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Abstract
This paper examines the relationship between index futures and index
options prices in India. By using futures prices, we eliminate the effed
of short sale restrictions in the cah market that impede abitrage
between the cah and derivative markets. We estimate the implied
(risk neutral) probabil ity distribution of the underlying index using the
Breeaden-Litzenberger formula on the basis of estimated implied
volatility smiles. The implied probability distribution is more highly
pe&ked and has (with one exception) thinner tail s than the normal
distribution or the historical distribution. The market appeasto be
underestimating the probabil ity of market movements in either
diredion, and thereby underpricing volatility severely. At the same
time, we seesome overpricing of degp-in-the-money calls and some
inconclusive evidence of violation of put-call-parity. We also show
that the observed prices are rather close to the average of the intrinsic
value of the option and its Bladk-Scholes value (disregarding the

smile). Thisisanother indication of volatility underpricing.

1 Introduction

It iswell known that severe mispricing prevails in India s nascent derivatives market.
The mispricing that has been most commented upon is the negative st of carry
phenomenon in which the futures trades at a discount to the underlying. Thisis
perhaps partly explained by the short sale restrictions in the cah market that
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precludes the reverse cah and cary arbitrage that would normally eliminate this
mispricing. Globally, also, it has been observed that futures trade below fair value
(though rot usually below underlying) in the presence of aaute short sale restrictions'.

This paper does not deal with the issue of the @st of carry at all. It sidesteps this
problem by looking at the relationship between futures and options prices (given by
the Bladk formula (Eq (1) — (4) below rather than the Black Scholes formula, Eq (5) —
(8) below). In thisrelationship, the ast of carry isamost irrelevant. The resultsin
this paper shows that even after removing the effect of the s of carry in this
manner, thereis svere mispricing in the options market. With one exception (deep
in-the-money-calls), volatility is sverely underpriced. There is also some evidence
that put-cdl parity? may be systematically violated in the index options market, but
the evidenceis not conclusive.

The plan of the paper is as follows. Using closing Nifty futures and options prices
from June 2001to February 2002 we employ the Blad formulato cdculate the
implied volatility for each option on ead day. We then fit a volatility smile to these
implied volatilities ssparately for put and call options. Statistical tests firmly establish
that the smiles are sharply different for calsand puswhile put call parity requires
that the smiles be the same®. Finally, we use the Breeden-Litzenberger formulato
compute the implied probability distributions for the terminal stock index price from
these two smiles. The implied probability distribution is more highly peaked and has
(with one exception) thinner tails than the normal distribution or the historical
distribution. The market appeasto be underestimating the probabil ity of market
movements in either diredion. This isthe severe underpricing of volatility referred to
above. The exception isin the cae of degp-in-the-money-calls where a fat left tail
leadsto overpricing. The overpricing is not large in percentage terms becaise these
options have large intrinsic values anyway. We also show that the observed prices are
rather close to the average of the intrinsic value of the option and its Blad-Scholes
value (disregarding the smile).

2 Implied Volatilities

The Bladk formulafor cdl and pu options in terms of futures pricesis as follows:
c=e™ [F N(dl)_ X N(dz)] (1)

p:e_rt [X N(_ dz)_ F N(_ dl)] (2
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_In(F/ X)+0°t/2
- O'\/f (3)

d,

d,=d, o+t (4)

where c and p are the call and put prices, r istherisk free interest rate, t isthe time to
expiry, F isthe futures price for the same maturity, N denotes the cumulative normal
distribution function and o is the volatility of the futures price. These formulas may
be compared with the Black-Scholes formulas:

c= SN(d,)-Xe™ N(d,) (5)

p= Xe_rtN(_ dz)_SN(_ dl) (6)
_In(SIX)+rt+c%/2

dl_ O'\/f (7)

dzzdl—O'\/f (8)

It may be seen that the Black prices are exactly what one would obtain if we used the
Black Scholes formulawith the stock price S replaced by e ™ F . This equivalence is
useful if we want to get Black formula prices using a Black Scholes options

calculator.

It will be noted that the risk free rate has a very small impact on the option price in the
Black formula because it appears in a discounting factor that is applied after taking
the difference of the two terms inside the bracket. Even setting it to zero will make a
difference of less than 1% for most option prices. In the Black Scholes formula on the
other hand, the discounting factor is applied to one of the terms before the subtraction,
and the risk free rate makes a huge difference to option values. Put differently, in the
Black-Scholes formula, the risk free rate determines whether and how much the
option isin or out of money, but this does not happen in Black formula®.

