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Preface

This book fulfills a twofold purpose: to provide a pedagogic panorama of the
current microscopic understanding of the basic physics of matter, and to help
students acquire a quantitative feeling of the typical orders of magnitude of the
main physical quantities (energy, time, temperature, length) involved in the specific
conditions relevant for “matter” in its atomic, molecular, and condensed forms.
Both tasks are favored by keeping structurally and conceptually well distinct the
analysis of the adiabatically separate motions of electrons and of atoms. This dis-
tinct treatment is organized in close parallel for molecules and for solids.

While keeping different degrees of freedom well distinct, formal likeness is
noted whenever useful, following the standard strategy of similar solutions for
similar equations. Noteworthy examples of this approach include the spherically
symmetric motion of electrons in atoms and of nuclei in diatomic molecules, as well
as applications of the Fermi-gas model to electrons in metals and to fluid 3He.

Several detailed derivations are included, when pedagogically useful to under-
stand the physical reasons of some results. Most of these derivations deserve being
understood and then quickly forgotten. In contrast, a number of mathematical
relations summarize essential physical information and results, and are therefore
well worth retaining. As a guide for the reader, a gray background highlights these
essential equations.

Numbers and orders of magnitude are important. At least as much as mathe-
matical derivations, probably more. A broad selection of numerical problems
invites the reader to familiarize herself with the conceptually simple but often
practically intricate numerical evaluations and unit conversions required to reach
quantitatively correct estimates in real life or laboratory conditions.

At variance with many textbooks in this field, the present one adopts SI units
throughout. This choice does not only follow international recommendation, but also
helps comparing all the results with the output of instruments. The one indulgence to
non-SI units is a frequent quotation of energies in eV, which represent a practical unit
for most atomic-scale phenomena, and converts easily to Joule.

As a basic textbook, this one focuses on what is currently well under control:
a selection of well-understood systems, phenomena, experimental techniques, and
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conceptual schemes. From this panorama, the reader should be warned against
gathering the false impression that the last word has been said about the physics of
matter. On the contrary, physicists, chemists, and biologists currently investigate
matter in its multifaceted forms, and collect a wealth of experimental data, for
which understanding is often only qualitative and partial. Creativity and insight
help scientists to develop novel approximate schemes (models) to interpret these
data and proceed toward a better understanding of the intimate structure and
dynamics of matter.

Not everything is equally important. A reader wishing to focus on a bare min-
imum contents, while still grasping the essentials of the physics of matter is sug-
gested to skip the following nonessential topics:

• the spectral-broadening mechanisms—Sect. 1.2,
• the hyperfine structure of H—Sect. 2.1.8,
• perturbation theory applied to the 2-electron atom—Sect. 2.2.3,
• the details of the variational calculation of Sect. 3.2.1,
• the electronic molecular transitions discussed in Sect. 3.3,
• the density operator formalism—Sect. 4.1.2,
• the foundation of the canonical ensemble—Sect. 4.2 before Eq. (4.10),
• the connection of entropy and statistics—Sect. 4.2.2,
• the laser—Sect. 4.4.1,
• the tight-binding and plane waves models for the electron bands of crystals—
Sect. 5.2.1,

• the extrinsic semiconductors and their technological applications, from page 214
to the end of Sect. 5.2.2.

On the other hand, a reader who aims at a broader view of the field than is
provided by the topics selection covered by the present textbook can follow the
extended introductory treatments, e.g., in Refs. [1–4]. Specialized texts focus on
advanced approaches closer to the frontiers of research, covering both the theo-
retical and the experimental side. The reader is invited to browse in particular
Refs. [5–7] for atomic physics, Refs. [6–9] for molecules, and Refs. [10–12] for
solid-state physics. Finally, this textbook focuses on the present-day understanding
of the physics of matter, omitting most of the fundamental experiments and con-
ceptual steps through which the scientists reached this understanding. Reference
[13] provides an insider’s view into the historical evolution of the basic concepts in
this field.

The present volume draws its initial inspiration from Luciano Reatto’s course
delivered in the 1990s at the University of Milano. In the past, the bulk of this
volume was made available as lecture notes, first released on January 15, 2004.
Precious feedback and suggestions from colleague Giovanni Onida and from many
students in the Milan Physics Diploma course prompted numberless corrections,
refinements, and clarifications through over one decade. Compared to the previous
lecture notes, the present Springer edition benefits also from (i) the addition of an
Appendix summarizing the minimal quantum mechanics needed to understand the
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physics of matter, (ii) the addition of selected problems, and (iii) a thorough
revision of the text and figures. The problems included in this book, plus many
more, are available at the website http://materia.fisica.unimi.it/manini/dida/archive_
exam.html.

The author acknowledges the warm feedback and interest from students of
physics at the University of Milano: this book was originally written for them. Last
but not least, the patient care and love by the author's family was a primary
ingredient in nurturing the present textbook.

Milano, November 2014 Nicola Manini
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Chapter 1
Introductory Concepts

1.1 Basic Ingredients

A substantial body of experimental evidence accumulated mainly through the late
19th and early 20th century eventually convinced the community of physicists and
chemists that any piece ofmatter (e.g. pure helium gas in a vessel, a block of solid ice,
a metallic screw, a mobile phone, a block of wood, a bee…) is ultimately composed
of a (often huge) number of electrons and atomic nuclei.

An electron is a bona-fide elementary point-like particle characterized by a
mass = me � 0.911 × 10−30 kg, and a negative charge = −qe, where the ele-
mentary charge qe � 1.60 × 10−19 C.

Nuclei comewith a complicated inner structure, involving length scales�10−15 m
andexcitation energies�10−13 J. These nuclear properties are largely irrelevant to the
“ordinary” properties of matter: to most practical purposes one can describe matter
by modeling nuclei as approximately structureless point-like particles. A nucleus
containing Z protons and A nucleons (protons and neutrons alike), has positive
charge = Zqe and mass M � A a.m.u. = A × 1.66 × 10−27 kg � me.

If we neglect relativistic effects and the interaction of a piece of matter with its
surroundings, then all internal microscopic interactions among its components are of
simple electromagnetic nature. The non-relativistic motion of nuclei and electrons
in the sample is governed by the following (Hamiltonian) energy operator:

Htot = Tn + Te + Vne + Vnn + Vee (1.1)

where:

Tn = 1

2

∑

α

P2
Rα

Mα

(1.2)

© Springer International Publishing Switzerland 2014
N. Manini, Introduction to the Physics of Matter,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-14382-8_1
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2 1 Introductory Concepts

is the kinetic energyof the nuclei (PRα is the conjugatemomentum to the position Rα),

Te = 1

2me

∑

i

Pri
2 (1.3)

is the kinetic energy of the electrons (Pri is the conjugate momentum to ri ),

Vne = − q2
e

4πε0

∑

α

∑

i

Zα

|Rα − ri | (1.4)

is the potential energy describing the attraction between nuclei and electrons,

Vnn = q2
e

4πε0

1

2

∑

α

∑

β �=α

Zα Zβ

|Rα − Rβ | (1.5)

describes the nucleus–nucleus repulsion, and finally

Vee = q2
e

4πε0

1

2

∑

i

∑

j �=i

1

|ri − r j | (1.6)

represents the electron–electron repulsion. Basically, the distinction between a steel
key and a bottle of beer is the result of their different “ingredients”, i.e. the number of
electrons and the number and types of nuclei (charge numbers Zα and masses Mα)
involved.

A state ket |ξ 〉 containing all quantum-mechanical information describing the
motion of all nuclei and electrons evolves according to Schrödinger’s equation

i�
d

dt
|ξ(t)〉 = Htot|ξ(t)〉. (1.7)

This equation, based on Hamiltonian (1.1), is apparently simple and universal. This
simplicity and universality indicates that in principle it is possible to understand the
observable behavior of any isolated macroscopic object in terms of its microscopic
interactions. In practice, however, exact solutions of Eq. (1.7) are available for few
simple and idealized cases only. If one attempts an approximate numerical solution of
Eq. (1.7), (s)he soon faces the problem that the information contents of a N -particles
ket increases exponentially with N , and soon exceeds the capacity of any computer.
To describe even a relatively basicmaterial such as a pure rarefiedmolecular gas, or an
elemental solid, nontrivial approximations to the solution of Eq. (1.7) are called for.

The application of smart approximations to Eq. (1.7) to understand observed
properties and to predict new properties of material systems is a refined art. These
approximations often represent important conceptual tools linking the macroscopic
properties of matter to the underlyingmicroscopic interactions. The present textbook
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proposes a panoramic view of several observed phenomena in the physics of mat-
ter, introducing a few standard conceptual tools for their understanding. The pro-
posed schemes of approximation represent a pedagogical selection of rather primitive
idealizations: the bibliography at the end suggests directions to expand the reader’s
conceptual toolbox to approach today’s state of the art in research. We should be
aware of the limitations of state-of-the-art tools: even smart and experienced physi-
cists of matter risk to deliver inaccurate predictions of a basic property such as the
electrical conductivity of a pure material of known composition and structure, before
actually measuring that property. For more complex systems (e.g. biological mat-
ter), quantitative and often even qualitative predictions based on Eq. (1.7) outrun the
capability of today’s modeling capability and computing power.

1.1.1 Typical Scales

The motions described by Hamiltonian Htot involve several characteristic dimen-
sional scales, dictated by the physical constants [14] in Htot, where the absence of
the speed of light c is noteworthy. Firstly, observe that in Htot the elementary charge
qe and electromagnetic constant ε0 always appear in the fixed combination

e2 ≡ q2
e

4πε0
= 2.3071 × 10−28 J m,

of dimensions energy× length. A unique combination of e2, Planck’s constant �, and
electron mass me yields the characteristic length

a0 = �
2

mee2
= 0.529177 × 10−10 m (1.8)

named Bohr radius, which sets the typical length scale of electronic motions. Most
microscopic structures and patterns of matter arise naturally with spacings of the
order of a0. For example, atomic positions can be probed by means of scanning
microscopes. These instruments slide a very sharp tip over a solid surface: the atomic
force microscope (AFM) maps the forces that the surface atoms exert as they come
into contact with the tip; the scanning tunneling microscope (STM) maps an elec-
tronic tunneling current between the tip and the surface as they are kept a fraction
of nm apart. This (and other) class of experiments provide consistent evidence, e.g.
Fig. 1.1, that indeed in materials atoms are typically spaced by a fraction of nm,
namely approximately 2 ÷ 10 times a0.

The interaction energy of two elementary point charges at the typical distance a0

EHa = e2

a0
= mee4

�2
= 4.35975 × 10−18 J = 27.2114 eV, (1.9)
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Fig. 1.1 a The AFM (A) and STM (B, C) topography images of a clean silicon (111) surface. The
STM map visualizes empty (B) and filled (C) electronic states. Reprinted figure with permission
from R. Erlandsson, L. Olsson, and P. Mårtensson, Phys. Rev. B 54, R8309 (1996). Copyright
(1996) by the American Physical Society. b The AFM topography of a clean copper (100) surface.
Reprinted figure with permission from Ch. Loppacher, M. Bammerlin, M. Guggisberg, S. Schär, R.
Bennewitz, A. Baratoff, E. Meyer, and H.-J. Güntherodt, Phys. Rev. B 62, 16944 (2000). Copyright
(2000) by the American Physical Society

named Hartree energy, sets a natural energy scale for phenomena involving one
electron in ordinary matter. In practice, the eV (�0.037 EHa) is a more com-
monly used energy unit. The nuclear charge factors Zα � 102 can scale the e2

electron–nucleus coupling constant up by�102, the electron–nucleus distance down
by �10−2, and therefore increase the binding energies of electrons by up to 4 orders
of magnitude (104 EHa � 300keV). On the other hand, delicate balances may occa-
sionally yield electronic excitation energies as small as 1meV. The motions of the
nuclei are usually associated to smaller energies (∼10−4 ÷ 10−3 EHa) and veloci-
ties than electronic motions, because of the at least 1,836 times larger mass at the
denominator of the kinetic term of Eq. (1.2).

The typical timescale of electronic motions is inversely proportional to its energy
scale:

t0 = �

EHa
= �

3

mee4
= 2.41888 × 10−17 s. (1.10)

Oscillations of period 2π t0 have a frequency ν0 = ω0/(2π) = EHa/(2π�) =
6.5797 × 1015 Hz.

The typical electron velocity is then set by the ratio

v0 = a0
t0

=
√

EHa

me
= e2

�
= 2.18769 × 106 m/s, (1.11)

http://link.aps.org/abstract/PRB/v54/pR8309
http://link.aps.org/abstract/PRB/v54/pR8309
http://link.aps.org/abstract/PRB/v62/p16944
http://link.aps.org/abstract/PRB/v62/p16944
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about 1% of the speed of light, which justifies a posteriori the initial neglect of
relativity. Specifically, the ratio

α = v0
c

=
√

EHa

mec2
= e2

�c
= 7.29735 × 10−3 = 1

137.036
, (1.12)

called fine-structure constant, measures the relative importance of the relativistic
corrections to the nonrelativistic motion of the electrons. Heavier nuclei usually
move far more slowly than electrons, thus relativistic corrections to their motion are
usually negligible.

Figure1.2 compares the typical length and frequency scales of electrons in matter
to the wavelengths and frequencies of the electromagnetic waves, used to investigate
matter itself as sketched mainly in Sects. 1.2, 4.4, 5.1.3, and 5.2.3. The radiation
wavelength matches the typical interatomic distances (∼10−10 m) in the X-rays
region. On the other hand, radiation frequencies (and thus radiation energy quanta,
or photons, see Sect. 4.3.2.2) match the typical atomic frequency scale ν0 (and thus
energy scale EHa) in the ultraviolet (UV) region: in this spectral region, the typi-
cal electromagnetic wavelength is a fraction of µm, i.e. three orders of magnitude
larger than the typical atomic size ∼a0. Typical frequencies (∼5THz) and energies
(∼10meV) associated to the motion of the nuclei in matter belong to the infrared
(IR) region of the electromagnetic spectrum.

1.1.2 Structure of Matter: A Panoramic View

In ordinary matter, electrons, driven by the attraction, Eq. (1.4), tend to lump around
the strongest positive charges around, namely the nuclei. Despite the diverging attrac-
tion, due to the kinetic energy of Eq. (1.3) and Heisenberg’s uncertainty relation (see
Sect.B.2.1), electrons fail to collapse inside the nuclei, and rather form atoms of
finite size ≈ a0, as discussed in Chap.2. Atoms then act as the building blocks of
matter, in its gaseous and condensed phases. Many observed macroscopic properties
of extended matter such as elasticity, heat transport, heat capacity can be described
in terms of the motion of atoms or aggregations of atoms. Ultimately, the interac-
tion among atoms, governing these motions, is driven by the quantum dynamics of
charged electrons and nuclei described by Eqs. (1.1) and (1.7), usually described
within the adiabatic separation scheme (Sect. 3.1). Understanding the dynamics of a
finite number of electrons in the field of two or several nuclei, and the motion of these
nuclei themselves (Chap.3) provides the basics of interatomic bonding, the mecha-
nism granting the very existence of molecules and of condensed states of matter. The
methods and approximations developed for few-atom systems and for large statisti-
cal ensembles (Chap. 4) lead eventually to new concepts and phenomena associated
to the macroscopic size of extended objects (Chap.5).

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_5
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Fig. 1.2 The spectrum of electromagnetic radiation, characterized by frequency ν, photon energy
E = �ω = 2π�ν, and wavelength λ = c/ν. Note the colors of visible light and the characteristic
atomic quantities a0, Eq. (1.8), and EHa, Eq. (1.9)

1.2 Spectra and Broadening

Starting from the late 19th century, physicists have developed and employed all
sorts of techniques to investigate the intimate excitations of matter. A rich body of
evidence has been collected through two broad classes of spectroscopies: absorption
and emission.

• Absorption: a collimated beam of monochromatic light (not necessarily visible)
crosses the sample; if the light frequency matches a characteristic sample tran-
sition, the photons are absorbed. The energy removed from the original beam
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I

MONOCHROMATIC

DETECTOR

ω

ω

PHOTON

ω
SAMPLE

Fig. 1.3 A conceptual scheme of the setup for absorption spectroscopy

Fig. 1.4 A conceptual
scheme of the setup for
emission spectroscopy

I
DETECTOR

PHOTONMONOCHROMATOR

ω

ω

ωSAMPLE

is transformed, e.g. re-emitted in random directions (mostly different from the
original one): the intensity loss of the beam as it crosses the sample is recorded as
a function of light frequency (or equivalently wavelength), as sketched in Fig. 1.3.1

• Emission: the sample is brought to excited state(s), e.g. by means of a flame or by
bombarding it with high-energy electrons. The light that the sample subsequently
emits in the deexcitation transitions is collected, and its intensity is recorded as a
function of frequency (Fig. 1.4).

Scientists record routinely spectra of both kinds in the IR, visible, UV and X-ray
ranges, to probe the properties of gaseous (both atomic and molecular), liquid, and
solid samples. Even the color analysis that the human eyes carry out for the light
diffused by an object illuminated by white light can be qualified as a rough emission-
spectroscopy experiment.

1 The transmitted intensity I (ω) can be converted into an absorption coefficient α(ω) by inverting
theBeer-Lambert attenuation law I/I0 = exp(−α l N/V ). Here I0 is the original radiation intensity,
l is the probed sample thickness, and N/V is the number density of absorbing atoms/molecules.
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Fig. 1.5 Broadening limits
the detail observable in a
spectrum: when the line
width exceeds the separation
between two lines (dotted
curve), they look like a
single bump, to the extent
that the “fine” detail of the
two near lines is lost

ω

width=0.02
width=0.05
width=0.08

Atomic and molecular spectra are often characterized by sharp monochromatic
peaks (also called “lines”) associated to transitions between quantum states |i〉 and
| f 〉, characterized by discrete energy levels Ei and E f . The angular frequency of
one such sharp peak is ωi f = |Ei − E f |/�.

In practice, no absorption/emission peak is ever infinitely sharp. Broadening limits
the spectral details which can be resolved, see Fig. 1.5. At least 3 simultaneous effects
combine to broaden each spectral line: (i) the finite experimental resolution of the
spectrometer, (ii) a “natural” broadening due to finite lifetime, (iii) the Doppler
broadening.

Experimental resolution is typically limited by the monochromator resolving
power, noise in the photon detector and electronics, inhomogeneities of the sample
or of some external field applied to it. Resolution broadening is usually generated by
several random concurrent effects, and determines therefore a Gaussian line shape. It
has no fundamental nature, thus it can be (and often is) reduced bymeans of technical
improvements.

Elementary Schrödinger theory predicts all atomic eigenstates to be stationary
states, because this theory neglects the interaction of matter with the always present
fluctuating radiation field. In reality, the ground state is the one really stationary state,
while all excited states decay spontaneously to lower-energy eigenstates, due to that
interaction. An individual excited atom decays at an unpredictable random future
time. However a large number N0 of initially excited atoms decays predictably: after
a time t , an average number of atoms

[N ](t) = N0 e−tγ = N0 e−t/τ , (1.13)

have not yet decayed; this decay law defines the single-atom lifetime τ and decay
rate γ = 1/τ of that atomic level. This decay rate γ is constant in time (an atom
becomes nomore or less likely to decay at the next instant because it has already spent
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some time in the excited level) and defines a uniform random decay.2 In practice,
very few atoms last in an excited state longer than a few times its characteristic τ .
Accordingly, τ sets the typical duration of any spectroscopy experiment involving
that excited state. Due to the time-energy uncertainty, the energy of an atomic level
cannot be measured with better precision than

ΔE � �

τ
= � γ. (1.14)

The effect of the finite lifetime of atomic levels on the spectral lines is therefore a
broadening of the otherwise infinitely sharp line. This “natural” broadening due to
lifetime appears in the spectrum as a Lorentzian peak profile

I (ω) = I0
γ 2

(ω − ωi f )2 + γ 2 , (1.15)

around the original line position ωi f . Atomic excited states are characterized by
typical lifetimes of several ns, thus by natural spectral broadening �γ of a fraction
of µeV.

The random thermal motion in a gas-phase sample introduces an extra source of
line broadening: the Doppler effect. When viewed from the lab frame, the intrinsic
transition frequencies of atoms/molecules moving toward or away from the detector
at a velocity vx are blue or red shifted relative to those at rest. Since the thermal
(molecular center-mass) velocities are non-relativistic, the Doppler frequency shift
is given by the simple form

ω = ωi f

(
1 ± vx

c

)
ωi f = angular frequency at rest. (1.16)

Themolecular velocities are randomdistributed [seeEq. (4.50) inSect. 4.3.1] depend-
ing on the gas temperature T : the average number of molecules with velocity com-
ponent vx in the direction of detection is

dn(vx )

dvx
= N

√
M

2πkBT
exp

(
− M v2x
2kBT

)
, (1.17)

2 The total decay rate γ is the sum of the rates of decay to all lower-lying states. For example, as
described in Sect. 2.1.9, the 3p state of H decays at a rate γ3p→1s = 1.67 × 108 s−1 to the ground
state, and at a rate γ3p→2s = 2.25×107 s−1 to the 2s state (decay to state 2p is dipole-forbidden, thus
occurs at a negligible rate). Therefore the 3p state empties at a total rate γ3p = γ3p→1s + γ3p→2s =
1.90 × 108 s−1.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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where M is the molecular mass. Radiation intensity then spreads around the rest
frequency ωi f as

I (ω) = I0 exp

[
− Mc2

2kBT

(
ω − ωi f

ωi f

)2
]

. (1.18)

This represents a Gaussian broadening of full width at half-maximum

ΔωDoppler = ωi f

√
8 ln(2)

kBT

Mc2
. (1.19)

As λ = 2πc/ω, the relative broadening in terms of wavelength is the same as for
frequency:

ΔλDoppler

λi f
=

√
8 ln(2)

kBT

Mc2
. (1.20)

Due to the M−1/2 dependence of the broadening width in Eqs. (1.19) and (1.20), for
a given temperature lighter atoms/molecules move faster and are then more severely
affected by Doppler broadening. The spectrum of atomic hydrogen is especially
Doppler-broadened. For example, the Hα line, introduced below, of 300K gas-phase
H suffers of ΔλDoppler/λi f � 3 × 10−6 (an absolute width �ΔωDoppler � 10µeV)
broadening.

According to the laws of statistics, the individual sources of broadening combine
into a total broadening Δωtot = [

(Δωexp)
2 + γ 2 + (ΔωDoppler)

2
]1/2

.



Chapter 2
Atoms

The importance of the spectroscopy of atoms and ions for the understanding of
the whole physics of matter cannot be overestimated. The study of atoms starts off
naturally from the exact dynamics of a single electron in the central field of one
positively charged nucleus (Sect. 2.1) because, beside the intrinsic interest of this
system, the notation and concepts developed here are at the basis of the language of
all atomic physics. This language is then used to introduce (Sect. 2.2) the spectroscopy
of many-electron atoms, clusters of 2 to about 102 electrons repelling each other, but
trapped together in the attractive central field of a single nucleus.

2.1 One-Electron Atom/Ions

The one-electron atom is one of the few quantum problems whose Schrödinger equa-
tion (1.7) is solved exactly. Here, comparison of theory and experiment allows physi-
cists to evaluate the limits of validity and predictive power of the quantum mechanical
model Eqs. (1.1)–(1.6). When relativistic effects are included (Sect. 2.1.7), this model
is found in almost perfect agreement with extremely accurate experimental data, all
the tiny discrepancies being satisfactorily accounted for by a perturbative treatment
of residual interactions (Sect. 2.1.8).

The solution of the Schrödinger equation (1.7), or rather its time-independent
counterpart (B.30), for the one-electron atom is a basic exercise in quantum mechan-
ics (QM). Both the Vee and Vnn terms in Eq. (1.1) vanish, and only the nuclear and
electronic kinetic energies plus the Coulomb attraction Vne are relevant. Many text-
books [5, 15, 16] provide detailed solutions of the one-electron atom problem. Here
we recall the general strategy and main results.

• Separation of the center-of-mass motion. In analogy to the solution of the
classical Kepler-Newton two-body “planetary” problem, the position operator of
the nucleus R, of mass M , and that of the electron re are replaced by the combi-
nations

Rcm = MR + mere

M + me
and r = re − R . (2.1)

© Springer International Publishing Switzerland 2014
N. Manini, Introduction to the Physics of Matter,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-14382-8_2
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http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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In these new coordinates, the Hamiltonian separates into a purely kinetic term for
the free translational motion of the atomic center of mass Rcm

Hcm = − �
2

2(M + me)
∇2

Rcm
, (2.2)

plus a Coulombic Hamiltonian for the relative coordinate r

HCoul = − �
2

2µ
∇2

r − Ze2

|r| , (2.3)

where
µ = Mme

M + me
(2.4)

is the reduced mass of this 2-particle system. The free global Rcm translational
motion is described trivially in terms of plane waves. The internal atomic dynamics
is that of a single particle of mass µ in the same Coulombic central field as the
original nucleus-electron attraction.

• Separation in spherical coordinates. To exploit the spherical symmetry of the
potential, the Schrödinger equation is conveniently rewritten in polar coordinates
r, θ, ϕ. By factorizing the total wavefunction ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ), the
variables separate, and the original three-dimensional (3D) equation splits into
three independent second-order equations for the r , θ , and ϕ motions:

− d2Φ

dϕ2 = η Φ, (2.5)

− 1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ η

sin2 θ
Θ = λ Θ, (2.6)

− �
2

2µ

1

r2

d

dr

(
r2 d R

dr

)
+

[
U (r) + �

2

2µ

λ

r2

]
R = ER. (2.7)

Here we put a general function U (r) in place of the potential energy −Ze2/r , to
emphasize that this same technique can be applied to any central potential (e.g. in
Sect. 3.3).

• Solution of the separate eigenvalue problems: the differential equations are solved
under the appropriate boundary conditions for R(r), Θ(θ) and Φ(ϕ). The eigen-
values η, λ, and E can assume only certain values, compatible with the boundary
conditions1:

η = ηml = m2
l , ml = 0, ±1, ±2, . . . (2.8)

λ = λl = l(l + 1), l = |ml |, |ml | + 1, |ml | + 2, . . . (2.9)

1 The “quantization” of the angular motion originates from the boundary conditions Φ(ϕ + 2π) =
Φ(ϕ), and finite Θ(0) and Θ(π) for the solutions of Eqs. (2.5) and (2.6): these conditions are
granted only for integer values of the quantum numbers ml and l ≥ |ml | [16]. Likewise, the discrete
energies originate from the requirement of a regular behavior of R(0) and R(∞) solving Eq. (2.7).

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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E = En = −µZ2e4

2�2n2 = − µ

me

EHa

2

Z2

n2 , n = l + 1, l + 2, l + 3, . . . (2.10)

The integer numbers ml (magnetic quantum number), l (azimuthal q.n.), and n
(principal q.n.) parameterize the eigenvalues and the corresponding eigenfunctions:

Φml (ϕ) = 1√
2π

eimlϕ (2.11)

Θlml (θ) = (−1)
|ml |+ml

2

√
2l + 1

2

(l − |ml |)!
(l + |ml |)! P |ml |

l (cos θ) (2.12)

Rn l(r) = k3/2

√
(n − l − 1)!
2n[(n + l)!]3 (kr)l L2l+1

n+l (kr) e−kr/2, (2.13)

where k is a shorthand for 2Z/(an), a is a mass-corrected Bohr atomic length
unit a = a0 me/µ = �

2/(µe2). For nonnegative integers l and m, the associated
Legendre functions Pm

l (x) are defined by

Pm
l (x) = (1 − x2)m/2 dm

dxm
Pl(x), Pl(x) = 1

2l l!
dl

dxl
(x2 − 1)l . (2.14)

The associated Laguerre polynomials Lq
p(ρ) are polynomials of degree p −q,

defined by

Lq
p(ρ) = dq

dρq
L p(ρ), L p(ρ) = eρ d p

dρ p
(ρ pe−ρ). (2.15)

Since each individual wavefunction of Eqs. (2.11)–(2.13) is properly normalized
by its own square-root factor, so is the total atomic wavefunction

ψnlml (r, θ, ϕ) = Rn l(r)Θlml (θ)Φml (ϕ) (2.16)

representing the atomic state |n, l, ml〉. Explicitly, the orthonormality relation
reads:

〈n, l, ml |n′, l ′, m′
l〉 =

∫
r2dr sin θdθ dϕ ψ∗

nlml
(r, θ, ϕ)ψn′l ′m′

l
(r, θ, ϕ)

= δnn′ δll ′ δml m′
l
. (2.17)

In addition to all these bound states, a continuum of unbound states of arbitrary
positive energy represents the ionic states, where the electron moves far away from
the nucleus.
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2.1.1 The Energy Spectrum

The energy eigenvalues (2.10) of the nonrelativistic one-electron atom depend on the
principal quantum number n only, and exhibit the characteristic structure sketched in
Fig. 2.1. In particular, the lowest-energy state is |n, l, ml〉 = |1, 0, 0〉. For hydrogen
(Z = 1), its energy E1 = −0.5 EHa µ/me = −13.5983 eV. Due to the reduced-mass
correction µ/me = 0.999456, this energy is slightly less negative than −0.5 EHa =
−13.6057 eV.

Above this ground state we find a sequence of energy levels. The lowest excited
(n = 2) level is 4-fold degenerate: it consists of |2, 0, 0〉, |2, 1,−1〉, |2, 1, 0〉, and
|2, 1, 1〉. Its energy is E2 = − 1

2 (Z/2)2 EHa
µ

me
= − 1

8 Z2 EHa
µ

me
. In hydrogen this

level is E2 − E1 = 3
8 EHa

µ
me

= 10.1987 eV above the ground state. Successive
E3, E4… levels exhibit an increasing degeneracy, because of the multiple values
l = 0, . . . , n − 1 compatible with larger n, and the values ml = 0,±1, . . . ,±l com-
patible with larger l. The ml -degeneracy (2l +1 states) is a general feature of central
potentials, representing the possibility for the orbital angular momentum to point in
any direction in 3D space without affecting the energy of the atom. In contrast, the
extra l-degeneracy (n values of l, for a total of n2 states) is peculiar of the Coulom-
bic potential energy U (r) ∝ −r−1: none of this “accidental” degeneracy occurs for
a different radial dependence of U (r), e.g. as encountered below in Sect. 2.2.4 for
many-electron atoms, and in Sect. 3.3.1 for diatomic molecules.

Transitions between any two energy levels are observed, Fig. 2.2. Historically,
the close agreement of the H-atom Schrödinger spectrum of Eq. (2.10) with accu-
rate spectroscopic observations marked an early triumph of QM. The transitions
group naturally in series of transitions ni → n f , characterized by the same lower-
energy level (usually the final level n f in emission experiments, see Fig. 2.2). Each
series of transitions of hydrogen is observed in a characteristic spectral region and
is named after the scientist who carried out its earliest investigations: the transitions

Fig. 2.1 The 6
lowest-energy levels En of
atomic hydrogen, according
to the nonrelativistic
Schrödinger theory,
Eq. (2.10). Energies in eV
are indicated next to each
line. The energy zero marks
the onset of the continuum of
unbound states

E
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http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 2.2 The observed
emission line spectrum of
atomic hydrogen, with a a
broad full IR-UV range
spectrum, b a closeup of the
Balmer plus the overlapping
infrared series, and c a
further closeup of the Balmer
series, with its 4 visible lines,
plus a few low-energy UV
lines
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whose lower level is n = 1 form the Lyman series (10.2–13.6 eV, UV); those whose
lower level is n = 2 constitute the Balmer series (1.89–3.40 eV, visible-UV); those
whose lower level is n = 3 form the Paschen series (0.66–1.51 eV, IR); those whose
lower level is n = 4 form the Brackett series (0.31–0.85 eV, IR). Note in particular,
that the Lyman and Balmer series do not overlap with any other series, since the
energy distance between their lower level (n = 1 or 2) and the next one (n + 1)
exceeds the whole range of bound-state energies from level n + 1 to the ionization
threshold.

The weak dependence of the spectrum on the nuclear mass M [through the
ratio µ/me = (1 + me/M)−1] produces a duplication (relative energy separation
�0.03 %—see Fig. 2.3) of the spectral lines of a mixture of different isotopes such as
regular hydrogen 1H and twice as heavy deuterium 2H (or D). Finally, note that the
Z2 dependence of the eigenvalues Eq. (2.10) makes one half of the lines of one half
of the series of the He+ ion (one third of those of Li2+, …) almost coincident (except
for the reduced-mass correction, and relativistic effects) with the lines of hydrogen,
as illustrated in Fig. 2.4.
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Fig. 2.3 A high-resolution
line spectrum of the Balmer
Hα emission of an isotope
mixture. 1H emits the
longer-wavelength structure
near 1.8887 eV; deuterium
2H emits the
shorter-wavelength lines near
1.8892 eV. The finer doublet
structure is due to relativistic
effects analyzed in Sect. 2.1.7

2.1.2 The Angular Wavefunction

The angular solutions (2.11) and (2.12) combine to form the spherical harmonics
Ylml (θ, ϕ) = Θlml (θ)Φml (ϕ), which are the normalized eigenfunctions2 of the
angular motion of a freely rotating quantum-mechanical particle. Ylml contains com-
plete information about an important observable: the orbital angular momentum. In
detail, �

2× [the angular part of −∇2 occurring at the left side of Eq. (2.6)] repre-
sents the squared orbital angular momentum |L|2 of the rotating two-body system.
�

2λ = �
2l(l + 1) are the eigenvalues of |L|2. Likewise, �ml are the eigenvalues

of the angular-momentum component Lz represented by −i� ∂
∂ϕ

, thus clarifying the

physical meaning of Eq. (2.5). Only statistical information about the Lx and L y

components is available, since these other components do not commute with Lz .
Note however that the choice of the ẑ direction in 3D space (related to the choice of
the polar coordinate system) is arbitrary: due to spherical symmetry, any alternative
choice would lead to the same observable results.

The spherical harmonics carry complete information about the angular distri-
bution of r. In a state |l, ml〉 with squared angular momentum fixed by l and
z-projection by ml , the probability that the vector r joining the nucleus to the electron
is directed as (sin θ cos ϕ, sin θ sin ϕ, cos θ) equals |〈θ, φ|l, ml〉|2 sin θ dθ dϕ ≡
|Ylml (θ, ϕ)|2 sin θ dθ dϕ. Equation (2.11) indicates that the ϕ dependence of |Ylml |2
is always trivial: |Ylml |2 are constant functions on all circles at fixed θ . Figure 2.5
illustrates the θ dependence as polar plots of |Ylml |2 for several values of l and ml .
Several textbooks and web sites report alternative visualizations of the Ylml func-
tions. It is apparent that l − |ml | counts the number of zeros (nodes) of |Ylml |2 as
the polar angle θ spans the 0 to π range. A large number of nodes indicates a large
angular-momentum component perpendicular to ẑ.

Observations: (i) The visible (Fig. 2.5) increase of |Yl0(0, ϕ)|2 with l does not
contradict normalization (2.17), because of the sin θ integration factor. (ii) If the rl

factor taken from the radial wavefunction (2.13) is grouped together with Ylml (θ, ϕ),

2 We stick to the standard convention for the phases of Ylml (θ, ϕ).
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Fig. 2.4 Comparison of the emission spectra of one-electron atoms/ions with different nuclear
charge: H (Z = 1) and He+ (Z = 2). The odd-n series of ionized helium find no correspondence
in the spectrum of hydrogen; in contrast, one half of the lines of the even-n series almost coincide
with the lines of hydrogen

one can express rl Ylml (θ, ϕ) in Cartesian components (rx , ry, rz), obtaining a
homogeneous polynomial of degree l. For example,

r Y10(θ, ϕ) =
√

3

4π
rz, r Y1 ±1(θ, ϕ) =

√
3

8π
(∓rx − i ry). (2.18)

(iii) Observation (ii) implies that the parity of Ylml (θ, ϕ) (i.e. its character for
r → −r) is the same as that of l, i.e. (−1)l . (iv) ml = 0 spherical harmonics are real
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l=1l=0 l=3l=2

Fig. 2.5 Polar plots of the lowest-l spherical harmonics: the radial distance from the origin equals∣∣Ylml (θ, ϕ)
∣∣2. Here the x–z plane (ϕ = 0) is shown, but ϕ may be taken of any value. θ measures the

angle away from the ẑ axis and varies from 0 (upward) to π (downward). Colors encode increasing
value of |ml |, from its minimum ml = 0 (red) to its maximum ml = l (violet)

functions. (v) Occasionally ml �= 0 spherical harmonics are combined to construct
real wavefunctions, e.g.

ψpx = Y1 −1 − Y1 1√
2

, ψpy = i
Y1 1 + Y1 −1√

2
. (2.19)

(vi) It is easy and useful to retain the expression for the simplest spherical harmonic
function (a polynomial of degree 0, i.e. a constant): Y00(θ, ϕ) = (4π)−1/2.

Important notation: Spectroscopists have adopted a letter code for the value of
the orbital angular momentum. This standard notation is: s, p, d, f, g, h,…, for l = 0,
1, 2, 3, 4, 5… respectively.

2.1.3 The Radial Wavefunction

The radial wavefunction Rn l(r), Eq. (2.13), is structured as the product of
(i) a normalization factor, (ii) a power rl (mentioned above in relation to Ylml ),
(iii) a polynomial of degree n − l − 1 in r (with a nonzero r0 term), and (iv) the
exponential of −Zr/(2an). The power term is responsible for the Rn l(r) ∝ rl

behavior at small r . The Laguerre polynomial L2l+1
n+l (ρ) vanishes at as many differ-

ent ρ > 0 points as its degree (n − l − 1): each of these zeroes produces a radial
node, i.e. a spherical shell of radius r where Rn l(r), and thus the overall wavefunc-
tion, vanishes and changes sign. The exponential decay dominates at large r , where
Rn l(r) ∼ rn−1 exp (−Zr/na). Figure 2.6 illustrates these features for the square
moduli of the lowest-n radial eigenfunctions.

The radial probability distribution P(r) = r2|R(r)|2 drawn in Fig. 2.7 and the
|R(r)|2 of Fig. 2.6 contain different information about the electron state. P(r) dr
yields the probability that the nucleus-electron distance is within dr of r , regardless
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s

p

d

Fig. 2.6 Z = 1 hydrogenic s p and d squared radial eigenfunctions |Rn l(r)|2. Solid, n = 1; dashed,
n = 2; ·– , n = 3; · ·– , n = 4; · · ·– , n = 5. Due to squaring, the (n − l − 1) radial nodes, where
Rnl(r) vanishes and changes sign, appear as tangencies to the horizontal axis of the linear plots
(left), and as downward kinks in the plots in log10 scale (right)
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Fig. 2.7 Hydrogen (Z = 1) s p and d radial probability distribution P(r) = |r Rnl(r)|2. Solid,
n = 1; dashed, n = 2; ·– , n = 3; · ·– , n = 4; · · ·– , n = 5

of the direction where r points. The r2 weighting factor is precisely the spherical-
coordinates Jacobian, proportional to the surface of the sphere of radius r , or rather
the volume of the spherical shell “between r and r + dr”. In Fig. 2.7, note that for
increasing n, P(r) peaks at larger and larger distance from the origin.

The probability that the electron is found at a specific position r relative to the
nucleus is not P(r), but is given by

P3D(r) d3r = |ψ(r)|2 d3r = |ψnlml (r, θ, ϕ)|2 d3r = |Rn l(r)|2 |Ylml (θ, ϕ)|2 d3r,
(2.20)

where the polar coordinates are those representing that point r. Equation (2.20)
indicates that |ψ(r, θ, ϕ)|2 gives the actual 3D probability distribution in space. This
means, e.g., that the probability density profile along a line through the nucleus (spec-
ified by fixing θ and ϕ) is simply |R(r)|2, multiplied by the constant |Ylml (θ, ϕ)|2.
Note that all s eigenfunctions have nonzero Rn 0(0) = 2[Z/(an)]3/2. Moreover,
r = 0 is a cusp-type absolute maximum of |Rn 0(r)|2, see Fig. 2.6. It is no surprise
that the most likely point in space for s electrons coincides with the nucleus, r = 0,
the spot with the most attractive potential energy U (r). This fact is hidden by the
vanishing of P(r → 0) which is entirely due to the r2 weight in P(r). For l > 0,
even the probability density |Rn l(r)|2 vanishes at the origin, where the centrifugal
repulsion ∝ λ/r2 = l(l + 1)/r2 “effective potential” term in Eq. (2.7) diverges. The
vanishing of |Rn l(r)|2 reflects the impossibility of a point particle carrying nonzero
angular momentum to reach the origin of a central potential. The wave-mechanical
reason is the following: for l > 0, r = 0 is a common point of one or several
nodes of the angular wavefunction, therefore if ψ did not vanish there, it would be
multiple-valued.

For increasing nuclear charge Z , |Rn l(r)|2 and thus P(r) move in closer and
closer to the origin3: the mean electron–nucleus separation decreases as ∝ Z−1,
and this fact combined with Vne ∝ Z/r explains the ∝ Z2 dependence of the
eigenenergies (2.10). The simplest radial wavefunction, that of the ground state,
exemplifies well this Z dependence:

3 The scaling laws are Rn l Z (r) = Z 3/2 Rn l 1(r Z) and PZ (r) = Z P1(r Z).
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R10(r) =
√

k3

2
e−kr/2 = 2

(
Z

a

)3/2

exp

(
− Zr

a

)
. (2.21)

Accordingly, the ground state of He+ has the same overall shape but half the size of
that of H.

Notation: the hydrogenic kets/eigenfunctions |n, l, ml〉 of Eq. (2.16) are often
shorthanded as n[l], where n is the principal quantum number and [l] is the relevant
letter s, p, d, … for that value of l. For example, 4p refers to any of ψ41 −1, ψ41 0, ψ41 1.
This notation is incomplete and ambiguous: (i) information about ml is lacking, and
(ii) the same 4p symbol implies different radial dependence R41(r) for a nucleus of
different charge and mass.

2.1.4 Orbital Angular Momentum and Magnetic
Dipole Moment

The angular momentum of an orbiting charged particle such as an electron is asso-
ciated to a magnetic dipole moment. This is illustrated (Fig. 2.8) for a classical point
particle of mass m and charge q rotating along a circular orbit of radius r at speed v.
Its angular momentum L = r × p = mrvn̂, where n̂ is the unit vector perpendicular
to its trajectory. As the rotation period is τ = 2πr/v, the current along the loop
I = q/τ = q v/(2πr). The magnetic moment of a ring current equals the product
of the current times the loop area:

µ = I πr2n̂ = qv

2πr
πr2n̂ = q

2
v r n̂ = q

2m
L. (2.22)

One can show that this equality holds for arbitrary shape of the periodic orbit.

Fig. 2.8 The relation
between the mechanical
angular momentum L and
the magnetic moment µ
generated by an electron of
charge −qe orbiting
circularly. The curved lines
represent the magnetic
induction field B produced
by the circulating current

B
B

e

μ

v
r

L
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Relation (2.22) holds also in QM, as an operatorial relation. For an electron of
charge q = −qe, where the angular momentum is quantized in units of �, it is
convenient to write Eq. (2.22) as

µ = − qe

2me
L = − �qe

2me

L
�

= −gl µB
L
�

, (2.23)

where the Bohr magneton µB = �qe/(2me) = 9.27401 × 10−24 J T−1 (alias A m2)
is the natural scale of atomic magnetic moments. gl = 1 is the orbital g-factor,
introduced for uniformity of notation with those situations, discussed below, with
nontrivial proportionality factors g �= 1 between µB L/� and µ. g-factors arise
because, while angular momenta are universal (i.e. simple multiples of �), magnetic
moments are usually non-universal multiples of µB.

The atomic angular momenta can be detected by letting the associated mag-
netic moments interact with a magnetic field. If the field B is uniform, it induces a
precession of µ around the direction of B with a frequency (the Larmor frequency)
ω = qe B/(2me), routinely detected in microwave resonance experiments. If the field
is nonuniform instead, a net force acts on the atom, as we discuss in the next section.

2.1.5 The Stern-Gerlach Experiment

The interaction energy of a magnetic moment with a magnetic field is

Hmagn = −µ · B. (2.24)

Unless some external mechanism alters the angle between µ and B, this energy
is conserved in time. A force arises on the magnetic dipole when the field B is
nonconstant in space:

F = −∇(−µ · B) = ∇(µ · B). (2.25)

In particular, in a magnetic field with a dominant Bz component, the z force compo-
nent Fz is proportional to the derivative of Bz along the same direction:

Fz � µz ∇z Bz = µz
∂ Bz

∂z
. (2.26)

The “microscopical” origin of this force is pictured in Fig. 2.9. The observation that
a nonuniform magnetic field produces a force proportional to a magnetic-moment
component is at the basis of the Stern-Gerlach experiment.

As illustrated in Fig. 2.10, a collimated beam of neutral atoms at thermal speeds
is emitted from an oven into a vacuum chamber where it traverses a region of
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Fig. 2.9 The origin of the force that a nonuniform magnetic field produces on a magnetic moment.
a If the magnetic dipole is seen as a circulating current, the net force originates from a force
component consistently pointing in the direction of increasing B. b If the dipole is viewed as a pair
magnetic monopoles, a net force arises from the unbalance between the forces on the individual
monopoles

inhomogeneous magnetic field, where Fz deflects individual atoms proportionally to
their magnetic moment z component, and is finally collected by a suitable detector.
Basically, the Stern-Gerlach apparatus is an instrument for measuring the component
of atomic magnetic moments in the field-gradient direction. This makes it one of the
key tools in QM, as detailed in the initial sections of Ref. [17]. The original (1922)
experiment was carried out using Ag atoms, but a similar pattern of deflections is
observed using atomic H.

The main outcome of the Stern-Gerlach experiment is that the z component of
µ is not distributed continuously as one would expect for a classical vector point-
ing randomly in space, but rather peaked at discrete values. Figure 2.10c shows the
clustering of the deflected atoms in two lumps.

According to QM, the ẑ-component Lz of angular momentum (and thus µz of
magnetic moment) should indeed exhibit discrete eigenvalues. However, (i) the num-
ber of eigenvalues of Lz should be odd [2l + 1, with integer l—see Eq. (2.9)] and
(ii) the ground state of hydrogen has l = 0, thus H should show no magnetic
moment at all, and one undeflected lump should be observed, rather than splitting
into two. This is a first hint that some extra degree of freedom must play a role in the
one-electron atom.

2.1.6 Electron Spin

The outcome of the Stern-Gerlach experiment, the multiplet fine structure of the spec-
tral lines (the fine doublets of Fig. 2.3), and the Zeeman splitting of the spectral lines
(see Sect. 2.1.10) are three pieces of evidence pointing at the existence of an extra
degree of freedom of the electron, beside its position in space. W. Pauli introduced
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Fig. 2.10 a In the Stern-Gerlach experiment, a collimated beam of atoms emitted from an oven
transverses a region of inhomogeneous magnetic field created by a magnet with asymmetric core
expansions: the atoms are finally detected at a collector plate. b In an inhomogeneous magnetic
field, a magnet experiences a net force which depends on its orientation. c The deflection pattern
recorded on the detecting plate in a Stern-Gerlach measurement of the z component of the magnetic
dipole moment of Ag atoms (the outcome would be the same for H atoms). Contrary to the classical
prediction of an even distribution of randomly oriented magnetic moments, two discrete components
are observed, due to the quantization of an angular-momentum component

a nonclassical internal degree of freedom, later named spin, with properties simi-
lar to orbital angular momentum. Even though this picture is imprecise, the elec-
tron spin may be viewed as the intrinsic angular momentum of the rotation of the
electron around itself. When spin is measured along a given direction, say ẑ, one
detects eigenvalues of Sz , �ms , where the quantum number ms takes (2s + 1) values
ms = −s, . . . , s, like the orbital Lz takes values ml = −l, . . . , l. Since a Stern-
Gerlach deflector splits an H beam into two lumps, 2 = 2s + 1 components are
postulated, requiring that the intrinsic angular momentum of the electron must be
s = 1/2. This in turn is associated to a squared spin angular-momentum operator |S|2
whose eigenvalue is 1/2(1/2 + 1)�2 = 3/4�2.

A complete wavefunction, necessary to specify all degrees of freedom of the
electron, is slightly more complicated than R(r) Ylml (θ, ϕ): an extra spin dependence
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must be inserted. Assuming, as apparent from the nonrelativistic Hamiltonian (1.1),
that spin and orbital motions do not interact, the full eigenfunction of a one-electron
atom with spin pointing up (↑, i.e. ms = 1/2) or down (↓, i.e. ms = −1/2) along a
fixed orientation is written

ψn l ml ms (r, θ, ϕ, σ ) = Rn l(r) Yl ml (θ, ϕ) χms (σ ). (2.27)

Here σ is the variable for the spin degree of freedom, which spans values ±1/2, i.e.
checking if the electron spin points up or down in the ẑ direction. The quantum
number ms = ±1/2 indicates which way the spin of this specific state is actually
pointing relative to the reference direction. These basis spin functions are therefore
simply χms (σ ) = 〈σ |ms〉 = δms σ .

Less trivial spin wavefunctions arise when the spin points in some direction other
than ẑ (non-Sz eigenstates). A Stern-Gerlach apparatus can be employed to purify
a spin polarized beam of atoms with spins pointing in some oblique direction. This
beam can then be analyzed by a second apparatus to measure the spin component
σ along the reference ẑ direction. For the oblique-spin state, the (now nontrivial)
spin wavefunction χ(σ) bears the standard significance of a wavefunction in QM:
|χ(↑)|2 is the probability that, when Sz is measured, +1/2� is found, while |χ(↓)|2
is the probability to obtain −1/2�. When a ẑ-Stern-Gerlach measurement is carried
out, the spin z component is found pointing either up or down, therefore the total
probability

∑
σ |χ(σ)|2 = |χ(↑)|2 + |χ(↓)|2 = 1.

A remarkable novelty regarding spin is that the separation of the ↑ and ↓
sub-beams in a Stern-Gerlach apparatus is compatible with a g-factor for spin gs � 2,
quite distinct from the orbital gl = 1. The precise value gs = 2.00232 generating
the electron intrinsic magnetic moment gsµB is measured extremely accurately by
electron spin resonance (ESR) experiments, where the electron spin interacts with a
uniform magnetic field which splits the ↑ and ↓ states.

At the present basic level of understanding, electron spin is just an extra quantum
number which, in the absence of magnetic fields only provides an extra degeneracy
to all states of the one-electron atom: the total degeneracy of the nth level is 2n2,
rather than n2. Spin will however affect the atomic energy levels when the magnetic
effects of relativistic origin are considered, in Sect. 2.1.7.

2.1.7 Fine Structure

The smallness of the observed fine splittings (a fraction of meV, see Fig. 2.3) in the
spectrum of H hints at some small correction, such as due to relativistic effects,
neglected in the original Hamiltonian (1.1). We come to investigate these corrections
in detail.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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2.1.7.1 Spin-Orbit Coupling

Consider first the action of the magnetic field experienced by the electron spin due
to its own orbital motion. This is a subtle relativistic effect, due to the Lorentz trans-
formation of the nuclear electric field into the frame of reference of the electron. Call
v the electron velocity in the nuclear rest frame. In the electron frame of reference,
the nucleus is seen to move with velocity −v, and thus carries a “current element”
−Zqev. According to the Biot-Savart law of electromagnetism, at the point where
the electron sits (reached from the nucleus by vector r), this moving charge generates
a magnetic field

B(r) = − 1

4πε0c2

r × (−Zqev)

|r|3 = E(r) × v
c2 . (2.28)

Equation (2.28) identifies this magnetic field as a relativistic effect [of order (v/c)2],
and expresses it in terms of the electric field generated by the nucleus at the electron
location

E(r) = Zqe

4πε0

r
|r|3 . (2.29)

In Eq. (2.28) we recognize the orbital angular-momentum operator:

B(r) = Zqe

4πε0c2

r × v
|r|3 = Zqe

4πε0c2me

L
|r|3 . (2.30)

This magnetic field B(r) acts on the electron at each point in space. By analogy with
Eq. (2.24), the interaction energy of the electron-spin magnetic moment µs with B
should equal −µs · B(r). However, this energy must actually be reduced by a factor
1/2 (first recognized by L.H. Thomas) due to the electron frame of reference being
accelerated [1]. The correct magnetic interaction energy operator is therefore:

Hs−o = −1

2
µs ·B(r) = 1

2

gsµB

�
S ·

(
Zqe

4πε0c2me

L
|r|3

)
= Ze2

2 m2
e c2

1

r3 S ·L. (2.31)

This operator, named spin-orbit interaction, exhibits nonzero diagonal and off-
diagonal elements 〈n, l, ml , ms |Hs−o|n′, l, m′

l , m′
s〉 connecting states with equal or

different n, ml , ms . States with n �= n′ have vastly different nonrelativistic energies
(2.10): the tiny n-off-diagonal spin-orbit couplings perturb these energies negligi-
bly, and can practically be neglected, see Appendix B.5.2 and B.9. For given l and
considering only the n-diagonal matrix elements of Hs−o, we rewrite Eq. (2.31) as

Hs−o � Ze2

2 m2
e c2

∑

n,l

|n, l〉〈n, l|r−3|n, l〉〈n, l| S · L. (2.32)
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The radial integral can be evaluated for l � 0 hydrogenic wavefunctions Rn l ,
obtaining

〈n, l|r−3|n, l〉 =
∞∫

0

r−3[Rn l(r)]2 r2 dr =
(

Z

a

)3 2

n3 l(l + 1)(2l + 1)
. (2.33)

The spin-orbit Hamiltonian is thus conveniently rewritten as

Hs−o =
∑

n,l

ξnl |n, l〉〈n, l| S · L
�2 , (2.34)

where the projectors |n, l〉〈n, l| select a radial wavefunction, and the spin-orbit
energy is

ξnl = Ze2
�

2

2 m2
e c2

(
Z

a

)3 2

n3 l(l + 1)(2l + 1)
= Z4α2 EHa

(
µ

me

)3 1

n3 l(l + 1)(2l + 1)
.

(2.35)

The last equality uses the expression for the mass-rescaled atomic length scale
a = a0 me/µ, the definition (1.9) of the Hartree energy, and the expression
α2 = EHa/(mec2) for the fine-structure constant. In this form, it is apparent that
the typical spin-orbit energy scale ξnl

• is positive, and therefore Hs−o favors antiparallel alignment of L and S;
• is a leading α2 ∼ (v/c)2 relativistic correction;
• is α2 � 5.3 × 10−5 times smaller than the typical orbital energies;
• grows as Z4, reflecting the increase in nuclear field intensity ∝ Z and the

reduction ∝ Z−1 of the average electron–nucleus distance so that 〈n, l|r−3|n, l〉
∝ Z3;

• decreases as n−3, reflecting the increase ∝ n of the average electron–nucleus
distance, and the r−3 dependence of the interaction energy (2.31);

• decreases roughly as l−3 (but S · L ∝ l), due to the rl suppression of the radial
wavefunction close to the origin, the region where spin-orbit interaction (2.31)
dominates.

The energy scale of ξnl amounts to α2 EHa (µ/me)
3 = 2.318×10−22 J = 1.447 meV

for hydrogen. Note however that the lowest-energy state for which spin-orbit applies,
2p, has n3l(l + 1)(2l + 1) = 48, thus ξ2p = 0.0301 meV only. For all higher levels
ξnl is even smaller.

Consider now the remaining operatorial part in Eq. (2.34): S · L. In the basis
|l, s, ml , ms〉 where spin and orbital motion are uncoupled, the operator S · L has
plenty of nonzero off-diagonal matrix elements. In computing the relativistic cor-
rected eigenvalues and eigenstates with the methods of Appendix B.5, one needs to
diagonalize S · L, within each (initially degenerate) space at fixed l and s. Intro-
ducing the coupling of spin and orbital angular momenta with the methods of

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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Appendix B.8.1, the |l, s, j, m j 〉 coupled basis introduced in Eq. (B.73) shows its
advantage: S ·L is diagonal in this coupled basis. To prove this result, take the square
of (L + S) = J and invert it as follows:

S · L = |J|2 − |S|2 − |L|2
2

. (2.36)

All operators at the right hand side are of course diagonal in the |l, s, j, m j 〉 basis:
the expression for the general matrix element is therefore

〈l, s, j, m j |S · L
�2 |l, s, j ′, m′

j 〉 = j ( j + 1) − s(s + 1) − l(l + 1)

2
δ j j ′ δm j m′

j
.

(2.37)

In summary: in the coupled basis |l, s, j, m j 〉, the spin-orbit interaction is diagonal
and its eigenvalues are given by Eq. (2.37), multiplied by the energy ξnl .

Notation: states of the coupled basis are commonly indicated as 2s+1[l] j , where
[l] is the relevant capital letter S, P, D,… for that value of l = 0, 1, 2, . . . Infor-
mation about n is encoded elsewhere, e.g. in the n[l] notation, and information
about m j is usually omitted. For example, 3d 2D3/2 stands for any of the four∣∣n = 3, l = 2, j = 3

2 , m j
〉

kets.
As an example of spin-orbit split states, for one p level of a one-electron atom,

the two different eigenvalues of the S · L/�
2 operator

〈1,
1

2
, j, m j | S · L

�2 |1,
1

2
, j, m j 〉 =

{−1 for j = 1/2

+1/2 for j = 3/2
.

Accordingly, spin-orbit splits any p level (3×2 = 6 orbital×spin states) of 1-electron
atoms into a doublet 2 P1/2 plus a quartet 2 P3/2, separated by an energy 3/2 ξn1. For
the 2p level of hydrogen this splitting amounts to 45.2µeV.

2.1.7.2 The Relativistic Kinetic Correction

A second relativistic correction of the same order (v/c)2 as spin-orbit must be
included. This energy contribution accounts for the leading correction to the kinetic
energy expression p2/(2µ):

Tr =
√
µ2c4 + p2c2 − µc2 = µc2

(
1 + 1

2

p2

µ2c2 − 1

8

p4

µ4c4 + · · · − 1

)

= p2

2µ
− p4

8µ3c2 + · · · (2.38)

Like for Hs−o, to treat the weak perturbation −p4/(8µ3c2) at first order, we just need
the n-diagonal matrix elements of this operator. Although p4 looks like a formidable
differential operator, the trick p4 = (p2)2 = [2µ(HCoul −Vne)]2 allows us to rewrite
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the diagonal matrix elements of p4 in terms of simple radial integrals of r−1 and
r−2. The final result is

〈n, l| − p4

8µ3c2 |n, l〉 = − Z4α2

n3 EHa

(
µ

me

)3 (
1

2l + 1
− 3

8n

)
, (2.39)

where we omit either ml , ms or j, m j , which are irrelevant for such radial integrals.
By combining the spin-orbit and kinetic correction

Hrel = Hs−o − p4

8µ3c2 , (2.40)

we obtain the diagonal matrix elements of the total relativistic correction to order α2:

〈n, l, j |Hrel|n, l, j〉 = Z4α2

n3 EHa

(
µ

me

)3

×
[

j ( j + 1) − s(s + 1) − l(l + 1)

2l(l + 1)(2l + 1)
− 1

2l + 1
+ 3

8n

]

= − Z4α2

n3 EHa

(
µ

me

)3 (
1

2 j + 1
− 3

8n

)
, (2.41)

where the last simplification is based on spin being s = 1/2, thus l = j ± 1/2. A
separate derivation shows that this Eq. (2.41) (but not all previous steps) holds for s
states too.

Expression (2.41) can be combined with the nonrelativistic eigenvalues (2.10) to
obtain the following expression for the energy eigenvalues, correct to order α2:

〈n, l, j |Htot + Hrel|n, l, j〉 = − EHa

2

µ

me

Z2

n2

[
1 +

(
Zα

µ

me

)2 1

n

(
2

2 j + 1
− 3

4n

)]
.

(2.42)

This remarkable relation yields a quantitative prediction for the spectrum that can be
directly compared to experiment: all n-levels should be split, for the different values
of j , but not for different values of l giving the same j , e.g. 2S1/2 and 2P1/2 for the
same n. This extra l-degeneracy is retained even in the solutions of Dirac’s equation,
which is exact to all orders in α, not just α2 as Eq. (2.42).

2.1.7.3 The Lamb Shift

As the l-degeneracy is rather surprising, the occurrence of a splitting between levels
with same j and different l was investigated closely, both theoretically and exper-
imentally. Indeed, quantum fluctuations of the electromagnetic field and the finite
nuclear size eventually lift this degeneracy, introducing tiny splittings named Lamb
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Fig. 2.11 a A direct spectroscopic observation of the Lamb shift in the Hα line, obtained with a
double-resonance experiment [18], sketched in panel c. Arrows point to the dipole-allowed transition
energies predicted according to the scheme of panel b, which reports the fine structure of the Balmer
Hα line, including the relativistic corrections and the Lamb shift [18]. Peaks labeled A, B, and C
involve the n = 2 2P3/2 state. Peaks labeled D–G involve the n = 2 j = 1/2 states. The splitting
between (D, E) and (F, G) is due to the spin-orbit coupling in the n = 3 multiplet. Instead, the
splittings between (D and E) and between (F and G) is due to the Lamb shift, which is thus measured
of the order of 5µeV. Without the Lamb shift, the D–G peaks would collapse to 2 peaks only. The
separation between the B and G lines measures the spin-orbit splitting in the 2p level: it agrees with
the theoretical prediction of �45µeV

shift. Figure 2.11b reports the expected spectral fine structure of the Balmer Hα line,
including both the relativistic correction and the Lamb shift.

Due mainly to Doppler broadening (see Sect. 1.2), the spectral lines are not sharp
enough to resolve these tiny energy differences. To circumvent Doppler broad-
ening and acquire the high-resolution spectrum of Fig. 2.11a, the authors of Ref.
[18] devised a trick based on double resonance. An intense tunable monochromatic
light beam is split into a strong interruptible “pump” beam plus a second weak
“probe” beam, Fig. 2.11c. When the light frequency matches a resonant transition,
absorption takes place and the probe beam is attenuated, as in a regular absorption
spectroscopy experiment. This absorption is strongly reduced if the pump beam hap-
pens to “saturate” the transition in the sample, as discussed quantitatively in Sect. 4.4.
The spectrum of Fig. 2.11a records the probe-beam absorption difference between
time intervals when the pump beam is on and when it is off. All atoms with a siz-
able translational velocity component in the beam direction are Doppler shifted in

http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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opposite directions relative to the two beams, which are almost antiparallel: these
atoms do not contribute to the difference signal. As a result, a subset of atoms is
selected by the matching pump/probe frequency, namely those with practically null
instantaneous translational velocity component, thus negligible Doppler shift: this
selection prevents Doppler broadening.

2.1.8 Nuclear Spin and Hyperfine Structure

Like electrons, several nuclei carry an intrinsic spin I. For example, the proton has
spin I = 1/2. Unsurprisingly, the nuclear magnetic moment µN is proportional to its
angular momentum:

µN = gnµn
I
�
.

Like for the electron, the nuclear magneton µn is defined by

µn = qe�

2Mn
= µB

me

Mn
, (2.43)

and the nuclear g-factor gn is a number of order unity whose value depends on the
inner nuclear structure. For example, gn = 5.58569 for the proton.

The nuclear spin generates a magnetic field that is extremely weak compared to
typical electronic fields, because it is suppressed by the ratio me/Mn . Through this
field, the nuclear and electron magnetic moments interact. Due to the rl term in
Eq. (2.13), this interaction is very weak for l > 0 orbitals, where the electron hardly
ever moves close to the nucleus: for simplicity we neglect it here. For s orbitals,
the only nonzero electronic magnetic moment is associated to the electron spin S.
Like for spin-orbit, the interaction Hamiltonian is proportional to the simplest scalar
combination of the two involved vector quantities:

HSI = −CµN · µe = C gngs µ
2
B

me

Mn

I · S
�2 .

The coupling factor C is the relevant radial matrix element, which equals

C = 2

3

1

4πε0c2 Rn 0(0)2.

Using Rn 0(0) = 2[Z/(an)]3/2, the characteristic coupling energy

ξN = Cgngsµ
2
B

me

Mn
= 2

3
gngs

Z3

n3mec2 E2
Ha

me

Mn

= 4

3
gn

Z3α2

n3

me

Mn
EHa = gn

Z3

n3

1.06µeV

Mn/a.m.u.
(2.44)
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where we replaced α2 for EHa/(mec2), and expressed the nuclear mass Mn in atomic
mass units (a.m.u.). For the ground state of 1H, Eq. (2.44) yields ξN = 5.88µeV.

The electron and nuclear spins couple to a grand total angular momentum F =
I + S, with the rules described in Appendix B.8.1. In analogy with Eq. (2.36), we
obtain

I · S = |F|2 − |I|2 − |S|2
2

,

so that the expectation value of I · S/�
2 equals [ f ( f + 1) − i(i + 1) − s(s + 1)]/2

in the coupled basis, the one where |F|2 and |Fz|, rather than Iz and Sz , are diagonal.
As s = 1/2, two coupled states f = i ± 1/2 occur, with an energy separation of
ξN (i + 1/2).

For 1H, the proton has spin i = 1/2, so that I · S/�
2 = −3/4 and 1/4 for f = 0

and 1, respectively. The separation between these two hyperfine-split states equals
therefore ξN � 5.88µeV: it corresponds to a wavelength 2π�c ξ−1

N � 21 cm, and
a frequency of ξN (2π�)−1 � 1.42 GHz. This transition, in the radio-frequency
range at 1420405751.8 Hz, was discovered in 1951 in astrophysical spectra, has been
adopted as a frequency standard, and is now used to map the distribution of interstellar
atomic 1H.

2.1.9 Electronic Transitions, Selection Rules

Not all conceivable transitions are equally easy to observe. Experimentally, certain
transitions proceed at a fast rate, while others occur immensely more slowly. This
fact can be explained by a quantum-mechanical analysis of the interaction of the
atom with the electromagnetic field. The probability per unit time that a quantum
object (e.g. an atom) decays radiatively from an initial state |i〉 to a final state | f 〉 is
given by

γif = 1

3πε0�4c3 E 3
if |〈 f |d|i〉|2, (2.45)

where Ei f = �ωif = Ei − E f , and d is the operator describing coupling to the
radiation field. In the approximation that the radiating object is much smaller than the
radiation wavelength (see Fig.1.2), this operator is the electric-dipole operator d =
−qer. All transitions for which the matrix element 〈 f |d|i〉 vanishes are “forbidden”
in the electric-dipole approximation: this means that they occur at very low rates,
associated to higher multipoles in the field expansion.

The matrix elements of the dipole operator of the one-electron wavefunction are:

〈n f , l f , ml f |d|ni , li , ml i 〉 =
∫

ψ∗
n f l f ml f

(r) d ψni li ml i (r) d3r. (2.46)

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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This integration is carried out conveniently in polar coordinates: express the dipole
operator d as −qer (sin θ cos ϕ, sin θ sin ϕ, cos θ), and observe that

rx = r

√
2π

3

[
Y1 −1(θ, ϕ) − Y1 1(θ, ϕ)

]

ry = r i

√
2π

3

[
Y1 −1(θ, ϕ) + Y1 1(θ, ϕ)

]

rz = r

√
4π

3
Y1 0(θ, ϕ)

[the inverse of Eq. (2.18)], so that the squared dipole matrix element is proportional to

|〈 f |r|i〉|2 = |〈 f |rx |i〉|2 + ∣∣〈 f |ry |i〉
∣∣2 + |〈 f |rz |i〉|2

= |〈 f |r |i〉|2 2π

3

(
|〈 f |Y1 −1 − Y1 1|i〉|2 + |〈 f |Y1 −1 + Y1 1|i〉|2

+ 2|〈 f |Y1 0|i〉|2
)

= |〈 f |r |i〉|2 4π

3

(
|〈 f |Y1 −1|i〉|2 + |〈 f |Y1 1|i〉|2 + |〈 f |Y1 0|i〉|2

)
,

with factored radial and angular matrix elements. Explicitly, in terms of the wave-
functions

∣∣〈n f , l f , ml f
∣∣ d |ni , li , ml i 〉|2

= q2
e

∣∣∣∣∣∣

∞∫

0

Rn f l f (r) r Rni li (r) r2 dr

∣∣∣∣∣∣

2

× 4π

3

∑

m

∣∣∣∣∣∣

π∫

0

sin θ dθ

2π∫

0

dϕ Y ∗
l f m f

(θ, ϕ)Y1 m(θ, ϕ)Yli mi (θ, ϕ)

∣∣∣∣∣∣

2

. (2.47)

No radial integral vanishes, because the function r Rni li (r) has nonzero expansion
coefficients on all radial basis wavefunctions of Eq. (2.13). The radial integral can
be computed analytically between any initial (ni , li ) and final (n f , l f ): it decreases
rapidly when ni and n f differ by large amounts, because Rni li (r) and Rn f l f (r) take
nonnegligible values in remote region, so that the product Rni li (r) Rn f l f (r) is small
everywhere.

Much stricter results are found for the angular part: the integration in the second
row of Eq. (2.47) represents the angular overlap of a state with angular momen-
tum l = l f with the product Y1 m Yli mi . By applying the rule (B.72) of angular-
momentum coupling, this product of objects carrying angular momenta l = 1 and
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l = li can be decomposed into the following allowed values4 of the total coupled
angular momentum:

l f = |li − 1|, li , li + 1. (2.48)

Final states characterized by angular momentum l f not satisfying Eq. (2.48) are guar-
anteed to make the angular integral vanish. Moreover, the angular integral vanishes
also when l f = li . The reason is that the parity of Y1 m , like that of r, is (−1)1 = −1,
while the parity of Y ∗

li ml f
Yli ml i is (−1)2li = 1. As a result, the parity of the integrated

product function Y ∗
li m f

Y1 mYli mi is odd, and therefore its integration over the entire
solid angle vanishes.

