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Abstract 

There seems to be some amount of confusion in the finance text books regarding the 
conditions under which an individual's preferences can be represented by a utility 
function . Fama and Miller, for example, assert that two axioms (comparability and 
transitivity) are sufficient to establish the existence of a utility function (when the set of 
alternatives is Rn). This is totally false: a real valued utility function need not exist even 
in the single good case (R1). One might hope that a vector valued utility might exist (with 
lexicographic ordering of the utility vector); but this is not the case. Indeed we cannot 
salvage the situation even by allowing the utility to be a vector in R� (i.e. to have an 
(countably) infinite number of components); only an uncountable number of real 
components can do the job. 

None of these results are new, but they do not seem to be sufficiently well known to 
researchers in finance. This may be because the original papers are mathematically 
forbidding or because they are scattered in sources somewhat removed form the 
mainstream finance literature. If that be so, this note should be of some help; some of our 
proofs and examples are new and hopefully more elementary (for example we avoid 
taking recourse to Sierpinski's lemma). 
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1. Introduction 

There is a considerable body of literature which deals with the conditions under which an 
individual's preferences can be represented by a utility function which assigns numbers 
(utilities) to each available alternative in such a way that the individual prefers alternative 
x to alternative y if and only if x has the higher utility assigned to it. Necessary and 
sufficient conditions for this are well known (see Debreu, 1964, Fishburn, 1970 or 
Richter, 1966). 

Nevertheless there seems to be some amount of confusion in the finance text books in 
this regard. Fama and Miller, for example, assert that two axioms (comparability and 
transitivity) are sufficient to establish the existence of a utility function (when the set of 
alternatives is Rn). This is totally false: a real valued utility function need not exist even 
in the single good case (R1). One might hope that a vector valued utility might exist (with 
lexicographic ordering of the utility vector); but this is not the case. Indeed we cannot 
salvage the situation even by allowing the utility to be a vector in R� (i.e. to have an 
(countably) infinite number of components); only an uncountable number of real 
components can do the job. 

None of these results are new, but they do not seem to be sufficiently well known to 
researchers in finance. This may be because the original papers are mathematically 
forbidding or because they are scattered in sources somewhat removed form the 
mainstream finance literature. If that be so, this note should be of some help; some of our 
proofs and examples are new and hopefully more elementary (for example we avoid 
taking recourse to Sierpinski's lemma). 

2. Real Valued Utilities 

The axioms of comparability and transitivity are: 

1.  Comparability: For every pair of alternatives x and y, either (1) x is preferred to y, or 
(2) y is preferred to x, or (3) x and y are indifferent to each other. The individual does 
not say that x and y are incomparable. 

2. Transitivity: If x is preferred to y, and y is preferred to z, then, x is preferred to z. The 
same holds for indifference. 



These two axioms state simply that the set S of alternatives is a pre-ordered set (the 
ordering being the preference ordering). S is only pre-ordered and not ordered because 
there may exist distinct elements x and y which are indifferent to each other (this is not 
allowed in an ordered set). However, we can consider the set S' of equivalence (or 
indifference) classes of S; this set S' is an ordered set. Without loss of generality, we 
shall, therefore, assume that S itself is an ordered set. 

FM assume that the set S of alternatives is the set Rn of all n- tuples q = (q1,...,qn); the 
alternative q is interpreted as consisting of qj units of good j, where it is assumed that 
there are n goods 1,...,n. FM's alleged proposition is thus that any arbitrary order on Rn 
can be represented by a real valued utility function. This is not true even for n = 1, but we 
shall first refute it for n = 2. 

Consider, therefore, the lexicographic order in R2: (a,b) > (p,q) if and only if either (1) 
a > p, or (2) a = p and b > q. Assume that a utility function exists in this case. For any real 
number p, consider the alternatives (p,0) and (p,1); these must be assigned utilities, say 
U(p) and V(p) respectively with U(p) < V(p). For any other real number q, we will have 
another pair of utilities U(q) < V(q), and the open intervals ( U(p), V(p) ) and 
( U(q), V(q) ) are disjoint. In other words, for every real number, there exists an open 
interval disjoint from the open interval associated with any other number. But, this is 
impossible: (1) each open interval must contain a rational number (there is a rational 
number between any two reals), (2) there are only a countable number of rationals, and 
(3) there are an uncountable number of reals. Conclusion: the alleged utility function does 
not exist. 

We can now show quite easily that FM's alleged result is not true even for the single good 
case (n = 1). Every real number x has a unique decimal expansion xnxn-1...x1x0.x-1x-2... (for 
terminating decimals, we choose the expansion with an infinite number of zeros). If we 
put together all the even numbered digits, we get a real number E(x) = xnxn-2...x2x0.x-2x-4... 
(if n is even). Putting together all the odd numbered digits, we get another real number 
O(x) = xn-1xn-3...x3x1.x-1x-3... . This is the classical one-to-one mapping from R1 to R2. We 
now define an order on R1 by the lexicographic order on the image ( E(x), O(x) )in R2 
under this mapping. As we have shown above, this order is not representable by a utility 
function. This demonstrates that FM's proposition is false even in the case of only one 
good. We note that the preference order which we defined on R1 is extremely 
discontinuous: in any interval, howsoever small, the commodity switches from being a 
good to being a bad and back again infinitely often. 