Since the results are not sensitive to the risk free rate while using the Black formula,
we have used a constant risk free rate of 9% to compute option prices and implied
volatilities from the Black formula’.

" The results presented below were re-estimated using risk free rates of 0% and 100%.
Qualitatively, the results were quite similar.
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For about 6.5% of all calls and about 7.5% of all puts, the implied volatility was
undefined becaise the option traded below its intrinsic value. While afew such
instances are to be expected because of non synchronous trading® while using closing
prices, the large percentage of such instances isitself prima facie indicative of
mispricing of options. Analysis of the reasons for this is an areafor future reseach.
For the purposes of this paper, these options were dropped from the sample and the
analysis was conducted using only options for which the implied volatility could be
calculated.

3 Volatility Smiles

The volatility smile is the relationship between the implied volatility and the strike
price for the same maturity. There is thus a different smile for each maturity on eeach
day. In pradice however, it iscommon to estimate asingle smile by relating the

implied volatility to the “moneyness’ of the option: In(F / X) /\/f (Positive values of

the moneyness indicae that a cdl option isin-the-money and a put option is out of the
money.) Note aso that there is a negative relation between moneynessand strike price
for afixed futures price. For fixed maturity (and futures price), the moneyness is
essentially the negative of the logarithm of the strike price The fad that the futures
priceis also subsumed into the definition of the moneynessallows usto estimate a
single smile for the entire time period under study.

We begin by examining a scater diagram of the implied volatility against moneyness
(Figures 1 and 2).
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Figure 1: Call Implied Volatility
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Figure 2: Put Implied Volatility
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» ThesmilesareV shaped. Normally, the smile for equity optionsis more like a
sneg — adownward sloping curve when plotted against the strike price. Smilesin
currency options are often U shaped or saucer shaped. The shapes that we observe
have some similarity to that observed for currency options.

» The smiles are markedly different for puts and cdls. The V istilted towardsthe
left for cals and tilted towards the right for puts. As alrealy stated, put-cdl parity
requires the two smiles to be the same. Here it is visuall y evident (even without
the statistical tests presented later) that the smiles differ sharply.

Before procealing to statistical analysis of the smile, it is necessary to aacount for
time variation in the implied volatility. Not to do so could paentially vitiate the
results because of the well known “omitted variable bias’. To model the time
variation in implied volatility we use an estimate of historical volatility obtained from
the exponentially weighted moving average (EWMA) method which is widely used
for this purpose. The exponential weighting coefficient for the EWMA was estimated
by Nonlinear Least Squares (NLL S) to provide the best linear fit to the implied
volatility. This procedure results in the following regression equation :

V = 0.00654 + 0.51559H Re=0. 07
(15.96)  (18.17) F(2, 4168) =330. 2

where V isthe implied volatility" and H is the historical volatility from an EWMA
with the optimal exponential weighting coefficient of 0.83802 The regression is
highly significant* though the explanatory power is rather low.

The estimate from this regression is adually a GARCH estimate. To seethis, we
rewrite the intercept 0.00654as 0.0134(1-0.51559, and recl that H is aweighted
average of yesterday’ s volatility and today’s sjuared return with weights 0.83802and
(1-0.83802 respedively. We seethat the regression estimate is a weighted average
of:

" Thet statistics are in parentheses

" The volatilities, both historical and implied are expressed on a per day basis (they
have not been annualised).

* Unless otherwise stated, all significance tests in this paper are & the 0.1% level
(p=0.0021).
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» along run volatility (1.34%) with weight (1-0.515%)
* yesterday’ s volatility with weight 0.51559%0.83802and
» today’s gquared return with weight 0.5155% (1-0.83802).

Thisistherefore aGARCH model except that it is estimated by the best fit not to the
adual volatility but to the implied volatility.

