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ABSTRACT 

It is well known that the existence of a countable order dense subset is necessary and 
sufficient for a preference order to be representable by a utility function, and that this 
condition is also sufficient for the utility function to be continuous with respect to the 
order topology. While the modern proof of the first part of this result is based on a 
theorem of Cantor on ordered sets, the proof of continuity is usually based on a theorem 
of Debreu in real analysis. This paper seeks to eliminate this appeal to real analysis, and 
show that the proof of continuity requires only the order structure of the reals and does 
not need any metric or algebraic properties of the reals. We also show that any 
continuous preference ordering on a separable topological space with an at most 
countable number of connected components is representable by a continuous utility 
function thereby relaxing the usual assumption that the space be connected. 
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A theorem of Cantor that the existence of a countable order dense subset is necessary and 
sufficient for an ordered set to be homeomorphically embeddable in the reals completely 
settles the question of the existence of a utility function representing a preference 
ordering (see Richter,1966). It does not seem to be realized that a closely related order 
type theorem is sufficient to establish the continuity of the utility function with respect to 
the order topology. Instead, proofs of continuity have relied on a theorem of Debreu in 
real analysis (see Debreu,1964 and Fishburn,1970). Unfortunately, the use of this 
theorem and particularly its method of proof introduce the algebraic and metrical 
properties of the reals into a problem which is concerned exclusively with order structure. 
Our proof eliminates this dependence on real analysis and displays the logical structure of 
the problem more clearly. 

Since the utility function is continuous with respect to the order topology, continuity with 
respect to any other topology is equivalent to the continuity of the preference ordering 
itself (i.e. the order topology should be a coarsening of the original topology). In 
particular, it has been known that any continuous preference order on a separable 
connected topological space has a continuous utility representation (Debreu,1964). We 
show that the assumption of connectedness can be relaxed to the extent that the space 
may have an at most countable number of connected components. 

We shall throughout assume that the preference order is always a strict total order. 
Techniques for extending the analysis to preorders and to partial orders are well known 
(Fishburn,1970). To ask whether a utility function exists is equivalent to asking whether 
the ordered set S is similar to a subset of the reals (R). (Two sets, A and B are said to be 
similar if there exists a one- to-one order preserving correspondence between them.) Two 
similar sets are said to have the same order type. A utility function exists if and only if 
the ordered set has the same order type as a subset of the reals. 

Theorem I : A preference ordering on a set S is representable by a utility function which 
is continuous in the order topology if under this ordering S contains a countable order 
dense subset, i.e., a subset D of elements d1, d2... such that the following condition is 
satisfied :   

If x < y (x, y � S) then: 

x � D, or y � D, or d � D where x < d < y. 

(Order denseness is closely related to but not the same as denseness with respect to the 
order topology. If the open interval (x, y) is nonempty, topological denseness guarantees 
an element of D lying in this interval; order denseness is a weaker requirement in this 
case as it guarantees only an element of D lying in the closed interval [x, y]. If the open 



interval (x, y) is empty, order denseness guarantees that either x or y belongs to D; 
topological denseness guarantees nothing.) 

Proof 

The proof is based on the following order type theorem (Hausdorff, 1957 p63):   

Every unbounded continuous set for which there exists a countable set that is dense in it 
has order type � (the order type of the reals). 

This theorem implies that we need only prove that we can embed the set S in an 
unbounded continuous set S*, and find a countable set D* which is dense in S*. S* would 
then be similar to the reals by the above theorem; S being a subset of S* would then be 
similar to a subset of the reals. This would establish the existence of a utility function. 

An unbounded set is one in which there is no first element and no last element i.e. given 
any x there exists a y < x and a z > x. To embed S in an unbounded set we add some 
artificial elements if necessary. If there exists an element min such that there is no 
x < min then we add the artificial elements Amin(q) where q ranges over all the negative 
reals (q<0). We specify that Amin(q) is greater than Amin(p) for q > p and is less than x for 
all other x. Similarly, if there exists a maximum element we add artificial elements 
Amax(q) where q ranges over all the positive reals (q>0). We specify that Amax(q) is less 
than Amax(p) for q < p and is greater than x for all other x. It is easily verified that with 
these additional points S becomes unbounded. 