In summary, in the dipole approximation, nonzero matrix element can occur only
for transitions involving states with l changing by exactly unity. The allowed transi-
tions have therefore

Δl = l f − li = ±1. (2.49)

This equality is the electric-dipole selection rule regarding l.
The fact that the dipole operator is associated to an orbital l = 1 implies also

that its component m = −1, 0, 1. Accordingly, the only value of ml f for which the
angular integral is nonzero, is obtained by adding m to ml i . From this observation
we formulate the ml -selection rule:

Δml = ml f − ml i = 0, ±1. (2.50)

Until this point, spin was ignored because the dipole operator is purely spatial:
it does nothing to spin. Indeed in the uncoupled basis |n, l, ml , ms〉, see Appen-
dix B.8.1, d only affects the spatial degrees of freedom, while for spin it acts as the
identity. As a result, we have

Δs = s f − si = 0 (2.51)

Δms = ms f − msi = 0. (2.52)

The first spin selection rule (2.51) is trivial for a one-electron atom, as s ≡ 1/2

anyway, but it will become relevant for many-electron atoms.
By analyzing the composition of the coupled states |n, l, j, m j 〉 in terms of the

|n, l, ml , ms〉 uncoupled basis, see Eq. (B.73), one can obtain the following selection
rules for the coupled states:

4 In general it can be shown that the angular integral within the absolute value in Eq. (2.47) is

proportional to the Clebsch-Gordan coefficient C
l f m f
li ml i 1 m , see Eq. (B.73).
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Δ j = j f − ji = 0, ±1 (not 0 −→ 0) (2.53)

Δm j = m j f − m j i = 0, ±1. (2.54)

After determining what transitions are allowed in the dipole approximation, we
should use Eq. (2.45) to estimate typical rates of radiative atomic transitions. By
noting that Eif ≈ Z2 EHa and observing that the order of magnitude of |〈 f |d|i〉| ≈
qea0/Z , we can estimate

γif = E 3
if |〈 f |d|i〉|2
3πε0�4c3 � Z4

ε0�3c3 E2
Ha ωif q2

e
a2

0

Z2 � e2 Z2

(�c)3 e4ωif = Z2
(

e2

�c

)3

ωif

= Z2α3ωif , (2.55)

where we have used EHaa0 = e2 and α = e2/(�c). As α3 � 10−7 and in one-
electron atoms ωif = Eif /� � Z2 1016 Hz, we expect typical radiative transition
rates of the order γif � Z4 109 s−1, i.e. decay times γ −1

if � Z−4 ns. The strong

(E 3
if ) dependence of γif makes this rate faster for more energetic transitions, and

slower for low-energy transitions. Much slower transition occur for dipole-forbidden
transitions, associated to weaker higher-order couplings to the electromagnetic field
(magnetic dipole, electric quadrupole…).

In a gaseous sample, other nonradiative transitions can also occur due to collisions
with other atoms and/or with the vessel walls. Nonradiative mechanisms can domi-
nate the decay of long-lived metastable states, i.e. those lacking fast dipole-allowed
decay transitions.

2.1.10 Spectra in a Magnetic Field

We conclude this Section with a brief analysis of atomic spectra in the condition
where a maximum of information can be extracted from them, namely when the
atomic sample is immersed in a uniform magnetic field. In these conditions, the
atom, depending on the component of its magnetic moment along the field direction,
acquires a little extra energy which can then be detected by spectroscopy.

In the presence of both orbital and spin angular momenta, the total atomic magnetic
moment is the vector sum

µ = µl + µs = −µB
glL + gsS

�
� −µB

L + 2S
�

. (2.56)
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By studying the matrix elements of the µ operator, one can evaluate the magnetic
properties of an atom, where both spin and orbital magnetic moments come into play.
Following Eqs. (2.24) and (2.56), the coupling with the external magnetic field can
be expressed as:

Hmagn = −B · µ = µB B · L + 2S
�

= µB Bz
Lz + 2Sz

�
. (2.57)

This operator is diagonal in the uncoupled |l, s, ml , ms〉 basis. Remember however
(Sect. 2.1.7) that Hs−o is not diagonal in that basis, but rather in the coupled basis
|l, s, j, m j 〉. In fact, Hs−o and Hmagn cannot be diagonalized simultaneously, as they
do not commute. To obtain the eigenenergies and eigenkets one must diagonalize the
total operator Hmagn + Hs−o, within each (2l +1) · (2s +1)-dimensional subspace
at fixed n, l, and s. This diagonalization is not especially complicated, but it is
perhaps more instructive to understand in detail the two limiting cases where either
characteristic energy scale µB |B| or ξ dominates.

The simplest limit (µB|B| � ξ ), of magnetic field energy µB|B| much larger than
the spin-orbit energy ξ , occurs for sufficiently large field intensity. The “sufficiently
large” threshold depends on the considered atom and level: for hydrogen 2p, the
strong-field limit is reached for |B| � 0.5 T, while for He+ 2p it takes a magnetic field
as large as |B| � 8 T, due to the Z4-dependence of the spin-orbit energy, Eq. (2.35). In
this limit of very strong field, the coupled basis is not especially good, as full rotational
invariance of the atom is badly broken. The uncoupled basis |l, s, ml , ms〉 works fine
instead: spin and orbital moments align relative to the field with separate energy
contributions depending on their different g-factors. In this basis, the dominating
interaction Hmagn is diagonal: if we neglect the smaller Hs−o, the magnetic energy
levels are simply

Emagn(ml , ms) � 〈ml , ms |Hmagn|ml , ms〉 = µB Bz(ml + 2ms) (2.58)

(Paschen-Back limit). Hs−o corrections may be added perturbatively.
In the (more common) opposite weak-field limit (|B| � ξ/µB), spherical sym-

metry is perturbed only weakly. The states |l, s, j, m j 〉 in the coupled basis are
exact eigenstates of Hs−o and approximate eigenstates of Hmagn + Hs−o. Following
the results of Appendix B.8.2, to first order in µB|B|/ξ , the energy contribution of
Hmagn is given by Eq. (B.75):

Emagn(m j ) � 〈 j, m j |Hmagn| j, m j 〉 = 〈 j, m j | − µz Bz | j, m j 〉 = g j µB Bzm j

(2.59)

(Zeeman limit), where g j is the Landé g-factor, Eq. (B.78).
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Fig. 2.12 Spin-orbit and
magnetic splitting of a 2P
multiplet. With the shorthand
b = µB B/ξ , the expression
for the m j = ±3/2 energies
(solid lines) is simply
(1/2 ± 2b) ξ . The energies of
the four other levels are
1/4(−1 ± 2b + d)ξ

(dot-dashed lines) and
1/4(−1 ± 2b − d)ξ (dashed
lines), where
d = √

9 + 4b(1 + b)
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In the intermediate-field regimeµB|B| � ξ neither basis is appropriate and neither
of expressions (2.58) and (2.59) is accurate. Figure 2.12 displays the exact pattern of
splittings of the six 2P states under the action of a magnetic field, changing from the
Zeeman (weak field) to the Paschen-Back (strong-field) limit. The initial slopes of
the energy curves at B → 0, divided by the relevant m j , measure the values of the
Landé g j .

The experimentally observed spectra confirm the theory outlined here. For H,
provided that a sufficiently strong magnetic field is applied, the Paschen-Bach is
relatively straightforward to observe as a triplication of all lines. If very high spectral
resolution can be achieved, also the weak-field Zeeman splitting of the H lines shown
in the conceptual scheme of Fig. 2.13 can be detected. Such Zeeman effect is called
“anomalous” since the lines are spaced irregularly. In fact, in atomic physics, such
irregular splittings are rather the rule than an anomaly: only selected spin-orbit-free
S = 0 lines in many-electron atoms happen to show “regular” Zeeman splittings (see
Fig. 2.30 in Sect. 2.2.8.4).

2.2 Many-Electron Atoms

2.2.1 Identical Particles

The concept of indistinguishable particles is central to all the physics of matter where
two or more electrons are involved. Note that in classical mechanics each particle is
labeled by its own position and momentum: one could in principle track individual
trajectories along the motion, and thus tell identical particles i and j apart at any time.
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Fig. 2.13 a A scheme of the Zeeman-split 1s←→2p lowest Lyman line of H. Splittings of levels
of successive m j equal the magnetic energy µB B times the appropriate g-factor: g j (

2P3/2) = 4
3 ,

g j (
2P1/2) = 2

3 , g j (
2S1/2) = 2. b The line spectrum: the splitting of the nearest lines equals 2

3µB B

In QM, indistinguishable particles are such at the deepest level. There is no way, even
as a matter of principle, to ever tell e.g. two electrons apart, as they both are present
at all points of space, with a certain probability amplitude. QM implements per-
fect indistinguishableness through symmetry: any many-particles ket has a definite
symmetry “character” for the permutation operator Pi j swapping the i th and j th iden-
tical particles. As this permutation symmetry is a discrete symmetry which, if applied
twice, leads back to the initial state, the eigenvalues of Pi j can only be +1 or −1.

The particles for whose swap the overall system ket |a〉 is symmetric are called
bosons. The eigenvalue of Pi j is +1, i.e. Pi j |a〉 = |a〉.

The particles for whose swap the overall ket |a〉 is antisymmetric are called fermi-
ons. Here the eigenvalue of Pi j is −1, i.e. Pi j |a〉 = −|a〉.

All elementary particles of “matter” (electrons, protons, neutrons5…) are exam-
ples of fermions, all of spin 1/2. Elementary bosons are carriers of “interactions”. For
example, photons (spin 1) are the quanta of the electromagnetic field, see Sect. 4.3.2.2.
A simple general rule connects the spin of a particle kind to its permutational sym-
metry: integer-spin particles are bosons, half odd-integer particles are fermions.

5 Contrary to electrons, protons and neutrons are not quite elementary, since they are bound states
of triplets of elementary spin-1/2 quarks, and they follow the rule for composite particles sketched
below.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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A collection of bosons and fermions lumped together can behave as a single
point-like particle. This occurs when the internal dynamics is associated to high
excitation energy, so that the lump remains in its ground state (possibly degenerate
according to the projection of the lump’s total angular momentum). It is important
to know the eigenvalue for the permutation of two such identical lumps (composite
bosons/fermions). This is simply answered by counting the number of (−1)’s gen-
erated by the permutations of pairs of identical fermions. For example, hydrogen
atoms in the same hyperfine state are identical bosons, since a −1 is generated by the
permutation of the two electrons and a second −1 is generated by the permutation of
the two protons, in total (−1) · (−1) = +1. Likewise, the 13C isotope of carbon is a
fermion (6 protons + 7 neutrons + 6 electrons), while 238U is a boson (92 protons
+ 146 neutrons + 92 electrons). Similarly, identical nuclei are bosons or fermions
according to whether they contain an even or odd number of nucleons (protons plus
neutrons); for example the deuteron nucleus D+, a bound proton and neutron in a
i = 1 nuclear-spin state, is a boson. Due to the angular-momentum composition rule
(B.72), all composite particles fulfill the general spin rule.

The permutational symmetry is crucial to understand the dynamics of many elec-
trons and, in particular, the structure of many-electron atoms. As discussed in greater
detail below, antisymmetry obliges N electrons to span N quantum states, thus effec-
tively avoiding one another. In practice, the geometrical constraint of antisymmetry is
often more effective than the dynamical electron–electron repulsion (1.6) in keeping
electrons apart.

Without permutational antisymmetry all electrons would occupy the same 1s shell
in the atomic ground state. If that happened (as it could if electrons were distinguish-
able particles—or bosons—rather then fermions), then the atomic ionization energies
should increase roughly as Z2 and the size of atoms should decrease roughly as Z−1.
In stark contrast, relatively mild non-monotonic Z dependence of both these prop-
erties (Figs. 2.14 and 2.15) are observed: in particular, the first ionization energy and
the atomic size exhibit a weak general tendency to respectively decrease and increase
with Z .

Fig. 2.14 As a function of
the atomic number Z , the
first-ionization energy of
neutral atoms (N = Z ), i.e.
the minimum energy
required to remove one
electron from the atom
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Fig. 2.15 Empirical atomic
radii, as a function of Z . The
vertical bars represent the
standard deviation. The
labels TM1, TM2 and TM3
mark the ranges of the first,
second and third transition
series, respectively (Data
from Ref. [19])
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2.2.2 The Independent-Particles Approximation

The exact solution of the Schrödinger equation associated to Hamiltonian (1.1)
requires the determination of a N -electron wavefunction. For increasing N , this
becomes soon a formidable task, because the N -electron wavefunction describes the
correlated motion of all the N electrons, and thus depends intricately on all posi-
tion and spin coordinates of the N electrons. The amount of information carried by
a generic N -electron wavefunction is exponentially large with N : there is no way
to store (let alone compute!) the full wavefunction for the ground state of many
interacting electrons.

Most approximate methods on the market exploit the observation that a basis of
the Hilbert space of N -particle states can be built as a product of single-particle basis
states. Consider the complete set of orthonormal states {|α〉} for a single particle,
where α takes all possible values allowed to a full set of quantum numbers, e.g. n, l,
ml , ms in the example of an electron in an atom. Then the tensor product

|α1, α2, . . . , αN 〉 = |α1〉 ⊗ |α2〉 ⊗ · · · |αN 〉, (2.60)

realizes a basis for N particles when all possible choices ofα1,α2,…,αN are explored.
For indistinguishable particles, the correct permutational symmetry is imposed to the
product state (2.60) by taking the properly symmetrized linear combination

|α1, α2, . . . , αN 〉S/A = 1√
NP

∑

P

(±1){P} P|α1, α2, . . . , αN 〉

= 1√
NP

∑

P

(±1){P} |αP1, αP2 , . . . , αPN 〉. (2.61)

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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Here P indicates a generic permutation of the N states α j , and the sum extends over
allNP permutations; for example,NP = N ! if the states α j happen to be all different.
{P} in the exponent indicates the parity of the permutation P , i.e. the number of pair
swaps composing P . The fully symmetrized basis state |α1, α2, . . . , αN 〉S realizes
the correct permutational symmetry of N bosons; the antisymmetric combination
|α1, α2, . . . , αN 〉A involving nontrivial (−1) signs can play the role of basis state
for N fermions. For bosons, no restriction applies to the quantum numbers α j : any
number of them may coincide. Instead, for fermions, all quantum numbers must
necessarily be different. If two were equal, say αi = α j , in the sum (2.61), the kets
|αP1, . . . , αPi , . . . , αPj , . . . , αPN 〉 and |αP1, . . . , αPj , . . . , αPi , . . . , αPN 〉 would be
equal, but with opposite parity phase factor (−1){P}, so that they all cancel in pairs
in the sum, and the total ket |α1, . . . , αi , . . . , α j , . . . , αN 〉A vanishes. As a result,
the product basis kets for N fermions are characterized by N different quantum
numbers: this property expresses the Pauli exclusion principle, according to which
two identical fermions can never occupy the same quantum state.

The wavefunction representation of a N -fermion basis ket is obtained starting from
the eigenket of position and spin of the j th fermion, shorthanded to |w j 〉 = |r j , σ j 〉.
The corresponding N -fermions product converts to a bra as 〈w1, w2, . . . wN |, and
is then to be properly antisymmetrized. The wavefunction associated to Eq. (2.61)
is then

Ψα1,...,αN (w1, . . . , wN ) = A〈w1, w2, . . . , wN |α1, α2, . . . , αN 〉A

= 1

N !
∑

P ′
(−1){P ′} ∑

P

(−1){P}〈wP ′
1
, . . . , wP ′

N
|αP1, . . . , αPN〉

= 1

N !
∑

P ′
(−1){P ′} ∑

P

(−1){P}ψαP1
(wP ′

1
) . . . ψαPN

(wP ′
N
)

=
∑

P

(−1){P}ψαP1
(w1) . . . ψαPN

(wN ), (2.62)

where the sum over permutations of the variables w j generates N ! identical copies of
the same wavefunction, and is therefore eliminated. The sum in the last expression
is the determinant of the matrix whose elements are ψαi (w j ):

Ψα1,...,αN (w1, . . . , wN ) = 1√
N !

∣∣∣∣∣∣∣∣∣

ψα1(w1) ψα1(w2) · · · ψα1(wN )

ψα2(w1) ψα2(w2) · · · ψα2(wN )
...

...
. . .

...

ψαN (w1) ψαN (w2) · · · ψαN (wN )

∣∣∣∣∣∣∣∣∣

. (2.63)

This basis wavefunction is called a Slater determinant.6

6 In Eq. (2.63) we introduce an extra normalization factor (N !)−1/2. This standard factor allows one
to carry out integration (e.g. for wavefunction normalization) over an unrestricted domain of all w j
variables, instead of the appropriate “hyper-triangle” w1 > w2 > · · · > wN .
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An (anti)symmetrized product ket (2.61) contains an amount of information only
directly, rather than exponentially, proportional to the number N of identical parti-
cles, and is thus substantially simpler than a general boson/fermion ket. Despite their
simplicity, the kets of Eq. (2.61) constitute a basis of the Hilbert space of the proper
symmetry: any physical N -boson/N -fermion ket |aB/F 〉, e.g. an exact energy eigen-
state of N interacting identical particles, can be expressed as a linear combination
of the factorized basis kets:

|aB/F 〉 =
∑

α1,α2,...,αN

ca
α1,α2,...,αN

|α1, α2, . . . , αN 〉S/A, (2.64)

where ca
α1,α2,...,αN

are the complex coefficients defining the linear combination. The
number of these coefficients grows exponentially with N : the amount of information
of the correlated state |aB/F 〉 is now encoded in its expansion coefficients ca

α1,α2,...,αN
.

Several approximate methods of solution of the Schrödinger problem for many-
electron systems replace the (lowest) exact eigenstate with one (as smart as possible)
basis state |α1, α2, . . . , αN 〉A constructed with single-particle states |α1〉, |α2〉,…
solutions of some appropriate single-electron Hamiltonian. This scheme is named
independent-particles approximation.

For atoms, the simplest approach along this line consists in neglecting the
electron–electron Coulomb interaction Vee of Eq. (1.6) altogether. In this approx-
imation, the Schrödinger problem for the N electrons factorizes exactly: each
electron moves independently of the others in the field Vne of the nucleus of
charge Zqe. Neglecting relativistic corrections, the single-electron eigenstates |α j 〉
are represented by hydrogenic wavefunctions of the kind (2.27), as defined in
Eqs. (2.11)–(2.13), with the appropriate Z .7 In this atomic context α j stands for
a set of quantum numbers n j , l j , ml j , ms j . Choose a list of N different α j : the
generic N -electron eigenstate is |α1, α2, . . . αN 〉A, as in Eq. (2.61). The example of
a possible N = 4-electron state is

|1, 0, 0,↑, 3, 1, 1,↑, 3, 1, 0,↑, 3, 1,−1,↓〉A. (2.65)

The standard spectroscopic notation 1s3p3 for this state lists the occupied single-
particle orbitals, with the corresponding electron numbers as exponents: all infor-

mation about the ml ’s and ms’s is omitted. In contrast, the box notation 1s 3p

contains all details.
The total energy E tot of an atomic state is minus the work needed to decompose

the atom from that given bound state to an isolated nucleus plus the N individual
electrons at rest at infinite reciprocal distance. The total energy of non-interacting
electrons is simply the sum of their single-electron energies.

7 We neglect all reduced-mass effects, assuming an infinite nuclear mass. The finiteness of the
nuclear mass could introduce tiny correlations in the electronic motions, which would add to those
of Coulombic origin.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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The eigenstate (2.65) is not the one with the lowest possible energy. The ground
state can be obtained by minimizing the energy of each single-particle orbital, without
violating the Pauli principle. For N = 4, the lowest energy is realized by any

of 1s 2s , 1s 2s 2p plus 11 similar states, 2p1s plus 14 similar
states: a total of 1 (1s22s2) +12 (1s22s2p) +15 (1s22p2) = 28 individual states, all
with energy

E tot
1s22s2 = 2E1 + 2E2 = −2

EHa

2

(
Z2

12 + Z2

22

)
= −5

4
Z2 EHa. (2.66)

The excited state (2.65) has significantly higher total energy E tot
1s3p3 = − 2

3 Z2 EHa.

Real electrons do interact with each other. In a neutral atom, the electron–electron
repulsion (1.4) is of the same order of magnitude as the attraction (1.6) to the nucleus,
which means that the brutal simplification of a complete neglect of Vee is a very
poor approximation, doomed to yield unphysical predictions. Since the maximum
occupation of the nth hydrogenic level 2n2 grows rapidly, the minimum energy
required to remove an electron from a neutral atom (the first ionization energy)
increases with Z only marginally more slowly than Z2, at variance with experiment
(Fig. 2.14). Moreover, in this model any atom (regardless of Z ) would be able to
accept any number N of electrons, always forming bound states. Experimentally,
however, only certain atoms can form negatively-charged ionic bound states, but
never with more than 1 extra charge (N ≤ Z +1). The main reason for the failures of
this model is illustrated in Fig. 2.16: in reality while an electron is removed from the
atom, it does not feel the bare nuclear attraction −Ze2/r but rather, due to electron–
electron repulsion and according to the divergence law of electromagnetism, the
substantially weaker combined effect of the nuclear charge and that of the other N −1
electrons, V (r) � (−Z + N − 1) e2/r . This phenomenon of screening decreases
the ionization energy substantially, and must be included for a fair description of the
atomic wavefunction.

The following section sketches a simple but instructive theory for the simplest
many-electron atom, He (Z = N = 2), for which significant insight is obtained by
treating Vee as a perturbation to the uncorrelated electron states. Perturbative methods
fail for N ≥ 3: Sect. 2.2.4 sketches a more systematic method for a much improved
independent-electron method, which includes screening.

Fig. 2.16 When one
electron moves away from an
atom/ion, the nucleus of
charge Zqe and the
remaining (N −1) electrons
attract it as if effectively they
were a point charge
(Z − N + 1) qe

Z

N

http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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2.2.3 The 2-Electron Atom

In the simplest nontrivial case of N = 2 electrons (relevant for the He atom, and for
the Li+, Be2+… ions), the independent-electron wavefunction reads

Ψα1,α2(w1, w2) = 1√
2

∣∣∣∣
ψα1(w1) ψα1(w2)

ψα2(w1) ψα2(w2)

∣∣∣∣ = ψα1(w1)ψα2(w2) − ψα1(w2)ψα2(w1)√
2

.

(2.67)
In the cases where the orbital quantum numbers coincide (n1 = n2, l1 = l2, ml 1 =
ml 2), the orbital part can be factorized in the Slater determinant. Only spin remains
in the antisymmetric combination:

Ψn,l,ml ,↑, n,l,ml ,↓(w1, w2) = ψn,l,ml (r1) ψn,l,ml (r2)
1√
2

∣∣∣∣
χ↑(σ1) χ↑(σ2)

χ↓(σ1) χ↓(σ2)

∣∣∣∣ .

(2.68)

Here the Slater determinant is simply χ↑(σ1) χ↓(σ2) − χ↑(σ2) χ↓(σ1). This
combination of the two electron spin wavefunctions is an eigenstate of the square
modulus of the total spin S = s1 + s2, with null eigenvalue |S|2 = S(S + 1)�2 = 0.
Eigenstates of |S|2, like the one of Eq. (2.68), are useful because the matrix elements
of the (hitherto neglected) Coulomb repulsion between states of different S vanish
since Vee is an orbital operator, which does not act on spin. The other S = 0 states
(spin singlets), those involving two different sets of orbital quantum numbers, are:

Ψ S=0
n1,l1,ml 1, n2,l2,ml 2

(w1, w2)

= ψn1,l1,ml 1(r1) ψn2,l2,ml 2(r2) + ψn1,l1,ml 1(r2) ψn2,l2,ml 2(r1)√
2

1√
2

∣∣∣∣
χ↑(σ1) χ↑(σ2)

χ↓(σ1) χ↓(σ2)

∣∣∣∣ .

(2.69)

Note that the S = 0 states of Eq. (2.69) are not single Slater determinants of the type of
Eq. (2.67). The singlet states are characterized by an orbital part of the wavefunction
which is symmetric under permutation P12, with the spin part taking care of the
required antisymmetry.

The singlet states (2.68) and (2.69) are S = 0 eigenstates of |S|2. The other value
of S allowed by Eq. (B.72) is S = 1. The spin part of the wavefunctions of the S = 1
spin-triplet states is any of:

X S=1,MS=1(σ1, σ2) = χ↑(σ1) χ↑(σ2) [MS = 1]
X S=1,MS=0(σ1, σ2) = 1√

2
[χ↑(σ1) χ↓(σ2) + χ↑(σ2) χ↓(σ1)] [MS = 0]

X S=1,MS=−1(σ1, σ2) = χ↓(σ1) χ↓(σ2) [MS = −1]
,

(2.70)
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Table 2.1 The characters of the fixed-total-spin-S two-electron basis states

S = 0—spin-singlet states S = 1—spin-triplet states

Orbital quantum number Any (n1, l1, ml 1) �= (n2, l2, ml 2)

Orbital wavefunction Symmetric Antisymmetric

Spin quantum numbers ↑ and ↓ (different) Any

Spin wavefunction Antisymmetric Symmetric

which are all symmetric for P12. Therefore the orbital part takes care of antisymmetry:

Ψ
S=1,MS

n1,l1,ml 1, n2,l2,ml 2
(w1, w2)

= ψn1,l1,ml 1(r1) ψn2,l2,ml 2(r2) − ψn1,l1,ml 1(r2) ψn2,l2,ml 2(r1)√
2

X S=1,MS (σ1, σ2).

(2.71)

In these states, at least one of the orbital quantum numbers for the two electrons needs
to be different: (n1, l1, ml 1) �= (n2, l2, ml 2), or else the wavefunction vanishes.

Table 2.1 summarizes the basic properties of the singlet (S = 0) and triplet
(S = 1) basis states |n1, l1, ml 1, n2, l2, ml 2, S, MS〉 for two electrons. These spin-
symmetrized states are convenient 0th-order states for a perturbation theory in Vee,
see Appendix B.39. They are eigenstates of Te+Vne: like in the example of Eq. (2.66),
the “unperturbed” energies

E tot (0)
n1,n2

= − EHa

2

(
Z2

n2
1

+ Z2

n2
2

)
= −2 EHa

(
1

n2
1

+ 1

n2
2

)
, (2.72)

where the last expression refers to He (Z = 2). The ground state n1 = n2 = 1 (in
spectroscopic notation 1s2) is necessarily a spin singlet and has energy E tot (0)

1,1 =
−4 EHa � −109 eV.

As a next step, following standard perturbation theory (Appendix B.9) the effect of
Vee is accounted for by evaluating its diagonal matrix elements over the zeroth order
eigenkets. Equation (B.85) provides the first-order (additive) correction E tot (1) =
〈Vee〉 to the eigenenergies:

E tot (1)
n1,l1,ml 1, n2,l2,ml 2, S,MS

= 〈n1, l1, ml 1, n2, l2, ml 2, S, MS|Vee|n1, l1, ml 1, n2, l2, ml 2, S, MS〉.
(2.73)

Since the electron–electron repulsion is positive, this correction is always positive.
The detailed calculation of these Coulomb integrals is a rather intricate mathemat-
ical exercise, with instructive qualitative outcomes. The largest of these E tot (1)
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corrections occurs for the most localized wavefunction, the one where the two
electrons stay very close together, both in the 1s level: the ground state 1s2. The
average inter-electron distance is approximately a0, thus the Coulomb integral
E tot (1)

1,0,0, 1,0,0, 0,0 is of order ∼ e2/a0 = EHa. The precise value obtained from integra-

tion [5] is 5
4 EHa � 34 eV. This correction brings the estimated ground-state energy

of He to E tot (0)
1,1 + E tot (1)

1,0,0, 1,0,0, 0,0 = −74.8 eV, in fair agreement with the experi-
mental value −79.00 eV (minus the sum of the first and second ionization energies
of He).

For the optically most relevant states, those with one electron sitting in 1s and
the other in an excited state n2[l2], the first-order correction accounts for several
experimental observations:

• All Coulomb integrals are smaller than the one for the ground state, and tend to
decrease for increasing n2: the Coulomb correction become less and less important
as the electrons move apart from each other.

• The Coulomb integrals at given n2 depend weakly on l2: they usually increase
for increasing l2. By looking at the hydrogenic radial distributions Fig. 2.7, one
can note that indeed the electrons, on average, sit slightly closer when l2 is larger.
This is an important novelty, since it breaks the H-atom l-degeneracy of the shells,
putting Ens < Enp < End < · · · , in accord to experimental finding (Fig. 2.17).

Fig. 2.17 Energy levels of
atomic He, with several
optical transitions. While
one electron remains in the
n1 = 1 single-electron state,
the quantum numbers
n = n2 and l2 refer to the
other (excited) electron. Note
that each triplet state sits
systematically lower than the
corresponding singlet. The
energy zero is the ground
state 1s2, and the horizontal
dashed line at 24.59 eV
marks the first-ionization
threshold. (Inspired by
Fig. 4.4 of Ref. [3]; data from
Ref. [20])

20

21

22

23

24

25 ns
1S

np
1P

nd
1D

nf
1F

nf
3F

nd
3D

np
3P

ns
3S

2

2

3

4

3 3

5

2

2

3
3 3

4

electric
-dipole

6

0
1



2.2 Many-Electron Atoms 47

• The Coulomb integrals depend on S, clearly not through the spin wavefunc-
tion which has nothing to do with the purely spatial operator Vee, but through
the different electron–electron correlation in the P12-symmetric (S = 0) or
P12-antisymmetric (S = 1) spatial wavefunction. In particular, Eq. (2.71) shows
that the triplet wavefunction Ψ

S=1,MS
n1,l1,ml 1, n2,l2,ml 2

(w1, w2) vanishes for r1 → r2.

On the contrary, the singlet wavefunction Ψ S=0
n1,l1,ml 1, n2,l2,ml 2

(w1, w2) is finite at
r1 = r2. Therefore, on average, the electrons in a spin-triplet state avoid each
other more effectively than in the spin-singlet state with the same orbital quantum
numbers.8 Indeed, Coulomb integrals are systematically smaller for S =1 than for
S =0 states, as explicit evaluation of the integral (2.73) shows. This result accounts
for the experimental observation that each triplet state always lies below the corre-
sponding singlet (Fig. 2.17). This kind of Coulomb splitting between states which
differ uniquely for their total spin, here S = 0 or 1, is called exchange splitting.

The perturbative approach presented here is useful mostly as a conceptual tool,
to understand qualitative trends, and general concepts such as those listed above.
Perturbation theory is relatively successful for the 2-electron atom, but for N > 2
electrons the repulsion that a given electron experiences from the other N −1 elec-
trons is comparable to the attraction generated by the nucleus, and any attempt to
treat it as a small perturbation fails. A better approximate approach, based on a
mean-field self-consistent evaluation of the electron–electron repulsion, yields fair
quantitative accuracy for any N and is commonly used to date. The reliability of this
and similar self-consistent field methods have made them standard tools for under-
standing experiments and making predictions of atomic properties of matter from
first principles.

2.2.4 The Hartree-Fock Method

The problem of describing at best the ground state of a N -electron problem in terms of
a single Slater determinant belongs to the general framework of variational problems,
see Appendix B.5. The simple idea is that the average energy Evar[a] = 〈a|Htot|a〉
of any state |a〉 is greater than or equal to that of the ground state. The lower Evar[a]
is, the closer |a〉 gets to the ground state. When for |a〉 we take a generic Slater
determinant, the “best” state in its class is the result of the minimization of the
energy

8 This means that the fixed-spin states include a degree of geometric correlation of the electronic
motion induced by the symmetry properties of the spatial wavefunction. Employing a basis where
the perturbation Vee is diagonal within each unperturbed degenerate space follows the same strategy
as the adoption (Appendix B.8.1 and Sect. 2.1.7) of the |l, s, j, m j 〉 basis to have Hs−o diagonal
within the degenerate multiplets.
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Evar[ψα1 , . . . , ψαN ]
= 〈α1, . . . , αN |A Htot|α1, . . . , αN 〉A

=
∫

dw1, . . . , dwN Ψ ∗
α1,...,αN

(w1, . . . , wN )HtotΨα1,...,αN (w1, . . . , wN )

=
∑

i

〈αi |H1|αi 〉 + 1

2

∑

i, j

[ ∫
dw dw′ |ψαi (w)|2 vee(w, w′) |ψα j (w

′)|2

−
∫

dw dw′ ψ∗
αi

(w)ψ∗
α j

(w′) vee(w, w′) ψα j (w)ψαi (w
′)
]

(2.74)

under arbitrary variations of the N single-particle wavefunctions ψαi composing
the Slater determinant. We only require the ψαi to remain mutually orthonor-
mal

∫
dw ψ∗

αi
(w)ψα j (w) = δi j . In Eq. (2.74), the “one-particle term” H1(w) =[

− �2

2me
∇2

r − Ze2

|r|
]

⊗ 1spin would describe the individual motion of each electron in

the field of the nucleus, and vee(w, w′) = e2

|r−r′| ⊗ 1spin represents the electron–
electron Coulomb repulsion of electrons at locations r and r′.

Finding a minimum of Evar is the problem of minimizing a functional, i.e. a
function whose independent variables are (a set of) functions. This constrained min-
imization problem is formally solved if the ψαi satisfy the set of coupled nonlinear
integro-differential equations called Hartree-Fock (HF) equations:

1︷ ︸︸ ︷
H1(w)ψα(w) +

2︷ ︸︸ ︷∫ ∑

β

|ψβ(w′)|2 vee(w, w′)dw′ ψα(w)

−
3︷ ︸︸ ︷∫ ∑

β

ψ∗
β(w′) vee(w, w′) ψβ(w) ψα(w′)dw′ = εαψα(w). (2.75)

Each numbered term in Eq. (2.75) derives from a corresponding term in the total
energy (2.74). If one pretends that all ψβ functions are given known functions (rather
than the unknown functions they really are), then equations (2.74) become linear
in ψα . These equations for ψα have then a Schrödinger-like form. Term 1 contains
the kinetic energy plus the Coulomb attraction of the nucleus; term 2 represents the
Coulomb repulsion of the average charge distribution of all electrons (

∑
β |ψβ(w′)|2

represents the number-density distribution of the N electrons at position&spin w′);
term 3 is a nonclassical nonlocal exchange term which, in particular, removes the
unphysical repulsion of the electron with itself introduced by term 2 (observe that
the α = β terms in the sums of terms 2 and 3 cancel).9 The HF equations realize a

9 In the β sum of term 3, only ms β = ms α terms survive, as vee is purely orbital and does not
modify spin.
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Fig. 2.18 An idealized resolution scheme of the self-consistent HF equations (2.75)

natural way to deal with the electron–electron repulsion as accurately as possible at
the mean-field level.

Terms 2 and 3 of Eq. (2.75) depend explicitly on the (unknown) wavefunctions
ψβ . The standard strategy (Fig. 2.18) for the solution of the HF equation is based
on initially assuming that all ψβ in Eq. (2.75) are known: start from some arbitrary
initial set of N orthonormal one-electron wavefunctions, put them in place of all
ψβ ’s in Eq. (2.75), thus generating a first approximation for the effective potential
energy acting on the single electrons; solve (usually numerically) the linear equations
for ψα; from the list of solutions, take the N eigenfunctions with lowest single-
particle eigenenergy εβ ; re-insert them into the equations (2.75) in place of the ψβ ’s
thus generating a better approximation for the effective potential energy; iterate this
procedure as long as needed. Usually, after several iterations (of the order of 10,
depending on the starting ψβ ), self-consistency is reached, i.e. the wavefunctions do
not change appreciably from one iteration to the next. The converged wavefunctions
allow one to compute several observable quantities, and in particular the total HF
energy given by Eq. (2.74). The sum of the nuclear potential plus the repulsion of
the charge distribution of the other electrons represents the self-consistent potential
energy VHF driving the motion of the electrons.

Until now, no assumption has been made about the symmetry of VHF(w), which
is safe in a general context. In practice, a simplifying approximation is usually made
when applying HF to atoms: that the electron charge distribution and therefore the
self-consistent VHF are spherically symmetric functions, like the attraction to the
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nucleus Vne. This approximation allows one to separate variables in Eq. (2.75), like
in the Schrödinger problem for the one-electron atom, and write each HF single-
particle solution ψα as the product of a radial wavefunction Rn l(r) times a spherical
harmonic Yl ml times a spinor χms (σ ), as in Eq. (2.27). In the spherical approximation,
one-electron wavefunctions are labeled by hydrogen-like quantum numbers α =
(n, l, ml , ms): here quantum numbers l, ml , ms label exactly the same angular and
spin dependence as in Eq. (2.27) for the one-electron atom. In contrast, the radial
wavefunctions Rn l(r) differ from those of Eq. (2.13), and are usually determined
numerically. Despite their differences, the HF radial functions and those of the one-
electron atom share the following properties: (i) the number of radial nodes (n−l−1)

defines n, and (ii) near the nucleus Rn l(r) ∝ rl .
The N -electron ground state is built by filling the single-electron levels starting

from 1s, 2s, 2p,… upward. As expected, the spherically symmetric self-consistent
potential VHF(r) felt by each electron behaves as � (N − 1 − Z) e2/r for large r
and as � −Ze2/r for small r , see Fig. 2.19. Because the potential has not a simple
Coulomb shape, the single-electron levels do not coincide with the energies of the
one-electron atom, Eq. (2.10), and importantly their energy depends on l, not only
on n. Indeed, an ns orbital, with larger probability than np near the nucleus (where
the effective HF potential is more strongly attractive), is placed lower in energy.
Thus the Hartree-Fock method accounts quite naturally for the observed l-ordering
ns, np, nd,… of the single-electron levels observed in the atomic spectra (e.g. for
He in Fig. 2.17). Moreover, the faster-than-Coulombic raise of the effective potential
of many-electron atoms induces a n-dependence of the shell energy which is more
rapid than the n−2 of the one-electron atom.

Figure 2.20 reports the filled single-electron radial distribution associated to the
HF wavefunctions for the Ar atom. The typical radii of the individual shells vary

Fig. 2.19 A sketch of the
radial dependence of the
one-electron Hartree-Fock
effective potential energy
multiplied by r for atomic
oxygen, N = Z = 8
(solid line). This quantity
interpolates between the
hydrogen −1 value (dashed)
at large distance, and the
value −8 generated by the
bare oxygen nucleus in the
context of a O7+ ion (dotted)
at small distance
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Fig. 2.20 The radial
distributions of a
many-electron atom (Ar,
N = Z =18) computed by
means of the HF
self-consistent method. a
The radial probability
distribution for each one of
the filled single-electron
states. Note that the
characteristic radius of the
innermost shell n = 1 is
≈a0/Z , while the outer filled
shell (n = 3) is slightly
larger than a0. b The total
radial probability distribution
P(r) and effective integrated
charge Zeff (r) generating the
effective one-electron HF
potential acting on each
electron (Data from Ref. [1])
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substantially with n, from ≈a0/Z of 1s, to a few times a0 for the 3p valence shell.
As a result, 3 peaks associated to each of the filled shells emerge prominently in the
total probability distribution P(r), Fig. 2.20b.

The independent-electron self-consistent spherical-field HF model has become far
more than just an approximation to the actual atomic state: it provides the ordinary
language of atomic physics. The electron occupancies of the single-electron orbitals
composing the Slater determinant with the largest overlap to the actual correlated
many-electron atomic eigenstate are adopted routinely as a label of that eigenstate.
For example, the standard notation for the electronic ground-state configuration of
Mg is 1s22s22p63s2.
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2.2.5 Electronic Structure Across the Periodic Table

Let us now examine electronic configurations across the periodic table in the light of
the HF theory. The 1s2 ground configuration of He has total energy E tot

1s2 = −77.8 eV
according to HF, ∼1.2 eV above the measured ground-state energy; the radial
dependence of the one-electron wavefunction is of course nonhydrogenic. In Lithium,
a third electron adds into 2s (configuration 1s22s). The HF ground-state total energy
is −7.4328 EHa [5], to be compared with the experimental (1st +2nd +3rd) ionization
energy 7.4755 EHa, with an error of about 1 eV. The first ionization potential can be
computed by subtracting the total energy given by a self-consistent calculation for
the positive ion, N = Z −1: for Li, one obtains a ionization potential of 5.34 eV, in
good accord with the experimental value 5.39 eV. This value is much smaller than
that of He (24.59 eV). The reason is that the binding of the n = 2 shell is much
weaker than 1s. Beryllium has a 1s22s2 ground state. For all these atoms (N ≤ 4)
involving only s orbitals, the spherical approximation is appropriate.

Starting from Boron, electrons occupy progressively a degenerate p sub-shell: as
the p orbitals are non spherically symmetric, the spherical approximation for the
self-consistent field is questionable. The 2p sub-shell is completely filled as Neon
(N = Z = 10), the next noble gas, is reached. Again Ne is a spherically symmetrical
atom, since

∑
ml

|Yl ml (θ, ϕ)|2 is independent of θ and ϕ. The ionization potential
of Ne is again very large, but not as much as that of He (see Fig. 2.21). The next
atom, Na, involves one electron in the 3s sub-shell, which is located much higher
in energy than 2p. Again the ionization potential has a dip, as shown in Fig. 2.14,
which can be interpreted as the starting of a new shell which is only weakly bound.
As Z = N further increases, the filling of the n = 3 shell proceeds fairly smoothly,
with 3s and 3p becoming more and more strongly bound until the next noble gas
Ar is reached.10 For Z this large, the l-dependence of the single-particle HF energy
is so strong that the HF self-consistent field puts the 4s sub-shell lower than 3d.
Indeed experiment shows that potassium has ground state 1s22s22p63s23p64s rather
than 1s22s22p63s23p63d. The physical properties of this atom are similar to those of
other alkali metals (Li, Na).

After filling 4s at Z = 20 (Ca), and before involving 4p, electrons start to fill the
3d shell. Note however a few inversions (as in Cr and Cu) indicating that 4s and 3d
are very close in energy, and subtler effects of electron correlation play a relevant
role. Further intersections associated to a strong l-dependence of energy occur as
4d, 4f and 5d are being filled, as reported in the periodic table. Similar properties of
all elements with a given number of s or p electrons in the outermost shell suggest
the overall arrangement of the periodic table. The “low-energy” properties of atoms

10 For argon, Z = 18, the HF approximation finds a total energy of −526.817 EHa, which is
0.791 EHa = 21.5 eV in excess of the experimental energy [21]. The absolute error is rather large,
which indicates that the neglect of dynamical correlations in the electronic motion is a serious
drawback of HF. However, the relative error is ∼0.15% only, and the excess energy per electron
amounts to approximately 1 eV, indicating that this mean-field approximation captures the bulk of
the electron–electron repulsion.
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Fig. 2.21 An energy diagram comparing the observed ground state and lowest excitations of the
1 ≤ Z ≤ 11 atoms. The zero of the energy scale (top of the figure) is set for each atom at the ground
energy of the monocation. The energy spread of the atomic multiplets for fixed configuration,
highlighted by the vertical arrows, is due to Coulomb exchange and correlation energy

with incomplete d shells (transition metals) and f shells (lanthanides) are relatively
similar in each group.

The size of the atoms (a not especially well-defined property) computed with HF
is in relatively good accord with the empirical trends of Fig. 2.15. In particular, noble
gases are especially small and alkali atoms especially large relative to other atoms
of similar Z ; on the whole, the size of neutral atoms tends to increase slowly with Z .
Cations (=positive ions) can be produced with any charge Z − N : the size of these
species decreases as shells empty up and screening is less and less effective. A cation
with N electrons often exhibits the same formal ground electronic configuration
as the neutral atom (Z = N ): this holds especially for small charging, N � Z .
However all single-electron wavefunctions shrink closer to the nucleus in cations
than in the neutral atom. Anions (=negative ions) are stable in gas phase only for
certain atoms and only up to a maximum charging of 1 electron (i.e. N ≤ Z + 1).
The HF model signals that a certain ionic configuration is unstable by never reaching
self consistence. The HF stability or lack thereof often agrees with experiment.
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For example all halogens (F, Cl, Br, I, At), thanks to their almost complete relatively
“deep” in energy np5 shell (Fig. 2.21), have positive electron affinity (defined as the
ionization potential of the negative ion), which means that their negative ion is stable
against the loss of the extra electron.

Beside ionic states, HF permits also to compute (to some extent) excited states and
excitation energies. For example, after computing the ground-state properties of Na,
by filling the N = 11 lowest single-electron levels as 1s22s22p63s, one could run a
new self-consistent calculation putting the 11th valence electron in 3p rather than in 3s
(configuration 1s22s22p63p). The self-consistent field turns out different, and the total
energy is larger. The difference in total energy between the two calculations is a fair
estimate of the excitation energy, here of the 3s→3p transition of Na, approximately
2 eV, see Fig. 2.24.

2.2.6 Fundamentals of Spectroscopy

The main observation needed to understand the spectra of many-electron atoms is
that the dipole operator driving electromagnetic transitions is a one-electron operator.
In concrete, it the sum of the individual dipoles of the single electrons:

d =
∑

i

di = −qe

∑

i

ri . (2.76)

Consider initial and final states described in the HF model as two antisymmetrized
states as in Eq. (2.61). Between two such states, the matrix element of one such
operator is11

〈β1, . . . , βN |A
∑

i

di |α1, . . . , αN 〉A

= 1

N !
∑

i

∑

P P ′
〈βP1 |αP ′

1
〉 . . . 〈βPi |di |αP ′

i
〉 . . . 〈βPN |αP ′

N
〉

= 1

N !
∑

i

∑

P P ′
δP1,P ′

1
. . . δPi−1,P ′

i−1
〈βPi |di |αP ′

i
〉 . . . δPN ,P ′

N

= 1

N !
∑

i P

〈βPi |di |αPi 〉 =
∑

i

〈βi |di |αi 〉.

11 The first simplification comes because all one-electron angular products vanish unless all βPk =
αP ′

k
. This statement is rigorous under the simplifying assumption that the single-electron basis

states composing the initial state |α1, . . . αN 〉A are essentially equal to those composing the final
state |β1, . . . βN 〉A. The second simplification is due to the N − 1 Kronecker deltas forcing the P ′
permutation to match P . The final elimination of the sum over P is due to this sum leading to N !
copies of the same matrix elements.
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This calculation relates the N -electron electric-dipole matrix element to that of
one-electron states. When 〈βi |di |αi 〉 vanishes, because it violates the one-electron
electric-dipole selection rules of Sect. 2.1.9, the overall matrix element vanishes.

In concrete: dipole-allowed transitions occur only between N -electron states dif-
fering in one electron that makes a dipole-allowed transition, with the other N −1
electrons remaining in their initial single-particle state. With this condition, any of
the N electrons in the initial states |αi 〉 can make its own transition to any ini-
tially empty state. The angular part of all one-electron wavefunction is a standard
spherical harmonic Ylm . Therefore the electric-dipole selection rules (Δl = ±1,
Δs = 0) derived for the one-electron atom in Sect. 2.1.9 continue to hold for the
electron executing the transition. Here we report a few examples of allowed tran-
sitions of beryllium: 1s22s2→1s22s2p, 1s22s2p→1s22s4d, and 1s22s2→1s2s23p;
and a few examples of forbidden transitions: 1s22s2 �→1s22s3d, 1s22s2 �→1s22p2,
and 1s22s2 �→1s2s2p3p. Further rules discussed in Sect. 2.2.9 restrict dipole-allowed
transitions depending on changes of total angular momenta obtained by coupling the
spins and orbital angular momenta of individual electrons following the schemes of
Sect. 2.2.8.3.

2.2.7 Core Levels and Spectra

A result of HF theory is that the screening of the deep (strongly bound) single-particle
levels is scarce, so that their energy is highly negative, and decreases essentially as
∝ −Z2. Indeed, in the independent-electron language, it should be possible to excite
electrons from the deep core levels 1s, 2s,… For example for Na, a configuration such
as 1s12s22p63s2 could be investigated, where an inner 1s electron has been promoted
to the outer 3s shell. Producing this state requires a huge excitation energy (of the
order of 40 EHa), to the extent that one might suspect that such a highly unbound
state has no right to exist. Indeed, the atom in this state has plenty of electric-dipole-
allowed transitions to get rid of big chunks of this excitation energy, to states at much
lower energy, such as 1s22s22p53s2. According to Eq. (2.45), the decay transition rate
is very large as it grows with the third power of the energy associated to the transition,
which dominates over the reduction in dipole matrix element due to the small size
of the initial shell, to a total ∼Z4−5 dependence—see Eq. (2.55). Accordingly, the
spectral broadening due to the short lifetime of core states is often huge, exceeding
�γ ≈ 1 eV. Despite such huge broadening, core-hole states are not just a theoretical
prediction of the independent-electron model, but they are routinely observed in UV
and X-ray spectroscopies.

Many experiments probing core spectra with photons can be classified as absorp-
tion or emission, with the same conceptual scheme of Figs. 1.3 and 1.4. Absorption
data (Fig. 2.22) show a remarkable regularity of the spectra above ≈100 eV, and sys-
tematic changes of peak positions and intensities as Z is increased. A characteristic
feature of X-ray absorption spectra is the asymmetry of the peaks, which exhibit a
sharp edge at the low-energy side and a broad slow decrease at the high-energy side.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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This edge occurs because below the minimum excitation energy for the core state no
absorption takes place, while above threshold, the core electron may be promoted to
several empty bound and unbound states of the atom (whether in gas or condensed
phase), leading to continuum absorption. The slow intensity decay above edge is
due to an increase of the ejected-electron kinetic energy (which equals the differ-
ence between the absorbed photon energy and the energy of the atomic excited core
state): the final state becomes increasingly orthogonal to the initial core level, and
correspondingly the dipole matrix element (2.46) decreases. For this same reason,
an X-ray photon hitting an atom is much more likely to extract a core electron than
a weakly-bound outer-shell electron.

Emission spectra show the same simplicity and regularity as absorption spec-
tra. Initial atomic excitations are usually prepared by collisions with high-energy
electrons. The subsequent emission involves transitions only from levels for which
enough energy is made available by excitation. For example, if 2 keV electrons are
used to excite the sample, emission involving the 1s shell is observed for all Z ≤ 14
(Si), but not for P and higher-Z atoms (see Fig. 2.22).

Yet another uncalled-for traditional notation haunts core states and X-ray spectra:
a hole (=missing electron) in shell n = 1, 2, 3, 4,… is labeled K , L , M , N ,… The
substructures related to states of different l and j acquire a Roman counting subscript
(e.g. LIII for 2p 2P3/2), as in Fig. 2.23. Dipole-allowed transitions in emission are
organized in series according to the initial shell, with a Greek-letter subscript for the
final shell. For example, the transition K → L (in other words the decay 1s2s22p6 · · ·
→ 1s22s22p5 · · · ) produces the Kα emission line, K → M is Kβ , and L → M is Lα .

In the days of the great discoveries of chemistry and physics, when the structure
and classification of atoms were being understood, H. G.-J. Moseley acquired and
compared characteristic emission spectra of many elements: he showed that the Kα

Fig. 2.22 The observed
absorption coefficient of all
atoms in the third row of the
periodic table, showing, for
increasing Z , the regular
displacement of the K edge
(at the right), and a gradual
buildup of the L edge (at the
left)
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Fig. 2.23 The observed
core-level structure of
uranium: states are labeled
by the quantum numbers n l
and j of the core hole;
arrows highlight the
electric-dipole—allowed
emission lines. Within each
shell, observe the huge
l-related and spin-orbit
splittings (Inspired by
Fig. 9.17 of Ref. [1])
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inverse wavelength (equivalently, energy) is roughly proportional to Z2. This inverse
wavelength fits an approximate phenomenological law:

1

λKα

≈ C (Z − a)2. (2.77)

In this phenomenological dependence, the proportionality constant C is close to
EHa/(4π�c) � 1.097 × 107 m−1, and the quantity a, accounting for screening, is
approximately 2. The discovery of this regularity permitted Moseley to identify the
correct value of Z of each atomic species, thus correcting several mistakes in the
early attempts to construct the periodic table of the elements.

The decent accuracy of Moseley’s fit suggests that one could estimate the core-
level energy positions (within, say, 20 %) without going through a full self-consistent
HF calculation. Indeed, the energy of a core level is close to that of an hydrogenic
state in an effective −Zeff e2/r Coulomb potential, where the value of Zeff is the
average of the effective potential, like the curve of Fig. 2.19, weighted by the radial
distribution P(r) of the single-electron wavefunction of that level. Accordingly, the
energy of a core shell can be estimated by means of Eq. (2.10), replacing Z with
a Zeff � Z − 2 for the K shell, Zeff � Z − 10 for the L shell, and in general
Zeff � Z—(number of electrons in inner shells up to and including the target shell).

Nowadays, X-ray spectroscopies are used routinely in research and applications,
including position-sensitive analytic tools, local probes of the near chemical envi-
ronment of different atomic species, and many others. Many more applications of
X-ray spectroscopies are reported in the scientific literature and at the web sites of
X-ray photon facilities [22].
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2.2.8 Optical Spectra

The systematic regularity of the core spectra is lost rapidly when the visible and
soft-UV range is explored. Different atoms exhibit vastly different spectra. A few
trends and similarities can be recognized.

In the LS scheme, atomic states are labeled 2S+1[L]J to collect their total angular
momenta. An optional “o” apex can be added to indicate that the overall parity
(−1)

∑
j l j of that state is odd.

2.2.8.1 Alkali Atoms

The alkali atoms have Z − 1 electrons filling a number of close shells (=completely
filled shells) which are energetically well separated (∼20 eV) from the outermost
half-occupied n0s level. The latter is very shallow, with a binding energy ranging
from 5.4 eV in Li to 3.9 eV in Cs. The electrons in the inner shells form an essen-
tially “frozen” spherically symmetric core (null spin and orbital angular momentum),
which provides an effective potential (Fig. 2.19) for the motion of the outer electron.
Like for hydrogen, the ground-state label is 2S1/2, because the angular momenta of
the alkali atoms coincide with those of the valence electron.

The outer electron is the protagonist of all excitations in the optical spectra of the
alkali elements. These spectra resemble the spectrum of a one-electron atom, the main
difference being the sizable energy gaps between states characterized by the same n
but different l, see Fig. 2.24. In both emission and absorption, dipole-allowed optical
transitions appear as diagonal lines in such level schemes, namely s↔p, p↔d, and
d↔f, like in Fig. 2.17. A characteristically bright transition in the visible (Li and Na)
or near IR (K, Rb, and Cs) spectrum originates from the ∼2 eV n0s↔n0p separation,
and finds no similarity in hydrogen. This n0s→ n0p transition is especially intense
due to the large electric-dipole matrix element involving strongly overlapping and
fairly extended wavefunctions.

Spin-orbit affects all non-s states. The natural generalization of Eqs. (2.32) and
(2.35) to a generic radial potential yields a microscopic estimate of the relevant ξnl

for a given shell:

ξnl = �
2

2 m2
e c2 〈n, l|1

r

dVeff(r)

dr
|n, l〉 = Z4

eff s−oα
2 EHa

1

n3l(l + 1)(2l + 1)
. (2.78)

where Zeff s−o is implicitly defined by this equation and provides rough estimates
of ξnl . Due to the strong localization of the mean field r−1 dV eff(r)/dr near the
origin, the effective charge Zeff s−o is usually larger than that introduced above for
the estimate of the level position: Zeff < Zeff s−o < Z . The spin-orbit level splittings
induces splittings of all optical transitions. Table 2.2 reports the observed spin-orbit
splittings of the lowest excited p state of the alkali atoms. These splittings are gen-
erally larger than those of H: for example the 3p splitting originates a well-resolved
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Fig. 2.24 The observed
level scheme of lithium and
sodium, compared to the
levels of hydrogen. For a
easier comparison, for each
atom the scale reference
energy is set at the ground
state of its monocation, like
in Fig. 2.21. Note the
significant dependence of
energy not only on n but also
on l. The 2s↔2p transition
of Li (red lines at 670.776
and 670.791 nm) and the
3s↔3p transition of Na
(yellow “D-lines” at 588.995
and 589.592 nm) are
characteristically bright
optical transitions in the
visible range (Data from Ref.
[20])
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Table 2.2 The spin-orbit splittings and effective charge of the lowest excited p level of the alkali
atoms

Element H Li Na K Rb Cs

Z 1 3 11 19 37 55

Single-electron excited level np 2p 2p 3p 4p 5p 6p

Spin-orbit splitting 3
2 ξnp (meV) 0.045 0.042 2.1 7.2 29.5 68.7

Zeff s−o 1 0.98 3.5 6.0 10.0 14.2

doublet structure in the optical spectrum of sodium vapors (the characteristic yel-
low 3s–3p lines of wavelengths 588.99 and 589.59 nm). Remarkably, the spin-orbit
splitting of Li 2p is smaller than that of H 2p: the reason is that most of the Li 2p
wavefunction lies well outside the compact 1s screening shell.

The fine-structure splittings of higher excited non-s states are smaller than those
of the n0p states, see Fig. 2.25. In the Li spectrum all doublets are split with the
smaller J at lower energy, as expected by ξnl > 0, Eq. (2.78). However, the spectra
of Na and K display an inverted splitting of the l ≥ 2 doublets, due to nontrivial
exchange and correlation effects (neglected in the mean-field HF approximation) of
the valence and core electrons [6] prevailing over the weak spin-orbit interaction.
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Fig. 2.25 The fine structure
of a few low-energy excited
levels of sodium. All
splittings are widely
expanded to make them
visible. The regular P1/2–P3/2

splitting of the p states is
governed by the spin-orbit
interaction. Note the inverted
splitting of the D5/2–D3/2

doublets. The reference
energy is the same as in
Fig. 2.24
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Within the HF model, Eq. (2.78) can be used to estimate the spin-orbit energy
ξnl for any shell of any atom, not just for the excited shells of alkali atoms. For
example, the large effective Zeff s−o accounts for the colossal spin-orbit splittings
(tens or hundreds eV) of the core shells of heavy atoms, observed in X-ray spectra
(e.g. the L I I –L I I I splitting shown in Figs. 2.22 and 2.23).

2.2.8.2 Atoms with Elementary Ground States

For a number of atoms, the occupancies of the single orbitals are sufficient to deter-
mine uniquely all global symmetry properties of the atomic ground state, in particular
its total angular momentum J (thus its degeneracy).

The ground-state symmetry of noble gases, alkali earth and, in general, all atoms
in close-shell configurations, including Zn, Cd, Hg, Yb, and No is trivial, as all
orbital and spin angular-momentum component cancel: these atoms all qualify as
nondegenerate spherically symmetric 1S0.

Likewise, the ground state of alkali metals is simply 2S1/2, with a twofold degen-
eracy associated to spin, but no orbital degeneracy.

B, Sc, and atoms in the same groups IIIB and IIIA, with a single electron in a
degenerate p or d shell (and all inner shells complete), are only marginally more
complicated: here the total spin and orbital angular momenta equal those of the
lone electron. Spin-orbit coupling splits the two levels with J = L ± 1/2, putting
J = L − 1/2 lower. Accordingly, the ground state of B is 2P1/2 and that of Sc is 2D3/2.

The last relatively simple class is that of the halogen atoms (group VIIB, p5

configuration), characterized by a single hole in an otherwise full shell. Here, unsur-
prisingly, this hole carries the same spin and orbital angular momentum (S = 1/2 and
L = 1) as one electron in that shell. However, the effective spin-orbit interaction for
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Fig. 2.26 The 6 × 5/2 = 15 Slater-determinant states of a p2 configuration

the hole is reversed in sign.12 Once this is agreed upon, the ground-state symmetry of
all halogens is 2P3/2. Similarly, the symmetry of the 4f13 ground state of Tm is 2F7/2.

2.2.8.3 Atoms with Incomplete Degenerate Shells

Things get intricate when several electrons occupy a degenerate shell, but are too
few to fill it completely. The HF independent-electron quantum state usually predicts
incorrect degeneracies. For example, the two 2p electrons of carbon can settle in any
of the 15 Slater-determinant states sketched in Fig. 2.26. HF puts all the six MS = ±1
states of the leftmost and rightmost column at the same energy, and the remaining
nine MS = 0 states in the three central columns at a higher energy. This splitting
is due to the exchange term in Eq. (2.75). However, the actual ground state of C is
not 6-fold degenerate! The MS = ±1 are the high-|Sz | components of a 3P spin and
orbital triplet, consisting of 3 × 3 = 9 states. The three missing MS = 0 states could
be obtained as suitable linear combinations of the nine MS = 0 Slater determinant,
which, as such, are not S2 eigenstates. These combinations are not single Slater
determinants, and therefore the HF method cannot be applied to these combinations

12 Observe that for N electrons within a degenerate shell the true spin-orbit operator is Hs−o =
ξ

∑N
i=1 li · si . To relate Hs−o to the effective form Hs−o eff = ξeff L · S that spin-orbit takes in terms

of the coupled orbital and spin angular-momentum operators, note that Hs−o = ξ
∑N

i, j li · s j −
ξ

∑N
i �= j li · s j = ξ

(∑N
i=1 li

)
·
(∑N

j=1 si

)
− ξ

∑N
i �= j li · s j = ξL · S − ξ

∑N
i �= j li · s j . When the

shell is full but for one electron, i.e. there are N = 2(2l + 1)− 1 ≡ d − 1 electrons, one can rewrite

the previous expression as: Hs−o = ξL ·S− ξ
∑d

i �= j li · s j + ξ
(

ld · ∑N
j s j + ∑N

i li · sd

)
. Observe

that the term
∑d

i �= j li · s j = 0 (since in a completely full shell for a given product li · s j there
is always another li · s j ′ which cancels the previous one) and that ld = −L and sd = −S (since

ld = ∑d
i li −∑N

i li = 0 − L). As a result, Hs−o = ξL · S + ξ [−L · S + L · (−S)] = −ξL · S. We
conclude that the spin-orbit interaction of the “missing” electron, named hole, in a halogen atom is
the same as that of one electron, but with with reversed spin-orbit ξeff = −ξ < 0.
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Fig. 2.27 The observed
ordering of the p2 multiplets
of carbon and silicon follow
Hund’s rules. Labels adopt
the LS coupling scheme.
Degeneracies (2J + 1) are
indicated at the left
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without specific adaptations. The 6 remaining MS = 0 combinations are excited
states, identified in Fig. 2.27. The splittings among these states is due to mechanisms
discussed in the following.

In general, N electrons can occupy d = 2(2l+1)degenerate spin-orbitals in
(d

N

) =
d!/N !/(d − N )! different ways, corresponding to physically different (orthonormal)
quantum states. The degeneracy of these states is partly (but generally incorrectly)
lifted by the HF method. In an actual atom, the splitting of these multiplets is governed
by (i) Coulomb exchange (mostly accounted for by HF) and correlation (i.e. the
effects of the residual electron–electron interaction ignored at the HF level, inducing
correlated electronic motion), and (ii) the spin-orbit interaction.

In the outer atomic shells and for Z smaller than ∼30, spin-orbit energy is a
comparatively small (ξ � 1 eV) and thus initially negligible interaction. Coulomb
repulsion induce much larger splittings of the order of one to several eV (see the He
results, Sect. 2.2.3). The Coulomb interaction (and also its residual part, i.e. the part
not accounted for by the HF mean field) is spherically symmetric: it thus commutes
with total |S|2 and |L|2. These operators thus provide a proper labeling of states in
the degenerate state. Table 2.3 reports a complete list of the “multiplet” states labeled
by their total spin and orbital angular momentum.

Coulomb exchange&correlation acts on the degenerate HF states very much like
the full Coulomb repulsion does in He (Sect. 2.2.3). It first of all splits states of
different total spin S: low-spin states sit higher in energy because the correlated
motion of the electrons takes them, on average, nearer to one another. The ground
state will therefore have the highest possible spin: this result agrees with the empirical
first Hund’s rule.

In degenerate configurations there can occur several states of the same S, but
different orbital angular momentum L . Electrons avoid one another more efficiently
when they rotate all together cooperatively, in states with high L . Accordingly, the
state with the largest possible L among those with given S sits lowest in energy. This
is known as second Hund’s rule.

Finally, once the total L and S are determined, the hitherto neglected spin-orbit
interaction couples them together to a total angular momentum J . The allowed values
of J are given by the usual rule (B.72), and the question of which of them is lowest
in energy is decided by the sign of the effective spin-orbit parameter for that partly
filled shell. While the true spin-orbit parameter is necessarily positive [see Eq. (2.78)],
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the effective parameter for the coupling of total L with total S may as well be negative,
as discussed above for the halogens. Indeed the sign of the effective spin-orbit reverses
when more than 2l + 1 electrons occupy a shell with room for 2(2l + 1) electrons.
Accordingly, the third Hund’s rule states that the lowest-energy state has J = |L −S|
for a less-than-half-filled shell and J = L + S when the shell is more than half filled.

In the p2 example, the 15 states of Fig. 2.26 combine themselves into 9 spin-
orbit split triplet states 3P0, 3P1, 3P2, plus 6 singlet states 1D2, 1S0. No other state
is compatible with Pauli’s principle [1]. The Hund-rules ordering of these states is
illustrated in Fig. 2.27.

Similar Hund-rules level ordering is usually observed also in configurations
involving several incomplete shells, as occur in atomic excited states—see Fig. 2.28b.
The observed multiplets of states corresponding to each configuration are scattered

Fig. 2.28 The conceptual sequence of splittings of LS multiplets caused by interactions of decreas-
ing strength. a The 6 × (6 − 1)/2! = 15 states of two “equivalent” electrons in a np2 configuration,
including Coulomb and spin-orbit splittings plus those induced by a weak external magnetic field
(Zeeman limit). b The 6 × 10 = 60 states of two “nonequivalent” (different n and/or l) electrons
in a 3d4p configuration, as occurs in the spectrum of excited Ti
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over ranges shown as brackets in Fig. 2.21 for a few low-Z atoms. The low-energy
multiplets scatter out by several eV, while more excited multiplets scatter less,
because the Coulomb repulsion is smaller for more extended wavefunctions. Note
also that Hund’s rules are phenomenological results, not exact laws of nature. Their
predictions are occasionally violated. For example, for the 3d24s2 configuration of
Ti Hund’s rules predict an ordering 3F < 3P < 1G < 1D < 1S, while in reality 1D
lies below 3P.

The described scheme of coupling all si together to a total S and all li together
to a total L (followed by spin-orbit coupling of S and L together) is called Russell-
Saunders or LS coupling. It provides a satisfactory basis of coupled states for low-Z
atoms, where Coulomb exchange and correlation dominates over spin orbit. For
increasing Z the spin-orbit interaction grows rapidly, while electron–electron repul-
sion remains in the few eV range, and even weakens due to the valence orbitals
spreading out. For very large Z ≥ 50 spin-orbit dominates: Hs−o must be accounted
for before Coulomb terms. The spin-orbit interaction couples the spin and orbital
moment of each electron to an individual ji = li ±1/2. These individual total angular
momenta are then coupled to a total J by smaller Coulomb terms. This ordering
of the couplings of the angular momenta is called jj coupling, and provides another
basis for the many-electron states. While the LS basis is almost diagonal for small
Z , the jj basis is almost diagonal for large Z (see Fig. 2.29). For intermediate Z ,
both basis are nondiagonal: the matrix of Coulomb exchange and correlation plus
spin-orbit interaction should be diagonalized to express the proper eigenstates as
linear combinations of the states of either basis.

Fig. 2.29 A level
correlation diagram,
illustrating, for increasing Z ,
the effect of the increasing
relative magnitude of
spin-orbit over Coulomb
exchange and correlation
energies: atomic spectra
evolve from the pure LS
coupling of carbon (Z = 6)
to the intermediate coupling
(exchange & correlation and
spin-orbit of the same order)
of germanium (Z = 32) to
the jj coupling (dominating
spin-orbit) of lead (Z = 82)
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2.2.8.4 Many-Electron Atoms in Magnetic Fields

When a uniform magnetic field acts on a many-electron atom, two very different
behaviors are observed depending on whether the atom carries a magnetic moment
or not. Atoms with total angular momentum J = 0 carry no permanent magnetic
dipole available to align with the field: the field induces a small magnetic moment
∼µB (µB B)/Δ, where Δ is the energy gap between the ground state and the lowest
excitation. We will ignore such tiny effects. Instead, open-shell atoms with J �= 0
carry a magnetic moment µ = −gJµBJ/�, with a tendency to align to the field.

For LS coupling, the appropriate Landé g-factor gJ is determined by Eq. (B.78),
with the total angular momenta J , L , and S in place of the single-electron j , l, and
s. As discussed in Sect. 2.1.10, this total magnetic moment, derived by the coupling
of orbital and spin contributions, is relevant in the limit of weak external magnetic
field (Zeeman limit). In practical experiments this is the relevant limit for many-
electron atoms, due to the Z4 increase of the spin-orbit energy ξ , often exceeding
the maximum field accessible in the lab (of the order of 10 T). Also the opposite
strong-field (Paschen-Back) limit can be realized, since in highly-excited states, an
electron close to dissociation is weakly affected by the nuclear field.

The simplest splitting pattern—three equally spaced lines, corresponding to
ΔMJ = 1, 0 and −1—is called regular Zeeman splitting. An example is shown
in Fig. 2.30. It occurs when the initial and final g-factors are equal (typically
g = gL = 1). This in principle occurs when either S = 0 or L = 0. However,
L = 0 is most unlikely, as the electron making the transition changes its l by unity,
thus transitions Li =0 → L f =0 seldom occur. In practice, regular Zeeman splitting
is observed in optical transitions between spin-singlet states (S = 0). In all other
cases, the Zeeman spectrum shows more complicated patterns due to the different
initial and final g-factors (anomalous Zeeman spectrum, see Fig. 2.31).

The most direct experiment to investigate the ground-state degeneracy and mag-
netic moment of many-electron atoms is the Stern-Gerlach one (Sect. 2.1.5). The
amount of deflection of the atoms in a field gradient measures the z component of
the magnetic moment, and therefore the Landé g-factor gJ , according to Eq. (2.26):

lm

1
0

m l

0
magnetic

2
1

magnetic

Fig. 2.30 A regular Zeeman spectrum, with its interpretation. It occurs in transitions between
S = 0 states, which have the same initial and final Landé g-factors. For example, it is observed in
the 2s3d 1D2 →2s2p 1P1 emission of Be
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Fig. 2.31 The anomalous Zeeman splitting of Na (a) and Zn (b) lines

Fz = µz
∂ Bz

∂z
= −µB gJ MJ

∂ Bz

∂z
. (2.79)

The number of sub-beams into which the inhomogeneous field splits the original
beam measures directly the number of allowed MJ values, i.e. the ground-state
degeneracy 2J +1.

2.2.9 Electric-Dipole Selection Rules

As discussed in Sect. 2.2.6, the main selection rule requires that a single electron
jumps to another state satisfying

Δl = ±1 (for the one electron making the transition). (2.80)

A few extra electric-dipole selection rules for the total quantum numbers J , L , and
S of many-electron atoms in LS coupling also apply. They are summarized below:

Parity changes (2.81)

ΔS = 0 (2.82)

ΔL = 0,±1 (2.83)
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ΔJ = 0,±1 (no 0 → 0 transition) (2.84)

ΔMJ = 0,±1 (no 0 → 0 transition if ΔJ = 0). (2.85)

As both S and L are good quantum numbers only in the limit of very small spin-orbit,
in practice selection rules (2.82) and (2.83) are only approximate.

