

Python	Programming	for	Biology

Bioinformatics	and	Beyond
Do	 you	 have	 a	 biological	 question	 that	 could	 be	 readily	 answered	 by	 computational
techniques,	but	 little	 experience	 in	programming?	Do	you	want	 to	 learn	more	about	 the
core	 techniques	 used	 in	 computational	 biology	 and	 bioinformatics?	 Written	 in	 an
accessible	 style,	 this	 guide	 provides	 a	 foundation	 for	 both	 newcomers	 to	 computer
programming	 and	 those	 who	 want	 to	 learn	 more	 about	 computational	 biology.	 The
chapters	 guide	 the	 reader	 through:	 a	 complete	 beginners’	 course	 to	 programming	 in
Python,	 with	 an	 introduction	 to	 computing	 jargon;	 descriptions	 of	 core	 bioinformatics
methods	with	working	Python	examples;	scientific	computing	techniques,	including	image
analysis,	statistics	and	machine	learning.	This	book	also	functions	as	a	language	reference
written	in	straightforward	English,	covering	the	most	common	Python	language	elements
and	 a	 glossary	 of	 computing	 and	 biological	 terms.	 This	 title	will	 teach	 undergraduates,
postgraduates	and	professionals	working	in	the	life	sciences	how	to	program	with	Python,
a	powerful,	flexible	and	easy-to-use	language.

TIM	J.	STEVENS,	a	biochemist	by	training,	is	a	Senior	Investigator	Scientist	at	the	MRC
Laboratory	of	Molecular	Biology	in	Cambridge.	He	researches	three-dimensional	genome
architecture	 and	 provides	 computational	 biology	 oversight,	 development	 and	 training
within	the	Cell	Biology	Division.

WAYNE	BOUCHER,	 a	mathematician	 and	 theoretical	 physicist	 by	 training,	 is	 a	 Senior
Post-Doctoral	Associate	and	computing	technician	for	the	Department	of	Biochemistry	at
the	 University	 of	 Cambridge.	 He	 teaches	 undergraduate	 mathematics	 and	 postgraduate
programming	 courses.	 Wayne	 is	 currently	 developing	 software	 for	 the	 analysis	 of
biological	molecules	by	nuclear	magnetic	resonance	spectroscopy.

Python	Programming	for	Biology

Bioinformatics	and	Beyond

Tim	J.	Stevens

MRC	Laboratory	of	Molecular	Biology

and

Wayne	Boucher

University	of	Cambridge

University	Printing	House,	Cambridge	CB2	8BS,	United	Kingdom

Cambridge	University	Press	is	part	of	the	University	of	Cambridge.

It	furthers	the	University’s	mission	by	disseminating	knowledge	in	the	pursuit	of
education,	learning	and	research	at	the	highest	international	levels	of	excellence.

www.cambridge.org

Information	on	this	title:	www.cambridge.org/9780521895835

©	Tim	J.	Stevens	and	Wayne	Boucher,	2015

This	publication	is	in	copyright.	Subject	to	statutory	exception	and	to	the	provisions	of
relevant	collective	licensing	agreements,	no	reproduction	of	any	part	may	take	place
without	the	written	permission	of	Cambridge	University	Press.

First	published	2015

Printed	in	the	United	Kingdom	by	TJ	International	Ltd,	Padstow	Cornwall

A	catalogue	record	for	this	publication	is	available	from	the	British	Library

Library	of	Congress	Cataloguing	in	Publication	data

Stevens,	Tim	J.,	1976–

Python	programming	for	biology,	bioinformatics,	and	beyond	/	Tim	J.	Stevens,	University
of	Cambridge,	Wayne

Boucher,	University	of	Cambridge.

pages	cm

Includes	index.

ISBN	978-0-521-89583-5	(Hardback)	–	ISBN	978-0-521-72009-0	(Paperback)

1.	Biology–Data	processing.	2.	Python	(Computer	program	language)	I.	Boucher,	Wayne.
II.	Title.

QH324.2.S727	2014

570.285–dc23	2014021017

ISBN	978-0-521-89583-5	Hardback

ISBN	978-0-521-72009-0	Paperback

Additional	resources	for	this	publication	at	www.cambridge.org/pythonforbiology

Cambridge	University	Press	has	no	responsibility	for	the	persistence	or	accuracy	of	URLs
for	external	or	third-party	internet	websites	referred	to	in	this	publication,	and	does	not
guarantee	that	any	content	on	such	websites	is,	or	will	remain,	accurate	or	appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521895835
http://www.cambridge.org/pythonforbiology

Contents
Preface

Acknowledgements

1 	Prologue

Python	programming	for	biology

2 	A	beginners’	guide

Programming	principles

Basic	data	types

Program	flow

3 	Python	basics

Introducing	the	fundamentals

Simple	data	types

Collection	data	types

Importing	modules

4 	Program	control	and	logic

Controlling	command	execution

Conditional	execution

Loops

Error	exceptions

Further	considerations

5 	Functions

Function	basics

Input	arguments

Variable	scope

Further	considerations

6 	Files

Computer	files

Reading	files

File	reading	examples

Writing	files

Further	considerations

7 	Object	orientation

Creating	classes

Further	details

8 	Object	data	modelling

Data	models

Implementing	a	data	model

Refined	implementation

9 	Mathematics

Using	Python	for	mathematics

Linear	algebra

NumPy	package

Linear	algebra	examples

10 	Coding	tips

Improving	Python	code

A	compendium	of	tips

11 	Biological	sequences

Bio-molecules	for	non-biologists

Using	biological	sequences	in	computing

Simple	sub-sequence	properties

Obtaining	sequences	with	BioPython

12 	Pairwise	sequence	alignments

Sequence	alignment

Calculating	an	alignment	score

Optimising	pairwise	alignment

Quick	database	searches

13 	Multiple-sequence	alignments

Multiple	alignments

Alignment	consensus	and	profiles

Generating	simple	multiple	alignments	in	Python

Interfacing	multiple-alignment	programs

14 	Sequence	variation	and	evolution

A	basic	introduction	to	sequence	variation

Similarity	measures

Phylogenetic	trees

15 	Macromolecular	structures

An	introduction	to	3D	structures	of	bio-molecules

Using	Python	for	macromolecular	structures

Coordinate	superimposition

External	macromolecular	structure	modules

16 	Array	data

Multiplexed	experiments

Reading	array	data

The	‘Microarray’	class

Array	analysis

17 	High-throughput	sequence	analyses

High-throughput	sequencing

Mapping	sequences	to	a	genome

Using	the	HTSeq	library

18 	Images

Biological	images

Basic	image	operations

Adjustments	and	filters

Feature	detection

19 	Signal	processing

Signals

Fast	Fourier	transform

Peaks

20 	Databases

A	brief	introduction	to	relational	databases

Basic	SQL

Designing	a	molecular	structure	database

21 	Probability

The	basics	of	probability	theory

Restriction	enzyme	example

Random	variables

Markov	chains

22 	Statistics

Statistical	analyses

Simple	statistical	parameters

Statistical	tests

Correlation	and	covariance

23 	Clustering	and	discrimination

Separating	and	grouping	data

Clustering	methods

Data	discrimination

24 	Machine	learning

A	guide	to	machine	learning

k-nearest	neighbours

Self-organising	maps

Feed-forward	artificial	neural	networks

Support	vector	machines

25 	Hard	problems

Solving	hard	problems

The	Monte	Carlo	method

Simulated	annealing

26 	Graphical	interfaces

An	introduction	to	graphical	user	interfaces

Python	GUI	examples

27 	Improving	speed

Running	things	faster

Parallelisation

Writing	faster	modules

Appendices

Appendix	1 	Simplified	language	reference

Appendix	2 	Selected	standard	type	methods	and	operations

Appendix	3 	Standard	module	highlights

Appendix	4 	String	formatting

Appendix	5 	Regular	expressions

Appendix	6 	Further	statistics

Glossary

Index

Preface
Many	years	ago	we	started	programming	in	Python	because	we	were	working	on	a	large
computational	biology	project.	In	those	days	choosing	Python	was	not	nearly	as	common
as	 it	 is	 today.	Nonetheless	 things	worked	out	well,	 and	as	our	 expertise	grew	 it	 seemed
only	natural	that	we	should	run	some	elementary	Python	courses	for	the	School	of	Biology
at	the	University	of	Cambridge,	where	we	were	employed.	The	basis	for	those	courses	is
what	turned	into	the	initial	idea	for	this	book.	While	there	were	many	books	about	getting
started	with	Python	and	some	that	were	tailored	to	bioinformatics,	we	felt	that	there	was
still	some	room	for	what	we	wanted	to	put	across.	We	began	with	the	idea	that	we	could
write	 some	 chapters	 in	 relatively	 straightforward	English	 that	were	 aimed	 at	 biologists,
who	might	be	complete	novices	at	programming,	and	have	other	sections	that	are	useful	to
a	 more	 experienced	 programmer.	 Also,	 given	 that	 we	 didn’t	 consider	 ourselves	 to	 be
typical	 bioinformaticians,	 we	 were	 thinking	 more	 broadly	 than	 just	 sequence-based
informatics,	 though	 naturally	 such	 things	 would	 be	 included.	We	 felt	 that	 although	 we
couldn’t	anticipate	all	the	requirements	of	a	biological	programmer	there	were	nonetheless
a	number	of	key	concepts	and	techniques	which	we	could	try	to	explain.	The	end	result	is
hopefully	a	toolkit	of	ideas	and	examples	which	can	be	applied	by	biologists	in	a	variety
of	situations.

Tim	J.	Stevens

Wayne	Boucher

Cambridge

January	2014

Acknowledgements
We	extend	our	sincere	thanks	to	a	group	of	intrepid	volunteers	who	have	been	invaluable
in	 the	proof-reading	and	 testing	of	 this	book:	Olga	Tkachenko,	Magnus	Lundborg,	Neil
Rzechorzek,	Rasmus	Fogh,	Simon	Fraser	and	Tom	Drury.

Special	thanks	also	go	to	David	Judge,	who	has	run	the	bioinformatics	teaching	facility
at	Cambridge	for	many	years	and	who	made	it	very	easy	to	give	the	Python	courses	that
eventually	led	to	this	book.

We	acknowledge	the	support	of	the	Medical	Research	Council	and	the	Biotechnology
and	Biological	Sciences	Research	Council,	 the	UK	funding	bodies	who	have	funded	the
scientific	projects	that	we	have	been	involved	with	over	the	years.	This	has	allowed	us	to
use	and	develop	our	Python	programming	skills	while	remaining	gainfully	employed.

1 	Prologue
Contents

Python	programming	for	biology

Choosing	Python

Python’s	history	and	versions

Bioinformatics

Computer	platforms	and	installations

Python	programming	for	biology
One	 of	 the	 main	 aims	 of	 this	 book	 is	 to	 empower	 the	 average	 researcher	 in	 the	 life
sciences,	who	may	 have	 a	 pertinent	 scientific	 question	 that	 can	 be	 readily	 answered	 by
computational	 techniques,	 but	 who	 doesn’t	 have	 much,	 if	 any,	 experience	 with
programming.	 For	 many	 in	 this	 position,	 the	 task	 of	 writing	 a	 program	 in	 a	 computer
language	 is	 a	 bottleneck,	 if	 not	 an	 impassable	 barrier.	 Often,	 the	 task	 is	 daunting	 and
seems	to	require	a	significant	investment	of	time.	The	task	is	also	subject	to	the	barriers
presented	 by	 a	 vocabulary	 filled	 with	 jargon	 and	 a	 seemingly	 steep	 learning	 curve	 for
those	 people	 who	 were	 not	 trained	 in	 computing	 or	 have	 no	 inclination	 to	 become
computer	specialists.	With	this	in	mind	for	the	novice	programmer,	one	ought	to	start	with
the	language	that	is	the	easiest	to	get	to	grips	with,	and	at	the	time	of	writing	we	believe
that	 that	 language	 is	 Python.	 This	 is	 not	 to	 say	 that	 we	 have	 made	 a	 compromise	 by
choosing	 a	 language	 that	 is	 easy	 to	 learn	 but	 which	 is	 not	 powerful	 or	 fully	 featured.
Python	 is	 certainly	 a	 very	 rich	 and	 capable	 way	 of	 programming,	 even	 for	 very	 large
projects;	otherwise	we	authors	wouldn’t	be	using	it	for	our	own	scientific	work.

A	second	main	aim	of	this	book	is	to	use	Python	as	a	means	to	illustrate	some	of	what	is
going	 on	 within	 biological	 computing.	 We	 hope	 our	 explanations	 will	 show	 you	 the
scientific	context	of	why	something	is	done	with	computers,	even	if	you	are	a	newcomer
to	biology	or	medical	sciences.	Even	where	a	popular	biological	program	is	not	written	in
Python,	or	if	you	are	a	programmer	who	has	good	reason	for	using	another	language,	we
can	 still	 use	 Python	 as	 a	 way	 of	 illustrating	 the	 major	 principles	 of	 programming	 for
biology.	 We	 feel	 that	 many	 of	 the	 most	 useful	 biological	 programs	 are	 based	 on
combinations	 of	 simple	 principles	 that	 almost	 anyone	 can	 understand.	 By	 trying	 to
separate	the	core	concepts	from	the	obfuscation	and	special	cases,	we	aim	to	provide	an
overview	of	techniques	and	strategies	that	you	can	use	as	a	resource	in	your	own	research.
Virtually	all	of	the	examples	in	this	book	are	working	code	that	can	be	run	and	are	based
on	 real	 problems	 or	 programs	 within	 biological	 computing.	 The	 examples	 can	 then	 be
adapted,	altered	and	combined	to	enable	you	to	program	whatever	you	need.

We	wish	 to	make	clear	 that	 this	book	intends	 to	show	you	what	sort	of	 things	can	be

done	and	how	to	begin.	It	does	not	intend	to	offer	a	deep	and	detailed	analysis	of	specific
biological	and	computational	problems.	This	is	not	a	typical	scientific	book,	given	that	we
don’t	always	go	for	the	most	detailed	or	up-to-date	examples.	Given	the	choice,	we	aim	to
give	 a	 broad-based	 understanding	 to	 newcomers	 and	 avoid	 what	 some	 may	 consider
pedantry.	No	doubt	some	people	will	 think	our	approach	somewhat	 too	simplistic,	but	 if
you	know	enough	to	know	the	difference	then	we	don’t	recommend	looking	to	this	book
for	 those	kinds	of	answers.	Likewise,	 there	 is	only	 room	for	 so	many	examples	and	we
cannot	 cover	 all	 of	 the	 scientific	methods	 (including	 Python	 software	 libraries)	 that	we
would	want	 to.	Hopefully	 though,	we	 give	 the	 reader	 enough	 pointers	 to	make	 a	 good
start.

Choosing	Python
It	 is	 perhaps	 important	 to	 include	 a	 short	 justification	 to	 say	why	we	 have	written	 this
book	 for	 the	 Python	 programming	 language;	 after	 all,	 we	 can	 choose	 from	 several
alternative	languages.	Certainly	Python	is	the	language	that	we	the	authors	write	in	on	a
daily	basis,	but	this	familiarity	was	actually	born	out	of	a	conscious	decision	to	use	Python
for	a	large	biological	programming	project	after	having	tried	and	considered	a	number	of
popular	 alternatives.	 Aside	 from	 Python,	 the	 languages	 that	 we	 have	 commonly	 come
across	in	today’s	biological	community	include:	C,	C++,	FORTRAN,	Java,	Matlab,	Perl,
R	and	Ruby.	Specific	comparison	with	some	of	 these	 languages	will	be	made	at	various
points	in	the	book,	but	there	are	some	characteristics	of	Python	that	we	enjoy,	which	we
feel	would	 not	 be	 available	 to	 the	 same	 level	 or	 in	 the	 same	 combination	 in	 any	 other
language.

We	 like	 the	 clear	 and	 consistent	 layout	 that	 directs	 the	 programmer	 away	 from
obfuscated	 program	 code	 and	 towards	 an	 elegantly	 readable	 solution;	 this	 becomes
especially	important	when	trying	to	work	out	what	someone	else’s	program	does,	or	even
what	your	own	material	does	several	years	later.	We	like	the	way	that	Python	has	object
orientation	at	its	heart,	so	you	can	use	this	powerful	way	to	organise	your	data	while	still
having	 the	easy	 look	and	 feel	of	Python.	This	also	means	 that	by	 learning	 the	 language
basics	you	automatically	become	familiar	with	 the	very	useful	object-oriented	approach.
We	like	that	Python	generally	requires	fewer	lines	of	program	code	than	other	languages
to	do	the	equivalent	job,	and	that	it	often	seems	so	much	less	tedious	to	write.

It	 is	 important	 to	 make	 it	 clear	 that	 we	 would	 not	 currently	 use	 Python	 for	 every
programming	 task	 in	 the	 life	 sciences.	 Python	 is	 not	 a	 perfect	 language.	 As	 it	 stands
currently	 for	 some	 specialised	 tasks,	 particularly	 those	 that	 require	 fast	 mathematical
calculations	which	are	not	supported	by	the	numeric	Python	modules,	we	actively	promote
working	 with	 a	 Python	 extension	 such	 as	 Cython,	 or	 some	 faster	 alternative	 language.
However,	 we	 heartily	 recommend	 that	 Python	 be	 used	 to	 administer	 the	 bookkeeping
while	the	faster	alternative	provides	extra	modules	that	act	as	a	fast	calculation	engine.	To
this	 end,	 in	 Chapter	 27	 we	 will	 show	 you	 how	 you	 can	 seamlessly	 mesh	 the	 Python
language	with	Cython	and	also	with	the	compiled	language	C,	to	give	all	the	benefits	of
Python	and	very	fast	calculations.

Python’s	history	and	versions

The	Python1	programming	language	was	the	creation	of	Guido	van	Rossum.	It	is	because
of	 his	 innovation	 and	 continuing	 support	 that	 Python	 is	 popular	 and	 continues	 to	 grow.
The	 Python	 programming	 community	 has	 afforded	 Guido	 the	 honour	 of	 the	 title
‘benevolent	dictator	for	life’.	What	this	means	is	that	despite	the	fact	that	many	aspects	of
Python	are	developed	by	a	large	community,	Guido	has	the	ultimate	say	in	what	goes	into
Python.	Although	not	bound	in	any	legality,	everyone	abides	by	Guido’s	decisions,	even	if
at	times	some	people	are	surprised	by	what	he	decides.	We	believe	that	this	situation	has
largely	 benefited	 Python	 by	 ensuring	 that	 the	 philosophy	 remains	 unsullied.	 Seemingly
often,	a	committee	decision	has	the	tendency	to	try	to	appease	all	views	and	can	become
tediously	 slow	with	 indecision;	 too	 timid	 to	make	 any	 bold,	 yet	 improving	moves.	The
Python	 programming	 community	 has	 a	 large	 role	 in	 criticising	 Python	 and	 guiding	 its
future	development,	but	when	a	decision	needs	to	be	made,	it	is	one	that	everyone	accepts.
Certainly	 there	 could	 be	 a	 big	 disagreement	 in	 the	 future,	 but	 so	 far	 the	 benevolent
dictator’s	decisions	have	always	taken	the	community	with	him.

There	 have	 been	 several,	 and	 in	 our	 opinion	 improving,	 versions	 of	 the	 Python
programming	 language.	 All	 versions	 before	 Python	 3	 share	 a	 very	 high	 degree	 of
backward-compatibility,	so	that	code	written	for	version	1.5	will	still	(mostly)	work	with
say	version	2.7	with	few	problems.	Python	3	is	not	as	compatible	with	older	versions,	but
this	seems	a	reasonable	price	to	be	paid	to	keep	things	moving	forward	and	eradicate	some
of	the	undesired	legacy	that	earlier	versions	have	built	up.	Rest	assured	though,	version	3
remains	similar	enough	in	look	and	feel	to	the	older	Pythons,	even	if	it	is	not	exactly	the
same,	and	the	examples	in	this	book	work	with	both	Python	2	and	Python	3	except	where
specifically	noted.	Also,	 included	with	 the	 release	of	Python	3	 is	 a	 conversion	program
‘2to3’	 which	 will	 attempt	 to	 automatically	 change	 the	 relevant	 parts	 of	 a	 version	 2
program	so	that	it	works	with	version	3.	This	will	not	be	able	to	deal	with	every	situation,
but	it	will	handle	the	vast	majority	and	save	considerable	effort.

For	this	book	we	will	assume	that	you	are	using	Python	version	2.6	or	2.7	or	3.	Some
bits,	 however,	 that	 use	 some	 newer	 features	 will	 not	 work	 with	 versions	 prior	 to	 2.6
without	 alteration.	We	 feel	 that	 it	 is	 better	 to	 use	 the	 best	 available	 version,	 rather	 than
write	in	a	deliberately	archaic	manner,	which	would	detract	from	clarity.

Bioinformatics
The	field	of	bioinformatics	has	emerged	as	we	have	discovered,	through	experimentation,
large	amounts	of	DNA	and	protein	sequence	 information.	 In	 its	most	conservative	sense
bioinformatics	 is	 the	discipline	of	extracting	scientific	 information	by	 the	study	of	 these
biological	 sequences,	which,	 because	 of	 the	 large	 amount	 of	 data,	must	 be	 analysed	 by
computer.	 Initially	 this	encompassed	what	most	biological	computing	was	about,	but	we
contend	that	 this	was	simply	where	biomolecular	computing	began	and	 that	 it	has	far	 to
go.	 The	 informatics	 of	 biological	 systems	 these	 days	 includes	 the	 study	 of	 molecular
structures,	 including	 their	 dynamics	 and	 interactions,	 enzymatic	 activity,	 medical	 and
pharmacological	statistics,	metabolic	profiles,	system-wide	modelling	and	the	organisation
of	experimental	procedures,	to	name	only	a	subset.	It	is	within	this	wider	context	that	this
book	is	placed.

At	present	 the	programming	 language	 that	 is	historically	most	 famous	 for	being	used

with	 bioinformatics	 is	 probably	 Perl,	 which	 is	 notable	 for	 its	 ability	 to	 manipulate
sequences,	particularly	when	stored	as	letters	within	formatted	text.	It	also	has	a	library	of
modules	 available	 to	 perform	 many	 common	 bioinformatics	 tasks,	 collectively	 named
BioPerl.	In	this	arena	Python	can	do	everything	that	Perl	can.	There	is	a	Python	equivalent
of	BioPerl,	unsurprisingly	named	BioPython,	and	at	this	time	the	uptake	of	Python	within
the	bioinformatics	community	is	growing,	which	is	not	surprising,	given	our	belief	that	it
is	an	easier	but	more	powerful	language	to	work	with.	It	is	important	to	note	that	although
some	of	the	BioPython	modules	will	certainly	be	discussed	in	the	course	of	this	book	(and
we	would	 generally	 advise	 using	 tested,	 existing	 code	wherever	 possible	 to	make	 your
programs	easier	 to	write	and	understand)	the	explanations	and	examples	will	be	more	to
do	with	 understanding	what	 is	 going	 on	 underneath.	We	 aim	 to	 avoid	 this	 book	 simply
becoming	 a	 brochure	 for	 existing	 programs	 where	 you	 don’t	 have	 to	 know	 the	 inner
workings.

Computer	platforms	and	installations
Python	 is	 available	 for	 every	 commonly	 used	 computer	 operating	 system	 including
versions	of	Microsoft	Windows,	Mac	OS	X,	Linux	and	UNIX.	With	Windows	you	will
generally	have	to	download	and	install	Python,	as	it	is	not	included	as	standard.	On	most
new	Mac	OS	X,	Linux	and	UNIX	systems	Python	is	 included	as	standard	(indeed	some
parts	 of	 Linux	 operating	 systems	 are	 themselves	 written	 with	 Python),	 although	 you
should	check	to	see	which	version	of	Python	you	have:	typing	‘python’	at	a	command	line
reveals	 the	version.	For	 a	 list	 of	website	 locations	where	you	 can	download	Python	 for
various	 platforms	 see	 the	 reference	 section	 at	 the	 end	 of	 this	 book	 or	 the	 Cambridge
University	Press	site:	http://www.cambridge.org/pythonforbiology.

Precisely	because	Python	 is	available	 for	and	can	be	 run	on	many	different	computer
platforms,	 any	 programs	 you	 write	 will	 generally	 be	 able	 to	 be	 run	 on	 all	 computer
systems.	However,	 there	are	a	 few	 important	caveats	you	should	be	aware	of.	Although
Python	as	a	 language	is	 interpreted	in	 the	same	way	on	every	computer	system,	when	it
comes	to	interacting	with	the	operating	system	(Windows,	Mac	OS	X,	Linux	…),	things
can	 work	 differently	 on	 different	 computers.	 This	 is	 a	 problem	 that	 all	 cross-platform
computing	languages	face.	You	will	probably	come	across	 this	 in	your	Python	programs
when	 dealing	with	 files	 and	 the	 directories	 that	 contain	 them.	Although	 each	 operating
system	will	have	its	own	nuances,	once	you	are	aware	of	the	differences	it	is	a	relatively
simple	 job	 to	ensure	 that	your	programs	work	 just	as	well	under	any	common	operating
system,	and	we	will	cover	details	of	this	as	required	in	the	subsequent	chapters.
1 	The	name	 itself	derives	 from	Monty	Python,	which	 is	why	you’ll	 find	 the	occasional
honorary	reference	to	‘spam’,	‘dead	parrot’	etc.	when	arbitrary	examples	are	given.

http://www.cambridge.org/pythonforbiology

2 	A	beginners’	guide
Contents

Programming	principles

Interpreting	commands

Reusable	functionality

Types	of	data

Python	objects

Variables

Basic	data	types

Numbers

Text	strings

Special	objects

Data	collections

Converting	between	types

Program	flow

Operations

Control	statements

Programming	principles
The	Python	language	can	be	viewed	as	a	formalised	system	of	understanding	instructions
(represented	 by	 letters,	 numbers	 and	 other	 funny	 characters)	 and	 acting	 upon	 those
directions.	Quite	naturally,	you	have	to	put	something	in	to	get	something	out,	and	what
you	are	going	to	be	passing	to	Python	is	a	series	of	commands.	Python	is	itself	a	computer
program,	which	is	designed	to	interpret	commands	that	are	written	in	the	Python	language,
and	 then	 act	 by	 executing	what	 these	 instructions	direct.	A	programmer	will	 sometimes
refer	to	such	commands	collectively	as	‘code’.

Interpreting	commands
So,	to	our	first	practical	point;	to	get	the	Python	interpreter	to	do	something	we	will	give	it
some	 commands	 in	 the	 form	 of	 a	 specially	 created	 piece	 of	 text.	 It	 is	 possible	 to	 give
Python	 a	 series	 of	 commands	 one	 at	 a	 time,	 as	 we	 slowly	 type	 something	 into	 our
computer.	However,	while	giving	Python	instructions	line	by	line	is	useful	if	you	want	to

test	out	something	small,	like	the	examples	in	this	chapter,	for	the	most	part	this	method	of
issuing	commands	is	impractical.	What	we	usually	do	instead	is	create	all	of	the	lines	of
text	 representing	 all	 the	 instructions,	written	 as	 commands	 in	 the	Python	 language,	 and
store	the	whole	lot	in	a	file.	We	can	then	activate	the	Python	interpreter	program	so	that	it
reads	all	of	the	text	from	the	file	and	acts	on	all	of	the	commands	issued	within.	A	series
of	commands	 that	we	store	 together	 in	 such	a	way,	and	which	do	a	 specific	 job,	can	be
considered	as	a	computer	program.1	If	you	would	like	to	try	any	of	the	examples	given	in
the	book	 the	next	chapter	will	 tell	you	how	 to	actually	get	 started.	The	 initial	 intention,
however,	is	mostly	to	give	you	a	flavour	of	Python	and	introduce	a	few	key	principles.

mass	=	5.9736

volume	=	1.08321

density	=	mass/volume

print(density)

An	example	of	a	very	simple,	four-line	Python	program	that	performs	a	calculation	and	displays	the
result.

Reusable	functionality
When	writing	programs	in	the	Python	language,	which	the	Python	interpreter	can	then	use,
we	 are	 not	 restricted	 to	 reading	 commands	 from	 only	 one	 file.	 It	 is	 a	 very	 common
practice	 to	 have	 a	 program	 distributed	 over	 a	 number	 of	 different	 files.	 This	 helps	 to
organise	 writing	 of	 the	 program,	 as	 you	 can	 put	 different	 specialised	 parts	 of	 your
instructions	 into	different	 files	 that	 you	 can	develop	 separately,	without	 having	 to	wade
through	 large	 amounts	 of	 text.	 Also,	 and	 perhaps	 most	 importantly,	 having	 Python
commands	in	multiple	files	enables	different	programs	to	share	a	set	of	commands.	With
shared	files,	the	distinction	between	which	commands	belong	to	one	program	and	which
belong	to	another	is	mostly	meaningless.	As	such,	we	typically	refer	to	such	a	shared	file
as	a	module.

In	 Python	 you	will	 use	modules	 on	 a	 regular	 basis.	And,	 as	 you	might	 have	 already
guessed,	 the	 idea	 is	 to	have	modules	containing	a	 series	of	 commands	which	perform	a
function	 that	would	be	useful	 for	several	programs,	perhaps	 in	quite	different	situations.
For	example,	you	could	write	a	module	which	contains	the	commands	to	do	a	statistical
analysis	on	some	numeric	data.	This	would	be	useful	to	any	program	that	needs	to	run	that
kind	of	analysis,	as	hopefully	we	have	written	the	statistics	module	in	such	a	way	that	the
precise	amount	and	source	of	 the	numeric	data	 that	we	send	 to	 the	module	 is	 irrelevant.
Whenever	we	use	a	module	we	are	avoiding	having	to	write	new	Python	commands,	and
are	hopefully	using	something	that	has	been	tried	and	tested	and	is	known	to	work.

from	Alignments	import	sequenceAlign

sequence1	=	'GATTACAGC'

sequence2	=	'GTATTAAT'

print(sequenceAlign(sequence1,	sequence2))

A	Python	example	where	general	functionality,	to	align	two	sequences	of	letters,	is	imported	from	a
module	called	Alignments,	which	was	defined	elsewhere.

When	working	with	Python	there	 is	already	a	 long	list	of	pre-made	modules	 that	you
can	use.	For	example,	there	are	modules	to	perform	common	mathematical	operations,	to
interact	with	the	operating	system	and	to	search	for	patterns	of	symbols	within	text.	These
are	all	generally	very	useful,	and	as	such	they	are	included	as	standard	whenever	you	have
Python	installed.	You	will	still	have	 to	 load,	or	 import,	 these	modules	 into	a	program	to
use	them,	but	in	essence	you	can	think	of	these	modules	as	a	convenient	way	of	extending
the	vocabulary	of	 the	Python	language	when	you	need	to.	By	the	same	token,	you	don’t
have	to	load	any	modules	that	are	not	going	to	be	useful,	which	might	slow	things	down	or
use	unnecessary	computer	memory.

Types	of	data
Before	going	on	 to	give	 a	more	detailed	 tutorial	we	will	 first	 describe	 a	 little	 about	 the
construction	 and	 makeup	 of	 commands	 written	 in	 the	 Python	 language.	 Writing	 the
command	code	for	a	program	involves	thinking	about	items	of	data.	There	can	be	many
different	kinds	of	data,	 from	different	origins,	 that	we	would	wish	 to	manipulate	with	a
computer.	Typically	we	will	represent	the	smallest	units	of	this	information	as	numbers	or
text.	We	can	organise	such	numbers	and	text	into	structured	arrangements,	for	example,	to
create	a	list	of	data,	and	we	can	then	manipulate	this	entire	larger	container,	with	all	of	its
underlying	elements,	as	a	 single	unit.	For	example,	given	a	 list	containing	numbers	you
could	extract	the	first	number	from	the	list,	or	maybe	get	the	list	in	reverse	order.

numbers	=	[6,	0,	2,	2,	1,	4,	1,	5]

numbers.reverse()

print(numbers)

Defining	a	list	of	numbers	as	a	single	entity	and	then	reversing	its	order,	before	printing	the	result	to
the	screen.

In	 Python,	 as	 in	 many	 languages,	 there	 are	 some	 standard	 types	 of	 data-containing
structures	that	form	the	basis	of	most	programs,	and	which	are	very	easy	to	create	and	fill
with	information.	But	you	are	not	limited	to	these	standard	data	structures;	you	can	create
your	 own	 data	 organisation.	 For	 example,	 you	 could	 create	 a	 data	 structure	 called	 a
Person,	which	can	store	the	name,	sex,	height	and	age	of	real	people.	In	a	program,	just	as
you	could	get	the	first	element	of	data	stored	in	a	list,	so	too	could	you	extract	the	number
that	 represents	 the	age	of	a	Person	data	structure.	Going	 further,	you	could	create	many
Person	 data	 structures	 and	 organise	 them	 further	 by	 placing	 them	 into	 lists.	 A	 data
structure	 can	 appear	 inside	 the	 organisation	 of	 many	 other	 data	 structures,	 so	 a	 single
Person	 could	 appear	 in	 several	 different	 lists	 (for	 example,	 organised	 by	 age,	 sex	 or
whatever)	or	a	Person	could	contain	references	to	other	Person	data	structures	to	indicate
the	relationships	between	parents	and	children.

Python	objects
This	 is	 where	 we	 can	 introduce	 the	 concept	 of	 an	 object.	 The	 Person	 data	 structure
described	 above	would	 commonly	 be	 referred	 to	 as	 a	 Person	 object.	 Indeed,	 all	 of	 the
organised	data	 structures	 in	Python,	 including	 the	 simple	 inbuilt	ones,	 are	 referred	 to	as

Python	objects.	So	numbers,	text	and	lists	are	all	kinds	of	objects.	Not	every	programming
language	formalises	things	in	this	way,	but	it	will	start	to	feel	natural	once	you	are	used	to
Python,	and	means	that	the	form	of	the	programming	language	is	the	same	whatever	type
of	object	is	being	manipulated.

x	=	3

y	=	7

print(x	+	y)

print(x.__add__(y))

An	example	which	shows	the	underlying	object-oriented	nature	of	numbers	in	Python:	the	last	two
lines	do	the	same	thing.	Although	we	would	normally	write	additions	in	a	conventional	way	with	a	plus
symbol,	we	are	actually	invoking	the	__add__	operation	which	all	Python	numbers	possess.

An	important	concept	when	dealing	with	objects	is	inheritance.	That	is	to	say	that	we
can	make	a	new	type	of	data	structure	by	basing	it	on	an	existing	one.	Indeed,	every	object
in	 Python,	 except	 the	 simplest	 data	 structure	 of	 them	 all	 (the	 base	 object),	 inherits	 its
organisation	from	another	object.	Accordingly,	you	could	take	a	Person	object	and	use	its
specification	to	create	a	Scientist	object.	This	would	immediately	give	the	Scientist	object
the	same	data	organisation	of	a	Person	object,	with	its	age,	sex	and	height	data,	but	we	can
go	 on	 to	 modify	 the	 Scientist	 object	 to	 also	 store	 different	 information,	 like	 a	 list	 of
publications	or	current	work	institution.	This	can	also	be	done	for	the	built-in	objects,	so
you	 could	 have	 your	 own	 version	 of	 a	 Python	 list	 that	 is	 only	 allowed	 to	 contain	 odd
numbers,	if	you	really,	really	wanted.

So	far	we	have	discussed	the	manipulation	of	data	by	a	Python	program	in	fairly	loose
terms,	so	it	is	about	time	to	more	properly	introduce	you	to	a	few	of	the	concepts	that	you
will	 commonly	use	 in	Python	programs.	The	 examples	 that	we	give	use	operations	 and
types	of	data	 that	are	built	 into	 the	 language	as	 standard,	 i.e.	 that	 the	Python	 interpreter
will	know	how	to	handle	without	you	having	to	add	any	special	information.

Variables
As	will	already	be	apparent	from	the	above	Python	snippets,	when	you	refer	to	some	data
in	 your	 program	 you	will	 often	 be	 assigning	 it	with	 a	 name,	 like	 ‘x’	 or	 ‘sequence1’	 or
‘dnaList’.	Such	names	are	commonly	referred	to	as	variables.	They	provide	you	with	an
identifiable	label	that	you	can	use	to	track	an	individual	item	of	data	amongst	many	others
within	your	 program.	The	 jargon	 term	 ‘variable’	 is	 quite	 apt	 because	you	often	want	 to
keep	the	same	name	label	but	vary	the	value	of	the	data	it	refers	to.	For	example,	you	can
write	a	program	that	calculates	x+2	and	x-2;	where	x	can	be	set	to	any	numeric	value	and
both	operations	are	performed	on	that	same	named	item,	whatever	it	may	be.	This	concept
is	similar	to	algebra,	where	you	can	describe	formulae,	like	y	=	x2	+	3,	without	specifying
what	x	 or	 y	 actually	 are,	 and	 then	 use	 the	 formula	 on	 different	 values	 of	 x	 in	 order	 to
compute	y.

Note	 that	 in	Python	 if	you	set	 the	variable	with	 the	name	‘x’	 to	 take	a	numeric	value
you	can	still	set	it	to	be	some	other	type	of	data	later	on	in	the	program,	so	initially	it	may
be	a	number,	but	 later	be	some	 text.	Bearing	 this	 in	mind,	you	must	be	careful	 that	you
only	perform	operations	on	the	‘x’	data	that	are	valid	for	that	type	of	data.	Staying	with	the

idea	 of	 data	 items	 having	 a	 particular	 data	 type,	 we	 next	 go	 through	 the	 basic	 types
available	in	Python.

Basic	data	types

Numbers
There	 are	 two	 common	 types	 of	 numeric	 data	 in	Python.	These	 are	 integers,	 the	whole
numbers,	and	floating	point	numbers,	numbers	with	decimal	points.

Integers
Integers	 are	whole	 numbers	 and	 can	 be	 positive,	 negative	 or	 zero	 in	 value.	You	would
typically	use	integers	to	count	things	that	only	come	as	a	whole,	like	the	size	of	a	list	or
number	of	people.	You	can	naturally	perform	mathematical	operations	with	integers,	also
in	combination	with	other	 types	of	number	object,	but	 in	Python	2	 if	you	perform	some
mathematical	operations	with	only	integers	the	result	is	an	integer	too.	While	this	makes
sense	for	addition	and	multiplication,	division	will	give	you	the	perhaps	surprising	result
of	 a	whole	 number,	 rounding	 the	 answer	 (towards	 negative	 infinity	 to	 be	 precise).	 The
advantage	 of	 integer	 operations	 is	 that	 they	 are	 quick	 and	 always	 precise;	 non-integer
representation	 can	 give	 rise	 to	 small	 errors	 which	 can	 sometimes	 have	 serious
consequences.

In	Python	2	there	are	actually	two	types	of	integers,	normal	integers	and	long	integers,
although	 you	 usually	 don’t	 have	 to	 pay	 much	 attention	 to	 this	 fact.	 The	 long	 integer
variety	is	used	when	the	number	is	so	big2	that	it	must	be	stored	in	a	different	way,	as	it
takes	up	more	memory	slots	 to	store	 the	digits.	Accordingly,	you	might	see	 the	18-digit
number	 123,456,789,123,456,789	 represented	 in	 Python	 (before	 version	 3)	 as
123456789123456789L,	 i.e.	with	an	extra	 ‘L’	at	 the	end	giving	a	hint	 that	 it	 is	 the	 long
variety.	But	otherwise	you	can	simply	treat	it	as	a	number	and	do	all	the	usual	operations
with	it.	In	Python	3	this	distinction	disappears	and	every	integer	is	a	long	integer.

Floating	point	numbers
Floating	point	numbers,	often	simply	 referred	 to	as	 floats,	are	numbers	expressed	 in	 the
decimal	 system,	 i.e.	 2.1,	 999.998,	 0.000004	 or	 whatever.	 The	 value	 2.0	 would	 also	 be
interpreted	as	a	floating	point	number,	but	the	value	2,	without	the	decimal	point,	will	not;
it	 will	 be	 interpreted	 as	 an	 integer.	 Floating	 point	 numbers	 can	 also	 carry	 a	 suffix	 that
states	which	power	of	ten	they	operate	at.	So,	for	example,	you	can	express	four	point	six
million	as	4.6×106,	which	in	Python	would	be	written	as	4.6e6	(or	as	46e5	or	as	0.46e7)
and	 similarly	 one	 hundredth	 would	 be	 1.0e-2.	 A	 potential	 pitfall	 with	 floating	 point
numbers	is	that	they	are	of	limited	precision.	Of	course	you	would	not	expect	to	be	able	to
express	 some	 fractions	 like	⅓	 exactly,	 but	 there	 can	otherwise	be	 some	 surprises	when
you	do	certain	calculations.	For	example,	0.1	plus	0.2	may	sometimes	give	you	something
like	0.30000000000000004,	because	of	the	way	that	the	innards	of	computers	work.	The
difference	between	this	number	and	the	desired	value	of	0.3	is	what	would	be	referred	to

as	a	floating	point	error.	Often	there	is	sufficient	accuracy	that	a	very	small	error	doesn’t
matter,	 but	 sometimes	 it	 does	 matter	 and	 you	 should	 be	 aware	 of	 this	 issue.	 Common
situations	where	 the	 floating	point	errors	could	matter	 include:	when	you	are	 repeatedly
updating	a	value	and	the	error	grows,	when	you	are	interested	in	the	small	difference	that
results	when	subtracting	two	larger	numbers	and	when	two	values	ought	 to	be	equal	but
they	 aren’t	 exactly,	 e.g.	 after	 division	 you	 test	 for	 1.0	 but	 don’t	 get	 the	 expected	 exact
value.

Text	strings
Strings	 are	 stretches	 of	 alphanumeric	 characters	 like	 “abc”	 or	 ‘Hello	 world’,	 in	 other
words	 they	 represent	 text.	 In	 Python	 strings	 are	 indicated	 inside	 of	 single	 or	 double
quotation	marks,	 so	 that	 their	 text	 data	 can	 be	 distinguished	 from	 other	 data	 types	 and
from	 the	 commands	 of	 the	 program.	 Thus	 if	 in	 Python	 we	 issue	 the	 command
print(“lumberjack”)	we	know	 that	 “lumberjack”	 is	 the	 string	data	and	everything	else	 is
Python	command.	Similarly,	quotation	marks	will	also	distinguish	between	real	numbers
and	 text	 that	 happens	 to	be	 readable	 as	 a	number.	For	 example,	 1.71	 is	 a	 floating	point
number	 but	 “1.71”	 is	 a	 piece	 of	 text	 containing	 four	 characters.	 You	 cannot	 do
mathematics	with	the	text	string	“1.71”,	although	it	 is	possible	to	convert	it	 to	a	number
object	with	the	value	1.71.

String	 objects	 might	 contain	 elements	 that	 cannot	 be	 represented	 by	 the	 printable
characters	found	on	a	keyboard,	but	which	are	nonetheless	part	of	a	piece	of	text.	A	good
example	of	this	is	the	way	that	you	can	split	text	over	several	lines.	When	you	type	into
your	computer	you	may	use	the	Return	key	to	do	this.	In	a	Python	string	you	would	use
the	special	sequence	“\n”	to	do	this:3	Python	uses	a	combination	of	characters	to	provide
the	 special	 meaning.	 For	 example,	 “Dead	 Parrot”	 naturally	 goes	 on	 one	 line,	 but
“Dead\nParrot”	goes	on	two,	as	if	you	had	pressed	Return	between	the	two	words.

Another	concept	that	deserves	some	explanation	is	the	empty	string,	written	simply	as
””,	with	no	visible	characters	between	quotes.	You	can	think	of	this	in	the	same	way	as	an
empty	list;	as	a	data	structure	that	is	capable	of	containing	a	sequence,	but	which	happens
to	contain	nothing.	The	empty	string	is	useful	in	situations	where	you	must	have	a	string
object	present	but	don’t	want	to	display	any	characters.

Text	strings	are	made	up	of	individual	characters	in	a	specific	order,	and	in	some	ways
you	can	think	of	them	as	being	like	lists.	Thus,	for	example,	you	can	query	what	the	first
character	 of	 a	 string	 is,	 or	 determine	 how	 long	 it	 is.	 In	 Python,	 however,	 you	 cannot
modify	strings	once	they	are	defined;	if	you	want	to	make	a	change	you	have	to	recreate
them	in	their	entirety.	This	might	seem	stifling	at	first	glance,	but	it	rarely	is	in	practice.
The	benefit	of	this	system	is	that	you	can	use	strings	to	access	items	in	a	Python	dictionary
(which	 is	 a	 handy	 way	 to	 store	 data	 that	 we	 discuss	 below);	 if	 strings	 were	 internally
alterable	 this	would	not	be	possible	 in	Python.	Python	can	readily	perform	operations	 to
replace	an	existing	string	with	a	modified	version.	For	example,	if	you	wanted	to	convert
some	 data	 that	 is	 initially	 stored	 as	 “Dead	 Parrot”	 into	 the	 text	 “Ex-Parrot”	 you	 could
redefine	the	data	as	the	string	“Ex-”	joined	onto	the	last	six	characters	of	the	original	text.
If	at	any	point	it	really	is	painful	to	redefine	a	string	entirely,	a	common	trick	is	to	convert
the	text	into	a	list	of	separate	characters	(see	list	data	type	below)	that	you	can	manipulate

internally,	before	converting	the	list	of	characters	back	into	text.

Special	objects

Booleans
The	two	Boolean	objects	are	True	and	False,	and	they	mean	much	what	you	might	expect.
Many	objects	can	be	examined	to	test	whether	they	are	logically	false,	like	an	empty	list	or
zero,	or	logically	true,	like	1.0	or	a	filled	list.	However,	the	True	and	False	objects	 (note
the	capital	letters)	are	special.	They	are	the	objects	that	you	get	back	when	you	do	a	truth
test.	So,	if	you	write	a	command	to	determine	whether	some	number	is	equal	to	another
number	you	will	get	a	True	object	if	they	are	equal	or	a	False	object	if	they	are	not	equal.
This	 differs	 from	 some	 languages	 where	 you	 might	 get	 0	 or	 1	 rather	 than	 dedicated
Boolean	objects.	Also,	you	can	set	things	to	be	True	or	False	within	your	programs	where
you	know	that	some	data	should	only	take	one	of	two	values.

hungry	=	True

chocolate	=	False

happiness	=	(not	hungry)	or	(hungry	and	chocolate)

Performing	Boolean	logic	operations	with	Python’s	True	and	False.

None
In	Python	 there	 is	 a	 special	object	 called	None.	When	you	use	 this	object	 it	means	 that
something	 is	 totally	 undefined.	 This	 is	 in	 contrast	 to	 empty	 lists	 or	 empty	 text	 strings,
which	still	exist	as	container	objects	of	their	respective	kind.	Accordingly	the	None	object
can	be	used,	for	example,	to	state	that	you	don’t	have	a	list	at	all,	rather	than	that	you	have
an	empty	one.	This	distinction	may	seem	tenuous,	but	it	can	be	critical.	For	example,	if	I
have	records	of	people	where	I	can	store	the	names	of	their	children,	an	empty	list	would
indicate	that	a	person	has	no	children	to	be	named,	but	a	None	object	would	indicate	that	I
have	been	unable	to	determine	whether	the	person	had	any	children	or	not;	not	that	they
definitely	had	none.

Data	collections
Python	has	several	inbuilt	collection	data	types,	which	are	used	to	contain	other	items.	The
basic	types	of	data	containers	in	Python	are	lists,	tuples,	sets	and	dictionaries.

Lists
A	 list	 in	 Python	 is	 a	 data	 structure	 that	 can	 contain	 a	 sequence	 of	 other	 objects,	 of
potentially	different	types,4	in	a	specific	order.	Lists	can	have	objects	added	to	them	and
removed	from	them	and	they	can	be	empty.	Also,	lists	can	refer	to	the	same	object	more
than	once,	at	different	positions	in	the	sequence.	For	example,	you	could	store	the	number
of	days	in	each	month	of	a	year	as	a	list,	as	illustrated	below.	Often	in	Python	programs
you	will	be	accessing	the	elements	contained	in	a	list	by	referring	to	a	specific	position	(an

index)	within	that	list	and	by	going	through	all	the	elements	in	a	list	in	their	given	order.	In
Python	we	use	square	brackets	to	specify	the	beginning	and	end	of	a	list:

days	=	[31,	28.243,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31]

matrix	=	[[-1,	0,	0],	[0,	1,	0],	[0,	0,	3]]

Defining	lists	in	Python;	a	simple	list	of	numbers	(both	integers	and	floating	point)	and	a	second	list
which	contains	three	sub-lists,	each	representing	a	row	in	a	matrix.

Tuples
A	tuple	is	a	data	structure	that	is	very	much	like	a	list,	but	which	you	cannot	change	once
it	 is	 created.	 In	Python	a	 tuple	may	be	defined	using	 round	brackets	 ‘()’.	Although	you
cannot	 change	 its	 items,	 a	 tuple	 is	 used	 to	 contain	 a	 sequence	of	 elements	 in	 a	 specific
order,	and	the	different	positions	of	 this	sequence	can	be	interrogated.	The	contents	of	a
tuple	are	defined	in	their	entirety	when	the	tuple	object	is	made.	Having	a	kind	of	list	that
you	cannot	change	may	seem	like	a	pointless	data	structure,	but	tuples	are	a	surprisingly
useful	type	of	object.	If	you	know	that	a	sequence	should	definitely	not	have	any	elements
modified,	 added	or	deleted,	 then	you	can	use	 a	 tuple	 to	 ensure	 that	 it	 is	 not	possible	 to
deviate	 from	 this	 plan:	 for	 example,	 if	 you	want	 to	 specify	 a	 vector	with	 exactly	 three
spatial	 coordinates,	 e.g.	 (x,	 y,	 z),	 using	 a	 tuple	 ensures	 that	 you	 can’t	 have	 an	 invalid
vector	 with	 too	 few	 or	 too	 many	 values.	 Similarly,	 tuples	 are	 used	 where	 you	 have
elements	that	you	know	always	go	together;	accordingly	you	could	use	tuples	to	specify	a
text	 font	 like	 (‘helvetica’,	 10)	 or	 (‘roman’,	 12),	 where	 you	must	 have	 two	 elements	 to
represent	the	name	and	the	size	of	the	font,	and	if	you	were	to	redefine	the	font	you	would
have	to	specify	both.	Tuples,	unlike	lists,	can	be	used	as	keys	to	refer	to	data	in	dictionary
data	structures	(see	the	Dictionaries	section	below).

Sets
Sets,	like	lists	and	tuples,	are	data	containers	that	encompass	a	collection	of	other	objects.
However,	unlike	lists	and	tuples,	the	elements	are	in	no	particular	order	and	the	elements
cannot	be	repeated	in	a	set.	A	notable	use	for	sets	 is	when	you	have	some	data	 that	you
know,	 or	 suspect,	 contains	 repeat	 objects.	 By	 placing	 such	 data	 within	 a	 set	 any
duplication	will	be	removed.	For	example,	you	might	have	a	list	containing	the	colours	of
different	 items;	 if	 you	 put	 these	 colours	 into	 a	 set	 object	 you	 can	 find	 out	 how	many
different	colours	were	used.	Also	 sets	can	be	useful	because	you	can	easily	perform	set
operations,	for	example,	to	find	the	items	that	two	collections	have	in	common;	this	would
be	trickier	using	lists	or	tuples.

females	=	set(['marge',	'maude',	'lisa',	'maggie',	'edna'])

simpsons	=	set(['homer',	'marge',	'bart',	'lisa',	'maggie'])

print(females	&	simpsons)

Defining	 Python	 sets	 and	 performing	 set	 operations;	 here	 finding	 an	 intersection	 (common
elements).

There	 is	 actually	 another	 variety	 of	 set,	 called	 a	 frozen	 set.	 These	 are	 the	 same	 as
regular	 sets	with	 the	 exception,	 as	 the	 name	 suggests,	 that	 they	 cannot	 be	 altered	 once
created	(just	like	tuples).	A	useful	consequence	of	this	is	that	they	can	be	used	as	keys	to
extract	data	from	dictionary	data	structures	(see	below).

Dictionaries
A	dictionary	 is	a	Python	data	structure	which	associates	pairs	of	data	objects	 to	create	a
look-up	 table.	The	 first	object	 in	 the	pair	 is	called	 the	key,	 and	 is	unique	 inside	a	given
dictionary,	and	the	second	object	is	its	value.	Unlike	lists,	where	you	refer	to	items	by	their
position	in	a	sequence,	with	dictionaries	the	data	is	not	stored	in	any	particular	order	and
you	access	the	values	contained	within	by	using	the	key.	For	example,	you	could	have	a
dictionary	 which	 records	 the	 heights	 of	 various	 mountains,	 where	 you	 find	 the	 correct
height	for	 the	correct	mountain	by	using	the	name	of	 the	mountain	(a	string,	 the	key)	 to
look	up	the	height	(the	value).	In	this	instance	if	you	were	using	a	list	you	would	have	to
know	in	which	order	the	heights	were	stored,	but	with	a	dictionary	you	do	not.	You	can
have	 empty	 dictionaries	 and	 add	 and	 remove	 data	 from	 dictionaries,	 by	 adding	 and
removing	the	pairs	of	key	and	value.	The	value	that	a	particular	key	finds	can	be	altered	at
any	 time,	 and	 although	 a	 key	 can	 only	 refer	 to	 one	 value,	 the	 value	 could	 be	 a	 data
structure	 object,	 like	 a	 list	 or	 set,	 that	 contains	 other	 items.	 In	 Python	 we	 use	 curly
brackets	to	specify	the	beginning	and	end	of	a	dictionary.

ageDict	=	{'homer':36,	'marge':34,	'lisa':8,	'bart':10}

print(ageDict['lisa'])

Defining	a	dictionary	in	Python,	which	in	this	example	allows	an	age	value	to	be	accessed	using	a
name	as	the	key.

An	important	point	to	be	aware	of	is	that	while	any	type	of	data	object	can	be	a	value	in
a	 dictionary,	 only	 certain	 kinds	 of	 object	 (those	 that	 cannot	 be	 internally	 modified	 to
assume	a	different	identity5)	can	be	used	as	keys.	Put	verbosely:	text	strings,6	 tuples,	 the
True	and	False	objects,	the	None	object,	user-defined	objects	and	frozen	sets	can	be	used
as	keys	to	access	dictionary	data,	but	lists,	normal	sets	and	other	dictionaries	cannot.	The
reason	 behind	 this	 rule	 is	 that	 the	 values	 in	 a	 dictionary	 are	 efficiently	 accessed	 based
upon	knowledge	of	the	route	from	their	keys,	so	Python	must	be	able	to	consistently	and
uniquely	identify	each	key	and	thus	get	the	correct	location	of	each	value.

Converting	between	types
If	you	have	some	useful	data	in	one	type	of	data	structure	but	need	it	to	be	in	another,	it
can	 be	 a	 very	 quick	 operation	 to	 do	 the	 transfer.	 Indeed,	 many	 of	 the	 common
transformations	between	the	standard	types	of	data	are	built	 into	the	language.	Thus,	for
example,	with	 single	 commands	 you	 can	 convert	 a	 floating	 point	 number	 to	 an	 integer,
which	 ignores	 everything	 after	 the	 decimal	 point,	 or	 convert	 an	 unalterable	 tuple	 to	 a
changeable	 list	 containing	 the	 same	elements,	 or	make	a	number	 from	a	 text	 string	 that
contains	digits.

text	=	'	+0.783	'

floatNumber	=	float(text)

wholeNumber	=	int(floatNumber)

dnaTuple	=	('A',	'C',	'G',	'T')

dnaList	=	list(dnaTuple)

Some	data	type	conversions	in	Python.

Program	flow
To	 form	 the	 logical	 flow	 of	 a	 computer	 program	 the	 component	 data	 objects	 and	 the
commands	that	activate	various	operations	are	organised	into	a	particular	order.	Just	as	this
book	is	written	to	be	read	left	to	right,	top	to	bottom,	commands	in	Python	are	interpreted
left	to	right	and	top	to	bottom.	And	it	is	also	in	this	order	that	the	operations	are	enacted.

Operations
So	far	we	have	described	the	common	types	of	data	that	you	will	be	dealing	with	in	your
programs.	 To	 make	 a	 working	 program,	 however,	 you	 must	 be	 able	 to	 do	 more	 than
organise	data;	 you	have	 to	work	with	 it	 by	performing	operations	 that	 depend	upon	 the
content	of	 the	data.	A	 simple	 example	of	 an	operation,	 and	one	which	we	have	 already
used	 above,	 would	 be	 the	 addition	 of	 numbers.	 Operations	 are	 specific	 to	 the	 type	 of
object	 that	 they	work	 upon,	 so	 you	 can	 do	mathematics	with	 numbers,	 but	 not	 strings.
Similarly,	you	can	join	two	strings	together	to	form	a	longer	text.	For	the	two	operations
of	adding	numbers	and	linking	strings	you	can	use	the	same	‘+’	symbol	in	the	Python	code
to	perform	the	two	operations,	but	the	result	is	always	appropriate	for	the	type	of	object.

x	=	'22'

y	=	'78'

print(x	+	y)

Operations	 in	Python	are	appropriate	 to	 the	 type	of	 data	 involved,	 so	 for	 the	above	 example	 the
result	is	the	text	‘2278’	not	the	number	100.

If	 an	 object	 is	 not	 internally	modifiable,	 like	 the	 number	 4	 or	 “abc”,	 then	when	 you
perform	an	operation	you	get	a	different	object	as	 the	 result.	So	 joining	 two	 text	strings
makes	a	new	string.	 If	an	object	 is	 internally	modifiable	 then	an	operation	 is	allowed	to
(although	it	doesn’t	have	to)	alter	the	data	within	the	object’s	structure	without	making	any
new	structures.	A	clear	example	of	this	would	be	reversing	the	order	of	a	list;	the	operation
doesn’t	make	any	new	data-containing	object,	it	just	moves	the	contents	around	internally.

Operations	 that	 are	 indicated	within	 a	 Python	 program	with	 symbols	 like	 +	or	 *	 are
really	 just	 shorthand	 ways	 of	 activating	 a	 procedure	 that	 is	 built	 into	 the	 fabric	 of	 the
object	being	used.	Thus	when	you	do	2+5,	the	number	object	2	has	an	internal	procedure,
activated	by	the	+	symbol,	that	deals	with	addition	of	the	other	number.	Such	procedures
that	are	built	into	objects	are	called	methods	in	the	jargon,	and	these	are	a	special	kind	of
what	we	later	describe	as	functions.	Because	there	are	only	a	limited	set	of	symbols	that
can	be	 sensibly	 used	 to	 indicate	 such	 inbuilt	 procedures,	 often	 you	have	 to	 activate	 the

procedure	 (‘call	 the	 method’	 in	 jargon)	 directly	 with	 a	 dot	 notation.	 For	 example,	 to
reverse	the	order	of	a	list	named	myData,	because	there	is	no	symbolic	way	of	reversing
the	 list,	you	would	 issue	 the	command	myData.reverse().	With	 this	notation,	 notice	 that
the	method	has	a	name7	and	that	it	is	clearly	associated	with	its	list	object	using	a	dot	‘.’.
We	use	the	brackets	at	 the	end	of	the	command	to	actually	activate	the	procedure.	If	we
simply	issued	the	command	myData.reverse	then	Python	would	interpret	this	as	referring
to	 the	method	(the	procedure)	without	actually	 running	 it.	The	brackets	at	 the	end	of	an
object’s	method	may	also	contain	some	data	that	the	operation	is	going	to	work	with.	For
example,	to	put	the	number	6	onto	the	end	of	a	list	you	can	use	the	append	operation	that
is	built	into	list	objects,	and	the	extra	number	goes	in	brackets:	myData.append(6).

Where	there	is	actually	a	neat	symbolic	way	of	representing	an	operation	there	will	also
be	an	equivalent,	albeit	less	elegant,	version	with	the	dot	notation.	As	was	illustrated	in	the
example	 given	 earlier,	 x+y	 can	 be	 written	 as	 x.__add__(y).	 Here,	 you	 can	 see	 that	 the
operation	 which	 the	 +	 symbol	 activates	 is	 internally	 called	 ‘__add__’.	 The	 plethora	 of
underscore	‘_’	symbols	indicates	that	this	method	is	inbuilt	and	normally	hidden.

Control	statements
You	have	more	control	in	a	program	than	just	activating	all	of	the	written	commands	once
in	 written	 order.	 You	 can	 use	 control	 commands	 to	 divert	 the	 flow	 of	 the	 program’s
execution	 under	 certain	 conditions,	 to	 add	 loops	 to	 repeat	 the	 execution	 of	 certain
statements	and	to	jump	to	a	completely	different	part	of	the	program,	run	some	commands
and	then	jump	back	again.	It	is	very	common	to	use	all	of	these	techniques,	even	in	simple
programs.	As	a	simple	example	you	might	wish	to	look	at	all	of	the	elements	of	a	list	in
turn	by	using	a	repeating	loop,	performing	the	same	operation	on	each	of	the	values.

total	=	0

numbers	=	[1,2,3,4,5,6]

for	x	in	numbers:

		total	=	total	+	x	*	x

print(total)

An	example	of	a	 loop	 in	Python,	specified	using	 the	for	keyword,	where	 the	 indented	command	 is
repeated	several	 times	with	different	values.	Here	 the	 total,	which	starts	as	zero,	 is	redefined	several
times	 by	 adding	 a	 number	 squared	 (x	 *	 x)	 to	 its	 previous	 value,	 so	 that	 at	 the	 end	 the	 total	 is
12+22+32+42+52+62.

The	ability	to	jump	from	executing	the	program	flow	in	one	place	to	another,	execute
some	 commands	 and	 then	 jump	 back	 again	 would	 be	 described	 in	 Python	 jargon	 as	 a
function.	In	some	older	programming	languages	you	can	make	the	order	of	your	program’s
execution	 jump	 about	 by	 using	 GOTO	 commands;	 which	 simply	 says	 that	 commands
from	 now	 on	 are	 executed	 from	 a	 specified	 line	 of	 code	 in	 the	 program.	 In	 contrast,	 a
function	 in	Python	 is	 a	 section	of	code	 that	 is	bundled	 together	with	a	name.	When	 the
Python	 interpreter	 reads	 the	 commands	 that	 go	 together	 to	make	 a	 function	 it	 does	 not
activate	 those	 commands	 immediately.	 Only	 when	 the	 name	 of	 the	 function	 is	 used
appropriately	 in	 the	main	 flow	 of	 the	 program’s	 execution	 are	 the	 commands	 from	 the
function	 run.	At	 the	 end	of	 the	 function’s	 execution	 the	 program	 flow	goes	 back	 to	 the

point	where	the	function	was	activated,	often	sending	back	some	data	from	the	function.

def	convertToFahrenheit(celsius):

		fahrenheit	=	celsius	*	1.8	+	32.0

		return	fahrenheit

print(convertToFahrenheit(37.0))

A	simple	example	of	a	Python	function:	how	the	function	works	is	defined	in	an	abstract	way	after
the	def	keyword,	but	the	operation	is	only	actually	performed	on	real	numbers	at	the	last	line.

Just	as	we	write	Python	modules	to	store	groups	of	commands	as	separate	files	that	can
be	useful	in	many	separate	situations,	so	too	functions	are	written	because	they	perform	a
role	that	is	useful	in	many	different	parts	of	a	program.	It	is	generally	far	better	to	write	a
function	to	do	a	particular	job	once,	and	then	activate	or	call	 that	function	wherever	that
job	needs	to	be	performed,	rather	than	writing	several	bits	of	code	that	do	the	same	thing.
One	note	of	caution	with	using	Python	functions	is	that	they	can	be	proportionally	slow	to
run	compared	to	the	regular	flow	of	a	Python	program;	so	if	speed	is	an	issue	things	can
often	be	helped	by	removing	unnecessary	calls	to	functions.	Also,	functions	are	generally
only	useful	 if	you	use	them	in	more	than	one	place	in	a	program.	If	a	procedure	is	only
ever	 going	 to	 be	 run	 in	 one	 part	 of	 a	 program	 you	 would	 usually	 put	 the	 required
commands	directly	into	the	program	and	not	bother	with	a	named	function.

Although	Python	functions	can	exist	on	their	own,	they	can	also	be	linked	to	particular
kinds	of	data	structures.	A	function	that	 is	 linked	to	an	object	becomes	a	method	of	 that
object	 (a	procedure	 that	belongs	 to	 the	object),	and	can	be	executed	 in	 the	same	way	as
any	other	method	with	the	dot	notation,	as	discussed	earlier.

class	UnitConverter:

		def	metresToFeet(self,	m):

				f	=	m	/	0.3048

				return	f

		def	feetToMetres(self,	f):

				m	=	f	*	0.3048

				return	m

converterObj	=	UnitConverter()

print(converterObj.metresToFeet(1.89))

print(converterObj.feetToMetres(6.0))

The	definition	of	custom	Python	objects	is	specified	using	the	class	keyword.	Here	we	have	defined	a
rudimentary	 unit	 converter	 class	 of	 object,	 which	 itself	 contains	 function	 definitions.	 The	 actual
converter	 object	 is	 created	 by	 using	 the	 name	 of	 the	 class	 and	 from	 this	 object	 we	 can	 access	 the
conversion	functions.

1 	Not	‘programme’,	even	in	the	UK.
2 	Typically	the	long	integers	start	at	231	or	263	depending	on	whether	the	system	is	32	bit
or	64	bit.
3 	To	actually	write	the	two	characters	“\n”	without	it	being	interpreted	as	a	new	line	you
would	use	“\n”.
4 	In	Python	3	having	different	types	in	a	list	is	discouraged.

5 	The	jargon	is	hashable,	and	this	point	is	discussed	further	in	Chapter	3.
6 	 It	 may	 seem	 surprising	 and	 limiting	 that	 text	 strings	 in	 Python	 are	 not	 internally
modifiable,	but	in	practice	this	causes	few	problems,	given	the	right	syntax.
7 	Which	hopefully	describes	its	purpose.

3 	Python	basics
Contents

Introducing	the	fundamentals

Getting	started

Whitespace	matters

Using	variables

Simple	data	types

Arithmetic

String	manipulation

Collection	data	types

List	and	tuple	manipulation

Set	manipulation

Dictionary	manipulation

Importing	modules

Introducing	the	fundamentals
Python	 is	a	powerful,	general-purpose	computing	 language.	 It	can	be	used	 for	 large	and
complicated	 tasks	or	 for	 small	 and	 simple	ones.	Naturally,	 to	get	people	 started	with	 its
use,	we	begin	with	 relatively	 straightforward	examples	and	 then	afterwards	 increase	 the
complexity.	 Hence,	 in	 the	 next	 two	 chapters	 we	 cover	 most	 of	 the	 day-to-day
fundamentals	 of	 the	 language.	You	will	 need	 to	 be,	 at	 least	 a	 little,	 familiar	with	 these
ideas	 to	 appreciate	 the	 subsequent	 chapters.	 Much	 of	 what	 we	 illustrate	 here	 is	 called
scripting,	although	 there	 is	no	hard	and	fast	 rule	about	what	 is	deemed	 to	be	a	program
and	what	is	‘merely’	a	script.	We	will	use	the	terminology	interchangeably.

Here	we	describe	most	of	the	common	operations	and	the	basic	types	of	data,	but	some
aspects	will	be	left	to	dedicated	chapters.	Initially	the	focus	will	be	on	the	core	data	types
handled	 by	Python,	which	 basically	means	 numbers	 and	 text.	With	 numbers	we	will	 of
course	describe	doing	arithmetic	operations	and	how	this	can	be	moved	from	the	specific
into	the	abstract	using	variables.	All	the	other	kinds	of	data	in	Python	can	also	be	worked
with	 in	 a	 similarly	 abstract	manner,	 although	 the	operations	 that	 are	used	 to	manipulate
non-numeric	data	won’t	be	mathematical.	Moving	on	 from	simple	numbers	and	 text	we
will	describe	some	of	the	other	standard	types	of	Python	data.	Most	notable	of	these	are
the	collection	types	that	act	as	containers	for	other	data,	so,	for	example,	we	could	have	a
list	of	words	or	a	set	of	numbers,	and	the	list	or	set	is	a	named	entity	in	itself;	just	another

item	 that	we	can	give	 a	 label	 to	 in	our	programs.	Python	also	has	 the	 ability	 to	 let	 you
describe	 your	 own	 types	 of	 data,	 by	 making	 an	 object	 specification	 called	 a	 class.
However,	this	will	be	discussed	in	Chapter	7.	We	will	end	this	chapter	by	introducing	the
idea	of	 importing	Python	modules,	which	 is	 a	mechanism	 to	 allow	a	program	 to	access
extra	functionality	contained	in	separate	files.

Finally,	using	Python	is	not	only	about	the	operation	of	programs,	it	is	also	important	to
consider	what	 it	means	 to	 the	people	who	read	 it.	Hopefully	you	will	be	writing	clearly
understandable	code,	with	meaningful	variable	names	and	such	 like.	Nonetheless,	 it	 is	a
good	idea,	when	using	any	programming	language,	to	get	into	the	habit	of	adding	human-
readable	 comments	 to	 your	 programs,	 especially	 at	 points	 where	 the	 logic	 of	 what	 is
happening	 is	 not	 so	 obvious.	 Such	 comments	 are	 simply	 textual	 descriptions	 that	 are
separate	from	the	functional	part	of	the	code.	In	Python,	comments	are	usually	introduced
using	 the	hash	symbol1	 ‘#’,	whereupon	all	subsequent	 text	on	 that	 line	 is	 for	humans	 to
read	and	not	part	of	the	program	proper.

Getting	started
Firstly,	 before	 using	 Python	 it	 must	 of	 course	 be	 installed	 on	 your	 computer.	 For
Macintosh	and	Linux	users	Python	is	generally	installed	as	standard,	though	you	may	wish
to	 upgrade	 if	 the	 version	 is	 before	 Python	 2.6.	 For	Windows	 users	 Python	 is	 a	 simple
double-click	install,	using	the	appropriate	‘MSI’	installer	file.	Windows,	Macintosh,	Linux
and	UNIX	 downloads	 are	 all	 available	 from	 http://www.python.org.	However,	 for	most
flavours	 of	 Linux	 it	 is	 easiest	 to	 install	 or	 upgrade	 Python	 via	 the	 system’s	 package
manager.	 Later,	 in	 this	 book	 we	 will	 require	 that	 some	 extra	 Python	 modules	 are	 also
installed,	such	as	Numeric	Python	and	Scientific	Python	packages.	Because	the	websites
for	these	may	change	in	the	future	we	list	the	up-to-date	download	locations	for	all	extra
packages	 on	 the	 Cambridge	 University	 Press	 website:
http://www.cambridge.org/pythonforbiology.

There	are	two	basic	ways	of	running	Python.	The	commands	can	be	read	and	run	from
a	file	as	a	script.	Alternatively,	you	can	manually	issue	commands	directly,	one	after	the
other,	 at	 what	 is	 called	 the	 Python	 prompt.	 To	 run	 a	 Python	 script	 on	 most	 computer
systems	you	type	within	the	command	line	interface,	after	the	operating-system	prompt,	as
illustrated	in	Figure	3.1.	This	will	generally	be	set	up	as	standard	on	Linux	and	Macintosh
computers.	 However,	 for	 Windows	 care	 must	 be	 taken	 to	 set	 the	 PATH	 environment
variable,	 as	 illustrated	 in	Figure	3.2.	Also	 for	Windows	 systems,	 because	 the	 command
line	 interface	 is	 less	 visible,	 it	 is	 common	 to	 execute	 a	 script	 by	 double-clicking	 on	 its
icon.	On-click	execution	can	usually	be	set	up	on	other	systems	too.

http://www.python.org
http://www.cambridge.org/pythonforbiology

Figure	3.1.	 Running	a	Python	script	from	different	operating	systems.	For	most
computer	systems	it	is	commonplace	to	open	a	command-line	interface	and	then	type	the
‘python’	command	followed	by	the	name,	or	file-system	location,	of	the	script,	before
pressing	the	Return	or	Enter	key.	For	Windows	systems	the	PATH	environment	variable
will	additionally	need	to	be	set	up,	as	illustrated	in	Figure	3.2.	In	Windows	Python	scripts
are	also	often	run	by	double-clicking	on	the	file	icon	or	by	using	the	Run	menu	from	the
IDLE	editor	(e.g.	started	via	‘Edit	with	IDLE’	in	the	right	mouse	menu	for	a	Python	file).
IDLE	is	often	included	as	part	of	Python	installations	for	Windows.

Figure	3.2.	 Setting	the	PATH	environment	variable	in	Windows.	For	the	‘python’
command	to	be	recognised	by	Windows	systems	the	PATH	environment	variable	must
include	the	location	of	the	directory	that	contains	the	‘python.exe’	file.	An	environment
variable	may	be	set	in	the	Windows	graphical	interface	via	Control	Panel	→	System	and
Security	→	System	→	Advanced	system	settings.	If	PATH	is	not	already	defined	then	the
Python	executable	location	may	be	specified	via	New	…,	for	example,	as	‘C:\Python27’
or	‘C:\Python33’,	depending	on	the	version.	If	the	PATH	is	already	defined	then,	after
selection	of	this	system	variable	in	the	lower	table,	using	Edit	…	enables	the	addition	of
the	Python	location	after	any	existing	values,	after	a	semicolon,	for	example,	adding
‘;C:\Python34’.	Note	that	the	PATH	specification	has	no	spaces	between	entries	(only	‘;’)
and	no	trailing	slash	‘\’.

The	file	name	for	Python	scripts	traditionally	ends	in	‘.py’,	as	illustrated	in	the	example
below,	although	strictly	speaking	it	does	not	have	to.	By	running	the	script	we	send	the	file
containing	lines	of	code	to	the	Python	interpreter,	which	reads	it	and	acts	on	the	contents.
Also,	if	required,	a	script	can	have	input	values	called	arguments	passed	along	when	it	is
run,	as	illustrated	for	the	Linux,	UNIX	or	Mac	command	line:

>	python	scriptName.py	argument1	argument2

This	assumes	 that	 the	executed	 ‘python’	command	 is	on	your	search	path,	where	 the
operating	system	knows	to	look	for	commands;	otherwise	you	have	to	type	the	full	path	to
its	location.

The	alternative	to	running	Python	from	script	files	is	to	run	Python	alone,	without	a	file,
in	an	interactive	mode.	This	mode	gives	you	a	prompt	‘>>>’,	where	you	can	type	manual
input	 that	 is	passed	 to	 the	 interpreter	one	 line	at	a	 time.	To	start	 the	 interpreter	with	 the
Windows	operating	system	you	would	click	on	the	Python	icon.	To	start	from	Mac	OS	X,
Linux	 or	 UNIX	 this	 means	 opening	 a	 command-line	 shell	 and	 typing	 ‘python’,	 then
pressing	the	Return	or	Enter	key.

You	can	type	commands	at	this	prompt,	pressing	the	Return	or	Enter	key	to	issue	each
command	and	move	on	to	the	next	line.	Note	that,	by	using	the	‘-i’	flag,	it	is	also	possible
to	run	a	Python	script	and	then	go	into	an	interactive	mode	immediately	afterwards.	When
the	script	is	done	it	presents	you	with	the	prompt	and	awaits	further	instructions:

>	python	-i	scriptName.py

[Output	of	the	script]

>>>

When	you	are	done,	you	quit	by	typing	either	the	Ctrl-d	key	combination	(so	hold	the
‘Ctrl’	key	down	and	then	tap	the	‘d’	key)	for	Mac,	Linux	and	UNIX	systems	or	Ctrl-z	for
Windows	systems.	The	Python	prompt	 is	convenient	 for	 testing	out	simple	bits	of	code.
More	serious	work	is	normally	done	with	scripts,	however.	In	this	chapter	you	can	work
either	way.

In	 Python	 2	 you	 can	 print	 a	 text	 message	 to	 the	 terminal	 window	 via	 the	 print
command,	for	example:

print	'Hello	world'

This	 automatically	 moves	 onto	 the	 next	 line	 because	 it	 prints	 a	 newline	 control
character	at	the	end.	However,	if	you	do	not	want	to	go	to	the	next	line	put	a	comma	at	the
end:

print	'Hello	world',

In	Python	3	the	print	statement	changes	to	a	function,	which	in	simple	terms	means	that
it	requires	parentheses:

print('Hello	world')

This	 function	 is	 also	 available	 in	 Python	 2,	 although	 it	 doesn’t	 print	 as	 nicely	 as	 in
Python	3.2	The	Python	2	syntax	for	print	is	fairly	ubiquitous	in	existing	Python	code.	For
new	code	it	is	probably	best	to	use	the	Python	3	syntax,	even	when	using	Python	2.	In	this
book	we	will	use	the	print	function	rather	than	the	print	statement.

Figure	3.3.	 Starting	the	interactive	Python	interpreter	on	different	operating
systems.	For	most	computer	systems	the	interactive	interpreter	is	started	by	issuing	the
‘python’	command	at	an	operating-system	prompt.	For	Windows	systems	the	PATH
environment	variable	will	need	to	be	set	first,	however,	as	illustrated	in	Figure	3.2.	Also,
for	Windows	the	interpreter	may	be	started	by	double-clicking	on	the	‘Python	(command
line)’	icon	(e.g.	accessed	via	the	start	menu),	or	by	double-clicking	on	the	installed
‘python.exe’	file.

The	print	operation	automatically	converts	anything	that	is	not	already	a	text	string	into
text	for	display.	Hence,	for	example,	you	can	print	numbers:

print(127)

Also,	 the	 value	 being	 printed	 might	 not	 be	 explicitly	 stated,	 coming	 instead	 from	 a
calculation	or	other	operation:

print(1	+	2	+	4	+	8	+	16)

And	 to	 print	 several	 things	 you	 can	 simply	 separate	 them	 with	 a	 comma,	 which	 as
standard	separates	the	printed	items	with	a	space:

print('The	meaning	of	life	is',	42)

If	you	want	 to	see	the	value	of	some	variable	when	running	Python	from	a	script	file
you	 need	 to	 explicitly	 use	 print.	 However,	 at	 the	 Python	 prompt	 just	 giving	 a	 variable
name,	 and	nothing	 else,	 on	 a	 line	will	 print	 it	 out,	 albeit	 sometimes	 slightly	 differently.
Note	 that	 print	 tidies	 things	 a	 little	 by	 rounding	 the	 last	 few	 decimal	 places,	 which	 is
normally	what	you	want:

>>>	x	=	0.333333333333333

>>>	print(x)

0.333333333333

>>>	x

0.333333333333333

>>>

Throughout	our	examples	we	will	be	adding	comments	to	the	Python	commands.	These
describe	 what	 is	 going	 on	 at	 a	 given	 point	 in	 the	 code,	 and	 we	 encourage	 you	 to	 add
helpful	explanations	to	the	relevant	points	in	your	programs.	Even	though	such	comments
are	passed	into	the	Python	interpreter,	they	are	ignored	and	serve	no	purpose	other	than	to
inform	anyone	who	reads	the	code.	In	Python,	single-line	comments	are	introduced	with
the	‘#’	character,	and	everything	after	this	character	on	that	line	constitutes	the	comment.
Comments	may	go	on	a	line	of	their	own,	but	it	 is	common	practice	to	add	them	after	a
command.	The	example	below	illustrates	the	addition	of	a	comment	to	the	end	of	a	line,
which	otherwise	adds	two	numbers.	As	will	be	discussed	below,	do	not	be	tempted	to	put
a	space	at	the	beginning	of	the	line.

>>>	2+2				#	this	is	a	comment

4

>>>

Whitespace	matters
One	 of	 the	 fundamental	 design	 decisions	Guido	 van	Rossum	made	when	 designing	 the
Python	language	was	to	designate	different	blocks	of	code	using	the	space	at	the	beginning
of	lines,	rather	than	using	curly	braces/brackets	as	many	other	languages	use	(e.g.	C,	Perl,
Java	etc.).	Thus	the	space	at	the	beginning	of	a	line	matters	in	terms	of	how	the	following
commands	are	interpreted.	Space	can	be	added	by	pressing	the	space	bar	or	the	Tab	key,
and	moves	the	characters	which	follow	to	the	right.	Things	like	space	and	tab,	which	have
no	 printed	 symbol,	 are	 often	 still	 considered	 as	 ‘characters’	 in	 computing	 and	 are
collectively	referred	 to	as	 ‘whitespace’.	 If	you	have	 too	 little	or	 too	much	whitespace	at
the	beginning	of	a	line	you	get	a	syntax	error.	The	syntax	error	indicates	that	the	Python
interpreter	was	unable	to	process	the	input	characters	in	a	meaningful	way.

>>>	2+2

4

>>>	2+2

	File	"<stdin>",	line	1

				2+2

				^

IndentationError:	unexpected	indent

>>>

Note	that	whitespace	after	 the	beginning	of	a	 line	does	not	matter	(between	 tokens	of
the	language):

>>>	2	+	2				#	this	is	same	as	2+2

4

>>>

Because	whitespace	at	the	beginning	of	a	line	is	required	to	delineate	blocks	of	code,	as
we	illustrate	later,	it	can	be	somewhat	problematic	if	not	used	appropriately.	In	particular,
you	 should	 never	 mix	 tabs	 with	 ordinary	 spaces	 (and	 from	 Python	 3	 this	 is	 illegal),
because	on	some	machines	a	tab	may	be	equivalent	to	four	spaces,	but	on	others	it	may	be
eight,	so	code	could	break	moving	it	from	one	machine	to	the	next.	In	many	text	editors
you	can	automatically	convert	tabs	to	ordinary	spaces	(sometimes	this	is	called	using	‘soft
tabs’)	and	that	is	what	we	recommend.

Using	variables
As	we	have	already	 illustrated,	we	can	create	 a	named	 item,	which	here	we	call	 ‘x’	 for
simplicity,	and	assign	it	to	a	value:

>>>	x	=	17

Using	the	above	example	we	can	introduce	some	more	jargon	computing	terms.	On	the
left-hand	side,	before	the	equals	sign,	we	have	a	variable.	On	the	right-hand	side	we	have
a	literal.	The	whole	line	here	is	a	statement	and	specifies	that	 the	variable	is	set	 to	have
value	equal	to	the	literal.	As	you	might	expect	from	the	term	‘variable’,	the	value	of	x	may
be	changed	by	assigning	a	new	value:

>>>	print(x)

17

>>>	x	=	3

>>>	print(x)

3

In	Python	the	names	we	give	variable	data	can	contain	only	the	usual	26	letters	(upper
and	 lower	case),	numbers	and	underscores	 (‘_‘),	with	 the	additional	 restriction	 that	 they
cannot	begin	with	 a	number.	Note	 that	names	are	 case-sensitive,	 so	 the	variables	DNA,
Dna	 and	 dna	 are	 all	 treated	 as	 distinct.	 In	 general,	 variables	 should	 have	 names	 that
indicate	 what	 their	 purpose	 and/or	 type	 are,	 in	 order	 to	 make	 the	 code	 more
understandable.	For	example,	if	you	state	freeEnergy	=	heat-entropy	and	not	x	=	p-q,	you
can	 see	 at	 a	 glance	 what	 is	 intended	 and	 have	 your	 program	 more	 easily	 understood,
including	by	yourself	at	a	later	date,	without	any	additional	comments.

We	can	use	as	many	different	variable	names	as	we	like	and	assign	their	value	based	on
other	variables.	For	 example,	 in	 the	 following	we	assign	a	value	 to	x	and	 then	assign	a
value	for	y	based	on	x:

>>>	x	=	17

>>>	y	=	x	*	13

>>>	print(y)

221

Unlike	many	computing	languages,	Python	is	not	a	language	where	you	must	initially
specify,	 and	 then	 stick	 to,	 a	 given	 kind	 or	 type	 of	 data	 for	 a	 given	 variable.	You	 could
initially	 allocate	 a	 numeric	 value	 to	 ‘x’,	 without	 advance	 warning,	 and	 then	 later	 on
change	‘x’	to	some	text.	This	differs	from	languages	like	C	and	Java,	for	example,	where
you	would	have	 to	declare	up	front	what	 type	of	data	‘x’	was	 to	contain.	 In	Python,	 the
type	of	variable	is	specified	by	the	type	of	whatever	its	value	is	set	to.	So	if	you	redefine	a
variable	 its	 type	may	 change.	Although	 variables	 can	 change	 type,	 it	 is	 usually	 best	 to
avoid	that	practice.

>>>	x	=	4						#	x	is	set	to	the	integer	4

>>>	3*x

12

>>>	x	=	7.1				#	x	now	set	to	the	floating	point	number	7.1

>>>	3*x

21.299999999999997

The	above	example	reminds	us	that	floating	point	calculations	are	not	always	precise.
The	answer	could	also	depend	on	the	Python	implementation	and	version.

Simple	data	types
As	with	other	computer	languages,	Python	has	various	simple,	inbuilt	types	of	data.	These
are	Boolean	values,	 integers,	 floating	point	numbers,	complex	numbers,	 text	 strings	and
the	null	object.

Boolean	 values	 represent	 truth	 or	 falsehood,	 as	 used	 in	 logic	 operations.	 Not
surprisingly,	 there	 are	 only	 two	 values,	 and	 in	 Python	 they	 are	 called	 True	 and	 False.3
Example	usage:

a	=	True

b	=	False

Integers	represent	whole	numbers,	as	you	would	use	when	counting	items,	and	can	be
positive	or	negative.	In	Python	2	there	are	two	types	of	integers,	plain	integers	and	 long
integers.4	 Plain	 integers	 have	 a	 maximum	 size	 dependent	 on	 the	 specific	 Python
implementation	you	are	using.	On	a	 typical	computer	 the	 largest	plain	 integer	would	be
231−1	 or	 263−1	 (for	 32	 bit	 and	 64	 bit	 respectively).	 There	 is	 no	 limit	 on	 long	 integers
except	 for	 what	 can	 fit	 into	 available	 memory.	 In	 Python	 3	 there	 is	 only	 one	 type	 of
integer,	 the	 long	 integer.	 Unless	 you	 are	 doing	 something	 unusual,	 there	 is	 no	 point
worrying	 about	 this	 distinction	 or	 the	 difference	 between	 the	 two	 types,	 and	 in	 most
situations	in	Python	2	the	plain	integers	will	suffice.	Example	usage:

x	=	-7

y	=	123

Floating	 point	 numbers	 (in	 mathematics	 the	 real	 numbers),	 which	 are	 written	 with
decimal	 points	 or	 exponential	 notation,	 are	 not	 always	 represented	 exactly,	 since	 a
computer	has	only	a	finite	amount	of	memory.	This	introduces	issues	to	do	with	numerical
errors,	 and	 potential	 instability	 of	 numerical	 algorithms.	 However,	 such	 issues	 are

common	to	all	computer	languages.	Example	usage:

z	=	123.45

There	 is	 also	 an	 inbuilt	 data	 type	 to	 represent	 complex	 numbers	 which	 you	 would
normally	write	in	the	form	‘a+bi’	(mathematical	notation)	or	‘a+bj’	(engineering	notation).
Although	 complex	 numbers	 occur	 quite	 naturally	 in	 mathematics,	 science	 and
engineering,	 relatively	 few	 Python	 programs	 use	 them.	 The	 Python	 syntax	 follows	 the
engineering	style	and	 the	 real	and	 imaginary	parts	can	 themselves	be	 integer	or	 floating
point:

x	=	3+4j

y	=	1.2-5.8j

Strings	represent	text,	i.e.	strings	of	characters.	They	can	be	delimited	by	single	quotes
(’)	or	double	quotes	(”),	but	you	have	to	use	the	same	delimiter	at	both	ends.	Unlike	some
programming	 languages,	 such	 as	 Perl,	 there	 is	 no	 practical	 difference	 between	 the	 two
types	 of	 quote,	 although	 using	 one	 type	 does	 allow	 the	 other	 type	 to	 appear	 inside	 the
string	as	a	regular	character.	Example	usage:

r1	=	'Ala'

r2	=	"Arg"

text	=	"It's	a	line	with	an	apostrophe"

Python	 also	 allows	 multi-line	 strings,	 which	 start	 and	 end	 either	 with	 triple	 single
quotes	(”’)	or	triple	double	quotes	(”””).	Example	usage:

text	=	"""Python	also	allows	multi-line	strings,	which

start	and	end	with	a	triple	single	quote	or	a	triple

double	quote."""

Note	 that	 the	 indentation	 inside	 the	string	does	not	have	 to	align	with	 the	start	of	 the
statement.	Any	whitespace	at	 the	beginning	or	end	of	 the	 internal	 lines,	 i.e.	between	 the
opening	 and	 closing	 triple	 quotes,	 does	make	 a	 difference	 though.	Hence,	 if	 the	 second
line	of	text	were	indented,	then	those	indentation	spaces	would	be	present	in	the	string.

The	last	of	 the	basic	data	 types	we	cover	here	 is	a	special	built-in	value	called	None,
which	can	be	thought	of	as	representing	nothingness	or	that	something	is	undefined.	For
example,	 it	 can	 be	 used	 to	 indicate	 that	 a	 variable	 exists,	 but	 has	 not	 yet	 been	 set	 to
anything	specific.	Example	usage:

z	=	None

Finally,	if	you	have	a	variable	and	want	to	know	what	its	data	type	is	then	you	can	use
the	type()	function.	This	actually	generates	a	special	object	representing	the	type,	though	it
prints	out	in	an	informative	way:

print(type(x))				#		'complex'

print(type(z))				#		'NoneType'

Arithmetic

Python	 mostly	 uses	 a	 similar	 syntax	 to	 other	 computer	 languages	 for	 performing
numerical	arithmetic:

x	+	y									#	addition

x	–	y									#	subtraction

x	*	y									#	multiplication

x	/	y									#	division

x	//	y								#	floored	division

x	%	y									#	remainder	of	x	/	y

x	**	y								#	x	to	power	y

pow(x,	y)					#	x	to	power	y

The	variables	x	and	y	can	be	integers,	floating	point	numbers	or	a	mixture.	If	both	are
integers	 the	result	 is	also	an	integer,	except	 in	 the	case	of	division	for	Python	version	3.
Otherwise	the	result	is	a	floating	point	number,	even	if	it	represents	a	whole	number.	Thus
4.6	+	2.4	is	7.0,	not	7.	This	also	includes	the	floored	quotient,	x//y,	which	gives	the	whole
number	part	of	the	division	of	x	and	y	as	floating	point.	For	example,	13.3//2.1	gives	6.0,
not	the	integer	equivalent.5

A	non-programmer	might	wonder	why	x//y	is	useful	at	all.	However,	it	turns	out	that	it
does	come	up	in	various	contexts,	but	mostly	when	x	and	y	are	integers.	This	brings	up	an
oddity,	which	Python,	before	version	3,	shares	in	common	with	many	computer	languages,
namely	that	for	integers,	the	operation	x/y	is	the	same	as	x//y.	A	non-programmer	might
expect	that	13/5	is	equal	to	2.6,	but	in	fact	it	is	equal	to	2,	the	integer	part	of	that.	This	is	in
contrast	to	doing	division	where	at	least	one	floating	point	number	is	involved	like	13/5.0,
13.0/5	or	13.0/5.0,	which	are	all	indeed	equal	to	2.6.	Hence	in	Python	2,	if	you	have	two
integers	and	want	to	do	the	traditional	non-integer	division	then	you	can	explicitly	convert
one	 of	 them	 to	 a	 floating	 point	 number	 using	 the	 float()	 function,	 so,	 for	 example,
float(13)/5.	(There	is	also	an	int()	function	for	converting	floating	point	numbers	to	their
integer	part.)

It	 is	 a	 historic	 accident	 that	 integer	 division	 behaves	 this	way,	 although	 the	 situation
changes	 in	 Python	 3,	 where	 integer	 division	 reverts	 to	 its	 more	 traditional	 ‘human’
meaning,	so	13/5	now	does	equal	2.6.	Accordingly,	 it	 is	 recommended	 that	 in	Python	2
you	avoid	x/y	if	x	and	y	are	integers,	but	instead	use	x//y.

Example	arithmetic	results:

13	+	5									#	18

13.0	+	5							#	18.0

13	–	5									#	8

13	–	5.0							#	8.0

13	/	5									#	2	in	Python	2;	2.6	in	Python	3

float(13)	/	5		#	2.6

13.0	/	5							#	2.6

13	//	5								#	2

13	//	5.0						#	2.0

As	 in	most	 computer	 languages,	 multiplication	 and	 division	 have	 higher	 precedence

than	addition	and	subtraction,	but	arithmetic	expressions	can	be	grouped	using	parentheses
to	override	the	default	precedence.	So	we	have:

13	*	2	+	5				#	31	since	"*"	has	higher	precedence	than	"+"

(13	*	2)	+	5		#	31

13	*	(2	+	5)		#	91

A	 common	 situation	 that	 arises	 is	 that	 a	 variable	 needs	 to	 be	 incremented	 by	 some
value.	For	example,	you	could	have:

x	=	x	+	1

which	increases	the	value	of	x	by	1.	Python	allows	a	shorthand	notation	for	 this	kind	of
statement:

x	+=	1

Also,	it	allows	similar	notation	for	the	other	arithmetic	operations,	for	example:

x	*=	y

assigns	x	to	be	the	product	of	x	and	y,	or	in	other	words	x	is	redefined	by	being	multiplied
by	y.

String	manipulation
Text	 items	 in	 Python	 are	 called	 strings,	 referring	 to	 the	 fact	 that	 they	 are	 strings	 of
characters.	String	functionality	is	an	important	part	of	the	Python	toolbox.	For	example,	a
file	 on	 disk	 (covered	 in	Chapter	6)	 is	 read	 as	 a	 string	 or	 a	 list	 of	 strings;	 a	 file	 can	 be
viewed	 as	 a	 collection	 of	 characters.	 Here,	 even	 if	 part	 of	 the	 loaded	 file	 represents	 a
number,	 it	 is	 initially	 represented	as	a	 string	of	characters,	not	a	proper	Python	numeric
object.	In	Python,	strings	are	not	modifiable.	This	might	seem	like	a	limitation,	but	in	fact
it	 rarely	 is	 because	 it	 is	 easy	 enough	 to	 create	 a	 new,	modified	 string	 from	 an	 existing
string.	And	since	strings	are	not	modifiable	 it	means	 that	 they	can	be	placed	 in	sets	and
used	as	keys	in	dictionaries,	both	of	which	are	exceedingly	useful.

In	 this	 section	 we	 will	 illustrate	 some	 basic	 manipulations	 on	 strings	 using	 the
following	example	string:

text	=	'hello	world'				#	same	as	double	quoted	"hello	world"

In	some	ways	a	string	can	be	thought	of	as	a	list	of	characters,	although	in	Python	a	list
of	 characters	would	be	 a	different	 entity	 (see	below	 for	 a	discussion	of	 lists).	Note	 that
when	 we	 refer	 to	 something	 in	 a	 string	 as	 being	 a	 character,	 we	 don’t	 just	 mean	 the
regular	 symbols	 for	 letters,	 numbers	 and	 punctuation;	 we	 also	 include	 spaces	 and
formatting	 codes	 (tab	 stop,	 new	 line	 etc.).	 You	 can	 access	 the	 character	 at	 a	 specific
position,	or	index,	using	square	brackets:

text[1]																	#	'e'

text[5]																	#	'	'	–	a	space

Note	that	the	index	for	accessing	the	characters	of	a	string	starts	counting	from	0,	not	1.

Thus	the	first	character	of	a	string	is	index	number	0.	At	first	 this	can	seem	odd	to	non-
programmers,	but	 it	 is	by	 far	 the	most	 sensible	convention,	and	 is	used	 in	most	modern
computer	languages.

Bear	in	mind	that	we	cannot	change	the	characters	of	a	string.	For	example,	we	get	an
error	if	we	try	to	change	the	first	position	to	an	‘H’:

text[0]	=	'H'											#	Fails!

TypeError:	'str'	object	does	not	support	item	assignment

You	can	count	backwards	from	the	end	of	the	string,	where	index	-1	is	the	last	character
of	the	string:

text[-3]													#	'r'

If	 a	 string	 has	 n	 characters,	 then	 the	 minimum	 value	 of	 the	 index	 is	 –n	 and	 the
maximum	value	is	n-1.	If	the	index	falls	outside	this	range	an	error	is	generated;	Python
makes	an	Exception	object	which	 reports	what	 the	error	was	 (see	 the	next	chapter	 for	a
description	of	these).

Python	also	has	a	very	convenient	slicing	notation,	to	access	a	substring	from	within	a
string.	The	notation	[start:stop]	 refers	 to	 the	 characters	 from	position	 start	 up	 to	but	not
including	position	stop.	As	with	single	indices,	 these	positions	can	be	negative.	The	fact
that	it	is	‘up	to	but	not	including’	might	seem	odd,	but	as	with	the	indices	counting	from	0,
this	 turns	out	 to	be	a	 sensible	convention.	 In	particular,	 if	 start	and	stop	numbers	 in	 the
slice	notation	are	both	non-negative	then	the	number	of	characters	in	the	resulting	slice	is
just	 the	difference	between	the	 two	values	(stop-start),	or	put	another	way	[start:start+n]
gives	n	characters.

As	a	further	convenience,	if	you	leave	out	the	start	entirely	giving	just	[:stop],	then	the
slice	starts	at	the	very	beginning;	the	start	point	is	taken	to	be	0.	If	you	leave	out	the	stop,
so	have	[start:],	 then	 the	slice	continues	 to	 the	very	end;	as	 if	 stop	were	 taken	 to	be	 the
length	of	the	string.	Thus,	for	example,	[:n]	refers	to	the	first	n	characters	of	the	string.

text[1:3]												#	'el'

text[1:]													#	'ello	world'

text[1:-1]											#	'ello	worl'

text[:-1]												#	'hello	worl'

This	leads	to	the	proper	way	to	(effectively)	change	the	first	character	of	the	example
string.	We	can	use	a	slice	to	access	the	characters	we	wish	to	keep	and	redefine	text:

text	=	'H'	+	text[1:]				#	'Hello	world'

You	can	check	if	a	substring	is	contained	in	a	string:

'wor'	in	text								#	True

'war'	in	text								#	False

or	is	not	contained	in	(is	absent	from)	a	string:

'wor'	not	in	text				#	False

'war'	not	in	text				#	True

There	are	two	functions	that	let	you	determine	the	position	of	(the	first	occurrence	of)	a
substring	inside	a	string:

text.index('wor')				#	6

text.find('wor')					#	6

Note	 that	 the	value	 returned	 is	 the	 index	of	 the	 first	 character	of	 the	 substring	 in	 the
string.	The	difference	between	these	functions	is	how	they	deal	with	the	situation	when	the
substring	is	not	contained	in	the	string.	For	the	index()	function	an	error	is	generated,	but
instead	the	find()	function	returns	−1:

text.find('war')					#	-1

It	is	a	matter	of	taste	which	version	you	use.	Nonetheless,	it	might	have	been	better	for
find()	to	return	None	if	 the	substring	isn’t	present.	You	can	search	from	the	(right-hand)
end	of	the	string	instead	of	the	beginning:

text.index('l')						#	2

text.rindex('l')					#	9

text.find('l')							#	2

text.rfind('l')						#	9

When	you	read	a	file,	you	often	end	up	with	whitespace	characters	(newlines,	carriage
returns,	 tabs	 and	 spaces)	 that	 you	 want	 to	 get	 rid	 of,	 or	 deal	 with.	 There	 are	 various
functions	for	this.	Here	we	will	consider	a	string	with	two	leading	spaces	and	two	trailing
spaces:

line	=	'		hello	world		'

You	can	strip	off	the	whitespace	from	both	ends:

line.strip()									#	'hello	world'

Note	 that	 since	 strings	 are	 not	 modifiable,	 this	 gives	 back	 a	 new	 string;	 it	 does	 not
modify	the	original	string.	You	can	also	strip	whitespace	from	just	the	beginning	(left)	or
end	(right)	of	the	string:

line.lstrip()								#	'hello	world		'

line.rstrip()								#	'		hello	world'

There	 is	 no	 inbuilt	 function	 to	 remove	 all	whitespace	 from	 everywhere	 in	 the	 string,
including	any	in	the	middle.	This	is	possible	using	the	regular	expression	module,	which
we	discuss	in	detail	in	Appendix	5.

You	 can	 split	 up	 your	 string	 into	 separate	 substrings	 according	 to	 the	 presence	 of
whitespace.	This	creates	a	list	of	strings,	where	a	‘list’	is	simply	a	container	for	the	strings
(here	represented	by	square	brackets).	Lists	are	Python	objects	in	their	own	right	and	are
discussed	further	in	the	next	section.

line.split()	#	['hello',	'world']	–	a	list	of	two	strings

Note	 that	 this	automatically	strips	off	 the	whitespace	at	 the	beginning	and	end	before
doing	 any	 splitting.	 You	 can	 also	 split	 on	 an	 arbitrary	 substring,	 noting	 that	 (quite

sensibly)	this	does	not	strip	off	the	whitespace	at	the	beginning	or	end:

line.split('wor')				#	['		hello		',	'ld		']

Given	that	you	can	split	a	string	into	parts,	it	 is	quite	natural	that	you	can	also	do	the
opposite	and	join	a	number	of	strings	together	into	one	long	string.	For	example,	given	a
variable	 that	 represents	 a	 list	 of	 strings,	 which	 we	 write	 inside	 square	 brackets	 and
separate	with	commas:

myList	=	['Homer',	'Marge',	'Maude',	'Ned']

you	may	want	to	create	one	long,	combined	string:

longText	=	'Homer,	Marge,	Maude,	Ned'

This	is	done	using	the	join()	function,	where	you	connect	 the	items	from	the	list	with
some	 other	 connecting	 string	 (e.g.	 with	 commas	 and	 spaces).	 However,	 although	 you
might	 expect	 the	 joining	 function	 to	 come	 from	 the	 list,	 it	 actually	 belongs	 to	 the
connecting	string.	Thus,	you	do	not	do:

longText	=	myList.join(connectorString)			#	Not	used

Instead	the	correct	Python	way	is:

longText	=	connectorString.join(myList)

The	syntax	can	take	a	bit	of	time	to	become	familiar,	because	the	string	that	is	linking
things	together	might	be	defined	on	the	same	line	where	the	joining	occurs.	Considering
the	following:

cities	=	['London',	'Paris',	'Berlin']

connector	=	'->'

connector.join(cities)		#	'London->Paris->Berlin'

The	last	lines	could	be	written	as	one,	without	an	intermediate	variable	name:

'->'.join(cities)							#	'London->Paris->Berlin'

Thus,	 the	 connecting	 string	 is	 the	 thing	 that	 comes	 before	 the	 dot.	 A	 further	 point,
which	 can	 catch	 you	 out,	 is	 that	 all	 the	 items	 that	 are	 to	 be	 joined	 together	 have	 to	 be
strings;	no	other	type	will	do.	Also,	the	joining	string	is	only	added	in-between	the	items
of	the	list	not	at	the	beginning	or	end.

The	 join()	 function	also	allows	you	 to	concatenate	 items	 together	without	adding	any
extra	characters,	using	an	empty	string.	For	example,	suppose	you	have	a	list	of	one-letter
codes	for	a	DNA	sequence	(or	protein	or	RNA)	and	want	to	create	a	string	of	all	the	letters
joined	together.	Then	you	could	do:

sequence	=	['G',	'C',	'A',	'T']

seq	=	''.join(sequence)											#	'GCAT'

You	 can	 also	 do	 string	 concatenation	 using	 the	 ‘+’	 operator,	 so	 an	 alternative	 to	 the
above	would	be:

seq	=	sequence[0]	+	sequence[1]	+	sequence[2]	+	sequence[3]

#	seq	is	'GCAT'

This	is	generally	not	a	good	approach	if	the	list	is	long,	because	it	is	much	less	efficient
than	 using	 the	 join()	method.	And	 in	 any	 case	 you	would	 usually	 not	write	 out	 the	 list
elements	 in	 full;	 you	 would	 use	 a	 loop	 to	 go	 through	 each	 item	 in	 turn	 (see	 the	 next
chapter).	On	 the	other	hand,	 for	concatenating	only	a	 few	strings	 together	 it	 is	perfectly
acceptable	 to	do	 it	 this	way.	As	another	 example,	 suppose	you	have	 some	numbers	 and
want	 to	 create	 a	 string	 with	 this	 information	 in	 it.	 Then	 you	 could	 do	 the	 following,
converting	the	numbers	to	strings	using	str():

x	=	12

y	=	5

text	=	"I	have	"	+	str(x)	+	"	apples	and	"	+	str(y)	+	"	oranges."

#	the	text	is	"I	have	12	apples	and	5	oranges."

Even	here,	though,	Python	offers	an	alternative,	which	is	to	use	a	formatted	string.	So
we	could	write	the	above	instead	as:

text	=	"I	have	%d	apples	and	%d	oranges."	%	(x,y)

Here	%d	is	a	formatting	code	and	represents	the	places	in	the	text	to	insert	 the	digits.
The	values	for	the	digits	are	contained	in	the	round-bracketed	‘tuple’	collection	at	the	end
(see	below	for	discussion	of	 tuples),	after	 the	bare	%	sign.	Naturally,	 there	should	be	as
many	formatting	codes	in	the	initial	string	as	there	are	items	to	insert.	If	we	were	inserting
other	types	of	data	then	we	would	use	different	codes,	for	example,	%s	to	insert	a	string
and	%f	for	a	floating	point	value:

name	=	'Barry'

weight	=	82.173

text	=	"The	weight	of	%s	is	%f	kg"	%	(name,	weight)

#	Gives	"The	weight	of	Barry	is	82.173000	kg"

We	can	optionally	 specify	 the	number	of	decimal	places	 to	use	 for	 the	 floating	point
value	by	adjusting	its	formatting	code.	For	example,	%.1f	can	be	used	so	that	the	weight	is
written	out	with	one	digit	after	the	decimal	place,	rounding	as	appropriate:

text	=	"The	weight	of	%s	is	%.1f	kg"	%	(name,	weight)

#	Gives	"The	weight	of	Barry	is	82.2	kg"

If	you	also	wanted	at	least	five	total	characters	for	the	weight,	padding	with	spaces,	you
would	 write	 %5.1f.	 It	 is	 notable	 that	 you	 can	 actually	 use	 %s	 for	 every	 type	 of	 data,
because	values	will	be	automatically	converted	into	a	representative	string,	but	if	you	want
to	 fine-tune	 the	 appearance	 of	 floating	 point	 numbers	 then	 it	 is	 best	 to	 use	 the	 %f
construct.

There	are	 analogous	options	 for	 the	%d	construct	 used	with	 integers.	So	%5d	means
that	at	least	five	places	are	used	to	display	the	integer,	and	%05d	means	that	you	zero-pad
the	 five	places	 at	 the	 left,	 if	 necessary.	For	 example,	 you	 could	 create	 a	 string	with	 the

time	of	day	via:

hours	=	12

minutes	=	5

seconds	=	43

t	=	"%02d:%02d:%02d"	%	(hours,	minutes,	seconds)

#	t	is	"12:05:43"

Python	has	a	notable	tweak	with	string	formatting:	if	the	collection	of	values	that	is	to
be	substituted	only	has	one	item	then	you	can	just	use	the	item	directly,	rather	than	using
brackets	(which	represents	a	tuple,	see	below).	So

"My	name	is	%s"	%	name

is	equivalent	to

"My	name	is	%s"	%	(name,)

See	 Appendix	 4	 for	 a	 more	 complete	 table	 of	 formatting	 codes	 and	 a	 thorough
description	of	the	new-style	formatting	system	specified	with	string.format()	method.

Collection	data	types
As	well	as	the	simple	data	types,	Python	has	several	common	collection	data	types,	tuples,
lists,	sets	and	dictionaries,	that	provide	a	means	of	bringing	multiple	items	together	into	a
container.

The	simplest	collection	 type	 is	a	 tuple.	A	 tuple	contains	a	 fixed	number	of	 items	and
once	 it	 is	 created	 it	 cannot	be	modified.	You	can	 think	of	 it	 as	a	 fixed	 (immutable)	and
ordered	collection	of	items.	A	tuple	is	defined	using	a	left	round	parenthesis	‘(’	at	the	start
and	a	right	round	parenthesis	‘)’	at	the	end.	For	example,	we	could	have:

x	=	()																	#	empty	tuple

x	=	("Ala",)											#	tuple	with	one	item

x	=	(123,	54,	92,	54)		#	tuple	with	four	items

Note	the	peculiar-looking	syntax	for	tuples	with	only	one	item	inside;	there	is	a	comma
(‘,’)	 at	 the	 end.	This	 is	 because	otherwise	Python	would	 interpret	 the	parentheses	 as	 an
expression	 rather	 than	 a	 tuple.	 For	 example,	 (2+3)	 is	 a	mathematical	 expression	 for	 the
number	5,	but	(2+3,)	is	a	tuple	containing	one	item	(again	5).	So	parentheses	are	used	in
both	 these	 contexts	 in	 Python,	 and	 the	 comma	 is	 a	 small	 irritation	 that	 results	 to	 avoid
ambiguity.

The	items	inside	a	tuple	can	repeat	themselves	and	be	of	different	data	types;	you	can
mix	numbers,	strings	or	whatever.	In	common	usage,	however,	the	items	tend	to	all	be	of
the	 same	 type,	 as	 illustrated	 above.	Also,	 an	 item	 inside	 a	 tuple	 does	 not	 have	 to	 be	 a
simple	data	type,	it	can	itself	be	a	collection,	or	even	a	user-defined	type	(which	we	come
to	in	Chapter	7).	A	nonsense	example	of	a	 tuple	with	mixed	 types	and	repetition,	where
the	last	item	is	another	tuple,	inside	the	first,	is:

x	=	(2,	2,	'banana',	False,	('a','b'))

Like	all	the	collection	types,	tuples	may	also	be	created	using	variables:

x	=	1.2

y	=	-0.3

z	=	0.9

t	=	(x,	y,	z)

The	next	simple	collection	type	is	a	 list.	A	list	contains	an	arbitrary	number	of	 items,
and	new	items	can	be	added	and	existing	ones	removed.	As	with	tuples,	the	items	in	a	list
remain	 in	 their	 specified	order.	The	major	difference	between	 lists	and	 tuples	 is	 that	 the
contents	of	a	list	can	be	modified,	whereas	a	tuple	is	fixed	at	the	moment	it	is	defined.	A
list	is	defined	using	a	left	square	bracket	‘[’	at	the	start	and	a	right	square	bracket	‘]’	at	the
end.	For	example,	we	could	have:

x	=	[]																	#	empty	list

x	=	["Ala"]												#	list	with	one	item

x	=	[123,	54,	92,	54]		#	list	with	four	items

As	with	tuples,	the	items	in	a	list	can	repeat	and	be	of	different	data	types,	although	in
normal	usage	they	tend	to	all	have	the	same	type.	And	again,	an	item	does	not	have	to	be	a
simple	data	type.	You	can	convert	a	tuple	to	a	list	with	the	inbuilt	list()	function,	and	you
can	convert	a	list	to	a	tuple	with	the	tuple()	function:

t	=	(123,	54)

x	=	list(t)				#	x	is	[123,	54],	t	is	still	(123,	54)

w	=	tuple(x)			#	w	is	(123,	54),	x	is	still	[123,	54]

The	next	collection	type	is	a	set.	A	set	contains	an	arbitrary	number	of	items,	and	can	be
modified;	 new	 items	 can	 be	 added	 and	 existing	 ones	 removed.	 Unlike	 tuples	 and	 lists,
however,	the	items	in	a	set	are	not	in	any	order.	Also,	an	item	can	only	appear	once	in	a
set;	 if	you	try	and	add	the	same	item	twice	then	the	second	time	it	will	be	ignored.	Sets
were	 introduced	 relatively	 late	 into	 Python6,	 and	 so	 the	 syntax	 used	 a	 keyword,
specifically	set(collection)	to	get	a	filled	set	or	set()	to	get	an	empty	set.	When	we	pass	a
collection	 (list,	 tuple	 or	 other	 set)	 to	 the	 construction	 the	 contents	 of	 the	 collection	 are
used	to	define	the	contents	of	the	set.

x	=	set()																					#	Empty	set

listData	=	[123,	54,	92,	54]

x	=	set(listData)													#	Set	with	_three_	items

Note	that	the	second	set	has	three	items,	not	four,	because	the	54	is	repeated	and	so	the
second	one	is	ignored.	Because	set()	does	not	take	more	than	one	argument,	extra	brackets
are	often	used	to	create	an	inner	collection,	for	specifying	multiple	items	directly:

x	=	set(1,4,9,16,25)					#	Fails!	–	Multiple	arguments

x	=	set([1,4,9,16,25])			#	Works	–	Brackets	make	a	single	list

In	 Python	 2.7	 and	 in	 Python	 3,	 although	 set()	 is	 still	 used	 for	making	 sets	 with	 the
contents	of	other	collections,	a	new	shorter	notation	can	be	used	for	directly	defining	non-
empty	sets.7

x	=	{123,	54,	92,	54}

Be	aware	that	creating	a	set	using	an	inner	tuple	requires	an	extra	comma	if	the	tuple
contains	only	one	item,	otherwise	the	parenthesis	will	effectively	be	ignored.	Using	square
brackets,	to	make	an	inner	list	instead,	does	not	have	this	issue.

x	=	set(("Ala"))									#	A	set	containing	three	letters!

x	=	set(("Ala",))								#	Set	containing	one	string	item

x	=	set(["Ala"])									#	Set	containing	one	string	item

As	with	 tuples	 and	 lists,	 the	 items	 inside	 a	 set	may	 represent	 a	mixture	 of	 different
kinds	of	data,	 so	you	could	have	a	 set	containing	both	numbers	and	 text	 if	you	wanted,
although	in	normal	usage	they	tend	to	all	be	of	the	same	type.	Additionally,	an	item	does
not	 have	 to	 be	 one	 of	 the	 simple	Python	 types;	 you	 could	 place	 your	 own	 custom	data
objects	in	it.

There	is	a	significant	caveat	with	putting	things	in	sets	because	it	turns	out	that	not	all
Python	data	types	can	be	placed	in	one.	Only	items	that	can	be	described	as	hashable	can
go	 in.	 The	 concept	 of	 hashability8	 is	 perhaps	 too	 complex	 to	 describe	 at	 this	 point.
However,	the	basic	essence	of	the	situation	is	that	if	an	item	is	to	be	allowed	within	a	set	it
cannot	be	modified	 internally,	 to	 take	on	a	new	value.	 If	 such	value	modifications	were
allowed	 then	 items	 inside	a	set	could	be	changed	so	 that	 they	become	indistinguishable,
and	this	is	inconsistent	with	sets	not	having	repeats.	The	inbuilt	simple	types	like	integers
and	strings	are	not	modifiable,	because	their	values	define	what	they	are.	Thus,	these	are
hashable	and	hence	are	allowed	as	set	items.	Modifiable	collections	like	lists,	dictionaries
and	other	sets	are	not	allowed	as	items,	because	when	their	content	changes	so	does	their
value.

The	 final,	main	 collection	 type	 is	 a	dictionary.	 (Python	dictionaries	 are	 equivalent	 to
hash	maps	in	Java	and	hashes	in	Perl	and	Ruby.)	A	dictionary	is	a	mapping	between	a	set
of	 identifying	 keys	 and	 specific	 values,	 one	 for	 each	 key.	An	 item	 in	 a	 dictionary	 is	 a
key:value	 pair	 that	 represents	 one	 entry.	A	 dictionary	 is	modifiable;	 new	 entries	 can	 be
added,	existing	entries	can	be	removed	and	existing	entries	can	be	modified	by	changing
the	value	associated	with	a	key.	A	dictionary	is	defined	using	a	left	curly	bracket	‘{’	at	the
start	and	a	right	curly	bracket	‘}’	at	the	end.	When	written	out	in	full	the	key	and	value	of
a	pair	is	linked	by	a	colon	‘:’	and	different	pairs	are	separated	with	commas.	For	example,
we	could	have:

x	=	{}																													#	empty	dictionary

x	=	{"Ala":	71.07}																	#	dictionary	with	one	entry

x	=	{"Ala":	71.07,	"Arg":	156.18}		#	dictionary	with	two	entries

The	last	dictionary	above	maps	the	string	‘Ala’	to	the	value	71.07	and	the	string	‘Arg’
gets	mapped	to	the	value	156.18.	Although	a	dictionary	value	can	be	of	any	type,	a	key	in
a	dictionary	must	be	hashable	(not	internally	modifiable),	in	the	same	way	as	an	item	in	a
set.	 Not	 only	 does	 this	 guarantee	 that	 the	 keys	 of	 the	 dictionary	 don’t	 repeat,	 it	 also
provides	an	efficient	look-up	mechanism.	Neither	the	keys	nor	the	values	have	to	all	be	of
the	 same	 data	 type,	 although	 in	 use	 they	 often	 are;	 it	 is	 quite	 common	 for	 keys	 to	 be
strings.	You	can	think	of	an	English	dictionary	as	being	a	map	from	words	to	definitions,
in	which	case	both	the	keys	(the	words)	and	the	values	(the	definitions	of	each	word)	are

text	 strings.	 Though,	 one	 difference	 is	 that	 an	 English	 dictionary	 is	 ordered
(alphabetically)	but	a	Python	dictionary	is	not.

After	having	described	the	major	collection	types,	a	question	arises	as	to	why	we	need
the	tuple	data	type	at	all,	since	a	list	is	everything	that	a	tuple	is	and	more.	There	are	three
basic	reasons.	The	first	reason	is	that	tuples	are	more	efficient	computationally,	although
normally	that	is	not	a	big	issue.	The	second	reason	is	that	a	program	might	want	to	return	a
tuple	rather	than	a	list	to	users	because	it	does	not	want	the	collection	to	be	modified;	an
example	would	be	(latitude,	longitude)	coordinates	where	both	items	go	together	to	give	a
meaningful	outcome.	The	third	reason	is	 that,	as	mentioned	above,	 lists	can	be	modified
and	 so	 are	 not	 hashable.	 Hence,	 lists	 cannot	 be	 used	 as	 items	 in	 a	 set	 or	 as	 keys	 in
dictionaries,	whereas	tuples	can.	You	can	think	of	a	tuple	as	a	frozen	list.

Although	sets	are	modifiable	and	so	not	hashable,	there	is	a	variant	of	sets	that	is,	and
these	are	called	frozen	sets.	Accordingly,	a	frozen	set	is	an	unordered	collection	of	items,
without	 repetition,	 and	 which	 cannot	 be	 modified.	 To	 create	 a	 frozen	 set	 you	 use	 the
nomenclature	 frozenset(…)	 instead	 of	 set(..).	You	 can	 think	 of	 the	 relationship	 between
sets	and	frozen	sets	as	being	the	same	as	the	relationship	between	lists	and	tuples.	There
are	no	inbuilt	frozen	dictionaries	in	Python,	although	you	could	add	them	yourself	if	you
were	really	keen	(by	making	a	custom	object	which	inherits	properties	of	a	dictionary,	but
where	some	of	the	innards	are	redefined).

List	and	tuple	manipulation
In	 this	 section	we	will	 illustrate	 some	basic	manipulations	 on	 tuples	 and	 lists	 using	 the
following	tuple	and	list	examples	to	do	this:

t	=	(123,	54,	92,	87,	33)										#	tuple

x	=	[123,	54,	92,	87,	33]										#	list

When	you	need	 to	 fetch	a	value,	 from	a	 tuple	or	 list,	 the	 items	are	accessed	by	 their
index	number:	the	position	of	the	desired	item	relative	to	the	start.	Although	Python	uses
round	parentheses	to	define	tuples	and	square	brackets	 to	define	lists,	when	you	want	to
access	an	item	of	a	tuple	or	list,	in	both	cases	you	use	square	brackets,	i.e.	myList[index],
myTuple[index]	will	fetch	the	value	at	the	index	position	of	the	list	and	tuple	respectively.
Note	 that	 the	 index	for	accessing	 items	of	 tuples	and	 lists	 starts	counting	 from	0,	 not	 1.
Thus	the	first	item	of	a	tuple	or	list	is	the	element	with	index	0.	By	way	of	example,	here
we	obtain	the	first	item	of	the	above	defined	tuple	and	the	third	element	of	the	list:

t[0]				#	123

x[2]				#	92

Python	 also	 lets	 you	 access	 items	 starting	 from	 the	 end	 of	 the	 tuple	 or	 list	 using
negative	indices,	where	the	index	-1	refers	to	the	last	item,	-2	to	the	next-to-last	etc.

t[-1]			#	33

x[-3]			#	92

If	 the	 tuple	 or	 list	 has	 n	 items,	 then	 the	minimum	 value	 of	 the	 index	 is	 –n	 and	 the
maximum	value	is	n-1.	If	the	index	falls	outside	this	range	an	error	is	generated;	Python

makes	an	Exception	object	which	 reports	what	 the	error	was	 (see	 the	next	chapter	 for	a
description	of	 these).	As	with	 strings,	Python	has	 a	very	 convenient	 slicing	 notation,	 to
access	a	range	of	items	from	within	a	tuple	or	list.	The	notation	[start:stop]	 refers	 to	 the
items	 from	position	 start	up	 to	but	not	 including	 position	 stop.	As	with	 single	 indices,
these	positions	can	be	negative.

As	a	further	convenience,	if	you	leave	out	the	start	entirely	giving	just	[:stop],	then	the
slice	starts	at	the	very	beginning;	the	start	point	is	taken	to	be	0.	If	you	leave	out	the	stop,
so	have	[start:],	 then	 the	slice	continues	 to	 the	very	end;	as	 if	 stop	were	 taken	 to	be	 the
length	of	the	tuple	or	list.	Thus,	for	example,	[:n]	refers	to	the	first	n	items	of	the	tuple	or
list.	If	you	leave	out	both	the	start	and	stop	points	then	you	get	back	a	copy	of	the	original
tuple	or	list,	and	this	is	a	convenient	way	of	doing	that.

t[1:3]													#	(54,	92)

t[1:]														#	(54,	92,	87,	33)

x[1:-1]												#	[54,	92,	87]

x[:-1]													#	[123,	54,	92,	87]

x[:]															#	[123,	54,	92,	87,	33]	–	A	copy

You	can	check	if	an	item	is	present	inside	a	tuple	or	list	by	using	the	in	operator,	which
gives	you	back	a	Boolean	value	(true	or	false):

92	in	t												#	True

93	in	x												#	False

Similarly	you	can	also	check	if	an	item	is	not	within	a	tuple	or	list:

92	not	in	t								#	False

93	not	in	x								#	True

Neither	 of	 these	 is	 a	 particularly	 efficient	 operation	 (computationally),	 so	 for	 long
tuples	and	lists	you	may	want	to	avoid	doing	too	many	of	this	kind	of	check	if	possible.
With	checks	of	this	kind	to	be	more	efficient	you	would	often	use	sets.

For	lists	and	tuples	you	can	count	the	number	of	occurrences	of	an	item,	which	may	be
more	useful	than	simply	detecting	its	presence:

y	=	[3,	11,	7,	3]

y.count(3)									#	2

For	lists	you	can	check	at	which	index	a	given	item	is	located,	noting	that	this	gives	the
first	occurrence	if	there	is	more	than	one:

x.index(87)								#	3

The	index()	function	also	exists	for	tuples	in	versions	of	Python	from	2.6	onwards	(it	is
slightly	 odd	 that	 it	 took	Python	 so	 long	 to	 introduce	 it).	Using	 index()	 is	 also	 not	 very
computationally	efficient,	 although	 it	 is	not	often	needed.	The	 len()	 function	 returns	 the
number	of	items	in	the	tuple	or	list;	its	length	in	other	words:

len(t)													#	5

len(x)													#	5

So	far	we	have	been	discussing	how	to	access	the	items	in	a	tuple	or	list.	Tuples	are	not
modifiable	so	the	above	is	pretty	much	the	end	of	the	story	for	them.	However,	given	that
lists	are	modifiable	there	are	more	things	we	need	to	consider.	You	can	change	the	item	at
a	specific	position	in	the	list:

x[1]	=	55										#	x	now	[123,	55,	92,	87,	33]

If	you	mistakenly	tried	the	same	operation	on	a	tuple	you	would	get	an	error:

t[1]	=	55										#	Fails!

TypeError:	'tuple'	object	does	not	support	item	assignment

You	can	append	new	items	to	the	end	of	a	list:

x.append(17)							#	x	now	[123,	55,	92,	87,	33,	17]

You	can	add	a	list’s	items	on	to	the	end	of	another:

y	=	[1,	2]

y.extend(x)								#	y	now	[1,	2,	123,	55,	92,	87,	33,	17]

You	can	insert	items	at	specific	positions:

x.insert(1,	99)				#	x	now	[123,	99,	55,	92,	87,	33,	17]

Here,	 for	 example,	 the	 index	 of	 1	 indicates	 what	 its	 final	 position	 will	 be	 after	 the
insertion;	it	is	inserted	before	the	previous	item	at	position	1.	And	if	the	index	is	the	length
of	 the	 list	 then	 the	 insertion	 is	 after	 the	 last	 existing	 item,	which	 is	 equivalent	 to	 using
append.	Strangely,	if	the	index	is	less	than	0	it	acts	as	if	it	were	0,	inserting	before	the	first
item.	 Similarly,	 any	 index	 greater	 than	 the	 length	 of	 the	 list	 inserts	 after	 the	 last	 item.
Either	way,	no	error	is	triggered	for	having	an	out-of-range	index.

You	can	remove	a	specific	item	from	within	the	list,	thus	shortening	it:

x.remove(92)							#	x	now	[123,	99,	55,	87,	33,	17]

This	will	cause	an	error	 if	 the	 item	is	not	 in	 the	 list.	You	can	also	delete	an	 item	at	a
specific	position	with	the	del	statement:

del	x[4]											#	x	now	[123,	99,	55,	87,	17]

This	will	 cause	 an	 error	 if	 the	 index	 is	 out	 of	 range.	Lists	 also	 have	 a	 pop()	method
which	allows	you	 to	 remove	 (‘pop	out’)	 the	 item	at	a	particular	 index,	but	 this	 function
will	also	return	the	value	of	the	item,	rather	than	discarding	it	entirely:

y	=	x.pop(2)							#	x	now	[123,	99,	87,	17],	y	is	55

You	can	even	change	a	range	of	items	of	a	list	to	a	new	range	of	items	using	the	slice
notation,	although	this	takes	some	getting	used	to:

x[1:3]	=	[19,	21,	5]		#	x	now	[123,	19,	21,	5,	17]

This	has	replaced	two	items,	at	positions	1	and	2,	with	three	new	items.

You	can	reverse	the	order	of	the	items	in	a	list:

x.reverse()								#	x	now	[17,	5,	21,	19,	123]

Also,	lists	can	be	sorted	internally	using	the	sort()	function:

x.sort()											#	x	now	[5,	17,	19,	21,	123]

If	you	want	a	new	list	to	be	generated	as	a	result	of	the	sorting,	rather	than	the	original
list	being	altered,	then	you	can	use	the	sorted()	function:

x	=	[123,	54,	92,	87,	33]

y	=	sorted(x)						#	y	=	[33,	54,	87,	92,	123],	x	unchanged

Note	the	difference	in	syntax,	so	there	is	no	sort(x)	and	also	no	x.sorted().	 In	 fact	 the
sorted()	function	can	also	be	used	on	tuples	and	sets,	but	still	returns	a	new	list:

t	=	(123,	54,	92,	87,	33)

y	=	sorted(t)						#	y	=	[33,	54,	87,	92,	123],	t	unchanged

The	sort()	and	sorted()	functions	use	the	‘natural’	sort	order	of	the	items;	numeric	and
alphabetic.	However,	it	is	possible	to	specify	another	ordering	method,	for	example,	to	get
the	reverse	of	the	sort.	These	topics	are	covered	in	Chapter	5	on	functions.

Set	manipulation
In	this	section	we	will	illustrate	some	basic	manipulations	on	sets	using	the	following	set,
containing	three	items:

s	=	{123,	54,	92}

The	items	in	a	set	are	not	in	any	order	and	so	it	does	not	mean	anything	to	access	them
by	index.	In	fact,	there	is	no	way	to	inquire	about	a	specific	item	in	a	set.	However,	you
could	put	 the	same	 items	 in	a	 tuple	or	a	 list	and	access	 that,	but	even	 then,	because	 the
items	in	a	set	are	unordered,	the	order	in	the	resulting	tuple	or	list	is	arbitrary:

x	=	tuple(s)				#	x	now	(123,	92,	54),	s	still	a	set

x	=	list(s)					#	x	now	[123,	92,	54],	s	still	a	set

You	can	check	whether	an	item	is	present	in	a	set,	which	is	a	computationally	efficient
operation,	like	with	dictionaries,	but	unlike	lists	and	tuples:

54	in	s									#	True

55	in	s									#	False

You	can	also	check	whether	an	item	is	not	in	(absent	from)	a	set:

54	not	in	s					#	False

55	not	in	s					#	True

The	len()	function	returns	the	number	of	items	in	the	set:

len(s)										#	3

You	can	add	items	to	a	set:

s.add(77)							#	s	now	{123,	54,	92,	77}

If	you	try	and	add	an	item	to	a	set	that	is	already	contained	in	the	set	then	the	operation
will	effectively	be	ignored:

s.add(123)						#	s	still	{123,	54,	92,	77}

You	can	remove	an	item	from	a	set:

s.remove(54)				#	s	now	{123,	54,	92,	77}

If	you	try	to	remove	an	item	that	is	not	in	the	set	then	you	get	an	error.

You	 can	 fetch	 and	 remove	 an	 arbitrary	 item	directly	 from	 a	 set,	 noting	 that	 here	 the
pop()	does	not	take	any	arguments:

y	=	s.pop()					#	s	is	one	smaller,	y	is	arbitrary

There	are	several	functions	that	work	with	multiple	sets,	to	do	many	of	the	operations
associated	with	 set	 theory	 (as	are	often	 illustrated	with	Venn	diagrams),	 for	example,	 to
find	unions	and	intersections.

s	=	set{1,	2,	3,	4,	5}

t	=	set{4,	5,	6,	7}

a	=	s	&	t			#		Intersection:	{4,	5}

b	=	s	|	t			#		Union:	{1,	2,	3,	4,	5,	6,	7}

More	set	operations	are	listed	in	the	reference	section	of	the	Appendices.

Dictionary	manipulation
In	 this	 section	 we	 will	 illustrate	 some	 basic	 manipulations	 on	 dictionaries	 using	 the
following	dictionary	to	do	this:

d	=	{'Ala':71.07,	'Arg':156.18}

Dictionaries	map	keys	to	values.	For	the	above	dictionary	we	have	two	keys,	‘Ala’	and
‘Arg’,	where	the	key	‘Ala’	gets	mapped	to	the	value	71.07	and	the	key	‘Arg’	gets	mapped
to	 the	value	156.18.	The	elements	of	a	dictionary	are	not	 stored	 in	any	particular	order,
thus	it	would	be	meaningless	to	access	them	by	position.	Instead	they	are	accessed	by	key.
Although	Python	uses	curly	brackets	to	define	dictionaries,	when	you	want	to	access	the
value	of	a	key	in	a	dictionary	you	use	square	brackets;	myDict[key].

x	=	d['Ala']														#	71.07

If	you	try	to	get	the	value	for	a	key	that	does	not	exist,	 then	an	error	is	generated	(an
Exception	object).	There	is	an	alternative	syntax,	however,	which	can	be	used	to	access	a
value	 and	 that	 does	 not	 generate	 an	 error	 if	 an	 unknown	 key	 is	 used.	 This	 is	 the
dictionary’s	get()	function,	which	returns	the	corresponding	value	if	the	key	is	known	and
None	otherwise:

x	=	d.get('Ala')										#	71.07

x	=	d.get('Gly')										#	None

There	 is	 an	 optional	 second	 argument	 to	 the	 get()	 function	 that	 specifies	 the	 default
value	to	use	if	the	key	is	not	in	the	dictionary:

x	=	d.get('Ala',	57.05)			#	71.07

x	=	d.get('Gly',	57.05)			#	57.05,	because	'Gly'	is	absent	from	d

Note	 that	 if	 the	 key	 is	 in	 the	 dictionary	 then	 this	 default	 value	 is	 ignored.	Also,	 the
dictionary	 is	not	changed	by	 this	call,	 so	 that	after	 the	second	 line	above,	 the	dictionary
still	 does	not	 have	 a	key	 for	 ‘Gly’.	 If	 you	want	 this	 kind	of	 side	 effect	 to	happen,	 then
there	 is	 the	 slightly	 oddly	 named	 function	 setdefault()	 that	 you	 can	 use	 instead.	 This
behaves	 exactly	 like	 get()	 (so	 the	 fact	 that	 the	 name	 starts	with	 ‘set’	 looks	misleading)
except	 that	 as	well	 as	 returning	 a	 value	 it	 also	 adds	 the	 key	 to	 the	 dictionary	with	 the
default	value	if	the	key	does	not	exist	(which	is	why	‘set’	is	not	totally	misleading):

x	=	d.setdefault('Ala',	57.05)		#	71.07

#	d	remains	{'Ala':	71.07,	'Arg':	156.18}

x	=	d.setdefault('Gly',	57.05)			#	57.05

#	d	becomes	{'Ala':71.07,	'Arg':156.18,	'Gly':57.05}

You	 can	 check	 whether	 a	 key	 is	 in	 a	 dictionary	 and,	 unlike	 with	 tuples	 and	 lists,
checking	containment	in	this	way	is	an	efficient	computation:

'Ala'	in	d																						#	True

'Thr'	in	d																						#	False

An	alternative,	equivalent	method	for	Python	2	is:

d.has_key('Ala')																#	True

d.has_key('Thr')																#	False

You	can	also	check	whether	a	key	is	not	in	a	dictionary:

'Ala'	not	in	d																		#	False

'Thr'	not	in	d																		#	True

The	len()	function	returns	the	number	of	(key,	value)	entries	in	the	dictionary:

len(d)																										#	3

You	can	change	the	value	for	an	existing	key	by	reassigning	it:

d['Ala']	=	71.04

#	d	now	{'Ala':71.04,	'Arg':156.18,	'Gly':57.05}

You	can	introduce	new	entries	in	the	dictionary	by	assigning	a	value	with	a	new	key:

d['Ser']	=	87.07

#	d	now	{'Ala':71.04,	'Arg':156.18,	'Gly':57.05,	'Ser':87.07}

You	can	delete	entries	from	the	dictionary:

del	d['Ala']

#	d	now	{'Arg':156.18,	'Gly':57.05,	'Ser':87.07}

This	will	generate	an	error	if	 the	key	is	not	 in	the	dictionary.	You	can	get	hold	of	the
keys	in	the	dictionary:

x	=	d.keys()					#	['Gly',	'Arg',	'Ser']

The	keys	of	a	dictionary	effectively	form	a	set,	but	sets	were	introduced	in	Python	long
after	dictionaries,	so	for	historic	reasons	in	Python	2	the	keys()	function	gives	back	a	list,
rather	than	a	set.	Nonetheless	it	still	makes	no	sense	to	talk	about	the	order	of	the	entries	in
a	dictionary,	and	thus	also	the	order	of	the	list	that	is	returned.	Although	the	list	of	keys	is
nominally	ordered,	the	order	cannot	be	relied	upon.

You	can	also	get	hold	of	the	values	associated	with	all	of	the	keys	from	the	dictionary:

x	=	d.values()			#	[57.04,	156.18,	87.07]

Unlike	keys,	 the	values	 in	a	dictionary	can	be	repeated.	So	strictly	speaking	what	we
should	get	is	what	mathematicians	call	a	multiset,	or	a	bag.	But	Python	has	no	inbuilt	data
type	 for	 this,	 and	we	are	given	a	 list,	 although	again	 it	 cannot	be	 relied	upon	 to	have	a
specific	order.

Finally,	you	can	get	hold	of	a	list	of	(key,	value)	pairs	as	tuples:

x	=	d.items()				#	[('Gly',	57.04),	('Arg',	156.18),	('Ser',	87.07)]

In	Python	3	the	keys(),	values()	and	items()	functions	change	to	return	what	is	called	a
view	rather	than	a	list,	which	is	a	subtle	difference	that	means,	for	example,	if	you	really
want	 to	 get	 hold	 of	 a	 set	 or	 a	 list	 then	 in	 Python	 3	 you	 would	 have	 to	 do	 so	 via
set(d.keys())	or	list(d.values())	etc.

Importing	modules
In	 Python	 much	 functionality	 is	 inbuilt	 and	 immediately	 available,	 as	 has	 been
demonstrated	in	this	chapter.	However,	one	of	the	fundamentals	of	the	Python	language	is
the	ability	to	import	external	modules	(or	libraries)	into	the	current	program.	Naturally,	we
do	this	to	make	use	of	extra	functionality	that	is	available	elsewhere.	Such	modules	may
be	part	of	 the	standard	 library	 (see	http://www.cambridge.org/pythonforbiology	for	 links
to	 the	 Python	 library	 documentation)	 that	 is	 automatically	 included	 with	 the	 Python
installation,	they	may	be	extra	libraries	which	you	may	have	to	install	separately	(such	as
NumPy	or	BioPython)	or	they	may	be	other	Python	programs	you	have	written	yourself.
Whatever	 the	 source	 of	 the	 module,	 they	 are	 imported	 into	 a	 program	 via	 an	 import
command.	For	example,	if	we	wish	to	access	the	mathematical	constants	π	and	e	we	can
use	the	import	keyword	to	get	the	module	named	math	and	access	its	contents	with	the	dot
notation:

import	math

print(math.pi,	math.e)

Also	we	can	use	the	as	keyword	to	give	the	module	a	different	name	in	our	code,	which
can	be	useful	for	brevity	and	avoiding	name	conflicts:

http://www.cambridge.org/pythonforbiology

import	math	as	m

print(m.pi,	m.e)

Alternatively	 we	 can	 import	 the	 separate	 components	 using	 the	 from	 …	 import
keyword	combination:

from	math	import	pi,	e

print(pi,	e)

Because	the	math	module	used	above	was	part	of	the	standard	Python	library	we	didn’t
have	 to	worry	 about	 installing	 it	 separately.	The	 standard	 library	 includes	 a	 selection	of
modules	that	are	useful	in	a	variety	of	general	situations.	Many	of	these	modules	are	listed
in	the	Appendices	at	the	end	of	the	book.

If	we	import	a	module	that	is	not	part	of	the	standard	library,	then	we	must	make	sure
that	 it	 is	 installed	 on	 our	 computer	 system	 (and	 there	 are	 generally	 instructions	 at	 the
download	 sites).	 If	 it	 is	 not	 installed	 we	 will	 get	 an	 ImportError.	 For	 example,	 if	 the
Python	 Imaging	Library	 (PIL)	 is	 not	 installed	but	we	 try	 to	 import	 its	 Image	 object	we
would	see	something	like:

>>>	from	PIL	import	Image

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

				from	PIL	import	Image

ImportError:	No	module	named	PIL

Lastly,	 if	 you	 want	 to	 write	 your	 own	 modules	 which	 can	 be	 imported	 into	 other
programs	then	you	need	to	be	aware	of	how	Python	searches	for	module	files.	Essentially
Python	has	a	series	of	import	directories	(a	‘search	path’)	that	it	looks	inside	to	find	a	file
of	 the	 required	name,	 starting	with	 the	 inbuilt	modules.	 If	we	 try	 to	 import	moduleAbc
then	Python	will	look	for	the	module	file	named	moduleAbc.py	in	its	 import	directories.
By	 default	 the	 import	 search	 path	 will	 include	 several	 directories,	 which	 contain	 the
standard	libraries,	external	installations	and	the	current	working	directory.	Within	Python,
sys.path	gives	the	list	of	what	is	on	the	search	path:

>>>	import	sys

>>>	print(sys.path)

You	 will	 see	 that	 this	 list	 contains	 an	 empty	 string	 ”	 for	 the	 current	 directory	 and
various	 other	 standard	 ‘lib’	 and	 ‘packages’	 directories	 that	 are	 part	 of	 the	 Python
installation.	If	you	have	a	Python	file	that	you	want	to	import	that	is	not	in	one	of	these
directories,	 then	 you	 can	 add	 further	 directories	 to	 sys.path	 and	 then	 refer	 to	 modules
inside	that	directory:

import	sys

sys.path.append('/home/user/myModules/')	#	Contains	userModule.py

from	userModule	import	userFunction

Alternatively	you	can	add	entries	to	the	PYTHONPATH	environment	variable	via	your
computer’s	operating	system,	which	will	automatically	be	added	to	sys.path	at	run	time.	It
is	in	this	way	that	you	can	use	all	of	the	downloadable	Python	code	that	accompanies	this

book.	Hence,	if	you	download	the	material	in	its	standard	directory	and	put	the	full	path
(i.e.	 including	 any	 leading	 directories)	 to	 this	 in	 sys.path	 or	 the	 PYTHONPATH
environment	variable	then	you	will	be	able	to	import	any	of	the	example	code,	such	as:

from	MachineLearning	import	neuralNetTrain,	neuralNetPredict

Any	sub-directories	of	the	import	directories	listed	in	sys.path	can	also	be	treated	as	if
they	were	modules,	although	before	Python	3.3	this	is	provided	they	contain	a	file	named
‘__init__.py’,	and	which	is	typically	blank	or	contains	only	‘pass’:	a	Python	statement	that
does	 nothing.	 For	 example,	 if	 I	 have	 a	 personal	 module	 directory	 located	 at
‘/home/user/myModules/’,	which	is	on	the	module	search	path,	I	can	then	add	a	sub-folder
called	 ‘molecules/’	 that	 contains	 the	 script	 ‘anneal.py’	 as	 well	 as	 any	 required
‘__init__.py’	(for	Python	before	version	3.3)	so	that	I	can	do	the	following	import:

from	molecules	import	anneal

1 	The	term	hash	symbol	 is	used	outside	America;	 in	America	the	term	pound	symbol	or
number	sign	is	often	used	instead.
2 	 In	 Python	 2.6	 and	 2.7	 you	 can	 get	 the	 Python	 3	 behaviour	 for	 print	 using	 a	 special
statement:	from	__future__	import	print_function.)
3 	These	existed	in	Python	2.2	but	were	then	just	synonyms	for	the	integers	1	and	0.	The
Boolean	type	was	properly	introduced	in	Python	2.3.
4 	 From	 Python	 2.2	 onwards,	 integers	 and	 long	 integers	 are	 treated	 uniformly,	 so	most
people	can	happily	ignore	the	difference	between	the	two	types.	Before	that	long	integers
had	to	have	an	‘L’	at	the	end	of	the	number,	for	example,	12345678901234L.
5 	This	result	is	because	2.1	divides	13.3	six	times	with	a	remainder	that	is	less	than	2.1,	or
more	precisely,	13.3	=	6.0*2.1	+	0.7.
6 	 It	 cannot	 be	 used	 for	 empty	 sets	 because	 that	 notation	 instead	 means	 an	 empty
dictionary.
7 	They	were	allowed	in	Python	2.3	but	were	not	done	in	the	current	way	until	Python	2.4.
8 	 The	 value	 of	 an	 item	 is	 converted	 via	 a	 hash	 function	 into	 an	 index	 that	 allows	 the
location	of	the	item	within	a	data	structure	to	be	determined	efficiently,	without	the	need
to	 compare	 values	with	 all	 the	 other	 items.	Hence,	 for	 this	 look-up	 to	work,	 the	 item’s
value	must	be	fixed	and	thus	also	its	index.

4 	Program	control	and	logic
Contents

Controlling	command	execution

Code	blocks

Conditional	execution

The	‘if’	statement

Comparisons	and	truth

Logic	operations

Loops

The	‘for’	loop

The	‘while’	loop

Skipping	and	breaking	loops

Positional	indices

List	comprehension

Looping	tips

Error	exceptions

Catching	exceptions

Triggering	exceptions

Finally

Further	considerations

Stopping	a	program

Test	code

Controlling	command	execution
On	the	whole,	a	program	will	normally	run	by	executing	the	stated	commands,	one	after
the	other	 in	 sequential	order,	 like	 reading	 the	 lines	of	 a	book.	Frequently,	however,	you
will	need	the	program	to	deviate	from	this,	to	jump	to	a	line	that	is	not	the	next	line.	There
are	three	main	ways	of	diverting	from	the	line-by-line	paradigm.	The	first	way	is	through
the	use	of	functions	(subroutines),	where	the	program’s	execution	jumps	from	a	particular
line	of	code	to	an	entirely	different	spot,	even	in	a	different	file	or	module,	 to	do	a	 task
before	(usually)	jumping	back	again.	You	can	even	jump	to	a	function’s	subroutine	from

inside	another	function,	and	do	this	repeatedly,	so	that	there	is	a	stack	of	jumps	between
the	 current	 line	 and	 the	 first	 jump	 point.	 Given	 their	 importance,	 functions	 will	 be
discussed	in	a	dedicated	chapter	that	follows	this	one.

The	 second	way	of	 jumping	between	program	 lines	 is	 through	 the	use	of	conditional
statements.	Here	you	can	check	 if	some	statement	or	expression	 is	 true,	and	 if	 it	 is	 then
you	continue	on	with	the	following	block	of	code,	otherwise	you	might	skip	it	or	execute	a
different	 bit	 of	 code.	The	 third	way	 is	 by	 performing	 repetitive	 loops	 through	 the	 same
lines	 of	 code,	 where	 each	 time	 through	 the	 loop	 different	 values	 may	 be	 used	 for	 the
variables.	Usually	such	loops	are	either	done	a	specific	number	of	times	or	until	something
in	particular	happens.	When	you	have	a	collection	of	items,	like	a	list,	a	loop	can	be	used
to	consider	all	of	 the	 items	 in	 turn;	 the	 loop	 iterates	 over	 the	 items	of	 the	collection.	A
significant	number	of	people	who	are	new	to	programming	find	this	the	hardest	idea	to	get
to	grips	with,	although	Python’s	syntax	makes	it	about	as	easy	as	it	can	be.

Figure	4.1.	 The	changes	to	the	flow	of	a	program’s	line-by-line	execution	using
conditionals	and	loops.	The	normal	flow	of	a	program’s	execution	proceeds	from	one
line	to	the	next.	The	presence	of	a	conditional	test,	using	an	‘if’	statement,	means	a	block
of	code	is	only	executed	if	the	test	evaluates	to	be	logically	true,	and	otherwise	the	block
is	skipped.	The	presence	of	a	loop,	starting	with	a	‘for’	or	‘while’	statement,	causes	the
execution	of	a	block	of	code	to	be	repeated	a	number	of	times	from	the	start	of	the	block
and	after	the	last	repeat	the	program	execution	resumes	after	the	block.

Loops,	 conditional	 statements	 and	 functions	 are	 the	 three	 ways	 of	 controlling	 a

program’s	 flow	 that	 occur	under	ordinary	 circumstances.	There	 is	 actually	 a	 fourth	way
that	can	cause	a	jump	in	program	execution	and	that	is	if	an	error	or	exception	occurs,	i.e.
something	 illegal	 has	 happened.	 In	 Python,	 like	 with	 Java	 and	 many	 other	 languages,
when	an	error	occurs	inside	a	function,	the	exception	propagates	back	up	the	stack	of	any
function	 calls,	 until	 it	 finds	 the	 first	 of	 those	 functions.	 If	 the	 initial	 function	 does	 not
specifically	 handle	 the	 error,	 then	 the	 program	 (or	 more	 precisely	 that	 specific	 thread)
stops.

Code	blocks
With	all	of	the	means	by	which	Python	code	execution	can	jump	about	we	naturally	need
to	be	aware	of	the	boundaries	of	the	block	of	code	we	jump	into,	so	that	it	is	clear	at	what
point	the	job	is	done,	and	program	execution	can	jump	back	again.	In	essence	it	is	required
that	the	end	of	a	function,	loop	or	conditional	statement	be	defined,	so	that	we	know	the
bounds	of	their	respective	code	blocks.

Figure	4.2.	 The	indentation	of	code	blocks	within	a	Python	program	using	spaces.
In	lines	of	Python	code	the	different	program	blocks	that	relate	to	flow-control	statements
like	‘if’,	‘for’	and	‘while’	etc.	are	indented	relative	to	the	start	of	the	line	using	whitespace.
A	flow-control	statement	in	the	main	part	of	the	program	will	have	no	indentation	but	will
define	the	start	of	a	program	block	that	is	indented	to	the	first	level.	Any	statements	that
are	indented	to	this	first	level	will	be	inside	the	block	of	the	first	statement.	A	further	flow-
control	statement	at	the	first	level	will	define	a	new	block	at	the	second	indentation	level.
Any	lines	of	code	that	have	less	indentation	than	a	preceding	line	are	outside	the	previous
block	and	are	part	of	the	existing	block	with	the	same	indentation	or	are	outside	all	blocks
if	there	is	no	indentation.

One	 distinct	 and	 important	 difference	 between	 Python	 and	 many	 other	 computer
languages	is	how	it	deals	with	the	issue	of	defining	execution	bocks	(that	are	jumped	into).
In	many	programming	 languages	 (such	as	Java,	Perl,	C,	etc.),	a	block	of	code	generally
has	a	left	curly	brace	(‘{’)	at	the	start	and	a	right	curly	brace	(‘}’)	at	the	end.	In	Python	the
extent	 of	 a	 block	 of	 code	 is	 completely	 determined	 by	 indentation,	 i.e.	 the	 addition	 of
blank	spaces	at	the	start	of	the	line.	The	start	of	a	Python	code	block	must	be	indented	by
some	 amount	 relative	 to	 whatever	 defines	 the	 block,	 such	 as	 a	 function	 declaration,	 a
conditional	statement	or	loop	statement.	The	content	of	the	block	must	all	have	the	same
indentation,	except	for	when	there	are	blocks	 inside	 the	blocks,	which	are	 then	 indented
further.	And	finally,	the	block	ends	when	the	indentation	ends.

For	people	moving	to	Python	from	other	languages	the	block	indentation	can	take	some
getting	used	 to.	An	 advantage	of	 the	Python	block	 syntax	 is	 that	 it	 removes	 clutter	 and
makes	 the	 code	 look	 cleaner;	 there	 is	 never	 a	 confusion	 of	 closing	 brackets.	 However,

there	is	one	subtle	issue:	it	is	generally	best	to	avoid	using	tab	stops	in	Python	code,	unless
your	 editor	 is	 set	 up	 to	 automatically	 convert	 tabs	 to	 spaces	while	 you	 are	 typing.	 The
reason	for	the	potential	problem	is	 that	 in	Python,	 tabs	equate	 to	giving	space	out	 to	 the
column	that	is	the	next	multiple	of	8	counting	from	the	beginning	of	the	line.	Many	editors
would	 show	 it	 instead	 out	 to	 the	 next	multiple	 of	 4	 or	 2,	 and	 so	 the	 code	would	 look
different,	 and	 this	 is	 particularly	 problematic	 if	 the	 code	 mixes	 tabs	 and	 spaces	 for
indentation.	The	number	of	leading	spaces	used	to	indent	each	block	is	a	matter	of	taste.
The	Python	community	generally	recommends	4	spaces,	but	in	this	book	we	consistently
use	2,	allowing	all	our	examples	to	fit	within	the	width	of	the	pages	in	a	reasonable-size
font.

Conditional	execution

The	‘if’	statement
A	 conditional	 statement,	 or	 ‘if’	 statement,	 is	 used	 to	 specify	 that	 some	 block	 of	 code
should	 only	 be	 executed	 if	 some	 associated	 test	 is	 upheld;	 a	 conditional	 expression
evaluates	to	True.	This	might	also	involve	subsidiary	checks	using	the	‘elif’	statement	(the
English	equivalent	of	which	might	be	‘or	else	if	 the	following’)	to	control	an	alternative
block	 if	 the	 previous	 expression	 turns	 out	 to	 be	False.	 There	 can	 even	 be	 a	 final	 ‘else’
statement	(in	English	‘otherwise	if	all	else	fails’)	to	do	something	if	none	of	the	checks	are
passed.

To	give	a	 solid	example,	 the	 following	uses	 statements	 that	 test	whether	a	number	 is
less	 than	zero,	greater	 than	zero	or	otherwise	equal	 to	zero	and	will	print	out	a	different
message	in	each	case:

if	x	>	0:

		print("Value	is	positive")

elif	x	<	0:

		print("Value	is	negative")

else:

		print("Value	is	zero")

The	general	form	of	writing	out	such	combined	conditional	statements	is	as	follows:

if	conditionalExpression1:

		#	codeBlock1

elif	conditionalExpression2:

		#	codeBlock2

plus	any	number	of	additional	elif	statements,	then	finally:

else:

		#	codeBlockEnd

The	elif	statements	are	optional	and	independently	the	else	statement	is	also	optional,	so
you	can	just	have	an	isolated	if	statement,	which	is	a	fairly	common	situation.	Each	block
has	to	be	indented	relative	to	the	if/elif/else.	Note	also	the	colon	(‘:’)	that	appears	after	the
if/else/else	statements.	This	is	a	mandatory	part	of	the	syntax,	though	it	is	easy	to	forget.

Each	 block	must	 contain	 at	 least	 one	 line	 of	 code,	 but	 can	 have	more.	 Python	 has	 a
‘pass’	 statement	 that	qualifies	as	a	 line	of	code	but	does	nothing.	So	when	you	are	 first
setting	out	your	code,	you	can	use	this	as	a	placeholder	until	you	get	around	to	adding	the
actual	desired	code:

if	someExpression:

		pass																		#	fill	code	in	later

Figure	4.3.	 The	flow	of	program	execution	with	combined	conditional	statements.
One	of	the	blocks	of	code	‘a’,	‘b’	or	‘c’	will	be	executed	depending	on	the	truth	or
falsehood	of	statements	that	follow	the	‘if’	and	‘elif’	keywords.	If	the	conditional
expression	at	the	‘if’	evaluates	as	true	then	code	block	‘a’	is	executed,	otherwise	if	the
conditional	expression	at	‘elif’	evaluates	as	true	then	instead	code	block	‘b’	is	executed,.
Finally,	if	none	of	the	conditional	expressions	evaluates	as	true	then	code	block	‘c’	is
executed	(so	there	is	no	additional	conditional	expression	to	evaluate	for	this,	the	block	is
just	executed).

Comparisons	and	truth
The	 question	 naturally	 arises	 as	 to	which	 expressions	 are	 deemed	 to	 be	 true	 and	which

false.	Naturally,	for	the	special	Python	logic	items	named	True	and	False	(often	referred	to
as	Boolean	values)	 the	answer	 is	obvious.	Also,	 the	 logical	states	of	 truth	and	falsehood
that	result	from	conditional	checks	like	‘Is	x	greater	than	5?’	or	‘Is	y	in	this	list?’	are	also
clear.	However,	in	Python	even	expressions	that	do	not	involve	an	obvious	query	can	be
assigned	a	status	of	conditional	truthfulness;	the	value	of	an	item	itself	can	be	forced	to	be
considered	as	either	True	or	False	 inside	an	 if	statement.	For	 example,	when	 tested	 in	 a
conditional	statement	the	number	1	will	be	interpreted	as	being	True	and	the	number	0	as
False,	 although	 their	 values	 are	 otherwise	 numeric.	 For	 the	 Python	 built-in	 data	 types
discussed	in	this	chapter	the	following	are	deemed	to	be	False	in	such	a	context:

None														#	nothingness

False													#	False	Boolean

0																	#	0	integer

0.0															#	0.0	floating	point

""																#	empty	string

()																#	empty	tuple

[]																#	empty	list

{}																#	empty	dictionary

set(())											#	empty	set

frozenset(())					#	empty	frozen	set

And	everything	else	is	deemed	to	be	True	in	a	conditional	context.

Python	has	the	standard	comparison	(or	relational)	operators:

x	>	y													#	x	greater	than	y?

x	<	y													#	x	less	than	y?

x	>=	y												#	x	greater	than	or	equal	to	y?

x	<=	y												#	x	less	than	or	equal	to	y?

x	==	y												#	x	equal	to	y?

x	!=	y												#	x	not	equal	to	y?

In	 terms	of	syntax,	 in	Python	2	you	can	compare	anything	with	anything,	although	 if
the	 expressions	 are	 not	 of	 the	 same	 data	 type	 the	 result	 is	 rather	meaningless	 in	 some
sense.	And	it	is	notable	that	in	Python	3	you	get	an	exception	(error)	if	you	try	to	use	any
of	 the	 comparison	 operators,	 other	 than	 ==	 and	 !=,	 to	 compare	 expressions	 that	 do	 not
have	a	natural	comparison,	like	when	comparing	numbers	with	strings.	A	consequence	of
this	is	that	in	Python	3	you	cannot	sort	the	elements	of	a	list,	according	to	value,	where	the
items	have	data	types	that	are	not	comparable,	because	they	cannot	be	ascribed	as	being
greater	than	or	less	than	one	another.

Python	has	two	additional	comparison	operators:

x	is	y															#	rather	than	x	==	y

x	is	not	y											#	rather	than	x	!=	y

The	difference	between	the	two	is	that	==	and	!=	compare	the	values	while	is	and	not	is
compare	whether	objects	are	identical.	Everything	in	Python	is	an	object,	and	you	might
be	interested	in	whether	two	objects	have	the	same	value	or	are	really	the	same	object,	a
stronger	condition.	As	an	analogy	in	the	real	world,	two	people	might	have	the	same	name
but	even	 if	 they	have	 the	 same	name	 it	does	not	mean	 they	are	 the	 same	person.	As	an
example	in	Python:

x	=	[123,	54,	92,	87,	33]		#	x	defined	as	a	list

y	=	x[:]																			#	y	is	a	copy	of	x

y	==	x																					#	True	–	same	value

y	is	x																					#	False	–	different	object

Logic	operations
Python	 also	 has	 standard	 logical	 connectives	 (and,	 or,	 not),	 although	 the	 resulting
expressions	are	not	necessarily	Boolean	(True	or	False).	For	example,	consider	the	logical
AND	operation,	also	known	as	conjunction:

x	and	y

You	might	think	that	this	should	give	the	value	True,	one	of	Python’s	special	Boolean
logic	objects,	if	x	and	y	both	evaluate	to	True	in	a	conditional	context	(imagine	each	tested
in	 an	 if	 statement),	 and	 the	 value	 False	 otherwise;	 the	 other	 logic	 object.	However,	 the
situation	is	more	subtle	than	that,	because	the	operation	doesn’t	necessarily	give	back	True
or	False	logic	objects.	Rather,	it	gives	back	the	x	or	y	value,	one	of	the	values	you	put	in,
which	only	evaluate	as	being	equivalent	to	True	or	False	in	a	conditional	test.

For	example,	given	 that	we	know	that	zero	 is	considered	 to	be	False	 in	 a	 conditional
test	and	other	numbers	are	considered	to	be	True:

z	=	0	and	3													#	z	equals	0	rather	than	False

z	=	1	and	2													#	z	equals	2	rather	than	True

z	=	5	and	0													#	z	equals	0	rather	than	False

z	=	x	and	y													#	z	might	equal	x	or	y,	depending	on	value

Considering	the	last	line,	if	x	evaluates	to	True	in	a	conditional	context	then	z	evaluates
to	y;	the	truth	is	determined	by	the	second	item.	And	conversely,	if	x	evaluates	to	False	in
a	conditional	context	then	z	evaluates	to	x;	which	is	known	to	be	false.	Naturally,	this	also
holds	when	the	values	we	are	using	in	the	logical	operation	are	not	so	obviously	True	or
False	in	comparisons:

[]	and	5																#	[]			(False	in	conditional	context)

3	and	5																	#	5				(True	in	conditional	context)

3	and	()																#	()			(False	in	conditional	context)

Moving	 on	 from	 the	 AND	 operation	 there	 is	 also	 the	 OR	 operation,	 also	 known	 as
disjunction:

x	or	y

Here,	 if	 x	 evaluates	 to	 True	 in	 a	 conditional	 context	 then	 the	 statement	 x	 or	 y
immediately	gives	back	x,	and	y	is	not	even	evaluated	(given	it	doesn’t	matter	whether	it
is	true	or	false).	If	x	evaluates	to	False	in	a	conditional	context	then	x	or	y	evaluates	to	y.

There	is	also	negation,	the	NOT	operation:

not	x

This	does	evaluate	to	a	proper	Boolean,	so	it	evaluates	to	True	if	x	evaluates	to	False	in
a	conditional	context,	and	vice	versa.

If	a	special	Boolean	object	 is	definitely	 required	 from	an	operation	 like	AND	or	OR,
rather	than	one	of	the	values	in	the	comparison,	you	can	explicitly	convert	the	result	using
bool():

x	=	3	and	5							#	x	is	5

y	=	bool(x)							#	y	is	True

Although	it	may	seem	a	little	odd,	you	can	do	the	above	in	one	step	and	use	the	logic
operation	as	if	it	were	a	single	argument:

y	=	bool(3	and	5)		#	y	is	True

In	many	circumstances	explicitly	converting	the	result	of	a	logic	operation	to	Boolean
True	or	False	is	not	required.	Going	further,	it	is	sometimes	positively	useful	to	get	back
one	of	the	actual	values	that	was	put	into	the	operation.	For	example,	suppose	you	have	a
variable	x,	which	is	sometimes	true	and	sometimes	not,	and	you	wanted	a	text	string	that
said	‘Yes’	if	x	was	True	and	‘No’	if	x	was	False.	You	could	do:

if	x:

		text	=	"Yes"

else:

		text	=	"No"

But	an	alternative	would	be	to	write:

text	=	x	and	"Yes"	or	"No"

Here,	 if	 x	 is	 True	 then	 the	 AND	 operation	 evaluates	 to	 ‘Yes’	 and	 the	 OR	 operation
preserves	 this.	 If	 x	 is	 False	 then	 the	 AND	 operation	 evaluates	 to	 False	 and	 the	 OR
operation	evaluates	 to	 ‘No’.	This	 is	perhaps	a	bit	of	 trickery,	based	on	 the	strings	being
true,	but	it	can	be	convenient.

There	 is	 one	more	 subtle	 point	with	 these	Boolean	True	 operations.	 Considering	 the
statement	x	or	y,	 if	x	 turns	out	 to	be	 true	 in	a	conditional	context	 then	 the	expression	y
would	not	be	evaluated	at	all,	given	that	the	OR	statement	will	be	true	no	matter	what	y	is.
The	same	idea	applies	to	x	and	y:	this	time	y	is	not	evaluated	when	x	is	false.	This	turns
out	to	come	in	quite	handy.	For	example,	if	x	is	a	tuple	or	list,	we	could	do:

x	=	[256,	128]

if	x	and	x[0]	>	10:

		#	etc.

Here,	 if	 x	 is	 an	 empty	 list	 (so	 evaluates	 to	 False	 in	 a	 conditional	 context)	 then	 the
second	 expression	 is	 not	 even	 evaluated,	 which	 is	 just	 as	 well	 since	 it	 would	 fail	 and
generate	an	exception	(error),	because	x[0]	does	not	exist.

As	an	example	of	a	conditional	statement,	we	could	have:

x	=	[123,	54,	92,	87,	33]

if	len(x)	>	10:

		x.append(999)

elif	len(x)	>	3:

		x.append(888)

else:

		x.append(777)

#	x	now	[123,	54,	92,	87,	33,	888]

In	 this	 case,	 since	 len(x)=5,	 the	 if	 expression	 evaluates	 to	 False	 whereas	 the	 elif
expression	evaluates	to	True	and	so	888	is	appended	to	x,	and	the	else	block	is	skipped.

There	is	another	conditional	statement	allowed	from	Python	2.5	onwards:

expression1	if	conditionalExpression	else	expression2

This	reads	a	bit	oddly	because	the	condition	is	in	the	middle,	but	what	this	means	is	that
if	the	conditionalExpression	evaluates	to	True	it	evaluates	to	expression1	and	otherwise	it
evaluates	to	expression2.	Thus	instead	of	writing	slightly	tricky	code	like:

text	=	x	and	"Yes"	or	"No"

you	can	instead	write:

text	=	"Yes"	if	x	else	"No"

Loops
When	you	have	a	 collection	 (tuple,	 list,	 set,	 dictionary	…)	 it	 is	 quite	natural	 to	want	 to
consider	 every	 element	 in	 the	 collection	 in	 turn,	 processing	 each	 in	 some	 way.	 This
process	is	often	called	iteration.	This	is	the	job	of	the	‘for’	loop.

The	‘for’	loop
In	this	section	we	will	illustrate	the	for	loop	using	the	following	list:

values	=	[10,	-5,	3,	-1,	7]

Then	an	example	of	a	for	loop	is:

for	v	in	values:

		print(v)	#	block	of	code

What	this	means	is	that	the	variable	v	is	set	to	each	item	from	the	list	values	in	turn,	and
every	time	this	happens	the	block	of	code	is	executed.	So	here	v	is	first	set	to	10,	and	the
block	of	code	is	executed,	then	v	is	set	to	-5,	and	the	block	of	code	is	executed	again	etc.,
until	finally	it	is	set	to	7	and	the	block	of	code	is	executed	for	the	last	time.	The	situation
shown	for	a	list	also	applies	if	values	is	a	tuple	or	set	or	dictionary.	For	a	dictionary	the
variable	 v	 would	 be	 assigned	 to	 the	 keys	 of	 the	 dictionary,	 one	 after	 the	 other.	 Also,
remember	that	sets	and	dictionaries	are	not	ordered	so	the	looping	will	not	happen	in	any
particular	order.

Note	 that	 although	 values	 is	 defined	 before	 the	 for	 statement,	 the	 item	 variable	 v	 is
introduced	anew	at	this	point.	It	does	not	matter	if	a	variable	named	v	already	exists	before
the	loop,	but	its	original	associated	value	will	be	overwritten.	The	item	variable	name	v	is

arbitrary,	and	any	other	name	could	be	used	instead.	Though	it	would	be	most	confusing	if
it	were	called	values	…

As	with	 conditional	 statements,	 the	 block	 has	 to	 have	 at	 least	 one	 line	 of	 code	 in	 it,
although	it	can	naturally	have	more,	and	the	colon	(‘:’)	at	the	end	of	the	for	statement	is
mandatory.	As	 another	 example,	 suppose	you	wanted	 to	 calculate	 the	 summation	of	 the
items	in	the	list	values.	Then	you	could	do:

total	=	0

for	v	in	values:

		total	=	total	+	v

#	At	the	end	total	is	14

Following	this	 in	detail,	doing	total	+	v	each	time,	we	are	doing	the	operations	0+10,
10-5,	5+3,	8-1,	7+7,	and	updating	s	each	time,	so	at	the	end	total	is	14.	It	would	not	matter
here	whether	values	were	a	list,	a	tuple	or	a	set,	this	loop	would	still	result	in	the	sum	of
the	items	in	values	being	calculated.	Note	that	v	is	not	forgotten	about	after	the	loop	ends,
it	holds	the	value	of	the	last	item	it	was	set	to,	in	this	case	7.

The	‘while’	loop
In	addition	to	the	for	loop	that	operates	on	a	collection	of	items,	there	is	a	while	loop	that
simply	repeats	while	some	statement	is	True:

while	conditionalExpression:

		#	codeBlock

The	codeBlock	 is	 repeated	over	and	over	until	 the	conditionalExpression	evaluates	 to
False.	Note	that	if	the	tested	expression	never	evaluates	to	False	then	you	have	an	‘infinite
loop’,	which	is	naturally	not	helpful.	Sometimes	you	can	use	a	while	loop	to	avoid	having
to	 initially	 generate	 a	 collection	 of	 items	 to	 then	 loop	 over.	 For	 example,	 you	 could
generate	a	series	of	numbers	by	doubling	a	value	at	each	iteration,	until	a	limit	is	reached:

value	=	1

while	value	<	32:

		#	maybe	do	something	with	the	value

		value	*=	2

#	value	is	32	at	the	end

What	happens	here	is	that	the	value	is	doubled	in	each	loop	and	once	it	gets	to	32	 the
while	test	fails	(32	is	not	less	than	32)	and	that	last	value	is	preserved.	Note	that	if	the	test
were	instead	value	<=	32	then	we	would	get	one	more	doubling	and	the	value	would	reach
64.

Skipping	and	breaking	loops
Python	has	two	ways	of	affecting	the	flow	of	the	for	or	while	loop	inside	the	block.	The
continue	 statement	 means	 that	 the	 rest	 of	 the	 code	 in	 the	 block	 is	 skipped	 for	 this
particular	item	in	the	collection,	i.e.	jump	to	the	next	iteration.

values	=	[10,	-5,	3,	-1,	7]

total	=	0

for	v	in	values:

		if	v	<	0:

				continue						#	skip	the	rest	of	the	block	for	this	v

		total	+=	v

#	At	the	end	total	is	20

So	here	 the	negative	 items	are	 left	out	of	 the	 sum.	An	alternative	way	of	writing	 the
above	without	the	continue	statement	is	to	only	add	the	numbers	we	do	want,	rather	than
skipping	those	we	don’t:

total	=	0

for	v	in	values:

		if	v	>=	0:

				total	+=	v

#	At	the	end	total	is	20

It	is	a	matter	of	taste	which	style	you	prefer.	Note	that	either	way	the	variable	v	at	the
end	will	still	be	the	last	value	from	the	list,	whether	or	not	it	is	negative.

The	second	way	of	affecting	the	flow	in	a	for	or	while	block	is	the	break	statement.	In
contrast	 to	 the	 continue	 statement,	 this	 immediately	 causes	 all	 looping	 to	 finish,	 and
execution	is	resumed	at	the	next	statement	after	the	loop.

total	=	0

for	v	in	values:

		if	v	==	3:

				break

		total	+=	v

#	At	the	end	total	is	5,	v	is	3

Here	the	third	item	in	the	list	 is	3,	so	at	 this	point	 the	 loop	terminates	and	the	sum	is
only	of	the	first	two	items	in	the	list.	Note	that	the	loop	variable,	v,	never	makes	it	to	the
rest	of	the	list,	so	stays	3	when	the	loop	terminates.

If	you	have	a	for	loop	inside	a	for	loop,	then	a	break	in	the	inner	loop	only	results	in	a
jump	to	the	end	of	the	inner	loop,	not	the	outer	one.	This	can	sometimes	be	a	pain	but	the
alternative	choice	would	in	general	have	been	worse.

There	 is	one	extra	 twist	with	for	 loops	when	you	have	a	break	statement	 in	 the	 loop.
Often	you	want	to	know	if	you	have	broken	out	of	the	loop,	but	otherwise	execute	some
code	if	you	have	not,	and	Python	has	a	special	syntax	for	adding	such	code.	For	example,
here	we	take	values	for	x	and	test	 if	 they	are	greater	 than	5	and	less	 than	10.	If	we	find
such	a	value	foundInRange	is	defined	to	be	True	and	the	loop	is	stopped	immediately	with
break.	 If	no	value	passes	 the	 test,	 then	 the	 loop	 reaches	 the	 end	and	program	execution
reaches	the	else:	block	where	foundInRange	is	alternatively	defined	as	False.

for	x	in	someList:

		if	5	<	x	<	10:												#	Is	x	between	5	and	10?

				foundInRange	=	True

				break																				#	Do	not	test	any	more

else:

		foundInRange	=	False							#	Found	nothing

print(foundInRange)

Thus	this	is	a	second	context	in	which	else	can	occur.	Note	that	the	else	lines	up	with
the	for.	The	code	 in	 the	else	block	 is	executed	only	 if	 the	break	 statement	has	not	been
executed.

Positional	indices
In	most	loops	you	do	not	have	to	know	the	positional	index	of	the	associated	variable	in
the	list,	you	just	need	to	know	that	the	variable	is	set	to	one	item	after	another	in	the	list.
But	sometimes	you	do	have	to	know	the	index.	For	example,	in	geometry	a	vector	(e.g.	x,
y	and	z	axis	values	to	specify	a	position	in	three-dimensional	space)	can	be	implemented
in	Python	 as	 a	 list	 of	 floating	 point	 numbers.	 Suppose	 that	 you	wanted	 to	 calculate	 the
inner	 (or	 dot)	 product	 between	 two	 vectors,	 vec1	 and	 vec2.1	 The	 inner	 product	 is	 the
summation	of	the	products	of	the	corresponding	terms	in	each	list.	So	in	three	dimensions,
for	example,	it	would	be:

vec1	=	(4,	7,	0)

vec2	=	(1,	3,	5)

s	=	vec1[0]*vec2[0]	+	vec1[1]*vec2[1]	+	vec1[2]*vec2[2]			#	25

Here	 the	 calculation	 for	 the	 inner	 product	 is	 (4×1)	 +	 (7×3)	 +	 (0×5)	 yielding	 25.	We
could	also	save	writing	out	the	whole	calculation	and	use	a	loop	to	go	through	all	of	the
required	 vector	 positions	 (indices)	 adding	 the	 product	 for	 each.	 Thus,	 instead	 we	 can
write:

s	=	0

for	index	in	[0,1,2]:

		s	+=	vec1[index]	*	vec2[index]

This	is	a	good	enough	way	of	calculating	the	inner	product	if	you	know	you	are	in	three
dimensions,	but	let’s	say	you	wanted	to	calculate	this	for	vectors	in	an	arbitrary	number	of
dimensions,	i.e.	where	the	length	of	the	vectors	is	not	known	beforehand.	In	this	case	the
list	 of	 indices	 needs	 to	 match	 the	 size	 of	 the	 vectors.	We	 can	 obtain	 such	 a	 list	 using
range().

The	range()	function	takes	one,	two	or	three	integer	arguments.	If	it	has	one	argument,
n,	then	it	generates	a	number	sequence	starting	at	0	and	finishing	at	n-1,	in	steps	of	1.	If	it
has	two	arguments,	n1	and	n2,	then	it	generates	a	sequence	starting	at	n1	and	finishing	at
n2-1,	in	steps	of	1.

range(7)															#	[0,	1,	2,	3,	4,	5,	6]	–	show	as	list(range(7))	in	

Python	3

range(2,	7)												#	[2,	3,	4,	5,	6]

If	it	has	three	arguments	then	the	first	two,	n1	and	n2,	are	as	before,	and	the	third	is	the
step	size.	There	is	one	subtlety,	however:	if	the	step	size	is	positive	then	the	list	stops	at
the	greatest	integer	less	than	n2	(which	might	not	be	n2-1)	and	if	the	step	size	is	negative
then	the	sequence	stops	at	the	least	integer	greater	than	n2.	If	you	use	a	step	size	of	0	you
get	an	error.

range(2,	13,	3)								#	[2,	5,	8,	11]

range(7,	2,	-2)								#	[7,	5,	3]

Returning	to	the	inner	product	calculation,	we	simply	need	to	use	the	length	of	one	of
the	vectors	len(vec1)	to	get	the	required	range	of	indices:

s	=	0

for	i	in	range(len(vec1)):

		s	+=	vec1[i]	*	vec2[i]

Here	 len(vec1)	 gives	 the	 length	 of	 vec1	 and	 so	 range(len(vec1))	 gives	 a	 list	 which
exactly	 contains	 the	 valid	 (non-negative)	 indices	 for	 vec1	 and	 vec2.	 Note,	 the	 code
assumes	that	vec1	and	vec2	are	the	same	length,	and	that	is	something	that	should	really
be	checked	somewhere.

In	Python	2	there	is	an	alternative	for	range(),	which	is	xrange().	The	difference	is	that
range()	actually	creates	a	whole	 list	of	numbers	while	xrange()	does	not;	 it	 just	 sets	 the
relevant	 loop	 variable	 (here,	 n)	 to	 what	 it	 should	 be	 set	 to,	 one	 after	 the	 other.	 The
difference	between	range()	and	xrange()	is	normally	not	an	issue	but	could	be	if	the	length
were	large.	In	Python	3,	xrange()	no	longer	exists	and	range()	behaves	like	the	Python	2
xrange().

There	is	another,	arguably	neater,	way	we	could	get	at	the	indices	and	that	is	using	the
inbuilt	 enumerate()	 function,	 which	 gives	 both	 an	 index	 and	 the	 corresponding	 item.
Specifically,	it	sets	the	loop	variable	to	a	two-tuple	whose	first	 item	is	the	index	and	the
second	is	the	list	item	at	that	index:

s	=	0

for	i,	x	in	enumerate(vec1):

		s	+=	x	*	vec2[i]

It	behaves	like	Python	3’s	xrange()	in	regard	to	not	actually	creating	one	big	list	(in	this
case	of	2-tuples),	so	is	reasonably	efficient.	It	might	seem	possible	to	also	use	the	.index()
function	 to	 get	 the	 position	 of	 an	 item	 in	 the	 vector.	However,	 this	would	 only	work	 if
each	term	in	vec1	was	unique,	and	there	is	no	guarantee	of	that:

s	=	0

for	x	in	vec1:

		i	=	vec1.index(x)								#	bad	idea	due	to	repeats

		s	+=	vec1[i]	*	vec2[i]

Also,	getting	the	index	in	this	way	is	relatively	slow.	So	overall	it	is	much	better	to	stick
with	the	range()	or	enumerate()	functions.

List	comprehension
Sometimes	loops	are	used	to	go	through	one	collection	of	items	simply	to	generate	another
collection	of	(different)	items.	For	example,	here	the	function	range(1,8)	gives	a	sequence
[1,2,3,4,5,6,7],	which	is	used	to	make	a	list	of	square	numbers:

squares	=	[]

for	x	in	range(1,8):

		squares.append(x*x)

#	squares	becomes	[1,	4,	9,	16,	25,	36,	49]

However,	 when	 mapping	 one	 collection	 to	 another	 in	 this	 way,	 there	 is	 a	 neater
alternative	syntax	called	list	comprehension.	And	often	this	will	allow	you	to	map	one	list
of	items	onto	another	in	a	single	line	of	code.	In	essence	a	list	comprehension	is	a	way	of
using	a	loop	to	build	a	list	from	the	inside.	Here	is	a	simple	example:

squares	=	[x*x	for	x	in	range(1,8)]		#		[1,	4,	9,	16,	25,	36,	49]

The	first	expression	inside	the	square	brackets	(x*x)	is	what	is	placed	in	the	resulting
list,	and	the	remainder,	from	the	for	to	the	closing	bracket,	is	what	generates	the	values	for
the	loop	variable	x.	Not	only	is	this	shorter	to	write	than	a	conventional	for	loop,	it	is	also
computationally	quicker.

Looping	tips
As	a	word	of	warning,	it	is	generally	not	a	good	idea	to	alter	the	number	of	items	in	a	list
while	you	are	looping	over	that	list,	unless	you	really	know	what	you	are	doing	(and	even
then	 we	 typically	 only	 add	 to	 the	 end).	 The	 sequence	 of	 elements	 that	 the	 loop	 goes
through	will	be	hard	to	predict	because	the	positional	indices	may	not	correspond	to	their
original	values.	Suppose	you	have	a	 list	of	values	and	want	 to	 remove	any	 that	are	 less
than	five.	You	could	try	the	following:

values	=	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

for	val	in	values:

		if	val	<	5:

				values.remove(val)		#	modify	the	loop	list:	bad	idea

This	does	not	work	because	the	loop	variable,	val,	gets	confused	about	where	it	is	in	the
list	when	the	list	is	modified	inside	the	loop.	In	this	case	some	of	the	values	less	than	five
were	skipped	and	not	removed	from	the	list:

print(values)		#	[1,	3,	5,	6,	7,	8,	9]

Instead	you	could	duplicate	the	list,	here	using	the	list()	function,	and	this	now	gives	the
expected	result:

values	=	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

for	val	in	list(values):

		if	val	<	5:

				values.remove(val)

print(values)	#	[5,	6,	7,	8,	9]

With	a	duplicate,	the	list	that	is	iterated	over	is	now	not	modified	inside	the	loop.	In	the
next	example	we	show	an	alternative	approach	where	the	values	are	added	to	an	initially
empty	list.	In	general,	constructing	a	new	list	in	this	way	is	more	efficient	than	making	a
copy	and	then	removing	internal	items:

values	=	[0,1,2,3,4,5,6,7,8,9]

values2	=	[]

for	val	in	values:

		if	val	>=	5:

				values2.append(val)

values	=	values2

The	above	is	an	example	of	filtering	a	collection	according	to	a	condition	(and	would
also	work	with	a	set	or	tuple).	For	this	task	we	could	also	use	a	list	comprehension,	which
has	 no	 problems	with	modifying	 the	 list	we	 are	 looping	 through	 and	 does	 the	 job	 on	 a
single	 line	 of	 code.	This	 combines	 a	 for	 loop	with	 a	 conditional	 if	 check,	 although	 the
latter	is	an	optional	part	of	the	syntax.

values	=	[0,1,2,3,4,5,6,7,8,9]

values	=	[val	for	val	in	values	if	val	>=	5]

If	 the	 code	 for	 the	 filter	 condition	 is	 complicated	 you	 may	 need	 to	 write	 the	 list
comprehension	over	more	than	one	line.	Though,	if	the	filtering	is	done	by	a	function	then
it	is	easier	to	keep	to	a	single	line.	You	can	also	operate	on	the	loop	variable	before	adding
it	to	the	filtered	list.	For	example,	here	we	import	a	mathematical	function	to	calculate	the
factorial	of	a	number	and	then	use	that	function	to	calculate	the	factorial	value	inside	the
list	comprehension:

from	math	import	factorial

values	=	[0,1,2,3,4,5,6,7,8,9]

result	=	[factorial(val)	for	val	in	values	if	factorial(val)	>=	700]

print(result)	#	[720,	5040,	40320,	362880]

This	approach	 is	where	a	 list	comprehension	might	not	be	such	a	good	 idea,	because
although	 it	 is	 short,	 it	 calls	 the	 function	 (factorial()	 in	 this	 case	 twice;	 once	 for	 the
conditional	 test	and	once	 to	construct	 the	result	 list.	Naturally	 this	 is	best	avoided	 if	 the
function	is	slow	to	calculate.	Hence,	for	efficiency	reasons	you	might	want	to	stick	with
the	longer	version:

values	=	[0,1,2,3,4,5,6,7,8,9]

result	=	[]

for	val	in	values:

		fac	=	factorial(val)

		if	fac	>=	700:

				result.append(fac)

As	mentioned	 earlier,	 you	 can	 loop	 over	 the	 keys	 of	 a	 dictionary.	Normally	 you	 are
interested	 not	 just	 in	 the	 keys,	 but	 also	 in	 the	 value	 associated	 with	 the	 key	 in	 the
dictionary.	However,	 if	 you	 have	 a	 dictionary	 and	 its	 keys,	 you	 can	 easily	 look	 up	 the
values.	For	example,	suppose	you	have	a	dictionary,	yearDict,	for	which	the	keys	are	the
names	of	months,	and	the	value	corresponding	to	each	key	is	the	number	of	days	in	that
month.	If	you	want	to	calculate	the	total	number	of	days	from	all	the	months	it	is	a	simple
matter	of	looping	through	all	of	the	keys	of	the	dictionary	(the	months),	then	using	each
key	in	turn	to	get	the	value	from	the	list,	which	is	then	added	to	the	total.

yearDict	=	{'Jan':31,'Feb':28,'Mar':31,'Apr':30,

												'May':31,'Jun':30,'Jul':31,'Aug':31,

												'Sep':30,'Oct':31,'Nov':30,'Dec':31,}

total	=	0

for	month	in	yearDict:							#	loop	through	keys

		total	+=	yearDict[month]		#	lookup	value

Error	exceptions
Python	deals	with	errors	caused	by	illegal	circumstances,	which	are	called	exceptions,	in	a
relatively	 graceful	manner.	Note	 that	 it	 is	 commonplace	 to	 say	 ‘throw	 an	 exception’	 to
mean	that	an	exception	was	generated	by	some	illegal	program	state.	Here	is	a	very	simple
example	of	something	that	will	generate	an	exception	object,	indicating	the	type	of	error,
in	this	case	because	it	is	illegal	to	divide	a	number	by	zero:

x	=	1/0			#	Throws	a	ZeroDivisionError

Catching	exceptions
Rather	 than	 simply	 letting	 such	 things	 always	break	 the	program,	Python	allows	you	 to
‘try’	something	and	then	‘catch’	any	exceptions	that	might	occur	and	do	something	about
it,	and	potentially	let	the	program	carry	on	afterwards.	The	simplest	version	is:

try:

		#	code	block	that	might	throw	an	exception

except:

		#	exception	handling	code

#	maybe	let	the	program	continue	after

So	if	an	exception	occurs,	the	program	immediately	stops	executing	the	code	in	the	try
block	and	instead	executes	the	code	in	the	except	block.	In	the	above	case,	every	kind	of
exception	error	is	trapped,	so	there	is	no	way	of	knowing	what	kind	of	exception	it	was.
However,	 you	 can	 specify	 what	 kind	 of	 exception	 is	 trapped.	 Python	 has	many	 inbuilt
exception	types	(classes).	As	illustrated	above,	if	you	try	and	divide	by	0	then	you	get	a
ZeroDivisionError,	and	you	can	check	specifically	for	that:

x	=	1

y	=	0

try:

		z	=	x	+	y

		w	=	x	/	y

		t	=	x	*	y

except	ZeroDivisionError:

		print('divided	by	zero')

print('program	did	not	stop')

In	this	specific	example,	an	exception	occurs	in	the	calculation	of	w,	so	it	is	not	set	and,
further,	the	calculation	of	t	never	happens	and	an	error	message	is	printed	instead.	Because
the	illegal	division	by	zero	was	dealt	with	the	program	can	then	continue.	You	can	even
get	hold	of	an	exception	object,	which	can	be	printed	out	to	show	the	internal	Python	error
message:

x	=	1

y	=	0

try:

		w	=	x	/	y

except	ZeroDivisionError	as	errorObj:

		print(errorObj)			#	prints	'integer	division	or	modulo	by	zero'

print('program	did	not	stop')

Before	Python	2.6	the	syntax	for	catching	the	exception	object	was	different,	so	if	you
are	using	an	older	version	of	Python	 then	you	have	 to	use	a	comma	 instead	of	 ‘as’	 (the
comma	syntax	also	works	in	Python	2.6	and	2.7	but	not	in	Python	3):

try:

		w	=	x	/	y

except	ZeroDivisionError,	errorObj:

		print(errorObj)			#	prints	'integer	division	or	modulo	by	zero'

This	 reports	 the	 Python	 message	 about	 what	 happened,	 which	 you	 would	 get	 if	 the
program	 failed,	 but	 naturally	 because	we	 used	 the	 try:	 clause	 to	 catch	 the	 problem	 the
program	did	not	stop.	There	is	a	simple	‘base’	exception	in	Python	called	Exception,	and
that	lets	you	trap	all	types	of	exception	and	get	hold	of	the	exception	object:

try:

		#	code	block	that	might	throw	an	exception

except	Exception	as	errorObj:

		#	exception	handling	code

Also,	you	can	catch	different	types	of	exception	by	repeating	the	except	statement.	This
allows	 different	 problems	 to	 be	 handled	 in	 different	 ways.	 For	 example,	 if	 you	 try	 to
divide	 something	 by	 a	 text	 string	 (or	 a	 string	 by	 something)	 in	 Python	 you	 get	 a
TypeError.	So	your	division	code	could	check	for	 this	and	for	zero	division,	printing	an
appropriate	message	for	each	situation:

try:

		w	=	x	/	y

except	ZeroDivisionError	as	errorObj:

		print('divided	by	zero',	errorObj)

except	TypeError	as	errorObj:

		print('divided	by	something	silly',	errorObj)

Triggering	exceptions
To	 cause	 your	 own	 exception	 you	 use	 the	 raise	 command.	This	 does	 not	 have	 to	 be	 in
response	to	an	illegal	Python	state;	you	can	force	an	exception	to	occur	at	any	time.	Often
this	is	done	to	trap	problems	before	an	illegal	state	can	occur.	For	example,	you	may	wish
to	check	that	two	vectors	are	of	the	same	length	before	calculating	the	inner	product	(as
above).	Here	it	is	better	to	have	an	informative	error	message	that	tells	us	in	English	that
the	vectors	are	of	different	lengths,	rather	than	reach	an	illegal	state	and	get	an	IndexError.

The	raise	command	takes	an	argument	which	is	an	exception	object,	and	normally	you
create	 this	 object	 right	 in	 the	 command	 itself.	 How	 to	 create	 an	 object	 is	 discussed	 in
Chapter	7.	But	as	an	example	of	raise,	suppose	you	are	given	a	variable	x	and	you	want	to
check	that	it	is	greater	than	zero	and	throw	an	exception	if	that	is	not	true.	You	could	do:

if	x	<=	0:

		raise	Exception('x	must	be	>	0')

In	the	same	way	as	when	an	illegal	state	triggers	an	exception,	the	raise	causes	Python
to	 look	 up	 the	 stack	 of	 executed	 commands	 until	 it	 finds	 any	 code	 that	 catches	 the
exception,	but	otherwise	the	program	quits	if	nothing	handles	it.	Note	that	in	versions	of
Python	before	2.6	you	could	use	strings	as	error	objects,	instead	of	dedicated	exceptions.
However,	you	should	not	use	strings	as	exceptions,	even	if	you	are	using	older	versions	of
Python,	since	it	will	break	if	someone	uses	the	code	in	a	newer	version.

The	raise	command	is	also	sometimes	used	in	an	except	block	because	you	might	want
to	re-throw	the	original	exception	after	having	done	some	of	your	own	handling.	 In	 this
case	 the	 program	 will	 stop	 because	 of	 the	 error,	 but	 you	 have	 the	 opportunity	 to	 do
something	else	before	the	end.	For	example,	this	could	be	useful	to	do	some	clean-up,	e.g.
to	delete	temporary	files,	close	an	Internet	connection	etc.

try:

		w	=	x	/	y

except	ZeroDivisionError	as	errorObj:

		print('Program	error	due	to	zero	division')

		#	do	some	clean-up	(not	shown)

		#	then	re-throw	exception

		raise	errorObj

In	this	case	you	don’t	have	to	create	an	exception	object	because	one	already	exists.	In
fact,	 inside	 an	 except	 block	 Python	 allows	 you	 to	 not	 explicitly	 specify	 the	 exception
object	in	the	raise	statement,	in	which	case	it	will	use	the	one	that	got	you	into	that	block
in	the	first	place:

try:

		w	=	x	/	y

except:

		print('Program	error	due	to	zero	division')

		raise

Finally
You	can	also	add	code	at	the	bottom	of	a	try/except	block	that	will	be	executed	whether	or
not	an	exception	was	thrown,	using	finally:

try:

		w	=	x	/	y

finally:

		print('finished	with	division')

So	here	 the	 final	message	 is	printed	whether	or	not	an	exception	occurred.	This	 final
block	of	code	is	a	convenient	location	for	cleaning	up	(for	example,	explicitly	closing	files
that	are	open).

In	 older	 versions	 of	 Python	 you	 could	 not	 have	 both	 an	 except	 clause	 and	 a	 finally
clause,	but	that	was	allowed	starting	in	Python	2.5	(the	syntax	for	the	except	clause	here	is
only	valid	from	Python	2.6):

try:

		w	=	x	/	y

except	ZeroDivisionError	as	e:

		print('divided	by	zero')

finally:

		print('finished	with	division')

Further	considerations

Stopping	a	program
We	have	mentioned	how	a	program	will	stop	when	an	error	exception	occurs,	unless	we
specifically	 try	 to	catch	 that	error,	and	how	we	can	manually	 trigger	an	exception	using
raise.	However,	 it	 is	 also	 possible	 to	 simply	 end	 a	 program	 immediately	 at	 a	 particular
point,	perhaps	the	harshest	way	to	control	program	flow.	This	kind	of	intervention	is	often
not	required.	Programs	in	general	will	simply	end	after	the	Python	interpreter	reaches	the
last	of	the	commands,	when	there	is	nothing	more	to	execute.	Also,	we	can	conditionally
execute	 most	 of	 a	 program	 inside	 an	 if	 block,	 and	 thus	 skip	 straight	 to	 the	 end	 of	 a
program	 if	 a	 condition	 is	 not	 met.	 However,	 there	 are	 some	 circumstances	 where	 a
program	has	an	indefinite	loop,	perhaps	waiting	for	specific	events,	which	we	might	want
to	terminate	in	a	deliberate	manner.	A	good	example	of	this	is	a	graphical	user	interface,
where	the	program	does	not	simply	end,	but	rather	enters	an	event-driven	loop	whereby	it
waits	 to	 respond	 to	 the	 user	 providing	 input	 like	 typing	 at	 the	 keyboard	 or
clicking/touching	a	graphical	item	on	the	screen.	In	this	case	the	program	will	continue	to
run	until	the	user	specifically	exits	the	program,	maybe	by	selecting	a	‘Quit’	option	from	a
menu.

In	general	a	Python	program	is	stopped	with	the	exit()	function	from	the	standard	sys
module,	which	naturally	must	 be	 imported	 first.	 In	 the	 following	 example,	 although	we
have	 a	 loop	 which	 would	 normally	 carry	 on	 indefinitely,	 the	 exit()	 stops	 the	 program
entirely	at	the	first	iteration:

import	sys

while	True:		#	Loop	indefinitely

		sys.exit()	#	Quit	program

print('This	never	gets	executed')

Technically	 using	 sys.exit	 raises	 a	 SystemExit	 exception,	 which	 in	 theory	 could	 be
intercepted	 using	 try	 and	 except,	 for	 example,	 to	 run	 clean-up	 code	 (e.g.	 deleting
temporary	 files	 or	 saving	 session	 data	 to	 disk)	 before	 re-raising	 the	 exception	 so	 the
program	actually	stops.	 If	you	 really	do	want	a	program	 to	stop	without	doing	anything
else	and	with	no	chance	of	interception,	then	os._exit()	can	be	used	instead	(taking	note	of
the	underscore	and	the	zero	which	is	an	exit	code):

import	os,	sys

try:

		sys.exit()

except	SystemExit:

		print("Exit	stopped")

os._exit(0)	#	Can't	be	stopped

Test	code
When	importing	a	Python	file	as	a	module	we	are	generally	interested	in	variable,	object
(class)	and	function	definitions	that	do	not	immediately	result	in	any	significant	program
execution.	However,	 the	Python	code	of	an	imported	module	 is	nonetheless	read	line	by
line	by	 the	 interpreter	 and	 any	 top-level	 commands2	 in	 that	 file	will	 be	 executed	 in	 the
usual	manner.	This	might	not	be	a	problem,	but	we	generally	want	to	import	just	parts	of	a
module	without	 running	 it	 as	 if	 it	were	 the	main	 program.	A	Python	module	will	 often
have	a	main	program	so	that	it	can	be	tested	and	show	examples	for	its	use.

Accordingly,	when	writing	your	own	Python	modules	it	is	commonplace	to	design	them
so	that	if	they	are	executed	directly	they	run	as	a	main	program	and	use	any	test	code	etc.,
but	 if	 they	 are	 only	 imported	 any	 code	 that	 is	 specific	 to	 their	 main	 program	 is	 not
executed.	Usually	this	is	achieved	by	placing	any	test	code	at	the	bottom	of	the	Python	file
and	 using	 the	 special	 internal	 variable,	 __name__.	 In	 Python,	 anything	 that	 begins	 and
ends	 with	 a	 double	 underscore	 (‘__’)	 is	 part	 of	 the	 language’s	 internal	 workings.	 The
variable	__name__	is	set	at	runtime	for	each	module	that	Python	uses	in	a	program.	It	is
set	to	the	string	“__main__”	in	the	main	script	(which	itself	may	be	used	as	a	module	in
other	programs)	that	you	directly	run,	and	it	is	set	to	the	module	name	in	all	modules	that
are	then	imported,	directly	or	indirectly,	from	that	script.

Thus	you	often	see	the	following	in	Python	modules:

#	implementation	code

if	__name__	==	"__main__":

		#	test	code	for	implementation	code

When	the	script	is	run	directly	then	__name__	is	set	to	“__main__”	and	the	test	code	is

executed,	but	if	the	code	is	imported	as	a	module	from	somewhere	else	then	__name__	is
set	to	the	module	name	and	so	the	test	code	is	not	executed.

The	sys	library	is	often	used	in	this	context	when	your	test	code	might	require	one	or
more	 arguments,	 such	 as	 a	 test	 file	 name	 to	 work	 with.	 Suppose	 you	 have	 a	 function,
wordCount(),	 that	calculates	 the	number	of	words	 in	a	 file,	and	you	want	 to	 test	 it.	You
could	put	some	test	code	at	the	bottom	of	the	module:

def	wordCount(fileName):

		#	implementation

		#	gives	back	the	word	count	in	fileName

if	__name__	==	"__main__":

		import	sys

		if	len(sys.argv)	<	2:

				print('Error:	no	file	name	specified')

				sys.exit()

		fileNames	=	sys.argv[1:]

		for	fileName	in	fileNames:

				print(fileName,	'word	count	=',	wordCount(fileName))

Note	 that	 sys.argv[0]	 is	 the	 name	 of	 the	 Python	 script,	 so	 the	 file	 names	 are	 from
position	1	onwards.	See	Chapter	5	 for	discussion	of	 the	function	definition	keyword	def
and	Chapter	6	for	discussion	of	command-line	arguments	sys.argv.
1 	This	would	allow	you	to	calculate	the	angle	between	two	directions,	for	example.	See
Chapter	9.
2 	Those	not	encapsulated	in	an	abstract	definition.

5 	Functions
Contents

Function	basics

Function	definitions	and	calls

Return	values

Input	arguments

Optional	arguments

Example:	reverse	transcribe	a	DNA	sequence

Anonymous	arguments

Variable	scope

Module	and	function	variables

Global	variables

Further	considerations

Nesting	functions

Lambda:	anonymous	functions

Decorators

Function	basics
Functions	are	the	mainstay	of	most	programming	in	Python.	The	point	of	a	function	is	to
group	a	specific	set	of	operations	in	a	specific,	hopefully	not	too	large,	piece	of	code.	A
function	in	Python	is	what	is	sometimes	referred	to	in	other	languages	as	a	subroutine.	A
function	 is	written	 as	 a	 block	of	 code	 that	 is	 separate	 from	 the	main	program	 flow,	 but
which	can	be	called	upon	to	operate	in	many	separate	places.	Once	defined,	a	function	will
not	do	anything	in	particular	until	instructed	to	act,	often	with	a	specific	set	of	data.	Many
functions	perform	jobs	 that	are	general	and	can	be	used	 in	more	 than	one	situation.	The
benefits	from	using	functions	in	your	programs	are	clear:	they	reduce	the	amount	of	code
you	have	to	write	and	maintain;	they	allow	you	to	use	existing	code	that	is	already	tested;
they	improve	the	clarity	of	your	code	by	separating	mundane	tasks	from	more	important
ones,	and	they	allow	you	to	recombine	code	in	different	ways	to	perform	new	tasks.

Below	is	a	very	simple	example	of	a	function	being	used:	the	function	name	is	abs	and
it	 is	 used	 to	 find	 the	 absolute	magnitude	 of	 a	 number,	 the	 positive	 value	 removing	 any
minus	sign.	In	this	case	we	have	used	an	inbuilt	Python	function	but	it	is	also	possible	to
define	new	functions	and	import	existing	ones	from	other	files.

x	=	abs(-3.0)

print(x)							#	Result:	3.0

When	discussing	functions	we	will	address	 two	distinct	 issues.	The	first	concerns	 the
definition	of	the	function;	this	is	to	state	what	operations	it	performs.	The	second	concerns
how	the	function	is	used	within	a	working	program;	this	is	to	say	how	a	function	is	called,
to	do	something	in	a	given	situation.

Figure	5.1.	 The	definition	of	abstract	functions	and	their	execution	within	a
program.	A	function	is	an	encapsulated	block	of	code	that	is	initially	defined	in	an
abstract	way.	A	function	generally	accepts	variable	arguments,	which	would	have	different
values	in	different	situations,	and	can	pass	back	or	‘return’	values	to	the	program.	A
function	can	be	called	into	use	at	any	point	in	a	program,	once	it	is	defined,	and	this	often
involves	sending	specific	values	for	the	functions’	arguments.	Upon	calling,	the	flow	of
the	program’s	execution	is	diverted	to	the	function,	but	returns	to	the	original	point	of	the
call	when	done,	often	sending	back	data	as	one	or	more	return	values.

Function	definitions	and	calls
A	function	carries	a	name	that	identifies	it	so	that	it	can	be	used	thereafter	in	the	program.
Thus,	 when	making	 new	 functions	 it	 is	 advisable	 to	 give	 functions	 informative	 names,
usually	 so	 that	 you	 instantly	 know	 what	 its	 purpose	 is.	 It	 is	 possible	 to	 define	 two
functions	with	the	same	name,	but	 the	one	defined	secondly	will	overwrite	the	first	one.
Here	we	define	a	simple	function	named	‘sayHello’	that	prints	a	line	of	text	to	the	screen:

def	sayHello():

		print('Hello	world')

The	‘def’	keyword	tells	the	Python	interpreter	that	a	function	definition	follows,	whose
name	is	‘sayHello’.	Note	that	the	brackets	are	a	required	part	of	the	definition	and	that	the
code	 block	 that	 the	 function	 contains	 (just	 a	 single	 print	 line	 in	 this	 case)	 is	 indented
relative	 to	 the	‘def’.	The	above	 just	defines	 the	 function	 in	an	abstract	way	and	nothing
will	be	printed	when	the	definition	is	made.	To	actually	use	a	function	you	need	to	invoke
it	(call	it)	by	using	its	name	and	a	pair	of	round	parentheses:

sayHello()		#	Prints	'Hello	world'

If	 required,	 a	 function	may	 be	written	 so	 it	 accepts	 input,	which	 can	 be	 any	 kind	 of
Python	object.	In	the	next	example	we	specify	a	variable	called	‘name’	in	the	brackets	of
the	function	definition	and	this	variable	is	then	used	by	the	function.	Although	the	input
variable	 is	 referred	 to	 inside	 the	 function	 the	 variable	 does	 not	 represent	 any	 particular
value.	It	only	takes	a	value	if	the	function	is	actually	used	in	context.

def	sayHello(name):

		print('Hello	'	+	name)

When	we	call	(invoke)	this	function	we	specify	a	specific	value	for	the	input.	Here	we
pass	 in	 the	 value	 ‘Marge’,	 so	 the	 name	 variable	 takes	 that	 value	 and	 uses	 it	 to	 print	 a
message,	as	defined	in	the	function.

sayHello('Marge')		#	Prints	'Hello	Marge'

When	we	call	the	function	again	with	a	different	input	value	we	naturally	get	a	different
message.	Here	we	illustrate	that	the	input	value	can	also	be	passed	in	as	a	variable	(text	in
this	case).

text	=	'Homer'

sayHello(text)					#	Prints	'Hello	Homer'

A	function	may	also	generate	output	that	is	passed	back	or	returned	to	the	program	at
the	point	at	which	the	function	was	called.	For	example,	here	we	define	a	function	to	do	a
simple	calculation	using	input	(x)	to	create	an	output	(y):

def	calcFunc(x):

		y	=	2*x*x	+	4*x	+	1

		return	y

Once	 the	 return	 statement	 is	 reached	 the	 operation	 of	 the	 function	 will	 end,	 and
anything	on	the	return	line	will	be	passed	back	as	output.	Here	we	call	the	function	on	an
input	number	and	catch	the	output	value	as	result.	You	can	visualise	the	invocation	of	the
function	as	transforming	the	input	into	the	output.	Notice	how	the	names	of	the	variables
used	inside	the	function	definition	are	separate	from	any	variable	names	we	may	choose	to
use	when	calling	the	function.

number	=	7

result	=	calcFunc(number)

print(result)		#			127

Strictly,	all	Python	functions	give	back	a	return	value.	In	cases	where	no	specific	return
statement	is	given,	like	with	sayHello()	above,	the	value	passed	back	from	the	function	is
implicitly	 the	None	object.	This	 alludes	 to	 the	 fact	 that	we	 are	 not	 obliged	 to	 catch	 the
output	of	a	function	as	a	variable;	even	if	a	function	returns	a	value	the	caller	can	choose
to	ignore	it.	So,	for	example,	we	could	just	do:

calcFunc(5)

In	this	case	the	call	 is	rather	pointless,	since	the	only	reason	to	use	this	function	is	 to
generate	the	value	that	is	passed	back.	But	it’s	possible	that	a	function	can	return	a	value
that	is	not	of	interest	in	all	circumstances.

A	function	can	accept	multiple	input	values,	otherwise	known	as	arguments.	These	are
separated	 by	 commas	 inside	 the	 brackets	 of	 the	 function	 definition.	 Here	 we	 define	 a
function	that	takes	two	arguments	and	performs	a	calculation	on	both,	before	sending	back
the	result.

def	calcFunc(x,	y):

		z	=	x*x	+	y*y

		return	z

result	=	calcFunc(1.414,	2.0)

print(result)		#		5.999396

Note	 that	 this	 function	does	not	 check	 that	x	 and	y	 are	 valid	 forms	of	 input.	 For	 the
function	to	work	properly	we	assume	they	are	numbers.	Depending	on	how	this	function	is
going	to	be	used,	appropriate	checks	could	be	added.

Return	values
There	can	be	more	than	one	return	statement	in	a	function,	although	typically	there	is	only
one,	 at	 the	 bottom.	 Consider	 the	 following	 function	 to	 get	 some	 text	 to	 say	 whether	 a
number	 is	 positive	 or	 negative.	 It	 has	 three	 return	 statements:	 the	 first	 two	 return
statements	pass	back	text	strings	but	 the	 last,	which	would	be	reached	if	 the	 input	value
were	zero,	has	no	explicit	return	value	and	thus	passes	back	the	Python	None	object.	Any
function	code	after	this	final	return	is	ignored.

def	getSign(value):

		if	value	>	0:

				return	'Positive'

		elif	value	<	0:

				return	'Negative'

		return

		print('Hello	world')		#	This	line	is	ignored

print	getSign(33.6)	#	Result:	'Positive'

print	getSign(-7)			#	Result:	'Negative'

print	getSign(0)				#	Result:	None

All	of	the	examples	of	functions	so	far	have	returned	only	single	values;	however,	it	is
possible	 to	 pass	 back	 more	 than	 one	 value	 via	 the	 return	 statement.	 In	 the	 following
example	we	define	a	function	that	takes	two	arguments	and	passes	back	two	values.	The
return	values	are	really	passed	back	inside	a	single	tuple,	which	can	be	caught	as	a	single
collection	 of	 values.	 However,	 if	 required	 the	 returned	 values	 can	 be	 extracted
immediately	to	give	a	clean	syntax.

def	calcFunc(x,	y):

		w	=	x*x	-	y*y

		z	=	x*x	+	y*y

		return	w,	z

values	=	calcFunc(1.414,	2.0)	#	Grab	output	as	a	whole	tuple

print(values)		#	Result:	(-2.000604,	5.999396)

a,	b	=	calcFunc(1.414,	2.0)	#	Grab	individual	values

print	a		#	Result:	-2.000604

print	b		#	Result:	5.999396

Input	arguments
In	 the	 previous	 section	 we	 saw	 that	 a	 function	 can	 take	 a	 specified	 number	 of	 input
arguments.	 However,	 compared	 to	 many	 programming	 languages	 Python	 is	 somewhat
flexible	in	the	way	it	accepts	arguments.

Optional	arguments
In	 a	 function	definition	Python	allows	default	 values	 to	be	 specified	 for	 arguments.	For
example,	suppose	we	have	a	function	that	will	run	a	simulation,	and	the	number	of	steps	in
the	simulation	is	one	argument	that	we	allow.	Also	suppose	that	1000	steps	is	a	sensible
default	value;	the	value	that	will	be	used	in	the	absence	of	any	other	information.	Then	we
could	define	the	first	line	of	the	function	with:

def	runSimulation(numberSteps=1000):

We	 can	 call	 the	 function	 and	 optionally	 specify	 or	 not	 specify	 the	 value	 for
numberSteps.	Thus	we	can	do	either

runSimulation(500)

or

runSimulation()

In	the	first	case	the	function	is	run	with	the	variable	numberSteps	set	to	500;	the	value
that	we	specified.	 In	 the	second	case	no	value	 is	 specified,	 so	numberSteps	 is	 set	 to	 the
default	value	of	1000.	Of	 course	we	could	 explicitly	pass	 in	1000	 to	 the	 function	 if	we
wanted	to.

When	using	defaulting	arguments	you	have	to	be	cautious	when	your	default	value	is	a
Python	object	that	is	mutable,	 i.e.	can	be	changed	internally.	This	applies	 to	Python	lists
and	dictionaries,	but	not	 things	 like	numbers,	 text	 strings	or	 tuples.	A	potential	problem
arises	where	a	default	value	is	mutable	because	each	time	the	function	is	called	the	same
Python	object	is	used;	it	will	not	make	a	new	one	each	time.	Consider	the	following:

def	myFunction(parameters=[]):

		parameters.append(100)

		print(parameters)

myFunction()	#	Result:	[100]

myFunction()	#	Result:	[100,	100]

myFunction()	#	Result:	[100,	100,	100]

Each	 time	 the	 function	 is	 run	 the	 same	parameters	 list	 remains	 and	 is	 added	 to	 each
time.	To	avoid	this	kind	of	problem,	rather	than	having	an	empty	list	as	a	default	value	we
use	the	None	object,	which	 is	of	course	 immutable,	and	 then	define	a	new	empty	 list	as
required.

def	myFunction(parameters=None):

		if	parameters	is	None:

				parameters	=	[]

		parameters.append(100)

		print(parameters)

myFunction()	#	Result:	[100]

myFunction()	#	Result:	[100]

A	 function	 can	 have	 any	 number	 of	 non-defaulting	 (mandatory)	 and	 defaulting
arguments,	as	long	as	the	defaulting	ones	come	last	in	the	definition;	so	that	when	we	pass
values	 to	 the	 function	 the	mandatory	 arguments	 are	 filled	 first.	 Accordingly,	 if	we	 add
another	 argument	 to	 the	 runSimulation	 function	 which	 represents,	 say,	 the	 initial
temperature	of	the	simulation,	we	would	do:

def	runSimulation(initialTemperature,	numberSteps=1000):

In	this	case	initialTemperature	does	not	have	a	default	and	must	be	specified	when	the
function	is	called.	If	the	new	argument	is	specified	with	a	default	value	then	it	is	allowed
to	follow	the	other	defaulting	arguments,	so,	for	example,	we	could	have:

def	runSimulation(numberSteps=1000,	initialTemperature=300.0):

You	could	call	the	second	form	of	the	function	above	by	explicitly	stating	the	values	of
numberSteps	as	500	and	initialTemperature	as	400.0:

runSimulation(500,	400.0)

or	 by	 stating	 only	 the	 first	 argument	 explicitly,	 i.e.	 numberSteps	 as	 500,	 leaving
initialTemperature	at	the	default	vale	of	300.0:

runSimulation(500)

or	just	use	both	default	values.

runSimulation()

The	question	then	naturally	arises	how	you	can	use	the	default	value	for	numberSteps
but	not	for	initialTemperature,	given	that	the	latter	is	the	second	argument	in	the	function.
Fortunately,	Python	allows	names	to	be	used	for	arguments	when	calling	functions,	so	you
can	identify	exactly	which	argument	is	being	passed	in.	Thus	the	following	is	allowed

runSimulation(initialTemperature=400.0)

Here	numberSteps	is	set	to	the	default	1000	and	initialTemperature	to	400.0.

You	can	use	names	for	function	arguments	even	if	 they	do	not	have	default	values	or
even	if	there	is	no	particular	need	to;	it	is	a	matter	of	taste,	but	should	be	considered	if	it
adds	clarity.	Remember	that	if	you	use	the	name	for	any	argument	when	calling	a	function
then	 all	 subsequent	 arguments	must	 also	 use	 the	 named	 syntax.	Accordingly,	 one	 could
use	a	named	argument	at	the	end:

runSimulation(500,	initialTemperature=400.0)

or	name	both	arguments:

runSimulation(numberSteps=500,	initialTemperature=400.0)

or	use	named	arguments	in	reverse	order:

runSimulation(initialTemperature=400.0,	numberSteps=500)

which	are	all	equivalent	to

runSimulation(500,	400.0)

The	ability	to	use	any	order	for	named	arguments	is	particularly	useful	so	that	you	don’t
have	to	remember	the	order	in	which	they	were	defined	in	the	function.

It	 is	 generally	 a	 good	 idea	 as	 a	 programmer	 that	 if	 you	 add	 arguments	 to	 a	 function
definition	that	has	already	been	used	in	various	applications	then	you	should	add	the	new
arguments	to	the	end	of	the	function	definition	and	specify	default	values	for	all	of	them.
This	 way	 any	 existing	 code	 employing	 the	 function	 continues	 to	 work	 without
modification.	(Of	course	it	 is	another	matter	if	 the	function	has	changed	what	it	actually
does.)

Example:	reverse	transcribe	a	DNA	sequence
To	 illustrate	 what	 we	 have	 described	 with	 a	 more	 realistic	 situation,	 next	 we	 define	 a
function	which	will	 take	a	 string	of	 letters	 representing	a	DNA	or	RNA	sequence	as	 an
input	argument	and	create	the	reverse	complement	sequence,	which	is	the	sequence	of	an
opposing	 strand	 that	 will	 form	 a	 tight	 interaction	 through	 hydrogen-bonding	 base	 pairs
(see	Chapter	11	 for	 further	 explanation).	Naturally	we	 give	 the	 function	 an	 informative
name,	 and	 specify	 two	 input	 arguments,	 one	 which	 is	 mandatory	 and	 represents	 the
sequence	and	the	other	which	is	optional	to	indicate	whether	we	have	a	DNA	sequence	(A,
C,	G	and	T	letters)	or	an	RNA	sequence	(A,	C,	G	and	U	letters).	This	optional	argument	is
named	isDna	and	defaults	to	True,	i.e.	that	we	have	a	DNA	sequence,	not	RNA.

def	reverseComplement(sequence,	isDna=True):

		from	string	import	maketrans

		if	isDna:

				sequence	=	sequence.replace('U','T')

				transTable	=	maketrans('ATGC',	'TACG')		else:

				sequence	=	sequence.replace('T','U')

				transTable	=	maketrans('AUGC',	'UACG')

		complement	=	sequence.translate(transTable)

		reverseComp	=	complement[::-1]

		return	reverseComp

Internally	 this	 function	 relies	 on	 the	 translate()	 function	 which	 is	 built	 into	 Python
strings	 (like	 the	 input	 sequence)	 and	 the	 maketrans	 function	 that	 is	 imported	 from	 the
string	module;	 this	makes	a	 character	 substitution	 table	between	equivalently	positioned
letters	from	two	strings.	Also,	it	is	notable	that	we	use	the	replace()	function	of	strings	to
guard	against	having	the	wrong	kinds	of	letter	(i.e.	T	versus	U)	in	the	input	compared	to
the	isDna	argument.	The	upshot	of	all	of	this	is	that	the	input	sequence	has	letters	swapped
according	 to	 the	 pairs	 G	↔	 C	 and	 A	↔	 T	 for	 DNA	 or	 A	↔	 U	 for	 RNA	 to	 create
complement.	The	reverse	of	this	reverseComp	is	generated	using	the	handy	slice	notation
with	 a	 negative	 step	 ([::-1]).	 This	 final	 string	 is	 what	 we	 want	 to	 pass	 back	 from	 the
function,	and	thus	we	use	it	with	return	at	the	end.	The	function	is	readily	tested	with	some
example	sequence	strings:

seq1	=	'GATTACA'

seq2	=	"AUGGUG"

print(reverseComplement(seq1))																			#	TGTAATC

print(reverseComplement(seq1,	isDna=False))						#	UGUAAUC

print(reverseComplement(seq2,	False))												#	CACCAU

Anonymous	arguments
There	is	one	extra	subtlety	with	function	arguments	(which	is	beyond	what	many	novice
programmers	 would	 need	 to	 know,	 so	 feel	 free	 to	 skip	 this	 section).	 In	 a	 function
definition,	Python	has	the	ability	to	specify	arbitrary	anonymous	arguments	at	the	end	of

the	 list	of	ordinary	arguments.	 It	uses	a	 special	 syntax	 for	 these	extra	arguments,	which
can	be	confusing	when	you	first	see	it.	Consider	the	following	illustrative	function:

def	testFunc(item,	*args,	**kw):

		print('Mandatory	argument:',	item)

		print('Unnamed	arguments:',	args)

		print('Keyword	dictionary:',	kw)

Here	 we	 have	 one	 mandatory	 argument,	 item,	 and	 at	 the	 end	 there	 are	 two	 special
arguments,	 *args	 (short	 hand	 for	 ‘arguments’)	 and	 **kw	 (short	 hand	 for	 ‘keywords’)
which	collect	any	number	of	extra	arguments	that	may	be	passed	in.	The	asterisks	(*)	have
to	be	used	as	shown;	one	for	args	and	two	for	kw,	but	the	actual	argument	names	can	be
different.	When	the	function	is	called	with	more	arguments	than	just	a	single	item	value,
these	 extra	 arguments	 are	 placed	 inside	 the	 args	 and	 kw	 variables.	 Simple	 listed
arguments,	i.e.	those	that	do	not	use	the	name=value	syntax,	are	put	in	the	args	tuple	and
those	that	do	use	the	name=value	syntax	are	put	in	the	kw	dictionary,	with	the	keys	being
the	argument	names	and	 the	values	being	what	 these	are	mapped	 to.	 Inside	 the	 function
args	 and	 kw	 are	 used	 without	 the	 asterisks	 (except	 possibly	 when	 passed	 into	 another
function).	 Note	 that	 in	 a	 function	 definition	 you	 don’t	 have	 to	 collect	 both	 kinds	 of
arbitrary	arguments;	you	can	have	*args	without	**kw	or	vice	versa.

The	following	examples	illustrate	how	using	this	arbitrary	argument	syntax	adds	a	large
degree	 of	 flexibility	 to	 function	 calls,	 although	 this	 is	 sometimes	 at	 the	 expense	 of
reducing	clarity.

testFunc('Hello',	1,	99,	valueA="abc",	valueB=7.0)

Here	the	variable	item	is	set	to	the	value	‘Hello’,	the	variable	args	is	set	to	the	tuple	(1,
99)	and	the	variable	kw	is	set	to	the	dictionary	{‘valueA’:“abc”,	‘valueB’:7.0}.

testFunc('Hello',	valueA="abc",	valueA=7.0)

Here	args	is	empty	and	kw	is	set	to	the	dictionary	{‘valueA’:“abc”,	‘valueB’:7.0}.

testFunc('Hello')

Here	only	the	mandatory	item	is	specified;	args	and	kw	are	both	empty.

You	may	 be	 thinking	why	 you	would	 ever	want	 to	 have	 anonymous	 arguments	 in	 a
function.	Indeed,	in	general	they	are	often	avoided,	because	it	means	it	is	not	particularly
obvious	what	the	arguments	are	expected	to	be.	However,	there	are	some	situations	where
the	use	of	anonymous	arguments	does	make	sense.	For	example,	you	may	have	a	function
whose	 input	 arguments	 are	 dictated	 by	 some	 other	 consideration,	 e.g.	 it	 might	 be	 a
function	which	will	be	called	by	an	application	that	someone	else	wrote,	and	which	you
can’t	change,	but	where	the	arguments	are	not	needed	to	make	the	function	work.	In	that
case	one	might	write	the	function	definition	as	follows,	to	indicate	that	the	only	argument
that	matters	is	the	first	one:

def	myPublicFunc(item,	*irrelevantArgs,	**irrelevantKw):

		print('Ignoring	all	arguments	except',	item)

Also,	 you	 sometimes	 have	 a	 function	 that	 passes	 forward	most	 of	 its	 information	 to

another	 function	 without	 using	 it	 directly,	 and	 that	 second	 function	 may	 have	 lots	 of
arguments.	Rather	than	listing	all	the	arguments	in	the	first	function,	it	is	quite	common	to
collect	 anonymous	 arguments	 and	 just	 pass	 them	 all	 onto	 the	 second	 function.	 So,	 for
example,	 suppose	 there	 is	 a	 function,	 setStyle,	 that	 a	 draw	 function	 calls	 to	 set	 lots	 of
things	like	the	colour,	line	style,	shading	etc.	The	draw	function	might	then	be	defined	as
follows,	passing	the	anonymous	arguments	to	another	function	that	is	called	inside:

def	draw(points,	*args,	**kw):

		#	some	code

		setStyle(*args,	**kw)

		#	some	more	code

This	would	work	if	the	definition	of	setStyle	accepts	anonymous	arguments	like

def	setStyle(*args,	**kw):

or	named	arguments

def	setStyle(fgColor="red",	bgColor="black",	linestyle="plain"):

Consider	the	following	call	to	the	draw	function:

draw(points,	bgColor="green")

In	the	first	case	where	setStyle	accepts	anonymous	arguments	the	kw	dictionary	is	set	to
{‘bgColor’:	 “green”},	 and	 the	 args	 tuple	 is	 empty.	 In	 the	 second	 case	 where	 there	 are
named	 arguments	 bgColor	 is	 ‘green’	 but	 the	 other	 arguments	 have	 default	 values;	 i.e.
fgColor	is	‘red’	and	linestyle	is	‘plain’.

When	calling	functions	with	anonymous	arguments	the	asterisk	syntax	should	be	used
with	care,	given	that

setStyle(*args,	**kw)

is	different	to

setStyle(args,	kw)

In	 the	 former	 the	 function	 can	have	 any	number	 of	 unspecified	 arguments	which	 are
filled	in	by	the	elements	of	the	tuple	and	the	dictionary.	For	the	latter	the	function	would
be	expecting	exactly	 two	arguments;	here	 the	first	argument	 is	a	 tuple	and	 the	second	a
dictionary.

Lasty,	 the	 anonymous	 arguments	 notation	 is	 sometimes	 convenient	 if	 the	 number	 of
arguments	being	passed	 into	 a	 function	 is	 large.	You	can	define	 the	 argument	 tuple	 and
keyword	argument	dictionary	before	the	function	call,	thus	reducing	clutter:

tupleArgs	=	(value1,	value2,	value3)

dictKw	=	{'color':'blue',	'depth':3,	'gamma':0.271728}

myFunction(*tupleArgs,	**dictKw)

Variable	scope
Next	we	move	 on	 to	 consider	 the	 scope	 of	 variables	 inside	 and	 outside	 functions.	 The
scope	 of	 a	 variable	 is	 the	 context	 within	 a	 program	 where	 the	 variable’s	 name	 has
meaning.	It	is	often	convenient	to	think	about	this	in	terms	of	whether	a	variable	operates
locally	or	not;	i.e.	whether	a	variable	only	exists	inside	a	block	of	code.

Module	and	function	variables
If	a	variable	is	defined	outside	a	function	then	its	name	has	meaning	for	the	whole	Python
file	or	module	in	which	it	resides.	Such	a	variable	is	usually	visible	to	other	modules,	so
can	be	imported	from	one	module	to	another,	unless	it	is	specifically	protected	from	being
exported	by	having	a	name	beginning	with	double	underscore	‘__’.	If	a	variable	is	defined
inside	a	function	then	it	is	visible	only	inside	that	function.

def	mathFunction(x,	y):

		z	=	(x+y)*(x-y)

		return	z

answer	=	mathFunction(4,	7)

print(answer)	#	Fine

print(z)	#	Fails;	z	does	not	exist	outside	function	definition

In	 general	 most	 Python	 code	 will	 be	 defined	 as	 functions	 and	 thus	 most	 variables
should	 be	 defined	 inside	 those	 functions.	 Keeping	 variables	 inside	 functions,	 and	 thus
their	 scope	 local,	 has	 several	 distinct	 advantages:	 the	 value	 of	 the	 variable	 cannot	 be
altered	outside	the	function,	so	there	is	no	‘pollution’	from	elsewhere;	you	don’t	have	to
worry	whether	your	variables	are	being	used	by	other	bits	of	code1	and	the	logic	is	usually
more	obvious,	since	it	is	contained.

An	occasion	where	a	variable	might	be	defined	outside	a	function	is	when	it	is	intended
to	be	 a	 constant,	 so	not	modified	after	 its	original	definition.	For	 example,	 consider	 the
following	two	functions	to	convert	masses	between	units	of	pounds	and	kilograms:

KILOS_PER_POUND	=	0.45359237

def	poundsToKilos(pounds):

		kilos	=	pounds	*		KILOS_PER_POUND

		return		kilos

def	kilosToPounds(kilos):

		pounds	=	kilos	/		KILOS_PER_POUND

		return		pounds

The	 constant	 POUNDS_PER_KILO	 could	 of	 course	 also	 be	 defined	 inside	 the
functions,	but	 it	 is	useful	 to	both,	and	does	not	change.	Thus	 in	 this	case	 it	makes	more
sense	to	define	the	constant	at	the	module	level,	outside	the	functions.

Global	variables
If	a	variable	is	defined	at	a	module	level	and	if	it	is	desired	to	change	it	inside	a	function,
then	Python	requires	a	‘global’	statement	in	the	function	to	get	hold	of	the	variable	from
outside.	 For	 example,	 suppose	we	 have	 a	 counter	 that	 is	 incremented	 inside	 a	 function,
then	we	could	do

counter	=	0

def	someFunction(argument):

		global	counter

		counter	+=	1

		performOperation(argument)

In	 some	 ways	 it	 is	 good	 that	 Python	 has	 this	 arduous	 way	 of	 modifying	 variables
defined	at	module	 level,	because	 it	 is	generally	not	a	good	 idea	 to	code	 this	way.	Often
you	would	avoid	using	global	entirely	by	passing	variables	in	as	arguments	and	collecting
them	as	output:

counter	=	0

def	someFunction(argument,	counterVal):

		counterVal	+=	1

		performOperation(argument)

		return	counterVal

counter	=	someFunction(input,	counter)

Further	considerations

Nesting	functions
Python	allows	functions	to	be	defined	inside	functions;	one	function	is	said	to	be	nested
inside	the	other.	Typically	you	would	do	this	only	if	the	inner	function	is	only	of	use	in	the
very	 limited	context	of	 the	outer	 function.	As	with	variables,	 this	 is	one	way	 to	prevent
functions	from	being	used	in	another	module.	However,	it	can	make	code	harder	to	read,
so	it	is	generally	best	to	use	this	technique	sparingly.

Nonetheless,	 sometimes	 a	 function	 inside	 a	 function	 makes	 sense.	 For	 example,	 in
Python,	lists	can	be	sorted	with	the	sort()	function,	and	it	has	an	optional	argument	which
is	 a	 function	 that	 determines	 the	 sort	 order	 (otherwise	 the	 ‘natural’	 sort	 order	 is	 used).
Suppose	we	have	a	function	that	draws	atoms,	and	we	want	to	draw	atoms	with	smaller	‘z’
coordinate	first	(assuming	that	‘z’	is	the	direction	out	of	the	screen).	Then	we	could	do

def	drawAtoms(atoms):

		def	atomKey(atom):

				return	atom.z

		atoms.sort(key=atomKey)

Here	 the	 sort()	 function	 takes	 an	 argument,	 key	 (allowed	 since	 Python	 2.4),	 that
specifies	a	function	which	takes	as	argument	an	item	of	the	list	and	returns	a	value	which
will	be	used	to	compare	different	items	in	the	list.	Here	the	value	returned	is	the	z	value	of
the	atom,	so	sorting	will	put	atoms	with	smaller	z	values	first.

Lambda:	anonymous	functions
So	 far	we	 have	 been	 discussing	 the	 normal	 named	 Python	 functions.	 However,	 Python
also	has	some	seemingly	strange	functionality	to	define	anonymous	functions.	Here’s	how
you	 can	 define	 an	 anonymous	 function	 using	 the	 lambda	 keyword;	 note	 how	 it	 is
immediately	assigned	to	a	variable	and	that	a	colon	‘:’	is	used	to	separate	the	inputs	from
what	is	returned.

cube	=	lambda	x:	x*x*x

print(cube(3))		#	Result:	27

This	is	equivalent	to:

def	cube(x):

		return	x*x*x

print(cube(3))		#	Result:	27

A	lambda	 function	can	only	be	 simple;	 it	 cannot	contain	control	 statements	 like	 if	 or
for.	So	its	use	is	restricted.	There	might	seem	little	point	in	defining	such	limited	functions
that	you	cannot	name,	but	there	are	a	few	situations	where	they	are	very	handy.	Consider
that	 you	 have	 a	 function	 that	 accepts	 another	 function	 as	 an	 argument;	 in	 this	 case	 the
argument	function	is	called	if	there	is	an	error:

def	jobFunc(arg1,	errorFunc):

Now	imagine	that	you	want	to	pass	some	arguments	to	errorFunc	to	say	how	the	error
should	be	displayed:

def	jobFunc(arg1,	errorFunc('Warning',	color='Red')):	#	Wrong

The	 above	 is	 not	what	we	want	 because	 errorFunc	 is	 always	 called	when	 jobFunc	 is
defined.	 What	 we	 really	 want	 to	 do	 is	 only	 call	 errorFunc	 with	 the	 warning	 message
somewhere	inside	jobFunc,	when	and	where	it	is	needed.	Accordingly	we	can	use	lambda
to	wrap	errorFunc	without	it	being	called.

def	jobFunc(arg1,	lambda:	errorFunc('Warning',	color='Red')):

As	 another	 demonstration,	 consider	 the	 sorting	 example	 for	 nested	 functions	 in	 the
previous	section.	We	could	use	lambda	instead:

def	drawAtoms(atoms):

		atoms.sort(key=lambda	atom:	atom.z)

Decorators
From	Python	2.4	the	language	was	extended	with	a	new	syntax	that	allows	the	convenient
wrapping	 of	 one	 function	 with	 another;	 to	 modify	 a	 function	 so	 that	 its	 output	 passes
directly	to	another	for	further	processing.	Doing	this	was	actually	possible	before	the	new
syntax	was	 invented,	 but	 the	 specification	of	 how	one	 function	wrapped	 another	 had	 to
come	 at	 the	 end,	 after	 the	 definition	 of	 the	 function.	This	meant	 that	 it	was	 not	 always
obvious	at	first	glance	that	a	function	had	been	wrapped,	and	consequently	that	its	output
might	be	modified.	Consider,	for	example,	the	following	trivial	example	function	to	do	a
simple	mathematical	operation:

def	getSumSquares(n):

		result	=	sum([i*i	for	i	in	range(n)])

		return	result

Next	 we	 consider	 a	 wrapping	 function	 addEmphasis	 that	 is	 designed	 to	 work	 in	 a
variety	 of	 situations	 (including	 for	 the	 function	 defined	 above).	 It	 takes	 an	 inputFunc
function	 and	 defines	 an	 inner	 modifyFunc	 function	 that	 runs	 the	 first	 inputFunc	 but
modifies	the	result,	in	this	case	to	make	text	with	added	‘*’	symbols.	Note	that	the	main
function	 passes	 back	 only	 a	 reference	 to	 the	 inner	 modifyFunc;	 it	 only	 defines	 a	 new
function	based	on	the	input	one	and	doesn’t	actually	run	anything.

def	addEmphasis(inputFunc):

		def	modifyFunc(*args):

				result	=	inputFunc(*args)

				result	=	'****%d****'	%	result

				return	result

		return	modifyFunc

The	 function	 addEmphasis	 is	 designed	 so	 that	 an	 input	 function	 can	 be	 redefined	 to
include	 the	modification.	 For	 example,	 getSumSquares	 can	 be	 changed	 from	 a	 numeric
output	to	produce	text	with	asterisk	symbols:

print(getSumSquares(127))		#	Gives:	674751

getSumSquares	=	addEmphasis(getSumSquares)	#	Redefine

print(getSumSquares(127))		#	Gives:	****674751****

With	the	decorator	syntax,	rather	than	redefining	a	function	at	the	end,	we	‘decorate’	it
at	the	start	with	a	wrapper	function	specification	using	the	‘@’	symbol:

@addEmphasis

def	getSumSquares(n):

		result	=	sum([i*i	for	i	in	range(n)])

		return	result

This	 ‘@’	 syntax	 can	 be	 used	 to	 add	 any	 number	 of	 decorator	 functions.	 Take,	 for
example,	another	general	wrapping	function,	which	in	this	case	times	how	long	something
takes	to	run:

def	usingTimer(function):

		from	time	import	time

		def	timer(*args,	**kw):

				start	=	time()

				output	=	function(*args,	**kw)

				end	=	time()

				print('Function	call	took	%f	seconds'	%	(end-start))

				return	output

		return	timer

To	add	this	wrapping	to	the	specification	we	only	need	to	add	one	line	to	the	start:

@usingTimer

@addEmphasis

def	getSumSquares(n):

		result	=	sum([i*i	for	i	in	range(n)])

		return	result

print(getSumSquares(127))

And	so	when	the	same	test	is	applied	again	the	result	is	further	modified	to	print	out	the
timing	information.

Function	call	took	0.000074	seconds

****674751****

1 	If	a	variable	is	defined	outside	a	function	then	code	that	changes	it	is	not	‘thread	safe’,
without	extra	code	to	manage	that.

6 	Files
Contents

Computer	files

File	formats

Reading	files

Using	‘open’

Reading	lines	of	data

Working	with	variable	file	names

File	reading	examples

Reading	whitespace-separated	files

Reading	FASTA	files

Reading	PDB	files

Reading	XML	files

Reading	PubMed	XML	files

Writing	files

Example	FASTA	format	writer

Column-delimited	formats

Further	considerations

File	operations	with	the	standard	library

Pickling	data

Computer	files
A	computer	file	is	a	means	by	which	data	is	stored	on	a	permanent	basis,	or	at	least	until	it
is	deleted.	It	is	held	in	a	place	such	as	a	hard	disk	drive	or	removable	storage	device	that	is
separate	from	the	active,	temporary	memory	of	a	computer.	While	the	active	memory	may
hold	the	current	program	and	an	amount	of	data,	files	represent	a	larger	archive	of	stored
data	and	 the	general	 idea	 is	 that	 this	 should	 survive	when	 the	computer	 is	 switched	off.
Parts	of	this	saved	data	may	be	copied	into	the	active	memory	as	required.	Loading	data
from	files	(which	may	be	stored	locally	or	transmitted	via	a	network)	places	data	into	the
active	memory	so	that	it	can	be	worked	upon	efficiently.	This	data	might	be	the	code	for	a
computer	 program	which	 can	 then	be	 executed	 to	 do	 a	 job.	Naturally	we	 save	program
instruction	code	as	a	file	so	that	it	may	be	used	as	many	times	as	desired,	without	having

to	rewrite	anything.

This	chapter	will	focus	on	data	files	that	store	information	for	programs	to	work	with,
rather	than	the	program	files	themselves,	given	that	we	can	trust	the	Python	interpreter	to
handle	the	loading	and	running	of	Python	code.	We	will	show	how	data	can	be	read	into	a
program	and	written	out	from	a	program,	e.g.	to	and	from	files	stored	on	disk.	Such	data
files	 come	 in	 a	 large	 variety	 of	 shapes,	 sizes	 and	 forms	 (unlike	 Python	 files,	 which
conform	to	a	single,	precise	standard).	Information	can	be	stored	in	an	endless	number	of
ways,	 sometimes	 at	 the	 whim	 of	 the	 programmer,	 but	 fortunately	 in	 the	 spirit	 of
cooperation	(including	mutual	financial	interest)	particular	types	of	data	are	often	stored	in
a	standardised	way,	with	a	known	specification.

Stored	data	is	represented	as	a	series	of	binary	numbers,	i.e.	zeros	and	ones	(merely	the
absence	 or	 presence	 of	 a	 signal)	 and	 a	 connected	 series	 of	 data	 that	 goes	 together,	 as	 a
named	 unit,	 is	 what	 we	 mean	 by	 a	 file.	 However,	 there	 are	 two	 distinct	 types	 of	 file:
binary	 and	 plain	 text.	 The	 difference	 between	 these	 is	 that	 plain	 text	 files	 only	 use	 a
limited	series	of	binary	codes	to	describe	data	as	character	symbols,	like	digits	and	letters.
Binary	 files	 are	 not	 restricted	 in	 this	 sense,	 but	 their	 interpretation	 is	 dependent	 upon
having	the	right	kind	of	computer	system	and/or	program	to	load	them.	Plain	text	files	are
much	 more	 universal	 and	 keep	 to	 a	 standard	 set	 of	 binary	 codes,	 so	 that	 they	 will	 be
interpretable	in	the	same	way	whatever	the	computer	system	or	programming	language.	In
this	chapter	we	concentrate	on	data	stored	as	plain	text	files,	and	this	will	cover	most	of
the	file	standards	used	in	biology.

File	formats
When	 data	 is	 stored	 in	 a	 plain	 text	 file,	 although	 interpreting	 the	 individual	 component
characters	is	trivial,	if	we	are	to	understand	what	the	contents	of	the	file	actually	mean	we
have	to	understand	the	way	in	which	the	data	inside	the	file	is	structured.	This	is	just	like
written	language	where	knowing	the	alphabet	is	not	enough,	we	also	need	to	understand
concepts	 like	 words,	 sentences	 and	 punctuation.	 Ultimately	 it	 is	 the	 decision	 of	 the
computer	programmer	as	to	how	the	data	in	saved	files	is	structured.	However,	where	it	is
important	 that	 files	 should	 be	 understood	 by	 a	 variety	 of	 programs	 the	 data	 will	 be
represented	in	a	standardised,	and	hopefully	documented,	way.	The	data	standard	for	a	file
is	often	referred	to	as	a	file	format.	Virtually	all	plain	text	formats	consider	the	stored	data
according	to	lines;	they	are	subdivided	by	special	end-of-line	control	characters1	at	the	end
of	each	line.

A	very	common	file	structure	is	to	have	one	record	of	data	per	line,	often	with	a	single
header	 line	at	 the	 top	of	 the	file,	 to	describe	 the	contents	of	 the	 lines.	One	possibility	 is
that	 the	file	represents	a	 table	with	each	line	describing	one	row.	The	fields	(or	cells)	 in
each	row,	one	for	each	column	of	the	table,	may	be	demarked	in	various	ways:	this	could
be	according	to	the	position	within	the	row,	i.e.	the	position	of	a	character	relative	to	the
start,	or	specified	by	special	separating	characters,	like	commas	or	whitespace	(tabs,	blank
spaces	etc.).	An	alternative	 to	a	 fixed	order	of	 fields	 is	 that	 the	 lines	consist	of	pairs	of
named	 keys	 (identifiers)	 and	 corresponding	 values.	 Here	 the	 keys	 will	 generally	 come
from	a	fixed,	allowed	set	of	keys	and	in	some	instances	the	data	values	that	are	addressed
by	a	single	key	may	span	many	lines.

Another	common	file	structure	 is	 to	have	 tags	 that	 identify	and	specify	 the	beginning
and	end	of	a	 record.	Often	 these	 tags	can	be	nested,	one	 inside	 the	other,	 thus	denoting
containment.	For	 example,	 the	XML	 (eXtensible	Markup	Language)	 data	 standard	 uses
tags	where	the	record	starts	with	text	like	‘<NAME>’	and	ends	with	the	text	‘</NAME>’,
where	here	‘NAME’	is	the	identifier	for	the	element.

Sometimes	a	programming	language	will	have	its	own,	inbuilt	formats	for	representing
data	 structures	 created	 in	 that	 language.	 This	 process	 is	 referred	 to	 as	 serialisation.	 In
general	 the	 serialisation	 format	 will	 be	 specific	 to	 the	 language	 in	 question,	 and	 may
require	 special	modules	 to	 be	 installed.	However,	 if	 data	 is	 only	 going	 to	 be	 used	 in	 a
single	language	environment,	using	serialisation	can	offer	an	efficient	means	to	store	the
active	 data,	 in	 terms	 of	 both	 speed	 and	 programming	 ease.	 Python	 has	 a	 serialisation
method	which	is	referred	to	as	pickling.	Such	‘pickle’	files	are	usually	textual,	but	they	are
not	so	easy	for	a	person	to	interpret.	For	example,	the	Python	list	data	structure:

x	=	[1,	2,	'a',	'b',	True,	None]

is	saved	by	the	pickling	method	as:

(lp1

I1

aI2

aS'a'

aS'b'

aI01

aNa.

Given	most	file	formats,	it	is	normally	easier	to	write	files	than	it	is	to	read	them;	it	is
easier	 to	 extract	data	 from	a	 controlled	and	 standardised	 in-memory	 representation	 (e.g.
Python	 structures)	 than	 it	 is	 to	 interpret	 someone	 else’s	 text,	 which	 may	 not	 be
standardised	or	even	fully	understood.	So	when	writing	a	program	to	read	a	file	you	need
to	 parse	 the	 file	 (determine	 its	 syntactic	 structure)	 and	 also	 confirm	 that	 the	 content	 is
valid,	however	that	may	be	defined.	When	writing	a	file	you	just	have	to	make	sure	that
you	 are	 following	 the	 rules	 for	 the	 file	 layout.	A	 common	programming	paradigm	 is	 to
first	 read	 one	 or	more	 files,	 do	 some	 processing	 and	 then	write	 out	 one	 or	more	 files.
Although	 the	 processing	 is	 normally	 the	 major	 objective	 of	 the	 program,	 it	 is	 not
uncommon	to	have	situations	where	most	effort	needs	to	be	spent	creating	the	code	to	do
the	reading	and	writing	of	the	files,	especially	for	simple	programs.	If	there	is	already	an
existing	 piece	 of	 tested	 code,	 such	 as	 the	 importable	 BioPython	module,	 which	 can	 be
used	to	read	and	write	files,	then	this	is	often	used	in	preference	to	spending	time	writing
something	new.	See	Chapter	11	for	examples	that	use	BioPython	to	read	and	write	files.

Figure	6.1.	 An	example	of	position	(column)	formatted	data.	This	extract	is	from	a
Protein	Data	Bank	file	which	is	used	to	represent	data	about	molecules	and	their	three-
dimensional	structures.

Figure	6.2.	 An	example	of	a	plain	text	format	that	uses	keys	and	values.	Here	the
last	value	extends	over	multiple	lines.	This	extract	is	a	fragment	of	a	file	format	called
mmCIF.	As	with	the	PDB	format	mmCIF	is	used	to	represent	data	about	biological
molecules	and	their	structure.

Figure	6.3.	 An	example	of	a	file	format	containing	tagged	elements.	A	truncated
fragment	of	an	XML	file	from	the	Protein	Data	Bank	(PDBML).

Reading	files

Using	‘open’
When	reading	a	file	within	a	Python	program,	you	obviously	need	to	specify	the	location
and	 the	name	of	 the	 file,	 collectively	 termed	 the	path	 to	 the	 file.	The	 file’s	path	 is	 then
used	by	the	inbuilt	open()	function,	or	similar,	to	get	access	to	the	file’s	contents.	The	path
can	be	absolute,	which	is	to	say	that	it	starts	at	the	top	or	root	of	the	operating-system	file
hierarchy,	or	the	path	can	be	relative	to	the	current	working	directory	(folder).	Initially	the
current	working	directory	is	the	directory	where	the	Python	interpreter	starts,	although	it
can	be	changed	from	inside	the	code	if	needed.	In	Python	the	file	path	is	just	a	string,	so,
for	example,	you	could	have:

path	=	'examples/dataFile.txt'

fileObj	=	open(path)

The	open	 function	passes	back	what	 is	 termed	a	 file	handle,	 a	 Python	 object	 used	 to
access	 and	 represent	 the	 open	 file.	 Here	 the	 file	 handle	 is	 stored	 in	 a	 variable	 called
fileObj.	It	might	be	tempting	to	use	the	more	natural	variable	name	‘file’,	but	 in	Python
the	word	‘file’	is	already	used	to	describe	the	type	(class)	of	such	objects.	Hence,	it	is	best
to	 avoid	 overriding	 the	 internal	 variable	 name.	 An	 alternative	 to	 the	 descriptive	 but
verbose	‘fileObj’	is	the	shorter	‘fh’,	meaning	‘file	handle’.

There	is	the	possibility	that	a	program	may	fail	to	open	the	file	with	the	specified	path.
For	example,	the	stated	file	may	simply	not	exist	(e.g.	the	name	was	wrong),	or	you	may
not	 have	 permission	 to	 read	 it.	Under	 such	 circumstances,	when	 you	 try	 to	 open	 it	 the
function	will	throw	an	error,	a	standard	Python	exception	(IOError).	Otherwise,	if	all	goes
well,	when	you	are	done	 reading	a	 file	 then	you	can	explicitly	 say	you	are	 finished,	by
using	 the	 close()	 function,	 a	method	 that	 is	 known	 to	 the	 file	 object	 class.	A	 listing	 of
methods	associated	with	file	objects	is	given	in	Appendix	2.

fileObj.close()

Usually	 you	 do	 not	 have	 to	 explicitly	 close	 a	 file,	 because	 when	 the	 variable	 name
fileObj	 goes	 out	 of	 scope	 and	 is	 no	 longer	meaningful,	 such	 as	 at	 the	 end	 of	 a	 loop	 or
function,	 Python	 will	 automatically	 close	 it.2	 However,	 it	 is	 generally	 a	 good	 habit	 to
explicitly	 close	 a	 file	 handle	when	you	know	you	are	done,	 just	 in	 case	 it	 is	 important.
Also,	this	lets	someone	who	reads	your	code	know	that	you	have	finished	using	the	file.

The	open()	 function	can	 take	an	optional	second	argument:	a	 ‘mode’,	specifying	how
the	file	should	be	opened.	These	modes	include	‘r’	to	read	from	a	file	and	‘w’	to	write	to	a
file,	but,	as	you	might	have	spotted	in	the	above	examples,	the	‘r’	is	optional,	given	that	it
is	the	default.	Although	we	could	still	have	explicitly	stated	reading	mode:

fileObj	=	open(path,	'r')

Reading	lines	of	data
The	 file	object	has	certain	 functionalities	associated	with	 it,	which	allow	 the	underlying
data	in	the	file	to	be	read.	The	most	commonly	used	functions	are:	read(),	readline()	and
readlines().	The	read()	 function	 is	used	 if	you	want	 to	 read	an	entire	 file	 in	one	go,	 into
one	long	string.

data	=	fileObj.read()

The	 read()	 function	 has	 an	 optional	 argument	 that	 specifies	 the	 required	 number	 of
bytes	 (addressable	 units	 of	 information)	 to	 load,	 but	 reading	 the	 entire	 file	 in	 one	go	 is
more	common	for	this	function.	Of	course,	if	the	file	is	huge	this	might	not	be	a	good	idea,
because	of	memory	 limitations.	Accordingly,	 the	 readline()	 function	 reads	only	one	 line
from	the	file,	and	is	often	placed	in	a	loop	to	process	multiple	lines,	without	having	to	load
everything	at	once.

line	=	fileObj.readline()

As	far	as	readline()	and	readlines()	are	concerned,	each	line	of	the	file	is	defined	as	a
text	 string	 ending	 in	 the	 newline	 character,	 or	 a	 string	 that	 stops	 at	 the	 end	 of	 the	 file
without	a	newline.	In	other	words	the	newline	character	separates	the	lines.	Note	that	the
newline	character	at	the	end	of	the	line	is	not	removed	when	using	this	function,	i.e.	it	is
included	as	the	last	character	of	the	returned	string.

For	Unix-derived	computer	systems	(e.g.	Linux,	OS	X)	the	‘\n’	newline	character	is	the
normal	convention.	However,	for	Windows	computers	the	normal	convention	is	that	a	line
ends	with	the	two	characters	‘\r\n’,	but	that	also	works	for	the	above	example	because	the

last	character	is	still	‘\n’.	In	some	situations	a	file	might	have	lines	that	only	end	with	‘\r’
and,	 given	 the	 way	 we	 have	 opened	 the	 file	 here,	 this	 would	 not	 automatically	 be
recognised	by	‘readline’	as	the	end	of	the	lines,	even	though	it	is	intended	to	be.

Python	has	provided	a	convenient	way	to	deal	with	the	‘\r’	versus	‘\n’	end-of-line	issue.
(The	 newline	 ‘\n’	 and	 carriage	 return	 ‘\r’	 concepts	 are	 originally	 from	 the	 humble
mechanical	 typewriter.)	 The	 mode	 argument	 to	 the	 open()	 function	 can	 include	 the
character	‘U’,	to	specify	universal	line	interpretation,	so,	for	example:

fileObj	=	open(path,	"rU")

This	means	that	when	the	file	is	read	every	occurrence	of	‘\r\n’	is	replaced	with	‘\n’	and
every	 occurrence	 of	 just	 ‘\r’	 is	 replaced	with	 ‘\n’.	 This	 is	 the	 recommended	method	 of
opening	 a	 text	 file	 when	 you	 are	 not	 sure	 of	 its	 line	 endings,	 unless	 of	 course	 the	 ‘\r’
characters	(singly	or	in	combination	with	‘\n’)	are	required	and	mean	something	specific
for	the	file	being	considered.

Every	time	you	read	part	of	a	file,	for	example,	using	readline(),	a	register	of	which	line
is	next	to	be	read,	the	file	pointer,	advances	in	the	file.	Hence,	the	next	time	you	read	some
more	 of	 the	 file,	 you	 read	 from	where	 the	 previous	 read	 ended.	When	 the	 file	 pointer
reaches	 the	 end	 of	 the	 file	 then	 the	 next	 readline()	 gives	 back	 an	 empty	 string;	 a
conveniently	False	value.	Thus	if	you	want	to	process	one	line	at	a	time	in	a	file	you	could
do	the	following	where	the	loop	continues	as	long	as	the	line	is	True:

fileObj	=	open(path,	"rU")

line	=	fileObj.readline()

while	line:

		#	process	line

		line	=	fileObj.readline()

fileObj.close()

However,	there	is	a	more	elegant	alternative	to	using	readline()	repeatedly:	from	Python
2.2	onwards	you	don’t	have	to	manage	the	lines	yourself.	Rather,	the	open	file	acts	as	an
iterable	object	which	leads	to	much	simpler	code,	i.e.	so	you	can	loop	through	the	file	as	if
it	was	a	list,	yielding	the	lines	inside	the	loop:

fileObj	=	open(path,	"rU")

for	line	in	fileObj:

		pass	#	process	line

fileObj.close()

The	function	readlines()	reads	all	the	lines	in	the	file	in	one	go,	and	returns	a	list	of	the
lines;	a	list	of	strings.	Accordingly,	an	alternative	way	to	process	an	entire	file	would	be	to
do:

fileObj	=	open(path,	"rU")

lines	=	fileObj.readlines()

fileObj.close()

for	line	in	lines:

		pass	#	process	line

Again,	 as	with	 the	 read()	 function,	 this	 is	 a	 reasonable	 approach	 if	 the	 file	 is	not	 too

large.	There	is	also	an	optional	argument	for	readlines()	giving	a	number	of	bytes	to	read,
whereupon	that	amount	of	data	will	be	read,	including	any	extra	bit	required	to	complete	a
final,	otherwise	partial	line.	Another	option,	which	is	slicker,	but	arguably	less	clear,	is	to
open	and	read	the	file	in	a	single	statement:

for	line	in	open(path,	"rU"):

		pass	#	process	line

Here	the	file	is	closed	implicitly,	because	it	was	not	assigned	to	a	variable,	and	this	is	a
case	where	 that	 is	 acceptable	 coding	 style.	 It	 is	 obvious,	 given	 that	 no	 explicit	 variable
name	is	stated,	that	the	file	is	no	longer	used	once	the	loop	has	finished.

Another	alternative	to	manually	closing	a	file	object	is	to	use	the	with	…	as	statement,
which	was	introduced	on	Python	2.5.	For	example,	we	could	write:

with	open(path,	"rU")	as	fileObj:

		for	line	in	fileObj:

				pass	#	process	line

Here	 the	 with	 statement	 assigns	 the	 opened	 file	 object	 to	 the	 fileObj	 variable	 in	 a
special	 way.	We	 won’t	 go	 into	 the	 precise	 details	 of	 what	 is	 happening,	 but	 the	 basic
principle	is	that	a	file	class	of	object	has	inbuilt	methods	(__enter__	and	__exit__)	to	deal
with	its	setup	and	release.	In	this	case	the	result	is	that	the	file	is	closed	at	the	end	of	the
with	 code	 block.	Note	 the	with	 and	 as	 keywords	 are	 a	 general	 part	 of	 Python,	 and	 not
specifically	related	to	files.

Working	with	variable	file	names
When	writing	a	program	we	often	want	it	to	be	able	work	with	different	files	on	different
occasions,	each	with	a	different	name	or	file	path.	Naturally	it	is	possible	to	sidestep	this
issue	 by	 simply	 writing	 file	 paths	 into	 the	 program	 code	 and	 change	 the	 program
whenever	it	needs	to	work	on	a	different	file.	However,	it	is	often	far	easier	to	accept	the
name	of	the	file	(or	files)	as	variable	arguments	when	we	run	the	Python	program.	To	do
this	we	could	either	use	a	graphical	 interface	(see	Chapter	26)	 to	select	files	using	a	file
browser,	or	if	we	are	running	a	program	using	the	python	command	we	can	put	the	name
of	the	file	argument	after	the	name	of	the	Python	script.	So,	for	example,	here	we	refer	to	a
file	 called	 ‘inputFile.txt’	 in	 a	 directory	 called	 ‘data/’	 which	 we	 include	 after	 the	 script
name	when	running	the	program:

>	python	programFile.py	data/inputFile.txt

Note	 that	 the	 directory	 separator	 ‘/’	 would	 be	 a	 backslash	 ‘\’	 on	Windows	 systems.
Inside	the	programFile.py	script	to	access	the	name	of	the	file	from	the	command	line	we
simply	 need	 to	 import	 sys.argv.	This	 is	 a	 list	 containing	 all	 of	 the	 text	 fields	 that	were
filled	in	on	the	command	line,	starting	with	the	name	of	the	Python	script	itself,	when	the
script	was	run:

import	sys

pyScriptName	=	sys.argv[0]	#	'programFile.py'

dataFileName	=	sys.argv[1]	#	'data/inputFile.txt'

workFunction(dataFileName)	#	Use	the	file	name	for	something…

Thus	 by	 accessing	 sys.argv[1],	 and	 higher	 numeric	 indices	 for	 further	 files,	 we	 can
define	file	paths	(or	any	other	parameters	we	want	to	pass	to	the	script)	in	a	dynamic	way
when	we	run	the	program.

File	reading	examples

Reading	whitespace-separated	files
For	our	 first	practical	example	we	will	begin	with	 reading	a	simple	yet	commonly	used
kind	of	file,	one	where	each	line	has	several	fields	that	are	separated	with	whitespace.	By
‘whitespace’	we	mean	 tab	stops	(‘\t’)	or	one	or	more	 spaces.	An	example	of	 such	a	 file
would	be	the	following,	where	we	first	have	a	descriptive	header	line	and	then	subsequent
lines	with	three	text	fields;	the	first	is	the	name	of	a	chromosome,	the	second	is	a	base-pair
position	 in	 the	 chromosome	 and	 the	 last	 is	 a	 value	 representing	 an	 experimentally
determined	value	for	that	position:

chromosome			position				value

chr1			3417953					0.74634

chrX			152662801			0.50036

chr7			55281536				0.82376

chr4			9168943					0.73375

chr1			13170641				0.42181

For	the	purposes	of	our	example	we	will	assume	that	the	above	lines	are	in	a	file	called
‘chromoData.tsv’	 which	 lies	 in	 the	 ‘examples’	 sub-directory	 of	 the	 current	 working
directory,	 where	 ‘.tsv’	 gives	 a	 hint	 that	 the	 format	 is	 tab-separated	 values.	 In	 order	 to
process	 this	 file	we	will	 first	 read	 the	separate	header	 line	with	 .readline(),	given	 that	 it
doesn’t	contain	data	we	are	interested	in.	Then	we	will	loop	through	the	remainder	of	the
lines,	 by	 iterating	over	 the	 file	 object,	 and	 for	 each	 line	we	will	 use	 the	 string	 function
split()	 to	 separate	 the	 line	 into	 a	 list	 of	 substrings.	Without	 any	 arguments	 split()	 will
separate	 the	 fields	 according	 to	whitespace,	which	 is	what	we	want.	For	 a	different	 file
format	we	could	specify	a	different	separator,	so,	for	example,	for	comma-separated	fields
we	 would	 use	 split(‘,’)	 or	 for	 tab-separated	 fields	 split(‘\t’),	 both	 of	 which	 can
accommodate	data	items	with	internal	spaces.

fileObj	=	open('examples/chromoData.tsv')

values	=	[]

header	=	fileObj.readline()	#	Don't	need	this	first	line

for	line	in	fileObj:

		data	=	line.split()

		chromosome,	position,	value	=	data

		position	=	int(position)

		value	=	float(value)

		values.append(value)

mean	=	sum(values)/len(values)

print('Mean	value',	mean)

For	 each	 line	we	 obtain	 a	 list	 with	 three	 items	 and	 these	 are	 extracted	 into	 separate
chromosome,	position	and	value	variables.	 Initially	 these	will	 be	 text	 strings,	 given	 that
they	were	 just	 read	from	the	file,	but	 in	 the	case	of	 the	position	and	value	we	generally
want	 to	 convert	 them	 from	 strings	 into	 integer	 and	 floating	 point	 number	 data	 types
respectively	(though	in	this	simple	example	we	have	not	used	the	position).	Accordingly
we	use	the	int()	and	float()	 functions	 to	do	 the	conversion.	Once	a	variable	 is	a	numeric
data	 type	we	 can	 then	perform	mathematical	 operations,	 like	 finding	 the	mean	value	 as
illustrated.

We	 will	 consider	 field-delimited	 formats	 again	 in	 the	 readListFile()	 function	 below,
where	we	handle	 things	 in	 a	more	general	way,	 allowing	different	 data	 type	 conversion
functions	and	field	separators	to	be	specified	as	function	arguments.

Reading	FASTA	files
The	FASTA	text	format	is	used	to	store	nucleotide	or	protein	sequences,	using	one-letter
codes	(as	illustrated	in	Figure	6.4).	Each	file	can	store	one	or	more	sequence	entries.	An
individual	sequence	entry	spans	two	or	more	lines:	 the	first	 line	is	a	textual	comment	or
identifier	 for	 the	 sequence	 (e.g.	 a	 gene	 or	 protein	 name	 with	 database	 codes),	 and	 the
remaining	 lines	 contain	 the	 sequence	 of	 residue	 codes.	The	 first	 comment	 line	 for	 each
sequence	begins	with	 the	 ‘>’	 character.	 (Originally	 the	 semicolon	 character	 ‘;’	was	 also
allowed	at	the	beginning	of	a	line	to	indicate	a	comment,	but	that	is	no	longer	commonly
used.)	Each	line	subsequent	to	the	comment	line	contains	part	of	the	sequence,	until	either
the	end	of	the	file	is	reached	or	the	next	comment	line	occurs,	indicating	the	start	of	the
next	sequence.	The	lines	of	residue	codes	are	normally	no	more	than	60	characters	long,
each	character	representing	one	nucleotide	or	amino	acid	in	the	sequence.

Figure	6.4.	 An	example	of	a	sequence	entry	from	a	FASTA-format	file.	Here	the	data
comprises	an	annotation	line,	which	contains	the	database	codes	and	name	of	a	protein,
followed	by	the	amino	acid	sequence	of	the	protein,	represented	as	one-letter	codes.

Here	we	will	define	a	function	to	read	a	FASTA	file,	and	return	a	list	of	the	sequences,
with	each	element	of	 the	 list	 representing	one	sequence	as	a	 string	containing	one-letter
codes.	It	would	be	a	relatively	simple	modification	to	also	collect	 the	annotation	(name)
data.	In	this	function	we	choose	to	read	one	line	at	a	time	because	the	length	and	number
of	sequences	can	become	very	large,	even	a	whole	genome.	Each	sequence	is	potentially
specified	across	multiple	 lines	 so	we	need	 to	keep	 track	of	 that,	 and	 it	 is	normally	only
clear	that	the	end	of	a	sequence	record	is	reached	when	the	next	comment	line	is	found,	or
the	end	of	the	file	is	reached.	The	example	below	does	this	by	creating	a	list	seqFragments
and	appending	each	part	of	the	sequence	as	it	finds	it,	and	then	at	the	end	joining	all	the
parts	together	using	the	join()	function.

The	function	accepts	a	single	argument,	which	is	the	name	of	the	file	to	open	(the	full
path	if	not	in	the	current	directory).	Within	the	function	the	file	name	is	used	to	create	a
file	 handle	 object,	 opened	 for	 reading	 in	 universal	mode	 ‘rU’,	 and	 two	 empty	 lists	 are
initialised:	one	to	collect	complete	sequences	and	one	to	store	fragments	of	sequences	as
they	are	extracted	from	separate	 lines.	The	 line	of	 the	opened	file	 is	 read	by	using	a	for
loop,	to	iterate	through	the	file	data	as	it	is	extracted	from	the	fileObj.	The	loop	naturally
yields	lines	until	the	end	of	the	file	is	reached.

def	readFastaFile(fileName):

		fileObj	=	open(fileName,	'rU')

		sequences	=	[]

		seqFragments	=	[]

		for	line	in	fileObj:

				if	line.startswith('>'):

						#	found	start	of	next	sequence

						if	seqFragments:

								sequence	=	''.join(seqFragments)

								sequences.append(sequence)

						seqFragments	=	[]

				else:

						#	found	more	of	existing	sequence

						seq	=	line.rstrip()	#	remove	newline	character

						seqFragments.append(seq)

		if	seqFragments:

		#	should	be	the	case	if	file	is	not	empty

		sequence	=	''.join(seqFragments)

		sequences.append(sequence)

		fileObj.close()

		return	sequences

Inside	the	loop	we	check	whether	the	line	begins	with	the	comment	identifier	‘>’,	and	if
it	 does	 the	 line	 is	 either	 at	 the	 first	 sequence	 record	 or	 it	 has	 found	 the	 start	 of	 a	 new
record.	 In	 the	 latter	 case	 the	 complete	 one-letter	 sequence	 of	 the	 previous	 record	 is
defined,	 by	 joining	 all	 of	 the	 fragments	 from	 separate	 lines,	 and	 added	 to	 the	 list	 of
sequences.	After	joining,	each	list	of	fragments	is	then	reset	for	the	next	sequence	record.
If	 the	 line	does	not	begin	with	 a	 comment	 identifier	we	must	be	on	 a	 sequence	 line,	 in
which	 case	 the	 trailing	 ‘\n’	 character	 is	 removed	 and	 the	 line	 is	 stored	 in	 the	 list	 of
sequence	fragments	(to	be	joined	at	 the	end	of	 the	record).	After	 the	loop	ends,	and	any
remaining	sequence	is	added,	the	list	of	sequences	is	passed	back.

An	 alternative,	 shorter	 and	 perhaps	 more	 understandable	 version	 would	 be	 to	 just
concatenate	strings	together:

def	readFastaFile(fileName):

		fileObj	=	open(fileName,	'rU')

		sequences	=	[]

		seq	=	''

		for	line	in	fileObj:

				if	line.startswith('>'):

						if	seq:

								sequences.append(seq)

						seq	=	''

				else:

						seq	+=	line.rstrip()

		if	seq:

				sequences.append(seq)

		fileObj.close()

		return	sequences

In	Python	it	is	sometimes	recommended	to	avoid	too	much	string	concatenation,	given
that	it	can	be	less	efficient	than	other	methods.	For	short	files	it	would	not	matter,	but	for
longer	ones	the	join()	method	works	slightly	faster.	This	is	an	example	where	it	pays	to	be
a	bit	more	careful	and	write	slightly	longer,	and	perhaps	more	opaque,	code.	Nonetheless,
it	is	up	to	the	programmer	to	decide	what	to	optimise	and	what	not	to	optimise.

We	shall	pause	to	consider	what	might	go	wrong	with	the	above	code.	Someone	might
pass	 in	 the	name	of	 a	 file	 that	 does	not	 exist,	 or	 for	which	 the	user	does	not	have	 read
permission,	in	which	case	the	open()	function	will	throw	an	exception,	indicating	the	error.
There	are	various	functions	 in	 the	os	module	(see	Appendix	3)	 that	can	help	avoid	such
problems.	For	example,	to	check	whether	a	file	exists	you	can	do:

import	os

fileName	=	'examples/chromoData.tsv'

if	os.path.exists(fileName):

		print('File	exists')

		#	…

Alternatively,	 someone	 might	 use	 a	 file	 that	 exists	 and	 for	 which	 the	 user	 has	 read
permission,	but	which	is	not	actually	a	FASTA-format	file,	or	is	not	a	recent	FASTA	file
where	comment	lines	start	with	‘>’.	This	will	lead	to	junk	output,	rather	than	an	error.	You
could	 check	 that	 the	 first	 line	 starts	with	 the	 character	 ‘>’,	 and	 throw	an	 exception	 if	 it
does	not.	Of	course	it’s	possible	there	is	a	non-FASTA	file	that	happens	to	start	with	‘>’.
You	could	check	that	all	the	other	lines	have	valid	nucleotide	or	protein	one-letter	codes.	It
is	up	 to	 the	programmer	 to	decide	how	much	 to	check	 for.	Though,	 the	more	you	want
your	code	to	be	used	by	other	people,	the	more	checks	you	should	have.	It	should	be	noted
that	the	BioPython	module	that	can	read	FASTA	format	will	do	some	of	these	checks	for
you:	see	Chapter	11	for	examples.

Reading	PDB	files
PDB	 (Protein	 Data	 Bank)	 files	 were	 invented	 in	 the	 1970s	 to	 describe	 the	 three-

dimensional	 coordinates	 of	 biological	 macromolecules.	 As	 the	 name	 suggests	 this	 was
initially	designed	 for	proteins,	but	 the	 same	system	 is	now	commonly	used	 to	 represent
DNA,	RNA,	carbohydrates,	 lipids,	small	molecules	and	any	other	biologically	important
molecule.	 PDB	 files	 can	 contain	 the	 description	 of	 multiple	 molecules	 and	 multiple
structures,	and	can	hold	lots	of	other	descriptive	information.	However,	in	this	section	we
ignore	 all	 the	 complexities	 and	 concentrate	 only	 on	 the	 parts	 that	 specify	 the	 spatial
coordinates.	A	PDB	file	 is	both	key/value	and	 line	oriented,	with	 the	key	at	 the	 start	of
each	line	giving	context	 to	 the	data	 in	 the	remainder	of	 the	line.	The	coordinates	we	are
interested	in	are	in	records	where	the	line	starts	with	the	six	characters	‘ATOM	’	(with	two
spaces	 at	 the	 end),	 which	 can	 be	 thought	 of	 as	 the	 key.	 The	 x	 coordinate	 is	 given	 in
columns	30	to	37,	y	in	columns	38	to	45	and	z	in	columns	46	to	53,	assuming	that	the	first
column	is	column	0.

The	 following	 example	 reads	 a	 PDB	 file	 to	 calculate	 the	 centroid	 of	 a	 structure,	 the
average	position	of	 the	 atoms.	Strictly	 speaking,	 this	 should	be	biased	by	 the	weight	 of
each	 atom,	 but	 we	 ignore	 that	 issue	 here	 (and	 in	 practice	 it	 does	 not	make	much	 of	 a
difference).	In	a	drawing	application,	if	you	rotate	a	molecule	on	the	screen,	it	is	generally
desired	to	rotate	it	about	the	centroid,	otherwise	the	rotation	looks	odd.

The	function	takes	the	name	of	the	PDB	file	as	an	argument,	and	returns	the	number	of
atoms	found	as	well	as	the	average	x,	y	and	z	positions.	As	a	PDB	reader	the	function	is
very	simple	and	naïve,	and	in	any	serious	program	you	would	do	best	to	use	an	existing
and	tested	function,	like	the	one	in	the	BioPython	module.	Nonetheless,	the	function	will
serve	to	illustrate	the	principles	involved.

Initially	we	 open	 the	 file	 object,	 read	 all	 of	 the	 lines	 and	 then	 immediately	 close	 it.
Next,	 variables	 representing	 the	 numbers	 of	 atoms	 and	 the	 totals	 for	 the	 x,	 y	 and	 z
coordinates	are	initialised	to	zero,	before	looping	though	each	of	the	lines.	If	a	line	begins
with	the	desired	‘ATOM	’	key	the	atom	count	 is	 increased,	 the	coordinates	are	extracted
and	the	coordinate	totals	are	increased.	The	coordinate	data	is	initially	just	text	characters
from	 the	 file	 and	 needs	 to	 be	 converted	 to	 Python	 numbers	 (which	 can	 be	 added
numerically).	The	Python	float()	performs	the	conversion	from	test	string	to	floating	point
number.	So,	for	example,	the	string	‘12.572‘	would	be	converted	to	the	number	12.572.

def	calcCentroid(pdbFile):

		fileObj	=	open(pdbFile,	'rU')

		natoms	=	0

		xsum	=	ysum	=	zsum	=	0

		for	line	in	fileObj:

				if	line[:6]	==	'ATOM		':

						natoms	=	+	=	1

						x	=	float(line[30:38])

						y	=	float(line[38:46])

						z	=	float(line[46:54])

						xsum	+=	x

						ysum	+=	y

						zsum	+=	z

		fileObj.close()

		if	natoms	==	0:

				xavg	=	yavg	=	zavg	=	0

		else:

				xavg	=	xsum	/	natoms

				yavg	=	ysum	/	natoms

				zavg	=	zsum	/	natoms

		return	(natoms,	xavg,	yavg,	zavg)

Once	the	 looping	 is	done	and	 the	additions	are	complete,	 the	averages	are	defined	by
dividing	the	summation	of	each	coordinate	type	by	the	total	number	of	atoms.	Note	that	if
the	PDB	file	has	no	atom	records	the	averages	are	simply	set	to	zero,	and	we	cannot	divide
by	zero	in	any	case.	The	function	is	then	readily	tested:

print(calcCentroid('examples/protein.pdb'))

Of	course	it’s	possible	that	someone	calls	the	calcCentroid()	function	with	an	argument
that	is	not	a	PDB	file,	or	even	a	file	that	does	not	exist.	If	the	file	does	not	exist,	or	you	do
not	have	permission	to	read	it,	 then	the	function	will	 throw	a	standard	Python	exception
(IOError)	when	it	tries	to	open	it.	If	the	file	exists	but	is	not	a	PDB	file	then	most	likely
there	will	be	no	lines	starting	with	the	text	‘ATOM	’	and	so	the	function	will	just	return	the
tuple	(0,	0,	0,	0).	It’s	also	possible	in	this	case	that	there	is	a	line	starting	with	‘ATOM	’
(by	coincidence)	but	it	does	not	have	three	floating	point	numbers	in	columns	30	through
53,	 in	 which	 case	 a	 standard	 Python	 exception	 (ValueError)	 will	 be	 thrown	 when	 the
float()	function	is	called.

There	is	always	a	question	as	to	how	you	deal	with	bad	input	to	a	function.	There	is	no
perfect	answer.	Sometimes	you	might	want	to	throw	standard	Python	exceptions.	In	other
cases	you	might	want	to	check	for	conditions	that	might	lead	to	an	exception	and	instead
return	some	sensible	default.	Alternatively	you	might	want	to	throw	your	own	exception
to	give	a	more	informative	warning	to	the	user,	rather	than	the	standard	Python	one.	It	is	a
matter	of	taste	and	circumstance.

Reading	XML	files
Extensible	Markup	Language	(XML)	is	a	way	of	storing	information	in	files	in	a	standard,
textual	way.	Although	it	is	rather	verbose,	it	is	very	popular	and	there	are	many	tools	for
parsing	XML	files,	which	makes	it	relatively	easy	to	use.	An	XML	file	is	ordered	like	a
tree,	with	a	containment	hierarchy,	so	in	some	sense	like	the	directory	structure	of	a	file
system.	At	the	outermost	level	is	the	‘root’	of	the	data	tree.	Each	node	in	the	tree	is	called
an	XML	element.	Each	element	has	a	tag	defining	what	kind	of	element	it	is,	and	may	also
have	 any	 number	 of	 attributes,	 some	 text	 and	 can	 contain	 any	 number	 of	 other	 (child)
elements.	 Each	 element,	 except	 for	 the	 root	 element,	 has	 a	 unique	 parent	 element.	 The
XML	tools	let	you	navigate	this	tree.