We now proceed to model the volatility smile by regressing the implied volatility on
H, M™ and M~ where H is as above, and M* and M™ are defined as max(0,M) and

max(0,-M) respedively and M is the moneynessdefined above & In(F / X) /vt . We

estimate the regressions for cdl options, put options and both options together. The
estimates are & follows:

M M* H Intercept R-square F and df

Cal | 0. 306516 0.776702 0.206408 0.004394 0.71 1968
(27.89) (73.32) (8.47) (13.01) (4, 2421)

Put 0.602442 0.279282 0.222035 0.005246 0.78 2070
(68.51) (27.55) (11.15) (19.13) (4, 1741)

Both 0.622162 0.43102 0.179747 0.004494 0.62 2269
(68.78) (49.10) (9.14) (16.52) (4, 4166)

The eguations have high explanatory power and are highly significant. All the
coefficients and intercepts are dso highly significant. Call and pu options have
sharply different slopesfor M~ and M *. The F-test for equality of all coefficientsin
the two regressions (call and pu) is highly significant (F=425with (4, 4166 df). The
t-test shows that the differences in slopes for M~ and M * between the two regressions
are statistically highly significant (t gatistics of -21.02 and 3393 respedively). These
tests firmly establi sh the difference between the smiles for call and pu options. This
could also be regarded as evidence of violation of put-cdl parity, but we must be
careful in drawing such an inference®.

While the estimated smiles have high explanatory power and are highly significant,
some further refinements appea desirable. First, the VV-shape that we seein the scatter
diagram has arounded vertex while the linea regression produces a V-shape with a
sharp corner. As aresult, the smile is non-diff erentiable when the option is at the
money. In the subsequent analysis of the implied probability density, we need to
compute the seaond derivative of the option pricewith resped to the strike price, and
the non-diff erentiabil ity of the smile is a problem.

IIMA Working Paper 2002-04-01, April 2002 7



We resort to a hyperbola a a simple way to produce arounded vertex by adding only
one etra parameter. The ‘V’ fromthe linea regression isapair of lines y=—ax and
y=Dbxthat can be represented by the single equation (a degenerate hyperbola)
(y+ax)(y—bx)=0 wherey denotes the implied volatility and x denotesthe

moneyness M. If we ald a constant ¢ to the equation, (y+ax)(y—bx)=c?, weget a
hyperbola with a rounded vertex that beames increasingly flatter as c increases. The
ideaisthat the parameter c of the hyperbola @an be estimated by non-linear least
squares. Solving the quadratic equation of the hyperbolafor y gives the expresson

~ (a-b)xx+/(a+h)2x? +4c?
y:

2

the expresgon involving hstorical volatility d +aH .

to be estimated by NLLS. To this must be added

On further visual inspedion of the scéter diagram, we observe afaint traceof non-
lineaity in the ams of the V-shape. Thisis most evident in the right arm of the V-
shape for cdl options. This suggests adding some quadratic terms to the equation —
perhaps, the squares of M~ and M*. Having just used a hyperbolato get rid of M~ and
M*, we do not want to give up differentiability again by putting them bad in. Instead,
we ald ey” to the equation where e is another parameter to be estimated and y is the
solution of the quadratic equation for the hyperbola. This tedhnique also eanomises
on parameters sinceintroducing M 2 and M *? into the eguation would have alded two
parameters rather than the one that we have brought in.

Our eguation for the implied volatility is therefore:

V=d+aH +y+ey’

y_—(a—b)M +./(a+h)*M? +4c
2

involving six parameters—a, b, ¢, d, e and a to be estimated simultaneously by
NLLS'.

" It may be noted that when M is =t equal to zero, y = ¢ and the implied volatility
(viewed as aregression against H) has an “intercept” ¢ + d + ec?. Thus while the
estimated implied volatility subsumes a Garch model, the Garch parameters are not
now easy to identify.
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The linear regression estimated earlier is nested within this model (c=e=0) and the
hyperbola without a quadratic correction (e=0) is nested between the two. We can
therefore use aF test (or equivalently at test since there is only additional parameter
involved) to choose between these nested models. We thus get t tests for the
hypotheses c=0 and e=0.