Figure 2.29 draws the allowed transitions in characteristic examples of LS cou-
pling and jj coupling. In this latter scheme, specific dipole selection rules apply,
which are described in advanced atomic-physics textbooks [6].

The present Chapter summarizes a few main concepts and experimental evidence
in the field of atomic spectroscopy which, in the context of a general course in
physics of matter, provide a minimal background and language for understanding
and describing the microscopic atomic structure, which lays at the root of the physics
of matter. Important conceptual points (e.g. the seniority scheme for the labeling of LS
states when L , S and J are not sufficient), and modern spectroscopic techniques (e.g.
Auger) are omitted altogether. These and other more advanced subjects, including
countless analytic chemical and astrophysical applications of atomic physics, are
dealt with in specific textbooks [5–7].

Problems

A � marks advanced problems.

2.1 A beam of oxygen atoms emerges from an oven with approximately equal
populations of its 1s22s22p2 triplet states: 3 P0, 3 P1, 3 P2. The average kinetic
energy is Ekin = 0.2 eV. These atoms are sent through a l = 0.3 m long
Stern-Gerlach magnet, where a field gradient ∂ B/∂z = 150 T/m is present.
Successively, the beam crosses a region of length l ′ = 0.5 m where the magnetic
field is negligible. Compute the total number of beam components detected at
the end of the SG apparatus and the distance between the most widely spaced
components.

2.2 The two lowest electric-dipole optically allowed transitions starting from the
ground state of the Ne atom are observed at energies 16.8 and 19.8 eV. Deter-
mine the electronic configuration and the corresponding spectroscopic term
of both final excited states involved in these transitions. Describe how these
absorption lines change if a uniform magnetic field of 1 T acts on a gaseous Ne
sample.

2.3 Construct the scheme of the core levels of Sn, indicating the excitation energies
in eV. The K edge is observed at λK = 0.425 Å, and the wavelengths of the
first two lines of the K series are: Kα = 0.517 Å, Kβ = 0.437 Å. Evaluate the
minimum excitation energy needed to observe the L series emission lines after
excitation. Evaluate the maximum kinetic energies of photoelectrons produced
by the excitation of shells K , L , M of Sn induced by 32 keV X rays.

2.4 Two hydrogen atoms are excited in the quantum states described by the fol-
lowing wavefunctions:
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(a) ψ300 = 1

9
√

3π a
3/2

0

(
3 − 2

r

a0
+ 2

9

r2

a2
0

)
e−r/3a0

and

(b) ψ210 = 1

4
√

2π a
3/2

0

r

a0
e−r/2a0 cos θ ,

where a0 is the Bohr radius. For each, evaluate the decay probability rate γ to
the ground state

ψ100 = 1√
π a

3/2

0

e−r/a0

in the electric-dipole approximation.

[Recall that in this approximationγif = (3πε0)
−1

�
−4c−3 (Ei−E f )

3 |〈 f |d|i〉|2,
where the Cartesian components of d are−qer sin θ cos φ,−qer sin θ sin φ, and
−qer cos θ .]

2.5 The 7 valence electrons of the Fe+ ion in its ground state assume the con-
figuration 3d6 4s. Evaluate the ground-state magnetic moment and the num-
ber of components in which the spin-orbit interaction splits the lowest-energy
(according to the first and second of Hund’s rules) degenerate configuration.

2.6 Determine the number of absorption lines that a gas-phase sample of atomic
chlorine at 1,000 K exhibits in the 3s23p5(2P) → 3s23p44s(2P) transition.
Assume a significant thermal population of the excited state of the 3s23p5(2P)
configuration, given that this excited state sits 109.4 meV above the ground
state. If this sample is immersed in a static uniform magnetic field |B| = 1.5 T,
how many distinct sub-lines does each of the lines determined above split into?

2.7 The three components of the ground configuration 3d24s2 3F of atomic titanium
are at energies 0, 0.02109, and 0.04797 eV. The absorption spectrum of Ti vapor
at 1,000 K involves lines related to transitions starting from the ground-state
components to 3d24s4p levels, which are organized as three groups of states
of total orbital angular momentum L = 2, 3 and 4. Establish the quantum
numbers of the final states of the electric-dipole allowed transitions in each of
the three groups. Considering now uniquely the transitions starting from the
ground state 3F2, identify the most intense transition in each group.

2.8* Evaluate the magnitude of the magnetic moment |µ| of atomic Sc, V, and Mn in
their respective ground states 3d4s2, 3d34s2, 3d54s2. Beams of such atoms with
equal kinetic energy are sent through one Stern-Gerlach apparatus. Identify for
which of these three elements the least-deflected beam component is deflected
the most.

2.9 A 30 keV X-ray beam hits a palladium target. Among the photoemitted elec-
trons several are measured at values of kinetic energy: 5,650, 26,396, 26,670,
and 26,827 eV. Given these data, evaluate the core-shell energies of Pd, assign
the departing shell for the electrons of the smallest kinetic energy and evaluate
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the effective charge Zeff (with three significant digits) relevant for the motion of
an electron in that shell, consistently with the measured photoelectron energies.

2.10 Helium atoms in the excited state 1s2s(3S1) are generated and accumulated in
a storage vessel for (on average) one hour. They leave it through a tiny orifice at
an average speed 2,000 m/s, and into a Stern-Gerlach apparatus characterized
by a length 0.5 m and a field gradient ∂ B/∂z = 9 T/m. Given that the lifetime
τ of the metastable 1s2s(3S1) state is 8,000 s, evaluate the fraction of deflected
atoms with a MJ = 1 component of total angular momentum over the total
number of atoms leaving the storage vessel in a given time. Evaluate also the
angular deflection of that component.

2.11 A 10 keV photon beam hits a cesium target. Part of the photoemitted electrons
is collimated by suitably placed slits and sent into a transverse-field analyzer
characterized by |B| = 0.1 T. Electrons circulating with radii 2.3 and 3.2 mm.
Based on these data, assign the core shells from which the electrons are emitted
and evaluate their excitation energy.

2.12 � In the standard formulation of the hydrogen-atom problem, the nucleus is
taken as a point charge producing a potential energy VCoul(r) = −e2/r for
the electron at distance r . In fact the nucleus has a finite size. Modeling it
as a uniform sphere of positive charge, of radius rn = 0.9 fm, the potential
energy changes to Vtrue(r) = −3e2/(2rn) + e2r2/(2r3

n ) inside the nucleus
(no change outside, of course). Evaluate the effect of this modification on the
hydrogen ground-state energy to first order in perturbation theory. [Suggestion:
approximate exp(x) � 1 when |x | � 1.]



Chapter 3
Molecules

Molecules, particularly diatomic ones, are the simplest systems where several nuclei
are bound together by their interaction with one or several electrons. Their simplicity
makes diatomics the ideal playground to approach two central concepts of condensed-
matter physics: the adiabatic separation of the electronic and nuclear motions, and
chemical bonding.

3.1 The Adiabatic Separation

The full Hamiltonian (1.1) for a piece of matter and all of its eigenfunctions Ψ depend
on the coordinates r of all electrons and R of all nuclei. This entangled dependency
makes the resulting information content catastrophically and often needlessly com-
plicated. A disentanglement of the fast electron dynamics from the slow motion of the
nuclei is a crucial conceptual step to make progress in understanding and interpreting
an immense body of phenomena and observations regarding matter.

Since the electron mass is much smaller than the nuclear mass, the ionic and
electronic motions should occur over different (and hopefully decoupled) time scales.
As masses appear at the denominators of the kinetic terms Eqs. (1.2) and (1.3),
electrons move much faster than atomic nuclei. The fast electrons should be capable
to follow the slow displacements of the nuclei with essentially no delay.

To implement this decoupling consider the following factorization of the total
wavefunction:

Ψ (r, R) = Φ(R) ψe(r, R). (3.1)

Assume that the electronic wavefunction ψe(r, R) is a solution ψ
(a)
e (r, R) of the

following electronic equation:

[Te + Vne(r, R) + Vee(r)] ψ(a)
e (r, R) = E (a)

e (R) ψ(a)
e (r, R), (3.2)
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where (a) represents the set of quantum numbers characterizing a given N -electron
eigenstate with energy E (a)

e . The electronic eigenfunction ψ
(a)
e (r; R) describes an

electronic eigenstate compatible with a fixed geometrical configuration R of the ions:
the R-dependence of ψ

(a)
e (r; R) is purely parametric [no ∇R operators in Eq. (3.2)].

The factorization defined by Eqs. (3.1) and (3.2) (known as the adiabatic or Born-
Oppenheimer scheme) implies the assumption that, once an initial electronic eigen-
state is selected, the atomic nuclei move slowly enough not to induce transitions to
other electronic states. These transitions are prevented by the electronic energy gaps
usually being much larger than the typical energies associated with the slow motion
of the nuclei.

To make use of the ansatz (3.1), observe that Te ∼ ∇2
r does not act on the R

coordinates:
Te [Φ(R) ψe(r, R)] = Φ(R) [Teψe(r, R)]. (3.3)

Derivation is slightly more intricate for the nuclear kinetic term:

∇2
R[Φ(R) ψe(r, R)] = ψe(r, R)∇2

RΦ(R) + 2 [∇Rψe(r, R)] ∇RΦ(R)

+ Φ(R)∇2
Rψe(r, R). (3.4)

Thus, when we substitute the factorization Ψ (r, R) = Φ(R) ψe(r, R) into the
Schrödinger equation HtotΨ = EtotΨ we obtain

−
∑

α

�
2

2Mα

{
2 [∇R αψe(r, R)] ∇R αΦ(R) + Φ(R)∇2

R αψe(r, R)

+ψe(r, R)∇2
R αΦ(R)

}

+ Φ(R) Teψe(r, R) + [Vne + Vee + Vnn] Φ(R)ψe(r, R) = Etot Φ(R)ψe(r, R),

(3.5)

(omitting the coordinate dependence of the V terms). We can rearrange Eq. (3.5) as
follows:

−
∑

α

�
2

2Mα

{
2 [∇R αψe(r, R)] ∇R αΦ(R) + Φ(R)∇2

R αψe(r, R)
}

(3.6)

+ ψe(r, R)

[
−

∑

α

�
2∇2

R α

2Mα

]
Φ(R) + Φ(R) [Te + Vne + Vee + Vnn] ψe(r, R)

= Etot Φ(R)ψe(r, R), (3.7)

in order to highlight the electronic Hamiltonian (Te + Vne + Vee) of Eq. (3.2).
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The two terms of line (3.6), involving derivatives ∇R of the electronic wave-
function ψe(r, R) are called nonadiabatic terms. These nonadiabatic terms (which,
recall, are of nuclear kinetic nature) are much smaller (usually by a factor ≈ me/Mα)
than the typical differences between electronic eigenenergies of Eq. (3.2), dominat-
ing Eq. (3.7). The adiabatic approximation consists precisely in the neglect of the
terms of line (3.6).

Substitute a solution ψ
(a)
e (r, R) of Eq. (3.2) for ψe(r, R) in the remaining terms

of Eq. (3.7):

ψ(a)
e (r, R)

[
−�

2

2

∑

α

∇2
R α

Mα

+ E (a)
e (R) + Vnn(R)

]
Φ(R)

= Etot ψ
(a)
e (r, R)Φ(R), (3.8)

where the electronic wavefunction ψ
(a)
e (r, R) is displaced to the left of the operator,

to stress that the differential part only acts on the ionic part Φ(R). Note that all
three terms Te, Vne and Vee are entirely (and in principle exactly) accounted for by
the electronic eigenvalue E (a)

e (R), the inter-nuclear repulsion Vnn remains indicated
explicitly, and only the nuclear kinetic term Tn is treated approximately, due to the
neglect of nonadiabatic corrections of line (3.6). The electronic wavefunction can
now be dropped [formally by multiplying Eq. (3.8) by ψ

(a) ∗
e (r, R) and integrating

over all electronic coordinates r ], to derive the equation for the adiabatic motion of
the nuclei described by Φ(R):

[
−�

2

2

∑

α

∇2
R α

Mα

+ E (a)
e (R) + Vnn(R)

]
Φ(R) = Etot Φ(R). (3.9)

The electronic equation (3.2) describes the motion of all electrons in the piece
of matter. When the number of electrons is greater than one (as is usually the case),
Eq. (3.2) involves at least the same technical difficulties as many-electron atoms dis-
cussed in Sect. 2.2, made worse by the lack of spherical symmetry. Equation (3.2) is
often solved within an approximate quantum many-body method, e.g. the Hartree-
Fock method sketched in Sect. 2.2.4, or the density-functional theory [23]. In the poly-
atomic context, theory faces the extra difficulty that the electronic problem depends
explicitly on the position R of all nuclei, through Vne. One should thus solve the
electronic problem for many geometric arrangements (classical configurations R) of
the nuclei, to obtain a detailed knowledge of the parametric R-dependence of the
electronic eigenfunction ψ

(a)
e (r, R) and eigenvalue E (a)

e (R). The latter is especially
fundamental, as it drives the motion of the nuclei through Eq. (3.9). Within the adi-
abatic approximation, once the electronic eigenstate (a) is chosen, this state never
mixes with other eigenstates (a′): the electronic state follows adiabatically the slow

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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nuclear motion. In reality, the neglected nonadiabatic terms originate a small proba-
bility that the motion of the nuclei induces transitions to different electronic states.

Once the electronic eigenvalue E (a)
e (R) is obtained, the Schrödinger equation

for the nuclei (3.9) describes the displacements of the nuclei as driven by a total
adiabatic potential energy

V (a)
ad (R) = Vnn(R) + E (a)

e (R), (3.10)

which is the sum of the direct Coulombic ion-ion repulsion Vnn plus the electronic
eigenvalue E (a)

e (R) (which changes as a function of the ionic coordinates, as dis-
cussed above). This second term, the “adiabatic electronic contribution”, acts as a
“glue” which keeps the atoms together. E (a)

e (R) is generally a complicated function
of all ionic coordinates R: contrary to Vnn , E (a)

e (R) can seldom be expressed as a
simple sum of two-body contributions.

Of all the electronic eigenstates labeled by (a), the electronic ground state gener-
ates the especially important lowest adiabatic potential energy surface V (gs)

ad (R), in
short Vad(R). Electronic excitations (a) generate different adiabatic potential energy
surfaces.

In the adiabatic scheme, the total adiabatic potential Vad(R) guides the displace-
ments of the nuclei. Since in common language “nuclear” recalls the internal dynam-
ics of nuclei, in practice Vad(R) is referred to as the potential energy governing the
motion of “atoms”, or “ions”.

As a function of the 3Nn ionic coordinates, Vad(R) exhibits two general sym-
metries, consequences of the symmetries of the original Hamiltonian (1.1) for an
isolated system:

• Translational symmetry: if all ions are displaced by an arbitrary (equal for all) trans-
lation u, then Vad remains unchanged. In formula: Vad(R1 +u, R2 +u, . . . , RNn +
u) = Vad(R1, R2, . . . , RNn ).

• Rotational symmetry: if all ions are rotated by an arbitrary (equal for all) rotation
A around a given arbitrary point in space, then Vad also remains unchanged. In
symbols: Vad(AR1, AR2, . . . , ARNn ) = Vad(R1, R2, . . . , RNn ).

These symmetries indicate that Vad depends on the relative positions of the atoms.
Vad(R) often shows a well-defined minimum, for the atoms placed at specific

relative positions RM. In the simplest example of a di-atom, Vad(R) depends on the
distance R = |R1 − R2| of the two nuclei. For any two atoms picked at random
from the periodic table, the potential energy as a function of R shows the qualitative
shape of Fig. 3.1, with an equilibrium inter-ionic separation RM at which Vad(R)

is minimum. If the potential well is deep enough, then at low temperature the ionic
motion is confined to a neighborhood of the equilibrium position RM: the ions execute
small oscillations around RM.

The ionic motion is sometimes treated within classical mechanics [Mn
d2 R
dt2 =

−∇R Vad(R)]. This does not mean that the actual ionic motion is any classical, only

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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Fig. 3.1 The typical
qualitative shape of the
adiabatic potential for a
diatom, as a function of the
inter-ionic separation R. The
zero of energy has been
taken as the sum of the total
energies of the two
individual atoms at large
distance. Horizontal lines
represent possible vibrational
ground and low-energy
excited levels. The actual
number and positions of
these states depends also on
the diatom reduced mass
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that under certain conditions (e.g. heavy ions), the classical limit can provide a fair
approximation to the actual quantum dynamics. The classical ionic dynamics often
yields useful insight into the quantum solution of Eq. (3.9). For example, the classical
problem of the normal modes describing small independent harmonic oscillations
around RM is mapped to that of a set of quantum harmonic oscillators (only one
oscillator in the case of a diatomic molecule). In Sects. 3.3 and 5.3, we shall return
to this fundamental problem in mechanics, and review its solutions.

In summary, the adiabatic scheme provides a fundamental separation of the cou-
pled electron-ion dynamics into two conceptually and practically distinct problems:
the electronic equation (3.2) governs the motion of the fast electrons in the field of the
ions, imagined as instantaneously frozen; the multidimensional Schrödinger equa-
tion (3.9) for the slower motion of the ions is controlled by the adiabatic potential,
which is the sum of the ion-ion Coulomb repulsion plus a “gluing” term provided by
the electronic total energy—Eq. (3.10).

3.2 Chemical and Non-chemical Bonding

In Fig. 3.1 we anticipated a typical profile for the adiabatic potential of a diatom. If
that sort of long-distance attractive and short-distance strongly repulsive behavior
is really general, and persists for Nn>2 atoms, then it can provide the microscopic
mechanism allowing collections of atoms to bind together, forming all kinds of
bound states (including the molecular gases, liquids, and solid objects of everyday
experience), with no tendency to collapse to infinitely dense point-like objects. To
obtain both qualitative and quantitative insight into the bonding nature of Vad(R),
we investigate conveniently simple model systems.

http://dx.doi.org/10.1007/978-3-319-14382-8_5
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3.2.1 H+
2

This investigation starts naturally with the simplest di-atom: H+
2 , which is free of the

complications of electron-electron repulsion. We construct a piece of evidence that
the adiabatic energy of H+

2 has a qualitative dependence of the inter-proton distance
R of the kind sketched in Fig. 3.1: we verify that, as R decreases from infinity,
the lowering in electronic energy E (a)

e (R) wins against the increase in inter-nuclear
Coulomb repulsion Vnn(R) = e2

R , with a net bonding behavior of the total adiabatic

potential energy V (a)
ad (R), Eq. (3.10).

We start considering the potential energy Vne acting on the electron of H+
2 . Vne

is the sum of the two attractive Coulomb terms VL + VR produced by the Left and
Right nuclei respectively, which, in the adiabatic scheme, we take as stationary at
a fixed separation R. In the end we will vary R to explore the adiabatic potential-
energy function Vad(R). Figure 3.2 shows three “cuts” of Vne(r, R) as a function of
the electron position r . Observe here that in the intermediate region, between the two
nuclei, the total potential is roughly twice more negative than it would be if only one
of the two nuclei was present. This suggests that the electron moving in the field of
both nuclei could take advantage of both attractions and lower its average potential
energy by spending a significant fraction of its probability distribution in this inter-
mediate extra-attractive region. We check if this mechanism generates bonding, i.e.
if Vad(R) decreases below its infinite-R value Vad(∞) = E1s = −EHa/2, namely
the energy of one isolated hydrogen atom (no mass correction μ/me, because the
nuclei are placed at fixed positions!).

To estimate if any energy can be gained, we use a simple variational approach
(see Appendix B.5) based on “trial” states build by linear combinations of two states

Fig. 3.2 Three parallel cuts
of the nuclei-electron
attraction Vne(r, R) = −e2

[|r−Rẑ/2|−1+|r+Rẑ/2|−1]
in H+

2 , drawn along the line
through the nuclei (the z
axis) and along parallel lines
at distances R/2 and R from
the nuclei. Here R = a0
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only, namely the two 1s hydrogen orbitals, Eq. (2.21), |1s L〉 and |1s R〉 centered
at the Left and Right nucleus respectively. Guided by the reflection symmetry of
Vne(r, R) across the xy plane, build two normalized trial electronic wavefunctions

as ψ
1s S

A
e (r) = 〈r | S

A 〉, with

|S〉 = 1

[2(1 + Re〈1s L|1s R〉)]1/2
(|1s L〉 + |1s R〉) Symmetric

|A〉 = 1

[2(1 − Re〈1s L|1s R〉)]1/2
(|1s L〉 − |1s R〉) Antisymmetric. (3.11)

Figure 3.3 sketches the wavefunctions ψ1s S
e (r), ψ1s A

e (r), with the ingredients

ψ
1s L

R
e (r).

For any given inter-nuclear separation R, the variational principle guarantees
that the ground-state energy E (GS)

e (R) ≤ 〈S|Te + Vne|S〉 ≡ ES , and similarly that
E (GS)

e (R) ≤ EA. For infinitely large inter-nuclear separation R, |S〉 and |A〉 are exact
eigenstates, of electronic energy E S

A
(R = ∞) = E1s = −1/2EHa. For finite R, their

mean electronic energy becomes

E S
A

= 〈 S

A
|Te + Vne| S

A
〉 = (〈L|Te + Vne|L〉 ± 〈R|Te + Vne|L〉) + (L ↔ R)

2(1 ± 〈L|R〉) ,

(3.12)

where we have omitted the 1s labels and the Re() (the overlap 〈L|R〉 is real). The
(L ↔ R) terms obtained by exchanging left and right equal the previous ones, thus
we can omit them together with the factor 2 at the denominator. Substitute VL + VR

Fig. 3.3 A cut along the
molecular axis for: (lower to
upper) the potential energy
Vne(r, R), the 1s
eigenfunctions of the left
ψ1s L

e (r) and the right
ψ1s R

e (r) individual potential
wells, plus their symmetric
ψ1s S

e (r) and antisymmetric
ψ1s A

e (r) combinations
(shifted upward for better
visibility)
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for Vne, and reorganize the six matrix elements, to take advantage of the fact that |L〉
is the ground state of (Te + VL):

E S
A

= 〈L|Te + VL |L〉 + 〈L|VR |L〉 ± 〈R|Te + VL |L〉 ± 〈R|VR |L〉
1 ± 〈L|R〉

= − EHa

2
+ 〈L|VR |L〉 ± 〈R|VR |L〉

1 ± 〈L|R〉 . (3.13)

The second term contains two Coulomb matrix elements, which are both real and
negative and depend on the inter-nuclear distance. Despite the denominator, the
symmetric state |S〉 is lower in energy than |A〉. The 〈L|VR |L〉 term represents
the attraction that the right nucleus exerts on the electron sitting around the left
nucleus. At large R this attractive term balances almost exactly the Vnn = e2/R
inter-nuclear repulsion. This cancellation represents the classical result that the elec-
trostatic interaction energy of a spherically symmetrical neutral object (the H atom)
and a remote point charge (the H+ ion) decays much faster than R−1. At large inter-
nuclear distance, the cross term 〈R|VR |L〉 decays very rapidly, approximately as
−EHa exp(−R/a0) a0/R. Thus for large R

〈L|VR |L〉 + 〈R|VR |L〉
1 + 〈L|R〉 = 〈L|VR |L〉1 + 〈R|VR |L〉

〈L|VR |L〉
1 + 〈L|R〉

 〈L|VR |L〉
(

1 + 〈R|VR |L〉
〈L|VR |L〉 − 〈L|R〉

)

 〈L|VR |L〉
⎛

⎝1 +
−e2

R/2 〈R|L〉 + · · ·
−e2

R 〈L|L〉 + · · ·
− 〈L|R〉

⎞

⎠

 〈L|VR |L〉 (1 + 〈L|R〉 + · · · ) ,

where the approximation 〈R|VR |L〉  −〈L|R〉e2/(R/2) applies since the distribu-
tion ψL(r)ψR(r) is very small everywhere, and peaks at the axial region between the
two atoms, at the center of which VR  −e2/(R/2). As a consequence, for large R
the attraction (last term of Eq. (3.13) for the symmetric state) prevails over the repul-
sion Vnn = e2/R, thus generates bonding. The sign of the correction to the attraction
is reversed for |A〉, where therefore the inter-nuclear repulsion prevails against attrac-
tion: the |A〉 state does not support bonding, hence its “antibonding” nature. This
simple variational model predicts that, at large R, the adiabatic energy gain should
be exponentially small in R/a0, due to the decay of the 1s atomic wavefunctions.

All integrals in Eq. (3.12) can be evaluated for arbitrary R: Fig. 3.4 collects the
outcome of this variational calculation. Note that:

• the adiabatic potential V (S)
ad (R) associated to the |S〉 state shows a minimum at a

finite separation RM; this potential well can bind the two protons together, and for
this reason |S〉 is called a bonding orbital;

• the adiabatic potential V (A)
ad (R) is monotonically decreasing (repulsive), which

suggests calling |A〉 an antibonding orbital;
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(a) (b)

Fig. 3.4 a The total adiabatic potential of the |S〉 variational state of H+
2 decomposed in its kinetic,

potential and ion-ion contributions: Vad(R) = 〈S|Te|S〉 + 〈S|Vne(r, R)|S〉 + Vnn(R). b A blowup
of the total adiabatic potential Vad(R) for the |S〉 (solid) and |A〉 (dashed) state. The minimum RM
of Vad(R) is indicated and corresponds to a molecular bond energy of 0.065 EHa or 1.76 eV

• the dot-dashed curve indicates that as R is reduced the lowering of the electronic
potential energy 〈S|Vne(r, R)|S〉 does not compensate the raise in inter-nuclear
repulsion, thus our initial expectation that bonding is related to a gain in electro-
static potential energy is not confirmed by the present variational model;

• as the electron moves in the wider potential well created by the two protons
rather than in the narrower well of an isolated proton, its kinetic energy decreases
significantly, enough to dig a minimum in V (S)

ad (R).

The conclusion of our simple variational model for H+
2 is that the physical origin

of bonding is to be attributed to both kinetic and potential energy lowering of the
electron “screening” the nuclei and spending a significant fraction of probability in the
inter-nuclear region. This mechanism works optimally at R  2.5 a0, and generates a
molecular bond energy of about 1.76 eV. For smaller R, the adiabatic potential shoots
up due to the divergence in Vnn (now compensated poorly), and a new increase of
the kinetic energy, as the molecular potential well shrinks to a more atomic-like
shape.The proposed variational estimate provides basic qualitative trends, but is
especially inaccurate at small R: a more quantitative treatment requires solving the
Schrödinger equation in the double Coulomb well: this yields a bond energy of
2.79 eV at an optimal distance of 2.00 a0, in good agreement with experiment.

The symmetry of the Schrödinger problem for one electron in the field generated
by two nuclei is axial (cylindrical), rather than spherical as in atoms. Accordingly,
the adiabatic electronic states are labeled by their angular-momentum projection
m along the molecular axis ẑ through the nuclei, and not by their total angular
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Fig. 3.5 The sign of the real and imaginary parts of the angular wavefunction of m = 0, 1, 2
electronic molecular states around the ẑ symmetry axis. Reverse-rotating m = −1,−2 states (not
drawn) have ImΦm(ϕ) of opposite sign

momentum l as in atoms. The electronic states of linear molecules, sketched in
Fig. 3.5, are labeled σ , π , δ,…, to indicate the absolute value |m| = 0, 1, 2, . . . of
their angular-momentum projection. Non-σ states are twofold degenerate orbitally.
Both |S〉 and |A〉 of Eq. (3.11) are σ states, as being composed of 1s (l = 0, thus
m = 0) atomic states. Standard chemical notation adds a star apex to antibonding
states, thus |A〉 would in fact be labeled 1σ ∗. H+

2 has further excited (bonding or
antibonding) electronic states (derived from p, d,… atomic levels) which possess
axial angular momentum m �= 0, thus symmetry other than σ .

3.2.2 Covalent and Ionic Bonding

The model for the H+
2 ion is instructive because in its simplicity it illustrates the phys-

ical origin of chemical bonding, sketches the basic concepts of bonding and antibond-
ing orbitals, and provides a numerical estimate of typical bond energies and distances
in molecules. Nonetheless, the electronic ground state of H+

2 does not qualify as a
proper chemical bond. For a full covalent bond, it would take two electrons occupying
(clearly, with antiparallel spins) the same bonding orbital |S〉, as in neutral H2. The
precise one-electron molecular orbital |S〉 should be determined by some method
(e.g. HF) which accounts—at least approximately—for electron-electron repulsion;
eventually, |S〉 will turn out similar to our variational guess, Eq. (3.11). Accordingly,
the ground wave function of a neutral H2 molecule is described approximately by

ψGS
e (r1σ1, r2σ2) = 〈r1σ1, r2σ2|S ↑, S ↓〉A

= 〈r1|S〉〈r2|S〉 1√
2

∣∣∣∣
χ↑(σ1) χ↑(σ2)

χ↓(σ1) χ↓(σ2)

∣∣∣∣ . (3.14)
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Both electrons occupy the same spatially symmetric bonding orbital, forming a
2-electron state which is antisymmetric for exchange of electron 1 and 2 (through
its spin-singlet part). The wavefunction (3.14) represents a typical homonuclear
covalent bond. For H2, the bond energy V (GS)

ad (∞) − V (GS)
ad (RM)  4.8 eV (at an

equilibrium distance RM  1.4 a0 = 74 pm). This amount is less than twice the bond
energy of H+

2 , due to the significant electron-electron repulsion payed by state (3.14).
The potential well generated by the two protons has room for several excited states,

which are often single-electron excitations with one electron promoted to a higher
bonding/antibonding state. Excited states with both electrons in bonding orbitals,
also lead to a bonding Vad(RM), although usually characterized by lower binding
energy and longer interatomic equilibrium distance than the electronic ground state
[24]. Not all excited electronic states need to favor bonding: for example, the lowest
triplet state of H2, with electron one in |S〉 and electron two in |A〉 is not bound.

When pairs of larger-Z atoms interact to form dimers, to accommodate all elec-
trons, the number of involved bonding and antibonding orbitals is necessarily larger.
Figure 3.6 sketches a qualitative ground-state electronic structure of several homonu-
clear diatoms, leaving the core 1s electrons out. This figure prompts several important
observations:

• With few exceptions, the overall ordering of the one-electron levels does not change
much in passing from one molecule to another. In particular every antibonding level
stands higher up in energy than the corresponding bonding level.

Fig. 3.6 A qualitative level scheme of the electronic structure of a few simple homonuclear diatomic
molecules, with their observed bond energy. Bonding/antibonding single-electron orbitals are iden-
tified by their color. Arrows represent electrons occupying the orbitals
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• Electrons fill the levels according to the same scheme as in atoms (low to higher
energy, fulfilling Pauli’s principle).

• The bond order is the number of electron pairs in a bonding level and missing in
the corresponding antibonding level: e.g. O2 is double-bonded.

• The strength of covalent bonds increases with their bond order: among the dimers
of Fig. 3.6, the strongest bond is the triple bond of N2, with a bond energy nearing
10 eV.

• When electrons start to fill 2p-derived molecular orbitals, the π states are lower
than the σ combination. In a way, this is surprising, as the overlap of the m = 0 p
orbitals (pointing along the molecular axis) is much larger than that of the m = ±1
orbitals (mostly located away from the axis): the σ −σ ∗ splitting is generally larger
than that of the corresponding π − π∗ orbitals. However, the Coulomb repulsion
of the filled 1s-derived orbitals and the hybridization with the 2s-derived orbitals
pushes the 2p-derived σ orbitals up by a substantial amount. The “natural” ordering
is restored in O2.

• In B2 and O2, two electrons sit in a degenerate π or π∗ molecular orbital, which has
room for 4 electrons: to minimize the residual Coulomb repulsion, the ground state
is a spin-triplet Hund-rules state ↑ ↑ (Sect. 2.2.8.3). These dimers are magnetic,
and their gases are therefore paramagnetic (see Sect. 4.3.1.3).

• Even dimers such as Be2 and Ne2, with null bond order (equally populated bond-
ing and antibonding orbitals), exhibit a weak bonding, of the type described in
Sect. 3.2.3.

Homonuclear diatomic molecules are very special diatoms, due to their peculiar
L ↔ R symmetry. Most pairs of atoms bind together, and many form covalent
bonds not so unlike those illustrated for the homonuclear molecules. For example,
the CO molecule has the same number of electrons as the molecule N2. The main
novelty is the lack of L ↔ R symmetry: the attraction of the O nucleus (Z = 8)
is stronger than that of C (Z = 6). As a consequence, as sketched in Fig. 2.21,
the 2s and 2p shells of O sit deeper than the 2s and 2p shells of C: the bonding and
antibonding orbitals deviate from symmetric/antisymmetric combinations of the type
(3.11). Extending the variational treatment of H+

2 with the methods of Appendix B.5,
with the simplification of neglecting overlaps 〈L|R〉, the approximate molecular
orbitals are the eigenstates of the 2 × 2 matrix

(
EL −Δ

−Δ ER

)
≡

( 〈L|H1|L〉 〈L|H1|R〉
〈R|H1|L〉 〈R|H1|R〉

)
, (3.15)

where H1 = Te + V eff is the effective one-electron Hamiltonian fixed by the self-
consistent potential acting on each electron, and |L〉, |R〉 are the considered atomic
states (e.g. the 2s or 2p) of the left and right atom (here C and O). The diagonal
elements are mostly dictated by the energy positions of atomic shells. The off-
diagonal overlap energy Δ > 0 is very small at large separation, and grows larger
and larger as the atoms move closer.

The eigenvalues Eb = Ē1 and Ea = Ē2 of the 2 × 2 matrix (3.15) are discussed
in Appendix B.5.2, and shown in Fig. B.2. The eigenenergies in Eq. (B.39) remain

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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centered around (EL+ER)/2, but their splittingEa−Eb = [
(EL − ER)2 + (2Δ)2

]1/2

exceeds both the diagonal splitting EL − ER and the minimum splitting |2Δ|, which
is recovered in the symmetric homonuclear limit EL = ER (i.e. u = 0). In this sym-
metric limit the bonding state |b〉 = |Ē1〉 and antibonding state |a〉 = |Ē2〉 coincide
with the equally-weighted |S〉 and |A〉 combinations of Eq. (3.11). For increasing u,
the eigenkets given in Eq. (B.40) resemble less and less the simple symmetric and
antisymmetric combinations (3.11): |b〉 acquires a prevalent |R〉 character, while |a〉
acquires a mainly |L〉 character. Electrons in the |b〉 state move partly to the R side,
thus providing a polar character to the dimer (unless an equal number of electrons
occupies the |a〉 state).

As sketched in Fig. 3.7a, an intermediate value of u  1 applies for the 2s and
2p orbitals of CO near its equilibrium separation: bonding molecular orbitals lie
prevalently at the O side, antibonding ones at the C side. The bond of CO and
of many similar heteronuclear diatoms is classified as polar covalent, since it is
associated to a nonzero average electric dipole due to the charge transfer produced
by the asymmetric charge distribution of the electrons in the bonding state |b〉.

In the limit of very large polar character (u � 1), the eigenenergies (B.39)
E b

a
 E R

L
, and the eigenkets |b〉  |R〉, |a〉  |L〉. At typical interatomic separation,

the bond of HF (here hydrogen fluoride, not Hartree-Fock!) is characterized by large
u, see Fig. 3.7b. Recall—Fig. 2.21—that E1s(H) � E2p(F). As a result, the relevant
bonding orbital is not much different from the 2p of an isolated F atom. Thus an
approximate description of the bond of HF invokes a complete charge transfer from
H to F: the latter therefore completes its open shell to 2p6. As long as the H+ and
F− ions are separated widely, they would then attract each other like point charges,
with a −e2/R attraction energy. As the proton moves inside the outer shell of F−,
electrons screen the positive charge of the F nucleus less and less, and this attraction

(a) (b)

Fig. 3.7 A schematic electronic structure of two heteronuclear diatomic molecules: a CO and
b HF. Blue indicates bonding, red indicates antibonding single-electron orbitals. The observed
bond energy is indicated. Single-electron energies and splittings are purely qualitative

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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turns gradually into a repulsion. The origin of bonding in this simple picture is the
energy gained in moving the ions from infinity to the equilibrium distance, to which
the energy paid to form the ions from the neutral atoms (the ionization potential of
the atom which turns into a cation—here H—minus the electron affinity of the atom
acquiring the electron—here F) is to be subtracted. Indeed, [e2/(92 pm) = 15.7 eV]
minus the ionization potential of H (13.6 eV) plus the electron affinity of F (3.4 eV)
yields 5.5 eV, in fair agreement with the observed bond energy = 5.9 eV. A molecular
bond such as that of HF, where u is so large that almost complete charge transfer
occurs is named an ionic bond.

The picture of molecular orbitals constructed by specific atomic orbitals, as in
Figs. 3.6 and 3.7 and relative discussion, is oversimplified. In fact, all orbitals of the
same symmetry are mixed, although with one prominent atomic component in the
actual molecular orbital. For example, each one of the orbitals labeled 2σ 2σ ∗ 3σ

and 4σ ∗ in Fig. 3.6 is a linear combination involving a little of all m = 0 states of
both atoms, mostly 2s and 2pz , but also 1s, 3s, 3pz , 4s… This hybrid character of
molecular orbitals, a side detail for diatomic molecules, is a crucial ingredient in
determining the 3D structure of polyatomic molecules and covalent solids.

Hybrid orbitals generate adiabatic potentials which depend strongly not only on
interatomic distances, but also on angles. An especially remarkable example is the
mix of 2s and 2p, at the origin of the shape of organic molecules, Fig. 3.8. As specific
and important examples, sp3 combinations intermixing 2s 2px 2py and 2pz orbitals
determine the ideally 109◦ angle between the bonds of tetrahedrally coordinated
carbon and silicon; sp2 combinations of 2s 2px 2py tend to bind atoms such as
carbon to three other atoms in the same plane, forming ideally 120◦ angles. The end-
less combinations of the molecular orbitals of polyatomic 3D molecular structures,
plus the multitude of weaker interactions among individual molecules, originate the
infinite variety of organic compounds, which are the microscopic building blocks
and byproducts of living matter. Analogous mixtures of 3s 3p, or 4s 4p, provide
Si, P, S, Ge, As, Se with a marked tendency to form directional bonds, producing
the extended (rather than molecular as for N2) covalently bound extended struc-
tures characterizing the solid state of these elements (see Figs. 5.9, 5.25, and 5.62).
Each equilibrium molecular structure identifies a minimum of the adiabatic potential
Vad. Polyatomic molecules are often characterized by multiple local minima of Vad,
representing individual isomers, e.g. those of Fig. 3.8i–k.

3.2.3 Weak Non-chemical Bonds

Our description of covalent bonds in terms of linear combinations of single “rigid”
atomic orbitals, is doomed to obtain an exponential dependence of Vad(R) at large
distance R, due to the exponential decay of the orbitals themselves. Experimen-
tally however, at large distance, the interaction energy between any two atoms is
attractive and decays following a universal power law: ∼R−6. This is due to a

http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_5
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3.8 The 3D equilibrium structures [25] of organic molecules is dictated by the hybrid orbitals
of carbon. sp3 hybridization, with C atoms at the center of a tetrahedron of 4 bonds, is relevant
e.g. for a methane CH4, b ethane C2H6, g ethanol CH3CH2OH, the carbon in the CH3 group of
h acetonitrile, and i–k three isomers of C3H8O. sp2 hybridization, with C atoms at the center of
a triangle of 3 bonds, is relevant e.g. for c ethylene C2H4, e benzene C6H6, and f naphthalene
C10H8. sp hybridization with C atoms in a linear 2-bonds configurations is relevant for d acetylene
C2H2, and the carbon in the CN group of h acetonitrile. The hybridization of l fullerene C60 is
intermediate between sp2 and sp3

classical-electromagnetism concept which the previous analysis completely over-
looked: atomic polarizability.

On average, the electric dipole moment of any atom vanishes. As long as spherical
symmetry is unbroken, the single-electron atomic orbitals are also eigenstates of the
orbital angular momentum |l|2. The parity of the eigenfunctions R(r)×Yl ml (r̂) is the
same as that of its spherical harmonic: (−1)l ; thus the angular probability distribution
|Yl ml (r̂)|2 of each electron is parity-even (see also Fig. 2.5 and Sect. 2.1.9). As a result,
the average electric dipole 〈l ml |d|l ml〉 vanishes. However, electrons move around
the nucleus and occupy instantaneously specific positions, associated to a fluctuating
nonzero dipole moment. According to basic electromagnetism, this dipole moment
generates an instantaneous electric field E, whose intensity decays away from the
atom as R−3.

An electric field acting on a second remote atom “polarizes” it. The electrons of
atom b react to minimize the total energy, now including an additional term −d · E

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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describing the coupling to the external field, where d = −qe
∑

ri . Atom b responds
to the applied external electric field by building up an induced dipole in the same
direction as the field: 〈d〉 = αbE. As the field is weak, the atomic polarizability
αb is independent of the field (linear response). Due to this induced polarization,
the total energy of the two atoms at separation R decreases by an amount −1/2〈d〉 ·
E = −1/2αb|E|2 ∝ R−6 compared to atoms a and b placed at infinite separation.
Dimension-wise, the coefficient multiplying R−6 is a [distance]6 × [energy]. As only
atomic physics is involved, the order of magnitude of this coefficient is EHa a6

0 
10−79 J m6  0.6 eV Å6. This van der Waals attraction is then approximately

V vdW
ad (R) ≈ −EHa

(a0

R

)6
. (3.16)

More quantitatively, the coefficient of R−6 is proportional to the product of the two
atomic electrical polarizabilities αaαb (because the dipole fluctuation in atom a is also
proportional to its polarizability αa), or, more precisely, to the energy integral of their
energy-dependent version αa/b(�ω) [26]. The physical dimension of polarizability is
[Charge]2[Length]2[Energy]−1 = [Charge]2[Time]2[Mass]−1, the same as 4πε0 ×
[Length]3. It is therefore natural to express atomic polarizabilities in units of αA.U. =
4πε0 a3

0 = 1.64878 × 10−41 C2s2/kg.
The atomic polarizability can be either measured (for example, by measuring the

dielectric properties of an atomic gas inserted in a charged parallel-plate capacitor)
or computed, by evaluating the distortion of the atomic state under the action of an
applied electric field. By standard perturbation theory, Appendix B.9, an external field
distorts the ground state so that (i) the electronic wavefunction acquires components
(proportional to |E|) of excited states with l changed by ±1, and (ii) the total energy
lowers quadratically with the field. For example, in a weak external electric field
E = Ez ẑ, the ground state of an H atom takes the form of a linear combination

|1, 0, 0; Ez〉 = b1|1, 0, 0〉 +
∑

n>1

bn|n, 1, 0〉. (3.17)

Here the hydrogen-atom eigenkets |n, l, m〉 are represented by the eigenfunc-
tions detailed in Eq. (2.1.6). The acquired electric dipole moment 〈1, 0, 0; Ez |dz |
1, 0, 0; Ez〉 = 2b1

∑
n bn〈n, 1, 0|dz |1, 0, 0〉 is proportional to Ez , because the bn>1

coefficients are. To evaluate the polarizability α, estimate the coefficients bn>1 by
first-order perturbation theory, Eq. (B.87), bn = −Ez〈n10|dz |100〉/(E1 −En), where
En are the energy levels of H, Eq. (2.10). The atomic polarizability α is then given
by

α = 〈1, 0, 0; Ez |dz |1, 0, 0; Ez〉
Ez

 −2
∑

n>1

|〈n, 1, 0|dz |1, 0, 0〉|2
E1 − En

. (3.18)

The static atomic polarizability of H amounts toαH = 4.50 αA.U.. Taking all electrons
into account, one can evaluate the same quantity for any atom. For example, He has
a record small αHe = 1.383 αA.U. due to its huge 1s-2p gap; Li has a much larger

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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αLi = 164.0 αA.U. due to the comparably small 2s-2p gap; and Cs holds the record
αCs = 401.0 αA.U. mostly due to the very small 6s-6p gap. Indeed, Eq. (3.18) suggests
that α depends inversely on the energy separation between the highest filled state
and the lowest empty state with l differing by ±1.

The dipole–induced-dipole mechanism is perfectly general, and it accounts for the
leading long-range attraction of all dimers of neutral atoms. As distance R decreases,
the dimer electrons can evolve along two distinct paths: open-shell atoms, e.g. H and
those forming the diatoms of Figs. 3.6 and 3.7, modify gradually their orbitals to
form robust covalent bonds; in contrast, for pairs of close-shells atoms (Be2, Ne2)
the one mechanism producing a (comparably weak) attraction is van der Waals, until
short-distance repulsion turns in.

As R is further reduced, the short-distance repulsive Coulombic divergence of
Vad ∝ R−1 is peculiar to H+

2 and few other dimers involving H. For general many-
electron atoms, long before the nucleus-nucleus repulsion Vnn(R) becomes relevant,
the electronic energy E (a)

e (R) blows up because of Pauli’s principle: as the core
electrons are brought together in the same region of space, their wavefunctions
become less and less orthogonal. Part of these electrons are then pushed up into
some orthogonal empty valence level, which makes tiny reductions of R cost tens or
even hundreds EHa. This rapid “hard-core” energy increase as two atoms collide is
responsible for the “impenetrability” of matter, i.e. the sharp increase of pressure of
a sample whose volume is reduced so much that each atom is squeezed into less than
its characteristic volume (∼ a few Å3). We see that a combined effect of electrons
indistinguishableness and quantum kinetic energy sustains matter against collapse
due to electromagnetic attraction. In a diatomic context, the Vad(R) blowup at short
distance is often parameterized phenomenologically with a R−12 power law.

The simplest potential capturing the long-distance van der Waals attraction and
the rapid short-range repulsion is the popular Lennard-Jones potential

VLJ(R) = 4ε

[(σ

R

)12 −
(σ

R

)6
]

. (3.19)

This expression is nothing but a phenomenological model for the actual Vad(R)

of a dimer. Its two parameters ε (the depth of the potential well at RM) and σ

(the radius where VLJ(R) changes sign) are listed in Table 3.1 for the noble-gas

Table 3.1 Parameters (obtained with a fit to atom-atom scattering data [2]) for the Lennard-Jones
pair potentials, Eq. (3.19), of the dimers of the noble-gas elements. Note the increase of atomic size
(i.e. σ ) with Z and the rapid increase in atomic polarizability in going from He to Ne [reflected by
the coefficient 4εσ 6 ∝ α2 of −R−6 in Eq. (3.16)]

Element σ (pm) ε (meV) 4εσ 6 (EHa a6
0)

He 256 0.879 1.7

Ne 275 3.08 8.9

Ar 340 10.5 109

Kr 368 14.4 239

Xe 407 19.4 590
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dimers, whose actual Vad(R) the Lennard-Jones potential is a fair approximation
for. In this context, VLJ(R) is also used for describing the dynamics of a collection
of more than two noble-gas atoms as a sum of pair potentials (two-body forces).
This extrapolation is a fair approximation of the actual adiabatic potential of simple
close-shell systems at low density: the phase diagram and correlation properties of
the Lennard-Jones solid/fluid is in close qualitative and semi-quantitative agreement
to observed data for noble-gas systems. The two-body Lennard-Jones model instead
is highly inappropriate for atoms forming strongly directional covalent bonds.

3.2.4 Classification of Bonding

We have clarified the mechanism for the general tendency, pictured in Fig. 3.1, of
atoms to attract at large distance and repel when coming in contact. Contrasting this
qualitative likeness, significant differences in the equilibrium distances and huge
differences in well depths make different diatoms, bonded by different mechanisms,
very unlike.

When at least one of the atoms is a noble gas, the dipole–induced-dipole mech-
anism is the only mechanism creating attraction, little or no covalency occurs, and
consequently the equilibrium atom-atom distance RM is rather large (∼250–400 pm)
and the bond energy [Vad(+∞)−Vad(RM)] is small (few meV, see Table 3.1). Weakly
bonded van der Waals systems retain ordinarily the monoatomic gas phase down to
relatively low temperature, and show a scarcer tendency to form dimers than to
condense to extended liquid and solid phases.

A few atoms with open shells (O, N, F) display a prominent tendency to form
diatomic molecules, with short strong covalent bonds, characterized by typical
several-eV bond energies. These molecular units are retained in the low-temperature
liquid and solid phases. For most other elements (e.g. Li, Be, B, C,…), the extra
energy gain in forming multiple chemical bonds per atom makes it energetically
convenient to form extended metallic or covalent solids, rather than diatoms.

When different atoms are bound together covalently, a fraction of their valence
charge moves closer to certain ions than to others, because the energy of the involved
atomic shells is different, as illustrated in the examples of Fig. 3.7. This electron dis-
placement provides a nonzero average electric dipole to polar heteroatomic bonds.
Even in the extreme limit of complete or almost complete charge transfer (e.g. HF,
LiF), energies and lengths involved in ionic bonds are in the same range as for
covalent bonds.

3.3 Intramolecular Dynamics and Spectra

In the previous section, we have discussed general properties of the solutions of
the electronic equation (3.2) for a diatom, thus acquiring information on the typical
shape of the adiabatic potential Vad. We consider now the motion of the two nuclei in
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the adiabatic force field described by Vad, with its spectroscopic implications. This
motion can be described in terms of solutions of Eq. (3.9).

As remarked in Sect. 3.1, the adiabatic potential is independent of the center-
mass position of the molecule (translational invariance) and of the orientation in
space of the straight line through the two nuclei (rotational invariance). Precisely the
same transformation (2.1) applied to the two-body problem of the one-electron atom
separates the center-mass motion of the two-body problem of the diatomic molecule.
Like for atoms, due to translational symmetry, the molecular center of mass translates
freely: the random thermal translational motion in a gas-phase sample originates
Doppler and collisional broadening of the spectra.

By using polar coordinates for the vector joining the two nuclei, we separate
the Schrödinger equation for the internal motion into angular (2.5), (2.6) and radial
(2.7) equations, exactly like for the one-electron atom. Of course, in the context
of diatoms, the nucleus-nucleus separation R replaces the electron-nucleus distance
r of the one-electron atom and the distance-dependent adiabatic potential Vad(R)

replaces U (r) in Eq. (2.7). The angular equations are universal, so that the angular
eigenfunctions, describing the orientation in space of the molecule (thus molecular
rotations) are standard spherical harmonics Yl ml . Rotational states |l, ml〉 are labeled
by the molecular angular momentum l,1 plus its z component ml .

The formal structure of the radial equation is the same as for the one-electron atom.
The substantial physical difference stands in the equilibrium distance (the separation
where the potential is the most attractive) which for the diatom is finite R = RM > 0,
rather than R = 0 as for the one-electron atom. The main consequence is that the
radial motion is mostly localized near RM, in a region where the centrifugal term
�

2l(l+1)/(2μR2) in Eq. (2.7) is often fairly small. If we neglect the variations of R−2

along a region around RM where the radial wavefunctions differ significantly from
zero, then the radial motion is approximately independent of the rotation, i.e., the
radial solutions are independent of l. The radial quantum number v = 0, 1, 2, . . . for
the diatomic molecule counts the radial nodes, matching n − l −1 in the one-electron
atom. If the adiabatic potential is Taylor-expanded around its minimum

Vad(R) = Vad(RM) + 1

2

d2Vad(R′)
d R′2

∣∣∣∣
R′=RM

(R − RM)2 + · · · , (3.20)

and truncated at second order, then the radial motion is approximately a harmonic
motion. In this scheme, the total energy consists of the sum of three contributions,
of decreasing magnitude:

• A large electronic term Vad(RM), whose lowering at the equilibrium configuration
Vad(∞) − Vad(RM) measures the well depth responsible for the chemical bond.

1 In the literature, the angular-momentum quantum number describing the overall molecular rotation
is occasionally labeled r , or j , rather than l.

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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• A vibrational term, which in the harmonic approximation, Eq. (B.65), amounts to

Evib(v) = �ω

(
v + 1

2

)
, (3.21)

measuring the energy of radial vibration around the equilibrium position RM. Here

ω =
√

K

μ
, with K = d2Vad(R′)

d R′2

∣∣∣∣
R′=RM

and μ = M1 M2

M1 + M2
, (3.22)

where μ indicates the reduced mass of the two-body oscillator composed of the
two nuclei of mass M1 and M2 [see Eq. (2.4)]. Typical vibrational energies �ω of
few hundred meV or less are observed.

• A rotational contribution from the mean rotational term �
2l(l + 1)/(2μR2) 

�
2l(l + 1)/(2μR2

M) in the radial equation (2.7) yields:

Erot(l) = �
2l(l + 1)

2μR2
M

= |L|2
2 I

, (3.23)

where I stands for the classical momentum of inertia μR2
M of the diatom relative to

its center of mass, assuming the interatomic distance R is frozen at the equilibrium
separation RM. The typical order of magnitude of the rotational energies �

2/(2I )
in molecular spectra is few meV or less, H2 exhibiting the largest one: 7 meV.

3.3.1 Rotational and Rovibrational Spectra

In an “adiabatic” transition with the electrons remaining in the electronic ground state,
observed spectra fulfill the standard dipole selection rules: Δl = ±1. The involved
electric dipole operator is the product of the inter-nuclear separation times the charge
difference permanently attached to the two atoms. This charge difference vanishes
for equal nuclei, thus no dipole transition occurs for homonuclear molecules.2 In
contrast, the large permanent dipole moments of strongly polar molecules, such as HF
and HCl, support intense dipole transitions. The dipole moment of CO, a weakly polar
molecule, is only about 10 % that of HCl, thus producing much weaker IR absorption.

2 This is the reason why clean air (composed mostly of gas-phase N2 and O2) is highly transparent
to IR light. Transparency in the visible and near-UV range is associated to the wide gaps (several
eV) from the electronic ground state to the first allowed electronic excitation.

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2


3.3 Intramolecular Dynamics and Spectra 91

Rotational and vibrational molecular spectra are mostly observed in absorption
rather than emission. The reason is the small spontaneous emission rate of such
low-energy transitions, due to the E 3 dependence of the electric-dipole decay rate,
Eq. (2.45). Other, radiationless, decay phenomena (typically related to molecular
collisions) occur over far shorted times scales, thus making it unfeasible to observe
emission spectra in this spectral region.

Purely rotational spectra, usually in the far IR region, are associated to Δv = 0,
Δl = 1 transitions. The energy difference between the |li 〉 and |l f 〉 = |li +1〉 states is

ΔErot(li ) = �
2

2I
[(li + 1)(li + 1 + 1) − li (li + 1)] = �

2

I
(li + 1) . (3.24)

Accordingly, the rotational spectrum of a sample composed of molecules in several
initial rotational states is constituted by an array of equally spaced lines. The energy
spacing is twice as large as the typical rotational energy quantum �

2/(2I ). Figure 3.9
reports a characteristic purely rotational absorption spectrum. The measured sepa-
ration of the lines permits us to estimate the interatomic equilibrium separation RM
through Eq. (3.24).

Rovibrational spectra are observed typically in near-IR absorption. Most of the
dipole intensity concentrates in Δv = 1 transitions, although weaker overtone tran-
sitions with Δv > 1 are observed routinely. Figure 3.10 reports a characteristic rovi-
brational spectrum. Again, transitions occur starting from several initial rotational
states: as a consequence, the purely vibrational peak is “decorated” by rotational
transitions, which on the low-energy side imply Δl = −1 and are called P branch,
and on the high-energy side imply Δl = +1 and are called R branch, as illustrated in
Fig. 3.11. The rotational structures are equally spaced according to Eq. (3.24) (for the
P branch a similar result holds). The rovibrational spectra are characteristic for the
absence of a purely vibrational peak at energy �ω, with could only occur if Δl = 0
transitions were dipole allowed (which are not).

Fig. 3.9 Observed purely rotational spectrum of HCl gas, with a few |li 〉 → |l f 〉 assignments. In
this spectrum, the |li = 0〉 → |l f = 1〉 line at ∼2.5 meV is just sketched rather than observed, due
to range limitations of the spectrometer (Data from Ref. [3])

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. 3.10 Observed rovibrational spectrum of HCl gas: absorption in this region is associated to
the “fundamental” transition |vi = 0〉 → |v f = 1〉, decorated by the rotational P branch transitions
|li 〉 → |li − 1〉, and R branch transitions |li 〉 → |li + 1〉. The isotopic duplication of the lines is
visible: H35Cl is responsible for the stronger peaks and less abundant H37Cl for the weaker ones

Fig. 3.11 A scheme of the
rotational levels and the
relative electric-dipole-
allowed absorption
transitions around the
v = 0 → 1 vibrational
excitation (at energy �ω) of a
diatomic molecule

Rovibrational spectra are often investigated through Raman spectroscopy, which
is not based on dipole transitions as IR absorption. Raman experiments are based on
optical (electronic) non-resonant excitations of the molecule, which rapidly decay
back to the electronic ground state, possibly leaving a vibrational and/or rotational
excitation. As the experiment involves two photons, the selection rules allow Δl = 0,

±2 transitions.
The rovibrational dynamics of polyatomic molecules involves further intricacies.

Once translations and rotations have been accounted for, 3Nn − 6 (or 3Nn − 5 for
linear molecules) internal degrees of freedom account for vibrations, approximately
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Fig. 3.12 The vibrational normal-mode displacements of two triatomic molecules. a CO2, a
molecule whose equilibrium geometry is linear. Its normal-mode energies are �ω1 = 166 meV,
�ω2 = 83 meV, �ω3 = 291 meV. b H2O, a bent molecule at equilibrium. Its normal-mode energies
are �ω1 = 453 meV, �ω2 = 198 meV, �ω3 = 466 meV

described in terms of small-amplitude harmonic oscillations (the normal modes of
classical mechanics) around the multi-dimensional minimum of Vad. Figure 3.12
sketches such vibrational modes for CO2 and H2O. Each normal mode i behaves
as an independent quantum harmonic oscillator, with its own vibrational frequency
(and thus ladder step �ωi ).

3.3.2 Electronic Excitations

Visible and UV photons can excite electronic states. These transitions are similar
to atomic excitations, and can roughly be understood as promotions of an electron
from a filled molecular orbital to an empty one, e.g. from a bonding to an antibonding
orbital. An electronic transition ψ

(a)
e → ψ

(b)
e in a molecule leads from one adiabatic

potential surface to another, as illustrated in Fig. 3.13.
During the extremely short timescale of the electronic transition, the ions have no

time to move, thus the transition is “vertical” in R. In general, the shapes of different
adiabatic potentials V (a)

ad (R) and V (b)
ad (R) associated to different electronic states

are often well distinct; in particular R(b)
M �= R(a)

M . This means that electronic transi-
tions are usually accompanied by vibrational “shakeup” transitions, excited by the
displacement of the equilibrium geometry. For this reason, an electronic transition
usually gets decorated by approximately equally-spaced vibrational satellites, sep-
arated by the harmonic frequency �ω(b) of the final adiabatic potential, as sketched
in Fig. 3.14.



94 3 Molecules

R

en
er
gy

V
ad

(a)

V
ad

(b)

v=0

v=1

v=2

v=3
v=4

v=0
v=1

v=2
v=3

R
M

(a)

R
M

(b)

Fig. 3.13 Rotational states build up tiny nonuniformly-spaced ladders on top of each of the pure
(l = 0) vibrational states of two adiabatic potentials V (a)

ad (R) and V (b)
ad (R) associated to the electronic

eigenfunctions ψ
(a)
e and ψ

(b)
e

0 1 2 3
R

en
er
gy

V
ad

(a)

V
ad

(b)

v=0

v=1

v=2

v=3
v=4

v’=0
v’=1
v’=2
v’=3

R
M

(a)

R
M

(b)

16 17 18 19
0

1

2 2Σ
g

+ 2Π
u

2Σ
u

+

10 0 1 2 3 4 5 0 1 v’

(a) (b)

Fig. 3.14 a A sketch of the adiabatic potentials of two different molecular electronic states,
with the respective vibrational energies, the ground, and a few excited vibrational wavefunctions.
Arrows highlight the most intense vertical (Franck-Condon) transitions in absorption and in emission
(fluorescence). b The observed photoemission spectrum of N2, with the transition between the
electronic ground state of N2 and three different electronic states of N+

2 labeled 2�+
g , 2�g , 2�+

u .
This spectrum exhibits sequences of regularly-spaced vibrational satellites built on top of each
electronic state of N+

2 (Data from Ref. [27])

The intensities of the different satellites are distributed proportionally to the over-
laps |〈v = 0|v′〉|2, involving the projection of the vibrational ground state |v = 0〉
of the initial adiabatic potential V (a)

ad on each of the final vibrational eigenstates |v′〉
of V (b)

ad . The most probable transitions involve those |v′〉 states with large amplitude
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in the region of the initial minimum R′
M, as illustrated in Fig. 3.14a (Franck-Condon

principle). Accordingly, the spectral intensity shared by a large number of vibrational
satellites indicates a large displacement of the equilibrium position in the electronic
transition. For example, the spectrum of Fig. 3.14b indicates that, in the electronic
transition from the ground state of N2 to N+

2 , RM shifts more in going to the 2�u state
than to either of 2�+

g or 2�+
u . Rotational structures accompanying the electronic-

vibrational structures are complicated by the change in momenta of inertia and by
occasional changes in electronic angular momentum.

3.3.3 Zero-Point Effects

We conclude this section with an intriguing detail: the bond energy of a diatom is
slightly less than the depth Vad(+∞) − Vad(RM) of the adiabatic potential well.
The bond energy would coincide with the well depth Vad(+∞) − Vad(RM) if the
nuclear masses were infinite, or equivalently if the ions moved according to classical
mechanics. Due to the quantum zero-point motion associated to Heisenberg’s uncer-
tainty principle (see Appendix B.2.1), the actual ground-state energy includes a vibra-
tional contribution, that in the harmonic approximation equals Evib(0) = �ω/2, see
Eq. (3.21). As illustrated in Fig. 3.15, when zero-point energy is accounted for, the
actual binding energy reduces to Eb = Vad(+∞) − [Vad(RM) + Evib(0)]. Experi-
mentally, this usually small effect can be probed by changing the nuclear isotopic
masses, thus modifying the vibrational frequency ω ∝ μ−1/2, without affecting
Vad(R).

Fig. 3.15 The role of the
zero-point vibrational
motion in the precise
definition of the bond energy
of a diatomic molecule. The
zero-point energy Evib(0) is a
consequence of Heisenberg’s
uncertainty principle, namely
the nonzero quantum kinetic
term 〈Tn〉 in a
position-localized state. The
zero-point energy decreases
as the atomic masses Mα

increase: Evib(0) would
eventually vanish in the limit
of a classical adiabatic
atomic motion 0 1 2 3

R/R
M
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1
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This zero-point effect is spectacular in 4He2. This dimer is so extremely weakly
bound (the well depth is approximately 900µeV, see Table 3.1) that a single bound
v = 0 “vibrational” level exists [28], with a zero-point energy Evib(0) that almost
entirey balances the adiabatic attraction, to a total net binding energy Eb  0.1µeV
only! Of the 25 % lighter 3He2, no bound state is observed.

The present chapter summarizes a few basic ideas and experimental evidence
in the field of molecular physics. The concepts of adiabatic separation and chem-
ical bonding stand at the heart of all physics and chemistry of matter: they open
the way to understanding the dynamics of systems composed of more than a single
atom, namely molecules, as well as polymers, clusters, solids… The basic concepts
sketched in these pages only scratch the surface of the broad field of molecular
spectroscopy, which provides detailed quantitative information about the geome-
try and dynamics of diatomic and polyatomic molecules [6, 8, 9]. Beside spec-
troscopic characterization, molecules are synthesized transformed and investigated
by means of all sorts of chemical reactions: these can mostly be analyzed con-
ceptually in terms of the dynamics of atoms guided by suitable multi-dimensional
potential energy surfaces Vad(R). The qualitative understanding and quantitative
study of these phenomena constitutes the hard core of chemistry and chemical
physics.

Problems

A � marks advanced problems. Problems labeled S involve concepts of statistical
physics from Chap. 4.

3.1 S Consider a H80Br gas sample at temperature 400 K. The equilibrium inter-
atomic distance is RM = 141 pm and the wave number of the vibrational tran-
sition ν̄ = 2,650 cm−1. Evaluate:

• the rotational quantum number l of the most populated state;
• the wave number of the most intense transitions of the P and R branches of

the absorption spectrum.

3.2 S The vibrational wave number of the isotopically pure H79Br molecule is ν̄ =
2,650 cm−1. Evaluate the force needed to stretch the bond, displacing the two
nuclei from their equilibrium distance RM by 1 pm. Evaluate also the vibrational
contribution to the specific heat capacity at temperature 350 K.

3.3 S The figure below records an infrared absorption spectrum of gas-phase H80Br.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Based on this experimental spectrum, determine:

• The elastic constant of the adiabatic potential in the harmonic approximation;
• the equilibrium distance between the H and Br nuclei;
• an estimate (with a 30 % precision) of the sample temperature.

3.4 S Consider fluorine gas at temperature 5,000 K. Using the harmonic approx-
imation, estimate the number of bound vibrational levels for a F2 molecule,
knowing that the vibrational transition is observed at ν̄ = 892 cm−1 and that
the molecular binding energy is 1.5 eV. Write the vibrational partition function
in the harmonic approximation, and estimate the fraction of bound molecules
and the fraction of dissociated molecule. For the latter, assume simply that the
dissociated molecules are represented by the harmonic vibrational levels above
the dissociation threshold.

3.5 Evaluate the force (in Newton) necessary to pull the two nuclei of a N2 mole-
cule 1 pm apart, starting from the equilibrium separation RM = 109 pm. The
vibrational frequency is observed at a wave number 2,360 cm−1. Evaluate also
the excitation energy of the rotational state with angular momentum l = 2
relative to the ground state l = 0.

3.6 In the rovibrational spectrum of gas-phase HCl the transition (v = 0, l = 2) →
(v = 1, l = 3) is observed at frequency 88,380 GHz. Evaluate the frequency of
the homologous line in the DCl spectrum, knowing that the molecular equilib-
rium separation is 1.27 Å. Additionally, estimate the difference in dissociation
energy between the two molecular species.

3.7 S Evaluate the total molar specific heat capacity of a gas of CO molecules at
temperature 500 K, knowing that the lowest pure rotational line is observed at
frequency 115.271 GHz, and that the vibrational frequency is 64,100 GHz.

3.8 Model the adiabatic potential energy as a function of the distance R between
a carbon and a oxygen nucleus with the Lennard-Jones potential:

V (R) = ε

[(σ

R

)12 −
(σ

R

)6
]

.

Evaluate the parameters ε and σ so as to reproduce the spectroscopic values of
the vibrational quantum ν̄ = 2,162 cm−1, and the 3.8 cm−1 separation between
the rotational lines of the 12C16O molecule.
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3.9 S The equilibrium interatomic distance of the HCl molecule is 127 pm, and
the curvature of the adiabatic potential at this equilibrium distance amounts
to 590 kg/s2. For a gas-phase sample of 1H37Cl at equilibrium at temperature
390 K, determine the frequency in Hz of the most intense rovibrational absorp-
tion line in the P branch.

3.10 � Refining the standard rigid-rotor approximation, the actual equilibrium dis-
tance of a diatomic molecule does not coincide with the adiabatic minimum
of Vad(R), but with the minimum of Vad(R) + Vcentrif(R), where the centrifu-
gal contribution to the radial equation depends on the interatomic separation
R and on the rotational quantum number l as well. As a consequence, the
momentum of inertia depends on l, so that the purely rotational spectrum gets
distorted compared to the rigid-rotor spectrum. Consider the 1H127I molecule
and assume

Vad(R) = ε

[(σ

R

)4 − 2
(σ

R

)2
]

,

with ε = 3.0 eV and σ = 161 pm. Evaluate the l value for which the corrected
rotational energy Erot(l) differs by 1 % compared to the prediction of the rigid-
rotor formula.

3.11 � Evaluate the mean distance between the two protons in the H2 molecule
and the mean square fluctuation of that distance due to the zero-point radial
motion in the ground state, assuming the harmonic approximation. Also com-
pute the ratio of these lengths. The vibrational wave number (4,395 cm−1) and
the rotational spectroscopic constant (�2/2I = 61.0 cm−1) have been deter-
mined experimentally.
[Recall the expression x0 = [�/(ωμ)]1/2 for the characteristic length scale of
a harmonic oscillator of angular frequency ω and mass μ.]

3.12 � Consider the transition between two electronic states 1 and 2 of the diatomic
molecule NH. Assume that the corresponding adiabatic potential energies
V (i)

ad (R) [for i = 1, 2] as a function of the interatomic distance R can be
represented by the (Morse) form:

V (i)
ad (R) = Eb i

[
e−2ai (R−R0 i ) − 2e−ai (R−R0 i )

]
.

Assume the following values of the parameters: Eb1 = 5.9 eV, R01 = 95 pm,
a1 = 19.0 (nm)−1, Eb2 = 3.2 eV, R02 = 107 pm, a2 = 19.0 (nm)−1. Adopting
the harmonic approximation for the vibrational energies, estimate the wave-
length of the radiation necessary to excite the transition from level 1 (ground
vibrational state v1 = 0) to level 2 (vibrational level v2 = 3).



Chapter 4
Statistical Physics

The purpose of statistical physics is to relate average properties of “macroscopic”
objects (thermodynamic quantities) to the fundamental interactions governing their
microscopic dynamics. The previous chapters have discussed the way many detailed
properties of individual atoms and molecules are accounted for based on the funda-
mental electromagnetic interactions driving the motion of the composing electrons
and nuclei. The number of electrons and nuclei in atoms and small molecules does
not exceed few hundred or, at most, few thousand. Macroscopic objects, as opposed
to microscopic systems, are characterized by huge numbers of degrees of freedom.
For example, a sodium-chloride crystal weighting 1 g, ready to be thrown in hot water
for cooking pasta, is composed of about 3 × 1023 electrons plus approximately 1022

Na and 1022 Cl nuclei. One may as well conceive some (possibly approximate) wave-
function for the dynamics of such a huge number of degrees of freedom, but must
also readily give up any hope to ever record the huge amount of information stored
by the wavefunction describing the full detail of such a system. On the other hand,
this limitation is not especially bad, since such intimate details of the dynamics of our
salt crystal, because the individual motions of electrons and nuclei are probably bor-
ing and of little practical use. Physicists and materials scientists are more interested
in the measurable average macroscopic properties of objects and substances, e.g.
stiffness, tensile strength, heat capacity, heat and electrical conductivity, dielectric
and magnetic susceptibilities, phase transitions…

4.1 Introductory Concepts

To draw a link between the microscopic dynamics and the macroscopic thermody-
namic properties, equilibrium statistical physics borrows its mathematical tools from
the theory of probability and from general statistics.