An	 XML	 file	 needs	 to	 be	 syntactically	 well	 formed,	 and	 the	 parsing	 tools	 will
automatically	check	for	this.	An	XML	file	may	also	be	required	to	be	valid,	in	the	sense	of
satisfying	 some	 ‘schema’,	 which	 defines	 what	 the	 hierarchy	 can	 be,	 including	 a

specification	of	 the	 tags,	 attributes	and	parent/child	 relationships.	The	parsing	 tools	will
also	automatically	check	for	validity,	if	the	XML	file	specifies	a	schema.	Schemas	can	be
defined	either	with	a	DTD	(Document	Type	Definition)	or	with	an	XML	schema.	We	do
not	consider	this	issue	further	here.	Note	that	just	because	an	XML	file	is	well	formed	and
valid	does	not	mean	that	the	data	it	contains	is	correct	or	meaningful.

Python,	from	version	2.5,	includes	an	XML	parser	called	ElementTree,	which	provides
a	 very	 convenient	 way	 of	 reading	 XML	 files.	 It	 can	 also	 be	 used	 to	 write	 XML	 files.
Because	ElementTree	does	all	the	tricky	parsing	and	validation	work,	in	some	sense	it	is
easier	to	read	XML	files	than	it	is	to	write	them.	So	when	you	read	an	XML	file	you	only
need	to	pay	attention	to	the	information	you	want,	but	when	you	write	an	XML	file	you
have	to	include	all	the	information	that	the	schema	is	expecting.

ElementTree	 includes	 a	 quick	 C-language	 implementation	 of	 the	 parser	 (hidden
underneath	the	Python),	and	it	is	recommended	that	this	is	how	you	use	it:

from	xml.etree	import	cElementTree	as	ElementTree

The	 first	 step	 when	 using	 ElementTree	 to	 read	 an	XML	 file	 is	 to	 parse	 it	 using	 the
module’s	parse()	function,	which	provides	a	handle	to	the	XML	tree	object:

xmlFile	=	'examples/protein.xml'

tree	=	ElementTree.parse(xmlFile)

root	=	tree.getroot()

The	 parse()	 function	 accepts	 either	 the	 path	 to	 the	 file	 or	 a	 file	 handle	 object.	 The
getroot()	 function	 on	 the	 tree	 handle	 then	 returns	 the	 root	 (top)	 object.	 From	 the	 root
object	 you	 can	 navigate	 down	 the	 tree	 hierarchy,	 extracting	 the	 information	 you	 need
using	several	functions	that	ElementTree	provides	for	every	node	element.

Given	 a	 node	 element,	 you	 can	 access	 any	 text	 that	 may	 be	 associated	 with	 it	 via
node.text.	Access	 to	 the	 attributes	 is	 obtained	 by	 treating	 a	 node	 almost	 as	 if	 it	were	 a
dictionary.	 So	 node.keys()	 returns	 the	 attribute	 names,	 and	 node.get(name)	 returns	 the
value	of	the	attribute	with	the	given	name,	or	None	if	there	is	no	attribute	with	that	name.
However	you	cannot	use	the	syntax	node[name].	This	is	because	instead	node[n]	 returns
the	nth	child	of	the	node.

The	node.find(pattern)	function	lets	you	find	the	first	descendant	of	a	node	that	matches
the	pattern,	or	None	if	there	are	none	matching.	At	its	simplest,	the	pattern	can	just	be	a
tag,	which	would	 then	 find	 the	 first	child	of	 the	node	 that	has	 that	 tag.	But	you	can	get
further	 down	 the	 tree	 by	 using	 a	 Unix-style	 file-system	 path	 syntax,	 so,	 for	 example,
find(‘PubDate/Year’)	would	find	the	first	grandchild	where	the	tag	is	‘Year’	and	its	parent
(so	the	child	of	the	original	node)	has	tag	‘PubDate’.

You	 can	 even	use	wildcards	 for	 any	of	 the	 tags	 on	 the	 path,	 so	 find(‘*/Year’)	would
match	 all	 children	 and	 find	 the	 first	 grandchild	 where	 the	 tag	 is	 ‘Year’,	 i.e.	 the
intermediate	 tag	 does	 not	 matter.	 However,	 you	 unfortunately	 cannot	 use	 wildcards	 to
match	part	of	a	tag,	so	find(‘Pub*/Year’)	would	not	work.

The	 findall(pattern)	 function	 works	 in	 the	 same	 way	 as	 find(pattern)	 except	 that	 it
returns	 all	 matching	 elements,	 instead	 of	 just	 the	 first	 one.	 Also,	 the	 findtext(pattern)

function	returns	the	text	of	the	first	element	that	matches	the	pattern,	or	None	if	there	is	no
match.	This	is	convenient	shorthand,	so

text	=	node.findtext(pattern)

is	the	same	as

element	=	node.find(pattern)

if	element:

		text	=	element.text

else:

		text	=	None

Reading	PubMed	XML	files
PubMed3	 is	a	search	engine	that	 lets	you	access	the	MEDLINE	database	of	citations	for
articles	 in	 the	 life	 sciences.	 You	 can	 download	 the	 citations	 in	 various	 formats.	 In	 this
section	we	consider	the	XML	format.

As	 with	 all	 XML	 formats,	 although	 you	 can	 escape	 from	 the	 pain	 of	 parsing	 using
ElementTree,	 you	 still	 have	 to	 understand	 what	 the	 schema	 (or	 ‘data	 model’)	 is.	 The
schema	 for	 PubMed	XML	 is	 defined	 by	 a	DTD	 (Document	 Type	Definition),	 although
reading	this	is	not	very	enjoyable.	And	as	with	all	schemas	it	is	quite	possible	that	it	will
change	in	future,	so	application	code	can	break.	Here	we	use	the	DTD	that	was	valid	on	1
January	2009.	We	will	 show	how	 to	 extract	 and	print	 the	 journal	 year	 and	 title	 and	 the
article	title	and	abstract,	from	a	collection	of	PubMed	XML	files	(which,	for	example,	can
be	downloaded	from	the	PubMed	website).

The	 root	 object	 has	 the	 tag	 ‘PubmedArticleSet’	 and	 underneath	 that	 are	 one	 or	more
children	with	 the	 tag	‘PubmedArticle’,	although	here	we	will	 just	 look	at	 the	first	child.
Underneath	 that,	 there	 is	either	a	child	with	 tag	 ‘NCBIArticle’	 or	 ‘MedlineCitation’	and
we	 will	 assume	 the	 latter.	 Continuing	 down	 the	 hierarchy	 we	 eventually	 get	 to	 the
information	we	want:

def	printPubmedAbstracts(xmlFiles):

		for	xmlFile	in	xmlFiles:

				tree	=	ElementTree.parse(xmlFile)

				root	=	tree.getroot()

				citationElem	=	root.find('PubmedArticle/MedlineCitation')

				pmid	=	citationElem.findtext('PMID')

				articleElem	=	citationElem.find('Article')

				journalElem	=	articleElem.find('Journal')

				journalTitle	=	journalElem.findtext('Title')

				journalYear	=	journalElem.findtext('JournalIssue/PubDate/Year')

				articleTitle	=	articleElem.findtext('ArticleTitle')

				articleAbstract	=	articleElem.findtext('Abstract/AbstractText')

				print('PMID	=	%s'	%	pmid)

				print('journalYear	=	%s'	%	journalYear)

				print('journalTitle	=	"%s"'	%	journalTitle)

				print('articleTitle	=	"%s"'	%	articleTitle)

				print('articleAbstract	=	"%s"'	%	articleAbstract)

				print('')

The	PMID	is	the	PubMed	ID	of	the	citation.	With	variants	of	this	code	you	could	create
your	own	kind	of	short	summary	of	MEDLINE	citations.

Writing	files
As	with	reading	a	file,	in	order	to	write	a	file	in	a	Python	program,	you	need	to	specify	the
path	 to	 the	file	and	use	 the	‘open’	 function	 to	define	an	object	and	get	access	 to	 it.	The
difference	 is	 that	 the	 file	mode	here	 is	 ‘w’,	which	 stands	 for	 ‘writing’,	 instead	of	 ‘r’	 or
‘rU’:

path	=	'output.txt'

fileObj	=	open(path,	"w")

This	creates	an	(initially)	empty	file.	Note	that	if	a	file	with	that	path	already	exists	then
it	will	first	be	deleted	before	the	new	file	is	created,	so	this	can	be	a	dangerous	operation.
You	 can	 check	 whether	 the	 file	 exists	 using	 os.path.exists(path)	 and	 then	 ask	 the	 user
whether	they	really	want	to	overwrite	what	is	there.	If	you	want	to	append	to	the	end	of	a
file,	rather	than	create	a	new	one,	then	you	can	use	the	append	mode:

fileObj	=	open(path,	"a")

The	most	 commonly	 used	writing	 functions	 are	write()	 and	writelines().	 There	 is	 no
function	 corresponding	 to	 readline	 because	 write	 serves	 that	 purpose.	 Thus	 write(data)
writes	out	the	string	data	and	it	doesn’t	care	whether	or	not	there	is	a	newline	character	(or
carriage	return)	in	the	string.	The	writelines(lines)	function	writes	out	a	list	of	strings,	and
again	 is	 indifferent	 as	 to	whether	or	not	 the	 strings	have	a	newline	character.	Given	 the
fact	 that	 these	 functions	 are	 somewhat	 free-form	with	 regard	 to	what	 is	written	out	 and
how	the	lines	of	the	file	are	defined	(i.e.	with	‘\n’	or	‘\r\n’),	you	need	to	be	sure	that	the
end-of-line	characters	are	added	in	the	right	way.

As	with	 reading,	when	you	are	done	with	 a	 file-handling	object	 for	writing	 then	you
should	generally	close	it	explicitly:

fileObj.close()

Example	FASTA	format	writer
Suppose	we	 have	 a	 sequence	 as	 either	 a	 list	 or	 string	 of	 one-letter	 codes.	Then	we	 can
create	a	FASTA	file	with	that	sequence	in	it	quite	easily.	A	function	is	defined	which	takes
arguments	for	the	textual	comment,	the	residue	sequence	and	file	location:

def	writeSingleFastaSequence(comment,	sequence,	fastaFile):

		fileObj	=	open(fastaFile,	"w")

		fileObj.write('>	%s\n'	%	comment)

		for	(n,	code)	in	enumerate(sequence):

				if	n	>	0	and	n	%	60	==	0:

						fileObj.write('\n')

				fileObj.write(code)

		if	n	%	60	!=	0:

				fileObj.write('\n')

		fileObj.close()

Notice	 how	 much	 simpler	 this	 is	 than	 reading	 a	 FASTA	 file,	 although	 getting	 the
newline	characters	correct	is	still	a	bit	fiddly.	The	function	outputs	60	one-letter	codes	on
each	line.	The	enumerate	function	is	useful	in	circumstances	like	this	because	it	not	only
gives	the	residue	code	but	it	also	gives	its	position,	n,	in	the	sequence.	If	n	is	a	multiple	of
60	 (which	 is	what	 ‘n	%	60	==	0’	checks)	and	 if	n	>	0	 then	 a	 carriage	 return	 should	be
added	to	the	output.	And	a	final	carriage	return	also	needs	adding	at	the	end	if	n	is	not	a
multiple	of	60	(if	it	is	then	one	has	already	been	added).

To	expand	upon	the	above	example	and	write	multiple	sequence	records	to	a	FASTA-
format	 file	 the	next	 function	 takes	multiple	 sequence	strings	and	a	corresponding	 list	 of
comments.	Also,	we	accept	an	optional	argument	to	state	the	width	of	the	sequence	lines.
To	 increase	 the	 efficiency	 of	 the	 process	we	 avoid	 looping	 though	 all	 of	 the	 characters
(and	writing	 them	separately);	 the	 sequences	have	 the	newline	characters	 inserted	at	 the
appropriate	 places	 and	 are	 written	 in	 their	 entirety.	 The	 number	 of	 sequence	 lines	 is
calculated	using	the	width,	so	that	by	default	a	sequence	of	60	residues	or	fewer	needs	one
line	 but	 61	 residues	 need	 two.	 The	 number	 of	 lines	 is	 used	 to	 generate	 a	 list	 of	 sub-
sequences	by	taking	the	appropriate	slice	out	of	the	seq	for	each	line,	i.e.	from	width*x	to
width*(x+1)for	each.	The	sub-sequences	are	joined	with	newlines	to	generate	a	long	string
of	lines.

def	writeFastaSeqs(comments,	sequences,	fastaFile,	width=60):

		fileObj	=	open(fastaFile,	'w')

		for	i,	seq	in	enumerate(sequences):

		numLines	=	1	+	(len(seq)-1)//width

		seqLines	=	[seq[width*x:width*(x+1)]	for	x	in	range(numLines)]

		seq	=	'\n'.join(seqLines)

		fileObj.write('>	%s\n%s\n'	%	(comments[i],	seq))

		fileObj.close()

Note	how	the	format	‘>	%s\n%s\n’	inserts	both	the	comment	and	the	sequence	text	at
the	 same	 time,	 thus	 avoiding	 calling	 file.write()	 again.	 The	 join()	 function	 adds	 ‘\n’	 in
between	all	the	sequence	lines	but	we	still	need	that	extra	‘\n’	at	the	end.	See	Chapter	11
for	examples	that	illustrate	how	to	write	FASTA	files	using	BioPython	modules.

Column-delimited	formats
Next	in	this	chapter	we	will	look	at	making	new	file	formats	to	work	with	your	programs.

In	general,	however,	you	might	consider	avoiding	this	entirely.	If	there	is	already	a	well-
defined	 standard	 that	 is	used	 for	 a	particular	kind	of	data,	 like	FASTA	for	 sequences	or
PDB	 (or	 more	 recently	 mmCIF)	 for	 molecular	 structures,	 then	 that	 should	 be	 the	 first
choice,	especially	if	you	want	other	people	or	programs	to	understand	your	data.	Also,	for
an	 arbitrary	 set	 of	 data	 you	 could	 use	 an	 existing	 standardised	 system	 like	 XML	 and
benefit	from	the	large	number	of	available	Python	modules	to	deal	with	it.

Nonetheless	there	are	occasional	situations	where	there	is	a	pertinent	need	to	read	and
write	data	in	a	custom	format,	especially	where	the	data	is	fairly	simple	and	the	files	will
only	be	used	in	a	limited,	perhaps	internal,	set	of	situations.	As	an	example	we	will	choose
a	 simple	 file	 format,	which	 is	 easy	 to	 read,	write	 and	 for	 a	human	being	 to	understand.
This	 will	 consist	 of	 an	 initial	 header	 line	 that	 states	 what	 the	 various	 items	 of	 data
represent	and	then	subsequent	 lines,	one	for	each	of	 the	data	elements	 in	a	 list.	On	each
data	line	we	will	use	a	piece	of	text	(commonly	a	single	character	like	a	space,	tab	stop	or
comma)	to	separate	or	delimit	the	various	items	on	that	line.	Note	that	we	should	choose
the	separator	string	carefully	so	that	it	is	not	something	that	will	be	contained	in	the	data
and	disrupt	the	delineation	of	different	items.

In	the	function	below,	to	write	out	the	data	we	first	create	a	header	line,	to	indicate	what
each	of	the	fields	represents,	and	then	loop	through	the	list	of	data	to	create	the	remaining
lines	of	the	file.	There	is	a	check	to	make	sure	the	heading	list	is	the	same	size	as	the	first
item	 of	 data	 and	 the	 heading	 line	 is	 formed	 using	 the	 .join()	 function	 of	 the	 separator
string.	This	combines	all	 the	elements	 into	one	 text	 string	and	 is	 then	written	out	 to	 the
file,	 combining	 it	 with	 a	 newline	 character.	 For	 the	 data	 lines	 the	 separator	 joins	 the
formats	variable	to	create	a	single	one-line	format,	which	will	be	the	template	to	say	how
to	 convert	 each	 row	 of	 data	 into	 the	 appropriate	 line	 of	 text,	 where	 each	 item	 has	 the
correct	numerical	precision	and	padding	etc.	The	actual	data	lines	are	created	from	a	tuple
of	each	row	via	the	‘%’	formatting	operator	and	are	written	out	with	a	newline	character.

def	writeListFile(fileName,	data,	headings,	formats,	separator='\t'):

		if	len(data[0])	!=	len(headings):

				print("Headings	length	does	not	match	input	list")

				return

		fileObj	=	open(fileName,	'w')

		line	=	separator.join(headings)

		fileObj.write('%s\n'	%	line)

		format	=	separator.join(formats)

		for	row	in	data:

				line	=	format	%	tuple(row)

				fileObj.write('%s\n'	%	line)

		fileObj.close()

To	 create	 a	 specific	 type	 of	 file	 using	 this	 general	 function	 the	 headings,	 format	 and
separator	can	be	specified,	i.e.	so	they	are	invariant	for	the	function.	For	example,	here	is	a
file	format	specification	which	uses	four	items	(a	string,	two	integer	numbers	and	floating
point	number)	on	a	line	separated	by	tabs:

def	writeChromosomeRegions(fileName,	data):

		headings	=	['chromo',	'start',	'end',	'value']

		formats	=	['%s',	'%d',	'%d',	'%.3f']

		writeListFile(fileName,	data,	headings,	formats,	'	')

Which	could	produce	something	like:

chromo	start	end	value

chr1	195612601	196518584	0.379

chr1	52408393	196590488	0.361

chr1	193237929	196783789	0.473

chr1	181373059	6104731	0.104

chr2	7015693	7539562	0.508

chr2	9097449	9108209	0.302

The	equivalent	functions	for	reading	our	files	are	fairly	simple.	We	just	need	to	skip	the
first	 line,	 assuming	 of	 course	we	 already	 know	what	 the	 data	 represents,	 and	 then	 loop
through	the	remainder	of	the	lines.	For	the	data	lines	we	remove	the	last,	newline	character
with	.rstrip()	and	split	them	according	to	the	specified	separator,	again	defaulting	to	a	tab
space,	and	put	the	resulting	list	as	an	entry	in	the	larger	list,	dataList,	which	is	returned	at
the	 end	 of	 the	 function.	 Note	 that	 because	 the	 values	 read	 from	 the	 files	 are	 just	 text
characters	we	need	 to	appropriately	convert	anything	which	should	not	 remain	a	Python
string,	 like	 numbers	 or	 True/False	 values.	 This	 is	 illustrated	 below	 by	 the	 use	 of	 the
converters	argument,	which	contains	a	list	of	functions	(int,	float	etc.)	to	transform	the	text
from	the	file	in	the	appropriate	way.	If	a	conversion	is	not	required	for	an	item	then	the	list
simply	contains	None.

def	readListFile(fileName,	converters,	separator='\t'):

		dataList	=	[]

		fileObj	=	open(fileName,	'rU')

		header	=	fileObj.readline()					#	Extract	first	line

		for	line	in	fileObj:												#	Loop	through	remaining	lines

				line	=	line.rstrip()

				data	=	line.split(separator)

				for	index,	datum	in	enumerate(data):

						convertFunc	=	converters[index]

						if	convertFunc:

								data[index]	=	convertFunc(datum)

				dataList.append(data)

		return	dataList

We	can	then	use	this	general	file-reading	function	to	make	something	more	specific,	i.e.
by	 defining	 a	 separator	 and	 conversion	 functions	 appropriate	 to	 a	 particular	 job.	 In	 the
example	below	we	use	a	space	as	a	separator	and	leave	the	first	value	as	text,	convert	the
second	and	third	values	to	integers	and	convert	the	fourth	to	a	floating	point	value,	i.e.	so

we	could	read	files	made	with	writeChromosomeRegions().

def	readChromosomeRegions(fileName):

		converters	=	[None,	int,	int,	float]

		dataList	=	readListFile(fileName,	converters,	'	')

		return	dataList

There	is	a	standard	Python	module,	called	‘csv’	(after	Comma	Separated	Value),	which
will	do	most	of	the	above	handling	of	delimited	text	files.	Unfortunately,	it	uses	different
methods	to	open	files	in	Python	2	and	Python	3.	In	Python	2	the	binary,	‘b’,	flag	is	used	to
open	the	file,	and	in	Python	3	an	extra	newline	argument	is	used	instead.	The	underlying
reason	for	the	complication	is	because	the	csv	module	is	designed	to	cope	with	new	lines
being	present	in	the	middle	of	an	item	of	data.	Hence,	the	module	does	not	read	or	write
the	data	with	the	standard	line-by-line	method	and	makes	a	separate	assessment	about	how
to	split	the	data	into	rows.

To	deal	with	all	of	this	we	have	created	a	small	function	that	can	distinguish	between
Python	2	and	Python	3	using	sys.version_info.major	(which	gives	the	value	2	or	3	for	the
respective	versions)	and	use	 the	csv	module	 in	 the	correct	way.	The	construction	of	 the
function	is	similar	to	writeListFile,	where	we	write	a	header	and	then	 the	data	 lines,	but
here	the	actual	writing	is	done	using	the	writerow()	method	of	a	csv.writer	object.	Also,	it
is	notable	that	what	we	have	called	the	data	separator,	the	csv	functions	call	the	delimiter.

import	csv

import	sys

def	writeCsvFile(fileName,	data,	headings,	separator='\t'):

		if	sys.version_info.major	>	2:

				fileObj	=	open(fileName,	'w',	newline='')

		else:

				fileObj	=	open(fileName,	'wb')

		writer	=	csv.writer(fileObj,	delimiter=separator)

		writer.writerow(headings)

		for	row	in	data:

				writer.writerow(row)

		fileObj.close()

There	 are	 also	 complications	 due	 to	 the	 Python	 version	 in	 our	 csv	 reader	 function
readCsvFile(),	 but	 the	 file	 reading	 itself	 is	 fairly	 straightforward.	 We	 simply	 create	 a
csv.reader	object	that	can	be	looped	through,	row	by	row.	We	ignore	the	first	(index	zero)
header	 row	 and	 convert	 the	 text	 to	 the	 required	 data	 types	 in	 the	 same	way	we	 did	 in
readListFile().

def	readCsvFile(fileName,	converters,	separator='\t'):

		dataList	=	[]

		if	sys.version_info.major	>	2:

				fileObj	=	open(fileName,	'r',	newline='')

		else:

				fileObj	=	open(fileName,	'rb')

		reader	=	csv.reader(fileObj,	delimiter=separator)

		for	n,	row	in	enumerate(reader):

				if	n	>	0:		#	n	=	0	is	the	header,	which	we	ignore

						for	index,	datum	in	enumerate(row):

								convertFunc	=	converters[index]

								if	convertFunc:

										row[index]	=	convertFunc(datum)

						dataList.append(row)

		fileObj.close()

		return	dataList

Further	considerations

File	operations	with	the	standard	library
Python	provides	 a	 library,	 or	module,	 called	 ‘os’	 and	 a	 sub-module	 called	 ‘os.path’	 that
together	provide	a	lot	of	functionality	which	is	useful	when	dealing	with	files.	These	two
modules	provide	functionality	to	easily	navigate	around	the	file	system.

Here	 is	 a	 list	 of	 some	 of	 the	 more	 useful	 functions.	 For	 more	 details	 and	 fuller
descriptions,	see	the	Appendices	at	the	end	of	this	book	or	documentation	on	the	Python
website	http://www.python.org.

os:

			chdir(path)							change	the	current	working	directory	to	be	path

			getcwd()										return	the	current	working	directory

			listdir(path)					returns	a	list	of	files/directories	in	the	directory	

path

			mkdir(path)							create	the	directory	path

			rmdir(path)							remove	the	directory	path

			remove(path)						remove	the	file	path

			rename(src,	dst)		move	the	file/directory	from	src	to	dst

os.path:

			exists(path)				returns	whether	path	exists

			isfile(path)													returns	whether	path	is	a	“regular”	file	(as	

opposed	to	a	directory)

			isdir(path)					returns	whether	path	is	a	directory

			islink(path)				returns	whether	path	is	a	symbolic	link

			join(*paths)				joins	the	paths	together	into	one	long	path

			dirname(path)			returns	directory	containing	the	path

			basename(path)		returns	the	path	minus	the	dirname(path)	in	front

http://www.python.org

			split(path)					returns	(dirname(path),	basename(path))

One	 reason	 the	 path.join	 function	 is	 provided	 is	 to	 abstract	 away	 details	 about	 the
operating	system,	such	as	whether	the	directory	separator	is	‘/’	(Unix,	Linux	and	OS	X)	or
‘\’	(Windows).	For	example,

os.path.join('home',	'test',	'mydoc.txt')

returns	‘home/test/mydoc.txt’	on	Unix	and	‘home\test\mydoc.txt’	on	Windows.

Suppose	 you	 want	 to	 find	 all	 files	 ending	 with	 a	 specified	 suffix	 (e.g.	 ‘.txt’)	 in	 a
directory,	 and	 recursively	 include	 all	 sub-directories.	 One	 way	 to	 do	 this	 using	 the
functions	listed	above	in	Python	is:

import	os

def	findFiles(directory,	suffix):

		files	=	[]

		dirfiles	=	os.listdir(directory)

		for	dirfile	in	dirfiles:

				fullfile	=	os.path.join(directory,	dirfile)

				if	os.path.isdir(fullfile):

						#	fullfile	is	a	directory,	so	recurse	into	that

						files.extend(findFiles(fullfile,	suffix))

				elif	dirfile.endswith(suffix):

						#	fullfile	is	a	normal	file,	and	with	correct	suffix

						files.append(fullfile)

		return	files

Note	that	listdir(directory)	returns	only	the	simple,	base	name	of	each	file,	i.e.	without
the	names	of	 the	directories	 in	which	 it	 is	 located,	so	os.path.join()	 is	used	 to	create	 the
full	file/directory	name.	Also,	make	sure	you	notice	how	this	function	calls	itself,	to	add
more	files	for	each	sub-directory.

Suppose	 instead	you	wanted	 to	remove	all	 files	ending	with	a	specific	suffix	 in	some
directory,	and	recursively	including	all	sub-directories.	The	code	would	be	very	similar:

import	os

def	removeFiles(directory,	suffix):

		dirfiles	=	os.listdir(directory)

		for	dirfile	in	dirfiles:

				fullfile	=	os.path.join(directory,	dirfile)

				if	os.path.isdir(fullfile):

						#	fullfile	is	a	directory,	so	recurse	into	that

						removeFiles(fullfile,	suffix)

				elif	dirfile.endswith(suffix):

						#	fullfile	is	a	normal	file,	and	with	correct	suffix

						os.remove(fullfile)

Pickling	data
If	you	do	not	need	a	quick	format	that	is	human-readable,	then	one	option	is	to	leave	the
reading	and	writing	of	files	entirely	to	Python,	by	using	its	pickling	serialisation	modules,
to	convert	in-memory	Python	objects	to	a	stream	of	characters	that	can	be	saved.	Note	that
if	you	are	loading	non-standard	Python	objects	from	a	pickle	file	the	reading	routine	must
be	 aware	 of	 the	 definitions	 of	 these	 objects.	 To	 make	 a	 text	 representation	 of	 a	 data
structure	(list,	dictionary	or	whatever)	and	then	save	it	to	file	you	could	do:

import	pickle

fileObj	=	open('saveFile.pickle',	'wb')

pickle.dump(data,	fileObj)

fileObj.close()

And	to	get	the	data	back	again:

import	pickle

fileObj	=	open('saveFile.pickle',	'rb')

data	=	pickle.load(fileObj)

fileObj.close()

In	Python	2	there	is	a	faster	implementation	of	the	pickle	module	called	cPickle,	but	the
latter	 might	 not	 be	 available	 in	 all	 implementations.	 In	 Python	 3	 the	 pickle	 module
automatically	uses	the	faster	implementation	if	it	is	available,	so	there	is	no	cPickle.	Also,
in	Python	3	the	file	objects	must	be	opened	in	binary	(‘b’)	mode;	in	Python	2	they	do	not
have	to	be.
1 	Not	a	regular	printable	symbol.
2 	When	the	variable	is	garbage	collected;	its	memory	released.
3 	http://www.ncbi.nlm.nih.gov/pubmed.

http://www.ncbi.nlm.nih.gov/pubmed

7 	Object	orientation
Contents

Creating	classes

Class	definition

Class	functions

Class	and	object	attributes

Class	constructors

Example:	molecule,	protein	and	amino	acid	classes

Further	details

Class	and	object	dictionary

String	attribute	access

Class	information

Creating	classes
For	 simple	 tasks	 involving	 short	 programs,	 you	 can	 survive	 perfectly	 well	 with	 the
standard	 Python	 data	 types	 for	 holding	 information,	 such	 as	 lists	 and	 dictionaries.
However,	 for	 more	 complicated	 tasks	 involving	 long	 programs,	 this	 often	 becomes
unwieldy.	There	are	various	ways	to	deal	with	this	issue,	but	one	of	the	most	fruitful	is	the
ability	to	define	your	own	data	types:	objects	built	to	your	own	specification,	organised	in
the	way	that	is	convenient	to	you.	Modern	computer	languages	do	this	via	the	introduction
of	 bespoke	 object	 definitions	 that	 are	 known	 as	 classes	 and	 this	 kind	 of	 thinking	 is
generally	termed	object-oriented	programming.

When	creating	your	own	custom	data	 types,	 the	class	 is	 the	definition	of	a	particular
kind	of	object	in	terms	of	its	component	features	and	how	it	is	constructed	or	implemented
in	code.	The	term	object,	however,	refers	to	a	specific	instance,	or	occurrence,	of	the	thing
which	has	been	made	according	to	the	class	definition.	The	making	of	an	object	of	a	given
class	 is	 what	 is	 usually	 termed	 instantiation.	 A	 convenient	 analogy	 is	 to	 think	 of	 the
blueprint	for	a	house	being	like	a	class,	but	the	actual,	solid	house	being	the	object.	Also,
given	a	single	blueprint	one	may	build	many	instances	of	different	house	objects,	all	to	the
same	 design.	 It	 is	 quite	 common	 to	 use	 the	words	 ‘class’	 and	 ‘object’	 interchangeably,
even	 in	 the	 same	 context,	 although	 they	 mean	 different	 things,	 and	 it	 is	 important	 to
understand	 the	 difference.	 As	 it	 happens,	 everything	 that	 is	 brought	 into	 existence	 in
Python	is	an	object,	so	even	integer	and	floating	point	numbers	are	objects,	although	most
of	the	time	you	can	work	without	noticing	that.

There	are	various	definitions	of	what	constitutes	object-oriented	programming,	and	here
the	exact	details	do	not	matter	much,	since	we	are	using	what	Python	has	provided	in	this
regard.	 One	 common	 principle	 seen	 in	 many	 programming	 languages	 is	 that	 the	 class
definition	should	make	available	certain	useful	functionality,	and	that	internal	information,
about	 how	 a	 specific	 class	 is	 implemented,	 should	 be	 hidden	 from	 the	 outside.	 This	 is
called	information	hiding	and	encapsulation.	In	this	regard,	however,	Python	does	not	take
a	particularly	strict	view	and	you	can	prod	and	probe	virtually	every	part	of	an	object,	if
you	know	how.	Nonetheless,	you	can	work	as	 though	 there	were	encapsulation,	 and	we
will	use	this	practically	in	the	next	chapter.	As	an	example,	suppose	you	have	a	Molecule
class	 that	models	 how	 biological	molecules	 are	 constructed.	 This	might	 have	 defined	 a
function	called	getName(),	which	gives	back	the	name	of	the	molecule	as	a	text	string.	For
the	person	who	 is	using	 this	 function,	 there	 should	be	no	 requirement	 to	know	how	 the
molecule’s	 name	 is	 stored	 internally	 or	 how	 the	 function	 is	 implemented,	 just	 that	 the
function	exists	and	provides	the	name	of	the	molecule.

Figure	7.1.	 The	definition	of	an	abstract	class	and	the	use	of	objects	made	with	the
class.	A	class	definition	is	an	abstract	prototype	that	contains	the	specification	for	creating
a	custom	kind	of	object	data	structure.	The	class	is	a	container	for	various	named	values,
which	may	be	simple	attributes	or	functions,	which	will	then	belong	to	any	object	created
using	the	class	definition.	The	initialisation	function	‘__init__()’	will	be	called	whenever	a
new	object	is	made,	and	this	can	accept	arguments	and	set	the	initial	state	of	the	object.
After	the	class	specification	has	been	defined,	a	particular	instance	can	be	created	using
the	class	name.	Such	an	object	is	generally	associated	with	a	variable	name	so	that	it	may
be	referred	to	later,	including	so	that	methods	(functions	bound	to	the	object)	can	be	called
using	the	dot	notation.

Another	principle	of	object-oriented	programming	is	that,	in	general,	a	class	should	be
capable	of	being	extended	by	you,	or	 someone	else,	 through	 the	 introduction	of	what	 is
known	as	a	subclass.	In	essence,	the	subclass	inherits	all	the	functionality	of	the	original

class	(which	is	called	its	superclass)	and	then	adds	something	extra.	To	continue	the	above
example,	 someone	might	decide	 to	extend	 the	Molecule	 class	 by	 introducing	 a	 subclass
called	Protein,	which	has	an	extra	function	getSequence()	that	returns	the	sequence	of	the
protein.	Because	of	the	inheritance	from	the	Molecule	superclass,	the	Protein	class	still	has
the	function	getName()	available	to	it.

Classes	can	have	 links	 to	other	classes,	 aside	 from	any	subclass-superclass	hierarchy.
For	 example,	 the	 Protein	 class	 might	 have	 a	 link	 to	 a	 quite	 different	 class	 called
AminoAcid	that	models	the	amino	acid	residues	that	make	up	the	protein	molecule.	Often
when	 linking	 different	 classes	 it	 is	 common	 to	 provide	 functionality	 that	 allows	 you	 to
interrogate	the	links	between	objects.	Accordingly,	the	Protein	class	could	have	a	function
getAminoAcids()	that	returns	a	list	of	objects,	each	of	which	would	be	an	AminoAcid.	If
the	 Protein	 class	 is	 used	 to	 make	 an	 actual	 object	 named	 myProtein,	 then	 calling	 the
function	on	this	object	will	give	back	specific	objects	that	describe	its	component	residues.

The	 superclass-subclass	 mechanism	 can	 generally	 be	 thought	 of	 as	 an	 ‘is	 a’
relationship,	whereas	 the	 links	between	classes	can	generally	be	 thought	of	as	‘has	a’	or
‘has’	 relationships.	 So,	 a	 Protein	 ‘is	 a’	 Molecule,	 whereas	 a	 Protein	 ‘has’	 AminoAcid
residues.

Class	definition
The	 definition	 of	 a	 class	 specification	 is	 begun	 using	 the	 class	 keyword,	 followed	by	 a
name	used	to	identify	the	class:

class	Molecule:

		#	contents	of	the	implementation

The	implementation	code,	which	defines	how	the	class	 is	constructed	and	operates,	 is
indented	 relative	 to	 the	 start	 of	 the	 class	 keyword,	 in	 keeping	 with	 the	 style	 of	 other
separated	 code	 blocks	 elsewhere	 in	 Python.	 In	 particular,	 functions	 are	 usually	 defined
within	the	indented	code	block	of	a	class,	such	that	these	functions	‘belong’	to	that	class
definition.

For	defining	a	subclass,	which	is	based	on	the	definition	of	some	other	class,	we	have	to
include	the	superclass	in	parentheses:

class	Protein(Molecule):

		#	extra	contents	for	subclass	implementation

Unlike	 many	 computer	 languages	 (e.g.	 Java),	 Python	 allows	 multiple	 inheritance,
which	is	to	say	that	a	class	can	have	more	than	one	superclass,	and	inherit	properties	from
all	of	 these.	 In	 this	 case	 the	names	of	 the	 superclasses	are	 listed,	 separated	by	commas,
within	 the	parentheses.	Multiple	 inheritance,	however,	 is	generally	rare;	 it	 is	much	more
common	to	have	only	one	superclass,	 like	 the	Protein	above,	or	no	superclass	at	all	 like
Molecule.

In	Python	2	 there	 is	a	 slight	complication	with	Python	classes,	which	stems	 from	 the
fact	that	‘new-style’	classes	were	introduced,	for	technical	reasons.1	In	most	circumstances
you	can	define	 things	 in	 the	 ‘classic’	way	as	we	have	 illustrated,	but	 if	 you	are	using	a

version	of	Python	from	2.2	to	2.7	you	can	use	the	new	style	by	making	the	class	definition
a	subclass	of	the	basal	Python	class,	which	uses	the	keyword	object.2

class	Molecule(object):		#	New	style

		#	contents	of	the	implementation

In	Python	3	all	classes	inherit	from	object	and	you	do	not	have	to	specify	this	explicitly
(although	you	can).

When	writing	your	own	class	code,	it	is	common	practice,	but	certainly	not	mandatory,
to	save	each	class	definition	within	a	single,	dedicated	file	on	disk	and	to	call	that	file	after
the	name	of	the	class.	For	example,	we	might	have	a	class	called	Molecule	implemented	in
a	file	named	‘Molecule.py’	and	Protein	implemented	in	one	named	‘Protein.py’.	Generally
this	 goes	 along	 with	 the	 notion	 that	 your	 class	 definitions	 may	 be	 useful	 in	 different
situations,	 whereupon	 each	 definition	 can	 be	 imported,	 to	 be	 used	 within	 any	 Python
program	 as	 needed.	 To	 access	 such	 classes,	 saved	 in	 other	 files	 (modules),	 one	 has	 to
import	the	class,	for	example,	here	via:

from	Molecule	import	Molecule

and

from	Protein	import	Protein

Above,	the	first	name	in	each	line	is	the	name	of	the	module,	which	relates	to	the	name
of	 the	 file	 (‘Molecule.py’	 or	 ‘Protein.py’)	 from	which	 to	 load	 data.	 Note	 that	 the	 ‘.py’
suffix	of	the	file	name	is	not	included.	The	second	name,	after	the	import	statement,	is	the
name	of	the	class	(Molecule,	Protein).	It	is	only	our	convention	that	the	module	names	and
class	names	are	the	same,	but	it	is	a	common	one	which	you	should	be	familiar	with.

There	is	an	alternative	approach,	especially	for	closely	related	classes,	where	multiple
class	definitions	are	contained	in	a	single	file.	For	example,	we	could	decide	to	put	both
Molecule	and	Protein	into	the	same	file,	here	somewhat	arbitrarily	called	‘Molecules.py’.
In	 this	 case	 the	 import,	 assuming	 you	 need	 access	 to	 both	 classes	 in	 your	 code,	would
instead	look	like:

from	Molecules	import	Molecule,	Protein

How	exactly	object	class	definitions	are	arranged,	in	terms	of	which	module	they	reside
in	and	what	the	module	names	are,	are	both	matters	of	taste	and	convenience.

Class	functions
Class	 functions	 are	 functions	 (subroutines)	 that	 are	 defined	within	 the	 construction	of	 a
class,	so	that	the	function’s	capabilities	are	available	to	any	object	made	according	to	that
class	 specification.	 They	 are	 defined	 in	 the	 same	 way	 as	 ordinary	 functions,	 albeit
indented	within	the	class	code	block,	but	there	is	one	extra	twist:	the	function	is	aware	of
the	object	to	which	it	belongs.	Class	functions	are	accessed	from	the	variable	representing
the	object	via	‘dot’	syntax,	linking	the	object’s	name	to	the	function	name.	For	example,
using	a	function	we	define	below,	for	a	Molecule	object	we	might	do:

name	=	myMolecule.getName()

Here	 the	getName()	 function	knows	which	Molecule	 object	 to	 use	when	 fetching	 the
name,	 without	 any	 additional	 information.	 When	 a	 class	 function	 is	 written,	 the	 first
argument	 in	 its	definition	 is	special	and	represents	 the	object	 that	 the	function	would	be
called	from.3	In	this	way	you	have	a	handle	on	the	object	that	you	can	use	in	the	function
code.	As	with	all	arguments	to	functions,	you	can	call	 this	argument	for	the	object	itself
anything	you	want.	However,	the	universal	and	unwavering	convention	in	Python	is	to	call
it	‘self’,	and	nothing	else,	ever.	If	you	call	it	anything	else,	and	a	Python	programmer	spots
it,	don’t	be	surprised	if	annoyance	results.

Here	we	define	a	class	and	include	a	class	function	within:

class	Molecule:

		def	getName(self):

				#	function	implementation

Because	 the	 class	 function	 takes	 self	 as	 the	 first	 argument,	 the	 function	 can	 be	 used
(called)	any	time	you	have	made	an	object	using	the	class.

Notice	that	when	you	call	the	function	(not	forgetting	the	brackets,	see	above)	you	do
not	include	the	self	argument	inside	the	parentheses,	since	it	is	automatically	known	that	it
refers	 to	 the	 object	 that	 is	 calling	 the	 function.	 This	 oddity	 can	 initially	 cause	 people
confusion,	but	a	convenient	way	to	think	about	it	is	that	the	object,	in	this	case	molecule,
substitutes	for	self	inside	the	class	and	inside	the	actual	function.	Indeed	the	self	argument
really	is	set	as	the	molecule	when	the	program	is	run.

There	is	an	alternative	way	to	call	class	functions,	which	explicitly	passes	in	the	object.
This	method	 turns	 out	 to	 be	 useful	 in	 certain	 circumstances	when	we	 are	 dealing	with
superclasses	and	subclasses.	So	instead	of	the	above,	you	could	use	the	name	of	the	class
and	pass	the	object	as	an	argument,	which	perhaps	makes	it	easier	to	see	how	self	is	filled:

name	=	Molecule.getName(molecule)

Here	getName()	is	the	general	function	definition	in	the	Molecule	class,	rather	than	one
bound	 to	a	particular	 instance	of	an	object.	Hence,	 the	specific	object	 to	be	operated	on
must	be	explicitly	passed	in	to	the	function	call,	because	otherwise	the	object,	in	this	case
molecule,	 is	not	known.	Note,	however,	 that	 this	method	still	uses	 the	 ‘dot’	 syntax.	The
first	object.function()	way	of	calling	reads	better,	and	is	shorter,	than	the	second	way.	So,
unless	you	definitely	need	to	use	the	second	version,	which	can	happen	when	subclasses
come	into	play,	then	the	first	version	is	preferred.

From	the	context	of	the	implementation,	inside	the	code	that	constructs	the	class,	you
write	function	calls	with	self	as	the	object,	which	of	course	is	filled	in	when	a	real	object
instance	is	made.	For	example,	suppose	we	have	a	function	that	provides	the	name	of	the
molecule	with	 the	first	 letter	capitalised.	To	implement	 this	function	we	first	get	hold	of
the	molecule’s	name,	without	capitalisation,	using	a	call	to	the	other	function,	before	we
do	the	job	of	changing	the	text:

class	Molecule:

		def	getName(self):

				#	function	implementation

		def	getCapitalisedName(self):

				name	=	self.getName()

				return	name.capitalize()

Notice	that	in	getCapitalisedName()	we	are	assuming	that	name	is	set	to	a	Python	string
and	not	None,	otherwise	capitalize()	would	cause	an	error,	and	generate	an	AttributeError
exception	 because	 the	 capitalize()	 function	 is	 only	 guaranteed	 to	 be	 present	 for	 string
objects.	 You	 could	 alternatively	 protect	 against	 this	 by	 not	 calling	 the	 capitalisation
function	unless	the	name	is	definitely	a	string:

class	Molecule:

		def	getName(self):

				#	function	implementation

		def	getCapitalisedName(self):

				name	=	self.getName()

				if	name:

						return	name.capitalize()

				else:

						return	name

The	 order	 of	 the	 function	 definitions	 inside	 the	 class	 implementation	 code	 does	 not
matter,	so	here	getCapitalisedName()	could	have	been	listed	before	getName().	Although,
be	warned	 that	 if	 by	mistake	 you	 actually	 specify	 a	 function	 definition	more	 than	 once
inside	a	class	then	the	last	occurrence	replaces	the	previous	one.

Moving	on	 to	 consider	 subclasses,	which	 build	 upon	 some	other	 class	 definition,	we
could	include	new	functions:

class	Protein(Molecule):

		def	getSequence(self):

				#	function	implementation

		def	getAminoAcids(self):

				#	function	implementation

You	would	call	these	functions	in	the	expected	way,	for	example:

sequence	=	protein.getSequence()

However,	it	is	especially	notable	that	there	is	no	need	to	repeat	the	code	for	getName()
or	getCapitalisedName(),	which	are	already	defined	 in	 the	Molecule	superclass;	 this	 is	a
major	 point	 of	 using	 class	 inheritance.	 The	 Protein	 class	 automatically	 inherits	 these
functions	from	the	other	class	on	which	it	is	based,	so,	for	example,	one	can	do:

name	=	protein.getName()

The	Molecule	class,	however,	knows	nothing	about	 the	extra	 functions	 in	 the	Protein

subclass.	 Accordingly	 .getSequence()	 cannot	 be	 used	 for	 an	 object	 made	 from	 the
Molecule	definition	but	only	from	an	object	made	from	the	Protein	definition.

Class	and	object	attributes
Object	 classes	 serve	 to	 bring	 together	 information	 and	 class	 functions	 that	 act	 on	 that
information.	 To	 hold	 this	 information,	 Python	 classes	 have	 simple	 attributes;	 plain
variables	tied	to	the	object.	A	very	simple	example	would	be	to	associate	a	variable	called
description	to	the	Molecule	class	so	that	for	a	given	instance	called	molecule,	we	can	do
the	following	to	get	its	value:

print(molecule.description)

There	are	two	ways	in	which	such	variables	can	be	associated	with	a	class.	They	can	be
an	object	attribute	and	belong	to	a	specific	object,	or	a	class	attribute	and	belong	 to	 the
class	as	a	whole.	Class	attributes	are	defined	outside	all	function	blocks	and	will	have	the
same	value	for	all	objects.	Object	attributes	are	defined	inside	class	functions	and	must	be
set	explicitly	for	each	object.

For	 example,	 the	AminoAcid	 class	might	 have	 a	 dictionary	 containing	 the	molecular
masses	 of	 amino	 acids,	with	 the	 key	 being	 the	 one-letter	 code	 of	 the	 amino	 acid.4	 The
weight	 of	 amino	 acids	 is	 independent	 of	which	 particular	 protein	molecule	we	may	 be
considering,5	so	in	this	case	we	could	define	a	dictionary	as	a	class	attribute.

class	AminoAcid:

		massDict	=	{'A':	71.07,	'R':	156.18,	…	}

Such	class	attributes	can	be	accessed	either	via	an	object	instance	or	via	the	class	name.
As	 with	 functions,	 attribute	 access	 is	 via	 the	 ‘dot’	 syntax,	 but	 note	 that	 there	 are	 no
parentheses	when	you	access	an	attribute;	that	is	how	you	can	tell	the	difference	between	a
function	 call	 and	 an	 attribute	 access.	Here,	 if	 you	 have	 an	 object	 lysine	made	 from	 the
AminoAcid	class,	then	you	can	get	to	the	dictionary	attribute	via:

massDict	=	lysine.massDict

However,	 because	 it	 is	 a	 class	 attribute	 you	 could	 also	 access	 it	 via	 the	 name	 of	 the
class:

massDict	=	AminoAcid.massDict

Class	 attributes	 are	 often	 used	 for	 variables	 which	 do	 not	 change,	 because	 they	 are
defined	for	the	class	as	a	whole	and	their	values	are	made	available	to	all	instances	of	that
kind	of	object.

The	AminoAcid	class	might	have	another	class	attribute	called	acceptableCodes,	which
lists	the	codes	that	are	deemed	to	be	valid	for	an	aminoAcid.	In	fact,	here	these	could	just
be	the	keys	from	the	massDict	dictionary,	so	we	could	do:

class	AminoAcid:

		massDict	=	{'A':	71.07,	'R':	156.18,	…	}

		acceptableCodes	=	set(massDict.keys())

In	Python	2,	the	above	massDict.keys()	call	gives	back	a	list	of	keys	for	mostly	historic
reasons,	 because	 lists	 and	 dictionaries	 were	 introduced	 into	 Python	 long	 before	 sets.
Although	 we	 could	 leave	 it	 as	 a	 list,	 we	 turn	 it	 into	 a	 set	 for	 efficiency	 reasons;
determining	whether	something	is	in	a	set	is	faster	than	determining	whether	it	is	in	a	list.
In	 Python	 3	 massDict.keys()	 returns	 a	 view	 onto	 the	 keys,	 and	 the	 set()	 converts	 this
explicitly	into	a	set.

To	access	the	massDict	class	variable	inside	a	class	function	we	write	‘self.massDict’.
But	it	is	notable	that	outside	a	class	function,	in	the	context	of	the	main	code	block	for	a
class,	there	is	no	self	so	above	we	would	not	write	‘self.massDict.keys()’.	Also,	when	the
Python	interpreter	sees	this	usage	of	massDict	it	is	not	yet	finished	with	reading	the	class
definition,	 so	 technically	 the	 class	 does	 not	 yet	 exist.	 Thus,	 the	 syntax
‘AminoAcid.massDict.keys()’	 is	 also	not	 allowed	 inside	 the	 class	 code	block.	 Instead,	 a
class	 attribute	 that	 refers	 to	 a	 previous	 class	 attribute	 just	 uses	 the	 name	 directly,	 as
illustrated	here.

Interestingly,	bare	function	names,	without	the	parentheses,	are	also	class	attributes,	so
you	 can	 get	 hold	 of	 them	 and	 then	 call	 them	 later.	 For	 example,	 with	 the	 function
getSequence	in	the	Protein	class	you	could	do:

getSequenceFunc	=	Protein.getSequence

getSequenceFunc(protein)							#	same	as	protein.getSequence()

The	AminoAcid	class	might	have	an	attribute	for	the	one-letter	code	of	the	amino	acid.
The	code	letter	depends	on	the	particular	amino	acid	in	question,	and	not	on	the	class	as	a
whole.	Thus,	this	provides	an	example	where	it	is	more	natural	to	have	an	object	attribute,
rather	than	a	class	attribute.	Accordingly,	we	might	have	a	function	setCode()	where	this
attribute,	which	we	 imaginatively	 call	 code,	 can	 be	 set	 (based	upon	 the	 input	 value)	 by
using	the	‘dot’	syntax	to	tie	the	variable	to	self:

class	AminoAcid:

		def	setCode(self,	code):

				self.code	=	code

Then	for	the	object	lysine,	built	from	this	class,	you	can	get	at	its	code,	once	it	has	been
set:

lysine	=	AminoAcid()

lysine.setCode('Lys')

code	=	lysine.code

It	is	relatively	easy	to	see	the	particular	object	instance	called	lysine	becomes	the	self	in
the	function	definition.	Taken	together,	you	might	have	 the	following	implementation	of
the	getSequence()	function	to	fetch	residue	codes	from	a	list	of	AminoAcid	objects:

class	Protein(Molecule):

		def	getSequence(self):

				return	[aminoAcid.code	for	aminoAcid	in	self.aminoAcids]

This	assumes	that	the	code	has	indeed	been	set	for	all	 the	amino	acids	making	up	the
protein;	and	 that	 the	attribute	self.aminoAcids	 is	defined	somehow	for	 the	Protein	class.
As	 it	 happens,	 in	 the	 situation	 described	 here	 we	 would	 probably	 not	 introduce	 the
function	 setCode()	 at	 all.	 Instead,	 we	 would	 set	 the	 important	 code	 attribute	 when	 we
create	 the	object	 in	what	 is	 called	 the	constructor,	 a	 special	 function	called	whenever	 a
new	object	is	made,	as	discussed	in	the	next	section.	Nonetheless	other,	less	fundamental
attributes	might	use	setter	functions.

Lastly	 we	 must	 come	 clean	 and	 admit	 that	 Python	 actually	 has	 another	 way	 to	 set
attributes,	namely:

aminoAcid.code	=	'A'

This	syntax	allows	you	to	set	any	attribute	to	any	value,	without	having	to	write	setter
functions,	or	even	having	 to	define	 the	attribute	elsewhere.	Because	 it	 is	 so	 simple,	 this
syntax	 is	 very	 popular	 among	 Python	 programmers.	 However,	 we	 have	 chosen	 to
introduce	the	more	formal	way	first,	because	classes	depend	on	knowing	which	attributes
are	present,	what	the	values	of	the	attributes	are	and	possibly	how	those	values	relate.	For
example,	in	setCode()	we	can	easily	introduce	a	check	to	ensure	that	an	amino	acid	code	is
valid.	When	designing	a	new	class,	setting	all	kinds	of	attributes	in	an	unregulated	way	is
not	the	best	way	to	start.	However,	as	we	will	go	on	to	discuss	in	the	Properties	section	at
the	end	of	Chapter	8,	there	is	actually	a	way	to	get	the	best	of	both	worlds	so	that	you	can
use	 the	 above	 assignment	 syntax	while	 under-the-hood	 it	 will	 really	 be	 using	 a	 special
setter	function.

Class	constructors
All	objects	have	a	life	cycle;	at	the	beginning	you	have	to	create	a	new	object,	and	at	the
end	the	object	is	removed.	The	creation	of	an	object	is	handled	in	a	special	function	that	is
called	a	constructor,	and	 its	 removal	 is	handled	 in	a	 function	 that	 is	called	a	destructor.
Python	 has	 automatic	 garbage	 collection,	 which	 means	 that	 objects	 are	 (eventually)
deleted	from	memory	when	they	are	no	longer	accessible	to	the	program,	so	normally	you
do	not	have	to	define	a	destructor.	Even	when	you	do	want	to	clean	up	deliberately,	when
you	are	done	with	an	object,	it	is	normal	to	define	a	separate	function	and	call	it	explicitly,
rather	 than	 use	 a	 destructor,	 since	 the	 latter	 is	 only	 called	when	 Python	 gets	 around	 to
doing	its	garbage	collection.

A	 constructor	 function,	 when	 present,	 is	 always	 called	 whenever	 the	 corresponding
object	 is	 created.	 The	 constructor’s	 definition	 always	 has	 the	 special	 name	 __init__;
double	underscore	followed	by	‘init’	followed	by	double	underscore.6	As	with	all	Python
class	 functions,	 the	 first	argument	 is	 the	object	handle,	 i.e.	 ‘self’.	After	 the	self	 you	 can
have	any	number	of	other	arguments	that	might	be	useful	to	set	the	object	up,	or	maybe	no
arguments	at	all.	Many	classes	have	a	key,	an	attribute	that	uniquely	identifies	objects	of	a
given	class.	Usually	 this	key	 is	either	passed	 into	 the	constructor	 function	as	one	of	 the
arguments	or	 it	 is	deduced	from	the	arguments	 that	are	passed	 in.	For	example,	suppose
you	decided	that	for	a	Molecule	there	is	a	name	that	identifies	it.	We	could	then	do:

class	Molecule:

		def	__init__(self,	name):

				#	contents	of	constructor	function

Unlike	a	normal	class	 function,	which	you	would	call	using	 the	same	name	as	 it	was
defined	with,	here	you	do	not	utter	the	constructor	name	‘__init__’	at	all	to	call	it.	Instead,
the	 class	 name	 is	 used	directly	with	 round	parentheses.	Thus,	 to	 create	 a	Molecule	 you
would	do:

molecule	=	Molecule(name)

The	next	question	is	what	to	do	in	the	constructor	with	the	information	that	is	passed	in.
Naturally,	 that	 is	 entirely	 up	 to	 the	 person	 writing	 the	 code,	 according	 to	 what	 the
requirements	 of	 the	 class	 are.	 A	 very	 common	 practice	 is	 to	 keep	 a	 reference	 to	 the
arguments	 that	are	passed	to	 the	constructor,	so	 that	 they	can	be	referred	to	 later	via	 the
object:

class	Molecule:

		def	__init__(self,	name):

				self.name	=	name

What	 this	 syntax	means	 is	 that	any	object	of	 the	Molecule	class	now	has	an	attribute
that	is	called	name;	the	variable	is	bound	to	the	self	that	represents	the	particular	instance
of	an	object.	You	can	thus	do	something	like:

molecule	=	Molecule(name)																				#	Make	new	object

print('molecule	name	=	%s'	%	molecule.name)		#	Use	the	object

Note	that	the	attribute	self.name	is	created	on-the-fly	inside	the	constructor.	You	do	not
have	to	otherwise	specify	that	you	intend	to	create	this,	or	any	other,	attribute	in	Python.
Here	the	value	is	set	directly	from	an	argument	that	is	passed	into	the	constructor	when	the
new	object	is	made,	but	it	is	possible	that	the	value	is	somehow	determined	indirectly.

As	 with	 any	 function,	 often	 you	 should	 check	 that	 the	 value	 passed	 into	 an	 object
constructor	makes	sense.	So	here,	for	Molecule,	perhaps	we	want	the	name	to	be	set	and
not	be	 the	empty	string	or	None.	Accordingly,	we	could	check	 that	 the	name	 is	defined
(semantically	true)	and	if	it	is	not	we	can	trigger	an	error	and	go	no	further:

class	Molecule:

		def	__init__(self,	name):

				if	not	name:

						raise	Exception('name	must	be	set	to	something')

				self.name	=	name

You	 can	 create	 attributes	 in	 any	 class	 function	 (or	 directly	 on	 the	 object),	 but	 it	 is
normal	to	create	most	of	them	in	the	constructor,	either	directly	in	the	constructor	function
or	 indirectly	 via	 another	 function	 that	 is	 itself	 called	 from	 within	 the	 constructor.
Sometimes	an	attribute	might	not	yet	have	a	known	value	at	the	moment	when	the	object
is	created,	and	 in	 this	case	 it	 is	normal	practice	 to	set	 it	 to	a	default	value,	 for	example,

None,	if	there	is	no	other	means	of	determining	it.	The	value	can	then	be	set	later	when	the
information	is	available.

As	 another	 example,	 the	 AminoAcid	 constructor	 could	 be	 implemented	 as	 follows,
giving	an	informative	error	message	about	what	should	have	been	done:

class	AminoAcid:

		def	__init__(self,	code):

				if	code	not	in	self.acceptableCodes:

						text	=	'code	=	"%s",	must	be	in	list	%s'

						raise	Exception(text	%	(code,	sorted(self.acceptableCodes)))

				self.code	=	code

For	 a	 subclass,	 such	 as	 the	 above	 Protein,	 you	 might	 decide	 that	 the	 superclass
constructor	is	all	that	you	need;	remembering	that	a	subclass	inherits	all	of	the	functions
and	attributes	of	its	superclass.	In	this	case	the	subclass	would	have	no	extra	constructor
defined,	 and	 when	 such	 an	 object	 is	 created	 it	 will	 automatically	 use	 the	 superclass
constructor.	 To	 create	 a	 subclass	 object	 you	 still	 use	 its	 class	 name,	 even	 if	 it	 doesn’t
explicitly	have	its	own	version	of	the	constructor	function:

protein	=	Protein(name)

Typically,	however,	a	subclass	would	define	its	own	__init__	function	and	thus	override
the	superclass	constructor,	because	there	are	usually	more	setup	operations	that	need	to	be
done	for	this	kind	of	object,	compared	to	the	class	on	which	it	is	based.

It	 is	very	common	that,	 if	you	do	overwrite	 the	constructor,	you	also	want	 to	call	 the
superclass	constructor	from	inside	the	subclass	constructor;	the	setup	for	the	superclass	is
also	useful	for	the	subclass	and	you	want	to	implement	both	pieces	of	code.	To	illustrate
this,	for	the	Protein	class	it’s	possible	we	would	pass	in	the	sequence	of	one-letter	codes,
which	determine	the	amino	acid	components	of	the	protein,	as	part	of	its	constructor,	and
so	have:

class	Protein(Molecule):

		def	__init__(self,	name,	sequence):

				Molecule.__init__(self,	name)

				#	now	the	Protein	specific	initialisation

Note	the	syntax:	inside	the	class	the	constructor	is	called	via	__init__,	not	via	the	class
name;	we	are	not	making	a	new	object	yet,	just	calling	the	setup	function.	Also	note	that
Molecule.__init__	is	the	constructor	for	the	Molecule	superclass.	We	cannot	use	the	more
normal	 syntax	 self.__init__	 in	 this	 context	 because	 that	 refers	 to	 the	 Protein	 __init__
function,	not	the	Molecule	__init__	function.

Given	 that	we	 are	 passing	 in	 the	molecular	 sequence	 to	 the	 constructor,	 it	would	 be
natural	to	create	the	AminoAcids	objects	there:

class	Protein(Molecule):

		def	__init__(self,	name,	sequence):

				Molecule.__init__(self,	name)

				self.aminoAcids	=	[]

				for	code	in	sequence:

						aminoAcid	=	AminoAcid(code)

						self.aminoAcids.append(aminoAcid)

Note	that	the	sequence	could	be	a	list	of	one-letter	strings	each	of	which	represents	one
code,	or	it	could	be	a	string	with	each	position	representing	one	one-letter	code,	it	does	not
matter	which	because	you	 iterate	over	 them	(consider	each	element	 in	 turn)	 in	 the	same
way	in	Python.

Example:	molecule,	protein	and	amino	acid	classes
Putting	the	code	for	the	class	definitions	all	together	in	one	place,	we	have:

class	Molecule:

		def	__init__(self,	name):

				if	not	name:

						raise	Exception('name	must	be	set	to	something')

				self.name	=	name

		def	getName(self):

				return	self.name

		def	getCapitalisedName(self):

				name	=	self.getName()

				return	name.capitalize()

class	Protein(Molecule):

		def	__init__(self,	name,	sequence):

				Molecule.__init__(self,	name)

				self.aminoAcids	=	[]

				for	code	in	sequence:

						aminoAcid	=	AminoAcid(code)

						self.aminoAcids.append(aminoAcid)

		def	getAminoAcids(self):

				return	self.aminoAcids

		def	getSequence(self):

				return	[aminoAcid.code	for	aminoAcid	in	self.aminoAcids]

		def	getMass(self):

				mass	=	18.02		#	N-terminus	H	and	C-terminus	OH

				aminoAcids	=	self.getAminoAcids()

				for	aminoAcid	in	aminoAcids:

						mass	+=	aminoAcid.getMass()

				return	mass

class	AminoAcid:

		massDict	=	{	"A":	71.07,	"R":156.18,	"N":114.08,	"D":115.08,

															"C":103.10,	"Q":128.13,	"E":129.11,	"G":	57.05,

															"H":137.14,	"I":113.15,	"L":113.15,	"K":128.17,

															"M":131.19,	"F":147.17,	"P":	97.11,	"S":	87.07,

															"T":101.10,	"W":186.20,	"Y":163.17,	"V":	99.13	}

		acceptableCodes	=	set(massDict.keys())

		def	__init__(self,	code):

				if	code	not	in	self.acceptableCodes:

						text	=	'code	=	"%s",	must	be	in	list	%s'

						raise	Exception(text	%	(code,	sorted(self.acceptableCodes)))

				self.code	=	code

		def	getMass(self):

				return	self.massDict[self.code]

And	here	 is	an	example	of	 these	objects	being	used,	with	some	self-explanatory	print
statements:

water	=	Molecule('Aqua')

print('molecule	attributes')

print('molecule	name	=',	water.name)

print('molecule	function	calls')

print('molecule	name	=',	water.getName())

print('molecule	capitalisedName	=',	water.getCapitalisedName())

myProtein	=	Protein('Fictitious',	'MPKAILV')

print('protein	attributes')

print('protein	name	=',	myProtein.name)

print('protein	amino	acids	=',	myProtein.aminoAcids)

print('protein	function	calls')

print('protein	name	=',	myProtein.getName())

print('protein	amino	acids	=',	myProtein.getAminoAcids())

print('protein	sequence	=',	myProtein.getSequence())

print('protein	mass	=	',	myProtein.getMass())

We	will	expand	on	the	idea	of	using	classes	to	describe	molecules	in	Chapter	8,	where
we	create	an	object	hierarchy	to	describe	molecular	structures	and	the	coordinates	of	their
component	atoms.

Further	details
This	next	section	discusses	some	of	the	finer	technical	details	of	Python	classes.	If	you	are
a	newcomer	to	object	orientation	then	this	section	can	be	skipped	on	a	first	reading,	as	all
of	 the	 subsequent	 examples	 in	 this	 book	 that	 involve	Python	objects	 can	be	 understood
using	what	we	have	discussed	above.

Class	and	object	dictionary
Python	classes	have	a	special	inbuilt	attribute	called	__dict__,	which,	as	its	name	implies,
is	a	Python	dictionary.	This	is	used	to	store	class	attributes,	including	functions.	The	key

to	 access	 an	 entry	 in	 the	 dictionary	 is	 the	 name	 of	 the	 attribute	 (or	 function),	 and	 the
dictionary	value	is	the	value	of	the	corresponding	attribute	(or	a	function	reference).	For
example,	if	we	have:

class	AminoAcid:

		massDict	=	{	…	}

		acceptableCodes	=	set(massDict.keys())

then	AminoAcid.__dict__	 would	 have	 an	 entry	 with	 key	 ‘massDict’	 and	 one	 with	 key
‘acceptableCodes’.	Note	that	the	dictionary	keys	are	Python	strings.

Instances	of	objects	also	have	an	attribute	called	__dict__	,	and	this	is	used	to	store	the
object’s	own	attributes.	For	example,	if	we	have	a	class	definition:

class	Molecule:

		def	__init__(self,	name):

				#	…

				self.name	=	name

and	we	create	a	corresponding	object	via:

molecule	=	Molecule('myMoleculeName')

then	molecule.__dict__	has	an	entry	with	key	‘name’	and	value	‘myMoleculeName’.

When	 Python	 needs	 to	 access	 an	 attribute	 for	 an	 object	 it	 first	 checks	 in	 the	 object
__dict__	for	a	key	equal	to	the	attribute	name,	and	if	that	does	not	exist	it	then	checks	in
the	associated	class	__dict__.	This	can	be	used	to	set	a	default	value	using	a	class	attribute
that	 can	 then	 optionally	 be	 overridden	 by	 an	 object	 attribute	 of	 the	 same	 name.	 Class
attributes	 take	up	 less	memory	 than	an	equivalent	object	 attribute	because	 the	 latter	has
space	allocated	in	the	object	__dict__	for	every	single	object	instance	of	the	class.

Python’s	 inbuilt	 dir()	 function,	 which	 lists	 available	 attributes	 for	 a	 given	 object	 or
class,	is	related	to	the	__dict__	attribute.	Acting	on	a	class	it	gives	a	list	of	the	keys	in	the
class	__dict__	and	acting	on	an	object	it	returns	a	merger	of	the	keys	for	the	class	__dict__
and	for	the	object	__dict__:

dir(Molecule)

#	list	that	includes	['__init__',	'getName',	'getCapitalisedName']

Although	it	 is	not	a	common	practice,	a	class	attribute	or	object	attribute	(including	a
function)	 can	 be	 removed	 completely	 using	 a	 del	 statement.	 Naturally,	 class	 attributes
must	use	the	del	on	the	class	and	object	attributes	use	the	del	on	an	object:

del	AminoAcid.massDict		#	removes	massDict	from	class

del	molecule.name							#	removes	name	from	molecule

del	aminoAcid.massDict		#	AttributeError	exception

del	Molecule.name							#	AttributeError	exception

In	effect,	the	del	operation	is	working	on	the	corresponding	__dict__:

del	molecule.name							#	same	as:	del	molecule.__dict__['name']

String	attribute	access
Sometimes	it	 is	useful	 to	access	an	attribute	using	a	string	that	contains	the	name	of	 the
attribute,	 rather	 than	 directly	 using	 the	 attribute	 itself.	 The	 following	 examples	 will
hopefully	make	the	distinction	clear.	Firstly,	there	is	the	inbuilt	Python	function,	hasattr(),
which	says	whether	a	given	object	has	a	given	attribute:

hasattr(molecule,	'name')			#	True

hasattr(molecule,	'style')		#	False

Note	that	the	second	argument	is	indeed	a	string	that	describes	the	name	of	the	attribute.
This	function	also	works	for	class	attributes	and	in	that	case	the	first	argument	can	also	be
a	class	rather	than	an	object:

hasattr(AminoAcid,	'massDict')		#	True

There	are	two	accompanying	functions,	getattr()	and	setattr(),	also	inbuilt.	For	example,
we	can	get	an	attribute	value	using	a	string	containing	the	attribute’s	name	via:

name	=	getattr(molecule,	'name')

#	same	as:	name	=	molecule.name

and	 we	 can	 set	 an	 attribute	 value	 in	 a	 similar	 manner,	 noting	 that	 we	 pass	 in	 three
arguments,	because	we	need	the	value	to	assign:

setattr(molecule,	'name',	'newMoleculeName')

#	same	as:	molecule.name	=	'newMoleculeName'

The	getattr()	and	setattr()	functions	might	seem	redundant.	After	all,	we	would	usually
just	do:

name	=	molecule.name

In	the	above	examples	that	would	be	a	fair	point,	because	the	attribute	of	interest	is	a
specific	 one.	However,	 sometimes	 in	 code	we	more	generally	 access	different	 attributes
using	 a	 variable	 name,	 rather	 than	 by	 directly	 referring	 to	 a	 particular	 name	 known	 to
Python,	and	that	is	where	these	additional	functions	come	in	very	handy.	It	is	not	unusual
to	see	code	like	the	following,	which	is	general	for	any	attribute;	 in	this	case	a	check	to
make	sure	a	named	attribute	is	not	accessed	unless	it	is	defined:

if	hasattr(molecule,	attr):

		value	=	getattr(molecule,	attr)

		#	…

For	example,	attr	might	be	‘aminoAcids’,	which	in	our	example	code	exists	if	molecule
is	a	Protein	but	not	if	it	is	just	a	plain	Molecule.	In	the	next	section	we	see	a	better	way	to
check	if	an	object	is	an	instance	of	a	specific	class.

To	 complete	 the	 suite	 of	 inbuilt	 attribute	 functions,	 there	 is	 also	 a	 delattr()	 function,
which	is	equivalent	in	functionality	to	the	del	statement:

delattr(molecule,	'name')			#	same	as:	del	molecule.name

Class	information
Normally	when	an	object	 is	manipulated	it	 is	 just	 the	attributes	and	functions	associated
with	 it	 that	 are	of	 interest.	However,	 sometimes	 the	class	 itself	 is	of	 interest.	There	 is	 a
special	object	attribute	called	__class__7	that	gives	a	handle	on	the	class	definition	of	an
object,	although	it	should	be	noted	that	this	exists	only	for	user-defined	classes:

molecule.__class__										#	same	as:	Molecule

It	might	not	seem	obvious	why	you	would	need	this,	given	that	the	class	definition	was
required	to	make	the	object	in	the	first	place.	Nevertheless,	it	is	surprisingly	useful	in	more
complex	situations	where	you	are	manipulating	objects	from	a	number	of	different	classes,
and	you	need	to	check	that	the	right	thing	happens	to	the	right	kind	of	object.

The	class	definition	 itself	has	a	special	attribute	called	__name__	 that	gives	 the	class
name	as	a	string:

Molecule.__name__											#	'Molecule'

These	two	special	attributes	do	not	appear	in	the	internal	attribute	dictionary	__dict__.

Classes	 have	 another	 special	 attribute	 called	 __doc__,	 which	 does	 appear	 in	 the
__dict__.	 This	 is	 used	 for	 adding	 textual	 comments	 to	 help	 document	 the	 class,	 in	 the
same	way	that	the	corresponding	attribute	(also	named	__doc__)	is	also	used	to	document
a	 function.	 It	 is	 filled	 in	 from	 the	 triple-quoted	 Python	 string	 that	 appears	 immediately
after	the	class	definition,	if	such	a	string	exists:

class	Molecule:

		'''This	class	describes	a	biological	molecule'''

		#	…

Molecule.__doc__			#	'This	class	describes	a	biological	molecule'

As	well	 as	 attributes	 accessed	 from	objects	 and	 classes,	 there	 are	 also	 inbuilt	Python
functions	 that	 operate	 on	 classes	 and	 objects	 to	 say	 something	 about	 them.	 There	 is	 a
function,	isinstance(),	that	checks	whether	a	specified	object	is	an	instance	of	a	class	(was
made	with	that	definition).	The	class	might	not	be	the	direct	class	of	the	object	but	could
also	be	a	superclass:

molecule	=	Molecule('moleculeName')

isinstance(molecule,	Molecule)				#	True

isinstance(molecule,	Protein)					#	False

molecule	=	Protein('proteinName',	'QWERTY')

isinstance(molecule,	Molecule)				#	True

isinstance(molecule,	Protein)					#	True

This	can	be	useful	when	you	have	objects	 that	derive	from	a	known	class,	but	which
include	a	mixture	of	subclass	and	superclass	versions,	where	you	only	want	to	operate	in	a
given	way	if	it	is	actually	a	member	of	the	subclass,	with	its	extra	bits:

if	isinstance(molecule,	Protein):

		aminoAcids	=	molecule.aminoAcids		#	exists	since	it's	Protein

		#	…

There	 is	 an	 associated	 function,	 issubclass(),	 that	works	on	 two	 classes	 instead	of	 an
object	and	a	class:

issubclass(Molecule,	Molecule)				#	True

issubclass(Molecule,	Protein)					#	False

issubclass(Protein,	Molecule)					#	True

issubclass(Protein,	Protein)						#	True

Related	to	detecting	which	kind	of	object	you	have,	there	is	another	concept	called	the
type	of	an	object.	The	type	of	an	object	is	given	by	the	inbuilt	type()	function.	In	Python	3
the	 type	 of	 an	 object	 gives	 its	 class,	 and	 the	 same	 is	 true	 in	 Python	 2	 for	 ‘new-style’
classes,	which	inherit	from	object.	In	Python	2	all	user-defined	‘old-style’	classes	have	the
same	type.

type(3)									#	<class	'int'>			in	v3,	<type	'int'>	in	v2

type(3.14)						#	<class	'float'>	in	v3,	<type	'float'>	in	v2

type('red')					#	<class	'str'>			in	v3,	<type	'str'>	in	v2

type(())								#	<class	'tuple'>	in	v3,	<type	'tuple'>	in	v2

type([])								#	<class	'list'>		in	v3,	<type	'list'>	in	v2

type(set())					#	<class	'set'>			in	v3,	<type	'set'>	in	v2

type({})								#	<class	'dict'>		in	v3,	<type	'dict'>	in	v2

type(molecule)		#	<class	'Molecules.Molecule'>	in	v3

																#	and	in	v2,	new	style	class

																#	<type	'instance'>	in	v2,	old	style	class

The	type()	function	actually	gives	you	back	another	Python	object,	and	the	type	of	such
an	object	is	the	seemingly	odd	<class	‘type’>	in	Python	3,	or	<type	‘type’>	in	Python	2.
The	type	objects	can	also	be	obtained	otherwise:

int													#	<class	'int'>			in	v3,	<type	'int'>	in	v2

float											#	<class	'float'>	in	v3,	<type	'float'>	in	v2

str													#	<class	'str'>			in	v3,	<type	'str'>	in	v2

tuple											#	<class	'tuple'>	in	v3,	<type	'tuple'>	in	v2

list												#	<class	'list'>		in	v3,	<type	'list'>	in	v2

set													#	<class	'set'>			in	v3,	<type	'set'>	in	v2

dict												#	<class	'dict'>		in	v3,	<type	'dict'>	in	v2

Molecule								#	<class	'Molecule'>	in	v3	and	v2

In	 Python	 2	 for	 ‘old	 style’	 classes,	 to	 get	 at	 the	 type	 of	Molecule	without	 using	 the
type()	function	we	need	to	import	the	types	module	and	then	we	have:

import	types

types.InstanceType		#	<type	'instance'>	in	v2	old	style	class

Checking	the	object	type	comes	in	handy	when	some	variable	could	have	one	of	a	few
types,	and	how	it	gets	processed	depends	on	the	type.	For	example,	a	function	might	have
an	argument	that	could	be	a	tuple	or	a	dictionary,	where	the	following	code	could	be	used:

def	f(x):

		if	isinstance(x,	tuple):

				#	do	something

		elif	isinstance(x,	dict):

				#	do	something	else

		else:

				#	error:	raise	an	exception

1 	 In	order	 to	unify	data	 types	 and	object	 classes,	which	until	Python	2.2	had	 remained
separate.
2 	This	is	a	confusing	name	since	it	is	a	class,	and	not	an	object,	which	is	an	instance	of	a
class.
3 	 In	Java,	as	a	comparison,	 this	handle	 is	not	 included	 in	 the	definition	of	 the	function,
rather	it	is	implicitly	made	available	via	the	‘this’	variable.
4 	Note	 that	 this	does	not	work	very	well	 if	you	have	non-standard	amino	acids	 in	your
protein.
5 	OK,	in	reality	isotope	abundances	and	protonation	states	will	affect	the	mass	a	bit,	but
we’ll	ignore	that	sort	of	thing	here.
6 	Anything	in	Python	that	begins	and	ends	with	a	double	underscore	is	‘magic’	relating	to
the	internal	workings.
7 	Remember	that	double	underscores	indicates	internal	Python	workings	or	‘magic’.

8 	Object	data	modelling
Contents

Data	models

Designing	a	molecular	structure	data	model

Implementing	a	data	model

Structure

Chain

Residue	and	atom

Populating	the	model:	reading	PDB	files

Refined	implementation

Getter	and	setter	functions

Properties

Data	models
This	 chapter	delves	more	deeply	 into	 the	 topic	of	 creating	 custom	Python	objects	using
class	definitions.	Given	that	we	have	discussed	the	basics	of	object-oriented	programming
in	 Chapter	 7,	 we	 now	 move	 on	 to	 illustrate	 how	 such	 mechanisms	 can	 be	 used	 in	 a
practical,	scientific	sense.	If	you	are	interested	in	only	a	light	introduction	to	Python,	you
might	consider	skipping	 this	chapter	on	a	first	 reading.	However,	 the	objects	we	discuss
here	will	underpin	many	of	the	examples	given	later	on	in	this	book,	in	Chapters	15	and
20,	so	you	may	like	to	look	back	to	see	how	such	things	are	constructed.

In	 the	 previous	 chapter	 we	 saw	 how	 to	 introduce	 our	 own	 types	 of	 data	 object	 into
Python,	using	classes.	Here	we	move	on	to	look	at	how	to	use	a	number	of	different,	but
connected,	classes	to	construct	what	is	often	known	as	a	data	model.	A	data	model	 is	an
abstract	description	of	concepts	that	can	be	used	to	build	a	computational	version	of	some
topic	or	real-world	situation	that	you	are	interested	in.	Essentially,	you	examine	the	kind
of	information	you	wish	to	describe	and	divide	it	up	into	conceptual	parcels.	Each	of	these
will	become	one	kind	of	computer	object	 (a	class	with	attributes,	 functions	and	 links	 to
other	classes),	which	then	allows	you	to	create	a	synthetic	analogue	of	the	thing	you	are
interested	in.	Virtually	all	programs,	irrespective	of	size,	rely	on	some	kind	of	underlying
model	 to	 organise	 data,	 although	 this	may	 not	 use	 object-oriented	 programming	 and	 is
often	not	formalised	in	any	way.	No	data	model	can	be	expected	to	be	a	perfect	computer
representation	of	what	it	describes,	but	the	idea	is	to	make	it	good	enough	to	serve	a	useful
purpose,	by	having	some	of	the	properties	of	the	things	being	modelled.

Designing	a	molecular	structure	data	model
In	this	chapter	we	construct	and	implement	an	example	data	model	which	represents	the
three-dimensional	structures	of	large	biological	molecules.	If	you	are	unfamiliar	with	the
basic	 principles	 of	 biological	 molecules	 and	 their	 structures,	 see	 the	 introductions	 to
Chapters	 11	 and	 15,	 which	 aim	 to	 be	 suitable	 for	 non-biologists.	 Specifically	 the	 data
model	 will	 be	 for	 linear	 polymers,	 such	 as	 DNA,	 RNA	 and	 protein,	 where	 a	 longer
molecule	 is	 built	 of	 smaller	 components	 linked	 together	 into	 a	 chain.	 It	 is	 a	 relatively
simple	 data	 model,	 and	 it	 could	 certainly	 be	 extended,	 but	 we	 will	 avoid	 adding
complications	and	keep	things	as	clear	as	possible	for	 this	book.	As	such,	we	will	make
various	simplifying	assumptions	about	molecules	and	biology,	but	that	is	the	case	with	all
data	models,	 it	 is	 all	 just	 a	matter	of	degree.	Specifically,	we	will	 ignore	 issues	 such	as
how	the	molecules	might	have	a	few	extra	or	a	few	absent	atoms	(mostly	hydrogen	ions
and	small	modifications)	or	how	the	molecules	might	have	extra	links,	which	are	not	part
of	the	main	linear	chain,	like	the	disulphide	links	found	in	some	proteins.	We	will	not	use
any	formal	computer	methods	to	describe	the	construction	of	the	data	model.	Instead,	we
will	rely	upon	relatively	plain	English.	There	are	formal	modelling	techniques,	like	UML
(Unified	Modeling	Language),	for	example,	but	such	things	are	well	beyond	the	scope	of
this	book.

Our	model	will	describe	the	identities	and	the	relative	three-dimensional	positions	of	all
of	the	atoms	which	collectively	can	be	considered	a	macromolecular	structure;	the	precise
shape	of	 large	biological	molecules.	This	 structure	may	be	 composed	of	 any	number	of
polymer	 molecules	 that	 come	 together,	 but	 is	 frequently	 used	 to	 describe	 just	 one
molecule.	Each	molecular	 chain	will	 have	 a	 distinct	 biological	 type,	 i.e.	DNA,	RNA	or
protein,	and	we	can	mix	polymer	types	however	we	like.	For	example,	we	might	want	to
consider	the	structure	of	a	protein	bound	to	a	section	of	DNA.

We	will	 sometimes	 expect	more	 than	 one	 set	 of	 three-dimensional	 coordinates	 for	 a
given	molecule,	which	means	that	for	 the	same	set	of	atoms	we	can	describe	alternative
arrangements	 or	conformations.	 Describing	multiple	 conformations	 is	 useful	 to	 indicate
situations	 where	 the	 precise	 structure	 is	 uncertain	 and	 to	 describe	 the	 outcome	 of
dynamical	 simulations	of	 the	molecule,	where	 each	 set	 of	 coordinates	 could	 represent	 a
different	 point	 in	 time	 or	 a	 different	 outcome.	 By	 allowing	 discrete	 collections	 of
coordinates	 for	 a	 given	 molecule,	 we	 generate	 what	 is	 sometimes	 referred	 to	 as	 a
structural	 ensemble.	 This	 term	 is	 used	 to	 emphasise	 the	 ‘togetherness’	 of	 a	 bundle	 of
related	conformations.

In	 our	model	 we	will	 identify	 a	 given	 structure	 by	 a	 name,	 which	 will	 be	 a	 textual
identifier,	 and	 we	 will	 also	 include	 a	 non-mandatory	 property,	 the	 Protein	 Data	 Bank
identifier,	 to	 indicate	 when	 the	 data	 has	 come	 from	 an	 entry	 in	 the	 main	 biological
coordinate	database.	The	Worldwide	Protein	Data	Bank1	 is	a	publicly	available	database
that	 stores	 the	 structures	 of	 molecules.	 These	 were	 mostly	 determined	 by	 X-ray
crystallography	 but	 many	 have	 been	 determined	 by	 other	 techniques	 such	 as	 nuclear
magnetic	 resonance	(NMR).	Despite	 the	name	suggesting	 that	 the	PDB	database	 is	only
for	proteins,	 these	days	 it	contains	coordinate	data	 for	DNA	and	RNA	too,	although	 the
protein	structures	vastly	outnumber	the	other	types.	The	structures	that	we	are	modelling
might	 have	 been	 entered	 into	 this	 database,	 and	 we	 want	 to	 keep	 track	 of	 that.

Accordingly,	we	use	 the	 textual	PDB	identifier	 that	 is	unique	 to	each	entry	 in	 the	PDB.
Naturally,	 the	 PDB	 has	 its	 own	 data	 model	 to	 describe	 biological	 structures	 and	 their
associated	data,	 and	 it	 is	 far	more	extensive	and	complicated	 than	 the	one	we	are	using
here.	In	their	data	model	the	PDB	identifier	is	mandatory,	but	in	our	data	model	we	will
make	it	optional;	the	data	doesn’t	have	to	come	from	this	database	in	every	case.

There	 are	many	 design	 decisions	 in	 our	 example	 data	model,	 about	 which	 things	 to
describe,	which	things	we	ignore	and	what	rules	we	apply.	We	will	discuss	the	aspects	of
our	particular	model	 as	we	go	 through	 the	 example.	However,	which	precise	details	we
have	chosen	 is	not	 the	most	 important	 thing;	 the	 idea	 is	 to	empower	you	 to	create	your
own	data	models	to	do	exactly	what	you	want.

Implementing	a	data	model
Once	you	have	designed	a	data	model,	you	can	implement	it	in	terms	of	code.	Things	are
not	necessarily	fixed,	however;	in	practice	it	is	very	common	to	modify	a	data	model	and
the	 corresponding	 code	 in	 a	 continuous	 process	 of	 improvement	 and	 adaptation.	 It	 is
somewhat	unusual	to	get	the	model	‘correct’	the	first	time	around.	Also,	it	is	also	almost
inevitable	that	more	functionality	is	added	over	time,	and	this	often	requires	a	change	to
the	data	model.

We	 have	 stated	 that	 we	 will	 use	 a	 data	 model	 to	 allow	 an	 ensemble	 of	 different
conformations	for	the	same	molecule.	There	are	various	ways	that	this	aspect	of	the	model
could	be	implemented,	but	there	are	two	appealing	choices.	We	could	have	Python	classes
that	describe	the	molecular	composition	once	and	have	multiple	sets	of	coordinates	which
emanate	 from	 this	 reference;	 each	 atom	 would	 have	 alternative	 coordinates	 for	 the
different	 conformations.	 Alternatively,	 we	 could	 have	 multiple	 descriptions	 of	 the
molecular	composition,	each	of	which	holds	a	single	set	of	coordinates.	Here	we	choose
the	 second	 option,	 and	 although	 this	 approach	 has	 advantages	 and	 disadvantages,	 it	 is
mostly	chosen	here	in	view	of	coding	simplicity.

Our	molecular	 structure	data	model	will	have	a	 top	class	called	Structure,	which	will
group	 all	 the	 objects	 belonging	 to	 other	 classes.	 There	will	 be	 three	 additional	 classes:
Chain,	 Residue	 and	 Atom,	 and	 the	 overall	 hierarchy	 is	 illustrated	 in	 Figure	 8.1.	 The
Chain2	class	will	 represent	one	polymer	molecule.	The	class	called	Residue3	will	model
the	individual	chemical	compounds	or	residues	that	have	been	linked	together	into	a	chain
to	form	the	molecule;	for	proteins	these	will	be	amino	acids	and	for	DNA	and	RNA	these
will	 be	 nucleotides.	Lastly,	 the	Atom	 class	will,	 somewhat	 unsurprisingly,	 represent	 the
atoms	 that	are	 found	 in	 the	 linked	chemical	components.	The	Atom	class	will	 contain	a
single	set	of	 three-dimensional	coordinates	 for	 that	atom.	The	classes	 in	our	data	model
will	be	linked	together	to	form	a	containment	hierarchy;	structures	contain	chains,	chains
contain	 residues	 and	 residues	 contain	 atoms,	 thus	 going	 from	 the	 largest	 entity	 and
subdividing	it	into	progressively	smaller,	but	still	meaningful,	parts.

Figure	8.1.	 A	simple	hierarchical	data	model	for	organising	macromolecular
structure	data.	The	example	data	model	for	containing	the	structures	of	biological
polymer	molecules	is	composed	of	four	object	classes.	The	top	of	the	hierarchy	is	a
Structure,	which	represents	the	3D	conformation	of	a	group	of	molecules.	Each	Structure
contains	Chain	objects,	each	of	which	represents	a	different	molecule	of	a	specific	type
(DNA,	RNA	or	protein).	A	Chain	contains	Residue	objects	that	represent	smaller	chemical
components	that	are	linked	together	into	a	chain,	i.e.	amino	acids	or	nucleotides,	thus
representing	the	protein	or	nucleic	acid	sequence.	Each	Residue	object	contains	Atom
objects,	which	are	of	a	specific	chemical	element	type	and	carry	the	actual	spatial
coordinates.

A	typical	life	cycle	of	a	Python	object	involves	first	creating	it,	then	possibly	modifying
it,	and	finally	deleting	it	(or	leaving	it	to	cease	to	exist	when	a	program	stops).	Our	model
will	 explicitly	 handle	 some	 deletion	 cases,	 like	 removing	 a	 Chain	 from	 a	 Structure.
However,	it	is	very	tempting	to	not	worry	at	all	about	deleting	objects,	and	often	you	can
get	away	with	this.	Sometimes	there	is	simply	no	need	to	add	deletion	functions,	because
you	are	only	ever	going	 to	explicitly	create	and	modify	objects,	never	 remove	 them.	To
this	end	it	 is	handy	that	Python	has	a	‘garbage	collection’	mechanism,	which	means	that
once	you	no	longer	have	a	handle	to	an	object,	it	will	(eventually)	automatically	be	cleared
away.

Structure
We	start	with	the	construction	of	the	Structure	class.	As	mentioned,	we	require	a	name	and
optionally	provide	a	PDB	identifier	code.	More	 than	one	Structure	object	with	 the	same
name	will	be	allowed,	each	with	its	own	set	of	coordinates.	Hence,	we	introduce	another
mandatory	attribute	called	conformation,4	which	 is	 a	number	 that	 specifies	which	 set	of
coordinates	within	an	ensemble	we	are	considering.	In	many	circumstances	we	will	only
have	one	conformation,	so	we	issue	a	default	value	of	0,	even	though	it	is	mandatory.

This	naturally	leads	to	the	following	first	attempt	at	the	class	definition	and	constructor
code:

class	Structure:

		def	__init__(self,	name,	conformation=0,	pdbId=None):

				if	not	name:

						raise	Exception('name	must	be	set	to	non-empty	string')

				self.name	=	name

				self.conformation	=	conformation

				self.pdbId	=	pdbId

Remembering	that	the	__init__	function,	the	constructor,	is	called	each	time	an	instance
of	this	class	of	object	is	made,	we	store	the	name,	conformation	and	pdbId	as	attributes	by
binding	their	values	onto	variables	that	are	linked	to	self,	which	provides	a	handle	to	any
actual	object	instance	made	using	this	class.	Note	that	we	have	used	a	convention	whereby
attribute	 names	 are	 lower	 case	 except	 when	 a	 new	 ‘word’	 starts,	 and	 then	 the	 first
character	 of	 that	 is	 capitalised,	 thus	 here	 giving	 pdbId.	A	 popular	 alternative	 is	 to	 keep
attribute	 names	 all	 lower	 case	 but	 use	 underscores	 to	 separate	 the	words,	which	would
give	 pdb_id.	 No	 doubt	 there	 are	 other	 conventions,	 and	 it	 mostly	 doesn’t	much	matter
what	you	do,	as	long	as	you	are	consistent	as	an	aid	to	readability.

In	 the	 class	 constructor	 we	 check	 whether	 name	 is	 defined.	 This	 is	 done	 using	 the
clause	‘if	not	name’	to	check	if	the	value	is	logically	false,	e.g.	None	or	an	empty	string,
and	 in	 these	 cases	 we	 deem	 the	 name	 to	 be	 undefined.	 An	 undefined	 name	 means
something	 is	wrong,	 so	we	 cause	 an	 error	 by	 raising	 an	 exception	object.	However,	we
have	 not	 checked	 that	 name	 is	 actually	 a	 text	 string.	 Someone	 could	 try	 to	 create	 a
Structure	by	passing	in	any	Python	object	 that	evaluates	as	 true	(a	non-zero	number,	for
example)	and	it	would	pass	the	check	but	violate	our	intention	about	what	the	name	should
be.	Hence,	if	you	were	being	cautious	you	would	check	the	type	of	name	before	using	it.
Similarly,	 checks	 can	be	made	 for	 the	other	 input	 arguments,	 and	 so	 in	 effect	 introduce
run-time	 type	checking	 into	 the	constructor.	Here,	 for	 the	 sake	of	brevity,	we	will	 avoid
such	caution.

Another	thing	we	have	not	checked	here	is	whether	values	are	meaningful,	even	if	they
are	of	 the	correct	Python	data	 type.	For	example,	we	do	not	know	whether	 the	pdbId,	 if
set,	is	actually	a	valid	identifier.	To	determine	if	the	pdbId	is	a	valid	PDB	identifier	code	is
not	trivial,	but	the	example	at	the	start	of	Chapter	15	will	give	you	a	hint	at	a	solution	if
you	are	really	keen.5	We	ignore	such	issues	here,	but	it	illustrates	that	no	matter	how	many
checks	you	make,	 there	are	almost	certainly	some	checks	that	you	have	not	made.	Also,
part	of	the	solution	is	to	not	pass	junk	into	your	data	model	in	the	first	place	(despite	the
fact	that	users	may	try).

For	 the	pdbId	we	have	 set	 the	default	 to	None	 rather	 than	an	empty	 string.	This	 is	 a
matter	 of	 taste,	 but	 generally	 in	 such	 situations	we	 use	None	 because	 this	 pretty	much
always	means	‘not	set’.	For	pdbId	an	empty	string	could	be	taken	to	mean	the	same	thing,
since	real	PDB	identifiers	are	never	empty	strings,	but	in	other	situations	an	empty	string
might	be	a	legitimate	setting.

In	data	modelling	there	is	the	notion	of	an	object’s	key;	this	is	something	that	uniquely
identifies	an	object	amongst	other	objects	of	the	same	class.	Here	we	intend	that	the	name

and	 the	 conformation	 uniquely	 identify	 Structure	 objects,	 so	 these	 two	 attributes	 taken
together	are	a	natural	key	for	this	class.	If	we	were	diligent,	and	really	wanted	to	enforce
this	to	be	a	key,	then	we	should	add	a	check	in	the	constructor	that	(name,	conformation)
has	not	 already	been	used	by	 an	 existing	Structure.	Again,	 for	 reasons	of	 simplicity	we
ignore	that	issue	here,	but	if	we	wanted	to	worry	about	it	then	we	would	have	to	keep	track
either	 of	 all	 the	 Structure	 objects	 that	 we	 created	 or	 of	 all	 the	 associated	 names	 and
conformations,	for	example,	using	a	set	or	list	of	(name,	conformation)	pairs.

This	 brings	 up	 another	 design	 decision:	 a	 Structure	 object	 has	 a	 name	 and
conformation,	 but	 we	 have	 not	 stated	 whether	 we	 are	 allowed	 to	 change	 them.	 This
depends	on	how	we	intend	to	use	them.	For	example,	if	we	have	an	application	where	the
name	is	intended	to	be	a	friendly	way	of	identifying	a	Structure	to	the	user	then	we	might
want	to	allow	the	user	to	change	it	to	something	they	prefer.	In	contrast,	the	conformation
is	effectively	just	an	index	number	into	the	coordinate	elements	of	a	structural	ensemble,
and	so	there	is	no	reason	to	allow	that	to	be	changed.	Indeed	if	it	could	be	modified	then
that	might	create	more	trouble	than	it	was	worth.	If	we	allow	an	attribute	to	change	we	call
it	changeable	and	otherwise	we	call	it	frozen.	When	an	attribute	is	frozen	it	can	only	ever
be	set	once,	and	normally	that	would	mean	in	the	constructor	(when	the	object	is	made).	In
Python	you	have	to	take	some	extra	steps	to	make	attributes	frozen,	and	we	will	discuss
this	later.	For	now	we	will	in	effect	assume	that	everything	is	changeable.

Another	 issue	 with	 attributes	 is	 the	 matter	 of	 how	 many	 items	 they	 are	 allowed	 to
represent,	according	to	the	data	model,	which	is	termed	their	cardinality.	Specifically,	the
cardinality	 is	 represented	with	whole	 numbers	where	 the	 low	 cardinality	 represents	 the
minimum	number	of	 items	that	can	be	represented,	while	 the	high	cardinality	 represents
the	 maximum	 number.	 Because	 we	 have	 stated	 that	 the	 name	 is	 mandatory	 it	 always
represents	exactly	one	thing,	thus	the	low	cardinality	is	1	and	the	high	cardinality	is	also	1.
We	 can	 write	 the	 overall	 cardinality	 of	 this	 attribute,	 minimum	 to	 maximum,	 as	 being
‘1..1’.	 Similarly,	 the	 cardinality	 of	 conformation	 is	 also	 ‘1..1’.	 Conversely,	 because	 the
pdbId	is	optional	there	might	be	none	or	one,	so	for	this	the	cardinality	is	‘0..1’.

Perhaps	at	some	point	we	decide	that	we	are	going	to	allow	references	to	more	than	one
PDB	 identifier	 in	 a	 given	 Structure	 object.	 This	 would	 fundamentally	 change	 the	 data
model,	 and	 the	 constructor	 then	 might	 become,	 noting	 the	 plural	 name	 for	 the	 last
attribute:

class	Structure:

		def	__init__(self,	name,	conformation=0,	pdbIds=None):

				#	etc.

Here	 we	 might	 intend	 that	 pdbIds	 is	 specified	 as	 a	 list	 or	 tuple,	 containing	 strings
representing	 PDB	 identifier	 codes,	 or	 otherwise	 left	 undefined	 as	 None.	 The	 low
cardinality	is	still	0,	because	there	might	be	no	PDB	identifiers,	but	we	now	have	no	upper
limit,	 so	 the	high	cardinality	 is	 effectively	unbounded,	which	we	 label	 as	 ‘*’.	This	 case
gives	an	overall	cardinality	of	‘0..*’.	Obviously	the	high	cardinality	for	any	attribute	has	to
be	 greater	 than	 0,	 otherwise	 it	 can	 never	 exist.	 If	 it	 is	 1	 then	 the	 attribute	 is	 normally
spelled	 in	 the	 singular	 (pdbId)	 and	 if	 it	 is	 greater	 than	 1	 then	 the	 attribute	 is	 normally
spelled	as	a	plural	(pdbIds).

When	the	high	cardinality	is	greater	than	1	another	issue	comes	into	play.	In	this	case
we	have	a	collection	and	there	is	the	question	of	whether	the	items	in	the	collection	are	in
any	particular	order,	or	not.	For	pdbIds	we	have	stated	that	we	intended	it	to	be	defined	by
a	list	or	tuple,	collections	that	do	have	ordered	items.	Consequently,	it	is	natural	to	assume
that	the	attribute	is	also	ordered.	Alternatively,	we	might	have	allowed	it	to	be	defined	by
a	set,	in	which	case	it	is	natural	to	assume	it	to	be	unordered.	Deciding	whether	something
is	 ordered	 or	 unordered	 can	be	 critical	 in	 some	 contexts.	 In	 any	 case,	 from	here	 on	we
stick	with	the	singlular	pdbId	attribute,	rather	than	pdbIds.

Changing	the	high	cardinality	of	an	attribute	changes	the	data	model	fairly	dramatically
(it	has	to	be	specifically	coded	in	the	classes)	so	it	is	a	good	idea	to	think	carefully	about
the	 situation	 being	 modelled.	 It	 might	 be	 tempting	 to	 always	 assume	 that	 the	 high
cardinality	is	unbounded	(‘*’)	because	it	is	more	general,	but	this	is	a	bad	idea	if	it	really
ought	to	be	1.	For	one	thing	it	means	dealing	with	a	collection	containing	a	single	object
instead	of	just	the	single	object	itself,	which	can	make	for	confusing	and	error-prone	code.

Finally,	we	create	a	Structure	object	 in	 the	usual	way,	by	using	 the	name	of	 the	class
and	passing	in	values	for	the	attributes:

structure	=	Structure('Chromosome	Regulator',	0,	"1A12")

or	we	could	write	it	using	named	input	attributes:

structure	=	Structure(name='Chromosome	Regulator',	pdbId="1A12")

As	another	example	we	could	avoid	passing	in	a	PDB	identifier,	given	that	this	attribute
is	not	mandatory	and	will	take	the	default	value	of	None.

structure	=	Structure(name='Chromosome	Regulator')

Chain
As	we	mentioned	 previously,	 a	 structure	may	 comprise	more	 than	 one	molecule.	 Each
molecule,	 because	 it	 is	 a	 chain	 of	 linked	 amino	 acids	 or	 nucleotides,	will	 be	 described
using	 the	 Chain	 class.	 Our	 data	 model	 is	 made	 with	 the	 assumption	 that	 each	 chain
belongs	 to	 a	 unique	 structure,	 so	 is	 effectively	 contained	 by	 that	 structure.	 This	 is	 an
important	design	decision	and	has	all	kinds	of	ramifications.	What	we	are	describing	here,
when	one	kind	of	object	is	said	to	contain	another,	is	what	is	known	in	data	modelling	as	a
parent-child	relationship.	The	Structure	 object	 is	 the	 parent	 and	 the	Chain	 object	 is	 the
child.	Also,	we	often	talk	in	terms	of	classes	rather	than	objects	and	say	that	Structure	 is
the	parent	class	of	Chain.

If	a	parent	object	contains	children,	then	each	child	object	must	belong	to	that	parent;	a
child	object	is	only	meaningful	within	the	context	of	its	parent.	A	consequence	of	this	is
that	the	parent	object	must	be	created	before	its	children.	Also,	if	a	parent	object	is	deleted
then	all	of	its	children	must	also	be	deleted.	An	alternative	here	would	be	to	make	a	Chain
free-standing,	 meaning	 it	 could	 appear	 in	 more	 than	 one	 Structure.	 That	 would	 be	 a
perfectly	plausible	scenario,	but	it	is	not	especially	helpful	here	and	not	the	way	we	will
model	 it.	A	parent	class	can	have	many	different	kinds	of	child	classes.	Thus,	we	could
have	a	Technique	class,	which	 represents	how	 the	 structure	was	determined.	This	 could

also	 be	 a	 child	 of	 Structure.	When	 a	 Structure	 is	 deleted	 both	 Technique	 children	 and
Chain	 children	would	 need	 to	 be	 deleted.	To	 keep	 things	 simple,	 here	we	 just	 consider
Chain.	 Note	 that	 Structure	 itself	 has	 no	 parent.	 Had	 we	 decided	 to	 model	 things
differently,	we	might	 have	 introduced	 a	 class	Ensemble,	 as	 the	 parent	 of	 Structure,	 and
then	Ensemble	would	have	no	parent.

A	 parent-child	 relationship	 is	 an	 example	 of	 a	 ‘link’	 between	 objects.	 Links	 are
generally	harder	to	manage	than	simple	attributes	(like	name	and	pdbId),	because	there	are
two	ends	to	consider,	one	for	each	object,	and	they	need	to	be	made	consistent	with	each
other.	One	way	to	manage	links	is	to	have	one	of	the	classes	keep	track	of	everything.	For
example,	 in	 the	 previous	 chapter	 we	 had	 a	 parent	 class,	 Protein,	 and	 a	 child	 class,
AminoAcid,	 and	 the	 parent	 class	 managed	 everything.	 So	 a	 Protein	 object	 had	 a	 list
self.aminoAcids.	 But	 an	 AminoAcid	 object	 had	 no	 reference	 to	 the	 Protein	 being	 its
parent.	 It’s	 quite	 possible	 that	 this	 is	 not	 a	 problem;	 for	 example,	 an	AminoAcid	might
only	appear	in	contexts	where	the	Protein	also	appears.	Having	all	the	information	at	one
end	of	a	link	makes	it	easier	to	manage.	On	the	other	hand,	it	usually	makes	it	harder	to
use.

Here	 we	 choose	 to	 manage	 object	 to	 object	 links	 from	 both	 ends.	 Accordingly,	 a
Structure	 object	 will	 have	 the	 attribute	 self.chains	 to	 access	 its	 children	 and	 the	 Chain
class	 will	 have	 self.structure	 to	 access	 its	 parent.	 We	 will	 need	 to	 keep	 both	 of	 these
attributes	synchronised	at	creation	and	deletion	of	a	Chain	object.	Both	ends	of	 this	 link
have	cardinality.	A	Chain	object	has	to	have	a	Structure	parent	and	there	can	be	only	one
of	 them,	 so	 that	 cardinality	 is	 ‘1..1’.	A	Structure	 object	 can	 have	 any	 number	 of	Chain
children	 (zero	 or	 more),	 and	 so	 that	 cardinality	 is	 ‘0..*’.	 We	 will	 assume	 that	 Chain
children	are	ordered	for	a	given	parent,	and	that	this	order	is	the	order	in	which	they	were
created.

We	will	model	the	Chain	class	as	having	an	identifying	code,	which	is	a	string,	and	a
descriptive	molType,	where	the	latter	can	be	‘protein’	or	‘DNA’	or	‘RNA’.	Relative	to	the
parent	Structure,	we	will	assume	that	the	code	uniquely	identifies	the	Chain.	Or	to	put	it
another	way,	a	given	Structure	object	has	only	one	Chain	child	with	a	given	code.	Thus,
the	 object	 key	 for	 a	Chain,	 relative	 to	 its	 parent,	 is	 code	 and	 the	 full	 key	 is	 (structure,
code).	This	is	a	typical	situation	for	a	child	class;	it	has	a	key	that	identifies	it	relative	to
its	parent	and	then	together	with	the	parent	itself	this	is	the	full	key	for	the	child.	This	then
leads	 to	 the	 following	 proposals	 for	 the	 implementation	 of	 Structure	 and	 Chain
respectively:

class	Structure:

		def	__init__(self,	name,	conformation=0,	pdbId=None):

				if	not	name:

						raise	Exception('name	must	be	set	to	non-empty	string')

				self.name	=	name

				self.conformation	=	conformation

				self.pdbId	=	pdbId

				self.chains	=	[]	#	For	the	children

		def	delete(self):

				for	chain	in	self.chains:

						chain.delete()

		def	getChain(self,	code):

				for	chain	in	self.chains:

						if	chain.code	==	code:

								return	chain

				return	None

The	 attribute	 that	 links	 the	 Structure	 parent	 to	 children	 is	 self.chains,	 and	 this	 is
initialised	 as	 an	 empty	 list,	 to	 be	 filled	 in	 as	 the	 child	 objects	 are	 made.	 The	 delete()
function	 is	 fairly	straightforward:	when	the	structure	 is	deleted	 its	chains	disappear.	 It	 is
notable	that	there	is	no	specific	deletion	of	the	structure	object	itself,	i.e.	we	don’t	do	del
self,	because	it	is	at	the	top	of	the	hierarchy	and	will	simply	disappear	when	it	is	no	longer
associated	with	any	Python	variables	(it	will	be	garbage	collected).	We	have	also	included
a	function	to	help	get	hold	of	a	specific	Chain	object,	whereby	a	code	string	is	accepted	as
an	argument.	Here	the	function	loops	through	the	list	of	children	(self.chains)	in	order	to
find	a	Chain	with	a	matching	attribute,	and,	because	this	is	the	unique	key	to	identify	the
Chain	within	its	parent,	there	will	never	be	more	than	one	possible	match.

The	Chain	class	 is	constructed	by	accepting	the	parent	structure,	 the	code	value	as	its
key	 and	 a	 molecule	 type.	 The	 __init__()	 performs	 some	 checks	 to	 make	 sure	 the
arguments	 are	 reasonably	 sensible,	 and	 this	 includes	 determining	 whether	 the	 parent
structure	already	contains	a	Chain	with	the	input	code,	which	needs	to	be	unique.	If	there
are	no	errors,	the	attributes	are	associated	with	the	self.	variables.	Lastly,	 the	constructor
adds	 the	Chain	(represented	here	by	self,	but	 filled	 in	with	an	actual	object	at	 run	 time)
onto	the	structure.chains	list,	the	link	from	the	structure	parent	to	its	children.	Note	that	we
do	not	modify	the	parent’s	link	to	its	child	until	after	we	have	checked	that	everything	is
ok.

class	Chain:

		allowedMolTypes	=	('protein',	'DNA',	'RNA')

		def	__init__(self,	structure,	code,	molType='protein'):

				if	not	code:

						raise	Exception('code	must	be	set	to	non-empty	string')

				if	molType	not	in	self.allowedMolTypes:

						raise	Exception('molType="%s"	must	be	one	of	%s'	%

																						(molType,	self.allowedMolTypes))

				#	check	that	key	code	is	not	already	used

				chain	=	structure.getChain(code)

				if	chain:

						raise	Exception('code="%s"	already	used'	%	code)

				self.structure	=	structure

				self.code	=	code

				self.molType	=	molType

				structure.chains.append(self)

		def	delete(self):

				self.structure.chains.remove(self)

The	delete()	 function	 for	 the	Chain	 is	 a	 simple	matter	 of	 removing	 the	 object	 (again
represented	by	self	 in	 the	class	definition)	 from	its	parent’s	 list	of	children.	Also,	unless
we	have	a	specific	handle	on	the	object,	all	notion	of	it	will	be	lost	and	it	will	eventually
be	removed	from	memory	when	Python	performs	garbage	collection.

Note	that	in	the	above	example	we	have	chosen	to	store	the	chains	of	a	structure	using	a
list.	That	means	that	the	structure.getChain()	function	is	not	particularly	efficient,	because
it	has	 to	 loop	over	a	 list	 looking	 for	 a	matching	 item.	 If	 the	chains	had	been	unordered
(relative	 to	 the	 structure)	 then	 an	 alternative	 would	 have	 been	 to	 have	 a	 dictionary,
chainDict,	where	the	key	is	code	and	the	value	is	the	chain.	The	chains	could	be	obtained
from	chainDict.values().	If	we	desire	both	efficiency	and	ordered	children	we	could	have
both	the	dictionary,	chainDict,	and	the	list,	chains,	although	we	would	have	to	keep	them
synchronised:6

#	Alternative	Chain	implementation

class	Structure:

		def	__init__(self,	name,	conformation=0,	pdbId=None):

				#	…	initial	part	as	before

				self.chainDict	=	{}

				self.chains	=	[]

		def	getChain(self,	code):

				return	self.chainDict.get(code)

class	Chain:

		def	__init__(self,	structure,	code,	molType='protein'):

				#	…	initial	part	as	before

				structure.chainDict[code]	=	self

				structure.chains.append(self)

		def	delete(self):

				del	self.structure.chainDict[self.code]

				self.structure.chains.remove(self)

Practically,	the	inefficiency	with	lists	isn’t	an	issue	here	because	we	expect	that	a	given
structure	 will	 at	 most	 have	 only	 a	 few	 chains,	 so	 we	 will	 stick	 with	 the	 simpler	 list
implementation.

As	a	final	point	on	the	Chain	class,	although	we	have	only	used	a	single	value	as	 the
identifying	 key,	 it	 would	 also	 be	 possible	 to	 have	 a	 key	 consisting	 of	 two	 values,	 e.g.
(code,	molType),	where	the	key	is	passed	around	as	a	tuple.

Residue	and	atom
The	same	issues	come	up	all	over	again	with	Residue,	a	child	class	of	Chain,	and	Atom,	a
child	class	of	Residue.	For	Residue	we	will	assume	that	it	has	an	identifying	key	(relative
to	its	parent)	called	seqId,	and	an	optional	attribute	called	code.	The	Chain	class	will	get
an	 extra	 function,	 getResidue(),	which	 returns	 the	 child	Residue	with	 a	 given	 seqId	 (or
None	if	there	isn’t	one).	We	will	assume	that	the	Residue	children	of	a	Chain	are	ordered,
according	to	the	order	of	their	creation.	However,	this	time	we	will	use	both	a	dictionary

and	a	list	in	the	implementation	because	a	chain	can	have	many	(so	hundreds	of)	residues
and	we	want	an	efficient	implementation	for	chain.getResidue()	and	a	list	of	the	residues
in	sequential	order.	We	will	also	add	another	 function,	getAtoms(),	 into	 the	Chain	class,
which	will	return	all	the	atoms	of	all	the	residues	in	the	chain.

For	Atom	we	will	 assume	 that	 it	 has	 a	 key	 to	 identify	 it,	 within	 its	 parent	 Residue,
called	name,	 and	 an	 additional	mandatory	 attribute	 coords	 giving	 the	 three-dimensional
(X,	 Y	 and	 Z)	 coordinates	 of	 the	 atom.	 It	 is	 a	 design	 decision	 to	 make	 coordinates
mandatory,	 and	 it	would	 be	 perfectly	 valid	 to	 instead	make	 them	optional,	 so	we	 could
represent	 ‘no	3D	 information’.	We	will	assume	 that	 the	Atom	children	of	a	Residue	are
ordered,	by	order	of	creation.	We	are	going	to	add	a	getAtom()	function	into	the	Residue
class	and	so	we	will	again	use	a	dictionary	to	make	this	efficient.

This	leads	to	the	following	proposal	for	the	implementation	of	Residue	and	Atom,	and	a
modified	implementation	of	Chain,	noting	that	there	is	nothing	especially	tricky	here	and
the	class	construction	uses	the	concepts	already	described:

class	Chain:

		allowedMolTypes	=	('protein',	'DNA',	'RNA')

		def	__init__(self,	structure,	code,	molType='protein'):

				#	…	initial	part	as	before

				self.resDict	=	{}															#	Children

				self.residues	=	[]														#	Children

				structure.chains.append(self)					#	Parent's	link

		def	delete(self):

				for	residue	in	self.residues:

						residue.delete()

				self.structure.chains.remove(self)

		def	getResidue(self,	seqId):

				return	self.resDict.get(seqId)

		def	getAtoms(self):

				atoms	=	[]

				for	residue	in	self.residues:

						atoms.extend(residue.atoms)

				return	atoms

For	the	Residue	class	remember	that	the	unique	key	to	identify	it	from	its	parent	Chain
is	the	seqId,	so	this	is	what	is	used	in	the	getChain()	look-up	to	make	sure	we	don’t	have
any	repeats.	When	we	construct	a	Residue	it	goes	 in	 its	parent’s	chain.resDict,	for	quick
look-up	 (with	 the	 seqId),	 and	 in	 the	 chain.residues	 list,	 to	 have	 the	 objects	 in	 order	 (an
alternative	would	 be	 a	 single	 ordered	 dictionary	 from	 the	 collections	module;	 available
from	Python	2.7).	When	a	Residue	 is	 deleted	 both	 of	 these	 operations	 are	 reversed;	we
remove	its	reference	from	both	the	list	and	dictionary.

class	Residue:

		def	__init__(self,	chain,	seqId,	code=None):

				if	not	seqId:

						raise	Exception('seqId	must	be	set	to	non-empty	string')

				residue	=	chain.getResidue(seqId)

				if	residue:

						raise	Exception('seqId="%s"	already	used'	%	seqId)

				self.chain	=	chain

				self.seqId	=	seqId

				self.code	=	code

				self.atomDict	=	{}														#	Children

				self.atoms	=	[]																	#	Children

				chain.resDict[seqId]	=	self					#	Parent's	link

				chain.residues.append(self)						#	Parent's	link

		def	delete(self):

				for	atom	in	self.atoms:

						atom.delete()

				del	self.chain.resDict[self.seqId]

				self.chain.residues.remove(self)

		def	getAtom(self,	name):

				return	self.atomDict.get(name)

Lastly	for	the	Atom,	it	 is	 the	same	approach	again.	In	this	case	the	key	to	identify	an
atom	is	 its	name,	 so	 this	 is	used	 to	 check	 for	 repeats	 and	 in	 the	Residue’s	 dictionary	 to
look	up	its	children.	Because	this	is	the	final	class	in	our	data	model	there	are	no	children
of	Atom.	 The	 atom	 record	 naturally	 holds	 the	 important	 coordinate	 information,	which
defines	 the	 three-dimensional	 structure	 as	 coords,	 a	NumPy	array	 containing	x,	 y	 and	 z
axis	positions.7	We	 are	 using	 an	 array	 for	 this	 to	make	 geometric	manipulations	 easier.
Note	that	we	check	the	coords	is	a	collection	of	three	items,	although	we	could	be	more
rigorous	 and	check	 the	data	 type	 etc.	Also,	we	have	an	 attribute	 to	 state	what	 chemical
element	the	atom	is,	which	may	not	be	obvious	from	the	name.

from	numpy	import	array

class	Atom:

		def	__init__(self,	residue,	name,	coords,	element):

				if	not	name:

						raise	Exception('name	must	be	set	to	non-empty	string')

				atom	=	residue.getAtom(name)

				if	atom:

						raise	Exception('name="%s"	already	used'	%	name)

				if	len(coords)	!=	3:

						raise	Exception('Coordinates	must	contain	three	values')

				self.residue	=	residue

				self.name	=	name

				self.coords	=	array(coords)

				self.element	=	element

				residue.atomDict[name]	=	self								#	Parent's	link

				residue.atoms.append(self)											#	Parent's	link

		def	delete(self):

				del	self.residue.atomDict[self.name]

				self.residue.atoms.remove(self)

At	each	level,	in	the	constructor	and	delete()	functions,	you	need	to	look	upwards	to	the
parent	and	downwards	to	the	children.

Populating	the	model:	reading	PDB	files
In	 Chapter	 6	 we	 made	 a	 quick	 and	 dirty	 attempt	 at	 reading	 structural	 coordinate
information	from	a	PDB-format	 file,	when	we	wrote	 the	function	calcCentroid().	 In	 that
function	we	used	the	information	as	we	read	it,	and	did	not	bother	storing	it	for	later	use.
In	 contrast,	 here	we	will	 create	 one	 or	more	 Structure	 objects,	 so	we	 can	 perform	 any
number	of	manipulations	and	interrogations	on	the	data,	after	it	has	been	loaded.	There	are
various	aspects	of	a	PDB-format	file	which	we	will	consider	when	loading	its	data	into	our
Python	objects:

A	PDB	file	can	have	multiple	structure	conformations	(models)	in	it,	so	our	function
will	return	a	list	of	structures.
A	 PDB	 file	 is	 record	 oriented	 and	 most	 records	 are	 one	 line	 long.	 The	 first	 six
characters	of	the	record	determine	the	record	type.
The	‘HEADER’	record	gives	a	short	description	and	a	date	but	most	importantly	for
us	it	also	provides	the	PDB	identifier.
The	‘TITLE’	 record	gives	a	 further	description	of	 the	molecular	assembly.	We	will
use	this	to	specify	the	name	attribute	of	the	structure.
A	‘MODEL’	record	indicates	when	a	new	structure	is	starting,	and	gives	numbers	for
the	conformation.	It	is	optional,	so	in	a	PDB	file	with	only	one	set	of	coordinates	it
can	be	missing.	If	there	is	a	‘MODEL’	record	then	there	is	a	matching	‘ENDMDL’
record	when	the	description	of	that	conformation	finishes.
An	‘ATOM’	record	specifies	 the	chain,	residue	and	atom	information,	 including	the
coordinates,	 for	 one	 atom.	 This	 means	 that	 the	 chain	 and	 residue	 information	 is
specified	over	and	over	again,	once	for	each	atom	in	the	residue.

A	 fuller	 description	 of	 the	 (current)	 PDB	 file	 format	 can	 be	 found	 via	 the	 wwPDB
website	(http://www.wwpdb.org).	There	are	many	more	record	types,	but	we	will	only	use
the	ones	mentioned	above	and	ignore	the	remainder.	Also,	 it	should	be	noted	that,	when
this	book	was	being	written,	a	decision	was	taken	to	phase	out	the	(now	quite	old)	PDB
file	format	and	use	the	mmCIF	format	instead.	However,	we	stick	with	the	PDB	format,
which	is	still	widespread,	as	an	example	for	teaching	Python.

Below	we	 define	 the	 getStructuresFromFile()	 function,	which	 takes	 the	 location	 of	 a
file	 and	 gives	 back	 a	 list	 of	 Structure	 objects.	 At	 the	 top	 of	 the	 function	 the	 variable
structure,	representing	the	current	working	Structure	object,	is	initialised	to	None.	This	is
done	so	that	later	in	the	code,	when	we	come	across	an	‘ATOM’	record	for	the	first	time
we	know	that	we	need	to	create	a	new	Structure	object.	The	variable	structure	is	again	set
to	None	when	an	‘ENDMDL’	record	is	found,	because	that	indicates	that	this	is	the	end	of
the	 current	 conformation;	 the	 next	 ‘ATOM’	 record,	 if	 there	 is	 another,	 is	 for	 the	 next
conformation	where	a	new	structure	would	then	need	to	be	created.	The	conformation	is
initialised	 to	0	because	 there	might	not	be	any	 ‘MODEL’	 record.	However,	 if	 there	 is	 a
‘MODEL’	record	then	instead	the	conformation	is	 taken	from	that.	The	name	and	pdbId
are	initialised	to	default	values.	In	theory	these	do	not	have	to	be	initialised	because	they

http://www.wwpdb.org

will	all	be	set	up	in	due	course,	when	the	‘TITLE’	and	‘HEADER’	records	have	been	read,
but	it	might	be	the	case	(for	non-standard	PDB	files)	that	those	records	are	missing.	After
the	initialisation	the	remainder	of	the	function	involves	looping	through	the	lines	from	the
file	to	interrogate	the	various	records,	making	the	required	Python	objects	as	we	go	along:

def	getStructuresFromFile(fileName):

		fileObject	=	open(fileName)

		structure	=	None

		name	=	'unknown'

		conformation	=	0

		pdbId	=	None

		structures	=	[]

		for	line	in	fileObject:

				record	=	line[0:6].strip()

				if	record	==	'HEADER':

						pdbId	=	line.split()[-1]

				elif	record	==	'TITLE':

						name	=	line[10:].strip()

				elif	record	==	'MODEL':

						conformation	=	int(line[10:14])

				elif	record	==	'ENDMDL':

						structure	=	None

				elif	record	==	'ATOM':

						serial					=	int(line[6:11])				#	not	used	here

						atomName			=	line[12:16].strip()

						resName				=	line[17:20].strip()

						chainCode		=	line[21:22].strip()

						seqId						=	int(line[22:26])

						x										=	float(line[30:38])

						y										=	float(line[38:46])

						z										=	float(line[46:54])

						segment				=	line[72:76].strip()

						element				=	line[76:78].strip()

						if	chainCode	==	'':

								if	segment:

										chainCode	=	segment

								else:

										chainCode	=	'A'

						if	not	structure:

								structure	=	Structure(name,	conformation,	pdbId)

								structures.append(structure)

						chain	=	structure.getChain(chainCode)

						if	not	chain:

								chain	=	Chain(structure,	chainCode)

						residue	=	chain.getResidue(seqId)

						if	not	residue:

								residue	=	Residue(chain,	seqId,	resName)

						if	not	element:

								element	=	name[0]	#	Have	to	guess

						coords	=	(x,y,z)

						atom	=	Atom(residue,	atomName,	coords,	element)

		fileObject.close()

		return	structures

Values	for	the	various	attributes	are	extracted	from	the	lines	of	the	file,	according	to	the
kind	of	record	present.	When	dealing	with	numeric	data	like	the	seqId	(an	integer)	or	the
x,	 y	 and	 z	 coordinates	 (floating	 point	 numbers)	 the	 data	 extracted	 from	 the	 line	 will
initially	 be	 just	 a	 string	 of	 characters,	 i.e.	 not	 a	 real	 Python	 number	 object.	 Hence,	 for
these	values	we	need	to	explicitly	convert	the	text	with	int()	or	float()	as	appropriate.	The
textual	values	receive	a	little	processing	to	remove	spaces	from	their	ends,	using	the	strip()
method	of	strings.

Note	that	as	well	as	 the	structure,	 the	chain	and	residue	are	also	created	as	and	when
they	are	needed;	each	time	we	come	across	an	‘ATOM’	line	we	definitely	need	to	make	a
new	atom,	but	a	new	chain	or	residue	is	only	needed	when	we	come	across	its	first	atom.
Here	 we	 detect	 when	 a	 new	 chain	 is	 needed	 when	 the	 chainCode	 changes	 and	 a	 new
residue	when	the	seqId	number	changes.	Naturally,	when	we	start	a	new	chain	we	will	also
make	a	new	residue,	given	that	it	doesn’t	yet	have	any	children	to	put	atoms	into.	For	the
chainCode	we	do	a	little	checking	to	make	sure	it	wasn’t	blank8	and	if	it	is	empty	we	try	to
substitute	 with	 the	 segment	 letter,	 and	 if	 this	 fails	 a	 plain	 ‘A’.	 Also,	 if	 the	 chemical
element	is	missing	we	take	the	first	character	of	the	atom	name	as	a	guess.	These	are	just
two	examples	of	the	kind	of	checking	that	should	be	done	if	you	are	accepting	coordinate
data	from	a	variety	of	sources	and	are	being	rigorous.	Here	we	consider	only	using	official
files	from	the	PDB,	so	we	are	confident	that	they	are	well	formed	and	conform	to	all	the
standards.

In	the	above	example	it	may	seem	odd	that	we	define	the	atom	variable,	since	in	fact	it
is	not	used	for	anything,	and	we	could	just	have	written

Atom(residue,	atomName,	coords,	element)

Either	way,	 it	 looks	 like	we	 are	 immediately	 throwing	 away	 the	 object	we	 have	 just
created,	leaving	it	to	be	garbage	collected.	However,	the	parent	residue	has	a	handle	to	all
its	atoms,	 via	 both	 a	 dictionary	 and	 a	 list,	 so	 this	 does	 not	 happen.	 In	 turn	 chain	 has	 a
handle	to	all	 its	residues,	and	structure	has	a	handle	 to	all	 its	chains.	So	 it	all	works	out
nicely	and	all	we	need	to	pass	back	at	the	end	of	the	function	is	a	list	of	structures,	which
contain	everything	else.	The	code	is	then	easily	tested	on	an	appropriate	PDB-format	file:

testStructs	=	getStructuresFromFile('examples/glycophorin.pdb')

structure	=	testStructs[0]

chain	=	structure.getChain('A')

for	residue	in	chain.residues:

		print(residue.seqId,	residue.code)

There	 is	 a	 notable	 deficiency	 in	 the	 code;	 the	molType	 of	 the	 chain	 is	 not	 specified
explicitly,	 so	 it	 is	 set	 to	 the	 default	 value,	 ‘protein’.	 This	 is	 not	 very	 satisfactory	 if	 the
chain	is	DNA	or	RNA.	A	cleverer	approach	would	be	to	try	and	determine,	perhaps	from
the	 residue.code	 and/or	 atom	 names,	 what	 the	molType	 is.	 This	 raises	 the	 issue	 that	 it
could	take	a	few	‘ATOM’	records	before	the	molType	might	be	determined	accurately,	by
which	 time	 the	 chain	 has	 long	 since	 been	 created,	 perhaps	with	 the	 incorrect	molType.
That	would	be	a	problem	if	the	molType	was	not	supposed	to	change,	i.e.	was	frozen.	If
we	do	 allow	 it	 to	 change	 then	we	 could	 set	 the	molType	accurately	by	 looking	at	what
kinds	of	atom	are	present.	A	function	to	do	this,	which	looks	at	a	few	characteristic	atoms
in	a	residue,	might	be	as	follows:

def	guessResidueMolType(residue):

		if	residue.getAtom("CA")	and	residue.getAtom("N"):

				return	'protein'

		elif	residue.getAtom("C5'")	and	residue.getAtom("C3'"):	#	DNA/RNA

				if	residue.getAtom("02'"):

						return	'RNA'

				else:											#	This	is	"2'-deoxy"

						return	'DNA'

		return	'other'

If	we	insisted	that	the	molecule	type	could	not	be	changed,	an	alternative	method	would
be	 to	 process	 the	 entire	 PDB	 file,	 deduce	 the	 molType	 and	 then	 afterwards	 create	 the
structure	 and	 associated	 chains	 etc.	We	would	 still	 need	 to	 store	 the	 information	 as	we
process	the	PDB	file,	and	that	means	some	kind	of	intermediate	data	structure,	though	this
could	be	a	simple	one	involving	dictionaries	and	lists.

Refined	implementation

Getter	and	setter	functions
Given	the	way	we	have	implemented	the	classes,	we	can	directly	access	and	manipulate
the	 class	 attributes.	 For	 example,	 if	we	 have	 a	 structure	 object	we	 can	 get	 the	 attribute
values:

name	=	structure.name

conf	=	structure.conformation

We	can	also	change	these	values:

structure.name	=	'new	name'

structure.conformation	=	235

Although	 the	 former	 seems	 harmless	 enough,	 the	 latter	 might	 be	 a	 bad	 idea.	 It’s

possible	 the	 application	might	 rely	 on	 these	 two	 attributes	 not	 changing.	Or	 even	 if	 the
information	is	allowed	to	change,	it’s	possible	that	the	values	being	set	might	be	illegal	in
some	way.	For	example,	in	the	constructor	we	checked	that	name	was	not	an	empty	string
and	that	is	not	done	here,	so	it	is	perfectly	possible	that	we	could	do:

structure.name	=	''

The	standard	way	to	deal	with	situations	like	this	in	most	modern	computer	languages
(e.g.	Java)	is	to	design	the	class	so	that	attributes	are	private	and	thus	not	accessible	in	this
way.	 Instead	we	would	have	getters	and	possibly	setters,	which	are	 functions	 that	allow
access	to	query	and	redefine	the	relevant	information,	but	in	a	guarded	way.	For	example,
here	we	could	have:

class	Structure:

		#	…

		def	getName(self):

				return	self.name

		def	setName(self,	name):

				if	not	name:

						raise	Exception('name	must	be	set	to	non-empty	string')

				self.name	=	name

We	see	that	the	setter	function	setName()	has	some	validity	checking	in	it.	Access	then
becomes:

name	=	structure.getName()

structure.setName('new	name')

If	 for	 some	 reason	 we	 thought	 that	 the	 name	 should	 not	 be	 changeable,	 we	 would
simply	 not	 provide	 the	 setter	 function,	 so	 only	 the	 getter	 function	 would	 exist.	 This
approach	still	has	a	couple	of	problems.	First	of	all,	 this	access	 is	 rather	verbose	 to	use.
For	example,	instead	of:

residue.chain.structure.name	=	'new	name'

we	would	have	to	do:

residue.getChain().getStructure().setName('new	name')

Secondly,	as	it	stands,	the	attribute	name	is	still	accessible,	so	someone	could	still	use
direct	access,	albeit	deliberately	or	by	mistake.	 In	Python,	nothing	can	be	 totally	hidden
from	the	user	in	the	implementation	of	a	class.	However,	there	are	ways	to	signal	the	clear
intent	to	disallow	access.	Instead	of	using	name	for	the	attribute	we	could	use	_name,	so
starting	with	an	underscore.	Then	the	getter	and	setter	become:

class	Structure:

		#	…

		def	getName(self):

				return	self._name

		def	setName(self,	name):

				if	not	name:

						raise	Exception('name	must	be	set	to	non-empty	string')

				self._name	=	name

With	 this	change	structure.name	no	 longer	works,	but	 structure._name	does,	although
the	underscore	in	front	is	a	warning	that	this	is	not	intended	to	be	used.	Another	alternative
is	 to	use	__name,	 starting	with	 two	underscores.	 In	 this	 case	 structure.__name	does	not
work,	and	 trying	 to	use	 it	 results	 in	an	AttributeError	exception.	This	 is	 a	bit	of	Python
‘magic’	 to	make	 the	attribute	somewhat	private.	However,	 it	 turns	out	 that	a	determined
person	could	still	get	at	the	attribute,	just	using	another	bit	of	Python	magic:	an	underscore
and	the	class	name	have	to	be	joined	to	the	beginning	of	the	attribute	name.	Thus,	here	the
access	would	be	via	structure._Structure__name.	There	is	no	real	privacy	in	Python.

Setter	 functions	often	have	validity	checking	 in	 them,	 so	 they	 seem	 to	 serve	a	useful
purpose.	On	the	other	hand	getter	functions	are	often	very	boring,	and	just	give	back	an
attribute,	 so	 they	 often	 seem	 to	 serve	 little	 purpose.	Nevertheless,	 there	 are	 a	 few	 clear
situations	 when	 they	 actually	 do	 something	 useful.	 The	 first	 case	 is	 when	 the	 high
cardinality	of	the	attribute	is	greater	than	1;	we	have	a	collection	of	items.	Returning	to	an
example	of	this	from	earlier	in	the	chapter,	we	could	have	decided	that	the	Structure	class
has	pdbIds,	instead	of	just	one	pdbId.	The	naïve	getter	function	would	simply	be:

class	Structure:

		#	…

		def	getPdbIds(self):

				return	self.pdbIds

Unlike	strings	and	integers,	collections	are	modifiable;	 their	contents	can	be	changed.
Thus,	returning	the	value	in	this	way	would	allow	the	person	using	the	function	to	directly
manipulate	the	collection,	which	may	cause	problems	for	the	objects:

pdbIds	=	structure.getPdbIds()

del	pdbIds[0]		#	delete	first	one;	changes	structure.pdbIds

An	 alternative	 implementation	 could	 return	 a	 copy	 of	 the	 collection	 instead	 of	 the
internal	attribute:

class	Structure:

		#	…

		def	getPdbIds(self):

				return	list(self.pdbIds)

Here	the	list	that	is	returned	from	the	function	can	be	manipulated	without	any	harm:

pdbIds	=	structure.getPdbIds()

del	pdbIds[0]		#	does	not	change	structure.pdbIds

Another	 case	 when	 a	 getter	 function	 is	 useful	 is	 when	 the	 associated	 value	 is	 not
directly	stored	in	the	object,	but	instead	is	calculated	on-the-fly.	For	example,	suppose	we
wanted	 to	have	a	 function,	structure.getMass(),	which	 returns	 the	molecular	mass	of	 the
structure.	We	might	choose	not	to	store	the	mass	at	all,	but	instead	do	something	like:

class	Structure:

		#	…

		def	getMass(self):

				mass	=	0

				for	chain	in	self.chains:

						mass	+=	chain.getMass()

				return	mass

and	 in	 turn	 the	 chain.getMass()	 could	 use	 residue.getMass()	 and	 that	 could	 use
atom.getMass().	Even	the	Atom	class	might	not	store	the	mass	but	instead	calculate	it	on-
the-fly	using	a	dictionary	based	on	the	element.

Our	 final	 example	 of	 useful	 getter	 functions	 illustrates	 that	 the	 underlying
implementation	of	a	class	can	change,	but	any	code	that	uses	a	getter	function	instead	of
direct	 attribute	 access	 does	 not	 itself	 have	 to	 change.	 Here,	 we	 might	 decide	 that
calculating	 the	mass	on-the-fly	 is	a	slow	procedure,	so	we	want	 to	calculate	 it	once	and
then	cache	the	result:9

class	Structure:

		#	…

		def	getMass(self):

				if	hasattr(self,	'mass'):

						#	already	been	calculated	so	just	return	value

						return	self.mass

				#	not	been	calculated	yet	so	do	it

				mass	=	0

				for	chain	in	self.chains:

						mass	+=	chain.getMass()

				self.mass	=	mass	#	cache	for	next	time

				return	mass

This	has	 changed	how	 the	 class	 is	 implemented,	but	 all	 code	 that	uses	 the	getMass()
function	is	unaffected.

Properties
Python	has	a	really	handy	mechanism	for	allowing	the	syntax	of	direct	attribute	access	but
with	 the	protection	of	using	getter	and	setter	 functions.	This	 is	called	a	Python	property
and	is	made	available	via	the	inbuilt	property()	function.	In	Python	2	it	is	only	(properly)
available	for	‘new-style’	classes;	those	that	inherit	from	object.	In	Python	3,	all	classes	are
‘new	style’	so	they	all	support	this	mechanism.	It	is	best	to	illustrate	with	an	example,	so
consider	the	code:

class	Structure(object):

		#	…

		def	getName(self):

				return	self._name

		def	setName(self,	name):

				if	not	name:

						raise	Exception('name	must	be	set	to	non-empty	string')

				self._name	=	name

		name	=	property(getName,	setName)

What	 this	 means	 is	 that	 use	 of	 the	 name	 attribute	 automatically	 calls	 getName()	 or
setName(),	rather	than	accessing	a	simple	attribute.	For	example:

name	=	structure.name

#	equivalent	to:	name	=	structure.getName()

structure.name	=	name

#	equivalent	to:	structure.setName(name)

Note	 that	 the	 information	 is	 stored	 internally	 using	 the	variable	 self._name.	Here	 the
variable	 could	 not	 instead	 be	 self.name	 because	 that	 would	 result	 in	 getName()	 or
setName()	being	called	recursively,	and	so	end	up	with	an	‘infinite’	loop.	In	the	property
definition	the	setter	function	is	optional,	and	this	provides	a	good	way	to	implement	frozen
attributes.	As	an	example,	if	we	suppose	chain.molType	was	frozen	we	could	have:

class	Chain(object):

		#	…

		def	getMolType(self):

				return	self._molType

		molType	=	property(getMolType)

In	 this	case,	 trying	 to	assign	 the	attribute’s	value	would	give	rise	 to	an	AttributeError
exception:

chain.molType	=	'DNA'		#	-->	AttributeError	exception

The	 property()	 function	 has	 a	 third	 optional	 argument	 to	 specify	 a	 delete	 function,
which	is	called	when	the	attribute	is	deleted	using	‘del’,	and	a	fourth	optional	argument	to
specify	documentation	for	the	property.

From	 Python	 2.6,	 there	 is	 an	 alternative	 syntax	 for	 specifying	 a	 property,	 using
decorators	(see	Chapter	5).	Again	these	only	apply	to	‘new-style’	classes.

class	Structure(object):

		#	…

		@property

		def	name(self):

				return	self._name

		@name.setter

		def	name(self,	value):

				if	not	value:

						raise	Exception('value	must	be	set	to	non-empty	string')

				self._name	=	value

This	is	not	any	shorter	than	the	non-decorator	form,	and	it	also	looks	odd	that	both	the
get	function	and	the	set	function	are	called	name.
1 	http://www.wwpdb.org.
2 	We	decided	against	using	the	name	Molecule	to	emphasise	the	fact	that	this	class	is	a
container	for	a	series	of	smaller	chemical	entities.
3 	See	Chapter	11	for	a	description	of	why	these	are	called	residues.

http://www.wwpdb.org

4 	 Several	 other	 molecular	 structure	 data	 models	 use	 the	 term	 ‘model’	 instead	 of
‘conformation’,	 but	we	 avoided	 it	 here	 because	 in	 a	 chapter	 about	 data	models,	 talking
about	other	kinds	of	‘model’	would	be	needlessly	confusing.
5 	The	wwPDB	offers	a	web	service	to	fetch	structural	data,	which	can	be	accessed	using
Python.
6 	 From	Python	 2.7	we	 also	 have	 the	 option	 of	 using	 an	 ordered	 dictionary,	which	 is	 a
special	collection	type	in	the	collections	module.
7 	See	Chapter	9	for	discussion	of	NumPy.
8 	Technically	a	single	space,	in	some	older	files.
9 	Strictly,	such	a	cache	should	be	reset,	as	part	of	 the	model	 implementation,	when	any
atom	is	added	or	removed.

9 	Mathematics
Contents

Using	Python	for	mathematics

The	Python	‘math’	module

Example:	mean	angle

Rounding

Plotting

Linear	algebra

Matrix	transformations

Multi-dimensional	arrays

Python	multi-dimensional	lists

NumPy	package

Array	objects

Array	operations	and	methods

Linear	algebra	examples

Rotation	matrices

Torsion	angle

Using	Python	for	mathematics
Given	 that	 Python	 is	 an	 interpreted	 programming	 language,	 rather	 than	 a	 fast	 compiled
language,	 many	 people	 do	 not	 consider	 it	 for	 writing	 programs	 that	 involve	 extensive
numerical	 work.	 While	 Python	 programs	 are	 certainly	 slower	 to	 execute	 than	 the
equivalent	written	in	something	like	C	or	FORTRAN,	mathematical	functionality	certainly
exists	in	Python	and	has	the	inherent	advantages	of	the	language;	it	is	easy	for	people	to
use	and	conveniently	links	to	other	helpful	data	structures.	Of	course	speed	of	calculation
may	not	be	so	important,	for	a	scientific	investigation	it	may	not	matter	if	something	takes
1	second	or	0.1	second	to	run.	Fortunately,	computers	get	faster	and	the	Python	interpreter
becomes	 improved,	 so	 you	 can	 do	 quite	 a	 bit	 of	 numerical	 work	 without	 concern.
However,	if	calculation	speed	really	is	important	in	a	given	situation	then	there	are	a	few
things	you	can	do	to	make	things	faster	while	still	keeping	the	convenience	of	Python.	For
example,	you	can	write	 code	 in	C,	 a	very	efficient	numerical	 language,	 and	use	 it	 from
within	Python	 (this	 is	called	a	C	extension),	 effectively	 extending	 the	vocabulary	of	 the
interpreted	 language	 with	 speedy	 subroutines.	 More	 recently	 the	 language	 Cython	 has

helped	 make	 C	 extensions	 very	 easy	 to	 write.	 Cython	 is	 a	 Python-like	 language,	 and
virtually	all	Python	programs	can	be	interpreted	by	it,	without	alteration,	but	the	language
ultimately	generates	C	code	that	can	be	compiled.	Cython	can	be	used	to	call	fast	library
code	written	in	pure	C,	and	can	incorporate	a	mixture	of	Python	and	C	data	structures	in
the	same	code;	although	less	flexible,	 the	C	data	structures	are	very	efficient.	Writing	C
extensions	and	Cython	modules	is	discussed	in	Chapter	27.

Python	 includes	 standard	 arithmetic	 operations	 as	 part	 of	 the	 core	 functionality:	 add,
multiply	 etc.	 There	 is	 an	 additional	module,	math,	which	 always	 comes	 packaged	with
Python	and	which	provides	further	numerical	functionality:	logarithms,	trigonometry	etc.
For	numerical	calculations	that	are	not	especially	intensive,	the	core	functionality	and	the
math	module	will	often	suffice.	There	has	been	a	history	of	trying	to	provide	modules	for
quick	 numerical	 algorithms	 in	 Python.	 The	 first	 attempt,	 begun	 in	 1995,	 was	 called
Numeric,	and	the	second	attempt	was	called	Numarray.	These	two	are	now	deemed	to	be
obsolete,	but	the	third	attempt,	begun	in	2005,	is	called	NumPy	(http://numpy.scipy.org/),
incorporates	elements	from	the	earlier	attempts	and	will	hopefully	last	longer.

NumPy	 provides	 support	 for	 basic	 numerical	 operations,	 with	 an	 emphasis	 on
specifying	 calculations	 that	 operate	 on	 a	 whole	 array	 of	 numbers	 at	 once.	 As	 will	 be
discussed	below,	 its	operations	 include	 functionality	 for	 random	numbers,	 linear	algebra
and	Fourier	transforms.	It	is	implemented	in	C	underneath,1	and	thus	is	quick	to	run,	but
can	naturally	be	accessed	in	Python.	NumPy	is	relatively	easy	to	use	because	you	are	still
working	with	Python	commands,	but	 the	way	 that	 some	 things	work,	 especially	how	 to
think	about	numeric	array	operations,	can	 take	some	 learning.	For	serious	 linear	algebra
work	in	Python,	NumPy	is	the	method	of	choice.	There	is	another	closely	related	package,
called	 SciPy2	 (Scientific	 Python),	 which	 adds	 some	 higher-level	 numerical	 capabilities,
such	as	integration,	optimisation	and	signal	processing.	NumPy	and	SciPy	are	not	part	of
the	 standard	 Python	 software	 release,	 so	 require	 a	 separate	 download	 and	 installation,
although	 modern	 download	 managers	 ought	 to	 make	 this	 fairly	 easy	 to	 do.	 See
http://www.cambridge.org/pythonforbiology	 for	 details	 of	where	 to	 download	SciPy	 and
NumPy.	In	some	sense	these	packages	could	be	deemed	to	be	the	Pythonic	answer	to	the
analogous	capabilities	in,	for	example,	the	MATLAB	system.3

The	Python	‘math’	module
The	 math	 module	 is	 most	 useful	 for	 trigonometric,	 exponential	 and	 logarithmic
functionality.	 All	 of	 the	 examples	 in	 this	 section	 assume	 that	 the	 math	 module
functionality	is	imported,	usually	in	its	entirety	with	the	following	statement:

import	math

So	that,	for	example,	you	could	to	the	following,	and	access	the	logarithm,	square	root
and	exponential	functions	using	the	‘dot’	notation:

a	=	math.log(x)							#	logarithm,	base	e,	of	x

b	=	math.sqrt(x)						#	square	root	of	x

c	=	math.exp(x)							#	e	to	the	power	of	x

Alternatively,	the	functions	of	the	math	module	may	be	imported	individually:

http://numpy.scipy.org/
http://www.cambridge.org/pythonforbiology

from	math	import	log,	sqrt,	exp

This	method	avoids	the	‘dot’	notation,	and	consequently	is	faster	to	execute,	though	you
now	have	to	remember	where	the	function	was	imported	from:

a	=	log(x)

b	=	sqrt(x)

c	=	exp(x)

See	Appendix	3	for	a	full	list	of	the	math	module	functionality.

As	 a	 slightly	 more	 complex	 example,	 the	 following	 takes	 a	 collection	 of	 angles	 in
degrees	 and	 makes	 a	 list	 containing	 their	 sines.	 This	 involves	 two	 math	 operations:
math.sin()	and	math.radians().	Unsurprisingly,	 the	 former	calculates	 the	sine	of	an	angle
that	is	passed	in,	but	the	latter	is	also	required	because	the	sine	calculation	requires	that	the
angles	 are	 in	 units	 of	 radians	 (i.e.	 2π	 for	 a	 full	 circle),	 not	 degrees.	Hence,	 if	we	 pass
angles	in	degrees,	math.radians()	is	used	to	convert	the	angle	values	to	radians.

angles	=	[0,	30,	45,	60,	90,	−90]

sines	=	[math.sin(math.radians(angle))	for	angle	in	angles]

#	[0.000,	0.500,	0.707,	0.866,	1.000,	−1.000]	(rounded	to	3	places)

Note	that	in	the	above	code	we	use	a	list	comprehension	to	build	a	list	(sines)	from	the
inside,	according	 to	another	 list	 (angles);	 this	 is	more	compact	and	quicker	 than	using	a
conventional	 for	 loop.	Going	 a	 little	 further,	 if	 the	 inverse	operation	 (valid	 in	 the	 range
−90	to	90	degrees)	were	needed	then	the	following	implementation	would	do	that,	using
math.degrees()	 to	 convert	 from	 radians	 and	 math.asin()	 for	 the	 inverse	 sine	 operation
(arcsine):

angles	=	[math.degrees(math.asin(sine))	for	sine	in	sines]

Example:	mean	angle
Below	we	 give	 a	more	 involved	 example	 that	 uses	 the	math	 module	 inside	 a	 function
definition.	This	function	will	be	used	later	on	in	this	book,	where	it	is	used	to	calculate	the
average	angle	value	from	a	list	of	input	angles.	Later,	in	context,	it	will	be	used	to	look	at
the	angles	of	chemical	bonds	that	come	from	alternative	molecular	shapes	(conformations)
to	give	the	average	bond	angle.	Because	angles	are	a	circular	measure	(i.e.	360°	equals	0°)
we	cannot	 take	 the	simple	mean	value	of	 the	numbers.	 Instead	we	find	 the	average	sine
and	cosine	of	the	angles,	which	oscillate	between	plus	and	minus	one	and	so	don’t	have	a
problem	when	angles	go	past	a	full	turn	or	become	negative.	Both	the	sine	and	cosine	are
required	because	each	function	on	its	own	is	not	unique	to	a	single	angle,	e.g.	the	sine	of
45°	equals	the	sine	of	135°.	Accordingly,	we	use	the	averages	of	both	sine	and	cosine	to
generate	 the	 average	 angle	 via	 a	 special	 inverse	 tangent	 function,	 and	 naturally	 the
mathematical	operations	come	from	the	math	module:

from	math	import	sin,	cos,	degrees,	radians,	atan2

def	meanAngle(angles,	inDegrees=True):

		sumCos	=	0.0

		sumSin	=	0.0

		for	angle	in	angles:

				if	inDegrees:

						angle	=	radians(angle)

				sumCos	+=	cos(angle)

				sumSin	+=	sin(angle)

		N	=	len(angles)

		meanAngle	=	atan2(sumSin/N,	sumCos/N)

		if	inDegrees:

				meanAngle	=	degrees(meanAngle)

		return	meanAngle

The	inverse	tangent	function	used	is	specifically	atan2;	while	a	normal	inverse	tangent
(atan)	 operates	 on	 a	 single	 number	 and	 gives	 an	 angle	 between	 −90°	 and	 +90°,	 this
function	uses	both	sine	and	cosine	values	to	calculate	the	inverse	tangent	and	also	which
quadrant	 of	 the	 circle	 it	 lies	 in.	 Thus	 the	 result	 is	 an	 angle	 between	 −180°	 and	 +180°.
Finally,	note	how	all	calculations	are	done	 in	 radians,	 so	we	must	explicitly	convert	 the
input	and	output	when	working	with	values	specified	in	units	of	degrees,	signalled	by	the
input	argument	inDegrees	being	True.

Rounding
The	math	module	also	has	a	couple	of	handy	functions	that	convert	floating	point	numbers
to	integral	floating	point	numbers,	i.e.	round	up	or	down	to	the	nearest	whole	number,	but
give	 a	 result	 that	 is	 still	 floating	 point.	 The	 function	 floor(x)	 converts	 x	 to	 the	 largest
whole	number	(integral)	value	less	than	or	equal	to	x,	and	similarly	ceil(x)	converts	x	 to
the	smallest	integral	value	greater	than	or	equal	to	x:

math.floor(5.25)										#	5.0

math.ceil(5.25)											#	6.0

Even	though	these	functions	remove	any	fractional	part,	after	the	decimal	point,	in	both
cases	 the	 data	 type	 returned	 is	 floating	 point.	Hence	 these	 could	 be	 converted	 to	 actual
Python	integers	using	the	int()	function:

int(math.floor(5.25))					#	5

int(math.ceil(5.25))						#	6

Note	that	int(x)	is	the	integer	part	of	x	and	so	int(math.floor(x))	is	not	the	same	as	int(x)
when	x	is	negative:

int(math.floor(-5.25))				#	-6;	the	integer	less	than	the	value

int(-5.25)																#	-5;	the	integer	part	of	the	value

The	more	usual	kind	of	rounding,	to	the	nearest	whole	number	or	decimal	place,	would
be	done	with	the	inbuilt	round()	function;	this	is	not	in	the	math	module.

round(8.49)											#	8.0				;	rounded	down

round(8.51)											#	9.0				;	rounded	up

round(3.141592,	1)				#	3.1				;	to	one	decimal	place

round(3.141592,	3)				#	3.142		;	to	three	decimal	places

round(9621,	-2)							#	9600.0	;	to	nearest	hundred

As	 illustrated	 above,	 the	 second	 argument	 in	 round()	 specifies	 how	 many	 decimal
places	the	rounding	is	done	to,	and	this	number	can	be	negative	to	round	off	at	positions
above	1.0;	to	the	nearest	ten,	hundred,	thousand	etc.	Note	that	even	rounded	numbers	will
still	be	subject	to	floating	point	errors.

In	 Python	 3	 the	 behaviour	 of	 round()	 changed	 slightly.	 Consider	 the	 case	 when	 the
second	argument	takes	its	default	value,	0.	In	Python	2,	the	function	rounds	to	the	number
with	the	larger	magnitude	if	the	fractional	part	of	the	argument	is	0.5,	but	in	Python	3	this
only	happens	if	 that	number	 is	even,	otherwise	 it	 rounds	to	 the	number	with	 the	smaller
magnitude.

round(7.5)												#	8.0	in	both	Python	2	and	Python	3

round(8.5)												#	9.0	in	Python	2,	8.0	in	Python	3

Thus	in	Python	3	you	always	get	an	even	number	in	this	circumstance.

Plotting
To	go	along	with	mathematical	operations	it	is	naturally	often	handy	to	plot	the	numerical
values	 as	 a	graph	or	 chart.	To	 illustrate	 this	we	will	 use	 the	popular	Matplotlib	module
which	 is	 often	 included	 with	 SciPy	 and	 NumPy	 packages.	 Naturally,	 the	 following
examples	 assume	 that	we	 have	 installed	 the	Matplotlib,	 otherwise	 you	will	 get	 an	 error
from	the	import	command.	From	the	matplotlib	module	we	will	import	pyplot,	which	has
lots	of	helpful	functions	that	can	be	used	to	display	information	as	charts	and	graphs.

from	matplotlib	import	pyplot

To	use	pyplot	we	 first	 create	 some	 example	 values	 in	 a	 list	 and	 then	 call	 the	 .plot()
function,	passing	the	data	in	as	an	argument.	This	will	create	a	line	graph	from	the	values
list,	but	doesn’t	immediately	display	anything	on	screen.

values	=	[x*x	for	x	in	range(10)]

pyplot.plot(values)

To	actually	display	the	line	graph	on	screen	we	call	the	.show()	function,	which	should
cause	a	pop-up	window	to	appear.

pyplot.show()

In	 order	 to	 create	 a	 graph	with	multiple	 data	 lines	we	 can	 repeatedly	 use	 plot()	with
different	 data	 lists,	 which	will	 all	 be	 added	 to	 the	 same	 graph,	 before	 finally	 invoking
show().

valuesA	=	[x*x	for	x	in	range(1,10)]

valuesB	=	[100.0/x	for	x	in	range(1,10)]

pyplot.plot(valuesA)

pyplot.plot(valuesB)

pyplot.show()

Note	that	once	we	call	show()	the	current	graph	data	is	completely	cleared,	i.e.	we	will
get	 a	 blank	plot	 if	we	 repeat	 show()	 immediately	 after.	 So	 far	 the	 graphs	 have	 all	 been
plotted	by	supplying	height	(y	axis)	information	for	the	values,	which	are	plotted	in	order.
However,	by	passing	two	data	 lists	 to	each	plot	we	can	also	specify	the	values	for	 the	x
axis:

xVals	=	range(21,30)

yVals	=	[100.0/x	for	x	in	range(1,10)]

pyplot.plot(xVals,	yVals)

pyplot.show()

As	 standard	 the	 plot()	 function	will	 use	 relatively	 sensible	 defaults	 to	 determine	 the
look	of	the	graphs.	However,	there	are	many	extra	options	that	can	be	specified	to	control
the	drawing	of	the	lines,	axes,	legends	etc.	Here	we	create	a	thicker	purple	line	by	setting
the	color	and	 linewidth	attributes.	Also,	we	give	 the	 line	plot	 a	 textual	 label	which	will
appear	if	legend()	is	used.	For	the	axes	we	control	the	range	of	displayed	values	for	the	y
axis	with	ylim(),	 here	making	 it	wider	 than	 the	default,	which	would	only	go	up	 to	 the
extremes	of	the	data	range,	and	manually	specify	the	values	for	the	tick	marks	on	the	axis
using	yticks()	(naturally	xlim()	and	xticks()	are	also	available).

pyplot.plot(xVals,	yVals,	color='purple',

												linewidth=3.0,	label='DataName')

pyplot.legend()

pyplot.ylim(0,	101)

pyplot.yticks([0,	25,	50,	75,	100])

As	an	alternative	to	simply	showing	the	graph	on	screen	we	could	also	write	an	image
out	 to	 a	 file.	Accordingly	we	 use	 savefig(),	 though	 note	 that	we	 do	 this	 before	we	 call
show(),	otherwise	the	latter	would	clear	the	current	graph	of	data.	Here	we	export	to	PNG
format	by	using	a	file	name	with	a	‘.png’	extension	and	state	that	we	require	72	dots	per
inch	output	resolution:

pyplot.savefig(“TestGraph.png”,	dpi=72)

pyplot.show()

As	well	 as	 simple	 line	 graphs	Matplotlib	 can	 easily	 create	many	 other	 types	 of	 data
display.	For	example,	here	we	create	a	scatter	plot	by	using	scatter()	(rather	than	plot()),
where	 we	 set	 the	 style	 for	 the	 marker	 symbol	 and	 its	 size	 (here	 s=40).	 Note	 that,	 for
illustrative	purposes,	the	valsB	list	 is	generated	by	using	random.gauss()	 to	 take	random
samples	from	a	normal	distribution	with	a	mean	of	0.0	and	standard	deviation	1.0.

from	random	import	gauss

valsA	=	range(100)

valsB	=	[gauss(0.0,	1.0)	for	x	in	valsA]

pyplot.scatter(valsA,	valsB,	s=40,	marker='*')

pyplot.show()

We	could	also	show	the	data	as	a	bar	chart,	where	valsB	will	represent	 the	heights	of

the	bars:

pyplot.bar(valsA,	valsB,	color='green')

pyplot.show()

Although	we	could	use	bar()	to	show	histogram	data,	i.e.	where	initial	values	have	been
grouped	into	different	regional	ranges	(bins),	we	could	instead	let	the	hist()	function	do	the
work	 of	 binning	 values	 (counting	 the	 number	 of	 data	 points	 in	 each	 range).	 Here,	 we
create	 a	 histogram	of	 the	 random	 (normally	 distributed)	 sample	 of	 points	 by	 stating	we
want	the	data	grouped	into	20	bin	regions	between	the	limits	of	−2.0	and	2.0:

pyplot.hist(valsB,	bins=20,	range=(-2.0,	2.0))

pyplot.show()

As	 a	 final	 example,	 the	 pie()	 function	 is,	 as	 you	might	 guess,	 handy	 for	making	 pie
charts	and	naturally	this	has	options	to	specify	the	colours	and	textual	labels	for	each	of
the	segments:

sizes		=	[83,	8,	4,	5]

labels	=	['Arthropoda',	'Mollusca',	'Cordata',	'Others']

colors	=	['#B00000',	'#D0D000',	'#008000',	'#4040FF']

pyplot.pie(sizes,	labels=labels,	colors=colors)

pyplot.show()

There’s	 a	 lot	 more	 functionality	 and	 graph	 types	 in	 pyplot	 (contour	 plots,	 colour
matrices,	 box-and-whisker	 plots	 etc.)	 that	we	 don’t	 have	 room	 to	 cover	 here.	However,
Matplotlib	 is	 well	 documented	 at	 the	 Matplotlib	 website,	 which	 we	 link	 at
http://www.cambridge.org/pythonforbiology.

http://www.cambridge.org/pythonforbiology

Figure	9.1.	 Example	graphs	and	charts	generated	using	Matplotlib.	The	examples
relate	to	the	named	line	graph,	scatter	plot,	histogram	and	pie	chart	functions	that	are
available	in	the	‘pyplot’	module,	e.g.	via	pyplot.hist(data).

Linear	algebra
In	 this	section	we	give	a	short	 introduction	to	 linear	algebra	 for	non-mathematicians.	A
familiarity	with	some	of	the	concepts	involved	will	be	assumed	when	discussing	various
parts	 of	 subsequent	 chapters.	 In	 particular	 for	 this	 book,	 linear	 algebra	 is	 helpful	 in	 the
understanding	 and	 manipulation	 of	 three-dimensional	 coordinates.	 Here,	 rather	 than
discussing	 how	 separate	 positions	 on	 each	 spatial	 axis	 (x,	 y	 and	 z)	 are	 used,	 we	 can
describe	a	3D	point	in	its	entirety	as	a	single	vector	 that	groups	the	axis	positions.	Also,
changes	of	position	(transformations)	may	be	described	with	matrices,	which	specify	how
vector	 locations	 are	 relocated.	 An	 example	 of	 an	 easily	 visualised	 transformation	 is
rotation;	a	shape,	defined	by	a	collection	of	coordinate	positions,	is	moved	to	a	new	set	of
coordinates	to	change	the	orientation	of	the	shape.

The	way	that	data	is	represented	in	linear	algebra	is	in	terms	of	vectors,	which	represent
positions	 in	 space.	 Although	 the	 ‘space’	 we	 mention	 in	 this	 book	 is	 usually	 the	 three-
dimensional	 in-out,	up-down	and	 left-right	kind	we	all	 recognise	 it	can	also	be	used	 for
more	 abstract	 spaces	where	 the	 ‘axes’	 are	merely	 independent	 qualities.	An	 example	 of
this	might	be	colour	space	where	you	can	define	a	colour	(or	rather	a	colour	vector)	by	its
red,	green	and	blue	components.	In	the	language	of	Python	a	vector	is	represented	by	an
ordered	collection	of	numbers,	an	array,	where	each	number	specifies	the	location	of	the
point	along	each	axis	 (dimension).	You	can	 think	of	 these	 just	as	a	 list	of	 floating	point

numbers;	 this	will	 have	 a	 known	 length	 and	will	 not	 contain	 any	 other	 kind	 of	 Python
object.	To	take	a	biological	example,	an	atom	in	a	molecule	has	a	location	(relative	to	the
other	 atoms),	which	 consists	 of	 three	 coordinates	 (x,	 y	 and	 z)	 and	 it	 is	 normal	 to	 place
these	values	in	an	array;	the	three	coordinates	correspond	to	what	is	normally	described	as
a	point	in	space.	If	you	were	studying	the	dynamics	of	a	molecule	then	in	addition	there
would	be	a	fourth	coordinate,	time,	and	you	would	be	dealing	with	space-time,	although
normally	you	would	only	consider	one	time	value	after	the	other,	rather	than	all	in	one	go.

Figure	9.2.	 Matrix	transformations	of	spatial	coordinates,	their	inverses	and
combinations.	With	reference	to	a	triangle	of	points,	various	simple	linear
transformations	of	coordinates	are	illustrated.	Each	transformation	may	be	specified	as	a
matrix	and	applied	to	coordinates,	specified	as	vectors,	using	matrix	multiplication.	For
linear	transformations	the	application	of	two	subsequent	transformations	can	be
represented	by	a	single	(combined)	transformation.	All	of	these	simple	transformations
have	inverse	transformations	which	will	restore	the	coordinates	of	the	points	to	their
original	values.

The	‘linear’	part	of	linear	algebra	refers	to	the	fact	that	the	fundamental	characteristic	of
a	coordinate	 transformation	does	not	change	with	 scale	 (its	magnitude).	For	example,	 if
you	break	down	a	transformation	into	two	smaller	parts,	then	it	does	not	matter	if	you	do
the	full	transformation	or	instead	do	the	two	smaller	parts	one	after	the	other.	If	you	rotate
a	shape	by	30°	around	some	axis	and	 then	again	by	a	further	45°	around	the	same	axis,
you	 get	 the	 same	 result	 as	 if	 you	 had	 instead	 just	 rotated	 the	 shape	 in	 one	 step	 by	 75°
(30+45).

The	 ‘algebra’	 part	 of	 linear	 algebra	 refers	 to	 the	 fact	 that	 different	 types	 of
transformation	may	be	melded	together	to	define	a	single	transformation.	For	example,	if
you	 rotate	 a	 shape	 about	 one	 axis	 by	 some	 angle,	 and	 then	 around	 another	 axis	 by	 a
different	 angle,	 then	 there	 is	 a	 single	 equivalent	 rotation	 that	 could	 do	 the	 whole	 job,
potentially	 about	 a	 third	 axis.	 The	 converse	 of	 combining	 transformations	 is	 also	 true
because	 a	 single	 transformation	 can	 be	 described	 by	 combinations	 of	 other
transformations.	 This	 point	 leads	 to	 the	 idea	 that	 transformations	 may	 be	 reversed;	 a
forward	 and	 corresponding	 reverse	 transformation	 results	 in	 no	 change.	 For	 example,	 a
rotation	about	a	given	axis	of	a	given	angle	has	an	opposite	rotation:	around	the	same	axis
but	in	the	opposite	direction,	so	that	if	you	combine	both	rotations	it	is	equivalent	to	not
doing	any	rotation	at	all.

If	you	imagine	a	vector	to	represent	a	point	in	space,	it	is	convenient	to	think	of	what
are	 called	unit	vectors,	 vectors	 of	 length	 1,	 as	merely	 representing	 directions.	 The	way
linear	 transformations	 are	 normally	 described	 is	 in	 terms	 of	 what	 happens	 to	 the	 unit
vectors	that	point	directly	along	the	coordinate	axes	(in	a	positive	sense).	For	example,	for
3D	space	we	would	consider	 the	 transformation	of	 the	 three	vectors	 (1,0,0),	 (0,1,0)	 and
(0,0,1),	which	 respectively	 represent	 the	unit	vectors	along	 the	positive	x,	y	and	z	axes.
Because	the	transformation	is	linear,	once	you	know	how	it	acts	on	these	unit	vectors,	you
know	how	it	acts	on	any	vector.

Suppose	 for	 a	 given	 transformation	 operation	 (1,0,0)	 gets	 mapped	 (transformed)	 to
(a,b,c),	 and	 (0,0,1)	 gets	 mapped	 to	 (d,e,f),	 and	 (0,0,1)	 gets	 mapped	 to	 (g,h,i).	 Then	 an
arbitrary	input	vector	(x,y,z)	gets	mapped	to	the	final	vector	(x′,y′,z′)	via:

This	 looks	pretty	horrible,	but	 fortunately	computers	usually	do	 the	calculations.	A	way
that	you	might	think	about	what	is	happening	above	is	that	the	x	component	of	the	input
vector	 is	multiplied	by	 elements	a,	b	 and	c	 (which	 define	 the	 transformation),	 but	 each
product	contributes	to	a	different	axis	of	the	output	vector;	xa	is	added	to	the	new	x′,	xb	is
added	to	the	new	y′,	and	xc	the	new	z′.	Similarly,	the	y	and	z	components	have	their	own
multiplicative	 elements	 to	 define	 contributions	 to	 the	 new	 vector.	 Thus,	 overall	 the
elements	of	the	transformation	(a	to	i)	say	how	to	combine	(multiply	and	add)	 the	 input
coordinates	to	make	the	output.

Matrix	transformations
Another	way	to	write	 transformations	mathematically	is	 in	terms	of	a	matrix,	which	 is	a
rectangular	encoding	of	the	transformation.	You	can	think	of	this	as	merging	the	mapping
vectors	for	each	axis	into	a	single	block.	When	we	do	this	we	normally	write	the	vectors	in
column,	 rather	 than	 row,	 fashion.	 For	 example,	 for	 the	 transformation	 above,	 the	 two
vectors	would	have	3	elements	and	the	matrix	would	have	3×3	elements:

The	way	to	read	this	is	that	the	first	element	(x′)	of	the	output	vector	on	the	left	is	found	by
adding	up	 the	 element-by-element	multiplication	of	 the	 first	 row	of	 the	matrix	with	 the
input	vector	on	the	right;	ax	+	dy	+	gz,	and	so	on	for	the	other	two	elements	y′,	z′.

There	 is	 a	 special	 transformation,	 the	 identity	 matrix,	 which	 transforms	 vectors	 to
themselves	(i.e.	causes	no	change	at	all):

The	 advantage	 of	 this	 matrix	 notation	 is	 that	 the	 composition	 of	 two	 transformations

(applying	one	after	the	other)	becomes	easier	to	manage.	For	example,	if	we	have	a	second
transformation:

then	the	composition	of	both	transformations	is:

The	 final	matrix	 is	 said	 to	be	 the	product	of	 the	 two	 initial	matrices.	The	element	at	 an
arbitrary	cell	location	(m,n),	the	cell	that	lies	in	both	row	m	and	in	column	n,	in	the	final
matrix	is	the	sum	of	the	element-wise	product	of	row	m	in	the	first	matrix	and	column	n	in
the	second	matrix.4	Note	that	when	applying	two	transformations	it	is	important	to	apply
them	 in	 the	correct	order;	usually	you	cannot	 swap	matrices.	For	example,	a	 rotation	of
90°	about	the	x	axis	then	a	rotation	of	90°	along	the	y	axis	is	not	the	same	as	doing	the
rotations	in	the	opposite	order.

Mathematicians	have	introduced	a	succinct	notation	for	vectors	and	matrices,	by	hiding
all	of	their	internal	elements,	which	makes	the	product	formula	look	clearer.	So	instead	of
writing	(x,y,z)	we	write	this	with	a	single	letter,	say	w:

and	similarly	for	w′	and	w″.	In	Python	this	could	be	implemented	as	a	list	(or	tuple)	and
we	would	have	x	=	w[0],	y	=	w[1]	and	z	=	w[2].	The	matrices	would	also	be	written	with
single	letters,	for	example,	T:

The	 transformation	 from	w=(x,y,z)	 to	w′=(x′,y′,z′)	 is	 then	 written	 simply,	 with	 implied
matrix	multiplication,	as:

w′	=	T	w

and	the	composition	of	two	transformations,	T	and	T′,	is	then:

w″	=	T′	T	w

which	can	also	be	described	as	the	outcome	of	the	first	transformation	(w′)	being	applied
to	the	second:

w″	=	T′	w′

or	in	terms	of	a	new	transformation	(T′′)	that	combines	both:

w″	=	T″	w

Here	T″	is	defined	as	the	product	of	the	matrices5	T′	and	T.	This	means	that	the	value	of	T″
at	cell	location	(m,n)	is	the	sum	of	the	element-wise	product	of	row	m	of	T′	and	column	n
of	T.	In	Python,	these	matrices	could	be	implemented	as	lists	of	lists.

The	identity	matrix	is	commonly	denoted	by	the	letter	I:

If	we	have	a	transformation	T,	then	the	inverse	transformation	T‒1	is	the	one	such	that	the
product	matrix	is	the	identity	matrix:

T	T−1	=	I

An	inverse	does	not	necessarily	exist	for	a	transformation	matrix	(e.g.	projecting	a	volume
on	to	a	line),	but	if	 it	does	then	it	 is	unique	and	it	also	acts	as	an	inverse	from	the	other
side:

T−1	T	=	I

The	 example	 we	 have	 used	 here	 has	 been	 in	 terms	 of	 vectors	 of	 size	 3	 and	 3×3
matrices.	However,	the	whole	thing	generalises	and	indeed	the	matrices	do	not	even	have
to	be	square,	although	if	they	are	not	square	then	they	do	not	have	a	(proper)	inverse.	So	if
we	wanted	 to	project	a	3D	shape,	 say,	 from	 its	 (x,y,z)	coordinates	 to	a	 representation	 in
terms	of	the	coordinates	(x,y)	on	a	computer	screen,	then	we	could	use	a	2×3	matrix:

Multi-dimensional	arrays
The	 term	 dimension	 is	 often	 used	 in	 popular	 parlance	 to	 describe	 the	 number	 of
independent	axes	that	can	be	used	to	span	a	given	space.	So,	for	example,	the	coordinate
(x,y,z)	of	an	atom	location	is	often	said	to	be	a	point	in	three-dimensional	space,	and	if	you
add	a	time	coordinate,	 t,	 then	you	have	a	point,	(x,y,z,t),	 in	four-dimensional	space-time.
Theoretical	 physicists,	 or	 at	 least	 some	 of	 them,	 are	 happy	 to	work	 even	 in	 10	 and	 24
dimensions.

In	Python,	especially	when	using	the	NumPy	module,	you	will	often	come	across	 the
word	‘dimension’	used	in	a	different	way,	as	an	indication	of	the	rank;	how	many	axes	are
needed	to	describe	an	array	of	numbers,	rather	than	the	size	of	the	space	they	operate	on.
The	dimension	of	 an	array	can	be	defined	as	 the	number	of	 indices	 that	 are	 required	 to
specify	 an	 element	 of	 the	 array.	 For	 example,	with	 a	 vector,	w,	we	 specify	 an	 element
using	one	index,	for	example,	w[m].	With	a	matrix	we	use	two	indices,	for	example,	T[m]

[n].	Thus	vectors	have	dimension	one	and	matrices	dimension	two,	even	if	both	work	in
real	3D	space,	and	it	is	possible	to	have	arrays	of	higher	dimension.	The	vector	(x,	y,	z)	is
said	 to	 have	 size	 3.	When	 using	 Python’s	 numpy	module	 we	 can	 define	 a	matrix	 as	 a
single	array	object,	rather	than	a	list	of	lists.	In	this	case	we	would	use	combined	indices
like	T[m,n]	to	access	elements	and	the	size	of	the	array	is	referred	to,	perhaps	confusingly,
as	its	shape;	so	a	2×3	matrix	is	said	to	have	shape	(2,	3),	and	total	size	2×3	=	6.	Note	that
an	array	in	NumPy	can	be	of	any	size,	and	thus	may	describe	vectors	and	matrices.

We	will	mostly	use	 the	NumPy	 terminology	 in	 this	 chapter	when	we	 consider	multi-
dimensional	arrays.	However,	as	we	illustrate	below,	we	can	implement	the	functionality
of	multi-dimensional	arrays	in	Python	ourselves,	using	lists	of	lists	etc.,	if	we	cannot	or	do
not	want	to	import	the	numpy	module.

Python	multi-dimensional	lists
This	 section	 illustrates	 how	multi-dimension	 array	 functionality	 can	 be	 used	 in	 Python
without	working	with	NumPy.	This	would	only	be	recommended	for	simple	linear	algebra
tasks	 where	 efficiency	 is	 not	 important.	 Python	 defines	multi-dimensional	 arrays	 using
collections	of	collections	of	collections	etc.	Here	the	collection	may	be	a	Python	list	or,	if
the	 associated	 data	 does	 not	 need	 modifying,	 a	 tuple.	 In	 particular,	 matrices	 can	 be
implemented	using	collections	of	collections.	For	example,	we	could	define	a	2×3	matrix
using	a	list	of	lists:

x	=	[[1,2,3],[4,5,6]]

The	elements	are	accessed	in	the	normal	Python	way:

y	=	x[1][2]								#	Value	in	row	1	column	2	(y	equals	6)

x[0][1]	=	7								#	Value	in	row	0	column	1	set	to	7

																			#	x	becomes	[[1,7,3],[4,5,6]]

The	rows	of	a	matrix	can	be	accessed	easily:

row	=	x[0]											#	Gives	[1,2,3]

and	the	columns	slightly	less	easily:

col	=	[y[2]	for	y	in	x]		#	Gives	[3,6]

Note	 that	 len(x)	 gives	 the	 number	 of	 rows	 and	 len(x[0])	 (or	 any	 element)	 gives	 the
number	of	columns	of	the	matrix,	assuming	the	matrix	is	not	empty:

len(x)													#	2

len(x[0])										#	3

Strictly	speaking,	for	any	function	that	manipulates	a	matrix,	it	should	be	checked	that
we	actually	have	a	matrix,	and	 in	particular	 that	 it	has	a	consistent	number	of	entries	 in
each	row.	In	the	interest	of	brevity,	here	we	leave	out	most	checks.	Without	such	caution,
if	someone	tried	to	use	nonsense	data	it	would	raise	an	exception,6	but	the	error	message
might	not	make	it	clear	what	the	problem	is.

Standard	Python	does	not	provide	any	inbuilt	functionality	for	matrix	(or	higher	multi-

dimensional	array)	manipulation,	so	it	all	has	to	be	implemented	by	the	programmer.	As
an	example	we	illustrate	a	function	that	creates	the	transpose	of	a	matrix.	The	transpose	of
a	 matrix	 is	 a	 new	 matrix	 with	 the	 first	 row	 of	 the	 original	 matrix	 becoming	 the	 first
column	in	the	new	matrix,	the	second	row	becoming	the	second	column	etc.	It	is	relatively
simple	to	implement,	here	using	list	comprehension:

def	transposeMatrix(x):

		nrows	=	len(x)

		ncols	=	len(x[0])

		return	[[x[n][m]	for	n	in	range(nrows)]	for	m	in	range(ncols)]

This	just	goes	through	all	the	elements	in	the	transposed	order.

x	=	[[1,7,3],	[4,5,6]]

y	=	transposeMatrix(x)				#	y	=	[[1,4],[7,5],[3,6]]

Matrix	multiplication	is	a	bit	harder:

def	multiplyMatrices(x,	y):

		rowsX	=	len(x)

		colsX	=	len(x[0])

		rowsY	=	len(y)

		colsY	=	len(y[0])

		if	colsX	!=	rowsY:

				message	=	'x	is	%d	x	%d;	inconsistent	with	y	which	is	%d	x	%d'

				raise	Exception(message	%	(rowsX,	colsX,	rowsY,	colsY))

		z	=	rowsX	*	[0]			#	Constructs	a	list	of	zeros,	of	size	rowsX

		for	i	in	range(rowsX):

				z[i]	=	colsY	*	[0]

				for	j	in	range(colsX):

						for	k	in	range(colsY):

								z[i][k]	+=	x[i][j]	*	y[j][k]

		return	z

Here	it	is	checked	that	the	number	of	columns	in	x	is	the	same	as	the	number	of	rows	in
y,	because	that	is	an	easy	mistake	to	make	when	using	the	function.	There	is	a	triple	loop
to	do	 the	sums,	which	 is	why	matrix	multiplication	 is	slow,	at	 least	when	it	 is	done	 this
way.

It	might	be	tempting	to	initialise	z	using:

z	=	rowsX	*	[colsY*[0]]

but	that	does	not	work	because	it	creates	a	matrix	with	literally	the	same	list	in	each	row,
so	 the	additions	would	affect	all	 the	rows,	not	 just	 the	given	row.	So	 the	 initialisation	 is
done	in	two	steps.	First	a	list	of	the	correct	length	is	created:

z	=	rowsX	*	[0]

Here	it	does	not	matter	what	is	used	as	the	repeated	item,	because	that	is	immediately

replaced	by	a	list	of	the	correct	length	in	the	loop	and	the	summation	is	done.

for	i	in	range(m):

				z[i]	=	colsY	*	[0]

If	this	is	as	sophisticated	as	the	code	is	required	to	get	in	terms	of	linear	algebra,	and
efficiency	is	not	an	issue,	then	it	is	acceptable	to	do	things	this	way.	However,	for	anything
more	sophisticated,	e.g.	matrix	inversion,	it	makes	most	sense	to	use	the	NumPy	module.

NumPy	package
For	the	examples	in	this	section	we	will	assume	that	the	numpy	module	has	been	installed,
given	 that	 it	 is	 not	 a	 standard	 part	 of	 Python,	 and	 that	 when	 not	 explicitly	 stated	 it	 is
imported	as	follows:

import	numpy

Array	objects
NumPy	has	its	own	version	of	multi-dimensional	arrays,	called	the	N-dimensional	array,7
which	 allows	 efficient	 manipulation.	 A	 basic	 Python	 multi-dimensional	 list	 can	 be
converted	to	a	NumPy	array	and	vice	versa.	For	example,	a	2×3	matrix	can	be	defined	in
NumPy	using:

x	=	numpy.array([[1,2,3],[4,5,6]])

And	to	get	back	standard	Python	lists	we	use	the	tolist()	method	of	the	array:

listOfLists	=	x.tolist()

The	elements	in	a	NumPy	array	can	be	accessed	in	the	same	way	that	ordinary	Python
matrices	 (like	 lists	 of	 lists)	 are	 accessed,	 although	 there	 is	 an	 alternative	 syntax	 that	 is
quicker	and	avoids	some	of	the	brackets:

x[1][1]																						#	5

x[1,2]																							#	6

NumPy	will	determine	the	data	type	of	matrices	from	the	data	types	of	its	elements.	For
example,	the	array	x	above	will	be	of	type	int	because	its	contents	are	integers.	If	instead
you	wanted	x	 to	 be	 floating	 point	 you	 could	 either	make	 one	 of	 the	 numbers	 explicitly
floating	point	or	you	could	specify	the	data	type	of	the	array	at	construction:

x	=	numpy.array([[1,2,3],[4,5,6]],	dtype=float)

Note	that	NumPy	has	its	own	data	types,	so	you	can	be	even	more	specific	about	which
kind	 of	 number	 you	 require,	 beyond	 the	 regular	 Python	 types.	 Here	 we	 specify	 32-bit
precision	numbers:

x	=	numpy.array([[1,2,3],[4,5,6]],	dtype=numpy.float32)

These	 special	 types	 are	usually	not	needed	 in	 regular	Python,	 but	 can	be	very	handy

when	interfacing	array	data	with	C	code	(see	Chapter	27).

The	shape	of	a	NumPy	array	(i.e.	number	of	rows,	columns)	is	determined	via:

x.shape																						#	(2,	3)

and	its	total	size	via:

x.size																							#	6	(=	2	x	3)

What	NumPy	calls	the	dimension	of	an	array	is	the	same	as	the	length	of	the	shape:

x.ndim																							#	2

len(x.shape)																	#	2

There	are	various	ways	of	making	arrays	of	a	standard	kind,	without	having	to	convert
other	 Python	 data	 structures.	 For	 example,	 we	 can	 create	 arrays	 of	 specified	 size
consisting	of	all	zeros,	all	ones	or	an	identity	matrix	(zeros	but	ones	on	the	diagonal):

x	=	numpy.zeros((2,3))												#	2	x	3	matrix	full	of	0.0

x	=	numpy.ones((3,2))													#	3	x	2	matrix	full	of	1.0

x	=	numpy.identity(3)													#	3	x	3	identity;	floating	point

x	=	numpy.identity(3,	numpy.int)		#	3	x	3	identity;	integer

The	regular	arithmetic	operations	work	on	NumPy	arrays,	and	operate	 in	an	element-
by-element	manner:

x	=	numpy.array([1.0,	2.0,	3.0])

y	=	numpy.array([3.0,	4.0,	5.0])

x	+	y				#	array([4.0,	6.0,	8.0])					i.e.	1+3,	2+4,	3+5

x	*	y				#	array([3.0,	8.0,	15.0])

x	–	y				#	array([-2.0,	-2.0,	-2.0])

x	/	y				#	array([0.33333333,	0.5,	0.6])

Also,	arithmetic	can	 involve	single	numbers,	whereupon	all	elements	of	 the	array	are
operated	on	with	that	number:

x	+	1.0		#	array([2.0,	3.0,	4.0])

y	*	5.0		#	array([15.0,	20.0,	25.0])

To	perform	other	mathematical	operations	on	arrays,	NumPy	has	the	array	equivalent	of
most	of	the	functions	found	in	the	math	module	and	these	work	efficiently	to	perform	the
operation	for	each	element	of	the	array.	As	well	as	NumPy	arrays	the	functions	will	accept
regular	Python	lists	or	tuples	as	input,	but	an	array	is	returned:

angles	=	numpy.array([30.0,	60.0,	90.0,	135.0])

radians	=	numpy.radians(angles)

cosines	=	numpy.cos(radians)				#	array([0.866,	0.50,	0.0,	-0.707])

numpy.log([10.0,	2.71828,	1.0])	#	array([2.302585,	1.0,	0.0])

numpy.exp([2.302585,	1.0,	0.0])	#	array([10.0,	2.71828,	1.0])

Array	operations	and	methods
As	well	as	accessing	arrays	with	explicit	index	numbers,	NumPy	supports	a	slice	notation

that	is	very	similar	to	lists	and	tuples	in	standard	Python.	However,	because	an	array	can
have	a	rank	greater	than	one,	like	a	matrix	which	has	both	rows	and	columns,	then	a	slice
expression	may	 be	 specified	 for	 each	 of	 the	 array	 dimensions,	 and	 a	 comma	 is	 used	 to
separate	the	expressions	for	the	different	dimensions:

x	=	numpy.array([[1,2,3],	[4,5,6]])

x[0]									#	array([1,	2,	3])								–	row	zero

x[0,:]							#	array([1,	2,	3])								–	row	zero,	as	above

x[:,2]							#	array([3,	6])											–	column	two

x[-1,:]						#	array([4,	5,	6])								–	last	row

x[:,1:]						#	array([[2,	3],[5,	6]])		–	column	one	onwards

x[1,0:2]					#	array([4,	5])											–	row	one,	first	two	columns

x[::-1,:]				#	array([[4,	5,	6],[1,	2,	3]])	–	reversed	rows

x[:,(2,1,0)]	#	array([[3,	1,	2],[6,	4,	5]])	–	new	column	order

Note	that	 the	 last	example	 listed	above,	where	the	columns	of	 the	matrix	are	shuffled
into	a	new	order	by	specifying	a	 tuple	of	 indices,	provides	a	way	of	sorting	a	matrix	so
that	 its	 rows	or	columns	appear	 in	numerical	order,	 comparing	values	at	 selected	 index.
Here	we	use	numpy.argsort()	 to	get	an	array	of	 indices	 (idx)	 that	 represents	 the	order	of
the	 numerical	 values	 in	 column	 one	 of	 x.	 These	 indices	 are	 then	 used	 to	 make	 a	 new
matrix	with	sorted	rows:

x	=	numpy.array([[4,4],	[5,1],	[8,3],	[7,2]])

idx	=	numpy.argsort(x[:,1])	#	array([1,	3,	2,	0])	–	column	one	order

x[idx,:]	#	array([[5,1],	[7,2],	[8,3],	[4,4]])

									#	re-ordered	rows,	by	column	one	value

We	can	 use	 the	 array	 index	 and	 slice	 notation	 not	 only	 to	 extract	 values,	 but	 also	 to
assign	values:

x	=	numpy.array([[1,1,1],	[1,1,1],	[1,1,1]])

x[1]			=	(2,3,4)		#		x;	array([[1,1,1],	[2,3,4],	[1,1,1]])

																		#		new	row	one

x[:,2]	=	(5,6,7)		#		x;	array([[1,1,5],	[2,3,6],	[1,1,7]])

																		#		new	column	two

						

y	=	numpy.zeros((2,2))

x[:2,:2]	=	y						#		x;	array([[0,0,5],	[0,0,6],	[1,1,7]])

																		#		replace	2	x	2	elements	with	0

x[:,:]	=	3								#		x;	array([[3,3,3],	[3,3,3],	[3,3,3]])

																		#		replace	all	elements	with	3

NumPy	 arrays	 have	 a	 number	 of	 inbuilt	 functions	 (methods)	which	 can	 be	 accessed
from	them	using	the	dot	notation.	Where	appropriate	we	can	often	specify	which	axis	(e.g.
rows	or	columns	for	a	matrix)	to	operate	on:

x	=	numpy.array([[3,6],

																	[2,1],

																	[5,4]])

x.min()										#	1	;	minimum	value

x.max()										#	6	;	maximum	value

x.max(0)									#	array([5,6])	;	maximum	value	row

x.max(axis=0)				#	same	as	above

x.sum()										#	21	;	summation	of	all	elements

x.sum(0)									#	array([10,	11])		;	add	rows	together

x.sum(1)									#	array([9,	3,	9])	;	add	columns	together

x.mean()									#	3.5		;	the	mean	value	of	the	elements

x.mean(1)								#	array([4.5,	1.5,	4.5])	#	mean	of	each	row

Note	that	the	specification	of	the	axis	argument	can	be	a	little	confusing	until	you	are
used	 to	 the	 way	 things	 work.	 Thus,	 for	 example,	 although	 axis	 1	 refers	 to	 columns,
x.sum(1)	will	add	up	the	elements	within	each	row;	it	 is	as	if	all	 the	columns	have	been
combined	into	one.

NumPy	cleverly	lets	you	create	a	new	array	by	changing	the	shape	of	an	existing	array.
For	 example,	 to	 create	 a	 2×3	matrix	 you	 can	 first	 create	 a	 vector	 of	 size	 6,	 here	 using
arange()	(the	array	equivalent	of	range()),	and	then	just	reshape	it:

x	=	numpy.arange(1,7)								#	array([1,	2,	3,	4,	5,	6])

x	=	x.reshape((2,	3))								#	array([[1,	2,	3],	[4,	5,	6]])

Of	 course	 the	 reshaping	 only	 works	 if	 the	 total	 size	 matches.	 You	 can	 even,	 for
example,	reshape	a	2×3	matrix	into	a	3×2	matrix:

y	=	x.reshape((3,	2))								#	array([[1,	2],	[3,	4],	[5,	6]])

Note	 that	 this	 does	 not	 reshape	 x	 itself	 but	 creates	 a	 new	 array	with	 the	 new	 shape.
Also,	the	reshaping	we	have	just	done	here	is	not	the	same	as	the	transpose	of	the	matrix,
where	rows	and	columns	are	switched.	The	transpose	of	the	matrix	is	given	by:

y	=	x.T																						#	array([[1,	4],	[2,	5],	[3,	6]])

or	equivalently

y	=	x.transpose()												#	array([[1,	4],	[2,	5],	[3,	6]])

Matrix	multiplication	is	exceedingly	simple	in	NumPy.	If	you	have	two	matrices	x	and
y	then	their	matrix	product	is	obtained	using	the	dot()	function:8

x	=	numpy.array(((1,1),(1,0)))

y	=	numpy.array(((0,1),(1,1)))

z	=	numpy.dot(x,	y)												#	array([[1,	2],	[0,	1]])

What	the	above	is	saying	in	terms	of	matrices	is	that

It	 might	 seem	 tempting	 to	 just	 use	 ‘*’	 for	 multiplication,	 and	 although	 this	 is	 a	 valid
operation	in	NumPy,	it	just	multiplies	the	two	matrices	together	element	by	element,	so	is
not	the	same	as	matrix	multiplication:

z	=	x	*	y																				#	array([[0,	1],	[1,	0]])

There	is	actually	a	specific	matrix	data	type	in	NumPy	that	does	allow	‘*’	to	be	used	for
matrix	multiplication,	but	it	is	not	used	very	often	and	it	is	generally	best	to	stick	with	the
commonly	used	array.	NumPy	also	has	 functions	 that	do	some	of	 the	 trickier	operations
involved	 in	 linear	 algebra;	 for	 example,	 there	 is	 a	 function	 to	 calculate	 the	 inverse	of	 a
matrix.	This	is	accessed	via	the	linalg	sub-module:

x	=	numpy.array(((1,1),(1,0)))

y	=	numpy.linalg.inv(x)						#	array([[0.,	1.],	[1.,	-1.]])

Note	 that	 the	 inverse	 is	 floating	point	even	 if	 the	original	matrix	 is	 integer.	What	 the
above	is	saying	in	terms	of	matrices	is	that

There	 is	much	more	 to	 the	 linalg	module,	 as	 described	 in	 the	NumPy	 documentation,9
including	various	decompositions	and	eigenvector	calculation.

Linear	algebra	examples
For	 the	 last	part	of	 this	chapter	we	will	work	 through	two	practical	examples	which	use
some	of	the	ideas	discussed	above.

Rotation	matrices
Often	we	want	 to	 consider	 transformations	 that	move	 and	 reorient	 coordinates	 but	 still
preserve	 their	 shape,	 i.e.	 the	 positions	 of	 the	 coordinates	 relative	 to	 one	 another.	 An
example	of	 this,	which	will	 be	discussed	 further	 in	 later	 chapters,	 is	 transformations	on
complete	molecular	structures,	in	which	case	we	are	interested	in	the	coordinate	positions
of	 the	 atoms	 that	make	 up	 the	molecule.	Although	 in	 some	 situations	we	may	want	 to
move	specific	atoms	to	generate	new	molecular	shapes,	often	we	don’t	want	to	distort	the
precious	 (experimentally	 determined)	 data	 and	merely	 wish	 to	 reposition	 the	molecule.
There	can	be	many	reasons	for	moving	a	molecule’s	coordinates,	a	few	of	which	include:
creating	 a	 view	 to	 make	 a	 graphical	 representation;	 setting	 up	 a	 system	 for	 energy
calculations	 and	 dynamic	 simulations;	 superimposing	 structures	 to	 find	 where
conformations	differ.	Whatever	 the	 reason,	a	commonly	 required	operation	 is	 rotation,	a
kind	of	coordinate	transformation	that	can	be	described	by	a	rotation	matrix.

The	simplest	rotations	to	consider	are	those	that	rotate	about	one	of	the	three	coordinate
axes.	First,	consider	rotation	by	an	angle	A	(specified	in	radians)	about	the	z	axis.	The	unit
vector	 along	 the	 z	 axis,	 (0,	 0,	 1)	 would	 not	 be	 affected	 by	 this	 rotation	 because	 it	 lies
exactly	along	the	direction	which	we	rotate	around;	effectively	it	gets	transformed	to	itself.
For	the	same	rotation,	the	unit	vector	along	the	x	axis,	(1,	0,	0),	would	naturally	be	altered
according	 to	 the	sine	and	cosine	of	 the	angle;	 it	moves	away	from	a	pure	x	direction	 to
gain	 a	 y	 component,	 specifically	 transformed	 to	 (cos	 A,	 sin	 A,	 0).10	 Similarly,	 the	 unit
vector	 along	 the	y	 axis,	 (0,	 1,	 0),	moves	 to	 gain	 an	 x	 component	 and	 is	 transformed	 to

(−sin	A,	cos	A,	0).	Thus,	combining	the	transformations	for	the	individual	axis	vectors,	the
rotation	by	an	angle	A	about	the	z	axis	is	given	by	the	matrix:

Note	that	this	indeed	transforms	things	correctly,	for	example:

A	rotation	by	an	angle	A	about	the	x	axis	is	similarly	given	by	the	matrix

And	a	rotation	by	an	angle	A	about	the	y	axis	is	given	by	the	matrix

It	turns	out	that	all	rotations,	about	any	direction,	can	be	composed	of	products	of	rotations
about	the	main	axes,	although	this	does	not	necessarily	help.	The	formula	for	the	rotation
about	an	arbitrary	direction,	n	(a	unit	length	axis	of	rotation),	by	an	angle	A	is	much	more
complicated,	and	we	won’t	describe	it	in	fine	detail.	It	turns	out	that	it	is	easiest	to	define	it
by	how	it	acts	on	an	arbitrary	vector	w:

Rn,Aw	=	(w	⋅	n)n	+	(cos	A)	(w	−	(w	⋅	n)n)	+	(sin	A)n	∧	w

Here	w	 ⋅	n	 is	 the	 sum	of	 the	element-wise	product	 (also	called	 the	 inner	product	or	dot
product)	of	the	two	vectors,	and	n	∧	w	is	what	is	known	as	the	cross-product.11	The	term
w	−	(w	⋅	n)n	can	be	thought	of	as	representing	the	projection	of	the	vector	w	along	the	axis
of	 rotation	 n.	 This	 component	 of	 the	 vector	 is	 not	 affected	 by	 the	 rotation,	 but	 the
remaining	 component	 is,	 hence	 the	 sine	 and	 cosine	 terms.	 Thinking	 in	 terms	 of	 two
vectors	we	can	explicitly	represent	the	calculations	involved	in	generating	the	dot	product
(a	single	number)	and	cross-product	(another	vector),	although	if	you	were	doing	this	 in
earnest	you	would	use	the	dot()	and	cross()	functions	in	NumPy:

vec1	=	(x1,	y1,	z1)

vec2	=	(x2,	y2,	z2)

dotProduct	=	x1*x2	+	y1*y2	+	z1*z2

crossProduct	=	(y1*z2-z1*y2,	z1*x2-x1*z2,	x1*y2-y1*x2)

Combining	 the	 expression	 for	 rotation	 about	 an	 arbitrary	 axis	with	 the	knowledge	of
how	to	calculate	dot	and	cross-products	we	can	derive	the	following	function	to	generate	a
rotation	matrix	in	Python.	It	takes	an	axis	direction	(specified	as	a	vector,	not	necessarily
of	unit	length)	and	an	angle	(in	radians)	to	define	a	rotation	matrix	that	will	perform	the
required	rotation	operation,	via	matrix	multiplication.

Note	how	 the	 example	makes	use	of	 the	 sin	 and	 cos	 trigonometric	 functions	 and	 the
square	 root	 function	 from	 the	 math	 module.	We	 will	 not	 go	 through	 the	 mathematical
details,	but	you	can	see	what	 the	construction	of	 the	matrix	 involves:	dividing	 the	 input
axis	by	its	 length	to	generate	an	axis	vector	of	unit	 length;	calculating	variables	for	sine
and	 cosine	 of	 the	 angle,	 to	 avoid	 repeated	 calculation;	 and	 construction	 of	 the	 final
rotation	matrix	using	the	required	expressions,	 involving	the	angle-derived	variables	and
axis	coordinates.

import	math

def	getRotationMatrix(axis,	angle):

		vLen	=	math.sqrt(sum([xyz*xyz	for	xyz	in	axis]))

		x,	y,	z	=	[xyz/vLen	for	xyz	in	axis]

		c	=	math.cos(angle)

		d	=	1-c

		s	=	math.sin(angle)

		R	=	[[c+d*x*x,			d*x*y-s*z,	d*x*z+s*y],

							[d*y*x+s*z,	c+d*y*y,			d*y*z-s*x],

							[d*z*x-s*y,	d*z*y+s*x,	c+d*z*z]]

		return	R

Note	 that	 this	does	not	use	NumPy	and	what	 is	 returned	 is	an	ordinary	Python	 list	of
lists,	but	it	can	be	converted	using	numpy.array(),	if	desired.	For	example,	in	the	following
we	get	a	NumPy	array	of	 the	rotation	matrix	representing	rotation	by	60	degrees	around
the	axis	(1,	1,	1)	so	that	its	transformation	can	be	applied	by	matrix	multiplication	using
the	dot()	function:

import	math

axis	=	(1,	1,	1)

angle	=	math.radians(60)		#	convert	from	degrees	to	radians

rotMatrix	=	numpy.array(getRotationMatrix(axis,	angle))

vector1	=	numpy.array([2,	-1,	-1])		#	A	test	vector

vector2		=	rotMatrix.dot(vector1)		#	[1,	1,	-2]

The	axis	could	be	passed	in	as	a	NumPy	vector	rather	than	an	ordinary	Python	vector;
the	function	works	in	either	case.

Torsion	angle
The	following	example	combines	use	of	both	the	math	module	and	NumPy.	The	objective
is	to	make	a	function	that	is	able	to	calculate	what	is	known	as	a	 torsion	angle.12	While
the	standard	kind	of	angle	involves	three	points,	which	we	can	imagine	as	a	‘V’	with	the
angle	being	the	amount	of	turn	between	the	two	ends	about	the	connecting	point,	a	torsion
angle	is	defined	by	four	points.	You	can	imagine	these	four	points	as	forming	a	‘Z’	shape
made	of	 three	 lines,	where	 the	 torsion	angle	 is	 the	 twist	between	 the	 first	and	 last	 lines.
Our	illustration	of	a	‘Z’	on	a	flat	page	is	a	torsion	angle	of	180°,	but	if	one	of	the	end	lines

came	directly	out	of	the	page	then	the	torsion	angle	would	be	90°.

Measuring	torsion	angles	will	be	helpful	in	later	chapters	where	the	four	defining	points
are	 atoms	of	 a	molecule	 and	 the	 lines	 connecting	 them	are	 chemical	bonds.	For	protein
molecules	especially,	the	torsion	angles	of	atoms	along	the	backbone	provide	quite	a	bit	of
useful	 information.	 In	 this	 context	 the	 torsion	 angle	 is	 defined	 to	 be	 the	 angle	 between
chemical	bonds	and	we	can	define	 these	bond	vectors	as	 the	difference	vectors	between
atom	positions:	what	we	have	to	add	to	one	atom	position	to	get	to	the	other.	The	central
chemical	bond	 (the	middle	 line	of	 ‘Z’)	 is	 the	axis	about	which	 the	 rotation	between	 the
other	bonds	is	measured.

We	now	provide	 the	 function	 that	 calculates	 the	 torsion	 angle.	Firstly,	we	 import	 the
required	NumPy	 and	mathematical	 functions.	Notice	 that	we	have	 not	 used	 the	NumPy
cross()	function	before;	this	calculates	the	cross-product	between	two	vectors,	which	was
mentioned	briefly	in	the	context	of	rotations.	If	you	imagine	two	directional	lines	in	three-
dimensional	space,	emanating	from	the	same	point,	the	cross-product	will	be	a	new	line	at
right	angles	to	both	the	other	lines.13

from	numpy	import	cross,	dot,	array

from	math	import	sqrt,	acos

A	 function	 is	 defined	which	 takes	 a	 list	 of	 four	 coordinate	 positions	 to	 calculate	 the
torsion	 angle	 between	 them.	Here	 the	 order	 of	 the	 input	 coordinates	 is	 critical;	we	will
measure	 the	 twist	 about	 the	 axis	 defined	 by	 the	 central	 two	 coordinates	 (coord2	 and
coord3).	We	will	not	describe	the	mathematics	behind	the	calculations	in	great	detail,	but
we	will	describe	the	basic	operation	performed	at	each	step.

Figure	9.3.	 A	cartoon	visualisation	of	the	torsion	angle	defined	by	a	sequence	of
four	points.	A	torsion	angle,	also	known	as	a	dihedral	angle,	is	the	measurement	of	the
amount	of	twist	between	two	planes	about	the	axis	of	their	intersection.	In	three
dimensions	a	torsion	angle	may	be	defined	by	four	distinct	points,	as	is	commonly	found
in	molecular	structures,	where	the	points	represent	atoms,	and	where	the	central	two	atoms
define	the	intersection	axis	and	each	end	atom	defines	the	direction	of	a	plane.

Inside	 the	function	 the	first	procedure	 is	 to	define	 three	vectors,	which	may	represent
the	bonds	between	 three	pairs	of	atom	coordinates,	by	subtracting	coordinates	 from	one
another;	the	resulting	difference	vector	represents	how	to	move	from	one	coordinate	to	the
other.	Two	perpendicular	cross-product	vectors	are	then	calculated:	for	the	first	and	second

vectors	and	for	the	second	and	third	vectors.	The	basic	idea	here	is	that	even	though	the
cross-product	vectors	are	perpendicular	 to	 the	second	(central)	vector	 they	will	have	 the
same	 angle	 of	 twist	 (relative	 to	 the	 central	 vector)	 between	 them	 as	 the	 first	 and	 third
vectors	 do.	 However,	 because	 they	 are	 perpendicular	 to	 the	 central	 vector	 the	 angle
between	them	is	the	angle	we	want:	the	angle	of	twist	around	the	axis	of	the	central	vector.
Hence,	 the	perpendicular	vectors	are	 then	used	 to	calculate	 three	dot	products.	The	 first
represents	the	‘shadow’	projection	of	one	vector	on	the	other,	which	naturally	depends	on
the	angle	between	them,	and	the	other	two	dot	products	will	simply	be	the	lengths	of	the
vectors	squared.	From	these	the	cosine	of	the	torsion	angle	is	obtained.

def	calcTorsionAngle(coord1,	coord2,	coord3,	coord4):

		bondVec12	=	coord1	-	coord2

		bondVec32	=	coord3	-	coord2

		bondVec43	=	coord4	-	coord3

		perpVec13	=	cross(bondVec12,	bondVec32)

		perpVec24	=	cross(bondVec43,	bondVec32)

		projection			=	dot(perpVec13,	perpVec24)

		squareDist13	=	dot(perpVec13,	perpVec13)

		squareDist24	=	dot(perpVec24,	perpVec24)

		cosine	=	projection	/	sqrt(squareDist13*squareDist24)

		cosine	=	min(1.0,	max(-1.0,	cosine))

		angle	=	acos(cosine)

		if	dot(perpVec13,	cross(perpVec24,	bondVec32))	<	0:

				angle	=	-angle

		return	angle

Note	 that	we	check	 to	make	 sure	 the	 cosine	 is	between	−1	and	+1;	we	might	have	a
small	error	in	the	calculation	from	the	use	of	floating	point	numbers	so	we	use	the	min()
and	max()	 functions	 to	 reinforce	 the	 limits.	The	angle	 is	calculated	by	using	 the	 inverse
cosine	 function	 acos()	 (meaning	 arccosine).	 Finally,	 we	 use	 a	 dot	 and	 cross-product	 to
check	whether	we	 actually	 calculated	 a	 negative	 angle;	 because	 the	 inverse	 cosine	will
only	give	a	value	between	zero	and	π	radians	(180°)	we	don’t	otherwise	know	whether	the
first	coordinate	is	‘above’	or	‘below’	the	plane	defined	by	the	other	three.	We	can	then	test
the	function:

from	numpy	import	array,	degrees

p1	=	array([2,1,1])

p2	=	array([2,0,0])

p3	=	array([3,0,0])

p4	=	array([3,1,-1])

angle	=	calcTorsionAngle(p1,	p2,	p3,	p4)

print(degrees(angle))				#	-90.0

1 	 NumPy	 relies	 on	 fast	 calculation	 routines	 from	 a	 library	 called	 LAPACK
(http://www.netlib.org/lapack/).

http://www.netlib.org/lapack/

2 	http://www.scipy.org/.
3 	 The	 core	 linear	 algebra	 part	 of	 LAPACK	 is	 called	 BLAS.	 For	 some	 operations	 it	 is
important	 to	 have	 a	 very	 efficient	 implementation	 of	 BLAS,	 such	 as	 is	 provided	 by
ATLAS	(http://www.math-atlas.sourceforge.net).
4 	It	follows	that	you	can	find	the	product	of	matrices	that	have	different	overall	sizes,	but
only	if	the	size	of	the	rows	in	the	first	is	the	same	as	the	size	of	the	columns	of	the	second.

5 	Mathematically	we	would	have:	 .
6 	Make	an	error	object.
7 	The	data	type	is	ndarray	in	NumPy	documentation.
8 	The	function	name	derives	from	the	dot	product	operation	commonly	applied	to	vectors.
9 	See	link	at	http://www.cambridge.org/pythonforbiology.
10 	This	is	assuming	that	the	rotation	follows	the	convention	known	as	the	right-hand	rule.
11 	Generating	a	vector	at	right	angles	to	both	of	the	vectors	operated	on.
12 	This	is	also	known	as	dihedral	angle.
13 	By	convention	this	direction	is	right-handed;	if	you	consider	a	typical	graph,	with	the	x
axis	 going	 across	 the	 bottom	 and	 the	 y	 axis	 going	 up	 on	 the	 left	 side,	 then	 the	 cross-
product	 will	 come	 out	 of	 the	 page.	 The	 length	 of	 the	 cross-product	 is	 also	 important
because	it	depends	on	the	sine	of	the	angle	between	the	two	directions.

http://www.scipy.org/
http://www.math-atlas.sourceforge.net
http://www.cambridge.org/pythonforbiology

10 	Coding	tips
Contents

Improving	Python	code

Code	clarity

Improving	speed

A	compendium	of	tips

Simple	operations

Strings

Collections

Loops

Functions

Comparisons

Miscellaneous

Improving	Python	code
This	chapter	is	concerned	with	improving	Python	code	and	we	will	illustrate,	using	short
code	 snippets,	 various	 tips	 that	 help	with	 speed,	memory	 use	 and	 coding	 clarity.	 There
may	be	 several	 aspects	 of	 a	 program	 that	we	 seek	 to	 improve,	 but	we	 can’t	 necessarily
expect	to	improve	all	of	them	all	of	the	time.	Often	optimisation	of	a	Python	program	is
about	 compromise;	 you	 may	make	 a	 program	 run	 faster	 at	 the	 expense	 of	 using	 more
memory.	Clarity	is	an	especially	important	aspect	that	we	will	be	mindful	of	when	making
suggestions,	and	in	general	we	recommend	making	code	more	easily	understood	over	mild
improvements	in	performance.	Finding	and	correcting	errors	in	code	can	take	a	long	time,
sometimes	 longer	 than	 the	program	 took	 to	write	 in	 the	 first	place,	 so	keeping	 the	code
easy	to	understand	is	especially	important.

A	basic	programming	approach	that	the	authors	often	follow,	and	which	may	be	helpful
for	others,	is	a	three-point	plan:

1.	 Firstly,	make	the	code	work:	an	inelegant	program	is	better	than	one	that	doesn’t
work.

2.	 Next	 do	 it	 properly:	 with	 a	 working	 reference,	 you	 can	 take	 a	 step	 back	 and
criticise	your	approach.

3.	 Then	 make	 it	 better:	 only	 once	 your	 program	 is	 working,	 and	 the	 general
approach	won’t	change,	is	it	worth	optimising.

During	 this	chapter	we	will	assume	that	 the	first	point	 is	covered	and	 think	about	 the
last	 two.	However,	 it	 is	worth	noting	upfront	that	 time	spent	on	optimising	(point	3)	has
the	tendency	for	ever	diminishing	returns,	so	we	will	try	not	to	be	too	obsessive.

Code	clarity
When	it	comes	to	writing	clear	Python	code	or	generally	being	‘elegant’	we	wouldn’t	want
to	 give	 fixed	 rules	 about	 something	 so	 subjective.	 However,	 we	 can	 show	 you	 some
extremes	 to	 avoid	 and	 highlight	 some	 of	 the	 more	 common	 conventions	 that	 other
programmers	 will	 be	 using.	 Considering	 the	 following	 versions	 of	 an	 example	 loop	 in
Python,	can	you	tell	what	it	is	supposed	to	be	doing	scientifically?

m	=	[]

for	a,	b	in	l:

		m.append(rf(a,	b,	54.7))

How	about	this:

transResult	=	[]

for	globalCoordPosX,	globalCoordPosY	in	mainCoordinateList():

		transResult.append(angleTransformationFunc(globalCoordPosX,

																																													globalCoordPosY,	54.7))

Or	maybe:

newCoords	=	[]

for	x,	y	in	coords:

		newCoords.append(rotate(x,	y,	54.7))

It	is	often	tempting	to	be	lazy	and	use	minimalist	names	for	variables,	but	in	the	long
run,	especially	if	you	have	to	maintain	the	code,	and	understand	what	it	means	at	a	later
date,	 this	 approach	 is	 often	 counterproductive.	Also,	 if	 you	write	 clear	 code	 in	 the	 first
place	there	is	much	less	need	to	document	your	programs.	In	contrast,	great	verbosity	is
not	always	what	is	called	for.	Some	verbosity	is	good,	but	too	much	obscures	what	you	are
trying	 to	 do,	 so	 keep	 it	 simple	 enough	 to	 be	 obvious.	 Single-letter	 variables	 can	 be
absolutely	fine	in	the	right	spot:	usually	where	they	are	used	immediately	(e.g.	in	a	loop)
or	used	for	simple	counters	etc.	The	verbose	example	above	also	hints	at	something	else
that	can	be	very	important,	which	is	the	choice	of	the	variable	names	per	se.	The	meaning
in	English	of	a	variable’s	name	should	give	a	huge	clue	to	what	it	does	or	represents,	so
call	a	variable	after	what	it	is.	And	if	it	is	a	collection,	like	a	list	or	set,	consider	using	the
plural	like	coords	or	using	a	hint	 like	coordList	or	coordSet,	so	you	never	have	 to	 think
what	you	have.

Some	 readers	may	already	have	noticed	 the	 frequent	use	of	camel	case	 in	 this	 book:
giving	names	humps	with	 capital	 letters	 like	 camelCase.	This	 is	merely	 convention	 and
not	a	 requirement	of	 the	 language.	While	you	will	 see	 it	 frequently	 in	Python	and	Java,
other	languages	more	frequently	have	underscores,	i.e.	under_score,	in	order	to	join	words
into	variable	names.	There	are	several	official	Python	style	recommendations,1	which	the
authors	admittedly	don’t	always	stick	to	in	the	book,	like	indenting	with	four	spaces	(that
would	mean	running	out	of	room	or	a	really	small	font),	but	adhering	to	the	spirit	of	these

and	not	being	too	silly	with	your	placement	of	whitespace	etc.	really	helps	in	the	long	run.

An	 important	 thing	 about	 coding	 conventions	 is	 that,	 as	 long	 as	 there	 is	 consistency,
you	can	impart	extra	information.	For	example,	for	variable	names	the	authors	follow	the
following	conventions.	 If	 a	variable	 is	global	 to	a	module,	 i.e.	outside	all	 functions	and
classes,	as	is	common	for	constants,	then	it	is	written	in	upper	case:

AVOGADRO_NUMBER	=	6.02214e23

GYROMAG_RATIOS	=	{'1H':267.513,	'2H':41.065,	'13C':67.262,	'15N':19.331,}

Function	and	regular	variable	names	begin	with	lower	case,	but	class	names	begin	with
upper	 case,	 so	 the	 following	 visually	 represent	 two	 completely	 different	 things	 in	 our
convention:

snack	=	BananaSplit()							#	Object	instance

twoHalves	=	bananaSplit()			#	function	call

Naturally,	functions	are	usually	distinguished	from	regular	variables	by	the	presence	of
parentheses.

Improving	speed
When	 it	 comes	 to	 making	 Python	 programs	 faster	 there	 are	 a	 few	 general	 points	 to
consider	before	going	through	specifics.	We	can	think	of	program	execution	time	in	terms
of	the	number	of	operations	performed	and	how	long	individual	operations	take.	Hence,	to
improve	speed	we	try	to	reduce	the	number	of	operations	and/or	perform	faster	individual
operations.	Also,	an	important	aspect	of	this	is	how	the	number	of	operations	scales	with
the	size	of	the	problem.	For	example,	the	time	taken	could	stay	roughly	constant,	increase
linearly	 or	 increase	 in	 an	 exponential	manner	 (to	 name	 only	 a	 few	 possibilities)	 as	 the
number	 of	 data	 items	 increases.	 Naturally	 the	 scaling	 depends	 on	 the	 algorithm	 in
question.	 Hence,	 if	 things	 seem	 too	 slow	 it	 is	 worth	 questioning	 whether	 a	 particular
algorithmic	approach	is	a	smart	one,	especially	if	the	number	of	data	items	is	large	and	the
speed	scales	poorly	with	the	size	of	this	data.	As	a	very	simple	example,	albeit	somewhat
contrived,	to	add	all	the	integer	numbers	between	a	and	b	you	could	do:

s	=	0

for	x	in	range(a,	b+1):

		s	+=	x

or

s	=	sum(range(a,	b+1))

or

s	=	(b+1-a)	*	(a+b)	/	2.0

The	first	two	examples	involve	an	operation	for	each	item	in	a	list	(albeit	explicitly	or
from	sum()),	so	their	execution	time	is	roughly	proportional	to	the	length	of	the	list.	The
last	formula	involves	a	small,	fixed	number	of	operations,	which	is	much	quicker	for	large
ranges,	although	you	could	argue	that	the	code	is	not	as	easy	for	a	novice	to	understand.

Whether	analyses	of	this	kind	are	worthwhile	will	depend	on	the	context	of	the	operation
within	 the	program	as	a	whole.	For	example,	 if	you	were	doing	 this	kind	of	 summation
many	times,	in	a	long	loop,	the	overall	gains	from	optimisation	would	be	significant,	but	if
it	 is	 only	 done	 occasionally	 or	 if	 you’re	 only	 adding	 a	 few	 values	 the	 difference	 is
probably	 negligible.	On	 the	whole	we	 advise	 opting	 for	 clarity	 if	 an	 operation	 is	 not	 a
performance	 bottleneck.	 Sometimes	 it	 is	 easy	 to	 spot	where	 the	 bottlenecks	 are	 in	 your
code	and	you	can	simply	time	how	long	something	takes,	as	illustrated	below.	However,	if
it	is	not	easy,	there	are	a	number	of	profiler	programs,	such	as	the	inbuilt	Python	module
cProfile,2	that	can	be	used	to	inspect	how	long	the	various	operations	take	and	thus	show
you	where	to	focus	attention.

Even	 when	 keeping	 the	 same	 basic	 Python	 algorithm,	 some	 surprisingly	 simple
programmatic	 changes	 or	 rearrangements	 can	 yield	 speed	 differences.	 This	 chapter	will
subsequently	 go	 through	many	more	 specific	 examples	 of	 these,	 but	 common	 things	 to
look	 out	 for	 are:	 avoiding	 unnecessary	 function	 calls	 (which	 are	 relatively	 slow	 in
Python),	taking	care	to	remove	unnecessary	operations	from	long	loops	and	making	good
use	 of	 Python	 collections.	 For	 the	 examples	 below	 we	 are	 using	 usingTimer(),	 as
described	in	Chapter	5,	as	a	decorator	to	wrap	the	test	code	in	a	function	that	times	how
long	the	operation	takes	to	run.	Firstly,	we	have	an	example	which	uses	the	math	module
to	take	the	square	root	for	a	range	of	numbers,	the	result	of	which	is	added	to	a	total:

import	math

@usingTimer

def	testFunc(x):

		y	=	0

		for	i	in	range(x):

				y	+=	math.sqrt(i)

		return	y

Testing	using	a	large	number	the	result	takes	just	over	2	seconds:3

testFunc(10000000)

>>>	Function	call	took	2.046932	seconds

>>>	21081849486.439312

Now	a	 small	modification	 is	done	 to	obtain	 sqrt	 at	 the	 start,4	 rather	 than	accessing	 it
repeatedly	from	the	math	module	inside	the	loop,	using	dot	notation:

from	math	import	sqrt

@usingTimer

def	testFunc2(x):

		y	=	0

		for	i	in	range(x):

				y	+=	sqrt(i)

		return	y

Testing	reveals	that	this	new	version	is	about	a	third	of	a	second	quicker:

testFunc2(10000000)

>>>	Function	call	took	1.672865	seconds

>>>	21081849486.439312

Rewriting	the	function	to	use	a	list	comprehension,	thus	avoiding	explicit	Python	loops,
is	quicker	still.	Note	that	in	this	version	we	have	also	avoided	constructing	large	lists.	In
Python	 2	we	would	 use	 the	 iterable	 xrange()	 instead	 of	 the	 list-creating	 range(),	 but	 in
Python	3	 the	 range()	 function	 has	 the	 same	behaviour	 as	 xrange()	 in	Python	 2.	And	by
using	round	parentheses	for	the	list	comprehension	we	make	a	list	generator	object,	rather
than	an	actual	large,	filled	list.

@usingTimer

def	testFunc3(x):

		yList	=	(sqrt(i)	for	i	in	range(x))				#	in	Python	use	xrange(x)

		return	sum(yList)

testFunc3(10000000)

>>>	Function	call	took	1.360537	seconds

>>>	21081849486.439312

Another	 common	 tactic	 to	make	Python	 run	 faster	 is	 to	 investigate	whether	 there	are
any	fast,	pre-constructed	libraries	that	you	can	import	(as	Python	modules)	to	do	the	job.
An	 obvious	 example	would	 be	 to	 use	NumPy	 for	mathematical	work	 involving	 arrays.
Here	 the	 imported	 code	 is	 written	 in	 a	 fast	 compiled	 language	 underneath	 and	 avoids
having	 to	 go	 through	 Python	 loops.	 An	 example	 of	 the	 gain	 from	 using	 numpy.array
objects	is	illustrated	below,	and	the	improvement	is	impressive,	over	nine	times	faster	than
the	original:

from	numpy	import	arange,	sqrt

@usingTimer

def	testFunc4(x):

		yArray	=	sqrt(arange(x))

		return	yArray.sum()

testFunc4(10000000)

>>>	Function	call	took	0.221356	seconds

>>>	21081849486.439312

If	there	is	a	requirement	to	make	a	Python	program	even	faster,	above	and	beyond	what
we	can	achieve	with	changes	to	coding	style,	then	we	might	consider	parallelisation	(using
multiple	processors)	or	write	a	module	in	a	fast	compiled	language	like	C.	We	cover	these
more	advanced	topics	in	Chapter	27.

A	compendium	of	tips
After	 more	 than	 enough	 moralising	 about	 coding	 style,	 we	 get	 to	 some	 simple	 tips	 of
things	in	Python	that	might	not	be	so	obvious,	especially	for	newcomers	to	Python.	Some
of	the	points	have	been	covered	in	earlier	chapters,	but	we	reproduce	them	here	to	give	a
single	resource.	This	really	is	just	a	big	list,	although	we	have	attempted	to	split	things	up
into	vague	subject	categories.

Many	of	 the	examples	we	give	here	are	simply	aspects	of	Python	 that	are	commonly
overlooked.	This	may	be	because	non-standard	options	are	easily	overlooked,	because	of

recent	additions	to	the	language	or	because	the	code	looks	a	bit	scary.	An	example	of	the
latter	would	be	the	following,	where	zip(*)	is	used	to	extract	separate	lists	of	the	first	and
second	elements	from	a	list	of	2-tuples.	So	instead	of	something	like:

data	=	[(2,5),(6,7),(8,7),(8,4),(2,5),(6,4),(3,2)]

xList	=	[pair[0]	for	pair	in	data]

yList	=	[pair[1]	for	pair	in	data]

You	might	see:

xList,	yList	=	zip(*data)

Without	wishing	to	suggest	anything	about	whether	the	zip(*)	approach	is	better,	it	is	a
proper	part	of	the	language	and	is	something	you	see	in	others’	code,	so	it	 is	good	to	be
aware	of	it.

Python	has	many	 features	and	 it	 is	easy	 to	overlook	some	of	 them,	even	 though	 they
might	be	useful.	A	very	simple	example	of	this	is	the	following	for	calculating	logarithms
in	any	base,	which	might	be	done	naturally	as	soon	as	one	learns	about	the	log()	function:

from	math	import	log

y	=	1e7

x	=	log(y)	/	log(10)

As	it	happens	the	base	for	the	logarithm	is	the	second	argument	to	the	log()	function,	so
instead	we	can	do:

from	math	import	log

y	=	1e7

x	=	log(y,	10)

This	shows	the	value	of	carefully	reading	the	Python	documentation.

Simple	operations
When	 taking	 powers	 of	 numbers	 the	 pow()	 function	 is	 slower	 than	 the	 **	 operator	 or
simply	using	multiplication.	So	instead	of:

v	=	pow(w,	1.5)

x	=	pow(y,	3)

try:

v	=	w**1.5								#	Faster

x	=	y*y*y									#	Faster	still

When	it	comes	to	taking	square	roots,	sometimes	you	can	avoid	the	operation	entirely,
e.g.	by	using	the	square,	which	is	quicker	to	calculate.	A	common	application	of	this	is	in
finding	 distances;	 the	 smallest	 square	 distance	 will	 still	 be	 the	 smallest	 overall.	 Thus,
instead	of	doing:

from	math	import	sqrt

for	x,	y	in	data:

		if	sqrt(x)	<	y:

				doSomething()

consider:

for	x,	y	in	data:

		if	x	<	y*y:

				doSomething()

The	 values	 of	 two	 variables	 can	 be	 swapped	 cleanly	 in	 one	 line	 by	 assigning	 the
elements	in	two	implicit	tuples.	Hence	the	three	lines	involving	a	temporary	variable:

temp	=	x

y	=	x

x	=	temp

become	one	neat	swap:

x,	y	=	y,	x

Different	 variables	 can	 be	 set	 to	 the	 same	 value	with	 a	 concatenated	 assignment,	 so
instead	of:

x	=	0

y	=	0

z	=	0

you	can	do:

x	=	y	=	z	=	0

This	does	not	work	for	variables	that	represent	collections.	Thus:

u	=	[]

v	=	[]

means	something	different	to:

u	=	v	=	[]

because	in	 the	first	example	we	have	two	separate	 lists,	and	in	 the	second	example	 they
both	represent	the	same	list.

Comparison	operators	can	be	concatenated,	e.g.	to	check	a	value	is	within	an	upper	and
lower	limit.	So	instead	of:

if	(lower	<	x)	and	(x	<=	upper):

		doSomething()

the	following	is	simpler:

if	lower	<	x	<=	upper:

		doSomething()

The	 Boolean	 and	 ternary	 (one-line	 if	 clause)	 operators	 can	 avoid	 simple	 multi-line
clauses	like:

aList	=	[1,	0,	0,	1,	1,	0]

for	x	in	aList:

		if	x:

				print('Yes')

		else:

				print('No')

This	 first	 alternative	 using	 Boolean	 logic	 works	 but	 is	 a	 little	 dangerous,	 because	 it
depends	on	both	the	alternatives	being	logically	true	(which	is	fortunately	the	case	here	for
the	strings	‘Yes’	and	‘No’):

aList	=	[1,	0,	0,	1,	1,	0]

for	x	in	aList:

		print(x	and	'Yes'	or	'No')

A	better	alternative	is	to	use	the	ternary	operator:

aList	=	[1,	0,	0,	1,	1,	0]

for	x	in	aList:

		print('Yes'	if	x	else	'No')

It	 is	 sometimes	 convenient	 to	 use	 or	 to	 provide	 a	 default	 value,	 so	 in	 the	 following
example	the	variable	is	assigned	to	None	if	the	function	call	returns	zero:

x	=	sum(myList)	or	None

Strings
When	joining	strings	into	longer	text	it	is	faster	to	use	a	separtor.join()call	than	redefining
the	string	each	time.	Thus	for	big	lists	avoid:

seqList	=	['C','A','T','G','G','C','T','C','T','C']

seqString	=	''

for	letter	in	seqList:

		seqString	+=	letter

when	you	can	do:

seqList	=	['C','A','T','G','G','C','T','C','T','C']

seqString	=	''.join(seqList)

though	in	later	versions	of	Python	the	latter	is	only	about	10%	quicker.

Similarly,	using	a	formatted	string	is	faster	than	string	concatenation:

line	=	'First:'	+	s1	+	'	Second:'	+	s2	+	'	Third:'	+	s3		#	Slower

line	=	'First:%s	Second:%s	Third:%s'	%	(s1,	s2,	s3)							#Faster

If	you	need	 to	get	 sequential	 letters	you	can	use	 the	handy	ord()	and	chr()	 functions,
which	 respectively	 fetch	 and	 decode	 character	 numbers	 (according	 to	 the	 Unicode
scheme).

startNum	=	ord('A')

tenLetters	=	[chr(startNum+i)	for	i	in	range(10)]

#	Gives	['A',	'B',	'C',	'D',	'E',	'F',	'G',	'H',	'I',	'J']

Removing	 characters	 from	 a	 string	 can	 be	 done	 with	 the	 often	 forgotten	 .translate()
method,	 though	this	 is	used	slightly	differently	 in	Python	3	compared	to	Python	2.	Here
we	remove	‘A’,	‘T’	and	‘,’	characters:

seq	=	'A,T,G,A,C,A,T,C,A,T,G,G,C,T,C,T,C'

#	Python	2

seq	=	seq.translate(None,	'AT,')

#	Python	3

transTable	=	str.maketrans('',	'',	'AT,')

seq	=	seq.translate(transTable)

#	Both	give	'GCCGGCCC'

Collections
To	see	if	a	collection	(list,	set,	tuple,	dictionary)	is	empty	just	test	whether	it	is	logically
true.	So	rather	than

if	len(myList)	==	0:

		doSomething()

instead	do:

if	myList:

		doSomething()

To	copy	a	list	you	can	use	the	list()	keyword	or	use	the	[:]	slice	notation:

duplicateList	=	list(firstList)

duplicateList	=	firstList[:]

A	slice	notation	can	also	be	used	to	get	a	reversed	copy	of	a	list	(remembering	that	the
last	element	of	the	slice	notation	is	the	step):

revList	=	firstList[::-1]

This	is	more	compact	than	copying	and	then	using	reverse():

revList	=	list(firstList)

revList.reverse()

or	using	the	reversed()iterator,	which	is	handy	when	going	through	loops	in	reverse	order
(for	 example,	 for	 x	 in	 reversed	 (a	 List):),	 but	 needs	 an	 explicit	 conversion	 to	 make	 a
duplicate	list:

revList	=	list(reversed(firstList))

For	dictionaries	don’t	forget	the	.get()	and	.setdefault()	methods.	So:

if	x	in	myDict:

		y	=	myDict[x]

else:

		y	=	defaultValue

becomes:

y	=	myDict.get(x,	defaultValue)

or	if	the	default	value	is	None	simply:

y	=	myDict.get(x)

If	the	default	value	should	be	actually	put	in	the	dictionary	then	you	can	do:

y	=	myDict.setdefault(x,	defaultValue)

In	Python	2	if	you	want	to	simply	enquire	whether	something	is	present	in	a	dictionary
it	is	simpler,	and	slightly	faster,	to	use	in	rather	than	call	has_key().

if	myDict.has_key(key):

		doSomething()

becomes:

if	key	in	myDict:

		doSomething()

In	Python	3	dictionaries	no	longer	have	the	has_key()	method.

It	may	 sometimes	 be	 helpful	 to	 construct	 a	 dictionary	 from	 a	 list.	Rather	 than	 going
through	a	loop,	a	list	of	2-tuples	with	(key,value)	pairs	can	be	used:

listData	=	[(1,'Apples'),	(2,	'Bananas'),	(3,	'Cherries')]

dictData	=	dict(listData)

print(dictData[2])

In	Python	2	to	do	the	reverse	you	can	use	.items()	to	get	a	list	of	all	pairs,	or	.iteritems()
to	get	an	iterator	object,	which	can	be	looped	though	like	a	list	but	which	yields	one	item
at	a	time,	and	so	saves	memory	by	not	making	the	complete	list:

for	k,	v	in	dictData.items():					#	Makes	a	list

		print('Key:	%d,	Value:	%s'	%	(k,v))

for	k,	v	in	dictData.iteritems():	#	Uses	an	efficient	iterator

		print('Key:	%d,	Value:	%s'	%	(k,v))

In	Python	3	there	is	no	.iteritems()	method	and	.items()	returns	an	iterable	view	on	the
items	in	the	dictionary,	rather	than	a	list.

The	zip	keyword	can	be	used	 to	combine	corresponding	elements	 from	multiple	 lists,
which	 is	 handy	 for	 dictionaries	 when	 you	 initially	 have	 separate	 lists	 for	 the	 keys	 and
values:

keys	=	[1,	2,	3]

values	=	['Apples',	'Bananas',	'Cherries']

listData	=	zip(keys,	values)	#		[(1,'Apples'),	(2,'Bananas'),	

(3,'Cherries')]

dictData	=	dict(listData)

The	 next	 tip	was	mentioned	 before,	 but	we	 repeat	 it	 in	 the	 compendium,	 and	 it	 can
reverse	 the	 above	 operation	 (although	 for	 dictionaries,	 .keys()	 and	 .values()	 also	 do	 the
job).	 If	you	already	have	data	 in	a	 list	of	 lists	 (or	 tuples)	 then	zip	can	neatly	extract	 the
elements	which	share	the	same	index.

listData	=	[(1,'Apples'),	(2,'Bananas'),	(3,'Cherries')]

numbers,		fruits	=	zip(*listData)

The	way	to	imagine	this	one	is	that	the	call	is	actually	zip((1,‘Apples’),	(2,	‘Bananas’),
(3,	‘Cherries’)),	with	the	*	extracting	the	items	in	the	list	as	separate	arguments.	The	zip
then	combines	the	first	elements	and	the	second	elements	together,	exactly	as	above.	This
is	neater	than	using	the	equivalent	list	comprehension:

listData	=	[(1,'Apples'),	(2,'Bananas'),	(3,'Cherries')]

numbers	=	[x[0]	for	x	in	listData]

fruits	=	[x[1]	for	x	in	listData]

The	zip	can	also	come	 in	handy	as	a	compact	notation	 for	 looping	 through	 two	 lists,
although	 in	Python	2	 it	 does	make	a	new	 list,	 so	 is	not	 so	 space	 efficient.	Accordingly,
something	like:

for	i,	aValue	in	enumerate(aList):

		bValue	=	bList[i]

		print(aValue,	bValue)

could	become:

for	aValue,	bValue	in	zip(aList,	bList):

		print(aValue,	bValue)

In	Python	 the	set	data	 type	 is	 sometimes	overlooked,	especially	by	 those	who	started
with	early	versions	of	Python.	Nonetheless,	it	is	exceedingly	useful	and	can	avoid	the	need
to	do	looping	with	lists,	as	long	as	order	is	not	important	(or	can	be	reconstructed).	There
is	a	caveat	to	such	set	operations,	however:	the	elements	must	be	hashable,	which	means
they	cannot	be	internally	modifiable,	a	requirement	to	keep	things	unique.	In	essence,	sets
can	contain	most	objects,	numbers,	strings,	tuples	and	frozen	sets	but	cannot	contain	other
sets,	lists	or	dictionaries.

Looking	up	elements	in	a	set	is	fast,	so	where	you	have	lots	of	look-ups	to	do,	instead
of:

for	x	in	firstList:

		if	x	in	veryLongList:

				doSomething()

you	can	make	things	quicker	with:

bigSet	=	set(veryLongList)

for	x	in	firstList:

		if	x	in	bigSet:

				doSomething()

Note	this	assumes	that	the	speed	gained	using	bigSet	for	look-up	makes	up	for	the	time
spent	creating	the	set	in	the	first	place.

Sets	provide	a	neat	way	of	removing	duplicates	from	a	list,	as	long	as	you	don’t	want	to
preserve	order,	you	just	convert	to	a	set	and	back	to	a	list	again:

myList	=	['apple',	'banana',	'lemon',	'apple',	'lemon',	'lemon']

uniqueList	=	list(set(myList))			#	['lemon',	'apple',	'banana']

To	get	the	common	elements	of	several	lists	using	set	operations	is	neat	and	efficient,
although	it	may	be	prudent	to	simply	work	with	sets	in	the	first	place:

a	=	['G','S','T','P','A']

b	=	['A','V','I','L','P']

intersection	=		set(a)	&	set(b)

commonList	=	list(intersection)		#		['A',	'P']

Likewise	to	find	elements	that	are	present	in	either	list:

a	=	['G','S','T','P','A']

b	=	['A','V','I','L','P']

union	=	set(a)	|	set(b)

combinedList	=	list(union)	#	['A',	'G',	'I',	'L',	'P',	'S',	'T',	'V']

When	constructing	lists	it	can	be	quicker	and	more	compact	to	use	list	comprehensions
than	loops.	For	example:

squares	=	[]

for	x	in	range(1001):		#	in	Python	2	use	xrange(1001)

		squares.append(x	*	x)

is	slower	than:

squares	=	[x*x	for	x	in	range(1001)]

Also,	 if	we	don’t	 need	 the	whole	 loop,	but	 just	 need	 to	 iterate	 though	 it,	we	can	use
round	parentheses	to	make	a	generator	object	(which	has	no	length	as	such	and	does	not
have	indices).

squares	=	(x*x	for	x	in	range(1001))		#	Using	()	not	[]

for	y	in	squares:

		doSomething()

squares[3]		#	Fail:	This	will	not	work	on	()	generators.

It	is	sometimes	overlooked	that	list	comprehensions	can	be	concatenated,	although	it	is
easy	to	take	this	sort	of	thing	too	far:

[(x,y)	for	x	in	range(3)	for	y	in	range(3)]

#	Gives	[(0,	0),	(0,	1),	(0,	2),

#								(1,	0),	(1,	1),	(1,	2),

#								(2,	0),	(2,	1),	(2,	2)]

[(x,y)	for	x	in	range(3)	for	y	in	range(x,3)	if	x+y	>1]

#	Gives	[(0,2),	(1,1),	(1,2),	(2,2)]

Sometimes	you	may	wish	to	construct	a	 list	of	blank	lists,	 to	put	 items	into	 later.	For
this	it	is	tempting	to	do:

data	=	[[]]	*	3

print(data)									#	Gives	[[],	[],	[]]

but	here	the	same	list	object	was	repeated	three	times	internally:

data[1].append(True)

print(data)									#	Gives	[[True],	[True],	[True]]

so	try	a	list	comprehension	instead:

data	=	[[]	for	x	in	range(3)]

data[1].append(True)

print(data)									#	Gives	[[],	[True],	[]]

Although	perhaps	not	such	common	operations,	the	any	and	all	keywords	can	be	used
to	find	whether	any	or	all	elements	in	a	list	hold	a	certain	condition.	Accordingly:

for	x	in	myList:

		if	x	<	2:

				doSomething()

				break

becomes:

if	any(x	<	2	for	x	in	myList):

		doSomething()

Likewise:

if	len(myList)	==	len([x<2	for	x	in	myList]):

		doSomething()

is	the	same	as:

if	all(x<2	for	x	in	myList]):

		doSomething()

For	obtaining	a	sorted	list,	the	inbuilt	sorted	function	is	useful	when	you	don’t	want	to
modify	the	original	list.	So	instead	of	:

b	=	list(a)

b.sort()

you	can	do:

b	=	sorted(a)

If	 you	 want	 to	 sort	 a	 list	 on	 something	 other	 than	 the	 items’	 innate	 value	 you	 can
construct	a	list	of	2-tuples	which	will	be	sorted	on	the	first	item	(which	contains	the	values
to	sort	on).	Here	we	sort	according	to	the	length	of	the	strings:

aList	=	['homer',	'bart',	'maggie',	'lisa',	'marge']

bList	=	[(len(x),	x)	for	x	in	aList]

bList.sort()

aList	=	[x	for	(lenX,	x)	in	bList]

#	Gives	['bart',	'lisa',	'homer',	'marge',	'maggie']

However.	 the	key	 option	 of	 sort()	 is	much	more	 nifty	 and	 allows	 you	 to	 pass	 in	 the
function	that	is	used	to	generate	the	sort	key:

aList	=	['homer',	'bart',	'maggie',	'lisa',	'marge']

aList.sort(key=len)

Sometimes	when	dealing	with	objects	we	would	like	to	sort	on	the	value	of	a	particular
attribute.	You	can	readily	write	a	function	to	fetch	that	attribute	(for	any	object	in	the	list,
as	required	by	the	sort	operation),	and	thus	generate	a	key	for	the	sort.	So,	for	example:

def	getSortAttr(obj):

		return	obj.something

objList	=	[objA,	objB,	objC]

objList.sort(key=getSortAttr)

However,	 you	 can	 also	use	 the	key	 option	 in	 combination	with	 the	 operator	module.
The	function	operator.attrgetter()	uses	the	name	of	an	attribute	to	create	a	separate	on-the-
fly	function5	which	sends	back	the	value	of	an	attribute,	which	in	this	case	is	the	value	to
sort	with.	So	an	alternative	to	the	above	is:

from	operator	import	attrgetter

objList	=	[objA,	objB,	objC]

objList.sort(key=attrgetter('something'))	#	Name	of	attribute	as	a	string

The	 functions	 operator.itemgetter	 (for	 selecting	 items	 in	 a	 collection)	 and
operator.methodcaller	(for	invoking	class	functions)	can	also	be	used	in	a	similar	manner.

Loops
We’ve	 been	 using	 enumerate()	 throughout	 the	 book,	 but	 it	 is	 still	 something	 novices
occasionally	overlook.	So	instead	of:

myList	=	['e',	'f',	'g']

for	i	in	range(len(myList)):

		print(i,	myList[i])

do:

myList	=	['e',	'f',	'g']

for	i,	val	in	enumerate(myList):

		print(i,	val)

And	from	Python	2.6	you	can	use	a	second	argument	to	specify	the	start	point	for	the
index:

for	i,	val	in	enumerate(myList,	5):

		print(i,	val)

#	Gives:

#	5	e

#	6	f

#	7	g

In	Python	2	when	looping	though	sequential	numbers,	such	as	indices,	consider	using
xrange()	rather	than	range().	This	saves	space	because	it	only	yields	numbers	on	demand.
Helpfully	an	xrange	still	has	a	length	and	can	be	indexed.	In	Python	3	xrange	is	effectively
renamed	range	and	replaces	the	old	list	constructor.

for	x	in	xrange(100,	1000000):	#	Doesn't	make	all	the	numbers	(Python	2)

		doSomething()

To	make	an	indefinite6	loop,	use	a	while	loop	that	tests	something	that	is	logically	true,
although	don’t	forget	to	break	out	of	the	loop	eventually:

while	1:

		test	=	doSomething()

		if	test:

				break

Because	 loops	 are	 constructs	 that	 allow	 you	 to	 repeat	 operations	 many	 times,	 when
thinking	 about	 speed	 a	 general	 principle	 is	 to	 put	 as	 few	 operations	 into	 the	 loop	 as
possible.	 For	 example,	 when	 doing	 function	 calls	 in	 a	 loop	 to	 construct	 a	 list	 using
.append(),	 a	 speed	 improvement	 can	be	made	 if	 the	dot	 notation	 call	 is	 done	only	once
outside	the	loop.	For	example:

aList	=	[]

for	x	in	someBigList:

		if	testFunc(x):

				aList.append(x)

becomes	the	faster:

aList	=	[]

addToList	=	aList.append

for	x	in	someBigList:

		if	testFunc(x):

				addToList(x)

Related	to	the	above,	if	you	know	how	long	a	list	will	be	it	is	faster	to	pre-construct	it	in
a	quick	manner	and	curate	it	using	indices,	rather	than	appending	repeatedly.

aList	=	[0]		*	n

bList	=	[0]		*	n

for	i	in	range(n):

		aList[i]	=	someCall(i)

		bList[i]	=	anotherCall(i)

If	 you	 need	 two	 loops	 and	 have	 to	 break	 out	 of	 both	 of	 them,	 cunning	 use	 of	 else,
continue	and	break	can	do	the	job	without	having	to	set	any	flags:

for	a	in	oneList:

		for	b	in	anotherList:

				if	discoverSomething(a,b):

						#	Quit	inner	loop	and	subsequently	the	outer	too

						break

		else:

				#	Without	a	break	we	get	here	at	the	end	of	the	inner	loop

				#	Continuing	the	outer	loop	the	next	break	is	skipped

				continue

		#	Only	get	here	due	to	the	first	break

		break

If	you	have	a	loop	that	may	cause	an	error	(throw	an	exception)	then	it	may	be	tempting
to	 do	 a	 precautionary	 check	 to	 stop	 errors	 before	 they	 occur.	 However,	 it	 is	 generally
quicker	to	let	the	exception	happen	and	then	catch	it	 in	a	safe	way.	This	is	because	with
try:	there	is	no	repeated	checking	and	extra	time	is	taken	only	if	an	error	is	encountered.
So,	for	example:

for	x	in	bigList:

		if	rareEvent(x):

				rareEventOccurred(x)

		else:

				commonTask(x)

can	be	modified	into:

for	x	in	bigList:

		try:

				commonTask(x)

		except	SpecialException:

				rareEventOccurred(x)

Functions
For	 keeping	 code	 tidy,	 depending	 on	 circumstances,	 you	 can	 consider	 collecting	 a
function’s	arguments	into	a	dictionary	before	it	is	called:

animal	=	longFunctionName(name='Benny',	age=9,	furColor='black',

																										legs=4,	tail=True)

The	above	can,	if	it	helps,	be	changed	to:

kwds	=	dict(name='Benny',

												age=9,

												furColor='black',

												legs=4,

												tail=True)

x	=	longFunctionName(**kwds)

If	you	need	to	collect	function	arguments	for	calling	some	other	function	internally,	but
don’t	want	to	have	to	state	them	explicitly,	you	can	collect	them	with	‘*’	notation	and	pass
them	on	untouched.

def	func1(a,	b,	c,	*args):

		d	=	func2(*args)

		…

To	 call	 a	 different	 function	 depending	 upon	 a	 value	 you	 could	 use	 conditional
statements:

if	x	=	1:

		funcA()

elif	x	=	2:

		funcB()

elif	x	==3:

		funcC()

or	perhaps	more	elegantly	do	a	dictionary	look-up:

funcDict	=	{1:funcA,	2:funcB,	3:funcC}

funcDict[x]()

Memoization	is	a	handy	technique	if	you	have	a	slow	operation,	but	the	operation	may
be	repeated,	so	you	can	pass	back	the	result	from	last	time	(given	the	same	inputs)	rather
than	calculating	again.	In	Python	we	can	implement	this	in	a	function	by	using	a	default
argument	such	as	a	dictionary.	It	sometimes	causes	trouble	if	a	dictionary	or	list	is	used	for
a	default	function	argument,	because	the	collection	is	not	automatically	renewed	each	time
the	function	is	called	(the	same	object	is	always	used).	However,	for	memoization	we	can
exploit	this	to	make	a	function	cache.

def	verySlowCalcOnSimpleData(data,	cache={}):

		key	=	getCacheKey(data)	#	This	could	be	as	simple	as	making	a	tuple

		answer	=	cache.get(key)

		if	answer	is	not	None:		#	Assumes	the	answer	is	never	None

				return	answer	#	Quick	response

		answer	=	someVerySlowCalculation(data)

		cache[key]	=	answer	#	Store	the	result	for	next	time

		return	answer

Note	that	the	input	data	itself	can	sometimes	be	used	as	a	key	to	the	cache	dictionary,
but	in	general	a	key	may	need	generating	so	that	it	can	be	used	in	a	dictionary.

Comparisons
Although	 we	 have	 covered	 comparison	 operators	 in	 earlier	 chapters,	 there	 are	 a	 few
occasions	where	it	is	easy	to	get	unexpected	results	with	what	may	seem	like	fairly	simple
tests.	For	example,	you	might	do	the	following	to	detect	an	undefined	value:

if	not	x:

		#	Do	something	if	x	is	logically	false

This	will	work	in	all	situations	where	the	variable	has	a	value	that	is	logically	false,	like
0.0,	None	 or	 an	 empty	 list.	However,	 sometimes	 you	 actually	want	 the	 test	 to	 be	more
specific,	for	example,	to	catch	None	when	the	variable	is	undefined	but	not	catch	0.0	when
it	is	a	useful	numeric	value.	In	this	case	the	test	should	be:

if	x	is	None:

		#	Does	not	get	here	if	x	is	zero

Clearly,	 sometimes	 you	 do	 actually	want	 the	more	 general	 test	 ‘if	 not	 x’	 to	 catch	 all
logically	false	values,	depending	on	the	situation.

When	 comparing	 whether	 two	 things	 are	 the	 same	 we	 can	 use	 either	 ‘==’	 or	 ‘is’.
Remember	that	the	double	equal	sign	checks	whether	the	two	items	have	the	same	value,
but	the	is	keyword	checks	whether	they	are	the	same	Python	object.	This	can	be	important
where	 there	 are	 two	different	 objects	 but	 they	hold	 the	 same	value.	For	 example,	when
comparing	integer	and	floating	point	numbers:

x	=	5.0		#	Floating	point

y	=	5				#	Integer

if	x	==	y:

		#	Succeeds;	same	values

if	x	is	y:

		#	Fails;	different	objects

Hence	when	working	with	numbers	 ‘==’	 is	 usually	what	we	want.	Conversely,	when
working	with	more	complicated	Python	objects	 it	 is	often	best	 to	use	the	is	keyword,	so
you	know	you	really	have	the	same	object,	because	classes	can	actually	be	written	to	yield
the	same	value	in	a	comparison,	even	if	they	are	not	the	same	entity.

In	many	 situations	 it	 is	 useful	 to	 act	 according	 to	what	 the	data	 type	of	 an	object	 is.
Remembering	that	we	can	get	the	data	type	of	a	Python	object	with	the	inbuilt	type(),	we
could	check	to	see	if	a	variable	is	of	a	specific	type:

if	type(x)	is	list:

		#	Do	something	only	if	x	is	a	list

The	above	example	relies	on	the	fact	that	the	keyword	list	represents	a	data	type,	even
though	 we	 often	 use	 it	 as	 a	 function,	 to	 create	 lists.	 Even	 if	 there	 is	 not	 a	 convenient
keyword,	 in	 Python	 2	 we	 can	 get	 hold	 of	 all	 inbuilt	 Python	 data	 types	 via	 the	 types
module,	e.g.

import	types

print(dir(types))	#	List	things	in	the	module

In	 Python	 3	 the	 types	 module	 exists	 but	 does	 not	 include	 data	 types	 with	 built-in
keywords	(like	int	or	list).	This	module	enables	you	to	do:

if	type(x)	is	types.FunctionType:

		#	Do	something	only	if	x	is	a	function

The	comparison	data	type	could	also	be	generated	within	the	statement	using	the	right
kind	of	object	(here	a	list,	albeit	an	empty	one):

if	type(x)	is	type([]):

			#	Do	something	only	if	x	is	a	list

Type	checking	can	also	be	done	using	the	inbuilt	isinstance()	function:

if	isinstance(x,	list):

			#	Do	something	only	if	x	is	a	list

And	 this	 is	especially	handy	 if	 there	are	 several	different	data	 types	 that	you	want	 to
catch.	For	example,	we	may	wish	to	do	something	if	the	variable	is	a	list	or	a	tuple	or	a
set.

if	isinstance(x,	(list,	tuple,	set)):

			#	Do	something	if	x	is	a	list,	tuple	or	set

Alternatively,	this	could	be	achieved	in	a	more	verbose	manner	by	combining	multiple
tests	with	the	OR	operator.	Using	isinstance	is	helpful	when	working	with	object	classes
and	their	hierarchies,	especially	considering	that	with	old-style	Python	version	2	classes7
using	type()	doesn’t	help:

class	Something:									#	Python:	old	style

		def	func(self):

				print("First	class")

class	Different:

		def	otherFunc(self):

				print("Second	class")

a	=	Something()

b	=	Different()

type(a)	is	type(b)							#	True;	not	what	you	might	expect!	Python	only

																									#	These	are	both	type	'instance'

isinstance(b,	Something)	#	False

isinstance(a,	Different)	#	False

As	 mentioned	 before,	 isinstance	 can	 also	 be	 used	 when	 one	 object	 is	 a	 subclass	 of
another.	Taking	an	example	from	Chapter	7	where	a	Protein	is	a	subclass	of	Molecule:

myProtein	=	Protein('Enzyme	A',	sequence)		#	a	pre-specified	sequence

if	isinstance(myProtein,	Molecule):

		#	Succeeds	:	Classes	are	different,	but	Protein	is	a	subclass	of	Molecule

In	Python	version	2	the	comparison	operations	(such	as	==,	!=,	<,	>,	<=,	>=	etc.)	will

work	with	all	different	data	 types,	and	while	we	might	expect	 to	compare	floating	point
numbers	with	integers	we	can	actually	compare	all	types,	whether	it	makes	much	sense	or
not:

a	=	'Banana'	#	A	text	string

b	=	5								#	An	integer

a	==	5							#	False;	as	you	might	expect

a	>	b								#	True	in	Python	2;	arbitrary,	but	consistent

Where	a	value	comparison	doesn’t	make	too	much	sense	Python	arbitrarily	deems	one
value	 to	be	greater	 than	 the	other,	 including	for	custom	classes,	although	 it	always	does
this	in	a	consistent	way.	This	may	seem	odd,	but	such	comparisons	are	handy	in	various
situations.	For	example,	you	can	sort	a	list	containing	items	of	mixed	data	types	and	get
the	 same	 result	 each	 time.	 However,	 it	 can	 be	 argued	 that	 allowing	 meaningless
comparisons	 allows	 errors	 to	 go	 unnoticed.	 It	 is	 for	 perhaps	 this	 reason	 that	 in	 Python
version	 3	 comparisons	 cannot	 be	made	 between	 incompatible	 types,	 so	 here	 comparing
integer	with	floating	point	works,	but	integer	and	string	does	not.

When	dealing	with	comparisons	and	arrays	created	using	the	NumPy	module,	we	have
to	 be	 especially	 careful.	 It	 might	 be	 expected	 that	 the	 comparison	 operations	 with	 a
numpy.array	object	give	back	a	 single	True	or	False,	as	 is	generally	 the	case	 in	Python.
However,	they	actually	give	back	arrays	of	True	and/or	False:

from	numpy	import	array

a	=	array([1,	0,	9,	1])

b	=	array([2,	0,	3,	1])

print(a	==	b)				#	Gives	array([False,	True,	False,	True])

As	you	can	see,	the	array	comparisons	are	element-wise	comparisons.	While	this	kind
of	 result	 can	 be	 handy	 in	 a	 NumPy	 context	 it	 has	 some	 important	 consequences.	 For
example,	 unlike	with	 lists,	 sets	 or	 tuples,	 a	NumPy	 array	 comparison	 cannot	 be	 placed
directly	in	a	logic	test:

if	a	==	b:

		#	Never	gets	here!	Raises	a	ValueError

Also,	 although	 you	 can	 put	 such	 arrays	 in	 a	 list,	 the	 list	 cannot	 be	 sorted	 (because
sorting	needs	plain	True	or	False	to	come	from	value	comparison).

myList	=	[a,	b]

myList.sort()				#	Fails!	Raises	a	ValueError

Miscellaneous
Lastly,	we	move	on	to	the	last	few	tips	that	don’t	seem	to	fit	in	the	other	categories.

To	write	some	test	code	in	Python	that	is	not	run	when	the	file	is	imported	as	a	module,
but	which	is	run	when	the	file	is	used	directly,	the	__name__	attribute	for	the	module	can
be	inspected.	This	attribute	belongs	 to	 the	 local	Python	file	and	is	only	equal	 to	 the	 text

string	‘__main__’	when	called	directly.

if	__name__	==	'__main__':

		testSomething()

When	performing	 imports	 it	 is	good	practice	 to	 issue	 them	at	 the	 top	of	 a	 file	where
possible,	 so	 you	 can	 see	 at	 a	 glance	 what	 is	 being	 used.	 Also,	 doing	 imports	 outside
functions	 is	 generally	 quicker.	 However,	 imports	 inside	 function	 definitions	 may	 be
needed	to	avoid	circular	imports	(i.e.	a	imports	b	which	imports	a	which	imports	b	…).	So
avoid:

def	func(x,	y):

		from	SomeModule	import	someFunction

		someFunction(c)

when	you	can	do:

from	SomeModule	import	someFunction

def	func(x,	y):

		someFunction(x)

Importing	 everything	 from	 a	 module	 with	 the	 ‘*’	 notation	 slows	 down	 execution
(including	because	it	interferes	with	the	optimisation	of	the	Python	compiler).	It	may	also
lead	to	other	problems:

from	library	import	*									#	Generally	bad

from	somethingElse	import	*			#	Even	worse	to	do	it	twice	in	one	module

The	problem	 is	 that	you	may	not	be	sure	what	you’ve	 imported,	and	you	might	have
imported	something	with	a	name	that	clashes	with	one	of	the	internal	names	or	one	of	the
names	 from	another	 import.	Also,	 if	you	do	 this	 for	multiple	modules	 it	won’t	be	at	 all
clear	which	thing	comes	from	which	module.	If	you	need	lots	from	the	imported	modules
it	is	better	to	consider	using	dot	notation,	if	you	don’t	want	to	make	imports	explicit.	So,
for	example:

import	library

import	somethingElse

x	=	library.magic()

y	=	somethingElse.magic()

If	you	need	to	know	what	attributes	and	methods	an	object	has,	try	the	dir()	keyword:

dir(obj)

Or	maybe	try	the	pydoc	graphical	interface	and	have	a	browse:

pydoc	-g	#	Python	2

pydoc3	-b	#	Python	3

1 	PEP8:	https://www.python.org/dev/peps/pep-0008/.
2 	From	Python	2.5.

https://www.python.org/dev/peps/pep-0008/

3 	With	a	3.2-GHz	64-bit	AMD	processor.
4 	If	we	use	the	original	math	import	we	could	do	sqrt	=	math.sqrt.
5 	A	callable	object.
6 	Some	might	say	infinite.
7 	 A	 new-style	 class	 in	 Python	 2	 would	 be	 defined	 using	 class	 Something(object):.	 In
Python	3	all	classes	are	new	style	and	do	not	need	to	subclass	object.

11 	Biological	sequences
Contents

Bio-molecules	for	non-biologists

Proteins

DNA

Transcription

Translation

DNA	sequencing

Using	biological	sequences	in	computing

Translate	a	DNA	sequence	into	protein

Estimate	molecule	mass

Simple	sub-sequence	properties

Finding	a	sequence	motif

GC	content	of	DNA

Protein	hydrophobicity	plot

Measuring	repetitiveness

Protein	isoelectric	point

Obtaining	sequences	with	BioPython

Reading	and	writing	FASTA	files

Accessing	public	databases

Bio-molecules	for	non-biologists
This	 section	 is	 aimed	 at	 programmers	 who	 do	 not	 have	 much	 biological	 training,	 to
explain	 a	 little	 about	where	 biological	 sequences	 come	 from.	Naturally	we	must	 omit	 a
large	 amount	 of	 detail	 if	 we’re	 going	 to	 keep	 things	 short	 enough	 for	 this	 book.	 The
emphasis	will	be	about	how	information	is	stored,	transferred	and	interpreted	in	biological
systems	 to	 ultimately	 give	 the	 chemistry	 of	 life.	 We	 leave	 details	 of	 the	 current
understanding	of	the	precise	mechanisms	to	your	enthusiasm	and	further	reading.

Life	 can	be	 thought	 of	 as	 a	 set	 of	 controlled	 chemical	 reactions	 and	 interactions	 that
build	 and	 maintain	 organisms.	 When	 there	 is	 no	 control	 over	 biochemistry	 the	 raw
materials	of	an	organism	soon	succumb	to	decay;	complex	biological	molecules	turn	into

much	simpler,	more	stable	forms.	The	specific	set	of	chemical	reactions	and	interactions
that	 allow	 life	 to	 live	 and	 reproduce	 are	 mostly	 directed	 by	 protein	 molecules	 with
occasional	roles	for	RNA	molecules.1

Proteins
The	 different	 kinds	 of	 protein	 molecules	 that	 direct	 the	 processes	 needed	 for	 life	 are
different	because	they	are	made	up	of	different	sequences	of	smaller	entities,	amino	acids
(see	Figure	11.1).	This	sequence	specifies	their	shape,	physical	properties,	movement	and
chemical	 activity.	 There	 are	 20	 common	 amino	 acid	 types	 that	 are	 joined	 together	 into
chains	of	varying	length	to	make	the	various	proteins.	The	amino	acids	are	joined	together
into	a	linear	sequence	by	chemical	bonds	that	are	referred	to	as	peptide	links,	thus	protein
chains	are	 frequently	 referred	 to	as	polypeptides.	Most	proteins	adopt	a	particular	 three-
dimensional	 arrangement	 as	 segments	 of	 the	 amino	 acid	 entities	within	 the	 chain	 come
together	into	one	or	more	compact	globules.	The	final	shape	of	a	protein	is	usually	vitally
important	 for	 its	 function,	 and	 this	 shape	 is	 governed	 by	 the	 combination	 and	 order	 of
amino	 acids	 in	 the	 polypeptide	 chain.	However,	 it	 should	 be	 noted	 that	 the	 relationship
between	 protein	 sequence	 and	 structure	 is	 exceedingly	 complex,	 such	 that	 we	 cannot
generally	predict	a	protein’s	structure	directly	from	its	sequence	alone.

Figure	11.1.	 A	protein	amino	acid	sequence	and	the	polymer	molecule	it	represents.
A	protein	is	a	polypeptide	chain	consisting	of	a	sequence	of	amino	acid	residues,	and	this
may	be	represented	in	several	different	ways.	In	the	simplest	form,	one-letter	codes	are
listed	sequentially,	where	each	letter	represents	a	different	kind	of	amino	acid.	The
sequence	may	also	be	represented	by	three-letter	amino	acid	codes.	For	both	kinds	of
sequence	the	amino	acids	are	listed	in	order	starting	from	the	N-terminus,	which	has	an
unlinked	amine	chemical	group.	Such	sequences	are	really	just	simplifications	of	the
underlying	chemical	structure,	which	in	most	biological	situations	adopts	a	particular
compact	three-dimensional	folded	structure.

The	amino	acids	 that	are	 linked	 into	a	protein	chain	are	often	 referred	 to	as	residues.
The	origin	of	this	term	is	somewhat	archaic;	it	stems	from	the	early	days	of	biochemistry.
When	 the	 sequence	 of	 amino	 acids	 in	 a	 protein	 was	 first	 discovered,	 it	 was	 done	 by
carefully	 removing	only	 the	 amino	 acid	 at	 the	 start	 of	 the	 protein	 chain	 using	 chemical
cleavage.	This	 removed	one	kind	of	amino	acid,	separating	 it	 from	the	remainder	of	 the
protein,	 and	 the	 amino	 acid	 was	 left	 as	 a	 chemical	 residue	 (i.e.	 the	 leftover)	 from	 the
cleavage	 reaction.	 Successive	 rounds	 of	 amino	 acid	 removal,	 on	 a	 shortening	 protein
chain,	gives	successive	chemical	residues,	each	of	which	corresponds	to	a	particular	kind
of	 amino	 acid.	Thus	 the	order	 of	 the	kinds	of	 chemical	 residue	 reveals	 the	order	 of	 the
amino	 acids	 that	made	 up	 the	 protein	 chain.	 Today	 you	will	 see	 the	 term	 residue	 used
when	 one	wants	 to	 refer	 to	 a	 particular	 amino	 acid	 in	 a	 particular	 position	 of	 a	 protein
chain.	 The	 term	 is	 also	 frequently	 used	 in	 the	 same	way	 for	 the	 entities	 that	 make	 up
chains	 of	 DNA	 and	 RNA,	 the	 other	 types	 of	 biological	 molecules	 that	 have	 a	 linear
sequence.

When	 a	 protein	 is	 constructed	 it	 is	made	 inside	 a	 living	 cell	 by	 joining	 amino	 acids
together	via	peptide	links,	in	the	correct	order	for	that	type	of	protein2	in	a	process	called
translation.	The	information	about	which	one	of	the	20	types	of	amino	acid	is	joined	to	the
previous	one	 in	 the	sequence,	at	 the	growing	end	of	a	protein	chain,	 is	determined	by	a
different	kind	of	molecule;	an	RNA.	RNA	molecules	are	also	made	up	of	chains	of	smaller
entities,	which	in	this	case	are	called	nucleotides	(completely	different	to	amino	acids	that
are	 found	 in	 proteins).	 RNA	molecules	 in	 this	 instance	 can	 be	 thought	 of	 as	messages,
because	 they	are	 relaying	 the	 information	 to	create	proteins.	The	origin	of	 the	 sequence
information	that	RNA	transfers	to	protein	ultimately	comes	from	DNA,	arguably	the	most
famous	 of	 the	 biological	molecules.	 It	 should	 be	 noted	 that	 not	 all	 RNA	molecules	 are
used	to	make	proteins;	the	non-coding	RNAs	have	various	other	roles	in	a	cell.

The	 sequence	 of	 components	 in	 RNA	 is	 essentially	 a	 short-lived	 copy	 of	 the
information	 that	 is	 stored	 in	 molecules	 of	 DNA.	 So	 even	 though	 the	 actual	 chemical
reactions	 of	 life	 mostly	 happen	 because	 of	 proteins,	 the	 blueprint	 of	 how	 to	 make	 the
proteins	 comes	 from	 the	 DNA.	 DNA	 is	 the	 permanent	 store	 of	 information	 present	 in
every	cell.	There	is	a	little	caveat	to	this	point	because	some	cells,	like	red	blood	cells	in
human	beings,	lose	their	DNA.	For	the	red	blood	cell	this	gives	it	more	space	to	fulfil	its
role	of	carrying	oxygen	around	the	body,	at	 the	cost	of	having	a	short	 lifespan:	 its	RNA
messages	will	eventually	run	out	and	it	will	no	longer	be	able	to	make	new	protein	(which
all	cells	must	do	to	survive).

DNA
DNA	is	present	in	a	cell	because	it	was	passed	from	parent	to	offspring.	Half	of	your	DNA
sequence	will	come	from	your	mother	and	half	from	your	father.	Of	the	total	DNA	inside	a
cell,	only	part	of	it	will	be	used	to	make	RNA	messages,	and	thus	ultimately	proteins.	The
regions	of	DNA	that	are	used	to	make	RNA,	by	specifying	its	sequence,	are	called	genes.
The	 remainder	of	 the	DNA	that	 is	not	part	of	any	gene	may	have	a	biological	 role	or	 it
may	be	 junk.	 Junk	DNA	does	not	have	any	specific	 function,	but	 it	 is	perhaps	useful	 in
providing	space	around	genes	so	that	life	can	evolve	by	shuffling	genes	without	damaging
them.

The	parts	of	DNA	that	are	neither	junk	nor	genes	are	critically	important.	Included	in
such	regions	are	DNA	sequences	that	determine	which	genes	are	actually	used	on	a	given
occasion.	For	example,	consider	a	brain	cell	and	a	muscle	cell	inside	a	human;	both	cells
have	the	same	DNA	but	one	helps	you	think	and	the	other	helps	you	move.	The	different
jobs	 that	 the	 different	 cells	 do	 are	 only	 possible	 because	 they	 make	 different	 kinds	 of
protein	molecules.	They	make	different	protein	molecules	because	different	sets	of	genes
are	active.	In	each	type	of	cell	some	genes	will	be	switched	off	and	some	will	be	switched
on.	It	 is	DNA	that	 lies	outside	a	gene	that	provides	these	on/off	switches	(often	near	the
starts	 of	 genes).	We	will	 forego	 detailed	 discussion	 about	 how	 these	 gene	 switches	 are
controlled,	but	suffice	it	to	say	that	in	the	case	of	muscle	cells	and	brain	cells	in	humans
the	initial	difference	in	gene	activation	is	made	early	in	development,	when	a	baby	is	just	a
tiny	embryo.

Figure	11.2.	 A	DNA	sequence,	the	double-stranded	base	pairs	and	the	molecule	it
represents.	A	DNA	chain	is	commonly	represented	as	a	one-letter	sequence	where	each
letter	represents	a	different	type	of	nucleotide	chemical	component.	By	convention	the
letters	are	listed	by	starting	from	the	5′	end	of	the	DNA	strand	(a	numbering	that	relates	to
the	position	of	a	free	hydroxyl	chemical	group	on	a	ribose	sugar	ring).	In	most	cases	the
DNA	sequence	is	really	a	representation	of	a	double-stranded	molecule	where,	even
though	only	the	sequence	of	one	strand	is	specified,	the	opposite	strand	is	deducible	as	the
reverse	complement,	following	the	normal	G:C,	A:T	base-pair	rules.	The	normal	three-
dimensional	structure	of	the	double-stranded	DNA	is	a	double	helix.

Chemically	DNA	is	composed	of	a	chain	of	four	different	kinds	of	smaller	component
called	nucleotides.3	People	often	refer	 to	DNA	as	having	four	bases,	which	refers	 to	 the
part	 of	 the	DNA	 residues	 that	 differs	 between	 the	 four	 types.	 The	 common	 part	 of	 the
residues	 is	a	sugar	scaffold	 joined	by	phosphate	groups.	Because	DNA	is	 the	permanent
store	of	information	in	a	cell	it	is	packaged	up	in	a	protected	form,	as	a	double	helix	with
many	special	proteins	bound	 to	 it.	This	double	helix	structure	means	 that	DNA	is	 really
composed	of	two	nucleotide	chains	aligned	along	their	length,	commonly	called	strands.
There	 are	 strict	 rules	 about	 how	 the	 two	 strands	 are	 aligned	 and	 joined	 to	 one	 another;
each	 base	 pairs	 up	with	 only	 one	 other	 type	 (A	with	 T	 and	G	with	C)	 on	 the	 adjacent
strand.	Such	sequences	of	nucleotides	that	are	able	to	pair	up	according	to	these	rules	are
said	to	be	complementary.	Thus	although	there	are	two	chains,	one	strand	always	mirrors
the	information	of	the	other.	Together,	one	long	pair	of	DNA	strands	inside	a	cell	is	called
a	chromosome,	 although	 in	 higher	 organisms	 these	 strands	 are	 never	 naked	DNA;	 they
have	lots	of	proteins	bound	to	them	to	compact	the	chromosome	and	control	the	reading	of

genes.

Transcription
When	 the	DNA	 information	 is	 read	 in	 a	 process	 called	 transcription	 its	 double	 helix	 is
unwound,4	 in	 a	 small	 area,	 so	 that	 its	 bases,	 on	what	 is	 called	 the	 template	 strand,	 are
exposed.	These	 exposed	 nucleotides	 specify	 how	 an	RNA	molecule	 is	made.	RNA	 is	 a
polymer	 composed	 of	 four	 different	 types	 of	 nucleotide	 residue	 just	 like	 DNA.	 RNA
chains	do	not	form	stable	double	helices	like	DNA,	but	they	can	associate	with	a	length	of
DNA	following	the	same	base-pair	rules	(the	exception	being	that	 the	T	base	 in	DNA	is
replaced	by	the	similar	U	in	RNA,	which	also	pairs	with	A).	Each	exposed	nucleotide	in
the	DNA	chain	will	only	bind	one	complementary	kind	of	RNA	nucleotide,	which	is	put
on	the	end	of	the	growing	RNA	chain;	thus	the	DNA	sequence	dictates	the	RNA	sequence
in	a	predictable	way.

Which	 physical	DNA	 strand	 of	 the	 two	 acts	 as	 the	 template	 to	make	RNA	varies;	 it
could	be	either.	In	other	words,	regions	of	both	DNA	strands	are	used	as	RNA	templates,
but	 a	 specific	 gene	 will	 only	 use	 one	 strand.	 Accordingly,	 when	 an	 RNA	 molecule	 is
made,	 its	 sequence	mirrors	 that	 of	 the	DNA;	 its	 nucleotides	 are	 joined	 into	 a	 chain	 by
physically	 binding	 the	 template	 DNA	 strand.	 Given	 that	 RNA	 uses	 the	 same	 base-pair
rules	as	DNA,	it	will	be	complementary	to	the	template.	Because	the	other	DNA	strand	is
also	complementary	to	the	template	(usually	it	pairs	up	to	form	a	helix),	so	the	RNA	and
the	 other	 DNA	 strand	 have	 the	 same	 sequence.	 The	 DNA	 strand	 which	 has	 the	 same
sequence	as	 the	RNA	is	called	 the	coding	 strand.	When	dealing	with	gene	 sequences	 in
computing	it	is	usually	the	case,	for	example,	when	looking	in	a	bioinformatics	database,
that	you	will	be	working	with	the	sequence	of	the	coding	DNA	strand,	which	is	the	same
as	the	RNA	sequence.	Also,	even	though	RNAs	really	have	U	bases	instead	of	T	bases,	in
bioinformatics	 an	 RNA	 sequence	 will	 often	 be	 presented	 with	 Ts,	 as	 if	 they	 were	 U;
certainly	 this	 is	 programming	 laziness,	 but	 it	 does	mean	 that	most	 programs	 don’t	 care
whether	the	sequence	came	from	RNA	or	DNA,	and	after	all	they	are	often	representations
of	the	same	information.

Translation
Most	RNA	molecules	go	on	 to	specify	protein	amino	acid	sequences	 in	a	process	called
translation;	these	are	called	messenger	RNAs	(mRNA).5	Because	there	are	20	(common)
types	 of	 protein	 amino	 acids	 and	 only	 four	 RNA	 nucleotides,	 a	 combination	 of	 RNA
nucleotides	is	required	to	specify	each	amino	acid.	By	a	mechanism	which	we	will	not	get
into,	 at	 a	 point	 within	 an	 mRNA	 (starting	 with	 the	 sequence	 ‘AUG’)	 each	 subsequent
group	of	three	bases,	called	a	codon,	directs	one	of	the	20	common	protein	amino	acids	to
be	joined	onto	a	growing	protein	chain.	Because	DNA	can	be	copied	into	RNA	from	either
of	 its	 two	strands	and	because	on	each	strand	there	are	 three	possible	ways	to	group	the
nucleotides	into	codons,	DNA	has	six	reading	frames,	i.e.	six	possible	ways	for	the	same
region	to	be	used	to	make	a	protein	sequence.	Of	course	one	gene	only	uses	one	reading
frame,	but	different	genes	exploit	all	of	the	six	possibilities.

Figure	11.3.	 An	overview	of	transcription	and	translation	processes.	When	a	protein
is	made	in	a	cell	its	sequence	is	determined	by	the	coding	sequence	contained	in	a
messenger	RNA	molecule	in	a	process	called	translation.	This	RNA	is	created	from	a	gene
region	in	the	DNA,	which	is	itself	part	of	a	chromosome,	in	a	process	called	transcription.
In	most	cases	an	initial	RNA	transcript,	effectively	a	copy	of	part	of	one	of	the	DNA
strands,	must	be	processed	by	splicing,	to	remove	non-coding	introns.

With	four	types	of	base	in	RNA	there	are	64	(4×4×4)	possible	combinations	of	triplet
nucleotide	sequence	that	can	make	a	codon.	A	few	of	the	codons	will	cause	the	production
of	 a	 protein	 to	 stop,	 but	 most	 will	 specify	 the	 inclusion	 of	 one	 specific	 amino	 acid.
Because	there	are	more	codons	than	amino	acid	types,	an	amino	acid	is	often	specified	by
several	different	codons.	The	relation	between	the	triplet	of	bases	in	codons	and	the	amino
acid	that	is	added	to	a	protein	is	known	as	the	genetic	code	(see	Table	11.1).	This	genetic
code	may	be	different	in	different	kinds	of	organism,	but	only	slightly	so.

Table	11.1. 	A	table	of	 the	standard	genetic	code.	Messenger	RNA	molecules	are
translated	 into	protein	 sequences	 at	 a	 large	molecular	 assembly	 called	 a	 ribosome.
This	takes	subsequent	groups	of	three	RNA	nucleotides,	called	codons	(starting	from
an	 ‘AUG’)	 and	 joins	 different	 amino	 acids	 into	 a	 growing	 polypeptide	 chain,

according	to	which	codon	sequence	is	present.	The	mapping	between	the	three-letter
RNA	codons	and	each	amino	acid	is	known	as	a	genetic	code.	In	most	cases	multiple
codons	(of	which	there	are	64	 in	total)	correspond	to	a	single	amino	acid	(of	which
there	are	20	in	total).	Some	of	the	codons	do	not	correspond	to	any	amino	acid	and
cause	 the	 protein	 chain	 synthesis	 to	 stop.	 The	 table	 shown	 is	 the	 standard	 genetic
code,	 which	 is	 valid	 for	 the	 genes	 found	 in	 the	 cell	 nucleus	 of	 most	 of	 the	 most
commonly	 studied	 organisms.	There	 are	 small	 variations	 compared	 to	 this	 code	 in
bacteria	and	organelle	genomes	(e.g.	mitochondria	and	chloroplasts).

