D 110210

(Pages: 3)

Nam	e	•••••	 •••••	•
Reg.	No			•

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2024

Mathematics

MTS 5B 07-NUMERICAL ANALYSIS

(2020 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20.

- 1. Find the polynomial of degree one passing through the points (1, 2) and (2, -1).
- 2. What you mean by Interpolation.
- 3. Write The Newton's Forward difference formula.
- 4. State Fixed Point Theorem.
- 5. Show that the equation $f(x) = x^5 x 5$ has a root between 1 and 2.
- 6. State Weierstrass approximation theorem.
- 7. Find the zeroth divided difference of the function $f(x) = x^2 1$ at $x_1 = 2$.
- 8. Write Three Point Mid Point Formula
- 9. Write the Trapezoidal rule for $\int_0^2 (x^2 + 1) dx$.
- 10. Write Newton's iteration formula for computing $\sqrt[3]{7}$
- 11. Does the set $\{(t, y), -1 < t < 1, -1 < y < 1\}$ is a convex set? Justify your answer.
- 12. State Lipschitz condition.

Turn over

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

- 13. Use Lagrange interpolating polynomial of degree three to approximate f(10) if f(5)=12, f(6)=13, f(9)=14, f(11)=16.
- 14. The following table lists the values of f at various points.

x	f(x)
20	0.3420
23	0.3907
26	0.4384
29	0.4848

Use the Newton forward difference formula to construct interpolating polynomial for this data. Also find f(21).

- 15. Find the real positive root of $f(x) = x \cos x 1 = 0$ by Newton's method.
- 16. Consider the following table of data :

x	f(x)	
50	3.6840	
51	3.7084	
52	3.7325	
53	3.7563	
54	3.7798	
55	3.8030	
56	3.8259	

Use forward difference formula to approximate the value of f'(50).

- 17. Evaluate $\int_{-3}^{3} x^4 dx$ by using (i) Trapezoidal rule ; and (ii) Simpson's rule.
- 18. Apply Taylor's method of order two to approximate the solution for the initial value problem $y' = e^{t-y}, 0 \le t \le 1, y(0) = 1, h = 0.5.$
- 19. Use Euler's method to approximate the solution for $y' = y + e^t$, y(0) = 0, h = 0.2.

Section C

Answer any **one** question. The question carries 10 marks.

- 20. Find the positive root of $x^4 x^3 2x^2 6x 4 = 0$ by Bisection method within 10^{-4} accuracy.
- 21. Use the Runge Kutta method of order four with h = 0.2, N = 10, $t_i = 0.2i$ to obtain approximations to the solutions of the initial value problem $y' = y t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5.

 $(1 \times 10 = 10 \text{ marks})$

41<mark>70</mark>81

D 50667

(**Pages : 3**)

Name	•••••	• • • • • • • • • • •	 •••••	••••

Reg. No.....

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 07-NUMERICAL ANALYSIS

(2020 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20.

- 1. State the formula for Newton's method.
- 2. Find all fixed points of the function $f(x) = \frac{x^3 1}{x^2 + 1}$.
- 3. What is an algebraic polynomial ? Give an example.
- 4. State Fixed Point Theorem.
- 5. State one advantage of Secant method over Newton's method.
- 6. Write Newton's backward difference formula.
- 7. Write the Simpson's rule for $\int_0^2 x^2 dx$.
- 8. Write the formula for the method of false position
- 9. Does the set $\{(t, y), -1 < t < 2, 0 < y < 1\}$ is a convex set ? Justify your answer.
- 10. What is Lipschitz constant?
- 11. What is a well posed problem ?
- 12. What is the 'Degree of Accuracy' of a quadrature formula ?

Turn over

D 50667

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

- 13. Find the positive root of $x = \cos x$ using Newton's method.
- 14. Use Newton's forward difference formula to find a polynomial of degree four which takes the values :

x	f(x)
2	0
4	0
6	1
8	0
10	0

15. Using Lagrange's formula of interpolation find f(9.5) given :

x	f(x)	
7	3	
8	1	
9	1	
10	9	

16. Approximate the integral $\int_0^6 \frac{1}{1+x^2}$ using Simpson's rule.

17. Consider the following table of data :

x	f(x)
50	3.6840
51	3.7084
52	3.7325
53	3.7563
54	3.7798
55	3.8030
56	3.8259

Use backward difference formula to approximate the value of f'(56).