© Springer International Publishing Switzerland 2014
N. Manini, Introduction to the Physics of Matter,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-14382-8_4
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4.1.1 Probability and Statistics

Statistics is rooted in the notion of probability. The naive notion of probability
coincides with the relative number of observations. For example, after rolling a dice
a large number N of times, we observe “two” N2 times: the ratio N2/N is an estimate
of the probability P2 of obtaining “two” in a single roll. However, we have also an
a-priori idea of probability. We will assert that P2 = 1/6, even against contradictory
observation, unless we have evidence that the dice is loaded. Such a-priori notion of
probability is an example of a rigorous definition of probability as a measure defined
on a “space of events”, such that the measure of all space equals unity. The basic
assumptions are:

1. for non-intersecting sets of events A and B, the probability of A ∪ B (i.e. that any
event in either A or B is realized) equals PA + PB;

2. given two spaces of events (which could intersect, or even coincide), two sets of
events A and B belonging to the first and second space are called independent if
the probability of (A and B) (i.e., an event occurs that satisfies the conditions for
belonging to A and at the same time to B) is the product P(A) · P(B).

Both these properties are trivial when probability and relative number of observations
are identified.

The two basic properties of probability sketched above allow us to relate the
probabilities of complicated events to those of elementary events. For example, the
probability of obtaining two ones when two dices are rolled independently is 1/6 ×
1/6 = 1/36 (property 2); the probability for a four and a five is 1/36 + 1/36 = 1/18, since
both (a four on dice 1 and a five on dice 2) and (a five on dice 1 and a four on dice 2)
are mutually exclusive events (property 1).

Statistics makes a wide use of probability distributions: these are lists of proba-
bilities of mutually exclusive sets of events which cover the whole space of events.
For example, when the two rolled dices are considered, the outcome may be grouped
in equal numbers (6 mutually exclusive possibilities, each of probability 1/36) or dif-
ferent numbers (6 × 5/2 = 15 mutually exclusive possibilities, each of probability
1/18): using property 1, this leads to a distribution Pequal = 1/6, and Pdifferent = 5/6.
Clearly, the events considered exhaust all space, and the sum of all the probabilities
in the distribution equals unity. It is a useful exercise to work out the distribution
Pboth even, Peven odd, Pboth odd on the same space of events. Basically, a probability
distribution makes probability a function of certain specifications of the events con-
sidered. Examples of popular distributions in statistical physics are the binomial
distribution, the Poisson distribution, and the Gaussian distribution.

QM, even at the level of a single particle, or few of them, has an intrinsic statistical
interpretation, in the probabilistic postulate of observation. When a measurement of
observable A is done on a quantum system initially in some state |i〉, the system will be
found in the eigenstate |a〉 of A associated to eigenvalue a, with probability Pa(|i〉) =
|〈a|i〉|2. The quantum state |i〉 contains all probability distributions corresponding to
all possible operators associated to conceivable measurements that could be carried
out on the system. In fact, statistical physics is concerned only marginally with
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this statistical interpretation because, as long as the quantum-mechanical system
is left undisturbed, the ket evolves from any given initial state according to the
(deterministic) Schrödinger equation (1.7). On the contrary, the statistical description
of a macroscopic system attempts to investigate its average properties without the
need of a precise specification of the initial conditions, but rather assuming that
all “reasonable” initial conditions could occur with equal probability. Ideally one
would like to identify macroscopic properties with time averages of the microscopic
observables along the evolution dictated by the internal dynamics.

Two basic assumptions reconcile the irrelevance of the initial conditions with the
time-average viewpoint: equilibrium and ergodicity. Equilibrium requires that long
ago the system has undergone some initial transient, and that now, at the time of
interest, no systematic drift is occurring any more, all collective quantities (e.g. pres-
sure) fluctuating in time around some well-defined average value. Ergodicity assumes
that all kinds of states are randomly explored in a period of time short compared to
the typical duration of measurements: subsequent times provide independent random
realizations of an underlying probability distribution. A dishonest dice roller violates
ergodicity by controlling accurately the initial conditions, rather than rolling blindly
to generate successive truly random independent numbers. A similar violation may
occasionally occur in statistical physics, as illustrated in the example of H2 nuclear
spin. H2 molecules occur with total nuclear spin 1 (orthohydrogen) or 0 (parahydro-
gen). These states have essentially the same energy, thus they should all occur with
equal probability: one expects to observe a ratio of ortho- to parahydrogen matching
their degeneracy ratio 3:1. However ortho-para inter-conversion is rather difficult:
ordinary molecular collisions conserve nuclear spins, thus leaving the total abundance
of each species unaltered. Normally, inter-conversions occur at the walls, in the neigh-
borhood of magnetic impurities. However, one could store the H2 sample in a vessel
where all magnetic impurities have been carefully removed. As a result, an anomalous
abundance ratio of ortho- to parahydrogen can be stabilized for an extended time.
Instead, if magnetic impurities are present, careless “shuffling” of the nuclear spins
occurs, the expected 3:1 equilibrium distribution is readily recovered, and the sys-
tem is ergodic. In brief, the ergodic hypothesis assumes that the system is sufficiently
random that no conserved quantities prevents the access (in periods of time short com-
pared to the duration of the experiment) to some major subset of the space of states.

When a system is at equilibrium and ergodic, time averages can safely be replaced
by averages over a suitable probability distribution of the microscopic states. We now
sketch the standard math used to describe a random distribution of quantum states.

4.1.2 Quantum Statistics and the Density Operator

We want to formalize our basic ignorance of the precise quantum state of a system,
while describing correctly its statistical properties [17]. A system may be found in any
of a number of quantum states |a1〉, |a2〉,… with probability w1, w2,… respectively.
The states |a1〉, |a2〉,… need not be eigenstates of any observable, they need not be

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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orthogonal, and in number they could even exceed the dimension of the Hilbert space
of states. The normalization of probability requires that

∑
i wi = 1.

On average, the measurement of an observable B on such a system should provide

[B] =
∑

i

wi 〈ai|B|ai〉 =
∑

i

wi

∑

b

b |〈ai|b〉|2, (4.1)

where the {|b〉} is the basis of eigenkets of B, with eigenvalues b. We introduce the
square brackets [ ] to indicate the ensemble average, i.e. the statistical mean of the
quantum average values.

The averages (4.1) are naturally computed using the statistical density operator

ρ̂ =
∑

i

wi |ai〉〈ai|, (4.2)

as

[B] =
∑

i

wi〈ai|B|ai〉 =
∑

i

wi

∑

b

b〈b|ai〉〈ai|b〉 =
∑

b

b〈b|
(
∑

i

wi|ai〉〈ai|
)

|b〉

=
∑

b

b〈b|ρ̂|b〉 =
∑

b

〈b|ρ̂B|b〉 = Tr(ρ̂B). (4.3)

The density operator collects all dynamical and statistical properties of the system.
ρ̂ is self-adjoint: it can therefore be diagonalized. On its diagonal basis, the density
operator is expressed as:

ρ̂ =
∑

m

Pm |ρm〉〈ρm|, (4.4)

where the kets |ρm〉 form a complete orthonormal basis of the Hilbert space [in
contrast to the |ai〉 of the definition (4.2)], associated to positive eigenvalues Pm.
Note the normalization

Tr(ρ̂) =
∑

b

〈b|ρ̂|b〉 =
∑

b i

wi〈b|ai〉〈ai|b〉 =
∑

i

wi

∑

b

〈ai|b〉〈b|ai〉

=
∑

i

wi〈ai|ai〉 = 1. (4.5)

indicating that also
∑

mPm = 1: the eigenvalues Pm can be interpreted as probabilities.
The special case of a statistical operator describing a single pure state ρ̂ = |a1〉〈a1|

falls back to standard deterministic QM: [B] = Tr(ρ̂B) = 〈a1|B|a1〉 = 〈B〉. In this
case (and only in this case) ρ̂ has the property of a projector ρ̂2 = ρ̂.

4.2 Equilibrium Ensembles

Consider a macroscopic isolated system (the “universe”) U, of which the energy
is known (microcanonical ensemble) up to an uncertainty ΔE. The fundamental
postulate of equilibrium statistical physics follows from the ergodic hypothesis: all
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Fig. 4.1 The whole
“universe” U partitioned into
two weakly-interacting
regions: a “system” S plus
the “rest of the universe” W S

U

W

quantum states of U are equally likely. In other words, the probability of any state
|i〉 equals a constant PU

i = 1/ΩU(E;ΔE) if the energy EU of |i〉 is in the range E ≤
EU ≤ E + ΔE, or vanishes otherwise. ΩU(E;ΔE) equals the number of individual
states of U in the selected energy range E ≤ EU ≤ E+ΔE. In this way, the probability
PU

i is correctly normalized to unity. From this very “democratic” postulate, we derive
the probability distribution of a system S in thermal equilibrium with the rest of the
universe W (Fig. 4.1). The total Hamiltonian HU = HS + HW + HSW is assumed to
involve an extremely weak interaction term HSW ≈ 0, so that EU ≈ ES + EW.

We address the specific problem: What is the probability Pm of finding the system S
in a given quantum state |m〉 of energy Em? As the coupling between S and W is weak,
we can assume that the states in S and in W are distributed independently at random.
The only correlations between S and W are induced by the energy conservation.
Accordingly,

PU = PS
m PW. (4.6)

Microcanonical distributions govern both U and W individually: like U-states
occur with probability PU = 1/ΩU(E;ΔE), in W each state has probability
PW = 1/ΩW(E − Em;ΔE). Here E − Em is the residual energy of W, once the
energy Em of S has been taken into account. From Eq. (4.6) we extract the probability
distribution of S:

PS
m = PU

PW = 1/ΩU(E;ΔE)

1/ΩW(E − Em;ΔE)
= ΩW(E − Em;ΔE)

ΩU(E;ΔE)
. (4.7)

Observe that for most U-states the energy Em in the system S is a tiny fraction of
the total energy of the universe E: one can Taylor-expand the numerator (rather: its
logarithm1) around E:

ln ΩW(E − Em;ΔE) = ln ΩW(E;ΔE) − βEm + . . . , (4.8)

1 The number ΩW of microstates of a huge “rest of the universe” increases roughly exponentially
with its energy, thus the expansion of log ΩW is far more accurate and better convergent than that
of ΩW.
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where the slope β = ∂ ln ΩW(E′;ΔE)/∂E′∣∣
E′=E has dimensions of inverse energy.

The linear approximation for the logarithm is exceedingly good as long as Em � EW.
We substitute it back into Eq. (4.7) and obtain

PS
m = ΩW(E;ΔE)

ΩU(E;ΔE)
e−βEm , (4.9)

which is a very remarkable result for at least two reasons:

• the whole dependence on the state |m〉 of S is confined to the exponential factor, as
the normalization factor Z−1 = ΩW(E;ΔE)/ΩU(E;ΔE) is independent of |m〉;

• the probability of the state |m〉 of S is a function of its energy Em only, through a
simple exponential.

We rewrite Eq. (4.9) inserting the normalization factor Z−1 and omitting the label S:

Pm = P(Em) = e−βEm

Z
. (4.10)

Equation (4.10) describes the Boltzmann equilibrium probability distribution for the
states of a generic system in weak thermal contact with a huge environment. This
distribution is associated to the Gibbs canonical ensemble.

As the probability distribution (4.10) is necessarily normalized, Z can alternatively
be expressed entirely in terms of properties of the system S under study, namely

Z =
∑

m

e−βEm = Tr
(

e−βH
)

, (4.11)

without any reference to U and W (thus, we write H in place of HS). Z is usually called
partition function. Note that the sum in Eq. (4.11) involves all microstates includ-
ing, in particular, all same-energy components of degenerate levels. An equivalent
formulation of the same sum is:

Z =
∑

E

ndeg(E)e−βE . (4.12)

where ndeg(E) is the number of degenerate states with energy E. Note also that the
trace in Eq. (4.11) can be taken on any basis of convenience.

The density operator associated to the Boltzmann equilibrium probability distri-
bution is diagonal in the energy representation:

ρ̂eq =
∑

m

e−βEm

Z
|m〉〈m| = 1

Z
e−βH . (4.13)

This same density operator can however be written on any basis, by applying a
suitable unitary transformation.
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4.2.1 Connection to Thermodynamics

Assume that the system S can be partitioned into two weakly interacting subsystems
S1 and S2 (Em1m2 ≈ E1m1 +E2m2 ). When thermal equilibrium is established between
S1, S2, and the rest of the world W, the distribution

Pm1m2 = Z−1e−βEm1m2 = e−β(E1m1 +E2m2 )

∑
n1n2

e−β(E1n1 +E2n2 )
,

can be factorized into

Pm1m2 = e−βE1m1

∑
n1

e−βE1n1
· e−βE2m2

∑
n2

e−βE2n2
= e−βE1m1

Z1
· e−βE2m2

Z2
. (4.14)

This decomposition shows that at equilibrium S1 and S2 follow independent Boltz-
mann distributions PSi

mi = e−βEimi /Zi, with the same β parameter. This observation
suggests that the intensive quantity β might be a function of temperature T .

The natural statistical definition for the internal energy U of thermodynamics is
the average of the energy operator

U = [H] = Tr(ρ̂H) =
∑

m

EmPm = 1

Z

∑

m

Eme−βEm . (4.15)

Deriving U with respect to β yields minus the squared energy fluctuation:

∂U

∂β
= −Z

∑
m E2

me−βEm + (∑
m Eme−βEm

)2

Z2

= −
(
[H2] − [H]2

)
= −

[
(H − [H])2

]
. (4.16)

Thus, ∂U/∂β ≤ 0, i.e. the internal energy decreases when β increases. This observa-
tion suggests that β and temperature might be inversely related. The determination
of the precise relationship is sketched below.

Firstly, note that Z is a multiplicative function [Z = Z1Z2 for a system composed
of two subsystems, see Eq. (4.14)], thus its logarithm is an additive function (ln Z =
ln Z1 + ln Z2). ln Z must then represent an extensive thermodynamic quantity. Define
the function

F = − ln Z

β
. (4.17)

Using this definition, we derive a relation between the β-derivative of the extensive
quantity ln Z and the internal energy U:

∂(βF)

∂β

∣∣∣∣
V,N

= −∂(ln Z)

∂β
= − 1

Z

∂Z

∂β
= −

∂
∂β

∑
m e−βEm

Z

= −
∑

m
∂
∂β

e−βEm

Z
=

∑
m Eme−βEm

Z
= [H] = U, (4.18)
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namely the average energy, as defined in Eq. (4.15). Equation (4.18) identifies the
derivative of βF w.r.t. β with the internal energy. This identification recalls a known
thermodynamic identity involving the free energy and temperature: starting from the
basic definition of the free energy F = U − T S (where S is entropy), one finds

U = F + TS = F − T
∂F

∂T
= −T2

(
−T−2F + T−1 ∂F

∂T

)
= −T2 ∂(T−1F)

∂T
.

(4.19)

This expression can be written more compactly in terms of a derivative w.r.t. the
inverse temperature:

∂(T−1F)

∂(T−1)
= U. (4.20)

In Eqs. (4.19) and (4.20) all T -derivatives are carried out at constant number of
particles N and volume V . By comparing Eqs. (4.18) and (4.20) we see that

• it is perfectly natural to identify the extensive quantity F defined statistically in
Eq. (4.17) with the free energy F of thermodynamics;

• β must then be proportional to the inverse temperature T−1.

The proportionality constant between T and β−1 is known as the Boltzmann
constant kB, and represents the numerical conversion factor between temperature [K]
and energy [J]:

β = 1

kBT
. (4.21)

The comparison of Eq. (4.47) with the empirical definition of temperature through
the ideal-gas thermometer provides the relation kB = R/NA with the gas con-
stant R and the Avogadro constant NA. The resulting kB = 1.38065 × 10−23 J/K =
86.1733µeV/K. In statistical physics, temperature usually appears in the energy
combination kBT or in the β notation.

The physical meaning of temperature is now clear: the probability distribution
of the microstates of any system in thermal equilibrium is determined uniquely by
the energies of these states, in a straightforward way: at a given temperature T , the
probability P(Em) of a given state of energy Em is proportional to exp(−βEm). Thus,
−β = −(kBT)−1 is the slope of the straight line representing P(Em) as a function
of Em in a lin-log plot, as in Fig. 4.2.

Note that, due to the normalization factor Z−1 in Eq. (4.10), the energies of all
states in the system determine the equilibrium probability Pm of the occurrence of a
given energy eigenstate |m〉. However, only the energy difference between two states
|m〉 and |n〉 determines their probability ratio Pm/Pn = exp[β(En − Em)].

The discussed relations, in particular Eqs. (4.17) and (4.21), establish an explicit
link between statistical physics and thermodynamics, i.e. between the microscopic
dynamics and macroscopic observable average properties. Based on Eq. (4.17), one
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Fig. 4.2 The statistical meaning of temperature: a in a system at equilibrium with the “rest of
the universe” the probability P(Em) of individual microstates |m〉 decays exponentially with their
energy Em. b The slope of the straight line representing P(Em) as a function of energy in a lin-log
scale is precisely −β = −(kBT)−1

can link all thermodynamic properties of a system at equilibrium purely to its parti-
tion function Z . We list here the expressions for several fundamental extensive and
intensive thermodynamic quantities:

free energy F = −kBT ln Z = − ln Z

β
(4.22)

internal energy U = F + TS = ∂(βF)

∂β

∣∣∣∣
V,N

= − ∂(ln Z)

∂β

∣∣∣∣
V,N

(4.23)

entropy S = − ∂F

∂T

∣∣∣∣
V,N

= kBT
∂ ln Z

∂T
+ kB ln Z = U

T
+ kB ln Z (4.24)

heat capacity CV = ∂U

∂T

∣∣∣∣
V,N

= −kB β2 ∂U

∂β

∣∣∣∣
V,N

= kB β2 ∂2 ln Z

∂β2 (4.25)

pressure P = − ∂F

∂V

∣∣∣∣
β,N

=
(

N

V

)2
∂(F/N)

∂(N/V )

∣∣∣∣
β

(4.26)

free enthalpy G = F + PV (4.27)

enthalpy H = F + PV + TS. (4.28)
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4.2.2 Entropy and the Second Principle

The connection (4.24) of entropy and statistics applies at equilibrium only. An entirely
general definition of entropy is available, which applies for any statistical distribution
of the quantum states defined by an arbitrary density operator ρ̂, whether it represents
an equilibrium ensemble or not:

S = −kBTr(ρ̂ ln ρ̂). (4.29)

This definition conforms to the intuitive idea of entropy as a measure of disorder.
Consider the basis |ρm〉 where ρ̂ is diagonal. Here, ρ̂ = ∑

m Pm|ρm〉〈ρm|. In this basis

S = −kB

∑

m

Pm ln Pm. (4.30)

We can now compute S for the most ordered distribution, namely a pure state (i.e.
Pm = 1 for a single state m and 0 for all others), and obtain S = 0 since all terms
vanish. S increases when several states have nonzero probabilities. For the extreme
limit of a completely random distribution with probability Pm = Ω−1 for a number
Ω of equally-likely states, we obtain S = −kB

∑Ω
m

[
Ω−1 ln(Ω−1)

] = kB ln(Ω).
We conclude that entropy is a logarithmic measure of the number of states that the
system accesses.

When the system is at equilibrium, the general statistical definition (4.29) coin-
cides with Eq. (4.24). This is readily verified by substituting the equilibrium density
operator ρ̂eq of Eq. (4.13) into (4.29), i.e. Eq. (4.10) into (4.30):

S = −kB

∑

m

Pm ln Pm = −kB

∑

m

e−βEm

Z
ln

e−βEm

Z

= −kB

∑
m e−βEm(ln e−βEm − ln Z)

Z
= kB

∑
m e−βEm(βEm + ln Z)

Z

= kBβ [H] + kB
Z ln Z

Z
= U

T
+ kB ln Z. (4.31)

Moreover, it is possible to show [29] that if ρ̂ coincides with the Gibbs-Boltzmann
equilibrium density matrix ρ̂eq, Eq. (4.13), the system entropy, defined in Eq. (4.29),
is maximum under the constraint of assigned internal energy Tr(ρ̂H) = U, volume
V , and number of particles N . Any generic density operator ρ̂gen, respecting the
constraints on U, V , and N , yields an entropy Sgen not exceeding the Seq of the
equilibrium distribution ρ̂eq, Eq. (4.13). Any isolated system is observed to evolve
spontaneously toward equilibrium: accordingly, this maximum-entropy result shows
the consistency of statistical physics with the second principle of thermodynamics. In
a spontaneous transformation toward equilibrium ρ̂gen → ρ̂eq, the entropy increases
from Sgen up to Seq. This result can be extended to conditions where U, V , or N vary
(not-isolated systems), but for our purposes it suffices to retain that the experimental
fact of entropy increase in the approach to equilibrium is rooted in statistics.
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For an in-depth analysis of the concepts sketched in the present section, we refer
to specialized textbooks, e.g. Refs. [17, 29, 30].

4.3 Ideal Systems

Before attempting any understanding of the complicated macroscopic properties
of structured objects such as a bicycle or a bowl of soup, scientists have wisely
chosen to investigate simpler systems: (usually) macroscopically homogeneous pure
(or controllably “doped”) bunches of atoms or molecules all of the same kind, or of
few kinds. These simpler systems constitute the wide class of materials. The rationale
behind studying materials is that the properties of a complex structured object can
be understood in terms of the functionality of the individual pieces it is composed
of, whose function, in turn, depends on their shapes and material properties. For
example, the total heat capacity of a bicycle is practically identical to the sum of the
heat capacities of the composing parts.

The macroscopic properties of a material are often studied in the limit of an
infinitely broad sample, for which the interactions with the surrounding environ-
ment (e.g. the containing vessel) are sufficiently weak to justify the assumptions of
Sect. 4.2. As the surface atoms/molecules directly interacting with the environment
usually involve a layer about ∼1 nm thick, for any sample whose linear dimensions
(all three of them) are larger than, say, ∼1µm, the error induced by this bulk approx-
imation should not be too bad.

Even with the idealization of a homogeneous bulk sample, the recipe

1. compute the spectrum of energies Em and eigenstates |m〉 of the system;
2. at given temperature T [or β = 1/(kBT)], compute the partition function Z ,

Eq. (4.11);
3. generate the equilibrium density operator ρ̂ using Eq. (4.13);
4. compute macroscopic average quantities as [B] = Tr(ρ̂B), as in Eq. (4.3);

is not really applicable for any realistic system, due to the difficulty of step 1.
Luckily, for a few ideal systems the programme of statistical physics can be carried

to satisfactory conclusion. By ideal systems we mean systems composed of individual
components (particles) whose mutual interactions are negligible. Ideal systems have

H =
N∑

i=1

Hi, (4.32)

where Hi governs the dynamics of a small set of degrees of freedom, e.g. the position
and spin of one particle. The simplicity of ideal systems allows us to obtain exact
partition functions, and thus to predict their thermodynamic properties by means of
statistical methods.

No ideal system exists in nature (although photons and neutrinos are very good
approximations to non-interacting particles). If one did exist, strictly speaking the
methods of equilibrium statistical physics would be irrelevant for that system since it
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would not be ergodic, and could never reach equilibrium. However, several proper-
ties of weakly-interacting systems resemble those of ideal systems. Most properties
of gaseous materials can be understood qualitatively, and often even quantitatively,
in terms of properties of ideal systems. The reader should however be cautioned
of the limited applicability and the risk of artifacts due to the idealized nature of
non-interacting systems: a quantitative understanding of the thermodynamic prop-
erties of real materials usually requires more sophisticated methods, to account for
interactions.

Consider an ideal system composed of a single type of identical noninteracting
particles, e.g., electrons, or atoms, or molecules… The natural basis of states is a
factored basis, Eqs. (2.60) and (2.61), where the αi quantum numbers identify the
state |αi〉 of particle i. Ignoring temporarily the permutational symmetry requirements
(Sects. 2.2.1 and 2.2.2), the partition function

Z =?
∑

α1 α2 ··· αN

exp[−β(Eα1 + Eα2 + · · · + EαN )]

=
∑

α1 α2···αN

e−βEα1 e−βEα2 · · · e−βEαN . (4.33)

(with Eα indicating the single-particle eigenenergies of state |α〉) factorizes into N
single-particle terms. However, due to (anti)symmetrization, the exchange of any two
quantum numbers αi and αj leads to the same state (possibly up to a sign) for the N
identical particles. For fermions, with all different αi’s, the number of permutations
of the quantum numbers giving the same state is N !. For bosons, where some αi’s
can coincide, the number of permutations of the quantum numbers is smaller. To
determine this number of permutations, first sort the single-particle states |α〉, e.g.
for increasing energy, say |0〉, |1〉, |2〉, . . . Then count the numbers n0, n1, n2, . . . of
times each of these single-particle states appears in any given term in the sum (4.33).
Clearly, the sum of these occupation numbers n0 + n1 + n2 + · · · = N . The number
of permutations of a set of indexes α1, α2, . . . , αN is N !/(n0! n1! n2! . . . ). This
expression holds for fermions as well, because all nα! = 0! = 1 or 1! = 1.

We can now correct the partition function to remove multiple counts of the same
states:

Z =
∑

α1 α2 ··· αN

n0! n1! n2! . . .

N ! exp

(
−β

N∑

i=1

Eαi

)
. (4.34)

The sum of Eq. (4.34) extends over all possible αi’s for bosons, and over different
αi’s respecting Pauli’s principle in the case of fermions.

4.3.1 The High-Temperature Limit

At low temperature, the Boltzmann exponential factor tends to privilege those states
with a total energy

∑N
i=1 Eαi = ∑

α nαEα as small as possible: relatively few

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. 4.3 Typical boson occupancies of single-particle energy eigenstates in a spectrum with no
upper bound. a Low temperature. b Intermediate temperature. c High temperature, with most levels
left unoccupied

low-energy single-particle states are significantly occupied, see Fig. 4.3a. We shall
come back to this low-temperature regime in Sect. 4.3.2.

In contrast, at high temperature (small β), assuming, as is usually the case, that the
single-particle spectrum has no upper bound, the occupation probabilities of the huge
number (�N) of single-particle states with energy �kBT are very similar. Thus the
probability that one individual state is occupied is very small (Fig. 4.3c). N-particle
states with all different quantum numbers are overwhelmingly more numerous than
those with two or more of them equal. As a result, at high temperature the main con-
tribution to the boson partition function comes from states which have nα = 0 or 1 at
most. All terms with nα > 1 in the sum of Eq. (4.34) contribute negligibly to a huge Z .
Thus in Eq. (4.34) we approximate n0! n1! n2! · · · � 1 and even in the fermionic case
we include the unphysical terms with nα > 1 in the sum. Thus we obtain an approx-
imate high-temperature partition function for bosons and fermions alike:

Z � 1

N !
unrestricted∑

α1 α2 ... αN

exp

(
−β

N∑

i=1

Eαi

)
= 1

N ! Z1 · Z2 · · · · · ZN = (Z1)
N

N ! . (4.35)

Here the single-particle partition function Z1 = ∑
α exp(−βEα) sums the Boltzmann

weights exp(−βEα) for all one-particle states |α〉. Z1 should not be confused with
the full Z of Eq. (4.11) which involves entire-system states |m〉 instead.

In this high-temperature limit, the free energy is

F = − ln Z

β
� −kBT ln

(Z1)
N

N ! � −kBT

(
N ln Z1 − N ln

N

e

)
= −NkBT ln

e Z1

N
,

(4.36)

where we made use of the Stirling approximation ln(N !) � N ln(N/e), which is very
accurate for large N .
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At so high a temperature that interactions among the N identical particles can
be neglected, the system is usually in its gas phase. The center of mass of each
particle translates freely. This translational degree of freedom can be separated
from the internal ones, as sketched in Sect. 2.1 for the one-electron atom. In
the single-particle Hamiltonian H1 tr + H1 int the two terms commute. Accordingly,
the single-particle partition function Z1 can be factored

Z1 = Z1 tr Z1 int (4.37)

into a translational times an internal part. The latter describes the statistical dynamics
of the internal degrees of freedom of the particle (including, e.g., its spin, and/or
its rotations), and depends therefore on the specific spectrum of its excitations. In
contrast, the translational part is universal: it depends uniquely on the particle mass
M and the containing volume V .

4.3.1.1 Translational Degrees of Freedom

To obtain Z1 tr, recall the spectrum of a freely translating particle contained in a
macroscopically large cubic box of volume V = L×L×L. Impose periodic boundary
conditions, i.e. the eigenfunction is the same at opposite faces of the box. The results
[Eq. (4.42) onward] would not change if we assumed that the wavefunction vanishes
at the boundary instead. The allowed values of the u = x, y, z momentum components

pu = � ku = �
2π

L
nu nu = 0,±1 ± 2 ± 3, . . . (4.38)

are associated to plane-wave eigenfunctions ψk(r) = L−3/2 exp(i k · r), of transla-
tional kinetic energy

En = |p|2
2M

= �
2|k|2
2M

= (2π�)2 (n2
x + n2

y + n2
z )

2ML2 . (4.39)

For macroscopically large L, the translational energy levels form a “continuum”: the
triple sum in the translational single-particle partition function

Z1 tr =
∑

n

exp(−βEn) =
∑

nx ny nz

exp

(
−β

[2π�]2[n2
x + n2

y + n2
z ]

2ML2

)
(4.40)

is conveniently approximated by the integral

Z1 tr =
∞∫

−∞

∞∫

−∞

∞∫

−∞
exp

(
−β[2π�]2

2ML2 [n2
x + n2

y + n2
z ]

)
dnx dny dnz. (4.41)

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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This expression factorizes into the product of three identical Gaussian integrals.2 In
total,

Z1 tr =
(

L

�

√
MkBT

2π

)3

=
(

L

Λ

)3

= V

Λ3 , (4.42)

where we have introduced the thermal length

Λ = �

√
2π

MkBT
. (4.43)

We can now substitute the result (4.42) for the single-particle partition function
into the global partition function (4.35) of the gas

Z = (Z1 tr)
N

N ! (Z1 int)
N = V N

N ! Λ3N (Z1 int)
N . (4.44)

Derivation yields the translational contribution to the internal energy

Utr = − ∂

∂β
ln Ztr = − ∂

∂β
ln

V N

N ! Λ3N
= 3N

∂ ln Λ

∂β

= 3N
∂ ln β

1/2

∂β
= 3

2

N

β
= 3

2
NkBT . (4.45)

This result is equivalent to the experimentally well-established translational contri-
bution 3

2 kB to the heat capacity per molecule of high-temperature gases. Likewise,
we obtain an expression for the free-energy contribution of the translational motion:

F = −N kBT ln
e Z1 trZ1 int

N
= −N kBT

(
ln

e V

NΛ3 + ln Z1 int

)
. (4.46)

Z1 int describes internal degrees of freedom: thus it can depend on T , but surely
not on the volume V of the containing vessel. This observation and the definition
of pressure (4.26) allow us to derive a remarkably general equation of state for the
ideal gas:

P = − ∂F

∂V

∣∣∣∣
β,N

= − ∂

∂V

[
−NkBT

(
ln

e V

NΛ3 + ln Z1 int

)]

T ,N

= NkBT
∂

∂V
ln

e V

NΛ3 ,

2 Recall that
∫ ∞
−∞ exp

(−x2/[2a2]) dx = √
2π a.
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i.e.

P = NkBT

V
. (4.47)

This relation, obtained on purely statistical grounds, is equivalent to the well-
established equation of state of perfect gases PV = nRT , universally and quan-
titatively valid for atomic and molecular gases at high temperature and low density.
The numerical value kB = R/NA is determined by identifying NkBT = nRT , given
that n moles of gas contain nNA particles.

Other quantities are accessible experimentally. For example, the single-particle
kinetic-energy distribution for center-mass translations, yields the probability to find
a particle in a given energy interval. To obtain this distribution, we need the energy
density of translational states

gtr(E ) = M3/2 V√
2 π2 �3

E
1/2, (4.48)

as can be derived from the kinetic-energy expression (4.39).3 Then, in the spirit of
Eq. (4.12), the single-particle kinetic-energy probability distribution is the product
of the density of states times the Boltzmann probability that a given state is
occupied:

dP(E )

dE
= gtr(E )

e−βE

Z1 tr
= M3/2V√

2π2�3
E

1/2 Λ3

V
e−βE = 2√

π
β

3/2 E
1/2 e−βE . (4.49)

This probability distribution, drawn in Fig. 4.4, is remarkably universal: it does not
even depend on the mass of the particles, but uniquely on temperature.

Similarly, we derive the translational velocity distribution. Every component of
v = p/M is Gaussian-distributed as

dP(vu)

dvu
=

√
βM

2π
exp

(
−β

Mv2
u

2

)
. (4.50)

To obtain the distribution of speed v = |v|, one can simply observe that the kinetic
energy E and speed v are connected by E = M

2 v2, and use the distribution (4.49):

3 According to Eq. (4.39), the kinetic energy is proportional to the squared length of the n vector
En = A|n|2. As the n points are evenly distributed with unit density, the number of states with
energy at most E equals the volume of the sphere of radius |n| = √

E /A in n-space. The density of
states is the derivative of this number of states with respect to energy: gtr(E ) = d

dE
4π
3 (E /A)

3/2 =
2πE 1/2/A3/2. This expression yields Eq. (4.48) after substituting the value of A = (2π�)2/(2ML2)

[from Eq. (4.39)], and V = L3.
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Fig. 4.4 The distribution—
Eq. (4.49)—of the
translational kinetic energy
of the molecules in an ideal
gas at a temperature high
enough that Bose/Fermi
statistics effects can be
neglected

dP(v)

dv
= dP(E )

dE

dE

dv
= Mv

dP(E )

dE
(4.51)

= Mv
2√
π

β
3/2

(
Mv2

2

)1/2

e−β M
2 v2 =

√
2

π
(Mβ)

3/2 v2 e− βM
2 v2

.

Equation (4.51), the Maxwell-Boltzmann equilibrium speed distribution, is drawn
in Fig. 4.5. The v2 factor, owing the same “polar” origin discussed for the radial

Fig. 4.5 The particle-speed
distribution of the
high-temperature ideal gas,
Eq. (4.51), rescaled by w =
(βM)−1/2 = (kBT/M)

1/2.
This distribution peaks at
vmax = √

2 w � 1.414 w, the
mean velocity is
[v] = √

8/π w � 1.596 w,
and the root mean square
velocity is
[v2]1/2 = √

3 w � 1.732 w
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Fig. 4.6 The velocity distribution of the atoms emerging from a oven through a tiny hole was probed
by letting them through a the spiraling slot of a rotating cylinder, to eventually be counted by a
tungsten surface ionization detector. b A typical observed distribution of the translational velocities
for high-temperature K vapor, compared to the curve of Eq. (4.51), but scaled to vmax rather than
w. Reprinted figures with permission from R.C. Miller and P. Kusch, Phys. Rev. 99, 1314 (1955).
Copyright (1955) by the American Physical Society

distribution P(r) of one-electron states in Sect. 2.1.3, should not hide the fact that
the most likely velocity is v = 0. Observations of the speed distribution confirm the
statistical analysis, see Fig. 4.6.

Internal degrees of freedom affect neither the equation of state nor any of the trans-
lational distributions. However, they do contribute an additive temperature-dependent
term to the free energy (4.46) [the part Fint(T) = NF1 int(T) = −NkBT ln Z1 int], to
the internal energy

U = 3

2
NkBT + N

[
F1 int(T) − TF ′

1 int(T)
]
, (4.52)

and therefore also to the heat capacity

CV = 3

2
NkB − NTF ′′

1 int(T). (4.53)

The internal term vanishes for structureless particles (e.g. electrons), while it con-
tributes significantly to thermodynamics whenever the internal degrees of freedom
are associated to excitation energies not too different from kBT . This internal contri-
bution is occasionally relevant for atomic gases and crucial for all molecular gases,
as illustrated by the following examples.

http://link.aps.org/abstract/PR/v99/p1314
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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4.3.1.2 Internal Degrees of Freedom of Molecules

We report here briefly the example of diatomic molecules, in the approximation that
rotational and vibrational motions are independent (Sect. 3.3). The partition function
factorizes Z1 int = Z1 vib Z1 rot, and therefore the free energy F1 int = −kBT ln Z1 int =
F1 rot + F1 vib.

For the rotational statistics

Z1 rot =
∞∑

l=0

(2l + 1) exp

(
−Θrot

T
l[l + 1]

)
(4.54)

is a function of the dimensionless ratio β �
2/(2I) = Θrot/T , where the characteristic

temperature Θrot = �
2/(2IkB). The series of (4.54) cannot be evaluated in a closed

form.4 However, the characteristic temperature Θrot is often small (e.g. 85 K for H2,
15 K for HCl, 2.9 K for N2). When Θrot/T � 1 the exponential in Z1 rot varies slowly
with l and many terms contribute to the sum in Eq. (4.54): it is a good approximation
to replace it with an elementary integral:

Z1 rot �
∞∫

0

(2l + 1) exp

[
−Θrot

T
l(l + 1)

]
dl =

∞∫

0

exp

(
−Θrot

T
y

)
dy

= T

Θrot
[T � Θrot]. (4.55)

The high-temperature rotational contribution to the thermodynamic functions is
therefore:

F1 rot = Frot

N
� −kBT ln

T

Θrot
(4.56)

U1 rot = Urot

N
� kBT (4.57)

CV 1 rot = CV rot

N
� kB (4.58)

S1 rot = Srot

N
� kB + kB ln

T

Θrot
(4.59)

[see Eqs. (4.22)–(4.25)]. At lower temperature T ∼ Θrot instead, truncating the
series (4.54) to a finite number of terms lmax � 2

√
T/Θrot approximates Z1 rot better.

Figure 4.7 reports the temperature dependence of the rotational heat capacity and
internal energy per molecule. Characteristically, as temperature is raised,

4 Equation (4.54) and its consequences are inaccurate for homoatomic molecules [31], where
nuclear spin and indistinguishableness play a role, due to ergodicity violations (e.g. slow ortho–
para-hydrogen inter-conversion). In such cases, one must consider even and odd l separately. In the
high-T limit, Eqs. (4.56)–(4.59) hold, though.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 4.7 The temperature
dependence of the rotational
contribution to a the
molecular internal energy
U1 rot and b the molecular
heat capacity CV 1 rot . The
energy scale of the problem
is set by �

2/(2I), which
translates into a temperature
scale Θrot = �

2/(2IkB). The
curves approach the
high-temperature limits of
Eqs. (4.57) and (4.58), for
T � Θrot
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the rotational degree of freedom “unfreezes”, reaching the classical equiparti-
tion limit at large temperature T � Θrot. Relative equilibrium populations Pl =
(2l + 1) exp(−l[l + 1]Θrot/T) /Z1 rot account for the observed relative intensities of
the rotational structures in molecular spectra (Figs. 3.9 and 3.10).5

As for the vibrational statistics in the harmonic approximation, Eq. (3.21), the
series is evaluated in closed form, thus yielding an exact partition function valid at
all temperatures:

Z1 vib =
∞∑

v=0

exp

(
−β�ω

[
v + 1

2

])
= exp

(
− x

2

) ∞∑

v=0

exp(−v x)

= exp
(
− x

2

) 1

1 − exp(−x)
= 1

2 sinh(x/2)
, with x = β�ω = Θvib

T
. (4.60)

5 The relative intensities of the rotational lines are proportional to the populations Pl provided that
the dipole matrix elements averaged over the initial (2l + 1) degenerate states and summed over
the final states l′ = l + 1 (R branch) or l′ = l − 1 (P branch) are independent of l. The radial part of
the matrix element is, but calculation shows that the angular part equals (l + 1)/(2l + 1) for the R
branch and l/(2l + 1) for the P branch. For not too small l, these factors are both close to 0.5, and
are therefore often approximated to constants.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 4.8 The temperature dependence of a the vibrational contribution to the molecular internal
energy U1 vib, Eq. (4.62), and b the molecular heat capacity CV 1 vib, Eq. (4.63). The energy scale of
the problem is set by �ω, which translates into a temperature scale Θvib = �ω/kB

Z1 vib is a function of the dimensionless ratio x = Θvib/T , where the characteristic
temperature Θvib = �ω/kB. For the vibrational degree of freedom, the thermody-
namic functions of Eqs. (4.22)–(4.25) are:

F1 vib = Fvib

N
= �ω

2
+ kBT ln

(
1 − e−x) (4.61)

U1 vib = Uvib

N
= �ω

2
+ �ω

ex − 1
(4.62)

CV 1 vib = CV vib

N
= kB

x2 ex

(ex − 1)2 = kB

[
x/2

sinh(x/2)

]2

(4.63)

S1 vib = Svib

N
= −kB ln

(
1 − e−x) + kB

x

ex − 1
. (4.64)

Figure 4.8 depicts the temperature dependence of the vibrational heat capacity and
internal energy per molecule. Similar to rotations, as temperature is raised, the vibra-
tional degree of freedom “unfreezes”, reaching the classical limit at T � Θvib. Note
that the high-T limit for one oscillator provides a contribution kBT to U1 (and thus
kB to CV 1) equal to that of the two rotational degrees of freedom. The reason is that
one harmonic oscillator is associated to two quadratic terms (kinetic and potential)
in the Hamiltonian, as many as the two kinetic quadratic terms for the two rotational
degrees of freedom.
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Fig. 4.9 The broad-range temperature dependence of the total heat capacity of a hypothetical
diatomic molecule (inspired to HCl), compared to that of a monoatomic gas (dotted)

Typical vibrational temperatures of a few diatomic molecules are: 6,300 K for H2,
4,300 K for H 35Cl, 3,400 K for N2, 403 K for K 35Cl. With such values of Θvib � Θrot,
contrary to the rotational unfreezing, the vibrational transition from the quantum-
frozen to the classical regime is usually accessible to heat-capacity measurements,
which find good accord with Eq. (4.63). Deviations at high temperature are mainly
due to the failure of the harmonic approximation.

The translational rotational and vibrational contributions to the molecular heat
capacity combine additively. In a real gas three physical mechanisms cause the main
deviations from the idealized sketch of Fig. 4.9: (i) inter-molecular interactions would
lead to liquid and solid phases at a temperature usually Θrot � T < Θvib; (ii) even
in the absence of inter-molecular interactions, quantum statistical effects (discussed
below) would make the low-temperature translational heat capacity deviate from
3
2 kB; (iii) at high temperature T � 104 K anharmonic and molecular dissociation
effects start to affect the heat capacity.

4.3.1.3 Finite Degrees of Freedom (e.g. Spin)

The Boltzmann formalism applies also to the statistics of any set of equal degrees of
freedom characterized by a (small) finite number of quantum states. For example, one
may wish to evaluate the contributions to thermodynamics of the low-lying electronic
and/or magnetic excitations of atomic or molecular gases, accounted for by the inter-
nal partition function Z1 int introduced in Eq. (4.37). One also applies this method to
magnetic “impurities” in solids or liquids, as long as they are so dilute that their inter-
actions can be neglected. For any such system involving a finite number of states, the
single-atom/molecule/impurity partition function and its derivatives are finite sums.
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Here we examine the simple but important case of equal non-interacting magnetic
moments in an external field. For brevity, we refer to “spins”: in reality the magnetic
moment is generally proportional to some total angular momentum. An angular
momentum J coupled to a total magnetic field B = Bẑ as in Eq. (2.24) spans a
(2J + 1)-dimensional space of states, a basis of which is labeled by the Jz projection
quantum number MJ . The “spin” partition function is the sum of (2J + 1) terms
corresponding to the levels of Eq. (2.59):

Z1 spin =
J∑

MJ=−J

exp
(
−β̃ MJ

)
, (4.65)

where the dimensionless ratio β̃ = β gjμBB = ΘB/T is the inverse temperature
scaled by the characteristic ΘB = gjμBB/kB (gj is the relevant g-factor). It is a
simple exercise to evaluate Z1 spin for any given spin J .

For the reader’s convenience, here we report the results for the simplest case, spin
J = 1/2:

Z1 spin = 2 cosh

(
ΘB

2T

)
= 2 cosh

β̃

2

[
spin−1/2

]
. (4.66)

By evaluating Eqs. (4.22)–(4.25) for Z1 spin, the spin-1/2 thermodynamic func-
tions are:

F1 spin = Fspin

N
= −kBT ln

(
2 cosh

β̃

2

)
(4.67)

U1 spin = Uspin

N
= −gμBB

2
tanh

β̃

2
(4.68)

CV 1 spin = CV spin

N
= kB β̃2

2 cosh(β̃) + 2
(4.69)

S1 spin = Sspin

N
= kB

[
ln

(
2 cosh

β̃

2

)
− β̃

2
tanh

β̃

2

]
. (4.70)

The temperature dependence of the internal energy and heat capacity per spin is drawn
in Fig. 4.10. As temperature is raised from absolute zero, like molecular rotations and
vibrations, the spin degree of freedom “unfreezes”, with an increase in heat capacity.
However, when T is raised further, due to the finite spectrum, the internal energy
cannot increase indefinitely: U1 spin flattens out, thus the spin heat capacity decays
to zero at high temperature T � ΘB.

The density of magnetization of a uniform system of magnetic moments

M = N

V
[µ1] (4.71)

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. 4.10 The temperature dependence of a the internal energy per spin U1 spin, Eq. (4.68), and b the
heat capacity per spin CV 1 spin, Eq. (4.69). These quantities characterize the thermodynamics of a
magnetic moment in a uniform field B, which sets the energy scale of the problem to gjμBB, and the
corresponding temperature scale ΘB = gjμBB/kB. Note that, due to the spectrum being bound from
above, at high temperature U1 spin does not grow indefinitely, but rather approaches a constant (zero)

is a quantity of straightforward experimental accessibility and relevance. In such
an ideal system M is necessarily oriented parallel to the magnetic field, M = M ẑ.
We have

[μz 1]= Tr(ρ̂1μz 1) =
J∑

MJ=−J

−gμBMJ
exp(−β̃MJ)

Z1 spin

= − 1

B

J∑

MJ=−J

EMJ PMJ = −U1 spin

B
(4.72)

Mz = N[µz 1]
V

= −NU1 spin

V B
= gμBN

2V
tanh

β̃

2

[
spin-1/2

]
. (4.73)

The average magnetization changes with temperature following the same functional
dependence as the internal energy, apart for a constant factor −N/(V B), thus
Fig. 4.10a can also be read as magnetization as a function of temperature for the J =
1/2 system. For weak field, β̃ → 0, the hyperbolic tangent can be expanded to lowest
order, obtaining the linear response of the localized spins to a weak total field B:



4.3 Ideal Systems 123

Mz � gμBN

4V
β̃ = χB B, with χB = N

V

(gμB

2

)2 1

kBT

[
spin-1/2

]
. (4.74)

χB represents the (weak-field) paramagnetic susceptibility. The characteristic inverse-
T dependence of the Curie susceptibility of free spins reflects the disordering effect
of temperature.

In practice it is more common to measure the susceptibility χm relative to the
external applied field strength H = ε0c2 Bext [in A/m]. The relation between χB and
χm derives from

M = χBB = χB [Bext + Bint] = χB

[
(ε0c2)−1H + (ε0c2)−1M

]
, (4.75)

where we use the relation Bint = (ε0c2)−1 M for the magnetic field of a uniformly
magnetized material. We solve Eq. (4.75) for M, obtaining

M = (ε0c2)−1 χB

1 − (ε0c2)−1 χB
H. (4.76)

Therefore, the desired expression for the dimensionless susceptibility χm is

χm = (ε0c2)−1 χB

1 − (ε0c2)−1 χB
. (4.77)

The reader should not worry of a diverging denominator in Eq. (4.77): even at a low
temperature of 1 K and for g = 2, the divergence condition χB = ε0c2 would require
a density N/V ≈ 1.3 × 1029 m−3, far too large for dilute spin-carrying impurities.
Actual macroscopic magnetic states are not so much due to a self-sustained magneti-
zation due to a divergence in Eq. (4.77), as to far larger exchange interactions similar
to those originating Hund’s rules in open-shell atoms, see Sect. 2.2.8.2.

4.3.2 Low-Temperature Fermi and Bose Gases

In Sect. 4.3.1 we discovered that, at high temperature, non-interacting identical fermi-
ons or bosons both behave as an ideal classical gas, with the occasional addition of
internal degrees of freedom. At low temperature however, spectacular fermion/boson
differences show up, as a consequence of the radically different constraints over the
occupation of the single-particle states.

The calculation of the exact partition function Z (4.34) at arbitrary T can be
carried out by replacing the focus on particles (labeled by i) with a focus in single-
particle states (labeled by α). The N sums over the single-particle quantum numbers
αi become sums over the occupation numbers nα of the single-particle states. In terms

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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of nα , the total N-particle energy in the exponential
∑N

i Eαi is rewritten as
∑

α nαEα .
In this form, the exponential factorizes as exp

(−β
∑

α nαEα

) = ∏
α exp(−βnαEα).

The partition function

Z =
∑

α1 α2 ... αN

n0! n1! n2! . . .

N ! e−β
∑

α nαEα =
∑

{nα }∑
α nα=N

e−β
∑

α nαEα

=
∑

{nα }∑
α nα=N

∏

α

(
e−βEα

)nα

. (4.78)

The occupancies nα are 0 or 1 for fermions, and 0, 1, 2, 3,… for bosons. The bino-
mial coefficients correcting the overcounting of the N-particle states by the

∑
α1... αN

sum of Eq. (4.34), is suppressed in the nα-sum, because now each N-particle state
(identified by its occupation numbers) is counted once only, as it should. Unfortu-
nately, the constraint of fixed total number of particles N makes the sum over the
occupancies in Eq. (4.78) extremely difficult to compute: without this constraint, one
could exchange sum and product, and the sums would all look alike.

To get rid of the fixed-N constraint we use a trick: we replace the canonical
ensemble, where the number of particles is fixed, with the grand canonical ensemble,
where N is allowed to vary, to describe a thermodynamic system which is (weakly)
exchanging not only energy but also particles with the rest of the universe. Figure 4.11
illustrates the need to subtract μN to the energy eigenvalue in the expression (4.11)
of the partition function. For an arbitrary system of equal particles, summing the
canonical Z over N yields the grand partition function

Q =
∞∑

N=0

∑

m(N)

e−β(Em(N)−μN) = T̃r
(

e−β(H−μN̂)
)

, (4.79)

[N]

Fig. 4.11 At fixed temperature, the internal energy U is generally a convex function of the number
of particles N , which is minimized at some N , e.g. N = 0. The addition of −μN to U shifts the
equilibrium point to some tunable average particle number [N], which is an increasing function of
the parameter μ
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where N̂ is the operator counting the number of particles, and T̃r indicates summing
over all states m and all number of particles N . Q plays the same role for the grand
canonical ensemble as Z for the canonical ensemble. Detailed analysis, similar to
that of Sect. 4.2.1, yields the relation between the grand partition function and ther-
modynamics. In particular, β identifies with the inverse temperature and μ with the
chemical potential. We have:

J(T , V, μ) = V P(T , μ) = kBT ln Q(T , V, μ) (4.80)

F = μ [N] − J (4.81)

U = μ [N] − J + TS (4.82)

G = J + F = μ [N] (4.83)

[N] = ∂J

∂μ

∣∣∣∣
T ,V

= V
∂P

∂μ

∣∣∣∣
T

(4.84)

μ = ∂F

∂[N]
∣∣∣∣
T ,V

= ∂G

∂[N]
∣∣∣∣
T ,P

(4.85)

S = ∂J

∂T

∣∣∣∣
μ,V

= V
∂P

∂T

∣∣∣∣
μ

. (4.86)

Equation (4.80), the analogous of Eq. (4.22), links Q to the thermodynamic potentials.
The listed relations allow us to compute all thermodynamic quantities for a system at
equilibrium with a reservoir of energy and of particles. See Ref. [30] for further detail.

Armed with this new tool, we proceed to compute the grand partition function Q for
a system of noninteracting identical bosons or fermions. Recalling that N = ∑

α nα ,
we rearrange the exponent of Eq. (4.78) and get rid of the constraint thanks to the
new summation over N :

Q =
∞∑

N=0

∑

{nα }∑
α nα=N

e−β[(
∑

α nαEα)−μN] =
∞∑

N=0

∑

{nα }∑
α nα=N

e−β[(
∑

α nαEα)−μ
∑

α nα]

=
∑

{nα}
e
∑

α β(μ−Eα)nα =
∑

{nα}

∏

α

eβ(μ−Eα)nα

=
∏

α

∑

nα

eβ(μ−Eα)nα =
∏

α

∑

nα

(
eβ(μ−Eα)

)nα

.

Next, observe that the occupation numbers nα are mute summation indexes. There
is no real reason to tell them apart: just call them all n. Accordingly, we write the
grand partition function as

Q =
∏

α

[
∑

n

(
eβ(μ−Eα)

)n
]

. (4.87)
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The sum in square brackets can be carried out explicitly: for fermions (n = 0, 1) it
equals 1 + eβ(μ−Eα); for bosons (n = 0, 1, 2, 3, . . . ) this sum is a geometric series,
whose summation6 gives (1 − eβ(μ−Eα))−1. By introducing a quantity θ = +1 for
bosons and θ = −1 for fermions, we can write Q in a form factorized over the
single-particle states and valid for both bosons and fermions:

Q =
∏

α

(
1 − θeβ(μ−Eα)

)−θ

. (4.88)

The grand potential (4.80) provides the connection to thermodynamics:

J = PV = kBT ln Q = −θkBT
∑

α

ln
(

1 − θeβ(μ−Eα)
)

. (4.89)

This expression, with Eqs. (4.81)–(4.86), determines all the thermodynamics of non-
interacting bosons/fermions. For noninteracting free particles, the single-particle
states |α〉 are labeled, as discussed in Sect. 4.3.1, by the single-particle momentum p,
plus possibly internal degrees of freedom. At low temperature any nontrivial inter-
nal dynamics is usually “frozen”. There remain accessible only gs degenerate states
labeled by a spin variable ms (representing for example the ẑ projection of the total
angular momentum of the particle). In practice, like in Eq. (4.40), the α-sum repre-
sents a sum over nx , ny, nz, and (possibly) ms. As the translational levels are very
dense, the n-sum can be replaced by an integration over energy E , weighted [in the
spirit of Eq. (4.12)] by the density of translational states gtr(E ) of Eq. (4.48):

∑

α

→
∑

ms

∑

nx ny nz

→ gs

∞∫

0

dE gtr(E ) →
∞∫

0

dE g(E ). (4.90)

Here we introduce the total density of states g(E ) = gs gtr(E ). We obtain an equation
of state

P = J

V
= −θkBT

∞∫

0

dE
g(E )

V
ln

(
1 − θ eβ(μ−E )

)

= −θkBTgs
(2M)

3/2

4π2�3

∞∫

0

dE
√
E ln

(
1 − θ eβ(μ−E )

)
. (4.91)

6 This series converges only if the number eβ(μ−Eα) < 1, i.e. only if μ is smaller than the smallest
single-particle energy Eα , which usually is 0. Therefore μ must be negative for bosons.



4.3 Ideal Systems 127

This integral can be rewritten in terms of the dimensionless variable Ẽ = E β, and
integrated by parts to obtain:

P = −θ(kBT)
5/2gs

(2M)
3/2

4π2�3

∞∫

0

dẼ
√
Ẽ ln

(
1 − θeβμ−Ẽ

)
(4.92)

= 2

3

2√
π

kBTgsΛ
−3

∞∫

0

dẼ
Ẽ 3/2

eẼ−βμ − θ
,

where the thermal length Λ was defined in Eq. (4.43). This equation of state expresses
the pressure of a gas of ideal particles in terms of its temperature and chemical poten-
tial. This result is unpractical, since μ is a quantity of difficult experimental access:
it would be preferable to express P in terms of T and the density [N]/V , like in the
high-temperature limit Eq. (4.47). Unfortunately, we have no simple analytic expres-
sion of μ as a function of the density, thus no convenient explicit equation of state
either. More interestingly, by computing the internal energy U through Eq. (4.82), it
may be verified that the high-temperature ideal-gas relation

P = 2

3

U

V
(4.93)

applies at any temperature,7 for both bosons and fermions, even though from the
point of view of the equation of state (4.92), at low temperature ideal bosons and
fermions are far from an “ideal gas” in the thermodynamic sense.

It is interesting to examine the leading high-temperature correction [30] to the
ideal-gas behavior Eq. (4.47) due to quantum statistics:

P = [N]
V

kBT
[
1 − θ 2−5/2 δ + O(δ)2

]
, for δ = Λ3 [N]

gs V
= (2π)

3/2
�

3

(MkBT)3/2

[N]
gs V

� 1.

(4.94)

The explicit form of the “degeneracy” parameter δ makes it clear that Eq. (4.94)
is a high-temperature and low-density expansion. The sign of the leading correc-
tion indicates the opposite tendencies of boson statistics to decrease pressure, and
of fermion statistics to increment it. This is a high-temperature hint at the “better
social character” of bosons compared to fermions. The experimental verification of
these corrections in real gases (e.g. of atoms) is very difficult, because inter-particle

7 We focused the present analysis on the low-temperature regime, the so-called “degenerate” gas.
In fact, the only assumption about temperature is that all internal degrees should be either frozen
or included in gs. As long as no other internal degree of freedom plays any relevant role, as e.g. in
atomic helium, Eqs. (4.89), (4.92), and (4.93) hold for arbitrary temperature.
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interactions introduce extra corrections to pressure of the same order as or even larger
than those associated to indistinguishableness.

At low temperature, the behavior of ideal bosons and fermions becomes radically
different. The average occupation number [nα] of single-particle states is a clear
indicator of these differences. This quantity is obtained as

[nα] = (
∑

n neβ(μ−Eα)n) · ∏
α′ �=α

∑
n eβ(μ−Eα′ )n

∏
α′′

∑
n eβ(μ−Eα′′ )n =

∑
n neβ(μ−Eα)n

∑
n eβ(μ−Eα)n

.

This fraction is recognized as ∂/∂(βμ) ln[∑n eβ(μ−Eα)n]. After Eq. (4.87) above,
we computed the sum inside the logarithm, and found the result [1 − θeβ(μ−Eα)]−θ .
Therefore, we have

[nα] = ∂

∂(βμ)
ln[1 − θeβ(μ−Eα)]−θ = −θ

∂

∂(βμ)
ln[1 − θeβ(μ−Eα)]

= −θ
−θeβ(μ−Eα)

1 − θeβ(μ−Eα)
,

which simplifies to

[nα] = 1

eβ(Eα−μ) − θ
. (4.95)

In a single formula, Eq. (4.95) collects the celebrated Bose-Einstein distribution of
boson occupations

[nα]B = 1

eβ(Eα−μ) − 1
(4.96)

and Fermi-Dirac distribution of fermion occupations

[nα]F = 1

eβ(Eα−μ) + 1
. (4.97)

The average occupation of each single-particle state is a function uniquely of temper-
ature and of the energy of the state itself.8 However, the presence of all other particles
affects each single-particle occupation distribution through the chemical potential μ,
which is a function of the total particle density [N]/V and temperature T .

8 And of no other property. For example, in the absence of any applied magnetic field, energy, and
therefore occupation, is independent of ms: at all temperatures the ideal gas is in a spin-unpolarized
nonmagnetic state.
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4.3.2.1 Fermions

The statistics of a cold gas of ideal fermions is of fundamental interest for the
physics of matter, because conduction electrons in many metals can be approximately
described as free non-interacting spin-1/2 fermions. At room temperature the thermal
length of electrons is Λ � 4 nm, corresponding to a thermal volume Λ3 ≈ 80 nm3.
Such a large Λ3, multiplied by the electron density [N]/V ≈ 100 nm−3 of a typ-
ical metal, Eq. (4.94) yields a huge degeneracy parameter δ ≈ 4,000. Electrons in
metals are therefore well outside the range of validity of the high-temperature expan-
sion (4.94). Many of their properties can rather be understood in terms of the ideal
Fermi-gas model in the opposite low-temperature limit.

The T = 0 properties of a Fermi gas are those of the ground state of N free
noninteracting fermions9: QM prescribes that this state should be the permutation-
antisymmetric state obtained by filling the N lowest-energy single-particle levels
(i.e. the N/gs shortest-|k| plane-wave states), up to some maximum single-particle
energy εF called Fermi energy, and leaving all the states above empty, as illustrated
in Fig. 4.12. Indeed, in the β → ∞ limit Eq. (4.97) predicts precisely that the average
occupation turns into a step function of energy:

lim
T→0

[nα]F =
⎧
⎨

⎩

1, Eα < μ
1/2, Eα = μ

0, Eα > μ

, (4.98)

which thus identifies the chemical potential at T = 0 with εF. Then, by requiring that

N =
∞∫

0

dE g(E ) [nα]F =
μ∫

0

dE g(E ) = gs
(2M)

3/2V

4π2�3

μ∫

0

dE E
1/2

= (2M)
3/2 V gs

4π2�3

2

3
μ

3/2, (4.99)

we establish the T = 0 relation between the particle density and the chemical
potential

εF = μ(T =0) = �
2

2M

(
6π2

gs

N

V

)2/3

. (4.100)

In p-space, each state within a sphere of radius pF [such that εF = p2
F/(2M)] is filled

by gs fermions, while those outside are empty. To this maximum momentum pF =
�kF = �

(
6π2/gs N/V

)1/3
(the Fermi momentum), there corresponds a maximum

9 Hence, for brevity, we adopt the symbol N for the average number of particles [N].
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Fig. 4.12 a The average filling of the single-particle levels of the ideal Fermi gas as a function
of energy E (measured in units of the chemical potential μ), for three values of temperature. The
temperature 0.05 μ/kB corresponds to several thousand K for electrons in simple metals. b The
filling of the single-particle levels of non-interacting fermions (here gs = 2) at T = 0

velocity vF = pF/M. Similarly, the Fermi energy is often expressed in terms of a
Fermi temperature TF = εF/kB.

In simple metals, typical densities of conduction electrons (M = me, gs = 2) of
the order N/V ≈ 1028 − 1029 m−3 (roughly the inverse cube of typical interatomic
separations) yield εF ≈ 2−10 eV, i.e. TF ≈ 20,000−100,000 K. This corresponds to
kF ≈ 1010 m−1, pF ≈ 10−24 kg m s−1, and a typical Fermi velocity vF ≈ 106 m s−1.

At T = 0 it is also straightforward to obtain the internal energy:

U =
∞∫

0

dE E g(E ) [nα]F =
εF∫

0

dE E g(E ) = (2M)
3/2V gs

4π2�3

εF∫

0

dE E
3/2

= (2M)
3/2V gs

4π2�3

2

5
ε

5/2

F . (4.101)

U can be expressed in terms of the density N/V by substituting Eq. (4.100). If in
Eq. (4.101) we substitute just a factor ε

3/2

F , we obtain the easier-to-remember relation:

U(T =0) = 3

5
N εF. (4.102)

As a special case of Eq. (4.93), the T = 0 pressure

P(T =0) = 2

5

N

V
εF (4.103)
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Fig. 4.13 The level scheme of the T = 0 Fermi-gas model applied to a metal. The energy scales at
the left and at the right are equally valid. Energy levels below the chemical potential (dashed line)
are fully occupied states inside the metal. Electrons promoted (e.g. by electromagnetic radiation)
to levels above the dotted line are free to leave the metal

can be very large, due to the huge average kinetic energy of the fermions, obliged by
Pauli’s principle to occupy different, orthogonal, plane-wave states. When the T = 0
free-electron gas model is applied to a simple metal, one discovers that the pressure
exerted by the electron gas is as large as P ≈ 1 − 10 GPa! A sharp potential-energy
step at the metal surface, related to the attractive atomic nuclei, maintains this pressure
by preventing the conduction electrons from escaping the solid, see Fig. 4.13.

The T = 0 properties of the free-electron gas account for several properties of the
electrons in simple metals, even at room temperature.10 The level scheme of Fig. 4.13
illustrates the application of the Fermi-gas model to metals. Note the role played by
the work function, namely the minimum energy required to extract an electron from
the solid.

We need to extend our analysis to the finite-T regime, in order to determine those
thermodynamic quantities that involve temperature explicitly, such as the heat capac-
ity. In the T � TF limit, a systematic expansion of the equation of state (4.92) and the
relation (4.85) connecting μ to N/V provides the thermal properties at lowest-order
in T . The mathematical details of this procedure [10] (called Sommerfeld expansion)
are slightly intricate, but the qualitative trends are straightforward. For example, one
can estimate the leading temperature dependence of μ and U by observing that when
a small temperature is turned on, the average occupation [nα]F changes slightly as

10 The accord of the free-electron model with experimental data of many simple metals is sur-
prisingly good despite neglecting the Coulomb interactions between electrons. The reason is that
the electron gas screens the long-range Coulomb forces efficiently. An experimentally observed
phenomenon directly related to electron-electron Coulomb repulsion is that of plasmon collec-
tive excitations, which however occur at rather high energy (few eV), and are therefore of little
importance to thermodynamics at ordinary temperature.
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Fig. 4.14 Thermal
excitations/deexcitations
across the Fermi sphere
involve mainly the
occupations of the states
within a skin of thickness δk
immediately inside and
outside the Fermi sphere.
The skin thickness is greatly
exaggerated here compared
to the smearing induced by a
realistic temperature T � TF
of electrons in ordinary
metals at room conditions
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sketched in Fig. 4.12a from the T = 0 step function, providing some weak prob-
ability that states above μ are populated at the expense of states below μ. As the
density of states g(E ) ∝ E 1/2 is slightly larger above εF than below, to conserve
the fermion number N = ∫ ∞

0 g(E ) [nα]F dE the chemical potential decreases slowly
as T increases.11 The internal energy U increases mainly due to the few electrons
moving up from states of a skin region of thickness ≈ kBT below εF into states
≈ kBT above (Fig. 4.14): the energy of each excited electron increases by ≈ kBT .
The number of excited electrons is of the order of the density of states g(εF) times
the energy interval kBT where excitation occurs. The total internal energy increases
therefore by approximately g(εF)(kBT)2. The detailed expansion yields

U = U(T = 0) + π2

6
g(εF) (kBT)2 + · · ·

= 3

5
N εF

[
1 + 5π2

12

(
T

TF

)2

+ · · ·
]

[T � TF], (4.104)

where the second equality relies on the useful relation valid for spin-1/2 free fermions

g(εF) = 3N

2εF
. (4.105)

Derivation of Eq. (4.104) w.r.t. T yields the heat capacity of the ideal Fermi gas:

CV = N kB
π2

2

T

TF
+ · · · [T � TF]. (4.106)

11 The low-T dependence of the chemical potential is μ = εF
[
1 − π2/12 (T/TF)2 + · · · ], for

gs = 2.
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Fig. 4.15 The low-temperature measured molar heat capacity of metallic potassium divided by
T , as a function of T2. For CV � a T1 + b T3, the finite intercept at T2 = 0 of the CV /T curve
measures the coefficient a of the T1 (electronic) contribution; the slope of the graph measures the
coefficient b of T3, which is the contribution of lattice vibrations, see Sect. 5.3.2 (Data from Table 1
of Ref. [32]—the point at T = 0.4231 K was suppressed)

Note that compared to the high-temperature ideal-gas value 3/2NkB, the heat capacity
is suppressed by a factor ∝ T/TF. The reason is that only few fermions with energy
very close to the chemical potential can be involved in thermal excitations, the large
majority remaining “frozen” in deeper filled states. Experimentally, a T -linear con-
tribution to the total heat capacity is observed in solid metals at low temperature
(Fig. 4.15), where lattice-vibration contributions are small, see Sect. 5.3. The elec-
tron gas is the responsible for this T -linear contribution: indeed the observed T -linear
coefficient for, e.g., potassium � 2.1 mJ mol−1K−2 (Fig. 4.15) agrees fairly with
the free-electron estimate NA kB π2/(2TF) � 1.7 mJ mol−1K−2 [consistent with the
Fermi energy εF � 2.1 eV obtained through Eq. (4.100) for the experimental density
N/V � 1.3 × 1028 m−3 of conduction electrons in potassium].

The Fermi gas is nonmagnetic, as both spin states are equally occupied. Within lin-
ear response, the application of an external magnetic field strength H = Hzẑ produces
a total magnetic field B = Bzẑ, that we assume to couple only to the spin degrees of
freedom: the gs degeneracy is lifted, and the ideal Fermi gas magnetizes. M = Mzẑ
denotes the volume density of magnetic moment, like in Eq. (4.71). For spin-1/2 elec-
trons (gs = 2), the magnetization is Mz = −μB[N↑ − N↓]/V . By computing the
linear response to the external field, one obtains the magnetic behavior of the ideal
Fermi gas. At high T , according to Eq. (4.74), independent spins produce a Curie sus-
ceptibility χB ∝ N/T , while at small T � TF the Pauli principle freezes out the spins
of most electrons, the paired ones deep inside the Fermi sphere (Fig. 4.14). Only the
approximately g(εF) kBT electrons near the Fermi surface do spin-polarize, thus pro-
ducing a characteristically T -independent magnetization. Detailed calculation yields:

Mz = μ2
Bg(εF)

V
Bz = 3

2

μ2
B

εF

N

V
Bz = 31/3

4π 4/3

q2
e

me

(
N

V

)1/3

Bz [T � TF], (4.107)

http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_5


134 4 Statistical Physics

18

12

χ
m

[1
0 

   
]

−
5

 6

 0 50 100 150 200 250 300

T [K]

Fig. 4.16 The measured magnetic susceptibility of Zr2V6Sb9. Conduction electrons are responsible
for the T -independent Pauli susceptibility χm of the metal. The raise of χm at very small temperature
is due to the Curie-type contribution, Eq. (4.74), of magnetic impurities in the sample (Data from
Ref. [33])

where the last expression shows the explicit density dependence. Accordingly, the
spin susceptibility of the low-temperature ideal spin-1/2 Fermi gas is given by
Eq. (4.77), with

(ε0c2)−1 χB = 31/3

4π 4/3 ε0c2

q2
e

me

(
N

V

)1/3

= α2a0

(
3 N

π V

)1/3

. (4.108)

As (V/N)
1/3 is a few Bohr radii, the magnetic susceptibility χm � (ε0c2)−1 χB is

tiny, ≈10−5. The reason is that χB gathers contributions of the electrons near the
Fermi level only, so that it is proportional to (N/V )

1/3, compared to linear in N/V
as for isolated spins, Eq. (4.74). This weak T -independent paramagnetic response
(Pauli paramagnetism) is a characteristic signature of metals in the experimental
study of the magnetic response of materials (see e.g. Fig. 4.16).