The results are as follows;

Cal | Put Bot h
o 0. 25615 0.23982 0. 25453
a 0. 18652 0.64501 0. 24592
b 0. 41800 0.35948 0. 38430
c 0.00144 0.00496 0. 00282
d 0.00474 0.00162 0. 00327
e 26.84434 0.00000 26.84582
R- square 0.75397 0.78985 0.67824
t-stat for e = 0 14.76 0. 00 22.06
t-stat for ¢ =0 14. 27 8. 55 15. 34

It may be seen that the hyperbolic term c is highly significant in all cases and the
quadratic term e is highly significant for call options as well as for all options taken
together but not for put options. While one might have expected e to be negative, so
that the smile is moderated at high levels, the estimated e is positive so that the smile
is actually strengthened at high levels.

The estimated smiles are plotted in Figure 3.
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Figure 3: Estimated Smiles
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4  Goodness of Fit to Option Prices

While fitting a curve to implied volatilities is regarded as numerically superior to
fitting a curve to option prices (Jackwerth, 1999), we are ultimately interested in the
goodness of fit to option prices. We therefore use the fitted smiles to calculate option
prices from the Black formula and compare the results with the market prices. We
compare our results with three other pricing models:

* ano smileor flat smile model in which the same implied volatility is used for all
strikes on the same day

» aconstant volatility model in which asingle long run implied volatility is used for
the entire sample

* theintrinsic model that assigns the value max(0, F-X) to the call option and the
value max(0, X-F) to the put option.

The goodness of fit is measured by regressing the actual prices on the model prices
for each model separately. A good fit would be reflected in a zero intercept, unit slope
and high R%. The regression results are as follows:
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Fitted No Smle Constant Intrinsic

Smle Vol atility Val ue
I ntercept 0.26813 -2.57154 29.43855 10. 41490
(t stat) (2.57) (-13. 46) (39. 66) (65.96)
Sl ope 0. 99553 0.99479 -0.05063 0. 975287
(t stat) (412.72) (231.85) (-3.45) (232. 37)
R 0. 976 0.928 0. 003 0.928
F Statistic 170338 53756 11.93 53995
df =(1, 4168)
t-statistic for 1.85 1.21 71.68 5. 89
slope =1

The model based on the fitted smile does extremely well with an R? of 0.98. The
intercept is not significant a the 0.1% level used throughout this paper (it just misses
being significant at the 1% level). The slope is not significantly different from unity.
The flat smile model has alower R? than the fitted model. Moreover, it has an
intercept that is highly significant. The constant volatility model fares disastroudly.
Most surprisingly, the intrinsic value model does as well as the no smile model.

Asafurther test to establish the importance of the smile, we estimate the following
regression equation:

Pactual = 0.07488 + 0.04524Posnite + 0. 95259Ps . R?=0.976
(0. 66) (4. 26) (91. 88) F(2, 4167) =85528

where as the names suggest, Pauwa IS the actual price while Pgpije and Prosmile are the
prices from the fitted smile model and the no smile model respectively. It is seen that
the coefficient of Prosmile, though statistically significant is very small (less than 0.05)
while the coefficient of Psyie IS more than 20 times larger and close to unity. As
compared to the regression on Pgyije alone shown in the earlier table, the R? remains
the same up to the third decimal place (it increases by 0.0001).

Another interesting result that emerges is that both the actual prices and the fitted
smile prices are quite well approximated by an equally weighted average of the
intrinsic value and the no smile prices’. It isas if half the investors value the option at
intrinsic value and the other half use the simple Black formula (without a smile) and
the market price that results is the average of the two. The regression results are as
follows:

Pactuat = 2.95425 + 0. 50875Pgsnite + 0.51701P;ntrinsic R’=0. 967
(19.36)  (69.33) (69.07) F(2, 4167) =60274
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Pemite = 2.78941 + 0.51260P osmite + 0. 51543Pnirinsic R=0.986
(28. 27) (108.07) (106. 52) F(2, 4167)=60274

Though the fitted smile model is o well approximated by combining the no smile and
intrinsic models, it is gill true that it provides a better fit to the adual prices than the
combination. We regressadual prices on the threemodels — fitted smiles, no smile
and intrinsic:

Pactual = 0.60910 + 0. 08368Pnosniic + 0. 07780P nrinsic + 0. 84073Psie
(4. 35) (6. 90) (6. 48) (41. 79)
Re=0. 976. F(3, 4166)=57593

The oefficient of the fitted smile model is not much below unity and is about ten
times the mefficients of the other two models. The R? is gill unchanged upto the
third decimal placefrom aregression on the fitted smile price alone (it increases by
0.0003.

