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Preface to the Second Edition

There is a lot that is different about this second edition. First, there is a co-author,
without whose help this revision would not have been possible. Second, we have
benefited from countless letters from readers and colleagues who have pointed out
errors and omissions and have made valuable suggestions over the past 25 years.
These communications make this revision worth the effort. Third, we have tried to
update the content of the book while striving to preserve the character and spirit of
the first edition.
Here are some of the numerous changes that have been made:

1.

2.

The Introduction section has been removed. We have also removed Chapter
14 on sequential statistical inference.

Many parts of the book have undergone substantial rewriting. For example,
Chapter 4 has many changes, such as inclusion of exchangeability. In Chapter
3 an introduction to characteristic functions has been added, in Chapter 5
some new distributions have been added, and in Chapter 6 there have been
many changes in proofs.

. The statistical inference part of the book (Chapters 8 to 13) has been updated.

Thus in Chapter 8 we have expanded the coverage of invariance and have
included discussions of ancillary statistics and conjugate prior distributions.

. Similar changes have been made in Chapter 9. A new section on locally most

powerful tests has been added.

. Chapter 11 has been greatly revised and a discussion of invariant confidence

intervals has been added.

. Chapter 13 has been completely rewritten in the light of increased emphasis

on nonparametric inference. We have expanded the discussion of U-statistics.
Later sections show the connection between commonly used tests and U-
statistics.

. In Chapter 12, the notation has been changed to confirm to the current con-

vention.
Many problems and examples have been added.



xii PREFACE TO THE SECOND EDITION

9. More figures have been added to illustrate examples and proofs.
10. Answers to selected problems have been provided.

We are truly grateful to the readers of the first edition for countless comments and
suggestions and hope we will continue to hear from them about this edition. Please
direct your comments to vrohatg @attglobal.net or to saleh@math.carleton.ca.

Special thanks are due Ms. Gillian Murray for her superb word processing of the
manuscript, and Dr. Indar Bhatia for figures that appear in the text. Dr. Bhatia spent
countless hours preparing the diagrams for publication. We also acknowledge the
assistance of Dr. K. Selvavel.

VIJAY K. ROHATGI
A. K. Md. EHSANES SALEH



Preface to the First Edition

This book on probability theory and mathematical statistics is designed for a three-
quarter course meeting four hours per week or a two-semester course meeting three
hours per week. It is designed primarily for advanced seniors and beginning grad-
uate students in mathematics, but it can also be used by students in physics and
engineering with strong mathematical backgrounds. Let me emphasize that this is a
mathematics text and not a “cookbook.” It should not be used as a text for service
courses.

The mathematics prerequisites for this book are modest. It is assumed that the
reader has had basic courses in set theory and linear algebra and a solid course in
advanced calculus. No prior knowledge of probability and/or statistics is assumed.

My aim is to provide a solid and well-balanced introduction to probability theory
and mathematical statistics. It is assumed that students who wish to do graduate
work in probability theory and mathematical statistics will be taking, concurrently
with this course, a measure-theoretic course in analysis if they have not already had
one. These students can go on to take advanced-level courses in probability theory
or mathematical statistics after completing this course.

This book consists of essentially three parts, although no such formal divisions
are designated in the text. The first part consists of Chapters 1 through 6, which
form the core of the probability portion of the course. The second part, Chapters 7
through 11, covers the foundations of statistical inference. The third part consists of
the remaining three chapters on special topics. For course sequences that separate
probability and mathematical statistics, the first part of the book can be used for a
course in probability theory, followed by a course in mathematical statistics based
on the second part and, possibly, one or more chapters on special topics.

The reader will find here a wealth of material. Although the topics covered are
fairly conventional, the discussions and special topics included are not. Many pre-
sentations give far more depth than is usually the case in a book at this level. Some
special features of the book are the following:

1. A well-referenced chapter on the preliminaries.

2. About 550 problems, over 350 worked-out examples, about 200 remarks, and
about 150 references.



xiv

10.
I1.

PREFACE TO THE FIRST EDITION

An advance warning to readers wherever the details become too involved.
They can skip the later portion of the section in question on first reading
without destroying the continuity in any way.

Many results on characterizations of distributions (Chapter 5).

Proof of the central limit theorem by the method of operators and proof of
the strong law of large numbers (Chapter 6).

A section on minimal sufficient statistics (Chapter 8).
A chapter on special tests (Chapter 10).

A careful presentation of the theory of confidence intervals, including
Bayesian intervals and shortest-length confidence intervals (Chapter 11).

A chapter on the general linear hypothesis, which carries linear models
through to their use in basic analysis of variance (Chapter 12).

Sections on nonparametric estimation and robustness (Chapter 13).
Two sections on sequential estimation (Chapter 14).

The contents of this book were used in a one-year (two-semester) course that I
taught three times at the Catholic University of America and once in a three-quarter
course at Bowling Green State University. In the fall of 1973 my colleague, Professor
Eugene Lukacs, taught the first quarter of this same course on the basis of my notes,
which eventually became this book. I have always been able to cover this book (with
few omissions) in a one-year course, lecturing three hours a week. An hour-long
problem session every week is conducted by a senior graduate student.

In a book of this size there are bound to be some misprints, errors, and ambiguities
of presentation. I shall be grateful to any reader who brings these to my attention.

V. K. ROHATGI

Bowling Green, Ohio
February 1975
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Enumeration of Theorems
and References

The book is divided into 13 chapters, numbered 1 through 13. Each chapter is divided
into several sections. Lemmas, theorems, equations, definitions, remarks, figures, and
so on, are numbered consecutively within each section. Thus Theorem i.j.k refers
to the kth theorem in Section j of Chapter i, Section i.j refers to the jth section of
Chapter {, and so on. Theorem j refers to the jth theorem of the section in which it
appears. A similar convention is used for equations except that equation numbers are
enclosed in parentheses. Each section is followed by a set of problems for which the
same numbering system is used.

References are given at the end of the book and are denoted in the text by numbers
enclosed in square brackets, [ ]. If a citation is to a book, the notation ([i, p. j])
refers to the jth page of the reference numbered {i].

A word about the proofs of results stated without proof in this book: If a reference
appears immediately following or preceding the statement of a result, it generally
means that the proof is beyond the scope of this text. If no reference is given, it
indicates that the proof is left to the reader. Sometimes the reader is asked to supply
the proof as a problem.
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CHAPTER 1

Probability

1.1 INTRODUCTION

The theory of probability had its origin in gambling and games of chance. It owes
much to the curiosity of gamblers who pestered their friends in the mathematical
world with all sorts of questions. Unfortunately, this association with gambling con-
tributed to very slow and sporadic growth of probability theory as a mathematical
discipline. The mathematicians of the day took little or no interest in the develop-
ment of any theory but looked only at the combinatorial reasoning involved in each
problem.

The first attempt at some mathematical rigor is credited to Laplace. In his monu-
mental work, Theorie analytique des probabilités (1812), Laplace gave the classical
definition of the probability of an event that can occur only in a finite number of
ways as the proportion of the number of favorable outcomes to the total number of
all possible outcomes, provided that all the outcomes are equally likely. According
to this definition, computation of the probability of events was reduced to combina-
torial counting problems. Even in those days, this definition was found inadequate.
In addition to being circular and restrictive, it did not answer the question of what
probability is; it only gave a practical method of computing the probabilities of some
simple events.

An extension of the classical definition of Laplace was used to evaluate the prob-
abilities of sets of events with infinite outcomes. The notion of equal likelihood of
certain events played a key role in this development. According to this extension,
if €2 is some region with a well-defined measure (length, area, volume, etc.), the
probability that a point chosen at random lies in a subregion A of Q is the ratio
measure(A)/measure(£2). Many problems of geometric probability were solved us-
ing this extension. The trouble is that one can define at random in any way one
pleases, and different definitions lead to different answers. For example, Joseph
Bertrand, in his book Calcul des probabilités (Paris, 1889), cited a number of prob-
lems in geometric probability where the result depended on the method of solution.
In Example 1.3.9 we discuss the famous Bertrand paradox and show that in reality
there is nothing paradoxical about Bertrand’s paradoxes; once we define probability

1



2 PROBABILITY

spaces carefully, the paradox is resolved. Nevertheless, difficulties encountered in
the field of geometric probability have been largely responsible for the slow growth
of probability theory and its tardy acceptance by mathematicians as a mathematical
discipline.

The mathematical theory of probability as we know it today is of comparatively
recent origin. It was A. N, Kolmogorov who axiomatized probability in his funda-
mental work, Foundations of the Theory of Probability (Berlin), in 1933. According
to this development, random events are represented by sets and probability is just a
normed measure defined on these sets. This measure-theoretic development not only
provided a logically consistent foundation for probability theory but also joined it to
the mainstream of modern mathematics.

In this book we follow Kolmogorov’s axiomatic development. In Section 1.2 we
introduce the notion of a sample space. In Section 1.3 we state Kolmogorov’s axioms
of probability and study some simple consequences of these axioms. Section 1.4 is
devoted to the computation of probability on finite sample spaces. Section 1.5 deals
with conditional probability and Bayes rule, and Section 1.6 examines the indepen-
dence of events.

1.2 SAMPLE SPACE

In most branches of knowledge, experiments are a way of life. In probability and
statistics, too, we concern ourselves with special types of experiments. Consider the
following examples.

Example 1. A coin is tossed. Assuming that the coin does not land on the side,
there are two possible outcomes of the experiment: heads and tails. On any perfor-
mance of this experiment, one does not know what the outcome will be. The coin
can be tossed as many times as desired.

Example 2. A roulette wheel is a circular disk divided into 38 equal sectors num-
bered from O to 36 and 00. A ball is rolled on the edge of the wheel, and the wheel is
rolled in the opposite direction. One bets on any of the 38 numbers or some combi-
nation of thern. One can also bet on a color, red or black. If the ball lands in the sector
numbered 32, say, anybody who bet on 32, or a combination including 32, wins; and
so on. In this experiment, all possible outcomes are known in advance, namely 00,
0,1,2,...,36, but on any performance of the experiment there is uncertainty as to
what the outcome will be, provided, of course, that the wheel is not rigged in any
manner. Clearly, the wheel can be rolled any number of times.

Example 3. A manufacturer produces 12-in rulers. The experiment consists in
measuring as accurately as possible the length of a ruler produced by the manufac-
turer. Because of errors in the production process, one does not know what the true
length of the ruler selected will be. It is clear, however, that the length will be, say,
between 11 and 13 in., or, if one wants to be safe, between 6 and 18 in.
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Example 4. The length of life of a light bulb produced by a certain manufacturer
is recorded. In this case one does not know what the length of life will be for the
light bulb selected, but clearly one is aware in advance that it will be some number
between 0 and oo hours.

The experiments described above have certain common features. For each exper-
iment, we know in advance all possible outcomes; that is, there are no surprises in
store after any performance of the experiment. On any performance of the exper-
iment, however, we do not know what the specific outcome will be; that is, there
is uncertainty about the outcome on any performance of the experiment. Moreover,
the experiment can be repeated under identical conditions. These features describe a
random (or statistical) experiment.

Definition 1. A random (or statistical) experiment is an experiment in which:

(a) All outcomes of the experiment are known in advance.

(b) Any performance of the experiment results in an outcome that is not known
in advance.
(c) The experiment can be repeated under identical conditions.

In probability theory we study this uncertainty of a random experiment. It is con-
venient to associate with each such experiment a set €2, the set of all possible out-
comes of the experiment. To engage in any meaningful discussion about the exper-
iment, we associate with  a o-field S of subsets of §2. We recall that a o-field is
a nonempty class of subsets of £ that is closed under the formation of countable
unions and complements and contains the null set @.

Definition 2. The sample space of a statistical experiment is a pair (€2, S), where

(a) K is the set of all possible outcomes of the experiment.
(b) S is a o-field of subsets of §2.

The elements of 2 are called sample points. Any set A € S is known as an
event. Clearly, A is a collection of sample points. We say that an event A happens
if the outcome of the experiment corresponds to a point in A. Each one-point set is
known as a simple or elementary event. If the set 2 contains only a finite number of
points, we say that (2, S) is a finite sample space. If Q contains at most a countable
number of points, we call (2, S) a discrete sample space. If, however, Q contains
uncountably many points, we say that (2, 8) is an uncountable sample space. In
particular, if Q@ = Ry or some rectangle in Ry, we call it a continuous sample space.

Remark 1. The choice of S is an important one, and some remarks are in order.
If © contains at most a countable number of points, we can always take S to be the
class of all subsets of €. This is certainly a o-field. Each one-point set is a member
of § and is the fandamental object of interest. Every subset of €2 is an event. If Q
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has uncountably many points, the class of all subsets of €2 is still a o-field, but it is
much too large a class of sets to be of interest. One of the most important examples
of an uncountable sample space is the case in which Q = R or  is an interval in R.
In this case we would like all one-point subsets of €2 and all intervals (closed, open,
or semiclosed) to be events. We use our knowledge of analysis to specify S. We will
not go into detail here except to recall that the class of all semiclosed intervals (a, b]
generates a class B that is a o-field on R. This class contains all one-point sets and
all intervals (finite or infinite). We take S = 9. Since we will be dealing mostly
with the one-dimensional case, we write B instead of 8. There are many subsets
of R that are not in B, but we do not demonstrate this fact here. We refer the reader
to Halmos [39], Royden [94], or Kolmogorov and Fomin [52] for further details.

Example 5. Let us toss a coin. The set €2 is the set of symbols H and T, where H
denotes head and T represents tail. Also, S is the class of all subsets of €2, namely,
{{H]}, {T}, {H, T}, @}. If the coin is tossed two times, then

Q = {(H,H), (H, T), (T, H), (T, D},
and

S = {0, ((H, D}, {(H, D}, (T, M}, {(T, D}, {(H, H), (H, D}, {(H, H), (T, H)},
{(H, ), (T, D} {(H, ), (T, B}, {(T, D, (T, B}, {(T, T),
H, D}, {H, H), H,T), (T, D}, {H, H), H, T), (T, D},
{(H, H), (T, H), (T, D}, {H, D), (T, H), (T, D}, 2},
where the first element of a pair denotes the outcome of the first toss, and the second
element, the outcome of the second toss. The event at least one head consists of

sample points (H, H), (H, T), (T, H). The event at most one head is the collection of
sample points (H, T), (T, H), (T, T).

Example 6. A die is rolled n times. The sample space is the pair (2, S), where
Q is the set of all n-tuples (x1, x2,... ,%n), Xi € {1,2,3,4,5,6},i = 1,2,... ,n,
and S is the class of all subsets of 2. £ contains 6" elementary events. The event A
that 1 shows at least once is the set
A= {(x1,x2,...,xn): at least one of x;’s is 1}
= Q — {(x1, x2, ..., xn): none of the x;’s is 1}

=Q—{(x1,x2,...,x):x; € {2,3,4,5,6}, i =1,2,... ,n}
Example 7. A coin is tossed until the first head appears. Then

Q={H, (T, H),T,T,H,TTTH),..}
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and S is the class of all subsets of 2. An equivalent way of writing Q2 would be to
look at the number of tosses required for the first head. Clearly, this number can take
values 1,2, 3, ..., so that R is the set of all positive integers. Thus S is the class of
all subsets of positive integers.

Example 8. Consider a pointer that is free to spin about the center of a circle.
If the pointer is spun by an impulse, it will finally come to rest at some point. On
the assumption that the mechanism is not rigged in any manner, each point on the
circumference is a possible outcome of the experiment. The set 2 consists of all
points 0 < x < 2mr, where r is the radius of the circle. Every one-point set {x} is
a simple event, namely, that the pointer will come to rest at x. The events of interest
are those in which the pointer stops at a point belonging to a specified arc. Here S is
taken to be the Borel o -field of subsets of [0, 277).

Example 9. A rod of length [ is thrown onto a flat table, which is ruled with
parallel lines at distance 2/. The experiment consists in noting whether or not the rod
intersects one of the ruled lines.

Let r denote the distance from the center of the rod to the nearest ruled line, and
let 8 be the angle that the axis of the rod makes with this line (Fig. 1). Every outcome
of this experiment corresponds to a point (7, #) in the plane. As 2 we take the set of
all points (r,8) in {(r,0): 0 <r <1,0 <6 < x}. For § we take the Borel o-field,
B,, of subsets of €2, that is, the smallest o-field generated by rectangles of the form

{x,y):a<x<bc<y<d0<a<b<l,0<c<d<nl

2/ 2

2

Fig. 1.
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Fig. 2.

Clearly, the rod will intersect a ruled line if and only if the center of the rod lies in
the area enclosed by the locus of the center of the rod (while one end touches the
nearest line) and the nearest line (shaded area in Fig. 2).

Remark 2. From the discussion above it should be clear that in the discrete case
there is really no problem. Every one-point set is also an event, and § is the class of
all subsets of 2. The problem, if there is any, arises only in regard to uncountable
sample spaces. The reader has to remember only that in this case not all subsets of
2 are events. The case of most interest is the one in which £2 = Ry. In this case
roughly all sets that have a well-defined volume (or area or length) are events. Not
every set has the property in question, but sets that lack it are not easy to find and
one does not encounter them in practice.

PROBLEMS 1.2

1. A club has five members, A, B, C, D, and E. It is required to select a chairman
and a secretary. Assuming that one member cannot occupy both positions, write
the sample space associated with these selections. What is the event that member
A is an officeholder?

2. In each of the following experiments, what is the sample space?

(a) In a survey of families with three children, the genders of the children are
recorded in increasing order of age.

(b) The experiment consists of selecting four items from a manufacturer’s output
and observing whether or not each item is defective.
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(c) A given book is opened to any page, and the number of misprints is counted.

(d) Two cards are drawn from an ordinary deck of cards (i) with replacement,
and (ii) without replacement.

3. Let A, B, C be three arbitrary events on a sample space (2, §). What is the event
that only A occurs? What is the event that at least two of A, B, C occur? What is
the event that both A and C, but not B, occur? What is the event that at most one
of A, B, C occurs?

1.3 PROBABILITY AXIOMS

Let (€2, S) be the sample space associated with a statistical experiment. In this sec-
tion we define a probability set function and study some of its properties.

Definition 1. Let (2, S) be a sample space. A set function P defined on S is
called a probability measure (or simply, probability) if it satisfies the following con-
ditions:

(i) P(A) >0forallA € S.
Gi) P(Q) =1.
(iii) Let {A;}, Aj € S, j = 1,2,..., be a disjoint sequence of sets; that is,
AjN A =@ for j # k, where ) is the null set. Then

(1 P(ZAj) =Y P(Ap,
Jj=I1 j=1

where we have used the notation Zi‘;l Aj to denote union of disjoint sets
A;
-

We call P(A) the probability of event A. If there is no confusion, we will write
P A instead of P(A). Property (iii) is called countable additivity. That P@ = 0 and
P is also finitely additive follows from it.

Remark 1. 1f Q is discrete and contains at most n (< 00) points, each single-
point set {w;}, j = 1,2, ..., n, is an elementary event, and it is sufficient to assign
probability to each {w;}. Then if A € S, where § is the class of all subsets of €,
PA = Y .4 P{w}. One such assignment is the equally likely assignment or the
assignment of uniform probabilities. According to this assignment, P{w;} = 1/n,
j=1,2,...,n. Thus PA = m/n if A contains m elementary events, 1 <m < n.

Remark 2. If Q is discrete and contains a countable number of points, one can-
not make an equally likely assignment of probabilities. It suffices to make the assign-
ment for each elementary event. If A € S, where S is the class of all subsets of €2,
define PA =3, 4 Plw}.
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Remark 3. If 2 contains uncountably many points, each one-point set is an ele-
mentary event, and again one cannot make an equally likely assignment of probabili-
ties. Indeed, one cannot assign positive probability to each elementary event without
violating the axiom P2 = 1. In this case one assigns probabilities to compound
events consisting of intervals. For example, if 2 = [0, 1] and S is the Borel o-field
of all subsets of €2, the assignment P[I] = length of I, where I is a subinterval of
2, defines a probability.

Definition 2. The triple (§2, S, P) is called a probability space.

Definition 3. Let A € S. We say that the odds for Aareatobif PA = a/(a+b),
and then the odds against A are b to a.

In many games of chance, probability is often stated in terms of odds against an
event. Thus in horse racing a two-dollar bet on a horse to win with odds of 2 to 1
(against) pays approximately six dollars if the horse wins the race. In this case the
probability of winning is %

Example 1. Let us toss a coin. The sample space is (2, S), where Q = {H, T}
and S is the o-field of all subsets of 2. Let us define P on S as follows:

PH}=1 and P({T}=1].

Then P clearly defines a probability. Similarly, P{H} = %, P{T} = }, and P{H} =
1, P{T} = O are probabilities defined on . Indeed,

PH}=p and P{T}=1-p (O=<p=l
defines a probability on (€2, S).

Example 2. Let Q@ = {1, 2, 3, ...} be the set of positive integers, and let S be the
class of all subsets of £2. Define P on S as follows:

Then } {2, P{i} = 1, and P defines a probability.

Example 3. Let @ = (0, 00) and S = ‘B, the Borel o-field on 2. Define P as
follows: For each interval I C £,

Pl =/e_x dx.
I

Clearly, PI > 0, P2 = 1, and P is countably additive by properties of integrals.
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Theorem 1. P is monotone and subtractive; thatis, if A, B € S and A C B, then
PA < PBand P(B— A) = PB — PA, where B— A = B N A°, A€ being the
complement of the event A.

Proof. 1f A C B, then
and it follows that PB = PA + P(B — A).

Corollary. ForaliA € 5,0 < PA < 1.

Remark 4. 'We wish to emphasize that if PA = 0 forsome A € S, we call A an
event with zero probability or a null event. However, it does not follow that A = @.
Similarly, if PB = 1 for some B € S, we call B a certain event, but it does not
follow that B = €.

Theorem 2 (Addition Rule). If A, B € S, then
2 P(AUB)=PA+ PB - P(ANB).

Proof. Clearly,

AUB=(A-B)+(B—-A+(ANB)
and
A=(ANB)Y+(A—B),B=(ANB)+ (B — A).
The result follows by countable additivity of P.
Corollary 1. P is subadditive, that is, if A, B € S, then

3) P(AUB)< PA+ PB.

Corollary 1 can be extended to an arbitrary number of events A ;,

“ P(UAj)SZPAj.
Jj j
Corollary 2. If B = A°, then A and B are disjoint and
é) PA=1— PA".

The following generalization of (2) is left as an exercise.
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Theorem 3 (Principle of Inclusion—-Exclusion). Let Aj, A2,... , A, € 8.
Then

n

(6) P(O Ak) = Zn: PAc— Y P(Ak N Ag,)
k=1 k=1

k1<k2

n

+ ) P(Ak N AL N Ay)
k1 <ky<k3

+---+(~1)"+‘P([']A,,).

k=1

Example 4. A die is rolled twice. Let all the elementary events in Q = {(i, j):
i,j = 1,2,...,6} be assigned the same probability. Let A be the event that the
first throw shows a number < 2, and B be the event that the second throw shows at
least 5. Then

A={(, H:1<i=<2 j=1,2,...,6},
B={(ij):5<j<6,i=12,...,6}
AN B ={(1,5),(1,6),(2,5).(2,6)}
and
P(AUB)=PA+ PB—P(ANB)
1,1 __4 _5
=3+t373% =%
Example 5. A coin is tossed three times. Let us assign equal probability to each

of the 23 elementary events in Q. Let A be the event that at least one head shows up
in three throws. Then

P(A) =1— P(A%)
= 1 — P(no heads)
=1-P(TTD) = §.

We next derive two useful inequalities.

Theorem 4 (Bonferroni’s Inequality). Given n (> 1) events Ay, Az, ..., Ay,

(7 iPAi—ZP(A,-ﬂAj)sP(OA,) siPA,-.
i=l1 i=1 i=1

i<j
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Proof. In view of (4), it suffices to prove the left side of (7). The proof is by
induction. The inequality on the left is true for n = 2 since

PA1 + PAy — P(A1NAy) = P(A1 U Ag).
Forn =3,
3 3
P(U A,-) =) PAi— ) P(A;NA)+P(AIN AN A3),
i=1 i=1 i<j

and the result holds. Assuming that (7) holds for 3 < m < n — 1, we show that it
also holds for m + 1:

m-+1 m
P<U Ai) = P(( Ai) UAm+1)
m m
= P<U Ai) + PApyr— P(Am+1 A (U Ai)>
i=1 1
m+1 m m
> Y PAi =) P(ANA)- P(U(A,- n Am+1))
i=1 i<j i=1
m+1 m m
>3 PA - P(AiNA) =Y P(AiN Ans1)
i=1 i<j i=1
m+-1 m+1
=D PA— ) P(ANA).
i=l1 i<j

Theorem 5 (Boole’s Inequality). For any two events A and B,

‘) P(ANBY>1—- PA° ~ PB-.

Corollary 1. Let{A;}, j = 1,2, ..., be a countable sequence of events; then
) P(NAj) > 1 — Z P(AS).

Proof. Take

oo
B=()4, and A=a4,
j=2

in (8).
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Corollary 2 (Implication Rule). If A, B, C € S and A and B imply C, then
(10) PC° < PA° + PB°.

Let {A,} be a sequence of sets. The set of all points w € 2 that belong to A,
for infinitely many values of n is known as the limit superior of the sequence and is
denoted by

limsupA, or lim A,.
n—oo n—00

The set of all points that belong to A, for all but a finite number of values of n is
known as the limit inferior of the sequence {A,} and is denoted by

lim infA, or lim A,.

n—co n— 00

If

lim A, = 11m Ay,
n—o0 n—

we say that the limit exists and write lim,_, o0 A, for the common set and call it the
limit set.
We have

[ oo
liﬂAn=UnAkgﬂ nEr—goAm

00 n=1k=n

i Cg

If the sequence {A,} is such that A, € A,y1, forn = 1,2,..., itis called nonde-
creasing; if A, D Ap41,n = 1,2, ..., itis called nonincreasing. If the sequence A,
is nondecreasing, we write A, ¥; if A, is nonincreasing, we write A, §. Clearly, if
Ap ¥ or A, }, the limit exists and we have

o0
lim A, = UA,, if An ¥
n n=1
and
o0
imA, =[)A4. ifA. 7.
n
n=l

Theorem 6. Let {A,} be a nondecreasing sequence of events in S; that is, A, €
S,n=12,...,and

Ap D An_t, n=273,....
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Then
o0
(an tim PA, = P( tim A,,) = P(U1 A,,) .
n=
Proof. Let
oo
= U A
j=1
Then

(e8]
A=Ap+ Y (Ajy1 — Ap).

j=n

By countable additivity we have

o0
PA=PAy+) P(Ajri—Aj.

j=n

and letting n — co, we see that
o0
PA= lim PA, +ngrxgoz P(Aj1— Aj).
j=n

The second term on the right tends to zero as n — 00 since the sum Z‘f’:, P(Aj1—
A;) < 1 and each summand is nonnegative. The result follows.

Corollary. Let {A,} be a nonincreasing sequence of events in S. Then

oo
(12) Jlim PA, = P(n]lrgo A,,) = P(’Q A,,) .
Proof. Consider the nondecreasing sequence of events {AS}. Then

o0
lim AS = U AS = A,

n—o0

It follows from Theorem 6 that

=g ) = (1) = s
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In other words,

lim (1 — PA,) =1—- PA,

n—00

as asserted.

Remark 5. Theorem 6 and its corollary will be used quite frequently in subse-
quent chapters. Property (11) is called the continuity of P from below, and (12) is
known as the continuity of P from above. Thus Theorem 6 and its corollary assure
us that the set function P is continuous from above and below.

We conclude this section with some remarks concerning the use of the word ran-
dom in this book. In probability theory random has essentially three meanings. First,
in sampling from a finite population, a sample is said to be a random sample if at
each draw all members available for selection have the same probability of being
included. We discuss sampling from a finite population in Section 1.4. Second, we
speak of a random sample from a probability distribution. This notion is formal-
ized in Section 7.2. The third meaning arises in the context of geometric probability,
where statements such as “a point is chosen randomly from the interval (a, b)” and
“a point is picked randomly from a unit square” are frequently encountered. Once we
have studied random variables and their distributions, problems involving geometric
probabilities may be formulated in terms of problems involving independent uni-
formly distributed random variables, and these statements can be given appropriate
interpretations.

Roughly speaking, these statements involve a certain assignment of probability.
The word random expresses our desire to assign equal probability to sets of equal
lengths, areas, or volumes. Let Q C R, be a given set, and A be a subset of ©2. We
are interested in the probability that a randomly chosen point in 2 falls in A. Here
randomly chosen means that the point may be any point of €2 and that the probability
of its falling in some subset A of €2 is proportional to the measure of A (independent
of the location and shape of A). Assuming that both A and 2 have well-defined finite
measures (length, area, volume, etc.), we define

PA— measure(A) .
measure($2)

[in the language of measure theory we are assuming that £ is a measurable subset of
R, that has a finite, positive Lebesque measure. If A is any measurable set, PA =
w(A)/ (), where p is the n-dimensional Lebesque measure.] Thus, if a point is
chosen at random from the interval (a, b), the probability that it lies in the interval
(¢c,d),a <c <d < b,is (d—c)/(b—a). Moreover, the probability that the randomly
selected point lies in any interval of length (d — ¢) is the same.

We present some examples.

Example 6. A point is picked “at random” from a unit square. Let Q = {(x, y):
0 <x <1,0 <y < 1}. It is clear that all rectangles and their unions must be in
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{0,1)

0.0 [(1.0)
Fig. . A={(x,y):0<x< %,%Syf 1.

S; s0, too, should be all circles in the unit square, since the area of a circle is also
well defined. Indeed, every set that has a well-defined area has to be in S. We choose
S = ‘B, the Borel o-field generated by rectangles in 2. As for the probability
assignment, if A € &, we assign PA to A, where PA is the area of the set A. If
A={x,yy:0<x < %,% <y < 1},then PA = %. If B is a circle with center

(4, %) and radius }, then PB = 7()? = 7 /4.1f C is the set of all points that are at
most a unit distance from the origin, then PC = /4 (see Figs. 1 to 3).

Fig.2. B={(x,y): =+ (- =1}
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Fig.3. C = {(x,y): x>+ y* < 1}.

Example 7 (Buffon’s Needle Problem). We return to Example 1.2.9. A needle
(rod) of length / is tossed at random on a plane that is ruled with a series of parallel
lines a distance 2/ apart. We wish to find the probability that the needle will intersect
one of the lines. Denoting by r the distance from the center of the needle to the closest
line and by 0 the angle that the needle forms with this line, we see that a necessary
and sufficient condition for the needle to intersect the line is that r < (I/2) sin 6. The
needle will intersect the nearest line if and only if its center falls in the shaded region
in Fig. 1.2.2. We assign probability to an event A as follows:

PA = areaofsetA'
i
Thus the required probability is
1 ("1 1
— —sinfdf = —.
I Jo 2 sm T

Here we have interpreted at random to mean that the position of the needle is char-
acterized by a point (r, 8) which lies in the rectangle 0 < r <[,0 <60 < 7. We
have assumed that the probability that the point (r, 8) lies in any arbitrary subset of
this rectangle is proportional to the area of this set. Roughly, this means that “all po-
sitions of the midpoint of the needle are assigned the same weight and all directions
of the needle are assigned the same weight.”

Example 8. An interval of length 1, say (0, 1), is divided into three intervals by
choosing two points at random. What is the probability that the three line segments
form a triangle?

It is clear that a necessary and sufficient condition for the three segments to form
a triangle is that the length of any one of the segments be less than the sum of the
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other two. Let x, y be the abscissas of the two points chosen at random. Then we
must have either

0<x<%<y<l and y—x<%

or
0<y<%<x<1 and x~y<%—.
Th{s is precisely the shaded area in Fig. 4. It follows that the required probability
is .
4If it is specified in advance that the point x is chosen at random from (0, %), and

the point y at random from (%, 1), we must have

0<x<%, %<y<1,

and
y—x<x+1l—-y o 2(y—x)<1.
In this case the area bounded by these lines is the shaded area in Fig. 5, and it follows

that the required probability is 1.
Note the difference in sample spaces in the two computations made above.

{0,031 4 =, S, % s
(1.0 X

Fig. 4. {(x,y): 0 < x < % <y < land (y —x) < %or0<y <1 <x <1, and

2
(x—y) <3}
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X

Fig.5. {((x,y):0<x <1, I <y<land2(y —x) <1}.

Example 9 (Bertrand’s Paradox). A chord is drawn at random in the unit cir-
cle. What is the probability that the chord is longer than the side of the equilateral
triangle inscribed in the circle?

We present here three solutions to this problem, depending on how we interpret
the phrase at random. The paradox is resolved once we define the probability spaces
carefully.

SOLUTION 1. Since the length of a chord is uniquely determined by the position
of its midpoint, choose a point C at random in the circle and draw a line through C
and O, the center of the circle (Fig. 6). Draw the chord through C perpendicular to
the line OC. If I is the length of the chord with C as midpoint, {; > /3 if and only
if C lies inside the circle with center O and radius % Thus PA = 7r(%)2 T = %.

In this case Q is the circle with center O and radius 1, and the event A is the
concentric circle with center O and radius % S is the usual Borel o-field of subsets
of Q.

SOLUTION 2. Because of symmetry, we may fix one endpoint of the chord at
some point P and then choose the other endpoint Py at random. Let the probability
that P; lies on an arbitrary arc of the circle be proportional to the length of this arc.
Now the inscribed equilateral triangle having P as one of its vertices divides the
circumference into three equal parts. A chord drawn through P will be longer than
the side of the triangle if and only if the other endpoint P, (Fig. 7) of the chord lies
on that one-third of the circumference that is opposite P. It follows that the required
probability is % Inthiscase 2 = [0,27], S =B 1 NQ, and A = [27/3, 47 /3].
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.

Fig. 6.

an

Fig. 7.

SOLUTION 3. Note that the length of a chord is determined uniquely by the
distance of its midpoint from the center of the circle. Due to the symmetry of the
circle, we assume that the midpoint of the chord lies on a fixed radius, OM, of the
circle (Fig. 8). The probability that the midpoint M lies in a given segment of the
radius through M is then proportional to the length of this segment. Clearly, the
length of the chord will be longer than the side of the inscribed equilateral triangle if
the length of OM is less than radius/2. It follows that the required probability is %
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Fig. 8.

PROBLEMS 1.3

1. Let 2 be the set of all nonnegative integers and S the class of all subsets of Q.
In each of the following cases, does P define a probability on (2, §)?

(a) For A € S, let

—Ayx
e A
PA=E Pt A>0.
x€A

(b) For A € S, let

PA:Zp(l——p)", O<p<l.

x€A

(c) For A € S, let PA = 1 if A has a finite number of elements, and PA =0
otherwise.

2. Let Q = R and S = ‘B. In each of the following cases, does P define a proba-
bility on (£2, §)?

(a) For each interval /, let

Pl—/1 ! dx
- ]T!'.1+x2 '
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9.
10.

11.

12.

14

(b) Foreachinterval I, let PJ = 1if I is an interval of finite length, and PI = 0
if I is an infinite interval.

(c) For each interval I, let PI = 0if I C (—o0,1) and PI = f,(%) dx if
I C[1,00]. [If I = I} + I, where I} € (—o0,1) and I C (1, 00), then
Pl =Pl

Let A and B be two events such that B © A. What is P(A U B)? What is
P(AN B)? Whatis P(A — B)?

. In Problem 1(a) and (b), let A = {all integers > 2}, B = {all nonnegative

integers < 3}, and C = {all integers x, 3 < x < 6}. Find PA, PB, PC,
P(ANB), P(AUB), P(BUC), P(ANC),and P(BNC).

. In Problem 2(a), let A be the event A = {x: x > 0}. Find PA. Also find

Pi{x: x> 0}.

A box contains 1000 light bulbs. The probability that there is at least 1 defective
bulb in the box is 0.1, and the probability that there are at least 2 defective bulbs
is 0.05. Find the probability in each of the following cases:

(a) The box contains no defective bulbs.
(b) The box contains exactly 1 defective bulb.
(c) The box contains at most 1 defective bulb.

. Two points are chosen at random on a line of unit length. Find the probability

that each of the three line segments so formed will have a length > %.

Find the probability that the sum of two randomly chosen positive numbers (both
< 1) will not exceed 1 and that their product will be < %

Prove Theorem 3.

Let {A,} be a sequence of events such that A, — A asn — o0. Show that
PA, > PAasn — oo.

The base and altitude of a right triangle are obtained by picking points randomly
from [0, a] and [0, b], respectively. Show that the probability that the area of the
triangle so formed will be less than ab/4 is (1 4 In2)/2.

A point X is chosen at random on a line segment AB. (a) Show that the proba-
bility that the ratio of lengths AX/BX is smaller than a (a > 0) is a/(1 + a).
(b) Show that the probability that the ratio of the length of the shorter segment

to that of the larger segment is less than % is %

COMBINATORICS: PROBABILITY ON FINITE SAMPLE SPACES

In this section we restrict attention to sample spaces that have at most a finite number
of points. Let 2 = {w;, w2, ..., w,} and S be the o-field of all subsets of €. For
any A € S,
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PA= )" Ploj}.

ijA
Definition 1. An assignment of probability is said to be equally likely (or uni-
Jorm) if each elementary event in §2 is assigned the same probability. Thus, if
contains n points w;, Plw;} =1/n,j =1,2,... ,n.

With this assignment

number of elementary events in A

)

" total number of elementary events in

Example 1. A coin is tossed twice. The sample space consists of four points. Un-
der the uniform assignment, each of four elementary events is assigned probability %.

Example 2. Three dice are rolled. The sample space consists of 6> points. Each
one-point set is assigned probability 1/6.

In games of chance we usually deal with finite sample spaces where uniform prob-
ability is assigned to all simple events. The same is the case in sampling schemes. In
such instances the computation of the probability of an event A reduces to a combi-
natorial counting problem. We therefore consider some rules of counting.

Rule 1. Given a collection of n; elements ay1, aiz, ... , a1, 72 elements ayy,
ax, ..., azn,, and so on, up to ny elements Agy, ai2, . .. , Gkn,, it is possible to form
ny-ny----- ni ordered k-tuples (a1 ,, azj,, - . . , axj, ) containing one element of each

kind, 1 < j; <n;,i=12,...,k

Example 3. Here r distinguishable balls are to be placed in n cells. This amounts
to choosing one cell for each ball. The sample space consists of n” r-tuples
(iy,i2,...,%r), where i; is the cell number of the jth ball, j = 1,2,...,r
(1 =<i; <n).

Consider r tossings with a coin. There are 2" possible outcomes. The probability
that no heads will show up in r throws is (-;—)' . Similarly, the probability that no 6

will turn up in r throws of a die is (%)’ .

Rule 2 is concerned with ordered samples. Consider a set of n elements ay, a,
..., ay. Any ordered arrangement (g;, , @i, - . . , a;,) of r of these n symbols is called
an ordered sample of size r. If elements are selected one by one, there are two pos-
sibilities:

1. Sampling with replacement. In this case repetitions are permitted, and we can
draw samples of an arbitrary size. Clearly, there are n” samples of size r.
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2. Sampling without replacement. In this case an element once chosen is not
replaced, so that there can be no repetitions. Clearly, the sample size cannot
exceed n, the size of the population. Therearen(n—1)---(n—r+1) =, P,,
say, possible samples of size r. Clearly, , P, = O for integers r > n. If r = n,
then , P, = n!.

Rule 2. If ordered samples of size r are drawn from a population of n elements,
there are n” different samples with replacement and , P, samples without replace-
ment.

Corollary. The number of permutations of n objects is n!.

Remark 1. 'We frequently use the term random sample in this book to describe
the equal assignment of probability to all possible samples in sampling from a finite
population. Thus, when we speak of a random sample of size r from a population of
n elements, it means that in sampling with replacement, each of n” samples has the
same probability 1/a" or that in sampling without replacement, each of , P, samples
is assigned probability 1/, P,.

Example 4. Consider a set of n elements. A sample of size r is drawn at random
with replacement. Then the probability that no element appears more than once is
clearly , P, /n".

Thus, if » balls are to be randomly placed in n cells, the probability that each cell
will be occupied is n!/n".

Example 5. Consider a class of r students. The birthdays of these r students form
a sample of size r from the 365 days in the year. Then the probability that all r
birthdays are different is 365.P,/(365)". One can show that this probability is < -é— if
r=23.

The following table gives the values of g, = 365 P, /(365)" for some selected
values of r.

r ’ 20 23 25 30 35 60
0.589 0493 0431 0294 0.186 0.006

Next suppose that each of the r students is asked for his or her birth date in order,
with the instruction that as soon as a student hears his or her birth date the student
is to raise a hand. Let us compute the probability that a hand is first raised when the
kth (k =1,2,...,r) student is asked his or her birth date. Let p; be the probability
that the procedure terminates at the kth student. Then

_1 364 r—1
pr= 365
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and

_ 3esP1 () k~1)""+1 . (365—k )'-k 23
PE= 363)kT 365 365 —k + 1 » k=231

Example 6. Let © be the set of all permutations of n objects. Let A; be the set of
all permutations that leave the ith object unchanged. Then the set U?_, A; is the set
of permutations with at least one fixed point. Clearly,

- Dt

pa, =D o
n!

(n—-2)!

n!

P(ANAj) =

i<j, Lj=12,...,n, etc.

By Theorem 1.3.3 we have

P"A—l ! ! :}:11
Uaif={1-g+5-*a)
=

As an application, consider an absentminded secretary who places n letters in n
envelopes at random. Then the probability that he or she will misplace every letter is

11 1
1—(1—2—!+§—-..i5).

It is easy to see that this last probability —> e~! = 0.3679 as n — 0.

Rule 3. There are (n) different subpopulations of size r < n from a population
r

of n elements, where

n n!
@ (r) B EDD

Example 7. Consider the random distribution of r balls in n cells. Let A be
the event that a specified cell has exactly k balls, k = 0,1,2,...,r; k balls can

be chosen in (;) ways. We place k balls in the specified cell and distribute the

remaining r — k balls in the n — 1 cells in (n — 1)"~* ways. Thus

Y =1"F i\ 1V 1\ ~*
ra=()* == () G) (-7)
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2
Example 8. There are (?3) = 635,013,559,600 different hands at bridge and

52
s)= 2,598,960 hands at poker.

The probability that all 13 cards in a bridge hand have different face values is

The probability that a hand at poker contains five different face values is
13 ny 52
5 5)

Rule 4. Consider a population of n elements. The number of ways in which the

population can be partitioned into k subpopulations of sizes ry, 2, ... , rg, respec-
tively,r1 +r2+---+re=n,0 < r; <n,isgivenby
n n!
3) =
[T O T ritrt--r!

The numbers defined in (3) are known as multinomial coefficients.

Proof. For the proof of Rule 4, one uses Rule 3 repeatedly. Note that

O ()T
ry,r,...,rr r rn rir—1

Example 9. In a game of bridge the probability that a hand of 13 cards contains
2 spades, 7 hearts, 3 diamonds, and 1 club is

13\ /13 /13 /13
2 7 3 1
.
13
Example 10. An urn contains 5 red, 3 green, 2 blue, and 4 white balls. A sample

of size 8 is selected at random without replacement. The probability that the sample
contains 2 red, 2 green, 1 blue, and 3 white balls is

REOE)
()

PROBLEMS 1.4

1. How many different words can be formed by permuting letters of the word Mis-
sissippi? How many of these start with the letters Mi?
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3.

6.

9.

10.

PROBABILITY

. An urn contains R red and W white marbles. Marbles are drawn from the urn

one after another without replacement. Let A be the event that a red marble is
drawn for the first time on the kth draw. Show that

k= R+W K+ TR+YW-j+1)

Let p be the proportion of red marbles in the umn before the first draw. Show that
PAy — p(1 — pY~tas R+ W — oo. Is this to be expected?

In a population of N elements, R are red and W = N — R are white. A group of
n elements is selected at random. Find the probability that the group so chosen
will contain exactly r red elements.

. Each permutation of the digits 1, 2, 3, 4, 5, 6 determines a six-digit number. If

the numbers corresponding to ail possible permutations are listed in increasing
order of magnitude, find the 319th number on this list.

. The numbers 1, 2, ... , n are arranged in random order. Find the probability that

the digits 1, 2, ... , k (k < n) appear as neighbors in that order.

A pinball table has seven holes through which a ball can drop. Five balls are
played. Assuming that at each play a ball is equally likely to go down any one of
the seven holes, find the probability that more than one ball goes down at least
one of the holes.

If 2n boys are divided into two equal subgroups, find the probability that the two
tallest boys will be (a) in different subgroups, and (b) in the same subgroup.

In a movie theater that can accommodate n +k people, n people are seated. What
is the probability that r < n given seats are occupied?

Waiting in line for a Saturday morning movie show are 2n children. Tickets are
priced at a quarter each. Find the probability that nobody will have to wait for
change if before a ticket is sold to the first customer, the cashier has 2k (k < n)
quarters. Assume that it is equally likely that each ticket is paid for with a quarter
or a half-dollar coin.

Each box of a certain brand of breakfast cereal contains a small charm, with k
distinct charms forming a set. Assuming that the chance of drawing any particu-
lar charm is equal to that of drawing any other charm, show that the probability
of finding at least one complete set of charms in a random purchase of N > k
boxes equals

-0 O -0

+ ..+(_1)k~'( k )(l)N (Hint: Use (1.3.7).]
iz :
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11.
12.

13.

14.

15.

16.

17.

Prove Rules 1 through 4.

In a five-card poker game, find the probability that a hand will have:

(a) A royal flush (ace, king, queen, jack, and 10 of the same snit).

{b) A straight flush (five cards in a sequence, all of the same suit; ace is high but
A, 2, 3,4, 5 is also a sequence), excluding a royal flush.

(c) Four of a kind (four cards of the same face value).

(d) A full house (three cards of the same face value x and two cards of the same
face value y).

(e) A flush (five cards of the same snit, excluding cards in a sequence).
(f) A straight (five cards in a sequence).

(g) Three of a kind (three cards of the same face value and two cards of different
face values).

(h) Two pairs.
(i) A single pair.

(a) A married couple and four of their friends enter a row of seats in a concert
hall. What is the probability that the wife will sit next to her husband if all
possible seating arrangements are equally likely?

(b) In part (a), suppose that the six people go.to a restaurant after the concert
and sit at a round table. What is the probability that the wife will sit next to
her husband?

Consider a town with N people. A person sends two letters to two separate
people, each of whom is asked to repeat the procedure. Thus for each letter re-
ceived, two letters are sent out to separate persons chosen at random (irrespective
of what happened in the past). What is the probability that in the first n stages
the person who started the chain letter game will not receive a letter?

Consider a town with N people. A person tells a ramor to a second person, who
in turn repeats it to a third person, and so on. Suppose that at each stage the
recipient of the rumor is chosen at random from the remaining N — 1 people.
What is the probability that the rumor will be repeated n times:

(a) Without being repeated to any person?
(b) Without being repeated to the originator?

There were four accidents in a town during a seven~day period. Would you be
surprised if all four occurred on the same day? If each of the four occurred on a
different day?

Whereas Rules 1 and 2 of counting deal with ordered samples with or with-
out replacement, Rule 3 concerns unordered sampling without replacement. The

most difficult rule of counting deals with unordered with replacement sampling.

+r—1
Show that there are (n : ) possible unordered samples of size » from a

population of n elements when sampled with replacement.
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1.5 CONDITIONAL PROBABILITY AND BAYES THEOREM

So far, we have computed probabilities of events on the assumption that no infor-
mation was available about the experiment other than the sample space. Sometimes,
however, it is known that an event H has happened. How do we use this informa-
tion in making a statement concerning the outcome of another event A? Consider the
following examples.

Example 1. Let um 1 contain one white and two black balls, and urn 2, one black
and two white balls. A fair coin is tossed. If a head turns up, a ball is drawn at random
from urn 1; otherwise, from urn 2. Let E be the event that the ball drawn is black.
The sample space is &2 = {Hbyy, Hby2, Hwi1, Tba1, Twa1, Twa), where H denotes
head, T denotes tail, b;; denotes jth black ball in ith urn, i = 1, 2, and so on. Then

PE = P{Hby1, Hbiz, Thot} = § =

Nl'—‘

If, however, it is known that the coin showed a head, the ball could not have been
drawn from urn 2. Thus, the probability of E, conditional on information H, is 2z,

Note that this probability equals the ratio P{head and ball drawn black}/ P {head}.

Example 2. Let us toss two fair coins. Then the sample space of the experiment
is Q@ = {HH, HT, TH, TT}. Let event A = {both coins show same face} and B = {at
least one coin shows H}. Then PA = %. If B is known to have happened, this
information assures that TT cannot happen, and P{A conditional on the information
that B has happened} = 1 = 1/3 = P(An B)/PB.

Definition 1. Let (2, S, P) be a probability space, and let H € S with PH > 0.
For an arbitrary A € & we shall write

P(ANH)

M PiA| H} = —&

and call the quantity so defined the conditional probability of A, given H. Condi-
tional probability remains undefined when PH = 0.

Theorem 1. Let (2, S, P) be a probability space, and let H € S with PH > 0.
Then (2, S, Py), where Pg(A) = P{A | H} for all A € S, is a probability space.

Proof. Clearly, Py(A) = P{A | H} = Oforall A € S. Also, Pg(Q) =
P(QNH)/PH = 1.1f Ay, Ay, ... is a disjoint sequence of sets in S, then

P”(= A,-)=P[§Ai|},]= P{(Z‘f;z,-)nH}

_wx IP(A,OH) i Pa(AD.

e
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Remark 1. 'What we have done is to consider a new sample space consisting of
the basic set H and the o-field Sy = SN H,of subsets AN H, A € S, of H. On
this space we have defined a set function Py by multiplying the probability of each
event by (PH)~!. Indeed, (H, Sy, Py) is a probability space.

Let A and B be two events with PA > 0, PB > 0. Then it follows from (1) that
2) P(ANB)=PA-P{B|A}), and P(ANB)=PB-P{A]|B}.

Equations (2) may be generalized to any number of events. Let A, A2, ..., A, € S,
n > 2, and assume that P(ﬂ'};} A} > 0. Since

n—-2 n—1
AlD(AINAYDD(AINANA) D -+ D (nAj) D (ﬂAj),
j=1 j=1

we see that

n—2
PA; >0, P(AjNA)>0, ..., P(ﬂAj)>0‘
j=1

1t follows that P{A; | ﬁ’;;ll A} are well defined fork = 2,3, ... ,n.

Theorem 2 (Multiplication Rule). Let (2, S, P) be a probability space and
AL, Az, ..., An € S, with P("W]_{A;) > 0. Then

€ P(ﬂ A,-) = P(ADP{A2 | Ai)P{A3 | AN Ag)--- P [An

j=1

n—1

ﬂ Ajt.

j=1

Proof. The proof is simple.

Let us suppose that {H;} is a countable collection of events in S such that H; N

Hy =0, j #k,and } 32 Hj = . Suppose that PH; > 0 for all j. Then

) PB=Y P(H)P{B|H;} forallBeS.

oo
j=1
For the proof we note that
00
B=) (BNH),
j=1

and the result follows. Equation (4) is called the rotal probability rule.
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Example 3. Consider a hand of five cards in a game of poker. If the cards are
52
dealt at random, there are 5 possible hands of five cards each. Let A = {at least

3 cards of spades}, B = {all 5 cards of spades}. Then

P(AN B) = P{all 5 cards of spades}
()
52
5

P(ANB)
PA

and

P{B| A} =

13 52

_ 5 5

_1339+1339+13 52\
3 2 4 1 5 5

Example 4. Urn 1 contains one white and two black marbles, urn 2 contains one
black and two white marbles, and urn 3 contains three black and three white marbles.
A die is rolled. If a 1, 2, or 3 shows up, urn 1 is selected; if a 4 shows up, urn 2 is
selected; and if a 5 or 6 shows up, urn 3 is selected. A marble is then drawn at random

from the urn selected. Let A be the event that the marble drawn is white. If U, V, W,
respectively, denote the events that the urn selected is 1, 2, 3, then

=(ANU)Y+(ANV)+ (ANW),
PANU)=PWU)-PA|U}=

L]

4
P(ANV)=P(V)-P{A|V}=1-3,
P(AnW):P(W)-P{AIW}:%-%,

It follows that

PA =

I
ol

+i+

(=l
D=
Df—

A simple consequence of the total probability rule is the Bayes rule, which we
now prove.

Theorem 3 (Bayes Rule). Let {H,} be a disjoint sequence of events such that
PH,>0,n=1,2,...,and ) o2, H, = Q. Let B € S with PB > 0. Then
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P(H;)P{B | Hj}

5) P{H; | B) = i=1,2,....

fore) £l

> P(H)P{B| H})
i=1

Proof. From (2)
P{BNH;} = P(B)P{H; | B} = PH,;P{B | H,},

and it follows that

PH;P{B | H;}
P(Hj | B} = ————L 55 Ly

The result now follows on using (4).

Remark 2. Suppose that H), H, ... are all the “causes” that lead to the out-
come of a random experiment. Let H; be the set of outcomes corresponding to the
Jjth cause. Assume that the probabilities PH;, j = 1,2, ..., called the prior prob-
abilities, can be assigned. Now suppose that the experiment results in an event B of
positive probability. This information leads to a reassessment of the prior probabili-
ties. The conditional probabilities P{H; | B} are called the posterior probabilities.
Formula (5) can be interpreted as a rule giving the probability that observed event B
was due to cause or hypothesis H;.

Example 5. In Example 4, let us compute the conditional probability P{V | A}.
We have

PVP{A|V)
PUP{A|U}+ PVP{A|V}+ PWP{A | W}

PV | A} =

Al
D= [ N—
TS IR
Ol [\ot—
i
Bp—

+3-34

Wip—
SN
[V [P}

PROBLEMS 1.5

1. Let A and B be two events such that PA = p; > 0, PB = py > 0, and
pt1+ p2 > 1. Show that P{B | A} > 1 — [(1 — p2)/p1].

2. Two digits are chosen at random without replacement from the set of integers
{1,2,3,4,5,6,7,8}.
(a) Find the probability that both digits are greater than 5.
(b) Show that the probability that the sum of the'digits will be equal to 5 is the
same as the probability that their sum will exceed 13.

3. The probability of a family chosen at random having exactly k children is ap*,
0 < p < 1. Suppose that the probability that any child has blue eyes is b,
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10.

11.
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0 < b < 1, independently of others. What is the probability that a family chosen
at random has exactly 7 (r > 0) children with blue eyes?

. In Problem 3, let us write

pr = probability of a randomly chosen family having exactly k children
=apk, =1,2,...,

ap

1—-p

po=1-

Suppose that all gender distributions of &k children are equally likely. Find the
probability that a family has exactly r boys, r > 1. Find the conditional proba-
bility that a family has at least two boys, given that it has at least one boy.

. Each of (N + 1) identical urns marked 0, 1,2, ..., N contains N balls. The

kth urn contains k black and N — k white balls, k = 0,1,2,...,N. An umn
is chosen at random, and »n random drawings are made from it, the ball drawn
always being replaced. If all the n draws result in black balls, find the probability
that the (n + 1)th draw will also produce a black ball. How does this probability
behave as N — o0?

. Each of n urns contains four white and six black balls, while another urn contains

five white and five black balls. An urn is chosen at random from the (n + 1) urns,
and two balls are drawn from it, both being black. The probability that five white
and three black balls remain in the chosen urn is % Find n.

. In answering a question on a multiple-choice test, a candidate either knows the

answer with probability p (0 < p < 1) or does not know the answer with
probability 1 — p. If he knows the answer, he puts down the correct answer with
probability 0.99, whereas if he guesses, the probability of his putting down the
correct result is 1/k (k choices to the answer). Find the conditional probability
that the candidate knew the answer to a question, given that he has made the
correct answer. Show that this probability tends to 1 as k — oo.

An urn contains five white and four black balls. Four balls are transferred to a
second urn. A ball is then drawn from this urn, and it happens to be black. Find
the probability of drawing a white ball from among the remaining three.

. Prove Theorem 2.

An umn contains r red and g green marbles. A marble is drawn at random and its
color noted. Then the marble drawn, together with ¢ > 0 marbles of the same
color, are returned to the urn. Suppose that n such draws are made from the urn.
Find the probability of selecting a red marble at any draw.