4.3.2.2 Bosons

The ground state of N non-interacting bosons is far simpler than that of N fermions:
they all occupy the lowest-energy state k = 0 of energy E = 0. If a spin degeneracy
gs is present, the average number of bosons of each spin projection is N/gs. This
situation is reflected in the expression (4.96) for [nα]B: for T → 0, the occupancies
of all positive-energy states vanish, and μ � −kBT/N → 0− in such a way to ensure
that the occupation of the E = 0 state approaches N . Unfortunately, the density of
states (4.48) vanishes at E = 0: this indicates that the conversion (4.90) of the sum
over the discrete one-particle states into an energy integral is missing completely
the most populated state, which becomes dominant at low temperature. A correct
treatment, including explicitly the population of the E = 0 state, shows a phase
transition at a finite temperature
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TBE = 6.625

kB

�
2

2M

(
N

V

)2/3

, (4.109)

signaled by the macroscopic filling of the E = 0 level at T ≤ TBE.12 This low-
temperature collective state is called a “Bose-Einstein condensate”.

Even though many atoms and molecules are bosons, they all turn solid at a much
higher temperature than the TBE appropriate for their ordinary densities. The only
exception in ordinary matter is 4He, and indeed a superfluid transition similar to the
Bose-Einstein condensation of an ideal boson gas is observed in 4He near 2 K at
ordinary pressure. However, 4He at low temperature is a liquid rather than a gas,
indicating that inter-particle interactions play an important role, and the helium fluid
can hardly be regarded as an ideal system: more sophisticated tools are necessary to
understand the actual nature of the superfluid transition of 4He.

Since the mid 1990s, ultracold droplets of atoms are being produced and kept in a
metastable gaseous state inside electromagnetic traps. Progress in cooling techniques,
down to the sub-µK range, permits to cross routinely TBE with droplets of boson
atoms [34]. In these droplets atoms are much more dilute than in a liquid, thus
the atom-atom interactions play a far weaker role. Therefore these droplets provide
experimental realizations of Bose-Einstein condensates more similar to the ideal
Bose gas than the 4He superfluid state.

In addition to proper material bosons, also the thermodynamic properties of
fictitious particles related to harmonic oscillators are described by the Bose-Einstein
distribution. Equation (3.21) yields the eigenvalues of an harmonic oscillator in terms
of the quantum number v, which counts the nodes of the corresponding wavefunc-
tion. Wherever several harmonic oscillators of frequencies ωα are present, as in a
polyatomic molecule, the vibrational state is labeled by all the vα quantum numbers,
and the associated total energy is

Evib(v1, v2, . . . ) =
∑

α

(
vα + 1

2

)
�ωα. (4.110)

Compare Eq. (4.110) to the expression

E(n1, n2, . . . ) =
∑

α

nαEα (4.111)

used, e.g. in Eq. (4.34), for the energy of noninteracting particles in terms of the
occupation numbers nα of the single-particle states of energy Eα . Apart from an

12 The average occupation of each state |α〉 follows Eq. (4.95). If one doubles the system size (both
N and V ), then the average occupation of |α〉 does not change: it is the density of states gtr(Eα)

that doubles to take care of the extra particles, see Eq. (4.48). Below TBE, the E = 0 state marks an
exception: its occupation is a finite fraction of N , thus, when doubling the system size, its occupation
also doubles.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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irrelevant constant zero-point shift 1
2

∑
α �ωα , expressions (4.110) and (4.111) are

identical, provided that the following identifications are made:

individual oscillator α ←→ α single−particle state

oscillator quantum number vα ←→ nα occupation number of state α

oscillator energy quantum �ωα ←→ Eα single−particle energy of state α

oscillator eigenvalue vα �ωα ←→ nα Eα energy of n particles in state α.

As vα = 0, 1, 2, 3, . . . , this identification makes sense for boson occupations. The
equality of the spectrum causes a completely equivalent statistical behavior. In detail,
consider the average vibrational energy of one oscillator, Eq. (4.62) and remove
the zero-point term �ωα/2. Individual energy levels v �ωα are proportional to the
quantum number v. Thus the average energy �ωα/(exp x − 1), reflects an average
value of v, which is [v] = 1/(exp x − 1). This expression coincides with the average
occupation [nα]B, Eq. (4.96), of a single-boson state |α〉, provided that Eα = �ωα

and μ = 0. One is then lead to think of each step in the harmonic ladder as a
fictitious boson-type particle, called “phonon” (sound particle) or “photon” (light
particle), depending on the nature of the involved oscillator. Accordingly, an oscillator
in its |v = 4〉 state is said to carry 4 photons, while an oscillator in its ground
state |v = 0〉 holds no photons. In this way, the Bose-Einstein distribution can be
profitably employed to describe the thermodynamics of a set of harmonic oscillators,
by replacing the single-particle energy Eα with the relevant ε = �ωα . The lack of
chemical potential μ indicates that the average number N of bosons is impossible to
control. Contrary to material particles in a vessel, phonons/photons are not conserved:
N varies widely as a function of temperature.

It is now straightforward to obtain the statistical properties of a set of independent
oscillators. We summarize here the main results for the “photon gas”, i.e. the thermo-
dynamics of the normal modes of the electromagnetic fields at thermal equilibrium
inside an isothermal cavity. This system is also known as blackbody radiation.

The components of the electromagnetic fields in vacuum obey a (Laplace)
stationary equation formally identical to the Eq. (B.52) of Schrödinger particles,
but with c2 in place of �

2/(2m) and ω2 in place of E . The resulting dispersion
relation ε(p) [or, equivalently, ω(k)] is

ε(p) = c|p| or ω(k) = c|k|, (4.112)

(c is the speed of light) rather than

E (p) = |p|2
2m

or ω(k) = �|k|2
2m

(4.113)
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as appropriate for particles of matter with mass m. While the ω(k) relation is quite
different, the equation being structurally the same, solutions are also plane waves.
Under the same periodic boundary conditions, the allowed values of wave vector are
connected to the box size by the same Eq. (B.55). The “spin” degeneracy of photons is
gs = 2, corresponding to the two independent transverse polarizations. By counting
the states within a k-sphere one obtains the total density of oscillator energies

gs gph(ε) = V

π2�3c3 ε2, (4.114)

to be compared with the same counting for Schrödinger particles, Eq. (4.48).
By executing the sum over the independent harmonic oscillators, i.e. integrating

over their energy ε = �ω, one obtains the following thermodynamic relations:

U = V

∞∫

0

u(ε, T) dε = V
π2(kBT)4

15 �3c3 ,

with u(ε, T) = 1

V
gs gph(ε) [nε]B ε = 1

π2�3c3

ε3

eε/kBT − 1
,

(4.115)

[N] =
∞∫

0

gs gph(ε)[nε]B dε = V
1

π2�3c3 (kBT)3

∞∫

0

y2

ey − 1
dy = V

2 ξ(3)

π2�3c3 (kBT)3,

(4.116)

where ξ is the Riemann function [ξ(3) � 1.20206]. These results were first derived
by M.K.E.L. Planck to interpret the experimental data of thermal-radiation spectra.
Equation (4.115) makes an important prediction for the spectral density u(ε, T)

(energy per unit volume and energy interval) of equilibrium radiation.13

It is more straightforward to probe experimentally the spectral irradiance R (radi-
ated power per unit surface and spectral energy interval) of some radiation than its
energy density. As it turns out, R and u are proportional:14

R(ε, T) = c

4
u(ε, T). (4.117)

13 The same quantities are occasionally quoted in terms of frequency ν or wavelength λ, rather than
photon energy ε = 2π�ν = 2π�c/λ. For example: g̃(ν, T) = 8πV ν2/c3, U = V

∫ ∞
0 ũ(ν, T) dν,

with ũ(ν, T) = 16π2
�c−3 ν3/ {exp[(2π�ν)/(kBT)] − 1}. And, likewise, U = V

∫ ∞
0 ū(λ, T) dλ,

with ū(λ, T) = 16π2
�c λ−5/ {exp[(2π�c)/(λkBT)] − 1}. Despite expressing the same property,

the physical dimension of these spectral densities are of course different: [u] = Length−3, [ũ] =
Energy×Length−3× Time, [ū] = Energy×Length−4.
14 The proportionality factor c/4 between irradiance R and energy density u originates from the
fact that each photon carries its energy at the speed of light c. Moreover, given an infinitesimal
surface, only a fraction (4π)−1

∫ 1
0 cos θ d cos θ

∫ 2π

0 dϕ = 1/4 of the photons in the surroundings of
that surface crosses it in a given direction.
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Fig. 4.17 The spectral
irradiance
R(ε, T) = c

4 u(ε, T) of the
equilibrium (blackbody)
electromagnetic fields at
three temperatures. Note that
as T increases, the area
under the curve increases
very rapidly, Eq. (4.118), and
its maximum shifts to higher
energy (shorter wavelength)
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Figure 4.17 reports the spectral irradiance R(ε, T) as a function of energy. The area
under each curve equals the total radiated power per unit surface

∞∫

0

R(ε, T) dε = π2(kBT)4

60 �3c2 . (4.118)

This result is know as the Stefan-Boltzmann law. According to Eq. (4.118), e.g., one
square meter of blackbody surface15 radiates a total 459 W at 300 K. The energy
at which a maximum irradiance R(ε, T) is observed shifts linearly with T (Wien
displacement law).

The spectral distribution of energy density (and, equivalently, radiative power) of
electromagnetic fields at equilibrium is a universal function of temperature (called
blackbody spectrum), and does not depend on the precise way this equilibrium is
established (for example on the optical properties of the material of the cavity enclos-
ing the fields). The distribution (4.115) agrees perfectly with the spectral analysis
of radiation escaping from an isothermal cavity through a tiny hole. This agreement
is not surprising, because a description of the electromagnetic fields in terms of
harmonic oscillators is basically exact. A spectacular realization (Fig. 4.18) of the
thermal-equilibrium radiation is that of the cosmic microwave background, a “fossil”
relic of an early stage of our universe when it was all at thermal equilibrium.

15 The name “blackbody” to indicate the spectrum of equilibrium radiation originates from the
fact that a perfectly absorbing (0 % reflectivity over the entire spectral range of Fig. 1.2) surface
irradiates precisely the spectrum R(ε, T), where T is the temperature of the surface itself. The reason
is the detailed energy balance of the fluxes of incoming and outgoing radiation between the surface
and the fields, which would be necessarily established if the surface was to be a part of the inside
face of an isothermal cavity containing the equilibrium electromagnetic fields.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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Fig. 4.18 The observed
cosmic microwave
background frequency
spectrum, compared to a
2.73 K blackbody spectrum
derived from Eq. (4.115).
Note the ∝ ε2 increase at
small frequency, and the
rapid (exponential) decay
past the maximum (From
G.F. Smoot and D. Scott,
Cosmic Background
Radiation, http://www.astro.
ubc.ca/people/scott/cbr_
aph_00.ps)
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In Sect. 5.3.2, we will apply the same statistics, with a modified density of states,
to describe the thermal properties of the vibrations of solids (phonons in the Debye
model).

4.4 Interaction Matter-Radiation

In Sect. 2.1.9 we have sketched the basic result for the rate—Eq. (2.45)—of spon-
taneous decay of an atom (or a molecule) from an excited state, as in an emission
experiment. In the absence of any external stimulation, the material system decays
to a lower-energy state transferring its excess energy to the electromagnetic radi-
ation field. In this section we examine in some detail how an external stimulating
radiation, as e.g. in an absorption experiment, affects this interaction. First off, this
radiation needs to resonate with the energy of a transition between two eigenstates
of the system. For simplicity, we shall ignore off-resonance transitions, occurring at
much smaller rates.

Consider an ensemble of noninteracting quantum “particles” (say atoms in gas
phase) and focus on two single-system levels only: |1〉 and |2〉, of energies E1 and
E2 > E1, with instantaneous populations n1 and n2, respectively. Resonant radiation
of energy ε = �ω = E2 −E1 can induce transitions between these two energy levels.
In particular, the excitation |1〉 → |2〉 is driven by the presence of radiation. Accord-
ingly, the probability per unit time (i.e. the rate) that an atom initially in state |1〉 gets
excited to the upper level |2〉 is proportional to the spectral energy density (per unit
volume and spectral interval) ρ(ε) of the electromagnetic field at the resonant energy:

R1→2 = B12 ρ(ε), (4.119)

where B12 is a suitable proportionality constant, depending on the microscopic
characteristics of the system and its coupling to the field. Here we neglect nonlinear

http://www.astro.ubc.ca/people/scott/cbr_aph_00.ps
http://www.astro.ubc.ca/people/scott/cbr_aph_00.ps
http://www.astro.ubc.ca/people/scott/cbr_aph_00.ps
http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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effects O(ρ2). On the other hand, an atom initially in state |2〉 has a probability per
unit time A21 to decay spontaneously to state |1〉 [in the dipole approximation, A21
equals the γ21 of Eq. (2.45)], plus an additional probability of downward transitions
promoted by the presence of stimulating radiation, whose rate is then proportional
to the same resonant spectral density:

R2→1 = A21 + B21 ρ(ε), (4.120)

where again B21 is a yet-to-determine constant of proportionality.
At any given time, the total number of particles undergoing the |1〉 → |2〉 tran-

sition is n1R1→2, and the total number of particles going |2〉 → |1〉 is n2R2→1.
Relations (4.119) and (4.120) hold under arbitrary radiation conditions, for exam-
ple when the ensemble is probed by a radiation beam in an absorption experiment
(Fig. 1.3). In particular, these relations hold also when the ensemble and the radiation
field are at equilibrium at a given temperature. At equilibrium the average popula-
tions of individual states remain constant, and this implies that the total number of
|1〉 → |2〉 and |2〉 → |1〉 transitions must, on average, be equal:

[n1] R1→2 = [n2] R2→1 [at equilibrium]. (4.121)

We substitute Eqs. (4.119) and (4.120) in the balance equation (4.121)

[n1] B12 ρ(ε) = [n2] (A21 + B21 ρ(ε)) . (4.122)

and solve for ρ(ε) obtaining

ρ(ε) =
A21
B21

[n1][n2]
B12
B21

− 1
. (4.123)

At equilibrium, the ratio of the populations equals the probability ratio which, accord-
ing to Boltzmann statistics, is simply [n1]/[n2] = P1/P2 = exp(β[E2 − E1]) =
exp(βε). At equilibrium, the spectral density of the radiation field follows the
universal energy dependence described in Sect. 4.3.2.2, in particular by Eq. (4.115):
ρ(ε) = u(ε, T). Accordingly,

A21

B21

1

exp (ε/kBT) B12/B21 − 1
= ρ(ε) = u(ε, T) = ε3

π2�3c3

1

exp (ε/kBT) − 1
.

(4.124)

The comparison of the two explicit expressions, which must coincide for any tem-
perature, requires the following identities for the coefficients:

B12

B21
= 1,

A21

B21
= ε3

π2�3c3 , (4.125)

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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known as Einstein relations. Relations (4.125), which can be reformulated as

B12 = B21 = π2
�

3c3

ε3 A21, (4.126)

were derived under the assumption of equilibrium. Since the coefficients B12 B21
A21 depend only on electromechanical properties of the particles, these relations
hold unchanged for arbitrary field conditions. Once one of these coefficients is eval-
uated, either experimentally or, e.g., by A21 = γ21 of Eq. (2.45), the two others are
fixed by Eq. (4.126).

The first equality expresses the symmetric role of the initial and final states in QM,
implying that a radiation field induces equal rates of excitation |1〉 → |2〉 and of stim-
ulated emission |2〉 → |1〉. For a strong radiation intensity, such that B21 ρ(ε) � A21,
the spontaneous emission rate becomes negligible, and B12 = B21 implies in partic-
ular that R1→2 � R2→1, thus rapidly also n1 � n2 (saturated transition). This result
clarifies the role of the intense pump beam in the experiment of Fig. 2.11: it saturates
the individual components of the |n = 2〉 ←→ |n = 3〉 transition of hydrogen.

The second relation implies that, for a constant spectral energy density ρ(ε) (inde-
pendent of ε), the ratio of spontaneous emission to stimulated emission varies with
ε3. Accordingly, in a low-energy (microwave, IR) transition, stimulated emission
tends to prevail, while at higher energy (UV, X-rays) spontaneous emission usually
dominates. In contrast, when the radiation is at equilibrium, the ratio of spontaneous
to stimulated emission

A21

B21u(ε, T)
= exp

(
ε

kBT

)
− 1 (4.127)

indicates, unsurprisingly, that thermal radiation is effective in stimulating emission
for high temperature kBT � ε only. Finally, in the context of spectroscopy, the
equality B12 = π2

�
3c3 ε−3 A21 proves that an emission-forbidden transitions is also

absorption-forbidden, and, vice versa, that a fast allowed transition in emission is
also intense in absorption.

4.4.1 The Laser

Ordinary media attenuate traversing electromagnetic waves. Absorption spectro-
scopies (Fig. 1.3) measure precisely this attenuation. Consider instead an optical
medium composed of non-interacting quantum systems which amplifies—rather than
attenuate—light. For this to occur, the total emission rate needs to exceed absorption:
n2R2→1 > n1R1→2, i.e. the ratio

rate of emission

rate of absorption
= n2 [A21 + B21ρ(ε)]

n1B12ρ(ε)
= n2

n1

[
1 + A21

B21ρ(ε)

]
(4.128)

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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Fig. 4.19 The principle of operation of three- and four-level lasers. These level schemes are two
tricks for implementing the population inversion needed to obtain an “active medium”, with a larger
population of level |2〉 than that of level |1〉. The lasing transition |2〉 → |1〉 must occur at a far
slower rate than all other indicated downward transitions. The latter are fast electric-dipole—allowed
transitions

needs to exceed unity. Since the term in brackets approaches unity as soon as a
sufficient radiation intensity builds up, this equation tells us that light amplification
(emission overcoming absorption) requires a single condition: a population ratio
n2/n1 > 1, i.e. inverted compared to a regular equilibrium population [n2]/[n1] < 1.
An inverted population is a radical deviation from equilibrium, and is thus highly
unstable: precisely the prevalence of emission over absorption leads the ensemble
of quantum systems spontaneously toward the regular Boltzmann population [n2] <

[n1]. In practice, some kind of electronic or optical pumping is needed to produce and
sustain the population inversion for an extended period of time, and replace the radi-
ated energy at the expense of an external power source, as in the schemes of Fig. 4.19.

Once an optical active medium which amplifies light is realized, light can be
channeled through it in a precise direction, by building a resonating one-dimensional
(1D) optical cavity around it. For an historically relevant example, see the ruby laser
illustrated in Fig. 4.20. A crucial feature of stimulated emission is coherence: the
emitted photon is not emitted at random as in spontaneous emission, but prevalently
in the same direction and with the same phase and polarization as the stimulating
photon, which thus is “cloned”.

The use of a long cavity lets photons emitted at odd directions escape basically
unamplified, while photons directed along the cavity axis bounce back and forth
several times through the active medium, thus getting strongly amplified. As a result,
a powerful highly coherent beam of radiation builds up for as long as the population
inversion is maintained. A device such as described here, producing a coherent beam
of photons by means of Light Amplification by the Stimulated Emission of Radiation
is named laser.

Diverse commercial applications of such coherent beams extend from the indus-
trial to the consumer side, including telecommunications, optical data storage,
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mirror mirror

λ

Fig. 4.20 The ruby laser is a three-level solid-state laser. Chrome impurities in an (otherwise
transparent) Al2O3 crystal rod act as noninteracting quantum systems carrying the levels involved
in the population inversion, as in Fig. 4.19a. A white flashtube lamp pumps this “active medium”
optically, raising many Cr impurities from their ground state |1〉 to a band of broad short-lived states
|3〉. The latter decay rapidly to metastable state |2〉. As a further spontaneous decay is very slow,
the |2〉 → |1〉 transition is mainly induced by stimulated emission. Since the energy of state |2〉
is defined sharply, the emitted radiation is highly monochromatic (λ = 694.3 ± 0.5 nm). Off-axis
photons arising from spontaneous decay escape from the sides of the rod. Repeatedly reflected
axially moving photons get amplified and stimulate further coherent emission. The output beam of
photons escapes through the partly transparent mirror at one end of the rod

telemetry, cutting, welding, surgery, etc. Lasers play also a fundamental role as irre-
placeable tools for research in spectroscopy, photochemistry, ultracold trapped-gas
cooling, microscopy, adaptive optics of telescopes, interferometry, etc.

4.5 Final Remarks

The present chapter connects thermodynamics with the principles of equilibrium
statistics, based on a simple “democratic” assumption of equal probability of all
states of a given energy. We focus on applications to ordinary matter, especially on
the few systems (mainly gas phases) where ideal noninteracting systems provide
semi-quantitative results.

Eventually, we obtain several quite different formulations and results, which are
applicable in different contexts. Table 4.1 summarizes the main formulas and their
range of applicability.

Statistical physics becomes more complicated and exciting when moving beyond
ideal systems and addressing applications to real interacting systems [29, 30]. Physi-
cists have devised all sorts of techniques to investigate interacting systems both the-
oretically (mean-field and many-body methods, the renormalization group,…) and
experimentally (the definition and measurement of position/momentum/spin corre-
lation functions, high-pressure techniques to investigate phase diagrams in extreme
regimes, analysis of fluctuations, finite-size effects, exotic magnetic phases…).
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Table 4.1 A summary of the main results of this chapter, with their appropriate applicability range

Physical context Main relations [β = (kBT)−1] Applicability

General
Boltzmann
statistics

Z = ∑global states
m′ e−βEm′

Pm = e−βEm /Z
Any system at equilibrium

Noninteracting
“distinguishable”
particles (any T )

Z = ∏
i Zi

Zi = ∑states of particle i
α e−βEi

α

P(i)
α = e−βEi

α /Zi

Localized or internal
degrees of freedom

Noninteracting
identical
particles (high T )

Z = (Z1)
N/N !

Z1 = Z1 tr = V/Λ3, Λ = �

(
2π

MkBT

)1/2

PV = NkBT

Ideal-gas translational
degrees of freedom

Noninteracting
identical bosons
(any T )

Q = ∏
α

[
1 − eβ(μ−Eα)

]−1

[nα]B = 1/(eβ(Eα−μ) − 1)

PV = −kBT
∑

α ln
(
1 − eβ(μ−Eα)

) = 2
3 U

Ideal-gas translational
degrees of freedom

Noninteracting
identical
fermions (any T )

Q = ∏
α

[
1 + eβ(μ−Eα)

]

[nα]F = 1/(eβ(Eα−μ) + 1)

PV = kBT
∑

α ln
(
1 + eβ(μ−Eα)

) = 2
3 U

Ideal-gas translational
degrees of freedom

The present introduction to statistical thermodynamics focuses on equilibrium,
and omits dynamical out-of-equilibrium quantities. These quantities are needed to
discuss transport (e.g. in the next chapter we will define electrical and thermal conduc-
tivities in solids) and general hydrodynamic properties derived from the microscopic
interactions.

Problems

A � marks advanced problems.

4.1 � A gas-phase HCl sample is traversed by a microwave field resonating with
the rotational transition between the rotational states of angular momentum
l = 1 and l = 2. Evaluate the ratio between the spontaneous and stimulated
emission rates, given the equilibrium distance RM = 127 pm between the
proton and the 35Cl nucleus, and the microwave spectral density at resonance
ρν = 0.250 J m−3 Hz−1.

4.2 � The inside density of “white dwarf” stars can reach approximately 1011 kg m−3.
Assume for simplicity that

• these stars are composed by non-interacting protons and electrons in equal
number and uniform density;

• that the electrons are ultra-relativistic, with energy E = c|p| = �c|k|;
• that temperature is 0 K.

Within the above hypothesis, evaluate the pressure of this electron gas.
4.3 To a fair approximation, the valence electrons of metal lithium form a Fermi

gas, while positive ions remain essentially immobile at crystalline equilibrium
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positions. The density of this this material is 535 kg m−3. Evaluate the pressure
of the electron gas at temperature 0 K. Instead, if one could generate a weakly-
interacting atomic-6Li gas with the same density, evaluate the pressure of such
Fermi gas at temperature 0 K.

4.4 Consider the dissociated single-atom fraction of a fluorine gas at temperature
5,000 K, thus neglecting all diatomic molecules. Neglect also all atoms in elec-
tronic states with a configuration other than 1s22s22p5. Evaluate the fraction of
atoms in the state with total angular momentum J = 1

2 , given that its excitation
energy is 50.1 meV above the atomic ground state. Compute also the transla-
tional and electronic contribution of each atom to the molar heat capacity at
the assigned temperature.

4.5 Comparing gas-phase samples of Cl atomic at equilibrium at temperatures
1,000 and 2,000 K, evaluate the intensity ratio I(2,000 K)/I(1,000 K) of the
least energetic absorption line exhibited by a sample in the 3s23p5(2P) →
3s23p44s(2P) transition, due to the different thermal population of the ground
and first-excited state of the 3s23p5(2P) configuration. These 3s23p5(2P) states
are 109.4 meV apart.

4.6 The three atomic levels associated to the ground configuration 3d24s2 3F of
titanium are found at energy 0, 0.02109, and 0.04797 eV. Evaluate the contri-
bution of these electronic excitations to the molar heat capacity of a vapor of
monoatomic titanium at temperature 1,000 K, and their fractional contribution
to the total heat capacity of the gas.

4.7 An insulating solid contains non-interacting atomic impurities (at a number-
density level 3×1021 m−3) characterized by localized levels F (threefold degen-
erate) and A (nondegenerate), separated by an energy EA − EF = 50 meV.
Evaluate the contribution of these impurities to the heat capacity per kilogram
of this solid at T = 700 K, given that the material’s density is 2,300 kg/m3.

4.8 Evaluate the ratio of the heat capacity per unit volume of the electromagnetic
fields in a blackbody cavity at temperatures 10,000 K and 4,000 K. Evaluate also
the ratio between the total radiated power at the two indicated temperatures.

4.9 Evaluate the mean speed 〈|v|〉 and the pressure of the conduction electrons in
the ground state of metallic gold (density 19.3 × 103 kg m−3, one electron
per atom in the conduction band), in the approximation of free non-interacting
electrons.

4.10 � Approximate the spectrum emitted by a furnace with blackbody radiation.
The radiated power (in W m−2) in the wavelength range between 3,150 and
3,250 nm (infrared) is measured. One observes that when the furnace absolute
temperature is doubled, this power increases by a factor 10. Evaluate the final
furnace temperature. At such temperature, what is the ratio of the radiated
power in the range 3,150–3,250 nm to the radiated power in the visible range
695–705 nm? [Suggestion: evaluate integration approximately as finite sums,
taking advantage of the narrowness of the integration intervals.]

4.11 Estimate, (with at least 10 % precision) the temperature needed to produce
with a 0.1 % efficiency, soft X-rays of energy ≥ 10 eV using a thermal
blackbody source. [Suggestions: (a) when x � 1, the error in the approximation
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(ex±1)−1 � e−x is negligible; (b)
∫ ∞

0 x3/(ex−1)dx = π4/15; (c) approximate
solutions of non-algebraic equations can be obtained by numeric bisection.]

4.12 Approximate a human body to a blackbody at temperature 37 ◦C. Evaluate
the total power that it irradiates, assuming a surface area 1.8 m2. Taking also
into account the power that reaches the human body when inside a blackbody
cavity, at what temperature should this cavity be placed for the net power lost
by the human body to be reduced by a factor 10?
[Recall the expression for the Stefan-Boltzmann constant: π2k4

B/(60 �
3c2).]

4.13 Consider a metallic sodium sample (density ρ = 950 kg m−3). Assuming the
free non-interacting Fermi model for the conduction electrons, evaluate the
electronic pressure. Assume that 10 % of the sodium atoms is replaced by alu-
minum atoms, with no change in the crystal structure (even the lattice spacing
remains unchanged). Evaluate the variation of the electronic pressure compared
to pure sodium due to the presence of 3 (rather than 1) electrons per aluminum
atom in the conduction band.

4.14 � The maximum phonon frequency of NaCl is νmax = 5 THz. Assume that all
vibrational modes whose frequency is smaller than of equal to νmax contribute
to electromagnetic radiation absorption, to the extent that NaCl is equivalent
to a black body in the 0 − νmax frequency interval. Assume moreover that at
frequencies larger than νmax the solid neither absorbs nor emits electromagnetic
radiation. Estimate (with less than 10 % error) the total radiated power emitted
by a NaCl crystal with a 1 cm2 surface kept at temperature 2,000 K.
[Recall the density of states of the electromagnetic fields in a cavity of volume
V : g(ε) = V ε2/(π2

�
3c3).]



Chapter 5
Solids

Macroscopic systems realize a thermodynamic equilibrium state in a balance between
the tendency of internal energy to decrease and that of entropy to increase. Temper-
ature tunes the balance in favor of the entropic contribution over the energetic one:
entropy prevails at high temperature, energy at low temperature. The entropy of the
solid state, where each atom sits most of the time around a definite position, is usually
smaller than in fluid states. Indeed, experience shows that most materials solidify as
temperature is lowered sufficiently.

The internal energy consists of a kinetic plus a potential term. The translationally
invariant kinetic energy Tn tends to favor states characterized by delocalized and
uncorrelated positions of individual atoms, not unlike entropy. On the contrary, the
adiabatic potential energy Vad takes advantage of characteristic optimal interatomic
separations (see e.g. Fig. 3.1) and angles, and attempts therefore to impose strong
positional localization and correlations. The solid state signals the prevalence of the
adiabatic potential energy over the atomic kinetic energy in Eq. (3.9). For almost
all materials at zero temperature, Vad prevails over Tn , thus leading to solid states.
The one remarkable exception is helium, which at ordinary pressure remains fluid
(a quantum fluid) down to zero temperature, due to its exceptionally weak interatomic
attraction associated to a scarce atomic polarizability (see Table 3.1). As atoms are
squeezed together by an applied pressure, the repulsive part of the He-He interaction
starts to dominate over Tn , and even helium acquires low-temperature solid phases.
These phases are quantum solids because zero-point motion, tunneling, and all sorts
of quantum-kinetic effects play a significant role.

The tendency of atoms in a solid to stick together is measured by the “total binding
energy” (in molecular language, the energy necessary to disaggregate the compound
into its atomic components). In the context of solids, this quantity is referred to as
the lattice cohesive energy, or lattice energy, and it is often expressed per atom, or
per formula unit, or per mole. Like for molecules, both the Vad and Tn contributions
vanish in the “atomized” state (assuming Vad = 0 in the atomized state), whereas in
the solid state, [Vad] < 0. In the solid state the kinetic term [Tn] ≥ 0 is much smaller
than |[Vad]|, see Fig. 3.15.
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Solid matter is characterized by long-distance rigidity: a force applied to one or
few of the atoms in a solid sample acts through the whole sample, which acceler-
ates maintaining its average shape unchanged. This is due to the ability of solids
(as opposed to fluids) to resist shear forces. This basic macroscopic property, on
which our daily experience relies, is far from trivial from the point of view of the
microscopic equations governing the dynamics of electrons and nuclei composing
a solid. Indeed, our analysis of the adiabatic potential acting directly between two
atoms at large distance reveals that Vad always decays with a rather fast power law
R−6. As the number of atoms at distance R from a given atom grows as R2, the
total interaction energy with faraway atoms decays as R−4. In practice, each atom
interacts significantly only with the atoms sitting in its close neighborhood, of a few
nm3 say. Long-distance rigidity therefore cannot be related to long-range forces. This
means that, in a solid, short-range forces propagate from one atom to the next ones,
and from those to farther atoms again and again, through the whole sample.

5.1 The Microscopic Structure of Solids

Many solids exhibit ordered microscopical structures, but highly disordered solids
are very frequent as well. Before coming to the experimental evidence for the ordered
structure of many solids, we try to understand why regular spatial arrangements of
atoms can and do emerge spontaneously.

In our initial study of many-atoms system (Chap. 3), we analyzed the typical shape
of the adiabatic potential (Fig. 3.1) for a diatom. We also found that the adiabatic
potential of many atoms is an explicit function of the relative positions of all of
them, including all distances and angles. For exceptionally simple systems, such
as the noble-gas elements, the total adiabatic potential of Nn atoms is fairly well
approximated by a sum of 2-body terms (e.g. of the Lennard-Jones type)

Vad
(
R1, R2, . . . , RNn

) =
Nn∑

α<α′
V2(|Rα − Rα′ |). (5.1)

Let us neglect the nuclear kinetic energy: the state of minimum energy of two such
atoms is realized by placing them at the equilibrium distance RM of the potential V2,
with an adiabatic energy equal to the depth −ε of the potential well.1 To start, assume
that all equal atoms are constrained to move along a line: a third added atom can
join the two others on either side, at approximately a distance RM from the nearest
atom, as illustrated in Fig. 5.1. Neglecting the weak attraction of second- third- etc.
-neighbors (see Fig. 5.1), the adiabatic potential energy decreases to approximately
−2ε. Likewise, Nn atoms along a chain place themselves at almost perfectly regular

1 For the Lennard-Jones potential—Eq. (3.19)—RM = 6
√

2 σ , with V2(RM) = VLJ(RM) = −ε.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 5.1 a A 1D solid constructed by the successive addition of atoms. The atoms after the second
add at fairly regular distances, slightly smaller than RM, the optimal equilibrium distance of the
2-body adiabatic potential. b The reason of the slightly smaller equilibrium separation in the solid
than in the diatom: if the separation was RM, forces to second, third,… neighbors would all be
attractive and uncompensated, thus some energy is gained by contracting the interatomic separation.
This contraction is tiny, as V2 explodes at short distance, and even tinier at the surface than in the
bulk, due to local deficiency of second, and farther neighbors

distances,2 and gain a total cohesive energy �(Nn − 1)ε, i.e. essentially ε per atom.
Depending on the precise shape of V2, the actual cohesive energy turns out slightly
larger due to the attraction of second and farther neighbors.

In 1D, regularity is trivial and indeed unavoidable for atoms of a single species.
In more than 1D, the greater geometric freedom allows several regular and irregular
atomic patterns to form. In 2D, a third atom can join two to form an equilateral
triangle; further atoms that join the cluster find a lowest-energy arrangement by
progressively building a triangular lattice (also called hexagonal lattice), as illustrated
in Fig. 5.2. Each atom (except the few ones at the border) is surrounded by 6 nearest
neighbors: it thus forms 6 bonds, each shared by two atoms. Accordingly, the cohesive
energy per atom is approximately 3ε. The attraction of farther neighbors adds a small
correction to the total cohesive energy. The important message here is that two-body
interactions favor configurations of maximal coordination, i.e. arrangements where
each atom is surrounded by as many nearest neighbors as geometry allows.3

2 Slight distortions occur at the surface. Deep inside the bulk, however, each atom is subject to
basically the same interactions as its neighboring ones, thus it reaches an equilibrium position
relative to the surrounding ones which involves perfectly regular spacings.
3 For comparison, if the atoms arranged themselves in a square lattice, each atom would bind
to 4 nearest neighbors, rather than 6. The resulting cohesive energy per atom would amount to
�2ε instead of �3ε: the macroscopic cohesive energy difference ΔU = U square − U triang � Nnε

indicates that the square lattice is strongly unstable and deforms spontaneously to the triangular
lattice shape.
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Fig. 5.2 A 2D solid constructed by successive addition of atoms. The basic unit is the equilateral
triangle, which repeats itself indefinitely in space, so that each atom in the bulk is (maximally) coor-
dinated to 6 other atoms. Contraction due to 2nd-, 3rd-,…-neighbor attraction is ignored in this figure

The principle of maximal coordination has important consequences also for 3D
solids.4 4 atoms maximize their coordination by placing themselves at the vertexes of
a regular tetrahedron. Extra atoms extend this basic unit in space following either of
the following regular patterns: the face-centered cubic (fcc) lattice and the hexagonal
close-packed (hcp) lattice. As illustrated in Fig. 5.3, both lattices are the result of a
regular stacking of 2D triangular lattices. In both hcp and fcc lattices, the second
layer is stacked above the first one so that the atoms sit on top of the centers of half
the triangles of the lower layer. The third layer is also stacked on top of half the
centers of the second-layer triangles: in the hcp directly above the atoms of the first
layer, while in the fcc above the remaining triangles. In both patterns, each atom is
surrounded by 12 nearest neighbors, thus the cohesive energy is approximately 6ε

per atom. When the attraction of farther neighbors is accounted for, the cohesive
energy is usually marginally more favorable to fcc than to hcp.

At low temperature the noble gases are indeed observed to crystallize in fcc
structures. The optimal equilibrium distance (accounting for all farther-neighbors
interactions) for the Lennard-Jones fcc solid equals 0.971RM = 1.09 σ , with a total
cohesive energy per atom of 8.6ε (significantly more bound than the 6ε nearest-
neighbor estimate). By plugging the parameters of Table 3.1 in this simple model,
one obtains the bond lengths and cohesive energies of Table 5.1. Not unexpectedly, the
experimental energy is generally slightly larger (less cohesive) than the prediction of
the simple Lennard-Jones model, where the ionic kinetic energy Tn and the associated
zero-point motion are neglected. The good overall agreement confirms the concept
of maximizing the coordination, leading to compact structures similar to the packing
of hard spheres, typically fcc, a concept valid whenever the adiabatic potential can
be decomposed into 2-body terms, as in Eq. (5.1).

The noble gases (and mixtures thereof) are not the only system where the approxi-
mation of a 2-body adiabatic potential works: it can describe successfully the overall
structure of many solids formed by “spherically symmetric” close-shell molecules,

4 3D structures are visualized better in 3D than with flat projections. The atomic coordinates
depicted in Fig. 5.3 and other figures below are available for download and 3D visualization at the
web site of Ref. [25].

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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fcc hcp

(c)(b)

(a)

Fig. 5.3 A close packing of spheres (e.g. cannonballs) in 3D is obtained by stacking close-packed
2D arrays, namely triangular lattices. If in panel (a) a third layer is superposed on sites of type
“c”, the fcc stacking is initiated. If instead the third layer is stacked on top of the spheres of layer
“a”, the hcp crystal is realized. Panel (b) illustrates the conventional fcc cell, realized as a stacking
sequence of type abcabc…Panel (c) illustrates the same concept for hcp: an ababab…stacking

Table 5.1 The estimate of the equilibrium nearest-neighbor interatomic separation a and cohesive
energy per atom for solid noble-gas elements based on the fcc Lennard-Jones model and parameters
(Table 3.1), compared to experimental determinations [10]

Element a (pm) 1.09 σ (pm) |U |/Nn (meV) 8.6ε (meV) Tmelt (K)

Exp Theory Exp Theory Exp

Ne 313 300 20 27 24.6

Ar 375 371 80 90 83.8

Kr 399 401 110 124 115.8

Xe 433 443 170 167 161.4

Discrepancies of the order of few percent are not surprising, especially for the light Ne, in view
of the neglect of the kinetic energy of the nuclei. Note the strong correlation between the cohesive
energy per particle and the melting temperature Tmelt of the solid (|U |/Nn � 12 kBTmelt)

e.g. methane CH4 [35]. With suitable modifications, similar 2-body models can
describe other molecular solids (e.g. H2, N2, Cl2) where again weak van der Waals
interactions provide cohesion, but the asymmetry of the individual molecules can
favor different lattice structures.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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The hitherto discussed molecular solids, where each molecular unit retains many
of its molecular properties and is only weakly bound to other units, constitute a
marginal class of solids, by no means the most typical one, like the Ar2 dimer is a
rather exotic example of a molecule. Contrary to molecular solids, electrons of the
outer atomic shells modify substantially their quantum state when they belong to a
covalent or metallic solid, in pretty much the same way that the electronic state of H
N and O is modified in forming the covalent molecules H2, N2, H2O, as discussed
in Sect. 3.2. A covalent or metallic solid can indeed be viewed as a huge molecule,
where the molecular bonding extends to the whole sample. Experimentally, cohesive
energies per atom |U |/Nn of solids are comparable to the bond energies of covalently
bound diatomic molecules, i.e. of the order of several eV. These are of course much
larger than those of noble-gas solids (Table 5.1); for example we report the cohesive
energies per atom of a few elemental solids: Li 1.65 eV, C (diamond) 7.36 eV, Si
4.64 eV, Fe 4.29 eV; Cs 0.83 eV. Ionic crystals (e.g. NaCl) exhibit similar cohesive
energies, of several eV per ion pair.

To estimate quantitatively the cohesive energy of a covalent or metallic solid, it
is necessary to study the dynamics of its electrons in detail. Like for many-electron
molecules, in practice, reliable estimates can be computed by means of detailed
self-consistent calculations. Before coming back to the electronic states of solids in
Sect. 5.2, observe that it is to be expected that the adiabatic potential associated to
such nontrivial electronic states depends strongly on all bond lengths and angles,
pretty much as it does in molecules where it enforces relatively rigid equilibrium
molecular geometries (Fig. 3.8). Therefore, in covalent and metallic solids, the 2-
body approximation Eq. (5.1) is bound to fail completely, and different structures,
other than fcc, are to be expected, depending on the detailed chemistry and thus on the
relevant Vad involved. Indeed, elemental solids show several different ordered struc-
tures including (beside fcc): hcp, body-centered cubic (bcc), diamond, and others.
Long-range crystalline order reaches spectacular levels of perfection, for example in
industrial-grade Si single crystals, where a sub-nanometer unit cell repeats itself over
and over in three dimensions for distances exceeding 1 m (Fig. 5.4). We shall soon
discuss these structures within the standard formalism of periodic crystals, based on
the infinite periodic repetition in space of a small piece of matter.

A perfect infinitely repeated lattice is an idealization which is never exactly real-
ized in nature. In a real material, the crystalline structure is doomed to contain defects.
A localized defect, such as a vacancy or an interstitial atom (Fig. 5.5) raises the total
energy by a few times the typical bond energy ε of an atom to its neighbors, and this
has an irrelevant effect on the total cohesive energy per atom U/Nn , in the large-Nn

limit. At equilibrium at low temperature, Boltzmann statistics predicts a small relative
concentration (of the order of ∼e−βε) of localized defects to survive. The modest dif-
ference in energy between the fcc and hcp lattices makes the creation even of extended
defects (e.g. dislocations—Fig. 5.6a, or stacking faults—Fig. 5.7) likely. The energy
cost of extended defects is macroscopically large and should therefore suppress them
strongly at equilibrium. However defects remain easily “frozen” within the solid, the
typical time for a defect to drift out of a macroscopically large sample being often
astronomically large. As a result, at low temperature a solid often remains locked

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 5.4 a Two 0.3 mm thick wafers sliced from ∼1 m long silicon boules, i.e. single-crystal ingots.
The diameters of these wafers are 100 mm (left) and 50 mm (right)—larger ones are available
commercially. The surface of the wafer at the left is polished, thus mirror-reflecting, while the
picture the right focuses on the unpolished side. (The wafers were kindly provided by A. Podestà
and R. Manenti.) b A balls-and-sticks view “from the inside” of the silicon crystal lattice structure
down the (110) direction. Each atom binds four other nearest-neighbor atoms only. This same
geometric arrangement describes diamond (C) and germanium as well

(a) (b) (c)

Fig. 5.5 Point defects in an otherwise perfect triangular lattice: a a vacancy, b an interstitial atom,
and c an impurity atom
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Fig. 5.6 a A dislocation in a
simple-cubic lattice. b The
motion of dislocations
reduces substantially the
shear resistance of a real
crystal relative to a
defect-free crystal

Fig. 5.7 Side view of a
stacking fault in a fcc crystal.
The defective interface
involves an irregular relative
stacking of two successive
(111) hexagonal planes, see
Fig. 5.3

b
c

b
c

a

a

c

a
b

a

c
b

a
b

Fig. 5.8 A grain boundary
in a fcc crystal viewed down
the (100) direction

in a metastable non-equilibrium state with a finite (often large) concentration of
defects depending on preparation (see the discussion of ortho- and para-hydrogen
of Sect. 4.1.1 for a conceptually simpler example of a metastable non-equilibrium
state surviving for a long time). Extended defects of the type of Figs. 5.6, 5.7 and 5.8

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.9 Simulated
atomic-resolution
microscopy image of an
amorphous zirconium (Zr)
alloy. Contrasted to, e.g.,
Fig. 1.1, atoms are arranged
randomly, due to the
noncrystalline glassy
structure of this material

are crucial for understanding the plastic deformations of real crystals under strain.
Ultimately, even without internal defects, real solids are never ideal because the lat-
tice periodicity must end at the inevitable terminating surface or interface or grain
boundary (see Fig. 5.8).

In many materials (e.g. multiple-component off-stoichiometric compounds,
glasses, polymers, alloys,…), the cost of the formation of defects is so small that it
is highly nontrivial (often impossible) to obtain crystalline samples. These materials
form amorphous solids, where no long-range lattice order is present (Fig. 5.9): their
microscopic structure often resembles that of a frozen liquid. The formalism that we
are going to set up for crystals is mostly useless for amorphous systems: their investi-
gation requires more advanced tools, exceeding the scope the present basic textbook.

The tendency to grow and to break along flat planes (cleave) at fixed characteristic
relative angles strongly hints at crystalline order in many solids, e.g. gemstones, see
Fig. 5.10. An even more compelling evidence is provided by the diffraction of X-rays,
neutrons and electrons of wavelengths in the a0 region. As Fig. 5.11 illustrates, several

Fig. 5.10 A few naturally grown minerals, resulting typically in aggregates of ∼mm-size defective
crystals. a Quartz (SiO2). b Fluorite (CaF2). Corundum Al2O3: c a Ti-doped (sapphire) sample
from Sri Lanka [Rob Lavinsky, iRocks.com—CC-BY-SA-3.0] and d a Cr-doped (ruby) sample
from Tanzania [Rob Lavinsky, iRocks.com—CC-BY-SA-3.0]

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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(a) (b) (c)

Fig. 5.11 a The scheme of a powder or polycrystalline sample diffraction experiment. The “radi-
ation” beam can consist in any wave field interacting with matter, typically X-rays, neutrons, or
electrons. The sample must be thin compared to the attenuation length of that radiation in that
material. The diffraction patterns made by a beam of b X-rays and of c electrons passing through
the same thin Al foil. The angles characterizing the diffraction rings are functions of the lattice
periodicity and the wavelength of the incident radiation

wave probes of wavelength in the correct range interact with crystals and generate
diffracted beams, as expected of regular, periodic, arrays of scatterers.5 We proceed to
introduce the basic mathematics describing periodic solids, with the central concepts
of direct and reciprocal lattice, and employ the related Fourier analysis to understand
diffraction experiments.

5.1.1 Lattices and Crystal Structures

The basic property of a crystalline solid is the essential equivalence of many different
regions in space. Any Ne atom in its fcc arrangement “sees” an essentially equiv-
alent environment, unless it lies close to the crystal surface or to some defect. In a
sufficiently “clean” crystal, most atoms are far enough, say at least 5 neighbors away,
from the nearest imperfection. The fields experienced by one such “bulk” atom equal
those the same atom would feel if it belonged in a perfectly periodic structure. It thus
makes sense to address many properties of crystalline solids by modeling them as
ideal crystals extending through all space.

The main symmetry of a crystal is a discrete translational symmetry.6 Given a
point r in the crystal, perfectly equal physical properties (including electric potential,

5 Occasional compounds have a quasicrystalline structure: they are perfectly ordered non-periodic
materials.
6 In an isolated atom, the rotational symmetry commuting with the effective single-electron
Hamiltonian makes the angular momenta li of individual electrons good quantum numbers, used
to label atomic states such as, e.g., 1s22s22p4. Sections 5.1.1 and 5.1.2 address the similar problem
to determine and diagonalize the symmetry operators of electrons in a crystal, in order to provide
electrons with appropriate quantum numbers.
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electric field, mass and charge density, current, etc.) are observed at all other points

r′ = r + R, with R = n1a1 + n2a2 + n3a3, (5.2)

with n j arbitrary integers, and a j three linearly independent vectors. All points of the
type R in Eq. (5.2) form an infinite array extending through space, named a Bravais
lattice. The vectors a j are said to generate the lattice. They are called primitive if, for
any r, the points r′ defined by Eq. (5.2) are all the points which have equal physical
properties as r (that means that a j are taken “as short as possible”, to make the array
of R points as dense as possible).

As a simplest example, Fig. 5.12 illustrates these ideas for a 2D lattice. Figure 5.13
shows a portion of a simple-cubic crystal, viewed from different angles. Primitive

a

a′

a′

a

1

2 2

1

P

Fig. 5.12 A finite portion of a generic 2D lattice generated by the primitive vectors a1 and a2. Other
equally good primitive vectors a′

1 and a′
2 are indicated, based on a different origin. Any lattice point

R, can be expressed as n1a1 + n2a2, for example P = −1 a1 + 4 a2 = −4 a′
1 + 8 a′

2

(a) (b) (c)

Fig. 5.13 A finite portion (5 × 5 × 5 lattice spacings) of a simple-cubic lattice observed from a the
ẑ direction (001), b the ŷ + ẑ direction (011), and c the x̂ + ŷ + ẑ direction (111)
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vectors can be chosen as ax̂, aŷ, aẑ, i.e. orthogonal and all of the same length a,
the side of the smallest cube in the lattice. The drawn portion of the crystal includes
125 points generated by 5 × 5 × 5 consecutive values of the n j indexes. The only
known example of a simple-cubic equilibrium crystal structure (with one atom at
each Bravais-lattice point) is polonium.

Other examples of 3D Bravais lattice—already encountered above—are the fcc
and bcc lattices sketched in Figs. 5.14 and 5.15. The equilibrium structure of many
elements are fcc, e.g. aluminum, nickel, copper, silver, gold, lead, or bcc, e.g. lithium,
vanadium, chromium, iron, molybdenum, tungsten. These lattices are built by adding
sites to the simple-cubic lattice (in the fcc, at the center of each face of the cubes,
in the bcc at the body center of the cubes). The added sites are perfectly equivalent
to the original sites at the cube corners. The lattice-point density of fcc is four times
and that of bcc is twice that of simple cubic of the same cube side a. For fcc and
bcc, the same cubic-lattice vectors ax̂, aŷ, aẑ as for the simple-cubic lattice are often
conveniently used. However, these are not primitive: Fig. 5.16 depicts a standard
choice of primitive lattice vectors.

(b) (c)(a)

Fig. 5.14 A finite portion (2×2×2 lattice spacings) of a face-centered cubic (fcc) lattice observed
from a the ẑ direction (001), b the ŷ + ẑ direction (011), and c the x̂ + ŷ + ẑ direction (111)

(a) (b) (c)

Fig. 5.15 A finite portion (3 × 3 × 3 cubic lattice spacings) of a body-centered cubic (bcc) lattice
observed from a the ẑ direction (001), b the ŷ+ ẑ direction (011), and c the x̂+ ŷ+ ẑ direction (111)
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Fig. 5.16 a Primitive lattice vectors for the fcc Bravais lattice: a1 = a
2 (ŷ + ẑ), a2 = a

2 (ẑ + x̂),
a3 = a

2 (x̂+ ŷ). b Primitive lattice vectors for the bcc lattice: a1 = a
2 (ŷ+ ẑ− x̂), a2 = a

2 (ẑ+ x̂− ŷ),
a3 = a

2 (x̂ + ŷ − ẑ). As an example, in both lattices the translation marked by R can be expressed
as R = a1 + a2 + a3

The primitive vectors can be used as three converging edges which define a
parallelepiped of volume Vc = a1 × a2 · a3. This parallelepiped contains all “dif-
ferent”, translationally-inequivalent points r in space: any other r′ lying outside this
parallelepiped is equivalent to some r inside, to which it can be translated by using
Eq. (5.2) with suitable n j . This parallelepiped is an example of a primitive cell, or unit
cell: a minimal volume which, by applying lattice translations R, fills up the whole
space without overlapping. The primitive cell contains all the relevant information
about the entire periodic crystal: what happens outside the primitive cell amounts
to essentially boring repetitions of what goes on inside. According to definition, a
primitive cell needs not be a parallelepiped (in 2D, a parallelogram—see Fig. 5.17).

Fig. 5.17 Several possible choices for the primitive cell of the same 2D lattice
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Fig. 5.18 The primitive cells of the fcc (a) and bcc (b) Bravais lattices. The volume of the fcc
primitive cell is 1/4 of the volume a3 of the conventional cubic cell (dashed edges). The volume of
the bcc primitive cell is 1/2 of the volume a3 of the conventional cell

Fig. 5.19 The geometric construction of the Wigner-Seitz primitive cell of a generic 2D lattice. The
Wigner-Seitz cells of all 2D lattices are hexagons, except when the lattice is rectangular or square

Each primitive cell contains, in particular, one and only one Bravais-lattice point,
see e.g. Fig. 5.18 for the fcc and bcc lattices.

Given a lattice point R, the Wigner-Seitz cell is the set of all points r closer to
R than to any other lattice point R′ (see for example Fig. 5.19). One can show that
the Wigner-Seitz cell is indeed a primitive cell. This special choice of primitive
cell retains the full symmetry of the lattice, and does not suffer the arbitrariness
(illustrated in Fig. 5.12) of the choice of the primitive vectors. Figure 5.20 shows the
Wigner-Seitz cells for two common lattices.

While in many crystals exactly one atom happens to sit in each primitive cell of
a Bravais lattice as, e.g., in solid neon or aluminum (both fcc crystals), even more
frequently several atoms belong in the same primitive cell, which is then repeated
periodically in space. For example, the nuclei of solid NaCl (and many similar com-
pounds such as LiCl, NaBr, KI, AgF, CaO, BaSe,…) sit around simple-cubic lattice
points, alternately as in Fig. 5.21a, with each Na surrounded by 6 neighboring Cl, and
vice versa. Similarly, the nuclei of CsCl (and similar compounds CsBr, TlCl,…) sit at
the lattice sites of a bcc lattice, alternately as in Fig. 5.21b, with each Cs at the center of
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(a) (b)

Fig. 5.20 a The Wigner-Seitz cell of the fcc lattice (a rhombic dodecahedron). A face of the conven-
tional cubic cell of side a is the square whose corners are points 1–4. The lattice site around which
the Wigner-Seitz cell is constructed (dashed circle) sits at the center of this square. b The Wigner-
Seitz cell of the bcc lattice (a truncated octahedron). Each regular hexagon bisects a segment joining
the conventional cell center to each vertex of the cube. Each truncation square bisects a segment
joining the cell center to the center of one of the 6 neighboring cubes (not drawn). The corner of
each truncation square sits midway between the center and the edge of a conventional-cell cube face

Fig. 5.21 a The sodium-chloride structure. b The cesium-chloride structure. Large and small balls
represent anions and cations. In the NaCl crystal, the ions of each kind form interpenetrating fcc
lattices. In the CsCl crystal, the ions of each kind form interpenetrating simple-cubic lattices

a cube with 8 neighbor Cl at its corners, and vice versa. To describe such structures, it
suffices to recognize the true periodicity of the lattice. For example the NaCl structure
can be viewed as a fcc Bravais lattice containing two atoms per cell: a Na atom at 0 and
a Cl atom at the center of the fcc primitive cell (a1 + a2 + a3)/2 = (x̂ + ŷ + ẑ) a/2.
This leads us to the necessity of introducing a basis, i.e. a list of atoms with their
positions within a primitive cell. A Bravais lattice plus a basis define completely a
crystal structure.

A basis is sometimes needed even when all atoms in the crystal are chemically
equal. For example, Fig. 5.22 illustrates the 2D honeycomb net (all sites hosting
“equal” atoms), which is not a simple Bravais lattice, because two neighboring atoms
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a
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Fig. 5.22 The honeycomb crystal structure is a 2D triangular net to which one third of the points has
been removed. It is not a simple Bravais lattice, since the geometric environment of two neighboring
atoms is inequivalent. The honeycomb net can be described as a Bravais lattice with two primitive
vectors a1 and a2 of equal length a, separated by a 60◦ angle, with a basis composed of, e.g., 0 and
(a1 + a2)/3. Graphene is a 2D honeycomb crystal of carbon, with a � 244 − 246 pm

a

b

a

Fig. 5.23 The structure of the graphite form of carbon: an alternating stack of 2D honeycomb nets
(graphene planes, Fig. 5.22). This crystal structure is a 3D hexagonal lattice with a basis of 4 atoms
per primitive cell: 2 atoms in plane “a” plus 2 in plane “b”

are geometrically inequivalent. The honeycomb net is the 2D crystal structure of
graphene, one atomically thin layer of the graphite form of carbon. The structure of
graphite, shown in Fig. 5.23, is a “vertical” alternating stack of graphene sheets. The
graphite structure is then a simple hexagonal lattice with a basis of 4 atoms per prim-
itive cell. The hcp structure is also an hexagonal Bravais lattice, but with a 2-atom
basis, see Fig. 5.24. The equilibrium structure of many elements, e.g. beryllium, tita-
nium, zinc, zirconium, is hcp, although usually deviating from ideal close-packed
structure, which should have c = a

√
8/3. Similarly, the diamond structure (of C-

diamond, Si, Ge, and α-Sn) drawn in Fig. 5.25 is a fcc lattice with a 2-atom basis.
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Fig. 5.24 The hcp structure, with a highlighted parallelepiped primitive cell. This crystal structure
involves a basis consisting of 2 atoms, e.g. one at 0 and one at a1/3 + a2/3 + a3/2. The hexagonal-
lattice primitive vectors a1 and a2 of equal length a form a 60◦ angle; a3, perpendicular to the
(a1, a2) plane, has length c, which for the ideal close-packed structure is c = a

√
8/3. This structure

consists of an alternate stacking of triangular lattices, see Fig. 5.3

a
a

Fig. 5.25 The diamond structure consists of two interpenetrating fcc Bravais lattices, displaced
along the body diagonal of the cubic cell by one quarter of the length of this diagonal. It can be
regarded as a fcc lattice with a basis of two-atoms at 0 and (a1 + a2 + a3)/4 = (x̂ + ŷ + ẑ)a/4

Each atom sits at the center of a tetrahedron, surrounded by four nearest neighbors
(see also Fig. 5.4).

Given the possibility that several atoms belong to each cell, one often finds it
more convenient to adopt a conventional cell containing several equal atoms, rather
than the primitive unit cell of the Bravais lattice. For example, fcc and bcc are often
conveniently described in terms of the underlying nonprimitive simple-cubic cell, of
larger volume than the primitive cells of Fig. 5.18. The fcc lattice is then viewed as
a simple-cubic Bravais lattice with a 4-atom basis [0, (ŷ + ẑ)a/2, (ẑ + x̂)a/2, and
(x̂ + ŷ)a/2], while the bcc is viewed as a simple-cubic lattice with a 2-points basis
[0 and (x̂+ ŷ+ ẑ)a/2]. All results must coincide when this conventional “lattice with
basis” formalism is used in place of the genuine description in terms of a Bravais
lattice.
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As a convenient picture, we introduced the Bravais lattice as an infinite array of
discrete geometric points. In fact, the precise mathematical meaning of a Bravais
lattice is a group of translations, which transform the corresponding array of points
back into itself.7 We leave the details of the classification of space and point groups
of 3D crystals8 to specific solid-state courses, and only note that extra symmetries
often induce extra degeneracies of the electronic and vibrational states of the crystal.

5.1.2 The Reciprocal Lattice

The Fourier transform of a periodic function includes only discrete “frequencies”:
this statement is the key to the introduction of a reciprocal lattice. We first illustrate
this concept in 1D. By definition, a periodic function f (x) of period a (the lattice
spacing) satisfies f (x) = f (x − na) = f (x − R) [R = na is a lattice vector, as in
Eq. (5.2)]. Then, in its Fourier expansion

f (x) = F−1[ f̃ ](x) = 1√
2π

∞∫

−∞
eikx f̃ (k)dk, (5.3)

all Fourier components f̃ (k) vanish except those whose exp(ikx) has the same peri-
odicity as f (x). The corresponding k must satisfy exp(ikx) = exp[ik(x − a)], i.e.

7 Any vector R can be also viewed as a translation operator TR such that TRr = R + r, for
any point r. It is easily verified that the set of all lattice translations {TR} of a Bravais lattice is
closed for composition (TRTR′ = TR+R′ ), it contains a neutral element (T0), and for each TR there
exists an inverse element (T−R) such that the composition of TR and its inverse yields the neutral
element. This means that all lattice translations {TR} form a group of geometric transformations.
As R + R′ = R′ + R, this group is Abelian, i.e. commutative. When the Hamiltonian has the entire
symmetry of this group of discrete translations, its eigenstates are simultaneous eigenstates of all
group operations, i.e. they are labeled by the group irreducible representations, see Sect. B.4. The
purpose of the following section is precisely to identify these irreducible representations: we shall
see that their structure is very general and not especially complicated.
8 In addition to the discrete translations, most lattices and crystal structures have extra symmetries.
For example, a simple-cubic lattice transforms back into itself if rotated around a lattice point by
90◦ around the x̂ axis, or by 120◦ around a body diagonal direction such as x̂ + ŷ + ẑ. These extra
transformations extend the group of discrete translations {TR} outlined above. The full symmetry
group of the crystal (space group) is a proper combination of the point group (a finite group of rigid
rotations and reflections about one point) and the lattice group of discrete translations {TR}. Back in
the first half of the 19th century it was recognized that only 7 inequivalent point groups could occur
for 3D crystals. Two groups are equivalent if they contain the same type of symmetry operations
(e.g., rotations by a certain angle, discrete translations up to suitable scaling factors). In particular,
there do not exist point groups including fivefold axes (rotations by 2π/5 = 72◦), or sevenfold or
higher-order axes, as they could not replicate infinitely in space.

These 7 point groups combine differently with the translations to form 14 inequivalent Bravais
lattices. The introduction of a basis into the Bravais lattices can reduce the global symmetry of the
replicated objects in the primitive cell, and thus the overall space group. When combined with all
possible types of basis, the different point groups become 32, rather than 7, and the space groups
230, rather than 14.
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exp(−ika) = 1, i.e. ka = 2πl, i.e. k = l · 2π/a, for any integer l = 0,±1,±2, . . .

We indicate those special k-values compatible with the lattice periodicity with the
notation

G = G(l) = l · 2π

a
. (5.4)

As at any value of k 	= G which does not respect the lattice periodicity the Fourier
component f̃ (k) vanishes, the Fourier expansion (5.3) can be written as a discrete
Fourier series

f (x) =
∑

G

eiGx f̃ (G), (5.5)

with coefficients

f̃ (G) = 1

a

a∫

0

exp(−iGx) f (x)dx . (5.6)

When periodic functions of period a are represented in Fourier space, the G points
acquire therefore a special role among all k’s. According to Eq. (5.4), the G points
form a regular lattice, of unit vector 2π/a, in k space. Apart from the physical
dimensions of inverse length rather than length, the k space is similar to the x space,
thus the lattice of G points holds all the properties of a Bravais lattice on its own: the
lattice of G points of Eq. (5.4) is called reciprocal lattice. By definition, direct-lattice
points R and reciprocal-lattice points G satisfy

eiRG = einal2π/a = ei2πnl = 1. (5.7)

The simple 1D example introduced here can be generalized to the 3D case relevant
for real-life crystals. A function f (r) has the periodicity of a Bravais lattice if f (r) =
f (r−R) for any lattice vector R = n1a1+n2a2+n3a3, with integer n j as in Eq. (5.2).
Then, the only nonzero components in its Fourier expansion satisfy exp(iG · r) =
exp[iG · (r − R)] for all R in the direct lattice. This relation is satisfied for all G
such that

eiR·G = 1. (5.8)

In words, the vectors G of the reciprocal lattice are all the k vectors whose associated
plane wave has the periodicity of the direct Bravais lattice. In particular, taking the
primitive vectors a j for R, one finds that the G vectors are all the vectors of the type

G = G(l1, l2, l3) = l1b1 + l2b2 + l3b3 (5.9)

(l j are integers), with

b1 = 2π
a2 × a3

Vc
, b2 = 2π

a3 × a1

Vc
, b3 = 2π

a1 × a2

Vc
, (5.10)
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where Vc = a1 × a2 · a3 is the volume of the unit cell. As above, the G vectors form
a Bravais lattice, of which Eq. (5.10) yields a set of primitive unit vectors. Note that
as bi · a j = 2πδi j , the dot product in Eq. (5.8) R · G = 2π(n1l1 + n2l2 + n3l3). Any
other vector k 	= G is associated to a plane wave which does not respect the lattice
periodicity, thus the corresponding Fourier component f̃ (k) vanishes. Like in 1D,
the Fourier expansion of the periodic function is a discrete Fourier summation over
the reciprocal lattice

f (r) =
∑

G

eiG·r f̃ (G), (5.11)

with coefficients

f̃ (G) = 1

Vc

∫

Vc

exp (−iG · r) f (r)d3r, (5.12)

where the integration is carried out over a single unit-cell volume. The volume
b1 × b2 × b3 of the reciprocal-lattice primitive cell is (2π)3/Vc. The Wigner-Seitz
cell of the reciprocal lattice is called first Brillouin zone (BZ).

By applying the transformations (5.10), it is easy to verify that the reciprocal
lattice of a simple-cubic lattice of side a is another simple-cubic lattice of side
2π/a. The fcc lattice of conventional cell of side a has as reciprocal lattice a bcc of
conventional side 4π/a. Conversely, the bcc lattice of conventional cell of side a has
a fcc reciprocal lattice9 of conventional cell side 4π/a. As a consequence, the first
BZ of the fcc lattice has the shape of the bcc Wigner-Seitz cell (Fig. 5.20b), and that
of the bcc lattice has the shape of the fcc Wigner-Seitz cell (Fig. 5.20a). It is a useful
exercise to determine the reciprocal lattice of the hexagonal lattice starting from the
conventional primitive vectors of Fig. 5.24.

G vectors in the reciprocal lattice select the plane waves eiG·r with the direct-lattice
periodicity. Consider the constant-wave surfaces of a given plane wave, namely its
“wave fronts”, for example those fixed by eiG·r = 1: these surfaces are a family of
parallel planes, perpendicular to G and separated by one wavelength λ = 2π/|G|.
Some of these planes pass through the lattice points. In particular all these planes pass
through lattice points if the integer indexes l1, l2, and l3 have no common nontrivial
divisors. Otherwise, for G given by nl1, nl2, nl3, one plane out of n goes through
lattice points. The integer indexes l1, l2, and l3 are called Miller indexes of the family
of lattice planes. These indexes are inversely proportional to the intercepts of these
planes with the crystal primitive directions. The standard notation to indicate planes
and directions in k space is (l1 l2 l3)—no commas, with minuses conventionally
represented by overbars, as in (2 −1 0) → (2 1̄ 0). Figure 5.26 illustrates the relation
of a few popular plane families with the real-space cubic cell. Traditionally, for
all cubic lattices, including fcc and bcc, lattice planes are labeled relative to the

9 This is a consequence of the general fact that the reciprocal of the reciprocal lattice is the original
lattice. This can be verified by applying twice the transformations (5.10), or even more simply by
observing that the roles of R and G in Eq. (5.8) can be exchanged.
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z

x

y

(100) (110) (111)

Fig. 5.26 A G vector identifies a well-defined family of parallel lattice planes, of constant phase
G · r. of the plane wave eiG·r. These planes are perpendicular to G and separated by a distance 2π

|G| .
The labels report the standard notation for the Miller indexes (l1 l2 l3) identifying families of lattice
planes in cubic lattices: (1 0 0), (1 1 0), and (1 1 1)

conventional cubic directions x̂, ŷ, ẑ, not relative to the primitive unit vectors of
Fig. 5.16.10

5.1.3 Diffraction Experiments

Diffraction of “wave probes” is the main quantitative source of structural data about
solids. Electrons of energy 1.5–150 eV, electromagnetic radiation of 1–10 keV (see
Fig. 1.2), and neutrons of 1–100 meV: the wavelength of all these “waves” fits the
typical unit-cell size of not too complicated crystals (of the order of a few typical
interatomic distances, 0.1–1 nm). The periodic density modulation in solids can and
does diffract waves of these three kinds. Of the 3 considered wave probes, electrons
interact very strongly with matter, and are thus sensitive to few topmost surface lay-
ers only. If the energy of X-rays is chosen off-resonance from all core excitations
of the atoms in the material (see Fig. 2.22), then their penetration depth in solids
easily exceeds thousands of unit-cell lengths, sufficient to generate sharp bulk dif-
fraction patterns. Slow neutrons are even better fit for structural diffraction studies,
as they only interact mostly with the nuclei, and boast penetration depths of sev-
eral centimeters. A sufficiently small sample guarantees that the total probability of
probe-sample interaction is small, so that most probing radiation goes unscattered

10 The reciprocal lattice helps us in identifying all different irreducible representations (see
Sect. B.4) of the group of the discrete direct-lattice translations. These representations, labeled
by an arbitrary k vector, are 1-dimensional and the corresponding character of a group operation TR
is simply exp(−ik ·R). Two irreducible representation labeled by k and k′ have all equal characters
(thus are in fact the same representation) whenever k − k′ = G for some G in the reciprocal lattice.
Indeed, exp(−ik ·R) = exp(−i[k′ +G] ·R) = exp(−ik′ ·R) exp(−iG ·R) = exp(−ik′ ·R), using
Eq. (5.8). Accordingly, all different irreducible representations of the discrete translational group
are labeled by all k points within one primitive zone of the reciprocal lattice, e.g. the first BZ.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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(a) (b)

′

′

′
′

Fig. 5.27 a In an elastic-scattering experiment (|k′| = |k|), the transferred wave vector q = k′ −k
holds information about the scattering angle 2θ and radiation wavelength λ = 2π/|k|. b The “far-
field” wave scattered by a point-like element of matter at r is dephased by −q · r compared to the
one at the origin 0, due to the extra path length q̂ ·r emphasized by bold segments. The evaluation of
the total interfering wave from a continuous distribution leads to a Fourier-transform “summation”

through the sample, a small fraction scatters once, and almost none scatters twice or
more. Under these conditions, understanding scattering is straightforward.