Codon
positions Amino	acid	translation	or	stop Codon

positions
Amino	acid	translation	or
stop

1st 2nd 3rd
One-
letter
code

Three-
letter
code

Full	name 1st 2nd 3rd
One-
letter
code

Three-
letter
code

U U U F Phe Phenylalanine A U U I Ile

U U C A U C

U U A L Leu Leucine A U A

U U G A U G M Met

U C U S Ser Serine A C U T Thr

U C C A C C

U C A A C A

U C G A C G

U A U Y Tyr Tyrosine A A U N Asn

U A C A A C

U A A STOP A A A K Lys

U A G A A G

U G U C Cys Cysteine A G U S Ser

U G C A G C

U G A STOP A G A R Arg

U G G W Trp Tryptophan A G G

C U U L Leu Leucine G U U V Val

C U C G U C

C U A G U A

C U G G U G

C C U P Pro Proline G C U A Ala

C C C G C C

C C A G C A

C C G G C G

C A U H His Histidine G A U D Asp

C A C G A C

C A A Q Gln Glutamine G A A E Glu

C A G G A G

C G U R Arg Arginine G G U G Gly

C G C G G C

C G A G G A

C G G G G G

An	 important	complication	 to	 the	way	 in	which	RNA	transmits	 its	 sequence	message
comes	 from	 the	 fact	 that	 it	 usually	 has	 large	 non-coding	 sections	 removed	 before	 it
becomes	 a	mature	mRNA	and	 its	 sequence	 is	 translated	 into	protein.	The	 regions	of	 an
RNA	chain	that	are	removed	are	called	introns	and	those	that	remain	are	called	exons.	The
RNA	is	said	to	be	spliced:	the	ends	of	the	exons	are	joined	as	the	introns	are	lost.	Introns
are	 very	 common	 in	 the	 human	 genome	 and	 their	 presence	makes	 it	 significantly	more
difficult	to	detect	which	bits	of	a	gene	are	actually	used	to	make	protein	sequences.

Even	 though	 DNA,	 RNA	 and	 protein	 really	 are	 sequences	 of	 chemical	 compounds,
linked	together	into	a	chain,	it	is	often	sufficient	to	represent	them	simply	as	a	sequence	of
letters	or	residue	codes.	You	can	perform	many	useful	analyses	simply	by	knowing	what
the	order	of	amino	acids	or	nucleotides	is,	without	having	to	consider	all	of	the	atoms	that
are	present	in	the	real	molecule.

DNA	sequencing
Today	 the	majority	 of	 the	 sequence	 information	 for	DNA,	RNA	 and	 protein	 in	 various
organisms	 comes	 from	 the	 sequencing	 of	 just	DNA.	Because	 of	 the	 rules	 of	 nucleotide
pairing	and	because	of	the	genetic	code	(three	nucleotides	give	one	amino	acid)	it	is	easy
to	determine	an	RNA	and	protein	sequence	once	you	know	the	gene-coding	regions	in	the
DNA.	It	may	be	difficult	to	work	out	where	the	coding	regions	of	a	gene	start	and	end	in	a
large	section	of	DNA,	but	the	conversion	to	the	different	types	of	sequence	is	trivial.

DNA	is	sequenced	with	a	special	kind	of	chemical	reaction,	which	these	days	is	often
performed	by	a	computerised	machine.	In	essence	many	copies	of	a	DNA	strand	are	made
using	 an	 enzyme	 (a	 protein	 that	 catalyses	 the	 required	 chemical	 reaction),	 and	 the
nucleotides	that	are	added	to	the	end	of	the	growing	strands	are	detected.	A	common	way
(used	in	Sanger	and	Illumina	sequencing	methods)	of	detecting	the	nucleotide	added	is	to
have	 the	reaction	occasionally	stop,	when	an	 inhibiting	compound	 is	 incorporated	at	 the
growing	 end.	Here	 there	 are	 four	 different	 inhibitors	 that	 take	 the	 place	 of	 each	 of	 the
DNA	nucleotides.	The	aim	is	 to	get	some	of	 the	copied	DNA	strands	to	stop	growing	at
every	 single	 nucleotide	 position.	 The	 sequence	 is	 revealed	 by	 detecting	which	 inhibitor
stopped	 the	 chain	 growing	 at	 each	 position;	 i.e.	which	 nucleotide	 is	 at	 the	 end	 of	 each
length	of	 strand.	The	different	 inhibitors	 at	 the	 end	of	 the	DNA	strands	 are	designed	 to
glow	with	 different	 colours	 to	make	 them	 easy	 to	 identify.	 The	 reaction	 can	 happen	 in
distinct	 cycles	 (e.g.	 Illumina	method)	 to	 give	 subsequent	 nucleotide	 reads,	 or	 the	DNA
strands	can	be	 sorted	by	 size	 so	 that	 the	 end	nucleotide	can	be	detected	afterwards	 (the
Sanger	method).

The	 actual	 DNA	 that	 is	 used	 in	 the	 sequencing	 reaction	 commonly	 comes	 from	 an
organism’s	set	of	chromosomes	(which	collectively	are	referred	to	as	a	genome),	but	it	is
also	 possible	 to	 have	DNA	which	 comes	 from	 the	 amplification	of	 a	 small	 section	of	 a
genome	 (i.e.	 a	 small	quantity	 is	 copied	 to	give	 a	 large	amount)	or	 to	use	DNA	 that	has
been	 copied	 from	RNA	 (i.e.	 opposite	 to	 the	 usual	 flow	 of	 information)	 using	 a	 special
enzyme.

Using	biological	sequences	in	computing
Whatever	 the	 origins	 of	 a	 biological	 sequence,	 before	 writing	 programs	 to	 work	 with
biological	 sequence	 information	 one	must	 first	 have	 the	 sequences	 represented	 in	 some
data	structure;	ideally	this	should	suit	the	purpose	of	any	subsequent	analyses.	There	are
various	 ways	 in	 which	 people	 store	 sequences,	 ranging	 from	 the	 simplistic	 to	 the
exceedingly	complex,	and	each	will	have	its	own	advantages	and	disadvantages.

The	 commonest	 and	 simplest	method	 is	 to	 store	 sequences	 as	 text;	 i.e.	 as	 strings	 of
letters,	where	each	letter	represents	a	different	kind	of	residue.	Thus	for	DNA	and	RNA
we	 will	 be	 working	 with	 alphabets	 of	 four	 letters,	 representing	 nucleotides,	 and	 for
proteins	an	alphabet	of	20,	representing	amino	acids.	For	the	standard	set	of	residues	that
make	up	the	majority	of	biological	polymers,	this	representation	is	sufficient	as	we	have
more	 than	 enough	 letters	 on	 a	 standard	 keyboard.	 However,	 a	 simple	 one-letter
representation	 is	 not	 good	 enough	 if	 we	 need	 to	 describe	 unusual	 amino	 acids	 (both

naturally	modified	and	artificially	created).	In	such	circumstances	people	usually	resort	to
three-letter	code	strings	for	amino	acids:	for	example	one	can	distinguish	between	proline
‘PRO’	 and	 hydroxyproline	 ‘HYP’.6	 One	 can	 go	 further	 still	 and	 define	 a	 biological
sequence	 as	 a	 series	 of	 purpose-made	object	 data	 structures,	 rather	 than	 a	 series	 of	 text
codes.	 While	 using	 lists	 of	 complex	 objects	 will	 be	 cumbersome	 and	 unnecessary	 for
many	 tasks,	 they	 are	 certainly	 a	 good	 choice	 if	 you	 need	 to	 work	 with	 the	 underlying
atoms	within	a	residue,	as	is	the	case	in	structural	biochemistry.

In	Python,	a	sequence	of	one-letter	residue	codes	will	usually	be	represented	as	a	string
data	 type	 and	 three-letter	 codes	 as	 a	 list,	 although	 other	 arrangements	 are	 of	 course
possible.	Also,	if	we	are	being	cautious	with	our	sequences	then	we	may	like	to	check	that
our	data	structures	only	contain	valid	codes.	A	biological	sequence	can	also	be	included	in
a	 larger	 data	 structure	 if	 it	 needs	 to	 be	 annotated	 with	 further	 information.	 Although
Python	 dictionaries	 can	 be	 used	 for	 this	 purpose	 when	 you	 need	 something	 quick,	 we
sometimes	advocate	defining	a	custom	object	that	can	link	your	sequences	to	other	data.

For	testing	and	demonstration	purposes,	like	the	examples	in	this	book,	sequence	data
can	 be	 entered	 directly	 into	 the	 code	 of	 your	 programs.	 Of	 course	 for	 real-world
applications	 of	 programs	 we	 would	 want	 to	 have	 our	 programs	 work	 on	 arbitrary
sequences	that	we	read	in	from	a	file	or	database.	These	could	be	sequences	that	have	been
output	from	another	program,	something	you	have	obtained	by	searching	a	large	sequence
database	or	even	an	entire	genome	sequence	that	you	have	downloaded.	Interacting	with
files	and	databases	directly	is	dealt	with	in	Chapters	6	and	20,	and	for	the	moment	we	will
simply	demonstrate	with	short	sequences.

Once	you	have	your	sequences	in	some	kind	of	data	structure,	it	is	time	to	start	analysis.
While	we	 cannot	 hope	 to	 anticipate	 all	 that	 you	might	 need	 to	 do,	we	 can	 at	 least	 give
some	idea	of	what	is	possible.	At	the	same	time	we	aim	to	show	how	some	of	the	things
that	 are	 commonly	 done	 with	 sequences	 can	 be	 readily	 achieved	 with	 Python.	 The
following	 examples	 are	 simple	 scripts	 that	 all	 deduce	 some	 property	 of	 an	 input	DNA,
RNA	or	protein	sequence	that	gives	some	real-world	information	or	prediction	about	the
sequence.	Note	that	in	all	of	the	examples	we	will	forego	checking	that	the	sequences	we
used	are	valid:	that	they	are	the	right	kind	of	object	and	that	they	contain	only	the	known
types	of	 residue	code	or	 letter.	 In	an	 important	 real-world	application	you	would	clearly
make	such	checks	before	you	try	to	run	any	analyses	and	the	BioPython	modules	that	we
demonstrate	at	the	end	can	help	you	do	this.

Translate	a	DNA	sequence	into	protein
The	first	example	script	is	designed	to	determine	the	sequence	of	amino	acids	in	a	protein,
starting	 from	 a	 DNA	 or	 RNA	 sequence	 by	 using	 the	 genetic	 code,	 stored	 in	 a	 Python
dictionary,	 to	 perform	 the	 translation.	 The	 situation	 is	 generally	 more	 complicated,
because	precisely	which	section	(or	sections)	of	a	nucleotide	sequence	end	up	being	used
is	not	always	clear;	 there	can	be	 the	 issue	of	 finding	a	gene	amongst	a	 large	amount	of
DNA	and	working	out	how	the	RNA	that	is	made	(transcribed)	from	the	gene	is	processed
by	splicing	to	give	a	mature	messenger	RNA.	For	now	we	leave	such	problems	aside.

Firstly,	 we	 define	 a	 dictionary	 that	 contains	 our	 genetic	 code.	 Here	 we	 use	 strings

containing	three	nucleotide	letters	as	the	dictionary’s	keys;	these	are	the	codons.	The	value
associated	with	 each	 codon	 is	 the	 three-letter	 code	of	 the	 appropriate	 amino	 acid	or	 the
None	object	if	it	is	a	stop	codon.

STANDARD_GENETIC_CODE	=	{

										'UUU':'Phe',	'UUC':'Phe',	'UCU':'Ser',	'UCC':'Ser',

										'UAU':'Tyr',	'UAC':'Tyr',	'UGU':'Cys',	'UGC':'Cys',

										'UUA':'Leu',	'UCA':'Ser',	'UAA':None,		'UGA':None,

										'UUG':'Leu',	'UCG':'Ser',	'UAG':None,		'UGG':'Trp',

										'CUU':'Leu',	'CUC':'Leu',	'CCU':'Pro',	'CCC':'Pro',

										'CAU':'His',	'CAC':'His',	'CGU':'Arg',	'CGC':'Arg',

										'CUA':'Leu',	'CUG':'Leu',	'CCA':'Pro',	'CCG':'Pro',

										'CAA':'Gln',	'CAG':'Gln',	'CGA':'Arg',	'CGG':'Arg',

										'AUU':'Ile',	'AUC':'Ile',	'ACU':'Thr',	'ACC':'Thr',

										'AAU':'Asn',	'AAC':'Asn',	'AGU':'Ser',	'AGC':'Ser',

										'AUA':'Ile',	'ACA':'Thr',	'AAA':'Lys',	'AGA':'Arg',

										'AUG':'Met',	'ACG':'Thr',	'AAG':'Lys',	'AGG':'Arg',

										'GUU':'Val',	'GUC':'Val',	'GCU':'Ala',	'GCC':'Ala',

										'GAU':'Asp',	'GAC':'Asp',	'GGU':'Gly',	'GGC':'Gly',

										'GUA':'Val',	'GUG':'Val',	'GCA':'Ala',	'GCG':'Ala',

										'GAA':'Glu',	'GAG':'Glu',	'GGA':'Gly',	'GGG':'Gly'}

Now	we	define	a	sequence.	This	initial	sequence	is	really	only	for	testing	purposes.	In
reality	 of	 course	 we	 want	 to	 accept	 a	 variety	 of	 different	 sequences	 from	 files	 and
databases.

dnaSeq	=	'ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTG'

Given	the	nucleotide	sequence,	we	take	each	group	of	three	nucleotide	letters	and	use
the	group	as	a	key	to	look	up	the	corresponding	amino	acid	code,	remembering	of	course
that	we	must	convert	any	DNA	T	residues	into	RNA	U	residues	(which	our	genetic	code
dictionary	 requires).	Assuming	we	 find	 an	 amino	 acid	 code	we	 add	 it	 to	 the	 list	which
represents	the	protein	sequence.	If	we	cannot	find	an	amino	acid	for	a	codon,	then	we	have
reached	 a	 stop	 codon,	 whereupon	 our	 protein	 sequence	 is	 complete	 and	 we	 can
immediately	 stop	 the	 translation.	 Note	 that	 we	 define	 the	 coding	 as	 a	 three-letter	 sub-
sequence	using	the	slice	notation	seq[i:i+3],	 remembering	 that	 this	will	 take	 letters	 from
position	 i,	 up	 to	 but	 not	 including	 i+3.	At	 the	 end	we	 pass	 back	 the	 list	 of	 amino	 acid
codes.	This	operation	 is	put	 into	a	Python	 function,	 so	 that	we	can	 repeat	 the	operation
with	any	sequence	and	genetic	code.

def	proteinTranslation(seq,	geneticCode):

		"""	This	function	translates	a	nucleic	acid	sequence	into	a

						protein	sequence,	until	the	end	or	until	it	comes	across

						a	stop	codon	"""

		seq	=	seq.replace('T','U')	#	Make	sure	we	have	RNA	sequence

		proteinSeq	=	[]

		i	=	0

		while	i+2	<	len(seq):

				codon	=	seq[i:i+3]

				aminoAcid	=	geneticCode[codon]

				if	aminoAcid	is	None:	#	Found	stop	codon

						break

				proteinSeq.append(aminoAcid)

				i	+=	3

		return	proteinSeq

Note	 that	 there	are	many	ways	 in	which	we	could	have	extracted	 the	groups	of	 three
letters	 from	 the	 input	 sequence.	 In	 this	 instance	 we	 used	 a	 while	 loop,	 and	 the	 loop
continues	as	long	as	there	are	still	at	least	three	letters	remaining,	i.e.	that	the	index	plus
two	i+2	is	still	within	the	length	of	the	sequence	(and	also	unless	the	break	is	triggered	by
a	stop	codon).	Here	index	i	will	be	the	position	of	the	first	letter	in	the	codon	and	i+2	will
be	the	last	letter.	Getting	these	‘boundary	conditions’	correct	(so	it	is	i+2	not	i+1	or	i+3)	is
one	 of	 the	 tricky	 bits	 of	 computer	 programming.	 Of	 course	 at	 the	 end	 of	 the	 loop	 we
increase	the	index	by	three	for	the	next	round.

To	actually	run	the	function	on	our	test	sequence	call	the	function	by	using	its	name	in
association	with	the	variable	for	the	test	sequence	and	the	variable	that	holds	the	genetic
code:	 these	get	passed	 to	 the	function	as	an	argument.	The	resulting	protein	sequence	 is
passed	back	to	fill	in	the	value	of	the	proteinSeq	variable.

protein3LetterSeq	=	proteinTranslation(dnaSeq,	STANDARD_GENETIC_CODE)

Converting	a	DNA	sequence	to	an	RNA	sequence	is	much	easier,	because	all	we	have
to	do	is	replace	T	letters	with	U	letters,	as	we	already	had	 to	do	when	using	 the	genetic
code	dictionary,	and	we	can	use	the	inbuilt	Python	functionality	(assuming	the	sequence	is
stored	as	a	text	string)	to	do	this.

rnaSeq	=	dnaSeq.replace('T','U')

Estimate	molecular	mass
This	 next	 script	 estimates	 the	 mass	 of	 a	 DNA,	 RNA	 or	 protein	 molecule	 (in	 units	 of
daltons).	This	is	only	an	estimate	because	various	residues	reversibly	bind	hydrogen	ions
under	 different	 conditions	 (i.e.	 pH	 affects	whether	H+	 ions	 are	 joined	 to	 the	 acidic	 and
basic	 sites)	 and	 we	 are	 assuming	 standard	 proportions	 of	 the	 various	 isotopes.7
Nonetheless	this	estimate	will	be	useful	enough	to	say	where	we	expect	DNA	or	protein	to
lie	on	an	electrophoresis	gel8	or	mass	spectrometer	trace.

Firstly,	 we	 define	 a	 function,	 hopefully	 with	 a	 sensible	 and	 informative	 name,	 and
specify	that	it	 takes	one	argument	seq,	which	is	a	sequence,	and	one	argument	molType,
which	 states	 whether	 we	 are	 using	 a	 protein	 sequence,	 a	 DNA	 sequence	 or	 an	 RNA
sequence.	Note	 that	we	 set	 a	 default	 value	 for	molType	 to	 be	 ‘protein’,	 so	 that	we	 can
work	with	protein	sequences	without	having	to	explicitly	specify	the	value.

Inside	the	function	we	define	a	dictionary	that	stores	the	average	molecular	weights	of
the	 different	 kinds	 of	 residue.	 Internally	 this	 dictionary	 contains	 three	 inner	 sub-
dictionaries,	 one	 for	 each	 of	 the	 different	 molecule	 types.	We	 access	 the	 correct	 inner
dictionary	using	the	molType	as	a	key.	The	one-letter	residue	codes	then	act	as	the	keys	to

the	inner	dictionary	to	extract	the	appropriate	molecular	masses.

Next	 we	 define	 a	 variable	 to	 hold	 the	 total	 for	 the	molecular	 mass.	 This	 is	 initially
defined	with	 a	 value	 equal	 to	 that	 of	 the	molecular	mass	 of	water,	 because	 the	 average
residue	masses	 in	 the	dictionary	do	not	 take	account	of	 the	end	 residues	 that	have	extra
atoms	(OH	at	one	end	and	H	at	the	other)	because	they	are	only	linked	on	one	side,	instead
of	both	sides.

def	estimateMolMass(seq,	molType='protein'):

		"""Calculate	the	molecular	weight	of	a	biological	sequence	assuming

					normal	isotopic	ratios	and	protonation/modification	states

		"""

		residueMasses	=	{

						"DNA":	{"G":329.21,	"C":289.18,	"A":323.21,	"T":304.19},

						"RNA":	{"G":345.21,	"C":305.18,	"A":329.21,	"U":302.16},

						"protein":	{"A":	71.07,	"R":156.18,	"N":114.08,	"D":115.08,

																		"C":103.10,	"Q":128.13,	"E":129.11,	"G":	57.05,

																		"H":137.14,	"I":113.15,	"L":113.15,	"K":128.17,

																		"M":131.19,	"F":147.17,	"P":	97.11,	"S":	87.07,

																		"T":101.10,	"W":186.20,	"Y":163.17,	"V":	99.13}}

		massDict	=	residueMasses[molType]

		#	Begin	with	mass	of	extra	end	atoms	H	+	OH

		molMass	=	18.02

		for	letter	in	seq:

				molMass	+=	massDict.get(letter,	0.0)

		return	molMass

The	 for	 loop	 extracts	 each	 element	 of	 the	 sequence	 in	 turn,	 which	 will	 be	 a	 single
nucleotide	or	amino	acid	letter.	This	letter	is	then	used	to	look	up	the	appropriate	value	of
molecular	mass	 in	 the	dictionary.	The	 .get()	 function	 of	 the	 dictionary	 is	 used	 so	 that	 a
default	value	for	the	mass	can	be	specified,	just	in	case	we	have	a	letter	in	the	sequence
that	is	not	in	the	dictionary.	In	such	a	circumstance	using	a	guess	for	an	average	mass	of
an	unrecognised	residue,	 rather	 than	0.0,	may	be	appropriate	under	some	circumstances.
The	molecular	mass	 of	 the	 current	 residue	 is	 then	 added	 to	 the	 total,	 and	 the	 for	 loop
moves	onto	the	next	letter	in	the	sequence.	Finally	the	return	statement	is	used	so	that	the
value	of	 the	 total	molecular	mass	 is	 passed	back	 to	 the	point	 in	 the	program	where	 the
function	was	called	from.	To	test	this	function	we	could	do	something	like:

proteinSeq	=	'IRTNGTHMQPLLKLMKFQKFLLELFTLQKRKPEKGYNLPIISLNQ'

proteinMass	=	estimateMolMass(proteinSeq)

or	for	DNA,	noting	that	we	have	to	specify	the	molecule	type:

dnaMass	=	estimateMolMass(dnaSeq,	molType='DNA')

Simple	sub-sequence	properties

The	 following	 examples	 move	 from	 considering	 a	 whole	 sequence	 to	 looking	 at	 the
properties	 of	 regions	 or	 overlapping	 sub-sequences	 from	 within	 a	 larger	 sequence.
Although	we	have	only	room	to	give	a	few	simple	examples,	this	kind	of	analysis	is	very
important	in	trying	to	ascertain	the	biological	function	of	the	different	parts	of	a	sequence
and	in	some	cases	to	help	guide	experimentation.

Finding	a	sequence	motif
The	 next	 example	 script	 is	 designed	 to	 find	 a	 particular	 smaller	 sub-sequence	within	 a
larger	sequence.	This	kind	of	operation	is	useful	because	specific	small	sequences,	called
motifs,	 often	have	 important	biological	 roles.	Examples	of	 this	 in	DNA	 include	 specific
sequences	which	indicate	the	start	of	genes,	specify	where	the	coding	regions	of	genes	are
spliced	 (introns	 are	 removed)	 or	 allow	 a	 protein	 to	 bind.	 There	 are	 also	 examples	 in
proteins	including	where	specific	sequences	are	used	to	interact	with	other	proteins,	bind
to	DNA	or	direct	that	the	protein	should	be	modified	(e.g.	by	joining	sugars	to	it).

The	following	is	a	simple	example	of	how	to	find	a	fixed	sub-sequence	within	a	larger
sequence:

seq	=	'AGCTCGCTCGCTGCGTATAAAATCGCATCGCGCGCAGC'

position1	=	seq.find('TATAAA')

position2	=	seq.find('GAGGAG')

This	will	give	the	values	for	position1	as	15	and	position2	as	−1	(because	it	cannot	be
found).	The	negative	number	that	is	given	back	from	.find()	when	a	substring	is	not	found
is	a	bit	of	an	oddity.	The	authors	feel	that	giving	back	the	None	object	would	have	been
more	appropriate.

In	 many	 cases,	 however,	 it	 is	 not	 just	 one	 single	 well-defined	 sub-sequence	 that
corresponds	to	a	motif	with	a	biological	function.	More	usually	there	are	a	range	of	similar
sequences	 that	 are	 all	 found	 to	 fulfil	 the	 same	 role.	 Accordingly,	 next	 we	 will	 not	 be
defining	a	sequence	motif	as	a	single	stretch	of	residues,	but	rather	as	a	residue	profile.

A	residue	profile	states,	for	each	position	in	the	motif,	what	range	of	residues	are	found
and	 how	 often	 one	 kind	 of	 residue	 is	 present	 compared	 to	 the	 others.	 Obviously,	 the
residue	profile	 that	we	use	 to	 try	 to	detect	 a	particular	motif	will	have	been	determined
beforehand,	 almost	 always	 by	 comparing	 sequences	 that	 we	 know	 (e.g.	 by
experimentation)	will	function	in	the	desired	way.

This	 particular	 example	 attempts	 to	 find	 the	 region	 of	 a	 DNA	 sequence	 called	 the
‘TATA	box’.	This	 is	 a	 biologically	 important	 region	which,	 as	 the	name	 suggests,	 often
contains	a	particular	sequence.	The	biological	role	of	this	sequence	is	to	help	define	where
the	start	of	a	gene	is.	Note	that	only	some	genes	use	the	TATA	box	system.

Firstly,	 we	 define	 the	 profile	 that	 encodes	 the	 preferred	 sequence	 letters	 for	 each
position	in	a	section	of	DNA.	The	profile	is	stored	as	a	Python	dictionary,	where	the	keys
to	the	dictionary	are	the	nucleotide	letters	and	the	values	are	lists	of	scores.	Each	score	list
contains	 a	 number	 for	 each	 position	 that	 indicates	 how	 likely	 it	 is	 to	 find	 the	 given
nucleotide	at	that	location.

profile	=	{

		'A':[61,	16,352,		3,354,268,360,222,155,	56,	83,	82,	82,	68,	77],

		'C':[145,	46,		0,	10,		0,		0,		3,		2,	44,135,147,127,118,107,101],

		'G':[152,	18,		2,		2,		5,		0,	10,	44,157,150,128,128,128,139,140],

		'T':[31,309,	35,374,	30,121,		6,121,	33,	48,	31,	52,	61,	75,	71]}

Next	we	define	a	function	that	takes	a	DNA	sequence	and	a	profile	to	determine	where
the	profile	best	matches.	A	for	loop	is	used	to	define	the	start	point	i	of	each	sub-sequence
that	we	wish	to	test	against	the	profile.	Note	that	we	have	ensured	that	the	sub-sequence
does	not	fall	off	the	end	of	the	larger	input	sequence	because	we	stop	the	loop	at	the	end	of
the	sequence	minus	the	profile	length,	for	which	we	use	the	variable	width.

We	 calculate	 the	 score	 for	 each	 sub-sequence	 by	 looking	 up	 the	 scores	 for	 the
component	letters	using	the	profile	dictionary:	we	use	the	nucleotide	letter	to	first	get	the
correct	sores	list	and	then	the	profile	position	j,	to	extract	the	right	score.	The	position	we
interrogate	from	the	 input	sequence	is	defined	as	 i+j;	 i.e.	we	add	the	position	within	 the
sub-sequence	to	the	absolute	start	of	the	sub-sequence	within	the	larger	sequence.	The	best
score	 that	has	been	found	so	far	 is	 recorded,	 together	with	 the	position	where	 that	score
occurred.

def	matchDnaProfile(seq,	profile):

		"""	Find	the	best-matching	position	and	score	when	comparing	a	DNA

						sequence	with	a	DNA	sequence	profile	"""

		bestScore	=	0

		bestPosition	=	None	#	Just	to	start	with

		width	=	len(profile['A'])

		for	i	in	range(len(seq)-width):

				score	=	0

				for	j	in	range(width):

						letter	=	seq[i+j]

						score	+=	profile[letter][j]

				if	score	>	bestScore:

						bestScore	=	score

						bestPosition	=	i

		return	bestScore,	bestPosition

Rather	 than	 finding	 the	 best	 score	 and	 best	 position,	 we	 could	 alternatively	 have
reported	the	scores	at	all	positions,	or	even	a	list	of	positions	that	all	give	a	score	above	a
specified	 threshold.	To	 test	our	 function	with	our	profile	and	DNA	sequence,	and	 report
back	which	section	of	the	sequence	gave	the	best	hit,	we	do	the	following:

score,	position	=	matchDnaProfile(dnaSeq,	profile)

print(score,	position,	dnaSeq[position:position+15])

GC	content	of	DNA
The	 next	 example	 investigates	 a	 DNA	 sequence	 by	 measuring	 its	 GC	 content:	 i.e.	 the
percentage	of	the	total	base	pairs	that	are	G:C	(rather	than	A:T).	All	we	need	to	do	for	this

is	 to	 take	 the	 sequence	 of	 one	 strand	 of	 DNA	 and	 simply	 count	 how	 many	 of	 the
nucleotides	are	G	or	C.	Measuring	the	GC	content	of	DNA	is	biologically	relevant	because
regions	of	a	chromosome	that	are	rich	in	G	and	C	give	a	hint	that	they	might	be	coding	for
genes.

To	make	 things	more	 interesting,	 rather	 than	 just	 report	 the	 final	GC	 content	 for	 the
whole	of	a	sequence,	we	will	measure	the	GC	content	for	every	possible	10	residue	sub-
sequence	and	 then	plot	 the	values	along	 the	 length	of	 the	 sequence	as	a	graph.	 In	other
words	we	will	perform	the	calculation	on	a	sliding	window	of	residues.

Firstly,	we	define	a	function	that	takes	a	DNA	sequence	and	a	window	size	(optionally)
as	input	and	gives	a	list	of	numerical	GC	content	values	as	output.	We	will	take	the	output
data	and	use	it	to	draw	a	graph	using	an	external	Python	module	called	Matplotlib,	which
is	 very	 useful	 for	 plotting	 numerical	 data	 (see	Chapter	 9	 for	more	 details).	As	with	 the
profile	 search	above,	we	will	use	a	 for	 loop	 to	 scan	 through	 the	 sequence,	while	 taking
care	to	avoid	falling	off	the	end.	However,	this	time,	because	we	don’t	need	the	position	of
each	 nucleotide	within	 the	 search	window	 (we	 only	 needed	 this	 before	 to	 get	 the	 right
position	 in	 a	 profile),	we	 can	 find	 the	 number	 of	G	 and	C	 letters	 by	 using	 the	 .count()
method	that	is	built	into	Python	strings	and	lists.

def	calcGcContent(seq,	winSize=10):

		gcValues	=	[]

		for	i	in	range(len(seq)-winSize):

				subSeq	=	seq[i:i+winSize]

				numGc	=	subSeq.count('G')	+	subSeq.count('C')

				value	=	numGc/float(winSize)

				gcValues.append(value)

		return	gcValues

Each	of	the	measurements	for	each	sliding	position	are	added	to	the	output	list,	which
we	 can	 then	 plot	 as	 a	 graph	 as	 follows.	 Note	 that	 this	 example	 assumes	 that	 we	 have
installed	 the	 Matplotlib	 module	 (see	 http://www.cambridge.org/pythonforbiology	 for
download	links),	otherwise	you	will	get	an	error	from	the	import	command.

from	matplotlib	import	pyplot

gcResults	=	calcGcContent(dnaSeq)

pyplot.plot(gcResults)

pyplot.show()

Protein	hydrophobicity	plot
Now	we	will	move	on	to	another	example	which	produces	data	which	we	can	display	as	a
graph,	but	this	time	it	will	be	for	a	protein	sequence.	The	task	here	is	to	generate	a	plot	of
how	water-hating,	or	to	use	the	proper	term	hydrophobic,	a	given	stretch	of	residues	is.	An
amino	acid	may	be	hydrophobic	if	 the	atoms	in	its	side	chain9	represent	an	arrangement
that	 does	 not	 favour	 interactions	with	water	molecules;	 typically	 this	means	 they	 don’t
carry	a	charge	or	chemical	groups	that	can	form	any	hydrogen	bonds.	It	is	often	useful	to

http://www.cambridge.org/pythonforbiology

find	 such	 hydrophobic	 regions	 because	 by	 shunning	 water	 they	 make	 important
interactions	 inside	 the	 folded	 core	 of	 proteins	 or	 allow	 a	 protein	 to	 be	 inserted	 into	 a
cellular	membrane.	It	is	in	the	context	of	cell	membranes	that	this	example	is	based.

A	cellular	membrane	is	a	double	layer	(bilayer)	of	hydrophobic	lipid10	molecules	into
which	 specific	 proteins	 are	 embedded	 by	 virtue	 of	 a	 hydrophobic	 anchor.	A	membrane
defines	 the	 outer	 extent	 of	 each	 cell,	 and	 various	 internal	 compartments,	 with	 special
functions,	 inside	 it.	Biologically	 the	 lipid	component	of	a	membrane	creates	a	barrier	 to
most	molecules	and	the	protein	component	allows	selective	passage	for	some	molecules,
in	line	with	the	requirements	of	the	cell.

The	next	 example	 function	 aims	 to	 predict	whether	 a	 protein	possesses	 a	 sufficiently
hydrophobic	 segment	 of	 residues	 (which	will	 fold	 into	 a	 helix)	 that	will	 allow	 it	 to	 be
inserted	 into	 a	 cell’s	 system	of	membranes.	This	 is	 a	 simplistic	 prediction,	 as	 in	 reality
there	 are	 other	 factors	 that	 govern	 whether	 a	 segment	 is	 used,	 but	 nonetheless	 it	 is
sufficiently	accurate	to	find	over	70%	of	membrane	spans.

Initially	we	define	a	hydrophobicity	scale:	a	number	associated	with	each	amino	acid
letter	that	says	how	water-hating	it	is.	For	this	example	we	will	use	the	GES	scale,11	but
there	are	several	others	to	choose	from.

GES_SCALE	=	{'F':-3.7,'M':-3.4,'I':-3.1,'L':-2.8,'V':-2.6,

													'C':-2.0,'W':-1.9,'A':-1.6,'T':-1.2,'G':-1.0,

													'S':-0.6,'P':	0.2,'Y':	0.7,'H':	3.0,'Q':	4.1,

													'N':	4.8,'E':	8.2,'K':	8.8,'D':	9.2,'R':12.3}

We	define	the	function	that	will	perform	the	search	so	that	it	accepts	a	protein	sequence
and	hydrophobicity	scale	dictionary	as	mandatory	inputs,	and	an	optional	input	to	specify
a	 search	window	 size.	The	 philosophy	 of	 this	 function	 differs	 a	 little	 from	 those	 above
because	 it	 includes	 an	 optimisation	 to	 calculate	 quickly;	 i.e.	minimising	 the	 number	 of
operations	performed.

An	index	i	is	defined	to	loop	through	the	sequence	and,	because	it	is	useful	in	several
spots,	we	define	j	to	be	i	plus	the	search	width.	The	adding	up	of	the	hydrophobicity	score
for	 each	 segment	 can	 take	 place	 inside	 one	 of	 two	 separate	 sections,	 depending	 on	 the
result	of	an	if	statement.	This	statement	is	set	up	such	that	the	first	time	we	add	up	scores
(detected	by	 the	 score	being	 at	 its	 start	 value	of	None)	we	 consider	 all	 of	 the	positions
from	 i	 up	 to	 j.	 After	 this	 first	 summation,	 rather	 than	 repeating	 the	 summation	 for	 the
whole	 of	 the	 next	 section,	 we	 use	 the	 fact	 that	 the	 next	 section	 only	 differs	 from	 the
previous	one	at	its	first	and	last	positions.	Accordingly,	to	get	the	score	for	the	next	section
we	take	the	existing	score	and	take	away	the	score	of	the	residue	we	have	just	left	behind
(i-1)	and	add	the	score	of	the	new	end	residue	(j-1:	we	go	up	to	but	do	not	include	position
j).	This	is	a	speed	optimisation	because	overall	fewer	operations	are	performed,	but	it	will
be	prone	to	the	accumulation	of	small	floating	point	errors:	however,	such	errors	will	not
grow	to	anything	significant	for	something	as	short	as	a	protein	sequence.

def	hydrophobicitySearch(seq,	scale,	winSize=15):

		"""Scan	a	protein	sequence	for	hydrophobic	regions	using	the	GES

					hydrophobicity	scale.

		"""

		score	=	None

		scoreList	=	[]

		for	i	in	range(len(seq)-	winSize):

				j	=	i	+	winSize

				if	score	is	None:

						score	=	0

						for	k	in	range(i,j):

								score	+=	scale[seq[k]]

				else:

						score	+=	scale[seq[j-1]]

						score	-=	scale[seq[i-1]]

				scoreList.append(score)

		return	scoreList

As	before	we	can	execute	 the	function	with	an	example	sequence	and	plot	 the	results
with	Matplotlib.

from	matplotlib	import	pyplot

scores	=	hydrophobicitySearch(proteinSeq,	GES_SCALE)

pyplot.plot(scores)

pyplot.show()

Measuring	repetitiveness
It	is	often	useful	to	measure	how	repetitive	a	section	of	DNA	or	protein	sequence	is.	For
DNA	regions	of	repetitive	sequence	are	often	associated	with	non-coding,	and	especially
‘junk’	DNA;	hence	if	we	are	searching	for	genes	and	their	regulatory	regions	we	look	for	a
sequence	that	is	not	repetitive.	For	protein,	repetitive	amino	acid	sequences	are	associated
with	the	parts	 that	are	unstructured:	 the	bits	 that	don’t	fold	into	a	compact	globule.	This
can	be	especially	useful	for	multi-domain	proteins	(several	independent	compact	globules
along	the	length	of	the	chain),	where	repetitive	sequence	regions	can	identify	the	flexible
linkers	between	the	compact,	inflexible,	folded	domains.

For	this	example	we	will	measure	the	repetitiveness	along	a	sequence	by	counting	how
many	different	kinds	of	residue	are	present	within	a	given	search	window.	If	a	given	sub-
sequence	only	uses	 a	 limited	number	of	 residue	 types,	 rather	 than	 a	 varied	mixture,	we
deem	that	sequence	to	be	repetitive	or	have	low	sequence	complexity.	For	a	more	formal
mathematical	definition	we	 turn	 to	 information	 theory	and	use	a	measure	which	derived
from	the	theory	of	information	entropy,	as	initially	described	by	Shannon.12

Considering	that	DNA	and	protein	have	different	numbers	of	possible	residue	types	(4
versus	 20),	 it	 is	 clear	 that	 for	 these	 different	 kinds	 of	molecule	 the	 expectation	 of	 how
many	 types	 of	 residue	 we	 will	 see	 on	 average	 in	 any	 given	 segment	 will	 be	markedly
different.	For	example,	 in	a	given	12-residue	segment,	for	DNA	we	would	expect	 to	see
every	 kind	 of	 nucleotide,	 and	 if	 all	 nucleotides	 are	 equally	 likely	 there	 would	 be	 on

average	 three	of	each	kind.	For	12-residue	protein	segments,	 it	 is	 impossible	 to	have	all
amino	acids	present,	and	we	might	reasonably	expect	the	average	occurrence	of	any	kind
to	be	less	than	1.

Accordingly,	because	the	expectation	of	how	likely	it	is	to	find	a	given	type	of	residue
varies	according	to	 the	situation,	we	will	measure	sequence	repetitiveness	by	comparing
the	measured	occurrences	with	what	we	would	expect	given	a	random	selection.	Here	we
will	refer	to	such	a	random	selection	as	the	null	hypothesis:	what	we	would	expect	in	the
absence	of	extra	information	(see	also	Chapter	22	for	further	discussion).	In	reality	there
are	many	null	hypotheses	that	you	could	choose	from,	if	you	were	searching	within	gene
sequences	and	already	know	 that	G:C	base	pairs	are	more	common	 than	A:T.	However,
for	this	exercise	we	will	assume	an	unbiased	null	hypothesis,	where	each	residue	type	is
equally	likely:	the	baseline	for	nucleotides	is	25%	and	the	baseline	for	amino	acids	is	5%.
We	will	refer	to	the	formulation	we	use	for	this	comparative	measure	of	repetitiveness	as
the	relative	entropy,	also	known	as	the	Kullback-Leibler	divergence.13

The	 actual	 example	 code	 will	 be	 broken	 up	 into	 two	 separate	 functions;	 one	 will
calculate	 the	 relative	 entropy	 and	 the	 other	will	 scan	 through	 a	 sequence	 compiling	 the
results.	 The	 first	 function	 takes	 a	 sequence,	 a	 list	 of	 possible	 residue	 types,	 which	 of
course	will	differ	for	DNA	and	protein,	and	does	the	appropriate	mathematics	(see	the	last
column	of	Table	11.2)	to	give	back	a	single	value	H	(a	traditional	letter	to	use	for	entropy).
Note	that	this	function	does	not	contain	any	code	specific	to	a	given	context.	This	means
that	the	function	will	be	useful	in	other	situations,	one	of	the	main	reasons	to	write	it	in	a
separate	block	of	code.	A	separate	function	also	helps	to	keep	the	Python	code	readable.

The	 workings	 of	 the	 function	 involve	 calculating	 the	 expected	 base-level	 proportion
base,	then	filling	the	dictionary	prop,	which	stores	the	abundance	of	each	kind	of	residue
we	 have	 in	 the	 input	 sequence.	 The	 residue	 counts	 are	 converted	 to	 a	 proportion	 (i.e.
between	 0	 and	 1)	 by	 dividing	 by	 the	 sequence	 length,	making	 sure	 that	we	 do	 floating
point	division	(dividing	two	integers	gives	an	integer	in	Python	before	version	3).	Armed
with	the	base	level	and	the	proportions	we	then	loop	through	each	residue	type	and	add	the
local	repetitiveness	measure	for	that	type	to	the	relative	entropy	total.	The	occurrence	of
base-2	logarithms	throughout	is	a	means	to	ensure	that	the	answer	is	output	in	units	of	bits
(common	in	information	theory).

def	calcRelativeEntropy(seq,	resCodes):

		"""Calculate	a	relative	entropy	value	for	the	residues	in	a

					sequence	compared	to	a	uniform	null	hypothesis.

		"""

		from	math	import	log

		N	=	float(len(seq))

		base	=	1.0/len(resCodes)

		prop	=	{}

		for	r	in	resCodes:

				prop[r]	=	0

		for	r	in	seq:

				prop[r]	+=	1

		for	r	in	resCodes:

				prop[r]	/=	N

		H	=	0

		for	r	in	resCodes:

				if	prop[r]	!=	0.0:

						h	=	prop[r]*	log(prop[r]/base,	2.0)

						H	+=	h

		H	/=	log(base,	2.0)

		return	H

The	second	function	will	use	the	calcRelativeEntropy()	function	as	it	scans	through	an
input	sequence.	In	this	example,	and	unlike	the	previous	ones	in	this	chapter,	rather	than
having	our	search	window	stop	before	it	falls	off	the	end	of	the	input	sequence	we	will	use
a	cheat	that	will	enable	the	search	to	go	right	to	the	last	residue.	This	involves	pretending
that	 the	sequence	is	circular;	rather	 than	falling	off	 the	end	the	search	will	 jump	back	to
the	beginning	of	 the	sequence.	Whether	 it	 is	appropriate	 to	cheat	 is	at	 the	programmer’s
discretion,	but	in	this	instance	it	gives	results	that	appear	reasonable,	due	to	the	fact	that
we	are	repeating	a	real	segment	of	sequence.

Table	11.2. 	The	 relative	 entropy	 formulation	 to	measure	 sequence	 repetitiveness.
The	 repetitiveness	 of	 a	 biological	 sequence	 may	 be	 formulated	mathematically	 by
calculating	 a	 relative	 entropy	value	DKL	 (the	Kullback-Leibler	divergence).	This	 is
simply	 the	 summation,	 considering	 all	 the	 residue	 (amino	 acid	 or	 nucleotide,
depending	 on	 the	 molecule)	 types,	 of	 the	 observed	 proportion	 of	 each	 type	 (Pi)
multiplied	 by	 the	 log-ratio	 of	 the	 observed	 proportion	 divided	 by	 the	 proportion
expected	in	random	sequences	(Qi,	which	is	always	0.25	in	the	above	example).	The
relative	entropy	is	illustrated	for	various	degrees	of	sequence	repetition,	showing	that
the	measure	represents	the	variety	of	different	residue	types,	in	a	sample	of	fixed	size.

Sequence Residue	proportions Relative	entropy	(bits)

G C A T

GGGGGGGG 1.000 0.000 0.000 0.000 2.00

TCTCTCTC 0.000 0.500 0.000 0.500 1.00

GGGGCCCC 0.500 0.500 0.000 0.000 1.00

GAAGACGA 0.375 0.125 0.500 0.000 0.59

GCATTACG 0.250 0.250 0.250 0.250 0.00

The	 makeup	 of	 the	 function	 is	 quite	 simple:	 it	 takes	 the	 input	 sequence	 and	 search
window	 size,	 and	 also	 an	 optional	 variable	 to	 flip	 between	 using	 DNA	 and	 protein
sequences.	 Note	 that	 the	 length	 of	 the	 input	 sequence	 lenSeq	 is	 recorded	 before	 we
perform	our	cheat	of	copying	residue	codes	from	the	beginning	of	the	sequence	to	make
an	artificial	extension.	Before	entering	the	loop	we	define	the	residue	codes	that	we	will
use	 for	 the	 relative	 entropy	 calculation,	 i.e.	 the	 four	 nucleotides	 for	DNA	 or	 20	 amino
acids	for	protein.	Within	the	loop,	rather	than	using	the	.append()method	to	add	each	score
to	the	list	we	first	make	a	blank	list	of	the	right	size	by	repeating	zeros	([0.0]	*	lenSeq),	to
which	the	individual	scores	are	then	added.	This	technique	can	often	be	used	to	make	your
code	 execute	more	 quickly.	 The	 index	 i	 in	 the	 for	 loop	 goes	 all	 the	way	 up	 to	 lenSeq,
because	we	have	added	 the	 extra	 sequence	and	 the	 entropy	 score	 is	 calculated	 from	 the
sub-sequence	that	is	sliced	out	of	the	input	sequence.

def	relativeEntropySearch(seq,	winSize,	isProtein=False):

		"""Scan	a	sequence	for	repetitiveness	by	calculating	relative

					information	entropy.

		"""

		lenSeq	=	len(seq)

		scores	=	[0.0]	*	lenSeq

		extraSeq	=	seq[:winSize]

		seq	+=	extraSeq

		if	isProtein:

				resCodes	=	'ACDEFGHIKLMNPQRSTVWY'

		else:

				resCodes	=	'GCAT'

		for	i	in	range(lenSeq):

				subSeq	=	seq[i:i+winSize]

				scores[i]	=	calcRelativeEntropy(subSeq,	resCodes)

		return	scores

We	can	then	test	the	function	in	the	usual	manner,	and	make	a	graph	of	the	results:

from	matplotlib	import	pyplot

dnaScores	=	relativeEntropySearch(dnaSeq,	6)

proteinScores	=	relativeEntropySearch(proteinSeq,	10,	isProtein=True)

pyplot.plot(dnaScores)

pyplot.plot(proteinScores)

pyplot.show()

Protein	isoelectric	point
The	last	of	the	examples	in	this	chapter	is	an	example	that	involves	an	optimisation.	So	far
all	 of	 the	 numerical	 values	 that	 we	 have	 calculated	 have	 been	 deduced	 analytically	 by
applying	some	equation:	there	is	a	direct	method	to	get	from	the	data	to	a	precise	answer.

However,	it	is	commonplace	to	come	across	problems	where	the	values	we	are	interested
in	are	not	directly	accessible.	In	reality	such	problems	may	range	from	those	for	which	it
is	genuinely	difficult	to	imagine	any	formulaic	method	(hard	problems:	see	Chapter	25)	to
those	where	a	direct	formulation	is	merely	inconvenient	or	slow.

The	topic	of	this	example	is	the	estimation	of	the	isoelectric	point	of	a	protein,	which
we	will	call	the	pI.	This	is	a	measurable	property	of	a	protein:	it	is	the	pH14	at	which	the
protein	 carries	 no	 overall	 electric	 charge.	 This	 is	 something	 that	 is	 often	 used	 to
characterise	 and	 isolate	 proteins,	 for	 example,	 by	 performing	 electrophoresis	 (moving
particles	through	a	porous	substance	with	an	electric	current)	in	a	gel	with	a	pH	gradient.

Proteins	have	electric	charges	because	certain	kinds	of	amino	acids,	 together	with	 the
chain	termini	(the	unlinked	ends),	are	capable	of	accepting	or	losing	a	hydrogen	ion	(H+).
The	 groups	 that	 are	 capable	 of	 gaining	 a	 hydrogen	 ion,	 and	 thus	 a	 positive	 charge,	 are
called	 basic:	 this	 includes	 the	 residues	 arginine,	 lysine	 and	 histidine15	 and	 also	 the	 N-
terminus	 of	 the	 protein,	 the	 start	 of	 the	 chain	 where	 there	 is	 a	 free	 amine	 group.	 The
groups	which	lose	a	hydrogen	ion	gain	a	negative	charge;	they	are	neutral	before	the	loss.
These	 groups	 are	 called	 acidic	 and	 include	 the	 residues	 aspartic	 acid,	 glutamic	 acid,
cysteine,	 tyrosine	and	 the	C-terminus	of	 the	protein:	 the	end	of	 the	protein	chain	where
there	is	a	free	carboxylic	acid	group.

In	 any	 given	 situation	 whether	 or	 not	 these	 basic	 and	 acidic	 groups	 carry	 a	 charge
depends	on	the	hydrogen	ion	concentration	of	the	environment:	the	pH.	In	a	solution	with
a	low	pH	the	concentration	of	H+	is	high,16	and	so	there	are	lots	of	free	ions	to	bind	to	the
basic	groups,	giving	them	a	positive	charge,	and	also	lots	of	free	ions	to	bind	to	the	acidic
groups,	removing	the	negative	charge	and	making	them	neutral.	Conversely,	with	a	high
pH,	 the	concentration	of	H+	 is	 low,	whereupon	 the	 ions	 are	 lost	 from	 the	 protein;	 basic
groups	become	neutral	and	acidic	groups	are	left	with	a	negative	charge.

The	different	basic	and	acidic	groups	do	not	bind	to	hydrogen	ions	equally	strongly.	For
example,	aspartic	acid	very	easily	loses	H+;	at	neutral	pH	7.0	they	are	almost	all	lost,	but
for	 tyrosine	at	a	neutral	pH	hardly	any	are	 lost.	The	strength	of	any	acid	or	base	can	be
described	 by	 the	 acid	 dissociation	 constant,	 referred	 to	 as	 the	 pKa.	 This	 has	 a	 formal
mathematical	 definition	 using	 the	 concentrations	 of	 hydrogen-bound	 and	 unbound
components,17	but	 is	most	easily	remembered	as	 the	pH	at	which	on	average	half	of	the
groups	will	be	bound	with	H+.	Any	one	specific	group	can	of	course	only	be	bound	to	a
whole	hydrogen	ion	or	no	hydrogen	ion,	so	these	constants	represent	the	average	over	time
as	H+	is	dynamically	lost	and	gained.	The	pKa	value	for	aspartic	acid	is	4.4,	so	at	pH	4.4	it
will	 have	 H+	 half	 of	 the	 time,	 and	 thus	 its	 average	 electric	 charge	 will	 be	 −0.5:	 half
negative	 because	 the	 free	 half	 is	 negative.	 For	 aspartic	 acid,	 as	 pH	 increases	 it	 will
become	 increasingly	 negatively	 charged	 as	 it	 will	 be	 bound	 to	 H+	 less	 of	 the	 time.
Conversely	the	pKa	value	for	lysine	is	10.0,	thus	at	pH	10.0	it	will	be	half	bound	by	H+,
but	 because	 this	 residue	 is	 basic	 the	 ions	 add	 a	positive	 charge,	 rather	 than	neutralise	 a
negative	 one.	 So	 for	 lysine,	 as	 the	 pH	 decreases	more	H+	 binds	 and	 it	 becomes	 more
positively	charged.

Figure	11.4.	 A	graph	of	how	overall	peptide	charge	varies	with	pH.	The	estimated
overall	charge	for	an	example	protein	sequence	is	shown	for	various	pH	values,	which
correspond	to	hydrogen	ion	concentrations.	At	different	pH	values	the	various	acidic	and
basic	chemical	groups	on	some	of	the	amino	acids	release	or	accept	hydrogen	ions,	thus
changing	the	average	(considering	many	molecules	over	time)	electric	charge.	The	pI	or
isoelectric	point	is	the	pH	value	where	the	individual	charges	balance	to	give	zero	overall
charge.

To	 calculate	 the	 pI	 we	 must	 find	 the	 pH	 where	 we	 think	 the	 positive	 and	 negative
charges	in	the	protein	balance,	hence	must	first	have	a	method	for	estimating	the	charge	of
a	protein	chain	at	a	given	pH.	We	then	use	this	method	to	test	different	values	of	pH,	until
we	 home	 in	 on	 the	 value	 where	 the	 overall	 charge	 is	 zero.	 It	 is	 possible	 to	 use	 an
exhaustive	method	whereby	we	 systematically	 test	 lots	 of	 pH	 values	which	 differ	 by	 a
very	small	amount	until	we	find	one	that	gives	the	charge	closest	to	zero.	However,	here
we	will	use	a	more	 intelligent	method	 that	will	 find	a	good	answer	 in	only	a	 few	steps.
Although	 the	 example	 problem	 is	 not	 so	 challenging	 and	 we	 could	 have	 used	 the
exhaustive	method,	 for	many	 other,	 larger	 problems	 using	 an	 intelligent	 optimisation	 is
essential	to	get	a	reasonable	answer	in	a	reasonable	time.

The	optimisation	algorithm	we	will	use	employs	a	divide-and-conquer	strategy.	We	test
various	pH	values	by	stepping	between	test	points	and	for	a	given	pH	value	and	whether
the	 resulting	 charge	 is	 above	 or	 below	 zero	 (positive	 or	 negative)	 tells	 us	 in	 which
direction	we	must	search	next	for	a	better	answer.	Also,	if	we	come	across	a	better	guess
for	the	pI	(i.e.	a	pH	that	predicts	a	charge	closer	to	zero)	then	we	reduce	the	step	size	(how
far	to	go	for	the	next	guess)	by	half	so	that	we	get	increasingly	close	to	the	optimum	value
and	don’t	overshoot	far.	Note	that	we	are	only	able	to	use	this	strategy	because	we	know
how	 the	 problem	 works;	 it	 is	 well	 behaved	 because	 we	 know	 that	 there	 is	 only	 one
solution	and	we	know	how	far	ahead	to	look	for	a	better	answer.	Not	all	problems	will	be
so	simple,	and	for	 the	more	difficult	situations	we	can	employ	the	methods	discussed	 in
Chapter	25.

The	function	estimateCharge	is	designed	to	estimate	the	charge	of	a	given	sequence	at	a
given	pH.	The	basis	of	 the	calculation	 involves	estimating	 the	proportion	of	dissociated
acidic	and	H+-bound18	basic	amino	acids	from	reference	pKa	values.	This	procedure	does
not	 take	 account	 of	 the	 effect	 that	 the	 sequence	 and	 folding	 of	 a	 protein	 has	 upon	 the
dissociation	constants	of	its	component	residues,	 i.e.	 the	pKa	values	in	any	real	situation
vary	 according	 to	 how	 charged	 residues	 interact	 with	 each	 other.	 Also,	 this	 calculation

assumes	we	are	in	water	at	a	standard	temperature.

The	function	takes	two	input	variables	which	are	helpfully	named	and	returns	a	single
charge	value.	We	define	a	dictionary	of	pKa	values	for	basic	and	acidic	amino	acids,	keyed
by	their	code	letters.	Note	that	we	also	have	values	for	‘+’	and	‘-’,	which	are	symbols	that
will	 be	 used	 to	 represent	 the	 charge-carrying	 groups	 that	 arise	 from	 the	 free	N-	 and	C-
termini.	We	define	another	dictionary,	isAcid,	so	that	we	can	look	up	whether	each	charge
group	acts	as	an	acid	or	not.

For	each	amino	acid	letter	in	the	sequence	we	find	the	pKa	value	of	the	amino	acid	from
the	pKa	dictionary.	If	an	amino	acid	is	neither	acidic	nor	basic	(uncharged),	and	thus	not
present	in	this	dictionary,	the	.get()	function	will	helpfully	give	a	value	of	None.	If	we	do
get	a	pKa	value	we	do	the	mathematics	with	the	pKa	and	the	input	pH19	to	calculate	how
much	of	the	group	will	be	dissociated	(free	from	H+).

If	 the	residue	 is	acidic	we	add	a	negative	charge	for	 the	dissociated	proportion	of	 the
residue.	Otherwise,	if	the	amino	acid	is	basic,	we	have	positive	charge	for	the	proportion
of	the	amino	acid	that	remains	associated	with	hydrogen	ions.	The	associated	proportion
is	what	remains	after	we	subtract	the	dissociated	proportion,	hence	1-proportion,	and	we
do	 not	 bother	 to	 multiply	 by	 +1	 for	 a	 positive	 charge.	 The	 estimated	 charge	 of	 the
individual	 amino	 acid	 is	 added	 to	 the	 running	 total.	And	 at	 the	 end	we	 return	 the	 total
charge	from	the	function	to	be	used	elsewhere.

def	estimateCharge(sequence,	pH):

		"""Using	pKa	values	estimate	the	charge	of	a	sequence	of

					amino	acids	at	a	given	pH"""

		pKaDict	=	{'+':	8.0,'-':	3.1,'K':10.0,'R':12.0,

													'H':	6.5,'E':	4.4,'D':	4.4,'Y':10.0,'C':	8.5}

		isAcid	=	{'+':False,'-':True,'K':False,'R':False,

												'H':False,'E':True,'D':True,'Y':True,'C':True}

		total	=	0.0

		for	aminoAcid	in	sequence:

				pKa	=	pKaDict.get(aminoAcid)

				if	pKa	is	not	None:

						r	=	10.0	**	(pH-pKa)

						dissociated	=	r/(r+1.0)

						if	isAcid[aminoAcid]:

								charge	=	-1.0	*	dissociated

						else:

								charge	=	1.0	-	dissociated

						total	+=	charge

		return	total

The	 estimateIsoelectric	 function	 uses	 the	 estimateCharge	 function	 defined	 above	 to

estimate	 the	 pH	 at	 which	 a	 protein	 sequence	 will	 be	 neutrally	 charged.	 To	 the	 input
sequence	of	letters	we	add	the	+	and	-	symbols	to	represent	the	charge	groups	at	the	N	and
C	 termini	 (strictly	 speaking	 these	 don’t	 have	 to	 be	 at	 the	 ends	 because	 order	 is
unimportant).	We	define	an	initial	pI	guess	bestValue	of	zero	before	starting	our	search	for
the	point	of	neutrality,	as	we	know	that	the	pI	is	not	going	to	be	less	than	this.	Also,	the
charge	at	this	starting	pH	is	estimated	from	this	initial	value	and	an	increment	size	of	7.0	is
defined	(somewhat	arbitrarily)	to	determine	the	next	pH	value	along	the	scale	that	will	be
tested.

Now	we	set	up	a	while	 loop	 to	 search	 for	 the	pH	at	neutrality,	but	we	do	not	 aim	 to
calculate	the	pH	at	which	the	charge	is	exactly	zero,	we	just	want	to	get	close;	the	result,
just	like	the	pKa	values,	will	only	be	an	estimate,	so	a	very	precise	value	is	not	necessary.
Thus,	 rather	 than	performing	 the	 loop	until	 the	 charge	 is	 exactly	 zero	we	only	continue
until	 it	 is	 less	 than	 an	 acceptable	 small	 value	 (0.001	 in	 this	 case).	We	 test	 to	 see	 if	 the
absolute	 value20	 of	 charge	 for	 the	 best	 pH	 found	 so	 far	 is	 greater	 than	 the	 threshold.
Otherwise	 the	 loop	will	 stop	 and	 the	 last	 value	 of	 the	 best	 pH,	 close	 to	 the	 pI,	will	 be
recorded.

If	the	test	charge	is	smaller	than	the	smallest	found	so	far	we	record	the	best	pH	from
the	value	tested	and	we	record	the	smallest	charge	found	thus	far.	Otherwise,	if	the	test	pH
gives	no	improvement	to	the	smallest	charge,	we	reduce	the	step	size	variable	increment	to
half	its	value,	to	narrow-in	on	a	better	value.	Also,	if	the	tested	charge	was	less	than	zero
we	know	that	we	should	step	in	the	reverse	direction	(multiply	by	minus	one)	to	get	closer
to	zero.	Finally,	when	the	while	loop	exits	the	last	pH	recorded	will	be	one	corresponding
to	neutrality,	so	we	return	this	value.

def	estimateIsoelectric(sequence):

		"""Estimate	the	charge	neutral	pH	of	a	protein	sequence.

						This	is	just	a	guess	as	pKa	values	will	vary	according	to

						protein	sequence,	conformation	and	conditions.

		"""

		sequence	=	'+'	+	sequence	+	'-'	#	assumes	seq	is	a	string

		bestValue	=	0.0

		minCharge	=	estimateCharge(sequence,	bestValue)

		increment	=	7.0

		while	abs(minCharge)	>	0.001:

				pHtest	=	bestValue	+	increment

				charge	=	estimateCharge(sequence,	pHtest)

				if	abs(charge)	<	abs(minCharge):

						minCharge	=	charge

						bestValue	=	pHtest

				else:

						increment	=	abs(increment)/2.0

						if	minCharge	<	0.0:

								increment	*=	-1

		return	bestValue

To	run	this	we	simply	call	the	function	with	a	protein	one-letter	sequence.	Also,	to	see

how	quickly	 the	 test	 pH	value	 homes-in	 on	 the	 pI,	 you	may	 like	 to	 insert	 print(pHtest)
inside	the	while	loop.

pI	=	estimateIsoelectric(proteinSeq)

Obtaining	sequences	with	BioPython
If	you	wish	to	use	any	of	the	above	examples	in	a	real	situation	you	will	naturally	want	to
get	 your	 sequences	 from	a	database	or	 file	where	 they	 are	 stored,	 rather	 than	having	 to
type	sequence	letters	into	a	Python	file.	With	a	working	knowledge	of	Python	you	would
hopefully	 be	 able	 to	 extract	 sequence	 information	 from	 the	 various	 text	 file	 formats.
However,	 for	 the	most	part	 this	 is	a	solved	problem	and	in	many	instances	you	can	rely
upon	existing	modules	to	extract	sequences	from	files	or	databases.	A	good	source	of	such
modules	 is	 the	BioPython	 library,	 and	below	we	 illustrate	 how	 to	use	BioPython	 to	 get
sequence	 data	 from	 a	 few	 common	 sources.	 These	 examples	 assume	 that	 BioPython	 is
installed	 correctly	 on	 your	 system	 and	 available	 to	 Python	 as	 the	 Bio	 module.	 See
http://www.cambridge.org/pythonforbiology	for	links	to	download	BioPython.

Reading	and	writing	FASTA	files
To	 read	a	FASTA-format	 file	using	BioPython	we	use	 the	SeqIO	module,	which	 in	 this
case	 takes	 an	 open	 file	 object	 and	 extracts	 each	 sequence	 of	 the	 file,	 in	 turn	 creating	 a
special	 object	 for	 each	 record.	 These	 objects	 have	 the	 attributes	 .id	 and	 .seq	 that
respectively	 allow	 us	 to	 get	 hold	 of	 Python	 strings	 representing	 the	 identifier	 and	 one-
letter	sequence.

Quite	simply	we	import	the	SeqIO	BioPython	module	and	create	an	open	file	object	for
the	sequence	file	(in	FASTA	format)	that	we	wish	to	read.

from	Bio	import	SeqIO

fileObj	=	open("examples/demoSequences.fasta",	"rU")

The	SeqIO	module	 has	 a	 parse()	 function	 that	 takes	 the	 file	 object	 and	 a	 file	 format
string	 to	yield	sequence	 record	objects.	Here	 the	 records	are	extracted	 in	a	 for	 loop	 and
allocated	to	the	protein	variable,	which	we	can	then	interrogate.	In	this	example	we	send
the	sequence	to	the	estimateIsoelectric	function	defined	above.

for	protein	in	SeqIO.parse(fileObj,	'fasta'):

		print(protein.id)

		print(protein.seq)

		print(estimateIsoelectric(protein.seq))

fileObj.close()

Writing	 a	 FASTA	 file	 using	 BioPython	 is	 slightly	 trickier	 because	 we	 have	 to	 first
create	the	right	type	of	BioPython	objects	(SeqRecord),	which	we	then	pass	into	a	function
for	writing.	Despite	 the	complication	of	making	 these	objects	 there	 is	 the	added	benefit
that	the	sequence	will	be	checked,	e.g.	that	it	has	the	right	set	of	letters,	before	it	is	written.

http://www.cambridge.org/pythonforbiology

We	make	several	more	imports	from	the	BioPython	library.	The	SeqRecord	is	the	final
object	we	wish	to	make,	and	which	will	be	written	out.	The	Seq	object	is	needed	internally
to	make	 a	 SeqRecord	 and	 IUPAC	 is	 needed	 to	 check	 the	 sequence	 letters	 according	 to
some	(the	IUPAC)	standard.

from	Bio.SeqRecord	import	SeqRecord

from	Bio.Seq	import	Seq

from	Bio.Alphabet	import	IUPAC

An	open	file	object	is	created	in	writing	mode,	with	the	desired	output	file	name.	If	we
were	 prudent	 we	 would	 check	 that	 we	 are	 not	 overwriting	 an	 existing	 file	 (using
os.path.exists()).

fileObj	=	open("output.fasta",	"w")

Next	 a	 Seq	 class	 of	 object	 is	 made,	 which	 accepts	 a	 one-letter	 sequence	 in	 its
construction,	 and	 a	 sequence	 validation	 alphabet	 specification,	which	 in	 this	 case	 is	 the
IUPAC	protein	codes.	This	 sequence	object	 is	 in	 turn	used	 to	make	a	SeqRecord	which
associates	 the	 sequence	 object	 with	 an	 identifier	 (and	 potentially	 other	 kinds	 of
annotation).

seqObj	=	Seq(proteinSeq,	IUPAC.protein)

proteinObj	=	SeqRecord(seqObj,	id="TEST")

The	proteinObj	(a	SeqRecord	class	object)	is	then	written	to	file	using	the	SeqIO.write()
function.	Note	that	this	takes	a	list	of	sequence	records,	as	we	can	have	many	sequences	in
one	 file,	 hence	 we	 put	 proteinObj	 in	 a	 list	 of	 one,	 using	 square	 brackets.	 The	 other
arguments	to	this	function	are	naturally	the	open	file	object	to	write	to	and	the	format	type
of	the	file.

SeqIO.write([proteinObj,],	fileObj,	'fasta')

fileObj.close()

Accessing	public	databases
If,	 rather	 than	getting	a	sequence	record	from	a	file,	we	wish	to	get	data	directly	from	a
database	then	there	are	a	few	helper	functions	in	BioPython	that	allow	easy	access	to	some
large	 sequence	 databases	 via	 Internet-based	 services,	 rather	 than	 having	 to	 talk	 to	 the
database	 directly.	 For	 example,	 if	 we	 wish	 to	 read	 a	 FASTA-format	 file	 from	 NCBI
GenBank	we	can	do	the	following,	although	we	naturally	have	to	know	the	identifier	for
the	sequence	we	want.

We	import	the	Entrez	module,	set	the	email	address	attribute	(to	identify	ourselves,	as
encouraged	 by	 the	 database)	 and	 then	 call	 a	 function	 to	 fetch	 a	 given	 entry	 based	 on	 a
given	database	type	“protein”,	return	format	type	“fasta”	and	sequence	identifier	number.

from	Bio	import	Entrez

Entrez.email	=	'mickey@disney.com'

socketObj	=	Entrez.efetch(db="protein",	rettype="fasta",

																										id="71066805")

The	 above	 function	 call	 gives	 back	 an	 open	 socket	 object	 (assuming	 the	 connection
works)	that	can	be	used	in	the	same	way	as	a	normal	open	file	object,	although	it	actually
represents	a	connection	via	the	Internet.	Hence,	the	reading	of	the	sequence	is	done	in	the
same	way	as	for	the	FASTA	file:

dnaObj	=	SeqIO.read(socketObj,	"fasta")

socketObj.close()

print(dnaObj.description)

print(dnaObj.seq)

In	 a	 similar	 way	 we	 can	 read	 a	 SWISSPROT	 record	 using	 the	 ExPASy	 module,
although	it	should	be	noted	that	the	function	to	find	the	sequence	and	get	an	open	socket
(get_sprot_raw)	 is	 different	 to	 before	 and	 requires	 different	 arguments,	 given	 that	 such
specifications	 depend	 on	 the	 exact	 details	 of	 the	 Internet	 service	 that	 the	 database
provides.

from	Bio	import	ExPASy

socketObj	=	ExPASy.get_sprot_raw('HBB_HUMAN')

proteinObj	=	SeqIO.read(socketObj,	"swiss")

socketObj.close()

print(proteinObj.description)

print(proteinObj.seq)

1 	RNA	 stands	 for	 ribonucleic	 acid	 and	 it	 is	 present	 in	 several	 fundamentally	 important
biochemical	situations.
2 	Cells	 have	 a	 specific	 kind	of	molecular	 particle,	 containing	protein	 and	RNA	chains,
called	the	ribosome,	which	does	this	job.
3 	Strictly	2′-deoxynucleotides	if	you	know	your	ribose	sugar	chemistry.
4 	By	special	proteins	called	helicases.
5 	 The	 RNAs	 that	 don’t	 act	 as	 messengers	 often	 have	 a	 direct	 physical	 role	 in
biochemistry,	just	like	proteins.
6 	This	example	uses	the	Protein	Data	Bank	naming	system.
7 	The	versions	of	a	chemical	element	with	different	atomic	weights,	caused	by	different
numbers	of	neutrons	in	the	nucleus.
8 	A	means	of	separating	molecules	in	a	sample	according	to	size,	by	passing	an	electric
current	through	a	gelatinous	substance	in	which	differently	sized	chains	move	at	different
speeds.
9 	The	part	that	differs	between	each	kind	of	amino	acid.
10 	A	kind	of	oily	fat.
11 	 Engelman,	 D.M.,	 Steitz,	 T.A.,	 and	 Goldman,	 A.	 (1986).	 Identifying	 nonpolar
transbilayer	 helices	 in	 amino	 acid	 sequences	 of	 membrane	 proteins.	 Annual	 Review	 of

Biophysics	and	Biophysical	Chemistry	15:	321–353.
12 	 Shannon,	 C.E.	 (1948).	 A	 mathematical	 theory	 of	 communication.	 Bell	 System
Technical	Journal	27(3):	379–423.
13 	 Kullback,	 S.,	 and	 Leibler,	 R.A.	 (1951).	 On	 information	 and	 sufficiency.	 Annals	 of
Mathematical	Statistics	22(1):	79–86.
14 	i.e.	hydrogen	ion	concentration	in	solution.
15 	See	Table	11.1	for	the	three-	and	one-letter	amino	acid	codes.
16 	pH	is	the	negative	log10	of	the	H+	ion	concentration.

17 	 pKa	 =	 −log10	 Ka,	 where	 Ka	 is	 the	 concentration	 of	 unbound	 component	 times	 the
concentration	 of	 free	 hydrogen	 ions,	 divided	 by	 the	 concentration	 of	 hydrogen-bound
component.
18 	Often	called	protonated	because	an	H+	ion,	without	any	electrons,	is	really	just	a	bare
proton.
19 	 When	 we	 have	 a	 pKa	 value	 we	 calculate	 the	 ratio	 between	 the	 hydrogen	 ion
concentration	 (obtained	 from	 the	 input	 pH)	 and	 the	 dissociation	 constant	 Ka,	 because
according	to	the	dissociation	equation	Ka	=	[H+][A−]/[HA],	 the	ratio	Ka/[H+]	 is	 the	ratio
between	dissociated	and	associated	concentrations.	We	then	use	the	ratio,	r,	of	dissociated
[A−]	to	associated	[HA]	to	calculate	the	proportion	of	the	dissociated	component	relative
to	the	total,	i.e.	dissociated	=	[A−]/([HA]	+	[A−])	=	r[HA]/([HA]+r[HA])	=	r/(1+r).
20 	The	magnitude	of	a	value	regardless	of	sign.

12 	Pairwise	sequence	alignments
Contents

Sequence	alignment

Sequence	classification

Conservation	analysis

Genetic	trees

Protein	structure	prediction

Whether	to	align	protein	or	DNA

Calculating	an	alignment	score

Sequence	identity

Substitutability

Calculating	sequence	similarity

Optimising	pairwise	alignment

Dynamic	programming

Pairwise	alignment	with	Python

Quick	database	searches

Using	BLAST	from	Python

Sequence	alignment
The	 alignment	 of	 biological	 sequences	 is	 probably	 the	 most	 widely	 used	 operation	 in
bioinformatics.	 In	 essence	 sequences	 are	 aligned	 so	 that	we	 can	 determine	 how	 similar
they	 are,	 and	 from	 this	 all	 sorts	 of	 useful	 information	 can	 come,	 such	 as	 whether	 two
sequences	are	related	by	evolution	(they	have	a	common	ancestor)	or	whether	they	have	a
similar	 biological	 function.	 The	 process	 of	 comparison	 is	 called	 alignment	 because	 the
trickiest	part	of	 the	process	 is	 to	 say	which	bits	of	 two	 sequences	are	 equivalent	 to	one
another;	how	residues	of	the	different	sequences	can	be	paired	up.	Usually	when	we	align
sequences	we	 seek	 to	 determine	 the	 best	 alignment	 out	 of	 the	 vast	 number	 of	 possible
comparisons	by	finding	the	combination	of	residue	pairs,	one	from	each	sequence,	which
gives	the	highest	overall	score	for	similarity.

Once	a	sequence	alignment	has	been	achieved,	and	assuming	you	trust	the	results,	you
can	treat	the	aligned	regions	as	having	a	degree	of	equivalency.	If	the	alignment	is	good
enough	you	might	be	able	to	say,	for	example,	that	two	DNA	sequences	relate	to	the	same
kind	 of	 gene,	 despite	 the	 nucleotides	 not	 being	 exactly	 the	 same.	 It	 should	 always	 be

remembered,	 however,	 that	 a	 sequence	 alignment	 can	 only	 give	 a	 limited	 amount	 of
information	about	the	underlying	biology,	but	it	is	often	an	excellent	starting	point.	Even
where	 the	 knowledge	 gained	 is	 distinctly	 incomplete,	 a	 sequence	 alignment	 is	 quick	 to
perform	and	often	helpful	to	guide	experiments.	You	might	significantly	narrow	down	the
number	 of	 possibilities	 of	 what	 a	 section	 of	 DNA	 or	 protein	 could	 be,	 or	 say	 what	 it
definitely	is	not,	with	one	simple	database	search,	i.e.	doing	alignments	against	a	database
of	well-studied	 sequences.	Sequence	 alignments	 are	 also	done	 in	 a	 laboratory	 setting	 to
guide	procedures,	for	example	to	determine	which	part	of	a	protein	to	investigate.

Figure	12.1.	 Example	alignments	of	protein	and	DNA	one-letter	sequences.	Dashes
are	used	to	represent	positions	where	one	sequence	has	a	residue	with	no	equivalent	in	the
other;	i.e.	a	gap	is	required	to	pair	up	the	residues	properly.	Note	that	with	the	protein
sequence	(left)	we	can	match	positions	not	only	by	the	residues	being	identical,	but	also
by	the	residues	being	similar.

As	 you	 might	 expect	 for	 the	 cornerstone	 technique	 of	 bioinformatics,	 sequence
alignment	comes	 in	many	different	varieties.	Which	kind	of	 sequence	alignment	 is	used
will	largely	depend	upon	what	kind	of	biological	question	is	being	asked.1	The	following
are	examples	of	situations	that	sequence	alignments	may	be	used	for,	with	attention	paid
to	what	is	different	about	the	bioinformatics	of	each	case.

Sequence	classification
You	will	 often	 find	 this	 task	 referred	 to	 as	 sequence	 annotation,	 i.e.	 to	 associate	 extra
information	with	a	sequence	to	say	what	it	is	or	does,	or	perhaps	at	least	say	what	it	might
do.	The	principle	behind	this	 is	 to	compare	a	query	sequence	(maybe	newly	discovered)
with	other	 sequences	 that	we	have	 some	 information	about.	 If	 the	query	can	be	aligned
with	some	of	 these	other	sequences	 then	we	can	often	infer	 that	our	query	sequence	has
some	 of	 the	 same	 properties	 as	 those	 that	 it	matches,	 and	 the	 degree	 of	 similarity	 says
something	about	 the	confidence	of	 the	 inference.	This	can	be	done	with	all	 the	different
kinds	 of	 biological	 polymer	molecule:	DNA,	RNA	and	 protein.	An	 illustrative	 example
would	 be	 when	 the	 elephant	 genome	 sequence	 is	 being	 processed,	 because	 there	 is	 a
massive	amount	of	information	about	the	genomes	of	other	mammals	(human,	mouse,	rat,
cat,	dog	etc.	…)	then	there’s	a	good	chance	that	any	given	gene	will	align	well	with	other
genes	that	we	already	have	knowledge	of.	Accordingly,	if	we	find	the	elephant	gene	that
aligns	 best	with	mammal	 genes	 labelled	 as	beta-globin	 then	 it	 is	 highly	 likely	 that	 this
gene	is	the	elephant’s	version	of	beta-globin	and	that	it	functions	in	the	same	way,	making
up	the	haemoglobin	protein	to	carry	oxygen	in	red	blood	cells.	On	this	occasion	we	could
align	 either	 DNA	 sequences	 or	 protein	 sequences,	 as	 we	 are	 working	 with	 relatively
closely	related	species.	In	situations	where	the	degree	of	similarity	is	not	so	good	protein
sequence	alignments	can	yield	better	results	than	DNA;	because,	for	reasons	that	will	be
discussed	 later,	protein	sequence	similarity	 tends	 to	be	better	preserved	during	evolution
than	for	DNA.

Conservation	analysis

Once	we	have	some	sequences	that	we	are	sure	are	related	to	one	another,	we	can	begin	to
look	 at	 how	 the	 sequences	 differ,	 despite	 the	 common	 connection.	 Such	 sequences	 are
often	 different	 versions	 of	 a	 gene,	 which	 function	 in	 the	 same	 way,	 from	 different
organisms.	The	basic	principle	of	this	type	of	analysis	is	that	when	the	biological	role	of	a
particular	 set	 of	DNA	sequences	 (and	 thus	 also	 any	protein	produced)	 is	 conserved,	 the
residues	in	the	sequence	that	are	important	for	this	function	are	also	conserved,	but	those
that	 are	 not	 so	 important	 are	more	 free	 to	 vary.	DNA	 sequences	 naturally	 change	when
cells	 divide	 (and	 the	 changes	 are	 passed	 on	 to	 future	 generations	 when	 organisms
reproduce)	 because	 of	 the	 error-prone	 nature	 of	DNA	 replication.	 If	 a	 sequence	 change
occurs	that	is	detrimental	to	the	function	of	the	cell	or	organism,	then	the	change	will	tend
not	 to	be	passed	on;	 the	cell	may	die,	offspring	may	not	survive	or	 the	descendants	will
not	be	as	successful	as	those	within	the	population	that	are	unaltered.	Conversely,	changes
that	are	of	little	or	no	detriment	will	be	tolerated.	These	could	be	at	unimportant	genetic
locations,	 for	 example,	 the	 last	 position	 of	 a	 codon	 is	 often	 irrelevant	 for	 determining
which	 amino	 acid	 is	 produced;	 or	 they	 could	 be	 variations	 that	 do	 cause	 a	 noticeable
change	but	which	function	just	as	well,	like	when	one	amino	acid	changes	for	another	that
can	act	in	the	same	way.

Simply	 by	 aligning	 sequences	 and	 discovering	 positions	 that	 significantly	 preserve
residue	 type	we	can	 tell	 that	 those	positions	 are	 important,	 even	 if	we	do	not	 yet	 know
why	they	are	 important.	Also,	 if	we	can	classify	sequences	 that	we	know	act	differently
despite	being	similar,	then	the	individual	changes	in	the	sequence	can	often	explain	why
the	 sequences	 as	 a	whole	 act	 differently.	To	 take	 an	 example	 from	 the	 study	 of	 genetic
diseases,	if	you	look	at	the	beta-globin	gene	in	people	who	have	sickle-cell	anaemia	and
compare	 it	 to	 those	who	do	not	have	 the	disease,	 it	 is	very	easy	 to	generate	a	 sequence
alignment	 to	 see	 that	 there	 is	 a	 change	 in	 the	DNA,	and	hence	protein	 sequence,	of	 the
seventh	 codon	 which	 is	 only	 present	 in	 those	 with	 the	 disease.2	 Further	 investigation
shows	that	this	change	really	is	the	underlying	cause	of	the	disease;	it	causes	haemoglobin
to	stick	together	aberrantly.

When	you	look	in	detail	at	positions	in	a	protein	sequence	and	measure	how	well	 the
residues	 are	 preserved,	 then	 the	 reasons	 and	 effects	 are	 often	 best	 understood	 by
considering	 the	 folded	structure	of	 the	protein;	 i.e.	by	considering	 the	 three-dimensional
locations	 of	 the	 atoms.	 Amino	 acid	 residues	 that	 are	 involved	 in	 a	 specific	 chemical
reaction	that	is	catalysed	by	the	protein,	at	its	active	site,	are	usually	very	well	preserved.
Other	 residues,	 for	 example,	 in	 the	 folded	 core	 of	 the	 protein,	 may	 be	 well	 conserved
because	 of	 their	 importance	 in	 determining	 the	 shape	 of	 the	 protein,	 although	 some
variation	will	be	tolerated	in	the	amino	acids	if	they	are	replaced	by	similar	types	that	fit
together	 in	a	 similar	way.	Positions	 that	are	not	 so	 important	 for	 the	 shape	of	a	protein,
generally	 the	 residues	on	 the	 surface	and	 those	 in	 flexible	 regions,	will	 tend	 to	vary	 the
most.	However,	even	 in	such	 locations	 there	are	some	constraints	on	which	amino	acids
are	tolerated	for	normal	function;	for	example,	a	change	could	make	a	necessary	flexible
region	inflexible.

If	we	step	backwards	 from	 the	 scale	of	an	 individual	gene	or	protein	and	 look	at	 the
context	of	lots	of	genes	on	the	chromosomes	which	make	up	a	whole	genome,	then	we	can
observe	trends	that	show	how	the	genome	as	a	whole	is	evolving.	A	good	example	of	this
is	 that	 when	 the	 human	 genome	 is	 compared	 to	 the	 chimpanzee	 genome	 it	 becomes

apparent	 that	 the	 human	 chromosome	 23	 has	 no	 single	 chimpanzee	 equivalent;	 indeed
there	are	 two	chimp	chromosomes	 that	 correspond	 to	 the	human	one.	We	are	certain	of
this	 because	 the	 relative	 location	 and	 identity	 of	 equivalent	 human	 genes	 is	 preserved,
even	if	the	length	of	chromosome	differs.	Going	on	from	this,	further	analysis	shows	that
the	 human	 chromosome	 has	 been	 created	 from	 the	merging	 of	 two	 smaller	 ones;	 other
monkeys	and	apes	have	two	rather	than	one,	so	we	are	sure	that	two	chromosomes	is	the
ancestral	situation.

Figure	12.2.	 The	conservation	of	residues	in	a	protease	enzyme’s	active	site.	The
active-site	residues	are	those	that	are	involved	in	the	chemistry	of	the	enzyme’s	reaction,
and	because	of	this	they	tend	to	vary	little	during	evolution,	as	long	as	the	function	of	the
enzyme	is	preserved.	Invariant	sites	in	this	alignment	are	marked	with	‘*’.	Such	important
residues	may	be	discovered	by	doing	multiple	alignments	of	evolutionarily	divergent
sequences,	e.g.	from	different	species,	to	see	which	amino	acid	residues	are	most
conserved.	If	an	active	site	is	not	preserved	this	may	tell	us	something	important	about	the
function	of	the	protein.

Genetic	trees
On	 the	 whole,	 groups	 of	 biologically	 important	 sequences	 are	 similar	 to	 one	 another
because	they	are	generated	from	common	ancestors	during	the	process	of	evolution.	Such

sequences	that	can	be	linked	by	their	ancestry	are	often	loosely	described	as	a	 family.	A
family	of	sequences	will	arise	as	sections	of	chromosomes	are	duplicated	and	as	different
groups	of	organisms	evolve	into	separate	species.	As	sequences	diverge	from	one	another,
their	functions	will	also	diverge,	i.e.	for	different	roles	and	different	situations.	However,
as	 long	as	 there	 is	sufficient	similarity	 to	 link	one	sequence	to	another	we	can	still	 infer
that	sequences	belong	to	a	family.

Going	a	step	further	we	can	say	not	only	that	sequences	are	related,	but	also	how	they
are	related.	This	is	to	say	in	what	order	they	diverged	from,	or	on	occasion	merged	with,
one	another	and	hence	build	a	 family	 tree	 for	 the	 sequences.	For	example,	by	using	 the
most	variable	 features	 in	 the	 non-coding	 regions	 of	DNA	we	 can	 build	 trees	 of	 closely
related	 human	 families.	 In	 order	 to	 build	 a	 genetic	 tree	 from	 a	 group	 of	 sequences	 the
basic	 procedure	 is	 to	 generate	 sequence	 alignments,	 and	 hence	 similarity	 scores,	 for	 all
pairs	 of	 sequences.	The	 task	 then	 is	 to	 use	 the	 scores	 to	 arrange	 the	 sequences	 into	 the
most	likely	tree-like	arrangement;	for	example,	by	considering	which	arrangement	is	most
frugal	with	regard	to	the	implied	residue	changes.	Building	an	accurate	tree	is	often	very
difficult,	given	that	the	number	of	possible	ways	of	arranging	a	tree	can	be	immense.

Figure	12.3.	 A	cartoon	phylogenetic	tree,	illustrating	the	evolutionary	relationship
of	a	few	ape	species.	We	often	build	phylogenetic	trees	using	biological	sequences	by
finding	the	arrangement	of	taxa	(which	here	represent	ape	species)	which	would	involve
the	simplest	genetic	changes,	thus	predicting	the	order	of	evolutionary	divergence	and
grouping	the	most	similar	taxa	together.	The	illustrated	tree	is	a	rooted	tree,	to	show	the
relationship	of	the	taxa	to	their	last	common	ancestor.	In	this	stylised	diagram	the	line
lengths	do	not	convey	any	special	meaning,	but	in	general	branch	lengths	are	used	to
represent	evolutionary	distance	(dissimilarity).	The	example	DNA	sequences	are	the	same
part	of	the	mitochondrial	cytochrome	c	oxidase	gene	COX1	from	each	of	the	species.

Often	the	family	trees	of	one	or	more	genes	will	be	used	to	construct	a	family	tree	for	a
group	of	whole,	 distantly	 related,	 organisms.	Accordingly,	 by	 studying	 slowly	 changing
features,	 like	 the	 genes	 for	 ribosomal	 RNA	 and	 large	 DNA	 insertion	 events,4	 we	 can

determine	how	most	of	 the	major	groups	of	 living	organisms	are	 related	 to	one	another.
Also,	if	we	use	a	multitude	of	genes	to	build	a	consensus	as	to	how	a	group	of	organisms
is	 related	 to	 one	 another,	 then	 we	 can	 determine	 where	 in	 the	 tree	 a	 particular	 change
occurred.	It	is	also	possible	to	seek	genes	that	do	not	follow	the	main	evolutionary	trend.
Such	 rogue	 genes	 are	 often	 the	 result	 of	 genetic	 material	 being	 transmitted	 by	 some
method	other	than	normal	reproduction;	examples	of	this	include	transfer	via	viruses	and
during	symbiosis.5

Although	 genetic	 trees	 of	 sequences	 are	made	 possible	 by	 doing	 alignment,	 they	 are
special	enough	to	get	their	own	section.	Hence,	for	more	detailed	information	and	Python
programming	examples	of	how	simple	genetic	trees	may	be	constructed	see	Chapter	14.

Protein	structure	prediction
We	cannot	 yet	 automatically	 determine	 the	 three-dimensional	 structure	 of	 a	 protein	 just
from	its	amino	acid	sequences,6	but	looking	at	the	variations	and	conservation	in	protein
structures	 as	 a	whole	 it	 is	 apparent	 that	 structural	 features	 are	more	 preserved	 than	 the
protein	 sequences.	 Sequences	 may	 vary	 considerably	 between	 proteins	 (that	 really	 are
related)	 and	yet	 have	very	 similar	 three-dimensional	 structures;	 so	much	 so	 that	we	 are
often	unable	to	produce	a	convincing	alignment	using	the	residue	sequence	alone.	Hence,
if	we	actually	can	make	a	good	sequence	alignment	between	two	protein	sequences	then
we	 can	 generally	 be	 confident	 that	 their	 structures	 are	 similar,	 i.e.	 structure	 is	 better
preserved	 than	 sequence.	 In	 effect	 we	 are	 saying	 that	 the	 two	 proteins	 had	 a	 common
ancestor	 that	was	structurally	similar	 to	both.	This	observation	of	structural	preservation
being	better	than	our	ability	to	detect	related	sequences	is	at	the	heart	of	a	process	called
comparative	modelling.	 Comparative	modelling	 allows	 us	 to	make	 a	 good	 guess	 at	 the
structure	of	one	protein	if	we	already	know	the	structure	of	a	related	one,	and	as	you	might
expect	the	closer	the	relationship	between	the	two	proteins	(evolutionarily	speaking)	then
the	 better	 our	 guess.	 This	 structural	 guess	 is	 usually	 called	 a	 model.	 In	 essence,	 an
alignment	is	made	with	our	query	sequence	and	various	potential	template	sequences	that
have	a	known	structure.	If	the	degree	of	sequence	similarity	is	suitably	large	then	we	may
attempt	 to	 build	 a	 model	 of	 our	 query	 protein	 structure	 using	 information	 from	 the
template.	Such	 information	might	 include	 the	position	of	 sub-structures	 like	helices	 and
extended	strands7	or	the	distances	and	angles	between	atoms.

Whether	to	align	protein	or	DNA
If	 you’re	 looking	 at	 the	 coding	 regions	 of	 genes	 and	 their	 resulting	 proteins,	 when
approaching	a	particular	sequence	alignment	problem,	there	is	often	the	option	of	aligning
nucleotide	sequences	or	protein	sequences.	In	general,	which	kind	of	alignment	to	do	will
be	governed	by	the	specific	purpose	of	the	investigation.	For	example,	if	you	are	studying
the	 spread	 of	 an	 influenza	 virus	 through	 human	 populations,	 then	 because	 the	 rates	 of
nucleotide	 change	 in	 the	 virus	 genome	 are	 high,	 and	 because	 you	wish	 to	 study	 every
genetic	 change	 in	 fine	 detail,	 aligning	 nucleotide	 sequences	 would	 be	 the	 best	 option.
Conversely,	 if	 you	 are	 interested	 in	 protein	 structure,	 maybe	 by	 doing	 comparative
modelling,	 then	 using	 nucleotide	 sequences	would	 introduce	 unnecessary	 error	 and	 you
would	always	use	the	protein	sequence,	albeit	possibly	translated	from	the	DNA.	In	such

circumstances,	 because	 the	 nucleotides	 can	 have	 one	 of	 four	 bases,	 the	 chances	 of	 a
random	match	 are	 quite	 high	 compared	 to	 an	 amino	 acid	 which	 is	 one	 of	 20;	 i.e.	 the
chances	of	spurious	matches	in	protein	sequences	are	much	smaller.	Also	worth	noting	is
the	fact	that	some	DNA	changes	have	no	effect	on	the	protein	at	all,	and	thus	are	irrelevant
for	many	questions	arising	from	protein	sequence.	Lastly,	when	dealing	with	amino	acids,
we	almost	always	calculate	a	score	of	an	alignment	based	upon	the	degree	to	which	they
match,	rather	than	just	saying	how	many	are	identical,	which	is	often	the	case	for	DNA.8
In	general,	this	is	possible	because	the	chemical	structure	of	amino	acids	allows	you	to	say
how	similar	they	are,	for	example,	in	terms	of	size	and	charge	or	in	the	ability	to	form	a
loop.	 This	 can	 reveal	 relationships,	 e.g.	 conservation	 caused	 by	 the	 protein’s	 structure,
which	would	otherwise	not	be	visible	by	considering	simple	matches	alone.

Calculating	an	alignment	score
Our	 first	 Python	 examples	 dealing	with	 sequence	 alignments	 are	 simple	 subroutines	 to
give	a	measure	of	how	good	an	alignment	is.	This	is	important	because	although	there	are
many	 possible	ways	 of	 arranging	 letters	 to	 get	 an	 alignment	 the	 one	we	 almost	 always
want	is	the	best	one:	the	one	with	the	highest	score.	The	easiest	way	to	calculate	a	score
for	two	aligned	sequences	is	 to	calculate	how	many	residue	pairs	are	identical;	 this	is	 to
say	we	can	measure	the	sequence	identity.

Sequence	identity
The	 Python	 function	 to	 measure	 sequence	 identity	 is	 fairly	 simple.	 It	 accepts	 two
sequences	and	compares	them	under	the	assumption	that	these	sequences	are	aligned,	i.e.
that	the	first	position	in	one	is	equivalent	to	the	first	position	in	the	other.	The	procedure	is
then	 to	 start	 with	 a	 score	 of	 zero	 and	 each	 time	we	 have	 a	 position	 in	 both	 sequences
where	the	letter	 is	 the	same	we	add	one	to	 the	score.	At	 the	end	we	give	back	the	score
divided	by	how	many	places	we	compared,	so	that	we	have	an	average.	We	also	multiply
this	by	100	so	that	we	get	a	percentage	figure,	which	is	the	conventional	representation.

Note	that	in	the	function	we	define	the	number	of	places	for	comparison	(numPlaces)	as
the	length	of	the	shortest	sequence,	i.e.	we	take	the	minimum	of	the	two	sequence	lengths
to	guarantee	that	we	won’t	overshoot	the	smallest	of	the	pair.

def	calcSeqIdentity(seqA,	seqB):

		numPlaces	=	min(len(seqA),	len(seqB))

		score	=	0.0

		for	i	in	range(numPlaces):

				if	seqA[i]	==	seqB[i]:

							score	+=	1.0

		return	100.0	*	score/numPlaces

We	 can	 now	 test	 this	 function	 by	 defining	 some	 short	 protein	 sequences,	 and	 then

applying	the	function	to	pairs	of	sequences

seq1	=	'ALIGNMENTS'

seq2	=	'ALIGDVENTS'

seq3	=	'ALIGDPVENTS'

seq4	=	'ALIGN-MENTS'

print(calcSeqIdentity(seq1,	seq2))	#	80.0%

print(calcSeqIdentity(seq1,	seq3))	#	40.0%

print(calcSeqIdentity(seq4,	seq3))	#	72.7%

Note	 that,	 as	 expected	 when	 seq1	 is	 compared	 to	 seq2	 the	 result	 returned	 is	 80%.
However,	for	seq1	and	seq3,	which	as	you	will	note	only	differ	by	one	extra	‘P’	residue,
the	value	falls	to	40%.	This	is	because	although	the	first	few	residues	align	well,	once	the
extra	residue	is	reached	the	sequences	are	no	longer	in	step.	The	situation	is	resolved	by
inserting	a	dash	(representing	a	gap)	in	the	shorter	sequence,	so	that	‘P’	is	paired	with	‘-’
and	 the	 ends	 of	 the	 sequences	 align	 nicely.	Accordingly	 seq4	 and	 seq3	 give	 a	 score	 of
72.7%	 (eight	 out	 of	 eleven).	 As	 you	 can	 see	 inserting	 a	 gap	 in	 the	 right	 place	 can	 be
crucial.	We	will	illustrate	later	how	gaps	can	be	inserted	automatically	to	give	an	optimal
alignment	without	human	intervention.

Substitutability
Next	 we	 will	 move	 on	 from	 measuring	 a	 simple	 sequence	 identity	 to	 the	 more	 subtle
measure	of	sequence	similarity;	this	is	to	say	that	sequence	pairs	in	an	alignment	can	have
a	score	even	when	they	are	not	the	same.	The	notion	of	similarity	in	this	case	is	somewhat
subjective	 and	 ultimately	 depends	 on	 the	 kind	 of	 biology	 you	 are	 working	 with.
Nevertheless	the	general	idea	when	scoring	how	similar	two	residues	are,	when	aligned	as
a	pair,	is	to	consider	how	substitutable	one	residue	type	is	for	another;	in	other	words,	how
likely	 they	 are	 to	 have	 been	 swapped	 or	 exchanged	 for	 one	 another.	 Residues	 that
commonly	 swap	 for	 one	 another	 are	 deemed	 to	 be	 similar	 and	 give	 high	 scores,	 while
those	that	rarely	swap	are	dissimilar	and	give	low	scores.	High	similarity	in	this	instance
doesn’t	necessarily	mean	 that	 two	 residues	are	always	chemically	 similar,	 although	 they
often	are.	Strictly	speaking	the	substitutability	of	one	residue	type	for	another	depends	on
the	exact	context	of	the	residue	(where	it	is	in	a	chromosome	or	protein	etc.)	but	we	can
ignore	this	complication	for	now	and	consider	just	an	average	value	for	swap-ability.

The	 substitutability	 of	 one	 residue	 for	 another	 is	 stored	 as	 a	 two-dimensional	 array,
commonly	 called	 a	 substitution	matrix	 or	 similarity	matrix.	 The	 idea	 is	 that	 each	 score
value	 in	 the	matrix	 represents	 the	substitutability	of	 two	residue	 types,	e.g.	 ‘A’	 to	 ‘G’	 in
DNA	or	‘V’	to	‘L’	in	proteins.	The	two	residue	types	can	be	thought	of	as	indicating	the
row	 and	 column	 of	 an	 element	 in	 a	 matrix,	 although	 in	 our	 Python	 examples	 we	 will
encode	 matrices	 as	 dictionaries	 of	 dictionaries.	 Using	 dictionaries	 we	 can	 look	 up	 the
score	for	two	residue	types	by	using	the	residue	letters	directly	as	keys,	without	having	to
work	 out	 the	 numbers	 for	 the	 matrix	 row	 and	 column.	 With	 a	 substitution	 matrix
dictionary	 the	 first	 key	 (residue	 letter)	 identifies	 a	 sub-dictionary	 from	 inside	 the	main
dictionary	and	the	second	key	gets	the	final	value	from	inside	the	sub-dictionary.

Below	 is	 an	 example	 of	 a	 very	 simple	 substitution	matrix	 that	 would	 give	 the	 same

scores	as	if	you	were	measuring	sequence	identity.	i.e.	a	score	of	one	where	residues	are
identical	and	zero	elsewhere.

DNA_1	=	{'G':	{	'G':1,	'C':0,	'A':0,	'T':0	},

									'C':	{	'G':0,	'C':1,	'A':0,	'T':0	},

									'A':	{	'G':0,	'C':0,	'A':1,	'T':0	},

									'T':	{	'G':0,	'C':0,	'A':0,	'T':1	}}

Remembering	that	two	keys	are	needed	to	extract	a	value	(one	for	the	main	dictionary
and	 one	 for	 the	 sub-dictionaries)	 we	 would	 get	 1	 for	 identical	 residue	 look-ups	 like
DNA_1[‘G’][‘G’]	and	0	for	non-identical	keys	like	DNA_1[‘G’][‘A’].

Changing	track	slightly,	rather	than	scoring	DNA	sequences	for	matches	we	could	also
score	for	complementarity	(i.e.	using	Crick	and	Watson’s	pairing	rules),	with	1	for	A:T	or
G:C	matches	and	-1	for	mismatches.	Expressed	as	a	Python	dictionary	this	would	be:

REV_COMP	=	{'G':	{	'G':-1,	'C':	1,	'A':-1,	'T':-1	},

												'C':	{	'G':	1,	'C':-1,	'A':-1,	'T':-1	},

												'A':	{	'G':-1,	'C':-1,	'A':-1,	'T':	1	},

												'T':	{	'G':-1,	'C':-1,	'A':	1,	'T':-1	}}

Moving	 on	 to	 a	 more	 sophisticated	 matrix,	 as	 illustrated	 above,	 you	 will	 note	 that
substitution	scores	can	have	negative	values	(mismatch)	and	that	a	score	of	zero	is	often
used	to	indicate	indifference.	In	the	DNA_2	matrix	below	note	that	identical	residue	keys
give	 a	 score	 of	 1	 but	 non-identical	 -3.	 In	 other	 words	 the	 mismatches	 are	 strongly
penalised;	in	an	alignment	three	identical	residues	are	required	to	balance	one	mismatch.
Also	 note	 that	 the	 example	 uses	 the	 residue	 code	 ‘N’,	which	 in	 this	 instance	 for	DNA
means	 any9	 unidentified	 residue,	 which	 is	 indifferent	 in	 an	 alignment,	 given	 that	 we
cannot	tell	if	it	is	good	or	bad	and	so	scores	zero	with	everything.

DNA_2	=	{'G':	{	'G':	1,	'C':-3,	'A':-3,	'T':-3,	'N':0	},

									'C':	{	'G':-3,	'C':	1,	'A':-3,	'T':-3,	'N':0	},

									'A':	{	'G':-3,	'C':-3,	'A':	1,	'T':-3,	'N':0	},

									'T':	{	'G':-3,	'C':-3,	'A':-3,	'T':	1,	'N':0	},

									'N':	{	'G':	0,	'C':	0,	'A':	0,	'T':	0,	'N':0	}}

The	next	 example	 is	 part	 of	 a	 substitution	matrix	 for	 protein	 sequences.	 It	 is	 a	 fairly
famous	one	called	BLOSUM62	(often	the	default	in	many	programs).	You	will	of	course
note	that	the	matrix	is	much	larger	than	for	DNA	because	we	have	20	regular	amino	acids,
plus	‘X’	for	unknown	type.	We	have	only	shown	the	first	 four	sub-dictionaries	here,	but
the	 full	 matrix	 can	 be	 found	 in	 the	 on-line	 material	 (available	 via
http://www.cambridge.org/pythonforbiology).	There	are	usually	many	variants	of	a	given
substitution	matrix	 type.	Here	we	specifically	use	 the	‘62’10	version	of	BLOSUM	series
because	it	 is	a	good	general-purpose	one.	You	would	commonly	consider	using	different
matrix	 versions	 to	 tune	 your	 alignment	 for	 more	 closely	 related	 or	 distantly	 related
sequences	for	which	substitution	preferences	are	known	to	differ.

BLOSUM62	=	{'A':{'A':	4,'R':-1,'N':-2,'D':-2,'C':	0,'Q':-1,

																	'E':-1,'G':	0,'H':-2,'I':-1,'L':-1,'K':-1,

																	'M':-1,'F':-2,'P':-1,'S':	1,'T':	0,'W':-3,

																	'Y':-2,'V':	0,'X':0},

												'R':{'A':-1,'R':	5,'N':	0,'D':-2,'C':-3,'Q':	1,

http://www.cambridge.org/pythonforbiology

																	'E':	0,'G':-2,'H':	0,'I':-3,'L':-2,'K':	2,

																	'M':-1,'F':-3,'P':-2,'S':-1,'T':-1,'W':-3,

																	'Y':-2,'V':-3,'X':0},

												'N':{'A':-2,'R':	0,'N':	6,'D':	1,'C':-3,'Q':	0,

																	'E':	0,'G':	0,'H':	1,'I':-3,'L':-3,'K':	0,

																	'M':-2,'F':-3,'P':-2,'S':	1,'T':	0,'W':-4,

																	'Y':-2,'V':-3,'X':0},

												'D':{'A':-2,'R':-2,'N':	1,'D':	6,'C':-3,'Q':	0,

																	'E':	2,'G':-1,'H':-1,'I':-3,'L':-4,'K':-1,

																	'M':-3,'F':-3,'P':-1,'S':	0,'T':-1,'W':-4,

																	'Y':-3,'V':-3,'X':0}}

##	SNIP:	THE	FULL	MATRIX	CARRIES	ON	FOR	17	MORE	SUB-DICTIONARIES	##

As	 with	 the	 DNA	matrices	 we	 use	 two	 keys	 to	 get	 the	 substitution	 score	 and	 have
positive,	zero	and	negative	values.	Note	that	the	matrix,	like	the	DNA	matrix	examples,	is
symmetric,11	 i.e.	 BLOSUM62[‘A’][‘R’]	 equals	 BLOSUM62[‘R’][‘A’].	Unlike	 the	DNA
examples	 the	 diagonal	 of	 the	matrix	 is	 not	 uniform,	 which	 is	 to	 say	 that	 the	 score	 for
residue	types	being	the	same	in	an	alignment	differs.	For	example,	BLOSUM62[‘A’][‘A’],
meaning	 an	 exact	 alanine	 match,	 gives	 a	 score	 of	 4,	 but	 an	 exact	 asparagine	 match
BLOSUM62[‘N’][‘N’]	gives	a	higher	score	of	6.	Thus	‘A’	 is	 less	well	 conserved	 (more
swappable	for	something	else)	than	‘N’.

We	 will	 not	 go	 into	 fine	 detail	 about	 how	 substitution	 matrices	 are	 calculated	 until
Chapter	14.	In	essence	the	idea	is	that	you	first	generate	good,	well-curated	alignments	of
multiple	 sequences	 using	 as	much	 information	 as	 humanly	 possible	 from	 structure	 and
function	 etc.	 and	 you	 then	 count	 how	 many	 times	 one	 residue	 type	 is	 substituted	 for
another	within	the	alignment.	Then	in	various	ways	these	counts	are	converted	into	whole-
number	scores,	relative	to	some	baseline	value.	If	you	are	really	interested,	we	recommend
the	early	papers	on	the	PAM12	and	BLOSUM13	matrices.	These	two	protein	matrices	are
calculated	in	slightly	different	ways,	but	together	they	give	a	good	idea	of	the	underlying
principles.

Calculating	sequence	similarity
The	next	example	of	a	Python	 function	will	consider	a	 substitution	matrix	 like	 the	ones
discussed	and	use	it	to	calculate	an	overall	similarity	score	for	two	aligned	sequences.	The
inputs	to	the	function	are	two	strings	of	sequence	letters	and	the	similarity	matrix.

def	calcSeqSimilarity(seqA,	seqB,	simMatrix):

		numPlaces	=	min(len(seqA),	len(seqB))

		totalScore	=	0.0

		for	i	in	range(numPlaces):

				residueA	=	seqA[i]

				residueB	=	seqB[i]

				totalScore	+=	simMatrix[residueA][residueB]

		return	totalScore

#	Test	with	pre-defined	substitution	matrices

#	DNA	example

print(calcSeqSimilarity('AGCATCGCTCT',	'AGCATCGTTTT',	DNA_2))

#	Protein	example

print(calcSeqSimilarity('ALIGNMENT',	'AYIPNVENT',	BLOSUM62))

The	 calcSeqSimilarity()	 function	 is	 very	 similar	 in	 construction	 to	 the	 previous
calcSeqIdentity()	function,	except	that	this	time	rather	than	seeing	if	two	residue	letters	are
equal,	we	use	them	as	keys	to	look	up	a	similarity	score	in	the	substitution	matrix.	Note
that	 this	 function	 has	 one	 big	 deficiency:	 it	 cannot	 deal	with	 gaps	 (‘-’).	To	address	 this
problem	 we	 could	 put	 entries	 for	 gaps	 into	 the	 similarity	 matrix.	 However,	 a	 simpler
solution	 is	 to	 introduce	 a	 separate	 gap	 penalty;	 gaps	 are	 generally	 undesirable	 but	 are
tolerable	if	the	subsequent	alignment	matches	well.	If	we	complicate	things	slightly	more
we	can	have	different	gap	penalties	depending	on	whether	we	are	inserting	a	new	gap	or
extending	an	existing	one.	Generally	extending	an	existing	gap	(i.e.	putting	one	dash	after
another)	 has	 the	 smaller	 penalty.	 This	 is	 equivalent	 to	 saying	 that	we	 score	 alignments
more	 highly	 if	 they	 use	 fewer,	 longer	 gapped	 regions.	The	 following	modified	 function
uses	gap	penalties	insert	and	extend,	which	both	carry	default	values.	Note	that	we	have	a
different	 name	 for	 the	 new	 function	 and	 its	 input	 sequences	 (alignA	 and	 alignB)	 to
reinforce	 the	 fact	 that	 it	 is	working	on	a	pair	 or	 aligned	 sequences,	 including	any	gaps,
rather	than	just	plain	sequences:

Pay	 special	 attention	 to	 the	 logic	 above	 in	 the	 if/elif/else	 statement.	 If	 a	 gap	 is	 not
amongst	the	two	residue	codes	then	the	score	for	the	pair	 is	obtained	as	before	from	the
similarity	matrix	dictionary.	Otherwise,	we	do	have	a	gap	and	thus	carry	on	to	check	the
other	two	conditions.	If	the	position	in	the	sequence	i	is	not	at	the	very	start	(i	>	0)	and	one

of	the	previous	positions	was	a	gap	we	subtract	the	extend	penalty.	And	if	all	else	fails	we
have	a	gap	that	starts	anew,	so	we	subtract	the	insert	penalty.

Optimising	pairwise	alignment
Given	that	we	have	discussed	the	principle	of	how	we	can	measure	the	match	quality	of	an
aligned	pair	of	sequences,	we	now	turn	to	the	problem	of	determining	which	alignment	out
of	all	the	possible	combinations	is	the	best	(highest	scoring).	Consider	for	a	moment	the
following	 three	 examples.	 The	 last	 alignment	 is	 the	 best,	 with	 the	 middle	 one	 a	 close
second.

ALIGNMENTS---									A--LIGN-MENTS										--ALIGN-MENTS

ANALIGDPVENTS									ANALIGDPVENTS										ANALIGDPVENTS

We	can	represent	 these	same	alignments	as	a	comparison	matrix,	where	each	element
represents	the	pairing	of	a	residue	from	one	sequence	with	a	residue	from	the	other.	In	this
case	we	have	indicated	the	aligned	(paired)	residues	for	a	given	row	and	column	with	‘x’.
Each	 alternative	 alignment	 can	 be	 viewed	 as	 a	 different	 route	 through	 the	 comparison
matrix	 and	 gaps	 are	 simply	 jumps	 in	 one	 sequence	 or	 another;	 down	 rows	 or	 across
columns.

ALIGNMENTS														ALIGNMENTS															ALIGNMENTS

Ax…......													Ax…......														A….......

N.x….....													N….......														N….......

A..x…....													A….......														Ax…......

L…x…...													L.x….....														L.x….....

I….x…..													I..x…....														I..x…....

G…..x….													G…x…...														G…x…...

D…...x…													D….x…..														D….x…..

P…....x..													P….......														P….......

V….....x.													V…..x….														V…..x….

E…......x													E…...x…														E…...x…

N….......													N…....x..														N…....x..

T….......													T….....x.														T….....x.

S….......													S…......x														S…......x

It	 is	 clear	 that	 each	 separate	 alignment	 possibility	 is	 a	 different	 way	 of	 placing	 the
dashes,	which	 represent	 the	gaps.	With	a	 total	 alignment	 length	of	13	and	placing	 three
gaps	 inside	 the	shorter	 sequence	we	have	 (13×12×11)/(3×2×1)	=	286	ways	of	arranging
the	 gaps.	 If	we	 extend	 this	 calculation	 to	 the	 not	 unreasonable	 and	 biologically	 typical
scenario	of	five	gaps	in	100	positions	then	the	result	is	(100×99×98×97×96)/(5×4×3×2×1)
=	75,287,520.	And	this	still	does	not	consider	another	class	of	alignment	possibilities	with
gaps	being	present	in	both	sequences	like:

------ALIGNMENTS

ANALIGDPVENTS---

As	you	can	see	the	number	of	possible	combinations	grows	very	rapidly	with	the	length
of	the	sequence.	Indeed,	for	almost	all	situations	it	is	impractical	to	check	them	all	when
doing	 an	 alignment.	 Nevertheless	 we	 can	 still	 find	 the	 best	 alignment	 of	 a	 pair	 of
sequences	by	using	a	clever	trick,	which	allows	us	to	neglect	checking	the	vast	majority	of

alignments.	 The	 principle	 behind	 this	 is	 commonly	 referred	 to	 dynamic	 programming.
This	 is	 perhaps	 a	misleading	 name,	 because	 the	 idea	 doesn’t	 actually	 involve	 anything
especially	 dynamic,	 and	 isn’t	 anything	 novel	 in	 terms	 of	 computer	 programming.
However,	the	idea	is	really	very	cunning.

Dynamic	programming
The	 dynamic	 programming	 algorithm,	 which	 we	 commonly	 use	 to	 align	 pairs	 of
sequences,	 is	based	on	 the	 idea	 that	 if	your	big	problem	can	be	broken	down	 into	 local
sub-problems	that	occur	repeatedly,	 then	 the	solution	 to	each	sub-problem	only	needs	 to
be	calculated	once.	In	terms	of	sequence	alignment	the	big	problem	is	to	find	the	highest-
scoring	 arrangement	 and	 the	 local	 sub-problems	 involve	 smaller	 sub-alignments.	 For	 a
simple	abstract	example	imagine	a	problem	where	you	wanted	to	find	the	quickest	overall
route	 from	point	A	 to	 point	H,	where	 you	 had	 to	 travel	 via	 various	 intermediate	 points
(you	 could	 imagine	 that	 each	 point	 represents	 a	 town	 and	 travelling	 represents	 a	 train
ride).	 The	 arrangement	 of	 the	 points	 is	 as	 shown	 in	 Figure	 12.4,	 such	 that	 at	 each
intermediate	stage	you	have	to	go	through	one	of	two	points.

Figure	12.4.	 A	simple	feed-forward	network	to	illustrate	the	principles	of	dynamic
programming.	The	objective	of	the	dynamic	programming	algorithm	is	to	find	the	best
route	through	the	network	without	having	to	consider	all	possible	routes.	By	finding	the
best	route	to	each	intermediate	location	the	algorithm	excludes	many	route	possibilities.

As	illustrated,	starting	at	A	you	must	go	via	B	or	C	then	through	D	or	E,	then	F	or	G
before	finally	getting	to	H.	Each	leg	of	the	journey	takes	a	different	time	and	all	of	these
times	are	added	to	get	the	total	travel	time.	If	I	want	to	find	the	quickest	journey	from	A	to
H	then	I	have	to	potentially	consider	all	of	the	possible	routes,	A,	B,	D,	F,	H,	A,	C,	E,	F,	H
etc.	…	It	might	seem	that	you	have	to	calculate	the	time	for	all	possible	journeys	before
you	 know	 which	 way	 is	 best.	 However,	 this	 problem	 can	 be	 broken	 into	 smaller	 sub-
problems	which	allow	us	to	discard	certain	routes	at	an	early	stage.	For	example,	we	can
calculate	 the	 shortest	 journey	 time	 from	A	 to	D	 and	A	 to	E;	 potentially	 these	 could	 go
through	 either	 B	 or	 C,	 but	 if	 both	 of	 the	 shortest	 routes	 go	 through	 B	 we	 need	 never
consider	point	C	ever	again.	When	extending	the	routes	through	F	and	G	we	only	have	to
extend	our	best	routes	from	D	and	E,	which	we	have	already	determined	only	use	point	B.
In	general,	if	we	add	up	journey	times	as	we	go,	and	given	that	at	each	point	there	are	only
two	previous	directions	that	we	could	have	come	from,	we	can	choose	the	best	direction	to
get	to	that	point	and	ignore	all	routes	that	come	from	the	other	direction.	Thus	in	the	end
when	we	reach	H	there	are	only	two	routes	to	choose	between,	one	from	F	and	one	from

G.	At	 the	 start	we	 couldn’t	 know	which	of	F	or	G	would	be	optimal	 in	 the	 end,	 but	 in
calculating	the	routes	(sub-problems)	to	these	final	points	we	have	only	been	following	the
best	paths	for	each	stage,	which	is	much	more	efficient	than	following	them	all.	Sequence
alignment	is	analogous	to	this	kind	of	journey	analysis,	the	difference	being	that	we	want
the	route	of	maximum	alignment	score	(not	minimum	time)	and	we	have	three	routes	into
each	point	rather	than	two;	the	three	routes	are	(i)	to	put	a	gap	in	one	sequence,	(ii)	put	a
gap	in	the	other	sequence	or	(iii)	align	two	residues.

If	we	start	from	the	beginning	of	two	sequences	and	consider	the	alignment	growing	by
inserting	a	gap	in	one	sequence	or	the	other,	or	by	putting	the	next	two	residues	together,
at	each	point	the	number	of	possibilities	grows	by	a	multiple	of	three	each	time.	However,
to	get	to	a	particular	residue	pairing	there	are	three	routes	that	it	could	have	come	from;
and	 like	 in	 the	 above	 example	 only	 the	 best	 one	 to	 this	 point	 needs	 to	 be	 continued.
Specifically,	 what	 sequence	 alignment	 does	 is	 to	 extend	 the	 (sub-total)	 scores	 of	 these
three	routes	with	gap	penalties	or	a	similarity	score	for	the	next	residue	pair.	By	taking	the
maximum	of	these	scores	the	other	two	are	discarded	and	their	routes	cut;	two	of	the	sub-
alignments	that	get	to	this	point	do	not	need	to	be	extended	any	further,	because	there	is
already	a	better	alignment	to	get	to	the	same	place.	Every	time	the	alignment	is	extended,
multiple	new	possibilities	are	generated,	but	at	the	same	time	previous	sub-alignments	can
be	 disregarded.	 By	 repeatedly	 extending	 the	 alignment,	 and	 pruning	 sub-optimal
alternatives	along	the	way,	the	end	of	the	sequences	is	eventually	reached.	Initially	as	the
sequences	are	compared,	there	is	no	way	to	know	which	sub-alignments	are	discarded	and
which	win	out,	but	the	decisions	that	are	taken	(whether	to	add	gaps	or	pair	up	residues)	at
each	step	along	the	way	can	be	remembered.	So,	starting	from	the	end	point	the	winning
decisions	can	be	followed,	backwards,	to	find	what	gave	the	best	score	at	each	point	and
hence	the	best	alignment.

Pairwise	alignment	with	Python
The	 following	Python	 function	 is	 an	 example	 of	 how	dynamic	 programming	 is	 used	 in
practice	 to	 generate	 an	 optimal	 alignment	 for	 a	 pair	 of	 sequences.	 The	method	 is	 very
similar	 to	 the	 one	 described	 by	 Needleman	 and	 Wunsch.14	 Another	 popular	 dynamic
programming	method	 for	 sequence	 alignment	was	 introduced	 by	 Smith	 and	Waterman,
which	focuses	more	on	local	solutions.15	However,	in	this	case	the	underlying	principle	is
the	same,	and	the	only	major	difference	is	that	a	Smith-Waterman	alignment	doesn’t	allow
the	 intermediate	 alignment	 scores	 to	 dip	 below	 zero,	 so	 that	 local	 (off	 diagonal)
alignments	are	more	prominent.

The	following	discussion	will	split	the	alignment	function	into	more	easily	understood
sections	but	the	code,	in	its	concatenated	entirety,	can	be	viewed	in	the	on-line	material	at
http://www.cambridge.org/pythonforbiology.	 First	 we	 begin	with	 the	 function	 definition
that	takes	two	one-letter	sequences,	a	substitution/similarity	matrix	and	two	different	gap
penalties.	Note	 that	 you	would	 normally	 check	 that	 the	 input	 values	were	 sensible	 (e.g.
sequences	were	really	one-letter	and	upper	case)	before	using	the	function

def	sequenceAlign(seqA,	seqB,	simMatrix=DNA_2,	insert=8,	extend=4):

Next	 we	 define	 two	 numbers	 which	 represent	 the	 size	 of	 the	 comparison	 grid.	 As

http://www.cambridge.org/pythonforbiology

illustrated	above,	the	comparison	grid	is	simply	a	matrix	of	one	sequence	versus	the	other,
so	that	each	point	is	a	different	possible	residue	pair.	The	size	of	the	grid	is	one	larger	than
the	lengths	of	the	sequences	because	we	require	an	extra	row	and	column	at	the	start	of	the
matrix	(left	and	top)	to	contain	starting	values	to	begin	growing	the	alignments	from.

numI	=	len(seqA)	+	1

numJ	=	len(seqB)	+	1

Next	 we	 create	 the	 matrices	 (actually	 lists	 of	 lists	 here,	 but	 we	 could	 use	 NumPy
matrices)	which	represent	the	comparison	grid.	We	will	actually	use	two	matrices	of	equal
size;	one	is	used	to	contain	the	sub-totals	of	the	alignment	scores	and	the	other	is	used	to
record	which	 route	 (sub-alignment)	 was	 taken,	 i.e.	 whether	 the	 best	 route	 to	 this	 point
involved	 a	 gap	 or	 a	 residue	 comparison.	 In	 the	 route	matrix	we	will	 use	 a	 code	 to	 say
which	of	the	three	directions	was	taken,	where	0	represents	the	pairing	of	two	residues,	1
is	for	a	gap	in	seqB	(but	a	residue	in	seqA)	and	2	is	for	a	gap	in	seqA	(but	a	 residue	 in
seqB).	We	build	the	preliminary	blank	matrices	of	the	right	size	initially	with	zeros:16

scoreMatrix	=	[[0]	*	numJ	for	x	in	range(numI)]

routeMatrix	=	[[0]	*	numJ	for	x	in	range(numI)]

Then	for	the	route	matrix	we	adjust	the	top	and	left	edges,	except	the	first	element,	so
that	 they	contain	 route	codes	 that	 represent	gaps.	This	means	 that	 for	 alignments	where
one	 sequence	 is	 indented	 relative	 to	 the	 other	 the	 only	 route	 to	 get	 to	 that	 point	 is	 by
having	a	series	of	leading	gaps	in	the	indented	sequence.	We	will	 leave	the	edges	of	the
score	matrix	at	zero,	so	as	not	to	penalise	alignments	that	begin	with	a	gap.	However,	in
some	situations	you	might	want	to	have	a	penalty	for	this.

for	i	in	range(1,	numI):

		routeMatrix[i][0]	=	1

for	j	in	range(1,	numJ):

		routeMatrix[0][j]	=	2

Given	that	the	edges	of	the	route	and	score	matrix	are	now	defined,	we	now	fill	in	the
remainder	 of	 the	matrix	 values	 by	 looping	 through	 i	 and	 j,	 the	 indices	 of	 the	 rows	 and
columns,	starting	at	1,	rather	than	0,	due	to	the	extra	edges	which	were	added.

for	i	in	range(1,	numI):

		for	j	in	range(1,	numJ):

We	need	 to	decide	which	gap	penalty	 is	 relevant	 for	each	matrix	element.	So	we	use
some	logic	which	means	that	the	insertion	penalty	is	used,	except	if	the	previous	position
has	a	gap,	 in	which	case	we	use	 the	extension	penalty.	Note	 that	we	make	 this	decision
twice	 and	 define	 two	 separate	 gap	 penalty	 values,	 one	 for	 each	 sequence.	 Detecting
whether	the	previous	position	has	a	gap	is	a	simple	matter	of	checking	the	route	matrix	in
the	previous	row	(i-1)	or	column	(j-1)	to	see	if	it	has	a	gap	code	(1	or	2).

penalty1	=	insert

penalty2	=	insert

if	routeMatrix[i-1][j]	==	1:

		penalty1	=	extend

elif	routeMatrix[i][j-1]	==	2:

		penalty2	=	extend

Next	we	look	up	the	similarity	score	for	comparing	the	residue	codes	 in	 this	row	and
column.	Note	that	we	get	the	position	for	the	residues	within	the	two	sequences	using	i-1
and	j-1;	this	is	because	the	row	and	column	in	the	comparison	matrix	is	one	larger	than	the
equivalent	position	in	the	sequences,	due	to	the	extra	initialisation	values	put	at	the	start.

similarity	=	simMatrix[seqA[i-1]][seqB[j-1]]

With	 the	 gap	 penalties	 and	 the	 similarity	 scores	 defined,	we	make	 a	 list	 of	 the	 three
possible	path	options	for	extending	the	alignment	at	this	position.	These	paths	are	the	sub-
total	 scores	 of	 three	 neighbouring	 matrix	 elements	 (representing	 the	 three	 shorter	 sub-
alignments	that	meet	at	this	point)	with	either	the	similarity	score	added	or	a	gap	penalty
subtracted.	 The	 first	 path	 (route	 code	 0)	 means	 adding	 two	 residues	 and	 using	 their
similarity	score,	effectively	going	diagonally	in	the	comparison	matrix	i-1,	j-1	to	i,j).	The
second	path	(route	code	1)	means	having	a	gap	in	seqB	and	subtracting	a	penalty,	going
down	a	row	i-1,	j	to	i,j.	Likewise	the	third	path	(route	code	2)	subtracts	a	penalty	for	a	gap
in	seqA	and	goes	across	a	column	i,	j-1	to	i,j.

paths	=	[scoreMatrix[i-1][j-1]	+	similarity,	#	Route	0

									scoreMatrix[i-1][j]	-	penalty1,	#	Route	1

									scoreMatrix[i][j-1]	-	penalty2]	#	Route	2

The	best	 sub-total	 score	 is	 simply	 the	maximum	value	 in	 the	paths	 list,	 and	 the	 route
code	is	the	index	(position	starting	at	zero)	of	this	score.	Note	how	the	paths.index	is	the
reason	for	using	the	numeric	route	codes;	they	are	arbitrary,	but	come	naturally	from	the
order	of	the	above	list.

best	=	max(paths)

route	=	paths.index(best)

Finally	for	the	loop	we	store	the	best	score	as	the	sub-total	for	this	matrix	element,	and
the	best	route	to	get	to	this	point	in	the	route	matrix.	In	a	subsequent	loop	these	values	will
be	considered	to	extend	the	alignment	further.	The	route	might	not	survive,	but	at	least	it
will	be	considered.

scoreMatrix[i][j]	=	best

routeMatrix[i][j]	=	route

Now	that	 the	matrix	of	 scores	and	matrix	of	 routes	are	 filled	 in	we	have	 reached	our
destination;	 routes	have	met	at	 the	ends	of	 the	 two	sequences.	The	 task	now	 is	 to	work
back	 from	 the	 end	 of	 the	 paths	 (bottom	 right	 of	 the	 comparison	matrix),	 following	 the
winning	 routes	 backwards	 to	 the	 start	 of	 the	 sequences,	 at	 each	 point	 adding	 the
appropriate	gap	or	paired	residues.	Thus,	we	define	initially	blank	alignment	lists,	one	for
each	input	sequence	that	we	will	fill	with	residue	codes	and	dashes	in	reverse	order:

alignA	=	[]

alignB	=	[]

Next	we	get	the	row	and	column	for	the	end	of	the	alignment,	which	are	one	less	than
the	corresponding	sizes,	given	that	list	 indices	start	at	zero.	We	also	record	the	score	for
this	final	position,	which	we	can	give	back	as	the	overall	score	for	the	overall	alignment.

i	=	numI-1

j	=	numJ-1

score	=	scoreMatrix[i][j]

The	next	loop	fills	in	the	alignment	strings	by	going	back	along	the	rows	and	columns
(decreasing	 values	 of	 i	 and	 j),	 following	 the	 winning	 route	 at	 each	 step.	 Naturally	 we
continue	 while	 we	 still	 have	 sequence	 alignment	 to	 fill	 in.	 Note	 how	 the	 while	 loop
continues	if	either	the	row	or	column	is	bigger	than	zero;	it	only	stops	when	both	are	zero,
when	at	the	very	start	of	the	alignment.	Each	time	the	operations	go	through	the	loop	there
will	be	a	new	row	and	column	combination,	and	thus	a	new	route	code	is	defined	for	this
point.

while	i	>	0	or	j	>	0:

		route	=	routeMatrix[i][j]

Depending	on	 the	route	code,	 i.e.	which	of	 the	paths	won	out	 to	get	 to	 this	point,	we
grow	 the	 alignment	 strings	 in	 one	 of	 three	 ways.	 Route	 0	 indicates	 that	 the	maximum
score	 came	 from	comparing	 two	 residues,	 so	 in	 this	 case	we	add	 residue	 letters	 to	both
alignment	strings	and	decrease	both	the	row	and	column	by	one.	Routes	1	and	2	indicate
that	the	best	score	came	from	having	a	penalty	and	inserting	a	gap,	in	which	case	we	add	a
dash	to	one	sequence	and	a	residue	to	the	other,	decreasing	either	the	row	or	the	column	as
appropriate.	Again,	note	that	the	indices	for	getting	residue	letters	from	the	sequences	are
one	less	than	the	row	and	column	indices.

if	route	==	0:	#	Diagonal

		alignA.append(seqA[i-1])

		alignB.append(seqB[j-1])

		i	-=	1

		j	-=	1

elif	route	==	1:	#	Gap	in	seqB

		alignA.append(seqA[i-1])

		alignB.append('-')

		i	-=	1

elif	route	==	2:	#	Gap	in	seqA

		alignA.append('-')

		alignB.append(seqB[j-1])

		j	-=	1

Lastly	we	reverse	the	alignment	lists,	given	that	we	were	working	backwards	from	the
end,	and	convert	them	to	text	strings	which	we	send	back	with	the	overall	score.	Note	that
working	with	 lists	of	 text	characters	 in	 this	way,	which	we	only	 join	 into	a	string	at	 the
end,	is	quicker	than	repeatedly	extending	strings,	especially	for	long	sequences.

alignA.reverse()

alignB.reverse()

alignA	=	''.join(alignA)

alignB	=	''.join(alignB)

return	score,	alignA,	alignB

And	the	function	can	be	tested	accordingly:

seqA	=	'WFSEPEIST'

seqB	=	'FSRPAVVIST'

score,	alignA,	alignB	=	sequenceAlign(seqA,	seqB,	BLOSUM62)

print(score)		#	17

print(alignA)	#	WFSEPE--IST

print(alignB)	#	-FSRPAVVIST

Quick	database	searches
As	 a	 final	 thought	 to	 this	 chapter	 we	 acknowledge	 another	 kind	 of	 alignment	 that	 is
routinely	performed.	This	is	to	have	a	query	sequence	and	compare	it	with	a	large	database
of	other	sequences	to	find	alignment	matches	from	a	potentially	vast	number	of	targets.

What	we	 have	 been	 discussing	 so	 far	 are	 rigorous	 alignments	 of	 limited	 numbers	 of
sequence	pairs.	The	dynamic	programming	method	and	 its	various	derivatives	will	 give
you	the	best	alignments,	but	it	has	the	disadvantage	that	it	is	prohibitively	slow	if	you	are
aligning	a	query	sequence	with	a	database	containing	thousands	(e.g.	the	human	genome)
or	even	millions	of	sequences	(e.g.	the	whole	EMBL	or	NCBI	database).	When	searching
such	databases,	the	approach	is	to	use	query	methods	that	can	take	clever	short-cuts,	i.e.	it
uses	rules	that	are	generally	true	in	order	to	quickly	remove	a	large	number	of	sequences
from	consideration,	without	having	to	do	full	sequence	alignments	with	every	member	of
the	database.	The	most	famous	of	these	methods	is	the	BLAST	routine.17	Although	such
heuristic	methods	have	opened	up	a	vast	array	of	convenient	sequence	information,	strictly
speaking	they	can	miss	things	that	a	more	rigorous	approach	would	not.

Below	we	give	an	example	of	how	we	can	run	BLAST	searches	on	sequence	databases
using	Python.	The	objective	here	is	not	to	rewrite	the	BLAST	program	itself,	but	rather	to
wrap	 the	 external	 program	 in	 code	 and	 use	 it	 as	 if	 it	were	 a	Python	module	which	 can
interface	with	all	of	our	other	code.	This	naturally	has	the	advantage	of	using	an	efficient,
tried	and	tested	program	but	still	being	able	to	work	with	Python.	Thus	what	we	will	do	is
create	a	function	that	makes	the	required	input,	runs	the	external	executable	(i.e.	the	actual
BLAST	program,	which	must	already	be	installed	on	the	system)	and	interprets	the	output,
collecting	the	data	back	into	the	Python	data	structures.

Using	BLAST	from	Python
Before	 we	 get	 started	 we	 need	 to	 consider	 how	 to	 create	 a	 sequence	 database	 that	 the
BLAST	program	can	search	through.	This	is	not	a	normal	sequence	file	or	database,	but
rather	 it	 is	 a	 special,	 optimised	 series	 of	 files	 that	 is	 special	 to	 the	BLAST	 system	 and
which	makes	the	comparison	of	sequences	efficient.	Fortunately	there	is	a	program	called
‘makeblastdb’,	which	is	available	in	the	BLAST+	package,18	that	can	be	used	to	make	the

special	database	from	sequences	stored	in	common	text-based	formats	like	FASTA.

Before	 the	examples	we	import	all	of	 the	external	 functions	and	modules	 that	will	be
required.	 Specifically	 we	 need	 the	 substitution	 function	 (sub)	 from	 the	 regular
expression19	module	 to	 help	 format	 the	 sequences	 for	 the	 input	 files.	 The	 call	 function
from	the	subprocess	is	a	convenient	way	to	run	programs	that	are	external	to	Python.	The
ElementTree	module	will	allow	us	to	read	the	XML20	formatted	BLAST	output.

from	re	import	sub

from	subprocess	import	call

from	xml.etree	import	ElementTree

Now	a	function	 is	defined	 to	make	 the	special	sequence	database	for	BLAST.	This	 is
not	a	conventional	relational	database,	e.g.	where	small	amounts	of	data	are	accessed	and
modified,	but	rather	a	specially	formatted	version	of	sequence	data	 to	be	queried,	which
allows	BLAST	to	efficiently	find	matches.	The	function	takes	a	FASTA-formatted	file	as
input,	 a	 distinguishing	name	 for	 the	database,	 formatdbExe,	 the	 location	 of	 the	 external
‘makeblastdb’	 program	 to	 run	 and	 isProtein,	 a	 switch	 to	 state	 whether	 the	 sequence	 is
protein	and	not	nucleic	acid	(RNA	or	DNA).	Note	that	the	input	FASTA	sequence	file	is
often	 very	 large,	 representing	 a	 whole	 database	 (e.g.	 UniProt)	 or	 even	 a	 genome.
Obtaining	genome	sequence	information	will	be	discussed	later	in	Chapter	17.

def	makeBlastDatabase(fastaFile,	databaseName,

																						formatdbExe=None,	isProtein=True):

If	a	value	for	formatdbExe	is	not	passed	 in	we	will	assume	that	 the	database	creation
program	is	available	to	the	local	system	as	a	command	called	makeblastdb.	If	the	program
name	is	unavailable,	or	not	set	correctly,	then	an	error	exception	will	be	triggered	when	we
come	to	run	the	program	via	call().

if	not	formatdbExe:

		formatdbExe	=	'makeblastdb'

Next	 we	 define	 a	 variable	 which	 will	 indicate	 the	 database	 type.	 The	 makeblastdb
program	accepts	a	value	‘prot’	(protein)	or	‘nucl’	(nucleic	acid)	after	its	-dbtype	option	to
indicate	whether	the	database	is	protein	or	not.

if	isProtein:

		molType	=	'prot'

else:

		molType	=	'nucl'

Then	all	of	the	options	and	arguments	that	will	be	used	when	running	the	makeblastdb
program	 are	 collected	 in	 a	 list.	 These	 would	 be	 the	 values	 that	 one	 would	 type	 at	 a
command	line	prompt	to	run	the	program.

cmdArgs	=	[formatdbExe,

											'-dbtype',	molType,

											'-in',	fastaFile,

											'-out',	databaseName]

This	list	is	then	passed	to	the	call()	function	to	actually	run	the	program,	noting	that	we

catch	any	exceptions	 that	may	occur.	 If	an	exception	 is	 triggered	we	print	 the	command
that	was	tried,	together	with	the	original	Python	error	(err)	so	we	can	determine	what	the
problem	was.

print('Making	BLAST	database	%s…'	%	databaseName)

try:

		call(cmdArgs)

except	Exception	as	err:

		print('BLAST	database	creation	failed')

		print('Command	used:	"%s"'	%	'	'.join(cmdArgs))

		print(err)

		return

print('	…done')

With	 the	 function	 defined	 we	 can	 now	 run	 the	 makeblastdb	 program	 on	 a	 FASTA-
format	file	as	if	it	were	Python.	Naturally	we	only	need	to	do	this	once	for	each	database,
unless	it	changes.

fileName	=	'EcoliGenome.fasta'

makeBlastDatabase(fileName,	'ECOLI_PROT')

However,	we	may	have	to	specifically	state	the	location	of	the	makeblastdb	program	if
the	system	doesn’t	know	that	location	of	the	executable	file:

makeBlastDatabase(fileName,	'ECOLI_PROT',	'/usr/bin/makeblastdb')

Next	we	 come	 to	 a	 similar	 Python	wrapper	 function	 that	will	 run	 the	 actual	BLAST
program,	given	a	query	sequence	and	a	database,	created	as	described	above.	For	the	sake
of	 simplicity,	 several	 of	 the	BLAST	 input	 options	will	 be	 ignored	 and	 only	 part	 of	 the
output	will	be	 read.	However,	 this	 function	can	be	expanded	 to	use	as	much	detail	as	 is
required.21

The	 Python	 function	 that	 controls	 the	 BLAST	 search	 takes	 arguments	 for	 the	 query
sequence	(as	one-letter	codes)	and	the	location	of	the	formatted	database	to	search.	There
are	optional	arguments	to	specify	the	BLAST	program	location	(otherwise	the	command
‘blastp’	will	be	tried),	the	maximum	cut-off	expectation	value	(the	E-value	score),	the	type
of	substitution	matrix	and	 the	number	of	processing	cores	 to	use.	 It	 is	 important	 to	note
that	 different	 BLAST	 programs	 are	 used	 to	 specify	 which	 molecule	 type	 (protein	 or
nucleic	 acid)	 is	 used	 in	 the	 query	 and	 independently	 in	 the	 database.	 Accordingly,	 the
following	programs	are	available	to	specify	which	type	of	BLAST	search	will	be	run:

‘blastp’:	protein	query	against	a	protein	database.

‘blastn’:	nucleic	acid	query	against	a	nucleotide	database.

‘tblastn’:	protein	query	against	a	translated	nucleotide	database.

‘blastx’:	translated	nucleic	acid	query	against	a	protein	database.

‘tblastx’:	translated	nucleic	acid	query	against	a	translated	nucleotide	database.

Note	that	the	‘tblastx’	method	translates	nucleotide	sequence	to	protein	sequence	in	all
reading	 frames,	 so	may	 yield	 amino	 acid	matches	 even	 if	 the	 base	 sequences	 are	 quite
different,	but	naturally	only	one	of	the	reading	frames	encodes	protein.

The	blastSearch()	function	makes	use	of	the	subprocess	module	again,	but	this	time	we
also	 import	 Popen	 and	 PIPE.	 The	 Popen	 class	 is	 a	 more	 general	 way	 of	 controlling
external	programs	than	a	simple	call	and	we	use	it	here	because	we	are	directly	controlling
the	standard	input	to	and	output	from	BLAST	using	Python,	rather	than	via	the	operating
system	(an	alternative	to	this	approach	would	be	to	read	and	write	 temporary	files).	The
PIPE	 import	 is	 a	 value	 that	 allows	 us	 to	 achieve	 this	 by	 setting	 the	 stdin	 and	 stdout
attributes	of	Popen	so	that	data	will	be	communicated	or	‘piped’	to	and	from	Python.

from	subprocess	import	call,	Popen,	PIPE

def	blastSearch(seq,	database,	blastExe=None,	eCutoff=10,

																matrix='BLOSUM62',	cpuCores=None):

As	with	 the	previous	 function	we	 set	 a	default	 name	 for	 the	program,	here	 assuming
‘blastp’	is	available	and	executable	on	the	system,	if	the	name	was	not	specifically	set	by
the	 user.	As	 discussed	 above,	 the	 choice	 of	 the	 specific	BLAST	 program	 dictates	what
type	 of	 search	 is	 being	performed	 and	what	molecule	 type	 (protein	 or	 nucleic	 acid)	 the
query	and	database	represent.

if	not	blastExe:

		blastExe	=	'blastp'

If	 the	 number	 of	 processor	 (CPU)	 cores	 was	 not	 specified	 we	 take	 the	 maximum
available	 as	 specified	 by	 the	 handy	multiprocessing	module.	 Using	multiple	 cores	 will
allow	 part	 of	 the	 BLAST	 search	 to	 run	 more	 quickly,	 because	 certain	 tasks	 can	 be
computed	in	parallel.

if	not	cpuCores:

		import	multiprocessing

		cpuCores	=	multiprocessing.cpu_count()

The	query	sequence	is	tidied,	making	it	upper	case	and	inserting	a	newline	‘\n’	every	60
characters	to	make	regular	FASTA-format	sequence	strings.

querySeq	=	seq.upper()

querySeq	=	sub('(.{60})(.)',r'\1\n\2',	querySeq)

The	 sequence	 is	 then	 placed	 into	 a	 string	 formatted	 as	 a	 FASTA	 entry	 by	 adding	 an
annotation	line	(with	arbitrary	name)	before	a	sequence	line.	These	two	lines	represent	the
data	that	would	be	contained	in	a	FASTA	file	containing	a	single	sequence,	which	we	will
send	as	input	to	BLAST.

querySeq	=	'>UserQuery\n%s\n'	%	querySeq

The	program	command	arguments	are	collected	in	a	list	as	before,	noting	that	we	don’t
need	to	set	any	input	or	output	files	because	by	default	BLAST	will	use	standard	input	and
output:

cmdArgs	=	[blastExe,

											'-outfmt',	'5',								#	=>	XML	output

											'-num_threads',	str(cpuCores),

											'-db',	database,

											'-evalue',	str(eCutoff),

											'-matrix',	matrix]

print('	'.join(cmdArgs))

The	Popen	class	is	used	to	make	an	object	that	encapsulates	the	BLAST	process,	setting
attributes	 so	 that	 the	 standard	 input	 and	output	 data	 is	 sent	 via	Python.	 If	 there	 are	 any
problems	with	this,	e.g.	if	the	BLAST	executable	is	not	found,	then	we	catch	the	exception
and	report	the	error	that	occurred.

try:

		proc	=	Popen(cmdArgs,	stdin=PIPE,	stdout=PIPE)

except	Exception	as	err:

		print('BLAST	command	failed')

		print('Command	used:	"%s"'	%	'	'.join(cmdArgs))

		print(err)

		return	[]

Nothing	will	be	run	by	BLAST	until	we	send	it	some	input	data	and	we	do	this	using
the	communicate()	method	of	the	process	object.	This	function	call	gives	back	two	values,
representing	 standard	 output	 and	 error	 data	 respectively.	 If	 we	 hadn’t	 set	 stdout=PIPE
above	this	data	would	simply	be	sent	to	the	screen.

stdOutData,	stdErrData	=	proc.communicate(querySeq)

The	results	are	collected	by	reading	through	the	XML-formatted	text	contained	in	 the
stdOutData	string	using	the	ElementTree	module.	The	fromstring()	function	will	give	back
an	object	 representing	 the	 tree-like	hierarchy	of	 the	XML	data.	To	navigate	 this	 tree	we
start	 at	 the	 base,	 which	 is	 named	 root	 here,	 from	which	we	 can	 follow	 any	 node	 (like
branches)	to	get	to	the	data	within.

results	=	[]

root	=	ElementTree.fromstring(stdOutData)

From	this	start	point,	to	collect	the	required	data	we	use	the	.find()function,	going	from
point	to	point	within	the	structure	defined	by	the	XML	file.	What	this	function	does	is	to
look	 for	 specific	 elements	 in	 the	 tree-like	 structure	 of	 the	 XML	 file	 which	 match	 a
particular	text	string.	Naturally,	knowing	which	things	to	look	for	depends	on	knowing	the
schema	of	 the	XML	file,	 i.e.	what	 the	names	of	 the	elements	are	and	how	they	relate	 to
one	another.	See	Chapter	6	 for	 further	discussion	of	XML	files.	Note	 that	 the	 format	of
these	XML	files	could	change	 in	future	versions	of	BLAST,	so	 if	 this	example	does	not
work	directly	look	at	the	actual	output	and	adapt	the	following	code	for	the	actual	XML
elements	in	the	file.

To	get	to	iteration,	which	will	store	all	the	sequences	matched	in	the	database	(there	is
only	 one	 iteration	 in	 a	 regular	 BLAST	 search)	 we	 go	 to	 elements	 named	 Blast
Output_iterations	and	then	Iteration.

iteration	=	root.find('BlastOutput_iterations').find('Iteration')

The	matches	to	the	query	that	BLAST	finds	(if	any)	will	be	stored	in	the	XML	inside
the	 ‘Iteration_hits’	 section	 as	 ‘Hit’	 elements.	 If	 there	 are	 no	 ‘Iteration_hits’	 then	 we
simply	return	an	empty	list	for	the	results.

ihit	=	iteration.find('Iteration_hits')

if	ihit:

		hits	=	ihit.findall('Hit')

else:

		return	[]

Otherwise	if	there	are	Hit	elements	representing	the	sequence	matches	to	the	query	in
the	database	we	loop	through	them	to	find	the	Hsp	elements	(high	scoring	pairs).

for	hit	in	hits:

		hsp	=	hit.find('Hit_hsps').find('Hsp')

Then	the	remainder	of	the	database	match	information	is	stored	in	a	dictionary	using	the
name	as	a	key.	Note	that	this	is	just	one	example	of	how	to	store	the	results	in	Python	data
structures.

hitDict	=	{}

The	 name	 of	 the	 match	 (the	 hit)	 is	 extracted	 from	 the	 ‘Hit_def’	 attribute	 using
hit.findtext()	 which	 we	 then	 store	 in	 the	 dictionary	 with	 the	 ‘def’	 key.	 Similarly,	 its
sequence	 length	 is	 stored	 as	 the	 ‘len’	 after	 conversion	 of	 the	 XML	 string	 to	 a	 Python
integer:

hitDict['def']	=	hit.findtext('Hit_def')

hitDict['len']	=	int(hit.findtext('Hit_len'))

For	all	the	values	associated	with	each	high-scoring	pair	we	take	the	tag	name	for	the
value	(as	used	in	the	XML	file)	and	remove	the	first	four	characters	to	make	a	simpler	key,
thus	avoiding	all	the	keys	beginning	with	‘Hsp_’,	e.g.	‘Hsp_score’	becomes	‘score’.	The
actual	 value	 is	 then	obtained	with	 .findtext()	 and	 converted	 to	 a	 Python	 data	 type,	with
int()	or	float()	as	needed.	First	we	collect	the	floating	point	values:

for	tag	in	('Hsp_bit-score',	'Hsp_evalue'):

		key	=	tag[4:]

		hitDict[key]	=	float(hsp.findtext(tag))

Then	the	integer	values:

for	tag	in	('Hsp_score',	'Hsp_query-from',

												'Hsp_query-to',	'Hsp_hit-from',

												'Hsp_hit-to',	'Hsp_query-frame',

												'Hsp_hit-frame',	'Hsp_identity',

												'Hsp_positive',	'Hsp_gaps',

												'Hsp_align-len'):

		key	=	tag[4:]

		hitDict[key]	=	int(hsp.findtext(tag,	'0'))

And	finally	the	plain	text	values:

for	tag	in	('Hsp_qseq',	'Hsp_hseq',	'Hsp_midline'):

		key	=	tag[4:]

		hitDict[key]	=	hsp.findtext(tag)

Once	 the	hit	 is	processed	we	store	 the	dictionary,	with	all	 the	extracted	values	 in	 the
results	 list.	A	dictionary	 could	 have	 been	used	 to	 store	 the	 results,	 but	 here	we	wish	 to
preserve	the	order	of	the	matches.

results.append(hitDict)

return	results

Finally,	 the	 Python	 BLAST	 search	 wrapper	 function	 can	 be	 tested	 with	 a	 query
sequence	and	a	BLAST	sequence	database	created	previously.

seq	=	'NGTISYTNEAGKIYQLKPNPAVLICRVRGLHLPEKHVTWRGEAIPGSLFDFA'	\

						'LYFFHNYQALLAKGSGPYFYLPKTQSWQEAAWWSEVFSYAEDRFNLPRGTIK'	\

						'ATLLIETLPAVFQMDEILHALRDHIVGLNCGRWDYIFSYIKTLKNYPDRVLP'

The	 location	 of	 the	 database	 is	 the	 file	 path	 to	 the	 BLAST	 database	 files,	 which
includes	the	database	name,	but	excludes	any	file	extensions:

database	=	'ECOLI_PROT'

The	 results	 that	 come	back	after	 running	 the	 specified	BLAST	program	 (the	path	 for
which	 should	 be	 set	 appropriately)	 are	 a	 list	 of	 names	 and	 data	 dictionaries	 for	 any
sequence	matches.

results	=	blastSearch(seq,	database'/usr/bin/blastp',

																						eCutoff=1.0,	cpuCores=4)

The	 various	 sequences	 and	 scores	 are	 obtained	 from	 the	 results	 dictionary	 for	 each
match	(hit)	by	using	the	appropriate	keyword:

for	hitDict	in	results:

		print(hitDict['def'],		hitDict['score'],	hitDict['evalue'])

		print(hitDict['qseq'])

		print(hitDict['midline'])

		print(hitDict['hseq'])

1 	And	sometimes	regrettably	which	software	is	available.
2 	There	are	actually	at	least	two	types	of	amino	acid	difference	that	are	known	to	cause
the	disease.
3 	The	numbering	system	for	chromosomes	simply	goes	from	the	largest	to	the	smallest,
excluding	the	sex	chromosomes	(X	and	Y).
4 	e.g.	virus	DNA	that	gets	left	behind	in	a	genome.
5 	Where	 different	 organisms	 live	 closely	with	 one	 another,	 to	 the	 advantage	 of	 one	 or
both.
6 	Current	computer	methods	are	not	accurate	and/or	fast	enough	to	determine	the	native

protein	conformation	from	the	vast	total	number	of	possibilities;	there	is	no	known	short-
cut	 from	 a	 single	 sequence	 to	 structure.	 Recently	 significant	 progress	 has	 been	 made,
however,	using	large	numbers	of	aligned	sequences:	http://evfold.org.
7 	See	Chapter	15	for	discussion.
8 	Although	strictly	speaking	not	all	DNA	substitutions	are	equally	likely.
9 	A	bad,	but	probably	intentional,	pun;	‘N-y’	for	‘any’.	Such	ambiguities	are	often	caused
by	uncertainties	in	the	recording	of	sequences,	especially	at	the	ends	of	a	DNA	read.
10 	Sixty-two	 is	 the	percentage	sequence	 identity	 limit	of	 the	blocks	of	multiply	aligned
sequences	that	are	used	to	count	the	substitutions.
11 	This	isn’t	universally	true	for	all	substitution	matrices	though.
12 	Dayhoff,	M.O.,	Schwartz,	R.,	and	Orcutt,	B.C.	(1978).	A	model	of	evolutionary	change
in	 proteins.	 Atlas	 of	 Protein	 Sequence	 and	 Structure	 (volume	 5,	 supplement	 3	 ed.).
Washington	DC:	National	Biomedical	Research	Foundation.	pp.	345–352.
13 	Henikoff,	S.,	and	Henikoff,	J.G.	(1992).	Amino	acid	substitution	matrices	from	protein
blocks.	PNAS	89(22):	10915–10919.
14 	Needleman,	S.B.,	and	Wunsch,	C.D.	(1970).	A	general	method	applicable	to	the	search
for	similarities	in	the	amino	acid	sequence	of	two	proteins.	Journal	of	Molecular	Biology
48(3):	443–453.
15 	 Smith,	 T.F.,	 and	 Waterman,	 M.S.	 (1981).	 Identification	 of	 common	 molecular
subsequences.	Journal	of	Molecular	Biology	147:	195–197.
16 	 See	 the	 description	 of	 list	 comprehensions	 in	 Chapter	 4	 for	 an	 explanation	 of	 the
Python.
17 	 Altschul,	 S.,	 Gish,	 W.,	 Miller,	 W.,	 Myers,	 E.,	 and	 Lipman,	 D.	 (1990).	 Basic	 local
alignment	search	tool.	Journal	of	Molecular	Biology	215(3):	403–410.
18 	The	equivalent	in	the	older	BLAST2	package	is	‘formatdb’
19 	Regular	expressions	are	discussed	more	fully	in	Appendix	5.
20 	 eXtensible	 Markup	 Language:	 a	 text-based	 general	 data	 storage	 format,	 somewhat
similar	to	the	HTML	used	in	web	pages.
21 	For	full	details	of	all	the	options	available	see	the	BLAST+	package	documentation	in
the	help	section	at	the	NCBI:	http://blast.ncbi.nlm.nih.gov.

http://evfold.org
http://blast.ncbi.nlm.nih.gov

13 	Multiple-sequence	alignments
Contents

Multiple	alignments

Progressive	pairing

Alignment	consensus	and	profiles

Generating	a	consensus	sequence

Generating	an	alignment	profile

Profile	alignments

Generating	simple	multiple	alignments	in	Python

Profile-based	multiple	alignment

Interfacing	multiple-alignment	programs

Using	ClustalW	from	Python

Multiple	alignments
Expanding	 from	an	alignment	of	 just	 two	 sequences,	 the	more	 sequences	you	can	align
together	 then	 the	more	 information	you	have	and	 the	more	accurate	your	alignment	will
be.	 The	 caveat	 to	 this	 is	 that	 the	 closeness	 of	 the	 relationship	 between	 sequences	 is
important	and	should	also	be	taken	into	account.	Consider	that	for	two	very	closely	related
sequences,	 the	 differences	 are	 significant	 and	 similarities	 less	 significant,	 because	 you
expect	 similarity.	 In	 contrast,	 for	 distantly	 related	 sequences	 residue	 differences	 are
positively	expected,	so	the	similarities	are	more	significant	and	differences	less	so.

Given	that	we	have	described	how	alignments	can	be	made	for	pairs	of	sequences,	the
next	topic	is	to	show	how	we	can	include	more	than	just	two	sequences	in	an	alignment	to
make	a	multiple-sequence	alignment,	and	how	the	overall	or	average	properties	of	such	an
alignment	 can	 be	 measured.	 As	 a	 naïve	 example	 of	 the	 benefits	 of	 multiple-sequence
alignment,	consider	the	following	alternative	alignments	for	two	sequences:

GCGCATG--GCGCAT											GCGCAT--GGCGCAT

GGGCATGCGGCGCAT											GGGCATGCGGCGCAT

There	 is	 no	way	 to	 know	which	 alignment	 is	 best;	 the	 gap	 appears	 equally	 good	 in
either	position.	However,	if	there	is	a	third	sequence	which	supports	one	scenario	over	the
other	then	we	can	make	a	better	judgement,	in	this	instance	supporting	the	first	scenario.

GCGCATG--GCGCAT

GGGCATGCGGCGCAT

GCGCATGCCCCGCAT

When	 aligning	 pairs	 of	 sequences,	 which	 you	 can	 imagine	 as	 a	 two-dimensional
problem,	 we	 can	 use	 the	 dynamic	 programming	 trick.	 However,	 as	 the	 number	 of
sequences	 in	a	multiple	alignment	 increases	 the	complexity	of	 the	problem	increases;	 in
effect	we	get	a	new	dimension	of	possibilities	for	each	extra	sequence.	If	the	comparison
of	two	sequences	required	a	grid	of	points	then	three	requires	a	volume	of	points,	four	a
4D	hypervolume	etc.	In	essence	the	alignment	problem	grows	very	complex	very	quickly
with	extra	sequences.	The	objective	is	to	find	the	gap	placements	in	the	multiple-sequence
alignment	to	give	the	optimum	alignment	score	for	all	of	the	sequences	at	the	same	time.
Overall,	 there	 is	 no	 general	 fast	 method	 for	 guaranteeing	 the	 generation	 of	 optimal
multiple-sequence	alignments.

Progressive	pairing
The	general	multiple-alignment	problem	might	not	be	solvable	in	an	optimal	mathematical
sense,	 but	 there	 are	 nonetheless	 means	 for	 getting	 very	 good	 (and	 hence	 scientifically
useful)	 solutions	 quickly.	 The	way	 that	 this	 is	 done	 considers	 that	 the	 sequences	 being
aligned	have	 arisen	 from	a	divergent,	 branching	 evolutionary	process.	Thus,	 rather	 than
optimising	the	alignment	of	each	sequence	with	all	of	the	others,	many	methods	attempt	to
join	sequences	into	an	alignment	in	the	order	of	their	similarity	to	one	another;	this	is	the
progressive	 pairing	 approach.	 The	 alignment	 process	 can	 thus	 be	 broken	 down	 into
discrete	stages:	the	building	of	a	family	tree	for	the	input	sequences	and	then	the	creation
of	the	overall	multiple	alignment,	by	progressively	pairing	alignments	of	smaller	numbers
of	 sequences	 in	 the	 same	order	 as	 the	 branches	 of	 the	 family	 tree	 join	 (often	done	 in	 a
weighted	manner	depending	on	the	lengths	of	the	tree	branches).

The	 tricky	 problem	of	 building	 (phylogenetic)	 trees	 is	 discussed	 later	 in	Chapter	 14.
Initially	we	will	make	only	crude	multiple-sequence	alignments	by	 joining	sequences	 in
the	input	(arbitrary)	order.	Nevertheless	you	can	use	later	Python	examples	to	make	family
trees	and	thus	employ	a	better	order	for	combining	alignments.	There	are	of	course	other
approaches	 that	 can	 be	 taken	 to	 generate	 multiple	 alignments,	 aside	 or	 on	 top	 of	 the
progressive	pairing	approach.	However,	many	of	these	are	slower	and	more	specialised	for
increased	 accuracy.	 Usually	 these	 more	 rigorous	 approaches	 will	 not	 give	 answers	 too
dissimilar	 to	 solutions	 from	progressive	pairing;	 indeed	one	 common	 speed-up	 trick	 for
more	exhaustive	searches	is	to	restrict	the	search	for	optimal	solutions	to	only	routes	that
lie	near	the	initial,	quick	solution.

Alignment	consensus	and	profiles
Before	we	begin	to	look	at	routines	to	generate	multiple	alignments	we	will	look	at	some
routines	to	analyse	multiple	alignments,	given	that	this	will	be	useful	in	their	construction.
Firstly,	 we	 will	 consider	 the	 consensus	 of	 a	 sequence	 alignment.	 This	 means	 the
compression	of	multiple	 aligned	 sequences	 into	one	 representative	or	 average	 sequence.
This	 will	 typically	 be	 a	 completely	 unnatural	 sequence,	 but	 it	 will	 have	 many	 of	 the
overall	properties	of	 the	alignment.	Consider	 the	 following	multiple	alignment,	with	 the
consensus	line	below.	You	can	see	that	the	residues	in	the	consensus	sequence	are	simply
formed	by	taking	a	poll	of	the	most	popular	residue	type	at	each	position.	Note	that	in	this

particular	example	we	have	not	considered	gaps;	a	residue	letter	always	wins	out	over	a
dash,	but	this	needn’t	always	be	the	case.

Seq1:	SRPAPVVIILIILCVMAGVIGTILLISYGIRLLIK

Seq2:	TVPAPVVIILIILCVMAGIIGTILLISYTIRRLIK

Seq3:	HHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIK

Seq4:	HEFSELVIALIIFGVMAGVIGTILFISYGSRRLIK

Cons:	HVPSPVVIILIILGVMAGVIGTILLISYGIRRLIK

Generating	a	consensus	sequence
The	following	Python	example	takes	a	(multiple)	alignment	and	produces	a	representative
consensus	sequence.	The	 input	alignment	 is	assumed	 to	be	a	 list	of	one-letter	sequences
with	 gaps,	 with	 each	 list	 assumed	 to	 be	 of	 the	 same	 length.	 The	 second	 input	 to	 the
function	is	a	threshold	value	so	that	if	no	single	residue	type	exceeds	this	fraction,	at	any
of	 the	 alignment	positions,	 then	 the	position	 is	 deemed	 to	be	undefined	 and	 the	 residue
code	‘X’	will	be	used.	With	the	default	threshold,	0.25,	if	we	have	an	alignment	containing
ten	sequences,	at	least	three	residues	of	the	same	kind	must	be	present	to	give	something
in	the	consensus.

Initially,	the	function	is	defined	along	with	some	initial	values,	one	for	the	length	of	the
sequences,	 n	 (we	 happen	 to	 measure	 the	 first	 sequence	 of	 the	 alignment),	 one	 for	 the
number	of	sequences	in	the	alignment,	nSeq,	and	an	empty	consensus	string	that	will	be
filled	in	and	then	passed	back	at	the	end.	Note	that	we	convert	the	number	of	sequences
into	a	floating	point	number	because	later	on	we	will	be	using	it	to	do	some	division,	and
we	want	to	ensure	that	this	operation	produces	a	floating	point	number.1

def	consensus(alignment,	threshold=0.25):

		n	=	len(alignment[0])

		nSeq	=	float(len(alignment))

		consensus	=	''

We	 loop	 though	 an	 index	 representing	 all	 of	 the	 positions	 (columns)	 within	 the
alignment.	Each	time	we	define	an	empty	counts	dictionary	that	will	hold	the	number	of
each	type	of	residue	observed	at	this	position.

for	i	in	range(n):

		counts	=	{}

Another	 loop	 is	defined	 inside	 the	 first	one	 to	 iterate	over	each	sequence.	We	get	 the
appropriate	letter	for	the	current	sequence	using	the	position	index,	and	skip	the	remainder
of	the	loop	if	the	letter	is	actually	a	dash.	Finally	in	the	loop	we	increase	the	count	for	this
kind	of	residue	letter	by	one,	using	the	dictionary	trick	involving	.get(),	so	that	a	starting
value	of	zero	is	obtained	if	we	have	not	seen	a	particular	letter	before	during	this	cycle.

for	seq	in	alignment:

		letter	=	seq[i]

		if	letter	==	'-':

				continue

		counts[letter]	=	counts.get(letter,	0)	+	1

Now	 that	 the	 counts	 for	 the	 residue	 letters	 have	been	 filled	 for	 this	 position	we	next
calculate	 the	 fractions	of	 the	 total	 that	 each	 letter	 represents.	This	 is	 a	 simple	matter	 of
dividing	 the	 count	 for	 a	 letter	 by	 the	number	of	 aligned	 sequences	 and	 then	putting	 the
fraction	and	 the	corresponding	 letter	 in	a	 list.	Note	 that	we	use	small,	 two-element	 sub-
lists	to	store	the	fractions,	rather	than	use	a	dictionary	as	we	did	for	the	counts,	so	that	we
can	sort	the	values.

fractions	=	[]

for	letter	in	counts:

		frac	=	counts[letter]/nSeq

		fractions.append([frac,	letter])

The	list	of	fractions	is	sorted	and	because	the	numeric	value	is	the	first	element	in	the
sub-lists,	 the	 fractions	will	 be	 put	 in	 value	 order	 of	 the	 number,	 rather	 than	 alphabetic
order	of	the	letter.	However,	the	letters	will	still	go	along	for	the	ride.	The	largest	fraction
(bestFraction)	and	corresponding	letter	are	the	ones	we	want	to	use	to	build	the	consensus
sequence	 with,	 thus	 we	 take	 the	 last	 element	 ([-1])	 of	 the	 sorted	 fractions	 list,
remembering	 that	 the	 values	 are	 sorted	 low	 to	 high.	 Although	 here	 we	 represent	 the
proportion	of	each	letter	using	a	floating	number	between	zero	and	one,	it	would	also	be
possible	to	use	integers,	i.e.	between	zero	and	the	number	of	sequences.

fractions.sort()

bestFraction,	bestLetter	=	fractions[-1]

If	 the	 winning	 fraction	 is	 below	 our	 significance	 threshold	 then	 we	 extend	 the
consensus	sequence	with	an	‘X’,	rather	than	use	an	infrequent	residue.	Otherwise	the	most
popular	residue	is	added	to	the	end	of	the	consensus,	and	the	consensus	string	is	returned
from	the	function.

if	bestFraction	<	threshold:

		consensus	+=	'X'

else:

		consensus	+=	bestLetter

return	consensus

Note	that	we	simply	concatenated	the	consensus	string	to	the	next	letter	using	‘+=’,	but
we	could	also	have	put	the	letters	in	a	list	and	used	”.join().	Finally,	the	function	can	be
tested	with	an	alignment	represented	as	a	list	of	sequences:

alignment	=	['SRPAPVVIILIILCVMAGVIGTILLISYGIRLLIK',

													'TVPAPVVIILIILCVMAGIIGTILLISYTIRRLIK',

													'HHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIK',

													'HEFSELVIALIIFGVMAGVIGTILFISYGSRRLIK']

print(consensus(alignment))	#	HVPSPVVIILIILGVMAGVIGTILLISYGIRRLIK

Generating	an	alignment	profile

The	 second	 alignment	 analysis	 we	 will	 do	 is	 to	 generate	 a	 profile.	 A	 profile	 is	 a	 per-
position	 statistic	 saying	 how	much	 of	 each	 kind	 of	 residue	 there	 is	 at	 a	 given	 location.
Because	 a	 profile	 has	 positional	 information	 it	 can	 still	 be	 aligned	 just	 like	 a	 simple
sequence	alignment,	only	this	 time	we	are	dealing	with	fractions	of	residue	types,	rather
than	single	residues.	The	Python	function	to	generate	a	profile	from	an	alignment	is	given
below.	 It	 is	 very	 similar	 to	 the	 consensus	 generation,	 excepting	 that	 we	 don’t	 have	 to
choose	a	winning	residue.	The	profile	that	is	generated	at	the	end	is	represented	as	a	list	of
dictionaries;	we	locate	an	alignment	position	with	a	list	index,	then	the	sub-dictionary	for
this	 index	gives	 the	 fractions	of	each	 residue	 type	present.	Note	how	we	use	 the	 counts
dictionary	initially	to	do	as	the	name	suggests,	and	store	counts,	but	later	it	is	used	to	store
the	fractions;	there	is	no	reason	to	introduce	another	variable.

def	profile(alignment):

		n	=	len(alignment[0])

		nSeq	=	float(len(alignment))

		prof	=	[]

		for	i	in	range(n):

				counts	=	{}

				for	seq	in	alignment:

						letter	=	seq[i]

						if	letter	==	'-':

								continue

						counts[letter]	=	counts.get(letter,	0)	+	1

				for	letter	in	counts:

						counts[letter]	/=	nSeq

				prof.append(counts)

		return	prof

alignment	=	['SRPAPVVIILIILCVMAGVIGTILLISYGIRLLIK',

													'TVPAPVVIILIILCVMAGIIGTILLISYTIRRLIK',

													'HHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIK',

													'HEFSELVIALIIFGVMAGVIGTILFISYGSRRLIK']

print(profile(alignment))

#	First	sub-dict:	{'H':	0.5,	'S':	0.25,	'T':	0.25}

Profiles	of	this	kind	are	often	used	as	position-specific	scoring	matrices,	for	example,	in
programs	 like	 PSI-BLAST.2	 The	 idea	 here	 is	 that	 you	 build	 a	 profile	 for	 a	 family	 of
sequences	which	have	something	of	interest	in	common,	and	then	search	other	sequences
with	the	whole	profile.	This	allows	you	to	find	sequences	that	share	the	properties	of	your
aligned	 family	 as	 a	 whole,	 rather	 than	 finding	 ones	 that	 are	 similar	 to	 the	 individual
members;	 this	 increases	 the	 sensitivity	 of	 similarity	 searches.	 A	 family	 profile	 conveys
family-specific	 information,	 like	 the	 presence	 of	 a	 highly	 conserved	 (or	 invariant)	 site,
which	would	not	be	recorded	if	you	looked	for	sequences	with	a	general	substitution	table.

Profile	alignments
Once	we	have	calculated	a	profile	for	an	alignment	we	can	align	it	with	something	else,
just	 as	we	do	 in	 a	pairwise	 sequence	alignment.	We	actually	 require	 the	ability	 to	 align
pairs	of	profiles	 for	 the	demonstration	 function	 to	 create	multiple	 alignments.	When	we
create	 a	 multiple-sequence	 alignment	 by	 progressively	 adding	 sequences,	 we	 have	 to
combine	 profiles	 for	 one	 alignment	 (one	 branch	 of	 the	 tree)	 with	 another	 alignment	 (a
different	branch);	we	cannot	do	a	plain	sequence	alignment.

We	 won’t	 go	 through	 the	 profile	 alignment	 function	 in	 great	 detail	 because	 it	 is	 so
similar	to	the	regular	sequence	alignment	function	discussed	in	Chapter	12.	Nonetheless,
there	 are	 still	 a	 few	 key	 differences.	 Firstly	 and	most	 obviously,	 we	 are	 not	 passing-in
sequences	 (strings	 of	 letters),	 but	 rather	 profiles	 (lists	 of	 residue	 fraction	 dictionaries).
Secondly,	 when	 we	 calculate	 the	 residue	 similarity	 scores,	 rather	 than	 comparing	 one
residue	with	another,	we	compare	all	of	the	residue	fractions	with	each	other.	Accordingly,
say	that	at	a	given	position	we	have	50%	‘A’	and	50%	‘G’	in	one	profile	and	25%	‘C’	and
75%	‘G’	in	the	other	profile,	then	the	final	similarity	score	comes	from	the	addition	of	four
values;	the	combinations	A:C,	A:G,	G:C	and	G:G	each	using	a	different	similarity	value
from	the	substitution	matrix,	multiplied	by	the	weight	for	 that	pair.	You	can	imagine	the
weights	for	each	combination	being	 the	area	within	a	square	defined	by	edges	 that	have
lengths	 defined	 by	 the	 individual	 profile	weights.	 For	 example,	 the	A:C	 combination	 is
50%	 times	25%,	giving	12.5%	 to	 the	 score.	Thirdly,	 the	 function	 also	modifies	 the	gap
penalties	 because	 the	 input	 profiles	 are	 generated	 from	alignments	 that	may	 carry	gaps.
The	modification	 is	 to	multiply	 the	penalties	by	 the	 total	weight	 for	 the	profiles	at	each
point;	any	missing	weight	will	be	due	 to	gaps	so	 the	 total	 is	not	necessarily	100%.	This
multiplication	 reduces	 the	 gap	 penalties,	 thus	 gaps	 are	 penalised	 less	 when	 gaps	 were
present	in	the	input	profiles.

def	profileAlign(profileA,	profileB,	simMatrix,	insert=8,	extend=4):

		numI	=	len(profileA)	+	1

		numJ	=	len(profileB)	+	1

		scoreMatrix	=	[[0]	*	numJ	for	x	in	range(numI)]

		routeMatrix	=	[[0]	*	numJ	for	x	in	range(numI)]

		for	i	in	range(1,	numI):

				routeMatrix[i][0]	=	1

		for	j	in	range(1,	numJ):

				routeMatrix[0][j]	=	2

		for	i	in	range(1,	numI):

				for	j	in	range(1,	numJ):

						penalty1	=	insert

						penalty2	=	insert

						if	routeMatrix[i-1][j]	==	1:

								penalty1	=	extend

						elif	routeMatrix[i][j-1]	==	2:

								penalty2	=	extend

						fractionsA	=	profileA[i-1]

						fractionsB	=	profileB[j-1]

						similarity	=	0.0

						totalWeight	=	0.0

						for	residueA	in	fractionsA:

								for	residueB	in	fractionsB:

										weight	=	fractionsA[residueA]	*	fractionsB[residueB]

										totalWeight	+=	weight

										similarity	+=	weight	*	simMatrix[residueA][residueB]

						penalty1	*=	totalWeight

						penalty2	*=	totalWeight

						paths	=	[scoreMatrix[i-1][j-1]	+	similarity,	#	Route	0

															scoreMatrix[i-1][j]	-	penalty1,					#	Route	1

															scoreMatrix[i][j-1]	-	penalty2]					#	Route	2

						best	=	max(paths)

						route	=	paths.index(best)

						scoreMatrix[i][j]	=	best

						routeMatrix[i][j]	=	route

		profileOutA	=	[]

		profileOutB	=	[]

		i	=	numI-1

		j	=	numJ-1

		score	=	scoreMatrix[i][j]

		while	i	>	0	or	j	>	0:

				route	=	routeMatrix[i][j]

				if	route	==	0:	#	Diagonal

						profileOutA.append(profileA[i-1])

						profileOutB.append(profileB[j-1])

						i	-=	1

						j	-=	1

				elif	route	==	1:	#	Gap	in	profile	B

						profileOutA.append(profileA[i-1])

						profileOutB.append(None)

						i	-=	1

				elif	route	==	2:	#	Gap	in	profile	A

						profileOutA.append(None)

						profileOutB.append(profileB[j-1])

						j	-=	1

		profileOutA.reverse()

		profileOutB.reverse()

		return	score,	profileOutA,	profileOutB

alignA	=	['SRPAPVV--LII',	'TVPAPVVIILII']

alignB	=	['HHFSEPEITLIIF',	'H-FSELVIALIIF']

print(profileAlign(profile(alignA),	profile(alignB),	BLOSUM62))

The	output	of	 the	 function	 is	a	numeric	score	and	 two	aligned,	gapped	profiles.	Note
that	the	output	profiles	were	made	by	using	the	.append()	function	to	add	to	the	end	of	the
lists,	even	though	we	went	 through	the	sequence	positions	 in	reverse	order	(decreasing	 i
and	j).	This	results	in	the	profile	lists	being	created	in	the	reverse	order	to	what	we	require,
hence	reverse()	is	used	to	flip	the	order	at	the	end.3	A	gap	is	indicated	in	an	output	profile
by	using	the	None	object;	this	is	arbitrary	but	something	that	evaluates	as	false	is	handy.

Generating	simple	multiple	alignments	in	Python
With	a	function	that	can	align	profiles,	we	can	now	consider	building	multiple	alignments.
Ideally,	as	previously	mentioned	you	would	make	a	genetic	tree	of	the	sequences	and	join
them	into	a	multiple	alignment	in	the	same	manner	as	the	tree	branches.	However,	because
we’ll	leave	tree	generation	until	later,	we	will	only	do	a	crude	multiple-sequence	assembly
and	add	sequences	one	at	a	time	to	a	growing	multiple	alignment,	which	will	be	enough	to
illustrate	the	procedure.	Because	sequence	alignment	works	with	a	pair	of	inputs,	we	will
have	 a	 pair	 of	 profiles	 that	 are	 to	 be	 aligned,	 each	 (potentially)	 representing	 smaller
alignments	 that	 have	 already	 been	 combined.	 Repeating	 this	 procedure	 the	 multiple
alignment	grows,	in	terms	of	the	number	of	sequences,	as	more	profiles	are	added.	Note
that	it	would	also	be	possible	to	generate	multiple	alignments	using	consensus	sequences,
rather	 than	 profiles.	 A	 function	 to	 do	 this,	 consensusMultipleAlign,	 is	 given	 in	 the
downloadable	 material	 that	 accompanies	 this	 book
(http://www.cambridge.org/pythonforbiology).	You	will	note	that	because	a	consensus	is	a
regular	 sequence	 representation	 only	 regular	 sequence	 alignment	 is	 required	 within	 the
function,	rather	than	having	to	do	profile	alignments.

Profile-based	multiple	alignment
Before	we	 define	 the	 next	 function	we	make	 the	 required	 imports	 to	 get	 a	 substitution
matrix	(used	for	testing)	and	the	regular	pairwise	alignment	function	sequenceAlign().	The
module	 we	 are	 importing	 from	 relates	 to	 Chapter	 12	 and	 is	 available	 in	 the	 on-line
material	 for	 this	 book	 (http://www.cambridge.org/pythonforbiology).	 The	 profile-based
multiple-alignment	function	takes	a	list	of	unaligned	sequences	and	a	substitution	matrix
as	input.	Then	we	initialise	a	value	for	the	number	of	input	sequences.

from	Alignments	import	BLOSUM62,	sequenceAlign

def	simpleProfileMultipleAlign(seqs,	simMatrix):

		n	=	len(seqs)

We	begin	 the	multiple	 alignment	 by	 aligning	 the	 first	 two	 sequences	 and	placing	 the

http://www.cambridge.org/pythonforbiology
http://www.cambridge.org/pythonforbiology

gapped	output	in	the	multipleAlign	list.	Obviously	we	would	need	to	check	that	we	had	at
least	two	sequences	before	using	this	function.	Note	that	if	we	were	doing	this	properly	we
would	need	to	start	with	the	edges	of	a	genetic	tree.

score,	alignA,	alignB	=	sequenceAlign(seqs[0],	seqs[1],	simMatrix)

multipleAlign	=	[alignA,	alignB]

Next	the	function	loops	through	an	index,	one	for	each	input	sequence,	but	starting	at	2.
We	 start	 here	 because	we	have	 already	used	 the	 first	 two	 sequences	 to	 get	 the	multiple
alignment	 started.	 Then	 in	 the	 loop	 we	 generate	 two	 profiles,	 one	 for	 the	 existing
alignment	and	one	for	the	sequence	to	be	added,	seqs[i],	noting	that	this	is	placed	inside	a
list	as	required	by	the	profile-generating	function.

for	i	in	range(2,n):

		profA	=	profile(multipleAlign)

		toAdd	=	[seqs[i],]

		profB	=	profile(toAdd)

Now	we	do	 the	alignment	of	 the	 two	profiles,	and	get	 two	gapped	profile	alignments
back,	as	well	as	a	score	which	in	this	instance	we	ignore.

score,	alignA,	alignB	=	profileAlign(profA,	profB,	simMatrix)

With	the	two	gapped	and	aligned	profiles,	we	have	to	use	the	positions	of	gap	insertions
to	combine	 the	new	sequence	 into	 the	existing	multiple	alignment.	Note	how	the	output
profiles	 are	 just	 a	 guide	 to	 place	 insertions;	 the	 deepening	 alignment	 always	 uses	 the
original	sequences.	We	repeat	this	operation	twice,	once	to	collect	and	insert	gaps	for	the
starting	multiple	 alignment,	 and	 once	 for	 the	 newly	 added	 sequences.	 Accordingly,	 we
loop	through	the	alignment	using	enumerate()	so	that	we	extract	both	an	index	number	and
a	fractions	dictionary	(which	is	what	a	profile	is	composed	of).	If	the	fractions	dictionary
is	None,	i.e.	missing,	then	we	have	a	gap	in	that	profile	and	we	place	the	current	index	in	a
list	of	gap	positions.

gaps	=	[]

for	j,	fractions	in	enumerate(alignA):

		if	fractions	is	None:

				gaps.append(j)

Once	the	gap	locations	are	collected,	all	the	sequences	in	that	part	of	the	alignment	are
looped	through	and	are	redefined	with	extra	dashes,	i.e.	we	add	a	column	of	‘-’	at	the	gap
location.	In	this	round	we	are	putting	dashes	into	the	original	multipleAlign	list.

for	j,	seq	in	enumerate(multipleAlign):

		for	gap	in	gaps:

				seq	=	seq[:gap]	+	'-'	+	seq[gap:]

				multipleAlign[j]	=	seq

Then	a	 second	 round	of	gap	 insertion	 is	done,	 this	 time	collecting	 locations	 from	 the
second	align	profile,	alignB,	and	placing	the	gaps	in	the	toAdd	list.

gaps	=	[]

for	j,	fractions	in	enumerate(alignB):

		if	fractions	is	None:

				gaps.append(j)

for	j,	seq	in	enumerate(toAdd):

		for	gap	in	gaps:

				seq	=	seq[:gap]	+	'-'	+	seq[gap:]

		toAdd[j]	=	seq

With	all	the	gaps	placed,	the	toAdd	list	is	then	added	to	the	multipleAlign	list	to	form	a
new,	deeper	alignment.	The	.extend()	function	is	used	because	we	are	joining	two	lists.

multipleAlign.extend(toAdd)

Finally,	 outside	 the	 loop,	 having	 combined	 all	 of	 the	 sequences,	 we	 pass	 back	 the
completed	multiple	alignment	and	test	the	function.

return	multipleAlign

#	To	test	and	print	out	the	result

seqs	=	['SRPAPVVLIILCVMAGVIGTILLISYGIRLLIK',

								'TVPAPVVIILIILCVMAGIIGTILLLIISYTIRRLIK',

								'HHFSEPEITLIIFGVMAGVIGTILLLIISYGIRLIK',

								'HFSELVIALIIFGVMAGVIGTILFISYGSRLIK']

align	=	simpleProfileMultipleAlign(seqs,	BLOSUM62)

for	k,	seq	in	enumerate(align):

		print(k,	seq)

#	Result:

#	0	-SRPAPVV--LIILCVMAGVIGTI--LLISYGIRLLIK

#	1	-TVPAPVVIILIILCVMAGIIGTILLLIISYTIRRLIK

#	2	HHFSEPEI-TLIIFGVMAGVIGTILLLIISYGIR-LIK

#	3	-HFSELVI-ALIIFGVMAGVIGTI--LFISYGSR-LIK

Note	that	in	the	above	test,	after	we	have	obtained	the	alignment	we	loop	through	the
list	of	sequences	of	which	it	is	composed	using	the	inbuilt	enumerate()	function.	This	is	so
we	efficiently	get	back	an	index	number	at	the	same	time	as	the	one-letter	sequences.

Interfacing	multiple-alignment	programs
The	above	examples	show	you	the	basic	mechanisms	of	how	multiple	alignments	can	be
made.	 However,	 unless	 you	 wish	 to	 develop	 your	 own	 routines,	 when	 doing	 multiple
alignments	 in	most	 laboratory	situations	 the	best	 solution	 is	 to	use	existing,	 tried,	 tested
and	 documented	 programs.	Common	programs	 like	ClustalW,4	MUSCLE5	 or	 T-Coffee6
are	 easily	 interfaced	 with	 other	 routines	 by	 using	 Python	 to	 write	 input	 files	 and	 read
output	files.	With	experience	you	could	write	your	own	functions	to	achieve	this;	however,
if	 you	are	using	common	 file	 formats	 then	 it	 is	 easiest,	 and	 safer,	 to	use	 the	BioPython
modules.	The	following	example	shows	how	you	can	make	input	for,	execute	and	read	the
output	 of	 ClustalW.	 ClustalW	 is	 arguably	 the	 most	 widely	 known	 multiple-alignment
program,	and	one	that	offers	a	good	compromise	between	speed	and	accuracy.	Using	the
same	principles	you	can	easily	adapt	the	approach	to	use	other	programs.

Using	ClustalW	from	Python
We	will	use	 input	 to	 the	ClustalW	program	in	 the	simple	FASTA	format,	which	you	are
hopefully	already	familiar	with.	Of	course,	 if	 the	data	is	not	already	in	a	FASTA	file	we
will	have	to	make	one;	indeed	the	following	example	will	make	the	files	for	you	starting
from	 a	 simple	 list	 of	 one-letter	 sequences	 as	 we	 have	 been	 using	 in	 the	 examples.
Although	plain	sequence	strings	are	fine	for	basic	analyses	you	may	wish	to	consider	more
detailed	 sequence	 representations,	 like	 the	 Bio.Seq	 module,	 when	 situations	 are	 more
complicated.

Firstly,	in	our	example	we	import	all	of	the	external	modules	we	will	need	upfront.	It	is
generally	a	good	idea	to	do	this	because	you	can	quickly	look	at	the	start	of	a	file	and	see
all	of	the	modules	you	are	depending	upon.	Most	of	the	modules	are	BioPython7	libraries,
so	it	is	assumed	that	this	is	installed	on	your	system.

import	os

from	Bio.Seq	import	Seq

from	Bio.SeqRecord	import	SeqRecord

from	Bio.Alphabet	import	IUPAC

from	Bio	import	SeqIO,	AlignIO

Two	file	names	are	defined;	one	for	the	input	to	the	alignment	program	(.fasta)	and	one
for	the	output	from	the	program	(.aln).

fastaFileName	=	"test2.fasta"

alignFileName	=	"test2.aln"

Next	we	loop	though	the	sequences,	seqs,	defined	as	needed,	to	make	a	list	of	sequence
record	objects.	For	each	one-letter	sequence	we	first	make	a	BioPython	Seq	object	using
the	standard	IUPAC8	protein	sequence	alphabet.	If	there	were	an	invalid	protein	sequence
we	would	 get	 an	 error.	The	basic	 sequence	 object	 is	 then	 combined	with	 a	 name	 and	 a
description	 to	 make	 a	 fully	 fledged	 sequence	 record	 object.	 The	 SeqRecord	 object	 is
required	for	writing	a	FASTA	file.

records	=	[]

for	i,	seq	in	enumerate(seqs):

		seqObj	=	Seq(seq,	IUPAC.protein)

		name	=	'test%d'	%	i

		recordObj	=	SeqRecord(seqObj,	id=name,	description='demo	only')

		records.append(recordObj)

We	 use	 the	 open()	 function	 to	 create	 a	 file	 handle	 object	 into	 which	 the	 sequence
records	 are	 written.	 The	 SeqIO	 module	 of	 BioPython	 has	 a	 .write()	 function	 that	 can
output	various	formats,	so	naturally	we	use	the	desired	‘fasta’	option.	With	the	file	written
the	file	handle	is	closed;	this	is	not	essential	here	but	a	good	habit	to	get	into.

outFileObj	=	open(fastaFileName,	"w")

SeqIO.write(records,	outFileObj,	"fasta")

outFileObj.close()

With	the	input	file	made,	the	next	job	is	to	run	the	external	alignment	program;	in	this
case	ClustalW.	This	requires	we	have	installed	the	alignment	program	and	that	 it	can	be

run	as	the	command	‘clustalw’	from	the	operating	system.	We	will	 invoke	the	command
using	the	subprocess.call()	function,	as	we	illustrated	for	BLAST	in	Chapter	12.	Also,	 in
this	instance	we	specify	-INFILE	and	-OUTFILE	options,	 to	define	 the	 input	and	output
file	 names	 respectively,	 formatted	 in	 the	 form	 –OPTION=VALUE	 (unlike	with	BLAST
where	 the	option	name	 and	 associated	value	 are	 separated	with	 a	 space).	 If	 desired,	we
could	read	the	ClustalW	manual	and	include	other	options	to	control	other	aspects	like	gap
penalties	and	the	substitution	matrix.

from	subprocess	import	call

cmdArgs	=	['clustalw',

											'-INFILE='	+	fastaFileName,

											'-OUTFILE='	+	alignFileName]

call(cmdArgs)

A	 perhaps	 better,	 but	 more	 complicated,	 alternative	 to	 the	 call()	 is	 to	 use	 the
subprocess.Popen	class,	which	amongst	other	things	provides	a	means	of	executing	jobs	in
parallel;	very	handy	to	do	if	you	have	lots	of	alignments	and	a	multi-core	computer.

After	 the	system	execution	we	then	open	and	read	 the	output	alignments	file.	We	use
the	AlignIO	module	 from	BioPython	 to	 do	 the	 interpretation	 of	 the	 file,	 specifying	 the
read	format	as	‘clustal’.	Note	that	we	use	the	.read()	function	because	we	only	have	one
alignment	in	the	file,	if	there	were	several	we	would	use	.parse()	instead,	to	get	back	a	list
of	alignments.	The	reading	function	makes	an	alignment	object	from	which	we	can	print
out	attributes,	like	the	length,	and	loop	through	to	get	at	the	individual	records.	Note	that
the	record	variables	are	BioPython	objects	and	thus	come	with	.seq	and	.id	attributes	from
which	you	can	easily	get	at	the	one-letter	sequence	and	name.

fileObj	=	open(alignFileName)

alignment	=	AlignIO.read(fileObj,	"clustal")

print("Alignment	length	%i"	%	alignment.get_alignment_length())

for	record	in	alignment:

		print(record.seq,	record.id)

Finally,	we	will	 illustrate	how	you	can	write	 the	alignment	object	out	 into	a	different
format	 (other	 than	 the	 Clustal-format	 file	we	 already	 have).	 This	 is	 a	 simple	matter	 of
making	a	list	of	alignments	and	an	output	file	handle	object,	with	a	new	name,	which	we
pass	on	to	the	AlignIO.write()	function.	In	this	example	we	are	using	the	‘phylip’	format
corresponding	 to	 the	PYHLIP	 suite9	 of	 programs	 that	makes	 and	 analyses	 phylogenetic
trees.

alignments	=	[alignment,]

outputHandle	=	open("test2.phylip",	"w")

AlignIO.write(alignments,	outputHandle,	"phylip")

1 	Remember	in	Python	2	dividing	two	whole	numbers	gives	a	whole	number.
2 	 Altschul,	 S.F.,	 Madden,	 T.L.,	 Schäffer,	 A.A.,	 Zhang,	 J.,	 Zhang,	 Z.,	 Miller,	 W.,	 and
Lipman,	 D.J.	 (1997).	 Gapped	 BLAST	 and	 PSI-BLAST:	 a	 new	 generation	 of	 protein
database	search	programs.	Nucleic	Acids	Research	25:	3389–3402.
3 	We	could	alternatively	have	used	insert(0)	to	add	to	the	start	of	the	lists,	though	the	way

we	have	shown	is	quicker.
4 	Thompson,	J.D.,	Higgins,	D.G.,	and	Gibson,	T.J.	(1994).	CLUSTAL	W:	improving	the
sensitivity	 of	 progressive	 multiple	 sequence	 alignment	 through	 sequence	 weighting,
position	specific	gap	penalties	and	weight	matrix	choice.	Nucleic	Acids	Research	22(22):
4673–4680.	Download	via	http://www.clustal.org/.
5 	Edgar,	 R.C.	 (2004).	MUSCLE:	multiple	 sequence	 alignment	with	 high	 accuracy	 and
high	throughput.	Nucleic	Acids	Research	32(5):	1792–1797.
6 	Notredame,	C.,	Higgins,	D.G.,	and	Heringa,	J.	(2000).	T-Coffee:	a	novel	method	for	fast
and	 accurate	 multiple	 sequence	 alignment.	 Journal	 of	Molecular	 Biology	 302(1):	 205–
217.
7 	http://biopython.org.
8 	 International	Union	of	Pure	and	Applied	Chemistry;	an	organisation	 that	 standardises
chemical	nomenclature.
9 	 Felsenstein,	 J.	 (1993).	 PHYLIP	 (Phylogeny	 Inference	 Package)	 version	 3.5c.
Distributed	by	the	author.	Department	of	Genetics,	University	of	Washington,	Seattle.

http://www.clustal.org/
http://biopython.org

14 	Sequence	variation	and	evolution
Contents

A	basic	introduction	to	sequence	variation

Mechanisms	of	genetic	change

Conservation	and	variation

Homologues	and	species

Phylogenetic	trees

Similarity	measures

Measuring	conservation

Conservation	display

Calculating	substitution	matrices

Phylogenetic	trees

Phylogenetic	trees	using	neighbour-joining

Tree-guided	multiple-sequence	alignments

Calculating	substitution	rates	using	trees

A	basic	introduction	to	sequence	variation
Naturally	the	genetic	codes	of	different	kinds	of	organism	differ	to	support	their	different
construction,	 habits	 and	 biological	 requirements.	 Also,	 genetic	 codes	 vary	 between
individuals	of	the	same	species,	despite	the	large	degree	of	similarity	that	binds	them	as	a
species.	 It	 is	 such	variation	within	species	 that	provides	 the	opportunity	 for	offspring	 to
differ	from	their	parents	and	potentially	gain	an	improvement	or	specialisation,	which	in
time	may	give	rise	to	a	new	species.	In	a	more	modern	context,	sequence	variations	have	a
vital	 role	 in	 our	 understanding	 of	 genetic	 diseases	 and	 are	 becoming	 increasingly
important	for	the	development	of	pharmaceuticals,	where	the	effectiveness	and	side	effects
of	drugs	may	vary	significantly	according	to	the	genotype	of	a	person.

The	variety	of	species	and	individuals	is	all	down	to	the	variety	of	genome	sequences,
but	in	order	to	discover	as	much	as	we	can	about	the	consequences	of	and	reasons	for	this
variation	we	should	understand	something	about	the	mechanism	by	which	sequences	can
change.	 In	 this	 chapter	 we	 will	 not	 go	 in	 to	 immense	 detail	 about	 the	 underlying
mechanics,	but	simply	cover	the	main	principles	and,	importantly	as	far	as	bioinformatics
is	concerned,	describe	what	kinds	of	change	are	detectable	in	the	biological	sequences.	It
should	be	remembered	 that	 it	 is	only	changes	 that	are	passed	on	 to	offspring	which	will
influence	 evolution	 directly,	 but	 other	 variations	may	 be	 important,	 for	 example,	 in	 the

study	of	cancer-causing	mutations.

Mechanisms	of	genetic	change
You	can	think	of	DNA	changes,	and	hence	for	RNA	and	protein	too,	as	arising	from	one	of
four	 general	 ways:	 from	 recombination	 events	 where	 DNA	 strands	 exchange;	 as	 a
consequence	of	damage	 to	DNA;	from	errors	 in	 the	replication	of	DNA	at	cell	division;
and	 by	 the	 action	 of	 mobile	 genetic	 elements,	 like	 viruses	 and	 transposons.	 We	 will
introduce	these	points	separately.

Recombination	is	the	shuffling	of	large	sections	of	DNA	(i.e.	many	bases	at	a	time)	as	a
result	of	crossover	between	two	different	sections	of	DNA	double	helix.	Two	regions	of
DNA	come	together	and,	in	a	controlled	way,	the	two	double	helices	are	broken	and	joined
back	together,	in	an	exchanged	manner	so	that	the	new	DNA	molecules	are	made	of	two
regions	 from	 different	 origins.	 There	 are	 two	 notable	 situations	 where	 this	 occurs,	 for
deliberate	biological	reasons.	The	first	is	during	meiosis,	the	cell	division	that	gives	rise	to
gametes	(egg	and	sperm	cells).	This	kind	of	recombination	usually	occurs	between	sister
chromosomes	(i.e.	the	two	copies	of	a	given	kind)	where	they	share	significant	similarity,
just	before	the	chromosomes	separate	to	form	eggs	or	sperm,	which	carry	only	one	copy
of	each	kind	of	chromosome.	The	end	result	is	that	offspring	have	chromosomes	that	are
not	 identical	 to	 their	 parents’,	 but	 rather	 versions	 that	 are	 a	 spliced	 combination	 of	 the
originals.	This	is	an	important	means	of	generating	genetic	variation	within	a	species	and,
because	recombination	occasionally	occurs	at	 the	wrong	spot	with	an	offset	between	the
chromosomes,	 is	 a	 means	 by	 which	 entire	 genes	 get	 duplicated.	 The	 second	 notable
occurrence	of	recombination	involves	genes	of	antibodies,	i.e.	for	the	immune	system.	In
this	 instance	 the	 recombination	 is	 used	 to	 form	 a	 diverse	 array	 of	 immune	 cells	 each
producing	different	antibodies.	This	is	part	of	the	way	that	the	immune	response	adapts	to
the	potentially	limitless	variety	of	invading	organisms.	The	antibody	genes	contain	many
alternative	coding	regions	(i.e.	exons)	 in	different	groups	and	the	splicing	brought	about
by	recombination	effectively	selects	a	different	coding	region	from	within	each	group,	to
create	different	final	exon	combinations	in	each	cell,	so	that	it	makes	antibodies	that	bind	a
different	target.

DNA	is	a	relatively	inert	biological	molecule,	which	is	important	for	its	role	as	the	store
and	transmitter	of	inherited	information.	Nevertheless,	there	are	still	means	by	which	the
chemical	 structure	 of	 DNA	 can	 be	 disrupted.	 This	 can	 be	 as	 a	 result	 of	 various	 things
including:	 high	 energy	 radiation	 (X-rays,	 gamma	 rays);	 ultraviolet	 light;	 highly	 reactive
free-radical	compounds,	including	those	generated	as	a	natural	consequence	of	breathing
oxygen;	high	temperatures	and	chemical	toxins.	DNA	damage	is	a	constant	part	of	life	and
as	such	many	repair	mechanisms	have	evolved	to	fix	things.	Usually	the	damage	can	be
fixed	directly	by	 repair	enzymes,	but	 if	 it	gets	 too	bad	a	cell	will	often	commit	 suicide.
Sometimes,	however,	the	repair	may	not	reproduce	the	original	chemical	structure	or	the
damage	 may	 escape	 being	 fixed,	 so	 that	 when	 the	 DNA	 is	 replicated	 the	 base-pair
matching	at	that	position	goes	awry	and	the	sequence	changes.	Because	DNA	damage	is	a
somewhat	 random	 process	 and	 localised	 to	 small	 areas	 the	 sequence	 changes	 it	 creates
mostly	involve	only	a	single	base	pair;	a	single-nucleotide	polymorphism.	However,	larger
changes	are	possible,	 for	example,	when	 there	are	double-stranded	DNA	breaks	 that	are

joined	back	together	in	the	wrong	way,	as	can	be	seen	in	some	cancer	cell	lines.

As	hinted	at	in	the	discussion	of	DNA	damage,	the	replication	of	DNA	strands	is	a	time
when	 variations	 become	 consolidated.	 However,	 it	 is	 also	 a	 time	 when	 variations	 can
initially	 occur	 because	 DNA	 replication	 itself	 is	 slightly	 error-prone.	 This	 is	 important
because	 it	 allows	 the	 changes	 to	 feed	 evolutionary	 processes,	 but	 they	 are	 mistakes
nonetheless;	DNA	is	produced	where	the	occasional	base	pair	doesn’t	match.	The	reason
for	this	kind	of	mistake	is	because	of	the	chemical	structure	of	the	DNA	bases	themselves.
The	bases	are	in	a	state	of	structural	flux;	there	is	an	exchange	between	the	normal	form
and	 another	 chemical	 structure.	 In	 chemical	 structure	 terms	 there	 is	 tautomerism,	 an
equilibrium	 between	 different	 double-bonded	 forms	 (the	 double	 bond	 can	 switch	 from
C=C	to	C=N	by	 the	movement	of	a	hydrogen).	While	 the	standard	chemical	 form	is	 far
more	common,	the	occasional	brief	occurrence	of	the	alternative	form	version	results	in	a
structure	 where	 different	 base	 pairs	 can	 form,	 compared	 to	 the	 normal	 Crick-Watson
pairing	(G:C,	A:T).	If	the	alternative	form	appears	during	replication	the	wrong	base	may
be	incorporated	into	the	new	strand,	thus	giving	a	base-pair	mismatch.	In	many	organisms,
including	humans,	once	the	newly	added	base	reverts	to	its	normal	form	the	pair	mismatch
can	 be	 detected	 and	 immediately	 removed	 by	 the	 proof-reading	 apparatus	 of	 the	 DNA
replication	machinery.1	Occasionally,	 however,	 the	mismatch	 still	 escapes,	 and	 although
this	is	a	very	rare	event	(maybe	of	the	order	of	1	in	1010	for	mammal	genomes),	given	a
large	number	of	total	bases	(6×109	in	a	human	cell),	a	large	number	of	cell	division	events
and	all	the	individuals	of	a	population	it	will	undoubtedly	happen	from	time	to	time.	An
escaped	 base-pair	mismatch	may	 still	 be	 repaired	 by	 enzymes,	 but	 as	 either	 of	 the	 two
bases	could	be	replaced,	to	give	a	matching	pair,	the	fix	may	either	regenerate	the	original
sequence	or	consolidate	a	change,	to	give	a	single-nucleotide	polymorphism.

Figure	14.1.	 An	overview	of	the	basic	types	of	small-scale	genetic	change.	Changes
in	DNA	sequence	often	arise	through	somewhat	random	processes,	like	errors	in
replication	or	recombination,	but	in	general	variation	is	accepted	non-randomly	by	natural
selection.	The	simplest	change,	shown	as	an	alignment	mismatch,	is	the	substitution	of
one	type	of	nucleotide	for	another,	called	a	single-nucleotide	polymorphism	(SNP),	and
there	may	be	many	substitutions	in	a	given	length	of	DNA.	Insertions	and	deletions	are
apparent	where	a	section	of	a	sequence	does	not	have	an	equivalent	alignment	match	in
another	sequence.	Knowing	the	ancestor	sequence	will	reveal	whether	the	change	was
actually	an	insertion	or	a	deletion,	though	in	general	such	changes	are	called	‘indels’
without	disclosing	the	mechanism.	Insertions	and	deletions	are	more	likely	to	occur	where
the	DNA	sequence	is	repetitive,	which	in	turn	results	in	variation	in	the	numbers	of	a
repeated	sub-sequence.

The	other	general	way	of	DNA	changing	is	via	the	action	of	viruses	and	transposons,
which	 can	 both	 be	 thought	 of	 as	 mobile	 genetic	 regions.	 Some	 viruses	 hide	 their	 own
genome	 inside	 that	 of	 their	 host,	 using	 enzymes	 they	 bring	 along,	 thus	 evading	 host
defences	to	become	virulent	at	a	 later	 time.	Some	of	 these	are	retroviruses,2	which	have
RNA	viral	genomes,	but	make	a	DNA	copy	using	a	reverse	transcriptase	enzyme,	i.e.	the
reverse	of	the	normal	DNA	to	RNA	transcription.	Virus	DNA	that	is	inserted	into	its	host’s
genome	naturally	causes	a	change	in	the	DNA	sequence,	but	it	may	not	stay	there.	Often
viral	DNA	is	cut	out	or	excised	from	its	host,	sometimes	leaving	parts	of	its	DNA	behind.
For	virus	DNA	that	remains,	it	can	sometimes	change	so	that	the	viral	sequence	remains	in
an	inactive	form,	but	is	carried	from	that	time	onwards	as	its	host	reproduces.	Transposons
are	like	viruses	in	that	they	can	be	considered	as	genetic	elements	that	can	move	and	they
often	have	similar	means	of	inserting	and	excising	their	genetic	material.	However,	unlike
viruses,	transposons	lack	the	means	to	escape	a	cell:	coat	proteins,	infection	receptors	and
the	 like.	They	are	sometimes	colloquially	called	‘jumping	genes’.	Transposons	and	 their
remnants	are	responsible	for	large	proportions	of	many	genomes,	forming	repetitive,	non-
functional	sequences	(at	least	in	the	cellular	sense;	they	arguably	have	a	role	in	evolution).

Whatever	the	cause	of	a	change	in	DNA	sequence,	its	persistence	relies	upon	it	being
accepted.	 If	 a	 change	 is	 detrimental	 and	 kills	 a	 cell	 or	 organism	 or	 carries	 a	 distinct
disadvantage,	 then	 that	 change	will	 tend	 not	 to	 be	 passed	 on	 to	 future	 generations.	 If	 a
change	is	neutral	or	carries	an	advantage,	then	it	will	tend	to	be	accepted.	Thus,	although

the	causes	of	sequence	variation	are	highly	random,	their	acceptance	by	evolution	is	not	at
all	random.	Indeed,	when	we	observe	variation	in	biological	sequences	most	interest	is	in
determining	what	the	consequences	are	for	the	biology,	for	individuals	and	species,	rather
than	the	causal	mechanics.

Conservation	and	variation
In	earlier	chapters	we	have	analysed	sequences	to	detect	their	similarities	and	thus	to	form
alignments.	The	purpose	of	alignment	 is	not	only	 to	group	sequences,	but	also	 to	say	 in
what	precise	ways	 the	 sequences	differ,	 or	 are	preserved.	 If	we	 look	down	a	column	of
letters	along	 the	various	positions	of	a	multiple	alignment	 some	 locations	will	use	more
residue	types	than	others,	and	if	we	are	considering	protein	sequences	we	can	see	places
where	the	chemical	character	of	the	amino	acids	may	remain	the	same	despite	the	precise
residues	being	different.	Accordingly,	we	can	measure	how	conserved	or	variable	a	given
position	is.	Combining	many	positions	we	can	say	how	variable	a	whole	region	or	whole
gene	 is.	We	 can	 analyse	 sequence	 variability	 and	 find	 changes	 of	 biological	 or	medical
importance,	and	also	learn	something	about	the	evolution	and	origins	of	the	sequences.

As	discussed,	when	organisms	reproduce,	sequence	changes	naturally	occur.	However,
not	 all	 changes	 in	 the	 DNA	 are	 of	 consequence	 and	many	 have	 no	 effect	 at	 all	 on	 an
organism.	This	is	because	not	all	DNA	has	an	immediate	biological	role,	and	even	within
the	regions	that	do	there	can	often	be	several	sequences	that	perform	a	job	equally	well.
Generally,	 changes	 in	DNA	which	 are	 not	 important	 for	 biological	 function	occur	more
frequently;	there	is	no	reason	for	them	not	to	be	passed	on.

In	the	genomes	of	many	organisms	there	is	a	high	proportion	of	non-functional,	often
repetitive	 junk	DNA	 between	 genes.	 This	 is	 not	 to	 say	 that	 all	 DNA	 between	 genes	 is
useless,	given	that	such	intergenic	regions	must	contain	control	elements	to	regulate	gene
expression,	promoters	and	enhancers,	and	also	structural	DNA	to	maintain	chromosomes,
like	 telomeres	 to	 protect	 chromosome	 ends	 and	 centromeres	 to	 allow	 replication.	 Some
regions	of	non-functional	DNA	tend	to	show	the	highest	rate	of	change	during	evolution
and	 thus	 the	 largest	 variation	 between	 individuals	 of	 a	 species.	 Human	 DNA
fingerprinting,	 for	 example,	 which	 may	 be	 used	 to	 identify	 criminals	 or	 detect	 family
members,	works	 by	 looking	 at	 hypervariable	 regions	 that	 are	 different	 in	 almost	 every
person.	Such	 fingerprinting	would	not	work	nearly	 so	well	 if	 gene-coding	 regions	were
used;	 there	 would	 be	 far	 fewer	 differences	 and	 finding	 two	 individuals	 with	 the	 same
sequence	 (i.e.	 not	 the	 real	 criminal)	 would	 be	 much	 more	 likely,	 and	 in	 some	 cases
positively	expected.

The	 task	 of	 some	 analyses,	 rather	 than	 to	 just	 detect	 variations,	 is	 to	 measure	 the
relative	rate	of	change	of	variation.	If	we	can	find	sites	where	the	rate	of	change	of	the
sequence	is	above	or	below	the	normal	expected	value,	then	this	tells	us	something	about
the	 process	 of	 evolution	 at	 a	 fine	 scale.	 A	 common	 rate	 measure	 for	 variations	 in	 the
coding	 regions	 of	 genes	 that	 go	 on	 to	make	 protein	 is	 to	 look	 at	 the	 number	 of	 DNA
substitutions	that	do	change	the	amino	acid	sequence,	compared	to	those	that	do	not;	the
synonymous,	silent	substitutions.	Remember	that	the	number	of	three-base	codons	(64)	is
larger	than	the	number	of	amino	acids,	and	there	are	usually	different	ways	of	coding	for
the	same	amino	acid.

In	 regions	 that	 have	 more	 silent	 changes	 than	 active	 ones	 the	 acceptance	 of	 the
sequences	during	evolution	indicates	a	purifying	selection;	this	sequence	is	important	and
there	is	a	reason	why	the	protein	sequence	is	preserved.	Where	there	are	proportionately
more	 active	 changes	 than	 silent	 ones,	 compared	 to	 the	 average,	 then	 this	 can	 indicate	 a
region	where	there	is	positive	selection.	Such	regions	indicate	that	the	rate	of	evolution	at
these	 sites	 is	 greater	 than	 normal	 and	 that	 continuous	 change	 and	 adaptation	 is
advantageous.	Regions	of	positive	selection	in	the	human	genome	include	genes	involved
in	the	immune	system,	which	are	ever	changing	to	cope	with	the	continuous	appearance	of
new	harmful	bacteria,	viruses	and	parasites.

Figure	14.2.	 How	changes	in	a	protein	sequence	depend	on	codons.	When	DNA
sequences	that	correspond	to	the	protein-coding	region	of	a	gene	are	aligned	we	can
observe	mismatches	that	arise	from	nucleotide	substitutions.	However,	in	order	to
determine	what	effect,	if	any,	there	will	be	in	the	protein	sequence	we	must	consider	what
the	differences	are	in	the	three-letter	codons.	Because	an	amino	acid	is	usually	encoded	by
more	than	one	three-letter	codon	a	nucleotide	change	may	have	no	effect;	the	change	can
be	synonymous.	Whether	there	is	a	difference	will	depend	on	the	genetic	code	and	the
precise	codon	change.

Homologues	and	species
When	 comparing	 different	 versions	 of	 the	 same	 gene	 or	 protein,	 say	 in	 a	 multiple
alignment,	the	sequences	analysed	are	all	related	to	one	another.	Saying	that	they	are	the
same	kind	of	gene	is	not	only	to	say	that	they	do	the	same	job,	but	also	that	they	have	a

common	 ancestor.	 Considering	 all	 the	 species	 of	 mammals	 on	 Earth,	 they	 all	 use
haemoglobin	 to	 transport	 oxygen	via	 blood	 and	 they	 all	 have	 globin	 genes	 to	make	 the
protein	 part	 of	 this.	 Thus	 we	 also	 know	 that	 the	 common	 ancestor3	 of	 mammals	 had
haemoglobin	particles	and	globin	genes.	The	origins	of	globin	undoubtedly	go	back	even
further	than	this	to	the	time	when	backboned	animals	were	new	to	our	planet.	The	globin
genes	have	diverged	as	the	various	species	have	split	from	one	another,	with	any	sequence
change	being	carried	on	to	descendants	of	that	line.	Genes	or	proteins	that	are	known	to	be
related	 to	 one	 another	 by	 the	 fact	 that	 they	 share	 a	 common	 ancestor	 are	 said	 to	 be
homologous.	It	is	a	common	mistake	to	mix	up	sequence	similarity	with	homology;	it	may
be	 stated	 that	 you	 can	 ‘measure	 sequence	 homology’,	 when	 strictly	 speaking	 what	 is
meant	is	that	the	sequences	are	sufficiently	similar	that	we	can	infer	homology:	a	common
ancestry.

Considering	again	the	globin	gene,	as	you	may	already	know,	there	are	even	different
kinds	of	globin	gene	within	a	single	genome.	Normal	haemoglobins	are	a	combination	of
alpha	and	beta	versions	of	globin;	two	copies	of	each	protein	make	the	final	particle.	If	we
consider	 globins	 that	 are	 used	 in	 an	 embryo	 and	 fetus	 even	 more	 globin	 versions	 are
present:	 gamma,	 delta,	 epsilon,	 zeta.	 Each	 version	 comes	 from	 a	 different	 gene	 and
because	 they	 are	 so	 similar	 we	 know	 that	 they	 all	 have	 a	 common	 ancestor	 and	 were
generated	by	gene	duplication	within	a	genome.	So	there	are	 two	basic	means	by	which
homologues	are	generated:	when	species	separate	or	when	genes	duplicate.	Accordingly
for	a	pair	of	homologous	genes	or	proteins	we	can	say	whether	 they	are	orthologues	or
paralogues.

Orthologues	are	different	versions	of	 the	same	gene	in	different	species,	generated	by
the	 fact	 that	 there	was	a	 common	ancestor	which	also	had	 the	gene.	For	 closely	 related
species	this	is	usually	a	straightforward	concept,	but	for	more	distantly	related	species	the
definition	 becomes	 fuzzier,	 given	 that	 functions	 can	 diverge	 and	 genes	 can	 be	 copied
within	an	organism.	For	example,	the	human	PAX6	gene	(involved	in	formation	of	the	iris
of	the	eye)	has	two	orthologues	in	fruit	fly,4	named	eyeless	(ey)	and	twin	of	eyeless	(toy).

Paralogues	are	genes	that	are	related	by	the	fact	that	they	arose	from	gene	duplication
within	 a	 genome.	 The	 eyeless	 and	 twin	 of	 eyeless	 genes	 already	 mentioned	 are	 good
examples;	there	was	one	ancestor	gene	and	a	duplication	event	generated	the	homologues.
This	is	not	to	say	that	the	duplication	occurred	in	the	fruit	fly	we	see	today,	but	rather	in
some	ancestor	 that	gave	rise	 to	many	species,	 including	 the	common	laboratory	fruit	 fly
Drosophila.	Looking	at	the	globin	genes	where	we	have	six	close	paralogues	it	is	obvious
that	here	there	must	have	been	multiple	gene	duplication	events.

Figure	14.3.	 The	classification	of	homologous	sequences	as	orthologues	or
paralogues.	DNA	sequences	in	different	contexts	may	be	similar	to	one	another	because
they	share	a	common	ancestor	(they	are	homologous)	and	any	differences	have	arisen	by
evolutionary	divergence.	There	are	two	general	ways	in	which	such	homologues	can	arise:
an	original	sequence	may	follow	two	different	evolutionary	routes	because	different
species	separated	from	one	another,	thus	creating	orthologues,	with	different	versions	of
the	sequence	in	each	genome.	Alternatively,	within	a	single	genome	a	sequence	may	be
duplicated	and	the	different	copies	may	then	take	on	different	roles,	diverging	from	one
another,	creating	paralogues.

When	looking	through	sequences	to	detect	homologues	it	is	often	the	case	that	we	find
only	sections	of	a	gene	or	protein	that	are	similar,	while	the	remainder	of	the	sequence	is
distinctly	 dissimilar.	 The	 reason	 for	 this	 is	 that	 the	 limits	 of	 genes	 are	 not	 static	 in
evolution;	via	sequence	changes	they	can	expand	and	contract	and	be	recombined	in	new
ways,	so	that	only	parts	of	their	common	ancestry	remain.	It	 is	a	common	occurrence	to
have	only	part	of	a	gene	duplicated,	and	in	some	instances	duplication	can	merge	genes	or
parts	of	genes.	The	units	that	are	most	commonly	shuffled	around	in	this	way	correspond
to	 exons,	 i.e.	 the	protein-coding	parts	of	genes	between	 the	 introns.	By	 shuffling	whole
exons	 it	 is	more	 likely	 that	 a	 sensible	 coding	 sequence	will	 be	maintained;	breaking	up
exons	 is	 more	 likely	 to	 result	 in	 codon	 frame-shifts	 and	 nonsense	 protein	 code.	 At	 a
protein	level	it	is	clear	that	the	shuffling	of	exons	gives	rise	to	shuffling,	duplication	and
recombination	 of	 entire	 domains,	 the	 functional	 units	 of	 proteins	 which	 are	 typically
autonomously	 folding	and	globular.	Multi-domain	proteins,	where	each	part	of	 the	gene
has	a	potentially	different	ancestry,	are	very	common	in	many	genomes,	including	human.

Accordingly	if	you	search	for	protein	homologues	you	are	typically	searching	for	domains
that	share	a	common	ancestor,	rather	than	whole	genes.	It	often	does	not	matter	whether
protein	homologues	comprise	whole	coding	regions	or	are	just	part	of	a	larger	gene	as	far
as	the	analysis	of	the	family	is	concerned.	So	long	as	they	do	have	a	common	ancestor	you
can	tell	something	about	conservation,	protein	structure	and	function.

Often	 we	 seek	 to	 link	 sequences	 as	 orthologues	 and	 paralogues.	 This	 helps	 us
understand	the	process	of	evolution	that	has	given	rise	to	the	observed	sequences.	Also,	if
we	 have	 some	 knowledge,	 experimental	 or	 otherwise,	 about	 one	 sequence	 then	we	 can
also	say	something	about	the	related	sequences;	often	they	have	a	similar	function.	We	can
group	them	into	a	family	where	we	can	see	general	trends	more	clearly;	multiple-sequence
alignment	is	improved	and	we	can	identify	conservation	to	identify	features	important	to
function	(e.g.	binding	sites	and	catalytic	sites)	and	protein	structure.	Indeed	the	presence
of	 a	 common	 ancestor	 for	 proteins,	 and	 the	 preservation	 of	 3D	 coordinates	 between
homologues,	 is	 at	 the	 heart	 of	 a	 process	 called	 comparative	 modelling,	 which	 will	 be
discussed	more	in	Chapter	15.	Often	there	is	a	choice	between	studying	DNA	sequence	or
protein	 sequence,	 and	 which	 you	 do	 on	 a	 given	 occasion	 depends	 on	 what	 you	 are
interested	in.	Protein	structure	is	far	more	conserved	than	amino	acid	sequence,	which	is
in	 turn	 more	 conserved	 than	 nucleotide	 sequence,	 so	 for	 detecting	 the	 conservation	 in
remote	 protein	 homologues,	 with	 similar	 3D	 folds,	 you	 would	 use	 protein	 sequences.
However,	 given	 that	 DNA	 changes	 are	 the	 underlying	 mechanism,	 and	 thus	 the	 most
sensitive	measure,	if	precise	changes	are	studied	nucleotide	sequences	are	used.

Phylogenetic	trees
Given	 a	 group	 of	 homologous	 sequences	we	 can	 often	 go	 beyond	 saying	 that	 they	 are
related	and	build	a	phylogenetic	tree	to	say	how	they	are	related	to	one	another.	The	idea
with	such	a	tree	is	to	reconstruct	the	way	that	sequences	have	diverged	during	evolution.
This	 can	 be	 used	 to	 reconstruct	 the	 events	 of	 how	 genes,	 non-coding	 regions	 and	 even
protein	domains	arose.	Given	enough	information	we	can	look	at	a	large	scale	to	say	how
whole	 species	 are	 related,	 and	 if	 we	 look	 at	 the	 fine	 details	 how	 individuals	 within	 a
family	are	related.	Of	course	on	some	occasions	we	already	know	the	inheritance	tree,	by
using	 knowledge	 of	 parentage.	 This	 enables	 us	 to	 follow	 traits	 including	 physical
differences,	biochemical	differences	(e.g.	blood	groups)	and	inherited	disease	symptoms.
However,	 it	 is	only	if	we	study	the	inherited	differences	at	 the	biological	sequence	level
that	 we	 can	 understand	 the	 molecular	 reasons,	 which	 in	 turn	 improves	 medicine	 and
biology.

In	 history,	 evolutionary	 and	 family	 trees	 were	 built	 according	 to	 observable
characteristics.	 If	 two	 species	 shared	 certain	 anatomical	 characteristics	 they	 would	 be
deemed	to	be	more	closely	related.	This	works	well	in	some	cases,	but	not	in	others	(such
as	knowing	where	to	place	the	elephant,	whale	and	duck-billed	platypus	in	the	evolution
of	 mammals).	 The	 reason	 for	 this	 difficulty	 is	 that	 people	 were	 only	 following	 a	 few
subjective	measurements.	DNA	sequencing	allows	us	to	place	evolutionary	lineages	with
much	more	confidence,	because	the	detection	of	sequence	is	a	precise	thing	and	there	are
vastly	 more	 data	 points	 to	 follow:	 potentially	 every	 base	 pair,	 gene	 and	 transposon.
Nevertheless,	we	sometimes	still	have	to	resort	to	anatomical	comparisons	when	DNA	is

unavailable,	as	with	dinosaurs,	but	the	more	bones	the	better.

When	constructing	a	phylogenetic	tree	of	sequences	the	basic	principle	is	to	think	of	the
most	similar	sequences	being	the	most	closely	related,	analogous	to	the	anatomical	means
of	grouping	organisms.	When	looking	at	sequence	evolution	we	often	think	in	terms	of	the
most	frugal	explanation	or	parsimony;	it	is	reasonable	to	assume	that	minimal	changes	are
the	most	likely,	so	we	would	think	that	a	nucleotide	is	less	likely	to	change	from	say	T	to
G	to	C	than	it	 is	 to	go	directly	from	T	to	C.	Accordingly	when	we	build	a	phylogenetic
tree	we	assume	that	the	correct	one	is,	or	is	close	to,	the	one	that	involves	the	minimum
amount	of	overall	 sequence	change.	Absolute	parsimony	 isn’t	 always	a	good	 idea	 in	all
situations:	 with	 distantly	 related	 sequences,	 and	 those	 with	 a	 high	 rate	 of	 change,	 the
chances	 of	 having	 intermediate	 residue	 changes	 is	 significant,	 so	 it	 is	 better	 to	 think	 in
terms	 of	 the	 long-term	 equilibrium	 of	 sequence.	 Also	 some	 things	 may	 be	 similar	 by
chance	 and	 not	 because	 of	 a	 common	 ancestor,	 although	 this	 becomes	 increasingly
unlikely	 overall	 if	 we	 consider	 increasingly	 more	 sequence	 data.	 However,	 there	 may
simply	not	be	enough	data	to	form	a	firm	opinion,	even	if	building	some	sort	of	optimised
tree	is	computationally	possible.

When	 trying	 to	 work	 out	 real	 inheritance	 and	 evolutionary	 relationships	 more
information	 will	 yield	 better	 results.	 Thus	 when	 we	 look	 at	 the	 relationships	 between
species	 it	 is	 best	 to	 consider	 as	 much	 sequence	 and	 as	 many	 sequences	 as	 possible,
although	 given	 the	 choice	 it	 is	 better	 to	 have	 sequences	 that	 sample	 a	 tree	 widely	 and
evenly.	Tree-building	becomes	more	 inaccurate,	with	 regard	 to	 the	underlying	 truth,	 the
longer	 the	 branch,	 so	 it	 is	 best	 to	 have	 lots	 of	 linking	 sequences	 and	 hence	 shorter
branches.	Also,	some	sequences	(genes,	proteins	or	whatever)	may	be	better	than	others	at
uncovering	 the	 relationships,	 particularly	 if	 the	 rate	 of	 sequence	 change	 is	 the	 right
magnitude;	 too	many	 changes	 and	 the	 assumption	 of	 parsimony	 is	weaker,	 but	 too	 few
changes	and	 there	 isn’t	enough	evidence	 to	support	a	hypothesis.	Accordingly,	when	we
study	fast-moving	things,	like	the	mutation	of	viruses,	we	look	at	rapidly	changing	genes,
and	 for	 slow	 things	 like	 speciation	we	 look	 at	 slowly	 changing	 things:	 ribosomal	RNA
genes,	mitochondrial	‘housekeeping’	genes	and	rare	transposon	and	duplication	events.

When	 we	 have	 confidently	 built	 a	 phylogenetic	 tree,	 analyses	 of	 sequence	 variation
gives	us	more	information	than	can	be	obtained	from	alignments.	We	will	be	able	to	spot
which	changes	occurred	first	and	whether	the	same	change	has	occurred	more	than	once.
As	illustrated	in	Figure	14.4,	consider	for	example	four	sequences	A,	B,	C	and	D,	two	of
which,	A	and	B,	have	residue	W	at	a	position	and	two	of	which,	C	and	D,	have	residue	Y
at	 the	 same	position.	 If	we	know	 that	 the	pairs	A	and	B	and	C	and	D	are	more	closely
related	as	a	whole,	 then	we	know	 that	one	 residue	substitution	was	enough	 to	make	 the
observed	 situation;	 the	 ancestor	 of	 the	 sequences	 might	 have	 had	 W	 or	 Y	 but	 one
substitution	 is	 enough	 to	 generate	 the	 A	 and	 B	 (W)	 branch	 or	 C	 and	 D	 (Y)	 branch.
Conversely	if	 the	most	closely	related	pairs	overall	are	A	and	C	and	B	and	D	then	each
pair	contains	a	mix	of	W	and	Y	 residues.	 In	 this	case	 there	must	have	been	at	 least	 two
substitution	events,	one	on	each	branch	from	the	ancestor,	which	could	only	have	one	of
the	two	residues.	Accordingly,	by	considering	the	overall	relationship	between	sequences
we	 can	make	much	better	measurements	 of	 the	 rate	 of	 change	 than	we	 can	 from	 just	 a
multiple	alignment.

Figure	14.4.	 How	phylogenetic	trees	may	be	used	to	count	substitution	events.	A
multiple	alignment	can	be	used	to	find	sequence	differences	and	thus	describe
conservation	(or	variation)	as	the	proportions	of	different	residues	present	at	a	given
position.	However,	if	we	consider	the	evolutionary	divergence	of	the	sequences	from	one
another,	as	illustrated	by	a	phylogenetic	tree,	we	can	get	more	information	about	the
evolutionary	rate	of	change.	The	illustrated	trees	place	the	aligned	sequences	in	two
different	hypothetical	situations.	For	the	first	tree	only	one	W↔Y	amino	acid	substitution
is	required	to	generate	the	observed	sequences,	whereas	for	the	second	two	substitutions
are	required.	Naturally,	the	substitutions	shown	are	the	simplest	scenarios,	but	overall	the
most	frugal	changes	will	be	the	most	likely.

Similarity	measures
The	first	Python	examples	in	this	chapter	involve	measuring	values	for	the	similarity	and
hence	conservation	of	sequences	 in	a	multiple	alignment.	This	 is	achieved	by	looking	at
the	various	positions	of	the	alignment	and	how	similar	the	residues	are	down	each	column.
This	 is	 not	 necessarily	 the	 best	 way	 to	 measure	 conservation	 (and	 consequently	 the
opposite	measure	of	variability),	because	 the	choice	of	 sequences	 can	be	 subjective	and
treating	 all	 sequences	 equally	 does	 not	 account	 for	 the	 expectation	 in	 the	 amount	 of
change;	the	more	distantly	related	sequences	are	as	a	whole	the	more	change	is	expected.
Nevertheless	 if	we	 choose	 sequences	 carefully	 and	 know	 that	 the	 evolutionary	 distance
between	them	is	appropriate	for	the	question	we	wish	to	ask	then	this	type	of	analysis	is
pertinent,	and	quicker	to	perform	than	many	more	complex	methods.

Measuring	conservation
As	 the	 first	 example	 we	 define	 the	 getConservation	 function,	 which	 expects	 input
arguments	consisting	of	an	alignment	and	a	substitution	matrix,	so	that	we	can	score	the
similarity	between	sequence	elements.	Note	how	initially,	after	defining	a	conservation	list
which	we	will	 fill	and	pass	back	at	 the	end,	we	use	 the	profile()	 function	defined	 in	 the
previous	chapter	 to	convert	 the	alignment	 into	a	profile:	a	 list	of	dictionaries	containing
the	composition	of	each	position.	In	order	to	use	the	profile-generating	function	we	must

either	 have	 defined	 it	 in	 the	 same	 Python	 file	 or	 use	 an	 import	 command	 like	 the	 one
below	 to	 access	 it	 from	 another	 location.	 The	module	 import	we	 illustrate	 is	what	 you
would	 need	 if	 importing	 from	MultipleAlign.py	 which	 has	 been	 placed	 on	 the	 current
Python	 import	 path	 (e.g.	 current	working	directory).	This	 file	 is	 downloadable	 from	 the
on-line	 archive	 which	 accompanies	 this	 book	 (see
http://www.cambridge.org/pythonforbiology).

from	MultipleAlign	import	profile

def	getConservation(align,	simMatrix):

		conservation	=	[]

		prof	=	profile(align)

So	armed	with	a	compositional	profile	generated	from	the	input	alignment	we	next	have
to	 convert	 the	 compositional	 data	 for	 each	 alignment	 position	 into	 a	 single	 value
representing	 the	 degree	 of	 residue	 conservation,	 according	 to	 some	 input	 matrix	 of
similarity	 scores.	Thus	we	 loop	 through	all	of	 the	dictionaries	of	 the	profile.	Within	 the
loop,	 for	 each	 composition	 dictionary	we	 call	 the	 .items()	 function,	which	 is	 an	 inbuilt
function	or	method	 of	 standard	Python	 dictionaries.	 In	 Python	 2	 this	 generates	 a	 list	 of
(key,	value)	pairs	which	serves	two	purposes:	firstly	we	will	need	both	the	residue	letter
(key)	 and	 composition	 (value)	when	we	 look	 through	 all	 the	 residue	 combinations,	 and
secondly	having	a	list	allows	us	to	sort	the	data.	In	Python	3,	the	.items()	function	returns
a	view	onto	the	items	and	a	list()	function	is	applied	to	this	to	get	an	actual	list.

for	compDict	in	prof:

		items	=	list(compDict.items())		#	list()	not	needed	in	Python	2

We	sort	 the	items	list	according	to	the	composition	value,	the	second	element	of	each
pair,	 so	 that	we	get	a	 ranking	 from	which	we	can	 find	 the	highest-scoring	 residue	code.
Note	that	if	we	sorted	according	to	the	first	element	of	the	pairs	we	would	get	the	list	in
alphabetical	 order,	 not	 the	 required	 scoring	 order.	 The	 sort	 is	 performed	 using	 the
specified	key	function,	which	takes	as	its	one	argument	an	element	of	the	list,	and	returns
the	desired	comparison	value	determined	by	that	element.	Here	that	is	the	second	element,
x[1],	which	is	used	for	the	comparison.	See	Chapter	5	for	a	more	detailed	description	of
lambda.	If	we	don’t	pass	a	key	function	then	the	list	would	be	sorted	according	to	x	itself,
which	means	the	first	element,	x[0].

items.sort(key=lambda	x:	x[1])

Next	 we	 define	 an	 initial	 score	 of	 zero	 and	 then	make	 two	 loops	 through	 the	 items
containing	 residue	 codes	 and	 composition	 values,	 so	 that	 we	 generate	 all	 possible
combinations	 of	 two	 residue	 types.	 The	 score	 for	 each	 combination	 is	 simply	 the
multiplication	of	the	compositional	fractions	and	the	similarity	score	from	the	substitution
matrix.	You	can	imagine	the	two	composition	values	defining	lengths	on	the	side	of	a	unit
square,	and	thus	their	product	represents	an	area	of	the	whole.

score	=	0.0

http://www.cambridge.org/pythonforbiology

for	resA,	compA	in	items:

		for	resB,	compB	in	items:

				score	+=	compA	*	compB	*	simMatrix[resA][resB]

With	 the	 score	 total	 for	 this	 position	 defined	we	 now	 scale	 its	 value	 so	 that	we	 can
easily	compare	different	positions.	Accordingly,	we	find	the	maximum	possible	value	for
the	score	at	 this	position	and	divide	by	 that,	 so	 that	all	 scores	will	be	between	zero	and
one.	We	define	 the	best	possible	 score	as	being	 the	diagonal	element	of	 the	substitution
matrix	for	the	residue	with	the	highest	composition	at	 this	 location.	Accordingly,	we	get
the	best	residue	code	from	the	end	of	our	sorted	list	of	items	(index	-1	to	get	the	highest
value)	and	use	it	as	both	of	the	keys	in	the	matrix	dictionary	look-up.

bestLetter	=	items[-1][0]

maxScore	=	simMatrix[bestLetter][bestLetter]

The	score	is	scaled	by	dividing	it	by	the	maximum	value	and	added	to	the	conservation
list,	which	once	filled	is	then	passed	back	at	the	very	end,	outside	the	profile	loop.

score	/=	maxScore

conservation.append(score)

return	conservation

We	can	test	 the	function	by	defining	some	alignments	and	calling	 the	function	with	a
substitution	matrix	appropriate	to	DNA	or	protein.	Note	that	we	can	import	the	previously
defined	matrices,	which	are	part	of	the	file	Alignments.py.

from	Alignments	import	DNA_1,	BLOSUM62

align1	=	['AAGCCGCACACAGACCCTGAG',

										'AAGCTGCACGCAGACCCTGAG',

										'AGGCTGCACGCAGACCCTGAG',

										'AAGCTGCACGTGGACCCTGAG',

										'AGGCTGCACGTGGACCCTGAG',

										'AGGCTGCACGTGGACCCTGAG',

										'AAGCTGCATGTGGACCCTGAG']

print(getConservation(align1,	DNA_1))

#	[1.0,	0.51,	1.0,	1.0,	0.76,	1.0,	…]

align2	=	['QPVHPFSRPAPVVIILIILCVMAGVIGTILLISYGIRLLIK-------------',

										'QLVHRFTVPAPVVIILIILCVMAGIIGTILLISYTIRRLIK-------------',

										'QLAHHFSEPE---ITLIIFGVMAGVIGTILLISYGIRRLIKKSPSDVKPLPSPD',

										'QLVHEFSELV---IALIIFGVMAGVIGTILFISYGSRRLIKKSESDVQPLPPPD',

										'MLEHEFSAPV---AILIILGVMAGIIGIILLISYSIGQIIKKRSVDIQPPEDED',

										'PIQHDFPALV---MILIILGVMAGIIGTILLISYCISRMTKKSSVDIQSPEGGD',

										'QLVHIFSEPV---IIGIIYAVMLGIIITILSIAFCIGQLTKKSSLPAQVASPED',

										'-LAHDFSQPV---ITVIILGVMAGIIGIILLLAYVSRRLRKRP-----PADVP-',

										'SYHQDFSHAE---ITGIIFAVMAGLLLIIFLIAYLIRRMIKKPLPVPKPQDSPD']

print(getConservation(align2,	BLOSUM62))

#	[0.3,	0.38,	0.09,	0.8,	0.08,	1.0,	0.64,	0.1,	0.32,	0.27,	…]

Conservation	display
In	 the	next	example	we	will	use	 the	conservation	values	 to	make	a	very	simple	display,
consisting	of	symbols	that	can	be	placed	under	the	alignment	to	indicate	which	positions
are	conserved	and	which	vary.	Such	a	display,	often	involving	‘*’,	‘:’	and	‘.’	characters	to
represent	perfect,	high	and	moderate	conservation	respectively,	is	very	commonly	seen	in
the	output	of	programs	that	generate	multiple	alignments.	A	more	sophisticated	graphical
display	 might	 involve	 rendering	 text	 with	 different	 colours.	 We	 will	 not	 give	 such	 an
example	here,	but	the	same	conservation	values	could	be	used.

The	 function	 is	 defined	 as	 accepting	 an	 alignment,	 a	 similarity	 matrix	 and	 a	 list	 of
threshold	 values	 as	 input	 arguments.	 The	 list	 of	 thresholds	 will	 define	 the	 values	 that
separate	 the	 conservation	 into	 different	 categories,	 and	 hence	 dictate	 which	 symbol	 is
used.	After	 the	 initial	 function	definition	we	define	an	empty	string	which	will	be	 filled
with	 symbols	 to	 indicate	 the	 similarity	 at	 each	 position.	We	 use	 the	 previously	 defined
getConservation()	 function	 to	 extract	 the	 conservation	 values	 from	 the	 input	 alignment,
and	we	extract	the	list	of	thresholds	as	three	singular	values.

def	makeSimilarityString(align,	simMatrix,	thresholds):

		simString	=	''

		conservation	=	getConservation(align,	simMatrix)

		t1,	t2,	t3	=	thresholds

		for	score	in	conservation:

				if	score	>=	t1:

						symbol	=	'*'

				elif	score	>=	t2:

						symbol	=	':'

				elif	score	>=	t3:

						symbol	=	'.'

				else:

						symbol	=	'	'

				simString	+=	symbol

		return	simString

The	 remainder	 of	 the	 function	 simply	 involves	 looping	 through	 each	 score	 and
comparing	 it	with	 the	 threshold	values,	which	are	assumed	 to	be	 in	descending	order.	 If
the	score	is	at	or	above	the	first	threshold,	the	symbol	is	defined	as	‘*’.	Otherwise	if	it’s	at
or	above	the	second	it	is	a	‘:’,	and	at	or	above	the	third	value	a	‘.’.	Finally,	if	the	score	was
below	 the	 smallest	 threshold	 the	 symbol	 is	 set	 to	 a	 space,	 representing	 little	 or	 no
conservation.	 At	 the	 end	 of	 each	 loop	 the	 symbol	 is	 added	 to	 the	 growing	 text	 string,
which	is	then	passed	back	at	the	return	statement.

We	 test	 this	 function	 by	 printing	 out	 the	 sequences	 in	 the	 alignment	with	 the	 line	 of
newly	generated	conservation	symbols	underneath.

symbols	=	makeSimilarityString(align2,	BLOSUM62,	(1.0,	0.5,	0.3))

for	seq	in	align2:

		print(seq)

print(symbols)

And	the	result	in	this	case	is:

QPVHPFSRPAPVVIILIILCVMAGVIGTILLISYGIRLLIK-------------

QLVHRFTVPAPVVIILIILCVMAGIIGTILLISYTIRRLIK-------------

QLAHHFSEPE---ITLIIFGVMAGVIGTILLISYGIRRLIKKSPSDVKPLPSPD

QLVHEFSELV---IALIIFGVMAGVIGTILFISYGSRRLIKKSESDVQPLPPPD

MLEHEFSAPV---AILIILGVMAGIIGIILLISYSIGQIIKKRSVDIQPPEDED

PIQHDFPALV---MILIILGVMAGIIGTILLISYCISRMTKKSSVDIQSPEGGD

QLVHIFSEPV---IIGIIYAVMLGIIITILSIAFCIGQLTKKSSLPAQVASPED

-LAHDFSQPV---ITVIILGVMAGIIGIILLLAYVSRRLRKRP-----PADVP-

SYHQDFSHAE---ITGIIFAVMAGLLLIIFLIAYLIRRMIKKPLPVPKPQDSPD

..	:	*:	.				:.	**:	**:*::..*:::::	...:.*:											.

In	 the	above	examples	we	have	been	 thinking	of	conservation	as	being	an	amount	of
something.	 However,	 we	 can	 also	 say	 in	 what	 way	 the	 residues	 are	 being	 conserved,
especially	 for	 amino	 acids	 that	 have	 chemical	 characteristics	 which	 may	 be	 preserved,
even	 if	 the	exact	 residue	 types	are	not.	An	example	would	be	a	position	where	we	have
histidine,	lysine	and	arginine	residues	(‘H’,	‘K’	and	‘R’),	where	although	the	amino	acid
type	does	change,	the	position	is	one	that	can	be	categorised	as	having	a	positive	electric
charge,	a	property	of	all	three	types.

Here	we	 illustrate	 a	Python	 list	 that	 defines	 some	 amino	 acid	 categories,	 based	upon
their	properties.	Each	category	is	represented	by	a	pair	of	items	in	a	tuple.	The	first	item	is
the	name	of	the	category	and	the	second	is	a	string	containing	all	of	the	residue	codes	for
that	 category.	 Note	 that	 we	 have	 simple	 one-letter	 categories	 for	 the	 individual	 amino
acids,	so	that	if	an	alignment	only	has	one	residue	type	in	a	given	position	the	pure	amino
acid	is	stated,	rather	than	giving	a	larger,	less	precise	category.

AA_CATEGORIES	=	[('G','G'),	('A','A'),	('I','I'),	('V','V'),

																	('L','L'),	('M','M'),	('F','F'),	('Y','Y'),

																	('W','W'),	('H','H'),	('C','C'),	('P','P'),

																	('K','K'),	('R','R'),	('D','D'),	('E','E'),

																	('Q','Q'),	('N','N'),	('S','S'),	('T','T'),

																	('-','-'),

																	('acidic',				'DE'),

																	('hydroxyl',		'ST'),

																	('aliphatic',	'VIL'),

																	('basic',					'KHR'),

																	('tiny',						'GAS'),

																	('aromatic',			'FYWH'),

																	('charged',				'KHRDE'),

																	('small',						'AGSVTDNPC'),

																	('polar',						'KHRDEQNSTC'),

																	('hydrophobic','IVLFYWHAGMC'),

																	('turnlike',			'GASHKRDEQNSTC'),

																	('undef',						'AGVILMFYWHCPKRDEQNST-')]

The	function	example	that	employs	amino	acid	categorisation	naturally	takes	this	list	as
an	argument,	as	well	as	an	alignment	to	work	on.	Inside	the	function	a	list	is	defined	that

will	be	 filled	with	 the	 residue	categories,	one	 for	each	position,	 then	 the	next	command
makes	a	profile	from	the	alignment	using	the	previously	discussed	profile()	function.

from	MultipleAlign	import	profile

def	getAlignProperties(align,	categories):

		properties	=	[]

		prof	=	profile(align)

The	 bulk	 of	 the	 function	 involves	 looping	 through	 the	 dictionaries	 containing
composition	fractions,	defined	for	 the	positions	of	profile,	and	getting	 the	 list	of	 residue
letters.	Here	the	actual	composition	values	are	not	used,	but	the	dictionary	keys	give	us	the
list	of	residue	types	found	at	that	location.

for	fracDict	in	prof:

		letters	=	fracDict.keys()

Given	the	residue	letters	the	task	is	now	to	go	through	each	category,	which	is	listed	in
order	of	size	 from	smallest	 to	 largest,	 to	 find	 the	first,	and	hence	smallest,	category	 that
contains	all	of	the	residue	letters	for	this	position.	Accordingly	for	each	category	in	turn
we	make	a	loop	through	each	letter	and	determine	if	it	is	within	the	string	of	letters	for	that
category	 (group).	 If	 the	 letter	 is	 not	 in	 the	 category,	 then	 the	 current	 category	 cannot
possibly	be	right,	so	we	use	the	break	keyword	to	quit	the	current	loop	through	the	letters
immediately,	thus	going	on	to	test	the	next	category.	If	there	is	no	residue	letter	that	causes
the	break	to	be	triggered,	i.e.	all	letters	were	present	for	the	group,	then	the	program	flow
will	reach	the	else:	statement,	whereupon	the	name	of	the	current	category	is	added	to	the
list	to	represent	the	current	alignment	position.	With	that	done	we	don’t	need	to	test	any
more	categories	for	this	position	so	a	different	break	is	 issued,	 this	 time	to	quit	 the	 loop
through	categories,	thus	going	on	to	the	next	position.	At	the	very	end	of	the	function	the
list	of	properties	is	returned	as	you	would	expect.

for	name,	group	in	categories:

		for	letter	in	letters:

				if	letter	not	in	group:

						break																					#	quit	inner	loop

		else:																									#	all	letters	are	in	group

				properties.append(name)

				break																							#	quit	outer	loop

return	properties

The	function	is	tested	with	an	alignment	and	the	categories	list	for	the	amino	acids.	In
this	 instance	we	print	 the	results	by	 looping	 through	the	category	names	and	 their	 index
numbers	simultaneously,	courtesy	of	Python’s	enumerate()	function

catNames	=	getAlignProperties(align2,	AA_CATEGORIES)

for	i,	category	in	enumerate(catNames):

		print(i,	category)

Calculating	substitution	matrices
Next	we	will	move	on	from	conservation	to	a	means	of	measuring	the	variations,	or	more
specifically	 the	 kinds	 of	 residue	 substitution,	 present	 in	 a	multiple-sequence	 alignment.
We	 will	 use	 the	 analysis	 of	 substitutions	 to	 illustrate	 how	 an	 empirically	 derived
substitution	matrix,	like	the	BLOSUM	variant	we	have	been	using,	can	be	measured.	Of
course	it	may	seem	that	there	is	a	somewhat	circular	argument	in	what	we	will	be	doing;
an	initial	substitution	matrix	is	needed	to	make	the	alignments	from	which	we	calculate	a
new	substitution	matrix.	Clearly	the	composition	of	the	new	matrix	will	be	influenced	by
the	 choice	 of	 the	 first.	 However,	 this	 is	 not	 all	 folly.	 Firstly,	 there	 are	 many	 ways	 of
making	and	improving	alignments	which	don’t	rely	on	a	substitution	rule.	For	proteins	this
would	typically	involve	using	alignments	of	three-dimensional	structures.	If	homologous
proteins	of	known	structure	can	be	aligned	spatially	then	we	have	an	alternative	means	to
detect	equivalent	residue	pairs.	Secondly,	even	if	we	use	one	matrix	to	generate	the	input
alignments	the	choice	of	sequences	in	the	alignment	has	a	vast	influence	on	the	outcome.
So,	for	example,	we	might	use	a	general	matrix	 to	perform	alignments	of	a	very	narrow
class	of	sequences,	but	the	measured	substitutions	will	reflect	the	choice	of	input.	In	this
way	 a	 substitution	 matrix	 becomes	 more	 specialised,	 and	 thus	 better	 able	 to	 detect
substitutions	of	the	specialist	class.

The	function	to	calculate	substitution	naturally	accepts	a	list	of	alignments	to	analyse,
and	various	other	arguments,	but	it	is	notable	that	these	include	a	number	that	is	used	to
smooth	 the	 data.	 The	 idea	 of	 data	 smoothing	might	 seem	 dubious	 at	 first	 but	 it	 has	 an
important	 function	 here.	What	 the	 function	will	 do	 in	 the	 end	 is	 compare	 the	 observed
number	of	substitutions,	given	 the	alignments,	and	 the	expected	number	of	substitutions
for	each	possible	pair	of	 residue	 types.	 If	 the	number	of	observations	 is	very	small	 then
such	a	 comparison	 is	much	 less	meaningful.	The	addition	or	 removal	of	 an	observation
might	cause	a	large	proportional	change,	but	this	isn’t	significant.	Consider	a	substitution
type	where	the	number	of	observations	is	4,	but	the	expected	value	is	2.	The	observation	is
double	what	you	expect,	but	it	is	likely	that	an	extra	couple	of	observations	arose	by	pure
chance.	 If	 the	 number	 of	 observations	were	 40	 and	 the	 expected	 20,	 then	 this	 is	much
more	meaningful.	 Accordingly,	 the	 smoothing	 procedure	 used	 to	 deal	 with	 this	 is	 only
significant	 when	 the	 number	 of	 observations	 is	 small	 (i.e.	 about	 the	 same	 size	 as	 the
smoothing	value),	and	all	it	does	is	make	the	data	move	towards	the	expectation,	such	that
a	particular	point	 is	not	unduly	significant.	Small	numbers	of	observations	are	of	course
much	less	problematic	if	the	total	amount	of	alignment	data	that	you	can	analyse	is	large,
but	you	don’t	always	have	the	luxury	of	this.

We	will	compare	observed	and	expected	substitutions	by	calculating	the	logarithm	of	a
probability	 ratio:	 a	 log-odds	 score.	 Hence,	 we	 import	 the	 log	 function	 from	 Python’s
standard	mathematical	 library.	 Logarithms	 are	 convenient	 for	 substitution	 tables	 so	 that
addition	can	be	used	to	get	an	overall	score	for	alignments	etc.	If	raw	probabilities	were
used	then	we	would	need	to	multiply	values	instead,	which	would	often	result	in	floating
point	numbers	 that	are	far	 too	small	for	a	computer	 to	quickly	and	accurately	deal	with.
The	 function	 name	 is	 then	 defined	with	 its	 arguments	 and	 two	 variables	 are	 initialised:
empty	dictionaries	that	will	hold	the	statistical	data.	The	alphabet	argument	is	a	list	of	all

possible	 residue	 letters,	 whether	 or	 not	 they	 are	 observed	 in	 the	 alignments,	 and	 the
maxVal	argument	is	used	to	scale	the	substitution	matrix	at	the	end.

from	math	import	log

def	calcSubstitutionMatrix(alignments,	alphabet,	maxVal,	smooth=5):

		matrix	=	{}

		counts	=	{}

The	blank	dictionary	that	will	contain	the	substitution	matrix	is	filled	with	smaller	sub-
dictionaries,	which	in	turn	are	filled	with	zero	values.	The	residue	letters	are	the	keys	in
both	dictionaries	 so	 two	 letters	 are	 required	 to	extract	 each	value:	 the	 substitutability	of
one	residue	for	another.	The	dictionary	containing	the	residue	counts	is	also	filled,	with	an
initial	value	of	zero	for	each	letter.

for	letterA	in	alphabet:

		subDict	=	{}

		for	letterB	in	alphabet:

				subDict[letterB]	=	0

		matrix[letterA]	=	subDict

		counts[letterA]	=	0

Initially	the	function	will	measure	the	observed	number	of	residues	of	each	kind	and	the
number	of	 substitutions	of	one	 residue	 type	 to	another.	However,	 in	 the	end	we	need	 to
calculate	 simple	 probabilities	 as	 the	 fraction	 of	 total	 possible	 events	 we	 observe.
Accordingly,	variables	for	two	totals	are	initialised	to	zero,	one	for	the	total	number	of	pair
substitutions	and	one	for	the	total	number	of	residue	letters	across	all	sequences.	Note	that
these	numbers	have	 floating	point	 representation	 (0.0	not	0)	 because	we	will	 eventually
use	them	for	division	and	wish	to	avoid	integer	rounding	in	Python	2.

totalRes	=	0.0

totalSub	=	0.0

The	main	part	of	the	function	involves	looping	through	the	input	alignments	to	collect
the	substitution	data.	It	would	have	been	possible	 to	call	upon	the	profile()	function	that
we	have	used	previously,	but	on	this	occasion	we	would	have	had	to	loop	through	all	of
the	sequences	and	positions	in	any	case,	to	calculate	the	totals	and	residue	counts.	Thus	in
this	 instance	it	 is	simpler	 to	do	everything	within	 the	same	set	of	 loops.	After	 the	 initial
loop	we	record	the	number	of	positions	in	the	particular	alignment,	and	then	loop	through
these	 positions,	 initialising	 a	 list	 which	 will	 collect	 the	 residue	 letters	 observed	 at	 this
position,	 eventually	 doing	 yet	 another	 loop	 though	 the	 residue	 letters,	 seq[i],	 available
from	 all	 the	 sequences	 at	 this	 location	 (i).	 If	 the	 letter	 represents	 a	 gap	 it	 is	 skipped,
otherwise	it	is	added	to	the	letters	list.

for	align	in	alignments:

		numPos	=	len(align[0])

		for	i	in	range(numPos):

				letters	=	[]

				for	seq	in	align:

						letter	=	seq[i]

						if	letter	==	'-':

								continue

						letters.append(letter)

With	the	letters	collected	we	go	through	the	list	in	two	loops	to	get	all	of	the	possible
residue	 pairs.	 The	 count	 for	 each	 letter	 is	 increased	 inside	 the	 first	 loop	 and	 inside	 the
second	loop	we	add	each	pair	observation	to	our	matrix.	The	matrix	is	thus	filled	with	the
observed	 substitutions,	 although	 since	 the	 letter	 does	 not	 change	 we	 really	 mean
preservation.	 The	 overall	 residue	 count	 is	 increased	 by	 numLetters,	 the	 length	 of	 the
letters	list	(so	not	including	gaps),	and	the	substitution	total	is	increased	by	the	square	of
numLetters,	because	we	compare	all	against	all	to	fill	the	matrix.

for	letterA	in	letters:

		counts[letterA]	+=	1

		for	letterB	in	letters:

				matrix[letterA][letterB]	+=	1

numLetters	=	len(letters)

totalRes	+=	numLetters

totalSub	+=	numLetters	*	numLetters

Once	the	residue	and	substation	counts	have	been	collected	the	next	task	is	to	calculate
the	 various	 probabilities	 and	 the	 log-odds	 scores	 for	 the	 final	 matrix.	 To	 calculate	 the
expected	 substitution	 probability	 we	 first	 calculate	 the	 average	 composition	 of	 each
residue	 type	by	 considering	 the	number	of	 counts	over	 all	 alignments,	 residue	positions
and	sequences.

averageComp	=	{}

for	letter	in	alphabet:

		averageComp[letter]	=	counts[letter]/totalRes

A	variable	 for	 the	maximum	score	 is	 initialised	and	 then	we	 loop	 through	all	 residue
pairs,	given	the	possibilities	defined	in	our	alphabet	of	residue	letters:

maxScore	=	None

for	resA	in	alphabet:

		for	resB	in	alphabet:

For	 each	 pair	 of	 residue	 types	 we	 calculate	 the	 expected	 substitution	 probability	 by
multiplying	 the	average	compositions	of	each	 type.	This	 is	equivalent	 to	 saying	 that	 the
expectation	for	a	given	pair,	in	the	absence	of	any	other	information,	depends	only	upon
the	 probability	 of	 observing	 each	 residue	 type	 independently.	 With	 the	 expectation
calculated	we	do	a	check	to	make	sure	that	it	is	not	a	zero	value	(False	in	the	if	statement);
if	it	 is	zero	then	one	of	the	residue	types	is	not	observed	at	all	in	the	data,	thus	we	have
nothing	to	do	and	so	skip	the	loop.

expected	=	averageComp[resA]	*	averageComp[resB]

if	not	expected:

		continue

The	observed	substitution	count	is	simply	the	pair	count	of	this	combination,	as	stored
in	matrix.	This	is	then	used	to	calculate	a	weighting	value	that	is	used	to	smooth	the	data
in	the	event	of	the	number	of	observations	being	low.	Note	that	if	observed	is	much	larger
than	the	smooth	value	the	weight	is	close	to	zero,	if	they	are	equal	the	weight	is	one	half,
and	if	observed	is	comparatively	small	the	weight	is	about	one.

observed	=	matrix[resA][resB]

weight	=	1.0	/	(1.0+(observed/smooth))

The	 observed	 substitution	 counts	 for	 the	 pair	 are	 converted	 into	 a	 probability	 by
dividing	 by	 the	 total	 number	 of	 substitution	 pairs.	 Then	 the	 smoothing	 is	 applied	 by
redefining	the	observed	probability	as	a	combination	of	the	original	observed	probability
and	 the	 expected	 probability.	With	 a	 low	 weight	 (lots	 of	 observations)	 the	 observation
probability	is	barely	altered,	but	with	a	large	weight	(few	observations)	the	probability	is
closer	to	the	expectation.

observed	/=	totalSub

observed	=	weight*expected	+	(1-weight)*observed

Lastly	in	the	loops	the	log-odds	score	is	calculated	as	the	logarithm	of	the	probability
ratio;	we	check	whether	this	score	is	the	new	maximum	score	value	and	then	put	the	score
into	the	matrix	for	the	current	residue	letters.

logOdds	=	log(observed/expected)

if	(maxScore	is	None)	or	(logOdds>maxScore):

		maxScore	=	logOdds

matrix[resA][resB]	=	logOdds

Once	 the	 loops	 are	 done	 it	 simply	 remains	 to	 scale	 the	 log-odds	 values	 in	 the
substitution	 matrix	 and	 convert	 to	 integers.	 The	 integer	 conversion	 is	 somewhat
traditional,	but	does	mean	that	calculations	with	the	substitution	matrix	are	quicker.	Note
how	 the	maximum	 score	 is	 converted	 to	 a	 positive	 value	 using	 abs()because	 the	 score
logarithm	could	be	negative.	The	maximum	score	is	used	to	divide	the	matrix	values	to	get
a	relative	figure.	However,	we	also	multiply	the	log-odds	score	by	the	maxVal	argument
passed	in	at	 the	start,	which	means	we	generate	a	range	of	 integer	values	up	this	figure.
Without	maxVal	using	int()	here	would	be	pointless;	we	would	only	get	zero	or	one.

maxScore	=	abs(maxScore)

for	resA	in	alphabet:

		for	resB	in	alphabet:

				matrix[resA][resB]	=	int(maxVal*matrix[resA][resB]/maxScore)

return	matrix

The	function	 is	 tested	with	a	 list	of	alignments,	a	 list	of	 residue	 letters	and	a	scaling,
maximum	value	for	the	matrix.	Note	how	we	can	cheekily	get	the	residue	letters	from	the
keys	of	an	existing	substitution	matrix.

aminoAcids	=	BLOSUM62.keys()

print(calcSubstitutionMatrix([align2,],	aminoAcids,	10))

Phylogenetic	trees
Moving	on	from	the	more	basic	ways	of	considering	substitutions	and	alignments,	the	next
examples	 relate	 to	 the	 generation	 of	 phylogenetic	 trees.	 These	 are	 branching	 structures
which	 in	general	aim,	however	falteringly,	 to	represent	 the	order	 in	which	different	 taxa
(the	sequences,	species,	strains	etc.	being	compared)	diverged	from	one	another	during	the
process	of	evolution.	The	aim	is	to	give	the	order	of	the	divergence	and	the	evolutionary
distance	 between	 the	 branch	 points	 and	 observed	 sequence	 data.	 Naturally,	 the	 more
information	 is	 available	 the	 better	 the	 chances	 are	 of	 a	 computer-generated	 tree	 having
accurate	 evolutionary	 distances	 and	 the	 real,	 historical	 divergence	 order.	 However,	 it
should	be	noted	 that	you	can	always	generate	 a	 tree,	however	bad	or	uninformative	 the
data,	so	caution	is	always	advised	in	estimating	the	true,	underlying	relationship.

Phylogenetic	trees	using	neighbour-joining
Tree-building	can	be	a	very	difficult	task.	This	is	basically	because	the	number	of	branch
combinations	 increases	 very	 rapidly	 with	 the	 number	 of	 input	 taxa.	 The	 number	 of
combinations	 can	 be	 so	 vast	 that	 we	 cannot	 routinely	 test	 all	 combinations	 to	 give	 the
optimum	 tree	 arrangement.	Hence	what	 is	 often	done,	 and	which	we	will	 do	here,	 is	 to
generate	 a	 quite	 good,	 but	 not	 optimal,	 tree	 using	 a	 computationally	 fast	 method.	 The
method	used	here	is	the	one	introduced	by	Saitou	and	Nei;	the	neighbour-joining	method.5
This	is	a	quick	way	of	generating	a	tree	that	is	usually	not	so	far	from	a	global	optimum
and	which	 is	 also	 relatively	 easy	 to	 understand	mechanistically.	The	generated	 tree	will
not	necessarily	be	at	the	global	optimum	because	the	algorithm	is	‘greedy’	in	that	it	only
optimises	the	local	solution	for	pairing	up	sequences,	 i.e.	 it	never	considers	the	tree	as	a
whole.	 Nonetheless	 it	 is	 still	 a	 speedy	 and	 useful	 example	 to	 be	 used	 in	 subsequent
analyses,	 and	 it	 can	 also	 provide	 a	 starting	 point	 for	 more	 globally	 aware	 optimising
methods,	if	more	accuracy	is	required.	As	with	most	of	the	examples	in	this	book,	the	aim
of	the	tree-generating	example	is	not	to	give	a	high-performance,	gold-standard	program,
but	 rather	 to	 lead	 you	 through	 a	 relatively	 simple	 piece	 of	 code	 that	 can	 be	 readily
understood	and	which	illustrates	the	major	points	of	the	topic.

The	 neighbour-joining	 algorithm	 involves	 repeatedly	 finding	 the	 closest	 pair	 from
amongst	the	input	sequences	(and	sub-trees	after	the	first	cycle)	and	joining	these	to	form
a	new	larger	sub-tree	until	all	sequences	have	been	considered	and	only	one,	fully	joined
tree	 remains.	 Thus	 the	 first	 step	 for	 the	 tree-building	 example	 is	 to	 calculate	 what	 is
termed	a	distance	matrix,	where	the	rows	and	columns	of	the	matrix	represent	the	different
input	sequences	and	the	matrix	elements	represent	the	evolutionary	distance	between	those
sequences.	 Here	 we	 will	 only	 compare	 isolated	 input	 sequences;	 however,	 the	 method
could	be	adapted	to	consider	multiple	sequences	for	each	taxon	(e.g.	each	input	is	a	group

of	 sequences	 representing	 a	 different	 species)	 so	 that	 the	 evolutionary	 distance	 between
organisms	is	better	represented	as	a	whole.	The	tree	that	will	result	in	the	end	is	what	is
called	an	unrooted	tree.	This	means	 that	 the	 tree	has	no	 indication	of	which	 taxon	came
first,	evolutionarily	speaking,	and	hence	where	the	common	(but	unseen)	ancestor	fits	in.
By	making	 an	 unrooted	 tree	we	 are	 only	 showing	 the	 branch	 relationships	 between	 the
input	taxa.	We	recommend	further	reading	if	you	wish	to	build	rooted	trees:	those	with	an
ancestor	start	point.

The	 evolutionary	 distance	 that	 separates	 two	 sequences	 in	 this	 instance	 will	 be
estimated	using	the	scores	that	are	generated	by	performing	pairwise	sequence	alignment.
Thus	 the	 values	 will	 depend	 on	 the	 similarity	 of	 paired	 residues	 as	 defined	 by	 a
substitution	 matrix.	 With	 DNA	 sequences	 it	 is	 common	 to	 use	 a	 more	 complex
evolutionary	 model,	 to	 say	 how	 each	 change	 relates	 to	 distance;	 there	 are	 many	 more
sophisticated	ways	of	calculating	the	distance	between	sequences,	not	all	of	which	can	be
used	with	 the	 relatively	 simple	neighbour-joining	method	used	here.	However,	by	using
the	substitution	matrices	we	will	keep	things	very	simple	for	illustrative	purposes	and	be
able	 to	use	existing	Python	functions.	For	further	reading	on	distance	matrix	generation,
and	tree	generation	in	general,	the	PHYLIP6	software	package	is	a	good	starting	point.

Figure	14.5.	 The	basic	construction	of	a	phylogenetic	tree	using	neighbour-joining.
Although	many	more	rigorous	methods	exist,	phylogenetic	trees	can	be	constructed	from
sequences	using	the	relatively	simple	neighbour-joining	method.	This	involves	creating
pairwise	alignments	between	all	sequences	to	determine	their	similarity,	and	thus	also
rough	evolutionary	distance	from	one	another.	The	resulting	distance	matrix	is	then	used
to	construct	the	tree.	This	is	done	in	a	cycle	where	the	most	similar	pair	each	time	is
combined	to	make	a	branch	point	and	reduce	the	size	of	the	matrix,	until	all	sequences	are
joined.

Before	 we	 get	 to	 the	 main	 tree-generating	 Python	 function	 we	 will	 construct	 some
ancillary	functions	that	will	be	used	inside	the	main	routine.	This	will	help	understanding
of	the	process	by	breaking	it	into	operations	that	can	be	thought	about	separately.	Also,	the
function	that	makes	the	tree	will	be	neater	and	easier	to	understand.	The	downside	to	this
way	of	doing	things	is	the	relative	speed	penalty	incurred	with	calling	Python	functions.
Thus	if	speed	was	an	issue	you	could	forego	the	separate	functions	and	embed	their	code
directly	 in	 the	 main	 section.	 If	 even	 more	 speed	 is	 required	 we	 would	 recommend	 a
Python/C	hybrid	language	approach,	for	example,	using	Cython,	as	discussed	in	Chapter
27.

To	start	with	we	make	a	simple	distance	matrix	generation	function	that	accepts	a	list	of
sequences	 and	 a	 substitution	 matrix	 as	 input	 arguments.	 It	 defines	 an	 initially	 blank
matrix7	 of	 zeros	with	 a	 row	and	column	 for	 each	 sequence	 (n	 sequences),	 such	 that	 the
matrix	elements	will	eventually	be	filled	with	the	distance	between	all	possible	sequence
pairs.	Then	we	calculate	a	list	of	maximum	possible	scores	for	sequence	comparisons,	by
comparing	 each	 sequence	 with	 itself	 using	 the	 calcSeqSimilarity()	 function	 defined	 in
Chapter	12.	These	values	will	give	a	baseline	for	 the	other	scores.	The	row	and	column
indices	 in	 the	 matrix	 are	 then	 looped	 through	 (i	 and	 j)	 and	 for	 each	 index	 the
corresponding	 sequence	 is	 obtained.	Note	 how	 two	 for	 loops	 are	 used	 but	we	 don’t	 go
from	index	0	to	n	for	these;	instead	the	first	loop	goes	up	to	n-1,	and	the	second	starts	from
i+1.	This	means	we	only	consider	one	half	of	the	matrix,	excluding	the	diagonal.	We	can
reduce	 the	 number	 of	 loops	 this	 way,	 and	 thus	 save	 some	 time,	 because	 the	 matrix	 is
symmetric,	i.e.	matrix[i][j]	is	the	same	as	matrix[j][i].

from	Alignments	import	sequenceAlign,	calcSeqSimilarity

from	math	import	exp

def	getDistanceMatrix(seqs,	simMatrix):

		n	=	len(seqs)

		matrix	=	[[0.0]	*	n	for	x	in	range(n)]

		maxScores	=	[calcSeqSimilarity(x,	x,	simMatrix)	for	x	in	seqs]

		for	i	in	range(n-1):

				seqA	=	seqs[i]

				for	j	in	range(i+1,n):

						seqB	=	seqs[j]

						score,	alignA,	alignB	=	sequenceAlign(seqA,	seqB,	simMatrix)

						maxScore	=	max(maxScores[i],maxScores[j])

						dist	=	maxScore	-	score

						matrix[i][j]	=	dist

						matrix[j][i]	=	dist

		return	matrix

The	sequences	for	each	matrix	element	are	aligned	using	the	input	substitution	matrix.
The	alignment	thus	generated	is	passed	back	with	a	score,	which	is	then	converted	into	a
distance.	The	maximum	possible	 score	 is	 calculated	 as	 the	maximum	 from	amongst	 the
two	maxScores	 list	 values	 for	 the	 sequences	 compared	 in	 this	 iteration.	 The	 distance	 is
then	calculated	as	the	difference	between	this	maximum	possible	score	and	the	observed
alignment	score.	Accordingly,	 if	 the	sequences	are	 identical	 the	alignment	score	value	is
equal	to	the	maximum	and	the	distance	is	zero,	and	the	more	dissimilar	the	sequences,	the
larger	 the	distance	between	them.	If	we	were	to	use	 the	simple	DNA	substitution	matrix
DNA_1,	the	distance	would	represent	the	number	of	non-identical	positions.	The	distance
value	is	then	inserted	into	the	matrix	at	the	given	row	and	column.

Here	we	test	the	function	using	previously	defined	lists	of	sequences	(without	gaps)	and
substitution	matrices.	The	output	is	looped	through	row	by	row	and	the	values	in	each	row
are	displayed	in	a	formatted	manner	(to	two	decimal	places	using	‘%.2f’)	to	keep	things

neat	on	screen.

seqs	=	['QPVHPFSRPAPVVIILIILCVMAGVIGTILLISYGIRLLIK',

								'QLVHRFTVPAPVVIILIILCVMAGIIGTILLISYTIRRLIK',

								'QLAHHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIKKSPSDVKPLPSPD',

								'QLVHEFSELVIALIIFGVMAGVIGTILFISYGSRRLIKKSESDVQPLPPPD',

								'MLEHEFSAPVAILIILGVMAGIIGIILLISYSIGQIIKKRSVDIQPPEDED',

								'PIQHDFPALVMILIILGVMAGIIGTILLISYCISRMTKKSSVDIQSPEGGD',

								'QLVHIFSEPVIIGIIYAVMLGIIITILSIAFCIGQLTKKSSLPAQVASPED',

								'LAHDFSQPVITVIILGVMAGIIGIILLLAYVSRRLRKRPPADVP',

								'SYHQDFSHAEITGIIFAVMAGLLLIIFLIAYLIRRMIKKPLPVPKPQDSPD']

distMatrix	=	getDistanceMatrix(seqs,	BLOSUM62)

distMatrix	=	getDistanceMatrix(align1,	DNA_1)

for	row	in	distMatrix:

		print(['%.2f'	%	x	for	x	in	row])

#	['0.00',	'2.00',	'3.00',	'4.00',	'5.00',	'5.00',	'5.00']

#	…

Next	 we	 define	 another	 function	 to	 find	 out	 which	 element	 of	 a	 distance	 matrix
represents	 the	 closest	 sequences,	 and	 thus	which	 sequences	 should	be	 joined	next	when
making	a	 tree.	Note	 that	 this	 is	not	as	simple	as	finding	 the	smallest	distance,	 rather	we
calculate	the	value	q	(which	is	often	described	in	the	form	of	the	Q-matrix)	as	the	distance
scaled	by	 the	number	of	branch	points	 for	 the	 tree	 (n-2)	minus	 the	 sum	of	 the	 row	and
column	at	that	point.	For	each	row	and	column	(again	only	needing	to	consider	half	of	the
matrix)	we	determine	whether	the	q	value	is	smaller	than	the	best	so	far.	If	so	(and	for	the
initial	 loop,	where	minQ	 is	None)	 then	we	 redefine	 the	 best	 q,	 and	 record	 the	 row	 and
column	for	this	element	as	joinPair.

def	getJoinPair(distMatrix):

		n	=	len(distMatrix)

		minQ	=	None

		joinPair	=	None

		for	i	in	range(n-1):

				sumRow	=	sum(distMatrix[i])

				for	j	in	range(i+1,	n):

						sumCol	=	sum(distMatrix[j])

						dist	=	distMatrix[i][j]

						q	=	(n-2)*dist	-	sumRow	-	sumCol

						if	(minQ	is	None)	or	(q	<	minQ):

								minQ	=	q

								joinPair	=	[i,j]

		return	joinPair

At	 the	 end	 of	 the	 function	 the	 indices	 for	 the	 closest	 pair	 of	 sequences	 are	 returned.

Because	of	the	for	loops	these	indices	are	in	a	specific	order,	which	helps	later	when	the
tree	is	built.	We	can	test	the	function	using	a	previously	defined	distance	matrix:

print(getJoinPair(distMatrix))

The	 final	 function	 we	 require	 before	 we	 get	 to	 the	main	 tree	 construction	 is	 one	 to
determine	the	distance	from	a	point	on	the	tree	(sequence	or	branch	point)	to	the	branch
point	that	is	created	when	joining	up	with	another	part	of	the	tree.	This	function	is	required
because	the	neighbour-joining	algorithm	works	using	a	distance	matrix,	and	each	time	we
join	sequences	we	need	to	know	the	distances	to	this	new	join	point	(node).	Effectively	the
joined	parts	of	the	tree	are	replaced	by	a	new	single	node;	i.e.	two	sequences	are	replaced
with	an	ancestor.	When	the	distance	matrix	is	recalculated	we	need	to	know	how	far	each
of	the	joined	sequences	is	from	the	new	point.

The	 function	 takes	 a	 distance	matrix	 and	 two	 indices,	 i	 and	 j.	 The	 first	 index	 is	 the
row/column	for	the	sequence	we	want	to	find	the	distance	from,	and	the	second	index	is
the	sequence	we	are	joining	with.	The	row	and	column	for	the	two	indices	are	extracted
directly,	remembering	that	the	distance	matrix	is	symmetric,	so	the	j	column	is	the	same	as
the	j	row.

def	getDistToJunction(distMatrix,	i,	j):

		n	=	len(distMatrix)

		row	=	distMatrix[i]

		column	=	distMatrix[j]

		dist	=	distMatrix[i][j]	+	(sum(row)-sum(column))/(n-2)

		dist	*=	0.5

		return	dist

The	 distance	 from	 sequence	 index	 i	 to	 the	 new	 node	 is	 the	 average	 distance	 (hence
multiplying	by	0.5)	between	the	two	joined	sequences	(distMatrix[i][j])	and	the	distance	to
the	whole	tree,	i.e.	for	n-2	nodes.	The	distance	to	the	rest	of	the	tree	is	calculated	by	taking
the	total	(whole	tree)	distance	for	one	sequence	away	from	the	total	distance	for	the	other
and	 then	 dividing	 by	 the	 number	 of	 nodes	 to	 get	 an	 average.	 If	 the	 total	 tree	were	 not
considered	 the	 branch	 point	 would	 be	 exactly	 halfway	 between	 the	 two	 sequences.
However,	with	the	rest	of	the	tree	potentially	being	closer	to	one	of	the	sequences	than	the
other	the	branch	point	is	pulled	to	one	side.