Consider a bicyclist who leaves a point P (see Fig. 1), choosing one of the roads
PRy, PRy, PR3 at random. At each subsequent crossroad she again chooses 2
road at random.
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12.

13

by

14.

1.6

Fig. 1. Map for Problem 11.

(a) What is the probability that she will arrive at point A?
(b) What is the conditional probability that she will arrive at A via road P R3?

Five percent of patients suffering from a certain disease are selected to undergo a
new treatment that is believed to increase the recovery rate from 30 percent to 50
percent. A person is randomly selected from these patients after the completion
of the treatment and is found to have recovered. What is the probability that the
patient received the new treatment?

Four roads lead away from the county jail. A prisoner has escaped from the jail
and selects a road at random. If road I is selected, the probability of escaping is
%; if road II is selected, the probability of success is %; if road Ill is selected, the
probability of escaping is %; and if road IV is selected, the probability of success
is T%'

(a) What is the probability that the prisoner will succeed in escaping?

(b) If the prisoner succeeds, what is the probability that the prisoner escaped by
using road IV? By using road 1?7

A diagnostic test for a certain disease is 95 percent accurate, in that if a person
has the disease, it will detect it with a probability of 0.95, and if a person does not
have the disease, it will give a negative result with a probability of 0.95. Suppose
that only 0.5 percent of the population has the disease in question. A person is
chosen at random from this population. The test indicates that this person has
the disease. What is the (conditional) probability that he or she does have the
disease?

INDEPENDENCE OF EVENTS

Let (£2,S, P) be a probability space, and let A, B € S, with PB > 0. By the
multiplication rule we have

P(ANB) = P(B)P{A | B).
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In many experiments the information provided by B does not affect the probability
of event A; thatis, P{A | B} = P{A}.

Example 1. Let two fair coins be tossed, and let A = {head on the second throw},
B = {head on the first throw}. Then

P(A)= P{HH,TH} = },  P(B) = (HH,HT} = },

and

P(ANB) _

P{A| B} = PB)

P(A).

(SN
ST

Thus
P(AN B) = P(A)P(B).
In the following, we write AN B = AB.

Definition 1. Two events, A and B, are said to be independent if and only if
¢)) P(AB) = P(A)P(B).

Note that we have not placed any restriction on P(A) or P(B). Thus conditional
probability is not defined when P(A) or P(B) = 0, but independence is. Clearly,
if P(A) = 0, then A is independent of every E € S. Also, any event A € S is
independent of ¥ and €2.

Theorem 1. If A and B are independent events, then
P{A | B} = P(A) if P(B) >0
and
P{B | A} = P(B) if P(A) > 0.

Theorem 2. If A and B are independent, so are A and B¢, A° and B, and A€
and B°.

Proof.
P(A°B) = P(B—- (AN B))
=P(B)—-P(ANB) since B 2 (AN B)
= P(B)[1 — P(A)]
= P(A°) P(B).

Similarly, one proves that A° and B¢, and A and B¢, are independent.
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We wish to emphasize that independence of events is not to be confused with
disjoint or mutually exclusive events. If two events, each with nonzero probability,
are mutually exclusive, they are obviously dependent since the occurrence of one
will automatically preclude the occurrence of the other. Similarly, if A and B are
independent and PA > 0, PB > 0, then A and B cannot be mutually exclusive.

Example 2. A card is chosen at random from a deck of 52 cards. Let A be the
event that the card is an ace, and B, the event that it is a club. Then

PA=FH=17 PB=F=1

and
P(AB) = P{ace of clubs} = 517

so that A and B are independent.

Example 3. Consider families with two children, and assume that all four
possible distributions of gender: BB, BG, GB, GG, where B stands for boy and
G for girl, are equally likely. Let E be the event that a randomly chosen family has
at most one girl, and F, the event that the family has children of both genders. Then

P(Ey=3, P(F)=}%, and P(EF)= 3},
so that £ and F are not independent.
Now consider families with three children. Assuming that each of the eight pos-
sible gender distributions is equally likely, we have
P(E)=%, P(F)=% and PEF) =3,
so that £ and F are independent.
An obvious extension of the concept of independence between two events A and
B to a given collection 4l of events is to require that any two distinct events in Lf be

independent.

Definition 2. Let 4 be a family of events from S. We say that the events U are
pairwise independent if and only if for every pair of distinct events A, B € 4,

P(AB) = PAPB.
A much stronger and more useful concept is mutual or complete independence.
Definition 3. A family of events i{ is said to be a mutually or completely inde-

pendent family if and only if for every finite subcollection {A;,, A;,, ..., A;,} of 81,
the following relation holds:
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k
®)) P(A; NA, N---NAy) =[] Pay.
j=1

In what follows we omit the adjective mutual or complete and speak of indepen-
dent events. It is clear from Definition 3 that to check the independence of n events

A1, Ay, ..., A, € S, we must check the following 2" — n — 1 relations:
P(AiAj) = PA;PA;, i#j i i=12,...,n,
P(AjAjAy) = PA;PAjPA;, i#¥j#k i,j,k=12,...,n,

P(A1A2---Ap) = PAIPA;-- PA,.

The first of these requirements is pairwise independence. Independence therefore
implies pairwise independence, but not conversely.

Example 4 (Wong [119]). Take four identical marbles. On the first, write sym-
bols A; Az A3. On each of the other three, write Ay, A, A3, respectively. Put the four
marbles in an urn and draw one at random. Let E; denote the event that the symbol
A, appears on the drawn marble. Then

P(E1) = P(Ey) = P(E3) = 3,
P(E\Ey) = P(E;E3) = P(E\E3) = §,
and
€) P(E1E2E3) = §.

1t follows that although events E|, E3, E3, are not independent, they are pairwise
independent.

Example 5 (Kac [46], pp. 22-23). In this example P(E;E2E3) = P(Ep) x
P(E»)P(E3), but E, E3, E3 are not pairwise independent and hence not indepen-
dent. Let Q = {1, 2, 3, 4}, and let p; be the probability assigned to {i},i = 1,2, 3, 4.
Letp1 = v2/2—§, p2 =}, Py = 3—v2/2, pa = §. Let E1 = (1,3}, E2 = (2,3},
E3 = {3, 4}. Then

3 2 1 2 2
P(E\EyE3) = P{3} = i % =3 (] — 1/2——) (1 - 1/2__—>

= (p1 + p3)(p2 + p3)(p3 + p4)
= P(E)P(E2)P(E3).

But P(E{E;) = % — 2/2 # PE;PE,, and it follows that E|, E,, E3 are not
independent.
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Example 6. A die is rolled repeatedly until a 6 tumns up. We will show that event
A, that “a 6 will eventually show up,” is certain to occur. Let Ay be the event that a 6
will show up for the first time on the kth throw. Let A = Y 7 | Ag. Then

==-1= s k=1,2,....,
PA; 6(6)

and

1 00 5 k—1 1 l
PA=- 2} == 1.

k=1

N

Alternatively, we can use the corollary to Theorem 1.3.6. Let B, be the event that
a 6 does not show up on the first n trials. Clearly, Bn+1 € By, and we have A® =
Np. Bn. Thus

o 5 n
— c __ — : —_ M —_— p—
1—-PA=PA _P(ﬂ Bn) = lim P(B,) = lim (6) =0.

n=1

Example 7. A slip of paper is given to person A, who marks it with either a plus
or minus sign; the probability of her writing a plus sign is % A passes the slip to
B, who may either leave it alone or change the sign before passing it to C. Next, C
passes the slip to D after perhaps changing the sign; finally, D passes it to a referee
after perhaps changing the sign. The referee sees a plus sign on the slip. It is known
that B, C, and D each change the sign with probability % We shall compute the
probability that A originally wrote a plus.

Let N be the event that A wrote a plus sign, and M, the event that she wrote a
minus sign. Let £ be the event that the referee saw a plus sign on the slip. We have

P(N)P{E | N}

PINTEY = 50DPE | M)+ POVPE [ N]

Now

P{E | N} = P{the plus sign was either not changed or changed exactly twice}
_ (LY +3(2 2 +(3
—\3 3 3

P{E | M} = P{the minus sign was changed either once or three times}

SO

and



38 PROBABILITY
It follows that
MG +33?dn
PN E) = 5 3+ OBOME + 2
IEFP +33) N+ GDBEHGE)* + (5]
13
_x_B
BT
31 41
PROBLEMS 1.6
1. A biased coin is tossed until a head appears for the first time. Let p be the

probability of a head, 0 < p < 1. What is the probability that the number of
tosses required is odd? Even?

. Let A and B be two independent events defined on some probability space, and

let PA =%, PB = 3 Find(a) P(AUB), (b)P{A | AUB}, and (c)P{B | AUBY}.

Let Ay, Aj, A3 be three independent events. Show that A, A5, and A§ are
independent.

. A biased coin with probability p, 0 < p < 1, of success (heads) is tossed until

for the first time, the same result occurs three times in succession (that is, three
heads or three tails in succession). Find the probability that the game will end at
the seventh throw.

. A box contains 20 black and 30 green balls. One ball at a time is drawn at ran-

dom, its color is noted, and the ball is then replaced in the box for the next draw.

(a) Find the probability that the first green ball is drawn on the fourth draw.

(b) Find the probability that the third and fourth green balls are drawn on the
sixth and ninth draws, respectively.

(c) Let N be the trial at which the fifth green ball is drawn. Find the probability
that the fifth green ball is drawn on the nth draw. (Note that N take values
56,7,...)

.. An urn contains four red and four black balls. A sample of two balls is drawn

at random. If both balls drawn are of the same color, these balls are set aside
and a new sample is drawn. If the two balls drawn are of different colors, they
are returned to the urn and another sample is drawn. Assume that the draws are
independent and that the same sampling plan is pursued at each stage until all
balls are drawn.

(a) Find the probability that at least » samples are drawn before two balls of the
same color appear.

(b) Find the probability that after the first two samples are drawn, four balls are
left, two black and two red.

. Let A, B, and C be three bokes with three, four, and five cells, respectively.

There are three yellow balls numbered 1 to 3, four green balls numbered 1 to 4,
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10.

11.

12.

13.

and five red balls numbered 1 to 5. The yellow balls are placed at random in box
A, the green in B, and the red in C, with no cell receiving more than one ball.
Find the probability that only one of the boxes will show no matches.

. A pond contains red and golden fish. There are 3000 red and 7000 golden fish,

of which 200 and 500, respectively, are tagged. Find the probability that a ran-
dom sample of 100 red and 200 golden fish will show 15 and 20 tagged fish,
respectively.

. Let (22, S, P) be a probability space. Let A, B, C € § with PB and PC > 0.

If B and C are independent, show that
P{A| B}=P{A|BNC}PC+ P{A| BNC }PC".

Conversely, if this relation holds, P{A | BC} # P{A | B}, and PA > 0, then
B and C are independent. (Strait [110])

Show that the converse of Theorem 2 also holds. Thus A and B are independent
if, and only if, A and B¢ are independent; and so on.

A lot of five identical batteries is life tested. The probability assignment is
assumed to be

1
P(A)=/ —e * dx
W

for any event A C [0, oco), where A > Q is a known constant. Thus the probabil-
ity that a battery fails after time ¢ is given by

% i
P(t,oo)=/ xe—"/)‘dx, t>0.
t

If the times to failure of the batteries are independent, what is the probability
that at least one battery will be operating after 7o hours?

On Q@ = (a,b), —00 < a < b < o0, each subinterval is assigned a proba-
bility proportional to the length of the interval. Find a necessary and sufficient
condition for two events to be independent.

A game of craps is played with a pair of fair dice as follows. A player rolls the
dice. If a sum of 7 or 11 shows up, the player wins; if a sum of 2, 3, or 12 shows
up, the player loses. Otherwise, the player continues to roll the pair of dice until
the sum is either 7 or the first number rolled. In the former case the player loses,
and in the latter the player wins.

(a) Find the probability that the player wins on the nth roll.
(b) Find the probability that the player wins the game.

(c) What is the probability that the game ends on (i) the first roll, (ii) the second
roll, and (iii) the third roll?



CHAPTER?2

Random Variables and Their
Probability Distributions

2.1 INTRODUCTION

In Chapter 1 we dealt essentially with random experiments that can be described by
finite sample spaces. We studied the assignment and computation of probabilities of
events. In practice, one observes a function defined on the space of outcomes. Thus,
if a coin is tossed n times, one is not interested in knowing which of the 2" n-tuples
in the sample space has occurred. Rather, one would like to know the number of
heads in n tosses. In games of chance, one is interested in the net gain or loss of a
certain player. Actually, in Chapter 1 we were concerned with such functions without
defining the term random variable. Here we study the notion of a random variable
and examine some of its properties.

In Section 2.2 we define a random variable, and in Section 2.3 we study the notion
of probability distribution of a random variable. Section 2.4 deals with some special
types of random variables, and in Section 2.5 we consider functions of a random
variable and their induced distributions. The fundamental difference between a ran-
dom variable and a real-valued function of a real variable is the associated notion
of a probability distribution. Nevertheless, our knowledge of advanced calculus or
real analysis is the basic tool in the study of random variables and their probability
distributions.

2.2 RANDOM VARIABLES

In Chapter 1 we studied properties of a set function P defined on a sample space
(2, S). Since P is a set function, it is not very easy to handle; we cannot perform
arithmetic or algebraic operations on sets. Moreover, in practice one frequently ob-
serves some function of elementary events. When a coin is tossed repeatedly, which
replication resulted in heads is not of much interest. Rather, one is interested in the
number of heads, and consequently, the number of tails, that appear in, say, n tossings
of the coin. It is therefore desirable to introduce a point function on the sample space.
We can then use our knowledge of calculus or real analysis to study properties of P.

40
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Definition 1. Let (€2, ) be a sample space. A finite, single-valued function that
maps 2 into R is called a random variable (RV) if the inverse images under X of all
Borel sets in R are events, that is, if

8)) X YB)={w: X(w)eBleS forall Be®B.

To verify whether a real-valued function on (2, S) is an RV, it is not necessary to
check that (1) holds for all Borel sets B € *B. It suffices to verify (1) for any class 2
of subsets of R that generates B. By taking 2 to be the class of semiclosed intervals
(—00, x], x € R, we get the following result.

Theorem 1. X is an RV if and only if foreachx € R,
2) {o: X(w) <x}={X<x}ed.

Remark 1. Note that the notion of probability does not enter into the definition
of an RV.

Remark2. M XisanRV,thesets {X =x},{a < X <b},{X <x},{a<X <
b}, {a < X < b}, {a < X < b} are all events. Moreover, we could have used any
of these intervals to define an RV. For example, we could have used the following
equivalent definition: X is an RV if and only if

3) fow: X(w) <x}e S forallx € R.

We have

(4) (X <x}= U(X<x—~—)
n=1

and

5) {Xfx}::Q(X<x+%).

Remark 3. In practice, (1) or (2) is a technical condition in the definition of an
RV which the reader may ignore and think of RVs simply as real-valued functions
defined on 2. It should be emphasized, though, that there do exist subsets of R that
do not belong to B, and hence there exist real-valued functions defined on €2 that are
not RVs, but the reader will not encounter them in practical applications.

Example 1. For any set A C 2, define

0, wé A,
1, w€E A.

I4(w) = [

14 (w) is called the indicator function of set A. I4 isan RV if and only if A € S.
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Example 2. Let Q@ = {H, T}, and S be the class of all subsets of . Define X by
XH) =1, X(T) = 0. Then

] ifx <0,
X (=00, x] = {{T} ifo<x <1,
H,T} ifl<ux,

and we see that X is an RV.

Example 3. Let @ = {HH, TT, HT, TH} and S be the class of all subsets of £2.
Define X by

X (w) = number of H’s in w.

Then X (HH) =2, X(HT) = X(TH) = 1, and X (TT) = 0.

R x <0,
TT <

X~ (=00, x] = {TT}, 0<x<l,
{TT, HT, TH}, 1<x <2,
Q, 2<x.

Thus X is an RV.
Remark 4. Let (2, S) be a discrete sample space; that is, let §2 be a countable
set of points and S be the class of all subsets of 2. Then every numerical-valued

function defined on (£2, S) is an RV.

Example 4. Let Q@ = [0, 1] and S = ‘B N [0, 1] be the o-field of Borel sets on
[0, 1]. Define X on 2 by

X(w) = w, w € [0, 1].
Clearly, X is an RV. Any Borel subset of €2 is an event.

Remark 5. Let X be an RV defined on (2, S) and a, b be constants. Then aX +b
is also an RV on (€2, S). Moreover, X2 is an RV and so also is 1/X, provided that
{X = 0} = @. For a general result, see Theorem 2.5.1.

PROBLEMS 2.2
1. Let X be the number of heads in three tosses of a coin. What is £2? What are the

values that X assigns to points of Q? What are the events {X < 2,75}, {0.5 <
X < 1.72)?
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2. A die is tossed two times. Let X be the sum of face values on the two tosses and
Y be the absolute value of the difference in face values. What is 2? What values
do X and Y assign to points of 2?7 Check to see whether X and Y are random
variables.

3. Let X be an RV. Is | X| also an RV? If X is an RV that takes only nonnegative
values, is +/X also an RV?

4, A die is rolled five times. Let X be the sum of face values. Write the events
{X = 4}, {X = 6}, {X = 30}, and {X > 29}.

5. Let @ = [0, 1] and S be the Borel o-field of subsets of 2. Define X on Q as
follows: X(w) = 0if0<w < s and X(w) =w—}if§ <w < 1.Is X anRV?
If so, what is the event {w: X (o) € (3, %)}‘7

6. Let 2 be a class of subsets of R that generates B. Show that X is an RV on  if
and only if X~1(A) € Rforall A € A.

2.3 PROBABILITY DISTRIBUTION OF A RANDOM VARIABLE

In Section 2.2 we introduced the concept of an RV and noted that the concept of
probability on the sample space was not used in this definition. In practice, however,
random variables are of interest only when they are defined on a probability space.
Let (2, S, P) be a probability space, and let X be an RV defined on it.

Theorem 1. The RV X defined on the probability space (€2, S, P) induces a
probability space (R, B, Q) by means of the correspondence

) Q(B) = P{X '(B)} = P{w: X(w) € B}  forall B € B.
We write Q = PX ™! and call Q or PX ™! the (probability) distribution of X.

Proof. Clearly, Q(B) > O forall B € B, and also Q(R) = P{X € R} =
P(Q)=11LletB; e B,i=12,...,with B; N B; =0,i # j. Since the inverse
image of a disjoint union of Borel sets is the disjoint union of their inverse images,

o(&e)=rb (B

=P [ix*’(zml
i=1

=): PX~ (B,)-ZQ(B)

l:

It follows that (R, B, Q) is a probability space, and the proof is complete.
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We note that Q is a set function and that set functions are not easy to handle. It is
therefore more practical to use (2.2.2) since then (—o00, x] is a point function. Let
us first introduce and study some properties of a special point function on R.

Definition 1. A real-valued function F defined on (—o0, 00) that is nondecreas-
ing, right continuous, and satisfies

F(—00)=0 and F(+o0)=1
is called a distribution function (DF).
Remark 1. Recall that if F is a nondecreasing function on R, then F(x—) =
lim; 4y F(t), F(x+) = lim,, F(t) exist and are finite. Also, F(+oc) and F(—o0)
exist as limy44.00 F () and lim; | _oo F (1), respectively. In general,

F(x—) < F(x) < F(x+),

and x is a jump point of F if and only if F(x+) and F(x—) exist but are unequal.
Thus a nondecreasing function F has only jump discontinuities. If we define

F*(x) = F(x+) forall x,

we see that F* is nondecreasing and right continuous on R. Thus in Definition 1
the nondecreasing part is very important. Some authors demand left instead of right
continuity in the definition of a DF.

Theorem 2. The set of discontinuity points of a DF F is at most countable.
Proof. Let (a, b] be a finite interval with at least n discontinuity points:
a<x1<xp<---<xp<b.
Then
F(a) < F(x1—) < F(x;) £--- £ F(xp—) < F(xs) < F(b).

Let pr = F(xg) — F(xg—), k= 1,2, ... ,n. Clearly,

Y i < F(b) - Fla),

k=1

and it follows that the number of points x in (a, b] with jump p(x) > ¢ > 0O is
at most e "1{F(b) — F(a)}. Thus for every integer N, the number of discontinuity
points with jump greater than 1/N is finite. It follows that there are no more than a
countable number of discontinuity points in every finite interval (a, b]. Since R is a
countable union of such intervals, the proof is complete.
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Definition 2. Let X be an RV defined on (2, S, P). Define a point function F(-)
on R by using (1), namely,

) F(x) = Q(—00, x] = P{w: X{w) < x} forallx € R.
The function F is called the distribution function of RV X.

If there is no confusion, we will write

F(x) = P{X <x}.

The following result justifies our calling F as defined by (2) a DE.

Theorem 3. The function F defined in (2) is indeed a DF.

Proof. letx; < x3. Then (—o0, x1] C (—00, x3], and we have

F(x1) = P{X <x1} < P(X < x2} = F(x2).

Since F isnondecreasing, it is sufficient to show that for any sequence of numbers

Xn L X, x1>x0> - >xp>--->x,F(xp) > F(x). Let Ay = {w: X(w) €
(x, xx]}. Then A € S and Ay ¥. Also,

00
Ii Ap = A =
koo K Q k=9,

since none of the intervals (x, x;] contains x. It follows that lim;_, o P(A;) = 0.
But

P(Ap) = P{X < x;} — P{X < x}
= F(xu) — F(x),

so that

lim F(xz) = F(x),
k->00

and F is right continuous.
Finally, let {x,} be a sequence of numbers decreasing to —oo. Then

[X <xa) 2{X < xp41} for each n

and

o0
nl_ig)lo{X < xp} = Q{X < xn} =0.
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Therefore,

F(=00) = lim P(X < x,} = P{ lim (X < )} =o0.

Similarly,

F(+00) = lim P(X <x} = L,

and the proof is complete.

The next result, stated without proof, establishes a correspondence between the
induced probability Q on (R, ‘B) and a point function F defined on R.

Theorem 4. Given a probability O on (R, *B), there exists a distribution function
F satisfying

3) Q(—00,x] = F(x) forallx € R,

and conversely, given a DF F, there exists a unique probability Q defined on (R, B)
that satisfies (3).

For proof, see Chung [14, pp. 23-24].
Theorem 5. Every DF is the DF of an RV on some probability space.

Proof. Let F be a DF. From Theorem 4 it follows that there exists a unique
probability Q defined on R that satisfies

Q(—00,x] = F(x) forall x € R.
Let (R, 98, Q) be the probability space on which we define
X(w) = w, weR.
Then
Qlw: X(w) < x} = Q(~00,x] = F(x),

and F is the DF of RV X.

Remark 2. 1f X isan RV on (2, S, P), we have seen (Theorem 3) that F(x) =
P{X < x} is a DF associated with X. Theorem 5 assures us that to every DF F
we can associate some RV. Thus, given an RY, there exists a DF, and conversely. In

this book when we speak of an RV we will assume that it is defined on a probability
space.
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Example 1. Let X be defined on (2, S, P) by
X(w)=c for all w € 2.
Then

P X=c}=1,
F(x) = Q(—00,x] = P{X (=00, x]} =0 ifx <c

and
Fx)=1 ifx > c.
Example 2. Let Q = {H, T} and X be defined by
X(H) =1, X(T) =0.
If P assigns equal mass to {H} and {T}, then

PIX=0=1=Px=1

and
0, x <0,
F(x)= Q(-o0,x]=11, 0=<x<1,
1, 1 <x.

Example 3. Let @ = {(i,j):i,j € {1,2,3,4,5,6}} and S be the set of all
subsets of Q. Let P{(i, j)} = 1/6? for all 6? pairs (i, j) in 2. Define

XE =i+, 1<i,j=<6.
Then

0, x <2,
%, 2<x <3,
%9 3_x<4,

F(x) = Q(—00,x] = P{X <x} = '3%, 4<x <5,
B, lsx<I12
1, 12 <

Example 4. We return to Example 2.2.4. For every subinterval I of [0, 1], let
P (1) be the length of the interval. Then (€2, S, P) is a probability space, and the DF
of RV X(w) = w, w € Q,isgiven by F(x) = 0if x < 0, F(x) = Plw: X(w) <
x}=P0,x]) =xifx € [0,1],and F(x) = 1ifx > 1.
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PROBLEMS 2.3

1. Write the DF of RV X defined in Problem 2.2.1, assuming that the coin is fair.

2. What is the DF of RV Y defined in Problem 2.2.2, assuming that the die is not
loaded?
3. Do the following functions define DFs?
(@ F(x) =0ifx <0,=xif0<x < },and=1ifx > §.
(b) F(x) =(/m)tan ! x, —00 < x < o0.
(¢) Fx)=0ifx <l,and=1-~ (1/x)if 1 < x.
@ Fx)=1—e*ifx >0,and =0ifx < 0.
4, Let X be an RV with DF F.
(a) If F is the DF defined in Problem 3(a), find P{X > 1}, P(} < X < }}.
(b) If F is the DF defined in Problem 3(d), find P{—o0 < X < 2}.

24 DISCRETE AND CONTINUOUS RANDOM VARIABLES

Let X be an RV defined on some fixed but otherwise arbitrary probability space
(2, S, P), and let F be the DF of X. In this book we restrict ourselves mainly to two
cases: the case in which the RV assumes at most a countable number of values and
hence its DF is a step function, and that in which the DF F is (absolutely) continuous.

Definition 1. An RV X defined on (2, &, P) is said to be of the discrete type, or
simply discrete, if there exists a countable set E € R such that P{X € E} = 1. The
points of E that have positive mass are called jump points or points of increase of
the DF of X, and their probabilities are called jumps of the DE.

Note that £ € ‘B since every one-point set is in 8. Indeed, if x € R, then
ol 1 t
N {x}:ﬂ[(x——<x§x+—)].
nei n n

Thus {X € E} is an event. Let X take on the value x; with probability p; (i =
1,2,...). We have

Plw: X(w) = xi} = pi, i=1,2,..., pi>0foralli.
Then Y 2, pi = 1.

Definition 2. The collection of numbers {p;} satisfying P{X = x;} = p; = 0,
foralli and Y ;2, pi = 1, is called the probability mass function (PMF) of RV X.



DISCRETE AND CONTINUOUS RANDOM VARIABLES 49

The DF F of X is given by
) F(x)=P{X<x}=)_ pi

Xi <X

If 1,4 denotes the indicator function of the set A, we may write
oo

3) X(@) =) Xilix=x)(®).
i=1

Let us define a function £(x) as follows:

i, x>0,
& ==
x) {o, x <0.

Then we have
o0
@ F(x) =Y pie(x — x).
i=1
Example 1. The simplest exampie is that of an RV X degenerate at ¢, P{X =
c}=1:

F(x)::s(x—c):{o’ r=6

1, X >c.

Example 2. A box contains good and defective items. If an item drawn is good,
we assign the number 1 to the drawing; otherwise, the number 0. Let p be the prob-
ability of drawing at random a good item. Then

P[X:O ={1“1”

1 P,
and
0, x <0,
Fx) =P{X <x}=4{1-p, O0<x <1,
1, 1 <x.

Example 3. 1et X be an RV with PMF

6 1

PX=k}=— =, k=12...
{ V=35

Then

6 & 1
F(x) = ?; ZE0 = k).



50 RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS

Theorem 1. Let {pz} be a collection of nonnegative real numbers such that
Y ro,; Pk = 1. Then {pi} is the PMF of some RV X.

We next consider RVs associated with DFs that have no jump points. The DF of
such an RV is continuous. We shall restrict our attention to a special subclass of such
RVs.

Definition 3. Let X be an RV defined on (§2, S, P) with DF F. Then X is said to
be of the continuous type (or simply, continuous) if F is absolutely continuous, that

is, if there exists a nonnegative function f(x) such that for every real number x we
have

) Fr) = f Fydr.

The function f is called the probability density function (PDF) of the RV X.

Note that f > 0 and satisfies lim, o0 F(x) = F(+00) = ff°oo f@®der = 1.
Let a and b be any two real numbers with a < b. Then

Pla <X <b} = F(b) — F(a)

b
= / f(t)dz.

In view of remarks following Definition 2.2.1, the following result holds.

Theorem 2. Let X be an RV of the continuous type with PDF f. Then for every
Borel set B € ‘B,

()] P(B) = [ f@) dzt.
B
If F is absolutely continuous and f is continuous at x, we have
dF(x
¢)) F'(x)= )(C ) = f(x).

Theorem 3. Every nonnegative real function f that is integrable over R and sat-
isfies

/oo fx)dx=1

is the PDF of some continuous RV X.
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Proof. In view of Theorem 2.3.5, it suffices to show that there corresponds a DF
F to f. Define

F(x)=/x f@)de, x € R.

Then F(—o0) =0, F(4+00) = 1, and if x2 > xy,

Flxy) = (f ' +/ ) f(t)dtz/ ' f@ydt = Fou).

Finally, F is (absolutely) continuous and hence continuous from the right.

Remark 1. In the discrete case, P{X = a} is the probability that X takes the
value a. In the continuous case, f(a) is not the probability that X takes the value a.
Indeed, if X is of the continuous type, it assumes every value with probability 0.

Theorem 4. Let X be any RV. Then

(8) P(X =a} = lim P{t < X <a).

t<a
Proof. Llett; <t <---<a, t, — a,and write
A, =1ty < X <a}.

Then A, is a nonincreasing sequence of events that converges to (oo An = {X =
a}. It follows that lim,, . PA, = P{X = a}.

Remark 2. Since P{t < X < a} = F(a) — F(t), it follows that

lim P{t < X <a) = P{X =a} = F(a) - lim F(1)
t—a t—a
t<a t<a

= F(a) — F(a—).

Thus F has a jump discontinuity at a if and only if P{X = a} > O; that is, F is
continuous at g if and only if P{X = a} = 0. If X is an RV of the continuous type,
P{X = a} = 0for all a € R. Moreover,

P{IXeR—{a}}=1

This justifies Remark 1.3.4.

Remark 3. The set of real numbers x for which a DF F increases is called the
support of F. Let X be the RV with DF F, and let S be the support of F. Then
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P(X € §) = 1and P(X € 5 = 0. The set of positive integers is the support of the
DF in Example 3, and the open interval (0, 1) is the support of F in Example 4.

Example 4. Let X be an RV with DF F given by (Fig. 1)

0, x <0,
F(x) = % x, 0<x<l,
1, 1 <x.

Differentiating F with respect to x at continuity points of f, we get

, 0, x<Qorx >1,
fx)=Fx)=
1, 0<x <1

The function f is not continuous at x = 0 or at x = 1 (Fig. 2). We may define f(0)
and f(1) in any manner. Choosing f(0) = f(1) = 0, we have

1, O0<x <1,
fxy= [0, otherwise.

Then
P{0.4 < X <0.6} = F(0.6) — F(0.4) =0.2.

Fix)

Fig. 1.
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A

f(x)

g g g

Fig. 2.

Example 5. 1.et X have the triangular PDF (Fig. 3)

Y

X, 0O<x<1,
f&x)=12~-nx, 1<x<2
0, otherwise.
1
1
f(x)
0 ‘ 1 4

Fig. 3. Graphof f.

53
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Fix)

0 1 2 X

Fig. 4. Graph of F.

It is easy to check that f is a PDF. For the DF F of X we have (Fig. 4)

F(x) =

Then

ifx <0,

0
/tdt:%— f0O<x <1,

o

1 x2
tdt+/(2——t)dt-—2x——7—1 ifl <x <2,

(=)

1 ifx > 2.

P{03 < X < 1.5} = P{X < 1.5} — P[X < 0.3}
= 0.83.

Example 6. Let k > 0 be a constant, and

f(x)zlkx(l——x), 0<x<l,

0, otherwise,

Then fol f(x)dx = k/6. It follows that f(x) defines a PDF if k = 6. We have

3
P{X>03)=1= 6[ x(1 —x)dx = 0.784.
0
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We conclude this discussion by emphasizing that the two types of RVs considered
above form only a part of the class of all RVs. These two classes, however, contain
practically all the random variables that arise in practice. We note without proof (see
Chung [14, p. 9]) that every DF F can be decomposed into two parts according to

© F(x) =aFz(x)+ (1 — a)F.(x).

Here F,; and F, are both DFs; Fj is the DF of a discrete RV, while F. is a continuous
(not necessarily absolutely continuous) DF. In fact, F. can be further decomposed,
but we will not go into that (see Chung [14, p. 11]).

Example 7. Let X be an RV with DF

0, x <0,

1

Ev -x=01
F(x) =

—1-+£ 0<x<1

2 2’ A

1, 1 <x.

Note that the DF F has a jump at x = 0 and F is continuous (in fact, absolutely
continuous) in the interval (0, 1). F is the DF of an RV X that is neither discrete nor
continuous. We can write

F(x) = JFy(x) + 1 Fo(x),

where
0, x <0,
Fi(x) =
d(x) {1' X0
and
0, x <0,
Fe(x) = {x, 0<x<l,
1, 1 <x.

Here Fy(x) is the DF of the RV degenerate at x = 0, and F,(x) is the DF with PDF

1, 0<x <1,
Jex) =

0, otherwise.
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PROBLEMS 2.4

1.

2.
3.

4.

5.

7.

8.

Let
p=pld-pF,  k=0,1,2,..., O<p<l.

Does {p;} define the PMF of some RV? What is the DF of this RV? If X is an
RV with PMF {py}, whatis P{n < X < N}, where n, N (N > n) are positive
integers?

In Problem 2.3.3, find the PDF associated with the DFs of parts (b), (c), and (d).
Does the function fy(x) = 8%xe~% if x > 0,and = 0if x < 0, where 6 > 0,

define a PDF? Find the DF associated with f3(x); if X is an RV with PDF fp(x),
find P{X > 1}.

Does the function fo(x) = {(x + 1)/[6(@ + D]}e™*/® if x > 0, and = 0
otherwise, where 8 > 0 define a PDF? Find the corresponding DF.

For what values of K do the following functions define the PMF of some RV?
@ f)y=KQ/xH,x=0,1,2,... ,A>0.

(b) fx)=K/N,x=1,2,...,N.

Show that the function

fx)= %e""’, —00 < x < 00,

is a PDE. Find its DE.

For the PDF f(x) = xif 0 < x < l,and =2 -xif 1 < x < 2, find

Pil<x<])

Which of the following functions are density functions?

(@ f(x) =x2—x), 0 <x <2, and 0 elsewhere.

M) f(x) =x(2x —1), 0 < x <2, and 0 elsewhere.

(©) f(x)=(1/r)exp{—(x —0)/A}, x > 6, and O elsewhere, A > 0.

@) f(x) =sinx, 0 <x < /2, and O elsewhere.

() f(x) =0forx <0, =(x+1)/9for0 < x < 1, =2Q2x — 1)/9 for
l<x<3,=25-2x)/9for3 <x <1,= 2 for2 <x <5,and0
elsewhere.

® fO) =11 +xH)), x eR.

Are the following functions distribution functions? If so, find the corresponding

density or probability functions.

(@) Fx) =0forx <0,=x/2for0<x < 1, = %forl <x <2,=x/4for
2<x<4and=1forx > 4.

®) Fix) =0ifx < -6, = %(x/9+ 1)if |x] < 6,and 1 for x > 0 where
6> 0.
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) F(x) =0ifx <0,and =1 — (1 + x)exp(—x) ifx > 0.
(d Fx) =0ifx <1,=(x —1)?/8if ] <x < 3,and 1 forx > 3.
() F(x) =0ifx <0,and =1 —e~* ifx > 0.
10. Suppose that P(X > x) is given for a random variable X (of the continuous

type) for all x. How will you find the corresponding density function? In partic-
ular, find the density function in each of the following cases:

(@ P(X >x)=1ifx <0,and P(X > x) =e ™ forx > 0; A > Oisa
constant.

() P(X >x)=1ifx <0,and = (1+x/A)"*,forx > 0, A > Qis aconstant.

(¢ P(X>x)=1ifx <0,and =3/(1 4+ x)* -2/(1 +x)*ifx > 0.

(d) P(X > x)=1ifx < xp,and = (xp/x)* if x > x9; x0 > Oand @ > 0 are
constants.

2.5 FUNCTIONS OF A RANDOM VARIABLE

Let X be an RV with a known distribution, and let g be a function defined on the real
line. We seek the distribution of ¥ = g(X), provided that Y is also an RV. We first
prove the following result.

Theorem 1. Let X be an RV defined on (2, S, P). Also, let g be a Borel-
measurable function on R. Then g(X) is also an RV.

Proof. For y € R, we have

(g(X) <y} = (X € g7 (o0, y1},

and since g is Borel-measurable, g ~!(~o00, y] is a Borel set. It follows that {g(X) <
y} € S, and the proof is complete.

Theorem 2. Given an RV X with a known DF, the distribution of the RV Y =
g(X), where g is a Borel-measurable function, is determined.

Proof. Indeed, forall y € R,
1) P{Y <y} = P{X € g7 (—00, yl}.

In what follows we always assume that the functions under consideration are
Borel-measurable.

Example 1. Let X be an RV with DF F. Then |X|, aX + b (where a # O and b
are constants), X k (where k£ > 0 is an integer), and | X|* (a > 0) are all RVs. Define

X+ — X, X >0,
o, X <0,
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and

X, X <0,
0, X >0

X =

Then X+, X~ are also RVs. We have

P{IX|<y}=P{-y =X <y}=P{X <y} - P(X < ~y}
= F(y) — F(=y) + P{X = —y}, y >0
PlaX+b<y}=PlaX <y-—b}
plyx<2=? ifa>0,
— a
plx>2="% ifa <0;
a
and
0 ify <0,
P{XT <y}=]P{X <0) ify =0,
P{X <0}4+P{0<X <y} ify>0.
Similarly,
PIX~ <y =1 fy20,
P{X <y} ify <0.

Let X be an RV of the discrete type and A be the countable set such that P{X €
A} =1land P{X =x} > Oforx € A.LetY = g(X) be a one-to-one mapping from
A onto some set B. Then the inverse map, g~ !, is a single-valued function of y. To
find P{Y = y}, we note that

PgX)=y}=P{X=g"'(»)}, yeB,
P(Y =y) = :
0, y € BC.
Example 2. Let X be a Poisson RV with PMF
M
P{X:k}: e ":!“, k=0,1,2,...; A,>O,
0, otherwise.

LetY = X?>+3.Theny = x>+ 3 maps A = (0,1,2,...} onto B = {3,4,7, 12,
19,28, ...}. The inverse map is x = /y — 3, and since there are no negative values
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in A, we take the positive square root of y — 3. We have

—AA\/)—:?
PY=y}=P{X=yy-3}= Too y € B,

and P{Y = y} = O elsewhere.
Actually, the restriction to a single-valued inverse on g is not necessary. If g has a

finite (or even a countable) number of inverses for each y, from countable additivity
of P we have

P{Y =y} =PigX) =y} =P} J(X =a,g(a) = y]}
= Z P(X =a, g(a) = y}.
Example 3. Let X be an RV with PMF

Pix=-2)=1% Px=-1)=} PXx=0=1,
P(X=1)=%, and PX=2}=1

Let Y = X2 Then

A={-2,-1,0,1,2} and B={0,1,4).

We have
3 y=0,
PlY=y}=414 1 _ 1 =1
N 0 O A
stp=3% ry=4

The case in which X is an RV of the continuous type is not as simple. First we note
that, if X is a continuous RV and g is some Borel-measurable function, ¥ = g(X)
may not be an RV of the continuous type.

Example 4. Let X be an RV with uniform distribution on {—1, 1]; that is, the

PDF of X is f(x) = 5, —1 < x < 1, and = O.elsewhere. Let Y = X*. Then, from
Example 1,

0, y <0,

1

bR y =4,

Py <y}={?
=y I+ly, 1>y>0,
1, y>1
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We see that the DF of Y has a jump at y = O and that Y is neither discrete nor
continuous. Note that all we require is that P{X < 0} > O for X* to be of the mixed

type.

Example 4 shows that we need some conditions on g to ensure that g(X) is also
an RV of the continuous type whenever X is continuous. This is the case when g
is a continuous monotonic function. A sufficient condition is given in the following
theorem.

Theorem 3. Let X be an RV of the continuous type with PDF f. Let y = g(x)
be differentiable for all x and either g’(x) > 0 for all x or g’(x) < O for all x. Then
Y = g(X) is also an RV of the continuous type with PDF given by

d
flg'on l;i-;g“‘(y)’, a<y<Bp,

Q, otherwise,

€5 h(y) =

where @ = min{g(—00), g(+00)} and B = max{g(—0o0), g(+00)}.

Proof. If g is differentiable for all x and g’(x) > 0 for all x, then g is continuous
and strictly increasing, the limits o, B exist (may be infinite), and the inverse function
x = g~ l(y) exists, is strictly increasing, and is differentiable. The DF of Y for
a <y < Bis given by

P(Y <y} =P{X <g~ '}

The PDF of g is obtained on differentiation. We have
d
h(y) = d—-P{Y <y}
y
d
_ ~1,01. 8 -1
= flg (y)]dyg ).

Similarly, if g’ < 0, then g is strictly decreasing and we have
M y

P{Y <y}=P{X > ¢ '(»)
=1-P{X <g '(y)} (X isacontinuous RV)

so that
-1 d _
h(y) =—flg (y)]-g—g ).
y

1

Since g and g are both strictly decreasing, (d/dy) g ') is negative and (2) fol-

lows.
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Note that
1) =
dy® dg(0)/dx g1y
so that (2) may be rewritten as
(x)
(3) h(y)=—-—f————— , a<y<p.
ldg(x)/dxl | —g-1(y)

Remark 1. The key to computation of the induced distribution of ¥ = g(X)
from the distribution of X is (1). If the conditions of Theorem 3 are satisfied, we
are able to identify the set {X € g~!(—00, y]} as (X < g~ '(»)} or (X > g~ (»)},
according to whether g is increasing or decreasing. In practice, Theorem 3 is quite
useful, but whenever the conditions are violated, one should return to (1) to compute
the induced distribution. This is the case, for example, in Examples 7 and 8 and
Theorem 4 below.

Remark 2. If the PDF f of X vanishes outside an interval {a, b] of finite length,
we need only to assume that g is differentiable in (a, b), and either ¢g’(x) > 0 or
g'(x) < 0 throughout the interval. Then we take

o = min{g(a), g(b)} and B = max{g(a), g(b)}

in Theorem 3.

Example 5. Let X have the density f(x) = 1,0 < x < 1, and = O otherwise.
Let Y = ¢X. Then X = log ¥, and we have

1
h(y)=,;‘-1, 0<logy <1,

that is,
1
-, l<y<e,
h() =1y
0, otherwise.
Ify=—2logx, thenx = e ¥/2 and
h(y) = |-5e %1, 0<e?? <1,

_ %e‘”z, 0<y<oo,
0, otherwise.
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Example 6. Let X be a nonnegative RV of the continuous type with PDF f, and
leta > 0. LetY = X“. Then

P{X <y} ify>0,

P{X% <y} =
=) [0 ify <0.

The PDF of Y is given by

h(y) = fV/*)

d
_yl/a
dy

1

(—x-y”““f(y‘/"), y >0,
0, y<0.

Example 7. Let X be an RV with PDF

1
fx) = ____e—x2/2’ —00 < X < 00.

Vr

Let Y = X2, In this case, g'(x) = 2x, which is > Ofor x > 0, and < Oforx < 0, so
that the conditions of Theorem 3 are not satisfied. But for y > 0,

P{Y <y} = P{—/y < X £ /¥}
= F(/y) — F(=J),

where F is the DF of X. Thus the PDF of Y is given by

1
s+ >0,

h(y) =3 2J¥
0, y <0.
Thus
! e /2 O<y
h(y)={+v2ny
0, y <0
Example 8. Let X be an RV with PDF
2x
Fox) = 3 0<x<m,
0, othe{wise.

Let ¥ = sin X. In this case g’(x) = cosx > 0 for x in (0, r/2) and < O for x in
(r/2, ), so that the conditions of Theorem 3 are not satisfied. To compute the PDF
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A

v

Fig. 1. y =sinx, 0 <x <m.
of Y, we return to (1) and see that (Fig. 1) the DF of Y is given by

P{Y <y} = P{sinX <y}, O<y<l,
=PlO0O<X<x)Ux <X <m}

where x; = sin ! yand xp = 7 — sin~! y. Thus

HYﬁyh=L“fqu+fﬂﬂndx

2

(&) (@)

and the PDF of Y is given by
d [sin’! 2 d 7 —sin~! 2
h(y) = — )+ - |22
dy /4 dy T
2
s O<y<l,
= {1~ y?
0, otherwise.

In Examples 7 and 8 the function y = g(x) can be written as the sum of two
monotone functions. We applied Theorem 3 to each of these monotonic summands.
These two examples are special cases of the following result.
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Theorem 4. Let X be an RV of the continuous type with PDF f. Let y = g(x)
be differentiable for all x, and assume that g’ (x) is continuous and nonzero at all but
a finite number of values of x. Then for every real number y,

(a) there exist a positive integer n = n(y) and real numbers (inverses) x1(y),
x2(¥), ... , xp(¥) such that

gixx(MI=y and g'[x(y] #0, k=1,2,...,n(0),

or
(b) there does not exist any x such that g(x) = y, g'(x) # 0, in which case we
write n(y) = 0.

Then Y is a continuous RV with PDF given by

n

’ -1 if
by = | 2 TEHONIE GO it >0,

0 ifn=0.

Example 9. Let X be an RV with PDF f, and let Y = |X|. Here n(y) = 2,
x1(y) =y, x2(y) = —yfory > 0, and

SO+ f(=y), y >0,

h(y)=[0’ y <0.

Thus, if f(x) = §, -1 <x <1, and = 0 otherwise, then

1, 0<yx<l,
0, otherwise.

h(y) = {

If f(x)= (1/v27t)e_(x2/2), —-00 < x < 00, then

2o s,

h(y) = { V27

0, otherwise.

Example 10. Let X be an RV of the continuous type with PDF f, and let ¥ =
X?m where m is a positive integer. In this case g(x) = x2m o'(x) = 2mx?m~1 5 0
forx > 0 and g'(x) < O for x < 0. Writing n = 2m, we see that for any y > 0,
n(y) =2, x1(y) = —y/*, x2(y) = y!/*. It follows that

1 1
h(y) = flxi(y)]- 'ny—l_'m + f[xz(Y)]n—y‘l—_j/—n

1 n n .
STl O+ SEYM] ity >0

0 ify <0.
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In particular, if f is the PDF given in Example 7, then

2 2/n
————————eXp r_ ify >0,
h(y) = § V2w nyl-l/n 2
0

ify <0.

Remark 3. The basic formula (1) and the countable additivity of probability al-
low us to compute the distribution of ¥ = g(X) in some instances even if g has a
countable number of inverses. Let A € R and g map A into B € R. Suppose that A
can be represented as a countable union of disjoint sets Ay, k = 1,2, .... Then the
DF of Y is given by

PY <y} = P{X € g (~00, yl}

=P [X € Z[{g‘l(—-oo, ylIIn Ak]}

k=1
00
=Y P{X e A n{g " (—o0, y]}}.
k=1
If the conditions of Theorem 3 are satisfied by the restriction of g to each Ay, we
may obtain the PDF of Y on differentiating the DF of Y. We remind the reader that

term-by-term differentiation is permissible if the differentiated series is uniformly
convergent.

Example 11. Let X be an RV with PDF

Ge 0, x >0,
o, x <0,

f(x)=[ 6 > 0.

Let Y = sin X, and let sin~! y be the principal value. Then (Fig. 2)forO0 < y < 1,

Pisin X < y}
=Pl0<X < sin~! yor(2n — D — sin~! y <X <2nm+ sin~! y
for all integers n > 1}

o0
=P0<X <sin"'y}+ Y P{@n—Dr —sin!y < X < 2nmw +sin"" )

n=1

[e¢]
-1 e—osin-‘ Y4 Z (e—e[(Zn—l)n—sin“ ¥yl _ ,—8Cnx+sin”! y))

n=1
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Fig. 2. y =sinx, x > 0.

00
—hein-] - G ein—1 _
1—e @sin”' y | (897!+98m Y _e 6 sin y)§ :e (267)n
n=1

e—267r

—1 —@sin~y om+6sin Ty
=1-e + (e T

—@sin!
—e # sin y)

P P
e~0n+9 sin”'y __ e—@ sin”' y
=1+

1 — e 276

A similar computation can be made for y < 0. It follows that the PDF of Y is given
by

ee-Bn(l _ e—~26n)-l(1 — y2)—1/2(eesin_‘ Y 4 e—@ﬂ——Gsin" Y) if —1< y < 0,

h(y) = 10(1 — e #7)7'(1 — y?)~ /205"y 4 g=0m+osin™") ifo<y<1,
0 otherwise.
PROBLEMS 2.5

1. Let X be a random variable with probability mass function
P(X=r}= (n)”r(l -p"",  r=0,1,2,...,n, 0<p<l.
r

Find the PMFs of the RVs (@) Y = aX + b, (b)Y = X%, and (c) Y = v/X.
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2,

Let X be an RV with PDF
0 ifx <0,
1
f(x) = 2 if0<x <1,
1
— ifl <x < oo.
2x2

Find the PDF of the RV 1/X.

. Let X be a positive RV of the continuous type with PDF f(-). Find the PDF of

the RV U = X/(1 + X). If, in particular, X has the PDF

1, 0<x<l,

0, otherwise,

f(X)=l

what is the PDF of U?

. Let X be an RV with PDF f defined by Example 11. LetY = cos X and Z =

tan X. Find the DFs and PDFs of Y and Z.
Let X be an RV with PDF

fe0x ifx >0,

0 otherwise,

fo(x) = [

where 6 > 0.Let ¥ = (X — 1/6)?. Find the PDF of Y.

. A point is chosen at random on the circumference of a circle of radius r with

center at the origin, that is, the polar angle 6 of the point chosen has the PDF

@) = —1—, 6 € (—m,m).
2n

Find the PDF of the abscissa of the point selected.

. For the RV X of Example 7, find the PDF of the following RVs: (a) Y} = eX,

(b) Y2 =2X% + 1, and (c) ¥3 = g(X), where g(x) = 1 if x > 0,= 1 ifx = 0,
and = —1ifx <0.

. Suppose that a projectile is fired at an angle 8 above the earth with a velocity V.

Assuming that @ is an RV with PDF

12 i T o b1 4
— —-— <8 < —,

f@=4{n= 6 4
0 otherwise,

find the PDF of the range R of the projectile, where R = V2sin26/g, g being
the gravitational constant.
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9, Let X be an RV with PDF f(x) = 1/(2n) if 0 < x < 2, and = 0 otherwise.
LetY = sin X. Find the DF and PDF of Y.

10. Let X be an RV with PDF f(x) = % if —1 < x < 2, and = 0 otherwise. Let
Y = | X|. Find the PDF of Y.

11. Let X be an RV with PDF f(x) = 1/(26) if —6 < x < 6, and = 0 otherwise.
Let Y = 1/X2. Find the PDF of Y.

12. Let X be an RV of the continuous type, and let Y = g(X) be defined as follows:
(a) gx)=1ifx >0,and= —1ifx <O.
b) gx)=bifx >b,=xif |x|] <b,and = —bif x < —b.
©) gx)=xif|x| > b,and =0if [x| < b.
Find the distribution of Y in each case.



CHAPTER3

Moments and Generating Functions

3.1 INTRODUCTION

The study of probability distributions of a random variable is essentially the study
of some numerical characteristics associated with them. These parameters of the
distribution play a key role in mathematical statistics. In Section 3.2 we introduce
some of these parameters, namely, moments and order parameters, and investigate
their properties. In Section 3.3 the idea of generating functions is introduced. In
particular, we study probability generating functions, moment generating functions,
and characteristic functions. In Section 3.4 we deal with some moment inequalities.

3.2 MOMENTS OF A DISTRIBUTION FUNCTION

In this section we investigate some numerical characteristics, called parameters, as-
sociated with the distribution of an RV X. These parameters are moments and their
functions and order parameters. We concentrate mainly on moments and their prop-
erties.

Let X be a random variable of the discrete type with probability mass function
pr=P{X=x},k=12,....If

o0
¢) > Ialpre < oo,
k=1

we say that the expected value (or the mean or the mathematical expectation) of X
exists and write

oC
@ p=EX=) up.
k=1

Note that the series D_g-.; X, px may converge but the series 3 72 |x¢| py may
not. In that case we say that E X does not exist.

69
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Example 1. Let X have the PMF given by

13 2 .
p]=P[X=(—1)j+]7l=—3—], _]=1,2,....

Then

2]

> 2
lejlpj = Z—. = 00,
=1 =1/

j=1

and E X does not exist, although the series

IS DRI
j=

j=1

is convergent.

If X is of the continuous type and has PDF f, we say that E X exists and equals
J xf (x) dx, provided that

/lxlf(x)dx < 00.

A similar definition is given for the mean of any Borel-measurable function A(X)
of X. Thus if X is of the continuous type and has PDF f, we say that EA(X) exists
and equals f h(x) f (x) dx, provided that

[Ih(x)lf(x) dx < o0.

We emphasize that the condition f |x|f(x) dx < oo must be checked before it
can be concluded that EX exists and equals f xf(x) dx. Moreover, it is worthwhile
to recall at this point that the integral ffooo @(x) dx exists, provided that the limit

himj ffb @(x) dx exists. It is quite possible for the limit lim,—, o ffa o(x)dx
to exist without the existence of ffgo @(x)dx. As an example, consider the Cauchy
PDF:

1

f& =1 + x?

, —00 < X < 00.

T

Clearly,

a 1
lim/ X dx=0.
amoo f ,mwl+x

However, E X does not exist since the integral (1/7) ffooo lx]/(1 + x2) dx diverges.
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Remark I. Let X(w) = I4(w) forsome A € S. Then EX = P(A).

Remark 2. If we write h(X) = |X|, we see that EX exists if and only if E|X]
does.

Remark 3. 'We say that an RV X is symmetric about a point « if
PIX>a+x}=P{X <a-ux} for all x.
In terms of DF F of X, this means that if
Flo—xY=1-F+x)+P{X =0 +x}

holds for all x € R, we say that the DF F (or the RV X) is symmetric with o as the
center of symmetry. If o =0, then for every x,

F(—x) = 1— F(x) + P{X = x].

In particular, if X is an RV of the continuous type, X is symmetric with-center « if
and only if the PDF f of X satisfies

fla—x)= fla+x) for all x.

If « = 0, we will say simply that X is symmetric (or that F is symmetric).

As an immediate consequence of this definition we see that if X is symmetric with
a as the center of symmetry and E{X| < oo, then EX = «. A simple example of a
symmetric distribution is the Cauchy PDF considered above (before Remark 1). We
will encounter many such distributions later.

Remark 4. 1If a and b are constants and X is an RV with E{X| < oo, then
ElaX 4+ b} < oo and E{aX + b} = aEX + b. In particular, E{X — u} =0, a
fact that should not come as a surprise.

Remark 5. If X is bounded, that is, if P{|X| < M} =1,0 < M < oo, then EX
exists.

Remark 6. If {X > 0} =1 and EX exists, then EX > 0.

Theorem 1. Let X be an RV and g be a Borel-measurable function on R. Let
Y = g(X).If X is of discrete type, then

3) EY = » g(xj)P{X = x;}

oo
=1

in the sense that if either side of (3) exists, so does the other, and then the two are
equal. If X is of continuous type with PDF f, then EY = f g(x) f(x)dx in the
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sense that if either of the two integrals converges absolutely, so does the other, and
the two are equal.

Remark 7. Let X be a discrete RV. Then Theorem 1 says that
00 e
Y gx)HPIX =x;} =Y wP{Y = u}
j=1 k=1

in the sense that if either of the two series converges absolutely, so does the other,
and the two sums are equal. If X is of the continuous type with PDF f, let 2(y) be
the PDF of Y = g(X). Then, according to Theorem 1,

f g(0)f(x) dx = f yh() dy,
provided that E|g(X)| < oo.

Proof of Theorem 1. In the discrete case, suppose that P{X € A} = 1.Ify =
g(x) is a one-to-one mapping of A onto some set B, then

PlY=y}=P(X=¢"'(»)), yeB.
We have »

Y e@P(X=x}=) yP{Y =y}

x€A yeR

In the continuous case, suppose that g satisfies the conditions of Theorem 2.5.3. Then

8 d
f gx)f(x)dx = f yf[g‘l(y)]z;g"(y)ldy

by changing the variable to y = g(x). Thus

B
f g () f(x) dx = f yh(y)dy.