To define a continuous set, we need to consider partitions of a set :   

S = P + Q 

where P < Q (every element of P is less than every element of Q). 

Four cases can arise :   

P has a last element and Q has a first element JUMP 

P has a last element and Q has no first element CUT 

P has no last element and Q has a first element CUT 

P has no last element and Q has no first element GAP 

A set is said to be continuous if there are no jumps and no gaps; in other words, in a 
continuous set every partition is a cut. 

We must now eliminate all jumps and gaps that may exist in S. We shall first show that, 
under the conditions of the theorem, there can be only a countable number of jumps. If x 



is the last element of P and y is the first element of Q in a jump, then there is no element 
between x and y. The countable order denseness condition guarantees that either x or y 
belongs to the countable set D. This means that the number of such jumps is at most 
countable. For each such jump, we now add the artificial elements APQ(q) where q ranges 
over the open unit interval : 0<q<1. We specify that APQ(q) < Q, P < APQ(q) and 
APQ(p) < APQ(q) if p < q. It is readily verified that with the addition of these elements, all 
jumps are removed. Next we eliminate all gaps by adding an artificial element APQ 
whenever the partition S = P + Q is a gap. We specify that P < APQ < Q. 

Let S* be the set obtained from S by adding the points Amin(q), Amax(q), APQ(q) and APQ. 
As seen above S* is an unbounded, continuous set containing S. Now consider the set D* 
obtained from D by adding the points Amin(q), Amax(q) and APQ(q) for all rational values 
of q. D* is an at most countable union of countable sets and is therefore countable. It is 
easy to verify that D* is dense in S* (a subset B is dense in an ordered set A if for any 
x,y � A (x < y) there exists a w � B such that x < w < y ). 

We have thus shown that S* is similar to the real numbers. Since the similarity map 
preserves the order relationship, it preserves the order topologies also; the mapping is 
thus a homeomorphism with respect to these topologies. The utility function U is the 
restriction of this map to S; U is, therefore, a homeomorphism (and a fortiori continuous) 
between S and a subset U(S) of R with respect to the subset topologies on S and U(S) 
induced from the topologies on S* and R. To show that U is continuous from S to R, we 
must show that these subset topologies are the same as the order topologies on S and 
U(S). (Given an arbitrary subset B of an ordered set A, B itself is an ordered set; the order 
topology on B is not, in general, the same as the subset topology induced on B from the 
order topology on A.) A subbase for the order topology on S* consists of the sets 

F*(�) = { x � S* | x < � } � � S*, and 

G*(�) = { x � S* | x > � } � � S*. 

Similarly, a subbase for the order topology on S consists of the sets 

F(�) = { x � S | x < � } � � S, and 

G(�) = { x � S | x > � } � � S. 

A subbase for the subset topology on S consists of the sets S � F*(�) and S � G*(�). If 
� � S, F(�) = S � F*(�) and G(�) = S � F*(�). This proves that the subset topology is a 
refinement of the order topology (this is obviously true in general). We must now 
consider � ∉  S. There are four possibilities:  

1. � = Amin(q). S � F*(�) = φ  and S � G*(�) = S, both open. 

2. � = Amax(q). S � F*(�) = S and S � G*(�) = φ , both open. 



3. � = APQ(q). S � F*(�) = F(y) and S � G*(�) = G(x) where x is the last element of P and 
y is the first element of Q. 

4. � = APQ.  S � F*(�) = 
Qx∈
�  F(x) and 

S � G*(�) = 
Px∈
� G(x) 

    are both unions of open sets and, therefore, open. 

The result which we have just proved is of independent interest and can be stated in more 
general terms :   

Lemma : Let A be a subset of the ordered set S and Ac be the complement of A. If the 
maximal intervals of S contained in Ac are either open or are degenerate (consist of only 
a single point), then the order topology on A coincides with the subset topology induced 
on A from S. 

In the course of proving his corollary, Debreu proves a special case of this lemma though 
his results and proofs are couched in the language of real analysis rather than that of 
ordered sets. His proof does, however, carry over to the general case, and is essentially 
the same as our proof above. 