Finally	 we	 get	 to	 the	 function	 that	 actually	 builds	 the	 tree.	 This	 takes	 an	 abstract
distance	matrix	as	 input,	 so	 that	 it	 can	be	used	 in	many	different	 situations	 (not	 just	 for
sequences),	 but	 which	 can	 be	 generated	 here	 using	 getDistanceMatrix()	 using	 a	 list	 of
sequences	 and	 a	 residue	 similarity	 matrix	 as	 arguments.	 As	 mentioned	 previously	 this
could	be	modified	to	take	multiple	sequences	for	each	taxon,	rather	than	just	one.	Initially
in	 the	 function	 a	 list	 joinOrder	 is	 initialised,	 which	 will	 record	 the	 order	 in	 which
sequences	are	joined	to	build	the	tree,	and	we	use	the	function	defined	above	to	make	the
initial	 matrix	 of	 distances	 between	 sequences.	 The	 tree	 variable	 is	 initialised	 as	 a	 list
containing	index	numbers,	one	for	each	sequence	in	the	distance	matrix.	An	alternative	to
using	simple	numbers	here	would	be	to	use	names	for	the	sequences	if	we	had	them.	What

is	 actually	 used	 for	 the	 tree	 construction	 is	 not	 important;	 it	 just	 needs	 to	 be	 a	 tag	 to
identify	 each	 taxon.	As	 the	main	part	 of	 the	 function	proceeds	 the	 tree	 variable	will	 be
modified,	and	each	time	a	new	branch	is	formed	the	tags	for	the	two	joined	sections	will
be	 combined	 (into	 a	 tuple).	 In	 the	 end	 the	nesting	of	pair	 sequence	 tags	 in	 this	 list	will
represent	the	structure	of	the	tree.

def	neighbourJoinTree(distMatrix):

		joinOrder	=	[]

		n	=	len(distMatrix)

		tree	=	list(range(n))		#	do	not	need	list()	in	Python	2

Next	we	perform	an	iterative	loop	using	the	while	statement.	The	loop	continues	while
the	length	of	the	distance	matrix	is	greater	than	two,	i.e.	while	we	still	have	to	work	out
which	possible	bits	of	 tree	 to	combine.	Each	time	we	go	through	the	 loop	a	new	branch
point	is	defined	and	the	length	of	the	distance	matrix	will	decrease	by	one	(two	sequences
disappear	and	one	new	branch	point	appears).	When	there	are	only	two	tree	parts	to	join
there	 are	 no	more	 choices	 to	 be	made;	 the	 last	 remaining	 join	 is	 made	 and	 the	 tree	 is
complete.	 Inside	 the	 loop	we	use	 the	 getJoinPair()	 function	 defined	 above	 to	 determine
which	 indices,	 stored	 as	 x	 and	 y,	 represent	 the	 closest	 pair,	 and	 thus	 should	 be	 joined
during	this	round.

while	n	>	2:

		x,	y	=	getJoinPair(distMatrix)

Just	as	the	distance	matrix	gets	smaller	each	time	we	join	sequences	so	too	does	the	tree
list.	When	we	combine	branches	we	remove	the	representation	of	those	branches	from	the
list	but	add	a	new	value	for	the	larger,	joined	branch.	Accordingly,	the	rows	and	columns
of	the	distance	matrix	have	a	direct	correspondence	to	the	positions	in	tree.	The	variable
node	 is	 defined	 as	 a	 tuple	 containing	 the	 two	parts	 of	 the	 tree	 that	 are	 to	 be	 combined.
These	two	parts	correspond	to	the	positions	x	and	y	(in	the	distance	matrix	and	tree	 list)
and	can	 represent	 single,	unjoined	 sequence	 tags	or	 tags	 that	 are	already	 in	a	branching
structure.	The	new	branch	node	is	added	to	the	joinOrder	list	and	the	tree	list.	To	see	the
tree	grow	you	could	issue	‘print(tree)’	during	the	iteration.

node	=	(tree[x],	tree[y])

joinOrder.append(node)

tree.append(node)

Then	we	delete	 the	x	and	y	elements	 from	 the	 tree	 list	because	 these	parts	have	now
been	combined,	and	added	as	the	new	node	to	the	end.	Note	that	the	y	element	is	deleted
before	 the	x	 because	we	want	 to	 delete	 the	 largest	 list	 index	 first.	Deleting	 the	 smaller
index	x	first	would	shuffle	the	remainder	of	the	list	containing	the	y	position	along	by	one,
complicating	matters.

del	tree[y]

del	tree[x]

Next	we	have	to	adjust	the	distance	matrix	in	light	of	the	newly	joined	positions.	First
we	calculate	the	distance	from	the	joined	x	and	y	positions	to	the	new	branch	point	using

the	function	getDistToJunction()	explained	in	detail	above.

distX	=	getDistToJunction(distMatrix,	x,	y)

distY	=	getDistToJunction(distMatrix,	y,	x)

A	new	row,	containing	zeros,	 is	added	 to	 the	distance	matrix.	This	will	 later	be	filled
with	distances	to	the	new	branch	point.	Note	that	this	new	row	has	one	more	element	than
the	existing	rows	because	it	won’t	be	extended	like	the	others	in	the	following	loop.

distMatrix.append([0]	*	(n+1))

Then	we	loop	through	all	positions	in	the	distance	matrix,	except	the	newly	added	one,
and	select	those	that	have	not	been	joined	this	round	(not	x	or	y).	The	distance	from	each
of	these	positions	to	the	new	node	is	then	defined	as	the	average	of	the	distances	to	the	x,
y	points	minus	the	respective	distances	of	x	and	y	to	their	joining	node.

for	i	in	range(n):

		if	i	not	in	(x,y):

				dist	=	(distMatrix[x][i]-distX)	+	(distMatrix[y][i]-distY)

				dist	*=	0.5

This	distance	is	added	to	the	end	of	the	distance	matrix	row.	Also,	the	new	row	(n)	at
the	bottom	has	the	appropriate	element	filled	in.	Thus	we	have	filled	in	the	new	distance
values	for	the	ends	of	row	and	column	i.

distMatrix[i].append(dist)

distMatrix[n][i]	=	dist

Once	the	loop	through	matrix	positions	is	complete	we	will	have	a	new	row	and	column
in	the	distance	matrix	for	the	newly	joined	branch	point.	So	next	we	delete	the	old	x	and	y
positions	from	the	matrix.	Firstly	we	delete	two	rows,	and	then	for	the	remaining	rows	we
loop	 through	 and	 delete	 the	 appropriate	 two	 columns.	At	 the	 end	 of	 the	while	 loop	we
decrease	n	 by	one,	 because	 after	 the	merge	 the	 distance	matrix	 is	 now	one	 row/column
smaller.

del	distMatrix[y]

del	distMatrix[x]

for	row	in	distMatrix:

		del	row[y]

		del	row[x]

n	-=	1

At	the	end	of	the	function	we	convert	the	tree	list	to	a	tuple,	effectively	saying	that	the
two	remaining	parts	are	joined	(remember	tuples	are	immutable).	We	add	the	whole	tree	to
the	 list	of	 join	events.	Finally	 the	 function	passes	back	 the	 tree	and	branch	combination
order,	each	of	which	is	useful	in	different	ways.

tree	=	tuple(tree)

joinOrder.append(tree)

return	tree,	joinOrder

For	 the	 above	 function	 the	 output	 tree	 data	 just	 uses	 sequence	 identifiers,	 it	 doesn’t
contain	 any	 distance	 information.	However,	 it	 is	 trivial	 to	make	modifications	 that	will
allow	 the	 function	 to	 also	pass	back	distX	 and	distY,	 the	distance	 to	 the	branch	points,
along	with	 the	 identifiers,	 e.g.	 node	=	((tree[x],	distX),	 (tree[y],	distY)).	 Finally	we	 can
test	the	tree	generation,	first	generating	the	distance	matrix	with	a	list	of	protein	sequences
and	the	BLOSUM	residue	substitution	scores:

distMatrix	=	getDistanceMatrix(seqs,	BLOSUM62)

tree,	treeJoinOrder	=	neighbourJoinTree(distMatrix)

print(tree)	#	Result	:	(((7,	(0,	1)),	(4,	5)),	((2,	3),	(6,	8)))

Tree-guided	multiple-sequence	alignments
Although	 we	 may	 just	 want	 to	 admire	 the	 evolutionary	 relationship	 suggested	 by	 a
phylogenetic	tree	we	can	also	use	trees	for	many	subsequent	bioinformatics	exercises.	One
important	example	is	in	the	generation	of	multiple-sequence	alignments.	When	making	a
tree,	pairs	of	sequences	are	compared	by	alignment,	but	we	can	combine	the	sequences	in
the	 same	order	as	 they	are	 liked	 into	 the	 tree	 to	build	a	deeper	multiple	alignment.	The
example	 of	 a	 multiple	 alignment	 we	 gave	 earlier	 in	 Chapter	 13	 simply	 combined
sequences	in	an	arbitrary	input	order.	Now	we	aim	to	do	much	better	and	link	them	in	a
way	 that	 better	 represents	 how	 they	diverged.	The	process	of	multiple	 alignment	 in	our
example	 will	 be	 much	 the	 same;	 profiles	 are	 aligned	 and	 gaps	 are	 inserted	 so	 that
sequences	can	be	stacked;	it	is	just	the	order	of	comparing	the	profiles	that	differs	(which
now	represents	the	branching	nodes	of	the	tree).	We	could	make	further	improvements	to
the	 multiple	 alignments	 by	 weighting	 the	 different	 branches	 when	 we	 combine	 the
sequences.	However,	we	will	leave	such	complexities	to	programs	like	ClustalW	etc.

The	 multiple-alignment	 function	 naturally	 takes	 a	 list	 of	 one-letter	 sequences	 and	 a
substitution	matrix	 as	 input	 arguments.	 Then	 inside	 the	 function	we	 create	 a	 dictionary
multipleAlign	which	will	hold	 the	 sequences	as	 they	are	combined.	Because	we	will	be
combining	groups	of	sequences	that	correspond	to	the	branches	of	a	phylogenetic	tree,	this
dictionary	will	hold	all	of	the	partial	alignments	as	they	are	joined	together.	The	keys	of
this	 dictionary	 represent	 the	 indices	 of	 the	 sequences	 that	were	used	 to	make	 each	 sub-
alignment.	 Initially	 nothing	 has	 been	 combined,	 so	 the	 dictionary	 is	 filled	with	 isolated
sequences	 alone	 in	 a	 list	 ([seq,]),	 keyed	 by	 a	 single	 index.	 As	 the	 multiple	 alignment
builds	new	indices	will	be	added	to	indicate	which	sequences	have	been	combined.	These
new	indices	will	be	of	the	tuple	form	(x,y)	where	x	and	y	could	be	plain	index	numbers	or
other,	already	joined	keys.	For	example,	 the	key	‘(3,(1,2))’	will	be	for	an	alignment	 that
first	combined	sequences	1	and	2	which	was	 then	added	 to	3	 –	 of	 course	here	 the	keys
‘(1,2)’	and	‘3’	will	already	exist	because	we	are	 following	 the	branches	of	 the	 tree	 from
outside	inwards.

from	MultipleAlign	import	profile,	profileAlign

def	treeProfileMultipleAlign(seqs,	simMatrix):

		multipleAlign	=	{}

		for	i,	seq	in	enumerate(seqs):

				multipleAlign[i]	=	[seq,]

With	 the	 alignment	 dictionary	 initialised,	 the	 neighbourJoinTree()	 function	 is	 called
using	a	distance	matrix	generated	with	the	same	input	sequences	and	substitution	matrix.
This	will	return	not	only	the	structure	of	the	tree,	in	terms	of	indices,	but	also	the	order	in
which	sequences	were	combined.	It	 is	 this	second	value	that	we	will	use	to	combine	the
sequence	alignment.	A	copy	is	made	of	the	tree	combination	order,	which	can	be	altered	as
we	make	the	alignment.	The	original	unmodified	treeOrder	list	will	be	returned	from	the
function	as	output.

distMatrix	=	getDistanceMatrix(seqs,	simMatrix)

tree,	treeOrder	=	neighbourJoinTree(distMatrix)

joinStack	=	treeOrder[:]

Next	a	while	 loop	 is	set	up	 to	continue	combining	sequences	while	we	still	have	 tree
branches	 to	 consider.	 Note	 how	 the	 first	 (index	 zero)	 element	 is	 removed	 from	 the
joinStack	 list,	 thus	 shortening	 it	 while	 at	 the	 same	 time	 providing	 the	 keys	 (keyA	 and
keyB)	 to	 extract	 the	next	 sub-alignments	 to	be	 joined.	Eventually	 all	 branch	points	will
have	been	considered	and	the	joinStack	list	will	be	empty,	whereupon	the	loop	will	stop.

while	joinStack:

		keyA,	keyB		=	joinStack.pop(0)

These	 keys	 are	 then	 used	 to	 access	 the	 relevant	 sub-alignments	 from	 the	 larger
dictionary.	These	sub-alignments	will	then	be	combined,	once	gaps	have	been	inserted,	to
make	a	new,	larger	multiple	alignment.	This	is	equivalent	to	joining	two	branches	of	the
phylogenetic	tree.

subAlignA	=	multipleAlign[keyA]

subAlignB	=	multipleAlign[keyB]

The	profiles	 (lists	of	 residue	 fraction	dictionaries)	are	calculated	using	 the	previously
defined	profile()	 function	 for	each	sub-alignment.	These	are	 then	passed	 into	 the	profile
alignment	 function,	 again	 previously	 defined,	 to	 generate	 a	 score	 (s,	 which	 will	 be
completely	ignored	here)	and	two	aligned	profiles,	i.e.	with	gaps.

profA	=	profile(subAlignA)

profB	=	profile(subAlignB)

s,	profAlignA,	profAlignB	=	profileAlign(profA,	profB,	simMatrix)

We	insert	the	gaps	in	the	previously	combined	multiple	alignments	(or	single	sequence
at	the	beginning)	by	looking	for	gaps	in	the	newly	aligned	profile.	Accordingly,	we	loop
though	 the	 profile	 alignment	 to	 find	 positions	 (index	 i)	 where	 there	 is	 no	 fraction
dictionary,	but	rather	a	None	object,	indicating	a	gap.

gaps	=	[]

for	i,	fractions	in	enumerate(profAlignA):

		if	fractions	is	None:

				gaps.append(i)

With	 the	 gaps	 collected,	 another	 loop	 is	 performed,	 this	 time	 through	 each	 of	 the
sequences	in	the	sub-alignment.	Each	sequence	is	redefined	by	the	insertion	of	dashes	‘-’
at	the	positions	specified	by	the	gaps	list.	Note	that	as	the	gaps	are	inserted	the	sequence
string	will	grow,	so	although	all	gap	positions	after	the	first	are	meaningless,	with	regard
to	 the	 initial	 contents	 of	 seq,	 once	 all	 preceding	 gaps	 have	 been	 inserted	 the	 next	 gap
location	will	be	in-step	with	the	longer	redefined	seq.	After	the	gap	insertion	the	sequence
is	re-inserted	in	the	sub-alignment	at	the	correct	index	[j].

for	j,	seq	in	enumerate(subAlignA):

		for	gap	in	gaps:

				seq	=	seq[:gap]	+	'-'	+	seq[gap:]

		subAlignA[j]	=	seq

The	 gapping	 procedure	 is	 repeated	 using	 the	 gaps	 from	 the	 second	 of	 the	 aligned
profiles	(profAlignB)	to	insert	dashes	into	the	second	of	the	sub-alignments	(subAlignB).

gaps	=	[]

for	i,	fractions	in	enumerate(profAlignB):

		if	fractions	is	None:

				gaps.append(i)

for	j,	seq	in	enumerate(subAlignB):

		for	gap	in	gaps:

				seq	=	seq[:gap]	+	'-'	+	seq[gap:]

		subAlignB[j]	=	seq

Now	 that	 the	 sequences	 have	 had	 the	 appropriate	 gaps	 inserted	 the	 two	 smaller
alignments	 are	 combined	 and	placed	 in	 an	 expanded	multipleAlign	dictionary.	The	new
key	 for	 this	 alignment	 is	 simply	 a	 tuple	 containing	 the	 two	 keys	 of	 the	 smaller	 sub-
alignments	that	were	combined	in	this	iteration	through	the	loop.	The	old	sub-alignments
are	no	longer	needed	and	can	now	be	removed	from	the	dictionary	by	deleting	the	entries
for	the	old,	now	combined,	keys.

newKey	=	(keyA,	keyB)

multipleAlign[newKey]	=	subAlignA	+	subAlignB

del	multipleAlign[keyA]

del	multipleAlign[keyB]

Finally	we	 return	 the	 deepest	 alignment	 in	 the	 dictionary,	which	 is	 the	 one	 that	was
stored	using	the	final	value	of	newKey	from	the	loop,	and	the	tree	data.	This	represents	the
last	joining	in	the	treeOrder	list,	and	thus	represents	the	tree	as	a	whole.

return	multipleAlign[newKey],	tree,	treeOrder

We	test	the	function	with	a	list	of	input	sequences	and	then	print	out	the	gapped	output
sequences	from	the	returned	alignment.

align,	tree,	order	=	treeProfileMultipleAlign(seqs,	BLOSUM62)

for	seq	in	align:

		print(seq)

And	this	gives:

-LAH-DFSQ--PVITV-IILGVMAGIIGIILLLAYVSRRLR-KR-----P-PADVP

QPVH-PFSRPAPVVIILIILCVMAGVIGTILLISYGIRLL--------------IK

QLVH-RFTVPAPVVIILIILCVMAGIIGTILLISYTIRRL--------------IK

MLEH-EFS--APVAIL-IILGVMAGIIGIILLISYSIGQIIKKRSVDIQP-PEDED

PIQH-DFP--ALVMIL-IILGVMAGIIGTILLISYCISRMTKKSSVDIQS-PEGGD

QLAH-HFSE--PEITL-IIFGVMAGVIGTILLISYGIRRLIKKSPSDVKPLPSP-D

QLVH-EFSE--LVIAL-IIFGVMAGVIGTILFISYGSRRLIKKSESDVQPLPPP-D

QLVH-IFSE--PVIIG-IIYAVMLGIIITILSIAFCIGQLTKKS-SLPAQVASPED

-SYHQDFSH--AEITG-IIFAVMAGLLLIIFLIAYLIRRMIKKPLPVPKPQDSP-D

Calculating	substitution	rates	using	trees
Another	way	to	use	sequences	while	following	a	phylogenetic	tree	structure	is	to	estimate
the	rate	of	residue	substitution.	This	will	not	be	a	rate	in	a	specific	time	sense,	but	a	rate	in
terms	of	 the	evolutionary	distance	between	sequences.	Strictly	 speaking	 the	calculations
will	 be	 of	 the	minimum	 rate	 of	 substitution	 because	we	might	 not	 see	 all	 intermediate
residue	changes,	i.e.	although	it	is	possible	for	a	residue	to	change	from	X	to	Z	to	Y,	unless
we	 observe	 Z	 we	 will	 assume	 a	 direct	 transition	 from	 X	 to	 Y,	 the	 most	 parsimonious
solution.	There	are	two	example	Python	functions	that	will	measure	substitution	rates:	the
first	 is	 just	 to	 give	 a	 simple	 numeric	 rate	 value	 for	 the	 positions	 along	 a	 set	 of	 aligned
sequences,	 and	 the	 second	 is	 to	work	 out	 the	 relative	 rates	 of	 passive	 and	 active	DNA
substitutions	in	protein-coding	regions.

In	 the	 following	 rate	 calculation	 functions	we	will	 be	 following	 residue	 letters	 back
along	the	branches	of	a	tree.	In	order	to	determine	whether	there	has	been	a	substitution
event	at	a	particular	 tree	branch,	at	a	particular	sequence	position,	we	estimate	what	 the
ancestral	 residue	 might	 be.	 This	 is	 a	 very	 simple	 guess,	 and	 other	 more	 complex
probabilistic	 estimates	 can	 be	made,	 but	 it	 is	 good	 enough	 for	 illustrative	 purposes.	 In
essence	the	function	works	by	taking	two	sets	for	residues,	one	for	each	of	the	branches	of
a	tree,	and	determining	whether	these	sets	have	any	residue	codes	in	common.	If	they	do	it
is	assumed	that	these	are	the	ancestral	residue	codes.	When	the	outer	branches	of	the	trees
are	 used	 then	 there	will	 only	 be	 a	 single	 residue	 letter	 in	 each	 set.	 However,	 for	 inner
branch	points	where	substitution	events	may	have	occurred	(and	there	is	no	good	guess	at
when	the	ancestor	might	be)	each	set	can	contain	several	residue	codes.

The	function	is	defined	to	take	two	sets	of	codes.	Because	we	are	using	the	Python	set
objects	 we	 can	 use	 their	 inbuilt	 .intersection()	 function	 to	 find	 residue	 letters	 that	 are
present	 in	 both	 input	 sets.	 Then	we	 perform	 some	 tests	 to	 determine	what	 the	 ancestor
residue	codes	might	be	and	whether	we	think	a	substitution	event	has	occurred.

def	ancestorResidue(codesA,	codesB):

		common	=	codesA.intersection(codesB)

If	 there	 are	 some	 residue	 codes	 in	 common	 this	 common	 set	 is	 passed	 back	 as	 the
ancestor	 set.	 Also,	 it	 is	 assumed	 that	 a	 substitution	 has	 not	 occurred	 if	 the	 number	 of
common	 residues	 is	 smaller	 than	 one	 or	 both	 inputs:	 then	 the	 ancestor	 represents	 a

clarification,	 rather	 than	 a	 divergence;	 any	 input	 set	 that	 is	 larger	 than	 the	 common	 set
would	 have	 already	 had	 its	 substitutions	 counted	 earlier,	 when	 the	 ambiguous	 set	 was
defined.

if	common:

		return	common,	False

If	 there	 are	 no	 residue	 codes	 in	 common,	 the	 ancestor	 is	 set	 to	 the	 union	 of	 the	 two
input	 sets.	 In	 this	 way	 ambiguous	 sets	 are	 generated.	 If	 the	 inputs	 are	 both	 full	 a
substitution	event	has	occurred,	otherwise	we	have	one	or	more	gaps	and	no	substitution	is
counted.

else:

		union	=	codesA.union(codesB)

		if	codesA	and	codesB:

				return	union,	True

		else:

				return	union,	False

Next	we	define	a	function	that	follows	a	tree	of	sequences	and	uses	the	ancestor	residue
estimation	to	calculate	minimum	substitution	rates.	This	function	takes	an	alignment	and
tree	 joining	order	as	 inputs;	obviously	these	relate	 to	 the	same	sequences.	We	determine
the	number	of	alignment	positions	n	and	the	number	of	tree	nodes.	Two	lists	of	zeros	are
then	 initialised	 to	 be	 filled	 in	 with	 the	 relative	 and	 absolute	 substitution	 rates	 for	 each
position.	The	relative	rates	will	be	compared	to	the	average	for	all	positions.

def	calcSubstitutionRates(align,	treeOrder):

		n	=	len(align[0])

		numNodes	=	float(len(treeOrder))

		absRates	=	[0.0]	*	n

		relRates	=	[0.0]	*	n

Next	 a	 dictionary	 is	 defined	 and	 initially	 filled	 with	 the	 gapped	 sequences	 from	 the
input	alignment.	The	sequences	are	converted	from	a	string	of	letters	into	a	list	of	Python
sets,	 each	 containing	 a	 single	 letter.	 Note	 that	 gaps	 are	 replaced	 by	 empty	 sets.	 As	we
compare	sequences	in	tree	order,	to	count	substitutions,	the	elements	of	this	dictionary	will
be	replaced	with	new	sets	of	residues	representing	ancestral	sequences	(i.e.	at	tree	branch
points).	The	initial	dictionary	keys	are	simply	indices	within	the	alignment.

treeSeqs	=	{}

for	i,	seq	in	enumerate(align):

		sets	=	[]

		for	letter	in	seq:

				if	letter	==	'-':

						sets.append(set())

				else:

						sets.append(set([letter]))	#	Could	use	sets.append({letter})

																																								from	Python	2.7

		treeSeqs[i]	=	sets

Then	we	 loop	 though	 the	 tree	 generation	 order,	 and	 in	 each	 iteration	we	 extract	 the
indices	of	 the	combined	branches	(a	and	b)	 from	the	start	of	 the	 list.	Note	 that	by	using
.pop()	the	list	is	shortened,	and	when	the	list	is	empty	the	while	loop	will	stop.	The	indices
are	 then	used	 to	 extract	 the	 relevant	 sequences,	 and	 a	new	 list	 is	 defined	which	will	 be
filled	with	a	guess	at	the	ancestor	sequence.

while	treeOrder:

		a,	b	=	treeOrder.pop(0)

		seqA	=	treeSeqs[a]

		seqB	=	treeSeqs[b]

		seqC	=	[]

To	 fill	 the	 ancestor	 sequence,	 all	 the	 alignment	 positions	 are	 looped	 through	 and	 the
corresponding	 pair	 of	 branching	 sequence	 elements	 extracted	 (seqA[i],	 seqB[i]).	 The
ancestor	residue	data	is	predicted	with	the	function	defined	above	and	we	catch	the	output
values	 for	 the	 ancestral	 residue	 codes	 and	 a	Boolean	 value	 (True	or	False)	 that	 tells	 us
whether	 a	 substitution	 has	 occurred.	 If	 it	 has,	 the	 list	 of	 counts	 for	 the	 absolute	 rate
calculation	is	incremented	by	one	at	this	position.

for	i	in	range(n):

		residueSet,	swapped	=	ancestorResidue(seqA[i],	seqB[i])

		seqC.append(residueSet)

		if	swapped:

				absRates[i]	+=	1.0

With	this	tree	branch	point	considered,	we	store	the	ancestor	sequence	in	the	dictionary
of	sequences,	combining	the	old	keys	in	a	tuple	to	make	a	new	key	for	the	ancestor.	This	is
the	same	way	that	the	node	identifiers	were	made	in	the	neighbourJoinTree()	function.

treeSeqs[(a,	b)]	=	seqC

del	treeSeqs[a]

del	treeSeqs[b]

After	 the	while	 loop	 the	average	substitution	 rate	 is	calculated	as	 the	 total	number	of
residue	 substitutions,	 across	 all	 positions,	 divided	 by	 the	maximum	 possible	 number	 of
substitutions:	one	for	each	branch	node	at	each	alignment	position.

meanRate	=	sum(absRates)/(numNodes*n)

Finally,	we	loop	though	the	alignment	positions	and	calculate	 the	per-site	rate	values.
The	absolute	rate	is	simply	the	count	in	the	absRates	list	divided	by	the	number	of	branch
points.	 The	 relative	 rate	 is	 the	 difference	 of	 the	 absolute	 rate	 from	 the	 mean,	 as	 a
proportion	 of	 the	mean	 rate,	 and	 thus	 gives	 a	 positive	 or	 negative	 value	 depending	 on
whether	the	local	rate	is	larger	or	smaller	than	average.	At	the	end	the	lists	of	absolute	and
relative	rates	are	passed	back	as	output.

for	i	in	range(n):

		rate	=	absRates[i]	/	numNodes

		absRates[i]	=	rate

		relRates[i]	=	(rate-meanRate)/meanRate

return	absRates,	relRates

To	test	 the	function	we	use	our	multiple-alignment	function	to	generate	the	alignment
and	tree	data	for	some	sequences.	The	alignment	and	order	of	 tree	construction	are	 then
passed	as	arguments	 to	calculate	 the	substitution	 rates,	which	we	 then	 loop	 through	and
print.

align,	tree,	joinOrder	=	treeProfileMultipleAlign(seqs,	BLOSUM62)

absRates,	relRates	=	calcSubstitutionRates(align,	joinOrder)

for	i,	absRate	in	enumerate(absRates):

		print('%2d	%6.2f	%6.2f'	%	(i,	absRate,	relRates[i]))

The	final	example	function	in	this	chapter	will	detect	sequence	substitutions	in	the	same
manner	as	the	substitution	rate	calculation,	by	following	a	guiding	tree.	However,	instead
of	treating	all	substitutions	equally	we	will	subdivide	them	into	two	categories:	those	that
change	a	codon	to	encode	a	different	amino	acid	(active)	and	those	that	do	not	(passive).
As	mentioned	above,	regions	of	high	active	substitution	may	indicate	positive	selection	in
evolution,	and	more	passive	regions	may	indicate	preservation	of	function.	Naturally	this
analysis	 only	 works	 for	 DNA	 sequences	 corresponding	 to	 the	 protein-coding	 region	 of
genes.	 We	 will	 assume	 that	 the	 input	 alignment	 is	 of	 the	 coding	 DNA	 strand	 (so	 not
reverse	complement	of	the	genetic	code)	and	starts	exactly	at	the	start	of	the	first	codon	to
be	considered	(so	no	offset).

The	function	takes	an	alignment,	tree	data	and	a	genetic	code	as	arguments.	As	before
the	number	of	positions	and	number	of	nodes	in	the	tree	are	defined.	Then	counters	for	the
active	and	passive	substitutions	are	initialised	and	the	dictionary	to	contain	the	sequences,
and	 ancestor	 sets,	 is	 defined.	 Much	 of	 the	 function’s	 logic	 is	 the	 same	 as	 described
previously	 in	calcSubstitutionRates().	However,	once	 the	ancestor	 residues	are	predicted
things	begin	to	differ.

def	calcActivePassive(align,	treeOrder,	geneticCode):

		n	=	len(align[0])

		numNodes	=	float(len(treeOrder))

		active	=	0

		passive	=	0

		treeSeqs	=	{}

		for	i,	seq	in	enumerate(align):

				sets	=	[]

				for	letter	in	seq:

						if	letter	==	'-':

								sets.append(set())

						else:

								sets.append(set([letter]))

				treeSeqs[i]	=	sets

		while	treeOrder:

				a,	b	=	treeOrder.pop(0)

				seqA	=	treeSeqs[a]

				seqB	=	treeSeqs[b]

				seqC	=	[]

				for	i	in	range(n):

						residues,	swapped	=	ancestorResidue(seqA[i],	seqB[i])

						seqC.append(residues)

If	 a	 substitution	 event	 is	 detected	 then	we	 have	 to	 consider	 the	 codons	 in	which	 the
current	DNA	residues	reside.	The	codon	start	position	is	defined	as	the	multiple	of	three	at
or	 before	 the	 current	 position:	 if	 we	 divide	 i	 by	 three,	 round	 to	 the	 integer	 and	 then
multiply	by	three,	we	will	round	down	to	a	multiple	of	three.	The	sub-sequences	for	the
codons	are	defined	for	each	of	the	sequences	by	taking	a	slice	of	each	from	the	codon	start
position	to	a	position	three	residues	along.

if	swapped:

		codonStart	=	(i//3)*3	#	//	is	integer	division

		subSeqA	=	seqA[codonStart:codonStart+3]

		subSeqB	=	seqB[codonStart:codonStart+3]

Because	 the	 variables	 containing	 the	 sub-sequences	 are	 actually	 lists	 of	 Python	 sets
(generated	 with	 the	 ancestorResidue()function)	 the	 actual	 triple-letter	 codons	 are
generated	by	 looping	 through	all	 the	 residue	possibilities	 for	 each	of	 the	 three	positions
and	joining	the	residue	combinations	(x+y+z).	For	each	combination	the	amino	acid	code
is	 then	 looked	up	using	 the	DNA	codon,	according	 to	 the	 input	genetic	code	dictionary.
Note	that	because	our	genetic	code	dictionary	uses	RNA	sequence	keys,	we	first	have	to
replace	T	with	U	in	the	DNA	codon.	The	amino	acid	code	is	added	to	the	set	of	amino	acid
codes	aminoAcidsA	using	the	.add()	function	of	Python	sets.

aminoAcidsA	=	set()

for	x	in	subSeqA[0]:

		for	y	in	subSeqA[1]:

				for	z	in	subSeqA[2]:

						codon	=	x+y+z

						codon.replace('T','U'’)

						aminoAcidsA.add(geneticCode.get(codon))

The	process	is	repeated	for	the	second	sub-sequence,	i.e.	the	other	branch	of	the	tree.

aminoAcidsB	=	set()

for	x	in	subSeqB[0]:

		for	y	in	subSeqB[1]:

				for	z	in	subSeqB[2]:

						codon	=	x+y+z

						codon.replace('T','U')

						aminoAcidsB.add(geneticCode.get(codon))

If	the	detected	substitution	leaves	any	of	the	amino	acid	codes	the	same,	comparing	the
two	branches	of	the	tree,	we	increase	the	count	for	the	passive	substitutions,	otherwise	if
the	code	does	change	then	the	active	count	is	increased.	Note	how	the	intersection	of	the

two	sets	of	amino	acid	codes	is	used	to	find	whether	there	are	codes	in	common,	in	which
case	we	assume	a	passive	change.

if	aminoAcidsA.intersection(aminoAcidsB):

		passive	+=	1

else:

		active	+=	1

Finally,	 in	 the	 while	 loop	 the	 new	 ancestor	 sequence	 is	 stored	 and	 the	 already
considered	parts	of	the	tree	are	deleted.	And	at	the	end	of	the	function	the	counts	for	the
active	and	passive	DNA	substitutions	are	passed	back	at	the	return	statement.

treeSeqs[(a,	b)]	=	seqC

del	treeSeqs[a]

del	treeSeqs[b]

return	active,	passive

To	 test	 we	 first	 generate	 an	 alignment	 and	 tree	 data	 and	 then	 make	 the	 active	 and
passive	counts,	using	an	imported	genetic	code	dictionary.

seqs	=	['AAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAGGCTG',

								'AAAGTGGATGATGTTGGTGCTGAGGCCCTGGGCAGGCTG',

								'AAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAGGCTG',

								'AAAGTGGATGAAGTTGGTGCTGAAGCCCTGGGCAGGCTG',

								'AAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAGGCTG',

								'CATGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTG',

								'AAAGTGGACGAAGTTGGTGCTGAGGCCCTGGGCAGGCTG',

								'CATGTGGATGAAATTAGTGGTGAGGTCCTGGGCAGGCTG',

								'AACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTG']

from	Sequences	import	STANDARD_GENETIC_CODE	as	SGC

align,	tree,	joinOrder	=	treeProfileMultipleAlign(seqs,	DNA_1)

active,	passive	=	calcActivePassive	(align,	joinOrder,	SGC)

print('Active:	%d	Passive:	%d'	%	(active,	passive))

1 	Many	virus	replication	enzymes	lack	proof-reading	ability	so	that	although	error-prone
their	genome	can	mutate,	adapt	and	evolve	at	a	very	high	rate.
2 	HIV,	which	causes	AIDS,	is	an	example.
3 	Strictly	speaking	a	population	rather	than	an	individual.
4 	Drosphila	melanogaster.
5 	 Saitou,	 N.,	 and	 Nei,	 M.	 (1987).	 The	 neighbor-joining	 method:	 a	 new	 method	 for
reconstructing	phylogenetic	trees.	Molecular	Biology	and	Evolution	4(4):	406–425.
6 	Felsenstein,	J.	(1989).	PHYLIP	–	Phylogeny	Inference	Package	(Version	3.2).	Cladistics
5:	164–166.
7 	Here	we	are	using	a	list	of	lists,	but	we	could	use	NumPy	arrays.

15 	Macromolecular	structures
Contents

An	introduction	to	3D	structures	of	bio-molecules

Protein	structure

Membrane	proteins

RNA	structure

Determining	macromolecular	structures

Using	Python	for	macromolecular	structures

Obtaining	structure	data

Simple	geometric	manipulations

Representing	structures	as	NumPy	arrays

Distances	and	angles

Structural	subsets

Coordinate	superimposition

Centring	coordinates

Aligning	coordinates

Calculating	root-mean-square	deviation

Aligning	a	structure	ensemble

Homologous	structure	alignment

External	macromolecular	structure	modules

Structures	in	BioPython

Structures	in	PyMol

An	introduction	to	3D	structures	of	bio-molecules
So	far	in	this	book	the	more	biological	chapters	have	focussed	on	sequences:	a	linear	and
effectively	 one-dimensional	 representation	 of	 biological	 macromolecules.	 Studying
sequences	allows	us	to	study	the	flow	of	biological	information	from	the	genome	and	how
DNA,	 RNA	 and	 protein	 macromolecules	 evolve.	 However,	 this	 representation	 is
somewhat	 removed	 from	 the	 physical	 reality	 of	 the	 biochemical	 soup	 of	 life,	which	 of
course	occurs	in	three-dimensional	space.	We	can	even	think	in	terms	of	four	dimensions,
if	you	consider	time	and	how	things	change.	Naturally,	change	in	biological	molecules	is

at	 the	core	of	all	 life	processes;	nothing	stands	still.	Here	we	will	keep	 things	 relatively
simple,	however,	and	will	not	delve	into	the	time-dependent,	dynamic	aspects.	Hence,	this
chapter	simply	relates	to	the	three-dimensional	arrangements	of	biological	molecules.

Here	our	primary	focus	is	on	the	structure	of	proteins	and	RNA.	This	is	not	to	say	that
the	structure	of	DNA	is	not	 important,	 it	 is	of	course	vital,	but	 the	difference	 is	 that	 for
proteins	(and	directly	functional,	untranslated	RNA)	our	understanding	of	the	way	biology
works	is	so	much	more	dependent	on	a	precise	three-dimensional	structure.	DNA,	with	its
double	 helix,	 is	 necessarily	 an	 inert	 and	 repetitive	 structure.	 Things	 happen	 to	 cause
deviations	 from	 this	 regularity	 when	 DNA	 is	 activated	 and	 deactivated	 (for	 reading),
transcribed	into	mRNA,	replicated,	repaired	etc.,	but	it	is	the	proteins	of	the	cell	that	are
the	causal	agents	for	these	specific	events.	The	way	that	proteins	interact	with	DNA	is	just
one	of	a	plethora	of	different	actions	they	perform	to	create	the	life-sustaining	processes
within	organisms.	The	ability	of	an	organism’s	proteins	to	do	a	multitude	of,	usually	very
precise,	 jobs	 stems	 from	 the	 fact	 that	 different	 proteins,	 encoded	 in	 different	 gene
transcripts,1	have	different	sequences	of	amino	acid	residues.	The	combinations	of	amino
acids	cause	the	different	protein	chains,	initially	made	in	a	linear	way,	to	fold	into	different
three-dimensional	structures.	 It	 is	 the	precision	of	 the	various	protein	structures,	 i.e.	 that
the	 same	 amino	 acid	 sequence	 virtually	 always	 gives	 the	 same	 three-dimensional
arrangement	of	atoms,	which	allows	proteins	 to	perform	a	 task	and	evolve	according	 to
this	 task,	 albeit	 catalysing	 a	 chemical	 reaction,	 interacting	 with	 another	 biological
molecule	or	whatever.

Studying	the	structures	of	proteins,	and	the	occasional	non-translated	RNA,	allows	us	to
work	out	how	they	operate;	what	their	molecular	mechanics	are.	This	not	only	improves
our	understanding	for	its	own	sake,	but	also	allows	us	to	intervene	in	biology	at	an	atomic
level,	 as	 we	 do	 when	 we	 make	 new	 medicines	 and	 pesticides	 etc.	 For	 medicine	 in
particular,	the	ability	to	say	why	things	happen	at	this	very	small	scale	has	allowed	us	to
design	new	compounds	 to	affect	biology	 in	a	knowledgeable	way,	 to	cure	an	ailment	or
disease.	Before	we	had	 such	precise	 atomic	knowledge	 the	best	we	could	do	was	 test	 a
vast	array	of	existing	compounds,	just	in	case	one	of	them	had	a	desirable	effect.

Protein	structure
When	we	determine	the	amino	acid	sequence	of	a	protein	we	gain	the	knowledge	of	which
types	of	residue	have	been	linked	into	a	polypeptide	chain.	Because	we	know	the	chemical
structure	of	the	individual	amino	acid	components,	and	because	protein	chains	are	formed
in	a	regular	and	predictable	way,	we	therefore	know	virtually	all	of	the	atoms	and	covalent
bond	 connections2	 that	 are	 present	 in	 the	 entire	 protein	 molecule.	 In	 general	 the	 only
deviations	 from	 this	 overall	 chemical	 structure	will	 occur	where	 small	 parts	 of	 specific
chemical	groups	are	not	static,	as	when	hydrogen	ions	hop	on	and	off	acidic	residues,	or	if
the	protein	 is	 subsequently	modified	by	 enzymes.	Such	post-translational	modifications
include	 the	 formation	 of	 cross-links	 (between	 cysteine	 residues),	 cutting	 of	 the	 peptide
backbone	and	the	addition	of	other	moieties	like	sugars,	fats	and	phosphate	groups.	While
modifications	 complicate	 the	 affair,	 if	 we	 are	 unable	 to	 do	 specific	 experiments	 to
determine	what	has	happened	(e.g.	mass	spectrometry)	 then	we	can	often	discover	what
has	occurred	once	we	determine	the	overall	three-dimensional	structure.

We	will	now	consider	why	proteins	fold	into	their	respective	shapes.	Protein	folding	is	a
deep	topic	because	the	number	of	potential	conformations	for	a	typical	polypeptide	chain
is	 vast	 and	 the	 relationship	 between	 protein	 sequence	 and	 structure	 is	 generally	 not
predictable.	Even	where	 it	 is	 possible	 to	 investigate	 a	 sufficient	 number	of	 hypothetical
three-dimensional	 arrangements,	 knowing	 which	 arrangement	 is	 correct,	 the	 native
conformation	 observed	 in	 nature,	 from	 purely	 theoretical	 considerations	 requires
exceedingly	 long	 computational	 calculations.	 Fortunately,	 in	 molecular	 biology	 we
generally	 don’t	 have	 to	make	 such	 tricky	 predictions	 because	we	 can	 determine	 protein
structure	by	performing	experiments	and	making	observations.	Because	protein	folding	is
an	exceedingly	complex	topic,	most	discussions	about	its	mechanisms	are	well	beyond	the
remit	 of	 this	 programming	 book.	 Nevertheless	 we	 will	 describe	 some	 of	 the	 basic
principles,	 specifically	 what	 kind	 of	 forces	 are	 involved	 in	 holding	 a	 protein	 structure
together,	because	this	helps	us	understand	the	features	we	observe	in	structure	data.

Overall	the	folding	of	molecules	can	be	thought	of	in	terms	of	energy.	The	atoms	of	a
molecule,	 because	 they	 are	 in	 constant	 thermal	 motion,3	 are	 able	 to	 change	 relative
position	so	 that	 the	overall	conformation	moves	 towards	 the	 lowest,	most	 stable	energy.
Generally	you	can	think	of	this	as	the	three-dimensional	arrangement	that	forms	the	most
stabilising	 interactions	between	atoms.	Strictly	speaking	a	molecule	will	not	be	static,	at
its	energy	minimum,	because	it	will	move	about	due	to	temperature	(it	has	kinetic	energy).
Accordingly,	 we	 often	 think	 of	 a	 molecule’s	 native	 state	 as	 being	 a	 set	 of	 similar
conformations	 that	 are	 close	 to	 the	 energy	 minimum,	 albeit	 bumbling	 about.	 It	 should
always	be	remembered	that	the	higher	the	temperature	the	wider	are	a	molecule’s	motions
and	the	further	it	can	stray.

Proteins	fold	into	compact,	globular	structures	because	of	the	way	amino	acids	interact
with	one	another	and	whether	they	interact	(or	do	not	interact)	with	water	molecules,	the
primary	biological	 solvent	 that	 surrounds	 them.	Sometimes	 a	 protein	will	 have	 cysteine
residues	that	form	covalent	disulphide	links	(under	oxidising	conditions)	that	tie	different
parts	of	the	protein	together,	but	most	of	the	compactness	and	precision	of	folding	is	due
to	 weaker,	 non-covalent	 interactions,	 including	 those	 with	 water	 molecules.	 In	 simple
terms	the	residues	that	can	form	stabilising	interactions	with	water	lie	on	the	outside	and
those	 that	 cannot	 lie	 on	 the	 inside	 (in	 the	 core).	 Admittedly	 there	 are	 some	 kinds	 of
proteins	that	aren’t	really	dissolved	in	water	directly,	including	those	that	are	embedded	in
lipid	bilayers	 (the	 fatty	membranes	 that	 surround	cells	and	 their	 internal	compartments).
However,	 even	 here	 it	 is	 the	 ability	 of	 particular	 amino	 acids	 to	 interact	with	 or	 avoid
water	that	is	behind	the	formation	of	a	compact	structure.

The	atoms	around	the	peptide	links,	which	form	the	backbone	of	a	protein’s	amino	acid
chain,	are	capable	of	interacting	in	a	stabilising	way	with	water	and	amongst	themselves;
the	amide	(N-H)	and	carboxyl	(C=O)	groups	form	polar	hydrogen	bonds.	All	things	being
equal	the	interaction	with	water	is	stronger,	but	the	other	parts	of	the	amino	acids	that	stick
out	 from	their	backbone,	 the	side	chains,	 tip	 the	balance	so	 that	 the	protein	backbone	 is
mostly	stabilised	by	the	backbone	atoms	hydrogen	bonding	with	each	other,	and	not	water.
The	different	amino	acids	have	chemical	 structures	 that	govern	whether	 their	 side	chain
can	make	a	significant	 interaction	with	water.	Side	chains	containing	atomic	groups	 that
can	 form	 relatively	 strong	 hydrogen	 bonds	 (O-H,	 N-H,	 C=O)	 and	 those	 that	 carry	 an
electric	charge	are	said	to	be	hydrophilic	(water-loving),	because	they	can	make	stabilising

interactions	with	water.	 Those	 that	 do	 not	 are	 described	 as	hydrophobic	 (water-hating).
Strictly	speaking	there	is	not	a	set	dividing	line	between	hydrophobic	and	hydrophilic;	it	is
more	 a	 matter	 of	 degree.	 In	 an	 aqueous	 (water)	 environment,	 the	 hydrophobic	 and
hydrophilic	 residues	 segregate	 when	 a	 protein	 folds,	 to	 form	 a	 hydrophobic	 core	 and
hydrophilic	exterior,	i.e.	a	globule.	This	is	just	a	general	trend	though;	the	protein	globule
is	stabilised	further	by	the	hydrogen	bonds	along	the	backbone,	which	tend	to	form	regular
patterns	 of	 hydrogen-bonding	 networks,	 called	 secondary	 structure.	 Also,	 the	 electric
charges	 and	 polarities	 will	 push	 and	 pull	 the	 structure	 into	 the	 final	 shape.	 This	 final
conformation	is	one	where	the	core	residues	(mostly	hydrophobic)	come	together	and	give
rise	to	another	weaker,	but	widespread,	kind	of	interaction	described	as	the	van	der	Waals
force,	 and	 thus	 the	 core	 packs	 tightly.	 This	 weak	 non-bonding	 interaction	 is	 actually
present	 all	 the	 time	 between	 close	 atoms,	 including	 those	 from	 water,	 but	 in	 many
situations	it	is	swamped	by	other,	stronger	interactions.	As	a	final	point	on	protein	folding,
it	 should	 be	 noted	 that	 some	 large	 sections	 of	 amino	 acid	 sequences	 do	 not	 have	 a
significant	hydrophobic	component.	These	regions	will	typically	not	form	a	single	stable,
folded	structure	because	they	don’t	have	the	ability	to	form	a	hydrophobic	core.	Usually
this	results	in	the	region	being	highly	dynamic	or	unstructured	and	is	commonly	seen	at
the	 ends	 of	 protein	 chains	 and	 as	 flexible	 linkers	 between	 folded	 domains,	 which	 are
compact	and	globular.

Protein	 structure	 is	 often	described	 in	 terms	of	 a	 structural	 hierarchy,	which	helps	us
understand	the	final	form	as	a	combination	of	smaller	elements;	which	is	 to	say	nothing
about	the	actual	mechanism	of	folding.	This	hierarchy	is	roughly	described	as	follows:

Primary	structure:	this	is	the	sequence	of	amino	acids	in	the	polypeptide	chain	and
traditionally	also	includes	any	disulphide	links	and	post-translational	modifications.
Essentially,	this	describes	the	covalent	bond	connectivity	of	the	residues.	It	should	be
noted	 that	 although	 amino	 acids	 have	 two	 mirror-image	 (chiral)	 forms,	 unless
explicitly	stated,	it	will	always	be	the	usual,	biologically	abundant	left-handed	form
that	is	present.

Secondary	structure:	 this	 is	a	regular	arrangement	of	hydrogen	bonding	along	the
protein	 backbone	 giving	 characteristic	 twist	 angles	 (dihedral/torsion)	 to	 the
polypeptide	chain.	The	common	secondary-structure	categories	are	alpha-helix,	beta-
sheet,	 turn	 and	 random	 coil	 (no	 regular	 structure).	 Secondary	 structure	 is	 often
displayed	in	terms	of	the	Ramachandran	angles:	the	twist	of	the	backbone	either	side
of	the	alpha	carbon	atoms	(the	atom	where	the	amino	acid	side	chain	branches).	The
twist	about	 the	peptide	bond	 is	not	 so	descriptive	here	because	 it	 is	 almost	always
very	flat.

Tertiary	 structure:	 this	 is	 how	 secondary-structure	 elements	 of	 one	 polypeptide
chain	come	together	to	form	a	compact	structure.	In	essence	this	is	the	folded,	three-
dimensional	structure	of	one	protein	molecule	in	isolation.

Quaternary	 structure:	 this	 is	 the	 structure	 that	 results	 when	 multiple	 proteins
and/or	proteins	and	other	molecules	(RNA,	DNA,	small	molecules)	come	together	to
form	a	larger	composite	structure	that	is	commonly	termed	a	complex.	Some	protein
complexes	consist	of	multiple	copies	of	 the	same	kind	of	protein	coming	 together,
often	in	a	highly	symmetric	way.

Membrane	proteins
As	already	hinted	at,	 there	are	some	proteins	 that	do	not	 reside	wholly	 in	water,	 instead
they	 lie	 within	 lipid	 membranes4	 of	 cells.	 In	 some	 sense	 the	 lipid	 membrane	 can	 be
viewed	as	an	alternative	solvent	to	water,	and	thus	it	is	a	somewhat	different	environment
for	protein	folding.	It	is	a	very	hydrophobic	(water-hating)	environment,	without	polar	or
hydrogen	 bonding	 groups	 that	 could	 interact	 with	 water,	 and	 thus	 excludes	 water
molecules.	This	exclusion	of	water	is	part	of	the	reason	why	membranes	exist	in	cells:	to
define	different	compartments	to	isolate	different	biochemical	environments,	including	the
limits	 of	 the	 cell	 itself.	 Although	 cell	 membranes	 are	 distinct	 layers,	 made	 of	 fatty
molecules,	 they	 are	 not	 entirely	 static;	 their	 component	 lipid	 molecules,	 and	 other
embedded	molecules	 such	 as	membrane	 proteins,	 can	move	 about	 (diffuse),	 albeit	 in	 a
mostly	 two-dimensional	manner.	While	 the	 lipids	 form	a	barrier,	membrane	proteins	are
inserted	 to	 give	 the	membrane	biological	 function,	 e.g.	 to	 transport	 specific	 compounds
across	the	barrier.

Figure	15.1.	 The	hierarchical	levels	at	which	protein	structures	are	commonly
described.	Proteins	may	be	described	in	various	ways,	from	a	simple	sequence	of	amino
acids	to	a	full	folded,	three-dimensional	structure.	The	primary	structure	of	a	protein	is	the
covalently	bound	chain	of	amino	acid	residues.	The	secondary	structure	represents	the
formation	of	characteristic	hydrogen-bonding	patterns	(and	thus	also	angles	of	twist)
between	its	backbone	peptide	groups.	The	two	most	common	secondary-structure	types
are	the	α-helix	and	the	β-sheet	(formed	of	β-strands,	represented	here	as	arrows).	The
tertiary	structure	represents	the	three-dimensional	shape	of	one	protein	chain	and	the
tertiary	structure	is	how	multiple	three-dimensional	protein	chains	combine	to	form	larger
assemblies.	The	quaternary	structure	represents	the	association	of	multiple	molecules,
which	may	or	may	not	be	of	different	types,	into	a	larger	complex.

The	 membrane-spanning	 part	 of	 a	 membrane	 protein	 is	 commonly	 referred	 to	 as	 a
transmembrane	 domain.	 The	 transmembrane	 part	 may	 only	 be	 a	 small	 part	 of	 a	 larger
protein,	where	the	other	parts	are	in	water,	but	in	some	cases	it	may	comprise	almost	all	of
the	 protein.	 The	 folding	 of	 a	 transmembrane	 protein	 domain	 is	 naturally	 somewhat
different	to	that	of	aqueous	domains.	Indeed,	most	membrane	proteins	are	inserted	through
a	hole	in	a	membrane	as	they	are	made.	However,	it	is	not	the	insertion	into	a	membrane
that	makes	a	protein	a	membrane	protein,	but	rather	its	amino	acid	composition.	Firstly,	a
special	signal	(a	special	kind	of	amino	acid	sequence	at	 the	start	of	 the	protein	chain)	 is
needed	to	get	them	to	the	membrane	when	they	are	made.	Secondly,	in	order	to	persist	in	a
membrane	 the	protein	needs	 to	have	a	 large	number	of	hydrophobic	amino	acids	 (those
that	cannot	form	especially	favourable	interactions	with	water)	to	form	the	transmembrane
domain.	Such	protein	domains	are	much	more	hydrophobic	than	those	that	sit	in	water;	if
they	 were	 not	 so	 they	 would	 simply	 dissolve	 in	 the	 water,	 leaving	 the	 membrane.
Accordingly,	 you	 can	 often	 spot	 a	 transmembrane	 span	 by	 looking	 at	 the	 amino	 acid
sequence,	because	it	has	so	many	hydrophobic	residues	in	a	concentrated	region.

Figure	15.2	(Plate	1).	 The	general	form	of	transmembrane	proteins	that	reside	in	a
lipid	bilayer.	Transmembrane	proteins	are	embedded	within	the	plane	of	a	hydrophobic
cellular	membrane,	which	is	composed	of	a	double	layer	of	lipid	molecules	and	other
membrane	proteins.	In	contrast	to	aqueous	proteins	that	reside	in	water,	a	membrane
protein	adopts	a	structure	so	that	its	hydrophobic	(water-hating)	parts	lie	within	the
membrane,	often	with	hydrophilic	(water-loving)	parts	protruding	into	the	aqueous	regions
either	side	of	the	membrane.	There	are	two	common	types	of	structure	that	transmembrane
proteins	adopt	to	form	a	hydrophobic	membrane	domain:	an	α-helical	bundle	or	a	β-barrel.

Within	 a	 membrane	 the	 polypeptide	 backbone	 of	 a	 protein	 forms	 regular	 hydrogen
bonds	with	itself.	Indeed,	there	is	no	water	to	interact	with	in	any	case.	And	because	the
domain	 crosses	 the	 membrane,	 only	 interacting	 with	 the	 aqueous	 environment	 at	 the
edges,	 there	are	only	 two	basic	ways	 that	 a	protein	can	pack	 into	a	compact,	 functional
shape.	 The	 most	 common	 of	 these	 is	 the	 alpha-helical	 bundle,	 where	 the	 rods	 of	 the
helices	 (i.e.	 the	 hydrogen-bonded	 secondary-structure	 part)	 cut	 across	 the	 plane	 of	 the
membrane	and	lie	roughly	parallel	with	one	another.	The	other	transmembrane	form	is	the
beta-barrel,	where	a	beta-sheet	secondary	structure	zigzags	its	way	across	the	width	of	the
membrane,	each	strand	hydrogen-bonding	with	the	next	to	eventually	form	a	closed	ring.
Although	 these	structural	 strategies	are	different	 they	have	a	 similarity	 in	 that	 they	both
present	 a	 very	 hydrophobic	 surface	 of	 amino	 acid	 side	 chains,	 to	 remain	 stable	 in	 the
membrane.	The	inside	of	such	folds	is	pretty	hydrophobic	too,	otherwise	they	would	tend

to	migrate	 to	 the	water	 surface.	Overall,	 transmembrane	 structures	 are	 notably	 different
from	 the	 aqueous	 proteins,	 and	 they	 are	 important	 to	 consider	 because	 they	 are	 quite
common;	 about	 30%	 of	 all	 proteins	 have	 a	 transmembrane	 domain.	 Unfortunately,
however,	you	will	see	proportionately	few	three-dimensional	structures	for	them,	because
they	 are	 notoriously	difficult	 to	 do	 the	normal	 experiments	with,	 given	 their	 need	 to	 be
surrounded	by	lipids	(or	similar).

RNA	structure
Unlike	 its	 DNA	 cousin,	 RNA	 doesn’t	 form	 long,	 continuous	 double-helical	 structures.
RNA,	once	it	is	synthesised	from	a	DNA	template	during	transcription,	is	a	single	strand
of	 nucleotide	 polymer	 which	 may	 then	 fold	 into	 a	 three-dimensional	 structure.	 Any
structure	might	not	be	of	much	importance	if	the	RNA	is	only	acting	as	a	messenger	for
protein	 synthesis.	 However,	 for	 RNA	molecules	 that	 are	 not	 translated,	 and	 have	 other
roles	in	biology,	their	three-dimensional	conformation	is	often	essential	for	their	function,
just	 as	 it	 is	 for	 proteins.	 Unlike	 proteins,	 however,	 which	 form	 globules	 due	 to	 the
presence	 of	 hydrophobic	 residues,	RNA	 structures	 tend	 to	 form	 initially	 because	 of	 the
hydrogen	bonding	that	occurs	between	pairs	of	bases,	i.e.	the	same	kind	of	complementary
interaction	 that	occurs	between	DNA	strands.	Such	base	pairing	describes	 the	secondary
structure	of	the	RNA.	In	this	way	an	RNA	can	fold	back	on	itself,	or	interact	with	another
RNA	molecule,	to	form	a	small	region	of	double-stranded	duplex.	A	common	feature	seen
in	RNA	structures	 is	stem-loops,	where	 the	 strand	 is	pinched	 together	because	 there	 are
two	relatively	close	complementary	sections	(the	stem),	leaving	a	loop	at	the	end.	The	full
conformation	 (tertiary	 structure)	 is	 a	 three-dimensional	 arrangement	 of	 the	 loops	 and
duplex	regions	relative	to	one	another.	Because	RNA	has	only	a	few,	chemically	similar
kinds	of	residue	its	structural	diversity	is	somewhat	limited	compared	to	that	of	proteins.
Nonetheless,	there	are	some	RNAs	that	are	complex	enough	to	form	biological	catalysts,
just	like	protein	enzymes;	these	are	called	ribozymes.

Determining	macromolecular	structures
There	 are	 a	 variety	 of	 methods	 that	 can	 be	 used	 to	 determine	 the	 three-dimensional
structures	 of	 large	 biological	 molecules,	 to	 various	 degrees	 of	 precision	 or	 resolution.
However,	 the	 vast	 majority	 of	 high-resolution	 structures	 of	 biological	 molecules	 were
determined	 by	 just	 two	 experimental	 techniques:	 X-ray	 crystallography	 and	 nuclear
magnetic	resonance.

X-ray	 crystallography,	 as	 you	 might	 guess,	 works	 by	 forming	 crystals	 made	 of	 the
molecule	 of	 interest,	 and	 is	 the	 most	 common	 form	 of	 macromolecular	 structure
determination.	Growing	 the	 crystals	 to	 start	 with	 is	 often	 the	most	 difficult	 part	 of	 the
process.	 However,	 if	 good	 crystals	 can	 be	 made,	 then	 because	 the	 molecules	 are	 held
together	 in	a	 lattice,	 the	regular	array	of	atom	positions	acts	 to	diffract	a	beam	of	X-ray
radiation,5	 thus	creating	a	diffraction	pattern	 consisting	 of	 spots	 called	 reflections,	once
the	 beam	 has	 passed	 though	 the	 crystal.	 Several	 diffraction	 patterns	 are	 collected	 by
rotating	 the	 sample	 in	 a	 precisely	 known	 way,	 to	 view	 the	 structure	 from	 a	 variety	 of
angles.	The	diffraction	patterns	can	be	combined,	by	mathematical	means	that	we	will	not
go	 into,	 to	 derive	 a	 three-dimensional	 map	 of	 the	 electron	 density	 of	 the	 atoms.	 The

structure	 of	 the	 macromolecule	 is	 then	 determined	 by	 fitting	 its	 covalent	 chemical
structure	into	the	electron	density	to	find	the	best	fit.	For	proteins	this	usually	involves	a
computer	 program	 that	 first	 finds	 the	 backbone	 route	 (fairly	 easy	 because	 of	 the
characteristic	 spacing	 and	 angles	 along	 the	 polypeptide)	 and	 then	 fits	 the	 side	 chains,
although	this	last	part	often	needs	manual	assistance.

Figure	15.3.	 The	sequence,	secondary	structure	and	folded,	three-dimensional
structure	of	an	RNA	molecule.	The	illustrated	RNA	sequence	is	from	a	tRNA	molecule,
which	forms	a	particular	three-dimensional	structure	to	perform	its	biological	role
(transferring	a	particular	amino	acid	to	the	ribosome	particle	during	transcription).	The
RNA	molecule	contains	short	internal	regions	of	complementary	base	pairs	and	folds	by
looping	to	form	hydrogen	bonds	within	itself,	as	illustrated	by	the	secondary	structure.

Nuclear	 magnetic	 resonance	 (NMR)	 is	 the	 second	 most	 common	 form	 of
macromolecular	 structure	 determination.	 Although	 overall	 many	 more	 structures	 have
been	determined	by	crystallography,	NMR	is	particularly	common	for	smaller	structures,
where	it	works	best;	indeed	there	is	generally	a	limit	to	the	size	of	the	molecule	that	can	be
studied	 this	 way.	 NMR	 typically	 uses	 a	 concentrated	 solution	 of	 the	 subject	 (although
solid-state	 samples	 are	 becoming	more	 common),	which	 is	 then	 placed	 in	 an	 extremely
powerful	electromagnet.	In	such	a	strong	magnetic	field	some	of	the	atomic	nuclei,	those
that	 have	 spin-active	 isotopes,	will	 align	with	 the	magnetic	 field.	While	 the	 spin-active
hydrogen-1	 and	phosphorus-31	 isotopes	 are	 very	 abundant	 in	 nature,	 the	 carbon-13	 and
nitrogen-15	isotopes	are	rare	and	thus	biological	samples	are	usually	artificially	enriched
with	 these.	 The	magnetic	 alignments	 of	 spin-active	 atomic	 nuclei	 are	 then	 detected	 by
passing	 a	 pulse	 of	 radio	 waves	 though	 the	 sample,	 so	 that	 they	 resonate.	 Because	 the
resonance	frequencies	of	the	atoms	depend	on	their	chemical	and	structural	environment,
individual	atoms	often	have	distinct	resonant	frequencies.	By	the	use	of	specially	designed
radio	 pulses	 the	 magnetisation	 can	 be	 moved	 from	 one	 atom	 to	 another,	 selectively	 to
covalently	bound	atoms	or	 those	 that	 are	close	 in	 space.	Such	experiments	correlate	 the
observed	resonances	so	that,	often	after	a	lengthy	analysis,	they	can	be	connected	together
to	 identify	 which	 resonance	 goes	 with	 which	 atom	 and	 then	 how	 the	 resonances	 are
arranged	in	space,	thus	yielding	a	three-dimensional	structure.

Comparative	modelling
When	we	do	not	have	direct	experimental	evidence	for	the	structure	of	a	protein,	we	can
sometimes	still	come	up	with	a	good	guess	called	a	model	 if	we	know	the	structure	of	a
closely	 related	 protein.	 This	 method	 is	 known	 as	 comparative	 modelling	 or	 homology

modelling.	 Strictly	 speaking	 even	 the	 structures	 of	 proteins	 determined	 by	 X-ray
crystallography	 and	NMR	can	 also	be	 thought	of	 as	models,	 as	 prior	 information	 about
normal	 molecular	 geometries	 is	 used	 and	 there	 is	 always	 some	 uncertainty.	 However,
direct	experimental	data	constrains	the	models	much	more	(and	generally	crystallography
more	so	than	NMR)	and	the	more	data	you	have	the	closer	the	model	will	be	to	the	native
conformation.

Comparative	 modelling	 relies	 on	 the	 observation	 that	 when	 proteins	 evolve	 their
structures	 change	more	 slowly	 than	 their	 amino	 acid	 sequence	 does.	 Hence,	 if	 we	 can
detect	 two	proteins	 that	have	sufficiently	similar	amino	acid	sequences,	and	 thus	 infer	a
common	ancestry,	then	we	can	be	confident	that	they	have	structural	similarities.	Also,	the
closer	 the	 sequence	 similarity	 between	 two	 such	 homologous	 proteins,	 the	 closer	 their
structural	 similarity	will	be.	There	are	 two	basic	 steps	when	building	a	 structural	model
based	upon	 the	 structure	of	 a	 protein	homologue:	 find	 a	homologue	of	 known	 structure
and	then	use	the	homologue’s	structure	to	guide	the	building	of	a	model.

For	 the	 query	 protein	 of	 unknown	 structure	 we	 use	 its	 sequence	 to	 find	 potential
homologues	which	do	have	a	known	structure,	to	act	as	the	structural	template.	Template
detection	 uses	 a	 special	 kind	 of	 sequence	 alignment,	 which	 is	 especially	 sensitive	 and
accurate.	 Rather	 than	 using	 the	 regular,	 general	 substitution	matrices	 like	 BLOSUM	 or
PAM,	 comparative	modelling	 tends	 to	 use	 family-specific	 scoring	matrices	 or,	 for	 even
better	 homologue	 detection,	 substitution	 tables	 that	 are	 specific	 to	 the	 structural
environment.	 Using	 environment-specific	 substitution	 data	 allows	 an	 alignment	 to	 be
sensitive	 to	 the	 way	 that	 amino	 acid	 changes	 in	 evolution	 depend	 on	 structure.	 For
example,	 serine	 swapping	 for	 proline	 is	 more	 common	 in	 turns	 than	 in	 alpha-helices,
because	 proline	 tends	 to	 disrupt	 helices.	We	 know	 the	 structural	 environment	 for	 each
position	in	a	sequence	alignment	because	we	know	the	structure	of	the	template,	and	the
best	 guess	 is	 that	 the	 query	 sequence	 has	 the	 same	 structural	 environment,	 even	 if	 the
residues	 differ.	 Such	 structural	 environments	 are	 typically	 defined	 by	 combining	 side-
chain	hydrogen	bonding,	solvent	exposure6	and	secondary-structure	categories.	Thus,	for
example,	you	would	have	substitution	matrices	for	exposed	alpha-helix;	buried,	side-chain
hydrogen-bonding	alpha-helix;	exposed	beta-sheet,	to	name	but	a	few.

Once	a	template	is	selected,	and	the	sequence-structure	alignment	tells	us	which	query
residues	are	equivalent	to	which	template	residues,	the	next	step	is	to	build	the	computer
model.	Generally	the	backbone	of	the	model	is	built	first,	then	the	side	chains,	given	that
these	 may	 vary	 significantly	 between	 the	 query	 and	 template,	 and	 finally	 loops	 are
modelled	 in	 the	 regions	 that	 were	 not	 aligned,	 i.e.	 where	 there	 were	 gaps.	 The	 initial
model	 may	 be	 built	 by	 assembling	 fragments	 of	 the	 query	 structure	 using	 the
conformations	borrowed	from	one	or	more	templates.	Alternatively,	it	may	be	built	by	the
application	of	spatial	restraints,	derived	from	the	templates,	on	to	the	model	of	the	query
polypeptide.	 The	 model	 is	 then	 subjected	 to	 a	 minimisation	 procedure	 to	 find	 the
conformation	 that	 best	 satisfies	 these	 restraints.	 A	 popular	 program	 for	 such	 restraint-
based	modelling	is	MODELLER.7

Using	Python	for	macromolecular	structures

In	 the	 following	 Python	 examples	 we	 will	 mostly	 examine	 and	 manipulate	 existing
structural	data,	i.e.	the	coordinates	of	atoms.	The	idea	is	that	you	should	become	familiar
with	 how	 to	 handle	 structural	 information.	 We	 deliberately	 avoid	 going	 into	 the
computational	aspects	of	how	to	determine	structures	in	the	first	place.	We	will	leave	such
vast	and	specialist	topics	to	your	future	diligence.

Obtaining	structure	data
Before	we	 can	begin	 to	manipulate	macromolecular	 structure	 data	we	must	 initially	 get
hold	of	the	coordinate	information.	Firstly,	if	you	are	using	the	downloadable	material	that
goes	with	this	book8	there	will	be	a	few	example	files	of	structures	saved	in	Protein	Data
Bank	 (PDB)	 file	 format.	Alternatively,	we	 could	 use	 the	 power	 of	 Python	 to	 download
data	directly	from	the	PDB	website’s	download	service.	The	following	code	achieves	this
by	making	use	of	the	urllib	module	(in	Python	3;	urllib2	in	Python	2),	which	is	a	standard
part	of	a	Python	installation.	This	module	will	do	all	the	hard	work	and	we	will	use	it	to
send	 a	 request	 to	 the	 PDB	web	 service,	 the	 response	 to	which	will	 be	 a	 plain	 text	 file
containing	 the	 required	 structural	 data,	 and	 all	 we	 need	 to	 do	 is	 specify	 the	 identifier
(pdbId)	of	the	entry	that	we	wish	to	download.

Initially,	we	 import	 the	web-handling	 urlopen()	 function.	 The	module	 this	 resides	 in
changed	from	Python	2	to	Python	3	so	we	first	try	the	Python	3	form	and	if	that	does	not
work	 then	 try	 the	 Python	 2	 form,	 using	 a	 try	 /	 except	 (you	 could	 also	 check	 whether
sys.version[0]	is	‘3’).

try:

		#	Python	3

		from	urllib.request	import	urlopen

except	ImportError:

		#	Python	2

		from	urllib2	import	urlopen

Then	 define	 a	 Python	 string	 that	 contains	 the	 URL	 where	 the	 PDB	 data	 can	 be
downloaded	from,	noting	 that	 it	 is	a	formatted	string	 template	with	%s	 indicating	where
the	database	identifier	will	be	inserted.

PDB_URL	=	'http://www.rcsb.org/pdb/cgi/export.cgi/'	\

										'%s.pdb?format=PDB&compression=None'

The	function	is	then	defined,	and	accepts	an	identifier	and	an	optional	file	name,	where
the	PDB	data	will	be	saved,	as	arguments.	 If	no	 file	name	 is	 specified	 (or	conditionally
evaluates	to	False,	like	an	empty	string)	then	the	file	name	is	specified	by	adding	‘.pdb’	to
the	database	identifier.

def	downloadPDB(pdbId,	fileName=None):

		if	not	fileName:

				fileName	=	'%s.pdb'	%	pdbId

		response	=	urlopen(PDB_URL	%	pdbId)

		data	=	response.read().decode('utf-8')

		fileObj	=	open(fileName,	'w')

		fileObj.write(data)

		fileObj.close()

		return	fileName

We	use	the	web-reading	urlopen()	function	to	generate	what	is	called	a	response	object.
This	object	 is	 then	used	 to	 fetch	 the	PDB	file	 into	a	 string	using	 the	 read()	 function.	 In
Python	3	this	comes	back	as	bytes,	not	as	a	string,	and	in	order	to	be	able	to	write	it	to	a
file	 it	 needs	 to	 be	 converted	 to	 a	 string	 via	 a	 decoding,	 here	 using	 UTF-8.	 This	 extra
decoding	step	is	not	needed	in	Python	2.	This	string	is	then	simply	written	to	file.	The	file
name	that	was	used	is	then	returned	at	the	end.	Note	that	if	you	were	to	use	this	function
regularly	it	would	be	advisable	to	add	a	few	checks,	just	in	case	things	go	wrong;	check
that	the	URL	query	really	worked	and	maybe	warn	the	user	if	attempting	to	overwrite	an
existing	file.	The	function	is	easily	tested,	in	this	case	to	generate	a	file	with	a	defaulted
name	of	‘1A12.pdb’.

fileName	=	downloadPDB('1A12')

For	most	of	the	subsequent	examples	we	will	be	working	with	the	simple	structure	data
model	that	was	described	in	Chapter	8	and	which	is	available	with	the	web	material	in	the
Modelling.py	file.	Hence,	to	be	able	to	test	these	functions,	you	will	need	to	load	the	PDB
file	data	into	our	Structure	class	of	objects	as	illustrated	below:

from	Modelling	import	getStructuresFromFile

strucObjs	=	getStructuresFromFile(fileName)

Of	 course	 our	 data	model	 and	 object	 classes	 for	macromolecular	 structure	 are	 fairly
simple,	so	they	can	be	used	as	examples	in	this	book.	If	you	require	a	more	complex	but
comprehensive	 set	 of	 objects,	 the	 Bio.PDB	 modules	 in	 BioPython	 can	 be	 used	 as	 an
alternative.	Some	of	the	basics	of	these	modules	are	described	briefly	towards	the	end	of
this	chapter.

Simple	geometric	manipulations
With	some	structure	data	 in	hand	 the	 job	now	is	 to	get	used	 to	working	with	 its	various
components.	 Given	 that	 the	 data	 we	 are	 working	 with	 consists	 of	 three-dimensional
coordinates,	many	of	the	manipulations	involve	thinking	about	geometry.	Accordingly,	the
first	 example	 is	 designed	 to	 find	 the	 centre	 of	mass	 (centroid)	 of	 a	 structure.	Although
similar	functionality	has	been	illustrated	earlier,	 in	Chapter	5,	 this	 time	we	are	using	 the
objects	in	our	structure	data	model.	This	is	done	so	that	the	loading	and	saving	of	data	are
entirely	separate	from	the	operations	we	want	to	focus	on,	thus	making	things	clearer	and
more	general.

Firstly,	 a	 dictionary	 is	 defined	 to	 give	 the	 atomic	 numbers	 of	 the	 chemical	 elements
commonly	found	in	biological	molecules.	If	precise	results	were	really	important	to	you,
the	dictionary	would	contain	many	more	elements,	and	list	atomic	masses	rather	than	the
atomic	 number	 (number	 of	 protons);	 however,	 this	 dictionary	 is	 sufficient	 for	 most
purposes;	 the	 most	 important	 thing	 is	 that	 hydrogen	 has	 less	 weight.	 There	 is	 also	 an

import	 for	 the	 NumPy	 function	 zeros,	 so	 the	 centre	 of	 mass	 can	 be	 initialised	 as	 a
numpy.array	object.	Importing	from	the	numpy	module	will	simplify	our	code	by	allowing
us	 to	 perform	 operations,	 quickly	 and	with	 a	minimal	 number	 of	 commands,	 on	 entire
arrays	 of	 numbers	 at	 once	 (see	Chapter	9).	The	numpy	module	 is	 often	 not	 part	 of	 the
standard	Python	 installation,	but	 its	use	 is	 exceedingly	widespread	and	 it	 is	 available	 to
download	via	the	Scientific	Python	website	(see	http://www.scipy.org).

The	function	getCenterOfMass	is	defined,	accepting	a	Structure	object	(as	we	describe
in	Chapter	8)	to	work	on	as	an	argument.	Inside	the	function	the	variables	to	represent	the
central	position	and	the	total	mass	are	set	to	zero.	Then	we	have	three	nested	loops,	which
iterate	over	all	of	the	chains,	residues	and	atoms,	all	according	to	the	structure	of	our	data
model	objects,	thus	accessing	each	of	the	atoms	in	the	structure	in	turn.

from	numpy	import	zeros

ATOMIC_NUMS	=	{'H':1,	'C':12,	'N':14,	'O':16,	'P':31,	'S':32}

def	getCenterOfMass(structure):

		centerOfMass	=	zeros(3,	float)

		totalMass	=	0.0

		for	chain	in	structure.chains:

				for	residue	in	chain.residues:

						for	atom	in	residue.atoms:

								mass	=	ATOMIC_NUMS.get(atom.element,	12.0)

								centerOfMass	+=	mass	*	atom.coords

								totalMass	+=	mass

		centerOfMass	/=	totalMass

		return	centerOfMass

The	 nested	 loops	 get	 to	 the	 individual	 atoms,	whereupon	we	 use	 the	 symbol	 for	 the
atom’s	 chemical	 element	 (atom.element)	 as	 key	 in	 the	 dictionary	 of	 atomic	 numbers	 to
extract	an	approximate	relative	mass	for	the	atom.	Note	that	if	the	key	is	not	present,	we
get	a	mass	equivalent	to	carbon.	The	mass	is	then	multiplied	with	the	atomic	coordinates,
in	 an	 element-wise	 fashion	 given	 that	 centerOfMass	 and	 atom.coords	 are	 both	 NumPy
arrays,	and	also	added	to	the	totals.	In	this	way	heavier	atoms	will	contribute	more	to	the
total	compared	to	lighter	ones,	e.g.	carbon	will	contribute	12	times	as	much	as	hydrogen.
The	mass	is	also	added	to	a	separate	total,	to	record	the	combined	mass	of	all	atoms.	Once
the	loops	are	finished	the	array	for	the	coordinate	totals	is	then	divided	by	the	total	mass	to
get	the	per-atom	average.	Of	course	if	we	were	not	using	a	weighted	summation,	we	could
divide	by	the	number	of	atoms.

We	can	test	the	function	on	data	loaded	as	a	Structure	object:

struc	=	getStructuresFromFile('examples/1A12.pdb')[0]

print(getCenterOfMass(struc))

In	the	next	examples	we	will	actually	change	structural	coordinates.	Usually	we	don’t
want	to	mess	about	with	the	coordinates	too	much;	however,	it	is	very	common	to	move

http://www.scipy.org

(translate)	and	rotate	a	structure,	to	reposition	it	while	still	leaving	the	relative	position	of
the	 coordinates	 unaffected.	 The	 Python	 example	 for	 rotating	 a	 structure	 involves	 using
what	is	often	called	the	rotation	matrix.	For	three-dimensional	space	a	rotation	matrix	is	a
three	by	three	square	array	of	numbers	which	represent	the	transformation	of	Cartesian	(x,
y	and	z)	coordinates.	In	essence,	to	use	the	matrix	we	take	a	vector	containing	a	positional
coordinate	and	multiply	it	(matrix	style)	to	get	a	new	vector,	which	is	now	rotated	relative
to	the	origin	(the	zero	point	on	all	axes).

The	function	 that	generates	 the	rotation	matrix	 is	 the	one	described	 in	Chapter	9,	and
can	be	imported	from	the	corresponding	example	module	and	is	used	inside	the	function
below,	which	 takes	a	given	 structure	and	 rotates	 it	by	a	given	angle	about	a	given	axis.
Naturally	 the	 molecular	 structure,	 axis	 vector	 and	 angle	 are	 passed	 in	 as	 arguments,
although	 we	 have	 defaults	 set	 to	 rotation	 about	 the	 x	 axis	 (1,0,0)	 and	 zero	 angle.	 The
getRotationMatrix	function	operates	on	the	axis	and	angle	to	produce	the	matrix,	and	we
convert	 it	 to	 an	 array	 so	 that	 we	 can	 use	 the	 dot()	 function,	 which	 calculates	 the	 dot
product	 between	 arrays;	 and	 if	 we	 use	 it	 on	 matrices	 this	 is	 the	 same	 thing	 as	 matrix
multiplication.	With	the	rotation	matrix	defined	the	task	is	then	to	loop	through	all	of	the
chains,	residues	and	atoms,	to	get	each	atom	in	turn	so	that	we	can	rotate	its	coordinates.

from	numpy	import	array,	dot

from	Maths	import	getRotationMatrix

from	math	import	pi

def	rotateStructure(structure,	axis=(1,0,0),	angle=0):

		rMatrix	=	array(getRotationMatrix(axis,	angle))

		for	chain	in	structure.chains:

				for	residue	in	chain.residues:

						for	atom	in	residue.atoms:

								newCoords	=	dot(rMatrix,	atom.coords)

								atom.coords	=	newCoords

rotateStructure(struc,	(0,1,0),	pi/2)

For	 each	 atom	 we	 calculate	 the	 dot	 product	 of	 the	 rotation	 matrix	 and	 the	 original
coordinate	 array;	 this	 is	 performing	 the	matrix	multiplication	 operation.	 Once	 the	 new,
rotated,	 coordinates	 are	 fully	 defined,	 the	 attribute	 of	 the	 atom	 object	 is	 updated
accordingly	 (remembering	 that	 it	 is	 stored	 as	 an	 array).	 Note	 that	 because	 we	 are
manipulating	the	structure	internally	we	don’t	need	to	return	anything	from	the	function.
Given	that	we	passed	the	structure	into	the	function	in	the	first	place	it	will	be	available
after	the	function	is	run,	albeit	now	with	rotated	atom	coordinates.

Representing	structures	as	NumPy	arrays
The	examples	above	used	standard	Python	loops	and	didn’t	make	full	use	of	the	NumPy
array	objects	that	store	the	atom	coordinates.	Accordingly,	given	that	each	atom	position	is
described	 as	 a	 single	 NumPy	 array	 (a	 vector	 of	 x,	 y	 and	 z	 coordinates)	 each	 atomic
coordinate	 can	 be	 placed	 inside	 another	 larger	 array,	 to	 form	 a	 two-dimensional	matrix
which	 represents	 the	 whole	 structure.	 To	 be	 able	 to	 work	 with	 whole	 2D	 arrays	 of

coordinates	we	must	first	transfer	each	atom’s	coordinates	from	the	data	model	into	the	2D
array.	Once	defined,	 the	2D	array	data	can	be	manipulated	without	having	 to	 repeatedly
loop	through	each	atom	in	turn;	most	operations	can	work	on	all	atoms	at	the	same	time.
Internally	there	will	actually	be	looping	going	on,	but	we	do	not	have	to	think	about	that
and	can	trust	that	it	will	occur	in	an	efficient	and	expected	manner.

The	 following	 function	 loops	 through	 all	 of	 the	 atoms	 in	 a	 structure	 and	 places	 the
coordinates	 in	a	NumPy	array	object.	This	 function	 is	 thus	general	and	can	be	used	any
time	 we	 wish	 to	 move	 from	 the	 hierarchical	 molecular	 data	 model	 to	 a	 numeric	 array
system.	 Firstly,	we	 import	 the	 required	 functions	 from	 the	 numpy	module:	 array	which
will	convert	a	Python	list	or	tuple	and	dot	for	matrix	multiplication.

from	numpy	import	array,	dot

def	getAtomCoords(structure):

		coords	=	[]

		atoms	=	[]

		for	chain	in	structure.chains:

				for	residue	in	chain.residues:

						for	atom	in	residue.atoms:

								coords.append(atom.coords)

								atoms.append(atom)

		return	atoms,	array(coords)

Inside	the	function	we	simply	loop	through	the	chains,	residue	and	atoms	and	append
the	 atom	 coordinates	 to	 a	 larger	 list	 of	 coordinates.	We	 also	 collect	 a	 list	 of	 the	 atom
objects	at	 the	same	time,	so	 that	we	will	know	which	coordinate	goes	with	which	atom;
obviously	useful	if	we	want	to	update	the	atom	positions	after	changing	the	coordinates.
Finally,	we	return	 the	 list	of	atoms	and	 the	coordinates,	 taking	special	notice	of	 the	 fact
that	the	coordinates	are	converted	from	the	normal	Python	list	into	a	NumPy	array	object
(which	here	will	be	two-dimensional).

We	will	now	use	this	array-generating	function	within	another	function	that	rotates	an
input	structure.	This	does	exactly	the	same	job	as	the	rotation	function	described	earlier,
but	 the	 innards	 are	 much	 simpler	 to	 write	 because	 we	 use	 one	 2D	 array	 for	 all	 the
coordinates	and	avoid	writing	loops.	As	before,	the	function	takes	an	input	angle	and	axis
to	define	a	rotation	matrix	which	is	converted	to	an	array.	The	getAtomCoords()	function
just	described	is	used	to	get	the	array	object	that	represents	all	of	the	coordinates.

def	rotateStructureNumPy(structure,	axis=array([1,0,0]),	angle=0):

		rMatrix	=	array(getRotationMatrix(axis,	angle))

		atoms,	coords	=	getAtomCoords(structure)

		coords	=	dot(coords,	rMatrix.T)

		for	index,	atom	in	enumerate(atoms):

				atom.coords	=	list(coords[index])

The	 actual	 rotation	 operation	 is	 exceedingly	 simple:	 we	 just	 use	 the	 NumPy	 dot()
operation	to	multiply	the	coordinate	array	by	the	rotation	matrix;9	this	can	be	described	as
applying	a	coordinate	transformation.	Finally,	the	updated	coordinates	are	used	to	update
the	coordinates	of	the	atom	objects.	Note	that	we	loop	through	the	atom	objects	with	the
enumerate()	 function,	 to	get	not	only	 the	atom	but	also	an	 index	position.	This	 index	 is
then	used	to	identify	the	correct	location	in	the	coordinate	array,	given	that	the	order	of	the
atom	 list	 exactly	 matches	 the	 order	 of	 coordinates;	 the	 getAtomCoords()function
guarantees	this.	The	position	for	each	atom	is	updated	in	one	operation	by	assigning	one
coordinate	array	 (containing	 three	numbers)	 to	 the	 three	atom	attributes,	 i.e.	 the	array	 is
unpacked	into	separate	components.

Here	we	test	the	function	by	rotating	the	previously	loaded	structure’s	coordinates	π/2
radians	(90°),	about	 the	y	axis.10	Because	 the	coordinates	are	modified	 internally	on	 the
atom	objects,	there	is	no	value	to	catch	when	the	function	is	called.	Note	that	the	numeric
constant	pi	is	not	known	to	Python	until	we	import	it	from	the	math	module.

from	math	import	pi

rotateStructureNumPy(struc,	(0,1,0),	pi/2)

The	next	example	function	moves	on	from	rotation	to	do	an	arbitrary	transformation	of
the	 structural	 coordinates.	 Such	 a	 change	 is	 called	 an	 affine	 transformation	 in	 maths-
speak,	and	involves	a	 transformation	matrix,	which	may	or	may	not	be	a	rotation,	and	a
translation:	a	vector	to	specify	movement	from	one	location	to	another.	The	transformation
matrix	may	be	used	to	stretch,	reflect,	shrink,	enlarge	and	rotate	the	structure.

Firstly,	 we	 import	 the	 identity	 function	 from	 the	 NumPy	 module,	 which	 is	 used	 to
create	an	identity	matrix,	where	the	diagonal	elements	are	one	and	the	other	elements	are
zero.	The	identity	matrix	represents	no	transformation	at	all	when	used	in	multiplication,
just	as	normal	multiplication	by	1	doesn’t	change	a	number.	We	use	an	identity	matrix	of
size	three11	as	the	default	value	of	the	transform	variable,	so	that	unless	we	state	otherwise
no	matrix	transformation	occurs.	The	default	for	the	translation	is	a	vector	of	zeros;	so	no
movement	occurs.

from	numpy	import	identity

def	affineTransformStructure(structure,	transform=identity(3),

																													translate=(0,0,0)):

		atoms,	coords	=	getAtomCoords(structure)

		coords	=	dot(coords,	transform.T)

		coords	=	coords	+	translate

		for	index,	atom	in	enumerate(atoms):

				atom.coords	=	coords[index]

As	with	the	rotation	example	we	use	the	getAtomCoords()	to	get	the	list	of	atom	objects
and	 the	 corresponding	 array	 of	 coordinates.	 The	 dot()	 call	 is	 used	 to	 apply	 the
transformation,	 i.e.	by	matrix	multiplication.	The	translation,	 to	move	the	coordinates,	 is

achieved	by	simply	adding	the	translate	vector,	containing	the	numbers	to	add	to	the	x,	y
and	z	locations,	to	the	coordinate	array.	Although	the	coords	variable	is	a	two-dimensional
numpy.array,	and	 the	 translate	vector	 is	only	one-dimensional	 (just	 three	values,	one	for
each	axis),	the	array	addition	repeats	over	all	of	the	rows	in	the	larger	array.	This	addition
does	 a	 simple	 element-wise	 addition	 for	 the	 x,	 y	 and	 z	 numbers	 in	 each	 atom	 row;
numbers	at	equivalent	columns	in	the	two	arrays	are	added	together	to	make	a	new	array
of	the	same	size	as	the	coordinate	array.

Below,	the	function	is	tested	on	a	loaded	structure	with	a	transformation	that	creates	a
mirror	 image	(the	coordinates	 take	on	the	opposite	sign;	negative	to	positive,	positive	 to
negative)	and	a	translation	which	is	a	movement	of	10	units	along	the	x	and	y	axes.	Using
the	 basic	 PDB	 writer	 function	 writeStructureToFile()	 that	 is	 available	 in	 the	 on-line
material	we	can	write	the	modified	structure,	with	transformed	coordinates,	to	a	new	file
so	that	we	can	view	the	structure	in	graphics	software	to	see	the	result	of	our	handiwork.
Using	 graphical	 software	 to	 view	 molecular	 structures	 will	 be	 discussed	 later	 in	 this
chapter.

mirrorTransform	=	array([[-1,0,0],	[0,-1,0],	[0,0,-1]])

translate	=	array([10.0,10.0,0.0])

affineTransformStructure(struc,	mirrorTransform,	translate)

from	Structures	import	writeStructureToFile

writeStructureToFile(struc,	'testTransform.pdb')

Distances	and	angles
The	next	 examples	 involve	 looking	 inside	 structures	 to	extract	particular	measurements,
like	atomic	distances	and	angles.	Specifically,	the	angles	we	will	be	looking	at	are	torsion
(or	dihedral)	angles,	which	represent	the	angle	of	twist	about	an	axis;	here	the	axis	will	be
along	a	chemical	bond	and	the	twist	will	be	the	relative	orientation	of	 two	neighbouring
bonds.

Firstly,	 to	 get	 the	 distances	 between	 two	 atoms	 is	 very	 easy:	 we	 simply	 get	 the
coordinates	 of	 each	 atom,	 get	 the	 difference	 between	 the	 coordinates	 (stored	 in	 the
variable	deltas),	add	together	the	squares	of	these	differences,	and	finally	take	the	square
root	of	 the	 total.12	Naturally	because	we	have	NumPy	arrays	most	of	 this	 is	done	 in	an
element-wise	manner.	It	should	be	noted	that	the	sum	of	squares	can	be	calculated	as	the
dot	 product	 of	 deltas	with	 itself	 (though	we	 could	 also	 do	 (deltas*deltas).sum(axis=1)).
Because	we	are	using	dot	 on	one-dimensional	 arrays	 (vectors)	 in	 this	 instance	we	get	 a
single	number	out,	i.e.	we	are	not	using	it	for	matrix	multiplication.	So	given	two	of	our
Structure.Atom	objects,	named	atomA	and	atomB,	we	do:

from	math	import	sqrt

deltas	=	atomA.coords	–	atomB.coords

sumSquares	=	dot(deltas,	deltas)

distance	=	sqrt(sumSquares)

We	move	on	from	this	toy	example	to	a	function	that	takes	a	structure	and	gives	back	a
list	of	atoms	that	are	within	a	certain	distance	from	a	specified	point.	This	might	be	useful
if	you	wanted	to	work	out	which	other	atoms	a	given	atom	may	be	interacting	with.	The
function	 takes	 a	 structure	object,	 position	and	a	distance	 limit,	 to	 specify	 the	 catchment
radius	relative	to	the	position.	Initially	within	the	function	a	blank	list	is	created	to	collect
the	close	atoms,	then	we	convert	the	input	xyz	location	into	a	NumPy	array	and	we	extract
the	 coordinate	 array	 from	 the	 structure	 object	 as	 illustrated	 previously.	 Next	 we	 define
limit2	as	the	square	of	the	limiting	search	radius.	This	is	done	so	that	when	we	are	looking
though	the	coordinates	we	do	not	have	to	repeatedly	calculate	square	roots,	which	would
needlessly	 slow	 things	down.	Given	 that	distances	are	always	positive	numbers,	we	can
say	whether	one	distance	is	larger	than	another	(the	search	limit	in	this	case)	by	comparing
the	squares	of	the	distances,	rather	than	the	actual	distances.

def	findCloseAtoms(structure,	xyz,	limit=5.0):

		closeAtoms	=	[]

		xyz	=	array(xyz)

		atoms,	coords	=	getAtomCoords(structure)

		limit2	=	limit	*	limit

		deltas	=	coords	–	xyz

		squares	=	deltas	*	deltas

		sumSquares	=	squares.sum(axis=1)

		boolArray	=	sumSquares	<	limit2

		indices	=	boolArray.nonzero()[0]	#	Array	for	first	and	only	axis

		closeAtoms	=	[atoms[i]	for	i	in	indices]

		return	closeAtoms

Next	in	the	function	deltas	is	calculated	as	the	difference	from	the	atom	coordinates	to
the	 xyz	 position.	 The	 square	 distance	 for	 each	 atom’s	 separation	 is	 calculated	 by
multiplying	 the	 differences	 with	 themselves	 and	 then	 summing	 along	 the	 spatial
dimensions	(axis=1)	 to	give	 sumSquares.	These	 are	 then	 compared	 to	 the	 square	 of	 the
limiting	radius.	Using	comparisons	on	NumPy	arrays	will	act	in	an	element-wise	manner
to	generate	an	array	of	Boolean	values.	Hence	boolArray	will	have	 true	elements	where
the	square	distance	is	less	than	the	limit.	The	indices	of	the	non-zero	(true)	elements	are
extracted	with	.nonzero(),	taking	note	that	this	gives	a	tuple	with	separate	indices	for	each
array	axis.	Thus,	because	boolArray	 is	only	one-dimensional,	here	we	 take	 the	 first	 and
only	 array	 of	 indices	 ([0]).	 These	 indices	 can	 finally	 be	 used	 to	 select	 the	 appropriate
group	of	close	atoms	from	the	larger	list	via	a	list	comprehension.	This	list	of	close	atoms
is	 then	passed	back	at	 the	end	of	 the	function.	We	can	test	 the	function	with	a	Structure
object,	 here	 finding	 atoms	 that	 are	 close	 to	 the	 centre	 of	 mass	 coordinates	 that	 were
determined	earlier:

atoms	=	findCloseAtoms(struc,	(18.89,	0.36,	1.24),	5.0)

for	atom	in	atoms:

		print(atom.residue.code,	atom.name)

Now	we	will	move	on	to	calculate	the	twist	angle	between	atoms,	imagined	as	a	group

of	 four	 atoms	 in	 a	 rough	 rectangle,	 connected	 by	 three	 bonds	 so	 that	 three	 edges	 are
connected	 and	 one	 edge	 is	 not.	The	 angle	we	will	 be	measuring	 is	 the	 amount	 of	 twist
between	 the	 first	 and	 last	 bonds,	 around	 the	 central	 bond.	 This	 can	 be	 visualised	 by
looking	directly	along	the	central	bond,	so	that	the	other	two	bonds	make	a	‘V’	shape;	the
torsion	angle	is	the	angle	made	by	this	shape.

We	can	use	the	function	described	in	Chapter	9	that	calculates	torsion	angles	to	measure
the	ϕ	and	ψ	angles	for	an	amino	acid	residue	we	find	in	a	protein	structure.	These	angles
represent	 the	 twist	of	 the	polypeptide	chain	backbone	either	 side	of	 the	 residue’s	 alpha-
carbon	 atom	 position	 (where	 the	 side	 chain	 comes	 out).	 The	 input	 to	 the	 function	 is
naturally	 a	 Residue	 object,	 from	 our	 structure	 data	 model,	 and	 an	 option	 to	 specify
whether	we	want	the	angle	to	be	represented	in	units	of	degrees	(the	default)	or	in	radians.
Because	of	the	choice	of	angle	units,	we	also	import	a	standard	function	which	allows	us
to	do	the	conversion	between	degrees	and	radians.13

from	Maths	import	calcTorsionAngle

from	math	import	degrees

def	getPhiPsi(residue,	inDegrees=True):

Initially	 the	ϕ	 and	ψ	 angles	 are	 initialised	 as	None,	 so	 that	 if	we	 fail	 to	 find	 certain
backbone	 atoms	 (this	 happens	 for	 the	 first	 and	 last	 residue	 of	 a	 chain)	 there	 is	 an
indication	that	the	angles	were	not	definable.	Next	we	get	a	list	of	all	of	the	residues	in	the
input	residue’s	chain,	so	that	we	can	get	hold	of	the	residues	either	side.	Given	that	we	are
using	our	data	model	objects,	getting	the	list	of	residues	is	a	simple	matter	of	first	finding
the	Chain	object	 to	which	 the	 input	Residue	object	belongs	(this	 is	 the	parent	 link),	and
then	following	the	.residues	link	to	get	the	list	of	all	residues	(children)	for	the	chain.

phi	=	None

psi	=	None

chain	=	residue.chain

residues	=	chain.residues

For	 the	 input	 residue	 we	 find	 three	 Atom	 objects	 representing	 the	 polypeptide
backbone,	 by	 fetching	 atoms	with	 the	 appropriate	 names.	 For	 each	 atom	we	 collect	 the
array	of	their	coordinates.

atomN		=	residue.getAtom('N')

atomCa	=	residue.getAtom('CA')

atomC		=	residue.getAtom('C')

coordsN		=	atomN.coords

coordsCa	=	atomCa.coords

coordsC		=	atomC.coords

A	 positional	 index	 is	 defined	 to	 represent	 the	 location	 of	 the	 current	 residue	 in	 the
polypeptide	chain.

index	=	residues.index(residue)

if	index	>	0:

An	index	greater	than	zero	means	we	are	not	at	the	start	and	thus	can	find	the	previous
residue	in	the	chain,	by	taking	one	from	the	index	and	fetching	the	residue	from	the	list.
We	use	the	previous	residue	to	fetch	the	atom,	and	then	the	coordinates,	for	the	preceding
carbonyl	carbon	(‘C’)	atom,	which	is	the	last	of	the	positions	required	to	calculate	the	phi
angle.	Armed	with	the	four	coordinates,	and	using	them	in	the	correct	order,	the	angle	is
calculated	using	the	function	described	previously.	Then	the	angle	is	converted	to	units	of
degrees	if	required.

residuePrev	=	residues[index-1]

atomC0	=	residuePrev.getAtom('C')

coordsC0		=	atomC0.coords

phi	=	calcTorsionAngle(coordsC0,	coordsN,	coordsCa,	coordsC)

if	inDegrees:

		phi	=	degrees(phi)

If	 the	 index	 is	 less	 than	 the	 last	 possible	 position,	 then	we	 are	 able	 to	 find	 the	 next
residue	in	the	chain,	by	adding	one	to	the	index,	and	thus	also	are	able	to	calculate	the	psi
angle	 in	 the	 same	manner.	 This	 torsion	 angle	 requires	 the	 coordinates	 of	 the	 backbone
nitrogen	 atom	 in	 the	 next	 residue,	 i.e.	 it	 is	 on	 the	 opposite	 side	 of	 the	 input	 residue,
compared	to	phi.

if	index	<	(len(residues)-1):

		residueNext	=	residues[index+1]

		atomN2	=	residueNext.getAtom('N')

		coordsN2		=	atomN2.coords

		psi	=	calcTorsionAngle(coordsN,	coordsCa,	coordsC,	coordsN2)

		if	inDegrees:

				psi	=	degrees(psi)

return	phi,	psi

Finally,	the	pair	of	angles	is	returned	from	the	function.	We	can	test	the	code	by	calling
the	 function	on	all	of	 the	 residues	 in	a	 structure	 (although	strictly	speaking	we	ought	 to
check	that	it	is	a	protein	first).	Note	that	we	exclude	the	first	and	last	residues	by	using	the
slice	notation	[1:-1].	The	measured	ϕ	and	ψ	angles	are	placed	into	separate	lists,	which	are
then	passed	as	input	to	a	function	from	the	pyplot	module	to	generate	a	scatter	plot	which
allows	 us	 to	 visualise	 the	 data	 (see	 http://www.cambridge.org/pythonforbiology	 for
Matplotlib	download	sites).	This	kind	of	display	is	called	a	Ramachandran	plot,	after	one
of	 its	 inventors,	 and	 will	 often	 have	 background	 colours	 indicating	 the	 likelihood	 of
finding	different	 angles.	Positions	of	 the	ϕ	 and	ψ	 angles	 on	 the	Ramachandran	plot	 are
indicative	of	 the	 secondary	 structure	of	 the	 residues.	Although	each	 secondary-structure
type	(defined	in	terms	of	hydrogen	bonding)	will	cover	a	range	of	angle	values,	a	typical
alpha	helix	will	be	at	(ϕ	=	−60°,	ψ	=	−45°)	and	a	typical	beta-strand	at	(ϕ	=	−135°,	ψ	=

http://www.cambridge.org/pythonforbiology

135°).

from	matplotlib	import	pyplot

phiList	=	[]

psiList	=	[]

for	chain	in	struc.chains:

		for	residue	in	chain.residues[1:-1]:

				phi,	psi	=	getPhiPsi(residue)

				phiList.append(phi)

				psiList.append(psi)

pyplot.scatter(phiList,	psiList)		#	Scatter	plot

pyplot.axis([−180,180,−180,180])		#	Set	bounds

pyplot.show()

Note	 that	 if	 you	 have	 a	 number	 of	 structural	models,	 for	 example	 from	 an	 ensemble
calculated	by	NMR,	then	you	may	wish	to	calculate	the	average	of	torsion	angles.	There	is
a	function	described	in	Chapter	9	which	does	this,	given	that	angles	are	a	cyclic	measure
(e.g.	−180°,	180°	and	540°	mean	 the	 same	 thing)	and	a	 simple	numerical	 average	 is	no
good.

Structural	subsets
Next	we	will	 consider	dissection	of	molecular	 structures	 into	 smaller	parts.	This	 sort	of
thing	is	done	in	many	instances.	You	may,	for	example,	want	to	remove	a	flexible	region
from	the	analysis	of	your	molecule.	Alternatively,	you	might	want	to	select	only	a	certain
kind	of	residue	or	certain	kinds	of	atoms.	The	latter	may	be	done	to	define	the	backbone
path	 of	 the	molecular	 chain,	which	 is	 useful	when	 comparing	 structures	with	 dissimilar
sequences.

The	example	Python	function	we	describe	makes	a	subset	of	a	structure	by	making	a
restricted	 copy	 of	 another	 structure,	 including	 only	 the	 atoms	 which	 are	 required.
Alternative	methodologies	might	be	to	remove	atoms	from	an	existing	structure,	or	only
load	 certain	 atoms	 in	 the	 first	 place,	 and	 these	 approaches	may	 save	 a	 bit	 of	 computer
memory.	Firstly	we	import	 the	definitions	of	 the	classes	of	structural	objects	we	wish	to
make:

from	Modelling	import	Structure,	Chain,	Residue,	Atom

A	 function	 is	 then	 defined	 which	 takes	 an	 input	 structure	 and	 three	 other,	 optional,
arguments	 that	 specify	 which	 chains,	 residues	 and	 atoms	 to	 consider.	 If	 any	 of	 these
arguments	 is	 not	 specified	 (so	defaults	 to	None),	 it	 is	 taken	 to	mean	 that	 no	 filtering	 is
done	 for	 that	 kind	 of	 component	 and	 all	 are	 included.	 The	 chainCodes	 argument	 is
assumed	to	be	a	collection	of	letter	codes,	e.g.	[‘A’,	‘B’],	the	residueIds	is	assumed	to	be	a
collection	of	residue	numbers	and	atomNames,	as	you	might	expect,	a	collection	of	atom
names.	You	 can	use	 any	of	 the	 common	Python	 collection	 types	 here,	 list,	 tuple	 or	 set,
although	 these	will	 be	 converted	 to	 sets	using	 set()	 to	 remove	 repeats	 and	give	 the	best
speed	performance.

def	filterSubStructure(structure,	chainCodes=None,

																							residueIds=None,	atomNames=None):

Within	the	function	we	determine	a	name	for	the	new	Structure	object	we	are	going	to
make	by	using	the	template	Structure	object’s	name,	and	then	adding	‘_filter’	plus	other
strings	that	list	which	chain	codes,	residue	numbers	(converted	to	strings)	and	atom	names
we	have	selected.	Note	how	we	first	check	to	see	if	a	chain,	residue	or	atom	specification
was	defined	(not	None,	and	hence	true)	before	the	name	is	extended.

name	=	structure.name	+	'_filter'

if	chainCodes:

		name	+=	'	'	+	','.join(chainCodes)

		chainCodes	=	set(chainCodes)

if	residueIds:

		name	+=	'	'	+	','.join([str(x)	for	x	in	residueIds])

		residueIds	=	set(residueIds)

if	atomNames:

		name	+=	'	'	+	','.join(atomNames)

		atomNames	=	set(atomNames)

Next	 the	class	definition	for	Structure	 is	used	 to	make	a	new	 instance	of	 that	kind	of
object,	which	we	 refer	 to	 as	 filterStruc.	Although	we	 defined	 a	 new	name	 for	 this	 new
object,	 we	 keep	 the	 conformation	 number	 and	 PDB	 identifier	 from	 the	 original;	 these
indicate	the	origin	of	the	data,	and	have	not	changed.

conf	=	structure.conformation

pdbId	=	structure.pdbId

filterStruc	=	Structure(name=name,	conformation=conf,	pdbId=pdbId)

The	main	body	of	the	function	is	to	loop	through	all	of	the	chains,	residues	and	atoms
of	 the	 input	 selecting	 only	 those	 we	 wish	 to	 duplicate.	 Thus	 first	 we	 go	 through	 each
Chain	object	and,	if	we	have	specified	a	filtering	list	for	its	code	(chainCodes),	we	exclude
any	 that	are	not	mentioned;	 the	 loop,	and	hence	chain,	 is	 skipped	by	using	 the	continue
command.	If	a	chain	is	not	excluded	then	we	initialise	a	list	that	will	contain	residues	to
copy:

for	chain	in	structure.chains:

		if	chainCodes	and	(chain.code	not	in	chainCodes):

				continue

		includeResidues	=	[]

For	 each	 included	 chain	 we	 loop	 through	 its	 Residue	 objects	 and	 perform	 a	 similar
check	to	see	if	the	residue	should	be	included.	If	the	residueIds	argument	was	filled	but	the
residue	number	is	not	present	then	that	residue	is	skipped.	Otherwise,	we	go	on	to	collect	a
list	of	atoms.

for	residue	in	chain.residues:

		if	residueIds	and	(residue.seqId	not	in	residueIds):

				continue

		includeAtoms	=	[]

Again,	 in	 the	 same	sort	of	way	we	check	 to	 see	 if	 each	atom’s	name	 is	 in	our	 list	of
things	to	include,	and	if	successful	the	list	of	template	Atom	objects	is	expanded.

for	atom	in	residue.atoms:

		if	atomNames	and	(atom.name	not	in	atomNames):

				continue

		includeAtoms.append(atom)

If	we	have	notionally	decided	to	include	a	particular	residue	but	that	residue	does	not
contain	any	of	the	required	atom	types,	then	there	is	no	need	to	copy	this	residue	at	all.14
When	there	are	some	atoms	to	copy	for	this	residue,	i.e.	includeAtoms	is	not	empty,	both
the	list	of	atoms	and	the	Residue	object	are	placed	in	the	includeResidues	list.	We	could
have	placed	the	atoms	in	a	big	list	on	their	own,	but	it	is	convenient	to	keep	them	with	the
corresponding	 residue,	 given	 that	we	 need	 to	 specify	 the	Residue	 (parent	 object)	when
making	an	Atom	(child	object).

if	includeAtoms:

		includeResidues.append((residue,	includeAtoms))

If	the	residue	list	is	not	empty,	we	can	make	a	new	chain	in	the	new	Structure	object,
which	is	passed	in	at	Chain	creation	to	specify	the	parent	link.	With	the	chain	now	made
we	 loop	 through	 the	 list	of	 residues	and	corresponding	atoms	 to	make	new	Residue	and
Atom	objects	in	the	new	structure.	Notice	that	we	use	the	attributes	of	the	original	objects
when	making	the	new	ones.	Thus,	the	residue	copies	will	have	the	same	number	and	code,
and	the	new	atoms	will	have	the	same	names	and	coordinates	(albeit	in	a	new	array).	Also,
remember	when	making	these	objects	within	our	structure	we	always	have	to	specify	the
parent	object,	going	up	the	data	model	hierarchy.

if	includeResidues:

		filterChain	=	Chain(filterStruc,	chain.code,	chain.molType)

		for	residue,	atoms	in	includeResidues:

				filterResidue	=	Residue(filterChain,	residue.seqId,

																												residue.code)

				for	atom	in	atoms:

						coords	=	array(atom.coords)

						Atom(filterResidue,	name=atom.name,	coords=coords)

Finally	in	the	function	the	new	Structure	object,	with	selectively	copied	components,	is
passed	back:

return	filterStruc

The	function	can	be	tested	by	specifying	the	chain,	residue	and	atom	selection.	Here	we
select	chain	‘A’,	all	 residues	(so	 the	filter	 is	None)	and	 the	backbone	heavy	atoms	 [‘N’,
‘CA’,	‘C’].

chainCodes	=	set(['A'])

residueIds	=	None																#	No	residue	filter:	all	of	them

atomNames		=	set(['N','CA','C'])	#	Heavy	backbone	atoms	(not	H)

chain_A_backbone	=	filterSubStructure(struc,	chainCodes,

																																						residueIds,	atomNames)

We	 could	 make	 a	 dedicated,	 streamlined	 function	 to	 make	 a	 complete	 copy	 of	 a
structure.	 However,	 using	 the	 above	 filterSubStructure()	 function	 without	 passing	 any
chain,	residue	or	atom	selection	results	in	a	full	copy	of	the	input	structure.	Thus	we	could
be	cheeky	and	do	the	following	to	pretend	we	had	a	dedicated	copy	function:

def	copyStructure(structure):

		return	filterSubStructure(structure,	None,	None,	None)

Coordinate	superimposition
In	accordance	with	earlier	examples	that	show	how	sequences	can	be	aligned,	this	section
describes	how	coordinates	 in	 three-dimensional	 space	may	be	aligned	by	superimposing
atom	 positions.	 Naturally	 this	 is	 a	 geometric	 operation	 that	 allows	 us	 to	 compare	 the
shapes	 of	 structures,	 rather	 than	 a	 per-residue	 analysis.	 Essentially	 the	 coordinate
alignment	 involves	moving	the	centres	of	 the	structures	 to	 the	same	point	(translation	to
the	 centre)	 and	 then	 finding	 the	 optimal	 rotation	 which	 gives	 the	 minimal	 deviation
between	 corresponding	 pairs	 of	 coordinates;	we	 superimpose	 equivalent	 atoms	 to	 place
them	as	close	 together	as	possible	without	distorting	 the	shape	of	 the	structures.	Overall
this	 procedure	 is	 commonly	 used	 to	 superimpose	 structures	 with	 identical	 atoms,	 i.e.
different	structural	conformations	(models).	However,	we	can	also	attempt	to	superimpose
structures	of	molecules	with	different	atoms	(different	residue	sequences).	Below	there	is
an	example	of	this,	where	we	find	a	common	set	of	equivalent	atoms,	which	can	be	used
to	guide	 two	different	molecules.	There	may	be	better	ways	 to	do	 this,	 but	 it	 illustrates
how	it	can	be	done	with	relatively	simple	Python.

Note	 that	 similar	 functionality	 is	 also	 available	 via	 BioPython,	 by	 use	 of	 the
Bio.PDB.Superimposer	object.	However,	we	define	our	own	functionality	here	to	explain
the	basics	of	what	is	happening	and	to	give	experience	with	Python.	The	following	Python
examples	work	with	the	structure	data	model	we	have	described	and	are	split	into	several
separate	 functions,	 so	 that	 we	 can	more	 clearly	 explain	 what	 is	 going	 on	 at	 each	 step.
Although	these	procedures	are	usually	applied	to	structures	of	proteins,	it	is	possible	to	do
the	same	thing	to	other	kinds	of	molecule,	including	RNA	and	DNA.

Centring	coordinates
Firstly	 in	 this	 section	 we	 will	 need	 to	 import	 some	 mathematical	 functions	 from	 the
numpy	module	to	allow	us	to	efficiently	work	with	arrays	of	numbers.	Note	especially	that
the	sqrt	and	exp	functions	have	the	same	names	as	the	equivalents	in	the	math	module,	but
work	on	both	NumPy	arrays	and	single	numbers.

from	numpy	import	zeros,	ones,	cross,	sqrt,	linalg,	exp,	identity

Before	we	align	structural	coordinates	by	optimising	 rotations,	we	 first	need	 to	move
the	input	structures	so	that	their	centres	are	aligned.	Effectively	this	means	calculating	the
centre	of	mass	of	each	structure	and	moving	its	coordinates	so	that	it	is	repositioned	with
the	centre	at	 the	zero	points	of	all	 the	axes	(x,	y	and	z).	The	centre	needs	to	be	the	zero
point	because	 the	 rotational	 transformations	we	will	consider	are	all	 rotations	about	 this
centre.	 The	 function	 that	moves	 an	 array	 of	 coordinates	 naturally	 takes	 the	 array	 as	 an
input	 argument,	 together	 with	 an	 array	 of	 weights.	 Note	 that	 both	 arguments	 must	 be
NumPy	array	objects,	which	allows	us	to	perform	operations	on	whole	arrays	of	numbers
at	once,	 rather	 than	using	 loops;	 this	 is	quicker	 to	 run	and	arguably	easier	 to	 read	(once
you	understand	NumPy).

The	weights	array	allows	different	kinds	of	atom	to	have	different	degrees	of	influence,
typically	derived	from	the	atom’s	mass.	Inside	the	function	we	first	multiply	the	elements
of	 the	 coordinates	 array	 by	 the	 weights	 array,	 taking	 special	 notice	 that	 we	 use	 the
transpose	 of	 coords	 array	where	 rows	 are	 switched	with	 columns.	 This	 transposition	 is
required	because	element-by-element	multiplication	of	a	one-dimensional	array	(weights)
with	a	two-dimensional	array	(coords)	works	on	a	per-row	basis.	If	we	switch	rows	with
columns	then	we	get	three	rows	that	correspond	to	all	of	the	x,	y	and	z	values	respectively,
and	what	we	require	is	to	multiply	all	of	these	rows	separately	with	the	weights.	Given	the
weighted	coordinates	(wCoords)	we	then	find	the	summation	of	the	x,	y,	and	z	coordinates
independently,	 i.e.	we	add	up	along	 the	 rows	 (specified	with	 sum(axis=1)),	 the	 result	of
which	is	an	array	of	three	numbers.	This	array	of	totals	is	then	divided	by	the	total	weight
to	 get	 an	 average	 that	 represents	 the	 centre	 of	 the	 coordinates	 (center).	 Finally,	 all	 the
coordinates	are	moved	to	the	new	centre	(0,	0,	0)	by	taking	away	the	old	centre	position;
another	 example	 of	 a	 per-row	 numpy.array	 operation.	 The	 new	 coordinates	 and	 the	 old
centre	 position	 (which	 represents	 a	 translation	 operation)	 are	 passed	 back	 from	 the
function.

def	centerCoords(coords,	weights):

		wCoords	=	coords.transpose()	*	weights

		xyzTotals	=	wCoords.sum(axis=1)

		center	=	xyzTotals/sum(weights)

		coords	-=	center

		return	coords,	center

Aligning	coordinates
The	 next	 function	we	 describe	 is	 the	 clever	mathematical	 part	 of	 the	whole	 coordinate
alignment	operation.	It	takes	two	arrays	of	coordinates,	and	an	optional	array	of	weights,
then	 calculates	 the	 rotation	 that	 best	 superimposes	 equivalent	 pairs	 of	 coordinates
(corresponding	 atoms	 from	 each	 structure).	 The	 underlying	 mathematical	 theory	 is
somewhat	involved,	and	we	will	not	discuss	this	in	great	detail,	but	by	reading	through	the
Python	code	it	should	be	clear	as	to	what	the	overall	effect	of	the	commands	is.

The	 function	 is	 defined,	 and	 if	 we	 do	 not	 pass	 in	 an	 array	 of	weights	 a	 new	 one	 is

created	using	ones(),	 to	 give	 a	 series	 of	 1’s	 the	 same	 length	 as	 the	 coordinates	 (one	 for
each	atom).

def	alignCoords(coordsA,	coordsB,	weights=None):

		n	=	len(coordsA)

		if	weights	is	None:

				weights	=	ones(n)

The	 alignment	 routine	 is	 basically	 a	 minimisation	 of	 the	 differences	 in	 positions
between	corresponding	coordinates,	which	we	can	achieve	by	finding	an	optimum	rotation
transformation.	 We	 define	 an	 initial	 matrix	 as	 the	 weighted	 dot	 product	 (matrix
multiplication)	of	the	one	coordinate	array	and	the	transpose	of	the	other.	We	need	to	make
the	transpose	(switch	rows	for	columns)	to	align	the	long,	atom	axes	of	the	arrays	so	we
end	 up	with	 a	 3×3	matrix.	 You	 can	 imagine	 each	 coordinate	 array	 as	 a	 transformation
between	 atom	 number	 and	 spatial	 position.	 Accordingly,	 by	 applying	 one	 array	 to	 the
other	 we	 get	 the	 transformation	 of	 positions,	 through	 a	 common	 set	 of	 atoms,	 to	 new
positions,	thus	defining	a	spatial	transformation.

rMat	=	dot(coordsB.transpose()*weights,	coordsA)

The	mathematical	magic	 that	 performs	 the	 actual	minimisation	 is	 an	operation	 called
singular	 value	 decomposition	 or	 SVD	 for	 short.	 Luckily	 the	 linear	 algebra	 module	 of
NumPy	 (linalg)	 has	 a	 convenient	 svd()	 function	 that	 will	 do	 all	 the	 hard	 work	 for	 us.
Effectively	this	takes	the	3×3	transformation	matrix	defined	above	and	splits	(factorises)	it
into	three	components,	the	combination	of	which	would	perform	the	same	transformation.
These	three	components	are	as	follows:	a	rotation	matrix,	an	array	of	linear	scaling	factors
and	 an	 opposing	 rotation	 matrix.15	 The	 detailed	 explanation	 of	 why	 this	 is	 done	 is
probably	 very	 confusing	 if	 you	 don’t	 already	 have	 a	 good	 understanding	 of	 what	 are
known	 as	 eigenvectors.	 However,	 it	 is	 sufficient	 to	 say	 that	 the	 matrices	 generated
represent	very	 special	 directions,	which	 allows	us	 to	get	 directly	 at	 the	 rotation	 that	we
need	to	apply	to	align	the	coordinates.

rMat1,	scales,	rMat2	=	linalg.svd(rMat)

Before	 using	 the	 extracted	 rotation	 matrices	 to	 align	 the	 coordinates,	 we	 must	 first
check	whether	 the	SVD	has	given	 transformations	 that	would	cause	a	mirror	 image;	 the
decomposition	 does	 not	 distinguish	 between	 normal	 and	 reflected	 solutions.	 To	 address
this	 problem	 we	 calculate	 what	 is	 known	 as	 the	 determinant	 of	 the	 matrices:	 a	 single
number	 that	 represents	 the	 overall	 scaling	 factor	 for	 the	 transformation.	 Helpfully,	 the
linalg.det()	 function	 easily	 calculates	 the	 determinant,	 which	 will	 be	 −1	 or	 +1	 for	 our
matrices.	Given	that	the	SVD	operation	has	factored	out	a	change	in	size,	all	that	remains
is	a	change	in	sign.	The	two	determinants	are	multiplied,	so	that	if	they	have	opposite	sign
the	result	is	−1.

sign	=	linalg.det(rMat1)	*	linalg.det(rMat2)

We	check	whether	the	sign	is	negative,	and	if	so	we	know	to	remove	the	reflection.	This
is	done	by	flipping	the	sign	of	the	numbers	in	the	last	column	in	the	matrix.

if	sign	<	0:

		rMat1[:,2]	*=	-1

Then	the	optimised	rotation	matrix,	which	will	allow	us	to	transform	the	coordinates	to
do	 the	 superimposition,	 is	 calculated	 by	 multiplying	 the	 two	 matrices	 obtained	 by	 the
linalg.svd	 decomposition.	 Effectively	 this	 is	 reconstructing	 most	 of	 the	 original	 rMat
transformation,	 except	 that	 the	 scaling,	 extracted	 by	 the	 SVD	 factorisation,	 has	 been
eliminated	so	that	only	a	pure	rotation	remains.

rotation	=	dot(rMat1,	rMat2)

We	 use	 the	 final	 rotation	 matrix	 to	 transform	 one	 set	 of	 coordinates,	 so	 that	 it	 is
repositioned	closer	to	the	other	set.	Naturally	we	only	move	one	coordinate	array,	and	the
other	is	left	alone.	The	dot()	function	is	used	to	perform	the	matrix	multiplication	on	the
arrays:	 apply	 the	 coordinate	 transformation.	 Lastly,	 we	 return	 the	 calculated	 rotation
matrix	and	the	updated	coordinates:

coordsB	=	dot(coordsB,	rotation)

return	rotation,	coordsB

Calculating	root-mean-square	deviation
In	order	to	help	us	interpret	the	coordinate	superimposition,	and	because	it	is	required	in
subsequent	 examples,	 we	 define	 a	 function	 that	 will	 calculate	 the	 variation	 in	 the
coordinates	 across	 the	 atom	 positions	 represented	 in	 our	 arrays.	 Strictly	 this	 is	 the
mathematical	 definition	often	 called	 root-mean-square	deviation	 or	RMSD	 for	 short.	As
the	name	suggests	 the	RMSD	value	 is	calculated	by	 taking	 the	differences	 in	coordinate
positions,	squaring	them,	finding	the	average	value	and	then	the	square	root	of	this.	This	is
effectively	the	average	distance	of	coordinate	spread,	although	it	should	be	noted	that	it	is
an	 average	 of	 squares,	 not	 the	 distances	 themselves,	 and	 so	 is	 biased	more	 towards	 the
larger	deviations	having	more	influence.	(Note	that	the	alignCoords()	function	can	easily
be	 adapted	 to	 calculate	RMSD	 for	 the	 overall	 transformation,	 but	we	 have	 deliberately
avoided	complicating	the	function	further.)

The	function	that	calculates	the	RMSDs	takes	an	array	of	reference	coordinates,	a	list	of
the	other	coordinate	array	to	compare	with	and	a	list	of	weights,	so	that	each	atom	position
can	be	biased	separately.	Inside	the	function	we	initialise	a	list	to	hold	the	RMSD	values
for	each	 structure,	 find	 the	 total	of	 all	 the	 input	weights	 (using	 the	handy,	 inbuilt	 sum()
function)	 and	 initialise	 an	 empty	 array	 of	 zeros	 that	 is	 the	 same	 size	 as	 the	 coordinate
arrays,	which	will	hold	the	summation	of	positional	differences.

def	calcRmsds(refCoords,	allCoords,	weights):

		rmsds	=	[]

		totalWeight	=	sum(weights)

		totalSquares	=	zeros(refCoords.shape)

		for	coords	in	allCoords:

				delta	=	coords-refCoords

				squares	=	delta	*	delta

				totalSquares	+=	squares

				sumSquares	=	weights*squares.sum(axis=1)

				rmsds.append(sqrt(sum(sumSquares)/totalWeight))

		nStruct	=	len(allCoords)

		atomRmsds	=	sqrt(totalSquares.sum(axis=1)/nStruct)

		return	rmsds,	atomRmsds

The	 bulk	 of	 the	 function	 involves	 looping	 through	 the	 list	 of	 coordinate	 arrays	 and
comparing	 them	 to	 the	 reference.	 The	 operations	 in	 this	 loop	 all	 involve	 whole	 array
objects,	and	so	when	we	add,	subtract,	multiply	and	divide	the	operations	are	applied	to	all
elements	on	the	arrays	at	the	same	time.	This	is	the	advantage	of	using	the	NumPy	arrays:
it	simplifies	the	code	and	avoids	having	to	write	more	loops.	Accordingly	delta	is	the	array
of	 all	 coordinate	 differences,	 and	 the	 elements	 of	 this	 whole	 array	 are	 squared	 to	 give
squares.	The	 square	 coordinate	differences	 are	 added	 to	 the	 array	of	 totals	 for	use	 later.
The	squared	deviation	for	each	atom	is	calculated	as	the	sum	of	the	square	values	along
the	 spatial	 axis	 (i.e.	 x2	 +	 y2	 +	 z2).	 Here	 this	 is	 done	 using	 the
squares.sum(axis=1)operation,	 thus	 we	 get	 the	 total	 for	 each	 atom	 separately	 and	 form
another	 array.	This	 is	 then	multiplied	by	 the	weights	 for	 the	 atoms	 to	give	 sumSquares,
which	 represents	 the	contribution	of	each	atom	 to	 the	coordinate	 ‘deviation’.	Lastly,	 the
sumSquares	is	summed	over	all	atoms	to	give	a	single	value,	which	is	divided	by	the	total
weight	to	find	the	average	atomic	square	deviation	for	each	structure.	The	square	root	of
this	(hence	root-mean-square	deviation)	is	placed	in	the	RMSD	list.

Once	 the	 loop	 is	 complete	 the	RMSD	values	 for	 the	 individual	 atoms	 are	 calculated.
Given	that	 the	square	differences	for	 the	atoms	were	added	to	 totalSquares	for	all	of	 the
coordinate	arrays	(all	structures)	the	average	of	these	is	then	used	to	calculate	each	atom’s
RMSD	 over	 the	 whole	 set	 of	 conformations.	 As	 before,	 this	 is	 all	 done	 with	 NumPy
operations,	to	work	on	whole	arrays	without	loops.

Aligning	a	structure	ensemble
Given	 that	we	now	have	 a	mathematical	 function	 that	 can	 find	 the	optimum	 rotation	 to
superimpose	two	arrays	of	coordinates,	we	now	require	a	function	that	will	superimpose
more	than	two	coordinate	arrays,	i.e.	so	we	can	superpose	all	the	conformations	of	a	whole
structure	 ensemble.	 We	 will	 do	 this	 by	 repeating	 pairwise	 superimpositions	 relative	 to
some	 reference.	 Repeating	 the	 superimposition	 of	 structure	 pairs	 is	 not	 actually	 the
optimal	way	 to	 align	 structures;	 it	would	 be	 better	 to	 have	 a	method	 that	 compared	 all
against	all	at	the	same	time.	However,	more	complicated	methods	are	beyond	the	scope	of
this	book,	and	the	result	we	get	here	will	be	very	good	in	most	circumstances.	Indeed	we
try	to	be	a	little	clever	in	the	way	that	we	perform	pair-superimposition	in	the	following
examples.	 Initially,	we	arbitrarily	align	all	coordinates	with	 the	 first	 set,	 from	which	we
calculate	 an	 average	 (albeit	 not	 real)	 structure.	We	 then	 find	 the	 real	 structure	which	 is
closest	 to	 the	 average	 to	 use	 as	 a	 reference	 for	 a	 second	 round	 of	 superimposing
alignment;	 we	 assume	 the	 reference	 is	 somewhere	 near	 the	 ‘middle’	 of	 the	 spread	 of
coordinates.	Also,	in	the	second	round	we	change	the	weights,	which	may	initially	be	set
according	 to	 atom	mass,	 to	 values	 that	 represent	 how	 variable	 each	 atom	 position	was

during	the	first	round.	Thus,	 the	final	coordinate	superimposition	will	be	biased	towards
the	atom	positions	that	were	most	similar	in	the	first	round	and	dissimilar	regions	(flexible
parts	 of	 an	 ensemble,	 for	 example)	 will	 not	 have	 much	 influence.	 This	 frees	 us	 from
having	to	specify	which	parts	of	the	structures	are	most	invariant	and	gives	better	overall
results.	It	should	be	noted	that	the	whole	superimposition	procedure	may	be	repeated	more
than	once	 to	get	 the	 coordinates	 to	 converge	more,	 although	 the	 convergence	 is	 usually
very	good	with	only	one	pass.

def	superimposeCoords(allCoords,	weights,	threshold=5.0):

		nStruct	=	len(allCoords)

The	 reference	 coordinate	 array,	 that	 will	 remain	 stationary	 during	 the	 alignment,	 is
arbitrarily	set	to	the	first	from	the	list	of	all	arrays.	We	then	create	an	array	of	zeros	of	the
same	size	 to	which	we	will	subsequently	add	all	of	 the	coordinates	(element	by	element
inside	 the	array)	after	 they	are	aligned	to	 the	reference,	so	 that	we	can	find	the	average.
The	list	of	rotation	matrices,	which	we	pass	back	at	the	end	of	the	function,	starts	empty
and	will	be	filled	as	we	do	the	alignments.

refCoords	=	allCoords[0]

		meanCoords	=	zeros(refCoords.shape)

		rotations	=	[]

The	 first	 round	 of	 coordinate	 superimposition	 (alignment)	 is	 achieved	 by	 looping
through	all	the	coordinate	arrays	and	aligning	them	to	the	reference	set.	Note	that	because
the	 reference	 array	 is	 simply	 the	 first	 array	 in	 the	 list	 we	 don’t	 need	 to	 align	 the	 first
coordinates	 (with	 themselves).	 Accordingly,	 when	 the	 loop	 index	 (generated	 by
enumerate())	 is	 zero	 we	 can	 skip	 the	 alignment	 and	 set	 the	 rotation	matrix	 as	 the	 3×3
identity	matrix,	identity(3)	(representing	no	rotation).	Otherwise,	the	coordinate	alignment
is	 done	 with	 the	 appropriate	 function	 and	 the	 optimised	 rotation	 matrix	 and	 updated
coordinates	are	obtained.	These	new	coordinates	are	put	back	into	the	allCoords	array	at
the	 current	 index,	 replacing	 the	 previous	 coordinates	 (the	 alignment	 makes	 a	 new
coordinate	array	and	doesn’t	affect	the	originals).	Then	the	rotation	matrix	is	collected	into
the	 rotations	 list.	 Finally	 in	 the	 loop,	 the	 coordinate	 array	 is	 added	 to	 the	 total	 held	 in
meanCoords,	 which	 is	 divided	 by	 the	 number	 of	 structures,	 after	 the	 loop,	 to	 give	 the
average	positions.

for	index,	coords	in	enumerate(allCoords):

		if	index	==	0:

				rotation	=	identity(3)

		else:

				rotation,	coords	=	alignCoords(refCoords,	coords,	weights)

				allCoords[index]	=	coords	#	Update	to	aligned

		rotations.append(rotation)

		meanCoords	+=	coords

meanCoords	/=	nStruct

We	calculate	 the	RMSD	values	 for	 the	 structures	 and	 atoms	using	 the	 above	defined
function.	Note	that	these	values	will	be	relative	to	the	coordinate	average	(passed	in	as	the

first	 argument)	 and	 will	 respect	 the	 weights.	 From	 the	 resulting	 RMSDs	 it	 is	 a	 simple
matter	 to	 find	 the	 best	 (smallest)	 value.	 The	 index	 of	 this	 value	 in	 the	 rmsds	 list	 then
allows	the	selection	of	the	appropriate	coordinate	array	within	the	list	of	all	coordinates.
This	best	set	of	coordinates	will	then	become	the	reference	structure	for	a	second	round	of
superimposition,	 with	 adjusted	 weights.	 Effectively	 this	 reference	 array	 is	 the	 structure
closest	to	the	mean	of	the	aligned	coordinates.

rmsds,	atomRmsds	=	calcRmsds(meanCoords,	allCoords,	weights)

bestRmsd	=	min(rmsds)

bestIndex	=	rmsds.index(bestRmsd)	#	Closest	to	mean

bestCoords	=	allCoords[bestIndex]

Adjusted	weights	are	defined	for	a	second	round	of	coordinate	alignment.	The	weights
that	are	used	are	derived	from	the	RMSD	values	for	the	corresponding	atoms.	We	scale	the
RMDS	value	by	a	 threshold	value,	which	effectively	defines	 the	sensitivity	 to	 structural
variation.	Then	the	new	weights	are	calculated	as	the	negative	exponent	of	the	scale	values
squared.	In	this	way	atoms	with	small	RMSD	values	will	have	the	largest	weights	and	as
the	variance	 increases	 the	weighting	will	 diminish	exponentially.	Note	 that	 the	below	 is
done	on	NumPy	array	objects	 (and	 the	exp()	 function	 is	 the	numpy	version)	 so	 that	 the
operations	are	performed	on	all	of	the	elements	in	the	array	at	once.

weightScale	=	atomRmsds/threshold

weights	*=	exp(-weightScale*weightScale)

We	define	an	array,	which	will	contain	 the	average	coordinates,	by	making	a	copy	of
the	 coordinate	 array	 that	 was	 used	 as	 the	 superimposition	 reference:	 the	 set	 that	 was
closest	to	the	mean.	A	loop	is	then	used	to	go	through	all	of	the	coordinate	arrays,	noting
that	if	the	index	matches	our	reference	coordinates	(indexBest)	then	we	skip	that	loop;	we
don’t	have	to	add	the	coordinates	to	the	average	as	they	are	already	in	the	required	array,
and	because	 it	 is	 the	 reference	 there	 is	no	need	 to	do	 the	superimposition.	For	 the	other
coordinate	 arrays,	 the	 superimposing	 alignment	 is	 performed,	 optimising	 the	 rotation	 to
the	reference.	Each	new	rotation	matrix	is	replaced	in	the	list	of	rotations	and	naturally	the
rotation	matrix	for	the	reference	is	left	as	it	was	before.	Updated	coordinates	are	inserted
back	 into	allCoords	 at	 the	 appropriate	 index	 and	 then	 added,	 element-wise,	 to	 the	 array
used	to	calculate	the	coordinate	average.

meanCoords	=	bestCoords.copy()

for	index,	coords	in	enumerate(allCoords):

		if	index	!=	bestIndex:

				rotation,	coords	=	alignCoords(bestCoords,	coords,	weights)

				rotations[index]	=	rotation

				allCoords[index]	=	coords	#	Update	to	aligned

				meanCoords	+=	coords

meanCoords	/=	nStruct

The	summation	of	the	coordinate	arrays	is	then	divided	by	the	number	of	structures	to
get	 the	 revised	 average	 (mean)	 coordinate	 set.	 Finally,	 a	 separate	 function	 is	 used	 to
calculate	the	RMSD	values	of	the	structures	and	individual	atoms.	Note	that	these	values

compare	 the	new	coordinates	with	 the	average	set	of	coordinates16	 and	also	 that	we	use
redefined,	unbiased	weights	(set	to	1.0	courtesy	of	NumPy’s	handy	ones()	function)	so	that
we	report	the	observed	distance	variation	for	each	atom	equally.	Then	the	final	coordinate
array,	the	RMSDs	and	the	list	of	rotation	matrices	are	passed	back	at	the	return	statement.

weights	=	ones(len(weights))

rmsds,	atomRmsds	=	calcRmsds(meanCoords,	allCoords,	weights)

return	allCoords,	rmsds,	atomRmsds,	rotations

Given	that	we	now	have	a	function	that	can	perform	an	optimised	superimposition	of
coordinate	arrays,	another	function	 is	 required	 that	will	apply	 the	procedure	 to	Structure
objects.	Accordingly,	we	define	a	function	that	takes	a	list	of	such	objects,	from	which	the
coordinate	 arrays	 can	 be	 extracted,	 perform	 the	 coordinate	 superimposition,	 and	 then
update	the	original	Atom	objects	with	the	new	coordinates.	This	function	requires	a	way
of	 getting	 the	weightings	 of	 different	 types	 of	 atoms,	 so	we	 use	 the	 previously	 defined
ATOMIC_NUMS	to	give	that	information,	although	it	is	likely	that	in	practical	situations
such	a	dictionary	will	be	defined	in	another,	more	general	module.

def	superimposeStructures(structures):

In	the	function	the	weights	variable	is	initially	set	to	None,	although	it	will	be	set	to	a
list	of	numbers	once	we	come	across	the	first	structure	object.	Then	we	define	an	empty
list	 to	 contain	 all	 of	 the	 coordinates	 for	 all	 of	 the	 structures;	 this	will	 be	 a	 list	 of	 two-
dimensional	arrays.

weights	=	None

allCoords	=	[]

The	 structures	 are	 inspected	 in	 turn	 inside	 a	 loop,	 and	 for	 each	 we	 use	 the	 existing
getAtomCoords()	function	to	get	the	coordinate	array	and	the	corresponding	list	of	Atom
objects.	In	essence,	we	convert	from	our	data	model	to	NumPy	arrays.	Also	in	the	loop	we
define	the	list	of	weights,	if	it	is	not	already	defined,	by	using	the	atomic	numbers	of	the
atoms,	which	we	look	up	in	a	dictionary.	This	of	course	assumes	that	the	weights	for	one
structure	 will	 do	 for	 all	 structures,	 a	 reasonable	 assumption	 because	 we	 are	 only
superimposing	 the	 same	 kinds	 of	 atoms.	Next	 the	 coordinates	 are	 redefined	 by	moving
them	to	the	centre	(zero	on	all	axes),	using	the	centerCoords()	function	and	respecting	the
atom	weights,	which	are	now	in	an	array	object.	Finally	at	the	end	of	the	loop	the	centred
coordinate	array	is	put	in	the	list	containing	all	coordinates.

for	structure	in	structures:

		atoms,	coords	=	getAtomCoords(structure)

		if	weights	is	None:

				weights	=	[ATOMIC_NUMS[atom.element]	for	atom	in	atoms]

				weights	=	array(weights)

		coords,	center	=	centerCoords(coords,	weights)

		allCoords.append(coords)

We	then	run	the	function	that	actually	performs	the	coordinate	superimposition	on	the

arrays	of	coordinates.	The	results	we	get	back	are:	the	array	of	modified	coordinates,	a	list
of	 RMSD	 values	 for	 each	 structure,	 a	 list	 of	 RMSD	 values	 for	 each	 atom	 (across	 all
structures)	and	a	list	of	the	rotations	that	were	applied	to	each	of	the	structures	to	do	the
superimposition.	Although	the	rotation	data	is	not	useful	here,	it	is	used	in	other	contexts,
as	illustrated	in	later	examples.

results	=	superimposeCoords(allCoords,	weights)

allCoords,	rmsds,	atomRmsds,	rotations	=	results

Lastly	in	the	function	we	go	through	each	of	the	structures,	using	enumerate()	to	get	a
list	index	as	well	as	a	Structure	object.	The	getAtomCoords()	function	is	used	to	get	a	list
of	atoms	and	an	array	of	the	original	coordinates	(which	we	are	not	actually	interested	in).
Then	a	second	loop	is	performed,	going	through	each	atom	index	(j)	and	atom	object.	The
coordinates	 of	 the	 atom	 are	 then	 updated	 from	 the	 array	 that	 contains	 the	 new,
superimposed	 locations.	 Note	 how	 we	 use	 the	 two	 indices	 to	 get	 the	 correct	 group	 of
coordinates	 from	 the	 allCoords	 array,	 and	 that	 the	 group	 is	 immediately	 unpacked	 into
three	variables.	With	the	Atom	objects	updated	with	new	positions,	the	loops	and	then	the
function	 end,	 passing	 back	 the	 RMSD	 values	 that	 specify	 how	 good	 the	 coordinate
superimposition	was	for	each	structure,	and	the	individual	atoms.

for	i,	structure	in	enumerate(structures):

		atoms,	oldCoords	=	getAtomCoords(structure)

		for	j,	atom	in	enumerate(atoms):

				atom.coords	=	allCoords[i][j]

return	rmsds,	atomRmsds

We	can	test	the	function	with	two	or	more	structures,	as	long	as	they	represent	the	same
atoms.	Here	we	 load	 the	 same	 structure	 from	 file	 twice,	 into	 two	 separate	 objects,	 then
rotate	one	of	them	before	trying	the	coordinate	superimposition.	This	is	a	reasonable	test
because	 the	 structures	 are	 the	 same,	 aside	 from	 the	 transformation,	 and	 thus	 the
superimposition	should	be	near	perfect,	with	RMSD	values	of	zero.

from	Modelling	import	getStructuresFromFile

strucA	=	getStructuresFromFile('examples/1A12.pdb')[0]

strucB	=	getStructuresFromFile('examples/1A12.pdb')[0]

rotateStructureNumPy(strucA,	(1,0,0),	pi/3)

rmsds,	atomRmsds		=	superimposeStructures([strucA,	strucB])

print(rmsds)		#	Hopefully	all	close	to	zero

If	 we	 get	 a	 whole	 ensemble	 of	 structural	 models,	 for	 example	 by	 downloading	 data
from	an	NMR-derived	PDB	entry,	then	we	can	test	the	alignment	on	the	corresponding	list
of	structures.

fileName	=	downloadPDB('1UST')

strucObjs	=	getStructuresFromFile(fileName)

coords,	rmsds,	atomRmsds,	rotation	=	superimposeStructures(strucObjs)

print(rmsds)

Homologous	structure	alignment
In	 this	 section	 we	 will	 link	 the	 structural	 examples	 described	 in	 this	 chapter	 with	 the
sequence	alignment	routine	described	in	Chapter	12.	The	objective	here	is	to	superimpose
two	 homologous	 structures	 (i.e.	 they	 have	 a	 common	 ancestor)	 which	 have	 similarly
shaped	structures,	but	which	have	different	residue	sequences,	and	hence	different	atoms.
Because	 our	 structural	 superimposition	 function	 only	 optimises	 the	 transformation
between	 two	 lists	 of	 coordinates	 that	 are	of	 the	 same	 size,	we	 first	 need	 to	determine	 a
subset	 of	 atoms	 that	 are	 common	 to	 both	 structures.	 This	 is	 achieved	 by	 first	 doing	 a
sequence	 alignment	 to	 gauge	 which	 residues	 are	 equivalent	 (those	 that	 pair	 up	 in	 the
alignment),	and	 then	selecting	backbone	atoms	that	are	present	on	both	residues	of	each
pair.	Despite	there	being	potentially	different	side-chain	atoms	for	the	aligned	residues	the
backbone	atoms	will	be	common	and	we	can	use	their	coordinates	alone	to	do	a	structural
alignment.

The	 first	 thing	 we	 need	 before	 doing	 the	 structural	 alignment	 is	 to	 convert	 the
sequences,	 of	 two	 molecular	 chains	 we	 wish	 to	 align,	 from	 the	 structure	 data	 model
representation	of	Residue	 objects	 into	 one-letter	 residue	 codes.	Because	 the	 data	model
uses	 three-letter	codes,	we	define	a	dictionary	 that	gives	 the	equivalent	one-letter	codes,
the	required	input	to	our	previous	sequence	alignment	function.	Note	that	we	have	residue
codes	for	DNA	and	RNA	as	well	as	protein	residues,	although	the	nucleic	acid	codes	are
not	 truly	 three-letter.17	We	 need	 such	 unaltered	 codes	 in	 our	 dictionary	 so	 that	 we	 can
detect	 an	 unknown	 code.	 An	 alternative	 would	 be	 to	 have	 a	 new	 sequence	 alignment
function	that	works	with	lists	of	three-letter	codes,	but	that	is	more	work.

THREE_LETTER_TO_ONE	=	{'ALA':'A','CYS':'C','ASP':'D','GLU':'E',

																							'PHE':'F','GLY':'G','HIS':'H','ILE':'I',

																							'LYS':'K','LEU':'L','MET':'M','ASN':'N',

																							'PRO':'P','GLN':'Q','ARG':'R','SER':'S',

																							'THR':'T','VAL':'V','TRP':'W','TYR':'Y',

																							'G':'G','C':'C','A':'A','T':'T','U':'U'}

Extracting	 the	 sequence	 of	 one-letter	 residue	 codes	 from	 a	 chain	 is	 a	 fairly	 simple
matter	 of	 looping	 through	 each	 of	 the	 residues	 that	 belong	 to	 the	 input	 chain.	 For	 each
residue	 the	 above	 dictionary	 is	 used	 to	 convert	 the	 (mostly	 three-letter)	 PDB	 residue
codes,	which	are	used	in	the	structure	data	model,	into	a	string	of	one-letter	codes	that	can
be	used	in	the	alignment	routines.	The	one-letter	codes	are	added	to	a	list,	which	is	then
joined	 into	 a	 long	 string	 after	 the	 loop	 is	 done.	Note	 that	 the	 dictionary	 look-up	 uses	 a
.get()	function	call,	which	supplies	an	‘X’	character	for	an	unknown	residue	type	that	has
no	key	in	the	dictionary.

def	getChainSequence(chain):

		letters	=	[]

		for	residue	in	chain.residues:

				code	=		residue.code

				letter	=	THREE_LETTER_TO_ONE.get(code,	'X')

				letters.append(letter)

		seq	=	''.join(letters)

		return	seq

Now	 we	 define	 the	 function	 that	 does	 the	 sequence	 alignment	 to	 get	 the	 pairs	 of
corresponding	residues.	These	pairs	are	then	used	to	define	a	subset	of	common	backbone
atoms	which	are	used	to	perform	the	coordinate	superimposition.	Although	this	function	is
fairly	 long	 and	 may	 look	 complicated	 at	 first	 glance,	 it	 is	 mostly	 connecting	 together
existing	 functionality	 to	 do	 the	 job.	 Firstly,	 we	 make	 sure	 that	 we	 have	 imported	 the
required	 substitution	 matrix	 (the	 default	 for	 the	 function)	 and	 the	 function	 that	 will
perform	the	pairwise	sequence	alignment.

from	Alignments	import	sequenceAlign,	BLOSUM62

The	function	is	defined	and	takes	two	Chain	objects	as	mandatory	input	arguments	and
has	optional	arguments	for	the	names	of	the	atoms	to	align	and	for	the	substitution	matrix
to	use	in	the	alignment.	The	atom	names	default	to	the	heavy	polypeptide	backbone	atoms,
and	 so	 will	 be	 present	 in	 all	 amino	 acids	 (including	 proline).	 The	 substitution	 matrix
defaults	to	a	fairly	general	one,	although	a	better	one	for	structural	purposes	may	of	course
be	passed	 in.	Both	defaulting	 arguments	naturally	 assume	 that	 our	molecular	 chains	 are
proteins.	If	we	were	using	this	function	on	nucleic	acid	structures	we	could	need	to	input	a
different	 set	 of	 atom	 names,	 for	 the	 ribose	 sugar	 phosphate	 backbone,	 and	 a	 different
substitution	matrix.

def	seqStructureBackboneAlign(chainA,	chainB,

																														atomNames=set(['CA','C','N']),

																														simMatrix=BLOSUM62):

Inside	 the	 function	 we	 initially	 find	 the	 two	 Structure	 objects	 that	 contain	 the	 input
chains	 (following	 the	 parent	 link).	 These	 objects	 will	 be	 used	 later	 on	 in	 selecting
structural	 subsets,	 and	 when	 applying	 the	 transformations	 for	 the	 final	 coordinate
superimposition.	Then	we	use	the	chains	to	get	a	complete	list	of	all	Residue	objects	that
we	are	going	to	align.

structureA	=	chainA.structure

structureB	=	chainB.structure

residuesA	=	chainA.residues

residuesB	=	chainB.residues

The	 getChainSequence()	 function	 defined	 earlier	 is	 used	 to	 obtain	 the	 one-letter
sequence	strings	from	the	two	Chain	objects,	so	that	we	can	pass	input	to	the	function	that
performs	the	pairwise	sequence	alignment	(see	Chapter	12).	The	alignment	strings	that	are
passed	back	from	the	function	will	contain	gaps	(‘-’	symbol)	to	indicate	how	one	sequence
is	aligned	with	the	other.	Gaps	will	indicate	that	a	residue	has	no	equivalent	in	the	other
sequence,	but	otherwise	we	will	have	pairs	of	residue	letters	that	indicate	which	positions
are	deemed	to	be	equivalent	when	comparing	the	two	molecules.	Although	in	this	instance
we	are	ignoring	the	alignment	score	that	is	generated,	we	could	be	more	prudent	and	use	it
to	check	whether	the	sequence	alignment	is	sufficiently	good	to	proceed	further.	Note	that

in	order	to	align	the	two	sequences	we	also	pass	in	the	similarity	matrix	as	an	argument.

seqA	=	getChainSequence(chainA)

seqB	=	getChainSequence(chainB)

score,	alignA,	alignB	=	sequenceAlign(seqA,	seqB,	simMatrix)

Next	 a	 few	 variables	 are	 initialised:	 two	 lists	 to	 contain	 the	 locations	 of	 the	 aligned
residues	(relative	to	their	position	in	the	chain,	not	the	alignment)	and	positional	counters
that	are	used	to	track	these	locations	as	we	look	through	the	sequence	alignment.

pairedPosA	=	[]

pairedPosB	=	[]

posA	=	0

posB	=	0

Then	the	output	strings	from	the	alignment	(alignA	and	alignB)	are	interrogated	to	find
the	residue	pairs.	This	is	achieved	by	defining	a	loop	that	goes	through	the	complete	range
of	index	positions	in	the	alignment	string.	For	each	index	i,	we	look	at	the	residue	codes	at
that	alignment	position	and	work	out	the	position	of	each	residue	relative	to	the	start	of	its
chain	(posA,	posB).	 In	essence	 the	sequence	position	of	each	 residue	 in	 the	molecule	 is
out	 of	 step	 with	 the	 position	 in	 the	 alignment	 because	 of	 the	 gaps	 that	 are	 inserted	 as
padding,	 to	make	 the	alignment	possible.	 If	at	a	given	position	 there	 is	a	gap	symbol	 in
one	of	the	alignment	strings	then	we	know	that	this	represents	a	point	where	a	residue	on
one	sequence	has	no	equivalent	in	the	other	sequence.	Accordingly,	we	increase	a	counter
(+=	1)	for	the	sequence	that	does	not	have	the	gap,	because	for	this	sequence	we	still	go
one	position	along	 the	chain.	Hence,	 if	alignA[i]	 is	a	gap,	we	 increment	posB,	and	vice
versa.	Otherwise,	 if	 there	are	no	gaps,	both	residue	chain	positions	are	added	to	the	lists
that	record	the	aligned	residue	pair	and	both	positions	increment	for	 the	next	 loop.	Note
that	we	add	the	old	residue	positions	before	the	increment,	so	that	we	start	 the	positions
from	zero;	handy	for	Python	lists.

for	i	in	range(len(alignA)):

		#	No	dashes	in	both	at	same	location

		if	alignA[i]	==	'-':

				posB	+=	1

		elif	alignB[i]	==	'-':

				posA	+=	1

		else:

				pairedPosA.append(posA)

				pairedPosB.append(posB)

				posA	+=	1

				posB	+=	1

Then	we	simply	use	the	list	of	paired	alignment	positions,	which	are	the	indices	to	the
residues	 in	 their	 respective	 lists,	 to	get	hold	of	 the	required	Residue	object	and	place	 its
number	(seqId	 attribute)	 in	 a	 list.	 In	 essence,	 the	 positions	 in	 the	 alignment	 are	 not	 the
same	thing	as	the	residue	number	in	the	structures,	so	we	need	a	conversion	between	the
two.

filterIdsA	=	[residuesA[p].seqId	for	p	in	pairedPosA]

filterIdsB	=	[residuesB[p].seqId	for	p	in	pairedPosB]

The	 filterSubStructure()function	 defined	 above,	 which	 takes	 a	 structure	 and	 copies
specified	parts,	is	used	to	define	new	Structure	objects	representing	only	backbone	atoms.
Note	that	we	make	a	filter	to	select	the	required	coordinates	using	the	chain’s	code,	a	list
of	residue	numbers	obtained	via	the	sequence	alignment,	and	the	names	of	the	backbone
atoms	which	 the	structures	will	have	 in	common.	The	 resulting	sub-structures	will	have
exactly	the	same	number	of	atoms,	with	a	one-to-one	correspondence	that	can	be	used	for
structure	superimposition.

backboneStrucA	=	filterSubStructure(structureA,	[chainA.code],

																																				filterIdsA,	atomNames)

backboneStrucB	=	filterSubStructure(structureB,	[chainB.code],

																																				filterIdsB,	atomNames)

For	each	of	the	backbone-only	sub-structures	we	collect	a	list	of	atoms	and	the	array	of
coordinates	(we	move	from	the	data	model	to	the	NumPy	array).	These	atom	lists	are	not
used	in	the	end,	but	are	generated	by	the	function	in	any	case.	The	weights	that	are	used	to
perform	the	superimposition	are	all	set	to	1.0	for	each	atom,	so	all	coordinates	carry	equal
worth	in	the	initial	instance.

atomsA,	coordsA	=	getAtomCoords(backboneStrucA)

atomsB,	coordsB	=	getAtomCoords(backboneStrucB)

weights	=	ones(len(atomsA))

The	 two	 sets	 of	 coordinates	 are	 moved	 to	 the	 centre	 (zero	 on	 all	 axes)	 using	 the
previously	 defined	 function.	 It	 is	 important	 to	 do	 this	 so	 that	 the	 remainder	 of	 the
structural	 superimposition,	 described	 by	 a	 rotation,	 can	 be	 estimated.	 Note	 that	 the
translations	that	were	applied	to	move	the	structures	are	recorded,	i.e.	in	the	centerA	and
centerB	vectors,	so	that	we	can	use	them	again	when	we	align	the	full	structures.

coordsA,	centerA	=	centerCoords(coordsA,	weights)

coordsB,	centerB	=	centerCoords(coordsB,	weights)

With	 the	 coordinates	 extracted,	 for	 those	 atoms	we	wish	 to	 superimpose,	we	 use	 the
superimposition	 function	we	described	above,	noting	 that	 the	 input	argument	 is	a	 list	of
coordinates.	In	this	instance	we	are	not	actually	interested	in	the	relocated	coordinates,	but
rather	in	the	rotational	transformation	that	was	applied.	Also,	we	collect	the	RMSD	values
to	report	at	the	end.

coords	=	[coordsA,	coordsB]

c,	rmsds,	atomRmsds,	rotations	=	superimposeCoords(coords,	weights)

The	 rotations	 that	 were	 recorded,	 from	 the	 coordinate	 superimposition,	 and	 the
locations	 of	 the	 coordinate	 centres	 are	 used	 to	 transform	 the	 original	 structures.	 Thus,
although	this	transformation	data	is	calculated	only	using	the	common,	sequence-aligned,
subset	of	backbone	atoms,	 the	 transformations	are	applied	 to	all	of	 the	atoms	from	both
structures.	 Finally,	 at	 the	 end	 of	 the	 function	 the	 RMSD	 values	 for	 the	 chains	 and
individual	atoms	are	returned,	to	see	how	well	the	structures	are	superimposed.

affineTransformStructure(structureA,	rotations[0],	-centerA)

affineTransformStructure(structureB,	rotations[1],	-centerB)

return	rmsds,	atomRmsds

We	can	test	the	function	with	two	known	homologous	proteins.	Here	we	download	the
PDB	 file	 data	 and	 extract	 the	 file	 data	 to	 define	 Structure	 objects.	 Note	 that	 in	 this
example	we	only	use	the	first	available	coordinate	set	(hence	the	[0]	to	select	the	first).	For
the	 first	 structure	 this	 means	 the	 first	 conformation	 of	 an	 NMR-derived	 ensemble	 of
structures.	 The	 second	 structure	 only	 has	 one	 set	 of	 coordinates	 in	 any	 case,	 the	 usual
situation	for	crystal	structures.	From	both	structures	we	select	the	chains	with	code	‘A’	and
perform	the	sequence-coordinate	alignment.

struc1	=	getStructuresFromFile(downloadPDB('1UST'))[0]

struc2	=	getStructuresFromFile(downloadPDB('1HST'))[0]

chain1	=	struc1.getChain('A')

chain2	=	struc2.getChain('A')

rmsds,	atomRmsds	=	seqStructureBackboneAlign(chain1,	chain2)

print(rmsds)

External	macromolecular	structure	modules
We	will	now	look	briefly	at	alternative	ways	of	using	macromolecular	data	in	Python.	The
first	of	these	is	the	PDB	module	of	BioPython,	which	provides	a	more	capable	and	tested
alternative	to	our	very	simple	structure	data	model.	The	second	is	the	graphical	program
PyMol,	which	can	be	imported	as	a	Python	module	so	that	coordinate	data	can	be	rendered
as	pretty	pictures.	(See	http://www.cambridge.org/pythonforbiology	for	download	links	to
BioPython	and	PyMol.)

Structures	in	BioPython
The	PDB	sub-module	of	BioPython	contains	functionality	to	read,	write,	manipulate	and
investigate	 macromolecular	 structure	 data.	 In	 the	 following	 example,	 after	 loading	 the
PDB	module,	we	make	 a	 parser	 object	 that	 can	make	 a	PDB.Structure	 object	 using	 the
data	from	a	file.	Although	this	method	may	seem	a	little	clunky	compared	to	our	earlier
examples	of	a	single	function	that	can	be	used	to	import	the	data,	having	an	intermediate
object	does	allow	the	programmer	to	have	more	line-by-line	control	of	the	file	reading.

from	Bio	import	PDB

fileName	=	'examples/1UST.pdb'

parser	=	PDB.PDBParser()

struc		=	parser.get_structure('Name',	fileName)

Once	 furnished	 with	 the	 main	 structure	 object,	 we	 can	 then	 extract	 the	 first	 set	 of
coordinates	 (first	 conformation)	 from	 the	 structure	 and	 loop	 through	 all	 of	 the	 chains,
residues	and	atoms	to	get	at	the	coordinates	in	a	convenient	manner,	noting	that	the	names
of	object	attributes	differ	from	the	previous	data	model:

http://www.cambridge.org/pythonforbiology

conformation	=	struc[0]

for	chain	in	conformation:

		for	residue	in	chain:

				atomNames	=	[a.name	for	a	in	residue]

				print(chain.id,	residue.id[1],	residue.resname,	atomNames)

				caAtom	=	residue['CA']

				print(caAtom.name,	caAtom.coord,	caAtom.bfactor)

Writing	 the	 data	 to	 disk	 requires	 calling	 a	 function	 to	 define	 a	 special	 object	 (called
writer	here)	which	can	be	used	to	save	the	file:

outFileName	=	'test.pdb'

writer	=	PDB.PDBIO()

writer.set_structure(struc)

writer.save(outFileName)

Referring	back	to	one	of	the	early	examples	we	gave	in	this	chapter,	to	find	the	atoms
within	a	given	distance	of	a	specified	point,	we	can	write	an	equivalent	function	that	uses
the	BioPython	PDB.Structure.Structure	object,	rather	than	the	simple	Structure	object	we
defined	 in	 Chapter	 8.	 The	 mathematics	 of	 the	 function	 are	 the	 same	 as	 in
findCloseAtoms(),	but	the	collection	of	coordinates	and	atom	objects	is	naturally	different
because	of	the	different	data	model.	Note	that	in	this	example	we	have	been	a	little	more
rigorous	and	check,	using	the	inbuilt	 isinstance()	 function,	 that	 the	 input	object	 is	of	 the
required	type:	PDB.Structure.Structure.	Looping	through	the	chains,	residues	and	atoms	is
fairly	straightforward,	although	the	data	model	is	slightly	different.	For	example,	here	we
use	 a	 conformation	 (coordinate	 model)	 number	 to	 specify	 which	 coordinate	 set	 to	 use
within	 the	 structure	 object;	 our	 bespoke	 model	 is	 simpler	 and	 loads	 alternative
conformations	as	entirely	separate	objects.

def	findCloseAtomsBioPy(structure,	xyz,	conf=0,	limit=5.0):

		if	not	isinstance(structure,	PDB.Structure.Structure):

				raise	Exception('Structure	must	be	Bio.PDB.Structure	class')

		closeAtoms	=	[]

		xyz	=	array(xyz)

		limit2	=	limit	*	limit

		coords	=	[]

		atoms	=	[]

		confModel	=	structure[conf]

		for	chain	in	confModel:

				for	residue	in	chain:

						for	atom	in	residue:

								coords.append(atom.coord)

								atoms.append(atom)

		deltas	=	coords	-	xyz

		squares	=	deltas	*	deltas

		sumSquares	=	squares.sum(axis=1)

		boolArray	=	sumSquares	<	limit2

		indices	=	boolArray.nonzero()[0]

		closeAtoms	=	[atoms[i]	for	i	in	indices]

		return	closeAtoms

Structures	in	PyMol
To	view	structures	graphically	with	the	PyMol18	program,	assuming	that	it	is	installed,	it	is
a	simple	matter	to	import	its	functionality	into	a	Python	script.19

import	pymol

With	 PyMol	 imported	we	 call	 a	 function	which	 causes	 the	 graphical	 environment	 to
appear,	so	that	we	can	see	step-by-step	what	effects	our	instructions	have.

pymol.finish_launching()

Using	 the	name	of	 a	PDB	 file	we	have	previously	downloaded	we	 load	 the	 structure
data	 for	 a	protein	 called	glycophorin20	 into	PyMol	 and	 then	 issue	 several	 commands	 to
render	the	structure	in	a	particular	graphical	form.	It	is	notable	that	PyMol	doesn’t	have	a
rich	data	model	for	this	data.	Thus,	rather	than	working	with	objects	that	represent	each	of
the	structural	entities,	we	make	copious	use	of	the	pymol.cmd	module	to	perform	most	of
the	operations	using	special	 instruction	strings,	which	unfortunately	we	must	learn.	Here
we	load	the	structure	and	give	it	a	name,	which	can	be	used	to	identify	the	whole	data	set
in	later	commands.

fileName	=	downloadPDB('examples/1AFO')

strucName	=	'Glycophorin'

pymol.cmd.load(fileName,	strucName)

Two	 subsets	 of	 the	 structure	 are	 defined:	 one	 called	 ‘bb’	 to	 represent	 the	 protein
backbone,	 where	 the	 ‘magic’	 string	 to	 select	 the	 backbone	 heavy	 atoms	 is	 ‘name
n+c+o+ca’;	and	another	called	‘tmd’	that	corresponds	to	the	transmembrane21	part	of	the
structure,	from	residue	number	71	to	100.

pymol.cmd.select('bb','name	n+c+o+ca')

pymol.cmd.select('tmd',	'resi	71-100	and	name	n+c+o+ca	')

Next	various	commands	are	issued	to	change	the	way	that	various	bits	of	the	structure
are	 displayed.	 In	 order,	 the	 operations	 do	 the	 following:	 colour	 the	whole	 protein	 grey,
colour	the	backbone	selection	red,	display	the	backbone	path	as	a	‘cartoon’	ribbon,	colour
the	transmembrane	residues	blue	and	finally	hide	the	lines	to	the	hydrogen	atoms.

pymol.cmd.color('gray',	strucName)

pymol.cmd.color('red',	'bb')

pymol.cmd.show('cartoon',	'bb')

pymol.cmd.color('blue',	'tmd')

pymol.cmd.hide('lines','hydro')

outFileName	=	strucName	+	'.pdb'

pymol.cmd.save(outFileName,	strucName,	0,	'pdb')

And	the	graphical	display	may	be	output	as	a	picture	file	(here	in	PNG	format):

pymol.cmd.png(strucName+'.png')

Finally	we	can	quit	the	display	program,	but	otherwise	leave	any	Python	script	running:

pymol.cmd.quit()

1 	Recall	that	due	to	splicing	variations	a	single	gene	can	give	multiple	RNA	transcripts.
2 	The	tight	and	somewhat	stable	kind	of	bond	commonly	seen	between	the	biologically
abundant	elements:	carbon,	nitrogen,	hydrogen	and	oxygen.
3 	Except	at	absolute	zero:	−273.15	degrees	Celsius	or	−459.67	degrees	Fahrenheit.
4 	Fatty	soap-like	molecules	that	form	double	layers.
5 	 X-rays	 are	 chosen	 because	 their	 wavelength	 is	 on	 the	 same	 scale	 as	 the	 separation
between	atoms.
6 	Buried	or	on	the	surface.
7 	Sali,	A.,	 and	Blundell,	T.L.	 (1993).	Comparative	protein	modelling	by	 satisfaction	of
spatial	restraints.	Journal	of	Molecular	Biology	234:	779–815.
8 	http://www.cambridge.org/pythonforbiology.
9 	The	transposed	rotation	matrix	is	the	last	argument	so	it	operates	on	the	(X,	Y,	Z)	spatial
dimension	of	the	data,	rather	than	the	(long)	atom	dimension.
10 	The	y	axis	has	the	first	and	last	numbers,	x	and	z,	set	to	0	and	the	middle	number,	for	y,
varies.
11 	As	a	Python	list	of	lists	this	would	be	[[1,0,0],[0,1,0],[0,0,1]].
12 	This	is	simply	applying	Pythagoras’	rule	for	calculating	the	length	of	the	hypotenuse	of
a	right-angle	triangle	in	three	dimensions.
13 	180°	equals	π	radians.
14 	 This	may	 occur	while	 selecting	 amide	 hydrogens	 in	 amino	 acids,	 given	 that	 proline
residues	have	none.
15 	More	formally	a	matrix	of	eigenvectors	of	rMat	multiplied	by	its	transpose;	an	array	of
single	numbers,	each	of	which	is	the	square	root	of	the	corresponding	eigenvalues;	another
matrix	of	eigenvectors	for	the	transpose	of	rMat	multiplied	by	rMat.	If	you	want	to	know
more	details	about	what	 is	going	on,	see	 the	following	reference:	Kabsch,	W.	 (1978).	A
discussion	 of	 the	 solution	 for	 the	 best	 rotation	 to	 relate	 two	 sets	 of	 vectors.	 Acta
Crystallographica	34A:	827–828.
16 	It	would	also	be	possible	to	find	a	new	medioid	(closest	to	mean)	structure	and	use	that
for	the	RMSD	calculation.
17 	In	a	PDB	file	the	codes	in	the	strictest	sense	will	have	three	characters,	i.e.	‘A	‘	or	‘G	‘,

http://www.cambridge.org/pythonforbiology

but	our	reader	function	removes	the	excess	spaces.
18 	The	PyMOL	Molecular	Graphics	System,	Version	1.5.0.4	Schrödinger,	LLC.
19 	Note	that	during	testing	of	this	code	on	some	Linux	computer	platforms,	we	discovered
that	in	order	for	the	PyMol	program	to	work	properly	from	a	Python	script	we	also	had	to
define	the	‘PYMOL_PATH’	environment	variable,	which	can	be	done	from	within	Python
by	 importing	 the	 os	 module	 and	 then	 setting	 os.environ[‘PYMOL_PATH’]	 =
os.path.dirname(pymol.__file__):	 the	 location	 where	 PyMol’s	 Python	 modules	 are
installed.
20 	This	protein	is	found	in	the	membranes	of	red	blood	cells.
21 	i.e.	the	hydrophobic	helices	that	anchor	this	protein	in	a	lipid	membrane.

16 	Array	data
Contents

Multiplexed	experiments

Microarrays

Handling	array	data

Reading	array	data

Importing	text	matrices

Extracting	array	image	data

The	‘Microarray’	class

Exporting	array	data

Value	normalisation

Changing	array	channels

Array	analysis

Differences	and	similarities

Hierarchical	clustering

Multiplexed	experiments
In	many	 areas	 of	 biological	 and	medical	 science,	 as	 new	 techniques	 and	machinery	 are
developed	 there	 is	 a	 tendency	 to	 record	 ever	 increasing	 amounts	 of	 data.	 A	 notable
example	 of	 this	 is	 comes	 with	 ‘next-generation’	 DNA	 sequencing,	 which	 we	 discuss
further	 in	 Chapter	 17.	 In	 general	 though,	 with	 high-throughput	 methods	 the	 idea	 is	 to
perform	many	small	experiments,	of	the	same	design,	in	parallel.	When	we	simultaneously
detect	the	outcome	of	many	assays	the	procedure	can	be	described	as	being	multiplexed.
This	 not	 only	 has	 speed	 advantages	 but	 can	 also	 reduce	 costs	 and	 improve	 consistency
between	experiments.	And	naturally,	to	handle	large	numbers	of	experimental	assays	it	is
important	to	use	computers	for	the	processing	and	analysis	of	data.

A	multitude	of	modern	techniques	involve	parallel	experiments,	including	the	detection
of	 potential	 drug	 compounds,	RNA	molecules,	 antibodies	 and	 protein	 crystals,	 to	 name
only	a	few.	However,	in	this	chapter	we	do	not	have	space	to	cover	the	informatics	of	lots
of	 specific	 techniques,	 so	 instead	 we	 cover	 general	 themes,	 such	 as	 data	 organisation,
normalisation	and	comparison.	Also,	all	of	the	examples	will	be	based	on	the	notion	of	the
experimental	 data	 being	 arranged	 as	 a	 rectangular	 array,	 which	 in	 turn	 is	 often	 a
consequence	of	the	physical	manner	in	which	the	assays	were	performed	and	detected,	on
some	form	of	regular	grid.

Although	there	has	been	a	recent	trend	to	use	the	R	programming	language	for	working
with	array-based	assays,	Python	together	with	its	NumPy	and	SciPy	libraries	is	naturally
more	than	capable.	In	a	change	from	much	of	 this	book,	where	we	describe	code	that	 is
simply	based	on	Python	functions,	here	we	will	use	an	object-oriented	framework.	Hence
we	 create	 a	 ‘Microarray’	 class	 that	 will	 tie	 together	 experimental	 data	 and	 various
functions	that	operate	on	it.	The	ideas	behind	this	approach	are	discussed	in	Chapters	7,	8
and	15.	Though	unlike	Chapter	15,	where	we	have	a	 relatively	complicated	hierarchical
data	 model	 involving	 several	 classes,	 here	 we	 describe	 only	 a	 single	 class	 to	 organise
things	into	a	helpful	construct.

Figure	16.1	(Plate	2).	 A	microarray	image	composed	of	red	and	green	colour
channels.	Here	each	spot	represents	a	different	probe	molecule	and	the	colour	intensity
reflects	the	binding	of	DNA	within	two	samples,	each	labelled	with	a	different	fluorescent
marker.	Original	image	courtesy	of	Paul	Edwards	and	Karen	Howarth,	University	of
Cambridge.

Much	of	what	we	describe	in	this	chapter	relates	to	data	management	and	many	of	the
underlying	 programming	 principles	 are	 the	 same	 as	 things	 that	 have	 been	 discussed
before.	Hence	 the	programming	examples,	which	 relate	 to	 array	 analyses,	will	 focus	on
the	organisation	and	analysis	of	 the	data	rather	 than	 its	acquisition.	We	will	assume	that
the	experiments	have	been	done	correctly	and	with	due	diligence,	although	some	emphasis
will	be	put	on	the	handling	of	errors	or	noise	in	the	data.	These	Python	examples	will	start
fairly	simply,	to	illustrate	the	fundamental	principles	of	what	the	data	means	and	how	we
represent	 it	 in	 computational	 data	 structures.	Examples	will	 grow	more	 complex	 by	 the
incorporation	of	analytical	methods,	many	of	which	are	discussed	 in	other	chapters,	e.g.
clustering	data.

Microarrays
A	microarray	is	a	means	of	performing	many	small-scale	experiments	on	a	sample	at	the
same	time.	These	experiments	will	all	be	of	the	same	kind,	i.e.	have	the	same	experimental
design,	but	 individual	experiments	will	have	different	conditions	or	components.	On	 the
whole	 these	 experiments	will	 be	physically	 arranged	as	 spots	 in	 a	 rectangular	 grid	on	 a
solid	surface	(the	matrix)	and	have	their	test	components	immobilised	on	that	surface,	so
they	 cannot	 mix.	 The	 basic	 reason	 for	 doing	 things	 in	 this	 manner	 is	 to	 make	 things
quicker	and	easier.	Lots	of	small	experiments	are	performed	at	the	same	time,	requiring	a
proportionately	small	amount	of	sample	and	providing	the	same	set	of	conditions	for	each
test	(or	at	least	very	similar;	there	can	be	inhomogeneities	across	the	array).	Naturally,	the

outcome	 of	 the	 experiments	 has	 to	 be	 detected	 at	 the	 end	 and	 the	 final	 state	 of	 the
microarray	is	generally	measured	using	optical	methods.	Most	microarrays	are	designed	to
detect	 the	binding	of	components	 from	a	sample,	 to	 the	different	 targets	 in	 the	array,	by
using	 fluorescence.	 Here	 the	 binding	 causes	 an	 element	 of	 the	 array	 to	 glow	 when
irradiated	with	UV	light.	In	terms	of	computing,	what	is	important	is	that	we	know	what
distinguishes	the	components	of	the	different	miniature	experiments	within	the	array,	and
then	at	the	end	how	much	signal,	e.g.	fluorescence,	is	detected	from	each.

The	actual	solid	support	for	the	array	of	experiments	is	typically	made	of	glass,	plastic
or	silicon	and	the	experimental	components	are	chemically	bonded	to	its	surface	in	a	small
regular	 array	 (placed	 there	 by	 machine).	 The	 components	 are	 generally	 bio-molecules,
such	as	DNA,	protein	or	 even	glycans	 (poly-sugars),	but	 could	also	be	 samples	of	 cells
(i.e.	 a	 tissue	microarray)	 or	 even	 small	molecules.	 In	 the	 case	 of	DNA	microarrays	 the
DNA	strands	of	differing	sequences	are	immobilised,	with	one	sequence	to	each	spot,	on
the	solid	matrix	and	bind	to	complementary	single-stranded	nucleotides,	i.e.	they	hybridise
through	base-pair	interactions.	The	samples	that	are	applied	to	such	an	array	will	contain
mixtures	 of	 fluorescent-labelled	 DNA	 strands,	 so	 that	 those	 with	 sequences	 that	 are
complementary	 to	 the	 spots	 hybridise,	 to	 cause	 that	 part	 of	 the	 array	 to	 emit	 a	 certain
colour	of	 light	 visible	when	 illuminated	with	UV	 light.	Naturally,	 to	know	which	DNA
sequences	have	been	detected	 in	 this	way	 requires	 that	 the	sequence	of	each	spot	 in	 the
array	 is	 known.	 For	 protein	microarrays	 the	 situation	 is	 similar	 but	 the	 array	 spots	 are
immobilised	 proteins,	 commonly	 antibodies,	which	 detect	 other	molecules	 in	 a	 specific
manner	via	non-covalent	interactions.

Whatever	the	type	of	array	component	(be	it	DNA,	protein	or	whatever)	and	however	it
is	 detected	 we	 will	 use	 the	 same	 basic	 Python	 data	 structure	 to	 represent	 all	 kinds	 of
microarray;	they	all	have	an	array	of	spot	elements	in	a	rectangular	grid	and	they	all	are
detected	by	means	of	some	kind	of	scalar	signal.	Although	this	abstract	description	can	be
applied	 in	 several	 situations,	 it	 could	 naturally	 be	 customised	 or	 extended	 for	 more
specialised	purposes.	 It	 should	be	noted	 that	we	have	chosen	 to	associate	 the	array	with
parallel	data	layers,	e.g.	for	red	and	green	fluorescence	channels,	which	is	commonplace
for	microarrays.	Accordingly	 an	 array	 element	may	 be	 associated	with	 several	 different
signal	values	and	 the	 system	 is	 flexible,	 so	 that	we	can	describe	anything	 from	a	 single
array	 of	 values	 to	 multiple	 layers	 representing	 different	 kinds	 of	 both	 processed	 and
unprocessed	data.

What	we	gain	from	microarrays	is	a	measure	of	interaction	or	reaction	for	each	of	the
spots	 in	 the	array.	An	array	will	 tell	us	how	strongly	a	given	sample	 interacts	with	each
spot	component.	One	of	 the	Python	examples,	 to	do	hierarchical	clustering,	will	analyse
this	further	to	show	similarities	within	a	microarray.	This	is	a	common	process	to	visually
indicate	 similarities	 between	 rows	 and	 columns.	Here	we	 can	 look	back	 to	 some	of	 the
phylogenetic	 tree-building	 code	 and	 borrow	 a	 function,	 illustrating	 the	 usefulness	 of
keeping	 Python	 functions	 abstract	 and	 general.	 We	 also	 show	 how	 you	 can	 look	 for
similarities	 and	 differences	 in	 array	 data,	 for	 example	 by	 comparing	 different	 colour
channels.	In	such	circumstances	it	can	be	important	to	use	controls	and	normalise	the	data,
to	test	whether	the	detection	worked	equally	well	in	each	case	and	to	remove	systematic
error.	With	 this	 in	mind	 several	 of	 the	 following	 examples	 are	 based	 on	 normalisation
techniques	which	will	 allow	 the	 comparison	 of	 different	 data	 arrays	 even	 if	 the	 overall

levels	 of	 signal	 differ,	 although	 which	 particular	 technique	 is	 used	 will	 vary	 for	 each
situation.

Handling	array	data
The	Python	examples	for	microarrays	that	we	describe	involve	creating	our	own	kind	of
object.	We	 are	 not	 forced	 to	 take	 this	 approach,	 and	 could	work	with	 isolated	 numeric
arrays	or	use	Python	data	structures	like	lists	or	dictionaries.	However,	we	want	to	show
how	 object	 orientation	 can	 organise	 data	 in	 a	 helpful	 way,	 improving	 consistency	 and
convenience.	In	this	case	we	will	define	one	class	of	custom	object	called	a	Microarray,
which	as	the	name	suggests	will	house	all	the	data	relating	to	one	microarray	experiment
(which	in	turn	represents	lots	of	spots	of	miniature	sub-experiments).	This	class	of	object
will	contain	all	the	microarray	data	in	terms	of	what	each	array	spot	element	represents	(in
terms	of	conditions	or	components)	as	well	as	the	detected	signals	for	each	spot	element.
We	will	store	 the	arrays	of	signal	 information	as	 two-dimensional	NumPy	arrays,	which
will	make	 doing	mathematical	 operations	 easier,	 but	 the	 rest	 of	 the	 data	model	will	 be
regular	Python	for	ease	of	bookkeeping.

The	Microarray	 class	will	 also	 contain	 its	 own	 functions	 (i.e.	methods	 for	 that	 class)
that	will	operate	on	the	data	contained	within	the	data	structure.	This	is	a	convenient	way
to	write	a	program	because	you	do	not	have	to	import	the	functions	or	pass	the	microarray
object	into	the	operation,	rather	the	class	gains	methods	that	are	innately	bound	to	the	data,
and	 thus	 they	 are	 immediately	 accessible	 to	 it.	 The	 downside	 of	 doing	 this	 is	 that	 the
programming	 is	 a	 little	 trickier,	 which	 is	 why	 for	 teaching	 purposes	 we	 initially	 avoid
classes	 in	 the	 book,	 but	 it	 is	 generally	 good	 practice	 to	 use	 this	 style	when	 you	 have	 a
distinct	concept	that	pulls	all	the	data	together,	albeit	a	microarray	or	a	molecular	structure
(as	 illustrated	 in	Chapter	8).	So	 although	 there	may	be	more	programming	 in	 the	 initial
instance	things	will	hopefully	be	easier	in	the	long	run.

Reading	array	data
We	will	define	the	Microarray	class	a	bit	later,	but	first	we	will	look	at	what	kind	of	raw,
experimental	data	it	will	contain.	This	will	be	illustrated	by	writing	functions	that	extract
data	 for	a	Microarray	object	 from	 the	 contents	of	 files,	 specifically	 text	 files	 and	 image
files.	An	alternative	approach	would	be	to	make	a	blank	Microarray	object	and	then	have
that	load	data	into	itself,	but	here	we	aim	to	first	show	the	kind	of	actual	underlying	data
we	are	dealing	with.

Importing	text	matrices
The	load	function	will	assume	a	simple	file	format	where	we	have	one	line	of	text	for	each
array	element	and	the	columns	of	data	in	the	file	are	identifiers	for	the	array	coordinates
(these	 could	 be	 the	 row	 and	 column	 of	 the	 array)	 and	 the	 actual	 data	 signal	 value.	 For
example,	this	could	be	something	like:

A											B								1.230

A											C								4.510

A											D								0.075

B											C								4.999

B											D								0.258

C											D								2.312

We	 will	 not	 assume	 that	 all	 elements	 of	 the	 array	 are	 represented	 and	 we	 will	 not
assume	 that	 the	 array	 row	 and	 column	 identifiers	 (i.e.	 A,	 B,	 C	 and	 D	 in	 the	 above
example)	are	either	continuous	or	in	any	particular	order.

The	 experimental	 microarray	 data	 will	 be	 represented	 as	 two-dimensional	 NumPy
arrays.	 Accordingly,	 we	 make	 various	 imports	 from	 the	 numpy	 library	 for	 the
mathematical	array	operations	that	will	need	to	be	done:

from	numpy	import	array,	dot,	log,	sqrt,	uint8,	zeros

The	function	to	load	data	from	a	file	and	create	a	Microarray	object	takes	a	file	name	to
load	from	as	the	first	argument,	an	identifying	name	for	the	array	as	the	second	argument
and	 an	 optional	 third	 argument	 to	 state	 what	 the	 default	 signal	 value	 is	 for	 an	 array
element	that	we	have	no	data	for.	This	last	argument	may	or	may	not	be	used	depending
on	what	 data	we	 read	 in,	 but	we	 should	 at	 least	 be	 aware	 of	 incomplete	 or	 failed	 data
points.	The	default	here	is	zero,	rather	than	None,	given	that	we	are	dealing	with	NumPy
arrays	that	don’t	mix	data	types.

def	loadDataMatrix(fileName,	sampleName,	default=0.0):

		fileObj	=	open(fileName,	'r')

Empty	sets	are	created	which	will	contain	 the	identifiers	for	 the	rows	and	columns	in
the	microarray	data.	 In	 the	 end	 these	 could	be	 filled	with	 just	numbers	 representing	 the
array	coordinates,	or	they	could	be	text	labels.	The	only	rule	about	these	identifiers	is	that
because	they	are	in	sets	they	cannot	be	internally	modifiable	items	like	lists	(they	must	be
hashable1).	The	values	in	these	sets	will	be	keys	to	access	the	numeric	data	stored	in	the
dataDict	dictionary.

rows	=	set()

cols	=	set()

dataDict	=	{}

Next	we	loop	though	all	the	lines	in	the	open	file	object	and	split	each	line	according	to
internal	whitespace	to	give	values	for	 the	row,	column	and	 the	numeric	value.	Naturally
this	operation	would	be	different	if	the	format	of	the	file	was	different.

for	line	in	fileObj:

		row,	col,	value	=	line.split()

A	check	is	made	to	ensure	that	each	row	identifier	that	comes	from	the	file	has	an	entry
in	dataDict.	If	it	does	not	then	we	make	a	new	inner	dictionary	within	the	main	one	using
the	row	 identifier	 as	 the	 key.	Note	 that	we	 cannot	 fill	 this	 dictionary,	 or	 any	 other	 data
collection,	in	advance	because	we	do	not	know	what	rows	or	columns	we	have	until	 the
file	has	been	read.

if	row	not	in	dataDict:

		dataDict[row]	=	{}

The	actual	signal	value,	which	is	a	floating	point	number,	is	then	added	to	the	data	by
using	the	row	and	column	identifiers	as	keys	for	the	main	and	inner	dictionaries,	although
we	first	check	the	dictionary	to	guard	against	using	repeats	for	the	same	element.	The	row
and	col	that	were	just	used	are	then	added	to	the	set	of	rows	and	cols.	Because	they	are	set
data	types	it	does	not	matter	 if	we	have	seen	them	before,	given	that	a	set	automatically
ignores	repeated	items.	Note	that	the	value	is	converted	using	float()	because	initially	it	is
just	a	text	string	loaded	from	a	file,	and	not	a	Python	number	object.

if	col	in	dataDict[row]:

		print('Repeat	entry	found	for	element	%d,	%d'	%	(row,	col))

		continue

dataDict[row][col]	=	float(value)

rows.add(row)

cols.add(col)

After	 all	 the	 lines	 have	 been	 processed	 we	 then	 convert	 the	 set	 of	 row	 and	 column
identifiers	 to	 sorted,	 ordered	 lists.	Only	now	 that	 the	 total	 range	of	 these	 identifiers	 has
been	collected	can	they	be	used	to	create	the	axes	of	the	NumPy	2D	value	array.	The	sizes
of	this	array	will	naturally	be	based	on	the	number	of	row	and	column	identifiers,	which
are	recorded	as	nRows	and	nCols.

rows	=	sorted(rows)

cols	=	sorted(cols)

nRows	=	len(rows)

nCols	=	len(cols)

The	NumPy	array	to	store	the	values	is	initialised	as	an	array	of	zeros	of	the	required
size,	with	the	data	type	(the	last	argument)	set	to	be	floating	point	numbers:

dataMatrix	=	zeros((nRows,	nCols),	float)

The	rectangular	dataMatrix	array	is	then	filled	by	extracting	values	from	the	dataDict,
although	there	is	provision	to	replace	missing	values	with	the	default	value	(hence	we	use
the	.get()	dictionary	call).	Note	how	we	use	enumerate()	to	extract	index	numbers	(i	and	j)
as	we	 loop	 through	 row	 and	 column	 identifiers.	 These	 indices	 are	 then	 used	 to	 fill	 the
correct	position	in	the	array.	At	the	end	the	ordered	list	of	rows	and	cols	will	be	used	so
that	 the	 indices	 in	 the	NumPy	array	can	be	used	 to	 look	up	 the	original	data	 labels	 that
they	refer	to.

for	i,	row	in	enumerate(rows):

		for	j,	col	in	enumerate(cols):

				value	=	dataDict[row].get(col,	default)

				dataMatrix[i,j]	=	value

fileObj.close()

With	the	data	collected	we	use	it	to	construct	a	Microarray	class	of	object,	made	with

the	definition	described	below.	This	is	then	passed	back	from	the	function.

return	Microarray(sampleName,	dataMatrix,	rows,	cols)

Extracting	array	image	data
The	next	example	reads	raw	array	data	from	a	pixelated	image,	i.e.	a	picture	of	the	whole
array,	which	contains	separate	layers	of	data	recorded,	or	at	least	stored,	as	separate	colour
channels.	Each	colour	channel	records	a	separate	signal	for	the	same	spots,	given	that	two
samples	were	labelled	with	different	fluorescent	dyes	that	can	be	assayed	independently.

The	 input	 file	 is	 read	 as	 a	 pixmap	 image	 that	 contains	 red,	 green	 and	 blue	 colour
channels	 (RGB)	using	 functionality	 that	 is	discussed	more	 fully	 in	Chapter	18.	Because
we	 are	 dealing	with	 image	 data	we	 import	 from	 the	Python	 Imaging	Library	 (PIL),2	 as
discussed	 in	Chapter	18	 (so	you	may	 like	 to	 skip	 ahead	 to	 learn	more	 about	 images)	 to
handle	all	the	tricky	tasks	of	making	image	pixmaps	and	saving	the	image	data	to	a	file.	It
should	be	noted	that	 this	is	not	part	of	the	standard	Python	library	and	must	be	installed
separately.	Also,	we	import	a	function	imageToPixmapRGB	from	the	Images	module	(part
of	the	downloadable	data	that	accompanies	this	book)	that	will	convert	the	image	data	into
a	NumPy	array.	And	as	you	may	expect	we	import	some	NumPy	functions	to	manipulate
numeric	array	data.

from	PIL	import	Image

from	Images	import	imageToPixmapRGB

from	numpy	import	array,	dstack,	transpose,	uint8,	zeros

The	array	import	function	itself	takes	the	name	of	the	file	to	load	and	a	human-readable
name	 for	 the	 data.	 Also	 we	 specify	 the	 number	 of	 rows	 and	 columns	 (optionally	 if
different	 from	 the	 rows)	 that	 the	 image	 represents.	While	 it	 is	 certainly	 possible	 to	 do
image	processing	to	guess	where	the	circular	spots	in	the	array	image	are	located	it	is	far
easier	 to	 specify	 the	grid	 size	upfront	and	 then	simply	 subdivide	 the	 image	 into	equally
sized	 rectangles,	 corresponding	 to	 the	 rows	 and	 columns.	Here	we	will	 simply	 take	 the
signal	for	each	spot	as	the	total	amount	of	signal	within	each	grid	cell,	though	this	could
be	refined	by	fitting	circles	and	removing	noise	etc.

def	loadArrayImage(fileName,	sampleName,	nRows,	nCols=None):

If	the	number	of	data	columns	was	not	specified	when	the	function	is	called	we	set	it	to
be	 equal	 to	 the	 number	 of	 rows.	 The	 numeric	 matrix	 that	 will	 contain	 the	 signal
information	dataMatrix	 is	 then	constructed	 initially	as	an	array	 for	zeros	of	 the	 required
size,	 noting	 that	 the	 first	 axis	 has	 three	 layers	 before	we	 specify	 rows	 and	 columns	 (3,
nRows,	nCols),	which	will	be	used	to	store	the	separate	colour	components.	It	is	a	matter
of	taste	whether	the	different	layers	use	the	first	or	last	axis	of	the	array,	but	here	we	put	it
first	because	it	makes	the	code	slightly	simpler	overall,	even	though	this	is	the	opposite	of
how	the	data	is	stored	in	the	image.

if	not	nCols:

		nCols	=	nRows

dataMatrix	=	zeros((3,	nRows,	nCols),	float)

Using	 the	 imported	modules,	 an	 object	 representing	 the	 image	 is	 generated	 from	 the
input	 file	with	 the	 Image.open()	method,	 and	 this	 is	 them	converted	 to	 a	 numeric	 array
with	the	function	from	Chapter	18.

img	=	Image.open(fileName)	#	Automatic	file	type

pixmap	=	imageToPixmapRGB(img)

The	size	of	the	pixel	data	along	each	of	its	axes	is	easily	determined	from	the	numeric
array.	By	dividing	the	total	 image	width	and	height	by	the	number	of	columns	and	rows
respectively	we	get	a	measure	of	the	grid	size,	which	we	will	use	to	subdivide	the	image
data.	We	calculate	both	floating	point	grid	sizes	(dx,	dy)	and	integer	sizes	(xSize,	ySize)
because	we	need	precise	values	to	define	the	grid	start	points	but	a	fixed	number	of	pixels
to	find	the	end	points,	and	thus	give	blocks	of	equal	area.	Note	the	integer	size	calculation
involves	adding	one	pixel	because	we	will	be	taking	a	slice	out	of	the	image	array	up	to,
but	not	including,	the	end	value,	but	that	this	also	means	we	subtract	one	prior	to	division
to	avoid	overshooting	the	edge	of	the	image.

height,	width,	depth	=	pixmap.shape

dx	=	width/float(nCols)		#	float()	not	needed	in	Python	3

dy	=	height/float(nRows)

xSize	=	1	+	(width-1)//nCols

ySize	=	1	+	(height-1)//nRows

Looping	 through	 each	microarray	 row	 the	 first	 pixel	 position	 for	 that	 image	 section
(yStart)	is	calculated	by	multiplying	the	row	number	by	the	row	depth	in	the	image	(dy)
and	converting	 to	an	 integer.	The	 last	pixel	position	will	be	 just	 inside	 the	 limit	 (yEnd),
which	is	calculated	as	the	start	plus	the	integer	grid	width	(ySize).

for	row	in	range(nRows):

		yStart	=	int(row*dy)

		yEnd			=	yStart	+	ySize

Similarly,	within	each	row	we	calculate	the	range	of	pixels	to	select	a	column	of	data
from	the	image.

for	col	in	range(nCols):

		xStart	=	int(col*dx)

		xEnd			=	xStart	+	xSize

The	 data	 corresponding	 to	 an	 individual	 microarray	 grid	 element	 (i.e.	 spot)	 is	 a
rectangular	 region	 of	 pixels	 sliced	 from	 the	 image	 pixmap,	 using	 the	 row	 and	 column
bounds	just	calculated.	The	data	from	this	sub-region	is	summed	along	both	the	width	and
height	axes	of	the	array	(but	not	colour	axis),	hence	we	use	.sum(axis=(0,1))	 to	give	 the
total	signal	for	the	grid	element.	This	is	then	stored	in	dataMatrix	at	the	required	row	and
column,	noting	 that	 the	‘:’	 specification	 for	 the	 first	axis	of	 the	array	means	 that	we	are
setting	all	the	colour	channels	at	the	same	time.

elementData	=	pixmap[yStart:yEnd,xStart:xEnd]

dataMatrix[:,row,	col]	=	elementData.sum(axis=(0,1))

Note	that	if	width	is	not	a	multiple	of	nCols	then	the	last	column	has	fewer	pixels	in	the

sum,	and	similarly	for	the	last	row,	if	height	is	not	a	multiple	of	nRows.	Finally	at	the	end
of	the	function	we	create	a	Microarray	object,	as	described	below,	with	its	name	and	data
array.

return	Microarray(sampleName,	dataMatrix)

The	‘Microarray’	class
Now	we	come	to	define	the	Microarray	class	of	object.	This	is	specified	according	to	the
principles	discussed	in	Chapter	8.	The	__init__	constructor,	which	is	called	each	time	an
object	of	this	type	is	made,	requires	a	sample	name	and	a	NumPy	array	of	data.	We	can
also	pass	in	values	for	the	row	and	column	data	labels.	These	are	not	mandatory,	and	if	not
set	they	will	be	filled	with	sequential	integer	numbers	for	each	row	and	column.	Note	that
the	 def	 keyword	 is	 indented	 relative	 to	 the	 class	 keyword,	 to	 specify	 that	 the	 function
definition	is	inside,	and	thus	part	of,	the	class	specification.

class	Microarray(object):

		def	__init__(self,	name,	data,	rowData=None,	colData=None):

Firstly,	 inside	 the	 constructor	 function	we	 store	 the	 name	 for	 the	microarray	 data	 by
assigning	it	to	self.name.	Recall	that	self.	arguments	are	used	so	that	variables	are	tied	to
the	Microarray	object,	 so	 that	when	a	particular	 instance	of	a	microarray	object	 is	made
the	self	will	represent	that	actual	object,	rather	than	the	abstract	specification	stated	within
the	class	construction.	Then	we	make	a	copy	of	the	input	data	(using	array()	will	make	a
copy	as	a	NumPy	array),	which	converts	any	input	lists	or	tuples	and	means	the	original
input	won’t	be	changed	if	it	is	used	elsewhere.

self.name	=	name

data	=	array(data)

Next	the	sizes	of	axes	in	the	array	data	are	extracted	with	the	.shape	attribute.	If	there
are	 three	 axes	 in	 the	 data	we	 assume	 these	 represent	 the	 respective	 data	 channels	 (e.g.
colours),	rows	and	columns.	Otherwise	if	there	are	two	data	axes	we	assume	there	is	only
one	channel	and	we	re-cast	the	data	array	as	a	single	element	within	a	larger	array,	so	that
it	is	forced	to	have	three	axes	(i.e.	shape	is	(1,	nCols,	nRows))	even	though	there	is	only
one	layer	of	data.

shape	=	data.shape

if	len(shape)	==	3:

		self.nChannels,	self.nRows,	self.nCols	=	shape

elif	len(shape)	==	2:

		self.nRows,	self.nCols	=	shape

		self.nChannels	=	1

		data	=	array([data])	#	or	data.reshape((1,	self.nRows,	self.nCols))

If	the	number	of	data	axes	doesn’t	fit	what	we	require	an	error	exception	is	triggered	so
the	program	will	stop	(if	the	exception	is	not	handled).

else:

		raise	Exception('Array	data	must	have	either	2	or	3	axes.')

With	the	data	now	potentially	adjusted,	to	ensure	that	it	has	three	axes,	we	associate	it
with	a	self.	variable	so	that	it	is	tied	to	the	object.	Also	we	take	a	copy	of	the	data	which
will	 be	 left	 in	 its	 original	 form,	 so	 that	 at	 any	 point	 in	 the	 future	we	 can	 revert	 to	 the
original	state	if	we	wish,

self.data	=	data

self.origData	=	array(data)

Lastly	 in	 the	 constructor	 function	 the	 row	 and	 column	 labels	 are	 associated	with	 the
object,	noting	that	the	or	keyword	is	used	so	that	if	either	list	of	labels	is	None	(empty	or
otherwise	logically	false)	then	they	are	defined	as	a	sequential	range	of	integer	numbers,
one	for	each	row	or	column.

self.rowData	=	rowData	or	range(self.nRows)

self.colData	=	colData	or	range(self.nCols)

This	example	is	somewhat	lazy,	given	that	we	have	not	made	any	checks	to	ensure	that
the	data	 is	of	 the	correct	 type	or	 that	 the	 rowData	or	colData	 is	 the	correct	 size	 (if	 set).
Naturally	these	checks	should	be	made	in	real-world	applications.

As	a	very	simple	example	in	the	toolkit	of	functions	for	Microarray	we	create	a	method
so	we	can	revert	the	self.data	array	back	to	the	original	values,	if	we	want.	The	function
takes	the	self	as	its	argument,	which	at	run	time	will	be	filled	with	a	particular	occurrence
of	the	object,	so	that	it	can	then	access	all	of	the	attributes	(and	other	functions)	linked	to
that	object;	in	other	words	we	can	use	self.	inside	this	function.	The	function	simply	works
by	assigning	self.data	to	a	copy	of	the	original	data	and	resetting	self.nChannels,	in	case
that	had	changed.

def	resetData(self):

		self.data	=	array(self.origData)

		self.nChannels	=	len(self.data)

Exporting	array	data
With	the	constructor	function	complete	we	know	that	the	Microarray	objects	can	be	made
with	the	required	set	of	attributes,	for	the	data,	rows	and	columns	etc.	The	next	task	is	to
create	other	functions	within	the	class	definition	that	provide	objects	of	that	class	with	any
special	 functionality	 that	we	need.	After	having	discussed	constructing	and	 loading	data
into	the	Microarray	objects	we	next	turn	to	getting	data	out.	As	with	the	import	functions
we	will	consider	both	text	files	and	images,	the	latter	of	which	will	be	handy	to	indicate
the	changes	that	occur	when	we	process	and	analyse	the	data.

We	define	the	writeData	function	inside	the	above	class	definition,	hence	all	of	the	code
for	 the	 function	 is	 indented.	 Internally	 the	 function	 works	 by	 opening	 a	 file	 object
(fileObj)	to	write	out	and	loops	through	the	rows	and	columns	of	the	array,	converting	the
row	and	column	identifiers	to	strings	with	str(),	just	in	case	they	are	stored	as	numbers.

def	writeData(self,	fileName,	separator='	'):

		fileObj	=	open(fileName,	'w')

		for	i	in	range(self.nRows):

				rowName	=	str(self.rowData[i])

				for	j	in	range(self.nCols):

						colName	=	str(self.colData[j])

For	each	row	and	column	combination	we	use	the	indices	(i,j)	to	get	the	data	from	the
array	for	all	array	channels:

values	=	self.data[:,i,j]

The	line	of	text	that	will	be	written	to	the	file	is	constructed	using	a	list	of	data	that	has
the	name	of	the	row	and	column	at	the	start	and	then	string	representations	of	the	numeric
data	in	values.	We	convert	the	floating	point	numbers	to	strings	with	three	decimal	places
with	 the	 format	 ‘%.3f’,	 though	we	 could	 increase	 the	 number	 of	 places	 if	 needed	 (see
Appendix	for	detailed	discussion	of	string	formatting	codes).

lineData	=	[rowName,	colName]

lineData	+=	['%.3f'	%	(v,)	for	v	in	values]

The	actual	line	to	write	is	created	by	using	the	separator	string	(by	default	a	space)	and
the	 .join()	method	 to	 combine	 the	 separate	 lineData	 strings	 into	 one.	The	 line	 is	 finally
written	to	the	file	object	with	a	trailing	newline	character,	before	the	loops	move	on	to	the
next	item.

line	=	separator.join(lineData)

fileObj.write(line	+	'\n')

When	we	call	this	function	we	will	do	so	from	an	instance	of	a	Microarray	object	(here
called	rgArray).	Using	example	data	that	accompanies	this	book	as	a	test3	we	can	load	the
array	data	from	an	image	and	export	it	as	a	text	file:

imgFile	=	'examples/RedGreenArray.png'

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

rgArray.writeData('RedGreenArrayData.txt')

For	 the	next	export	example	we	will	define	an	 internal	class	function	(a	method)	 that
creates	a	picture	 representing	 the	microarray	data.	This	will	be	very	useful	 to	users	and
programmers	 to	 get	 a	 visual	 representation	of	 the	 experimental	 values	 in	 the	 array.	The
second	 argument	 after	 self	 is	 a	 number	 that	 determines	 how	 large	 a	 square	 to	 use	 to
represent	each	element	of	the	microarray,	i.e.	we	are	aiming	to	make	a	picture	of	the	array
using	coloured	squares.	The	channels	argument	can	be	used	to	specify	which	layers	of	the
array	data	will	be	used	to	create	the	red,	green	and	blue	components	of	the	image,	bearing
in	mind	that	the	Microarray	could	have	many	layers	of	data.	It	will	be	specified	as	a	list
(or	 tuple)	of	 integer	 indices	 to	 select	 the	 layers	 and	may	contain	None	 to	 specify	 that	 a
colour	channel	should	be	blank	(zeros).

def	makeImage(self,	squareSize=20,	channels=None):

Because	we	will	be	making	an	image	file	that	uses	eight	data	bits	to	store	each	colour
component	the	numeric	values	are	adjusted	so	they	fit	the	integer	range	0	to	255	(28−1).
Accordingly	 the	 extreme	 values	 present	 in	 the	 array	 data	 are	 found	 using	 the	 handy
functions	built	into	NumPy	arrays	and	the	overall	range	is	calculated.

minVal	=	self.data.min()

maxVal	=	self.data.max()

dataRange	=	maxVal	-	minVal

The	 adjusted	 array	 adjData	 contains	 pixel	 colour	 intensities	 and	 is	 a	 copy	 of	 the
self.data	value	array	that	has	its	lower	limit	subtracted	(so	that	the	pixmap	has	a	minimum
value	of	zero,	corresponding	to	black	here)	and	which	is	then	scaled	so	that	the	upper	limit
is	 set	 to	 have	 the	 value	 255	 (the	 brightest	 colour).	 The	 array	 is	 then	 converted	 into	 an
unsigned	8-bit	(uint8)	version	of	 itself;	 this	way	of	storing	numbers	 is	 the	way	that	 they
are	represented	in	our	image	data.

adjData	=	(self.data	-	minVal)	*	255	/	dataRange

adjData	=	array(adjData,	uint8)

Next,	 if	 the	array	channels	 (layers)	 to	 take	 for	 image	construction	were	not	passed	 in
then	we	decide	on	some	sensible	defaults.	If	there	is	only	one	channel	in	the	data,	the	red,
green	and	blue	components	of	the	image	(which	will	end	up	grey)	will	all	come	from	the
only	data	layer	(index	0).	Otherwise	we	will	simply	take	the	first	layers	of	the	array	up	to	a
maximum	of	three	(we	will	fill	missing	RBG	channels	with	zeros	later).

if	not	channels:

		if	self.nChannels	==	1:

				channels	=	(0,0,0)	#	Greyscale

		else:

				channels	=	list(range(self.nChannels))[:3]

In	 the	next	 step	we	will	allow	for	blank	colour	channels.	For	example,	 if	we	want	 to
specify	 that	an	 image	should	use	red	only	we	could	set	channels	as	 (0,	None,	None),	so
that	the	first	array	Microarray.data	layer	makes	the	red	colour	but	there	is	no	green	or	blue.
Hence	if	a	None	is	found	in	the	channels	we	append	an	array	of	zeros	of	the	required	size
to	 the	 pixmap	 list.	 Otherwise	 we	 add	 the	 required	 layer	 from	 the	 adjusted	 data.	 Using
channels	 could	 also	 result	 in	 a	 different	 colour	 order	 to	 the	 original,	 e.g.	 by	 specifying
channels	as	(2,	1,	0)	the	layers	that	usually	represent	red	and	blue	would	be	swapped.

pixmap	=	[]

for	i	in	channels:

		if	i	is	None:

				pixmap.append(zeros((self.nRows,	self.nCols),	uint8))

		else:

				pixmap.append(adjData[i])

We	will	also	allow	for	the	channels	to	be	shorter	than	three,	in	which	case	we	simply
add	missing	channels	as	zero	arrays	to	pixmap.

while	len(pixmap)	<	3:

		pixmap.append(zeros((self.nRows,	self.nCols),	uint8))

The	 three-dimensional	 image	 pixmap	 array	 is	 created	 by	 stacking	 the	 three	 colour
layers	along	the	depth	axis	(hence	dstack())	and	this	is	used	with	the	PIL	module	to	make
an	 Image	 object	 called	 img.	Given	 that	we	 usually	 don’t	want	 the	 array	 elements	 only
represented	by	single	pixels,	which	would	be	too	small	to	distinguish,	the	whole	image	is
resized	 so	we	 have	 squareSize	 pixels	 in	 each	 row	 and	 column,	 and	 hence	much	 larger
colour	blocks.	The	final	image	object	is	then	passed	back	at	the	end	of	the	function.

pixmap	=	dstack(pixmap)

img	=	Image.fromarray(pixmap,	'RGB')

width	=	self.nCols	*	squareSize

height	=	self.nRows	*	squareSize

img	=	img.resize((width,	height))

return	img

To	 test	 the	 function	 we	 will	 again	 load	 the	 red	 and	 green	 example	 image	 as	 a
Microarray.

imgFile	=	'examples/RedGreenArray.png'

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

The	image	generation	function	can	be	used	to	make	a	picture	with	20×20	pixel	squares,
so	we	 can	 see	whether	 the	data	 is	 faithfully	 reproduced,	 albeit	 not	 in	 its	 original	 spotty
form.	 Note	 that	 we	 display	 the	 Image	 object	 generated	 immediately	 using	 its	 inbuilt
.show()	method	(see	Figure	16.2a).

rgArray.makeImage(20).show()

Figure	16.2	(Plate	3).	 Image	pixmaps	constructed	from	array	data	stored	in	the
Microarray	class.	Shown	from	left	to	right	are:	a	red	and	green	representation	of	the
original,	imported	data;	the	original	data	displayed	as	yellow	and	blue	colours	(the	original
red-channel	data	becomes	red	and	green	in	the	image	and	the	original	green	data	becomes
blue);	clipped	and	normalised	data	where	values	less	than	half	the	maximum	are	set	to
zero.

To	make	an	image	only	containing	red	by	taking	data	from	layer	0	in	the	array	we	can
specify	channels	as	(0,None,None).

rgArray.makeImage(20,	channels=(0,None,None)).show()

And	if	we	want	 to	change	 the	order	of	 the	 layers	so	 that	 the	originally	 red	and	green

data	 (indices	0	and	1)	are	mapped	 to	yellow	and	blue	 respectively	we	do	 the	 following,
illustrating	the	result	in	Figure	16.2b:

rgArray.makeImage(20,	channels=(0,	0,	1)).show()

Value	normalisation
Now	the	examples	move	onto	methods	that	adjust	and	normalise	our	data.	The	aim	here	is
generally	to	preserve	the	features	and	correlations	within	the	data,	while	adjusting	the	data
values	 so	 that	 they	have	a	 standard	 range	or	 fit	better	 to	 some	kind	of	distribution.	The
reasons	 for	 doing	 this	 may	 simply	 be	 mathematical,	 e.g.	 to	 calculate	 scores	 or
probabilities,	but	normalisation	has	a	very	important	role	in	making	different	experiments
(both	experiment	spots	within	an	array	and	whole	arrays)	comparable	with	one	another.

The	first	function	of	this	kind	is	used	to	clip	the	lowest,	base	value	of	the	data	so	that	it
does	not	drop	below	a	specified	threshold;	elements	that	have	smaller	values	will	be	set	to
this	 limit.	 Note	 that	 if	 the	 absolute	 threshold	 is	 not	 specified	 it	 is	 taken	 to	 be	 some
proportion	 of	 the	 maximum	 value,	 which	 in	 this	 case	 arbitrarily	 defaults	 to	 0.2.	 This
function	 would	 be	 handy	 to	 eliminate	 erroneous	 negative	 values,	 for	 example,	 or	 to
disregard	microarray	elements	that	are	deemed	to	be	insignificant	because	they	are	below
some	 noise	 level.	Also,	 as	with	 the	makeImage()	 function	we	 allow	 the	 channels	 to	 be
specified	 to	 state	 which	 layers	 of	 the	 array	 data	 should	 be	 considered.	 If	 this	 is	 not
specified	it	defaults	to	the	indices	for	all	layers	range(self.nChannels).	Note	that	channels
is	deliberately	converted	to	a	tuple	and	then	placed	in	a	list	so	that	it	can	be	used	to	index	a
subset	 from	 the	 self.data	 array	 (this	 is	 a	 consequence	 of	 the	way	NumPy	 array	 indices
work).

def	clipBaseline(self,	threshold=None,	channels=None,	defaultProp=0.2):

		if	not	channels:

				channels	=	range(self.nChannels)

		channels	=	[tuple(channels)]

The	maximum	value	 is	found	from	the	required	channels	of	 the	array	data,	and	if	 the
threshold	(clipping)	value	is	not	specified	it	is	calculated	with	the	default	proportion.

maxVal	=	self.data[channels].max()

if	threshold	is	None:

		limit	=	maxVal	*	defaultProp

else:

		limit	=	threshold

By	comparing	the	whole	array	self.data	with	the	limit	we	generate	an	array	of	Boolean
values	(True/False)	that	state	whether	each	element	was	less	than	the	threshold	value.	The
indices	 of	 the	 positions	 where	 this	 is	 True	 are	 provided	 by	 the	 nonzero()	 function	 of
NumPy	 arrays.	 These	 array	 elements	 corresponding	 to	 these	 indices	 are	 then	 set	 to	 the
lower	limit.

boolArray	=	self.data[channels]	<	limit

indices	=	boolArray.nonzero()

self.data[indices]	=	limit

After	clipping,	the	data	is	then	centred	by	subtracting	the	baseline	value,	to	give	a	new
base	 value	 of	 zero,	 and	 finally	 scaled	 (effectively	 stretched)	 to	 restore	 the	 original
maximum	value.

self.data[channels]	-=	limit

self.data[channels]	*=	maxVal	/	(maxVal-limit)

We	 now	 consider	 various	 simple	 normalisation	 and	 adjustment	 methods.	 The
normaliseSd	function	will	scale	the	data	values	according	to	the	standard	deviation	in	the
measurement,	 thus	we	divide	all	signal	values	by	the	standard	deviation.	We	include	the
scale	argument	so	that	the	data	can	also	be	arbitrarily	scaled	at	the	same	time.	This	kind	of
adjustment	is	useful	when	comparing	different	instances	of	microarrays,	where	the	actual
range	 of	 signals	 (e.g.	 detected	 fluorescence	 values)	 probably	 ought	 to	 be	 the	 same	 on
different	 occasions,	 but	 where	 there	 is	 variation	 in	 magnitude	 simply	 by	 the	 way	 the
microarray	is	constructed.	For	example,	one	microarray	might	have	a	systematically	larger
amount	of	substrate	printed	on	it	compared	to	another.	If	there	is	confidence	that	different
arrays	are	showing	the	same	range	of	underlying	data	then	this	normalisation,	according	to
standard	deviation,	is	reasonable.	The	operation	is	done	separately	on	all	of	the	data	layers
(one	 for	 each	 channel),	 though	 we	 could	 extend	 the	 function	 to	 accept	 only	 a	 limited
number	of	 channels.	The	data	 is	multiplied	and	divided	appropriately	 in	 an	element-by-
element	manner	 in	 the	NumPy	array.	The	standard	deviation	 is	obtained	using	 the	 .std()
method	inbuilt	into	the	NumPy	array	objects,	as	we	describe	in	Chapter	22.

def	normaliseSd(self,	scale=1.0):

		for	i	in	range(self.nChannels):

				self.data[i]	=	self.data[i]	*	scale	/	self.data[i].std()

Another	similar	kind	of	normalisation	is	simply	to	make	sure	that	microarray	values	are
scaled	relative	 to	 their	mean	value.	This	 is	done	for	similar	 reasons	as	above,	but	 rather
than	saying	the	variation	in	values	is	the	same	across	different	arrays,	we	assume	that	the
mean	values	should	be	the	same,	or	nearly	so.	This	is	indeed	a	reasonable	assumption	in
many	situations.

def	normaliseMean(self,	scale=1.0):

		for	i	in	range(self.nChannels):

				self.data[i]	=	self.data[i]	*	scale	/	self.data[i].mean()

If	we	do	one	of	 the	above	normalisations	 then	 it	 is	often	handy	 to	 represent	 the	data
values	as	positive	and	negative	numbers	either	side	of	the	mean	value,	so	we	can	see	what
is	above	or	below	 the	average,	 rather	 than	as	a	merely	positive	 intensity.	This	 is	 readily
achieved	by	subtracting	the	mean	value	from	all	the	data:

def	centerMean(self):

		for	i	in	range(self.nChannels):

				self.data[i]	-=	self.data[i].mean()

Combining	 the	 centring	 of	 the	 data	 and	 scaling	 by	 the	 standard	 deviation	 we	 get	 a
commonly	 used	 operation	 which	 is	 called	 Z-score	 normalisation,4	 as	 we	 discuss	 in
Chapter	22.	All	this	really	means	is	that	we	move	the	data	values	so	that	they	are	centred
at	zero	and	scaled	to	put	the	standard	deviation	at	the	values	±1.0.

def	normaliseZscore(self):

		self.centerMean()

		self.normaliseSd()

Another	kind	of	normalisation	is	to	scale	the	values	to	some	upper	limit,	e.g.	so	they	are
at	most	1.0.	This	 is	done	by	dividing	by	the	maximum	value.	This	operation	is	useful	 if
you	know	what	 the	maximum	value	 in	 the	array	 is,	or	 tends	 towards.	For	example,	 this
could	be	a	strong	reference	signal	for	an	element	acting	as	a	positive	control.	Here	we	add
the	 option	 to	 consider	 either	 each	 data	 layer	 separately	 (perChannel=True)	 or	 the
maximum	value	from	all	the	data	(perChannel=False).

def	normaliseMax(self,	scale=1.0,	perChannel=True):

		if	perChannel:

				for	i	in	range(self.nChannels):

						self.data[i]	=	self.data[i]	*	scale	/	self.data[i].max()

		else:

				self.data	=	self.data	*	scale	/	self.data.max()

Likewise	we	could	normalise	 the	 rows	 separately,	 relative	 to	 the	maximum	values	 in
each	row.	Here	 the	data	values	are	divided	by	an	array	representing	the	maximum	value
along	only	one	axis,	hence	axis=1,	to	get	the	sum	of	the	values	(over	the	column	positions)
for	 each	 row.	 The	 slice	 notation	 [:,None]	 is	 a	 convenient	way	 of	 changing	what	would
otherwise	 be	 a	 one-dimensional	 array	 of	 maxima,	 in	 one	 long	 row	 vector,	 into	 a	 two-
dimensional	 array	 with	 several	 rows	 (one	 number	 in	 each)	 and	 one	 long	 column.	 This
means	the	division	then	scaling	of	each	row	of	values	by	a	different	number.

def	normaliseRowMax(self,	scale=1.0):

		for	i	in	range(self.nChannels):

				self.data[i]	=	self.data[i]	*	scale	/	self.data[i].max(axis=1)[:,None]

Row	 normalisation	 is	 useful	 where	 each	 row	 represents	 a	 different	 kind	 of	 data.	 An
example	would	 be	where	 each	 column	 corresponds	 to	 a	 different	 nucleotide	 (or	 amino
acid)	sequence	change	in	one	molecule	and	each	row	represents	a	set	of	target	molecules
that	are	being	bound.	By	normalising	by	row	we	will	get	the	relative	signal	that	illustrates
which	sequence	changes	give	the	best	binding	to	each	target.	This	may	be	useful	in	finding
the	 change	 that	 leads	 to	 optimal	 binding	 for	 several	 targets,	 but	 naturally	 we	 lose
information	about	the	comparative	strength	of	binding	between	targets.

Alternatively	we	 can	 normalise	 the	 rows	 so	 they	 are	 scaled	 according	 to	 their	mean
value.

def	normaliseRowMean(self,	scale=1.0):

		for	i	in	range(self.nChannels):

				self.data[i]	=	self.data[i]	*	scale	/	self.data[i].mean(axis=1)[:,None]

The	same	operations	can	be	done	for	the	columns	in	the	data,	it	just	depends	on	how	the
array	is	arranged.	Note	that	here	we	use	axis=0	and	so	don’t	have	to	do	convert	the	array
of	maxima	into	a	column	vector.

def	normaliseColMax(self,	scale=1.0):

		for	i	in	range(self.nChannels):

				self.data[i]	=	self.data[i]	*	scale	/	self.data[i].max(axis=0)

def	normaliseColMean(self,	scale=1.0):

		for	i	in	range(self.nChannels):

				self.data[i]	=	self.data[i]	*	scale	/	self.data[i].mean(axis=0)

If	the	microarray	contains	elements	that	represent	control	values,	i.e.	where	you	know
what	the	expected	results	for	these	are,	then	you	can	scale	the	whole	array	relative	to	the
known	signal	for	these	reference	points.	Here	the	reference	values	are	specified	by	passing
in	 the	 lists	 of	 the	 rows	 and	 columns	 they	 are	 found	 in,	 which	 are	 used	 to	 extract	 the
corresponding	values	from	the	data.	Taking	a	slice	from	self.data	using	separate	rows	and
column	specifications	[rows,	cols],	rather	than	finding	specific	indices,	may	seem	odd,	but
is	 often	 convenient	 in	 NumPy	 (e.g.	 this	 is	 what	 .nonzero()	 gives).	 The	 [rows,	 cols]
notation	will	affect	all	of	the	elements	where	all	of	the	indices	coincide,	so	can	actually	be
more	efficient	than	stating	separate	coordinates.	The	mean	of	the	reference	values	is	then
used	to	divide	the	whole	array.	To	add	a	bit	of	diversity	we	revert	to	allowing	the	channels
to	be	specified	to	state	which	data	layers	to	operate	on.

def	normaliseRefs(self,	rows,	cols,	scale=1.0,	channels=None):

		if	not	channels:

				channels	=	range(self.nChannels)

		channels	=	tuple(channels)

		refValues	=	self.data[channels,	rows,	cols]

		for	i	in	channels:

				self.data[i]	=	self.data[i]	*	scale	/	refValues[i].mean()

A	different	way	of	normalising	data	values,	especially	for	fluorescence	intensity	data,	is
to	convert	it	into	a	logarithmic	scale,	effectively	compressing	its	dynamic	range.	Note	that
we	 clip	 the	 baseline	 to	 remove	 any	 negative	 values	 and	 add	 1.0	 so	 we	 don’t	 take	 the
logarithm	 of	 any	 zero	 values.	 After	 conversion	 to	 a	 log	 scale	we	 can	 then	 apply	 other
normalisation	 techniques	 to	 compare	 different	 microarrays	 or	 rows	 etc.	 (Obviously	 we
cannot	 do	 centerMean()	 before	 the	 log	 conversion,	 because	 we	 want	 all	 values	 to	 be
positive.)

def	normaliseLogMean(self):

		self.clipBaseline(threshold=0.0)

		for	i	in	range(self.nChannels):

				self.data[i]	=	log(1.0	+	self.data[i]	/	self.data[i].mean())

We	can	test	all	of	the	above	by	creating	a	Microarray	object	named	testArray	that	uses
some	example	data	 from	a	 text	 file.	We	 illustrate	 the	 result	of	 the	various	normalisation
methods	by	writing	out	an	image	after	each	point.

testArray	=	loadDataMatrix('examples/microarrayData.txt',	'Test')

testArray.makeImage(25).save('testArray.png')

#	Log	normalise

testArray.normaliseLogMean()

testArray.makeImage(25).save('normaliseLogMean.png')

#	Normalise	to	max	and	clip

testArray.resetData()

testArray.normaliseMax()

testArray.clipBaseline(0.5)

testArray.makeImage(25).save('clipBaseline.png')

#	Normalise	to	standard	deviation

testArray.resetData()

print(''Initial	SD:'',	testArray.data.std())

testArray.normaliseSd()

print(''Final	SD:'',	testArray.data.std())

Another	handy	way	 to	do	normalisation,	 albeit	 in	 a	 less	 scientific	way,	 is	 to	perform
quantile	normalisation	and	this	is	commonly	used	in	DNA	microarrays	where	consistency
can	be	an	 issue.	The	process	here	 is	 to	make	 the	distribution	of	data	values	 in	 the	array
match	 some	 other,	 external	 distribution.	 This	 other	 distribution	 could	 be	 different
microarray	data	or	a	mathematical	distribution	like	a	normal	distribution	(Gaussian).	The
matching	of	distributions	is	achieved	by	replacing	each	real	microarray	data	value	with	the
value	from	the	reference	distribution	that	has	equal	rank,	so	the	highest	value	is	replaced
by	the	highest	reference	value,	the	second	highest	with	the	second	highest	reference	and	so
on.	While	this	may	seem	a	little	like	cheating,	quantile	normalisation	is	especially	useful	if
you	suspect	that	the	distribution	of	values	in	the	microarray	has	been	distorted	or	skewed,
but	at	least	the	order	of	values	conveys	information.

The	 quantile	 normalisation	 procedure	 can	 be	 done	 by	 using	 NumPy	 as	 we	 illustrate
below.	The	objective	is	 to	replace	items	in	values	by	selecting	 items	with	 the	equivalent
rank	from	refData.	Note	 that	we	don’t	 just	sort	 replacement	values	because	we	want	 the
ranks	of	 these	numbers	 in	 the	original	data	order.	First	 the	data	array	 is	 flattened	 into	a
one-dimensional	vector	and	the	indices	of	the	values	are	extracted	in	size	order	(.argsort()
does	this).	Hence,	order	represents	the	selection	that	sorts	values.	To	take	an	example,	if
the	 flattened	 data	 is	 [2.5,	 7.1,	 0.0,	 5.9]	 then	 the	 indices	 order	 is	 [2,	 0,	 3,	 1]	 (2	 is	 the
position	of	the	smallest	value,	0	the	position	of	the	next	smallest	etc.).

def	normaliseQuantile(self,	refData,	channel=0):

		#	could	be	to	a	different	channel

		values	=	self.data[channel].flatten()

		order	=	values.argsort()

Similarly	the	reference	refData	distribution	is	flattened	into	refValues	(assumed	to	be	an
array	 of	 the	 same	 size	 as	 self.data)	 into	 a	 vector.	 Then	 refValues	 is	 sorted,	 putting	 its
elements	 into	 size	 (and	 hence	 rank)	 order,	 so	 that	 we	 obtain	 an	 array	 of	 replacement
values.	The	array	of	 indices	 in	original	value	order	 (order)	 is	 itself	 subject	 to	 .argsort().
This	may	seem	confusing	but	what	you	get	is	an	array	of	the	ranks	of	each	value,	and	thus
a	mapping	from	the	original	values	 to	 the	replacement	reference	values.	For	example,	 if
values	is	[2.5,	7.1,	0.0,	5.9]	then	the	refSelection	is	[1,	3,	0,	2],	where	each	number	is	the
size	rank	(starting	at	zero)	of	the	equivalent	data	value.	Once	defined,	refSelection	allows
us	 to	 redefine	values	by	 taking	 the	 reference	values	 in	 the	original	 rank	order.	Finally	a
new	self.data	is	made	by	arranging	values	into	the	original	shape.

refValues	=	refData.flatten()

refValues.sort()

refSelection	=	order.argsort()

values	=	refValues[refSelection]

self.data[channel]	=	values.reshape((self.nRows,	self.nCols))

And	we	can	do	a	similar	thing	to	quantile	normalise	each	row	separately.	However,	here
we	can	use	an	internal	reference	distribution,	which	is	the	average	for	all	the	rows.	We	do
not	flatten	the	data	arrays	into	a	vector	as	each	row	is	a	vector	and	is	dealt	with	separately.
Accordingly	we	determine	the	order	of	elements	of	increasing	value	in	each	row	(orders).
The	refValues	is	defined	by	sorting	the	values	in	each	row	and	taking	the	average	for	each
column	 (so	 each	 is	 the	 average	 of	 values	 with	 equivalent	 rank	 from	 each	 row).	 The
self.data	rows	are	then	replaced	with	those	of	matching	rank	from	the	refValues	averages.

def	normaliseRowQuantile(self,	channel=0):

		channelData	=	self.data[channel]

		orders	=	channelData.argsort(axis=1)

		sortedRows	=	array(channelData)

		sortedRows.sort(axis=1)

		refValues	=	sortedRows.mean(axis=0)	#	average	over	columns

		rows	=	range(self.nRows)

		self.data[channel,rows,:]	=	refValues[orders[rows,:].argsort()]

We	can	test	the	quantile	normalisation	using	example	data	loaded	from	an	image.	For
the	reference	we	will	use	the	data	in	layer	1	(green)	to	normalise	layer	0	(red).

imgFile	=	'examples/RedGreenArray.png'

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

rgArray.normaliseQuantile(rgArray.data[1],	0)

rgArray.makeImage(25).show()

Changing	array	channels

Moving	on	from	making	adjustments	to	the	values	within	the	array	data	we	next	consider
operations	that	can	add	and	remove	whole	signal	layers.	Naturally	it	is	possible	to	create
one	Microarray	object	with	different	channels	based	on	another,	manipulating	 the	signal
data	outside	the	class.	Hence,	for	example,	we	could	take	the	red	and	green	(index	0	and
1)	layers	from	one	object	and	construct	another,	here	making	an	array	which	visualises	as
yellow	and	blue:

red	=	rgArray.data[0]

green	=	rgArray.data[1]

yellowBlue	=	Microarray('yellowBlue',	[red,	red,	green])

yellowBlue.makeImage(20).show()

However,	 in	 keeping	 with	 the	 object-oriented	 approach,	 we	 can	 add	 any	 general
functionality	to	the	Microarray	class	as	methods.	As	examples	we	will	add	functions	that
replace,	add	and	 remove	complete	 layers	of	array	data	 (i.e.	corresponding	 to	one	colour
channel).	Though,	in	the	situations	where	we	are	supplying	new	values	the	input	data	must
be	of	the	correct	size	to	be	added	to	the	array.	In	order	to	guarantee	this	we	first	describe
the	checkDataSize()	function,	which	will	trigger	an	error	if	the	input	for	a	layer	is	not	of
the	same	size	as	the	existing	array	data.	This	function	first	makes	an	array()	copy	of	 the
data,	in	case	it	was	input	as	lists	or	tuples,	and	then	the	input	size	(accessed	with	.shape)
must	naturally	match	the	number	of	rows	and	columns.

def	checkDataSize(self,	channelData):

		channelData	=	array(channelData)

		if	channelData.shape	!=	(self.nRows,	self.nCols):

				msg	=	'Attempt	to	use	data	of	wrong	size'

				raise	Exception(msg)

		return	channelData

With	 the	 above	 function	 available	 to	 check	 any	 input	 we	 now	 add	 the	 functions	 to
change	 the	 array	 layers.	 First	 setChannel()	 is	 constructed	 to	 replace	 all	 the	 data	 for	 an
array	layer	specified	at	a	given	(existing)	index.

def	setChannel(self,	channelData,	index=0):

		channelData	=	self.checkDataSize(channelData)

		self.data[index]	=	channelData

The	 second	 function	 adds	 an	 entirely	 new	 layer	 of	 array	 data	 after	 the	 existing	 data.
This	involves	using	the	NumPy	function	append()	with	the	setting	axis=0	to	create	a	new
larger	array	(along	the	first	axis).	The	self.nChannels	attribute	that	records	the	number	of
individual	layers	is	naturally	incremented	to	keep	consistency.

def	addChannel(self,	channelData):

		from	numpy	import	append

		channelData	=	self.checkDataSize(channelData)

		self.data	=	append(self.data,	channelData,	axis=0)

		self.nChannels	+=	1

The	function	to	swap	channels	 takes	 two	indices	(which	we	really	ought	 to	check	are
valid)	and	uses	 tuples	 to	 index	subsets	of	 the	NumPy	arrays,	 i.e.	assign	 the	 layer	values
which	were	at	indexA	to	indexB,	and	vice	versa.

def	swapChannels(self,	indexA,	indexB):

		self.data[(indexB,	indexA)]	=	self.data[(indexA,	indexB)]

The	function	to	remove	a	layer	uses	the	NumPy	delete()	function,	noting	that	this	does
not	 change	 the	 input	 arrays,	 but	 rather	 gives	 back	 a	 new	 array	 with	 the	 required	 part
removed,	which	we	then	assign	to	self.data.

def	removeChannel(self,	index):

		from	numpy	import	delete

		if	index	<	self.nChannels:

				self.data	=	delete(self.data,	index,	axis=0)

				self.nChannels	−=	1

Lastly	 there	 is	 a	 function	 to	 combine	 two	 channels	 specified	 via	 indices.	 This	 has	 a
combFunc	option	to	specify	how	the	layers	should	be	combined,	which	otherwise	defaults
to	 addition.	 If	 a	 special	 combFunc	 is	 passed	 in	 it	must	 be	 the	 name	 of	 a	 function	 that
accepts	 two	 equal-size	NumPy	 arrays	 to	 perform	 the	 combination	operation	 and	 creates
another	array	of	the	same	size.	The	replace	option	states	which	layer	the	new,	combined
data	should	be	put	into.	This	could	be	an	entirely	new	layer,	if	the	value	is	left	as	None,	or
it	 replaces	 an	 existing	 layer	 given	 an	 index.	 The	 required	 addition	 or	 replacement
operation	is	easily	achieved	by	using	the	existing	methods	we	discussed	above.

def	combineChannels(self,	indexA,	indexB,	combFunc=None,	replace=None):

		if	not	combFunc:

				import	operator

				combFunc=	operator.add

		channelData	=	combFunc(self.data[indexA],	self.data[indexB])

		if	replace	is	None:

				self.addChannel(channelData)

		else:

				self.setChannel(channelData,	replace)

We	can	test	the	above	function	using	the	example	red	and	green	data:

imgFile	=	'examples/RedGreenArray.png'

testArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

#	Red	and	green	added	to	channel	2

testArray.combineChannels(0,	1,	replace=2)

#	Display	channel	2	as	yellow

testArray.makeImage(20,	channels=(2,	2,	None)).show()

Array	analysis
This	final	section	continues	the	construction	of	the	Microarray	class	(so	note	the	relative
indentation	 to	 the	 above	 Python	 code)	 and	moves	 from	 simple	manipulations	 to	 a	 few
practical	analyses.	In	general	we	will	look	at	how	we	can	find	differences	and	similarities
in	the	data.	Only	a	few	basic	examples	will	be	given,	but	analyses	may	be	taken	further
using	ideas	discussed	in	other	chapters.	Hence	we	could	use	microarray	data	for	principal
component	analysis	(Chapter	23)	or	with	machine	learning	methods	(Chapter	24).

Differences	and	similarities
A	very	simple	way	of	comparing	two	signal-intensity	arrays	is	to	take	one	away	from	the
other	 and	 display	 the	 resulting	 positive	 or	 negative	 values	 as	 red	 and	 green	 colour
channels.	Hence	we	calculate	the	array	of	differences	diff:

imgFile	=	'examples/RedGreenArray.png'

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

diff	=	rgArray.data[0]-rgArray.data[1]

Then	the	differences	are	stored	in	the	first	two	colour	channels,	flipping	the	sign	for	the
green	channel,	and	the	values	are	clipped	at	0.0	to	remove	any	negative	values.

rgArray.setChannel(diff,	0)

rgArray.setChannel(-diff,	1)

rgArray.clipBaseline(threshold=0.0,	channels=(0,1))

rgArray.makeImage(20).show()

Alternatively	we	could	use	the	Microarray.combineChannels()	function	to	perform	the
comparison.	For	example,	 to	 illustrate	where	values	on	 two	channels	are	similar	we	can
multiply	the	values,	so	the	result	is	largest	where	the	values	from	both	channels	coincide.

from	operator	import	mul	#	Multiply

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

rgArray.combineChannels(0,	1,	combFunc=mul,	replace=2)

rgArray.makeImage(20,	channels=(2,2,None)).show()

Figure	16.3	(Plate	4).	 The	results	of	various	array	comparison	procedures.	Shown
from	left	to	right	are:	the	product	of	red	and	green	channels,	displayed	as	yellow,	to
illustrate	the	coincidence	between	channels;	the	G-test	scores	of	red	×	log2(red/green),
which	is	designed	to	show	where	the	values	in	the	two	channels	are	different	and	of
significant	value;	hierarchical	clustering	to	produce	shuffled	rows	and	columns	in	the	test
data,	which	here	shows	that	there	are	replicates	for	each	row.

As	another	example,	next	we	find	the	logarithm	(here	in	base	2)	of	the	ratio	of	the	red
and	green	channels.	Combining	two-channel	red	and	green	microarray	data	in	this	way	is
commonplace	(for	example,	when	making	‘MA’	plots).	To	achieve	 this	we	first	define	a
small	helper	function	log2Ratio	which	will	accept	two	input	data	arrays	and	give	back	the
combined,	 comparison	 array,	 noting	 that	we	 take	 a	 copy	 of	 the	 original	 data	 and	 add	 a
small	amount	to	each	array,	to	ensure	that	we	do	not	divide	by	zeros	or	take	logarithms	of
zero:

from	numpy	import	log2

def	log2Ratio(data1,	data2):

		data1	=	array(data1)	+	1e-3

		data2	=	array(data2)	+	1e-3

		return	log2(data1/data2)

We	can	use	this	function	to	combine	the	red	and	green	channels	(index	0	and	1),	placing
the	result	in	the	blue	channel	(index	2).

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

rgArray.combineChannels(0,	1,	combFunc=log2Ratio,	replace=2)

The	result	can	be	visualised	by	selecting	only	the	blue	channel,	here	making	a	greyscale
image.

rgArray.makeImage(20,	channels=(2,2,2)).show()

A	further	alternative	to	show	differences	between	the	two	channel	intensities	is	to	use
logarithms	 to	 calculate	 x*log(x/y),	where	 x	 and	 y	 are	 two	 colour	 channels,	 which	 is	 a
convenient	way	of	showing	the	information	content5	of	one	distribution	over	another	and
which	 is	 used	 in	 the	G-test	 (see	 Chapter	 22).	 Similar	 to	 the	 previous	 example	 red	 and
green	channel	arrays	are	both	shifted	away	from	zero	by	a	small	amount,	so	that	zeros	do
not	occur	in	the	division	that	will	follow.

from	numpy	import	log2

def	gScore(data1,	data2):

		data1	=	array(data1)	+	1e-3

		data2	=	array(data2)	+	1e-3

		return	data1	*	log2(data1/data2)

This	 can	 be	 tested	 as	 before,	 though	 we	 normalise	 the	 values	 so	 the	 logarithms	 are
scaled	into	the	same	range	as	the	other	channels:

rgArray	=	loadArrayImage(imgFile,	'TwoChannel',	18,	17)

rgArray.combineChannels(0,	1,	combFunc=gScore,	replace=2)

rgArray.normaliseMax(perChannel=True)

rgArray.makeImage(20,	channels=(2,2,2)).show()

With	values	calculated	 in	 this	way	we	can	perform	significance	 tests,	 as	described	 in
Chapter	22,	given	that	the	random	expectation	is	that	values	will	be	chi-square	distributed.
Here	 the	comparative	 term	has	been	calculated	 from	 the	perspective	of	 the	 red	channel,
but	we	could	also	do	it	for	green	(i.e.	green	*	log(green/red)).

Hierarchical	clustering
The	next	example	moves	on	to	rearranging	the	data	(swapping	rows	and	columns)	so	that
we	 can	 better	 see	 similarities	 or	 correlations	 in	 the	 elements.	 This	 rearrangement	 will
involve	hierarchical	clustering,	and	uses	the	same	idea	as	building	a	phylogenetic	tree	(see
Chapter	14),	 so	 that	 the	most	 similar	 rows	and	columns	are	placed	next	 to	one	another.
The	aim	is	that	any	rows	or	columns	that	show	similar	patterns	will	be	placed	together	in
easily	visualised	sub-groups.	The	image-generating	method	described	earlier	can	then	be
used	to	make	a	visual	representation	(see	Figure	16.3).

The	 function	 __hierarchicalRowCluster	 takes	 an	 array	 of	 data	 as	 a	 two-dimensional
matrix	and	uses	this	to	build	a	matrix	of	the	distances	between	each	row,	so	the	element
distanceMatrix[i][j]	is	the	distance	between	row	i	and	row	j.	By	‘distance’	here	we	mean
the	 similarity	 between	 different	 rows,	 and	measure	 this	 here	 as	 the	 Euclidean	 distance
between	row	vectors	(root	of	sum	of	differences	squared).	In	different	situations	you	could
consider	other	means	of	estimating	the	similarity	between	rows.6	 It	should	be	noted	that
the	function	name	begins	with	a	double	underscore	‘__’.	In	Python	a	function	starting,	and
not	ending,	with	a	double	underscore	is	effectively	private,7	so	it	can’t	be	called	directly
from	an	instance	of	a	class.	A	function	is	kept	private	like	this	if	you	don’t	want	to	expose
it	as	a	normal	method	(a	function	linked	to	a	class),	and	only	use	it	internally	within	the
class	definition.	Hence,	here	we	make	the	clustering	function	private	and	use	it	in	the	inner
workings	 of	 Microarray	 but	 do	 not	 allow	 method	 calls	 from	 an	 object	 like
microrray1.__hierarchicalRowCluster(data).

def	__hierarchicalRowCluster(self,	dataMatrix):

		from	SeqVariation	import	neighbourJoinTree

		n	=	len(dataMatrix[0])

		distanceMatrix	=	zeros((n,	n),	float)

We	loop	through	each	layer	and	row	in	the	dataMatrix	and	take	this	row	away	from	the
whole	 array,	 so	we	get	 a	matrix	of	differences	 to	 this	 row.	The	differences	 are	 squared,
added	up	 along	 the	 row	and	 the	 square	 root	 is	 taken,	 giving	 a	 distance	 from	 row	 to	 all
other	 rows.	 These	 distances	 are	 then	 placed	 at	 position	 i	 for	 this	 row	 within	 the
distanceMatrix.

for	channelData	in	dataMatrix:

		for	i,	row	in	enumerate(channelData):

				diffs	=	channelData	-	row

				sqDiffs	=	diffs	*	diffs

				sqDists	=	sqDiffs.sum(axis=1)

				distanceMatrix[i,:]	+=	sqDists

The	 function	 neighbourJoinTree	 which	 was	 described	 previously	 in	 Chapter	 14	 is
reused	here	to	create	a	hierarchical	tree	from	the	distance	matrix.	Note	that	we	use	.tolist()
to	make	a	list	of	lists	from	the	array	of	distances	because	the	tree-generating	function	did
not	make	use	of	NumPy	arrays	earlier	in	the	book.

tree,	joinOrder	=	neighbourJoinTree(distanceMatrix.tolist())

The	hierarchical	tree	structure	is	then	interrogated	by	following	its	branches,	effectively
flattening	it	 into	a	single	 list	of	node	indices,	which	represents	 the	order	of	rows	for	 the
shuffled	matrix.	The	 list	 rowOrder	 is	 initially	 defined	 as	 a	 copy	 of	 the	 tree,	 but	 is	 then
processed	to	insert	the	contents	of	any	sub-lists	(or	tuples)	directly	into	the	main	list.	The
use	 of	 a	while	 loop	 here	 is	 because	 the	 size	 of	 the	 rowOrder	 list	will	 grow	 as	 the	 tree
branches	are	flattened.	We	record	an	index	i,	which	represents	the	position	in	the	list	that
is	 being	 processed,	 and	 continue	 until	 the	 end	 of	 the	 list.	 The	 inner	while	 loop	 checks
whether	the	list	item	at	position	i	is	an	integer	(the	end	of	a	tree	branch),	and	if	it	is	not	the
contents	of	the	sub-list	(rowOrder[i])	are	inserted	into	the	main	list	using	the	slice	notation
[i:i+1],	replacing	the	original	range	covering	the	sub-list	with	its	contents.	The	use	of	the
second	while	loop	is	needed	because	the	new	element	at	position	i	may	itself	be	another
sub-list.

rowOrder	=	list(tree)

i		=	0

while	i	<	len(rowOrder):

		while	not	isinstance(rowOrder[i],	int):

				rowOrder[i:i+1]	=	rowOrder[i]

		i	+=	1

return	rowOrder

The	row	clustering	routine	is	actually	used	by	the	hierarchicalCluster	function,	which	is
not	private	and	so	provides	the	method	microarray.hierarchicalCluster().	This	clusters	the
rows	in	self.data	and	then	reorders	the	array	according	to	the	row	hierarchy.	The	resulting
data	 array	 is	 then	 transposed	 (flip	 rows	 for	 columns)	 and	 clustered	 again,	 effectively
clustering	the	columns,	which	forms	the	new	column	order.

def	hierarchicalCluster(self):

		rows	=	self.__hierarchicalRowCluster(self.data)

		swapped	=	transpose(self.data,	axes=(0,2,1))

		cols	=	self.__hierarchicalRowCluster(swapped)

The	reordered	rows	and	cols	are	used	as	 indices	 into	 the	NumPy	arrays	 to	shuffle	 the
data,	 according	 to	 the	hierarchical	 clustering,	 noting	 that	we	don’t	 affect	 self.data.8	The
data	is	then	used	to	make	an	entirely	new	Microarray	object,	with	a	different	order	for	its
rows	and	columns.

data	=	self.data[:,rows]	#	Rearrange

data	=	data[:,:,cols]

#	data	=	array(data.tolist())	#	to	fix	PIL.Image	bug

name	=	self.name	+	'-Sorted'

rowData	=	[self.rowData[i]	for	i	in	rows]

colData	=	[self.colData[j]	for	j	in	cols]

sortedArray	=	Microarray(name,	data,	rowData,	colData)

return	sortedArray

When	 testing	 the	hierarchical	 clustering	we	get	back	a	new	Microarray	object	with	 a
different	order	of	rows	and	columns:

sortedArray	=	rgArray.hierarchicalCluster()

sortedArray.makeImage(20).show()

print(rgArray.rowData)

print(sortedArray.rowData)

#	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17]	–	Original	

rows

#	[4,	13,	2,	11,	6,	15,	5,	14,	7,	16,	1,	10,	3,	12,	8,	17,	0,	9]	–	Shuffled	

rows

1 	See	discussion	in	Chapter	3.
2 	 See	 http://www.cambridge.org/pythonforbiology	 for	 information	 about	 how	 to
download	and	install	PIL.
3 	See	http://www.cambridge.org/pythonforbiology.
4 	Synonymous	with	standard	score	or	Z-value	normalisation.
5 	For	probability	distributions,	the	sum	of	such	values	gives	the	Shannon	relative	entropy.
6 	Hamming	distance	or	Shannon	mutual	information	entropy	would	be	examples.
7 	In	Python	no	function	is	truly	private	given	that	it	can	be	accessed	from	an	object	if	you
know	what	its	internal,	‘mangled’	name	is.

http://www.cambridge.org/pythonforbiology
http://www.cambridge.org/pythonforbiology

8 	 Note	 that	 due	 to	 a	 bug	 in	 PIL	 at	 the	 time	 of	 writing,	 an	 extra	 line	 data	 =
array(data.tolist())	is	required	for	proper	function.

17 	High-throughput	sequence	analyses
Contents

High-throughput	sequencing

Sequencing	for	biochemical	analysis

Short-read	mapping

Python	examples

Mapping	sequences	to	a	genome

Obtaining	genome	sequences

Indexing	a	genome

Aligning	reads	to	a	genome

Using	the	HTSeq	library

Reading	sequences	from	FASTQ	files

Reading	a	genome	alignment	file

Matching	sequence	reads	to	genome	data

High-throughput	sequencing
Given	the	decreasing	cost	required	to	determine	the	sequence	of	nucleic	acids,	sequencing
is	used	in	increasingly	wider	contexts.	Rather	than	only	determining	the	genome	sequence
of	an	organism,	high-throughput	 techniques	allow	researchers	 to	 investigate	much	more,
such	 as	 the	 variation	 within	 individuals	 of	 a	 population,	 the	 amount	 of	 expression	 of
individual	genes	in	a	given	sample	(e.g.	by	detecting	RNAs)	and	the	sequences	which	are
bound	to	particular	protein	components.	A	sequencing	run	on	one	of	the	latest-generation
sequencing	machines	may	generate	many	gigabases	(>109	bp)	of	data	and	so	much	of	the
task	for	bioinformatics	is	to	make	sense	of	the	raw	sequence	data:	to	put	it	into	a	genomic,
biological	context.	For	organisms	with	a	known	genomic	sequence	the	primary	task	when
processing	 high-throughput	 sequence	 data	 is	 to	 simply	 map	 relatively	 short	 bits	 of
sequence	 called	 ‘reads’	 that	 come	 from	 the	 sequencing	machine	 to	 a	 reference	genome.
Only	 then	 can	 the	 detected	 sequences	 be	 understood.	 By	 mapping	 newly	 acquired
sequences	on	to	the	known	chromosomes	the	whole	database	of	information	that	annotates
the	genome,	such	as	the	position	of	genes	and	regulatory	sequences,	indicates	which	DNA
features	 were	 detected.	 In	 this	 chapter	 we	 will	 give	 an	 introduction	 to	 various	 basic
computational	 procedures	 involving	 high-throughput	 sequence	 data	 which	 can	 be
achieved,	or	at	least	handled,	using	Python.	Because	this	is	a	vast	and	rapidly	expanding
subject	we	 can	only	 lightly	 touch	on	 the	 core	 concepts	 here,	 though	hopefully	we	have

provided	solid	starting	points	for	further	development.

Sequencing	for	biochemical	analysis
Although	the	advances	 in	fast	and	relatively	 low-cost	DNA	sequencing	technology	were
initially	 driven	 by	 the	 desire	 to	 acquire	 and	 assemble	 genome	 sequences,	 there	 are	 an
increasing	 number	 of	 methods	 that	 rely	 upon	 mapping	 many	 short	 DNA	 reads	 to	 a
complete,	or	nearly	complete,	genomic	sequence.	This	might	be	done	to	find	differences	in
sequences	 compared	 to	 the	 reference	 genome,	 i.e.	 finding	 sequence	 polymorphisms.
However,	it	is	also	common	to	use	high-throughput	methods	for	the	biochemical	analysis
of	cells.	For	example,	the	DNA	sequences	could	be	a	large	complement	of	cDNAs,	which
are	prepared	using	reverse	transcription	from	messenger	RNA,	to	show	which	genes	were
actually	 being	 read	 in	 a	 given	 sample	 or	 cells;	 this	 method	 is	 called	 RNA-seq.
Alternatively	 the	 DNA	 could	 be	 fragments	 of	 genomic	 origin	 that	 have	 been	 specially
selected	in	some	way.	Chromatin	immumoprecipitation	sequencing	or	ChIP-seq	is	such	an
example,	where	genomic	DNA	is	chemically	cross-linked	to	proteins	that	are	bound	to	the
chromosomes	before	it	 is	cut	 into	small	fragments.	Here	the	cross-linking	is	not	specific
for	 any	 particular	 kind	 of	 DNA-binding	 protein,	 but	 the	 fragments	 of	 DNA	 with	 their
associated	proteins	are	purified	using	antibodies	that	bind	to	and	select	only	one	kind	of
protein.	 The	 end	 result	 is	 to	 produce	 a	 sample	 of	 DNA	 sequences	 that	 were	 in	 close
contact	with	a	specific	type	of	protein	when	it	was	functioning	inside	cells.	Reversing	the
DNA-protein	cross-links	then	allows	the	associated	DNA	to	be	sequenced,	thus	indicating
where	in	the	chromosomes	the	protein	was	originally	present.	ChIP-seq	is	frequently	used
to	 see	 which	 DNA	 sequences	 are	 associated	 with	 modified	 histone1	 proteins	 (usually
methylate	or	acetylate),	and	this	in	turn	indicates	which	sections	of	the	DNA	are	active	or
inactive	for	transcription.

Short-read	mapping
Irrespective	of	whichever	technique	was	actually	used	to	generate	the	DNA	segments	their
sequence	must	be	mapped	to	a	reference	genome	to	find	from	where	in	the	chromosomes
the	 sequence	 originated.	 Effectively,	 mapping	 short	 sequence	 reads	 back	 to	 a	 pre-
assembled	 genome	 sequence	 that	 allows	 the	 reads	 to	 be	 annotated	 with	 all	 the	 known
genomic	 information.	This	will	 include	aspects	 such	as:	whether	 the	sequence	 is	 from	a
gene,	is	a	regulatory	region,	is	a	structural	region2	or	is	non-functional;	which	gene,	if	any,
the	sequence	is	from	(or	near	to)	and	whether	the	sequence	is	an	intron	or	an	exon.	Often
the	actual	base-pair	sequence	of	a	read	is	not	the	point	of	main	interest;	the	location	within
the	genome	is.	Naturally,	to	find	where	DNA	fragments	come	from	requires	an	alignment
of	the	read	sequences	to	the	reference	genome	sequence	to	find	where	they	match.	Usually
only	the	two	ends	of	the	fragments	are	read	for	the	first	100	or	so	base	pairs,3	but	this	is
generally	enough	to	locate	the	sequence	within	the	genome.	Also	in	this	case,	the	pairing
of	the	sequences	from	the	two	fragment	ends	can	help	the	mapping:	if	you	know	the	range
of	 lengths	 of	 the	 DNA	 fragments	 (for	 example,	 using	 information	 from	 gel
electrophoresis)	 then	 you	 know	 how	 far	 apart	 the	 paired-end	 reads	 could	 be,	 and	 thus
restrict	alignments	to	only	genome	positions	where	the	reads	are	relatively	close	together.
Unfortunately	 there	may	still	be	more	 than	one	genome	match	 for	 a	particular	 sequence

read,	especially	if	the	region	has	a	repetitive	sequence.	Here	the	ambiguity	can	sometimes
be	resolved	by	sequencing	for	longer,	e.g.	reading	the	DNA	fragments	for	more	than	100
base	 pairs,	 but	 this	 gives	 diminishing	 returns	 as	 longer	 reads	 become	more	 error-prone.
Sometimes	a	sequence	read	may	not	match	at	all,	if	there	has	been	a	genuine	substitution
or	 an	 error	 in	 the	 sequencing	 (common	 at	 the	 end	 of	 reads).	 Fortunately	 in	 situations
where	sequences	differ	slightly	we	can	do	the	sequence	alignments	in	a	permissive	way,	to
accept	small	changes	where	the	expectation	is	that	the	quality	of	the	reads	decreases	with
length;	i.e.	the	chances	of	a	mismatch	increase	with	length.

The	alignment	of	short,	high-throughput	DNA	sequence	reads	to	a	genome	is	not	done
using	 the	 types	 of	 sequence	 alignment	 discussed	 previously,	 i.e.	 not	 using	 dynamic
programming	or	programs	like	BLAST.	Such	methods	would	be	too	slow.	Instead	genome
mapping	methods	pre-index	the	genome	sequence	for	a	quick	look-up,	and	commonly	use
the	Burrows-Wheeler	 transform	 for	data	 compression.4	The	genome	 index	means	 that	 a
small	 query	 sequence	 can	 be	 mapped	 to	 the	 genome	 by	 extracting	 the	 known	 genome
positions	 for	 its	 constituent	 sequence(s)	 that	 have	 been	 previously	 located;	 this	 is
somewhat	similar	to	finding	data	in	a	Python	dictionary	using	its	key.	The	general	idea	is
to	avoid	having	to	align	a	query	sequence	to	the	large	number	of	possible	short	sequences
in	the	whole	genome	each	time.	Rather,	significant	matches	are	found	with	a	quick	look-
up	 which	 can	 eliminate	 the	 vast	 majority	 of	 the	 genome	 sequence.	 This	 strategy	 is
optimised	 for	 large	 numbers	 of	 reads	 being	 mapped	 to	 the	 same	 target	 (the	 genome
sequence).	 This	 would	 be	 impractical	 for	 general	 pairwise	 alignments	 of	 arbitrary
sequence	 databases	 because	 the	 indexing	 process,	 required	 before	 using	 a	 new	 target
sequence,	is	designed	for	large	contiguous	sequences.	Indexing	is	memory-intensive	and	is
proportionately	slow	but,	given	the	target	is	fixed	for	a	given	genome	sequence,5	the	cost
is	 returned	many	 times	 over	 for	 the	mapping	 of	 large	 numbers	 of	 small	 sequences	 to	 a
single	target.

Python	examples
For	some	of	the	Python	examples	relating	to	high-throughput	sequence	analysis	we	will	be
using	 the	HTSeq	 library	 (see	 http://www.cambridge.org/pythonforbiology	 for	 download
and	installation	instructions)	and	will	not	attempt	to	write	our	own	classes	of	object.	This
is	a	fast	library	providing	objects	that	deal	with	genomes,	sequences	and	annotations	etc.	It
is	especially	helpful	in	simplifying	the	reading	and	writing	of	the	various	data	file	formats
that	are	used	to	store	sequence	and	sequence-related	data.	For	example,	we	will	use	it	to
load	FASTQ6	files	that	contain	the	sequencing	information	that	comes	from	a	sequencing
machine	 and	 GFF7	 files	 containing	 genome	 annotation	 information.	 Initially	 we	 will
illustrate	how	to	obtain	genome	sequences	and	map	sequence	reads,	albeit	controlling	an
external	 program	 to	 index	 the	 genome	 and	 do	 the	 actual	 Burrows-Wheeler	 alignment.
Next	 we	will	 load	 the	 resulting	 alignment	 information	 to	 show	 how	 the	 results	 can	 be
accessed	 in	 Python,	 including	 making	 graphs.	 Finally	 we	 illustrate	 how	 to	 link	 the
alignment	results,	and	thus	the	DNA	sequence	reads,	to	genomic	annotations	that	describe
genes,	exons,	introns	and	such	like.

http://www.cambridge.org/pythonforbiology

Figure	17.1.	 High-throughput	mapping	of	sequence	reads	to	an	indexed	genome.
Large	numbers	of	short	DNA	sequence	reads,	such	as	those	that	come	from	a	ChIP-seq
experiment,	may	be	mapped	to	a	complete	genome	sequence	to	identify	which	positions
they	represent.	Rather	than	comparing	each	short	read	with	the	whole	genome,	many	high-
throughput	methods	map	the	sequences	by	using	a	pre-constructed	index,	to	quickly
connect	a	large	set	of	sub-sequences	with	their	genome	locations.	The	result	of	the
mapping	is	a	genomic	profile,	illustrating	any	hotspots	in	the	chromosome	sequences	that
have	multiple	reads.

Mapping	sequences	to	a	genome
In	this	next	section	we	illustrate	how	we	can	use	Python	to	control	the	process	of	mapping
large	numbers	of	relatively	short	DNA	sequence	reads	to	a	known	genome	sequence.	For
the	intensive	calculations	we	will	be	relying	on	an	existing	external	program	that	is	quick
and	well	tested.

Obtaining	genome	sequences
While	we	 can	 obtain	 genome	 sequences	 using	 a	web	 browser,	we	may	 sometimes	 also
wish	 to	automate	 the	process,	which	can	naturally	be	done	with	Python	scripts.	For	 this
example	we	will	be	illustrating	how	to	get	data	from	the	NCBI,8	but	hopefully	it	is	clear
how	 the	 procedure	would	 be	 adapted	 to	 use	 other	 databases.	 The	 following	 downloads
genome	 sequence	 information,	 in	 the	 simple	 FASTA	 format,	 in	 a	 similar	 way	 to	 the
example	 used	 earlier	 to	 download	 Protein	 Data	 Bank	 (PDB)	 files	 containing
macromolecular	structure	data.

On-line	resources	change,	so	naturally	the	examples	have	been	tuned	to	work	with	the
way	 that	 genomes	 can	 be	 accessed	 at	 the	 time	 of	 writing.	 In	 the	 future,	 however,	 the
various	Internet	addresses	we	use	will	probably	require	adjustment.	Here	we	use	the	File
Transfer	Protocol	(FTP)	service	available	at	the	following	URL:

FTP_ROOT	=	'ftp://ftp.ncbi.nlm.nih.gov/genomes'

And	 as	 an	 example	we	 illustrate	 the	 downloading	 of	 the	 following	E.	coli	 bacterium
genome	data	(and	naturally	we	checked	with	a	web	browser	to	see	the	file	names	of	the
sequences	that	were	available):

GENOME	=	'/Bacteria/Escherichia_coli_536_uid58531/NC_008253.fna'

The	 equivalent	 for	 a	 human	 chromosome	 sequence	 would	 use	 something	 like	 the
following,	noting	that	there	is	a	sub-directory	to	specify	the	chromosome:

GENOME	=	'/H_sapiens/CHR_10/hs_ref_GRCh8_chr10.fa.gz'

We	will	 define	 a	 simple	 Python	 function	 downloadFile()that	may	 be	 built	 into	more
automated	 scripts	 to	 fetch	and	save	 the	 file.	For	our	example	 the	 file	will	be	a	FASTA-
format	 sequence.	 Firstly	 a	 few	 imports	 are	 made.	 The	 fnmatch	 module	 provides	 a
filename-matching	function	that	makes	it	easy	to	choose	particular	file	names	that	have	a
particular	 file	extension	(an	ending	 like	 .fna	or	 .fasta),	 as	 an	alternative	 to	using	 regular
expressions	(the	re	module).	The	urlopen()	function	will	handle	all	of	the	communication
with	the	remote	data	server.	In	Python	3	it	is	in	the	urllib.request	module	and	in	Python2	it
is	in	the	urllib2	module,	so	we	first	try	to	import	the	former	and	if	that	fails	try	the	latter:

import	os

from	fnmatch	import	fnmatch

try:

		#	Python	3

		from	urllib.request	import	urlopen

except	ImportError:

		#	Python	2

		from	urllib2	import	urlopen

The	download	function	itself	takes	two	arguments,	the	URL	of	the	remote	file	we	wish
to	acquire	and	the	file	path	(file	name	and	directory)	of	where	we	save	the	file	locally.	In
the	function	we	print	a	message	to	give	the	user	some	information	on	what	is	happening,
open	 a	 connection	 to	 the	 remote	 location	with	 urlopen()	 and	 read	 the	 contents	 into	 the
variable	data.

def	downloadFile(remoteFile,	localFile):

		print('Downloading	to	%s	…'	%	localFile)

		response	=	urlopen(remoteFile)

		data	=	response.read()

Then	at	the	end	we	open	the	local	output	file	for	writing	in	binary	mode.9	Note	that	we
are	being	lazy	here	and	don’t	make	any	checks	 to	ensure	 that	we	are	not	overwriting	an
existing	file,	but	this	would	be	easily	handled	using	os.path.exists().

fileObj	=	open(localFile,	'b')

fileObj.write(data)

fileObj.close()

print('	…done')

This	 function	 is	 simply	 tested	with	 the	 following	 demonstration	 code	 for	 the	E.	 coli
genome	file	mentioned	above	(saving	the	file	in	the	current	working	directory):

remoteGenome	=	

FTP_ROOT+'/Bacteria/Escherichia_coli_536_uid58531/NC_008253.fna'

downloadFile(remoteGenome,	'EcoliGenome.fasta')

Moving	on	 from	 fetching	 single	 files,	 the	next	 example	downloads	 several	 files	with
related	 locations.	 For	 example,	 the	 files	 may	 contain	 the	 different	 human	 chromosome
sequences,	but	are	housed	in	different	sub-directories	(as	is	the	case	for	the	NCBI’s	FTP
site).

The	downloadGenomeFiles()	 function	 takes	 a	 remote	 directory	 and	 a	 local	 directory,
rather	 than	 using	 a	 single	 specific	 file	 name,	 and	 searches	 for	 all	 the	 files	 that	 end	 a
particular	way	(by	default	with	‘fna’).	Also,	in	this	example	we	have	separated	the	main
(base)	location	of	the	remote	site	into	a	variable	called	url,	given	that	this	is	not	expected
to	change	much	and	we	can	avoid	always	having	to	specify	the	full	location	of	the	remote
data.	After	the	initial	definition	line	some	tidying	is	done	on	the	input	remoteDir	to	ensure
that	it	begins	and	ends	with	a	‘/’	character,	which	is	what	is	expected	later	in	the	function.

def	downloadGenomeFiles(remoteDir,	localDir,	fileType='*.fna',	

url=FTP_ROOT):

		if	remoteDir[0]	!=	'/':

				remoteDir	=	'/'	+	remoteDir

		if	remoteDir[-1]	!=	'/':

				remoteDir	=	remoteDir	+	'/'

The	full	remote	path	is	then	the	combination	of	the	base	URL	and	the	variable	remote
path.	Note	that	here	we	do	not	use	os.path.join(),	because	this	would	use	different	slashes
under	different	operating	systems	(‘\’	for	Windows,	‘/’	 for	Max	OS	X	and	Linux)	and	 is
appropriate	only	for	local	file	systems,	not	remote	Internet	resources	that	expect	only	‘/’.

remotePath	=	url	+	remoteDir

print("Reading	%s"	%	remotePath)

Next	 the	urlopen()	 function	 is	used	and	 in	 this	case,	because	 the	 target	 is	a	directory,
gets	the	listing	of	the	file	names	at	the	remote	location.

response	=	urllib2.urlopen(remotePath)

data	=	response.read()

Some	empty	lists	are	initialised,	which	will	contain	all	the	file	information.	The	remote
data	that	is	read	is	one	long	test	string	containing	all	the	file	names,	which	we	split	on	the
newline	character	to	give	a	list	of	lines.

fileNames	=	[]

filePaths	=	[]

chromosomeDirs	=	[]

lines	=	data.split('\n')

Then	 each	 line	 from	 the	 remote	 read	 is	 considered	 in	 a	 loop,	 stripping	 off	 any

whitespace	and	skipping	blank	lines:

for	line	in	lines:

		line	=	line.strip()

		if	not	line:

				continue

The	actual	file	name	is	the	last	element	of	an	array	([-1])	when	we	split	the	line	into	a
list	 according	 to	 its	 whitespace.	 Then	 if	 the	 entry	 begins	 with	 the	 letters	 ‘CHR’	 it	 is
deemed	to	be	a	sub-directory	for	individual	chromosomes	that	we	need	to	look	into	to	get
the	sequence	files,	and	this	chromosome	directory	is	added	to	the	chromosomeDirs	list.

fileName	=	line.split()[-1]

if	fileName.startswith('CHR'):

		chromosomeDirs.append(fileName	+	'/')

Otherwise,	if	the	file	is	not	a	chromosome	sub-directory,	a	check	is	made	to	see	if	it	is	a
sequence	file	with	the	prescribed	ending.	Here	we	use	the	imported	fnmatch()	function	to
see	 if	 the	 file	 name	 contains	 the	 pattern	 specified	 in	 the	 input	 arguments.	 This	 pattern
defaults	to	‘*.fna’,	which	means	that	the	name	matches	if	it	ends	in	.fna;	the	‘*’	matches
any	number	of	characters	in	the	file	name	before	the	stated	ending.

elif	fnmatch(fileName,	fileType):

		fileNames.append(fileName)

		continue

We	then	get	 the	 full	 locations	of	 the	 individual	 remote	 files	and	download	 them,	 to	a
local	file	of	the	same	name,	using	the	downloadFile()	function	defined	above.	Here	we	do
use	os.path.join()	to	make	a	local	file	name	which	is	consistent	with	the	operating	system
we	are	using.	The	os.path.abspath()	is	used	to	get	the	full,	long	file	name,	with	directories
relative	 to	 the	root	of	 the	 local	 file	system:	 this	 resolves	relative	directory	specifications
like	 ‘../’,	 removes	 redundancies	 like	 ‘dirA/./dirB’	 and	 converts	 any	 slashes	 to	 the	 right
kind	for	the	current	operating	system.

for	fileName	in	fileNames:

		filePath	=	os.path.join(localDir,	fileName)

		filePath	=	os.path.abspath(filePath)

		filePaths.append(filePath)

		downloadFile(url	+	remoteDir	+	fileName,	filePath)

Given	 that	 reading	 the	 remote	 directory	 may	 have	 found	 some	 sub-directories	 for
individual	 chromosomes	 we	 then	 repeat	 the	 whole	 operation	 on	 each	 sub-directory	 by
calling	the	downloadGenomeFiles()	function	from	inside	itself,	 i.e.	recursively.	This	will
then	go	in	to	each	of	those	other	locations	and	potentially	add	more	matching	files	to	the
current	list.	Note	that	only	the	first,	main	function	call	will	give	back	files	to	the	user,	and
all	the	recursive	calls	will	be	absorbed	into	the	filePaths	list	at	this	point.

for	chromosomeDir	in	chromosomeDirs:

		subDir	=	remoteDir	+	chromosomeDir

		filePaths	+=	downloadGenomeFiles(subDir,	localDir,		fileType,	url)

return	filePaths

At	the	end	the	function	returns	a	list	of	the	file	paths	that	were	actually	saved.	We	can
then	test	 the	function	on	the	human	genome	at	 the	NCBI	site	used	previously.	Note	 that
this	may	take	a	significant	time	to	download,	so	only	do	it	for	real	if	you	really	want	all	of
the	human	genome	data!

filePaths	=	downloadGenomeFiles('H_sapiens','examples','hs_ref*.fa.gz')

One	 further	 convenience	 function	 extracts	 any	 compressed	GZIP	 archives	 (ending	 in
‘.gz’)	so	they	can	be	used	locally	without	hindrance.	This	function	simply	uses	standard
Python	modules	to	create	open	file	objects	for	compressed	formats.	These	can	be	parsed,
line	by	line,	in	much	the	same	way	as	a	regular	file.	Here	the	example	simply	writes	out
the	 uncompressed	 lines	 one	 by	 one	 into	 a	 new	 file,	 but	 if	 there	 is	 enough	memory	 the
whole	file	could	be	read	in	one	go	(using	.read()).	Also,	the	gzip	library	could	be	used	to
read	 compressed	 files	 directly	 inside	 analysis	 functions,	 thus	 avoiding	 having	 to	 store
uncompressed	 files.	 Note	 that	 there	 are	 also	 standard	 Python	 modules	 to	 handle	 other
compression	formats	like	‘ZIP’	and	‘BZIP2’;	zipfile	and	bz2.

import	gzip

def	uncompressGzFile(fileName):

		if	fileName.endswith('.gz'):

				inFileObj	=	gzip.open(fileName,	'rb')

				fileName	=	fileName[:-3]

				outFileObj	=	open(fileName,	'w')

				for	line	in	inFileObj:

						outFileObj.write(line)

				#	Faster	alternative,	given	sufficient	memory:

				#	outFileObj.write(infileObj.read())

				inFileObj.close()

				outFileObj.close()

		return	fileName

Next	we	use	an	external	program	that	will	do	the	alignment	to	map	the	short	sequence
reads	to	a	genome	sequence.	Popular	open-source	software	choices	for	this	at	the	time	of
writing	 are	 BOWTIE10	 and	 BWA,11	 and	 we	 will	 illustrate	 the	 use	 of	 the	 former	 by
wrapping	with	a	convenient	Python	function,	in	a	similar	manner	to	what	was	done	with
BLAST	and	ClustalW	examples	in	earlier	chapters.

Downloading	genome	sequence	data	is	usually	a	simple	matter,	as	described	above,	of
accessing	an	on-line	repository.	The	next	step	is	naturally	to	consider	aligning	some	short-
read	 data	 to	 the	 genome	 sequence.	 For	 demonstration	 purposes,	 there	 are	 lots	 of	 high-
throughput	 sequencing	 data	 sets	 that	 are	 available	 via	 on-line	 services	 like	 the	 Gene
Expression	Omnibus,12	 and	which	 can	 be	 used	with	 the	 scripts	we	describe	 below.	The

actual	genome	alignment	in	these	examples	will	be	done	by	the	program	called	Bowtie,13
which	is	just	the	open-source	example	we	happen	to	have	chosen	for	this	chapter.	Python
functions	will	 be	 illustrated	which	wrap	 this	 external	 program	 so	 that	we	 can	 use	 it	 in
larger	programs	and	automated	pipeline	scripts.	Hence	the	purpose	of	the	examples	is	to
easily	 use	 existing	 (tested	 and	 efficient)	 programs,	 rather	 than	 doing	 everything	 from
scratch	in	Python,	which	would	be	slower	to	run	and	take	a	long	time	to	describe.

Indexing	a	genome
Before	considering	running	the	actual	alignment	the	genome	sequence	data	first	needs	to
be	 indexed.	This	process	 is	 critical	 for	 the	 fast	 short-read	 alignment	program	operation.
Using	a	full	genome	sequence	in	a	textual	file	format	would	be	exceedingly	slow;	rather
the	chromosomes	are	processed	to	give	a	binary	index	file	where	the	sequence	of	a	short
read	can	be	looked	up	efficiently.	The	indexing	process	does	take	a	significant	amount	of
time	(and	computer	memory),	but	it	only	has	to	be	done	occasionally,	when	there	is	a	new
release	of	an	improved	genome	sequence.

The	first	step	to	get	started	is	to	make	an	import	from	the	standard	Python	subprocess
module,	 which	 will	 handle	 invoking	 the	 command	 to	 run	 the	 external	 indexing	 or
alignment	program.	Naturally,	we	also	need	 to	specify	 the	 location	of	 the	aligner	within
the	local	file	system;	the	directory	that	contains	the	program	executable	file(s)	is	specified
in	ALIGNER_PATH.

from	subprocess	import	call

ALIGNER_PATH	=	'/home/user/programs/bowtie-0.12.7/'	#	substitute	correct	

path

For	 our	 example	 program,	 Bowtie,	 the	 indexing	 program	 will	 be	 found	 in	 the
ALIGNER_PATH	 directory	 specified	 above.	 The	 Python	 function	 that	 controls	 the
indexing,	 as	 illustrated	 below,	 takes	 various	 arguments,	 which	 naturally	 include	 the
location	of	the	genome	sequence	files	and	the	various	options	to	control	the	indexing.	The
options	that	are	used	here	are	specific	to	the	particular	program	and	its	current	version,	so
changes	 would	 need	 to	 be	 made	 to	 use	 other	 aligners,	 albeit	 using	 the	 same	 kinds	 of
strategy.

The	function	 indexGenome()	 takes	 the	genomeName,	which	will	 be	 the	 identifier	 for
the	genome	data	that	will	be	used	later	when	the	actual	alignment	is	made.	The	fileNames
are	 the	 names	 of	 the	 sequence	 files	 and	 naturally	 outputDir	 controls	where	 the	 indexed
genome	files	are	placed.	The	other	options	control	a	few	of	the	more	important	aspects	of
the	 indexing	 process;	 however,	 there	 are	 many	 more	 options	 that	 could	 have	 been
included.	The	full	list	of	options	(normally	issued	via	the	command	line)	is	available	in	the
main	Bowtie	documentation.

def	indexGenome(genomeName,	fileNames,	outputDir,

																tableSize=10,	quiet=True,	pack=True):

Firstly,	in	the	function	a	check	is	made	to	decompress	any	archived	genome	sequence
files,	using	the	function	described	above,	which	will	not	affect	sequence	files	that	are	not
compressed.	The	names	of	the	uncompressed	sequence	files	are	appended	to	a	list,	which

is	then	joined	by	commas	into	one	long	text	string,	fastaFileStr,	and	it	is	in	this	form	that
we	specify	the	sequence	files	when	running	the	indexing	program.

fastaFiles	=	[]

for	fileName	in	fileNames:

		fileName	=	uncompressGzFile(fileName)

		fastaFiles.append(fileName)

fastaFileStr=	','.join(fastaFiles)

The	next	 stage	 is	 to	 assemble	 the	options	 (the	 command	 line	 arguments)	 that	will	 be
used	when	creating	the	index.	These	are	assembled	into	the	cmdArgs	list.	In	essence	this
list	 will	 contain	 all	 of	 the	 things	 that	 would	 be	 typed	 by	 a	 person	 at	 a	 command	 line
prompt	if	the	program	were	to	be	run	directly	from	the	operating	system.	Accordingly,	the
first	 thing	 in	 the	 list	 is	 the	 full	 file	 path	 of	 the	 indexing	 program,	 which	 is	 the
ALIGNER_PATH	joined	to	the	name	of	the	indexing	program,	which	here	is	bowtie-build
(and	is	located	in	that	directory).	The	‘-f’	option	specifies	that	the	input	sequence	data	is
hard-wired	to	be	in	FASTA	format.	If	 this	is	not	always	the	case	in	use,	then	this	option
could	 be	 changed	 by	 adding	 another	 optional	 argument	 in	 the	 function	 definition.	 The
quiet	and	pack	arguments	of	 the	function	are	used	to	specify	whether	 the	respective	‘-q’
and	‘-p’	options	end	up	in	the	list.	Here	the	quiet	option	is	used	to	suppress	textual	output
during	 the	 indexing	procedure	and	 the	pack	 is	used	 to	 compress	data	when	 the	 index	 is
made;	 this	makes	 indexing	slower,	but	means	 it	 takes	 less	computer	memory.	Note	how
the	 example	 has	 substituted	 a	 simple	 command	 line	 option	 and	 replaced	 it,	 as	 far	 as
running	 from	 Python	 is	 concerned,	 with	 a	 variable	 that	 has	 a	 more	 immediately
informative	name,	e.g.	‘-q’	becomes	quiet.

cmdArgs	=	[ALIGNER_PATH+'bowtie-build',	'-f']

if	quiet:

		cmdArgs.append('-q')

if	pack:

		cmdArgs.append('-p')

The	 final	 options	 to	 add	 to	 the	 list	 relate	 to	 the	 table	 size,	 which	 is	 the	 number	 of
sequence	positions	 from	 the	short	query	 that	will	be	mapped	at	one	 time	 to	 the	genome
data,	the	input	sequence	files	and	the	name	tag	for	the	resultant	genome	index.

cmdArgs	+=	['-t',	str(tableSize),	fastaFileStr,	genomeName]

The	competed	list	of	command	options	is	joined,	using	spaces,	into	a	line	that	is	printed
out,	 to	 show	 the	 user	 what	 is	 being	 run.	 This	 might	 result	 in	 something	 like
‘/home/user/programs/bowtie-build	 -f	 -t	 10	 genomeFasta/NC_008253.fna	 E_coli’.	 Then
finally	the	indexing	job	is	run	using	call()	with	the	program	name	and	option	information.
Note	that	the	output	directory	is	dictated	by	setting	the	current	working	directory	(cwd)	at
the	time	the	call	is	made,	rather	than	this	being	a	program	input	option.

print('	'.join(cmdArgs))

call(cmdArgs,	cwd=outputDir)

Under	 normal	 circumstance	 the	 indexing	will	 only	 be	 done	 occasionally,	 but	 beware
that	 the	procedure	will	 often	 take	 a	 significant	 amount	of	 active	 computer	memory.	For
example,	 even	 with	 the	 pack	 option	 being	 used	 a	 mammalian	 genome	 will	 typically
require	over	three	gigabytes	of	free	memory	to	index.

