D 110209

(Pages: 3)

Nam	e	 	 •••••	•••••
Reg.	No	 	 	

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum 25 marks.

- 1. Prove that there does not exist a rational number *r* such that $r^2 = 2$.
- 2. Determine the set A of $x \in \mathbb{R}$ such that $|2x+3| \le 7$.
- 3. If $a, b \in \mathbb{R}$, prove that $|a + b| \le |a| + |b|$.
- 4. State the supremum property of \mathbb{R} .
- 5. If $S = \left\{\frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N}\right\}$, find inf S and sup S.
- 6. State and prove Archimedean property.
- 7. Let x and y be real numbers with x < y, prove there exists an irrational number z such that x < z < y.
- 8. State and prove squeeze theorem.
- 9. If a sequence (x_n) of real numbers converges to a real number x, prove that any subsequence (x_{nk}) of (x_n) also converges to x.

Turn over

- 10. Prove that every Cauchy sequence of real numbers is bounded.
- 11. Let (x_n) and (y_n) be two sequence of real numbers and suppose that $x_n \le y_n$ for all $n \in \mathbb{N}$. If $\lim x_n = +\infty$, prove that $\lim y_n = +\infty$.
- 12. Prove that the intersection of any finite collection of open sets in \mathbb{R} is open.
- 13. Compute $(1+\sqrt{3}i)^9$.
- 14. Find the real and imaginary parts of $f(z) = z^2 (2+i)z$ as a function of x and y.
- 15. Show that the complex function f(z) = z + 3i is a one to one on the entire complex plane and find a formula for its inverse function.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 35 marks.

- 16. State and prove Cantor's theorem.
- 17. Let *a* and *b* be positive real numbers, prove that $\sqrt{ab} \le \frac{a+b}{2}$ and the equality occurs if and only if a = b.
- 18. State and prove density theorem.
- 19. Prove that unit interval [0, 1] is not countable.
- 20. State and prove monotone convergence theorem.
- 21. Let $F \subseteq \mathbb{R}$; prove that the following are equivalent :
 - (a) F is a closed subset of \mathbb{R} ;
 - (b) If $X = (x_n)$ is any convergent sequence of element in F, then lim X belongs to F.

22. Find an upper bound for $\left| \frac{-1}{z^4 - 5z + 1} \right|$ if |z| = 2.

D 110209

23. For any *two* complex numbers, prove that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|)^2$.

Section C

Answer any **two** questions. Each question carries 10 marks.

24. a) If A_m is a countable set for each $m \in \mathbb{N}$, prove that $A = \bigcup_{m=1}^{\infty} A_m$ is countable.

- b) State and prove Bernoulli's inequality.
- 25. a) State and prove monotone convergence theorem.
 - b) Let $s_1 = 1$ and $s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right)$ for $n \in \mathbb{N}$. Prove that (s_n) converges to \sqrt{a} .
- 26. a) Prove that every contractive sequence is a Cauchy sequence.

b) Let
$$f_1 = 1, f_2 = 1$$
 and $f_{n+1} = f_n + f_{n-1}$. Define $x_n = \frac{f_n}{f_{n+1}}$. Prove that $\lim x_n = \frac{-1 + \sqrt{5}}{2}$

27. Find a complex linear function that maps the equilateral triangle with vertices

1+i, 2+i and $\frac{3}{2} + \left(1 + \frac{1}{2}\sqrt{3}\right)i$ onto the equilateral triangle with the vertices i, $\sqrt{3} + 2i$ and 3i.

 $(2 \times 10 = 20 \text{ marks})$

D 50666

(Pages: 3)

Namo	e	••••••	•••••	 	•••••
Reg.	No				

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum 25 marks.

- $1. \ \ {\rm State \ Cantor's \ theorem}.$
- 2. Prove that there does not exist a rational number *r* such that $r^2 = 3$.
- 3. If $a, b \in \mathbb{R}$, prove that $||a| |b|| \le |a b|$.
- 4. Prove that an upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$ there exist an $s_{\epsilon} \in S$ such that $u \epsilon < s_{\epsilon}$.
- 5. State and prove Archimedean property.
- 6. Prove that a sequence in \mathbb{R} can have at most one limit point.
- 7. Prove that $\lim \left(\frac{\sin n}{n}\right) = 0.$
- 8. Let $e_n = \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$. Prove that $2 < e_n < 3$ for all $n \in \mathbb{N}$.
- 9. Give an example of an unbounded sequence that has a convergent subsequence.
- 10. If (x_n) and (y_n) are Cauchy sequences, prove that $(x_n + y_n)$ is a Cauchy sequence.

Turn over

- 11. Prove that the sequence $\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right)$ diverges.
- 12. Define Cantor set.
- 13. Describe the set of points z in the complex plane that satisfy the equation |z-2| = Re(z).

 $\mathbf{2}$

- 14. Find the image of the line segment from 1 to *i* under the complex mapping $\omega = \overline{iz}$.
- 15. Find the image of the rectangle with vertices -1+i, 1+i, 1+2i and -1+2i under the linear mapping f(z) = 4iz + 2 + 3i.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 35 marks.