- 18. Use Euler's method to approximate the solution for y' = t + y, y(0) = 1, h = 0.2.
- 19. Apply Taylor's method of order two to approximate the solution for the initial value problem $y' = y t^2 + 1, 0 \le t \le 2, y(0) = 0.5.$

Section C

Answer any **one** question. The question carries 10 marks.

- 20. Show that the Mid point method and Modified Euler method give the same approximations to the initial value problem y' = -y + t + 1, $0 \le t \le 1$, y(0) = 1 for any choice of *h*. Why is this true ?
- 21. Find the positive root of $x^3 9x + 1 = 0$ by Bisection method within 10^{-4} accuracy.

 $(1 \times 10 = 10 \text{ marks})$

D 30570

(Pages : 2)

Nam	e	•••••	 	•••••	•••••
Reg.	No		 		

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 5B 07—NUMERICAL ANALYSIS

(2020 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20.

- 1. Compute the absolute error and relative error in the approximation of p by p^* , where $p = \pi$, $p^* = \frac{22}{7}$.
- 2. Write Newton-Raphson Formula and state Intermediate Value theorem.
- 3. Let $f(x) = e^x x 1$. Show that *f* has a zero of multiplicity 2 at x = 0.
- 4. Show that $f(x) = x^3 + 4x^2 10 = 0$ has a root in [1, 2].
- 5. Express $\Delta^2 f_0$ and $\Delta^3 f_0$ in terms of the values of the function.
- 6. State Neville's Method.
- 7. Write Newton's Divided Difference Formula.
- 8. What is the degree of accuracy of a quadrature formula?
- 9. Write the Legendre Polynomials $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$ and $P_4(x)$.
- 10. Define a convex set in \mathbb{R}^2 .
- 11. Give the difference equation form of Runge-Kutta method of order four.
- 12. Define an implicit three-step method known as the fourth-order Adams-Moulton Technique.

Turn over

$\mathbf{2}$

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

13. Show that $g(x) = \frac{x^2 - 1}{3}$ has a unique fixed point on the interval [-1, 1].

- 14. The function $f \in C'[a, b]$ has a simple zero at p in (a, b) if and only if f(p) = 0 and $f'(p) \neq 0$.
- 15. Suppose $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$ and $f(x) = e^x$. Determine the interpolating polynomial P_(1,2,4) and use this to approximate f(5).
- 16. Use the forward difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ with h = 0.1, 0.05 and h = 0.01 and determine bounds for the approximation errors.
- 17. Determine value of h that will ensure an approximation error of less than 0.00002 when

approximating $\int_{0}^{x} \sin x \, dx$ using composite Simpson's rule.

- 18. Approximate $\int_{-1}^{1} e^x \cos x \, dx$ using Gaussian quadrature with n = 3.
- 19. Show that the initial value problem

$$\frac{dy}{dt} = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5 \text{ is well posed on } D = \{(t, y) : 0 \le t \le 2, -\infty < y < \infty\}.$$

Section C

Answer any **one** question. The question carries 10 marks.

- 20. By fixed point iteration method determine a solution accurate to within 10^{-2} for $x^4 3x^2 3 = 0$ on [1, 2]. Use $p_0 = 1$.
- 21. Apply Taylor's method of order 2 with N = 10 to the initial value problem $y' = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5.$

 $(1 \times 10 = 10 \text{ marks})$

D 30561

(Pages: 2)

Name..... Reg. No.....

FIFTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2022

Mathematics

MTS 5B 07-NUMERICAL ANALYSIS

(2019 Admissions only)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20 marks.

- 1. State Intermediate value Theorem.
- 2. Determine the fixed points of the function $f(x) = x^2 2$.
- 3. Set up Newton's iteration formula for computing $\sqrt[3]{24}$.
- 4. State the formula for method of false Position.
- 5. Write the Lagrange Interpolating polynomial through (2, 4) and (5, 1).
- 6. Write Newton's Forward difference formula.
- 7. Write second derivative Mid Point formula.
- 8. Write Simpson's Three- Eighths Rule formula.
- 9. Define Numerical quadrature.
- 10. Show that f(t, y) = t|y| satisfies a Lipschitz condition on the interval

- 11. What does local truncation error at a specified step of an approximation method measure ?
- 12. What is the local truncation error, if Taylor's method of order *n* is used to approximate the solution to $y'(t) = f(t, y(t)), a \le t \le b, y(a) = \alpha$ and with step size *h* and if $y \in C^{n+1}[a,b]$?

Turn over

 $D = \{(t, y) : 1 \le t \le 2, and -3 \le y \le 4\}.$

$\mathbf{2}$

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30 marks.