Aligning	reads	to	a	genome
Next	we	create	another	wrapper	to	control	an	external	program,	to	do	the	alignment	with
the	indexed	genome	data.	There	are	many	more	options	to	control	the	program	this	time,
as	this	is	highly	dependent	not	only	on	the	source	of	the	data	(in	terms	of	which	kind	of
sequence	machine	 produced	 it)	 but	 also	 on	 the	way	 in	which	 the	 sequenced	DNA	was
prepared	and	how	this	experimentally	 informs	the	biology	that	we	are	 interested	 in.	The
key	 aspects	 of	 the	 sequences	we	wish	 to	 align	 are	 the	 sequence	 lengths	 and	within	 this
length	what	 the	 quality	 of	 the	 called	 sequence	 reads	 is,	 given	 this	 generally	 diminishes
with	 length.	 Also	 when	 the	 alignment	 is	 actually	 done	 we	 have	 to	 consider	 how
mismatches	(e.g.	polymorphisms	or	errors	in	the	sequencing)	are	handled.	The	full	list	of
options	that	we	pass	in,	as	arguments	to	the	alignment	function,	is	as	follows:

genomeName This	is	the	name	or	tag	given	to	the	indexed	genome	that	we
wish	to	align	to.	This	is	the	same	name	as	was	used	when
building	the	index	with	the	function	described	above.

genomeDir The	location	of	the	directory	that	contains	the	binary	genome
index	files.

readFiles A	list	containing	the	names	of	the	files	containing	the	short-
read	sequences	to	align.

pairedReadFiles For	experiments	that	use	paired	read	data,	a	second	list	of
short-read	sequence	file	names	that	match	up	(as	pairs)	with
the	readFiles.

outFile The	name	of	the	output	alignment	file,	which	by	default	will
use	the	SAM	format.

leftTrim The	number	of	sequence	letters	to	trim	from	the	start	of	all	the
reads;	useful	to	remove	known	barcode	sequences	etc.,	which
should	not	be	mapped.

rightTrim How	many	sequence	letters	to	remove	from	the	end	of	the
sequence	reads.

useSOLiD Whether	the	data	comes	from	an	ABI	SOLiD	sequencing
machine.

qualType The	type	of	quality	scores	to	use,	which	is	expected	to	be

‘illumina1.3’,	‘solexa’	or	‘sanger’.	See	the	description	below	of
the	FASTQ	format	for	more	explanation	of	this.

maxMismatches The	maximum	number	of	base-pair	mismatches	to	tolerate	in
an	alignment.

highQualLen How	many	sequence	positions,	from	the	start	of	the	read,	are
deemed	reliable.

pairSepRange The	range	of	separations	for	paired	sequence	reads;	known
from	the	size	selection	used	to	prepare	the	DNA	fragment
library.

showHits The	number	of	genome	location	alignment	‘hits’	to	show	for
each	input	read	sequence.

maxHits Sets	the	maximum	number	of	alignments	that	will	be	tolerated
for	a	read	sequence;	otherwise	the	read	is	deemed	to	be
unmappable	and	is	discarded.

enforceBest Whether	to	enforce	the	display	of	only	the	best-matching	read,
if	more	than	one	could	be	aligned	to	the	genome.

cpuCores If	set,	this	states	how	many	processing	jobs	to	run	at	one	time,
making	use	of	multi-core	central	processing	units.	The	default
is	to	use	all	available	CPU	cores.

The	short	sequence	reads	that	are	aligned	to	the	genome	are	generally	stored	in	a	textual
format	called	FASTQ.	These	 files	contain	 sequence	entries,	one	after	another,	 in	a	 form
exemplified	by	the	following	text:

@Annotation

CGGATGATTTTTATCCCATGAGACATCCAGTTCGG

+Annotation

45567778999:9;;<===>?@@@@AAAABCCCDE

As	illustrated,	each	sequence	read	comprises	four	lines	of	text.	The	first	and	third	lines,
beginning	with	‘@’	and	‘+’	respectively,	are	textual	annotations	for	the	sequence	read.	In	a
basic	sense	these	are	just	identifiers,	but	the	output	of	most	sequencing	machines	contains
a	 rich	 variety	 of	 information,	 including	 details	 relating	 to	 the	 machine	 that	 read	 the
sequence.	Importantly,	if	the	FASTQ	sequence	files	consist	of	read	pairs	(sequencing	from
the	 two	 ends	 of	DNA	 fragments)	 then	 the	 annotation	 for	 each	 sequence	 can	 be	 used	 to
unambiguously	identify	the	connected	read	pairs	even	if	(and	as	is	generally	the	case)	the
read	pairs	are	given	in	two	files,	one	for	the	sequencing	from	each	end.	However,	it	should
be	 noted	 that	 currently	 in	many	 cases	 the	 order	 of	 sequences	 in	 paired	 FASTQ	 files	 is
consistent,	so	that	the	pair	identity	is	simply	the	position	in	the	file.	The	second	line	of	a
FASTQ	file	is	clearly	the	one-letter	code	sequence	of	the	DNA	base	pairs.	The	fourth	line

of	the	entry	is	an	array	of	quality	scores,	each	character	of	which	relates	to	the	sequence
letter	 at	 the	 same	 read	 position.	 It	 is	 perhaps	 unfortunate	 that	 there	 are	 several	 slightly
different	systems	of	code	 that	are	used	 to	state	 the	positional	 read	quality,	which	 is	why
the	quality	 score	 scheme	 is	 taken	 as	 an	 input	 to	 the	 alignment	 program.	All	 the	 quality
score	systems	use	a	range	of	textual	(ASCII)	characters	to	specify	the	quality	value	at	each
read	position	and	what	differs	in	each	system	is	which	range	of	characters	are	used.	The
basic	 problem	 is	 that	 just	 using	 characters	 from	 0	 through	 to	 9	 does	 not	 give	 enough
precision	 to	 the	 scores,	 so	 instead	 more	 characters	 are	 used,	 which	 naturally	 includes
letters	and	other	symbols.	All	the	characters	are	used	in	the	following	order:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

'abcdefghijklmnopqrstuvwxyz{|}~

Here	the	score	value	in	the	scale	decreases	left	to	right	and	each	sub-sequence	character
is	 the	 next	 point	 on	 the	 scale.	 One	 thing	 that	 differs	 between	 the	 different	 schemes,
however,	 is	 which	 characters	 have	 the	 highest	 and	 lowest	 scores.	 Recent	 Illumina
machines	 (under	 the	 ‘sanger’	 scheme	 here),	 for	 example,	 use	 symbols	 from	 ‘!’	 to	 ‘J’
inclusive	(older	Illumina	machines	use	the	‘illumina1.3’	scheme).	Note	that	it	is	possible
to	also	use	reads	in	FASTA	file	format,	rather	than	FASTQ,	although	these	will	not	contain
any	quality	information.

Now	 we	 come	 to	 the	 Python	 function	 that	 actually	 does	 the	 genome	 alignment	 by
wrapping	 the	 Bowtie	 aligner	 program.	 It	 should	 be	 noted	 that	 not	 all	 of	 the	 possible
command	line	options	for	Bowtie	have	been	considered	(such	as	the	read	pair	orientation,
reverse	 complementation	 and	 backtracking	 retries),	 and	 of	 course	 this	 is	 specifically
designed	 to	 fit	 the	 requirements	 of	 one	 version	 of	 the	 genome	 alignment	 software.	The
genomeAlign()	function	takes	the	arguments	described	in	the	above	table,	noting	that	we
can	split	the	line	defining	the	input	alignments	to	keep	things	neat	and	tidy:

def	genomeAlign(genomeName,	genomeDir,	readFiles,	pairedReadFiles=None,

																outFile=None,	leftTrim=0,	rightTrim=0,	useSOLiD=False,

																qualType='sanger',	maxMismatches=2,	highQualLen=28,

																pairSepRange=(0,250),	showHits=1,	maxHits=2,

																enforceBest=True,	cpuCores=None):

This	alignment	program	requires	that	the	genome	directory,	containing	the	binary	index
files,	is	specified	as	an	environment	variable,	i.e.	a	name	needs	to	be	associated	with	the
location	at	the	operating-system	level,	rather	than	being	specified	at	run	time.	To	get	round
this	 requirement	we	can	 simply	 set	 the	operating	 system’s	environment	variables	within
Python,	 hence	 the	 os.environ	 line	 which	 links	 the	 variable	 name	 to	 its	 value	 using	 a
Python	dictionary.	The	next	operation	then	sets	the	output	file	if	it	was	not	passed	into	the
function,	with	 the	 default	 being	 the	 genome	 name	 appended	with	 ‘.sam’,	 given	we	 are
making	SAM-format	files.14

os.environ['BOWTIE_INDEXES']	=	genomeDir

if	not	outFile:

		outFile	=	genomeName	+	'.sam'

As	with	the	previous	example	we	collect	a	list	of	text	strings	that	are	equivalent	to	the

program	name	with	the	command	line	options	required	to	run	the	program.	Here	the	‘-S’
option	means	that	the	output	alignment	file	format	will	be	SAM,	although	we	could	adapt
the	function	to	specify	something	different.	The	readFilesStr	is	simply	the	comma-joined
list	of	input	(short-read	sequence)	file	names.

cmdArgs	=	[ALIGNER_PATH+'bowtie',	'-S']

readFilesStr	=	','.join(readFiles)

Next	 is	 some	code	 to	 automatically	guess	 the	 type	of	 the	 input	 file	 based	on	 the	 file
extension	 that	 follows	 the	 file	 name	 (from	 the	 ‘.’	 at	 the	 end).	 Here	 we	 use	 the
os.path.splitext()	function	to	split	the	name	on	the	appropriate	period/full-stop	character	to
get	the	trailing	characters.	Note	that	this	procedure	assumes	that	all	the	input	read	files	are
of	the	same	file	format,	given	we	only	determine	the	type	from	the	first	in	the	list,	but	in
reality	they	really	ought	to	be	the	same.	If	the	file	extension	is	in	the	first	pre-set	list	then
the	input	reads	are	assumed	to	be	in	FASTA	format,	which	requires	that	the	‘-f’	option	is
used.	Otherwise	we	check	whether	the	format	appears	to	be	FASTQ,	where	we	use	the	‘-q’
option.	And	if	none	of	that	is	true	we	assume	the	reads	are	in	‘raw’	format,	where	there	is
simply	a	different	one-letter	sequence	on	each	line.

foreName,	fileType	=	os.path.splitext(readFiles[0])

if	fileType	in	('.fa','.fna','.mfa','.fasta'):

		cmdArgs.append('-f')

elif	fileType	in	('.fq','.fastq'):

		cmdArgs.append('-q')

else:

		cmdArgs.append('-r')

Next	is	the	option	for	using	ABI	SOLiD	data.	Then	the	quality	score	type	is	set,	which
effectively	translates	the	more	informative	text	string	options	into	‘—’	style	options.	Note
here	that	the	term	‘phred’	refers	to	the	original	DNA	sequence	quality	score	system,	from	a
program	 of	 that	 name,	 which	 is	 adjusted	 to	 use	 the	 text	 characters	 as	 described	 above
(ASCII	with	a	specified	offset).

if	useSOLiD:

		cmdArgs.append('-C')

if	qualType	==	'illumina1.3':	#	Phred+64

		cmdArgs.append('--phred64-quals')

elif	qualType	==	'solexa':	#	Phred+59

		cmdArgs.append('--solexa-quals')

else:	#	Sanger,	current	illumina:		Phred	+	33

		cmdArgs.append('--phred33-quals')

The	 options	 to	 enforce	 reporting	 of	 only	 the	 best-matching	 genome	 alignment	 and
setting	the	number	of	processing	jobs	are	considered.	Note	that	the	number	of	CPU	cores
available	 on	 the	 current	 computer	 system	 can	 be	 determined	 using	 the	 standard
multiprocessing	library,	which	is	available	from	Python	2.6	onward.

if	enforceBest:

		cmdArgs.append('--best')

if	not	cpuCores:

		import	multiprocessing

		cpuCores	=	multiprocessing.cpu_count()

The	remaining,	numeric,	options	are	converted	to	text	strings	and	added	to	the	list.	Here
the	+=	operator	is	used,	which	is	equivalent	to	list.extend()	to	add	the	contents	of	one	list
to	another.

cmdArgs	+=	['-5',	str(leftTrim),

												'-3',	str(rightTrim),

												'-n',	str(maxMismatches),

												'-l',	str(highQualLen),

												'-k',	str(showHits),

												'-m',	str(maxHits),

												'-p',	str(cpuCores),

												'--chunkmbs',	'256']

If	 a	 second	 list	 of	 file	 names	was	passed	 to	 the	 function,	 specifying	paired	 sequence
reads	 from	 the	 two	 ends	 of	 the	 DNA	 fragments,	 then	 we	 set	 some	 further	 options
specifically	relating	to	read	pairs.	Naturally,	we	process	the	input	sequence	file	names,	as	a
comma-joined	list	like	before.	Then	we	split	the	input	separation	limits	for	the	pairs	from
pairSepRange;	these	are	input	as	separate	arguments	for	the	aligner.	Note	that	when	paired
reads	are	used	the	‘-1’	and	‘-2’	options	are	employed	to	set	the	two	file	names.	Otherwise,
i.e.	at	the	else,	the	remaining	options	just	refer	to	the	one	readFilesStr.

if	pairedReadFiles:

		pairedReadFiles	=	','.join(pairedReadFiles)

		minSep,	maxSep	=	pairSepRange

		cmdArgs	+=	[genomeName,

														'--minins',	str(minSep),

														'--maxins',	str(maxSep),

														'-1',	readFilesStr,

													'-2',	pairedReadFiles,

													outFile]

else:

		cmdArgs	+=	[genomeName,	readFilesStr,	outFile]

And	finally	at	the	end	we	invoke	call()	to	run	the	actual	external	aligner	program,	which
may	take	a	significant	time	depending	on	the	number	of	sequence	reads	and	the	available
computational	power.	The	output	file	name	is	returned	from	the	function.

call(cmdArgs)

return	outFile

All	of	the	above	can	be	brought	together	in	the	following	example	of	a	test,	using	the
demonstration	 data	 supplied	 in	 the	 on-line	 material,15	 which	 is	 the	 single	 E.	 coli
chromosome	 sequence,	 although	 in	 practice	we	will	 only	 really	 index	 the	 genome	 if	 it
changes.	Note	that	the	test	chromosome	file	is	converted	to	the	full	(absolute)	file-system
path	using	os.path.abspath,	which	is	what	our	indexing	program	requires.

filePath	=	os.path.abspath('examples/EcoliGenome.fasta')

genomeName	=	'E_coli'

indexGenome(genomeName,	[filePath,],	'examples')

fastqFile	=	'examples/EcoliReads.fastq'

genomeAlign(genomeName,	'examples',	[fastqFile],	qualType='sanger')

The	final	alignment	of	this	will	produce	output	of	the	form:

#	reads	processed:	1000

#	reads	with	at	least	one	reported	alignment:	685	(68.50%)

#	reads	that	failed	to	align:	301	(30.10%)

#	reads	with	alignments	suppressed	due	to	-m:	14	(1.40%)

Reported	685	alignments	to	1	output	stream(s)

Using	the	HTSeq	library
Now	we	come	to	actually	using	the	result	of	a	short-read	to	genome	alignment	to	illustrate
how	 the	 results	may	be	analysed.	For	 this	 section	we	will	be	making	use	of	 the	HTSeq
library,	 which	 is	 not	 a	 standard	 Python	 module,	 but	 which	 should	 be	 downloaded	 and
installed	 separately.16	 All	 of	 the	 following	 could	 be	 done	 with	 pure	 Python	 and	 its
standard	libraries,	but	by	using	this	extra	module	we	will	be	making	the	job	much	easier,
and	 this	will	hopefully	 result	 in	 the	ability	 to	do	more	science.	Also,	we	could	consider
using	other	packages	 like	Pysam,17	which	 can	 read	 genomic	 alignments,	 though	overall
HTSeq	provides	more	diverse	functionality.

To	 use	 the	HTSeq	 library,	 once	 it	 is	 properly	 installed,	we	 simply	 import	 it	 into	 our
Python	programs.	The	imports	give	the	ability	to	read	several	bioinformatics	file	formats:
FASTQ	 for	 the	 sequence	 reads,	 SAM	 for	 the	 genome	 alignment	 results	 and	 GFF	 files
which	give	the	genome	annotation	information	(e.g.	where	the	genes	lie	in	the	sequence),
to	 which	 we	 can	 relate	 the	 high-throughput	 sequencing	 data.	 The	 GenomicArray	 and
GenomicInterval	 imports	 are	 object	 classes	 that	 we	 will	 use	 to	 hold	 the	 sequence
information	in	an	efficient	and	easily	accessible	manner.	Next	some	imports	are	made	to
make	graphs	with	the	matplotlib	library	and	the	usual	NumPy	module	to	handle	numeric
arrays	with	which	we	can	do	the	mathematics.

from	HTSeq	import	FastqReader,	SAM_Reader,	GFF_Reader

from	HTSeq	import	GenomicArray,	GenomicInterval

from	matplotlib	import	pyplot

from	numpy	import	array

Reading	sequences	from	FASTQ	files
A	FASTQ-format	sequence	file	is	read	by	using	the	imported	reader	class	FastqReader	 to
make	an	object	that	represents	the	open	file.	It	is	then	a	simple	matter	to	extract	each	of
the	sequence	records	that	is	represented	in	the	file	by	looping	through	this	object.	Each	of

the	seqRes	objects,	 as	 it	 appears	 in	 the	 loop,	 is	 a	SequenceWithQualities	 class	 from	 the
HTSeq	library,	and	as	such	it	comes	with	lots	of	inbuilt	functionality	and	some	of	this	is
demonstrated	below:	printing	the	name,	the	sequence	itself	and	the	reverse	complement	of
the	 read	 (here	 the	 slice	 notation[::-1]	 gives	 the	 sequence	 in	 reverse	 relative	 to	 the	main
sequence).

fileObj	=	FastqReader(fastqFile)

for	seqRead	in	fileObj:

		print(seqRead.name)

		print(seqRead.seq)

		print(seqRead.get_reverse_complement()[::-1])

This	gives	a	result	like:

r999

AGGATAATGAGGCGAGCCGGGGGAACTGAAANTGG

TCCTATTACTCCGCTCGGCCCCCTTGACTTTNACC

Given	 that	 these	 sequence	 records	 come	 from	 reading	 a	 file	 format	 that	 incorporates
quality	 scores	we	 can	 naturally	 interrogate	 those	 scores.	 In	 this	 example	we	 generate	 a
graph	of	the	mean	score	along	the	alignment	positions.	The	meanQual	initially	starts	out
as	None	and	for	the	first	sequence	is	set	to	a	NumPy	array	of	the	scores	seqRead.qual.	For
subsequent	 records	 the	 scores	 are	 then	 added	 (element	 by	 element	 as	 is	 the	 standard
NumPy	way)	to	this	array,	so	that	at	the	end	the	whole	array	can	be	divided	by	numReads
to	give	the	average	value	along	the	sequence,	which	is	plotted	with	the	pyplot	library.

numReads	=	0.0

meanQual	=	None

for	seqRead	in	fileObj:

		print(seqRead.qual)

		if	meanQual	is	None:

				meanQual	=	array(seqRead.qual)

		else:

				meanQual	+=	seqRead.qual

		numReads	+=	1.0

if	numReads:

		pyplot.plot(meanQual/numReads)

		pyplot.show()

Reading	a	genome	alignment	file
The	next	example	illustrates	how	to	read	a	genome	alignment	file,	which	in	this	case	is	in
SAM	format	and	could	have	been	generated	by	the	genomeAlign()	defined	above.	Firstly,
the	name	of	the	genomic	alignment	is	specified	as	alignFile	and	a	set	is	defined	to	collect
the	 chromosome	 identifier.	 The	 SAM	 file	 reader	 is	 used	 to	 create	 Alignment	 objects,
noting	 here	 that	 we	 choose	 to	 loop	 directly	 though	 the	 reader’s	 output,	 rather	 than
explicitly	defining	 a	variable	 that	 represents	 the	open	 file	object.	The	 alignment	objects
can	then	be	interrogated	with	the	.read	attribute	to	access	a	sequence	read	object.

alignFile	=	'examples/EcoliGenomeAlign.sam'

chromosomes	=	set()

for	alignment	in	SAM_Reader(alignFile):

		if	alignment.aligned:

				seqRead	=	alignment.read

				print(seqRead.name)

				print(seqRead.seq)

Also,	 the	alignment’s	 .iv	attribute	 (a	GenomicInterval)	provides	a	means	of	accessing
the	location	that	was	aligned	in	the	genome	sequence:

genomeRegion	=	alignment.iv

chromo	=	genomeRegion.chrom

strand	=	genomeRegion.strand

start	=	genomeRegion.start

end	=	genomeRegion.end

chromosomes.add(chromo)

print(chromo,	start,	end,	strand)

The	set	of	chromosome	identifiers	which	were	collected	above	are	converted	into	a	list
so	that	they	can	be	used	to	make	a	GenomicArray(),	an	object	that	can	be	used	to	house
any	data	 that	we	may	 care	 to	map	 to	 an	 efficient	Python	 representation	of	 the	 genome,
which	in	this	case	will	store	the	locations	of	where	short-read	sequences	aligned.	Note	that
the	typecode	argument	dictates	what	kind	of	data	is	housed	in	the	array	and	can	take	the
values	 ‘d’,	 ‘i’,	 ‘b’	 and	 ‘O’,	 respectively	 representing	 floating	 point	 numbers,	 integers,
Booleans	and	general	Python	objects.

chromosomes	=	list(chromosomes)

hitMap	=	GenomicArray(chromosomes,	stranded=True,	typecode='i')

This	genomic	array	can	be	filled	with	the	results	from	a	SAM	alignment	file.	A	check	is
made	to	ensure	that	the	alignment	was	successful	(i.e.	that	alignment.aligned	is	true)	and
then	the	genomic	interval	genomeRegion	can	be	used	to	set	values	in	the	genomic	array,
noting	that	we	can	access	the	array	as	if	it	were	a	Python	dictionary	and	set	the	value	of	1
for	the	leading	strand	and	-1	otherwise.

for	alignment	in	SAM_Reader(alignFile):

		if	alignment.aligned:

				genomeRegion	=	alignment.iv

				if	genomeRegion.strand	==	'+':

						hitMap[genomeRegion]	=	1

				else:

						hitMap[genomeRegion]	=	-1

To	 access	 the	 results	 of	 the	 hitMap	 genomic	 array	GenomicInterval	 objects	 are	 used
again,	although	here	they	are	created	from	scratch	to	represent	the	region	of	interest.	As	an
example	intervals	are	created	for	 the	first	chromosome	from	position	zero	to	2	Mbp,	for
different	strands.

chromo	=	chromosomes[0]

endPoint	=	2000000

plusStrand		=	GenomicInterval(chromo,	0,	endPoint,	'+')

minusStrand	=	GenomicInterval(chromo,	0,	endPoint,	'-')

bothStrands	=	GenomicInterval(chromo,	0,	endPoint,	'.')

The	hitMap	can	then	simply	be	queried	with	the	interval	object.	Converting	the	result	to
a	list	allows	the	result	to	be	easily	plotted	in	a	graph.

pyplot.plot(list(hitMap[plusStrand]))

pyplot.plot(list(hitMap[minusStrand]))

pyplot.show()

Matching	sequence	reads	to	genome	data
Lastly	we	look	at	how	we	can	relate	high-throughput	sequence	information	to	annotation
information	that	accompanies	a	genome.	Here	the	Python	example	will	focus	on	the	data
contained	within	a	‘GFF’-formatted	text	file,	although	the	HTSeq	library	can	be	used	in	an
analogous	manner	for	different	annotation	formats.

We	have	included	an	example	GFF	file	with	the	on-line	material	that	accompanies	this
book.	Also,	using	the	file	downloading	function	defined	above,	we	can	obtain	GFF	files
from	the	same	NCBI	download	site	as	the	genome	sequence	data.18

remoteFileName	=	'/Bacteria/Escherichia_coli_536_uid58531/NC_008253.gff'

gffFile	=	'examples/EcoliGenomeFeatures.gff'

downloadFile(FTP_ROOT+remoteFileName,	gffFile)

When	 using	 genome	 annotation	 data	 it	 is	 especially	 important	 to	 make	 sure	 that	 it
matches	 the	 genome	 sequence	 that	 sequence	 reads	 were	 mapped	 to.	 Naturally	 the
annotations	should	be	for	the	same	organism,	and	any	sub-type,	as	the	sequence,	but	care
also	needs	to	be	taken	to	ensure	that	the	same	genome	assembly	(as	indicated	by	the	build
number)	is	used	for	both	data	sets.	For	larger	eukaryotic	genomes,	especially	if	the	data	is
relatively	new,	there	can	be	some	significant	improvements	between	releases.

Assuming	the	GFF	annotation	file	downloaded	successfully,	the	GFF_Reader()	 import
from	the	HTSeq	library	makes	it	easy	to	access	the	file	data.	In	this	case	you	can	see	the
file	object	that	is	opened	and	the	annotation	data	can	be	iterated	through	in	a	loop	to	get
GenomicFeature	class	objects,	which	naturally	link	a	genomic	location	to	a	description	of
the	feature.

fileObj	=	GFF_Reader(gffFile)

for	genomeFeature	in	fileObj:

Here	we	 fetch	 the	chromosome	 location	 information	 for	 the	 feature,	by	accessing	 the
genomeFeature.iv	attribute,	a	genomic	interval:

genomeRegion	=	genomeFeature.iv

data	=	(genomeRegion.chrom,

								genomeRegion.start,

								genomeRegion.end,

								genomeRegion.strand)

print('%s	%s	-	%s	(%s)'	%	data)

Similarly	there	are	other	attributes	that	indicate	the	kind	of	annotation	that	goes	along
with	the	location.	These	will	include	features	like	genes,	introns,	exons	etc.

data	=	(genomeFeature.name,

								genomeFeature.type,

								genomeFeature.source)

print('%s	%s	(%s)'	%	data)

One	 notable	 attribute	 is	 the	 attr	 dictionary,	 which	 contains	 a	 variety	 of	 information,
including	cross-links	to	other	databases.

print(genomeFeature.attr)

This	will	yield	results	like	the	following:

NC_008253.1	4933963	–	4935385	(+)

CreC	CDS	(RefSeq)

{'locus_tag':	'ECP_4785',	'exon_number':	'1',	'product':	'sensory	histidine

	kinase	CreC','EC_number':	'2.7.3.-',	'note':	'part	of	a	two-component	

regulatory

	system	with	CreB	or	PhoB%3B	involved	in	catabolic	regulation',	'db_xref':

	'GeneID:4190641',	'transl_table':	'11',	'protein_id':	'YP_672568.1'}

For	the	next	example	we	will	look	again	at	creating	GenomicArray	objects,	which	will
map	 the	 annotations	 on	 to	 a	Python	 representation	 of	 the	 chromosomes.	Here	 geneMap
will	 link	 the	genomic	array	directly	 to	 the	annotation	objects	and	 the	genePlot	will	hold
numbers	 to	 plot	 a	 graph	 of	 gene	 locations.	Note	 the	 use	 of	 the	 argument	 ‘auto’,	which
means	that	the	data	structure	will	automatically	expand	to	represent	all	of	the	chromosome
locations	that	we	add.

geneMap	=	GenomicArray('auto',	stranded=False,	typecode='O')

genePlot	=	GenomicArray('auto',	stranded=False,	typecode='i')

To	fill	 the	GenomicArray	data	we	simply	use	 the	genome	region	 from	the	annotation
objects	 as	 keys	 in	 a	 dictionary-like	 manner,	 setting	 the	 corresponding	 values	 to	 the
genomeFeature	object	and	a	number.	Note	that	we	only	do	this	if	the	feature	is	of	‘gene’
type.	Thus,	by	setting	genePlot	to	hold	the	value	1	at	 the	feature	 location	we	will	get	an
intermittent	array	of	values	we	can	turn	into	a	rough	graph	to	show	gene	positions.

for	genomeFeature	in	fileObj:

		if	genomeFeature.type	==	'gene':

				genomeRegion	=	genomeFeature.iv

				geneMap[genomeRegion]	=	genomeFeature

				genePlot[genomeRegion]	=	1

Once	a	genomic	array	is	created	we	can	naturally	 interrogate	 it	and	fetch	the	data	we
initially	mapped.	The	steps()	 function	 is	useful	 to	provide	a	mechanism	 to	 loop	 through

what	is	contained,	extracting	a	record	of	the	sequence	region	covered	and	whatever	data
we	 associated	with	 that	 location.	Here	we	 loop	 through	 the	 positioned	GenomicFeature
objects	(although	we	could	have	used	other	types	of	Python	object).

for	region,	feature	in	geneMap.steps():

		if	feature:

				data	=	(feature.name,

												region.start,

												region.end,

												feature.iv.strand)

				print('%s:	%s	-	%s	(%s)'	%	data)

If	 we	 wish	 to	 make	 a	 graph,	 plotting	 the	 locations	 with	 the	 value	 1,	 which	 were
arbitrarily	set	for	the	genes,	then	we	choose	a	chromosome	(from	an	arbitrary	region	used
above)	 and	 construct	 a	 40,000	 base	GenomicInterval	 to	 state	 the	 region	 of	 interest.	 As
before	the	region	is	used	like	a	dictionary	key	to	fetch	part	of	the	mapped	array,	and	we
can	convert	this	to	a	list	for	graphing:

chromosome	=	genomeRegion.chrom

region	=	GenomicInterval(chromosome,	0,	40000,	'.')

pyplot.plot(list(genePlot[region]))

pyplot.show()

1 	Histones	are	proteins	that	wrap	around	and	package	DNA	to	form	chromatin,	and	thus
control	access	to	the	DNA.
2 	E.g.	telomere,	centromere.
3 	For	example,	Illumina	machines	typically	sequence	100	bases,	at	the	time	or	writing.
4 	See:	Burrows,	M.,	and	Wheeler,	D.	(1994).	A	block	sorting	lossless	data	compression
algorithm.	Technical	Report	124,	Digital	Equipment	Corporation.
5 	Actually	occasional	new,	refined	genome	builds	will	be	released.
6 	 Cock,	 P.J.,	 Fields,	 C.J.,	 Goto,	 N.,	 Heuer,	 M.L.,	 and	 Rice,	 P.M.	 (2010).	 The	 Sanger
FASTQ	 file	 format	 for	 sequences	 with	 quality	 scores,	 and	 the	 Solexa/Illumina	 FASTQ
variants.	Nucleic	Acids	Research	38(6):	1767–1771.
7 	http://gmod.org/wiki/GFF3.
8 	National	Center	for	Biotechnology	Information	in	the	United	States.
9 	Binary	mode	is	used	because	response.read	in	Python	3	always	gives	data	bytes	and	in
any	case	we	could	be	dealing	with	a	compressed	file	(e.g.	GZIP).
10 	Langmead,	B.,	Trapnell,	C.,	Pop,	M.,	and	Salzberg,	S.L.	(2009).	Ultrafast	and	memory-
efficient	alignment	of	short	DNA	sequences	to	the	human	genome.	Genome	Biology	10(3):
R25.
11 	Li,	H.,	and	Durbin,	R.	 (2009).	Fast	and	accurate	short	 read	alignment	with	Burrows-

http://gmod.org/wiki/GFF3

Wheeler	Transform.	Bioinformatics	25:	1754–1760.
12 	http://www.ncbi.nlm.nih.gov/geo/.
13 	Download	via:	http://bowtie-bio.sourceforge.net.
14 	 Li,	 H.,	 Handsaker,	 B.,	 Wysoker,	 A.,	 et	 al.;	 1000	 Genome	 Project	 Data	 Processing
Subgroup	 (2009).	 The	 Sequence	 Alignment/Map	 format	 and	 SAMtools.	Bioinformatics
25(16):	2078–2079.
15 	http://www.cambridge.org/pythonforbiology.
16 	 http://pypi.python.org/pypi/HTSeq.	 Note	 that	 to	 install	 this	 you	 can	 use	 the	 Python
setup	 tool	by	 issuing	 the	 following	at	 the	 command	 line:	 python	 setup.py	build;	python
setup.py	install.
17 	A	Python	wrapper	for	SAMtools:	http://pypi.python.org/pypi/pysam.
18 	We	 could	 also	 find	 data	 that	 relates	 to	 the	 Ensembl	 database	 at	 an	 alternative	 site:
ftp://ftp.ensembl.org/pub/current_gtf/;	 note	 GTF	 and	 GFF	 formats	 are	 generally
compatible,	the	former	being	a	more	restricted	set	of	the	latter.

http://www.ncbi.nlm.nih.gov/geo/
http://bowtie-bio.sourceforge.net
http://www.cambridge.org/pythonforbiology
http://pypi.python.org/pypi/HTSeq
http://pypi.python.org/pypi/pysam
ftp://ftp.ensembl.org/pub/current_gtf/

18 	Images
Contents

Biological	images

Pixmaps

Image	manipulation

Basic	image	operations

Python	Imaging	Library

Using	NumPy	for	images

Adjustments	and	filters

The	ImageEnhance	module

Intensity	adjustments	using	NumPy

Convolving	image	filters

Sharpen,	blur	and	edge-detection	filters

Feature	detection

Counting	cells

Biological	images
Often	in	biology	and	medicine	 the	data	people	use	comes	in	 the	form	of	an	 image.	This
could	be	as	simple	as	a	photograph	of	some	cells	or	an	 image	that	has	been	constructed
from	 other	 data,	 e.g.	 from	 an	MRI	 scan.	 The	 images	 that	we	will	 be	 discussing	 in	 this
chapter,	whatever	their	source,	will	be	pixmap	images,	also	known	as	raster	images.	They
will	 be	 constructed	 as	 rectangular	 arrays	 of	 colour	 or	 grey	 values,	 the	 smallest	 square
element	of	which	we	refer	 to	as	a	pixel.	We	will	not	be	considering	 the	vector	graphics
approach	 to	 making	 pictures,	 where	 the	 data	 is	 described	 in	 terms	 of	 lines	 and	 shape
outlines.	Here	we	will	concentrate	on	pixel	arrays,	the	kind	of	image	data	that	comes	from
our	digital	cameras	and	various	scientific	instruments.

We	will	deal	with	pixmap	 images	 in	a	general,	 slightly	mathematical	way.	 It	will	not
matter	what	the	image	actually	represents	for	the	most	part,	although	we	will	endeavour	to
give	 examples	 with	 a	 biological	 flavour.	 Not	 so	 long	 ago	 images	 would	 largely	 be
acquired	by	using	photographic	film,	but	now	the	digital	camera	is	ubiquitous,	and	without
the	need	to	buy	expensive	film	a	scientist	can	capture	as	many	images	as	time	and	storage
capacity	 allow.	 Thus	 the	 examples	 presented	 here	will	 often	 have	 an	 emphasis	 towards
automation,	and	if	you	need	to	write	programs	dealing	with	biological	data	this	will	allow
you	to	construct	efficient	analytical	pipelines.

Pixmaps
A	pixmap	image	can	be	stored	in	a	variety	of	different	ways	on	a	computer,	such	as	 the
common	file	formats	 like	JPEG,	PNG	or	GIF.	However,	whatever	 the	means	of	storage,
which	is	often	just	a	cunning	way	of	saving	space	(or	download	bandwidth),	all	pixmaps
can	be	imagined	as	an	array	of	different	colour	values.	Here	the	usual	convention	is	that
the	 first	pixel	 (array	position	0,	0)	 is	 viewed	 as	 the	 top	 left	 of	 the	 image,	 i.e.	 the	 other
pixels	go	right	and	down	relative	to	the	first.	A	pixmap	image	will	have	no	resolution	as
such,	 just	one	 fixed	size	 in	 terms	of	points	 in	a	matrix;	how	big	 it	 ends	up	 looking	 is	a
matter	 for	 the	display	or	printer.	Each	pixel	 element	of	 such	an	array	will	 have	 its	own
colour	 specification	 and	 placing	 these	 all	 together	 makes	 the	 whole	 image.	 There	 are
several	common	ways	of	representing	colour	in	computing,	some	of	which	are	described
below.	The	 basic	 principle	 is	 that	 one	 or	more	 numbers	 are	 allocated	 to	 each	 pixel	 and
these	describe	the	components	or	properties	of	the	colour.	It	is	then	up	to	the	display	(or
printer)	to	know	how	to	interpret	the	pixel’s	values	and	to	show	the	colours	correctly.

Figure	18.1	(Plate	5).	 Examples	of	a	variety	of	different	kinds	of	images	used	in
biology.	Shown	from	left	to	right	are:	a	microscope	image	of	a	mammalian	cell	culture
(courtesy	Dr.	Anja	Winter,	University	of	Leicester);	a	red-green	fluorescence	microscope
image	of	an	oocyte	and	its	nucleus	(courtesy	Dr.	Melina	Schuh,	MRC	Laboratory	of
Molecular	Biology);	a	two-dimensional	electrophoresis	gel	of	a	plant	proteome	(courtesy
Prof.	Paul	Dupree,	University	of	Cambridge);	an	image	of	a	DNA	microarray	(courtesy
Karen	Howarth,	University	of	Cambridge);	a	protein	crystal	that	has	been	grown	for
structure	determination	by	X-ray	crystallography	(courtesy	Dr.	Aleksandra	Watson,
University	of	Cambridge).

A	few	of	the	more	common	colour	models	used	in	computing:

Greyscale:	each	pixel	is	represented	by	a	single	value,	which	determines	how	bright
it	is.	Zero	will	represent	black	and	the	maximum	value	will	be	white,	with	the	grey
shades	 in	 between.	 Sometimes	 greyscale	 is	 referred	 to	 as	 luminance	 (although	 this
has	a	proper	meaning	in	physics).
RGB:	represents	each	pixel	with	three	numbers	which	specify	the	amount	of	red	(R),
green	(G)	and	blue	(B)	component	colours	that	are	in	the	pixel.	The	mixtures	of	these
components	 specify	 other	 colours.	 This	 is	 similar	 to	 the	 way	 that	 most	 computer
screens	operate.
RGBA:	this	is	the	same	as	RGB,	but	carries	an	extra	number	for	each	pixel	called	the
alpha	(A)	value,	which	specifies	how	transparent	it	is;	this	is	only	really	useful	when
making	 things	 pretty	 and	 overlaying	 images,	 to	 say	 how	much	 of	 the	 background
comes	through.	This	is	certainly	a	form	to	be	aware	of	but	not	something	we	usually
have	to	think	about	too	much	for	science.
CMYK:	represents	each	pixel	with	four	numbers	indicating	cyan	(C),	magenta	(M),

yellow	 (Y)	 and	 black	 (K)	 components.	 This	 is	 a	 specification	 useful	 for	 printing,
where	 the	 components	 match	 the	 colours	 of	 inks	 (which	 are	 better	 for	 mixing	 on
paper	than	red,	green	and	blue).
HSV:	represents	each	pixel	in	terms	of	hue	(H),	saturation	(S)	and	value	(V).	The	hue
indicates	where	 the	 pure	 colour	 lies	 in	 a	 rainbow	 (or	 colour	wheel),	 the	 saturation
specifies	how	colourful	 the	pixel	 is	compared	 to	grey,	and	 the	value	says	how	dark
(close	to	black)	the	colour	is.

A	technical	aspect	that	will	impinge	on	our	ability	to	deal	with	images	is	the	way	that
different	number	ranges	are	used	in	different	circumstances.	Thinking	about	RGB	images,
we	can	imagine	the	pixels’	red,	green	and	blue	components	as	taking	values	between	0.0
(minimum)	 and	 1.0	 (maximum),	 and	 this	 may	 be	 convenient	 for	 us	 when	 doing
mathematical	manipulations.	However,	such	components	are	not	generally	held	as	floating
point	values	between	zero	and	one,	rather	 they	are	stored	as	 integers.	For	example,	 they
commonly	range	from	zero	up	to	255.	For	RGB	this	means	using	8	bits	for	each	colour	(28
=	256),	which	in	turn	gives	rise	to	the	whole	image	being	described	as	24-bit	(8	red	+	8
green	+	8	blue).	Naturally	allowing	values	to	be	stored	as	larger	numbers	takes	up	more
memory	but	allows	for	many	more	gradations,	and	so	better	colour	representation.	In	order
to	interpret	image	data	correctly	we	must	know	what	this	maximum	value	is,	i.e.	whether
it	is	8-bit,	16-bit	etc.,	otherwise	the	data	will	be	nonsense.

Figure	18.2	(Plate	6).	 An	image,	its	component	pixels	and	their	RGB	colour-space
values.	A	section	of	the	book	cover	picture	is	shown	magnified	at	different	levels	to	reveal
the	array	of	square	pixels	that	the	digital	image	is	composed	of.	For	the	highest
magnification,	example	pixels	with	different	colours	are	selected	and	the	component	red,
green	and	blue	(RBG)	values	that	constitute	each	colour	are	shown	as	histograms.

Once	we	know	how	image	data	is	stored	we	will	need	to	be	able	to	manipulate	it.	In	this
chapter	 we	 will	 generally	 be	 working	 with	 greyscale	 or	 the	 RGB	 colour	 model	 for
simplicity,	 but	 we	 will	 illustrate	 how	 to	 convert	 to	 and	 from	 the	 other	 representations.
When	performing	more	mathematical	operations	with	numeric	Python	we	will	think	of	the
pixels	in	an	image	as	being	elements	of	a	matrix	(a	2D	array)	and	often	we	can	think	of	the
different	 red,	 green	 and	 blue	 components	 as	 separate	 layers	 (also	 called	 channels)	each
with	a	separate	matrix,	which	are	then	arranged	depth-wise	to	make	the	full	pixmap.

Image	manipulation
Much	of	what	is	covered	in	this	chapter	is	about	manipulation	of	pixmaps.	Naturally	when
making	 changes	 we	 have	 to	 be	 mindful	 of	 biasing	 the	 scientific	 investigation.	 It	 is
important	to	be	objective	so	that	we	show	what	is	actually	there,	not	just	what	we	expect
or	what	looks	pretty.	Of	course	this	is	not	different	in	principle	to	any	other	scientific	data,
but	it	is	often	very	easy	to	manipulate	an	image	and	forget	to	keep	the	original	data.	Hence
we	 encourage	 keeping	 the	 original	 data	 in	 important	 situations.	 This	 also	 allows	 the

development	of	better	analytic	methods	in	the	future.

Sometimes	when	manipulating	images	we	will	be	working	with	the	pixel	data	directly
in	 numeric	 Python.	 However,	 such	 low-level	 coding	 is	 not	 always	 required.	 When
performing	common	operations	on	an	image,	such	as	adjusting	contrast	or	colour	balance,
we	can	make	good	use	of	existing	high-level	graphics	libraries	that	work	with	Python	such
as	the	Python	Imaging	Library1	(PIL)	and	the	Python	wrapper	to	Imagemagick.2	Although
these	 libraries	 are	 both	worth	 considering	we	will	 focus	mainly	 on	 PIL	 in	 this	 chapter.
Generally	we	will	use	PIL	for	high-level	functions,	especially	the	ability	to	display,	load
and	save	images,	and	then	use	numeric	Python	for	the	detailed	work.	However,	for	some
operations	we	will	 illustrate	 using	 both	 PIL	 and	 numeric	 Python	 and	 leave	 it	 up	 to	 the
reader	to	choose	which	is	most	convenient	or	useful.

Basic	image	operations
The	first	Python	examples	in	this	chapter	will	illustrate	how	we	can	use	PIL	to	get	hold	of
pixmaps	 from	 the	 data	 stored	 in	 various	 kinds	 of	 image	 file.	 The	 data	 can	 then	 be
manipulated,	 if	 required,	 and	 saved	 back	 again,	 potentially	 to	 a	 different	 type	 of	 image
file.	When	working	with	images	we	often	simply	need	to	convert	from	one	type	of	image
file	to	another,	given	computer	programs	are	sometimes	particular	about	the	format.	Also,
by	 converting	 we	 can	 sometimes	 improve	 storage	 efficiency,	 e.g.	 going	 from	 an
uncompressed	TIFF	to	JPEG.

Python	Imaging	Library
To	work	with	PIL,	the	following	examples	naturally	assume	that	the	library	is	installed.3
Then	to	begin	we	import	the	Image	module,	which	will	allow	us	to	construct	Image	class
objects.4.Inbuilt	 into	 this	 kind	of	object	 are	 lots	 of	useful	 operations	 that	we	can	 access
directly	for	the	image	just	by	calling	a	function	(i.e.	a	bound	method)	on	the	object.	The
image	module	 can	 use	 the	 .open()	method	 to	 load	 a	 file	 from	disk	 and	make	 an	 Image
object.	Note	that	the	PIL	function	automatically	guesses	at	the	type	of	file	at	load	time	so
that	we	only	have	to	specify	a	file	name.	The	example	files	we	are	working	with	here	are
available	in	the	downloadable	data	that	supports	this	book.

from	PIL	import	Image

img	=	Image.open('examples/Cells.jpg')

With	the	image	object	made	we	can	access	its	properties,	and	most	importantly	call	the
.show()	method	to	display	it	on	screen.

print(img.size)

print(img.mode)

img.show()

A	given	image	object	can	be	saved	back	to	a	file	using	several	different	file	formats.	In
the	example	below	we	use	PNG	and	GIF	format.	At	the	time	of	writing	PIL	can	use	any	of

the	 following	 formats:	BMP,	DCX,	EPS,	GIF,	 IM,	 JPEG,	PCD,	PDF,	PNG,	PPM,	PSD,
TIFF,	XBM	and	XPM.	Not	all	of	these	will	store	images	in	the	same	way.	For	the	common
web	formats,	JPEG	gives	the	smallest	files,	but	will	change	the	data	and	may	lose	quality
(it	 uses	 lossy	 compression),	 PNG	will	 preserve	 all	 the	 data	 but	 the	 files	 will	 be	 larger
(lossless	compression).	GIF	 is	 similar	 to	PNG,	but	 can	only	handle	256	colours	 at	once
(although	this	palette	of	colours	can	be	chosen	from	a	larger	set)	so	if	the	image	has	more
colours	saving	as	GIF	will	lose	information.

img.save('Cells.png',	'PNG')

If	we	need	to	have	an	image	which	describes	its	pixel	values	in	a	different	way	we	can
use	 the	 .convert()	 function	 prior	 to	 saving,	 or	 some	 other	 operation.	 It	 is	 notable	 that
converting	to	greyscale	(code	‘L’)	in	PIL	takes	account	of	the	sensitivity	of	the	human	eye
to	colours	where,	 for	 the	same	physical	 intensity,	green	seems	brightest	 followed	by	red
and	then	blue.	Thus,	such	a	greyscale	conversion	preserves	aesthetic	brightness,	but	 this
will	be	a	biased	average	of	the	pixel	values	and	may	not	be	what	we	want	scientifically.

img.convert('CMYK')		#		Cyan,	Magenta,	Yellow,	blacK

img.convert('L')				#		Luminance	=	greyscale

Next	we	will	run	though	a	few	of	the	more	basic	ways	of	changing	images,	which	we
can	admire	by	using	 .show()	 or	 by	 saving	 and	viewing	 in	 another	 program.	The	 .crop()
method	chops	 the	edges	off	 the	pixmap.	We	need	 to	specify	 the	rectangle	 to	use	as	 left,
top,	right	and	bottom	edges	(in	order)	and	pass	these	values	as	arguments	in	a	tuple,	not
separately.	 The	 convention	 used	 in	 the	 Image	 object	 is	 that	 the	 pixel	 with	 positional
indices	 (0,0)	 is	 at	 the	 top	 left.	 Accordingly,	 in	 the	 example	 the	 right	 and	 bottom	 edge
points	are	calculated	by	subtracting	from	the	original	width	and	height.	Also,	note	that	we
are	sending	the	result	back	to	a	variable	called	img,	thus	we	are	overwriting	the	original
data,	but	of	course	we	are	free	to	use	a	different	name	if	required.

w,	h	=	img.size

img	=	img.crop((10,	10,	w-10,	h-10))

Another	easy	manipulation	 is	 rotation,	which	 is	 inbuilt.	Here	we	specify	 the	angle	of
rotation	in	degrees	and	then	save	the	rotated	pixmap.	As	before,	we	are	overwriting	img
with	new	data.

img	=	img.rotate(270)

img.save('CellsAdj.png',	'PNG')

To	change	the	size	of	an	image	we	have	one	of	two	options:	the	first	method	is	.resize(),
which	gives	back	a	new	 image,	preserving	 the	one	we	passed	 in.	For	 this	operation	we
need	to	say	how	the	image	will	be	resized	(how	to	combine	the	original	pixels	together	to
make	the	new	array).	Thus	we	enter	what	the	new	width	and	height	will	be:	here	half	of
the	 original	 values.	 Also,	 we	 can	 optionally	 supply	 a	 resizing	method,	 which	 specifies
which	algorithm	will	be	used.	The	example	uses	the	Image.ANTIALIAS	option	(coming
directly	 from	 the	 module	 Image,	 not	 the	 object).	 Antialiasing	 is	 commonly	 what	 you
would	want	 for	making	 smaller	 images,	 though	 .BILINEAR,	 .BICUBIC	 or	 .NEAREST
can	all	be	used	for	resizing	in	general.

img2	=	img.resize((w/2,	h/2),	Image.ANTIALIAS)

img2.save('CellsHalfSize.png',	'PNG')

An	 alternative	 way	 of	 resizing	 images	 is	 to	 make	 smaller	 preview	 versions	 called
thumbnails.	Unlike	the	previous	examples,	the	thumbnail()	function	actually	changes	the
image	in-place.	If	we	do	not	want	the	original	to	be	affected	we	need	to	make	a	copy	first,
which	is	fortunately	easy:

img2	=	img.copy()

img2.thumbnail((50,	50),	Image.ANTIALIAS)

img2.save('CellsThumb.png',	'PNG')

Using	NumPy	for	images
Next	we	move	on	from	the	inbuilt	PIL	methods	and	place	the	image	data	into	a	numeric
Python	array.	Naturally	this	array	will	have	the	same	width	and	height	as	the	image,	i.e.
we	have	an	array	element	for	each	pixel.	The	array	will	have	different	depths	depending
on	the	kind	of	image	data	that	is	being	interpreted.	For	example,	if	the	image	is	greyscale
(‘black	and	white’),	 then	we	need	an	array	that	 is	only	one	element	deep,	 to	contain	 the
brightness	value.	If	the	image	is	RGB,	then	we	need	an	array	that	is	three	deep;	you	can
imagine	this	pixmap	as	consisting	of	three	stacked	planes,	for	red,	green	and	blue	layers
respectively.	Or	put	another	way,	a	pixel	 that	makes	an	RGB	element	 is	 a	vector	of	 the
form	(red,	green,	blue).

For	the	following	example	we	will	first	make	the	NumPy	imports	that	will	be	needed.
Many	 of	 these	 will	 be	 familiar,	 but	 uint8	 warrants	 some	 explanation.	 The	 uint8	 object
represents	 a	 data	 type	 that	 specifies	 unsigned5	 8-bit	 integer	 numbers.	Most	 integers	 in
Python	will	be	32-bit	and	have	signs.	 In	essence	a	uint8	number	will	only	go	 from	0	 to
255,	and	this	is	how	many	RGB	image	values	are	actually	stored.	To	interpret	the	pixmap
data	we	will	need	to	use	this	data	type,	rather	than	the	regular	Python	number	types.

from	numpy	import	array,	dot,	dstack,	ones,	random,	uint8,	zeros

To	make	an	image	from	scratch	we	make	an	array	of	the	required	size.	Here	we	specify
a	height	and	width	of	200	pixels	and	use	a	depth	of	three,	because	we	want	to	make	RGB
pixmaps.	Note	that	when	we	make	the	array	first	we	use	height	h,	then	width	w,	then	depth
d.	This	may	seem	counterintuitive	to	some	people,	given	the	custom	for	using	x,	y	order	in
coordinates	and	stating	dimensions	as	width	×	height.	However,	putting	height	first	better
reflects	the	way	that	pixels	are	stored	in	image	files,	and	so	matches	what	we	will	pass	on
to	PIL	at	the	end	to	save	the	image.

h	=	200

w	=	200

d	=	3

The	pixmap	is	constructed	as	an	array	using	these	sizes,	and	the	values	that	we	put	in
the	array	will	 specify	 the	colour	of	 the	pixels.	All	zeros	will	give	 rise	 to	black,	all	ones
will	become	white	and	random	could	be	anything.

pixmap	=	zeros((h,	w,	d))	#	black

pixmap	=	ones((h,	w,	d))	#	white

pixmap	=	random.random((h,	w,	d))	#	random	colours

pixmap	*=	255

The	 arrays	 constructed	 above	 contain	 values	 that	 go	 from	 zero	 to	 one,	 but	 the	RGB
values	will	go	from	0	to	255.	Thus,	in	the	above	example	*=	255	multiplies	each	value	in
the	array	by	255.

Also,	the	Python	arrays	usually	contain	standard	integers	or	floating	point	numbers,	not
the	 required	 8-bit	 variety,	 so	 we	 have	 to	 explicitly	 convert	 the	 data	 type	 to	 uint8.	 The
converted	array	can	be	directly	interpreted	by	PIL	to	make	an	Image	object	which	we	can
show	on	screen,	save	to	file	or	whatever.	Here	we	encapsulate	the	conversion	operations
into	a	function,	pixmapToImage,	so	we	can	use	it	later.	In	the	function	we	check	to	make
sure	pixel	values	do	not	exceed	255,	scaling	them	back	if	they	do:

def	pixmapToImage(pixmap,	mode='RGB'):

		if	pixmap.max()	>	255:

				pixmap	*=	255.0	/	pixmap.max()

		pixmap	=	array(pixmap,	uint8)

		img	=	Image.fromarray(pixmap,	mode)

		return	img

img1	=	pixmapToImage(pixmap)

img1.show()

Next	we	will	consider	 the	construction	of	 images	by	combining	separate	matrices	 for
the	red,	green	and	blue	image	components.	So,	for	example,	if	we	wanted	to	make	a	pure
yellow	image,	which	has	maximum	red	and	green	components,	we	can	do	the	following	to
make	component	matrices	of	 the	same	size	and	use	dstack	 to	combine	 them	in	 the	right
manner:

size	=	(h,w)

redMatrix			=	ones(size)

greenMatrix	=	ones(size)

blueMatrix		=	zeros(size)

pixmap	=	dstack([redMatrix,	greenMatrix,	blueMatrix])

pixmap	*=	255

img1	=	pixmapToImage(pixmap)

img1.show()

In	 order	 to	 copy	 existing	 PIL	 image	 data	 into	 a	 numeric	 Python	 array	 the	 handy
.getdata()	method	can	be	used,	which	is	built	into	all	PIL	Image	objects.	It	is	notable	that
the	unit8	is	used	again	so	that	the	numbers	in	the	image	are	of	the	unsigned	8-bit	data	type.
Also,	we	put	in	a	.convert()	step	to	check	that	the	image	is	of	the	RGB	type.	However,	it
should	be	noted	that	our	pixmap/image	conversion	functions	should	perform	many	more
checks	 if	 they	were	used	 in	real-world	scenarios.	 Initially	 the	data	will	be	a	plain	 list	of
colour	 data;	 all	 pixels	 will	 effectively	 be	 in	 a	 long	 line.	 To	 reconstruct	 the	 original
pixmap’s	dimensions	reshape	can	be	used	to	rearrange	the	elements,	remembering	that	the

width	and	height	are	used	in	the	opposite	order	to	what	.size	gives.

def	imageToPixmapRGB(img):

		img2	=	img.convert('RGB')

		w,	h	=	img2.size

		data	=	img2.getdata()

		pixmap	=	array(data,	uint8)

		pixmap	=	pixmap.reshape((h,w,3))

		return	pixmap

The	 loaded	 image	 pixmap	 can	 now	 be	 manipulated	 as	 required,	 although	 it	 will	 be
convenient	to	use	PIL	to	actually	visualise	what	is	happening.

As	 an	 example	 of	 working	 with	 image	 data	 stored	 in	 arrays,	 below	 we	 perform	 an
operation	which	may	be	useful	 to	 red-green	colour-blind	people.	The	notion	here	 is	 that
some	types	of	biological	 images	are	bright	red	and	green,	because	of	special	fluorescent
marker	compounds,	and	must	be	converted	(here	to	yellow	and	blue)	so	that	a	red-green
colour-blind	 person	 can	 view	 them	 effectively	 (see	 Figure	18.3	 for	 an	 illustration).	 The
image	is	loaded	and	converted	to	a	pixmap	in	the	manner	described:

img	=	Image.open('examples/CellNucleusRedGreen.png')

pixmap	=	imageToPixmapRGB(img)

Figure	18.3	(Plate	7).	 Matrix	transformations	of	pixmap	colours.	A	red-green
coloured	(i.e.	two-channel)	fluorescence	microscope	image	of	a	cell	is	shown	alongside
colour-adjusted	yellow-blue	and	red-cyan	versions.	Inset	in	each	image	is	the	RGB	colour
transformation	matrix	relative	to	the	red-green	image.

Here	it	is	notable	that	there	is	an	alternative	approach	using	SciPy	(a	scientific	Python
package	which	is	often	installed	alongside	NumPy):	the	imread()	function	is	provided	in
the	 ndimage	module,	 to	 create	 an	 array	 directly	 from	 the	 file	 data.	 Though	 it	 may	 be
convenient	 to	 avoid	 PIL,	 without	 an	 Image	 object	 we	 cannot	 invoke	 show()	 to	 easily
visualise	the	loaded	data.	Also,	doing	things	this	way	will	include	the	‘alpha’	transparency
layer,	so	to	get	the	same	kind	of	array	as	above	we	take	a	slice	of	the	first	three	(red,	green
and	blue)	colour	layers	with	[:,:,:3].

from	scipy	import	ndimage

pixmap	=	ndimage.imread('examples/CellNucleusRedGreen.png')

pixmap	=	pixmap[:,:,:3]

The	next	 task	 is	 to	define	a	colour	 transformation	matrix.	The	way	 to	 think	of	 this	 is

that	the	three	rows	dictate	how	to	modify	red,	green	and	blue	respectively	and	the	[r,	g,	b]
values	within	each	row	specify	what	the	colour	will	become.	Accordingly,	in	transform	the
first	row	specifies	that	the	red	channel	will	be	transformed	into	equal	red	and	green	(i.e.
yellow),	the	second	row	means	that	the	green	channel	will	become	blue	and	the	third	row
is	all	zero	and	so	any	original	blue	is	removed	entirely	(not	that	there	is	much	in	the	test
image).	The	transformation	is	applied	using	a	dot	product,	remembering	that	the	order	of
the	arguments	is	important.

transform	=	array([[1.0,	1.0,	0.0],

																			[0.0,	0.0,	1.0],

																			[0.0,	0.0,	0.0]])

pixmap2	=	dot(pixmap,	transform)

img2	=	pixmapToImage(pixmap2)

img2.show()

Pixmap	data	can	be	manipulated	as	floating	point	numbers,	rather	than	just	integers	in
the	range	0	to	255.	In	the	next	example	the	pixmap	is	converted	to	an	array	of	float	data
type,	so	the	numbers	fall	in	the	range	0.0	to	255.0.	Dividing	by	255.0	the	range	becomes
0.0	to	1.0,	which	is	handy	for	the	next	step,	where	the	values	of	the	pixmap	are	squared
(an	element-by-element	operation).	Squaring	colour	values	 in	 the	 range	zero	 to	one	 is	 a
convenient	way	of	changing	the	brightness	of	the	image;	values	will	move	towards	zero,
but	 the	 upper	 limit	 is	 still	 1.0.	With	 the	 brightness	 adjusted	 the	 array	 can	 be	 converted
back	into	the	range	0	to	255	to	go	back	to	PIL.

pixmap	=	array(pixmap,	float)

pixmap	/=	255.0

pixmap	=	pixmap	**	2

pixmap	=	array(255*pixmap,	uint8)

img2	=	pixmapToImage(pixmap)

img2.show()

Adjustments	and	filters
The	previous	example	which	adjusts	the	brightness	of	a	pixmap	leads	neatly	into	thinking
about	more	general	ways	that	we	can	change	the	global	properties	of	an	image.	Helpfully
many	kinds	of	adjustment,	for	contrast,	brightness,	sharpness	etc.,	can	be	made	directly	in
PIL.	This	is	more	convenient	than	doing	things	in	numeric	Python	arrays.	Nonetheless,	we
will	go	on	to	show	some	of	the	equivalent	operations	with	arrays,	because	this	gives	more
control	and	teaches	something	about	how	the	adjustments	work	at	a	low	level.

The	ImageEnhance	module
To	adjust	PIL	 images	 the	ImageEnhance	module	 is	 imported,	as	well	as	 the	 Image	 used
earlier,	and	then	an	example	image	loaded	to	experiment	with:

from	PIL	import	Image,	ImageEnhance

img	=	Image.open('examples/Cells.jpg')

Firstly,	we	will	use	this	image	enhancement	module	to	change	the	contrast	in	the	image.
The	way	that	this	works	with	PIL	is	to	create	a	processing	object	(here	processObj)	for	a
given	 image,	 which	 is	 then	 called	 with	 the	 parameters	 needed	 to	 control	 the	 image
adjustment.	 Here	 we	 make	 a	 processing	 object	 to	 adjust	 the	 contrast	 and	 then	 call	 its
.enhance()	method	with	a	value	of	2.0.	For	all	of	the	kinds	of	ImageEnhance	enhancement
calls,	 a	value	of	1.0	will	 preserve	 the	 image	 as	 it	was.	Thus	here	we	 are	 increasing	 the
contrast:

processObj	=	ImageEnhance.Contrast(img)

img2	=	processObj.enhance(2.0)

img2.show()

Figure	18.4.	 Example	results	from	common	image-processing	operations.	An
original	microscope	image	of	mammalian	cells	is	shown	alongside	five	adjusted	versions
created	with	image-processing	routines	presented	here.	The	gamma	adjustment	used	a
factor	of	4.0.	The	blurred,	sharpened	and	edge-detected	images	were	generated	by	matrix
convolution.	The	intensity	clipping	set	the	lightest	pixels	to	mid-grey	and	then	normalised
the	intensities	to	the	full	black-white	range.

If	 we	 want	 to	 perform	 a	 different	 kind	 of	 adjustment	 we	 need	 to	 make	 a	 different
processing	object.	The	next	example	is	for	image	sharpness	(changing	the	local	contrast	at
the	edges	within	an	image),	where	we	can	make	things	sharper	with	a	value	greater	than
one,	or	more	blurred	with	a	value	less	than	one:

processObj	=	ImageEnhance.Sharpness(img)

img2Sharp	=	processObj.enhance(4.0)

img2Sharp.show()

imgBlur	=	processObj.enhance(0.5)

imgBlur.show()

Likewise,	we	 can	 adjust	 brightness	 and	 overall	 colourfulness,	 noting	 that	 in	 the	 next
examples	 we	 use	 the	 method	 .enhance()	 straight	 away,	 and	 don’t	 make	 an	 explicit
processing	 object;	 the	 object	 is	 still	 made	 after	 .Brightness(img),	 but	 it	 is	 not	 given	 a
named	variable.

imgBrighter	=	ImageEnhance.Brightness(img).enhance(0.5)

imgDull	=	ImageEnhance.Color(img).enhance(0.1)

Intensity	adjustments	using	NumPy
Moving	to	numeric	Python,	we	will	show	the	same	kinds	of	image	adjustment	for	pixmap
arrays	and	also	show	how	things	can	be	taken	further.	The	examples	will	be	constructed	as
Python	functions	and	testing	is	demonstrated	after	the	function	definitions.	As	usual,	 the
required	NumPy	imports	are	made	upfront:

from	numpy	import	array,	dstack,	exp,	mgrid,	sqrt,	uint8

The	mgrid	 object	 imported	 here	may	 not	 be	 familiar.	 This	 is	 used	 to	 quickly	 create
arrays	that	can	be	used	together	to	form	a	grid	of	row	and	column	numbers.	For	example,
mgrid[0:3,0:3]	gives	the	following	sub-arrays:	[[0,0,0],[1,1,1],[2,2,2]]	and	[[0,1,2],[0,1,2],
[0,1,2]].	This	 is	handy	because	 the	first	sub-array	gives	 the	row	number	of	 the	elements
and	 the	 second	gives	 the	column	number.	This	can	be	 thought	of	 as	being	analogous	 to
using	the	regular	range()	function,	for	arrays.

The	first	example	function	controls	the	brightness	of	an	object	using	what	is	known	as
gamma	correction	 (see	Figure	18.4b).	 This	 sort	 of	 correction	 is	 often	 used	 to	 adjust	 an
image	 so	 that	 it	 can	 be	 presented	 by	different	 kinds	 of	 display,	 accounting	 for	 different
innate	 responses	 to	 brightness.	 The	 mathematical	 operation	 used	 is	 very	 simple:	 the
pixmap	values	(albeit	greyscale,	RGB	etc.)	are	converted	into	the	range	0.0	to	1.0	and	all
the	values	are	raised	to	the	power	of	gamma.	The	effect	is	that	if	gamma	is	greater	 than
one	 the	 image	will	 look	darker,	and	below	one	brighter.	Taking	 the	mid	point,	0.5	as	an
example,	 gamma=2.0	 changes	 this	 to	 0.25	 and	 gamma=0.5	 gives	 0.707.	 Adjusting	 the
brightness	in	this	way	still	preserves	the	extremes	(i.e.	0γ	=	0	and	1γ	=	1)	but	the	‘curve’	of
intermediate	values	is	distorted.

The	function	takes	a	pixmap	array	and	the	gamma	factor	as	input.	Inside	the	function,
the	 pixmap	 (which	 we	 are	 assuming	 takes	 values	 from	 0	 to	 255)	 is	 scaled,	 so	 the
maximum	possible	value	is	1.0.	The	gamma	power	is	applied,	and	the	values	are	then	re-
scaled	back	to	their	original	range.	Because	we	made	a	new	array	in	the	function	we	pass
this	back	at	the	return.

def	gammaAdjust(pixmap,	gamma=1.0):

		pixmap	=	array(pixmap,	float)/255.0

		pixmap	=	pixmap	**	gamma

		pixmap	*=	255

		return	pixmap

The	next	 brightness-related	 function	 is	 designed	 to	 automatically	 adjust	 the	values	 in
the	pixmap	so	that	they	are	‘normalised’	to	take	up	the	full	range.	So,	for	example,	if	we

had	a	dull	grey	image,	with	no	black	or	white,	the	darkest	shade	would	be	moved	to	black
(0)	and	the	brightest	to	white	(255).	The	function	works	by	first	subtracting	the	smallest
(.min())	 value	 in	 the	 pixmap	 from	all	 the	 elements,	 so	 that	 the	minimum	 is	 set	 to	 zero.
Next	the	maximum	value	is	set	to	be	255,	by	dividing	by	the	adjusted	pixmap’s	maximum
(giving	 a	 0.0	 to	 1.0	 range	 initially)	 and	 then	 multiplying	 by	 255.0.	 Note	 that	 we
deliberately	use	the	floating	point	number	255.0	so	that	the	division	also	gives	a	floating
point	result	and	also	that	we	guard	against	dividing	by	a	maximum	of	zero	(in	an	all-black
image).	The	scaled	pixmap	is	then	passed	back	at	the	end.

def	normalisePixmap(pixmap):

		pixmap	-=	pixmap.min()

		maxVal	=	pixmap.max()

		if	maxVal	>	0:

				pixmap	*=	255.0	/	maxVal

		return	pixmap

The	 next	 example	 is	 a	 little	 more	 complicated.	 It	 sets	 the	 minimum	 and	 maximum
brightness	values	in	an	image	by	clipping,	i.e.	 it	only	adjusts	the	edges	of	the	brightness
range	and	doesn’t	affect	the	middle.	For	greyscale	images	the	clipPixmapValues	function
can	be	used	with	normalisePixmap	above	to	stretch	the	values	to	black	and	white	again,
thus	removing	any	dark	or	light	image	detail,	as	illustrated	in	Figure	18.4c.

The	function	is	defined	as	taking	a	pixmap	and	two	threshold	values.	These	thresholds
have	default	values	so	that	if	they	are	not	set	the	image	does	not	change,	i.e.	0	and	255	are
the	normal	limits	and	all	values	will	lie	between.	In	the	function	the	pixmap	is	first	copied,
so	we	don’t	affect	the	original.	Then	we	define	grey,	which	will	be	a	greyscale	pixmap	(a
map	of	 the	brightness)	by	 taking	an	average	over	all	 the	colour	values,	 i.e.	 in	 the	depth
dimension	 of	 the	 pixmap,	 hence	 axis=2.6	 It	 should	 be	 noted	 that,	 because	 we	 take	 an
average	 of	 colours,	 individual	 red,	 green	 and	 blue	 components	 may	 lie	 outside	 the
thresholds,	so	in	essence	the	clipping	is	according	to	how	close	a	pixel	is	to	black	or	white.

With	 the	 grey	 pixmap	 defined,	 we	 set	 any	 limiting	 values,	 first	 minimum	 then
maximum.	In	both	cases	we	define	boolArray,	which	contains	an	array	of	True	and	False
values	 depending	 on	 whether	 the	 test	 condition	 was	met:	 if	 the	 intensity	 values	 of	 the
elements	 were	 smaller	 or	 larger	 than	 the	 threshold.	 The	 arrays	 of	 truth	 values	 are
converted	 to	 indices	 with	 .nonzero(),	 which	 pulls	 out	 the	 array	 coordinates	 (row	 and
column)	of	 the	True	 values.	These	 indices	 are	 the	 ones	 that	 are	 to	 be	 changed,	 and	 are
simply	used	to	set	those	values	in	the	pixmap	to	the	specified	limit.

def	clipPixmapValues(pixmap,	minimum=0,	maximum=255):

		pixmap2	=	pixmap.copy()

		grey	=	pixmap2.mean(axis=2)

		boolArray	=	grey	<	minimum

		indices	=	boolArray.nonzero()

		pixmap2[indices]	=	minimum

		boolArray	=	grey	>	maximum

		indices	=	boolArray.nonzero()

		pixmap2[indices]	=	maximum

		return	pixmap2

Note	 that	 an	 alternative	way	 of	 clipping	 the	 values	 of	 a	 bitmap	would	 be	 to	 use	 the
.clip()	function	of	NumPy	arrays,	e.g:

minimum,	maximum	=	64,	192

pixmap2	=	pixmap.clip(minimum,	maximum)

In	 contrast	 to	 clipPixmapValues()	 this	 will	 limit	 the	 values	 in	 the	 colour	 layers
separately,	 rather	 than	 the	 combined,	 average	 signals.	Naturally	which	 function	 is	more
useful	will	depend	on	the	context.

Ancillary	 to	 the	 above	 functions	 that	 adjust	 brightness	 values,	 it	 is	 commonplace	 to
look	at	a	histogram	of	the	values	to	see	what	their	distribution	is.	This	is	a	good	way	of
looking	at	the	statistical	effect	of	the	operations,	and	also	allows	people	to	make	intelligent
choices	 when	 using	 thresholds,	 e.g.	 to	 separate	 signal	 from	 noise,	 or	 foreground	 from
background.	 First	 a	 grey	 pixmap	 of	 brightness	 is	 made	 by	 averaging	 over	 the	 depth
(colour)	axis.	This	array	 is	 then	 flattened	 to	a	one-dimensional	array	and	converted	 to	a
regular	Python	list.	This	list	is	passed	to	the	pyplot.hist()	function	from	matplotlib	to	make
a	histogram	with	256	bits	(or	we	could	use	a	smaller	number	for	less	detail).

def	showHistogram(pixmap):

		grey	=	pixmap.mean(axis=2)

		values	=	grey.flatten().tolist()

		from	matplotlib	import	pyplot

		pyplot.hist(values,	256)

		pyplot.show()

The	above	functions	can	be	tried	with	a	test	image,	using	the	PIL	Image	object	to	take
care	of	loading	and	display,	as	discussed	previously.

from	PIL	import	Image

img	=	Image.open('examples/Cells.jpg')

pixmap	=	imageToPixmapRGB(img)

showHistogram(pixmap)

pixmap2	=	gammaAdjust(pixmap,	0.7)

pixmap3	=	clipPixmapValues(pixmap2,	0,	145)

pixmap4	=	normalisePixmap(pixmap3)

pixmapToImage(pixmap4,	mode='L').show()

Convolving	image	filters
The	next	examples	move	on	from	pixel	brightness	to	the	concept	of	filters.	In	this	context

a	 filter	 is	 a	way	 of	 transforming	 an	 image,	 combining	 original	 pixel	 values	 together	 to
make	new	values.	A	simple	example	of	this	is	the	blurring	of	an	image	(see	Figure	18.4d).
The	blurred	version	of	a	pixel	 is	constructed	by	setting	its	value	to	be	an	average	of	 the
surrounding	pixels.	The	filters	used	will	be	described	as	matrices.	For	example,	 the	3×3
matrix	[[1,1,1],	[1,8,1],	[1,1,1]],	can	be	used	to	blur	an	image.	The	way	to	think	of	this	is
that	 the	 centre	of	 the	matrix	 (which	has	 the	value	8	here)	 represents	 the	position	of	 the
original	pixel,	and	the	other	elements	are	the	square	of	pixels	that	surrounds	it.	The	values
in	the	filter	matrix	dictate	how	much	influence	each	of	the	pixels	has	when	used	to	create	a
new	pixel.	For	the	3×3	example	with	1	at	the	edges	and	8	in	the	centre	the	new	pixel	will
be	 an	 average	 (in	 terms	 of	 RGB	 or	 whatever)	 of	 the	 eight	 surrounding	 pixels	 and	 the
central	one,	which	here	has	as	much	influence	as	all	the	rest	combined.	As	a	consequence
the	new	pixmap	will	be	a	blurred	version	of	 the	original;	 the	pixel	values	will	spread	to
their	neighbours	slightly.	When	applying	a	filter	matrix	 it	 is	either	normalised	(elements
sum	 to	 one)	 or	 the	 image	 is	 normalised	 afterwards	 so	 that	 the	 final	 pixel	 value	 cannot
exceed	the	image	maximum.

Many	 of	 the	 filtering	 and	 processing	 examples	 that	 we	 will	 illustrate	 have
implementations	 in	 the	 scipy.ndimage	module.7	 This	module	 is	well	worth	 considering,
especially	in	view	of	its	speed	and	large	range	of	functionality.	For	example,	instead	of	the
Gaussian	 blurring	 example	 that	 we	 give	 below,	 which	 uses	 NumPy	 alone,	 the
scipy.ndimage.filters.gaussian_filter()	 function	 can	 be	 used	 instead.	 However,	 in	 this
chapter	we	will	mostly	use	NumPy,	 to	better	 illustrate	what	 is	happening	at	a	 low	level,
and	only	use	SciPy	a	little	for	some	generic	functionality.

The	 actual	 application	 of	 the	 filter	 is	 mathematically	 a	 convolution,	 which	 we	 can
perform	 using	 the	 handy	 ndimage.convolve()function	 from	 the	 scipy	 module.8	 The
convolution	operation	takes	two	arrays,	which	in	this	instance	are	the	image	pixmap	and
the	filter	matrix.	One	caveat	to	the	convolve	function	is	that	both	input	arrays	must	have
the	same	number	of	axes	(dimensions),	so	when	we	are	applying	a	flat	matrix	(2D)	to	an
RGB	 or	 CMYK	 pixmap	 (3D)	 we	 convolve	 the	 2D	matrix	 separately	 with	 each	 of	 the
colour	layers.	The	check	for	this	is	simple	given	the	.ndim	attribute	of	the	arrays:	we	insist
that	the	matrix	is	2D	(triggering	an	exception	if	not)	and	that	the	pixmap	is	either	2D	or
3D.	 If	 the	 pixmap	 is	 2D	we	 can	 perform	 the	 convolution	 directly.	Otherwise,	 for	 a	 3D
pixmap	the	colour	components	are	convolved	separately	(extracting	each	layer	with	slice
notation	pixmap[:,:,i])	and	the	transformed	colour	layers	are	then	stacked	in	the	usual	way
(depth	means	colour)	and	returned	from	the	function	as	a	complete	pixmap	array.

For	the	convolution	the	mode	can	be	specified	to	determine	how	the	limits	of	the	arrays,
where	 the	 filter	 would	 overlap	 the	 pixmap	 edge,	 are	 treated.	 By	 default	 this	 mode	 is
‘reflect’,9	which	means	that	the	image	is	effectively	extended	by	using	a	mirror	image	at
the	 edge.	 This	 kind	 of	 edge	 treatment	 can	 introduce	 processing	 artefacts,	 but	 it	 at	 least
keeps	the	size	of	the	output	array	the	same	as	the	input.

from	scipy	import	signal

def	convolveMatrix2D(pixmap,	matrix,	mode='reflect'):

		matrix	=	array(matrix)

		if	matrix.ndim	!=	2:

				raise	Exception('Convolution	matrix	must	be	2D')

		if	pixmap.ndim	not	in	(2,3):

				raise	Exception('Pixmap	must	be	2D	or	3D')

		if	pixmap.ndim	==	2:

				pixmap2	=	ndimage.convolve(pixmap,	matrix,	mode=mode)

		else:

				layers	=	[]

				for	i	in	range(3):

						layer	=	ndimage.convolve(pixmap[:,:,i],	matrix,	mode=mode)

						layers.append(layer)

				pixmap2	=	dstack(layers)

		return	pixmap2

To	 process	 an	 image	with	 a	 filter	we	 simply	 call	 the	 above	with	 pixmap	 and	matrix
arguments:

matrix	=	[[1,	1,	1],

										[1,	8,	1],

										[1,	1,	1]]

pixmapBlur	=	convolveMatrix2D(pixmap,	matrix)

To	 view	 the	 result	 we	 need	 to	 normalise	 the	 image,	 given	 that	 the	 pixmap	 was
convolved	 in	 a	 way	 that	 increased	 the	 intensity	 values	 by	 a	 factor	 of	 16	 (8	 from	 the
original	 intensity	 plus	 1	 from	 each	 of	 eight	 neighbouring	 pixels,	 according	 to	 matrix).
Hence,	 we	 divide	 the	 pixmap	 so	 that	 the	 intensities	 of	 the	 pixels	 are	 put	 back	 in	 the
original	range.

pixmapBlur	/=	array(matrix).sum()

pixmapToImage(pixmapBlur).show()

Sharpen,	blur	and	edge-detection	filters
Although	we	can	use	any	 filtering	matrix,	 there	are	 several	 common	operations	 that	 are
applied	to	pixmaps,	so	we	will	encapsulate	some	of	these	in	functions.	The	first	example
of	 these	 sharpens	 an	 image,	 as	 illustrated	 in	 Figure	 18.4e.	 It	 uses	 a	 filter	 matrix	 that
accentuates	the	differences	between	pixels.

def	sharpenPixmap(pixmap):

		matrix	=	[[-1,-1,-1],

												[-1,	8,	-1],

												[-1,-1,-1]]

The	procedure	is	to	convert	the	input	pixmap	into	a	grey	(brightness)	pixmap.	The	grey
pixmap	is	then	convolved	with	the	filter	matrix,	which	increases	the	contrast	at	the	edges
of	features	(where	there	are	changes	in	brightness),	and	normalised	to	use	the	full	range:	0
to	255.

grey	=	pixmap.mean(axis=2)

pixmapEdge	=	convolveMatrix2D(grey,	matrix)

normalisePixmap(pixmapEdge)

The	 grey	 pixmap	 with	 the	 enhanced	 edges	 has	 its	 values	 centred	 on	 the	 average
brightness.	So,	for	example,	if	the	average	brightness	of	pixmapEdge	is	127,	the	range	of
values	 changes	 from	 0…255	 to	 −127…128.	 These	 centred	 values,	 either	 side	 of	 zero,
represent	 how	 much	 adjustment	 we	 will	 apply	 to	 sharpen	 the	 original	 image.	 Before
making	the	adjustment	pixmapEdge	is	stacked	so	that	it	is	three	layers	deep,	and	thus	will
operate	on	red,	green	and	blue.

pixmapEdge	-=	pixmapEdge.mean()

pixmapEdge	=	dstack([pixmapEdge,	pixmapEdge,	pixmapEdge])

The	 new,	 sharpened	 image	 is	 created	 by	 adding	 the	 pixmap	 edge	 adjustment	 to	 the
original	pixmap.	With	the	pixels	adjusted	the	clip	function	(inbuilt	into	NumPy	arrays)	is
used	to	make	sure	that	adding	the	pixmaps	does	not	exceed	the	limits	of	0	and	255.

pixmapSharp	=	pixmap	+	pixmapEdge

pixmapSharp	=	pixmapSharp.clip(0,	255)

return	pixmapSharp

The	next	example	is	the	Gaussian	filter,	which	blurs	pixels	with	a	weighting	that	has	a
normal	(‘bell	curve’)	distribution	(see	Figure	22.4	for	an	illustration).	For	this,	two	values
are	passed	in:	r	is	the	half-width	of	the	filter	excluding	the	centre	and	sigma	is	the	amount
of	spread	in	the	distribution.	These	parameters	respectively	control	the	size	and	strength	of
the	blur.	Larger	filters	with	wider	distributions	(i.e.	 influence	away	from	the	centre)	will
give	more	blurring.	It	is	notable	that	the	mgrid	object	is	used	to	give	a	range	of	initial	grid
values	 for	 the	 filter,	 specifying	 the	 separation	of	 each	point	 from	 the	 centre	 in	 terms	of
rows	and	columns;	this	is	similar	to	using	range()	to	generate	a	list.

def	gaussFilter(pixmap,	r=2,	sigma=1.4):

		x,	y	=	mgrid[-r:r+1,	-r:r+1]

The	 Gaussian	 function	 is	 applied	 by	 taking	 the	 row	 and	 column	 values	 (x	 and	 y),
squaring	 them,	 scaling	 by	 two	 times	 sigma	 squared	 and	 finally	 taking	 the	 negative
exponent	of	the	sum.	The	exact	centre	row	and	column	will	be	zero	and	so	the	exponent
will	be	at	a	maximum	here,	but	the	further	x	and	y	row	and	column	values	are	from	the
centre	the	smaller	the	value	is.

s2	=	2.0	*	sigma	*	sigma

x2	=	x	*	x	/	s2

y2	=	y	*	y	/	s2

matrix	=	exp(-(x2	+	y2))

matrix	/=	matrix.sum()

Once	the	filter	matrix	is	defined	it	is	applied	to	the	pixmap	using	convolution,	to	each

of	the	colour	components.

pixmap2	=	convolveMatrix2D(pixmap,	matrix)

return	pixmap2

The	 final	 filter	 example	 is	 for	 edge	 detection	 and	 uses	 what	 is	 known	 as	 the	 Sobel
operator.	In	essence	this	is	a	filter	that	detects	the	intensity	gradient	between	nearby	pixels
(see	 Figure	 18.4f).	 It	 is	 applied	 horizontally,	 vertically	 or	 in	 both	 directions	 and	 gives
bright	pixels	at	those	edges.	As	can	be	seen	in	the	Python	code	the	filter	is	a	3×3	matrix
where	there	is	a	line	of	negative	numbers,	then	zeros,	then	positive	numbers.	This	matrix
is	transposed	to	switch	between	horizontal	and	vertical	operations.	The	matrix	means	that,
for	 a	 given	 orientation,	 a	 transformed	 pixel	 has	 none	 of	 its	 original	 value,	 but	 rather	 a
value	which	represents	the	difference	between	values	on	either	side.

def	sobelFilter(pixmap):

		matrix	=	array([[-1,	0,	1],

																		[-2,	0,	2],

																		[-1,	0,	1]])

The	Sobel	filter	matrix	is	applied	to	the	grey	average	of	the	input	pixmap.	This	is	done
twice	for	both	orientations	so	we	get	two	edge	maps.

grey	=	pixmap.mean(axis=2)

edgeX	=	convolveMatrix2D(grey,	matrix)

edgeY	=	convolveMatrix2D(grey,	matrix.T)

The	final	pixmap	of	edges	is	then	a	combination	of	horizontal	and	vertical	edge	maps.
Taking	the	square	root	of	the	sum	of	the	squares	of	the	two	edge	maps	means	the	values
will	always	be	positive;	 it	won’t	make	a	difference	between	an	edge	going	from	light	 to
dark	or	dark	to	light	in	an	image.	The	edge-detected	pixmap	is	also	normalised	so	we	can
see	the	full	range	of	values	and	finally	it	is	returned	from	the	function.

pixmap2	=	sqrt(edgeX	*	edgeX	+	edgeY	*	edgeY)

normalisePixmap(pixmap2)	#	Put	min,	max	at	0,	255

return	pixmap2

The	filter	functions	can	all	be	tested	with	the	example	image,	using	Image.show()	to	see
the	 results,	after	 the	appropriate	array	conversions.	Note	 that	 for	 the	sobelFilter()	output
we	pass	the	‘L’	mode	to	the	PIL	conversion	function	because	it	is	a	greyscale	image,	not
RGB.

from	PIL	import	Image

img	=	Image.open('examples/Cells.jpg')

pixmap	=	imageToPixmapRGB(img)

pixmap	=	sharpenPixmap(pixmap)

pixmapToImage(pixmap).show()

pixmap	=	gaussFilter(pixmap)

pixmapGrey	=	sobelFilter(pixmap)

pixmapToImage(pixmapGrey,	mode='L').show()

In	 the	 above	 examples	 we	 have	 demonstrated	 using	 Python	 functions,	 rather	 than
classes	(our	own	kind	of	Python	object),	 to	keep	things	simple.	However,	custom	object
classes	 can	 be	 really	 convenient	when	 you	 know	what	 you’re	 doing.	 So,	 for	 the	 image
examples	 the	 programmer	 may	 consider	 making	 a	 bespoke	 Pixmap	 class	 (or	 whatever
name	seems	best).	This	could	have	the	ability	to	work	with	PIL	automatically,	doing	the
right	 array	 conversions	 and	perform	common	operations,	 i.e.	 using	Pixmap.sobelFilter()
methods	etc.

Feature	detection
Lastly	 in	 this	 chapter	 we	 show	 a	 practical	 example	 that	 aims	 to	 automatically	 extract
information	 about	 the	 physical	 objects	 that	 are	 represented	 by	 an	 image.	 This	 touches
lightly	on	the	field	of	 image	recognition,	although	what	we	show	is	simple	compared	 to
state-of-the	art	techniques.	Nonetheless	it	aims	to	give	a	basic	idea	of	what	kind	of	thing	is
possible.	The	objective	will	be	to	count	the	number	of	cells	in	a	digital	photograph	taken
using	a	microscope,	which	is	a	fairly	routine	data-gathering	task	in	biology.

Counting	cells
Initially	the	image	is	loaded	and	converted	to	an	array	representing	the	pixmap.	Then	we
apply	the	Gaussian	filter	(with	default	parameters)	to	blur	the	image	slightly,	assigning	the
result	to	pixmap2	to	keep	the	original	pixmap.	The	blurring	acts	to	remove	the	small-scale
components	of	 the	 image;	 this	 reduces	 image	noise	but	does	not	 significantly	 affect	 the
images	 of	 the	 cells.	 Then	 we	 apply	 the	 Sobel	 edge-detection	 filter	 to	 the	 image,	 and
normalise.	This	makes	a	greyscale	 image	of	 just	 the	outlines,	which	we	can	 inspect.	An
alternative	at	this	point	would	be	to	convert	the	image	into	black	and	white	(only)	using	an
intensity	threshold;	however,	edge	detection	will	work	better	where	the	background	colour
of	the	photograph	is	uneven.

from	PIL	import	Image

img	=	Image.open('examples/Cells.jpg')

pixmap	=		imageToPixmapRGB(img)

pixmap2	=	gaussFilter(pixmap)

pixmap2	=	sobelFilter(pixmap2)

normalisePixmap(pixmap2)

pixmapToImage(pixmap2).show()

Next	the	pixmapCluster	 function	 is	constructed,	which	will	analyse	our	pre-processed
image	 by	 clustering	 the	 bright	 pixels	 (the	 edges)	 so	 that	 we	 can	 identify	 blobs	 that
represent	 cells.	 The	 blobs	 can	 then	 be	 analysed	 to	 select	 those	 of	 the	 required	 size	 and
shape	etc.

Before	 the	clustering	a	helper	function	 is	defined	which	will	 find	 the	neighbours	of	a

pixel,	investigating	those	above,	below,	to	the	left	and	to	the	right,	and	checking	whether
each	is	present	in	a	pre-specified	set	of	points.	This	points	set	will	represent	all	the	bright
pixels	 that	come	from	the	edge-detection	step.	The	check	 list	specifies	 the	neighbouring
locations	relative	to	the	input	point	to	test,	and	neighbours	is	the	list	from	among	these	that
are	acceptable	because	they	are	in	points.	Note	that	some	of	the	checked	positions	will	be
off	the	edge	of	the	pixmap,	but	this	does	not	matter	because	they	would	never	be	found	in
points	in	the	first	place.

def	getNeighbours(point,	points):

		i,	j	=	point

		check	=	[(i-1,	j),	(i+1,	j),

											(i,	j-1),	(i,	j+1)]

		neighbours	=	[p	for	p	in	check	if	p	in	points]

		return	neighbours

Next	comes	the	main	pixel	clustering	function.	The	details	of	this	will	not	be	described
here	because	 it	 is	very	similar	 to	 the	simpleCluster()	function	described	fully	in	Chapter
23.	Essentially	a	threshold	value	is	used	to	get	a	list	of	bright	pixel	points	(using	the	same
indexing	 strategy	 as	 clipPixmap()).	 These	 are	 then	 grouped	 into	 clusters	 according	 to
whether	they	are	deemed	to	be	neighbours,	as	determined	in	getNeighbours.	Comparing	to
simpleCluster()	the	key	differences	are	that	we	are	working	directly	with	the	pixel	objects,
rather	than	via	indices,	and	that	the	neighbour-detecting	algorithm	does	not	need	to	search
all	pairs	of	data	points;	here	only	a	local	area	of	the	pixmap	needs	to	be	inspected,	which
is	very	much	quicker.	At	the	end	of	the	clustering,	clusters,	a	list	of	lists,	is	passed	back,
where	each	sub-list	represents	all	the	pixel	points	(x,	y	locations)	in	each	detected	blob.

def	brightPixelCluster(pixmap,	threshold=60):

		boolArray	=	pixmap	>	threshold

		indices	=	array(boolArray.nonzero()).T

		points	=	set([tuple(point)	for	point	in	indices])

		clusters	=	[]

		pool	=	set(points)

		clustered	=	set()

		while	pool:

				pointA	=	pool.pop()

				neighbours	=	getNeighbours(pointA,	points)

				cluster	=	[]

				cluster.append(pointA)

				clustered.add(pointA)

				pool2	=	set(neighbours)

				while	pool2:

						pointB	=	pool2.pop()

						if	pointB	in	pool:

								pool.remove(pointB)

								neighbours2	=	getNeighbours(pointB,	points)

								pool2.update(neighbours2)

								cluster.append(pointB)

				clusters.append(cluster)

		return	clusters

The	 bright	 pixel	 clustering	 may	 then	 be	 used	 on	 a	 pre-processed	 pixmap	 with
highlighted	edges.	Each	cluster	of	pixels	will	 represent	a	blob,	which	we	can	group	into
large,	 medium	 and	 small	 varieties.	 Here	 the	 blob	 size	 thresholds	 were	 determined	 by
looking	at	a	histogram	of	the	number	of	points	in	the	clusters:

clusters	=	brightPixelCluster(pixmap2)

sizes	=	[len(c)	for	c	in	clusters]

from	matplotlib	import	pyplot

pyplot.hist(sizes,	40)

pyplot.show()

Then	the	clusters	were	grouped	by	size	and	placed	in	separate	lists	for	reporting:

smallBlobs	=	[]

mediumBlobs	=	[]

bigBlobs	=	[]

for	cluster	in	clusters:

		n	=	len(cluster)

		if	n	<	80:

				smallBlobs.append(cluster)

		elif	n	<	320:

				mediumBlobs.append(cluster)

		else:

				bigBlobs.append(cluster)

print('Found	%d	small	blobs'	%	len(smallBlobs))

print('Found	%d	medium	blobs'	%	len(mediumBlobs))

print('Found	%d	big	blobs'	%	len(bigBlobs))

To	 visualise	 the	 clustering	 results	we	will	 add	 colour	 codes	 to	 a	 grey	 version	 of	 the
original	 image.	Note	 that	 the	 grey	 pixmap	 has	 had	 its	 edges	 removed	 by	 slicing	 ([2:-2,
2:-2])	because	 the	pre-processed	pixmap2	 lost	 two	edge	points	when	 it	went	 though	 the
convolution	 filters.	We	 could	 improve	 the	 filtering	 process	 to	 deal	 with	 edges	 better	 if
required,	for	example,	by	extending	a	pixmap	with	copied	data	so	that	it	retains	its	original
size	after	filtering.

The	grey	pixmap	is	stacked	three	layers	deep	so	we	can	make	an	RGB	image	with	the
colour	codes:

grey	=	pixmap.mean(axis=2)[2:-2,	2:-2]

colorMap	=	dstack([grey,	grey,	grey])

A	list	of	colours	containing	(red,	green,	blue)	arrays	and	the	corresponding	blob	data	is
constructed:

colors	=	[(255,	0,	0),	(255,	255,	0),	(0,	0,	255)]

categories	=	[smallBlobs,	mediumBlobs,	bigBlobs]

Then	by	going	 through	 the	 clusters	 in	 each	 category	we	 can	 colour	 the	 initially	 grey
pixmap.	Each	cluster	contains	a	list	of	row	and	column	locations	within	the	pixmap,	and
by	extracting	these	into	two	separate	lists	(x,	y)	we	have	a	means	of	selecting	a	subset	of
the	 colorMap	 and	 setting	 the	 colour	 of	 blob	 points	 to	 reflect	 the	 category.	 Once	 it	 is
coloured,	we	can	admire	our	handiwork	with	Image.show().

for	i,	blobs	in	enumerate(categories):

		color	=	colors[i]

		for	cluster	in	blobs:

				x,	y	=	zip(*cluster)

				colorMap[x,y]	=	color

Image.fromarray(array(colorMap,	uint8),	'RGB').show()

The	analysis	performed	on	the	blobs	has	only	considered	their	total	pixel	area,	but	more
sophisticated	 properties	 can	 be	 used.	For	 example,	 the	 shape	 of	 the	 blobs,	 such	 as	 how
circular	 they	are,	could	be	measured.	Looking	at	 the	example	blob-detection	results	 (see
Figure	18.5)	there	is	an	obvious	extension	to	our	cell-counting	routine,	which	is	to	attempt
to	subdivide	the	larger	blobs	to	estimate	how	many	cells	are	overlapped:

numCells	=	len(mediumBlobs)		#	initial	guess

cellAreas	=	[len(blob)	for	blob	in	mediumBlobs]

meanCellArea	=	sum(cellAreas)	/	float(numCells)

for	blob	in	bigBlobs:

		numCells	+=	int(len(blob)	//	meanCellArea)

print('Estimated	number	of	cells:	%d'	%		numCells)

Figure	18.5	(Plate	8).	 Images	from	micrograph	cell-counting	procedure.	An	original
microscope	image	of	mammalian	cells	is	shown	alongside	the	results	of	the	edge	detection
and	a	greyscale	version	where	the	different	cell-edge	features	are	labelled	with	colours
after	blob	analysis.	Isolated	cells	are	yellow,	overlapping	cells	are	blue	and	small
fragments	are	red.
1 	As	of	2013,	PIL	has	not	been	ported	 to	Python	3,	 but	 an	 alternative	 implementation,
Pillow,	has	been:	http://python-imaging.github.io.

http://python-imaging.github.io

2 	http://www.imagemagick.org/.
3 	Download	PIL	via	links	at	http://www.cambridge.org/pythonforbiology.
4 	 These	 Image	 objects	 sometimes	 cause	 problems	 if	 they	 are	 associated	 with	 a	 local
variable,	 e.g.	 inside	 a	 function,	 and	 get	garbage	collected	 sooner	 than	 expected.	 If	 this
occurs	then	the	general	solution	is	to	make	sure	that	the	image	object	has	a	reference	from
another	object	that	will	persist	in	memory,	for	example	by	putting	it	in	a	non-local	list	or
adding	it	as	a	self.	attribute.
5 	No	positive	or	negative	sign.
6 	The	 array	 axis	 indices	 are	 0	 for	 the	 row/height,	 1	 for	 column/width	 and	2	 for	 colour
values.
7 	SciPy	is	typically	installed	with	NumPy.
8 	SciPy	also	has	a	signal.convolve()	 function,	which	could	be	used,	 though	 this	doesn’t
deal	with	the	edges	of	images	so	well.
9 	The	other	options	include	‘constant’,	which	uses	a	user-defined	(cval=)	constant	value
outside	 the	 image	edge;	 ‘nearest’,	which	extends	 the	 edge	values	outwards;	 and	 ‘wrap’,
which	takes	values	from	the	opposite	edge.

http://www.imagemagick.org/
http://www.cambridge.org/pythonforbiology

19 	Signal	processing
Contents

Signals

Simulating	a	signal

Displaying	a	signal

Fast	Fourier	transform

The	theory	of	FFT

FFT	using	NumPy

Peaks

A	‘Peak’	class

Peak	picking

Peak	fitting

2D	gel	peak-picking	example

Signals
In	science	many	different	kinds	of	experiment	involve	the	recording	of	signals:	series	of
measurements	 that	 represent	 the	variation	 in	 some	kind	of	underlying	physical	property.
The	 signal	 can	 then	be	 interpreted,	 based	on	 some	 theoretical	model	 of	 the	 experiment.
Commonly	the	recorded	signal	is	one	that	varies	over	time,	such	as	sound	or	radio	waves,
but	it	could	also	represent	a	variation	in	space,	or	indeed	along	any	other	kind	of	axis.	In
general	 a	 signal	 is	 represented	 by	 values	 that	 are	 directly	 recorded	 by	 instruments	 at
specific,	usually	regular,	 intervals;	although	in	some	situations	derived	data,	 like	a	DNA
sequence,	can	also	be	thought	of	in	terms	of	signals.

If	a	signal	varies	in	a	regular	manner,	i.e.	oscillates,	then	it	is	often	the	frequencies	that
occur	within	 the	 signal	 that	 are	 of	 interest,	 rather	 than	 the	 original	 signal	 itself.	 This	 is
because	 the	underlying	 frequencies	are	generally	characteristic	of	what	made	 the	 signal.
To	take	a	toy	example,	if	we	have	a	peal	of	bells,	where	each	bell	has	a	different	tone,	we
can	 record	 the	 variation	 of	 the	 overall	 sound	 signal	 over	 time.	 Then,	 by	 looking	 at	 the
component	 frequencies	 we	 can	 discern	 the	 tones	 of	 the	 individual	 bells	 that	 made	 the
sound.	As	we	will	illustrate,	it	is	possible	to	convert	the	time	signal	into	a	spectrum	of	its
component	frequencies	using	what	is	known	as	a	Fourier	transform.

Simulating	a	signal
We	will	begin	by	thinking	about	how	a	signal	may	be	simulated	in	a	computer.	Naturally,

we	 won’t	 actually	 be	 generating	 a	 real	 signal	 as	 we	 won’t	 be	 taking	 experimental
measurements,	but	it	is	nonetheless	useful	to	have	code	that	simulates	a	signal.	This	will
help	give	a	basis	for	understanding	the	signal	processing	we	describe	later	and	allow	us	to
check	that	the	processing	code	works	as	expected.	A	pure	frequency	signal	just	oscillates
and	 mathematically	 this	 is	 either	 a	 sine	 or	 cosine	 function,	 or,	 in	 terms	 of	 complex
numbers,	 an	 exponential	 function	 with	 an	 imaginary	 argument.	 The	 signal	 also	 has
amplitude,	which	in	general	is	also	a	complex	number.	Thus	a	pure	frequency	signal	(x),	in
continuous	time	(t),	has	the	form:

x(t)	=	Aei2πωt

where	ω	is	the	frequency	and	A	is	the	amplitude.

Note	that	this	is	one-dimensional,	given	there	is	only	one	independent	variable,	t,	which
can	 be	 used	 to	 calculate	 the	 amplitude	 at	 a	 given	 time.	 In	 many	 applications	 higher
dimensions	may	also	be	considered;	 imagine	calculating	 the	 frequency	of	 ripples	on	 the
surface	 of	 water	 as	 an	 example	 of	 two-dimensional	 waves.	 An	 example	 of	 a	 three-
dimensional	signal	would	be	diffraction	patterns	in	X-ray	crystallography,	although	in	this
case	 it	 is	 spatial	 distance	 rather	 than	 time	 that	 is	 the	 relevant	 variable.	Mathematically
there	is	no	extra	difficulty	with	handling	signals	that	have	more	than	one	dimension,	but
visualisation	becomes	harder.

It	is	often	the	case	that	the	signal	decays	exponentially	in	time,	as	illustrated	in	Figure
19.1.	Mathematically	we	 can	 simulate	 this	 by	multiplying	 the	 signal	 by	 an	 extra	 decay
term,	as	follows,	for	decay	constant	λ:

x(t)	=	Aei2πωt	e−λt

In	 terms	 of	 discrete	 time	 points	 (as	would	 generally	 be	 recorded	 by	 a	machine),	 the
signal	 is	 described	 by	 the	 same	 form,	 but	 sampled	 at	 regular	 time	 intervals	 (

,	 for	N	 points).	 We	 will	 allow	 the	 superposition	 of	 a
number	of	 such	 signals,	which	 can	be	 combined	 in	 a	 simple	 linear	manner,	 so	 the	 total
signal	will	just	be	the	sum	of	the	individual	frequency	components.	We	will	also	assume
that	the	signal	has	random	imperfections,	i.e.	that	it	is	affected	by	noise.	There	are	many
ways	 to	 model	 noise	 but	 we	 will	 assume	 that	 at	 each	 point	 in	 time	 its	 magnitude	 is
normally	distributed	(Gaussian)	in	both	real	and	imaginary	components,	with	the	mean	at
zero	amplitude	and	with	a	specified	standard	deviation	that	is	independent	of	time.

Figure	19.1.	 Time	series	for	various	signal	situations.	A	pure,	single	frequency	signal
is	shown	in	various	combinations	with	an	exponential	decay	function,	random	(normally
distributed)	noise	and	a	second	pure	frequency.

These	considerations	lead	to	the	following	Python	code	to	create	a	simulated	signal:

from	numpy	import	arange,	zeros,	exp,	pi,	sqrt

from	numpy.random	import	standard_normal	as	normal

I	=	1j			#	Square	root	of	-1;	complex(0,	1)

def	createSignal(parameters,	tStep,	nPoints,	noise):

		sig	=	zeros(nPoints,	dtype=complex)

		t	=	tStep	*	arange(nPoints,	dtype=float)

		for	amplitude,	frequency,	decay	in	parameters:

				sig	+=	amplitude	*	exp(2*pi*I*frequency*t)	*	exp(-decay*t)

		noise	*=	sqrt(0.5)

		sig	+=	noise*(normal(nPoints)	+	I*normal(nPoints))

		return	sig

The	 function	 starts	 by	 initialising	 the	 signal	 array	 sig	 to	 be	 filled	with	 zeros	 for	 the
correct	 number	 of	 time	 points.	 The	 NumPy	 data	 type	 is	 explicitly	 set	 to	 be	 complex
because	 otherwise	 it	 would	 be	 regular	 floating	 point	 numbers	 and	 the	 sums	would	 not
work	 (the	 imaginary	 parts	 would	 be	 dropped).	 The	 function	 then	 loops	 over	 each
component	of	the	signal,	each	of	which	is	specified	by	its	amplitude,	frequency	and	decay
from	the	parameters	list	passed	to	the	function.	Then	a	noise	contribution	is	added,	which
is	 simply	 sampling	 a	 normal	 distribution	 (via	 normal())	 for	 both	 real	 and	 imaginary

components	 of	 the	 complex	 number.	 The	 factor	 of	 sqrt(0.5)	 in	 the	 noise	 calculation	 is
because	 the	 real	 and	 imaginary	 components	 both	 contribute	 to	 the	 standard	 deviation.
Finally,	the	function	passes	back	the	NumPy	array	containing	the	signal.

Displaying	a	signal
It	is	easy	enough	to	write	a	sample	test	script	to	run	the	code,	but	rather	than	just	look	at
lists	of	numbers	it	is	more	useful	to	draw	plots	of	the	signals	and	Fourier	transforms.	We
will	use	the	pyplot	module	from	the	matplotlib	library	(available	with	SciPy)	to	do	this.	As
illustrated	in	earlier	chapters,	it	can	show	a	graphical	plot	on	the	screen	as	well	as	save	it
to	a	file,	although	below	we	will	just	do	the	latter.	We	combine	the	graph-generating	code
into	one	function	for	convenience:

from	matplotlib	import	pyplot

def	savePlot(x,	y,	xlabel,	ylabel):

		pyplot.plot(x,	y,	color='k')			#	k	means	BlacK

		pyplot.xlabel(xlabel)

		pyplot.ylabel(ylabel)

		fileName	=	ylabel.replace('	',	'')

		pyplot.savefig(fileName)

		pyplot.close()

The	pyplot	xlabel()	function	sets	the	label	for	the	x	axis,	and	similarly	for	ylabel().	The
savefig()	 function	 saves	 the	 figure	 to	 a	 file	 with	 the	 specified	 name	 (well,	 a	 suffix	 is
appended,	e.g.	‘.png’).

In	this	simple	example	we	assume	that	there	are	two	pure	frequency	components	of	the
signal,	 the	 first	with	 amplitude	 1.0,	 frequency	0.1	 and	 decay	 0.01,	 and	 the	 second	with
amplitude	 2.5,	 frequency	 0.7	 and	 decay	 0.05.	 A	 signal	 is	 created	 with	 100	 points	 and
appropriate	time	step	and	noise	values.

sigParams	=	((1.0,	0.1,	0.01),	#	Amplitude,	frequency,	decay

													(2.5,	0.7,	0.05))

nPoints	=	100

tStep	=	1.0

noise	=	0.5

sig	=	createSignal(sigParams,	tStep,	nPoints,	noise)

The	above	plotting	function	can	then	be	used	to	draw	a	graph	using	the	time	value	for
each	point	on	the	x	axis	and	the	signal	intensity	on	the	y	axis:

times	=	[i*tStep	for	i	in	range(npoints)]

savePlot(times,	sig,	'time',	'signal')

In	the	signal	plot	(see	Figure	19.1)	we	can	see	the	two	pure	frequency	signals	(ω	=	0.1
and	ω	=	0.7)	fairly	clearly.	However,	if	we	have	lots	of	pure	frequency	signals	it	becomes
much	 harder	 to	 see	what	 is	 going	 on,	which	 is	why	 in	many	 cases	we	would	 go	 on	 to
investigate	the	Fourier	transform.

Fast	Fourier	transform
The	Fourier	transform	is	one	mathematical	technique	for	determining	the	frequencies	that
exist	 in	 a	 signal.1,2	 In	 essence,	 what	 the	 Fourier	 transform	 does	 is	 to	 work	 out	 what
combination	 of	 pure	 sinusoidal	 oscillations	 the	 signal	 is	 composed	 of,	 in	 terms	 of	 both
frequency	and	intensity,	so	that	we	can	see	how	much	of	each	frequency	is	present.	The
‘transformation’	 is	 from	 the	original	 signal	 axis,	which	 is	 typically	 time,	 to	 a	 frequency
axis.	Sometimes	 the	signal	oscillates	 in	more	 than	one	direction,3	 and	 so	 is	 recorded	on
two	 orthogonal	 axes	 and	 is	 represented	 by	 complex	 numbers,	 rather	 than	 plain	 (real)
numbers.	Effectively	this	means	that	the	signal	values	are	two-dimensional,	but	this	can	all
be	 dealt	 with	 by	 the	 Fourier	 transform.	 Although	 time	 is	 a	 continuous	 variable,	 the
measurement	of	the	signal	is	usually	made	at	discrete	times,	and	so	the	relevant	technique
to	use	is	the	discrete	Fourier	transform.4

Figure	19.2.	 An	example	signal	time	series	generated	using	Python.	A	plot	of	the
one-dimensional	signal,	or	time	series	created	using	the	synthetic	signal-generation
function.	The	trace	shows	two	superimposed	frequencies	with	different	maximum
intensities	and	decay	rates.	The	jagged	nature	of	the	line	illustrates	how	only	few	points
are	sampled	relative	to	the	period	of	the	signals,	which	is	typical	in	many	real-world
situations.

The	Fourier	 transform	can	also	be	used	in	other	circumstances,	unrelated	to	time.	For
example,	 a	 crystal	 has	 a	 periodic	 three-dimensional	 atomic	 structure	 and	 as	 a	 result	 the
Fourier	transform	can	be	used	to	determine	the	structure	of	a	molecule	in	a	crystal	from	X-
ray	diffraction	patterns.	Also,	the	Fourier	transform	can	be	used	to	detect	patterns	in	DNA
and	protein	sequences,	e.g.	to	look	at	amino	acid	properties	that	occur	with	a	periodicity
corresponding	to	alpha-helical	structures.

Once	 a	 signal	 has	 been	 Fourier	 transformed,	 we	 generally	 find	 that	 only	 certain

frequencies	 have	 significant	 representation,	 and	 so	 various	 algorithms	 have	 been
developed	 to	 determine	 what	 those	 frequencies	 are.	 Because	 of	 the	 imprecision	 of	 the
signal	 measurement,	 and	 perhaps	 also	 because	 of	 a	 spread	 in	 the	 phenomenon	 being
observed,	 normally	 when	 there	 are	 discrete	 frequencies	 the	 transformed	 distribution	 at
those	 points	 is	 not	 perfectly	 sharp.	 Instead,	 for	 each	 there	 is	 an	 observed	 range	 of
frequencies,	 called	 a	 peak,	 with	 the	 maximum	 value	 occurring	 close	 to	 the	 actual
frequency.	In	general	we	want	to	determine	the	centre	of	each	peak	and	other	parameters
associated	 with	 the	 peak,	 such	 as	 the	 intensity	 (its	 maximum	 height)	 and	 also	 the
integration	of	 the	peak	over	 its	frequencies	(often	called	its	volume).	 Integration	 is	often
used	because	it	allows	us	to	relate	the	signal	strength	to	the	underlying	amount	of	causal
phenomenon.

The	theory	of	FFT
Fourier	 transformation	 is	 effectively	 the	 weighted	 summation	 of	 sinusoidal	 waves	 that
reproduces	 the	 original,	 oscillating	 signal.	 The	 transformed	 frequency	 plot	 (often	 called
the	spectrum)	is	then	the	graph	of	the	amount	of	each	frequency	found.

If	we	consider	a	signal	sampled	uniformly	in	time,	so	that	there	is	time	Δt	in	between
every	measurement,	we	can	represent	the	series	of	values	as	xk,	where	k	is	the	time	index
(k	=	0,	…,	N−1).	Assuming	that	the	first	measurement	is	made	at	time	t	=	0,	the	signal	xk	is
measured	 at	 time	 k	 multiplied	 by	 Δt.	 Here	 we	 allow	 the	 xk	 to	 be	 complex	 numbers,
although	 we	 could	 instead	 restrict	 them	 to	 being	 real	 numbers.	 The	 discrete	 Fourier
transform	 of	 this	 signal	 gives	 the	 amount	 of	 frequency	 y	 at	 frequency	 index	 j.	 This	 is
calculated	by	measuring	the	amount	of	coincidence	between	the	signal	values	and	a	pure
sinusoid	at	each	frequency.	Hence,	we	sum,	over	all	the	time	points	k,	the	signal	value	xk
multiplied	by	the	sinusoid	value	for	frequency	index	j:

Here	the	minus	sign	in	the	exponent	is	a	convention.	For	each	frequency	point	j	there	are
N	 terms	 in	 the	 sum	and,	 since	 j	 itself	 has	N	 possible	 values,	 there	 are	N2	 operations	 to
determine	the	entire	transformed	signal.	We	use	the	notation	O(N2)	to	describe	this	where
the	‘O’	 stands	 for	 the	 ‘order’,	or	approximate	number,	of	 the	operations.	 In	 fact	we	can
view	this	transform	as	a	multiplication	of	a	matrix	by	a	vector,	where	the	vector	is	xk	and
the	matrix	has	components	as	given	by	the	exponential	term	in	the	sum.	O(N2)	algorithms
are	not	ideal	in	computing	because	if	you	scale	N	by	say	10	then	the	number	of	operations
scales	by	100.

Note	that	although	we	restrict	the	range	of	j	to	be	between	0	and	N−1,	one	could	allow
an	arbitrary	integer	j,	noting	that	if	we	add	the	total	sampled	width	N	(or	multiples	thereof)
to	a	frequency	there	is	no	difference	in	the	sum.5	For	example,	sampling	10	points	along
an	 oscillation	 of	 frequency	 1	 gives	 the	 same	 result	 as	 a	 frequency	 of	 11,	 where	 faster
oscillations	match	the	same	heights	at	the	sampled	points.	Thus	the	transformed	signal	is
periodic	with	period	N.

In	the	1960s,	Cooley	and	Tukey	published	a	fast	algorithm	for	determining	the	discrete
Fourier	transform	when	N	is	a	power	of	2.6	The	number	of	operations	for	the	algorithm	is
O(N	log	N),	which	is	much	better	than	O(N2)	for	large	N,	and	this	has	become	the	basis	for
the	widespread	 use	 of	 Fourier	 transforms	 in	 science.	 Later	 developments	 improved	 the
algorithm,	for	example,	 to	deal	with	 the	case	when	N	was	not	an	exact	power	of	2,	and
generalisations	 to	 other	 transforming	 functions	 than	 the	 simple	 exponential,	 to	 give	 a
‘wavelet’	transform.

FFT	using	NumPy
Because	 this	 is	 a	 numerical	 problem,	 the	 fast	 Fourier	 transform	 (or	 FFT,	 for	 short)	 is
normally	 implemented	 in	 a	 fast	 compiled	 language	 like	 Fortran	 or	 C.7	 But	 fortunately
NumPy	provides	a	Python	wrapper	around	a	C	implementation	of	the	FFT:

from	numpy.fft	import	fft

freqs	=	fft(sig)

Also,	SciPy	provides	two	implementations	of	the	FFT,	one	actually	being	the	same	as
the	NumPy	one,	and	the	alternative	being:

from	scipy.fftpack	import	fft

freqs	=	fft(sig)

They	both	accept	either	a	NumPy	array	or	an	ordinary	Python	list	or	tuple	as	input,	and
return	a	NumPy	array	as	output.

As	 an	 example,	 we	 can	 continue	 the	 code	 from	 the	 first	 section,	 which	 simulated	 a
signal,	 sig,	 and	 calculate	 its	 Fourier	 transform.	We	 can	 then	 save	 plots	 of	 the	 real	 and
imaginary	parts	of	the	Fourier	transform,	and	also	the	magnitude	squared	of	that,	which	is
called	the	power	spectrum.

freqs	=	fft(sig)

freqReal	=	[f.real	for	f	in	freqs]

savePlot(times,	freqReal,	'freq',	'FT	real')

freqImag	=	[f.imag	for	f	in	freqs]

savePlot(times,	freqImag,	'freq',	'FT	imag')

powerSpec	=	[abs(f)**2	for	f	in	freqs]

savePlot(times,	powerSpec,	'freq',	FT	power')

In	the	example	above	we	have	assumed	the	intensities	we	require	are	represented	by	the
real	component	of	the	complex	numbers,	which	is	why	the	frequencies	from	the	imaginary
part	 of	 the	 transform	 fluctuate	 about	 zero.	 In	 general,	 however,	 the	 real	 and	 imaginary
parts	 of	 the	 transform	 are	 affected	 by	 phasing.	 Multiplying	 the	 signal	 by	 a	 complex
number	with	magnitude	1	can	be	thought	of	as	a	‘rotation’	of	the	real	into	the	imaginary
part	 and	 vice	 versa,	 hence	 the	 term	 phase,	 which	 describes	 the	 angle	 of	 rotation.	 This
multiplication	 has	 the	 same	 effect	 on	 the	 Fourier	 transform.	 But	 the	 power	 spectrum
remains	unchanged,	because	 it	 is	 the	magnitude	squared,	which	 is	one	 reason	 it	 is	often
used	 for	 analysis.	 However,	 in	 some	 areas	 of	 science,	 for	 example,	 NMR	 (nuclear

magnetic	resonance),	it	is	important	to	understand	the	phasing	because	it	turns	out	that	you
can	get	sharper	(narrower)	peaks	with	the	real	part	of	a	suitably	phased	transformed	signal,
versus	the	power	spectrum.

Figure	19.3.	 The	results	of	a	Fast	Fourier	transform.	Illustrated	are	real	and
imaginary	parts	of	the	Fourier	transform	(for	the	time	series	shown	in	Figure	19.2)	and	its
power	spectrum.	The	original	time	signal	has	been	converted	into	a	frequency	spectrum
where	the	intensity	axis	shows	the	amount	of	each	frequency	present	in	the	signal.

Peaks
Once	we	have	a	Fourier	transformed	signal,	which	in	certain	contexts	is	called	a	spectrum,
the	 next	 thing	 to	 do	 is	 to	 analyse	 the	 frequency	 peaks,	 or	 at	 least	 the	 significant	 ones.
These	correspond	to	the	underlying	frequency	components	of	the	signal.	We	would	like	to
determine	 the	 parameters	 for	 each	 peak,	 namely	 the	 amplitude,	 frequency	 and	decay.	 If
there	are	many	components	then	the	peaks	can	overlap	and	this	job	becomes	difficult.	To
simplify	our	introduction	we	will	assume	here	that	there	is	no	overlap	between	the	peaks.

The	 frequency	 is	 the	 point	 in	 the	 spectrum	 where	 the	 given	 peak	 value	 is	 at	 its
maximum,	but	there	are	a	few	subtleties	to	this.	The	spectrum	is	specified	on	a	grid,	so	at
equally	 spaced	 frequencies.	Hence,	 it’s	quite	 likely	 that	 the	 actual	underlying	 frequency
does	not	lie	exactly	on	the	point	of	the	sampled	grid,	but	in	between	two	such	points.	This
means	 that	 the	 maximum	 points	 need	 to	 be	 interpolated	 somehow	 to	 find	 the	 peak
frequency	positions.

There	is	another	subtle	issue	to	do	with	frequency,	which	comes	about	because	of	the
discrete	 time	 sampling	of	 the	 signal.	 If	 the	 signal	 is	 sampled	at	 time	 intervals	Δt	 then	a
pure	signal	at	frequency	ω	and	another	one	at	frequency	ω	+	1/Δt	give	 the	same	Fourier
transform,	since	 .	Indeed,	in	general	we	get	the	same	Fourier	transform
for	 frequency	ω	 +	n/Δt	 for	 any	 integer	n.	 In	 effect,	 a	 signal	 at	 one	of	 these	 frequencies
cannot	be	distinguished	from	a	signal	at	any	of	the	other	frequencies.	The	frequency	with
an	 absolute	 value	 less	 than	 1/(2Δt)	 is	 called	 the	 fundamental	 frequency	 and	 the	 other
frequencies	are	said	to	be	aliased	to	this	one.8

The	height	or	intensity	of	a	peak	is	the	value	at	its	maximum.	This	does	not	determine
the	 underlying	 amplitude	 by	 itself,	 because	 the	 observed	 height	 is	 also	 affected	 by	 the
decay	parameter,	and	as	with	the	frequency	there	is	also	the	issue	that	the	peak	values	are
only	defined	on	a	grid.	The	amplitude	is	proportional	to	the	volume	(integral)	of	the	peak,
which	is	the	summation	of	the	frequency	values	around	the	peak,	but	there	is	the	question
of	exactly	how	that	is	done,	such	as	how	far	away	from	the	maximum	position	to	include
in	 the	 sum.	 The	 decay	 parameter	 is	 determined	 by	 the	 linewidth	 of	 the	 peak,	 which	 is

roughly	speaking	how	wide	 the	peak	 is.	A	common	way	 to	measure	 this	 is	 the	width	at
half	the	peak	height.	These	parameters	can	be	determined	by	fitting	the	observed	data	to	a
theoretical	description	of	a	peak.

Figure	19.4.	 Parameters	of	signal	peaks	in	a	frequency	spectrum.	Two	peaks	within
a	frequency	spectrum	are	identified	by	the	frequency	positions	of	their	intensity	extrema,
which	here	are	labelled	as	their	heights.	The	integrals	represent	the	area	under	the	peak	to
the	zero	intensity	value,	although	other	integration	methods	are	possible,	e.g.	if	an
idealised	peak	shape	is	fitted.	The	linewidths	of	the	peaks	are	illustrated	at	half-height
values	(a	common	heuristic),	and	are	indicative	of	the	decay	of	the	signal.	The	data	shown
is	the	real	part	of	the	Fourier	transform	also	illustrated	in	Figure	19.3.

A	‘Peak’	class
One	way	to	store	information	about	peaks	would	be	to	use	simple	data	structures,	like	lists
or	arrays,	which	would	contain	values	corresponding	 to	positions,	 intensities,	 linewidths
etc.	However,	here	we	will	represent	peaks	using	a	custom	Python	object	by	constructing	a
class	called	Peak.	This	will	link	together	all	of	the	parameters	that	relate	to	the	same	peak
and	allow	us	to	associate	special	functions	for	the	class	(i.e.	methods)	to	calculate	various
peak	properties.	See	Chapter	7	for	more	detailed	discussion	about	how	classes	are	written,
and	the	role	of	self.	and	the	constructor	function	__init__.

In	the	construction	of	the	Peak	class	we	will	insist	that	a	peak,	at	the	very	least,	has	a
reference	to	the	data	it	derives	from	(self.data)	and	a	position	(self.position).	The	position
might	be	a	whole	number,	where	the	peak	lies	at	a	point	on	the	grid,	or	it	may	lie	between
grid	points.	The	latter	indicates	that	some	kind	of	interpolation	has	been	done,	to	specify	a
more	 accurate	 position.	 So	 that	 we	 can	 store	 both	 on-grid	 and	 interpolated	 values
self.point	records	the	nearest	grid	point	to	self.position.

Keeping	a	 reference	 to	 the	underlying	 (often	 frequency)	data	means	 that	we	can	 later
interpolate	and	fit	the	peak.	Hence	we	include	dataHeight,	the	height	of	the	peak,	and	the
linewidth.	 These	 are	 optional	 parameters	 that	 may	 be	 calculated	 if	 not	 specified	 in	 the
initial	instance	(if	they	are	None).

from	numpy	import	ix_,	outer,	zeros

class	Peak:

		def	__init__(self,	position,	data,	dataHeight=None,

																	linewidth=None):

				self.position	=	tuple(position)

				self.data	=	data

The	on-grid	points	for	the	peaks	are	initially	set	up	by	rounding	the	input	position	to	the
nearest	integer,	remembering	that	we	have	a	value	for	each	dimension.

self.point	=	tuple([int(round(x))	for	x	in	position])

If	 the	 dataHeight	 is	 not	 provided	 then	 it	 is	 calculated	 as	 being	 the	 value	 of	 the
underlying	 data	 at	 self.point.	 A	 better	 alternative	 would	 be	 to	 do	 some	 kind	 of	 simple
quadratic	fitting.

if	dataHeight	is	None:

		dataHeight	=	data[self.point]

self.dataHeight	=	dataHeight

If	 the	 linewidth	 is	 not	 initially	 specified	 then	 it	 is	 calculated	 using	 the
_calcHalfHeightWidth()	function,	which	we	describe	below.

if	linewidth	is	None:

		linewidth	=	self._calcHalfHeightWidth()

self.linewidth	=	linewidth

Finally	in	the	constructor	we	initialise	the	fitted	parameters	as	null	values.

self.fitAmplitude	=	None

self.fitPosition	=	None

self.fitLinewidth	=	None

The	 linewidth	 is	 calculated	 by	 the	 function	 below	 as	 the	 full	 width	 at	 half	 the	 peak
height,	noting	that	there	is	a	different	width	in	each	dimension.	The	method	to	do	this	goes
through	each	dimension	 in	 the	data	and	finds	 the	positions	on	 the	 two	sides	of	 the	peak
that	would	be	at	half	the	maximum	height	(see	Figure	19.4),	using	_findHalfPoints().	The
width	is	simply	the	difference	between	these,	which	is	added	to	the	list	that	is	passed	back.

def	_calcHalfHeightWidth(self):

		dimWidths	=	[]

		for	dim	in	range(self.data.ndim):

				posA,	posB	=	self._findHalfPoints(dim)

				width	=	posB	-	posA

				dimWidths.append(width)

		return	dimWidths

The	function	_findHalfPoints	 looks	 in	a	given	dimension	 for	 the	places	either	side	of
the	 peak	 position	 where	 the	 half-height	 is	 reached.	 The	 first	 issue	 to	 face	 is	 that	 it	 is
possible	 to	 hit	 the	 edge	 of	 the	 grid,	where	 the	 data	 is	 defined,	 before	 the	 half-height	 is
reached.	We	have	taken	a	simple	approach	of	just	stopping	at	the	edge	of	the	grid,	but	an
alternative	would	be	to	wrap	round	and	continue	on	the	other	side	of	the	grid.	However,	if
you	took	the	latter	approach	you	would	need	to	make	sure	the	code	does	not	end	up	in	an
indefinite	 loop,	 going	 around	 and	 around,	 because	 the	values	 are	possibly	 all	 above	 the
half-height.

The	initial	height	is	the	absolute	value	of	self.dataHeight,	and	halfHt	is	half	that,	i.e.	the
value	we	are	 looking	for.	Using	 the	absolute	value	simplifies	 the	code	a	 little	because	 it
means	we	won’t	need	to	use	separate	clauses	if	the	peaks	go	in	the	negative	direction.	We
define	 variables	 to	 refer	 to	 the	 underlying	 data	 (data)	 and	 peak	 grid	 position	 (point)	 by
using	self.	 to	access	attributes	that	belong	to	the	Peak	class.	We	are	not	 forced	 to	define
new	variables	here,	but	as	a	general	practice	we	minimise	use	of	self.	for	speed	reasons.

def	_findHalfPoints(self,	dim):

		height	=	abs(self.dataHeight)

		halfHt	=	0.5	*	height

		data	=	self.data

		point	=	self.point

The	search	will	be	done	by	investigating	the	height	values	associated	with	a	testPoint
that	varies	in	position	along	the	tested	dimension.	Initially	this	is	a	copy	of	the	peak’s	grid
point	 so	 that	 the	 positions	 are	 correct	 in	 the	 other	 (unsearched)	 dimensions.	 Note	 that
testPoint	 is	 a	 list	 because	 it	 can	 be	 changed	 internally	 (unlike	 a	 tuple)	 as	 we	 assign
different	 positions	 in	one	of	 the	dimensions.	The	variables	posA	and	posB	are	 the	one-
dimensional	 search	positions,	 corresponding	 to	 the	 two	sides	of	 the	peak,	which	will	be
refined	and	passed	back	at	the	end.

testPoint	=	list(point)

posA	=	posB	=	point[dim]

The	actual	 search	 involves	 a	while	 loop	 that	 tests	whether	 the	 search	position	 is	 still
within	bounds.	The	first	search	is	backwards,	i.e.	towards	zero,	using	posA.	The	value	of
posA	is	decreased	by	one	 to	get	 the	previous	point	 in	 the	data	and	 this	 is	set	within	 the
correct	 dimensional	 index	 of	 testPoint,	 so	 that	we	 can	 access	 the	 absolute	 value	 of	 the
(possibly	multi-dimensional)	 data.	 Note	NumPy	 requires	 that	 we	 convert	 testPoint	 to	 a
tuple	for	use	as	an	index	of	data.

prevValue	=	height

while	posA	>	0:	#	Search	backwards

		posA	-=	1

		testPoint[dim]	=	posA

		value	=	abs(data[tuple(testPoint)])

At	 the	 end	 of	 the	 loop	 there	 is	 a	 check	 to	 see	 if	 the	 half-height	 has	 been	 reached,
breaking	out	of	 the	 loop	 if	 it	has.	Linear	 interpolation	 is	almost	always	needed,	because
the	half-height	is	unlikely	to	occur	exactly	on	a	grid	point.	Hence,	if	the	data	value	is	less
than	the	half-height	we	know	we’ve	over-stepped,	and	we	add	back	a	fraction	of	a	point.
This	fraction	is	calculated	as	the	drop	in	height	of	value	below	halfHt	as	a	proportion	of
the	drop	in	height	from	one	point	to	the	next.

if	value	<=	halfHt:

		posA	+=	(halfHt-value)/(prevValue-value)

		break

prevValue	=	value

And	we	repeat	the	procedure	for	posB,	searching	in	the	other	direction,	though	this	time
the	last	data	point	in	the	data	is	recorded	from	the	.shape	of	the	data	array	(its	size)	so	that
we	know	when	to	stop.	Then	at	the	end	we	pass	back	the	two	positions	that	correspond	to
the	half-height.

lastPoint	=	data.shape[dim]	-	1	#	Shape	is	size

prevValue	=	height

while	posB	<	lastPoint-1:	#	Search	forwards

		posB	+=	1

		testPoint[dim]	=	posB

		value	=	abs(data[tuple(testPoint)])

		if	value	<=	halfHt:

				posB	-=	(halfHt-value)/(prevValue-value)

				break

		prevValue	=	value

return	posA,	posB

Peak	picking
Now	 that	we	have	defined	 the	Peak	 class,	we	 are	 ready	 to	 actually	 identify	 or	pick	 the
peaks	 from	 the	 frequency	 data.	 There	 are	 many	 subtle	 issues	 here,	 and	 we	 will	 only
provide	 the	 simplest	 peak	 picker,	 with	 some	 commentary	 about	 what	 can	 be	 done	 to
improve	 it.	How	best	 to	 proceed	will	 depend	on	 the	 specifics	 of	 the	 type	 of	 data	 being
analysed,	 and	 it	 is	 unlikely	 that	 any	 peak	 picker	will	 work	 in	 all	 circumstances	 for	 all
possible	data	sets.

Here	 we	 will	 just	 look	 for	 local	 maxima	 above	 a	 specified	 threshold.	 This	 works
reasonably	well	 for	data	 that	 is	not	especially	noisy	or	crowded.	For	 this	kind	of	simple
operation	 there	 is	 existing	 functionality	 from	SciPy	 and	NumPy	 that	 can	 be	 used	 to	 do
most	of	the	work,	although	the	way	they	are	used	here	is	not	necessarily	speed-efficient.
The	maximum_filter()function	will	be	used	 to	 find	maxima	 in	 the	data.	Although	 this	 is
part	of	SciPy’s	multi-dimensional	image-processing	module	the	data	need	not	actually	be
an	image.	It	is	notable	that	the	minimum_filter()	function	also	exists,	which	could	be	used
to	find	negative	peaks.

from	scipy.ndimage.filters	import	maximum_filter

from	numpy	import	argwhere

The	 function	 findPeaks	 takes	 an	 array	 of	 data	 (of	 arbitrary	 dimensionality)	 and	 a
threshold	 value.	Only	maxima	 above	 this	 threshold	will	 be	 considered	 as	 peaks,	 and	 in
general	 the	 threshold	will	 be	 set	 to	 distinguish	 the	 required	 signals	 from	 the	noise.	The
size	represents	the	region	to	consider	when	searching	for	maxima.	The	default	value	of	3
means	to	consider	a	central	point	(potentially	the	peak	centre)	and	its	nearest	neighbours
either	side,	which	is	reasonable	if	the	data	is	not	too	noisy.	The	mode	argument	specifies
how	 the	data	 is	 treated	at	 the	boundary.	When	mode=‘wrap’	 this	means	 that	 the	data	 is
wrapped	around	at	the	boundaries,	and	this	is	often	the	most	appropriate	value	for	Fourier
transformed	data,	which	is	naturally	periodic.	Sometimes,	though,	the	data	is	truncated,	in
which	 case	 it	 is	 more	 appropriate	 to	 use	 mode=‘constant’,	 which	 in	 effect	 treats	 the
boundary	 as	 the	 end	 of	 the	 data.	 (In	 the	 previous	 section	 we	 only	 had	 code	 for	 the
equivalent	of	mode=‘constant’.)

def	findPeaks(data,	threshold,	size=3,	mode='wrap'):

		peaks	=	[]

		if	(data.size	==	0)	or	(data.max()	<	threshold):

				return	peaks

For	 the	NumPy	array	data	 it	 is	 possible	 to	 filter	 on	 a	 threshold	 just	 by	 doing	 data	>
threshold.	This	creates	an	array,	with	 the	same	size	and	dimensions	as	data,	where	each
entry	is	True	or	False,	depending	on	whether	the	corresponding	value	in	data	is	above	the
threshold.

boolsVal	=	data	>	threshold

Next	 we	 use	 maximum_filter()	 to	 find	 local	 maxima	 in	 the	 data,	 considering	 the
specified	size	 to	 inspect.	This	 function	 returns	a	copy	of	 the	 input	array	where	 the	non-
maximal	points	have	been	 set	 to	 zero.9	Then	we	create	another	array	of	True	 and	False
values,	 corresponding	 to	whether	 the	 filtered	 points	 have	 their	 original	 values	 (data	 ==
maxFilter),	i.e.	we	will	have	a	True	at	each	maximum.

maxFilter	=	maximum_filter(data,	size=size,	mode=mode)

boolsMax	=	data	==	maxFilter

The	peak	points	 that	are	both	above	 the	 threshold	and	 local	maxima	are	 found	as	 the
intersection	(logical	AND	operation)	between	values	from	the	two	arrays	of	Booleans.

boolsPeak	=	boolsVal	&	boolsMax

Next	we	find	the	indices	of	the	True	values	in	the	boolsPeak	array,	which	correspond	to
the	positions	(row,	column	etc.)	of	the	peaks	in	data.	The	NumPy	function	we	use	to	get
the	indices	is	argwhere(),	which	gives	an	array	of	the	non-zero	(true)	positions	in	the	form
((row1,	col1,	…),	(row2,	col2,	…)	…),	i.e.	with	one	group	of	coordinates	for	each	peak.	It
is	notable	that	nonzero()	is	often	used	to	find	true	values	in	an	array,	but	this	would	give	a
result	in	the	form	((row1,	row2,	…),	(col1,	col2,	…)	…),	which	is	ideal	for	indexing	array
elements	but	inconvenient	here.

indices	=	argwhere(boolsPeak)	#		Position	indices	for	True

Finally	Peak	objects	are	created	for	these	grid	positions	and	appended	to	the	peaks	list
that	is	passed	back.

for	position	in	indices:

		position	=	tuple(position)

		height	=	data[position]

		peak	=	Peak(position,	data,	height)

		peaks.append(peak)

return	peaks

There	are	 improvements	 that	could	be	made	 to	 the	algorithm.	 Instead	of	 looking	 in	a
rectangular	 region	 for	 local	 maxima,	 a	 non-rectangular	 footprint	 could	 be	 specified.
Sometimes	 it	 is	 also	 worth	 checking	 that	 any	 putative	 peak	 has	 a	 shape	 such	 that	 a
sufficient	 drop	 is	made	 between	 the	maximum	height	 and	 the	minimum	value	 before	 it
turns	up	again,	in	any	direction.	Also,	if	the	data	is	such	that	negative	height	peaks	are	also
of	interest,	then	the	algorithm	can	be	modified	to	look	for	minima	(below	zero)	by	using
minimum_filter()	when	the	threshold	is	negative.

Peak	fitting
In	order	to	fit	the	peak	shape,	there	has	to	be	a	model	of	what	the	peak	shape	should	be.
For	 exponentially	 decaying	data,	 the	 real	 part	 of	 a	 continuous	Fourier	 transform	of	 that
data	has	what	is	called	a	Lorentzian	line	shape,	in	any	given	dimension:

Here	A	is	the	amplitude,	ω0	is	the	position	and	λ	is	the	linewidth	of	the	peak,	which	is	the
full	width	of	the	peak	at	half-height:

In	practice,	the	data	is	not	continuous,	it	is	discrete,	and	the	discrete	Fourier	transform	is
carried	 out	 instead	 of	 the	 continuous	 one.	 This	 leads	 to	 a	 slightly	 different,	 and	 more
complicated,	line	shape	than	the	above,	but	in	practice	the	difference	is	small	enough	close
to	 the	central	position	 that	 the	Lorentzian	 line	 shape	 functional	 form	can	be	used	 in	 the
fitting,	and	that	is	what	will	be	done	here.

Peaks	with	more	 than	one	dimension	have	 a	 single	height	 (amplitude),	 but	 there	 is	 a
position	 and	 a	 linewidth	 for	 each	 dimension.	 Thus	 for	 a	 Lorentzian	 line	 shape	 the
theoretical	value	of	the	data	can	be	modelled	as	being	a	product	of	the	amplitude	and	of
the	line	shape	in	each	dimension	(the	index	i	represents	one	of	the	dimensions):

The	fit()	function	is	added	to	the	Peak	class	so	that	it	can	be	called	on	a	peak	object	via

peak.fit(fitWidth).	As	discussed	in	Chapter	7,	because	this	function	belongs	inside	a	class
definition	it	can	use	the	self	variable	to	refer	to	the	actual	peak	object.	The	first	thing	the
function	does	is	to	define	a	region	which	is	fitWidth	points	either	side	of	the	integer	peak
position	 in	 each	 dimension,	 talking	 care	 that	 the	 region	 doesn’t	 fall	 off	 the	 edge	 of	 the
array,	and	then	it	gets	self.fitData,	the	data	values	in	the	specified	region.	An	alternative
approach	would	be	for	a	user	to	specify	the	region	via	a	graphical	user	interface.

from	scipy	import	optimize

def	fit(self,	fitWidth=2):

		region	=	[]

		numPoints	=	self.data.shape

		for	dim,	point	in	enumerate(peak.position):

				start	=	max(point-fitWidth,	0)

				end	=	min(point+fitWidth+1,	numPoints[dim])

				region.append((start,	end))

The	data	 is	normalised	by	 the	peak	height,	 to	make	 the	 fitting	work	on	data	 that	has
maximum	value	at	1,	rather	than	an	arbitrary-sized	number.

self.fitData	=	self._getRegionData(region)	/	self.dataHeight

The	SciPy	 function	optimize.fmin	 is	 used	 to	 determine	 the	optimum	 fit.	 It	 requires	 a
fitting	function	and	a	list	of	starting	values	for	the	parameters.	Here	the	parameters	are	the
amplitudeScale	 (relative	 to	 the	peak	height)	and,	 for	each	dimension,	an	offset	 from	the
peak	position	and	a	linewidth	scale.

amplitudeScale	=	1.0

offset	=	0.0

linewidthScale	=	1.0

These	 are	 inserted	 into	 the	 params	 list.	 The	 fitting	 function	 is	 an	 unnamed	 lambda
function	(see	Chapter	5)	that	allows	the	data	region	to	be	passed	into	the	fitting	function	as
an	argument	before	its	actual	execution.	An	alternative	would	be	to	store	the	region	on	the
peak	object.	There	are	several	optional	arguments	for	optimize.fmin,	including	xtol,	which
allows	a	specification	of	how	precise	the	result	needs	to	be.

ndim	=	self.data.ndim

params	=	[amplitudeScale]

params.extend(ndim*[offset])

params.extend(ndim*[linewidthScale])

fitFunc	=	lambda	params:	self._fitFunc(region,	params)

result	=	optimize.fmin(fitFunc,	params,	xtol=0.01)

The	result	comes	back	as	a	NumPy	array,	which	is	then	split	into	the	amplitude,	offset
and	linewidth	parts	using	the	appropriate	slices.

amplitudeScale	=	result[0]

offset	=	result[1:ndim+1]

linewidthScale	=	result[ndim+1:]

Although	 they	 do	 not	 have	 to	 be,	 the	 values	 are	 converted	 to	 ordinary	 Python	 types
using	the	float()	and	list()	functions	and	stored	as	attributes	on	the	peak	object.

peak.fitAmplitude	=	float(amplitudeScale	*	peak.dataHeight)

peak.fitPosition		=	list(peak.position	+	offset)

peak.fitLinewidth	=	list(linewidthScale	*	peak.linewidth)

The	function	_getRegionData	does	the	required	extraction	of	the	data	in	the	region	from
the	full	data	set.	The	region	determines	the	selection	by	using	the	standard	Python	slice()
function,	which	allows	us	to	specify	an	index	which	goes	from	start	to	end.	This	is	done	in
each	dimension	and	the	result	needs	to	be	converted	to	a	tuple	for	use	as	a	NumPy	index.

def	_getRegionData(self,	region):

		slices	=	tuple([slice(start,	end)	for	start,	end	in	region])

		return	self.data[slices]

The	 fit-testing	 function	 _fitFunc	 is	where	 the	 real	work	 is	 done.	 The	 SciPy	 function
optimize.fmin	 calls	 this	 repeatedly	with	 a	 specified	 choice	 of	 params	 to	 determine	 how
good	 the	 fit	 is,	 until	 either	 convergence	 to	 the	 solution	 is	 achieved	 or	 the	 number	 of
iterations	 reaches	 its	 maximum	 limit.	 The	 (fixed)	 region	 is	 also	 passed	 into	 the	 fitting
function	because	of	the	way	we	defined	it	as	a	lambda	function.	The	fitting	function	first
unpacks	 the	 params	 list	 into	 the	 corresponding	 parameters	 and	 sliceData	 is	 initially	 set
with	zeros,	but	will	eventually	contain	the	line	shapes	for	each	dimension.

from	numpy	import	array,	zeros

def	_fitFunc(self,	region,	params):

		ndim	=	self.data.ndim

		amplitudeScale	=	params[0]

		offset	=	params[1:1+ndim]

		linewidthScale	=	params[1+ndim:]

		sliceData	=	ndim	*	[0]

A	for	 loop	goes	though	each	data	dimension,	calculating	test	values	for	 linewidth	and
testPos	by	using	the	input	 test	parameters	 to	adjust	 the	values	stored	on	the	peak	object.
The	start	and	end	points	for	the	dimension	are	extracted.

for	dim	in	range(ndim):

		linewidth	=	linewidthScale[dim]	*	self.linewidth[dim]

		testPos	=	offset[dim]	+	self.position[dim]

		(start,	end)	=	region[dim]

A	check	is	made	that	linewidth	>	0	because	there	are	some	situations	where	the	SciPy
optimize.fmin	function	will	set	 the	linewidthScale[dim]	parameter	 to	be	negative.	If	 it	 is
negative	then	the	line	shape	will	be	zero	(in	all	dimensions,	given	the	final	product).	An
alternative	would	be	to	use	the	absolute	value	of	this	parameter.	The	Lorentzian	line	shape
is	then	calculated	(see	above	equation)	for	each	dimension,	in	the	specified	region.

if	linewidth	>	0:

		x	=	array(range(start,	end))

		x	=	(x	–	testPos)	/	linewidth

		slice1d	=	1.0	/	(1.0	+	4.0*x*x)

else:

		slice1d	=	zeros(end-start)

sliceData[dim]	=	slice1d

The	final	heights	for	the	shape	are	calculated	by	multiplying	the	amplitude	by	the	multi-
dimensional	 outer	 product	 (see	 below)	 of	 the	 one-dimensional	 shapes	 contained	 in
sliceData.	Lastly,	 the	 test-fit	 function	must	 return	 the	 difference	 between	 the	 theoretical
line	shape	and	the	actual	data.	Here	the	root-mean-square	difference	is	used,	but	that	is	not
mandatory	(we	could	just	use	the	square).

heights	=	amplitudeScale	*	self._outerProduct(sliceData)

diff2	=	((heights-self.fitData)**2).mean()

return	sqrt(diff2)

The	 individual	 line	 shapes	 are	 one-dimensional,	 and	 the	 product	 of	 these	 across	 the
different	 dimensions	 is	 required	 to	get	 the	 full	 theoretical	 shape.	NumPy	has	 a	 function
outer	which	will	do	the	appropriate	multiplication	in	two	dimensions.	In	order	to	do	it	in
an	arbitrary	number	of	dimensions,	the	outer	function	needs	to	be	called	first	on	the	first
two	dimensions,	 then	next	on	 that	 result	 and	 the	 shape	 for	 the	 third	dimension	etc.	The
result	is	a	two-dimensional	array	so	finally	the	data	needs	to	be	reshaped	into	the	correct
number	of	dimensions.	This	is	all	accomplished	in	the	function	_outerProduct():

from	numpy	import	outer

def	_outerProduct(self,	data):

		size	=	[d.shape[0]	for	d	in	data]

		product	=	data[0]

		for	dim	in	range(1,	len(size)):

				product	=	outer(product,	data[dim])

		product	=	product.reshape(size)

		return	product

There	 are	many	 improvements	 that	 could	 be	made	 to	 the	 code.	Different	 line	 shapes
could	be	allowed	to	be	fit,	for	example,	a	‘Gaussian’	one	(where	the	exponential	decay	is
squared).	A	constant	vertical	offset	(constant	baseline),	or	more	complicated	descriptions
of	the	baseline,	could	be	fitted	to	the	data.	It	could	be	that	one	or	more	of	the	parameters
are	somehow	known,	so	should	not	be	fitted.	If	the	peaks	overlap	then	more	than	one	peak
could	be	fitted	at	a	time,	though	the	number	of	parameters	is	proportional	to	the	number	of
peaks,	and	so	fitting	more	than	one	peak	increases	the	risk	of	having	too	many	degrees	of
freedom	with	too	little	data.

2D	gel	peak-picking	example

We	provide	 a	 simple	 application	 of	 using	 the	 peak	 picker	 to	 find	 extrema	 in	 an	 image,
which	in	this	case	represent	spots	on	a	polyacrylamide	protein	gel.	Naturally,	this	data	was
not	 recorded	 as	 a	 signal	 that	 required	 transformation	 into	 the	 frequency	 domain,	 but
nonetheless	 it	 is	 a	 biologically	 relevant	 test	 case	 and	 is	 analogous	 to	 signals	 we	might
observe	 in	 a	 frequency	 spectrum.	 The	 example	 will	 use	 some	 of	 the	 functionality
discussed	 in	 Chapter	 18	 to	 convert	 between	 the	 Image	 objects	 made	 by	 the	 Python
Imaging	Library	(PIL)	and	numeric	arrays.

from	PIL	import	Image

from	Images	import	imageToPixmapRGB,	pixmapToImage

img	=	Image.open('examples/Gel2D.png')

pixmap	=	imageToPixmapRGB(img)

The	RGB	(three-component-deep)	image	is	averaged	along	the	last	axis,	to	generate	a
simple	array	of	values	of	the	same	size	representing	the	pixel	intensity.	This	is	normalised
to	 be	 between	 0	 and	 1	 by	 taking	 away	 the	 baseline	 minimum	 and	 dividing	 by	 the
maximum.	Because	in	the	image	the	spots	we	want	to	pick	are	darker	than	the	background
we	flip	the	data	array	(1.0	–	data)	so	 that	 the	spots	 to	pick,	and	not	 the	background,	are
points	of	maximum	intensity.

data	=	pixmap.mean(axis=2)

data	-=	data.min()

data	/=	data.max()

data	=	1.0	–	data

The	peak	picking	threshold	is	simply	defined	as	a	proportion	of	the	maximum	intensity
(which	 here	 is	 1.0)	 and	 then	 the	 findPeaks()	 function	 defined	 above	 is	 used	 to	 find	 the
peak	locations	in	the	data	using	a	size	which	is	appropriate	to	the	scale	of	the	peaks	in	the
image.

threshold	=	0.3	*	data.max()

peaks	=	findPeaks(data,	threshold,	size=7,	mode='wrap')

Figure	19.5	(Plate	9).	 Example	of	2D	peak	picking	for	a	protein	gel.	An	image	of	a
two-dimensional	polyacrylamide	gel,	with	the	peak	picked	maxima	shown	as	small
crosses.	The	gel	has	been	stained	with	Coomassie	Brilliant	Blue	dye	to	show	the
abundance	of	different	proteins	that	have	been	separated	according	their	size	and
isoelectric	value.

By	looping	though	the	resulting	Peak	objects	we	can	extract	the	identified	positions	and
use	this	 to	mark	small	crosses	 in	 the	 image	pixmap	that	we	initially	 loaded,	here	setting
the	RGB	colour	for	the	pixel	to	be	yellow,	maximum	red	and	green	but	no	blue.	Note	the
use	 of	 the	 array	 slice	 notation	 [xIndices,	 yIndices,:],	 which	 sets	 the	 whole	 of	 the	 last
(colour)	 axis	 for	 the	 required	 rows	 and	 columns	 (which	 are	 specified	 in	 the	 tuples	 of
indices).	The	 pixmap	 is	 then	 converted	 into	 a	PIL	 Image	object	 so	 that	 it	 can	 easily	 be
viewed	and	saved	to	file.

color	=	(255.0,	255.0,	0.0)

for	peak	in	peaks:

		x,y	=	peak.position

		xIndices	=	(x-1,	x,	x,	x,	x+1)	#	X	indices	for	a	cross	shape

		yIndices	=	(y,	y-1,	y,	y+1,	y)	#	Y	indices	for	a	cross	shape

		pixmap[xIndices,	yIndices,:]	=	color

img2	=	pixmapToImage(pixmap,	mode='RGB')

img2.show()

img2.save('PickedGel.png')

If	 we	 wish	 to	 refine	 the	 peak	 locations,	 i.e.	 to	 interpolate	 their	 centres	 between	 the
integer	grid	points,	it	is	a	simple	matter	of	calling	the	.fit()	method	of	the	peak	and	looking
at	the	the	updated	attribute	values.

for	peak	in	peaks:

		peak.fit(fitWidth=3)

		print(peak.fitAmplitude,	peak.fitAmplitude,	peak.fitLinewidth)

1 	Fourier,	J.B.J.	(1822).	Théorie	Analytique	de	la	Chaleur.	Paris:	Chez	Firmin	Didot,	père
et	fils.
2 	 Titchmarsh,	 E.	 (1948).	 Introduction	 to	 the	 Theory	 of	 Fourier	 Integrals	 (2nd	 edn.).
Oxford:	Clarendon	Press.
3 	It	has	polarisation.
4 	http://en.wikipedia.org/wiki/Discrete_Fourier_transform.

5 	 	since	 	for	any	integer	k.
6 	 Cooley,	 J.W.,	 and	 Tukey,	 J.W.	 (1965).	 An	 algorithm	 for	 the	 machine	 calculation	 of
complex	Fourier	series.	Mathematics	of	Computation	19:	297–301.
7 	Press,	W.H.,	Teukolsky,	S.A.,	Vetterling,	W.T.,	 and	Flannery,	B.P.	 (2007).	Numerical
Recipes:	 The	 Art	 of	 Scientific	 Computing	 (3rd	 edn.).	 New	York:	 Cambridge	University
Press.
8 	 A	 related	 result	 is	 the	 Nyquist-Shannon	 sampling	 theorem,	 which	 says	 that	 if	 the
frequencies	 are	 bandlimited,	 that	 is,	 |ω|	 <	B	 for	 some	B,	 then	 the	 entire	 signal	 can	 be
exactly	 reconstructed	from	an	 infinite	sequence	of	samples	at	 interval	Δt	as	 long	as	B	 <
1/(2Δt).	Of	course	in	practice	an	infinite	sequence	of	samples	is	not	taken.
9 	We	could	set	non-maximal	points	to	some	other	value	using	origin,	if	zero	has	meaning.

http://en.wikipedia.org/wiki/Discrete_Fourier_transform

20 	Databases
Contents

A	brief	introduction	to	relational	databases

Tables

Schemas

Basic	SQL

Creating	a	table

Running	SQL

Manipulating	records

Designing	a	molecular	structure	database

SQL	creation	of	the	database

Python	interaction	with	the	database

Adding	a	structure	to	the	database

Getting	a	structure	from	the	database

Querying	the	database

A	brief	introduction	to	relational	databases
Any	collection	of	data	can	be	considered	to	be	a	database,	however	it	is	stored	or	utilised.
However,	the	common	use	of	the	word	‘database’	usually	refers	to	a	relational	database.
Relational	databases	were	introduced	in	the	1970s	and	model	their	data	in	terms	of	tables
with	 rows	 and	 columns.	 There	 is	 an	 associated	 language,	 SQL	 (Structured	 Query
Language),	that	can	be	used	to	send	messages	to	the	database	to	allow	the	database	to	be
queried	and	modified:	inserting,	changing	and	deleting	data	elements.	SQL	also	provides
the	 ability	 to	 make	 connections	 between	 the	 data	 in	 different	 tables.	 In	 terms	 of
mathematics,	 relational	 databases	 can	 be	 thought	 of	 as	 ‘first-order	 predicate	 logic’,	 and
this	mathematical	underpinning	of	the	principles	of	relational	databases	is	one	reason	they
are	conceptually	attractive.

Tables
A	table	 in	a	relational	database	has	a	name	and	also	has	some	named	columns	and	each
row	in	the	table	represents	one	record	of	data.	The	type	of	the	data	in	each	column	can	be
specified	and	the	data	in	any	column	can	be	stated	to	be	mandatory,	or	not.	One	or	more
columns	in	each	table	define	the	key.	Each	record	in	the	table	must	have	a	unique	key;	the

key	identifies	the	individual	record.	Sometimes	a	table	has	a	‘natural’	key	but	sometimes
there	is	no	obvious	key	and	so	instead	a	counter	(a	‘serial’	or	‘ID’	number)	is	used,	which
is	set	(in	many	database	implementations	automatically)	to	1	for	the	first	record,	2	for	the
second,	etc.	At	a	simplistic	level,	spreadsheets	(e.g.	as	used	in	Excel)	can	be	thought	of	as
tables	in	a	weak	substitute	for	a	relational	database.	A	table	can	have	one	or	more	columns
that	refer	to	one	or	more	other	tables,	and	this	is	a	way	that	information	between	tables	can
be	linked.	In	the	database	jargon,	a	query	that	 involves	relating	information	across	more
than	one	table	is	called	a	join.

Many	databases	(relational	or	otherwise)	provide	reliable	transaction	control,	through	a
mechanism	named	with	the	memorable	acronym	ACID	(Atomicity,	Consistency,	Isolation,
Durability),	and	 this,	more	 than	anything	else,	 is	what	makes	databases	so	ubiquitous	 in
the	modern	world.	 In	effect,	multiple	agents	(people	or	computers)	can	reliably	access	a
database	 at	 the	 same	 time.	 Relational	 databases	 are	 the	 most	 significant	 and	 common
examples	 of	 ACID-compliant	 databases,	 although	 not	 all	 relational	 databases	 are
necessarily	ACID-compliant.

Schemas
As	with	other	areas	in	computing,	one	of	the	most	important	jobs	in	relational	databases	is
their	design,	in	terms	of	the	definitions	of	the	tables	and	the	relations	between	the	tables.
This	can	be	 thought	of	as	an	exercise	 in	data	modelling.	 In	 the	database	context,	 this	 is
called	designing	the	database	schema.	Sometimes	the	nature	of	relational	databases	forces
non-ideal	design	decisions.	In	other	areas	of	computing	it	is	quite	common	to	use	object-
oriented	methodology,	 but	 the	mapping	 between	 objects	 and	 relational	 databases	 is	 not
always	easy.	 In	 terms	of	 the	object-relational	mapping,	a	class	of	object	 is	mapped	onto
one	or	more	tables.	Each	column	in	a	table	would	represent	a	property	(an	attribute	or	link
to	another	object)	of	the	class.	It	would	be	ideal	if	there	could	just	be	one	table	per	class,
but	 that	 is	 not	 always	 possible	 because	 an	 attribute	 that	 is	 allowed	 to	 have	 multiple
possibilities	 (so	a	high	cardinality	of	more	 than	1,	 in	data-modelling	 jargon)	 requires	an
additional	table	in	relational	databases,	and	any	link	between	classes	that	allows	multiple
possibilities	at	both	ends	(so	a	many-to-many	link	in	data-modelling	jargon)	also	requires
an	additional	table.

Another	possibility	would	be	to	map	more	than	one	class	onto	one	table.	This	is	called
denormalisation	of	the	database,	and	it	(usually)	means	that	there	is	redundant	information
in	the	table.	We	could	even	map	all	of	the	classes	onto	one	‘universal’	table.	Whether	this
is	a	good	idea	depends	on	how	the	database	is	going	to	be	used.	If	the	database	is	only	or
is	mainly	for	querying,	then	a	universal	table	works	well.	But	if	the	database	is	frequently
updated	 and	 the	 contents	 modified,	 then	 a	 universal	 table	 does	 not	 work	 well.	 In	 this
chapter	 we	 will	 largely	 avoid	 these	 subtler	 points	 but	 in	 practice	 they	 need	 to	 be
considered.

Basic	SQL
There	 are	many	 available	 pieces	 of	 software	 that	 implement	 relational	 databases.	Most
relational	database	implementations	provide	client	software	into	which	you	can	type	SQL

commands.	The	client	usually	also	allows	SQL	scripts	 to	be	run.	Many	implementations
also	 have	 a	 separate	 server,	 which	 receives	 commands	 from	 the	 client	 and	 actually
executes	them,	referring	to	the	data	stored	in	the	database,	and	then	gives	back	the	result
to	the	client.

Much	of	the	SQL	syntax	is	well	standardised,	but	most	implementations	stray	slightly
from	 standards	 and	 also	 provide	 extra	 functionality	 that	 is	 non-standard.	 Where	 such
differences	matter,	we	will	look	at	two	relational	databases	in	this	chapter,	MySQL1	and
SQLite.2	 MySQL	 is	 the	 most	 common	 open-source	 relational	 database.	 SQLite	 is	 a
lightweight	implementation	that	requires	no	conventional	server	to	be	installed	or	run;	it	is
all	handled	by	the	client	and	it	stores	the	entire	database	in	a	single	file	on	disk.

There	 are	 Python	 wrappers	 around	 SQL	 for	 many	 of	 the	 relational	 database
implementations.	 With	 the	 exception	 of	 SQLite,	 these	 wrappers	 are	 not	 part	 of	 the
standard	Python	distribution,	and	so	require	a	separate	download.	For	MySQL	the	Python
module	 is	 called	MySQLdb.3	 Note	 that	 for	MySQL	 you	 will	 also	 need	 the	 underlying
database	 implementation	 to	 be	 on	 your	 computer,	 in	 addition	 to	 the	 Python	 wrapper
around	it.	Many	Linux/UNIX	distributions	will	automatically	have	SQLite	installed,	but	it
is	less	common	to	have	MySQL	installed.	We	will	assume	in	this	chapter	that	the	SQLite
program	(executable)	is	called	sqlite3	and	that	the	MySQL	client	program	is	called	mysql.

The	wrappers	 to	 these	database	implementations	allow	Python	to	be	used	to	create	or
delete	tables,	and,	more	commonly,	to	insert	or	delete	or	modify	records	in	the	database,	or
simply	 to	query	 the	database.	Unfortunately	 the	 interaction	methodology	 is	 rather	weak:
the	database	constructs	are	not	directly	modelled,	and	the	way	information	is	passed	from
the	 Python	world	 to	 the	 database	 world	 is	 just	 via	 textual	 strings.	 This	 problem	 is	 not
unique	 to	Python;	other	 languages,	 like	 Java,	have	 the	 same	 issue	when	communicating
with	an	SQL	database.

Creating	a	table
In	 this	section	we	will	work	with	a	very	simple	database,	which	we	will	call	PersonDb,
which	will	have	just	one	table,	called	Person.	The	code	in	the	following	section	is	in	the
SQL	 language	 not	 Python,	 though	 later	we	 go	 on	 to	 show	 how	 Python	 can	 be	 used	 to
interact	 via	 SQL.	To	 create	 a	 table,	we	 use	 the	 SQL	CREATE	 command.	 The	 simplest
version	is	where	just	the	column	names	and	types	are	specified.	For	example,	suppose	that
in	 the	 Person	 table	 there	 are	 three	 columns,	 firstName,	 lastName	 (both	 strings)	 and
birthYear	(an	integer).	We	could	create	the	table	via:

CREATE	TABLE	Person	(

			firstName	TEXT,

			lastName	TEXT,

			birthYear	INT

);

The	SQL	keywords	 are	 case-insensitive	 although	 they	 are	 often	written	 in	 all	 capital
letters.	The	table	and	column	names	might	or	might	not	be	case-sensitive	dependent	on	the
exact	SQL	 implementation	 being	 used,	 but	 it	 is	 probably	 safest	 to	 assume	 that	 they	 are
also	 case-insensitive.	 The	 SQL	 type	 for	 text	 strings	 is	 tricky.	 In	 most	 SQL

implementations	 there	 are	 several	 alternatives.	 TEXT	 is	 usually	 one	 of	 the	 alternatives,
and	 it	 means	 that	 the	 strings	 are	 of	 unlimited	 length.	 If	 we	 had	 put	 TEXT(30)	 (for
example)	it	would	mean	that	the	strings	are	of	length	no	more	than	30.	And	an	alternative
string	 type	 to	TEXT	would	be	VARCHAR,	which	 is	 somewhat	 less	understandable,	but
has	been	around	longer	in	SQL	implementations.

If	 a	 given	 column	 is	 mandatory,	 whereby	 every	 record	 has	 to	 have	 a	 value	 for	 that
column,	 then	 the	 NOT	 NULL	 descriptor	 is	 used.	 For	 example,	 if	 the	 firstName	 and
lastName	were	mandatory	in	the	Person	table	then	we	would	have:

CREATE	TABLE	Person	(

			firstName	TEXT(30)	NOT	NULL,

			lastName	TEXT(30)	NOT	NULL,

			birthYear	INT

);

Here	we	have	also	changed	the	strings	to	have	a	maximum	length	of	30.

A	primary	key	for	a	table	is	a	list	of	one	or	more	columns	for	which	the	corresponding
values	uniquely	identify	a	record,	and	we	can	specify	which	column	or	columns	these	are.
For	example,	perhaps	we	think	that	the	firstName	and	lastName	uniquely	identify	a	person
in	our	database	(although	that	 is	probably	not	a	very	good	assumption).	Then	we	would
have:

CREATE	TABLE	Person	(

			firstName	VARCHAR(30)	NOT	NULL,

			lastName	VARCHAR(30)	NOT	NULL,

			birthYear	INT,

			PRIMARY	KEY	(firstName,	lastName)

);

It	 is	 this	 final	 version	 that	 we	will	 use	 here.	We	 have	 changed	 the	 string	 type	 from
TEXT	to	VARCHAR	because	MySQL	does	not	allow	the	former	for	any	column	that	 is
part	of	the	primary	key.	With	SQLite	we	could	have	stayed	with	TEXT(30)	or	indeed	just
TEXT.	It	is	these	little	annoyances	that	make	life	difficult	if	one	tries	to	support	more	than
one	SQL	implementation.

Running	SQL
We	 can	 run	 the	 SQL	 program	 at	 the	 operating-system	 prompt	 (‘>’)	 and	 then	 type	 the
command	(or,	more	generally,	commands)	at	the	‘SQL	prompt’.	For	example,	in	SQLite	a
session	might	take	the	form:

>	sqlite3	PersonDb

…		(information	printed	out	by	the	program)

		sqlite>	CREATE	TABLE	Person	(

				…>					firstName	VARCHAR(30)	NOT	NULL,

				…>					lastName	VARCHAR(30)	NOT	NULL,

				…>					birthYear	INT,

				…>					PRIMARY	KEY	(firstName,	lastName)

				…>);

sqlite>	.quit

The	last	command	(‘.quit’	for	SQLite,	‘quit’	for	MySQL)	exits	us	from	the	SQL	prompt
back	to	the	operating-system	prompt.	With	MySQL	it	would	be	the	same	except	we	would
probably	need	to	specify	a	username	and	enter	a	password:

>	mysql	–u	USERNAME	–p	PersonDb

Enter	password:

…		(information	printed	out	by	the	program)

mysql>	CREATE	TABLE	Person	(

				->					firstName	VARCHAR(30)	NOT	NULL,

				->					lastName	VARCHAR(30)	NOT	NULL,

				->					birthYear	INT,

				->					PRIMARY	KEY	(firstName,	lastName)

				->);

mysql>	quit

Here	USERNAME	should	be	replaced	with	the	appropriate	value.	And	the	‘-p’	flag	tells
the	 mysql	 program	 to	 ask	 for	 a	 password	 before	 SQL	 commands	 can	 be	 entered.
Alternatively,	 and	 this	 is	 the	 normal	 practice,	 we	 could	 put	 the	 command	 (or	 more
generally,	 commands)	 into	 a	 file	 and	 run	 this.	 So	 suppose	 we	 place	 this	 CREATE
command	 in	 a	 file	 called	 createPersonTable.sql,	 then	 to	 create	 the	 table	 in	 SQLite	 we
would	run:

>	sqlite3	PersonDb	<	createPersonTable.sql

This	just	runs	the	script.	It	does	not	then	leave	you	at	the	SQL	prompt,	but	instead	back
at	the	operating-system	prompt.	With	MySQL	it	would	be	the	same	except	for	the	issue	of
the	username	and	password:

>	mysql	–u	USERNAME	–p	PersonDb	<	createPersonTable.sql

Manipulating	records
To	 add	 records	 to	 the	 database	 we	 use	 the	 INSERT	 command.	 Here	 we	 must	 specify
values	 for	 the	 columns	 that	 are	 mandatory	 (i.e.	 NOT	 NULL),	 but	 naturally	 can	 also
specify	 the	values	for	other	columns.	For	example,	 the	following	commands	 insert	 three
records	into	the	Person	table:

INSERT	INTO	Person	(firstName,	lastName)	VALUES	('Mary',	'Jones');

INSERT	INTO	Person	(firstName,	lastName)	VALUES	('Tom',	'Smith	');

INSERT	INTO	Person	(firstName,	lastName,	birthYear)	VALUES	('Susan',	

'Brown',

1723);

We	can	modify	the	data	in	existing	records,	subject	to	the	various	constraints,	such	as
data	type	and	uniqueness	of	the	primary	key,	still	being	satisfied:

UPDATE	Person	SET	birthYear=1942	WHERE	lastName=	'Smith';

UPDATE	Person	SET	firstName=	'Ann',	birthYear=2001	WHERE	lastName=	'Jones';

We	 can	 query	 the	 database	 and	 determine	 which	 records	 satisfy	 specified	 constraint
criteria	(here	born	after	1900):

SELECT	lastName	FROM	Person	WHERE	birthYear	>	1900;

To	remove	records	from	the	database	we	use	the	DELETE	command.	We	can	specify
conditions	 for	 deletion:	 for	 example,	 the	 following	 only	 deletes	 records	 where	 the
firstName	is	‘Mary’:

DELETE	FROM	Person	WHERE	firstName=	'Mary';

And	the	following	deletes	records	where	the	lastName	is	‘Brown’	and	the	birthYear	 is
1723:

DELETE	FROM	Person	WHERE	lastName=	'Brown'	AND	birthYear=1723;

We	can	delete	all	the	records	in	one	go	from	a	table	by	omitting	the	WHERE	clause:

DELETE	FROM	Person;

This	does	not	remove	the	table,	just	all	the	records	inside	the	table.	To	remove	an	entire
table	from	the	database	we	use	the	DROP	command:

DROP	TABLE	Person;

These	last	two	commands	are	rather	dramatic	in	their	effect	and	obviously	should	only
be	carried	out	with	due	care.	SQL	has	much	more	complexity	than	we	have	shown	in	this
section,	but	this	is	enough	to	get	started.	This	is	a	book	about	Python	after	all.

Designing	a	molecular	structure	database
In	this	section	we	use	the	model	for	molecular	structures	described	in	Chapter	8	to	create	a
database	for	structures.	Recall	 that	we	had	four	classes	(object	specifications):	Structure,
Chain,	Residue	and	Atom.	We	will	create	a	table	for	each	class,	with	the	name	of	the	table
being	the	same	as	that	of	the	corresponding	class.

For	 each	 of	 the	 tables	 (classes)	 there	 will	 be	 columns	 (attributes)	 that	 could	 act	 as
natural	keys	with	real	meaning,	 to	 identify	each	item	of	data.	However,	 instead	of	using
these	we	will	use	serial	number	keys	(integers)	to	identify	each	item,	and	let	the	database
automatically	 generate	 them.	Hence	 they	will	 be	 unique	 by	 construction.	 Both	MySQL
and	SQLite	have	the	ability	to	automatically	generate	serials.	Note	that	these	automatically
generated	serial	numbers	are	unique	across	 the	whole	 table,	not	 just	unique	relative	 to	a
local	 context	 (e.g.	 a	 parent	 container	 item).	 Although	 it	 might	 seem	 better	 to	 use
meaningful	natural	keys,	like	the	Atom.name	that	we	set	up	in	the	structure	data	model,	a
serial	number	key	has	many	advantages,	not	least	of	which	is	that	if	it	is	unique	across	the
table	 (as	 it	 is	here)	 then	 it	 only	 requires	 this	one	column	 to	 specify	 the	key.	 If	we	used
natural	keys,	or	a	serial	key	that	was	only	unique	relative	to	the	parent,	then	child	tables
would	have	to	include	the	full	key	of	the	parent	table,	and	so	that	includes	the	grandparent
key,	the	great-grandparent	key	etc.,	and	that	gets	rather	long	when	you	are	deep	down	in
the	parent-child	containment	hierarchy.	Take,	 for	example,	 the	Atom:	again	 the	full	key,
considering	 all	 the	 parent	 links,	 would	 need	 to	 include	 Structure.pdbId,
Structure.conformation,	Chain.code,	Residue.seqId	and	Atom.name.	We	do	need	another
column	 in	 the	child	 table,	 for	 the	 serial	key	of	 the	parent,	 in	order	 that	we	know	which
child	goes	with	which	parent,	but	that	is	a	total	of	two	columns	only.	That	second	column

is	called	a	foreign	key	because	it	refers	to	a	key	in	a	different	table.

The	 Structure	 class	 has	 three	 attributes,	 name,	 conformation	 and	 pdbId.	 In	 the	 class
only	name	was	mandatory,	but	here	we	will	assume	that	all	three	are	now	mandatory.	And
then	 the	conformation	and	pdbId	 together	provide	 a	natural	key	 for	 the	 table.	When	we
add	a	new	Structure	 to	 the	database	we	want	 to	make	sure	 that	(conformation,	pdbId)	 is
not	already	used,	and	the	database	will	not	automatically	do	that	because	we	are	using	a
serial	key,	not	the	natural	key.	Note	that	the	Structure	constructor	code	cannot	check	that
these	are	unique	because	there	is	no	parent	class	(containing	other	structures),	so	there	is
no	way	for	the	constructor	to	check	what	other	(conformation,	pdbId)	values	have	already
been	used.	We	could	have	modelled	a	parent	class	for	Structure,	and	called	it	Database,	in
which	case	this	check	could	have	been	put	in	the	Structure	constructor,	but	we	did	not	do
it	 this	way.	So	 instead	we	have	 to	check	the	uniqueness	of	(conformation,	pdbId)	 in	our
own	code	that	acts	as	a	bridge	between	the	class	and	the	table.	In	summary,	the	Structure
table	will	have	four	columns:	id	(for	the	serial	key),	name,	conformation	and	pdbId,	which
are	all	mandatory.

For	 all	 the	 other	 classes,	we	do	not	 have	 this	 issue	with	 the	natural	 key,	 because	 the
uniqueness	 is	explicitly	checked	 in	 the	corresponding	class	constructor.	The	Chain	 class
has	two	attributes,	code	and	molType,	and	a	link	to	the	parent	Structure.	As	discussed,	the
key	for	the	Chain	table	will	be	an	auto-generated	serial,	and	the	link	to	the	parent	structure
will	be	modelled	as	a	foreign	key.	So	the	Chain	table	will	have	four	columns:	id	(for	the
serial	key),	structureId	(for	 the	parent	serial	key),	code	and	molType.	The	Residue	class
has	two	attributes,	seqId	and	code,	and	a	link	to	the	parent.	So	the	Residue	table	will	have
four	 columns:	 id	 (for	 the	 serial	 key),	 chainId	 (for	 the	 parent	 serial	 key)	 and	 seqId	 and
code.

The	Atom	class	has	three	attributes,	name,	coords	and	element,	and	a	link	to	the	parent.
Here	we	face	an	issue,	because	coords	has	three	values	(x,	y	and	z),	not	one,	and	not	all
SQL	implementations	allow	many-valued	columns	(as	the	ARRAY	data	type).	There	are
two	 possible	 solutions	 here.	 We	 could	 introduce	 a	 new	 table,	 just	 for	 the	 coordinates.
Having	a	new	table	is	a	possible	approach	for	many-valued	attributes.	In	this	approach	we
could	call	 the	new	table	AtomCoord,	with	columns	 id	 (for	a	serial	key),	atomId	(for	 the
relevant	atom	serial	key),	dim	(for	the	dimension	being	considered,	1,	2	or	3)	and	coord
(for	the	coordinate	for	that	dimension).	This	works	pretty	well	in	the	SQL	context.	But	we
will	take	another	approach	here,	relying	on	the	fact	that	coords	is	always	of	length	3.	So
we	will	stay	with	one	 table	and	split	 the	attribute	coords	into	three	columns,	x,	y	and	z.
The	code	that	bridges	between	the	Atom	class	and	the	Atom	table	will	have	to	deal	with
translating	from	coords	to	(x,	y,	z)	and	back	again.	If	we	had	introduced	a	new	table	then
the	bridging	code	would	have	had	to	deal	with	that,	which	is	more	complicated.	The	Atom
table	will	thus	have	seven	columns,	id	(for	the	serial	key),	residueId	(for	the	parent’s	serial
key),	name	 (for	 the	atom	name),	x,	y,	z	 (for	 the	coordinates)	and	element	 (for	 the	 atom
element	type,	e.g.	‘C’	or	‘N’).

SQL	creation	of	the	database
Although	we	could	use	Python	to	create	the	database	and	the	tables	in	the	database,	this	is
often	done	directly	in	SQL	because	it	is	a	one-off	exercise	(except	occasional	upgrades	to

the	data	model)	and	there	are	no	particular	advantages	to	using	Python	in	this	context.

To	create	a	database	in	SQLite	we	just	need	to	refer	to	it	when	we	do	anything,	so	in
particular	when	we	create	 the	 tables	 it	will	 automatically	 create	 the	database	 if	 it	 is	not
already	created.	In	MySQL	you	have	to	create	the	empty	database	before	you	can	use	it,
and	often	the	system	administrator	has	to	do	this	for	you,	and	set	up	suitable	privileges	so
that	you	can	access	it.	We	will	assume	here	that	the	database	has	been	created.

Given	 the	model	discussed	 in	 the	previous	 section,	 the	 table	 creation	 in	SQLite	 is	 as
follows:

CREATE	TABLE	structure	(

			id	INTEGER,

			name	TEXT	NOT	NULL,

			pdbId	TEXT	NOT	NULL,

			conformation	INTEGER	NOT	NULL,

			PRIMARY	KEY	(id)

);

CREATE	TABLE	chain	(

					id	INTEGER,

				structureId	INTEGER	NOT	NULL,

				molType	TEXT	NOT	NULL,

				code	TEXT	NOT	NULL,

				PRIMARY	KEY	(id),

				FOREIGN	KEY	(structureId)	REFERENCES	structure(id)

);

CREATE	TABLE	residue	(

					id	INTEGER,

					chainId	INTEGER	NOT	NULL,

					seqId	INTEGER	NOT	NULL,

					code	TEXT,

					PRIMARY	KEY	(id),

					FOREIGN	KEY	(chainId)	REFERENCES	chain(id)

);

CREATE	TABLE	atom	(

					id	INTEGER,

					residueId	INTEGER	NOT	NULL,

					name	TEXT	NOT	NULL,

					x	FLOAT	NOT	NULL,					y	FLOAT	NOT	NULL,

					z	FLOAT	NOT	NULL,

					element	TEXT	NOT	NULL,

					PRIMARY	KEY	(id),

					FOREIGN	KEY	(residueId)	REFERENCES	residue(id)

);

Figure	20.1.	 SQL	database	showing	two	tables.	The	table	header	shows	what	data	is
stored	in	the	table,	and	each	row	represents	one	record	of	data.	Here	the	second	table,
Chain,	has	a	link,	called	a	foreign	key,	to	the	first	table,	Structure.	Thus,	for	each	row	in
the	Chain	table	there	is	a	unique	row	in	the	Structure	table	(but	not	vice	versa,	in	general).

The	table	creation	in	MySQL	is	the	same	except	that	we	need	to	explicitly	specify	the
automatic	increment	feature	of	the	primary	keys	in	each	of	the	four	tables:

id	INTEGER	AUTO_INCREMENT,

We	use	‘CREATE	TABLE’	followed	by	the	table	name,	to	create	that	table,	and	then	we
list	 the	columns	 that	exist	 in	 the	 table,	with	 their	properties.	The	‘NOT	NULL’	property
means	 that	 the	 corresponding	 attribute	 is	 mandatory.	 Here,	 most	 of	 our	 attributes	 are
mandatory.	 The	 PRIMARY	 KEY	 indicates	 the	 column	 or	 columns	 that	 make	 up	 the
primary	 key.	 And	 the	 FOREIGN	 KEY	 indicates	 that	 the	 relevant	 column	 refers	 to	 a
column	(normally	a	key)	in	another	table.	In	particular,	on	insertion	of	any	record	in	this
table,	the	SQL	implementation	should	check	that	there	is	a	record	in	the	other	table	with	a
value	in	the	other	column	equal	to	that	for	the	column	in	this	table.	In	essence	it’s	about
consistency	of	information	between	tables.

If	we	place	these	SQL	commands	in	a	file	called	createStructureTables.sql	and	assume

that	 the	 database	 is	 called	 StructureDb,	 we	 can	 then	 create	 the	 tables	 by	 issuing	 the
following	operating-system	command	for	SQLite	(at	the	command	line	prompt):

>	sqlite3	StructureDb	<	createStructureTables.sql

We	could	also	create	the	equivalent	script	that	deletes	(or	‘drops’)	 the	 tables,	and	that
would	be	accomplished	by	the	much	simpler	SQL	script:

DROP	TABLE	structure;

DROP	TABLE	chain;

DROP	TABLE	residue;

DROP	TABLE	atom;

If	we	place	that	in	the	file	dropStructureTables.sql,	then	we	can	delete	the	tables	via:

>	sqlite3	StructureDb	<	dropStructureTables.sql

Obviously	one	has	to	be	very	careful	about	running	such	a	script.	It	is	good	for	testing
purposes,	but	in	real	life	it	would	be	unusual	to	want	to	delete	an	entire	set	of	tables	like
this.	The	MySQL	versions	of	dropping	tables	would	be	the	same	except	for	 the	possible
requirement	of	a	username	and	password.

>	mysql	–u	USERNAME	–p	StructureDb	<	createStructureTables.sql

>	mysql	–u	USERNAME	–p	StructureDb	<	dropStructureTables.sql

You	could	 also	write	SQL	 scripts	 to	 insert,	modify,	 query	 and	delete	 records,	 but	we
will	do	 this	using	Python.	 If	 instead	of	having	one	 table	per	class	we	decided	 to	 instead
have	 just	 one	 table	 containing	 all	 the	 information,	much	of	 it	 redundant,	 then	we	 could
have	the	following	creation	command	(in	SQLite):

CREATE	TABLE	structure	(

			id	INTEGER,

			structureName	TEXT	NOT	NULL,

			structurePdbId	TEXT	NOT	NULL,

			structureConformation	INTEGER	NOT	NULL,

			chainMolType	TEXT	NOT	NULL,

			chainCode	TEXT	NOT	NULL,

			residueSeqId	INTEGER	NOT	NULL,

			residueCode	TEXT,

			atomName	TEXT	NOT	NULL,

			atomX	FLOAT	NOT	NULL,

			atomY	FLOAT	NOT	NULL,

			atomZ	FLOAT	NOT	NULL,

			atomElement	TEXT	NOT	NULL,

			PRIMARY	KEY	(id)

);

In	 MySQL	 we	 would	 add	 AUTO_INCREMENT	 to	 the	 id.	 Note	 that	 the	 ‘ATOM’
records	in	a	PDB	file	could	be	thought	of	as	representing	this	kind	of	table,	and	indeed	in	a
PDB	file	there	is	much	redundant	information,	e.g.	the	residue	code	is	repeated	over	and
over	for	each	atom	in	the	same	residue.	As	noted	previously,	this	kind	of	universal	table
can	be	desirable	if	the	database	is	mainly	for	querying.

Python	interaction	with	the	database
In	Chapter	8	we	read	a	PDB	file	and	created	one	or	more	Structure	objects	as	a	result.	In
this	section	we	show	how	to	put	a	Structure	object	into	a	database.	The	Python	wrapping
around	SQLite	is	handled	in	a	package	called	sqlite3,	which	is	automatically	included	with
the	 standard	 Python	 distribution.	 The	 Python	 wrapping	 around	 MySQL	 is	 called
MySQLdb,	 which	 requires	 a	 separate	 installation.	 Mechanically	 they	 both	 work	 in	 the
same	way;	the	main	differences	in	the	Python	modules	correspond	to	any	differences	that
exist	for	the	underlying	SQL	commands.

The	 first	 thing	 that	we	need	 to	do	 is	 to	make	a	connection	 to	 the	database.	For	most
database	implementations	this	optionally	allows	a	username	and	password	to	be	supplied,
and	in	a	real-world	situation	this	would	normally	be	required.	In	SQLite	the	concept	of	a
username	 and	 password	 does	 not	 exist,	 and	 instead	 access	 is	 totally	 determined	 by	 the
user’s	permissions	 to	 the	 file	 that	contains	 the	database.	As	an	example,	with	sqlite3,	 to
connect	to	a	database,	we	just	have	to	do:

import	sqlite3

connection	=	sqlite3.connect(database)

whereas	with	MySQLdb	we	would	instead	do,	if	a	username,	assumed	to	be	stored	in	the
variable	user,	and	password,	assumed	to	be	stored	in	the	variable	pwd,	were	required:

import	MySQLdb

connection	=	MySQLdb.connect(db=database,	user=user,	passwd=pwd)

When	we	are	finished	with	a	connection	we	can	just	close	it:

connection.close()

There	is	a	further	subtlety	with	databases,	compared	to	storing	data	in	regular	files:	at
any	 point	 you	 can	 decide	 to	 commit	 or	 roll	 back	 any	 changes	 you	 have	 made	 to	 the
database	 since	 the	 last	 time	 you	 committed	 changes,	 or,	 if	 you	 have	 not	 previously
committed	 any	 changes,	 since	 you	 connected	 to	 the	 database.	 This	 is	 an	 exceedingly
powerful	ability.	So	if	the	changes	are	acceptable,	then	you	can	commit	them:

connection.commit()

and	otherwise	you	can	discard	them	and	go	back	to	your	previous	state:

connection.rollback()

Note	that	if	you	close	a	connection	without	doing	a	commit	then	all	changes	will	have
been	 lost.	 For	 many	 database	 implementations,	 connection	 is	 a	 relatively	 heavyweight
operation	to	carry	out,	so	normally	we	would	want	to	make	a	connection	to	the	database,
carry	out	many	commands	and	then	disconnect,	rather	than	connecting	and	disconnecting
for	every	single	command.

A	second	step	 is	 required	before	any	SQL	command	can	be	executed,	which	 is	 that	a
cursor	needs	to	be	created	for	the	connection.	This	is	much	more	lightweight,	so	can	be
done	on	a	regular	basis.	An	SQL	command	is	executed	using	the	cursor,	and	the	result	is
then	 returned.	 In	 some	 sense,	 you	 can	 think	 of	 a	 cursor	 as	 an	 opaque	 handle	 into	 the

database,	 in	much	 the	 same	way	 that	 the	Python	open()	 command	 supplies	 an	object	 to
handle	a	file	on	disk.	To	get	hold	of	a	cursor	from	a	connection	we	just	have	to	do:

cursor	=	connection.cursor()

When	you	are	done	with	a	cursor	you	can	close	it:

cursor.close()

The	cursor	allows	execution	of	SQL	commands.	For	example,	suppose	you	want	to	find
the	records	in	the	Structure	table	with	pdbId=‘1AFO’.	Then	you	can	do:

stmt	=	"select	*	from	structure	where	pdbId='1AFO'"

cursor.execute(stmt)

Note	that	the	statement	has	no	semicolon	(‘;’)	at	the	end.

The	execute()	 function	does	not	return	 the	result	 from	executing	 the	command.	There
are	 a	 couple	 of	 further	 functions	 you	 can	 call	 to	 get	 at	 the	 actual	 result,	 if	 there	 is	 one
(some	commands,	 such	as	 insertions,	never	 return	a	 result).	 In	 the	way	 that	 file	handles
have	two	functions,	readline()	and	readlines()	to	either	read	the	next	line	in	the	file	or	all
the	remaining	lines,	a	cursor	has	the	equivalent	functionality	for	the	result	from	a	cursor
execution.	So	the	function	fetchone()	gives	the	next	record,	or	None	if	there	are	no	more.
And	the	function	fetchall()	returns	all	the	remaining	records,	or	an	empty	list	if	there	are
no	more.

Each	record	in	the	result	 is	a	 tuple,	but	what	is	 in	the	tuple	depends	on	the	command
executed.	For	example,	the	above	query	uses	‘*’	in	the	query	so	returns	all	the	columns	for
the	table,	which	in	this	case	are	four	in	number,	so	the	tuple	for	every	result	record	will	be
of	length	four.	Thus	we	could	have	the	following	loop:

for	(structureId,	name,	pdbId,	conformation)	in	cursor.fetchall():

		print(pdbId,	conformation)		#	or	whatever

The	way	we	have	 coded	 it,	 the	 above	query	 just	 uses	 the	 constant	 ‘1AFO’	 to	 do	 the
query.	In	most	normal	applications	the	conditions	would	be	provided	by	variables	rather
than	by	constants.	This	raises	a	slightly	tricky	issue.	So	it	would	be	natural,	from	a	Python
point	of	view,	to	do	the	following:

stmt	=	"select	*	from	structure	where	pdbId='%s'"	%	pdbId

cursor.execute(stmt)

But	 this	 is	 not	 the	 recommended	 methodology,	 because	 it	 makes	 the	 application
vulnerable	to	an	‘SQL	injection	attack’.	So	you,	as	a	developer,	might	think	that	the	pdbId
variable	is	harmless,	because	it	is	just	a	PDB	id.	But	unless	you	can	guarantee	the	source
of	the	information	in	this	variable,	it	might	contain	malicious	SQL	code.	For	example,	if
you	ask	the	user	for	a	PDB	id	and	they	enter:

"0'	or	'0'='0"

the	statement	would	then	become:

stmt	=	"select	*	from	structure	where	pdbId='0'	or	'0'='0'"

The	 second	condition	 in	 the	where	 clause	 is	 always	 true	 so	 this	 query	 returns	 all	 the
records	 in	 the	Structure	 table,	which	 is	 not	 the	 intended	 result.	 Imagine	 the	 trouble	 that
would	be	caused	if	instead	of	a	query	this	were	a	delete	command.	The	recommendation	is
instead	 to	 use	 a	 placeholder	 for	 each	value,	 and	 to	 set	 them	 in	 the	 execute	 function.	 In
sqlite3	the	placeholder	is	a	question	mark	(‘?’):

stmt	=	"select	*	from	structure	where	pdbId=?"

values	=	(pdbId,)

cursor.execute(stmt,	values)

In	 MySQLdb	 the	 placeholder	 is	 ‘%s’,	 otherwise	 the	 syntax	 is	 the	 same.	 So	 in
MySQLdb	the	statement	would	be

stmt	=	"select	*	from	structure	where	pdbId=%s"

Note	that	there	are	no	single	quotation	marks	around	the	placeholder	in	the	statement,
which	 is	nice,	because	 it	means	you	do	not	have	 to	worry	about	whether	 a	 column	 is	 a
string	 or	 not.	 The	 second	 argument	 to	 execute()	 has	 to	 be	 a	 tuple,	 even	 if	 only	 one
condition	is	being	set.	As	an	example	with	two	conditions,	consider	the	query	(syntax	for
sqlite3):

stmt	=	"select	*	from	structure	where	pdbId=?	and	conformation=?"

values	=	(pdbId,	conformation)

cursor.execute(stmt,	values)

Adding	a	structure	to	the	database
The	basic	ideas	of	how	to	deal	with	the	Python	wrapper	around	SQL	were	discussed	in	the
previous	section.	Here	we	provide	an	implementation	of	how	we	can	add	a	structure	item,
including	 all	 of	 its	 chains,	 residues	 and	 atoms,	 into	 the	 database.	 The	 example	 below
works	 for	 both	 sqlite3	 and	 MySQLdb	 because	 we	 use	 the	 simple	 function
formatStatement()	to	insert	 the	correct	placeholder	text	in	all	 the	statements,	substituting
using	the	normal	Python	string	format	code	%s.

def	formatStatement(text,	placeHolder):

		if	placeHolder	==	'%s':

				return	text

		numInserts	=	text.count('%s')

		return	text	%	numInserts*(placeHolder,)

The	 code	 below	 executes	 one	SQL	 command	 for	 each	 record	 being	 inserted	 into	 the
database.	 In	 general	 SQL	 commands	 are	 rather	 slow	 to	 execute.	 It	 would	 be	 better	 to
bundle	 several	 SQL	 insert	 statements	 into	 each	 command.	 SQLite	 does	 not	 offer	 this
functionality	so	the	method	below	is	the	only	one	used	in	this	case.	But	MySQL	does	offer
the	ability	to	bundle	several	insert	statements	into	each	command,	and	after	we	discuss	the
generic	version	 then	we	will	modify	 the	 code	 to	 take	 advantage	of	 this	 feature.	 In	 real-
world	 applications	 requiring	 reasonable	 performance,	 the	 following	 code	 would	 not	 be
acceptable	(and	so	SQLite	would	not	be	acceptable).	But	we	illustrate	here	nonetheless	for

educational	purposes.

The	function	definition	has	 three	arguments:	a	database	connection,	a	structure	object
and	a	placeHolder,	which	defaults	to	the	MySQLdb	value.	The	function	first	gets	a	cursor,
with	which	interactions	with	the	database	will	take	place.

def	addStructureToDb(connection,	structure,	placeHolder='%s'):

		cursor	=	connection.cursor()

We	 first	 check	 whether	 there	 is	 already	 a	 structure	 with	 the	 same	 pdbId	 and
conformation	in	the	database.	If	so,	we	raise	an	error	exception.

pdbId	=	structure.pdbId

conformation	=	structure.conformation

stmt	=	"select	*	from	structure	where	pdbId=%s	and	conformation=%s"

stmt	=	formatStatement(stmt,	placeHolder)

cursor.execute(stmt,	(pdbId,	conformation))

if	cursor.fetchone():

		cursor.close()

		msg	=	'structure	with	(pdbId=%s,	conformation=%s)	already	known'

		raise	Exception(msg	%	(pdbId,	conformation))

If	 there	is	any	kind	of	error	when	inserting	the	structure	into	the	database	we	want	to
roll	back	(reverse)	 the	 transaction,	so	we	put	 the	entire	code	into	a	 try/except	block.	We
then	 insert	 the	relevant	structure	data	 into	 the	 structure	 table.	Note	 that	 after	 a	 record	 is
inserted	into	the	database,	 the	identifier	of	 that	record	can	be	found	via	cursor.lastrowid.
This	identifier	is	then	used	when	creating	the	child	records.	Here	it	is	the	structureId.

try:

		stmt	=	"insert	into	structure	(name,	pdbId,	conformation)	"	\

									"values	(%s,	%s,	%s)"

		stmt	=	formatStatement(stmt,	placeHolder)

		cursor.execute(stmt,	(structure.name,	pdbId,	conformation))

		structureId	=	cursor.lastrowid

We	 then	 descend	 down	 the	 rest	 of	 the	 hierarchy:	Chain,	Residue	 and	Atom,	 in	 turn.
First	we	add	the	chains.

for	chain	in	structure.chains:

		molType	=	chain.molType

		code	=	chain.code

		stmt	=	"insert	into	chain	(structureId,	molType,	code)	"	\

									"values	(%s,	%s,	%s)"

		stmt	=	formatStatement(stmt,	placeHolder)

		cursor.execute(stmt,	(structureId,	molType,	code))

		chainId	=	cursor.lastrowid

Then	we	add	the	residues.

for	residue	in	chain.residues:

		seqId	=	residue.seqId

		#	insert	residue	into	database

		stmt	=	"insert	into	residue	(chainId,	seqId,	code)	"	\

									"values	(%s,	%s,	%s)"

		stmt	=	formatStatement(stmt,	placeHolder)

		cursor.execute(stmt,	(chainId,	seqId,	residue.code))

		residueId	=	cursor.lastrowid

Finally	we	add	the	atoms.	This	is	the	longest,	and	slowest,	part	of	the	operation.

for	atom	in	residue.atoms:

		#	insert	atom	into	database

		(x,	y,	z)	=	atom.coords

		stmt	=	"insert	into	atom	"	\

									"(residueId,	name,	x,	y,	z,	element)	"	\

									"values	(%s,	%s,	%s,	%s,	%s,	%s)"

		stmt	=	formatStatement(stmt,	placeHolder)

		cursor.execute(stmt,

			(residueId,	atom.name,	x,	y,	z,	atom.element))

If	 there	 are	 no	 errors	 then	 we	 close	 the	 cursor.	 Technically	 speaking,	 Python	would
eventually	close	the	cursor	in	any	case,	but	it’s	better	to	be	explicit.	Finally,	we	commit	the
transaction.

cursor.close()

connection.commit()

If	there	was	an	error	then	we	again	close	the	cursor.	An	error	exception	could	occur	for
a	few	reasons.	For	example,	the	database	connection	might	be	lost.	Or	the	pdbId	might	not
have	been	set	(this	is	not	required	in	the	Structure	class	constructor).	If	there	has	been	an
exception	 we	 do	 a	 rollback,	 to	 restore	 the	 previous	 state,	 and	 afterwards	 re-raise	 the
originating	exception	object.

except	Exception	as	e:		#	syntax	from	Python	2.6

		cursor.close()

		try:

				connection.rollback()

		except:

				pass

		raise	e	#	re-raise	original	exception

Now	we	can	test	the	above	on	data	from	a	PDB	file.	We	only	want	to	run	this	test	code
if	the	module	is	run	directly,	rather	than	imported	from	another	module,	so	we	use	a	check
on	__name__.	The	user	should	specify	the	database	name	and	PDB	file,	otherwise	an	error
is	given	and	the	program	exited.	We	then	read	the	structures	from	a	file,	using	the	function
getStructuresFromFile()	from	Chapter	8.

if	__name__	==	'__main__':

		import	sys

		if	len(sys.argv)	!=	3:

				print('need	to	specify	database	and	PDB	file')

				sys.exit(1)

		database	=	sys.argv[1]

		pdbFile	=	sys.argv[2]

		from	Modelling	import	getStructuresFromFile

		structures	=	getStructuresFromFile(pdbFile)

We	then	open	a	connection	and	pass	that	object	into	the	addStructureToDb()	 function.
This	 is	 just	 a	matter	 of	 taste.	We	 could	 instead	 have	 passed	 in	 the	 database	 name	 (and
username	and	password,	if	needed)	and	opened,	and	then	at	the	end,	closed	the	connection
inside	the	function.	In	sqlite3	we	can	open	the	connection	just	with	the	database	name:

import	sqlite3

connection	=	sqlite3.connect(database)

placeHolder	=	'?'

In	MySQLdb	we	also	need	a	username	and	password.	We	assume	that	the	user	for	the
database	 is	 the	same	as	 returned	by	getpass.getuser(),	and	similarly	 for	 the	password.	 In
general	this	might	not	be	the	case,	so	the	test	code	might	need	tweaking	here.	(It	is	just	test
code,	 though.)	Accordingly,	 the	MySQLdb	alternative	to	 the	above	block	of	code	would
be	something	like:

import	MySQLdb

import	getpass

user	=	getpass.getuser()

pwd	=	getpass.getpass()

connection	=	MySQLdb.connect(db=database,	user=user,	passwd=pwd)

placeHolder	=	'%s'

We	then	add	the	structures	into	the	database,	one	after	the	other.	We	wrap	the	code	in	a
try/finally	 block	 so	 that	 we	 always	 close	 the	 connection	 whether	 or	 not	 an	 error	 has
occurred.	Again,	Python	would	do	 this	 automatically,	 but	 it’s	better	 to	be	 explicit.	Note
that	the	way	the	code	is	written,	if	we	get	an	error	adding	some	structure,	then	the	previous
structures	will	remain	in	the	database	because	those	transactions	will	have	been	committed
in	addStructureToDb().	An	alternative	would	be	to	do	the	transaction	management	here,	so
that	either	all	the	structures	are	inserted,	or	none	of	them	is.

try:

		for	structure	in	structures:

				addStructureToDb(connection,	structure,	placeHolder)

finally:

		connection.close()

Now	we	consider	how	to	change	the	code	to	allow	several	insert	statements	into	each
SQL	command	 that	 is	 executed.	This	 is	 possible	 in	MySQL	but	 not	 in	SQLite,	 and	 the
below	is	how	this	kind	of	application	should	be	implemented	in	practical	situations.	The

simplest	change	is	 to	 insert	 the	atom	records	for	a	given	residue	in	one	command,	since
normally	 there	 are	 many	 atoms	 per	 residue,	 but	 to	 leave	 the	 other	 records,	 for	 the
structure,	chains	and	residues,	 inserted	one	at	a	 time.	 In	 this	case,	 the	only	modification
required	in	the	code	is	the	innermost	loop,	which	now	looks	like:

values	=	[]

for	atom	in	residue.atoms:

		(x,	y,	z)	=	atom.coords

		values.extend([residueId,	atom.name,	x,	y,	z,	atom.element])

nAtoms	=	len(values)	/	6

atomPlaceHolder	=	'(%s,	%s,	%s,	%s,	%s,	%s)'

atomPlaceHolder	=	nAtoms	*	[atomPlaceHolder]

atomPlaceHolder	=	','.join(atomPlaceHolder)

stmt	=	"insert	into	atom"	\

							"	(residueId,	name,	x,	y,	z,	element)	values	"	\

							+	atomPlaceHolder

cursor.execute(stmt,	values)

The	values	 that	 are	going	 to	be	 inserted	 into	 the	 atom	 table	 are	 stored	 in	 an	 array.	 It
would	be	natural,	 from	a	Python	point	of	view,	 to	 store	 this	 as	 a	 list	 of	 lists,	with	 each
inner	list	being	the	six	pieces	of	data	relevant	for	each	atom	(residue	ID,	atom	name,	x,	y,
z,	chemical	element).	But	 the	way	MySQLdb	works	 this	 is	not	possible,	and	 instead	we
have	 to	 store	 everything	 in	 one	 long	 list.	 The	 variable	 nAtoms	 is	 the	 number	 of	 atom
records	being	inserted,	and	this	is	the	length	of	values	divided	by	6	because	there	are	six
pieces	 of	 data	 for	 each	 atom.	 The	MySQL	 syntax	 for	 inserting	multiple	 records	 into	 a
database	 does	 expect	 a	 list	 of	 lists,	 and	 this	 gives	 rise	 to	 the	 slightly	 complicated
construction	 of	 the	 variable	 atomPlaceHolder.	 For	 example,	 if	 nAtoms	 is	 2	 then
atomPlaceHolder	would	 be	 the	Python	 string	 ‘(%s,	%s,	%s,	%s,	%s),(%s,	%s,	%s,	%s,
%s)’.

On	 a	 test	 protein	with	 a	 total	 of	 20	 structures,	 40	 chains,	 1600	 residues	 and	 26,440
atoms	 (around	 17	 atoms	 per	 residue)	 the	 time	 to	 insert	 this	 data	 into	 the	 database	was
reduced	 by	 a	 factor	 of	 around	 3.5	 in	 comparison	 with	 the	 original	 method.	 So	 this	 is
definitely	 worth	 doing	 (although	 as	 noted,	 it	 cannot	 be	 done	 with	 SQLite).	 A	 further
optimisation	is	to	insert	all	the	structures	in	one	go,	then	all	the	chains	in	one	go	etc.	This
is	 left	 as	 an	 exercise	 for	 the	 reader.	On	 the	 test	 protein	 this	 further	 reduced	 the	 time	 to
insert	the	data	by	around	another	25%,	so	is	a	much	smaller	effect.

Getting	a	structure	from	the	database
The	converse	operation	from	the	previous	section	is	to	load	a	structure	from	the	database
into	a	Structure	object.	Standard	SQL	allows	all	the	data	to	be	fetched	in	one	query	of	the
database,	 and	 this	 is	 the	way	 it	 should	 be	 done	 for	 reasons	 of	 efficiency.	The	Structure
object	is	then	created	from	the	returned	result.

The	single	query	is	rather	long:	for	example,	in	SQLite	it	would	be:

stmt	=	"SELECT	structure.name,	chain.molType,	chain.code,

residue.seqId,	residue.code,	atom.name,	atom.x,	atom.y,	atom.z	FROM

structure,	chain,	residue,	atom	WHERE	structure.pdbId=?	AND

structure.conformation=?	AND	structure.id=chain.structureId	AND

chain.id=residue.chainId	AND	residue.id=atom.residueId	ORDER	BY

chain.id,	residue.id,	atom.id"

Note	that	all	the	tables	are	included	in	the	FROM	clause	and	all	the	parent-child	ids	are
explicitly	 checked	 as	 being	 equal	 in	 the	 WHERE	 clause	 (these	 are	 table	 ‘joins’),	 in
addition	to	the	usual	check	on	pdbId	and	conformation.	Where	the	column	names	are	not
unique	we	have	to	include	the	table	name	as	a	qualifier.	Here,	for	the	sake	of	clarity,	we
have	always	included	the	table	name,	even	when	the	column	name	is	unique.

In	the	function	we	first	get	the	cursor	object.

from	Structures	import	Structure,	Chain,	Residue,	Atom

def	getStructureFromDb(connection,	pdbId,	conformation=1,

																							placeHolder='%s'):

		cursor	=	connection.cursor()

We	wrap	the	code	in	a	try/finally	block	so	that	we	always	close	the	cursor	at	 the	end,
whether	or	not	there	is	an	error.	We	then	get	the	complete	record	from	the	database.	If	that
fails	then	we	raise	an	error	exception.

try:

		stmt	=	"SELECT	structure.name,	chain.molType,	chain.code,

residue.seqId,	residue.code,	atom.name,	atom.x,	atom.y,	atom.z,

atom.element	FROM	structure,	chain,	residue,	atom	WHERE

structure.pdbId=%s	AND	structure.conformation=%s	AND

structure.id=chain.structureId	AND	chain.id=residue.chainId	AND

residue.id=atom.residueId	ORDER	BY	chain.id,	residue.id,	atom.id"

		stmt	=	formatStatement(stmt,	placeHolder)

		cursor.execute(stmt,	(pdbId,	conformation))

		result	=	cursor.fetchall()

		if	not	result:

				msg	=	'structure	with	(pdbId=%s,	conformation=%s)	not	known'

				raise	Exception(msg	%	(pdbId,	conformation))

We	then	loop	over	all	the	records	in	the	result.	Each	record	represents	one	atom,	so	the
code	 is	 similar	 in	 style	 to	 that	 in	 the	getStructuresFromFile()	 function	 in	Chapter	8.	We
create	the	structure	object	the	first	time	through	the	loop.

structure	=	chain	=	residue	=	atom	=	None

for	(structureName,	chainMolType,	chainCode,

					residueSeqId,	residueCode,	atomName,

					atomX,	atomY,	atomZ,	atomElement)	in	result:

		if	not	structure:

				structure	=	Structure(structureName,	conformation,	pdbId)

We	then	create	the	residue	and	chain	objects	if	they	are	needed.

if	not	chain	or	chain.code	!=	chainCode:

		chain	=	Chain(structure,	chainCode,	chainMolType)

if	not	residue	or	residue.chain	!=	chain	\

				or	residue.seqId	!=	residueSeqId:

		residue	=	Residue(chain,	residueSeqId,	residueCode)

We	then	(always)	create	an	atom	object.

coords	=	(atomX,	atomY,	atomZ)

Atom(residue,	atomName,	coords,	atomElement)

At	the	end	we	close	the	cursor	and	return	the	structure.

finally:

		cursor.close()

return	structure

We	add	some	test	code.	For	sqlite3	we	have:

if	__name__	==	'__main__':

		import	sys

		if	len(sys.argv)	not	in	(3,	4):

				print('need	to	specify	database,	PDB	id,	[conformation=1]')

				sys.exit(1)

		database	=	sys.argv[1]

		pdbId	=	sys.argv[2]

		if	len(sys.argv)	==	3:

				conformation	=	1

		else:

				conformation	=	int(sys.argv[3])

		import	sqlite3

		connection	=	sqlite3.connect(database)

		placeHolder	=	'?'

		try:

				structure	=	getStructureFromDb(connection,	pdbId,

																																			conformation,	placeHolder)

		finally:

				connection.close()

For	MySQLdb	we	instead	have	the	slightly	more	complicated:

import	MySQLdb

import	getpass

user	=	getpass.getuser()

pwd	=	getpass.getpass()

connection	=	MySQLdb.connect(db=database,	user=user,	passwd=pwd)

placeHolder	=	'%s'

The	 test	 code	 does	 not	 do	 anything	with	 the	 generated	Structure	 object	 but	 the	 code

could	be	extended	to	do	so.	More	generally,	once	you	have	a	Structure	object	then	you	can
do	all	 the	manipulations	on	a	 structure	 that	were	discussed	 in	Chapter	8.	Having	all	 the
structures	 in	a	database	makes	doing	 this	on	many	structures	 in	one	go	a	relatively	easy
matter.

Querying	the	database
Instead	 of	 loading	 records	 from	 the	 database	 into	 a	 Structure	 object,	 and	manipulating
those,	 we	 can	 just	 manipulate	 the	 records	 directory.	 For	 example,	 suppose	 we	 want	 to
count	all	the	chains	in	the	database	of	a	specified	molType.	Then	we	can	do	as	follows:

def	countChainMolType(connection,	molType,	placeHolder='%s'):

		cursor	=	connection.cursor()

		try:

				#	get	matching	chain	records	from	database

				stmt	=	"select	*	from	chain	where	molType=%s"

				stmt	=	formatStatement(stmt,	placeHolder)

				cursor.execute(stmt,	(molType,))

				result	=	cursor.fetchall()

				count	=	len(result)

		finally:

				cursor.close()

		return	count

Alternatively,	we	could	use	the	SQL	statement

"select	count(*)	from	chain	where	molType=%s"

which	counts	the	records	and	returns	that	result.

The	test	code,	for	sqlite3,	is:

import	sys

if	__name__	==	'__main__':

		import	sys

		if	len(sys.argv)	!=	3:

				print('need	to	specify	database,	molType')

				sys.exit(1)

		database	=	sys.argv[1]

		molType	=	sys.argv[2]

		import	sqlite3

		connection	=	sqlite3.connect(database)

		placeHolder	=	'?'

		try:

				count	=	countChainMolType(connection,	molType,

																														placeHolder)

				print	'Found	%d	chain(s)'	%	count

		finally:

				connection.close()

Note	that	we	do	not	even	have	to	deal	with	the	Structure	table	in	order	to	answer	this
particular	query,	but	just	the	Chain	table.

The	 Structure	 object	 is	 useful	 to	 have	 if	 there	 is	 a	 general	 application	 dealing	 with
structures	and	where	it	is	useful	to	have	the	structures	all	in	memory	at	the	same	time,	and
where	 the	 database	 just	 happens	 to	 be	 the	 way	 that	 the	 data	 is	 stored.	 But	 in	 some
applications,	e.g.	using	a	browser	to	display	information	about	structures	that	are	stored	in
a	remote	database,	 it	 is	quite	possible	 that	 just	querying	 the	database	and	using	 the	data
directly	without	creating	a	Structure	is	the	best	way	to	proceed.
1 	http://www.mysql.com
2 	http://www.sqlite.org
3 	http://sourceforge.net/projects/mysql-python/

http://www.mysql.com
http://www.sqlite.org
http://sourceforge.net/projects/mysql-python/

21 	Probability
Contents

The	basics	of	probability	theory

Sample	space

Probability	values

Restriction	enzyme	example

Combining	probabilities

Conditional	probabilities

Bayesian	analysis

Random	variables

Binomial	distribution

Poisson	distribution

Geometric	distribution

Markov	chains

Markov	processes

Hidden	Markov	models

Using	Python	for	hidden	Markov	models

The	Viterbi	algorithm

The	forward-backward	algorithm

Implementing	a	protein	sequence	HMM

The	basics	of	probability	theory
The	theory	of	probability	was	based	on	the	observation	of	random	physical	events,	most
notably	 for	 games	 of	 chance.	 And	 naturally,	 calculating	 accurate	 probabilities	 became
especially	important	for	people	when	money	was	wagered	on	the	outcome.	Probability	is	a
way	 of	 ascribing	 numerical	 values	 to	 the	 possible	 outcomes	 to	 help	 us	 understand	 a
random	process	more	 fully.	This	enables	us	 to	ask	questions	 like	how	much	more	often
one	event	occurs	compared	to	another,	but	because	of	the	random	nature	of	what	we	are
studying	we	can	never	say	what	the	outcome	will	definitely	be.	Rather	we	tend	to	think	of
the	process	 in	 terms	of	what	 the	 long-term	proportions	of	different	outcomes	are,	 if	 the
random	experiment	were	 repeated	a	very	 large	number	of	 times,	or	perhaps	 if	money	 is
involved	what	a	wager	on	a	particular	outcome	is	worth.

Turning	 to	 biological	 systems,	 some	 things	 in	 living	 organisms	 occur	 as	 a	 result	 of
random	processes,	like	the	segregation	of	a	parent’s	chromosomes	among	their	children	or
base-pair	 changes	 in	DNA	 (such	 as	 a	 result	 of	 replication	 errors	 or	 ionising	 radiation),
though,	under	most	 circumstances	we	don’t	 get	 to	 see	 the	 actual	 random	event.	For	 the
most	part	we	just	view	the	outcomes,	sometimes	billions	of	years	later	in	the	case	of	DNA
sequence	changes.	Of	course	a	DNA	sequence	isn’t	actually	random,	given	that	it	exists	to
contain	biologically	meaningful	information	representing	genes	and	gene	control	elements
etc.	 which	 have	 been	 selected	 for	 their	 function	 during	 evolution,	 even	 if	 the	 initial
mutations	 were	 random.	 Nonetheless	 for	 a	 sufficiently	 large	 and	 unbiased	 selection	 of
DNA	we	can	treat	the	sequence	as	if	it	were	random	in	order	to	ask	various	questions.	For
example,	how	often	do	 I	 find	 the	sub-sequence	AAGCTT	 in	a	megabase-long	 region	of
DNA?

Probability	 theory	 is	 often	 also	 useful	 in	 situations	 where	 there	 is	 no	 underlying
randomness	in	the	biology,	but	rather	an	uncertainty	in	our	scientific	interpretation.	Here	a
probabilistic	treatment	of	our	uncertainty	can	lead	to	informative	predictions.	An	example
of	this	would	be	for	the	classification	of	whether	two	genes	have	the	same	function	as	one
another	(generally	because	they	have	a	common	ancestor).	They	either	do	or	do	not,	and
the	underlying	assignment	of	this	status	is	not	a	random	process,	but	our	prediction	based
on	the	available	data	does	have	an	uncertain	component,	and	so	it	can	be	helpful	to	treat
the	situation	probabilistically.	It	is	also	notable	that	in	biological	analyses	it	may	be	rare	to
actually	 deal	with	 probabilities	 directly,	 but	 probability	 theory	 underpins	 statistical	 tests
which	are	very	commonly	used,	and	we	describe	some	of	those	in	Chapter	22.

Here	we	will	lightly	go	through	some	of	the	fundamentals	of	probability	theory.	Being
mindful	 of	 our	 expected	 readership,	 we	 will	 endeavour	 to	 avoid	 going	 into	 too	 much
detailed	 mathematical	 notation.	 We	 won’t	 escape	 the	 equations	 entirely	 but	 hopefully
these	will	serve	as	a	primer	for	further	reading.

Sample	space
Firstly,	we	need	 to	define	a	probabilistic	 system	by	knowing	what	 the	 range	of	possible
outcomes	is.	In	mathematical	jargon	this	means	to	define	the	sample	space.	The	range	of
possible	outcomes	can	be	fairly	straightforward,	so	for	a	six-sided	die	we	know	that	there
are	simply	six	outcomes	corresponding	to	 the	numbers	of	spots	on	different	faces.	If	we
are	thinking	about	the	occurrence	of	a	DNA	base	at	a	position	in	a	genome	then	we	know
that	it	must	be	either	G,	C,	A	or	T.	Often	though	we	are	thinking	about	multiple	dice	rolls
or	 several	positions	 in	a	DNA	sequence.	 In	 these	cases	we	 think	of	 the	sample	space	 in
terms	of	the	combinations	of	possibilities	for	each	roll	or	position.	Hence	for	rolling	two
dice	we	have	six	possibilities	for	the	first	roll,	and	then	for	any	given	first	roll	there	are	a
further	six	possibilities	for	the	second	roll.	Overall	there	will	be	six	times	six	possibilities
for	the	total	number	of	possible	outcomes.	Naturally	if	there	is	a	further	roll	there	are	six
more	possibilities	for	each	of	the	36	two-roll	outcomes.	So	here	the	general	rule	is	that	the
size	of	the	sample	space	is	6N,	if	there	are	N	rolls,	i.e.	multiplied	by	six	for	each	roll.	The
same	idea	can	be	applied	to	sequential	positions	in	DNA.	Here	there	are	four	nucleotide
possibilities	at	each	position	and	so	for	a	sequence	(or	sub-sequence)	of	length	N	there	are
4N	different	combinations.	Although	 the	nucleotides	of	a	DNA	sequence	are	actually	all

present	in	the	same	molecule,	it	may	be	helpful	for	understanding	to	fictitiously	imagine
the	sequence	being	generated	by	the	roll	of	an	imaginary	four-sided	die.

More	generally	there	can	sometimes	be	the	complication	that	we	actually	don’t	have	a
fixed	number	of	dice	rolls	or	a	fixed	length	of	DNA.	For	example,	we	may	be	interested	in
finding	 out	 how	many	 dice	 rolls	we	would	 expect	 to	make,	 on	 average,	 before	we	 roll
three	 sixes.	 The	 DNA	 equivalent	 of	 this	 is	 to	 ask	 what	 the	 expected	 length	 of	 DNA
(number	of	positions)	is	before	we	find	a	given	small	sub-sequence.	The	latter	is	quite	a
relevant	 question	biologically	 because	 the	 small	 sub-sequence	might	 be	 a	 cut	 site	 for	 a
restriction	enzyme,1	where	it	can	be	useful	to	know	the	average	size	of	DNA	fragments	the
enzyme	would	 generate.	 In	 these	 examples	 the	 sample	 space	may	 be	 unbounded,	 or	 at
least	very	large	in	the	case	of	a	genome.	Nonetheless	we	still	have	a	firm	idea	of	what	the
range	of	possibilities	is,	even	if	it	is	technically	infinite.	For	example,	even	though	it	may
be	 technically	 possible	 to	 never	 roll	 three	 consecutive	 sixes	 if	 a	 die	 were	 rolled
continuously	for	the	history	of	the	universe	the	odds	are	so	astronomically	small	(close	to
zero)	that	this,	and	similar	extremes,	don’t	have	any	practical	effect.

Figure	21.1.	 Sample	space	size	for	sequential	events.	The	calculations	to	give	the	size
of	the	sample	space	are	shown	for	three	subsequent	rolls	of	a	die	and	three	positions	in	a
DNA	sequence.	The	sample	space	represents	the	totality	of	all	possible	outcomes.	For	a
sequence	of	events,	where	each	has	a	fixed	number	of	possibilities,	the	size	of	the	sample
space	is	the	product	of	the	numbers	of	possibilities	at	each	point	in	the	sequence.

Probability	values
Probabilities	are	values	between	zero	and	one	 (between	 impossibility	and	certainty)	 that
we	assign	to	the	outcomes	of	a	random	process.	The	summation	of	all	probabilities,	over
all	 possible	 outcomes,	 is	 exactly	 one.	 In	 effect,	 each	 outcome	 occupies	 a	 fraction	 of
likelihood	from	the	certainty	that	something	happens	in	a	random	process.	Hence	for	a	roll
of	an	unbiased	die	the	probability	assigned	to	each	of	the	six	possible	outcomes	is	1/6,	so
they	 all	 add	 up	 to	 one.	 As	 illustrated	 in	 Figure	 21.2,	 this	 can	 be	 visualised	 by	 each
outcome	 taking	 a	 different	 fraction	 of	 a	 line	 of	 unit	 length,	 though	 the	 order	 of	 the
resulting	 regions	 is	 unimportant.	 Note	 that	 we	 introduce	 the	 notation	 Pr(X),	 which	 is
shorthand	to	mean	the	probability	of	X	occurring,	whatever	occurrence	X	may	be.

Figure	21.2.	 Probabilities	partitioning	a	unit	line.	Probability	values	for	the	different
possible	outcomes	can	be	imagined	to	partition	a	region	of	length	one.	Here	we	illustrate
this	for	the	probabilities	for	the	colour	of	mouse	offspring	resulting	from	a	genetic	cross
(between	a	pure	white	strain	and	a	pure	black	strain)	where	black	is	three	times	more
likely	than	white.

For	a	biological	system	we	may	have	a	good	model	of	how	we	expect	things	to	behave,
i.e.	that	we	know	what	the	probabilities	are.	For	the	genetics	example	illustrated	in	Figure
21.2	we	might	assume	that	the	probability	is	¾	for	having	black	offspring	and	¼	for	white
offspring,	and	 likewise	 for	a	position	 in	DNA	we	might	 say	 that	 the	probability	of	each
base	is	¼	and	thus	for	a	pair	of	bases	is	1/16.

We	should	not	forget,	however,	that	these	values	stem	from	idealised	models,	so	that	in
reality	 the	 actual	 probabilities	 are	 not	 neat	 whole-number	 fractions.	 Accordingly,	 for	 a
DNA	nucleotide	position	it	is	only	an	approximation	to	say	that	each	base	is	equally	likely.
In	reality	in	any	given	genome	there	will	be	more	G	and	C	bases	than	A	and	T	bases,	or
vice	versa.	 It	should	be	noted	 that	 if	we	consider	both	DNA	strands	 then	because	of	 the
base-pairing	rules	the	numbers	of	G	and	C	will	be	the	same,	and	thus	also	the	numbers	of
A	and	T.	Naturally	this	means	that	the	probability	of	finding	a	base	at	a	random	position	is
also	equal	within	these	pairs.

Figure	21.3.	 Nucleotide	probabilities	for	two	DNA	positions.	For	two	positions	in	a
DNA	sequence	there	are	16	possible	outcomes,	given	the	four	different	types	of
nucleotide.	If	the	probabilities	of	single	nucleotides	are	equal	then	the	probabilities	of	all
nucleotide	pairs	are	also	equal	(1/16),	and	naturally	sum	to	one.

As	we	have	alluded	 to,	 in	order	 to	obtain	a	 realistic	probability	estimate	 for	different
outcomes	we	generally	count	the	number	of	occurrences	of	each	in	a	large	data	set.	Hence
for	 our	 mouse-breeding	 example,	 even	 if	 we	 didn’t	 have	 a	 good	 theoretical	 model	 we
could	 cross	 the	 two	 strains,	 count	 the	 different	 coat	 colours	 of	 the	 progeny	 and	 then
express	the	counts	as	a	proportion	of	the	total.	We	may	do	such	experiments	to	validate	a
given	model,	which	 in	 this	 case	might	 show	something	of	genetic	 interest,	 if	 the	model
does	not	fit.	Though,	for	this	kind	of	hypothesis	testing	(which	is	more	properly	described
in	Chapter	22)	we	have	to	be	mindful	of	how	the	amount	of	data	affects	our	confidence.
To	take	an	arbitrary	example	with	a	mouse	cross,	just	because	eight	black	mice	were	born
in	a	litter	does	not	mean	that	the	model	of	a	3:1	black-white	ratio	is	wrong;	litters	of	eight
would	be	all	black	about	10%	of	the	time	(0.758).	You	would	need	a	much	larger	sample

of	data	to	be	confident	of	the	probabilities;	the	more	experimental	examples	we	have	the
closer	 the	experimental	 ratios	will	match	 the	 long-term	probabilities.	Likewise	 for	DNA
nucleotide	probabilities	we	can	count	C:G	and	A:T	base	pairs	we	find	in	a	genome,2	and
will	 get	 the	 most	 accurate	 results	 by	 choosing	 as	 large	 a	 sample	 of	 sequence	 data	 as
possible.	If	we	want	our	probabilities	 to	be	general	for	 the	whole	genome	we	would	not
want	to	look	at	only	a	small	part,	which	may	not	be	representative.

In	 Python	 if	we	 know	 the	 number	 of	G:C	 and	 the	 number	 of	A:T	 pairs	 for	 a	whole
genome	 then	 the	 probability	 of	 each,	 i.e.	 Pr(G),	 Pr(C),	 Pr(A)	 and	 Pr(T),	 at	 a	 random
position	can	be	calculated	as	the	proportion	of	the	total:

counts	=	{'G':2356491,	'C':2356491,	'A':2283184,	'T':2283184}

total	=	float(sum(counts.values()))

letterProbs	=	{}

for	letter	in	counts:

		letterProbs[letter]	=	counts[letter]	/	total

print(letterProbs)

#	Result:	{'A':0.24605,	'C':0.25395,	'T':0.24605,	'G':0.25395}

Even	 though	 these	 probabilities	 are	 improved	 from	 ¼	 for	 all	 bases	 it	 should	 still
potentially	 be	 considered	 as	 an	 approximation,	 depending	on	 the	 situation	 at	 hand.	You
may	have	noticed	 that	we	have	been	quite	careful	 to	say	 that	 this	 is	 the	probability	at	a
random	position.	 If	 the	DNA	position	we	are	considering	 is	not	 random	then	 the	above
whole-genome	average	would	just	be	the	first	approximation.3	The	G:C	content	of	DNA	is
actually	different	for	different	chromosomes	and	generally	varies	depending	on	whether	a
position	is	in	a	gene	or	non-gene	region.	We	could	end	up	with	endless	categorisations	and
qualifications	for	probabilities.	So	while	it	is	possible	to	define	the	probabilities	for	C	or	G
being	at	(to	take	an	arbitrary	and	complex	example)	the	last	position	of	the	first	exon	of	all
carbohydrate	metabolism	genes,	we	wouldn’t	want	to	go	into	so	much	detail	unless	there
was	 a	 special	 reason.	 In	 general	 a	 balance	 is	 struck	 between	 having	 accurate	 general
probabilities,	supported	by	large	amounts	of	data,	and	contextualised	probabilities,	which
may	be	supported	by	very	little	data.	In	a	probabilistic	analysis	we	may	wish	to	account
for	context,	 to	make	more	accurate	predictions,	but	naturally	we	must	have	data	 for	 the
different	situations	and	know	when	to	use	them.	There	will	be	some	further	discussion	of
such	matters	in	the	Markov	chains	section	below.

Restriction	enzyme	example
Taking	the	DNA	example	a	little	further,	let’s	consider	a	restriction	enzyme	called	HindIII
that	is	commonly	used	in	molecular	biology	and	which	cuts	DNA	at	the	specific	sequence
AAGCTT.	 Using	 a	 simple	 probabilistic	 model	 about	 the	 likelihood	 of	 finding	 a	 given
letter	at	a	given	position	in	an	otherwise	random	DNA	sequence,	we	can	estimate	various
properties,	like	how	often	the	enzyme	cuts	or	what	the	size	of	the	fragments	will	be	after
cutting.	 A	 DNA	 sequence	 actually	 isn’t	 totally	 random,	 but	 the	 approximation	 is
nonetheless	good	enough	to	get	useful	predictions.

Assuming	that	the	nucleotide	at	one	position	does	not	depend	in	any	way	on	what	the

nucleotides	 are	 at	 the	 other	 positions	 (i.e.	 the	 nucleotides	 at	 different	 positions	 are
independent),	we	 can	 calculate	 the	 probability	 of	 a	HindIII	 site	 at	 any	 six	 residue	 sub-
sequence	to	be	Pr(A)	×	Pr(A)	×	Pr(G)	×	Pr(C)	×	Pr(T)	×	Pr(T).	This	is	about	one	cut	in
4096	 (46)	 positions,	 if	 we	 assumed	 equal	 probabilities	 for	 all	 nucleotides.	 Hence	 for	 a
DNA	sequence	of	length	N	we	would	expect	N	×	1/4096	restriction	enzyme	cut	sites.	Also,
on	 average	 we	 could	 expect	 the	 separation	 to	 be	 about	 4096	 bases.	 Calculating	 the
probability	of	the	cut	site	using	the	non-equal	nucleotide	probabilities	calculated	above	we
get:

cutSite	=	'AAGCTT'

probSite	=	1.0	#	Starting	value

for	letter	in	cutSite:

		probSite	*=	letterProbs[letter]

print(probSite)		#	0.00023637	–	approx	one	in	4230

Because	the	occurrence	of	a	site	is	effectively	random	we	will	expect	a	distribution	of
different	values	for	the	number	of	cut	sites	in	a	given	length	and	also	for	the	lengths	of	the
fragments.	 In	 other	 words	 because	 the	 sites	 are	 random,	 and	 not	 regular,	 the	 spacing
between	sites	will	generally	be	more	or	 less	 than	4230.	We	will	consider	models	for	 the
shape	of	such	probability	distributions	later	in	this	chapter.

Combining	probabilities
The	 final	major	 rule	with	 probability	 theory	 is	 about	 how	we	 combine	 probabilities.	 If
there	are	mutually	exclusive	outcomes	then	the	probability	of	the	event	that	any	of	these
particular	 outcomes	 occurs	 is	 the	 sum	 of	 their	 individual	 probabilities.	 In	mathematical
terms	we	describe	an	event	formally	as	a	set	of	different	outcomes.	Also,	by	saying	that	if
an	event	is	defined	by	one	outcome	or	another	(or	another	etc.)	then	it	can	be	described	in
set	 theory	 terms	 as	 the	 union	 of	 the	 outcomes.	 Taking	 the	 roll	 of	 two	 fair	 dice	 as	 an
example,	 as	 we	 have	 already	 illustrated	 there	 are	 36	 possible	 outcomes	 each	 with
probability	1/36.	If	we	want	to	know	the	probability	that	the	total	on	the	two	dice	is	seven,
then	we	 first	 consider	 which	 of	 the	 outcomes	 contribute	 to	 this	 event	 (as	 illustrated	 in
Figure	21.4)	and	then	add	the	probabilities	for	each.

Figure	21.4.	 The	range	of	all	possible	outcomes	for	two	dice.	The	outcomes	which	all
contribute	to	each	numeric	total	are	grouped	together.	The	probability	of	getting	a	total	of
seven	is	then	calculated	from	the	sum	of	the	outcomes	for	that	event.

When	using	dice	rolls	or	DNA	bases	as	examples	it	is	clear	that	individual	outcomes	are
mutually	exclusive,	in	that	a	die	provides	only	one	number	and	that	only	one	of	the	DNA
nucleotides	 is	possible	 in	a	given	position.	However,	 it	 is	 also	possible	 to	define	events
that	 are	 not	 mutually	 exclusive.	 For	 example,	 given	 two	 DNA	 positions	 we	 could
investigate	the	event	that	there	is	at	least	one	A	nucleotide	present	(7	of	16	possibilities)
and	 the	 separate	 event	 that	 the	 two	 nucleotides	 are	 different	 (12	 of	 16	 possibilities).
Clearly	 these	 are	 not	 exclusive	 events	 because	 some	 outcomes	 are	 present	 in	 both	 sets.
The	set	of	common	outcomes,	which	apply	to	both	one	event	and	another,	is	referred	to	as
the	 intersection.	 Furthermore	 knowing	 what	 the	 intersection	 is	 allows	 us	 to	 calculate
things	like	the	probability	that	one	event	but	not	the	other	occurs.

We	 can	 use	 Python	 to	 calculate	 the	 probabilities	 for	 the	 illustrated	 events	 and	 their
intersection	 in	 the	 case	where	 the	 probabilities	 of	 the	 outcomes	 are	 not	 equal.	Here	 the
probabilities	 of	 the	 two-letter	 outcome	 are	 obtained	 by	 multiplying	 the	 individual
probabilities	for	a	nucleotide	recorded	in	letterProbs,	i.e.	the	probability	of	having	x	at	the
first	position	times	the	probability	of	having	y	at	the	second.	The	outcomes	are	then	tested
and	added	to	the	appropriate	event,	which	we	store	as	Python	sets.	We	can	then	use	the	set
operation	 ‘&’,	 which	 generates	 a	 new	 set	 with	 the	 common	 elements.	 Finally,	 the
probabilities	of	the	events	are	simply	calculated	from	the	summation	of	the	probabilities
within	each.

probs	=	{}

letters	=	['G','C','A','T']

event1	=	set()

event2	=	set()

for	x	in	letters:

		for	y	in	letters:

				outcome	=	(x,y)

				probs[outcome]	=	letterProbs[x]	*	letterProbs[y]

				if	'A'	in	outcome:

						event1.add(outcome)

				if	x	!=	y:

						event2.add(outcome)

intersection	=	event1	&	event2

pEvent1	=	sum([probs[xy]	for	xy	in	event1])	#	0.43156

pEvent2	=	sum([probs[xy]	for	xy	in	event2])	#	0.74994

pEvent1and2	=	sum([probs[xy]	for	xy	in	intersection])	#	0.37102

Figure	21.5.	 Combining	probabilistic	events.	The	first	event,	that	one	nucleotide	from
the	16	pairs	contains	an	A,	and	the	second	event,	that	the	nucleotides	are	different,	are
subsets	of	the	total	set	of	outcomes.	The	intersection	between	the	two	events	is	the	set	of
outcomes	common	to	both.	Probabilities	are	calculated	for	the	events	assuming	that	all
outcomes	are	equally	likely.

Something	that	follows	from	the	basic	axioms	of	probability	is	the	notion	that	we	can
use	 the	 probability	 of	 the	 intersection	 between	 events	 Pr(E1	 and	 E2)	 to	 calculate	 the
probability	of	the	union	between	events	Pr(E1	or	E2):

Pr(E1	or	E2)	=	Pr(E1)	+	Pr(E2)	–	Pr(E1	and	E2)

If	there	is	an	intersection	between	the	event	E1	and	the	event	E2	adding	 the	probabilities
for	 the	 two	will	 include	 the	overlapping	outcomes	 twice,	 so	 subtracting	 the	 intersection
that	both	E1	and	E2	happen	redresses	this.	This	way	each	outcome	that	involves	E1	or	E2
contributes	 the	 same.	When	 considering	mutually	 exclusive	 events	 the	 probability	 P(E1
and	E2)	 is	naturally	zero,	 in	which	case	Pr(E1	or	E2)	 is	 just	 the	 sum	of	 the	 independent
probabilities.4	We	can	show	the	calculation	of	P(E1	or	E2)	in	Python	by	either	creating	the
appropriate	set	or	by	using	the	above	equation:

union	=	event1	|	event2	#	Set	with	elements	from	both

pUnion	=	sum([probs[xy]	for	xy	in	union])

print(pUnion)																										#	0.81049

print(pEvent1	+	pEvent2	-	pEvent1and2)	#	0.81049	-	same

While	we	can	treat	combined	dice	rolls	or	DNA	positions	as	discrete	outcomes	we	can
also	 imagine	 these	 as	 arising	 from	 a	 chain	 of	 probabilistic	 selections.	 In	 the	 above
examples	 the	 trials	 are	 independent	 and	 the	 result	 of	 the	 first	 has	 no	 influence	 on	 the
second,	which	is	reasonable	for	a	fair	die.	However,	for	DNA	(and	many	other	analogous
situations	 in	biology)	 the	probabilities	of	 the	occurrence	of	a	nucleotide	at	each	position
may	not	only	be	different,	as	discussed	before,	but	the	probability	for	the	second	position
may	 also	 vary	 according	 to	which	 base	 is	 present	 in	 the	 first	 position,	 or	 indeed	many
other	positions.

In	 this	 case	we	would	 say	 the	 positions	were	 not	 independent	 and	 the	 probability	 of
observing	 the	 second	 nucleotide	 differs,	 depending	 on	 the	 outcome	 of	 the	 first.	 To
calculate	 the	 probability	 of	 getting	 each	 pair	 of	 nucleotides	 we	 get	 the	 probability	 of
obtaining	 the	 first	 nucleotide	 and	multiply	 this	by	 the	probability	of	getting	 the	 second,
given	the	first.	This	is	what	is	termed	a	conditional	probability	and	in	general	we	would
need	 to	know	what	 the	probabilities	 for	 the	 four	nucleotides	were	given	 each	particular
preceding	nucleotide.

Conditional	probabilities
Moving	to	a	different	kind	of	example,	we	will	consider	probabilities	associated	with	the
occurrence	 of	 a	 disease	 (D)	 and	 how	 this	 relates	 to	 the	 experimental	 observation	 of	 a
particular	mutant	 version	 (M)	 of	 a	 gene,	 i.e.	 with	 a	 different	 DNA	 sequence.	 Here	 the
probability	that	both	occur,	Pr(D	and	M),	on	its	own	does	nothing	to	suggest	whether	the
two	are	related.	Naturally	to	investigate	the	link	between	the	two	we	would	need	to	know
probabilities	 of	 the	 events	 alone	 (having	 the	 disease	 and	 having	 the	mutation)	 and	 thus
whether	 the	 intersection	 of	 the	 two	 is	more	 or	 less	 than	we	would	 expect	 if	 they	were
unrelated.	 By	 doing	 this	 we	 implicitly	 use	 the	 concept	 of	 hypothesis	 testing.	 As	 far	 as
medical	prediction	and	diagnosis	is	concerned	it	is	helpful	to	consider	the	complementary
events.	In	this	case	these	are	the	event	that	there	is	no	disease	and	the	event	that	there	is	no
mutation.	With	 these	we	can	compare	 the	hypothesis,	 that	 the	disease	and	mutations	are
linked,	with	an	appropriate	alternative	and	null	hypothesis	(see	Chapter	22).

By	 counting	 occurrences	 of	 the	 different	 situations	 we	 can	 estimate	 the	 various
combinations	of	conditional	probabilities.	For	example,	we	can	estimate	the	probability	of
having	the	disease	given	that	the	mutation	is	present,	Pr(D	given	M),	and	compare	it	to	the
probability	 of	 having	 the	 disease	 given	 no	mutation	 Pr(D	 given	 noM),	 i.e.	 whether	 the
mutation	 increases	 or	 decreases	 the	 chance	 of	 the	 disease.	Also,	 if	 it	 is	 established	 that
Pr(D	 given	M)	 is	 much	 greater	 than	 Pr(D	 given	 noM),	 i.e.	 that	 the	mutation	 is	 highly
correlated	with	the	disease,	then	knowing	the	probability	of	not	having	the	disease	given
the	mutation	being	present	Pr(noD	given	M)	 is	vital	 if	we	hope	 to	use	 a	genetic	 test	 to
predict	the	disease	outcome;	in	other	words	we	need	to	know	whether	there	would	be	lots
of	false-positive	results.

We	 can	 also	 think	 of	 the	 dependent	 DNA	 events	 in	 the	 HindIII	 restriction	 enzyme
example	in	terms	of	conditional	probabilities,	for	example,	what	the	probability	of	having
a	 cut	 site	 (AAGCTT)	 is	 in	 a	 region	 of	DNA	given	 a	G:C	 content	 greater	 than	 60%.	 It
should	 be	 noted	 that	 this	 is	 a	 distinct	 question	 from	 asking	what	 the	 probability	 of	 one
event	and	another	is,	though	the	two	are	related.	For	this	example	the	probability	that	both
events	 occur	 considers	 the	 outcomes	 from	 all	 the	 possible	 DNA	 sequences,	 while	 the
probability	that	one	occurs	given	the	other	does	not,	it	only	considers	situations	where	the
second	event	has	definitely	occurred.	The	probability	that	they	are	both	true	is	the	same	as
the	 probability	 of	 one	 occurring	 multiplied	 by	 the	 probability	 of	 the	 second	 occurring
given	that	we’ve	already	got	the	other.	So	for	two	arbitrary	events	X	and	Y	we	have:

Pr(X	and	Y)	=	Pr(X)	×	Pr(Y	given	X)

And	it	doesn’t	matter	which	way	we	phrase	this,	the	converse	is	also	true:

Pr(X	and	Y)	=	Pr(Y)	×	Pr(X	given	Y)

Obviously	 this	only	makes	 sense	 if	Pr(X)	and	Pr(Y)	are	not	 zero.	Combining	 these	 two
formulations	we	can	say	that	one	is	equal	to	the	other,	i.e.	that:

Pr(X)	×	Pr(Y	given	X)	=	Pr(Y)	×	Pr(X	given	Y)

which	is	often	written	in	the	form:

Pr(Y	given	X)	=	Pr(Y)	×	Pr(X	given	Y)	/	Pr(X)

This	is	a	very	important	result	which	is	called	Bayes’	theorem.	As	we	discuss	in	the	next
section	this	formulation	is	commonly	used	for	hypothesis	testing.

Returning	 to	our	medical	 example,	 for	prognosis	 and	appropriate	 treatment	we	might
want	 to	 know	 the	 probability	 of	 getting	 the	 disease	 given	 the	mutation	 Pr(D	 given	M).
However,	 it	 may	 not	 be	 cost-effective	 to	 obtain	 statistics	 by	 genetically	 testing	 large
numbers	of	people	for	the	mutation,	just	for	the	chance	that	they	would	get	a	rare	disease.
Also,	 it	might	be	 that	 the	disease	 is	difficult	 to	diagnose	and	doesn’t	show	immediately.
Conversely	 it	may	be	easier	 to	determine	Pr(M	given	D)	by	 testing	a	 limited	number	of
people	who	 definitely	 do	 have	 the	 disease	 to	 discover	whether	 they	 have	 the	mutation.
Using	Bayes’	theorem	we	can	easily	get	the	probability	we	want	from	the	other.

Pr(D	given	M)	=	Pr(M	given	D)	Pr(D)	/	Pr(M)

Naturally	 we	 must	 also	 estimate	 Pr(D)	 and	 Pr(M),	 the	 probabilities	 of	 disease	 and
mutation	 in	 the	 absence	 of	 any	 other	 information,	 from	 statistical	 data.	However,	 Pr(D)
could	simply	come	from	medical	records	and	Pr(M)	could	come	from	testing	any	group	of
people,	whether	or	not	they	had	the	rare	disease.

Bayesian	analysis
Bayesian	 analysis	 is	 a	 very	 powerful	 and,	 in	 the	 minds	 of	 some,	 the	 ‘proper’	 way	 to
generally	 think	 about	 scientific	 matters.	 Scientific	 philosophy	 is	 largely	 based	 upon
proving	or	disproving	hypotheses	using	experimental	 evidence.	Thinking	 in	general	 and
abstract	terms	with	the	above	example,	and	introducing	the	symbolic	notation	‘|’	to	mean
‘given’,	we	have:

Pr(Hypothesisi	|	Data)	Pr(Data)	=	Pr(Data	|	Hypothesisi)	Pr(Hypothesisi)

What	 this	 says	 about	 the	 scientific	 approach	 may	 not	 be	 immediately	 clear	 from	 a
symbolic	 representation,	 but	 a	 key	 aspect	 here	 is	 that	 in	 science	 we	 compare	 different
hypotheses,	 hence	 the	 introduction	 of	 the	 subscript	 i,	 to	 label	 one	 hypothesis	 among
others.	Essentially	what	this	says	is	that	the	interesting	posterior	quantity	Pr(Hypothesisi	|
Data)	is	only	meaningful	in	comparison	with	other,	competing	hypotheses.	The	likelihood
of	a	given	hypothesis	generating	the	experimental	data	Pr(Data	|	Hypothesisi)	is	a	measure
of	how	well	the	data	fits	the	hypothesis.	However,	even	if	one	hypothesis	seems	to	fit	the
experimental	 data	 very	 well,	 our	 confidence	 in	 this	 particular	 hypothesis	 is	 naturally
diminished	if	there	is	a	somewhat	different	hypothesis	that	also	fits	the	experimental	data
very	 well.	 Conversely	 if	 all	 the	 hypotheses	 that	 fit	 the	 data	 are	 very	 similar	 then	 the
confidence	of	our	answer	increases,	and	we	gain	an	awareness	of	the	width	of	acceptable

solutions:	 what	 precision	 is	 meaningful	 in	 our	 hypotheses.	 Accordingly,	 the	 Bayesian
inferential	 approach	 is	 more	 objective	 than	 a	 simple	 deductive	 approach	 (where	 if
something	 fits	 well	 it	 is	 assumed	 to	 be	 the	 correct	 answer),	 and	 it	 has	 an	 inbuilt
mechanism	to	quantify	the	uncertainty	associated	with	a	hypothesis.

An	 aspect	 of	 Bayesian	 analysis	 which	 in	 some	 situations	may	 not	 seem	 particularly
scientific	 is	 the	 quantity	 Pr(Hypothesisi)	 that	 represents	 the	prior	 information	 about	 the
hypothesis,	 in	 the	 absence	 of	 any	 experimental	 evidence.	 Indeed	 the	 ability	 of	 this
approach	 to	work	well	can	often	depend	on	a	scientist’s	ability	 to	come	up	with	a	good
estimate	of	the	prior	probability.	We	can	always	say	that	we	have	no	prior	information	to
compare	hypotheses	in	the	initial	instance,	i.e.	that	the	prior	is	the	same	for	all	hypotheses,
in	which	case	our	analysis	effectively	becomes	a	maximum	likelihood	approach.	However,
it	 is	 often	 possible	 to	 do	 better	 by	 thinking	 about	 the	 system	 under	 study,	 which	 is	 a
general	 principle	 when	 doing	 mathematical	 modelling.	 Thinking	 of	 an	 example	 about
molecular	3D	structure,	we	can	use	prior	probabilities	to	say	that	some	conformations	are
more	 likely	 than	 others,	 considering	 things	 like	 the	 length	 of	 and	 the	 angle	 between
chemical	bonds.	Effectively	we	are	selecting	hypotheses	that	fit	what	we	generally	know
about	molecular	 structures,	 disregarding	 solutions	with	 distorted	 geometries.	You	 could
argue	 that	 this	 is	 subjective	 and	 thus	 biased,	 to	 find	 solutions	 that	 fit	 our	 expectations.
However,	in	practice	good	and	useful	prior	probabilities	will	generally	derive	from	a	well-
founded	theory	or	other	experimental	observations,	e.g.	about	how	long	different	kinds	of
chemical	bonds	are	on	average.

It	 should	be	noted	 that	 the	quantity	of	Pr(Data)	 is	 the	same	for	all	hypotheses	and	so
calculating	 its	 value	 doesn’t	 help	 in	 determining	 the	 best	 hypothesis.	 Accordingly	 it	 is
often	 ignored	and	 set	 to	a	value	of	1.	However,	 if	 an	accurate	value	of	Pr(Hypothesisi	 |
Data)	 is	 sought	 then	 Pr(Data)	 can	 be	 calculated	 by	 summing	 the	 likelihood	 over	 all
hypotheses:	Σi	Pr(Data	|	Hypothesisi)Pr(Hypothesisi).

Random	variables
Random	 variables	 describe	 numeric	 values	 that	 relate	 to	 the	 outcomes	 of	 a	 random,
probabilistic	 process.	 A	 very	 simple	 example	 of	 a	 random	 variable	 is	 the	 height	 of
individual	people	in	a	population.	A	random	variable	describes	a	range	of	possible	values,
which	we	call	 a	distribution,	 and	we	associate	 a	probability	with	 each	value.	A	 random
variable	can	be	applied	to	discrete	events,	like	counting	the	number	of	G:C	nucleotides	in
a	 DNA	 sequence,	 where	 the	 number	 of	 outcomes	 is	 finite.5	 Alternatively	 the	 random
variable	 may	 be	 continuous,	 as	 is	 the	 case	 with	 our	 height	 example.	 However,	 in	 this
chapter	we	will	concentrate	on	discrete	random	variables.	We	have	implicitly	mentioned
random	variables	earlier	in	this	chapter,	in	relation	to	what	the	sequence	separation	would
be	for	the	HindIII	restriction	enzyme	cut	site.	In	this	case	the	random	variable	represents
the	variation	 in	 the	 length	of	 the	DNA	sequence	before	 the	cut	site,	which	might	be	 the
separation	 between	 one	 cut	 site	 and	 another	 when	 cutting	 a	 whole	 genome	 into	 small
fragments.	 Here	 the	 distribution	 of	 lengths,	 and	 thus	 the	 probability	 of	 each,	 can	 be
modelled	with	 the	geometric	distribution,	 as	we	describe	below.	By	matching	a	 random
variable	 to	 a	 well-characterised	 probability	 distribution	 we	 say	 something	 about	 the

process	 that	 generated	 it.	 Going	 further,	 if	 we	 have	 a	 candidate	 model	 for	 a	 random
process	 that	matches	 the	 distribution	 (and	 thus	 explains	 our	 data)	we	 can	 then	 look	 for
deviation	from	the	model.	This	may	suggest	a	better	model	or	illustrate	in	what	way	our
data	is	not	random,	e.g.	if	a	restriction	enzyme	cuts	at	sites	that	don’t	match	expectations.

Next	we	will	 go	 through	 some	of	 the	more	 commonly	used	probability	 distributions.
We	aim	to	give	an	idea	of	how	they	arise	and	thus	what	they	may	be	useful	for.	Practical
biological	examples	are	given	in	Python,	often	by	making	use	of	the	SciPy	library,	which
has	a	module	for	probability	and	statistics,	scipy.stats.

Binomial	distribution
Given	 an	 event	 with	 a	 fixed	 probability	 of	 occurrence,	 the	 binomial	 distribution	 is	 the
probability	 distribution	 of	 the	 number	 of	 events	 that	 occur	 after	 a	 specified	 number	 of
independent	trials.	A	simple	example	of	this	would	be	the	event	of	rolling	a	six	on	a	die,
i.e.	with	 probability	 1/6,	where	 after	 a	 specified	 total	 number	 of	 rolls	we	 can	 count	 the
number	of	times	that	a	six	came	up.	Repeating	the	same	experiment	(with	the	same	total
number	 of	 rolls)	 will	 result	 in	 a	 distribution	 of	 different	 counts	 for	 rolling	 a	 six.	 The
probability	of	getting	a	given	count	of	sixes	is	described	by	the	binomial	distribution.	For
a	 given	 event	 probability	 and	 given	 number	 of	 trials,	 the	 probability	 of	 a	 count	 can	 be
calculated	 using	 the	 formula	 presented	 below.	 This	 is	 based	 on	 the	 notion	 that	 the
probability	of	a	count	depends	on	the	number	of	arrangements	in	which	the	count	can	be
obtained.	To	 take	 the	example	of	 rolling	a	die	 three	 times,	where	 there	are	216	(6×6×6)
possible	outcomes,	there	is	only	one	way	of	getting	a	count	of	three	sixes,	but	there	are	15
ways	 of	 getting	 two	 sixes	 (a	 non-six	 can	 occur	 in	 three	 positions,	 and	 there	 are	 five
possibilities	for	each),	75	ways	of	getting	one	six	(a	six	can	occur	at	three	positions	and
there	 are	 five	 times	 five	 possibilities	 for	 the	 non-sixes)	 and	 125	ways	 of	 getting	 no	 six
(five	possibilities	for	each	position).

The	 probability	 Pr(k)	 of	 observing	 k	 events	 from	 n	 independent	 trials	 given	 event
probability	p	is:6

This	is	often	written	using	 ,	which	is	notation	for	the	combinatorial	factor,	giving	the
number	of	ways	of	choosing	k	items	from	a	total	of	n:

If	we	seek	the	probability	of	getting	two	sixes	from	three	rolls	we	multiply	the	probability
of	getting	two	sixes,	pk	=	1/62,	by	the	probability	of	getting	a	non-six	in	the	other	rolls,	(1
−	p)n	−	k	=	 (5/6)3−2,	by	 the	number	of	ways	of	choosing	 two	successes	 from	three	rolls,	

,	and	the	result	is	indeed	15/216.

We	can	define	a	function	to	calculate	this	in	Python,	using	the	handy	comb,	which	we
can	import	from	SciPy	to	calculate	the	combinatorial	factor:

from	scipy.misc	import	comb

def	binomialProbability(n,	k,	p):

		return	comb(n,	k)	*	p**k	*	(1-p)	**	(n-k)

To	test	this	we	can	again	calculate	the	probability	of	getting	two	sixes	from	three	rolls
of	a	die:

p	=	1/6.0										#	Probability	of	event

n	=	3														#	Number	of	trials

k	=	2														#	Number	of	events	sought

print(binomialProbability(n,	k,	p))

#	Result	is	0.069444444	=	15/216

As	 a	 biological	 example	 we	 could	 investigate	 the	 distribution	 in	 the	 number	 of
sequencing	errors	(i.e.	calling	the	wrong	nucleotide)	we	expect	when	determining	a	DNA
sequence	of	a	given	length.	If	the	sequencing	machine	has	a	random	error	rate	of	0.01	and
reads	 the	sequence	 for	a	 total	of	100	nucleotides,	 then	 the	distribution	of	 the	number	of
errors	can	be	plotted	as	follows:

from	matplotlib	import	pyplot

p	=	0.01

n	=	100

xVals	=	[]

yVals	=	[]

for	k	in	range(7):

		pk	=	binomialProbability(n,	k,	p)

		xVals.append(k)

		yVals.append(pk)

pyplot.plot(xVals,	yVals)

pyplot.show()

This	(plotted	in	Figure	21.6)	shows	 that	although	 the	expectation	 is	 to	have	one	error
every	100	nucleotide	positions,	around	36%	of	the	time	there	will	be	no	errors.

Figure	21.6.	 An	example	output	of	the	Binomial	distribution.	A	graph	of	the	output
generated	from	the	binomialProbability()	function,	tested	for	100	trials	with	event
probability	0.01	and	illustrating	the	probability	for	discrete	numbers	of	events	in	the	range
from	0	to	6.	Note	that	the	line	is	only	to	guide	the	eye;	because	the	distribution	is	discrete,
it	is	only	defined	for	whole	numbers.

It	should	be	noted	that	the	combinatorial	factor	gets	very	large	as	the	number	of	trials	n
gets	large,	unless	k	is	near	0	or	near	n,	so	the	binomial	probability	can	be	computationally
tricky	to	calculate.	For	example,	 returning	 to	 the	restriction	enzyme	HindIII,	which	may
cut	a	random	DNA	sequence	with	a	probability	of	0.0025,	 for	a	 total	DNA	length	of	10
megabases	we	may	try	to	estimate	the	probability	of	having	2500	cuts	(the	mean	value)	as
follows:

p	=	0.00025

n	=	10000000

print(binomialProbability(n,	2500,	p))	#	Fails!

Although	 this	 was	 a	 reasonable	 question	 to	 ask	 the	 code	 fails	 because	 of	 the	 large
number	of	combinations	involved.	All	is	not	lost,	however,	because	the	scipy.stats	module
provides	 an	 implementation	 that	 is	more	 robust	 (and	 quicker).	 To	 use	 this	we	 define	 a
Python	object	 that	 represents	 a	 binomial	 random	variable	with	 given	parameters,	which
here	 are	 the	 number	 of	 trials	 and	 event	 probability.	 This	 object	 has	 various	 methods
(functions	bound	to	it),	and	one	of	these	is	.pmf(),	which	represents	the	probability	mass
function,	 i.e.	 a	 function	 that	 calculates	 the	 probability	 for	 a	 given	 value	 of	 the	 random
variable,	just	like	binomialProbability().

from	scipy.stats	import	binom

p	=	0.0025

n	=	10000000

binomRandomVar	=	binom(n,	p)

print(binomRandomVar.pmf(2500))#	Succeeds:	0.007979577

The	random	variable	object	also	has	other	handy	functions,	as	described	 in	 the	SciPy
documentation:

print(binomRandomVar.mean())	#	Most	likely	value		:	2500.0

print(binomRandomVar.std())		#	Standard	deviation	:	49.99

Also,	as	you	might	expect,	the	SciPy	functions	not	only	operate	on	single	numbers,	but
also	work	with	NumPy	arrays.	Hence,	we	can	create	a	whole	array	of	values	for	the	counts
k	and	calculate	the	array	of	probabilities	for	these	with	.pmf():

from	scipy.stats	import	binom

from	numpy	import	array

binomRandomVar	=	binom(10000000,	0.00025)

counts	=	array(range(2300,	2700))

probs	=	binomRandomVar.pmf(counts)

pyplot.plot(counts,	probs)

pyplot.show()

We	can	 also	 calculate	 the	 cumulative	 probabilities,	 the	 sum	of	 the	 probabilities	 from
zero	to	each	value	of	k	(which	is	very	handy	for	statistical	testing,	as	discussed	in	Chapter
22),	using	.cdf():

cumulative	=	binomRandomVar.cdf(counts)

pyplot.plot(counts,	cumulative)

pyplot.show()

Figure	21.7.	 Example	output	of	the	binomial	distribution	for	a	large	number	of
trials.	A	graph	of	the	output	generated	using	the	binom.pmf()	function	from	the	scipy.stats
module,	tested	for	10	million	trials	with	event	probability	0.00025.	The	graph	illustrates
the	probability	for	discrete	numbers	of	events	in	the	range	from	2300	to	2700,	covering
the	mean	value	at	2500.

Figure	21.8.	 Example	output	of	the	Binomial	cumulative	distribution	function.	A
graph	of	the	output	generated	using	the	bionom.cdf()	function	from	the	scipy.stats	module,
tested	for	10	million	trials	with	event	probability	0.00025	and	illustrating	the	cumulative
probability	density	for	discrete	numbers	of	events	in	the	range	from	2300	to	2700,
covering	the	mean	value	at	2500.

Poisson	distribution
If	 we	 know	 the	 average	 rate	 at	 which	 an	 event	 occurs,	 over	 a	 large	 number	 of
independent	 trials,	 then	 the	 Poisson	 distribution	 is	 the	 probability	 distribution	 of	 the
number	 of	 events	 that	 occur	 in	 a	 time	 interval.	 This	 is	 closely	 related	 to	 the	 binomial
distribution,	but	specifying	the	rate	(λ)	at	which	the	event	occurs	means	we	don’t	specify
the	number	of	trials	(n)	or	the	probability	of	an	event	(p),	though	the	rate	λ	is	essentially	p
×	 n.	 The	 Poisson	 distribution	 would	 be	 used	 instead	 of	 the	 binomial	 distribution	 in
situations	 where	 the	 number	 of	 trials	 is	 not	 measurable.	 For	 example,	 as	 we	 illustrate
below,	where	statistically	we	observe	the	average	rate	of	births	in	a	population	per	day,	we
can	calculate	the	probability	distribution	of	the	number	of	births	per	day	without	knowing
the	size	of	the	population.	The	binomial	distribution	approaches	the	Poisson	distribution	as
the	number	of	trials	(n)	becomes	large	and	the	event	probability	(p)	becomes	small.

For	the	Poisson	distribution	the	equation	for	the	probability	of	observing	k	events	given
an	occurrence	rate	of	λ	from	independent	trials	is:

Here	e	is	the	mathematical	constant	≈2.71828	(Euler’s	number).	It	can	be	shown	that	the
mean	of	the	Poisson	distribution	is	λ	and	the	variance	(see	Chapter	22)	is	also	λ.

We	can	implement	the	Poisson	distribution	using	the	scipy.stats	module,	which	is	quick
and	robust,	compared	to	calculating	the	factorials	and	powers	explicitly	in	basic	Python.
For	an	example	where	in	a	hospital	there	is	an	average	of	4.7	births	per	day	the	Poisson
distribution	estimates	the	probability	of	observing	a	given	number	of	births	as	follows:

from	scipy.stats	import	poisson

poissRandomVar	=	poisson(4.7)

for	k	in	range(10):

		pk	=	poissRandomVar.pmf(k)

		print('Number	of	births:	%2d	probability:	%.3f'	%	(k,	pk))

We	can	apply	the	distribution	to	the	restriction	enzyme	example	we	used	above,	which
shows	 that	 for	 large	 numbers	 of	 trials	 and	 small	 event	 probabilities	 the	 Poisson
distribution	is	a	very	good	approximation	for	the	binomial	distribution.

from	scipy.stats	import	poisson

from	numpy	import	array

rate	=	10000000	*	0.00025

poissRandomVar	=	poisson(rate)

counts	=	array(range(2300,	2700))

probs	=	poissRandomVar.pmf(counts)

pyplot.plot(counts,	probs)

pyplot.show()

Geometric	distribution
For	 an	 event	 of	 specified	 probability,	 the	 geometric	 distribution	 is	 the	 probability
distribution	for	the	number	of	independent	trials	that	do	not	 result	 in	 the	event,	until	 the
event	is	observed	once.	If	we	consider	the	event	a	‘success’,	then	the	distribution	is	over
the	 number	 of	 ‘failures’.	 A	 good	 example	 of	 this	 is	 the	 distribution	 of	 DNA	 fragment
lengths	after	being	cut	with	an	enzyme	like	HindIII.	Here	 the	event	 is	a	cut	site	and	 the
distribution	of	the	number	of	other	DNA	positions	we	observe	before	finding	a	cut	site	is
geometric.	For	the	geometric	distribution	the	probability	of	a	number	of	independent	non-
event	trials	(k)	required	to	observe	the	event	with	stated	probability	(p)	is	given	by:

Pr(k)	=	(1	−	p)k	−	1	p

Here	k	takes	integer	values	from	one.	A	different	formula	arises	if	k	starts	at	zero,	i.e.	Pr(k)
=	(1−p)k	p,	which	represents	the	number	of	trials	required	before	the	event	occurs,	i.e.	not
including	the	event.	As	it	happens,	the	scipy.stats.geom	function	uses	the	first	form,	which
includes	 the	 event.	 The	 geometric	 distribution	 is	 related	 to	 a	 more	 general	 distribution
called	the	negative	binomial	distribution	that	represents	the	probability	distribution	for	the
number	of	trials	that	occur	before	an	arbitrary	number	of	events	of	stated	probability	occur
(rather	than	just	one).

Figure	21.9.	 An	example	output	of	the	Poisson	distribution.	A	graph	of	the	output
generated	using	the	poisson.pmf()	function	from	the	scipy.stats	module,	tested	for	an	event
rate	of	2500.	The	graph	illustrates	the	probability	density	for	discrete	numbers	of	events	in
the	range	from	2300	to	2700.	This	is	a	very	good	approximation	for	the	binomial
distribution	illustrated	above	(Figure	21.7).

Figure	21.10.	 An	example	output	of	the	geometric	distribution.	A	graph	of	the	output
generated	using	the	geom.pmf()	function	from	the	scipy.stats	module,	tested	for	an	event
probability	of	0.0025.	The	graph	illustrates	the	probability	for	the	number	of	independent
trials	until	the	event	occurs,	in	the	range	from	0	to	1000.

Again	we	can	use	SciPy	to	calculate	the	probabilities	for	the	distribution,	here	using	the
probability	 for	a	 restriction	enzyme	cut	 site	 to	get	 the	distribution	 in	 the	DNA	fragment
lengths:

from	scipy.stats	import	geom

from	numpy	import	array

p	=	0.0025

geomRandomVar	=	geom(p)

lengths	=	array(range(1,	1000))

probs	=	geomRandomVar.pmf(lengths)

pyplot.plot(lengths,	probs)

pyplot.show()

The	geometric	distribution	is	the	last	discrete	probability	distribution	we	will	describe
in	detail	but	 there	are	several	other	distributions	 that	are	easily	accessible	 in	Python	via

their	 implementation	 in	 the	 scipy.stats	 module.	 Some	 of	 the	 more	 notable	 available
probability	distributions	are	as	follows:

dlaplace:	the	discrete	Laplace	distribution;	the	differences	between	two	independent
but	 identically	 distributed	 random	 variables	 which	 themselves	 have	 geometric
distributions.

hypergeom:	 the	 hypergeometric	 distribution,	 describing	 the	 number	 of	 successful
events	occurring	after	selecting	a	given	number	of	items	from	a	population	without
replacement.	(With	replacement	the	distribution	would	be	binomial.)

nbinom:	 the	 negative	 binomial	 distribution,	 a	 generalisation	 of	 the	 geometric
distribution	for	a	variable	number	of	events.

randint:	the	uniform	distribution,	i.e.	where	all	values	are	equally	likely.

skellam:	the	Skellam	distribution,	the	differences	between	two	independent	random
variables	which	themselves	have	Poisson	distributions	and	different	mean	values.

Markov	chains
When	 we	 have	 referred	 to	 the	 rolling	 of	 dice	 or	 subsequent	 DNA	 positions,	 we	 have
already	been	considering	a	chain	of	events	that	occur	from	subsequent	probabilistic	trials.7
Also,	until	now	we	have	only	dealt	with	situations	where	the	probabilities	of	the	various
outcomes	 are	 independent	 of	 their	 position	 in	 the	 chain	 (i.e.	 that	 the	 probabilities	 don’t
change	for	the	same	kind	of	outcome	at	different	locations	in	the	chain	of	trials).	As	we
have	 mentioned	 before,	 this	 is	 a	 simplification	 for	 many	 types	 of	 random	 process.
Naturally	there	could	be	all	sorts	of	dependencies,	where	the	probabilities	of	the	outcomes
vary	 according	 to	 context.	 In	 a	 general	 sense	 we	 can	 describe	 this	 context	 in	 terms	 of
conditional	probabilities,	where	a	probability	is	assigned	for	an	event	given	the	case	that
another	event	has	occurred.

A	Markov	 chain	 is	 a	model	which	 uses	 conditional	 probabilities	 for	 a	 chain	 of	 trials
with	 the	 specific	 criterion	 that	 the	 probabilities	 of	 a	 trial	 are	 conditioned	 only	 on	 the
outcome	of	 the	previous	 trial.	Phrasing	 this	differently	we	could	say	 that	 the	chain	does
not	have	 any	memory	beyond	 its	 current	 state.	This	 is	 certainly	 a	 simple	model,	 and	 in
reality	 a	 probability	 may	 actually	 be	 dependent	 on	 more	 than	 just	 the	 outcome	 of	 the
previous	trial.	However,	 the	fact	 that	we	have	a	whole	series	of	conditional	probabilities
from	the	start	of	the	chain	means	that	information	is	relayed	throughout	the	whole	chain.
The	fact	that	Markov	chains	have	proven	useful	in	various	areas	of	biology	is	undeniable.

Markov	processes
A	Markov	chain	is	defined	by	a	set	of	possible	states	that	represent	the	range	of	possible
occurrences	 for	 the	 trials	 that	make	up	 the	 chain.	The	probability	 for	 a	given	 chain	 can
then	 be	 calculated	 using	 the	 conditional	 probability	moving	 from	 each	 state	 to	 the	 next
state	along	the	chain.	For	the	simple	example	of	rolling	dice,	we	can	use	a	Markov	chain
to	model	the	situation	where	a	fair	die	is	occasionally	swapped	for	a	loaded	(unfair)	die,
i.e.	where	the	probabilities	of	the	six	outcomes	are	not	equal.	Hence,	according	to	which

die	is	used	the	probabilities	of	the	different	roll	outcomes	change	and	we	could	model	this
by	having	two	states:	a	fair	die	and	a	loaded	die.	Similarly	for	an	otherwise	random	DNA
model	 we	may	 have	 different	 probabilities	 of	 observing	 C:G	 versus	A:T	 depending	 on
whether	 the	 region	 is	 a	 gene	 or	 not.	 Here	 the	 states	 would	 be	 gene	 and	 non-gene
nucleotides,	each	with	associated	conditional	probabilities.	Technically	we	are	describing
a	 discrete-time	 homogeneous	Markov	 chain.8	 It	 is	 discrete	 time	 because	we	 have	 fixed
positions	or	trials	for	the	chain,	which	needn’t	be	true	in	the	general	case,	and	the	notion
of	being	homogeneous	refers	to	the	fact	that	the	conditional	probabilities	don’t	vary	along
the	chain	(e.g.	vary	with	‘time’).

Expressing	this	in	terms	of	conditional	probability,	we	model	the	probability	of	a	trial
having	a	particular	state	given	the	state	of	the	previous	trial.	A	consequence	of	this	is	that
we	consider	all	the	possible	probabilities	of	going	from	one	state	to	another.	Generally	this
is	described	as	a	matrix	of	conditional	probabilities,	which	we	call	the	transition	matrix.
Here	each	element	of	the	matrix	(T)	is	the	probability	of	observing	a	particular	state	(State
=	 j)	at	a	position	 in	 the	chain	 (n+1)	given	 the	occurrence	of	a	potentially	different	 state
(State	=	i)	at	the	previous	position	(n),	i.e.	we	transition	from	state	i	to	j:

Ti,j	=	Pr(Staten	+	1	=	j|	Staten	=	i)

As	before	we	use	the	typical	mathematical	notation	where	the	‘|’	symbol	means	‘given’.
We	 assume	 that	 the	 transition	 matrix	 is	 the	 same	 across	 the	 whole	Markov	 chain,	 i.e.
independent	of	n.	Note	that	since	the	chain	must	transition	to	something,	i.e.	Staten+1must
take	some	value,	the	summation	over	all	destination	states	j	for	starting	state	i	is	one:

Once	we	know	 the	probability	of	going	 to	 the	next	 state	given	 the	previous	one,	which
would	 often	 be	 derived	 from	 statistical	 observations	 of	 real	 data,	 we	 can	 then	 use	 a
Markov	chain	 to	generate	 sequences	of	outcomes	or	 states.	 In	 essence	 this	would	mean
using	 the	 transition	 matrix	 repeatedly,	 albeit	 in	 a	 random	 manner	 according	 to	 its
probabilities,	to	produce	a	sample	from	the	model.9	From	a	relatively	simple	transitioning
model	we	 can	 then	make	 long-term	predictions.	For	 example,	we	 could	have	 a	Markov
chain	that	models	the	reproduction	of	a	population	of	bacteria,	with	assigned	probabilities
for	 the	number	of	progeny	 in	a	generation	given	 the	number	 in	 the	previous	generation.
Although	 this	 process	 is	 really	 continuous	 we	 are	 considering	 a	 simplified	model	 with
discrete	 time	 points	 by	 using	 the	 notion	 of	 a	 ‘generation’.	 Given	 different	 starting
populations	we	 can	 then	 investigate	 the	 different	 long-term	 outcomes,	 e.g.	 whether	 the
population	grows	or	dies	out.

Here	we	would	say	the	state	was	the	size	of	the	population,	and	the	probability	for	the
size	at	a	next	point	is	predicted	only	from	the	current	population	size.	We	can	repeat	this
process	 and	 take	 another	 discrete	 step	 along	 the	 chain,	 to	 predict	 even	 further	 into	 the
future,	but	naturally	if	we	do	this	the	likelihood	of	any	given	outcome	becomes	even	more
uncertain.	At	a	glance	it	may	seem	futile	to	extend	the	chain	very	far,	basing	guesses	upon
guesses,	but	the	real	power	of	the	Markov	process	comes	from	the	ability	to	compare	the
relative	 likelihood	 of	 different	 outcomes	 and	 how	 these	 may	 have	 arisen	 from	 a

combination	of	different	intermediate	states.

For	 our	 simplistic	 model	 of	 bacterial	 population	 growth,	 where	 we	 assume	 that
generations	are	distinct,	we	will	use	a	probability	distribution	that	describes	the	likelihood
of	the	number	of	progeny	that	each	individual	bacterium	can	give	rise	to	in	a	generation.
In	 this	 case	 the	 states	 that	 the	 Markov	 chain	 can	 take	 are	 non-negative	 integers,	 i.e.
numbers	zero	and	above,	and	we	will	use	a	Poisson	distribution	 for	 the	probabilities.	A
state	 of	 zero	 means	 that	 the	 population	 dies	 out.	 A	 general	 transition	 matrix,	 which	 is
independent	 of	 both	 the	 individual	 bacterium	 and	 the	 generation,	 then	 derives	 from	 the
Poisson	 distribution	 being	 applied	 to	 each	 state.	Although	 the	 distribution	 describes	 the
likelihood	of	progeny	for	an	individual	we	combine	these	for	all	individuals	within	a	given
population	size.

In	this	example	we	do	not	explicitly	calculate	the	complete	transition	matrix,	given	that
the	 population	 size	 is	 unbounded.	 Rather	 we	 will	 calculate	 the	 population	 of	 the	 next
generation	 based	 on	 the	 current	 population	 by	 generating	 random	 outcomes	 for	 each
individual	 bacterium,	 according	 to	 the	 probability	 distribution.	 In	 subsequent	 examples
where	 there	 are	 more	 limited	 states	 we	 will	 describe	 the	 whole	 transition	 matrix	 of
probabilities	 upfront.	The	general	 form	of	 the	 transition	matrix	 is	 as	 follows,	where	 the
subscripts	(i	and	j)	respectively	represent	the	current	and	next	population	states:

Figure	21.11.	 Example	Markov	chain	probability	distribution.	The	Poisson
probability	distribution	(in	this	case	rate	=	2.0)	which	we	use	to	model	the	number	of
progeny	for	each	bacterium	in	the	population.

Naturally	T0,j	is	zero,	for	all	subsequent	states	j,	because	once	you	have	no	individuals
they	cannot	have	any	progeny.	A	bacterial	population	of	one	would	have	the	following	for

the	 first	 ten	 transition	 probabilities,	 T1,0	 to	 T1,10:	 0.1353,	 0.2707,	 0.2707,	 0.18046,
0.09028,	0.0361,	0.0120,	0.003,	0.0008,	0.0001,	assuming	a	Poisson	distribution	with	rate
2.0.	The	 calculation	of	 transition	probabilities	 for	 a	 population	of	 two	 (T2,j)	would	 take
more	work,	because	you	have	separate	outcomes	for	each	individual	in	the	population	and
these	 would	 have	 to	 be	 multiplied	 for	 the	 total	 number	 of	 combinations.	 However,
simulating	population	growth	with	this	kind	of	model	you	fortunately	do	not	need	to	know
the	exact	value	of	Tj,k	for	all	states	j	and	k	but	instead	consider	individuals	by	themselves
and	calculate	the	number	of	progeny	for	each.