- 16. Prove that the following statements are equivalent :
 - a) S is a countable set ; and
 - b) There exists a surjection of $\mathbb N$ onto S.
 - c) There exists an injection of S onto \mathbb{N} .
- 17. Determine the set B = $\{x \in \mathbb{R} : |x-1| < |x|\}$.
- 18. Prove that \mathbb{R} of real numbers is not countable.
- 19. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y respectively. Prove that $X \cdot Y$ converges to xy.
- 20. State and prove Cauchy convergence criterion for sequences.
- 21. Prove that
 - a) the union of an arbitrary collection of open subsets in ${\mathbb R}$ is open.
 - b) the intersection of any finite collection of open sets in \mathbb{R} is open.

- 22. Determine whether the points $z_1 = -2 8i$, $z_2 = 3i$, $z_3 = -6 5i$ are the vertices of a right triangle.
- 23. Let S = $\{z \in \mathbb{C} : 1 \le |z 1 i| < 2\}$. Determine whether the set S is :
 - a) Open ;
 - b) Closed ;
 - c) Domain ;
 - d) Bounded ; and
 - e) Connected.

Section C

Answer any **two** questions. Each question carries 10 marks.

24. (a) Let *a* and *b* be positive real numbers, prove that $\sqrt{ab} \le \frac{1}{2}(a+b)$ and the equality holds if and only if a = b.

- (b) State and prove Bernoulli's inequality.
- 25. Prove that there exits a positive real number *x* such that $x^2 = 2$.
- 26. (a) Prove that every contractive sequence is a convergent sequence.
 - (b) The polygonal equation $x^3 7x + 2 = 0$ has a root r with 0 < r < 1. Use an appropriate contractive sequence to calculate r within 10^{-5} .
- 27. (a) Solve the simultaneous equations |z| = 2 and |z-2| = 2.
 - (b) Find the image of the triangle with vertices 0, 1 + i and 1 i under the mapping $\omega = z^2$.

 $(2 \times 10 = 20 \text{ marks})$

D 30569

(Pages: 3)

Nam	e	•••••	 	•••••
Rog	NT.			

FIFTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 5B 06—BASIC ANALYSIS

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 Marks. Maximum 25 Marks.

- 1. Define denumerable set. Give an example.
- 2. If $a \in \mathbb{R}$, then prove that $a \cdot 0 = 0$.
- 3. Let a, b, c be elements of \mathbb{R} and if a > b and b > c, then prove that a > c.
- 4. Prove that |-a| = |a| for all $a \in \mathbb{R}$.
- 5. Describe Fibonacci sequence.
- 6. State Monotone Convergence Theorem.
- 7. Define Cauchy sequence. Give an example.
- 8. Define properly divergent sequence.
- 9. Show that $\mathbb{R} = (-\infty, \infty)$ is open.
- 10. Describe any two properties of Cantor Set.
- 11. Whether the sequence $\left(1, \frac{1}{2}, 3, \frac{1}{4}, \dots\right)$ is convergent ? Justify your answer.
- 12. Find the principal cube root at the point z = i.
- 13. Define bounded subset of the complex plane.

Turn over

- 14. Find the reciprocal of z = 2 3i.
- 15. Express $-\sqrt{3} i$ in polar form.

Section B

 $\mathbf{2}$

Answer any number of questions. Each question carries 5 Marks. Maximum 35 marks.

- 16. State and prove Cantor's Theorem.
- 17. Prove that there does not exist a rational number *r* such that $r^2 = 2$.
- 18. (a) Define supremum of a set of real numbers.
 - (b) Prove that there can be only one supremum of a given subset S of \mathbb{R} , if it exists.
- 19. Prove that $\lim_{n \to \infty} \left(\frac{1}{n^2} \right) = 0.$
- 20. If 0 < b < 1, then prove that $\lim (b^n) = 0$.
- 21. Prove that the intersection of an arbitrary collection of closed sets in \mathbb{R} is closed.
- 22. Show that the complex function f(z) = z + 3i is one-to-one on the entire complex plane and find a formula for its inverse function.
- 23. If $f(z) = \frac{z}{\overline{z}}$ then show by two path test that $\lim_{z \to 0} f(z)$ does not exist.

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. State and prove Monotone Subsequence Theorem.
- 25. Prove that a monotone sequence of real numbers is convergent if and only if it is bounded. If $X = (x_n)$ is a bounded increasing sequence, then prove that :

 $\lim (x_n) = \sup \{x_n : n \in \mathbb{N}\}.$

- 26. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Then prove that the sequence $(\sqrt{x_n})$ converges and $\lim (\sqrt{x_n}) = \sqrt{x}$.
- 27. Show that the function f defined by :

$$f(z) = \sqrt{r}e^{i\theta/2}, -\pi < \theta < \pi$$

is a branch of the multiple-valued function $F(z) = z^{1/2}$.