting? Discuss Curve fitting procedure to fit a straight line through given data points.
- 21. Write an essay on operators used in python language. List the operators according to their precedence.

 $(1 \times 10 = 10 \text{ marks})$

D 30584	(Pages : 2)	Name
		Reg. No.

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Physics/Applied Physics

PHY 5B 06/APH 5B 06—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type)

Answer all questions in two or three sentences. Each correct answer carries a maximum of 2 marks.

- 1. Define functions in Python.
- 2. Differentiate between interactive mode and script mode used in Python.
- 3. Modify the expression print 5 + 3 * 2 to get the result of 16.
- 4. What is meant by indentation?
- 5. Discuss any two functions to create arrays in Python.
- 6. Write a note on matplotlib module.
- 7. Write down Forward difference table.
- 8. Write down Newton's forward interpolation formula.
- 9. Write down Taylor series expansion of $\sin x$
- 10. Write a python program to plot $\cos x$ using plot().
- 11. Discuss the accuracy consideration in simulation.
- 12. Write the significance of computer in numerical methods.

(Ceiling 20)

Section B (Paragraph / Problem Type)

Answer all questions in a paragraph of about half a page to one page.

Each correct answer carries a maximum of 5 marks.

- 13. Write a program to plot a circle using the polar() function.
- 14. Discuss second order Runge-Kutta method.

- 15. Write a Python program to create a 3×3 matrix and find its inverse.
- 16. Write a program to convert Fahrenheit to Celcius.
- 17. Find the cubic polynomial which takes the following values

y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10. Obtain y(4) using Newton's forward interpolation formula.

- 18. Write a note on graphical simulation; take a horizontally thrown projectile as an example.
- 19. Write a Python program to simulate motion of a freely falling object.

(Ceiling 30)

Section C (Essay Type)

Answer in about **two pages**, any **one** question. Each correct answer carries 10 marks.

- 20. Write an essay on different data types in Python.
- 21. Obtain Trapezoidal rule and Simpson's 1/3 rule for numerical integration.

 $(1 \times 10 = 10 \text{ marks})$

(Pages: 2)

Ne	me	•••••
146		
Re	g. No	

FIFTH SEMESTER U.G. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS—UG)

Physics/Applied Physics

PHY 5B 06/APH 5B 06—COMPUTATIONAL PHYSICS

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

The symbols used in question paper have their usual meanings.

Section A (Short Answer Type)

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. Identify the functional differences of the Compiler and the Interpreter in the context of high-level computer languages.
- 2. Write an algorithm to check whether a given number is odd or even.
- 3. List the different datatypes in Python.
- 4. Write a Python program to print the multiplication table of 9 having 20 rows using while loop.
- 5. What is a tuple? How it is different from list?
- 6. Discuss about the functional differences of break and continue statements in Python.
- 7. Write a Python program to plot the function $y = \sin x$ within the region 0 to 2π .
- 8. Write a Python program to create a 3×2 matrix having random numbers ranging between 0 and 1 as elements.
- 9. Explain the least squares curve fitting procedures.
- 10. Construct a forward difference table for the following data:

 x
 :
 0
 1
 2
 3
 4

 y
 :
 1
 3
 9
 27
 81

- 11. How the subintervals width is associated with the error in Trapezoidal rule and Simpson's 1/3 rule for numerical integration?
 - 12. Discuss the advantages of numerical methods over analytical methods.

 $(8 \times 3 = 24 \text{ marks})$

Section B (Paragraph/Problem Type)

Answer at least five questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Write a Python program to print the squares of the integer numbers within the range entered by the user.
- 14. Discuss about different built-in operations on list in Python with the help of examples.
- 15. Write a program to create two 3×3 matrices and add them.
- 16. The table below gives the temperature T (in °C) and length l (in mm) of a heated rod. If $l=a_0+a_1$ T, find the best value for a_0 and a_1 :

T (in °C) : 20 30 40 50 60 70 1 (in mm) : 800.3 800.4 800.6 800.7 800.9 801.0

- 17. Using Newtons forward interpolation formula obtain y (2), given that, y (1) = 24, y (3) = 120, y (5) = 336, and y (7) = 720.
- 18. Explain the Bisection method for finding the solutions of algebraic equations.
- 19. Write a Python program to simulate the motion of a body dropped into a highly viscous medium.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type)

Answer any one question.
The question carries 11 marks.

- 20. (a) Find y(0.2) for y' = (x y)/2, y(0) = 1, with step length 0.1 using Runge-Kutta method.
 - (b) Write a Python program to simulate a two-dimensional projectile motion using Euler's method in a table.
- 21. (a) Explain the Newton-Raphson method to find the roots of a function.
 - (b) Write a Python program to simulate a freely falling body using Euler's method in a table.

 $(1 \times 11 = 11 \text{ marks})$