We	can	simulate	the	whole	process	in	Python,	given	a	particular	number	of	individuals
in	 one	 generation,	 and	 with	 a	 Poisson	 distribution	 randomly	 determining	 how	 many
progeny	 one	 bacterium	will	 have.	We	 can	 calculate	 the	 number	 of	 bacteria	 in	 the	 next
generation	 by	 considering	 how	 many	 offspring	 each	 of	 the	 individuals	 in	 the	 current
generation	 has.	 We	 define	 a	 function	 to	 generate	 the	 size	 of	 the	 population	 using	 a
scipy.stats	random	variable	object.	Note	that	we	use	the	.rvs()	method	to	draw	the	required
number	 of	 random	 samples	 from	 this	 distribution,	 which	 in	 this	 case	 would	 be	 the
numbers	 of	 progeny	 for	 each	 bacterium.	 The	 population	 of	 the	 next	 generation	 is	 then
simply	the	summation	of	the	numbers	of	progeny.

def	getNextGenPop	(currentPop,	randVar):

		progeny	=	randVar.rvs(size=currentPop)

		nextPop	=	progeny.sum()

		return	nextPop

A	random	variable	object	with	a	Poisson	distribution	is	generated	with	the	required	rate
(average	number	of	progeny	in	the	generation):

from	scipy.stats	import	poisson

rate	=	1.02				#	A	deliberately	low	rate

poissRandVar	=	poisson(rate)

The	Markov	process	 is	 then	simulated	by	repeatedly	recalculating	 the	populations	for
the	subsequent	generations.	At	the	low	reproductive	rate	which	we	use	here,	you	will	note
that	the	population	sometimes	dies	out.

pop	=	25

for	i	in	range(100):

		pop	=	getNextGenPop(pop,	poissRandVar)

		print("Generation:%3d	Population:%7d"	%	(i,	pop))

Returning	to	the	general	situation,	the	transition	matrix	determines	the	properties	of	the
Markov	chain.	For	example,	if	we	define	the	initial	distribution	I	of	the	probability	of	the
state	j	to	be:

Ij	=	Pr(State0	=	j)

then	the	probability	for	each	state	at	the	next	position	in	the	chain	is	the	summation	over
all	 the	possible	starting	states	multiplied	by	the	conditional	probability	to	get	to	the	next
state.	In	other	words	we	can	get	to	the	next	state	via	multiple	routes	from	different	initial
states,	each	with	a	potentially	different	probability:

Pr(State1	=	j)	=	Pr(State1	=	j	|	State0	=	k)	Pr(State0	=	k)	=	∑k	Ik	Tk,j
Thus	the	distribution	at	chain	position	1	can	be	determined	from	that	at	chain	position	0
just	by	multiplication	by	the	transition	matrix	(T).	It	can	also	be	shown,	for	example,	that:

Pr(Staten	=	k	|	State0	=j)	=	(Tn)j,k

where	Tn	is	the	nth	power	of	the	transition	matrix.	Thus	in	theory	we	can	exactly	calculate
the	 distribution	 of	 states	 at	 any	 subsequent	 position	 (Staten),	 given	 the	 starting	 state	 (at
position	zero)	and	multiplying	by	the	matrix	Tn.	Accordingly	we	have:

Pr(Staten	=	j)	=	Pr(Staten	=	j	|	State0	=	k)	Pr(State0	=	k)	=	∑k	Ik	(Tn)k,j
This	 also	 allows	 us	 to	 calculate	 the	 probability	 of	 a	whole	 sequence	 of	 specified	 states
(from	 i0	 to	 in)	 from	 the	 starting	 state	 and	 the	product	of	 the	 individual	 transition	matrix
elements	which	are	selected	from	the	knowledge	of	the	states:

Pr(State0	=	i0,	State1	=	i1,	…,	Staten	=	in)	=	Ii0	Ti0i1	Tin-1in
Lastly,	 analyses	 of	 Markov	 chains	 sometimes	 refer	 to	 the	 equilibrium	 distribution.	 An
equilibrium	distribution,	πi,	for	a	Markov	chain	is	a	distribution	of	states	which	does	not
vary	as	 the	 chain	 evolves	 for	 subsequent	 probabilistic	 trials,	 i.e.	 applying	 the	 transition
matrix	regenerates	the	previous	distribution	(πT	=	π).	If	an	equilibrium	distribution	exists,
then	 it	 can	 be	 shown,	 under	 weak	 assumptions,	 that	 all	 distributions	 approach	 the
equilibrium	distribution	as	 the	number	of	 trials	gets	 large,	 i.e.	 I	×	Tn	approaches	π	 as	n
gets	 large,	 for	 any	 starting	 state.	 This	 can	 be	 important	 for	 biological	 and	 predictive
systems	where	the	equilibrium	distribution	represents	a	long-term	description	of	a	system
when	it	has	had	time	to	‘settle	down’.

Hidden	Markov	models
A	 hidden	 Markov	 model	 (HMM)	 is	 a	 kind	 of	 Markov	 chain	 where	 the	 states	 are	 not
directly	 observable,	 but	 a	 quantity	 that	 is	 directly	 observable	 is	 determined,	 often
probabilistically,	by	the	state	at	a	given	point	in	the	sequence.	The	key	idea	is	that	there	is
not	necessarily	any	direct	correspondence	between	the	 invisible	state	and	the	observable
state.	For	example,	 if	we	want	 to	predict	 the	secondary	structure	of	a	protein	(which	we
might	 simply	 represent	 as	 alpha-helix,	 beta-strand	 or	 random	 coil)	 then	 the	 observable
data	 would	 be	 the	 protein	 sequence	 and	 the	 hidden	 states	 could	 be	 modelled	 as	 the
secondary-structure	 type	 at	 each	 point	 in	 the	 sequence.	 Here,	 by	 considering	 the
probabilities	 of	 changing	 from	 one	 state	 to	 another	 and	 the	 probabilities	 of	 making	 an
observation,	given	a	particular	state,	then	we	can	make	a	prediction	about	what	the	hidden
states	 are	 if	we	 have	 some	observable	 data,	 i.e.	 having	 a	 protein	 sequence	 allows	 us	 to
make	a	prediction	of	the	underlying	secondary-structure	states.	Later	in	this	chapter,	once
we	have	covered	some	key	 theory	and	algorithms,	we	will	 look	at	an	HMM	example	 in
Python	that	involves	protein	sequences.

To	be	more	precise,	suppose	we	can	obtain	some	observable	data	d	for	each	position	in
the	Markov	chain.	We	require	a	function	ei(d)	that	gives	the	probability	of	generating	or
‘emitting’	 the	 observed	 data	 given	 an	 underlying	 state	 i.	 It	 is	 assumed	 this	 emission

probability	 is	 independent	 of	 the	 position	 in	 the	 chain.	 Sometimes	 an	 HMM	model	 is
constructed	 such	 that	 the	 observable	 data	 has	 a	 direct	 correspondence	 to	 one	 of	 the
underlying	 states,	 in	 which	 case	 ei(d)	 =	 1	 for	 that	 specific	 observation	 and	 ei(d)	 =	 0
otherwise;	 we	 will	 demonstrate	 this	 idea	 later.	 Because	 for	 an	 HMM	 we	 distinguish
between	 the	hidden	state	at	position	n	 and	 the	data	observed	 (emitted)	at	position	n,	we
multiply	 the	 transition	matrices	 to	 get	 the	 probabilities	 of	 the	 subsequent	 hidden	 states
(from	the	previous	states)	and	multiply	the	emission	probabilities	to	get	the	likelihood	of
observing	the	actual	data	given	this	underlying	state.	Hence,	the	probability	of	observing
the	 whole	 sequence	 of	 data,	 over	 all	 the	 positions	 of	 the	 Markov	 chain	 starting	 with
probabilities	for	the	initial	state,	 	can	be	written	as:

Using	Python	for	hidden	Markov	models
So	 far	 we	 have	 covered	 a	 fair	 amount	 of	 general	 theory,	 so	 for	 the	 remainder	 of	 this
chapter	we	turn	to	some	Python	versions	of	key	algorithms	which	will	allow	you	to	work
with	 hidden	 Markov	 models	 and	 go	 on	 to	 show	 you	 how	 these	 can	 be	 practically
implemented.	Given	the	definition	of	an	HMM	the	task	naturally	turns	to	extracting	some
useful	information.	We	usually	want	to	know	what	the	likely	underlying	hidden	states	are,
given	 some	 sequence	 of	 observable	 data.	 Because	 we	 are	 dealing	 with	 a	 probabilistic
model,	and	bearing	in	mind	a	Bayesian	approach	which	considers	alternative	hypotheses,
there	will	be	various	competing	sequences	of	hidden	states	or	‘routes’	through	the	Markov
chain.	Often	it	is	useful	to	have	the	most	likely	sequence	of	hidden	states,	hence	we	cover
the	Viterbi	algorithm.	We	then	go	on	to	the	forward-backward	algorithm,	which	will	allow
us	to	estimate	the	probabilities	of	particular	states	being	present	at	a	particular	point	in	the
chain,	 to	 compare	competing	 solutions	and	 indicate	 the	points	of	greatest	uncertainty	 in
our	predictions.

We	will	demonstrate	the	use	of	these	algorithms	with	a	relatively	simple	example	of	a
hidden	Markov	model	that	relates	to	protein	sequences.	Specifically	we	will	have	states	to
describe	protein	residues	in	sequences	as	being	‘buried’	or	‘exposed’.	These	reflect	where
amino	acid	 residues	 lie	within	 the	3D	structure	of	 a	 folded	protein.	The	buried	 residues
will	be	found	in	the	interior	of	the	protein,	at	its	core,	and	the	exposed	residues	will	be	on
its	surface,	 i.e.	exposed	to	the	water	solvent.	We	don’t	expect	state	predictions	from	this
HMM	to	be	especially	accurate,	given	that	protein	folding	is	so	complex,	but	the	example
is	 simple	 enough	 for	 this	 book.	 Also,	 we	 are	 basing	 the	 HMM	 on	 a	 well-known
observation,	 that	 the	 buried	 cores	 of	 residues	 in	 proteins	 have	 a	 distinctly	 different
complement	of	amino	acids	compared	 to	 the	exposed	surface.	The	exposed	amino	acids
have	 a	 strong	 tendency	 to	 be	 hydrophilic	 and	 have	 side	 chains	 that	 contain	 polar	 and
charged	 atom	groups,	which	 can	 interact	with	 the	water.	 In	 contrast	 the	 buried	 residues
tend	to	be	hydrophobic,	and	thus	have	non-polar,	uncharged	side	chains.10

A	simple	way	to	form	the	HMM	would	be	 to	only	have	two	hidden	states,	 for	buried
and	exposed	categories.	In	this	case	we	would	calculate	the	probabilities	for	changing	(or
not	changing)	between	states	as	we	move	through	the	protein	sequence.	For	an	observed
amino	acid	type	there	will	be	probabilities	that	it	came	from	each	of	the	two	states.	Hence,
the	observed	data,	the	protein	sequence,	would	be	emitted	in	a	probabilistic	manner	from

these	two	states.

In	practice	we	will	not	use	 this	 simple	HMM,	rather	we	will	have	many	more	states.
Each	 state	will	 be	 a	 combination	of	 a	 buried/exposed	 label	and	 an	 amino	 acid	 type,	 so
there	 will	 be	 40	 states	 in	 total.	 The	 reason	 behind	 this	 is	 to	 make	 the	 transition
probabilities	more	detailed,	so	the	overall	HMM	becomes	more	accurate.	By	encoding	the
amino	acid	type	in	the	hidden	state	we	will	be	able	to	incorporate	the	effect	of	the	amino
acid	 type	 in	 the	 transitions	 of	 the	 chain.	 For	 example,	where	 a	 sequence	 position	 has	 a
valine	amino	acid	followed	by	a	serine	amino	acid	we	will	know	more	precisely	what	the
probability	is	to	go	from	a	buried	or	exposed	valine	to	a	buried	or	exposed	serine;	in	effect
the	 transition	 probability	 matrix	 will	 vary	 according	 to	 the	 sequence.	 If	 we	 use	 such
combined	 states	 the	 emission	 probabilities	 become	 trivial:	 the	 probability	 of	 getting	 the
observed	amino	acid	is	1.0	if	that	amino	acid	is	part	of	the	hidden	state	and	0.0	otherwise.
Naturally	 the	more	states	we	have	 in	 the	HMM	the	more	statistical	data	we	need	 to	get
accurate	probabilities;	we	need	data	for	40×40	transitions.	However,	the	probabilities	will
be	estimated	from	a	large	amount	of	PDB	data	(containing	protein	3D	structures)	so	there
is	little	concern	about	getting	good	statistics	here.

Figure	21.12.	 A	schematic	of	a	simple	two-state	HMM	for	buried	and	exposed
protein	states.	For	a	model	of	two	hidden	states	(‘b’	is	buried	and	‘e’	is	exposed)	we	have
a	transition	matrix	corresponding	to	four	possible	state	transitions	and	an	emission	matrix
specifying	the	likelihood	of	each	of	the	20	amino	acids	being	found	in	each	of	the	two
states.

Figure	21.13.	 A	schematic	of	a	40-state	HMM	for	buried	and	exposed	protein	states.
In	this	model	there	is	a	separate	hidden	state	for	each	amino	acid	and	buried/exposed
combination	(i.e.	2×20	states).	This	gives	rise	to	a	large,	1600-element	transition	matrix
between	all	the	40	possibilities.	The	emission	matrix	in	this	case,	however,	is	simple,
given	that	an	observed	amino	acid	can	only	come	from	the	two	hidden	states	which
involve	that	specific	amino	acid,	and	the	non-matching	emission	probabilities	will	be	zero.

The	Viterbi	algorithm
The	Viterbi	algorithm	is	an	efficient	means	of	using	the	probabilities	within	an	HMM	to
predict	 the	 most	 likely	 sequence	 of	 hidden	 states	 that	 generates	 a	 sequence	 of	 known
outcomes:	 our	 observed	 data.	 There	 are	many	 situations	when	 it	 can	 be	 useful	 to	 get	 a
handle	on	the	‘best	guess’	for	the	underlying	states,	and	in	the	example	at	the	end	of	this
chapter	we	will	 use	 the	method	 to	 estimate	 the	most	 likely	 sequence	 of	 buried/exposed
protein	 states.	However,	 this	 is	not	 to	 suggest	 that	we	are	always	satisfied	with	a	 single
optimum	 answer;	 considering	 a	Bayesian	 approach	 it	may	 actually	 be	more	 relevant	 to
have	a	distribution	of	different	hidden	state	sequences,	which	can	tell	us	something	about
the	reliability	of	estimates.

The	Viterbi	algorithm	is	an	example	of	dynamic	programming,	similar	to	the	pairwise
sequence	alignment	method	shown	in	Chapter	12,	where	we	compute	the	path	through	the
hidden	 state	 transitions	 that	 maximises	 the	 overall	 probability.	 Rather	 than	 multiplying
probabilities,	which	would	often	result	in	very	small	numbers	that	cannot	be	represented
accurately	 in	 floating	 point	 representation,11	we	 add	 the	 logarithms	 of	 the	 probabilities,
which	will	always	be	in	a	manageable	range.

The	procedure	starts	at	the	beginning	of	the	HMM	chain	and	calculates	the	probabilities

for	all	hidden	states	at	subsequent	positions	until	the	end,	where	one	‘winning’	sequence
of	hidden	states	 is	 revealed.	Given	an	array	of	different	 states	 there	are	several	possible
transitions	(paths)	to	get	to	the	different	states	at	the	subsequent	positions	in	the	Markov
chain.	 At	 a	 given	 position	 where	 the	 probability	 of	 having	 each	 state	 is	 recorded,	 the
highest	 probability	 for	 a	 state	 in	 the	 next	 position	 is	 taken	 as	 the	 maximum	 of	 the
outcomes	 when	 these	 probabilities	 are	 multiplied	 by	 the	 appropriate	 transition	 and
emission	probabilities	(i.e.	observing	the	data	for	the	following	position).	For	the	protein
example	this	means	we	multiply	by	probabilities	of	going	from	one	buried/exposed	state
to	 the	 next	 and	 by	 the	 probability	 of	 observing	 a	 particular	 amino	 acid,	 given	 the	 next
state.

In	the	Viterbi	algorithm,	although	there	are	many	sequences	of	hidden	states	that	can	be
proposed	 to	yield	a	particular	observed	state	 for	a	position	 in	 the	chain,	 the	sub-optimal
state	 sequences	 are	 discarded.	 The	 procedure	 can	 be	 viewed	 as	 using	 pre-computed
solutions	 for	 the	prior	chain	positions.	The	dynamic	programming	core	of	 the	algorithm
means	 that	we	do	not	 compute	 all	possible	 routes,	only	 the	best	ones	 for	 each	position,
thus	minimising	the	amount	of	computation	that	has	to	be	done.

The	implementation	of	the	Viterbi	algorithm	is	fairly	simple	using	Python	with	NumPy
arrays.	We	go	from	one	point	in	the	sequence	to	the	next	in	a	for	loop,	given	we	know	the
number	of	 observations.	Calculating	 the	 log-probabilities	 involves	 adding	 arrays	 for	 the
preceding	states	(or	starting	values)	 to	the	transition	and	emission	arrays,	noting	that	 the
emission	 probabilities	 are	 conditioned	 given	 the	 actual	 observed	 data	 for	 the	 point.	 For
each	 step,	 choosing	 the	 best	 transition	 to	 get	 to	 each	 of	 the	 states	 in	 the	 subsequent
position	is	a	simple	maximisation	of	the	summed	log-probabilities.	Here	we	use	.argmax()
to	give	the	indices	for	the	highest-scoring	transitions.	This	allows	us	not	only	to	select	the
required	values,	but	also	to	record	the	list	of	winning	indices	at	each	position.	Hence,	once
the	end	is	reached,	the	overall	highest-scoring	path	will	be	determined.	Note	that	we	are
only	 recording	 the	 best	 route	 and	 log-probability	 for	 each	 state,	 so	 this	 operation	 is
relatively	frugal	on	memory.

For	the	actual	Python	example	we	do	the	required	NumPy	imports	for	arrays	and	then
define	 a	 function	 which	 takes	 four	 arguments:	 a	 list	 of	 the	 observed	 data	 and	 log-
probabilities	 for	 the	 starting	 values,	 transition	 matrix	 and	 emissions.	 Note	 that	 it	 is
assumed	 that	 all	 the	 probabilities	 are	NumPy	 arrays	 and	 that	 the	 logarithms	were	 taken
beforehand	 (e.g.	 logArray	=	numpy.log(myArray)),	 so	we	 can	 add	 rather	 than	multiply.
For	 simplicity	 we	 will	 often	 refer	 to	 the	 log-probabilities	 simply	 as	 ‘scores’.	 The
observations	may	be	a	list	or	an	array	and	encode	the	data	as	indices.	So,	for	example,	if
the	data	is	a	DNA	sequence	with	G,	C,	A	and	T	letters	then	obs	is	a	list	that	selects	from
four	indices:	0,	1,	2	or	3.	Here	the	order	in	which	the	data	states	are	encoded	is	arbitrary,
but	the	order	must	naturally	be	the	same	as	in	the	emission	matrix	pEmit.

from	numpy	import	empty,	array

def	viterbi(obs,	pStart,	pTrans,	pEmit):

Initially	we	record	the	number	of	hidden	states	from	the	input	arrays,	and	then	initialise
values	for	the	log-probabilities	scores.	The	first	value	for	scoresPrev	is	initialised	with	the
starting	 scores	 and	 the	 emissions	 for	 the	 first	 data	 item.	 The	 dictionary	 pathsPrev	 that

records	 the	 score-maximising	 choices,	 and	 hence	 best	 path	 through	 the	HMM,	 uses	 the
index	of	the	state	(here	i)	as	a	key	and	holds	a	list	of	indices,	to	record	the	prior	states	and
hence	path.	The	initial	value	here	is	naturally	i,	where	we	start	from.

nStates	=	len(pStart)

states	=	range(nStates)

scores	=	empty(nStates)

scoresPrev	=	pStart	+	pEmit[:,obs[0]]

pathsPrev	=	dict([(i,	[i])	for	i	in	states])

Next	we	 loop	 through	all	of	 the	subsequent	observations,	 i.e.	 for	each	position	 in	 the
Markov	 chain	 after	 the	 start,	 noting	 that	we	 record	 the	 observed	value	 as	 val.	 For	 each
position	we	redefine	the	paths	based	on	the	previous	ones	so	we	create	paths,	which	will
extend	the	previous	array	of	state	indices.

for	val	in	obs[1:]:

		paths	=	{}

For	the	current	position	we	go	through	each	state	index	i,	and	define	the	options	for	the
possible	 outcomes	 as	 a	 sum	 of	 log-probabilities.	 To	 the	 previous	 scores	 we	 add	 the
transition	 to	get	 to	state	 i	and	 the	probability	of	emitting	 the	outcome	val.	Note	 that	we
take	the	slice	pTrans[:,i]	so	that	we	get	the	scores	to	transition	from	all	states	to	the	current
one,	and	that	the	emission	of	the	observed	value	for	this	state	pEmit[i,val]	is	just	a	single
number	(and	so	is	added	to	all	array	elements).	The	best	score	for	the	state	is	simply	the
largest	.max()	and	 the	 index	for	 this	 is	extracted	using	 .argmax().	The	 index	bestState	 is
the	winning	state	that	we	come	from	to	get	to	i.	This	index	is	used	to	access	the	path	for
that	 state:	 the	 winning	 one	 up	 to	 the	 previous	 point.	 The	 updated	 path	 list	 is	 then	 the
extension	of	the	path	we	came	from	with	the	current	state.

for	i	in	states:

		options	=	scoresPrev	+	pTrans[:,i]	+	pEmit[i,val]

		bestState	=	options.argmax()

		scores[i]	=	options.max()

		paths[i]	=	pathsPrev[bestState]	+	[i]

Once	all	the	states	have	been	considered	for	this	position	we	store	the	current	paths	and
scores	as	the	previous	ones	for	the	next	iteration.

pathsPrev	=	paths

scoresPrev	=	array(scores)

Finally,	 it	 is	 easy	 to	get	 the	best	 state	 (or	 index	 thereof)	 and	 its	 log-probability	 score
from	the	arrays	we	are	left	with	at	the	end.	The	winning	path	and	score	is	returned	from
the	function.

endState	=	scores.argmax()

logProb	=	scores.max()

return	logProb,	paths[endState]

The	forward-backward	algorithm
The	forward-backward	algorithm	is	commonly	used	to	estimate	all	the	probabilities	of	the
hidden	 states	 of	 the	 HMM	 for	 any	 sequence	 of	 observations.	 With	 these	 hidden	 state
probabilities	 various	 things	 are	 possible:	 for	 example,	 we	 can	 compare	 the	 overall
probabilities	of	different	hidden	state	sequences	(which	may	not	be	the	best)	for	a	set	of
observations;	 this	 in	 turn	 can	 be	 useful	 to	 generate	 a	 probabilistic	 distribution	 of	 state
sequences	rather	 than	a	single	best	answer,	as	we	did	with	 the	Viterbi	algorithm.	It	 is	 in
keeping	with	the	Bayesian	approach	to	consider	an	ensemble	of	different	solutions,	so	we
have	a	better	idea	of	the	error	in	the	prediction	and	whether	there	are	competing	solutions
with	similar	probabilities.

This	method	works	by	expressing	 the	probability	of	a	 state	at	a	given	position	as	 the
product	 of	 two	 components,	 the	 forward	 and	 backward	 parts.	 The	 forward	 part	 is	 the
probability	of	the	states	for	a	given	point	in	the	chain	given	the	sequence	of	observations
up	to	 that	point.	The	backward	part	 is	 the	probability	of	getting	 the	observations	for	 the
remainder	of	the	chain	after	a	point	given	a	set	of	state	probabilities.	We	will	not	describe
the	mathematical	derivation	of	the	algorithm12	but	in	essence	the	result	stems	from	using
Bayes’	rule	and	the	fact	that,	because	of	the	no-memory	property	of	the	Markov	chain,	the
observations	either	side	of	a	position	are	 independent,	given	the	condition	that	we	know
the	probabilities	of	the	hidden	states	at	that	point.

The	 forward-backward	 algorithm	 itself	 is	 yet	 another	 example	 of	 dynamic
programming,	which	makes	the	process	reasonably	efficient	to	compute.	Both	the	forward
and	 backward	 parts	 calculate	 probabilities	 for	 subsequent	 points	 in	 the	 Markov	 chain,
albeit	 from	 different	 directions,	 by	 using	 the	 previously	 calculated	 result	 from	 the
neighbouring	position.	This	can	be	thought	of	as	a	recursion	(although	we	don’t	code	the
Python	in	that	way),	where	the	result	for	each	point	extends	the	previous	result	and	thus
includes	all	the	results	of	all	the	calculations	prior	to	that	one.

The	example	Python	 function	 that	 implements	 the	algorithm	makes	use	of	NumPy	 to
perform	matrix	algebra,	to	give	a	fairly	compact	result	(avoiding	loops),	using	the	starting
probability	 matrix	 pStart,	 transition	 probability	 matrix	 pTrans	 and	 emission	 probability
matrix	pEmit	discussed	before.	Naturally	these	are	inputs	to	the	function,	together	with	the
sequence	 of	 observations	 obs	 that	 we	 wish	 to	 estimate	 the	 probabilities	 for.	 Note	 that,
unlike	in	the	Viterbi	algorithm,	we	don’t	work	with	logarithms	and	thus	we	will	multiply
probabilities.	 Here	 we	 re-normalise	 as	 we	 go,	 to	 get	 relative	 probabilities,	 and	 so	 the
values	don’t	get	especially	small	(unlike	the	probability	of	a	long	sequence).

from	numpy	import	array,	empty,	identity,	dot,	ones

def	forwardBackward(obs,	pStart,	pTrans,	pEmit):

First	 in	 the	 function	 a	 few	 variables	 are	 initialised:	 the	 number	 of	 observations,	 the
number	of	hidden	states	and	an	identity	matrix	of	an	appropriate	size.

n	=	len(obs)

nStates	=	len(pStart)

I	=	identity(nStates)

Next	a	matrix	fwd	is	initialised	as	an	empty	NumPy	array,	which	will	hold	the	hidden
state	probabilities	for	the	forward	part	of	the	algorithm.	Note	that	this	array	is	one	longer
than	the	number	of	observations,	so	that	we	can	include	the	starting	probabilities	for	the
states	at	position	0.

fwd	=	empty([n+1,nStates])

fwd[0]	=	pStart

Now	comes	the	main	loop	for	the	forward	part	of	the	algorithm,	where	we	go	through
each	index	that	references	each	observation	from	start	to	end.	The	forward	probability	is
calculated	 by	 applying	 the	 transition	 matrix	 to	 the	 previous	 (or	 starting)	 hidden	 state
probabilities	and	then	applying	the	emission	probabilities	for	the	observation	val,	all	using
dot()	 to	 do	 the	 matrix	 multiplication.	 Effectively	 we	 are	 saying	 that	 a	 hidden	 state
probability	derives	 from	the	 transitions	of	 the	previous	states	and	 the	 likelihood	 that	 the
state	generates	the	observation.	Note	the	use	of	the	identity	matrix	I	to	give	an	array	of	the
right	shape	to	apply	the	emission	probabilities	and	that	we	set	index	[i+1],	given	that	we
designed	 our	 matrix	 to	 begin	 with	 the	 starting	 probabilities,	 which	 we	 will	 need	 later,
rather	than	the	result	from	the	first	observation.	The	division	by	fProb.sum()	ensures	that
the	 probabilities	 are	 normalised	 and	 so	 sum	 to	 1.0;	 this	 implementation	 doesn’t	 bother
calculating	the	various	probability	scaling	constants.

for	i,	val	in	enumerate(obs):

		fProb	=	dot(pEmit[:,val]*I,	dot(pTrans,	fwd[i]))

		fwd[i+1]	=	fProb	/	fProb.sum()

With	 the	 forward	part	done,	we	next	 turn	 to	 the	backward	part.	Here	we	define	bwd,
which	 will	 hold	 the	 ‘backward’	 hidden	 state	 probabilities.	 Unlike	 the	 forward	 part	 we
don’t	 need	 to	 remember	 the	whole	 array	 of	 probabilities	 (although	 you	 could	 if	 it	 was
useful)	so	 this	 is	 just	a	simple	vector	 that	will	be	updated	for	each	subsequent	step.	The
starting	values	in	bwd	are	1.0,	from	which	we	can	multiply	to	get	subsequent	probabilities.
The	smooth	array	will	be	filled	with	the	final	result,	which	is	the	‘smoothed’	combination
of	 the	 probabilities	 from	 the	 forward	 and	 backward	 calculations;	 the	 fwd	 and	 bwd
probabilities	are	multiplied	and	re-normalised.	A	separate	loop	is	not	needed	to	calculate
this	 as	 it	 can	 be	 filled	 in	 at	 the	 same	 time	 as	 bwd.	 Note	 the	 last	 vector	 of	 smooth
probabilities	is	set	upfront	as	the	last	of	the	forward	values,	given	that	the	bwd	values	here
are	1.0	and	so	multiplication	would	have	no	effect.

bwd	=	ones(nStates)

smooth	=	empty([n+1,nStates])

smooth[-1]	=	fwd[-1]

The	backward	loop	goes	through	all	the	positions	in	reverse	order	and	calculates	bwd,
by	applying	the	transition	matrix	to	the	matrix	product	of	the	emission	probabilities	for	the
current	observation	obs[i]	and	the	previous	bwd	(i.e.	for	the	subsequent,	i+1	point	 in	 the
sequence).	 Effectively	we	 are	 saying	 that	 the	 new	 bwd,	 the	 probability	 of	 observations
(from	 this	 point	 to	 the	 end)	 given	 the	preceding	 (i-1)	 hidden	 states,	 can	 be	 calculated
recursively.	 We	 multiply	 the	 old	 bwd	 by	 the	 emission	 probability	 of	 the	 current
observation	and	apply	the	transition	matrix,	adding	an	extra	observation	and	transitioning
to	the	earlier	state.	The	smooth	probability	matrix,	which	is	passed	back	from	the	function,

is	then	the	normalised	product	(element-wise)	of	the	forward	and	backward	components.

for	i	in	range(n-1,	-1,	-1):

		bwd	=	dot(pTrans,	dot(pEmit[:,obs[i]]*I,	bwd))

		bwd	/=	bwd.sum()

		prob	=	fwd[i]	*	bwd

		smooth[i]	=	prob	/	prob.sum()

return	smooth

Implementing	a	protein	sequence	HMM
Finally	 in	 this	 chapter	 we	 end	with	 a	 demonstration	 of	 using	 the	 above	 algorithms	 for
handling	our	example	protein	sequence	HMM,	so	we	can	predict	buried	or	exposed	status.
To	 do	 this	 we	 must	 first	 obtain	 some	 probabilities	 for	 the	 transitions	 between	 the	 40
different	 possible	 states.	 In	 Python	 we	 will	 label	 the	 states	 in	 the	 form	 (exposure,
aminoAcid).	The	probabilities	are	derived	from	a	simple	statistical	analysis	of	a	subset	of
the	PDB	database.	The	actual	subset	of	3D	structures	coordinates	used	are	from	the	VAST
chain	set13	and	represent	only	protein	amino	acid	chains	that	are	dissimilar	to	each	other,
within	a	predefined	limit	(p-value	cut-off	10−7).	The	idea	behind	using	this	non-redundant
subset	is	to	try	to	reduce	the	amount	of	bias	that	comes	from	having	multiple	entries	for
closely	 related	 proteins.	 Overall,	 we	 would	 like	 the	 probabilities	 for	 our	 HMM	 to	 be
representative	of	proteins	in	general,	and	not	skewed	towards	those	kinds	which	have	the
most	structure	data.	This	kind	of	problem	is	common	when	dealing	with	sequence	data	in
general	(protein,	DNA	or	RNA)	and	is	something	that	a	bioinformatician	should	be	wary
of.

To	determine	whether	each	of	the	amino	acids	in	our	structure	database	is	in	a	solvent-
exposed	 or	 buried	 context	 an	 external	 program	was	 run	 on	 all	 of	 the	 PDB-format	 data
files.	 For	 reasons	 of	 space	we	will	 not	 discuss	 this	 in	 detail	 but	 the	method	 is	 the	 one
described	 by	 Shrake	 and	 Rupley.14	 This	 calculates	 numerical	 values	 representing	 the
exposed	 surface	 area	 for	 each	 atom.	For	our	HMM	we	want	 to	have	 exposed	or	 buried
categories	for	each	residue,	so	the	per-atom	values	needed	to	be	converted.	The	algorithm
here	is	to	add	the	values	for	all	the	atoms	within	a	residue	to	get	the	exposed	surface	area
for	the	whole	residue.	This	is	then	divided	by	the	maximum	surface	area	for	that	kind	of
residue,	which	gives	a	fractional	value	and	eliminates	the	effect	of	amino	acid	size.	Buried
residues	are	then	defined	as	those	which	have	an	exposed	surface	area	of	less	than	7%	of
the	 maximum.15	 The	 results	 from	 this	 procedure	 are	 represented	 in	 a	 file	 which
accompanies	 this	 book:	 ‘PdbSeqExposureCategories.txt’	 (download	 via
http://www.cambridge.org/pythonforbiology).	 The	 lines	 of	 this	 file	 are	 in	 the	 form
illustrated	below,	with	one	line	of	one-letter	amino	acid	codes	followed	by	a	second	line	of
the	same	length	representing	buried	or	exposed	categories	for	 the	sequence.	Here	a	dash
‘-’	represents	an	exposed	position	and	an	asterisk	‘*’	buried,	so	 that	 the	categorisation	is
easy	to	see:

GSSGSSGHEETECPLRLAVCQHCDLELSILKLKEHEDYCGARTELCGNCGRNVLVKDLKTHPEVCGREGS

-------------------*------------------**------------*-------*---*-----

VWSVQIVDNAGLGANLALYPSGNSSTVPRYVTVTGYAPITFSEIGPKTVHQSWYITVHNGDDRAFQLGYEGGGVA

-*-*-----------*-----**-*---*****---******------------******-----****---*-*

http://www.cambridge.org/pythonforbiology

With	 the	 exposure	 category	data	 at	 hand	we	move	on	 to	 calculating	 the	 probabilities
and	generating	the	HMM.	For	this	example	we	have	plenty	of	data	to	derive	probabilities
from	 the	 frequency	 of	 observing	 particular	 events.	 However,	 if	 data	 is	 missing,	 or
otherwise	difficult	to	analyse,	we	could	use	a	method	like	the	Baum-Welch	algorithm,	to
estimate	 the	 emission	 and	 transition	 possibilities,	 given	 a	 sufficient	 amount	 of
representative	 training	 data.	 The	 Baum-Welch	 algorithm	 can	 actually	 be	 applied	 when
none	 of	 the	 probabilities	 are	 initially	 known,	 which	 in	 effect	 means	 that	 the	 HMM
probabilities	can	be	 ‘learned’	 from	even	proportionately	sparse	data.	 In	essence	 this	 is	a
variety	 of	 machine	 learning,	 although	 we	 leave	 further	 discussion	 of	 this	 topic	 until
Chapter	 24.	 In	 our	 example	 case	 we	 simply	 count	 the	 occurrences	 of	 the	 different
buried/exposed	transitions	in	the	data	file.

Initially	we	get	a	 list	of	 the	exposure	and	amino	acid	 type	 labels,	 the	combination	of
which	gives	the	hidden	state	labels.	Although	we	will	be	working	with	NumPy	arrays,	and
thus	referring	to	the	states	by	numeric	indices,	 the	order	of	symbols	in	these	lists	relates
each	state	index	to	a	meaningful	symbol.

expTypes	=	['-','*',]

aaTypes	=	['A','C','D','E','F','G','H','I','K','L',

											'M','N','P','Q','R','S','T','V','W','Y']

The	data	counts	and	probabilities	will	be	stored	 in	NumPy	arrays,	so	we	define	 these
upfront	as	empty	data	structures	of	the	required	sizes,	and	of	floating	point	data	type.

nExp	=	len(expTypes)											#	Number	of	exposure	categories

nAmino	=	len(aaTypes)										#	Number	of	amino	acid	types

nStates	=	nExp	*	nAmino										#	Number	of	HMM	states

from	numpy	import	zeros,	log

pStart	=	zeros(nStates,	float)													#	Starting	probabilities

pTrans	=	zeros((nStates,	nStates),	float)		#	Transition	probabilities

pEmit		=	zeros((nStates,	nAmino),	float)			#	Emission	probabilities

Because	we	will	be	reading	the	data	from	a	file	containing	textual	symbols	we	will	need
to	 relate	 those	 symbols	 to	 the	 correct	 indices	 in	 the	NumPy	 arrays.	Hence	we	 create	 a
dictionary	for	all	the	textual	state	codes	so	we	can	quickly	look	up	each	index.	This	is	a
simple	matter	of	 looping	 through	all	 the	exposure	and	amino	acid	symbols	and	for	each
combination	making	a	tuple	that	acts	as	a	key	to	the	index,	which	is	incremented	each	time
in	 the	 loop.	The	additional	stateDict	 is	made	so	we	can	do	 the	 reverse	 look-up	 later	on,
converting	indices	into	symbols.

indexDict	=	{}

stateDict	=	{}

index	=	0

for	exposure	in	expTypes:

		for	aminoAcid	in	aaTypes:

				stateKey	=	(exposure,	aminoAcid)

				indexDict[stateKey]	=	index

				stateDict[index]	=	stateKey

				index	+=	1

To	 fill	 the	counts	 for	 the	 state	 transitions	we	 read	 through	 the	data	 file.	We	open	 the
data	file	for	reading,	remembering	to	use	the	full	path	to	the	file	if	it	is	not	in	the	current
directory:

fileName	=	'examples/PdbSeqExposureCategories.txt'

fileObj	=	open(fileName,'r')

The	file	is	read	two	lines	at	a	time	using	a	while	loop	so	that	the	amino	acid	sequence
comes	from	line1	and	the	exposure	code	from	line2.

line1	=	fileObj.readline()

line2	=	fileObj.readline()

while	line1	and	line2:

		sequence	=	line1.strip()

		exposure	=	line2.strip()

For	each	sequence,	a	second	loop	goes	through	all	adjacent	pairs	of	amino	acids	and	the
corresponding	exposure	codes.	Combining	the	exposure	and	amino	acid	symbols	gives	a
key	to	look	up	the	correct	numeric	indices.	Note	that	we	use	.get()	to	skip	situations	where
we	have	unusual	amino	acids	(not	in	our	list	of	20)	and	thus	have	an	unknown	state	key.

n	=	len(sequence)

		for	i	in	range(n-2):

				aa1,	aa2	=	sequence[i:i+2]

				exp1,	exp2	=	exposure[i:i+2]

				stateKey1	=	(exp1,	aa1)

				stateKey2	=	(exp2,	aa2)

				index1	=	indexDict.get(stateKey1)

				index2	=	indexDict.get(stateKey2)

				if	index1	is	None	or	index2	is	None:

						continue

The	indices	allow	the	counts	to	be	incremented	in	the	correct	element	of	the	arrays:

pStart[index1]	+=	1.0

pTrans[index1,	index2]	+=	1.0

When	the	inner	loop	is	done,	we	add	a	count	for	the	last	position	(which	was	otherwise
missed	because	 in	getting	sequence	pairs	we	didn’t	go	 to	 the	end)	and	 then	get	 the	next
lines	for	the	while	loop.

pStart[index2]	+=	1

line1	=	fileObj.readline()

line2	=	fileObj.readline()

The	NumPy	arrays	contain	counts,	which	are	converted	to	probabilities	by	dividing	by
their	totals.	For	pTrans	we	divide	the	values	in	each	row	of	the	matrix	by	the	total	for	that
row.

pStart	/=	pStart.sum()

for	i	in	range(nStates):

		pTrans[i]	/=	pTrans[i].sum()

Finally	we	 fill	 the	 trivial	 emission	 probabilities,	 setting	 to	 1.0	where	 the	 amino	 acid
matches	the	hidden	state,	and	leaving	values	at	0.0	otherwise.	Note	that	we	use	the	look-
up	dictionary	to	get	the	index	for	the	state	(the	first	dimension	in	the	emission	array)	but
the	plain	amino	acid	index	simply	comes	from	looping	through	the	list	of	amino	acid	types
with	enumerate().

for	exposure	in	expTypes:

		for	aminoIndex,	aminoAcid	in	enumerate(aaTypes):

				stateIndex	=	indexDict[(exposure,	aminoAcid)]

				pEmit[stateIndex,	aminoIndex]	=	1.0

With	the	probability	arrays	defined	we	can	then	test	 the	Viterbi	algorithm,	noting	that
we	convert	the	probabilities	to	logarithms	and	represent	the	sequence	as	numeric	indices,
rather	than	code	letters.	Note	the	small	addition	when	taking	logarithms,	to	deal	with	zero
probability	values.

seq	=	"MYGKIIFVLLLSEIVSISASSTTGVAMHTSTSSSVTKSYISSQTNDTHKRDTYAATPRAH"\

						"EVSEISVRTVYPPEEETGERVQLAHHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIKK"\

						"SPSDVKPLPSPDTDVPLSSVEIENPETSDQ"

obs	=	[aaTypes.index(aa)	for	aa	in	seq]

adj	=	1e-99

logStart	=	log(pStart+adj)

logTrans	=	log(pTrans+adj)

logEmit		=	log(pEmit+adj)

logProbScore,	path	=	viterbi(obs,	logStart,	logTrans,	logEmit)

To	generate	a	string	of	symbols	 representing	 the	buried	or	exposed	states,	 the	 indices
from	the	winning	Viterbi	path	are	used	as	keys	to	stateDict,	which	gives	back	the	textual
symbols	 for	 the	 state	 (exposure,	 aminoAcid)	 and	 the	 first	 of	 these	 (hence	 [0])	 is	 the
symbol	we	want.

bestExpCodes	=	''.join([stateDict[i][0]	for	i	in	path])

print(seq)

print(bestExpCodes)

This	will	give	the	following	output,	albeit	on	one	line:

MYGKIIFVLLLSEIVSISASSTTGVAMHTSTSSSVTKSYISSQTNDTHKRDTYAATPRAHEVSEISVRT

----*******---**------------------------*------------------------***---

VYPPEEETGERVQLAHHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIKKSPSDVKPLPSPDTDVPLS

--------------------***************************---**------*-------------

SVEIENPETSDQ

We	 can	 also	 test	 the	 implementation	 of	 the	 forward-backward	 algorithm	 and	 plot	 a
graph	to	show	the	underlying	probabilities	for	exposed	or	buried	states	at	each	point	in	the
Markov	 chain.	 For	 each	 position	 we	 get	 back	 an	 array	 of	 smoothed	 probability	 values
(combining	 forward	 and	 backward	 values)	 and	 because	 of	 the	way	we	 created	 the	 data

arrays	 we	 know	 that	 the	 first	 20	 values	 correspond	 to	 the	 exposed	 category,	 and	 the
remainder	the	buried.	The	sum	of	each	half	of	values	will	give	the	total	probability	for	the
category,	although	for	our	example	HMM	only	one	amino	acid	(for	the	observed	type)	will
have	a	non-zero	value.

smooth	=	forwardBackward(obs,	pStart,	pTrans,	pEmit)

buriedList	=	[]

exposeList	=	[]

for	values	in	smooth:

		exposeList.append(sum(values[:20]))

		buriedList.append(sum(values[20:]))

xAxisValues	=	list(range(len(exposeList)))	#	Sequence	positions

from	matplotlib	import	pyplot

pyplot.plot(xAxisValues,	exposeList,	c='#A0A0A0')

pyplot.plot(xAxisValues,	buriedList,	c='#000000')

pyplot.show()

Figure	21.14.	 Example	state	probabilities,	as	calculated	by	the	forward-backward
algorithm.	A	plot	of	the	probabilities	for	the	buried	(black)	and	exposed	(grey)	protein
amino	acid	states	at	each	position	of	the	Markov	chain.	Where	the	probabilities	are
distinctly	different	we	can	be	more	confident	about	the	category	assignments.
1 	An	enzyme	that	cuts	DNA	at	specific	sub-sequences.
2 	If	a	whole-genome	sequence	is	not	available	this	could	also	be	done	the	old-fashioned
way,	by	hydrolysing	the	DNA	into	its	component	nucleotides	and	chemically	determining
the	concentration	of	the	components.
3 	Also,	 if	we	 are	 thinking	 about	DNA	 from	different	 individual	 organisms	which	 have
slightly	different	sequences,	compared	to	the	sequenced	genome,	then	the	fractions	would
vary	by	a	tiny	amount,	though	this	would	usually	be	of	little	concern.
4 	 This	 is	 actually	 an	 axiom:	 for	 mutually	 exclusive	 or	 disjoint	 events	 Pr(E1	 or	 E2)	 =
Pr(E1)	+	Pr(E2).

5 	Or	more	generally	countable.
6 	Here	 !	means	 factorial:	 the	 product	 of	 a	 number	 and	 all	 the	 positive	 integers	 smaller
than	it.	For	example:	6!	=	6×5×4×3×2×1.
7 	Or	strictly	speaking	observations	in	the	case	of	a	DNA	sequence.

8 	 The	 use	 of	 the	 term	 ‘time’	 is	 historic,	 and	 the	 chain	 needn’t	 represent	 a	 temporal
process.
9 	Hence	the	term	model,	because	we	are	modelling	the	state	generation	mechanism	using
transition	probabilities.
10 	So	typically	aliphatic	or	aromatic	hydrocarbon.
11 	Referred	to	as	underflow.
12 	For	a	better	description	see	Durbin,	R.M.,	Eddy,	S.R.,	Krogh,	A.,	and	Mitchison,	G.
(1998).	Biological	Sequence	Analysis:	Probabilistic	Models	of	Proteins	and	Nucleic	Acids
(1st	edn.).	Cambridge:	Cambridge	University	Press.
13 	See	http://www.ncbi.nlm.nih.gov/Structure/VAST/nrpdb.html.
14 	Shrake,	A.,	and	Rupley,	J.A.	(1973).	Environment	and	exposure	to	solvent	of	protein
atoms.	Lysozyme	and	insulin.	Journal	of	Molecular	Biology	79(2):	351–371.
15 	Hubbard,	T.J.,	and	Blundell,	T.L.	(1987).	Comparison	of	solvent-inaccessible	cores	of
homologous	proteins:	definitions	useful	for	protein	modelling.	Protein	Engineering	1(3):
159–171.

http://www.ncbi.nlm.nih.gov/Structure/VAST/nrpdb.html

22 	Statistics
Contents

Statistical	analyses

Samples	and	significance

Null	and	alternative	hypotheses

Type	I	and	II	errors

Statistics	in	Python

Simple	statistical	parameters

Mode,	median	and	mean

Variance,	standard	deviation	and	skew

Statistical	tests

Significance	and	hypotheses

Tailed	tests	and	p-values

Z-scores	and	Z-test

T-tests

Probability	intervals

Chi-squared	and	G-tests

Correlation	and	covariance

Covariance

Correlation	coefficient

Simple	linear	regression

Statistical	analyses
In	 this	 chapter	 we	 look	 at	 the	 analysis	 and	 interpretation	 of	 collections	 of	 data	 in	 a
mathematical	way.	 In	 order	 to	 understand	 the	 basics	 of	 statistics	we	will	 assume	 some
familiarity	with	the	basics	of	probability,	as	discussed	in	Chapter	21.

Generally	 when	 we	 gather	 numerical	 measurements	 we	 don’t	 get	 identical	 results,
rather	 we	 get	 a	 spread	 of	 values.	 The	 underlying	 reason	 for	 this	 variation	 could	 be	 a
natural	 variation	 in	 what	 we	 are	 measuring,	 an	 error	 in	 the	 way	 we	 make	 the
measurements	or,	as	is	almost	always	the	case,	a	combination	of	both	of	these.	Statistics
helps	us	to	make	sense	of	variations	in	numerical	data	and	commonly	we	are	asking	the

question	 whether	 what	 we	 measure	 is	 statistically	 significant,	 according	 to	 some	 prior
hypothesis.	Depending	on	the	result	this	naturally	then	drives	further	investigations,	based
on	 a	 belief	 of	 a	 hypothesis	 being	 true	 or	 untrue.	 Statistics	 is	 a	 vast	 subject,	 so	 in	 this
chapter	we	 can	 only	 cover	 a	 few	 of	 the	more	 important	 aspects	 that	we	 either	 refer	 to
elsewhere	in	this	book	or	that	are	otherwise	commonly	used	in	biology.

Samples	and	significance
One	of	 the	key	principles,	which	underpins	most	statistical	analyses,	 is	 the	 idea	 that	 the
data	 we	 collect	 contains	 a	 limited	 number	 of	 samples	 from	 some	 kind	 of	 underlying
probability	distribution.	This	probability	distribution	can	be	thought	of	as	the	mechanism
by	which	the	data	values	are	generated,	but	naturally	the	data	arises	due	to	some	physical
process	and	by	ascribing	a	probability	distribution	we	are	merely	forming	a	mathematical
model,	which	is	often	significantly	simplified,	to	approximate	the	data-generation	process.

For	 a	 given	 situation,	 if	 we	 have	 an	 idea	 of	 what	 type	 of	 underlying	 probability
distribution	would	be	appropriate,	 then	by	 looking	at	 the	observed	data	we	can	begin	 to
estimate	what	the	parameters	of	the	distribution	are,	such	as	where	its	centre	is	and	how
much	it	spreads.	Given	parameter	estimates	we	can	then	begin	to	answer	questions	which
relate	to	the	probabilistic	model,	such	as	how	likely	it	is	that	a	given	value	is	generated	by
the	model.	 In	virtually	all	 cases	 the	answer	provided	 is	not	 certain,	 rather	 the	answer	 is
given	 as	 being	 true	 with	 a	 certain	 probability,	 which	 for	 parameter	 estimation	 is	 often
called	a	confidence	level.	It	is	often	the	case	that	a	95%	probability	is	considered	a	suitable
confidence	 level	 for	 inferring	 significance,	 but	 of	 course	 even	 at	 this	 seemingly	 strict
level,	5%	(1	in	20)	of	the	sampled	values	would	lie	outside	the	quoted	range.

In	 Python	 several	 of	 the	 commonly	 used	 probability	 distributions	 are	 represented,
including	 in	 the	scipy.stats	module,	which	we	will	 routinely	 refer	 to	 in	 this	chapter,	 and
also	 in	 the	 numpy.random	 module,	 which	 allows	 us	 to	 draw	 random	 samples	 from	 a
distribution.	 Here	 we	 illustrate	 creating	 random	 samplings	 with	 different	 numbers	 of
points,	selecting	from	a	normal	distribution	using	random.normal,	which	we	then	show	as
a	histogram:

from	matplotlib	import	pyplot

from	numpy	import	random

mean	=	0.0

stdDev	=	1.0

for	nPoints	in	(10,	100,	1000,	10000,100000):

		sample	=	random.normal(mean,	stdDev,	nPoints)

		pyplot.hist(sample,	bins=20,	range=(-4,4),	normed=True)

		pyplot.show()

Predictions	from	a	probability	distribution	are	often	coupled	to	the	idea	of	a	competing
hypothesis.	 Here	 the	 probability	 distribution	 is	 often	 a	 model	 of	 what	 we	 expect	 at
random	 and	 the	 competing	 hypothesis	 would	 mean	 that	 something	 significantly	 non-
random	was	happening.	Hence,	rather	than	drawing	significance	if	this	model	appears	to
fit	the	data,	we	assert	that	there	is	significance	if	the	random	model	is	unlikely	to	explain
the	 data	 samples;	 that	 our	 data	 does	 not	 fit	 the	 probability	 distribution	 of	 the	 random

situation.	 So	 by	 applying	 a	 probabilistic	model	 we	 are	 generally	 not	 assuming	 that	 we
actually	have	a	good	physical	model	for	our	data,	but	rather	that	there	is	a	mathematical
approximation	 to	 the	 data-generation	 process,	 which	 is	 nonetheless	 useful	 for	 making
predictions	and	for	understanding	key	aspects	of	what	we	are	studying.

Lastly,	 it	 is	 important	 to	note	 that	even	 in	situations	where	 the	underlying	probability
distribution	is	not	known	we	can	nonetheless	estimate	some	statistical	parameters.	In	the
simplest	 situation,	 we	 might	 simply	 try	 and	 estimate	 the	 mean	 (average)	 or	 standard
deviation	(spread)	of	the	distribution,	given	the	data,	and	not	worry	too	much	about	what
the	distribution	is.

Figure	22.1.	 An	example	of	results	from	drawing	different	numbers	of	random
samples	from	an	underlying	probability	distribution.	The	samples	illustrated	are	taken
randomly	from	a	normal	distribution	with	a	mean	of	0.0	and	a	standard	deviation	of	1.0,
where	the	sampling	was	done	using	the	Python	example.

Null	and	alternative	hypotheses
Instead	of	trying	to	show	whether	something	is	likely	to	be	true,	in	statistics	we	often	aim
to	show	whether	something	is	likely	to	be	false.	The	basic	reason	for	this	is	that	it	is	often
easier	 to	 know	 what	 the	 underlying	 probability	 distribution	 would	 be	 if	 the	 observed
measurements	were	generated	by	a	random	process,	 rather	 than	know	what	 the	situation
would	be	 in	 an	 as	yet	 unproven,	 non-random	situation.	 In	 essence,	 a	 random	process	 is
often	 used	 as	 a	 scientific	 control.	 In	 this	 case	we	 hypothesise	 a	 statement	 called	 a	null
hypothesis	 and	we	 try	 and	demonstrate,	 to	 a	 certain	 confidence	 level,	whether	 it	 can	be
rejected.	 For	 example,	 when	 analysing	whether	 a	 new	 drug	 is	 beneficial	 for	 a	medical
condition	the	null	hypothesis	might	be	that	there	is	no	difference	in	the	treatment	outcome
compared	to	a	placebo.	If	we	can	demonstrate	that	this	hypothesis	is	likely	to	be	wrong,
then	 we	 have	 evidence	 that	 the	 new	 drug	 has	 a	 worthwhile	 effect.	 The	 alternative
hypothesis	 is	 the	 negation	 (the	 opposite)	 of	 the	 null	 hypothesis,	 and	 thus	 if	 the	 null
hypothesis	is	rejected	then	the	alternative	hypothesis	is	accepted.

Type	I	and	II	errors
Because	 statistics	 deals	 with	 predictions	 and	 probability,	 some	 mistakes	 will	 be	 made.
Thus,	it	is	important	to	consider	how	we	can	quantify	the	errors	of	predictions	made	on	the
basis	 of	 statistical	 analysis.	 With	 a	 mathematical	 formulation	 based	 on	 testing	 a	 null
hypothesis	(a	random	control),	the	analysis	can	lead	to	two	types	of	errors:

A	Type	I	error	 is	 the	situation	where	 the	null	hypothesis	has	wrongly	been	rejected
when	it	is	really	correct.
A	Type	II	error	is	the	situation	when	the	null	hypothesis	has	not	been	rejected	when	it

should	have	been,	because	it	is	really	incorrect.

Alternatively,	we	might	 say	 that	 these	 errors	 are	 respectively	 false	 positive	 and	 false
negative	as	far	as	the	alternative	hypothesis	is	concerned.	As	an	example	of	a	Type	I	error,
a	statistical	analysis	of	a	specific	trial	might	lead	us	to	believe	that	a	drug	has	a	beneficial
effect,	 thus	 favouring	 the	 alternative	 hypothesis	 and	 rejecting	 the	 null	 hypothesis,	when
actually	there	was	no	real	benefit	and	the	null	hypothesis	was	true.	The	end	result	is	that
further	development	of	the	drug	would	be	needlessly	undertaken.	Conversely	for	a	Type	II
error,	a	new	drug	might	have	a	worthwhile	effect	but	statistics	of	a	specific	trial	might	lead
us	 to	 believe	 that	 it	 does	 not,	 incorrectly	 accepting	 the	 null	 hypothesis,	 meaning	 that
further	development	of	a	promising	drug	might	be	stopped.

Naturally,	both	kinds	of	errors	are	potentially	serious.	In	a	given	situation,	with	a	given
sample	size,	you	could	specify	in	advance	what	Type	I	or	Type	II	error	you	are	willing	to
tolerate.1	However,	by	decreasing	the	probability	of	a	Type	I	error	you	generally	increase
the	probability	of	a	Type	 II	error,	and	vice	versa.	For	example,	 if	we	 incorporate	a	new
medical	 test	 that	makes	 it	 less	 likely	 to	detect	a	spurious	effect	 from	a	drug	we	will	get
fewer	false	positives,	but	we	will	 tend	to	miss	more	marginal	cases	and	have	more	false
negatives.	Hence,	it	is	commonplace	to	have	a	balance	between	Type	I	and	Type	II	errors,
depending	on	things	like	financial	cost	and	danger	etc.	Also,	for	a	specified	Type	I	error
level,	you	can	decrease	 the	probability	of	a	Type	 II	error	by	 increasing	 the	sample	size,
and	 vice	 versa.	 This	 is	 because	 having	 more	 data	 values	 means	 we	 get	 more	 precise
estimates	 of	 the	 null	 hypothesis	 parameters,	 so	 for	 a	 fixed	 Type	 I	 error	 probability	 the
Type	II	error	is	less	affected	by	the	variation	due	to	the	random	data	sampling.

Statistics	in	Python
Although	you	can	use	knowledge	of	the	underlying	mathematics	to	design	and	code	your
own	 statistics	 software,	 for	 anything	 beyond	 the	 simplest	 analysis	 it	 is	 common	 to	 use
existing	 statistical	 routines.	For	 the	 examples	 in	 this	 chapter	we	will	 primarily	be	using
data	held	in	NumPy	arrays	in	combination	with	the	SciPy2	module	scipy.stats.	At	the	time
of	writing	 the	 statistical	 package	R3	 is	 very	 commonly	 used	 in	 biology.	 R	 has	 its	 own
language,	but	there	is	a	Python	wrapper	around	it	called	RPy,4	so	you	can	use	R	tools	in
Python	programs,	including	with	NumPy	arrays.	In	the	Appendix	we	will	illustrate	the	use
of	RPy	for	some	of	the	most	common	statistical	tests.

Simple	statistical	parameters
Our	first	practical	analyses	of	data	involve	measuring	some	of	the	fundamental	statistical
parameters.	 These	 can	 be	 calculated	 without	 any	 knowledge	 of	 what	 the	 underlying
probability	distribution	might	be.	However,	if	we	do	consider	the	underlying	distribution
these	 sample-based	 parameters	will	 be	 estimates	 for	 their	 probabilistic	 equivalents.	 The
theory	regarding	whether	we	are	truly	estimating	the	underlying	probabilistic	parameters
in	an	unbiased	way	 is	 left	 to	 further	 reading.	Here	we	will	 simply	 introduce	 the	 simple
statistical	parameters	and	how	we	usually	calculate	them.

Mode,	median	and	mean
For	a	collection	of	values,	one	of	the	most	useful	measures	is	to	estimate	where	the	centre
of	 the	 distribution	 is.	 The	 general	 idea	 here	 is	 that	 we	 get	 a	 single	 value	 that	 is	 most
representative	of	the	data	set	as	a	whole.	There	are	a	few	different	ways	that	are	generally
used	 to	 get	 such	 a	measure,	which	 are	 called	mode,	median	 and	mean.	 Naturally	 these
have	different	 properties	 and	 are	useful	 in	different	 situations,	 although	 the	mean	 is	 the
most	common	parameter	used.

The	mode	 is	 the	most	 commonly	 occurring	 value	 in	 a	 set	 of	 data.	 For	 example,	 the
mode	of	the	list	of	values	[1,2,2,3,2,1,4,2,3,1,0]	is	2,	because	the	number	2	appears	most
often.	Naturally,	 if	each	value	only	occurs	once	then	the	mode	tells	you	nothing.	Hence,
for	this	to	be	a	useful	measure	the	amount	of	data	and	whether	the	values	are	represented
with	a	specific	precision	are	 important.	This	 is	especially	 true	when	using	floating	point
numbers,	 where	 repeated	 values	 can	 be	 unlikely,	 in	 which	 case	 it	 is	 commonplace	 to
represent	the	data	as	a	histogram.	If	the	values	are	assigned	to	suitable	ranges	the	shape	of
the	distribution	can	become	more	apparent	and	 the	mode	will	be	 the	histogram	bin	with
the	most	values.

Using	standard	Python	we	can	calculate	the	mode	of	the	values	in	a	list	using	the	list’s
.count()	method.	We	use	a	list	comprehension	to	build	a	counts	list	containing	(count,	val)
pairs,	noting	that	we	use	set()	to	remove	any	repeats	in	the	values.	Using	max()	on	these
pairs	will	find	the	one	with	the	largest	count,	although	the	mode	will	be	the	second	item	of
the	pair;	the	value	that	went	with	the	count.

values	=	[1,2,2,3,2,1,4,2,3,1,0]

counts	=	[(values.count(val),	val)	for	val	in	set(values)]

count,	mode	=	max(counts)

print(mode)

Calculating	 the	 mode	 is	 easier	 to	 do	 with	 SciPy,	 as	 there	 is	 a	 pre-constructed
stats.mode()	function	that	works	with	NumPy	array	objects,	though	this	also	gives	back	an
array,	hence	we	take	the	[0]	item	from	the	result:

from	scipy	import	stats

from	numpy	import	array

valArray	=	array(values,	float)

mode,	count	=	stats.mode(valArray)

print('Mode:',	mode[0])	#	Result	is	2

The	median	 represents	 the	middle-ranked	 value	when	 the	 data	 is	 placed	 in	 its	 sorted
order.	Or	put	differently,	the	median	is	the	50th	percentile	point	that	separates	the	top	and
bottom	halves	of	the	values.	Taking	the	example	[1,2,2,3,2,1,4,2,3,1,0]	again,	sorting	this
gives	[0,1,1,1,2,2,2,2,3,3,4]	and	the	middle	value	is	2.	If	there	is	an	even	number	of	points
the	median	is	generally	represented	as	the	average	of	the	two	middle	points.	The	median	is
a	 fairly	 robust	 statistic	 to	use,	 including	where	 the	underlying	probability	distribution	 is
not	known,	because	the	middle	ranking	will	be	insensitive	to	outlier	points	(with	extreme
values).

We	can	calculate	the	median	in	standard	Python	by	sorting	the	values	and	selecting	the
middle	index,	though	if	there	is	an	even	number	of	values	(nValues	%	2	==	0)	we	take	the
average	of	the	central	two:

def	getMedian(values):

		vSorted	=	sorted(values)

		nValues	=	len(values)

		if	nValues	%	2	==	0:	#	even	number

				index	=	nValues//2

				median	=	sum(vSorted[index-1:index+1])/2.0

		else:

				index	=	(nValues-1)//2

				median	=	vSorted[index]

		return	median

med	=	getMedian(values)

Calculating	the	median	is	easy	using	NumPy,	given	its	median()	function:

from	numpy	import	median

med	=	median(valArray)

print('Median:',	med)			#	Result	is	2

The	mean	 is	 the	numerical	average	of	a	set	of	values.	 It	 is	analogous	 to	 the	centre	of
‘mass’	of	the	distribution.	In	simple	terms	the	sample	mean	is	calculated	by	adding	up	all
the	 values	 and	 dividing	 by	 the	 number	 of	 values.	The	mean	 of	 [1,2,2,3,2,1,4,2,3,1,0]	 is
21/11	 =	 1.909.	 In	 terms	 of	 an	 underlying	 probability	 distribution,	 the	mean	 of	 a	 random
variable,	X,	is	referred	to	as	the	expectation	of	the	random	variable,	written	E(X),	because
it	 represents	 the	 value	 that	 represents	 the	 long-term	 average,	 considering	 an	 unlimited
amount	of	data,	and	thus	also	the	most	representative	centre	value	for	the	distribution.	It
should	be	noted	that	in	this	chapter	we	will	be	considering	two	types	of	mean	value.	The
first	 is	 the	 true	mean	value	of	 the	underlying	probability	distribution,5	and	for	a	 random
variable	X	we	will	give	it	the	label	μx.	The	other	kind	of	mean	is	the	sample	mean,	labelled
,	which	often	acts	as	an	estimate	for	the	true	mean,	and	which	is	calculated	as	an	average

value	of	a	series	of	measurements,	xi,	as	one	might	expect:

We	can	readily	calculate	the	sample	mean	in	standard	Python:

values	=	[1,2,2,3,2,1,4,2,3,1,0]

mean	=	sum(values)/float(len(values))

or	using	NumPy	arrays,	noting	 that	mean()	 is	both	a	 stand-alone	 function	and	a	method
bound	to	array	objects:

from	numpy	import	array,	mean

valArray	=	array(values,	float)

m	=	valArray.mean()

#	or

m	=	mean(valArray)

print('Mean',	m)				#	Result	is	1.909

It	is	handy	that	these	NumPy	functions	also	take	an	axis	argument,	so	that	in	a	multi-
dimensional	array	you	can	calculate	the	mean	across	rows	or	columns	of	values	etc:

valArray2	=	array([[7,9,5],

																			[1,4,3]])

print(valArray2.mean())

#	All	elements	-	result	is	4.8333

print(valArray2.mean(axis=0))

#	Column	means	-	result	is	[4.0,	6.5,	4.0]

print(valArray2.mean(axis=1))

#	Row	means	-	result	is	[.0,	2.6667]

For	most	 named	probability	distributions	 the	mean	 is	 either	 a	 fundamental	 parameter
that	is	used	in	the	description	of	the	distribution	(e.g.	for	Gaussian)	or	is	readily	derived
from	 the	 fundamental	 parameters	 (e.g.	 binomial,	 geometric).	 However,	 there	 are	 some
curious	cases	where	the	mean	is	undefined,	e.g.	for	the	Cauchy	distribution.6

Variance,	standard	deviation	and	skew
The	standard	deviation	and	variance	(the	square	of	the	standard	deviation)	are	measures	of
the	spread	in	the	range	of	values.	These	can	be	calculated	for	any	given	sample	of	values.
However,	and	in	a	similar	manner	to	the	mean,	the	parameters	calculated	for	a	given	set	of
samples	are	only	an	estimate	for	the	underlying	probability	distribution.	Here	we	label	the
true	(or	population)	standard	deviation	as	σ	and	 true	variance	as	σ2,	whereas	 the	sample
standard	deviation	is	s	and	sample	variance	is	s2.

The	 variance	 is	 a	 measure	 of	 how	 far	 the	 values	 are	 spread	 from	 the	 mean.
Mathematically	 it	 is	 the	 expectation	 of	 the	 squared	 differences	 from	 the	 mean.	 For	 a
sample	it	is	calculated	as	the	sum	of	the	square	differences	from	the	mean	divided	by	the
number	of	values	(n)	minus	one:

This	is	an	unbiased	estimate7	of	the	underlying	variance,	but	it	is	also	commonplace	to
simply	 divide	 by	 the	 number	 of	 values,	 which	 for	 a	 large	 sample	 size	 makes	 little
difference,	though	strictly	speaking	it	is	biased:

We	can	calculate	the	variance	in	standard	Python	if	we	need	to:

values	=	[1,2,2,3,2,1,4,2,3,1,0]

n	=	float(len(values))

mean	=	sum(values)/n

diffs	=	[v-mean	for	v	in	values]

variance	=	sum([d*d	for	d	in	diffs])/(n-1)	#	Unbiased	estimate

Although,	as	you	might	expect,	there	is	a	handy	var()	function	in	NumPy,	which	is	also
built	into	array	objects.	Similar	 to	 the	mean	function,	we	can	also	specify	an	axis	 to	get
variances	 across	 rows	 and	 columns	of	multi-dimensional	 arrays.	 It	 should	be	noted	 that
var()	 takes	 a	 ddof	 argument,8	 which	 should	 be	 set	 at	 1	 for	 the	 unbiased	 estimate;	 the
default	value	is	zero	for	the	biased	estimate.

from	numpy	import	array

valArray	=	array(values)

variance	=	valArray.var()	#	Biased	estimate

print('Var	1',	variance)		#	Result	is	1.1736

variance	=	valArray.var(ddof=1)	#	Unbiased	estimate

print('Var	2',	variance)								#	Result	is	1.2909

The	 biased	 variance	 equation	 can	 be	 rearranged	 as	 follows,	 as	 the	 mean	 (the
expectation)	of	the	squared	values	minus	the	square	of	the	mean:

Formulating	 the	 variance	 in	 this	 way	 can	 be	 handy	 in	 various	 situations	 because	 it
involves	fewer	computational	steps;	we	don’t	need	to	do	a	subtraction	for	every	data	point
(which	additionally	may	incur	floating	point	errors).

Given	that	the	standard	deviation	is	the	square	root	of	the	variance	it	is	useful	because	it
gives	 a	measure	of	 spread	 in	 the	 same	units	 of	measurement	 as	 the	data.	This	 is	 handy
when	describing	 statistical	 samples,	 so,	 for	 example,	 the	height	 of	 a	 population	may	be
described	as	the	mean	plus	or	minus	the	standard	deviation:	e.g.	1.777	±	0.075	metres.	The
standard	 deviation	 is	 trivial	 to	 obtain	 using	 a	 square	 root	 operation	 and	 the	 above
equations	for	variance,	though	there	is	also	a	handy	std()	function	that	is	also	inbuilt	into
NumPy	 arrays,	 noting	 again	 that	 we	 set	 ddof=1	 to	 use	 the	 unbiased	 estimate	 of	 the
variance	(although	even	in	this	case,	std(ddof=1)	does	not	give	a	truly	unbiased	estimate
of	the	standard	deviation):

from	numpy	import	std,	sqrt

stdDev	=	sqrt(variance)

stdDev	=	std(valArray)								#	Biased	estimate			-	1.0833

stdDev	=	valArray.std(ddof=1)	#	"Unbiased"	estimate	-	1.1362

print('Std:',	stdDev)

Related	 to	 the	 standard	 deviation	 is	 a	 value	 called	 the	 standard	 error	 of	 the	 mean
(SEM).	Given	 that	 the	mean	 of	 a	 sample	 is	 only	 an	 estimation	 of	 the	 underlying	mean
there	will	naturally	be	some	variation	in	its	calculation.	The	SEM	represents	the	standard
deviation	 in	 the	 sample	 mean	 that	 results	 from	 different	 samplings	 of	 the	 underlying
probability	distribution.	Scientifically	it	can	be	important	to	acknowledge	that	the	sample
mean	is	an	estimate,	and	when	supporting	theories	with	a	mean	value	it	is	often	helpful	to
show	the	SEM,	for	example,	on	a	graph,	to	indicate	the	confidence	in	the	argument.	The
standard	error	of	the	mean	is	the	standard	deviation	in	x	(sx)	divided	by	the	square	root	of
the	number	of	values:

This	may	be	calculated	in	Python	from	the	standard	deviation	and	also	by	using	a	function
from	scipy.stats:

stdErrMean	=	valArray.std(ddof=1)/sqrt(len(valArray))

from	scipy.stats	import	sem

stdErrMean	=	sem(valArray,	ddof=1)	#	Result	is	0.3426

The	 skewness	 of	 a	 distribution	 is	 a	 measure	 of	 asymmetry	 or	 lopsidedness.	 Though
perhaps	not	as	commonly	used	as	the	other	parameters,	estimating	the	skewness	can	be	a
useful	 test	 if	 you	believe	 the	underlying	probability	 distribution	ought	 to	 be	 symmetric.
The	 skewness	 is	 commonly	estimated	 for	 a	 sample	as	 the	mean	cubed	difference	of	 the
data	from	the	mean	divided	by	the	standard	deviation	cubed:

We	 can	 illustrate	 this	 in	 Python	 using	 a	 random	 sample	 drawn	 from	 the	 asymmetric
gamma	function.

from	scipy.stats	import	skew

from	numpy	import	random

samples	=	random.gamma(3.0,	2.0,	100)	#	Example	data

skewdness	=	skew(samples)

print('Skew',	skewness)		#	Result	depends	on	random	sample

Alternatively,	 as	 a	 very	 rough	measure	 of	 skew,	 the	 non-parametric	 skew	 is	 easy	 to
calculate	 as	 the	 difference	 between	 the	 mean	 and	 the	 median	 divided	 by	 the	 standard
deviation,	with	the	general	idea	being	that	the	mean	and	the	median	will	be	the	same	when
the	distribution	is	symmetric.

Statistical	tests

Significance	and	hypotheses
Many	 statistical	 tests	 are	 tests	 of	 significance,	 but	 we	 will	 require	 different	 levels	 of
certainty	in	different	contexts	before	we	say	that	a	group	of	observations	is	‘significant’.
This	is	often	dependent	on	the	cost	of	the	outcome	if	we’re	wrong.	More	generally	though,
statistical	 tests	 are	 about	 probabilities,	 and	 indeed	 it	 can	 be	 useful	 to	 estimate	 the
probability	of	an	event	occurring,	given	a	hypothesis,	without	formulating	any	notion	of
what	is,	or	is	not,	significant.

Figure	22.2.	 A	histogram	of	samples	taken	from	a	skewed	distribution.	The	above
data	were	generated	by	randomly	selecting	100	values	using	a	gamma	distribution,	which
is	asymmetric,	as	illustrated	in	the	Python	sample.	The	difference	between	the	mean	and
median	of	a	distribution	compared	to	the	standard	deviation	can	be	used	as	a	rough
measure	of	asymmetry,	though	the	proper	skewness	is	easy	to	calculate	using	SciPy.

When	 a	 statistical	 model	 has	 an	 approximating	 probability	 distribution	 then	 we	 can
calculate	probabilities	with	reference	to	that	distribution.	And,	as	we	mentioned	above,	the
probability	distribution	could	be	a	null	hypothesis,	which	represents	a	random	expectation.
In	 this	 case,	 our	 notion	 of	 significance	 would	 be	 based	 on	 the	 likelihood	 of	 the	 null
hypothesis	 generating	 the	 observed	 data,	 though	 this	 is	 often	 also	 compared	 to	 the
likelihood	 of	 the	 same	 data	 being	 generated	 by	 a	 competing	 hypothesis,	 such	 as	 the
alternative	hypothesis.

Tailed	tests	and	p-values
A	simple	test	to	perform	with	a	probability	distribution	is	to	evaluate	the	likelihood	that	a
value	was	generated	by	 the	distribution,	which	 is	a	matter	of	knowing	 the	mathematical
form	 of	 the	 distribution.	 Although	 this	 may	 be	 helpful	 for	 some	 discrete	 probability
distributions	(as	 illustrated	 in	 the	previous	chapter),	as	 the	number	of	possible	outcomes
becomes	larger	the	probability	of	specific	outcomes	gets	ever	smaller.	If	we	are	trying	to
test	whether	 an	observation	was	generated	by	 a	probability	distribution,	 it	 often	doesn’t
help	 to	know	 that	 a	particular	observed	outcome	 is	 itself	highly	unlikely.	This	notion	 is
taken	to	the	extreme	for	continuous	probability	distributions	where	the	probability	that	any

single,	 precise	 real	 number	 value	 was	 generated	 by	 a	 probability	 distribution	 is	 zero,
because	technically	there	are	an	infinite	number	of	values	that	could	have	arisen.	Hence,
rather	 than	 thinking	 about	 the	 likelihood	 of	 a	 single	 value	 we	 instead	 tend	 to	 test	 the
probability	of	a	value	falling	within	a	given	range.	Mathematically	we	can	formulate	this
as	an	integral	of	the	probability	mass	function	(introduced	in	Chapter	21),	i.e.	the	area	of	a
region	under	the	curve	defining	the	probabilities	for	each	value	(see	Figure	22.3).

Figure	22.3.	 Calculating	tail	probabilities	in	the	binomial	test.	The	probability	mass
function	and	the	regions	considered	in	probabilistic	tail	tests	are	illustrated	for	an	example
binomial	distribution,	where	probability	of	an	event	(p)	is	0.5	and	the	number	of	trials	(n)
is	1000.	For	a	one-tailed	test	the	probability	considered	corresponds	to	the	area	under	the
curve	from	the	test	value,	which	here	is	530,	and	above.	For	the	two-tailed	test	the
probability	considered	corresponds	to	the	area	under	the	curve	in	two	regions	above	and
below	the	mean	(530	and	470	here)	that	start	at	the	same	separation	from	the	mean	and	go
outwards.	The	cumulative	distribution	is	the	running	total	of	the	probabilities	for	all	the
counts	up	to	a	particular	value	(i.e.	starting	at	zero)	and	can	be	used	to	look	up	the	areas	of
the	tails	from	the	probability	mass	function.	For	the	right-hand	threshold	(530)	the
cumulative	probability	is	the	sum	up	to	that	value,	but	for	the	tail	area	we	require	the
cumulative	probability	from	that	value,	hence	we	subtract	the	cumulative	probability
before	the	right-hand	threshold	from	1.0	to	get	the	required	value.

The	most	common	kind	of	region,	and	hence	integral,	 to	choose	for	statistical	 tests	 is
the	 tails	 of	 the	probability	 distribution.	Here,	 by	 ‘tail’	we	mean	 the	 area	 at	 the	 extreme
edge	 of	 the	 distribution	 that	 is	 bounded	 by	 a	 specified	 threshold.	 Many	 probability
distributions	 will	 have	 two	 tails,	 for	 extremely	 small	 and	 extremely	 large	 values
respectively,	 and	 in	 a	 statistical	 test	we	may	 choose	 to	 consider	 either	 or	 both	 of	 these
tails,	depending	on	the	situation.	Accordingly,	you	will	see	both	one-tailed	and	two-tailed
tests	 used	 in	 scientific	 contexts.	 In	 biological	 research	 p-values	 are	 frequently	 quoted,
which	is	simply	the	application	of	one-tailed	tests	to	a	null	hypothesis.	Put	more	formally,
a	p-value	is	the	probability	of	values	at	least	as	extreme	as	the	observation	being	generated
by	the	null	hypothesis.9	(It	is	not	the	probability	that	the	null	hypothesis	is	correct	or	the
probability	that	a	value	is	random	‘noise’.)	While	it	is	possible	to	define	other	regions	of
the	distribution	for	testing	purposes,	using	the	tails	of	the	distributions	has	the	advantage
of	 having	no	 extra	 parameters	 to	 consider	 (such	 as	 a	 region	width)	 and	 their	 integral	 is
easy	to	calculate	using	a	cumulative	density	function,	which	represents	the	running	total	of
probabilities	up	to	a	specific	value.	We	will	illustrate	one-tailed	and	two-tailed	tests	using
the	 discrete	 (i.e.	 whole	 number)	 binomial	 and	 Poisson	 probability	 distributions	 that	 we

introduced	in	Chapter	21,	as	well	as	for	the	continuous	normal	distribution.

First	we	consider	the	binomial	test,	which	is	concerned	with	the	number	of	occurrences
of	an	event	that	has	a	fixed	probability	of	occurring,	given	a	certain	number	of	trials.	If	we
apply	this	to	the	example	of	a	DNA	sequence	of	specified	length	(a	specified	number	of
trials)	where	we	believe	 that	 the	probability	of	G:C	base	pairs	occurring	 is	 equal	 to	 the
probability	of	A:T	pairs	we	can	ask	whether	an	observed	G:C	versus	A:T	count	fits	with
our	 model.	 If	 we	 look	 at	 a	 DNA	 sequence	 of	 length	 1000,	 then	 following	 the	 random
hypothesis	we	would	expect	that	on	average	around	500	of	the	nucleotides	would	be	G	or
C,	and	500	would	be	A	or	T.	If	we	get	significantly	more	or	fewer	than	500	(of	either	pair)
then	we	can	conclude	that	 the	G:C	content	is	 likely	to	be	not	random.	The	binomial	test
formalises	these	considerations:	if	the	probability	of	the	G:C	event	is	0.5	then	the	expected
number	of	events	in	1000	trials	is	0.5×1000	=	500.	Furthermore,	the	binomial	distribution
allows	us	to	associate	a	probability	to	every	number	of	G:C	events	that	may	be	observed
in	1000	trials	and	hence	also	calculate	the	area	under	the	tails	of	the	distribution.

The	 exact	 form	 of	 the	 one-tailed	 test	 depends	 on	 whether	 the	 observed	 number	 of
events	 is	 higher	 or	 lower	 than	 the	 expected	 number	 of	 events.	 If	 it	 is	 higher,	 then	 we
calculate	the	probability	that	the	observed	number	is	that	value	or	larger.	If	it	is	lower,	we
instead	consider	the	probability	that	it	is	that	value	or	smaller.	In	both	cases	the	two-tailed
test	is	the	same.	If	in	our	example	the	actual	number	of	observed	G:C	pairs	is	530,	then	the
one-tailed	 test	 considers	 the	 probability	 that	 we	 would	 observe	 at	 least	 530	 G:C
nucleotide	pairs	in	the	sequence	of	length	1000.	The	two-tailed	test	not	only	considers	the
probability	of	observing	at	least	530	G:C	(30	more	than	the	mean)	but	also	considers	the
probability	of	observing	at	most	 470	G:C	 (30	 fewer	 than	 the	mean).	Conversely,	 if	 the
actual	 number	 of	 observed	 G:C	 pairs	 is	 470,	 then	 the	 one-tailed	 test	 considers	 the
probability	 that	we	would	observe	at	most	470	G:C	nucleotide	pairs	 in	 the	 sequence	of
length	1000.

The	two-tailed	binomial	test	is	available	as	a	function	in	SciPy:

from	scipy.stats	import	binom_test

count,	nTrials,	pEvent	=	530,	1000,	0.5

result	=	binom_test(count,	nTrials,	pEvent)

print('Binomial	two	tail',	result)

However,	 we	 can	 also	 create	 our	 own	 function	 using	 the	 explicit	 probability
distribution.	We	will	allow	the	input	counts	argument	to	be	a	list,	tuple	or	a	NumPy	array.
With	a	bit	of	extra	effort	we	could	also	allow	the	argument	to	be	a	simple	integer.	We	first
convert	counts	to	be	a	NumPy	array,	because	that	allows	for	calculations	to	be	done	on	the
entire	 array	 in	 one	 go,	 rather	 than	 having	 to	 loop	 over	 the	 elements.	 (For	 a	 discussion
about	NumPy,	see	Chapter	9.)

We	also	include	an	option	to	specify	one-tailed	tests.	The	one-tailed	test	is	complicated
because,	as	noted	above,	the	calculation	is	different	depending	on	whether	the	counts	are
greater	or	less	than	or	equal	to	the	mean.	Here	we	test	whether	elements	are	greater	than
the	 mean	 (counts	 >	 mean),	 which	 yields	 an	 array	 of	 True	 and	 False	 values.	 Then	 the
NumPy	nonzero()	 function	 is	 used	 to	obtain	 the	 indices	of	 the	 true	 elements:	 those	 that
were	greater	than	the	mean.	Conveniently,	we	can	access	the	corresponding	elements	of	a

NumPy	array	using	these	indices.	This	is	faster	than	looping	over	the	individual	elements
of	the	array,	at	the	cost	of	requiring	more	memory	for	the	indices.	The	values	that	are	less
than	the	mean	will	be	the	opposite	selection:	we	also	get	these	from	the	same	test,	but	it	is
noteworthy	that	a	NumPy	array	cannot	be	negated	with	the	ordinary	Python	not	Boolean
operator.	Rather	the	‘~’	symbol	negates	each	element	of	the	array	(swaps	True	with	False).

from	scipy.stats	import	binom

from	numpy	import	array,	zeros

def	binomialTailTest(counts,	nTrials,	pEvent,	oneSided=True):

		counts	=	array(counts)

		mean	=	nTrials	*	pEvent

		if	oneSided:

				result	=	zeros(counts.shape)

				isAboveMean	=	counts	>	mean

				aboveIdx	=	isAboveMean.nonzero()

				belowIdx	=	(~isAboveMean).nonzero()

				result[aboveIdx]	=	binom.sf(counts[aboveIdx]-1,	nTrials,	pEvent)

				result[belowIdx]	=	binom.cdf(counts[belowIdx],	nTrials,	pEvent)

		else:

				diffs	=	abs(counts-mean)

				result	=	binom.cdf(mean-diffs,	nTrials,	pEvent)

				result	+=	binom.sf(mean+diffs-1,	nTrials,	pEvent)

		return	result

For	counts	less	than	or	equal	to	the	mean,	we	use	the	cumulative	distribution	function,
.cdf(),	which	 exactly	 provides	 the	 probability	 that	 the	 value	 is	 less	 than	 or	 equal	 to	 the
count.	For	counts	higher	than	the	mean	we	instead	use	.sf(),	the	‘survival’	function,	as	an
alternative	to	calculating	1.0	minus	the	cumulative	distribution	function,	which	would	be
required	to	calculate	the	integral	of	the	probabilities	greater	than	or	equal	to	the	count.	The
subtraction	of	1	from	the	counts	in	the	.sf()call	is	the	main	oddity	here,	and	this	is	because
the	binom.sf()	 function	calculates	 the	probability	 that	 the	number	of	successes	 is	greater
than	that	argument,	rather	than	greater	than	or	equal.

For	the	two-tailed	test	we	subtract	the	test	values	(counts)	from	the	distribution’s	mean
value	to	get	separations	from	the	mean.	These	differences	are	then	used	to	get	the	upper
and	lower	test	thresholds.	The	probability	sums	for	the	lower	thresholds	are	obtained	via
.cdf(),	and	the	upper	thresholds	with	.sf(),	like	the	one-tailed	test.

Continuing	 with	 the	 G:C	 content	 example,	 where	 we	 observe	 530	 G:C	 events	 from
1000	positions,	to	do	the	one-tailed	test	to	get	the	probability	that	we	observe	at	least	530
we	simply	call	the	function	with	the	appropriate	arguments:

counts	=	[530]

result	=	binomialTailTest(counts,	1000,	0.5,	oneSided=True)

print('Binomial	one	tail',	result))

and	 this	gives	a	probability	of	0.0310.	Given	 that	 the	binomial	distribution	was	 the	null
hypothesis	 this	one-tailed	probability	 is	 the	p-value.	Similarly,	we	can	do	 the	 two-tailed
test	 to	 calculate	 the	 probability	 that	 we	 observe	 at	 least	 530	 or	 at	 most	 470	 events,

remembering	that	we	set	oneSided	to	be	False:

result	=	binomialTailTest(counts,	1000,	0.5,	oneSided=False)

print('Binomial	two	tail',	result)

which	gives	a	result	of	0.0620.	These	results	illustrate	the	subtlety	of	statistical	analysis.
Often	 it	 is	 deemed	 that	 something	 is	 significant	 if	 it	 has	 less	 than	 a	 5%	 probability	 of
originating	 from	 the	null	distribution.	Given	 the	one-tailed	probability	here	 is	3.1%	one
might	want	 to	conclude	from	this	 that	 it	 is	 likely	 that	 the	DNA	sequence	 is	non-random
(doesn’t	fit	the	null	hypothesis).	However,	the	two-tailed	probability	is	6.2%,	so	one	might
equally	 say	 that	one	 cannot	 conclude	 this.	Fundamentally	 it	 is	 the	probability	 itself	 that
matters,	 including	 how	 it	 is	 defined	 (one-tailed	 or	 two-tailed)	 and	 no	 matter	 what
threshold	we	 use,	 the	 probability	 itself	 tells	 us	 how	 likely	we	 are	 to	 be	 right	 or	wrong
about	any	specific	statement.	Significance	thresholds	like	5%	are	merely	conveniences	for
standardisation	and	not	always	applicable	in	every	situation.

Although	we	have	illustrated	the	tailed	test	for	the	binomial	distribution,	we	can	use	the
same	strategy	for	other	distributions	that	are	provided	by	SciPy.	In	the	next	example,	we
illustrate	for	the	Poisson	distribution,	noting	that	the	function	(like	the	binomial	one)	can
accept	an	array	of	values	to	calculate	probabilities	for:

from	scipy.stats	import	poisson

from	numpy	import	abs,	array

def	poissonTailTest(counts,	eventRate,	oneSided=True):

		counts	=	array(counts)

		if	oneSided:

				result	=	poisson.sf(counts-1,	eventRate)

		else:

				diffs	=	abs(counts-eventRate)

				result	=	2*poisson.cdf(eventRate-diffs,	eventRate)

		return	result

counts	=	[2300,	2400,	2550]

result	=	poissonTailTest(counts,	2500,	oneSided=False)

result	=	poissonTailTest(counts,	2500,	oneSided=False)

print('Poisson	two	tail',	result)

#	Result	is	[0.00002655,	0.022746,	0.1611]

The	 only	 differences	 to	 the	 binomial	 example	 are	 that	 the	mean	 value	 is	 simply	 the
event	 rate	 (the	 distribution’s	 only	 parameter)	 and	 because	 the	 distribution	 is	 symmetric
either	side	of	the	mean	the	one-tail	calculation	is	simpler,	and	we	can	double	the	integral
for	one	tail	to	get	the	probability	corresponding	to	both	tails.

Next	we	move	on	to	an	example	that	uses	the	normal	distribution,	otherwise	known	as
the	 Gaussian	 distribution.	 In	 this	 case	 we	 are	 dealing	 with	 a	 continuous	 probability
distribution	 (rather	 than	 a	 discrete	 one),	 i.e.	 where	 the	 outcome	 is	 a	 value	 from	 the
continuum	of	real	numbers.	The	concepts	 largely	carry	over	from	discrete	 to	continuous

distributions,	with	the	important	difference	that	discrete	sums	become	integrals.10	And	as
part	of	 that	difference,	 for	 a	 continuous	 random	variable,	X,	we	now	have	 a	probability
density	function,	 f(x).11	The	probability	density	 function	for	 the	normal	distribution	 is	as
follows:

We	use	the	normal	distribution	to	model	 the	distribution	of	heights	 in	a	population	of
male	humans,	where	we	might	say	the	mean	(μ)	is	1.76	and	the	standard	deviation	(σ)	 is
0.075,	 and	we	 plot	 f(x).	 Here	 we	 illustrate	 with	 Python	 using	 the	 stats.norm()	 function
directly,	with	 the	required	mean	and	standard	deviation,	 to	obtain	an	object	 representing
the	 random	 variable	 (normRandVar).	 We	 can	 then	 use	 this	 object	 to	 calculate	 the
probability	 density	 function	 for	 an	 array	 of	 values,	which	 here	 represent	 a	 range	 of	 the
horizontal	x	axis	that	we	will	plot	(see	Figure	22.4	for	a	labelled	version	of	the	output).	It
is	notable	that	the	function	we	call	is	.pdf(),	which	is	distinct	from	the	.pmf()	used	for	the
discrete	probability	distributions.

from	matplotlib	import	pyplot

from	scipy.stats	import	norm

from	numpy	import	arange

mean	=	1.76

stdDev	=	0.075

stepSize	=	0.0001

normRandVar	=	norm(mean,	stdDev)		#	Random	variable	object

xVals	=	arange(1.42,	2.1,	stepSize)		#	Graph	range

yVals	=	normRandVar.pdf(xVals)							#	Note	PDF	not	PMF

pyplot.plot(xVals,	yVals,	color='black')

Then	we	 can	 also	 plot	 the	 regions	 corresponding	 to	 one	 and	 two	 standard	 deviation
widths	 using	 the	 handy	 pyplot.fill_between()	 function,	 which	 in	 this	 case	 fills	 the	 area
from	the	tail	region	of	the	curve	to	the	x	axis	(y	=	0).

xVals	=	arange(mean-2*stdDev,	mean+2*stdDev,	stepSize)

yVals	=	normRandVar.pdf(xVals)

pyplot.fill_between(xVals,	yVals,	0,	color='lightgrey')

xVals	=	arange(mean-stdDev,	mean+stdDev,	stepSize)

yVals	=	normRandVar.pdf(xVals)

pyplot.fill_between(xVals,	yVals,	0,	color='grey')

pyplot.show()

Figure	22.4.	 A	normal	distribution	with	mean	and	one	and	two	standard	deviations
marked.	Corresponding	to	the	example	of	human	heights,	the	graph	is	the	probability
density	function	for	a	normal	(or	Gaussian)	distribution	with	a	mean	(μ)	of	1.76	and	a
standard	deviation	(σ)	of	0.075.	The	values	corresponding	to	one	and	two	standard
deviations	above	and	below	the	mean	value	are	marked.

The	normal	distribution	is	 important	because	of	 the	central	 limit	 theorem,	which	says
that,	 under	 fairly	 weak	 assumptions,	 the	 distribution	 of	 the	 average	 of	 a	 number	 of
independent	 and	 identically	 distributed	 random	 variables	 approaches	 a	 normal
distribution,	 as	 the	 number	 of	 random	 variables	 increases.	 Considering	 two	 random
variables,	if	for	each	point	in	the	distribution	for	the	first	we	superimpose	the	spread	that
arises	from	the	distribution	of	the	second,	then	the	summation	is	a	‘smoothed’	probability
distribution.	The	more	independent	random	variables	we	add	the	closer	the	overall	density
gets	to	the	normal	distribution.

This	 commonly	 applies	 in	 science	 because	 observed	 values	 are	 often	 complicated
combinations	of	multiple	random	variables,	i.e.	different	factors,	that	all	contribute	to	an
observed	distribution	of	values,	and	data	samples	are	often	assumed	to	be	independent	and
identically	 distributed.	 Hence,	 the	 central	 limit	 theorem	 is	 often	 invoked	 to	 justify
considering	the	measurement	of	some	property	to	be	distributed	normally.	For	the	example
of	the	heights	of	(male)	humans	the	independent	factors	that	contribute	to	the	final	value
may	 be	 things	 like	multiple	 genetic	 factors	 (each	with	 probability	 density	 functions	 for
outcomes),	nutrition,	mother’s	weight	etc.,	and	 it	 is	 the	combination	of	all	 these	random
factors	that	gives	rise	to	the	single	statistic	of	height.

In	the	same	manner	as	for	the	discrete	probability	distributions,	we	can	create	a	simple
function	to	do	one-tailed	and	two-tailed	probability	tests	for	the	normal	distribution	using
functions	from	the	scipy.stats	module.

def	normalTailTest(values,	meanVal,	stdDev,	oneSided=True):

		normRandVar	=	norm(meanVal,	stdDev)

		diffs	=	abs(values-meanVal)

		result	=	normRandVar.cdf(meanVal-diffs)	#	Distrib	is	symmetric

		if	not	oneSided:

				result	*=	2

		return	result

We	can	test	this	for	an	array	of	test	values	(i.e.	human	heights):

mean	=	1.76

stdDev	=	0.075

values	=	array([1.8,	1.9,	2.0])

result	=	normalTailTest(values,	mean,	stdDev,	oneSided=True)

print('Normal	one	tail',	result)

#	Result	is:	[0.297,	0.03097,	0.000687]

Assuming	the	normal	distribution	and	its	parameters	are	a	good	model	for	male	human
height,	the	results	estimate	that	29.7%	are	1.8	metres	or	taller,	3.1%	are	1.9	metres	or	taller
and	0.069	%	are	over	2.0	metres.

Z-scores	and	Z-test
A	 Z-score	 (also	 called	 the	 standard	 score)	 is	 the	 number	 of	 standard	 deviations	 an
observed	value	 is	different	 from	 the	mean.	So	 for	our	human	height	 example,	values	of
1.685	 metres	 and	 1.910	 metres	 have	 Z-scores	 of	 −1.0	 and	 2.0	 because	 they	 are
respectively	 1σ	 below	 and	 2σ	 above	 the	 mean.	 This	 is	 formalised	 in	 the	 following
equation,	i.e.	subtract	the	mean	and	divide	by	the	standard	deviation:

If	we	apply	this	to	a	whole	distribution	of	values	then	we	will	centre	it	(the	mean)	at	zero
and	 give	 it	 a	 standard	 deviation	 of	 1.0,	 e.g.	 to	 create	 the	 standard	 normal	 distribution,
whose	random	variable	 is	often	 labelled	Z.	We	can	easily	calculate	a	Z-score	 in	Python,
here	taking	parameters	from	the	human	height	example:

from	numpy	import	abs

mean	=	1.76

stdDev	=	0.075

values	=	array([1.8,	1.9,	2.0])

zScores	=	abs(values	-	mean)/stdDev

print('Z	scores',	zScores)

Thus	we	estimate	that	1.8,	1.9	and	2.0	metres	respectively	correspond	to	about	0.5,	1.9
and	 3.2	 standard	 deviations	 from	 the	mean.	Note	 that	 SciPy	 provides	 the	 stats.zscore()
function,	but	it	operates	differently	because	it	estimates	its	own	sample	mean	and	sample
standard	deviation	from	the	input	values:

from	scipy.stats	import	zscore,	norm

samples	=	norm.rvs(mean,	stdDev,	size=25)		#	Values	for	testing

zScores	=	zscore(samples,	ddof=1)										#	Unbiased	estimators

print('Est.	Z	scores	',	zScores)

A	related	concept	to	this	is	the	Z-test,	which	can	be	used	when	we	have	samples	that	are
taken	from	a	normal	distribution	where	the	true	mean	and	standard	deviation	are	known.
The	 Z-test	 is	 effectively	 the	 calculation	 of	 a	 Z-score	 for	 a	 sample	 mean.	 A	 common
situation	for	use	of	the	Z-test	is	where	a	large	population	is	known	to	have	a	mean,	μ0,	and
standard	deviation,	σ,	 and	where	some	other	population	of	 size	n	 is	measured	 to	have	 a
sample	 mean,	 ,	 and	 the	 same	 standard	 deviation.	 We	 want	 to	 know	 whether	 this	 is
significantly	different	and	the	null	hypothesis	would	be	that	the	two	populations	have	the
same	mean.	For	the	Z-test	the	Z-score	is	defined	as:

As	 discussed	 above,	 in	 the	 context	 of	 the	 standard	 error	 of	 the	 mean,	 the	 standard
deviation	of	the	sample	mean	is	a	factor	of	 	smaller	than	the	standard	deviation	of
the	distribution.	The	analysis	also	works	if	the	distribution	is	not	normal	but	the	number	of
samples,	n,	is	large,	by	the	central	limit	theorem	(assuming	the	conditions	for	the	theorem
are	satisfied).	If	the	standard	deviation	is	not	known,	then	the	T-test	described	in	the	next
section	should	be	used	instead.

Given	a	standard	normal	distribution	(μ	=	0,	σ	=	1),	 the	probability	of	observing	a	Z-
score	or	worse	is	a	two-tailed	test.	If	this	probability	is	low	then	the	two	populations	are
deemed	 to	 have	 a	 significantly	 different	mean,	 and	 the	 null	 hypothesis	 is	 rejected.	 If	 z
were	 positive	 we	 could	 also	 consider	 a	 one-tailed	 test,	 which	 is	 the	 probability	 of
observing	a	result	at	least	this	positive.	For	the	Z-test	there	is	no	direct	SciPy	function	to
perform	the	whole	calculation	of	tail	probabilities.	Hence	we	need	to	take	specific	steps	to
find	the	integral	of	the	probability	distribution	from	the	Z-score.	Fortunately	this	is	partly
solved	by	having	a	cumulative	distribution	available:	the	summation	up	to	a	threshold	of
the	probability	density	function.	The	cumulative	distribution	of	the	standard	normal	(Φ)	is
required	for	 the	 tailed	 test.	This	 is	easily	calculated	 in	Python	using	 the	error	 function12
available	 in	 SciPy,	which	 is	 related	 to	 cumulative	 distribution	 of	 the	 standard	 normal	 :

,	 and	 thus	 solves	 the	 integral	 we	 require	 without	 too	 much
hassle.

The	code	to	calculate	the	Z-test	probability	in	SciPy	involves	calculating	the	Z-scores
for	 the	 standard	error	of	 the	means	 and	 then	using	 the	 error	 function	erf()	 to	derive	 the
cumulative	probability:

from	numpy	import	sqrt

from	scipy.special	import	erf

def	zTestMean(sMean,	nSamples,	normMean,	stdDev,	oneSided=True):

		zScore	=	abs(sMean	-	normMean)	/	(stdDev	/	sqrt(nSamples))

		prob	=	1-erf(zScore/sqrt(2))

		if	oneSided:

				prob	*=	0.5

		return	prob

The	calculation	of	the	probability	involves	a	trivial	bit	of	arithmetic,	remembering	that
we	want	1−	Φ,	 the	 tail	of	 the	cumulative	distribution	of	 the	standard	normal,	and	noting
that	 the	 initial	 cumulative	 probability	 calculation	 is	 the	 two-tailed	 result	 (i.e.	 twice	Φ),
which	we	halve	for	the	one-tailed	result.	This	can	be	tested	with	some	example	data	values
which	are	roughly	normal:

samples	=	array([1.752,	1.818,	1.597,	1.697,	1.644,		1.593,

																	1.878,	1.648,	1.819,	1.794,	1.745,		1.827])

mean	=	1.76

stDev	=	0.075

result	=	zTestMean(samples.mean(),	len(samples),

																			mean,	stdDev,	oneSided=True)

print('Z-test',	result)	#	Result	is	0.1179

The	 resulting	probability	of	 the	 sample	mean	coming	 from	 the	normal	distribution	 is
11.8%,	so	we	generally	wouldn’t	want	to	reject	the	notion	that	the	samples	were	generated
from	it.

As	another	example,	suppose	we	have	a	large	database	of	DNA	sequences	and	the	G:C
content	of	sequences	in	the	database	has	mean	0.59	and	standard	deviation	0.1.	The	G:C
content	would	 not	 usually	 be	modelled	 using	 a	 normal	 distribution,	 but	 if	we	have	 100
sequences	not	 in	 the	database,	and	measure	 the	G:C	content	of	each,	 then	we	could	still
reasonably	apply	the	Z-test,	thus	informing	us	whether	they	are	likely	to	be	from	the	same
population	of	sequences.	Suppose	that	the	average	G:C	content	in	these	100	sequences	is
0.61.	The	one-tailed	test	is	given	by

result	=	zTestMean(0.59,	100,	0.61,	0.1)

with	result	0.023.	The	two-tailed	test	gives	twice	this,	so	0.046.	In	both	cases,	if	5%	is	the
significance	 level	used,	 then	 the	null	hypothesis	 is	 rejected,	 and	 it	 is	 concluded	 that	 the
100	 sequences	 have	 a	 significantly	 different	 G:C	 content	 than	 the	 sequences	 in	 the
database.

T-tests
The	 Z-test	 we	 described	 relied	 on	 knowledge	 of	 a	 distribution’s	 standard	 deviation	 (or
having	a	good	estimate	from	a	large	population).	However,	in	many	situations	we	do	not
know	the	underlying	mean	and	standard	deviations	of	the	probability	distributions.	This	is
often	 the	natural	outcome	of	having	 small	 statistical	 samples.	Nonetheless,	we	may	still
want	 to	evaluate	whether	statistical	samples	are	significantly	different	 from	one	another.
This	is	where	the	idea	of	T-tests	comes	in.

T-tests	 are	 based	 on	 the	 notion	 of	 the	 T-statistic,	 which	 is	 similar	 to	 the	 Z-score
discussed	 before.	 Accordingly,	 the	 T-statistic	 is	 the	measure	 of	 the	 number	 of	 standard

errors	 a	measured	 parameter	 value	 is	 from	 its	 true	 value.	 In	many	 cases	 the	 parameter
we’re	interested	in	is	the	mean	of	a	normal	distribution,	in	which	case	the	T-statistic	could
be	the	number	of	standard	errors	that	the	sample	mean	()	lies	from	the	true	mean	(μx):

The	important	difference	compared	to	the	Z-score	is	that	the	sample	standard	deviation	(s)
is	used.	Because	 the	 sample	 standard	deviation	 is	only	an	estimate	 for	 the	 true	 standard
deviation	(σ),	given	it	is	calculated	from	a	limited	number	of	samples,	then	when	we	wish
to	perform	a	statistical	test	we	will	get	an	extra	uncertainty	that	accounts	for	the	sampling
process.	 It	 should	be	noted	 that	 there	are	many	different	 formulations	of	T-statistics	 that
can	be	used,	depending	on	the	question	being	asked.	However,	they	all	have	the	form	of	a
difference	from	a	parameter	estimate,	divided	by	the	corresponding	standard	error	in	the
sample.	For	example,	a	T-test	can	be	applied	 to	determine	whether	 two	sets	of	samples,
each	from	a	normal	distribution,	have	the	same	underlying	mean,	assuming	that	they	have
same	variance	(which	might	not	be	known).	 In	 this	case	 the	T-statistic	 is	 formulated	for
the	two	independent	sample	means	 	and	 ,	with	sample	sizes	nx	and	ny	respectively:

Here	sx,y	 is	 the	 sample	 estimate	 for	 the	 standard	deviation	 that	 is	 shared	between	 the
two	 samples,	 irrespective	of	whether	 they	have	 the	 same	mean.	This	may	be	 calculated
from	the	individual	sample	variances	for	the	two	distributions	(and)	as	follows:

This	 is	 the	 standard	 deviation	we	would	 obtain	 if	we	 combined	 both	 samples	 together,
with	an	adjustment	because	we	have	two	sample	means,	one	for	each	group.	Effectively
we	replace	the	1	/	(n	−	1)	fraction	in	the	unbiased	sample	variance	with	1	/	(nx	+	ny	−	2)	to
consider	both	samples.

Figure	22.5.	 Comparing	the	underlying	mean	of	a	probability	distribution	and	the
sample	mean.	A	standard	normal	distribution,	with	a	mean,	μ,	of	0.0	is	superimposed	on	a
set	of	data	with	a	sample	mean,	 ,	of	0.36.	Given	that	the	sample	mean	has	an	associated
error	depending	on	the	number	of	samples	taken,	we	can	use	a	T-test	to	assess	whether	the
separation	between	the	two	means	is	significant,	and	thus	whether	the	probability
distribution	is	a	good	model	for	the	data.

In	mathematical	parlance,	for	the	two-sample	T-test	the	T-statistic	turns	out	to	follow	a
T-distribution	with	nx	+	ny	−	2	degrees	of	freedom.	Similarly	the	one-sample	T-test	has	a
T-statistic	with	n	−	1	degrees	of	freedom.	In	statistics	the	notion	of	‘degrees	of	freedom’
can	be	a	somewhat	tricky	concept,	but	the	principle	is	to	know	the	number	of	independent
data	points	 that	can	truly	vary.	To	take	an	arbitrary	but	simple	example,	where	 there	are
three	sample	values	that	have	a	mean	of	zero,	once	two	values	are	known	then	there	is	no
choice	about	the	third,	because	we	know	it	must	give	the	known	mean.	Hence,	in	general,
for	a	statistical	analysis	 the	number	of	degrees	of	freedom	is	 the	number	of	 independent
sample	values,	minus	the	number	of	restraining	parameters.

Once	 we	 have	 an	 appropriate	 T-statistic,	 with	 an	 appropriate	 number	 of	 degrees	 of
freedom,	in	order	to	perform	a	statistical	test	we	use	the	distribution	of	how	the	T-statistic
itself	varies	when	taking	different	samplings.	This	probability	distribution	is	the	Student	T-
distribution,13	 which	 assumes	 the	 samples	 are	 independent	 and	 have	 the	 same	 normal
distribution.	We	won’t	go	into	details	of	this	distribution,	only	to	say	that	it	is	a	bell	shape,
like	 the	normal	distribution	but	with	 thicker	 tails.	For	Python	 the	scipy.stats	module	has
some	 pre-packaged	 T-test	 functions	 as	 well	 as	 facilities	 to	 access	 the	 Student	 T-
distribution,	which	 allow	us	 to	 easily	make	probability	 estimates	 to	 assess	 the	 variation
due	to	sample	variance.

The	 complete	 T-test	 functions	 available	 in	 scipy.stats	 are	 ttest_1samp,	 ttest_ind	 and
ttest_rel	 and	 these	 accept	 samples,	 represented	 as	 arrays	 of	 values,	 and	 perform	 the
appropriate	 two-tailed	 test	 to	 estimate	 a	 probability.	 Also,	 because	 the	 T-distribution	 is
symmetric,	 for	a	one-tailed	 test	we	can	simply	halve	 the	probability.	 Illustrating	each	of
these	functions	in	turn,	ttest_1samp	finds	the	probability	of	a	sample	mean	being	the	same
as	the	true	mean	from	a	distribution	(e.g.	a	null	hypothesis),	and	thus	uses	the	T-statistic

for	 	described	above.	Note	that	the	T-statistic	as	well	as	the	two-tailed	probability
are	passed	back	by	the	function:

from	scipy.stats	import	ttest_1samp

trueMean	=	1.76

samples	=	array([1.752,	1.818,	1.597,	1.697,	1.644,	1.593,

																	1.878,	1.648,	1.819,	1.794,	1.745,	1.827])

tStat,	twoTailProb	=	ttest_1samp(samples,	trueMean)

#	Result	is:	-0.918,	0.378

The	function	ttest_ind	performs	the	two-sample	T-test,	testing	whether	two	independent
samples	 have	 the	 same	 underlying,	 true	mean,	 based	 on	 their	 respective	 sample	means,
described	as	 	and	 	above:

from	scipy.stats	import	ttest_ind

samples1	=	array([1.752,	1.818,	1.597,	1.697,	1.644,	1.593])

samples2	=	array([1.878,	1.648,	1.819,	1.794,	1.745,	1.827])

tStat,	twoTailProb	=	ttest_ind(samples1,	samples2)

#	Result	is:	-2.072,	0.0650

There	is	an	extra	option	to	this	function,	to	relax	the	requirement	that	both	samples	have
the	same	variance,	in	which	case	the	test	is	called	Welch’s	T-test,14	though	the	difference
for	our	test	case	is	slight:

tStat,	twoTailProb	=	ttest_ind(samples1,	samples2,	equal_var=False)

#	Result	is:	#	-2.072	0.0654

Lastly,	the	ttest_rel	function	again	works	with	two	samples	in	the	same	way	as	above,
but	assumes	that	the	samples	are	dependent,	i.e.	that	the	values	in	the	pair	of	samples	are
related	 to	 one	 another	 (they	must	 have	 the	 same	 variance,	 hence	 there	 is	 no	 equal_var
option).	An	example	of	this	would	be	to	take	some	measure	from	a	group	of	people	as	the
first	 samples	and	 then	 to	 take	 repeated	measurements	 for	 the	 same	people	at	 a	different
time	(perhaps	after	some	treatment)	or	using	a	different	method.

Probability	intervals
So	 far	 in	 this	 chapter	 we	 have	 been	 using	 tailed	 tests	 to	 calculate	 the	 probability	 of
obtaining	a	given	value	from	a	statistical	sample,	and	then	on	the	basis	of	this	probability
we	 can	 decide	 whether	 we	 deem	 the	 sample	 to	 be	 significantly	 different	 from	 a	 null
hypothesis	using	a	threshold	probability,	say	5%.	However,	we	can	also	take	the	reverse
approach	 and	 use	 a	 probability	 threshold	 upfront	 to	 calculate	 what	 the	 equivalent	 test
statistic	would	be	for	this	limiting	value.	In	turn	this	then	leads	to	a	corresponding	interval
in	the	actual	measurements.

Returning	to	the	one-sample	T-test	example	of	comparing	a	sample	mean,	 ,	with	the
true	 mean,	 μx,	 we	 can	 determine	 a	 confidence	 interval	 for	 the	 true	 mean,	 related	 to	 a
specified	probability,	given	the	sample	mean	and	the	unbiased	sample	standard	deviation.

Mathematically	 we	 want	 to	 determine	 the	 interval	 size	 I	 such	 that	 there	 is	 a	 specified
probability	that	μx	is	within	I	of	 .

This	 is	 a	 two-tailed	 test,	 and	 the	 one-sided	 equivalent	would	 be	 the	 probability	 that	
	 is	 larger	 or	 smaller	 than	 some	 value.	 To	 calculate	 the	 interval	 we	 say	 that	 the

probability	of	the	absolute	difference	between	means	is	the	same	as	the	probability	that	the
magnitude	 of	 the	 T-distribution	 is	 less	 than	 the	 interval	 divided	 by	 the	 standard	 error,
which	simply	comes	from	rearranging	the	formula	for	the	T-statistic:

We	need	to	invert	this	function	to	determine	I	given	a	probability.	To	do	this	practically	we
use	a	function	called	the	quantile	function	or	percent	point	function.	This	does	the	inverse
job	 to	 the	 cumulative	 distribution	 function,	 so	 we	 pass	 in	 a	 probability	 and	 get	 out	 a
threshold	value	that	the	random	variable	will	be	bounded	by	(at	or	below).	Fortunately	for
Python	the	percent	point	function	is	available	for	all	the	common	probability	distributions
described	in	the	scipy.stats	module,	so	we	generally	don’t	have	to	worry	about	its	precise
formulation.	When	we	have	calculated	the	inverse	for	a	given	probability	we	then	simply
multiply	 by	 an	 appropriate	 factor,	 representing	 the	 standard	 error,	 to	 obtain	 the
measurement	interval.

We	 now	 provide	 a	 Python	 function	 to	 calculate	 the	 value	 of	 the	 interval,	 given	 the
probability,	 or	 confidence	 that	 the	 samples	were	drawn	 from	 the	distribution.	The	 input
can	 be	 a	 list	 or	 a	 NumPy	 array	 of	 samples,	 and	 a	 confidence	 level	 (e.g.	 0.95	 for	 95%
confidence).	 The	 result	 is	 the	 sampleMean	 and	 the	 interval.	 For	 the	 two-sided	 test	 this
means	 that	 the	 actual	 mean	 is	 between	 sampleMean-interval	 and	 sampleMean+interval
with	the	probability	given	by	the	confidence	level.

from	numpy	import	mean,	std,	sqrt

from	scipy.stats	import	t

def	tConfInterval(samples,	confidence,	isOneSided=True):

		n	=	len(samples)

		sampleMean	=	mean(samples)

		sampleStdDev	=	std(samples,	ddof=1)	#	Unbiased	estimate

		if	not	isOneSided:

				confidence	=	0.5	*	(1+confidence)

		interval	=	t(n-1).ppf(confidence)	*	sampleStdDev	/	sqrt(n)

		return	sampleMean,	interval

Inside	the	function,	 if	 the	test	 is	 two-tailed	we	adjust	 the	confidence	value	so	that	 the
tail	probability	used	is	half	that	for	a	single	tail.	For	example,	for	an	input	95%	confidence
(5%	tail	probability)	we	will	find	the	interval	corresponding	to	a	one-tailed	confidence	of
97.5%	(2.5%	tail	probability)	because	there	will	be	two	tail	integrals	that	both	contribute.
Next,	using	scipy.stats.t	we	pass	the	appropriate	number	of	degrees	of	freedom	(n-1)	in	to
the	T-distribution	and	use	the	percent	point	function	for	this	with	ppf().	The	value	obtained

is	actually	 ,	so	we	scale	this	by	 	to	get	the	required	interval.	The	function
can	be	tested	with	our	previous	example,	using	a	sample	of	human	heights:

from	numpy	import	array

samples	=	array([1.752,	1.818,	1.597,	1.697,	1.644,		1.593,

																	1.878,	1.648,	1.819,	1.794,	1.745,		1.827])

sMean,	intvl	=	tConfInterval(samples,	0.95,	isOneSided=False)

print('Sample	mean:	%.3f,	95%%	interval:%.4f'	%	(sMean,	intvl))

Note	that	the	double	‘%%’	in	the	print()	statement	is	because	Python	treats	a	single	‘%’
as	the	first	character	in	a	format	string.

Hence,	 the	 difference	 to	 the	mean	 that	we	would	 accept	 for	 a	 95%	confidence	 limit,
when	accepting	an	underlying	probability	distribution,	is	an	interval	of	0.0615	metres.	If
the	mean	of	our	null	hypothesis	distribution	is	actually	1.76	metres,	then	we	would	accept
the	 sample	mean	of	1.734	metres	because	 it	 is	0.0257	metres	away	 from	 the	mean,	 and
thus	lies	within	the	interval.

Chi-squared	and	G-tests
The	 statistical	 tests	 discussed	 so	 far	 in	 this	 chapter	 have	 considered	whether	 individual
sample	parameters	or	data	values	fit	with	probability	distributions.	For	example,	we	have
illustrated	 tailed	 tests,	 to	 compare	 values	 with	 a	 null	 hypothesis	 distribution	 and	 thus
obtain	 a	 p-value.	 However,	 there	 are	 various	 ways	 that	 we	 can	 compare	 multiple
parameters	and	even	whole	distributions	with	one	another,	and	naturally	this	can	involve	a
distribution	 for	 hypothesis	 testing	 in	 what	 is	 termed	 a	 goodness-of-fit	 test.	 If	 two
distributions	 have	 the	 same	 mean	 but	 otherwise	 have	 different	 shapes,	 then	 such	 an
analysis	will	convey	a	clear	advantage.	Though,	as	before	we	must	naturally	account	for
the	error	associated	in	taking	random	(and	potentially	small)	samples	from	an	underlying
probability	distribution.

The	first	method	to	compare	multiple	variables	we	will	cover	is	Pearson’s	chi-squared
test.	This	 test	 is	 based	 on	 the	 chi-squared	 statistic	 (χ2),	which	 is	 defined	 as	 follows	 for
observed	frequencies	of	events	(oi)	and	the	expected	frequencies	of	events	(ei),	which	 is
generally	based	on	the	null	hypothesis:

The	test	can	be	applied	to	categorical	selection,	and	by	extension	to	histograms	of	counts
which	may	be	used	to	approximate	any	arbitrary	distribution.	The	assumption	for	the	test
is	 that	 each	 pair	 of	 expected	 and	 observed	 counts	 is	 derived	 from	 a	 normal	 random
variable.	 The	 chi-square	 distribution,	 which	 the	 statistical	 test	 is	 based	 upon,	 is	 the
distribution	of	such	a	sum	of	squares	resulting	from	different	random	samplings	in	each	of
the	variable	categories.	For	the	chi-square	distribution	(as	with	the	T-distribution)	we	will
need	to	know	the	number	of	degrees	of	freedom,	which	in	general	will	be	the	number	of
observed	values	(e.g.	categories)	minus	the	number	of	restraining	parameters	(e.g.	totals).

Returning	 to	 the	example	G:C	versus	A:T	content	of	a	1000	DNA	base	pairs,	we	can
apply	the	chi-square	statistic	 to	 these	two	base-pair	categories,	 though	naturally	 they	are
restrained	because	they	must	sum	to	a	given	total.	However,	we	treat	them	as	independent
observations	for	the	calculation	of	the	statistic	and	then	consider	the	appropriate	number
of	 degrees	 of	 freedom.	 Hence	 if	 we	 have	 530	 G:C	 pairs	 and	 470	 A:T	 pairs	 and	 the
expected	count	for	each	is	500,	then	the	statistic	is:

After	 calculating	 the	 chi-square	 statistic,	 comparing	 observed	 and	 expected	 counts,	 the
next	stage	is	to	evaluate	the	statistical	significance	of	the	resulting	value	(3.6	in	the	above
example).	For	this	we	use	the	chi-square	distribution.	The	number	of	degrees	of	freedom
here	 is	 the	 number	 of	 random	 variables	 (which	 in	 the	 above	 case	 is	 the	 number	 of
categories)	minus	one;	we	lose	a	degree	of	freedom	because	the	total	is	fixed,	so	the	A:T
count	is	not	random	given	the	G:C	count.	We	can	use	the	cumulative	density	function	chi-
square	distribution	for	one	degree	of	 freedom	 to	generate	a	p-value	 (i.e.	do	a	one-tailed
test	compared	to	the	null	hypothesis)	for	the	observed	chi-squared	statistic.	Fortunately	in
SciPy	this	is	all	handled	in	one	neat	chisquare	function.	This	will	assume	the	number	of
degrees	of	freedom	is	(n−1),	though	in	other	situations	we	could	pass	in	ddof,	representing
the	difference	in	the	number	of	degrees	of	from	the	default:

from	scipy.stats	import	chisquare

obs	=	array([530,	470])

exp	=	array([500,	500])

chSqStat,	pValue	=	chisquare(obs,	exp)

print('DNA	Chi-square:',	chSqStat,	pValue)	#	3.6,	0.05778

The	result	for	this	is	the	anticipated	chi-square	statistic	of	3.6	and	a	test	probability	of
0.058.	It	should	be	noted	that	the	chi-square	test	is	almost	always	a	one-tailed	test	because
we	 are	 normally	 interested	 in	 whether	 the	 fit	 is	 worse	 than	 the	 expected	 fit,	 and	 not
concerned	if	the	fit	is	better	than	expected	(i.e.	too	good).

Moving	on	from	the	simple	DNA	example,	we	can	think	of	samples	from	a	probability
distribution	where	the	resulting	values	have	been	binned	into	a	histogram	(see	Figure	22.6
for	an	example	histogram).	This	will	give	a	discrete	set	of	categories,	one	for	each	range,
and	we	can	treat	each	category	as	a	separate,	independent	sampling	and	compare	it	to	the
expectation	from	the	null	hypothesis.	In	this	case	the	expected	count	will	be	the	area	of	the
probability	for	reach	range	(a	region	of	the	probability	density	function)	multiplied	by	the
total	number	of	observations.

Figure	22.6.	 A	histogram	of	observed	and	expected	counts	for	a	G-test.	The
illustrated	histogram	represents	the	observed	counts	for	a	sample	of	100	values	that	have
been	binned	into	regions	of	width	0.05.	The	expected	counts,	represented	by	black	spots,
are	calculated	from	the	probability	density	funtion	of	the	normal	distribution,	to	which	the
histogram	approximates.	For	the	G-test	the	different	bins	are	treated	as	independent
random	variables,	and	overall	we	estimate	the	goodness	of	fit	of	the	sample	histogram	to
the	normal	expectation.	It	should	be	noted	that	because	some	counts	are	small	(<5)	it
would	be	inappropriate	to	do	the	chi-square	test.

We	can	illustrate	 this	for	 the	heights	of	people,	using	a	null	hypothesis	with	a	normal
distribution,	 and	 then	 test	 the	 goodness	 of	 fit	 for	 different	 height	 categories.	 Here	 bins
represents	 the	 centres	 of	 the	 histogram	 ranges	 and	 obsd	 contains	 the	 corresponding
number	of	observed	counts	for	each	bin.	The	expected	counts	expd	are	calculated	for	each
of	 the	 bins	 values	 by	 applying	 the	 .pdf()	 for	 the	 normal	 distribution	 (with	 appropriate
mean	and	standard	deviation)	and	then	scaling	so	that	the	total	is	the	same	as	the	number
of	observations.

from	scipy.stats	import	norm

from	numpy	import	array

bins	=	array([1.65,	1.7,	1.75,	1.8,	1.85,])

obsd	=	array([14,	15,	33,	22,	8,])

mean	=	1.76

std	=	0.075

nObs	=	obsd.sum()

expd	=	norm.pdf(bins,	mean,	std)

expd	*=	nObs	/	expd.sum()

#	Expected	counts:	9.196,	19.576,	26.720,	23.385,	13.122

chSqStat,	pValue	=	chisquare(obsd,	expd)

print('Chi	square	A',	chSqStat,	pValue)

The	result	is	a	chi-square	statistic	of	7.14	and	corresponding	p-value	of	0.129	(12.9%).
Hence,	we	would	not	reject	the	null	hypothesis.	As	an	alternative	method	we	could	use	the
SciPy	distribution	chi2	and	do	 the	 statistical	 test	 for	a	one-tailed	value	as	we	 illustrated
previously,	 noting	 that	 here	 we	 have	 to	 explicitly	 specify	 the	 number	 of	 degrees	 of
freedom	 for	 the	 chi-square	 distribution	 (which	 is	 one	 fewer	 than	 the	 number	 of
categories):

from	scipy.stats	import	chi2

degFree	=	len(obsd)-1

pValue	=	chi2.sf(chSqStat,	degFree)	#	Result	is	0.129

Not	only	can	the	chi-square	test	be	applied	to	discrete	categorical	counts	as	we	illustrate
above,	but	the	process	can	also	be	applied	to	the	fundamental	parameters	of	a	probability
distribution.	 For	 example,	 the	 null	 hypothesis	may	 be	 a	 specific	 probability	 distribution
which	can	be	described	by	a	few	fundamental	parameters	(μ,	σ	etc.)	and	we	can	compare
that	with	 the	alternative	hypothesis	where	 the	parameters	are	unrestricted.	 In	 the	case	of
mean	and	standard	deviation	there	would	be	three	degrees	of	freedom	in	the	test	(two	of
which	come	from	the	fundamental	parameters).

Pearson’s	chi-square	test	is	commonly	used,	and	thus	implemented	in	SciPy,	but	there
are	limitations	to	its	use,	especially	concerning	low	counts.	A	popular	heuristic	is	that	at
least	 five	 observed	 counts	 are	 required	 for	 each	 random	 variable	 (each	 category).
Although	corrections	can	be	applied	to	account	for	this,	in	general	where	counts	are	small
it	may	be	easier	 to	apply	a	different	 test.	 Indeed	the	chi-square	statistic	 is	really	only	an
approximation,	 developed	 in	 the	 days	 before	 computers	 for	 ease	 of	 calculation,	 to	 the
likelihood	ratio	statistic.	In	the	modern	computer	age	we	have	little	problem	implementing
likelihood	ratio	 tests,	 such	as	 the	G-test	 that	we	describe	next,	which	 is	 less	sensitive	 to
small	counts.	The	G-test	uses	the	following	statistic:

The	statistic	is	a	more	accurate	version	of	chi-square	so	we	still	do	statistical	tests	using
the	chi-square	distribution	with	the	same	degrees	of	freedom	as	the	equivalent	chi-square
test.	 The	 G-statistic	 is	 not	 only	 useful	 for	 deriving	 probabilities,	 but	 also	 has	 a	 useful
meaning	 in	 itself.	 It	 is	 the	 same	 thing	 as	 twice	 the	 Kullback-Leibler	 divergence15	 or
relative	 entropy:	 a	 measure	 of	 the	 extra	 information	 required	 to	 get	 the	 observed
distribution	 from	 the	 expected	distribution.	Unfortunately	 the	G-test	 is	 not	 implemented
directly	in	a	single	SciPy	function,	but	we	can	easily	do	the	required	steps,	making	use	of
the	 chi-square	 distribution’s	 survival	 function	 (chi2.sf())	 to	 obtain	 a	 p-value.	Firstly,	we
gather	some	test	data,	which	is	similar	to	before,	although	we	have	included	a	few	more
histogram	 bins	 with	 small	 counts.	 Then	 we	 calculate	 the	 expectation	 from	 the	 normal
distribution:

bins	=	array([1.55,	1.6,	1.65,	1.7,	1.75,	1.8,	1.85,	1.90])

obsd	=	array([3,			4,		14,			15,			33,		22,				8,				1])

mean	=	1.76

std	=	0.075

nObs	=	obsd.sum()

expd	=	norm.pdf(bins,	mean,	std)

expd	*=	nObs/expd.sum()

#Expected:	0.535,	2.769,	9.194,	19.571,	26.713,	23.379,	13.119,	4.720

The	G-test	is	easily	calculated	for	the	arrays	by	taking	the	natural	logarithm	(base	e)	of
the	required	ratio,	multiplying	by	the	observations	and	then	finding	twice	the	sum	of	the
resulting	array.	The	resulting	G-value	is	 then	applied	to	the	chi-square	survival	function,
with	the	appropriate	degrees	of	freedom:

from	numpy	import	log

g	=	2.0	*	sum(obsd	*	log(obsd/expd))

degFree	=	len(obsd)-1

pValue	=	chi2.sf(g,	degFree)

print('G	test',	g,	pValue)		#	Result	is:	17.34,	0.015

As	illustrated,	the	result	is	a	one-tailed	probability	of	1.5%.	If	we	compare	this	with	the
chi-square	test,	even	though	it	is	not	appropriate	to	do	so	with	such	small	counts,	we	get:

chSqStat,	pValue	=	chisquare(obsd,	expd)

print('Chi-square',	chSqStat,	pValue)		#	Result:	21.98,	0.00256

With	 the	 chi-square	 test	 the	 probability	 is	 now	 estimated	 to	 be	 0.26%,	 which	 is
substantively	different	from	the	G-test	value.

Correlation	and	covariance
For	 the	 last	 part	 of	 this	 chapter	 we	 move	 from	 studying	 distributions	 of	 one	 type	 of
measurement	 to	 the	 comparison	 of	 two	 different	 types,	 each	 with	 a	 different	 random
variable.	We	can	 imagine	 the	 random	variables	 to	correspond	 to	different	dimensions	or
axes.	Hence,	a	data	point	will	be	composed	of	two	values,	one	for	each	axis.	An	approach
here	might	be	to	apply	statistical	tests	to	a	two-dimensional,	joint	probability	distribution,
employing	 the	 methods	 already	 discussed.	 However,	 we	 are	 often	 interested	 in	 the
relatively	 simple	question	of	whether	 the	values	 for	 the	 two	axes	vary	 together	 in	 some
way.	 In	 other	words	 if	 the	 value	 of	 one	measurement	 increases	we	would	 like	 to	 know
whether	the	other	measurement	also	increases,	decreases	or	stays	the	same	overall.	This	is
what	we	call	correlation.	Naturally,	this	is	also	subject	to	significance	testing	because	the
variation	 associated	 with	 sampling	 of	 the	 probability	 distributions	 impinges	 on	 our
measures	of	correlation.	In	particular,	because	of	the	variation	arising	from	a	small	number
of	samples	we	may	observe	an	apparent	correlation	and	need	to	know	the	likelihood	that	it
was	generated	by	a	random	process.

Covariance
Covariance	 is	 a	measure	 of	whether	 two	 random	variables	 vary	 simultaneously	 as	 their
values	increase	or	decrease.	The	covariance	is	calculated	by	subtracting	the	means	of	the

random	variables,	 so	 they	 are	 effectively	 centred	 on	 zero,	 and	 then	 finding	 the	 average
product	 of	 the	 two	 coordinates.	 Hence	 for	 two	 probability	 distributions,	 described	 by
random	variables	X	and	Y	with	sample	points	xi	and	yi	respectively,	the	covariance	may	be
written	as:

The	idea	is	that	if	there	is	a	correlation	then	the	positions	from	both	axes	will	be	on	the
same	side	of	their	means,	giving	consistently	positive	products.	If	 there	is	no	correlation
the	products	will	be	both	positive	and	negative,	averaging	towards	zero.	In	Python	there	is
the	handy	numpy.cov()	 function	 to	 do	 the	work	 for	 us.	Here	we	 illustrate	with	 two	 test
combinations	for	random	xVals:	yVals1	is	completely	random	and	yVals2	is	derived	from
xVals	by	adding	an	offset,	gradient	and	small	random	deviations:

from	numpy	import	random,	cov

xVals	=	random.normal(0.0,	1.0,	100)

yVals1	=	random.normal(0.0,	1.0,	100)	#	Random,	independent	of	xVals

deltas	=	random.normal(0.0,	0.75,	100)

yVals2	=	0.5	+	2.0	*	(xVals	-	deltas)	#	Derived	from	xVals

cov1	=	cov(xVals,	yVals1)

#	The	exact	values	below	depend	on	the	random	numbers

#	Cov	1:	[[0.848,	0.022]

#									[0.022,	1.048]]

cov2	=	cov(xVals,	yVals2)

#	Cov	2:	[[0.848,	1.809]

#									[1.809,	5.819]]

The	 result	 here	 is	 the	 covalence	matrix,	 rather	 than	 just	 a	 single	value.	This	 is	 just	 a
generalisation	of	the	process,	where	if	you	pass	in	several	arrays	it	will	give	back	a	matrix
of	the	covariance	for	all	possible	pairs.	Hence	for	our	two	input	arrays	we	will	get	a	matrix

with	four	values,	i.e.	 ,	so	the	diagonal	is	simply	the	variances	for	X	and	Y	and	the
other	 values	 are	 equal	 to	 the	 covariance	 we	 generally	 want.	 Here	 the	 interesting
covariances	are	0.022	and	1.809	for	yVals1	and	yVals2	respectively.

Correlation	coefficient
As	the	covariance	calculation	derives	from	products	of	the	two	variables,	the	magnitude	of
the	measure	 is	 dependent	on	 the	 scaling	of	both	X	and	Y.	Correspondingly,	 the	units	 of
covariance	will	be	the	product	of	the	X	and	Y	units.	We	can	remove	the	effect	of	scaling	by
dividing	the	covariance	by	the	standard	deviations	of	the	two	random	variables	and	thus
obtain	a	dimensionless	value	that	lies	between	−1	and	1.	A	value	of	−1	will	mean	perfectly
anti-correlated,	 that	 the	quantities	 change	 together	but	 in	opposite	directions;	 a	value	of

zero	 will	 mean	 completely	 uncorrelated	 and	 1	 means	 fully	 correlated.	 This	 is	 what	 is
called	Pearson’s	correlation	coefficient	and	it	gives	us	a	handy	measure	of	how	well	two
quantities	 are	 linearly	 correlated,	 irrespective	 of	 any	 different	 scales	 or	 units	 they	may
have.	We	can	write	the	equation	for	this	as:16

Although	we	have	written	this	for	the	true	standard	deviations	of	the	random	variables
the	calculation	is	the	same	for	the	sample	correlation	coefficient,	except	that	the	unbiased
sample	standard	deviation	is	used.	If	we	apply	this	to	various	data	sets,	plotted	as	graphs
in	Figure	22.7,	we	can	see	how	the	value	of	the	correlation	coefficient	corresponds	to	the
degree	of	linear	correlation.

Figure	22.7.	 Pearson’s	correlation	coefficient	values	(r)	for	a	variety	of	different
data	samples.	The	coefficient	represents	the	degree	of	linear	covariance	in	the	two
quantities	and	is	scaled	so	that	the	value	lies	between	−1	(for	negative	correlation)	and	+1
(positive	correlation).	Values	near	zero	indicate	the	quantities	are	non-linearly	correlated,
although	there	may	be	other	patterns	or	forms	of	non-linear	correlation,	which	would	not
be	exposed	by	this	test.

The	correlation	coefficient	 is	 readily	calculated	 in	Python	using	 the	numpy.corrcoef()
function,	and	as	with	the	covariance	function	we	get	back	a	matrix	of	values,	for	all	pairs
of	inputs.	Testing	on	the	previously	used	values	we	get:

from	numpy	import	corrcoef

r1	=	corrcoef(xVals,	yVals1)[0,	1]	#	Result	is:	0.0231

r2	=	corrcoef(xVals,	yVals2)[0,	1]	#	Result	is:	0.8145

Hence	we	 can	 see	 that	 xVals	 has	 almost	 no	 correlation	with	 yVals1,	 but	 has	 a	 large
positive	 correlation	 (0.8145)	 with	 yVals2,	 as	 we	 might	 expect.	 If	 we	 wished	 we	 could
naturally	also	derive	the	correlation	coefficient	from	the	previously	calculated	covariance,
remembering	that	we	use	the	unbiased	sample	standard	deviation	(ddof=1):

from	numpy	import	std

cov2	=	cov2[0,1]	#	X-Y	element

stdDevX	=	std(xVals,	ddof=1)

stdDevY	=	std(yVals2,	ddof=1)

r2	=	cov2	/	(stdDevX*stdDevY)

Although	 the	 correlation	 coefficient	 is	 insensitive	 to	 different	 sample	 means	 and
variances	 for	 the	 quantities,	 it	 should	 not	 be	 forgotten	 that	 it	 is	 only	 a	 test	 of	 a	 linear
relationship.	 There	 may	 be	 a	 distinct	 non-random,	 non-linear	 relationship	 between	 the

quantities	which	will	not	be	picked	up	by	the	test,	although	in	some	instances	it	is	possible
to	transform	a	quantity	(e.g.	by	taking	a	logarithm)	so	that	the	relationship	becomes	linear.

We	 can	 subject	 the	 correlation	 coefficient	 to	 significance	 tests	 if	 we	 consider	 an
uncorrelated	 null	 hypothesis,	 i.e.	 where	 the	 underlying	 correlation	 coefficient	 is	 0.	 The
basic	 idea	here	 is	 that	even	 if	distributions	are	 really	uncorrelated	 they	can	appear	 to	be
correlated	(points	are	coincidentally	linear),	especially	if	the	size	of	a	sample	is	small.	If
the	underlying	distributions	are	normal	then	it	can	be	shown	that	the	null	hypothesis	can
be	rejected	at	the	0.95	confidence	level	if	the	test	statistic

is	larger	than	the	corresponding	T-distribution	percent	point	function	with	confidence	level
0.975	(because	our	test	is	two-tailed)	and	n−2	degrees	of	freedom.	Here	n	is	the	number	of
sample	 points	 in	 each	 of	X	 and	Y.	We	 can	 invert	 the	 above	 function,	 and	 solve	 for	 the
correlation	coefficient	r	as	a	function	of	n.

Accordingly	we	 can	plot	 the	 correlation	 coefficient	 as	 a	 function	 of	 the	 sample	 size,	 as
illustrated	in	Figure	22.8.	If	r	is	larger	than	the	value	then	the	null	hypothesis	is	rejected.
This	 is	 readily	 done	 in	 Python	 using	 the	 .ppf()	 function	 of	 the	 scipy.stats.t	 distribution
object	and	applying	the	above	equation:

from	numpy	import	sqrt

from	scipy.stats	import	t

nVals	=	range(5,	101)

rVals	=	[]

for	n	in	nVals:

		tVal	=	t(n-2).ppf(0.975)

		tVal2	=	tVal	*	tVal

		rVal	=	sqrt(tVal2/(n-2+tVal2))

		rVals.append(rVal)

pyplot.plot(nVals,	rVals,	color='black')

pyplot.show()

Figure	22.8.	 The	Pearson	correlation	coefficient	that	rejects	an	uncorrelated
hypothesis	at	the	5%	level	for	different	sample	sizes.	For	two	uncorrelated	random
variables	the	likelihood	of	coincidentally	obtaining	a	Pearson	correlation	coefficient	(r)
substantially	different	from	zero	diminishes	with	increasing	sample	size.	The	graph	shows,
for	different	sample	sizes,	the	threshold	value	of	r	that	will	be	exceeded	5%	of	the	time	by
truly	uncorrelated	normal	distributions.

Simple	linear	regression
Related	to	the	linear	correlation	coefficient	is	 the	notion	of	the	line	of	best	fit.	Although
there	are	various	ways	to	calculate	such	a	line,	Pearson’s	correlation	coefficient	provides	a
handy	way	of	 doing	 a	 line	 fit	 called	 simple	 linear	 regression.	 For	 reasons	we	won’t	 go
into,	 it	can	be	shown	that	 the	covariance	of	X	and	Y	divided	by	 the	variance	of	X	 is	 the
gradient	of	 the	 line	 that	minimises	 the	 sum	of	 the	 squared	differences	along	 the	Y	axis,
from	the	fit	line	to	the	data	points.	Hence	the	gradient	β	can	be	written	as	this	ratio,	which
in	turn	may	be	derived	from	the	correlation	coefficient:

Following	from	this,	the	intersection	of	the	Y	axis,	α	can	be	calculated	as:

α	=	μy	−	βμx
This	is	all	very	easy	to	do	in	Python	using	NumPy	functions,	noting	that	as	before	we	test
with	some	artificial	values	derived	from	a	random	sample:

from	numpy	import	cov,	var,	mean,	random

xVals	=	random.normal(0.0,	1.0,	100)

yVals	=	2.0	+	-0.7	*	xVals	+	random.normal(0.0,	0.2,	100)

grad	=	cov(xVals,	yVals)/var(xVals,	ddof=1)

yInt	=	mean(yVals)	–	grad	*	mean(xVals)

print('LR	1:',	grad,	yInt)	#	Result	for	one	run	was:	-0.711	2.04

Figure	22.9.	 An	example	of	simple	linear	regression	applied	to	a	linearly	correlated
data	set.	The	two	random	variables	X	and	Y	have	been	fitted	by	the	minimisation	of	the
difference,	at	a	specified	X-value,	between	the	Y-value	of	each	point	and	the	Y-value	at	the
line.	The	Y-intercept,	α	(where	x	=	0)	and	gradient,	β	were	calculated	as	illustrated	in	the
Python	example	shown	in	the	text.

Accordingly,	 the	 fitted	 line	 has	 a	 gradient	 and	 Y-intercept	 close	 to	 the	 artificial	 test
values	of	−0.7	and	2.0.	There	is	also	a	handy	function	in	the	scipy.stats	function	linregress
which	 calculates	 lots	 of	 useful	 things	 in	 one	 fell	 swoop,	 including	 the	 correlation
coefficient	and	the	two-tailed	probability	of	the	hypothesis	that	the	gradient	is	zero.	Here
we	do	the	linear	regression	and	then	plot	the	best-fit	line	on	the	same	graph	as	the	input
data	(like	Figure	22.9):

from	scipy.stats	import	linregress

from	matplotlib	import	pyplot

grad,	yInt,	corrCoeff,	pValue,	stdErr	=	linregress(xVals,	yVals)

print('LR	2:',	grad,	yInt,	corrCoeff,	pValue,	stdErr)

#	Result	for	one	run	was:	-0.711,	2.04,	-0.949,	9.639e-51,	0.0240

xValsFit	=	[xVals.min(),xVals.max()]

yValsFit	=	[yInt	+	x*grad	for	x	in	xValsFit]

pyplot.plot(xVals,	yVals,	'o')

pyplot.plot(xValsFit,	yValsFit)

pyplot.show()

Tailed	tests	and	confidence	intervals	may	be	calculated	more	generally	for	the	gradient
using	a	T-test	(with	n−2	degrees	of	freedom).	Here	the	T-statistic	is	calculated	as	follows,
where	 	is	the	estimated	gradient	and	 	is	a	y	value	estimated	by	the	fit	line:

1 	The	probability	of	a	Type	I	error	is	usually	denoted	by	α,	and	the	probability	of	a	Type
II	 error	 by	 β.	We	 sometimes	 speak	 of	 the	 power	 of	 a	 statistical	 analysis,	 which	 is	 the
probability	 that	 the	 null	 hypothesis	 has	 been	 rejected	 when	 it	 really	 is	 false,	 which	 is
equivalent	to	1	−	β.
2 	The	examples	in	this	chapter	were	tested	with	SciPy	0.7.1.
3 	http://www.r-project.org/
4 	http://rpy.sourceforge.net/
5 	If	the	distribution	is	a	large	data	set	which	we	know	in	its	entirety	the	true	mean	may	be
referred	to	as	the	population	mean.

6 	 Cauchy	 probability	 density	 function:	 ,	 see
http://en.wikipedia.org/wiki/Cauchy_distribution.
7 	http://en.wikipedia.org/wiki/Bias_of_an_estimator.
8 	‘Delta	degrees	of	freedom’.
9 	The	more	extreme	values	can	either	be	smaller	or	larger	than	the	observation,	depending
on	the	context.
10 	So	 the	 total	probability,	1	=	∫f(x)dx	where	 the	 integral	 is	over	 the	 region	where	X	 is
defined.	The	mean,	μ	 =	E(X)	=	∫x	 f(x)dx	 and	 the	variance	 is	 still	E(X2)	−	E(X2),	 where
E(X2)	=	∫x2	f(x)dx.
11 	 Here	 f(x)	 can	 be	 thought	 of	 as	 the	 probability	 that	 the	 random	 variable	X	 takes	 the
value	x,	although	that	is	not	quite	correct	mathematically,	since	in	general	the	probability
that	X	takes	any	precise	value	is	0,	given	there	are	an	infinity	of	real	numbers	in	a	given
range.	More	correctly,	f(x)	is	the	probability	that	X	takes	values	in	the	range	(x−δ,	x),	then
divided	by	δ,	and	in	the	limit	that	δ	approaches	0.

12 	
13 	‘Student’	was	a	pseudonym	of	William	Gosset,	who	discovered	the	distribution	while
working	for	the	Guinness	brewery	in	the	early	twentieth	century.

14 	The	T-statistic	for	Welch’s	T-test	is:	 .
15 	Mentioned	in	Chapter	11	to	measure	the	repetitiveness	of	a	sequence.
16 	It	also	follows	that	r2	is	the	coefficient	of	determination:	the	fraction	of	the	variance	in
Y	that	is	explained	by	X.

http://www.r-project.org/
http://rpy.sourceforge.net/
http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Bias_of_an_estimator

23 	Clustering	and	discrimination
Contents

Separating	and	grouping	data

Vector	data	units

Discrimination

Clustering

Clustering	methods

Simple	threshold	clustering

Density-based	clustering

K-means	clustering

Improving	k-means

The	‘jump’	method

Data	discrimination

Principal	component	analysis

Extracting	a	principal	component

Linear	discriminant	analysis

Separating	and	grouping	data
When	dealing	with	biological	information,	the	question	at	hand	often	relates	to	the	ability
to	separate	a	pool	of	data	into	different	groups.	This	may	be	a	simple	two-way	split,	for
example	between	people	who	do	or	do	not	have	a	disease,	or	it	may	involve	many	more
data	categories.	Sometimes,	however,	the	number	of	groups	may	not	be	known	and	it	may
not	 even	be	 appropriate	 to	 think	 in	 terms	of	 rigidly	 defined	groups.	Rather,	 it	might	 be
better	 to	 first	determine	 the	most	discriminating	 features	 that	 separate	 the	data	 and	 then
investigate	 afterwards	 whether	 groups	 are	 present,	 and	 if	 so	 how	 many.	 Any	 kind	 of
discrimination	exercise	naturally	requires	some	form	of	information	on	which	a	judgement
may	be	based,	such	as	the	results	from	an	experiment,	which	can	even	include	things	like
DNA	sequences.	Implicit	in	this	sort	of	analysis	is	the	notion	that	units	of	data	are	being
separated,	but	each	unit	may	relate	to	several	pieces	of	information.	For	example,	if	a	unit
of	data	corresponds	to	a	person	they	may	be	diagnosed	by	several	different	parameters	and
test	measurements,	 or	 if	 a	 unit	 is	 a	 biological	molecule	 it	may	 be	 categorised	 by	many
different	properties	and	experimental	results.

Whatever	 the	 situation	 and	 type	of	 data,	 sometimes	 the	 question	being	 asked	 tries	 to

place	each	unit	of	data	in	one	group	or	another,	where	there	is	no	possibility	of	something
being	in	more	than	one	group.	Naturally,	whether	this	is	a	valid	assumption	will	depend	on
context	 and	 the	 formulation	of	 the	problem.	 In	 reality,	 a	hard	boundary	between	groups
might	 not	 actually	 be	 as	 useful	 as	 a	 more	 fuzzy	 membership.	 Referring	 again	 to	 the
problem	of	diagnosing	a	condition	in	people	using	experimental	test	results,	it	may	be	that
two	people	with	identical	test	results	have	different	outcomes;	there	may	not	be	a	simple
dividing	 line	 between	 groups.	 We	 may	 have	 official	 values	 to	 distinguish	 between
‘underweight’,	‘normal’	and	‘overweight’	people	to	help	guide	healthcare,	but	of	course	it
is	a	continuous	scale,	so	it	may	be	sufficient	to	merely	separate	people	(e.g.	using	height,
weight	and	gender	information)	and	be	able	to	make	more	flexible	decisions,	not	based	on
rigid	categories.

Where	 there	 are	 discrete	 groups,	 identification	 and	 classification	 will	 sometimes	 be
based	on	rich,	well-studied	data,	e.g.	people	who	definitely	do	or	do	not	have	a	condition,
but	 the	groupings	may	 then	be	used	 to	make	predictions	with	more	 limited	 information,
where	 there	 is	 no	 certainty.	 In	 such	 situations,	 it	 may	 be	 appropriate	 to	 approach	 the
classification	 of	 a	 unit	 of	 data,	 within	 one	 group	 or	 another,	 in	 a	 probabilistic	manner.
While	Chapter	21	deals	with	 the	concept	of	probability,	here	we	focus	on	the	process	of
separating	data,	in	terms	of	both	making	groups	and	determining	the	most	discriminating
information.	We	 refer	 to	 the	 formation	 of	 discrete	 groups	 by	 bringing	 together	 units	 of
data	as	clustering,	and	use	discrimination	 to	mean	how	we	find	 the	best	combination	of
the	different	kinds	of	data	feature	to	perform	separation.

Vector	data	units
This	 chapter	 will	 consider	 all	 units	 of	 data	 (the	 things	 that	 are	 being	 separated)	 in	 an
abstract	 way.	 All	 data	 in	 a	 given	 unit	 will	 be	 represented	 numerically	 and	 all	 different
kinds	of	 information	will	be	placed	 together	 in	 the	 same	data	 structure.	Doing	 things	 in
this	 manner	 enables	 us	 to	 think	 in	 a	 more	 general,	 mathematical	 way	 and	 the
computational	methods	that	we	consider	will	work	on	any	input	data,	whatever	its	origin.
To	this	end	we	will	refer	to	each	separable	unit	of	data	as	a	feature	vector.	A	feature	refers
to	 a	 different	 kind	 of	 measurement,	 whether	 weight,	 length,	 height,	 x-coordinate,	 y-
coordinate	 or	 whatever.	 A	 vector	 refers	 to	 the	 placement	 of	 all	 of	 the	 features	 that	 go
together	 into	particular	 slots	of	 an	 array.	For	 example,	 a	 colour	may	be	described	 as	 an
array	consisting	of	red,	green	and	blue	component	values,	 i.e.	color	=	(red,	green,	blue).
Vectors	are	often	used	 to	describe	positions	 in	 three-dimensional	space,	and	 in	 the	same
way	a	more	general	feature	vector	can	be	thought	of	as	a	position	in	a	feature	space.	The
only	 difference	 is	 that	 the	 axes	 of	 a	 feature	 space	 don’t	 necessarily	 represent	 spatial
position;	 the	 axes	 represent	 whatever	 is	 being	 measured	 and	 can	 have	 any	 number	 of
‘dimensions’,	one	 for	each	 feature.	 Just	as	distances	can	be	measured	between	points	 in
space,	distances	can	also	be	measured	in	a	feature	space.	We	will	often	be	measuring	such
distances	 for	 the	 purposes	 of	 separating	 data,	 as	 a	 means	 of	 measuring	 the	 degree	 of
similarity	between	units	of	data.	This	 is	not	 to	 suggest	 that	 the	usual	Cartesian	distance
(square	root	of	the	sum	of	square	axis	differences)	is	always	the	best	measure;	the	distance
criterion	should	be	chosen	to	be	appropriate	to	the	problem.

Discrimination
Some	of	the	computational	methods	presented	in	this	chapter	are	used	to	determine	which
aspects	of	which	features	best	separate	the	data.	For	example,	if	there	are	many	different
kinds	of	tests	that	can	be	performed	on	a	person	to	diagnose	a	disease,	each	of	the	different
kinds	of	measurement	will	 have	 a	different	 degree	of	 importance	 to	 the	outcome.	Also,
certain	 combinations	 of	 measurements	 may	 be	 important	 for	 classification,	 in	 either	 a
positive	 or	 negative	 sense.	 In	 essence,	with	 such	 information	we	wish	 to	 determine	 the
best	view	of	the	feature	vectors	to	observe	the	correlations	and	distinctions.	To	take	a	very
simple	three-dimensional	example,	imagine	the	problem	was	to	distinguish	blurred	points
of	 light	 by	 taking	 photographs.	 Here	 you	 would	 not	 expect	 to	 be	 able	 to	 separate	 the
different	lights	if	 the	camera	view	meant	that	one	light	lay	directly	behind	the	other;	 the
best	 separation	 for	 two	 lights	would	 be	 a	 view	perpendicular	 to	 the	 line	 between	 them.
Generalising	the	problem	for	any	feature	space	we	would	seek	to	find	a	projection	(view)
of	the	data	where	differences	or	groups	are	most	obvious.	Implicit	in	this	reasoning	is	the
tactic	of	mapping	several	different	kinds	of	features	into	a	simpler,	flatter	representation,
otherwise	known	as	dimensional	reduction.

Taking	 a	 photograph	 of	 real	 objects	 involves	 going	 from	 three	 dimensions	 to	 a	 two-
dimensional	projection,	so	 this	 is	an	example	of	dimensional	 reduction,	although	for	 the
purposes	of	data	discrimination	we	would	not	 take	just	any	view,	but	rather	 the	one	that
gives	optimal	separation.	If	there	are	only	two	data	categories	that	are	to	be	separated,	we
could	draw	a	 line	 through	 the	 ‘centre’	 of	 one	 category	 to	 the	 other.	Although	we	know
where	this	line	is	in	the	feature	space	of	the	data,	the	line	itself	is	only	a	one-dimensional
object	 that	 charts	 the	 transition	 of	 going	 from	 one	 group	 to	 the	 other.	 By	 transforming
multi-dimensional	 data	 (lots	 of	 features)	 to	 points	 on	 an	 optimally	 positioned	 one-
dimensional	 line	 we	 automatically	 create	 an	 axis	 for	 separation;	 a	 decision	 boundary
would	 be	 a	 point	 on	 the	 line	 between	 the	 groups.	 It	 is	 noteworthy	 that	 although
dimensional	reduction	can	often	simplify	a	problem	involving	large	numbers	of	features,
including	 giving	 human	 beings	 the	 kinds	 of	 graphs	 and	 2D	 pictures	 they	 can	 visually
appreciate,	 this	 simplification	 is	 not	 a	 prerequisite	 for	 separating	 data	 items.	 Many
methods	allow	data	to	be	grouped	and	separated	in	its	original	high-dimensional,	feature
vector	form.	Where	it	is	possible,	separating	the	unmapped	data	should	be	considered	first,
given	that	dimensional	reduction	loses	information,	which	may	obscure	separation.

In	 this	 chapter	 we	 will	 look	 at	 two	 forms	 of	 data	 discrimination	 with	 different
approaches.	 These	 are	 principal	 component	 analysis	 (PCA)	 and	 linear	 discriminant
analysis	(LDA),	and	either	may	be	used	to	work	out	a	best-separating	projection	(view)	of
data	 represented	 as	 feature	 vectors.	 Accordingly	 they	may	 also	 be	 used	 as	 a	means	 of
dimensional	reduction.

Figure	23.1.	 How	many	seashells	in	how	many	groups?	Some	views	of	data	are	better
at	distinguishing	items	and	clusters	than	others.

Clustering
Clustering	 relates	 to	 the	process	of	 partitioning	data	units	 into	discrete	groups.	Such	 an
operation	 requires	 that	 the	similarity	 (or	difference)	between	units	 is	measured	and	 then
the	 members	 of	 each	 group	 are	 allocated	 to	 give	 the	 arrangement	 that	 maximises	 the
association	of	similar	items	and	the	separation	of	dissimilar	ones.	In	practice	most	of	the
clustering	methods	presented	here	will	not	be	able	to	give	an	immediate	analytical	solution
to	 this	 optimisation	 problem,	 rather	 the	 process	 will	 be	 an	 iterative	 one,	 with	 several
cycles	 of	 improvement	 until	 a	 stable	 solution	 is	 found.	As	mentioned	 above,	 clustering
may	 operate	 on	 data	 items	 which	 have	 a	 high	 dimensionality,	 represented	 as	 feature
vectors.	However,	if	the	analysis	is	too	slow	or	too	complicated	the	original	data	may	be
transformed	(projected)	into	a	set	of	lower-dimensionality	data	by	methods	like	PCA	prior
to	the	clustering	operation.

Depending	on	the	situation,	 the	process	of	clustering	may	work	with	prior	knowledge
about	 the	number	of	clusters,	e.g.	what	 the	underlying	data	categories	are.	Alternatively,
the	 number	 of	 clusters	 may	 be	 completely	 unknown.	 If	 the	 numbers	 of	 clusters	 is	 not
known	then	this	number	must	be	deduced	or	optimised.	Generally,	several	different	trials
are	run,	each	of	which	involves	a	different	number	of	clusters.	Within	each	trial	there	is	a
separate	optimisation	for	how	the	data	items	are	allocated	within	that	number	of	clusters.
The	best	number	of	clusters	is	then	determined	from	the	best	overall	arrangement	from	all
the	 trials.	 It	would	be	possible	 to	place	each	data	 item	 in	a	 separate	cluster,	 thus	giving
maximum	separation,	but	the	objective	is	to	give	the	best	balance	between	the	number	of
clusters	and	the	degree	of	separation,	rather	than	only	maximising	separation.

Once	 clusters	 are	 defined	 the	 result	 may	 then	 be	 used	 as	 a	 means	 of	 predicting
classification,	 i.e.	 estimating	 in	 which	 cluster	 a	 previously	 unseen	 piece	 of	 data	 lies.
Making	a	prediction	may	be	as	 simple	as	 finding	which	cluster	 is	closest.	Alternatively,
more	advanced	approaches,	such	as	the	supervised	machine	learning	methods	described	in
Chapter	24,	can	be	used	where	classification	is	not	so	easy.	These	can	learn	patterns	from
training	 data	with	 known,	 fixed	 classifications	 before	 predictions	 are	made.	One	 of	 the

machine	learning	methods	presented	later,	the	self-organising	map,	is	notable	because	it	is
unsupervised	 (needs	no	prior	classifications)	and	thus	can	be	viewed	as	an	alternative	to
the	linear	clustering	methods	presented	in	this	chapter.

Figure	23.2.	 An	illustration	of	three	clusters	of	points	in	two	dimensions.	Each
cluster	is	shown	by	a	different	kind	of	shape.	Points	are	plotted	at	different	positions
relative	to	the	two	axes,	which	represent	two	different	quantities	relating	to	the	data.	The
data	categories	may	be	known	in	advance,	in	which	case	the	plot	can	be	used	to	illustrate
the	degree	of	separation	in	the	data.	Alternatively,	the	clusters	in	the	data	may	be	inferred
by	analysis	of	the	spatial	relationship	of	the	data	points,	by	grouping	points	with	similar
axis	locations	(i.e.	features).

Clustering	methods
The	 following	Python	 examples	 demonstrate	 a	 range	of	 clustering	methods.	Overall	we
have	tried	to	give	an	overview	of	the	different	approaches	and	have	chosen	examples	that
are	reasonably	easy	to	explain	(and	write	in	Python)	but	which	should	also	prove	useful	in
many	different	situations.

Simple	threshold	clustering
The	first	Python	example	in	this	chapter	involves	grouping	items	of	data	into	clusters	in	a
fairly	simple	manner,	based	upon	how	close	(similar)	the	items	of	data	are.	This	method	is
somewhat	naïve	and	suffers	from	a	few	problems,	but	is	a	good	place	to	start	in	the	subject
and	 we	 will	 subsequently	 show	 improvements.	 The	 algorithm	 works	 by	 initially
considering	an	item	of	data	as	a	potentially	separate	cluster	and	then	expands	the	cluster
by	adding	any	other	items	that	are	sufficiently	close,	i.e.	the	distance	between	data	points
is	 less	 than	 a	 threshold.	 The	 general	 problem	 with	 this	 kind	 of	 approach	 is	 that	 it	 is
sensitive	to	the	arrangement	of	data	points;	two	genuine	clusters	can	be	merged	into	one
by	the	presence	of	outlying	points	that	 just	happen	to	span	the	gap	between	the	clusters.
The	method	is	sometimes	described	as	being	‘too	greedy’.

Firstly,	 in	the	Python	example	we	define	a	simple	function	that	calculates	the	regular,
Euclidian	 distance	 between	 two	 items	 of	 data	 (feature	 vectors).	 Although	 this	 is	 a
reasonable	general	choice	for	measuring	the	similarity	between	data	items,	there	are	some
situations	where	 something	 else	may	 be	more	 appropriate.	 A	 good	 example	 of	 using	 a
different	 kind	 of	 measure	 would	 be	 for	 biological	 sequences,	 where	 it	 is	 possible	 to
estimate	how	similar	the	sequences	are,	assuming	an	evolutionary	process.

The	euclideanDist	function	will	assume	the	data	items	are	NumPy	array	objects,	so	that
we	can	do	some	quick	manipulations	without	having	to	go	through	loops.	The	distance	is
calculated	 by	 first	 finding	 the	 difference	 between	 two	vectors:	 another	 vector,	 diff.	 The
square	root	of	the	sum	of	the	squares	of	the	values	in	the	diff	vector	is	then	the	distance	we
want.	We	use	the	dot()	function	to	do	the	summing	and	squaring	for	us.	(See	Chapter	9	for
an	explanation	of	dot().)

from	numpy	import	dot,	sqrt

def	euclideanDist(vectorA,	vectorB):

		diff	=	vectorA-vectorB

		return	sqrt(dot(diff,diff))

Next	is	another	small	helper	function	that	we	will	use	in	the	clustering.	In	this	case	the
findNeighbours	 function	 is	 built	 to	 look	 through	 all	 pairs	 of	 data	 items,	 calculate	 the
distance	 between	 the	 items	 (for	 example,	 using	 the	 euclideanDist	 function)	 and	 record
those	items	that	are	sufficiently	close	to	be	considered	as	near	neighbours.	The	three	input
arguments	 are	 naturally	 the	 data	 itself,	 the	 function	 to	 get	 the	 distance	 value	 and	 a
threshold	 for	 defining	 neighbours.	 The	 results	 will	 be	 stored	 in	 a	 Python	 dictionary
neighbourDict,	so	this	is	defined	and	initially	filled	with	empty	lists,	one	for	each	item	of
data.

def	findNeighbours(data,	distFunc,	threshold):

		neighbourDict	=	{}

		n	=	len(data)

		for	i	in	range(n):

				neighbourDict[i]	=	[]

		for	i	in	range(0,n-1):

				for	j	in	range(i+1,n):

						dist	=	distFunc(data[i],	data[j])

						if	dist	<	threshold:

								neighbourDict[i].append(j)

								neighbourDict[j].append(i)

		return	neighbourDict

The	remainder	of	the	function	involves	going	through	all	pairs	of	data	items.	Hence	we
have	two	loops,	one	with	the	index	i	and	one	with	the	index	j,	to	get	two	items.	Note	how
we	have	deliberately	chosen	the	ranges	for	these	indices	to	avoid	repetition,	i.e.	j	are	the

indices	larger	than	i.	The	distance	 is	calculated	by	using	 the	function	 that	was	passed	 in
and	then	if	the	distance	is	less	than	the	threshold	we	record	the	data	for	i	and	j	indices	to
be	neighbours;	the	indices	go	in	each	other’s	list	of	neighbours,	held	in	neighbourDict.

Finally	we	get	to	the	actual	simpleCluster	clustering	function.	This	takes	a	list	of	data,
each	item	of	which	is	assumed	to	be	a	NumPy	array,	a	distance	threshold	and	the	function
to	make	 the	distance	measurement.	 Initially,	 the	dictionary	of	neighbours	 is	 filled	using
findNeighbours,	 then	 the	 remainder	of	 the	 function	works	 to	 find	clusters	by	combining
neighbours	together	into	groups.

def	simpleCluster(data,	threshold,	distFunc=euclideanDist):

		neighbourDict	=	findNeighbours(data,	distFunc,	threshold)

For	 the	 clusters	 we	 first	 define	 an	 empty	 list,	 which	 will	 represent	 items	 of	 data	 in
discrete	groups.	The	pool	variable	 is	a	set	of	numbers,	 the	 indices	of	data	 items	 that	we
have	not	yet	processed.	The	aim	will	be	to	go	through	all	the	pool	and	place	the	indices	in
the	appropriate	cluster.	We	are	using	Python	sets	here	because	detecting	something	in	a	set
is	quicker	than	looking	though	a	list.

clusters	=	[]

pool	=	set(range(len(data)))

Now	the	task	is	to	process	the	data,	which	involves	taking	an	item	from	the	‘to-do’	pool
(remembering	 pop()	 removes	 something	 from	 a	 set	 so	 the	 pool	 shrinks)	 and	 looking
through	its	neighbours,	which	we	fetch	from	the	neighbourDict.	Because	the	item	was	in
the	pool	it	will	not	yet	be	in	a	cluster,	thus	we	define	a	new	one	as	an	empty	set	and	add
the	 item	 index	 i.	 The	 item	 is	 now	 considered	 processed.	 It	may	 seem	 dumb	 to	 already
consider	 the	 item	processed,	but	as	will	become	apparent	most	 items	will	be	added	 in	a
different	way;	this	is	just	a	start	for	the	cluster.

while	pool:

		i	=	pool.pop()

		neighbours	=	neighbourDict[i]

		cluster	=	set()

		cluster.add(i)

Once	the	new	cluster	is	defined	we	then	add	all	of	the	neighbours	which	are	known	to
be	close	to	the	same	cluster.	To	do	this	a	new	pool	pool2	is	defined	from	the	indices	j	of
the	neighbours.

pool2	=	set(neighbours)

while	pool2:

		j	=	pool2.pop()

If	 the	 neighbour	 has	 not	 yet	 been	 processed	 (j	 still	 in	 pool)	 then	 we	 process	 it	 by
removing	it	from	the	main	pool,	and	add	it	to	the	current	cluster.	Its	own	neighbours	then
go	 into	 pool2,	 the	 set	 that	 we	 are	 currently	 working	 on.	 In	 this	 way	 neighbours	 of
neighbours	are	placed	in	the	same	cluster.	Note	the	use	of	the	update,	which	will	expand	a
Python	set	to	include	any	new	values	from	another	group.

if	j	in	pool:

		pool.remove(j)

		cluster.add(j)

		neighbours2	=	neighbourDict[j]

		pool2.update(neighbours2)

This	 inner	 loop	ends	when	no	more	neighbours	are	placed	 in	 the	pool	 for	 the	current
cluster	and	pool2	is	fully	processed	(empty),	whereupon	the	cluster	is	added	to	the	list	of
clusters.	Another	cluster	will	be	created	by	the	outer	while	 loop	as	 long	as	 the	pool	still
contains	something	to	process:	those	that	are	not	a	member	of	any	clusters	seen	so	far.

clusters.append(cluster)

The	final	output	of	the	clusters	will	be	given	as	a	list	of	lists;	each	sub-list	will	contain
all	 of	 the	 data	 items	 that	 go	 together	 in	 the	 same	 cluster.	 So	 far	 the	 clusters	 are	 only
defined	 in	 terms	 of	 index	 numbers,	 so	 it	 is	 a	 simple	 matter	 to	 go	 through	 each	 set	 of
clustered	 indices	 and	 add	 the	 actual	 data	 items	 they	 correspond	 to	 (data[i])	 to	 the
clusterData	list	which	will	be	passed	back	at	the	end	of	the	function.

clusterData	=	[]

for	cluster	in	clusters:

		clusterData.append([data[i]	for	i	in	cluster])

return	clusterData

For	 testing	 we	 will	 use	 some	 random	 data	 clusters	 with	 a	 normal	 (Gaussian)
distribution,	readily	created	using	random.normal.	Here	each	data	cluster	 is	centred	on	a
different	point	but	has	the	same	spread	and	size:	100	points	in	two	dimensions.	These	are
then	combined	into	a	single	array	of	vectors	(300	points	on	two	dimensions)	using	vstack,
which	combines	the	arrays	of	vectors	along	their	first	axis	(rows),	and	shuffled	to	mix	up
the	vectors	from	the	different	clusters.

from	numpy	import	random,	vstack

spread	=	0.12

sizeDims	=	(100,2)

data	=	[random.normal((0.0,	0.0),	spread,	sizeDims),

								random.normal((1.0,	1.0),	spread,	sizeDims),

								random.normal((1.0,	0.0),	spread,	sizeDims)]

data	=	vstack(data)

random.shuffle(data)	#	Randomise	order

clusters	=	simpleCluster(data,	0.10)

The	following	can	then	plot	the	results	with	different	symbols	and	colours.	Note	that	we
plot	all	the	small	‘noise’	clusters	that	have	fewer	than	three	items	as	black	spots.	Also,	the
zip	function	is	handy	here	because	the	scatter	plotting	function	requires	two	separate	lists
of	x	values	and	y	values,	but	our	data	has	(x,y)	pairs.	Hence	*cluster	expands	the	one	list
of	(x,y)	pairs	into	multiple	small	lists,	and	zip	groups	the	separate	x	and	y	values	together
(see	Chapter	10).

from	matplotlib	import	pyplot

colors	=	['#F0F0F0','#A0A0A0','#505050',

										'#D0D0D0','#808080','#202020']

markers	=	['d','o','s','>','^']

i	=	0

for	cluster	in	clusters:

			allX,	allY	=	zip(*cluster)

			if	len(cluster)	>	3:

					color	=	colors[i	%	len(colors)]

					marker	=	markers[i	%	len(markers)]

					pyplot.scatter(allX,	allY,	s=30,	c=color,	marker=marker)

					i	+=	1

			else:

					pyplot.scatter(allX,	allY,	s=5,	c='black',	marker='o')

pyplot.show()

Density-based	clustering
The	threshold	clustering	method	works	fairly	quickly	to	group	our	data,	but	we	will	now
consider	 a	way	of	 improving	 the	method	 so	 that	 it	 takes	 account	 of	 the	 density	 of	 data
points,	and	thus	the	method	is	less	likely	to	have	intermediate	points	that	greedily	combine
otherwise	separate	clusters.	The	method	we	have	chosen	here	is	referred	to	as	DBSCAN1

and	is	commonly	used	in	scientific	analyses.	We	might	have	also	considered	the	OPTICS2
method,	 but	 we	 omit	 this	 only	 for	 reasons	 of	 brevity.	 The	 basic	 principle	 here	 is	 that
distance	alone	is	not	sufficient	to	define	the	clusters;	the	number	of	neighbours	should	be
considered	too.	Hence	cluster	membership	requires	support,	i.e.	a	certain	density	of	points.
The	method	 can	 be	 criticised	 as	 being	 subjective,	 given	 that	 the	 threshold	 distance	 and
minimum	number	of	supporting	neighbours	have	to	be	specified.	Nonetheless	the	method
is	free	from	any	assumptions	about	how	the	data	 is	distributed	and	copes	well	when	the
clusters	 are	 irregular	 shapes.	 Also,	 there	 is	 the	 inherent	 concept	 of	 ‘noise’	 points:	 data
items	that	are	disconnected	from	the	clusters.

Figure	23.3.	 Example	output	of	simple	associative	clustering	at	two	thresholds.	A
simple	associative	clustering	method	works	by	grouping	points	together	into	a	cluster	if
the	separation	between	them	(from	one	point	to	any	other,	considering	all	axes)	is	below	a
specified	threshold.	Assuming	the	data	is	well	separated	and	an	appropriate	threshold	is
chosen,	this	method	can	be	useful	and	is	very	fast.	However,	simple	associative	clustering
will	naturally	not	separate	overlapping	clusters	or	situations	where	there	are	outliers,
within	the	clustering	threshold,	that	can	bridge	between	what	otherwise	appear	to	be
distinct	groups.

The	dbScanCluster	function	resembles	simpleCluster	but	we	add	checks	for	the	number
of	neighbours	and	accordingly	add	any	disconnected	points	to	a	list	of	noise,	rather	than	a
cluster.	 The	 inputs	 now	 include	 minNeighbour,	 which	 as	 the	 name	 suggests	 says	 how
many	neighbours	an	item	should	have	at	minimum.

def	dbScanCluster(data,	threshold,	minNeighbour,	distFunc=euclideanDist):

As	before,	 the	dictionary	of	neighbours	is	calculated	and	we	initialise	some	variables,
including	a	set	to	hold	the	indices	of	the	noise	items.

neighbourDict	=	findNeighbours(data,	distFunc,	threshold)

clusters	=	[]

noise	=	set()

pool	=	set(range(len(data)))

Figure	23.4.	 Example	results	of	density-based	clustering,	illustrating	clusters	and
noise	points.	Density-based	clustering	can	be	imagined	as	an	extension	of	associative
clustering.	Points	are	joined	into	the	same	cluster,	but	with	the	extra	requirement	that	there
needs	to	be	a	minimum	number	of	close	points.	This	requirement	reduces	the	occurrence
of	sparse	points	bridging	clusters.	Also,	because	of	the	requirement	of	a	minimum	number
of	close	neighbours	for	a	point	to	be	included	in	a	cluster,	some	points	will	be	excluded
from	clusters	below	threshold	size	and	thus	marked	as	‘noise’.

Then	 we	 go	 through	 the	 work	 pool,	 popping	 out	 indices	 and	 adding	 to	 clusters.
However,	 we	 now	 check	 that	 the	 item	 (index	 i)	 has	 enough	 neighbours.	 If	 it	 does	 not
(len(neighbours)	<	minNeighbour),	then	the	index	is	added	to	the	noise	set	and	clustering
is	skipped	for	that	item.

while	pool:

		i	=	pool.pop()

		neighbours	=	neighbourDict[i]

		if	len(neighbours)	<	minNeighbour:

				noise.add(i)

Otherwise	the	clustering	proceeds.	A	new	cluster	 is	defined	and	the	index	is	added	to
the	set.

else:

		cluster	=	set()

		cluster.add(i)

Next	a	new	pool	 is	defined	from	the	neighbours	of	 the	current	 item.	However,	we	do
not	 automatically	 accept	 all	 neighbours	 into	 the	 current	 cluster.	 Those	 with	 too	 few
neighbours	themselves	are	added	to	the	noise	set	instead.	All	points,	be	they	noise	or	not,
are	removed	from	the	work	pool,	so	they	are	only	ever	considered	once.

pool2	=	set(neighbours)

while	pool2:

		j	=	pool2.pop()

		if	j	in	pool:

				pool.remove(j)

				neighbours2	=	neighbourDict.get(j,	[])

				if	len(neighbours2)	<	minNeighbour:

						noise.add(j)

				else:

						pool2.update(neighbours2)

						cluster.add(j)

clusters.append(cluster)

Finally,	the	function	collates	the	data	items	based	upon	whether	their	indices	ended	up
in	the	noise	set	(isolated	items)	or	in	one	of	the	main	clusters.

noiseData	=	[data[i]	for	i	in	noise]

clusterData	=	[]

for	cluster	in	clusters:

		clusterData.append([data[i]	for	i	in	cluster])

return	clusterData,	noiseData

This	function	can	be	tested	in	the	same	manner	as	the	simple	clustering:

clusters,	noise	=	dbScanCluster(data,	0.10,	2)

K-means	clustering
The	 next	 Python	 example	 for	 clustering	 is	 an	 algorithm	 known	 as	 k-means	 clustering.
Here	the	‘k’	refers	to	the	number	of	clusters	that	we	wish	to	group	our	list	data	items	into.
The	 ‘means’	 refers	 to	 the	 concept	 of	 describing	 each	 cluster	 as	 the	 central	 average
position:	a	geometric	average	of	its	members.	There	are	implementations	of	the	k-means
algorithm	 in	 the	 Scientific	 Python	 library	 (scipy.cluster.vq.kmeans	 and
scipy.cluster.vq.kmeans2),	 but	 we	 will	 create	 one	 from	 scratch	 here	 to	 illustrate	 the
methods	 and	 to	 give	 a	 basis	 for	modification.	Also,	 there	 are	 variants	 of	 this	 clustering
method	that	can	be	used,	like	‘k-medoids’	or	‘k-medians’,	which	can	also	be	considered,
but	which	we	will	not	go	into	here	for	reasons	of	brevity.	Compared	to	the	threshold-based
methods	already	discussed,	the	k-means	method	has	the	advantage	that	you	do	not	have	to
choose	 a	 threshold.	Although	 you	 do	 have	 to	 say	 how	many	 clusters	 (k)	 to	make,	 it	 is
possible	to	try	several	values	for	k	and	take	the	best	one.	Compared	to	DBSCAN,	k-means
will	not	work	as	well	with	data	clusters	that	have	irregular	or	intermingled	shapes,	but	will
allow	separation	of	regular	(‘blobby’)	clusters	even	when	they	are	overlapped.

Initially	 the	 cluster	 centres	 are	 defined	 randomly,	 basing	 them	 on	 the	 locations	 of
random	data	items.	Each	of	the	input	data	items	will	then	become	a	member	of	a	cluster
by	 simply	 determining	 which	 centre	 is	 closest.	 The	 effect	 is	 that	 the	 discrimination
boundaries	between	clusters	are	straight	lines.3	Most	likely	the	initial	guess	for	the	cluster
centres	will	be	bad,	so	the	algorithm	goes	through	a	number	of	iterative	cycles	to	improve
the	 locations	 of	 the	 centres.	 Each	 cycle	 consists	 of	 re-appraising	 which	 data	 items	 are
members	of	which	cluster	and	 then	moving	 the	centres	of	 the	clusters	 to	 the	average	of
their	memberships.	When	a	cluster	centre	moves	the	membership	of	items	may	change	for

the	next	cycle,	which	in	turn	leads	to	a	new	centre,	and	so	the	cycle	repeats.	The	k-means
algorithm	is	simple	in	that	there	is	no	recorded	statistic	that	is	being	optimised.	Instead	the
iteration	 continues	 until	 a	 stable	 situation	 is	 reached.	 For	 data	 sets	 where	 there	 are	 (k)
obvious	 clumps	 of	 items	 the	 algorithm	will	 be	 fairly	 reproducible.	However,	where	 the
data	items	are	more	evenly	spread	the	final	clustering	will	depend	on	the	initial	guess	of
the	centres,	i.e.	there	can	be	more	than	one	stable	solution.	If	there	isn’t	a	stable	solution
you	 should	 consider	 whether	 it	 is	 meaningful	 to	 cluster	 the	 data	 in	 this	 way;	 imagine
dividing	a	regular	grid	of	points	into	two,	where	any	straight	line	that	makes	two	groups	of
equal	size	is	a	possible	solution.

The	 Python	 function	 that	 performs	 k-means	 clustering	 takes	 an	 array	 of	 input	 data
vectors	and	the	number	k,	 to	specify	how	many	clusters	 there	will	be.	We	also	have	 the
option	 of	 passing	 in	 some	 initial	 guesses	 for	 the	 cluster	 centres,	 but	 by	 default	 this	 is
None,	and	we	choose	random	centres.	If	unspecified,	to	define	the	initial	guess	for	centers
we	use	 the	sample	 function	 from	Python’s	standard	 random	number	module,	which	will
choose	k	different	 items	from	the	data,	and	 then	convert	 the	resulting	 list	 into	a	NumPy
array.

from	numpy	import	array,	random

from	random	import	sample

def	kMeans(data,	k,	centers=None):

		if	centers	is	None:

				centers	=	array(sample(list(data),	k))	#	list()	not	needed	in	Python	

2

With	 the	 initial	 cluster	 centres	 defined	 we	 now	 come	 to	 the	 iterative	 part.	 Here	 we
define	the	amount	of	change,	which	is	initially	large	(proportionately	speaking).	The	while
loop	 will	 continue	 as	 long	 as	 the	 change	 between	 subsequent	 cycles	 is	 big	 enough,
otherwise	we	deem	the	clustering	to	have	reached	a	stable	solution.

change	=	1.0

while	change	>	1e-8:

The	membership	of	the	clusters	is	defined	by	putting	each	data	item	into	a	list,	one	for
each	cluster,	according	to	which	cluster	centre	is	closest.	Hence	clusters	is	defined	as	a	list
of	 lists	which	collects	 the	data	 items.	Note	 that	 the	membership	of	clusters	may	change
each	 cycle,	 so	 we	 have	 to	 repeatedly	 re-appraise	 the	 memberships.	 The	 for	 loop	 goes
though	each	data	item,	here	called	vector,	and	subtracts	the	centres;	this	will	give	an	array
of	 difference	 vectors	 from	 the	 data	 item	 to	 all	 of	 the	 centres.	Note	 that	 this	 subtraction
assumes	we	are	working	with	NumPy	arrays,	hence	subtracting	two	arrays	gives	another
array.	The	array	of	differences	is	then	squared	and	then	summed	up	for	each	vector,	so	that
we	have	a	list	of	(square4)	distances,	with	one	value	for	each	centre;	i.e.	an	array	of	(x,	y,
z)	items	becomes	(x2,	y2,	z2)	and	then	(x2+y2+z2).	The	closest	centre	is	then	the	index	of
the	smallest	value	in	the	array	dists.argmin().	The	data	vector	is	added	to	the	appropriate
list	in	clusters	with	the	closest	index.

clusters	=	[[]	for	x	in	range(k)]

for	vector	in	data:

		diffs	=	centers	-	vector

		dists	=	(diffs	*	diffs).sum(axis=1)

		closest	=	dists.argmin()

		clusters[closest].append(vector)

With	the	membership	of	 the	clusters	defined,	 the	next	 loop	recalculates	 the	centres	of
the	clusters	based	on	the	data	vectors	that	belong	to	each.	We	simply	go	through	the	list	of
clusters	 and,	 after	 converting	 to	 a	 NumPy	 array,	 we	 calculate	 the	 average	 data	 vector,
taking	a	summation	for	each	data	dimension	and	dividing	by	the	length	of	the	cluster.	The
difference	between	the	old	and	new	cluster	centre	is	calculated	by	subtraction,	then	added
as	 the	 sum	of	 squares	 (i.e.	 length	 squared)	 to	 the	 total	 amount	of	 change	 for	 this	 cycle.
Finally	in	the	loop	the	new	centre	replaces	the	old	one:	centers[i]	=	center.

change	=	0

for	i,	cluster	in	enumerate(clusters):

		cluster	=	array(cluster)

		center	=	cluster.sum(axis=0)/len(cluster)

		diff	=	center	-	centers[i]

		change	+=	(diff	*	diff).sum()

		centers[i]	=	center

return	centers,	clusters

At	 the	 end	 of	 the	 function,	 once	 the	 change	 is	 small	 enough,	 we	 pass	 back	 the	 last
values	of	the	cluster	centres	and	the	list	which	contains	the	data	items	grouped	according
to	cluster	membership.

To	 test	 the	data	we	can	use	 a	 random	spread	of	1000	data	points	 in	 two	dimensions,
grouping	into	three	clusters:

testDataA	=	random.random((1000,2))	#	No	clumps

centers,	clusters	=	kMeans(testDataA,	3)

Or	we	can	add	two	distinct	clumps	of	two-dimensional	points:

from	numpy	import	vstack

testDataB1	=	random.normal(0.0,	2.0,	(100,2))

testDataB2	=	random.normal(7.0,	2.0,	(100,2))

testDataB	=	vstack([testDataB1,	testDataB2])	#	Two	clumps

centers,	clusters	=	kMeans(testDataB,	2)

For	each	 test	we	can	display	 the	 result	 in	a	scatter	graph	using	 the	matplotlib	 library.
Note	that	to	make	the	plot	we	extract	the	x	and	y	coordinates	for	the	data	items	separately
using	zip,	because	matplotlib.pyplot	expects	 two	separate	 lists	 (rather	 than	 (x,y)	points).
After	plotting	the	data	with	separate	colours	we	also	make	a	scatter	plot	of	the	centres	of
the	clusters	with	black	circles.

from	matplotlib	import	pyplot

colors	=	['#FF0000','#00FF00','#0000FF',

										'#FFFF00','#00FFFF','#FF00FF']

for	i,	cluster	in	enumerate(clusters):

		x,	y	=	zip(*cluster)

		color	=	colors[i	%	len(colors)]

		pyplot.scatter(x,	y,	c=color,	marker='o')

x,	y	=	zip(*centers)

pyplot.scatter(x,	y,	s=40,	c='black',	marker='o')

pyplot.show()

Figure	23.5.	 Example	output	from	the	k-means	clustering	method,	for	both	sparse
and	dense	data.	By	using	an	iterative	algorithm,	the	k-means	clustering	method	partitions
data	points	into	a	specified	number	of	clusters	(k).	The	cluster	centres	are	initially	chosen
at	random,	and	the	membership	of	each	data	point	is	determined	by	its	closest	cluster
centre.	Subsequent	cluster	centres	are	defined	as	the	geometric	mean	of	the	cluster
members.	The	cluster	assignment	and	centre	recalculation	steps	are	repeated	until
convergence.	Because	membership	is	based	on	distance	to	the	cluster	centres,	the
boundaries	between	clusters	will	be	straight	lines	representing	the	points	of	equal	distance
between	two	centres.

Improving	k-means
The	k-means	 algorithm	can	be	 improved	by	having	a	better	guess	 at	 the	 starting	 cluster
centres.	 The	 idea	 is	 that	 by	 choosing	 cluster	 centres	 that	 are	 spaced	 further	 apart	 the
optimisation	 converges	 more	 quickly	 and	 is	 less	 likely	 to	 get	 stuck	 in	 sub-optimal
positions,	which	 are	 often	 characterised	 by	 two	 centres	 being	 close	 and	 dividing	 a	 real
cluster	at	 the	expense	of	a	globally	better	 solution.	One	method	 that	uses	better	 starting
positions	is	called	k-means++,	which	works	by	choosing	centres	on	a	probabilistic	basis,
where	 the	 chance	of	 a	point	becoming	an	 initial	 centre	 increases	with	 the	 square	of	 the
distance	 to	 the	 other	 centres	 specified	 so	 far.	 However,	 here	 we	 will	 consider	 another,
slightly	more	directed	approach	with	a	similar	aim.

For	 the	kMeansSpread	 function	we	guess	one	cluster	 centre	by	 taking	a	 random	data
point	 and	 then	 choose	 the	 centres	 of	 subsequent	 clusters	 by	 selecting	 points	 that	 are
furthest	away	from	those	defined	so	far.	Each	cluster	centre	is	chosen	by	creating	an	index,
which	 is	placed	 in	 the	set	 indices,	which	 is	used	at	 the	end	 to	select	corresponding	data
items	and	thus	create	an	array	of	centres.	The	index	for	the	first	cluster	is	a	random	integer
between	zero	(the	first	data	item)	and	n-1	(the	last	data	item),	selected	using	the	standard

random	number	Python	module:	random.randint(0,	n-1).5	The	remaining	indices	are	added
in	a	while	loop,	until	a	total	of	k	is	achieved,	by	choosing	subsequent	points	which	have
minimum	radial	influence	from	the	centres	already	chosen.

from	numpy	import	zeros,	ones,	vstack

from	random	import	randint

def	kMeansSpread(data,	k):

		n	=	len(data)

		index	=	randint(0,	n-1)

		indices	=	set([index])

		influence	=	zeros(n)

		while	len(indices)	<	k:

				diff	=	data	-	data[index]

				sumSq	=	(diff	*	diff).sum(axis=1)	+	1.0

				influence	+=	1.0	/	sumSq

				index	=	influence.argmin()

				while	index	in	indices:

						index	=	randint(0,	n-1)

				indices.add(index)

		centers	=	vstack([data[i]	for	i	in	indices])

		return	kMeans(data,	k,	centers)

Key	to	this	approach	is	 the	 influence	array.	Initially	starting	with	zeros,	each	time	we
add	 an	 index	 for	 a	 new	 centre	 we	 calculate	 the	 difference	 from	 that	 cluster	 centre
(data[index])	 to	all	 the	data,	 thus	creating	diff.	Each	value	 in	 the	 influence	array	 is	 then
increased	by	one	over	sumSq:	the	sum	of	this	difference	squared.	Note	that	sumSq	has	1.0
added	to	each	element	to	avoid	dividing	by	zero,	i.e.	where	a	data	point	coincides	exactly
with	the	previous	centre.	Also,	we	do	an	element-wise	division	when	we	divide	the	simple
number	1.0	by	 the	whole	array	sumSq,	so	we	get	an	array	of	 reciprocals.	 In	effect	each
centre	has	a	diminishing	 radial	 influence	and	we	choose	 the	 index	where	 the	sum	of	all
these	influences	influence	is	minimised.	In	some	circumstances	an	index	can	actually	be
picked	twice,	but	we	guard	against	this	with	a	second	while	loop	which	checks	for	repeats
and	chooses	a	random	index	until	an	unused	one	is	found.	Once	k	indices	are	collected,	a
list	 of	data	 items,	 representing	 the	 cluster	 centres,	 is	 created	using	a	 list	 comprehension
and	 stacked	 into	 a	NumPy	 array	 (vstack	 operates	 on	 arrays	much	 like	 append	 does	 on
lists).	Overall	this	method	is	analogous	to	the	concept	of	repelling	charges.	In	the	end	the
‘repelled’	 centres	 are	 a	 fair	 starting	 point	 for	k-means,	which	 is	 called	 at	 the	 end	 so	 its
results	are	passed	back	directly	at	the	return.

The	 function	 is	 used,	 and	 can	 be	 tested,	 in	 the	 same	 way	 as	 kMeans().	 If	 speed	 of
execution	 becomes	 important	 then,	 aside	 from	 faster	 implementations	 (e.g.	 using	 a	 C-
language	extension,	as	described	in	Chapter	27),	further	improvements	can	sometimes	be
made	to	the	algorithmic	efficiency.	For	example,	if	the	dimensionality	of	the	data	items	is
not	 too	 large	 (e.g.	 three-dimensional)	 techniques	 like	 kD-trees6	 can	 be	 used	 to	 more

efficiently	 calculate	 the	 closest	 centre	 for	 each	 data	 item.	 Also,	 if	 the	 data	 set	 to	 be
clustered	is	large,	significant	time	savings	can	be	made	by	initially	running	the	algorithm
on	a	smaller,	 random	subset	of	 the	data.	The	cluster	centres	from	the	smaller	subset	can
then	be	used	as	good	starting	values	in	a	second	round	of	clustering	using	the	whole	data
set.	A	point	of	note	with	k-means	and	similar	methods	is	that	they	tend	to	only	work	well
where	the	clusters	are	of	about	the	same	size	and	density	and	are	convex	(blobs).

The	‘jump’	method
Next	we	will	consider	the	situation	where	you	do	not	know	in	advance	how	many	clusters
the	data	should	be	grouped	into,	but	do	not	wish	to	use	a	threshold-based	method.	We	will
consider	an	augmentation	on	top	of	the	k-means	method	to	try	various	numbers	of	clusters
and	 determine	 the	most	meaningful.	 The	 example	 function	 uses	what	we	will	 term	 the
‘jump’	method.7	 It	 will	 perform	 k-means	 clustering	with	 different	 values	 of	 k	 and	 then
assesses	which	of	the	steps	between	increasing	values	of	k	represents	the	best	compromise
between	the	number	of	clusters	and	complexity	of	the	solution.

For	 a	 given	 trial	 value	 of	 k,	 the	 result	 of	 a	 trial	 clustering	 attempt	 involves	 the
calculation	of	what	we	term	the	‘distortion’,	which	in	essence	is	a	measure	of	the	average
spread,	from	the	cluster	centres,	of	data	points	over	all	the	clusters.	This	spread	is	adjusted
for	the	covariance8	in	the	data,	which	indicates	how	much	variation	there	is	in	the	values
for	the	various	axes,	such	that	the	relative	scale	of	the	different	features	does	not	matter.

The	 jumpMethodCluster	 function	 is	 constructed	 to	 take	 a	 set	 of	 data,	 as	 an	 array	 of
arrays,	 an	 optional	 range	 of	 k	 values	 (numbers	 of	 clusters)	 to	 test	 and	 cycles,	 which
determines	 how	many	 times	 to	 repeat	 the	 clustering.	 This	 cyclic	 repetition	 is	 important
because	 different	 clustering	 attempts,	 involving	 random	 numbers,	 may	 give	 variable
results.

from	numpy	import	cov,	linalg

def	jumpMethodCluster(data,	kRange=None,	cycles=10):

Firstly,	we	extract	the	length	of	the	data	and	the	number	of	dimensions	(features).	This
is	simply	the	size	(.shape	in	NumPy)	of	the	array.	Then	we	define	the	range	of	k	values	if
none	were	passed	in;	by	default	 the	range	is	between	two	and	the	number	of	data	items.
Note	that	the	range	is	specified	by	an	upper	limit,	which	will	not	be	included.

n,	dims	=	data.shape

if	kRange	is	None:

		start,	limit	=	(2,	n+1)

else:

		start,	limit	=	kRange

Next	 we	 define	 the	 power	 variable,	 which	 will	 be	 used	 to	 adjust	 the	 calculated
distortion	 values	 according	 to	 the	 number	 of	 dimensions	 in	 the	 data	 (see	 the	 primary
reference	for	an	explanation	of	this).	The	distortions	are	collected	in	a	dictionary,	keyed	by
k	values,	so	this	is	initially	defined	as	blank.	The	invCovMat	is	a	matrix	representing	the
covariance	in	the	dimensions	of	the	input	data.	Here	we	can	make	use	of	NumPy’s	cov	and

linalg.pinv	functions	to	estimate	the	covariance	and	then	invert	the	matrix.9

power	=	dims/2.0

distortions	=	{}

invCovMat	=	linalg.pinv(cov(data.T))

Then	a	 loop	goes	 through	all	 of	 the	values	of	k	which	 are	 to	 be	 tested.	For	 each	we
define	 an	 array,	 initially	 at	 zero,	 of	 average	distortions	 (scaled	distances).	We	will	 have
one	value	for	each	cycle,	with	the	aim	being	to	find	the	cycle	with	the	best	clustering	and
hence	minimum	distortion.

for	k	in	range(start,	limit):

		meanDists	=	zeros(cycles)

The	 next	 for	 loop	 exists	 to	 provide	 several	 clustering	 attempts,	 to	 guard	 against
clustering	where	k-means	gets	stuck	in	a	stable	but	sub-optimal	situation.	For	each	attempt
we	define	a	 sum	of	distortions	sumDist,	 and	use	 the	kMeansSpread	 function	 to	 actually
generate	the	clusters	for	this	cycle	and	value	of	k.

for	c	in	range(cycles):

		sumDist	=	0.0

		centers,	clusters	=	kMeansSpread(data,	k)

With	the	clustering	attempt	made	the	results	are	analysed.	We	go	through	each	cluster
in	 turn	 and	 calculate	 diffs,	 the	 difference	 between	 the	 data	 items	 in	 the	 cluster	 and	 the
cluster	centres	that	the	k-means	algorithm	gave.

for	i,	cluster	in	enumerate(clusters):

		size	=	len(cluster)

		diffs	=	array(cluster)	-	centers[i]

The	 differences	 are	 used	 to	 calculate	 the	 average	 distortion.	 At	 a	 basic	 level	 this
requires	that	the	diff	arrays	are	squared	using	a	dot	product	(dot(diff.T,	diff)),	but	we	also
apply	the	inverse	covariance	matrix	to	scale	the	values	according	to	the	spread	of	data	in
the	 dimensions	 (i.e.	 treat	 each	 data	 feature	 equivocally).	 The	 distortion,	 which	 can	 be
thought	of	as	a	measure	of	distance,	 is	 then	divided	by	 the	size	of	 the	cluster,	 to	get	an
average	for	the	items	in	the	cluster,	and	added	to	the	total.

for	j,	diff	in	enumerate(diffs):

		dist	=	dot(diff.T,	dot(diff,	invCovMat))

		sumDist	+=	dist	/	size

The	final	summation	of	average	distortions	in	the	cycle	is	then	averaged	again,	over	the
number	of	 clusters	 and	dimensions,	 so	 that	we	get	 the	 average	 for	 the	whole	 clustering
solution.

meanDists[c]	=	sumDist	/	(dims	*	k)

Finally,	after	all	trial	cycles	are	done	the	minimum	value	of	the	averaged	distortions	is
selected:	the	trial	that	gave	the	best	clustering.	This	value	is	adjusted	by	being	raised	to	the
negative	power	-power,	which	scales	the	result	according	to	how	the	distortion	is	expected
to	vary	according	to	the	number	of	data	dimensions	(see	reference	above).

distortions[k]	=	min(meanDists)	**	(-power)

With	 the	 distortions	 calculated,	 it	 only	 remains	 to	 go	 through	 the	 values	 to	 find	 the
value	of	k	(cluster	size)	that	corresponds	to	the	biggest	improvement.	The	largest	jump	in
the	distortion	value	will	occur	when	we	reach	the	optimum	value	of	k,	 the	one	 that	give
the	most	notable	 improvement	 in	 the	 relative	 separation	between	 the	data	 items	and	 the
cluster	centres.

maxJump	=	None

bestK	=	None

for	k	in	range(start+1,	limit):

		jump	=	distortions[k]	-	distortions[k-1]

		if	(maxJump	is	None)	or	(jump	>	maxJump):

				maxJump	=	jump

				bestK	=	k

return	bestK

To	visualise	how	the	jump	method	works,	imagine	three	real	clusters,	as	illustrated	in
Figure	23.6.	There	will	be	some	large	spreads	from	the	cluster	centres	if	we	try	to	use	only
two	clusters.	Using	four	clusters	will	tend	to	split	a	real	cluster,	leading	to	only	a	modest
reduction	 in	 the	 spread.	 Scaled	 properly,	 according	 to	 the	 effect	 of	 dimensionality,	 the
spread	measure	(distortion)	can	be	used	to	suggest	the	value	of	k.

Figure	23.6.	 Finding	the	optimum	number	of	clusters	for	the	k-means	method.	For	a
given	data	set,	the	k-means	clustering	method	can	be	applied	to	partition	the	data	into
different	numbers	of	clusters.	If	the	number	of	clusters	(k)	is	not	known	different	numbers
can	be	tried	so	that	an	optimum	can	be	found.	A	simple	way	to	evaluate	the	optimum
number	of	clusters	is	to	measure	the	relative	improvement	of	the	separations	of	the	data
points	from	their	nearest	cluster	centre.	Having	more	clusters	will	always	give	smaller
separations	but	there	will	be	the	most	significant	change	near	the	optimum	number.	For
the	illustrated	example,	going	from	two	to	three	clusters	has	a	bigger	jump	in	minimising
separations	than	going	from	three	to	four	clusters.	Using	four	clusters	only	improves
separations	to	the	centres	mildly.

We	 can	 test	 the	 jump	method	on	 a	 simple	 normal	 data	 set	 as	 before.	The	underlying
clusters	are	stacked	and	shuffled	randomly	and	passed	in	to	the	function.

data	=	[random.normal((0.0,	0.0),	spread,	sizeDims),

								random.normal((1.0,	1.0),	spread,	sizeDims),

								random.normal((1.0,	0.0),	spread,	sizeDims)]

data	=	vstack(data)

random.shuffle(data)

k	=	jumpMethodCluster(data,	(2,	10),	20)

print('Number	of	clusters:',	k)

Data	discrimination
Now	we	will	move	on	from	clustering	data	to	consider	data	discrimination,	i.e.	finding	the
view	 (projection)	 of	 the	 data	 that	 gives	 the	 best	 separation.	 We	 will	 consider	 two
examples.	The	 first	 is	principal	component	analysis	 (PCA),	which	 can	 be	 used	 to	 show
trends	in	a	data	set	without	first	having	to	group	it	into	categories,	although	clustering	will
often	be	performed	after	PCA.	The	second	example	is	linear	discriminant	analysis	(LDA),
which	 operates	 on	 two	 categories	 of	 data	 and	 illustrates	 how	 rules	 can	 be	 set	 up	 to
discriminate	between	the	groups,	e.g.	to	perform	classification	on	unseen	data.

Principal	component	analysis
Principal	component	analysis	 (PCA)	 is	 a	 relatively	 simple	but	widely	used	 technique	 to
extract	the	innate	trends	within	data.	The	principal	components	of	data	are	the	vectors	(in
the	same	feature	space	of	the	data)	that	give	the	best	separation	of	the	data	items	in	terms
of	 their	 covariances.	 Mathematically,	 PCA	 gives	 the	 eigenvectors	 of	 the	 covariance
matrix.	 Taking	 the	 eigenvalues	 of	 these	 in	 size	 order	we	 can	 find	 the	most	 significant,
principal	 components	 that	 account	 for	 most	 of	 the	 variance	 in	 the	 data.	 Taking	 fewer
principal	components	than	the	number	of	dimensions	present	in	the	input	data	set	allows
for	 a	 lower-dimensionality	 representation	 of	 the	 data	 (by	 projecting	 it	 onto	 these
directions)	that	still	contains	the	important	correlations.

When	we	calculate	the	principal	components	of	a	data	set	we	obtain	vectors,	directions
in	 the	 data,	which	 are	 orthogonal	 (perpendicular)	 to	 one	 another.	Thus	 each	 component
vector	represents	an	independent	axis	and	there	can	be	as	many	components	as	there	are
data	dimensions.	As	some	axes	are	more	significant	 than	others,	 for	separating	 the	data,
those	 are	 the	 ones	 we	 are	 usually	 interested	 in.	 We	 can	 also	 consider	 the	 principal
component	vectors	as	a	 transformation,	which	we	can	apply	 to	our	data:	 to	orient	 it	and
stretch	it	along	these	orthogonal	axes.

Principal	component	analysis	does	have	 limitations,	which	 the	programmer	should	be
aware	of,	but	it	is	quick	and	easy,	so	often	worth	a	try.	A	classic	example	where	PCA	fails
is	 for	 ‘checkerboard’	data,	 i.e.	 alternating	 squares	of	 two	categories,	where	 there	 are	no
simple	axes	in	data	that	separate	the	categories.	In	such	instances	more	sophisticated,	non-
linear	techniques,	such	as	support	vector	machines	(see	Chapter	24),	may	be	used.

In	 the	 Python	 example	 for	 PCA	 we	 first	 make	 the	 NumPy	 imports	 and	 define	 the
function	which	takes	data	(as	an	array	of	arrays)	and	the	number	of	principal	components
we	wish	to	extract.

from	numpy	import	cov,	linalg,	sqrt,	zeros,	ones,	diag

def	principalComponentAnalysis(data,	n=2):

First	we	get	the	size	of	the	data,	in	terms	of	the	number	of	data	items	(samples)	and	the
number	of	dimensions	(features).

samples,	features	=	data.shape

We	calculate	 the	 average	data	 item	 (effectively	 the	 centre	of	 the	data)	 by	 finding	 the
mean	along	 the	primary	data	axis.	We	then	centre	 the	 input	data	on	zero	(on	 the	feature
axes)	by	taking	away	this	average.	Note	that	we	then	transpose	the	data	with	.T,	turning	it
sideways,	so	we	can	calculate	the	covariance	in	its	dimensions.

meanVec	=	data.mean(axis=0)

dataC	=	(data	-	meanVec).T

The	 covariance	 is	 estimated	 using	 the	 cov()	 function	 and	 the	 eigenvalues	 and
eigenvectors	are	extracted	with	the	linalg.eig()	function.	Here	the	inbuilt	NumPy	functions
for	dealing	with	arrays	and	linear	algebra	really	show	their	value.

covar	=	cov(dataC)

evals,	evecs	=	linalg.eig(covar)

The	 resulting	eigenvalues,	which	 represent	 the	 scaling	 factors	along	 the	eigenvectors,
are	sorted	by	size.	Here	we	use	the	.argsort()	function,	which	gives	the	indices	of	the	array
in	the	order	in	which	the	values	increase.	We	then	use	the	cunning	trick	[::-1]	for	reversing
NumPy	arrays.10	The	eigenvectors	are	then	reordered	by	using	these	indices,	to	put	them
in	order	of	decreasing	eigenvalue,	i.e.	most	significant	component	first.

indices	=	evals.argsort()[::-1]

evecs	=	evecs[:,indices]

We	can	then	take	the	top	eigenvectors	as	the	first	n	principal	components,	which	we	call
basis,	because	these	are	the	directions	that	we	can	use	to	map	our	data	to.	The	energy	 is
simply	a	measure	of	how	much	covariance	our	top	eigenvalues	explain,	which	is	useful	for
detecting	whether	more	principal	components	should	be	considered.

basis	=	evecs[:,:n]

energy	=	evals[:n].sum()

#	norm	wrt	to	variance

#sd	=	sqrt(diag(covar))

#zscores	=	dataC.T	/	sd

return	basis,	energy

Extracting	a	principal	component
As	the	calculation	of	all	of	the	principal	components	of	a	data	set	is	often	not	required,	e.g.
we	 may	 be	 only	 interested	 in	 the	 first	 two	 principal	 components,	 the	 next	 example
function	 can	 more	 efficiently	 extract	 the	 principal	 components	 one	 at	 a	 time	 (most

significant	 first)	without	 calculating	a	 full	 covariance	matrix.	Each	 time	a	 component	 is
extracted	 the	 data	 may	 be	 transformed,	 eliminating	 that	 component,	 so	 the	 next	 most
important	component	can	be	extracted.	This	is	an	iterative	method	that	converges	on	the
principal	component,	hence	we	pass	in	a	precision	value	to	state	how	long	we	iteratively
cycle	to	improve	the	convergence.

from	numpy	import	random,	dot,	array,	outer

def	extractPrincipalComponent(data,	precision=1e-9):

As	before,	we	extract	 the	number	of	samples	(data	 items)	and	features	from	the	input
data.	We	then	calculate	the	mean	(centre)	of	the	data	so	that	it	can	be	moved	to	the	zero
point.

samples,	features	=	data.shape

meanVec	=	data.mean(axis=0)

dataC	=	data	-	meanVec

The	initial	guess	at	the	principal	component	pc1	is	constructed	as	a	random	array,	with
the	same	length	as	the	number	of	features.	We	also	initialise	pc0,	which	will	be	the	value
from	the	previous	cycle,	so	that	we	can	check	for	convergence.	Initially	pc0	is	arbitrarily
set	to	be	different	to	pc1.

pc1	=	random.random(features)

pc0	=	pc1	-	1.0

The	main	optimisation	involves	a	while	loop	that	checks	the	two	subsequent	estimates
for	 the	 principal	 components.	 If	 their	 difference,	 summed	 up	 over	 all	 dimensions,	 is
sufficiently	close	(within	the	precision	value)	the	loop	will	stop.

while	abs((pc0-pc1).sum())	>	precision:

Inside	 the	 loop	 the	 principal	 component	 vector	 is	 improved	 upon	 for	 the	 next	 cycle.
This	involves	going	through	all	the	items	in	the	(centred)	data,	scaling	each	according	to
the	projection	onto	 the	guess	for	 the	principal	component	(with	dot	product)	and	adding
them	to	a	total	vector,	t.	When	normalised	(scaled	to	length	one)	this	total	vector	will	be
the	new	estimate	for	the	principal	component.	Here	the	dot	product	gives	the	coincidence
of	 the	 data	 vectors	with	 the	 current	 principal	 component	 estimate.	 The	 summation	will
give	 an	 average	 vector	 which	 is	 weighted	 according	 to	 the	 data	 items	 that	 have	 most
coincidence.	The	convergence	occurs	because	the	largest	correlation	in	the	data	will	have
a	 biased	 influence	 on	 the	 weights,	 increasing	 the	 size	 of	 t	 each	 cycle	 until	 there	 is
maximum	overlap	with	pc1.	At	 this	point	pc1	represents	a	 fundamental	axis	 in	 the	data,
along	which	most	convergence	occurs.

t	=	zeros(features)

for	datum	in	dataC:

		t	+=	dot(datum,	pc1)	*	datum

At	the	end	of	each	cycle	the	previous	principal	component	estimate	is	stored	as	pc0	and
the	new	estimate	is	found	by	scaling	the	t	vector	to	length	one.

pc0	=	pc1

pc1	=	t	/	sqrt(dot(t,t))

Once	 there	 is	 little	 improvement	 in	 the	 principal	 component	 the	 cycles	 stop	 and	 the
estimate	is	returned.

return	pc1

We	will	test	both	the	full	and	quick	PCA	functions	with	the	same	data	set.	This	will	be	a
random	 data	 set	 of	 100	 points	 in	 two	 dimensions,	 which	 is	 transformed	 by	 a	 shearing
matrix,	in	order	to	produce	a	visible	correlation	in	the	data.	Naturally	we	are	not	limited	to
only	two-dimensional	data,	but	this	is	easier	to	illustrate	here.

testData	=	random.normal(0.0,	2.0,	(100,2))

shear	=	array([[2,1],[1,0]])

testData	=	dot(testData,	shear)

The	PCA	is	performed	by	the	two	functions	and	the	results	are	compared.

pc1	=	extractPrincipalComponent(testData)

print('Quick	PC1:',	pc1)

basis,	energy	=	principalComponentAnalysis(testData,	n=2)

print('Full	PCA:',	basis,	energy)

The	 test	data	 can	be	plotted	 in	 the	usual	way	and	we	can	visualise	 the	 first	principal
component	(pc1)	by	drawing	a	 line	along	its	direction.	We	make	a	 line	from	pc1,	which
we	can	plot,	by	scaling	the	vector	(by	a	factor	of	ten	to	make	it	visible)	either	side	of	the
centre.

from	matplotlib	import	pyplot

x,y	=	zip(*testData)

pyplot.scatter(x,	y,	s=20,	c='#F0F0F0',	marker='o')

x,y	=	zip(-10*pc1,	10*pc1)

pyplot.plot(x,	y)

To	illustrate	that	the	basis	matrix	transforms	the	data	in	the	right	way	we	can	apply	it	to
the	test	data,	so	that	the	principal	component	axes	are	aligned	with	the	axes	of	our	graph.

transformed	=	dot(testData,	basis)

x,y	=	zip(*transformed)

pyplot.scatter(x,	y,	s=10,	c='#000000',	marker='^')

pyplot.show()

Linear	discriminant	analysis
While	PCA	finds	the	directions	of	maximum	variance	within	a	data	set,	LDA	attempts	 to
determine	 the	 line	 of	 separation	 between	 different	 data	 sets.	 What	 we	 show	 here	 is
sometimes	referred	to	as	Fisher’s	linear	discriminant.11	This	particular	approach	assumes

a	normal	distribution	within	the	data.

The	basic	idea	is	that	we	wish	to	determine	a	discrimination	matrix	that	represents	how
to	 transform	 the	 data	 sets	 into	 an	 orientation	 that	 best	 separates	 them.	 This	 can	 be
imagined	as	rotating	the	data	sets	so	that	they	maximally	align	with	an	axis	of	separation,
equivalent	to	a	line	between	the	two	sets.	If	the	data	sets	had	the	same	scatter	(variance)
then	this	line	is	simply	the	line	between	the	averages	(means)	of	the	two	data	sets.

Figure	23.7.	 Principal	component	analysis	of	2D	data	and	its	projection	onto	a
principal	axis.	As	illustrated	for	a	two-dimensional	example,	the	first	principal
component	(PC	1)	is	the	single	linear	combination	of	features	(i.e.	a	direction	relative	to
the	axes)	that	explains	most	of	the	variance	in	the	data.	Subsequent	principal	components
represent	orthogonal	directions	(i.e.	at	right	angles	to	the	other	components)	that	maximise
the	remaining	variance	not	covered	by	earlier	principal	components;	though,	for	this	two-
dimensional	example	PC	2	is	determined	by	PC	1,	since	it	is	the	only	possibility.
Projecting	a	data	set	onto	its	most	important	principal	component	axes	allows	for	the
dimensionality	of	the	data	set	to	be	reduced,	while	still	preserving	as	much	linear
correlation	as	possible.	This	can	be	useful	for	visualisation	and	to	reduce	the	complexity
of	high-dimensionality	data	sets.

The	LDA	optimisation	 is	 achieved	by	 finding	 the	matrix	 (and	hence	orientation)	 that
maximises	the	separation	(scatter)	between	the	data	sets,	relative	to	the	separation	within
each	 data	 set.	 The	 scatter	 within	 is	 simply	 the	 weighted	 covariances	 of	 the	 data	 sets
separately,	and	 the	scatter	between	 is	 the	difference	between	 their	means.	 In	essence	we

scale	 the	 line	between	 the	 two	means	of	 the	data	 sets	 by	 the	 combined	 size	of	 the	data
scatter	for	each	dimension.	The	resultant	matrix	can	be	used	to	transform	the	data	into	a
new	orientation	for	easy	discrimination.

Firstly	 a	 Python	 function	 is	 defined	 which	 takes	 two	 data	 sets.	 These	 could	 be	 the
results	of	a	clustering	operation	or	a	previously	known	classification.

def	twoClassLda(dataA,	dataB):

Firstly,	we	 find	 the	 averages	 (centres)	 of	 the	 data	 sets,	 by	 summing	 along	 the	major
axes,	i.e.	adding	the	vectors	together	and	dividing	by	the	total	number.

meanA	=	dataA.mean(axis=0)

meanB	=	dataB.mean(axis=0)

Then	 the	 cov()	 function	 is	 used	 to	 calculated	 the	 covariance	matrix	 for	 each	data	 set
(the	size	of	the	correlation	between	the	data	dimensions).

covA	=	cov(dataA.T)

covB	=	cov(dataB.T)

Then	the	number	of	points	in	each	data	set,	less	one,	is	calculated	for	the	data	sets.	The
subtraction	 is	 present	 effectively	 because	 having	 only	 one	 data	 point	 does	 not	 give	 a
scatter,	so	we	use	the	number	of	points	above	this	first	one.

nA	=	len(dataA)-1.0

nB	=	len(dataB)-1.0

The	 scatter	 within	 each	 category	 is	 simply	 defined	 as	 the	 sum	 of	 the	 covariance
matrices,	weighted	according	to	the	size	of	the	data	sets.	The	scatter	between	categories	is
simply	 the	 separation	 between	 the	 data	 sets,	 i.e.	 the	 difference	 from	 one	 data	 centre	 to
another.

scatterWithin	=	nA	*	covA	+	nB	*	covB

scatterBetween	=	meanA	-	meanB

The	 discrimination	 matrix	 between	 data	 sets	 is	 the	 line	 between	 centres
(scatterBetween)	divided	by	the	scatter	within	the	data	(multiplied	by	inverse	matrix)	for
each	dimension.

discrim	=	dot(linalg.inv(scatterWithin),scatterBetween)

The	data	sets	are	 transformed	using	 the	discrimination	matrix,	 reorienting	 them	along
the	line	of	best	separation.	These	are	passed	back	at	the	end	for	inspection.

transfA	=	dot(dataA,	discrim.T)

transfB	=	dot(dataB,	discrim.T)

The	best	guess	for	 the	dividing	point	 that	separates	 the	data	sets	 is	 the	average	of	 the
two	data	centres	reshaped	(transformed)	to	lie	along	the	discriminating	direction.

divide	=	dot(discrim,(meanA+meanB))/2.0

return	transfA,	transfB,	divide

Here	we	 test	 the	LDA	function	with	 two	normally	distributed,	 random	data	 sets.	One
has	a	small	spread	and	 is	moved	 to	 the	side	(by	adding	array([-10.0,5.0]))	and	 the	other
has	a	wider	spread.	The	two	sets	should	overlap	(intermingle).

testData1	=	random.normal(0.0,	2.0,	(100,2))	+	array([-10.0,5.0])

testData2	=	random.normal(0.0,	6.0,	(100,2))

The	test	sets	can	be	visualised	with	matplotlib	in	the	usual	way:

from	matplotlib	import	pyplot

x,	y	=	zip(*testData1)

pyplot.scatter(x,	y,	s=25,	c='#404040',	marker='o')

x,	y	=	zip(*testData2)

pyplot.scatter(x,	y,	s=25,	c='#FFFFFF',	marker='^')

pyplot.show()

Running	 the	 function	 on	 these	 data	 sets	 we	 get	 two	 arrays	 proj1,	 proj2	 containing
transformed	 data	 and	 a	 dividing	 value,	 div.	 These	 arrays	 are	 one-dimensional	 and
represent	the	projection	of	our	two	data	sets	onto	the	discrimination	line.	We	can	plot	them
as	points	along	a	line,	which	here	we	separate	for	clarity	with	y-values	at	0.5	and	-0.5.	The
dividing	value	div	can	be	used	to	draw	a	line	to	show	where	the	LDA	has	estimated	the
best	boundary	between	categories	(assuming	a	symmetric,	normal	distribution).

proj1,	proj2,	div	=	twoClassLda(testData1,	testData2)

print(div)

x	=	proj1

y	=	[0.5]	*	len(x)

pyplot.scatter(x,	y,	s=35,	c='#404040',	marker='o')

x	=	proj2

y	=	[-0.5]	*	len(x)

pyplot.scatter(x,	y,	s=35,	c='#FFFFFF',	marker='^')

pyplot.plot((div,	div),	(1.0,	-1.0))

pyplot.show()

Figure	23.8.	 Results	from	linear	discriminant	analysis	of	2D	data	to	separate	two
data	classes.	Linear	discriminant	analysis	is	a	method	to	find	the	linear	combination	of
features,	and	hence	projection,	that	best	separates	different	data	classes.	Here	the
separation	is	measured	as	the	ratio	of	the	separation	between	class	means	to	the	combined
covariance.	This	separation	is	maximised	by	a	line	that	goes	through	the	sample	means	of
the	two	data	classes,	and	a	class	discriminating	point	on	this	line	(technically	a	hyperplane
in	the	original	dimensions)	can	be	estimated	from	the	average	of	the	two	class	means.
1 	Ester,	M.,	Kriegel,	H.-P.,	Sander,	J.,	and	Xu,	X.	(1996).	A	density-based	algorithm	for
discovering	 clusters	 in	 large	 spatial	 databases	 with	 noise.	 In	 E.	 Simoudis,	 J.	 Han,	 and
U.M.	Fayyad	(eds.),	Proceedings	of	 the	Second	 International	Conference	on	Knowledge
Discovery	and	Data	Mining	(KDD-96).	AAAI	Press.	pp.	226–231.
2 	Ankerst,	M.,	Breunig,	M.M.,	Kriegel,	H.-P.,	and	Sander,	J.	 (1999).	OPTICS:	ordering
points	 to	 identify	 the	 clustering	 structure.	ACM	 SIGMOD	 International	 Conference	 on
Management	of	Data.	ACM	Press.	pp.	49–60.
3 	It	will	be	a	Voronoi	diagram.
4 	There	is	no	point	taking	the	square	root	given	that	we	only	want	to	find	the	closest.
5 	 Note	 that	 unlike	 the	 range(a,	 b)	 function	 the	 randint(a,	 b)	 nomenclature	 will	 give
numbers	including	b.
6 	A	completely	different	k	to	the	one	used	in	these	clustering	algorithms.

7 	Sugar,	C.A.,	and	James,	G.M.	(2003).	Finding	the	number	of	clusters	in	a	data	set:	an
information	theoretic	approach.	Journal	of	the	American	Statistical	Association	98:	750–
763.
8 	 Covariance	 is	 discussed	 more	 fully	 in	 Chapter	 22.	 Here	 the	 covariance	 matrix	 has
elements	 that	 show	 the	 covariance,	 and	 hence	 scaled	 correlation,	 between	 the	 different
dimensions	or	features	of	a	data	set.
9 	See	Chapter	9	for	details	about	such	matrix	manipulations.
10 	See	Chapter	10.
11 	Fisher,	R.A.	(1936).	The	use	of	multiple	measurements	in	taxonomic	problems.	Annals
of	Eugenics	7(2):	179–188.

24 	Machine	learning
Contents

A	guide	to	machine	learning

Supervised	machine	learning

Unsupervised	machine	learning

Machine	learning	algorithms

Feature	space

k-nearest	neighbours

Distance	between	feature	vectors

k-nearest	neighbours	in	Python

Self-organising	maps

A	Kohonen	map	in	Python

Feed-forward	artificial	neural	networks

Training	a	neural	network	by	back	propagation

A	Python	neural	network

A	neural	network	for	biological	sequences

Support	vector	machines

A	Python	support	vector	machine

Support	vector	machine	predictions

A	guide	to	machine	learning
When	using	computers	to	solve	scientific	problems	there	can	be	situations	where	you	have
some	measured	 data	 and	 a	 related	 property	 of	 the	 data,	 but	 there	 is	 no	 known	 or	 fixed
formula	to	link	the	two.	Sometimes	the	link	between	the	two	sets	of	data	may	be	easy	for	a
human	to	see,	but	otherwise	difficult	to	encode	in	a	computer	algorithm.	A	simple	example
of	this	would	be	in	the	reading	of	handwriting;	humans	do	not	write	in	a	fixed	typeface,
every	letter	of	a	given	kind	will	be	written	slightly	differently,	and	yet	we	can	read	most
other	people’s	handwriting	without	much	effort.	When	we	look	at	writing	we	attempt	 to
recognise	the	letters	and	words,	and	where	there	is	ambiguity	we	can	use	our	intelligence
to	infer	what	was	intended	by	using	the	context	of	what	the	writing	means,	or	any	other
clues	that	we	can	glean.	Writing	a	computer	program	to	read	handwriting	is	difficult,	and
not	nearly	as	reliable	as	a	person	would	be.	Nevertheless	it	can	be	done,	and	is	put	to	good

use	in	the	mechanised	sorting	of	mail	by	postal	(zip)	code.	The	common	trick	to	getting	a
computer	to	perform	tasks	like	this	is	not	to	program	it	with	a	designed	and	elaborate	rule,
but	rather	to	bestow	a	computer	program	with	a	degree	of	artificial	intelligence	so	that	it
can	come	up	with	its	own	rules	and	learn.	The	exercise	whereby	a	program	comes	up	with
its	 own	 rules	 to	 solve	 a	 problem	 is	 often	 referred	 to	 as	machine	 learning.	 It	 should	 be
noted,	 however,	 that	 we	 usually	 don’t	 expect	 a	 computer	 to	 learn	 a	 task	 perfectly;	 if
perfection	were	possible	we	generally	wouldn’t	have	to	resort	to	such	means.	Instead	it	is
best	 to	 think	 of	 machine	 learning	 algorithms	 as	 making	 predictions,	 and	 as	 such	 the
predictive	power	should	be	tested	before	we	make	reliance	upon	it.	There	are	two	kinds	of
machine	 learning	which	are	commonly	discussed,	supervised	 learning	 and	unsupervised
learning,	and	we	will	give	examples	of	both	in	this	chapter.

Supervised	machine	learning
The	supervised	kind	of	machine	 learning	 involves	having	a	computer	algorithm	 that	we
can	train	on	some	known	data.	Here	you	would	have	some	input	data	and	knowledge	of
what	each	piece	of	data	corresponds	 to.	Using	 the	postal	code	handwriting	example,	 the
input	data	might	be	examples	of	handwritten	marks	and	the	output	would	be	knowledge	of
which	of	the	10	numerals	or	26	letters	of	the	alphabet	were	written.	To	take	a	biological
example	 you	may	 have	 a	 set	 of	DNA	 or	 protein	 sequences	 and	 associate	 each	with	 an
experimentally	 determined	 category.	 Initially,	 during	 the	 training	 stage,	 our	 special
computer	 algorithm	 learns	 to	 associate	 each	 input	 with	 the	 correct,	 known,	 output	 by
adapting:	essentially	changing	some	internal	parameters	so	that	if	you	present	an	input	to
the	 algorithm	 it	 gives	 an	 output	 that	 is	 as	 close	 to	 the	 known	 result	 as	 possible.	 The
objective	 is	usually	 to	have	a	single	set	of	parameters	 that	performs	the	 job	in	a	general
way,	adapting	to	all	of	the	data	to	learn	the	overall	properties	of	the	problem,	rather	than
optimising	 performance	 for	 some	 data	 at	 the	 expense	 of	 others.	 In	 this	 way,	 after	 the
training	stage	the	parameters	of	the	algorithm	are	fixed	and	the	algorithm	may	be	applied
to	 input	data	 it	has	not	seen	before	and	come	up	with	an	output	prediction:	a	prediction
made	following	the	rules	learned	during	the	training	phase.

Broadly	 speaking	 you	will	 encounter	 supervised	machine	 learning	 being	 used	 in	 two
major	ways:	to	generate	discrete	alternative	outputs,	for	example	to	perform	classification
as	with	the	reading	of	handwritten	letters	and	numbers;	and	also	to	predict	the	value	of	a
continuous	variable,	which	 is	often	referred	 to	as	 functional	approximation.	Predicting	a
continuous	variable	would	occur	when	you	 are	 predicting	 something	on	 a	 sliding	 scale,
like	temperature,	energy	etc.	It	is	perhaps	fortunate	that	we	can	often	use	the	same	basic
kinds	 of	 computational	 algorithm,	 albeit	with	 a	 degree	 of	modification,	whether	we	 are
predicting	a	discrete	classification	or	a	continuous	variable.	In	the	case	of	artificial	neural
network	methods,	 which	 we	 introduce	 below,	 the	 distinction	 between	 the	 two	 types	 of
situation	can	be	as	simple	as	restricting	values	to	0.0	or	1.0	if	the	problem	is	of	the	discrete
kind.

Figure	24.1.	 A	simple	schematic	illustrating	the	application	of	machine	learning	to
the	classification	problem	of	text	character	recognition.	A	training	data	set	consists	of
many	known	examples	for	each	type	of	letter,	represented	as	a	grid	of	image	pixels	with
different	intensities.	Using	the	training	data,	generalised	pattern	classes	representing	the
different	characters	are	constructed.	This	is	often	achieved	by	the	calculation	of	decision
boundaries	between	the	different	possibilities.	The	identity	of	query	characters	is	predicted
by	finding	the	best-matching	category	pattern.	This	prediction	is	often	quick	because	the
match	is	performed	on	the	generalised	class	features,	rather	than	comparing	to	all	the
training	data.

Unsupervised	machine	learning
Unsupervised	learning	is	where	we	have	an	algorithm	that	 isn’t	shown	a	known	data	set
for	 training.	 Instead	 the	 algorithm	 proceeds	 and	 optimises	 of	 its	 own	 accord	 without
influence	 from	 a	 human-imposed	 set	 of	 standards.	 Usually	 the	 objective	 is	 for	 the
algorithm	to	organise	or	arrange	some	input	data	according	to	relatively	simple	rules,	but
where	there	is	nevertheless	no	straightforward	answer.	Where	the	data	has	been	arranged
so	 that	 similar	 inputs	 have	 been	 placed	 near	 to	 one	 another	 the	 end	 result	 can	 be	 a
classification.	Unsupervised	methods	are	often	used	as	a	means	of	dimensional	reduction,
where	 the	 input	 data	 has	 many	 independent	 qualities	 (dimensions)	 but	 you	 wish	 to
represent	the	data	in	only	a	few	dimensions,	say	as	a	two-dimensional	map.	A	biological
example	 might	 be	 if	 you	 have	 some	 medical	 data	 where	 you	 have	 an	 abundance	 of
different	test	measurements	(lots	of	dimensions)	but	wish	to	categorise	patients	into	a	few
discrete	groups,	each	of	which	will	have	a	different	treatment	regime;	patients	within	each
group	will	have	similar	test	results,	even	though	the	results	are	multi-factorial	and	it	is	not
easy	for	a	human	to	derive	the	groupings.

Machine	learning	algorithms
There	 are	 some	 properties	 of	machine	 learning	 algorithms	 that	make	 them	 attractive	 to
use,	 even	when	 there	 are	 alternative	 approaches	 that	 could	be	used	 to	 achieve	 the	 same
task.	Firstly,	you	don’t	have	to	think	about	the	precise	details	of	what	is	going	on.	As	long
as	you	can	train	a	program	to	do	a	good	job,	then	that	may	be	enough;	although	in	some
cases	 people	 will	 be	 distressed	 at	 the	 lack	 of	 a	 proper	 ‘reason	 why’.	 Secondly,	 most
machine	learning	methods	are	indifferent	to	the	kind	of	data	that	is	being	input	or	output,
as	long	as	it	can	be	encoded	numerically;	all	sorts	of	disparate	kinds	of	input	data	may	be
combined	if	they	improve	the	prediction	being	made.	Thirdly,	machine	learning	methods
are	able	to	make	non-linear	and	contextual	decisions,	which	is	to	say	that	they	can	make
predictions	when	the	relationships	between	data	items	are	not	straightforward,	including,

for	example,	when	two	sets	of	input	are	generally	very	similar	but	some	subtle	correlation
causes	a	completely	different	result.

In	this	chapter	we	will	cover	four	different	machine	learning	examples,	and	you	can	try
these	 for	your	own	computational	 problems	where	 appropriate.	For	 each,	we	describe	 a
simple	Python	 implementation	 (or	as	 simple	as	we	can	make	 it	while	 still	being	useful)
and	aim	to	point	out	the	advantages	and	disadvantages	of	each	method.	We	start	with	the
k-nearest	 neighbour	 algorithm,	 which	 is	 perhaps	 the	 simplest	 of	 all	 machine	 learning
algorithms	 and	 relatively	 easy	 to	 understand.	 Despite	 its	 simplicity,	 however,	 in	 some
situations	it	can	make	good	classifications	with	relatively	little	effort.	Also,	 it	 introduces
some	of	the	principles,	like	vector	input,	that	will	be	discussed	in	the	other	methods.	Next
we	will	 describe	 a	 self-organising	map	 as	 an	 example	 of	 an	 unsupervised	method,	 and
then	 go	 on	 to	 two	 supervised	 methods:	 a	 feed-forward	 artificial	 neural	 network	 and	 a
support	vector	machine.	Both	of	these	methods	can	be	used	in	a	large	number	of	different
situations	where	there	is	 training	data	available.	The	support	vector	machine	is	 the	more
recent	 invention	 and	 holds	 certain	 advantages	 over	 neural	 networks:	 it	 is	 generally
deterministic,	 giving	 the	 same	 result	 on	 the	 same	 training	 data,	 and	 it	 is	 much	 less
susceptible	to	over-training,	where	a	method	‘learns’	the	training	data	too	well	and	is	not
general	 enough	 to	make	 the	 best	 predictions	 on	 data	 not	 seen	 before.	 Nonetheless,	 we
include	the	feed-forward	neural	network	because	it	 is	easier	to	implement,	especially	for
multi-option	 classification,	 and	 often	 a	 good	 place	 to	 start	 in	 order	 to	 judge	 whether
machine	learning	is	an	effective	strategy	for	any	given	situation.

Feature	space
The	 k-nearest	 neighbour	 algorithm	 described	 below	 is	 a	 very	 simple	 yet	 surprisingly
powerful	 method	 to	 perform	 classification.	 The	 idea	 is	 that	 you	 describe	 the	 known,
classified	data	as	points,	with	coordinate	locations,	in	a	feature	space.	Just	like	real	three-
dimensional	space,	a	feature	space	is	defined	by	separate	axes	and	a	location	in	that	space
is	 defined	 by	 coordinates	 on	 each	 of	 the	 axes.	 A	 simple	 example	 of	 a	 feature	 space	 is
colour,	 which	 may	 be	 described1	 by	 red,	 green	 and	 blue	 axes.	 Any	 colour	 within	 and
including	the	extremes	of	black	(zero	red,	green	and	blue)	and	white	(maximum	red,	green
and	blue)	is	described	by	a	certain	amount	of	red,	green	and	blue,	in	other	words	positions
on	these	axes,	and	thus	a	colour	may	be	described	as	a	location	vector	(red,	green,	blue).
We	may	also	measure	the	distance	between	colour	vectors,	which	is	effectively	to	say	how
similar	the	colours	are.	Note	that	with	this	colour	example	we	don’t	have	the	same	kind	of
unbounded	continuum	that	we	have	 in	real	 three-dimensional	space:	 it	 is	meaningless	 to
have	a	negative	colour	value	and	we	don’t	let	the	values	exceed	the	maximum	intensity;
nothing	can	be	whiter	than	white.

When	dealing	with	feature	spaces	in	general	you	can	have	a	mixture	of	both	bounded
and	unbounded	axes,	and	as	many	numbers	of	‘dimensions’	as	is	required	to	describe	your
data,	 although	 it	 is	 often	 a	 good	 idea	 to	 normalise	 the	 numeric	 data	 so	 that	 it	 fits	 in	 a
limited	range	of	values	(typically	−1	to	+1).	A	good	example	of	high-dimensionality	data
occurs	in	the	use	of	biological	sequences.	For	example,	if	you	have	input	data	that	consists
of	DNA	 sequences	 that	 are	 five	 base	 pairs	 long,	 then	because	we	 can	have	 one	 of	 four
independent	nucleotide	residue	types	at	each	position	along	the	length	we	need	a	vector	of

length	20	(20	‘dimensions’)	to	describe	a	five-letter	sequence;	5	positions	times	4	residue
types.	 In	 this	 case	with	 axes	 for	G,	C,	A	and	T,	 the	 sequence	 ‘TATGA’	would	have	 the
vector	(0,	0,	0,	1,	0,	0,	1,	0,	0,	0,	0,	1,	1,	0,	0,	0,	0,	0,	1,	0),	where	each	sequential	group	of
four	numbers	corresponds	to	one	position	in	the	DNA	sequence.	Note	that	1	indicates	the
presence	 of	 a	 letter	 on	 its	 axis,	 and	 0	 the	 absence.	 If	 we	moved	 from	 describing	 pure
sequences	to	alignment	profiles	(i.e.	proportions	of	the	residue	type	at	each	position)	we
could	 have	 a	 sequence	with	 fractional	 values	 instead	 of	 the	 plain	 0	 or	 1.	You	might	 be
tempted	to	encode	DNA	sequences	with	a	numbered	system	where,	for	example,	A	=	0,	T
=	1,	C	=	2,	G	=	3,	so	the	above	example	would	be	(1,0,1,3,0).	However,	 this	would	not
work	because	 the	different	nucleotides	are	entirely	alternative	states	and	not	points	on	a
continuum	where	one	type	is	meaningfully	‘closer’	to	another.

k-nearest	neighbours
If	you	can	describe	your	data	as	position	vectors	in	a	feature	space,	and	have	a	good	way
of	 calculating	 the	 distance	 or	 similarity	 between	 points,	 then	 the	 k-nearest	 neighbour
method	can	be	used	to	classify	an	unknown	data	vector	by	comparing	it	to	data	vectors	for
which	there	is	a	known	classification.	In	essence	this	is	 like	taking	a	voting	poll.	For	an
unclassified	 query	 point	 you	 look	 for	 a	 given	 number,2	 k,	 of	 nearest	 neighbours	 in	 the
feature	space	that	you	have	a	classification	for.	You	then	assume	that	the	classification	of
the	 query	 is	 the	 same	 as	 the	 majority	 of	 its	 k	 neighbours.	 Implementing	 this	 method
successfully	 is	 dependent	 on	 having	 reasonable	 training	 data;	 you	must	 have	 sufficient
numbers	of	well-dispersed	vectors	of	known	classification	so	that	any	query	is	not	too	far
from	a	known	data	point,	and	one	class	of	data	should	not	be	significantly	more	abundant
than	 any	 other,	 otherwise	 the	more	 populous	 classification	will	 have	 a	 positive	 bias	 for
being	a	neighbour	to	the	query.	It	should	also	be	noted	that	this	method	can	be	fairly	slow,
given	 that	 you	 have	 to	 calculate	 distances	 to	 many	 classified	 points;	 however,	 if	 the
method	works	well	 you	 can	 optimise	 later,	 for	 example,	 by	 using	 constructions	 like	 k-
dimensional	trees3	to	find	nearest	neighbours	without	having	to	check	every	data	point.

Figure	24.2.	 An	overview	of	the	k-nearest	neighbour	method.	Data	items	are
represented	as	vector	locations	within	a	space	where	the	axes	correspond	to	different
features	of	the	data.	The	training	data	vectors	have	known	classifications	and	the
classification	of	a	query	point	is	predicted	from	its	k	(in	this	case	five)	nearest	neighbour
points.	A	poll	is	taken	of	the	categories	present	among	the	neighbour	points	and	the	most
common	category	is	the	prediction	for	the	query	point.

Distance	between	feature	vectors
Firstly,	before	introducing	the	main	kNearestNeighbour	function	we	will	consider	a	small
function	that	will	be	used	to	measure	the	distance	between	two	points	of	data.	Effectively
this	is	to	say	how	similar	two	pieces	of	input	data	are;	the	smaller	the	distance	between	the
feature	measurements	that	make	up	two	data	points	the	more	similar	they	are.	The	distance
measurement	 demonstrated	 here	 is	 simply	 the	 summation	 of	 the	 squared	 differences
between	 each	 corresponding	 pair	 of	 values.	 For	 example,	 if	 we	 were	 measuring	 the
‘distance’	between	two	colours	this	calculation	means	finding	the	squares	of	the	difference
in	 the	 red,	 green	 and	 blue	 values.	 Note	 that	 we	 need	 not	 take	 the	 square	 root	 of	 the
summation,	as	you	might	do	in	 the	calculation	of	 the	conventional	distance,	because	the
square	root	operation	takes	more	calculation	time	and	is	not	really	needed;	we	only	need
to	 find	 the	 closest	 points	 of	 data	 and	 the	 smallest	 distance	 will	 also	 have	 the	 smallest
squared	 value.	 If	 the	 following	 function	 is	 not	 such	 a	 good	 measure	 of
similarity/difference4	in	data	points	then	you	can	easily	replace	it	with	one	that	is,	without
affecting	the	main	function.

The	‘distance’	function	simply	takes	two	feature	vectors	as	inputs,	which	represent	two
data	points.	We	use	the	inbuilt	zip()	function	to	extract	equivalent	feature	values	from	both
inputs	at	the	same	time,	e.g.	a	and	b	would	be	the	two	red,	green	or	blue	values	in	turn,	if
the	inputs	were	colours.	Then	we	calculate	the	difference	for	each	pair	of	values,	square
the	difference	and	add	it	to	the	total.	The	total	is	then	given	back	at	the	end	at	the	return
statement	so	that	it	can	be	picked	up	by	the	calling	function.

def	getFeatureDistance(vector1,	vector2):

		distance	=	0.0

		for	a,	b	in	zip(vector1,	vector2):

				delta	=	a-b

				distance	+=	delta	*	delta

		return	distance

k-nearest	neighbours	in	Python
Next	is	 the	main	k-nearest	neighbour	function	that	 takes	an	input	of	known	data,	feature
vectors	 with	 a	 known	 classification,	 and	 a	 query	 vector	 that	 we	wish	 to	 determine	 the
classification	 of.	 It	 also	 accepts	 a	 value	 for	 k,	which	 dictates	 how	many	 of	 the	 nearest
neighbours	 to	 the	 query	 point	 are	 considered	 when	 making	 the	 classification	 estimate.
Depending	 upon	 the	 problem	 the	 best	 value	 of	 k	 to	 use	will	 vary,	 and	 the	 user	 should
optimise	this	in	a	fair	way,	although	in	many	problems	the	value	can	be	surprisingly	small.
This	next	 function	has	not	been	optimised	 in	 terms	of	 speed	of	execution,	given	we	are
primarily	 interested	 in	 clarity	 here.	 However,	 in	 the	 on-line	material	 we	 also	 include	 a
speed-optimised	 version	which	 uses	NumPy	 arrays	 to	 avoid	 loops	 and	 repeated	 calls	 to
getFeatureDistance().	A	notable	simplification	 in	 the	code	below	is	 that	we	only	make	a
simple	decision	if	there	is	a	tie	in	the	scores,	where	competing	classifications	have	equal
numbers	among	the	nearest	neighbours.	Here	a	tie	is	broken	by	taking	the	category	with
the	closest	single	point	to	the	query.	Also,	when	there	are	only	two	categories	using	an	odd
value	for	k	would	avoid	this	issue	given	that	ties	would	then	be	impossible.

The	function	code	involves	the	definition	with	the	input	arguments.	We	then	perform	a
check	to	make	sure	k	is	small	enough	for	the	data	set.	After	this,	the	next	step	is	to	fill	the
starting	 values	 of	 the	 dists	 list,	 which	 records	 the	 distances	 and	 categories	 for	 all	 the
known	(already	classified)	data	points.	The	list	is	appended	with	small	tuples	of	distance
and	category	(dist,	cat),	with	the	distance	being	first	so	that	when	we	sort	the	list	we	sort
according	to	distance,	but	the	categories	remain	paired	with	their	corresponding	distances.
The	 small	 tuple	 could	 also	 contain	 the	 feature	 vector	 from	 the	 known	data	 input,	 if	we
need	the	function	to	report	what	the	closest	known	data	points	actually	are,	rather	than	just
the	 best	 classification.	 After	 the	 dists	 list	 is	 filled	 it	 is	 sorted	 so	 that	 it	 is	 in	 order	 of
increasing	distance.	The	k	closest	of	the	known	categories	is	then	simply	taken	from	the
start	of	the	list	using	the	appropriate	slice	notation	dists[:k].

def	kNearestNeighbour(knowns,	query,	k=7):

		if	k	>=	len(knowns):

				raise	Exception(‘Length	of	training	data	must	be	larger	than	k’)

		dists	=	[]

		for	vector,	cat	in	knowns[:k]:

				dist	=	getFeatureDistance(vector,	query)

				dists.append((dist,	cat))	#	Vector	could	be	included

		dists.sort()

		closest	=	dists[:k]

		counts	=	{}

		for	dist,	cat	in	closest:

				counts[cat]	=	counts.get(cat,	0)	+	1

		bestCount	=	max(counts.values())

		bestCats	=	[cat	for	cat	in	counts	if	counts[cat]	==	bestCount]

		for	dist,	cat	in	closest:

				if	cat	in	bestCats:

						return	cat

The	remainder	of	the	function	involves	looking	at	the	k	closest	data	points	to	the	query
and	 determining	 what	 the	 most	 popular	 category	 is.	 This	 is	 achieved	 by	 making	 a
dictionary	 for	 category	 counts,	 and	 then	 as	 we	 loop	 through	 the	 closest	 of	 the	 known
points	the	count	is	made	by	adding	one	to	the	count	for	each	category	encountered.	Note
that	the	.get()	function	is	used	so	that	the	starting	value	for	a	category’s	count	is	zero;	there
is	no	previous	entry	in	the	dictionary	to	add	one	to.	With	categories	of	the	closest	points
tallied	the	best	count	is	determined	as	the	maximum	of	the	list	values.	The	best	categories
are	 then	determined	by	 finding	 all	 those	 that	 have	 this	maximum	count,	 using	Python’s
compact	list	comprehension	notation.	More	than	one	category	may	have	a	maximal	count,
indicating	a	tie.	Potential	ties	are	resolved	by	the	final	loop	where	the	closest	matches	are
gone	through	in	order,	remembering	that	they	are	sorted	to	give	the	closest	first.	The	first
category	in	the	list	from	those	with	maximum	count	is	then	returned	as	the	best	category
prediction	(whereupon	the	loop	ceases).	The	first	point	in	the	closest	list	is	not	necessarily
the	winner	if	other	categories	within	the	closest	k	are	more	populous.

We	can	test	the	functions	with	some	crude	fictitious	data.	Here	we	have	colour	vectors
that	 are	 placed	 into	 only	 two	 named	 categories.	 We	 have	 tried	 to	 have	 about	 equal
numbers	 of	 well-spaced	 points	 for	 each	 category,	 so	 that	 the	 choice	 of	 inputs	 doesn’t
introduce	much	bias.	We	then	test	by	running	the	function	on	a	query	colour.	This	example
shows	how	the	input	of	known	data	with	classifications	is	expected	to	be	a	list	of	smaller
lists	(or	tuples),	each	of	which	contains	first	a	feature	vector,	and	second	a	textual	category
classification.	Other	Python	data	structures	could	be	used,	but	they	should	naturally	match
the	programming	of	the	prediction	function.	Also,	in	many	situations	you	would	need	to
check	the	form	and	validity	of	the	input	before	running	the	calculation.

knownClasses	=	[((1.0,	0.0,	0.0),	'warm'),	#	red

																((0.0,	1.0,	0.0),	'cool'),	#	green

																((0.0,	0.0,	1.0),	'cool'),	#	blue

																((0.0,	1.0,	1.0),	'cool'),	#	cyan

																((1.0,	1.0,	0.0),	'warm'),	#	yellow

																((1.0,	0.0,	1.0),	'warm'),	#	magenta

																((0.0,	0.0,	0.0),	'cool'),	#	black

																((0.5,	0.5,	0.5),	'cool'),	#	grey

																((1.0,	1.0,	1.0),	'cool'),	#	white

																((1.0,	1.0,	0.5),	'warm'),	#	light	yellow

																((0.5,	0.0,	0.0),	'warm'),	#	maroon

																((1.0,	0.5,	0.5),	'warm'),	#	pink

]

result	=	kNearestNeighbour(knownClasses,	(0.7,0.7,0.2),	k=3)

print('Colour	class:',	result)

Self-organising	maps
The	next	machine-learning	example	is	an	illustration	of	unsupervised	learning,	where	we
don’t	 pass	 input	 data	 with	 any	 associated	 known	 classification	 or	 value.	 Instead,	 the
algorithm	will	simply	organise	the	data,	in	this	case	putting	similar	points	of	data	near	one
another	and	separating	dissimilar	points.	The	example	we	give	is	called	a	self-organising
map,	and	this	form	is	also	known	as	a	Kohonen	map.5	The	reason	for	organising	data	 in
this	way	naturally	depends	upon	the	kind	of	problem	being	addressed.	Once	the	data	has
been	 rearranged	 into	 an	 organised	 form,	 the	 ‘map’	 of	 the	 data,	 it	 can	 be	 divided	 into
different	 regions	 to	 define	 categories.	 Also,	 because	 the	 organising	 mechanism	 may
consider	the	similarity	of	large	numbers	of	features	from	the	input	data	(large	vectors)	but
creates	 a	 low-dimensionality	 (often	 two-dimensional)	 map,	 the	 organisation	 process
performs	 a	 kind	 of	 dimensional	 reduction;	 we	 can	 more	 easily	 visualise	 the	 major
differences	and	similarities	in	the	data	without	having	to	think	in	n-dimensional	space.

The	 self-organising	 map	 presented	 here	 is	 the	 first	 example	 of	 an	 artificial	 neural
network.	Although	 this	name	originally	stems	from	analogies	 to	how	brain	cells	 interact
with	 one	 another,	 in	 the	 computational	 sense	 a	 neural	 network	 may	 be	 imagined	 as	 a
network	of	 interconnected	data	points	or	nodes.	Each	node	may	be	connected	 to	several
others	and	the	strength	of	the	connections	is	determined	by	a	weighting.	What	a	data	node
means	 depends	 somewhat	 on	 the	 kind	 of	 neural	 network	 being	 used.	 For	 the	 self-
organising	map	 example	 each	node	will	 represent	 a	 position	on	 a	 rectangular6	 grid	 that
makes	up	the	map	dimensions.	Each	grid	node	will	possess	a	feature	vector	that	is	of	the
same	 kind	 as	 the	 input	 data	 (in	 the	 test	 example	 this	will	 be	 a	 colour).	 The	 features	 of
different	 nodes	 will	 be	 moved	 towards	 and	 away	 from	 the	 input	 data	 vectors	 so	 that
different	kinds	of	input	are	mapped	to	different	spots	on	the	grid.	Here	it	should	be	noted
that	the	strength	of	the	connections	between	the	grid	nodes	does	not	change;	effectively	a
node	will	always	stay	in	the	same	grid	position,	but	how	each	node	maps	to	the	input	data
varies.	 For	 the	 feed-forward	 neural	 network	 described	 later	 the	 strength	 of	 connections
between	nodes	does	change.

Figure	24.3.	 A	schematic	of	the	learning	process	of	a	self-organising	map.	A	regular
array	of	initially	random	feature	vectors	is	constructed.	The	feature	vector	for	each	real
data	item	is	compared	to	the	array	and	the	most	similar	point	in	the	map	is	found.	This
closest	matching	vector	in	the	map	and	its	neighbours	are	adjusted	to	better	match	the	data
item.	The	matching	and	adjustment	is	then	repeated	for	all	the	other	data	items	before	a
new	cycle	considers	all	the	data	points	again.	The	process	continues	for	a	large	number	of
cycles	or	to	convergence.

The	organisation	process	of	the	self-organising	map	occurs	by	repeatedly	exposing	the
input	data	 to	 the	map	of	nodes,	which	 initially	have	random	similarities	 to	 the	data.	For
each	input	data	point	the	single	node	on	the	grid	that	best	matches	is	determined:	how	well
the	 input	 features	 (e.g.	 colour	 vector)	match	 the	 features	 stored	 for	 the	 node.	 This	 best
node	 is	 then	 pulled	 closer	 to	 the	 input	 point	 along	with	 a	 few	 of	 the	 surrounding	 grid
nodes,	 so	 that	 the	 feature	 vectors	 of	 that	 region	 of	 the	 grid	more	 closely	 resemble	 that
input.	Different	input	points	will	pull	different	parts	of	the	grid,	in	terms	of	feature	vectors,
towards	themselves	and	away	from	dissimilar	points.	After	many	rounds	of	adjustment	to
the	nodes,	similar	feature	vectors	will	cluster	together	on	the	grid;	similar	input	points	will
map	to	nodes	that	are	close	on	the	grid.	After	sufficient	 iterations	for	 the	features	of	 the
grid	 nodes	 to	 stabilise	 the	 ‘learning’	 process	 stops.	 To	 help	 with	 this	 stabilisation	 the
strength	of	 the	pull	 from	 the	 inputs	on	 the	grid	 features	 is	gradually	diminished,	 so	 that
towards	the	end	of	the	process	only	minor	adjustments	are	made.	Any	data	point,	even	if
not	seen	before,	may	then	be	mapped	onto	the	grid	by	finding	the	closest	node.	Naturally
for	any	given	input	there	need	not	be	an	exact	match	on	the	grid,	even	for	the	values	used
in	 the	 training	 data;	 the	 grid	 is	 of	 a	 finite	 size	 and	 nodes	 may	 represent	 compromises
between	competing	data.	Nevertheless,	by	finding	a	matching	node,	data	may	be	mapped,
reducing	dimensionality	and	allowing	categorisation	if	the	map	is	divided	into	regions.

A	Kohonen	map	in	Python
The	Python	function	below	encodes	a	simple	self-organising	map.	It	makes	extensive	use
of	 array	 functionality	 imported	 from	NumPy,	which	 in	 this	 instance	 reduces	 calculation
time	 for	 large	maps	 and,	 perhaps	more	 importantly	 for	 this	 book,	 improves	 brevity	 by
avoiding	 loops.	 Although	 some	 readers	 may	 find	 the	 use	 of	 vector/array	 operations
disconcerting	 to	 start	 with,	 the	 approach	 does	 focus	 attention	 on	 the	 higher-level
operations	and	reasoning	that	underpin	the	method.

Firstly,	 we	 import	 a	 couple	 of	 modules	 to	 give	 access	 to	 array	 operations	 and	 the
exponential	 function.	 Then	 we	 define	 the	 function	 that	 takes	 a	 list	 of	 inputs	 (feature
vectors	 defined	 as	 numpy.array	 objects)	 and	 something	 we	 have	 called	 spread,	 which
represents	 the	 strength	of	connectivity	between	close	nodes	on	 the	grid;	 this	 is	 a	 square
array	(a	matrix)	of	weights	where	the	centre	represents	the	amount	of	pull	from	the	input
data	on	 the	best-matching	grid	node	during	 learning	and	 the	off-centre	values	determine
how	much	this	influence	spreads	to	adjacent	grid	positions.	The	size	input	is	the	number
of	 rows	and	columns	 in	 the	grid	map	and	steps	 is	 simply	 the	number	of	 learning	cycles
that	will	be	performed.

import	numpy

from	math	import	exp

def	selfOrganisingMap(inputs,	spread,	size,	steps=1000):

We	extract	 the	number	of	rows	and	columns	for	the	grid	from	the	input	size	and	then
determine	vecLen,	which	represents	the	size	of	the	feature	vectors	(e.g.	three	for	a	colour
containing	red,	green	and	blue	values).	These	numbers	are	 then	used	 to	make	 the	 initial
version	 of	 the	 map	 grid,	 which	 is	 named	 somap.	 This	 grid	 naturally	 has	 the	 required
number	of	rows	and	columns,	but	also	has	a	depth	axis	so	that	each	grid	location	contains
a	number	of	 feature	values	(a	feature	vector),	hence	 the	 input	axis	sizes	for	 the	map	are
nRows,	nCols,	vecLen.

nRows,	nCols	=	size

vecLen	=	len(inputs[0])

somap	=	numpy.random.rand(nRows,	nCols,	vecLen)

The	next	 thing	to	 initialise	 is	an	array	that	determines	 the	 influence	(pull)	of	an	input
data	vector	on	a	 region	of	 the	map	grid.	The	 input	 spread	array	gives	 the	basic	 form	of
this;	 however,	 this	 needs	 to	 be	 applied	 to	 all	 of	 the	 feature	 values	 in	 the	map,	 however
deep	 the	 feature	 vectors;	 all	 the	 values	 along	 the	 vector	 are	 moved	 closer	 to	 the
corresponding	values	from	the	best-match	input.	The	spread	array	is	only	one	value	deep,
but	 the	map	 is	vecLen	deep,	hence	we	define	 the	 influence	array,	which	uses	 the	values
from	spread,	repeated	vecLen	times.	Building	a	deep	array	of	this	kind	upfront	means	we
do	not	have	to	loop	through	the	features	to	apply	the	influence	weighting.	The	influence
array	is	simple	to	create;	by	using	the	‘*’	operation	on	a	list	the	spread	array	is	replicated,7

and	the	dstack()8	function	stacks	the	arrays	on	top	of	one	another	along	the	depth	axis.	The
infWidth	is	calculated	to	find	the	radius	of	the	influence,	as	needed	later	in	the	calculation.
Then	to	improve	clarity	and	speed	we	define	the	function	makeMesh,	which	is	simply	a

renaming	of	the	cryptic	numpy.ix_	function;	this	takes	lists	of	row	and	column	indices	and
creates	 a	 ‘mesh’	where	 the	 indices	 intersect,	 and	 hence	 allows	 the	 extraction	 of	 a	 sub-
matrix	from	a	larger	matrix.

influence	=	numpy.dstack([spread]*vecLen)	#	One	for	each	feature

infWidth	=	(len(spread)-1)	//	2

makeMesh	=	numpy.ix_			#	Ugly

With	 the	 initialisation	 done	 the	 code	 now	 goes	 through	 the	 main	 learning	 steps.	 In
Python	2,	the	xrange()	function	is	used	instead	of	range()	because	the	number	of	steps	may
be	 fairly	 large	 and	 the	 latter	 would	 make	 a	 large	 list	 in	 memory,	 not	 just	 yield	 a	 step
number,	which	is	all	we	need.	In	Python	3,	the	range()	function	behaves	like	xrange()	in
Python	2.	For	each	step	the	decay	variable	is	calculated	as	the	exponent	of	the	proportion
we	have	gone	through	all	steps;	this	is	then	used	to	diminish	the	pull	of	the	input	data	on
the	map	vectors	so	that	initially	they	can	change	a	large	amount	but	later	stabilise.	Then
for	each	step	we	begin	a	loop	through	the	array	of	input	data	vectors.

for	s	in	range(steps):		#	xrange	in	Python	2

		decay	=	exp(-s/float(steps))

		for	vector	in	inputs:

Inside	 the	 loop,	 for	 each	 input,	we	 calculate	 the	 difference	of	 the	 current	map	 to	 the
vector.	This	is	an	array	operation	in	compact	NumPy	notation	where	same	vector	is	taken
away	from	each	of	the	feature	vectors	across	all	of	the	rows	and	columns	of	the	grid;	the
result	is	an	array	the	same	size	as	the	grid,	with	a	difference	vector	for	each	grid	position.
This	 difference	 array	 is	 then	 squared	 in	 an	 element-wise	 manner	 (not	 matrix
multiplication),	 then	 the	 square	 differences	 are	 added	 up	 along	 the	 depth	 (feature)	 axis.
The	result	dist2	is	effectively	a	distance	(squared)	for	each	point	on	the	grid	to	the	current
input,	to	give	a	measure	of	similarity.

diff	=		somap-vector

diff2	=	diff*diff

dist2	=	diff2.sum(axis=2)

The	argmin()	 function	quickly	 finds	 the	 index	 in	 the	array	 representing	 the	minimum
vector	distance	(most	similar	grid	position);	unfortunately,	however,	the	index	given	back
is	the	position	in	the	array	as	if	it	were	flattened	into	one	long	list.	Thus,	we	then	have	to
perform	more	calculations	to	determine	what	the	column	and	the	row	of	this	index	are;	the
row	is	found	using	integer	division	(the	number	of	complete	rows	covered	by	the	index),
and	the	column	is	a	remainder	of	the	index	from	the	start	of	the	row.

index	=	dist2.argmin()

row	=	index	//	nRows

col	=	index	%	nRows

Given	the	row	and	column	of	the	best-matching	feature	vector	in	the	grid,	we	determine
lists	of	rows	and	columns	which	cover	the	area	of	the	map	that	will	be	‘pulled’	towards	the
input.	These	lists	are	a	range	of	values	that	goes	infWidth	positions	either	side	of	the	best-
matching	 row	 or	 column.	 Note	 the	 second	 argument	 for	 range()	 has	 one	 added	 to	 it,

because	 the	 second	argument	 is	 a	 limit	 that	 is	 not	 included	on	 the	output.	The	 row	and
column	numbers	(x	and	y)	are	subject	 to	a	modulo	‘%’	operation9	 so	 that	 if	values	 from
the	 range	 fall	 off	 the	 edge	 of	 the	 grid	 (less	 than	 zero	 or	 greater	 than	 last	 position)	 the
calculated	remainder	continues	the	row/column	on	the	opposite	side.	Effectively	this	joins
the	edges	of	the	grid	so	that	it	wraps	round	in	a	continuous	way;	it	needn’t	be	done	like
this,	but	edge	effects	are	helpfully	removed.

rows	=	[x	%	nRows	for	x	in	range(row-infWidth,	row+1+infWidth)]

cols	=	[y	%	nCols	for	y	in	range(col-infWidth,	col+1+infWidth)]

Finally	 in	 the	 loop,	 the	 rows	 and	 columns	 are	 used	 to	 make	 a	 mesh,	 where	 they
intersect,	 that	 is	 then	used	 to	extract	 sub-matrices	 for	 the	grid	map	and	difference	array.
The	sub-matrix	part	of	 the	map	is	 the	region	that	will	be	 influenced	by	the	 input	vector.
The	sub-matrix	of	 the	map	 is	moved	 towards	 the	 input	 feature	vector	by	subtracting	 the
corresponding	 sub-matrix	 of	 the	 difference	 array	 (reducing	 the	 difference	 between	map
and	 input).	 Note	 that	 the	 sub-matrix	 of	 difference	 values	 (diff[mesh])	 is	 scaled	 by	 two
things:	the	influence	of	the	input	vector	on	the	grid	points	near	to	the	best-match	position
and	the	scaling	factor	that	decays	during	the	course	of	the	learning.	The	influence	array	is
the	 same	 size	 and	 shape	 as	 the	 sub-matrix,	 but	 decay	 is	 a	 simple	 number.	 The	 scaling
means	the	amount	of	adjustment	of	the	map	grid	towards	the	input	vector	diminishes	both
with	the	 in-map	distance	from	the	best-match	point	and	over	 the	course	of	repeating	the
procedure.	 Finally,	 after	 the	 loop	 the	 grid	 array	 somap	 (of	 mapped	 feature	 vectors)	 is
passed	back.

mesh	=	makeMesh(rows,cols)

somap[mesh]	-=	diff[mesh]	*	influence	*	decay

return	somap

To	test	the	function	we	first	define	a	numpy.array	which	will	determine	how	far	across
the	self-organising	map	 (grid)	 the	 input	 influence	spreads.	The	centre	 (scoring	1.0	here)
represents	the	best-match	position	in	the	map.

spread	=	numpy.array([[0.0,	0.10,	0.2,	0.10,	0.0],

																						[0.1,	0.35,	0.5,	0.35,	0.1],

																						[0.2,	0.50,	1.0,	0.50,	0.2],

																						[0.1,	0.35,	0.5,	0.35,	0.1],

																						[0.0,	0.10,	0.2,	0.10,	0.0]])

As	a	test	we	will	make	some	random	input;	an	array	400	(20×20)	vectors	of	length	3.
Each	feature	vector	will	represent	a	different	colour	in	terms	of	red,	green	and	blue	values
between	zero	and	one.

rows,	cols	=	20,	20

testInput	=	numpy.random.rand(rows	*	cols,	3)

The	 self-organising	 map	 is	 run	 for	 100	 iterations,	 and	 will	 arrange	 the	 values	 on	 a
20×20	grid.	Note	that	the	input	is	of	length	rows	×	cols	so	that	we	have	exactly	one	data
point	(input	colour	vector)	for	each	map	position.	This	needn’t	be	the	case,	but	is	good	to
use	for	this	example	because	it	allows	a	1-to-1	mapping	of	inputs	to	grid	positions;	 thus

the	 operation	 effectively	 performs	 shuffling	 of	 the	 inputs	 to	make	 a	 2D	map	 of	 colour
similarity.

som	=	selfOrganisingMap(testInput,	spread,	(rows,	cols),	100)

We	can	then	view	the	results	of	the	organised	map	(look	at	the	feature	vectors	for	each
node	in	the	grid)	by	converting	the	numpy.array	into	a	real	colour	image	that	we	can	view
on	 screen.	 The	 conversion	 of	 an	 array	 of	 numbers	 to	 a	 displayable,	 graphical	 image	 is
discussed	in	Chapter	18.

from	PIL	import	Image

colors	=	som*255

colors	=	colors.astype(numpy.uint8)

img1	=	Image.fromarray(colors,	'RGB')

img1.save('som.png',	'PNG')

img1.show()

Figure	24.4	(Plate	10).	 Example	self-organising	map	output.	Results	from	of	an
initially	random	100×100	colour	pixel	map	(left)	and	the	effect	of	the	self-organising	map
on	clustering	the	colours	after	1,	10	and	100	iterations.

Feed-forward	artificial	neural	networks
The	next	machine	learning	example	that	we	will	cover	is	another	kind	of	artificial	neural
network,	 but	 this	 time	 it	 is	 one	 that	will	 undergo	 supervised	 learning.	 This	means	 that
when	 the	 network	 ‘learns’,	 it	 takes	 input	 data	 (more	 feature	 vectors)	 and	 changes	 its
internal	 weights	 so	 that	 it	 can	 reproduce	 a	 known	 answer.	 The	 supervisory	 process
whereby	the	programmer	adjusts	the	network	so	that	it	gives	the	right	answer,	or	as	close
to	 the	 right	 answer	 as	 possible,	 for	 some	 known	 data	 is	 usually	 referred	 to	 as	 training.
Naturally,	 when	 training	 a	 neural	 network	 it	 is	 important	 to	 have	 as	 large	 and	 as
representative	a	set	of	training	data	as	possible.	The	predictive	power	comes	from	the	fact
that	the	neural	network	can	accept	input	from	data	that	it	has	not	seen	before,	that	was	not
used	in	the	training.	Predictions	can	be	made	for	unseen	data	because	inputs	that	resemble
those	that	were	used	during	the	initial	 training	will	give	similar	outputs.	In	this	regard	it
doesn’t	 actually	matter	very	much	what	 the	 input	or	output	data	 represents,	 the	patterns
and	connections	between	them	can	be	learnt	nonetheless.

The	neural	network	that	we	describe	below	is	composed	of	a	series	of	nodes	arranged
into	 three	 layers.	 The	 prediction	 of	 this	 network	 will	 proceed	 by	 a	 feed-forward
mechanism,	whereby	input	(often	referred	to	as	‘signal’)	is	entered	into	the	first	layer	of
nodes.	 This	 input	 data	 is	 then	 moved	 to	 the	 middle	 or	 hidden	 layer	 to	 which	 it	 is

connected,	before	finally	reaching	the	last	output	layer	of	nodes.	It	is	possible	to	construct
feed-forward	 networks	with	more	 than	 three	 layers	 (i.e.	more	 hidden	 layers).	However,
these	can	be	more	difficult	 to	 train	and	 it	has	been	shown	that	 for	many	situations	 three
layers	are	sufficient	 to	do	everything	 that	more	 layers	can	do10	 (although	 the	number	of
nodes	 will	 differ).	 The	 number	 of	 nodes	 in	 the	 three-layer	 network	 depends	 on	 the
problem	 being	 addressed.	 The	 number	 of	 input	 nodes	 represents	 the	 size	 of	 the	 input
vector;	the	value	of	each	feature	goes	to	a	different	input	node.	For	example,	if	the	input
was	a	colour	with	 red,	green	and	blue	 features,	 there	would	be	 three	 input	nodes.	 If	 the
input	was	a	DNA	sequence	composed	of	four	base	letters,	there	would	be	four	input	nodes
for	each	position	of	the	sequence	analysed,	thus	a	sequence	of	length	ten	would	need	40
inputs.	The	number	of	output	nodes	depends	on	the	problem,	but	there	is	some	flexibility
to	represent	the	data	in	different	ways.	For	example,	if	 the	network	is	used	to	predict	an
angle	then	the	output	could	be	a	single	number	or	it	could	be	the	sine	and	the	cosine	of	the
angle	separately.	When	being	used	for	categorisation,	then	there	would	be	as	many	output
nodes	as	there	are	categories.	If	the	neural	network	was	instead	being	used	to	approximate
a	continuous	function,	then	the	output	will	have	a	variable	number	of	nodes,	depending	on
how	many	axes	are	required.	The	number	of	hidden	nodes	used	will	depend	on	the	type
and	 complexity	 but	 will	 normally	 be	 optimised	 to	 give	 the	 best	 predictions.	 Numbers
between	three	and	ten	are	common.	The	smaller	the	number	of	nodes	the	quicker	it	is	to
optimise	 the	 network	 during	 training,	 but	 the	 fewer	 the	 number	 of	 patterns	 that	 can	 be
detected	in	the	data.	The	optimum	number	of	hidden	nodes	can	often	be	smaller	than	the
number	of	 inputs	but	 is	usually	 larger	 than	 the	number	of	outputs.	A	convenient	way	 to
think	 of	 things	 is	 that	 the	 number	 of	 hidden	 nodes	 represents	 the	 complexity
(dimensionality)	of	the	problem,	which	is	not	necessarily	related	to	the	size	of	the	input	or
output.

The	three	layers	of	nodes	in	our	feed-forward	network	will	be	connected	together.	Each
node	will	be	connected	to	all	of	the	others	in	a	neighbouring	layer.	Thus,	each	input	node
is	 connected	 to	 all	 hidden	nodes;	 each	hidden	node	 is	 connected	 to	 all	 of	 the	 input	 and
output	nodes;	 and	 each	output	 to	 each	hidden	node.	The	properties	of	 a	neural	 network
emerge	because	the	strength	of	the	connection	between	nodes	can	vary	during	the	learning
process;	 so	 some	 nodes	 become	more	 or	 less	 well	 connected.	 If	 a	 connection	 ends	 up
having	a	zero	weight	then	its	linked	nodes	are	effectively	disconnected;	thus	the	network
can	represent	a	large	number	of	possible	internal	organisations.	A	node	will	be	connected
to	many	others	to	varying	degrees,	but	the	actual	feed-forward	action	of	the	network	that
is	used	to	make	predictions	(generate	output)	uses	what	is	known	as	a	trigger	function	 to
adjust	 the	 response.	 In	 essence,	 a	 node	 collects	 input	 signals	 on	 one	 side	 and	 has	 to
combine	 these	 in	 some	manner	 to	generate	output	on	 the	other	 side,	which	could	be	 an
intermediate	or	final	output	signal.	The	input	signals	are	added	together,	but	the	strength
of	the	resulting	output	which	is	sent	to	any	nodes	in	the	next	layer	is	altered.	Firstly,	the
summation	of	the	combined	inputs	is	scaled	to	be	within	certain	minimum	and	maximum
bounds	for	practical	purposes.	And	secondly,	the	input	is	applied	to	the	trigger	function	to
increase	or	decrease	the	effect	that	certain	amounts	of	input	have.	Sometimes	the	trigger
function	is	a	two-state	switch	where	smaller	input	values	produce	very	little	response,	but
above	a	particular	 threshold	the	response	is	very	strong;	 this	 is	perhaps	analogous	to	the
firing	of	a	neuron	inside	a	brain.	However,	many	types	of	 trigger	functions	are	possible,
and	the	one	we	employ	here	is	the	popular	hyperbolic	tangent	function	(tanh;	see	Figure

24.5).	Using	 the	 sigmoid-shaped	hyperbolic	 tangent	 curve	means	 that	 in	mid	 ranges	 the
strength	of	 a	 node’s	 output	 is	 roughly	proportional	 to	 its	 input,	 but	 at	 the	high	 and	 low
input	 extremes	 the	 output	 is	 attenuated	 towards	 limits.	 This	 function	 also	 benefits	 from
having	an	easily	calculated	gradient	(required	for	training)	and	has	successfully	been	used
in	many	diverse	situations.

Figure	24.5.	 Components	of	a	feed-forward	artificial	neural	network.	The
organisation	of	nodes	in	a	three-layer	artificial	neural	network	(left)	where	the	node	in
each	layer	is	connected	to	all	the	nodes	in	the	next	layer,	albeit	with	different	connection
strengths.	The	hyperbolic	tangent	is	often	used	as	a	trigger	function	to	modulate	each
node’s	output	(right).	For	the	trigger	function	the	x	axis	corresponds	to	the	total	input,
which	is	the	weighted	sum	of	the	inputs	from	all	the	connections.	The	y	axis	represents	the
node	output	that	may	be	sent	to	the	next	layer.

Training	a	neural	network	by	back	propagation
The	 artificial	 neural	 network	 presented	 here	 is	 trained	 via	 a	mechanism	known	 as	back
propagation.	 This	 is	 a	 fairly	 efficient	 general	 solution	 for	 training,	 but	 other	 ways	 of
finding	 network	 connection	 weights	 are	 possible,	 like	 the	 slower	 but	 more	 rigorous
Markov	chain	Monte	Carlo	(see	Chapter	25).	The	back-propagation	mechanism	takes	the
known	 output	 values	 for	 the	 input	 training	 data	 and	 adjusts	 the	 connection	 weighting
between	the	nodes,	working	backward	layer	by	layer	from	output,	via	hidden	to	input.	The
objective	at	each	stage	 is	 to	minimise	 the	error	between	 the	fixed,	known	result	and	 the
actual	network	output	 (the	prediction).	The	weights	are	adjusted	a	 little	 to	minimise	 the
error	of	each	bit	of	 training	data	 in	 turn,	although	 it	 is	often	 important	 to	 randomise	 the
order	 of	 the	 data.	 Because	 different	 examples	 of	 training	 data	 may	 compete	 with	 one
another	 (pull	weights	 in	different	directions)	 and	because	a	given	node	 is	 influenced	by
many	others	we	can	really	only	guess	at	how	to	adjust	the	weights	to	make	output	match.
Hence	 training	 can	 be	 a	 slow	 and	 cautious	 process,	 repeatedly	 going	 through	 all	 the
training	 data	 many	 times,	 while	 the	 connection	 weights	 settle	 into	 a	 hopefully	 stable
pattern.	The	actual	amount	that	weights	are	adjusted	for	each	bit	of	data	in	each	cycle	will
naturally	depend	on	the	kind	of	trigger	function	used	by	the	nodes,	but	in	general	the	idea
is	that	the	gradient	of	the	function	indicates	in	which	direction	the	inputs	to	a	node	should
be	adjusted	to	better	match	the	output.

The	programmer	should	always	be	cautious	when	training	an	artificial	neural	network,

and	 it	 can	 only	 legitimately	 be	 used	 to	make	predictions	 if	 the	 performance	 is	 properly
tested	on	data	that	it	has	never	seen	before;	it	 is	commonplace	to	hold	back	some	of	the
training	data	set	for	testing.	Also,	these	networks	can	suffer	from	over-training,	where	the
network	 learns	 to	 associate	 the	 training	 input	 and	 output	 too	 well;	 it	 becomes	 too
specialised	 and	 performs	 poorly	 on	 data	 it	 has	 not	 seen	 before.	 Over-training	 can	 be
minimised	by	selecting	a	widely	spread	set	of	training	examples,	optimising	performance
by	testing	on	some	data	that	has	never	been	seen	before,	and	not	worrying	too	much	about
small	improvements	in	the	connection	weight	optimisation.	Even	considering	these	things
though,	 the	user	also	has	 to	be	mindful,	as	with	any	machine	 learning,	 that	 the	problem
being	addressed	is	well	formulated.	There	is	the	anecdotal	example	of	the	military	neural
network	 that	was	designed	 to	automatically	distinguish	between	pictures	of	 friendly	and
enemy	 tanks.	 In	 training,	 this	neural	network	 seemed	 to	work	very	well,	 but	 in	 the	 real
world	 it	 performed	 poorly.	 It	 turned	 out	 that	 pictures	 of	 friendly	 and	 enemy	 tanks
generally	 had	 different	 kinds	 of	 backgrounds	 and	 the	 network	 has	 learned	 the
classification	based	upon	the	(easier	to	distinguish)	terrain	type,	not	on	the	tanks.	Putting
an	enemy	 tank	 in	 front	of	 some	 trees	made	 it	 look	 friendly,	 at	 least	 as	 far	 as	 the	neural
network	was	concerned.	The	moral	here	is	to	only	use	input	that	is	unbiased	and	relevant.

A	Python	neural	network
The	feed-forward	neural	network	example	in	Python	has	been	split	into	two	functions:	one
that	 makes	 predictions	 and	 one	 that	 does	 the	 training.	 It	 would	 also	 be	 possible	 to
construct	this	neural	network	using	classes	(custom	kinds	of	Python	objects),	and	this	may
hold	 certain	 advantages,	 like	 the	 ability	 to	 make	 adapted	 subclasses.	 However,	 using
functions	makes	it	simpler	to	describe	the	principles	of	what	is	happening.

The	first	function	is	called	neuralNetPredict,	which	takes	some	input	data	for	the	first
layer	 of	 network	 nodes,	 applies	 the	 first	 weighted	 connections	 and	 trigger	 functions	 to
pass	 the	 signal	 to	 the	 hidden	 layer	 of	 nodes	 and	 then	 applies	 the	 second	 weights	 and
triggers	to	generate	some	output.	This	is	used	both	during	the	training	of	the	network,	to
set	 up	 the	 connection	 weights,	 and	 to	 make	 predictions	 on	 unseen	 data.	 Initially	 some
mathematical	functions	are	imported	from	the	NumPy	library,	so	that	we	can	express	the
operations	concisely	as	arrays	and	matrices.11

from	numpy	import	array,	tanh,	zeros,	ones,	random,	sum,	append

Then	we	define	 the	function	name	and	 its	 input	arguments:	an	array	of	 input	 features
(inputVec)	and	two	matrices	that	represent	the	connection	weights.	The	matrix	weightsIn
represents	 the	 strength	 of	 connection	 between	 the	 input	 nodes	 (which	 include	 the	 bias
node	 we	 describe	 below)	 and	 the	 hidden	 nodes.	 Likewise,	 weightsOut	 represents	 the
strengths	 between	 the	 hidden	 and	 the	 output	 nodes.	 The	 weights	 are	 represented	 as
matrices	 so	 that	 the	 rows	 correspond	 to	 a	 set	 of	 nodes	 in	 one	 layer	 and	 the	 columns
represent	 the	 set	 of	 nodes	 in	 the	 other	 layer,	 to	 connect	 everything	 in	 one	 layer	 to
everything	in	 the	other.	For	example,	 if	 the	network	has	four	 input,	 five	hidden	and	two
output	nodes,	then	weightsIn	will	be	a	4×5	matrix,	and	weightsOut	will	be	a	5×2	matrix.
Inside	 the	function	 the	first	step	 is	 to	define	 the	signalIn	vector	 for	 the	network.	This	 is
simply	a	copy	of	the	input	features	array	with	an	extra	value	of	1.0	appended	to	the	end.