3. Vector Valued Utilities 

We thus find that real valued utility functions may not exist at all. One way of getting 
round this suggests itself: relax the requirement that the utility function be real valued and 
allow it to be a vector. For example if we allow the utility to consist of two numbers 
(with the usual lexicographic order), we can, quite trivially, represent the lexicographic 
order on R2 by the identity map U(x) = x. But this does not get us very far. To represent 
the lexicographic preference on R3, we would need three numbers and so on. This means 



that, for no finite number n, is a utility function with n components adequate, as we can 
always consider a lexicographic preference on Rn+1. Indeed, by the same method as in 
section 1, we can construct a preference order in R1 that replicates the lexicographic order 
in Rn+1. This means that even in the single good case, no finite number of components is 
adequate. The only hope is to allow utilities with an infinite number of components. 

4. R� Valued Utilities 

To show that even this will not do requires mathematical machinery of a far higher order 
than we have used so far. We begin with several definitions. 

Two ordered sets, A and B are said to be similar if there exists a one-to-one order 
preserving correspondence between them. To ask whether a utility function exists is 
equivalent to asking whether the ordered set S is similar to a subset of the reals(R). Two 
similar sets are said to have the same order type. So the existence of a utility function is 
equivalent to the ordered set being of the same order type as a subset of the reals. 

Let A and B be any ordered sets. We let AB* denote the power set AB (the set of all 
functions from B to A) endowed with the following lexicographic partial order: 

Given f and g � AB* define 

D(f,g) = {q � B | f(q) � g(q)} 

If D(f,g) has no first element then f and g are incomparable; else let d be the first element 
of D(f,g) and define 

 >  >  
f = g according as f(d) = g(d) 
 <  <  

If the set B is well ordered (i.e. every subset of B has a first element), then D(f,g) always 
has a first element; AB* is then totally ordered. 

R� is the usual notation for R�* where � is the smallest infinite ordinal (the order type of 
the positive integers); we have also so far used the notation R�, but shall henceforth use 
the more precise notation R�*. R�* is lexicographically totally ordered. 

To show that an R�* valued utility is not sufficient to represent a preference order on Rn it 
is sufficient to consider in place of Rn, any set of the same cardinality. This was the 
general principle which allowed us to show that the single good case R1 is no better than 
R2 or Rn since they all have the same cardinality: the cardinality of the continuum. 

We are now ready to state and prove the non existence theorem. 



Theorem: There exists an ordered set of the cardinality of the continuum which is not 
similar to a subset of R� (i.e. R�*). 

Proof: Let Q be the rationals; since Q is countable, RQ like R�, has the same cardinality 
as the continuum. As above, RQ is lexicographically partially ordered. 

Consider the element 0 � RQ defined by 0(q) � 0. Define the subset S of RQ defined as 
follows: 

S = { f � RQ | D(f,0) is well ordered} 

We observe that if f,g � S then D(f,0) � D(g,0) is the union of two well ordered sets and 
therefore well ordered; D(f,g) being a subset of this well ordered set is itself well ordered. 
This means that S is totally ordered. 

Now consider a fixed infinite sequence of rationals:   

0 = q0 < q1 < ... < q� = 1 

and define 

T = {f � RQ | f(q) = 0 , q � qj, j � �+1} 

where �+1 = {0,1,...,�} = {0,1,...} � {�} is the infinite ordinal immediately following �. 

T is contained in S because if f � T, then D(f,0) is a subset of {qj, j��+1} which is well 
ordered. Thus T is a totally ordered set of the cardinality of the continuum. 

It is obvious that T is similar to R(�+1)*; we wish to show that it is not similar to a subset 
of R�*. Since on the one hand J = [0,1] is contained in (and therefore similar to a subset 
of) R, and on the other hand R is similar to the subset (0,1) of J, it is clearly sufficient to 
show that J(�+1)* is not similar to a subset of J�*. (If R(�+1)* were similar to a subset of R�*, 
then the subset J(�+1)* of R(�+1)* would be similar to a subset of R�* which in turn is 
similar to a subset of J�*). 

Our proof closely follows Hausdorff's proof that Jm is not similar to a subset of Jn where 
n < m. 

Assume to the contrary that there is a similarity map. Let the images of (x1,0,0...,0) and 
(x1,1,1...,1) be (y1,y2,...) and (z1,z2,...) respectively. Clearly y1 � z1; but it is not possible 
for y1 and z1 to be distinct for all x1. For, if this were so, the open intervals (y1,z1) would 
be disjoint, and the set of these intervals would, like the set of the x1, have the cardinality 
of the continuum; whereas, since each such interval must contain a rational, there are 
only a countable number of them. Hence for some value of x1 say a1 we have y1 = z1 = 
say b1. This means that if the first coordinate of x is a1 then the first coordinate of its 
image is b1 regardless of the remaining coordinates. 