The functions A(x) = x", where n is a positive integer, and h(x) = |x|*, where a
is a positive real number, are of special importance. If EX" exists for some positive
integer n, we call EX" the nth moment of (the distribution function of) X about
the origin. If E|X|* < oo for some positive real number «, we call E|X[* the oth
absolute moment of X. We shall use the notation

@ m, =EX" and B, = E|X|*

whenever the expectations exist.
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Example 2. Let X have the uniform distribution on the first N natural numbers;
that is, let

1

X=kl=—, k=12,...,N.
P{ k} N
Clearly, moments of all order exist:
N
1 N+1
EX=Y k- —=——,
k="
N
1 (N+D@EN+1)
2 _ 2 L _ W T AT )
EX*=Y "k < :

=
X

Example 3. Let X be an RV with PDF

2 x>1
fx)=1x% -
0, x <1
Then
2
1 X
But

does not exist. Indeed, it is easily possible to construct examples of random variables
for which all moments of a specified order exist but no higher-order moments do.

Example 4. Two players, A and B, play a coin-tossing game. A gives B one
dollar if a head turns up; otherwise, B pays A one dollar. If the probability that the
coin shows a head is p, find the expected gain of A.

Let X denote the gain of A. Then

P{X = 1} = Pftails} =1 - p, P{X =—-1}=p,

and

>0 ifandonlyif p < %

EX=1-p—-p=1-2
pP—p P{:O ifandonlyifp::%.

Thus EX = 0 if and only if the coin is fair.
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Theorem 2. If the moment of order ¢ exists for an RV X, moments of order 0 <
§ <t exist.

Proof. Let X be of the continuous type with PDF f. We have

X = [ wfrwaxs [ st reods
Jxjs<1 Jx|$>1

< P{X|* <1} + E|X|' < o0.
A similar proof can be given when X is a discrete RV.

Theorem 3. Let X be an RV on a probability space (2, S, P). Let E|X|* < oo
for some k > 0. Then

nkP{|X|>n}—>O asn — oo.

Proof. 'We provide the proof for the case in which X is of the continuous type
with density f. We have

0 >/|x|kf(x)dx = lim Ix|* £ (x) dx.
n—>o00 Ix|<n
It follows that
lim Ix*f(x)dx > 0  asn — oo.
=00 Jix|>n
But

f £ () dx = nkP(X] > n),
Ix|>n

completing the proof.

Remark 8. Probabilities of. the type P{|X| > n} or either of its components,
P{X > n} or P{X < —n}, are called tail probabilities. The result of Theorem 3,
therefore, gives the rate at which P{|X| > n} converges to 0 as n — 0.

Remark 9. 'The converse of Theorem 3 does not hold in general; that is,
nkP{!X|>n}—>0 as n — oo for some k

does not necessarily imply that E|X|¥ < oo, for consider the RV

P{X = n) < n=23,....

~ nZlogn’
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where ¢ is a constant determined from

o0

c
Yoo =1
—=n logn
We have

oo
dx =~ cn"l(logn)‘1

P{X>n}%c/

n x2logx

and n P{X > n} - 0asn — oo. (Here and subsequently, &~ means that the ratio of
two sides — 1 as n — 00.) But

¢
EX = =
anogn ®

In fact, we need
WHPX|>n}—>0 asn—0

for some & > 0 to ensure that E|X|*¥ < o0c. A condition such as this is called a
moment condition.

For the proof we need the following lemma.
Lemma 1. Let X be a nonnegative RV with distribution function F. Then
0
5) EX =/ [1—-F(x)]dx,
0
in the sense that if either side exists, so does the other and the two are equal.

Proof. If X is of the continuous type with density f and EX < 0o, then
o0 n
EX = / xf(x)dx = lim f xf(x)dx.
i) n—>00 0
On integration by parts, we obtain
n n n
/ xf(x)dx =nF(n) ——/ F(x)dx = —n[1 — F(n)] +f [1 — F(x))dx.
0 0 0
But
o0 x>
n[l—F(n)]:nf f(x)dx</ xf(x)dx,
n n

and since E|X| < oo, it follows that

nfl— Fn)] -0 asn —> 00.
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We have
EX = lim f xf(x)dx = lim / [l—F(x)]dx:f [1— F(x)ldx.
n—o0 0 n—o0 0 0
If [;°[1 — F(x)]dx < oo, then

/"xf(x)dxsfn[l-F(x)]de/ [1 — F(x)]dx,
0 0 0

and it follows that E|X| < co.
We leave the reader to complete the proof in the discrete case.

Corollary 1. For any RV X, E|X| < oo if and only if the integrals [°_ P{X <
x}dx and f0°° P{X > x}dx both converge, and in that case

o0 0
EX =/ P{X > x}dx —f P{X <x}dx.
0

—oQ

Actually, we can get a little more out of Lemma 1 than the corollary above. In
fact,

o0 [ o]
E|X|® =f P{X|° > x}dx = a/ x*1P{1X| > x}dx,
(4] 0

and we see that an RV X possesses an absolute moment of order @ > 0 if and only if
[x[*~1P{|X]| > x} is integrable over (0, 00).
A simple application of the integral test leads to the following moments lemma.

Lemma 2

(6) EIXI* <0 & ZP{IX\ > n'/?} < co.

n=1

Note that an immediate consequence of Lemma 2 is Theorem 3. We are now ready
to prove the following result.

Theorem 4. Let X be an RV with a distribution satisfying n® P{|X| > n} - 0
as n — oo for some a > 0. Then E|X|# < oo for0 < 8 < a.

Proof. Given ¢ > 0, we can choose an N = N (¢g) such that
£
P{|X|>n} < — foralln > N.
n(!

Tt follows that for 0 < 8 < «,
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N 00
E|X|? = ﬂfo P IPX| > x}dx + ﬂfN - 1P{1X| > x}dx

00
< N# +,Bs/ Pt gy
N

< O0O.
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Remark 10. Using Theorems 3 and 4, we demonstrate the existence of random
variables for which moments of any order do not exist, that is, for which E|X|* = oo
for every @ > 0. For such an RV n®*P{|X| > n} -» Oasn — oo forany o > O.

Consider, for example, the RV X with PDF
1

—_— f
fo0 = { 2eidogp?. 7
0 otherwise.
The DF of X is given by
! ifx < —e
2log x| -7
1
Fx) = 2 if —e<x<e,
1
— 2log ifx >e.
X

Then for x > e,

P{IX|>x}=1-F(x)+ F(-x)
_ 1
" 2logx’

and x* P{{X| > x} — oo asx — oo for any @ > 0. It follows that E|X|* = oo for
every a > 0. In this example we see that P{|X| > cx}/P{|X| > x} - lasx — oo
for every ¢ > 0. A positive function L(-) defined on (0, 0o) is said to be a function of
slow variation if and only if L(cx)/L(x) — 1 as x — oo for every ¢ > 0. For such
a function x* L(x) — oo for every o > 0 (see Feller (23, pp. 275-279]). it follows
that if P{|X| > x} is slowly varying, E|X{* = oo for every ¢ > 0. Functions of

slow variation play an important role in the theory of probability.

Random variables for which P{|X| > x} is slowly varying are clearly excluded

from the domain of the following result.

Theorem S. Let X be an RV satisfying
P{|X| > cx}

@) —_— 0 asx —»> oo forallce>1;

P(IX| > x}
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then X possesses moments of all orders. [Note that if ¢ = 1, the limit in (7) is 1,
whereas if ¢ < 1, the limit will not go to 0 since P{|X| > cx} = P{|X| > x}.]

Proof. lete > 0(we will choose ¢ later), choose xg so large that

P{IX
®) M <& for all x > xg,
P{|X| > x}

and choose x; so large that
9 PiiIX|>x} <¢ forall x > x.

Let N = max(xg, x1). We have for a fixed positive integer r,

(10)

y r p
PliX| > " x} _ l—I P{IX]| > cPx} <o
POX1>x} O\ PIX| > cP-lx} —
for x > N. Thus for x > N we have, in view of (9),

a1 P{X| > c"x} <&t

Next note that for any fixed positive integer n,
0
12  E|x|" =n/ "“IP{IX| > x}dx
0

N oo
=nf UP{X| > x}dx +n/ " P(IX| > x}dx.
0 N

Since the first integral in (12) is finite, we need only show that the second integral is
also finite. We have

o0 0 N
/ U P{IX] >x}dx=Z/ " LP{X| > x}dx
N r___] '

r~1 N

o0
< Z(C'N)"*‘e' 2N

r=1
o0
= 2N" Z(sc")'
r=1

n
= 2N" &¢ < 00
1 —sc”

provided that we choose £ such that ec” < 1. It follows that E|X|" < oo forn =
1,2,.... Actually, we have shown that (7) implies that £|X ¥ < oo forall § > O.
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Theorem 6. If hy, hy, ..., h, are Borel-measurable functions of an RV X
and Eh;(X) exists fori = 1,2,...,n, then F [Z;’zl h,-(X)] exists and equals
Yoieg ERi(X).

Definition 1. Let k be a positive integer and ¢ be a constant. If E(X — o) exists,
we call it the moment of order k about the point c. If we take ¢ = EX = u, which
exists since E|X| < 0o, we call E(X — u)* the central moment of order k or the
moment of order k about the mean. We shall write

e = E(X — w*.

If we know mj, ma, ..., mg, We can compute (1, 42, ... , 4k, and conversely.
We have

k k
(13) me=EX-wr=m - (1)’“""" + (

2)u2mk_2 — e (= DFRf

and

k k
(14)  mg=EX —pu+wf =m+ (l)ﬂllvk*l + (2

)uzuk—z 4o pk,
The case k = 2 is of special importance.

Definition 2. If E X? exists, we call E(X — u)? the variance of X, and we write
02 = var(X) = E(X — p)?. The quantity o is called the standard deviation (SD)
of X.

From Theorem 6 we see that
(15) 62 =py=EX?*— (EX)>
Variance has some important properties.

Theorem 7. Var(X) = 0if and only if X is degenerate.

Theorem 8. Var(X) < E(X — ¢)? forany ¢ # EX.

Proof. 'We have

var(X) = E(X — p)? = E(X — ¢)* + (c — p)*.
Note that
var(aX + b) = a? var(X).

Let E|Xi2 < 00. Then we define
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_X—-EX X-—p
(1o L= Ram - o

and see that EZ = O and var(Z) = 1. We call Z a standardized RV.

Example 5. Let X be an RV with binomial PMF

P{X =k} = (Z)pk(l —p" K k=0,1,2,....,n; O<p<l.
Then
o, (1 k k
EX = 1— py*~
:L;;k(k)p (1 - p)
n—1\ . —k
=an(k_ 1)” (1-p)"
= np,
EX?=E[X(X - 1)+ X]
= Zk(k - 1)(:)[1"(1 - p)"”k +np
=n(n — 1)p* + np;
var(X) = n(n — l)p2 +np — n2p2
= np(l — p);
EX?=E[X(X - I)(X —2) +3X(X — D)+ X]
=nn—1)(n—2)p> +3n@r — )p? + np;
and

p3 = m3y — 3umy + 2u>
=nn— n-— 2)p3 +3n(n — l)p2 +np — 3npln(n — l)p2 +npl + 2n3p3
=np(l — p)(1 —2p).

In the example above we computed factorial moments EX(X — I}(X — 2)---
(X —k+1) for various values of k. For some discrete integer-valued RVs whose PMF
contains factorials or binomial coefficients, it may be more convenient to compute
factorial moments.

We have seen that for some distributions, even the mean does not exist. We next
consider some parameters, called order parameters, which always exist.



MOMENTS OF A DISTRIBUTION FUNCTION 81

A
f(x)
: 1-p
o
1] 3;, 1 >
Fig. 1. Quantile of order p.
Definition 3. A number x (Fig. 1) satisfying
an P{X <x}=>p, PX>x}>1-p, O<p<l,

is called a quantile of order p [or (100p)th percentile] for the RV X (or for the DF
F of X). We write 3,(X) for a quantile of order p for the RV X.

If x is a quantile of order p for an RV X with DF F, then
(18) p<Fkx)<p+P{X=x}

If P{X = x} = 0, as is the case—in particular, if X is of the continuous type—a
quantile of order p is a solution of the equation

(19) F(x) = p.
If F is strictly increasing, (19) has a unique solution. Otherwise (Fig. 2), there may

be many (even uncountably many) solutions of (19), each of which is then called a
quantile of order p. Quantiles are of great deal of interest in testing hypotheses.

Definition 4. Let X be an RV with DF F. A number x satisfying

(20) <F@) <3+ P{X =x)

Nb—=

or, equivalently,
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A
Fx)
1
pl--mmmeees :
@ 0 ’ 1 7}
A
1 Flx)
p _______
® o i

- x¥

Fig. 2. (@) Unique quantile; (b) infinitely many solutions of F(x) = p.

@1 P{X<x}>4 and P(X>x}>3
is called a median of X (or F).

Again we note that there may be many values that satisfy (20) or (21). Thus a
median is not necessarily unique.

If F is a symmetric DF, the center of symmetry is clearly the median of the DF F.
The median is an important centering constant, especially in cases where the mean
of the distribution does not exist.
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Example 6. Let X be an RV with Cauchy PDF

1
1422

—00 <X < 00,

q =

fx)=

Then E|X]| is not finite, but E|X|2s < oo for 0 < § < 1. The median of the RV X is
clearly x = 0.

Example 7. Let X be an RV with PMF

PIX=-2}=P{X=0=1% PX=1=1% Px=2=1%

Then

P{X<0}=1 and P{X>0y=3>}.
In fact, if x is any number such that 0 < x < 1, then

PIX<x}=PX=-21+P(X=0}=1
and

PIX>x}=P{X=1}+P{X=2}=},

and it follows that every x, 0 < x < 1, is a median of the RV X.
If p = 0.2, the quantile of order p is x = —2, since

P{X<-2)=%>p and P{X>-2}=1>1-p.

PROBLEMS 3.2

1. Find the expected number of throws of a fair die until a 6 is obtained.

2. From a box containing N identical tickets numbered 1 through N, n tickets are
drawn with replacement. Let X be the largest number drawn. Find EX.

3. Let X be an RV with PDF

c

T = e

—0<x <000, m>1,

where ¢ = T'(m)/[T'($)I'(m — })). Show that EX?" exists if and only if 2r <
2m — 1. What is EX* if 2r < 2m — 1?

4. Let X be an RV with PDF
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ka*

fx) =1 (x +a)t!
0 otherwise (a > 0).

ifx >0,

Show that E|X|* < oo for ¢ < k. Find the quantile of order p for the RV X.

5. Let X be an RV such that E|X| < oo. Show that E|X — ¢| is minimized if we
choose ¢ equal to the median of the distribution of X.

6. Fareto’s distribution with parameters « and g (both « and 8 positive) is defined
by the PDF

pa’ .
foy={w Hrze
0 ifx < a.

Show that the moment of order n exists if and only if » < 8. Let 8 > 2. Find
the mean and the variance of the distribution.

7. For an RV X with PDF
X f0<x <1,

ifl<x <2,
la-x if2<x<3,

DI B =

fx) =

show that moments of all order exist. Find the mean and the variance of X.

8. For the PMF of Example 5, show that
EX*=np+Tn(n—1p>+6nn—1)n—2)p> +nn~)n—2)(n—3)p*
and

s = 3(npg)? + npq(1 — 6pq),

where0<p<l,g=1-p.
9, For the Poisson RV X with PMF

X

A
P{X=x}=e"‘—’, x=0,12, ...,
X!

showthat EX = A, EX2 = A+ A2 EX3 = A+ 322+ 03 EXY = A4+ 7A2 +
6A3 + 1%, and puy = 3 = A, s = A + 322
10. For any RV X with E|X|* < oo, define

v M e
(n2)¥/?’ I
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Here o3 is known as the coefficient of skewness and is sometimes used as a
measure of asymmetry, and a4 is known as kurtosis and is used to measure the
peakedness (“flatness of the top”) of a distribution. Compute a3 and a4 for the
PMFs of Problems 8 and 9.

11. For a positive RV X define the negative moment of order n by EX ™", where
n > 0is an integer. Find E[1/(X + 1)] for the PMFs of Example 5 and Prob-
lem9.

12. Prove Theorem 6.
13. Prove Theorem 7.
14. In each of the following cases, compute E X, var(X), and EX” (forn > 0, an
integer) whenever they exist:
@ fix)=1, —% <x < %, and zero elsewhere.
(b) f(x) =e %, x > 0, and zero elsewhere.
© f(x)=(k— 1)/x" , x > 1, and zero elsewhere; k > 1 is a constant.
@ fx)=1/[x(1+x?)), —00 < x < 0.
(e) f(x) =6x(1 —x),0 < x < 1, and zero elsewhere.
) f(x) =xe™*,x > 0, and zero elsewhere.
(g) P(X =x)=p(l — p)“'"l,x =1,2,...,and zero elsewhere: 0 < p < 1.
15. Find the quantile of order p(0 < p < 1) for the following distributions.
@ fx)=1 /x%, x > 1, and zero elsewhere.
®) f(x)=2x exp(—xz), x > 0, and zero otherwise.
(©) f(x) =1/6,0 < x < 6, and zero elsewhere.
d PX=x)=0(1-6)*"1x=1,2,...,and zero otherwise; 0 < 6 < 1.
(&) f(x) = (1/8Hx exp(—x/B), x > 0, and zero otherwise; § > 0.
0 fx) = G/P* )b — x)%,0 < x < b, and zero elsewhere.

3.3 GENERATING FUNCTIONS

In this section we consider some functions that generate probabilities or moments
of an RV. The simplest type of generating function in probability theory is the one
associated with integer-valued RVs. Let X be an RV, and let

pr=P{X =k}, k=012,...

Definition 1. The function defined by

) P(s)=Y  pis*,
=0
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which surely converges for |s| < 1, is called the probability generating function
(PGF) of X.

Example 1. Consider the Poisson RV with PMF

k

A
P{X:k}:e"‘-k—', k=0,1,2,....

We have
00 et
Pe)=) (M- =eTret =079 foralls.
k=0
Example 2. Let X be an RV with geometric distribution, that is, let

P{X=kl=pg*, k=012...; 0<p<1, g=1-p.

Then

oo
P(s)=) stpgk=p
k=0

, < 1.
T—sq Is| <

Remark 1. Since P(1) = 1, series (1) is uniformly and absolutely convergent in
[s] < 1 and the PGF P is a continuous function of s. It determines the PGF uniquely,
since P(s) can be represented in a unique manner as a power series.

Remark 2. Since a power series with radius of convergence r can be differenti-
ated termwise any number of times in (—r, r), it follows that

PO()= "ntn—1)--(n—k+ DHP(X =n)s"*,
n=k

where P® is the kth derivative of P. The series converges at least for —1 < s < 1.
For s = 1 the right side reduces formally to E[X(X — 1)...(X — k + 1)], which
is the kth factorial moment of X whenever it exists. In particular, if EX < oo,
then P'(1) = EX, and if EX? < oo, then P"(1) = EX(X — 1) and var(X) =
EX?— (EX)*=P"(1) — [P/ (D + P'(1).

-1

Example 3. In Example 1 we found that P(s) = e =), |s| < 1, for a Poisson

RV. Thus

P'(s) = e M179),
P”(S) — }\Ze—k(l—s)‘

Also, EX = A, E(X?—X) = A2, sothatvar(X) = EX?*—(EX)? = A24A—22 = A.
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In Example 2 we computed P(s) = p/(1 — sq), so that

2
Pq ; " 2pq

P _— d P = .

(s) = sq7? an (s) 027

Thus
2 2 2
EX::g—, EX2=2+——p(3] , and var(X)=g—+1=iZ.
p p 14 P 14 14
Example 4. Consider the PGF
1 n

P(s)=( +S), -0 < § < 00.

Expanding the right side into a power series, we get

n 1 /n ~ n
P(s) = Z—ﬁ(k)s" ¢ =kZ(j)pksk,

and it follows that
v [P n _
P(X-k)~Pk—(k)/2, k=0,1,...,n.

We note that the PGF, being defined only for discrete integer-valued RVs, has limited
utility. We next consider a generating function that is quite useful in probability and
statistics.

Definition 2. Let X be an RV defined on (2, S, P). The function
) M(s) = Ee’X

is known as the moment generating function (MGF) of the RV X if the expectation
on the right side of (2) exists in some neighborhood of the origin.

Example 5. Let X have the PMF

6 1
fw=17 e Kb
0, otherwise.

Then (1/72) Y52, e**/k?, is infinite for every s > 0. We see that the MGF of X
does not exist. In fact, EX = oo.

Example 6. Let X have the PDF

16—1/2

f) =12 ’

0, otherwise.

x >0,



88 MOMENTS AND GENERATING FUNCTIONS

Then

1 1
T2 =3
Example 7. Let X have the PMF
2k
PIX = k) = e“"ﬁ-, k=0,1,2,...,
0, otherwise.

Then
X A M
— S sk
M(Gs) =Ee’” =e kz_oe T

=) foralls.
The following result will be quite useful subsequently.

Theorem 1. The MGF uniquely determines a DF and, conversely, if the MGF
exists, it is unique.

For the proof we refer the reader to Widder [116, p. 460], or Curtiss [18]. Theo-
rem 2 explains why we call M(s) an MGF.

Theorem 2. If the MGF M (s) of an RV X exists for s in (—sp, $p), say, so > O,
the derivatives of all order exist at s = 0 and can be evaluated under the integral sign,
that is,

3) M®(s)| _, = Ex* for positive integral k.

For the proof of Theorem 2, we refer to Widder [116, pp. 446-447]. See also
Problem 9.

Remark 3. Alternatively, if the MGF M (s) exists for s in (—so, o), say, sg > O,
one can express M (s) (uniquely) in a Maclaurin series expansion:

MO M’
@ M =m© + Ly LO2
so that E X* is the coefficient of s*/k! in expansion (4).

Example 8. Let X be an RV with PDF f(x) = 1e=*/2, x > 0. From Example 6,
M(s) = 1/(1 - 2s) for s < %. Thus
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M'(s) = 2 d M'(s)= 42 s<l
R A P T 2

It follows that
EX=2, EX*’=8, and var(X)=A4.

Example 9. Let X be an RV with PDF f(x) = 1,0 < x < 1, and = 0 otherwise.
Then

R

1
-1
M(s):fe”dx:e o alls,
0 Ry

ron_ € s—(=1-1
M(s)_‘ 52 L

and

set —éef +1 i
EX = M'(0) = lim ———— = —.
() SI—I;I}) s2 2

We emphasize that the expectation Ee*X does not exist unless s is carefully re-
stricted. In fact, the requirement that M(s) exists in a neighborhood of zero is a

very strong requirement that is not satisfied by some common distributions. We next
consider a generating function that exists for all distributions.

Definition 3. Let X be an RV. The complex-valued function ¢ defined on R by
& (1) = E(€X) = E(costX) + i E(sintX), teR

where i = +/—1 is the imaginary unit, is called the characteristic function (CF) of
RV X.
Clearly,

o) = Z(cos txp +isintxg) P(X = xz)
k

in the discrete case, and

00

¢(t)=/ costxf(x)dx-{—i/ sintx f(x)dx

-~—00 -0

in the continuous case.
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Example 10. Let X be a normal RV with PDF

fx)= ! ex ——x—z xeR
TV o\ 2 ) '

Then

¢(t) S costx e~ /2 dx + i /oo intx e */24
= — X e X 4+ —= sintx e x.
V2 J-oo V2T J 0o

. . . . . -2
Note that sinzx is an odd function and so also is sinzx e™* /2. Thus the second
integral on the right side vanishes and we have

o) L /w costx e */2d
= = OStx e X
«/271’ —00

—x22

g2
costx e dx = e t/?, teR.

2 e ]

- A/ 2N </—oo

Remark 4. Unlike an MGF that may not exist for some distributions, a CF al-

ways exists, which makes it a much more convenient tool. In fact, it is easy to see

that ¢ is continuous on R, |¢(1)| < 1 for all 7, and ¢(—1) = ¢(¢) where ¢ is the

complex conjugate of ¢. Thus ¢ is the CF of —X. Moreover, ¢ uniquely determines

the DF of RV X. For these and many other properties of characteristic functions, we

need a comprehensive knowledge of complex variable theory, well beyond the scope
of this book. We refer the reader to Lukacs [68].

Finally, we consider the problem of characterizing a distribution from its mo-
ments. Given a set of constants {ig = 1, 1, U2, .. . }, the problem of moments asks
if they can be moments of a distribution function F. At this point it will be worth-
while to take note of some facts.

First, we have seen that if the M(s) = Ee*X exists for some X for s in some
neighborhood of zero, then E|X}{" < oo for all n > 1. Suppose, however, that

E|X|" < oo forall n > 1. It does not follow that the MGF of X exists.
Example 11. Let X be an RV with PDF
f(x) =ce ™", O<a<l, —o00<x<o00,

where c is a constant determined from

R o
cf e M dx = 1.
—00
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e sx —x% * x(s—x*"h
e dx = e dx
0 4}

and sincea — 1 < 0O, f0°° s**e~*" dx is not finite for any s > 0. Hence the MGF
does not exist. But

Lets > 0. Then

o0 o
o o
E|lX|" = c/ lxI"e " dx = 2(:/ x"e™™ dx <oo  foreachn,
—o0 0

as is easily checked by substituting y = x©.
Second, two (or more) RVs may have the same set of moments.
Example 12. Let X have lognormal PDE
fx) = (x«/2—n)_1e“(l°gx)2/2, x>0,
and f(x) =0forx < 0. Let X, le| < 1, have PDF
fe(x) = f)[1 + &sin(27 log x)1, xeR.

[Note that f; > Oforall &, |¢] < 1, and ff°°o fe(x)dx =1, so f, is a PDE] Since,
however,

o 1 00 2
k . _ — (2 /2)+kt
x" f(x)sin2m logx)dx = ——— / e sin(2mt) dt
,/o V21 J-x0

=L n [T n sin@my) dy
V27 —00
=0,

we see that

/ooxkf(x)dx :/ooxkfe(x)dx
0 0

foralle, le| < l,andk =0,1,2,.... But f(x) # f:(x).

Third, moments of any RV X necessarily satisfy certain conditions. For example,
if By = E|X|*, we will see (Theorem 3.4.3) that (8,)!/" is an increasing function
of v. Similarly, the quadratic form

" 2
E (Z X“"t;) >0
i=]1

yields a relation between moments of various orders of X.
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The following result, which we do not prove here, gives a sufficient condition for
unique determination of F from its moments.

Theorem 3. Let {m;} be the moment sequence of an RV X. If the series

&) Z Tk gk

converges absolutely for some s > 0, then {m;} uniquely determines the DF F of X.
Example 13. Suppose that X has PDF
f(x)=¢e " forx>0 and =0forx <0.

Then EX* = f0°° xke=* dx = k!, and from Theorem 3,

X s &, 1
M) =) mim =D st =1—,
= k=0 S

0 < s < 1, which is the MGF of X.
In particular, if for some constant c,
Imy] < c*, k=1,2,...,

then

) 00 k
Z *‘—*’Z < Z (C]:') <€ fors > 0,
=~ k!

k=1

and the DF of X is determined uniquely. Thus if P{|X
then all moments of X exist, satisfying |mz| < c*, k
determined uniquely from its moments.

Finally, we mention some sufficient conditions for a moment sequence to deter-
mine a unique DF.

== ] for some ¢ > 0,
, and the DF of X is

<c}
> 1

(i) The range of the RV is finite.

(i) (Carleman) 3 2° . (ma)~!/%k = 0o when the range of the RV is (00, 00).
If the range is (0, 0o), a sufficient condition is Y go ; (my) ™% = oo,
(i) limy—, 0ol(m2,)1/2" 20} is finite.
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PROBLEMS 3.3

1. Find the PGF of the RVs with the following PMFs:
n
P{X =k} =
(a) P{ } (k
b) PIX=k)=[e*/Q —e MO /D), k=1,2,...;1>0.
(© P{X =k}=pg*1—g"**"H 1L k=0,1,2,... ,N;0<p<lg=1-p.

2. Let X be an integer-valued RV with PGF P(s). Let « and B be nonnegative
integers, and write Y = X + b. Find the PGF of Y.

3. Let X be an integer-valued RV with PGF P(s), and suppose that the MGF
M(s) exists for s € (—sp. 50), so > 0. How are M(s) and P(s) related? Using
M®)(5));—0 = EX* for positive integral k, find EX* in terms of the derivatives
of P(s) for values of k = 1, 2, 3, 4.

4. For the Cauchy PDF

)pk(l—p)"_k,k=0,1,2,...,0_<_p5 1.

1 1
f(x)=;°—-——l+x2, —00 < X < 00,

does the MGF exist?
5. Let X be an RV with PMF

P{X = j} = pj, j=0,1,2,....

Set P{X > j}=g4;,j=0,1,2,....Clearly,q; = pj+1+ pjs2+---,j = 0.
Write Q(s) = Z;‘_’__O qjs’. Then the series for Q(s) converges in |s| < 1. Show
that

o) = 1_1:——6:(;2 for |s| < 1,

where P(s) is the PGF of X. Find the mean and the variance of X (when they
exist) in terms of Q and its derivatives.
6. For the PMF

.07
PIX=j)= i}i(b_)

where a; > 0 and f(6) = }"72,a;6/, find the PGF and the MGF in terms of
f.
7. For the Laplace PDF

i=0,1,2,..., 6>0,

1
f(x)=—2—Xe‘|x"”/)‘, —0<x<00; A>0, —00<u<oo0,
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show that the MGF exists and equals

1
M@) = (1 — 2%~ leH, It} < =

For any integer-valued RV X, show that

Y S"PIX <np=(1-9)7"Pes),
n=0

where P is the PGF of X.

Let X be an RV with MGF M (¢), which exists for t € (—tg, tp), ty > 0. Show
that

EiIX|" <nls " [M(s) + M(—s)]

for any fixed s, 0 < s < 1, and for each integer n > 1. Expanding ¢'* in a
power series, show that forr € (—s,5),0 < s < 1o,

X,  EX"
M(t)=_$_ " —
=0 n.

[Since a power series can be differentiated term by term within the interval of
convergence, it follows that for |¢{ < s,
MO )0 = EX*

for each integer k > 1.] (Roy, LePage, and Moore [93]]

Let X be an integer-valued random variable with

n
! 1 —
EX(X 1) (X —k +1)] = k.(k) ifk=0,1,2,... ,n
0 ifk > n.

Show that X must be degenerate at . [Hint: Prove and use the fact that if EX* <
oo for all k, then

N (s — DF
P(s)=Z 5 EIX(X-1)---(X —k+D].
k=0 :

Write P(s) as

‘o0 oo k
P(s)=) PX=ks'=) PX=k) (-1
k=0 k=0 i=0
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= i(s -y (’:) P(X =k).)
i=0 k

=i
11. Let p(n, k) = f(n, k)/n! where f(n, k) is given by

fn+1Lk)y=fn b+ fr,k—D+---+ f(n,k—n)

n
fork:O,l,...,(2> and

f(n,k)y=0 fork <0, (1,0 =1, f(1, k) = 0 otherwise.

Let

o0

1
Pa(s) = =3 s“f(n, k)

T k=0

be the probability generating function of p(n, k). Show that

n 1 —
Pu) = ) [ 7=

k=2

, Is| < 1.

(P, is the generating function of Kendall’s 7-statistic.)

12. Fork =0,1,..., (;), let uy, (k) be defined recursively by

up(k) = up_1(k —n) + up—1(k)

with ug(0) = 1, ug(k) = 0 otherwise and u,(k) = 0 fork < 0. Let P,(s) =
322 o sku, (k) be the generating function of {u,}. Show that

n
Pus) =[] +s)  forls| < 1.
Jj=1
If pp(k) = un(k)/2", find {pp(k)} forn = 2, 3, 4. (P, is the generating function
of the one-sample Wilcoxon test statistic.)

34 SOME MOMENT INEQUALITIES
In this section we derive some inequalities for moments of an RV. The main result of
this section is Theorem 1 (and its corollary), which gives a bound for tail probability

in terms of some moment of the random variable.

Theorem 1. Let £(X) be a nonnegative Borel-measurable function of an RV X.
If Eh(X) exists, then for every ¢ > 0,
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M PUX) = €} < Eh:X’.

Proof. 'We prove the result when X is discrete. Let P{X = x;} = pr, k =
1,2,.... Then

ER(X) =) h(xo)pk
k

= (Z + Z) h(xi) Pk
A A

where
A={k: hixg) > ¢€}.
Then
Eh(X) > Y h(x)pk 2 €Y pr
A A
=g P{h(X) > e}.
Corollary. Let 2(X) = |X|" and ¢ = K", where r > 0 and K > 0. Then

E\XY)

) P{iX|z K} = —=

which is Markov's inequality. In particular, if we take h(X) = (X — )2, & = K202,
we get Chebychev—Bienayme inequality:

1

3 P{IX —pl =z Ko} = 5,

where EX = u, var(X) = o2

Remark 1. The inequality (3) is generally attributed to Chebychev, although re-
cent research has shown that credit should also go to L. J. Bienayme.

Remark 2. If we wish to be consistent with our definition of a DF as Fx(x) =
P(X < x), then we may want to reformulate (1) in the following form:

P{h(X) > e} < EhE(X).

For RVs with finite second-order moments, one cannot do better than the inequal-

ity in (3).
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Example 1
1
PX=0=1-—
K2
K > 1, constant,
P{IX =1} = —
{ F1} 7K?
EX =0 EX? = o=
- 1 h K27 - K’
and
1
P{IXI_>.K0}=P{IX!21}=F,

so that equality is achieved.

Example 2. Let X be distributed with PDF f(x) = 1if0 < x < 1,and = 0
otherwise. Then

and
1 /1 1 1 1 1
X——l<2f—=1t= - - — z+—=¢=1
P{‘ 2< 12} P[2 3<X<2+ 3} 1
From Chebychev’s inequality

1 1 1
Pllx—-|<2/= — = =0.75.
{‘ 2l< 12]21 yy 0.75

In Fig. 1 we compare the upper bound for P{|X — %I > k/+/12} with the exact
probability.

It is possible to improve upon Chebychev’s inequality, at least in some cases, if
we assume the existence of higher-order moments. We need the following lemma.

Lemma 1. Let X be an RV with EX = 0 and var(X) = o2. Then

2
o .
4) P{XZX}Sm ifx >0,
and
x2
&) P{X>x}> ——os ifx <0.

o2 4 x2
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Upper bound

xY

0 1 V3
Fig. 1. Chebychev upper bound versus exact probability.

Proof Leth(t) = (t + ¢)2, ¢ > 0. Then h(¢) > 0 for all ¢ and

h(t)z(x—i—c)2 fort > x > 0.

It follows that
(6) P{X > x} < P{h(X) > (x +¢)?}
2
<w forallc >0, x>0.
(x +¢)? .

Since EX = 0, EX? = o2, and the right side of (6) is minimum when ¢ = o2/x.
We have

2

P{X >x} < T x>0

0?2 4 x¥’

A similar proof holds for (5).
Remark 3. Inequalities (4) and (5) cannot be improved (Problem 3).

Theorem 2. Let EIXI4 <oo,andlet EX =0, EX2 = o2. Then

ps — o'

4+ oK4 - 2K 204

@) P{X|> Ko} < for K > 1,
I

where ug = EX*.
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Proof. For the proof, let us substitute (X% — 02)/(K?02 — o?) for X and take
x = 1in (4). Then

2 _ 2 2.2 2 var{(X? — 0?)/(K%0? — 0?)]
PIXT =0 2 Koo = o) S (X — oD /(K %07 — o))

ps —ot

oM K2 - 12+ pg — ot

pa —o*

- ta + 4K — 2K’

K > 1,

as asserted.

Remark 4. Bound (7) is better than bound (3) if K2 > u4 /a4 and worse if
1 < K? < pu4/o* (Problem 5).

Example 3. Let X have the uniform density

f0<x <1,
f) = {0 otherwise.

Then
EX = 1 var(X) , e = E(X - —1-)4 = —1-,
2 1 2 80
and
1 1 % — T 4
PI’X—EIZZ E]sﬁlﬁé‘; 1:544—85‘1:@’
that is,

1 45
X — = 2 — =092,
which is much better than the bound given by Chebychev’s inequality (Example 2).

Theorem 3 (Lyapunov Inequality). Let 8, = E|X|" < oo. Then for arbitrary
k,2 <k < n, we have

® AL < i
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Proof. Consider the quadratic form:
[o o]
Qo) = [ sV 4wl B2 f ) ax,
—00

where we have assumed that X is continuous with PDF f. We have

Q(u, v) = uBr_1 + 2uvpy + Brr1v2.

Clearly, Q@ > 0 for all u, v real. It follows that

g’;—l g:-H 20,
implying that
B < Bi_1Bisr-
Thus
BE =B, Br<pIBE ... BV <priprt

where S = 1. Multiplying successive k — 1 of these, we have
B < B o BTV <k
It follows that
pr=B <p’ =< <p"
The equality holds if and only if

ﬂllk ﬂ,:i(lkﬂ) fork=1,2,...:

that is, {ﬂ,:/ k} is a constant sequence of numbers, which happens if and only if | X| is
degenerate; that is, for some ¢, P{|X| =c¢} = 1.
PROBLEMS 3.4

1. For the RV with PDF
—X A

Al

fx )=

)
\
L
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where A > 0 is an integer, show that

A
PO<X <2(A+1)} > —.
0<X<204D}> 74

Let X be any RV, and suppose that the MGF of X, M (1) = Ee', exists for every
t > 0. Then forany ¢t > O,

PitX > s2 +log M()} < ™.

. Construct an example to show that inequalities (4) and (5) cannot be improved.

. Let g(-) be a function satisfying g(x) > O for x > 0, g(x) increasing for x > 0,

and E|g(X)| < oo. Show that

Eg(1X])

P{lX| > &} < 2©)

forevery e > 0.

Let X be an RV with EX = 0, var(X) = o2, and EX* = u4. Let K be any
positive real number. Show that
1 ifK2 <1,
P{|X| > Ko} < 7{% ) if1§K2<§,
H“a + UI:Z;(; i 2K204 if K* 2 g%'

In other words, show that bound (7) is better than bound (3) if X 2 > U4 /a‘* and
worse if 1 < K2 < p4/0*. Construct an example to show that the last inequalities
cannot be improved.

. Use Chebychev’s inequality to show that for any k > 1, ef+! > k2,

7. For any RV X, show that

P{X >0} <inflp(s) : 1 = 0] <1,

where ¢(t) = Ee'X, 0 < ¢(1) < 0.

. Let X be an RV such that P(a < X < b) = 1 where —00 < a < b < 00. Show

that var(X) < (b — a)?/4.



CHAPTER 4

Multiple Random Variables

4.1 INTRODUCTION

In many experiments an observation is expressible, not as a single numerical quan-
tity, but as a family of several separate numerical quantities. For example, if a pair of
distinguishable dice is tossed, the outcome is a pair (x, y), where x denotes the face
value on the first die, and y, the face value on the second die. Similarly, to record
the height and weight of every person in a certain community, we need a pair (x, y),
where the components represent, respectively, the height and the weight of a partic-
ular person. To be able to describe such experiments mathematically, we must study
multidimensional random variables.

In Section 4.2 we introduce the basic notations involved and study joint, marginal,
and conditional distributions. In Section 4.3 we examine independent random vari-
ables and investigate some consequences of independence. Section 4.4 deals with
functions of several random variables and their induced distributions. In Section 4.5
we consider moments, covariance, and correlation, and in Section 4.6 we study con-
ditional expectation. The last section deals with ordered observations.

4.2 MULTIPLE RANDOM VARIABLES

In this section we study multidimensional RVs. Let (2, S, P) be a fixed but other-
wise arbitrary probability space.

Definition 1. The collection X = (X1, X3, ..., X,) defined on (2, S, P) into
Rn by

X(w) = (X1(w), X2(®), ... , Xn(®)), w € Q,
is called an n-dimensional RV if the inverse image of every n-dimensional interval

I=A{(x1,x2,...,%): —00c <x; <a;,q;€R,i=12,...,n}

102
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is also in S, that is, if
X W) ={w: X1(w) <aj,..., Xp(@) <a,}) €S  fora; e R.

Theorem 1. Let X1, X2,...,X, be n RVson (£, S, P). Then X = (Xy, X3,
..., Xp) is an n-dimensional RV on (2, S, P).

Proof. Letl = {(x1,x2,...,%xp): —00 < x; <a;, i =1,2,...,n}. Then
{(X15X2’ »Xn) € I} = {w: X](Cl)) Sal$ XZ(CU) §a27--‘ 7Xn(w) 5an}

=[to: Xx@) <@} €S,
k=1

as asserted.

From now on we restrict attention to two-dimensional random variables. The dis-
cussion for the n-dimensional (n > 2) case is similar except when indicated. The
development follows closely the one-dimensional case.

Definition 2. The function F (-, -), defined by
H Fx,y)=P{X <x,Y <y}, all (x, y) € Ry,
is known as the DF of the RV (X, Y).

Following the discussion in Section 2.3, it is easily shown that

(i) F(x,y) is nondecreasing and continuous from the right with respect to each
coordinate, and

(ii) lim F(x,y) = F(+o00, +o0) =1,
x-—>+00

y—>+0o0

lim F(x,y)= F(x,—00)=0 for all x,
y—>—00
lim F(x,y)= F(—00,y)=0 for all y.
X —00
But (i) and (ii) are not sufficient conditions to make any function F(-, -) a DF.
Example 1. Let F be a function (Fig. 1) of two variables defined by

0, x<0orx+y<lory<0,
1, otherwise.

F(x,y)={

Then F satisfies both (i) and (ii) above. However, F is not a DF since



104 MULTIPLE RANDOM VARTABLES

v

Fig. 1.

Pll<x<tii<yv=<1}=Fa.D+F(}. ) -F(1.3)-F3.1)
=140-1-1=-~1%0.

Let x; < x3 and y; < y;. We have

Plxi <X <x,y1 <Y <y}
=PIX<x,Y <y}+PX <x,Y <y}
—PX <x1,Y <y} —P{X <x2,Y <y}
= F(x2, y2) + F(x1, y1) — F(x1, y2) — F(x2, y1)
>0

for all pairs (x1, y1), (x2, y2) withx; < x2, y1 < y2, (see Fig. 2).

Theorem 2. A function F of two variables is a DF of some two-dimensional RV
if and only if it satisfies the following conditions:

(i) F is nondecreasing and right continuous with respect to both arguments.
(ii) F(—o0,y) = F(x, —o0) = 0 and F (400, +00) = 1.
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(x4.y2) (X2,¥2)

{x1.¥1) (x2.y1)

Xy

0
Fig.2. {x; <x <x, y; <y < y}.
(iii) For every (x1, y1), (x2, y2) with x; < x and y; < y2 the inequality
(2) F(x2, y2) — F(x2, y0) + F(x1,y1) — F(x1,52) > 0
holds.

The “if” part of the theorem has already been established. The “only if”” part will
not be proved here (see Tucker [113, p. 26).
Theorem 2 can be generalized to the n-dimensional case in the following manner.

Theorem 3. A function F(xy, x3, ... , x) is the joint DF of some n-dimensional

RV if and only if F is nondecreasing and continuous from the right with respect to
all the arguments xy, x32, ... , x, and satisfies the following conditions:

€y F(—00,x2,...,xp) = F(x1,—00,Xx3,... ,Xp) - -~
=F(xy,..., 241, —00) =0,

F (400,400, ...,400) = 1.

(i) For every (x1,x2,...,%xp) € Rpandallg; > 0( = 1,2,...,n), the in-
equality

3) F(xyp+et,xp2+e,...,x5+8n)

n
*ZF(XI +E&l e s Ximl T -1 X, Xig 1 F Eig .. Xn T &)
i=1
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n
+ Z F(xy+ 1,00, Xim1 + 821, X, Xig1 + 841y ey
i,j=1
i<j
Xjl +Ejt,Xj, Xj4l + Ejgls vy Xn + En)

+(=D"F(x1,x2,...,%,) >0
holds.

We restrict ourselves here to two-dimensional RVs of the discrete or continuous
type, which we now define.

Definition 3. A two-dimensional (or bivariate) RV (X, Y) is said to be of the
discrete type if it takes on pairs of values belonging to a countable set of pairs A with
probability 1. We call every pair (x;, y;) that is assumed with positive probability
pij a jump point of the DF of (X, Y), and call p;; the jump at (x;, y;). Here A is the
support of the distribution of (X, ¥).

Clearly, Zij pij = 1. As for the DF of (X, Y), we have
F(x,y) =) pijs
B

where B = {(i, j): x; <x,y; < y}.

Definition 4. Let (X, ¥) be an RV of the discrete type that takes on pairs of values
(xi,y;),i=12,...and j=1,2,... . Wecall

pij = P{X =x.,Y =yj}, i=12,..., j=12,...,
the joint probability mass function (PMF) of (X, Y).

Example 2. A die is rolled, and a coin is tossed independently. Let X be the face
value on the die, and let Y = 0 if a tail turns up and ¥ = 1 if a head turns up. Then

A=1{(1,0),2,0),...,(6,0),(1,1), @2, 1,..., (6 D},

and

1
Pij =13 fori=1,2,...,6; j=0,1.

The DF of (X, Y) is given by
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(0, x<l,—00<y<o00;—00<x<00,y<0,
Tli’ 1<x<20<y<l,
—é—, 2<x<3,0<y<lil<x<2,1<y,
%, 3<x<4,0=xy<l,
Fix. ) -;—, 4<x<50<y<l;2<x<3 1<y,
Y= %, 5<x<6,0<y<l,
5, 6<x,0<y<l;3<x<4,1<y,
2, 4=<x<512y,
2, S5=<x<61<y,
1, 6<x,1<y.
Theorem 4. A collection of nonnegative numbers {p;;: i = 1,2,...;j =

1,2,...} satisfying 3°7_ pij = 1is the PMF of some RV.
The proof of Theorem 4 is easy to construct with the help of Theorem 2.

Definition 5. A two-dimensional RV (X, Y) is said to be of the continuous type
if there exists a nonnegative function f(-, -) such that for every pair (x, y) € Ry we
have

(C)) F(x,y)=/x []y f(u,v)dv]du,

where F is the DF of (X, Y). The function f is called the (joint) PDF of (X, ¥).
Clearly,

x ¥
F (400, +00) = xEIBoo/ f fu,v)dvdu
—0Q J —OO

y—>+00

o< o0
:/ / fu,v)dvdu = 1.

If f is continuous at (x, y), then

F(x,y) _

) oxdy flx, y).

Example 3. 1et (X, Y) be an RV with joint PDF (Fig. 3) given by

Fx y)__{e'("+Y), D<x<oo, 0<y<o0,

0, otherwise.
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Fig.3. f(x,y)=exp[-(x+ ], x>0,y >0.

Then

(1—e™1 —e), D<x<oo, 0O<y<oo,
0, otherwise.

F(x,y)=[

Theorem 5. If f is a nonnegative function satisfying | fooo f fzo fx,y)dxdy =
1, then f is the joint density function of some RV.

Proof.  For the proof, define

F(x,y)=/x [jy f(u,v)dv]du
—00 L/ —00

and use Theorem 2.
Let (X, Y) be a two-dimensional RV with PMF
p,‘j = P{X = X, Y= yj}‘

Then

s

o0
©6) pij =Y PIX=xi,¥ =y;}= P{Y =y}
i=1

1]
—_

and
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o0 [o 0]
Q) Y opii=) PIX=x,¥=yj}=PX=ux)
=1 =
Let us write
o o0
(8) Di. =Zpij and p.j=Zp,'j.
j=1 i=1

Then p;. > Oand 32, pi. = 1,p; > Oand 332, p; = 1, and {pi}, (p.j}

represent PMFs.

Definition 6. The collection of numbers {p;.} is called the marginal PMF of X,
and the collection {p. ;}, the marginal PMF of Y .

Example 4. A fair coin is tossed three times. Let X = number of heads in three
tossings, and Y = difference, in absolute value, between number of heads and num-
ber of tails. The joint PMF of (X, Y) is given in the following table:

X 0o 1 2 3]PyY=y)
Y

ORI
3 %00%%
PX=x [} § 1 4] 1

The marginal PMF of Y is shown in the column representing row totals, and the
marginal PMF of X, in the row representing column totals.

If (X, ¥) is an RV of the continuous type with PDF f, then

© A = f Fx,y)dy
and
(10) fO) = / Fx.y)dx

satisfy f1(x) > 0, f2(y) = 0, and ffgo fi)dx =1, ffgo () dy = 1. It follows

that fi(x) and f>(y) are PDFs.

Definition 7. The functions fi(x) and fa(y), defined in (9) and (10), are called
the marginal PDF of X and the marginal PDF of Y, respectively.

Example 5. 1et (X, Y) be jointly distributed with PDF f(x,y) = 2,0 < x <
y < 1, and = 0 otherwise (Fig. 4). Then
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fix,y)=2

>y

0 1

Fig.4. f(x,y) =2, 0<x<y< L.

1
2 —2x, 0<x <1,
= 2dy =
fi) /x Y {O, otherwise

and

y 1
fz(y)=] 2dx={2y, 0<y<l,
0

0, otherwise
are the two marginal density functions.

Definition 8. Let (X, Y) be an RV with DF F. Then the marginal DF of X is
defined by

() Fi(x) = F(x,00) = lim F(x,y)
y—>00
X< P if (X, Y) is discrete,
“JF Aitvde  if (X, ¥) is continuous.

A similar definition is given for the marginal DF of Y.

In general, given a DF F(x1, x2, ... , x,) of an n-dimensional RV (X1, X, ...,
X,), one can obtain any k-dimensional (1 < k < n — 1) marginal DF from it. Thus
the marginal DF of (X;,, Xi,,... X;), where 1 < iy <iy < --- < i} < n,is given
by
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lim F(xi,x2,...,x)
Xi—>00
iy, ig,... ik

= F(400,...,4+00, Xx;, +00, ..., 4+00,... , Xi, +00, ... , +00).

We now consider the concept of conditional distributions. Let (X, Y) be an RV
of the discrete type with PMF p;; = P{X = x;, Y = y;}. The marginal PMFs
are p;. = Y72  and p; = Y72, pij. Recall that if A, B € S and PB > 0, the
conditional probability of A, given B, is defined by

P(AB)
P(B)

P{A| B} =

f

Take A = {X = x;} = {{x;,y): —00 < y < oo} and B Y = y;} =
{(x,yj); =00 < x < oo}, and assume that PB = P{Y = y;} = p.; > 0. Then
AnB:{sz;,Y=yj},and

Pij

PA|B}=P{X=x; | Y =y;}=—.

P
For fixed j, the function P{X = x; | Y = y;} > O0and Y2, P{X = x; | ¥ =
yi} = 1.Thus P{X = x; | Y = y;}, for fixed j, defines a PMF.

Definition 9. Let (X, Y) be an'RV of the discrete type. If P{Y = y;} > 0, the
function
P{X = Xi, Y= yj}

(12) PX =5 1Y =yj) = =5
)

for fixed j is known as the conditional PMF of X, given ¥ = y;. A similar definition
is given for P{Y = y; | X = x;}, the conditional PMF of Y, given X = x;, provided
that P{X = x;} > 0.

Example 6. For the joint PMF of Example 4, we havefor Y = 1,

3 l=1,2.
Similarly,
1 o
PiX=i|y=3=]2 =03
0, ifi =1,2,
PIY=j|X=0]= 0, ff{=1’
1, if j =3,

and so on.
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Next suppose that (X, Y) is an RV of the continuous type with joint PDF f. Since
P{X = x} =0, P{Y = y} = Ofor any x, y, the probability P{X < x | Y = y},
or P{Y < y | X = x}, is not defined. Let ¢ > 0, and suppose that P{y —~¢ < Y <
y + &} > 0. For every x and every interval (y — €, y + €], consider the conditional
probability of the event {X < x}, given thatY € (y — €, y + €]. We have

P X<x,y—e<Y <y+e¢}

PIX<x|y-e<Y<y+e¢}= PV e —5ytel]

For any fixed interval (y — ¢, y +¢], the expression above defines the conditional DF
of X giventhat Y € (y — &, y + ¢}, provided that P{Y € (y — ¢,y + €]} > 0. We
shall be interested in the case where the limit

lim P X<x|Ye(y—sy+el}
>0+

exists.

Definition 10. The conditional DF of an RV X, given ¥ = y, is defined as the
limit

13) lim P X<x|Ye(y—e,y+el,
e—~0+

provided that the limit exists. If the limit exists, we denote it by Fxy (x|y), and define
the conditional density function of X, given Y = y, fx|y(x|y), as a nonnegative
function satisfying

(14) Fxiy(xly) = f far(lyde  forallx € R.

For fixed y we see that fxyy(x|y) > O and f_°°oo fxiy(xly)ydx = 1. Thus
Sfxjr(xly) is a PDF for fixed y.

Suppose that (X, Y) is an RV of the continuous type with PDF f. At every point
{(x, y) where f is continuous and the marginal PDF f,(y) > 0 and is continuous, we
have

PX<x,Ye(y—ey+el}

F =l
xir (x17) 5-1>I3+ PlYe(y—¢ey+el
ffoo[ yngs fu, v)dv] du
e~0t I pwdy

Dividing numerator and denominator by 2¢ and passing to the limit as ¢ — 0+, we
have
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[ fu, y)du
2

[ )
—o L 20

It follows that there exists a conditional PDF of X, given Y = y, that is expressed by

Fxyir(x | y) =

S,

: 0.
f2(») L=

fxiy(x 1 y) =

We have thus proved the following theorem.

Theorem 6. Let f be the PDF of an RV (X, Y) of the continuous type, and let
f2 be the marginal PDF of Y. At every point (x, y) at which f is continuous and
f2(y) > 0 and is continuous, the conditional PDF of X, given Y = y, exists and is
expressed by

f&x,

1 = .
(15) Sxir(x | y) 50)

Note that
/_; fu, y)du = fr(y)Fxy(x | y),
so that
aer niw= /;c: [/:)o S, y)du] dy = /_: L) Fxiy(x | y)dy,

where Fj is the marginal DF of X.

It is clear that similar definitions may be made for the conditional DF and condi-
tional PDF of the RV Y, given X = x, and an analog of Theorem 6 holds.

In the general case, let (X, X3, ..., X,) be an n-dimensional RV of the continu-
ous type with PDF fx, x, . x,{(x1,x2,...,x3). Also,let{i} <ip <--- < iy, j1 <
J2 < --- < ji} beasubsetof {1,2,...,n}. Then

F(xil,xiz,..- ,xik Ixj],x_hy-" ’xj[)
Xy iy, k
_ -—oo"'f—oo inl,..,X,'k,Xj],...,le(ui“ ey Uiy Xy et ’le) Hp:l duip
o0 (v .¢] k M
f._oo"'j;oo fX,“,...,X,'k,Xj‘...,X”(ui]a-'- s Uip s Xj1oen- sxj,) np=1 duip

an
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provided that the denominator exceeds 0. Here fx,,] v Xigo Xy Xy is the joint
marginal PDF of (X;,, X;,, ..., Xy, X, Xj,,..., X};). The conditional densities
are obtained in a similar manner.

The case in which (X1, X2, ..., X,) is of the discrete type is treated similarly.

Example 7. For the joint PDF of Example 5, we have

fa,y _ 1
fitko) 1—x

so that the conditional PDF fy x is uniform on (x, 1). Also,

x| x) = , x<y<l,

1
fXIY(x|}’)=;, 0<x <y,

which is uniform on (0, y). Thus

1
Plrzdli=gl= [ o=t
1
2/3
P{Xz%|y=.§.}=f -l—dxzé.
1

We conclude this section with a discussion of a technique called truncation. We
consider two types of truncation, each with a different objective. In probabilistic
modeling we use truncated distributions when sampling from an incomplete popu-
lation.

Definition 11. Let X bean RV on (2, S, P),and T € B such that 0 < P{X ¢
T} < 1. Then the conditional distribution P{X < x | X € T}, defined for any real
x, is called the truncated distribution of X.

If X is a discrete RV with PMF p; = P{X = x;}, i = 1,2, ..., the truncated
distribution of X is given by

PX—x. XxeTt |[=2— ifxeT
f— . ¢ ’
(9 Px=x | xer)= LX=XXETh A5 o p

P{X eT) 0 otherwise.