- 13. Approximate the root of the function $f(x) = \cos x x = 0$ using Newton's method with $p_0 = \pi/4$.
- 14. Given f(2) = 5, f(2.5) = 6. Evaluate f(2.2) using Lagrange's Method.
- 15. Using Newton's divided difference interpolation formula evaluate f(3) from the following table :

x	:	1	2	4	5	6
у	:	14	15	5	6	19

- 16. Use Newton's forward-difference formula to approximate the derivative of f(x) = In x at $x_0 = 1.8$ using h = 0.01, h = 0.05 and h = 0.01 and determine bounds for the approximation errors.
- 17. The values for $f(x) = xe^x$ are given. Use Three-point end point formula to approximate f(2.0) with h = 0.1, -0.1:

x	:	1.8	1.9	2	2.1	2.2
xe^x	:	10.889365	12.703199	14.778112	17.148957	19.855030

- 18. Approximate the integral $\int_{0.5}^{1} x^4 dx$ using Trapezoidal Rule.
- 19. Use Euler Method to approximate the solution of the initial value problem

 $y' = 1 + (t - y)^2, 2 \le t \le 3, y(2) = 1$ with h = 0.5.

Section C

Answer any **one** question. The question carries 10 marks. Maximum marks 10.

- 20. Find a positive root of the equation $f(x) = xe^{x} 1$ correct to 3 decimal places using Bisection Method.
- 21. Use the Midpoint method with N = 10, h = 0.2, $t_i = 0.2i$, and $w_0 = 0.5$ to approximate the solution to $y' = y t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5.

Nam	e	 	•••••	•••••

Reg. No.....

FIFTH SEMESTER U.G. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-UG)

Mathematics

MTS 5B 07-NUMERICAL ANALYSIS

(2019 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Show that $f(x) = x^3 + 4x^2 10 = 0$ has a root in [1, 2].
- 2. Determine fixed points of the function $g(x) = x^2 2$.
- 3. Write the equation of Lagrange's interpolating polynomial through (x_0, y_0) and (x_1, y_1) .
- 4. State three point end point formula of differentiation.
- 5. Using Trapezoidal rule find $\int_0^2 x^2 dx$.
- 6. Show that f(t, y) = t |y| satisfies a Lipschitz condition on the interval $D = \{(t, y)/1 \le t \le 2 \text{ and } -3 \le y \le 4\}.$
- 7. Define a convex set.
- 8. For all $x \ge -1$ and any positive *m* show that $0 \le (1+x)^m \le e^{mx}$.
- 9. When is the initial value problem $\frac{dy}{dt} = f(t, y)$, $a \le t \le b$, $y(a) = \alpha$ well posed.
- 10. What is the degree of accuracy or precision of a quadrature formula ?

Turn over

 $\mathbf{2}$

- 11. Write Newton's Forward difference formula.
- 12. Set up Newton-Raphson formula for computing \sqrt{N} .

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Find a root of $f(x) = x^3 3x 5 = 0$ correct to 3 decimal places using Newton-Raphson method. Start with $x_0 = 3$.
- 14. Using Lagrange's interpolation formula find y(10) if :
- 15. Using Newton's forward interpolation formula find the cubic polynomial for the data :

- 16. Approximate $\int_{1}^{2} \frac{1}{x} dx$ using Simpson's $\frac{3}{8}$ th rule with step value h = 0.25
- 17. Using Second derivative midpoint formula approximate $f^{11}(1.3)$ if $f(x) = 3xe^x \cos x$ with h = 0.1. Given :

x	:	1.2	1.29	1.30	1.31	1.40
у	:	11.59006	13.78176	14.04276	14.30741	16.86187

- 18. Use Euler's method to find approximate solution for the initial value problem $y^1 = 1 + \frac{y}{t}$, $1 \le t \le 2, y (1) = 2$ with h = 0.25.
- 19. Use Newton's Backward difference formula to construct interpolating polynomial of degree 1 if f(-0.75) = -.07181250, f(-0.5) = -.02475000, f(-.25) = .33493750, f(0) = 1.10100000.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question. The question carries 11 marks.

- 20. Find by the method of Regula Falsi a root of the equation $x^3 + x^2 3x 3 = 0$ lying between 1 and 2.
- 21. Use the Modified Euler method to approximate the solutions to the IVP $y^1 = \frac{1+t}{1+y}, 1 \le t \le 2$,

y(1) = 2 with h = 0.5.

(1 × 11 = 11 marks)