The goodnessof fit can also be measured in terms of the percentage asolute pricing
error:

lactual price—model pricd 100
actual price

However, in doing so it is necessary to ignore low price options as even small pricing
errorsresult in large percentage arors for such options. We therefore ignore options
whose priceis lessthan 1% of the futures price and compute the mean and median of
the percentage asolute pricing error for the remaining options for al models. For
comparison we also present the mean percent error obtained when the model priceis
replaced by the sample mean of adual prices:
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Per cent age absol ute

Model pricing error
Mean Medi an
Fitted smle 14. 83% 10. 27%
No smile 26. 04% 11. 96%
Constant Vol atility 76. 90% 54. 13%
Intrinsic value + 10 25. 84% 19. 90%
Sanpl e Mean Price 50. 81% 43. 80%

Again, the fitted model is far superior to the other models.
5 Implied Probability Density

Breeden and Litzenberger (1978) showed that a primitive security that has a unit
payoff when the asset price at time T lies between s and st+ds is given by

2
(;(;’T)E‘ where c(X,T) isthe price of a call option with strike price X maturing
at time T. Multiplying thisby e gives usthe risk neutral probability that the
. o ~BD(X,T)E
terminal asset price lies between s and s+ds. In other words, € X gives

us the risk neutral probability density of the terminal stock price. By put-call parity,
the Breeden-L itzenberger formula holds for put prices as well®,

We now derive the risk neutral probabilities implied by the smiles estimated above.
For various values of X, we compute the implied volatility using the smile, plug this
into the Black-Scholes formulato get the option price. We use numerical
differentiation to compute the second derivative of the option price. Since the stock
price is approximately lognormally distributed, we transform the computed density to
the implied density of the log stock price standardised to a zero mean and unit
variance. Thisis the same as computing the distribution of the logarithmic stock price

" The pureintrinsic model fares very badly asiit assigns zero valueto al out of the
money options. The reasonable R? of this model with actual prices is because the
regression equation includes an intercept of about 10.41. To give areasonable chance
to the intrinsic model, we simply add a constant 10 to the intrinsic model values. A
better solution might be to consider max(10, intrinsic_value).

IIMA Working Paper 2002-04-01, April 2002 13



return. Figure 4 plots the computed implied densities from call and pu options. For
comparison, it also plots the standard normal density as well asthe historical
probability density of the Nifty index computed in Varma(1999 using data for 1990
1998

Figure 4: Implied Probability Density of the Log Stock Return

10
0

0.9 g

— Put

— Normal
o= Call

—e— Historical

04—
0.3
02

0.1 4

; T T -6 T T ’
-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00
Standard Deviations

It is seen that the implied densities are much more highly pegked and (with one
exception discussd later below) have thinner tail s than the normal density and the
historical density. The high pe& and thin tail s imply an expectation that the stock
pricewould move within avery narrow range. Thisis inconsistent with historical
experience and any plausible forecast of the future.

The only exception isthe fat left tail for call options. This beas me superficial
similarity to the findings of Jadkwerth and Rubinstein (1996 who observed fat left
tails (10 and 100times fatter than the normal at three and four standard deviations
respedively) for index options in the United States after the aash of 1987. This
phenomenon of “crashophobia” as Rubinstein called it, made abig difference to the
valuation of out-of-the-money put options which should be worth very little under the
Black-Scholes model. However, the fat left tail that we seehere does not apply to put
options. The fat left tail isonly for call options, it affeds only deegp in the money calls,
and even here the percentage dfed onthe priceis not very large a these options
anyway have large intrinsic values. The fat tail here does not seem to have anything to
do with “crashophobia” sincewe do not see afail tail for put options.
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A more intelligible explanation of the peak and tails of the implied probability
densities is provided by the earlier finding that the market prices are approximately
equal to an average of the Black-Scholes prices (without any smile) and the intrinsic
value of the option®. Since the intrinsic value is based on the assumption of zero
volatility, it is clear that the implied distribution would have a large peak at zero (no
change in the index) and would have thin tails.