For simplicity, the incoming beam is assumed to be produced by a monochro-
matic source placed at a large distance from the sample, so that it is characterized by
a well-defined wave vector k (or momentum �k). The detector is also very remote
from the sample, so that it detects outgoing radiation scattered elastically to another
well-defined wave vector k′ (Fig. 5.27a). As analyzed quantitatively in the theory of
scattering, every infinitesimal volume d3r of a continuous distribution of matter scat-
ters radiation in proportion to the number of scatterers n(r)d3r locally present. As
suggested around Eq. (2.45) and sketched in Fig. 5.27b, the total rate of transition γk k′
is proportional to the square modulus of the matrix element

∫
e−ik′·rn(r)eik·rd3r =∫

e−i(k′−k)·rn(r)d3r ∝ F[n](k′ − k) = ñ(k′ − k), namely the Fourier transform of
the density of scatterers. These observations suggest that the elastic scattering rate
of the incoming k wave radiation into the k′ direction is proportional to the square
modulus of the Fourier transform ñ of the appropriate density n, evaluated at the
transferred wave vector q = k′ − k (Fig. 5.27a). For neutrons the relevant density is
the nuclear-matter density nnuc(r) while for X-rays it is the electronic density nel(r):

I neutr
X−rays

(q) ∝
∣∣∣F[n nuc

el
](q)

∣∣∣
2 ≡

∣∣∣ñ nuc
el

(q)

∣∣∣
2
. (5.13)

As a nucleus is essentially point-like, if viewed at atomic resolution, the Fourier
transform of the density distribution of one nucleus is basically flat: thus each atom
scatters neutrons essentially independently of q, see Fig. 5.28a. When two atoms
diffuse neutrons, the scattered matter wave interfere: interference leads to inten-
sity reinforcement and reduction in alternating directions. Constructive interference
occurs whenever the two source-atom-detector path lengths (Fig. 5.27b) differ by an

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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(a) (b)

Fig. 5.28 Comparison of a neutron and b X-ray elastic scattering by a single Si atom. qx repre-
sents the x-component of the change in wave vector k′ − k of the scattered radiation. Intensity is
proportional to the square modulus of the Fourier transform of the appropriate density. Neutrons
probe the nuclear-matter density, which is concentrated in lumps of typical size ∼1 fm, practically
similar to a Dirac-delta distribution δ(r): its Fourier transform is a constant, essentially independent
of q (until a huge |q| � 104 Å−1, irrelevant for diffraction experiments of crystals). X-rays probe
the Fourier transform of the total atomic electronic charge density, which lumps in a region size of
∼1 Å: thus the atomic form factor varies significantly over a qx range of few Å−1 (Generated using
the software of Ref. [36])

integer multiple of the radiation wavelength λ. Quantitatively, the square modulus
of the Fourier transform ñnuc(q) of two equal point-like objects at R1 and R2

|ñnuc(q)|2 ∝ |exp(−iR1 · q) + exp(−iR2 · q)|2

=
∣∣∣∣exp

(
−i

R1 + R2

2
· q
)

2 cos

(
R1 − R2

2
· q
)∣∣∣∣

2

= 2
[
1 + cos ((R1 − R2) · q)

] = 2 [1 + cos (a qx )] (5.14)

shows characteristic oscillations (Fig. 5.29a, c). Assume that R1−R2 = ax̂: construc-
tive interference yields maximum intensity in the q directions characterized by a pro-
jection qx along the line joining the two nuclei such that (R1 −R2) ·q ≡ aqx = 2π×
an integer l1. The role of interatomic separation a on the interference pattern of the
scattered waves is illustrated by the comparison of Fig. 5.29a, c: an increased separa-
tion in real space produces closer interference maxima in q space. Scattered intensity
is independent of the qy , qz components in the plane (not shown in Fig. 5.29) orthog-
onal to the line joining the two atoms (see also Fig. 5.32a for a 2D example).

Neutron scattering from a crystal arises from the interference of the waves scat-
tered coherently by a regular array of point scatterers. The Fourier transform in
Eq. (5.13) is again a discrete sum

∑
n1

e−iqx n1a , recalling the Fraunhofer theory
of light diffracted by an optical grating with narrow slits. Figure 5.30 shows the
intensity scattered by short regular chains of atoms: despite the smallness of such
1D “crystals”, sharp intense diffraction structures emerge at regular q directions
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(a) (b)

(c) (d)

Fig. 5.29 a, c Neutron and b, d X-ray scattering by two Si atoms. The patterns shows the charac-
teristic interference periodicity 2π

a , where a = |R1 − R2| is the distance between the two nuclei,
(a, b) a = 2 Å and (c, d) a = 3 Å. According to Eq. (5.18), the X-rays pattern is the product of the
neutron pattern (uniquely determined by the atomic positions) times the atomic form factor, carrying
information on the charge distribution of the single atom. Note that, due to the enlarged interatomic
separation a, the interference fringes in (c, d) are closer than in (a, b), while the enveloping atomic
form factor remains unchanged (Generated using the software of Ref. [36])

characterized by e−iqx n1a = 1 for all n1. In between these strong Bragg diffraction
peaks, the intensity of the weak secondary interference peaks decreases rapidly as
the number of atoms increases. Already for 30 atoms these weak structures become
almost invisible (Fig. 5.30c, d), and disappear in the limit of a macroscopically large
regular crystal.11 The values of qx for the Bragg maxima of diffracted intensity, with
all phase factors qx n1 a = an integer multiple of 2π are precisely the 1D reciprocal
lattice vectors qx = l1 × 2π/a. The same occurs also for 2D and 3D periodicity:
we conclude that Bragg diffraction peaks occur for transferred wave vector equal to
reciprocal-lattice points q = G.

11 The modest regularity sufficient to produce diffracted peaks grants the possibility to generate
detectable diffraction patterns even in the event that the coherence length of the probing radiation
available in the lab extends to several lattice cells spacings only, much shorter than the whole
sample size.
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(a) (b)

(c) (d)

Fig. 5.30 Neutron and X-rays diffraction patterns but generated by 7 (a, b) and 30 (c, d) atoms rather
than 2 as in Fig. 5.29. The sharp diffraction peaks at distance 2π

2.0 Å−1 reflect the separation a = 2.0 Å.
The relative intensity of the subsidiary interference peaks decreases quickly as the number of atoms
is increased, and vanishes in the limit of an infinitely large crystal. In the X-ray pattern, the diffraction
peaks are modulated by the atomic form factor (Generated using the software of Ref. [36])

The patterns of Figs. 5.29 and 5.30 show that the X-ray diffractograms differ from
neutrons diffractograms by an amplitude modulation. This is easily understood in
steps:

• X-rays scattered by a single atom probe its smooth electronic density distribution
nat(r). According to Eq. (5.13), one atom scatters X-rays elastically with the non-
trivial q dependence given by Fourier transform of its electronic density, called
atomic form factor fat(q) ≡ ñat(q), as drawn for Si in Fig. 5.28b. Figure 5.31
reports two examples of X-ray atomic form factors: these are characteristic bell-
shaped functions of total weight proportional to the squared number of electrons.

• As illustrated in Sects. 3.2.1 and 3.2.2 above, chemical bonding modifies the elec-
tronic states of a molecule or a solid, so that the electronic charge density does
differ from the sum of the densities of the individual atoms. However only valence
electrons are involved in bonding and delocalize significantly. X-rays are scat-
tered mostly by the (more numerous if Z  1) core electrons, which retain an

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 5.31 The square moduli of the X-ray atomic form factors | fat(q)|2 of carbon (Z = 6) and
of silicon (Z = 14). a Absolute values, showing that the total X-ray scattering increases ∝ Z2; b
Intensities scaled to the q = 0 value, showing that the form factor of the heavier atom is broader,
due to the sharper charge localization of its inner-core electrons

atomic-like charge distribution. Accordingly, it is a fair approximation to assume
that the electronic distribution of a collection of atoms (as in a molecule, or in a
solid) equals the sum of the individual atomic electronic distributions. For exam-
ple an elementary solid consisting of many equal atoms sitting one per cell at the
points R of a Bravais lattice has

nel(r) =
∑

R

nat(r − R). (5.15)

• Substitute Eq. (5.15) in the calculation of the Fourier transform:

ñel(q) =
∑

R

∫
nat(r − R)e−iq·rd3 r =

∑

R

∫
nat(r′)e−iq·(r′+R)d3 r′

=
∑

R

e−iq·R
∫

nat(r)e−iq·rd3 r = ñBravais(q) fat(q). (5.16)

Observe that the resulting amplitude is the product of two independent functions of
q: ñBravais(q) = ∑

R e−iq·R describes the scattering of point-like objects arranged
at the nodes of the Bravais lattice; and the atomic form factor accounts for the
scattering from a single atom, Fig. 5.28b. Accordingly, the scattered intensity

IX−rays(q) ∝ |ñel(q)|2 = |ñBravais(q) fat(q)|2 = |ñBravais(q)|2 | fat(q)|2 . (5.17)
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• Finally, observe that nnuc(r) ∝ nBravais(r), and conclude that

IX−rays(q) ∝ | fat(q)|2 |ñnuc(q)|2 ∝ | fat(q)|2 Ineutr(q). (5.18)

This relation clarifies the role of the atomic form factor fat(q) in X-ray diffraction:
X-rays scatter in the same q directions as neutrons of the same wavelength, but
the peak intensities are modulated multiplicatively by the squared atomic form
factor. This observation accounts for the compared diffractograms of Figs. 5.28,
5.29 and 5.30.

The 1D patterns of Figs. 5.28, 5.29 and 5.30 generalize simply to 2D and 3D.
Figure 5.32 shows the 2D pattern of neutrons scattered by 2, 3, 4, and 5 equal atoms
located at the vertexes of regular polygons. The fact that 3 and 4 atoms generate a Bra-
vais lattice as an interference pattern, while the pentagonal arrangement does not, sug-
gests that pentagonal symmetry is incompatible with repetition in space. Figure 5.33
illustrates the typical effect of geometric deformations of the lattice on the diffraction
pattern, as described mathematically by Eq. (5.10). Figures 5.34, 5.35, 5.36 and 5.37
display typical neutron diffraction patterns for varied 2D geometries. It is instructive
to explore other 2D patterns my means of the handy software of Refs. [36, 37].

The 3D patterns follow similar rules: diffracted beams come out in the directions
where the transferred q matches a G-vector of the 3D reciprocal lattice. In practice,
when shining a monochromatic neutron or X-ray beam on a single crystal, one
generally obtains no diffracted beams, since, for that given k, all possible k′ = k+G
have lengths |k′| different from |k|, and would then correspond to inelastic scattering.
Diffracted beams are retrieved by carefully orienting the crystal until, for some G,
the incident and scattered wave numbers match:

|k| = |k′| = |k + G|. (5.19)

This geometric condition is represented by the Ewald construction of Fig. 5.38a. The
scattering angle, i.e. the angle between k and k′ is related to |k| and G by squaring
Eq. (5.19), obtaining

k · Ĝ = −|G|
2

. (5.20)

Figure 5.38b illustrates this geometric relation: the projection k · Ĝ = −|k| sin θ

must equal half the length of G. Accordingly, scattering is observed at angles 2θ

related to the lengths of k and G by

sin θ = |G|
2 |k| . (5.21)
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(a)

(b)

(c)

(d)

Fig. 5.32 2D neutron scattering patterns generated by regular polygons of 2–5 equal atoms. For 2
atoms (a), as indicated by Eq. (5.14), scattering is independent of the q component perpendicular
to the line joining them. Note that the regular triangle (b) and square (c) generate Bravais lattices
as “diffraction” patterns, while the pentagon (d) does not. This figure and a few others below have
h = q1/2π and k = q2/2π , and have been generated using the software of Ref. [36]
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(a)

(b)

(c)

Fig. 5.33 A color-intensity plot 2D of the X-rays radiation scattered by 4 atoms.This interference
pattern hints at the general features of diffraction from the square (a), rectangular (b), and oblique
(c) nets. The diffracted spots at the reciprocal lattice points become much sharper when a large
crystal, rather than 4 atoms, generates them. The inverse proportionality and orthogonality relation
(5.10) of the reciprocal-lattice and direct-lattice basis is illustrated

In Sect. 5.1.2, we related G to a family of lattice planes (drawn in Fig. 5.38b) separated
by a distance d = n2π/|G|, where n is the greatest common divisor of the Miller
indexes defining G. On the other hand, |k| is connected to the radiation wavelength
λ by |k| = 2π/λ: substitution in Eq. (5.21) yields the celebrated Bragg condition
for diffraction

2d sin θ = nλ. (5.22)

According to these relations, no diffraction occurs for 2|k| < |G|, or equivalently
for λ > 2d.

In practice, to generate diffracted beams off a single crystal, one must move the
reciprocal lattice relative to the Ewald sphere until some G point touches the Ewald
sphere, as in Fig. 5.38a. One can either vary the radiation wavelength, thus changing
the Ewald sphere diameter, or else rotate the crystal sample [its reciprocal lattice
rotates accordingly, see Eq. (5.10)].
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Fig. 5.34 The neutron diffraction pattern generated by a 9 × 9 square-lattice crystal. A red square
marks the real-space primitive cell; a blue square marks the reciprocal space primitive cell. The
peaks are much sharper than in the 2 × 2 example of Fig. 5.33

Fig. 5.35 The neutron diffraction pattern generated by a rectangular-lattice crystal
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Fig. 5.36 The neutron diffraction pattern generated by an oblique-lattice crystal

Fig. 5.37 The neutron diffraction pattern generated by a triangular-lattice crystal

In the lab, it is common to characterize the structure of powder samples, i.e.
collections of microcrystals rotated randomly in space. This uniform distribution of
orientations is equivalent to averaging over all possible rotations of the reciprocal
lattice. As illustrated by Fig. 5.39, the crystal scatters radiation at fixed angles 2θ

[given by Eq. (5.21)] away from the incident k. This means that diffracted radiation
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Fig. 5.38 a The Ewald construction. Given the incident vector k, draw a sphere of radius |k|
about the point k in reciprocal space (shaded). Diffraction peaks corresponding to reciprocal lattice
vectors G occur only if −G happens to lie on the surface of the Ewald sphere, as drawn. Under this
condition, radiation is diffracted to the direction k′ = k + G. b The relation between the scattering
angle 2θ and the lengths of k and G vectors. The angle θ between the incident beam and the family
of Bragg planes fixed by G yields the projection k · Ĝ = −|k| sin θ , which is compatible with
diffraction when it equals −|G|/2

O
k

Fig. 5.39 The Ewald construction for a powder sample. The wave vector k of the incoming radiation
defines the (shaded) Ewald circle in 2D (a sphere in 3D). Crystal grains take all possible rotations:
the entire reciprocal lattice (solid points) must then be “averaged” over all angles: every G point
covers a circle in 2D (a sphere in 3D). In 2D, each one of these circles intersects the fixed Ewald
circle at a pair of points k′, both forming an angle 2θ with k. In 3D, each sphere intersects the Ewald
sphere at a circle of points k′, again forming a fixed angle 2θ with k: therefore scattered radiation
comes out in coaxial cones of k′ directions, axially symmetric around the k̂ direction. G vectors
longer than 2|k| generate circles/spheres such as the dashed one, which do not intersect the Ewald
sphere, thus producing no diffraction
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Fig. 5.40 Powder diffraction patterns: intensity as a function of the scattering angle 2θ . a Scattering
of the copper Kα X-ray radiation by a Y2Fe17 powder sample, with the intensity counting compared
to the rings on the film recording. (Data from Ref. [38].) b Scattering of low-energy neutrons by
powder samples of elementary carbon (Data from Ref. [39])

forms cones whose axis is the direction of the incident radiation k̂. The rings of
Fig. 5.40a illustrate an example of such a pattern recorded on film. Also Fig. 5.11
shows an example of such a pattern, generated by an Al foil (not a proper pow-
der): the sharp cones of radiation diffracted at characteristic angles prove that Al is
microcrystalline. Microcrystalline structures of this kind (tightly bound collections
of randomly oriented microscopic individual crystals separated by grain boundaries)
are responsible for the plastic deformable character of most solid metals, as opposed
to the rigidity of those solids which crystallize in the form of large single crystals
(e.g. Si, NaCl).

Structural data about powder or microcrystalline samples are conveniently
collected in plots of the diffracted intensity as a function of the angle 2θ , as in
the patterns of Fig. 5.40. In this kind of diffractograms, the vertical axis reports the
total scattered intensity, integrated along circles at fixed 2θ .

The derivation of Eq. (5.17) is readily generalized to crystals with nd atoms in each
periodically repeated cell, where the electron density is nel(r) = ∑

R
∑nd

j=1 nat j (r−
d j −R). The result is that the atomic form factor in Eqs. (5.16–5.18) must be replaced
by a structure factor

S(q) =
nd∑

j=1

e−iq·d j fat j (q), (5.23)

representing the Fourier transform of the matter distribution of the nd atoms sitting
at positions d j in the repeated cell. Expression (5.23) holds for X-rays, fat j (q)

being the atomic form factors of the individual atoms in a cell. For neutrons, the
same expression applies, provided that the fat j (q) are replaced by q-independent
neutron scattering amplitudes of the individual nuclei in the cell. The decomposition
I (q) ∝ |ñBravais(q)|2 |S(q)|2 implies a fundamental result: a given Bravais lattice
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yields the same characteristic diffraction pattern irrespective of the number, kinds and
positions of the atoms populating its unit cell: these details affect the structure factor
|S(q)|2, in turn applying a multiplicative intensity modulation to the same peaks.

The possibility of describing a same crystal structure in terms of different lattices
with different basis might make us worry of some ambiguity. For example, a square
lattice of side a could also be viewed as a square lattice of side 2a with nd = 4 atoms
per cell: the reciprocal-lattice G points of the 2a lattice are twice as dense in each
direction, but the diffracted pattern must remain the same, because this is the same
crystal described in a formally different way. Indeed, the structure factor (drawn in
Fig. 5.33a) vanishes for all G points of the denser reciprocal lattice which do not
belong to the reciprocal lattice of the true a-side square. However, the 2a lattice may
become the correct minimal description of the actual structure, e.g. as a consequence
of a structural deformation—one or several atoms in each 2×2 square moving away
from their perfect-square position. With such a deformation, some of the 2a denser
G peaks acquire nonzero intensity. Likewise, a fcc crystal of conventional cell side
a, as a Bravais lattice, generates diffraction spots for all q = G points forming a bcc
reciprocal lattice of conventional side 4π/a. However, the same fcc structure can be
viewed as a simple-cubic lattice of side a with 4 atoms/cell. The reciprocal lattice
of this simple-cubic lattice has denser G points (a simple-cubic lattice of side 2π/a)
than that of the fcc. However, the diffraction pattern is the same, regardless of the
adopted formalism, because, the structure factor (5.23), computed for 4 equal atoms
[equal fat j (q)] sitting at positions 0, (x̂ + ŷ)a/2, (x̂ + ẑ)a/2, (ŷ + ẑ)a/2, gets rid of
peaks at G points of the simple-cubic lattice (side 2π/a) not belonging to the actual
bcc reciprocal lattice (side 4π/a).

Defects and the finite crystal size displace some scattered intensity from the sharp
Bragg peaks into a diffuse continuous background (see e.g. Fig. 5.30). If disorder
increases, the intensity of this continuous background grows until, for amorphous or
liquid samples, neutron or X-ray scattering does not exhibit the sharp Bragg peaks
characteristic of lattice periodicity any more: the scattered intensity is then a smooth
function of the angle 2θ , which provides useful statistical information about the
materials’ structural properties, retrievable by numerical Fourier analysis.

5.2 Electrons in Crystals

Within the adiabatic framework (Sect. 3.1), electrons move in a solid according to the
electronic equation (3.2). The total electronic energy obtained by solving Eq. (3.2),
added to the inter-nuclear repulsion, yields the adiabatic potential (3.10) which, in
turn, determines the dynamics of the nuclei through Eq. (3.9). For a crystalline solid
at low enough temperature, Vad keeps the atomic configuration close to its minimum,
characterized by a regular arrangement of the nuclei, basically a large chunk of an
ideal crystal of the kind described in Sect. 5.1. For the moment, we neglect the
nuclear kinetic energy and the movements of the ions: at equilibrium, we assume
that all ions sit at the ideal crystal-structure positions (deferring to Sect. 5.3 the study
of the ionic motions about these equilibrium configurations), and focus our attention

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 5.41 The bare nuclear
potential energy Vne(x)

(solid) and the screened
effective one-electron
potential energy Veff (x)

(dashed) experienced by an
electron moving in a crystal
along a line through a
direct-lattice primitive
direction. The screened
potential energy is less
attractive than that produced
by the bare nuclei, but it
exhibits the same lattice
translational symmetry:
Veff (r) = Veff (r + R)
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to the motion of electrons. Within this idealized scheme, we investigate the solutions
of the electronic equation (3.2), starting from their general properties required by
symmetry.

The many-body equation (3.2) is plagued by the same difficulties discussed for
atoms and molecules. The Schrödinger problem of many electrons in a crystal can
usually be approached in a one-electron mean-field scheme, e.g. of the Hartree-
Fock type, like that of atoms and molecules. As discussed in Sect. 2.2.4, this type
of approximation maps the N -electron equation to single-electron self-consistent
equations for the motion of one electron in the field of the nuclei and the charge
distribution of the N − 1 other electrons. The mean-field effective potential Veff(r)
has the same symmetry as the potential created by the bare nuclei, i.e. the full crystal
symmetry12 (Fig. 5.41). Similarly to atoms, where the single-electron HF orbitals
carry spherical-symmetry labels l and m, the single-electron states of crystals carry
Bravais-lattice group representations, labeled by k vectors chosen within a primitive
zone of the reciprocal lattice, often the first BZ. Specifically, the k quantum number
carries information about the way a wavefunction changes under the action of lattice
translation TR, i.e. in going from one lattice cell to the next. Like in atoms, additional
non-symmetry-related quantum numbers identify states of different nodal structure
(within each primitive cell) and spin projection.

12 This assumption is more well-grounded than the approximation of a spherically-symmetric mean
field in atoms. The reason is that, while non-s atomic states have nonuniform angular distributions, as
discussed below crystal states have the same probability distribution (wavefunction square modulus)
in all cells. As a related example, the symmetric and antisymmetric wavefunctions of Eq. (3.11),
drawn in Fig. 3.3, have both a perfectly symmetric square modulus under reflections across the
mid-plane separating the nuclei.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
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The determination of the eigenfunction and eigenenergy for an electron moving
according to H1 = [Te 1 + Veff(r)] requires a detailed calculation, which is usually
carried out numerically. In this context, symmetry plays a twofold role:

• simplify greatly the solution of the HF-Schrödinger equation in the crystal;
• understand general features of its solutions.

Bloch’s theorem expresses the action of lattice discrete symmetry on the electronic
eigenstates in crystals. This theorem states that in a periodic potential [Veff(r) =
Veff(r + R)] all Schrödinger eigenstates can be chosen in the factorized form

ψ j (r) = eik·ruk j (r), (5.24)

where the function uk j (r) has the same periodicity of the lattice [uk j (r) =
uk j (r+R)], and k is a suitable wave vector (depending on ψ j , but otherwise subject
to no restriction). This fundamental result can be interpreted in two alternative, but
equally instructive ways:

• In a periodic context all electronic eigenfunctions display a nontrivial spatial
dependence within one primitive unit cell only: in any other cell displaced by
TR, the wavefunction is equal to the one in the original cell, apart from a constant
phase factor eik·R which leaves the probability distribution |ψ j |2 unaffected. This
consideration is basically also the demonstration of Bloch’s theorem.13

• In a periodic potential, the Schrödinger eigenstates are essentially free-electron
plane-wave–like states, except for a periodic (thus trivial) amplitude modulation.

Observe that k may as well be restricted to one primitive cell of the reciprocal
lattice, e.g. a primitive parallelepiped, or the first BZ14—see Fig. 5.17. Indeed, if k
was outside this primitive cell, we could always find a reciprocal lattice vector G such
that k′ = k + G is in the primitive cell of our choice. But then ψ j (r) = eik·ruk j (r) =
ei(k′−G)·ruk j (r) = eik′·re−iG·ruk j (r), and the function u′

k′ j (r) = e−iG·ruk j (r) is

lattice-periodic, thus eik′·ru′
k′ j (r) is a valid Bloch function.

It is instructive to find the explicit equation satisfied by the Bloch functions
uk j (r). This is obtained by substituting the decomposition (5.24) in the stationary
Schrödinger equation for the electrons in the periodic effective potential:

[
− �

2

2me
∇2 + Veff(r)

]
eik·ruk(r) = E eik·ruk(r). (5.25)

13 The single-electron effective Hamiltonian Te + Veff (r) commutes with all lattice translations
TR . Accordingly, its eigenfunctions may be chosen as simultaneous eigenfunctions of all discrete
translation operators. But then TRψ j (r) = e−ik′ ·Rψ j (r) for some k′ in the first BZ. Accordingly,
one can call k = −k′ and construct uk j (r) = ψ j (r) eik′ ·r, which is periodic, as can be readily
verified by the substitution of r − R in place of r.
14 In 1D, any k-interval of length 2π/a. For example the first BZ, i.e. the interval −π/a < k ≤ π/a.
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To deal with the kinetic term, observe that

∇2eik·ruk j (r) = ∇ ·
[
eik·r∇uk j (r) + ikeik·ruk j (r)

]

= eik·r∇2uk j (r) + 2eik·rik · ∇uk j (r) − |k|2eik·ruk j (r)

= eik·r (∇ + ik)2 uk j (r).

By substituting this decomposition into the Schrödinger equation (5.25), and dividing
by the common factor eik·r, we obtain

[
− �

2

2me
(∇ + ik)2 + Veff(r)

]
uk j (r) = Ek j uk j (r). (5.26)

This fundamental equation allows us to compute the stationary states of every electron
in a crystal, given its wave number k. Thanks to the periodicity of uk j established by
Bloch’s theorem, Eq. (5.26) must be solved within a single cell of the direct lattice
(with applied periodic boundary conditions) rather than over the macroscopically
large volume of the whole crystal. In practice, the need to solve Eq. (5.26) in a
microscopically small unit cell represents an immense technical advantage. No such
possibility is available in the absence of lattice periodicity, as in non-periodic solids,
where the electronic motions are therefore far harder to investigate. Once uk j (r)
is evaluated by exact or approximate techniques, the full electronic wavefunction
ψ j (r) can then be extended to the whole crystal by means of Eq. (5.24).

Before attempting the solution of Eq. (5.26), we discuss the qualitative properties
of the single-electron eigenstates and eigenenergies in a crystal. Equation (5.26) is
a second-order differential equation, defined in the unit-cell volume Vc, with stan-
dard periodic boundary conditions. Apart for the wave-vector shift by k, Eq. (5.26)
is equivalent to a stationary Schrödinger equation. Accordingly, for any fixed k, its
solutions must be analogous to those of a standard Schrödinger equation (B.30) in a
microscopically small volume, namely: a ladder of discrete eigenenergiesEk j associ-
ated to eigenfunctions uk j (r), characterized by an increasing number of nodal planes
for increasing energy. The index j = 1, 2, 3, . . . labels precisely these solutions, for
increasing energy, see Fig. 5.42.

Fig. 5.42 For each given k
in the first BZ, the solution
of Eq. (5.26) provides
discrete electronic energies
Ek j , for j = 1, 2, . . ., three
of which are sketched here.
These energies depend
parametrically on k. The
continuous functional
dependence E j (k) = Ek j is
an energy band of the solid

E

_ π
a

j=3

j=2

j=1

π
a

kx_ _
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k can vary arbitrarily within the first BZ, and as it does, the Eq. (5.26) for uk(r)
changes. This justifies attaching the label k to eigenenergies Ek j and eigenfunctions
uk j (r). The parameter k affects Eq. (5.26) analytically, thus one should expect that its
solutions depend analytically on k. Indeed, for fixed j , the eigenenergies Ek j depend
on k as continuous functions called energy bands, or simply “bands” (Fig. 5.42). As
k takes all its allowed values within the first BZ, for each j , Ek j spans a continuous
interval of available energies (the range of the Ek j function, sometimes itself called
a “band”). The ranges of two successive bands Ek j and Ek j+1 can either overlap
(like bands 2 and 3 in Fig. 5.42) or not overlap (like bands 1 and 2 in Fig. 5.42). Both
possibilities are compatible with Eq. (5.26), and do occur in actual solids. The main
consequence of Bloch’s theorem is then a spectrum of electronic energies involving
intervals of allowed energies, often separated by ranges of forbidden energies (band
gaps). In a crystal, electrons are characterized by an energy spectrum somewhat
intermediate between that of a free particle (all positive energies) and that of an atom
(isolated eigenvalues separated by gaps).

Figure 5.43 shows the qualitative form of the band eigenfunctions in a 10-sites
portion of a monoatomic 1D crystal (this sketch could be extended to 2D and 3D). The
real part of the wavefunctions is drawn for two bands: the imaginary part is similar,
although with a different phase, so that |ψk j (x)|2 is periodic, i.e. repeated equally
in all cells. The primary role of k is to tune the phase change of the wavefunction in
going from one site to the next. The wavelength associated to these Bloch waves is
2π/|k|. The values of k selected in Fig. 5.43 yield wavelengths commensurate to the
10-sites region drawn. Other intermediate choices of k would produce wavelengths

x

ψ
(x

j

a x

ψ
(x

j

a

(a) (b)

Fig. 5.43 A sketch of the real part of a few Bloch wavefunction ψk j (x) = eik·x uk j (x) as a
function of position x in a 1D crystal, for (bottom to top) k = 0, k = 0.1 × 2π/a, k = 0.2 × 2π/a,
k = 0.3 × 2π/a, k = 0.4 × 2π/a, k = 0.5 × 2π/a, for the states belonging to bands a j = 1
and b j = 2. Negative k values of the same length |k| yield wavefunctions whose real part is the
same. As k increases from 0 to the first-BZ boundary, the phase difference of the wavefunction at
neighboring sites increases. At the zone boundary k = π/a, this phase difference is maximum, and
equals π , corresponding to the sign alternation of the topmost curve. At the same time, due to the k
dependence of Eq. (5.26) for uk j (x), the shape of the wavefunction in each cell also evolves with k
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not matching the boundary condition. In addition, k affects also the local “shape”
of the wavefunction ψk j (x) within each cell, through the explicit dependence of
Eq. (5.26), and thus of uk j (x). This k-dependence is smooth and often relatively
mild, while the wavefunctions usually change more when comparing different bands
j and j ′.

The detailed calculation of the band energies Ek j and wavefunctions uk j (x)

of an actual solid is typically carried out by means of some self-consistent cal-
culation of the mean-field potential Veff(r), associated to the numerical solution of
Eq. (5.26) in a direct-lattice primitive unit cell, for a sufficiently dense set of k points.
However, useful insight in the physics of the band states can be obtained by consid-
ering substantially simplified “model” solutions of Eq. (5.26).

5.2.1 Models of Bands in Crystals

Although for many crystals Eq. (5.26) is not especially difficult to solve numerically
in a primitive unit cell, for any reasonable number of “sample” k points, approximate
solutions help us to gain insight in the fundamental properties of the band energies and
states. Like in Sect. 4.3.1, we apply periodic boundary conditions to a macroscopic
box, chosen of a shape and volume multiple of Vc, suitable to preserve the lattice
symmetry. We refrain from applying more realistic open-end boundary conditions,
which would break the periodicity, and would involve the subtle properties of crystal
surfaces, themselves an entire branch of science.

5.2.1.1 The Tight-Binding Model

In a region near each atomic nucleus, the crystal effective potential (Fig. 5.41) act-
ing on an electron resembles that of an isolated atom. Accordingly, for the crystal
electronic wavefunctions it makes sense to follow the construction of molecular
orbitals in terms of atomic ones, as sketched in Chap. 3 for H+

2 and H2. In this pic-
ture, a crystal is viewed as a huge molecule with the band states constructed as the
natural generalization of bonding and antibonding molecular orbitals. Models for
extended electronic states expressed as linear combinations of atomic orbitals are
often referred to as “tight binding”.

The 2-atoms calculation of Sect. 3.2.1 is the simplest example of tight-binding
application. It addresses the 1s “band” of a “crystal” composed of Nn = 2 H atoms
only. |1sL〉 represents the state at the left atom. |1sR〉, represents that at the right
atom, obtained from |1sL〉 by a “lattice” translation. Fictitious periodic boundary
conditions bring |1sR〉 back again to |1sL〉 upon a further translation (Fig. 5.44). The
symmetry-adapted states of Eq. (3.11) can be viewed as bonding and antibonding
combinations

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 5.44 a A tiny “crystal” of Nn = 2 equal atoms represents a diatomic molecule (with its
bond duplicated). b A 1D crystal of Nn equal atoms with periodic boundary conditions exhibits the
connectivity of a ring

|S〉 = NS(|1sL〉 + |1sR〉) = NS

∑

p=0,1

|p〉 = NS

Nn−1∑

p=0

eikpa |p〉, k = 0

|A〉 = NA(|1sL〉 − |1sR〉) = NA

∑

p=0,1

(−1)p |p〉 = NA

Nn−1∑

p=0

eikpa |p〉, k = π

a
,

with |0〉 = |1sL〉, |1〉 = |1sR〉, and NS/A are suitable normalization constants. The
only possible phase relations in these two-site combinations are “in phase” and “out
of phase”.

These linear combinations can be generalized to a chain of Nn ≥ 2 hydrogen
atoms, forming a 1D “crystal”, Fig. 5.44. To construct kets compatible with the global
“ring” periodic boundary condition 〈r + Nna|φ〉 = 〈r |φ〉, 1D version of Eq. (B.55)
with L = Nna, we adopt the phase factors generated by:

k =
(

−1

2
+ 1

Nn

)
2π

a
,

(
−1

2
+ 2

Nn

)
2π

a
,

(
−1

2
+ 3

Nn

)
2π

a
, . . . ,

1

2

2π

a
. (5.27)

We construct Nn combinations of the 1s orbitals by using the appropriate phase
factors in the linear combination:

|φk〉 = Nk

Nn−1∑

p=0

eikpa |p〉. (5.28)

In the limit of macroscopically large Nn , the energies of the |φk〉 states form a
continuum in the first BZ−π/a < k ≤ π/a. As k spans the BZ, the band energy spans
continuously the range from the bonding value (band bottom) to the antibonding value
(band top), Fig. 5.45.

By extending the derivation of the molecular Eq. (3.13), we can work out a method
to compute the band energies for a general crystal, which will provide an approximate
relation for the 1D band of Fig. 5.45 as a special case. The tight-binding method is
based on expanding the crystal electronic states as linear combinations of eigenstates
of the atomic one-electron effective Hamiltonian H at:

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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Fig. 5.45 As the Nn equally-spaced k points in the first BZ allowed by the entire-sample artificial
periodicity become denser and denser in the Nn → ∞ macroscopic-crystal limit, the electronic
energies form the band continuum of a macroscopic solid

|ψ〉 =
∑

R

∑

n

bRnTR |φn〉. (5.29)

In this expression, appropriate for a monoatomic crystal, |φn〉 is the nth single-
electron eigenstate of the isolated atom, TR is an operator which translates rigidly
by a lattice translation R, and bR n are suitable coefficients. One usually selects a
subset n = 1, . . . , no of the atomic states, usually comprising a few valence orbitals
only, and solves the one-electron Hamiltonian problem (B.36) in its variational matrix
form, see Appendix B.5. The involved matrix elements of the 1-electron Hamiltonian
are Hmn(R) = 〈φm |H1 TR|φn〉, and the overlap integrals are Bmn(R) = 〈φm |TR|φn〉.
The construction of the eigenstates and eigenvalues of Eq. (B.36) involves the (gener-
alized) diagonalization of a square matrix whose size equals the number no of orbitals
involved in each unit cell multiplied by the number of unit cells in the crystal. This
prohibitively large size can be reduced to just no, by taking advantage of the discrete
translational symmetry.

We decompose the one-electron Hamiltonian H1 = [Te 1 + Veff(r)] as

H1 = H at + ΔU, (5.30)

where H at contains the kinetic energy Te 1 plus the effective potential energy for an
electron moving around one isolated ion placed at the origin R = 0, and ΔU (r) is
the total screened potential energy generated by all ions in the crystal, reduced by the
single-ion contribution, see Fig. 5.46. In terms of the atomic levels Eat

n and matrix
elements

Cmn(R) = 〈φm |ΔU TR |φn〉, (5.31)

the tight-binding matrix secular problem (B.36) can be expressed as

∑

n R

[
Eat

m Bmn(R) + Cmn(R)
]

bR n = E
∑

n R

Bmn(R) bR n . (5.32)
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Fig. 5.46 The screened one-electron potential energy Veff (x) (dashed) experienced by an electron
moving in the crystal, and the same potential to which the contribution of the ion at R = 0 has been
subtracted (ΔU (x), solid). The plot sketches a 1D cut along the x axis of a typical crystal

Inspired by Eqs. (5.24) and (5.28), we guess an appropriate R-dependence of the
coefficients bR n , to reconstruct the appropriate Bloch symmetry:

bR n = eik·R b̃n . (5.33)

In practice, Eq. (5.33) imposes a specific amplitude and inter-cell phase relation
to the wavefunction 〈r|ψ〉, as dictated by the selected k. The wavefunction 〈r|ψ〉
satisfies Bloch’s theorem, as is readily verified. Eigenstates are obtained by selecting
appropriate combinations, as dictated by the coefficients b̃n .

For given k, we indicate by |Ek〉 the Bloch wavefunction |ψ〉 provided that it
solves the Schrödinger equation

H1|Ek〉 = Ek|Ek〉, (5.34)

where the eigenvalue Ek is the band eigenenergy. By multiplication on the left by
〈φm |, Eq. (5.34) for |Ek〉 maps to a matrix equation for the expansion coefficients b̃n :

∑

n

Hk,mnb̃n = Ek

∑

n

Bk,mn b̃n . (5.35)

For each fixed k, Eq. (5.35) is the generalized eigenvalue problem for the no × no
matrix Hk, of the type of Eq. (B.36). The no eigenvalues obtained for each k point
form no bands, as k is let vary across the BZ. In practice the matrix diagonalization
(5.36) needs to be carried out at a sufficiently fine discrete mesh of k points. Ek
represents the generic eigenvalue, corresponding to an eigenvector b̃ of components
b̃n . The solution eigen-coefficients b̃n depend on k and on the precise eigenvalue
(band) considered. In the matrix multiplication language, Eq. (5.35) reads simply

Hk · b̃ = Ek Bk · b̃. (5.36)
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The tight-binding energy and overlap matrices of Eq. (5.35) are explicitly:

Hk,mn =
∑

R

eik·R〈φm |H1 TR|φn〉 (5.37)

Bk,nm =
∑

R

eik·R〈φm | TR |φn〉, (5.38)

with the sums over R extending in principle over all lattice points. In practice, when
the distance |R| grows significantly beyond the typical atomic size (a few times a0),
the energy and overlap matrix elements, decay rapidly to 0, due to the exponential
decay of the atomic wavefunctions 〈r|φn〉 at large distance |r|.

Using the decomposition (5.30), Eq. (5.35) can be written in the instructive form
related to Eq. (5.32):

∑

n

[
Eat

n Bk,mn + Ck,mn
]

b̃n = Ek

∑

n

Bk,mnb̃n, (5.39)

where the matrix Ck is the Fourier transform of Eq. (5.31):

Ck,mn =
∑

R

eik·R〈φm |ΔU TR|φn〉. (5.40)

Assuming, for simplicity, that the overlap matrix is the identity (Bk,mn ≈ δmn),
Eq. (5.39) takes the following explicit form:

⎛

⎜⎜⎜⎝

Eat
1 + Ck,11 Ck,12 Ck,13 · · ·

Ck,21 Eat
2 + Ck,22 Ck,23 · · ·

Ck,31 Ck,32 Eat
3 + Ck,33 · · ·

...
...

...
. . .

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

b̃1

b̃2

b̃3
...

⎞

⎟⎟⎟⎠ = Ek

⎛

⎜⎜⎜⎝

b̃1

b̃2

b̃3
...

⎞

⎟⎟⎟⎠ . (5.41)

Figure 5.47 sketches the connection between the atomic and the solid-state spectra
as the component atoms, sodium in this example, move together to form a crystal.
Equation (5.41) provides a quantitative justification for the physics of Fig. 5.47: for
very large interatomic separations, all k-dependent part of the matrix elements Ck,mn

vanishes exponentially and the overlap matrix Bk,mn does coincide with δmn , thus
the eigenvalue problem (5.41) becomes trivially independent of k and the bands
become flat and coinciding with the atomic eigenenergies Eat

m . As the atoms move
closer together, |Ck,mn| generally increase, thus leading to proper band dispersions
with finite bandwidth (i.e. the difference Emax − Emin). Further shrinking of the
lattice periodicity (as induced, e.g., by the application of hydrostatic pressure to
the crystal), tends to broaden the band dispersion and a consequently decrease the
forbidden energy gaps. Similarly, for a given interatomic separation, since high up
excited atomic states decay relatively slowly with distance (see, e.g., Fig. 2.6), these

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. 5.47 The energy bands of bcc sodium, as a function of the nearest-neighbor interatomic
spacing d = a

√
3/2. As the atoms move closer, their separation becomes comparable to the

size of the atomic wavefunctions, and the individual atomic levels spread out into bands. If the
lattice parameter decreases, e.g. under the effect of an external pressure, then all bandwidths tend
to increase further, and more bands may overlap. At the equilibrium spacing deq = 367 pm, the
strong overlap of the 3s, 3p,… bands indicates that the tight-binding method is not especially well
suited to describe this wide highly hybridized conduction band. Indeed, the plane-waves method
(Sect. 5.2.1.2) describes the conduction band of alkali metals better

states give origin to generally larger |C(k)mn|, thus to broader band dispersions than
the more localized deep (core) levels.

The tight-binding method, requiring a number of (small) matrix diagonalizations,
is easily coded in a computer program, and it is employed routinely as a simple
technique to obtain semi-quantitative band structures with a modest effort.

In the extreme limit where only no = 1 atomic s state |φn〉 is retained, the tight-
binding model is conveniently solved analytically, as matrices turn into numbers, and
matrix products turn into simple products. The “eigenvector” can be taken b̃n = 1,
and Eq. (5.39) becomes

Eat
n Bk,nn + Ck,nn = Ek Bk,nn, (5.42)

with solution

Ek n = Eat
n + Ck,nn

Bk,nn
. (5.43)

We retain the label n to Ek to remind us that it represents the band of atomic nature
|φn〉.

To further simplify Eq. (5.43), in the Fourier sums (5.38) and (5.40) of the Bk and
Ck matrices, it is convenient to separate the R = 0 contribution from R 	= 0 terms.
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The R = 0 contribution to Bk equals unity, and that to Ck is a negative energy

αn = 〈φn| ΔU |φn〉. (5.44)

For the R 	= 0 integrals contributing to Bk and Ck in (5.38) and (5.40) we use the
notation:

βn(R) = 〈φn| TR|φn〉 (5.45)

γn(R) = 〈φn| ΔU TR|φn〉. (5.46)

Observe that (i) by symmetry βn(−R) = βn(R), γn(−R) = γn(R), and (ii) for
arbitrary Bravais lattice, when some R occurs in the R-sums, also −R is present. One
can then replace the complex exponentials with cosines, and rearrange the solution
(5.43) for Ek n as:

Ek n = Eat
n + αn +∑

R 	=0 cos(k · R) γn(R)

1 +∑
R 	=0 cos(k · R) βn(R)

. (5.47)

This relation expresses the tight-binding band energy as an explicit function of k, in
terms of a set of numerical parameters Eat

n , αn , γn(R), and βn(R). Equations (5.44),
(5.45) and (5.46) provide the explicit recipe to compute these parameters in terms
of overlap integrals of atomic wavefunctions. Note in particular that the “hopping
energy” γn(R) < 0, because the phase of the overlapping long-distance tail of the
s atomic wavefunction is the same for both wavefunctions in Eq. (5.46), and the
potential ΔU is attractive.

As observed above, due to the localization of these atomic wavefunctions, both
γn(R) and βn(R) become exponentially small for large |R|. It therefore makes sense
to ignore all the integrals for |R| > Rmax, which would bring in only negligible
corrections to the band structure Ek n . In particular, the simplest approximation, pro-
viding a band structure depending on a minimal number of parameters, is to neglect
all of the βn(R)’s (so that the denominator Bk,nn becomes unity) and to include only
the γn(R)’s for the nearest neighbors (nn) of 0. In this extreme simplification, the
expression (5.47) becomes

Ek n = Eat
n + αn + γn

∑

R∈(nn)

cos(k · R), (5.48)

where γn = γn(Rnn).

Example 1 For a 1D chain, Eq. (5.48) yields a cosine-shaped band Ek = Eat + α +
2 γ cos (a k). Since γ < 0, the minimum of the tight-binding band is reached at
k = 0, as sketched in Figs. 5.45 and 5.48.15 The molecular orbitals of the benzene

15 For p orbitals the angular dependence of the atomic wavefunction can make some of the relevant
γn(R) positive, thus producing “reversed bands”, with a maximum at k = 0, rather than a minimum.
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Fig. 5.48 Solid curve the
characteristic cosine-like
shape of the
nearest-neighbor orthogonal
1D tight-binding band of s
electrons, Eq. (5.48). Dashed
curve the modest effect of a
robust superposition integral
β = 0.3, Eq. (5.47) on the
band profile
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ring of 6 atoms (Fig. 3.8e) can be described approximately by a 6-sites 1D-lattice
tight binding, with 6 k points, see Eq. (5.27).

Example 2 In 2D, a square lattice has Ek = Eat + α + 2 γ
[
cos (akx ) + cos

(
aky

)]
.

Different expressions can be obtained for 2D lattices of different symmetries.

Example 3 For the fcc lattice Eq. (5.48) yields

Ek = Eat + α + 2 γ
{

cos
[a

2
(kx + ky)

]
+ cos

[a

2
(ky + kz)

]
+ cos

[a

2
(kz + kx )

]

+ cos
[a

2
(kx − ky)

]
+ cos

[a

2
(ky − kz)

]
+ cos

[a

2
(kz − kx )

] }

= Eat + α + 4 γ

×
[
cos

(a

2
kx

)
cos

(a

2
ky

)
+ cos

(a

2
ky

)
cos

(a

2
kz

)
+ cos

(a

2
kz

)
cos

(a

2
kx

)]
.

The above examples of approximate band dispersions confirm that the bandwidth
increases proportionally to the off-diagonal hopping energies |γ |. Changes in the
overlap integral (here β) at the denominator produce only quantitative changes, but
do not win over the dominant increase with |γ |. Observe also that the negative value
of α reflects the fact that, on average, the energy of a band state in a crystal is lower
than the original state in the isolated atom, due to the extra attraction ΔU (r) of all
other nuclei. If the considered band happens to be filled with electrons, this energy
lowering contributes to the crystal cohesive energy.

The one-orbital approximation discussed here is suitable for s bands, whenever
the diagonal energy separation

∣∣Eat
n − Eat

m

∣∣ of |φn〉 from all other atomic orbitals
|φm〉 is much larger than the dispersive part of Ck,mn . Under such conditions, the
|φn〉-derived s band remains isolated from all others. As soon as the inter-band gaps
become comparable to the bandwidths and inter-band couplings, one needs to run a
multi-orbital tight binding (no > 1). The bands obtained by a multi-band tight binding
can be rather intricate, but they share many qualitative features with the single-band
model. In particular it holds true that large interatomic separation calls for narrow

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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bands separated by substantial gaps, and that bands get broader and more hybridized
when the lattice is squeezed, as sketched in Fig. 5.47. It is apparent that for inner s
shells the single-band tight-binding approximation is accurate, while it provides a
rather poor description of the usually broad conduction band around or above the
Fermi level, at the equilibrium lattice structure. An increase of the number no of the
included orbitals improves systematically the accuracy of the tight-binding model,
at the expense of bigger matrices to be diagonalized. Also in polyatomic crystals,
the size of the matrix problem (and correspondingly the number of resulting bands)
equals the total number of orbitals contributed by all atoms in a unit cell. For further
details related to crystal structures with several-atom basis, refer to Ref. [10].

5.2.1.2 The Plane-Waves Method

A practical alternative to tight binding method, is the plane-waves basis. We note
in Fig. 5.41 that inside a crystal the effective one-electron potential for the valence
electrons is significantly screened, thus free-electron eigenstates should approximate
well the valence-band eigenstates, except near the atomic nuclei. In the general
discussion below, we use a 3D formalism, but this problem can be visualized more
easily in 1D, where we restrict most of our illustrative examples.

Following the standard mapping of Appendix B.5, we expand the band states in
the basis of momentum eigenstates:

|b〉 =
∑

k′
bk′ |k′〉,

where |k′〉 are plane-wave states, see Eqs. (B.53) and (B.56). This sum extends over
all k′ vectors, and represents therefore an integration.

Application of the Schrödinger equation to the candidate eigenket |b〉 and multi-
plication on the left by 〈k| (implying a volume integration over r) maps the initial
differential problem to an algebraic (matrix) equation for the wavefunction Fourier
components bk′ :

H |b〉 =
[

p2

2me
+ Veff

]
|b〉 = E |b〉

〈k|
[

p2

2me
+ Veff

]
|b〉 = E 〈k|b〉

∑

k′

[
�

2k2

2me
δk,k′ + 〈k|Veff |k′〉

]
bk′ = E

∑

k′
δk,k′bk′ , (5.49)

where we use appropriate orthonormality 〈k|k′〉 = δk,k′ of the plane waves and that
p |k′〉 = �k′|k′〉. The matrix elements
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〈k|Veff |k′〉 = N

∫
ei(k′−k)rVeff(r)d3r = Ṽeff(k − k′)

are the Fourier components of the potential, and N is the appropriate normalization,
see Eqs. (B.53) and (B.56).

Until this point, we made no mention of any lattice symmetry: indeed Eq. (5.49)
is the standard momentum representation of the Schrödinger equation. For a generic
potential Veff this formulation is not especially advantageous, since the matrix indexes
k of the eigenvalue problem (5.49) are smooth quantities, taking continuously many
values, exactly like r in the real-space equation. For a periodic potential however, as
observed in the general discussion of Eq. (5.11), the Fourier expansion of the periodic
potential is a discrete Fourier series over the reciprocal lattice, i.e. Ṽeff(k − k′) is
nonzero only for k−k′ = G, a vector of the reciprocal lattice. This means that in the
continuous-indexed energy matrix of Eq. (5.49) most off-diagonal matrix elements
vanish. In practice, given any k′ in the first BZ, the off-diagonal potential matrix
elements connect the plane wave |k′〉 only to plane waves |k〉, whose k is displaced
by a reciprocal-lattice vector: k = k′ + G. One can then consider separately each
subset of states originated from a given k. Only the corresponding matrix sub-blocks
need to be diagonalized. In one of such sub-blocks, the matrix form of Eq. (5.49) is:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

. . .
.
.
.

.

.

.
.
.
.

· · · T (k + G1) + Ṽeff (0) Ṽeff (G1 − G2) Ṽeff (G1 − G3) · · ·
· · · Ṽeff (G2 − G1) T (k + G2) + Ṽeff (0) Ṽeff (G2 − G3) · · ·
· · · Ṽeff (G3 − G1) Ṽeff (G3 − G2) T (k + G3) + Ṽeff (0) · · ·

.

.

.
.
.
.

.

.

.
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.

bk+G1

bk+G2

bk+G3

.

.

.

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= Ek

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.

bk+G1

bk+G2

bk+G3

.

.

.

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (5.50)

where T (k) = �
2k2/(2me). The matrix in Eq. (5.50) must be diagonalized for each

(fixed) k in the first BZ. Diagonalization is of course trivial whenever all off-diagonal
matrix elements are identically null, i.e. for a constant potential [Ṽeff(G 	= 0) = 0]:
the eigenvalues in the solid are then simply the free-particle energies Ek shifted by
the constant potential Ṽeff(0), and the eigenstates coincide with the original plane
waves |k〉. However, in any realistic solid, many G 	= 0 Fourier components of
Veff are nonzero: these generate off-diagonal couplings among plane waves. The
exact eigenstates of the problem are linear combinations of the plane waves differing
by G vectors, obtained by the diagonalization of the full matrix in Eq. (5.50). As
the G-points are infinite, this is again an infinite matrix, but one can cut the basis
restricting it to a finite number npw relevant plane waves separated by G-points,
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Fig. 5.49 Graphical intersections of a few translated free-electron parabolas T (k + G1), T (k +
G2),… In a neighborhood of the highlighted intersection points, even small off-diagonal Ṽeff
(G 	= 0) matrix elements can distort the parabolas quite significantly. In this figure, a = 210 pm,
and Gl = l 2π/a

and then diagonalize numerically a finite version of Eq. (5.50). This method is used
routinely for standard band-structure calculations.

Whenever the potential is “weak” (small |Ṽeff(G 	= 0)|), analytic information can
be extracted out of Eq. (5.50). More precisely, whenever the off-diagonal elements
Ṽeff(G2−G1) are small compared to the diagonal separation |T (k+G1)−T (k+G2)|
of the coupled states, the off-diagonal term acts as a small perturbation, thus it
“perturbs” the diagonal energy only weakly, see Appendix B.9. As a result, if all
couplings Ṽeff(G − G1) of a state |k + G1〉 to all other plane-wave states are small
compared to their diagonal energy separation, we can safely assume that the exact
band energy shall not differ much from the diagonal energy

Ek ≈ �
2|k|2
2me

+ Ṽeff(0). (5.51)

However, even in the favorable case of small Fourier components of Veff , the condi-
tion ∣∣∣Ṽeff(G1 − G2)

∣∣∣ � |T (k + G1) − T (k + G2)| (5.52)

is not verified for a set of special k points, namely those where two or more translated
kinetic-energy parabolas get degenerate or nearly so: T (k + G1) � T (k + G2). At
these points (highlighted in Fig. 5.49), the off-diagonal term Ṽeff(G1 −G2) becomes
dominating, and it displaces the actual band significantly away from the free-electron
parabola Eq. (5.51). At k points where states |k + G1〉 and |k + G2〉 are degenerate
or nearly so, approximate band energies can be calculated by diagonalizing the 2×2
sub-matrix (

T (k + G1) + Ṽeff(0) Ṽeff(G1 − G2)

Ṽeff(G2 − G1) T (k + G2) + Ṽeff(0)

)
.
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Fig. 5.50 a A gap of width 2|Ṽeff (G)| opens at each degeneracy point k = Gl/2: the parabolic
bands distort in an entire neighborhood around that k point. This representation adopts a repeated-
zone scheme, which emphasizes that the bands are periodic functions of k, with the periodicity of
the reciprocal lattice. b The same band structure, restricted to the first BZ

The spectrum of this matrix is discussed in Appendix B.5.2. The eigenenergies of
Eq. (B.39), with T (k + G1) + Ṽeff(0) in place of EL , T (k + G2) + Ṽeff(0) in place
of ER , and |Ṽeff(G1 − G2)| in place of −Δ, solve the 2 × 2 secular problem at hand.
Figure B.2 shows that due to characteristic “repulsion” produced by the off-diagonal

element, the band energies never come any closer than
∣∣∣2Ṽeff(G1 − G2)

∣∣∣.
This model illustrates the tendency of the periodic components of the potential

to open forbidden energy intervals in the otherwise uninterrupted parabolic free-
electron dispersion. As illustrated in Fig. 5.50, in 1D, gaps are guaranteed to open at
all G/2 points (unless some Fourier component |Ṽeff(G)| of the potential happens to
vanish). In 3D, degeneracies of the kinetic term occur for all k such that |k+G| = |k|,
which is the condition (5.19) for Bragg scattering. The corresponding |Ṽeff (G)| opens
a gap at a location in k-space. In 3D, the periodic potential does not always generate
a true band gap, i.e. a range of forbidden energy, since the forbidden energies for one
k-direction may well be allowed in some other k-direction (see Fig. 5.54).

The free-electron starting point described here, like the tight-binding method
of Sect. 5.2.1.1, lead to single-electron spectra characterized by bands of allowed
energy separated by gaps of forbidden energy, in accord with Bloch’s theorem. These
models provide a physical meaning to the band index j of the electronic states in
solids, see Eq. (5.26) and Fig. 5.42. In the tight-binding scheme, the band index
contains indications mainly about the atomic labeling n of the state (which is a clear-
cut concept especially for the narrow bands of inner shells, see Fig. 5.47). In the
quasi-free-electron approach (especially fit for the wide bands related to the empty
atomic levels), the band index j counts the number of times that the k 	= 0 Fourier
components of the potential have reflected the free-electron parabola back inside the
first BZ.
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5.2.2 Filling of the Bands: Metals and Insulators

The T = 0 (ground) state of a system of many independent electrons in a periodic
potential is obtained by filling the one-electron band states up to a Fermi energy, like
in the free-fermion model described in Sect. 4.3.2.1. The Fermi energy separates filled
(below) from empty (above) levels. Depending on the total number of electrons in
the solid, the Fermi energy may end up either inside one (several) energy band(s), or
within a band gap (Fig. 5.51). In the first case, the electrons in the partly filled band(s)
close to the Fermi energy are ready to take up excitation energy, provided typically
by an external electromagnetic field. In particular, an arbitrarily weak applied electric
field can accelerate electrons, which can then conduct electric current. Such a solid
is a metal. In contrast, all electrons in completely filled bands are “frozen” by Pauli’s
principle. Any dynamical response of these electrons requires an excitation across
some energy gap. A solid where all bands are either entirely filled or empty, with
the Fermi energy inside a gap, is an insulator. In solids, the highest completely filled
band is called valence band, while the lowest empty (or partly filled) band is the
conduction band.

This basic difference affects substantially all properties of these two classes of
materials, even at finite temperature. The Fermi-Dirac distribution (4.97) applies to
independent electrons at equilibrium in a solid pretty much like in a free gas, simply
replacing the free-electron energies and plane-wave states with the band energies and
Bloch states. Thus, a nonzero temperature in a metal generates a finite concentration
of electrons above the chemical potential and holes below it, similarly to what happens
around the Fermi sphere of a free-electron gas. Accordingly, the thermodynamics
of electrons in metals is interesting and rich of physical consequences, including a
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Fig. 5.51 The two basic T = 0 band-filling schemes: a a metal—the Fermi level (dotted) crosses a
partly filled conduction band; b an insulator—the Fermi energy sits in a gap between a completely
empty conduction band and a completely filled valence band
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Fig. 5.52 A sketch of the
occupation of the band levels
(b) of a semiconductor,
according to the
finite-temperature Fermi
distribution (a). The
chemical potential μ sits in
between the
conduction-band bottom Ec
and the valence-band top Ev
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characteristic T -linear contribution to the heat capacity of the solid, as discussed
in Sect. 4.3.2.1. Instead, in an insulator of gap Δ between conduction and valence
band, the average occupation of a valence-band state is [nv] � 1−exp[−Δ/(2kBT )],
extremely close to 1 at low temperature, and correspondingly the average occupa-
tion of a conduction-band state is [nc] � exp[−Δ/(2kBT )], extremely small at
low temperature. For a temperature much smaller than Δ/kB, the electrons of an
insulator can be considered to all effects as frozen in the filled bands, their excita-
tion being accessible only by means of high-energy spectroscopies. For a wide-gap
insulator (e.g. Al2O3 Δ � 5 eV, C diamond Δ � 5.5 eV, SiO2 Δ � 8.0 eV, NaCl
Δ � 8.97 eV), any practical temperature is by far smaller than Δ/kB, and the band
occupancies are indistinguishable from those at T = 0. For example, with a 4 eV gap
at room temperature (kBT ≈ 0.025 eV), [nc] ≈ e−80 � 10−35. However, small-gap
insulators, usually called semiconductors (e.g. Ge Δ � 0.74 eV, Si Δ � 1.17 eV,
GaAs Δ � 1.52 eV), show measurable conduction associated to thermal electronic
excitations across the gap, even at room temperature, as sketched in Fig. 5.52, and
discussed in Sect. 5.2.2.2.

But how can we predict the Fermi-energy position? In a many-electron atom,
we just need to count electrons, but an infinite crystal boasts an infinite number
of band states and of electrons: to determine the expected Fermi-energy position,
we need a counting rule. Consider a macroscopic portion of the solid of volume
V = Nn1 Nn2 Nn3Vc, extending for Nni lattice repetitions in the a1, a2, a3 primitive
directions. Apply periodic boundary conditions to this portion of solid, so that discrete
translational invariance is preserved. To satisfy these artificial boundary conditions
ψk j (r) = ψk j (r + Nni ai ), the k label of the Bloch states is restricted to

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.53 The filling of the bands of a hypothetical Ne (a) and Na (b) 1D crystal composed of Nn = 6
atoms. According to Eq. (5.53), the allowed k-points in the first BZ are k = 0, ± 1
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k = n1

Nn1
b1 + n2

Nn2
b2 + n3

Nn3
b3,

with n j = − Nnj

2
+ 1,− Nnj

2
+ 2, . . . ,

Nnj

2
− 2,

Nnj

2
− 1,

Nnj

2
. (5.53)

These values of k are the lattice equivalent to those of Eq. (4.38), and the 3D gen-
eralization of Eq. (5.27). These Nn = Nn1 Nn2 Nn3 discrete k values become dense
and fill the primitive unit cell of the reciprocal lattice as Nnj → ∞ and the infinite
real-space crystal is recovered (see Fig. 5.44). The number of electrons of this finite
crystal portion equals Nn times the number ncell of electrons of each unit cell. Each
band (orbital) state makes room for 2 electrons, one for each spin state, ↑ and ↓. If the
bands are all disjoint, one on top of another, the Nnncell electrons fill the 2Nn spin-
orbital states of the ncell/2 lowest bands, as illustrated in Fig. 5.53. An even value of
ncell leads to ncell/2 full bands, followed by empty bands above. In the example of
Fig. 5.53, each atom of solid neon (fcc, one atom per cell) carries ncell = 10 electrons
to the bands, for a total of 10Nn electrons in the crystal. In a tight-binding language,
2Nn electrons fill the 1s band, 2Nn electrons fill the 2s band, and 6Nn electrons fill
completely the 2p bands, for a total of 5 filled bands. The Fermi energy then lies in
the gap between the filled 2p band and the 3s-3p empty bands above: the neon crystal
is an insulator.

Odd ncell leads to (ncell − 1)/2 full bands plus one half-filled band. For example,
the ncell = 11 electrons that each sodium atom puts in the band states of its bcc
crystal (one atom per cell) fill completely the 1s, 2s, 2p bands, and fill only the Nn/2
lowest-energy spin-orbital states of the 3s band. This 3s band is then half filled, the
Fermi energy cutting through it: the sodium solid is thus a metal.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.54 Band overlap. The band energies Ek j of 2D and 3D crystals depends on the k direction.
Even with a gap in the band structure in each k-direction, when taking all directions into account
the overall gap can vanish, since the energy range forbidden in some direction ka becomes allowed
in a different direction kb: these bands overlap. In this kind of solid, even with an even number of
electrons per cell, the Fermi energy can thus end up crossing several bands: that solid is a metal

While it is evident that any band crystal with an odd number of electrons per cell
ncell is a metal,16 for even ncell both insulators (like Ne) and metals are possible,
since the (ncell/2)-th and the (ncell/2 + 1)-th bands are not necessarily separated
by a gap, as illustrated in Fig. 5.54. The alkali earth (IIA) and end of the transition
(IIB: Zn, Cd, and Hg) elemental solids are all metals, with even ncell, precisely due
to overlapping bands at the Fermi energy.

5.2.2.1 Metals

The distinctive feature of a metal is its ability to conduct electric current. In practice all
solids, even insulators, show some measurable conductivity associated to impurities
and thermal excitations. What does characterize uniquely the metallic state is a
conductivity which decreases as T is increased, contrasted to the conductivity of
insulators, which increases as T is increased due to extra thermally excited charge
carriers. In the k space of metals a Fermi surface separates full and empty states at
T = 0, like the Fermi sphere of the ideal Fermi gas.

We now analyze the predictions of band theory for the movement of electrons
in crystals. To describe the motion of electrons in the periodic field of the ions plus
the applied external field, a semiclassic approach is useful. The standard approach
of QM is to represent an electron as a wave packet, i.e. a superposition of Bloch
states of a single band j , characterized by a peaked wave-number distribution, thus
a large spatial extension (much larger than the crystal lattice spacing, see Fig. 5.55).

16 When the independent electrons approximation breaks down, as in strongly correlated materials,
there occur insulating states with odd ncell, often accompanied by magnetic order of the spins.



5.2 Electrons in Crystals 201

x

Fig. 5.55 A cartoon for the electron dynamics within the semiclassic model. The length over which
externally applied fields (dashed) vary far exceeds the spread in the electron wavepacket (solid),
and this wavepacket, in turn, extends over a region several lattice constants wide

The following equations govern the motion of the center of mass r of such a wave
packet [10]:

d

dt
r = v j (k) = 1

�
∇k Ek j (5.54)

�
d

dt
k = −qe

[
E(r, t) + v j (k) × Bext(r, t)

]
. (5.55)

The external perturbing electric E(r, t) and magnetic Bext(r, t) fields17 are supposed
to vary slowly on the scale of the wave-packet size (Fig. 5.55). A rigorous derivation
of Eqs. (5.54) and (5.55) goes beyond the scope of the present course: we suggest a
few heuristic arguments to support their plausibility.

• The center-mass velocity v j of the wave packet is the group velocity associated
to the dispersion Ek j of the Bloch waves. Equation (5.54) states the basic fact of
wave mechanics that a wave packet with dispersion ω(k) = �

−1Ek j moves with
the velocity given by its group velocity ∇k ω(k). In the special case of a free
electron Ek = �

2k2/(2me), this yields the usual relation v(k) = �k/me between
velocity and momentum.

• If the force associated to a static external electric potential φext(r) acts on the band
electron, then its total energy

[
Ek j − qe φext(r)

]
should remain conserved along

the semiclassic motion. To verify this, we derive this total energy with respect to
time (notation: d f

dt ≡ ḟ ):

d

dt

[
Ek j − qe φext(r)

] = ∇k Ek j · k̇ −qe ∇r φext(r) · ṙ = v j (k) · [�k̇ + qe E(r)
]
,

17 The magnetic field H produced by currents external to the solid is related to the magnetic
induction field Bext of Eq. (5.55) by H = ε0c2 Bext .
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where we use ∇k Ek j = �v j (k), Eq. (5.54). If Eq. (5.55) is satisfied, then this
derivative indeed vanishes, as the vector �k̇+qeE = −qev j ×Bext is perpendicular
to the velocity v j . Total energy is thus conserved.

• Equation (5.55) recalls the classical equation of motion of a particle of charge −qe

moving under the action of the external electromagnetic fields E(r) and Bext(r)
only. The periodic forces produced by the crystal act through the band dispersion
Ek j , generating the nontrivial k-dependence of the velocity in Eq. (5.54), replacing
the free-electron v = �k/me. This means that in the crystal �k does not equal the
electron momentum, as for a free electron. It is rather called crystal momentum.

• The semiclassic equations assume that the external fields are sufficiently weak to
induce no inter-band transitions. Strong fields would make the semiclassic approx-
imation fail and lead to electric or magnetic breakdown. Also, the single-band
semiclassic equations hold until the frequency of any time-oscillating field does
not approach inter-band gaps (ω � Δ/�). Rapidly varying fields are applied in
spectroscopy precisely with the purpose of inducing inter-band transitions.

According to the semiclassic equations, the electrons of a completely filled band
do not contribute to either electric or heat current. The electric current density carried
by a wave packet representing an electron moving in a volume V is (−qe)v j (k)/V .
The total electric current density carried by all electrons in a filled band j amounts
to18

j =
∫

BZ

(−qe)v j (k)
1

4π3 d3k = 0. (5.56)

This integral vanishes since, due to Eq. (5.54), the integrand function is the gradient
of a periodic function (∇kEk j , and Ek j is periodic with the reciprocal-lattice peri-
odicity), which is integrated over an entire cell (e.g. the first BZ). In other terms, in a
filled band for each electron carrying current in some direction another electron car-
ries current the opposite way, totaling a vanishing net current. The same observations
apply to the energy (heat) current

jE =
∫

BZ

Ek j v j (k)
1

4π3 d3k = 0, (5.57)

by noting that the integrand is proportional to ∇k(Ek j )
2. Completely filled band

do not contribute to transport any more than completely empty bands. All electric
and thermal conductivity is to be attributed to partly filled bands. This explains
why no systematic increase of conductivity is observed in the crystalline elements
for increasing Z (for example the conductivities of fcc Cu, Ag, and Au are quite
similar), despite the largely different total number of electrons.

18 Similarly to Eq. (4.90), the ni sum is turned into an integral by inserting the appropriate density of
states. According to Eq. (4.38), the k-density of states is V/(2π)3. An extra factor gs = 2 accounts
for the spin degeneracy. The integration of V/(4π3) over the whole BZ represents the summation
over all states in band j .

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.56 The reciprocal-space motion of the electrons of a 1D crystal. Under the action of a
leftward external force (uniform constant rightward electric field E), the wave number k drifts at
constant speed. At the BZ boundary k can be brought back into the first BZ by k = −π/a → π/a,
and then continues to move leftward and traverse the BZ again and again. Correspondingly, a the
electron band energy oscillates. The real-space electron b velocity and c acceleration also oscillate,
because they are proportional to the first, Eq. (5.54), and second, Eq. (5.64), derivative of the band
energy

On the other hand, Bloch states are stationary states of the Schrödinger equation
in the perfect crystal: if a wave packet of Bloch states representing an electron has a
finite mean velocity (as happens unless by chance ∇k Ek j = 0), then that velocity
shall persist forever. Thus, this semiclassic theory for Bloch states predicts that, even
in the absence of any external electric field, metals should carry persistent currents.
No such persistent currents are observed. Even worst, as illustrated in Fig. 5.56 for
the simple 1D case, the semiclassic motion following Eq. (5.55) under the action of
a constant field cycles the k-point across the whole BZ. Correspondingly, Eq. (5.54)
yields an oscillating velocity generating positive and negative currents for the same
amount of time. A DC electric field should then induce an AC current (Bloch oscil-
lations) in a metal wire! This unphysical prediction is neither an artifact of 1D nor
of the semiclassic approximation: real metals under ordinary conditions exhibit a
completely different response: Ohm’s law19 j = σE. This inconsistency of the model

19 The current I in a wire is directly proportional to the applied potential drop: I = R−1V . The
coefficient of proportionality R depends on the length L and cross section A of the wire, but not
on the current or potential drop. In terms of the current density j crossing perpendicularly the surface
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with observation is due to Bloch electrons (and wave packets thereof) being capable
to travel forever through a perfect crystal, without any energy dissipation. Any real
crystal deviates from ideality because of

• structural defects, as discussed in Sect. 5.1;
• its nuclei not being frozen at their equilibrium positions but actually vibrating

around them, as we shall discuss in Sect. 5.3.