If X is of the continuous type with PDF f, then

PIX<x,XeT}) Jooxnr fO)dy
PiIXeT} [, fdy

(199 P{X<x|XeT}=

The PDF of the truncated distribution is given by
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fx®
(20) hx)={ [7 FO)dy’
0, xgT.

xeT,

Here T is not necessarily a bounded set of real numbers. If we write ¥ for the RV
with distribution function P{X < x | X € T}, then Y has support 7.

Example 8. Let X be an RV with standard normal PDF

_ L
fx)= Jz_”e

LetT = (—00,0). Then P{X € T} = % since X is symmetric and continuous. For
the truncated PDF, we have

2f(x), —00<x <0,

h =
*) 0, x>0

Some other examples are the truncated Poisson distribution

—A k
€ X
P{X‘—“k}:'l'———e‘:-i'l—c-", k=1,2,...,

where T = {X > 1}, and the truncated uniform distribution
1 .
fx)= 5, 0O<x <@ and =0 otherwise,

where T = {X < 6},6 > 0.

The second type of truncation is very useful in probability limit theory, especially
when the DF F in question does not have a finite mean. Let a < b be finite real
numbers. Define the RV X* by

X* = X ifa<X<b
o ifX<a or X>b.

This method produces an RV for which P{a < X* < b} = 1 so that X* has moments
of all orders. The special case when b = ¢ > 0 and a = —c is quite useful in
probability limit theory when we wish to approximate X through bounded RVs. We
say that X€ is X truncated at ¢ if X¢ = X for |X] < ¢, and = 0 for |X| > ¢. Then
E|X°|* < ¢*. Moreover,

P{X # X} = P{IX| > c},
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so that ¢ can be selected sufficiently large to make P{|X| > ¢} arbitrarily small. For
example, if E|X 12 < 00, then

E|X]?

P{X|> ¢} < — o,
C

and given £ > 0, we can choose ¢ such that E|X|2/c? < &.
The distribution of X* is no longer the truncated distribution P{X < x | | X]| < ¢}.
In fact,

0, )’S—C,

Fc(y) - F()’) - F(_C)9 —C < y< 0,
1-F)+F(@y), O0O0=<y<g
1, y=>c

where F is the DF of X and F€ is that of X°¢.
A third type of truncation, sometimes called Winsorization, sets

X*=X ifa<X<b, =a ifX<a, and =b ifX>0b

This method also produces an RV for which P(a < X* < b) = 1, moments of all
orders for X* exist, but its DF is given by

F*(y) =0 fory<a, =F(y) fora<y<b, =1 fory>b.

PROBLEMS 4.2

1. Let F(x,y) =1ifx + 2y > 1,and = 0 if x + 2y < 1. Does F define a DF in
the plane?

2. Let T be a closed triangle in the plane with vertices (0,0), (0, ﬁ), and
(ﬁ, «/5). Let F(x,y) denote the elementary area of the intersection of T
with {(x1,x2): x; < x,x2 < y}. Show that F defines a DF in the plane, and
find its marginal DFs.

3. Let (X, Y) have the joint PDF f defined by f(x,y) = % inside the square with
corners at the points (1, 0), (0, 1), (—1,0), and (0, —1) in the (x, y)-plane, and
= 0 otherwise. Find the marginal PDFs of X and Y and the two conditional
PDFs.

4. Let f(x,y,2)=e* Y% x>0,y >0, z > 0, and = 0 otherwise, be the joint
PDF of (X, Y, Z). Compute P{X <Y < Z}and P{X =Y < Z}.

5. Let (X, Y) have the joint PDF f(x,y) = %[xy + (x%/]if0 <x < 1,0 <
y < 2, and = 0 otherwise. Find P{Y < 1| X < %}.
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6. ForDFs F, F|, F,, ... , F, show that

n
1= Y 11— F()] < Fxi,xz, ..., %) < min Fi(xi)
1<i<n

i=1
for all real numbers xy, x2, ... , x,, if and only if F;’s are marginal DFs of F.

7. For the bivariate negative binomial distribution

_ __(x+y+k—-l)! .y &
P{X——x,Y—y}~7y!(—k_1—)!—*P1P2(1—P1 - p2)",
where x,y = 0,1,2,... ,k > lisaninteger, 0 < p; < 1,0 < py < 1,

and p; + p2 < 1, find the marginal PMFs of X and Y and the conditional
distributions.

In Problems 8 to 10, the bivariate distributions considered are not unique gener-
alizations of the corresponding univariate distributions.

8. For the bivariate Cauchy RV (X, Y) with PDF
f&x,y) = %(C2+x2+y2)_3/2, —0 <X <00, —00<y<o00, c>0,
find the marginal PDFs of X and Y. Find the conditional PDF of Y given X = x.

9. For the bivariate beta RV (X, Y) with PDF

I'(p1 + p2 + p3)
C(pDT(p2)T(p3)
x20, y>0, x+y<1,

1Pyl (g — x — Pl

flx,y) =

where py, p2, p3 are positive real numbers, find the marginal PDFs of X and Y
and the conditional PDFs. Find also the conditional PDF of Y/(1 — X), given
X =x.

10. For the bivariate gamma RV (X, Y) with PDF
ﬂa+y
F(@)T(y)

find the marginal PDFs of X and Y and the conditional PDFs. Also, find the
conditional PDF of Y — X given X = x, and the conditional distribution of X/ Y
givenY = y.

11. For the bivariate hypergeometric RV (X, Y) with PMF

N\"'/N N N —Np; — N
s = () (0P

x,y=0,1,2,...,n,

2y -0 le™, 0<x<y @By >0,

flx,y)=
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where x < Npi,y < Npa,n —x —y < N(1 — p1 — p2), N, n integers with
n<N,and0 < p; < 1,0 < p3 < 1sothat p; + p» < 1, find the marginal
PMFs of X and Y and the conditional PMFs.

12. Let X be an RV with PDF f(x) = 1if0 < x < 1, and = 0 otherwise. Let
T = {x: % < x < %}. Find the PDF of the truncated distribution of X, its
means, and its variance.

13. Let X be an RV with PMF

}\'1
P{X=x}=e‘}‘—,—, x=0,1,2,...,A>0.
X:

Suppose that the value x = 0 cannot be observed. Find the PMF of the truncated
RV, its mean, and its variance.

14. Is the function

exp(—u), O<x<y<z<u<o

X,y,Z,u)=
Feey ) 0, elsewhere

a joint density function? If so, find P(X < 7) where (X, Y, Z, U) is a random
variable with density f.
15. Show that the function defined by

24
A+x+y+z+u)’

fx,y,z,u) = x>0, y>0, z>0, u>0

and zero elsewhere is a joint density function.
@ Find P(X>Y >Z>U).
() Find P(X+Y+Z+U > 1).

16. Let (X, Y) have joint density function f and joint distribution function F. Sup-
pose that

O yD) flx2, y2) < O, y2) f(x2, 31)
holds for x; < a < xj and y; < b < y;. Show that
F(a,b) < Fi(a)F2(b).

17. Suppose that (X, Y, Z) are jointly distributed with density

Foyi0) = g(x)g(y)g(2), x>0, y>0, z>0

0 elsewhere.

Find P(X > Y > Z). Hence find the probability that (x, y,z) € {X > Y > Z}
or {X <Y < Z}. (Here g is a density function on R.)
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4.3 INDEPENDENT RANDOM VARIABLES

We recall that the joint distribution of a multiple RV uniquely determines the
marginal distributions of the component random variables, but in general, knowledge
of marginal distributions is not enough to determine the joint distribution. Indeed,
it is quite possible to have an infinite collection of joint densities f, with given
marginal densities.

Example 1 (Gumbel [36]). Let f1, f2, f3 be three PDFs with corresponding DFs
F1, F», F3, and let a be a constant, j| < 1. Define

Salx1, x2, x3) = fi(x1) f2(x2) f3(x3)
A1+ a[2F 1 (x1) — 11[2F(x2) — 11[2F3(x3) — 1]}.

We show that F,, is a PDF for each « in [—1, 1] and that the collection of densities
{fa; — 1 < & < 1} has the same marginal densities f1, f2, f3. First note that

H2F1(x1) — H[2F2(x2) — 1J[2F3(x3) — 1]} < 1,
so that
1+ a[2F(x1) — 1][2F2(x2) — 1][2F3(x3) ~ 1] > 0.

Also,

// Ja(xi,x2,x3)dx1 dx2dx3
=l+a (/DFI (1)~ 1fi (xl)dxn) ([[2F2(x2) — 11f2(x2) de)

. (f[ZFz(X3) - 1]f3(X3)dX3)

=1+ a{[FFa|™ — NIFFa)|™, — 1FZ ()| — 11}
=1.

It follows that f,, is a density function. That f;, f», f3 are the marginal densities of
[« follows similarly.

In this section we deal with a very special class of distributions in which the
marginal distributions uniquely determine the joint distribution of a multiple RV.
First we consider the bivariate case.

Let F(x,y) and Fi(x), F2(y), respectively, be the joint DF of (X, ¥) and the
marginal DFs of X and Y.

Definition 1. We say that X and Y are independent if and only if

(1) F(x,y) = Fi(x)F2(y) forall (x,y) € Rs.
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Lemma 1. If X and Y are independent and a. < ¢, b < d are real numbers, then
2) Pla<X<c¢,b<Y<d)=Pla<X <c}P{b<¥Y <d}.
Theorem 1

(a) A necessary and sufficient condition for RVs X, Y of the discrete type to be
independent is that

&) P{X =x;,Y =yj} = P{X = x;} P{Y =y}

for all pairs (x;, y;).
(b) Two RVs X and Y, of the continuous type are independent if and only if

4 fx,y) = Ailx) () forall (x, y) € Ra,

where f, f1, f2, respectively, are the joint and marginal densities of X and ¥,
and f is everywhere continuous.

Proof. (a) Let X, Y be independent. Then from Lemma 1, letting a — ¢ and
b — d, we get

PiX=c, Y =d} = P{X = c}P{Y = d}.

Conversely,
F(x,y)= Y P{X=ux;,Y =y},
B
where
B={(j)x <x,y; <y}
Then

F(x,y) =) P{X =x} P{Y =y}
B

=y [z PIY = y,-}] P(X = x} = F®FO).

Xi<x Lyj<y
The proof of part (b) is left as an exercise.

Corollary. Let X and Y be independent RVs; then Fy|x(y | x) = Fy(y) for all
v, and Fxiy(x | y) = Fx(x) for all x.

Theorem 1. The RVs X and Y are independent if and only if
(5) P{X € A,Y € Ay} = P{X € A1} P{Y € A3}

for all Borel sets A; on the x-axis and A; on the y-axis.
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Theorem 2. Let X and Y be independent RVs and f and g be Borel-measurable
functions. Then f(X) and g(Y) are also independent.

Proof. We have

P{f(X) < x,8(Y) <y} = P(X € f7!(~00,x], Y € g (=00, y]}
= P{X € f~'(~00,x]} P(Y € g'(—00, y]}
= P{f(X) = x} P{g(Y) < y}.
Note that a degenerate RV is independent of any RV.
Example 2. Let X and Y be jointly distributed with PDF
14+xy

f(-x’ .Y) = 4 ’
0, otherwise.

x| < Lyl <1,

Then X and Y are not independent since fj(x) = -'2-, x! < 1, and fo(y) = %,
|yl < 1, are the marginal densities of X and Y, respectively. However, the RVs X
and Y2 are independent. Indeed,

v1/2 ul/Z
P{XZSM,YZSU}=] / fx,y)dxdy
iz J_yin

1/2

1 172 u
=—/ f (1 +xy)dx |dy
4 J 2 iJoan

= 4172172

= P{X* <u)P{Y? < ).

Note that ¢ (X?2) and ¥ (Y'2) are independent where ¢ and i are Borel-measurable
functions. But X is not a Borel-measurable function of X?.

Example 3. We return to Buffon’s needle problem, discussed in Examples 1.2.9
and 1.3.7. Suppose that the RV R, which represents the distance from the center of
the needle to the nearest line, is uniformly distributed on (0, /]. Suppose further that
0, the angle that the needle forms with this line, is distributed uniformly on [0, 7).
If R and © are assumed to be independent, the joint PDF is given by

1 1
- — if0<r<l, 0<um,
TR 4

0 otherwise.

fre )= fr(r)fe(®) =

The needle will intersect the nearest line if and only if
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L ® >R
— Sm .
2 >

Therefore, the required probability is given by

IR 7 p(/2)sing
P{sin@)z T] =f0 / fre(r,®)drdo
(]

b1

1 ! .
=iz A Esmed()—-

.

1
i 4

Definition 2. A collection of jointly distributed RVs X1, X, ..., X,, is said to
be mutually or completely independent if and only if

n
©®  Feix,....o;)=[[FRG)  forall (ixz... x) € Ry,
i=1

where F is the joint DF of (X, X2,...,X,), and F;(i = 1,2,...,n) is the
marginal DF of X;. X1, ..., X, are said to be pairwise independent if and only if
every pair of them are independent.

It is clear that an analog of Theorem 1 holds, but we leave it to the reader to
construct it.

Example 4. In Example 1 we cannot write

Ja(xi,x2, x3) = fi(x1) f2(x2) f3(x3)

except when a = 0. It follows that X1, X», and X3 are not independent except when
a=0.

The following result is easy to prove.

Theorem 3. If X1, X»,..., X, are independent, every subcollection X;,, Xj,,
..., X;, of Xy, X2,..., X, is also independent.

Remark 1. 1tis quite possible for RVs X1, X3, ... , X, to be pairwise indepen-
dent without being mutually independent. Let (X, Y, Z) have the joint PMF defined
by

3
— if (x,y,2) € {(0,0,0), (0, 1, 1),

16
1,0, 1, (1, 1,0)},
PX=xY=yZ=z1={, ( ), ( )}
16 if (x,y,2) € {(0,0,1),(0,1,0),

(1,0,0), (1,1, DH}.
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Clearly, X, ¥, Z are not independent. (Why?) We have
P X=x,Y=yl=73, (x,y)€{©,0),(0,1), (1,0), (1, D},
, (y.z) € {(0,0), (0, 1), (1,0), (1, 1)},

1

4

PlY=y,Z=2}=]
PX=x,Z=1z)=13, (x,2)€{(0,0),(0,1),(1,0), (1, D},

1

2

1

2

P{X = x} = 5, x=0,x=1,

PlY=y}=3, y=0y=1,
and
PZ=z}=%  1=0z=1.
It follows that X and ¥, Y and Z, and X and Z are pairwise independent.

Definition 3. A sequence {X,} of RVs is said to be independent if for every n =
2,3,4,... the RVs Xy, X, ..., X, are independent.

Similarly, one can speak of an independent family of RVs,

Definition 4. We say that RVs X and Y are identically distributed if X and Y
have the same DF, that is,

Fx(x) = Fy(x) forallx e R,
where Fy and Fy are the DFs of X and Y, respectively.

Definition 5. We say that {X,} is a sequence of independent, identically dis-
tributed (iid) RVs with common law £(X) if {X,} is an independent sequence of
RVs and the distribution of X,,(n = 1,2, ...) is the same as that of X.

According to Definition 4, X and Y are identically distributed if and only if they
have the same distribution. It does not follow that X = Y with probability 1 (see
Probiem 7). If P{X = Y} = 1, we say that X and Y are equivalent RVs. All Defini-
tion 4 says is that X and Y are identically distributed if and only if

P{X € A} = P{Y € A} forall A € ‘B.

Nothing is said about the equality of events {X € A} and {Y € A}

Definition 6. Two multiple RVs (X, X2,..., Xp) and (Y1, Y2, ..., Y,) are said
to be independent if

(7) F(xl,x2,-~- ’xm,}’l,}’Zv--‘ ,.Vn) - Fl(-xlax:’.v"‘ ,xm)F2(YI,}’27--- s)’n)
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for all (x1,%2,... ,Xms¥Y1>¥2s+-- > Yn) € Rypin, where F, Fj, Fp are the joint
distribution functions of (X, X2, ..., Xm, Y1, V2, ..., ¥p), (X1, X2,... , Xm),
and (Y1, Yy, ..., Y,), respectively.

Of course, the independence of X = (X1, X2, ... . Xm)and Y = (Y1, Y2, ..., Yy)
does not imply the independence of components X1, X2, ..., X;n of X or compo-
nents Y1, Y2, ..., Y, of Y.

Theorem 4. Let X = (X1, X2,..., Xp)and Y = (¥, Va, ..., Yy,) be indepen-
dent RVs. Then the component X ; of X(j = 1,2, ..., m) and the component ¥; of
Yk =1, 2,...,n)are independent RVs. If & and g are Borel-measurable functions,
h(X{,X2,...,Xp)and g(Y1, Yo, ..., Y,) are independent.

Remark 2. 1t is possible that an RV X may be independent of ¥ and also of
Z, but X may not be independent of the random vector (¥, Z). See the example in
Remark 1.

Let Xj, X3, ..., X, be independent and identically distributed RVs with common
DF F. Then the joint DF G of (X, X3, ..., X,) is given by

n
Gy xz, .. vxm) = [ [ F&xp.
j=1

We note that for any of the n! permutations (x;,, xi5, ... , Xi,) of (x1, x2, ..., xp)
n
G(xl9x2v-'- »xn)= F(-xi,'):G(xilvxi29--- 9xi,,)
j=1
. . . d
so that G is a symmetric function of x1,x2,...,x,. Thus (X1, X2,...,X,) =

Xi,, Xiys ... » Xi,), where X 4 Y means that X and Y are identically distributed
RVs.

Definition 7. The RVs X, X2, ..., X, are said to be exchangeable if
d
(le X2’ are s Xn) = (Xfp Xi21 ceey Xi,,)

for all n! permutations (i1, i2, ..., i) of (1,2,...,n). The RVs in the sequence
{X,} are said to be exchangeable if X;, X», ... , X, are exchangeable for each n.

Clearly if Xy, X, ..., X, are exchangeable, then X; are identically distributed
but not necessarily independent.
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Example 5. Suppose that X, Y, Z have joint PDF

%(x+y+z), 0<x<1,0<y<1,0<z<l,
0, otherwise.

f(x,y,z)={

Then X, Y, Z are exchangeable but not independent.

Example 6. Let X1, X»,..., X, be iid RVs. Let S, = Z;'.:l Xj,n=1,2...
and Yy = Xpg—Su/n,k=1,2,... ,n—1.Then Yy, Yo, ..., Y, are exchangeable.

Theorem 5. Let X, Y be exchangeable RVs. Then X — Y has a symmetric dis-
tribution.

The proof is simple.

Definition 8. Let X be an RV, and let X’ be an RV that is independent of X and
X' £ X. We call the RV

X=x-X
the symmetrized X.
In view of Theorem 5, X* is symmetric about zero so that
P{X*>0}>3 and P{X* <0}z 1.

If E|X| < o0, then E|X®| < 2E|X| < 00, and EX* = 0.
The technique of symmetrization is an important tool in the study of probability
limit theorems. We will need the following result later. The proof is left to the reader.

Theorem 6. For s > 0,

(@ P{IX®| > e} <2P{IX] > &/2}.
(b) Ifa > Osuchthat P{X >a} <1 — pand P{X < —a} <1— p, then

P{IX°| =z e} = P{IX] > a + ¢}

fore > 0.

PROBLEMS 4.3

1. Let A be a set of k numbers and 2 be the set of all ordered samples of size n
from A with replacement. Also, let S be the set of all subsets of Q and P be a
probability defined on S. Let X, X, ..., X,, be RVs defined on (2, S, P) by
setting

Xi(ar,az, ... ,an) = a; (i=12,...,n).
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Show that X1, X3, ..., X, are independent if and only if each sample point is
equally likely.

2. Let Xy, X, be iid RVs with common PMF

P{X==%1)=1.

Write X3 = X;X,. Show that Xy, X7, X3 are pairwise independent but not
independent.

3. Let (X3, X3, X3) be an RV with joint PMF

1 .
flx,xa,x3) =7 if (x1,x2,x3) € A,

=0 otherwise,
where
A=1{(1,0,0),(0,1,0),(0,0,1), (1,1, D}.

Are X1, X», X3 independent? Are X1, X2, X3 pairwise independent? Are Xy +
X, and X3 independent?

4. Let X and Y be independent RVs such that XY is degenerate at ¢ # 0. That is,
P(XY =c) = 1. Show that X and Y are also degenerate.

5. Let (22, S, P) be a probability space and A, B € S. Define X and Y so that
X(w) = 14(w), Y(w) = Ig(w) forallw e Q.

Show that X and Y are independent if and only if A and B are independent.
6. Let X1, X3,..., X, be a set of exchangeable RVs. Then

k
E(X1+X2+ +Xk):__ l<k<n

X1+ X4+ X, n’

7. Let X and Y be identically distributed. Construct an example to show that X and
Y need not be equal; that is, P{X = Y} need not equal 1.

8. Prove Lemma 1.

9. Let X1, X2,..., X, be RVs with joint PDF f, and let f; be the marginal PDF
of X;(j =1,2,...,n). Show that X, X3, ..., X, are independent if and only
if

fGrxax) =[] fip  forall (x1,x2,... , xa) € Rn.
j=1
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10. Suppose that two buses, A and B, operate on a route. A person arrives at a certain
bus stop on this route at time 0. Let X and Y be the arrival times of buses A and
B, respectively, at this bus stop. Suppose that X and ¥ are independent and have
density functions given, respectively, by

1
filx) =—, 0<x<a, andzeroelsewhere,
a

and
1 .
f200) = 5 0<y<bh, andzerootherwise.

What is the probability that bus A will arrive before bus B?
11. Consider two batteries, one of brand A and the other of brand B. Brand A bat-
teries have a length of life with density function
fx)= 3ax2 exp(—Ax3), x > 0, and zero elsewhere
whereas brand B batteries have a length of life with density function given by

gx) = 3uy2 exp(—~uy3), y > 0, and zero elsewhere.

Brand A and brand B batteries operate independently and are put to a test. What
is the probability that brand B battery will outlast brand A? In particular, what
is the probability if A = pu?
12. (a) Let (X, Y) have joint density f. Show that X and Y are independent if and
only if for some constant k¥ > 0 and nonnegative functions f; and f5,

f&x,y) =kfi(x) f2(y)

forallx,y e R.

(b) Let A = {fx(x) > 0}, B = {fy(y) > 0}, and fx, fy are marginal densities
of X and Y, respectively. Show that if X and Y are independent, then {f >
0} = A x B.

13. If ¢ is the CF of X, show that the CF of X* is real and even.

14. Let X, Y be jointly distributed with PDF f(x,y) = (1 — x3y)/4 for |x| < 1,

[yl < 1, and = O otherwise. Show that X 2 y and that X — Y has a symmetric
distribution.

4.4 FUNCTIONS OF SEVERAL RANDOM VARIABLES

Let X, X2, ..., X, be RVs defined on a probability space (2, S, P). In practice
we deal with functions of Xy, X5,..., X, such as X + X3, X1 — X2, X1X>,
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min(Xy, ..., X,), and so on. Are these also RVs? If so, how do we compute their
distribution given the joint distribution of X1, X»,... , X,?
What functions of (Xi, X2, ..., X,) are RVs?

Theorem 1. Let g: R, — R,, be a Borel-measurable function; that is, if B €
B,,, then g~ 1(B) € B,. ¥ X = (X1, X2, ... , X») is an n-dimensional RV (n > 1),
then g(X) is an m-dimensional RV.

Proof. For B € B,
{g(X1, X2, ..., Xn) € B) = (X1, X2, ..., Xn) € g~ 1(B)),

and since g~ !(B) € By, it follows that {(X{, X2, ..., X,) € g"1(B)} € S, which
concludes the proof.

In particular, if g: R, — R, is a continuous function, then g(X1, Xo, ..., X;,)
is an RV,

How do we compute the distribution of g(X1, X2, ..., X,)? There are several
ways to go about it. We first consider the method of distribution functions. Suppose
that ¥ = g(X1, ..., Xp) is real-valued, and let y € R. Then

P{Y <y}=PEX1,...,Xn) Z)
Z PXi=xp,...,Xp=2x,) in the discrete case

(X150 Xn):8 (X0, x0) <y}

fxr, ... ,xp)dxy - -dxp in the continuous case
{(x1,... . %n):8(x1,. , Xn )<Y}

where in the continuous case f is the joint PDF of (X1, ..., Xp).

In the continuous case we can obtain the PDF of ¥ = g(X1, ..., X,;) by differen-
tiating the DF P{Y < y} with respect to y provided that Y is also of the continuous
type. In the discrete case it is easier to compute P{g(Xy, ..., X») = y}.

We take a few examples,

Example 1. Consider the bivariate negative binomial distribution with PMF

Ay +k=1 k
P{X—x,Y—y}—mplpz(l“m-m) )

where x,y = 0,1,2,...;k > 1is an integer; p1, p2 € (0,1);and py + p2 < 1.
Let us find the PMF of U = X + Y. We introduce an RV V = Y (see Remark 1
below) so that u = x + y, v = y represents a one-to-one mapping of A = {(x, y) :
x,y=0,1,2,...}ontotheset B = {(u,v): v=0,1,2,...,u5 u=0,1,2,...}
with inverse map x = u — v, y = v. It follows that the joint PMF of (U, V) is given
by
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k-1,

PWU=uV=vl=]@-v)o k-’
0

py(1 — p1 — p2)* for (u,v) € B,

otherwise.
The marginal PMF of U is given by

(+k—DA—p1 — p)* & (U uw
PIU=u} = - Dlul_ ;()’ P2
_ k=11 - pi — po)* u
= *—Dlu! 1+ p2)

utk-—1 . ,
—( " )(p1+p2)(1—p1/—p2)" ®=012,...).

Example 2. Let (X1, X;) have uniform distribution on the triangle {0 < x; <
x3 < 1); that is, (X, X?) has joint density function

2, O0<x1<x2=<1
fx1,x2) = {0, elsewhere.

LetY = X1+ Xs. Thenfory < 0, P(Y <y)=0,andfory > 2, P(Y <y)=1.
For0 < y < 2, we have

PY=sy)y=PX1+X2<y) = // fx1,x2)dx1dx;.

0<x1=xp<1
x1+x2<y

There are two cases to consider according to whether0 <y < lor!l <y <2 (Fig.
la and b). In the former case,

¥/2 y—x) y/2 y2
Pr == (/ 2dxz) an=2["G-2mdn =%
x1=0 x 0

2=X1 2
and in the latter case,

1 X7
P(Ysy)=1~P(Y>y):l—-/ (/ 2dx1)dxz
x=y/2 \Jx

1=y—X2
1

—~2)2
-2 @un-ypdy=1-9=2
y/2 2

Hence the density function of Y is given by

y, O<y=l,
fr)=1{2-y, I<y<2,

0, elsewhere.
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Xo lr

X2 ‘F

»
>

) 0 y-1 yf2 1 Xy

Figl. @+ <y30<xn<n<l,0<y<i®x+xn=<y,0<x<x<
I<y=<2}

The method of distribution functions can also be used in the case when g takes
values in R,,, 1 < m < n, but the integration becomes more involved.

Example 3. Let X be the time that a customer takes from getting in line at a
service desk in a bank to completion of service, and let X, be the time she waits in
line before she reaches the service desk. Then X; > X7 and X; — X is the service
time of the customer. Suppose that the joint density of (X1, X?) is given by
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X2 A

>
>

0 X4

Fig. 2. A={x+ 0 <y, n1—x <y, 0<xn <x < oo

e , 0<x <x <o00,

f(ch2)=[

0, elsewhere.

LetY; = X| + X3 and Y, = X1 — X». Then the joint distribution of (Y1, ¥3) is given
by

P <y, Y2<y) =//Af(m,x2)dX1 dxa,

where A = {{x1,x2): x1 +x2 < y1, X1 —x2 < ¥2, 0 < xp < x1 < o0}. Clearly,
x1{ + x2 > x1 — x3, so that the set A is as shown in Fig. 2. It follows that

n—-y/2 x2+y2
PY1 <y, m»<y2) =/ (f e dxl) dx;
X

x2=0 1=X%2

/2 yi—x2
+ / (/ e ! dm) dx;
x=(y1~y2)/2 \Jx;=x;

(y1—y2)/2
= / e 2(1 —e ) dx;
0

/2
+ / (e — e M) dx,
n—y2)/2
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=1 —e )1 - e~ 1212y
+ (e~()ﬂ—yz)/2 — e-)’x/2) —eN (ey’/2 — e —yz)/Z)

=1—e 72 —2e N2 L 2ot/
Hence the joint density of Yy, Y» is given by

le=Ot»)/2 0 0 <y, <y < oo,

fY],Yz(yl s )’2) -
A elsewhere.

The marginal densities of Yj, Y3 are easily obtained as

i) =e™ for y; > 0, and 0 elsewhere;
and
f(2) = e 2121 — en2/?y for y; > 0, and 0 elsewhere.
We next consider the method of transformations. Let (Xi,..., X,) be jointly

distributed with continuous PDF f(x1, x2, ..., x,),andlety = g(x1, x2, ... , X,) =
(1. Y2, --. » Yn), where

yi = &i(X1, %2, ..., %n), i=1,2,....n
be a mapping of R, to R,,. Then

P{(Y1.Ya2.... . Yy) € B} = P{(X1, X2, ..., X») € g7 (B))

n
=f f(xl,xz,---,xn)n dx;,
g—l(B) i=]

where g‘l(B) = {x = (X1, X2, ..., %) € R, : g(x) € B}. Letus choose B to be the
n-dimensional interval

B=By={()’i,}’§, ,y;,)i — 00 <)’,/ Syl’l: L,2,... ’n}-
Then the joint DF of Y is given by

P{Y € By} = Gy(y) = P{g1(X) < y1, 82X) < y2,..., 8 (X) < yu}

n
=f ff(xl,xz,...,xn)[]dxi,
g7 (By) i=1

and (if Gy is absolutely continuous) the PDF of Y is given by
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3"Gy(y)

wy) = ——————
y dy1 dyz- - dyn

133

at every continuity point y of w. Under certain conditions it is possible to write w in

terms of f by making a change of variable in the multiple integral.

Theorem 2. Let (X, X2,..., X,) be an n-dimensional RV of the continuous

type with PDF f(x;, x2, ..., xp).
(a) Let

J’l =g1(x]ax2an- sxn)’

Y2 = gZ(xl,xL cea g xn),

Yn = gn(X1, X2, ..., Xn)

be a one-to-one mapping of R, into itself; that is, there exists the inverse

transformation

x1 =hi(y, Y2, - ) x2=ha(Ly2 . ), ..,
Xn =hy(Y1,¥2, ..., Yn)
defined over the range of the transformation.

(b) Assume that both the mapping and its inverse are continuous.
(c) Assume that the partial derivatives

8x,~
Byj ’

exist and are continuous.
(d) Assume that the Jacobian J of the inverse transformation

axy ax; dxy

1 In Yy

oxy dxp dx2

IRCICITRTTST VN Pl FN
AV, .. s V) s ‘ .n
3:‘n 6,;7,, 3.;6,,

ay1 Iy 3Yn

is different from zero for (y1, y2, ... , ¥») in the range of the transformation.
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Then (Y1, Y, ... , Yp) has a joint absolutely continuous DF with PDF given
by

M whnyz -y =G - Yn)s oo (Yoo Ya)).
Proof For (¥1,¥2,....¥n) € Ru, let
B={(},Y5 - ¥p) ERy: —00 <y <y, i=12,...,n}
Then
g B)={x € Rp:g®) € B} = {(x1, %2, ... . Xn): gi(®) <y, i=12,...,n)
and
Gy(y) = P{Y € B} = P(X e g ' (B)}

=/ ff(xl,xz,--.,xn)dxldxz--~dxn
g '(B)

n In o(x1,X2,...,x
=f [ iyt | SR X
—00 -0 a()’]v)’Z,--‘ y)’n)

Resuilt (1) now follows on differentiation of DF Gy.

Remark 1. In actual applications we will not know the mapping from xi, x3,

., Xn tO ¥1, ¥2, ..., ¥yn completely, but one or more of the functions g; will be
known. If only k, 1 < k < n, of the g;’s are known, we introduce arbitrarily n —
k functions such that the conditions of the theorem are satisfied. To find the joint
marginal density of these k variables, we simply integrate the w function over all the
n — k variables that were introduced arbitrarily.

Remark 2. An analog of Theorem 2.5.4 holds, which we state without proof.

Let X = (X1, X3,..., X,;) be an RV of the continuous type with joint PDF f,
and let y; = gi(x1,x2,...,x), i = 1,2,...,n, be a mapping of R, into itself.
Suppose that for each y the transformation g has a finite number & = k(y) of inverses.
Suppose further that R,, can be partitioned into k disjoint sets A1, A2, ..., Ag, such
that the transformation g from A;(i = 1,2, ... ,n) into R, is one-to-one with in-
verse transformation

x1=h1;(y1,}’2»---’)’n)» ey xn=hn,-()’1a)’2,---syn), i=1a27-'~,k-

Suppose that the first partial derivatives are continuous and that each Jacobian
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ohy; 3hy; ohy;
oy 2 O
3h2,’ dhz,' ah2i
Ji=| oy 92
d'hm' ahm’ a}';m’
Y e T o

is different from zero in the range of the transformation. Then the joint PDF of Y is
given by

k
WL Y2 ) = DT f R Y20 o Ynds s Bni (1, Y20 Ya))-
i=1

Example 4. Let X, X2, X3 be iid RVs with common exponential density func-
tion

et if x > 0,
f)= )
0 otherwise.
Also, let
X1+ X, X
Y1T=X1+X2+X3, V=——"—— and V3 = —--—.
P=AT a2 i 2= X+ X 3T X+ X

Then

X1 =y1y2y3, x2=y1y2—x1=yy2(l—-y3), and
x3=y1 —y1y2 = y1(1 — y2).

The Jacobian of transformation is given by

y2y3 yiy3 y1y2
J=1yn0-y) ynd-y3) —yy2 |= —ylzn-
-y -¥ 0

Note that 0 < y1 < 00,0 < y2 < 1,and 0 < y3 < 1. Thus the joint PDF of
Y1, Y2, Y3 is given by

w1, y2, y3) = yiyze ™
= (2y2)(%y12e“y'), O<y<oo, O<y, y3<lL

It follows that Y1, Y2, and Y3 are independent.
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y24

-1

Fig.3. 0<y+m<2,0<y—y»m<2}

Example 5. Let X1, X; be independent RVs with common density given by

1 if0<x <1,
0 otherwise.

f(x)={

Let Y} = X1 + X7, Y2 = X; — X5. Then the Jacobian of the transformation is given

by
J =|
2
and the joint density of Y, Y, (Fig. 3) is given by

1 + -
fY],Yz(Y],yz) = Ef (yl . yZ)f(y1 . yz)

Nb= D=

if0<~——————yl+y2 < 1, 0<__~_____y1—y2

< 1,
2 2

Il

DO b

if(y1,y2) €{0<y1+y2<2,0<y —y2 <2}
The marginal PDFs of Yy and Y; are given by

2 3 dv2 =i, 0<y =<1,

frn =1 2

S ldyy=2-y, l<y<2,

0, otherwise;
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yzy: ld)’l—)’2+1 -1 <y <0,

fn2) = fyz2 Pidyi=1-y, O<py<l,
0, otherwise.

Example 6. Let X1, X2, X3 be iid RVs with common PDF

1
fx) = e“"z/z, —00 < X < 00.

Var

Let Y] = (X1 —X2)/v2, Y2 = (X1 +X2—2X3)//6,and Y3 = (X + X2+ X3)//3.
Then

Y1 »2 3
Xy = "=+ "=+ —
V2 N6 V3
Xy = — pas )’ y
NIV
and
x3=_x/§y2+_§_
V3 3

The Jacobian of transformation is given by

o &lLsl-
54 sl-51-

Sl=&l-G1-
t

The joint PDF of X, X», X3 is given by

1 x% 4 x2 4 x2
g(xlvx29x3)=(—\/7—n—)—§e,xp (*1—‘% , x1,x2,x3 € R.

It is easily checked that
Xt +x3 4+ x5 =yl +y3 + 3,
so that the joint PDF of Y1, Y3, Y3 is given by

w(yr, y2, y3) = : exp —M
T (v2r)? 2

It follows that Y1, Y,, Y3 are also iid RVs with common PDF f.
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In Example 6 the transformation used is orthogonal and is known as Helmert’s
transformation. In fact, we will show in Section 7.6 that under orthogonal transfor-
mations iid RVs with PDF f defined above are transformed into iid RVs with the
same PDF.

In Example 6 it is easily verified that

3 2
X1+ x2 +x3
y12+y§== E (xj’—'——S———“) .

We have therefore proved that (X; 4+ X7 + X3) is independent of 23{:1 {(X; (X1 +

X2+ X3)/ 3]}2. This is a very important result in mathematical statistics, and we will
return to it in Section 7.5.

Example 7. Let (X, Y) be a bivariate normal RV with joint PDF

1
2noy02(1 — p?)1/2

[ 1 [(x—m)2 2p(x — (¥ — pu2) (y—uz)z]}
.exp -_ E]

S, y) =

- +
20-p%|  of 0102 o}

—00 <X <00, —00<y<oo; i €R,uzeR;

and o1 >0, op>0, |pl<l.

Let
X
U]=VX2+Y2 and U2=—)—;

Foru; > 0,

VxZ4+y?*=u; and i=uz
y

have two solutions:

uiuz U1
M= = e and xp = —x1, Y2= N
J1+us V1t
for any uy € R. The Jacobians are given by
uz Ui
2
1 +u§ a "‘“2)3/2 i
J]:Jz: 1 uiuz =—1‘+u%.

Jira arad”
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It follows from the result in Remark 2 that the joint PDF of (U, Uy) is given by

Uiuy
1+“2 ‘/1+u2 ‘/1+u2
wuy, u2) = | — ity

iful > 0, uy GR,

,/1+u2 ,/1+u2

In the special case where 1 = 2 = 0, p =0, and o1 = 02 = o, we have

otherwise.

Fx,y) = el 20)
2ro?

so that X and Y are independent. Moreover,

fx,y) = f(=x,—

and it follows that when X and Y are independent,

1 2uq 2 /9.2

— ze—“l/z" ,  u1>0, —00<uy< oo,
w(uy, up) = {270° 1 +uj
0, otherwise.
Since
1 U _,p2
Wy, up) = ———s 2%,
(1 +u2)U

it follows that U; and U, are independent with marginal PDFs given by

! —uz/Za
——€ uy > Ov
wi(uy) = {02

0, u; <0,
and

1

wa(ur) = ———-, —00 < Uy < 00,
7 (1 + u3)

respectively.

An important application of the result in Remark 2 will appear in Theorem 4.7.2.
Theorem 3. Let (X, Y) be an RV of the continuous type with PDF f. Let

Z=X+Y, U=X-Y, and V =XY;
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and let W = X/Y. Then the PDFs of Z, V, U, and W are, respectively, given by

@ f2@) = f Fx 2 —x)dx,

3 o) = / Fu+y,y)dy,
00 vy 1

@ o= [ f(n¥) e

and

) fuw(w) = / Fxw, x)lx| dx.

The proof is left as an exercise.

Corollary. If X and Y are independent with PDFs f; and f,, respectively, then

o0
(6) fz(2)=/ fix) f2z — x)dx,
¢)) folu) = f filu +y) f2(y) dy,
® wo = [ awp(E) o,
and
) Sw(w) = f fGw) L(0)x|dx.

Remark 3. Let F and G be two absolutely continuous DFs; then
o o] oo
Hw = [ Fe-nGmay= [ 6x-nrody
—00 —00 »
is also an absolutely continuous DF with PDF
o0 e 0]
H'(x) = f F'(x -y)G'(y)dy = f G'(x — y)F'(y)dy.
—00

-0

If

Fe)=) peex —x) and G(x) =) gje(x - y;)
k J
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are two DFs, then
Hx)=)_ Z prgje(x — xp = yj)
k j

is also a DF of an RV of the discrete type. The DF H is called the convolution of
F and G, and we write H = F x G. Clearly, the operation is commutative and
associative; that is, if Fi, Fp, Faare DFs, Fi x Fo = Fo x Fiand (Fi x F2) x F3 =
F) % (F x F3). In this terminology, if X and Y are independent RVs with DFs F and
G, respectively, X + Y has the convolution DF H = F x G. Extension to an arbitrary
number of independent RVs is obvious.

Finally, we consider a technique based on MGF or CF which can be used in

certain situations to determine the distribution of a function g(Xy, X», ..., X,) of
X1, X0,...,X,.
Let (X1, X2, ..., Xy) be an n-variate RV, and g be a Borel-measurable function

from R, to R;.
Definition 1. If (X, X7, ..., X,) is discrete type and

> lgtrx2, . x)IP{X = x1, X2 =X2,..., Xp = X} < 00,

Xls-ee s Xn
then the series

Eg(leXZa"- 1X’l)
= Z 8(x1, %2, ..., X)) P{X1 = x1, X2 =x3, ..., Xp = Xn}

Xiyeer sXn

is called the expected value of g(X1, X2, ..., X,). If (X1, Xa, ..., Xp) is a contin-
uous RV with joint PDF f, and if

o0 o0 (e, 0] n
[t st x0T da < oo,
—00 J—00 —00 i=1

then

Eg(X1, X2, ..., Xn)
n
/[ /g(xl,xz,.-.,xn)f(xl,xz,---,xn)l_[dxi
i=1

is called the expected value of g(Xi, X7, ..., X,).
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LetY = g(Xy, X2, ..., X»n), and let k(y) be its PDF. If E|Y| < oo, then

EY:/ yh(y)dy.
o0

An analog of Theorem 3.2.1 holds. That is,

0o o0 o0 ox n
/ yh(y)dy=/ f / gOet, X2, ) fOn 2, xa) [ ] i,
00 —00 J —00 —00 i=1

in the sense that if either integral exists, so does the other, and the two are equal. The
result also holds in the discrete case. .

Some spec_ial f.unctions of ipte:’_es} are Z;f:l xj, ﬂ§=1 x j’ where ki, k2, ..., k,
are nonnegative integers, o=t i*i, where t,12,...,t, are real numbers, and

iy o tix; .
e Yjerty 7, wherei = +/—1.

Definition 2. Let X1, X», ..., X, be jointly distributed. If E (ezrll'=' X7y exists
fortjl <hj,j=1,2,... ,n,forsomeh; >0, j=1,2,...,n, we write

(10 Mt o, ..., t,) = EehXitaXat+iXn

and call it the MGF of the joint distribution of (X1, X2, ... , X») or, simply, the MGF
of (X1, Xo,..., Xn).

Definition 3. Let ¢, 17, ... ,, be real numbers and i = +/—1. Then the CF of
(X1, X2, ..., X,) is defined by

(1 ¢t n,... t))=E l:exp (i Zt,-xj)}
j=1

. [ (z t,xj)] +iB [ (zl ,,.x,)] .

As in the univariate case ¢ (t1, t2, . . . , 1) always exists.

We will deal mostly with MGF even though the condition that it exist for |¢;| <
hj, j = 1,2,...,n restricts its application considerably. The multivariate MGF
(CF) has properties similar to the univariate MGF discussed earlier. We state some of
these without proof. For notational convenience we restrict ourselves to the bivariate
case.

Theorem 4. The MGF M (¢, f2) uniquely determines the joint distribution of
(X, Y), and conversely, if the MGF exists, it is unique.

Corollary. The MGF M (t;, t2) completely determines the marginal distributions
of X and Y. Indeed,
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(12) M(t,0) = Ee"* = Mx (1),
and
(13) MO, 1) = Ee?Y = My(tp).

Theorem 5. If M(11, 1) exists, the moments of all orders of (X, Y) exist and may
be obtained from

A" M(1y, 1)
(14) _ = E(X™Y").
3,;’1 atél ty=t,=0
Thus
aM(0,0
MO0 _ o 0.0 _
an an
32M (0,0 32M (0,0
*——(2 ) _ EX?, —————(2 ) _ EY?,
iy aty
aM(0,0)
= E(XY),
an ot (XT)
and so on.

A formal definition of moments in the multivariate case will be given in Sec-
tion 4.5.

Theorem 6. X and Y are independent RVs if and only if
(15) M(t17 1) = M(t,0) M(0, 13) forallty, 1 e R.
Proof. Let X and Y be independent. Then
My, 1) = Ee"XF2Y = (E ) (Ee2Y) = M(1;, 0)M(0, 1;).
Conversely, if
M, 1) =M@, 00MQO, ),

then in the continuous case,

// 'Y f(x, y)dx dy = [/ e""fl(x)dx] [/ e'”fz(y)dy:lv

/f eNTRY £(x, yydxdy = f/ e f1(x) fL(y)dx dy.

that is,
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By the uniqueness of the MGF (Theorem 4) we must have
fx,y)= fit)faly)  forall (x,y) € Ra.

It follows that X and Y are independent. A similar proof is given in the case where
(X, Y) is of the discrete type.

The MGF technique uses the uniqueness property of Theorem 4. To find the dis-
tribution (DF, PDF, or PMF) of Y = g(X{, X2, ..., X,) we compute the MGF of Y
using the definition. If this MGF is one of the known kind, ¥ must have this kind of
distribution. Although the technique applies to the case when Y is an m-dimensional
RV, 1 < k < n, we will use it mostly for the m = 1 case.

Example 8. Let us first consider a simple case when X is normal PDF

.2
e /?

1
fx)= T ,

-0 <X < —OQ.

Let Y = X2. Then

MY(S) = Eesx2 = —————1 /oo e(l/2)(l—2s)x2 dx

27 J-
= —1—— forx < 1.
VT=25 2
It follows (see Section 5.3 and Example 2.5.7) that Y has a chi-square PDF
e /2
w(y) = i3 ’ y > 0.

Example 9. Suppose that X; and X; are independent with common PDF f of
Example 8. Let Y1 = X1 —X>. There are three equivalent ways to use MGF technique
here. Let Y2 = X». Then rather than compute

M(sy, s2) = Eel 115212,
it is simpler to recognize that Y; is univariate, so
My, (s) = Eest¥1—X2)
= (EeX1)(Ee™"2)
— 5252 _ st

It follows that Y, has PDF

1
fx) = €“x2/4, —00 < X < 00.

a4
Note that My, (s) = M(s, 0).
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Let Y3 = X + X3. Let us find the joint distribution of Y; and Y3. Indeed,

EeS|Y1+82Y3 — E(e(51+52)xl _e(sl ~S2)X2)

— (Ee(s’ +52) X1 )(Ee(sl —Sz)Xz)

— 12?2 s1-52)2/2 _ 5T . o55

and it follows that Yy and Y3 are independent RVs with common PDF f defined
above.

The following result has many applications, as we will see. Example 9 is a special
case.

Theorem 7. Let X, X5, ..., X, be independent RVs with respective MGFs

M;(s),i = 1,2,...,n. Then the MGF of Y = Z?:l a; X; for real numbers
ay, az, ... ,an is given by

My(s) = nMi(aiS)-
i=l

Proof. Y M; exists for |s| < h;, h; > 0, then My exists for |s| < min(hy, ..., h,)
and

n n
My(s) = Ee* Zi=1%%i = [T Ee™ X =[] Mi(ais).

i=1 i=1
Corollary. If X;’s are iid, the MGF of Y = ) | X; is given by My (s) = [M(s)]".

Remark 4. The converse of Theorem 7 does not hold. We leave the reader to
construct an example illustrating this fact.

Example 10. Let X1, X3, ..., Xm be iid RVs with common PMF

n

P{X =k} = (k

)pk(] —-p%, k=0,1,2,...,n;, 0<p<l.

Then the MGF of X; is given by
M(t) = (1 — p + pe')".

It follows that the MGF of S,,, = X} + X2+ -+« + X, is

m
Ms, () = [~ p+pe’y" = (1 — p+ pe')™,
1
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and we see that S, has the PMF
P(Sn=5)= ("’”)psu P 5=0,1,2,... ,mn.
s

From these examples it is clear that to use this technique effectively one must be
able to recognize the MGF of the function under consideration. In Chapter 5 we study
a number of commonly occurring probability distributions and derive their MGFs
(whenever they exist). We will have occasion to use Theorem 7 quite frequently.

For integer-valued RVs one can sometimes use PGFs to compute the distribution
of certain functions of a multiple RV.

We emphasize the fact that a CF always exists and analogs of Theorems 4 to 7
can be stated in terms of CF’s.

PROBLEMS 4.4

1. Let F be a DF and ¢ be a positive real number. Show that

1 x+e
Yi(x) = —/ F(x)dx
€ Jx
and
1 x+&
s (x) = ——/ F(x)dx
28 Jy—e

are also distribution functions.

2. Let X, Y be iid RVs with common PDF

e * ifx >0,
f& = {0 ifx <0.
(a) Find the PDFof RVs X + Y, X — Y, XY, X/Y, min{X, Y}, max{X, Y},
min{X, Y}/ max{X, Y}, and X/(X + 7).
(b) Let U = X +Y and V = X — Y. Find the conditional PDF of V, given
U = u, for some fixed u > 0.

(c) Show that U and Z = X /(X -+ Y) are independent.

3. Let X and Y be independent RVs defined on the space (2, S, P). Let X be
uniformly distributed on (—a, @), a > 0, and Y be an RV of the continuous type
with density f, where f is continuous and positive on R. Let F be the DF of Y.
If ug € (—a, a) is a fixed number, show that
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5

frix+y (¥ | up) = § F(up +a) — F(up — a)
0 otherwise.

ifugp—a<y<wup+a,

where fy|x+y(y | uo) is the conditional density function of Y, given X+Y = uy.

4. Let X and Y be iid RVs with common PDF

1 if0<x <1,

0 otherwise.

f(X)={

Find the PDFs of RVs XY, X /Y, min{X, Y}, max{X, Y}, min{X, Y}/ max{X, Y}.

5. Let X1, X3, X3 be iid RVs with common density function

1 ifo0<x<l,

0 otherwise.

f(x)=[

Show that the PDF of U = X; 4+ X, + X3 is given by

2

%—, O<u<l,
3
g(u) = 3u—u? -2, 1<u<?,
Y
(uz), 2<ux<3,
0, elsewhere.

An extension to the n-variate case holds.

6. Let X and Y be independent RVs with common geometric PMF
P{X =k} =n(l —n), k=0,1,2,...; O<m<l.

Also, let M = max{X, ¥}. Find the joint distribution of M and X, the marginal
distribution of M, and the conditional distribution of X, given M.

7. Let X be a nonnegative RV of the continuous type. The integral part, Y, of X is
distributed with PMF P{Y = k} = Ake™*/k!, k = 0,1,2,...,A > 0; and the
fractional part, Z, of X has PDF f,(z) = 1if 0 < z < 1, and = O otherwise.
Find the PDF of X, assuming that ¥ and Z are independent.

8. Let X and Y be independent RVs. If at least one of X and Y is of the continuous
type, show that X 4+ Y is also continuous. What if X and Y are not independent?
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9. Let X and Y be independent integral RVs. Show that
P(t) = Px(1) Py (1),

where P, Py, and Py, respectively, are the PGFsof X + Y, X,and Y.

10. Let X and Y be independent nonnegative RVs of the continuous type with PDFs
f and g, respectively. Let f(x) = e *ifx > 0,and = 0if x < 0, and let g
be arbitrary. Show that the MGF M(¢) of Y, which is assumed to exist, has the
property that the DF of X/Y is 1 — M(—1).

11. Let X, Y, Z have the joint PDF

6(1—}-x+y+z)_4 if0<x,0<y,0<z,
0 otherwise.

f(x,y,z)={

Find the PDFof U = X +Y + Z.
12. Let X and Y be iid RVs with common PDF

(x«/271)“1e_(1/2)('°g‘)2, x > 0,

o=l

Find the PDF of Z = XY.

13. Let X and ¥ be iid RVs with common PDF f defined in Example 8. Find the
joint PDF of U and V in the following cases:

@ U=+vX2+7Y2, V=tan \(X/Y), -n/2 <V <m/2.
®) U=X+Y)/2, V=(X-Y)?2

14. Construct an example to show that even when the MGF of X + Y can be writ-
ten as a product of the MGF of X and the MGF of Y, X and Y need not be
independent.

15. Let Xy, X, ..., X, be iid with common PDF
1 .
fx) = =2 a<x <b, =0otherwise.
—a

Using the distribution function technique, show that:

(a) The joint PDF of X () = max(Xi, X2,..., X,), and X(3) = min(X1, X»,
... X5) is given by

n(n — D(x — y)"
b —a)y

ulx,y) = , a<y<x<b,

and = 0 otherwise.
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(b) The PDF of X, is given by

JPRY
g(2) = %, a<z<b, =0otherwise
and that of X() by
_ n—1
h(z) = E(_(bl;_—:%))"_’ a <z<b, =0otherwise.

16. Let X1, X5 be iid with common Poisson PMF
A'I
P(Xi =x) =e—*—', x=0,1,2,..., i=12,
X! :
where A > 0 is a constant. Let X2, = max(Xy, X3) and X1y = min(X, X3).
Find the PMF of X (3.
17. Let X have the binomial PMF

n

P(X =k) = (k)pk(l——p)"_k, k=0,1,....,n; O0<p<l1.

Let Y be independent of X and Y 2 X. Find'the PMF of U = X 4 Y and
W=X-Y.

4.5 COVARIANCE, CORRELATION, AND MOMENTS
Let X and Y be jointly distributed on (£2, S, P). In Section 4.4 we defined Eg(X, Y)
for Borel functions g on R,. Functions of the form g(x, y) = x/ y*, where j and k

are nonnegative integers, are of interest in probability and statistics.

Definition 1. If E|X/Y¥| < oo for nonnegative integers j and k, we call
E(X/Y*) a moment of order (j + k) of (X, Y) and write

(1) mjx = E(X/Y*).
Clearly,

@) mig = EX, mo; = EY,
my = EX?, my = E(XY), andmg = EY2.

Definition 2. If E ](X —~ EX)I(Y — EY)* [ < oo for nonnegative integers j and

k, wecall E {(X — EX)/ (Y — EY)*} a central moment of order (j + k) and write
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3) ujk=E{(X~EX)j(Y—EY)k].

Clearly,

@) Hio = po1 =0, oo = var(X), uoz = var(Y), and
1y = E[(X — mp)(Y —mo1)l.

We see easily that

) w1y = E(XY)— EXEY.

Note that if X and Y increase (or decrease) together, then (X — EX)(Y — EY) should
be positive, whereas if X decreases while Y increases (and conversely), the product
should be negative. Hence the average value of (X — EX)(Y — EY), namely .u11,
provides a measure of association or joint variation between X and Y.

Definition 3. If E[(X — EX)(Y — EY)] exists, we call it the covariance between
X and Y and write

(6) cov(X,Y)=E[(X - EX)(Y — EY)] = E(XY) - EXEY.

Recall (Theorem 3.2.8) that E(Y — a)? is minimized when we choose a = EY
so that EY may be interpreted as the best constant predictor of Y. If, instead, we
choose to predict Y by a linear function of X, say aX + b, and measure.the error
in this prediction by E(Y —aX — b)2, we should choose a and b to minimize this
mean square error. Clearly, E(Y —aX — b)? is minimized, for any a, by choosing
b = E(Y —aX) = EY — aEX. With this choice of b, we find a such that

E(Y —aX — b)?> = E[(Y — EY) — a(X — EX))?

= cr% —2apun +a20,2(
is minimum. An easy computation shows that the minimum occurs if we choose

) a==3

provided that 0)2( > 0. Moreover,

min E(Y — aX — b)? = min {o? —2an1, +a*a}}
a, a

2

2 M1

®) =0y — —5
Ox
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Let us write

©) p= Hit

oxoy

Then (8) shows that predicting ¥ by a linear function of X reduces the prediction
error from a% to 0,2,(1 — pz). We may therefore think of p as a measure of the linear
dependence between RVs X and Y.

Definition 4. If EX2, EYZ? exist, we define the correlation coefficient between
XandY as
(10) cov(X, Y) E(XY)— EXEY
p= = ,
SDX)SD(Y) | JEX?2 —(EX)2/JEY? —(EY)?

where SD(X) denotes the standard deviation of RV X.

We note that for any two real numbers a and b,

a’ +b?
b} < s
lab} < 3

so that E|XY| < oo if EX? < oo and EY? < oo.

Definition 5. We say that RVs X and Y are uncorrelated if p = 0, or equivalently,
cov(X,Y)=0.