This	extra,	fixed	input	is	what	is	known	as	a	bias	node,	and	is	present	so	the	baseline	(the
level	without	meaningful	signal)	of	an	input	can	be	adjusted.	This	gives	more	flexibility	at
the	 trigger	 function	 used	 for	 the	 hidden	 layer	 of	 nodes,	 which	 improves	 learning.	 The
weight	 matrices	 must	 be	 of	 the	 right	 size	 to	 account	 for	 the	 bias	 node,	 and	 although
weights	from	the	bias	node	are	still	adjusted	by	training	they	are	naturally	not	affected	by
the	input	data.	A	bias	connection	going	to	each	hidden	node	enables	the	input	to	that	node
to	be	offset,	effectively	shifting	the	centre	of	the	trigger	function	about	so	that	it	can	better
distinguish	 the	 input	 values;	 the	 upshot	 of	 this	 is	 that	 the	 programmer	 doesn’t	 have	 to
worry	about	centring	input	feature	values	(e.g.	making	their	mean	values	zero).

def	neuralNetPredict(inputVec,	weightsIn,	weightsOut):

		signalIn	=	append(inputVec,	1.0)	#	input	layer

		prod	=	signalIn	*	weightsIn.T

		sums	=	sum(prod,	axis=1)

		signalHid	=	tanh(sums)		#	hidden		layer

		prod	=	signalHid	*	weightsOut.T

		sums	=	sum(prod,	axis=1)

		signalOut	=	tanh(sums)		#	output		layer

		return	signalIn,	signalHid,	signalOut

The	main	operation	of	 the	 function	 involves	multiplying	 the	 input	vector,	element	by
element,	with	the	columns	of	the	first	matrix	of	weights.	As	a	result	of	the	training	process
we	describe	later,	the	weight	matrix	is	arranged	so	that	there	is	a	column	for	each	of	the
hidden	nodes.	Given	we	want	 to	apply	 the	 input	signal	 to	each	hidden	node,	we	use	 the
transpose	 (.T)	 of	 the	 weight	 matrix	 so	 that	 columns	 are	 switched	 with	 rows	 for	 the
multiplication.	This	is	a	requirement	because	element	multiplication	of	a	one-dimensional
NumPy	array	with	a	two-dimensional	array	is	done	on	a	per-row	basis.	Next	we	calculate
the	summation	of	the	weighted	input	down	each	column	(axis=1),	so	we	get	one	value	for
each	hidden	node.	Then	to	get	the	signal	that	comes	from	the	hidden	layer	we	calculate	the
hyperbolic	tangent	of	the	sums,	applying	the	sigmoid-shaped	trigger	function	to	each.	This
whole	operation	 is	 then	repeated	 in	 the	same	manner	for	going	from	the	hidden	 layer	 to
the	output	layer;	we	apply	weights	to	the	signal	vector,	sum	over	columns	and	apply	the
trigger	function.	The	final	output	vector	is	the	prediction	from	the	network.	At	the	end	of
the	function	we	return	all	the	signal	vectors,	and	although	only	the	output	values	are	useful
in	making	predictions	the	other	vectors	are	used	in	training	the	network.

The	second	Python	function	for	the	feed-forward	neural	network	is	a	function	to	train	it
by	the	back-propagation	method,	to	find	an	optimal	pair	of	weight	matrices.	The	objective
is	 to	minimise	error	between	 the	output	vectors	predicted	by	 the	network	and	 the	 target
values	(known	because	this	is	training	data).	Here	the	error	is	calculated	as	the	sum	of	the
squared	differences,	but	other	methods	may	be	more	appropriate	in	certain	situations.	The
function	is	defined	and	takes	the	training	data	as	an	argument,	which	is	expected	to	be	an
array	containing	pairs	of	items:	an	input	feature	vector	and	the	known	output	vector.	The
next	 argument	 is	 the	 number	 of	 nodes	 in	 the	 hidden	 layer;	 the	 size	 of	 input	 and	 output
layers	need	not	be	specified	because	they	can	be	deduced	from	the	length	of	the	input	and
output	vectors	used	in	training.	The	remaining	arguments	relate	to	the	number	of	training

steps	 (cycles	over	 the	data)	 that	will	be	made,	a	value	 for	 the	 learning	rate	 that	governs
how	strongly	weights	are	adjusted	and	a	momentum	factor	that	allows	each	training	cycle
to	use	a	fraction	of	the	adjustments	that	were	used	in	the	previous	cycle,	which	makes	for
smoother	 training.	 In	practice	 the	 learning	 rate	 and	momentum	 factor	 can	be	optimised,
but	the	default	values	are	generally	a	fair	start.

def	neuralNetTrain(trainData,	numHid,	steps=100,	rate=0.5,	momentum=0.2):

Within	the	function	a	few	values	are	initialised.	The	numbers	of	nodes	in	the	input	and
output	 layers	 are	 extracted	 from	 the	 size	 of	 the	 first	 item	 (index	 zero)	 of	 training	 data,
noting	that	the	number	of	inputs	is	then	increased	by	one	to	accommodate	the	bias	node.
The	error	value	which	we	aim	to	minimise	starts	as	None,	but	will	be	filled	with	numeric
values	later.

numInp	=	len(trainData[0][0])

numOut	=	len(trainData[0][1])

numInp	+=	1

minError	=	None

Next	we	make	the	initial	signal	vectors	as	arrays	of	the	required	sizes	(a	value	comes
from	each	node)	with	all	elements	starting	out	as	1	courtesy	of	numpy.ones().	The	 input
will	be	the	feature	vector	we	pass	in	and	the	output	will	be	the	prediction.

sigInp	=	ones(numInp)

sigHid	=	ones(numHid)

sigOut	=	ones(numOut)

The	initial	weight	matrices	are	constructed	with	random	values	between	−0.5	and	0.5,
with	 the	 required	 number	 of	 rows	 and	 columns	 in	 each.	 The	 random.random	 function
makes	matrices	of	random	numbers	in	the	range	0.0	to	1.0,	but	by	taking	0.5	away	(from
every	element)	we	shift	this	range.	This	particular	range	is	not	a	strict	requirement,	but	is	a
fairly	good	general	strategy;	too	small	and	the	network	can	get	stuck,	but	too	large	and	the
learning	is	stifled.	The	best	weight	matrices,	which	is	what	we	are	going	to	pass	back	from
the	function	at	the	end	of	training,	start	as	these	initial	weights	but	then	improve.

wInp	=	random.random((numInp,	numHid))-0.5

wOut	=	random.random((numHid,	numOut))-0.5

bestWeightMatrices	=	(wInp,	wOut)

The	 next	 initialisation	 is	 for	 the	 change	matrices,	which	will	 indicate	 how	much	 the
weight	matrices	 differ	 from	 one	 training	 cycle	 to	 the	 next.	 These	 are	 important	 so	 that
there	 is	 a	 degree	 of	 memory	 or	 momentum	 in	 the	 training;	 strong	 corrections	 to	 the
weights	will	tend	to	keep	going	and	help	convergence.

cInp	=	zeros((numInp,	numHid))

cOut	=	zeros((numHid,	numOut))

The	final	initialisation	is	for	the	training	data:	pairs	of	input	and	output	vectors.	This	is
done	 to	convert	all	of	 the	vectors	 into	numpy.array	data	 type,	 thus	allowing	 the	 training
data	to	be	input	as	lists	and/or	tuples.	We	simply	loop	through	the	data,	extract	each	pair,
convert	to	arrays	and	then	put	the	pair	back	in	the	list	at	the	appropriate	index	(x).

for	x,	(inputs,	knownOut)	in	enumerate(trainData):

		trainData[x]	=	(array(inputs),	array(knownOut))

With	 everything	 initialised,	we	 can	 then	 begin	 the	 actual	 network	 training,	 so	we	 go
through	 the	 required	 number	 of	 loops	 and	 in	 Python	 2	 use	 xrange()	 so	 that	 a	 large	 list
doesn’t	have	to	be	created.	Note	we	don’t	use	a	while	loop	to	check	for	convergence	on
the	error	because	a	neural	network	is	not	always	guaranteed	to	converge	and	sometimes	it
can	 stall	 before	 convergence.	 For	 each	 step	we	 shuffle	 the	 training	 data,	which	 is	 often
very	 important	 for	 training;	 without	 this	 there	 is	 a	 bias	 in	 the	 way	 the	 weights	 get
optimised.	After	the	shuffle,	the	error	starts	at	zero	for	the	cycle.

for	step	in	range(steps):		#	xrange()	in	Python	2

		random.shuffle(trainData)		#	Important

		error	=	0.0

Next	 we	 loop	 through	 all	 of	 the	 training	 data,	 getting	 the	 input	 feature	 vector	 and
known	output	 for	each	example.	We	 then	use	 the	current	values	of	 the	weight	matrices,
with	the	prediction	function	described	above,	to	calculate	the	signal	vectors.	Initially	the
output	signal	vector	(the	prediction)	will	be	quite	different	from	the	known	output	vector,
but	this	will	hopefully	improve	over	time.

for	inputs,	knownOut	in	trainData:

		sigIn,	sigHid,	sigOut	=	neuralNetPredict(inputs,	wInp,	wOut)

Given	 the	 neural	 network	 signals	 that	 come	 from	 the	 current	 estimates	 for	 weight
matrices	 we	 now	 apply	 the	 back-propagation	 method	 to	 try	 to	 reduce	 the	 error	 in	 the
prediction.	 Thus	 we	 calculate	 the	 difference	 between	 the	 known	 output	 vector	 and	 the
signal	output	from	the	neural	network.	This	difference	is	squared	and	summed	up	over	all
the	features	(diff	is	an	array)	before	being	added	to	the	total	error	for	this	cycle.

diff	=	knownOut	-	sigOut

error	+=	sum(diff	*	diff)

Next	we	work	out	an	adjustment	that	will	be	made	to	the	output	weights,	to	hopefully
reduce	 the	 error.	The	 adjustment	 is	 calculated	 from	 the	 gradient	 of	 the	 trigger	 function.
Because	this	example	uses	a	hyperbolic	tangent	function,	the	gradient	at	the	signal	value	is
one	minus	 the	 signal	 value	 squared	 (differentiate	 y	 =	 tanh(x)	 and	 you	 get	 1	 −	 tanh2(x)
which	 equals	 1	 −	 y2).	 The	 signal	 gradient	 multiplied	 by	 the	 signal	 difference	 then
represents	the	change	in	the	signal	before	the	trigger	function,	which	can	be	used	to	adjust
the	weight	matrices.	Note	that	all	these	mathematical	operations	are	performed	on	all	the
elements	of	whole	arrays	at	once,	courtesy	of	NumPy.

gradient	=	ones(numOut)	-	(sigOut*sigOut)

outAdjust	=	gradient	*	diff

The	same	kind	of	operation	is	repeated	for	the	hidden	layer,	to	find	the	adjustment	that
will	be	made	 for	 the	 input	weight	matrix.	Again,	we	calculate	 a	 signal	difference	and	a
trigger	 function	gradient	 and	multiply	 them	 to	get	 an	 adjustment	 for	what	goes	 into	 the
trigger	function.	However,	this	time	we	can’t	compare	output	vectors,	so	instead	we	take
the	 array	 of	 signal	 adjustments	 just	 calculated	 and	 propagate	 them	 back	 through	 the

network.	Thus	the	signal	difference	for	the	hidden	layer	is	calculated	by	taking	the	signal
adjustment	 for	 the	 output	 later	 and	 passing	 it	 through	 the	 output	 weight	 matrix,	 i.e.
backwards	through	the	last	layer.

diff	=	sum(outAdjust	*	wOut,	axis=1)

gradient	=	ones(numHid)	-	(sigHid*sigHid)

hidAdjust	=	gradient	*	diff

With	 the	 adjustments	 calculated	 it	 then	 remains	 to	 make	 the	 changes	 to	 the	 weight
matrices,	and	hopefully	get	an	improvement	 in	 the	error.	The	weight	change	going	from
hidden	 to	output	 layers	 requires	 that	we	calculate	a	change	matrix	 (the	same	size	as	 the
weights),	 hence	we	 take	 the	vector	of	 adjustments	 and	 the	vector	of	 hidden	 signals	 and
combine	 them;	 each	 row	 of	 adjustments	 (one	 per	 output)	 is	multiplied	 by	 a	 column	 of
signals	 (one	 per	 hidden	 node)	 to	 get	 the	 new	weights.	 Note	 how	we	 use	 the	 reshape()
function	to	convert	the	array	of	signals,	a	single	row,	into	a	column	vector;	it	is	tipped	on
its	side	so	that	the	multiplication	can	be	made	to	generate	a	matrix	with	rows	and	columns.

#	update	output

change	=	outAdjust	*	sigHid.reshape(numHid,	1)

wOut	+=	(rate	*	change)	+	(momentum	*	cOut)

cOut	=	change

In	the	same	manner	the	changes	are	made	to	the	input	weight	matrix.

#	update	input

change	=	hidAdjust	*	sigIn.reshape(numInp,	1)

wInp	+=	(rate	*	change)	+	(momentum	*	cInp)

cInp	=	change

Then	finally	in	the	training	cycle,	we	see	if	the	minimum	error	has	been	improved	on.
During	the	first	cycle	the	minimum	error	is	None,	so	we	always	fill	 it	with	the	first	real
calculated	error	value	in	that	case.	Each	time	we	find	a	new	minimum	error	we	record	the
best	weight	matrices	 (so	 far)	 by	 taking	 copies	 of	 the	 current	 versions,	 using	 the	 handy
.copy()	function	of	NumPy	arrays.	Then	finally	at	the	end	of	all	of	the	training	cycles,	the
best	weight	matrices	are	returned.

if	(minError	is	None)	or	(error	<	minError):

		minError	=	error

		bestWeightMatrices	=	(wInp.copy(),	wOut.copy())

		print("Step:	%d	Error:	%f"	%	(step,	error))

return	bestWeightMatrices

We	can	test	the	feed-forward	neural	network	by	using	some	test	training	data.	As	a	very
simple	example,	the	first	test	takes	input	vectors	with	a	pair	of	numbers	which	are	either
one	or	zero.	The	output	corresponds	to	the	‘exclusive	or’	(XOR)	logic	function:	the	output
is	1	if	either	of	the	inputs	is	1,	but	not	both.	This	test	data	is	a	list	of	[input,	output]	pairs.
Note	that	even	though	the	output	is	just	a	single	number	it	is	nonetheless	represented	as	a
list	with	a	single	item.

data	=	[[[0,0],	[0]],

								[[0,1],	[1]],

								[[1,0],	[1]],

								[[1,1],	[0]]]

The	number	of	hidden	nodes	used	here	is	simply	stated	as	2,	but	in	practical	situations
several	 values	will	 need	 to	 be	 tried,	 and	 their	 performance	 evaluated.	 Then	we	 run	 the
training	function	in	the	data	to	estimate	the	best	weight	matrices	for	the	neural	network.

wMatrixIn,	wMatrixOut	=	neuralNetTrain(data,	2,	1000)

The	output	weight	matrices	can	then	be	run	on	test	data	for	evaluation.	At	the	very	least
they	 ought	 to	 do	 a	 reasonable	 job	 at	 predicting	 the	 output	 signals	 for	 the	 training	 set,
although	in	practice	these	really	ought	to	be	for	data	that	has	not	been	used	in	the	training.

for	inputs,	knownOut	in	data:

		sIn,	sHid,	sOut	=		neuralNetPredict(array(inputs),	wMatrixIn,	wMatrixOut)

		print(knownOut,	sOut[0])

A	neural	network	for	biological	sequences
Next	we	move	on	 from	 the	 trivial	neural	network	 test	 example	 to	 illustrate	how	 feature
vectors	may	be	generated	from	biological	sequences	(and	category	data	generally),	so	that
they	 can	 be	 used	 in	 such	 machine	 learning	 programs.	 The	 example	 will	 predict	 the
secondary	 structure	 of	 a	 residue	 in	 the	middle	 of	 a	 five-amino-acid	 sequence.	Both	 the
amino	 acid	 sequence	 and	 the	 output	 secondary-structure	 categories	 will	 be	 represented
initially	as	code	letters,	but	 they	will	be	converted	into	numbers	(zeros	and	ones)	before
being	 passed	 into	 the	 feed-forward	 neural	 network.	Although	 this	 example	 uses	 protein
sequences	an	analogous	procedure	can	be	used	for	DNA	and	RNA.

The	test	data	that	will	be	illustrated	for	the	example	is	very	small,	simply	to	give	a	taste
of	 the	data	and	still	have	it	 fit	on	the	page.	As	a	result,	a	neural	network	trained	on	this
data	 would	 be	 totally	 useless	 at	 making	 secondary-structure	 predictions	 in	 practice.
However,	 in	 the	 on-line	 material	 a	 file	 (SecStrucTrainingData.tsv,	 available	 via
http://www.cambridge.org/pythonforbiology)	 with	 a	 large	 data	 set	 containing	 many
thousands	 of	 sequences	 is	 available.	 Using	 this	 as	 input	 would	 give	 a	 vastly	 superior
result.	The	test	data	 is	presented	as	a	 list	of	2-tuples;	each	tuple	has	a	five-letter	residue
protein	 sequence	 and	 a	 secondary-structure	 code.	 Three	 secondary-structure	 codes	 are
used	to	represent	three	general	conformations	of	protein	backbone	geometry.	These	codes
are	 ‘E’	 for	 extended	 conformations	 (mostly	 beta-strand),	 ‘H’	 for	 helices	 (mostly	 alpha-
helix)	and	‘C’	for	random	coil	or	unstructured	stretches	(everything	else).

seqSecStrucData	=	[('ADTLL','E'),

																			('DTLLI','E'),

																			('TLLIL','E'),

																			('LLILG','E'),

																			('LILGD','E'),

																			('ILGDS','E'),

																			('LGDSL','C'),

																			('GDSLS','H'),

																			('DSLSA','H'),

																			('SLSAG','H'),

																			('LSAGY','H'),

http://www.cambridge.org/pythonforbiology

																			('SAGYR','C'),

																			('AGYRM','C'),

																			('GYRMS','C'),

																			('YRMSA','C'),

																			('RMSAS','C')]

Before	 the	above	data	can	be	used	 it	will	need	 to	be	converted	 from	 text	 strings	 into
numeric	feature	vectors	(arrays	of	numbers).	All	of	the	feature	vectors	that	represent	either
sequence	 input	 or	 prediction	 output	 will	 contain	 numbers	 to	 represent	 the	 presence	 or
absence	of	a	particular	category	of	item.	In	this	example	the	feature	vectors	will	contain
ones	 to	 indicate	 the	 presence	 and	 zeros	 to	 represent	 the	 absence	 of	 an	 amino	 acid	 (for
input)	or	of	a	secondary-structure	code	letter	(for	output).	Other	numbers	could	have	been
used	 instead	 with	 equal	 success	 (e.g.	 ±1	 or	 ±0.5),	 although	 the	 two	 values	 chosen	 for
presence	or	absence	should	naturally	be	distinct	and	lie	in	the	range	of	the	trigger	function
where	 there	 is	 a	 steep	gradient;	 for	 the	hyperbolic	 tangent	 example	used	here	 the	 range
from	−1	to	+1	is	usually	best.	Note	that	the	size	of	the	vector	generated	is	the	length	of	the
input	 sequence	multiplied	by	 the	number	of	 possible	 letters;	 each	 element	of	 the	vector
represents	 a	 different	 residue	 at	 a	 different	 sequence	 position.	 For	 a	 five-letter	 protein
sequence	the	vector	will	have	20	elements	(one	for	each	amino	acid)	for	each	of	the	five
sequence	positions,	and	thus	the	total	length	will	be	100.

To	make	the	feature	vectors	we	first	define	dictionaries	so	that	a	letter	can	be	used	as	a
key	to	look	up	the	position	(index)	in	the	vector	that	should	be	set	to	1.0.	The	actual	order
that	we	go	through	the	letter	codes	is	unimportant,	but	it	should	be	consistent	for	a	given
program.	Here	we	could	have	used	the	list.index(letter)	form	to	get	a	position	index,	but
this	is	slower,	especially	if	the	number	of	possible	letters	and	amount	of	training	data	are
large.	To	make	the	index-look-up	dictionary	for	the	amino	acids	we	loop	through	a	list	of
possibilities	and	associate	the	residue	letter	code	with	the	index	i,	which	in	this	case	was
generated	with	enumerate():12

aminoAcids	=	'ACDEFGHIKLMNPQRSTVWY'

aaIndexDict	=	{}

for	i,	aa	in	enumerate(aminoAcids):

		aaIndexDict[aa]	=	i

The	 same	 sort	 of	 thing	 is	 repeated	 for	 the	 secondary-structure	 codes,	 albeit	 with	 a
smaller	number	of	possible	letters:

ssIndexDict	=	{}

ssCodes	=	'HCE'

for	i,	code	in	enumerate(ssCodes):

		ssIndexDict[code]	=	i

Now	we	actually	do	the	conversion	of	the	training	data	from	the	text	strings	to	numeric
vectors	 that	 can	 be	 used	 in	 the	 neural	 network	 routine.	 To	 help	 with	 this	 the
convertSeqToVector	 function	 defined	 below	 is	 constructed	 to	 take	 a	 sequence	 of	 letters
seq,	 and	 indexDict,	 which	 can	 convert	 each	 letter	 to	 the	 correct	 position	 in	 the	 code
alphabet.	 The	 vector	 initially	 starts	 filled	 with	 zeros,	 but	 then	 selective	 positions	 are
converted	to	ones,	depending	on	which	sequence	letters	are	observed.	The	actual	index	in
the	vector	that	needs	to	be	set	is	determined	by	the	index-look-up	dictionary	for	that	letter,

indexDict[letter],	 and	 the	 start	 point	 for	 that	 sequence	 position,	 pos	 *	 numLetters.	 For
example,	 if	 the	 third	 letter	 (index	 2,	 counting	 from	 0)	 in	 seq	 is	 ‘F’,	 this	 adds	 a	 one	 at
position	45;	forty	(2	×	20)	to	get	to	the	start	of	the	block	that	represents	the	third	sequence
position	and	five	more	because	‘F’	is	at	index	5	in	the	protein	sequence	alphabet.

def	convertSeqToVector(seq,	indexDict):

		numLetters	=	len(indexDict)

		vector	=	[0.0]	*	len(seq)	*	numLetters

		for	pos,	letter	in	enumerate(seq):

				index	=	pos	*	numLetters	+	indexDict[letter]

				vector[index]	=	1.0

		return	vector

The	actual	 training	data	 for	 the	neural	network	 is	made	by	 looping	 through	all	of	 the
pairs	 of	 protein	 sequence	 and	 secondary-structure	 code,	 and	 for	 each	of	 these	 using	 the
above	 function	 to	 make	 the	 feature	 vector	 from	 the	 text.	 The	 trainingData	 list	 is
constructed	 as	 linked	 pairs	 of	 input	 and	 output	 feature	 vectors.	 Note	 that	 because	 the
secondary-structure	code	ss	is	only	a	single	letter	the	output	vector	will	be	of	length	three.
Specifically,	for	the	three	codes	the	output	vectors	will	be	as	follows:	‘E’:	[0.0,	0.0,	1.0];
‘C’:	[0.0,	1.0,	0.0];	‘H’:	[1.0,	0.0,	0.0].

trainingData	=	[]

for	seq,	ss	in	seqSecStrucData:

		inputVec	=	convertSeqToVector(seq,	aaIndexDict)

		outputVec	=	convertSeqToVector(ss,	ssIndexDict)

		trainingData.append((inputVec,	outputVec))

The	number	of	hidden	nodes	is	set	to	three,	by	way	of	example.	The	training	data	and
network	 size	 are	 then	 passed	 into	 the	 main	 training	 function,	 in	 order	 to	 generate	 the
predictive	weight	matrices.

wMatrixIn,	wMatrixOut	=	neuralNetTrain(trainingData,	3,	1000)

After	 training,	 the	 neural	 network	 can	 make	 secondary-structure	 predictions	 for	 any
five-letter	protein	sequence,	but,	as	before,	this	must	be	converted	into	the	numeric	vector
form.	Because	the	prediction	operates	on	a	whole	numpy.array	the	test	vector	is	converted
into	an	array	(here	with	one	element).

testSeq	=	'DLLSA'

testVec	=	convertSeqToVector(testSeq,	aaIndexDict)

testArray	=	array([testVec,])

The	weight	matrices	from	the	training	are	used	to	make	predictions	on	the	test	array	and
the	 output	 signal,	 sOut,	 is	 interrogated	 to	 find	 the	 position	 of	 the	 largest	 value	 (i.e.	 the
position	predicted	to	be	one	not	zero).	This	index	represents	the	best	secondary-structure
code,	and	the	code	itself	can	be	obtained	by	using	the	index	with	the	original	set	of	codes
to	get	a	letter	back.

sIn,	sHid,	sOut	=		neuralNetPredict(testArray,	wMatrixIn,	wMatrixOut)

index	=	sOut.argmax()

print("Test	prediction:	%s"	%	ssCodes[index])

Support	vector	machines
The	final	example	of	a	machine	learning	method	in	this	chapter	moves	away	from	neural
networks	to	a	different	and	more	recent	approach,	described	generally	as	kernel	methods,
and	 the	specific	example	given	here	 is	known	as	a	support	vector	machine	 (SVM).	 The
SVM	 can	 be	 thought	 of	 as	 being	 related	 to	 the	 k-nearest	 neighbour	 idea,	 where	 we
visualise	 known	 points	 of	 data	 in	 a	 vector	 space	 and	 aim	 to	 make	 predictions	 on
previously	 unseen	 input	 by	 looking	 where	 a	 query	 lies	 in	 this	 space	 in	 relation	 to	 the
known,	training	data.	Whereas	with	the	k-nearest	neighbour	method	a	prediction	is	made
by	looking	at	a	number	of	known	values	in	the	vicinity	of	a	query,	for	an	SVM	the	training
data	vectors	are	used	to	define	the	location	of	a	boundary	that	separates	the	vector	space
into	two	regions.	A	prediction	is	made	for	an	unseen	query	vector	by	seeing	on	which	side
of	the	decision	boundary	it	occurs.	For	two	dimensions	such	a	decision	boundary	would	be
a	line,	and	in	three	dimensions	it	is	a	plane,	but	for	most	SVMs	we	are	working	in	more,
often	many	more,	than	three	dimensions	(data	features),	 in	which	case	the	boundary	is	a
hyperplane.	The	name	support	vector	machine	derives	from	the	support	vectors,	which	are
the	known,	training	data	points	that	are	found	on	the	edge	of	this	boundary,	defining	the
boundary	position.

One	of	 the	useful	properties	of	 support	 vector	machines	 compared	 to	neural	 network
techniques	comes	from	the	fact	that	they	maximise	the	margin	between	data	categories.	If
you	 imagine	 the	 training	 data	 to	 be	 two	 distinct,	 fixed	 groups	 the	 operation	 finds	 the
widest	region	that	separates	them.	The	boundary	between	these	two	groups	is	placed	in	the
centre	of	 the	separating	region,	and	 the	prediction	of	previously	unseen	data	 is	made	by
finding	out	on	which	side	of	the	boundary	the	query	point	lies.	With	a	neural	network	the
effective	boundary	between	data	categories	will	not	always	be	fairly	placed	in	the	middle.
This	is	a	particular	issue	when	the	training	data	is	not	evenly	spread	(e.g.	one	prediction
category	is	significantly	more	populous)	and	if	it	has	been	over-trained.	The	decision	line
may	be	much	closer	 to	one	category	or	 the	other,	with	 the	 result	 that	unseen	query	data
that	lies	between	the	two	will	tend	to	be	classified	inappropriately,	in	only	one	way.	With	a
support	vector	machine	it	is	only	the	support	vectors	at	the	edge	of	the	maximised	margin
between	 categories	 that	 define	 the	 boundary,	 thus	 over-training	 is	 not	 possible	 and	 the
amount	of	data	on	either	side	does	not	affect	the	decision	line	so	much.13

A	 support	 vector	 machine	 effectively	 defines	 the	 widest	 boundary	 between	 two
categories	of	data	vector	by	doing	linear	optimisation,	similar	to	finding	a	line	of	best	fit.
However,	the	input	data	may	not	naturally	lie	in	two	discrete	regions	and	thus	be	separable
with	 a	 simple	 plane	 boundary.	 Imagine	 trying	 to	 decide	 which	 applicants	 should	 be
allowed	to	join	the	army	based	on	their	weight	measurements.	You	wouldn’t	expect	to	be
able	to	sensibly	use	a	single	decision	line	to	separate	those	who	pass	and	those	who	fail,
given	 that	 you	 have	 to	 distinguish	 between	 both	 those	 people	who	 are	 overweight	 and
those	who	are	underweight.	The	solution	to	this	kind	of	problem	can	nonetheless	be	solved
using	a	single	line,	and	thus	by	a	support	vector	machine,	because	the	decision	boundary

can	 be	 placed	 in	 a	 space	 of	 higher	 dimensionality	 than	 the	 original	 problem.	Referring
again	 to	 the	 army	 recruits,	 if	 instead	of	 having	 a	 single	weight	 axis	 you	put	 the	weight
measurements	 in	 a	 semi-circle	 then	 you	 can	 now	 separate	 the	 pass	 and	 fail	 categories
above	and	below	a	single	line.	It	is	simply	that	the	data	is	now	in	two	dimensions,	rather
than	the	original	one.	The	extra	dimension	has	nothing	to	do	with	the	original	data,	it	has
simply	spread	it	out	 in	a	predictable	way	and	you	can	still	 retrieve	the	original	values	if
required:	in	this	case	from	the	distance	along	the	curve.	Using	a	known	function	to	spread
data	points	into	more	dimensions	is	often	referred	to	as	the	kernel	trick14	and	gives	power
to	the	SVM	to	operate	on	nonlinear	problems	(e.g.	with	context	dependency)	while	using
mathematically	 robust,	 linear	means	 to	make	an	optimum	decision.	Although	 the	simple
example	mentioned	uses	 two	dimensions	 to	achieve	separation,	a	general	 support	vector
machine	 can	 use	 any	 number	 of	 extra	 dimensions.	Although	 at	 first	 this	might	 seem	 to
arbitrarily	complicate	the	problem,	the	really	clever	part	of	the	kernel	trick	is	that	within
the	algorithm	to	find	the	separating	boundary	the	high-dimensionality	locations	of	the	data
points	do	not	have	to	be	stored	or	even	calculated.	The	optimisation	can	be	performed	by
merely	considering	what	the	projection	of	the	high-dimensionality	points	onto	the	original
feature	axes	(i.e.	using	the	dot	product)	would	be.	For	a	more	mathematical	explanation	of
support	vector	machines	and	the	kernel	trick	see	the	reference	given	below.15

Figure	24.6.	 A	schematic	overview	of	support	vector	machines.	Feature	vectors
representing	the	training	data	are	separated	into	different	regions	by	a	boundary	line,
which	in	the	original	feature	space	can	follow	a	complex	path.	The	support	vector	machine
finds	the	boundary	line	by	finding	the	linear	hyperplane	that	best	separates	the	data	in	a
higher	number	of	dimensions.	The	decision	hyperplane	is	in	the	middle	of	the	widest
margin	between	the	data	classes,	and	this	margin	is	itself	determined	by	the	support
vectors:	data	items	which	border	the	decision	zone.

The	 particular	 algorithm	 that	 our	 example	 uses	 in	 its	 learning	 procedure	 is	 called
successive	over-relaxation.	This	is	a	means	of	efficiently	solving	the	linear	equations	that
govern	 the	 location	 of	 the	 decision	 hyperplane	 between	 two	 categories	 of	 data.	 The
objective	of	this	algorithm	is	to	define	which	of	the	feature	vectors	in	the	training	data	are
support	 vectors,	 and	 thus	 define	 the	 hyperplane	 direction.	 We	 will	 not	 discuss	 the
mathematical	 detail	 of	 this	method	 or	 of	 SVMs	 in	 general	 here,	we	will	merely	 give	 a
flavour	 of	 what	 is	 happening.	 However,	 the	 keen	 and	 more	 mathematically	 inclined
readers	can	investigate	the	specified	literary	references.

The	 support	vector	machine	 example	given	here	will	 learn	 and	predict	 classifications
between	two	categories	of	vector	data,	here	encoded	internally	as	+1	and	−1	respectively.
Obviously	there	are	often	situations	where	there	are	more	than	just	two	categories	that	we
wish	 to	 predict.	 In	 these	 cases	 multiple	 support	 vector	 machines	 can	 be	 used	 to	 make

separate	 two-way	decisions.	 Imagine	 that	you	have	 three	categories	of	data	A,	B	and	C:
the	 first	 support	vector	machine	might	distinguish	A	 from	everything	else,	 i.e.	 the	other
category	is	B	and	C,	and	the	second	SVM	will	distinguish	between	the	remaining	B	and
C.	 It	 should	 be	 noted,	 however,	 that	 where	 there	 is	 overlap	 between	 the	 different
categories,	 the	 order	 of	 two-way	 decisions	may	 be	 important;	 in	 general	 you	would	 try
different	 combinations	 and	 tend	 to	make	 the	most	 secure	predictions	 first.	Although	we
will	 only	 be	 discussing	 an	 SVM	 that	 can	 be	 used	 for	 classification	 into	 two	 discrete
categories,	there	is	a	closely	related	method,	support	vector	regression,	which	may	be	used
to	predict	 continuous	values.	Here	 the	vectors	of	 training	data	have	a	 range	of	different
numeric	values	and	the	support	vectors	are	used	to	give	a	line	of	best	fit	to	these	in	high-
dimensionality	 space.	 This	 line	 will	 yield	 predictions	 by	 interpolation;	 calculating	 the
position	 of	 a	 query	 along	 the	 line	 of	 known	 slope	 gives	 an	 estimate	 of	 the	 associated
numeric	value.

A	Python	support	vector	machine
The	Python	example	of	a	support	vector	machine	starts	with	 the	 import	of	various	array
and	 mathematical	 NumPy	 functions	 that	 will	 be	 needed.	 As	 with	 the	 neural	 network
example	 the	 use	 of	 array	 operations	 aims	 to	 focus	 attention	 on	 the	 high-level	 operation
being	performed,	 and	 thus	 the	 reasoning	 involved	 in	 the	method.	Helpfully,	 the	NumPy
routines	are	also	quicker	 to	execute	 than	 looping	 through	large	arrays.	There	are	several
NumPy	 imports	 and	 it	 should	 be	 noted	 that	many	 of	 these	 have	 the	 same	 name	 as	 the
equivalent	in	the	standard	math	module,	although	as	you	might	expect	these	versions	work
on	whole	arrays,	not	just	single	numbers:

from	numpy	import	exp,	power,	array,	zeros,	sqrt

from	numpy	import	nonzero,	random,	abs,	sum,	dot

Next,	because	we	will	be	using	some	random	numbers	we	initialise	the	random	number
generator	in	NumPy.	This	initialisation	is	done	using	a	seed	number,	which	in	this	instance
is	 the	 system	 time	 in	 seconds16	 because	 it	 is	 easy	 to	 access	 and	 constantly	 changing.
Initialising	random	numbers	in	this	way	is	always	good	if	you	do	not	want	to	have	exactly
the	 same	 result	 each	 time.	Although,	 if	 you	do	want	 to	 have	 the	 same	 result,	 say	when
doing	debugging	of	the	code,	you	can	use	the	same	seed	number;	so	that	although	a	stream
of	 numbers	 come	 out	 apparently	 randomly	 it	 will	 be	 the	 same	 numbers	 each	 time	 the
program	is	run.

from	time	import	time

random.seed(int(time()))

Next	we	define	the	kernel	functions,	which	are	used	to	replace	the	explicit	calculation
of	dot	products	between	feature	vectors	in	high-dimensionality	space,	as	a	measure	of	the
coincidence	 between	 two	 data	 points.	 We	 give	 only	 two	 simple	 examples	 for	 kernel
functions	 here,	 although	more	 could	 be	 considered.	 Both	 functions	 take	 in	 two	 feature
vectors	 (data	points)	 and	give	 a	 single	value	measure	of	 their	 similarity	or	 coincidence.
The	Gaussian	kernel	 (normal	 curve)	 is	perhaps	 the	most	general	 and	widely	used	 form.
The	 calculation	 for	 the	 Gaussian	 kernel	 is	 fairly	 simple	 and	 involves	 only	 a	 single
parameter,	sigma,	which	dictates	 the	width	of	 the	 function.	First	 the	difference	between

two	feature	vectors	is	calculated,	then	the	sum	of	the	differences	squared	(a	single	scalar
value)	is	conveniently	calculated	using	the	dot	product.	The	number	is	finally	scaled	and
the	exponent	of	its	negative	returned.	This	kernel	will	give	a	measure	of	coincidence	that
is	always	positive	and	how	quickly	this	diminishes	will	depend	on	sigma.

def	kernelGauss(vectorI,	vectorJ,	sigma=1.0):

		sigma2	=	sigma	*	sigma

		diff	=	vectorI	-	vectorJ

		dotProd	=	dot(diff,diff)

		return	exp(-0.5	*	dotProd	/	sigma2)

The	 linear	 kernel	 is	 also	 very	 simple;	 the	 function	 calculates	 the	 difference	 of	 each
vector	to	the	vector	mean	of	the	input	data	(which	we	calculated	beforehand)	and	returns
the	dot	product	of	 these	differences.	Effectively	 the	value	generated	 is	a	measure	of	 the
coincidence	of	the	input	vectors	relative	to	the	centre	of	the	data.	It	should	be	noted	that
the	 output	 can	 be	 negative	 if	 the	 input	 vectors	 go	 in	 opposite	 directions	 relative	 to	 the
mean.

def	kernelLinear(vectorI,	vectorJ,	mean):

		diffI	=	vectorI	-	mean

		diffJ	=	vectorJ	-	mean

		return	dot(diffI,	diffJ)

Next	we	get	to	the	main	support	vector	machine	training	algorithm,	the	details	of	which
follow	 the	 method	 of	 ‘successive	 over-relaxation’	 as	 described	 in	 the	 reference	 given
below.17	 In	 essence	 this	will	 find	 the	optimal	 boundary	between	 two	 sets	 of	 input	 data.
The	inputs	to	the	function	comprise	an	array	of	known	classifications	containing	+1	or	−1
for	 the	 two	 classes,	 an	 array	 of	 training	 feature	 vectors	 (data)	 which	 are	 typically
normalised	to	be	between	0.0	and	1.0,	a	kernel	function,	like	those	described	above,	a	set
of	parameters	that	are	used	with	the	kernel	function	and	three	numeric	values.	It	should	be
noted	 that	 all	 of	 the	 input	 arrays	 are	 expected	 to	 be	 of	 the	 numpy.array	 type.	The	 limit
parameter	 is	 the	 upper	 limit	 to	 the	 amount	 of	 ‘support’	 that	 a	 data	 vector	 can	 provide
towards	 the	 optimisation	 of	 the	 classifying	 boundary	 plane.	 The	 maxSteps	 number	 is
simply	the	maximum	number	of	cycles	that	we	will	allow	during	the	training	of	the	SVM.
The	last	argument	(relax)	takes	values	between	0	and	2.0	and	is	known	as	the	‘relaxation
parameter’.	 This	 governs	 the	 rate	 at	 which	 the	 successive	 over-relaxation	 technique
performs	 the	optimisation.	Under	many	circumstances	 this	does	not	need	 to	be	changed
from	its	default	value.

def	svmTrain(knowns,	data,	kernelFunc,	kernelParams,

													limit=1.0,	maxSteps=500,	relax=1.3):

Next	we	do	some	initialisation	to	set	up	various	numbers	and	arrays	in	the	calculation.
Firstly,	we	define	the	size	of	the	problem	from	the	dimensions	of	the	input	data	array.	The
dimensionality	of	the	feature	vectors	that	comprise	the	training	data	is	n	and	the	number	of
training	data	points	is	m.	Next	we	initialise	the	supports	array,	which	is	the	thing	we	are

trying	to	optimise	by	the	successive	over-relaxation	technique	that	the	training	is	based	on.
The	supports	array	will	define	which	of	 the	 training	data	are	support	vectors,	and	hence
where	the	classification	hyperplane	lies.	Initially	the	support	values	are	set	as	zeros	using
the	handy	zeros()	 function	 from	NumPy,	noting	 that	we	pass	 in	 float	 (an	 inbuilt	Python
data	 type)	as	an	argument	 to	state	 that	 the	array	 is	composed	of	 floating	point	numbers,
rather	than	integers.	The	change	value	will	be	used	to	record	how	much	change	is	made	to
the	support	array	during	the	optimisation,	testing	for	convergence.	Its	starting	value	is	1.0,
which	is	arbitrary	but	large	enough	to	cause	the	first	optimisation	cycle	to	proceed.

m,	n	=	data.shape

supports	=	zeros(m,	float)

change	=	1.0	#	arbitrary	but	big	start

The	next	initialisation	is	to	pre-calculate	the	kernelArray.	This	square	array	represents
the	coincidence	(similarity)	between	all	of	the	m	pairs	of	feature	vectors	that	make	up	the
input	training	data.	Then	the	kernel	function	is	used	for	all	pairs	of	data	vector	to	calculate
the	coincidence	values,	which	are	stored	in	the	array	using	indices.	Once	the	kernel	array
is	 filled	we	 can	 quickly	 look	up	 values	 using	 appropriate	 indices,	 rather	 than	 having	 to
calculate	a	value	each	time.	It	should	be	noted	that	in	order	to	keep	this	example	relatively
simple,	and	 improve	calculation	speed,	we	calculate	all	of	 the	kernel	values	at	 the	start,
but	this	requires	memory	to	store	the	information.	If	the	training	data	set	were	very	large,
compared	 to	 the	 amount	 of	 available	 memory,	 then	more	 on-the-fly	 calculations	 and	 a
smaller	 memory	 cache	 can	 be	 used.	 Because	 of	 the	 successive	 over-relaxation	 method
used	to	perform	the	optimisation,	the	kernel	array	has	all	of	its	elements	incremented	by
1.0	(the	diagonal	will	carry	1.0	values	as	that	was	not	set	from	the	kernel	function).

kernelArray	=	zeros((m,m),	float)

for	i	in	range(m):						#	xrange()	in	Python	2

		for	j	in	range(i+1):		#	xrange()	in	Python	2

				coincidence	=	kernelFunc(data[i],	data[j],	*kernelParams)

				kernelArray[i,j]	=	kernelArray[j,i]	=	coincidence

kernelArray	+=	1

The	main	 part	 of	 the	 function	 performs	 the	 actual	 optimising	 loops	 that	 employ	 the
method	of	successive	over-relaxation.	We	use	a	while	loop	to	continue	the	optimisation	of
the	supports	array,	until	 it	converges	(the	change	 is	small)	or	we	hit	 the	maxSteps	 limit.
The	first	line	inside	the	loop	makes	a	copy	of	the	supports	array	so	that	we	can	work	out
how	much	change	has	occurred	during	the	cycle.

steps	=	0

while	(change	>	1e-4)	and	(steps	<	maxSteps):

		prevSupports	=	supports.copy()

Next	 we	 build	 sortSup,	 an	 array	 of	 values	 and	 index	 numbers	 from	 the	 supports.
Naturally,	for	the	first	optimisation	cycle	all	the	values	will	be	zero,	but	that	will	quickly
change	 for	 subsequent	 iterations.	We	 get	 these	 indices	 by	 using	 the	 inbuilt	 enumerate()
function	 inside	a	 list	comprehension,	where	we	collect	 the	 index	 i.	The	sortSup	 array	 is
then	sorted	 in	order	of	decreasing	value,	which	will	be	according	 to	 the	 first	element	 in
each	 (val,i)	 tuple;	 this	 follows	 the	 published	 successive	 over-relaxation	 procedure,	 but

other	implementations18	favour	using	a	random	order,	the	code	for	which	is	shown	in	the
comment	in	the	code	example	below.

sortSup	=	[(val,i)	for	i,	val	in	enumerate(supports)]

sortSup.sort(reverse=True)

#random.shuffle(sortSup)	–	also	possible

Eventually	 we	 get	 to	 the	 actual	 successive	 over-relaxation	 optimisation.	 A	 precise
explanation	of	what	is	being	done	will	not	be	given	here;	this	is	only	a	programming	book
with	limited	space	after	all.	However,	the	keen	more	mathematical	reader	can	investigate
the	SVM	section	of	 the	book	reference	given	 in	 footnote	18.	What	we	will	aim	to	do	 is
merely	give	a	hint	at	why	things	are	done.	The	next	loop	is	the	first	of	two	optimisation
stages.	At	this	point	we	consider	all	of	the	data	vectors,	or	more	precisely	all	of	the	indices
in	range(m).	 For	 each	 index,	 representing	 one	 of	 the	 training	 data	 points,	 a	 summation
named	pull	 is	 calculated	 by	multiplying	 the	 supports	 values	 by	 the	 required	 row	 of	 the
kernelArray	matrix	and	the	values	for	the	known	classification.	Here	the	kernel	array	will
specify	how	similar	 the	data	vector	at	 index	 i	 is	 to	all	of	 the	other	vectors.	The	knowns
array	contains	values	of	+1.0	or	−1.0,	thus	each	individual	multiplication	that	goes	into	the
final	 summation	 will	 pull	 the	 value	 to	 the	 positive	 or	 negative	 side,	 depending	 on	 the
classification	of	 the	 training	data	vector.	Note	 that	we	are	making	use	of	NumPy	arrays
here	and	that	when	we	do	multiplication	it	 is	being	performed	in	an	element-by-element
manner	within	the	arrays.

for	support,	i	in	sortSup:

		pull	=	sum(supports	*	kernelArray[i,:]	*	knowns)

The	pull	value,	towards	the	negative	or	positive,	is	used	to	calculate	an	adjustment	for
the	support	at	this	position.	The	product	knowns[i]	*	pull	will	be	positive	if	both	the	pull
and	the	known	classification	have	the	same	sign,	i.e.	go	in	the	same	direction.	Taking	1.0
from	this	means	that	when	the	values	have	the	same	sign	the	adjustment	will	be	closer	to
zero	compared	to	when	they	have	a	different	sign.	Dissimilar	signs	mean	that	the	current
supports	 values	 do	 not	 separate	 the	 training	 data	 vectors	 in	 the	 right	 way.	 Note	 that
negative	values	of	adjust	will	actually	increase	the	supports[i]	value,	so	that	mismatching
training	vectors	get	more	 influence	on	 the	placement	of	 the	classification	boundary.	The
actual	 adjustment	 to	 the	 supports	 values	 is	 scaled	 relative	 to	 the	 maximum	 amount	 of
support	for	that	data	point	(i.e.	the	kernel	array	value	at	the	diagonal;	kernelArray[i,i])	and
multiplied	by	the	relax	parameter,	which	governs	the	rate	of	change	and	thus	convergence.
Note	 that	 this	 adjustment	 can	 overshoot	 the	 optimum,	 so	 a	 bigger	 relax	 is	 not	 always
better.	Finally,	the	adjusted	value	for	the	support	at	position	i	is	bounded	by	the	upper	and
lower	limits;	it	must	be	at	least	zero	and	at	most	limit.

adjust	=	knowns[i]	*	pull	-	1.0

supports[i]	-=	adjust	*	relax	/	kernelArray[i,i]

supports[i]	=	max(0.0,	min(limit,	supports[i]))

At	 this	 point	 we	 could	 go	 through	 another	 round	 optimising	 all	 the	 support	 values.
However,	we	will	get	quicker	convergence	if	we	do	some	more	optimising	in	this	cycle	for
only	a	subset	of	the	data	points:	those	with	a	support	value	that	is	above	zero.	Hence,	we

calculate	the	nonZeroSup	subset	of	points	which	have	at	least	some	support	(val	>	0)	in	a
similar	manner	to	what	was	done	for	sortSup,	by	using	enumerate	to	get	the	value	and	the
index,	so	 that	 later	we	can	sort	according	 to	 the	value.	Note	 that	 if	 there	 is	none	of	 this
type	of	 support	we	 skip	 to	 the	next	 cycle	with	continue.	 It	 is	 reasonable	 to	 suggest	 that
these	 points	 on	 the	 edges	 of	 the	 separation	 margin	 need	 further	 attention	 and	 more
optimisation,	and	in	practice	this	really	does	help.

nonZeroSup	=	[(val,i)	for	i,	val	in	enumerate(supports)	if	val	>	0]

if	not	nonZeroSup:

		continue

nonZeroSup.sort()

We	collect	the	indices	inds	for	the	non-zero	support	positions,	because	this	is	handy	for
the	next	stage,	and	then	estimate	how	many	extra	optimisation	cycles	(niter)	to	do	on	the
supporting	values	based	on	the	number	that	remain.	This	is	not	a	precise	calculation	but
the	general	principle	is	 that	 the	more	marginal	support	vectors	there	are	the	more	cycles
are	 required.	 If	 there	 are	 no	 non-zero	 supports	we	use	 a	minimum	value,	 but	 otherwise
make	a	guess	based	on	the	square	root	of	the	number	of	non-zero	supports.

inds	=	[x[1]	for	x	in	nonZeroSup]

niter	=	1	+	int(sqrt(len(inds)))

Next	we	repeat	exactly	the	same	kind	of	support	value	optimisation	as	before,	but	this
time	only	using	the	indices	of	the	non-zero,	supporting	points.	These	extra	sub-cycles	will
often	 be	 significantly	 quicker	 than	 the	 previous	 optimisation	 that	 goes	 through	 all	 the
points,	i.e.	the	number	of	supports	is	relatively	few.	Note	how	we	use	slice	indexing	of	the
form	 ‘knowns[inds]’	 to	 perform	 operations	 on	 only	 the	 required	 subset	 of	 the	 NumPy
arrays.

for	i	in	range(niter):		#	xrange	in	Python	2

		for	j	in	inds:

				pull	=	sum(kernelArray[j,inds]	*	knowns[inds]	*	supports[inds])

				adjust	=	knowns[j]	*	pull	-	1.0

				supports[j]	-=	adjust	*	relax	/	kernelArray[j,j]

				supports[j]	=	max(0.0,	min(limit,	supports[j]))

Finally,	 after	 all	 the	optimisation	 is	done	 for	 this	 cycle	we	see	how	much	change	we
have	conferred	to	the	support	value	and	increase	the	step	count.	The	change	is	simply	the
square	root	of	the	summation	of	the	difference	between	old	and	new	values	squared.

diff	=	supports	-	prevSupports

change	=	sqrt(sum(diff	*	diff))

steps	+=	1

At	 the	 end	 of	 the	 function	 we	 pass	 back	 the	 optimised	 array	 of	 support	 values,	 the
number	 of	 steps	 that	 were	 taken	 during	 the	 optimisation	 and	 the	 array	 containing	 the
kernel	values	(the	measures	of	coincidence	between	the	data	vectors),	to	save	calculating
it	again	when	investigating	the	decision	hyperplane.

return	supports,	steps,	kernelArray

Support	vector	machine	predictions
To	use	 the	SVM	 to	make	 a	 prediction	 involves	working	 out	which	 side	 of	 the	 decision
hyperplane,	 determined	 during	 training,	 a	 query	 feature	 vector	 lies.	 Naturally	 the
prediction	 function	 takes	a	query	vector	 as	 input,	 together	with	 the	 training	data	and	 its
known	categories.	We	also	pass	in	the	function	and	parameters	that	allow	the	calculation
of	the	coincidence	of	feature	vectors	using	a	kernel.

def	svmPredict(query,	data,	knowns,	supports,	kernelFunc,	kernelParams):

		prediction	=	0.0

		for	j,	vector	in	enumerate(data):

				support	=	supports[j]

				if	support	>	0:

						coincidence	=	kernelFunc(vector,	query,	*kernelParams)	+	1.0

						prediction	+=	coincidence	*	support	*	knowns[j]

		return	prediction

The	 SVM	 prediction	 is	 made	 by	 going	 through	 all	 of	 the	 training	 data	 points	 and
finding	 those	 that	are	 support	vectors	 (support	>	0).	When	a	 support	 vector	 is	 found	 its
coincidence	with	(similarity	to)	the	query	is	found	using	the	kernel	function.	The	degree	of
coincidence	is	multiplied	by	the	amount	of	support	for	that	training	vector	and	the	known
classification.	Given	 that	 the	known	classification	of	 the	data	vector	 is	+1.0	or	−1.0	 this
will	either	add	or	subtract	from	the	prediction	total;	effectively	each	support	vector	pulls
the	 summation	 to	 the	 positive	 or	 the	 negative	 size.	 In	 the	 end	whether	 the	 predictSum
value	is	finally	positive	or	negative	determines	the	category	of	the	query.

This	next	function,	svmSeparation(),	is	used	to	test	whether	the	training	data	was	well
separated	into	two	categories,	i.e.	reproducing	the	known	classification.	We	don’t	use	the
above	prediction	function	because	we	can	reuse	the	pre-calculated	kernelArray	for	speed.
As	before,	the	known	classification	is	in	the	form	of	an	array	containing	values	of	+1.0	or
−1.0.

def	svmSeparation(knowns,	supports,	kernelArray):

		score	=	0.0

		nz	=	[i	for	i,	val	in	enumerate(supports)	if	val	>	0]

		for	i,	known	in	enumerate(knowns):

				prediction	=	sum(supports[nz]	*	knowns[nz]	*	kernelArray[nz,	i])

				if	known	*	prediction	>	0.0:	#	same	sign

						score	+=	1.0

		return	100.0	*	score	/	len(knowns)

Making	 the	 prediction	 is	 done	 using	 the	 same	 logic	 as	 described	 for	 svmPredict(),
although	here	we	do	it	in	one	line	using	NumPy	array	operations,	given	that	we	don’t	have
to	call	 the	kernel	function	and	can	use	the	pre-calculated	array	instead.	It	 is	also	notable
that	we	calculate	nz,	a	list	of	the	indices	for	the	non-zero	support	values,	upfront	to	help

reduce	the	number	of	calculations.	With	each	prediction	value,	to	actually	test	whether	the
classification	 is	 correct	 we	 see	 if	 the	 prediction	 is	 the	 same	 sign	 as	 the	 known
classification.	At	the	end	the	function	gives	back	a	percentage	of	correct	classifications	for
the	training	data.

To	test	out	the	support	vector	machine	code	we	will	make	a	fairly	simple	example	that
contains	a	discontinuous	patchwork	of	points	 in	a	 two-dimensional	plane	that	have	been
placed	 into	 one	 of	 two	 categories,	 each	 in	 distinct	 regions.	 The	 following	 code	 goes
through	a	grid	of	x	and	y	positions,	which	are	normalised	 to	be	between	0.0	and	1.0,	 to
make	an	alternating	chequerboard	pattern	for	the	categorisation	(−1	or	+1),	except	for	the
middle	square,	which	is	flipped	the	other	way,	resulting	in	a	central	cross.	This	will	give	a
recognisable	shape	in	the	data	that	we	can	look	for	afterwards.

At	 each	 grid	 location	 the	 random.normal	 function	 from	 NumPy	 is	 used	 to	 make	 a
cluster	of	points	by	specifying	a	set	of	values	for	the	x	and	y	axes.	The	category	and	the	x
and	y	value	for	each	point	are	placed	in	the	main	catData	list.	This	list	is	then	shuffled	to
introduce	a	random	order.	The	list	of	known	categorisations	is	extracted	as	the	last	index
(-1)	for	all	catData	items	and	the	training	feature	vectors	as	everything	up	to	the	last	index
([:,:-1]).

numPoints	=	20

catData	=	[]

for	x	in	range(1,6):

		for	y	in	range(1,6):

				xNorm	=	x/6.0						#	Normalise	range	[0,1]

				yNorm	=	y/6.0

				if	(x	==	3)	and	(y	==	3):

						category	=	-1.0

				elif	(x%2)	==	(y%2):

						category	=	1.0

				else:

						category	=	-1.0

				xvals	=	random.normal(xNorm,	0.2,	numPoints)

				yvals	=	random.normal(yNorm,	0.2,	numPoints)

				for	i	in	range(numPoints):		#	xrange	in	Python	2

						catData.append((xvals[i],	yvals[i],	category))

catData	=	array(catData)

random.shuffle(catData)

knowns	=	catData	[:,-1]

data	=	catData	[:,:-1]

Running	the	SVM	on	this	data	 involves	passing	 in	 the	known	classifications,	 training
data,	 a	 Gaussian	 kernel	 function	 and	 the	 parameters	 for	 the	 kernel.	 After	 training	 the
svmSeparation()function	 can	 be	 used	 to	 assess	 how	well	 the	SVM	separates	 the	 known
categories.

params	=	(0.1,)

supports,	steps,	kernelArray	=	svmTrain(knowns,	data,	kernelGauss,	params)

score	=	svmSeparation(knowns,	supports,	kernelArray)

print('Known	data:	%5.2f%%	correct'	%	(score))

Figure	24.7.	 Example	output	for	an	SVM	classifier	with	two	data	dimensions.	The
input	SVM	training	data	is	shown	with	black	and	grey	circles	representing	the	two	data
categories	(left).	The	support	vectors	are	indicated	as	the	circled	points.	The	prediction
result	is	displayed	over	the	whole	data	range,	to	illustrate	the	classification	boundaries
(right).	The	category	for	each	point	is	illustrated	by	being	a	black	or	grey	shade.

The	following	Python	code	tests	the	trained	SVM	on	a	whole	range	of	different	points
in	the	plane	between	0	and	1,	thus	showing	the	shape	of	the	categorisation	boundaries.	The
distinction	between	the	categories	is	made	according	to	whether	the	prediction	is	greater
than	zero	(positive)	or	not.	Note	that	the	x	and	y	values	for	a	given	query	are	appended	to
lists	so	 that	 the	data	can	be	displayed	as	graphical	scatter	plots,	using	the	helpful	pyplot
library	(from	MatplotLib).

from	matplotlib	import	pyplot

ds1x	=	[]

ds1y	=	[]

ds2x	=	[]

ds2y	=	[]

x	=	0.0

while	x	<	1.0:

		y	=	0.0

		while	y	<	1.0:

				query	=	array((x,y))

				prediction	=	svmPredict(query,	data,	knowns,	supports,

																												kernelGauss,	params)

				if	prediction	>	0:

						ds1x.append(x)

						ds1y.append(y)

				else:

						ds2x.append(x)

						ds2y.append(y)

				y	+=	0.02

		x	+=	0.02

pyplot.scatter(ds1x,	ds1y,	color='grey')

pyplot.scatter(ds2x,	ds2y,	color='black')

pyplot.show()

1 	As	far	as	human	visual	appreciation	of	light	is	concerned.
2 	A	certain	number	of	points	best	determined	by	experimentation.
3 	Just	an	unfortunate	coincidence	in	terminology,	this	is	a	different	k	to	before.
4 	Alternative	metrics	might	be	 things	 like	Hamming	distance,	 the	minimum	number	of
substitutions	 to	 convert	 one	 sequence	 to	 another,	 or	 non-Euclidian	 distances	 like	 the
surface	distance	between	points	on	a	sphere.
5 	 Kohonen,	 T.	 (1982).	 Self-organized	 formation	 of	 topologically	 correct	 feature	 maps.
Biological	Cybernetics	43(1):	59–69.
6 	In	general	the	grid	need	not	be	rectangular.	For	example,	it	could	be	hexagonal.
7 	The	square	brackets	are	vital	so	the	whole	array	is	‘multiplied’	by	repetition,	rather	than
the	elements	inside	being	numerically	multiplied.
8 	There	are	also	vstack()	and	hstack()	functions	for	the	other	axes.
9 	The	remainder	after	integer	division,	e.g.	13	%	10	=	3	and	3	%	10	=	3.
10 	 This	 is	 described	 by	 the	 universal	 approximation	 theorem;	 see
http://http://en.wikipedia.org/wiki/Universal_approximation_theorem.
11 	Although	using	NumPy	can	actually	be	slower	for	small	neural	networks.
12 	Though	it	is	less	obvious	what	is	happening	we	could	also	do	the	following	and	avoid
the	loop:	aaIndexDict	=	dict	(enumerate(aminoAcids)).
13 	It	can,	strictly	speaking,	affect	the	likelihood	of	finding	a	support	vector.
14 	Aizerman,	M.,	Braverman,	E.,	and	Rozonoer,	L.	(1964).	Theoretical	foundations	of	the
potential	function	method	in	pattern	recognition	learning.	Automation	and	Remote	Control
25:	821–837.
15 	Boser,	B.E.,	Guyon,	 I.M.,	and	Vapnik,	V.N.	 (1992).	A	 training	algorithm	for	optimal
margin	classifiers.	In	D.	Haussler	(ed.),	5th	Annual	ACM	Workshop	on	COLT.	Pittsburgh,
PA:	ACM	Press.	pp.	144–152.
16 	Since	midnight	1	January	1970:	the	beginning	of	‘UNIX	time’.
17 	Mangasarian,	O.L.,	and	Musicant,	D.R.	(1999).	Successive	overrelaxation	for	support
vector	machines.	IEEE	Transactions	on	Neural	Networks	10(5):	1032–1037.
18 	Press,	W.H.,	Teukolsky,	S.A.,	Vetterling,	W.T.,	and	Flannery,	B.P.	 (2007).	Numerical

http://http://en.wikipedia.org/wiki/Universal_approximation_theorem

Recipes.	 The	Art	 of	 Scientific	Computing	 (3rd	 edn.).	 Cambridge:	 Cambridge	University
Press.

25 	Hard	problems
Contents

Solving	hard	problems

The	Monte	Carlo	method

Simple	Monte	Carlo	integration

Function	minimisation	by	Monte	Carlo

Metropolis-Hastings	Monte	Carlo

The	travelling	salesman	problem

Simulated	annealing

Simulated	annealing	of	the	travelling	salesman

Function	minimisation	by	simulated	annealing

Particle	dynamics	simulation

Solving	hard	problems
This	 chapter	 deals	 with	 problems	 that	 cannot	 be	 readily	 solved	 with	 a	 straightforward,
deterministic	algorithm.	This	includes	problems	that	computer	scientists	would	describe	as
NP	and	not	P	(non-deterministic	in	polynomial	time,	but	not	solvable	in	polynomial	time),
which	is	a	way	of	saying	that	a	problem	is	not	efficiently	solvable.	Whether	a	problem	is
straightforward	 to	 solve	will	 depend	on	 the	 complexity	of	 the	 system.	To	 take	 a	 classic
example,	 solving	 the	 gravitational	 equations	 for	 two	 orbiting	masses,	 like	 the	 Sun	 and
Earth,	is	fairly	easy,	but	adding	more	masses,	e.g.	the	Moon,	Mars	etc.,	makes	the	problem
much	harder.	The	basic	 equations	 of	 the	 system	do	not	 have	 to	 be	 complicated	 though.
Another	famous	(NP-hard)	problem	is	the	travelling	salesman	problem.	Here	the	objective
is	to	find	the	shortest	route	on	a	tour	that	goes	through	all	the	places	on	the	salesman’s	list.
The	 problem	 is	 easy	 to	 describe,	 and	 it	 is	 easy	 to	 calculate	 the	 length	 of	 a	 solution	 (a
route),	but	the	number	of	combinations	grows	very	quickly	with	the	number	of	places	to
visit	 and	 so	 finding	 the	 best	 solution	 can	 be	 difficult.	 This	 is	 somewhat	 different	 to	 a
classic	 optimisation	 problem,	 e.g.	 finding	 the	 minimum	 of	 a	 function,	 where	 you	 can
typically	follow	gradients	to	home	in	on	the	answer.

When	it	comes	to	biological	information	there	are	many	situations	of	this	kind,	because
biology	frequently	deals	with	large	and	interacting	systems.	For	example,	determining	the
structure	of	a	protein	generally	involves	several	thousands	of	atoms	and	in	general	we	can
only	 ‘solve’	 the	 structure	with	 good	 experimental	 data	 (e.g.	 from	 high-resolution	X-ray
crystallography);	it	is	not	sufficient	to	start	with	unstructured	atoms	and	a	physical	model.
However,	for	a	complex	problem	like	this,	and	in	a	similar	vein	to	measuring	a	travelling

salesman’s	 route,	 testing	 a	 given	 solution	 to	 see	 if	 it	 is	 better	 or	 worse	 can	 be
proportionately	 straightforward.	 Referring	 again	 to	 protein	 structures,	 there	 are	 many
methods	 that	 can	 quickly	 calculate	 the	 likelihood	 (or	 energy)	 of	 a	 structural	model.	An
obvious	approach	to	working	out	how	a	protein	folds	into	a	structure	would	be	to	approach
the	 situation	 in	 reverse:	 generate	 an	 array	 of	 possible	 solutions	 and	 then	 use	 the	 easier
testing	 methods	 to	 see	 if	 any	 of	 these	 look	 reasonable.	 Unfortunately,	 the	 number	 of
possible	 combinations	 is	 enormous,	 and	 there	 simply	wouldn’t	 be	 time	 to	 exhaustively
search	through	all	possibilities.	We	can	be	smarter	than	this	though,	for	example,	taking	a
smaller	number	of	random	solutions	and	only	testing	those,	and	then	basing	a	subsequent
round	 of	 guesses	 on	 the	 best	 solutions	 from	 the	 previous	 round.	 This	 leads	 us	 into	 the
realm	 of	Monte	 Carlo	 and	Markov	 chains,	 which	 we	 describe	 below.	 Also,	 it	 is	 often
helpful	to	use	heuristics,	which	for	big	problems	may	provide	smart	guesses	about	which
kinds	of	solution	should	never	be	tested,	thus	saving	time.	A	heuristic	for	solving	a	protein
structure	 might	 be	 that	 the	 dihedral	 angles	 along	 its	 backbone	 have	 unstrained
conformations.

Figure	25.1.	 The	travelling	salesman	problem	as	an	example	of	a	hard	problem.
Using	the	map	coordinates	of	cities	in	France	as	an	example,	the	route	that	minimises	the
total	journey	distance	between	all	cities	is	an	example	of	a	hard	problem	that	cannot	be
solved	by	classic	minimisation	techniques.	Here	the	number	of	possible	routes,	with	no
fixed	starting	or	end	points,	is	15!	=	1,307,674,368,000,	or	half	that	number	if	we	consider
reverse	routes	to	be	the	same.	Because	it	is	often	impractical	to	test	all	possible	routes	we
can	use	methods	like	Monte	Carlo,	or	Monte	Carlo	in	combination	with	simulated
annealing,	to	find	a	good	solution	in	a	reasonable	time.	The	illustrated	route	is	the
optimum	solution	found	by	the	Python	functions	described	later	in	this	chapter.

Problems	of	 this	kind	are	a	vast	 topic	 that	we	can	only	 touch	upon	 lightly.	However,
using	Python	examples	we	will	illustrate	a	few	core	techniques,	which	are	commonly	used
to	 solve	 complex	 problems	 in	 general.	 Accordingly	 we	 will	 describe	 the	Monte	 Carlo
method,	 simulated	 annealing,	 particle	 dynamics	 and	Markov	 chains.	These	will	 then	 be
applied	 to	situations	 that	a	biologist	will	be	passingly	 familiar	with.	Unfortunately	 there
will	not	be	room	to	include	descriptions	of	other	methods,	such	as	genetic	algorithms	or
bounded	 tree	 traversal.	 It	 is	 worth	 noting,	 however,	 that	 the	 methods	 described	 are
complementary	 to	 the	machine	 learning	 approaches	 described	 in	Chapter	24,	which	 are
good	at	recognising	patterns	and	approximating	functions	in	complex	systems:	useful	for
getting	good	heuristics.

The	Monte	Carlo	method
The	Monte	Carlo	method1	means	to	randomly	test	data	points	to	approximate	or	guess	a

solution,	 thus	 getting	 a	 good	 idea	 of	 what	 is	 going	 on	 by	 sampling	 only	 a	 few	 points,
rather	than	many.	This	approach	is	often	coupled	with	targeting	the	selection	of	data	points
towards	the	most	promising	or	important	results.	This	leads	directly	into	the	Markov	chain
idea,	where	we	can	base	a	new	selection	on	the	last	one,	and	a	famous	implementation	of
this	is	the	Metropolis-Hastings	algorithm,2,3	for	making	the	next	guess,	for	an	effectively
random	walk	with	probabilistic	selection	that	echoes	thermodynamic	energy.

Key	to	the	implementation	of	Monte	Carlo	and	related	methods	is	the	ability	to	generate
random,	 or	 almost	 random,	 numbers.	 Fortunately	 in	 Python	we	 can	 exploit	 the	 random
module	 and	 its	 equivalent	 in	 NumPy.	 Usually	 we	 do	 not	 require	 absolutely	 random
numbers	so	the	usual	pseudorandom	generators	will	be	sufficient.	The	important	thing	is
that	 the	distribution	of	 the	emitted	numbers	 is	approximately	correct	 (typically	uniform;
level	 throughout	 a	 range)	 and	 that	 there	 is	 no	 significant	 selection	 bias.	 Having	 truly
random	 numbers	 that	 are	 entirely	 unpredictable	 doesn’t	 matter.	 Indeed,	 being	 able	 to
restart	a	Monte	Carlo	run	with	the	same	set	of	pseudorandom	numbers	can	be	useful	for
testing.

Simple	Monte	Carlo	integration
The	first	and	simplest	Python	example	that	uses	a	Monte	Carlo	approach	is	one	that	aims
to	perform	integration,	i.e.	to	determine	the	area	bounded	by	some	condition.	Here	we	will
use	a	circle,	and	the	result	will	not	depend	upon	knowing	what	the	value	of	the	constant	π
is.	Indeed,	this	example	actually	provides	a	means	of	estimating	a	value	for	π,	based	upon
the	measurement	for	the	area	of	a	circle.	As	illustrated	in	Figure	25.2,	the	method	works
by	taking	a	square	area	where	x	and	y	axis	values	range	between	−1	and	1.	Random	data
points	(i.e.	(x,y)	values)	are	added	 to	 this	square	and	 then	 the	number	of	points	 that	 fall
inside	 a	 circle	 are	 compared	 to	 the	 total	 number	of	points.	Here	 it	 is	 easy	 to	 tell	which
points	are	 inside	 the	circle	because	 they	will	be	within	a	 fixed	distance	from	the	centre.
For	this	example	this	distance	(the	radius	of	the	circle)	is	1.0	and	the	centre	is	at	the	origin
of	the	coordinates.	After	a	large	number	of	points	have	been	added,	the	number	of	points
that	have	randomly	fallen	inside	the	circle	will	be	proportionate	to	the	area	of	the	circle.
This	then	leads	to	an	estimation	of	the	area	compared	to	the	total	square,	and	thence	to	an
estimated	value	for	π.

Figure	25.2.	 Using	the	Monte	Carlo	method	to	estimate	π	from	the	area	of	a	circle.
By	uniformly	selecting	random	points	in	a	square	interval	we	can	estimate	the	area	of	a
circle	from	the	proportion	of	points	that	fall	within	a	given	distance	of	the	centre.	This	in
turn	can	be	used	to	give	an	estimate	for	the	mathematical	constant	π:	for	a	circle	of	radius
1,	and	hence	area	π,	the	area	of	the	bounding	square	is	4.	Thus	the	ratio	of	circle	area
points	to	total	points	approaches	π/4	as	the	sample	size	increases.	This	is	a	simple
example	of	the	Monte	Carlo	approach,	which	uses	random	samples	of	test	points	to	solve
a	problem.

Firstly,	we	 import	 the	 random	module	 from	NumPy	and	make	a	 few	definitions.	The
uniform	function	 is	defined	upfront	 so	 that	we	are	not	 repeatedly	using	 the	dot	notation
inside	 loops	 (which	 is	 slower).	This	will	 generate	pseudorandom	numbers	with	 an	 even
distribution	in	our	desired	range.	The	number	of	random	points	sampled	for	the	example	is
defined	as	100,000,	but	it	is	interesting	to	play	with	this	to	see	the	effect	on	the	accuracy
of	estimating	π.	The	number	of	points	inside	the	circle	numInside	is	naturally	defined	as
zero	at	the	start.

from	numpy	import	random

uniform	=	random.uniform

numSamples	=	100000

numInside	=	0

Then	 comes	 a	 loop	with	 the	 required	 number	 of	 cycles	where	we	define	 the	 random
points.	Here	we	 use	 the	 range()	 function,	which	works	 in	 both	Python	2	 and	Python	 3,
although	for	the	latter,	rather	than	generating	a	whole	list	of	values,	it	creates	an	iterable
object	that	gives	the	sequence	of	numbers	on	demand	(you	can	use	xrange()	in	Python	2
for	this	behaviour).	Note	that	the	first	two	arguments	to	the	function	uniform()	define	the
limit	 to	 the	 random	 values	 (i.e.	 between	 plus	 and	 minus	 one)	 and	 the	 last	 argument
indicates	how	many	values	to	yield;	here	we	need	two,	for	x	and	y.

for	i	in	range(numSamples):					#	could	use	xrange	in	Python	2

		x,	y	=	uniform(-1.0,	1.0,	2)

With	 the	 coordinates	 of	 the	 random	 point	 defined	 we	 now	 test	 whether	 the	 point	 is
inside	the	circle;	if	the	sum	of	coordinates	squared	is	less	than	one	(squared)	the	point	is
sufficiently	 close	 to	 the	 centre.	 If	 the	 coordinates	 represent	 a	point	 for	which	 this	holds
then	the	count	for	internal	points	is	increased	by	one.

if	(x	*	x)	+	(y	*	y)	<	1.0:

		numInside	+=	1

At	 the	 end	 the	 estimate	 for	π	 is	 simply	 four	 times	 the	 proportion	 of	 internal	 points,
relative	to	the	total	number	of	points.	This	follows	from	the	area	of	the	region	being	4.0,
i.e.	a	circle	of	radius	1.0	is	bounded	by	a	square	with	sides	of	length	2.0.

pi	=	4.0	*	numInside	/	float(numSamples)

print(pi)

This	 is	 not	 an	 especially	 efficient	means	 of	 estimating	π4,	 but	 the	 same	 idea	 can	 be
applied	to	any	shape	or	function	that	can	be	defined,	however	many	dimensions	it	might
have.

Function	minimisation	by	Monte	Carlo
The	next	example	will	be	to	minimise	a	fairly	simple	two-dimensional	function:	 f(x,y)	=
(1−x)2	+	100(y−x2)2.	This	is	known	as	the	Rosenbrock	test5	and	is	sometimes	used	to	test
optimisation	 performance.	 The	 function	 has	 a	 crescent-shaped	 valley.	 The	 minimum	 at
(1,1)	is	in	a	flat	region	of	the	valley	and	is	fairly	hard	to	pin	down	exactly.

In	Python	the	test	function	is	defined	below.	This	will	be	used	to	estimate	the	value	of
the	function	(which	can	be	imagined	as	the	‘height’)	for	each	of	the	test	points.	Simply	the
coordinates	are	accepted	as	arguments	and	the	value	at	that	point	is	passed	back.

def	testFunc(point):

		x,	y	=	point

		a	=	1.0	-	x

		b	=	y	-	(x	*	x)

		return	(a	*	a)	+	(100	*	b	*	b)

We	will	start	with	a	simplistic	approach	to	minimising	this	function,	which	will	then	be
built	upon	to	give	something	resembling	a	more	normal	Monte	Carlo	search.	For	the	most
basic	approach	we	will	define	a	range	of	values	for	the	coordinates	(here	between	−5	and
5)	and	choose	random	points	from	within	that.	Naturally	when	trying	to	find	the	answer	to
an	optimisation	problem	it	helps	to	know	something	about	the	range	of	sensible	answers.
It	is	important	that	the	range	of	tested	points	spans	the	optimum	answer	but	smaller	ranges
result	 in	quicker	 searches.	For	combinatorial	problems	 (such	as	 travelling	 salesman)	 the
question	 is	generally	well	bounded	but	for	an	arbitrary	function	 there	may	be	no	known
limits,	so	it	is	up	to	the	programmer	to	choose	sensible	bounds	for	variables	and	perhaps
perform	preliminary	tests	to	establish	these.

The	search	begins	by	 initialising	 the	best	point	 (the	one	with	 the	smallest	value)	as	a

random	coordinate.	Here	we	do	this	with	uniform	and	record	the	initial	bestValue	as	 the
value	of	the	function	at	this	point.

bestPoint	=	uniform(-5,	5,	2)

bestValue	=	testFunc(bestPoint)

Next	there’s	a	loop,	for	a	given	number	of	steps,	which	defines	a	random	point	between
the	pre-set	limits.	The	value	of	the	function	at	that	point	is	tested.	If	the	value	of	the	latest
point	 is	 smaller	 than	 the	 current	 best	 value	 then	 the	 best	 point	 and	 corresponding	 best
value	are	 redefined.	 In	 this	example	we	print	a	 line	 to	 the	screen	when	a	better	point	 is
found	so	that	the	progress	can	be	visualised.

numSteps	=	100000

for	i	in	range(numSteps):

		point	=	uniform(-5,	5,	2)

		value	=	testFunc(point)

		if	value	<	bestValue:

				bestPoint	=	point

				bestValue	=	value

				x,	y	=	point

				print('%5d	x:%.3f	y:%.3f	value:%.3f'	%	(i,	x,	y,	value))

The	next	example	illustrates	an	improvement	on	the	above	loop.	Rather	than	choosing	a
completely	random	point	to	test	next	the	subsequent	points	are	based	on	the	best	point	so
far;	 this	 is	 done	 using	 the	 normal()	 function,	 which	 selects	 the	 next	 point	 in	 a	 random
Gaussian	 spread.	 The	 variable	 bestPoint	 is	 passed	 to	 this	 function	 as	 the	 centre	 of	 the
distribution,	i.e.	the	test	point	is	based	on	the	previous	best.	The	values	0.5	and	2	represent
the	spread	of	the	distribution	and	the	number	of	values	(dimensions)	respectively.	The	rest
of	 the	 loop	remains	 the	same,	 testing	whether	 the	value	is	an	improvement.	Because	the
test	points	now	follow	the	good	solutions,	this	example	tends	to	reach	the	optimum	point
more	efficiently	than	the	previous	example.

normal	=	random.normal

mumSteps	=	100000

for	i	in	range(numSteps):	#	could	use	xrange	in	Python	2

		point	=	normal(bestPoint,	0.5,	2)

		value	=	testFunc(point)

		if	value	<	bestValue:

				bestPoint	=	point

				bestValue	=	value

				x,	y	=	point

				print('%5d	x:%.3f	y:%.3f	value:%e'	%	(i,	x,	y,	value))

Metropolis-Hastings	Monte	Carlo
After	 the	 gentle	 introduction,	 the	 next	 example	 illustrates	 a	 further	 improvement	 to	 the
Monte	 Carlo	 optimisation	 approach,	 giving	 what	 is	 termed	 the	 Metropolis-Hastings
approach.	 The	 Metropolis-Hastings	 algorithm	 is	 formally	 described	 in	 terms	 of	 a

probability	distribution,	 so	 it	 fits	well	with	 optimisation	 problems	 that	 have	 a	 statistical
nature;	it	takes	samples	from	a	probability	distribution.	The	example	problem	used	here	is
not	 actually	 probabilistic,	 but	 we	 can	 pretend	 that	 it	 is	 and	 the	method	will	 work	well
nonetheless.

The	 algorithm	works	 by	 estimating	what	 is	 effectively	 a	 probability	 ratio,	 comparing
the	value	at	a	previous	good	point	to	a	new	test	point.	If	the	test	point	is	better	it	is	always
accepted,	 but	 if	 the	 test	 point	 is	 worse	 it	 may	 still	 be	 accepted,	 in	 a	 random	 way,
depending	on	how	much	worse	 it	 is.	This	 is	 the	key	difference	between	 the	Metropolis-
Hastings	algorithm	and	the	previous	one,	which	only	accepted	new	points	(solutions	to	the
problem)	 if	 they	 are	 better.	 By	 sometimes	 accepting	worse	 points	 the	 algorithm	 has	 an
opportunity	to	jump	out	of	what	may	be	only	a	local	optimum,	to	search	for	a	better	global
optimum.	Nonetheless,	the	algorithm	will	still	effectively	home	in	on	good	solutions.	This
approach	is	a	way	of	taking	samples	from	a	probability	distribution	(or	other	function)	and
is	sometimes	solely	used	for	that	purpose;	finding	the	absolute	optimum	is	not	always	the
objective.	However,	here	we	define	a	Monte	Carlo	function	that	does	record	the	optimum
point	 found	 so	 far.	Hence,	 in	 the	 example	 below	we	 record	bestPoint,	 the	 globally	 best
point	so	far,	as	well	as	prevPoint,	which	is	the	previous	‘good’	point	that	we	are	currently
searching	from,	but	which	may	not	be	the	absolute	best.

The	next	 example	 is	more	general	 than	 the	previous	one,	 and	 is	 defined	 as	 a	Python
function	rather	than	a	bare	loop.	Thus	we	could	use	it	for	multiple	different	problems	by
defining	 the	 test	 function	 and	 dimensionality	 appropriately.	 Compared	 to	 the	 full
Metropolis-Hastings	 algorithm	 the	 function	 has	 a	 simplification,	 given	 that	 we	 will
assume	that	the	probability	of	a	jump	from	the	previous	point	to	the	test	point	is	the	same
as	the	reverse	jump;	the	‘proposal	density’	is	symmetric.	For	some	problems	this	need	not
be	 the	 case,	 but	 for	 this	 example	 it	 keeps	 things	 simple	 and	means	 that	 the	 acceptance
probability	(prob)	is	based	only	on	the	values	of	the	function,	and	not	on	the	way	in	which
search	points	are	generated	with	a	normal	distribution.

The	 appropriate	 import	 of	 exp	 to	 calculate	 exponents	 is	 made	 and	 the	 function
monteCarlo	 is	 defined,	 taking	 arguments	 representing	 the	 number	 of	 search	 steps,	 the
function	to	test,	the	spread	of	the	normal	distribution,	which	generates	the	next	test	point,
and	the	number	of	dimensions	of	the	problem	(defaults	to	2,	i.e.	for	x	and	y	axes).

from	math	import	exp

def	monteCarlo(numSteps,	testFunc,	spread=0.1,	nDims=2):

The	initial	coordinates	for	 the	best	point	so	far	and	for	 the	previous	 test	point	 (which
may	not	be	the	best)	are	defined,	here	as	the	same	random	vector,	with	coordinates	in	the
range	−1.0	to	1.0	(although	other	values	could	be	used).	The	corresponding	value	of	 the
function	 being	 optimised	 is	 calculated	 for	 these	 points.	 Initially	 the	 best	 and	 previous
points	and	values	are	the	same,	but	this	will	change	after	the	main	search	starts.

bestPoint	=	uniform(-1.0,	1.0,	nDims)

prevPoint	=	bestPoint

bestValue	=	testFunc(bestPoint)

prevValue	=	bestValue

The	main	for	loop	is	constructed	for	the	specified	number	of	steps.	As	before,	the	test
point	 is	 based	 on	 a	 previous	 one,	 using	 the	 normal()	 function	 and	 the	 input	 amount	 of
spread.	The	value	is	then	simply	the	value	of	the	input	function	at	this	test	point.

for	i	in	range(numSteps):

		testPoint	=	normal(prevPoint,	spread,	nDims)

		value	=	testFunc(testPoint)

The	acceptance	probability	is	the	exponent	of	the	difference	between	the	test	value	and
the	previous	value;	this	is	equivalent	to	the	ratio	between	two	probabilities	(e(a−b)	=	ea/eb),
so	we	are	effectively	 saying	 that	 the	exponent	of	 the	value	given	by	 the	 test	 function	 is
proportional	 to	 the	 probability.	 Naturally,	 if	 proper	 probabilities	 are	 available	 for	 a
particular	problem	these	should	be	used	instead.

prob	=	exp(prevValue-value)

Next	we	 test	whether	 the	 ‘probability’	 score	 is	greater	 than	a	 random	number	 (in	 the
range	0.0	to	1.0).	If	 the	test	point	gives	a	value	that	 is	better	 than	the	previous	point	 the
value	of	prob	will	be	greater	than	1.0,	so	this	test	will	definitely	be	passed.	If	the	prob	is
less	than	1.0	(the	test	point	is	not	as	good	as	the	previous	one)	the	value	may	be	accepted,
although	with	less	likelihood	the	further	prob	is	from	1.0.	Effectively	this	can	be	viewed
as	uniform()	generating	a	threshold,	and	if	prob	exceeds	this	the	test	point	is	accepted	and
the	previous	point	for	the	next	cycle	is	redefined.

if	prob	>	uniform():

		prevPoint	=	testPoint

		prevValue	=	value

A	second	check,	subject	to	passing	the	first,	determines	whether	the	tested	value	is	the
best	 overall	 so	 far	 inspected,	 and,	 if	 it	 is,	 this	 value	 and	 the	 corresponding	 point	 are
recorded.	 As	 before,	 we	 print	 out	 the	 best	 points	 to	 give	 an	 indication	 of	 optimisation
progress.	Although,	because	the	number	of	dimensions	of	the	points	in	any	given	situation
can	vary,	a	Python	list	comprehension	converts	the	numbers	to	strings	and	is	then	joined
with	‘,	‘.join()	to	make	the	coordinates	into	a	Python	string.	At	the	end	of	the	function	the
best	point	and	its	corresponding	value	are	passed	back.	Alternatively,	all	of	the	accepted
points	 (prevPoint)	 could	 be	 recorded	 to	 give	 an	 indication	 of	 the	 ‘trajectory’	 that	 the
Monte	Carlo	search	took;	this	may	be	plotted	using	matplotlib.

if	value	<	bestValue:

		bestPoint	=	testPoint

		bestValue	=	value

		coordinates	=	',	'.join(['%.3f'	%	v	for	v	in	testPoint])

		print('%5d	[%s]	value:%e'	%	(i,	coordinates,	value))

return	bestValue,	bestPoint

The	 function	 is	 simply	 tested	 on	 the	 Rosenbrock	 function	 using	 a	 large	 number	 of
points.	 It	 is	worth	 experimenting	 to	 see	 how	 repeat	 runs	 locate	 the	minimum	 (1.0,1.0);
some	search	paths	locate	the	global	minimum	more	quickly	than	others:

monteCarlo(100000,	testFunc,	2)

The	travelling	salesman	problem
The	 Python	 examples	 now	move	 on	 from	Monte	Carlo	 optimisation	 of	 a	mathematical
function	to	combinatorics:	the	travelling	salesman	problem.	Specifically,	we	will	show	an
example	that	can	determine	the	best	route	between	15	of	the	largest	cities	in	France	(see
Figure	25.1).	There	are	a	 total	of	1,307,674,368,000	possible	ways	of	ordering	the	cities
into	a	route,	although	our	solution	will	search	only	a	fraction	of	these	to	come	up	with	the
optimum	answer.	We	don’t	mean	to	suggest	that	Monte	Carlo	is	the	best	way	to	solve	this
particular	 problem,	 but	 it	 gives	 a	 clear	 example	 to	work	with.	 Likewise,	we	 could	 also
choose	to	solve	a	different	problem,	but	hopefully	by	keeping	things	simple	you	will	see
how	analogous	situations	that	involve	the	ordering	of	data	items	can	be	solved.

Figure	25.3.	 Trajectories	of	subsequent	trials	from	Metropolis-Hastings	Monte
Carlo	searches	to	minimise	a	shallow	function.	In	this	plot	the	lighter	the	background
shade	the	smaller	is	the	value	of	a	two-dimensional	test	function.	The	trajectories	of	test
points	that	result	from	applying	the	Metropolis-Hastings	Monte	Carlo	method	are
visualised	as	darker	lines.	This	method	works	by	selecting	subsequent	test	points	(after	a
random	start)	relative	to	the	position	of	the	previous	point,	but	only	accepting	the	new
solution	if	it	is	better	and	occasionally	if	it	is	worse,	with	a	probability	specified	by	the
Metropolis-Hastings	criterion.	In	this	way	the	routes	of	accepted	points	will	follow	the
function	to	its	minimum	but	have	occasional	jumps,	which	may	be	important	in
overcoming	local	minima.

The	 travelling	 salesman	 problem	 solely	 involves	 considering	 the	 distances	 between
cities,	but	 in	other,	more	biological,	 situations	 there	may	be	more	 information	 to	 reduce
the	complexity	of	the	problem.	For	example,	in	nuclear	magnetic	resonance	(NMR)	it	is	a
common	operation	to	assign	signals	that	occur	in	a	spectrum	to	the	amino	acid	residues	of

a	protein	chain.	The	problem	is	 that	you	don’t	know	which	signal	corresponds	 to	which
amino	 acid	 in	 the	 sequence.	 Specific	 NMR	 experiments	 allow	 you	 to	 determine	which
signals	 are	 likely	 to	 be	 neighbours	 in	 a	 sequence	 (although	 not	 unambiguously	 so)	 and
also	what	kinds	of	amino	acid	a	signal	could	represent.	Thus,	although	you	can	solve	the
problem	 is	 the	 same	 basic	 way	 as	 the	 travelling	 salesman,	 to	 determine	 the	 best	 data
sequence	 you	 have	 considerably	 more	 information	 and	 can	 exclude	 many	 possibilities;
many	data	points	are	known	to	not	be	neighbours,	and	certain	data	points	can	be	excluded
from	particular	locations	in	the	sequence.	Generalising	for	other	biological	problems,	the
more	information	you	have,	to	give	better	probabilities,	the	more	robust	the	solution.

To	solve	 the	 travelling	salesman	problem	with	a	 simple	Python	 function	we	will	 first
make	 a	 few	 handy	 imports	 and	 then	 define	 a	 helper	 function,	 which	 has	 the	 job	 of
determining	the	total	distance	for	a	particular	route	between	all	the	cities.

from	math	import	sqrt,	exp

from	random	import	shuffle,	randint

from	numpy	import	array

The	 function	 getRouteLength()	 takes	 a	 dictionary	 containing	 the	 distances	 between
points	(cities	in	our	example)	and	the	route	to	calculate	the	distance	for.	It	should	be	noted
that	if	the	distances	between	all	of	the	relevant	points	can	be	determined	in	advance	then
this	 will	 generally	 lead	 to	 a	 quicker	 program,	 given	 that	 we	 won’t	 have	 to	 repeat	 the
distance	calculation.	However,	caching	the	distances	in	this	way	requires	memory,	which
may	be	insufficient	for	large	problems.	The	innards	of	the	function	are	fairly	simple.	The
initial	 distance	 is	 initialised	 as	 zero,	 then	we	go	 through	each	pair	 of	 subsequent	points
visited	in	the	route;	the	order	of	cities	in	the	list	defines	the	route.	The	inbuilt	enumerate()
is	used	to	extract	the	index	and	each	location	of	the	route	at	the	same	time.	Note	that	this
loop	only	goes	up	to	the	penultimate	point	in	the	route	(route[:-1])	so	that	we	always	have
room	to	 fetch	 the	next	point	 in	a	pair:	 route[i+1].	The	 two	neighbouring	points	are	 then
used	as	a	key	to	look	up	the	distance	between	them	in	the	distanceData	dictionary	passed
in,	which	is	then	added	to	the	total.	If	it	is	not	practical	to	have	a	look-up	table	of	distances
then	 this	 function	 could	 calculate	 the	 distances	 from	 the	 data	 points	 themselves.
Construction	 of	 the	 dictionary	 of	 city	 distances	 is	 illustrated	 in	 the	 function
calcCityDistances()	discussed	later.

def	getRouteLength(distanceData,	route):

		distance	=	0.0

		for	i,	pointA	in	enumerate(route[:-1]):

				pointB	=	route[i+1]

				key	=	frozenset((pointA,	pointB))

				distance	+=	distanceData[key]

		return	distance

Next	we	come	 to	 the	 function	 that	 does	 the	 actual	 solving	of	 the	 travelling	 salesman
problem	 using	 the	 Monte	 Carlo	 method.	 The	 general	 idea	 is	 that	 we	 will	 start	 with	 a
random	 route	 (order	 of	 cities)	 and	 then	 swap	 random	 pairs	 of	 cities	 on	 the	 route	 to
generate	the	next	test	route.	A	test	route	will	be	accepted	or	rejected	in	the	same	manner

that	we	did	for	the	previous	function	optimisation.	Swapping	pairs	of	cities	is	not	the	only
way	 that	we	could	generate	new	routes	 (states)	 to	 test:	 for	example,	 random	neighbours
could	be	swapped.	However,	swapping	completely	random	points	works	well	for	the	test
problem	 and	 generally	 allows	 a	wide	 range	 of	 solutions	 to	 be	 sampled.	 Swapping	 only
neighbours	 gives	 less	 drastic	 changes	 and	may	 be	 better	 at	 refining	 good	 solutions,	 but
will	not	be	as	quick	to	search	a	wide	variety	of	routes.	Subsequently	this	method	that	uses
random	swaps	will	be	refined,	using	simulated	annealing,	so	that	we	get	an	initially	wide
and	unbiased	search	that	subsequently	narrows	to	a	refined	solution.

The	function	travellingSalesman()	is	defined	as	taking	the	distanceData	dictionary	that
provides	the	distance	look-up,	a	list	of	the	cities	involved	and	the	number	of	search	steps
to	use.	Naturally,	the	number	of	steps	to	use	will	depend	on	the	number	of	cities	that	are
considered	and	acceptable	values	may	be	determined	by	experimentation.

def	travellingSalesman(distanceData,	cities,	numSteps=10000):

The	 number	 of	 cities	 in	 the	 problem	 is	 recorded	 and	 the	 initial	 bestRoute	 list	 is	 a
randomly	shuffled	copy	of	the	input	list	of	cities.

n	=	len(cities)

bestRoute	=	cities[:]

shuffle(bestRoute)

The	acceptance	scores	we	use	below	will	depend	on	the	differences	in	route	lengths,	but
the	 magnitude	 of	 these	 distances	 will	 vary	 according	 to	 the	 situation	 at	 hand	 (in	 our
example	we	happen	to	be	dealing	with	thousands	of	kilometres).	Hence,	so	that	it	doesn’t
matter	what	the	scale	of	the	distances	are,	we	calculate	a	normalising	factor,	which	we	call
scale.	The	heuristic	we	use	here	is	to	take	half	of	the	standard	deviation	of	the	inter-city
distances	as	 the	scale	 factor.	This	 is	easily	calculated	with	 the	 function	std()	 inbuilt	 into
NumPy	arrays:

dists	=	list(distanceData.values())	#	list()	not	needed	in	Python	2

scale	=	0.5	*	array(dists).std()

The	corresponding	 initial	bestDistance	uses	 the	helper	 function	getRouteLength()	and
the	dictionary	of	distance	information	to	calculate	the	length	of	the	initial	route.	Copies	of
the	initial	route	and	distance	are	then	made,	which	will	be	the	starting	point	for	the	Monte
Carlo	search.

bestDistance	=	getRouteLength(distanceData,	bestRoute)

prevRoute	=	bestRoute

prevDistance	=	bestDistance

A	for	 loop	 is	defined	 to	go	 through	each	of	 the	search	steps.	Two	indices	a	and	b	are
defined	as	random	numbers,	between	zero	and	the	index	of	the	last	city.	These	will	be	the
indices	of	the	two	cities	that	will	be	swapped	in	the	route.	The	test	route	for	this	cycle	is
initially	defined	as	a	copy	of	the	previous	‘good’	route.	Then	the	entries	at	the	two	random
indices	are	swapped;	position	a	in	the	old	route	is	b	in	the	new	one	and	vice	versa.

for	i	in	range(numSteps):

		a	=	randint(0,	n-1)

		b	=	randint(0,	n-1)

		route	=	prevRoute[:]

		route[a]	=	prevRoute[b]

		route[b]	=	prevRoute[a]

With	the	test	route	defined,	the	length	going	through	the	cities	is	calculated.	The	score
(equivalent	to	a	Metropolis-Hastings	acceptance	probability)	is	calculated	as	the	exponent
of	 the	 difference	 in	 distances	 between	 the	 test	 route	 and	 the	 prior	 one,	 divided	 by	 the
normalising	distance	scale	factor.	The	result	of	this	is	that	if	a	test	route	length	is	longer	by
the	value	of	scale	there	is	an	e−1	(37.8%)	chance	of	acceptance.

distance	=	getRouteLength(distanceData,	route)

score	=	exp((prevDistance-distance)/scale)

The	score	is	compared	against	a	random	number	in	the	range	0.0	to	1.0.	If	the	new	route
is	shorter	the	score	will	be	greater	than	1.0	and	it	will	definitely	be	accepted,	otherwise	it
is	a	matter	of	chance	depending	on	how	much	 longer	 the	distance	 is.	 If	 the	 test	 route	 is
accepted	it	is	recorded	as	prevRoute	so	that	it	will	be	the	state	to	go	from	in	the	next	cycle.

if	score	>	uniform():

		prevRoute	=	route

		prevDistance	=	distance

A	second	test	determines	whether	the	distance	is	the	overall	shortest	so	far	measured.	If
so	the	route	is	remembered	as	the	best	one.	The	best	distance	and	step	number	are	printed
to	indicate	progress.

if	distance	<	bestDistance:

		bestRoute	=	route[:]

		bestDistance	=	distance

		print('%5d	%.5f'	%	(i,	distance))

return	bestDistance,	bestRoute

To	 finally	 test	 the	 function	 some	 distance	 information	 is	 required.	 Here	 this	 is	 done
using	a	dictionary	that	contains	the	coordinates	(latitude	and	longitude	in	degrees)	of	the
cities	 concerned.	 Of	 course,	 this	 will	 only	 allow	 us	 to	 calculate	 approximate	 distance
across	 the	Earth’s	globe,	 rather	 than	practical	 road	or	 rail	distances.	Nonetheless,	 this	 is
good	enough	to	illustrate	the	procedure.

cityCoords	=	{'Paris':(48.856667,	2.350833),

														'Marseille':(43.296386,	5.369954),

														'Lyon':(45.759723,	4.842223),

														'Toulouse':(43.604503,	1.444026),

														'Nice':(43.703393,	7.266274),

														'Strasbourg':(48.584445,	7.748612),

														'Nantes':(47.21806,	-1.55278),

														'Bordeaux':(44.838611,	-0.578333),

														'Montpellier':(43.61194,	3.87722),

														'Rennes':(48.114722,	-1.679444),

														'Lille':(50.637222,	3.063333),

														'Le	Havre':(49.498889,	0.121111),

														'Reims':(49.26278,	4.03472),

														'Saint-Etienne':(45.434722,	4.390278),

														'Toulon':(43.125,	5.930556)}

The	 next	 function	 uses	 the	 city	 coordinates	 to	 calculate	 a	 dictionary	 containing	 the
distances	between	each	pair,	hence	we	use	two	for	loops	to	get	all	city	pairs.	The	distance
metric	derives	from	the	length	of	the	great	arc	between	the	cities,	given	that	we	are	dealing
with	positions	on	the	surface	of	the	Earth	rather	than	a	flat	plane.	Hence	we	first	calculate
the	central	angle	between	the	cities	(in	radians)	and	then	multiply	this	by	the	radius	of	the
Earth.	Note	that	the	key	to	the	distances	dictionary	is	a	Python	frozenset	object,	 thus	the
key	to	get	a	distance	value	does	not	depend	on	the	order	of	the	two	cities	in	the	key.	If	we
used	a	Python	tuple	as	a	key	then	we	would	have	to	store	both	(cityA,	cityB)	and	(cityB,
cityA)	or	always	sort	the	key	items.	Here	a	simple	Python	set	cannot	be	used,	it	must	be
the	frozen	kind	as	dictionary	keys	cannot	have	modifiable	values.

from	math	import	acos,	cos,	sin,	radians

def	calcCityDistances(coordDict):

		cities	=	list(coordDict.keys())

		n	=	len(cities)

		distances	=	{}

		for	i	in	range(n-1):

				cityA	=	cities[i]

				latA,	longA	=	coordDict[cityA]

				latA	=	radians(latA)

				longA	=	radians(longA)

				for	j	in	range(i+1,	n):

						cityB	=	cities[j]

						latB,	longB	=	coordDict[cityB]

						latB	=	radians(latB)

						longB	=	radians(longB)

						dLong	=	abs(longA	-	longB)

						angle	=	acos(sin(latA)*sin(latB)	+	cos(latA)*cos(latB)*cos(dLong))

						dist	=	angle	*	6371.1	#	Mean	Earth	radius	(km)

						key	=	frozenset((cityA,	cityB))

						distances[key]	=	dist

		return	distances

Using	the	distance	information,	the	best	route	between	the	cities	can	hopefully	be	found
using	the	Monte	Carlo	method.

distances	=	calcCityDistances(cityCoords)

cities	=	list(cityCoords.keys())																#	Use	all	the	cities

dist,	route	=	travellingSalesman(distances,	cities,	1000000)

print('%.3f	%s'	%	(dist,	',	'.join(route)))

If	all	goes	well,	the	test	will	give	the	following	route,	or	its	equally	good	reverse,	with
the	distance	of	2465.56	km:

Strasbourg,	Reims,	Lille,	Paris,	Le	Havre,	Rennes,	Nantes,	Bordeaux,	

Toulouse,	Montpellier,	Marseille,	Toulon,	Nice,	Lyon,	Saint-Etienne

Simulated	annealing
The	 next	 section	 of	 this	 chapter	 relates	 to	 an	 adjustment	 to	 the	 Monte	 Carlo	 method
termed	 simulated	 annealing,6,7	 and	 this	 may	 be	 applied	 to	 both	 the	 combinatorial	 and
function	optimisations	already	described.	Here	the	main	principle	is	to	have	the	same	kind
of	random	selection	and	acceptance	rules	as	before,	but	the	degree	of	acceptance	of	non-
improving	 states	 diminishes.	 As	 the	 data	 sampling	 proceeds	 the	 acceptance	 criterion
becomes	 stricter,	 and	 the	 range	 of	 accepted	 steps	 effectively	 becomes	 narrower.	 This
enables	an	initially	wide	search	that	will	hopefully	sample	enough	to	explore	close	to	the
globally	best	solution,	but	which	will	 later	settle	on	a	refined	optimum.	Using	simulated
annealing	will	counter	some	of	the	later	moves	which	would	otherwise	cause	the	state	to
jump	 out	 of	 a	 globally	 optimum	 solution.	 For	 some	 problems	 the	 simulated	 annealing
approach	need	not	be	used,	as	it	does	not	sample	as	widely	as	plain	Monte	Carlo,	in	the
same	 number	 of	 steps,	 and	 has	 a	 greater	 tendency	 to	 get	 stuck	 in	 sub-optimal	minima.
However,	when	used	with	care	it	makes	a	better	refinement	protocol,	and	at	the	end	of	the
search	 the	 last	state	will	 tend	 to	be	close	 to	an	optimum	(local	or	otherwise),	which	can
remove	 the	 need	 to	 record	 good	 solutions	 during	 the	 search.	Often	 simulated	 annealing
will	be	used	in	situations	where	it	is	not	required	to	have	the	absolute	best	solution,	just	a
reasonably	good	one	in	a	short	time.

The	term	simulated	annealing	reflects	a	similar	physical	process	that	occurs	in	materials
science,	when	a	solid	is	heated	and	slowly	cooled	to	create	a	more	ordered	state,	e.g.	with
bigger	 crystals.	 The	 term	 that	 we	 introduce	 into	 a	Monte	 Carlo	 search	 to	 diminish	 the
likelihood	 of	 accepting	 less	 optimal	 states	 is	 analogous	 to	 temperature	 in	 physical
annealing.	 Here	 we	 introduce	 the	 variable	 cool,	 which	 represents	 the	 sampling
‘temperature’,	or	more	generally	the	annealing	schedule.	The	Python	examples	will	only
use	a	simple	exponential	decay	 to	provide	 the	value	of	cool,	but	 in	other	 situations	 it	 is
commonplace	 to	have	more	complex	annealing	schedules.	For	example,	 the	solutions	 to
some	problems	that	have	been	caught	in	sub-optimal	states	may	be	rescued	by	restarting
the	 annealing	 from	 a	 recorded	 earlier	 state	 and	 temperature,	 or	 by	 re-raising	 the
temperature	(‘shake	and	bake’).	Another	approach	that	is	worth	mentioning,	but	which	we
do	 not	 have	 room	 to	 describe	 in	 detail,	 is	 ensemble-based	 methods,	 where	 multiple,
separate	copies	of	a	Monte	Carlo	search	are	done	 in	parallel.	Each	of	 the	replicas	 in	an
ensemble	 of	 concurrent	 Monte	 Carlo	 searches	 will	 find	 different	 solutions	 and	 may
operate	 under	 different	 conditions.	 A	 method	 called	 parallel	 tempering	 or	 replica
exchange	Monte	Carlo	will	 perform	 the	 separate	 searches	 at	 different	 temperatures	 and
occasionally	swap	solutions	between	the	different	temperatures,	searching	both	widely	and
precisely	while	maintaining	detailed	balance.	Another	common	ensemble	approach	 is	 to
use	 a	 genetic	 algorithm,	 whereby	 different	 replicas	 exchange	 part	 of	 their	 states:	 the
genetics	analogy	is	with	the	mutation	and	crossover	of	DNA	strands	when	parents	produce
offspring.

Figure	25.4	(Plate	11).	 An	overview	of	the	simulated	annealing	procedure,	as
applied	to	a	molecular	structure.	The	method	of	simulated	annealing	can	be	applied	to
the	problem	of	computing	a	molecular	structure	given	information	relating	to	the	bonding
and	non-bonding	forces	between	atoms.	Starting	from	random	positions	the	forces	that
result	from	a	particular	arrangement	of	atoms	can	be	estimated	using	knowledge	of	the
forces’	energy	potentials.	In	turn	this	leads	to	a	dynamics	simulation	where	the	forces,
momenta	and	thus	changes	of	atomic	position	can	be	modelled	at	discrete	time	steps.	By
applying	an	annealing	schedule	with	a	decreasing	effective	temperature,	the	simulated
kinetic	energy	of	the	atoms	will	initially	be	large,	so	that	large	differences	in	conformation
can	be	explored,	but	end	up	making	only	small	adjustments,	to	better	home	in	on	a	precise
solution.

Simulated	annealing	of	the	travelling	salesman
The	first	simulated	annealing	example	in	Python	is	 the	same	as	the	travellingSalesman()
described	above	but	with	the	introduction	of	the	cool	variable,	which	can	act	as	a	kind	of
temperature.	We	will	 use	 an	 exponential	 cooling	 decay	 based	 on	 the	 proportion	 of	 the
current	 step	 through	 the	whole	 run:	 the	current	 step	 relative	 to	 the	 total	 (i/m).	The	only
three	 differences	 in	 the	 Python	 function	 are	 the	 introduction	 of	m,	 the	 total	 number	 of
steps	as	a	floating	point	number;	cool,	 the	current	effective	 temperature	 in	 the	annealing
schedule;	and	a	different	score:	this	is	now	divided	by	cool	before	the	exponent	is	taken.
The	effect	of	this	is	that	as	the	search	proceeds	cool	diminishes	exponentially	from	1.0	to
almost	0.368	(e−1),	and	the	difference	in	distances,	as	they	affect	the	acceptance	criterion,
is	magnified.	Thus	the	score	will	be	closer	to	zero	for	the	same	distance	difference	in	later
cycles.	 Better	 distances	 will	 still	 always	 be	 accepted	 at	 any	 stage,	 but	 it	 will	 be
increasingly	 less	 likely	 for	other	scores	 to	be	accepted.	Hence,	 the	state	will	 tend	not	 to
jump	out	of	a	good	solution	towards	the	end,	but	initial	exploration	is	unaffected.

def	travellingSalesmanSimAnneal(distanceData,	cities,	numIter=10000):

		n	=	len(cities)

		bestRoute	=	cities[:]

		shuffle(bestRoute)

		dists	=	list(distanceData.values())

		scale	=	0.5	*	array(dists).std()

		bestDistance	=	getRouteLength(distanceData,	bestRoute)

		prevRoute	=	bestRoute

		prevDistance	=	bestDistance

		m	=	float(numIter)													#	Use	to	calculate	cool

		for	i	in	range(numIter):							#	could	use	xrange	in	Python	2

				cool	=	exp(-i/m)													#	annealing	schedule	'temperature'

				a	=	randint(0,	n-1)

				b	=	randint(0,	n-1)

				route	=	prevRoute[:]

				route[a]	=	prevRoute[b]

				route[b]	=	prevRoute[a]

				distance	=	getRouteLength(distanceData,	route)

				score	=	exp((prevDistance	-	distance)	/	(scale*cool))	#	Adjusted	

score

				if	score	>	uniform():

						prevRoute	=	route

						prevDistance	=	distance

				if	distance	<	bestDistance:

						bestRoute	=	route[:]

						bestDistance	=	distance

						print('%5d	Dist:%.5f	Temp:%.5f'	%	(i,	distance,	cool))

return	bestDistance,	bestRoute

The	function	may	be	tested	in	exactly	the	same	manner	as	the	non-annealing	version.

distances	=	calcCityDistances(cityCoords)

cities	=	list(cityCoords.keys())

dist,	route	=	travellingSalesmanSimAnneal(distances,	cities,	1000000)

print('%.3f	%s'	%	(dist,	'-'.join(route)))

With	the	appropriate	number	of	search	steps	this	will	generally	give	the	same	result	as
the	previous	function	 travellingSalesman(),	although	 the	 last	 tested	 route	will	usually	be
much	closer	to	the	best	route	than	for	the	non-annealing	version.	Testing	different	numbers
of	cycles	will	show	that	if	the	number	of	search	steps	is	too	small	the	annealing	will	‘cool’
before	a	reasonable	number	of	states	have	been	sampled	and	the	final	result	will	not	be	the
best.	Accordingly,	it	is	critical	to	give	the	algorithm	enough	steps	if	the	absolute	optimum
is	required.	However,	an	advantage	of	simulated	annealing	compared	to	plain	Monte	Carlo
is	 its	 speed,	 so	 if	 all	 you	want	 is	 a	 reasonably	good	 solution	 in	 a	 reasonable	 time	extra
steps	may	not	be	needed.

Function	minimisation	by	simulated	annealing
In	the	next	example	we	return	to	the	function	minimisation	previously	discussed.	Here	by
using	 simulated	 annealing	 the	 final	 solutions	 will	 focus	 much	 more	 precisely	 on	 the
optimum	value	compared	 to	plain	Monte	Carlo,	given	 that	 there	will	be	more	chance	of
refinement	 and	 less	 chance	 of	 sub-optimal	 jumps.	 The	 Python	 is	 very	 similar	 to	 the
previous	monteCarlo	function.	Again,	there	is	only	the	introduction	of	a	few	extra	values
to	calculate	and	the	application	of	the	cooling	schedule:	n	is	the	number	of	iterations,	cool

is	the	effective	temperature	and	prob	is	now	different	because	the	difference	in	values	is
scaled	by	cool	prior	to	exponentiation.

def	simAnneal(numIter,	testFunc,	spread=0.1,	nDims=2):

		n	=	float(numIter)

		bestPoint	=	uniform(-1.0,	1.0,	nDims)

		bestValue	=	testFunc(bestPoint)

		prevPoint	=	bestPoint

		prevValue	=	bestValue

		for	i	in	range(numIter):

				cool	=	exp(-i/n)

				testPoint	=	normal(prevPoint,	spread,	nDims)

				value	=	testFunc(testPoint)

				prob	=	exp((prevValue-value)	/	cool)		#	Adjusted	acceptance	score.

				if	prob	>	uniform():

						prevPoint	=	testPoint

						prevValue	=	value

				if	value	<	bestValue:

						bestPoint	=	testPoint

						bestValue	=	value

						pointStr	=	'	'.join(['%.3f'	%	p	for	p	in	testPoint])

						print('%5d	T:%.3f	%s	value:%e'	%	(i,	cool,	pointStr,	value))

		return	bestValue,	bestPoint

We	can	test	with	both	the	plain	Monte	Carlo	and	the	simulated	annealing	optimisers	to
compare	and	contrast	their	performance:

numSteps	=	100000

simAnneal(numSteps,	testFunc)

monteCarlo(numSteps,	testFunc)

Particle	dynamics	simulation
We	 now	 move	 on	 to	 dynamics	 simulations	 that	 are	 somewhat	 analogous	 to	 simulated
annealing.	The	method	shares	the	concept	of	going	to	a	new	solution	to	the	problem	based
on	a	prior	one	and	also	a	notion	of	cooling.	However,	dynamics	simulations	move	away
from	using	purely	random	numbers	 to	determine	 the	search	 trajectory.	Rather,	we	create
what	is	called	a	force	field	 that	will	push	and	pull	the	items	into	more	optimal	locations.
Naturally,	this	sort	of	approach	only	works	if	you	have	some	idea	of	the	kind	of	influences
on	 the	 items	 of	 data,	 e.g.	 a	 physical	 model.	 The	 advantages	 of	 having	 a	 simulated
computer	model	of	a	physical	system	are	numerous,	but	as	far	as	optimisation	problems
are	 concerned	 they	 can	 be	 efficient	 search	methods	 that	 are	more	 directed	 than	Monte
Carlo.	Also,	we	may	benefit	from	knowing	that	the	real	physical	system	actually	finds	a

solution	 (e.g.	 a	 protein	 folds)	 so	 in	 theory	 a	model	 stands	 at	 least	 some	 chance	 of	 also
finding	 a	 solution.	 Here	 we	 will	 use	 a	 very	 simple	 model	 system,	 of	 repulsive	 atoms
bonded	 in	 a	 chemical	 structure,	 to	 determine	 an	 extended	 conformation	 for	 a	molecule.
The	molecule	will	not	be	large	and	the	force	field	will	be	very	simplistic	(definitely	not	the
proper	physics	equations),	but	it	will	give	you	the	general	idea	and	will	be	good	enough	to
give	a	reasonable	picture	of	the	molecule.

The	force	field	used	in	the	Python	example	will	consist	of	a	simple	bond	model	and	a
simple	repulsive	force	between	atoms.	The	bonds	will	pull	atoms	to	a	single	set	distance
(in	reality	bond	lengths	vary	and	we	have	double	bonds	and	bond	orbitals	etc.),	and	will
attract	or	 repel	accordingly	when	atoms	are	 too	close	or	 too	distant.	The	repulsive	force
will	 be	 calculated	 between	 non-bonded	 atoms	 and	will	 diminish	with	 an	 inverse	 power
relation	to	the	distance	between	atoms;	close	atoms	will	repel	strongly	but	distant	atoms
will	have	little	effect.	The	test	molecule	itself	is	the	common	pharmaceutical	paracetamol
(also	known	as	acetaminophen).	This	 is	complex	enough	 to	present	a	challenge,	but	not
too	 unwieldy	 for	 this	 book.	 A	 Python	 dictionary	 is	 used	 to	 contain	 the	 chemical	 bond
information,	i.e.	which	atoms	are	bound	to	which.	The	bond	dictionary	for	paracetamol	is
given	below.	Here	we	have	used	a	system	where	each	atom	is	identified	by	a	unique	name.
There	is	a	key	in	the	dictionary	for	each	atom	and	the	values	for	that	atom	are	the	names
of	the	other	atoms	with	which	it	shares	chemical	bonds.	An	alternative	here	would	be	to
use	 just	 index	 numbers,	 one	 for	 each	 atom,	 so	 that	 we	 didn’t	 have	 to	 decide	 upon	 the
names	of	atoms	(which	follow	no	special	rule).	However,	with	names	it	is	perhaps	easier
to	visualise	the	setup.

chemBonds	=	{'H1':	['O1',],	'O1':	['H1',	'C1'],		'C1':	['O1',	'C2',	'C6'],

													'C2':	['C1',	'H2',	'C3'],	'H2':	['C2'],		'C3':	['C2',	'H3',	

'C4'],

													'H3':	['C3'],	'C4':	['C3',	'N7',	'C5'],	'C5':	['C4',	'H5',	

'C6'],

													'H5':	['C5'],	'C6':	['C5',	'H6',	'C1'],	'H6':	['C6'],

													'N7':	['C4',	'H7',	'C8'],	'H7':	['N7'],	'C8':	['N7',	'O8',	

'C9'],

													'O8':	['C8'],	'C9':	['C8',	'H9a',	'H9b',	'H9c'],	'H9a':	

['C9'],

													'H9b':	['C9'],	'H9c':	['C9']}

The	main	dynamics	function	is	written	to	take	a	chemical	bond	dictionary,	the	number
of	dynamics	steps	and	the	length	of	chemical	bonds	to	aim	for.	It	should	be	noted	that	the
scale	of	any	measurements	is	not	explicitly	stated,	but	for	a	good	physical	model	the	bond
lengths	 would	 be	 of	 the	 order	 of	 10−10	 metres.	 Firstly,	 we	 make	 some	 extra	 NumPy
imports	that	are	required	and	then	define	the	function	name.

from	numpy	import	zeros,	sqrt

def	chemParticleDynamics(bondDict,	numSteps=5000,	bondLen=1.0,	

timeStep=0.01):

The	 list	 of	 atoms	 is	 determined	 as	 the	 keys	 of	 the	 dictionary	 that	 contains	 the	 bond
information.	The	number	of	atoms	is	the	length	of	this	list	and	the	atomic	coordinates	are
initialised	with	random	values,	using	a	uniform	distribution	over	a	reasonable	range.	Note

that	 the	 last	 argument	 to	 uniform,	 when	 defining	 the	 initial	 coordinates,	 defines	 the
number	of	rows	and	columns	to	yield	values	for.	Here	we	want	a	vector	of	length	three	(x,
y,	 z)	 for	 each	 atom.	 If	 developing	 this	 method	 further	 it	 may	 be	 useful	 to	 use	 custom
Python	classes	to	define	Atom	objects,	as	illustrated	in	Chapter	8,	rather	than	using	lists.

atoms	=	list(bondDict.keys())

numAtoms	=	len(atoms)

atomCoords	=	uniform(-10.0,	10.0,	(numAtoms,	3))

The	list	indices	is	simply	the	numbers	of	all	the	atoms.	This	is	defined	upfront	so	that
we	don’t	have	to	recreate	it	repeatedly	in	the	search	steps.	Likewise	n	is	the	floating	point
version	 of	 the	 number	 of	 steps,	 and	 is	 used	 to	 generate	 the	 temperature	 factor	 in	 the
annealing	schedule.

indices	=	range(numAtoms)

n	=	float(numSteps)

The	main	loop	goes	through	the	specified	number	of	search	steps	and	for	each	of	these
the	effective	temperature	temp	is	defined	as	in	other	examples.

for	step	in	range(numSteps):

		temp	=	exp(-step/n)

For	the	given	step,	with	its	temperature	factor,	the	dynamics	simulation	requires	that	we
go	through	all	atoms	in	the	molecule	and	calculate	the	effect	of	the	other	atoms	according
to	the	force	field.	The	for	loop	goes	through	all	the	indices	for	the	atoms,	so	that	we	can
get	hold	of	the	atom’s	name	(atom)	and	the	coordinates.	Note	that	we	can	ignore	the	first
atom	in	this	loop	(hence	[1:]),	which	doesn’t	need	to	move;	the	others	will	move	around	it.
The	variable	velocity	is	defined	initially	as	a	zero	vector	and	will	represent	the	change	that
is	made	 to	 the	 atom’s	 position	 along	 the	 x,	 y	 and	 z	 axes,	 once	we	 have	 considered	 the
forces.

for	i	in	indices[1:]:

		atom	=	atoms[i]

		coords	=	atomCoords[i]

		velocity	=	zeros(3,	float)

For	the	primary	atom	(at	index	i)	we	then	need	to	consider	all	of	the	other	atoms	that	it
interacts	 with,	 according	 to	 the	 force	 field.	 Hence	 we	 define	 a	 second	 loop	 and
corresponding	atom	index	j,	skipping	the	loop	if	we	come	across	the	primary	atom.

for	j	in	indices:

		if	i	==	j:

				continue

Then	comparing	each	of	 the	secondary	atoms	with	 the	primary	 (index	 i	with	 index	 j)
delta	 is	 calculated	 as	 the	 difference	 vector	 between	 their	 coordinate	 positions.	Then	 the
sum	of	this	squared	is	dist2,	the	distance	between	atoms	squared.

delta	=	coords	–	atomCoords[j]

delta2	=	delta	*	delta

dist2	=	delta2.sum()

Next	we	apply	the	actual	force	field.	Because	we	are	keeping	the	demonstration	simple
we	 are	 using	 only	 two	 terms	 and	 these	 are	mutually	 exclusive.	 Proper	molecular	 force
fields	will	 have	many	more,	 complex	 terms	 for	 things	 like	 electrostatic	 charge,	 van	der
Waals	 force,	 bond	 angle	 etc.	Anyhow,	 here	we	 test	whether	 the	 primary	 and	 secondary
atoms	are	directly	bound.	If	 they	are	bound	the	name	of	one	atom	will	be	in	the	bonded
list,	which	is	extracted	from	the	bondDict	using	the	other	atom	as	a	look-up	key.	If	 they
are	 bound	 a	 simple	 ‘force’	 value	 is	 calculated	 as	 the	 difference	 between	 the	 input	 bond
length	and	the	distance	between	atoms.8	Note	that	we	only	calculated	the	square	distance
up	to	this	point	and	only	now	calculate	the	square	root	when	we	need	to.	The	force	value
could	also	be	scaled	separately	to	other	forces,	which	in	general	is	a	way	of	balancing	the
different,	competing	terms.	Also,	any	scaling	dictates	how	much	movement	can	be	gained
in	each	step,	although	here	we	use	a	general	scale	factor	timeStep	to	control	the	step	size.
The	scale	factors	for	the	two	force	terms	in	this	example	just	happen	to	work	well	when
they	are	the	same	(1.0).

bound	=	bondDict[atoms[j]]

if	atom	in	bound:

		force	=	bondLen	-	sqrt(dist2)

If	the	atoms	do	not	share	a	direct	chemical	bond	we	apply	the	repulsive	term,	which	is
inversely	proportional	to	the	distance	between	atoms	raised	to	the	fourth	power	(the	square
distance	squared).	Using	this	power	law	is	quite	arbitrary,	but	works	nicely	here.

else:

		force	=	1.0	/	(dist2*dist2)

With	the	force	variable	defined	for	a	bond	or	repulsion,	we	do	a	check	to	make	sure	it	is
not	 too	great.	This	 is	 important	because	a	 force	 field	can	potentially	produce	some	very
large	numbers	(e.g.	repelling	atoms	that	are	very	close)	which	would	otherwise	throw	an
atom	too	far	away	for	practical	purposes,	and	may	also	lead	to	numerical	Python	errors.
The	bounded	force	value	is	then	multiplied	by	timeStep,	temp	and	delta,	and	added	to	the
total	 for	 the	 velocity.	 The	 temperature	 factor	 is	 part	 of	 the	 annealing	 process	 discussed
previously	and	the	time	step	determines	how	much	movement	can	occur	for	each	iteration.
Longer	 time	 steps	 will	 move	 things	 more	 quickly	 but	 can	 lead	 to	 atoms	 overshooting
optimal	positions.	The	delta	represents	the	vector	between	the	two	atoms,	and	thus	applies
the	force	in	the	correct	direction,	i.e.	the	force	is	between	atoms.

force	=	min(max(-200.0,	force),	200.0)

velocity	+=	delta	*	force	*	temp	*	timeStep

After	all	the	interacting	atoms	have	been	considered	the	velocity	variable	will	represent
the	residual	push	and	pull	on	the	primary	atom.	At	an	optimised	location	all	the	competing
forces	will	balance	out	and	this	will	be	a	zero	vector,	but	otherwise	the	residual	will	move
the	atom.	Accordingly,	velocity	is	added	to	the	coordinates	for	the	atom.

atomCoords[i]	+=	velocity

After	all	of	the	dynamics	steps	the	atom	coordinates	are	centred	(for	ease	of	inspection),
by	subtracting	the	average	position,	and	then	returned	from	the	function.

center	=	atomCoords.mean(axis=0)

atomCoords	=	atomCoords-center

return	atomCoords

Testing	 is	 simply	 a	 matter	 of	 using	 the	 chemical	 bonding	 data	 defined	 earlier	 (the
connection	topology)	with	the	particle	dynamics	function.	The	resulting	atom	coordinates
may	 be	 printed	 out,	 or	 even	 displayed	 in	 a	 graphical	 interface.	Naturally,	 it	 is	 only	 the
relative	values	of	the	atom	coordinates	that	are	important,	rather	than	their	exact	values.	If
all	the	positions	are	rotated	or	translated	by	the	same	amounts	it	is	still	the	same	structure.

coords	=	chemParticleDynamics(chemBonds)

print(coords)

Figure	25.5.	 A	simple	graphical	representation	of	the	chemical	structure	of	paracetamol,
with	atom	coordinates	determined	by	the	particle	dynamics	algorithm.	Python	code	for	the
ChemView	class	used	to	generate	such	graphics	is	available	in	the	on-line	material,
http://www.cambridge.org/pythonforbiology.

Graphical	 inspection	 of	 the	 atomic	 coordinates	 reveals	 a	 bent	 aromatic	 ring	 and	 thus
reaffirms	that	the	force	field	used	is	very	simple	and	naïve.	However,	the	result	shows	that
the	 approach	 is	 working	 and	 we	 have	 a	 reasonable	 extended	 conformation,	 given	 the
specified	rules.
1 	The	name	Monte	Carlo	is	from	the	Monte	Carlo	Casino	in	Monaco,	and	the	name	was
given	by	the	physicist	John	von	Neuman	for	the	idea	that	Stanisław	Ulam	had	for	a	way	to
estimate	neutron	collisions.	Both	were	working	at	Los	Alamos	at	the	time,	developing	the
atomic	bomb.	Monte	Carlo	was	a	secret	code	phrase	and	had	notions	of	probability	and
chance,	albeit	related	to	gambling.
2 	 Metropolis,	 N.,	 Rosenbluth,	 A.W.,	 Rosenbluth,	 M.N.,	 Teller,	 A.H.,	 and	 Teller,	 E.
(1953).	Equation	of	state	calculations	by	 fast	computing	machines.	Journal	of	Chemical
Physics	21(6):	1087.
3 	Hastings,	W.K.	(1970).	Monte	Carlo	sampling	methods	using	Markov	chains	and	their
applications.	Biometrika	57(1):	97–109.

http://www.cambridge.org/pythonforbiology

4 	It	can	be	shown	that	the	standard	deviation	of	this	estimate	for	π	is	 ,	where	n
is	the	number	of	samples,	so	with	100000	samples	this	gives	0.013.
5 	 http://en.wikipedia.org/wiki/Rosenbrock_function.	 Rosenbrock,	 H.H.	 (1960).	 An
automatic	method	for	finding	the	greatest	or	least	value	of	a	function.	Computer	Journal
3:	175–184.
6 	Kirkpatrick,	S.,	Gelatt	 Jr.,	C.D.,	 and	Vecchi,	M.P.	 (1983).	Optimization	 by	 simulated
annealing.	Science	220(4598):	671–680.
7 	Černý,	V.	 (1985).	 Thermodynamical	 approach	 to	 the	 traveling	 salesman	 problem:	 an
efficient	simulation	algorithm.	Journal	of	Optimization	Theory	and	Applications	45:	41–
51.
8 	When	the	force	is	proportional	to	distance	the	term	is	described	as	‘harmonic’.

http://en.wikipedia.org/wiki/Rosenbrock_function

26 	Graphical	interfaces
Contents

An	introduction	to	graphical	user	interfaces

Widgets	and	graphics	libraries

GUI	construction

Python	GUI	examples

Using	Tkinter

Using	Python	Qt

An	introduction	to	graphical	user	interfaces
At	some	stage	when	writing	your	own	programs	there	may	come	a	time	when	you	want
others	to	be	able	to	use	what	you	have	created	without	them	necessarily	having	to	know
anything	about	programming	or	Python.	Should	 this	happen	 the	next	 step	 is	 to	consider
writing	 a	 more	 friendly	 interface	 to	 the	 program.	 Once	 upon	 a	 time	 in	 computing
everything	 was	 text-based	 and	 the	 user	 had	 to	 type	 commands	 to	 get	 things	 to	 work.
Fortunately	things	have	moved	on	and	we	are	now	usually	presented	with	graphics	and	a
pointing	device,	either	a	mouse	or	a	touch	screen,	and	the	user	can	interact	with	graphical
objects	like	menus	and	buttons.

When	building	a	graphical	user	 interface	 (GUI)	 the	programmer	must	 be	mindful	 of
various	factors,	which	are	sometimes	antagonistic,	forcing	us	to	make	compromises.	For
example,	 the	 designer	 has	 to	 strike	 a	 balance	 between	 on	 the	 one	 hand	 giving	 lots	 of
functionality	and	on	the	other	hand	keeping	things	simple	for	novices	and	intuitive	to	use.
In	 this	chapter	we	will	aim	to	give	some	general	advice	about	 the	programming,	but	we
leave	 you	 to	make	 the	 tough	 choices.	We	wish	 to	 be	 clear	 that	 this	 chapter	 deals	with
making	graphical	interfaces	that	run	on	the	users’	local	computer.	We	will	not	venture	into
the	 world	 of	 Internet-based	 applications,	 although	 these	 are	 becoming	 increasingly
important,	and	the	Pyjamas	library,1	which	is	available	for	Python	programmers,	works	in
a	remarkably	similar	way	to	the	graphical	libraries	discussed	here.

Widgets	and	graphics	libraries
Most	graphical	interfaces	are	composed	of	discrete	graphical	objects	like	buttons,	menus
and	text	boxes	etc.	Collectively	these	are	referred	to	as	widgets.2	In	general	each	on-screen
widget	 will	 have	 a	 corresponding	 computational	 object.	 Such	 widget	 classes	 allow	 the
programmer	to	build	graphical	interfaces	from	common	building	blocks,	without	having	to
worry	about	how	the	object	is	drawn	on	screen.	For	example,	if	we	add	a	clickable	button
to	a	program	we	usually	only	have	to	think	about	its	general	placement	and	what	operation

it	triggers.	The	graphical	library	that	lies	behind	the	widget	will	take	care	of	exactly	where
and	how	to	draw	its	pixels.	Occasionally,	however,	the	standard	graphical	objects	are	not
sufficient	 to	meet	our	needs,	and	we	may	have	 to	create	customised	or	even	completely
novel	widgets,	although	the	common	graphics	 libraries	have	 tools	 to	do	 this	without	 too
much	pain.

Before	attempting	to	construct	a	GUI	the	programmer	must	first	make	the	choice	about
which	 graphics	 library	 to	 use,	 i.e.	 which	 system	 of	 widgets	 the	 interface	 will	 be
constructed	with.	Graphical	 systems	 are	 generally	 not	 directly	 available	within	 the	 core
Python	 libraries,	 but	 there	 are	 various	 capable	 choices	 and	 some	 of	 the	 more	 popular
include	PyGtk,	Tkinter,	PyQt	and	WxPython.	Because	of	the	limited	space	in	this	book	we
will	 focus	on	just	a	couple	of	 these:	Tkinter	and	PyQt.	Both	of	 these	 libraries	are	cross-
platform	and	will	run	on	Linux,	Mac	and	Windows	operating	systems.	The	Tkinter	library,
which	is	Python	wrapping	around	a	system	known	as	Tcl/Tk,	is	not	the	most	sophisticated
or	most	modern	graphical	system,	but	it	is	the	de	facto	standard	for	Python	and	is	usually
bundled	 with	 the	 standard	 Python	 installation	 for	Windows.	 Hence,	 if	 you	 want	 to	 do
something	quick	 and	 simple	 then	Tkinter	may	be	 the	 best	 choice.	 PyQt	 and	PySide,	 an
alternative	implementation,	are	Python	wrappers	to	the	Qt	libraries,	written	in	C++.	This	is
a	more	sophisticated,	state-of-the-art	choice	and	includes	support	for	OpenGL	(for	fast	3D
graphics),	embedded	web	browsing	and	basic	multimedia	 support,	 to	name	only	a	 little.
Thus	we	would	recommend	Qt	 for	 larger	projects.	Especially	helpful	 is	 the	Qt	Designer
system,	 which	 allows	 you	 to	 lay	 out	 widgets	 in	 a	 graphical	 (non-programmatic)	 way,
although	in	this	chapter	we	demonstrate	only	the	direct	programming	route.

GUI	construction
When	 constructing	 a	 GUI	 there	 are	 a	 few	main	 areas	 that	 the	 programmer	 must	 think
about	above	and	beyond	the	appearance	of	the	graphical	items.	At	the	simplest	level	the
widgets	 that	 constitute	 a	 GUI	 will	 collect	 information	 from	 the	 user,	 trigger	 various
actions	 (i.e.	 function	 calls)	 and	 display	 information.	 Thus	 the	 graphical	 objects	 need	 a
means	 of	 interacting	 with	 the	 other	 parts	 of	 the	 program,	 which	 is	 commonly	 kept
somewhat	separate	from	the	GUI	code.	When	a	user	interacts	with	a	widget,	e.g.	to	enter
some	text	into	a	box,	the	program	needs	to	access	that	data	and	perhaps	change	the	state	of
the	 graphics	 accordingly.	With	 these	 interactions	 in	mind,	 we	 use	 the	 term	 callback	 to
describe	 the	process	of	graphical	widget	calling	a	function	 in	our	main	program	and	 the
term	update	 to	describe	 the	setting	of	 the	widgets	 to	display	new	 information.	The	 term
signal	 is	 general	 and	will	 refer	 to	 both	 callback	 and	 update	 operations.	To	 give	 a	more
specific	example,	if	a	graphical	interface	is	constructed	with	a	tick	box	(check	button)	we
can	specify	a	function	to	be	called	when	the	state	changes,	i.e.	when	the	box	is	ticked.	This
callback	from	the	widget	then	invokes	some	change	in	our	program.	Conversely,	we	may
wish	to	send	a	signal	in	the	opposite	direction	so	that	the	tick	box	is	kept	updated	to	reflect
the	 state	 of	 the	main	 program	 after	 some	 event.	 Inherent	 in	 this	 sort	 of	 thinking	 is	 the
notion	that	the	GUI	forms	a	separate	layer	to	the	rest	of	the	program.

A	GUI	 is	programmed	by	 selecting	which	kinds	of	widgets	are	 to	be	used,	how	 they
signal	 to	 interact	 with	 the	 rest	 of	 the	 program	 and,	 of	 course,	 how	 the	 objects	 are
displayed.	When	it	comes	to	display,	a	widget	is	either	placed	directly	in	the	context	of	the

screen	or	inside	the	borders	of	another	widget.	A	top-level	widget	is	the	term	that	we	will
use	for	a	widget	that	is	not	graphically	contained	by	another.	The	usual	form	of	top-level
widgets	in	today’s	operating	systems	is	a	window.	The	geometry	of	a	top-level	widget,	in
terms	of	position	and	size,	 is	something	 that	 is	often	adjusted	by	 the	user.	However,	 the
placement	of	sub-widgets	that	go	inside	the	top	level	is	not	usually	subject	to	user	control.
The	 positioning	 of	 such	widgets	 is	 a	 large	 part	 of	 the	GUI’s	 design,	 and	 the	 items	 are
generally	 placed	 to	 make	 operations	 convenient	 and	 intuitive.	 Placement	 of	 internal
widgets	is	usually	done	in	a	fairly	flexible	way	so	that	the	interface	can	cope	when	the	top-
level	window	is	resized.	Accordingly,	it	is	more	common	to	specify	that	a	widget	sticks	to
the	edge	of	a	window,	or	expands	to	fit	the	current	size,	rather	than	specifying	its	location
absolutely.	Graphical	 libraries	will	 have	 a	 layout	 or	geometry	management	 system	 as	 a
means	 of	 directing	 where	 widgets	 are	 placed.	 For	 example,	 we	 often	 just	 specify	 that
widgets	 are	 stacked	 vertically,	 lie	 horizontally	 or	 are	 arranged	 in	 a	 grid	 and	 the	 layout
manager	handles	the	fine	placement	automatically	(e.g.	making	things	line	up).

Figure	26.1.	 User	interaction	with	a	program	via	its	graphical	interface.	Various
concepts	involved	in	the	design	and	operation	of	a	graphical	interface	are	illustrated	for	a
mock	example	of	a	graphical	interface	window.	In	general	all	of	the	graphical	items,	or
widgets,	are	placed	within	the	context	of	a	larger	area	using	some	form	of	geometry
management:	here	we	illustrate	with	left	and	right	layout	areas,	which	are	then	subdivided
top	to	bottom.	Some	graphical	objects,	like	text	labels,	are	generally	static	and	cannot	be
changed	by	the	user.	However,	others	like	text	boxes	(for	typing	into),	buttons	(to	press),
check	boxes	(to	tick)	and	pull-down	menus	(to	select	within)	can	be	manipulated	by	the
user	via	a	pointing	device	and	keyboard	etc.	When	a	graphical	object	is	manipulated	the
underlying	program	is	usually	informed	of	any	changes,	via	a	‘callback’	function,	so	that	it
can	respond	to	the	new	state,	or	in	other	words	perform	the	functionality	that	the	user
expects.

Python	GUI	examples
In	this	chapter	we	will	give	a	simple	introduction	to	the	Python	versions	of	the	Tkinter	and
Qt	graphics	systems.	Such	a	task	could	fill	a	whole	book,	so	for	this	chapter	we	will	keep
things	very	simple	and	aim	to	give	an	impression	of	the	basic	principles	and	what	kinds	of

things	 are	 possible:	 to	 help	 a	 programmer	 get	 started,	 rather	 than	 give	 an	 in-depth
description	of	every	possible	widget.	The	examples	construct	a	simple	graphical	interface
for	some	of	the	biological	sequence	analysis	that	was	discussed	in	Chapter	11.	Indeed,	we
will	 import	functions	defined	there.3	We	will	only	show	a	few	of	 the	more	basic	widget
types,	but	 the	 interface	will	 be	 functional.	The	 same	basic	 interface	will	 be	 constructed
using	both	Tkinter	 and	Qt,	 so	 that	 you	 can	 compare	 and	 contrast	 the	differences.	There
might	be	a	more	elegant	way	of	handling	 things	 in	either	example,	but	we	have	 tried	 to
keep	the	equivalence	reasonably	close.

Compared	 to	most	 of	 the	other	 chapters,	 the	 reader	will	 notice	 that	 the	 examples	 are
constructed	by	using	classes,	which	generate	a	customised	version	of	a	graphical	Python
object.	Whereas	 in	most	of	 the	examples	 in	 this	book	we	can	illustrate	 the	principles	by
sticking	 predominantly	 to	 simpler	 Python	 functions	 (and	 leave	 it	 to	 the	 programmer	 to
decide	whether	to	use	classes),	here	for	the	GUI	code	we	actively	encourage	using	classes
from	the	outset.	The	reason	for	this	is	the	high	degree	of	interconnectivity	and	data	sharing
that	goes	on	with	graphical	 items	and	 the	underlying	data	 they	 represent	or	manipulate.
Making	a	class	for	a	graphical	interface,	which	usually	at	least	requires	a	subclass	of	a	top-
level	window,	allows	all	of	the	component	widgets	to	be	automatically	grouped.	Also,	it	is
less	sensitive	to	the	order	in	which	the	code	is	written	and	minimises	the	arguments	that
have	to	be	passed;	 internal	functions	can	access	class	attributes	(variables	 that	belong	to
the	GUI	object).	A	GUI	can	be	written	with	functions	alone,	but	it	is	harder	work.

The	 interfaces	 that	 form	 the	 examples	 are	 pictured	 in	 Figure	 26.2.	 Each	 example
consists	of	a	single	top-level	window	and	inside	this	we	place	the	sub-widgets:	small	text
labels	to	provide	headings,	large	text	boxes	to	display	DNA	sequences	and	output,	buttons
to	allow	the	user	to	trigger	actions	and	a	small	text	entry	box	for	a	user	to	type	into.	It	is
deliberate	 that	 we	 have	 accepted	 the	 default	 styling	 for	 the	 widgets	 and	 not	 tried	 to
customise	 the	 look;	 that	 comes	 later	 if	 you	 can	 find	 the	 time.	 The	 examples	 only
demonstrate	a	few	of	the	available	widget	types,	but	a	more	complete	listing	is	available	in
the	on-line	documentation	for	Tkinter	and	Qt.

Figure	26.2.	 An	example	of	graphical	interfaces	to	operate	simple	DNA	sequence
analysis	functionality.	The	two	windows	result	from	the	Python	examples	constructed
using	the	Tkinter	(left)	and	Qt/PySide	(right)	graphical	object	libraries.	The	widget	styles
are	the	defaults	for	each	situation	and	reflect	what	happens	under	the	same	Linux
operating	system.

Using	Tkinter
Before	getting	into	the	main	example	we	will	initially	demonstrate	‘hello	world’	code	for
Tkinter.	Naturally	the	examples	assume	that	the	Tkinter	library	is	installed	and	available	to
Python.	See	http:www.cambridge.org/pythonforbiology	 for	Tkinter	download	and	 install
instructions,	as	well	as	links	to	full	documentation.	The	module	is	called	Tkinter	in	Python
2	and	tkinter	in	Python	3,	so	we	try	the	latter	and	if	that	does	not	work	then	try	the	former.
We	then	create	the	top-level	rootWindow,	which	is	a	Tk()	class	of	object.

try:

		import	tkinter

except:

		import	Tkinter	as	tkinter

rootWindow	=	tkinter.Tk()

Then	we	make	a	widget	 to	put	 inside	 the	window,	which	 in	 this	case	 is	a	simple	 text
label,	 of	 the	 tkinter.Label	 class.	 Note	 that	 we	 construct	 the	 label	 object	 using	 the
rootWindow	as	the	first	argument,	which	is	the	means	of	specifying	that	the	label	belongs
to	the	window;	in	GUI	speak	rootWindow	is	the	parent	and	label	is	the	child.

label	=	tkinter.Label(rootWindow,	text='Hello	World')

Once	the	label	is	created	we	must	specify	where	in	the	window	it	will	go.	Here	the	pack
geometry	manager	 is	used	(because	 it	 is	simple),	which	by	default	adds	widgets	 to	 their
parent	from	top	to	bottom.	Unless	we	use	a	geometry	manager	the	label	will	not	appear,
because	Tkinter	will	not	know	where	to	draw	it.

label.pack()

Then	to	actually	see	the	result	the	mainloop()	function	call	is	issued	from	the	top-most
parent	widget	 (often	 called	 the	 ‘root’).	 If	we	did	not	 issue	 this	 function	 call	 the	Python
interpreter	would	make	all	the	graphical	objects	but	the	program	would	then	immediately
end,	 without	 displaying	 anything.	 By	 invoking	 a	 main	 graphics	 loop	 the	 system	 is
informed	that	it	should	not	end	the	program.	Instead	Tk	remains	active	and	waits	to	detect
graphical	events,	like	clicking	on	a	button	or	resizing	a	window.

rootWindow.mainloop()

With	 these	 basic	 principles	 in	 mind	 we	 move	 on	 to	 the	 definition	 of	 the	 graphical
interface	class	for	simple	DNA	sequence	analysis.	As	usual,	we	first	make	the	appropriate
imports.	The	re	module	is	imported	because	we	will	do	a	precautionary	check	of	the	DNA
sequences,	 to	 remove	 any	 whitespace.	 The	 Tkinter	 imports	 now	 include	 filedialog	 and
messagebox	 in	 Python	 3,	 or	 equivalently	 tkFileDialog	 and	 tkMessageBox	 in	 Python	 2,
which	are	pre-constructed	Tk	elements,	for	finding	files	and	displaying	pop-up	messages.
These	 larger	 compound	 widgets	 exist	 to	 easily	 perform	 some	 of	 the	 most	 common
operations.	 The	 remaining	 imports	 are	 from	 the	 Sequence	 module,	 which	 refers	 to	 the
examples	from	Chapter	11	 in	 this	book	that	can	be	downloaded	from	the	supporting	on-
line	material.

import	re

http://www.cambridge.org/pythonforbiology

try:

		import	tkinter

		from	tkinter	import	filedialog,	messagebox

except:

		import	Tkinter	as	tkinter

		import	tkFileDialog	as	filedialog

		import	tkMessageBox	as	messagebox

from	Sequences	import	proteinTranslation,	STANDARD_GENETIC_CODE

To	construct	the	GUI	a	new	class	is	defined	as	a	subclass	of	tkinter.Tk.	Thus	it	inherits
all	of	 the	properties	of	 this	Tk	main	window.	Little	of	 the	Tk	class	will	be	changed,	but
rather	we	will	augment	the	new	object	definition	to	embed	sub-widgets	(text	boxes,	button
etc.)	and	add	a	number	of	bound	methods,	which	include	function	calls	to	actually	do	the
specialist	science	operations.	Immediately	after	the	class	statement	the	__init__	function	is
redefined	(which	is	called	when	a	new	object	of	this	type	is	made).	All	Python	objects	will
have	an	__init__(),	so	here	we	are	overwriting	the	one	from	the	Tk	superclass.	However,
we	 invoke	 the	 __init__	 for	 tkinter.Tk	 directly	 on	 self	 (which	 represents	 the	 current
instance	 of	 an	 object)	 as	 the	 first	 task,	 so	 the	 superclass	 initialisation	 is	 still	 done.	 The
reason	 to	 overwrite	 the	 function	 in	 this	 way	 is	 to	 keep	 the	 original	 functionality,	 i.e.
actually	making	 a	GUI	window	 in	 this	 case,	 but	 at	 the	 same	 time	 create	 a	 place	where
customisation	can	occur.	Hence,	 in	 the	 remainder	of	 the	__init__	 function	we	 add	 extra
code	that	creates	this	specialist	window,	including	adding	any	internal	sub-widgets.

class	SequenceTkGui(tkinter.Tk):

		def	__init__(self):

				tkinter.Tk.__init__(self)

Unlike	 the	 simple	 ‘hello	 world’	 example	 above	 we	 will	 use	 a	 different	 geometry
manager	called	grid	to	create	the	layout	of	the	widgets	inside	the	top-level	window.	Using
a	grid	is	an	easier	way	to	manage	things	overall	(in	the	authors’	own	experience)	because
it	is	easier	to	predict	the	results.	As	the	name	suggests,	using	grid	means	that	we	will	be
placing	widgets	 in	 the	main	window	by	 specifying	 the	 row	and	column	 they	 lie	within.
Also,	when	required,	a	widget	can	be	made	to	span	multiple	rows	or	columns,4	which	adds
lots	of	flexibility.

The	next	command	configures	 the	behaviour	of	 the	rows	and	 the	columns	of	 the	grid
system	 within	 which	 the	 graphical	 widgets	 will	 be	 placed.	 By	 default	 all	 rows	 and
columns	 have	 weight=0,	 which	 means	 that	 they	 do	 not	 expand	 to	 fill	 any	 extra	 space
beyond	 the	 immediate	 size	 of	 the	 item	 they	 contain.	 Setting	 the	 weight=1	 below
specifically	for	column	5,	row	1	and	row	4	(counting	from	zeros)	means	that	these	will	be
the	expanding	rows	and	column	in	our	window.	Hence,	when	the	main	window	is	resized
these	will	resize	too.	If	required,	weights	greater	than	1	could	be	used	if	one	part	needs	to
expand	more	than	another.

self.grid_columnconfigure(5,	weight=1)

self.grid_rowconfigure(1,	weight=1)

self.grid_rowconfigure(4,	weight=1)

The	first	graphical	widget	that	is	added	will	be	a	text	label,	as	was	demonstrated	above.
In	 this	 example	 widgets	 are	 added	 to	 the	 window	 class	 in	 display	 order,	 from	 top	 to
bottom	and	left	to	right.	This	is	just	good	practice	to	make	visual	inspection	easier	and	not
an	absolute	requirement.	The	tkinter.Label	 is	created	as	belonging	to	self	and	having	the
required	 text.	The	 object	 is	 assigned	 to	 the	 self.label1	 variable	 so	 that	we	 can	 access	 it
anywhere	 inside	 the	 class	 (without	 self	 it	 would	 only	 be	 accessible	 in	 the	 immediate
function).	 In	 keeping	with	 the	 intention	 to	 use	 a	 grid	 layout	we	 invoke	 the	 .grid()	call,
which	is	available	to	all	Tk	widgets.	As	the	arguments	indicate,	the	label	is	placed	at	grid
position	row=0,	column=0	and	spans	six	columns,	i.e.	the	whole	of	the	top	row.	The	last
sticky	argument	states	how	the	widget	inside	the	grid	will	adhere	to	the	edges	of	its	cell.
The	system	Tkinter	uses	is	based	on	the	cardinal	compass	coordinates,	i.e.	North,	South,
East	and	West.	This	can	seem	a	bit	odd,	given	that	compass	directions	depend	on	which
way	you	are	 facing,	but	can	be	 imagined	 if	you	are	 facing	a	map	with	North	at	 the	 top.
Accordingly	 the	specification	 tkinter.EW	here	means	 to	stick	 to	both	 the	 left-	and	 right-
hand	edges.

self.label1	=	tkinter.Label(self,	text='Enter	1-Letter	DNA	Sequence:')

self.label1.grid(row=0,	column=0,	columnspan=6,	sticky=tkinter.EW)

The	next	widget	is	a	tkinter.Text,	which	will	allow	us	to	display	multiple	lines	of	text.	It
is	placed	into	the	grid	on	the	next	row	with	NSEW	stickiness,	i.e.	to	stick	to	all	four	edges
of	the	grid	cell.

self.seqTextBox	=	tkinter.Text(self)

self.seqTextBox.grid(row=1,	column=0,	columnspan=6,

																					sticky=tkinter.NSEW)

Below	the	text	box	comes	a	row	of	buttons	that	the	user	can	‘push’	by	clicking	with	the
mouse	cursor.

The	button	objects	are	defined	using	the	tkinter.Button	class	and	assigned	to	respective
self.	variables.	The	arguments	for	constructing	the	buttons	are	self	(the	parent),	some	text
to	display	on	the	button	and	a	command.	The	command	is	the	name	of	a	Python	callback
function	 which	 will	 be	 triggered	 when	 the	 user	 pushes	 the	 button.	 Here	 the	 callback
functions	 are	 custom	ones	 that	will	 be	defined	 later	 in	 the	 class	 structure.	Naturally	 the
text	of	 the	buttons	reflects	 the	functions	 they	call.	The	functions	 take	no	arguments,	but
arguments	may	be	added	via	a	lambda	function.5	All	of	the	buttons	are	placed	in	separate
columns	within	row	2,	sticking	to	the	left	of	the	grid	cell	(tkinter.W).

self.clearButton	=	tkinter.Button(self,	text='Clear',

																																		command=self.clearSeq)

self.clearButton.grid(row=2,	column=0,	sticky=tkinter.W)

self.loadButton	=	tkinter.Button(self,	text='Load	FASTA',

																																	command=self.loadFasta)

self.loadButton.grid(row=2,	column=1,	sticky=tkinter.W)

self.transButton	=	tkinter.Button(self,	text='Translate',

																																		command=self.seqTranslate)

self.transButton.grid(row=2,	column=2,	sticky=tkinter.W)

self.compButton	=	tkinter.Button(self,	text='Composition',

																																	command=self.seqComposition)

self.compButton.grid(row=2,	column=3,	sticky=tkinter.W)

self.findButton	=	tkinter.Button(self,	text='Find:',

																																	command=self.seqFind)

self.findButton.grid(row=2,	column=4,	sticky=tkinter.EW)

The	last	widget	in	row	2	is	a	tkinter.Entry	rather	than	a	button.	An	Entry	object	allows
the	user	to	type	in	a	small	piece	of	text.	This	will	be	used	to	enter	a	query	DNA	sequence,
which	will	be	searched	for	within	the	main	sequence.

self.findEntry	=	tkinter.Entry(self)

self.findEntry.grid(row=2,	column=5,	sticky=tkinter.EW)

The	next	 two	 rows	contain	another	Label,	giving	 the	 title	 for	 the	 section,	 and	 second
large	Text	box	to	display	the	textual	output	for	the	user.	Both	of	these	widgets	span	all	six
columns,	remembering	that	columns	0	to	5	inclusive	were	filled	above.

self.label2	=	tkinter.Label(self,	text='Text	output:')

self.label2.grid(row=3,	column=0,	columnspan=6,	sticky=tkinter.W)

self.outTextBox	=	tkinter.Text(self)

self.outTextBox.grid(row=4,	column=0,	columnspan=6,

																					sticky=tkinter.NSEW)

The	final	widget	is	placed	in	a	row	on	its	own.	This	is	another	Button	and	it	calls	 the
self.destroy	function.	This	function	is	inbuilt	into	all	Tk()	objects	and	provides	a	means	of
removing	 the	 main	 window,	 which	 stops	 the	 Tkinter	 mainloop()	 and	 so	 causes	 the
program	to	end.

self.closeButton	=	tkinter.Button(self,	text='Quit',

																																		command=self.destroy)

self.closeButton.grid(row=5,	column=5,	sticky=tkinter.EW)

self.closeButton.config(bg='yellow')	#	Yellow	background

With	 the	 widget	 construction	 done	 the	 remainder	 of	 the	 class	 involves	 defining	 the
functions	that	underpin	the	graphics	to	make	things	work.	All	of	the	functions	at	least	take
self	as	an	argument	so	they	can	access	the	self.	names	from	within	the	object.	Although,	as
discussed	previously,	the	self	is	not	passed	in	brackets	when	calling	the	function;	rather	it
is	implicit	because	of	the	dot	notation.

First	are	functions	to	clear	and	set	the	DNA	sequence	text	within	self.seqTextBox	(the
upper	text	area).	Note	that	Tk	uses	a	string	(row.column)	based	system	to	identify	parts	of
the	text	within	the	Text	widget;	‘0.0’	is	the	beginning,	and	tkinter.END	represents	the	end,
wherever	that	is.	Thus	clearing	the	sequence	means	applying	delete()	to	all	the	text.	When
setting	 the	 sequence	 the	 text	 box	 is	 cleared	 before	 the	 text	 that	 was	 passed	 in	 as	 an
argument	is	added.

def	clearSeq(self):

		self.seqTextBox.delete('0.0',	tkinter.END)

def	setSequence(self,	text):

		self.clearSeq()

		self.seqTextBox.insert(tkinter.END,	text)

The	function	to	get	the	DNA	sequence	from	the	upper	box	extracts	all	the	widget	text,
between	start	and	end	points.	The	re	(regular	expression	module;	see	Appendix	5)	is	used
to	 tidy	 the	 sequence	 by	 removing	 any	whitespace,	 including	 tabs	 and	 line	 returns.	 The
sequence	is	also	forced	to	be	upper	case.	Mostly	these	checks	are	present	as	examples	to
remind	us	that	whenever	the	user	provides	input	 that	 is	supposed	to	have	some	meaning
(so	 here	 it	 should	 be	 a	DNA	 sequence	 not	 a	 shopping	 list)	 our	 program	 should	 aim	 to
detect	or	remove	nonsense.	At	the	end	of	the	function	the	curated	sequence	string	seq	 is
returned.

def	getSequence(self):

		seq	=	self.seqTextBox.get('0.0',	tkinter.END)

		seq	=	re.sub('\s+','',seq)

		seq	=	seq.upper()

		return	seq

Two	 functions	 control	 the	 contents	 of	 the	 lower	 text	 area,	 self.outTextBox.	 The
showText()	function	is	for	adding	text	to	the	box.	This	is	similar	to	seqSequence()	but	we
do	not	clear	the	text	area	first.	Also,	an	explicit	check	is	made	to	ensure	that	all	added	text
ends	 with	 a	 ‘\n’	 (new	 line)	 character;	 this	 function	 adds	 a	 new	 line	 each	 time.	 The
clearOutput()	function	removes	all	output	text	using	the	Text.delete()	call	with	ranges,	as
mentioned	for	clearSeq().

def	showText(self,	text):

		if	text[-1]	!=	'\n':

				text	+=	'\n'

		self.outTextBox.insert(tkinter.END,	text)

def	clearOutput(self):

		self.outTextBox.delete('0.0',	tkinter.END)

With	the	functions	to	control	the	text	areas	defined,	attention	now	turns	to	the	functions
that	are	called	by	pressing	the	buttons,	i.e.	callbacks	connected	via	command.	The	first	of
these	is	a	function	to	load	a	sequence	from	a	FASTA-format	file.	It	uses	functionality	from
BioPython,	 as	 discussed	 in	Chapter	 11,	 to	 read	 the	 entries.	Here	we	 only	 take	 the	 first
sequence	from	the	file,	i.e.	there	is	a	break	in	the	loop,	but	we	could	take	more	sequences
if	 the	GUI	was	adjusted	accordingly.	The	notable	part	of	 this	 function	 is	 that	 it	uses	 the
filedialog,	which	comes	with	Tkinter	and	allows	us	to	easily	create	a	widget	that	lets	the
user	select	a	 file.	The	 .askopenfile()	call	actually	displays	 the	file-requesting	widget	and
gives	back	an	open	file	object	(same	as	if	using	the	open()	keyword),	although	we	have	to
check	for	None	if	no	file	was	selected.

def	loadFasta(self):

		fileObj	=	filedialog.askopenfile(parent=self,	mode='rU',

																																			title='Choose	a	FASTA	file')

		if	fileObj:

				from	Bio	import	SeqIO

				for	entry	in	SeqIO.parse(fileObj,	'fasta'):

						self.setSequence(entry.seq)

						break

				fileObj.close()

Next	comes	 the	first	scientific	 function	of	 the	class.	As	 the	name	hints	seqTranslate()
will	 translate	 the	DNA	sequence	 (in	 the	upper	panel)	 into	 three-letter	 protein	 sequences
that	 are	 displayed	 in	 the	 lower	 text	 panel.	 The	 self.getSequence()	 function	 is	 called	 to
extract	 the	 currently	 displayed	 DNA	 sequence.	 The	 output	 area	 is	 cleared	 and	 we	 use
showText()	to	display	a	title.	Then	comes	a	for	loop	inside	which	the	sequence	translation
occurs.	A	 loop	 is	used	 so	 that	we	can	define	 indent	 (as	0,	 1,	 2)	 to	 specify	where	 in	 the
DNA	sequence	we	start	translating,	remembering	that	a	protein’s	amino	acids	are	coded	by
three	DNA	 bases.	 Thus	 by	 using	 the	 loop	we	will	 get	 translations	 of	 all	 three	 forward
reading	frames.6

def	seqTranslate(self):

		seq	=	self.getSequence()

		self.clearOutput()

		self.showText('DNA	sequence')

		self.showText(seq)

		self.showText('Protein	sequence')

		for	indent	in	range(3):

In	the	loop	the	protein	sequence	is	obtained	by	calling	the	proteinTranslation()	defined
earlier	in	the	book.	We	translate	with	the	standard	genetic	code,	so	that	is	passed	in.	The
GUI	could	be	expanded	so	that	the	user	may	select	from	among	several	genetic	codes.	The
translated	protein	sequence	is	initially	a	list	of	Python	strings,	but	is	then	joined	into	one
long	line	of	text.	The	variable	spaces	is	defined,	which	will	act	as	padding	in	the	output,	to
move	the	indentation	of	each	subsequent	translated	reading	frame	one	space	to	the	right,
i.e.	so	the	amino	acid	codes	are	staggered	and	lie	exactly	under	their	DNA	codon	triplet.
At	 the	 end	 of	 the	 loop	 the	 elements	 are	 combined	 to	 give	 the	 output	 text,	 which	 is
displayed	in	the	GUI	using	showText().

proteinSeq	=	proteinTranslation(seq[indent:],	STANDARD_GENETIC_CODE)

proteinSeq	=	''.join(proteinSeq)

spaces	=	'	'	*	indent

text	=	'Reading	frame	%d\n%s%s'	%	(indent,	spaces,	proteinSeq)

self.showText(text)

A	second	scientific	function	is	one	that	gets	the	DNA	sequence	and	counts	the	different
letters.	Each	letter	is	used	as	a	key	to	the	counts	dictionary.	The	letters	are	then	sorted	and
for	each	kind	the	average	composition,	as	a	percentage,	is	calculated.	The	data	is	then	used

to	make	a	line	of	text	and	passed	to	self.showText()	for	display.

def	seqComposition(self):

		self.clearOutput()

		seq	=	self.getSequence()

		n	=	0.0

		counts	=	{}

		for	letter	in	seq:

				counts[letter]	=	counts.get(letter,	0)	+	1

				n	+=	1.0

		letters	=	counts.keys()

		letters.sort()

		text	=	"Composition:"

		for	letter	in	letters:

				text	+=	'	%s;%.2f%%'	%	(letter,	counts[letter]	*	100	/	n)

		self.showText(text)

The	 last	 function	 in	 the	SequenceTkGui	 class	 is	used	 to	 locate	 a	query	 sub-sequence
within	the	main	DNA	sequence.	The	query	sequence	is	obtained	using	the	.get()	call	that
goes	 with	 the	 self.findEntry	 widget;	 this	 gives	 back	 the	 contents	 of	 the	 box.	 Any
whitespace	 at	 the	 edges	of	 the	query	 is	 removed	with	 .strip().	Then	 a	 check	 is	made	 to
ensure	 that	we	 are	 not	 searching	with	 something	 blank.	Thus	 if	 query	 is	 empty	we	 use
messageBox	 to	 create	 a	 pre-constructed	 Tk	widget	 and	 inform	 the	 user	 that	 the	 search
could	not	be	done.	After	a	warning	 the	 return	 statement	 immediately	quits	 the	 function.
Otherwise,	if	the	search	query	was	defined,	the	main	sequence,	seq,	is	fetched.	Then	it	is	a
relatively	simple	matter	to	see	if	the	query	sequence	is	present.	If	it	is	we	loop	through	the
main	sequence	to	find	all	occurrences,	i.e.	query	is	compared	with	seq[i:i+win],	where	i	is
the	 position	 and	 win	 is	 the	 query	 width.	 Whether	 the	 search	 made	 a	 match	 or	 not	 is
indicated	by	the	text	that	is	passed	into	self.showText().

def	seqFind(self):

		self.clearOutput()

		query	=	self.findEntry.get()

		query	=	query.strip()

		if	not	query:

				messagebox.showwarning("Warning",	"Search	sequence	was	blank")

				return

		seq		=	self.getSequence()

		if	query	in	seq:

				text	=	"Locations	of	%s"	%	(query)

				self.showText(text)

				win	=	len(query)

				for	i	in	range(len(seq)-win):

						if	seq[i:i+win]	==	query:

								self.showText('	%d'	%	i)

		else:

				text	=	"Sub-sequence	%s	not	found"	%	(query)

				self.showText(text)

Finally,	at	 the	end	of	 the	class	and	function	definitions	we	can	write	 testing	the	code.
Note	that	this	is	subject	to	the	__name__	==	‘__main__’	clause,	which	only	runs	the	test	if
the	 Python	 file	 is	 used	 directly.	 This	 allows	 for	 the	 SequenceTkGui	 to	 be	 imported	 by
other	 Python	modules	without	 the	 test	 code	 being	 run.	 The	 testing	 is	 done	 by	 creating
window	as	a	SequenceTkGui	class	object,	and	then	calling	the	Tk()	main	loop,	which	the
class	inherits	from,	to	view	the	graphics.

if	__name__	==	'__main__':

		window	=	SequenceTkGui()

		window.mainloop()

Using	Python	Qt
The	same	DNA	sequence	GUI	example	will	be	shown	again,	but	using	Qt-based	libraries
to	compare	and	contrast	with	the	Tkinter	system.	There	are	currently	several	choices	for	a
Python-based	Qt	graphics	library,	PyQt4,	PyQt5	and	PySide,	 though	PyQt5	only	arrived
after	 most	 of	 this	 book	 was	 written.	 For	 the	 most	 part	 these	 are	 almost	 identical	 and
Python	code	that	works	in	one	will	work	with	the	other	with	only	minor	adjustments.	For
the	example	we	will	use	PySide	because	we	feel	it	has	a	more	Pythonic7	way	of	dealing
with	 GUI	 signals	 (widget	 callbacks	 etc.),	 and	 also	 less	 restrictive	 licence	 conditions.
Unfortunately	 PyQt5	 arrived	 too	 late	 to	 be	 considered	 in	 this	 book,	 though	 this	 is	 the
system	the	authors	would	use	in	the	future,	given	that	it	has	the	most	active	development
and	 the	 future	 of	 PySide	 is	 somewhat	 uncertain.	 See
http://www.cambridge.org/pythonforbiology	 for	 PySide	 and	 PyQt	 download	 and	 install
instructions,	as	well	as	links	to	full	documentation.

Compared	to	Tk	the	Qt	libraries	for	Python	have	a	larger	variety	of	widgets,	although
we	will	 only	 use	 a	 few	 in	 the	 example.	Also,	Qt	 naturally	 exposes	 a	 greater	 variety	 of
signals,	 although	Tk	 can	 be	 expanded	 somewhat	 by	 the	 use	 of	 .bind()	 calls,	 to	 connect
events	 to	 widgets.	 For	 example,	 a	 Tkinter.Button	 is	 generally	 only	 used	 with	 a	 single
callback	for	when	the	button	 is	pressed.	The	nearest	Qt	equivalent,	QtGui.QPushButton,
automatically	comes	with	clicked,	pressed,	released	and	toggled	signals.

Compared	 to	 other	 libraries	 used	 in	 this	 book	 the	 Python	 bindings	 to	Qt	 feel	 a	 little
different,	because	of	the	way	the	underlying	C++	code	is	wrapped.	For	example,	most	Qt
objects	are	created	with	few	initial	arguments,	and	 the	object	 is	configured	with	various
calls	 after	 it	 is	 created.	 Also	 nomenclature	 like	 ‘QtCore.Qt.AlignLeft	 |
QtCore.Qt.AlignRight’	 can	 seem	 a	 bit	 unfriendly	 at	 first.	 Here	 the	 vertical	 line	 is	 the
logical	OR	operator	and	is	simply	a	means	of	combining	the	two	options	for	left	and	right
alignment,	which	are	represented	as	separate	bits	in	a	binary	number	(a	typical	C++	style
of	doing	things).	This	example,	albeit	using	binary,	is	actually	just	equivalent	to	1	+	2	 in
Python.

http://www.cambridge.org/pythonforbiology

For	the	GUI	example	we	make	the	initial	imports.	If	PyQt4	is	used	instead	the	connect()
calls	 in	 the	 class	 must	 be	 adjusted,	 as	 mentioned	 below.	 Qt	 is	 separated	 into	 discrete
modules	which	relate	 to	different	aspects	of	 the	system	and	here	we	import	 the	required
QtCore	and	QtGui.

import	re

from	PySide	import	QtCore,	QtGui	#	or	from	PyQt4

from	Sequences	import	proteinTranslation,	STANDARD_GENETIC_CODE

The	SequenceQtGui	definition	is	a	subclass	of	the	basic	QtGui.QWidget	and	when	we
initialise	 this	 class	we	 also	 initialise	 the	 superclass	 for	 self.	Although	QWidget	 is	more
directly	 comparable	 to	 Tk	 used	 earlier,	 the	 programmer	 can	 also	 consider	 using
QMainWindow	 because	 this	 comes	 prepared	 with	 slots	 for	 a	 main	 menu,	 tool	 bar	 and
status	bar	etc.

class	SequenceQtGui(QtGui.QWidget):

		def	__init__(self):

				QtGui.QWidget.__init__(self,	parent=None)

In	Qt	it	is	fairly	common	to	use	simple	horizontal	and	vertical	layouts	to	arrange	sub-
widgets	in	a	window,	but	here	we	will	use	a	grid,	as	in	the	previous	example.	Rather	than
the	 grid	 being	 inbuilt	 into	 the	 widget	 system	 we	 need	 to	 make	 a	 layout	 object,
QGridLayout,	and	say	that	this	belongs	to	self,	i.e.	it	is	the	layout	for	the	main	window.

grid	=	QtGui.QGridLayout(self)

The	layout	object	grid	can	then	be	used	to	configure	the	size	behaviour	of	the	rows	and
columns.	As	before	column	5,	row	1	and	row	4	are	set	to	expand	with	weight	1.

grid.setColumnStretch(5,	1)

grid.setRowStretch(1,	1)

grid.setRowStretch(4,	1)

As	an	equivalent	 to	Tkinter.EW,	 to	 refer	 to	 the	 left	and	right	edges	of	a	grid	cell,	we
define	 leftRight	 for	 later	 use	 by	 combining	 the	 binary	 Qt.AlignLeft	 and	Qt.AlignRight
options.

leftRight	=	QtCore.Qt.AlignLeft	|	QtCore.Qt.AlignRight

Next	 we	make	 the	 actual	 sub-widgets.	 A	 QtGui.QLabel	 is	 constructed,	 which	 is	 the
equivalent	 of	 Tkinter.Label.	 Instead	 of	 a	 simple	 label	 the	 QtGui.QGroupBox	 could	 be
used,	which	provides	a	title	and	a	border	to	group	sub-widgets.	Once	the	widget	is	made	it
is	then	added	to	the	grid	layout	at	position	0,0;	the	first	row	and	column.

self.label1	=	QtGui.QLabel(text='Enter	1-Letter	DNA	Sequence:',

																											parent=self)

grid.addWidget(self.label1,	0,	0)

Next	 to	 be	 constructed	 is	 the	 upper	 text	 box.	 This	 will	 be	 from	 the

QtGui.QPlainTextEdit	 class	 (there	 is	 also	QTextEdit	which	 supports	 rich	 text	mark-up).
This	 goes	 in	 the	 next	 row	 of	 the	 grid	 (1,0)	 and	 we	 include	 the	 row	 and	 column	 span
arguments	(1,6)	to	cover	one	row	and	six	columns.	The	align	argument	dictates	how	the
widget	sticks	to	the	grid	sides.	Note	that	compared	to	the	Tk	equivalent	the	Qt	text	box	has
more	functionality,	e.g.	 there	is	a	context	menu	(right	mouse	click)	with	editing	options,
which	we	do	not	use	here.

self.seqTextBox	=	QtGui.QPlainTextEdit(parent=self)

grid.addWidget(self.seqTextBox,	1,	0,	1,	6,	align=leftRight)

The	QtGui.QPushButton	 class	 is	 used	 for	 simple	 buttons.	 Unlike	 Tk,	 where	 we	 just
specify	the	callback	for	the	button	with	command,	for	Qt	we	have	to	select	which	kind	of
user	action	we	want	it	to	respond	to.	Here	we	want	the	callback	to	be	triggered	from	the
clicked	 action	 (technically	 a	 slot	 in	Qt).	 The	 connecting	 of	 an	 action	 slot	 to	 a	 callback
function	 is	 usually	 done	 differently	 for	 PyQt4	 and	 PySide	 libraries.	 For	 this	 PySide
example	the	self.clearButton.clicked	object	 represents	 the	button	clicking,	and	 this	has	a
connect()	 function	 to	 link	 it	 to	whichever	 callback	 function	we	 desire.	 Thus	 the	 button
click	 calls	 self.clearSeq.	 A	 comment	 is	 included	 below	 to	 illustrate	 the	 equivalent	 for
PyQt4.	 This	 involves	 actually	 creating	 a	 SIGNAL	 object	 using	 a	 text	 string	 (not	 very
Pythonic)	and	then	the	connect()	call	to	link	the	target	of	the	signal	to	the	function	comes
from	a	Qt	widget	(self	in	this	case).8

self.clearButton	=	QtGui.QPushButton(text='Clear',	parent=self)

self.clearButton.clicked.connect(self.clearSeq)

grid.addWidget(self.clearButton,	2,	0)

#PyQt4	uses:

#self.connect(self,	QtCore.SIGNAL('clicked()'),	self.clearSeq)

The	other	buttons	are	made	in	a	similar	way,	and	placed	in	separate	grid	columns:

self.loadButton	=	QtGui.QPushButton(text='Load	FASTA',	parent=self)

self.loadButton.clicked.connect(self.loadFasta)

grid.addWidget(self.loadButton,	2,	1)

self.transButton	=	QtGui.QPushButton(text='Translate',	parent=self)

self.transButton.clicked.connect(self.seqTranslate)

grid.addWidget(self.transButton,	2,	2)

self.compButton	=	QtGui.QPushButton(text='Composition',	parent=self)

self.compButton.clicked.connect(self.seqComposition)

grid.addWidget(self.compButton,	2,	3)

self.findButton	=	QtGui.QPushButton(text='Find:',	parent=self)

self.findButton.clicked.connect(self.seqFind)

grid.addWidget(self.findButton,	2,	4)

The	 last	 widget	 in	 row	 2	 is	 the	 small	 text	 box	 for	 the	 user	 to	 enter	 a	 query	 DNA
sequence.	The	class	used	is	QtGui.QLineEdit	and	we	will	not	connect	any	callback	to	the
widget,	 although	 we	 could	 use	 returnPressed	 or	 editingFinished	 action	 slots	 to	 do
something	when	the	user	changes	the	text.

self.findEntry	=	QtGui.QLineEdit(parent=self)

grid.addWidget(self.findEntry,	2,	5)

Lastly	we	add	the	second	label,	the	lower	text	area	for	output	and	the	quit	button	(which
is	 connected	 to	 the	 inbuilt	 QWidget.destroy()).	 Note	 that	 in	 order	 to	 configure	 the	 text
widget,	 in	 this	 case	 to	 say	how	 the	 text	wraps	 around	 at	 the	 end	of	 a	 line,	 the	 function
.setLineWrapMode()	is	used	after	the	object	is	created.

self.label2	=	QtGui.QLabel(text='Text	output:',	parent=self)

grid.addWidget(self.label2,	3,	0,	1,	6)

self.outTextBox	=	QtGui.QPlainTextEdit(parent=self)

self.outTextBox.setLineWrapMode(QtGui.QPlainTextEdit.NoWrap)

grid.addWidget(self.outTextBox,	4,	0,	1,	6,	align=leftRight)

self.closeButton	=	QtGui.QPushButton(self,	text='Quit')

self.closeButton.clicked.connect(self.destroy)

grid.addWidget(self.closeButton,	5,	5,	align=leftRight)

The	next	functions	after	the	initialisation	involve	clearing	and	updating	the	text	areas.
This	 is	 a	 little	 simpler	 than	 with	 Tk,	 given	 that	 .clear()	 is	 inbuilt	 in	 to
QtGui.QPlainTextEdit.	As	you	might	expect,	 the	names	and	 the	actions	of	 the	 functions
differ	between	 the	 two	systems.	For	example,	 setPlainText()	 replaces	 all	 the	 text,	 so	we
don’t	 have	 to	 clear	 first.	 Likewise,	 using	 appendPlainText()does	 not	 need	 newline
characters	to	be	added	to	text.

def	clearSeq(self):

		self.seqTextBox.clear()

def	setSequence(self,	text):

		self.seqTextBox.setPlainText(text)

def	showText(self,	text):

		self.outTextBox.appendPlainText(text)

def	clearOutput(self):

		self.outTextBox.clear()

Fetching	 the	 DNA	 sequence	 is	 simple	 and	 employs	 .toPlainText()	 rather	 than	 Tk’s
.get().	The	tidying	of	the	DNA	sequence	is	done	as	described	earlier.

def	getSequence(self):

		seq	=	self.seqTextBox.toPlainText()

		seq	=	re.sub('\s+','',seq)

		seq	=	seq.upper()

		return	seq

The	 loadFasta	 function	 uses	 the	 compound	widget	QtGui.QFileDialog	 to	 get	 the	 file

name.	 This	 looks	 somewhat	 prettier	 than	 the	 Tk	 equivalent,	 and	 will	 have	 a	 style	 that
represents	the	native	operating	system.	Note	that	getOpenFileName	does	not	give	back	a
file	object.	Rather	it	gives	back	the	location	of	the	file,	so	we	use	open()	to	get	the	actual
file	object	that	BioPython	works	with.

def	loadFasta(self):

		msg	=	'Choose	a	FASTA	file'

		filePath,	filtr	=	QtGui.QFileDialog.getOpenFileName(self,	msg)

		if	filePath:	#	Something	was	selected

				fileObj	=	open(filePath,	'rU')

				from	Bio	import	SeqIO

				for	entry	in	SeqIO.parse(fileObj,	'fasta'):

						self.setSequence(str(entry.seq))

						break

				fileObj.close()

The	two	functions	seqTranslate()and	seqComposition()	are	unchanged	compared	to	the
Tk	equivalent,	so	we	will	not	repeat	them.	However,	it	is	worth	pointing	out	that	the	lack
of	 any	 difference	 shows	 that	 we	 have	 separated	 the	more	 graphical	 functions	 from	 the
scientific	functions,	which	is	generally	a	good	plan.

For	finding	a	query	DNA	sub-sequence	the	seqFind	function	is	similar	 to	before.	The
differences	are	that	the	query	entry	box	uses	.text()	not	.get()	and	 that	we	have	naturally
swapped	to	QtGui.QMessageBox	to	display	warnings	to	the	user.	One	extra	thing	that	has
been	included	here	is	self.seqTextBox.find(query).	This	highlights	successive	instances	of
the	query	string	in	the	upper	text	area.	Although	Tkinter.Text	has	a	search()	function	this
merely	finds	text,	but	does	not	highlight	it.

def	seqFind(self):

		self.clearOutput()

		query	=	self.findEntry.text()

		query	=	query.strip()

		if	not	query:

				QtGui.QMessageBox.warning(self,	"Warning",

																														"Search	sequence	was	blank")

				return

		seq	=	self.getSequence()

		self.seqTextBox.find(query)

		if	query	in	seq:

				text	=	"Locations	of	%s"	%	(query)

				self.showText(text)

				win	=	len(query)

				for	i	in	range(len(seq)-win):

						if	seq[i:i+win]	==	query:

								self.showText('	%d'	%	i)

		else:

				text	=	"Sub-sequence	%s	not	found"	%	(query)

				self.showText(text)

To	 test	 the	 SequenceQtGui	 class	 code	 we	 have	 a	 little	 work	 to	 do.	 A	 Qt	 graphical
interface	 only	works	 if	 there	 is	 a	QApplication	 instance	 to	 control	 the	 flow	of	 the	GUI
program	and	carry	its	main	settings	(this	does	some	of	the	job	that	the	Tk	root	does).	The
application	 object	 is	 accordingly	 made	 and	 assigned	 to	 the	 app	 variable.	 The	 window
object	is	made	using	the	SequenceQtGui	class	described	above	and	will	become	the	top-
level	graphical	object.	The	.show()	call	is	required	to	actually	see	something;	although	this
might	seem	a	little	tedious	it	is	really	handy	to	be	able	to	control	the	visibility	of	widgets
(all	QWidgets	have	 .show()).	The	 final	 line	 looks	a	 little	odd,	but	 is	merely	 running	 the
QApplication,	 and	 is	 equivalent	 to	 Tk.mainloop().	 The	 function	 is	 called	 ‘exec_’	 not
‘exec’	 because	 the	 latter	 is	 an	 inbuilt	 keyword	 of	 Python.	 This	 call	 is	 wrapped	 by
sys.exit(),	which	is	required	for	the	program	to	exit	cleanly	when	done.

if	__name__	==	'__main__':

		import	sys

		app	=	QtGui.QApplication(['Qt	Sequence	Example'])

		window	=	SequenceQtGui()

		window.show()

		sys.exit(app.exec_())

1 	http://pyjs.org/.
2 	Borrowing	from	the	 term	used	 to	describe	small	manufactured	 items	of	 indeterminate
function.
3 	 Available	 as	 a	 Python	 file	 in	 the	 downloadable	 material,
http://www.cambridge.org/pythonforbiology.
4 	Similar	to	the	way	tables	are	set	up	in	HTML.
5 	 Constructing	 buttons	 with	 command=func(args)	 will	 call	 the	 function	 too	 early,	 but
command=lambda:	func(args)	will	not.	See	Chapter	5.
6 	See	Chapter	11	for	explanations	of	codons	and	reading	frames.
7 	Is	more	in	keeping	with	the	Python	philosophy.
8 	PySide	can	do	it	this	way	too,	if	you	have	to.

http://pyjs.org/
http://www.cambridge.org/pythonforbiology

27 	Improving	speed
Contents

Running	things	faster

Parallelisation

Using	the	‘multiprocessing’	module

Using	data	queues

Writing	faster	modules

Pure	Python	implementation

NumPy	implementation

C	implementation

Cython	implementation

Speed	comparison	of	implementations

The	‘ctypes’	module

Running	things	faster
This	 chapter	 is	 all	 about	 how	 to	 make	 Python	 programs	 run	 faster.	 We	 will	 discuss
optimising	existing	routines	so	that	they	take	a	shorter	amount	of	time	to	run,	above	and
beyond	 the	 simple	 Python	 tips	 and	 tricks	 discussed	 earlier.	 Initially	 parallel	 computing,
where	a	job	is	split	into	parts	and	run	concurrently	on	separate	processors	(or	processing
cores),	is	discussed	in	a	basic	way.	For	this	we	use	modules	that	are	available	from	Python
2.6	and	above,	which	allow	programs	to	take	account	of	multiple	processing	cores	present
in	 a	 single	 computer.	For	 the	 remainder	of	 the	 chapter	we	will	 deal	with	 improving	 the
performance	of	a	single	processing	job.

At	the	end	some	timing	results	will	be	given	so	that	the	reader	can	see	how	much	was
gained	for	the	effort.	For	mathematical	routines	involving	lots	of	loops	it	is	not	uncommon
to	 get	 speed	 improvements	 of	 better	 than	 tenfold.	 The	 fine	 details	 about	 the	 logic	 and
underlying	algorithms	of	the	examples	used	here	will	not	be	described;	an	example	will	be
taken	 from	 earlier	 in	 the	 book	 where	 such	 things	 are	 described	 fully.	 Also,	 which
particular	example	we	have	chosen	is	not	especially	important,	other	than	the	fact	that	it	is
a	computationally	intensive	one	that	takes	a	noticeable	time	to	run.	It	should	be	noted	that
this	chapter	comes	with	a	‘health	warning’	for	novice	programmers,	because	the	mainstay
of	the	optimisation	will	be	to	move	away	from	Python.	Some	of	the	focus	will	be	on	the
low-level	compiled	language	C,	although	it	will	be	used	in	a	way	to	provide	a	module	that
can	still	be	used	directly	inside	Python	programs.	The	details	of	the	C	language,	and	how

to	compile	it,	will	not	be	discussed	and	to	actually	learn	to	program	in	C	we	recommend
further	 reading.1	 Nonetheless,	 if	 you	 have	 no	 experience	 with	 C	 we	 hope	 that	 we	 can
provide	 a	 basic	 appreciation	 of	 how	 it	 can	 help.	 We	 also	 consider	 Cython,2	 a	 C-like
extension	 to	Python,	which	has	made	 it	possible	 to	benefit	 from	the	speed	of	C	without
having	to	necessarily	deal	with	all	the	complexities	of	C.	This	is	particularly	powerful	in
combination	with	using	NumPy	arrays.

Naturally,	for	an	analysis	of	program	speed	we	will	be	starting	from	something	that	is
already	 working	 correctly.	 Although	 with	 experience	 it	 is	 certainly	 possible	 to	 write
speedy	 code	 in	 the	 first	 instance,	 it	 is	 common	 to	 write	 a	 simple,	 slower	 pure	 Python
version	of	a	program	first	and	then	optimise	it	afterwards:	effectively	making	a	working
prototype.	Writing	 in	 regular	Python	 is	 relatively	efficient	 in	 terms	of	human	effort,	and
there	 is	 little	 point	 in	 optimising	 something	 that	 doesn’t	 do	what	 is	 intended.	Also,	we
should	be	mindful	that	it	may	not	be	necessary	to	optimise	at	all;	if	a	program	takes	only
0.1	 seconds	 to	 run,	 the	effort	 to	 improve	speed	may	have	no	noticeable	effect.	Where	a
program	does	 take	 a	while	 to	 run	we	 generally	 do	 not	 need	 to	 optimise	 the	 speed	 of	 a
whole	program.	Usually	there	will	be	particular	bottlenecks	that	can	be	optimised	to	good
effect,	and	optimising	the	remainder	would	make	no	significant	difference.	Commonly	we
will	find	that	regular	Python	is	left	unaltered	to	do	the	main	program	control,	but	that	the
computationally	 intensive,	 more	 mathematical	 parts	 are	 optimised.	 Often	 this	 means
writing	a	separate	fast	module	that	is	then	embedded.

Parallelisation
Most	computers	these	days	have	more	than	one	central	processing	core.	If	we	have	a	job
that	can	be	split	up	into	parts	that	can	be	run	at	the	same	time,	we	can	exploit	the	multiple
processing	 capabilities	 and	 run	 things	 in	parallel	 and	 so	 complete	 the	overall	 task	more
quickly.3	Naturally	this	adds	complexity	to	our	code,	but	from	Python	version	2.6	there	is
a	 convenient	 standard	 means	 of	 doing	 this	 using	 the	 multiprocessing	 module.	 When
considering	 running	 tasks	 with	 this	 module,	 we	 should	 consider	 how	 much
communication	is	needed	between	the	parallel	parts.	In	some	cases,	where	a	job	frequently
needs	 to	 exchange	 information	 with	 other	 jobs,	 or	 is	 dependent	 on	 jobs	 being
synchronised,	 then	we	do	not	expect	 to	get	 the	full	advantage	of	multiple	processes,	 i.e.
using	two	cores	does	not	always	make	things	twice	as	fast.	Thus	the	best	speed	gains	come
(and	are	worth	 the	 extra	 coding	effort)	where	 a	procedure	 can	be	 easily	 split	 into	 fairly
discrete	units.

Using	the	‘multiprocessing’	module
Below	we	 give	 a	 couple	 of	 simple	 examples	 that	 illustrate	 how	multiprocessing	 can	be
used.	 The	 examples	 are	 simple	 in	 the	 sense	 that	 the	 calculation	 jobs	 are	 completely
separate	and	each	parallel	process	doesn’t	need	to	communicate	much,	other	than	to	accept
input	arguments	and	pass	back	the	result.	However,	this	is	not	an	uncommon	situation	in
biological	computing;	for	example,	things	like	molecular	structure	calculations	generate	a
range	(an	ensemble)	of	separate	solutions	 to	a	problem,	and	 in	many	circumstances	 jobs
can	be	run	separately	on	independent	input	data.

For	 our	 examples	 we	 make	 three	 imports,	 one	 for	 the	 Process	 class,	 which	 is	 the
simplest	 way	 of	 generating	 a	 parallel	 job,	 another	 for	 Queue,	 which	 allows	 data	 to	 be
shared	 between	 jobs,	 and	 Pool,	 which	 provides	 a	 convenient	 way	 of	 matching	 a	 fixed
number	of	processing	cores	with	a	variable	number	of	sub-tasks;	the	pooling	mechanism
collects	jobs	to	be	run	and	then	allocates	them	to	the	processor	when	there	is	a	free	slot.

from	multiprocessing	import	Process,	Queue,	Pool

Figure	27.1.	 A	schematic	of	how	a	program	may	be	executed	in	parallel	by
spawning	sub-processes.	Parallelism	in	programming	is	often	achieved	by	invoking	a
function	call	from	an	originating	‘parent’	process,	which	then	waits	for	the	outcomes	from
the	‘child’	sub-processes	that	it	started.	In	general	the	same	program	code	will	be	executed
by	the	child	processes	(here	labelled	‘f’),	although	they	will	commonly	operate	on
different	input	arguments.	For	the	examples	illustrated	in	this	chapter	the	sub-processes
will	be	run	on	the	same	computer,	although	it	is	also	possible	to	interact	with	other
computers	via	a	network.	The	ability	to	run	several	jobs	in	parallel	on	one	computer	will
depend	on	the	number	of	processing	cores	that	a	computer	has,	although	on	most	modern
operating	systems	it	is	possible	to	initiate	more	jobs	than	there	are	cores.	In	this	case	the
different	processing	tasks	(the	threads)	will	be	shared	at	a	fine	scale	by	the	processor(s),
and	will	not	all	run	at	their	maximum	speed.

Firstly,	 we	 define	 a	 function	 that	 will	 do	 the	 actual	 work,	 and	 this	 will	 be	 called
separately	for	the	different	jobs.	This	is	a	regular	Python	function,	and	for	the	example	we
perform	an	arbitrary	mathematical	calculation	that	 takes	a	few	seconds	to	run	and	prints
out	 the	 job	 status,	 if	 only	 to	 illustrate	 the	 principles.	 The	 function	 calcFunc	 takes	 two
numbers	as	input	arguments,	but	we	could	send	any	input	data	to	the	function	as	long	as
that	data	is	pickleable,	i.e.	can	be	converted	from	an	in-memory	to	a	serial	representation;
this	includes	all	the	regular	Python	data	structures.

def	calcFunc(n,	m):

		print("Running	%d	%d"	%	(n,m))

		result	=	sum([x*x	for	x	in	range(n)	if	x	%	m	==	0])

		print("Result	%d	%d	:	%d	"	%	(n,	m,	result))

		return	result

To	set	up	the	parallel	jobs	we	first	use	the	Process	class	to	create	objects	that	represent
each	 of	 the	 parallel	 jobs.	 The	 target	 argument	 is	 the	 name	 of	 the	 function	 that	 will	 be
called	 upon	 to	 do	 the	 work	 and	 args	 is	 a	 tuple	 of	 the	 values	 that	 will	 be	 input	 to	 the
function	 when	 it	 is	 actually	 run.	 We	 create	 two	 job	 specifications,	 running	 the	 same
operation,	but	with	different	inputs	thus:

job1	=	Process(target=calcFunc,	args=(8745678,	2))

job2	=	Process(target=calcFunc,	args=(2359141,	3))

Each	of	the	jobs	can	be	started	as	required,	so	this	is	where	the	main	flow	of	the	Python
script	separates	from	the	sub-jobs:

job1.start()

job2.start()

Then	it	is	a	simple	matter	of	having	the	main,	parent	process	wait	until	the	sub-jobs	are
complete	before	continuing	any	 further	operations.	The	waiting	 is	 easily	done	using	 the
.join()	 method,	 which	 optionally	 takes	 a	 time	 in	 seconds	 to	 wait	 before	 proceeding
regardless	(this	is	called	a	timeout).

job1.join()

job2.join()

Using	data	queues
Note	that	with	the	above	example	we	fire	off	jobs	but	don’t	actually	take	any	measures	to
collect	the	results	back	into	the	main	program.	We	could,	however,	collect	results	using	a
Queue	 object,	 which	 can	 be	 passed	 as	 an	 argument,	 to	 be	 filled	 by	 the	 sub-jobs.	 To
illustrate	we	define	a	modified	calculation	function	that	takes	an	extra	argument	queue	 to
collect	results	using	queue.put.	Note	that	in	this	we	record	(n,	m,	result)	so	that	we	know
which	 results	 go	 with	 which	 inputs,	 given	 that	 jobs	 will	 not	 necessarily	 finish	 in	 any
particular	order.

def	calcFuncWithQ(queue,	n,	m):

		result	=	sum([x*x	for	x	in	range(n)	if	x	%	m	==	0])

		queue.put((n,	m,	result))

We	 can	 run	 things	 in	 a	 similar	manner	 to	 before,	 but	 this	 time	we	 create	 the	Queue
object	upfront	and	can	use	its	.get()	method	at	the	end	to	fetch	the	results:

queue	=	Queue()

job1	=	Process(target=calcFuncWithQ,	args=(queue,	8745676,	2))

job2	=	Process(target=calcFuncWithQ,	args=(queue,	2359461,	3))

job1.start()

job2.start()

job1.join()

job2.join()

print("Result",	queue.get())

print("Result",	queue.get())

queue.close()

Perhaps	 a	 simpler	 way	 of	 managing	 parallel	 jobs,	 without	 having	 to	 worry	 about
queues,	 is	 to	use	a	Pool	object	 to	manage	 the	processing.	As	mentioned	above,	 this	also
has	 the	 advantage	 of	 allocating	 an	 arbitrary	 number	 of	 jobs	 to	 a	 fixed	 number	 of
processors/cores.

As	an	example,	we	consider	a	 list	of	 input	values	and	pool	 is	created	 to	organise	 the
allocation	of	work.	By	default	a	Pool	will	use	the	total	number	of	central	processor	cores
that	are	available	on	the	computer	as	the	maximum	number	of	jobs	to	run	at	one	time,	but
the	 number	 of	 parallel	 jobs	 may	 be	 passed	 in	 instead	 (the	 default	 comes	 from
multiprocessing.cpu_count()).

inputList	=	[37645,	8374634,	3487584,	191981,	754967,	12345]

pool	=	Pool()

With	 the	 worker	 pool	 created,	 we	 next	 set	 up	 the	 individual	 jobs	 via
pool.apply_async(),	 which	 as	 the	 name	 suggests	 will	 start	 the	 calculations	 in	 an
asynchronous	manner.	As	with	the	earlier	examples	the	basic	point	is	to	associate	a	worker
function	with	a	set	of	arguments	for	that	sub-job.	The	job	objects	themselves	are	collected
in	 a	 list	 so	 that	we	 can	 get	 the	 return	 result	 of	 the	 calcFunc	 call,	 which	 in	 this	 case	 is
collected	for	us	without	having	to	take	any	special	measures:

jobs	=	[]

for	value	in	inputList:

		inputArgs	=	(value,	2)

		job	=	pool.apply_async(calcFunc,	inputArgs)

		jobs.append(job)

We	can	then	collect	the	results	directly	from	the	job	objects	using	.get():

results	=	[]

for	job	in	jobs:

		result	=	job.get()

		results.append(result)

And	finally	we	print	the	result	and	do	some	clean	up,	to	close	the	worker	pool	and	to
make	 sure	 that	 the	 main	 program	 does	 not	 proceed	 until	 the	 sub-processes	 have	 fully
terminated.

pool.close()

pool.join()

print(results)

If	speed	improvement	is	still	really	critical	after	optimising	(cf.	Chapter	10)	and	perhaps

parallelising	Python,	then	it	might	be	worth	not	using	Python	at	all,	or	at	least	not	entirely.
Python	code	can	only	be	sped	up	to	a	point,	after	which	you	can	try	one	of	the	compiled
languages	like	C,	C++	or	Fortran	for	the	slow	bits,	which	may	then	be	interfaced	with	the
main	Python	program.	With	regard	to	parallel	execution,	the	libraries	like	OpenMP4	will
allow	 C	 and	 C++	 modules	 to	 control	 efficient,	 fine-grained	 parallel	 processing	 on	 a
computer	system	with	a	single,	shared	memory.

Writing	faster	modules
At	one	time	doing	anything	especially	intensive	in	Python	was	not	practical.	Fortunately
though,	 the	 main	 implementation	 of	 Python	 is	 itself	 written	 in	 C	 and	 has	 a	 specified,
although	not	extensively	documented,	way	of	interfacing	C	code	with	the	Python	world.
Thus	the	idea	is	to	write	numerically	intensive	code	in	C	(or	C++,	or	even	Fortran	suitably
wrapped	 in	C)	 and	 then	 call	 that	 routine	 from	 inside	 Python.	As	we	 discuss	 in	 the	 last
section	of	this	chapter,	one	way	to	do	this	is	by	using	the	ctypes	module.	This	lets	Python
create	C-compatible	data	types	and	call	C	functions,	which	is	especially	useful	to	interact
with	established	C	 libraries.	However,	 in	 the	 initial	 instance	we	will	make	 the	 language
interface	in	C.	In	theory	you	can	also	access	Python	data	types	directly	in	C,	given	that’s
what	 they	 are	 written	 in,	 but	 the	 most	 useful	 approach	 is	 to	 keep	most	 of	 the	 C	 code
general	 (i.e.	 not	 Python-specific)	 and	 then	 to	wrap	 a	 thin	 layer	 of	 specialised	 interface
code	 in	C	 that	 connects	 the	 Python	world	 to	 your	C	 code.	 This	 interface	 layer	 is	 often
described	as	boilerplate	code,	referring	to	the	fact	that	you	have	to	write	the	same	kind	of
interface	for	each	module.	Accordingly,	and	as	illustrated	in	Figure	27.2,	when	a	specific
C	 function	 gets	 called	 from	 the	 Python	 code,	 the	 Python	 variables	 are	 converted	 into
variables	 that	 your	 C	 code	 understands,	 the	 compiled	 C	 code	 is	 called,	 the	 returned
variable	is	converted	to	a	Python	data	type	and	the	function	passes	that	back	to	the	Python
world.	You	can	even	use	a	tool	to	write	this	boilerplate	code,	the	best	known	being	SWIG
(Simplified	Wrapper	and	Interface	Generator).

Figure	27.2.	 An	overview	of	how	a	module	written	in	C	may	be	wrapped	so	it	can
be	called	from	Python.	To	increase	the	speed	at	which	calculation-intensive	Python
programs	run	we	can	write	fast	modules	in	the	compiled	language	C	and	encapsulate	them
so	that	they	can	be	called	like	normal	Python	functions.	To	do	this	the	C	module	must	be
written	in	such	a	way	as	to	accept	input	as	Python	objects	and	also	to	send	back	any	return
values	as	Python	objects.	This	interface	can	be	written	by	directly	accessing	the	Python
data	structures	using	Python’s	own	C	library	or	by	using	a	system	like	Cython,	which	can
automatically	convert	between	the	two	systems.	Otherwise,	once	the	data	is	routed	to	C
data	structures	a	fast	C	routine	can	be	constructed	in	the	normal	way.

More	 recently	 there	 has	 been	 less	 reason	 to	 go	 down	 the	 C	 route.	 For	 much	 of	 the
numerical	 work	 you	 can	 use	 the	 NumPy	 and	 SciPy	 modules.	 Of	 course,	 the	 Python
modules	they	provide	are	actually	also	wrappers	around	C,	to	make	it	quick,	so	the	library
authors	have	simply	done	the	hard	work	for	you.	However,	it’s	possible	that	you	require
the	 use	 of	 some	 algorithm	 that	 is	 not	 easily	 expressed	 in	 functionality	 that	NumPy	 and
SciPy	 provide.	 After	 all	 these	 libraries	 naturally	 provide	 mathematical	 and	 array
operations	 that	 are	 general.	 Fortunately,	 there	 are	 various	ways	 to	write	 C-like	 code	 in
Python	itself,	and	this	provides	another	way	of	optimising	code	for	speed.	In	this	chapter
we	discuss	one	of	these,	called	Cython.	Cython	is	actually	a	separate	language,	although	it
is	very	similar	to	Python	and	unmodified	Python	code	will	normally	work	directly	without
any	alteration.	What	Cython	offers	is	a	way	to	mix	Python	code	with	some	elements	of	the
C	 language	 and	 then	 to	 automatically	 convert	 this	 friendly	 language	 into	 pure	 C	 code,
which	 is	 then	 compiled	 in	 the	 normal	 C	manner,	 usually	 to	make	 a	 Python-compatible
module.

There	 is	 still	 at	 least	one	good	 reason	why	you	might	want	 to	 interface	directly	 to	C
code,	and	that	is	if	you	have	an	existing	extensive	library	that	you	do	not	want	to	have	to
rewrite	 in	NumPy	or	Cython.	 It	 is	also	possible	 that	a	C	version	of	 the	code	 is	 just	 that
much	 faster	 that	 it	 is	worth	writing.	Unfortunately	 it	 is	difficult	 to	know	for	 sure	which
way	is	actually	best	until	the	C	code	is	written.	Note	that	one	of	the	main	problems	with
using	C	code	is	that	it	has	to	be	compiled	for	each	type	of	machine	architecture5	on	which
you	want	it	to	run.	The	same	is	actually	true	of	Python	and	NumPy,	but	generally	someone
else	 has	 already	 done	 the	 compiling	 for	 you.	This	 is	 an	 advantage	 of	Python	 code,	 and
should	 not	 be	 underestimated,	 especially	 if	 you	 are	 intending	 to	 distribute	 your	 code	 to
other	people.

In	this	chapter	we	use	the	self-organising	map	from	Chapter	24	as	an	example,	which

should	be	looked	at	before	reading	this	chapter	in	detail.	In	that	chapter	a	solution	to	the
problem	was	implemented	by	using	NumPy	arrays.	Here	we	will	re-implement	it	in	plain
(non-NumPy)	 Python,	 C	 and	 Cython,	 to	 give	 a	 comparison	 between	 the	 various
approaches.

Pure	Python	implementation
The	self-organising	map	deals	with	matrices	that	are	potentially	large,	and	thus	it	would	be
expected	 that	 a	pure	Python	 implementation	will	 be	pretty	 slow	 in	 comparison	with	 the
NumPy	implementation.	A	notable	reason	for	keeping	a	pure	Python	implementation	is	to
avoid	the	requirement	of	having	NumPy	installed,	given	that	 it	 is	not	part	of	 the	official
Python	 release.	 For	 mainly	 numerical	 code	 it	 also	 turns	 out	 that	 a	 pure	 Python
implementation	is	fairly	close	in	style	and	even	in	syntax	to	a	C	implementation.	So	once
we	have	a	pure	Python	implementation	it	is	going	to	be	fairly	easy	to	write	the	C	version.
The	 main	 additional	 burdens	 in	 the	 C	 implementation	 will	 be	 memory	 allocation,	 and
wrapping	Python	around	the	C	code.

The	 arguments	 to	 the	main	 function,	 selfOrganisingMap,	will	 be	 the	 same	 as	 for	 the
NumPy	code,	 except	 that	we	will	 use	 lists	of	 lists	 instead	of	NumPy	arrays.	The	 inputs
argument	is	of	size	the	number	of	inputs	times	the	depth,	which	in	our	example	will	be	3
because	the	data	represents	an	RGB	colour	image.	The	spread	argument	is	a	list	of	lists	of
size	width	times	height	describing	how	far	across	the	self-organising	map	(grid)	the	input
influence	spreads.	The	steps	 argument	 is	 the	number	of	 iterations	 for	 the	 algorithm.	We
need	the	Python	random	module	for	generating	random	numbers,	and	the	math	module	for
taking	the	exponential	of	a	number.

import	math

import	random

def	selfOrganisingMap(inputs,	spread,	size,	steps):

		nrows,	ncols	=	size

		depth	=	len(inputs[0])

We	then	initialise	the	map	to	be	random	numbers	between	0	and	1.	We	use	the	Python
random.random	function	for	this.	We	just	loop	over	all	rows	and	columns	and	the	depth.

somap	=	nrows	*	[0]

for	i	in	range(nrows):

		somap[i]	=	ncols	*	[0]

		for	j	in	range(ncols):

				somap[i][j]	=	depth	*	[0]

				for	k	in	range(depth):

						somap[i][j][k]	=	random.random()

We	 then	 iterate	 the	 number	 of	 times	 specified,	 updating	 the	map	 for	 each	 cell	 (row,
column).	The	decay	parameter	determines	the	relative	influences	of	the	map	and	the	input
value	in	updating	the	map.

for	step	in	range(steps):

		decay	=	math.exp(-step	/	float(steps))

		for	vector	in	inputs:

				updateSomap(somap,	vector,	spread,	decay)

return	somap

The	code	that	updates	the	map	of	course	implements	the	same	functionality	as	with	the
NumPy	 version	 but	 is	 much	 more	 tedious	 because	 it	 all	 has	 to	 be	 done	 with	 explicit
looping.	First	we	determine	the	relevant	sizes.

def	updateSomap(somap,	vector,	size,	spread,	decay):

		nrows,	ncols	=	size

		depth	=	len(vector)

		width	=	len(spread)

		height	=	len(spread[0])

Then	we	determine	the	cell	with	the	smallest	difference	between	the	map	and	the	input.

imin	=	jmin	=	-1

diff2min	=	0

for	i	in	range(nrows):

		for	j	in	range(ncols):

				diff2	=	0.0

				for	k	in	range(depth):

						diff	=	somap[i][j][k]	-	inputs[k]

						diff2	+=	diff	*	diff

				if	(imin	==	-1)	or	(diff2	<	diff2min):

						imin	=	i

						jmin	=	j

						diff2min	=	diff2

Then	 this	 cell	 and	 surrounding	 cells,	 determined	 by	 the	 spread	 matrix,	 are	 updated,
using	a	weighting	determined	by	the	decay	parameter.

halfWidth	=	(width-1)	//	2

halfHeight	=	(height-1)	//	2

for	k	in	range(width):

		i	=	(imin	+	k	-	halfWidth	+	nrows)	%	nrows

		for	l	in	range(height):

				j	=	(jmin	+	l	-	halfHeight	+	ncols)	%	ncols

				alpha	=	decay	*	spread[k][l]

				for	m	in	range(depth):

						somap[i][j][m]	=	(1.0-alpha)	*	somap[i][j][m]	+	alpha	*	vector[m]

NumPy	implementation
With	NumPy	 a	 lot	 of	 the	 pain	 is	 removed	 from	matrix	manipulations,	 and	 in	 particular
there	are	fewer	explicit	loops.	In	particular,	the	updateSomap	function	in	the	pure	Python
implementation	becomes	just	one	line	in	the	NumPy	version.	See	Chapter	24	for	 further
discussion	of	this	implementation,	since	the	code	is	just	a	repeat	of	what	is	there.

def	selfOrganisingMap(inputs,	spread,	size,	steps=1000):

		nRows,	nCols	=	size

		vecLen	=	inputs.shape

		somap	=	numpy.random.rand(nRows,	nCols,	vecLen)

		influence	=	numpy.dstack([spread]*vecLen)	#	One	for	each	feature

		infWidth	=	(len(influence)-1)	//	2

		makeMesh	=	numpy.ix_			#	Ugly

		for	s	in	range(steps):

				decay	=	numpy.exp(-s/float(steps))

				for	vector	in	inputs:

						diff	=		somap-vector

						diff2	=	diff*diff

						dist2	=	diff2.sum(axis=2)

						index	=	dist2.argmin()

						row	=	index	//	nRows

						col	=	index	%	nRows

						rows	=	[x	%	nRows	for	x	in	range(row-infWidth,	row+1+infWidth)]

						cols	=	[y	%	nCols	for	y	in	range(col-infWidth,	col+1+infWidth)]

						mesh	=	makeMesh(rows,cols)

						somap[mesh]	-=	diff[mesh]	*	influence	*	decay

		return	somap

C	implementation
The	C	implementation	is	very	similar	to	the	pure	Python	implementation	except	that	there
are	memory	management	issues	to	address.	These	do	not	occur	in	Python	because	there	is
automatic	memory	allocation	and	freeing	of	unused	memory	(called	garbage	collection).
Further,	 if	you	want	 to	be	able	 to	call	 the	C	functionality	from	Python	then	you	need	to
write	additional	code	to	accomplish	this,	to	convert	from	Python’s	own	data	structures	to
more	normal	C	types	on	the	way	in,	and	convert	the	result	C	types	to	Python’s	own	data
types	on	the	way	out.	This	approach	assumes	that	you	have	an	existing	C	library	that	you
want	to	use	without	having	to	rewrite	it.	If	instead	you	were	writing	a	C	implementation
from	scratch	then	an	alternative	strategy	would	be	to	use	Python’s	or	NumPy’s	own	types
throughout	your	C	code.	Whether	or	not	this	is	a	good	idea	depends	on	the	details	of	the
code,	 and	 what	 else	 you	 might	 want	 to	 do	 with	 it,	 though	 the	 C	 types	 generally	 give
quicker	 execution.	 Here	 we	 will	 write	 the	 core	 part	 of	 the	 C	 implementation	 to	 use
standard	C	types	rather	than	Python’s	or	NumPy’s	own	types.	We	will	not	explain	all	the
vagaries	of	the	C	syntax	but	just	the	important	differences	with	Python.

In	C	it	 is	standard	practice	to	have	two	files	go	together:	 the	first	(suffix	‘.h’)	gives	a
specification	of	the	interface	to	the	functionality,	in	particular	stating	what	functions	you
want	 to	 make	 publicly	 accessible,	 and	 the	 other	 file	 (suffix	 ‘.c’)	 is	 the	 actual
implementation	 of	 the	 functionality.	 Here	 we	will	 call	 the	 former	 file	 somap.h	 and	 the

latter	somap.c.	In	general	there	might	be	lots	of	functions	that	you	want	to	specify	as	being
publicly	accessible.	Here	we	will	only	have	one	function,	so	somap.h	has:

extern	double	***selfOrganisingMap(double	**inputs,

																		int	ninputs,	int	depth,	int	nrows,	int	ncols,

																		double	**spread,	int	width,	int	height,	int	nsteps);

In	C	we	have	to	specify	types	explicitly.	Here	we	have	‘int’	for	integers	and	‘double’	for
double-precision	 floating	 point	 numbers.6	 The	 two-asterisk	 **	 and	 three-asterisk	 ***
syntaxes	are	effectively	the	C	way	of	specifying	that	the	corresponding	variable	is	a	list	of
lists	 or	 a	 list	 of	 lists	 of	 lists,	 respectively.	The	 function	 selfOrganisingMap	 is	 expecting
nine	 arguments.	 The	 extra	 arguments	 compared	with	 the	 Python	 implementation	 are	 to
specify	the	sizes	of	the	lists,	because	in	C	the	list	variables	themselves	do	not	contain	this
information	(one	of	the	common	sources	of	bugs	in	C	programs).	The	result	returned	has
to	 be	 specified	 and	 here	 it	 is	 a	 list	 of	 lists	 of	 lists	 of	 double-precision	 floats,	 which
represents	 the	 constructed	map.	 The	 ‘extern’	 just	 says	 that	 the	 function	 is	 implemented
elsewhere	(i.e.	in	this	case	in	the	file	somap.c).

The	 implementation	 of	 selfOrganisingMap	 is	 very	 similar	 to	 the	 Python	 version.	 In
somap.c	we	declare	the	function,	just	repeating	what	is	given	in	somap.h	but	without	the
‘extern’:

double	***selfOrganisingMap(double	**inputs,

																		int	ninputs,	int	depth,	int	nrows,	int	ncols,

																		double	**spread,	int	width,	int	height,	int	nsteps)

In	C,	blocks	of	code	are	delineated	not	by	whitespace	but	by	curly	brackets,	‘{’	and	‘}’.
In	C	we	also	need	 to	explicitly	declare	 the	data	 type	of	any	variable	 that	 is	being	used.
And	in	C	statements	have	to	end	with	a	semicolon	‘;’.

{

		int	step,	i;

		double	decay;

		double	***somap;

We	then	set	up	the	 initial	value	for	somap.	This	 is	similar	 to	what	happens	 in	Python
except	that	here	we	also	require	explicit	memory	allocation,	and	to	be	tidy	we	put	it	in	a
separate	function,	randomMap.	In	C	the	equivalent	(as	such)	of	None	is	called	NULL.	For
the	memory	allocation	a	result	of	NULL	means	the	allocation	failed.	This	can	be	checked
with	the	short	expression	!somap.	If	that	happens	there	is	not	much	we	can	do	except	to
give	up.

somap	=	randomMap(nrows,	ncols,	depth);

if	(!somap)

		return	NULL;

We	then	repeat	the	same	loops	as	in	the	Python	version:

for	(step	=	0;	step	<	nsteps;	step++)

{

		decay	=	exp(-step	/	(double)	nsteps);

		for	(i	=	0;	i	<	ninputs;	i++)

				updateSomap(somap,	inputs[i],	depth	,	nrows,	ncols,

																spread,	width,	height,	decay);

}

return	somap;

}

The	randomMap	function	does	 the	memory	allocation	and	setting	 the	 initial	values	 to
random	numbers.	The	‘static’	means	that	this	function	is	not	visible	outside	this	file,	so	is
private.	The	function	which	allocates	memory	is	called	malloc	and	you	have	to	tell	it	how
many	bytes	of	memory	you	want	allocated,	and	sizeof	provides	the	relevant	multiplier	to
go	from	the	number	of	objects	to	the	number	of	bytes.

static	double	***randomMap(int	nrows,	int	ncols,	int	depth)

{

		int	i,	j,	k;

		double	***x;

		x	=	(double	***)	malloc(nrows	*	sizeof(double	**));

		if	(!x)

				return	NULL;

		for	(i	=	0;	i	<	nrows;	i++)

		{

				x[i]	=	(double	**)	malloc(ncols	*	sizeof(double	*));

				if	(!x[i])

						return	NULL;

				for	(j	=	0;	j	<	ncols;	j++)

				{

						x[i][j]	=	(double	*)	malloc(depth	*	sizeof(double));

						if	(!x[i][j])

								return	NULL;

				for	(k	=	0;	k	<	depth;	k++)

						x[i][j][k]	=	randomNumber();

		}

}

return	x;

}

The	 randomNumber()	 function	 should	 return	 a	 uniformly	 sampled	 random	 number
between	0	and	1.	On	most	computers	there	is	a	function	provided	for	this;	for	example,	on
many	Unix	systems	there	is	one	called	drand48().

The	updateSomap()	 function	 is	 very	 similar	 in	C	 to	 the	pure	Python	 implementation,
except	here	we	have	to	declare	the	type	of	variables.

static	void	updateSomap(double	***somap,	double	*input,

																int	depth,	int	nrows,	int	ncols,

																double	**spread,	int	width,	int	height,	double	decay)

{

		int	halfWidth,	halfHeight,	i,	j,	k,	l,	m,	imin,	jmin;

		double	diff,	diff2,	diff2min,	lambda;

		imin	=	jmin	=	-1;

		diff2min	=	0;	//	will	change	in	first	pass

		for	(i	=	0;	i	<	nrows;	i++)

		{

				for	(j	=	0;	j	<	ncols;	j++)

				{

						diff2	=	0.0;

						for	(k	=	0;	k	<	depth;	k++)

						{

								diff	=	somap[i][j][k]	-	input[k];

								diff2	+=	diff	*	diff;

						}

						if	((imin	==	-1)	||	(diff2	<	diff2min))

						{

								imin	=	i;

								jmin	=	j;

								diff2min	=	diff2;

						}

				}

		}

		halfWidth	=	(width-1)	/	2;

		halfHeight	=	(height-1)	/	2;

		for	(k	=	0;	k	<	width;	k++)

		{

				i	=	(imin	+	k	-	halfWidth	+	nrows)	%	nrows;

				for	(l	=	0;	l	<	height;	l++)

				{

						j	=	(jmin	+	l	-	halfHeight	+	ncols)	%	ncols;

						lambda	=	decay	*	spread[k][l];

						for	(m	=	0;	m	<	depth;	m++)

								somap[i][j][m]	=	(1.0-lambda)	*	somap[i][j][m]	+	lambda	*	input[m];

				}

		}

}

The	wrapper	 around	 this	 C	 code	 that	 converts	 to	 and	 from	 Python	 data	 types	 is	 the
boilerplate	code.	We	will	name	the	file	py_somap.c,	but	it	could	be	called	anything.	The
way	that	Python	interfaces	to	C	code	changed	between	Python	2	and	Python	3,	and	if	you
want	to	write	this	wrapper	code	to	be	compliant	with	both	then	you	can	check	whether	the
defined	constant	PY_MAJOR_VERSION	is	>=	3,	and	if	it	is	then	use	the	Python	3	form
of	 the	code,	and	otherwise	 the	Python	2	 form.	C	has	convenient	macros	#ifdef	 /	#else	 /
#endif	which	can	be	used	to	selectively	include	code	in	compilation.

In	order	to	access	the	module	in	Python	there	must	be	a	publicly	available	function.	In
Python	2	it	is	named	as	‘init’	concatenated	with	the	module	name.	Here	we	will	name	the
module	 somap	 and	 so	 the	 function	 must	 be	 named	 initsomap.	 This	 function	 returns
nothing,	which	in	C	means	void.	We	first	need	to	call	the	internal	Python	function	(albeit
via	C)	Py_InitModule	in	order	to	specify	the	module	name	and	functions	that	will	be	made
available	to	Python.

In	Python	3	the	publicly	available	function	instead	has	‘PyInit_’	concatenated	with	the

module	 name,	 so	 here	 PyInit_somap.	 It	 returns	 the	 module	 object,	 which	 is	 of	 type
PyObject	*.	And	to	initialise	the	module	we	call	the	function	PyModule_Create(),	which
expects	 an	 argument	 of	 type	 PyModuleDef	 *,	 which	 in	 turn	 contains	 the	 name	 of	 the
module	and	the	functions	that	will	be	made	available	to	Python.

Then	 we	 need	 to	 call	 import_array	 in	 order	 to	 initialise	 NumPy	 and	 also	 create	 an
exception	 object,	 ErrorObject,	 so	 that	 we	 can	 report	 errors	 that	 occur	 when	 using	 this
module.	In	Python	2	we	return	nothing,	but	in	Python	3	we	return	the	module	object.

#if	PY_MAJOR_VERSION	>=	3

static	struct	PyModuleDef	module_def	=	{

				PyModuleDef_HEAD_INIT,

				"somap",													/*	m_name	*/

				NULL,																/*	m_doc	*/

				-1,																		/*	m_size	*/

				Somap_type_methods,		/*	m_methods	*/

				NULL,																/*	m_reload	*/

				NULL,																/*	m_traverse	*/

				NULL,																/*	m_clear	*/

				NULL,																/*	m_free	*/

};

#endif

#if	PY_MAJOR_VERSION	>=	3

PyObject	*PyInit_somap(void)

#else

void	initsomap(void)

#endif

{

		PyObject	*module;

		/*	create	the	module	and	add	the	functions	*/

#if	PY_MAJOR_VERSION	>=	3

		module	=	PyModule_Create(&module_def);

#else

		module	=	Py_InitModule("somap",	Somap_type_methods);

#endif

		import_array();		/*	needed	for	numpy,	otherwise	it	crashes	*/

		/*	create	exception	object	and	add	to	module	*/

		ErrorObject	=	PyErr_NewException("somap.error",	NULL,	NULL);

		Py_INCREF(ErrorObject);

		PyModule_AddObject(module,	"error",	ErrorObject);

		/*	check	for	errors	*/

		if	(PyErr_Occurred())

				Py_FatalError("can't	initialize	module	somap");

#if	PY_MAJOR_VERSION	>=	3

		return	module;

#endif

}

Everything	else	in	the	module	will	be	‘static’,	i.e.	private	in	the	C	world	(although	the
specified	functions	will	be	available	in	the	Python	world),	and	should	be	placed	above	this
function	in	the	file.

The	exception	object	is	just	a	simple	variable.	All	Python	objects	in	C	are	of	type	either
PyObject*	or	extensions	thereof.

static	PyObject	*ErrorObject;

The	 functions	 available	 to	 the	 module	 are	 passed	 as	 the	 second	 argument	 to
Py_InitModule	and	here	this	is	called	Somap_type_methods.	This	is	a	list	with	each	entry
containing	four	items:	the	name	of	the	function	(method)	as	it	will	be	called	in	Python,	the
function	itself,	the	calling	convention	and	a	documentation	string,	here	called	somap_doc.
The	list	should	be	terminated	with	an	entry	that	contains	a	NULL	value	for	the	function
name.	Here	we	only	have	one	function,	which	we	also	call	somap.

static	char	somap_doc[]	=	"Creates	a	self-organising	map";

static	struct	PyMethodDef	Somap_type_methods[]	=

{

		{	"somap",		(PyCFunction)	somap,		METH_VARARGS,		somap_doc	},

		{	NULL,					NULL,																	0,													NULL	}

};

The	most	common	convention	is	METH_VARARGS,	where	the	functions	expect	 two
arguments,	the	first	being	the	object	itself	(by	convention	called	self,	as	in	Python	code)
and	 the	second	being	a	 tuple	containing	 the	values	passed	 to	 the	 function	 in	Python	(by
convention	called	args).	For	other	calling	conventions	see	the	Python	documentation	(see
links	at	http://www.cambridge.org/pythonforbiology).

The	function	somap	is	what	does	the	work	converting	from	the	Python	world	to	the	C
world,	 calling	 the	C	 function	and	 then	converting	back	 from	 the	C	world	 to	 the	Python
world.	It	first	unpacks	the	arguments,	and	checks	that	they	are	of	the	correct	data	type.	The
function	PyArg_ParseTuple	 unpacks	 the	 args	 tuple.	Here	 the	 tuple	 is	 expected	 to	 be	 of
length	five,	because	there	are	five	arguments	that	are	passed	in	from	the	Python	code.	The
first	element	of	 the	 tuple	 is	 the	 inputs	object,	 the	second	 the	spread	object,	 the	 third	 the
number	of	rows,	 the	fourth	the	number	of	columns	and	the	fifth	 the	number	of	steps	for
the	 algorithm.	 The	 ‘O!’	 in	 the	 call	 to	 PyArg_ParseTuple	 says	 that	 the	 corresponding
element	 in	 the	 tuple	must	 be	 Python	 objects	 of	 the	 specified	 type,	 here	 PyArray_Type,
which	is	the	NumPy	array	type.	The	‘i’	in	the	call	to	PyArg_ParseTuple	says	that	the	last
three	elements	must	be	integers.	Next	it	is	checked	that	inputs_obj	and	spread_obj	are	both
of	 the	 required	 type	 and	 shape	 as	NumPy	arrays.	The	RETURN_ERROR	C	macro	 is	 a
shorthand	for	creating	an	error	report	(exception)	that	will	be	passed	back	to	Python.

#define	RETURN_ERROR(message)	\

								{	PyErr_SetString(ErrorObject,	message);	return	NULL;	}

static	PyObject	*somap(PyObject	*self,	PyObject	*args)

{

		int	ninputs,	nsteps,	nrows,	ncols,	depth,	width,	height,	i,	j,	k;

		PyArrayObject	*inputs_obj,	*spread_obj;

		PyObject	*somap_obj;

http://www.cambridge.org/pythonforbiology

		double	**inputs,	**spread,	***somap;

		npy_intp	dims[3];

		if	(!PyArg_ParseTuple(args,	"O!O!iii",	&PyArray_Type,	&inputs_obj,

																&PyArray_Type,	&spread_obj,	&nrows,	&cols,	&nsteps))

				RETURN_ERROR("need	5	args:	inputs,	spread,	nrows,	ncols,	nsteps");

		if	(!PyArray_Check(inputs_obj))

				RETURN_ERROR("inputs	needs	to	be	NumPy	array");

		if	(PyArray_NDIM(inputs_obj)	!=	2)

				RETURN_ERROR("inputs	needs	to	be	NumPy	array	with	ndim	2");

		if	(!PyArray_Check(spread_obj))

				RETURN_ERROR("spread	needs	to	be	NumPy	array");

		if	(PyArray_NDIM(spread_obj)	!=	2)

				RETURN_ERROR("spread	needs	to	be	NumPy	array	with	ndim	2");

		if	(PyArray_TYPE(inputs_obj)	!=	NPY_DOUBLE)

				RETURN_ERROR("inputs	needs	to	be	array	of	doubles");

		if	(PyArray_TYPE(spread_obj)	!=	NPY_DOUBLE)

				RETURN_ERROR("spread	needs	to	be	array	of	doubles");

Next	 the	 function	 determines	 the	 size	 of	 inputs_obj	 and	 spread_obj	 and	 then	 copies
these	two	NumPy	arrays	into	standard	C	arrays.

ninputs	=	PyArray_DIM(inputs_obj,	0);

depth	=	PyArray_DIM(inputs_obj,	1);

width	=	PyArray_DIM(spread_obj,	0);

height	=	PyArray_DIM(spread_obj,	1);

if	(!(inputs	=	copyArray2(inputs_obj)))

		RETURN_ERROR("getting	inputs	as	C	array");

if	(!(spread	=	copyArray2(spread_obj)))

{

		freeArray2(inputs,	nrows,	ncols);

		RETURN_ERROR("getting	spread	as	C	array");

}

If	there	are	any	problems	then	the	function	returns	an	error	message.	The	copyArray2
function	 includes	 memory	 allocation,	 and	 there	 are	 of	 course	 corresponding	 memory-
freeing	functions.	We	also	need	a	freeArray3	function	for	later	use.

static	void	freeArray2(double	**array,	int	m)

{

		int	i;

		for	(i	=	0;	i	<	m;	i++)

				free(array[i]);

		free(array);

}

static	void	freeArray3(double	***array,	int	m,	int	n)

{

		int	i;

		for	(i	=	0;	i	<	m;	i++)

				freeArray2(array[i],	n);

		free(array);

}

static	double	**allocArray2(int	m,	int	n)

{

		int	i;

		double	**array;

		array	=	(double	**)	malloc(m*sizeof(double	*));

		if	(array)

		{

				for	(i	=	0;	i	<	m;	i++)

						array[i]	=	(double	*)	malloc(n*sizeof(double));

		}

		return	array;

}

		static	double	**copyArray2(PyArrayObject	*array_obj)

		{

				int	i,	j,	m,	n;

				double	**array;

				m	=	PyArray_DIM(array_obj,	0);

				n	=	PyArray_DIM(array_obj,	1);

				array	=	allocArray2(m,	n);

				if	(array)

				{

						for	(i	=	0;	i	<	m;	i++)

						{

								for	(j	=	0;	j	<	n;	j++)

										array[i][j]	=	*((double	*)

																								PyArray_GETPTR2(array_obj,	i,	j));

						}

				}

				return	array;

		}

Getting	back	to	the	somap	function,	up	to	this	point	we	have	just	been	converting	the
Python	data	types	into	C	data	types.	Next	the	function	calls	the	straight	C	function	that	we
wrote	 above,	which	 is	 the	whole	 point	 of	 the	 exercise	 and	 is	 the	 one	 line	 of	 code	 that
actually	does	anything	directly	useful.

somap	=	selfOrganisingMap(inputs,	ninputs,	depth,	nrows,	ncols,

																										spread,	width,	height,	nsteps);

Finally	 the	 function	copies	 the	 result	back	 into	a	Python	data	 type	and	 frees	memory
and	returns	the	result	to	Python.

dims[0]	=	nrows;

dims[1]	=	ncols;

dims[2]	=	3;

somap_obj	=	PyArray_SimpleNew(3,	dims,	NPY_DOUBLE);

for	(i	=	0;	i	<	nrows;	i++)

		for	(j	=	0;	j	<	ncols;	j++)

				for	(k	=	0;	k	<	depth;	k++)

						*((double	*)	PyArray_GETPTR3(somap_obj,i,j,k))	=	somap[i][j][k];

freeArray3(somap,	nrows,	ncols);

freeArray2(inputs,	ninputs);

freeArray2(spread,	width);

return	somap_obj;

}

Once	written,	 the	C	 code	 needs	 to	 be	compiled	 before	 it	 can	 be	 used,	 to	 convert	 the
textual	source	code	into	binary	code	that	can	be	executed	on	a	computer	platform.	Further
information	 on	 how	 to	 compile	 and	 run	 the	 C	 code	 examples	 is	 given	 at
http://www.cambridge.org/pythonforbiology.

Cython	implementation
The	 Cython	 language	 allows	 C-like	 constructs,	 including	 data	 type	 information,	 to	 be
introduced	 into	 what	 otherwise	 looks	 like	 Python	 code.	 This	 allows	 for	 much	 faster
execution	 at	 the	 expense	of	more	 complicated	 coding,	 but	 compared	 to	 regular	C	using
Cython	greatly	simplifies	the	conversion	between	the	C	and	Python	worlds.	Cython	code
is	conventionally	placed	in	a	file	ending	with	.pyx,	and	the	Cython	compiler	then	converts
that	into	a	compiled	C	library	which	can	then	be	imported	in	Python	code,	the	same	way
as	with	directly	compiled	C	code.	The	compilation	is	normally	done	via	a	Python	setup.py
file	 that	 controls	 a	 regular	 C	 compiler	 (like	 cc	 or	 gcc).	 For	 details	 see	 the	 Cython
documentation	(see	links	at	http://www.cambridge.org/pythonforbiology).

Pure	 Python	 code	 is	 valid	 Cython,	 and	 you	 can	 usually	 get	 a	 modest	 speed-up	 just
running	ordinary	Python	code	 through	 the	Cython	compiler,	 although	 this	will	naturally
restrict	portability	because	the	code	will	only	run	on	the	processor	architecture	for	which	it
was	compiled.	The	Cython	implementation	of	the	self-organising	map	could	be	made	very
similar	to	the	C	implementation.	As	in	the	Python+C	implementation,	you	could	convert
from	Python	objects	to	their	C	equivalent,	then	do	the	calculation,	then	convert	the	result
back	from	C	objects	to	Python	objects.	In	particular,	a	list	in	Python	would	get	converted
to	 a	C	 pointer	 and	 require	memory	 allocation	 and	 freeing.	However,	we	will	 avoid	 the
complication	 of	 data	 conversion	 and	 memory	 allocation	 and	 freeing	 by	 instead	 using
NumPy	 data	 throughout	 the	 code.	 This	 makes	 the	 code	 simple	 to	 write	 and	 avoids	 a
tedious	aspect	of	writing	code	in	C.

We	will	not	explain	all	 the	Cython	constructs,	but	 the	main	difference	 in	syntax	with
ordinary	Python	is	that	C	data	types	are	specified	using	cdef.	Though	Python	objects	can
also	have	a	type	specified,	and	in	general	even	that	makes	for	faster	execution.	In	addition,

http://www.cambridge.org/pythonforbiology
http://www.cambridge.org/pythonforbiology

imports	of	C	libraries	are	done	using	cimport	instead	of	import.	Here	we	need	the	NumPy
C	ndarray	data	type.	We	also	need	random	and	exp	from	the	standard	NumPy.	Finally,	we
need	the	import	of	cython	itself.

from	numpy	cimport	ndarray

from	numpy	import	random,	exp

import	cython

The	main	function	 in	 the	Cython	implementation	 is	different	 from	other	functions	we
have	seen	in	that	it	has	some	additional	Cython-specific	typing	for	some	of	the	arguments.
In	 particular,	 we	want	 the	 inputs	 and	 spread	 arguments	 to	 be	 two-dimensional	 NumPy
arrays.	They	both	have	 type	double,	which	 is	 the	default	NumPy	 type	 for	 floating	point
(real	number)	data.

def	selfOrganisingMap(ndarray[double,	ndim=2]	inputs,

																						ndarray[double,	ndim=2]	spread,

																						size,	nsteps):

We	then	define	the	incidental	variables	we	use	in	the	code	to	all	be	C	types	rather	than
Python	 types.	 This	 includes	 the	 map	 itself,	 which	 will	 be	 a	 three-dimensional	 NumPy
array.	 It	 is	 important	 to	 use	 C	 data	 types	 to	 make	 Cython	 code	 fast,	 although	 some
variables	are	less	important	than	others	for	speed.

cdef	int	nrows,	ncols,	ninputs,	depth,	width,	height

cdef	int	step,	i,	j

cdef	double	decay

cdef	ndarray[double,	ndim=3]	somap

We	then	initialise	the	variables.	The	somap	variable	can	be	initialised	using	the	standard
NumPy	random	number	generation	functionality.

nrows,	ncols	=	size

ninputs	=	len(inputs)

depth	=	len(inputs[0])

width	=	len(spread)

height	=	len(spread[0])

somap	=	random.random((nrows,	ncols,	depth))

We	then	iterate	over	nsteps	in	the	same	way	as	previously.

for	step	in	range(nsteps):

		decay	=	exp(-step	/	float(nsteps))

		for	i	in	range(ninputs):

				updateSomap(somap,	inputs[i],	spread,	nrows,	ncols,	depth,

																width,	height,	decay)

Finally,	we	return	somap.

return	somap

The	important	work	is	done	in	the	updateSomap()	function.	In	order	to	make	Cython	as
quick	 as	 possible,	 we	 turn	 off	 some	 checking	 that	 would	 otherwise	 be	 done	 on	 arrays,
using	function	decorators	 from	the	cython	module	(with	 the	‘@’	syntax;	see	Chapter	5).

This	is	dangerous	to	do	and	should	only	be	done	if	you	are	very	confident	that	your	code
has	no	array-indexing	bugs	in	it.	Python	handles	such	errors	graciously,	but	C	does	not.

@cython.boundscheck(False)

@cython.nonecheck(False)

@cython.wraparound(False)

cdef	void	updateSomap(ndarray[double,	ndim=3]	somap,

																						ndarray[double,	ndim=1]	inputs,

																						ndarray[double,	ndim=2]	spread,

																						int	nrows,	int	ncols,	int	depth,

																						int	width,	int	height,	double	decay):

We	then	define	the	variables	we	will	use.

cdef	int	halfWidth,	halfHeight,	i,	j,	k,	l,	m,	imin,	jmin

cdef	double	alpha,	diff,	diff2,	diff2min

The	 rest	 of	 the	 code	 is	 very	 similar	 to	 the	C	 code.	 It	 is	 important	 to	 use	 the	 bracket
notation	 [i,	 j,	 k]	 for	 array	 access	 rather	 than	 [i][j][k]	 because	 otherwise	 sub-arrays	 are
constructed,	which	significantly	reduces	the	speed.	It	 is	also	important	that	 these	indices
be	C	integers	rather	than	Python	integers.

halfWidth	=	(width-1)	//	2

halfHeight	=	(height-1)	//	2

imin	=	jmin	=	-1

diff2min	=	0.0

for	i	in	range(nrows):

		for	j	in	range(ncols):

				diff2	=	0.0

				for	k	in	range(depth):

						diff	=	somap[i,j,k]	-	inputs[k]

						diff2	+=	diff	*	diff

				if	((imin	==	-1)	or	(diff2	<	diff2min)):

						imin	=	i

						jmin	=	j

						diff2min	=	diff2

for	k	in	range(width):

		i	=	(imin	+	k	-	halfWidth	+	nrows)	%	nrows

		for	l	in	range(height):

				j	=	(jmin	+	l	-	halfHeight	+	ncols)	%	ncols

				alpha	=	decay	*	spread[k,l]

				for	m	in	range(depth):

						somap[i,j,m]	=	(1.0-alpha)	*	somap[i,j,m]	+	alpha	*	inputs[m]

We	 could	 use	 the	 following	 NumPy	 code,	 which	 is	 similar	 to	 code	 we	 used	 in	 the
NumPy	implementation,	to	replace	the	calculation	of	imin	and	jmin:

cdef	ndarray[double,	ndim=3]	diff

cdef	ndarray[double,	ndim=2]	diff2

diff	=	somap	-	inputs[i]

diff2	=	(diff*diff).sum(axis=2)

cdef	int	index	=	dist2.argmin()

imin	=	index	//	nrows

jmin	=	index	%	nrows

However,	it	turns	out	that	this	is	much	slower.

Before	the	above	functions	can	be	used,	the	code	must	be	transformed	into	binary	code
that	 can	 actually	 be	 run.	This	 is	 a	 two-step	 process	 in	Cython.	 Initially	 the	 Python-like
code	is	converted	into	the	equivalent	C	and	then	the	C	code	is	compiled	into	binary	code
that	 can	 be	 executed	 on	 a	 particular	 type	 of	 computer	 system.7	 These	 conversions	 are
fairly	easy	to	do	using	the	Cython	system.	In	essence,	we	run	a	setup	script	with	Python,
which	from	an	operating-system	prompt	would	look	something	like:

>python	setup.py	build_ext	--inplace

The	‘setup.py’	script	instructs	Cython	which	Python-like	.pyx	files	to	convert	into	fast,
compiled	Python	modules,	and	what	the	names	of	those	modules	should	be.	We	give	full
details	 of	 the	 setup	 script	 and	 how	 compilation	 is	 practically	 achieved	 on	 different
computer	 systems	 at	 http://www.cambridge.org/pythonforbiology.	 Our	 example	 uses
‘somapCython.pyx’	 to	 create	 the	 ‘somapCython’	 module	 (the	 actual	 compiled	 file	 is
‘somapCython.so’),	which	can	then	be	imported	into	standard	Python	code:

from	somapCython	import	selfOrganisingMap

And,	 if	we	 set	 appropriate	values	 for	 the	 input	 arguments,	 the	 function	can	be	called
from	Python	in	the	normal	manner:

mapOut	=	selfOrganisingMap(inData,	spreadArray,	mapSize,	numSteps)

Speed	comparison	of	implementations
It	is	often	difficult	to	compare	the	exact	speed	of	implementations	because	the	details	of
how	something	is	compiled	can	make	a	large	performance	difference.	For	example,	with
the	 C	 implementation,	 you	 can	 get	 a	 difference	 in	 speed	 of	 a	 factor	 of	 four	 just	 by
choosing	different	optimisation	options	for	 the	compiler.	For	 the	data	given	here	we	use
the	GCC	compiler	version	4.6.3	with	the	-O2	flag,

It	 is	 also	 important	 to	 understand	 how	 the	 running	 time	 scales	 with	 the	 size	 of	 the
problem:	in	this	case	how	big	the	input	data	arrays	are.	All	the	implementations	scale	in
the	same	basic	way,	with	the	slight	exception	of	the	NumPy	implementation,	where	some
of	the	array	calculations	are	proportionally	more	efficient	for	larger	arrays;	although	once
large	enough	to	be	efficient	the	NumPy	scaling	will	be	about	the	same.	Here	we	have	to
consider	 the	 size	 of	 the	 inputs	 array	 (parameters	ninputs	 and	depth)	 and	 the	 size	 of	 the
spread	array	(parameters	width	and	height)	and	the	number	of	steps	(parameter	steps),	in
addition	to	the	size	of	 the	output	self-organising	map	(parameters	rows,	cols	and	depth).
For	testing	we	have	taken	ninputs	to	be	rows	×	cols.	In	many	problems	it	is	possible	that
the	spread	array	is	of	a	fixed	size	(e.g.	5×5)	and	the	depth	is	of	a	fixed	size	(e.g.	3)	and	that
we	really	might	consider	varying	just	the	three	parameters	rows,	cols	and	steps.	Looking
at	the	algorithm	we	see	that	the	number	of	operations	scales	proportionately	to	steps,	but
with	the	squares	of	both	rows	and	cols.	Typically	the	rows	and	cols	are	the	same,	such	that
doubling	each	multiplies	 the	number	of	operations	by	 (approximately)	16.	This	 is	 not	 a

http://www.cambridge.org/pythonforbiology

fast	algorithm.

There	are	three	C-like	implementations	that	can	be	tested	and	compared	to	the	Python
versions.	Firstly,	we	can	 test	 the	C	implementation	with	code	 itself	written	entirely	 in	C
(and	 quite	 possibly	 this	 might	 be	 how	 such	 an	 implementation	 would	 have	 been	 used
originally).	Secondly,	we	can	test	the	C	implementation	using	the	Python	wrapping	around
it	 that	 we	 have	 provided	 above.	 Thirdly,	 we	 can	 test	 the	 Cython	 implementation.	 Not
surprisingly,	 these	 all	 come	 out	 at	 around	 the	 same	 speed.	 Note	 that	 all	 of	 these	 tests
depend	 on	 how	 the	 C	 code	 and	 the	 Python	 code	 are	 compiled.	 Naturally,	 the	 relative
values	are	specific	to	the	actual	program	being	tested,	so	the	speed-up	factors	are	only	a
rough	guide	to	the	general	situation.

The	pure	Python	implementation	is	unsurprisingly	the	slowest,	by	more	than	two	orders
of	magnitude	compared	with	the	fastest.

Table	 27.1. 	Comparing	 Python,	 Cython	 and	 C	 module	 execution	 speeds.	 Speed
test	 results	 for	 various	 implementations	 of	 the	 self-organising	 map;	 testing	 100
iterations	of	a	100	by	100	input	matrix.	The	Python	version	used	during	testing	was
2.7.3	and	the	C	compiler	used	was	GGC	version	4.6.3	with	the	–O2	option.

Implementation Average	run	time	(seconds) Speed-up	factor

C 82 227

C+Python 85 219

Cython 81 230

Python+NumPy 658 28

Python 18616 1

The	‘ctypes’	module
Python	has	a	module,	called	ctypes,	which	lets	Python	code	interact	directly	with	C	data
types	 and	 call	 C	 functions.	 This	 is	 not	 necessarily	 much	 easier	 than	 writing	 Python/C
wrapper	code,	as	was	done	above,	but	it	does	save	having	to	compile	the	code,	although
you	still	have	to	be	able	 to	understand	the	C	specification	of	whatever	functionality	you
are	using.	It	is	also	important	to	understand	who	(the	C	world	or	the	Python	world)	‘owns’
dynamically	 allocated	 memory,	 otherwise	 it	 could	 potentially	 cause	 problems	 with
memory	 leaks,	 or	 crashes	 from	 using	 memory	 that	 has	 been	 freed.	 For	 complete
documentation	and	further	discussion	of	 the	many	issues	 that	need	to	be	considered,	see
the	 documentation	 page	 for	 the	 ctypes	 module	 on	 the	 Python	 website,
http://www.python.org.	We	will	illustrate	a	few	examples	here	using	the	C	runtime	library,
because	 that	 is	 available	 on	 most	 computer	 systems.	 The	 functionality	 we	 use	 as	 an
example	is	already	available	in	Python,	but	it	nonetheless	shows	the	beginnings	of	how	the

http://www.python.org

ctypes	module	works.

The	ctypes	module	has	an	object,	cdll,	for	loading	dynamically	linked	libraries,	and	so
the	first	thing	to	do	is	to	import	that:

from	ctypes	import	cdll

On	Windows	machines	the	C	runtime	library	is	available	directly	as	an	attribute	of	cdll.
On	other	platforms,	like	Linux	and	OSX,	there	is	instead	a	function,	LoadLibrary().	This
has	one	argument,	which	is	the	file	name	of	the	library	(so	including	the	suffix).	The	file
name	is	platform	specific.	But	there	is	a	utility	function,	find_library(),	which	allows	the
user	 to	 find	 the	 file	 name	 of	 the	 standard	 libraries	 such	 as	 the	 C	 runtime	 library.	 To
determine	if	we	are	under	a	Windows	operating	system,	we	can	use	sys.platform,	and	if	it
starts	with	“win”	we	assume	we	are	using	Windows.

import	sys

if	sys.platform[:3]	==	"win":

		libc	=	cdll.msvcrt

else:

		from	ctypes.util	import	find_library

		fileName	=	find_library("c")	#	"c"	for	C	runtime	library

		libc	=	cdll.LoadLibrary(fileName)

Once	we	have	the	handle	to	the	C	runtime	library	we	can	call	its	available	functionality.
For	example,	to	call	the	C	time()	function	we	just	do:

print("time	=	%d"	%	libc.time(None))

This	prints	 the	number	of	 seconds	 since	1	 January	1970.	Here	 the	argument	None	 to
time()	represents	the	C	null	pointer.

The	standard	C	print	function,	printf(),	is	also	available,	and	this	illustrates	how	to	deal
with	C	types.	Only	the	following	restricted	set	of	Python	data	types	can	be	passed	directly
to	C	functions:	None,	integers	(and	longs,	 in	Python	2)	and	bytes	objects	(and	strings	in
Python	2).	Other	types	need	converting.	For	example,	for	Python	floating	point	numbers
there	 are	 three	 corresponding	 C	 data	 types:	 ‘float’,	 ‘double’	 and	 ‘long	 double’.
Respectively,	 these	 have	 their	 own	 conversion	 functions:	 c_float(),	 c_double()	 and
c_longdouble().	 Accordingly,	 to	 print	 a	 Python	 float	 as	 a	 C	 ‘double’,	 to	 three	 decimal
places,	we	can	do:

from	ctypes	import	c_double

x	=	3.14159

libc.printf(b"x	=	%.3f\n",	c_double(x))

In	Python	3	the	‘b’	converts	the	string	to	a	bytes	object,	in	Python	2	it	is	not	needed	but
it	 works	 (for	 Python	 2.6	 and	 2.7).	 In	 C	 the	 printf()	 function	 returns	 the	 number	 of
characters	written,	and	so	the	above	printf()	gives	two	lines	of	output	when	called	from	the
Python	prompt:8

x	=	3.142

10

In	addition	to	the	standard	types,	C	also	allows	user-defined	data	types.	These	are	just	a

list	of	attributes,	and	for	each	attribute	a	type.	The	ctypes	module	has	a	Python	class	called
Structure,	and	by	subclassing	this	you	effectively	get	the	Python	version	of	a	C	data	type.
In	this	class	you	specify	the	attribute	_fields_	(only	one	underscore	before	and	after,	not
two).	This	is	a	list	and	each	element	of	the	list	contains	a	2-tuple,	where	the	first	element
of	the	tuple	is	the	name	of	the	associated	datum,	and	the	second	element	of	the	tuple	is	its
type.	The	names	are	your	choice,	but	it	is	good	practice	to	use	the	C	names,	which	can	be
found	from	reading	the	C	documentation.

We	will	illustrate	use	of	Structure	with	a	calendar	example.	For	working	with	calendar
time	there	is	a	C	data	type,	‘struct	tm’,	which	stores	the	second,	month,	hour,	day	and	so
on.	You	have	to	read	the	C	documentation	to	know	exactly	how	it	is	stored	in	order	to	be
able	to	use	it	via	ctypes.	For	‘struct	tm’	the	data	type	of	all	the	attributes	is	the	C	‘int’	so
here	we	use	c_int.	This	leads	to:

from	ctypes	import	Structure,	c_int

class	TimeStruct(Structure):

		fields	=	[\

				('tm_sec',	c_int),			#	seconds

				('tm_min',	c_int),			#	minutes

				('tm_hour',	c_int),	#	hours

				('tm_mday',	c_int),	#	day	of	the	month

				('tm_mon',	c_int),			#	month

				('tm_year',	c_int),	#	year

				('tm_wday',	c_int),	#	day	of	the	week

				('tm_yday',	c_int),	#	day	in	the	year

				('tm_isdst',	c_int)	#	daylight	saving	time

]

In	the	following	example	we	will	fetch	the	current	time	in	seconds,	using	the	libc.time()
function	mentioned	above,	and	then	use	the	function	libc.localtime(),	which	will	 take	an
input	time	in	seconds	and	convert	it	into	a	TimeStruct.	Here	we	need	to	set	the	return	data
type	of	 localtime(),	otherwise	Python	will	 interpret	 it	 as	an	 integer	 (the	default).	This	 is
done	by	setting	the	attribute	restype	of	the	function.

from	ctypes	import	POINTER	,	c_long,	byref

libc.localtime.restype	=	POINTER(TimeStruct)

When	we	fetch	the	time,	one	technical	detail	is	that	time()	returns	a	Python	integer	but
we	need	it	to	be	a	c_long,	so	we	convert:

t	=	libc.time(None)

t	=	c_long(t)

Then	the	 time	in	seconds	has	 to	be	passed	 into	 the	 localtime()	 function	using	byref(),
which	 requires	 that	 the	 calling	 argument	 should	 be	 passed	 by	 reference	 rather	 than	 by
value.

resultPtr	=	libc.localtime(byref(t))

From	reading	the	C	documentation	we	know	what	the	return	data	type	is:	it	is	what	C
calls	a	‘pointer’,	which	in	this	case	is	to	the	TimeStruct	object.	Here,	this	can	be	thought

of	as	a	Python	list	of	length	one,	where	the	one	and	only	element	is	the	actual	TimeStruct
object.	Hence	we	take	index	0:

result	=	resultPtr[0]

Finally,	we	print	out	the	result	using	TimeStruct	attributes.	The	year	starts	at	1900,	so
we	add	that	to	turn	it	into	the	usual	convention.	And	the	month	starts	at	0	rather	than	1,	so
we	also	add	that.

print("day	=	%04d	%02d	%02d,	time	=	%02d:%02d:%02d"	%

						(result.tm_year+1900,	result.tm_mon+1,	result.tm_mday,

							result.tm_hour,	result.tm_min,	result.tm_sec))

1 	There	are	many	books	for	 learning	C:	for	example,	Kelley,	A.,	and	Pohl,	 I.	 (1997).	A
Book	on	C:	Programming	in	C.	Addison	Wesley.
2 	http://cython.org.
3 	Although	we	don’t	go	further	than	this	here,	that	natural	next	step	would	be	to	distribute
jobs	over	many	separate	computers.
4 	http://openmp.org.
5 	Dependent	on	what	kind	of	CPU	is	present.
6 	Python	float	numbers	have	this	double	precision	as	standard.
7 	 It	will	be	compiled	so	 that	 it	 runs	on	a	particular	processor	architecture,	such	as	x86,
x86-64,	ARM	etc.
8 	The	count	of	10	includes	the	newline	character,	‘\n’.

http://cython.org
http://openmp.org

Appendices

These	appendices	contain	simple	explanations	and	definitions	for	a	subset	of	 the	Python
language,	 its	 standard	 libraries	 and	 a	 few	 of	 the	 key	 modules	 used	 in	 this	 book.	 The
objective	is	not	to	give	a	complete	description	of	every	possible	option,	which	is	already
documented	(and	will	be	more	up-to-date)	on	the	Internet.	Rather,	the	aim	is	to	cover	all	of
the	components	used	in	this	book	as	well	as	a	few	extra	useful	details	in	relatively	plain
English,	to	help	with	learning	the	language.	Hence,	it	is	deliberate	that	we	have	simplified
or	omitted	certain	details	 to	 avoid	obfuscating	 the	main	points	 for	novice	programmers.
While	 we	 describe	 most	 of	 the	 core	 components	 of	 standard	 Python,	 for	 some	 of	 the
libraries	we	will	 only	 highlight	 some	 parts	we	 have	 found	 particularly	 useful.	 In	 some
cases,	where	we	don’t	describe	individual	components,	we	will	describe	what	a	library	or
a	module	is	generally	used	for,	in	order	to	guide	further	investigation.

In	 addition	 to	 the	 material	 presented	 here,	 the	 website
http://www.cambridge.org/pythonforbiology	 provides	 links	 to	 full,	 in-depth
documentation	for	Python	and	the	associated	libraries	that	are	used	throughout	this	book.

http://www.cambridge.org/pythonforbiology

Appendix	1 	Simplified	language	reference

Keywords
The	following	table	gives	basic	descriptions	of	the	Python	keywords,	which	are	a	reserved
part	of	the	language	and	so	cannot	be	used	for	variable	names.

Keyword Description Example

and Performs	the	logical	AND
operation	(conjunction)	on	two
values,	yielding	a	true	value	if	both
are	true,	and	otherwise	a	false
value.

if	x	and	y:

		print("Both	are	true")

as Used	in	conjunction	with	the	with
keyword	to	define	a	variable	that
holds	a	context	manager	object.
Alternatively	used	with	import
statements	to	create	synonyms	for
external	components.

[See	examples	for	‘with’	and
‘import’]

assert Checks	whether	a	statement	is	true,
and	if	not	triggers	an	exception.
Often	used	to	check	the	validity	of
input	values.	The	command	is
ignored	if	Python	is	run	in
optimised	mode.

assert(isinstance(x,	int))
Note:	triggers	an
AssertionError	exception	if	the
test	fails.

break Causes	the	program	execution
within	current,	innermost,	iterative
loop	(invoked	with	for	or	while)	to
stop	immediately.

for	value	in	valueList:

		if	value	>	0:

				print('Loop	stopped')

				break

class Defines	a	class:	the	construction	of
a	named	type	of	Python	object,
which	may	be	based	on	one	or	more
other	classes.

class	

Biologist(Scientist):

		field	=	'Biology'

continue Causes	program	execution	within
current,	innermost,	iterative	loop for	value	in	valueList:

(invoked	with	for	or	while)	to	skip
to	the	next	iteration.

		if	value	>	0:

				print('Value	skipped')

				continue

def Defines	a	named	Python	function
(subroutine),	the	code	for	which	is
in	an	indented	block.

def	dotProduct(vec1,	

vec2):

		pairs	=	zip(vec1,	vec2)

		p	=	sum([a*b	for	a,b	in	

pairs])

		return	p

del Deletes	a	variable	or	item,	directly
from	memory	or	from	an	enclosing
data	structure.

p	=
[‘Neptune’,‘Uranus’,‘Pluto’]
del	p[2]
Note:	deleted	list	item	with
index	2	(Pluto).

elif Used	after	an	if	statement	to	define
a	further	block	of	code	that	is
conditionally	executed	if	a	different
condition	holds.

if	x	>	0:

		print("x	is	positive")

elif	x	<	0:

		print("x	is	negative")

else Used	after	an	if	statement	to	define
a	final	block	of	code	that	is
executed	if	none	of	the	conditions
after	the	if	or	elif	statements	hold.
Also	used	after	try	to	define	a	block
that	is	executed	if	no	error	occurs,
and	after	for	to	define	a	block	that
is	executed	if	the	for	loop	has	not
been	exited	because	of	a	break.

if	x	%	2:

		print("x	is	odd")

else:

		print("x	is	even")

except Used	after	the	try	keyword	to
provide	a	code	block	that	catches
and	deals	with	particular	kinds	of
error	exception.

[See	example	for	try]

exec Executes	Python	statements	that	are
contained	within	text	strings	or	a
file;	allows	the	creation	of	dynamic
code.

text	=	‘sum(range(1,100,3))’
exec(text)

finally Used	after	the	try	keyword	in	order
to	specify	a	block	of	code	that	is
always	executed	after	exception

fileObj	=	open(name)

try:

		

handling,	typically	to	perform
clean-up	operations.

print(fileObj.readlines())

finally:

		fileObj.close()

for Creates	a	repeating,	iterative	loop
where	a	variable	is	assigned	values
in	turn	from	a	collection	or	iterable
object.

total	=	0.0

for	value	in	

[1,3,5,7,9,11]:

		total	+=	value	**	0.5

from Used	in	a	statement	to	specify
which	module	to	import	a
component	from.

from	math	import	sqrt
y	=	sqrt(2.0)

global Makes	named	variables	accessible
in	a	global	context,	i.e.	throughout
the	whole	file,	even	if	they	only
appear	within	inner,	local	code
blocks.

def	func(text):

		global	value

		value	=	len(text)

func('hello')

print(value)		#	5

if Used	to	execute	a	block	of	code
only	on	condition	that	a	statement
holds.	May	be	used	in	conjunction
with	elif	and	else.

if	x	>	0:

		print("Here	if	x	is	

positive")

import Imports	a	named	external	module
so	that	it	is	available	within	the
current	program.	Can	be	used	with
from	to	import	a	particular	sub-
component	and	with	as	to	create	a
synonym	for	the	module.

import	math

y	=	math.sqrt(2.0)

import	numpy	as	np

a	=	np.array([2,0,4,1])

in Used	in	various	situations.	On	its
own	used	in	tests	whether	an	item	is
a	member	of	a	collection,	giving
True	if	it	is	and	False	otherwise.
Also	used	after	for	and	exec
keywords.

letters	=	

['G','C','A','T']

if	x	in	letters:

		print('x	is	in	the	

list')

[See	also	for	and	exec
keywords]

is Compares	two	Python	objects	to
test	whether	they	are	the	same
object,	yielding	True	if	they	are	and
False	otherwise.

if	x	is	None:

		print("x	not	defined")

is	not Compares	two	Python	objects	to
test	whether	they	are	not	the	same
object,	yielding	True	if	they	are
different	and	False	if	they	are	the
same	object.

if	x	is	not	None:

		print("x	is	defined")

lambda Creates	an	unnamed	(anonymous)
function.	Useful	for	defining	small
functions	in	place	in	larger
expressions.

data	=	[('A',4),	('B',9),	

('C',2)]

data.sort(key=lambda	x:	

x[1])

Sorts	on	the	second	item.

not Performs	a	logical	NOT	operation
(negation)	on	a	value,	giving	True	if
the	value	is	false	and	False	if	the
value	is	true.

if	not	x:

		print("x	is	false")

or Performs	the	logical	OR	operation
(disjunction)	on	two	values,
yielding	a	true	value	if	one	or	other
is	true,	and	otherwise	a	false	value.

if	x	or	y:

		print("At	least	one	is	

true")

pass A	keyword	that	doesn’t	actually	do
anything	except	form	part	of	a	valid
Python	syntax.	Used	as	a
placeholder	where	code	may	be
filled	in	later.

if	x	is	None:

		pass	#	Add	code	later

else:

		x	+=	2.0

print Displays	a	line	of	text	to	screen
(standard	out),	with	an	option	to
redirect	the	data,	e.g.	to	a	file.	In
Python	2	print	is	a	statement	or	a
function.	In	Python	3	it	is	a
function.

print	‘Hello’
print	>>	fileObj,	“Data	line”
Note:	above	lines	are	for
Python	2.
print(‘Hello’)
Note:	above	line	is	for	Python
2	or	3.
print(‘Data	line’,	file=fileObj)
Note:	above	line	is	for	Python
3.

raise Manually	triggers	an	error
exception.	May	be	used	on	its	own
for	custom	exceptions	or	to	re-
throw	error	objects	caught	with	try:
and	except:.

if	x	==	0.0:

		raise	

Exception("Detected	zero")

return Exits	from	a	named	function	and
optionally	passes	back	one	or	more
items	to	the	point	where	the
function	was	called.

def	countWords(text):

		n	=	len(text.split())

		return	n

print(countWords('Hello	

world'))

try Encapsulates	a	block	of	code	so	that
if	an	illegal	state	triggers	an
exception	the	error	can	be	caught
and	dealt	with	in	a	special	way.
Used	in	conjunction	with	except
and	or	finally	keywords.

try:

		x	+=	a	/	b

except	ZeroDivisionError:

		print("Ignored	zero	

division")

while Continues	the	repeated,	iterative
execution	of	a	block	of	code	while
a	certain	condition	holds.

x	=	2

while	x	<	1000:

		print(x)

		x	*=	2

with Encapsulates	a	block	of	code	using
a	context	manager	object,	which
has	dedicated	methods	to	deal	with
starting	and	cleanly	ending	the
context.	Generally	used	so	that	the
context	can	have	clean-up	before	it
exits	or	an	exception	occurs.
Optionally	uses	the	as	keyword.

with	open(fileName)	as	

fileObj:

		for	line	in	fileObj:

				print(line)

The	with	statement
encapsulates	the	file	reading
block	so	the	file	is	closed	at
the	end	or	if	an	error	occurs.

yield Used	inside	a	function	to	pass	back
a	value	like	return,	but	allows	the
function	to	be	re-entered,	keeping
the	previous	state.	Used	to	make
generator	functions.

def	generateSquare():

		for	x	in	range(1,10):

				yield	x*x

print(generateSquare())				

#	1

print(generateSquare())				

#	4

Escape	sequences
The	following	are	some	of	 the	most	commonly	used	escape	sequences	 in	Python,	which
allow	you	 to	 specify	 textual	 characters	 or	 control	 codes	when	 they	 are	 not	 available	 as
regular	symbols.

Code Description Example

\ A	backslash	character,	which	needs	to	be
forced	when	the	following	character	would
otherwise	form	an	escape	code.

text	=	‘\title’
Text	is	‘\title’	and	does
not	have	a	tab	(\t)	code
inside.

' A	single	quote,	which	may	need	to	be	escaped
in	situations	where	it	should	not	be	considered
as	the	start	or	end	of	a	string.

text	=	‘Don't	do	that!’
Note:	not	required
when	a	string	is	defined
with	double	quotes.

" A	double	quote,	which	may	need	to	be	escaped
in	situations	where	it	should	not	be	considered
as	the	start	or	end	of	a	string.

text	=	“Shout	"Help!"
loudly.”
Note:	not	required
when	a	string	is	defined
with	single	quotes.

\n A	newline	(linefeed)	control	character.	Used	to
separate	lines	of	text	in	Unix-	and	Linux-based
computers

text	=	‘Line	A\nLine
B\n’
Text	value	is	split	into
two	lines	on	Linux	and
Unix	machines.

\r A	carriage	return	control	character.	Used	in
combination	with	\n	on	Windows-based
systems	to	separate	lines	of	text.

text	=	“Line	A\r\nLine
B\r\n”
Text	is	split	into	two
lines	on	Windows
machines.

\t A	tab	character,	providing	indentation	with
whitespace	to	pre-set	stop	points.

text	=	‘Col	1\tCol
2\tCol	3\n’
Tabs	indent	to	form
three	columns.

\u…. Specifies	a	Unicode	character	using	a	16-bit
hexadecimal	value.

text	=	u’\u03b1-helix’
Creates	‘α-helix’,	e.g.
for	graphical	displays.

\x.. Specifies	a	character	using	a	hexadecimal
value.

text	=
‘\x48\x65\x6C\x6C\x6f’
Text	is	hexadecimal
code	for	‘Hello’.

Constants

The	 following	 are	 the	 commonly	 used	 named	 constants.	 From	 Python	 3	 these	 become
keywords,	and	thus	are	a	reserved	part	of	the	language	and	may	not	be	redefined.

Name Description Example

True A	Python	object	that	represents
truth	in	Boolean	logic. foundPositive	=	False

for	value	in	numbers:

		if	value	>	0:

				foundPositive	=	True

				break

False A	Python	object	that	represents
falsehood	in	Boolean	logic.

[As	above]

None A	Python	object	that	represents	an
absence,	or	that	something	is
undefined.

value	=	myDict.get(key)

if	value	is	None:

		print("key	was	not	in	

dictionary")

		print("(or	its	value	was	

None)")

Note:	the	.get()	method	of	Python
dictionaries	gives	None	if	a	key	is
absent.

Mathematical	operations
The	following	table	lists	the	standard	mathematical	operations	that	are	inbuilt	into	Python.
Some	 of	 these	 are	 specified	 with	 operator	 symbols,	 while	 others	 use	 standard	 named
functions.

Operation Description Example

x	+	y Addition:	x	plus	y. revenue	=	profit	+	expenses

x	-	y Subtraction:	x	minus	y: income	=	profit	-	taxes

x	*	y Multiplication:	x	times	y. area	=	volume	*	height

x	/	y Division:	x	divided	by	y,	within
the	precision	allowed	by	the
system.	Note	that	in	Python	2
dividing	two	integers	gives	an

mean	=	(x	+	y	+	z)	/	3.0

integer	(it	gives	a	floating	point
number	in	Python	3).

x	//	y Integer	floor	division:	x	divided
by	y	but	giving	the	nearest
whole	number	rounded
downwards.

a	=	13.0	//	5.0
The	value	of	a	is	2.0.

x	%	y Modulus:	find	the	remainder
when	dividing	x	by	y.

a	=	13	%	5
The	value	of	a	is	3.

-x Negate	the	value	of	x,
equivalent	to	multiplying	by	−1.

a	=	5
b	=	-a	*	3
The	value	of	b	is	−15.

a	+	bj Specifies	a	complex	number	a	+
bi:	(a	is	the	real	part;	b	is
imaginary).	Here	b	must	be	an
explicit	number,	not	a	variable.

x	=	1.0	+	-1.0j
print(x	*	x)
Gives	0-2i	(-2j	in	Python)

abs(x) Gives	the	absolute	value	of	x,
irrespective	of	sign,	i.e.	makes
values	positive.

a	=	abs(-7)
The	value	of	a	is	7.

int(x) Convert	x	into	the	integer
(whole	number)	equivalent;
gives	an	integer	data	type,
rounding	towards	0	as	required.
A	second	argument	is	the	base	in
which	to	interpret	x.

int(‘	21	‘)
int(3.0	*	7.0)
int(‘10101’,	2)
All	these	values	are	21.

long(x) Convert	x	into	a	long	integer
(i.e.	of	arbitrary	length):	this	is
mostly	redundant.	Not	available
in	Python	3.

x	=
long(12345123451234512345)
Note:	int()	will	automatically
create	long	integers	as	needed.

float(x) Convert	x	into	the	equivalent
floating	point	number:	a	fixed
precision	number	with
significant	digits	and	an
exponent.

c	=	float(‘	6.0322e23	‘)
d	=	float(12)

round(x[,n]) Round	x	to	the	nearest	whole
number	or	optionally	accepts	n,
stating	how	many	decimal

a	=	1.5555

b	=	round(a)				#	2.0

c	=	round(a,	2)	#	1.56

places	to	round	to.

complex(a,b) Creates	an	imaginary	number
with	real	part	a	and	imaginary
part	b,	i.e.	a	+	bi.

c	=	complex(1,	-2)
d	=	c.conjugate()

divmod(x,	y) Divide	x	by	y	giving	the	integer
floor	and	remainder	as	separate
values.

a,	b	=	divmod(13.0,	5.0)
The	value	of	a	is	2.0	and	b	is
3.0.

pow(x,	y)
or
x	**	y

Raise	x	to	the	power	of	y,	i.e.	xy. a	=	2	**	3
The	value	of	a	is	8.

Comparison	operators
The	 following	 table	 lists	 the	 standard	 item	 comparison	 operations	 that	 are	 built	 into
Python,	 to	 compare	 the	 value	 or	 identity	 of	 objects.	 Note	 that	 in	 Python	 3	 inequality
comparisons	can	only	be	made	on	objects	of	a	comparable	type.	In	Python	2	you	can	make
the	comparison	2	<	‘a’	 (even	 though	 it	does	not	 really	make	sense)	but	 this	 is	 illegal	 in
Python	3.

Operator Description Example

== Tests	whether	two	operands	(either	side	of	the
operator)	have	the	same	value,	giving	True	if
they	do	and	False	otherwise.

x	=	3	*	5

if	x	==	15:

		print("Equal")

!= Tests	whether	two	operands	have	different
values,	giving	True	if	they	do	and	False
otherwise.

seq	=	'GCGC'

if	seq	!=	

'TATA':

		print("Not	

equal")

> Tests	whether	the	value	of	the	first	operand	is
greater	in	value	than	the	second,	giving	True	if
it	is	and	False	otherwise.

x	=	2**10
x	>	1024
Evaluates	to	False;
210	is	exactly
1024,	not	greater.

< Tests	whether	the	value	of	the	first	operand	is
smaller	in	value	than	the	second,	giving	True	if
it	is	and	False	otherwise.

x	=	2**10
x	<	1025
Evaluates	to	True.

>= Tests	whether	the	value	of	the	first	operand	is
greater	or	equal	in	value	than	the	second,
giving	True	if	it	is	and	False	otherwise.

x	=	2**10
x	>=	1024
Evaluates	to	True.

<= Tests	whether	the	value	of	the	first	operand	is
smaller	or	equal	in	value	than	the	second,
giving	True	if	it	is	and	False	otherwise.

x	=	2**10
x	<=	512
Evaluates	to	False.

is Tests	whether	two	operands	represent	the	same
Python	object,	giving	True	if	they	do	and	False
otherwise.

x	=	True

if	x	is	True:

		

print("Success")

is	not Tests	whether	two	operands	represent	different
Python	objects,	giving	True	if	they	are	different
and	False	if	they	are	the	same.

value	=	

myDict.get(key)

if	value	is	not	

None:

		print('Found	

key')

Binary	operators
The	following	are	standard	bitwise	binary	operations	that	are	built	into	Python.

Operator Description Example

x	&	y The	bitwise	binary	AND	operation,	giving	1	if
both	bits	at	a	position	are	1,	and	0	otherwise.

x	=	0b11111000
y	=	0b10011111
print(bin(x	&	y))
Result	is
0b10011000.

x	|	y The	bitwise	binary	OR	operation,	giving	1	if
any	of	the	bits	at	a	position	are	1,	and	0
otherwise.

x	=	0b11010000
y	=	0b00001101
print(bin(x	|	y))
Result	is
0b11011101.

x	^	y The	bitwise	binary	XOR	operation,	giving	1
only	if	one	of	the	bits,	but	not	both,	at	a
position	is	1,	and	0	otherwise.

x	=	0b11111000
y	=	0b00011111
print(bin(x	^	y))
Result	is

0b11100111.

x	<<	n The	left-shift	bit	operation.	Moves	the	bits	of
x	by	n	places	to	the	left.	The	same	as
multiplying	x	by	2**n.

x	=	0b00010101	#
21	in	decimal
print(bin(x	<<	2))
Result	is
0b1010100;	84	in
decimal.

x	>>	n The	right-shift	bit	operation.	Moves	the	bits	of
x	by	n	places	to	the	right.	The	same	as	the
integer	part	of	dividing	x	by	2**n.

x	=	0b01010101	#
85	in	decimal
print(bin(x	>>	1))
Result	is	0b101010;
42	in	decimal.

~x The	bitwise	binary	NOT	operation;	forms	the
complementary	binary	number	by	flipping	1
for	0	and	0	for	1.	Note	this	flips	all	bits	in	the
full	binary	representation	whether	they	are
directly	represented	or	not	(i.e.	have	implicit
leading	zeros).

from	numpy	import
int8
x	=
int8(0b11000011)
print(bin(~x))
Result	is	0b111100.
Note	use	of	8-bit
integers	from
NumPy	to	avoid
implicit	zeros	in
normal	Python
integers.

Inbuilt	functions
The	 following	 lightly	 describes	 selected,	 standard	 Python	 functions	 which	 require	 no
imports	to	use.	See	the	standard	Python	documentation	for	more	technical	descriptions	and
details	of	all	arguments.	Optional	arguments	are	specified	in	italics.

Function Description Example

abs(val) Generates	the	absolute	value
of	a	number,	i.e.	its
magnitude,	irrespective	of
sign.

numbers	=	[-3,-2,-1,0,1,2,3]
print([abs(x)	for	x	in
numbers])
Result	is	[3,	2,	1,	0,	1,	2,	3].

all(vals) Determines	whether	all	the
items	in	a	collection	(or	other
iterable)	have	true	values.

all([True,	False,	True])	#
False
all([1,2,3,4])	#	True

Gives	True	if	they	do	and
False	otherwise.	This	does
not	work	on	multi-
dimensional	NumPy	arrays.

any(vals) Determines	whether	any	of
the	items	in	a	collection	(or
other	iterable	object)	have
true	values.	Gives	True	if	so
and	False	otherwise.	This
does	not	work	on	multi-
dimensional	NumPy	arrays.

any([True,	False,	True])	#
True
any([False,	None,	0.0])	#
False

bin(val) Creates	a	string	representing
the	binary	version	of	a
number;	0	and	1	characters
prefixed	with	‘0b’.	Available
from	Python	2.6	onwards.

x	=	341
print(bin(x))
Result	is	‘0b101010101’.

bool(val) Determines	whether	a	value
is	logically	true	or	false,	i.e.
converts	a	value	into	a
Boolean	object.

bool(0.0)	#	False
bool(3.0)	#	True
bool(‘abc’)	#	True

callable(obj) Determines	whether	an	object
is	callable,	i.e.	can	be
invoked	like	a	function.
Giving	True	if	so	and	False
otherwise.

y	=	1.47
x	=	abs	#	The	inbuilt
function
print(callable(y),
callable(x))	#	False,	True

chr(code) Gives	the	ASCII	character
string	for	an	integer	code
number.	Performs	the	inverse
operation	to	ord().

i	=	ord(‘A’)
print(chr(i+1))
Result	is	‘B’.

cmp(val1,	val2) Compares	two	objects	and
gives	back	1	if	the	first	is
larger,	−1	if	the	second	is
larger	or	0	if	they	are	equal.
Not	available	in	Python	3.

cmp(1,2)		#	-1

cmp(2,2)		#			0

cmp(2,1)		#			1

complex(real,
imag)

Creates	a	complex	number
using	separate	real	and
imaginary	components.

x	=	complex(1,-1.4142)
Result	is	(1-1.4142j);	1-
1.4142i.

dict(vals) Creates	a	dictionary	from	a
specified	object,	e.g.	to	copy
another	dictionary	or	to
convert	a	list	of
keyword:value	pairs.

x	=	[(1,1),(2,4),(3,9),(4,16)]
y	=	dict(x)
Result	is	{1:1,	2:4,	3:9,
4:16}.

dir(obj) Gives	a	list	of	variable	names
that	are	present	within	the
current	program	scope,	or	if
object	is	specified	the	names
associated	with	that	object	as
attributes.

print(dir())
print(dir(”))
First	line	shows	imports	and
declarations.	Second	line
shows	attributes	of	string
types.

divmod(val1,
val2)

Divide	x	by	y	giving	the
integer	floor	and	remainder
as	separate	values.

