533292

D110208

(Pages: 3)

Nam	e	•••••	•••••	 •••••	• • • • •
Reg.	No				

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 05—ABSTRACT ALGEBRA

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Let *n* be a positive integer. Prove that the congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.
- 2. Make multiplication table for \mathbb{Z}_6 .
- 3. Find the order of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$.
- 4. Let G be a nonempty set with an associative binary operation in which the equations ax = b and xa = b have solutions for all $a, b \in G$. Prove that G is a group.
- 5. Let G be group. Prove that G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.
- 6. Prove that any group of prime order is cyclic.
- 7. In $\operatorname{GL}_2(\mathbb{R})$, find the order of $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$.
- 8. Prove that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic.
- 9. Let G be a cyclic group. If G is infinite, prove that $G \cong \mathbb{Z}$.

Turn over

- 10. Prove that the set of all even permutations of S_n is a subgroup of S_n .
- 11. Let $\phi: G_1 \to G_2$ be group homomorphism, with $K = \ker(\phi)$. Prove that K is a subgroup of G_1 such that $gKg^{-1} \in K$ for all $k \in K$ and $g \in G_1$.
- 12. Let $G = \mathbb{Z}_{12}$ and $H = \langle | 4 | \rangle$. Find all cosets of H.
- 13. State First isomorphism theorem.
- 14. Let G be a group. Prove that Aut(G) is a group under composition of functions.
- 15. Prove that any subring of a field is an integral domain.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

- 16. State and prove Euler theorem.
- 17. On \mathbb{R}^2 , define $(a_1, a_2) \sim (b_1, b_2)$ if $a_1^2 + a_2^2 = b_1^2 + b_2^2$. Check that this defines an equivalence relation. What are the equivalence classes ?
- 18. Prove that the units of \mathbb{Z}_8 forms a group under multiplication of congruences.
- 19. Let G be a group with identity element *e*, and let H be a subset of G. Prove that H is a subgroup of G if and only if the following conditions hold :
 - (a) $ab \in H$ for all $a, b \in H$;
 - (b) $e \in \mathbf{H}$; and
 - (iii) $a^{-1} \in H$ for all $a \in H$.
- 20. Let G be a group, and let H and K be subgroups of G. If $h^{-1} kh \in K$ for all $h \in H$ and $k \in K$, Prove that HK is a subgroup of G.
- 21. Prove that every subgroup of a cyclic group is cyclic.
- 22. State and prove fundamental theorem of homomorphism.

23. Let G be a group with normal subgroups H, K such that HK = G and $H \cap K = \{e\}$. Prove that $G \cong H \times K$.

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum 20 marks.

- 24. a) Prove that every permutation in S_n can be written as a product of disjoint cycles
 - b) Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 6 & 3 & 8 & 1 & 4 \end{pmatrix}$ be a permutation in S_8 . Express σ as a product of disjoint cycles.
- 25. a) Let $\phi: G_1 \to G_2$ be an isomorphism of groups. Prove that ϕ preserves following structural properties:
 - (i) If a has order n in G_1 , then $\phi(a)$ has order n in G_2 ,
 - (ii) If G_1 is abelian, then so is G_2 ,
 - (iii) If G_1 is cyclic, then so is G_2 .
 - b) Prove that $\mathbb{Z}_4 \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 26. Let H be a subgroup of the group G. Prove that the following conditions are equivalent.
 - a) H is a normal subgroup of G;
 - b) aH = Ha for all $a \in G$;
 - c) for all $a, b \in G$, $ab \in H$ is the set theoretic product (aH)(bH);
 - d) for all $a, b \in G$, $ab^{-1} \in H$ if and only if $a^{-1}b \in H$.
- 27. State and prove second isomorphism theorem.

 $(2 \times 10 = 20 \text{ marks})$

(Pages: 3)

Name	e	 	•••••	•••••
Reg.	No	 		

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 05—ABSTRACT ALGEBRA

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Make multiplication table for \mathbb{Z}_7 .
- 2. State and prove Fermat theorem.
- 3. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$ be permutation in S₇.

Find $\sigma \tau$ and $\tau \sigma$.

- 4. State and prove cancellation property for groups.
- 5. Is \mathbb{Z}_8^x cyclic? Justify.
- 6. Let H be a subgroup of the group G. For $a, b \in G$, define $a \sim b$ if $ab^{-1} \in H$. Prove that \sim is an equivalence relation.
- 7. Find HK in \mathbb{Z}_{16}^{x} , if $H = \langle [3] \rangle$ and $K = \langle [5] \rangle$.
- 8. Let G_1 and G_2 be groups, and let $\phi: G_1 \to G_2$ be a function such that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G_1$. Prove that ϕ is one to one if and only if $\phi(x) = e$ implies x = e, for all $x \in G_1$.