If X and Y are independent, then from (5) cov(X,Y) = 0 and, X and Y are
uncorrelated. If, however, p = 0, then X and ¥ may not necessarily be independent.

Example 1. Let U and V be two RVs with common mean and common variance.
letX=U+VandY =U — V. Then

cov(X,Y) =E(U? - V) — EQU +V)E(U -V)=0

so that X and Y are uncorrelated but not necessarily independent (see Example
449).

Let us now study some properties of the correlation coefficient. From the defini-
tion we see that p [and also cov(X, Y)] is symmetric in X and Y.

Theorem 1

(a) The correlation coefficient p between two RVs X and Y satisfies

an lpl < 1.

(b) The equality |o| = 1 holds if and only if there exist constants a # 0 and b
such that PlaX +b =1} = 1.
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Proof. From (8) since E(Y — aX — b)? > 0, we must have 1 — p > 0, or
equivalently, (11) holds.

Equality in (11) holds if and only if pZ = 1, or equivalently, E(Y —aX —b)? =0
holds. This implies and is implied by P(¥Y =aX + b) = 1. Here a # 0.

Remark 1. From (7) and (9) we note that the signs of a and p are the same, so if
p =1,then P(Y =aX + b) wherea > 0, andif p = —1, thena < 0.

Theorem 2. Let EX? < 0o, EY? < 00, andlet U = aX +b,V = cY +d. Then

px.y = %pu.v,

where px,y and py,v, respectively, are the correlation coefficients between X and Y
andU and V.

The proof is simple and is left as an exercise.

Example 2. Let X, Y be identically distributed with common PMF
1

P{X =k} = ¥ k=1,2,..., N(N > 1.
Then
N+ 1)(2N
EX=EY=M, Ex?=Eyt= N7 ) +1),
2 6
so that
21
X)= =
var(X) = var(Y) 2
Also,
E(XY) = JEX*+EY? - E(X - 1)}
_(N+D@N+1) EX - Y)?2
= < > .
Thus
(N+DRN+1) EX-Y)2 (N+1)?
cov(X,Y) = — _
6 2 4
(N+DIN-1 1 2
=— 2 7 _E(X-Y)%
12 2 ( )
and
(N2 —=1)/12—EX -Y)*/2
PXyY =

(N2=1)/12
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6E(X — Y)?
NZ—-1 ~
If P{X =Y} =1, then p = 1, and conversely. If P(Y = N + 1 — X} =1, then

EXX-Y)Y?=EQCX-N-1)?

2
=4(N+1);2N+1) _4(1\1;1) PV

and it follows that pxy = —1. Conversely, if px y = —1, from Remark 1 it follows
that Y = —aX + b with probability 1 for some a > 0 and some real number b. To
find a and b, we note that EY = —aEX + b, so that b = [(N + 1)/2](1 + a). Also,
EY? = E(b — aX)?, which yields

(1 —a®)EX? +2abEX — b* = 0.

Substituting for b in terms of a and the values of EX? and EX, we see that a® = 1,
sothata = 1. Hence b = N1, and it follows that Y = N +1— X with probability 1.

Example 3. Let (X, Y) be jointly distributed with density function

x+y, O0<x<l1, O<y<l,
f(x,y>={ Y Y

0, otherwise.

Then

1 1
E(XIY”')zf / xy™(x + y)dx dy
0 Jo

1 pl
=// {+1 mdxdy+// Im+1dxdy
0 Jo

=T omsDn T (l+1)(m+2)

where [ and m are positive integers. Thus

EX=EY =15,
2_5
EX*=EY’= 3,
= - 49 _ 11
var(X) = var(Y) = ——~1—44- 44

and
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Theorem 3, Let X1, X»,..., X, beRVssuchthat E|X;| <o0,i=1,2,...,n.
Letay, ay, ... ,a, be real numbers, and write

S=aX1+aXo+:--+aXp.

Then E S exists, and we have

n
(12) ES=Y a;EX;.
j=1

Prooﬁ If (X1, X2, ..., X,) is of the discrete type, then

ES = Z (a1xi; +apx;, + ...+ anxi YP{Xy =x;, Xo=x15, ..., X = %3}

i1,iz,-. in

zalzxi, Z PiXy=xi, ..., X0 =x;,)
i iz

(2,00 ol
s

+otan ) x, Y, PXi=xi,..., Xe=x,)
in

[ T
=ary_xPXi=xi)+ - +an ) PXn=1x,)
it in
=qEX|+---+a,EX,.
The existence of ES follows easily by replacing each a; by |a;| and each x;; by

|xi;| and remembering that E|X ;| < oo, j = 1,2,...,n. The case of continuous
type (X1. X2, ... , X,) is treated similarly.

Corollary. Takeay = a3y =--- =a, = 1/n. Then
Xo+---+X 1<
E(X1+ 2+ + ”)=—ZEX.-,
n n i
andif EX; = EXy=---=EX, = u, then
E(X1+X2+~--+Xn)__
n

Theorem 4. Let X, X», ..., X, be independent RVs such that E|X;| < o0,i =
1,2,...,n.Then E([T;_, Xi) exists and

(13) E (]i[x,.) = I_nIEX,-.
i=1 i=1

Let X and Y be independent and g, (-) and g2(-) be Borel-measurable functions.
Then we know (Theorem 4.3.2) that g1 (X) and g2(Y) are independent. If E[g1(X)],
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E[gy(Y)], and E[g1(X) g2(Y)] exist, it follows from Theorem 4 that

14 E[g1(X) g2(1)] = E[g1(X)] E[g2(V)]-

Conversely, if for any Borel sets A and Az we take g1(X) = 1if X € Aj,and=0
otherwise, and g2(Y) = 1 if Y € A3, and = 0 otherwise, then

E[g1(X)g2N)] = P{X € A1, Y € A3}

and E[g1(X)] = P{X € A1}, E[g2(Y)} = P{Y € A,}. Relation (14) implies that
for any Borel sets A; and A; of real numbers

P{Xe€ A Ye€eA)=P{XeA}PY € Ay}.

It follows that X and Y are independent if (14) holds. We have thus proved the
following theorem.

Theorem 5. Two RVs X and Y are independent if and only if for every pair of
Borel-measurable functions g and g; the relation

(15) E[g1(X)g2(Y)] = El[g1(X)] E{g2(Y)]
holds, provided that the expectations on both sides of (15) exist.

Theorem 6. Let X, Xo, ..., X, be RVs with E|X;[? <oofori =1,2,... ,n.
Letay, az, ... , an be real numbers and write § = Y ;_; a; X;. Then the variance of
S exists and is given by

n n n
(16) var(S) = Y a var(X;) + Y ) aiajcov(X;, X ;).
i=l1 i=1 j=1
i%j

If, in particular, Xy, X, ..., X, are such thatcov(X;, X;) = Ofori, j = 1,2,... ,n,
i # j,then

n
an var(S) = Y _ a? var(X;).

i=1

Proof. We have

2
n n
var(S) = E (Z a; X ~ ZaiEXi)
i=1 i=1

n
=E [Za,?(x,- — EX)*+ ) aiaj(Xi — EX)(X; — EX,-)]
i=1 i#j
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Z PE(X; — EX)? + ) aia; E[(X: — EX))(X; — EX)].
i=1 i#j
If the X;’s satisfy
cov(X;, X;) =0 fori,j=1,2,...,n;, i# ],
the second term on the right side of (16) vanishes, and we have (17).

Corollary 1. Let X3, X5, ..., X,, be exchangeable RVs with var(X;) = 0l i=
1,2,...,n. Then

var (Za,X,) =02 Za + p02 Za,a,,
i£j
where p is the correlation coefficient between X; and X ;, i # j. In particular,

n 2

X; o n—1 ,
var — | =— .
(BX)-Z+ 2

i=1

Corollary 2. If Xy, X5, ..., X, are exchangeable and uncorrelated, then

n n
var Za,-Xi =022ai2,
i=1 i=1

and

n 2

X,' (e}

var — )= —.

(Z n ) n
i=1

Theorem 7. Let X1, X5, ..., X, be iid RVs with common variance o 2. Also, let

ai, az, ... ,an be real numbers such that > 7 a; = 1, and let § = ), a; X;. Then
the variance of § is least if we choose ; = 1/n,i =1,2,... ,n.

Proof. 'We have

n

var(§) = o? Za,—z,

i=1

which is least if and only if we choose the a;’s so that ) ;_, a is smallest, subject
to the condition ) ;_; a; = 1. We have

n ) n 1 1 2
Zai:Z(ai—;+;)

i=1 i=1
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n 1\ 2 1 1

i=1

n l 2 l
= (a-7) 5
; n n
i=1
which is minimized for the choicea; = 1/n, i =1,2,... ,n.

Note that the result holds if we replace independence by the condition that X;’s
are exchangeable and uncorrelated.

Example 4. Suppose that r balls are drawn one at a time without replacement
from a bag containing n white and m black balis. Let S, be the number of black balls
drawn.

Let us define RVs X as follows:

1 if the kth ball drawn is black
X = k=1,2...,r
0 if the kth ball drawn is white

Then
Ss=X1+Xo+ -+ X,.
Also,
m n
18 P{X)=1}=——, and P{Xy=0}= .
(18) {Xe =1} o {Xx =0} o

Thus EX; = m/(m + n), and

m m2 mn

VA = T A mE - man

To compute cov(X;, Xi), j # k, note that the RV X ; X; = 1 if the jth and kth balls
drawn are black, and = 0 otherwise. Thus

(19) E(Xij)zP{Xj=1,Xk=1]:mn_:_nﬁ~n‘i—l
and
mn
cov(X;, Xp) = _(m T Em =D
Thus
4 mr
ES, =’;Exk= g
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and

mn

varS) = (m +m)2m +n—1)

—r{r—1)

mn
,
(m +n)?
_ mnr
T m+nim+n+1)

(m+n-—r).

Readers are asked to satisfy themselves that (18) and (19) hold.

Example 5. let X, X»,...,X, be independent, and aj,as,...,a, be real
numbers such that Y a; = 1. Assume that EIXizl < 00,i = 1,2,...,n, and
let var(X;) = aiz, i = 1,2,...,n. Write § = Z?:l a; X;. Then var(S) =

?:1 ai2crl.2 = a, say. To find weights g; such that o is minimum, we write

o =a%ai2+a%022+~-+(l —ay —az—---—a,,-l)zcr,%,
and differentiate partially with respect to ay, aa, . .. , a,_1, respectively. We get
do
—_— :201012—2(1 —ay—ay —--- —‘a,,_l)an2 =0,
day
do
= 2a,,-103_‘ -2 —ay—ap —---— a,,_l)a,% =0.
dan—
It follows that
ajoj2 ='a,,0,f, j=1L2,...,n—1,
that is, the weights aj, j = 1,2, ..., n, should be chosen proportional to 1 /aj?. The
minimum value of o is then
n 2 n
Omin = ) —707 =k* ) =,
i—19; i=1 9

where k is given by 3_}_, (k/07) = 1. Thus
Omin =

where H is the harmonic mean of the cr]?.

‘We conclude this section with some important moment inequalities. We begin
with the simple inequality

(20) la+bl" < cr(lal” +1bI),
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where¢, = 1forO <r < l,and=2""!forr > 1.Forr =Oandr = 1, (20) is
trivially true.

First note that it is sufficient to prove (20) when 0 < a < b. Let0 < a < b, and
write x = a/b. Then

(@a+b) (1+x)
a +b  1+xr

Writing f(x) = (1 + x)" /(1 + x7), we see that

_r(+ x) 1

’ _ Lr—-1
F'® == =2,

where 0 < x < 1. It follows that f'(x) > 0ifr > 1, =0ifr = 1,and < 0ifr < 1.
Thus

Omax}f(x):f(O):l ifr <1,

while

Omaxlf(x) =fH=2"1  ifr>1.

Note that ja + b|" < 2"(ja]” + |b]") is trivially true since
la + bl < max(2lal, 2|b|).
An immediate application of (20) is the following result.

Theorem 8. Let X and Y be RVs and r > O be a fixed number. If E|X|", E{Y|"
are both finite, so alsois E{X + Y.

Proof. leta = X and b = Y in (20). Taking the expectation on both sides, we
see that

EIX+Y| <c(EIXI"+E|Y]),
wherec, = 1if0 <r < land =2""lifr > 1.

Next we establish Holder’s inequality,
2n Jxyl € — + —,
P

where p and g are positive real numbers such that p > 1 and 1/p -+ 1/q = 1. Note
that for x > O the function w = log x is concave. It follows that for x1, x > 0,

log[txy) + (1 — t)x2] = tlogx; + (1 —¢) logxsa.



160 MULTIPLE RANDOM VARIABLES
Taking antilogarithms, we get
t. 1—t
XX, =tx+ (1 —t)xs;.

Now we choose x; = |x|P,xp = |y|?,t = 1/p,1 —t = 1/q, where p > 1 and
1/p+1/g =1, to get (21).

Theorem 9. lLetp > 1,9 > 1,sothat 1/p + 1/g = 1. Then
22) EIXY| < (EIX\)VYPE|Y|9)4.

Proof. By Holder's inequality, letting x = X[E|X|P]"VP, y = Y[E|Y|9]71/4,
we get

XY < p~ ' IXIPLEIXIP)/P ENY 919 + g7 Y LE Y| E X\ PP
Taking the expectation on both sides leads to (22).

Corollary. Taking p = g = 2, we obtain the Cauchy-Schwarz inequality,

E|XY| < EV2IXPEV Y2

The final result of this section is an inequality due to Minkowski.

Theorem 10. For p > 1
(23) [EIX + YIP1VP < [E1X|P1V7 + [E|Y|P)/P.

Proof. We have, for p > 1,

X+ Y17 < XX+ Y17y X + )Pl

Taking expectations and using Holder’s inequality with Y replaced by [X+Y[?~1(p >
1), we have

EIX + Y|P < [EIX|PY/PLEIX + Y|P~ D49 1 [EY|PYVPLE|X + v|P~Da)l/a
= {[EIX|P1'/P + [EIY|P]/P} - [EIX + ¥|P~DO]14,

Excluding the trivial case in which E|X + Y|P = 0, and noting that (p — 1)q = p,
we have, after dividing both sides of the last inequality by [E|X + Y|?]V/4,

[EIX +Y|P1VP <(E\X\PV/P +(ElY\P)YP,  p>1L.

The case p = 1 being trivial, this establishes (23).
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PROBLEMS 4.5

1.

6

.

Suppose that the RV (X, Y) is uniformly distributed over the region R =
{(x,¥): 0 < x <y < 1}. Find the covariance between X and Y.

Let (X, Y) have the joint PDF given by

2, Xy :
x°+ = f0l<x<1,0<y<2
fx y)—[ 3

otherwise.

Find all moments of order 2.

Let (X, Y) be distributed with joint density

Foroyy = JFUFEEE=3D] ik <Lyl <,
' 0 otherwise.

Find the MGF of (X, Y). Are X, Y independent? If not, find the covariance
between X and Y.

. For a positive RV X with finite first moment, show that (a) E+/X < vEX and

.

h

() E(1/X) > 1/EX.

If X is a nondegenerate RV with finite expectation and such that X > a > 0,
then

E{VX?-a?) < J(EX)2 =42

(Kruskal [54])
Show that for x > 0,

00 ) 2 oo ) oo )
(/ te”" /2 dt) 5/ et /Zdt/ t2e712 gy,
X X .4

and hence that

oo
/ e dr > J{(4+ 5D — xle
X

. Given a PDF f that is nondecreasing in the interval a < x < b, show that for

anys >0

b ) 25+1 a3+l
/a Jodxz o +1)(b—a)/f(x)dx

with the inequality reversed if f is nonincreasing.
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8. Derive the Lyapunov inequality (Theorem 3.4.3)
[EIXIT/" < [E)XPFI'YS,  1<r<s<oo,

from Holder’s inequality (22).

9. Let X be an RV with E|X|" < oo for r > 0. Show that the function log E| X|"
is a convex function of r.

10. Show with the help of an example that Theorem 9 is not true for p < 1.

11. Show that the converse of Theorem 8 also holds for independent RVs; that is, if
E|X +Y|" < ooforsome r > 0 and X and Y are independent, then E|X|" <
o0, E|Y|" < oo. (Hint: Without loss of generality, assume that the median of
both X and Y is O. Show that forany ¢t > 0, P{{X + Y| > ¢} > %P{|X| >t}
Now use the remarks preceding Lemma 3.2.2 to conclude that £|X|" < o0.)

12. Let (£2, S, P) be a probability space and Aj, Ay, ..., A, be events in S such
that P(U}_, Ag) > 0. Show that

(Choi PAR: ~ %) PAx

2 P(A;A
Z ( j k) = P(UzzlAk)

1<j<k<n

(Hint: Let X} be the indicator function of A, k = 1,2, ..., n. Use the Cauchy-
Schwarz inequality.) (Chung and Erdos [13])

13. Let (2, S, P) be a probability space and A, B € Swith0 < PA < 1,0 <
PB < 1.Define p(A, B) by p(A, B) = correlation coefficient between RVs I4
and Ip, where 14, Ip, are the indicator functions of A and B, respectively. Ex-
press p(A, B) interms of PA, P B, and P(AB), and conclude that p(A, B) =0
if and only if A and B are independent. What happens if A = B or if A = B¢?

(a) Show that
p(A,B)>0% P{A| B} > P(A) © P{B| A} > P(B)
and
p(A,B) <0<« P{A| B} < PA & P|B|A} < PB.
(b) Show that

P(AB) P(A°B°) — P(AB°) P(A°B)
(PAPAc.- PBPB)\/2

p(A, B) =

14. Let X1, X3, ..., X, be iid RVs, and define

X‘v — ?:l Xi and S2 — Z?=I(Xi - X)Z .
n n-—1
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15.

16.

17.

18.

19.

Suppose that the common distribution is symmetric. Assuming the existence of
moments of appropriate order, show that cov(X, § 2y =0.

Let X, Y be iid RVs with common standard normal density

52
ex/2

1
fx) = Nor '

LetU = X + Y and V = X? 4 Y. Find the MGF of the random variable
(U, V). Also, find the correlation coefficient between U and V. Are U and V
independent?

—00 <X < 0Q.

Let X and Y be two discrete RVs:

P{X =x1} = p1, PX=x}=1-p,
and

P{Y = y1} = pa, PiY =y}=1-p2.

Show that X and Y are independent if and only if the correlation coefficient
between X and Y is zero.

Let X and Y be dependent RVs with common means 0, variances 1, and corre-
lation coefficient p. Show that

E[max(X2, Y] <1 +4/1—p2.

Let X, X5 be independent normal RVs with density functions

1 1 (x—ui\>
exp —-—( ) . —0<x <00, i=1,2.
oiv2mw 2 o;

filx) =

Also let
Z = X1c080 + Xpsinf and W = Xpcos8 — Xqsinf.

Find the correlation coefficient, p, between Z and W, and show that

Let (X1, X2,..., X,) be an RV such that the correlation coefficient between
each pair X;, X, i # j,is p. Showthat —-(n — )"! < p < 1.
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20. Let Xy, X3,..., Xm+n be iid RVs with finite second moment. Let §; =
Z’;zl X,k = 1,2,...,m + n. Find the correlation coefficient between S,
and Sy, 40 ~ Sm, Where n > m.

21. Let f be the PDF of a positive RV, and write

fx+y)

glx,y)=1 x+vy
0 otherwise.

ifx >0, y>0,

Show that g is a density function in the plane. If the mth moment of f exists for
some positive integer m, find EX™. Compute the means and variances of X and
Y and the correlation coefficient between X and Y in terms of moments of f.
(Adapted from Feller [23, p. 100].)

22. A die is thrown n + 2 times. After each throw a + sign is recorded for 4, 5, or 6,
and a — sign for 1, 2, or 3, the signs forming an ordered sequence. Each sign, ex-
cept the first and the last, is attached a characteristic RV that assumes the value 1
if both the neighboring signs differ from the one between them, and 0 otherwise.
Let Xy, X3,..., X, be these characteristic RVs, where X; corresponds to the
(i + Dstsign (i = 1,2, ..., n) in the sequence. Show that

n n 5 _2
E (E Xi) = % and var(z X;) = n16 .
1 1

23. Let (X, Y) be jointly distributed with PDF f defined by f(x, y) = % inside the
square with comers at the points (0, 1), (1, 0), (=1, 0), (0, —1) in the (x, y)-
plane, and f(x, y) = O otherwise. Are X, Y independent? Are they uncorre-
lated?

4.6 CONDITIONAL EXPECTATION

In Section 4.2 we defined the conditional distribution of an RV X, given Y. We
showed that if (X, Y) is of the discrete type, the conditional PMF of X, given Y = y;,
where P{Y =y j} > 0, is a PMF when considered as a function of the x;’s (for
fixed y;). Similarly, if (X, Y) is an RV of the continuous type with PDF f(x, y) and
marginal densities f; and f2, respectively, then at every point (x, y) at which f is
continuous and at which f>(y) > 0 and is continuous, a conditional density function
of X, given Y, exists and may be defined by

fex,y

fxir(xiy)= "oy
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We also showed that fx|y(x | ), for fixed y, when considered as a function of x
is a PDF in its own right. Therefore, we can (and do) consider the moments of this
conditional distribution.

Definition 1. Let X and Y be RVs defined on a probability space (§2, S, P), and
let 1 be a Borel-measurable function. Then the conditional expectation of h(X),
given Y, written as E{h(X) | Y}, is an RV that takes the value E{h(X) | y}, defined
by

D h@P{X=x|Y =y} if(X,Y)is of the discrete
* type and P{Y = y} > 0,
h(x) fxiy(x | y)dx if (X, Y) is of the continuous

() Eth(X) |y} = /oo
type and f2(y) > 0,

—00

when the RV Y assumes the value y.

Needless to say, a similar definition may be given for the conditional expectation
E{h(Y) | X}.

It is immediate that E{h(X) | Y} satisfies the usual properties of an expectation

provided we remember that E{h(X) | Y} is not a constant but an RV. The following
results are easy to prove. We assume the existence of indicated expectations.

2) E{c|Y}=c for any constant ¢
and
3  Eflaigi(X) +a282(X)]1 | Y} = a1 E{g1(X) | Y} + a2 E{g2(X) | Y},

for any Borel functions g1, g2-

4 PX>0)=1= E{X|Y}>0
and
&) P(X12X2)=1= E{X) | Y} > E{X2| Y}

The statements in (3), (4), and (5) should be understood to hold with probability 1.
(6) E{X | Y} = E(X), E{Y | X} = E(Y)

for independent RVs X and Y.
If (X, Y) is a function of X and Y, then

Q) E{¢p(X,Y) | y} = E{¢(X, y) | y}.

and
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® E{y(X)p(X,Y) | X} = ¥ (X)E{¢p(X,Y) | X}

for any Borel function ¥.

Again, (8) should be understood as holding with probability 1. Relation (7) is
useful as a computational device. See Example 3 below.

The moments of a conditional distribution are defined in the usual manner. Thus,
forr > 0, E{X" | Y} defines the rth moment of the conditional distribution. We
can define the central moments of the conditional distribution and, in particular, the
variance. There is no difficulty in generalizing these concepts for n-dimensional dis-
tributions when n > 2. We leave the reader to furnish the details.

Example 1. An urn contains three red and two green balls. A random sample of
two balls is drawn (a) with replacement, and (b) without replacement. Let X = 0 if
the first ball drawn is green, = 1 if the first ball drawn is red, and let Y = 0 if the
second ball drawn is green, = 1 if the second ball drawn is red.

The joint PMF of (X, Y) is given in the following tables:

(a) With replacement (b) Without replacement
X0 1 X0 1
Y Y
4 6 |2 2 6 |2
0 |% 3|3 0 |% % |53
i 5 9|3 1 6 6 |3
3 B |S % 2|5
2 3 2 3
5 s51i1 -

The conditional PMFs and the conditional expectations are as follows:

2 2
Ty 0’ T 0’
(a) P{X=x|0}=[§ P{Y=y|0}={g Y
3 1, 5 y 11
2 2
. T 0, B 17
P(X=x|1}={3 Piy=y|y=13 7
5 —1, £l y 11
3 =0 3 0
Ex|vy=1y 7 E(Y|X)=]{% ’
3 3 .
5, y_"l, 3 1’
%, X 0, %a }’“ [
) PX=x|0={1% P{Y =y|0}=13
4", 1, 4 y la
1 1
3 0, bE 0!
P X=x|1}=4{% Py =y|1}=11% Y
1 1
3 =1, b y 1,
3 0 3 0
Exiny={¥ 777 E{y | Xy={% ’
1 1
b y 1’ 2 = 1.
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Example 2. For the RV (X, Y) considered in Examples 4.2.5 and 4.2.7,

11—x> 1+x

1
= =3 , 0 1,
E{Y | x} /x}’fYIX()’UC)dy 1= ) <X <
and
Y y
EX = [xperinar=2 o<y <1,
0
Also,
y 1 2
Bt i = [ Plar=X 0<y<
oy 3
and

var{X | y} = E(X? | y} - [E(X | y)}°

2 2 2
Yy _¥r
=3 T O<y<l.
Theorem 1. Let EA(X) exist. Then
&) Eh(X) = E{E{h(X) | Y}}.

Proof. Let (X, Y) be of the discrete type. Then

E(Eth(X) | Y} =) [Z hP{X =x|Y = y}] P{Y =y}

y

=y [Zh(x)P{x =x,Y = y}:|
y x

=Y h(x)Y P(X=x,Y =y}
x y

= Eh(X).
The proof in the continuous case is similar.
Theorem 1 is quite useful in computation of EA(X) in many applications.
Example 3. Let X and Y be independent continuous RVs with respective PDF f
and g and DFs F and G. Then P{X < Y} is of interest in many statistical applica-

tions. In view of Theorem 1,

P{X < Y} = Elix<yy = E{E{Jix<r}IY }}
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where 14 is the indicator function of event A. Now

E{lixn)lY =y} = E{lix<y) | ¥}
= E(lix<y)) = F(y)

and it follows that

P(X < ¥} = E{F(Y)} = f F(»)g() dy.
If, in particular, X 2 Y, then
P{X <Y)= f FOfdy =3

More generally,
P{X —-Y <z} = E{E{lix—y<y | Y}} = E[F(Y + 2)]

=f F(y +2)g(y)dy

-0

gives the DF of Z = X — Y as computed in corollary to Theorem 4.4.3.

Example 4. Consider the joint PDF

f(x,y) = xe >, x>0, y=>0, andzero otherwise
of (X, 7). Then
Sx(x) =e*, x >0, and zero otherwise
and
1
= — >0, and zero otherwise.

Clearly, EY does not exist but
o0 1
E{le}:/ yxe Vdy = —.
0 X

Theorem 2. If EX? < o0, then

(10) var(X) = var(E{X | Y}) + E(var{X | Y}).
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Proof. The right-hand side of (10) equals, by definition,

(E(E{X | Y})* = [E(E{X | YD} + E(E{X* | Y} — (E{(X | YD)
={EE{X | YD? —(EX)®)+ EX? — E(E(X | Y})?
= var(X).

Corollary. If EX? < oo, then
1n var(X) > var(E{X | Y}
with equality if and only if X is a functionof Y.

Equation (11) follows immediately from (10). The equality in (11) holds if and
only if

E(var{X | Y)) = E(X —E{X | Y})?> =0,
which holds if and only if with probability 1
12) X=E{X|Y}.

Example 5. Let X}, X5, ... beiid RVsand let N be a positive integer-valued RV.
Let Sy = lecv:l X and suppose that the X’s and N are independent. Then

E(Sy) = E{E{SN | N}}.
Now
E{Sy | N=n}=E{S, | N=n}=nEX
50 that
E(Sy) = E(NEX1) = (EN)EX)).
Again, we have assumed above and below that all indicated expectations exist. Also,
var(Sy) = var(E{Sy | N}) + E(var{Sy | N}).
First,
var(E(Sy | N}) = var(NEX1) = (EX1)? var(N).
Second,

var{Sy | N = n} = nvar(Xy),
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SO
E(var{Sy | N}) = (EN) var(Xy).
It follows that
var(Sy) = (EX;)? var(N) + (EN) var(X1).
PROBLEMS 4.6

1. Let X be an RV with PDF given by

], —00 <X <00, —00<uU<oo, o>>0.

1
fx)= 0—\/‘2‘—; exp
Find E{X | a < X < b}, where a and b are constants.

2. (a) Let (X, Y) be jointly distributed with density

YA 4x) e @7y,
0, otherwise.

f(x’}’)=[

Find E{Y | X}.
(b) Do the same for the joint density

4
foy = [5"‘ T xy20,

0, otherwise.

3. Let (X, Y) be jointly distributed with bivariate normal density

1
fe, = ————=
2no109y/1 — p?

1 x—m > X1y —p2 (y-uz>2
: -2 .
exp l 2(1 — p?) [( o1 ) L o) * o2

Find E(X | y) and E{Y | x}. (Here, p1, 42 € R, 01,02 > 0,and |p| < 1.)
4. Find E(Y — E{Y | XD
5. Show that E(Y — qS(X))2 is minimized by choosing ¢ (X) = E{Y | X}.
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6. Let X have PMF

A

PX=x)="2,  x=012...

and suppose that A is a realization of a RV A with PDF
f) =e?, A>0.

Find E{fe 2 | X = 1}.
7. Find E(XY) by conditioning on X or Y for the following cases:

@ f(x,y)=xe 1) x>0,y > 0,and zero otherwise.
() f(x,y)=2,0<y <x < 1,and zero otherwise.

8. Suppose that X has uniform PDF f(x) = 1,0 < x < 1 and zero otherwise. Let
Y be chosen from interval (0, X] according to the PDF

1
gy 1 x) = -, 0 <y<=x, andzero otherwise
X

Find E{Y* | X} and EY* for any fixed constant k > 0.

4.7 ORDER STATISTICS AND THEIR DISTRIBUTIONS
Let (X1, X2, ..., X,) be an n-dimensional random variable, and (x1, x2, ..., Xp)
be an n-tuple assumed by (X1, X2, ..., X,,). Arrange (x1, x3, . .. , Xn) in increasing

order of magnitude so that

X)) X2 < = X(m)s

where x(1y = min(xy, X2, . .. , X,), X(2) is the second smallest value in x, x2, ... , X,
and so on, x(n) = max(xy, x2, ..., x,). If any two x;, x; are equal, their order does
not matter.

Definition 1. The function X, of (X1, X3, ... , X,,) that takes on the value x
in each possible sequence (x1, x2, ... , xp) of values assumed by (X, X2, ..., X,)
is known as the kth-order statistic or statistic of order k. {X(1y, X2), ... , Xy} 18
called the set of order statistics for (X, X2, ..., X,).

Example 1. Let X1, X2, X3 be three RVs of the discrete type. Also, let X1, X3
take on values 0, 1, and X take on values 1, 2, 3. Then the RV (X1, X, X3) assumes
these triplets of values: (0, 1,0), (0,2,0), (0,3,0), (0,1,1), (0,2,1), (0,3, 1),
(1,1,0), (1,2,0), (1,3,0), (1,1, 1), (1,2, 1), (1,3, 1); X1y takes on values 0, 1;
X (2) takes on values 0, 1; and X3 takes on values 1, 2, 3.
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Theorem 1. Let (X1, X2, ..., X,) be an n-dimensional RV. Let X), 1 <k <
n, be the statistic of order k. Then X ) is also an RV.

Statistical considerations such as sufficiency, completeness, invariance, and ancil-
larity (Chapter 8) lead to the consideration of order statistics in problems of statistical
inference. Order statistics are particularly useful in nonparametric statistics (Chap-
ter 13), where, for example, many test procedures are based on ranks of observations.
Many of these methods require the distribution of the ordered observations, which
we now study.

In the following we assume that X;, X», ... , X, are iid RVs. In the discrete case
there is no magic formula to compute the distribution of any X ;) or any of the joint
distributions. A direct computation is the best course of action.

Example 2. Suppose that X,,’s are iid with geometric PMF
m=PX=k=p¢g"!, k=1,2...,0<p<l, g=1—p.
Then for any integers x > landr > 1,

P{Xy =x}=P{Xy <x}—P{Xp) <x—1}.

Now
P{X < x} = P{atleastr of X’s are < x}
=y ('.')[P(Xl <O PX > O
i=1 t

and

o0

PX1zx)=) pg* ' = -pr Tt

k=x

It follows that

— ) = = (n (x-l)(n~i)[ n—iyy Xy 1 _ x—lil
P{X( = x) ;(l)q g -V -1 —g" '},
x=1,2,....Inpatticular, let n = r = 2. Then
PXpy=x}=pg" '(pg" ' +2-2¢""", x>
Also, for integers x, y > 1 we have
P{Xqy =x,X@) — X0y =y} = PX@y = x, X) = x + y}
=PX1=x,Xo=x+y}+P{Xi=x+y, X; =x}
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= 2pg*t . pgrtr-l
=2pg* % pg® = P{Xq) = x}P(X) = y)
and

Pl Xn=1.Xo X0 =0=P{Xq = Xp=1}= pz.

It follows that X1y and X2y — X(1) are independent RVs and, moreover, that X3 —
X (1) has a geometric distribution.

In the following we assume that X|, X3,..., X, are iid RVs of the continu-
ous type with PDF f. Let {X(1), X2), ... , X(u)} be the set of order statistics for
X1, X2, ..., X,. Since the X; are all continuous type RVs, it follows with probabil-
ity 1 that

Xy <Xo << X

Theorem 2. The joint PDF of (X(1), X2, ... , X(u)) is given by

n! [Tio fxa)s xa) <x@) <+ < X@),

1 2 X@2)s - s X)) =
(1) g, x@ ) [0’ otherwise.

Proof.  The transformation from (X1, X2, ..., X») to (Xa), X2), ..., X(m)) is
not one-to-one. In fact, there are n! possible arrangements of xy, x2, ..., x, in in-
creasing order of magnitude. Thus there are n! inverses to the transformation. For
example, one of the n! permutations might be

X4 <X < Xp] < X3 < -0 < Xp < X2.
Then the corresponding inverse is
X4 = X(1)» X1 = X2)> Xn-1 = X(3), X3 =X(4)s ...y Xn = X@n-1), X2 = X(n).
The Jacobian of this transformation is the determinant of an n x n identity matrix

with rows rearranged, since each x; equals one and only one of xq, x2, ..., x,.
Therefore, J = 1, and

n
8(X2)s X(n)> X(4)s X(1)> - - - s X(3)> X(n—1)) = IJII—[f(x(i)), X(1) <X@2) < < X(m)-

i=1

The same expression holds for each of the n! arrangements.



174 MULTIPLE RANDOM VARIABLES

It follows (see Remark 4.4.2) that

n
glx(y, X2y, -+ X)) = Z nf(X(i))

Callm =l
inverses

_ e fx@) - frm)  ifxay <x@) - < X,
0 otherwise.

Example 3. Let X1, X3, X3, X4 be iid RVs with PDF f. The joint PDF of
Xay, X2, X3y, Xa is

4 fFDf () f(3) f(ya), Y1 <y2<Y3<y4

s B s Y4) =
gy, ¥2, y3, y4) {0’ otherwise.

Let us compute the marginal PDF of X 2. We have
g2(y2) =4! f/ FOLfODf(y3) f(ya)dyydysdys
=4 £ ) f_ : fy oo[ : £O0) dy4] FOR ) dys dyy
=asom [ { :“ - F(ya)]f(ys)dyal Fondys

» [1 - F(y))?
=4!f(y2)/ E———z—(-y“zlf(yl)dh

2
=4 f(y )*—*—(yz—)]—F(n), »eR.

The procedure for computing the marginal PDF of Xy, the rth-order statistic of
X1,X2, ..., Xy, is similar. The following theorem summarizes the result.

Theorem 3. The marginal PDF of X,y is given by

. n! r—lrq _ n—r
05 8r(yr) = Py ——— r)![F(yr)] (1= FQII"7 fOr)

where F is the common DF of Xy, X5, ..., X,.

Proof.

¥r Yr— Y2 oo OO
&r(yr) = n'f()’r)/ f / f / / nf(yt)dyn < dyry1
Yr Yr+1 Yn—

Lig#r
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dy -+ -dyr—1

— FO)™" [» e r
T S e ﬂ[f(y,)dy,

—r)!

(1= FoI'™" [Fo)r~!
(n—nr)! (r— 1

=n!f(y)

’

as asserted.
We now compute the joint PDF of X, and X, 1 < j <k <n.

Theorem 4. The joint PDF of X ;) and X, is given by

n! ,
: i=l¢y.
B e e
Bk I =1 _F)FI L = FOOP fONfo0) iy < i
0 otherwise.
3)
Proof.

Yj y2 Yr Yk o0 o0
g,-k(yj,yk)=f f f / ff nF D) - (o)
—00 00 i —2 Y Yk Yn—1

~dyn - dyryr1dye—1---dyjdyr - -dyj

yj 2 Y [1—F n—k
! / f / / [ (y")] = FOOTTE o0y fly) - F )
Yi Yie—

~dyg—1---dyj+1dy -~de~1
_ L= FOour™ F()’k)]n —* Fo /yf fyz [F(y) — F(yp))——1

Y k—j—1)
‘f()’I)f()’Z)"‘f(yj)d}’I coedyjog
= ! [1 = FOOI ™ [Fw) — FyplF7-1
n—0lk—j— 1) Yk Yi
j—1
~fOR ) [—L’)]—— Vi < Y

-nt’
as asserted.

In a similar manner we can show that the joint PDF of X, ..., Xj,), 1 < ji <
Jo<-- < jr <n,1 <k <n,is given by
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n!
Gr=D!G2 = ji = D!+ (n = ji)!
- FI N o) FODIF (32)
— FOl> 7 f () - [T = FOOT f ()

gj[,jz,.“,jk(ylv y2... ,)’k) =

fory; < y; <--+ < y, and = O otherwise.

Example 4. Let X1, X3, ..., X, be iid RVs with common PDF

1 if0<x <1,
X)) =
e 0 otherwise.
Then
n! )
gr(y) = ET'_—T)!_(;:_T)T}’:~ A=y 7", O<y.<1,d<r<n),
0 otherwise.

The joint distribution of X ;) and X, is given by

n! -1 kmjmt »
GoDIE =) =Dl =l ey =™
gik(yj, yi) = 0 <y <<,
0 otherwise,

where 1l < j <k <n.
The joint PDF of X(1) and X () is given by

gL Y) =n(n—DOn—yD)" % O<yi<y, <1

and that of the range R, = X — X(1) by

nn — Dw"2(1 — w), O<w<1,
0, otherwise.

gRr,(w) = [

Example 5. Let X1y, X(2), X(3) be the order statistics of iid RVs X3, X2, X3 with
common PDF

Be B, x>0
0, otherwise

f(x)=[ (B > 0).
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Let Y1 = X3y — X(2) and Y2 = X (7). We show that ¥; and Y, are independent. The
joint PDF of X () and X3, is given by

3!

gnilx,y)={ 1101
0, otherwise.

(1 — e F*)Be~ Bxge—By, x <y,

The PDF of (Yy, Y3) is

Fyn, y2) = 3!,32(1 — e—ﬁ)’z)e~ﬁyze~(y1+y2)ﬁ
_J31Be7 (1 — e Pr))(Be A1), 0 <y < 00,0 <y <00,
o, otherwise.

It follows that Y7 and ¥, are independent.

Finally, we consider the moments: namely, the means, variances, and covariances
of order statistics. Suppose that X1, X, ..., X,, are iid RVs with common DF F.
Let g be a Borel function on R such that E{g(X)| < oo, where X has DF F. Then
fori <r <n,

' / g0 ( e @I T - FOrT S dx

< n(’: ~ 11) fm g@Ifdx  O<F<1

—0Q
< 00

and we write
oC
Eg(X()) = f ()8 () dy
—00

forr = 1,2,...,n. The converse also holds. Suppose that E{g(X ()| < oo for
r=1,2,...,n. Then

— 1 o0
"(’: - 1) [ lg)IF" (01 = FEOI'™ f(x) dx < 00

—00

forr =1,2,...,n and hence
" /.J;l(f _ :)F ool - F(x)l""]lg(x)|f(x)dx

= n/ g f(x)dx < oo.

-0
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Moreover, it also follows that

Y Eg(X() = nEg(X).

r=1

As a consequence of the remarks above, we note that if £|g(X ()| = oo for some r,
1 <r < n, then E{g(X)| = oo, and conversely, if E|g(X)| = o0, then E|g|X())| =
ooforsomer,l <r <n.

Example 6. Let X, X», ..., X, be iid with Pareto PDF f(x) = 1/x2, ifx>1,
and = 0 otherwise.
Then EX =o0o.Nowforl <r <n,

n—1\ [*® V1 oax
oo =) [7e (1-2) 7
-1 i
=n(” ) [ yta—yrtay,
r—1/Jo

Since the integral on the right side converges for 1 < r < n — 1 and diverges for
r>n—1,weseethat EX;) = ooforr =n.

PROBLEMS 4.7

1. Let X1y, X(2), - - - X(n) be the set of order statistics of independent RVs X, X>2,
... , Xy with common PDF ,

Be P ifx >0,
0 otherwise.

f(X)={

(@) Show that X(,) and X5y — X() are independent for any s > r.
(b) Find the PDF of X(-11) — X(n).

(© Let Z; = nXq),Z2 = n — DX — X)) 23 = n — )Xy —
X)) Zn = (X@m) — X@n—1)- Show that (Zy, Z>, ..., Z,) and (X1, Xo,
... » Xp) are identically distributed.

2. Let Xy, X3, ..., X, beiid from PMF

. ‘
=—, k=12...,N.
PE=%

Find the marginal distributions of X1y, X(»), and their joint PMF.
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3. Let Xy, X2, ..., X, beiid with a DF

(+4

if 1,

0 otherwise, a>0.

Show that X¢iy/X @y, i = 1,2, ... ,n — 1, and X(,) are independent.

4. Let X1, X3, ..., X, be iid RVs with common Pareto DF f(x) = ao®/x*t],
x > o where @ > 0, ¢ > 0. Show that:
(@ Xyand (X2y/ Xy --- » X/ X (1)) are independent.
(b) X(1) has Pareto (o, na) distribution.
() z:f:] In(X(jy/ X (1)) has PDF

5. Let X1, X2, ..., X, be iid nonnegative RVs of the continuous type. If E|X| <
oo, show that E{X (| < co. Write M,, = Xy = max(Xy, X, ..., X,,). Show
that

o0
EM, = EM,_; +/ F* 1)1 — F(x)]dx, n=23,....
0

Find E M, in each of the following cases:
(a) X; have the common DF

Fx)=1—-¢#  x>0.
(b) X; have the common DF
F(x)=1x, O<x <.

6. Let X(1), X(2), ... , X(n) be the order statistics of n independent RVs X, X,
..., X, with common PDF f(x) = 1if0 < x < 1, and = 0 otherwise. Show
thatY) = X(1)/ X2, 12 = X/ X3y, - - - Yu—1) = X(u—1)/ X(mp» and ¥y, = X(p)
are independent. Find the PDFs of Y|, Y3, ..., Y,.

7. For the PDF in Problem 4, find EX .

8. An urn contains N identical marbles numbered 1 through N. From the urn n
marbles are drawn, and let X (,) be the largest number drawn. Show that P(X(,) =

k)=(k'1)/(5),k=n,n+1,...,N,andEX(,,)=n(N+1)/(n+1).

n—1



CHAPTERS
Some Special Distributions

5.1 INTRODUCTION

In preceding chapters we studied probability distributions in general. In this chapter
we study some commonly occurring probability distributions and investigate their
basic properties. The results of this chapter will be of considerable use in theoretical
as well as practical applications. We begin with some discrete distributions in Sec-
tion 5.2 and follow with some continuous models in Section 5.3. Section 5.4 deals
with bivariate and multivariate normal distributions, and in Section 5.5 we discuss
the exponential family of distributions.

5.2 SOME DISCRETE DISTRIBUTIONS

In this section we study some well-known univariate and multivariate discrete distri-
butions and describe their important properties.

5.2.1 Degenerate Distribution

The simplest distribution is that of an RV X degenerate at point k, that is, P{X =
k} = 1 and = O elsewhere. If we define

0 ifx <0,
1 -
M &) [1 ifx >0,

the DF of the RV X is e(x — k). Clearly, EX! =k',1 = 1,2,..., and M(t) = .
In particular, var(X) = 0. This property characterizes a degenerate RV. As we shall
see, the degenerate RV plays an important role in the study of limit theorems.

5.2.2 Two-Point Distribution

We say that an RV X has a two-point distribution if it takes two values, x; and x2,
with probabilities

P X=x3}=p and P{X=x3}=1-p, O<p<l.

180



SOME DISCRETE DISTRIBUTIONS 181

We may write
2) X =x1 hx=x;} + x21[X=x5),

where 14 is the indicator function of A. The DF of X is given by

€)] F(x) = pe(x — x1) + (1 — p)e(x — x2).
Also,

o) ExXt=p+a—-pxt, k=12...,
and

5) M(t) = pe'™i + (1 — p)e”™*  forallt.

In particular,

(6) EX =pxi+(1-pr

and

) var(X) = p(1 — p)(x —x2)*.

If x; = 1, xo = 0, we get the important Bernoulli RV:
8) P X=1}=p and P{X=0}=1-p, O<p<l
For a Bernoulli RV X with parameter p, we write X ~ b(1, p) and have
(9) EX =p, var(X) = p(1—p), and M(t) =1+ p(e' —1), all ¢.

Bernoulli RVs occur in practice, for example, in coin-tossing experiments. Sup-
pose that P{H} = p,0 < p < 1,and P{T} = 1 — p. Define RV X so that X (H) = 1
and X(T) = 0. Then P{X = 1} = p and P{X = 0} = | — p. Each repetition of
the experiment will be called a trial. More generally, any nontrivial experiment can
be dichotomized to yield a Bernoulli model. Let (€2, S, P) be the sample space of
an experiment, and let A € S with P(A) = p > 0. Then P(A°) = 1 — p. Each
performance of the experiment is a Bernoulli trial. It will be convenient to call the
occurrence of event A a success and the occurrence of A€ a failure.

Example 1 (Sabharwal [95)). In a sequence of n Bernoulli trials with constant
probability p of success (§), and 1 — p of failure (F), let Y, denote the number
of times the combination SF occurs. To find EY, and var(¥,), let X; represent the
event that occurs on the ith trial, and define RVs

1 ifXi=S, Xipg=F

Xi, X; =
F i Xivt) 0 otherwise

i=12,...,n—1).
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Then
n—I1
Yo=Y f(Xi, Xit1)
i=1
and
EY, = (n - Dp(d - p).
Also,

n—1
EY; =E [}: 11, Xi+1>] +E [ZZ X Xip) (X}, x,~+1)]
i=1

i#j
=@ —1)p( - p)+ (- 2)(n —3)p*(1 — p)?,

so that
var(Y,) = p(1 - p)in — 1 + p(1 — p)(5 — 3m)].
If p = 4, then
n—1 n+1
EY, = e and var(¥Y,) = TS

5.2.3 Uniform Distribution on n Points

X is said to have a uniform distribution on n points {x, x, . ..

the form

(10 PiX =xi} =

S |-

s i=12,...,n.

Thus we may write

n

, Xp} if its PMF is of

n
1
X =3 xilix=y) and F(x)= ~ D el —x),

i=1 i=1

1 n
() EX=-) x,
ni:l
1 1¢ )
(12) EX'==-3"xl, 1=12,...
ni:l
and

n 2 n
(13) var(X) = %Zx?— (%Zn) = %Z(x,- -x)
i=1

i=1
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if we write x = Y7, x;/n. Also,

1 n
(14) M) =~ Y e forallt.
i=1
If, in particular, x; =i,i =1,2,... ,n,
n+1 (n+D@2n+1)
1 EX = : EX?= —
15 2 6
and
21
(16) var(X) = =

12

Example 2. A box contains tickets numbered 1 to N. Let X be the largest number
drawn in n random drawings with replacement.
Then P{X < k} = (k/N)", so that

PIX=k}=P(X<k}—-P{X<k-1)}
_ k\" k—1\"
-(:) ()
Also,

N
EX _ N—-n Z[kn+1 _ (k - 1)n+l _ (k — l)n]

o]

5.2.4 Binomial Distribution

We say that X has a binomial distribution with parameter p if its PMF is given by
(17 pr=P{X =k} = (Z)pk(l —-p"* k=0,1,2,...,m; O0<p<l.

Since Y ;_o Pk = [p+(1—p)]" = 1, the p;’s indeed define a PMF. If X has PMF
(17), we will write X ~ b(n, p). This is consistent with the notation for a Bernoulli
RV. We have

n

Fa) =) (Z) P — py"Fe(x — k).

k=0
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In Example 3.2.5 we showed that

18) EX = np,

(19) EXzzn(n—l)p2+np,
and

(20) var(X) = np(l — p) = npq,

where ¢ = 1 — p. Also,

@1) M) = Ze"‘(”)p"(l ~ pyk
k=0 k

= (g + pe’)"  forallt.
The PGF of X ~ b(n, p) is given by P(s) = '{1 -p( =), Is| <1
Binomial distribution can also be considered as the distribution of the sum of n
independent, identically distributed b(1, p) random variables. If we toss a coin, with

constant probability p of heads and 1 — p of tails, n times, the distribution of the
number of heads is given by (17). Alternatively, if we write

Yo = 1 if kth toss results in a head,
k= 0 otherwise,

the number of heads in # trials is the sum §,, = X1 + X2 + -+ + X,,. Also
PiXy=1=p and P{Xg=0}=1—p, k=12,...,n

Thus

n
ESy=) EX;=np,
1

var(Sy) = ) var(X;) = np(1 — p),
1
and

M@) = f[ Ee'Xi

i=1

= (g + pe')".

Theorem 1, Let X;(i = 1,2,...,k) be independent RVs with X; ~ b(n;, p).
Then S; = Z;‘___l X; hasab(ny + ny + - - - + ng, p) distribution.
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Corollary. If X;(i = 1,2,...,k) are iid RVs with common PMF b(n, p), then
Sk has a b(nk, p) distribution.

Actually, the additive property described in Theorem ! characterizes the binomial
distribution in the following sense. Let X and ¥ be two independent, nonnegative,
finite integer-valued RVs and let Z = X+Y . Then Z is a binomial RV with parameter
p if and only if X and Y are binomial RVs with the same parameter p. The “only if”
part is due to Shanbhag and Basawa [101] and will not be proved here.

Example 3. A fair die is rolled n times. The probability of obtaining exactly one
6 is n(})(2)""!, the probability of obtaining no 6 is (3)", and the probability of
obtaining at least one 6is 1 — (%)".

The number of trials needed for the probability of at least one 6 to be > % is given
by the smallest integer n such that

so that

Example 4. Here r balls are distributed in n cells so that each of n” possible
arrangements has probability n~". We are interested in the probability p; that a
specified cell has exactly k balls (k = 0, 1,2, ... ,r). Then the distribution of each
ball may be considered as a trial. A success results if the ball goes to the specified
cell (with probability 1/n); otherwise, the trial results in a failure (with probability
1 — 1/n). Let X denote the number of successes in r trials. Then

1 k 1 r—k
pkzP{X=k}=(r)(—) (1——) ., k=0,1,2....n
k n n

5.2.5 Negative Binomial Distribution (Pascal or Waiting-Time Distribution)

Let (2, S, P) be a probability space of a given statistical experiment, and let A € S
with P(A) = p. On any performance of the experiment, if A happens we call it a
success, otherwise a failure. Consider a succession of trials of this experiment, and
let us compute the probability of observing exactly r successes, where r > lisa
fixed integer. If X denotes the number of failures that precede the rth success, X + r
is the total number of replications needed to produce r successes. This will happen
if and only if the last trial results in a success and among the previous (r + X — 1)
trials there are exactly X failures. It follows by independence that

22) P{X:x}:(x +;—1)pr(1-—-p)x, x=0,1,2, ...
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Rewriting (22) in the form

23) P{X=x}=<;r)p'(—q)", x=012,...; g=1-p,
we see that
x —r
(24) > ( )(~q)" =(1-q) =p~.
x=0 x
It follows that

io: P{X =x} = 1.
x=0

Definition 1. For a fixed positive integerr > 1 and 0 < p < 1, an RV with PMF
given by (22) is said to have a negative binomial distribution. We use the notation
X ~ N B(r; p) to denote that X has a negative binomial distribution.

We may write
i S (k+r—1
X=Y xlx-yy and F(x)=) ( ¢ )p’(l — pe(x — k).
x=0 k=0
For the MGF of X we have
ol -1
(25) M@) = Z (x r )Pr(l — p)e”
x=0 *

> x+r—1
=p Z(qe’)"( ) @=1-p)
x=0 x
=p' (1—-qge)" forge <1.
The PGF is given by P(s) = p" (1 —s¢g)™", |s| < 1. Also,

a -1
26) EX Zx(x+; )p’q*

x=0
. [x+r

rpr Z ( )qx—H
x=0 x

—r—1 L‘Z
p

il

=rp'ql—q)™"" =
Similarly, we can show that

rq
@n var(X) = —.
P
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If, however, we are interested in the distribution of the number of trials required
to get r successes, we have, writing Y = X +r,

y
r

—1
(28) P{Y=y}=( __l)p'(l—p)y—’, y=rr+1,...,

EY =EX+r=—,
p

(29) rq
var(Y) = var(X) = 5
P
and
30) My(t) = (pe'’) (1 —ge)™ forge' < 1.

Let X be a b(n, p) RV, and let ¥ be the RV defined in (28). If there are r or more
successes in the first n trials, at most n trials were required to obtain the first  of
these successes. We have

3n P{X >r} = P{Y <n}
and also
(32) P{X <r}= P{Y > n}.

In the special case when r = 1, the distribution of X in (22) is given by
(33) P{X = x} = pq*, x=01,2,....

An RV X with PMF (33) is said to have a geometric distribution. Clearly, for the
geometric distribution, we have

(34) M@) = p(l —qge")™ !, EX= i, and var(X) = %
p p

Example 5 (Banach’s Matchbox Problem). A mathematician carries one
matchbox each in his right and left pockets. When he wants a match, he selects
the left pocket with probability p and the right pocket with probability 1 — p. Sup-
pose that initially each box contains N matches. Consider the moment when the
mathematician discovers that a box is empty. At that time the other box may contain
0,1,2..., N matches. Let us identify success with the choice of the left pocket.
The left-pocket box will be empty at the moment when the right-pocket box contains
exactly r matches if and only if exactly N — r failures precede the (N 4 1)st success.
A similar argument applies to the right pocket, and we have

pr = probability that the mathematician discovers a box empty while
the other contains » matches

(2N =1\ Nyt Nr | (PN =T\ N1t N
—(N—r)p R U L
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Example 6. A fair die is rolled repeatedly. Let us compute the probability of event
A that a 2 will show up before a 5. Let A; be the event that a 2 shows up on the jth
trial (j = 1, 2, ...) for the first time, and a 5 does not show up on the previous j — 1
trials. Then PA =} 7, PA;, where PA; = £(3)/~!. It follows that

© 1 /4\i"t g
P(A) = -(*) = -,

Similarly, the probability that a 2 will show up before a Sora 6 is % and so on.

Theorem 2. Let X, X3, ..., Xg beindependent NB(r;; p)RVs,i = 1,2,... k,
respectively. Then $; = Zle X; is distributed as NB(ry +ra + - - - +r; p).

Corollary. If Xy, X5, ..., X} are iid geometric RVs, then Sy is an NB(k; p) RV.
Theorem 3. Let X and Y be independent RVs with PMFs NB(rq; p) and

N B(ry; p), respectively. Then the conditional PMF of X, given X + Y = ¢, is
expressed by

(x-l-rl—l)(t-i-rz—-x—l).
PX=x|X+Y¥ =1} = x (X .

(t+r1+r2—l)
t

If, in particular, ri = rp = 1, the conditional distribution is uniform on ¢ + 1 points.

Proof. By Theorem 2, X + Y is an N B(ri + r2; p) RV. Thus

PiX=x, Y=1t—x)
P(X+Y =1}

-1 t — -1
(H;‘ )p"u-p)*( T )p’%l—p)’“"

t
t -1
( +r —rrz )p,,+,2(1 —

(x+r1—1)(t+r2—x—1)
- x =x J i=012....
(t+r1+r2—1)
t

Ifry = rp = 1, thatis, if X and Y are independent geometric RVs, then

PX=xIX+Y =t =

1
(35)P{X=x|X+Y=t}=t—_—+F—1, x=012,...,8 t=0,1,2,....
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Theorem 4 (Chatterji [12]). Let X and Y be iid RVs, and let

PIX=kj=pt>0, k=0,1,2,....