The proof of continuity is now easy. The order and subset topologies on S are identical; 
since U is a homeomorphism from S* to R these two topologies are identical on U(S) 
also. U is continuous from S endowed with the order topology to U(S) endowed with the 
subset topology, and therefore from S to R. � 

Corollary : In all cases, whenever a utility function exists, a bounded utility function 
exists with the same continuity properties; a fortiori, it is never necessary to introduce the 
extended real line (with ± � adjoined). 

Proof : The open unit interval (0,1) is an unbounded, continuous set with a countable 
dense subset (viz., the rationals between 0 and 1), and is, therefore, by the order type 
theorem, similar to the reals. If U is a real valued utility function, and V is the similarity 
mapping from R to (0,1), then the composition V o U is a utility function taking values in 
(0,1); it is continuous if U is. Since R is similar to (0,1), the extended real line (with ± � 
adjoined) is similar to the closed unit interval [0,1]. Any utility function into the extended 
reals can be replaced by one into [0,1] with the same continuity properties. � 

Since the utility function is always continuous in the order topology, it is continuous with 
respect to any other finer topology, i.e. any topology in which the intervals 
{ x | � < x < � } are open. 

When the set S is endowed with a topological structure and this topology is a refinement 
of the order topology, we say that the preference ordering is continuous. In some 



topological spaces, continuity of preferences implies that the countable order denseness 
condition is automatically satisfied; this makes the existence theorems simpler in those 
cases. Two well known examples are the separable connected spaces and the spaces with 
a countable base. The following theorem generalizes these results. 

Theorem II: If S is a topological space and preferences are continuous, then a continuous 
utility function exists if either of the following conditions is satisfied: 

a) S is a separable space with an at most countable number of connected components; or 

b) S has a countable base of open sets. 

Proof : Since the order topology is a coarsening of the topology of S, the order topology 
will also satisfy conditions (a) and (b) if the original topology does so. 

Assume that S satisfies condition (a). Let D1 be a countable set which is dense in S with 
respect to the order topology. Now consider all pairs of points x,y � S, x < y such that no 
element of S lies between x and y. If x belongs to a component C, then x must be the last 
(or largest) element of C. This is because the open set {z � C | z > x} is the same as the 
closed set {z � C | z � y} and must be null as C is connected. Since there are only a 
countable number of components, there are only a countable number of such x's : we add 
these to D1 to obtain the countable set D. It is seen that D is a countable order dense 
subset of S. The existence of a continuous utility function follows from Theorem I. 

Now consider condition (b). Let Oj be a countable base of open sets for the order 
topology. By picking one point from each of the Oj, we have a countable subset D1 which 
is dense with respect to the order topology. Once again we shall prove that there are only 
a countable number of pairs of points x,y � S, x < y such that no element of S lies 
between x and y. Given any such pair, the set {z | z 	 x} = {z | z < y} is an open set and is 
the union of some of the Oj; there must, therefore, be an Oj which is 	 x and contains x; x 
is the largest element of Oj. We can thus associate a distinct Oj to each such x; since the 
Oj are countable, the x's must also be countable. Once again, we add the x's to D1 to get 
the countable order dense set D, and use Theorem I.� 

We now show that Debreu's main theorem on which he bases all continuity properties 
can itself be proved as a corollary of our theorems without invoking any algebraic or 
metric properties of the reals. 

Theorem III (Debreu's main theorem): If S is a subset of R  (the extended reals), there is 
an increasing function g from S to R  such that all the maximal intervals in the 
complement of g(S) are either degenerate or open. 

Proof : Since the extended real line is similar to the closed unit interval, it is sufficient to 
consider the reals instead of the extended reals in proving the above theorem. Since R 
(endowed with the order topology) has a countable base, so does any subset S of R (S is 
endowed with the subset topology). Since the order topology on S is a coarsening of the 



subset topology, we can invoke Theorem II to show that there exists a continuous utility 
function from S to R. An examination of the proof of Theorem I shows that the utility 
function constructed therein has the property required of g. � 

REFERENCES 

Debreu, G.(1964), "Continuity Properties of Paretian Utility", International Economic 
Review, 5, 285-293. 

Fishburn, P.C. (1970), Utility Theory for Decision Making, New York, John Wiley. 

Hausdorff, F. (1957), Set Theory, New York, Chelsea. 

Richter, M.K. (1966), "Revealed Preference Theory", Econometrica, 34, 634-645.  