Both these discrepancies from the ideal-crystal picture are sources of collisions for
conduction electrons.20 To represent the effect of collisions as simply as possible,
we shall assume that:

1. Each electron experiences an instantaneous collision at random, with probability
τ−1 per unit time. The time τ , variously known as the relaxation time, the collision
time or the mean free time, represents the average time that an electron travels
freely between a collision and the next.

2. The electron emerges from a collision in a random k state, reflecting the (Fermi)
distribution at the appropriate local temperature, and respecting Pauli’s principle.
All memory of the initial k prior to collision is lost.

3. Between successive collisions, each electron moves according to the semiclassic
equations of motion (5.54), (5.55).

As a result of frequent collisions, the external field induces only a weak perturba-
tion to the thermal equilibrium distribution. Basically, collisions act mostly close to
the Fermi surface. When, following Eq. (5.55), a DC electric field attempts to shift
each occupied k state in the −qeE direction, collisions rapidly transfer electrons
from occupied states in the higher-energy region back into the emptied region of
lower energy. This tendency of collisions to re-establish thermal equilibrium, illus-
trated in Fig. 5.57a, quenches the free acceleration of the electrons, thus preventing
the Bloch oscillations. After an initial transient, the net effect of the field E amounts
to a small steady displacement of the filled states relative to zero field (Fig. 5.57b).
This displacement generates a steady current density j equal to the k-space integra-
tion of V −1 (−qe)v j (k) through the region δ3k of unbalanced occupation. j can be
estimated roughly for a free-electron parabolic band as

j =
∫

δ3k

V −1 (−qe)v j (k)
V

4π3 d3k �
∫

δ3k

(−qe)ÊvF d3k � −qe vF Ê (δ3k), (5.58)

(Footnote 19 continued)
area A, I = |j|A. In terms of the electric field E, the potential drop V = L|E|. Thus Ohm’s law
rewrites j = L/(AR) E = σ E, where the conductivity σ = L/(AR) and resistivity ρ = σ−1 are
characteristic properties of the material,.
20 Some scattering is produced by electron-electron interaction as well, but this mechanism is
quite negligible compared to the two other sources of collisions in ordinary metals at ordinary
temperature.
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Fig. 5.57 a Band occupation under the combined effect of (i) a rightward static external electric
field E, accelerating the electrons to the left according to Eq. (5.55), and (ii) collisions with crystal
defects and vibrations, which tend to reestablish equilibrium by scattering extra-energetic electrons
prevalently into lower-energy states which have been left empty. b Under the combined effect of
the field and collisions, the occupation distribution shifts to the left in k space. This steady shift,
here largely exaggerated, is proportional to both |E| and the average time τ between collision, and
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Fig. 5.58 The shift δk of
the Fermi sphere induced by
a rightward external electric
field E = E ŷ. The
highlighted k-space volume
(δ3k) is responsible for the
velocity-distribution
asymmetry supporting the
net electric current carried by
this partly filled band

kz

kx

δ

δ

ky

3
E

k

k

where we drop numerical factors of order 1. The k-space volume (δ3k) in between
the equilibrium Fermi surface and its field-shifted replica, sketched in Fig. 5.58 for
free electrons, can be estimated by observing that in the average time τ between two
collisions, each electron changes its wave vector by δk = �

−1τ (−qe) E. Dropping
again factors of order unity, the volume (δ3k) is approximately

(δ3k) � −|δk| k2
F � τ

�
(−qe) |E| k2

F,

where the minus sign indicates that the shift is opposite to the E field. By substituting
this expression and vF � �kF/me (valid for free electrons) in Eq. (5.58), we obtain
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Table 5.2 The measured electrical resistivity ρ = σ−1 of a few elemental metals [10]

Element ρ (n�m) ρ (n�m) τ (10−14 s) τ (10−14 s)

at 77 K at 273 K at 77 K at 273 K

Na 8 42 17 3.2

K 14 61 18 4.1

Rb 22 110 14 2.8

Cu 2 16 21 2.7

Ag 3 15 20 4.0

Au 5 20 12 3.0

Mg 6 39 7 1.1

Al 3 25 6.5 0.8

The corresponding relaxation times are obtained from Eq. (5.60) through τ = me/
(
ρq2

e
N
V

)
, with

N
V equaling the density of conduction electrons (Data from Ref. [10])

j � (−qe)
�kF

me
Ê

τ

�
(−qe) |E| k2

F � q2
e τ

me
k3

F E � q2
e τ

me

N

V
E, (5.59)

where we used the free-electron relation of kF with electron density, k3
F = 3π2 N/V

(Sect. 4.3.2.1), dropping factors of order unity. Equation (5.59) agrees with Ohm’s
law, and yields a conductivity

σ � q2
e τ

me

N

V
. (5.60)

By measuring the resistivity ρ = σ−1 and the conduction-electron number density
N/V of metals, we evaluate the relaxation time τ through Eq. (5.60). The values
reported in Table 5.2, in the 10−13 s range, indicate that between two successive
collisions an electron travels an average distance (called the electron’s mean free
path) d = τvF � 100 nm, hundreds of typical interatomic spacings.

The observed trend of increasing resistivity with temperature, indicates that the
relaxation time decreases. Collisions become more frequent as thermal motion
produces larger displacements of the nuclei from their equilibrium positions, as
described in Sect. 5.3. The average time between collisions is indeed inversely
proportional to the total number of phonons τ−1 ∝ ∑

ε[nε]B . At thermal ener-
gies kBT much larger than the characteristic phonon energies (ε � 100 meV),
the total phonon number is proportional to T (verify this by expanding Eq. (4.96):
[nε]B = (eβε − 1)−1 � (βε)−1 = kBT/ε). Indeed, at high temperature metals do
exhibit a resistivity approximately ρ ∝ T . At low temperature, the phonon number
decreases rapidly [see Eq. (4.116)], but all sorts of crystal defects provide a residual
T -independent scattering. Accordingly, at low temperature the T -linear regime turns
into a T -independent (but sample-dependent) resistivity, as illustrated in Fig. 5.59

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.59 The
low-temperature resistivity
of sodium, measured for two
samples characterized by
different defect
concentrations, leading to
different low-T residual
resistivity. At low
temperature the tiny phonon
contribution to resistivity
grows as T 5, but it then turns
rapidly into a T -linear
increase (dashed line)
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for Na. The low-temperature resistivity contribution of defects varies widely among
different metals, and is huge in disordered alloys.

In analogy to electrical conductivity, we can estimate the thermal conductiv-
ity of electrons in a metal. When a thermal gradient ∇rT = ẑ dT/dz is estab-
lished across the sample, electrons reaching a given point inside the metal, have a
slightly different energy distribution, depending on whether they are coming from the
high-temperature side or from the low-temperature side. This difference is seen
mainly as a different broadening near the Fermi energy, and its amount depends on
the average distance d � τvF that these electrons have traveled since the previous
collision. As sketched in Fig. 5.60, the electrons coming to that point from a region
at temperature T + ΔT carry an extra energy V −1Cv ΔT = −V −1Cv d ẑ · ∇rT
where Cv is the heat capacity, Eq. (4.106), and the minus sign indicates that energy
is transported in the direction opposite to the temperature gradient. The heat current
density is obtained by multiplying this heat density by the speed vF at which electrons
travel:

jE � −V −1 NkB
π2

2

kBT

εF
τvF∇rT vF � −k2

B T τ
v2

F

εF

N

V
∇rT � −k2

B T τ

me

N

V
∇rT,

(5.61)
where we use the relation εF = mev2

F/2, and we drop factors of order unity. The
expression (5.61) for the heat current is compatible with a thermal conductivity21

K � k2
B T τ

me

N

V
. (5.62)

By comparing σ and K in Eqs. (5.60) and (5.62) we predict a ratio

21 The underlying linear-response relation is jE = −K ∇rT .

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.60 Heat transport is associated to electrons moving out from the hotter (right) region carrying
(on average) higher energy than those coming from the cooler (left) region. At a given point r in
the metal, the distribution of k states has therefore a slight asymmetry (strongly exaggerated in this
cartoon) in the direction of ∇rT

K

σ
= π2

3

k2
B

q2
e

T (5.63)

between thermal and electric conductivities according to the relaxation-time model
considered. A careful analysis of the factors of order unity previously ignored yields
the factor π2/3 in Eq. (5.62). This relation predicts that good electrical conductors
are also good heat conductors. The empirical observation of this fact is known as the
Wiedmann-Franz law. Experimentally, for a broad range of metals and temperature,
the ratio K /σ follows Eq. (5.63) surprisingly well, given the model simplifications.
Indeed, measurements of the ratio K /(σ T ) normalized to the universal expression
π2k2

B/(3q2
e ), yield: 0.868 (Na, 273 K), 0.950 (Au, 273 K), 0.966 (Au, 373 K), 1.08

(Pb, 273 K), 1.04 (Pb, 373 K), indicating moderate deviations from Eq. (5.63).
Other transport experiments, both in the DC and AC regime can be interpreted in

terms of this simple relaxation-time model. An important class of measurements is
related to the Hall effect: an electric field arising perpendicular to a current running
through a sample immersed in a magnetic field Bext also perpendicular to the current.
The Hall field is generated by the charge accumulating on the conductor sides due
the Lorentz force of Eq. (5.55), as sketched in Fig. 5.61. The Lorentz force acting
on the carriers is independent of the sign of their charge. Therefore, the sign of the
charge buildup and of the ensuing transverse Hall field probes the sign of the charge
carriers. In most metals, the resulting Hall field is, as in Fig. 5.61, consistent with
negative charge carriers. Surprisingly however, a number of metals (e.g. beryllium
and cadmium) exhibit a reversed Hall field, as if their carriers had a positive charge!
This inversion is one of the most spectacular consequences of the deviations of the
crystalline bands from a simple free-electron parabola.

The main effect of the crystal periodic potential is to replace the free-electron
dispersion (a parabola whose curvature �

2/me is fixed by the electron mass) with
nontrivial bands. As illustrated in Fig. 5.56, electrons in a crystal band accelerate at
a different rate compared to free electrons, due to nontrivial local band curvature.
According to Eqs. (5.54) and (5.55),
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Fig. 5.61 A scheme of Hall’s experiment: the Lorentz force deflects the charge carriers moving in
a conductor immersed in a perpendicular magnetic field. This deflecting force Fy pushes carriers
toward the sample front surface regardless of the sign of the charge carriers. In the steady state, the
charge accumulated at the surface generates a transverse electric field Ey that balances the Lorentz
force, and whose sign reflects the sign of the charge carriers: the scheme depicts the sign appropriate
for electrons (Inspired by Fig. 1.3 of Ref. [10])

d2

dt2 r = d

dt
v j (k)

= [∇kv j (k)
] · dk

dt
= 1

�2

∑

uw

êu

[
∂2Ek j

∂ku∂kw

]
d(�kw)

dt
=
∑

uw

êu(m∗)−1
uw Fw,

(5.64)

where ê1 = x̂, ê2 = ŷ, ê3 = ẑ indicate the Cartesian versors, and F = −qe(E +
v j × Bext) represents the total external force acting on the electron. The final form
of Eq. (5.64) expresses a sort of Newton equation, with an inverse mass tensor of
components

(m∗)−1
uv = 1

�2

∂2Ek j

∂ku∂kv
, (5.65)

describing the band curvature. As the electrons active in transport are those near the
Fermi energy, this curvature is to be evaluated at some k point at the Fermi sur-
face. |m∗| replaces the free-electron mass in Eqs. (5.60) and (5.62), thus accounting
for the actual value of the acceleration of electrons close to the Fermi energy in a
crystal-potential band. In 1D m∗ is proportional to the inverse of the band curva-
ture, Fig. 5.56c. In 3D, the effective mass m∗ is a suitable average over the tensor
components (m∗)uv, and may differ substantially from the free-electron mass me.
In particular m∗ turns out larger than me for narrow flat bands, characterized by
a weak curvature, such as 3d bands of transition metals or 4f bands of rare-earth
metals. According to Eqs. (5.60) and (5.62), a larger mass leads to smaller conduc-
tivity because, in between two collisions, external fields can accelerate heavier band
electrons less than free electrons. Note however that the carrier mass drops out in
the ratio K /σ of Eq. (5.63): the Wiedmann-Franz law should and does hold roughly
independently of m∗.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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Importantly, negative effective masses occur whenever the Fermi level sits in a
region where the band curves downward (e.g. close to the BZ boundary of Fig. 5.57a).
An electron of negative m∗ accelerates in a direction opposite to the applied force: as
its charge (−qe) is negative, it accelerates in the same direction as the external electric
field. A negative-m∗ electron behaves therefore in all ways as a particle of positive
charge (+qe) and positive mass |m∗|, called a hole. Holes carry electric current in
the same direction as the applied field (like genuine electrons), but produce reversed
Hall effect, because they behave as positive carriers. Thus, a negative effective mass,
i.e. hole conduction, explains the reversed Hall field of several metals.

5.2.2.2 Semiconductors

Semiconductors are insulators characterized by a ≈1 eV gap between the valence
and conduction bands. For example, Fig. 5.62 sketches the bands of solid Si and
Ge, semiconductors sharing the same crystal structure as C diamond but with larger
lattice spacing a. In these elemental semiconductors, the Fermi energy sits inside the
bandgap between a full sp3 bonding-type band and an empty sp3 antibonding-type
band. Note that the possibility of this band “splitting” is directly connected to the
diamond crystal structure, and would not occur in a hypothetical simple-cubic or fcc

a
C Si Ge

1s

2s

2p

atomic
levels

Fig. 5.62 Qualitative lattice-parameter dependence of the band energies for the IVB group solids,
those with the diamond structure. The narrow separate s and p bands at unphysically large a expand
and evolve into a hybrid sp3 band as a is reduced. Eventually this hybrid band splits into a filled
“bonding” and an empty “antibonding” band (similar to the bonding and antibonding states of CH4).
These bands move apart as the crystal shrinks (aGe > aSi > aC). This electronic structure leads
to the bandgap ordering ΔGe < ΔSi < ΔC, and to the uncommon bandgap increase under applied
external pressure (and decrease with thermal expansion)
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Fig. 5.63 Direct versus
indirect gap in insulators and
semiconductors. A direct gap
can be probed
spectroscopically by “direct”
optical absorption. In
contrast, absorption through
an indirect gap instead must
be assisted by some phonon
absorption/emission in order
to grant the wave-number
conservation in the process
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Si/Ge; precisely this bandgap yields a large cohesive stability to the rarefied diamond
structure of those solids where the number of electrons matches the capacity of the
bonding-type band.22 Semiconductors of type III–V (e.g. GaAs) and some II–VI (e.g.
BeSe) crystallize in a similar crystal structure, namely the zincblend structure, with
two different chemical species occupying the two geometrically inequivalent sites of
the unit cell of the diamond structure (Fig. 5.25). Different structures are observed
in other semiconductors. Due to structural and chemical differences, the bands of
individual compounds are qualitatively and quantitatively different. In particular,
the gap Δ = Ec − Ev between the top of the valence band and the bottom of the
conduction band can be either direct (same k for the minimum Ec of Ek c and for the
maximum Ev of Ek v, as in GaAs and InP) or indirect (when these two extrema occur
at different k points, as in Si, Ge, GaP), see Fig. 5.63.

Transport in a pure (intrinsic) semiconductor is dominated by the thermal exci-
tation of electrons from the valence into the conduction band. The average number
density of such electrons is

Nc = [nc]
V

= 1

V

∞∫

Ec

g(E ) [nE ]F dE = 1

V

∞∫

Ec

g(E )
1

eβ(E−μ) + 1
dE , (5.66)

where g(E ) is the density of band states, of the type sketched in Fig. 5.64. The
chemical potential lies somewhere in the gap between conduction and valence band

22 Elements with different electron numbers, e.g. solid Na, Mg and Al, realize an energetically
more stable configuration in more compact crystal structures (bcc, hexagonal, and fcc respectively),
because their electrons are too few to fill completely the bonding-type band of a hypothetical
diamond structure.
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Fig. 5.65 At low temperature, in an intrinsic semiconductor characterized by an energy gap Δ =
Ec − Ev, the chemical potential μ lies near the mid-gap energy (Ec + Ev)/2. The energy distances
of μ to the edges of both conduction and valence band are much larger than kBT . Accordingly, the
electron occupation of individual conduction band states [nEc ]F is very small and that of valence
states [nEv ]F is very close to unity

(at low temperature close to the mid-gap energy), thus several times kBT below the
conduction-band bottom Ec (see Fig. 5.65). It is therefore usually a good approxi-
mation to neglect the 1 at the denominator of [nE ]F , and take (eβ(E−μ) + 1)−1 �
e−β(E−μ) = e−β(Ec−μ) e−β(E−Ec). The first exponential is the same for all states in
the band: it reflects the exponential suppression of the electron occupation of the
conduction band due to its distance from μ. The second factor is the standard Boltz-
mann occupation of a high-temperature ideal gas, as in Eq. (4.10): fermion statistics
has little or no effect in such an extremely rarefied electron gas. The energies E can

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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be estimated by expanding the conduction band around its minimum23

E = Ek c = Ec + 1

2

∑

uw

∂2Ek c

∂ku∂kw

∣∣∣∣
kmin

(ku − kmin
u )(kw − kmin

w ) + · · ·

� Ec + �
2

2m∗
c
|k − kmin|2 + · · ·

The approximate excitation energy E = (E − Ec) in the second exponential takes
the form of the kinetic energy of a free particle of mass m∗

c , once the wave numbers
are referred to kmin. Accordingly, the density of conduction states (excluding spin)
goes as gtr(E) = m∗

c
3/2V/(

√
2π2

�
3) E 1/2 [see Eq. (4.48)]. The calculation of the E

integration in Eq. (5.66) is then identical to the calculation of the classical partition
function Z1 tr = V/Λ3

c of Eq. (4.42). In detail, we obtain

Nc = e−β(Ec−μ)

V

∞∫

Ec

g(E )e−β(E−Ec) dE � e−β(Ec−μ)

V

∞∫

0

gs gtr(E) e−βE d E

� gs
e−β(Ec−μ)

V
Z1 tr = 2

e−β(Ec−μ)

Λ3
c

= 2 e−β(Ec−μ)

(
m∗

ckBT

2π�2

)3/2

, (5.67)

where the factor gs = 2 reflects the spin degeneracy.24

The thermal length

Λc =
√

2π�2

m∗
ckBT

� 6 nm,

at T = 300 K and taking m∗
c � 0.5 me. The exponential factor, for μ sitting at the

middle of a 1.1 eV gap (i.e. Ec − μ = 0.55 eV), is of the order eβ(μ−Ec) ≈ e−21 �
6 × 10−10. This yields about Nc ≈ 5 × 1015 m−3, a modest charge-carrier density

23 For energies high above the band minimum Ek c, the quadratic expansion is inaccurate, but the
statistical occupation factor suppresses the contribution of the higher-energy states anyway.
24 A very similar result is obtained for the number of holes in the valence band:

Pv = 1

V

Ev∫

−∞
g(E )(1 − [nE ]F ) dE � eβ(Ev−μ) 2

Λ3
v

= 2 eβ(Ev−μ)

(
m∗

v kBT

2π�2

)3/2

.

The requirement of charge neutrality, Pv = Nc, fixes the position of the chemical potential:
eβ(Ev−μ) m∗

v
3/2 = eβ(μ−Ec) m∗

c
3/2, where we simplified common factors. By taking the logarithm

of both sides we obtain

μ = 1

2
(Ev + Ec) + 3

4
kBT ln

m∗
v

m∗
c
,

which confirms that at T = 0 the chemical potential sits at the middle of the gap, and when T is
raised it drifts slowly toward the band with the smaller effective mass, to compensate for the smaller
density of states.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.66 The measured
resistivity of antimony-doped
germanium as a function of
inverse temperature for
increasing donor-impurity
concentration, from
5.3 × 1020 m−3 (i.e. 0.012
part per million atoms) to
9.5 × 1023 m−3 (i.e. 21 part
per million atoms) (Data
from Ref. [40])
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compared to that of regular metals (≈1028 m−3). Note however that this carrier den-
sity varies exponentially with T −1 (e.g. for the same conditions, Nc ≈ 6×1020 m−3

at T = 600 K). If this dependence is plugged into the expression (5.60) for con-
ductivity in the presence of collisions, one expects a rather poor room-temperature
conductivity, which is rapidly increasing with the exponential of T −1, with slowly
varying corrections due to (i) drifts of μ, (ii) the Λ−3

c ∝ T 3/2 term in Eq. (5.67), and
(iii) a decreasing τ due to the increasing collision rate with phonons. Indeed, intrin-
sic semiconductors (square points in Fig. 5.66) exhibit a room-temperature resistivity
many orders of magnitude larger than in metals (Table 5.2). The drastic temperature
dependence (approximately exponential in T −1) of resistivity makes pure semicon-
ductors quite sensitive temperature sensors, especially at in the few-K range where
the resistivity of metals is almost temperature-independent—see Fig. 5.59.

In practice, semiconductors find important applications mainly as “doped” crys-
tals, called extrinsic semiconductors. Doping is realized typically by substitutional
impurities replacing a few of the perfect-crystal atoms, as sketched in Fig. 5.67. Pen-
tavalent impurities, such as P or As replace Si/Ge atoms at the regular lattice sites,
thus formally establishing four chemical bonds. In other terms, the crystal bands are
not much deformed by the impurities. However a pentavalent atom carries one extra
positive nuclear charge, thus forming a potential well which tends to attract one extra
electron. This well produces a characteristic localized “impurity” state, associated to
an energy level inside the band gap. At zero temperature, the extra electron carried
by the pentavalent atom occupies this impurity state.
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Fig. 5.67 Substitutional atoms of group III or group V replace a few Si or Ge atoms of the pure
semiconductor (a), producing extrinsic semiconductors of p type (b) or n type (c) respectively. The
square lattice is just a convenient pictorial for the actual diamond structure

Fig. 5.68 Localized donor
and acceptor levels are very
shallow. They are usually
located within few tens meV
of the conduction-band
minimum and valence-band
maximum respectively.
Room temperature is hot
enough to excite carriers
from these localized states to
the delocalized band states

The main feature of the impurity states of pentavalent dopants (donors) is their
close vicinity to the conduction band (Fig. 5.68). Due to screening, the extra electron
is bound to the impurity ion very weakly. The electron binding to the impurity can be
roughly described as a particle of charge −qe and mass m∗

c attracted to the impurity
nucleus by the screened Coulomb potential of the impurity ion �qe/(4πε0ε r), where
ε is the static dielectric constant of the pure semiconductor (ε � 12 for Si, ε � 16
for Ge). The bound-state energy levels of this 1-electron-atom-like model are given
by Eq. (2.10) with effective nuclear charge Z = ε−1 and effective mass μ = m∗

c . In
particular, the ground-state energy equals a suitably-rescaled Rydberg energy:

δE � m∗
c

me

1

ε2

EHa

2
. (5.68)

Typical values of m∗
c and ε lead to binding energies of the order 10−3 EHa � 30 meV.

Indeed, the separations δE = Ec − Ed of the P and As impurity levels from the
bottom of the conduction band of Si are observed 44 and 49 meV respectively (in
Ge, 12 and 13 meV respectively).

A trivalent impurity (acceptor) carries a localized excess negative charge, as long
as the conduction band is filled. The missing electron can be represented as a bound
hole, weakly attracted to the excess negative charge representing the impurity. In

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. 5.69 A cartoon temperature dependence of the majority carrier density for n doping. The
high-temperature regime is dominated by intrinsic carriers. The intermediate “saturation” regime
of almost constant Nc � Nd is the temperature region where extrinsic carriers prevail and are
dissociated from their impurities. The low-temperature decrease of Nc is due to “freezing” of the
extrinsic carriers, which at absolute zero would all end up “captured” by the localized impurity
states

the electron picture this bound hole will manifested itself as an additional electronic
level Ea slightly above the top of the valence band. The hole is bound when this level
is empty, as at T = 0. When an electron is promoted from the valence band into this
localized level, paying a small energy Ea − Ev, the excess charge of the impurity is
removed, and an unbound hole is left in the valence band.

Impurity states are localized and do not contribute to transport. At T = 0, a
homogeneous doped semiconductor is an insulator, with the Fermi level sitting near
either Ea or Ed , according to whether the density Na of acceptors or that Nd of donors
is larger (p/n doping respectively). As temperature is raised from 0, the bound charges
get rapidly unbound into the band levels, mostly in the valence band, if Na > Nd

(p doping), or in the conduction band, if Nd > Na (n doping). Due to the small
binding energy of the impurity levels compared to the band gap, it is far easier to
thermally excite an electron into the conduction band from a donor level, or a hole
into the valence band from an acceptor level, than it is to excite an electron across the
entire gap Δ from valence to conduction band. At room temperature, the probability
that an electron unbinds from the impurity levels is high. The chemical potential
moves toward the middle of the gap, but (for temperature not too high) it remains
closer to the valence (p doping) or conduction (n doping) band. This leads to a
significant concentration of carriers, which dominates over the intrinsic carriers over
a broad temperature range. In this “saturation” regime the density of majority carriers
(holes for p doping, electrons for n doping) changes slowly and approximates the net
concentration of impurities,25 as in Fig. 5.69. This carrier concentration, plugged into

25 For n doping an electron density Nc � Nd − Na . For p doping a hole density Pv � Na − Nd .
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Eq. (5.60), is compatible with the doping and temperature dependence of resistivity
shown in Fig. 5.66. In the saturation regime, doped semiconductors conduct like poor
metals. In particular, p-doped semiconductors exhibit reversed Hall field, indicating
hole conduction. The carrier population in the minority band (conduction for p doping
and valence for n doping) is extremely small (but increases rapidly with temperature).

Doped semiconductors deliver an immense range of applications mostly as inho-
mogeneous systems, i.e. crystals where the impurity concentrations vary in space.
Advanced techniques allow industries and labs to tailor the doping level over a sub-
μm scale, across crystals of lateral size exceeding several centimeters. This technol-
ogy is at the basis of the modern electronics industry, where semiconductor devices
act as “active” components which permit the manipulation (e.g. amplification or
shaping) of electric signals. Countless other applications of inhomogeneous semi-
conductor include sensors, light production, electronic data manipulation… Since the
1950s, semiconductor devices have been a leading area of research and development,
a common playground of fundamental QM, solid-state physics, materials science,
industrial engineering, and electronics. Specific courses delve in this vast field. Here
we only sketch the principle of functioning of the simplest inhomogeneous extrinsic
semiconductor: the p-n junction.

Consider a piece of semiconductor with ideal step-like p-n dopant densities

Na(x) =
{

Na, x < 0
0, x > 0

Nd(x) =
{

0, x < 0
Nd , x > 0

, (5.69)

as a function of some displacement x across the sample. This is what one could
conceptually (not practically) construct by assembling a p-doped and a n-doped
piece of semiconductor. As required by thermodynamic equilibrium, the chemical
potential in the two separate sections of the semiconductor, initially significantly
different, must become the same after this contact is realized. Starting with each
portion in a homogeneous neutral situation, the equilibration of the chemical potential
is realized by the diffusion of electrons from the n side (where their concentration
is higher) into the p side (where their concentration is smaller), and of holes in the
opposite direction, like when a wall separating oxygen and nitrogen is removed from
the middle of a vessel and the two gases mix. As diffusion continues, the resulting
charge transfer builds up an electric field opposing further diffusive currents until
a steady configuration is reached, when the electric force on the charge carriers
balances the effect of diffusion.

It is possible to describe the electric field Ex = −dφ/dx and the local densities
of electrons and holes via coupled Maxwell equations and Eqs. (5.54) and (5.55)
for the carriers. However, here we adopt a simpler qualitative approach. Because
the carriers are highly mobile, in the equilibrium configuration the carrier densities
are very low wherever Ex has an appreciable value, see Fig. 5.70b. The resulting
depletion layer is typically of 10–103 nm thick, depending mainly on the dopant
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Fig. 5.70 a A sharp p-n junction at thermodynamic equilibrium (no voltage bias). b The quali-
tative profile of the hole density Pv(x) (left) and electron density Nc(x) (right). These quantities
approach rapidly the bulk values Pv(x � 0) � Na , Nc(x  0) � Nd that guarantee charge
neutrality far away from the junction. In the region near the junction, both carrier concentrations
are strongly suppressed: hence the name depletion region. c The total electric charge density ρ(x):
the uncompensated densities Na and Nd of acceptors and donors dominate a double layer, leaving
a net negative charge at the p side of the junction and a net positive charge at its n side. d This
double layer of charge produces a leftward electric field Ex (x), which sweeps the carriers away,
maintaining the depletion. e The electric potential φ(x) consistent with Ex (x)

concentrations and the dielectric constant of the semiconductor. The impurity-ion
charges remain uncompensated in the depletion layer, thus producing the electric
charge-density profile illustrated in Fig. 5.70c. The double layer of charge generates
the electric field sketched in Fig. 5.70d. This field corresponds to a finite potential
drop (Fig. 5.70e), which compensates the different chemical potential in the bulk, far
away from the junction:

qeΔφ0 = qe[φ(+∞) − φ(−∞)] = μn − μp, (5.70)
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Fig. 5.71 The energy barrier −qeφ(x) encountered by negatively-charged electrons, as a function
of the displacement x across the p-n junction. a At equilibrium, in the absence of external bias.
b In the presence of forward bias (V > 0). c In the presence of reverse bias (V < 0). Carrier
currents are indicated: note that generation currents are largely independent of bias

where μp/n indicate the chemical potential in the isolated bulk p or n semiconductors,
prior to the construction of the junction. This potential difference shifts rigidly the
bands (and impurity levels) away from the junction, as illustrated in Fig. 5.71a. When
metal electrodes are deposited on both sides of the junction and joined by a wire,
at thermodynamic equilibrium the chemical potential aligns everywhere inside the
circuit to a common value, and no net current flows in the circuit, as the individual
potential drops at the interfaces cancel algebraically.

At the p-n junction the net current vanishes due to the cancellation of four contri-
butions:

• At the p side of the depletion layer a few “minority” electrons appear by thermal
excitation out of the valence band: these are immediately “swept” by the strong
electric field, and expelled to the n side (Fig. 5.71a). This electron generation cur-
rent J gen

e depends exponentially on temperature, but only weakly on the potential
drop and the size of the depletion region.

• Few (majority) electrons at the n side of the junction acquire enough thermal energy
to overcome the potential barrier to the p side. Once in the p region, these electrons
turn into minority carriers and are likely to recombine with (majority) holes in the
valence band: the corresponding current is therefore called recombination current
J rec

e .
• Similarly, a hole generation current J gen

h sweeps thermal holes from the n to the p
side, and a hole recombination current J rec

h accounts for thermally excited holes
diffusing into the n side.

At equilibrium these currents cancel in pairs (J gen
e = J rec

e , and J gen
h = J rec

h ) and no
net current flows through the junction.26

The external shorting wire can be cut and a voltage generator inserted, to alter the
electric potential drop across the semiconductor by a tunable potential V , with the

26 The four quantities J rec/gen
e/h are defined as the (positive) norm of the corresponding number

current-density vectors, and are measured in units of s−1 m−2.
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Fig. 5.72 a Circuit scheme for measuring the I − V characteristics of a p-n junction. The sign
convention has forward bias V > 0 increasing the electric potential at the p side and producing a
fast-rising current I > 0; V < 0 (reverse bias) sustains a tiny essentially V -independent reverse
current I < 0. The diode electronic symbol plus a packaged silicon diode are also depicted aside
the p-n junction. b The I − V characteristic according to Eq. (5.73)

sign convention of Fig. 5.72. The bulk p and n regions are fair (low-resistance) con-
ductors, thanks to their large carrier density (compared to the depletion layer). We can
therefore assume that practically all the potential drop induced by the external applied
field is realized over the depletion layer, as illustrated in Fig. 5.71. When V 	= 0 the
condition of thermodynamic equilibrium is violated and a net current density jx (thus
a current I ) is established through the junction. To understand semi-quantitatively
the I − V characteristic of the p-n junction, observe that the recombination currents
depend very strongly on the electric potential drop through the depletion layer: J rec

e
is proportional to the number of carriers acquiring sufficient energy to overcome the
potential barrier. This is now modified by V : J rec

e ∝ exp [−qe(Δφ0 − V )/(kBT )].
The equilibrium requirement at V = 0 (J rec

e = J gen
e ) and the fact that the generation

current is almost independent of V fixes the proportionality constant:

J rec
e = J gen

e e
qe V
kBT . (5.71)

The total current density carried by electrons is therefore

Je = J rec
e − J gen

e = J gen
e

(
e

qe V
kBT − 1

)
. (5.72)

A similar analysis, with a similar result, can be carried out for holes. Compared to
electrons, the hole currents J gen

h and J rec
h move in the opposite direction, but carry

positive charge, thus their contribution adds up to that of electrons, to give a total
electric current density

jx = qe
(
J gen

e + J gen
h

) (
e

qe V
kBT − 1

)
. (5.73)
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Fig. 5.73 Typical I − V characteristics of commercial silicon diodes: Vishay 1N4001–1N4007.
Observe deviations from the ideal behavior of Eq. (5.73): (i) The exponential current increase as a
function of forward bias V ends at about V = 0.8 V; above this bias the current is limited by the
series resistance of the homogeneous regions of the doped semiconductor. (ii) The reverse current
is significantly larger than predicted by Eq. (5.73) and keeps changing slowly with V instead of
remaining constant for −V > 4kBT/qe � 0.1 V. (iii) A reverse breakdown knee is observed as the
reverse voltage exceeds the rated peak reverse voltage (50–1000 V for this family of diodes). (From
the web site http://www.diotec-usa.com/; copyright 2010 by Diotec)

This I − V characteristic, illustrated in Fig. 5.72, is strongly asymmetric and non-
linear: basically the p-n junction operates as a rectifier, allowing electric current to
circulate in one direction only, similarly to the old vacuum diode based on thermionic
emission. For this reason, a two-terminal semiconductor device consisting of a single
p-n junction is named a diode. I − V curves very much like Eq. (5.73) are indeed
observed experimentally (Fig. 5.73). Deviations include a reverse breakdown regime
at large negative voltage, and resistive current limitation at large positive voltage.

Carefully tailored commercial p-n junctions are built for all sorts of applications.
They include: the light emitting diode (LED, where forward electrical bias causes
the two species of charge carrier—holes and electrons—to be “injected” into the
depletion region, where their spontaneous recombination generates visible or IR
light depending on the semiconductor gap), the laser diode (like a LED plus an
optical cavity surrounding the p-n junction to enhance stimulated emission), the
photo-voltaic cell (the reverse of a LED: light induces extra electron-hole pairs in
the depletion layer, and these carriers drift following the local field and reduce the
junction electric potential drop from its equilibrium value Δφ0, thus inducing a
current in an external circuit, and converting radiation into electric power).

Beside 2-terminal devices, semiconductor single crystals are doped to form several
p-n junctions. The simplest 3-terminal device is the bipolar transistor, a two-junctions
sandwich, where the voltage (and a small current) across one junction controls the
(potentially large) current through the second junction, thus providing amplification.
Amplification is also realized by the constructively different field-emission transistor
(FET). Diodes, transistors, and other semiconductor electronic components provide
the ability to manipulate electronic signals. These components (often thousands or

http://www.diotec-usa.com/
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even millions of them) are routinely integrated into large semiconductor (usually
silicon) single crystals of ∼cm lateral size, to provide the complex functionality at
the core of modern microelectronics [41].

5.2.3 Spectra of Electrons in Solids

The experimental investigation of the electronic states in solids relies on several
techniques. Here we discuss briefly three basic ones: photoemission, X-ray absorp-
tion/emission, and optical absorption/reflectivity.

Figure 5.74 illustrates the conceptual setup of a photoemission experiment. The
kinetic-energy Ekin distribution I (Ekin) of the photoemitted electrons measures the
density of occupied states of the material, with a rigid shift by the photon energy �ω.
The observed continuous spectrum probes the filled bands of the material, essentially
up to the chemical potential. Angle-integrated photoemission gives direct informa-
tion on the density of occupied band states g(E )[nE ]F , and on forbidden energy gaps,
as in Fig. 5.75. Moreover, in metals, photoemission in the region E � μ probes the
Fermi edge, i.e. the step-like drop of [nE ]F close to μ. Angle-resolved photoemis-
sion provides further information about the k-dependence of the band energy Ek j .
A possible source of systematic error in photoemission is the charge buildup in insu-

I
MONOCHROMATIC

Ekin

Ekin

ELECTRON

E kin

DETECTOR

μ
W

electrons
ωh

ωh

ωhvacuum

SAMPLE

Fig. 5.74 The scheme and interpretation of a photoemission experiment. An electron initially in a
band state of the solid absorbs a photon and acquires its energy �ω. If the energy of the resulting final
state is sufficient, the electron can move out of the solid into the surrounding vacuum. The detector
measures the kinetic energy Ekin = E + �ω distribution I (Ekin) of the photoemitted electrons thus
mapping the density of occupied states of the sample, up to the Fermi energy



5.2 Electrons in Crystals 223

Fig. 5.75 The observed
photoemission spectrum of a
gold film. “Binding energy”
should indicate
E = (�ω − Ekin), as in the
left scale of Fig. 4.13.
However, as is common
practice, here the scale zero
is shifted to the Fermi level,
rather than at the vacuum
level. The weak intensity
between 0 and 1.5 eV
represents the broad metallic
(mainly 6s) band; the intense
structures in the 2–7 eV
range are associated to the
narrow 5d bands 0 2 4 6
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lating samples caused by electron removal and producing a macroscopic electric field
outside the sample. Further factors limiting the quality of the spectra are: secondary
collisions of the emitted electron while still inside the solid, and the short penetration
of visible/UV light in metals. Both these effects make photoemission more sensitive
to surface layers than to the solid bulk.

These difficulties are circumvented by X-ray spectroscopies. Resonant X-ray
absorption, in particular, excites core electrons into the empty bands states, thus
probing their density of states g(E )(1 − [nE ]F ), see Figs. 5.76 and 5.77a.27 X-ray
emission, instead, probes the density of filled band states g(E )[nE ]F , whence elec-

Fig. 5.76 An elementary
interpretation of X-ray
absorption and emission
spectra

2s

1s

absorption emission

F

27 The interpretation of these spectra is complicated by the presence of the core hole, which acts
as a localized extra charge and distorts the bands as if an impurity was located at that site.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.77 a Points the X-ray absorption spectrum of cubic boron nitride (BN) at the B 1s edge,
probing the empty band levels of this material. Continuous curves model calculations which interpret
the experimental data. Reprinted figure with permission from A.L. Ankudinov, B. Ravel, J.J. Rehr,
and S.D. Conradson, Phys. Rev. B 58, 7565 (1998). Copyright (1998) by the American Physical
Society. b The 4d→2p3/2 and 3p→2s emission spectra of Pt excited at respectively 11,610 eV
(dotted) and 14,010 eV (connected points), probing the density of occupied states [42]. Reprinted
figure with permission from F.M.F. de Groot, M.H. Krisch, and J. Vogel, Phys. Rev. B 66, 195112
(2002). Copyright (2002) by the American Physical Society

trons can decay to fill a core hole previously generated (Fig. 5.77b). The main disad-
vantage of core spectroscopies is the severe limitation in energy resolution imposed
by the broad short-lived core-hole states (Sects. 1.2 and 2.2.7).

Optical excitations are usually probed by means of optical reflectivity, rather than
absorption, since solids are often too opaque to transmit significant visible or UV
radiation across any practical sample thickness, see Fig. 5.78. Both reflectivity and
absorption are related to the material’s complex dielectric function ε(ω), that accounts
for both the change of speed of radiation and the energy transferred from the radiation
field to the material. At low frequency, the reflectivity of metals approaches 100 %
due to intra-band electron excitations, see Fig. 5.78.28 At larger energy, of the order of
few to several eV, inter-band transitions dominate. Different colors of different metals
(Cu, Ag, Au, Fe) indicate different spectral reflectivities, which can be understood
in terms of their different band structures.

Inter-band transitions conserve energy and momentum (thus wave number):

28 In the limit of extremely small photon energy (long wavelength), the DC regime is approached,
where a good metal “short circuits” the electric-field component of radiation, thus efficiently sup-
pressing it inside the material, and reflecting it outside. Note that reflectivity is defined for an infi-
nitely thick metal layer. Note also that the absorption coefficient α decreases slowly as ω decreases
down into the radio-wave region. As a consequence of these two observation, in practice radio-waves
are not 100 % reflected, but partly penetrate through a sufficiently thin metal layer, of thickness not
exceeding a few times α−1. This is the reason why one can operate a cell phone e.g. inside a metallic
elevator cab.

http://link.aps.org/abstract/PRB/v58/p7565
http://link.aps.org/abstract/PRB/v58/p7565
http://link.aps.org/abstract/PRB/v66/p195112
http://link.aps.org/abstract/PRB/v66/p195112
http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_2


5.2 Electrons in Crystals 225

0.0 5.0×10
15

1.0×10
16

1.5×10
16

photon frequency ω   [rad/s]

0

0.1

0.2

α  
 [

nm
-1

]

0

0.5

1

no
rm

al
 r

ef
le

ct
iv

ity
 R

0 2 4 6 8 10

photon energy [eV]

0

0.5

1
Fe

Si

Fig. 5.78 The reflectivity R at normal incidence and the absorption coefficient α of a metal (iron)
and a semiconductor (silicon) at room temperature, for electromagnetic radiation around the optical
region. In the static (ω → 0) limit, the reflectivity R of metals approaches unity, as characteristic of
intra-band transitions. In the same limit, the reflectivity of semiconductors and insulator approaches
a constant value connected to their static dielectric permittivity by R = (ε

1/2−1)2/(ε
1/2+1)2 � 30 %

for Si, which has ε � 12. The wiggles in the visible-UV region originate from inter-band transitions.
In the far-UV and X-ray region both R and α decay smoothly toward 0, except for specific structures
at the core-shell energies, see Fig. 2.22 (Fe data from Ref. [43], Si data from Ref. [44])

�ω = Ek′ j ′ − Ek j , q = k′ − k, (5.74)

where �ω is the photon energy, q is the photon wave number and, as usual in a
crystal, the initial and final k and k′ are defined up to a reciprocal lattice vector G,
and can therefore be reported within the first BZ. Importantly, at optical wavelengths
λ ∼ 500 nm, the photon wave number |q| ≈ 107 m−1, while typical wave numbers
of electrons in a solid are of the order of the size of the first BZ, i.e. of the order
of the reciprocal lattice parameter, in the 109–1010 m−1 region. Therefore in the
conservation (5.74) the photon wave number q can be neglected, implying k′ � k.
In words, optical transitions are “vertical” in k space, as sketched in Fig. 5.79.29

Unlike metals, pure semiconductors and insulators have no intra-band excitations,
and are therefore basically transparent at low-frequency, with very weak absorption
up to photon energies at least as large as the gap Δ. In direct-gap semiconductors, the

29 In insulators and intrinsic semiconductors, the conduction electrons and valence holes induced
by photon absorption can carry current as if they were generated by high temperature or by doping:
this phenomenon, named photoconductivity, is exploited in light sensors.

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. 5.79 A sketch of the excitations probed in optical absorption/reflectivity experiments of crys-
talline solids. a A metal; b a direct-gap insulator. Transitions are vertical due to wave-vector con-
servation

absorption threshold measures the gap amplitude directly. However, when the gap
is indirect (see Fig. 5.63), the onset of vertical transitions occurs at an energy larger
than the actual gap. This difference is quite large for silicon, which has Δ � 1.17 eV
but little absorption before ∼3 eV, see Fig. 5.78. With the assistance of a phonon (of
much smaller energy than a typical electronic energy) providing the missing wave
vector, the smallest-energy nonvertical transition across the gap can then be observed
in an “indirect” way.30

This simplified picture relating optical properties to the electronic band
structure relies on the assumption that photoexcited electrons and holes behave
as independent (quasi-)particles propagating in the conduction and valence bands,
respectively. While this approximation may work in semiconductors, in wide-gap
insulators screening by the other electrons is small and the attraction between the
electron and the hole cannot be neglected. This electron-hole interaction can modify
strongly the optical absorption near and below the gap [12, 45], often creating bound
electron-hole pairs (“excitons”). This characteristic effect is viewed e.g. in the UV
spectrum of LiF, Fig. 5.80, which exhibits a prominent excitonic peak well below the
gap.

Impurities in otherwise perfect insulators provide localized states inside the gap:
transitions involving these impurity states often appear with strong intensity. For
example, perfect industrial grade Al2O3 (corundum) is transparent to visible light
(Δ ≈ 5 eV). However Al2O3 scatters characteristic red or blue light upon Cr or
Ti doping: in these doped forms Al2O3 is commonly called “ruby” or “sapphire”
respectively in the gemstone trade, see Fig. 5.10c, d.

30 The need to involve a phonon makes these transitions far less likely: for this reason, semiconductor
applications involving light detection/production/control (optoelectronics) usually prefer direct-gap
semiconductors.
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Fig. 5.80 Same as Fig. 5.78,
but for the wide-bandgap
insulator LiF. The intense
peak below the bandgap
width (dashed line) is
attributed to an excitonic
state, i.e. an electron-hole
bound state (Data from Ref.
[46])
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5.3 The Vibrations of Crystals

In Sect. 5.2 the atomic nuclei were assumed to sit quietly at their more or less ideal
crystalline equilibrium positions. This static-ion model is fine for describing many
properties of solids. However, several other observed properties including elasticity,
heat capacity, and heat transport depend on the vibrational dynamics and thermo-
dynamics of ions. The reader will note a similarity with the effects of the internal
motions of molecular gases—Sects. 3.3 and 4.3.1.2.

5.3.1 The Normal Modes of Vibration

Let us go back to the Eq. (3.9) for the motion of the nuclei. We assume that the
adiabatic potential Vad(R) of Eq. (3.10) has a single well-defined minimum.31 Like
we did for molecules in Eq. (3.20), we expand Vad(R) around its minimum RM,
recalling that the first-order term proportional to gradient of Vad(R) vanishes at RM
because the minimum is a stationary point:

31 For many materials, a unique absolute minimum RM of Vad(R) represents the perfect crystal.
However, the actual configuration of a solid often deviates substantially, as it remains trapped in a
defective configuration, represented by one of many deep local minima occurring in the configu-
rations space somewhere around RM. The thermal and quantum tunneling rate through the barrier
leading from the defective configuration to the perfect crystal is often negligible, and the defected
configuration is metastable. The vibrations around a moderately defective local minimum might
not differ too much from those around the crystalline absolute minimum.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3


228 5 Solids

Vad(R) = Vad(RM) + 1

2

∑

αβ

∂2Vad

∂ Rα∂ Rβ

∣∣∣∣
RM

uαuβ + O(u3), (5.75)

where the vector u of components uα = Rα−RM α collects the atomic displacements
away from the minimum

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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−

⎛
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.76)

The atomic nuclei are labeled j = 1, 2, . . . , Nn , with component ξ = x, y, z;
α stands collectively for j, ξ , and thus spans 3Nn values. Call Φ the 3Nn × 3Nn

(Hessian) matrix of second derivatives of Vad(R): the element Φαα′ = Φ jξ j ′ξ ′
in the second-order term of the expansion (5.75) amounts to minus the ξ -change
in the force acting on atom j due to a unit displacement of atom j ′ in direction
ξ ′. By neglecting all terms of third and higher order in u in Eq. (5.75) we obtain
the harmonic approximation. This approximation is meaningful to describe small
oscillations around equilibrium, thus it is usually appropriate for solids at low tem-
perature, but it is bound to fail e.g. when the solid is highly deformed, or near melting.

The Schrödinger equation (3.9) could be solved exactly for a quadratic multi-
dimensional potential. Unfortunately, this fully quantum approach involves some
mathematical intricacies. It is preferable to first solve the classical Newton-Hamilton
equations for the motion of the ions, and introduce QM as a later step. In vector form,
the 3Nn classical equations of motion for the u dynamical variables are:

Mn
d2u

dt2 = −∇u Vad(RM + u)

� −∇u

⎡

⎣Vad(RM) + 1

2

∑

α′β ′
Φα′β ′uα′uβ ′

⎤

⎦ = −1

2
∇u

∑

α′β ′
Φα′β ′uα′uβ ′ ,

(5.77)

(assume for simplicity all atoms of the same mass Mn). Equation (5.77) can be written
for a generic α-component of u, by noting that uα appears twice in the double sum,

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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as either uα′ or uβ ′ , thus leading to a single sum and canceling the factor 1/2:

Mn
d2uα

dt2 = −
∑

β

Φαβ uβ. (5.78)

We have obtained a set of 3Nn equations for 3Nn coupled harmonic oscillators.
Couplings are introduced by the off-diagonal matrix elements of Φ, i.e. by the forces
that the displacement of an atom produces on other atoms.

A normal mode is a periodic motion of all atoms oscillating at a single frequency.
To investigate normal modes, we substitute u = ūeiωt , where ū is a time-independent
still undetermined vector, and eventually the actual displacements are identified with
the real part of the complex solutions for u. By evaluating the time derivative, we
transform the differential equation (5.78) for u into the algebraic equation

Mnω
2ūα =

∑

β

Φαβ ūβ (5.79)

for ū, which can also be written as

∑

β

(
ω2δαβ − 1

Mn
Φαβ

)
ūβ = 0. (5.80)

This is the secular equation for the diagonalization of the matrix D = M−1
n Φ (the

so-called dynamical matrix). The eigenvalues are the values of ω2 which make
the determinant |ω2I − D| vanish. The eigenvector corresponding to each ω2 is
the nonzero (complex) vector ū satisfying Eq. (5.80). With its 3Nn components, ū
describes the relative amplitude and phase of the displacement of all the coordinates
of the Nn atoms. Different masses can be accounted for by a simple generalization
of the dynamical matrix.32

The present formalism is completely general: it applies equally well to the deter-
mination of the normal modes of either a polyatomic molecule (see e.g. Fig. 3.12),
or of a crystalline or amorphous solid. In each case, the calculation of the normal
frequencies and displacements requires the diagonalization of a 3Nn × 3Nn matrix.

For a crystal, we take advantage of the lattice symmetry to greatly simplify33

the diagonalization of D. Consider first the case of a single atom per unit cell. We
construct a wave-type ansatz for ū: the ξ component of the displacement of atom j
(sitting in the cell identified by lattice translation R) is ū jξ = eik·Rεξ . Here εξ is the
ξ = x , y, or z component of a still undetermined 3D vector. From Eq. (5.80), we
obtain the following equation for εξ :

32 In practice, replacing M−1
n with M−1/2

nj M−1/2

nj ′ in the expression for the dynamical matrix D.
33 This simplification is equivalent to the one which Bloch’s theorem provides to the description of
the electronic motions in a perfect crystal, Sect. 5.2.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
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(a)

(b)

Fig. 5.81 For a given wavelength (i.e. a given k), a string exhibits three normal modes of vibration.
a A longitudinal mode exhibits displacements parallel to k. b Two transverse modes with displace-
ments perpendicular to k; one is drawn, the second one vibrates orthogonally to the plane of the
figure

∑

ξ ′

[
ω2δξξ ′ − D̃ξξ ′(k)

]
εξ ′ = 0, (5.81)

where we exploit the lattice translational invariance of the dynamical matrix

D jξ j ′ξ ′ = D j ′′ξ j ′′′ξ ′ if R j − R j ′′ = R j ′ − R j ′′′ , (5.82)

to obtain its Fourier transform in reciprocal space:

D̃ξξ ′(k) =
∑

j

e−i(R j −R j ′ )·k D jξ j ′ξ ′ , (5.83)

which is independent of the choice of R j ′ . Equation (5.81) shows that the normal
modes of a monoatomic crystal are the result of the diagonalization of a 3 × 3 k-
dependent matrix. As a consequence, for each k point in the first BZ, 3 normal modes
and associated frequencies ωs(k) (labeled by an index s = 1, 2, 3) are obtained. The
number of k points in the BZ is precisely Nn , see Eq. (5.53): overall we retrieve
precisely 3Nn normal modes.

The example of the vibrations of a string, drawn in Fig. 5.81, suggests that for a
given k (here, a given wavelength), three oscillations are observed: one longitudinal
“compression-dilation” mode associated to displacements parallel to the string, plus
two transverse modes associated to perpendicular displacements. The same example
of the string suggests that for small k (long wavelength), the frequencies of all
three of these modes should be proportional to |k|. Likewise, for each k, the three
frequencies of vibration in 3D solids correspond to one (mainly) longitudinal and
two (mainly) transverse modes, with an “acoustic” behavior (ω � vs|k| at small
|k|, like sound waves in air). Like for the vibrating string three generally different
and k̂-dependent sound velocities vs, one for each acoustic branch are observed.
Figure 5.82 sketches this typical dispersion. The zero-frequency acoustic modes at
k = 0 are the “infinite-wavelength vibrations” representing the free x̂, ŷ, and ẑ rigid
translations of the solid.

If nd atoms occupy each crystal unit cell,34 the problem complicates slightly
because of the need to label the displacements of individual atoms within the cell: ξ

spans a total 3nd different values, rather than just 3 as for the monoatomic crystal.

34 So that the total number of atoms Nn = nd × Ncell, where Ncell is the number of cells in the
solid.
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Fig. 5.82 Typical phonon dispersion curves along a generic direction in k-space for a monoatomic
crystal (1-atom basis). The two lower curves track the frequencies of the mainly transverse modes,
the upper curve, the mainly longitudinal mode. The slopes of the three branches for |k| � 0 are
the three sound velocities vs. In some high-symmetry k-space direction the two transverse phonon
branches could be degenerate

The eigenvector components εξ to be determined are now 3nd . These eigenvectors
are the result of the diagonalization of a dynamical matrix D̃ of size 3nd × 3nd

(still enormously smaller than the original 3Nn × 3Nn problem). As a result, for
each k, we have 3nd modes. Three of these modes are analogous to the acoustic
modes of a monoatomic crystal, and represent deformation waves with all atoms
in each unit cell oscillating essentially in phase. The remaining (3nd − 3) modes
represent atomic vibrations leaving the cell center of mass immobile. These modes
could be visualized by analyzing the simple model problem of a linear chain with
springs of alternating strength connecting nearest-neighboring point masses. At all
k, the dispersion of these (3nd −3) optical modes remains characteristically far from
ω = 0, as illustrated in Fig. 5.83 for a crystal with nd = 2 atoms per cell.

In summary, the harmonic normal modes of a general crystal have frequencies
ωs(k), and are labeled by k plus an index s = 1, 2, . . . , 3nd identifying the dispersion
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Fig. 5.83 Typical phonon dispersion curves along a general direction in k-space for a crystal
structure with a nd = 2-ions basis. The three lower curves (acoustic branches) are approximately
linear in |k| for small |k|. The three upper curves (optical branches) become quite flat if intra-cell
interactions are much stronger than those between cells
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branch. The normal displacements form a basis for the classical dynamics of the
whole crystal: arbitrary atomic motions, e.g. wave packets, are linear superpositions
of the eigenvectors of D̃ multiplied by the appropriate eik·R factor. The coefficients
of the linear combination are fixed by the initial condition.

Now that the classical problem of normal modes is under control, recall that
the atomic positions are quantum degrees of freedom rather than classical ones.
They should therefore obey Schrödinger equation (3.9) rather than Newton equation
(5.77). Promote the normal-mode classical displacements back to quantum opera-
tors. Accordingly, replace the 3Nn classical oscillations with 3Nn quantum harmonic
oscillators. A basis state for the Hilbert space of the whole vibrating crystal is then
characterized by the number vks of excitations (phonons) of each oscillator [of fre-
quency ωs(k)]. In state |{vks}〉, the vibrational energy of the whole crystal, viewed
as a huge polyatomic molecule, Eq. (4.110), is

Evib({vks}) =
∑

ks

�ωs(k)

(
vks + 1

2

)
. (5.84)

Apart for a less trivial dispersion ωs(k) rather than simply ω(k) = c|k|, these
oscillations resemble closely the oscillations of the electromagnetic fields in a cavity,
whose thermodynamics we studied in Sect. 4.3.2.2. This close similarity suggested
the name phonons for the quanta of these crystal harmonic oscillators. The creation
of a phonon of given crystal wave vector k and branch s simply means raising
the quantum number vks of the oscillator (k, s) by one, thus increasing the total
vibrational energy by �ωs(k).

Phonon dispersions are investigated by means of several techniques, including
neutron inelastic scattering, ultrasound echo, Raman, and IR absorption. All these
techniques involve excitations or deexcitation of one or several phonon states. The
outcome of these experiments generally agrees with the sophisticated calculations
based on the evaluation and diagonalization of the dynamical matrix D. Figures 5.84
and 5.85 show examples of measured phonon dispersions of real materials. Optical
phonons often appear as absorption peaks in the IR spectrum of otherwise transpar-
ent insulators. This absorption is especially strong for ionic crystals, e.g. NaCl or
LiF (Fig. 5.86), where optical displacements are associated to a large electric-dipole
change.

5.3.2 Thermal Properties of Phonons

Phonons are essential to understand the thermal properties of solids. In particular, the
heat capacity of all solids is mainly associated to the crystal vibrations.35 By further
developing the analogy of photons and phonons, i.e. by applying the statistics of

35 With a few noteworthy exceptions: (i) in metallic solids, at very low temperature (typi-
cally few K) the tiny electronic contribution (Fig. 4.15) dominates over the phonon heat capacity;

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.84 Inelastic neutron scattering measurements of the phonon dispersion of crystalline (fcc)
Al, along two k-space lines: (100) and (110). Note that the two transverse branches T1 and T2
remain degenerate along the (100) line, but exhibit distinct frequencies along the (110)
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Fig. 5.85 a The observed phonon dispersion of silicon, measured by inelastic neutron (circles)
and by X-ray (solid line) scattering. Note the presence of both acoustical and optical branches, as
appropriate for a (diamond) structure with a basis of nd = 2 atoms per cell. The letters mark special
points in k-space, e.g. Γ is k = 0. Along high-symmetry paths (Γ -X and Γ -L) pairs of transverse
branches are degenerate, while this degeneracy is resolved along other directions. Reprinted figure
with permission from M. Holt, Z. Wu, H. Hong, P. Zschack, P. Jemian, J. Tischler, H. Chen, and
T.-C. Chiang, Phys. Rev. Lett. 83, 3317 (1999). Copyright (1999) by the American Physical Society.
b The scheme of the inelastic scattering event

the harmonic oscillator as in Eq. (4.62), the total internal energy of the harmonic
crystal is

(Footnote 35 continued)
(ii) occasionally, localized magnetic moments add a contribution which may become important at
low temperature.

http://link.aps.org/abstract/PRL/v83/p3317
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.86 Observed transmittance of IR radiation by a 200 nm-thick LiF film at room temperature.
Radiation impinges on the film at ∼30◦ from vertical. The electric field is parallel/perpendicular to
the plane of incidence for of P/S-polarized radiation, respectively. The peaks measure the frequen-
cies of the transverse and longitudinal optical phonons, at energy �ω � 50 meV and �ω � 100 meV
respectively. Momentum conservation [Eq. (5.74) and Fig. 5.85b] implies that IR radiation absorp-
tion probes the k � 0 region of the optical phonon branches (Data from Ref. [47])

Uvib = U0+
∑

k s

εk s[nεks ]B = U0+
∑

ks

εks

exp
(

εks
kBT

)
− 1

, with εks = �ωs(k).

(5.85)

U0 includes the zero-point energy
∑

ks �ωs(k)/2, which is a material-dependent con-
stant, irrelevant for thermodynamics. Using for each oscillator the result of Eq. (4.63),
the T -derivative of Uvib yields the heat capacity:

CV vib = kB

∑

ks

x2
ks exp(xks)

exp(xks) − 1
= kB

∑

ks

[
xks/2

sinh(xks/2)

]2

, with xks = �ωs(k)

kBT
.

(5.86)
Equations (5.85) and (5.86) depend on the detail of the phonon dispersions. In

practice however, experimentally crystals exhibit a fairly universal T -dependence of
the molar specific heat (once the T -linear electronic contributions of metals is sub-
tracted) illustrated in Fig. 5.87: a ∝ T 3 raise at low temperature (see also Fig. 4.15),
and stabilization to a constant �3NAkB (Dulong-Petit) limit at high temperature.

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.87 The measured molar heat capacity at constant volume for a few solids. At high temperature
(but limited by melting), CV vib approaches the universal 3NAkB � 24.9 J mol−1 K−1 Dulong-Petit
value
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Fig. 5.88 The Debye model approximates the phonon branches of a real solid with an effective
linear dispersion ω � v∗

s |k|. The sound velocity v∗
s is taken as a suitable average of the k → 0 slopes

of the three acoustic branches over all directions. The real phonon modes is replaced by integration
over a sphere of radius kD and multiplication by a factor 3 representing the three acoustic branches,
which are assumed degenerate. The wave-number cutoff kD is of the same order as the size of the
BZ, but it becomes significantly larger for a crystal structure with several atoms per cell, to account
for multiple optical branches

To capture this T dependency, a popular simplified model is usually adopted: the
Debye model. The details of the phonon dispersions are replaced by a fictitious linear
dispersion (Fig. 5.88) reproducing the minimal quantitative properties of the phonons
of the material under consideration:
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1. The average speed of sound v∗
s . This average slope of the acoustic branches close

to k = 0 is chosen such as to provide the correct factor Ξ in the low-energy
density of oscillator energies g(ε) = Ξε2.36 In this way the model fits the low-T
limit, where only low-energy oscillators are excited significantly.

2. The total number of vibrational modes must equal 3Nn , in order to guarantee the
correct high-temperature behavior, in accord with classical equipartition.

The latter point is implemented by replacing the sum over k and s in (5.85) by a sum
over k extended over a spherical region of radius kD (the Debye wave number) and a
factor gs = 3 representative of the three acoustic branches.37 The allowed k points
of a finite sample of Nn atoms in a L × L × L cube are k = 2π

L n [see Eqs. (4.38)
and (5.53)]. This observation allows us to determine the radius kD of the sphere of
allowed oscillators, as follows:

3Nn = gs

∑

|n|<nD

1 � gs

nD∫

0

n2dn = gs
4π

3
n3

D, (5.87)

whence nD = ( 3
4π

Nn
)1/3

, and thus kD = 2π
L nD =

(
6π2 Nn

V

)1/3

. This corresponds

to a Debye cutoff energy

εD = �ωD = �v∗
s kD = � v∗

s

(
6π2 Nn

V

)1/3

. (5.88)

As established in Eq. (4.114), the energy-density of states corresponding to a
dispersion ω = v∗

s |k| is quadratic in ε:

gs gph(ε) =
{

9Nn ε2/ε3
D for 0 ≤ ε ≤ εD

0 elsewhere
. (5.89)

With this approximate (Debye) density of oscillators, the internal energy Eq. (5.85)
becomes

Uvib = U0 +
εD∫

0

gs gph(ε)
ε

e
ε

kBT − 1
dε = U0 + 9Nn

ε3
D

εD∫

0

ε3

e
ε

kBT − 1
dε. (5.90)

As 9Nn/ε3
D = 3/2V/(π2

�
3v∗

s
3), Eq. (5.90) reproduces formally the expression

(4.115) for photons, except for (i) a factor gs = 3 rather than 2, (ii) the sound velocity

36 In view of the speed dependence in Eq. (4.114), v∗
s is obtained as the angular average of the

inverse cube of the three speeds of sound: 3v∗
s
−3 = ∫

(v−3
s1 + v−3

s2 + v−3
s3 )dΩk̂/(4π).

37 The eventuality of optical branches is effectively accounted for by the value of the cutoff kD,
which is fixed precisely by imposing that the total number of modes is 3Nn .

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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v∗
s in place of c, and (iii) the cutoff εD in the energy integration. Equation (5.90) is

rewritten conveniently as

Uvib = U0 + 9Nn
(kBT )4

ε3
D

ΘD
T∫

0

x3

ex − 1
dx = U0 + 9NnkB

T 4

Θ3
D

ΘD
T∫

0

x3

ex − 1
dx,

(5.91)

where, unsurprisingly, ΘD = εD/kB.
At low temperature T � ΘD, the integration end ΘD/T can be approximated

with infinity, and the resulting energy integral over the Planck distribution is the same
as in Eq. (4.115):

∫∞
0 x3/(ex − 1)dx = π4/15. In this limit, the internal energy is

therefore

Uvib(T � ΘD) � U0 + 9NnkB
T 4

Θ3
D

π4

15
= U0 + 3π4

5
NnkB

T 4

Θ3
D

. (5.92)

Derivation with respect to T yields a heat capacity

CV vib(T � ΘD) � 12π4

5
NnkB

(
T

ΘD

)3

, (5.93)

reproducing the experimental behavior at low temperature.
For large temperature, the ratio ΘD/T is small, and so is the variable x in

Eq. (5.91). The integrand function is then expanded as x3/(ex − 1) � x2. In this
limit, the integral in Eq. (5.91) yields approximately 1

3 (ΘD/T )3, thus the internal
energy is

Uvib(T  ΘD) � U0 + 9NnkB
T 4

Θ3
D

1

3

(
ΘD

T

)3

= U0 + 3NnkBT . (5.94)

This form matches the classical equipartition limit, corresponding to a heat capacity

CV vib(T  ΘD) � 3NnkB, (5.95)

reproducing the Dulong-Petit limit.
The general expression, accurate at arbitrary temperature, derives directly from

Eqs. (5.86) and (5.89):

CV vib(T ) = 9NnkB

(
T

ΘD

)3
ΘD
T∫

0

[
x2/2

sinh(x/2)

]2

dx . (5.96)

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. 5.89 The measured heat capacity (in units of R = kB NA) of five individual solids. Temperature
is rescaled by the Debye temperature ΘD of each material, so that all data follow the universal
(Debye) curve of Eq. (5.96) (solid line). For a better comparison, here CV vib data refer to Nn = NA
atoms in total: this represents 1 mole of Ag, Al, and C, but 0.5 mole of KCl (2 atoms per chemical
formula), and 0.2 mole of Al2O3 (5 atoms per formula) (Inspired by Fig. 13-9 of Ref. [3])

The Debye form (5.96) interpolates between the low- and high-temperature limits,
see Fig. 5.89. The T dependence of CV vib(T ) agrees closely with most experimen-
tal data of crystalline solids. This agreement on thermodynamics is striking, for a
model which gathers all the complications of the phonon dispersions in a single
parameter ΘD (or, equivalently, εD, or ωD) that can be determined purely through
the measurement of mechanical properties of the solid, see Eq. (5.88).

The success of the Debye model yields a central role to its one parameter, as
the energy scale characterizing the phonons of a crystal. Table 5.3 lists the Debye
temperature of a few examples of crystals. Values of ΘD range in the same scale as
the typical vibrational temperature Θvib of diatomic molecules (Sect. 4.3.1.2).

The Debye model exhibits the same general “quantum-unfreezing” behavior as
a single oscillator (Fig. 4.8). The main difference, the low-temperature CV vib ∝ T 3

dependence in the solid [rather than CV vib ∝ exp(−Θ/T )], is due to the presence of

Table 5.3 The Debye
temperature of a few
elemental solids

Element ΘD (K) Element ΘD (K)

Ag 225 Ge 366

Au 165 Na 159

C (diamond) 1,860 Ni 456

Cu 339 Pt 229

http://dx.doi.org/10.1007/978-3-319-14382-8_4
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Table 5.4 Compared analytic expressions for the low- and high-temperature heat capacity of several
thermodynamic systems relevant for the physics of matter

Thermodynamic system Low temperature High temperature

Ideal spin-s system NkB

(
gμB B
kBT

)2
exp

(
− gμB B

kBT

)
1
3 s(s + 1)N kB

(
gμB B
kBT

)2

Rotations of molecules 3NkB

(
�

2

I kBT

)2
exp

(
− �

2

I kBT

)
N kB

Vibrations of molecules NkB

(
�ω
kBT

)2
exp

(
− �ω

kBT

)
N kB

Vibrations of crystals 12π4

5 NkB

(
T

ΘD

)3
3N kB

Electromagnetic fields 4π2

15 V kB

(
kBT
�c

)3
(for any T )

Gas of ideal fermions π2

2 N kB
T
TF

3
2 N kB

a continuum of oscillators of arbitrarily low frequency: even at low temperature, all
oscillators with �ω < kBT remain quantum-unfrozen and contribute kB to CV vib.

It is instructive to compare the temperature dependence of the heat capacity of
the Debye model to that of other thermodynamic systems studied earlier on. In par-
ticular, the low- and high-T temperature dependences collected in Table 5.4 deserve
a thorough understanding.

5.3.3 Other Phonon Effects

In the absence of electronic mechanisms, phonons are the responsible of heat trans-
port in insulating solids. With arguments of the type employed for electronic heat
transport in Sect. 5.2.2.1, it is possible to evaluate heat conduction by phonons, and
to account quantitatively for the observational data [10, 11].

Macroscopic elastic properties of solids are directly related on the small-k region
of the acoustic phonon branches, i.e. on the sound velocities. Small sound veloci-
ties call for soft easily-deformable solids; large sound velocity are typical of rigid
materials.

Thermal expansion is also associated to atomic displacements. Harmonic phonons
however do not account for any expansion, because 〈vks |uks |vks〉 = 0 for any phonon
number vks , thus at any temperature [uks] = 0: a temperature raise only increases
the average amplitude of oscillation around the same fixed equilibrium separation.
Thermal expansion arises therefore entirely as a consequence of the anharmonicity
of the potential, i.e. of terms O(u3) and higher-order in Eq. (5.75), which are present
in real solids but are neglected in the harmonic theory of phonons.
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Finally, displacements of the atoms away from their ideal crystal positions associ-
ated to phonons affect structural determinations done by means of X-ray and neutron
diffraction experiments. For not too low T , the amplitude of the random thermal
atomic displacements [u2

α] ∝ T . These random movements leave the diffracted peak
positions unchanged, but remove some intensity from the peaks, and transfer it into
a diffuse background.

Problems

A � marks advanced problems.