If
(36) P{X=t|X+Y=t}=P{X:t~l|X+Y=t}=t+;l, t>0,
then X and Y are geometric RVs.

Proof. We have

Pt Po 1

(37 PiX=tX+Y=1t}= T =
and
(38) PIX—t—1X+Y=1}=Ptp 1

S oPkP-k tH1
It follows that

b _ P

Pt Po

and by iteration p; = (p1/po)' po- Since Y soq pr = 1, we must have py/po < 1.
Moreover,

1
T = (pi/p0)’

so that p1/po = 1 — po, and the proof is complete.

1= p

Theorem 5. If X has a geometric distribution, then for any two nonnegative in-
tegers m and n,

(39 P{X >m+n|X > m} = P{X > n}.
The proof is left as an exercise.

Remark 1. Theorem 5 says that the geometric distribution has no memory; that
is, the information of no successes in m trials is forgotten in subsequent calculations.

The converse of Theorem 5 is also true.

Theorem 6. Let X be a nonnegative integer-valued RV satisfying

P{X >m+1|X >m} = P{X = 1}.



190 SOME SPECIAL DISTRIBUTIONS

for any nonnegative integer m. Then X must have a geometric distribution.

Proof. Let the PMF of X be written as

PIX=kl=pi, k=012 ...

Then
o0
PXznl=) p
k=n
and
o ¢]
P{X > m} = Z Pk = Qqm, say,
m+1
P{X 1
PIX>mt )X >m)= LX>mHH_ dmit
P{X > m} dm
Thus
Im+1 = 4mq0,
where go = P{X > 0} = py+ pa+--- = 1 — pg. It follows that g; = (1 — pg)*+1,
and hence py = g1 —qx = (1 — po)* po, as asserted.

Theorem 7. Let X3, X3, ... , X, be independent geometric RVs with parameters
p1, P2, - - - , Pn, Tespectively. Then X1y = min(X1, X2, ..., X,) is also a geometric
RV with parameter

n
p=1-[a-p.
i=1

The proof is left as an exercise.

Corollary. lid RVs X, X3, ..., X, are NB(1; p) if and only if X() is a geo-
metric RV with parameter 1 — (1 — p)”.

Proof. The necessity follows from Theorem 7. For the sufficiency part of the
proof, let

P{X@py <k} =1—P{Xq) >k} =1—(1 - py"¢+D,
But

P{Xqy<k}=1-P{X1>k,Xa>k,..., Xy >k}
=1-[1-F®VI,
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where F is the common DF of X1, X5, ..., X,. It follows that
1— F(k) = (1 - pt,

so that P{X; > k) = (1 — p)**1, which completes the proof.

5.2.6 Hypergeometric Distribution

A box contains N marbles. Of these, M are drawn at random, marked, and returned
to the box. The contents of the box are then thoroughly mixed. Next, n marbles are
drawn at random from the box, and the marked marbles are counted. If X denotes
the number of marked marbles, then

/M (N -M
@ () (0

Since x cannot exceed M or n, we must have
41 x < min(M, n).
Also,x >0and N - M > n — x, so that

42) x > max(0, M +n — N).

2 ()62 - ()

for arbitrary numbers a, b and positive integer n. It follows that

prcen= () B0

X

Note that

Definition 2. An RV X with PMF given by (40) is called a hypergeometric RV.

It is easy to check that

n

43) EX = M,

,_ MM-1) M
(44) EX? = St — 1+ 2
and
(45) var(X) = —M N~ My - n).

NX(N — 1)



192 SOME SPECIAL DISTRIBUTIONS

Example 7. A lot consisting of 50 bulbs is inspected by taking at random 10
bulbs and testing them. If the number of defective bulbs is at most 1, the lot is ac-
cepted; otherwise, it is rejected. If there are, in fact, 10 defective bulbs in the lot, the
probability of accepting the lot is

(10) (40) (40)
1 9 10
50 + SO\ = 3487
10 10
Example 8. Suppose that an urn contains b white and ¢ black balls, b + ¢ = N.
A ball is drawn at random, and before drawing the next ball, s + 1 balls of the same
color are added to the urn. The procedure is repeated n times. Let X be the number

of white balls drawn inn draws, X =0, 1, 2, ... , n. We shall find the PMF of X.
First note that the probability of drawing k white balls in successive draws is

bb+s b+2s b+ k—1)s
NN+sN+2s N+ k-1Ds’

and the probability of drawing k white balls in the first k draws and then n — k black
balls in the next n — k draws is

46) pk=£b+s‘“b+(k—1)s c c+s
NN+s N4+Gk—-—1)sN+ks N+ (k+1)s
c+@m—k—1)s
N+ (—1Ds

Here py also gives the probability of drawing k white and n — k black balls in any
given order. It follows that

@7) P(X =k} = (Z)pk.

An RV X with PMF given by (47) is said to have a Polya distribution. Let us write
Np=b, N(Q-p)=c¢, and Na=s.

Then withg = 1 — p, we have

P{sz}z(n)p(p+a)---[p+(k—l)a]q(q ta)-lg+(n—k-Da]

k 1d+a)-[1+ @ — Dal

Let us take s = —1. This means that the ball drawn at each draw is not replaced in
the urn before drawing the next ball. In this case @ = —1/N, and we have
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oy (M\NPNp—1) - [Np— (k= Dle(c = 1) ---[e = (n —k = 1]
P{X“k}“(k) N(N=1---[N—(@n-D]

()
*)

which is a hypergeometric distribution. Here

(48) =

49) max(0, n — Ng) < k < min(n, Np).

Theorem 8. Let X and Y be independent RVs with PMFs b(m, p) and b(n, p),
respectively. Then the conditional distribution of X, given X 4 Y, is hypergeometric.

5.2.7 Negative Hypergeometric Distribution

Consider the model of Section 5.2.6. A box contains N marbles; M of these are
marked (or say defective) and N — M are unmarked. A sample of size » is taken, and
let X denote the number of defective marbles in the sample. If the sample is drawn
without replacement, we saw that X has a hypergeometric distribution with PMF
(40). If, on the other hand, the sample is drawn with replacement, then X ~ b(n, p)
where p = M/N.

Let Y denote the number of draws needed to draw the rth defective marble. If
the draws are made with replacement, then Y has the negative binomial distribution
given in (22) with p = M/N. What if the draws are made without replacement? In
that case in order that the kth draw (k > r) be the rth defective marble drawn, the
kth draw must produce a defective marble, whereas the previous £ — 1 draws must
produce r — 1 defectives. It follows that

G v

P =k) = (N) "N-ok+1
k—1
fork =r,r +1,..., N. Rewriting, we see that
()
(50) P(Y =k) = (’r‘: :)—T;’—

(i)

An RV Y with PMF (50) is said to have a negative hypergeometric distribution.
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It is easy to see that

N+l _rr+ DV DN +2)
EY=rom7 EYOH D= S+

and

r(N—=MYN+1DWM+1-r)
M+ 1D2(M +2)

Also, if r/N — Oand k/N — 0 as N — oo, then

G Y A I G TGO N (S

which is (22).

var(Y) =

5.2.8 Poisson Distribution

Definition 3. An RV X is said to be a Poisson RV with parameter . > 0 if its
PMF is given by
e Ak
kKt

(51 P{X=k}= k=0,1,2,....

We first check to see that (51) indeed defines a PME We have

[o.¢] )‘.k
2 :P{X k=) =t =1.
k_.O

If X has the PMF given by (51), we will write X ~ P(A). Clearly,

00
X = Zkl[x:k]

k=0

and

F(x) = Ze ——e(x — k).
The mean and the variance are given by (see Problem 3.2.9)
(52) EX=Xx  EX*=xr+421%

and

(53) var(X) = A.



SOME DISCRETE DISTRIBUTIONS 195

The MGF of X is given by (see Example 3.3.7)
(54) Ee'X = explr(e’ — 1]
and the PGF by P(s) = e *179 |s] < 1.

Theorem 9. Let X, X», ..., X, be independent Poisson RVs with X; ~ P(A),
k=1,2,...,n.Then S, = X1+ X2+ -+ XpisaPAy+ 22 +---+A1,) RV.

The converse of Theorem 9 is also true. Indeed, Raikov [82] showed that if
X1, X2, ..., X, are independent and S, = }_;_; X; has a Poisson distribution, each
of the RVs Xy, X3, ..., X, has a Poisson distribution.

Example 9. The number of female insects in a given region follows a Poisson
distribution with mean A. The number of eggs laid by each insect is a P(u) RV. We
are interested in the probability distribution of the number of eggs in the region.

Let F be the number of female insects in the given region. Then

#Akf
P{F = f} = , fF=012....
f.
Let Y be the number of eggs laid by each insect. Then
P{Y =y, F=f}=P{F=f}P{Y =y|F = f}
e\ (fuye ™

f! y!
Thus
Py =y) = W S Qe
=y} = ! f! .
y f=0
The MGF of Y is given by
X aFe X, et y
M(t)-z € Z (flt) —uf
f=0 =0
X afe? '
=2~ oxplfu(e — 1)
f=0 ’

[Ae“(e ~1)]f

Z

=e > exp[ke“(e Dy
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Theorem 10. Let X and Y be independent RVs with PMFs P(A1) and P(),),
respectively. Then the conditional distribution of X, given X + Y, is binomial.

Proof. For nonnegative integers m and n, m < n, we have
PiX=m,Y=n—m}

e MAT /mDe 2 (A /(n — m)))
e~ M0y + a9)" /n!

_ (n) A
m) (1 + A"

()G ()
ERVTAVYESY A+ A2 ’

m=0,1,2,... ,n,

P{X =m|X+7Y =n}

and the proof is complete.

Remark 2. The converse of this result is also true in the following sense. If X
and Y are independent nonnegative integer-valued RVs such that P{X = k} > 0,
P{Y =k} > 0,fork = 0,1,2,..., and the conditional distribution of X, given
X +7, is binomial, both X and Y are Poisson. This result is due to Chatterji [12].
For the proof, see Problem 13.

Theorem 11. If X ~ P(A) and the conditional distribution of Y, given X = x, is
b(x, p),then Y isa P(\p) RV.

Example 10 (Lamperti and Kruskal [58]). Let N be a nonnegative integer-valued
RV. Independent of each other, N balls are placed either in urn A with probability p
(0 < p < 1) orinum B with probability 1 — p, resulting in N4 balls in um A and
Np = N — N4 ballsin urn B. We will show that the RVs N4 and N are independent
if and only if N has a Poisson distribution. We have

b
P{Ny=aand Ng =b|N =a+b} = (a: )p“(l -p’,

where a, b are integers > 0. Thus

a+b

P{NA=a,NB=b}:( )p“q”P{N=n}, g=1—p, n=a+b.

If N has a Poisson () distribution, then

(a + b)! “ be—k}"a+b

P{Ng =a, Np=b}=
(Na=a, Np=b} = =0 =P 0"
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_ (Pakae—x/z) (qbkbe_l/z)
al b! ’

so that N4 and Np are independent.
Conversely, if N4 and Np are independent, then

P{N = njn! = f(a)g(b)

for some functions f and g. Clearly, f(0) # 0, g(0) # Obecause P{N4 =0, Np =
0} > 0. Thus there is a function h such that h(a + b) = f(a)g(b) for all nonnegative
integers a, b. It follows that

h(1) = f(1)g(0) = f(0)g(D),
h(2) = f(2)g(0) = f(1)g(1) = f(0)g(2),

and so on. By induction,

g(l)]“*‘ [f(l)]””‘
= f(1)| —= s b) = g() | —= .
fla)= f( )[g(o) gd) =g 70
We may write, for some «y, a3, A,

fa) = aje™, gb) = are Pt

and
e Math)
P{N =n} = alazm,
so that N is a Poisson RV.

5.2.9 Multinomial Distribution

The binomial distribution is generalized in the following natural fashion. Suppose
that an experiment is repeated n times. Each replication of the experiment terminates

in one of k mutually exclusive and exhaustive events Aj, A3, ..., A¢. Let p; be the
probability that the experiment terminates in A;, j = 1,2, ... , k, and suppose that
pj (j = 1,2,..., k) remains constant for all n replications. We assume that the n
replications are independent.

Letxj, x2,... , xx—1 be nonnegative integers such that xy +x3 +-- - + x4_1 < n.
Then the probability that exactly x; trials terminate in A;,i = 1,2,... ,k — 1, and

hence that xp = n — (xy + x2 + - - - + x4¢_1) trials terminate in Ay is clearly

n! X ox

e e e - . Xk
ot P2 P
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If (X1, X2, ..., Xi) is a random vector such that X ; = x; means that event A; has
occurred x; times, x; =0, 1,2, ..., n, the joint PMF of (Xy, X», ..., Xi) is given
by

(55) PiXi=x1, Xo=x2,..., Xp = xx}

n! x

t X2 Xk . k
—_ ifn= Xi,
= X1!xz!-~xk!p1 P2 Pr 21

0 otherwise.
Definition 4. AnRV (X, X7, ..., X;y) with joint PMF given by

(56) P{X1=x1, Xa=x2,..., Xp—1 = x-1}

n! x —xp—m
P X2 n—X{—..—Xf_]
piipyt...p
_ xlx) . (—xy = — T2 k
- ifxi+x24+---+x,-1 <,
0 otherwise,

is said to have a multinomial distribution.
For the MGF of (X, X3, ..., Xx—1) we have

(57) M(t1, 12, ... , tx—1) = EenXitiXot -1 X

n X1 X2

! w
= Z etlxl+'"+tk—1Xk—|n'pl Py ---Dx

fxat. .. xp!
=0 xilxpte - xg!
xy+x2+.. Xk =0

n
n!
* t I
= E —'——'————‘(ple‘)x‘(pze2)x2...
xilxa!. . x!

X15X250en ,xk_1=0
xi+xy+t. Xp_1<n

- (pr—1€® YR Rk
= (p1e" + pae” + - + pr_1e! + pi)”
foralley, fp, ... , it € R.

Clearly,
M(tlaovov"' ’0) = (Plet' + p2+ +Pk)n = (1 — Pt +Plet1)n’

which is binomial. Indeed, the marginal PMF of each X;,i = 1,2,... ,k - 1,is
binomial. Similarly, the joint MGF of X;, X;,i,j = 1,2,... ,k — 1 { # j),is

M©,0,...,0,4,0,...,0,4,0,...,0) = [pie" + pje'i + (1 — p; — p)I",

which is the MGF of a trinomial distribution with PMF
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n! x; Xj M—Xj—Xj
. «=1—pi —pj.
Xl —x —xpn i PiPe P i hi

(58) flxi,xj)=

Note that the RVs X1, X3, ..., Xy_ are dependent.
From the MGF of (X, X7, ..., Xx_1) or directly from the marginal PMFs we
can compute the moments. Thus

(59) EX; =np; and var(X;)=np;{1 - p;), ji=12,..., k-1,
andfor j =1,2,... ,k—1l,andi # j,
(60) cov(X;, X;) = E((X; —np;)(X; —np;)] = —np; p;.
It follows that the correlation coefficient between X; and X ; is given by
1/2
®1) pij =—|:(1——-—p1,)-_;flj_——_pj_)] / L =12 k=1 (%))
Example 11. Consider the trinomial distribution with PMF

n! X
PX=x,Y=y=-o— " _piplpi™>Y
{ * ¥l x!y!(n—x—y)!plpzp3

where x, y are nonnegative integers such that x + y < n, and p;, p2, p3 > 0 with
p1 + pz + p3 = 1. The marginal PMF of X is given by

P(X=x)= (Z)pf(l —p)", x=0,1,2,....n.

It follows that
P{Y = y|X = x}

(n —x)! P2 ( P3
={ymn—x—-yN1l-p1 \1-p
0 otherwise,

n—x—y
) ify=0,1,2,... ,n—x,

(62)

which is b{(n — x, p2/(1 — p1)). Thus

(63) E{(Y|x})=(n—x)—2_.
1—p

Similarly,

(64) E{X|y} = (n — y) 22

1—p2
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Finally, we note that if X = (X1, X2,..., Xp)and Y = (Y1, Y2, ..., ¥}) are
two independent multinomial RVs with common parameter (p1, p2, ... , px), then
Z = X + Y is also a multinomial RV with probabilities (p1, p2, - .. , px). This fol-
lows easily if one employs the MGF technique, using (58). Actually, this property
characterizes the multinomial distribution. If X and Y are k-dimensional, nonnega-
tive, independent random vectors, and if Z = X + Y is a multinomial random vector
with parameter (pj, p2, ..., pi), then X and Y also have multinomial distribution
with the same parameter. This result is due to Shanbhag and Basawa [101] and will
not be proved here.

5.2.10 Multivariate Hypergeometric Distribution

Consider an urn containing N items divided into k categories containing ny, na, ... ,
ny items, respectively, where lef:, n; = N. A random sample, without replace-
ment, of size n is taken from the urn. Let X; = number of items in sample of type i.
Then

k o /n; N
(65) PiXy=x,X0=x3,..., Xp =x¢} = I l (xj>/<n)
I

j=1
where x; =0, 1,..., min(n, n}), and E’;zl xXj=n.
We say that (X, X, ..., Xk~1) has multivariate hypergeometric distribution if

its joint PMF is given by (65). It is clear that each X ; has a marginal hypergeometric
distribution. Moreover, the conditional distributions are also hypergeometric. Thus

ni\ (N —n; —x;

()02 %)
N —n; ’
()

ni\(N—n; —nj—ng
(x,-)(n — Xi — Xj —Xe)
(N —nj— ng) ’
n—xj— X¢
and so on. It is therefore easy to write down the marginal and conditional means and
variances. We leave the reader to show that

P{X,' =xi|Xj =x,'} =

and

PXi=xi|Xj=xj,X¢ = x4} =

ni
EX; =n-L
J nN
var(X ;) = an—an—n.

PEMYTN N1

1
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and

cov(X;, X ) = —x_"n (ﬂ)z.

5.2.11 Multivariate Negative Binomial Distribution

Consider the setup of Section 5.2.9, where each replication of an experiment ter-
minates in one of k£ mutually exclusive and exhaustive events Ay, Az, ..., Ax. Let
pj = P(Aj), j = 1,2,... , k. Suppose that the experiment is repeated until event
Ay is observed for the rth time, r > 1. Then

(66) PX1=x1, Xo=x2,...,Xp=7r)

_txt . Axey =) ,kﬁ y
B k=1 _ | 173884
( j=1x1'-)(r—1)- j=1
k—1

forx; =0,1,2,... (i=1,2,... k=1, 1 <r<o0,0<pi<1,);;pi<l,
and px = 1 - Y_02] pj-

We say that (X1, X2, ..., Xx—1) has a multivariate negative binomial (or nega-
tive multinomial) distribution if its joint PMF is given by (66).
It is easy to see that the marginal PMF of any subset of {X1, X2,..., Xz—1} is

negative multinomial. In particular, each X ; has a negative binomial distribution.
We will leave the reader to show that

ko1 k~1 -r
67)  M(si,52,...,s6—1) = EeZi=1"%i = pt (1 - Zsfl”)
=

and

(68) cov(X;, X;) = LPL.
Pi

PROBLEMS 5.2

1. (a) Let us write

n

bk;n, p) = (k

)Pk(l"P)n’k, k=0,1,2,....,n.

Show that as & goes from O to n, b(k; n, p) first increases monotonically and
then decreases monotonically. The greatest value is assumed when k = m,
where m is an integer such that
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m+Dp—l<m<(n+Dp

except that b(m — 1; n, p) = b(m;n, p) whenm = (n + Dp.
(b) If k > np, then

(k+1)(1 - p)
P{X >k} <btk;n, p)————"—;
X2k =bln P T Dy
and if k < np, then
(n—k+1p

P{X <k} <bk;n, .
(X <k} <blkin, =
2. Generalize the result in Theorem 10 to n independent Poisson RVs; that is, if
X1, X2,..., X, are independent RVs with X; ~ P(X;),i = 1,2,... ,n, the
conditional distribution of X, X», ... , X, given ZLI X; = t, is multinomial
with parameters £, A1/ Y 7 Ay ..., An/ D1 Ai-

3. Let X1, X be independent RVs with X; ~ b(n;, %), i =1, 2. What is the PMF
of X1 — Xo+ny?

4. A box contains N identical balls numbered 1 through N. Of these balls, n are
drawn at a time. Let X1, X2, ..., X,, denote the numbers on the n balls drawn.
Let S, = ?_:1 X;. Find var(S,,).

5. From a box containing N identical balls marked 1 through N, M balls are
drawn one after another without replacement. Let X; denote the number on
the ith ball drawn, { = 1,2,... , M, 1 < M < N.LletY = max(X, X,,
..., Xp). Find the DF and the PMF of Y. Also find the conditional distribution
of X1,Xs,...,Xum,givenY = y. Find EY and var(Y).

6. Let f(x;r,p),x=0,1,2,..., denote the PMF of an N B(r; p) RV. Show that
the terms f(x; r, p) first increase monotonically and then decrease monotoni-
cally. When is the greatest value assumed?

7. Show that the terms
Ak
PX =k} =e“*7(-,-, k=0,1,2,...,
of the Poisson PMF reach their maxima when k is the largest integer < A and at
(A — 1) and A if A is an integer.

8. Show that

k
AW n—k A
(k)p (-p)" " —>e !

asn — oo and p — 0, so that np = X remains constant. (Hint: Use Stirling’s
approximation, namely, n! = /2w nt 12" a5 n — 0.)
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9.

10.

11.

12.

13.

14.
18.

16.

A biased coin is tossed indefinitely. Let p (0 < p < 1) be the probability of
success (heads). Let Y| denote the length of the first run and ¥> be the length of
the second run. Find the PMFs of Y; and Y7, and show that EY; =q/p + p/q.
EY, = 2.If ¥, denotes the length of the nth run, n > 1, what is the PMF of ¥,,?
Find EY,.

Show that

N NP\ (NG =P\ (m) o0 i
(z) ()5) = G-

as N — oo.
Show that

r+k—1\ P L
( k )p(l—p)—>e o

as p — 1l and r — oo in such a way that 7(1 — p) = A remains fixed.

Let X and Y be independent geometric RVs. Show that min(X, Y)and X — Y
are independent.

Let X and Y be independent RVs with PMFs P{X =k} = pi, P{Y =k} = g,
k=0,1,2,..., where pg,qx > Oand Y g2 pr = 2 gooqk = 1. Let

P{X=kiIX+Y =t}= (;)af‘(l —a)'k, O0<k<t

Then o; = « for all ¢, and

_ e—Oﬂ(Oﬁ)k B e—99k
Pr= """ and g = o

where B = o/(1 — &), and 6 > O is arbitrary. (Chatterji [12])
Generalize the result of Example 10 to the case of k urns, k > 3.

Let (X1, X2, ..., Xx-1) have a multinomial distribution with parameters n,
P1, P2y -+ s Pk—1- Write

v i X — npi)?
i:l. np; ’

where pr =1—py—---—pr—1,and Xy =n— Xy~ .- — X;_;.Find EY and
var(Y).
Let X, X> be iid RVs with common DF F, having positive mass at 0, 1, 2, . ...

Also, let U = max(Xy, Xp) and V = X; — X». Then
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PlU=j, V=0}=PU = jIP{V =0}

for all j if and only if F is a geometric distribution. (Srivastava [107])

17. Let X and Y be mutually independent RVs, taking nonnegative integer values.
Then

P{X5ﬁ}—P{X+Y5n}=aP{X+Y=n}

holds forn =0, 1,2, ... and some ¢ > 0 if and only if

1 o \"
PlY =n} = , =0,1,2,....
{ n) 1+a(1+a) " 2

(Hint: Use Problem 3.3.8.) (Puri [817])

18. Let X1, X5, ... be a sequence of independent b(1, p) RVs with 0 < p < 1.
Also,let Zy = ZlNzl X;i, where N is a P(A) RV that is independent of the X;’s.
Show that Zy and N — Zy are independent.

19. Prove Theorems 5,7, 8, and 11.

5.3 SOME CONTINUOUS DISTRIBUTIONS

In this section we study some most frequently used absolutely continuous distribu-
tions and describe their important properties. Before we introduce specific distribu-
tions it should be remarked that associated with each PDF f there is an index or a
parameter § (may be multidimensional) which takes values in an index set ®. For
any particular choice of § € ® we obtain a specific PDF fg from the family of PDFs
{fo, 0 € B).

Let X be an RV with PDF fp(x), where 6 is a real-valued parameter. We say that
6 is a location parameter and { fy} is a location family if X — 6 has PDF f(x) which
does not depend on 8. The parameter 8 is said to be a scale parameter and { fo} is a
scale family of PDFs if X /0 has PDF f(x) which is free of 8. If 0 = (i, o) is two-
dimensional, we say that 6 is a location-scale parameter if the PDF of (X — p)/o is
free of . and o. In that case, { fo} is known as a location-scale family.

It is easily seen that 6 is a location parameter if and only if fo(x) = f (x — 0),
a scale parameter if and only fp(x) = (1/60) f(x), and a location-scale parameter if
fo(x) = (1/o)f({(x — pn)/o), o > 0 for some PDF f. The density f is called the
standard PDF for the family { fp, 6 € ©}.

A location parameter simply relocates or shifts the graph of PDF f without chang-
ing its shape. A scale parameter stretches (if @ > 1) or contracts (if 6 < 1) the graph
of f. A location-scale parameter, on the other hand, stretches or contracts the graph
of f with the scale parameter and then shifts the graph to locate at u (see Fig. 1).

Some PDFs also have a shape parameter. Changing its value alters the shape of
the graph. For the Poisson distribution A is a shape parameter.
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For the following PDF,
fOsu, Be) 1 (x““)a—lexpl x_“] x>
X3 » My = == - 4
Br) \ B p

and = 0 otherwise, i is a location, B a scale, and a a shape parameter. The standard
density for this location-scale family is

xa—-l —X

, x>0
')

fx)=

and = 0 otherwise. For the standard PDF f, « is a shape parameter.

5.3.1 Uniform Distribution (Rectangular Distribution)

Definition 1. An RV X is said to have a uniform distribution on the interval
[a, b], —00 < a < b < o0, if its PDF is given by
1
1 fx)y=1b-a’

0, otherwise.

a<x<b,

We will write X ~ Ula, b] if X has a uniform distribution on [a, b].
The endpoint a or b or both may be excluded. Clearly,
o0
/ fx)dx =1,
—00

so that (1) indeed defines a PDF. The DF of X is given by

0, x <a,
2 Foy=1%2%  a<x<b
b—a
L b < x;
at+b . b gkt
3 EX = X Ext= 2 e ) o |
® 2 *k+ D —a) > 0 is an integer
(b —a)?
4 X) = .
G var(X) o,
) M(r) (e — '), (%o,

- t(b—a)
Example 1. Let X have a PDF given by

Ae M, O<x<oo, A>0,
fx) =

0, otherwise.
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Then

F(x)={0 x <0,

1—e*x, x> 0.

LetY = F(X) = 1 — ¢™*X . The PDF of Y is given by

L e Cumiost-» _y g <y <.

1
fY(Y)———x' -y

Let us define fy(y) = 1 aty = 1. Then we see that Y has density function

1, 0<y<l,
0, otherwise,

fr(y =

which is the U[0, 1] distribution. That this is not a mere coincidence is shown in the
following theorem.

Theorem 1 (Probability Integral Transformation). Let X be an RV with a
continuous DF F. Then F(X) has the uniform distribution on [0, 1].

The proof is left as an exercise.
The reader is asked to consider what happens in the case where F is the DF of a

discrete RV. In the converse direction the following result holds.

Theorem 2. Let F be any DF, and let X be a U[0, 1] RV. Then there exists a
function & such that 2(X) has DF F, that is,

6) Plh(X) <x}= F(x) for all x € (—o0, 00).
Proof. If F is the DF of a discrete RV Y, let
P{Y =y} = px, k=1,2,....
Define h as follows:

yi if0<x < py,
h(x) = {» if pr <x < p1+ pa2

Then

PIh(X)y=yn}=P{0<X < p1} = p1,
Plh(X) =y} = P{p1 < X < p1 + p2} = p2,
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and, in general,
P{h(X) = y} = px. k=1,2,....
Thus k(X) is a discrete RV with DF F.
If F is continuous and strictly increasing, F~! is well defined, and we take

h(X) = F~1(X). We have

P(h(X) < x} = P(F1(X) < x}

= P{X < F(x)}
= F(x),
as asserted.
In general, define
0 F~(y) =inflx: F(x) > y),
and let A(X) = F~1(X). Then we have
(8) (F'O) <x)=[y < F)).

Indeed, F“(y) < x implies that forevery ¢ > 0,y < F(x + ¢). Since ¢ > 0O is
arbitrary and F is continuous on the right, we let ¢ — 0 and conclude that y < F(x).
Since y < F(x) implies that F -1 (y) < x by definition (7), it follows that (8) holds
generally. Thus

P{F1(X) < x} = P{X < F(x)} = F(%).

Theorem 2 is quite useful in generating samples with the help of the uniform
distribution.

Example 2. Let F be the DF defined by

F(x):lo, x<0

1—-e™*, x> 0.
Then the inversetoy =1 —e ¥, x > 0,isx = —log(l — y),0 < y < 1. Thus
h(y) = —log(1 - y),
and — log(1 — X) has the required distribution, where X is a U[0, 1] RV.

Theorem 3. Let X be an RV defined on [0, 1]. If P{x < X < y} depends only
ony—xforall0 <x <y <1,then X is U[O, 1].
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Proof LetP{x <X <yl=f(y—x);then f(x+y)=P{0<X <x+y}=
PO< X <x}+ Pl{x <X <x+y} = f(x)+ f(y). Note that f is continuous
from the right. We have

f@x) = f(x)+ f(0),

so that

f(©) =0

We will show that f(x) = cx for some constant c. It suffices to prove the result for
positive x. Let m be an integer; then

flmx) = f(x) 4 -+ f(x) = mf (x).

Letting x = n/m, we get

so that

n 1

F(Z)=—rm==sm,

m

for positive integers n and m. Letting f(1) = ¢, we have proved that
f(x)=cx

for rational numbers x.

To complete the proof we consider the case where x is a positive irrational number.
Then we can find a decreasing sequence of positive rationals x1, x3, ... such that
Xxp — x. Since f is right continuous,

f(x) = lim f(x,) = lim cx, = cx.
Xndx Xndx

Now, for0 <x <1,
Fx)=P(X <0} +P{0<X <x]}
=FO)+P{0< X <x}
=f)

=cx, 0<x<l.
Since F(1) = 1, we must have ¢ = 1, so that
F{x) = x, 0<x<1.

This completes the proof.
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5.3.2 Gamma Distribution

The integral

9 MNa) = f wx“*‘e‘x dx
0+

converges or diverges according as @ > 0 or < 0. For ¢ > 0 the integral in (9) is
called the gamma function. In particular, if ¢ = 1, ['(1) = 1. If ¢ > 1, integration
by parts yields

oo
(10) MNo) = (a — 1)/ 12 dx = (@ — DI'(@ — 1).
0

If @ = n is a positive integer, then
ay P(n) = (n— D

Also writing x = y2/2 in l"(%), we see that

1 1 *® 2
'l=})=— eV 2 dy.
(2) V2 J-x ’

Now consider the integral I = [0 e™*/2 dy. We have

[ Y] 2 2
12 = f f exp l:.._gx___;;y_).il dx dy,
—o0o0 J—o0

and changing to polar coordinates, we get

2r  poo r2
Izzf f rexp| —— ) drd6 =2n.
o Jo 2

It follows that I'(3) = /7.
Letus write x = y/8, B > 0, in the integral in (9). Then

0o a—1

o B

(12) I(e) = e/ ay,

so that

A SR
(13) f ~lg=¥Bgy — 1.
o T@p” Y
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Since the integrand in (13) is positive for y > 0, it follows that the function

1

(14) f) =1 T@)p”
0, y<0.

yele=y/B, 0<y<oo,

defines a PDF fora > 0, 8 > 0.

Definition 2. An RV X with PDF defined by (14) is said to have a gamma distri-
bution with parameters o and 5. We will write X ~ G{(«a, ).

Figure 2 gives graphs of some gamma PDFs.
The DF of a G(e, B) RV is given by

[0, x <0,
as) FO= L[ ot

dy, .
T @B Jy y* e y x>0

The MGF of X is easily computed. We have

— *® x(t—1/8) a—1
(16) M@) = F(oz)ﬁ"‘,/o e X dx
_ 1 o« p00 ya—-le*y —1—
(=) [ TFar e <3
1
=(1-p7%, —
( Bt) t < i
It follows that
an EX =M (t)li=0 = aB
and
(18) EX* = M" (1)l = a(c + 1)B?,
so that
(19) var(X) = ap?.

Indeed, we can compute the moment of order n such that « + n > 0 directly from
the density. We have

1 oo
20 EX" = f “xlPyatnlyg
(20) F(a)B* Jo ¢ x o

I'la +n)

=pr—T"

'a)
=p"e+n—D@+n-2) -«
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The special case when o = 1 leads to the exponential distribution with param-
eter B. The PDF of an exponentially distributed RV is therefore

Ble~*/B, x>0,
0, otherwise.

(21) fx) = I

Note that we can speak of the exponential distribution on (—o00, 0). The PDF of such
an RV is

~1,%/B
22) f = [(‘f e
Clearly, if X ~ G(1, B), we have
(23) EX" =n!pg"
24) EX=p8 and var(X)=p2
and
(25) M@e)=(1—-B0""  forr < gl

Another special case of importance is when ¢ = n/2, n > 0 (an integer) and

B=2

Definition 3. An RV X is said to have a chi-square distribution ( x2-distribution)
with n degrees of freedom where n is a positive integer if its PDF is given by

1

(26) fx) = { T'(n/2)2"/?
0, x<0.

e—x/Z n/2—-1

X 0<x <oo,

We will write X ~ xz(n) fora )(2 RV with n degrees of freedom (d.f.).

If X ~ x2(n), then

(04)) EX =n, var(X) = 2n,
k
28 pxt = ZTL@/2) +k)
T'(n/2)
and
(29) M@)=Q-20""?  fort <}

Theorem 4. Let X3, Xo, ... , X, be independent RVs such that X ; ~ G(«j, B),
i=12,...,n.Then S, =Y ;_; Xk isaG(Z';zl oj, B) RV.
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Corollary 1. Let X, X5, ..., X, be iid RVs, each with an exponential distribu-
tion with parameter 8. Then S, is a G(n, ) RV.

Corollary 2. If Xy, X5, ..., X, are independent RVs such that X; ~ x2(r i
j=1,2,...,n,then Sy isa x2(3_7_,rj) RV.

Theorem 5. Let X ~ U(0, 1). Then ¥ = —2log X is x2(2).

Corollary. Let Xq, X5,..., X, be iid RVs with common distribution U (0, 1).
Then —2 Y7 log X; = 2log(1/ [T, X:) is x2(2n).

Theorem 6. Let X ~ G(ap, B) and ¥ ~ G(aa, B) be independent RVs. Then
X +Y and X/Y are independent.

Corollary. Let X ~ G(ay, B) and ¥ ~ G(«a2, B) be independent RVs. Then
X + Y and X/(X + Y) are independent.

The converse of Theorem 6 is also true. The result is due to Lukacs [66], and we
state it without proof.

Theorem 7. Let X and Y be two nondegenerate RVs that take only positive val-
ues. Suppose that U = X + Y and V = X/Y are independent. Then X and Y have
gamma distribution with the same parameter S.

Theorem 8. Let X ~ G(1, 8). Then the RV X has “no memory,” that is,

(30) PIX>r+s|X >s5}=P{X>r}

for any two positive real numbers r and s.

The proof is left as an exercise.
The converse of Theorem 8 is also true in the following sense.

Theorem 9. Let F be a DF suchthat F(x) =0ifx <0, F(x) < 1ifx > 0, and

1—F(x+y)
1-F(y

Then there exists a constant 8 > 0 such that

an =1~ F(x) forallx,y > 0.
(32) 1— F(x)=e¢*#, x > 0.
Proof. Equation (31) is equivalent to

gx +y)=gx) + gy
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if we write g(x) = log{l — F(x)}. From the proof of Theorem 3 it is clear that the
only right continuous solution is g(x) = cx. Hence F(x) = 1 — ", x > 0. Since
F(x) — 1 as x — 09, it follows that ¢ < 0 and the proof is complete.

Theorem 10. Let X;, X3,..., X, be iid RVs. Then X; ~ G(1,nB), i =
1,2,...,n,ifand only if X(1y is G(1, B).

Note that, if X1, X2, ... , X, are independent with X; ~ G(1, 8;),i =1,2,... ,n,
then X1y isa G(1, 1/ 32, 7 RV.

The following result describes the relationship between exponential and Poisson
RVs.

Theorem 11. Let X, X,,... be a sequence of iid RVs having common expo-
nential density with parameter § > 0. Let S, = Y ;_; X be the nth partial sum,
n=1,2,..., and suppose that ¢t > 0. If Y = number of S, € [0,7], then Y is a
P(t/8) RV.

Proof. We have
1 [o. 0]
P{Y =0} = P{S) >t} = Ef e Pdx =et/P,
t

so that the assertion holds for ¥ = 0. Let n be a positive integer. Since the X;’s are
nonnegative, S, is nondecreasing, and

(33) P{Y =n}=P{S;, <t, Spp1 >t}

Now

(34 P{Sp <t} = P{Sp <t, Spt1 > 1} + P{Suq1 < 1}.
It follows that

(3% P{Y =n} = P{S, <t} — P{Sp41 < 1},

and since S, ~ G(n, B), we have

t 1 t 1
PlY = = n—1 —x/ﬂd __f s un,—x/B
{ n) /0 I‘(n)ﬂ"x e X A l)ﬂ"“x e dx
t"e—t/ﬂ
T

as asserted.

Theorem 12. If X and Y are independent exponential RVs with parameter 8,
then Z = X/(X + Y) has a U(0, 1) distribution.
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Note that in view of Theorem 7, Theorem 12 characterizes the exponential distri-
bution in the following sense. Let X and ¥ be independent RV that are nondegener-
ate and take only positive values. Suppose that X + ¥ and X/Y are independent. If
X/(X 4+ Y)isU(0, 1), X and Y both have the exponential distribution with param-
eter B. This follows since by Theorem 7, X and Y must have the gamma distribution
with parameter 8. Thus X /(X + Y) must have (see Theorem 14) the PDF

_ Plag+ag)

= —— =yl pye-l 0<x <1,
INGIDINGE))

f(x)

and this is the uniform density on (0, 1) if and only if &) = o = 1. Thus X and Y
both have the G(1, 8) distribution.

Theorem 13. Let X be a P()) RV. Then

1 o0
(36) P{X <K} = ~f e *xK dx
K/,

expresses the DF of X in terms of an incomplete gamma function.

Proof.
iP(X <K}= i l(je"AAj_l —xe™)
d\ = = !
_aK g

and it follows that

as asserted.

An alternative way of writing (36) is the following:
P{X < K} = P{Y = 24},

where X ~ P(A),and Y ~ x2(2K + 2).

5.3.3 Beta Distribution
The integral
1—

(37) B(a, B) = / 211 —x)f Vdx
0+



SOME CONTINUOQUS DISTRIBUTIONS 219

converges for ¢ > 0, B > 0 and is called a beta function. Fora < Oor § < 0 the
integral in (37) diverges. It is easy to see thatfora > 0, 8 > 0,

(38) B(a, B) = B(B, ),
(39) B(a, B) = / N1+ x)"* P dx,
0+
and
_ T(@T(p)
(40) B(a, B) = Tatp
It follows that
#»a-of
C3)) fx)= B, p) ’
0, otherwise,
defines a PDF.

Definition 4. An RV X with PDF given by (41) is said to have a beta distribution
with parameters o and 8, ¢ > 0, 8 > 0. We will write X ~ B(«, 8) for a beta
variable with density (41).

Figure 3 gives graphs of some beta PDFs.

Fig. 3. Beta density functions
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The DF of a B(w, 8) RV is given by

0, x <0,
X
(42)  F(x)={iB, A" f y i1 —-yPldy, o0<x<1,
0+
1, x>1.

If n is a positive number, then

S T g1
(43) EX" = B, ﬁ)/o x (1-x)"""dx
_Bn+ao,p) Tr+al(@+p)

B,p)  T@T@n+a+p)

using (40). In particular,

o
(44) EX ==
and
(45) var(X) = ap

@+ B la+p+1)’

For the MGF of X ~ B(«, 8), we have

1

(46) M@) = @B

1
/ e*x* 11 — x)fV dx.
0

Since moments of all order exist, and E|X|/ < 1 for all j, we have

X 4j

@ MO =) SEX)

j=0

t/ T+ j)T@+p)
TG+ DT@+p+)T@)

J

Remark 1. Note that in the special case where « = B = 1 we get the uniform
distribution on (0, 1).

Remark 2. If X is a beta RV with parameters o and 8, then 1 — X is a beta
variate with parameters  and «. In particular, X is B(x, @) if and only if 1 — X is
B(a, «). A special case is the uniform distribution on (0, 1). If X and 1 — X have the
same distribution, it does not follow that X has to be B(a, ). All this entails is that
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the PDF satisfies
fx) = f(1-x), O<x<l
Take
flx) = 1 A -0+ Q-0 %P, 0<x <1,

B(a, B) + B(B, @)
Example 3. Let X be distributed with PDF

il -x), 0<x<l,

J@ = 0, otherwise.
Then X ~ B(3,2) and
EX = Tn+3)TE) _ 4 @m+2)! 12
FAr;m+5 21 m+4! n+dHr+3)
EX = 12 var(X) = 6 = L
20’ T 52.6 25
XU G+ra
M) = t_'T‘(J'+4)!E
=7 (G +92
o0 tj

_Z(J +4)(J+3) v
and

1
P{02 <X <05) = m (x 2 x¥dx =0.023.

Theorem 14. Let X and Y be independent G (1, 8) and G(a3, B), respectively,
RVs. Then X/(X + Y) is a B(ay, az) RV.

Let X3, X2, ..., X, be iid RVs with the uniform distribution on [0, 1]. Let X )
be the kth-order statistic.

Theorem 15. The RV X(;) has a beta distribution with parameters ¢ = k and
B=n—k+1.

Proof. Let X be the number of X;’s that lie in [0, ¢]. Then X is b(n, ¢). We have

P{Xgy <t} =P{X=zk}=)_ (;f),j(] —r,

Jj=
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§P{X>k = (;’)[th -7 —(—pra—-n"rh

" ):!’*1(1 — —n(” - 1):!’(1 —z)"—f—l]
j- J
( })z" 1 -k,

On integration, we get

—1 t
P{Xg <ti=n(" f 71— 0k dx,
k—1)Jo

as asserted.

Remark 3. Note that we have shown that, if X is b(n, p), then

(48) 1 - P{X <k} =ﬂ(n B 1) fpxk_l(l —x)"*dx,
k—1)J

which expresses the DF of X in terms of the DF of a B(k,n — k 4+ 1) RV.

Theorem 16. Let X1, X», ..., X, be independent RVs. Then X;, X5,..., X,
are iid B(«, 1) RVs if and only if X,y ~ B(an, 1).

5.3.4 Cauchy Distribution

Definition 5. An RV X is said to have a Cauchy distribution with parameters [
and @ if its PDF is given by

1

(49) fx)= ”m,

-0 <x <, >0,

We will write X ~ C(u, 6) for a Cauchy RV with density (49).

Figure 4 gives graph of a Cauchy PDF.
We first check that (49) in fact defines a PDF. Substituting y = (x —8)/u, we get

®© 1 [ dy 2 -1
dx = — = —(t 2 =1.
f_oof(x) x n/_wl-{»yz ~(an”! ) =1
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T

Fig. 4. Cauchy density function.

The DF of a C(1, 0) RV is given by
1 1

(&) F(x)=§+—tan'1x, —00 < X < 00.
b4

Theorem 17. Let X be a Cauchy RV with parameters ¢ and 6. The moments of
order < 1 exist, but the moments of order > 1 do not exist for the RV X.

Proof. It suffices to consider the PDF

1 1
f(x):;-——-——l+x2, —00 < X < 00,
2 [ 1
E|X|* = -f x* de,
w Jo 1+x

and, letting z = 1/(1 + xz) in the integral, we get
1
EIX|* = l/ LA-0/2=1(y _ /-1 4,
7 Jo

which converges for @ < 1 and diverges for @ > 1. This completes the proof of the
theorem.

It follows from Theorem 17 that the MGF of a Cauchy RV does not exist. This
creates some manipulative problems. We note, however, that the cf of X ~ C(u, 0)
is given by

(51 () = e M.
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Theorem 18. Let X ~ C(u1,61) and Y ~ C(uz, 82) be independent RVs. Then
X +YisaC(uy + 2, 67 +62) RV.

Proof. For notational convenience we will prove the result in the special case
where (11 = u2 = 1 and ) = 6, = 0, that is, where X and Y have the common PDF

1 1
f(x)=;-1+x2, —00 < X < 00.
The proof in the general case follows along the same lines. If Z = X + Y, the PDF
of Z is given by
1 > 1 1
= — . dx.
f2(@) w2 /;,,,_,1—%—)62 14 (z—x)2 g
Now

1
1+ 21+ (z —x)?]

1 [ 2zx 22 272 — 2zx 22 ]

T 2@+ | T+ 1422 14 G@-x)?  1+(@z-x)7?
so that
fz(@) ! lo 1+ +z%tan"! x + z2 tan~!( ) ”
)= —5 z z z x —
2= 2@+ | P BT -0 1
1 2 o o
=, —00 < z < 00.
7z +22 ¢

It follows that if X and Y are iid C(1, 0) RVs, then X + Y is a C(2, 0) RV. We note
that the result follows effortlessly from (51).

Corollary. Let X1, X5, ..., X, be independent Cauchy RVs, X; ~ C(ug, 6),
k=1,2,...,n.Then S, = Y] Xy isaC(X] pk, Y1 6k) RV.

In particular, if X1, X3, ..., X, are iid C(1, 0) RVs, n~1S, is also a C(1, 0) RV.
This is a remarkable result, the importance of which will become clear in Chapter 6.
Actually, this property uniquely characterizes the Cauchy distribution. If F is a non-
degenerate DF with the property that n 1S, also has DF F, then F must be a Cauchy
distribution (see Thompson [112, p. 112]).

The proof of the following result is simple.

Theorem 19. Let X be C(ut, 0). Then A/ X, where A is a constant, isa C(|A|/u, 0)
RV.

Corollary. X is C(1,0) if and only if 1/X is C(1, 0).
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We emphasize that if X and 1/X have the same PDF on (—o0, 00), it does not
follow* that X is C(1, 0), for let X be an RV with PDF

—1— if |x] <1,
fx) = 41
Z;i if |X| > 1.
Then X and 1/ X have the same PDF, as can easily be checked.
Theorem 20. Let X bea U(—m /2, w/2) RV. Then Y = tan X is a Cauchy RV.

Many important properties of the Cauchy distribution can be derived from this
result (see Pitman and Williams {78)).

5.3.5 Normal Distribution (Gaussian Law)

One of the most important distributions in the study of probability and mathematical
statistics is the normal distribution, which we examine presently.

Definition 6. An RV X is said to have a standard normal distribution if its PDF
is given by

(52) p(x) = e*("z/z), —00 < X < 00.

We first check that f defines a PDF. Let
o0
I= f e 12 dx.
-0

2
~x2/2 _ x4l

Then

O<e —0 < X < 00,

o0
/ e P gy = 2e,
—00

and it follows that I exists. We have

[e,¢]
I—_-f y 12712 gy
0

*Menon [71] has shown that we need the condition that both X and 1/ X be stable to conclude that X
is Cauchy.
A nondegenerate distribution function F is said to be stable if for two iid RVs X, X, with common
DF F, and given constants a;, a; > 0, we can find @ > 0 and B(ay, a3) such that the RV

Xy =o aix) + a2 X2~ B)

again has the same distribution F. Examples are the Cauchy (see the corollary to Theorem 18) and normal
(discussed in Section 5.3.5) distributions.
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) o172

[
-~
R —

.Ié‘

Thus ffooo @(x)dx = 1, as required.
Let us write Y = 0 X + p, where ¢ > 0. Then the PDF of Y is given by

1 —
Yy =—p (—————y ")
(el [e2

1
(53) = > e_[()’"")2/2"2], —x<y<; o06>0 —o0o<pu<oo.
o2

Definition 7. An RV X is said to have a normal distribution with parameters p
(—o0 < u < oo) and o (> 0) if its PDF is given by (53).

If X is a normally distributed RV with parameters u and o, we will write X ~
N (i, 62). In this notation, ¢ defined by (52) is the PDF of an A/(0, 1) RV. The DF
of an A/ (0, 1) RV will be denoted by ®(x), where

1 x 2
54 P(x) = —— e duy.
54) A2 J -0

Clearly, if X ~ N(u, 02),then Z = (X — u)/o ~ N(O, 1). Z is called a standard
normal RV. For the MGF of an N (1, %) RV, we have

1 oo 2 2 2
55 M) = f exp( Ux +xw +u_fi_) dx

V2o J-oso 202 o? 202
1 *® —(x—p—oin? 02
= t+——\d
e f—ooexp[ 752 + ut + 5 X

o%t?
=exp | ut + —2— y

for all real values of . Moments of all order exist and may be computed from the
MGEF Thus

(56) EX=M@®l=o= (@ +02OM®)|im0 =1
and
(57 EX? = M"(t)li=0 = IM()o? + (u + X’ M(D))i=0

=02+u2.
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Thus
(58) var(X) = a?.

Clearly, the central moments of odd order are all zero. The central moments of
even order are as follows:

] [v.0)
(59) E(X — )" = x2e~*12" gy (n is a positive integer)
Y/ 2 —00

azn 2n+1/21- n + 1
V2r 2

=[@2n—1)@2n—3)---3-1]a ™.

Q

As for the absolute moment of order «, for a standard normal RV Z we have

1 o0 2
60 E|Z|* = — - 2/ %e %12 dy
©0) 2= 7m0,
L[ tasty2i-1 -y
—— a+)/D1-1g-3/2 4
2 ./0 Y Y
_ Tl + /2122
=

As remarked earlier, the normal distribution is one of the most important distribu-
tions in probability and statistics, and for this reason the standard normal distribution
is available in tabular form. Table ST2 at the end of the book gives the probability
P{Z > z} for various values of z(> 0) in the tail of an A'(0, 1) RV. In this book we
write z, for the value of Z that satisfiesa« = P{Z > 74}, 0 <o < 1.

Example 4. By Chebychev’s inequality, if E1X 1?2 < 00, EX == p, and var(X) =
2
o, then

P{X —pl z Ko} < —.

For K = 2,weget P{|X —pu| > Ko} <0.25,and for K = 3, we have P{|{X — | >
Ko} < %. If X is, in particular, N'(u ¢?), then

P{X —ul = Ko} = P{|Z| = K},
where Z is A'(0, 1). From Table ST2,

P{|Z| > 1} =0.318, P{|Z|>2}=0.046, and P{|Z|> 3} = 0.002.
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Thus practically all the distribution is concentrated within three standard devia-
tions of the mean.

Example 5. Let X ~ N (3,4). Then

2-3 X-3 5-3
PR2<X<5}=P < < =P{-05<Z<1)
2 2 2
= P{Z < 1} — P{Z < —0.5}
=0.841 — P{Z > 0.5}

= 0.0841 — 0.309 = 0.532.

Theorem 21 (Feller [22, p. 175]). Let Z be a standard normal RV. Then

1 2
61) P{Z > x} ~ e~ * /2 asx — oo.
V2 x
More precisely, for every x > 0,
1 2 1 1 1 2
62 ———e'x/z(———-)<PZ>x < e * 12,
©2) V2 x x3 { } x+/2n

Proof. 'We have

1 [® 2 3 1 a1 1
63 [ (112 (1 - —) dy = —— o212 (_ - ._)
(63) 2w Jx )T I x  x3

and

(64) —— fooe"yzﬂ (1 + 1)d =Ll
V2 Jx y 2 Y V2n x’
as can be checked on differentiation. Approximation (61) follows immediately.

Theorem 22. Let Xy, X2, ... , X, be independent RVs with X; ~ N(ux, op),
k=1,2,...,n Then S, = Y p_; Xx isan N (X f_{ ik, Y 02) RV.

Corollary 1. If X;, X, ... , X, areiid N (i, 62) RVs, then Sy, is an A (npe, no?)
RV and n~1S,, is an N (., 02/n) RV.

Corollary 2. If X1, Xo, ..., X, are iid A(0, 1) RVs, then n~1/2§, is also an
N0, 1) RV.

We remark that if X1, Xa, ..., X, are iid RVs with EX = 0, EXZ = 1 such that
n~1/28, also has the same distribution for each n = 1,2, ... , that distribution can
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only be A/(0, 1). This characterization of the normal distribution will become clear
when we study the central limit theorem in Chapter 6.

Theorem 23. Let X and ¥ be independent RVs. Then X <+ Y is normally dis-
tributed if and only if X and Y are both normal.

If X and Y are independent normal RVs, X + Y is normal by Theorem 22. The
converse is due to Cramér [15] and will not be proved here.

Theorem 24. Let X and Y be independent RVs with common N (0, 1) distribu-
tion. Then X + Y and X — Y are independent.

The converse is due to Bernstein [3] and is stated here without proof.

Theorem 25. If X and Y are independent RVs with the same distribution, and
if Zy = X+ Y and Z; = X — Y are independent, all RVs X, Y, Zq, and Z; are
normally distributed.

The following result generalizes Theorem 24.

Theorem 26. If X;, X2,..., X, are independent normal RVs and ) ;_, a;b;
var(X;) = O, then L) = Y} _,a;X; and Ly = )_;_, b;X; are independent. Here

aiy,az,...,a, and by, by, ... , b, are fixed (nonzero) real numbers.

Proof. Letvar(X;) = a,-z, and assume without loss of generality that EX; = 0,
i=1,2,...,n.Forany real numbers «, 8, and t,

n
Ee@Lt+AL)! — Eexp [t Z(aai + ﬁbi)Xi]
1
= nexp [ (aa; + Bb)?o, 2]
2,2 n n
ot i 2\ (.
= EXp (—2—' 1 a, a, leb,-zai ) (smce zi:aib,-crf = 0)

= nexp ——a; o exp b
i=1 2

n

n
— E toa; X; E 1Bb; X;
1_[ [4 U [4

1

n n
= Eexp (ta > a Xi) E exp (tﬂ > b X,-) = Ee*l1Eeftla,
1 1
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Thus we have shown that

M(at, Bt) = M(at, )M (O, Bt) forall a, B, .
It follows that Ly and L, are independent.

Corollary. If X1, X; are independent A/ (11, o?) and N'(u2, 02) RVs, then X 1—
X2 and X1 + X are independent. (This gives Theorem 24.)

Darmois [19] and Skitovitch [104] provided the converse of Theorem 26, which
we state without proof.

Theorem 27. If Xj, X5,..., X, are independent RVs, ai, az, ... ,a,, by, by,
... , b, are real numbers none of which equals zero, and if the linear forms

n n
L =ZaiXi and L2=ZbiX,'
i =.1 i=1
are independent, all the RVs are normally distributed.

Corollary. If X and Y are independent RVs such that X + ¥ and X — Y are
independent, X, Y, X 4+ Y, and X — Y are all normal.

Yet another result of this type is the following theorem.

Theorem 28. Let X, X5, ..., X, be iid RVs. Then the common distribution is
normal if and only if

n n
Sn=) X and Y, = Z(X,- —n1s,)?
k=1 i=1

are independent.

In Chapter 7 we prove the necessity part of this result, which is basic to the theory
of ¢-tests in statistics (Chapter 10; see also Example 4.4.6). The sufficiency part was
proved by Lukacs [65], and we will not prove it here.

Theorem 29. X ~ N0, 1) = X2 ~ x%(1).

See Example 2.5.7 for the proof.

Corollary 1. If X ~ N(u, 02), the RV Z2 = (X — u)?/o?is x2(1).