[See	Mathematics	section]

enumerate(vals,
start)

Generates	sequential	pairs	of
(number,	item)	from	a
collection	or	other	iterable
object,	e.g.	extracting	objects
and	their	indices	from	a	list.
Creates	an	iterator	object.
Takes	a	start	number	as	a
second	argument.

letters	=	‘GCAT’
enum	=
list(enumerate(letters))
Result	is	[(0,‘G’),	(1,‘C’),
(2,‘A’),	(3,‘T’)].

eval(exprn,	locals,
globals)

Evaluates	a	string	as	an
expression	in	Python	syntax,
i.e.	to	allow	the	dynamic
generation	of	expressions.
Allows	optional	dictionary
arguments	to	specify	global
and	local	scope	variable
names.

text	=	‘x*7+5*y’
x	=	4.7
y	=	8.1
eval(text)
Result	is	73.4.

execfile(fileName,
locals,	globals)

Like	exec()	(see	above)	but
operates	on	a	named	file.
Dynamically	reads	and
executes	the	Python	code	in
the	file.	Allows	optional
dictionary	arguments	to
specify	global	and	local
scope	variable	names.	Not
available	in	Python	3.

execfile(fileName)

file(name,	mode) Creates	a	file	object.	Little
if	isinstance(obj,	

used	because	open(),
described	below,	is	generally
used	instead,	but	useful	for
checking	data	types.	Not
available	in	Python	3.

file):

		print("Object	is	a	

file")

float(val) Converts	a	number	or	string
into	its	best	floating	point
equivalent.

print(float(‘7’))
print(float(‘+18.57e12’)	/
2.0)

format(val,
specification)

Formats	a	string	value
according	to	a	specified
representation.	See	Appendix
4	below	for	new-style
formatting	codes.

format(3.14159,‘E’)
format(‘DNA’,	‘>4s’)
Results	are	‘3.141590E+00’
and	‘DNA’.

frozenset(vals) Creates	a	frozen	set	from	a
given	object;	an	immutable
unordered	collection	of	non-
repeating	items.	Sometimes
used	to	convert	sets	into	the
immutable	equivalent	so	they
may	be	used	as	keys	in
dictionaries.

l	=	[0,1,2,3,1,2,3,2,1,0,1,3]
x	=	frozenset(l)
print(x)
Result	is	frozenset([0,	1,	2,
3]).

getattr(obj,	name,
defaultVal)

Retrieves	a	particular	named
attribute	from	a	specified
Python	object.	Sometimes
used	as	an	alternative	to	the
dot	notation	when	the
attribute	name	is	a	variable.

import	math

print(getattr(math,	

'pi'))

print(math.pi)

Results	are	both
3.141592653589793.

globals() Gives	a	dictionary	of	variable
name	and	object	pairs	that	are
available	in	the	outermost,
global	context	of	the
program’s	execution.

varDict	=	globals()
print(varDict)

hasattr(obj,	name) Determines	whether	a	Python
object	has	a	particular	named
attribute.	Gives	True	if	it
does	and	False	otherwise.

import	math

hasattr(math,'sin')	#	

True

hasattr(math,'apple')

	#	False

help(obj) Gets	help	documentation	for
a	given	Python	object.

print(help(float))
fileObj	=	open(‘a.txt’)
print(help(fileObj))

hex(val) Creates	a	text	string
representing	the	hexadecimal
(i.e.	base	16)	version	of	an
integer	number.

print(hex(2**24-1))
Result	is	‘0xffffff’.

id(obj) Gives	the	unique	number	that
identifies	a	particular	Python
object.	Such	numbers	do	not
change	within	a	Python
session,	but	they	will
(usually)	be	different	for	a
new	session.

print(id(7))
print(id(float))
print(id(None))

input(prompt) Prompts	the	user	at	the
command	line	for	keyboard
input,	i.e.	so	the	entered
values	can	be	used	in	the
program.

x	=	input(‘Enter	value:’)
print(“Value	is:	“,	x)

int(val,	base) Converts	a	number	or	string
into	an	integer	representation.
Optionally	takes	the	radix
number	for	which	base	to
use.

print(int(34.96))	#	Base	10
print(int(‘1000100’,2))	#
Base	2
Results	are	34	and	68.

isinstance(obj,
class)

Determines	whether	one
object	is	derived	from	a
specified	class	(or	subclass
thereof),	returning	True	if	it
is	and	False	otherwise.

isinstance(7,	int)	#	True
isinstance(7,	float)	#	False

issubclass(class1,
class2)

Determines	whether	one
object	class	is	a	subclass	of
another,	returning	True	if	it	is
and	False	otherwise.

issubclass(Protein,
Molecule)

len(vals) Gives	the	size	of	an	object,
e.g.	the	number	of	items	in	a
collection.

letters	=	[‘G’,‘C’,‘A’,‘T’]
print(len(letters))	#	4

list(vals) Creates	a	Python	list t	=	(‘V’,‘I’,‘L’,‘A’,‘M’,‘P’)

collection	from	a	specified
object,	which	must	be
iterable.	Can	be	used	on	a	list
to	make	a	copy.

x	=	list(t)
y	=
list(enumerate(range(7,11)))
First	example	converts
tuple	to	list.	Second
converts	iterator,	giving	[(0,
7),	(1,	8),	(2,	9),	(3,	10)].

locals() Gives	a	dictionary	of	variable
name	and	object	pairs	that	are
available	in	the	innermost,
local	context	at	a	point	in	the
program’s	execution.

for	x	in	range(5):

		varDict	=		locals()

		print(varDict)

Results	show	x	changes
locally,	in	the	loop.

long(val,	base) Converts	val	into	a	long
integer	(i.e.	of	arbitrary
length):	this	is	mostly
redundant.	Not	available	in
Python	3.

[See	Mathematics	section]

map(func,	vals,
…)

Takes	an	iterable	object,	like
a	list,	and	applies	a	function
to	each	item,	generating	a
new	list	(in	Python	2)	or	a
map	iterator	(in	Python	3).
This	function	is	largely
redundant	and	it	is	more
commonplace	to	use	a	list
comprehension	instead.

vals	=	[30.0,	31.0,	28.25]
ints1	=	map(int,	vals)
ints2	=	[int(x)	for	x	in	vals]
Note:	ints1	and	ints2	are	the
same	in	Python	2,	but	in
Python	3	ints1	is	a	map
iterator.

max(vals)
or
max(val1,	val2,
…)

Finds	the	minimum	value	of
a	collection	(or	other	iterable
object)	or	list	of	arguments.
This	does	not	work	on	multi-
dimensional	NumPy	arrays.

print(max(3,11,	9,	5))		

#	11

l	=	[30.0,	31.0,	28.25]

print(max(l))		#	31.0

min(vals)
or
min(val1,	val2,
…)

Finds	the	minimum	value	of
a	collection	(or	other	iterable
object)	or	list	of	arguments.
This	does	not	work	on	multi-
dimensional	NumPy	arrays.

print(min(8,	12,	3,	34))	#	3
l	=	[30.0,	31.0,	28.25]
print(min(l))	#	28.25

object() Creates	a	basic,	blank,
featureless	object.	The	class

x	=	object()
print(dir(x))

of	the	object	is	the	superclass
of	all	Python	objects.

oct(val) Creates	a	text	string
representing	the	octal	(i.e.
base	8)	version	of	an	integer
number.

print(oct(2**24-1))
Result	is	‘077777777’	in
Python	2	and	‘0o77777777’
in	Python	3.

open(fileName,
mode)

Opens	a	file	on	disk	for
reading	or	writing	by	creating
a	file	type	object.	The	second
argument	is	a	mode	string
that	specifies	whether	the	file
is	for	reading	(‘r’),	writing
(‘w’),	appending	(‘a’)	etc.
The	default	mode	is	reading.

fObj1	=	open(inName,	

'rU')

line	=	fObj1.readline()

fObj2	=	open(outName,	

'w')

fObj2.write('Hello	

world\n')

ord(char) Gives	the	ASCII	code
number	for	a	character	string.
Performs	the	inverse
operation	to	chr().

i	=	ord(‘Z’)-1
print(i,	chr(i))
Result	is	89,	Y.

pow(val1,	val2,
modulo)

Raises	a	number	to	a	given
power,	equivalent	to	using
the	‘**’	operator.

x	=	pow(2,	8)
x	=	2**8	#	Same

print(text,	sep,
end,	file)

This	function	is	present	in
Python	2	and	from	Python
2.6	is	the	same	as	the
function	in	Python	3	by	using
from	__future__	import
print_function.	It	replaces	the
print	statement	which	is	in
Python	2	but	not	in	Python	3.
Prints	a	textual	representation
of	one	or	more	Python
objects	to	the	screen	or	file.

x	=	'Some	data'

print(x)

print(x,	file=fileObj)	

#Python	3

print(1,2,3)

Result	is	1	2	3.

print(1,	2,	3,	sep=';',

						end='*\n')

Result	is	1;2;3*.

property(getFunc,
setFunc,	delFunc,
docStr)

Allows	attribute-style	dot
notation	access
(classObj.attrName)	for
getter	and	setter	functions	in
‘new-style’	class	definitions
(which	inherit	from	object).

class	DemoObj(object):

		def	__init__(self):

				self._x	=	None

		def	getX(self):

				return	self._x

		def	setX(self,	

value):

This	means	that	the	code
looks	cleaner	and	allows
extra	functionality,	for
example,	validation	in	the
setter	function.	Optionally
there	is	a	third	argument
which	is	a	function	for
attribute	deletion,	and	a
fourth	argument,	which	is	a
document	string.

				self._x	=	value

		x	=	property(getX,	

setX)

d	=	DemoObj()

d.x	=	55	#	same	as	

d.setX(55)

print(d.x)	#	same	as	

d.getX()

Result	is	55.

range(end)
or
range(start,	end,
step)

Gives	a	range	of	integers
from	a	start	up	to	(but	not
including)	an	end	value	with
a	regular	increment.	By
default	the	range	starts	at	0
and	increments	by	1.	In
Python	2	range()	creates	a
list,	but	in	Python	3	becomes
an	iterable	object,	more	like
xrange(),	and	xrange()	itself
disappears.

range(7)	#	[0,1,2,3,4,5,6]
range(3,8)	#	[3,	4,	5,	6,	7]
range(3,10,2)	#	[3,	5,	7,	9]
range(5,0,-1)	#	[5,	4,	3,	2,
1]
In	Python	3	the	result	is	not
a	list	but	instead	a	range
iterable.

raw_input(prompt) Prompts	the	user	at	the
command	line	for	keyboard
input,	i.e.	so	the	entered
values	can	be	used	in	the
program.	Not	available	in
Python	3,	use	input()	instead.

x	=	raw_input(‘Enter
value:’)
print(“Value	is:	“,	x)

reload(module) Reloads	a	Python	module,
assuming	it	was	previously
imported.	Not	available	in
Python	3.

import	math
math.pi	=	3.0
print(math.pi)	#	3.0
reload(math)
print(math.pi)	#
3.14159265359

repr(obj) Creates	a	formal,	textual
representation	of	a	Python
object.	Similar	to	str(),	but
gives	unambiguous	(in	terms
of	identifying	the	original
object),	albeit	sometimes	less
readable,	text.

from	numpy	import	array

a	=	array([1,2,3])

str(a)		#	'[1	2	3]'

repr(a)	#	'array([1,	2,	

3])'

reversed(seq) Creates	an	iterator	object	that
for	x	in	

provides	items	in	the	reverse
order,	based	on	an	ordered
collection.

reversed(range(7)):

			print(x)

round(val,	places) Rounds	val	to	the	nearest
whole	number	or	optionally
accepts	places,	stating	how
many	decimal	places	to	round
to.

[See	Mathematics	section
above]

set(vals) Creates	a	set	from	a	given
object;	an	unordered
collection	of	non-repeating
items.

l	=	[0,1,2,3,1,2,3,2,1,0,1,3]
x	=	set(l)
print(x)
Result	is	set([0,	1,	2,	3]).

setattr(obj,	name,
val)

Sets	a	named	attribute	of	a
specified	object	with	a	given
value.	This	is	often	an
alternative	to	the	object.attr	=
value	notation	where	the
name	of	the	attribute	can
vary.

p1	=	Molecule()
setattr(p1,	‘name’,	‘c-Myc’)
p1.name	=	‘c-Myc’	#	Same

sorted(vals,
comparator,	key,
reverse)

Creates	a	new	list	with	items
in	sorted	order	from	the	items
of	a	collection	or	other
iterable	object.

list1	=	[‘G’,‘C’,‘A’,‘T’]
list2	=	sorted(list1)
print(list2)
Result	is	[‘A’,‘C’,‘G’,‘T’].

str(obj) Converts	a	Python	object	into
an	informal	textual	string
representation.	Numeric
values	may	be	rounded	for
display.

str(7.500000000001)	#	

'7.5'

str([5,7,11])	#	'[5,	7,	

11']

str(type(1))	#		"<type	

'int'>"

sum(vals,	start) Adds	all	the	items	of	a
collection	or	other	iterable
object.	For	NumPy	arrays	it
sums	along	the	first	axis.

values	=	

[7,69,31,99,53,16,72]

print(sum(values))		#	

347

super(objType,
obj)

When	a	function	is
overridden	in	a	subclass	this
allows	calling	of	a	superclass
function	without	mentioning

class	C(B):

		def	f(self,	arg):

				super(C,	

self).f(arg)

the	superclass	by	name.	An
optional	object	(or	class)	may
be	passed	in	as	a	second
argument.

				#	same	as	doing:

				#	B.f(self,	arg)

tuple(vals) Creates	a	Python	tuple
collection	from	a	specified
object,	which	must	be
iterable.	Can	be	used	on	a
tuple	to	make	a	copy.
Sometimes	used	to	convert	a
list,	so	that	it	may	be	used	as
a	dictionary	key.

l	=	[‘D’,‘E’,‘R’,‘K’,‘H’]
t	=	tuple(enumerate(l))
Result	is	((0,‘D’),	(1,‘E’),
(2,‘R’),	(3,‘K’),	(4,‘H’)).

type(obj) Gives	an	object	representing
the	type	of	a	specified	object.

type(1)	#	<type	‘int’>
type(‘a’)	#	<type	‘str’>
type(type(1))	#	<type
‘type’>
In	Python	3	the	result	is
<class	‘int’>	etc.

unichr(code) Gives	the	Unicode	character
string	for	an	integer	code
number.	Performs	the	inverse
operation	to	ord()	for
Unicode	strings.	Not
available	in	Python	3	since
all	strings	are	Unicode.

alpha	=	u’\u03b1’
i	=	ord(alpha)
print(unichr(i+1))
Result	is	u’\u03b2’;	‘β’.

unicode(obj,
encoding)

Converts	a	Python	object	into
a	Unicode	string
representation	in	a	manner
similar	to	str().	The	optional
second	argument	allows	the
encoding	type	to	be	specified,
e.g.	when	converting	plain
text.	Not	available	in	Python
3,	since	all	strings	are
Unicode.

text1	=	unicode(3.141)
x	=	‘\xce\xb1-helix’
text2	=	unicode(x,	‘utf-8’)
Last	result	is	u’\u03b1-
helix’;	‘α-helix’.

xrange(end)
or
xrange(start,	end,
step)

Used	for	looping	through
large	ranges	of	numbers.
Compared	to	range(),
xrange()	doesn’t	create	a
whole	list	and	thus	saves

n	=	1000000
y	=	[x**0.5	for	x	in
xrange(n)]

memory;	instead	it	creates	an
iterable	object.	Not	available
in	Python	3	since	range()
behaves	like	xrange().

zip(vals1,	vals,
…)

Takes	items	in	sequence	from
a	number	of	collections	(or
other	iterable	objects)	to
make	a	list	of	tuples,	where
each	tuple	contains	one	item
from	each	collection.	Often
used	to	group	items	from	lists
which	have	the	same	index.
Note	the	inverse	operation	is
achieved	with	zip(*c).	In
Python	3	the	result	is	a	zip
iterator	rather	than	a	list.

a	=	[1,2,3]
b	=	[‘x’,‘y’,‘z’]
c	=	list(zip(a,b))
d	=	list(zip(*c))
Note:	list()	conversion	not
necessary	in	Python	2.
Result:
c	is	[(1,‘x’),	(2,‘y’),	(3,‘z’)]
d	is	[(1,2,3),	(‘x’,‘y’,‘z’)]

Appendix	2 	Selected	standard	type	methods	and
operations

Operations	common	to	strings,	lists	and	tuples
The	 table	 below	 lists	 most	 of	 the	 functions	 that	 may	 be	 applied	 to	 Python	 sequence
(ordered)	collection	types.	For	Python	2	the	sequence	types	are	buffer,	bytearray,	list,	str,
tuple,	unicode	 and	xrange.	For	Python	3	 these	 types	 are	 bytearray,	bytes,	memoryview,
list,	range,	str	and	tuple.1

Operation Description Example

x	in	seq
x	not	in	seq

Determines	whether	an	item	is	or	is	not	in	a
collection,	giving	True	or	False
accordingly.

myList	=	

[3,1,4,1,5,9]

2	in	myList	#	

False

8	not	in	myList	

#	True

seqA	+	seqB Generates	a	new	collection	which	is	the
combination	of	two	collections	of	the	same
type,	in	order.

tupleA	=	

('G','C')

tupleB	=	('A',	

'T')

tupleA	+	tupleB

('G',	'C',	'A',	

'T')

seq	*	n
n	*	seq

Generates	a	new	collection	based	by
repeating	the	items	of	a	collection	a
number	of	times.

'AB'	*	4	#	

'ABABABAB'

5	*	[0]	#		

[0,0,0,0,0]

seq[i] Accesses	an	item	in	an	ordered	collection
by	using	a	positional	index,	which	starts
from	zero.

text	=	'Banana'

text[0]		#	'B'

nums	=	

[1,4,9,16,25]

nums[2]	#	9

seq[i:j] Generates	another,	usually	smaller

collection,	by	accessing	a	range	of	items
from	an	ordered	collection,	from	a	starting
positional	index,	up	to	but	not	including	a
second	index.	If	unspecified,	the	starting
index	defaults	to	zero	and	the	end	defaults
to	the	end	of	the	collection.	Negative	index
numbers	count	from	the	end.

text	=	'Banana'

text[1:5]		#	

'anan'

x	=	

[1,4,9,16,25]

x[2:4]		#	

[9,16]

x[:4]			#	

[1,4,9,16]

x[1:]			#	

[4,9,16,25]

x[1:-1]	#	

[4,9,16]

seq[i:j:k] Generates	another,	usually	smaller
collection,	by	accessing	a	range	of	items
from	an	ordered	collection,	using	positional
indices	(see	above)	and	a	step	size	to	skip
certain	indices.	Step	may	be	negative	for
reverse	direction.

x	=	

[1,4,9,16,25]

x[0:5:2]	#	

[1,9,25]

x[::2]			#	

[1,9,25]

x[::-1]		#	

[25,16,9,4,1]

len(seq) Gives	the	total	number	of	items	in	the
collection;	its	size. len('Banana')	#	

6

len((1,4,9,16))	

#	4

len([])	#	0

min(seq) Retrieves	the	item	from	a	collection	that
has	the	smallest	value.	This	does	not	work
on	multi-dimensional	NumPy	arrays.

x	=	[10,	5,	1,	

10,	3]

min(x)	#	1

min('ABCDE')	#	

'A'

max(seq) Retrieves	the	item	from	a	collection	that
has	the	largest	value.	This	does	not	work
on	multi-dimensional	NumPy	arrays.

x	=	(10,	5,	1,	

10,	3)

max(x)	#	10

max('abcdefgh')	

#	'h'

seq.index(item) Retrieves	the	(first)	positional	index	at
which	an	item	is	found	in	a	collection.
Assumes	the	item	is	present	and	gives	a
ValueError	if	not.

text	=	'Banana'

text.index('a')	

#	1

x	=	

[10,5,1,10,3]

x.index(3)	#	4

seq.count(item) Counts	the	number	of	occurrences	of	a
given	item	within	a	collection. text	=	'Banana'

text.count('a')	

#	3

String	methods
The	 table	below	describes	 selected	methods	 that	 relate	 to	 standard	Python	 textual	 string
objects,	 which	 you	 would	 call	 using	 the	 dot	 notation	 string.method(arg).	 Separate
descriptions	 for	 string	 formatting	 (both	 old	 and	 new	 style)	 and	 the	 regular	 expression
module	re	are	given	in	Appendix	4	and	Appendix	5	respectively.	Note	 that	most	objects
can	be	converted	to	a	string	representation2	with	str(x).

It	should	be	noted	that	there	are	big	changes	in	Python	between	version	2	and	version	3
with	regard	to	handling	Unicode.	In	Python	3	all	strings	are	Unicode,	so	there	is	no	need
for	 unicode(x)	 or	 u”	 syntax;3	 any	 ‘\u’	 escaped	 codes	 in	 a	 string	 will	 naturally	 be
recognised	as	Unicode	characters.	Also,	the	binary	data	type	is	introduced,	which	may	be
created	with	bytes(),	which	is	immutable,	or	bytearray(),	which	is	mutable.	The	bytes	type
may	be	used	for	general	binary	data,	which	may	include	binary	encoded	Unicode.	Before
Python	3	the	normal	string	type	was	used	for	binary	data.

Method Description Example

s.capitalize() Generates	a	copy	of	a
string	where	the	first
character	is	capitalised,	if
it	is	a	lower-case	letter.

'abc'.capitalize()		#	

'Abc'

'Abc'.capitalize()		#	

'Abc'

'1abc'.capitalize()	

#'1abc'

s.count(substr,

								start,	end)

Counts	the	number	of
occurrences	(without
overlap)	of	a	substring
within	a	larger	string.
Optional	index	range
arguments.

text	=	'Bananarama'

text.count('a')					#	5

text.count('q')					#	0

text.count('an')				#	2

text.count('ana')			#	1

s.endswith(substr,

	start,	end)

Determines	whether	a
string	ends	with	a	given
substring.	Optional
position	range

'xyz'.endswith('z')	#	

True

'xyz'.endswith('y')	#	

False

arguments. 'xyz'.endswith('yz')#	

True

'xyz'.endswith('y',0,2)	

#	True

s.find(substr,

						start,	end)

Gives	the	starting	index
of	the	first	occurrence	of
a	substring	within	a
larger	string,	or	−1	if
none	is	found.	Optional
index	range	arguments.

text	=	'Bananarama'

text.find('r')	#	6

text.find('a')	#	1

text.find('q')	#	-1

text.find('am')	#	7

s.format(*args,	**kwd) Generates	a	specially
formatted	version	of	a
string.

[See	formatting	in
Appendix	4	below]

s.index(substr,

								start,	end)

Gives	the	starting	index
of	the	first	occurrence	of
a	substring	within	a
larger	string.	Creates	a
ValueError	if	none	is
found.	Optional	index
range	arguments.

text	=	'Bananarama'

text.index('a')	#	1

text.index('am')	#	7

text.index('q')	#	

Fails!

s.isalnum() Determines	whether	a
string	contains	only
alphanumeric	characters.
Gives	True	if	so,	and
False	otherwise.

'ab12'.isalnum()	#	True

'ab/12'.isalnum()	#	

False

s.isalpha() Determines	whether	a
string	contains	only
letters	of	the	alphabet.

'abc'.isalpha()	#	True

'abc?'.isalpha()	#	

False

s.isdigit() Determines	whether	a
string	contains	only
numeric	digit	characters.
Gives	True	if	so,	and
False	otherwise.

'10'.isdigit()	#	True

'1.0'.isdigit()	#	False

s.islower() Determines	whether	a
string	contains	letters	that
are	all	lower	case.	Gives
True	if	so,	and	False
otherwise.

'abc'.islower()	#	True

'Abc'.islower()	#	False

'ab@#12'.islower()	#	

True

'@#12'.islower()	#	

False

s.isspace() Determines	whether	a
string	contains	only
whitespace	characters.
Gives	True	if	so,	and
False	otherwise.

'	'.isspace()	#	True

'a'.isspace()	#	False

'	a'.isspace()	#	False

'\t\n	'.isspace()	#	

True

s.isupper() Determines	whether	a
string	contains	letters	that
are	all	upper	case.	Gives
True	if	so,	and	False
otherwise.

'ABC'.isupper	()	#	True

'Abc'.isupper	()	#	

False

'AB@#12'.isupper()	#	

True

'@#12'.isupper()	#	

False

s.join(iterable) Uses	one	string	to	join
the	items	(which	must
also	be	strings)	that	come
from	a	sequence
collection,	or	other
iterable	object,	to	form	a
new	string.

x	=	['G','C','A','T']

sep	=	','

sep.join(x)	#	'G,C,A,T'

';	'.join(x)	#	'G;	C;	

A;	T'

'/'.join(('AC','DC'))

#	'AC/DC'

s.lower() Generates	a	copy	of	a
string	where	any	upper-
case	characters	are
converted	to	lower	case.

'Ala258'.lower()	#	

'ala258'

'ALA258'.lower()	#	

'ala258'

s.lstrip(chars) Generates	a	copy	of	a
string	where	specified
characters	at	the	start
(left)	are	removed.
Optional	string	argument
to	specify	which
characters	to	consider,
otherwise	it	is	leading
whitespace	which	is
removed.

'		X	Y		'.lstrip()	#	'X	

Y		'

s.replace(old,	new,	

maxNum)

Generates	one	string
from	another	by rna	=	'AUGCAUAGCA'

dna	=	

replacing	all	occurrences
of	one	substring	with
another	substring.
Optional	maximum
number	of	replacements.

rna.replace('U','T')

Result	is	'ATGCATAGCA'.

s.rfind(substr,

								start,	end)

Like	find(),	but	gives	the
starting	index	of	the	last
occurrence	of	a	substring
within	a	larger	string,	or
−1	if	none	is	found.

text	=	'Bananarama'

text.rfind('r')	#	6

text.rfind('a')	#	9

text.rfind('q')	#	-1

s.rindex(substr,

									start,

end)

Like	index(),	but	gives
the	starting	index	of	the
last	occurrence	of	a
substring	within	a	larger
string.	Creates	a
ValueError	if	none	is
found.

text	=	'Bananarama'

text.rindex('a')	#	9

text.rindex('am')	#	7

text.rindex('q')	#	

Fails!

s.rstrip(chars) Generates	a	copy	of	a
string	where	specified
characters	at	the	end
(right)	are	removed.
Optional	string	argument
to	specify	which
characters	to	consider,
otherwise	it	is	trailing
whitespace	which	is
removed.

'		X	Y		'.rstrip()	#	'		

X	Y'

s.split(sep,	maxNum) Generates	a	list	of	strings
by	splitting	a	string	into
parts	where	a	substring	is
found.	If	substring	is	not
specified	then	split	on
whitespace.

t	=	'G,	C,	A,	T'

t.split(',	')

#	['G','C','A','T']

t.split(':')

#	['G,	C,	A,	T']

s.splitlines(keepends) Generates	a	list	of	strings
by	splitting	a	string	into
parts	where	newline
(‘\n’,	‘\r’,	‘\r\n’)
characters	are	found.

text	=	'AC\nDC'

text.splitlines()	#	

['AC',	'DC']

s.startswith(prefix,
Determines	whether	a
string	starts	with	a	given 'xyz'.startswith('x')	#	

											start,

end)
substring.	Optional
position	range
arguments.

True

'xyz'.startswith('y')	#	

False

'xyz'.startswith('xy')	

#	True

'xyz'.startswith('y',1)	

#	True

s.strip(chars) Generates	a	copy	of	a
string	where	specified
characters	at	either	end
are	removed.	Optional
string	argument	to
specify	which	characters
to	consider,	otherwise	it
is	whitespace	which	is
removed.

'		X	Y		'.strip()	#	'X	

Y'

s.title() Generates	a	copy	of	a
string	where	the	first
character	of	each	group
of	letters	is	capitalised.

'	hi	joe	'.title()	#	'	

Hi	Joe	'

s.translate(table,
delChars)

Generates	one	string
from	another	by	using	a
256-character	translation
table	to	map	characters,
and	optionally	also	delete
characters.

from	string	import	

maketrans

table	=	

maketrans('U','T')	#	v2

rna	=	'AUGCAUAGCA'

dna	=	

rna.translate(table)

Result	is	'ATGCATAGCA'.

In	Python	3	second	line	

instead	is:

table	=	

str.maketrans('U','T')

s.upper() Generates	a	copy	of	a
string	where	any	lower-
case	characters	are
converted	to	upper	case.

'ala258'.upper()	#	

'ALA258'

'Ala258'.upper()	#	

'ALA258'

s.zfill(width) Fill	a	string	with	zero
characters	‘0’,	up	to	a
given	total	width.

'7'.zfill(3)	#	'007'

'7'.zfill(1)	#	'7'

List	operations
The	following	table	describes	some	of	the	operations	and	inbuilt	methods	for	Python	lists
and	related	sequence	containers,	which	are	generally	represented	as	seq.	It	should	be	noted
that	 a	 collection	 object	 (set,	 tuple,	 other	 list	 …)	 can	 be	 converted	 to	 a	 list	 using
list(collection)	and	that	list()	generates	an	empty	list,	just	like[].

Operation Description Example

len(seq) Determines	the	number	of	items	in	the
list;	its	length. letters	=	

['G','C','A','T']

len(letters)	#	4

seq[i]	=
obj

Sets	the	item	at	a	given	index	position	in
a	list. letters	=	

['G','C','A','T']

letters[3]	=	'U'

#	['G','C','A','U']

seq[i:j]	=
vals

Sets	a	number	of	items	covering	a	range
of	positional	indices;	from	a	starting
positional	index	and	up	to	but	not
including	a	second	index.

nums	=	[1,2,3,4,5,6]

nums[2:]	=	[3,2,1]

#	[1,	2,	3,	2,	1]

vals	=
seq[i:j]

Extracts	number	of	items	covering	a
range	of	positional	indices	as	a	new	list;
from	a	starting	positional	index	and	up
to	but	not	including	a	second	index.

nums	=	[1,2,3,4,5,6]

new1	=	nums[3:]

#	[4,5,6]

new2	=	nums[:]	#	Copy	

all

del	seq[i:j] Deletes	an	item	or	range	of	items	from	a
list	of	specified	indices. nums	=	[1,2,3,4,5,6]

del	nums[1:5]

#	[1,	6]

seq[i:j:k]
=	vals

Sets	a	number	of	items	covering	a	range
of	positional	indices	with	a	given	step. myList	=	

[0,0,0,0,0,0]

myList[1::2]	=	

[1,1,1]

#	[0,	1,	0,	1,	0,	1]

del
seq[i:j:k]

Deletes	a	number	of	items	covering	a
range	of	positional	indices	with	a	given
step.

letters	=	

['A','B','C','D','E']

del	letters[::2]

#	['B',	'D']

Method Description Example

seq.append(val) Adds	a	single	item	to	the	end	of
a	list. x	=	[True,	False]

x.append(None)

#	[True,	False,	

None]

seq.extend(vals) Adds	one	or	more	items	from	a
collection	onto	the	end	of	a	list. x	=	[1,2]

y	=	[3,4]

x.extend(y)

#	x	is	[1,	2,	3,	4]

seq.count(val) Counts	the	number	of
occurrences	of	a	given	item. x	=	[7,9,2,7,1]

x.count(7)	#	2

seq.index(val,	start,
end)

Determines	the	index	of	the
first	occurrence	of	an	item,
within	an	optional	index	range.

x	=	[7,9,2,7,1]

x.index(7)	#	0

x.index(7,1)	#	3

seq.insert(index,
val)

Inserts	an	item	at	a	given
positional	index	within	a	list,
increasing	the	length	of	the	list
by	one.

x	=	[1,2,2,1]

x.insert(2,4)

#	[1,	2,	4,	2,	1]

seq.pop(index) Removes	and	passes	back	an
item	from	a	list,	reducing	the
length	of	the	list	by	one.
Defaults	to	remove	the	last
item,	otherwise	an	index	may
be	specified.

x	=	

['a','b','c','d']

x.pop()	#	'd';	x	now	

['a',	'b',	'c']

x.pop(1)	#	'b';	x	

now	['a',	'c']

seq.remove(val) Removes	the	first	occurrence	of
an	item	from	a	list. x	=	[1,2,3,2,1]

x.remove(2)

#	[1,	3,	2,	1]

seq.reverse() Reverses	the	order	of	items	of
the	list.	Does	not	generate	a x	=	

['a','b','c','d']

new	list. x.reverse()

#	['d',	'c',	'b',	

'a']

seq.sort(comparator,
key,	reverse)
Above	for	Python	2
seq.sort(key,
reverse)
Above	for	Python	3

Sorts	the	items	of	a	list,	using
optional	comparison	function
(in	Python	2)	and	key	attribute.
Option	to	sort	in	reverse	order.

x	=	[7,9,2,7,1]

x.sort()

#	[1,	2,	7,	7,	9]

x.sort(reverse=True)

#	[9,	7,	7,	2,	1]

Set	operations
The	 set	 and	 the	 immutable	 equivalent	 frozenset	 are	 Python’s	 standard	 unordered	 non-
repeating	collection	data	types.	The	following	table	lists	common	operations	and	methods
for	sets	 (and	where	appropriate	 frozen	sets).	Sets	may	be	specified	with	 the	 inbuilt	 set()
function,	 operating	 on	 another	 collection,	 e.g.	 set([a,b,c])	 and	 also	 (from	 Python	 2.7
onwards)	by	using	the	curly	brace	notation	{a,b,c},	which	differs	from	dictionaries	due	to
the	absence	of	colons.	Using	set()	with	no	arguments	or	on	an	empty	collection	creates	an
empty	set,	but	{}	does	not;	 it	 is	an	empty	dictionary.	For	 the	descriptions	below	we	 list
methods	of	sets	in	the	form	s.method(args)	and	also	any	equivalents	that	can	be	performed
with	a	symbolic	operator	syntax.	For	example,	set3	=	set1.union(set2)	is	equivalent	to	set3
=	set1	|	set2.

Operation/Method Description Example

len(s) Determines
the	number
of	items
within	a	set;
its	size.

s	=	{1,2,3,2,1}

len(s)	#	3	–	no	repeats

len(set())	#	0	-	Empty

x	in	s
x	not	in	s

Determines
whether	an
item	is
within	a	set,
or	not.

s	=	{'G','C','A','T'}

'G'	in	s	#	True

'G'	not	in	s	#	False

s.isdisjoint(other) Determines
whether	one
set	has	no
items	in
common
with

s	=	{1,2,3}

t	=	{4,5,6}

s.isdisjoint(t)	#	True

another.

s.issubset(other)
or
set	<=	other

Determines
whether	all
of	the	set’s
items	are
contained
within
another	set.

s	=	{1,2,3,4}

t	=	{2,4}

s.issubset(t)	#	False

t	<=	s	#	True

s	<=	s	#	True

set	<	other Determines
whether	all
of	the	set’s
items	are
contained
within
another	set
and	the	sets
are	not	the
same.

s	=	{1,2,3,4}

t	=	{2,4}

t	<	s	#	True

s	<	s	#	False

s.issuperset(other)
or
set	>=	other

Determines
whether	all
the	items	of
another	set
are
contained	in
this	set.

s	=	{1,2,3,4}

t	=	{2,4}

s.issuperset(t)	#	True

t	>=	s	#	False

s	>=	s	#	True

set	>	other Determines
whether	all
the	items	of
another	set
are
contained	in
this	set	and
the	sets	are
not	the
same.

s	=	{1,2,3,4}

t	=	{2,4}

s	>	t	#	True

t	>	s	#	False

s	>	s	#	False

s.union(other,	…)
or
set	|	other	|	...

Generates	a
new	set	that
contains	all
the	items
that	are
present	in

a	=	{1,2}

b	=	a.union({2,3},{3,4})

c	=	{1,2}	|	{2,3}	|	{3,4}

#	b,c	both	{1,2,3,4}

any	of	a
group	of
sets.

s.intersection(other,	…)
or
set	&	other	&	…

Generates	a
new	set	that
contains
only	items
that	are
present	in
all	the	sets
in	a	group.

{1,2,3}.intersection({2,3,4})

#	{2,3}

{1,2}	&	{2,3}	&	{3,4}

#	set()	–	Empty

s.difference(other,	…)
or
set	-	other	-	…

Creates	a
copy	of	a
set	with	any
items	that
are
common	to
other	sets
removed.

{0,1,2,3}.difference({2,3,4})

#	{0,1}

{1,2,3,4,5}	-	{2,5}	-	{2,3}

#	{1,	4}

s.symmetric_difference(other)
or
set	^	other

Generates	a
new	set
from	two
sets	by
selecting
only	items
that	appear
in	one	but
not	both	of
the	sets.

{0,1,2,3}	^	{2,3,4}	^	{2,5}

#	{0,	1,	2,	4,	5}

s.copy() Creates	a
copy	of	a
set;	a
separate
Python
collection
with	the
same	items.
Same	as	s2
=	set(s1).

s	=	{1,2,3}

t	=	s.copy()

t.add(4)

#	t	is	{1,	2,	3,	4}

s.update(other,	…)
set	|=	other	|	…

Adds	any
items	which s	=	{0}

are	not
already
present
from	one	or
more	other
sets.

s.update({1,2})

s	|=	{2,4,9}

#	{0,	1,	2,	4,	9}

s.intersection_update(other,	…)
or
set	&=	other	&	…

Modifies	a
set	by
adding	any
items	that
are
common	to
all	the	sets
in	a	group.

s	=	{1,2,4,9}

s	&=	{1,2,3,4}

#	s	is	{1,	2,	4}

s.difference_update(other,	…)
or
set	-=	other	|	…

Modifies	a
set	by
removing
any	items
that	are
present	in	a
group	of
other	sets.

s	=	{1,2,4,9}

s	-=	{1,2,3,4}

#	s	is	{9}

s.symmetric_difference_update(other)
or
set	^=	other

Modifies	a
set	so	it
contains
items	that
are	only
present	in
one,	but	not
both,	of	the
two	sets.

s	=	{1,2,4,9}

s	^=	{1,2,3,4}

#	s	is	{9,3}

s.add(obj) Adds	a
single	item
to	a	set,	if	it
is	not
already
present	in
the	set.

s	=	{1,2,3,4}

s.add(5)

s.add(3)

#	s	is	{1,	2,	3,	4,	5}

s.remove(obj) Removes	a
single	item s	=	{1,2,3,4}

s.remove(2)

from	a	set,
assuming	it
is	present	in
the	set;
gives	a
KeyError	if
not.

#	s	is	{1,	3,	4}

s.discard(obj) Removes	a
single	item
from	a	set,
if	it	is
present	in
the	set.	If
the	item	is
not	in	the
set	there	is
no	error.

s	=	{1,2,4,9,16}

s.discard(5)	#	No	effect

s.discard(1)

#	s	is	{16,	9,	2,	4}

s.pop() Removes
and	passes
back	a
single,
arbitrary
item	from	a
set,	making
the	set
smaller.	If
the	set	is
empty	it
gives	a
KeyError.

s	=	{1,2,4,9,16}

s.pop()

#	16(for	example)

#	s	becomes	{9,	2,	4,	1}

s.clear() Removes
all	the	items
from	a	set,
generating
an	empty
set.

s	=	{1,2,4,9,16}

s.clear()

#	s	is	set()	–	empty

Dictionary	operations
The	 following	 table	 lists	 the	 common	 operations	 that	 may	 be	 used	 with	 dictionaries.
Dictionaries	may	be	created	from	other	collections	(containing	key,	value	pairs)	using	the
inbuilt	dict(collection)	or	explicitly	using	the	curly	brace	notation	{k1:	v1,	k2:v2}.	Using

dict()	with	no	arguments	creates	an	empty	dictionary,	as	does	{}.	It	should	be	noted	that
only	hashable	objects,	which	do	not	allow	modification	of	their	innate	value,	can	be	used
as	 dictionary	 keys;	 this	 excludes	 lists,	 sets	 and	 other	 dictionaries	 but	 includes	 tuples,
frozen	sets,	strings,	integers,	floating	point	numbers	and	most	other	Python	objects.

Operation Description Example

len(d) Determines	the	number	of
(key:value)	pairs	in	a	dictionary d1	=	

{'G':3,'C':3,'A':2,'T':2}

len(d1)	#	4

d2	=	{'pi':3.141,	

'e':2.718}

len(d2)	#	2

d[key] Retrieves	the	value	from	a
dictionary	that	is	associated	with	a
given	key,	giving	a	KeyError	if	the
key	is	not	present.

d	=	

{'FR':33,'DE':49,'GB':44}

d['GB']	#	44

d['DE']	#	49

d[key]	=
value

Sets	the	value	for	a	specified	key.
d	=	

{'FR':33,'DE':49,'GB':44}

d['ES']	=	34

#	d	is	{'FR':	33,	'DE':	

49,

#	'GB':	44,	'ES':	34}

del	d[key] Removes	a	specified	(key:value)
pair	from	the	dictionary. d	=	{1:'G',	2:'C',

					3:'A',	4:'T'}

del	d[4]

#	d	is	{1:'G',	2:'C',	

3:'A'}

key	in	d
key	not	in
d

Determines	whether	a	key	is	used
by	a	dictionary,	or	not. d	=	{1:'G',	2:'C',

					3:'A',	4:'T'}

1	in	d	#	True

1	not	in	d	#	False

'A'	in	d	#	False	–	not	a	

key

iter(d) Creates	an	iterator	object	from	a
dictionary,	which	provides	an
alternative	way	of	looping	through
all	the	keys.

d	=	{'G':3,'C':3,

					'A':2,'T':2}

iterObj	=	iter(d)

for	key	in	iterObj:

		print(key)

Method Description Example

d.clear() Removes	all	key:value
pairs	from	a	dictionary,
leaving	an	empty
dictionary.

d	=	{'pi':3.141,	

'e':2.718}

d.clear()

#	{}	-	Empty

d.copy() Makes	a	copy	of	a
dictionary;	a	new,	separate
Python	object	with	the
same	key:value	pairs.
Same	as	d2	=	dict(d1).

d1	=	{'pi':3.141,	

'e':2.718}

d2	=	d1.copy()

d2['r2']	=	1.414

#	d2	is	{'pi':	3.141,

#					'e':2.718,	'r2':	

1.414}

d	=
dict.fromkeys(seq,
value)

Generates	a	new	dictionary
using	keys	from	a	specified
collection.	All	values	will
be	set	to	None	or	an
optional	default.

d	=	dict.fromkeys('ABC',	

0)

#	{'A':	0,	'C':	0,	'B':	

0}

d.get(key,	default) Retrieves	the	value	from	a
dictionary	that	is
associated	with	a	given
key,	and	if	the	key	is	not	in
the	dictionary	then	it	gives
None	or	the	specified
optional	default.

d	=	{'pi':3.141,	

'e':2.718}

d.get('pi')	#	3.141

d.get('mu')	#	None

d.get('mu',	0.0)	#	0.0

d.has_key(key) Determines	whether	a
specified	key	is	used	in	a
dictionary.	Deprecated,
use	key	in	dict	instead.	Not
available	in	Python	3.

[Deprecated,	use	"key	in	

dict"	instead.]

d.items() In	Python	2,	generates	a
list	of	tuples	containing
(key,	value)	pairs	from	a
dictionary.	In	Python	3,
gives	an	iterable	view
object	instead	of	a	list.

d	=	

{'G':3,'C':3,'A':2,'T':2}

d.items()

#	dict_item([('A',	2),	

('C',	3),	('T',	2),	('G',	

3)])

d.iteritems() Generates	an	iterator
d	=	{'G':3,'C':3,

object	that	can	loop
through	(key,	value)	pairs
from	a	dictionary.	Not
available	in	Python	3,	use
d.items()	instead.

					'A':2,'T':2}

iterObj	=	d.iteritems()

for	key,	val	in	iterObj:

		print(key,	val)

d.iterkeys() Generates	an	iterator
object	that	can	loop
through	all	keys	from	a
dictionary.	The	method
dict1.iterkeys()	does	the
same	as	iter(dict1).	Not
available	in	Python	3,	use
d.keys()	instead.

d	=	{'G':3,'C':3,

					'A':2,'T':2}

iterObj	=	d.iterkeys()

for	key	in	iterObj:

		print(key)

d.itervalues() Generates	an	iterator
object	that	can	loop
through	all	values	from	a
dictionary.	Not	available	in
Python	3,	use	d.values()
instead.

d	=	{'G':3,'C':3,

					'A':2,'T':2}

iterObj	=	d.itervalues()

for	value	in	iterObj:

		print(value)

d.keys() In	Python	2,	generates	a
list	containing	the	keys
from	a	dictionary.	The
items	in	the	list	are	in	no
particular	order.	In	Python
3,	gives	an	iterable	view
object	instead	of	a	list.

d	=	{'pi':3.141,	

'e':2.718}

k	=	d.keys()

print(k)

#	dict_keys(['pi',	'e'])

d.pop(key,	default) Passes	back	a	value
associated	with	a	specified
key	and	removes	the
(key:value)	pair	from	the
dictionary,	substituting	an
optional	default	value	if	a
key	is	not	present.

d	=	{'pi':3.141,	

'e':2.718}

d.pop('e')	#	2.718

d.pop('mu',	0.0)	#	0.0

#	d	is	{'pi':	3.141}

d.popitem() Removes	and	passes	back
an	arbitrary	key:value	pair,
as	a	tuple,	from	the
dictionary.

d	=	{'G':3,'C':3,

					'A':2,'T':2}

item	=	d.popitem()

#	d	might	be	

{'C':3,'T':2,'G':3}

#	item	is	then	('A',	2)

d.setdefault(key, Retrieves	the	value	from	a

default) dictionary	that	is
associated	with	a	given	key
and	if	a	key	is	not	present
adds	it	to	the	dictionary
with	a	value	of	None	or
optional	default.

d	=	{'G':3,'C':3}

d.setdefault('A')	#	None

d.setdefault('G')	#	3

#	{'A':None,'C':3,'G':3}

d.update(otherDict) Adds	all	the	(key:value)
pairs	from	one	dictionary
to	another,	replacing	any
values	for	keys	that	are
already	present.

d	=	{'G':3,'C':3}

d.update({'A':2})

#	{'A':2,	'C':3,	'G':3}

d.values() In	Python	2,	generates	a
list	containing	the	values
from	a	dictionary.	The
items	in	the	list	are	in	no
particular	order.	In	Python
3,	gives	an	iterable	view
object	instead	of	a	list.

d	=	{'pi':3.141,	

'e':2.718}

v	=	d.values()

print(v)

#	dict_values([3.141,	

2.718])

File	objects
The	following	table	lists	commonly	used	methods	and	attributes	of	file	objects,	which	are
generally	 created	with	open(fileSystemPath,	 readWriteMode)	 in	 order	 to	 read	 data	 from
and/or	write	data	to	a	file	system,	e.g.	hard	disk,	DVD	etc.

Method Description

f.close() Closes	a	file	object	so	that	it	is	no	longer	used	for	reading
or	writing.	This	often	happens	implicitly	when	the	handle
on	the	object	falls	out	of	scope	(e.g.	returning	from	a
function).

f.flush() Flushes	out	and	writes	any	cached	file	data	(held	in	the
file	buffer).	Note	use	of	os.fsync(fileObj.fileno())	may
additionally	be	required	to	force	the	operating	system	to
write	immediately.

f.fileno() Gives	a	number	that	identifies	the	particular	file	object	to
low-level	operating-system	procedures.

f.read(size) Reads	a	specified	number	of	bytes	from	a	file	object	as	a
string	or	(from	Python	3)	as	bytes	if	in	binary	mode,

although	this	may	be	limited	by	the	end	of	the	file.	With
no	size	argument	reads	all	data	from	the	file.

f.readline(size) Reads	a	single	line	from	file,	optionally	specifying	the
maximum
number	of	bytes	to	read	(thus	potentially	truncating	the
line).

f.readlines(targetSize) Reads	all	the	lines	from	a	file	object.	With	optional
argument,	no	more	lines	are	read	once	total	size	of	lines
read	so	far	exceeds	the	given	number	of	bytes.

f.seek(offset,	code) Moves	the	file	object’s	current	read/write	position	to	a
given	byte	position.	Generally	more	useful	for	‘binary’
files	than	text	files.	Optional	second	argument	is	0,	1	or	2
to	seek	relative	to	the	start	(default),	current	position	or
file	end	respectively.

f.tell() Retrieves	the	file’s	current	read/write	position.

f.truncate(size) Truncates	the	file	to	the	current	read/write	position,	or	to
an	optionally	specified	size.

f.write(text) Writes	a	specified	text	string	or	bytes	(if	Python	3	binary
mode)	to	file.	Note	that	the	data	may	not	actually	be
written	to	disk	until	the	buffering	cache	is	full.

f.writelines(texts) Writes	an	ordered	collection	of	text	strings	or	bytes	(if
Python	3	binary	mode)	to	file.

Attribute Description

f.closed Determines	whether	the	file	object	is	closed	for	reading/writing.

f.mode Fetches	the	read/write/append	mode	that	the	file	object	was	created
with.

f.name Gives	the	name	of	the	file,	as	represented	on	disk.

1 	Compared	to	Python	2,	in	Python	3	all	strings	are	Unicode	and	the	type	bytes	is	used	for
immutable	binary	data,	rather	than	strings.
2 	Or	to	Unicode	before	Python	3	with	unicode(x).
3 	Note	that	the	u”	syntax	was	removed	in	Python	3.0	to	3.2,	but	reintroduced	in	3.3.

Appendix	3 	Standard	module	highlights

The	‘string’	module
The	table	below	lists	attributes	which	can	be	imported	from	the	string	module.	It	should	be
noted	that	many	things	that	were	previously	handled	using	the	string	module	in	very	old
versions	of	Python	are	now	generally	built	into	the	string	class,	e.g.	a	=	b.upper(),	so	we
only	list	a	few	of	the	more	useful	string	constants	below.

Constant
(string.) Description Value

ascii_letters All	ASCII	letters	both
upper	and	lower	case,
in	order.

‘abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’

ascii_lowercase All	ASCII	lower-case
letters,	in	order.

‘abcdefghijklmnopqrstuvwxyz’

ascii_uppercase All	ASCII	upper-case
letters,	in	order.

‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

digits The	characters	that
are	used	to	represent
whole	numbers.

‘0123456789’

hexdigits The	characters	that
are	used	in
hexadecimal
representations	of
numbers.

‘0123456789abcdefABCDEF’

letters All	letters	both	upper
and	lower	case,	in
order.	Not	available
in	Python	3,	use
string.ascii_letters
instead.

‘abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’

lowercase All	lower-case	letters,
in	order.	Not

‘abcdefghijklmnopqrstuvwxyz’

available	in	Python	3,
use
string.ascii_lowercase
instead.

octdigits The	characters	that
are	used	in	octal
represntations	of
numbers.

‘01234567’

punctuation All	punctuation
characters,	i.e.	not
letters,	digits	or
whitespace.

‘!”#$%&'()*+,-./:;<=>?@[\]^_`{|}~’

printable All	printable
characters	that	have
an	on-screen	effect.

‘0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!”#$%&'()*+,-./:;
<=>?@[\]^_`{|}~\t\n\r\x0b\x0c’

uppercase All	upper-case	letters,
in	order.	Not
available	in	Python	3,
use
string.ascii_uppercase
instead.

‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

whitespace All	whitespace
characters.

‘\t\n\x0b\x0c\r	‘

The	‘math’	module
The	following	table	lists	some	of	the	more	commonly	used	mathematical	operations	that
may	 be	 used	 by	 importing	 from	 the	math	module.	Most	 descriptions	will	 also	 apply	 to
equivalents	in	the	cmath	module,	which	is	used	for	complex	numbers.	It	should	be	noted
that	 although	 the	methods	 are	 listed	 in	 the	 form	math.method(),	 if	 many	mathematical
operations	are	being	performed	(inside	loops),	and	execution	speed	is	important,	then	it	is
generally	 better	 to	 import	 the	 function	 directly,	 i.e.	 from	math	 import	method,	 and	 use
method(args)	rather	than	repeatedly	use	the	dot	notation	math.method(args).

Method/Attribute
(math.) Description

ceil(x) Gives	a	floating	point	value	that	is	rounded	to	the	next
integer	value	towards	infinity.	Equivalent	to
math.floor(x)+1.0.

factorial(x) For	an	integer,	the	product	of	all	natural	numbers	up	to	and
including	that	value:	x!.	Noting	that	0!	is	defined	to	be	1.

floor(x) Gives	a	floating	point	value	that	is	rounded	to	the	next
integer	value	towards	negative	infinity.

isinf(x) Determines	whether	a	value	is	an	infinity	object.

isnan(x) Determines	whether	a	value	is	a	‘not	a	number’	object.

exp(x) Finds	the	exponent;	e	to	the	power	of	a	value.

log(x,	base) Finds	the	logarithm	of	a	value.	Defaults	to	a	natural
logarithm,	but	an	optional	base	may	be	specified.

pow(x,	y) Raises	one	value	to	the	power	of	another.	Equivalent	to	x	**
y.

sqrt(x) Finds	the	square	root	of	a	non-negative	value.

acos(x) Finds	the	inverse	cosine	(arccosine).

asin(x) Finds	the	inverse	sine	(arcsine).

atan(x) Finds	the	inverse	tangent	(arctangent).

atan2(y,	x) Finds	the	inverse	tangent	of	y/x	(arctangent).

cos(x) Finds	the	cosine	of	an	angle	(in	radians).

hypot(x,	y) Finds	the	length	of	the	hypotenuse	of	a	right-angled	triangle
(2D),	given	the	length	of	the	other	two	sides.	Equivalent	to
math.sqrt(x*x	+	y*y).

sin(x) Finds	the	sine	of	an	angle	(in	radians).

tan(x) Finds	the	tangent	of	an	angle	(in	radians).

degrees(x) Converts	an	angle	in	radians	to	degrees.

radians(x) Converts	an	angle	in	degrees	to	radians.

acosh(x) Finds	the	inverse	hyperbolic	cosine.

asinh(x) Finds	the	inverse	hyperbolic	sine.

atanh(x) Finds	the	inverse	hyperbolic	tangent.

cosh(x) Finds	the	hyperbolic	cosine.

sinh(x) Finds	the	hyperbolic	sine.

tanh(x) Finds	the	hyperbolic	tangent.

pi The	constant	Pi	(π);	3.141592653589793…

e The	constant	Euler’s	number	(e);	2.718281828459…

The	‘random’	module
The	following	table	lists	some	of	the	more	general	methods	of	the	random	module,	which
is	used	to	generate	pseudorandom	numbers.	It	should	be	noted	that	for	testing	purposes	it
may	 be	 useful	 to	 use	 random.seed()	 with	 a	 fixed	 value	 to	 get	 a	 reproducible	 set	 of
apparently	random	numbers.

Method
(random.) Description

seed(x) Sets	an	initialising	seed	number	for	the	(pseudo)random
number	generator.	Defaults	to	use	the	current	time	as	the
seed.	Using	a	fixed	seed	allows	for	the	same	pseudorandom
sequence	to	be	generated.

randint(start,	end) Generates	a	random	integer	value	from	a	specified	range.
Note	that	the	start	and	end	of	the	range	is	included.

choice(vals) Retrieves	a	random	item	from	a	list	or	other	ordered
collection.

shuffle(vals,	func) Randomly	changes	the	order	of	items	in	a	list	(or	other
mutable	sequence).	Optional	argument	to	specify	a	specific
random	number	[0–1]	generating	function.

sample(vals,	num) Randomly	selects	a	number	of	items	from	a	list	or	generator,
without	replacement.	Leaves	the	original	list	unaltered.

random() Generates	a	random	floating	number	between	zero	and	one
(interval	[0,1]),	using	a	uniform	probability	distribution.

uniform(start, Generates	a	random	floating	number	from	between	specified

end) bounds,	using	a	uniform	probability	distribution.

normalvariate(mu,
sigma)

Generates	a	random	numbers	with	a	normal/Gaussian
probability	distribution	of	specified	mean	and	standard
deviation.

The	‘os’	module
The	os	module	is	used	for	things	that	depend	on	the	operating	system	(whether	Windows,
Mac	OS	X,	Linux	etc.)	and	presents	them	in	a	standardised	way.	For	example,	os.path	 is
used	to	interact	with	the	file	system.	We’ve	skipped	the	description	of	lots	of	functionality
involving	 processes,	 devices	 etc.,	 concentrating	 only	 on	 a	 few	 of	 the	 more	 commonly
used,	general	functions.	This	module	should	not	be	confused	with	the	sys	module,	which
deals	with	Python	interpreter	information	and	not	the	operating	system.

Method	(os.) Description

chdir(path) Changes	the	current	working	directory;	for	specifying
relative	file-system	paths.

getenv(varname,
default)

Gets	an	environment	variable	of	a	given	name,	with	optional
default	value	if	it	doesn’t	exist.

putenv(varname,
value)

Sets	an	environment	variable	of	a	given	name,	with	a	given
value.

uname() In	Python	2	gives	a	tuple	containing	five	items	detailing	the
current	operating-system	type.	In	Python	3	gives	a
uname_result	object,	representing	the	same	kind	of
information.

unsetenv(varname) Deletes	a	named	environment	variable.

tmpfile() Creates	an	unnamed,	temporary	file	object	with	mode	‘w+b’
(write	binary)	which	only	exists	for	the	current	session.

access(path,	mode) Gets	status	information	for	a	file-system	path,	using	a
specified	mode	to	check	if	the	path	exists,	is	readable,
writeable	or	executable.

chdir(path) Changes	the	current	working	directory	(for	relative	paths)	to
the	specified	path.

getcwd() Retrieves	a	path	string	representing	the	current	working
directory;	for	relative	paths.

chmod(path,
mode)

Changes	read,	write	and	execution	permissions	for	a	given
path.	Equivalent	to	UNIX	‘chmod’.

chown(path,	uid,
gid)

Changes	the	user	and	group	ownership	or	a	given	path.
Equivalent	to	UNIX	‘chown’.	Note	this	can	be	used	on
Windows	systems	but	only	sets	the	read-only	status.

link(target,
linkName)

Creates	a	(hard)	file	link	connecting	a	stated	source/target
path	with	a	specified	name.

listdir(path) Creates	a	list	of	file	and	directory	names	for	a	specified	file-
system	path.

mkdir(path,	mode) Creates	a	new,	empty	directory	with	a	specified	file-system
path.	Optional	argument	to	specify	the	file	access	mode.

makedirs(path,
mode)

Recursively	creates	a	new,	empty	directory	with	a	stated
path,	including	any	intervening	directories	if	they	do	not
exist.	Optional	argument	to	specify	the	file	access	mode.

remove(path) Deletes	a	file	of	specified	path.	Gives	an	OSError	if	the	path
is	a	directory	(use	rmdir()	for	deleting	directories).

removedirs(path) Recursively	removes	a	directory,	if	empty,	and	then	parent
directories	that	are	empty.	Gives	an	OSError	if	the	directory
is	not	empty.

rename(old,	new) Change	the	name	of	a	file	or	directory.

rmdir(path) Removes	a	specified	directory	path	from	a	file	system,	if	it
is	empty,	otherwise	it	gives	an	OSError.

stat(path) Generates	a	status	object	that	has	attributes	detailing
information	about	a	given	path,	including	access
permissions,	device,	owner,	group,	file	size,	access	time,
modification	time	etc.

symlink(target,
linkName)

Creates	a	symbolic	(soft)	link	to	a	given	path.

unlink(path) Same	as	os.remove().

walk(top,
topDown,	onError,
followLinks)

Creates	a	generator	that	yields	(parentPath,	dirNames,
fileNames)	tuples	that	recursively	walk	through	a	directory
and	any	sub-directories.

system(command) Issues	a	command	to	the	operating	system	as	if	it	were	from
a	command	line	prompt.	It	is	recommended	to	use
subprocess.call()	instead.

The	‘os.path’	sub-module
The	 sub-module	 os.path	 contains	 further	 functionality	 that	 applies	 to	 file-system	 paths.
The	 term	 path	 refers	 to	 a	 particular	 location	 of	 a	 file,	 directory	 or	 link	 within	 the
hierarchical	organisation	of	a	file	system,	e.g.	on	a	hard	disk	or	DVD.	All	the	functionality
presented	 here	 works	 on	 strings	 to	 represent	 the	 file-system	 paths,	 e.g.
‘/home/user/file.py’.	Given	 that	Python	strings	are	 immutable,	 the	 relevant	methods	will
generate	new	path	strings	etc.	rather	than	modify	existing	ones.	All	of	the	examples	below
assume	 the	appropriate	 import	has	been	made	 in	 the	 form:	 from	os.path	 import	method,
although	 we	 do	 not	 mean	 to	 preclude	 other	 import	 styles.	 From	 Python	 3.4	 there	 is	 a
module,	pathlib,	which	provides	an	object-oriented	approach	to	file	paths.

Method	(os.path.) Description

abspath(path) Generates	a	full	absolute	path	from	a	relative	path,
i.e.	by	joining	it	to	the	current	working	directory.

basename(path) Gives	the	file	or	directory	name	at	the	end	of	a	path,
removing	any	leading	directories.

commonprefix(list) Generates	the	longest	string	possible	which	has
characters	that	matches	the	start	of	all	the	paths	in	a
list.

dirname(path) Gives	the	directory	name	or	names	for	a	path,
removing	any	file	or	directory	name	at	the	end.

exists(path) Determines	whether	a	file	or	directory	path	exists	in
the	file	system,	giving	True	if	it	does	and	False
otherwise.	Broken	symbolic	links	give	False.

lexists(path) As	above	for	exists(),	but	broken	symbolic	links
give	True.

expanduser(path) Generates	a	path	where	any	‘˜’	or	‘˜user’	stand-ins
for	a	home	directory	are	expanded	to	the	current
user’s	full	home	directory.

expandvars(path) Generates	a	path	where	any	substrings	representing
environment	variables	of	the	form	‘$env’	or

‘{$env}’	are	filled	in	with	the	textual	value	of	the
environment	variable	(if	it	is	known).

getatime(path) Gets	the	last	access	time	for	a	path	in	seconds,
assuming	it	exists.*

getmtime(path) Get	the	last	modification	time	for	a	path	in	seconds,
assuming	it	exists.*

getctime(path) Gets	creation	time	for	a	path	in	seconds,	assuming	it
exists.*

getsize(path) Gets	the	number	of	bytes	used	to	store	a	path,
assuming	it	exists,	on	a	file	system.	Generally	use	to
get	the	size	of	a	file.

isabs(path) Determines	whether	a	path	is	an	absolute	path	(or
otherwise	is	a	relative	path).	For	UNIX-based
systems	an	absolute	path	will	start	from	the	root	‘/’
and	on	Windows	from	‘'	or	a	drive	specification	like
‘C:'.

isfile(path) Determines	whether	a	path	represents	the	location	of
a	normal	file,	or	a	symbolically	linked	file,	i.e.	exists
and	is	not	a	directory.

isdir(path) Determines	whether	a	path	represents	the	location	of
a	directory,	or	a	symbolically	linked	directory,	i.e.
exists	and	is	not	a	file.

islink(path) Determines	whether	a	path	represents	a	symbolic
link,	whether	to	a	file	or	directory.

ismount(path) Determines	whether	a	path	represents	a	location	that
points	to	a	different	device	(hard	disk,	CD	ROM,
USB	drive)	compared	to	the	parent	directory,	i.e.
whether	it	is	a	mount	point.

join(path1,	path2,	…) Generates	a	longer	path	string	by	combining
multiple	other	paths	(e.g.	sub-directories	and	a	file
name)	in	order	using	the	appropriate	separator	for
the	system	(‘'	or	‘/’).

normcase(path) Generates	a	path	with	letters	of	consistent	case;	only
has	an	effect	on	systems	without	case	sensitivity	(in
which	case	it	converts	to	lower	case).	Has	no	effect

on	UNIX-like	systems.

normpath(path) Generates	a	normalised	version	of	a	path	which	has
any	redundant	directory	specifications	removed	(e.g.
involving	‘../’).

realpath(path) Provides	the	real,	underlying	file-system	path	for	the
destination	of	a	symbolic	link.	Gives	back	the	input
path	unaltered	if	it	is	not	a	symbolic	link.

relpath(path,	start) Given	a	path	creates	a	relative	path	to	that	file-
system	location	from	the	current	working	directory,
or	optionally	from	another	specified	directory.

samefile(path1,	path2) Determines	whether	two	path	specifications
represent	the	same	file	or	directory,	giving	True	if
they	do	and	False	otherwise.

sameopenfile(fileObj1,
fileObj2)

Determines	whether	two	file	objects	represent	the
same	file	or	directory,	giving	True	if	they	do	and
False	otherwise.

split(path) Creates	a	split	version	of	the	path,	separating	any
leading	directory	from	a	final	file	or	directory	name.
Gives	a	2-tuple	in	the	form	(leading,	final).	Same	as
(dirname(path),basename(path)).

splitdrive(path) Creates	a	split	version	of	the	path,	separating	any
leading	drive	specification	from	the	rest	of	a	path,
yielding	a	2-tuple.	Generally	only	useful	on
Windows	systems.

splitext(path) Creates	a	split	version	of	the	path,	separating	any
trailing	file	extension	(e.g.	‘.jpg’,	‘.py’	etc.)	from	the
remainder	of	the	path,	which	generally	includes	the
directories	and	the	rest	of	the	file	name.	Gives	a	2-
tuple	in	the	form	(leading,	extension).

* 	Since	the	system	zero	time,	which	is	somewhat	arbitrarily	00:00:00	UTC	on	1	January	1970,	the	start	of	the
computing	‘epoch’.

The	‘pickle’	module
The	 module	 pickle	 can	 be	 used	 to	 serialise	 Python	 objects,	 to	 convert	 them	 to/from	 a
textual	representation,	which	may	be	saved	to	disk	etc.	All	the	normal	Python	data	types

as	well	as	module-level	classes	and	functions	can	be	serialised	in	this	way.	Custom	classes
may	also	be	serialised	if	the	class	is	imported	into	the	current	name-space	of	a	program.	It
should	 be	 noted	 that	 in	 Python	 2	 there	 is	 also	 a	 cPickle	 module,	 which	 is	 a	 faster	 C-
language	implementation	of	pickle,	and	normally	cPickle	is	the	one	to	use	unless	you	are
defining	 pickle	 subclasses.	 In	 Python	 3	 there	 is	 no	 cPickle	 module,	 and	 pickle
automatically	uses	the	C-language	implementation	when	it	is	available.

Method
(pickle.) Description

dump(obj,	file,
protocol)

Saves	a	copy	of	a	Python	object	to	disk,	as	a	serialised	Pickle
file,	using	a	specified	file	object.

load(file) Loads	a	Python	object	saved	as	a	serialised	Pickle	file	into
memory.

dumps(obj,
protocol)

Creates	a	serialised	Pickle	string	that	represents	a	given	object.

loads(string) Creates	a	Python	object	from	a	serialised	Pickle	string	version.

The	‘sys’	module
The	sys	module	contains	information	that	relates	to	the	Python	interpreter	and	its	runtime
environment.	As	with	the	os	module	(which	is	for	operating-system	interaction)	we	only
focus	on	some	of	the	more	commonly	used	functionality.

Attribute/Method
(sys.) Description

argv Retrieves	a	list	that	contains	the	command	line	arguments
that	were	passed	in	when	Python	was	run,	starting	with	the
name	of	the	Python	script.

exit(code) Quits	the	current	Python	session/program,	optionally
passing	back	a	specific	exit	status	code	to	the	system.

modules Retrieves	a	dictionary	that	contains	all	of	the	currently
imported	modules	as	(module	name:	file	path),	key,	value
pairs.

path Retrieves	a	list	of	strings	representing	the	Python	module
look-up	paths.	Starts	with	the	value	from	the
PYTHONPATH	environment	variable.	This	list	of	paths	can

be	modified	programmatically.

platform Retrieves	a	string	indicating	what	basic	kind	of	computer
system	Python	is	running	on,	i.e.	indicating	Windows,	Mac
OS	X,	Linux	etc.

stdin Retrieves	a	file	object	that	represents	standard	input,	where
textual	input	is	taken	from,	which	by	default	is	the	keyboard.

stdout Retrieves	a	file	object	that	represents	standard	output	to	the
screen,	where	textual	output,	in	the	absence	of	a	specific	file,
is	sent.	This	is	what	print	writes	to	by	default.

stderr Retrieves	a	file	object	that	represents	standard	error	output;
usually	to	screen,	unless	otherwise	redirected.

version Retrieves	a	string	indicating	which	version	of	Python	is
being	used.

The	‘time’	module
The	 following	 are	 a	 few	 simple	 methods	 from	 the	 time	 model.	 There	 is	 much	 more
functionality	 in	 this	 module,	 and	 in	 the	 related	 datetime	 module,	 e.g.	 for	 time	 string
representation,	formatting	and	daylight	savings,	which	is	described	in	the	standard	on-line
Python	documentation.

Method
(time.) Description

ctime(secs) Generates	a	human-readable	string	from	a	time	represented	in
seconds	(since	the	arbitrary	zero	time:	00:00:00	UTC	on	1	January
1970)	.	Defaults	to	the	current	time	if	no	argument	is	specified.

sleep(secs) Suspends	the	execution	of	the	program	for	a	given	number	of
seconds.

time() Retrieves	the	time	in	seconds	since	the	system	zero	time	(00:00:00
UTC	on	1	January	1970).

The	‘shutil’	module
The	shutil	module	 is	 used	 to	manipulate	whole	 files,	 providing	 functionality	 that	 is	 not
present	in	os.

Method	(shutil.) Description

copyfileobj(srcOb,
dstOb[,
chunkSize])

Copies	the	contents	of	one	open	file	object	to	another,
optionally	specifying	the	number	of	byte	‘chunks’	to	buffer
while	copying.

copyfile(source,
dest)

Copies	the	data	contained	in	a	file	from	one	path	to	another
full	file	path	(not	just	a	directory	name).	Does	not	copy
permissions,	access	times	etc.

copymode(source,
dest)

Copies	read,	write	and	execute	permissions	from	a	source
path	(e.g.	file	or	a	directory)	to	a	destination	path.

copystat(source,
dest)

Copies	the	permissions	and	access/modification/creation
times	from	a	source	path	to	a	destination	path.

copy(source,	dest) Copies	a	file	from	one	path	to	a	destination	file	path	or
directory.	If	the	destination	is	a	directory	then	the	source	file
name	will	be	used.	File	permissions	will	be	copied,	but	not
access	time	etc.

copy2(source,
dest)

Like	copy()	above,	but	will	copy
access/modification/creation	times.

copytree(source,
dest,	symlinks,
ignore)

Copies	the	contents	of	an	entire	directory	tree	recursively	to
a	destination	directory.	Options	to	also	copy	symbolic	links
and	callable	argument	that	can	be	used	to	exclude	items.

rmtree(path,
errorIgnore,	func)

Deletes	an	entire	directory	tree	recursively.	Options	to	ignore
any	errors	and	a	callable	argument	to	use	in	the	event	of	an
error.

move(source,
dest)

Moves	a	file	or	directory	(recursively)	from	one	path	to
another.

Miscellaneous	modules
Below	we	list	some	of	the	standard	Python	modules	in	terms	of	their	general	function	and
give	 a	 few	 simple	 examples.	Full	 documentation	 for	 these	modules	 can	be	 found	at	 the
official	 Python	 website	 at	 http://docs.python.org/2/library/	 or
http://docs.python.org/3/library/.	These	are	modules	 that	will	need	 to	be	 imported	 into	a
Python	script,	but	which	should	be	present	as	standard	in	the	Python	installation.	It	should
be	noted	that	the	re	module	is	described	in	extensive	detail	later	in	Appendix	5.

http://docs.python.org/2/library/
http://docs.python.org/3/library/

Module Description Example

argparse A	module	that
helps	interpret
command	line
options/arguments,
i.e.	information
typed	after	the
name	of	a
program,	as
available	in
sys.argv.

from	argparse	import	ArgumentParser

parser	=	ArgumentParser(prog='MyProgram')

parser.add_argument('-x',	type=float,	help='Help

for	X')

parser.add_argument('-y',	type=int,	nargs='?',

>default=1)

parser.print_help()

array A	packed	numeric
array	object,	i.e.
an	ordered
collection
containing	all
numbers	or
characters,	with	a
given	data	type
(specified	with	a
one-letter	code).
Not	as	capable	as
numpy.array	but
part	of	standard
Python	and
efficient	for
interpreting
‘binary’	data.

from	array	import	array

data	=	[9,7,5,4]

x	=	array('i',	data)	#	Int	type

len(x)	#	4

copy Creates	a	new
Python	object	by
copying	an
existing	object.
Can	create	shallow
or	deep	copies,
where	any	object
contained	by	an
object	is	itself	also
copied.

from	copy	import	copy,	deepcopy

x	=	[[1,2],	[3,4]]

y	=	copy(x)	#	Same	_contents_

z	=	deepcopy(x)	#	All	new

x[1].append(5)

print(y)	#	[[1,	2],	[3,	4,	5]]

print(z)	#	[[1,	2],	[3,	4]]

cStringIO
(Python	2)
or
io

Used	to	create	an
object	that	can	be
used	to	read	string
data	as	if	it	were	a

Python	2:

from	cStringIO	import	StringIO

obj	=	StringIO('Start\nMid\nEnd\n')

obj.readline()	#	'Start\n'

(Python	3) file.
Python	3:

from	io	import	StringIO

datetime A	module	that
contains	date,
time,	timedelta
and	datetime
objects	to
represent	temporal
information.	Deals
with	daylight
savings,	date
formatting,	time
string
interpretation	etc.

from	datetime	import	datetime

text	=	'07/May/1945	02:41'

format	=	'%d/%b/%Y	%H:%M'

dt	=	datetime.strptime(text,format)

dt.month	#	5

dt.ctime()

#	'Mon	May		7	02:41:00	1945'

fnmatch Provides	file	name
matching	using
UNIX-like	wild
cards,	i.e.	patterns
that	include	‘*’
and	‘?’	rather	than
regular
expressions.

from	os	import	listdir

from	fnmatch	import	fnmatch

for	file	in	listdir('.'):

				if	fnmatch(file,'*.txt'):

								print(file)

ftplib Used	to	send	and
receive	files	using
the	File	Transfer
Protocol.

from	ftplib	import	FTP

ftpSession	=	FTP('ftp.ncbi.gov',	

username,password)

ftpSession.cwd('genomes')

ftpSession.dir()

ftpSession.retrbinary('RETR:	remoteFile')

ftpSession.storLines('STOR	localfile')

ftpSession.quit()

gzip,	bz2,
zipfile,	tarfile

Libraries	that	deal
with	creating	and
extracting
compressed	and/or
archived	files.

import	gzip

fileObj	=	gzip.open('data.gz')

for	line	in	fileObj:

				print(line)

httplib
(Python	2)

Used	to	send	and
receive

Python	2:

from	httplib	import	HTTPConnection

or
http.client
(Python	3)

information	across
the	Internet	using
the	Hypertext
Transport
Protocol.	A	lower-
level	library	than
urllib/urllib2.

conObj	=	HTTPConnection("www.python.org")

conObj.request("GET","/index.html")

resp	=	conObj.getresponse()

print(resp.status)

print(resp.read())

Python	3:

from	http.client

import	HTTPConnection

multiprocessing Runs	Python	code
as	separate,
parallel,	processes.
Generally	used	on
multiple
core/processor
systems.

from	multiprocessing	import	Process

job1	=	Process(target=calcFunc,

																											args=work1)

job2	=	Process(target=calcFunc,

																										args=work2)

job1.start()

job2.start()

job1.join()

job2.join()

platform Used	to	get
information	about
the	current
computer	and	its
architecture.

import	platform

platform.processor()

#	e.g.	'x86_64'

platform.python_version()

#	e.g.	'2.7.3'

platform.architecture()

#	e.g.	('64bit',	'ELF')

platform.node()

#	e.g.	'MyPC'

re Regular
expressions;	used
to	find	and	replace
substrings	using
pattern	matching.
See	Appendix	5.

See	Appendix	5.

sqlite3 Allows	interaction
with	a	lightweight
SQL	database
called	SQLite.

import	sqlite3

conn	=	sqlite3.connect('myDb')

cursor	=	conn.cursor()

stmt	=	"select	*	from	structure	where	

pdbId='1AFO'"

cursor.execute(stmt)

result	=	cursor.fetchall()

cursor.close()

conn.close()

subprocess Runs	an	external
program	as	a
separate
job/process	and
connects	any
input/output	data
streams.

from	subprocess	import	call

command	=	'clustalw	seq.fasta'

call(command,	stdIn=filObj)

threading Runs	Python	code
in	separate
threads.	These	will
not	run
concurrently	on
multiprocessor
systems	(use
multiprocessing
instead	for	that),
but	can	be	useful
to	process
intermittent	data
streams.

from	threading	import	Thread

job1	=	Thread(target=calcFunc,

																												args=work1)

job2	=	Thread(target=calcFunc,

																												args=work2)

job1.start()

job2.start()

job1.join()

job2.join()

urllib,	urllib2
(Python	2)
or
urllib.request,
urllib.parse,
urllib.error
(Python	3)

Used	to	send	and
receive
information	across
the	Internet:	a
higher-level,	and
so	often	more
convenient,	library
than	httplib.
Handles	web
proxies,
redirection,
passwords,
cookies	etc.	Often
used	to	interact
with	web	services
and	databases.

Python	2:

import	urllib,	urllib2

optionDict	=	{'format':'PDB',	

'compression':'None'}

optionStr	=	urllib.urlencode(optionDict)

url	=	

'http://www.rcsb.org/pdb/cgi/export.cgi/1OUN.pdb'

req	=	urllib2.Request(url,	optionStr)

resp	=	urllib2.urlopen(req)

print(resp.read())

Python	3:

import	urllib,	urllib.request

optionDict	=	{'format':'PDB',	

'compression':'None'}

optionStr	=	

urllib.parse.urlencode(optionDict).encode('utf-

8')

url	=	

'http://www.rcsb.org/pdb/cgi/export.cgi/1OUN.pdb'

req	=	urllib.request.Request(url,	optionStr)

resp	=	urllib.request.urlopen(req)

print(resp.read().decode('utf-8'))

zlib Used	to	compress
data	into	more
compact
representation,
using	the	zlib
algorithm.	Can	be
useful	for	caches
and	undo
functions.

import	zlib

x	=	zlib.compress('Bananarama')

print(x,	zlib.decompress(x))

Numerical	Python:	‘numpy’
The	table	below	details	a	subset	of	the	functionality	available	from	the	numpy	module.	For
brevity	we	have	only	included	some	of	the	more	commonly	used	aspects	as	well	as	those
mentioned	 in	 this	 book.	 Often	 we	 have	 not	 included	 all	 the	 possible	 arguments	 for	 a
function,	instead	only	focussing	on	what	we	deem	most	important.	Fuller	documentation
may	 be	 found	 at	 the	NumPy	 and	 SciPy	website:	 http://docs.scipy.org/doc/.	 It	 should	 be
noted	 that	 the	 numpy	module	 is	 not	 part	 of	 the	 standard	 Python	 library,	 and	 as	 such	 is
installed	separately.

Although	 not	 listed	 in	 the	 table,	 the	 numpy	 module	 includes	 many	 mathematical
operations,	e.g.	abs,	sqrt,	exp,	 log,	power,	cos,	sin,	 tan,	arccos,	arcsin,	 arctan	 cosh,	 sinh
and	 tanh,	 which	 sometimes	 share	 the	 same	 names	 as	 standard	 math	 methods.	 These
methods	accept	single	values	(so	may	be	used	instead	of	math	methods)	and	also	operate
on	arrays,	where	they	act	in	an	element-wise	manner.

NumPy	 has	 more	 numeric	 data	 types	 than	 standard	 Python,	 which	 may	 be	 used	 to
represent	 numbers	 with	 various	 numbers	 of	 bits	 (and	 thus	 also	 levels	 of	 precision).
Examples	include:	int,	int8,	int16,	uint8,	uint16,	float,	float32	etc.	The	types	int	and	float,
without	 a	 bit	 specification,	 will	 correspond	 to	 the	 same	 data	 type	 as	 regular	 Python
(although	this	is	specific	to	the	system,	i.e.	32	or	64	bit).

In	 NumPy	 the	 most	 important	 class	 is	 the	 container	 object	 array	 and	 many	 of	 the
functions	which	may	be	independently	imported	from	numpy	are	also	bound	methods	of
array.	Thus,	for	example,	to	calculate	a	dot	product	we	could	do	direct	imports:

from	numpy	import	array,	dot

a1	=	array([1,	2,	3])

a2	=	array([4,	5,	6])

dp	=	dot(a1,	a2)

Or	use	a	bound	method:

from	numpy	import	array

a1	=	array([1,	2,	3])

a2	=	array([4,	5,	6])

dp	=	a1.dot(a2)

http://docs.scipy.org/doc/

We	list	both	approaches	in	the	table,	which	naturally	assumes	the	appropriate	modules
are	imported	for	each	case.	It	should	also	be	noted	that	the	input	arguments	generally	do
not	 themselves	need	 to	be	NumPy	array	(or	matrix)	 objects.	 In	many	 cases	 data	 can	 be
input	 in	 the	 form	 of	 an	 ‘array-like’	 sequence	 of	 values,	 which	 would	 typically	 include
tuples	and	lists	of	numbers.

Constructor
(numpy.) Description Example

array(data,
dtype)

Creates	a	numeric	array	object	from	another
array	or	array-like	data.	All	values	will	be
converted	to	the	same	data	type.	Data	type	will
be	inferred	from	the	input	values	if	not
specifically	stated.	An	array	may	have	more
than	one	dimension/axis,	e.g.	constructed	using
a	list	of	lists.

a	=	array([[1,	

2,	3],

	[4,	5,	6]])

a.shape	#	

(2,3)	–	rows,	

cols

a.ndim		#	2	-	

axes

a.tolist()	#	

Make	Python	

list

b	=	

array([3.0,	0,	

4.7,	1],	

float)

#	Floats:	3.0,	

0.0,	4.7,	1.0

matrix(data,
dtype)

Creates	a	numeric	matrix	object	from	an	array
or	array-like	data.	Provides	an	alternative	to
array()	that	has	more	matrix-oriented
operations,	e.g.	multiplication	is	not	element-
wise.	Data	type	will	be	inferred	from	the	input
values	if	not	specifically	stated.

m1	=	

matrix([[1,2],	

[1,0]])

m2	=	

matrix([[3,0],	

[0,3]])

print(m1	*	m2)

#	matrix([[3,	

6],

#																	

[3,	0]])

Method Description Example

append(data1,
data2,	dtype)

Add	one	or	more	values	on
the	end	of	an	array	to	make	a
longer	array.	Unless	an	axis
is	specified	the	result	will	be

a	=	array([[1,	2,	3],

																				[4,	5,	

6]])

b	=	append(a,	[7,8,9])

a	flattened,	1D	array.	If	an
axis	is	specified	the	array
added	must	have	the	same
number	of	dimensions,	and
naturally	must	match	the
shape	along	that	axis.	Note	it
will	generally	be	quicker	to
use	empty()	and	then	fill
array	values	by	index	rather
than	call	append()	multiple
times.

#	Makes	flat	1	x	9	array

c	=	append(a,	[[7,8,9]],	

axis=0)

#	Makes	3	x	3	array

d	=	append(a,	[[4],[7]],	

axis=1)

#	Makes	2	x	4	array

arange(start,
end,	step,	dtype)

Generates	an	array	of	equally
spaced	numbers,	from	a	start
point,	up	to	(but	not
including)	an	end	point	using
a	given	step	size.	The	start
defaults	to	zero	and	the	step
to	1.	The	data	type	will	be
inferred	from	the	arguments
unless	specifically	stated.
Similar	to	range/xrange	in
standard	Python,	but	for
more	data	types.

arange(3.0)

#	Floats:	array([0.0,	1.0,	

2.0])

arange(7,	3,	-1)

#	Ints:	array([7,	6,	5,	

4])

arange(0,	6	,2,	float)

#	Floats:	array([0.0,	2.0,	

4.0])

arange(3.2,	3.5,	0.1)

#	Floats:	array([3.2,	3.3,	

3.4])

argmax(arry,
axis)
or
a.argmax(axis)

Gets	an	array	of	indices	that
specify	the	position	of	the
maximum	value	in	an	array,
either	along	a	specified	axis
or	in	the	flattened	1D	version
of	the	array	if	no	axis	is
specified.

a	=	array([[1,2,8],	

[9,1,1]])

argmax(a)	#	3

#	Position	of	max	in	1D

argmax(a,	axis=0)

#	array([1,	0,	0])

#	Which	row	has	max	for	

each	col

a.argmax(axis=1)

#	array([2,	0])

#	Which	col	has	max	for	

each	row

argmin(arry,
axis)
or
a.argmax(axis)

As	above,	but	finds	the
indices	for	the	minimum
value.	Also	an	inbuilt
method	of	numpy.array.

a	=	array([[1,2,8],	

[9,1,1]])

a.argmin(0)	#	axis=0

#	array([0,	1,	1])

#	Which	row	has	min	for	

each	col

argsort(arry,
axis)
or
a.argsort(axis)

Compares	the	values	in	an
array	to	generate	an	array	of
their	indices	in	value-sorted
order.	If	the	axis	is	not
specified	the	result	refers	to	a
flattened	1D	version	of	the
array.

a	=	array([5,9,3,4,1,8])

sortIndices	=	a.argsort()

print(sortIndices)

#	[4,2,3,0,5,1]	–	min	val	

at	a[4]

print(a[sortIndices])

#	[1,3,4,5,8,9]

argwhere(arry) Finds	the	indices	of	the	non-
zero	(or	true)	elements	of	an
array.	Unlike	nonzero(),	the
returned	indices	are	grouped
by	element,	rather	than	by
axis.

a1	=	array([[8,	0,	0],

																							[0,	

0,	9]])

indices	=	argwhere(a1)

#	array([[0,	0],	[1,	2]])

#	Positions	of	non-zero	

elements

cov(data1,
data2)

Makes	an	array	representing
the	sample	covariance	matrix
for	given	array	or	array-like
data.	Each	data	row	is	taken
to	be	a	different	variable,	and
each	data	column	represents
a	separate	data	point/vector.
The	covariance	matrix
represents	the	correlations
between	different	pairs	of
variables	(data	dimensions).

x	=	[0.0,	1.0,	2.0,	3.0]

y	=	[0.4,	2.2,	3.9,	5.8]

cov(x)	#	1.666667

cov(y)	#	5.342500

cov([x,	y])

#	array([[1.666667,	

2.983333],

																	

[2.983333,	5.342500]])

cross(arry1,
arry2)

The	cross-product	between
two	vector	arrays.	The	arrays
must	be	2	or	3	dimensional.
For	3D	arrays	the	result	is	a
vector	array	that	is
perpendicular	to	both	input
vectors	(where	possible).	For
2D	arrays	the	result	is	the
determinant	of	the	associated
2×2	matrix.

cross([0,1,0],	[0,0,1])

#	array([1,	0,	0])

cross((3,1),(1,2))

#	5

dot(arry1,
arry2)
or
a.dot(arry)

The	dot	product	or	scalar
product	between	two	arrays.
For	2D	matrices	the	result	is
matrix	multiplication.	For
1D	vectors	the	result	is	a
scalar,	equivalent	to	the

m1	=	array([[1,	2],

																						[-2,	

0]])

m2	=	array([[-1,	1],

																						[2,	

3]])

magnitude	of	the	projection
of	one	vector	on	to	the	other.

m3	=	dot(m1,	m2)

#	array([[3,		7],

#															[2,	-2]])

v1	=	array([1,2,3,4])

v1.dot(array([4,3,2,1]))	#	

20

dstack(arrays) Combines	a	sequence	(e.g.
list)	of	arrays	into	a	larger
array	by	stacking	them
depth-wise,	along	their	third
axis.	For	example,	combines
separate	2D	matrices	into	a
3D	tensor.

m1	=	array([[1,2,3],

																						

[4,5,6]])

m2	=	array([[7,8,9],

																						

[0,1,2]])

m3	=	dstack([m1,	m2])

#	array([[[1,	7],[2,	8],

[3,	9]],

																					[[4,	

0],[5,	1],[6,	2]]])

print(m3.shape)

#	(2,	3,	2)

empty(sizes,
dtype)

Generates	a	new	empty
array,	of	specified	size.	The
array	will	actually	be	filled
with	arbitrary	(but	small)
numbers,	rather	than	zero.
The	data	type	may	be
specified,	but	otherwise
defaults	to	floating	point.
The	size	can	be	an	integer	or
a	tuple	of	integers,	one	for
each	axis,	specifying	number
of	rows,	columns	etc.

a	=	empty((2,1))

#	2	x	1	array,	

arbitrarily:

#	array([[1.34634549e-

316],

#															[

1.81895505e-317]])

eye(nRows,
nCols)

Creates	an	identity	matrix	of
a	specified	size;	a	2D	array
with	ones	on	the	diagonal
and	zeros	elsewhere.	If	the
number	of	columns	is	not
specified	the	matrix	is
square.

eye(3)

#	array([[1.0,	0.0,	0.0],

#															[0.0,	

1.0,	0.0],

#															[0.0,	

0.0,	1.0]])

histogram(arry,
bins,	valRange,
density)

Given	an	input	array	of
values	generates	a	histogram
(counts	and	edges	arrays)	by
counting	values	within	range

data	=	[0.1,	0.5,	1.5,	

1.3,	1.0]

hist	=	histogram(data,	3,	

(0,3))

vals,	edges	=	hist

bins.	The	bins	can	be
specified	as	a	number	of	bins
or	as	a	list	of	boundary
values.	If	unspecified	the
value	range	is	from	the
minimum	to	maximum
values	of	the	input.	Option	to
normalise	the	histogram	so
its	summation	is	one:
density=True.

print(vals)

#	[2,	3,	0]

print(edges)

#	[0.,		1.,		2.,		3.]

hstack(arrays) Combines	a	sequence	(e.g.
list)	of	arrays	into	a	larger
array	by	stacking	them
column-wise,	along	their
first	axis.	For	example,
combines	1D	vectors	into	a
single	long	1D	vector.

v1	=	array([0,1,2])

v2	=	array([7,8,9])

v3	=	hstack([v1,	v2])

#	array([0,	1,	2,	7,	8,	

9])

inner(arry1,
arry2)

Calculates	the	inner	product
of	two	arrays,	scalars	or	one
of	each.	Equivalent	to	.dot()
for	1D	vectors,	but	for	2D
and	above	the	result	is	the
sum	of	the	products	over	the
last	axes	(rather	than	last	and
penultimate	in	matrix
multiplication).

m1	=	array([[1,	2],

																						[-2,	

0]])

m2	=	array([[-1,	1],

																						[2,	

3]])

m3	=	inner(m1,	m2)

#	array([[1,		8],

#															[2,	-4]])

ix_(indices1,
indices2,	…)

Given	a	list	of	indices	for
each	axis/dimension
generates	a	mesh	of	indices:
a	tuple	of	arrays	that	can	be
used	to	index	the	selected
rows,	columns	etc.	of
another	array.	Can	be	used	to
extract	sub-matrices.

rows	=	[0,1]

cols	=	[0,2]

mesh	=	ix_(rows,	cols)

a1	=	array([[0,	1,	2],

																							[3,	

4,	5],

																							[6,	

7,	8]])

a2	=	a1[mesh]

#	array([[0,	2],

#															[3,	5]])

max(array,	axis)
or
a.max()

Gives	the	maximum	values
of	an	array	along	a	given
axis,	or	if	no	axis	is	specified
the	maximum	value	in	the
whole	array.

m1	=	array([[-1,	1],

																							[

2,	3]])

m1.max()

#	3

m1.max(axis=0)

#	array([2,	3])

m1.max(axis=1)

#	array([1,	3])

mean(array,
axis)
or
a.mean()

Gives	the	mean	(average)
values	of	an	array	along	a
given	axis,	or	if	no	axis	is
specified	the	mean	value	of
the	whole	array.

m1	=	array([[-1,	1],

																							[

2,	3]])

m1.mean()

#	1.25

m1.mean(axis=0)

#	array([0.5,	2.0])

mgrid[slice1,
slice2,	…]

An	N-dimensional	grid
object	which	can	be	indexed
to	generate	multi-
dimensional	ranges	of
indices.	Provides	similar
functionality	to	range()	over
multiple	dimensions.

m	=	mgrid[0:3,0:3]

#array([[[0,0,0],

#															[1,1,1],

#															[2,2,2]],

#														[[0,1,2],

#															[0,1,2],

#															[0,1,2]]])

min(array,	axis)
or
a.min()

Gives	the	minimum	values
of	an	array	along	a	given
axis,	or	if	no	axis	is	specified
the	minimum	value	in	the
whole	array.

m1	=	array([[-1,	1],

																							[

2,	3]])

m1.min()

#	-1

m1.min(axis=0)

#	array([-1,	1])

m1.min(axis=1)

#	array([-1,	2])

nonzero(arry)
or
a.nonzero()

Gives	the	positional	indices
for	elements	in	an	array	that
are	non-zero,	or	true	in	a
Boolean	sense.

a1	=	array([[8,	0,	0],

																							[0,	

0,	9]])

rows,	cols	=	a1.nonzero()

#	array([0,	1]),	array([0,	

2])

#	Nonzero	at	(0,0)	and	

(1,2)

ones(sizes,
dtype)

Generates	a	new	array,	of
specified	size,	filled	with
ones.	The	data	type	may	be
specified,	but	otherwise
defaults	to	floating	point.
The	size	can	be	an	integer	or
a	tuple	of	integers,	one	for

ones(4,	int)

#	Ints:	array([1,	1,	1,	

1])

ones((2,3))

#	2	x	3	array

#	array([[1.0,	1.0,	1.0],

each	axis,	specifying	number
of	rows,	columns	etc.

#															[1.0,	1.0,	

1.0]])

outer(arry1,
arry2)

Calculates	the	outer	product
or	tensor	product	of	two
array	vectors.	The	outer
product	of	two	vectors	will
create	a	matrix	with	elements
that	are	the	product	of	the
elements	from	each	vector,
where	the	first	vector	is
applied	across	rows	and	the
second	across	columns.

v1	=	array([0,1,2])

v2	=	array([7,8,9])

m	=	outer(v1,v2)

#	array([[0,		0,		0],

#															[7,		8,		

9],

#															[14,	16,	

18]])

radians(degrees) Converts	an	angle	value	in
degrees	to	radians:	multiply
by	π/180.

radians(120.0)

#	2.0943951023931953

ravel(arry)
or
a.ravel()

Creates	a	flattened,	one-
dimensional	version	of	an
array.

a	=	array([[0,	1,	2],

																					[3,	

4,	5],

																					[6,	

7,	8]])

a.ravel()

#	

array([0,1,2,3,4,5,6,7,8])

reshape(arry,
sizes)
or
a.reshape(sizes)

Rearranges	the	elements	of
an	array	to	make	a	new	array
with	specified	number	of
positions	along	each	axis
(rows,	columns	etc.).

a	=	array([1,2,3,4,5,6])

reshape(a,	(2,3))	#	Rows,	

cols

#	array([[1,	2,	3],

#															[4,	5,	

6]])

a.reshape(3,2)

#	array([[1,	2],

#															[3,	4],

#															[5,	6]])

std(arry,	axis)
or
a.std(axis)

Calculates	the	standard
deviation	of	the	values	in	an
array	along	a	specified	axis.
If	the	axis	is	not	specified	the
standard	deviation	is	over	all
values,	i.e.	the	array	is

data	=	array([[0.1,	0.2,	

0.4],

																									

[1.5,	1.3,	1.0]])

data.std()

#	0.543905629069

data.std(axis=1)

flattened. #	array([0.12472191,	

0.20548047])

sum(arry,	axes)
or
a.sum(axes)

Calculates	the	summation	of
the	values	in	an	array,	along
a	specified	axis	(or	tuple	of
axes).	If	no	axis	is	specified
the	summation	is	over	all
values	in	the	array.

data	=	array([[0.1,	0.2,	

0.4],

																									

[1.5,	1.3,	1.0]])

data.sum()

#	4.5

data.sum(axis=0)

#	array([1.6,	1.5,	1.4])

var(arry,	axis)
or
a.var(axis)

Calculates	the	variance	of
the	values	in	an	array	along	a
specified	axis.	If	the	axis	is
not	specified	the	variance	is
over	all	values,	i.e.	the	array
is	flattened.

data	=	array([[0.1,	0.2,	

0.4],

																											

[1.5,	1.3,	1.0]])

data.var()

#	0.295833333333

data.var(axis=1)

#	array([0.01555556,	

0.04222222])

vstack(arrays) Combines	a	sequence	(e.g.
list)	of	arrays	into	a	larger
array	by	stacking	them	row-
wise,	along	their	second	axis.
For	example,	combines	1D
vectors	into	a	2D	matrix.

v1	=	array([0,1,2])

v2	=	array([7,8,9])

m	=	vstack([v1,	v2])

#	array([[0,	1,	2],

#															[7,	8,	

9]])

zeros(sizes,
dtype)

Generates	a	new	array,	of
specified	size,	filled	with
zeros.	The	data	type	may	be
specified,	but	otherwise
defaults	to	floating	point.
The	size	can	be	an	integer	or
a	tuple	of	integers,	one	for
each	axis,	specifying	number
of	rows,	columns	etc.

zeros(5)

#	Floats:	0.0,	0.0,	0.0,	

0.0,	0.0

zeros(4,	int)

#	Ints:	array([0,	0,	0,	

0])

zeros((2,3))

#	2	x	3	array

#	array([[0.0,	0.0,	0.0],

#															[0.0,	0.0,	

0.0]])

Module Description Example

fft A	module	with	methods	to	perform	Fourier
analysis,	such	as	the	discrete	Fourier
transform	and	its	inverse.

from	numpy	import	

exp,	pi,	arange

I	=	complex(0,	1)

t	=	arange(0.0,	5.0,	

0.1)

decay	=	0.3

x	=	exp(2*pi*I*t)	*	

exp(-decay*t)

w	=	fft.fft(x)

z	=	fft.ifft(w)

#	z	=	x	up	to	

numerical	error

linalg A	module	with	methods	to	perform	array
operations	common	in	linear	(matrix)
algebra,	for	example,	to	calculate
determinant,	eigenvalues,	eigenvectors,
inverse,	single	value	decomposition	etc.

m1	=	array([[-1,	1],	

[2,	3]])

linalg.eig(m1)

linalg.det(m1)

linalg.inv(m1)

linalg.svd(m1)

random A	module	with	methods	for	generating	and
sampling	(pseudo-)random	numbers. vals	=	random.rand(6)

#	Six	floats	from	0.0	

to	1.0

vals	=	

random.randint(2,9,5)

#	Five	ints	in	range	

2	to	5

x	=	[1,2,3,4]

random.shuffle(x)

#	New	order

random.seed()

#	Init	pseudorandom	

generator

Appendix	4 	String	formatting

Old-style	formatting
The	following	table	describes	old-style	string	formatting	codes,	which	are	used	in	Python
strings	which	 are	 followed	by	 the	 ‘%’	 format	operator,	 such	 as	 ‘%8.3f’	%	value.	 These
follow	the	general	system	used	by	sprintf/printf	in	the	standard	C	library.	The	general	form
of	the	formatting	code	syntax	is:

'%<prefix><minWidth><.numDigits><format>'	%	data

where	data	is	either	a	single	value	or	a	tuple	of	values.	This	formatting	system	is	described
at	the	end	of	Chapter	3.

Format
code Description Example

% A	literal	percentage	sign. ‘%.2f%%’
%	32.1
#
‘32.10%’

c Character,	specified	directly	or	using	an	ASCII	code. ‘%c-%c’
%	(0x61,
‘a’)
#	‘a-a’

d	or	i Integer	(decimal). ‘%d	%d’
%	(4,	-7)
#	‘4	-7’

e	or	E Exponential	floating	point.	Lower	case	and	upper	case
respectively.

‘%.2e’	%
(7,)
#
‘7.00e+00’
‘%.2E’	%
(-1.3e-7)
#	‘-1.30E-
07’

f	or	F Floating	point. ‘%.3f’	%
(7)

#	‘7.000’
‘%6.2f’	%
(7.3999)
#	‘	7.40’

g	or	G General	floating	point,	using	an	exponent	above	or	at	the
precision	number	(after	the	point)	and	also	below	10−4.
Lower	case	and	upper	case	respectively.

‘%.2g’	%
(100,)
#	‘1e+02’
‘%.3G’	%
(100,)
#	‘100’

o Octal	(base	8). ‘%o’	%
(100,)
#	‘144’

r String,	converting	objects	with	repr(). ‘%r	%r’	%
(None,
‘abc’)
#	‘None
“abc”’

s String,	converting	objects	with	str(). ‘%s	%s’	%
(True,
‘abc’)
#	‘True
abc’

x	or	X Hexadecimal	(base	16).	Using	lower-case	a–f	or	upper-
case	A–F	respectively.

‘%x’	%
(1023,)
#	‘3ff’

Control
options

Description Example

0 Pads	numeric	values	with	leading	zeros. ‘%05i’	%
(7,)
#	‘00007’

- Left	justifies	the	string,	so	spaces	occur	to	the	right. ‘%-5s’	%
(‘abc’)
#	‘abc	‘

<Space> Places	a	space	before	a	positive	number. ‘%	.2f’	%
(123)
#	‘	123.00’

+ Puts	a	plus	sign	before	a	positive	number. ‘%+.2f’	%
(123)
#
‘+123.00’

# For	certain	formats,	uses	an	alternative	form. ‘%#x’	%
(1023,)
#	‘0x3ff’

New-style	formatting
From	Python	2.6	a	new	style	of	formatting	was	introduced	with	the	.format()	method	for
strings.	The	general	 idea	is	 that	curly	braces	are	placed	inside	the	string	and	the	method
inserts	the	stated	values	into	the	appropriate	places,	formatting	appropriately.	The	braces
accept	an	identifier	stating	which	of	the	values	to	place	in	which	slot.	For	example,	here
the	values	6	and	7	are	placed	in	slots	‘{0}’	and	‘{1}’	respectively,	using	the	index	of	each
argument	as	an	identifier:

'X:{0}	Y:{1}'.format(6,	7)	#	Gives	'X:6	Y:7'

From	Python	version	2.7	the	identifiers	are	optional	and	the	order	of	inserted	values	is
the	 same	 as	 the	 order	 of	 arguments,	 so	we	 could	 also	 do	 the	 following	 to	 get	 the	 same
result	as	before:

'X:{}	Y:{}'.format(6,	7)	#	From	Python	2.7

However,	by	using	identifiers,	 the	order	in	which	the	values	are	placed	into	the	string
can	be	controlled,	so,	for	example,	we	could	reverse	the	order	by	swapping	the	identifier
numbers:

'X:{1}	Y:{0}'.format(6,	7)	#	'X:7	Y:6'

The	system	also	accepts	named	identifiers,	where	the	argument	name	is	the	same	as	the
name	inside	the	curly	brace	where	it	is	to	be	placed:

'X:{a}	Y:{b}'.format(a=5,	b=2)	#	'X:5	Y:2'

Identifiers	can	also	be	a	mixture	of	argument	indices	and	names:

'X:{0}	Y:{b}'.format(5,	b=2)			#	'X:5	Y:2'

If	 a	 sequence	 of	 values	 is	 passed	 in	 (e.g.	 a	 list	 or	 tuple),	 then	 the	 sequence	 can	 be
indexed	inside	the	curly	brace	specification,	so,	for	example,	here	the	initial	‘0’	identifiers
refer	to	dList	and	the	square	brackets	refer	to	the	index	of	elements	within	that	list.

dList	=	[5,7]

'X:{0[0]}	Y:{0[1]}'.format(dList)	#	'X:5	Y:7'

The	sequence	identifier	can	also	be	a	named	argument,	which	perhaps	makes	for	more

readable	code:

'X:{data[0]}	Y:{data[1]}'.format(data=dList)

If	 the	argument	is	a	Python	object	 then	named	attributes	of	that	object	can	be	used	in
the	braces:

import	math

'Constant	Pi:{0.pi}'.format(math)	#	'Constant	Pi:3.14159265359'

For	the	examples	given	so	far	we	have	let	the	formatting	system	display	the	values	in	a
standard,	 default	 manner.	 However,	 there	 are	 many	 additions	 that	 we	 can	 make	 to	 the
format	specification	 inside	 the	braces	 to	control	exactly	how	the	output	string	should	be
formatted.	Hence,	 for	example,	we	could	 repeat	 the	above	but	display	 the	 floating	point
number	to	only	four	decimal	places	using	the	formatting	code	after	the	colon:

'Constant	Pi:{0.pi:.4f}'.format(math)	#	'Constant	Pi:3.1416'

The	 general	 form	 of	 the	 format	 specification	 is	 {<identifier><!converter>
<:formatting>}.	 So,	 in	 the	 above	 example	 <identifier>	 is	 ‘0.pi’,	 <!converter>	 is	 not
specified	and	<:formatting>	is	‘:.4f’.	The	<!converter>	part	is	generally	not	used,	in	which
case	it	is	the	equivalent	of	using	the	inbuilt	str()	function.	If	instead	we	use	the	‘!r’	code
then	the	conversion	is	equivalent	to	repr(),	which	is	especially	handy	if	we	have	an	object
that	has	a	special	string	representation	method	(__repr__())	which	is	different	from	a	plain
string	conversion.

'Text:	{0}'.format('abc')			#	Using	str()		-	'Text:	abc'

'Text:	{0!r}'.format('abc')	#	Using	repr()	-	"Text:	'abc'"

The	 <:formatting>	 part	 of	 the	 specification	 itself	 may	 have	 several	 sub-components,
and	the	general	form	of	this	is	<:(fill)align><sign><0><#><width><,><precision><type>.
We	will	describe	some	of	these	options,	although	a	more	complete	list	of	the	possibilities
is	listed	in	the	table	below.

An	alignment	code	is	used	when	the	substring	may	be	smaller	than	the	insert	width.	In
such	cases	we	can	 choose	 to	 align	 the	value	with	 the	 left,	 right	or	middle	of	 the	 insert.
Here	we	use	 the	 ‘<’	code	 to	push	 the	value	 to	 the	 left	of	 the	 insert	 and	 the	value	 ‘5’	 to
specify	the	width	of	the	insert:

'Text:{0:<5}'.format('a')		#	'Text:a				'

Also,	we	could	explicitly	 say	 that	 the	 insertion	 is	of	 string	 type	 (which	 is	 the	default
anyhow)	using	the	‘s’	data	type	code.

'Text:{0:<5s}'.format('a')		#	'Text:a				'

Similarly	we	could	format	 to	 the	right	of	 the	 insert	with	a	decimal	 integer	(type	code
‘d’)	value,	although	right	alignment	is	the	default	so	need	not	be	specified:

'Value:{0:>5d}'.format(-7)			#	'Value:			-7'

Or	the	alignment	code	‘^’	could	be	used	to	place	the	value	in	the	centre:

'Value:{0:^5d}'.format(7)			#	'Value:		7		'

There	 is	 one	 further	 alignment	 option	 ‘=’,	 where	 any	 numeric	 sign	 is	 maximally
separated	from	a	number:

'Value:{0:=5d}'.format(-7)		#		'Value:-			7'

As	standard,	when	we	are	aligning	format	values	within	a	larger	width,	any	extra	room
is	 padded	 out	 with	 space	 characters.	 However,	 we	 may	 like	 to	 use	 something	 else	 as
padding,	in	which	case	a	different	padding	character	is	placed	before	the	alignment	code.
So,	for	example,	if	we	wanted	to	pad	with	asterisks:

'Value:{0:*>5d}'.format(7)		#	'Value:****7'

Numeric	signs	will	normally	only	be	shown	for	negative	numbers,	but	we	can	force	the
appearance	 of	 a	 plus	 symbol	 for	 the	 positives	 with	 ‘+’	 following	 the	 alignment	 code
(where	present):

'Value:{0:>+5d}'.format(7)		#	'Value:			+7'

Likewise	we	can	use	a	single	space	as	a	 sign	code,	 so	 that	positive	numbers	have	an
extra	space	before,	which	can	be	handy	to	keep	alignment	with	negative	numbers:

'Value:{0:<	6d}'.format(1023)		#'Value:	1023	'

'Value:{0:<	6d}'.format(-1023)	#'Value:-1023	'

Also	for	similar	purposes,	numeric	values	are	easily	padded	with	 leading	zeros	 to	 fill
the	specified	width:

'Value:{0:05d}'.format(123)		#	'Value:00123'

A	more	recent	addition	to	the	scheme	(from	Python	2.7	onwards)	is	to	use	commas	in
the	format	output	to	separate	each	‘thousands’	block	of	three	digits.	As	you	might	expect
this	uses	a	‘,’	code:

'Value:{0:,d}'.format(123456789)	#	'Value:123,456,789'	–	Python	2.7+

A	numeric	value	need	not	be	specified	as	a	decimal	integer	or	floating	point,	as	we	have
shown	so	far.	There	are	several	other	codes	for	different	base	systems,	so,	for	example,	we
can	format	as	hexadecimal:

'Value:{0:4x}'.format(1023)		#	'Value:	3ff'

For	 floating	 point	 numbers,	 as	mentioned	 above,	 it	 is	 generally	 useful	 to	 specify	 the
precision	(number	of	decimal	places),	which	we	achieve	with	the	dot	notation:

'Value:{0:.3f}'.format(123)		#	'Value:123.000'

And	 as	 you	 may	 expect	 this	 can	 be	 combined	 with	 the	 required	 total	 width
specification.	Here,	for	example,	we	make	sure	that	at	least	ten	characters	are	inserted	for
a	value	specified	to	three	decimal	places:

'Value:{0:10.3f}'.format(123)		#	'Value:			123.000'

As	 with	 the	 old-style	 formatting,	 floating	 point	 numbers	 can	 be	 represented	 in	 the
exponent	format	‘e’:

'Value:{0:.2e}'.format(7)						#	'Value:7.00e+00'

'Value:{0:.2e}'.format(0.0012)	#	'Value:1.20e-03'

And	also	using	the	general	number	format	‘g’	which	only	uses	the	exponent	form	if	the
exponent	is	small	(<	−4)	or	greater	than	the	precision	number:

'Value:{0:.4g}'.format(7.0)				#	'Value:7'

'Value:{0:.4g}'.format(10234)		#	'Value:1.023e+05'

It	 should	 be	 noted	 that	 the	 number	 of	 decimal	 places	 can	 be	 set	 dynamically	 from	 a
variable,	 should	 it	 need	 to	 change	 in	 a	 program.	 This	 can	 be	 achieved	 by	 having	 one
formatting	code	inside	another.	Hence	here	the	number	of	decimal	places	is	inserted	into
the	‘{1}’	(from	the	second	argument)	to	complete	the	outer	formatting	code,	which	in	the
example	below	would	be	equivalent	to	‘{0:.7f}’:

nPlaces	=	7

'Value:	{0:.{1}f}'.format(123,	nPlaces)	#	'Value:	123.0000000'

Lastly,	we	can	use	this	tactic	of	having	braces	inside	braces	to	control	other	aspects	of	a
format	specification:	here,	for	example,	setting	the	alignment	code	with	a	named	attribute:

'Value:	{0:{align}5d}'.format(5,	align='<')	#	'Value:	5				'

The	table	below	summarises	the	various	alignment,	sign	and	data	type	codes	used	with
Python’s	new-style	string	formatting	system.

Alignment	code Description

< Left	alignment.

> Right	alignment.

^ Centre	alignment.

= Separate	sign	and	number.

Sign	code Description

+ Shows	positive	and	negative	signs.

- Negative	signs	only	(default).

<Space> Uses	a	space	before	positive.

Type
code Description

b Binary	(base	2).

c Character,	using	a	numeric	ASCII	code.

d Decimal	integer	(base	10).

e Exponential,	with	lower-case	‘e’.

E Exponential	with	upper-case	‘E’.

f Floating	point.

g General	number,	formatted	with	exponential	if	the	exponent	is	less	than
−4	or	greater	than	the	precision	number.

G General	number,	as	above,	but	using	upper-case	‘E’.

n Number	with	local	settings,	e.g.	for	thousand	separator,	decimal	point.

o Octal	(base	8).

x Hexadecimal	(base	16),	with	lower-case	letters	a–f.

X Hexadecimal	with	upper-case	letters	A–F.

% Converts	to	a	percentage	(multiply	by	100.0)	and	adds	a	‘%’	sign.

Appendix	5 	Regular	expressions
The	 term	 ‘regular	 expression’	 refers	 to	 the	 specification	 of	 a	 particular	 pattern	 of
characters	which	may	occur	within	a	text	string.	Given	a	pattern	a	program	can	then	look
for	certain	kinds	of	character	being	present	in	particular	locations.	As	an	example	we	may
wish	 to	 search	 for	 email	 addresses	within	 a	 larger	 piece	 of	 text.	 In	 reality	 this	 is	 fairly
complex,1	 but	 the	 basic	 pattern	 for	 this	 would	 consist	 of	 a	 leading	 group	 of	 (mostly)
alphanumeric	 characters,	 without	 spaces,	 before	 the	 ‘@’	 symbol,	 then	 more	 characters
before	ending	with	a	dot	 ‘.’	and	a	 final	group	of	 letters.	Such	a	pattern	would	expect	 to
identify	strings	like	‘mickey@disney.com’	or	‘h.j.simpson@springfield.ac.uk’.

In	practice,	 regular	 expressions	 in	Python	are	 specified	using	 a	 system	where	 special
codes	are	used	to	represent	general	or	ambiguous	kinds	of	character	(it	is	actually	a	very
similar	 system	 to	what	 is	used	 in	other	 languages	 like	Perl	 and	C).	For	 example,	 ‘\d’	 is
used	 to	 match	 any	 digit	 character	 in	 the	 range	 ‘0’	 through	 to	 ‘9’.	 Given	 a	 regular
expression	 the	 essential	 task	 is	 to	 determine	 whether	 a	 pattern	 does	 or	 does	 not	 occur
within	a	string.	If	 it	does,	often	we	will	also	want	 to	extract	 the	substrings	 that	matched
and	perhaps	replace	them	with	some	other	text.	It	should	be	noted	that	some	simple	text
string	queries	and	manipulations,	which	certainly	could	be	done	with	regular	expressions,
are	often	more	 easily	performed	using	 the	 standard	 string	methods.	Thus,	when	dealing
with	 only	 a	 few	 exact	 substrings	 we	 recommend	 considering	 string	 methods	 like
text.find(subString),	text.replace(old,	new)	in	preference	to	regular	expressions.

A	guide	to	regular	expressions
Moving	on	to	practical	matters,	the	following	is	an	introductory	guide	to	the	basic	use	of
regular	expressions	in	Python.	To	use	regular	expressions	in	Python	we	must	first	import
the	re	module:

import	re

or	the	required	sub-modules:

from	re	import	search,	compile,	sub

We	use	 the	former	approach	here.	To	begin,	we	will	consider	 looking	for	a	particular
substring	within	a	larger	string	using	re.search.	This	takes	the	general	form:

matchObj	=	re.search(regExpPattern,	textString)

And	 in	 practice	 we	 would	 do	 something	 like	 the	 following,	 where	 for	 illustrative
purposes	we	use	an	exact	string	as	a	pattern	to	search	for:

text	=	'Antidisestablishmentarianism'

matchObjA	=	re.search('establish',	text)		#	Present	–	gives	MatchObject

matchObjB	=	re.search('banana',	text)							#	Absent		-	gives	None

As	you	can	see,	 the	search	gives	back	a	special	MatchObject	 if	successful	or	None	 if
the	search	failed.	A	MatchObject	may	then	be	interrogated	to	determine	where	the	match
occurred,	and	what	the	substring	was	etc.

If	the	search	pattern	doesn’t	change	often	compared	to	the	number	of	searches	then	it
may	be	quicker	to	compile	the	pattern	from	the	regular	expression	string	once	at	the	start,
before	 then	 applying	 the	 pattern	 repeatedly.	 In	 this	 instance	 to	 ‘compile’	 a	 regular
expression	means	 to	 interpret	 the	 pattern	 specification	 (which	 is	 initially	 just	 text)	 and
create	a	RegexObject,	which	has	methods	(bound	functions)	 to	perform	searches	etc.	on
that	 particular	 pattern.	 So	 adapting	 an	 example	 from	 above	we	 could	 do	 the	 following,
noting	the	.search()	now	comes	from	regexObj,	the	compiled	regular	expression	object:

regexObj	=	re.compile('establish')

matchObj	=	regexObj.search(text)

print(matchObj)

Various	useful	functionalities	are	associated	with	the	match	object:

print(matchObj.group())		#	The	substring	that	was	found/matched

print(matchObj.start())		#	index	in	the	string	of	the	start	of	match

print(matchObj.end())					#	index	in	the	string	for	just	after	end	of	match

print(matchObj.span())				#	(start,	end+1)

In	general	we	need	to	check	that	a	search	was	successful,	i.e.	that	it	did	not	give	None,
before	proceeding	to	interrogate	any	match	object:

regexObj	=	re.compile('Green')

texts	=	['Green	tomatoes',	'Red	brick	house']

for	text	in	texts:

			matchObj	=	regexObj.search(text)

			if	matchObj	is	None:

							print('Pattern	does	not	match')

			else:

							print(matchObj.span())

Considering	the	above	search	pattern	‘Green’,	we	may	wish	to	be	less	specific	and	also
accept	 lower-case	‘green’.	The	regular	expression	string	for	 this	could	be	‘[Gg]reen’,	so
that	we	accept	either	upper-	or	lower-case	letters	at	the	start	of	the	word.2

regexObj	=	re.compile('[Gg]reen')

print(regexObj.search('Green	door'))

print(regexObj.search('Fried	green	tomatoes'))

As	you	may	expect	the	above	regular	expression	was	made	more	general	by	creating	a
group	 of	 accepted	 characters	 using	 square	 brackets	 [].	 Hence,	 square	 brackets	 have	 a
special	meaning	when	 they	 are	 in	 a	 regular	 expression.	There	 are	 other	 characters	with
special	meanings,	and	the	complete	list	is:

.	^	$	*	+	?	{	}	[]	\	|	()

See	the	table	below	for	what	these	are	used	for.	If	we	want	to	have	these	characters	used
in	 a	 literal	 way	 then	 we	 have	 to	 put	 a	 ‘\’	 in	 front	 so	 that	 it	 escapes	 any	 special
interpretation	(in	the	jargon	the	character	is	said	to	have	been	‘escaped’).

regexObj	=	re.compile('\[abc\]')	#	Match	the	bracket	characters

regexObj.search('Text	with	exactly	[abc]	inside')

While	we	 can	 explicitly	 define	 groups	 of	 characters	 by	 stating	 all	 possibilities,	 for	 a
range	of	consecutive	characters	we	can	use	a	shorter	notation.	Thus	instead	of	doing	the
following	to	match	any	grade	from	A	through	to	E:

text	=	'passed	the	exam	with	grade	D'

regexObj	=	re.compile('grade	[ABCDE]')

matchObj	=	regexObj.search(text)

we	could	use	a	range	specified	with	the	group	‘[A-E]’.

regexObj	=	re.compile('grade	[A-E]')

matchObj	=	regexObj.search(text)

In	a	similar	way	you	can	define	range	groups	like	‘[A-Z]’,	‘[a-z]’	or	‘[a-z0-9]’,	the	last
of	which	would	match	lower-case	letters	or	digits.	For	some	of	the	more	general,	regularly
used	character	groups	there	are	some	even	simpler	codes.	Hence	instead	of	the	complete
digit	character	group	‘[0-9]’	the	code	‘\d’	can	be	used	instead:

regexObj	=	re.compile('grade	\d')

regexObj.search('Wizard	grade	1')

regexObj.search('Wizard	grade	2')

As	described	in	the	table	below	the	commonly	used	group	codes	are:

\s	\d	\w	\S	\D	\W

Respectively	 these	 represent	 whitespace,	 digit,	 alphanumeric/underscore	 and	 their
opposites;	 non-whitespace,	 non-digit,	 non-alphanumeric/underscore.	Accordingly,	 in	 one
of	 the	 above	 examples	we	 could	 use	 ‘\w’	 instead,	 and	 this	 will	 match	 both	 letters	 and
numbers:

regexObj	=	re.compile('grade	\w')		#	'Wordy'	character	[0-9a-zA-Z_]

regexObj.search('grade	D')

regexObj.search('grade	1')

Sometimes	 a	 regular	 expression	 cannot	 be	 expressed	 in	 terms	 of	 simple	 character
groups	and	codes.	For	example,	we	may	wish	to	accept	alternative	words.	In	such	cases
we	 can	 simply	 specify	 complete	 substring	 alternatives	 using	 ‘|’,	 which	 acts	 as	 an	 OR
operator.

regexObj	=	re.compile('\s(trousers|pants)\.')

matchObj	=	regexObj.search('I	got	mud	on	my	trousers.')

So	 far	 we	 have	 only	 considered	 groups	 and	 codes	 for	 matching	 single	 characters.
Naturally	 we	 often	 want	 to	 find	 more	 than	 one	 character	 from	 a	 given	 group.	 This	 is
achieved	 using	 the	 ‘+’	 symbol,	 which	 means	 to	 match	 one	 or	 more	 (as	 many	 as	 are

available).	For	example,	to	match	multiple	digits:

regexObj	=	re.compile('\d+')

matchObj	=	regexObj.search('In	the	year	of	1949.')

print(matchObj.group())	#	Print	the	part	that	matches

In	this	case	we	would	match	the	multiple	digits	of	the	substring	‘1949’.	Note	that	this
matching	is	‘greedy’,	so	gets	all	of	the	sequence	of	digits.	Multiple	character	groups	and
codes	 can	 be	 used	 in	 the	 same	 regular	 expression.	 So	 adapting	 the	 above	 example	 we
could	 also	 match	 one	 or	 more	 non-digit	 characters,	 specified	 with	 ‘\D+’	 before	 any
number	of	digits	‘\d+’.

regexObj	=	re.compile('\D+\d+')	#	One	or	more	non-digit,	one	or	more	digit

matchObj	=	regexObj.search('I	arrived	in	1949	from	Cuba.')

print(matchObj.group())

The	 result	 here	 is	 ‘I	 arrived	 in	 1949’,	 so	 you	 can	 see	 that	 the	 ‘\D+’	matched	 all	 the
initial	characters	and	the	‘\d+’	matched	the	year	in	the	combined	pattern.	As	an	alternative
we	could	use	the	code	‘.+’,	which	means	one	or	more	of	any	character,	but	 it	should	be
noted	that	this	will	also	match	to	digits.	Hence,	if	we	do	the	following:

regexObj	=	re.compile('.+\d+')	#	One	or	more	of	anything,	one	or	more	digit

matchObj	=	regexObj.search('I	arrived	in	1949	from	Cuba.')

print(matchObj.group())

The	 final	 result	 is	 the	 same	as	before	but	 the	 ‘.+’	code	actually	matches	 ‘I	 arrived	 in
194’;	it	is	‘greedy’	and	matches	as	many	characters	as	possible	before	the	next	code	‘\d+’,
which	here	only	matches	 the	single	character	‘9’.	As	another	example,	you	may	wish	to
match	digits	only	if	they	are	preceded	by	a	space	(or	other	whitespace	character	like	‘\t’,
‘\r’	or	‘\n’).	In	this	case	you	could	do:

regexObj	=	re.compile('\s\d+')

regexObj.search('Year	2013')	#	Success

regexObj.search('Year2178')		#	Gives	None:	no	whitespace	before	digit

Note	that	here	we	could	also	use	‘\s+’,	but	searching	for	multiple	spaces	doesn’t	make
any	difference	if	all	we	require	is	one.	If	the	pattern	really	must	have	a	space,	and	nothing
else,	then	re.compile(‘	\d+’)	can	be	used.

As	 far	 as	 the	output	 is	 concerned,	 the	 examples	 so	 far	 don’t	 distinguish	 the	different
parts	of	the	regular	expression.	However,	we	may	wish	to	segregate	the	different	parts	of
the	 matched	 string	 so	 that	 we	 can	 extract	 it	 separately	 using	 the	 .group()	 or	 .groups()
method	of	the	match	object.	Hence,	considering	the	extraction	of	numbers	from	the	above
example	we	can	use	round	brackets	()	to	define	a	group	so	that	although	the	match	must
include	whitespace	we	can	access	the	digits	separately:

regexObj	=	re.compile('\s(\d+)')

matchObj	=	regexObj.search('In	the	year	of	1949.')

print(matchObj.group(1))	#	'1949'	-	digits	only

print(matchObj.groups())	#	('1949',)	–	all	match	groups	as	a	tuple

Note	 that	 using	 .group(0)	 gives	 the	 complete	match	 substring.	Naturally,	 if	 there	 are

more	 groups	 these	 take	 subsequent	 numbers,	 as	 in	 the	 following	 example,	 where	 ‘\D’
means	non-digit:

regexObj	=	re.compile('(\d+)\D+(\d+)')

matchObj	=	regexObj.search('The	14th	day	of	January	1865.')

print(matchObj.group(0))	#	'14th	day	of	January	1865'

print(matchObj.group(1))	#	'14'

print(matchObj.group(2))	#	'1865'

print(matchObj.groups())	#	('14',	'1865')

There	 are	 some	 tricky	 details	 when	 using	 special	 character	 codes.	 Consider	 the
following,	for	example:

text	=	'C:\data'

regexObj	=	re.compile('\data')

matchObj	=	regexObj.search(text)

print(matchObj.group())		#	Fails

The	 problem	 arises	 because	 ‘\d’	 is	 a	 special	 code	 for	 digit	 characters	 and	 is	 not
interpreted	 as	 a	 literal	 backslash	 character	 followed	 by	 a	 ‘d’.	 Now,	 given	 what	 we
mentioned	above	by	escaping	characters	by	prepending	them	with	‘\’	you	might	expect	the
following	to	work	to	treat	the	slash	literally.

regexObj	=	re.compile('\\data')

print(regexObj.search(text).group())		#	Still	fails!

To	get	this	to	work	as	we	intended	we	need	the	following	completely	horrid	pattern:

regexObj	=	re.compile('\\\\data')		#	Works	–	Yuck!

print(regexObj.search(text).group())

The	problem	we	have	encountered	here	occurs	because	in	reality	there	are	actually	two
rounds	 of	 string	 interpretation	 and	 in	 both	 rounds	 ‘\’	 is	 an	 escape	 code.	 The	 first
interpretation	 is	 the	 normal	 Python	 string	 handling,	 and	 here	 ‘\’	 also	 means	 a	 literal
backslash	(remembering	that	a	backslash	is	used	for	whitespace	codes	like	‘\n’,	‘\t’	etc.).
The	second	interpretation	is	the	interpretation	as	a	regular	expression,	which	has	its	own
set	 of	 escape	 codes.	 Thus	 the	 first	 round	 of	 string	 interpretation	 in	 compile(‘\data’)
replaces	the	double	backslash	code	with	a	single	literal	backslash,	so	that	by	the	time	the
string	gets	 to	 the	 regular	 expression	 interpretation	 the	double	 backslash	 is	 removed	 and
we’re	back	at	‘\d’.	At	this	point	it	should	be	noted	that	we	didn’t	have	this	problem	with
the	 ‘\[’	 or	 ‘\]’	 in	 previous	 examples	 because	 these	 only	 act	 as	 escape	 codes	 in	 regular
expressions,	not	in	regular	Python	strings.

As	you	can	see,	we	can	add	yet	more	backslashes	so	that	the	removal	of	double	slashes
in	 the	string	 interpretation	 leaves	enough	for	 the	regular	expression.	However,	 there	 is	a
much	more	palatable	way	of	doing	things	by	disabling	the	first	round	of	escape	character
interpretation	using	what	are	called	raw	strings	so	all	characters	are	treated	literally,	which
uses	the	r”	or	r””	syntax.	Hence	we	can	do:

regexObj	=	re.compile(r'\\data')									#	Raw	string

print(regexObj.search(text).group())	#	Success!

Another	 aspect	 of	 regular	 expressions	which	 should	 be	 noted	 is	 that	 the	matches	 are
done	 as	 close	 to	 the	 start	 of	 the	 queried	 string	 as	 possible.	 Hence,	 if	 there	 are	 two
possibilities	 which	 both	 match	 in	 theory	 it	 is	 the	 first	 that	 is	 matched	 in	 practice.	 For
example:

regexObj	=	re.compile('\d+')

matchObj	=	regexObj.search('In	the	years	1949	and	1954.')

print(matchObj.group())	#	'1949'	-	First	match

Where	 there	are	multiple	matches	for	 the	pattern	we	can	use	 .findall()	 to	get	multiple
match	 occurrences,	 noting	 that	 this	 gives	 back	 the	 matches’	 substrings	 rather	 than	 a
MatchObject	(we	could	get	such	objects	using	.finditer(),	as	we	show	later):

regexObj	=	re.compile('\d+')

matchStrs	=	regexObj.findall('In	the	years	1949,	1954	and	1963.')

for	matchStr	in	matchStrs:

			print(matchStr)

So	far	we	have	only	considered	regular	expressions	where	a	particular	character	code	or
group	 must	 occur.	 However,	 there	 are	 situations	 when	 a	 group	 of	 characters	 may
sometimes	 be	 absent.	 For	 example,	 consider	 the	 following	 strings	 where	 we	 wish	 to
extract	 the	 numeric	 data	 after	 equal	 signs	 but	where	 there	may	 or	may	 not	 be	multiple
spaces	before	the	digits.

s1	=	'first=123457'

s2	=	'second=				6'

s3	=	'third=		8768'

All	of	these	numeric	substrings	can	be	extracted	with	a	single	regular	expression.	Here
‘*’	means	zero	or	more	(as	applied	to	the	preceding	character)	so	we	have	flexibility	with
regard	to	the	presence	of	spaces	before	getting	one	or	more	digits:

regexObj	=	re.compile('=	*\d+')

print(regexObj.search(s3).group())

Taking	 this	 kind	 of	 example	 further,	 the	 extraction	 of	 numbers	 may	 be	 further
complicated	with	the	presence	or	absence	of	minus	signs	and	decimal	points.	However,	we
only	accept	the	presence	of	a	single	minus	sign	and/or	a	single	decimal	point,	so	we	use	‘?’
to	mean	zero	or	one	(and	not	more).	Considering	the	following	string:

line	=	'p1=123.457,	p2=		1.80,	delta1=	-7.869,	delta2=-10'

A	regular	expression	to	match	all	the	numbers	must	account	for	zero	or	more	spaces	‘*’,
an	 optional	 minus	 sign	 ‘-?’,	 one	 or	 more	 digits	 ‘\d+’,	 an	 optional	 decimal	 point	 ‘\.?’
(remembering	the	backslash	because	a	plain	dot	is	a	code	for	any	character)	and	then	any
optional	 remaining	 digits	 ‘\d*’.	 The	 resulting	 regular	 expression	 may	 seem	 somewhat
unreadable	at	first	glance,	but	it	is	readily	broken	down	into	its	component	parts:

regexObj	=	re.compile('=	*(-?\d+.?\d*)')

for	match	in	regexObj.finditer(line):	#	iterates	through	all	match	objects

			print(match.group(1))

Note	that	by	bracketing	the	part	of	the	character	specification	that	includes	the	numbers

and	 any	 minus	 sign	 we	 can	 get	 just	 the	 numeric	 part	 with	 .group(1).	 So	 far	 we	 have
considered	codes	for	zero	or	one	‘?’,	zero	or	more	‘*’	and	one	or	more	‘+’,	but	naturally
there	are	other	possibilities,	such	as	allowing	between	two	and	four,	but	no	more	or	less.
In	 this	 case	 we	 use	 the	 curly	 brace	 specification	 in	 the	 form	 ‘{minAllowed,
maxAllowed}’.	Hence	to	allow	two,	three	or	four	whitespace	characters	‘\s’	before	digits
we	could	do:

regexObj	=	re.compile('=\s{2,4}\d+')	#	From	two	to	four,	inclusive

If	 only	 one	 number	 is	 given	 in	 braces	 then	 there	 must	 be	 exactly	 that	 number	 of
characters	for	a	match:

regexObj	=	re.compile('=\s{2}\d+')	#	Exactly	two

If	 the	 first	number	 is	omitted,	with	a	comma	still	present,	 then	 the	minimum	number
defaults	to	zero.	So	the	following	accepts	up	to	two	whitespace	characters,	but	no	more:

regexObj	=	re.compile('=\s{,2}\d+')	#	Zero	to	two

If	the	second	number	after	the	comma	is	omitted	the	maximum	number	of	occurrences
is	unlimited.	The	following	accepts	two	or	more	whitespace	characters:

regexObj	=	re.compile('=\s{2,}\d+')	#	Two	or	more

Moving	 on	 from	 simply	 matching	 and	 extracting	 substrings,	 the	 re	 module	 and
RegexpObject	have	a	substitution	method	.sub().	Here	if	the	pattern	matches	the	matching
substring	 is	 replaced	 with	 another	 substring,	 yielding	 a	 new	 string.	 In	 the	 following
example	any	negative	integer	numbers	are	replaced	with	‘neg!’:3

text	=	'N:	-9	4	-2	7	8	-8'

regexObj	=	re.compile('-\d+')

newText	=	regexObj.sub('neg!',	text)	#	Gives	'N:	neg!	4	neg!	7	8	neg!'

Alternatively	 the	 replacement	 substring	can	 simply	be	empty,	 so	 that	 the	matches	are
removed.	Here	we	remove	any	negative	numbers	and	preceding	whitespace:

text	=	'N:	-9	4	-2	7	8	-8'

regexObj	=	re.compile('\s+-\d+')

newText	=	regexObj.sub('',	text)	#	Gives	'N:	4	7	8'

If	we	wish	to	keep	the	digits	we	found	after	the	minus	sign	we	can	capture	them	in	a
group	 and	 then	 recall	 them	 in	 the	 replacement	 text	 using	 the	 ‘\1’	 etc.	 (a	 second	 group
would	be	‘\2’).	Hence	the	following	matches	both	the	minus	sign	and	digits,	but	puts	the
digits	back	into	the	new	string	after	a	space:

text	=	'N:	-9	4	-2	7	8	-8'

regexObj	=	re.compile('\s+-(\d+)')

newText	=	regexObj.sub(r'	\1',	text)	#	Gives	'N:	9	4	2	7	8	8'

Note	 that	 here	 we	 use	 the	 raw	 string	 notation	 r”	 so	 that	 Python	 uses	 the	 characters
literally	and	does	not	attempt	to	interpret	‘\1’	as	an	escaped	control	character.

Another	useful	operation	involving	regular	expressions	is	to	split	a	string	according	to	a

pattern.	The	method	for	this	(of	both	the	re	module	and	RegexpObject)	is	.split().	This	is
like	the	string	method	with	the	same	name,	in	that	it	gives	a	list	of	strings	by	breaking	a
long	 string	 at	 the	 points	 where	 a	 separator	 matches,	 but	 the	 matching	 is	 done	 with	 a
regular	expression,	not	just	an	exact	substring	of	characters.	The	following	is	an	example
of	splitting	with	a	regular	expression,	but	 take	special	note	 that	 the	pattern	uses	‘.+?’.	 If
you	try	the	example	without	the	question	mark	you	will	see	that	the	‘.+’,	meaning	one	or
more	of	any	character,	is	too	greedy	and	will	match	all	of	the	rest	of	the	string,	up	to	the
last	angle	bracket	‘>’.	Rather	what	we	want	is	for	the	pattern	to	match	conservatively	and
only	go	up	to	the	next	‘>’,	hence	we	use	‘+?’	which	means	a	minimalistic	search	for	one	or
more:

text	=	'<p>Paris
London</p>Berlin
New	York'

regexObj	=	re.compile('<.+?>')

print(regexObj.split(text))	#	['',	'Paris',	'London',	'Berlin',	'New	York']

There	are	many	more	subtleties	and	options	with	regular	expressions	in	Python.	Many
of	these	are	detailed	in	the	following	tables,	but	we	recommend	reading	the	main	on-line
Python	documentation	for	the	complete	picture.

Regular	expression	codes
The	 following	 table	 summarises	 a	 subset	 of	 the	 code	 syntaxes	 which	 have	 special
meanings	 within	 regular	 expression	 specifications.	 Note	 that	 regular	 expressions	 also
accept	the	escaped	control	characters	which	are	present	in	general	Python	strings,	such	as
\n	\r	\t	\	etc.

Regexp
code Meaning

. Matches	any	character,	except	newline	(unless	in	flag=re.DOTALL
mode).

^ Matches	the	beginning	of	a	string,	or	the	beginning	of	a	line	if
flag=re.MULTILINE.

$ Matches	the	end	of	a	string.

* Requires	zero	or	more	matches.

+ Requires	one	or	more	matches.

? Requires	zero	or	one	match.

*?,	+?,	?? As	above,	but	matching	minimally	(non-greedy)	before	the	next
term.

{n} Requires	exactly	n	number	or	matches.

{min,max} Requires	between	min	and	max	matches,	inclusive.

{min,max}? As	above,	but	matching	minimally	(non-greedy)	before	the	next
term.

[abc] Matches	a	set	of	explicit	characters.	Control	codes	like	‘.’	and	‘+’
are	treated	literally.

[a-e] Matches	a	set	made	with	a	consecutive	range	of	characters,	from	a
to	e,	inclusive.
May	be	combined	with	explicit	characters.

[^abc] Matches	the	inverse	character	set,	i.e.	if	the	character	is	not	a,	b	or
c.

a|b Matches	either	specification	a	or	b.

(expression) Captures	part	of	a	match	as	a	group	which	may	be	recalled.

(?…) An	extended	system	allowing	more	complex	rules.
See	http://www.python.org	for	full	documentation.

\1,	\2,	…
\99

Recalls	the	match	from	a	numbered	group.
Can	be	used	to	repeat	a	match	or	include	group	contents	in	a
substitution.

\A Matches	the	beginning	of	a	string.

\b Matches	a	word	boundary;	between	a	word	(\w)	and	non-word
(\W)	character.
Used	to	match	the	edges	of	a	word	without	specifying	what’s
outside.

\B Matches	a	non-word	boundary.

\d Matches	digit	characters.
Equivalent	to	the	set	[0-9].

\D Matches	non-digit	characters.

\s Matches	whitespace	characters.
Equivalent	to	the	set	[\n\r\t\v\f].

\S Matches	non-whitespace	characters.

\w Matches	alphanumeric	characters	and	underscore	(‘word’

http://www.python.org

characters).
Equivalent	to	the	set	[0-9a-zA-Z_].

\W Matches	non-word	characters.

\Z Matches	the	end	of	string.

The	regular	expression	module	‘re’
The	table	below	describes	selected	functions	that	are	in	the	re	module	and	bound	methods
of	the	re.RegexpObject	class,	which	we	represent	here	as	reObj.	Note	in	many	cases	the
RegexpObject	methods	accept	optional	start	and	end	points	to	specify	which	region	of	the
text	 string	 to	 search	within.	Also,	 all	 of	 the	 re	methods	below	 that	 accept	 a	pattern	 can
include	optional	flags	to	specify	special	behaviour:	e.g.	re.compile(patt,	flags=re.I)	is	used
for	case-insensitive	searching.	These	are	listed	at	http://www.python.org.

Method Description

re.compile(patt,
flags)

Creates	a	RegexpObject	from	a	pattern	string.

re.escape(text) Creates	a	string	where	non-alphanumeric	characters	are
escaped,	by	putting	a	backslash	in	front.

re.findall(patt,
text)
or
reObj.findall(text,
start,	end)

Creates	a	list	of	substrings	that	match	a	pattern.

re.finditer(patt,
text)
or
reObj.finditer(text,
start,	end)

Like	.findall()	but	generates	an	iterator	that	gives	back
objects	of	type	MatchObject.

re.match(patt,
text)
or
reObj.match(text,
start,	end)

Creates	a	MatchObject	if	a	pattern	matches	the	start	of	a
string,	gives	None	otherwise.

re.search(patt,
text)

Create	a	MatchObject	if	a	pattern	matches	within	a	string,
gives	None	otherwise.

http://www.python.org

or
reObj.search(text,
start,	end)

re.split(patt,	text,
maxNum)
or
reObj.split(text)

Splits	a	string	into	a	list	of	strings	according	to	where	a
pattern	matches.	Optional	maximum	number	of	splits	to
perform.

re.sub(patt,	repl,
text,	maxNum)
or
reObj.sub(repl,
text,	maxNum)

Creates	a	new	string	by	replacing	all	matches	to	a	pattern
with	a	replacement	substring.	Optional	maximum	number	of
replacements	can	be	given.

re.subn(patt,	repl,
text,	maxNum)
or
reObj.sub(repl,
text,	maxNum)

As	above	but	also	reports	the	number	of	substitutions	made.
Output	is	a	tuple	(newString,	numSubs).

The	 following	 tables	 lists	 selected	 methods	 of	 the	 re.MatchObject,	 as	 given	 by
re.search()	etc.

Method Description

group(id)
or
group(id1,	id2)

Gives	the	substring	matched	by	a	group	given	one	or	more
group	identifiers	(typically	numbers	from	1).	No	identifier	or
an	identifier	of	0	gives	the	whole	matched	substring.

groups(nullMatch) Gives	all	the	substring	matches	back	as	a	tuple.	The	optional
argument	allows	a	value	to	be	specified	for	pattern	groups
that	legitimately	match	nothing,	otherwise	these	give	None.

start(id) The	start	position	of	a	given	group	within	the	queried	string.

end(id) The	end	position	of	a	given	group	within	the	queried	string.

span(id) The	start	and	end	positions	of	a	given	group	within	the
queried	string.

1 	And	in	practice	it	is	often	best	to	use	the	Python	module	email	to	deal	with	this	sort	of
thing.
2 	This	can	also	be	done	with	 the	re.I	 flag	for	case-insensitive	searching,	but	 that	would

also	match	“gReen”	etc.
3 	 Note	 that	 the	 first	 argument	 to	 sub()	 is	 the	 substring	 replacement	 and	 the	 second
argument	is	the	string	being	modified.

Appendix	6 	Further	statistics

RPy	and	the	R	statistical	package
The	R	statistical	package1	is	one	of	the	most	commonly	used	ones	for	analysing	statistical
data.	It	has	its	own	language.	There	is	a	Python	wrapper	around	it	called	RPy.2	The	main
reason	to	use	RPy	would	be	if	you	have	lots	of	existing	R	code	that	you	wish	to	interface
to	in	Python.

There	 are	 a	 few	 things	 to	 keep	 in	mind	when	using	RPy.	Standard	Python	 collection
types	or	NumPy	arrays	have	to	be	converted	into	special	RPy	data	types,	and	results	that
are	 returned	 from	 R	 have	 to	 be	 suitably	 interpreted.	 Reading	 the	 R	 documentation	 is
crucial	to	using	RPy.

We	will	illustrate	the	use	of	R	via	RPy	for	a	few	standard	examples.

Binomial	test
First	we	consider	the	binomial	test,	which	is	concerned	with	the	number	of	occurrences	of
an	event	that	has	a	fixed	probability	of	occurring,	given	a	certain	number	of	trials.	R	has	a
method,	 ‘binom.test’,	 to	 do	 the	 binomial	 test.	We	 create	 a	 function,	 binomialTailTest(),
which	calls	 this	method	via	RPy,	and	which	has	 the	 same	arguments	as	 in	our	previous
version	of	the	function	in	Chapter	22,	which	used	SciPy.

First	we	need	to	import	the	RPy	module,	rpy2.robjects,	which	we	call	R	below.	This	has
an	object	inside	it,	R.r,	which	is	what	we	use	to	get	hold	of	R	methods,	using	dictionary
syntax	keyed	on	the	name	of	the	R	method.	Here	we	want	to	use	the	R	method	binom.test,
and	so	R.r[‘binom.test’]	is	the	Python	version	of	this	R	method.

The	 R	 documentation	 tells	 us	 that	 this	 function	 has	 four	 arguments,	 x,	 n,	 p	 and
alternative,	 which	 correspond	 to	 our	 arguments	 count,	 nTrials,	 pEvent	 and	 oneSided,
although	alternative	is	a	string	in	R	rather	than	a	Boolean.	In	fact	alternative	can	take	three
values	in	R,	‘greater’,	which	is	for	our	one-tailed	calculation,	‘two.sided’,	which	is	for	our
two-tailed	calculation	and	‘less’,	which	would	give	1.0	minus	 the	one-tailed	calculation,
so	we	do	not	need	that	here.

In	R,	there	is	an	optional	fifth	argument,	conf.level,	which	defaults	to	0.95	and	which	is
used	 if	 you	 want	 to	 calculate	 a	 confidence	 interval,	 for	 example.	 Here	 we	 are	 just
calculating	a	probability.	We	are	using	the	four	arguments	in	the	expected	R	order,	so	in
fact	here	we	do	not	need	to	use	the	‘key=value’	syntax,	we	can	just	list	the	values.

The	one	oddity	is	how	to	extract	what	we	want	from	the	returned	result.	The	R	output
contains	 a	 lot	 of	 information.	 It	 turns	 out	 that	 the	 probability	 is	 item	 2	 of	 the	 result
considered	as	a	collection.	That	is	not	obvious,	and	can	only	be	determined	by	looking	at

the	output.	And	further	we	need	to	access	item	0	of	that,	because	it	is	an	RPy	collection
type	of	length	one.	This	leads	to	the	strange-looking	result[2][0].

import	rpy2.robjects	as	R

def	binomialTailTest(count,	nTrials,	pEvent,	oneSided=True):

			alt	=	'greater'	if	oneSided	else	'two.sided'

			func	=	R.r['binom.test']

			result	=	func(x=count,	n=nTrials,	p=pEvent,	alternative=alt)

			return	result[2][0]

We	can	now	test	the	function.

count	=	530

nTrials	=	1000

pEvent	=	0.5

result	=	binomialTailTest(count,	nTrials,	pEvent,	oneSided=True)

print('Binomial	one	tail',	result)

result	=	binomialTailTest(count,	nTrials,	pEvent,	oneSided=False)

print('Binomial	two	tail',	result)

Two-sample	T-test
The	two-sample	T-test	tests	whether	two	independent	samples	have	the	same	underlying,
true	mean.	In	R	there	is	a	method,	‘t.test’,	to	carry	this	out.	There	are	a	few	extra	subtleties
in	comparison	with	the	RPy	code	for	the	binomial	test.

The	T-test	involves	comparing	two	collections	of	samples.	These	need	to	be	converted
to	 RPy	 data	 types	 using	 the	 converter	 R.FloatVector().	 The	 R	 method,	 ‘t.test’,	 has	 an
optional	argument,	var.equal,	which	specifies	whether	 the	 two	samples	should	be	 treated
as	 having	 the	 same	 variance	 or	 not.	 In	 Python,	 var.equal	 cannot	 be	 used	 as	 a	 key	 in	 a
function	argument	because	it	is	not	valid	syntax.	In	RPy	we	can	often	use	these	arguments
by	changing	the	dot	(.)	to	an	underscore	(_).	But	replacing	var.equal	with	var_equal	does
not	 work	 here	 and	 instead	 we	 use	 a	 bit	 of	 Python	 trickery.	 In	 Python	 you	 can	 specify
‘key=value’	arguments	by	using	a	dictionary.	But	the	trickery	is	that	the	dictionary	itself	is
not	passed	 in	 (the	function	 is	not	expecting	a	dictionary	as	an	argument)	but	 instead	we
use	 a	magic	 **	 in	 front	 of	 the	 dictionary,	which	means	 that	 the	 dictionary	 contents	 are
unwrapped	 into	key=value	 pairs.	 This	 is	 the	 safest	way	 to	 pass	 arguments	with	 dots	 in
them	in	RPy.

We	 pass	 back	 both	 the	 T	 statistic,	 which	 happens	 to	 be	 item	 0,	 and	 the	 probability,
which	happens	to	be	item	2,	of	the	result.

def	tTest(x,	y,	sameVariance=False):

			func	=	R.r['t.test']

			argDict	=	{'var.equal':	sameVariance}

			result	=	func(x=R.FloatVector(x),	y=R.FloatVector(y),	**argDict)

			return	result[0][0],	result[2][0]

We	can	now	test	the	function.

from	numpy	import	array

samples1	=	array([1.752,	1.818,	1.597,	1.697,	1.644,		1.593])

samples2	=	array([1.878,	1.648,	1.819,	1.794,	1.745,		1.827])

print('Same	variance	result',	tTest(samples1,	samples2,	sameVariance=True))

#	Result	is:	-2.072,	0.0650

print('Not	same	variance	result',	tTest(samples1,	samples2,	

sameVariance=False))

#	Result	is:	#	-2.072	0.0654

1 	http://www.r-project.org/.
2 	http://rpy.sourceforge.net/;	code	was	tested	on	versions	2.0.8	and	2.2.7.

http://www.r-project.org/
http://rpy.sourceforge.net/

Absolute	path
(computing):

Absolute	value
(mathematics):

Acid	dissociation
constant	(chemistry):

Acidic	group
(chemistry):

Active	site	(molecular
biology):

Affine	transformation
(mathematics):

Aliased	(signal
processing):

Glossary
This	is	a	simple	English	glossary	to	aid	understanding.	These	are	not	formal	definitions,
but	rather	where	you	can	turn	if	a	particular	term	makes	no	sense.

The	full	specification	of	a	file	or	directory	location	within	a
computer’s	hierarchical	file	system,	starting	from	the	highest
level	that	contains	all	files.	On	Linux	and	OSX	systems	this
starts	with	the	root	file	system	‘/’	and	in	Windows	systems	with
a	drive	letter	e.g.	‘C:\’.

The	magnitude	of	a	number,	irrespective	of	sign.	Calculating	an
absolute	value	effectively	means	to	give	the	positive	version	of
the	number.

A	physical	constant	which	describes	the	affinity	of	a	chemical
group	for	hydrogen	ions	in	aqueous	solutions,	and	thus	the
strength	of	an	acid.	By	definition	this	number	is	the
concentration	of	free	component	times	the	concentration	of
hydrogen	ions	divided	by	the	concentration	of	hydrogen-bound
component:	[A−][H+]/[HA].

A	chemical	group	which	gives	up	hydrogen	ions,	H+,	in	water
(aqueous	solution).

The	part	of	a	biological	molecule’s	structure	that	catalyses	a
chemical	reaction	by	binding	the	reacting	substances	in	a
specific	conformation.

A	mathematical	operation	that	transforms	vectors	(e.g.
coordinates)	by	using	a	linear	transformation	(such	as	a	rotation,
scale	or	shear)	and	then	a	translation	(movement).	For	example
this	may	be	used	to	change	the	orientation	and	position	of	a
shape.

Where	the	measured	frequency	of	a	signal	is	different	from	its
actual	frequency	because	the	range	of	measured	frequencies	is
limited	and	frequencies	outside	that	range	are	mapped,	in	a

Alignment
(bioinformatics):

Alpha-globin	(molecular
biology):

Alpha	channel
(graphics):

Alternative	hypothesis
(mathematics):

Annealing	schedule
(computing):

Argument	(computing):

Array	(computing):

Asynchronous
(computing):

periodic	fashion,	into	that	range.

The	placement	of	macromolecule	sequences	(codes	for	different
kinds	of	component	chemicals	in	a	chain)	next	to	one	another	so
that	equivalent	residues	within	the	sequences	line	up.	Usually	an
alignment	is	constructed	to	maximise	the	similarity	between
residues	by	placing	gaps	in	the	sequences.

One	of	the	protein	components	of	the	haemoglobin	particle
which	carries	oxygen	in	blood.	Each	haemoglobin	particle
contains	two	copies	of	alpha-globin	and	two	copies	of	the
similar	beta-globin.	Each	goblin	protein	binds	a	red	haem
compound	which	in	turn	binds	oxygen.

The	component	of	an	image	or	pixel	that	describes	transparency.
Usually	a	maximum	alpha	value	means	fully	opaque,	where	no
background	shows	through,	and	zero	means	fully	transparent.

In	statistics,	the	opposite	of	the	null	hypothesis,	i.e.	where	there
is	a	non-random	relationship	between	data.

The	specification	of	a	series	of	temperature	values	that	control
the	range	of	search	space	explored	in	a	simulated	annealing
protocol	(see	below).	Typically	a	schedule	starts	with	a	high
temperature,	corresponding	to	a	wide	initial	search,	which	then
diminishes	to	a	narrow	but	precise	search	at	the	end.

A	value	that	is	passed	into	a	function	or	subroutine.	An
argument	is	represented	by	a	variable	inside	a	general	function
definition,	but	will	represent	a	specific	value	when	the	function
is	used.

A	collection	of	data	items,	of	the	same	data	type,	arranged	in	a
linear	manner,	i.e.	in	order	with	a	first	and	last	position.

Where	events	occur	independently	of	one	another	and	the	main
thread	of	a	program.	In	parallel	processing	this	means	new	jobs
may	start	before	previous	jobs	have	finished.

Artificial	intelligence
(computing):

Artificial	neural	network
(computing):

Attribute	(computing):

Back	propagation
(machine	learning):

Bandlimited	(signal
processing)::

Base	(molecular
biology):

Base	(chemistry):

Basic	(chemistry):

Beta-globin
(biochemistry):

The	concept	of	using	computers	to	mimic	or	approximate	the
actions	of	a	person,	albeit	usually	for	a	specific	task.	For
example	an	artificial	intelligence	(AI)	software	system	can	be
used	to	represent	non-human	players	in	a	computer	game.	AI
methods	are	often	involved	in	pattern	recognition.

A	computer	program	that	consists	of	a	network	of
interconnected	data	nodes	that	are	capable	of	machine	learning,
commonly	used	to	perform	data	classification	and	as	substitutes
for	analytical	functions.	Learning	occurs	when	a	network	is
trained,	by	changing	the	strength	of	connections	between	nodes.

A	named	variable	that	belongs	to	a	computer	object	of	a	given
type.

A	means	of	training	an	artificial	neural	network	in	a	supervised
way.	A	known,	correct	result	is	used	to	adjust	the	layers	of	the
network	in	a	retrograde	manner,	from	output	to	input,	so	that	the
output	of	the	network	better	matches	the	known	result.

The	recording	of	a	signal	where	only	a	finite	range	of
frequencies	is	measured.	In	practice	all	signal	recordings	are
bandlimited	because	recording	devices	cannot	detect	and
represent	all	possible	frequencies.

In	reference	to	nucleic	acids	like	DNA	or	RNA,	the	part	of	a
nucleotide	that	contains	nitrogenous	aromatic	rings.

A	chemical	group	which	accepts	hydrogen	ions,	H+,	in	water
(aqueous	solution);	the	opposite	of	an	acid.

The	characteristic	of	being	a	chemical	base	(as	above),	the
opposite	of	acidic.

One	of	the	protein	components	of	the	haemoglobin	particle
which	carries	oxygen	in	blood.	Each	haemoglobin	particle
contains	two	copies	of	beta-globin.	Each	goblin	protein	binds	a
red	haeme	compound	which	in	turn	binds	oxygen.

Bias	node	(computing):

Bilayer	(molecular
biology):

Binary	number
(mathematics):

Binomial	distribution
(mathematics):

Binomial	test
(mathematics):

Bit	(computing):

Bitwise	(computing):

Block	(computing):

With	reference	to	machine	learning,	an	extra	node	in	an
artificial	neural	network	which	is	in	the	same	layer	as	regular
nodes	but	which	receives	no	variable	input;	it	usually	has	a
fixed	signal	strength	of	1.0.	The	strengths	of	a	bias	node’s
connections	are	trained	in	the	usual	way	and	serve	to	introduce
signal	offsets	to	the	next	layer	of	nodes.	In	practical	terms	the
bias	connections	set	a	baseline	signal	that	the	other,	input-
responsive	signals	adjust.

A	double	layer	of	fatty	lipid	molecules	that	form	cell
membranes.	Bilayers	are	arranged	in	continuous	sheets,	with
oily,	hydrophobic	groups	facing	the	interior	and	hydrophilic
groups	facing	the	exterior.	Lipid	bilayers	form	a	barrier	that
surrounds	and	defines	cells	and	sub-cellular	compartments.

Representing	numbers	using	base-2,	i.e.	using	only	zeros	and
ones.	In	computing	such	ones	and	zeros	are	represented	by	the
presence	or	absence	of	an	electrical	signal.

A	discrete	probability	distribution	that	models	the	number	of
successes	in	a	specified	number	of	trials,	where	the	probability
of	success	for	each	trial	is	independent	of	previous	successes
and	independent	of	the	trial	number.

A	statistical	test	that	determines	whether	the	number	of
observations	of	some	property	follows	a	binomial	distribution
with	a	specified	parameter.

One	part	of	a	number	represented	in	binary	form,	either	taking
the	value	zero	or	one.

To	perform	an	operation	on	the	binary	representation	of	a
number	where	each	0	or	1	digit	position	is	considered
separately.	For	example	a	bitwise	operation	101000	OR	100110
gives	101110,	where	the	answer	gives	a	1	if	either	of	the	input
numbers	have	a	1	at	the	same	position.

A	discrete	part	of	a	computer	program	where	commands	form
an	ordered	group	that	ise	executed	together.	Blocks	occur
naturally	when	using	program	flow	control	statements,	such	as

Boilerplate	code
(computing):

Boolean	value
(computing):

Call	(computing):

Callback	(computing):

Camel	case	(computing):

Cardinality	(computing):

Central	limit	theorem
(mathematics):

Centroid	(mathematics):

C	extension
(computing):

clauses,	loops	and	functions:	for	example	an	if	statement
conditionally	executes	a	block	of	code.

A	generic	form	of	program	code	that	needs	to	be	written	time
and	again,	generally	performing	a	mundane	task.

A	value	representing	whether	something	is	logically	true	or
logically	false.	In	Python	there	are	special	True	and	False
computer	objects	to	represent	these	two	truth	values.

The	occasion	of	executing	a	general	function	(running	a
subroutine)	with	specific	data.

A	function	that	is	executed	in	response	to	the	actions	of	the	user,
typically	interacting	via	a	graphical	interface.

The	use	of	mixed	capitalisation	within	a	conjoined	word.	Used
in	programming	to	join	separate	words	into	a	single	variable
name,	e.g.	rootMeanSquare:	an	alternative	to	concatenating	with
underscores,	e.g.	root_mean_square.

In	data	modelling,	the	number	of	items	that	is	represented	by	an
object	attribute.	An	attribute	may	represent	a	collection,	and
thus	the	cardinality	is	the	size	of	that	collection.	For	example	an
Atom	object	may	have	three	values	in	its	coordinates	attribute,
to	specify	its	3D	(x,	y,	z)	position.

A	theorem	that	says	that	the	mean	value	of	a	large	number	of
measurements	of	independent	and	identically	distributed
random	variables	is	approximately	normal	(follows	a	Gaussian
distribution).

The	geometric	centre	of	a	shape	(defined	by	a	set	of	locations).
If	weightings	are	included,	such	as	atomic	masses	in	a	molecule,
the	centroid	may	be	the	centre	of	mass.

The	means	of	extending	the	functionality	of	a	high-level
programming	language,	like	Python,	by	creating	a	module	in	the
low-level	C	programming	language	(generally	quicker	to	run)

Changeable
(computing):

Channels	(graphics):

Channels	(signal
processing):

Character	(computing):

Chemical	character
(biochemistry):

Chromosome	(biology):

Chromatin	(molecular
biology):

Class	(computing):

Class	function
(computing):

which	can	be	incorporated	directly	in	the	high-level	language
using	normal	syntax.

The	ability	to	manipulate	a	data	item	so	that	its	value	or	content
changes	internally,	but	leaving	the	handle	(reference)	to	the	data
item	unaffected.

The	separate	components	of	an	image,	e.g.	red,	green	and	blue,
which	when	combined	form	a	complete	image.

The	separate	signal	streams	of	a	composite	data	source.

The	smallest,	indivisible	part	of	a	piece	of	text	that	represents
letters,	digits	and	punctuation	etc.	Computationally	each
character	is	represented	by	a	number	within	a	specific	scheme.

When	referring	to	biological	molecules,	its	physical	and
chemical	properties,	e.g.	whether	it	is	hydrophobic	(oily),	polar,
charged	etc.

A	large,	double-stranded	DNA	chain	that	is	the	particle	of
inheritance	in	organisms.	A	chromosome	is	bound	by	proteins
and	contains	genes	(sub-regions	of	DNA)	that	encode	the
biological	functions	required	for	life.	Each	species	has	a	distinct
number	of	chromosomes	within	its	cells,	and	the	total	of	all
chromosomes	constitutes	the	genome.

A	section	of	DNA	which	is	bound	by	proteins	such	as	histones
that	package	it	into	a	more	compact	form	and	regulate	its
expression,	i.e.	how	it	is	read.

The	abstract	template	that	specifies	how	a	specific	kind	of
computer	object	is	constructed.	Classes	are	used	to	create
custom	data	structures	in	programs,	which	frees	the	programmer
from	having	to	only	use	the	inbuilt	data	types.

In	object-oriented	programming,	a	function	in	a	class	that	can	be
defined	independently	of	the	properties	of	any	object
constructed	with	the	class.

Client	(computing):

Clustering
(mathematics):

Coding	strand
(molecular	biology):

Codon	(molecular
biology):

Collection	(computing):

Colour	space	(graphics):

Comparative	modelling
(bioinformatics):

Compilation
(computing):

The	part	of	a	computer	application	that	interacts	with	the	user,
typically	as	a	result	of	using	a	service	on	a	remote	server.

For	a	collection	of	data	items,	the	process	of	grouping	similar
items	together	into	a	number	of	clusters.	The	number	of	groups
may	or	may	not	be	known	ahead	of	time	but	a	data	item	is
allocated	to	only	one	cluster.	Clustering	works	by	changing	the
membership	of	data	items	in	cluster	groups	to	maximise
similarity	of	items	within	clusters	and	minimise	the	similarity	of
items	between	clusters.

In	a	double-stranded	DNA	chain	that	contains	a	gene,	the	coding
strand	is	the	one	that	is	reproduced	as	RNA,	in	terms	of
sequence,	when	the	DNA	is	read.

A	group	of	three	nucleotide	residues	that	specify	the
incorporation	of	a	particular	kind	of	amino	acid	into	a	given
position	of	a	protein	chain.

The	grouping	of	otherwise	separate	data	items	into	a	container
data	structure,	which	may	be	referred	to	as	a	distinct	entity.	In
Python	the	usual	collection	types	are	lists,	sets,	tuples	and
dictionaries.

The	notion	of	describing	colours	as	vector	locations,	relative	to
colour	axes,	which	describe	the	component	properties	(e.g.	red,
green	and	blue)	of	colours.

The	process	by	which	the	three-dimensional	structures	of
proteins	may	be	predicted	by	comparison	to	similar	proteins
with	experimentally	determined	structures.	If	two	proteins	are
inferred	to	be	homologous	(evolutionarily	related)	by	virtue	of
sequence	similarity,	then	because	structure	is	more	conserved
than	sequence	the	known	structure	of	one	protein	can	be	used	as
a	template	to	determine	the	fold	of	the	other.

The	process	of	converting	textual	source	code,	which	is
generally	independent	of	any	particular	kind	of	computer,	into
executable	binary	code	that	may	be	run	on	computers	with	a
specific	type	of	processor	architecture.

Complement
(mathematics):

Complementarity
(molecular	biology):

Complex	(molecular
biology):

Composition
(mathematics):

Conditional	probability
(mathematics):

Conditional	statement
(computing):

Confidence	level
(mathematics):

Conformation
(chemistry):

Consensus	sequence
(bioinformatics):

Conservation	(molecular

In	set	theory,	the	elements	that	are	not	in	a	specified	set.

The	relationship	between	two	molecules	where	the	chemical
properties	of	one	complement	those	of	the	other,	and	so	allow	a
tight	interaction.	This	is	often	used	to	describe	aromatic	base
pairs	between	nucleotides,	which	form	hydrogen	bonds	across	a
DNA	duplex.	Accordingly	A	and	T	residues	are	complementary
and	likewise	C	and	G.

Two	or	more	biological	molecules	that	bind	to	one	another	in	a
specific	manner	to	form	a	larger	particle.

The	application	of	two	transformations,	e.g.	by	matrix
multiplications,	one	after	the	other.

The	probability	that	one	event	occurs	given	the	condition	that
some	other	event	has	occurred.

A	means	of	controlling	the	flow	of	a	program’s	execution,	doing
different	things	depending	on	whether	some	test	turns	out	to
give	true	or	false.	In	Python	this	is	done	with	if,	elif	and	else
statements.

In	statistics,	the	probability	that	a	measurement	will	be	within
some	specified	range	of	values.

For	a	molecule,	one	specific	three-dimensional	shape	from
amongst	a	range	of	many	possible	shapes.	Different
conformations	may	be	similar	to	one	another,	e.g.	if	a	protein
has	a	compact	fold,	and	a	set	of	conformations	can	represent	the
dynamics	or	uncertainty	of	a	structure.

A	consensus	sequence	represents	the	average	of	all	the
sequences	in	a	sequence	alignment,	and	thus	not	usually	a	real
biological	sequence.	Each	position	in	the	consensus	may	reflect
the	most	common	residue	observed	at	that	position	or	the
average	residue	properties	of	that	position.

The	tendency	of	a	biological	feature,	such	as	a	sequence	or	a	3D

biology):

Constructor
(computing):

Containment	hierarchy
(computing):

Continuous
(mathematics):

Convolution
(mathematics):

Covalent	bond
(chemistry):

Cross	product
(mathematics):

Ctrl	(computing):

Cursor	(computing):

structure,	to	resist	changes	during	evolution,	resulting	in	similar
forms.	Some	evolutionary	changes	are	more	conservative	than
others,	e.g.	DNA	changes	that	don’t	affect	protein	sequence	or
amino	acid	changes	that	conserve	chemical	characteristics.

A	function	that	is	part	of	the	definition	of	an	object	class,	which
is	executed	whenever	a	new	object	of	that	type	is	made.	Thus	a
constructor	may	be	used	to	set	up	the	initial	state	of	a	computer
object.	In	Python	the	constructor	function	is	named	__init__.

A	means	of	describing	the	links	and	relationships	between
computational	data	items,	especially	in	a	data	model,	where	one
kind	of	object	belongs	to,	or	is	contained	by,	another,	producing
a	tree-like	system	of	categorisation.

Where	a	quantity	is	modelled	in	terms	of	the	real	numbers
instead	of	a	discrete	series,	i.e.	taking	any	value,	not	just	whole
numbers.

The	modification	of	one	function	given	another,	whereby	for
different	offsets	(sliding	one	relative	to	the	other)	a	new
function	is	created	as	the	summation	of	the	product	of	the	two.
Commonly	used	in	image	adjustment	where	original	pixel
values	are	modified	by	a	convolution	matrix	that	specifies	how
pixels	of	the	adjusted	image	are	formed	by	the	weighted
combinations	of	surrounding	pixels.

A	strong	chemical	bond	between	two	atoms	that	are	held
together	in	a	discrete	molecule.

In	three	dimensions,	a	vector	which	is	orthogonal	to	both	of	two
specified	vectors,	and	with	length	given	by	the	area	of	the
parallelogram	determined	by	the	two	vectors.

The	control	key	on	the	keyboard,	usually	used	in	combination
with	other	keys	so	the	user	can	issue	specific	commands.	The
equivalent	for	German	keyboards	is	‘Strg’.

The	point	on	a	computer	screen	where	typed	keyboard
characters	appear.	Often	indicated	by	a	graphical	marker	so	the

Cursor	(databases):

Database	schema
(computing):

Data	model
(computing):

Decorator	(computing):

Degrees	of	freedom
(mathematics):

Denormalisation
(computing):

Destructor	(computing):

Determinant
(mathematics):

user	can	see	where	text	will	be	extended	or	inserted.

A	way	of	accessing	the	data	records	in	a	relational	database	via
programming,	to	process	it	in	terms	of	its	rows.

A	way	of	specifying	the	layout	of	the	information	that	will	be
stored	in	a	relational	database.

Using	data	object	definitions,	as	formalised	in	classes,	to	create
a	computational	representation	of	a	network	of	interconnected
concepts.	A	data	model	will	often,	but	not	always,	contain
classes	that	correspond	closely	to	real-world	entities,	such	as
atoms,	molecules	or	even	people.	The	purpose	of	the	model	is	to
provide	a	convenient	way	of	representing	data	and	its
connections.	The	model	itself	is	an	abstract	concept,	and	so	does
not	contain	any	specific	data.	Rather	the	model	is	a	specification
of	how	to	represent	data,	which	in	turn	is	used	to	create	real
instances	of	computer	objects.

A	Python	function	that	is	used	to	wrap	and	modify	another
function	(similar	to	annotations	in	Java).	A	modifying	decorator
function	is	declared	before	the	target	function	it	operates	on
(using	the	@	symbol),	but	is	equivalent	to	calling	the	modifying
function	on	the	result	of	the	target.

The	number	of	parameters	that	are	free	to	vary	in	a
mathematical	model;	the	minimum	number	of	parameters	that
are	needed	to	fully	specify	the	state	of	a	system.

The	redundant	storage	of	data	in	a	relational	database	so	that
fewer	tables	are	used,	i.e.	by	repeating	values.

A	function	that	is	part	of	the	definition	of	an	object	class,	which
is	executed	whenever	an	object	is	deleted,	e.g.	to	perform	any
required	clean-up.

A	number	that	can	be	calculated	from	a	matrix	that	gives	the
volume	of	the	region	obtained	when	the	matrix	is	applied	as	a
transformation	to	a	region	with	unit	volume.

Detailed	balance:

Dictionary	(computing):

Diffraction	pattern
(chemistry):

Dihedral	angle
(mathematics):

Dimension
(mathematics):

Dimensional	reduction
(mathematics):

Discrete	(mathematics):

Discrete	Fourier
transform	(computing):

When	considering	the	smallest	component	process	of	a	dynamic
system,	detailed	balance	is	reached	when	the	system	is	at
equilibrium	and	the	reverse	of	each	micro-process	restores
equilibrium.	In	Markov	chains,	when	using	the	Metropolis-
Hastings	criterion,	detailed	balance	is	used	to	test	whether	the
chain	has	reached	the	required	equilibrium	state.

A	collection	data	type	in	Python	(equivalent	to	a	Perl	hash	and	a
Java	hash	map)	where	data	items	are	held	in	pairs	such	that	a
unique	key	is	used	to	look	up	a	corresponding	value	from	the
dictionary.

The	primary	experimental	data	collected	in	X-ray
crystallography,	which	may	be	used	to	determine	the	three-
dimensional	structures	of	molecules.	The	diffraction	pattern	is
created	when	a	beam	of	X-ray	radiation	irradiates	a	regular
crystal	lattice,	effectively	reflecting	from	the	different	atomic
planes	in	the	crystal.

Also	called	torsion	angle,	is	a	measure	of	twist	between	two
planes.	A	dihedral	angle	can	be	measured	for	an	ordered	list	of
four	points;	the	first	three	points	define	one	plane	and	the	last
three	the	second	plane,	such	that	the	angle	of	twist	is	around	the
central	two	points	which	the	planes	share.

The	number	of	independent	axes	(or	features)	that	describe	a
location	within	a	given	parameter	space.	A	dimension	may	also
refer	to	one	of	those	independent	axes,	e.g.	the	‘depth’
dimension.

The	practice	of	representing	a	set	of	data	using	fewer
dimensions	than	the	original	data,	for	example	by	using
projection.	Often	the	aim	of	dimensional	reduction	is	to	render
the	data	more	amenable	to	analysis	while	still	preserving	the
essential	features	of	the	data.

Where	a	quantity	is	represented	in	terms	of	the	whole	numbers,
rather	than	as	a	continuum	of	real	values.

The	Fourier	transform	(converting	a	signal	from	time	to
frequency)	applied	to	a	data	series	with	discrete,	rather	than

Discrete-time
homogeneous	Markov
chain	(computing):

Discrimination
(computing):

Disjoint	(mathematics):

Distance	matrix
(mathematics):

Distribution
(mathematics):

Disulphide	(chemistry):

DNA	(biology):

DNA	sequence	(
molecular	biology):

continuous,	time	points.

A	Markov	chain	with	discrete,	rather	than	continuous,	positions
in	the	chains	(time),	and	where	the	transition	probabilities
between	states	do	not	depend	on	chain	position	(or	time).

The	process	of	allocating	data	points	into	distinct	categories	or
clusters.	In	computing	this	may	be	a	predictive	method	rather
than	an	unambiguous	classification.

In	probability,	two	events	that	do	not	intersect,	and	so	share	no
common	outcome.

A	rectangular	array	of	values	representing	the	distances	between
items,	where	each	item	corresponds	to	a	different	row	and/or
column	in	the	matrix.	The	distance	may	be	a	conventional
geometric	distance	or	some	other	metric	that	measures	the
similarity	or	separation	between	data	items.

An	assignment	of	a	probability	to	each	possible,	measureable
outcome.

A	chemical	group	consisting	of	two	covalently	linked	sulphur
atoms.	Disulphide	groups	are	often	present	in	proteins	found
outside	cells	(an	oxidising	environment),	linking	the	side	chains
of	two	cysteine	residues.

2′-Deoxyribonucleic	acid,	the	long-chain	molecule	that	is	the
main	store	of	genetic	information;	the	template	for	making	RNA
and	proteins	and	the	means	by	which	genes	are	inherited.

The	sequential	order	of	the	four	different	types	of	nucleotide
compound	that	make	up	a	linear	DNA	chain.	Although	DNA	is
a	double	strand,	containing	two	tightly	bound	chains,	because
the	residues	of	the	chains	are	complementary	the	sequence	of
one	strand	is	automatically	known	from	the	other.	When
referring	to	genes	it	is	conventional	to	refer	to	the	DNA
sequence	of	the	coding	strand.

Domains	(molecular
biology):

Dot	product
(mathematics):

Double	precision
(computing):

Drosphila	melanogaster
(biology):

Duplex	(molecular
biology):

Dynamic	programming
(computing):

Electron	density
(chemistry):

Ensemble
(bioinformatics):

A	domain	is	an	autonomous	part	of	a	protein	that	has	a	discrete
structure,	function	and	evolutionary	history,	relative	to	other
parts	of	a	protein.	Domains	are	often	separate	globules	that	can
fold	independently.	A	family	of	related	domains,	with	similar
structure	and	function,	may	occur	in	proteins	that	are	otherwise
very	different:	shuffling	and	recombining	domains	is	a	major
evolutionary	mechanism.

Also	called	the	scalar	product.	A	scalar	value,	calculated	as	the
sum	of	the	component-wise	product	of	two	vectors	(or	arrays)
which	represents	the	size	of	the	projection	of	one	vector	on	to
the	other.	Equivalent	to	the	product	of	the	length	of	two	vectors
and	the	cosine	of	the	angle	between	them.

A	numerical	data	type	that	typically	uses	64	binary	bits	to	store
the	value;	basically	two	of	the	traditional	32-bit	memory	slots.

A	fruit	fly	that	is	commonly	used	for	biological
experimentation,	particularly	for	genetic	studies.

The	double-stranded	form	of	DNA,	which	is	structurally	a
double	helix.	The	duplex	is	formed	of	two	anti-parallel	DNA
chains	(going	in	opposite	directions)	with	complementary
nucleotide	sequences	that	cause	the	chains	to	bind	tightly	along
their	length.

An	algorithm	which	is	commonly	used	to	align	pairs	of
biological	sequences.	The	algorithm	is	much	more	efficient	than
an	exhaustive	search	and	works	by	disregarding	many
alignment	possibilities	at	an	early	stage,	where	there	is	a	known,
better	solution	to	an	alignment	sub-problem.

Often	with	reference	to	its	detection	by	X-ray	crystallography,	a
spatial	map	of	the	density	of	electrons	in	a	molecule.	An
electron	density	map	may	be	fitted	with	a	chemical	structure	to
give	the	three-dimensional	structure	of	a	molecule,	including	for
proteins	and	nucleic	acids.

With	regard	to	structures,	a	short	form	of	structure	ensemble
(see	below).	In	general	an	ensemble	is	a	collection	of	similar	but

Equilibrium	distribution
(mathematics):

Eukaryotic	(biology):

Event	(mathematics):

Exception	(computing):

Excision	(molecular
biology):

Exon	(molecular
biology):

Expected	value
(mathematics):

Expression	(molecular
biology):

Expression	(computing):

Family	(molecular
biology):

distinct	arrangements,	conformations	or	examples	for	a
particular	system:	e.g.	an	ensemble	of	related	solutions	to	a
mathematical	problem.

In	(well-behaved)	Markov	chains,	the	long	run	proportion	of
time	that	the	Markov	chain	spends	in	each	state.

Pertaining	to	the	kinds	of	organisms	that	have	cells	with	nuclei,
i.e.	plants,	animals,	fungi,	amoebae	etc.	In	essence	this	is	all
cellular	organisms	except	bacteria	(true	bacteria	and	archea).

In	probability,	a	possible	set	of	outcomes.

An	error	condition	indicating	that	something,	often	unexpected,
has	gone	wrong	in	a	computer	program	while	it	is	running.

The	act	of	cutting	to	remove	part	of	something,	used	to	describe
the	removal	of	sections	of	DNA	or	RNA	by	cutting	with
enzymes.	This	occurs	naturally	during	the	repair	of	DNA
damage	and	when	viruses	replicate.

A	part	of	a	gene	that	is	transcribed	from	DNA	into	RNA	and
which	remains	after	introns	are	removed.

In	probability,	the	average	value	of	some	function	of	a	random
variable.

The	realisation	of	genetic	code	to	produce	biologically
functional	protein	or	RNA	molecules.

A	specific	combination	of	elements	in	a	program	(variables,
values,	operators	etc.)	that	is	used	to	compute	and	give	back
value.

Or	more	specifically,	a	homologous	family.	When	referring	to
genes	or	proteins	a	family	is	a	group	of	related	genes	or	proteins
that	share	a	common	evolutionary	ancestor.	Members	of	a
family	will	share	many,	but	not	all,	characteristics	(e.g.	in	terms
of	sequence,	structure	or	function)	by	virtue	of	inheritance,	with

Feature	(mathematics):

Feature	space
(mathematics):

Feature	vector
(mathematics):

Feed-forward	neural
network	(computing):

File	handle	(computing):

File	pointer
(computing):

Filter	(graphics):

Filter	(signal
processing):

Fisher’s	linear
discriminant
(mathematics):

Float	(computing):

more	closely	related	members	generally	having	more	in
common.

An	independent	property	or	axis	that	is	used	to	describe	an	item
of	data,	e.g.	hue	saturation	and	value	can	describe	colours.

The	range	of	possible	values	that	the	independent	features	of	a
data	item	may	take.	A	given	item	of	data	will	effectively	have	a
position	within	this	space.

The	location	vector	that	describes	the	position	of	a	data	item
within	a	feature	space,	in	terms	of	its	coordinates	on
independent	feature	axes.

A	type	of	artificial	neural	network	(a	machine	learning	method)
where	nodes	are	arranged	in	distinct	layers,	from	input	to
output,	and	the	network	operates	for	recall	or	prediction	by
passing	signals	from	one	layer	to	the	next.

A	computational	object	that	represents	a	stream	of	external	data
so	that	it	can	be	accessed	within	a	program.	This	data	stream
often	corresponds	to	the	contents	of	a	file	as	it	is	stored	on	disk
and	typically	involves	accessing	the	data	line	by	line.

A	synonym	for	file	handle.

A	pixel	transformation	that	is	applied	to	an	image	to	change
particular	features.	For	example	filters	can	be	used	to	change
colours,	blur	images	or	detect	edges.

A	method	for	modifying	a	signal:	for	example	to	suppress
undesired	frequencies.

A	method	to	separate	two	or	more	classes	of	data	by	calculating
a	linear	combination	of	their	features	(an	axis	of	projection)	that
best	separates	the	data.

A	colloquial	term	for	floating	point	number.

Floating	point	number
(computing):

Floating	point	error
(computing):

Floor	division
(computing):

Fold	(biochemistry):

Force	field	(computing):

Foreign	key
(computing):

Format	(computing):

Fourier	transform
(mathematics):

A	data	type	that	is	used	to	represent	real	(non-integer)	numbers
such	as	decimals.	The	value	is	represented	in	terms	of	a	fixed
number	of	digits	and	an	exponent	that	scales	the	value,	e.g.	to	a
given	power	of	ten.	Such	numbers	are	of	limited	precision	but
cover	a	very	large	range	of	values.

A	kind	of	numeric	error	that	occurs	with	digital	computers,
because	they	cannot	represent	all	fractional	and	decimal	values
precisely.	This	results	in	a	small	error	in	the	least	significant
digit.	This	error	may	become	significant	under	some
circumstances,	e.g.	when	looking	at	very	small	differences
between	values.

When	dividing	one	number	by	another,	rounding	the	result
down	to	the	previous	integer;	the	largest	integer	less	than	or
equal	to	the	actual	real	value	of	the	division.	Denoted	in	Python
by	//.

The	general	three-dimensional	arrangement	of	a	biological
molecule,	especially	a	protein.	In	proteins	folds	are	usually
described	in	terms	of	the	composition	and	relative	orientation	of
secondary-structure	elements,	such	as	coiled	alpha-helices	and
extended	beta-strands.

A	computational	model	of	a	physical	system	constructed	by
specifying	the	equations	that	describe	the	relative	energy	or
force	between	items	(the	spatial	gradient	of	energy).	An
example	is	a	molecular	force	field,	describing	the	motions	and
interactions	between	atoms,	which	simulates	molecular	folding
and	dynamics.

In	databases,	a	column	or	group	of	columns	in	one	table	that
uniquely	identifies	a	row	in	another	table.

The	way	that	computational	information	is	arranged	when
stored,	i.e.	using	a	regular	or	organised	scheme	so	that	the
meaning	of	each	part	of	the	data	is	understood.

A	method	for	converting	data	in	a	time	series	to	the	equivalent
in	frequencies.

Frozen	(computing):

Function	(computing):

Functional
approximation
(computing):

Fundamental	frequency
(signal	processing):

Gamma	correction
(graphics):

Garbage	collection
(computing):

Gaussian	distribution
(mathematics):

Gel	electrophoresis
(molecular	biology):

Gene	(molecular
biology):

Describes	a	data	structure	that	is	fixed	and	cannot	be	modified
after	creation,	for	example	a	tuple	or	frozen	set	in	Python.

Sometimes	called	a	subroutine,	a	function	is	part	of	a	computer
program	that	represents	an	encapsulated	set	of	commands	in	a
block	that	is	separate	from	the	main	flow	of	the	program,	but
which	may	be	invoked	from	different	points	within	the	program.
A	function	is	usually	written	to	perform	a	general	operation	on
an	abstract	set	of	inputs.

Representing	a	continuous	mathematical	function	(which	is
typically	highly	complex	and/or	unknown)	for	which	some	data
points	are	known,	in	an	approximate	way	using	a	combination
of	simpler	functions	that	have	been	fitted	to	the	data.

A	frequency	in	the	range	of	the	recorded	frequencies,	which
might	not	be	the	true	frequency	of	a	signal	because	of	aliasing
(see	above).

The	process	of	changing	the	brightness	of	an	image	using	a
power	law.	This	does	not	affect	the	black	and	white	extremes	of
brightness,	but	intermediate	values	are	scaled	to	lighten	or
darken	an	image,	depending	on	the	gamma	value:	above	1.0	will
darken	and	below	1.0	will	lighten.

Freeing	allocated	computer	memory	that	is	no	longer	being
used.

Also	called	the	normal	distribution,	a	special	continuous
probability	distribution	with	a	‘bell’	shape	that	is	determined	by
its	mean	and	standard	deviation	and	that	occurs	in	many
applications	of	statistics.

The	process	of	separating	dissolved	molecules	by	passing	them
through	a	gel	substance	using	an	electric	current.	Typically	this
is	done	to	separate	the	molecules	according	to	their	size	or
electric	charge.

The	unit	of	inheritance	in	biological	systems,	which	is	formed
by	a	particular	DNA	sequence	within	the	genome	of	an

Gene	duplication
(molecular	biology):

Generator	(computing):

Genetic	algorithm
(computing):

Genetic	code	(molecular
biology):

Genome	(biology):

Genome	build
(bioinformatics):

Geometric	distribution
(mathematics):

organism.	Genes	are	a	persistent	store	of	information	and	are
read	to	make	functional	RNA	and	protein	molecules	that	control
an	organism’s	biochemistry.

The	process	of	copying	a	gene	inside	a	given	genome.
Duplication	arises	from	errors	in	DNA	replication	and	from
mobile	genetic	elements	(like	viruses).	The	copying	of	a	gene
allows	for	evolutionary	diversification,	as	the	two	genes	can
take	on	different	roles	as	they	diverge.

A	memory-saving	method	for	functions	that	give	back	a	list,	by
only	returning	each	element	in	the	list	as	it	is	needed,	rather	than
a	full	list.

An	iterative	optimisation	method	that	seeks	to	find	better
combinations	of	parameters	by	mimicking	the	way	that	a
population	of	genes	change	and	are	selected	in	evolution.	The
algorithm	involves	a	population	of	solutions	to	the	problem
which	are	improved	upon	by	mutation:	small	changes	in
parameters,	crossover;	swapping	large	blocks	of	parameters	and
then	propagation	of	the	‘fittest’	solutions	to	the	next	round.	This
is	an	alternative	to	Monte	Carlo	and	simulated	annealing
approaches.

The	rules	for	translating	DNA	and	RNA	sequences	into	protein
sequences;	for	going	from	three	adjacent	nucleotide	residues	in
a	codon	(64	possibilities)	to	the	20	standard	amino	acids	or	a
sequence	stop.	A	genetic	code	is	specified	by	tRNA	molecules
and	the	synthetase	enzymes	that	associate	a	particular	amino
acid	to	a	particular	codon.	Animals	have	a	slightly	different
genetic	code	in	the	nucleus	compared	to	their	mitochondria.

The	entirety	of	an	organism’s	(or	cell’s)	genetic	information,
stored	in	its	chromosomes	as	a	sequence	of	nucleic	acids
(generally	DNA	but	RNA	in	some	viruses).

The	particular	version	of	an	assembled	genome	sequence,	i.e.
the	current	state	of	sequence	knowledge.

A	discrete	probability	distribution	that	models	how	long	it	takes
to	have	a	successful	trial,	where	the	probability	of	success	for

Geometry	management
(graphics):

Getter	(computing):

Goodness-of-fit
(mathematics):

Graphical	user	interface
(computing):

Hard	problem
(computing):

Hashable	(computing):

Hash	symbol
(computing):

Hash	value	(computing):

each	trial	is	independent	of	previous	successes	and	independent
of	the	trial	number.

When	considering	graphical	user	interfaces,	the	process	of
arranging	graphical	items	by	controlling	certain	aspects	of	their
placement	and	size,	the	idea	being	to	specify	something	general
about	how	items	are	arranged,	such	as	whether	they	go	to	the
left	or	right	and	whether	they	expand	to	fit	empty	space,	and	so
the	programmer	avoids	having	to	give	fine	details	of	exactly
how	something	is	drawn.

A	function	that	gets	(fetches)	a	particular	attribute	of	an	object.
The	attribute	might	be	stored	directly	in	the	object,	or	it	might
be	calculated	from	other	attributes.

In	statistics,	a	measure	of	how	two	distributions	compare,
usually	one	measured	and	the	other	provided	by	a	model.

A	means	by	which	the	user	can	interact	with	a	computer
program	via	graphical	items	displayed	on	screen	or	other
dynamic	visual	medium.

A	problem	that	is	difficult	to	solve	using	straightforward,
deterministic	means.	Although	it	may	be	difficult	to	find	the
best	solution	to	such	a	problem,	testing	the	merit	of	a	given
solution	may	be	significantly	easier.

Whether	an	unchanging	hash	value	(see	below)	can	be	assigned
to	an	object.

The	‘#’	key	of	a	keyboard,	often	called	the	pound	sign	in
America	(distinct	from	the	unit	of	weight	or	currency)	and
elsewhere	the	number	sign.

An	integer	that	can	be	used	as	a	short	identifier	for	an	object	in
a	look-up	data	structure.	Strictly,	this	does	not	have	to	uniquely
identify	the	object	but	works	best	in	practice	if	not	many	objects
share	the	same	hash	value.

Height	(signals):

Heuristic:

Hidden	layer
(computing):

Hidden	Markov	model
(mathematics):

High	cardinality
(computing):

High-throughput
sequence	analysis
(biology):

Homogeneous:

Homology	(biology):

Homology	modelling
(bioinformatics):

Hydrogen	bond
(chemistry):

The	extreme	of	magnitude	for	a	signal	peak,	in	contrast	to	the
volume,	which	is	an	integral	or	summation.

A	rule,	determined	by	experience,	which	is	designed	to	simplify
or	speed	up	a	process.	A	heuristic	may	be	an	approximation	and
cause	errors,	but	for	a	good	heuristic	the	benefits	will	outweigh
the	drawbacks.

With	reference	to	machine	learning,	one	of	the	middle	layers	of
an	artificial	neural	network,	i.e.	not	the	input	or	output.

A	Markov	chain	where	the	states	are	not	directly	observable.

In	data	modelling,	for	an	object	attribute	that	is	a	collection,	the
maximum	number	of	items	that	have	to	be	contained	in	the
value.

An	experiment	that	studies	large	numbers	of	nucleotide
sequences	in	a	biological	sample,	not	limited	to	merely
discovering	the	sequence	of	a	genome.	For	example	an	analysis
may	be	used	to	determine	the	identities	and	amounts	of
expressed	RNA	molecules.

Describes	something	as	having	relatively	even	or	uniform
properties.

The	notion	that	two	biological	entities	have	similarities	because
they	share	a	common	ancestor	and	are	thus	related	by	evolution.
Often	used	when	describing	gene	and	protein	families.	When
dealing	with	biological	sequences	homology	is	often	inferred	by
virtue	of	sequence	similarity.

A	synonym	for	comparative	modelling.

A	relatively	weak	chemical	bond	that	occurs	between	the
hydrogen	of	a	donating	group	and	an	electronegative	acceptor
atom,	such	as	oxygen	or	nitrogen.	Hydrogen	bonds	are	common
in	biological	molecules,	forming	the	base-pair	interactions
between	DNA	strands	and	the	backbone	secondary	structures	of

Hydrophilic	(chemistry):

Hydrophobic
(chemistry):

Hyperplane
(mathematics):

Hypervariable	site
(molecular	biology):

Identity	matrix
(mathematics):

Image	recognition
(graphics):

Implementation
(computing):

Import	(computing):

Independent
(mathematics):

proteins.

A	water-loving	chemical	or	chemical	group.	Such	groups	are
polar	or	charged	and	readily	dissolve	in	water	by	forming
stabilising	interactions.

A	water-hating	chemical	or	chemical	group.	Such	groups	are
non-polar,	typically	consisting	of	hydrocarbons.	A	lack	of
favourable	interactions	with	water	means	hydrophobic	groups
tend	to	cluster	together,	for	example	in	the	cores	of	globular
proteins	and	in	lipid	bilayers.

A	flat	surface	in	a	space	with	a	high	number	of	dimensions	(or
independent	features).

When	talking	of	variation	in	protein	or	DNA	sequences,	a
position	where	the	rate	of	substitution,	from	one	residue	to
another,	during	evolution	is	significantly	higher	than	average.
Hypervariable	sequences	are	useful	in	distinguishing	individuals
for	DNA	fingerprinting.

A	matrix	which	when	applied	to	a	vector	or	other	matrix	(by
matrix	multiplication)	leaves	the	subject	unaltered.	The
elements	of	the	matrix	are	1	along	the	diagonal	but	otherwise	0.

The	analysis	of	an	image	to	determine	properties	about	the
physical	items	that	the	image	represents,	for	example	to	count
items	or	determine	their	shape.

The	actual	code	in	a	computer	program	that	provides	some
desired	functionality.

With	reference	to	a	computer	program	code,	to	incorporate	the
functionality	from	a	separate	program	module	that	exists
elsewhere,	e.g.	saved	in	a	different	file.

With	two	or	more	random	variables,	whether	the	values	of	any
subset	of	these	depend	in	any	way	on	the	values	of	the
remaining	ones.

Index	(computing):

Influenza	(biology):

Information	entropy
(mathematics):

Inheritance	(computing):

Inner	product
(mathematics):

Instantiation
(computing):

Integer	(computing):

Intensity	(signal
processing):

The	position	of	a	data	item	within	an	ordered	collection;	in	a
containment	data	structure.	In	Python	indices	are	integers	that
start	at	0	and	negative	numbers	count	backward	from	the	end.

The	RNA	virus	that	causes	the	infectious	disease	of	the	same
name	(or	simply	‘flu’).

Otherwise	known	as	Shannon	entropy,	is	a	measure	of	the
amount	of	randomness	in	a	variable	quantity,	which	in	turn	is	a
measure	of	information	content.	The	further	a	set	of	data	is	from
a	random	distribution	(or	any	null	hypothesis)	the	more
information	it	contains	compared	to	that	distribution.	High
entropy	corresponds	to	low	information	content.

When	considering	computational	class	definitions,	inheritance	is
the	mechanism	by	which	a	subclass	will	automatically	gain	the
same	definitions	(of	attributes	and	methods	etc.)	as	a	parent
super-class.	The	inherited	properties	of	the	subclass	may	differ
from	the	super-class,	but	only	if	they	are	explicitly	overwritten
in	the	subclass.

The	sum	of	the	component-wise	product	of	two	vectors,	or
arrays.	Generally	synonymous	with	dot	product	(see	above).

To	make	a	real,	in-memory	representation	of	something	that	was
initially	defined	in	abstract	terms.	For	example,	a	class	is	an
abstract	definition	of	an	object	which	is	instantiated	to	make	an
actual	in-memory	object.

A	whole	number	data	type,	without	a	decimal	point.	Integers
can	have	positive	or	negative	sign.	In	Python	the	number	3	is	of
integer	type	whereas	3.0	is	not;	although	these	numbers	have	the
same	mathematical	value	their	internal	representation	is
different.

A	measure	of	the	strength	of	a	measured	signal.	This	is	a
somewhat	ambiguous	term;	for	signal	data	it	can	refer	to	signal
height	or	volume.	For	radiant	energy,	such	as	light	or	sound,	the
intensity	is	a	measure	of	energy	output	for	a	given	spatial
region.

Interface	(computing):

Intersection
(mathematics):

Intron	(molecular
biology):

Isoelectric	point
(chemistry):

Iterable	(computing):

Iterate	(computing):

Iterator	(computing):

Java	(computing):

A	specification	for	the	functionality	provided	by	a	class	or
module,	without	worrying	about	how	that	functionality	is
actually	implemented.

The	common	elements	between	two	collections,	usually	sets.

The	non-coding	parts	in	the	middle	of	genes.	Intron	sequences
are	initially	transcribed	into	RNA,	but	are	removed	to	make
mature	RNA	molecules,	and	so	do	not	contribute	to	the	final
product.	Introns	separate	a	gene’s	exons,	which	do	form	the
mature	RNA	and	thus	may	encode	protein	sequence.

The	pH	at	which	a	molecule	has	no	overall	charge;	naturally
only	relevant	for	molecules	that	contain	acidic	and/or	basic
chemical	groups.

A	property	whereby	an	object	can	provide	the	individual
members	from	a	group	of	items,	e.g.	from	a	list.	In	Python	an
iterable	object	can	be	used	to	provide	a	sequence	of	items,	such
as	in	a	‘for’	loop.	This	is	a	concept	distinct	from	the	iterator
object	(see	below),	though	all	iterable	objects	can	be	converted
into	iterators	using	the	iter()	function.

The	process	of	repeating	the	same	basic	operation	a	number	of
times,	such	as	extracting	all	the	items	from	a	list	in	sequence.	In
the	context	of	algorithms	this	might	be	to	improve	the	solution
to	a	problem,	where	the	solution	to	one	cycle	serves	as	a
foundation	for	the	next.

An	object	that	emits	a	succession	of	items,	by	continually
asking	for	the	‘next’	item	until	all	items	have	been	considered.
In	Python	an	iterator	is	a	special	kind	of	object	that	provides	the
next	item	in	a	data	sequence	via	its	__next()__	method	(in
Python	3;	next()	in	Python	2).	In	this	context	an	iterator	is
distinct	from	an	iterable,	which	does	not	support	the	__next()__
method	but	which	can	nonetheless	be	used	in	loops	etc.	All
iterators	are	iterable	but	not	vice	versa.

A	compiled,	object-oriented	programming	language	commonly
used	for	database	and	internet	applications.

Join	(computing):

Ka	(chemistry):

K-dimensional	trees
(computing):

Kernel	methods
(computing):

Kernel	trick
(mathematics):

Key,	value	(computing):

k-nearest	neighbour
(computing):

Kohonen	map
(computing):

Layout	(graphics):

With	regard	to	databases	the	way	information	can	be	linked
across	different	tables.

A	symbolic	abbreviation	for	the	acid	dissociation	constant.

A	way	of	grouping	data	with	K	dimensions	(independent	data
axes)	into	a	tree-like	structure,	i.e.	a	hierarchy	of	branching
nodes.	Such	an	arrangement	can	make	particular	operations,
such	as	finding	data	points	within	a	given	radius,	more	efficient.
The	basic	notion	is	that	the	tree	arrangement	means	that	only
some	of	the	data	needs	to	be	checked.

A	type	of	algorithm	used	for	machine	learning	(pattern
recognition)	where	the	original	data	are	placed	in	a	vector	space
so	that	the	data	may	be	analysed	in	terms	of	the	distance
between	points.	Such	methods	often	use	a	kernel	function	to
efficiently	calculate	the	coincidence	or	similarity	(inner	product)
between	data	points.

The	means	by	which	a	kernel	method	uses	a	kernel	function	to
effectively	map	a	pattern-recognition	problem	to	one	of	higher
dimensionality,	e.g.	to	help	separate	data	into	categories.	This	is
achieved	by	calculating	inner	products,	as	a	measure	of
coincidence	in	the	data,	and	eliminates	the	need	to	explicitly
represent	the	data	in	the	higher	dimensions.

The	pairs	of	items	that	constitute	a	dictionary	data	structure.	The
key	is	a	unique,	unmodifiable	item	that	is	used	to	access	the
corresponding	value.

A	simple	machine	learning	algorithm	that	classifies	data	by
finding	the	k	nearest	neighbours	in	the	feature	space,
representing	the	closest	data	points	with	known	classification.
The	classification	is	assigned	by	taking	a	poll	of	the	classes
represented	in	the	neighbouring	points.

A	synonym	for	a	self-organising	map	(see	below),	named	after
Teuvo	Kohonen.

With	reference	to	graphical	user	interfaces,	the	relative

Likelihood	ratio	test
(mathematics):

Linear	algebra
(mathematics):

Linear	discriminant
analysis	(LDA)
(mathematics):

Linewidth	(signal
processing):

Lipid	(chemistry):

List	(computing):

List	comprehension
(computing):

Literal	(computing):

Long	integer
(computing):

Loop	(computing):

arrangement	of	graphical	items	on	screen.

A	statistical	test	to	compare	two	distributions,	one	of	which	is	a
special	case	of	the	other.

The	mathematics	that	describes	linear	transformations,	typically
using	matrices.	Two	transformations	are	linear	if	applying	each
separately	causes	the	same	effect	as	applying	a	transformation
which	is	the	summation	of	the	two.

A	method	to	classify	points	within	a	set	of	data	using	linear
combinations	of	the	features	to	separate	the	data.

The	width	of	a	specific	well-defined	part	of	a	signal,	often
measured	as	the	difference,	or	‘full	width’,	at	the	positions
which	are	half	the	maximum	value	in	both	directions	from	the
maximum.

A	variety	of	fatty,	hydrocarbon-rich	molecules	that	are	the	main
component	of	biological	membranes,	i.e.	forming	a	lipid	bilayer.
Typical	lipid	molecules	include	cholesterol,	long-chain	fatty
acids	and	phospholipids.

A	data	structure	containing	an	ordered	collection	of	items.	In
Python	a	list	may	be	modified,	e.g.	to	add	and	remove	items,
and	can	contain	items	of	any	data	type.

A	kind	of	program	syntax	in	which	a	list	is	constructed	in	its
entirety	in	one	expression	using	another	data	list.	In	Python	this
is	in	the	basic	form	newList	=	[item	for	item	in	oldList].

A	textual	quantity	in	a	computing	program	that	is	a	specific
constant	number	or	string	rather	than	a	variable.

A	data	type	to	represent	whole	(integer)	numbers	that	are	larger
in	value	than	standard	integers	(which	use	a	limited	amount	of
memory).

A	program	control	structure	where	the	same	block	of	code	is

Lossless	compression
(computing):

Lossy	compression
(computing):

Low	cardinality
(computing):

Luminance	(imaging):

Machine	learning
(computing):

Macro	(computing):

Macromolecule
(molecular	biology):

Markov	chain
(mathematics):

used	repeatedly	a	number	of	times,	usually	considering	different
values	each	time,	for	example	to	process	the	contents	of	a	list.
In	Python	this	is	done	with	for	and	while	statements.

A	means	by	which	data	is	transformed	into	a	different,	smaller
representation,	without	affecting	the	fidelity	of	the	underlying
data,	i.e.	uncompressing	the	data	recreates	the	original	data
exactly.

A	means	by	which	data	is	transformed	into	a	different,	smaller
representation,	where	the	compressed	form	is	only	an
approximation	of	the	original.	Uncompressing	the	data	does	not
normally	recreate	the	exact	details	of	the	original	data,	rather	it
gives	something	similar.

In	data	modelling,	for	an	object	attribute	that	is	a	collection,	the
minimum	number	of	items	that	have	to	be	contained	in	the
value.

The	brightness	of	an	area	of	an	image.	When	applied	to	pixmaps
this	usually	means	the	brightness	of	a	pixel.

A	method	whereby	a	computer	program	learns	to	perform	a	task
(usually	classification	or	functional	approximation)	based	on	a
set	of	input	training	data.	Such	methods	may	be	described	as
supervised	if	the	training	data	has	known	values/categories.

In	C,	a	fragment	of	code	which	has	a	specific	name	and
optionally	arguments,	and	which	can	then	be	used	by	invoking
the	name.

A	large	biological	molecule	that	is	a	polymer	of	smaller
components,	typically	taken	to	mean	DNA,	RNA	or	protein
chains	with	more	than	a	few	residues.

A	random	process	that	moves	in	time	(or	position)	between
some	specified	states	and	where	the	next	state	only	depends	on
the	current	state	and	not	on	the	previous	states.

Matrix	(mathematics):

Matrix	(molecular
biology):

Maximum	likelihood
(mathematics):

Mean	(mathematics):

Memoization
(computing):

Memory	allocation
(computing):

Meoisis	(biology):

Method	(computing):

Microarray	(biology):

A	two-dimensional,	rectangular	array	of	numbers,	i.e.	arranged
into	rows	and	columns.

Inert,	solid	material	that	is	used	to	support	or	attach	a
component	of	interest.

The	estimate	of	parameters	of	a	probability	distribution	which
maximises	the	probability	that	the	data	is	observed	given	the
hypothesized	distribution.

The	average	value	of	a	collection	of	data.

The	process	by	which	a	function	remembers	the	results	from
previous	executions,	so	that	a	cached	result	may	be	returned	if
an	operation	is	repeated	for	the	same	input	data,	thus
eliminating	the	need	to	perform	the	entire	operation	again.	This
often	improves	program	speed,	at	the	expense	of	using	more
memory.

The	allocation	of	a	specific	chunk	of	memory	for	use	by	a
program,	which	some	(typically	older)	programming	languages
usually	have	to	do	explicitly.

The	separation	of	chromosomes	within	the	nuclei	of	eukaryotic
cells	(i.e.	not	bacteria)	into	two	sets,	each	containing	half	of	the
chromosomes.	After	cell	division	this	results	in	daughter	cells
which	have	only	one	copy	of	each	kind	of	homologous
chromosome.	For	example	the	original	cell	will	have	two	copies
of	chromosome	1,	but	after	divisions	the	cells	have	one	copy
each.

A	function	that	belongs	to	a	computational	object,	and	which	is
generally	specified	in	the	object’s	class	definition.

A	kind	of	multiplexed	experiment,	where	many	miniature
experiments,	which	are	of	the	same	type	but	use	different
reagents,	are	performed	at	the	same	time	within	a	rectangular
array	on	a	solid	support.

Mitosis	(biology):

Model	(bioinformatics):

Model	(computing):

Module	(computing):

Monte	Carlo	method
(computing):

Motif	(molecular
biology):

Multiple	inheritance
(computing):

Multiple-sequence
alignment
(bioinformatics):

Mutable	(computing):

The	reproduction	and	separation	of	chromosomes	within	the
nuclei	of	eukaryotic	cells	(i.e.	not	bacteria)	that	results	in	two
identical	sets	of	chromosomes.	Mitosis	is	usually	followed	by
cell	division,	i.e.	to	create	two	copies	of	the	original	cell.

In	relation	to	three-dimensional	structures,	a	conformation	(see
above)	that	is	consistent	with	the	known	data.

An	abbreviation	of	data	model.

A	discrete	unit	of	computer	code	that	is	stored	as	a	separate	file,
but	which	may	have	its	functionality	imported	into	the	program
code	represented	in	other	files.

A	means	of	solving	a	problem	by	using	random	numbers	to
create	test	points	or	solutions.	The	Monte	Carlo	method	is	used
as	an	unbiased	way	of	getting	a	representative	picture	of	a
problem	without	having	to	have	any	innate	understanding	of	the
underlying	mechanics	and	while	only	considering	a	small
proportion	of	possible	values.

A	small,	recurring	feature	within	biological	molecules,	such	as	a
group	of	closely	related	sequences	or	sub-structures,	that	can	be
related	to	a	particular	biological	function.	For	example	a	protein
may	bind	to	a	given	DNA	sequence	motif	to	activate	a	number
of	different	genes.

When	considering	object	orientation	and	the	construction	of
class	definitions,	the	process	by	which	one	class	is	based	on	two
or	more	parent	super-classes	and	thus	inherits	properties	from
all	of	them.

An	alignment	(see	above)	where	there	are	more	than	two
macromolecule	sequences.	Sequence	elements	are	arranged,	by
placing	gaps,	to	maximise	the	similarity	between	residues	in
each	column.

The	ability	to	manipulate	a	data	item	so	that	its	value	or
contents	changes	internally,	but	leaving	the	handle	(reference)	to
the	data	item	unaffected.

Native	conformation
(molecular	biology):

Negative	binomial
distribution
(mathematics):

Nested	(computing):

Newline	character
(computing):

Nodes	(computing):

Non-deterministic
polynomial	(NP)
(computing):

Normal	(mathematics):

Normal	distribution
(mathematics):

The	properly	folded	and	functional	arrangement	of	a	biological
molecule’s	structure,	which	is	generally	believed	to	be	close	to
the	lowest-energy	form.

A	discrete	probability	distribution	that	models	the	number	of
successful	trials	before	a	specified	number	of	failed	trials
occurs,	where	the	probability	of	success	for	each	trial	is
independent	of	previous	successes	and	independent	of	the	trial
number.	A	geometric	distribution	is	a	special	case	of	the
negative	binomial	distribution	where	number	of	failures	sought
is	one.

An	arrangement	of	computer	code	where	one	control	structure	is
placed	inside	the	block	of	another.	For	example	a	loop	may	be
defined,	to	repeat	the	execution	of	a	bit	of	code,	and	that	bit	of
code	itself	may	contain	another	loop,	controlling	an	inner	block.
In	this	case	one	loop	is	said	to	be	nested	in	the	other.

A	special	character,	not	resulting	in	a	printed	symbol,	which
causes	the	flow	of	text	to	begin	at	a	new	line.	On	Linux	and
Mac	OSX	systems	the	newline	character	was	originally	a
linefeed	command,	from	the	days	of	typewriters;	represented	in
Python	by	the	escape	code	‘\n’.	On	Windows	systems	a	new	line
is	given	by	a	carriage	return	and	a	linefeed	control	character;	in
Python	‘\r\n’.

A	point	of	connectivity	within	a	network,	which	performs	a
process	and	which	is	associated	with	input	and	output	data
streams.

A	problem	whose	solution,	if	given,	can	be	verified	in
polynomial	time	(polynomial	in	the	size	of	the	problem).

A	vector	that	is	perpendicular	(at	right	angles)	to	a	plane	or
another	vector.

Also	called	the	Gaussian	distribution,	a	special	continuous
probability	distribution	with	a	‘bell’	shape	that	is	determined	by
its	mean	and	standard	deviation	and	that	occurs	in	many

Null	hypothesis
(mathematics):

Object	(computing):

Object	attribute
(computing):

Object	orientation
(computing):

One-tailed	test
(mathematics):

Optimisation
(mathematics):

Order	(computing,
mathematics):

Orthologues	(molecular
biology):

Overtraining
(computing):

applications	of	statistics.

When	assessing	a	hypothesis,	a	competing	hypothesis	that
represents	what	would	be	expected	to	happen	given	random
chance	or	in	the	absence	of	discriminating	information.	The	null
hypothesis	is	useful	to	give	an	objective	baseline	to	predictive
theories.

A	computational	data	structure,	built	according	to	a	class
definition,	that	contains	other	items	of	data	(as	attributes)	and
which	may	have	bound	functions	(methods).

A	bound	variable	that	represents	a	property	of	an	object.

A	general	method	of	writing	computer	programs,	representing
the	data	items	as	objects,	often	with	interconnectivity.

A	statistical	test	that	determines	the	probability	of	an	observed
value	having	at	least	a	given	separation	from	mean	value,	on
one	side	only.	For	example,	the	probability	that	an	observation
is	at	or	above	one	standard	deviation	from	the	mean.

A	method	to	select	the	best	values	(or	other	elements)	from	a
range	of	possibilities.	Often	this	means	to	find	the	parameters
which	give	the	minimum	or	maximum	value	of	a	function.

How	the	number	of	operations	required	to	perform	a
computational	task	scales	with	the	size	of	the	problem.

Entities	which	are	homologous,	sharing	a	common	ancestor,
because	of	the	separation	that	occurs	as	separate	species	evolve.
Effectively	different	versions	of	the	same	protein	or	gene	from
different	organisms.

Pertaining	to	the	pattern	recognition	of	supervised	machine
learning	methods,	the	problem	of	applying	the	training	data	too
much,	so	that	the	method	is	less	general	and	performs	sub-
optimally	on	unseen	data.

Paired-end	reads
(molecular	biology):

Palette	(graphics):

Parallel	tempering
(computing):

Paralogues	(molecular
biology):

Parent-child	relationship
(computing):

Parsimony
(bioinformatics):

Path	(computing):

Pearson’s	chi-squared
test	(mathematics):

Pearson’s	correlation
coefficient

A	pair	of	experimentally	determined	DNA	sequences	(reads)
which	are	known	to	come	from	either	end	of	the	same	fragment
of	DNA.

A	limited	array	of	colours	used	as	a	look-up	table	to	construct
an	image.	Using	a	colour	palette	gives	smaller	images	because
colours	are	referred	to	by	index,	rather	than	by	value,	but	the
range	of	colour	available	for	the	image	is	limited.

Also	called	replica	exchange,	is	a	variant	of	the	Markov	chain
Monte	Carlo	method	that	uses	parallel	implementations	at
different	‘temperatures’,	i.e.	where	higher	temperatures	allow
greater	variation	between	subsequent	steps.	The	temperatures	of
parallel	computations	are	swapped	so	that	each	can	explore	a
large	number	of	states	in	an	unbiased	manner.

Entities	which	are	homologous,	sharing	a	common	ancestor,
because	of	a	gene	duplication	event.	Effectively	finding	closely
related	genes	or	proteins	inside	one	organism.

When	referring	to	data	models,	the	relationship	between	objects
stating	that	one	is	formally	contained	by	the	other;	the	parent
contains	the	child.	For	example	a	molecule	object	may	contain
atom	objects.	This	containment	hierarchy	usually	involves
objects	of	completely	different	types	and	is	distinct	from	the
super-	to	subclass	relationship.

The	principle	of	the	most	likely	evolutionary	route,	which	for
example	has	generated	divergent	sequences,	being	the	one	that
involves	the	fewest	changes,	i.e.	the	most	frugal.

The	location	of	a	file	stored	in	a	file	system,	e.g.	on	disk,
described	as	a	path	through	a	hierarchical	directory	structure.

In	statistics,	a	test,	first	discussed	by	Karl	Pearson,	for	a	null
hypothesis	that	a	distribution	determined	from	a	measured
sample	is	consistent	with	the	distribution	provided	by	a	model.

In	statistics,	a	measure	of	the	linear	correlation	between	two
distributions,	usually	provided	by	paired	measurements	of	a

(mathematics):

Percent	point	function
(mathematics):

Perl	(computing):

pH	(chemistry):

Phase	(signal
processing):

Phasing	(signal
processing):

Phylogenetic	tree
(bioinformatics):

pI	(chemistry):

Pickle	(computing):

Pixel	(graphics):

Pixmap	(computing):

sample.

A	function	that	determines	the	confidence	interval	around	the
sample	mean,	given	a	specified	confidence	level.

A	programming	language,	which	like	Python	is	high	level	and
interpreted.	Perl	is	an	older	language	than	Python,	and	is
popular	in	the	bioinformatics	community.

The	negative	logarithm	of	the	hydrogen	ion	concentration	of	a
solution;	a	measure	of	the	acidity	where	a	value	of	7.0	is
neutral;	lower	than	this	is	acidic	and	greater	than	this	is	alkaline.

In	certain	applications,	this	describes	the	amount	by	which	the
real	and	imaginary	parts	of	a	complex	signal	need	to	be	rotated
in	order	to	put	them	into	a	form	that	provides	a	purer	description
of	the	signal,	which	can	help	in	interpretation	of	the	signal.

The	process	whereby	a	complex	signal	has	its	phase	corrected	in
some	situations.

A	hierarchical	data	structure	used	to	describe	the	evolutionary
relationship	between	biological	entities,	such	as	whole
organisms	or	single	macromolecules.

The	isoelectric	point;	the	pH	at	which	a	molecule	has	no	overall
charge,	where	positive	and	negative	charged	chemical	groups
balance.	The	pI	is	a	property	of	a	molecule	that	depends	on	the
number	and	relative	strengths	of	its	acidic	and	basic	groups.

The	Python	method	of	serialising	data,	automatically	converting
in-memory	data	structures	into	a	stream	of	data	that	may	be
stored	on	disk,	typically	a	plain	text	file.

The	smallest	square	area	of	colour	with	which	a	computer
image	is	constructed.

A	rectangular	array	of	colour	intensity	values	that	describe	the
pixels	of	an	image.

pKa	(chemistry):

Plain	text	(computing):

Poisson	distribution
(mathematics):

Position-specific	scoring
matrix	(bioinformatics):

Positive	selection
(biology):

Posterior	(mathematics):

Post	translational
(molecular	biology):

Pound	symbol
(computing):

Power	spectrum	(signal
processing):

Polypeptide	(chemistry):

Preservation	(molecular
biology):

A	numerical	constant	describing	the	strength	of	an	acidic	group;
equivalent	to	the	pH	at	which	the	acidic	group	is	half	ionised.

A	means	of	representing	data	using	a	restricted	set	of	standard,
textual	characters.

A	discrete	probability	distribution	that	is	used	to	describe	the
number	of	events	that	occur	in	a	specific	interval,	assuming	the
events	occur	independently	and	with	a	common	rate.

A	table	describing	the	abundance	of	different	kinds	of	residue	at
each	position	within	the	alignment	of	a	family	of	homologous
genes	or	proteins.

The	tendency	for	the	evolutionary	process,	in	some	situations,	to
select	gene	sequences	that	show	differences,	i.e.	that	are	actively
changing	in	sequence.

The	probability	that	a	hypothesis	is	true	given	some
experimental	data

Generally	of	processes,	occurring	after	a	protein	has	been	made,
e.g.	modification	of	the	standard	amino	acids	by	joining	sugars
or	lipids.

The	‘#’	key	of	a	keyboard,	often	called	the	hash	symbol	in	the
UK	and	elsewhere	the	number	sign.

The	magnitude	squared	of	a	complex	valued	signal,	as	a
function	of	frequency.

A	long	polymer	molecule	consisting	of	a	string	of	amino	acid
residues,	linked	via	peptide	bonds.	Polypeptides	are	the	primary
component	of	proteins.

The	tendency	for	a	biological	feature	to	be	preserved	during	the
process	of	evolution,	e.g.	protein	or	DNA	sequences	that	do	not

Proteomics	(biology):

Primary	key
(computing):

Principal	component
analysis	(PCA)
(mathematics):

Prior	(mathematics):

Probability	density
function	(mathematics):

Product	(mathematics):

Profile	(bioinformatics):

Progressive	paring
(bioinformatics):

Prompt	(computing):

Protein	(molecular

change.

The	study	of	the	total	protein	complement	of	cells	or	organisms.

In	a	relational	database,	this	is	a	list	of	one	or	more	columns	of	a
table	for	which	the	corresponding	values	uniquely	identify	a
record	in	the	table.

A	method	to	find	the	innate	directions	within	data,	represented
as	vectors,	which	explain	most	of	the	variance	within	the	data.
Taking	the	first	few	principal	components	of	a	high-
dimensionality	data	set	provides	a	method	for	simplifying	the
data	(dimensional	reduction)	while	preserving	an	optimal
amount	of	variation.

The	probability	that	a	hypothesis	is	true	before	experimental
data	is	obtained

For	a	continuous	probability	distribution	this	can	be	thought	of
as	the	probability	that	the	distribution	takes	a	specified	value.
Technically,	it	is	the	probability	that	the	distribution	takes	a
value	in	a	small	region	around	the	specified	value,	divided	by
the	size	of	the	region,	in	the	limit	that	the	latter	goes	to	zero.

The	result	of	a	multiplication	operation.

When	used	in	the	context	of	biological	sequences,	a	profile
describes	the	abundances	of	different	residues	at	the	various
positions	within	a	multiple	alignment.

A	fast,	heuristic	method	of	generating	a	hierarchical,	tree-like
data	structure	by	progressively	joining	the	groups	of	data	items,
starting	with	the	most	similar	pair.

The	symbols	printed	at	the	start	of	a	textual,	command-line
interface,	indicating	where	to	type	commands	to	control	a
computer.

A	biological	macromolecule	primarily	composed	of	one	or	more

biology):

Protein	sequence
(molecular	biology):

Pseudorandom	number
(computing):

Purifying	selection
(biology):

Quantile	function
(mathematics):

Quantile	normalisation
(statistics):

Ramachandran	plot
(bioinformatics):

Random	variable
(mathematics):

Rank	(mathematics):

polypeptide	chains.	Proteins	are	the	diverse,	functional
molecules	of	living	organisms	that	catalyse	and	control
biological	processes.

The	order	in	which	the	different	kinds	of	amino	acid	residues
are	joined	together,	to	create	the	polypeptide	chain	of	a	protein.

A	value	generated	by	an	algorithm	to	mimic	the	effect	of	having
random	numbers.	Pseudorandom	numbers	are	not	truly	random
(they	may	eventually	repeat,	for	example)	but	often	appear	to	be
sufficiently	random	to	perform	various	computational	tasks,
such	as	the	Monte	Carlo	method.

Also	referred	to	as	negative	selection,	the	tendency	for	the
evolutionary	process,	in	some	situations,	to	select	gene
sequences	that	do	not	change,	i.e.	to	remove	sequence	variation.

A	function	that	determines	the	confidence	interval	around	the
sample	mean,	given	a	specified	confidence	level.

A	technique	for	mapping	the	statistical	properties	of	one	sample
distribution	to	another	distribution.	This	is	achieved	by
replacing	values	for	data	points	in	one	distribution	with
equivalent	values	from	the	other	distribution	that	share	the	same
rank	(preserving	order	of	relative	magnitude).

A	two-dimensional	plot	of	the	backbone	(phi	and	psi)	dihedral
angles	in	a	polypeptide,	showing	how	the	chain	twists	and
indicating	common	conformations	like	alpha-helices	and	beta-
strands.

A	mathematical	construct	to	describe	random	behaviour,	usually
for	some	specified	model	of	the	randomness.	A	way	of
assigning	a	label	to	a	property	that	has	its	value	selected	at
random,	according	to	a	given	probability	distribution.

With	reference	to	matrices,	the	maximum	number	of	linearly
independent	rows	or	columns.

Raster	(graphics):

Raw	string	(computing):

Read	(molecular
biology):

Readable	(computing):

Reading	frame
(biochemistry):

Real	(mathematics):

Reflections
(crystallography):

Regular	expression
(computing):

Relational	database
(computing):

Relative	entropy
(mathematics):

To	compose	an	image	from	a	regular	array	of	pixels,	i.e.	as	a
pixmap,	in	contrast	to	using	vector	graphics	where	images	are
described	in	terms	of	geometric	shapes.

A	Python	string	where	the	standard	Python	escape	characters
(i.e.	prefixed	with	‘\’)	are	not	active	and	instead	the	string	is
considered	literally	as	typed.

In	the	context	of	sequencing,	the	experimental	determination	of
one,	often	small,	section	of	DNA	sequence;	which	may	then	be
combined	with	others.

Whether	the	data	stored	in	a	file,	e.g.	on	disk,	can	be	accessed.

When	referring	to	the	translation	of	an	RNA	sequence,	or	its
DNA	equivalent,	to	a	protein	amino	acid	sequence.

A	number	from	the	unrestricted	continuum	of	negative	and
positive	values,	i.e.	not	a	complex	number.

A	pattern	of	regularly	spaced	spots	created	when	X-ray	radiation
diffracts	through	a	crystal	(an	atomic	lattice).	The	spots	are
points	of	constructive	interference	between	the	X-rays.

The	specification	of	a	particular	pattern	of	characters	that	may
be	sought	within	a	text	string.	The	pattern	itself	is	a	string,
which	can	contain	both	literal	characters	and	metacharacters,
with	the	latter	describing	ambiguous	character	groups,	and	thus
the	type	of	pattern	to	be	searched	for.

A	way	of	storing	certain	types	of	structured	data	that	allows	fast
querying	of	logical	relationships	in	the	data.

A	measure	of	whether	two	variable	quantities	have	the	same
distribution,	and	equivalently	a	measure	of	the	information
content	one	distribution	holds	above	another.	This	is	related	to
Shannon	information	entropy,	where	the	comparison	is	instead
with	respect	to	a	random	distribution.	The	relative	entropy	is
useful	because	it	indicates	that	data	is	significant	and	different.

Replica	exchange	Monte
Carlo	(computing):

Replicas	(computing):

Residue	(biochemistry):

Resolution
(bioinformatics/graphics):

Retroviruses	(biology):

Return	(computing):

Return	key	(computing):

Reverse	complement
(molecular	biology):

See	parallel	tempering.

Multiple	copies	of	a	simulation	or	search	process	that	all	relate
to	the	same	data,	for	example	so	that	an	optimisation	is	done
several	times	in	parallel	from	different	starting	points.

One	of	the	component	monomer	chemicals	at	a	particular
position	in	a	biological	polymer	sequence,	i.e.	an	amino	acid	at
a	location	in	a	polypeptide	chain	or	a	nucleotide	in	a	nucleic
acid	chain	(DNA	or	RNA).

A	measure	of	the	limit	in	the	precision	of	a	measurement,	i.e.
what	size	features	can	be	seen	or	resolved.	With	reference	to
biomolecular	structures	the	resolution	reflects	the	uncertainty	in
the	positions	of	atoms,	and	depends	on	the	experimental
technique	used	and	the	quality	of	data.	When	referring	to
images	the	resolution	is	usually	stated	simply	as	the	number	of
component	pixels,	often	giving	width	and	height	separately.

A	virus	that	has	an	RNA	genome,	which	uses	a	reverse
transcriptase	enzyme	to	convert	the	RNA	into	DNA,	the
opposite	of	the	normal	biological	information	flow.	The
conversion	is	often	for	the	purpose	of	inserting	the	viral	DNA
into	the	DNA	of	the	host’s	genome,	a	means	of	lying	dormant
and	evading	the	host’s	defence	mechanisms.	HIV,	which	causes
AIDS,	is	an	example	of	a	retrovirus.

To	finish	the	execution	of	a	function	(a	subroutine)	and	pass	a
value	back	to	the	previous	point	in	the	program	flow,	where	the
function	was	called	from.

The	key	on	a	keyboard	which	is	used	to	start	a	new	line	or
complete	the	entry	of	data.	Often	synonymous	with	the	Enter
key	and	frequently	symbolised	by	a	bent	arrow,	going	down	and
left.

A	DNA	or	RNA	sequence	that	has	the	opposite	kinds	of	base
and	reversed	order	compared	to	another	sequence,	such	that	the
two	nucleic	acids	could	form	complementary	base	pairs,	but	are
both	viewed	in	the	same	orientation	(usually	5′	to	3′).	Given	A:T

Ribosome	(molecular
biology):

Ribozymes	(molecular
biology):

RNA	(molecular
biology):

RNA	sequence
(molecular	biology):

Root	(computing):

Root-mean-square
deviation	(mathematics):

Rooted	tree
(bioinformatics):

and	G:C	base	pairs,	the	reverse	complement	of	the	sequence
ATCCGACTCAG	would	be	CTGAGTCGGAT,	so	that	the	first
position	for	the	first	sequence	pairs	with	the	last	position	of	the
second	sequence.

The	large	enzyme	particle	inside	cells,	containing	both	protein
and	RNA,	which	catalyses	the	synthesis	of	new	proteins	(i.e.
polypeptide	chains)	by	joining	individual	amino	acids	(delivered
on	a	tRNA)	and	a	messenger	RNA	that	specifies	the	sequence.

Biological	catalysts	that	use	RNA	to	increase	the	rate	of	a
reaction,	i.e.	enzymes	that	use	RNA	rather	than	protein	at	the
active	site.

Ribonucleic	acid,	biological	polymer	modules	that	are	copies	of
parts	of	DNA	sequences	and	which	have	various	roles	in	cells,
including	enabling	the	creation	of	proteins	(transferring	DNA
sequence	information	and	delivering	amino	acids),	acting
directly	as	functional	molecules	alongside	proteins	and
controlling	the	stability	of	other	RNA	molecules.

The	sequential	order	of	the	four	different	types	of	nucleotide
compound	that	make	up	a	linear	RNA	chain,	which	is	generally
a	molecule	with	a	single	strand,	unlike	DNA.

When	referring	to	locations	within	a	file	system,	the	root	is	the
very	top	of	the	containment	hierarchy	which	contains	all	of	the
other	sub-directories.	On	Unix,	Linux	and	Mac	OSX-based
systems	this	is	represented	with	a	single	forward	slash	symbol
‘/’.	On	Windows-based	systems	there	is	no	single	root,	rather
there	are	separate	drive	letters	like	‘C:\’.

A	measure	of	the	overall	difference	between	two	sets	of	paired
values.	It	is	calculated	as	the	square	root	of	the	average	squared
difference	between	the	paired	values.	Commonly	used	as	a
measure	of	coordinate	difference	between	three-dimensional
structures.

A	hierarchical	branching	data	classification	where	there	is	a
base	or	root.	For	a	phylogenetic	tree	this	means	that	there	is
ancestor	node.

Rotation	matrix
(mathematics):

Runtime	(computing):

Sample	mean
(mathematics):

Sample	space
(mathematics):

Sample	variance
(mathematics):

Scalar	product
(mathematics):

Scope	(computing):

Scripting	(computing):

Search	path

A	matrix	which,	when	applied	to	a	vector	or	another	matrix	(of
suitable	size)	by	means	of	matrix	multiplication,	causes	a
transformation	of	coordinates	that	is	a	pure	rotation.

The	time	when	a	computer	program	is	running.

The	observed	mean,	or	average	value,	of	a	property	from	a
sample	of	data.

In	probability,	the	specification	of	the	set	possible	outcomes
which	can	occur.

The	observed	variance	of	a	property	from	a	sample	of	data.

Also	called	the	dot	product.	A	scalar	value,	calculated	as	the
sum	of	the	component-wise	product	of	two	vectors	(or	arrays)
which	represents	the	size	of	the	projection	of	one	vector	on	to
the	other.	Equivalent	to	the	product	of	the	length	of	two	vectors
and	the	cosine	of	the	angle	between	them

Short	for	lexical	scope,	the	context	within	the	commands	of	a
computer	program	for	which	a	particular	variable	is	defined.
Often	discussed	in	terms	of	a	named	variable	being	local	or
global,	with	respect	to	a	block	of	code.	For	example	a	variable
defined	in	a	Python	function	is	local	to	the	function,	i.e.	its
name	only	binds	to	a	value	inside	the	function	and	using	the
same	name	outside	the	function	actually	refers	to	a	different
thing.

The	use	of	a	high-level	interpreted	(i.e.	not	explicitly	compiled)
computer	language,	like	Python,	Perl	or	Unix	shell	commands,
to	create	a	simple	computer	program	to	perform	a	simple	task.
The	distinction	between	what	is	a	script	and	what	is	a	program
is	somewhat	blurred	for	a	fully	functional	language	like	Python
or	Perl,	but	a	script	is	usually	a	program	to	provide	an
automated	and	convenient	alternative	to	something	that	could	be
done	by	other,	more	tedious	means.

The	specification	of	which	locations	should	be	investigated	to

(computing):

Secondary	structure
(molecular	biology):

Seed	(computing):

Self-organising	map
(machine	learning):

Sequence	annotation
(bioinformatics):

Sequence	complexity
(mathematics):

find	a	given	item,	usually	within	a	hierarchical	data	structure,
such	as	a	file	system.	With	particular	reference	to	Python
modules	the	search	path	is	effectively	a	list	of	directories	that
contain	the	files	that	describe	the	modules	which	can	be	loaded
into	a	program	to	provide	extra	functionality.

The	classification	of	the	local	conformation	of	a	biological
polymer	chain,	which	generally	corresponds	to	a	particular
backbone	hydrogen-bonding	pattern	with	characteristic
backbone	dihedral	(twist)	angles.	The	term	is	generally	used	for
proteins,	where	the	common	secondary-structure	types	are
(right-handed)	alpha-helix	and	extended	beta-strand	(which
form	beta-sheets).

With	reference	to	random	numbers,	the	seed	is	an	arbitrary
number	which	is	used	to	start	a	pseudorandom	number-
generating	algorithm.	The	seeds	themselves	are	often	quite
random,	but	the	use	of	the	same	seed,	in	what	otherwise	appears
to	be	a	random	process,	is	important	for	determinism,	i.e.	the
same	seed	gives	reproducible	pseudorandom	output,	which	is
useful	for	testing	software.

Also	called	a	Kohonen	map.	A	kind	of	unsupervised	neural
network	that	operates	by	arranging	data,	represented	as	vectors,
in	a	grid	(i.e.	a	map	of	low	dimensionality)	to	arrange	the	data
into	a	simpler	form	that	preserves	the	distinction	and	similarity
between	items.	It	can	be	used	to	automatically	cluster	data	and
map	it	to	fewer	dimensions;	this	is	similar	to	what	principal
component	analysis	does,	but	does	not	assume	any	underlying
distribution	in	the	data.

The	mechanism	of	ascribing	a	biological	sequence	with	further
information,	typically	describing	what	its	function	and	relation
to	other	sequences	are.

A	measure	of	how	random	or	non-random	a	sequence	is.	This	is
related	to	the	concept	of	information	entropy	(see	above).	A
repetitive	sequence,	where	only	a	few	kinds	of	residue	from	the
total	available	are	present,	is	deemed	to	have	low	complexity;
less	information	is	needed	to	encode	it	and	so	it	is	easier	to
generate	at	random.

Sequence	identity
(bioinformatics):

Sequence	similarity
(bioinformatics):

Serialise	(computing):

Server	(computing):

Set	(mathematics):

Setter	(computing):

Side	chains	(molecular
biology):

Signal	(computing):

Silent	substitutions
(molecular	biology):

A	measure	of	the	number	or	proportion	of	residues	in	two
aligned	biological	sequences	that	are	exactly	the	same,	i.e.	have
the	same	kinds	of	residue	at	equivalent	positions.

A	measure	of	how	alike	two	aligned	protein	sequences	are,
accounting	for	the	similarities	and	differences	in	the	component
amino	acids.	Often	the	similarity	is	derived	from	a	measure	of
how	substitutable	different	residues	are	in	evolution.

Automatically	convert	in-memory	data	structures	into	a	stream
of	data	that	may	be	stored	on	disk,	typically	a	plain	text	file.	In
Python	the	inbuilt	method	of	serialising	data	is	called	pickling.

The	part	of	a	computer	application	that	does	the	work,	e.g.
calculations,	or	putting	together	the	contents	of	a	webpage,
which	is	distinct,	and	often	physically	remote,	from	the	client
with	which	the	user	interacts.

A	collection	of	items	which	is	unordered	and	where	no	item	is
repeated.

A	function	that	sets	a	specified	attribute	of	an	object	to	a
specified	value.	This	can	include	verification	that	the	value	is
allowed.

When	referring	to	the	amino	acid	compounds	that	make	up
proteins,	the	side	chain	is	the	part	of	an	amino	acid	that	varies
between	the	different	types,	and	which	sticks	out	from	the
backbone	(the	part	that	is	linked	together	to	form	chains).

With	regard	to	graphical	interfaces,	particularly	those	based	on
the	Qt	libraries,	a	signal	is	a	notification	sent	out	from	a
graphical	item	to	indicate	that	something	has	happened,	e.g.	the
item	was	clicked	or	resized.	In	Qt	signals	are	connected	to	slots,
which	are	functions	that	are	triggered	in	response	to	the	signal.

A	change	within	the	protein-coding	region	of	a	gene’s	DNA
sequence	which	does	not	result	in	a	change	in	the	protein
sequence.	This	occurs	because	an	amino	acid	may	be
represented	by	multiple	different	three-base	codons	in	the

Similarity	matrix
(bioinfromatics):

Simple	linear	regression
(mathematics):

Simulated	annealing
(computing):

Single-nucleotide
polymorphism	(SNP)
(molecular	biology):

Singular	value
decomposition	(SVD)
(mathematics):

Slice	(computing):

Slot	(computing):

genetic	code.

See	substitution	matrix.

In	statistics,	a	linear	fit	of	one	distribution,	Y,	against	a	single
other	distribution,	X,	with	both	usually	provided	by
measurements.	Accordingly,	we	find	a	(y-axis	intercept)	and	b
(gradient)	such	that	Y	=	a	+	b	X	best	fits	the	data,	using	a	least-
squares	calculation.

A	global	optimisation	procedure,	i.e.	for	finding	the	best	overall
solution	to	a	problem,	that	involves	having	a	search	strategy
which	bases	the	next	trial	solution	on	the	previous	solution
using	a	parameter	analogous	to	temperature.	At	a	high
‘temperature’	subsequent	solutions	can	be	quite	different	from
one	another	(analogous	to	large	thermal	motion)	and	sample	the
parameter	space	widely,	but	as	the	temperature	is	cooled	the
differences	become	smaller,	allowing	the	solution	to	refine	and
approach	a	precise	optimum.	Simulated	annealing	can	often	find
good	solutions	to	complex	problems	in	a	reasonable	time.

A	point	of	variation	in	a	DNA	sequence,	often	when	comparing
individuals	of	the	same	species,	consisting	of	a	single	base-pair
change.

A	useful	technique	for	decomposing	a	matrix	into	its
fundamental	parts:	a	rotation,	a	scaling	and	another	rotation.
Commonly	used	to	find	the	optimal	rotation	which	minimises
differences	between	spatial	coordinates,	i.e.	to	superpose/align
structures.

A	means	of	accessing	a	range	of	elements	in	an	ordered	data
collection	(like	a	Python	list,	text	string	or	tuple)	by	specifying
the	extent	of	the	selection,	rather	than	each	item	individually.

Referring	to	graphical	user	interfaces,	especially	for	the	Qt
libraries,	a	slot	is	a	function	belonging	to	one	graphical	object
that	is	invoked	in	response	to	a	notification	signal	emitted	from
another.	This	mechanism	allows	the	coordination	of	graphical
items	in	response	to	a	common	set	of	data.

Sobel	operator	(images):

Spatial	restraints
(bioinformatics):

Spectrum	(signal
processing):

Spin	active	(chemistry):

Splice	(molecular
biology):

Stack	(computing):

Standard	deviation
(mathematics):

Standard	normal
distribution
(mathematics):

Statement	(computing):

Stem-loops	(molecular
biology):

Also	called	a	Sobel	filter.	A	matrix	which	is	convolved	with	a
pixmap	image	for	the	purpose	of	detecting	contrast	changes	(i.e.
edges)	along	a	horizontal	or	vertical	direction.	Effectively	this
creates	a	secondary	image	where	the	signal	gives	an
approximation	of	the	gradient	of	intensity	changes	in	the
primary	image.

Bits	of	geometric	information	that	relate	to	the	spatial
conformation	of	an	object,	such	as	a	protein	structure,	which
when	considered	in	combination	help	determine	the	overall
three-dimensional	shape.

An	experimental	signal	viewed	in	terms	of	frequency,	rather
than	time	or	space.

With	reference	to	atoms,	a	nucleus	which	exhibits	nuclear
magnetic	resonance,	i.e.	absorbs	characteristic	radio	frequencies
when	placed	in	a	magnetic	field.

To	join	together	two	biopolymer	chains.	Splicing	notably	occurs
in	the	processing	of	messenger	rRNA	modules,	where	the
unwanted	parts,	introns,	are	removed	and	the	remainder	(which
generally	contains	the	protein-coding	region)	are	joined
together.

A	collection	of	items	that	are	processed	in	the	order	‘first	in,	last
out’.

A	measure	of	the	spread	of	values	from	their	mean.	Calculated
as	the	square	root	of	the	average	square	difference	between	the
values	and	the	mean.

A	normal	distribution	with	mean	0	and	standard	deviation	1.

The	smallest	logical	elements	of	a	computer	program.

Small	regions	of	double-stranded	nucleic	acid,	usually	RNA,
where	a	single	chain	folds	back	and	base-pairs	with	itself.

Strand	(molecular
biology):

String	(computing):

Structural	environment
(bioinformatics):

Structure	ensemble
(bioinformatics):

Student’s	T	distribution
(mathematics):

Subclass	(computing):

Substitutable	(molecular
biology):

Substitution	(molecular
biology):

Substitution	matrix
(bioinformatics):

One	nucleic	acid	chain	molecule.	DNA	usually	has	two	nucleic
acid	strands	joined	along	their	length	by	hydrogen-bonded	base
pairs;	the	strands	go	in	the	opposite	directions,	in	terms	of	the
chemical	bonds.

A	computational	data	type	representing	an	ordered	collection	of
characters	that	form	a	piece	of	text.

The	categories	of	local	three-dimensional	conformation	within	a
biological	molecule.	Generally	with	reference	to	the	different
features	found	in	protein	structure	that	affect	the	nature	of
residue	substitution	during	evolution.	Environment	categories
typically	correspond	to	secondary	structure,	hydrogen	bonding
and	solvent	accessibility	states.

A	representation	of	a	molecule’s	three-dimensional	structure,
consisting	of	a	collection	of	alternative	models	(i.e.	sets	of
coordinates)	which	together	represent	the	variability	or
uncertainty	in	the	data.	Often	the	models	of	an	ensemble
represent	alternative	conformations	which	all	fit	with	the
experimental	data.

Used	in	various	statistical	tests	including	determining
confidence	intervals	on	the	mean	of	a	distribution	given	a
sampling,	i.e.	whether	two	means	are	significantly	different.

With	reference	to	object-oriented	programming,	a	subclass	is	a
type	of	object	definition	that	is	based	on,	i.e.	inherits	from,
another	type	of	object,	called	the	superclass.

The	ability	of	two	different	types	of	residue	to	swap	with	one
another	(in	a	DNA	or	protein	chain)	during	evolution.

The	swapping	during	evolution	of	one	residue	type	for	another
in	a	given	position	of	a	biological	polymer	molecule.

Also	called	a	similarity	matrix.	A	means	of	representing	the
equivalence	between	different	types	of	residue	in	a	sequence
alignment.	Described	in	the	form	of	a	table,	so	that	a	score	may
be	obtained	for	each	possible	pair	of	residue	type.	This	provides

Superclass	(computing):

Supervised	learning
(computing):

Support	vector	(
computing):

Support	vector	machines
(computing):

Support	vector
regression	(computing):

Systems	biology:

Tab	(computing):

the	basis	to	calculate	a	score	for	an	alignment	and	thus	the
method	of	generating	optimised	alignments.	The	equivalence
scores	usually	indicate	how	readily	different	residue	types
substitute	for	one	another.

With	reference	to	object-oriented	programming,	a	superclass	is
a	type	of	object	definition	that	lends	its	specification	as	the	basis
for	another	kind	of	object	(a	subclass).

A	type	of	machine	learning	method	where	the	pattern-matching
algorithm	is	trained	to	associating	known	inputs	with	known
outputs	so	that	afterwards	it	may	make	predictions	in	a	general
way	on	unseen	data.	See	also	training	below.

With	regard	to	machine	learning,	one	of	the	data	points
considered	by	a	support	vector	machine	that	lies	on	the	edge	of,
and	thus	defines,	the	boundary	used	in	the	separation	of	data
classes.

A	kind	of	machine	learning	algorithm	that	works	by	performing
a	linear	separation	of	data	mapped	into	a	space	of	higher
dimensionality,	using	the	kernel	trick.	The	widest	margin	region
between	different	data	classes	is	found	in	a	regression-like
process,	which	defines	a	decision	boundary	that	can	be	used	to
separate	unseen	data	points	in	a	general	way.	This	separation
margin	is	defined	by	the	support	vectors	(see	above)	and	is	less
susceptible	to	over-training	compared	to	methods	like	artificial
neural	networks.

Using	support	vector	machines	to	approximate	continuous
functions,	e.g.	to	predict	where	points	lie	on	a	graph.	This	is	in
contrast	to	using	support	vector	machines	to	classify	data	points
into	discrete	categories.

The	study	of	the	emergent	properties	of	a	biological	system
considered	as	a	whole,	i.e.	things	that	would	not	be	evident	by
looking	at	individual	components	in	isolation.

Derived	from	a	‘tab	stop’	on	a	typewriter.	A	tab	is	a	key	on	the
keyboard	and	the	resulting	special	(whitespace)	character	that
causes	indentation	of	text.	A	tab	is	often	longer	than	several

Tables	(computing):

Tautomerism
(chemistry):

Taxa	(biology):

Template	(molecular
biology):

Template
(bioinformatics):

Thread	(computing):

Timeout	(computing):

Token	(computing):

normal	spaces.

Relational	databases	store	data	in	tables,	with	each	column
representing	an	attribute	of	the	data	and	each	row	representing
one	record	of	data.	This	a	similar	notion	to	the	usage	of	tables	in
spreadsheets.

The	ability	of	certain	chemical	compounds	to	be	able	to	swap
between	two	different	forms	that	contain	the	same	atoms.	Often
this	involves	an	equilibrium	where	both	chemical	structures	are
present	to	some	degree	and	continuously	inter-convert.

The	different	hierarchical	classifications	of	organisms	within	the
evolutionary	tree	of	life,	i.e.	the	named	groups	of	related
organisms.

When	referring	to	nucleic	acid	strands	the	template	is	the	strand
that	is	the	basis	for	the	creation	of	a	new	strand	using	base-
pairing	rules,	for	example	in	DNA	and	RNA	synthesis.

With	specific	reference	to	protein	structures,	a	template	is	a
protein	of	known	(experimentally	determined)	structure	which
is	used	as	the	basis	for	predicting	the	structure	of	another	similar
protein:	generally	a	homologue	with	a	similar	sequence.

A	sequence	of	the	smallest	segments	of	program	instructions
that	can	be	scheduled	to	run	independently	on	a	computer.	The
notion	behind	this	is	that	a	processor’s	stream	of	execution	can
rapidly	switch	between	different	computing	tasks.	A	result	is
that	multiple	programs	can	effectively	be	run	at	the	same	time
on	a	single	processor,	though	on	a	small	scale	the	execution	may
merely	be	interlaced.	Threading	is	a	concept	distinct	from	true
parallel	processing,	which	uses	separate	processor	cores,	though
most	modern	multi-core	processors	implement	both	concepts.

A	specified	time	that	is	allowed	to	elapse	before	a	specific	event
is	triggered,	often	used	as	a	failsafe	in	the	case	that	various
asynchronous	tasks	do	not	complete	in	a	reasonable	time.

A	string	of	one	or	more	characters	that	when	taken	together

Top-level	widget
(graphics):

Top	object	(computing):

Torsion	angle
(mathematics):

Training	(computing):

Transcribe	(molecular
biology):

Transformation
(mathematics):

Transition	matrix
(mathematics):

Translation	(molecular
biology):

represent	the	smallest	meaningful	parts	of	a	computer	language.

A	graphical	object	in	a	user	interface	that	can	contain	other
graphical	items,	but	which	is	not	itself	contained	by	any	other
items.	Such	objects	are	typically	free-floating	windows	and
have	an	iconified	representation	when	fully	minimised.

The	top	of	an	object	hierarchy	in	a	data	model,	i.e.	the	class	of
object	that	contains	all	others.

See	dihedral	angle	above.

With	reference	to	supervised	machine	learning	methods,	the
stage	where	data	with	known	outcome	(e.g.	there	is	a	known
classification	for	a	given	set	of	input	values)	is	used	to	adjust
internal	parameters	so	that	the	method	may	be	used	to	recognise
patterns	and	make	predictions	in	a	general	way	on	unseen	data.
For	a	neural	network	training	involves	setting	the	connectivity
weights	between	nodes	so	that	the	output	signals	are	close	to	the
known	values	for	the	given	input.

The	process	of	converting	a	DNA	sequence	into	an	RNA
sequence,	effectively	making	a	copy	of	the	coding	DNA	strand
by	forming	a	chain	that	is	complementary,	following	base-
pairing	rules,	to	the	template	DNA	strand.

A	function	that	maps	elements	from	one	set	to	another,
generally	preserving	any	structure	that	may	be	present	in	the
data.	When	applied	to	spatial	coordinates,	transformations
commonly	involve	scaling,	rotation,	translation	and	shearing.

The	matrix	that	specifies	how	a	Markov	chain	evolves	from	one
moment	in	time	to	the	next;	the	probability	of	transitioning	from
one	state	to	another.

The	process	of	synthesising	a	protein’s	polypeptide	chain	where
the	sequence	of	amino	acids	is	determined	by	subsequent	groups
of	three	bases	(codon)	in	a	messenger	RNA	molecule.	The
directed	polymerisation	reaction	is	catalysed	by	a	large	multi-
component	particle	called	the	ribosome.

Transmembrane
(molecular	biology):

Transpose
(mathematics):

Travelling	salesman
problem	(computing):

Trypsin	(molecular
biology):

Trigger	function
(computing):

Tuple	(computing):

Two-sample	T-test
(mathematics):

Two-tailed	test
(mathematics):

Something	that	resides	in	and	spans	the	lipid	bilayers	that	form
cellular	membranes.	Usually	used	to	refer	to	hydrophobic
protein	domains	that	are	embedded	in	lipids	so	that	the	protein
is	exposed	on	both	sizes	of	the	membrane,	in	contrast	to	a
membrane-associated	protein	which	is	only	attached	on	one
side.

A	matrix	obtained	by	swapping	rows	with	columns,	i.e.	flipping
about	the	diagonal.

A	classic	example	of	a	computationally	hard	problem,	involving
the	determination	of	the	most	efficient	route	for	a	person	to	visit
a	given	set	of	points	on	a	map,	i.e.	which	order	the	visits	should
be	made	in.

A	protein-cleaving	enzyme	(a	protease),	originally	isolated	from
the	pancreas	of	many	animals	where	it	works	to	digest	food.
Artificially	synthesised	trypsin	is	a	common	tool	in	molecular
biology	for	cutting	up	protein	chains	at	predictable	locations.

In	machine	learning,	when	referring	to	the	nodes	of	a	neural
network,	the	trigger	function	is	the	operation	associated	with	a
node	that	converts	the	summation	of	all	the	(weighted)	input
signals	into	an	output	signal.	The	trigger	functions	are	typically
step-like	or	S-shaped	(e.g.	the	sigmoidal	hyperbolic	tangent)	so
that	only	inputs	above	a	threshold	cause	a	significant	output	and
so	that	the	maximum	output	is	limited.

A	data	structure	containing	an	ordered	collection	of	items.	In
Python	a	tuple	cannot	be	modified	after	creation	and	may
contain	any	kind	of	item,	including	mixtures	of	different	types.

A	statistics	test	which	indicates	whether	two	samplings	which
are	assumed	to	be	normally	distributed	with	the	same	variance
have	the	same	mean.

A	statistical	test	that	determines	the	probability	of	an	observed
value	having	at	least	a	given	separation	from	a	mean	value	(in
either	direction);	for	example,	the	probability	that	an
observation	is	separated	from	the	mean	by	at	least	one	standard

Type	(computing):

Type	checking
(computing):

Unbiased	estimate
(mathematics):

Underflow	(computing):

Uniform	distribution
(mathematics):

Union	(mathematics):

Unit	vector
(mathematics):

Unrooted	tree
(bioinformatics):

Unsigned	(computing):

Unstructured	(molecular
biology):

deviation.

Short	for	data	type,	indicating	what	kind	of	computational	data
structure	is	being	referred	to,	whether	a	simple	one	like	a
number,	linear	ones	like	text	strings	or	lists,	or	complex
arbitrary	objects.

The	process	of	ensuring	that	the	data	types	of	any	values	are
correct	for	the	kind	of	operation	being	performed,	e.g.	to	ensure
that	mathematical	operations	are	only	performed	on	numbers.

For	a	probability	distribution	which	is	described	by	a	certain
parameter	and	where	an	estimate	of	the	parameter	is	made	by
observing	the	random	variable.	The	estimate	is	unbiased	if	there
is	no	difference	between	its	expected	value	(long-term	average)
and	the	true	parameter	value.

The	result	of	an	arithmetic	calculation	that	is	too	small	in
magnitude	to	store	in	computer	memory.

A	totally	flat,	even	distribution	of	values.	For	example	in	the
context	of	a	generating	random	numbers	all	values	are	equally
likely.

With	reference	to	sets	of	items,	the	total	obtained	by	combining
all	of	the	items	into	a	larger	set.

A	vector	of	length	one.	Unit	vectors	are	often	constructed	to
represent	the	direction,	but	not	magnitude,	of	another	vector.

A	hierarchical	branching	data	classification	where	there	is	no
root	or	base.	For	a	phylogenetic	tree	this	means	that	the	ancestor
node	is	not	explicitly	represented.

With	reference	to	numeric	data	types,	a	way	of	representing	a
value	without	any	sign	(positive	or	negative)	information.

A	biological	molecule	is	unstructured	if	it	doesn’t	adopt	any
particular	conformation,	e.g.	a	protein	which	is	highly	dynamic

Unsupervised	learning
(computing):

Update	(graphics):

Van	der	Waals
(chemistry):

Variable	(computing):

Variable	(molecular
biology):

Variance	(mathematics):

Vector	(mathematics):

Vector	graphics
(computing):

Vector	space
(mathematics):

and	not	folded	into	a	compact	shape.

The	process	by	which	some	machine	learning	methods	can
recognise	patterns	in	data	without	the	requirement	for	training
data	of	known	classification	or	value.

With	reference	to	graphical	interfaces,	to	refresh	the	display	to
reflect	the	state	of	the	underlying	data,	i.e.	to	have	a	graphical
display	that	responds	to	changes.

The	non-bond	interaction	that	occurs	between	atoms	by	virtue
of	their	radii.	At	close	distances	the	van	der	Waals	force	is
repulsive,	as	the	atoms’	electrons	resist	being	superimposed,	but
at	larger	distances	the	interaction	is	attractive	(albeit
diminishing),	due	to	transient,	uneven	charge	distributions.

A	data	slot	that	can	contain	many	different	values.	Generally	a
variable	is	a	named	item,	i.e.	a	means	of	allocating	a	value	with
a	tag	so	that	it	can	be	referred	to	in	an	abstract	way	within	a
program.

With	reference	to	a	biological	molecule,	the	property	of
changing	rapidly	during	evolution,	i.e.	giving	variations	in	a
protein	or	DNA	sequence.

A	measure	of	the	amount	of	spread	or	variation	in	a	set	of
values,	which	is	the	square	of	the	standard	deviation.	Calculated
as	the	average	square	difference	between	the	values	and	the
mean.

An	array	of	numbers	used	to	specify	the	location	of	a	point	in	a
space.

A	way	of	creating	a	graphical	display	by	describing	the
underlying	geometry	of	items	(e.g.	using	points,	lines	and	areas)
so	that	they	can	be	rendered	into	an	image	of	any	size	by
considering	a	particular	view	(lighting	and	orientation	etc.).

An	abstract	space	where	any	position	may	be	reached	using	a

View	(computing):

Volume	(signal
processing):

Whitespace
(computing):

Widgets	(computing):

Window	(computing):

XML	(computing):

combination	of	vectors	that	span	the	different	axes.	For	many
computational	methods,	independent	qualities	of	data	items	may
be	expressed	in	vector	form,	within	a	vector	space.

A	dynamic	representation	of	a	collection	of	items,	which	avoids
the	need	of	having	to	make	detached	copies	of	the	collection
while	still	supporting	membership	tests	and	iteration.	In	Python
3	a	view	is	the	result	of	a	dictionary	method,	such	as	keys(),
which	is	updated	when	the	dictionary	is	updated.

The	integral	or	summation	of	a	signal	peak,	representing	the
strength	of	the	signal.

Textual	characters	which	don’t	have	a	symbol	and	control	the
space	or	separation	between	other	characters.	Examples	include
simple	spaces,	tab	stops	and	line	returns.

On-screen	graphical	objects	that	are	used	to	construct	a
graphical	user	interface.	Examples	include	buttons,	check	boxes
and	menus.

A	discrete	area	within	a	graphical	interface	containing	smaller
graphical	items,	usually	a	box	that	can	be	moved	and	resized
within	the	display.

Extensible	Markup	Language,	a	textual	data	format	used	to
store	information	in	a	hierarchical,	object-oriented	manner.	The
format	comprises	data	tags	that	have	attributes	and	may	contain
other	tags.

Index
@	syntax	76

__class__	attribute	114

__init__()	function	108,	121

__init__.py	file	42

__name__	attribute	62,	179

3D	structure	see	structures

active	substitutions	275

alignments

amino	acid	properties	257

BLAST	225

ClustalW	241

conservation	255

gap	penalties	219

guide	tree	269

mapped	genomic	357

multiple	232,	241,	269

pairwise	221

profile	235–236

alternative	hypothesis	456

amino	acids	182

AND	operation	49

arithmetic	operations	25

arrays

hierarchical	clustering	338

normalisation	328

NumPy	see	NumPy	arrays

quantile	normalisation	333

reading	image	files	321

text	files	319

value	clipping	373

writing	text	files	325

Z-score	normalisation	330

atan2()	function	139

attributes

checking,	fetching	113

frozen	136

getters,	setters	132

listing	113

privacy	134

bar	charts	142

Bayes’	theorem	429

best-fit	line	485

binary	operations	613

binomial	distribution	431

binomial	test	464

BioPython	205

multiple	alignments	242

reading	sequence	files	205

structures	312

writing	sequence	files	206

BLAST	225

BLOSUM	matrix	216

bool()	function	49

Boolean	data	type	24,	47

Bowtie	program	349

break	statement	53

C	language

calling	functions	603

Cython	598

interface	587

modules	591

Python	library	594

Python	values	596

calling	external	programs	225,	242

cardinality	122

catching	exceptions	58

cell	counting	378

central	limit	theorem	469

character	ranges	see	slicing:	strings

chi-square	see	Pearson’s	chi-squared	test

chi-square	distribution	477

classes	100

__class__	attribute	114

__dict__,	attribute	dictionary	112

__init__()	function	108

__name__	attribute	114

attribute	getters,	setters	132

attributes	105,	113

constructor,	initialisation	108

defining	102

destructors	125

functions	103

hierarchy	119

importing	103

inheritance,	subclassing	102,	105

instantiation	109

hierarchical	129

methods	103

parent-child	links	124

private	attributes	134

property	attributes	135

self	attributes	106

self-referencing	103

superclass	function	110

type	checking	115

classification

linear	discriminant	analysis	507

neural	network	526

support	vector	machine	536

ClustalW	241

clustering	489

associative	490

density	based	493

k-means	496

number	of	clusters	501

CMYK	colour	model	362

code

blocks	45

indentation	22,	45

coding	strand	185

coding	tips	164

codon	185

command	line	arguments	84

comment	line	22

comparison	operators	48,	612

complex	number	data	type	25

conditional	falsehood	48

conditional	truth	48

confidence	interval	475

confidence	level	455

consensus	sequence	233

conservation	string	255

continue	statement	52

converting	Python	to	C	598

coordinates

affine	transform	292

alignment	301

centring	300

rotation	291

copying	files	641

correlation	481

confidence	level	483

cos()	function	139

covariance	480

matrix	481

cross-product	156–157

ctypes	module	603

cumulative	distribution	function	466

Cython	language	598

databases

commiting	changes	411

connection	410

creating	tables	403,	407

creation	407

cursors	411

deleting	records	405

dropping	tables	406,	409

executing	SQL	412

inserting	records	405,	413

macromolecular	structure	example	406

Python	access	410

queries	405,	417,	419

roll	back	411

schemas	402

SQL	modules	403

tables	401

data	types

Boolean	24

complex	numbers	25

floating	point	24

integer	24

strings	25

def	statement	64

del	statement	37,	40,	113

dictionaries	34

accessing	items	39

assignment,	changing	items	40

default	values	168

key	membership	39

keys	34

of	dictionaries	192

operations	629

size	39

dihedral	angle	157

dimensional	reduction	488,	504,	518

directories

listing,	curating	98

paths	98

recursion	98

division

by	zero	58

floor	26

integer	26

DNA	183

complementary	strands	185

G+C	content	195

genome	sequences	344

multiple	alignments	232,	241,	269

one-letter	code	strings	190

reading	frame	186

sequence	alignment	208

sequence	conservation	253

sequence	motif	193

sequence	profile	194

sequence	repetitiveness	197

short	reads	351

dot	product	156,	158

downloading	files	287

dynamic	programming	220,	445

dynamics	simulations	561

edge	detection	376

eigenvalues	505

ElementTree	90

elif,	else	statements	46

else	in	for	loop	53

enumerate()	function	55,	173

error	function	471

errors

handling	57

triggering	59

escape	sequences	610

except	statement	58

exceptions	57

exit()	function	61

exiting	a	program	61

exp()	function	138

False	value	47

Fast	Fourier	transform	388

FASTA	sequence	file	format	86,	93,	205

FASTQ	files	351

quality	scores	352

reading	356

feature	vector	487

feed-forward	neural	network	523

file	object	632

files

accessing	81

character-delimited	fields	95

compression	formats	348

copying	641

CSV,	TSV	formats	96

deleting,	moving	98

directories,	paths	98

end-of-line	characters	82

existence	88

FASTA	format	86,	93,	205

FASTQ	format	351,	356

file	object	81,	632

GFF	format	358

GZIP	compressed	348

handles	81

line	iteration	83

opening	81

PDB	format	129,	287

pickling,	serialisation	99

reading	82

SAM	format	357

whitespace	delimited	84

writing	92

XML	format	90

finally	statement	60

Fisher’s	linear	discriminant	507

floating	point	data	type	24

for	…	else	53

for	loops	51

format()	function	654

formatting	text	see	strings:	formatting

forward-backward	algorithm	447

Fourier	transform	385

frozen	sets	34

FTP	downloads	345

functions

*,	**	arguments	70

arbitrary,	anonymous	arguments	70

arguments	66–67

calling	64

decorators	76

defaulting	arguments	67

defining	64

in	classes	103

keyword	dictionaries	175

lambda	74

named	arguments	dictionary	72

nesting	74

returning	output	66

gap	penalty	219

Gaussian

distribution	467

tailed	test	469

generator	171

genetic	code	186,	190

genome	index	349

genomic	alignment	351

genomic	feature	data	358

geometric	distribution	436

getattr()	function	113

GFF	annotation	files	359

global	statement	73

graphics

images	364

user	interfaces	568

widget	objects	570,	578

graphs	141

greyscale	colour	model	362

G-test	479

GUIs	566

gzip	module	348

hasattr()	function	113

hash	maps	see	dictionaries

hierarchical	clustering	338

HMMs	442

HSV	colour	model	362

HTSeq	module	355

if	statement	46,	51

ternary	operator	167

images

blurring	376

colour	components	363

colour	models	362

contrast	adjustment	370

convolution	374

counting	cells	378

cropping	365

edge	detection	376

filters	373

gamma	correction	371

Gaussian	filter	376

intensity	histogram	373

NumPy	arrays	367

object	representation	364

PIL	module	364

pixmaps	361

reading	from	file	364,	368

resizing	365

rotating	365

scaling	365

sharpening	370,	375

Sobel	filter	377

thumbnails	366

value	clipping	373

value	normalisation	371

writing	to	file	365

import	statement	41

importing	modules	41

indentation	45

indexing

lists	35

NumPy	arrays	151

strings	27

tuples	35

installation	18

integer	data	type	24

interactive	mode	19

is	keyword	176

is	versus	==	48,	176

isinstance()	function	115

joining

file	paths	98

strings	30,	167

keywords	607

k-means	clustering	496

k-nearest	neighbours	515–516

Kohonen	map	518

Kullback-Leibler	divergence	198–199,	479

lambda	statement	74

leading	whitespace	see	code:	indentation

length	of	lists,	tuples	36

line	graphs	141

linear	regression	484

lists	32

adding	items	174

changing	items	36

comprehension	55

copying	168

filtering	56

manipulation	34

matrices	148

membership	35

operations	621,	625

reversing	37,	168

sorting	37,	172

literal	23

log()	function	138

logical	connectives	49

loops

break	statement	53

continue	statement	52

dictionary	keys	57

for	51

indices	54

list	comprehension	55

skipping,	stopping	52

while	52

macromolecular	structure	286

philosophy	278

Markov	chains	438

bacterial	growth	example	439

discrete-time	homogeneous	438

forward-backward	algorithm	447

HMMs	442,	449

transition	matrix	438

Viterbi	algorithm	443

math	module	138,	635

mathematical	operations	611

matplotlib	module	141

matrix	145

convolution	374

determinant	302

multiplication	154,	157

rotation	155

transpose	153

mean	value	459

median	value	458

memoisation	175

methods	103

Metropolis-Hastings	550

microarrays

colour	channels	334

data	model	323

philosophy	317

mode	value	458

modules

importing	41,	179

search	path	41

test	code	block	61

Monte	Carlo

integration	example	547

Metropolis-Hastings	550

minimisation	549

travelling	salesman	554

multi-dimensional	arrays	148

multiprocessing	module	583

ndimage	module	368

Needleman-Wunsch	alignment	221

negative	binomial	distribution	437

neural	network	518,	523

prediction	527

sequence	example	531

training	525,	528

None	value	25

normal	distribution	467

normal	tailed	test	469

NOT	operation	49

nucleotides	184

null	hypothesis	456

null	value	see	None	value

NumPy	arrays	148

array()	function	150,	646

comparing	178

creation	151

data	types	151

element-wise	operations	151

FFT	388

image	pixmaps	366

inbuilt	methods	153

indexing,	slicing	152

mathematics	functions	152

mean	value	459

ndarray	object	150

numeric	148

range	153

size,	shape	151

sorting	152

standard	deviation	461

variance	461

numpy	module	645

numpy.linalg	module	301

object	orientation	100

objects

attribute	cardinality	122

attribute	getters,	setters	132

attributes	105

class	information	114

custom	classes	102

key	identifier	121

parent-child	links	124

types	115

one-tail	test	463

open()	function	81

optimisation

Monte	Carlo	549

SciPy	396

simulated	annealing	560

optimising	speed	602

OR	operation	49

os	module	97,	636

os.path	module	97,	638

outer	product	398

parallel	processing	583

passive	substitutions	275

PDB	files	129

downloading	287

Pearson’s	chi-squared	test	476

Pearson’s	correlation	coefficient	481

percent	point	function	475–476

performance	162

phylogenetic	trees

construction	263

neighbour-joining	263

philosophy	251

pickle	module	99,	640

pie	charts	143

plots	141

Poisson	distribution	435

Poisson	test	467

pow()	function	165

principal	component	analysis	504

print	statement	20

print()	function	20

probability

basics	423

Bayes’	theorem	429

binomial	distribution	431

combining	426

conditional	428

geometric	distribution	436

hidden	Markov	models	442

Markov	chains	438

negative	binomial	distribution	437

Poisson	distribution	435

posterior	430

prior	430

probability	density	function	467

property()	function	135

proteins

backbone	angles	294

estimating	charge	202

hydrophobicity	196

isoelectric	point	200

membranes	281

primary	structure	281

quaternary	structure	281

Ramachandran	plot	296

residue	similarity	216

secondary	structure	281

structure	279

structure	hierarchy	281

tertiary	structure	281

PyMol	314

PySide	module	577

Python	3

dictionary	views	40

division	26

print()	function	20

rounding	numbers	141

Python	installation	18

Qt	graphics	577

Qt	signals	and	slots	578

quantile	normalisation	332

quitting	a	program	61

R	statistical	package	668

raise	statement	59

Ramachandran	plot	296

random	module	636

range()	function	54

regular	expressions	658

code	syntax	665

re	module	658,	666

relative	entropy	198

residues	182

return	statement	66

reverse	complement	69

RGB	colour	model	362

RGBA	colour	model	362

RNA	185

root-mean-square	deviation	302

rotation	matrix	155

round()	function	140

rounding	numbers	140

RPy	668

SAM	files

creation	with	Bowtie	353

reading	357

scatter	plots	142

scipy.optimise	module	396

scipy.stats	module	431

scope	of	variables	72

self	variable	103,	121

self-organising	map	518,	520

sequence	collection	types	621

sequence	complexity	197

sequences

alignment	208

alignment	score	218

annotation	files	358

consensus	233

conservation	253

conservation,	substitution	272

database	fetching	206

distance	matrix	265

genome	data	344

genome	indexing	349

genomic	mapping	351

HMM	example	449

identity	score	214

pairwise	alignment	221

profile	235

quality	scores	352

reading	from	file	205

similarity	score	215,	217

variation	mechanisms	244

vector	representation	532

writing	to	file	206

setattr()	function	114

sets	33

adding,	removing	items	38

membership	38

operations	38,	170,	627

restrictions	33

size	38

shutil	module	641

signals

peak	finding	393

peak	fitting	395

plotting	384

simulation	384

spectrum	peaks	389

simulated	annealing	557

sin()	function	139

singular	value	decomposition	301

slicing

lists,	tuples	35

NumPy	arrays	152

strings	28

speed	improvement	162

splitting	text	strings	29

SQL	401

basics	403

databases	see	databases

injection	attack	412

Python	modules	403

running	404

sqrt()	function	138

standard	normal	distribution	470

standard	Python	functions	614

standard	score	470

statement	23

statistical	error	456

statistics

binomial	test	464

categorical	counts	477

CDF	466

chi-squared	test	476

confidence	interval	475

correlation	481

covariance	480

error	function	471

G-test	479

hypothesis	testing	462

likelihood	ratio	479

linear	regression	484

mean	459

median	458

mode	458

normal	distribution	467

normal	tailed	test	469

one-sample	T-test	474

one-tail	test	463

PDF	467

Poisson	test	467

PPF	476

probability	intervals	475

p-values	463

skewness	462

standard	deviation	461

standard	error	of	mean	462

survival	function	466

tail	tests	463

T-tests	472

two-sample	T-test	474

two-tail	test	463

variance	460

Welch’s	T-test	474

Z-score	470

stopping	a	program	61

string	module	634

strings

data	type	25

formatting	31,	653

formatting,	new-style	654

joining	167

methods	622

operations	621

quotation	marks	25

triple	quotes	25

structures	286

affine	transform	292

atomic	distances	293

backbone	alignment	309

centre	of	mass	288

centring	300

coordinate	alignment	299,	301

coordinate	arrays	290

data	model	classes	119

dihedral	angle	294

downloading	287

ensemble	alignment	304

homologous	alignment	308

loading	288

mirroring	288

one-letter	sequence	309

PyMol	visualisation	314

RMSD	302

rotation	290–291

SQL	database	406

sub-selections	297

torsion	angle	294

subclassing	105,	115

constructor	110

subprocess	module	226

substitution	matrices	215–216

calculating	258

substitution	rates	272

substrings	28

support	vector	machines	534,	541

sys	module	640

sys.argv	attribute	84

text	functions	622

textual	data	see	Strings:	data	type

thumbnail	images	366

time	module	641

timing	performance	163

tkinter	module	570

torsion	angle	157

transcription	185

translate()	function	70,	167

translation,	of	codons	185,	190

travelling	salesman	problem	552

trigonometric	functions	139

triple-quoted	string	25

True	value	47

try	statement	58

T-statistic	472

T-tests	472

tuples	32

manipulation	34

membership	35

operations	621

two-tailed	test	463

type	checking	177

type	classes	115

type()	function	25,	115

types	module	177

undefined	value	see	None	value

urllib	module	287,	345

urlopen()	function	288,	345

variables	23

as	attributes	105

naming	23

naming	convention	160

scope	72

self	106

swapping	165

vector	distance	516

vector	space	144

Viterbi	algorithm	443

while	loops	52

whitespace

in	Python	code	22

removal	29

splitting	on	84

with	statement	83

XML	files	90,	229

zip()	function	164,	169

Z-score	470

	Half title page
	Title page
	Copyright page
	Contents
	Preface
	Acknowledgements
	1 Prologue
	Python programming for biology

	2 A beginners’ guide
	Programming principles
	Basic data types
	Program flow

	3 Python basics
	Introducing the fundamentals
	Simple data types
	Collection data types
	Importing modules

	4 Program control and logic
	Controlling command execution
	Conditional execution
	Loops
	Error exceptions
	Further considerations

	5 Functions
	Function basics
	Input arguments
	Variable scope
	Further considerations

	6 Files
	Computer files
	Reading files
	File reading examples
	Writing files
	Further considerations

	7 Object orientation
	Creating classes
	Further details

	8 Object data modelling
	Data models
	Implementing a data model
	Refined implementation

	9 Mathematics
	Using Python for mathematics
	Linear algebra
	NumPy package
	Linear algebra examples

	10 Coding tips
	Improving Python code
	A compendium of tips

	11 Biological sequences
	Bio-molecules for non-biologists
	Using biological sequences in computing
	Simple sub-sequence properties
	Obtaining sequences with BioPython

	12 Pairwise sequence alignments
	Sequence alignment
	Calculating an alignment score
	Optimising pairwise alignment
	Quick database searches

	13 Multiple-sequence alignments
	Multiple alignments
	Alignment consensus and profiles
	Generating simple multiple alignments in Python
	Interfacing multiple-alignment programs

	14 Sequence variation and evolution
	A basic introduction to sequence variation
	Similarity measures
	Phylogenetic trees

	15 Macromolecular structures
	An introduction to 3D structures of bio-molecules
	Using Python for macromolecular structures
	Coordinate superimposition
	External macromolecular structure modules

	16 Array data
	Multiplexed experiments
	Reading array data
	The ‘Microarray’ class
	Array analysis

	17 High-throughput sequence analyses
	High-throughput sequencing
	Mapping sequences to a genome
	Using the HTSeq library

	18 Images
	Biological images
	Basic image operations
	Adjustments and filters
	Feature detection

	19 Signal processing
	Signals
	Fast Fourier transform
	Peaks

	20 Databases
	A brief introduction to relational databases
	Basic SQL
	Designing a molecular structure database

	21 Probability
	The basics of probability theory
	Restriction enzyme example
	Random variables
	Markov chains

	22 Statistics
	Statistical analyses
	Simple statistical parameters
	Statistical tests
	Correlation and covariance

	23 Clustering and discrimination
	Separating and grouping data
	Clustering methods
	Data discrimination

	24 Machine learning
	A guide to machine learning
	k-nearest neighbours
	Self-organising maps
	Feed-forward artificial neural networks
	Support vector machines

	25 Hard problems
	Solving hard problems
	The Monte Carlo method
	Simulated annealing

	26 Graphical interfaces
	An introduction to graphical user interfaces
	Python GUI examples

	27 Improving speed
	Running things faster
	Parallelisation
	Writing faster modules

	Appendices
	Appendix 1 Simplified language reference
	Appendix 2 Selected standard type methods and operations
	Appendix 3 Standard module highlights
	Appendix 4 String formatting
	Appendix 5 Regular expressions
	Appendix 6 Further statistics
	Glossary
	Index