Turn over

- 9. Let G be a group, and let $a, b \in G$ be elements such that ab = ba. If the orders of a and b are relatively prime, prove that o(ab) = o(a) o(b).
- 10. Let $\phi: G_1 \to G_2$ be a group homomorphism, with $K = \ker \phi$. Prove that K is a subgroup of G_1 .
- 11. Let $\phi: G_1 \to G_2$ be an onto homomorphism. If H_1 is normal in G_1 , prove that $\phi(H_1)$ is normal in G_2 .
- 12. Let $G = \mathbb{Z}_{24}$ and $H = \langle [3] \rangle$. Find all cosets of H.
- 13. State second isomorphism theorem.
- 14. Prove that Aut $(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\mathbf{x}}$.
- 15. If D is an integral domain, prove that D [x] is an integral domain.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

- 16. Let n be a positive integer. Prove that :
 - (a) The congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.
 - (b) A non zero element of \mathbb{Z}_n is either has a multiplicative inverse or is a divisor of zero.
- 17. (a) Let $\sigma \in S_n$ be written as a product of disjoint cycles, prove that the order of σ is the least common multiple of the lengths of its cycles.
 - (b) Find the order of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$.
- 18. Let G be a group and let H be a subset of G. Prove that H is a subgroup of G if and only if H is nonempty and $ab^{-1} \in H$ for all $a, b \in H$.
- 19. Let G_1 and G_2 be groups. Prove that the direct product $G_1 \times G_2$ is a group under the operation defined for all $(a_1, a_2), (b_1, b_2) \in G_1 \times G_2$ by $(a_1, a_2) (b_1, b_2) = (a_1b_1, a_2b_2)$.

3

- 20. If *m* and *n* are positive integers such that gcd (m, n) = 1, prove that \mathbb{Z}_{mn} is isomorphic to $\mathbb{Z}_m \times \mathbb{Z}_n$.
- 21. Give the subgroup diagram of \mathbb{Z}_{12} .
- 22. State and prove fundamental homomorphism theorem.
- 23. Let G be a group. Prove that Aut (G) is a group under composition of functions, and Inn (G) is a normal subgroup of Aut (G).

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum 20 marks.

- 24. If permutation written as a product of transpositions in two ways, prove that the number of transpositions is either even in both cases or odd in both cases.
- 25. (a) State and prove Lagrange theorem.
 - (b) Prove that any group of prime order is cyclic.
- 26. State and prove Cayley theorem.
- 27. State and prove second isomorphism theorem.

 $(2 \times 10 = 20 \text{ marks})$

245513

D 30568

(Pages: 3)

Name.	 	

Reg. No.....

FIFTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 5B 05—ABSTRACT ALGEBRA

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Write addition and multiplication tables for \mathbb{Z}_4 .
- 2. Check whether the relation on defined by $a \sim b$ if n | (a b), where n is a positive integer is an equivalence relation.
- 3. Consider the following permutations in S_7 :

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}.$

Compute $\sigma\tau$ and $\tau\sigma$.

- 4. Show that cancellation property holds in a group G.
- 5. Find all cyclic subgroups of the group \mathbb{Z}_6 .
- 6. Find the order of the element $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$ in $GL_2(R)$.
- 7. Give addition table for $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 8. Show that composite of two group isomorphisms is a group isomorphism.
- 9. Give the subgroup diagrams of \mathbb{Z}_{24} .

Turn over

- 10. Find the order of the permutation (1, 2, 5) (2, 3, 4) (5, 6).
- 11. Let $G = \mathbb{Z}_{12}$, and let H be the subgroup $4\mathbb{Z}_{12}$. Find all cosets of H.
- 12. Define normal subgroup of a group G. Give an example.
- 13. Compute the factor group $\frac{\mathbb{Z}_6 \times \mathbb{Z}_4}{\langle (2,2) \rangle}$.
- 14. Define commutative ring. Give an example.
- 15. Define Integral Domain. Give an example.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

- 16. If (a, n) = 1, then show that $a^{\phi(n)} \equiv 1 \pmod{n}$.
- 17. Let G be a group and let H be a subset of G. Then show that H is a subgroup of G if and only if H is non-empty and $ab^{-1} \in H$ for all $a, b \in H$.
- 18. Let G be a finite cyclic group with *n* elements. Show that $G \cong Z_n$.
- 19. Let $\phi: G_1 \to G_2$ be a group homomorphism with Ker $\phi = \{x \in G_1 : \phi(x) = e\}$. Show that ϕ is one to one if and only if Ker $\phi = \{e\}$.
- 20. Let G be a group, and let $a, b \in G$ be elements such that ab = ba. If the orders of a and b are relatively prime, then prove that 0(ab) = 0(a) 0(b).
- 21. Show that any subring of a field is an integral domain.
- 22. Let G be an abelian group, and let *n* be any positive integer. Show that the function $\phi: G_1 \to G_2$ defined by $\phi(x) = x^n$ is a homomorphism.
- 23. State and prove Fundamental Homomorphism Theorem.

245513

D 30568

Section C

3

Answer any **two** questions. Each question carries 10 marks. Maximum 20 marks.

- 24. Show that the inverse of a group isomorphism is a group isomorphism.
- 25. Show that every sub-group of a cyclic group is cyclic.
- 26. Let H be a sub-group of the finite group G. Show that the order of H is a divisor of order of G.
- 27. State and prove First Isomorphism Theorem.