Corollary 2. If X;, X, ... , X, are independent RVs and X ~ N (ux, akz), k=
1,2,...,n,then Y p_ (Xi — i)t /ol is x2(n).
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Theorem 30. Let X and Y be iid A'(0, 02) RVs. Then X/Y is C(1, 0).

For the proof, see Example 2.5.7.

We remark that the converse of this result does not hold; that is, if Z = X/Y is
the quotient of two iid RVs and Z has a C(1, 0) distribution, it does not follow that
X and Y are normal, for take X and Y to be iid with PDF

f(x)=£ 1

—1~+—:{, —00 < X < OQ.
b4 X

We leave the reader to verify that Z = X/Y is C(1, 0).

5.3.6 Some Other Continuous Distributions

Several other distributions that are related to distributions studied earlier also arise
in practice. We record briefly some of these and their important characteristics. We
will use these distributions infrequently. We say that X has a lognormal distribution
if Y = In X has a normal distribution. The PDF of X is then

1 (log x — p)?
ex - N X = 0»
xa«2n P [ 202

and f(x) =0forx < 0, where —00 < 1 < 00,0 > O.Infact forx > 0

(65) fx) =

P(X <x)=P(ln X <ln x)

=P(Y§lnx)=P(
g

=¢(lnx—u)
o

where @ is the DF of a A'(0, 1) RV which easily leads to (65). It is easily seen that
forn > 0,

n2a?
EX" =exp{nu+

Y—u<lnx—u
p—

2
(66) 2
EX = exp (,LL + -—2—) . var(X) = expQu + 20%) — expQu + a?).
The MGF of X does not exist.

We say that the RV X has a Pareto distribution with parameters 8 > O and a > 0
if its PDF is given by

ed
(67) f@) = e x>0
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and zero otherwise. Here 6 is scale parameter and « is a shape parameter. It is easy
to check that

od
F)=PX<x)=1———— x>0
@ +x)~
(68) P «?
EX = ——, 1, and X)=— 2
o1 ¥ L and varlX) = T

for @ > 2. The MGF of X does not exist since all moments of X do not.
Suppose that X has a Pareto distribution with parameters 6 and . Writing ¥ =
In (X/#), we see that Y has PDF

ae¥

(69) friy) = W;

—00 <y < 00,

and DF
Fy()) =1-(Q1+¢€)*  forally.

The PDF in (69) is known as a logistic distribution. We introduce location and scale
parameters p and o by writing Z = p + oY, taking o = 1, and then the PDF of Z
is casily seen to be

_ 1 explz - wy/al
(70) fz@) =7 {1 +expl(z — u)/o1P?

for all real z. This is the PDF of a logistic RV with location and scale parameters y
and o . We leave the reader to check that

_ _ -1
Fz(z) =exp (i_ﬂ) [1 + exp (Z IL)]
(e} o
2.2
an EZ=p, varZ)=_ 3"
Mz(t) = exp(ut)T'(1 —at)T'(J + ot), t < %.

Pareto distribution is also related to an exponential distribution. Let X have Pareto
PDF of the form

ac®
(72) fX(S)=xT+‘1', x>0

and zero otherwise. A simple transformation leads to PDF (72) from (67). Then it
is easily seen that ¥ = In (X /o) has an exponential distribution with mean 1/c.
Thus some properties of exponential distribution that are preserved under monotone
transformations can be derived for Pareto PDF (72) by using the logarithmic trans-
formation.



SOME CONTINUOUS DISTRIBUTIONS 233

Some other distributions are rejated to the gamma distribution. Suppose that X ~
G(1,B).LetY = X'/* o > 0. Then ¥ has PDF

(73) fry = %y“*‘ exp (f), y>0

and zero otherwise. The RV Y is said to have a Weibull distribution. We leave the
reader to show that

Fy(y)=l—exp<—; ), y>0

(74) Ey" = peT (1+ g) EY = pUAT (1 + 1),

o
()10 1)]
o o

The MGF of Y exists only for ¢ > 1 but for « > 1 it does not have a form useful in
applications. The special case & = 2, and B = 62 is known as a Rayleigh distribution.

Suppose that X has a Weibull distribution with PDF (73). Let Y = In X. Then ¥
has DF

Setting # = (1/) In B and 0 = 1/, we get

(75) Fy(») =1—exp [~exp (1—;—3)]
with PDF
1 — @ — 6
(76) fr(y) = —exp [—y— —exp (1—)]
(o2 [e2 [e2

for —00 < y < oo and ¢ > 0. An RV with PDF (76) is called an extreme value
distribution with location and scale parameters 6 and o . It can be shown that

n2a?

EY =6 — yo, = ——,
an yo var(Y) 5

My(t) = €T (1 +ot)
where y =~ 0.577216 is the Euler constant.

The final distribution we consider is also related to a G(1, ) RV. Let f; be the
PDF of G(1, B) and f;, the PDF

1
f2x) = Zexp (%) ., x<0, =0otherwise.
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Clearly, f; is also an exponential PDF defined on (—o0, 0). Consider the mixture
PDF

(78) f@) =3AE+ o&x)],  —oco<x <oo.
Clearly,

79 =1 —'—"—') —oo <

(79 fx—zexP( ) X <00

and the PDF f defined in (79) is called a Laplace or double exponential PDF. 1t is
convenient to introduce a location parameter y and consider instead the PDF

(80) f(x)=%exp(-—lx;m), —00 < X < 00,

where —00 < u < 00, B > 0. Itis easy to see that for RV X with PDF (80), we have
@l)  EX=p, var(X)=28% and M(@)=e"[1— (8",

for |t} < 1/B.
For completeness let us define a mixture PDF (PMF). Let g(x|0) be a PDF and
let 1(0) be a mixing PDF. Then the PDF

(82) fx)= /g(xle)h(t?) de

is called a mixture density function. If h is a PMF with support set {61, 62, ... , 6},
then (82) reduces to a finite mixture density function

k
(83) &)= g&xI6)h6).

i=1

The quantities 7(6;) are called mixing proportions. The PDF (78) is an example with
k=2,h(61) =h(6r) = % g(x161) = f1(x), and g(x]62) = f2(x).

PROBLEMS 5.3

1. Prove Theorem 1.

2. Let X be an RV with PMF p; = P{X = k} given below. If F is the correspond-
ing DF, find the distribution of F(X), in the following cases:

n

(@) pr = (k
®) pr=e kKN, k=0,1,2,...;1>0.

)ﬁa—pwﬂkzaLz“”m0<p<L
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3.

9.

10.

Let ¥y ~ U[0, 1], Y2 ~ U[O, 11}, ..., ¥y ~ U0, Y,_1]. Show that
YINle YZNX]XZ, ey Yn’\’XIXZ...Xn,

where Xy, X2,... , Xpareiild U[0, 11RVs. If U is thenumberof Y1, Y2, ... , ¥y
in[t, 1], where 0 < ¢ < 1, show that U has a Poisson distribution with parameter
—logz.

. Let Xy, X3,..., X, beiid U[0, 1] RVs. Prove by induction or otherwise that

Sn = Y _p—1 X has the PDF
fax) = [ — DN Z( 1)"( )[s(x oI te -k,

wheree(x) =1ifx >0,=0if x <O.

. (@) Let Xbean RV withPMF p; = P(X = xj), j=0,1,2,...,and]et F be

the DF of X. Show that
EF(X)=3 (1 + Zopj)
]=

and
var F(X) =3 pjdie1 — 5 (1 - pf)
=0

where gj 11 = Y721 Pi-
(®) Let p; > 0for j=0,1,...,Nand ¥ , p; = 1. Show that
J j=0FJ

EF(X) > N+2
“2AN+1D)

with equality if and only if p; = 1/(N 4 1) for all j. (Rohatgi [89])
Prove (a) Theorem 6 and its corollary, and (b) Theorem 10.

. Let X be a nonnegative RV of the continuous type, and let Y ~ U(0, X). Also,

let Z = X — Y. Then the RVs Y and ‘Z are independent if and only if X is
G(2,1/A) for some A > 0. (Lamperti [57])

Let X and Y be independent RVs with common PDF f(x) = B~ %ax*" 1 if 0 <
x < B, and = 0 otherwise; ¢ > 1. Let U = min(X, Y) and V = max(X, Y).
Find the joint PDF of U and V and the PDF of U + V. Show that U/V and V
are independent.

Prove Theorem 14.

Prove Theorem 8.
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11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
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Prove Theorems 19 and 20.

Let X1, X3, ..., X, be independent RVs with X; ~ C(ui, A4),i =1,2,... ,n.
Show that the RV X = 1/Y 7 ; X s also a Cauchy RV with parameters
/(2 + u?) and A/ (A2 + p?), where

O Y
A= —— - and p= ——
7.2 2.2
= A i AT

Let X1, X2, ... , X, beiid C(1,0) RVs and a; # 0, b;,i = 1,2, ... ,n, be any
real numbers. Find the distribution of > ;_, 1/(a; Xi + b;).

Suppose that the load of an airplane wing is a random variable X with A/(1000,
14400) distribution. The maximum load that the wing can withstandisan RV Y,
which is A'(1260, 2500). If X and Y are independent, find the probability that
the load encountered by the wing is less than its critical load.

Let X ~ N(0,1). Find the PDF of Z = 1/X2. If X and ¥ are iid A'(0, 1),
deduce that U = XY/v/X2+ Y2 is N'(0, }).

In Problem 15 let X and Y be independent normal RVs with zero means, Show
that U = XY/+/X2 + ¥2 is normal. If, in addition, var(X) = var(Y), show that
V= (X2-Y%)/J/X 2 + Y2 is also normal. Moreover, U and V are independent.
(Shepp [102])

Let X1, X2, X3, X4 be independent A'(0, 1). Show that ¥ = X1 X5 + X3X4 has
the PDF f(y) = 3™V, —00 < y < o0.

Let X ~ N'(15, 16). Find (a) P{X < 12}, (b) P{10 < X < 17}, (c) P{10 <
X <191 X <17}, and (d) P{]X — 15] = 0.5}.

Let X ~ N(—1,9). Find x such that P{X > x} = 0.38. Also find x such that
P{IX+ 1| <x}=04.

Let X be an RV such that log(X — a) is N'(u, o2). Show that X has PDF

1 {_ log(x —a) — pJ?

— if )
fx)= a(x—a)ﬁ;exp 202 ] fr=a
0

ifx <a.

If m1, m; are the first two moments of this distribution and a3 = p3/ y,g/ 2 is the
coefficient of skewness, show that a, i, o are given by

2
Jm2—m
a=m ——————-—1—, 02=10g(1 + 1),
n

and
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21.

22.

23.

25.

27.

1 = log(m; —a) — 302,

where 7 is the real root of the equation 1> + 35 — a3 = 0.

Let X ~ G(a, Byand letY ~ U(0, X).

(a) Find the PDF of Y.

(b) Find the conditional PDF of X given Y = y.

(¢) Find P(X +Y <2).

Let X and Y be iid A'(0, 1) RVs. Find the PDF of X/|Y|. Also, find the PDF of
1X1/1Y .

It is known that X ~ B(c, 8), and P(X < 0.2) = 022. If ¢ + 8 = 26, find &
and B. (Hint: Use Table ST1.)

. Let X1, X2, ..., Xn be iid N (u, 02) RVs. Find the distribution of

Y, = ZZ:] kXe — 1 ZZ:I k
n= n 2 1/2 :
(X1 ¥

Let Fi, Fa, ..., F, be n DFs. Show that min[ F; (x1), Fa(x2), ..., F,(xx)]is an
n-dimensional DF with marginal DFs F, F>, ..., F,. (Kemp [48])

Let X ~ NB(l; p)and Y ~ G(1, 1/A). Show that X and Y are related by the
equation

P{X <x}=P{Y <[x]} forx>0, A=log (~1~1_p) .

where [x] is the largest integer < x. Equivalently, show that
P{Y € (n,n + 1]} = Po{X =n},

where § = 1 —e™. (Prochaska [80])

Let T be an RV with DF F and write S(t) = 1 — F(t) = P(T > t). The
function F is called the survival (or reliability) function of X (or DF F). The
function A(t) = f(¢)/S(t) is called the hazard (or failure-rate) function. For the
following PDF, find the hazard function:

(a) Rayleigh: f(¢r) = (t/a?) exp(—t2/2a2), t > 0.

(b) Lognormal: f(t) = 1/(tov/2m) exp[—(In t — w)?/20?].
(c) Pareto: f(z) = af%/t**!, t > 6, and = 0 otherwise.

(d) Weibull: f(t) = (a/B)t* Lexp(—1%/8), t > 0.

(e) Logistic: f(t) = (1/B) expl—(z — w)/BH1 +expl—(t — p)/B1} 72, —o0 <
t < 0C.
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28. Consider the PDF

A\ AMx — w)?
f(x)“—‘(m) exp[———z—ﬁix—— , x>0

and = 0 otherwise. An RV X with PDF f is said to have an inverse Gaussian
distribution with parameters y and A, both positive. Show that

3

EX =p, var(X)'—“-u;T, and
1/2
A 2epu?
M(t) = Eexp(tX) =exp{ — ]_(1__)\&_)
n

29. Let f be the PDF of a V' (i1, o'2) RV.
(a) For what value of ¢ is the function ¢f", n > 0, a PDE?
(b) Let @ be the DF of Z ~ N (0, 1). Find E[Z®(Z)] and E[Z%®(Z)].

5.4 BIVARIATE AND MULTIVARIATE NORMAL DISTRIBUTIONS

In this section we introduce the bivariate and multivariate normal distributions and
investigate some of their important properties. We note that bivariate analogs:of other
PDFs are known, but they are not always uniquely identified. For example, there are
several versions of bivariate exponential PDFs so-called because each has exponen-
tial marginals. We will not encounter any of these bivariate PDFs in this book.

Definition 1. A two-dimensional RV (X, Y) is said to have a bivariate normal
distribution if the joint PDF is of the form

e QN oo <x <00, —00<y<o00,

1
1 ) I
M fx,y) ool 2

where 01 > 0,02 > 0, |p] < 1, and Q is the positive definite quadratic form

1 x—ur\? x — — — u2\?
@ 00 =1—— [( m) gyt Ty ke +(y 2) ]
- o1 o1 02 az

Figure 1 gives graphs of bivariate normal PDF for selected values of p.
We first show that (1) indeed defines a joint PDF. In fact, we prove the following
result.

Theorem 1. The function defined by (1) and (2) with o1 > 0,072 > 0, [p| < 1
is a joint PDF., The marginal PDFs of X and Y are, respectively, N (i, 012) and
N (uz, 0’22), and p is the correlation coefficient between X and Y.
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Proof Let fi(x) = f f(x, y)dy. Note that

. _ 2 _ 2
(l—pZ)Q(x,y)=(y K2 _ % ‘“) +(1—p2)(" ‘“)

02 o1 o1

_ [y — 12 + plo2/01)(x — p1)] }2 +d -0 (x - I‘«l)z‘

o a1

It follows that

Fi) = - exp | 2’ /°° exp(—(y = f)*/o; (1 = 1)
: o2 2012 —00 o2/1— p2 21 ’
3)

where we have written

) Be = 2+ P2 (x — ).
[25]

The integrand is the PDF of an N (B, 03(1 — p%)) RV, so that

_ 2
Hx) = Ul\/_.exp[ l(xalm):l' —00 < X < 00.

/_:[_[:f(x,y)dy] dx:[_:fx(X)dx=1,

and f(x, y) is a joint PDF of two RVs of the continuous type. It also follows that f]
is the marginal PDF of X, so that X is A'(uy, 012). In a similar manner we can show

that ¥ is N'(i2, 03).
Furthermore, we have

fey —(y — Bx)?
Si®) 02,/1— 2o 202 — 0%

where B, is given by (4). It is clear, then, that the conditional PDF fyx(y | x) given
by (5) is also normal, with parameters S, and o3 2(1 — p?). We have

Thus

6))

(6) E{Y | x} =B, —Mz+p~(x~m)
and

N var{Y|x} = o2(1 — p?).
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In order to show that p is the correlation coefficient between X and Y, it suffices
to show that cov(X, Y) = poy02. We have from (6)

E(XY) = E{E{XY|X}}
02
=E IX [uz +po—(X —ul)]]
ap

002
= pip2 + —of.
a1

It follows that
cov(X, ¥) = E(XY) — pp2 = po10y.

Remark 1. If p? = 1, then (1) becomes meaningless. But in that case we know
(Theorem 4.5.1) that there exist constants @ and b such that P{Y = aX + b} = 1.
We thus have a univariate distribution, which is called the bivariate degenerate (or
singular) normal distribution. The bivariate degenerate normal distribution does not
have a PDF but corresponds to an RV (X, ¥) whose marginal distributions are normal
or degenerate and are such that (X, ¥) falls on a fixed line with probability 1. It is for
this reason that degenerate distributions are considered as normal distributions with
variance 0.

Next we compute the MGF M(#, ;) of a bivariate normal RV (X, ). If f(x, y)
is the PDF given in (1) and f; is the marginal PDF of X, we have

M, 1) = /w /°° "+ f(x, y) dx dy,
—00 v =00
= f [ f frix(y | x)e dy] " fi(x)dx
—o00 LJ—0c0
% Hx 1 2.2 2 [ep)
=f e filx)jexp| mo3t; (1 — p*) + 2 {2 + p—(x — u1) dx
o0 2 o]

1 o o
= exp [5022&2(1 —pH) + g — ptzgj-m] f €% ePo2/ NN £ (x) dx.

-0

Now

” a2 1, ) 2

f e(tl+,0t202/¢71)xf1 (x) dx = exp | i1 (tl + p_t2) + ~o! o+ ptn 2 '

- o1 2 o1

Therefore,
2,2 2.2
oit] + 0yt +2poioatity

®) My, ) = exp (ultt + gty + L2 22 )
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The following result is an immediate consequence of (8).

Theorem 2. If (X, ¥) has a bivariate normal distribution, X and Y are indepen-
dent if and only if p = 0.

Remark 2. It is quite possible for an RV (X, Y) to have a bivariate density such
that the marginal densities of X and Y are normal and the correlation coefficient is
0, yet X and Y are not independent. Indeed, if the marginal densities of X and ¥ are
normal, it does not follow that the joint density of (X, Y) is a bivariate normal. Let

1 1 —1
(9) f(-xv }’) _ 5 [2”(1 _ p2)1/2 €xXp [2(1 - p2) (x2 - 2Px}’ + )’2)]

1 -1
T ama- P [2(1 =

()c2 +2pxy + yz)]} .

Here f(x, y) is a joint PDF such that both marginal densities are normal, f(x, y)
is not bivariate normal, and X and Y have zero correlation. But X and Y are not
independent. We have

1 2

fi(x) = —=e™* 2, —-00 < X < 00,

2r

1

hy) = ﬁ_e“yz/z, —00 < y < 00,
T

and
EXY =0.

Example 1 (Rosenberg [91]). Let f and g be PDFs with corresponding DFs F
and G. Also, let

(10 h(x,y) = f)gWI +a(2F (x) — DG — D],

where |a| < 1 is a constant. It was shown in Example 4.3.1 that & is a bivariate
density function with given marginal densities f and g.
In particular, take f and g to be the PDF of N(0, 1), that is,

2
e * 12, —00 < X < 00,

1
an fx) =g =
V2
and let (X, Y) have the joint PDF h(x, y). We will show that X + Y is not normal
except in the trivial case @ = 0, when X and Y are independent.

Let Z =X 4+ Y. Then

EZ =0, var(Z) = var(X) + var(Y) + 2cov(X, ¥).
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It is easy to show (Problem 2) that cov(X, Y) = a/m, so that var(Z) = 2[1 4 («/7)].
If Z is normal, its MGF must be

(12) M, (1) = e e/,
Next we compute the MGF of Z directly from the joint PDF (10). We have
M] (t) — E{etX+tY}

— e ta f f XHY2F (x) — I12F(y) — 11700 £ (y) dx dy

oo 2
=e'2+a{/ e”‘[2F(x)—1]f(x)dx} .

Now
/ e*2F(x) — 1] f(x)dx = —2f e[l = Fx)1f (x) dx + /2

2 © (> 1 1,2, 2
:et/ __2[ f ——exp[—z(x +u —2tx)] dudx
—oJx 2W

oo EXP [—%[x2 +(v+x)? - 2tx]}

2 2 o0
=e/? - / dvdx
/-oo 0 T
oo 2 _ 2 [o] — — 2
_ 2 _/ exp[—v/2+ (v —1) /4]/ exp{—[x + (v —1)/2] }dx dv
0 VT —o0 N3
1 2
expi—s5[(v+1¢)/2
___8,2/2_28,2/2/00 p{-lw+ 0?2} .
o 27
_epn 272 [ ! ]
=e * -2 7°P{Z) > —1t,
V2
(13)
where Zy is an (0, 1) RV.
It follows that
(14) M) =e” + ('2/2 2 ‘Z/ZP{Z ! })2
= e xjle — e > —
1 1 7

e [1+a(1 ~2r{zi> %])z]
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If Z were normally distributed, we must have M (1) = M;(¢) for all ¢ and all
la| < 1, that is,

2
t

15 e e/ — ot 1‘+a(1——2P[Z >—-—}) ]
(15) 1 7

For a = 0, the equality clearly holds. The expression within the brackets on the right
side of (15) is bounded by 1 + «, whereas the expression ea/me? is unbounded, so
the equality cannot hold for all ¢ and «.

Next we investigate the multivariate normal distribution of dimension n, n > 2.
Let M be an n x n real, symmetric, and positive definite matrix. Let x denote the
n x 1 column vector of real numbers (x, x2, ... , x,)’, and let g denote the column
vector (fL1, 42, ... , in) , where pu; (i = 1,2, ..., n) are real constants.

Theorem 3. The nonnegative function

— YM(x —
f(x)—_—cexp[—(x M)z(x “)], —0 <X <00, I=1,2,...,n,

(16)

defines the joint PDF of some random vector X = (X, X2, ... , X,;), provided that
the constant ¢ is chosen appropriately. The MGF of X exists and is given by

tM- 1t
an M(t;,tz,...,t,,):exp(t’u-f- > ),
where t = (t1, 2, ... ,#,) and 11, f2, .. . , 1, are arbitrary real numbers.
Proof. Let
[20] [ o] . !M _ n
(18) I=c/ / exp[t’x——(x Py M M)]l_—-[dx,-.
—o0 00 2 i=l1
Changing the variables of integration to y;, y2, ..., y» by writing x; — w; = y;,
i=12,...,nandy = (y1,¥2,... , ¥n), we have x — pu = y and
o0 [o.8] /M n
(19) [ = cexp(t’u)/ / exp (t’y - u) n dy;.
—00 =00 2 i=1
Since M is positive definite, it follows that ail the n characteristic roots of M, say
mi, my, ... ,my,, are positive. Moreover, since M is symmetric, there existsann x n

orthogonal matrix L such that L'ML is a diagonal matrix with diagonal elements
mi, my, ...,y Let us change the variables to zy, 22, ... , z, by writing y = Lz,
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where Z = (z1, 22, . . . , zZn), and note that the Jacobian of this orthogonal transfor-
mation is |L|. Since 'L = I, where I, is an n X n unit matrix, |L| = 1 and we
have

o roo ‘LMLz {*
(20) I =cexp(t'p) exp [ t'Lz — 2L MLz I l dz;.
- 2
- —o0 i=1

If we write tL = ' = (u1,u2,...,u,), then tLz = Y7, u;z;. Also, L'ML =
diag(my, ma, ... ,my), so that ZL'MLz = )Y}, miz,.z. The integral in (20) can

therefore be written as

= [ myz2 | [2m u?
l_[ exp | uizi — —— dz; | = —expl-—]i-
i=1 —00 i=1 m; 2m,-

If follows that
: Qm)n? 2\ u?
21 I =c exp(tu)~————-————¢ 1.
@b PO G -y 72 P =1 2mi
Setting 1y = tp = - - - = t, = 0, we see from (18) and (21) that
00 0o 2 n/2
f f f(xl,xz,...,x,,)dxldxz---dx,,z————c—(—nl——-——.
o J-oo (mimy - - - my)1/2
By choosing
22) _ (mmy - mp)'/?

Qn )n /2

we see that f is a joint PDF of some random vector X, as asserted.
Finally, since

(L'ML)™! = diag(m]', m3', ... m "),

we have

n uz
Z 4 —d @M 'Lyu=tM"'t.
iz1 M

Also,
M~ = [LMTIL] = (mamy - -mg) ™
Tt follows from (21) and (22) that the MGF of X is given by (17), and we may write

1

23) c= @ IS

This completes the proof of Theorem 3.
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Letus write M~ ! = ((0i )i, j=12.....n- Then

2
t
M@©O,0,...,0,%,0,... ,0)=exp<tiui +aii—é—)

isthe MGF of X;,i = 1,2, ... ,n. Thuseach X; is N'(i,0i),i = 1,2, ... ,n.For
i # j, we have for the MGF of X; and X ;

M(,0,...,0,%,0,...,0,¢,0,...,0)

O'iiti2+20'ijtitj +I}0’jj
=exp | Lipi +tpj+ 3

This is the MGF of a bivariate normal distribution with means u;, 1 ;, variances o;;,
oj;, and covariance o;;. Thus we see that

(24) o=, pa, e i)

is the mean vector of X' = (X1, ..., X,),

(25) oii =of =var(X;), i=12,...,n,
and

(26) Oij = pij0i0j, i#j, Lj=12,...,n

The matrix M~ is called the dispersion (variance—covariance) matrix of the multi-
variate normal distribution.

If 0;; = O fori # j, the matrix M~ is a diagonal matrix, and it follows that
the RVs X, X3, ..., X, are independent. Thus we have the following analog of
Theorem 2.

Theorem 4. The components X, X3, ..., X, of a jointly normally distributed
RV X are independent if and only if the covariances o;; = Oforalli # j (i,j =
1,2,...,n).

The following result is stated without proof. The proof is similar to the two-variate
case except that now we consider the quadratic form in n variables: E{} "_, #;(X; —

1)) > 0.

Theorem 5. The probability that the RVs X1, X, ..., X, with finite variances
satisfy at least one linear relationship is I if and only if |[M] = 0.

Accordingly, if M| = 0, all the probability mass is concentrated on a hyperplane
of dimension < n.
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Theorem 6. Let (X, X2,...,X,) be an n-dimensional RV with a normal dis-
tribution. Let Y1, Yo, ..., ¥k, k < n, be linear functions of X; (j = 1,2,...,n).
Then (Y1, Y2, ..., Yi) also has a multivariate normal distribution.

Proof. Without loss of generality let us assume that EX; = 0,i = 1,2,... ,n.
Let

n
@7 Yo=Y ApX;, p=12.. .,k k=n
j=1
Then EYp, =0,p=1,2,... ,k,and
n
(28) cov(Yp, Yp) = Y ApiAgjoyj,
ij=1

where E(X; X} = 0ij,i, j=1,2,... ,n.
The MGF of (Y1, Y3, ..., Y}) is given by

n n
M*t1,t,... ) =E l:exp (tlelej +--~+thAijj>] .
= j=

Writing u; = Z;:l tpApj, j=1,2,...,n, wehave

29) M*(t,t,... . ) =E [exp (Z u;X;):I
i=1
1 n
= exp (5 Z aiju,-uj) by (17)

i,j=1

1 n k
= exp (5 Z oij Z tlthziAmj)
ij=1  lm=l

ij

1 &
= exp (5 titm AliAijij)
1,

n
m==1 i,j=1
L
= exp 3 Z ytmeov(Y, Y |-
I,m=1

When (17) and (29) are compared, the result follows.

Corollary 1. Every marginal distribution of an n-dimensional normal distribu-
tion is univariate normal. Moreover, any linear function of X1, X», ..., X,, is uni-
variate normal.
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Corollary 2. If X1, X2,..., X, are iid N (y, 0?), and A is an n x n orthog-

onal transformation matrix, the components ¥1,Y;,...,Y, of Y = AX', where
X = (Xy,..., Xn), are independent RVs, each normally distributed with the same
variance o'2.

We have from (27) and (28)

n
COV(Yp, ¥g) = D ApiAgicii + ) ApiAgjcij
i=1 ikj

- 2

_[o ifp#a
fog ifp=gq,

since Y 7 ApiAgi =0and 3}, Aij = 1. It follows that

l n
M*(t, 1y, ... ,ty) = €xp (5 Zt,zoz) .
I=1

and Corollary 2 follows.

Theorem 7. Let X = (X1, X2, ..., X»). Then X has an n-dimensional normal
distribution if and only if every linear function of X,

Xt=nX1+0X2+ - +t0Xn
has a univariate normal distribution.
Proof. Suppose that X't is normal for any t. Then the MGF of X't is given by
(30) M(s) = exp (bs + Jos?).

Here b

i

E{X't} = Y 1tiu = tp, where ' = (u1,..., k), and 0% =

var(X't) = var(}_ #; X;) = t M~ !t, where M~ is the dispersion matrix of X. Thus
G M(s) = exp (t’us + %t’M—ltsz) .

Lets = 1; then

(32) M(1) = exp (t’u + %t’M"t) ,

and since the MGF is unique, it follows that X has a multivariate normal distribution.
The converse follows from Corollary 1 to Theorem 6.

Many characterization results for the multivariate normal distribution are now
available. We refer the reader to Lukacs and Laha [67, p. 791.
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PROBLEMS 5.4

1. Let (X, Y) have joint PDF

1 8(x* 31 xy y* 4 7
f(x,y)—-gmemlt—? (—1—6-——§§x+——+-—-——y+-—— :
for —o0o < x < 00, —00 < y < 00.

(a) Find the means and variances of X and Y. Also find p.

(b) Find the conditional PDF of Y given X = x and E{Y|x}, var{Y|x}.
(¢c) Find P4 <Y <6{X =4]}.

2. In Example 1, show that cov(X,Y) = a/n.

3. Let (X, Y) be a bivariate normal RV with parameters py, f2, 012, 022, and p.
What is the distribution of X + Y? Compare your result with that of Example 1.

4. Let (X, Y) be a bivariate normal RV with parameters 1y, (2, 012, 022, and p, and
letU =aX +b,a#0,and V = cY + d, ¢ # 0. Find the joint distribution of
w, V).

5. Let (X, Y) be a bivariate normal RV with parameters uy =5, uy = 8§, 012 = 16,
0}=9,andp=06.Find P{5<Y < 11| X =2}.

6. Let X and Y be jointly normal with means 0. Also, let
W = Xcos@ + Y siné, Z = Xcos@® — Ysin6.

Find @ such that W and Z are independent.

7. Let (X, Y) be a2 normal RV with parameters p3, 12, 012, 022, and p. Find a nec-
essary and sufficient condition for X + Y and X — Y to be independent.

8. For a bivariate normal RV with parameters p11, u2, g1, 02, and p show that

1 1 ~1 p
P(X 4 = - — tan —_—
X>p1, ¥V >p) 1o T2

[Hint: The required probability is P((X —upjor > 0, (Y —up)/on > 0).
Change to polar coordinates and integrate. ]

9. Show that every variance—covariance matrix is symmetric positive semidefinite
and conversely. If the variance—covariance matrix is not positive definite, then
with probability 1 the random (column) vector X lies in some hyperplane ¢'X =
a withe # 0.

10. Let (X, Y) be abivariate normal RV with EX = EY = 0, var(X) = var(Y) = 1,
and cov(X, Y) = p. Show that the RV Z = Y/ X has a Cauchy distribution.
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11. (a) Show that

1 lez n L
fx) = IPISTE exp (——2——) [1 + I:[ (x,.e .2/2)]

is a joint PDF on R,,.
(b) Let (X1, X2,...,X,) have PDF f given in (a). Show that the RVs in any
proper subset of {X1, X2,..., X} containing two or more elements are

independent standard normal RVs.

5.5 EXPONENTIAL FAMILY OF DISTRIBUTIONS

Most of the distributions that we have so far encountered belong to a general family
of distributions that we now study. Let ® be an interval on the real line, and let
{fo : 8 € O} be a family of PDFs (PMFs). Here and in what follows we write
X = (x1, x2, ... , Xp) unless otherwise specified.

Definition 1. If there exist real-valued functions Q(6) and D(€) on © and Borel-
measurable functions T (xy, x2, ... , x,) and S(x1, x2, ... , x,) on R, such that

(n foxi, x2,..., xp) = explQEO)T (X) + D(B) + Sx)),
we say that the family { fo, @ € ©} is a one-parameter exponential family.

Let X1, X3, ..., X, be iid with PMF (PDF) fy. Then the joint distribution of
X = (X1, X3,...,X,) is given by

g0 =[] foxi) = [Jexpl@@®)T x) + D®B) + Sx:))
i==1 i=1
= exp [Q(G) Y T@x)+mD@O) + S(xi)] :

i=1 i=l1

where X = (X1, X2,...,Xm), Xj = (Xj1,%Xj2,...,Xjn)s j = 1,2,...,m, and it
follows that {gy : @ € ®] is again a one-parameter exponential family.

Example 1. Let X ~ N(uyp, o2), where o is known and o2 unknown. Then

1 exp _(x = po)?
o271 202

_ 2
= exp [— log(o~/2—71) — w]

for(x) =

202
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is a one-parameter exponential family with

Q0% = —L, T(x) = (x — uo)?, §(x) =0, and
202
D(az) = — log(o«/z;).

IfX ~MN(u, 002), where og is known but g is unknown, then

_ 1 -
ful) = mexp[ o7 ]

2 2
x ux ou
ex St =73
0’0\/ P ( ag 2002)

is a one-parameter exponential family with

Qu) =

Oult

, D(n) = - T(x) =x,
2 0

and

Sx) = — f—%—ll no?)
A Py R R

0

Example 2. Let X ~ P(L), A > 0 unknown. Then

x

A
P{X =x}= e_)‘;'— = exp[—A + xlog A — log(x1)],

and we see that the family of Poisson PMFs with parameter A is a one-parameter
exponential family.

Some other important examples of one-parameter exponential families are bino-
mial, G(a, ) (provided that one of «, B is fixed), B(c, B) (provided that one of «, 8
is fixed), negative binomial, and geometric. The Cauchy family of densities and the
uniform distribution on [0, 6] do not belong to this class.

Theorem 1. Let {fp: 6 € O} be a one-parameter exponential family of PDFs
(PMFs) given in (1). Then the family of distributions of 7' (X) is also a one-parameter
exponential family of PDFs (PMFs), given by

go(t) = exp[t Q(6) + D(8) + S* (1)}

for suitable S*(¢).
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The proof of Theorem 1 is a simple application of the transformation of vari-
ables technique studied in Section 4.4 and is left as an exercise, at least for the cases
considered in Section 4.4. For the general case we refer to Lehmann [63, p. 58].

Let us now consider the k-parameter exponential family, k > 2. Let @ C Ry be a
k-dimensional interval.

Definition 2. If there exist real-valued functions Qy, @3, ..., O, D defined on
©, and Borel-measurable functions 77, T, ... , T, S on R, such that

k
@) fox) = exp [Z 0:(O)T; (%) + D(6) + S(x)] :
i=1
we say that the family { fg, @ € ©) is a k-parameter exponential family.

Once again, if X = (Xy, X2, ..., X,) and X; are iid with common distribution
(2), the joint distributions of X form a k-parameter exponential family. An analog of
Theorem 1 also holds for the k-parameter exponential family.

Example 3. The most important example of a k-parameter exponential family is
N (i, 02) when both u and o2 are unknown. We have

0=(u,0%, O={(ko):—00<p<o00ac?>0
and
1 x2 = 2ux + p?

2 2
_ x u 1l u 2
_exp[—-zﬁ + ;Ex - '2‘ [? +log(2mo )]} .
It follows that fy is a two-parameter exponential family with

1
01(0) = ~

5 Q2(9)=-§%, Tiw) =12,  To(x)=x,

1| u? 2
D) = —= | — +log2no*)|, and Sx)=0.
2| o2

Other examples are the G(«, ) and B(a, B) distributions when both «, 8 are
unknown, and the multinomial distribution. U[e, B] does not belong to this family,
nor does C(x, B).
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Some general properties of exponential families will be studied in Chapter 8, and
the importance of these families will then become evident.

Remark 1. The form in (2) is not unique, as easily seen by substituting & Q; for
Q; and (1/a)T; for T;. This, however, is not going to be a problem in statistical
considerations.

Remark 2. 'The integer k in Definition 2 is also not unique since the family
{1,01,...,Qx}or {1,71,..., T;} may be linearly dependent. In general, k need
not be the dimension of ®.

Remark 3. The support {x : fe(x) > 0} does not depend on .

Remark 4. In (2), one can change parameters to n; = Q;(0),i = 1,2,... ,k,
so that

k
3 Jn(X) = exp [}: mTi(x) + D) + S (X)]

i=1

where the parameters § = (91, 72, . . . , ) are called rarural parameters. Again, 7;
may be linearly dependent so that one of 7; may be eliminated.

PROBLEMS 5.5

1. Show that the following families of distributions are one-parameter exponential
families:

(a) X ~ b(n, p).

(b) X ~ G(a, B), (i) if o is known, and (ii) if B is known.
(¢) X ~ B(a, B), (i) if o is known, and (ii) if 8 is known.
(d) X ~ NB(r; p), where r is known, p unknown.

2. Let X ~ C(1, ). Show that the family of distributions of X is not a one-parameter
exponential family.

3. Let X ~ UJ[0, 6], 6 € [0, 0c). Show that the family of distributions of X is not an
exponential family.

4. Is the family of PDFs
Jolx) = %e"x‘el, —00 < x < 00,8 € (—00, 00),

an exponential family?
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5. Show that the following families of distributions are two-parameter exponential
families:
(a) X ~ G(«, B), both o and 8 unknown.
(b) X ~ B(e, B), both o and 8 unknown.

6. Show that the families of distributions U[w, 8] and C(«, 8) do not belong to the
exponential families.

7. Show that the multinomial distributions form an exponential family.



CHAPTERG

Limit Theorems

6.1 INTRODUCTION

In this chapter we investigate convergence properties of sequences of random vari-
ables. The three limit results proved here, namely, the two laws of large numbers and
the central limit theorem, are of considerable importance in the study of probability
and statistics. Just as in analysis, we distinguish among several types of convergence.
The various modes of convergence are introduced in Section 6.2. Sections 6.3 and
6.4 deal with the laws of large numbers, and the central limit theorem is proved in
Section 6.6.

The reader may find some parts of this chapter difficult, at least on first reading.
These have been identified with a dagger (1) and include the concept of almost sure
convergence (Section 6.2) and the strong law of large numbers (Section 6.4). Since
the central limit result is basic and will be used repeatedly in the rest of the book, it
is important for readers to familiarize themselves with this result and its application
and to understand its significance. Similarly, on the first reading it will suffice to
know the strong law of large numbers and to understand its significance.

6.2 MODES OF CONVERGENCE

In this section we consider several modes of convergence and investigate their inter-
relationships. We begin with the weakest mode.

Definition 1. Let {F,} be a sequence of distribution functions. If there exists a
DF F such thatas n — o0,

) F.(x) > F(x)

at every point x at which F is continuous, we say that F, converges in law (or,
weakly), to F, and we write F, A F.

If {X,} is a sequence of RVs and {F,} is the corresponding sequence of DFs, we
say that X,, converges in distribution (or law}) to X if there exists an RV X with DF

F such that F,, it F. We write X, 5 X.

256
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It must be remembered that it is quite possible for a given sequence of DFs to
converge to a function that is not a DF.

Example 1. Consider the sequence of DFs

0, x <n,
Fr(x) = 1 r>n

Here F,(x) is the DF of the RV X,, degenerate at x = n. We see that F,, (x) converges
to a function F that is identically equal to 0, and hence is not a DE.

Example 2. Let X, X5, ..., X, be iid RVs with common density function,
1 0 9, (©O<é@ )
-, <x <8, < 8 < 00),
f&x)=16
0, otherwise.

Let X(n) = max(X1, X2, ..., X»). Then the density function of X(,) is

nxn—l
=14 0<x <4,
0, otherwise,
and the DF of X, is
0, x <0,
Fp(x) = 1 (x/0)", 0<x <8,
1, x>0.

We see that as n — 00,

F,(x) - F(x) = (1)’

which is a DF. Thus F,, — F.

The following example shows that convergence in distribution does not imply
convergence of moments.

Example 3. Let F, be a sequence of DFs defined by

0, x <0,

1
FFx)y=4¢1- —, 0<x<n,
n

1, n<x.
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Clearly, F, -> F, where F is the DF given by

0, x <0,

ro={ 150

Note that F,, is the DF of the RV X,, with PMF
1 1
P{Xp=0=1——, P{X, =n}=—~,
n n

and F is the DF of the RV X degenerate at 0. We have

1
EX,’; =nk (—-) = nk—l,
n

where k is a positive integer. Also, EX* = 0, so that
EX* » Ex*  foranyk > 1.

We next give an example to show that weak convergence of distribution functions
does not imply the convergence of corresponding PMFs or PDFs.

Example 4. Let {X,} be a sequence of RVs with PMF

1
1, fx =24 —,
falx) = P{Xy =x} = n
0, otherwise.
Note that none of the f,’s assigns any probability to the point x = 2. It follows that
fa(®) > f(x) a5 n— oo,

where f(x) = 0 for all x. However, the sequence of DFs {F,,} of RVs X, converges
to the function

0, x <2,
1 x>2,

F(x) = {

at all continuity points of F. Since F is the DF of the RV degenerate at x = 2,
F, = F.

The following result is easy to prove.
Theorem 1. Let X,, be a sequence of integer-valued RVs. Also, let f,(k) =

P{X,=k},k=0,1,2,... ,bethe PMFof X,,n =1,2,... ,and f(k) = P{X =
k} be the PMF of X. Then

fax) = f(x) forall x ¢ X, Lx
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In the continuous case we state the following result of Scheffé [98] without proof.
Theorem 2. Let X,,,n = 1,2, ..., and X be continuous RVs such that

falx) = f(x) for (almost) all x as n — o0.

Here, f, and f are the PDFs of X,, and X, respectively. Then X, Lx

The following result is easy to establish.

Theorem 3. Let {X,} be a sequence of RVs such that X, —[—3 X,and let ¢ be a
constant. Then

(a) Xn+c—ll>X+c,and
®) cXn 5 cX,c#0.

A slightly stronger concept of convergence is defined by convergence in proba-
bility.

Definition 2. Let {X,] be a sequence of RVs defined on some probability space
(2, S, P). We say that the sequence {X,} converges in probability to the RV X if
for every € > 0,

) P{|IX,—X|>¢€}—>0 asn — 00.

We write X, ﬁ» X.

Remark 1. We emphasize that the definition says nothing about the convergence
of the RVs X, to the RV X in the sense in which it is understood in real analysis.

Thus X,, £ X does not imply that given £ > 0, we can find an N such that | X,, —
X| < e forn > N. Definition 2 speaks only of the convergence of the sequence of
probabilities P{| X, — X| > €} to 0.

Example 5. Let {X,} be a sequence of RVs with PMF

1 1
P(X,,=1}=,—l, and P{X,,=0}=1~;.

Then

1
P{X,=1}=- if0<e <1,
n

ife > 1.

P{|Xn| > &} =

It follows that P{|X,,| > ¢} — 0 as n — o0, and we conclude that X, LS 0.
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The truth of the following statements can easily be verified.

LXx, 5xex,-x50

N oom s

1.

X B XX, B Yo PX=Y)=1for PUX—Y| > ¢} < P(|X,—X]| >

¢/2}+ P{|X, — Y| > ¢/2}, and it follows that P{|X — Y| > ¢} = O for every
c>0.

.X,,—P>X=>X,.—X,,,f>0asn,m——>oofor

P{]X,,—X,,,]>e}5P[!X,,—X|>§]+P{|XM—X|>—62—].

, bxv,brax, 27,5 x+r.
X, —P> X, k constant, = kX, —P+ kX.

X, k= x2 5

P P P
X, —a,Y, = b,a, bconstants = X, Y, — ab, for

2 - 2 2 __ B2
XY, = Xn+Y,) , (Xn —Yn) __l; (a +b) 7 (a—b) = ab.

Xo 512 %775 1for
> P{1>l+s +rl <
Ep = — —_— -
> Xz e
1
= {~1—>1+s]+P[——-<0}

1
+P{0<-—X7—_<_1—e},

n

1
Pll—-1
IE

n

and each of the three terms on the right goes to 0 as n — oo.

Xy > a,¥, 5 ba, bconstants, b £0 = X, ¥ 5 ap~l.
10.

X, £ X,and Y anRV = X, Y £ XY.Note that Y is an RV, so that given
& > 0, there exists a k > 0 such that P{|Y| > k} < 8/2. Thus

P{|X,Y — XY| > e} = P{|Xp — X||¥| > &, |¥| > k}
+ P{|Xn — X|IY| > ¢,|Y| <k}

<%+P(|X,,—X|>%).

X, 5xv5r=x,y 5 Xy, for

(X, — X)Y.—Y) 50
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The result now follows on multiplication, using result 10. It also follows that
X, 5 x=x25 x2

Theorem 4. Let X, 5 x , and g be a continuous function defined on R. Then

g(Xn) > g(X)asn — oo.

Proof. Since X is an RV, we can, given ¢ > 0, find a constant k = k() such
that

PlIX| > k} < %

Also, g is continuous on R, so that g is uniformly continuous on [k, k]. It follows
that there exists a 8 = 8(&, k) such that

lg(xn) — g(0)| < &

whenever |x| < k and |x, — x| < §. Let

A = {|X] <k}, B = {|X, — X[ < 8}, C = {lg(Xn) — g(X)| < ¢}.
Thenw € ANB = w e C, so that

ANBCC.
It follows that
P{C‘} < P{A®} + P{B‘},
that is,
Pllg(Xn) — 8(X)| = £} < P{|X, — X| 2 8} + P{iX| > k} <&
forn > N (g, 8, k), where N (g, 8, k) is chosen so that
PUXy —X|28) <= fornz N(.5,0).

Corollary 1. X, A ¢, where ¢ is a constant = g(X,) A g(c), g being a

continuous function.

We remark that a more general result than Theorem 4 is true and state it without

proof (see Rao [86, p. 124]): X,, L X, and g continuous on R = g(X,,) Y g2(X).
The following two theorems explain the relationship between weak convergence
and convergence in probability.
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Theorem 5. X, > X = X, - X.
Proof. Let F, and F, respectively, be the DFs of X, and X. We have

{o: X(@) <x'} = {0 Xp(@) < x, X () < x'}U{o: X (@) > x, X(@) <x'}
Cl{X,<x}U{X,>x,X <x').

It follows that

F(x') < Fy(x) + P{X, > x, X <x'}.

. P
Since X,, — X — 0, we have forx’ < x,

P Xp>x,X<xX}<P{X,—X|>x-x}—-0 as n— oo.
Therefore,
F(x) < lim F,(x), ' <ux.
n—oo

Similarly, by interchanging X and X,,, and x and x’, we get
lim Fn(x) < F(x"), x <x”.
n—>o

Thus, for x' < x < x”, we have

F(x') < lim F,(x) < lim F,(x) < F(x").

Since F has only a countable number of discontinuity points, we choose x to be a
point of continuity of F, and letting x” | x and x” 1 x, we have

F(x) = lim Fa(x)
at all points of continuity of F.
Theorem 6. Let k be a constant. Then
Xo B k=X, 5k
The proof is left as an exercise.

Corollary. Let k be a constant. Then

X, 5 ke X, 5k
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Remark 2. 'We emphasize that we cannot improve the result above by replac-

ing k by an RV; that is, X, 5 x , in general, does not imply X, £ X, for let
X, X1, X3, ... beidentically distributed RVs, and let the joint distribution of (X, X)
be as follows:

X,
X 0 1
111
0 N
1
1 ;7 03
1
AR

Clearly, X, Ex But

P{IX, — X|> ) = P{IX, — X| = 1)
=P{X,=0,X=11+P{Xp=1,X =0}
=1-»0.

Hence, X, 5» X, but X, —L» X.

Remark 3. Example 3 shows that X, - X does not imply that EX k> EX*
for any k > 0, k integral.

Definition 3. Let {X,} be a sequence of RVs such that E{X,|" < oo for some
r > 0. We say that X,, converges in the rth mean to an RV X if E|X|" < oo and

3) ElX,—-X|"—0 as n —> oo,
and we write X, 5x.

Example 6. Let {X,) be a sequence of RVs defined by
1 1
PiX,=0}=1- —, P{X,=1}= —, n=1,2...
n n
Then

1
E|X,,|2=—~—>0 as n — 00,
n

and we see that X, A X, where RV X is degenerate at 0.

Theorem 7. Let X, 7> X for some r > 0. Then Xn LY X.
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The proof is left as an exercise.

Example 7. Let {X,} be a sequence of RVs defined by

1 1
PiX,=0=1-—, and P{X,=n}=—, r>0 n=12,....
n n

Then E|X,|” = 1, so that X,, » 0. We show that X,, —> 0.

P{X, =n} if e<n

PAXal > &} = if e>n

} -0 asn — oo.
Theorem 8. Let {X,} be a sequence of RVs such that X, —2> X.Then EX,, —
EXand EX? > EX*asn — oo.
Proof. 'We have
|EXp— X)| < E|Xn— X| <EY2X,—X?>0 asn— oo.
To see that EX2 — EX? (see also Theorem 9), we write
EX? = E(X, — X)* 4+ EX* + 2 E{X(X, — X)}

and note that

|E(X (X, — X)}| < VEX2E(Xn ~ X)?

by the Cauchy—Schwarz inequality. The result follows on passing to the limits.
We get, in addition, that X, —2> X implies that var(X,) — var(X).

Corollary. Let {X,]), {¥,} be two sequences of RVs such that X,, LS X,
Yp > Y. Then E(XnYy) — E(XY)asm,n — oo.

The proof is left to the reader. 5
As a simple consequence of Theorem 8 and its corollary we see that X,, — X,

Y. = Y together imply that cov(Xm, ¥») —> cov(X, Y).
Theorem 9. If X, = X, then E|X,|” — EIX|".
Proof. 1Let0 <r < 1.Then

E\Xal" = E|Xn — X + XI"
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so that
E|Xn|" — EIXI < E|X. — X[".
Interchanging X, and X, we get
E|X|" — E|Xal” < E|X, — X"
It follows that
IE\X\" — E\Xp|"| < E|X, — X' >0 as n — 00.
For r > 1, we use Minkowski’s inequality and obtain
X1 < [E1Xs — XU/ + (EIXITV
and
[EIXV1Y" < [EIXy — X117 + [EI X1
It follows that
[EVT X, " — EVT X\ < EMTIX, — X" >0 as n— oo.
This completes the proof.
Theorem 10. Letr > s. Then X, LXx= X, 5 X.
Proof. From Theorem 3.4.3 it follows that fors < r,
ElX, — XI"<[E|X, —XI'T/" >0 asn— o0
since X, 5ox.

Remark 4. Clearly, the converse to Theorem 10 cannot hold, since E|X|* < oo
for s < r does not imply that E|X|" < co.

Remark 5. In view of Theorem 9, it follows that X, — X = E|X,|* —» E|X|®
fors <r.

Definition 4. Let {X,} be a sequence of RVs. We say that X, converges almost
surely (a.s.) to an RV X if and only if

C)) Plw: X,(w) = X(w)asn — oo} = 1,

and we write X, 2% XorX » — X with probability 1.

tMay be omitted on the first reading.
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The following result elucidates Definition 4.

Theorem 11. X,, —> X if and only if lims_ 00 P{SUPp5, [Xm — X| > €} = 0
foralle > 0.

Proof. Since X, a5 x , Xn— X 25 0, and it will be sufficient to show the
equivalence of

(a) X, 2% 0and
(b) limy— 0 P{sup,,>, |Xm| > €} = 0.

Let us suppose that (a) holds. Let ¢ > 0, and write

An(£)=[sup|Xml>€] and C={nli)ngoX,,=0]‘

m>n

Also write B,(¢) = C N A,(g), and note that B, +1(¢) C Bp(€), and the limit set
N, Bu(e) = 0. It follows that

o0
lim PBy(e) = P DIB,,(e)] =0.

Since PC =1, PC¢ = 0, and we have
PB,(e) = P(A,NC) =1~ P(C°U AS)
=1-PC°— PA + P(C°N AL
= PA, + P(C° N AS)
= PA,.

It follows that (b) holds.
Conversely, let limy,, oo PAn(g) = 0, and write

D) = LE‘;’;O'X"' >6> o].

Since D(s) C An(e) forn =1,2,..., it follows that P D(g) = 0. Also,

e [y ° = 1
= 5o o) fmona = 1.

so that

e 1
1-PC<) PD{-])=0,
=270 (g)

and (a) holds.
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Remark 6. Thus X, 2% 0 means that for ¢ > 0, n > 0 arbitrary, we can find
an ng such that

) P{sup X, >€} -

n>ny

Indeed, we can write, equivalently, that

(6) lim P[ U (1 Xn] > e}] =0.

ng— 00
0 n=>ng

Theorem 12. X, =5 X = X, 5 X.

Proof. By Remark 6, X, 2 x implies that for arbitrary € > 0, n > 0, we can
choose an ng = no(e, n) such that

P[ﬂ{lxn—X|sa}]zl~n.

n=ngp

Clearly,

o0
(Y UXn—XI<e)ClXa—XI<e} for n=no.

n=ng

It follows that for n > nyg,

P{IXn—Xlss}zP[ﬂ{IXn—?ﬂSE}]21~n,

n=ng
that is,
P{|Xn — X|>¢}<n  for n=>ng,
which is the same as saying that X, £ X.
That the converse of Theorem 12 does not hold is shown in the following example.

Example 8. For each positive integer n there exist integers m and k (uniquely
determined) such that

n=2=%4+m, 0<m<2t, k=0,1,2,....

Thus, forn = 1,k =0andm = 0; forn = 5,k = 2 and m = 1; and so on. Define
RVs X, forn=1,2,... on Q2 = {0, 1] by
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& m m
X, () = 25, 2k5“’< T
0, otherwise.

Let the probability distribution of X, be given by P{I} = length of the interval
I C Q. Thus

1 1
— 2%y =0} =

The limit lim,,— o0 X, () does not exist for any » € €, so that X, does not converge
almost surely. But

0 if &>2%
P{X,| > e} = P{X, > ¢} =
Fal el =P =320 1 gceank,
2k
and we see that

P{| Xyl >} > 0 as n (and hence k) — oo.

Theorem 13. Let {X,} be a strictly decreasing sequence of positive RVs, and
suppose that X, £ 0. Then X, 235 0.

The proof is left as an exercise.

Example 9. Let {X,} be a sequence of independent RVs defined by

1 1
PXy=0)=1~~, and PX,=1}=~, n=12....

Then

1
E\X, — 02 =E|Xa>==-—>0 asn— oo,
n

so that X, —2+ 0. Also,
P{X, =0 foreverym <n < ngp}
il 1 -1
()
e n no

which diverges to zero as np — oo for all values of m. Thus X, does not converge
to 0 with probability 1.
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Example 10. Let {X,} be independent, defined by
1 1

P{X,=0}=1—— and P{X,=n}=—, r>=2, n=12,....
n” n”

Then
no 1
P{X,=0 f <n< = 1——1.
{Xn orm < n < np} anI( n’)

As ng — oo, the infinite product converges to some nonzero quantity, which itself

a.s. r
converges to 1 as m — oo. Thus X,, — 0. However, E|X,|" = 1,and X,, -~ 0 as
n — oo.

Example 11. Let {X,} be a sequence of RVs with P(X, = 1/n} = 1. Then

E|X,)" = 1/n" — Oasn — oo,and X, — 0. For j < k, |X;| > |X¢], so that
{iXe] > e} C {|X| > &}. It follows that

(Jx;1 > e} = (IXal > &).

j=n
Choosing n > 1/¢, we see that

P [g{lle > e}:l = P{X,| >} <P {anl - ;11_} =0,

and (6) implies that X,, — 0.

Remark 7. In Theorem 6.4.3 we prove a result that is sometimes useful in prov-
ing a.s. convergence of a sequence of RVs.

Theorem 14. Let {X,, Y,},n = 1,2, ..., be a sequence of RVs. Then
X —Yul >0 and ¥, 5Y =X, 57
Proof. Let x be a point of continuity of the DF of Y and ¢ > 0. Then
P{Xp = x}=P{¥y <x+ Y, — Xp}
=PYpn<x+Y,— Xn;Yn— Xn < ¢}

+PYn<x+Y,—Xn; Yy — Xn > €}
< P{Y, <x+¢}+ P{Y, — X, > &}.
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It follows that

lim P{X, <x} < lim P{¥, <x+¢}.

n—o0 n—>00
Similarly,

lim P{X, <x}> lim P{¥, <x — s}
n—00 n->00

Since & > 0 is arbitrary and x is a continuity point of P{¥ < x}, we get the result
by letting ¢ — 0.