5.1 In the approximation of free non-interacting electrons at temperature 0 K com-
pute the mean speed 〈|v|〉 of a conduction electron in solid aluminum, using the
fact that X-rays of wavelength λ = 100 pm are diffracted by its fcc structure at
a minimum angle 2θ = 24.7◦, and recalling that every Al atom contributes 3
electrons to the conduction band.

5.2 Solid titanium has a density 4,507 kg/m3. Sound waves propagate through tita-
nium at an average speed vs = 4.14 km/s. In the Debye approximation, deter-
mine the low-temperature molar heat capacity of the phonons of titanium,
specifically evaluating the parameters α and A which express its temperature
dependence in the relation Cv = ATα . Evaluate also the molar heat capacity at
a such a high temperature that the classical limit provides a good approxima-
tion for Cv. Finally, determine at what temperature the heat capacity reaches
1 % of its maximum value.
[Recall the relation connecting the Debye cutoff frequency to the average speed
of sound vs and the number density Nat/V of the atoms in the solid: ωD =
vs
(
6π2 Nat/V

)1/3
.]

5.3 For the energy of the conduction band of a hypothetical one-dimensional
cesium crystal, take the expression εk = −A − B cos(ka), where A = 2.9 eV,
B = 4.1 eV, k is the wave vector, and a = 125 pm. The expression for εk

is valid in an energy scale whose zero refers to an electron at rest far away
from solid. Determine the maximum wavelength of electromagnetic radiation
capable to produce electron photoemission from such a solid.

5.4 � Consider a one-dimensional crystal of lattice spacing a. Estimate the lowest-
energy band gap at the BZ boundary in the approximation of quasi-free elec-
trons (plane-waves basis), and assuming that the effective periodic potential
acting on the electron takes the form

V (x) = E

(
cos

2πx

a
+ 1

3
cos

6πx

a

)
,

where E = 6.8 eV. If each atom contributes two electrons, is the crystal a metal
or an insulator? Is it opaque or transparent for visible light?
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5.5 � Three different crystalline solids A, B and C have such structures that in
each of them 2 different atoms (total mass M1 + M2 = 120 atomic mass units)
occupy every primitive cell of the respective periodic lattice. A has simple-cubic
(sc) structure; B has face-centered cubic (fcc) structure; C has body-centered
cubic (bcc) structure. Neutrons of 10 meV kinetic energy diffract over powder
samples of A, B, and C, forming diffraction rings at several angles. For all three
samples the smallest diffracted angle is 2θ = 32.4◦. Evaluate the side a of the
conventional cubic cells for each one of the 3 solids, determine which solid has
the largest density, and the value of this density.

5.6 The vibrational molar heat capacity Cv of aluminum is 0.0239 J/(mol K) and
0.0804 J/(mol K) at temperatures 20 and 30 K respectively. Knowing that X-
rays of wavelength λ = 110 pm are diffracted by its fcc structure at a minimum
angle 2θ = 18.1◦, evaluate the mean speed of sound vs in this solid.
[Recall the relation connecting the Debye cutoff frequency to the speed of
sound vs and the number density Nat/V of the atoms in the solid: ωD =
vs
(
6π2 Nat/V

)1/3
.]

5.7 � Consider a bcc iron crystal. Focus on the phonons characterized by rigid
displacements of each atomic plane perpendicular to one of the main diag-
onals of the conventional cubic cell. Restrict further to the displacements
ui perpendicular to the planes themselves, i.e. longitudinal phonons in the
(111) direction. Assume an elastic interaction between near-neighbor planes,
i.e. a restoring force acting on each atom in the i th plane given by Fi =
C(ui+1 − ui ) + C(ui−1 − ui ), and indicate with a the equilibrium distance
between near-neighbor planes. Write the dispersion relation of such phonons,
and evaluate their maximum frequency, in the hypothesis that C = 65.6 N/m.

5.8 The phenomenon of Bloch oscillations expected in an ideal crystal could be
observed even in a real crystal, provided that the mean collision time τ of the
conduction electrons is long enough. Assuming that a uniform constant electric
field |E| = 1 V/m is applied to a sodium metal sample, estimate the minimum
value of τ for an electron to stand a chance to cross the entire BZ without
colliding. Assume for simplicity a one-dimensional monoatomic crystal of
lattice spacing 200 pm.

5.9 Compute the smallest nonzero Bragg diffraction angle θ observed in neutron
elastic-scattering experiments. The neutron kinetic energy is 22 meV. The sam-
ple is microcrystalline aluminum of face-centered cubic (fcc) structure, density
2,700 kg m−3, and atomic mass number A = 27.
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5.10 The following molar heat capacity of gallium arsenide (70Ga75As, density
ρ = 5,320 kg/m3) were measured:

T (K) CV (J K−1 mol−1)

1.0 8.33 × 10−5

2.0 6.67 × 10−4

3.0 2.25 × 10−3

Based on these data, evaluate the average sound velocity according to the Debye
model and extrapolate the molar heat capacity at T = 1,000 K.
[Recall the Debye-model expression for the vibrational internal energy per
atom in the Debye model:

U1 = 9kB
T 4

Θ3
D

ΘD/T∫

0

x3dx

ex − 1
and the result

∞∫

0

x3dx

ex − 1
= π4

15
.]



Appendix A
Conclusions and Outlook

The adiabatic approximation sketched in Sect. 3.1 is a central tool for understanding
the combined dynamics of electrons and nuclei. It works well in such contexts, as
close-shell molecules and wide-gap insulators, where an excitation gap “protects”
the electronic ground state against transitions induced by atomic motion.

Metals violate this adiabatic paradigm since both electrons and vibrations involve
arbitrarily small excitation energies. For this reason, even at low temperature, each
electron near the Fermi surface has a significant chance of colliding with some
phonon (Sect. 5.2.2.1): as a result, in contrast to the adiabatic assumption, the overall
electronic state of a metal changes all the time. Precisely the absence of a gap in
the electronic spectrum makes the neglect of nonadiabatic terms of Eq. (3.6) not
particularly well justified: the adiabatic approximation seems therefore rather ill-
grounded in metals. In fact, despite these difficulties, it still makes sense to apply the
adiabatic concepts to metals, since phonon scattering involves only a small fraction
of the electrons: those within meVs of the chemical potential. All other “deeper”
electrons remain “frozen” in their adiabatic state due to the forbidden (by Pauli’s
principle) “sea” of already occupied states sitting at near energies. This protection
is equivalent to an effective gap, of the order of the energy distance of these deeper
electrons to the chemical potential. This vast majority of (deeper) electrons is the
main responsible of the crystal cohesion, and thus of the existence of a fairly well-
defined adiabatic potential acting on the ions. It is precisely this adiabatic potential
that provides a stable crystal structure and phonons even for a metal. The frequent
collisions of Fermi-surface electrons with the vibrating crystal are then described as
electron-phonon coupling, associated to the nonadiabatic terms, and result in a rel-
atively weak perturbation to the adiabatic motion. Eventually however, the ground
state of over one third of the elemental metals, and of many metallic compounds
cannot be simply interpreted as an adiabatically separated state, but rather a super-
conducting state. While the material remains a solid (due to the cohesion produced
by its deeper electrons), in a superconductor a correlated motion of the phonons and
the Fermi-surface electrons yields peculiar collective thermodynamic and transport
properties, quite distinct from those of the ordinary resistive metallic state.
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Furthermore, in many materials, electron-electron correlations introduce new
physics beyond the independent-electron approximation. Magnetism, basically a
consequence of the same repulsion-induced correlations as Hund’s rules (Sect.
2.2.8.3) in atoms, is a macroscopic deviation from the band picture, where, strictly
speaking, it finds no place (see Fig. 5.53).

The present introductory course leaves out a number of important topics, includ-
ing the coexistence of different phases, order parameters, phase transitions, chemical
reactions, amorphous and nanostructured solids, the liquid, superfluid, and plasma
states of matter, and all sort of collective behavior which makes the study of the ther-
modynamics of matter fascinating. The account of experimental techniques is also
radically limited to a few providing the most fundamental and transparent datasets.
Readers are likely to encounter several other popular techniques in lab courses. A
solid understanding of the material in the present textbook should provide the reader
with the conceptual tools for understanding the investigated physical phenomena, and
estimating the resolution and the limits of several specific classes of experimental
techniques.

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Appendix B
Elements of Quantum Mechanics

We summarize here the main concepts and ingredients of QM needed to digest the
physics of matter in the present volume. The present level of treatment is quite basic
and compact, aiming at providing the minimal conceptual tools needed to understand
the physics of matter. Most subtle epistemologic implications1 and mathematical
derivations are omitted. This Appendix collects and organizes an absolute minimum
of QM concepts. A student in physics will probably enjoy the present textbook better
after taking a full semester course in QM, or reading substantial parts e.g. of one of
these textbooks: Refs. [5, 15–17].

B.1 Bras, Kets and Probability

In QM, a physical state is represented by a unit-norm vector—a ket |j〉 in Dirac nota-
tion [17]—in an abstract complex Hilbert space of vectors. The symbol j identifying
uniquely the quantum state stands for a full set of quantum numbers. A bra 〈q′| is the
linear operator which, given any state |j〉, yields its projection (or “overlap”) 〈q′|j〉
along the “direction” representing state |q′〉. This projection is a complex number.
The bra-ket application defines an inner product between vectors in the Hilbert space.
The special case 〈j|j〉 of the overlap of a vector with itself produces a real nonnega-
tive number, which represents the squared norm of the vector itself. When a vector
represents a physical state, its norm equals 1. As long as |j〉 is not the null vector,
it can be normalized by dividing it by its norm: |j〉/(〈j|j〉)1/2. The basic property of
kets in a Hilbert space is linearity: a|j〉 + a′|j′〉 is also a ket, for arbitrary complex

1 QM can be far from intuitive. Two great gurus of QM used to say: For those who are not shocked
when they first come across quantum theory cannot possibly have understood it. [Niels Bohr, quoted
in Heisenberg, Werner (1971). Physics and Beyond. New York: Harper and Row. pp. 206.]; I think
I can safely say that nobody understands quantum mechanics. [Richard Feynman, in The Character
of Physical Law (1965)].
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numbers a and a′. The transformation of a ket into a bra is antilinear, in the sense that
the bra associated to a|j〉 + a′|j′〉 is a∗〈j| + a′∗〈j′|, where a∗ indicates the complex
conjugate to a.

Any observable, i.e. any quantity which can be measured in a physical experiment,
is associated with a self-adjoint linear operator Q from the Hilbert space into itself.
The fact that Q brings the Hilbert space into itself means that for any ket |j〉, Q|j〉 is
a (generally unnormalized) ket too. The linearity of Q means simply that Q(a|j〉 +
a′|j′〉) = aQ|j〉 + a′Q|j′〉 for any complex numbers and kets involved. The adjoint
X† of a linear operator X is a generalization of the complex conjugation which
comes about when converting X|j〉 to the corresponding bra: X|j〉 → 〈j|X†. A self-
adjoint operator Q is such that Q† = Q. In practice the self-adjointness means that
〈j|Q|j′〉 = 〈j′|Q|j〉∗ for any |j〉 and |j′〉.

The values which may come up as the result of a single measurement of the
observable associated to Q are the eigenvalues of the operator Q, namely those special
numbers q′ such that Q|q′〉 = q′|q′〉. Due to the self-adjointness property of Q, its
eigenvalues are real quantities. Moreover, the set {|q′〉} of all possible eigenstates
of Q, is a complete set of orthogonal states. This means that any state in the Hilbert
space can be written as a linear combination |j〉 = ∑

q′ aq′ |q′〉. Assuming that all
|q′〉 are properly normalized (〈q′|q′〉 = 1), the coefficients in the linear combination
are aq′ = 〈q′|j〉.

These coefficients bear an important physical significance. The probability that,
with the system initially in state |j〉, a measurement of Q yields the eigenvalue q is
the square module of the overlap of the physical state |j〉 with the relevant eigenket
of Q: P(q) = |〈q|j〉|2. In case q is degenerate, i.e. the same eigenvalue is associated
to several orthonormal eigenkets |qi〉, then one needs to sum over these eigenkets:

P(q) =
∑

i
qi=q

|〈qi|j〉|2 . (B.1)

The probability distribution P(q) needs to be properly normalized. Indeed, the
sum of P(q) over all possible outcomes q of a measurement must be

1 =
∑

q

Pj(q) =
∑

q′
|〈q′|j〉|2 =

∑

q′
〈j|q′〉〈q′|j〉 = 〈j|

⎡

⎣
∑

q′
|q′〉〈q′|

⎤

⎦ |j〉 . (B.2)

The quantity in square brackets is an operator from the Hilbert space into itself, and
the completeness of the basis {|q′〉} guarantees that it coincides with the identity
I . This leaves 〈j|j〉 which must then be unity for the probability to be properly
normalized.
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B.1.1 Wavefunction and Averages

We obtain an important example of this sort of overlaps when for Q we select the
position operator R, with eigenvalues r′ and eigenkets |r′〉. The overlap ψj(r′) = 〈r′|j〉
is called the wavefunction of state |j〉 at point r′. ψj(r′) is a complex number, such
that |ψj(r′)|2 is the probability density Pj(r′) that the particle in an initial state |j〉
is found at r′ when its position is measured. Since the eigenvalues of the position
operator are continuous quantities, the sum in Eq. (B.2) is replaced by an integral.
Thus the normalization of the probability distribution in r′-space is

1 =
∫

Pj(r
′) dr′ =

∫

|〈r′|j〉|2 dr′ =
∫

|ψj(r
′)|2 dr′ . (B.3)

Going back to a general observable Q, typically one can prepare the quantum sys-
tem every time in the same initial state |j〉, repeatedly measure the observable Q, and
average over these measurements. Given the individual probabilities for all possible
outcomes q′ of the measurement of Q, quantum theory provides a straightforward
formula to predict this average value 〈Q〉:

〈Q〉 =
∑

q′
q′Pj(q

′) =
∑

q′
q′|〈q′|j〉|2 =

∑

q′
〈j|q′〉q′〈q′|j〉

=
∑

q′
〈j|q′〉〈q′|q′|q′〉〈q′|j〉 . (B.4)

Since q′|q′〉 = Q|q′〉,

〈Q〉 =
∑

q′
〈j|q′〉〈q′|Q|q′〉〈q′|j〉 =

∑

q

∑

q′
〈j|q〉〈q|Q|q′〉〈q′|j〉 . (B.5)

In the last passage we have added a lot of null terms, namely all those with q �= q′.
Now, we notice that we have expressed the identity at both sides of Q:

〈Q〉 = 〈j|
⎡

⎣
∑

q

|q〉〈q|
⎤

⎦Q

⎡

⎣
∑

q′
|q′〉〈q′|

⎤

⎦ |j〉 = 〈j|Q|j〉 . (B.6)

We conclude that the average of an observable Q is provided by the diagonal matrix
element of its operator on the probed state. Notice that 〈Q〉 need not coincide with
any of the eigenvalues q′! For example, if the outcome of an observable is +1/2 one
half of the times and −1/2 one half of the times, its average equals zero. However
zero can occur in no measurement.
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B.2 Position, Momentum, and Translations

QM is about the motion of particles. The simplest way to move a particle is to
translate it. Consider an eigenstate of position R|r′〉 = r′|r′〉, where r′ = (x′, y′, z′).
A translation by δx in the x̂ direction modifies |x′, y′, z′〉 into |x′ + δx, y′, z′〉. Indicate
with T (δx) the operator for an infinitesimal translation by δx = x̂ δx:

|r′〉 → T (δx)|r′〉 = |r′ + δx〉 = |x′ + δx, y′, z′〉 . (B.7)

This result can be generalized to an arbitrary state |j〉, by expanding it on the basis
of the position eigenstates:

|j〉 → T (δx)|j〉 = T (δx)

∫

d3r′|r′〉〈r′|j〉 =
∫

d3r′[T (δx)|r′〉]ψj(r′) . (B.8)

We apply Eq. (B.7) to the square bracket, and rewrite the integral in terms of a shifted
variable:

T (δx)|j〉 =
∫

d3r′|r′ + δx〉ψj(r′) =
∫

d3r′|r′〉ψj(r′ − δx) . (B.9)

We conclude that a translation by δx acts on the wavefunction of a state by substituting
its argument r′ with r′ − δx.

Translation must conserve the normalization of arbitrary states:

〈j|T (δx)†T (δx)|j〉 = 〈j|j〉. (B.10)

This condition is guaranteed by the requirement that the product

T (δx)†T (δx) = I , (B.11)

the identity in the Hilbert space. According to Eq. (B.11),T (δx) is a unitary operator,
i.e. T (δx)† = T (δx)−1. The following additional properties apply to infinitesimal
translations:

T (δx)−1 = T (−δx) , T (0) = I , T (δx)T (δx′) = T (δx + δx′).
(B.12)

The properties of Eqs. (B.11) and (B.12) are satisfied provided that

T (δx) = I − iK · δx , (B.13)

for a suitable “generating” vector K of self-adjoint operator components Kx/y/z, and
neglecting terms of order O(|δx|2).

Translations, and their “generators” K are related to the position operator as
follows:
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R T (δx)|r′〉 = R|r′ + δx〉 = (r′ + δx)|r′ + δx〉 , (B.14)

T (δx)R|r′〉 = r′T (δx)|r′〉 = r′|r′ + δx〉. (B.15)

By subtracting these two relations we have

(R T (δx) − T (δx) R) |r′〉 = δx|r′ + δx〉 � δx|r′〉, (B.16)

where in the last passage we neglect a quantity of order O(|δx|2). As Eq. (B.16) holds
for any |r′〉, which form a basis of the Hilbert space, it implies the operatorial relation

R T (δx) − T (δx) R ≡ [R,T (δx)] = δxI , (B.17)

where the [·, ·] indicates the commutation relation between two operators. We sub-
stitute now Eq. (B.13) into Eq. (B.17), obtaining

− iR K · (δx) + iK · (δx) R = δxI . (B.18)

This relation holds for the 3 components Ru of vector R. We can generate 9 equations
by selecting successively the vector δx along the three versors x̂v:

Ru Kv − Kv Ru ≡ [Ru, Kv] = i δuv I . (B.19)

These fundamental commutation relations acquire a central role in QM, once one
realizes that K is related to the momentum operator P by

P = �K , (B.20)

where � = 6.6260 × 10−34 m2 kg s−1 is the Planck constant. K is the wave-vector
operator. To highlight the role of momentum as the generator of translation, we
rewrite Eq. (B.13) as

T (δx) = I − i�−1P · δx . (B.21)

The commutation relations (B.19) are rewritten in terms of momentum as

[Ru, Pv] = i�δuvI . (B.22)

B.2.1 Compatible and Incompatible Observables

Position and momentum components are examples of non-commuting observables.
To understand what this non-commutation implies, we need to clarify first the prop-
erties of commuting observables. Suppose that A B are operators with A|a′〉 = a′|a′〉,
B|b′〉 = b′|b′〉, and [A, B] = 0. Then we prove that if a′ �= a′′ then 〈a′|B|a′′〉 = 0.
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This is an immediate consequence of the definition of commutator:

0 = 〈a′| [A, B] |a′′〉 = 〈a′|AB − BA|a′′〉 = (a′ − a′′)〈a′|B|a′′〉 . (B.23)

If all eigenvalues of A are nondegenerate, this means that the basis of eigenstates
of A is diagonal for observable B. But even if A has some degenerate eigenvalue,
nothing prevents us to diagonalize B in the degenerate Hilbert space, with the result
of constructing a basis of simultaneous eigenstates of both operators:

A|a′, b′〉 = a′|a′, b′〉 ; B|a′, b′〉 = b′|a′, b′〉 . (B.24)

This result can be generalized to any number of commuting observables. The mea-
surement of any of them does not affect the measurement of the others. After the
measurement of A the QM system ends up in a common eigenstate |a′, b′〉. Any sub-
sequent sequence of measurements of B and/or A will keep the system in the same
eigenstate |a′, b′〉. For this reason, commuting observables are therefore said to be
compatible.

We have a quite different situation for non commuting observables, such as posi-
tion and momentum components. First of all, no common basis of eigenkets can exist
if [A, B] �= 0. If there was one, then

AB|a′, b′〉 = Ab′|a′, b′〉 = a′b′|a′, b′〉 ; BA|a′, b′〉 = Ba′|a′, b′〉 = a′b′|a′, b′〉 .

(B.25)

By subtracting these relations, one proves that [A, B] is diagonal and vanishes on a
complete basis, which would mean that [A, B] is the null operator, contrary to our
assumption. Note that this statement does not prevent A and B from sharing one
or several common eigenkets: it just means that these common eigenkets cannot
constitute a complete basis.

For any physical state, we define the standard deviation of an arbitrary operator
A as

σ 2
A = 〈 (A − 〈A〉)2〉 = 〈A2〉 − 〈A〉2 , (B.26)

where the averages are to be taken over the state under consideration. If the physical
state is an eigenstate of A, clearly σ 2

A vanishes. Otherwise σ 2
A measures the uncertainty

or dispersion to be expected in the outcome of repeated measurements of A realized
on that same physical state. Equipped with this definition, it is possible to prove that
for any physical state and for any two observables A and B,

σ 2
A σ 2

B ≥ 1

4
|〈[A, B]〉|2 . (B.27)

This uncertainty relation expresses the fact that incompatible observables cannot
both be measured with infinite precision.
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Fig. B.1 A sketch of Heisenberg’s uncertainty principle, in the phase-space slice of the x̂ component
of the position and momentum of a particle. For classical mechanics (left) an individual point in
this space represents full information about (Rx, Px). In contrast, QM (right) can only resolve the
phase space up to regions of area �/2

The example of position and momentum is especially straightforward, since the
commutator of corresponding components is a constant i� times the identity operator,
see Eq. (B.22). As a consequence of Eq. (B.27), on any physical state Heisenberg’s
uncertainty relation

σ 2
Ru

σ 2
Pv

≥ 1

4
�

2δuv . (B.28)

holds. Accordingly, for different components u �= v, e.g. Rx and Py, which are
compatible observables, one can generate states with arbitrarily small uncertainty for
both observables. In contrast, for a matching component u = v, e.g. Rx and Px , namely
incompatible observables, a state characterized by a small position uncertainty σRx

has necessarily a large σPx ≥ �/(2σRx ), i.e. a largely undefined momentum, and
vice versa. This result of QM contrasts with classical mechanics which is based on
a phase-space continuous tracking of each particle’s both position and momentum,
with an in principle arbitrary precision. QM corrects this picture, leading to a fuzzy
view of the phase space, with no possibility of identifying sharp points in each pair
of conjugate variables such as (Rx, Px), with a minimum uncertainty “area” of the
order of �/2, see Fig. B.1.

B.3 The Schrödinger Equation

If one leaves a quantum mechanical system undisturbed, it evolves in time in a
predictable manner dictated by the Schrödinger equation associated to its total-energy
(or Hamiltonian) operator H:

i�
d

dt
|ξ(t)〉 = H|ξ(t)〉 . (B.29)
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Here we focus on the common situation of a Hamiltonian H which is constant
in time. We have a standard strategy to solve the full time-dependent Schrödinger
equation (1.7). This method is based on solving first the “stationary” Schrödinger
equation, i.e. the eigenvalue problem

H |Ej〉 = Ej|Ej〉 . (B.30)

In the resulting basis of energy eigenkets |Ej〉, one then expands the general solution
of Eq. (B.29)

|ξ(t)〉 =
∑

j

|Ej〉 〈Ej|ξ(0)〉 e−i Ej t/�, (B.31)

where the time-independent coefficients 〈Ej|ξ(0)〉 are precisely the complex com-
ponents of the initial state |ξ(0)〉 on the adopted basis of energy eigenstates.

There is a remarkable situation, where the system is prepared in a pure energy
eigenstate |ξ(0)〉 = |Ej̄〉. In such a special case, the time evolution involves a sin-
gle rotating phase factor exp(−iEj̄t/�). Such an overall phase factor cannot affect
the quantum average of any physical quantity: 〈ξ(t)|Q|ξ(t)〉 = 〈ξ(0)|Q|ξ(0)〉 =
〈Ej̄|Q|Ej̄〉. This property justifies the qualification of the Hamiltonian eigenkets |Ej〉
as stationary states. According to Eq. (B.31), an isolated quantum system prepared
in one of its stationary states remains unchanged (up to a trivial rotating phase)
forever. As discussed in Sect. 1.2, in real-life time-independent quantum system,
excited states would eventually decay under the action of weak interactions with the
surrounding environment (e.g. the electromagnetic fields).

An instructive and less trivial condition is realized when the initial state is a linear
combination of two energy eigenstates: |ξ(0)〉 = a1 |Ej1〉 + a2 |Ej2〉. According to
Eq. (B.31), the time evolution of this ket is

|ξ(t)〉 = a1 e−i Ej1 t/� |Ej1〉 + a2 e−i Ej2 t/� |Ej2〉
= e−i Ej1 t/�

[
a1 |Ej1〉 + a2 e−i (Ej2 −Ej1 ) t/� |Ej2〉

]
.

In the final expression, we have extracted an irrelevant overall phase factor, which
has no effect on any observable quantity, and highlighted the relative phase of the
two contributions in the linear combination. This phase rotates at an angular speed
(Ej2 − Ej1)/� proportional to the energy difference of the two states. At all times
that are integer multiple of the rotation period 2π�/(Ej2 − Ej1), the evolving ket
reproduces its initial condition |ξ(0)〉 (up to a phase). Note however that when three
or more energy eigenkets are involved in the initial condition, no similar return to
the initial ket generally occurs.2

2 It would occur in the unlikely event that all relative frequencies (Eji − Ej1 )/� of the eigenkets
involved in the initial state are mutually commensurate.

http://dx.doi.org/10.1007/978-3-319-14382-8_1
http://dx.doi.org/10.1007/978-3-319-14382-8_1
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B.4 Symmetry

Symmetries can usually be represented by unitary operators in the Hilbert space:
they transform kets into symmetry-modified kets. For example, a mirror reflection
plane σh takes a ket initially localized at the right side of the plane and moves it to the
left side. A second application of this symmetry operator leads back to the original
state, thus σh σh = I . This is not the case with all symmetry operators. For example,
a 120◦ rotation C3 around a given axis needs being applied 3 times before it leads
the kets back to their initial location: C3 C3 C3 = I . In other cases no number of
successive application of a symmetry operation leads back to I , as occurs e.g. with
a 1 radian rotation.

The symmetry operators of a given QM system usually form a group, namely a
set closed for composition (for any two symmetry operations A and B, also B A is a
symmetry operation), it contains a neutral element (any system is trivially symmetric
under the “do nothing” operator I ), and for each A there exists an inverse symmetry
operation A−1 such that the composition A−1 A = A A−1 = I .

Symmetry groups can contain a finite number of elements. For example, the
symmetry operations for a water molecule in its equilibrium geometry (see Fig. 3.12b)
are 4 (the identity I , a rotation by 180◦ C2 around an axis bisecting the ˆHOH angle,
and 2 reflection planes: the molecular plane and a perpendicular plane through the
C2 axis).

Other symmetry groups contain an infinite number of elements. A relevant exam-
ple is the group of the discrete translations of a crystalline solid (the Bravais-lattice
translations) described in Sect. 5.1.1. Other important infinite groups are (i) the group
of symmetry operations of a linear (e.g. diatomic) molecule, which contains the infi-
nitely many rotations around the molecular axis, (ii) the group of internal symmetry
operations of an atom, which includes all possible rotations around its center of mass,
and (iii) the group of all continuously many translations of a free particle.

For a given symmetry group, the fact that a QM system has that symmetry is
expressed by the fact that any given state |j〉 has the same energy whether or not it is
transformed by any of the group symmetry operators A:

〈j|A†HA|j〉 = 〈j|H|j〉 . (B.32)

As this equation holds for any |j〉 in the Hilbert space, the corresponding equality of
operators must hold:

A†HA = H , (B.33)

or, using the property A† = A−1 of unitary operators,

HA = AH , or [H, A] = 0 . (B.34)

So, all A operators in the group are compatible with H.

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_5
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In the occasions where A is also an observable (a self-adjoint operator A† = A,
which as A is unitary implies A−1 = A† = A), as discussed in Sect. B.2.1, H and A
can be diagonalized simultaneously. The energy eigenstates are then also symmetry
eigenstates. For example, this occurs with the L ↔ R symmetry operation σh of
homonuclear dimers: in that system, all one-electron energy eigenstates are either
symmetric (bonding) or antisymmetric (antibonding) L − R combinations.

For more complicated symmetry groups, whose elements are not (all) self-adjoint,
symmetry provides also a labeling of the energy eigenstates. In these cases, this
labeling is given by the irreducible representation of the symmetry group. For the
mathematical definition of irreducible representations and how they label the energy
eigenstates, the reader is referred to any textbook on group theory, e.g. Ref. [48]. We
only need to retain here that many groups have multi-dimensional irreducible rep-
resentations, thus leading to degenerate energy eigenstates. For example, the degen-
eracies of the p, d, f, . . . electronic one-electron states are related to the 3, 5, 7, . . .

-dimensional irreducible representations of the full rotational symmetry group of the
one-electron Hamiltonian of the atom.

B.5 Variational Methods

Start from an energy eigenstate |Ej〉 and modify it by adding a small “distortion”
|δ〉, such that 〈δ|δ〉  1). By taking the normalization of the modified state |φ〉 =
|Ej〉 + |δ〉 into account, its average energy is:

Ē(|Ej〉 + |δ〉) = (〈Ej| + 〈δ|)H(|Ej〉 + |δ〉)
(〈Ej| + 〈δ|)(|Ej〉 + |δ〉)

= 〈Ej|H|Ej〉 + 〈Ej|H|δ〉 + 〈δ|H|Ej〉 + 〈δ|H|δ〉
〈Ej|Ej〉 + 〈Ej|δ〉 + 〈δ|Ej〉 + 〈δ|δ〉

= Ej + 2Re〈δ|H|Ej〉 + 〈δ|H|δ〉
1 + 2Re〈δ|Ej〉 + 〈δ|δ〉

= [Ej + 2EjRe〈δ|Ej〉 + 〈δ|H|δ〉]

×
[
1 − 2Re〈δ|Ej〉 − 〈δ|δ〉 + 4(Re〈δ|Ej〉)2 + O(|δ〉)3

]

= Ej + 〈δ|H|δ〉 − Ej〈δ|δ〉 + O(|δ〉)3

= Ej + O(|δ〉)2 .

This result illustrates that changes to the mean energy of the modified state are at
least quadratic in the norm of the perturbing ket |δ〉. This argument holds for the
ground state, which is a minimum of the energy as a function of the ket; excited
states are stationary saddle points.
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Given a set of states {|φj〉} one can build linear combinations |φ〉 = ∑l cl|φl〉 of
these states. Assume that these states {|φj〉} are elements of a Hilbert space where
an energy operator H is defined. The best approximation to the energy eigenstates
|Ej〉 and eigenenergies Ej is realized by tuning the coefficients {cl} in such a way
that they implement the stationary property discussed above: the average energy
Ē(|φ〉) = Ē({cl}) = 〈φ|H|φ〉/〈φ|φ〉 must have null linear-order variation. Ē should
vary at least quadratically as the coefficients {cl} are displaced away from their
optimal values. To determine the values of the coefficients making Ē stationary, we
impose that its gradient against variations of c∗

j vanishes:

0 = ∂Ē(|φ〉)
∂c∗

j
= 〈φj|H|φ〉

〈φ|φ〉 − 〈φ|H|φ〉 〈φj|φ〉
(〈φ|φ〉)2 =

∑

l

〈φj|H|φl〉
〈φ|φ〉 cl − Ē

∑

l

〈φj|φl〉
〈φ|φ〉 cl .

(B.35)

Introduce the shorthand Hjl = 〈φj|H|φl〉 for the matrix element, and Bjl = 〈φj|φl〉
for the overlap (Bjl = δjl if orthonormal states {|φj〉} are selected). In this notation
Eq. (B.35) becomes:

∑

l

Hjl cl = Ē
∑

l

Bjl cl . (B.36)

This variational method transforms the original abstract Schrödinger problem (B.30)
into an algebraic problem, namely the generalized secular problem of the calculation
of the approximate eigenvalues Ē and eigenvectors of a matrix {Hjl} relative to the
overlap matrix {Bjl}. Note that, given a Hilbert subspace generated by Nφ states
|φj〉, at most Nφ eigenenergies and eigenstates can be estimated with this method. In
particular, the lowest eigenvalue of the matrix problem (B.36) is an upper bound of
the exact ground-state energy: Ē0 ≥ E0.

The form (B.36) is standard and ready to translate into a computer implementation.
In several applications, an orthonormal basis (Bjl = δjl) is adopted for conceptual
simplicity and numerical convenience.

B.5.1 One State

An especially simple application of the variational method is obtained for Nφ = 1.
In this case, the variational inequality H00 ≡ Ē0 ≥ E0 states the trivial fact that
the average energy of an arbitrary state is greater than or equal to the ground-state
energy. The single trial state |φ〉 is often made depend on some tunable parameters
a1, a2, . . . When parameters are available, they can be “optimized” with the target
of minimizing the average energy Ē0 = H00:

E0 ≤ min
a1,a2,...

Ē0 ≡ min
a1,a2,...

H00 ≡ min
a1,a2,...

〈φ(a1, a2, . . . )| H |φ(a1, a2, . . . )〉 ,

(B.37)
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thus realizing the best approximation (in this class of parameterized states) to the
true ground state.

The HF method of Sect. 2.2.4 is an example of this single-state approach. The
parameters being optimized in that case are the single-electron wave functions them-
selves, which parameterize the many-body state.

B.5.2 Two States

The solution of Eq. (B.36) for two states |φ1〉 = |L〉 and |φ2〉 = |R〉 is especially
instructive. For simplicity assume that these states are orthonormal, so that the overlap
matrix Bjl = 〈φj|φl〉 = δjl is the identity. The eigenenergies and eigenstates of the
full problem are approximated by the eigenvalues and eigenvectors of the 2 × 2
matrix

(
H11 H12
H21 H22

)

≡
(〈L|H|L〉 〈L|H|R〉
〈R|H|L〉 〈R|H|R〉

)

=
(

EL −Δ

−Δ∗ ER

)

. (B.38)

The eigenvalues of the matrix (B.38) are

Ē 1
2

= EL + ER

2
∓
√
(

EL − ER

2

)2

+ |Δ|2 . (B.39)

The corresponding ground |Ē1〉 and excited |Ē2〉 eigenkets can be written as

∣
∣
∣Ē 1

2

〉
= Δ

|Δ|

√
1

2

(

1 ∓ u√
1 + u2

)

|L〉 ±
√

1

2

(

1 ± u√
1 + u2

)

|R〉 , (B.40)

assuming EL ≥ ER, and with

u = EL − ER

2|Δ| . (B.41)

measuring the relative importance of the diagonal energy difference to the off-
diagonal coupling strength.

The eigenvalues are sketched in Fig. B.2. We see that the two eigenenergies are
centered around (EL + ER)/2, due to the conservation of the matrix trace upon
diagonalization. The eigenenergies never get closer than the smaller of (ER − EL)

and |2Δ|. The off-diagonal coupling Δ induces a sort of mutual “repulsion” between
the energy levels.

In the special limit EL = ER, i.e. u = 0, the two eigenvalues acquire a minimum
separation |2Δ|; the corresponding kets turn into symmetric |Ē1〉 = 2−1/2(|L〉+ |R〉)
and antisymmetric |Ē2〉 = 2−1/2(|L〉 − |R〉) combinations of the original states.
For increasing u, the eigenkets (B.40) deviate more and more from these simple

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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Fig. B.2 The eigenvalues, Eq. (B.39), of the 2 × 2 matrix (B.38), as a function of the asymmetry
ratio u. The symmetric case u = 0 describes the splitting of degenerate levels by a off-diagonal
“perturbation”. This splitting determines, e.g., the bonding-antibonding splitting in the electronic
structure of homonuclear diatomic molecules. For large u � 1, Eb � ER and Ea � EL . This limit
describes, e.g., the electronic bonding/antibonding states of strongly ionic dimers

symmetric and antisymmetric combinations: |b〉 acquires a prevalent |R〉 character,
while |a〉 acquires a mainly |L〉 character.

B.6 The Schrödinger Equation in Real Space

The variational method outlined above provides also a useful reformulation of the
Schrödinger equation, by adopting the basis of position eigenstates |r′〉 for the set
of kets |φl〉. Because for the translational degrees of freedom the set of all |r′〉 is
complete, this method yields an exact mapping of the Schrödinger equation (B.30)
for the translational degrees of freedom. This mapping to a differential equation for
the wavefunction ψ(r′) takes the name of “position representation”.

To obtain this mapping, we need to represent the momentum operator on the
position basis. Applying Eq. (B.21) on an arbitrary state |α〉, we have

(
I − i�−1P · δx

)
|α〉 = T (δx)|α〉 = T (δx)

∫

d3r′ |r′〉〈r′|α〉

=
∫

d3r′ T (δx)|r′〉〈r′|α〉 =
∫

d3r′ |r′ + x̂ δx〉〈r′|α〉

=
∫

d3r′ |r′〉〈r′ − x̂ δx|α〉
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=
∫

d3r′ |r′〉 (〈r′|α〉 − δx · ∇r′ 〈r′|α〉)

= |α〉 − δx ·
∫

d3r′ |r′〉∇r′ 〈r′|α〉.

By identifying the terms proportional to δx, we conclude that

P|α〉 = −i�
∫

d3r′ |r′〉∇r′ 〈r′|α〉 = −i�
∫

d3r′ |r′〉∇r′ψα(r′). (B.42)

This expression indicates that the wavefunction of a state after the momentum oper-
ator has acted on it is −i� × the gradient of the wavefunction ψα(r′) of the original
state. In this sense, the position representation of the momentum operator is −i� ∇r′ .

The following expressions for the matrix elements of P are direct consequences
of Eq. (B.42):

〈r′|P|r′′〉 = −i�∇r′δ(r′ − r′′) (B.43)

〈β|P|α〉 =
∫

d3r′ ψ∗
β(r′) (−i�∇r′) ψα(r′) . (B.44)

For a single particle of mass m under the action of conservative forces described
by a potential energy function V (r), the Hamiltonian is

H = Hkin + V (R) = |P|2
2m

+ V (R) . (B.45)

The expression (B.43) for the momentum matrix operator allows us to recognize that
on the position basis the matrix of the |P|2 operator is diagonal:

〈r′| |P|2|r′′〉 = −�
2∇2

r′ δ(r′ − r′′). (B.46)

Also the potential-energy term is of course diagonal on this basis:

〈r′|V (R)|r′′〉 = V (r′) δ(r′ − r′′) . (B.47)

With these results in mind, evaluate now the matrix elements in Eq. (B.36) on the
position basis: |φj〉 = |r′〉 and |φl〉 = |r′′〉. Due to the Dirac deltas in Eqs. (B.46) and
(B.47), the

∑
l (here an

∫
d3r′′) drops out, resulting in a substantial simplification.

Therefore, the Schrödinger equation (B.30) maps to

[

− �
2

2m
∇2

r′ + V (r′)
]

ψE (r′) = E ψE (r′) . (B.48)

This is a second-order differential secular equation in 3D space. Simpler 1D and
2D versions can be formulated whenever the motion in the remaining dimensions is
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either impossible or trivial. For several interacting particles moving simultaneously,
under the action of a many-body Hamiltonian

H = Hkin + V (R1, R2, R3, . . . ) =
∑

α

|Pα|2
2m

+ V (R1, R2, R3, . . . ) , (B.49)

the equation in real space generalizes to

[

− �
2

2m

∑

α

∇2
r′
α

+ V (r′
1, r′

2, r′
3, . . . )

]

ψE(r′
1, r′

2, r′
3, . . . ) = E ψE(r′

1, r′
2, r′

3, . . . ) .

(B.50)

For most practical problems, the real-space formulation (B.48) and (B.50) is
far too complicated to solve analytically. In these cases one usually goes back to
approximate numerical methods based on the mapping of Eq. (B.30) onto an algebraic
matrix problem, as described in Sect. B.5. However, the real-space formulation of
the Schödinger problem can be solved exactly in a few simple cases.

B.7 Simple Solutions of the Schrödinger Equation

In the following we report three simple but physically fundamental examples. A few
other examples, e.g. the one-electron atom, are mentioned elsewhere in the present
book.

B.7.1 A Free Particle

When in Eq. (B.48) the potential energy V (r′) = 0, the motion of the particle is free.
One can separate the motion in the three Cartesian directions by decomposing the
solution

ψE (r′) = ψEx (r
′
x) ψEy(r

′
y) ψEz (r

′
z) , (B.51)

with Eu representing the contribution of the u-component of the motion to the total
kinetic energy E = Ex + Ey + Ez. The equation for each component is

− �
2

2m
∇2

r′
u
ψEu(r

′
u) = Eu ψEu(r

′
u) . (B.52)

Any kind of harmonic-type functions such as, e.g., ψ(r′
u) = exp(κr′

u) or ψ(r′
u) =

sin(κr′
u) solve Eq. (B.52) for a suitable Eu. However, not all solutions are equally
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acceptable: in these two examples, whenever �(κ) �= 0 the exponential one would
diverge at large r′

u, and for �(κ) �= 0 the trigonometric one would have similar
defects. In practice, solutions of the type

ψku(r
′
u) = (2π)−1/2 exp(i ku r′

u) (B.53)

are usually adopted, for real ku. The factor (2π)−1/2 yields a convenient normalization
for a wavefunction defined in the whole range −∞ < r′

u < ∞. In such a case, all
real values of ku are possible, and provide an energy contribution Eu = �

2k2
u/(2m),

as one can immediately verify by inserting the solution (B.53) into Eq. (B.52).
The vector k of components {kx, ky, kz} represents the eigenvalue of the vector

operator K introduced in Eq. (B.13). Indeed, the states defined by the plane-wave
function of Eq. (B.53) are eigenstates |k〉 of K and therefore also of the translation
operator T (δx). According to Eq. (B.20), these |k〉 states are also eigenstates of the
momentum operator P with eigenvalue p′ = �k. The ordinary relations of energy
and momentum hold for these eigenvalues:

E = Ex + Ey + Ez = �
2k2

x

2m
+ �

2k2
y

2m
+ �

2k2
z

2m
= p′2

x

2m
+ p′2

y

2m
+ p′2

z

2m
= |p′|2

2m
. (B.54)

It is often convenient to express the free-particle wavefunctions in a finite—rather
than infinite—region of space, of size V = L × L × L. Periodic boundary conditions
are usually applied across this cube. As a consequence, not all values of wave vector
are allowed, but only those with components

ku = 2π

L
nu nu = 0,±1,±2,±3, . . . (B.55)

The associated plane-wave eigenfunctions are normalized as follows:

ψk(r) = L−3/2 exp(i k · r). (B.56)

The corresponding translational kinetic energy takes on the discrete values

En = |p′
n|2

2m
= �

2|kn|2
2m

= (2π�)2

2mL2 (n2
x + n2

y + n2
z ). (B.57)

In the limit of infinite size L → ∞ the discrete kinetic-energy eigenvalues turn into
the same continuum of positive energies as as those of Eq. (B.54).
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B.7.2 A Particle in an Infinitely Deep Square Well

A particle confined in a finite region of space is particularly illuminating the conse-
quence of the Heisenberg uncertainty relation on the energy spectrum.

Consider for simplicity a particle confined in 1D to an interval by the potential
energy

V (rx) =
{

0 if 0 ≤ rx ≤ L

+∞ elsewhere
. (B.58)

Inside the confinement region, the particle moves freely: its wavefunction follows
Eq. (B.52). The confining potential forces the wave function to vanish at rx ≤ 0
and rx ≥ L, or else the infinite repulsion would make Ex diverge. This requirement
imposes a vanishing boundary condition to the eigenfunctions of Eq. (B.52). The
general solution

ψkx (rx) =
√

2

L
sin(kx rx) , kx = π n

L
, n = 1, 2, 3, . . . (B.59)

exhibits n − 1 nodes, where it changes sign.
The corresponding (kinetic) energy eigenvalues are

En = �
2k2

x

2m
= π2

�
2 n2

2mL2 , n = 1, 2, 3, . . . . (B.60)

Compare this result with Eq. (4.39): note in particular that the ground-state energy of
the free particle vanishes, while that of the confined particle, obtained by substituting
n = 1 in Eq. (B.60), is nonzero. Its value increases with the inverse of the particle mass
and the inverse square of the confinement size L. This a fundamental consequence
of Heisenberg’s uncertainty relation: the more restrictively a quantum particle is
confined in position space, the fuzzier its momentum becomes, with a resulting
larger and larger average kinetic energy.

B.7.3 The Linear Harmonic Oscillator

Another basic problem of mechanics is that of a mass attached to a fixed point through
an elastic spring, which we address for simplicity in 1D. The restoring force −Krx

is represented by the potential energy

V (rx) = 1

2
Kr2

x . (B.61)

http://dx.doi.org/10.1007/978-3-319-14382-8_4
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Fig. B.3 The ground-state and a few excited eigenfunctions of the linear harmonic oscillator

As it is straightforward to verify by direct substitution, the eigenfunctions of the
Schrödinger equation

(

− �
2

2m
∇2

rx
+ 1

2
Kr2

x

)

ψE (rx) = E ψE (rx) (B.62)

are

ψn(rx) =
(

1

π 1/22nn! x0

)1/2

Hn

(
rx

x0

)

exp

(

− r2
x

2x2
0

)

, n = 0, 1, 2, 3, . . . , (B.63)

where

x0 = �
1/2 (mK)−1/4 , Hn(ξ) = (−1)n exp

(
ξ2
) dn

dξn
exp
(
−ξ2

)
. (B.64)

The functions Hn(ξ) are (Hermite) polynomials of degree n, e.g. H0(ξ) = 1, H1(ξ) =
2ξ , H2(ξ) = 4ξ2 − 2, … As illustrated in Fig. B.3, ψn(rx) exhibits n nodes, where
Hn(rx/x0) changes sign.

The corresponding energy eigenvalues

En = �ω0

(

n + 1

2

)

= �

√
K

m

(

n + 1

2

)

(B.65)

form an equally spaced ladder of spacing �ω0. The energy En of each eigenstate is
composed of 50 % kinetic plus 50 % potential contributions.
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The ground-state position probability distribution P0(rx) = |ψ0(rx)|2 is a
Gaussian of standard deviation 2−1/2x0, measuring the amplitude of the zero-point
motion. Like for the infinite square well, the “zero-point” ground-state energy
E0 = �ω0/2 is positive, as a consequence of confinement and Heisenberg’s uncer-
tainty relation. The 50 % kinetic and 50 % potential energy composition of E0 con-
trasts the purely-kinetic ground-state energyE1 of the infinite square well, Eq. (B.60).

The harmonic oscillator is a fundamental model for several physical phenomena,
including

• the vibrational degree of freedom of a diatomic molecule, where v is used for the
quantum number n, see Sect. 3.3;

• each normal mode of vibration of a polyatomic molecule, see Fig. 3.12;
• each normal mode of vibration of a solid, see Sect. 5.3;
• each normal oscillation mode of the electromagnetic fields in a cavity, see

Sect. 4.3.2.2.

B.8 Angular Momentum

Similar to linear momentum P, which generates translations, see Sect. B.2, angular
momentum generates rotations. The orbital angular momentum operator L = R × P
generates the rotations of the position degrees of freedom of a particle around the
origin of the reference system. Starting from the commutation relations for the R
and P operators, it is straightforward to realize that [Lx, Ly] = i � Lz, and analogous
relations obtained by cyclic permutations of the components. These commutation
relations are fundamental in nature, and can be deduced directly for the total angular
momentum J from requiring that it is related to the operator D(n̂, δφ) implementing
a rotation by an infinitesimal angle δφ around the direction n̂, by

D(n̂, δφ) = I − i�−1J · n̂ δφ . (B.66)

One realizes that J ≡ L for a spinless particle. For particles with spin instead, a
rotation must include spin as well, with the result that an extra contribution has to be
included in the total angular momentum

J = L + S (B.67)

of a particle carrying spin, such as an electron. Spin must of course fulfill the same fun-
damental commutation relations [Sx, Sy] = i � Sz, etc. as the Lu components. More-
over, spin acts in a space different from the one of translations, therefore [Lu, Sv] = 0.
For systems formed by several particles the rotations of all must be included, so that

J = J1 + J2 + J3 + · · · (B.68)

http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_3
http://dx.doi.org/10.1007/978-3-319-14382-8_5
http://dx.doi.org/10.1007/978-3-319-14382-8_4
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The angular momentum commutation relations

[Jx, Jy] = i � Jz , etc. (B.69)

are all that it takes to determine the properties (eigenvalues, eigenvectors, matrix
elements) of the angular momentum operators, irrespective of their spin or orbital
nature [17]. One can show that the operator |J|2 commutes with any component
operator, e.g. Jz. As a consequence, |J|2 and Jz are compatible observables and can
be diagonalized simultaneously, see Sect. B.2.1. Call |j, mj〉 the basis of common
eigenstates of |J|2 and Jz. The expressions for their eigenvalues are [17]:

|J|2|j, mj〉 = �
2j(j + 1) |j, mj〉 , with j = 0, 1/2, 1, 3/2, 2, 5/2, . . . (B.70)

Jz|j, mj〉 = �mj |j, mj〉 , with mj = −j, −j + 1, . . . j − 1, j . (B.71)

For given j, the projection quantum number mj can take one of the 2j + 1 values
listed above.

B.8.1 The Coupling of Angular Momenta

A common problem arises from the necessity of combining several angular momenta,
e.g. those carried by several particles or by the orbital and spin degrees of freedom
of the same particle. The main question is: what are the allowed eigenvalues of the
total angular momentum j, for given values of the coupled angular momenta?

Here we provide the answer to this problem for the addition of two angular
momenta only. Say you want to add an orbital angular momentum L and a spin
one S. The starting observation is that one can identify two sets of 4 mutually com-
muting operators (|L|2, |S|2, Lz, Sz) and (|L|2, |S|2, |J|2, Jz). Each of these sets can be
diagonalized simultaneously to produce a basis of orthonormal states. Basis one and
basis two, obtained diagonalizing the first and second set respectively, do not coin-
cide. However, observe that two out of four operators coincide |L|2 and |S|2. They
can then be taken diagonal in both bases. It is then possible to fix the corresponding
quantum numbers l and s.

In basis one, of states |l, s, ml, ms〉, Lz and Sz are diagonal. For fixed l and s, this
basis is formed by d = (2l+1)·(2s+1) states labeled by all possible combinations of
the allowed values ml = −l, −l+1, . . . l−1, l and ms = −s, −s+1, . . . s−1, s for
the individual ẑ-projections. Alternatively, one can select the second basis of states
|l, s, j, mj〉, with diagonal |J|2 and Jz, to span this d-dimensional space of states. The
coupling of these angular momenta provides the change of basis from basis one to
basis two.

To identify the |l, s, j, mj〉 states we need to identify the values of j compatible
with the given l and s. The commutation relations are sufficient to answer completely
this question [17] and also to express the “coupled states” |l, s, j, mj〉 in terms of the
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Fig. B.4 An intuitive
mnemonic sketch for the rule
of angular-momentum
composition, Eq. (B.72)

max
j    =l+s

l

min

s

s

l

j   = l−s|     |

original Lz and Sz eigenstates |l, s, ml, ms〉. For our purposes, it suffices to retain the
main result of this instructive exercise, namely that the allowed values for j are

j = |l − s|, |l − s| + 1, . . . l + s − 1, l + s . (B.72)

The extremal values recall the classical picture of vector composition (Fig. B.4);
the discrete values are characteristic of the QM of angular momentum. One should
check that the number d of states in basis one and two is the same, i.e. that

(2l + 1) · (2s + 1) = 2(|l − s|) + 1 + 2(|l − s| + 1) + 1 + · · ·
+ 2(l + s − 1) + 1 + 2(l + s) + 1 .

The coupling of angular-momentum eigenstates is realized by a unitary transforma-
tion in this d-dimensional space, i.e. by multiplication of the basis states by a unitary
d × d matrix:

|l, s, j, mj〉 =
∑

ml,ms

C
j mj

l ml s ms
|l, s, ml, ms〉 , (B.73)

where the C
j mj

l ml s ms
numbers (named Clebsch-Gordan coefficients, taken real by con-

vention, and tabulated in books [49, 50]) provide the coefficients for the linear com-
binations forming the transformed basis.

Unless some physical coupling mechanism is present, either basis is equally
suitable to describe a particle’s angular+spin dynamics. The difference is that the
|ml, ms〉 basis (here we drop the fixed l and s labels) emphasizes the invariance against
separate position-space and spin-space rotation, while the |j, mj〉 basis emphasizes
the invariance for global rotations (equal rotations for position and spin).

Consider the concrete example of an electron with its spin. With the basic non-
relativistic Hamiltonian (1.1) all the d states within the (l,s) multiplet have the same
energy, and this degeneracy occurs whether we describe them in terms of the |ml, ms〉

http://dx.doi.org/10.1007/978-3-319-14382-8_1
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basis or of the |j, mj〉 basis. Taking relativistic interactions into account, which are
invariant over global rotations, not separate orbital and spin rotations, the coupled
|j, mj〉 basis becomes the basis of choice. Let us see then how the orbital angular
momentum l of one electron combines with its spin s = 1/2. Rule (B.72) attributes to
j either one value j = s = 1/2 (when l=0, i.e. s states), or two values j = l ± 1/2 (for
all other l = 1, 2, 3 . . . , i.e. p, d, f… states). For s states, the transformation matrix
from the |ml = 0, ms〉 basis to the |j=1/2, mj〉 basis is trivially the 2 × 2 identity

C
1/2 mj
0 0 1/2 ms

= δmj ms , since, for l = 0, J coincides with S. Likewise, for l ≥ 1, the
spin-orbital “maximally aligned” components

∣
∣
∣
∣j= l+ 1

2
, mj =±

(

l+ 1

2

)〉

=
∣
∣
∣
∣ml =±l, ms =±1

2

〉

.

Each of the remaining coupled states is expressed in terms of two uncoupled states
only, namely those whose Jz component match:

∣
∣
∣
∣j= l + 1

2
, mj

〉

= c1

∣
∣
∣
∣ml =mj+ 1

2
, ms =−1

2

〉

+ c2

∣
∣
∣
∣ml =mj− 1

2
, ms =+1

2

〉

.

The orthogonal ket is

∣
∣
∣
∣j= l− 1

2
, mj

〉

= c2

∣
∣
∣
∣ml =mj+ 1

2
, ms =−1

2

〉

− c1

∣
∣
∣
∣ml =mj− 1

2
, ms =+1

2

〉

,

where

c1 = C
l+ 1

2 mj

l mj+ 1
2

1
2 − 1

2
=
√

l + 1
2 − mj

2l + 1
and c2 = C

l+ 1
2 mj

l mj− 1
2

1
2

1
2

=
√

l + 1
2 + mj

2l + 1

are the matrix elements of the basis-change transformation. Clearly, c2
1 + c2

2 = 1
must hold for this transformation to be unitary.

Even more concretely, for a p (l = 1) orbital triplet, the explicit transformation
matrix between the |ml, ms〉 basis and the coupled |j, mj〉 basis involves a 6 × 6
matrix as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣
∣j = 1

2 , mj = 1
2

〉

∣
∣j = 1

2 , mj = − 1
2

〉

∣
∣j = 3

2 , mj = 3
2

〉

∣
∣j = 3

2 , mj = 1
2

〉

∣
∣j = 3

2 , mj = − 1
2

〉

∣
∣j = 3

2 , mj = − 3
2

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −
√

1
3 0

√
2
3 0 0

0 0 −
√

2
3 0

√
1
3 0

1 0 0 0 0 0

0
√

2
3 0

√
1
3 0 0

0 0
√

1
3 0

√
2
3 0

0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣
∣ml = 1, ms = + 1

2

〉

∣
∣ml = 0, ms = + 1

2

〉

∣
∣ml = −1, ms = + 1

2

〉

∣
∣ml = 1, ms = − 1

2

〉

∣
∣ml = 0, ms = − 1

2

〉

∣
∣ml = −1, ms = − 1

2

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,



Appendix B: Elements of Quantum Mechanics 267

where we list the j = 1 − 1/2 = 1/2 doublet followed by the j = 1 + 1/2 = 3/2

quartet. In a pictorial “box” notation where ↑ stands for the uncoupled basis state
|ml = 1, ms = +1/2〉, e.g., the two bottom rows of the matrix relation above can be

written as
∣
∣j = 3/2, mj = −1/2

〉 =
√

1
3

↑ +
√

2
3 ↓ and

∣
∣j = 3/2, mj = −3/2

〉 =
↓ .

In practice, when we measure the total angular momentum |J|2 of a one-electron
atom, then each multiplet of states of given l > 0 yields two groups of states char-
acterized by two values of j, namely l − 1/2 and l + 1/2. Unless spherical symmetry
is broken, all states at given j and different mj have the same energy. Even states
of different j are degenerate as long relativistic effects are ignored, but no physical
reason prevents them to acquire different energies. In Sect. 2.1.7 we discuss a weak
relativistic interaction associating slightly different energies to different j, thus clar-
ifying the need for the coupled basis. This interaction provides an explanation for
the observed two-fold fine-split structure of the spectral lines (Fig. 2.3).

The angular-momentum composition rules discussed here are more general than
the composition of the orbital and spin angular momenta of a single electron. These
rules are purely algebraic: they apply equally well to any kind of angular momentum.
We rely on this formalism for combining the angular momenta of many-electron
atoms, especially in Sects. 2.2.4 and 2.2.8.3.

B.8.2 Coupled Magnetic Moments

The magnetic properties of a rotating charge are determined by angular-momentum
properties, Eq. (2.56). In this Section we evaluate the matrix elements of the magnetic-
moment operator on the spin-orbital uncoupled and coupled basis. These matrix
elements are related via the unitary transformation (B.73). In the uncoupled basis
|ml, ms〉, the μz operator is diagonal, with eigenvalues

〈ml, ms|μz|ml, ms〉 = −μB 〈ml, ms|Lz + 2Sz

�
|ml, ms〉 = −μB (ml + 2ms) .

(B.74)

The matrix elements of the μx and μy components too have explicit expressions,
which can be obtained from the well-known (nondiagonal) matrix elements of Lx/y

and Sx/y [17].
In principle one could obtain the matrix elements of μ in the coupled basis |j, mj〉

by using explicitly the Clebsch-Gordan transformation (B.73). However, a simpler
and more instructive method yields these matrix elements within each subspace at
fixed total angular momentum j. The key point is a symmetry argument: on average,
all vector quantities characterizing a spherically symmetric object freely rotating in
space are proportional to its total angular momentum. This means in particular that

〈μ〉 ∝ 〈J〉, 〈L〉 ∝ 〈J〉, and 〈S〉 ∝ 〈J〉 .

http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
http://dx.doi.org/10.1007/978-3-319-14382-8_2
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The matrix elements of J are well known. The only unknown quantities are the indi-
vidual proportionality constants. To obtain the relevant ones, note that by definition

〈j, mj|μ|j, mj〉 = −μB

�
〈j, mj|L + 2S|j, mj〉 = −μB

�
〈j, mj|J + S|j, mj〉

= −(1 + γ )
μB

�
〈j, mj|J|j, mj〉 = −gj

μB

�
〈j, mj|J|j, mj〉 ,

(B.75)

where we introduce the ratio γ between 〈j, mj|S|j, mj〉 and 〈j, mj|J|j, mj〉. We deter-
mine γ by observing that the same ratio is involved when we take the scalar product
with J:

〈j, mj|S|j, mj〉 = γ 〈j, mj|J|j, mj〉 ,

〈j, mj|J · S|j, mj〉 = γ 〈j, mj|J · J|j, mj〉 . (B.76)

γ can be extracted from Eq. (B.76) by replacing the scalar product J · S with the
expression

J · S = |J|2 + |S|2 − |L|2
2

, (B.77)

obtained by squaring (J − S) = L. [Note the similarity to Eq. (2.36).] We obtain the
proportionality constant

γ = 〈j, mj|J · S|j, mj〉
〈j, mj| |J|2 |j, mj〉 = 〈j, mj| |J|2 + |S|2 − |L|2 |j, mj〉

2 j(j + 1) �2

= j(j + 1) + s(s + 1) − l(l + 1)

2j(j + 1)
.

This result allows us to evaluate the proportionality constant between μ/μB and
−J/� introduced in Eq. (B.75):

gj = 1 + γ = 1 + j(j + 1) + s(s + 1) − l(l + 1)

2j(j + 1)
(B.78)

called Landé g-factor. gj measures (in units of μB) the effective atomic magnetic
moment resulting from the combined orbital and spin contributions, as seen within a
given fixed-j multiplet. In the spectroscopy of atoms the states of such a j-multiplet
split in a magnetic field as if they had a component of 〈μ〉

〈j, mj|μz|j, mj〉 = −gj μB mj (B.79)

http://dx.doi.org/10.1007/978-3-319-14382-8_2
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in the ẑ direction of the field. Be warned that not all off-diagonal matrix elements
of Sz (and thus of μz) vanish in the coupled basis |j, mj〉. Note also that contrary to
what one might expect for a combination of two magnetic moments with gl = 1 and
gs = 2, the values of gj are not restricted to the range 1 ≤ gj ≤ 2.

B.9 Perturbation Theory

Real QM system are occasionally similar to simple systems for which exact ana-
lytic solutions are available, like in the examples of Sect. B.7. This similarity is
expressed by

H = H0 + V , (B.80)

where H0 is the “simple-system” Hamiltonian, and the operator V = H − H0 is
the difference between the full Hamiltonian for the actual problem and the simple
Hamiltonian. Consider now

H(λ) = H0 + λ V , (B.81)

where 0 ≤ λ ≤ 1 is a real parameter which tunes continuously the Hamiltonian
system from the simple H0 to the full H. If V is sufficiently “small” (meaning that
H0 is really similar to H), then the set of eigenenergies and eigenkets should evolve
continuously as follows:

λ : 0 → 1

H(λ) : H0 → H

E(λ)
n : E(0)

n → En

|n(λ)〉 : |n(0)〉 → |n〉 .

(B.82)

It should be possible to Taylor-expand the functional dependence of the eigenen-
ergy and eigenkets:

E(λ)
n = E(0)

n + λE(1)
n + λ2E(2)

n + . . . (B.83)

|n(λ)〉 = |n(0)〉 + λ|n(1)〉 + λ2|n(2)〉 + . . . (B.84)

It is possible to prove that the first-order energy correction

E(1)
n = 〈n(0)|V |n(0)〉 . (B.85)
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The second-order energy correction is

E(2)
n =

∑

k �=n

|〈n(0)|V |k(0)〉|2
E(0)

n − E(0)
k

. (B.86)

The first-order correction to the eigenkets is

|n(1)〉 =
∑

k �=n

|k(0)〉 〈n(0)|V |k(0)〉
E(0)

n − E(0)
k

. (B.87)

The corrections of Eqs. (B.85)–(B.87) are used to generate approximate eigenvalues
and eigenkets by substitution into Eqs. (B.83) and (B.84), taking λ = 1. For example,
the first-order approximation to the eigenvalues of H is given by

En � E(0)
n + E(1)

n = E(0)
n + 〈n(0)|V |n(0)〉 . (B.88)

Note that:

• Expression (B.85)–(B.88) involve unperturbed energies and matrix elements of
the perturbing Hamiltonian V over unperturbed states. All these quantities involv-
ing the simple system H0 can either be evaluated as analytic expressions. or be
computed by numerical integration.

• Equations (B.86) and (B.87) involve energy denominators E(0)
n −E(0)

k which vanish
for degenerate H0-eigenstates. In such degenerate cases, Eqs. (B.86) and (B.87)
do not hold as such. However, in a degenerate situation one is free to chose any
linear combination of the unperturbed basis states within the degenerate space. One
can then select suitable combinations such that all off-diagonal matrix elements
〈n(0)|V |k(0)〉 at the numerators above the vanishing denominators vanish as well.
This means that one must first diagonalize the perturbation operator within all
degenerate subspaces of the H0 system. After this diagonalization, Eqs. (B.86)
and (B.87) hold again, with the provision that the 0/0 terms are set to 0.

• The kets in any truncated version of Eq. (B.84) are generally unnormalized. It is
straightforward to normalize each approximate eigenket by dividing it by its norm.

An important consequence of Eq. (B.85) is that perturbing operators with
vanishing diagonal matrix elements induce null first-order corrections to the eigenen-
ergies. The lowest nonzero correction is then second order and involves the ratio of
the square of off-diagonal matrix elements divided by the unperturbed energy differ-
ence, Eq. (B.86). This quadratic dependence often results in very small corrections.
For example, if E(0)

n −E(0)
k � 1 eV and 〈n(0)|V |k(0)〉 � 1 meV, then the lowest-order

correction is E(2)
n � (10−3 eV)2/(1 eV) � 1 µeV.

An apparent exception to this observation occurs in the degenerate case E(0)
n −

E(0)
k = 0. As noted above, this singular condition must be treated by pre-diagonalizing



Appendix B: Elements of Quantum Mechanics 271

the perturbation operator in the degenerate space. After this unitary rotation, the per-
turbation V becomes purely diagonal: Eq. (B.85) applies, and predicts first-order
corrections, of the same order as the perturbation matrix elements.

B.10 Interaction of Charged Particles and Electromagnetic
Radiation

A charged particle such an electron or a proton interacts with the electromagnetic
fields. The form of this interaction is

H = 1

2m
(P − qA)2 + qφ + V , (B.89)

where and m, q are the particle’s mass and charge, A and φ are the electromag-
netic vector and scalar potentials and V is the potential energy describing non-
electromagnetic forces acting on the particle. The potentials are functions of position
(and often of time). In QM the particle position R is an operator. Therefore the elec-
tromagnetic potentials are operators, and precisely they are functions of the position
operator R. This implies that while [Au(R), Rv] = 0, in general [Au(R), Pv] �= 0,
so the potentials and the particle momentum are not compatible observables. The
meaning of the square in Eq. (B.89) is then

(P − qA)2 = |P|2 − q(P · A + A · P) + q2|A|2 . (B.90)

Of these three terms, the first one generates the standard kinetic energy of the uncou-
pled particle, the others describe the particle-fields coupling. For static fields, one
can represent the electric fields in terms of the φ potential, and the magnetic field in
terms of A. When the fields change in time, as in the presence of electromagnetic
radiation, a suitable gauge choice must be adopted.

As long as the electromagnetic fields are not too intense, this interaction is usually
addressed by time-dependent perturbation theory, a rather advanced topic whose
mathematical subtleties far exceed the level of the present Appendix. To our purposes
it suffices to retain that the electric-dipole emission rate Eq. (2.45) is obtained by a
linear-response perturbative treatment of the term proportional to q in Eq. (B.90).
The scattering of radiation, e.g. in the investigation of the structure of solids as in
Sect. 5.1.3, in terms of Eq. (B.90) is described as a first-order contribution of the q2

term plus the second-order effect of the q term.
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Solutions

Problems of Chap. 2

2.1 5 components; 25.4 mm
2.2 1s22s22p53s 1P1, 1s22s22p54s 1P1; both split into 3 components separated by

58 µeV
2.3 5145 eV; 2827 eV, 26835 eV, 31199 eV
2.4 γ3s−1s = 0; γ2p−1s = 6.27 × 108 s−1

2.5 7.177 × 10−23 A m2; 5 components
2.6 4 lines; 3 sub-lines for each line with ΔJ = 0, 6 sub-lines for the lines ΔJ = 1

and ΔJ = −1
2.7 3G3/4/5, 3F2/3/4, 3D1/2/3; 3G3, 3F3, 3D3
2.8 1.606 × 10−23 A m2; 1.606 × 10−23 A m2; 5.487 × 10−23 A m2

2.9 24350 eV (K); 3604 eV (LI ); 3330 eV (LII ); 3173 eV (LIII ); the K shell; 42.30
2.10 21.25 %; 0.18◦
2.11 L, 5400 eV; M, 1000 eV
2.12 2

5 EHa(rm/a0)
2 = 3.15 neV

Problems of Chap. 3

3.1 l = 4; 2581.3 cm−1 and 2735.9 cm−1

3.2 4.086 × 10−10 N; 0.0183 J mol−1 K−1

3.3 380 kg/s; 1.46 × 10−10 m; 280 K
3.4 14 levels; Z = 3.885; bound fraction = 97.25 %
3.5 2.297 × 10−9 N; 1.508 meV
3.6 62964 GHz; 50.6 meV (in the harmonic approximation)
3.7 21.459 J mol−1 K−1

3.8 1.3575 × 10−18 J; 1.0134 × 10−10 m
3.9 9.4211013 Hz
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274 Solutions

3.10 l = 4 [provided that one takes into account all the following effects: (i) the
decrease of the zero-point energy, (ii) the increase of Vad, and (iii) the decrease
of the Vcentrif term. l = 8 in case effects (i) and (ii) were ignored]

3.11 74.08 pm; 6.19 pm; 0.084
3.12 343.7 nm

Problems of Chap. 4

4.1 16π2
�ν3c−3ρ−1

ν = 5.297 × 10−21

4.2 P = �c (N/V )
4/3(3π2)1/3/4 = 5.712 × 1024 Pa

4.3 1.401 × 1010 Pa; 1.633 × 106 Pa
4.4 percentage (J = 1/2) = 30.81 %; 2.07 × 10−23 J/K; 3.963 × 10−26 J/K
4.5 1.70
4.6 0.42102 J mol−1 K−1; 0.0327
4.7 1.372 × 10−6 J/(kg K)
4.8 15.625; 39.06
4.9 1.046 × 106 m/s; 2.090 × 109 Pa

4.10 2046 K; 14.372
4.11 8953 K
4.12 944 W; 302.1 K
4.13 4.96 GPa; ΔP = 1.76 GPa
4.14 8.0 mW

Problems of Chap. 5

5.1 1.519 × 106 m/s
5.2 α = 3; A = 1.831 × 10−5 J mol−1 K−4; 23.9 K
5.3 427.5 nm
5.4 gap � E = 6.8 eV; insulator; transparent
5.5 A: 512.6 pm; B: 887.8 pm; C: 724.9 pm; A, with density 1479 kg m−3

5.6 11110 m/s
5.7 ω(k) = 2

√
C/MFe sin(ka/2); 8.26 THz

5.8 20.7 µs
5.9 24.35◦

5.10 ΘD = 360 K; vs = 3420 m/s; approximately 6R � 50 J mol−1 K−1
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