As for the deep-in-the-money calls, a plausible explanation would be that the market
is starting with the intrinsic value of the option and adding a small time value to this.
We saw earlier that adding a constant Rs 10 to the intrinsic value gives atolerably
good fit to actual prices. A better fit was got when we added atime value equal to half
of what it should be under Black-Scholes’. What appears to be happening is that for
deep-in-the-money calls where the Black-Scholes time value is negligible, the market
still adds a small time value and those overprices them. This turns up in the analysis
asthe fat left tail for the call option implied distribution. Why we do not see a
corresponding fat right tail for put options is a mystery.

6 Market Maturity and Learning

One might speculate that as the market becomes more mature and participants learn
more about various derivative products and their inter-relationships, price discovery
would improve and the observed mispricing would diminish. Some attempts were
made to divide the sample into subperiods and look for improvements in pricing
relationships. These attempts were not very successful.

There is evidence for a highly significant structural break after September 11, 2001.
Theterrorist atacks on the World Trade Centre in the United States on that day led to
a sharp spike both in historical (Garch) volatilities and in implied volatilities. An
intercept dummy for the post 9/11 period in the regressions for implied volatility has a
positive and highly significant coefficient. The natural interpretation of this result
would be that there was an upward shift in the long run volatility in the Garch model
after the 9/11 episode. One could with some ingenuity argue that what happened
instead was a reduction in the underpricing of volatility due to increased maturity and
learning. It is however difficult to see how such learning would happen overnight.
One would expect learning to more gradual and to take the form of a positive

" Averaging the intrinsic and the Black-Scholes prices is equivalent to adding half the
time value to the intrinsic value.
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coefficient when atime variable that is added to the implied volatility regression.
However, in the presence of the 9/11 dunmy, the time variable is not significant at
all.

All told, we would like to leave the leaning hypothesis as a matter for future
reseach. For thisreason, the results relating to the 9/11 dummy and the time variable
are not being reported here.

7 Conclusion

We have established severe mispricing in the Indian index options market even after
using futures pricesto eliminate the dfed of short sale restrictions in the cash market.
In particular, volatility is verely underpriced.

We have estimated volatility smiles sparately for put and call options and established
by statistical significanceteststhat the smiles are sharply different for cdlsand pus
while put cdl parity requires that the smiles be the same. The implied probability
distribution is more highly peaked and has (except for degp-in-the-money calls)
thinner tail s than the normal distribution or the historical distribution. The market thus
appeasto be underestimating the probabil ity of market movements in either

diredion. At the same time, we seesome overpricing of degp-in-the-money calls and
some inconclusive evidence of violation of put-call-parity. We also show that the
observed prices are rather close to the average of the intrinsic value of the option and
its Bladk-Scholes value (disregarding the smile).
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period anaysed in this study, bath the presence of arbitrageurswho are long in socks and the possble
circumvention of short salerestrictions suggest that the downtick rule had little dfed on the
mispricing. Thisresult may not however extend to ather periods. If short sale restrictions are binding,
therestrictions wil | affed the mispricing unlessinstitutions possess sifficient capital to fully exploit
negative mispricing arbitrage opportunities’. Jiang, Fung and Cheng (2001) review studies covering
Finland, Germany, United Kingdom and Hong Kong that show that short sale restrictions do have an
impact on the market. They also show that thelifting of short salerestrictionsin Hong Kong after 1994
enhanced the dynamic dficiency of the relationship between the cash and futures markets.

2 It may be noted that put-call parity does not require the ability to short the cash. The payoff on expiry
of a call option with exercise price X and maturity T is max(0, Sy —X) where Sy istheterminal stock
price The payoff of a put option ismax(0, X—S;). We have the relationship

max(0, St —=X) = (Sr—X) + max(0— (S —X), X-§ — (5 X))
= (Sr—X) + max( X-5;,0)
= (Sr =X) + max(0, X-S).
This establi shes the put-cdl parity:
c(X,T) =f(X,T) + p(X,T)
where  ¢(X,T) isacdl option with exercise price X and maturity T
p(X,T) isaput option with exercise price X and maturity T
f(X,T) isa seaurity that has payoff (Sy —X) at maturity T

The seaurity f(X,T) isusualy thought of as along position isthe stock financed partly by borrowing an
amount X €"T whose repayment (principal plusinterest) at time T equals X. However, the same payoff
can be achieved through a position in futuresinstead d the underlying. Therefore, where the put-cdl
arbitragerequires shorting f(X,T), it is sufficient to be able to sall futures. Short sale restrictions on the
cash market are quiteirrelevant.
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3 Let pes(X,T,0) and cas(X,T,0) represent the Black-Scholes put and call prices based on avolatility o.
These prices obey put-call parity:

Cas (X,T,0) = f(X,T) + pes (X,T,0)

As shown in above note 2 above, the put-call parity for actual market pricesis:
c(X,T) = f(X,T) + p(X,T)

Let oy betheimplied volatility at which the Black Scholes formulayields the market price of the call.
Putting o = oy makes the | eft hand sides of the above two equations equal. Therefore the right hand
sides of the above equations must also be equal. Thismeansthat pgs (X, T, ax) = p(X,T) so that o is
also theimplied volatility of the put. Sincethisistrue for each grike price X, the smiles computed from
put and call prices must be the same whenever put-call parity holds for these prices.

4 Often, an option is said to be in or out of the money according as the strike is below or above the
current stock price, and if the option isin the money, the difference between the stock price and the
strike is often said to be theintrinsic value of the money. Thisisnot quite correct. If we let the
volatility go to zeroin Eq (1) - (8) above, we get theintrinsic value of acall ase’” max(0,F-X) or
max(0,S- ' X). Thus the moneyness of the option and itsintrinsic value are related to F-X and not
SX. (inthe case of a put option, theintrinsic valueisrelated to X-F. Thisis the viewpoint adopted in
this paper.

® Trading in options was rather thin throughout this period particularly when we recognise that the
modest daily trading volume is distributed over put and call options of several different strikesand
maturities. This means that the closing price of many options came from trades done several hours
before close. Futures prices might also be stale, but perhaps | ess so. Though futures trading volumes
were also quite modest, futures were traded more heavily than options, and the trading volume was
distributed over only three maturities. In many cases, therefore, the closing option price and futures
price were not prices that prevailed simultaneoudly. If there are substantia intra-day price movements,
an option that was above intrinsic value when it was traded early in the day might appear to be bel ow
intrinsic value when the futures closed at a different price later in the day.

® To establish violation of put-call parity, it isnot sufficient to establish that a fitted model violates put-
call parity. It is necessary to show theviolation in actud prices. The difference between the two smiles
does prove that any valuation model that uses the Black-Scholes model with a volatility smile would
violate put-call parity. But it is possible that there are other non Black-Scholes model s that provide
reasonably good fitsto actual prices. We present such amodd later in this paper and discussits
implications for put-call parity in note 7. One may be tempted to test for put-call parity violation in the
actua prices directly by looking at the prices of put and call options with the same grike price. This
testing is problematic because of the phenomenon of asynchronous trading described in note 3. Put call
parity is even more severely affected by asynchronous trading as the parity holds only when the prices
of put, call and future are all as at the sameinstant of time. Any slight non simultaneity in the prices of
puts, calls and futures would cause a violation of the put-call parity. The mean absolute violation of
put-call parity (in the sample of over 1600 observations where puts and calls of the same strike price
and maturity were traded on the same day) is about Rs 2.5 representing nearly 10% of the mean put
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price. A put-call parity violation of at least Rs 5 isfound in about 14% of the cases. These violations
areindeed quitelarge but it isdifficult to determine how much of these are apparent viol ations due to
asynchronous trading and how much isreal. A definitive answer on put cal parity would perhaps
require intra-day prices.

" This model hasimplications for put-call parity issue discussed in note 6 above. The point isthat both
the no smile model and theintrinsic value moddl separately satisfy put-call parity. (In fact, theintrinsgc
value modd is a Black-Scholes model with zero volatility.) As such an average of the two would also
satisfy the parity condition. Of course, it is true that this average still has alower R? with actual prices
than thefitted smile model. But the point is that it might be possible to find another model with a better
fit.

8 put call parity states that ¢ = p + f where ¢ and p arethe call and put prices respectively while f isthe
price of a position involving the stock or the futures along with some borrowing. Thisimplies that

d°c _d°p  9°f _0o°
> = FZ) + > = FZ) since the stock price or futures price isindependent of the exercise price.
0X*° 0X° o0X° oX

° Thisis abit facetious. In redlity, it was an examination of the implied probability distribution that led
the author to consider theidea of using intrinsic value in conjuction with a Black-Scholes modd to
approximate option prices.
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