We now assume that a sequence of numbers a1, a2, ..., ak has been found such that if the 
first k coordinates of x are a1, a2, ..., ak respectively, then the first k coordinates of its 
image are b1, b2, ..., bk regardless of what the remaining coordinates are. We now 
consider the subset J(�+1)*(a1,a2,...,ak) of J(�+1)* whose first k coordinates are a1, a2, ..., ak 
and the subset J�*(b1,b2,...,bk) of J�* whose first k coordinates are b1, b2, ..., bk. Repeating 
our earlier argument, we can now find ak+1 and bk+1 such that if the (k+1)'th coordinate of 
x � J(�+1)*(a1,a2,...,ak) is ak+1, then the (k+1)'th coordinate of its image y � J�*(b1,b2,...,bk) is 
bk+1 regardless of what the remaining coordinates are. By induction therefore we find the 
sequences aj and bj, j � �. 

Now consider the points (a1, a2, ..., 0) and (a1, a2, ..., 1). By induction, we see that both of 
these points must be mapped into (b1, b2, ...). This proves that J(�+1)* cannot be mapped 
into a subset of J�* in an order preserving way. � 

If it were only desired to prove the bare substance of the theorem, it would have been 
sufficient to directly introduce the R(�+1)* instead of introducing RQ and exhibiting R(�+1)* 
as a subset thereof. That would, however, have left open the possibility that perhaps 
R(�+1)* or some larger space is sufficient while R�* is not. Our method of proof can be 
used to show that any attempt to represent all orderings of the continuum by a 
lexicogrpahically ordered space is doomed to failure if we use only a countable number 
of real coordinates. 

5. Higher Countable Ordinals 

We wish to show that it is not possible to represent all possible orderings of the 
continuum with utility functions having only a countable number of real components. 
This is a consequence of the following considerations: 

1. Our proof that R(�+1)* is not similar to a subset of R�* can be extended to show that 
R(�+1)* is not similar to a subset of R�* for any infinite ordinal �. All that we have to do 
is to replace ordinary induction by transfinite induction. The case of finite � is covered 
by Hausdorff's theorem cited above. 

2. Given any countable ordinal �, there exists a subset of the rationals whose order type 
(under the natural order) is the same as �. In fact, the rationals contain not merely all 
the countable ordinals, but all the countable order types (Hausdorff p 60). 

3. Consequently, the set S constructed in the proof of Theorem I, contains a subset 
similar to R�* for any countable ordinal �. 

4. If � is any countable ordinal, �+1 is also a countable ordinal (adding one element to an 
infinite set cannot change its cardinality). 

We are led to the following theorem: 



Theorem: There exists a set of the cardinality of the continuum which is not similar to a 
subset of R�* for any countable ordinal �. 

Proof: The set S constructed in Section 4 contains a subset similar to R(�+1)* which is not 
similar to a subset of R�*.� 

Since RS* is totally ordered only if S is well ordered, and any well ordered set is similar 
to an ordinal, this theorem justifies the statement made earlier that to represent all 
possible orderings of the continuum by a lexicographic order, a countable number of real 
coordinates is not sufficient. We now proceed to show that utilities with an uncountable 
number of real components can do the job. 

6. Utilities with Uncountable Number of Real Components 

Theorem: Let A be any ordered set and �, its cardinality. Then, A is similar to a subset of 
the lexicographically ordered set {0,1}�* where � is identified with any well ordered set 
of cardinality �. 

Proof: Let V be a one-to-one (not necessarily order preserving) map from � to A (which 
exists because the two sets have the same cardinality). Define the similarity map U from 
A to {0,1}�* as follows: 

U(a) = f where f(x) = 1 if V(x) < a 

= 0 otherwise. 

It is clear that if f=U(a), g=U(b), y = V-1(a) and a < b, then 

f(x) � g(x) for all x; and 

0 = f(y) < g(y) = 1 

Consequently, U(a) < U(b) and U is order preserving.� 

Corollary 1: If A is countable, it is similar to a subset of the reals. 

Proof: The unit interval is identical to {0,1}�* as every real number in (0,1) has a binary 
expansion of 0s and 1s, and the natural order on (0,1) is the same as the lexicographic 
order on these sequences of 0s and 1s. 

Remark: As we have stated earlier, if A is countable, it is similar to a subset of the 
rationals; our corollary, though useful and often used, is not the strongest possible result. 

Corollary 2: Any preference ordering on R or Rn or even R� can be represented by a 
utility function taking values in {0,1}�* (or a fortiori in R�*) where � is the smallest 
ordinal with the cardinality of the continuum. 



Proof: Immediate. � 
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