Corollary. X, > X = X, 5 X.

Theorem 15 (Slutsky’s Theorem). Let {X,,, Y,},n = 1,2,..., be a sequence
of pairs of RVs, and let ¢ be a constant. Then

@ Xy B X VDX +V, 5 X+
) X, 5 X,

XY, 5 cX  ife#0,

P
Yp—>c= p
XY, — 0 ifc=0;

© X 5 X,V D e Xa/vn 5 X/cifc £0.

Proof () Xn 5 X = X, + ¢ > X + ¢ (Theorem 3). Also, ¥, — ¢ =
(¥ + Xp) — (X + ) > 0. A simple use of Theorem 14 shows that

Xo4+ Y, 5 X +e.
(b) We first consider the case where ¢ = 0. We have for any fixed number k > 0,

£ £
PUXn¥al > 2} = P{IXaYal > &, 1¥a] < z] + P{1XaYal > &, (¥l > -}

< P(Xal > K1+ P{1%al > £}

Since Y, —I—; Oand X, i) X, it follows that for any fixed k£ > 0,
lim P{|X.Y,| > ¢} < P{IX| > k}.
n—oo

Since k is arbitrary, we can make P{}X| > k} as small as we please by choosing k
large. It follows that

X, Y, 5 0.
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Now, let ¢ # 0. Then

XuYp —cXp = Xu(Yn —©),

and since X, —11> X, Y, —P> c, Xp(Yy—c) -f» 0. Using Theorem 14, we get the result
that

X,v, 5 cx.

© Y > c,andc £ 0= ¥1 5 o1 It follows that X, > X, ¥, 5 ¢ =
n

XY, 15 1y , and the proof of the theorem is complete.

As an application of Theorem 15, we present the following example. Many more
examples appear in Chapter 7.

Example 12. Let X1, X», ..., be iid RVs with common law N0, 1). We shall
determine the limiting distribution of the RV

Xi+ X+ + Xn

Wy = /1 :
" X2+ X2+ + X2

Let us write

1 X1+ Xxj+---+ X2
Up=—(X1+X2+--+X,) and V,=-"1-22 "
n n

Then

For the MGF of U, we have

n

n
My, (t) = I_[ Ee'Xi/Vn l—[etz/z"

i=1 i=1

2
=2,

so that U, is an A/(0, 1) variate (see also Corollary 2 to Theorem 5.3.22). It follows

that U, -4 Z, where Z is an N(0, 1) RV. As for V,,, we note that each Xi2 is a
chi-square variate with 1 d.f. Thus

n ; 12 n
My (1) = _— —
WO H(I—Zt/n) ey

i=1

( 2x)-"/2 n
={1-= L t< =,
n 2
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which is the MGF of a gamma variate with parameters ¢ = n/2 and § = 2/n. Thus
the density function of V,, is given by

i 1

fv,(x) = { T(n/2) 2/n)*/?
0, otherwise.

x"/2-lgmnx/2 0<x<o0,

We will show that V,, —1: 1. We have for any € > 0,

2
P{IVn—l|>e}5var§/") =(%) (%) 6—12—-—>0 as n — oo.

We have thus shown that
Up 5z and v, 51
It follows by Theorem 15(c) that W,, = U,/ V,, ~L> Z, where Z is an N (0, 1) RV.

Later we will see that the condition that the X;’s be (0, 1) is not needed. All we
need is that E|X;|? < oo.

PROBLEMS 6.2

1. Let Xy, X3, ... be asequence of RVs with corresponding DFs given by F,,(x) =
Oifx < —n,=(x+n)/2nif —n < x < n,and = 1if x > n. Does F, converge
to a DF?

2. Let X1, X5... be iid A(0, 1) RVs. Consider the sequence of RVs {X,}, where
a=n"13" X, LetF,bethe DFof X,,,n = 1,2,....Findlimy_cc Fy(x).
Is this limit a DF?

3. Let X, X2, ... beiid U(0,0) RVs. Let X(;) = min(X1, X2,..., X,), and
consider the sequence ¥, = nX(y. Does Y, converge in distribution to some RV
Y?If so, find the DFof RV Y.

4. Let X1, X2,... be iid RVs with common absolutely continuous DF F. Let
X(ny = max(Xy, X3, ..., X»), and consider the sequence of RVs ¥, = n[l —
F(X(n))]. Find the limiting DF of Y,,.

5. Let Xy, X2, ... be a sequence o_f_iid RVs with common PDF f(x) = e~ if
x>60,and=0if x < 6. Write X, =n"! Y7, X;.

(2) Show that X, 2> 1 +6.
(b) Show that min{X{, X2, ... , Xn} => 6.

6. Let Xy, X7, ... beiid U[0, #] RVs. Show that max{X, X2, ..., X} LA a.



MODES OF CONVERGENCE 273

7.

10.

11

12.
13.

14.

Let {X,} be a sequence of RVs such that X, L X. Let a, be a sequence of
P
positive constants such that a, — oo as n — 0o. Show that a, lx, 5 0.

. Let {X,} be a sequence of RVs such that P{|X,| < k} = 1 for all » and some

constant k > 0. Suppose that X, £ X. Show that X » —> X for any r > 0.

. Let X1, X2, ..., X2q be iid A/(0, 1) RVs. Define

X; X Xon—
,.=(—‘+—3+---+ 2 1),
X2 Xy Xon

Un

w=ﬁ+@+m+ﬁ,mda=7u
n

Find the limiting distribution of Z,,.

Let {X,} be a sequence of geometric RVs with parameter A/n,n > A > 0. Also,
let Z, = X, /n. Show that Z, L G(l,1/ ) asn — oo. (Prochaska [80])

Let X, be a sequence of RVs such that X, 250, and let ¢, be a sequence of
real numbers such that ¢, — 0 as n — 00. Show that X, + ¢, 2% 0.

Does convergence almost surely imply convergence of moments?

Let Xy, X3, ..., be asequence of iid RVs with common DF F, and write X () =
max{X;, X2,..., Xp}l,n=1,2,....

(a) Fora > .0, limy_, oo x* P{X; > x} = b > 0. Find the limiting distribution
of (bn)~1/* X (). Also, find the PDF corresponding to the limiting DF and
compute its moments.

(b) If F satisfies
lim &’ [1 - F(x)]=5b >0,
X—>00

find the limiting DF of X (,) — log(bn) and compute the corresponding PDF
and the MGF.

(c) If X; is bounded above by x¢ with probability 1, and for some ¢ > 0

Em (xg —x) %1 - F(x)]=»b > 0,
X~>X()—

find the limiting distribution of (bm)'/{x (») — X0}, the corresponding PDF,
and the moments of the limiting distribution.

(The remarkable result above, due to Gnedenko [33], exhausts all limiting dis-
tributions of Xy with suitable norming and centering.)

Let {F,} be a sequence of DFs that converges weakly to a DF F that is continu-
ous everywhere. Show that F, (x) converges to F'(x) uniformly.
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15. Prove Theorem 1.

16. Prove Theorem 6.

17. Prove Theorem 13.

18. Prove Corollary 1 to Theorem 8.

19. Let V be the class of all random variables defined on a probability space with
finite expectations, and for X € V define

| X
1+ 1X|

P(X)ZE{

Show the following:
(@ p(X+7Y) < p(X)+p(Y); p(aX) < max(|o|, Dp(X).
(b) d(X,Y) = p(X —Y) is a distance function on V (assuming that we identify
RVs that are a.s. equal).
© liMposoo d(Xn, X) =0 ¢ X, - X.
20. For the following sequences of RVs { X,,}, investigate convergence in probability
and convergence in rth mean.
(@) Xn, ~C(1/n,0).
®) P(X,=¢")=1/n2, P(X,=0)=1-1/n%

6.3 WEAK LAW OF LARGE NUMBERS

Let {X,) be a sequence of RVs. Write S, = > y_{ Xk, n = 1,2, .... In this section
we answer the following question in the affirmative: Do there exist sequences of
constants A, and B, > 0, B, — 00 as n — 00, such that the sequence of RVs
B; (S, — An) converges in probability to 0 as n — o0?

Definition 1. Let {X,} be a sequence of RVs, and let S, = > ;_; Xk, n =
1,2,.... We say that {X,} obeys the weak law of large numbers (WLLN) with
respect to the sequence of constants {B,}, B, > 0, B, 1 0o, if there exists a se-
quence of real constants A, such that B, 1S, — An) LA Qasn — 00. A, are called
centering constants, and By, norming constanis.

Theorem 1. Let {X,} be a sequence of paJrW1se uncorrelated RVs with EX; =
u,-andvar(Xi)=oi2,i=12 If}: 10 — 00 as n — 00, we can choose
Ap =) 4 bk and B, = i 02, that is,

n

Xi—ui p
Z-—'—n—ﬁli——)O asn — 00.
i=1 2i=10;
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Proof. We have, by Chebychev’s inequality,

n n " o ' 2
Pl Sn ‘“Zuk > 820’[.2] < E [ (Xi — )]
k=1 i=1

2
62 (Z?:l aiz)
Corollary 1. If the X,’s are identically distributed and pairwise uncorrelated

1
=0 asn — 00.
2
&2y i 10
with EX; = p and var(X;) = 02 < 0o, we can choose A, = np and B, = nal.

Corollary 2. In Theorem 1 we can choose B, = n, provided thatn =237, 62 —

Qasn — oo.

Corollary 3. In Corollary 1 we can take A, = nu and B, = n, since no2/n* —
0 as n — oo. Thus, if {X,} are pairwise-uncorrelated identically distributed RVs

. . . P
with finite variance, S,/n — u.

Example 1. 1et X1, X3, ... be iid RVs with common law b(1, p). Then EX; =
p, var(X;) = p(1 — p), and we have

Sh P
— = p asn —> 00.
n

Note that S, /n is the proportion of successes in # trials.

Hereafter, we shall be interested mainly in the case where B, = n. When we say
that {X, } obeys the WLLN, this is so with respect to the sequence {n}.

Theorem 2. Let {X,} be any sequence of RVs. Write ¥, = n™! Y }_, Xx. A
necessary and sufficient condition for the sequence {X,} to satisfy the weak law of
large numbers is that

YZ
(D E 1+"Ynz — asn — 0o,

Proof. For any two positive numbers a, b, a > b > 0, we have

a 1+4b
>

>

) 1+a b

Let A ={|¥,| > ¢). Thenw € A = |¥,|2 > &2 > 0. Using (2), we see that w € A
implies that

Y2 1+4¢2

n

> 1.
1+Y2 &2
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It follows that
2 2
pa<pl i ¢
1+ Y2 1+¢2
12/ + YD) L
=T+ by Markov’s inequality
—0  asn—> oo.
That is,

P
Y, —> 0 asn —» oo.

Conversely, we will show that for every ¢ > 0,

3) P{|Y,|>¢} > E i 2
{[Xn] = &} 1+Y —£°.

We will prove (3) for the case in which Y,, is of the continuous type. The discrete
case being similar, we ask the reader to complete the proof. If Y, has PDF f,(y),

then
/ 1+y 2fn()’)dy— / f + 2fn()’)dy
lyl>e  Iyl<e
€ 1
< P{|Yal > 8’+L (1 — 1+y2)fn(y)dy
g2 2
< P{|Yy| > e} + 1542 < P{|Ya| > &} + ¢,
which is (3).

Remark 1. Since condition (1) applies not to the individual variables but to their
sum, Theorem 2 is of limited use. We note, however, that all weak laws of large num-
bers obtained as corollaries to Theorem 1 follow easily from Theorem 2 (Problem 6).

Example 2. Let (X1, X, ... , Xp) be jointly normal with EX; = 0, EX? =
forall i, and cov(X;, X;) = pif|j—i| = 1, and = O otherwise. Then S, = PP
is N'(0, 62), where

o =var(S,) =n+2(n—1p,



WEAK LAW OF LARGE NUMBERS 277

£ Y2 _E 52
1+7? n?+ 82

2 [o%e] x2
- o2 [) nZyx2°
_ .2 /°° y2n +2(n — 1)p)
2 Jo n?+ ¥ n+2(n - 1)p]

<n+2(n——l)p/°° 2

—x2/20 dx

eV 12 dy

2 —yi2

y“e dy — 0 asn — 0.
7

It follows from Theorem 2 that 1S, £ 0. We invite the reader to compare this
result to that of Problem 6.5.6.

Example 3. Let X1, X», ... beiid C(1, 0) RVs. We have seen (corollary to The-
orem 5.3.18) that n-! Sy ~ C(1,0), so that nLlS, does not converge in probability
to 0. It follows that the WLLN does not hold (see also Problem 10).

Let Xy, X», ... be an arbitrary sequence of RVs, and let S, = Zz=1 Xi,n =
1,2,....Letus truncate each X; at ¢ > 0, that is, let

X¢ =

1

X; ile,'l <c
0 if1Xi|>¢’
Write

n n

Sy = ZX,C and m, = ZEX,C

i=1 i=1
Lemma 1. For any € > 0,
R
4) P(1Sy —mal > e} < P{IS; —mal > e} + Y P{|Xil > c}.
k=1
Proof. We have
P{|Sh —myu| > €} = P{|S, —my| > cand | X <c fork=1,2,...,n}

+ P{{Sp, —my| > eand | Xy] > ¢ for at least one k,
k=1,2,...,n}

< P{I8; —my)| > e} + P{{ Xkl > ¢ for at least one k,
1<k <n}

n
< P{IS; —mul > e} + ) P{IXkl > c).
k=1
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Corollary. If Xy, Xs, ..., X, are exchangeable, then

5) P{|S; —my| > €} < P{|S; — mul > €} + nP{|X1] > c}.

If, in addition, the RVs X, X, ..., X, are independent, then

nE(X$5)?

®) P{|Sy —m,| > €} < 5
&

+nP{|X1] > c}.
Inequality (6) yields the following important theorem.

Theorem 3. Let {X,} be a sequence of iid RVs with common finite mean p =
EXj. Then

n_IS,,-f)p, as n — oo.
Proof. Let us take ¢ = n in (6) and replace ¢ by ne; then we have
1
P{IS, = mal > ne} < — EQX]? +nP{IX1] > n),

where X7 is X truncated at n.
First note that E|X 1| < o0 = nP{|X] > n} — 0asn — o0o. Now (see remarks
following Lemma 3.2.1)

E(XM? = 2[ xP{|Xi| > x}dx
0

A n
=2(/ +f )xP{|X1|>x}dx,
0 A

where A is chosen sufficiently large that

xP{|X1] > x} < forall x > A,$ > O arbitrary.

[\ R ]

Thus

n
E(XT? §c+8f dx <c+ns,
A
where c is a constant. It follows that
1 c 8
___E Xn 2 < — —
ne? XD _n6‘2+6‘2

and since § is arbitrary, (1/ne?) E(X 'l’)2 can be made arbitrarily small for sufficiently
large n. The proof is now completed by the simple observation that since EX; = u,
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my
— —>u  asn —> 00,
n

We emphasize that in Theorem 3 we require only that E|X| < oo; nothing is
said about the variance. Theorem 3 is due to Khintchine.

Example 4. Let X1, X7,... be iid RVs with E|X 1|" < oo for some positive
integer k. Then

n

k
Z—J- asn — 00,
o

Thus, if EX% < o0, then Y ] ij./n A E X?; and since (2;21 Xj/n)2 LA (EX1)?,
it follows that

zXx? wx.\2 .
i_ (—i) £ var(Xy).
n n

Example 5. Let X;, X5, ... be iid RVs with common PDF

1456 .
foy=1z#  *=1 s
0, x<1

Then

®© 1
E|X|=(1+8)/; x—lﬁ-dx

148

PR

and the law of large numbers holds, that is,

p 1+4

n“]Sn-» 5 asn — oo.
PROBLEMS 6.3
1. Let X, X», ... be a sequence of iid RVs with common uniform distribution on
[0, 1]. Also, let Z, = (TT/_, X:)!/" be the geometric mean of Xy, X2, ... , X,,
n=1,2,....Show that Z, £ ¢, where c is a constant. Find c.

2. Let Xy, X2, ... be iid RVs with finite second moment. Let
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2 n
Yp=————> iX;.
" n(n+1); ’

Show that ¥, i,» EX;.

3. Let Xy, X», ... be a sequence of iid RVs with EX; = u and var(X;) = o2
Let §; = Zi’:l X ;. Does the sequence S; obey the WLLN in the sense of
Definition 1? If so, find the centering and the norming constants.

4. Let {X,} be a sequence of RVs for which var(X,) < C for all n and p;; =
cov(X;, X;) = Oas |i — j| — oo. Show that the WLLN holds.
5. For the following sequences of independent RVs, does the WLLN hold?
@) P{X=+2}=1.
(b) P{Xy = £k} =12k, P{X =0} = 1 — (1//k).
(©) P{Xx= 2%} =12%H P(X; =0} =1— (1/2%).
(d) P{Xy=£1/k} = 3.
(@) P{Xy=*vk} =3
6. Let X3, X,, ... be a sequence of independent RVs such that var (X;) < oo for

k=1,2,...,and (1/n%) Y %_, var(Xx) — O asn — oco. Prove the WLLN,
using Theorem 2.

7. Let X, be a sequence of RVs with common finite variance a2. Suppose that the
correlation coefficient between X; and X; is < O for all i # j. Show that the
WLLN holds for the sequence {X,}.

8. Let {X,} be a sequence of RVs such that X; is independent of X jforj#k+1
or j 3 k — 1.1f var(Xy) < C for all k, where C is a constant, the WLLN holds
for {X;}.

9. For any sequence of RVs {X,}, show that

max [Xi] > 0= n-ls, 5 o.

1<k<n

10. Let X1, X5, ... beiid C(1, 0) RVs. Use Theorem 2 to show that the weak law of
large numbers does not hold. That is, show that

52 =z
n_ZfTS'Z_HO asn — oo, where S,,:;Xk, n=12,....
11. Let {X,} be a sequence of iid RVs with P{X, > 0} = 1. Let §, = ;=1 X,
n=1,2,....Suppose that {a,} is a sequence of constants such that a, is, N

1. Show that (a) a, — oo asn — o¢, and (b) @nyy/an — 1.
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6.4 STRONG LAW OF LARGE NUMBERS'

In this section we obtain a stronger form of the law of large numbers discussed in
Section 6.3. Let X1, X7, ... be a sequence of RVs defined on a probability space
Q,S8, P).

Definition 1. We say that the sequence {X,} obeys the strong law of large num-
bers (SLLN) with respect to the norming constants { By} if there exists a sequence of
(centering) constants {A,} such that

) B\ (S —An) 250 asn— oo
Here B, > 0 and B, — oo asn — 00.

We will obtain sufficient conditions for a sequence {X,} to obey the SLLN. In
what follows we will be interested mainly in the case B, = n. Indeed, when we
speak of the SLLN we will assume that we are speaking of the norming constants
B,, = n, unless specified otherwise.

We start with the Borel-Cantelli lemma. Let {A ;} be any sequence of events in S.
We recall that

_ o0 [, S2Ne o)
@ 75,40 i, O = 0

k=n n=1 k=n

We will write A = lim,_, coA,. Note that A is the event that infinitely many of the
A, occur. We will sometimes write

PA = P(lim A,) = P(A,i.0),
n->0oco

where “i.0.” stands for “infinitely often.” In view of Theorem 6.2.11 and Re-
mark 6.2.6 we have X, —> 0 if and only if P{|X,| > ¢i0.}=0foralle > 0.

Theorem 1 (Borel-Cantelli Lemma)

(a) Let {A,) be a sequence of events such that ) oo, PA, < 0c0.Then PA = 0.

(b) If {A,} is an independent sequence of events such that Zf__l PA, = oo,
then PA = 1.

Proof.

(a PA = P(limy- o0 U]‘:in Ay) = limy, o P(U:in Ap) < limy o0 Z:.;n
PA, =0.

(b) We have A = | 72, M2, AS, so that

This section may be omitted on first reading
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[o.< o0
c __ . cl . n c
paT=F (,,&fgok_n Ak) = Jim, P (kﬂ Ak) -

For ng > n, we see that (o, A C ()2, Af, so that

=n
o0 1o g
c : cY 1 _
F (ﬂ Ak) < m r (,D Ak) = Jm [0 - rav.

because {A,]} is an independent sequence of events. Now we use the elementary
inequality

19 no no
1—CXP(—Z°‘}')Sl*n(l—a,‘)sza,‘, no>n, 1>a;>0,
Jj=n j=n j=n
to conclude that
oo ng
c . _
P (,Dn Ak) < lim exp ( ,; PAk) .

Since the series Y oo, P A, diverges, it follows that PA° =0 or PA = 1.

Corollary. Let {A,]} be a sequence of independent events. Then P A is either 0
orl.

The corollary follows since Y 5o ; P A, either converges or diverges.

As a simple application of the Borel-Cantelli lemma, we obtain a version of the
SLLN.

Theorem 2. If X, X7, ... are iid RVs with common mean g and finite fourth
moment, then

P{lim §f—=u}=l.
n—oo n
Proof. We have
E{S(X; —w) =nEX| — w* + 6(;)04 < Cn?.

By Markov’s inequality,

P[ Y (X -
1

E[Xixi-w]' o2 ¢
> "E] = (ne)? St
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Therefore,

o0
P{|S, — un| > ne} < oo,
n=1

and it follows by the Borel-Cantelli lemma that with probability 1 only finitely many
of the events {w: |(S,/n) — ul > €} occur, that is, PA, = 0, where

o).

The sets A, increase, as ¢ — 0, to the @ set on which S,/n - u. Lettinge — 0
through a countable set of values, we have

P{%—M%O]=P(ijm/k)=o.

Corollary. If X, X,,... are iid RVs such that P{|X,] < K} = 1 for all n,
where K is a positive constant, then n=1 S, 25 .

Sn
— K
n

n—o0

A; = lim sup{

Theorem 3. Let X1, X2, ... be a sequence of independent RVs. Then

o0
Xo =504 Y PllXnl>e}<oo foralle > 0.

n=1

Proof. Writing A, = {|X,.| > &}, we see that {A,,} is a sequence of independent

events. Since X, > 0, X, — Oonaset E€ with PE = 0. A pointw € E€ belongs
only to a finite number of A,. It follows that

lim sup A, C E,
n—>oo
hence P(A, i.0.) = 0. By the Borel-Cantelli lemma [Theorem 1(b)] we must have

ooy PA, < oo. [Otherwise, Y oo | PA, = 0o, and then P(A, i.0.) = 1]
In the other direction, let

1
Ak —-:limsup{ixnl > -],

n—»o00 k
and use the argument in the proof of Theorem 2.
Example 1. We take an application of the Borel-Cantelli lemma to prove a.s.

convergence.
Let { X} have PMF

1 1
P(Xn=0)=l~;;, and P(Xn::tn)zi’;;‘
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Then P(|X,| > &) = 1/nr® and it follows that
o0 o0 l
Y P(Xal>e)=) —<o0 fora>1.
n
n=] n=1

Thus from Borel-Cantelli Lemma P (A, i.0.) = 0, where A, = {|X,| > ¢}. Now
using the argument in the proof of Theorem 2, we can show that P(X,, /4 0} =0.

‘We next prove some important lemmas that we will need subsequently.

Lemma 1 (Kolmogorov’s Inequality). Let X, X2,..., X, be independent
RVs with common mean 0 and variances okz, k=1,2,...,n,respectively. Then for
any £ > 0,

n 0'-2
3 P { max | < —+.
@ (im0 ef <3

Proof. LetAp =,

Ap = | max |S;| <&y, k=1,2,...,n
1<j<k
and
Bk=Ak_1nAi
={|S1l <& ...,|8-1] <e}N{atleastone of [$1],...,|Sk|is > &}
={IS1l <& ..., |81l <e S| > e}
It follows that
n
A'C‘:ZBIC
k=1
and

Bi C {I8k-11 <&, |Sk| > €}
As usual, let us write Ip,, for the indicator function of the event B;. Then

E(Sy18,)? = E{(Sx — S)Ip, + Selp, .
= E{(S, — Sk)2Ip, + S21p, + 28k(Sn — St) 1B, ).

Since S, — Sk = Xk4+1 + -+ + X, and Sk I, are independent, and E X = 0 for all
k, it follows that
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E(SnIp)? = E{(Sn — StV 1B }* + E(StIp,)?
> E(SiIp,)? > €2 PB.

The last inequality follows from the fact that in By, |Sk| > &. Moreover,
n n
D E(Sulp)? = E(Silag) < E(SD =) _of,
k=1 1
so-that
n n
Z"kz > g? Z PB, = £?P(AS),
1 1
as asserted.
Corollary. Take n = 1; then

2
91
P(X1] > &} < =,
which is Chebychev’s inequality.

Lemma 2 (Kronecker Lemma). If ZZ":I X, converges to s (finite) and b,, 1 o0,
then

n
b;l Zbkxk - 0.
k=1

Proof. Writing bg = 0, ax = by — by_y, and sp41 = ) ;. Xk, We have
1 & 1 &
= Z bexy = P Z by (Sk+1 — 5k)
" k=1 n =1
1 “ 1 <&
= buspi1 + Zbk~lsk e Zkak
n 1 ™ k=1

] n
= Sntl — - Z(bk — br_1)sk
" k=1

1 n
= Sn+1 — b E A Sk -
k=1

It therefore suffices to show that b, 1 ZZ:] arsp — s. Since s, —> s, there exists an
ng = ng(e) such that
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£
|sp — 5| < 3 forn > ng.

Since b, 1 00, let ny be an integer > ng such that
no €
b;! ;(bk —be)s =) <5 forn>mn.

Writing
n
rn=b7' Y bk — b))k,
k=1

we see that

n

> (be = be—1)(sk — 5)

k=1

lrn —s| = +—
n

3

and choosing n > nj, we have

1
4 —

n

|rn —s| < < &

> e—ben)s

1 &
— > (b — br-1)(sk — )
bn k=1 k=n0+1

This completes the proof.

Theorem 4. If Y 2° | var(X,) < oo, then ¥ oo, (X, — EX,) converges almost
surely.

Proof. Without loss of generality, assume that EX,, = 0. By Kolmogorov’s
inequality,

1 n
P { max |Smsk = Sml 2 e] <5 ;var(xmm.
Letting n — o0, we have

P [maxlSm+k — Sm| > e} =P [ max |Sg — Sml > s]
k>1 k>m+1
1 [e o]
< o) E var(Xp).

k=m-1

It follows that
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lim P {maxlSk ~ Sm| < s} =1,

n-—> 00
- o] -1
Consequently, 372 X ; converges a.s.

As a corollary we get a version of the SLLN for nonidentically distributed RVs

and since ¢ > 0 is arbitrary, we have

o0
DX
j=m

P { lim
m—>00

which subsumes Theorem 2.

Corollary 1. Let {X,} be independent RVs. If

ivar(Xk) < 00 B, 1t o0

2
k=1 Bk

then

Sn - ESn a.s,
—— > 0.
By

The corollary follows from Theorem 4 and the Kronecker lemma.

Corollary 2. Every sequence {X,} of independent RVs with uniformly bounded
variances obeys the SLLN.
If var(X) < A for all k, and By = k, then

o0

};75 Z_z o,

1

and it follows that
S, — ES, a8 4

n

Corollary 3 (Borel’s Strong Law of Large Numbers). For a sequence of
Bernoulli trials with (constant) probability p of success, the SLLN holds (with

B, =nand A, = np).

Since

EXy=p, var(Xp)=p(l-p)<jz O<p<l,

the result follows from Corollary 2.
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Corollary 4. Let {X,} be iid RVs with common mean p and finite variance al.

Then

S
P[lim —"=u}—_—1.

n—>00 n

Remark 1. Xolmogorov’s SLLN is much stronger than Corollaries 1 and 4 of

Theorem 4. 1t states that if {X,,} is a sequence of iid RVs, then

nlS, 25 u = E[X1| < o0,

and then p = EX,. The proof requires more work and will not be given here. We
refer the reader to Billingsley [5], Chung [14], Feller [23], or Laha and Rohatgi [56].

PROBLEMS 6.4

1.

For the following sequences of independent RVs does the SLLN hold?
(@ P(Xy =225 =1

(b) P{Xy =k} = 1/2vk, P{X; =0} = 1 — (1//k).

(©) P{Xg = £2k} = 1722+ P(X; = 0} = 1 — (1/2%). _

Let X1, X2, ... be a sequence of independent RVs with 3"5° | var(X)/k? < oo.
Show that

1 n
3 E var(Xz) — 0 asn —> oo.
k=1

Does the converse also hold?

. For what values of o does the SLLN hold for the sequence

P{Xi= k%) =47

. Let {02} be a sequence of real numbers such that h el o2/k? = o0o. Show
k k=19

that there exists a sequence of independent RVs { Xy} with var(X,) = akz, k =
1,2,..., suchthatn™! Z;c’:l(X r — EX}) does not converge to 0 almost surely.
[Hint: Let P{X; = £k} = 02/2k2, P{Xi = 0} = 1 — (02/k?) if o¢/k < 1, and
P{Xy = oy} = % if ox/k > 1. Apply the Borel-Cantelli lemma to {| X,,| > n}.]

. Let X, be a sequence of iid RVs with E|X,| = +o0c. Show that for every positive

number A, P{|X,| > nAio.} =1and P{|S,| < nAio}=1.

Construct an example to show that the converse of Theorem 1(a) does not hold.

. Investigate a.s. convergence of {X,} to 0 in each case. (X,,’s are independent in

each case.)
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(@) P(Xp=¢€") = 1/n2 P(X,=0)=1-1/n2
®) PXy=0)=1—1/n, P(X, = +1) = 1/22n).

6.5 LIMITING MOMENT GENERATING FUNCTIONS

Let Xy, X7, ... be a sequence of RVs. Let F,, be the DEof X, n = 1,2,..., and
suppose that thc MGF M, (t) of F, exists. What happens to M,(t) asn — oo‘7 If it
converges, does it always converge to an MGF?

Example 1. Let {X,} be a sequence of RVs with PMF P(X, = ~n} = L,n =
1,2,.... We have

M,(t) = Ee'Xr = ¢~ 5 0 asn — oo forallt >0,

and
M,(t) —> +oo forallt <0, and M,(t) > 1 atr=0.
Thus
0, t>0
M,t) - M) =141, t=0 asn — oo.
00, t<0

But M(¢) is not an MGF. Note that if F), is the DF of X, then

0 ifx <-—n
Fp(x) = {l ifx> —n — Fx)=1 for all x,

and F is not a DF.

Next suppose that X, has MGF M,, and X, L X, where X is an RV with MGF
M. Does M, (t) — M(t) as n — oo? The answer to this question is in the negative.

Example 2 (Curtiss [18]). Consider the DF

0, X < ~n,
F,(x) = % + ¢, tan~ 1 (nx), -n<x<n,
1, X >n,

where ¢, = 1/{2 tan~! (nz)]. Clearly, as n — oo,

x <0,

Fp(x) = F(x) = {(1)

=]
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at all points of continuity of the DF F. The MGF assoctated with F, is

" n
M, () = / cpe’t ———dx,
—n 1+ n2x2

which exists for all 1. The MGF corresponding to F is M(¢) = 1 for all ¢t. But
Mp(t) -» M), since M, (t) = oo if t # 0. Indeed,

n m3x3 n
M,(t) > Cp——— T35 .
n() /(; n 6 1+n2x2 X

The following result is a weaker version of the continuity theorem due to Lévy
and Cramér. We refer the reader to Lukacs [68, p. 47], or Curtiss [18], for details of
the proof.

Theorem 1 (Continuity Theorem). Let {F,} be a sequence of DFs with corre-
sponding MGFs {M,,}, and suppose that M,,(¢) exists for |¢| < ty for every n. If there
exists a DF F with comresponding MGF M which exists for |f] < #; < g, such that

M,(t) = M(t) asn — oo forevery t € [—t, t;], then F, —> F.

Example 3. Let X, be an RV with PMF

P(Xy =1} = -

1
., PXp=01=1--.
n n

Then M, (t) = (1/n)e’ +[1—(1/n)] exists forall t € R, and M,,(t) — 1asn — oo
for all 1. Here M(t) = 1 is the MGF of an RV X degenerate at 0. Thus X, L X.

Remark 1. 'The following notation on orders of magnitude is quite useful. We
write x, = o(ry) if given ¢ > 0, there exists an N such that [x,/r,| < & for all
n > N, and x, = O(r,) if there exists an N and a constant ¢ > 0, such that
[xn/rn) < c forall n = N. We write x, = O(1) to express the fact that x, is
bounded for large n, and x, = o(1) to mean that x, — O asn — oc.

This notation is extended to RVs in an obvious manner. Thus X, == o, (r,) if, for
every € > 0 and § > O, there exists an N such that P(1X,/rn,] < 8) 2 1 — ¢ for
n > N,and X, = Op(ry,) if for &£ > 0, there exists a ¢ > 0 and an N such that

P(IXn/ral <) 2 1 — €. We write X,, = 0p(1) to mean X, —> 0.
The following lemma is quite useful in applications of Theorem 1.

Lemma 1. Let us write f(x) = o(x), if f(x)/x — Oasx — 0. We have

1 n
lim [1 + 2 +o (—)] =€ for every real a.
n n

n—>oo
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Proof. By Taylor’s expansion we have

fx) = fO) +xf'(6x)
= fO)+xf (0 + {f (Bx) — f (D, 0<8 <1,

If f'(x) is continuous at x = 0, then as x — 0,
F(x) = fO) +xf(0) + o(x).

Taking f(x) = log(l + x), we have f'(x) = (1 + x)~1, which is continuous at
x = 0, so that

log(1 4+ x) = x 4+ o(x).

Then for sufficiently large n,
a 1 a 1 a 1
nlog|l+—-—+ol-)]|=ny—+o|l~-)+o0o|-+o| -
n n n n n n
=a+no| -
n

= a + o(1).

1+2 40 -1—) . eo o),
n n

Example 4. 1et Xy, X5, ... beiid b(1, p) RVs. Also, let §, = Z'l' Xy, and let
M, () be the MGF of §,,. Then

It follows that

as asserted.

M, (t) = (g + pe')" forall e,

where ¢ = 1 — p. If we let n — o0 in such a way that np remains constant at A, say,
then, by Lemma 1,

A’ A t § A’ ! § !
M,)=[1-— - + —e =14+ - -1 — explr(e — 1] for all ¢,
n n

which is the MGF of a P (1) RV. Thus, the binomial distribution function approaches
the Poisson DF, provided that n — oo in such a way thatnp = A > 0.

Example 5. Let X ~ P(A). The MGF of X is given by

M(t) = exp[r(e’ — D] for all z.
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Let Y = (X — A)/+/A. Then the MGF of Y is given by

My(t) = e M (—t—) .

VA
Also,
t
log My (t) = —tv/A + log M (—-—)
g 2 7
= —tVA + 2V~ 1)
t 2 3
= -—-t\/x A‘ S JE— ——— PR
+ (ﬁ+2x NETT U )
£2 3
=7 It
It follows that
t2
log My (1) —> 7 as A — 00,

so that My (t) — e'/% as A — oo, which is the MGF of an (0, 1) RV.
For more examples, see Section 6.6.

Remark 2.  As pointed out earlier, working with MGFs has the disadvantage that
the existence of MGFs is a very strong condition. Working with CFs which always
exist, on the other hand, permits a much wider application of the continuity theorem.
Let ¢, be the CF of F,,. Then F, -, Fifand onlyif¢, - ¢pasn - ocoonR,
where ¢ is continuous at ¢ = 0. In this case ¢, the limit function, is the CF of the
limit DF F.

Example 6. Let X be a C(0, 1) RV. Then its CF is given by

1 [ cost 1 [ sint
Eexp(itX):—f costx dx—i—i—/ SIIX ax

T J o 1+ x2 TS 1+ x2
=l/°° COSEX | _ -l
T oo 1 +x2

since the second integral on the right side vanishes.
Let {X,} be iid RVs with common law £(X), and set ¥,, = ’]'.:1 Xj/n. Then
the CF of Y, is given by
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on(t) = Eexp (itz %) = nexp (_%l)
j=1

j=1
= exp(—t])

for all n. It follows ¢, is the CF of a C(1, 0) RV. We could not have derived this result
using MGFs. Also, if U, = 37, X;/n® fora > 1, then

t
Pu, (t) = exp (“nl,L) 1

as n — oo for all ¢. Since @(¢#) = 1 is continuous at t = 0, ¢ is the CF of the limit

DF F. Clearly, F is the DF of an RV degenerate at 0. Thus Z'}zl Xj/n® Ly ,
where P(U =0) = 1.

PROBLEMS 6.5

1. Let X ~ NB(r; p). Show that
L
2pX - Y asp— 0,

where ¥ ~ x2(2r).

2. Let X, ~ NB(rn; 1 — pn), n = 1,2, .... Show that X, L x as r, — 00,
pn — 0, in such a way that r, p, — A, where X ~ P(}).

3. Let X, X2, ... be independent RVs with PMF given by P{X, = 1} = %,
n=12,....LetZ, = Y"_, X,;/2/. Show that Z, > Z, where Z ~ U[—1, 11.

4, Let {X,} be a sequence of RVs with X,, ~ G(n, 8) where B > 0 is a constant
(independent of n). Find the limiting distribution of X,,/n.

5. Let X, ~ x%(n),n = 1,2, .. .. Find the limiting distribution of X, /n2.
6. Let X, X5, ..., X, be jointly normal with EX; = 0, EX? = 1 for all { and

cov(X;, Xj) = p,i,j = 1,2,... (i # j). What is the limiting distribution of
n=1s,, where S, = Y jp_; Xi?

6.6 CENTRAL LIMIT THEOREM

Let X1, X2,... be a sequence of RVs, and let S, = Y ;_;, Xe,n = 1,2,....
In Sections 6.3 and 6.4 we investigated the convergence of the sequence of RVs
B, 1(S, — A,) to the degenerate RV. In this section we examine the convergence of
B, (S, —Aptoa nondegenerate RV. Suppose that for a suitable choice of constants
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Ap and B, > 0, the RVs B l(S" — Ap) —L> Y. What are the properties of this
limit RV Y? The question as posed is far too general and is not of much interest
unless the RVs X; are suitably restricted. For example, if we take X1 with DF F and
X2, X3, ... to be 0 with probability 1, choosing A, = 0O and B, = 1 leads to F as
the limit DE. ‘

We recall (Example 6.5.6) thatif X, X5, ..., X, are iid RVs with common law
C(1,0), then n~LS, is also C(1, 0). Again, if X1, X2, ..., X, are iid N'(0, 1) RVs
then n~1/28, is also A/(0, 1) (Corollary 2 to Theorem 5.3.22). We note thus that for
certain sequences of RVs there exist sequences A, and B, > 0, B, — 00, such that

B, LS, — Ap) 5 Y. In the Cauchy case B, = n, A, = 0, and in the normal case
B, = nl/2, A, = 0. Moreover, we see that Cauchy and normal distributions appear
as limiting distributions—in these two cases, because of the reproductive nature of
the distributions. Cauchy and normal distributions are examples of stable distribu-
tions.

Definition 1. Let X, X; be iid nondegenerate RVs with common DF F. Let a,
ay be any positive constants. We say that F is stable if there exist constants A and B
(depending on ay, a3) such that the RV B~1(a; Xy + a X3 — A) also has the DF F.

Let X, X3,... be iid RVs with common DF F. We remark without proof (see
Loéve [64, p. 339]) that only stable distributions occur as limits. To make this state-
ment more precise, we make the following definition.

Definition 2. Let X 1, X2, ... be iid RVs with common DF F. We say that F be-
longs to the domain of attraction of a distribution V if there exist norming constants
B, > 0 and centering constants A, such that asn — oo,

4)) P{B;Y (S, — An) < x} = V(x)
at all continuity points x of V.

In view of the statement after Definition 1, we see that only stable distributions
possess domains of attraction. From Definition 1 we also note that each stable law
belongs to its own domain of attraction. The study of stable distributions is beyond
the scope of this book. We restrict ourselves to seeking conditions under which the
limit law V is the normal distribution. The importance of the normal distribution in
statistics is due largely to the fact that a wide class of distributions F belongs to the
domain of attraction of the normal law. Let us consider some examples.

Example 1. Let X1, X2, ..., X, beiid b(1, p) RVs. Let

n
Su=) Xi, and A, =ES,=np,  B,=/var(S;) = np(i - p).
k=1
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Then
_ Sy —np
Mn () = E exp [m‘]
_nE exp[ _P ]
«/np(l— p)
= ex [__ﬁlj_t__][ + ex [____t—_.:l}n —1_
R Aol | L o el | A
_ _pt qt "
h [q exP( anq) T pexp (\/npq)]

[rese@)]

It follows from Lemma 6.5.1 that

272

M,(t) —> e asn —> 00,

and since e'/2 is the MGF of an A/(0, 1) RV, we have by the continuity theorem

S,,—— ] / 122
P 24t forallx € R.
12 <+| = 72

Example 2. Let X1, X3, ..., X, be iid x2(1) RVs. Then S, ~ x%(n), ES, = n,
and var(S,) = 2n. Also let Z, = (S, — n)/+/2n; then

M, (¢t) = Ee'Zn

= exp (—t\/—g) (1 — \/2_;—;)_”/2' 2 < +/2n,
= [exp (t\/g) - t‘/gexp (t\/g)]—"ﬂ’ t < %

Using Taylor’s approximation, we get

ex t\/2 —1+t‘/§+ﬁ \/—2'2+—1- 6, ‘/53
P n] n 2 n 6exp(,,) ! nl’
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where 0 < 0, < t/2/n. It follows that

where

2 32 2t
tn) = — a2 e il ~2-—-f— exp(6,) — 0 asn — 0o,
n 3V¥n . 3n

2

for every fixed t. We have from Lemma 6.5.1 that M, () — e!12 as n - oo for all

real ¢, and it follows that Z,, Lz , where Z is N (0, 1).

These examples suggest that if we take iid RVs with finite variance, and take
A, = ES,, B, = +/var(5,), then B,,"I(S,, — Ap) L Z, where Z is N'(0, 1). This
is the central limit result, which we now prove. The reader should note that in both
Examples 1 and 2, we used more than just the existence of E|X|?. Indeed, the MGF
exists and hence moments of all order exist. The existence of MGF is not a necessary
condition.

Theorem 1 (Lindeberg-Lévy Central Limit Theorem). Let {X,} be a se-
quence of iid RVs with 0 < var(X,) = 0? < oo and common mean u. Let
Sp=2i_1Xj,n=1,2,.... Then forevery x € R,

. Sp ~np L X—u 1 Toaen
,,1220”{ o f*}—n&w{;‘/—ﬁf"}“ﬁﬁ; au

Proof. The proof we give here assumes that the MGF of X, exists. Without loss
of generality, we also assume that EX, = 0 and var(X,) = 1. Let M be the MGF of
X,.. Then the MGF of S,,//n is given by

M, (t) = Eexp (%) = [M (ﬁ)]n

and
In Ma(r) = n In M(1//m) = 11&;%«@
_ L
-,

where L(t//n) = In M(t//n). Clearly, L(0) = In(1) = 0, so that as n — oo, the
conditions for L’Hospital’s rule are satisfied. It follows that

L' t
lim In M, () = lim Z8/YDE
n—00 n—00 Q/ﬁ
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and since L'(0) = EX = 0, we can use L'Hospital’s rule once again, to get

L'(¢t/ym)i* 12
——=3

lim In M, (t) = lim
n-—>o00 n—oo 2

using L”(0) = var(X) = 1. Thus
2
M, (t) — exp 3 =M(@)

where M (1) is the MGF of a M (0, 1) RV.

Remark 1. In the proof above we could have used the Taylor series expansion of
M to arrive at the same result.

Remark 2. Even though we proved Theorem 1 for the case when the MGF of
X,’s exists, we will use the result whenever 0 < EX? = 02 < 0o. The use of
CFs would have provided a complete proof of Theorem 1. Let ¢ be the CF of X,,.
Assuming again, without loss of generality, that EX,, = 0, var(X,) = 1, we can
write

o) =1 - 11 + 20(1).
Thus the CF of S,/ /n is

t\1" 1, 1 "
— =[1—-—t —o(l
[‘P (ﬁ)] [ 0t no( )]
which converges to exp(——t2 /2), which is the CF of a (0, 1) RV. The devil is in the
details of the proof.

The following converse to Theorem 1 holds.

Theorem 2. Let X1, X3, ..., X, be iid RVs such that n=1/2§, has the same dis-
tribution forevery n = 1,2, .... Then, if EX; = 0, var(X;) = 1, the distribution of
X; must be (0, 1).

Proof. Let F be the DF of n~1/2§,,. By the central limit theorem,

lim P{n~172S, < x} = ®(x).

n—o0

Also, P{n~1/25, < x} = F(x) for each n. It follows that we must have F(x) =
o (x).

Example 3. Let X1, X3, ... be iid RVs with common PMF

P{X =k} = p(1 — p)*, k=0,1,2,..., O0<p<1, g=1—p.
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Then EX = q/p, var(X) = q/pz. By Theorem 1 we see that

p{igf_;'l(ﬂp_)psx]—*¢(x) asn — ooforallx € R.

vng
Example 4. Let X1, X3, ... be iid RVs with common B(«, 8) distribution. Then
EX = s and var(X) = 2aﬂ .
o+ (a+B)+B+1)

By the corollary to Theorem 1, it follows that

Sp — nle/(@ + B)] L,
Vepn/l(@+ B+ D@ + B)%)

where Z is N (0, 1).

For nonidentically distributed RVs we state, without proof, the following result
due to Lindeberg.

Theorem 3. Let X, X5, ... be independent RVs with DFs Fi, F», ... , respec-
tively. Let E Xy = pi and var(Xy) = o2, and write

n
2 _ § : 2
S"— O']
j=1

If the F},’s are absolutely continuous with PDF fj, assume that the relation

n

1
@ im 5[ cmwdr =0
X —fLy | > &Sy

n—o00 S% =1

holds for all £ > 0. (A similar condition can be stated for the discrete case.) Then

"Xi—=-Y"
3) sr= == Z”Mﬂ$Z~Nmu

Sn

Condition (2) is known as the Lindeberg condition.

Feller [21] has shown that condition (2} is necessary as well in the following
sense. For independent RVs {X;} for which (3) holds and

Xi — EXkl > s\/\Zr_(?,J} — 0,

P{ max

1<k<n

(2) holds for every ¢ > 0.
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Example 5. Let X, X3, ... be independent RVs such that Xy is U(—ay, ax).

Then EX; = O, var(Xx) = (1/3)aZ. Suppose that |ax| < a and )} al - oo as
n — o0o. Then

1
SZZf 2fk(x)dx<s22: f aéz;dx

|x|>ss,, |x|>ss,.
2 n 2 n
a a var(Xy)
< ) PUXel > e} = 12
A Ry £“S
n k=1 n k=1 n
a2
= 53 -0 asn — 00.
£4s2

If Y3°a? < oo, then 52 1 A?, say, as n — oo. For fixed k, we can find & such
that ¢ A < ax and then P{|X| > &rs,} > P{|Xk| > €A} > 0. For n > k, we have

sz Z / sz

U 1x(> ks

2.2 n
§,&

> 2N PUX)| > ersa)
S5 i

> g2 P{|Xk| > &xsn)
>0,

so that the Lindeberg condition does not hold. Indeed, if Xy, X7, ... are indepen-
dent RVs such that there exists a constant A with P{|X,| < A} = 1 for all n, the
Lindeberg condition (2) is satisfied if s2 — oo as n — oo. To see this, suppose that
s,% —> 00. Since the X} s are uniformly bounded, so are the RVs X — E Xy. It follows
that for every ¢ > 0 we can find an N; such that forn > N, P{| Xy — EX}| < €5y,
k=1,2,...,n} = 1. The Lindeberg condition follows immediately. The converse
also holds, for if lim,,_, 5o s,f < oo and the Lindeberg condition holds, there exists a
constant A < oo such that s,% - A2, For any fixed j, we can find an ¢ > O such that
P{IX; — wjl > €A} > 0. Then, forn > j,

n
> Z [ e w2y P = el > o5
|X Hil>esn k=1
> e2P(|X; — pjl > £ A)
>0,

and the Lindeberg condition does not hold. This contradiction shows that s? — oo is
also a necessary condition; that is, for a sequence of uniformly bounded independent
RVs, a necessary and sufficient condition for the central limit theorem to hold is

52 > ooasn — oo.
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Example 6. Let X1, X2, ... be independent RVs such that o = E|X;|**? < 00
forsomed > 0anda; + a2+ -+ +a, = o(s,%‘“s). Then the Lindeberg condition
is satisfied, and the central limit theorem holds. This result is due to Lyapunov. We
have

1 n
22

n k=

1 S
f 2 fi(x)dx < = f [+ fie(x) dx
%0 j=1J-o

1 1x]>&8p

n
— Zk:l Ok -0

244

asn — 0o.
edsy

A similar argument applies in the discrete case.

Remark 3. Both the central limit theorem (CLT) and the (weak) law of large
numbers (WLLN) hold for a large class of sequences of RVs {X,,}. If the {X,,} are
independent uniformly bounded RVs, that is, if P{|X,| < M} = 1, the WLLN

(Theorem 6.3.1) holds; the CLT holds provided that s> — oo (Example 5).
If the RVs {X,,} are iid, then the CLT is a stronger result than the WLLN in that
the former provides an estimate of the probability P{|S, — nu{/n > €}. Indeed,

P(1S, — npl >ns}=P{'—%—:f:—“—' . gﬁ}
~1-p|izI < =V},
g

where Z is N (0, 1), and the law of large number follows. On the other hand, we note
that the WLLN does not require the existence of a second moment.

Remark 4. 1If {X,} are independent RVs, it is quite possible that the CLT may
apply to the X,’s, but not the WLLN.

Example 7 (Feller [22, p. 255]). Let { X} be independent RVs with PMF
PiXe=k)=P(Xx =k} =4 k=12...

Then E Xy = 0, var(X) = k?*. Also let A > 0; then

n n+1 1)2A+1
2 _ N2 o ng, ot _
Sn kzzl K= /0 YT TN

It follows thatif 0 < A < , s»/n — 0, and by Corollary 2 to Theorem 6.3.1, the
WLLN holds. Now k* < n*, so that the sum Y "¢_; 3", - s, X4 Pkt Will be nonzero
ifn* > es, =~ e[n**t1/2 ) /21 ¥ 1)). It follows that as long as n > (24 + 1)e 72,
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Z Z x%{[’klzo

k=1 |xy|>esp

§N| -

and the Lindeberg condition holds. Thus the CLT holds for A > 0. This means that

A+ 1 b ¢=1*/2 4y
Pla<., ———S,<b _—
[ 2)»+1 n } g /27[

, an*t1/2-1 S, bnit1/2-1 R /-b e—t2/2 0
2+ 1 n V2A+1 a

Thus

and the WLLN cannot hold for A %

We conclude this section with some remarks concerning the application of the

CLT. Let X;, X2, ... beiid RVs with common mean u and variance o2. Let us write
Zn = Sn — nle
on

and let zy, z2 be two arbitrary real numbers with 7, < zp. If F, is the DF of Z,, then

lim Plz1 < Z, <z3} = hm [Fn(zz) Fp(z1)]

n—o00
= —1- /‘22 e"'z/2 dt,
+/ 2n z1

that is,

1 (2
(4  dim Plyovitnp < Sy <znovntnu)=— | e 2dr
n—00 /271 2

It follows that the RV S, = Y ;_; X\ is asymptotically normally distributed (see
Section 7.5) with mean nu and variance no?. Equivalently, the RV n~15,, is asymp-
totically A (1, 02/n). This result is of great importance in statistics.

In Fig. 1 we show the distribution of X in sampling from P(A) and G(1, 1).
We have also superimposed, in each case, the graph of the corresponding normal
approximation.

How large should n be before we apply approximation (4)? Unfortunately, the an-
swer is not simple. Much depends on the underlying distribution, the corresponding
speed of convergence and the accuracy one desires. There is a vast amount of liter-
ature on the speed of convergence and error bounds. We will content ourselves with
some examples. The reader is referred to Rohatgi [88] for a detailed discussion.
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0.84
086
0.4
0.2
0 1 2 3 1 5 3
(a)
A
2 Approximation
Exact density
1
0 0.5 1 15 2

(b)

Fig. 1. (a) Distribution of X for Poisson RV with mean 3 and normal approximation;
(b) distribution of X for exponential RV with mean 1 and normal approximation.

In the discrete case when the underlying distribution is integer valued, approxi-
mation (4) is improved by applying the continuity correction. If X is integer valued,
then for integers x1, x3

P{x15X5x2}=P{x1—%<X<x2+-é-}
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which amounts to making the discrete space of values of X continuous by consider-
ing intervals of length 1 with midpoints at integers.

Example 8. Let Xy, X2,..., X, be iid b(1, p) RVs. Then ES, = np, and

var(S,) = np(1 — p), so (S, — np)/+/np(1 — p) is approximately N(@O, ).
Suppose thatn = 10, p = % Then from binomial tables, P(X < 4) = 0.3770.
Using normal approximation without continuity correction,

4-5
PX<4=~P (z < -—_) = P(Z < —0.63) = 0.2643.

V2.5
Applying continuity correction,
P(X <4) = P(X < 4.5) ~ P(Z < —0.32) = 0.3745.

Next suppose that n = 100, p = 0.1. Then from binomial tables P(X = 7) =
0.0889. Using normal approximation, without continuity correction,

PX=7=P60<X <80)= P(-133 <Z < —-0.67)
= 0.1596
and with continuity correction
P(X=7)=P6S5<X <75~ P(-1.17 < Z < —0.83)
= 0.0823

The rule of thumb is to use continuity correction, and normal approximation when-
ever np(1 — p) > 10, and Poisson approximation with A = np for p < 0.1, A < 10.

Example 9. Let X1, X2,... be iid P(A) RVs. Then §, has approximately an
N (nA, n)) distribution for large n. Let n = 64, A = 0.125. Then §, ~ P(8),
and from Poisson distribution tables, P(§, = 10) = 0.099. Using normal approxi-
mation,

P(S; =10)= P95 < 8, <105)~ P(0.53 < Z < 0.88)
= 0.1087.

Ifn =96, A =0.125,then S, ~ P(12) and
P(S, = 10) =0.105, exact,
P(S, = 10) = 0.1009, normal approximation.

PROBLEMS 6.6

1. Let {X,]} be a sequence of independent RVs with the following distributions. In
each case, does the Lindeberg condition hold?
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10.

11.
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(@ P{X,==x(1/2M}=35
(b) P{X, =21} =1/2"13 P{X, =0} =1 — (1/2"1?),
(©) P{X,==1}=(1—-2"")/2, P{X, = 27"} = 1/2"+],

(d) {X,} is a sequence of independent Poisson RVs with parameter A,, n =
1,2,...,suchthat > ;_; Ax > oo.

&) P{X,=+2"}=1.

. Let X1, X2, ... be iid RVs with mean 0, variance 1, and EX? < oo. Find the

limiting distribution of

XiX2+ XaXg+ -+ Xop- 1X2n
2 2,
X1 +X2 +X2n

an\/r—l

. Let Xy, X3, ... beiid RVs with mean « and variance o2, and let Y1,Y,,... be

iid RVs wiLh mean f (# 0) and variance 2. Find the limiting distribution of
Zy = /nXp —a)/Yn, where X, =n" ' Y1 X;and Y, =n" 1Y%, ¥,

. Let X ~ b(n,0). Use the CLT to find n such that Po{X > n/2} > 1 —a.In

particular, let @ = 0.10 and 8 = 0.45. Calculate n, satisfying P{X > n/2} >
0.90.

. Let X1, X2, ... be a sequence of iid RVs with common mean g and varlance

o?. Also, let x = n—l i Xpand 82 = (n — D)7 YL (X; — X)2. Show
that /n(X — p)/$ L 7, where Z ~ N, .

. Let X1, X2,..., X100 be iid RVs with mean 75 and variance 225. Use Cheby-

chev’s inequality to calculate the probability that the sample mean will not differ
from the. population mean by more than 6. Then use the CLT to calculate the
same probability, and compare your results.

. Let X1, X2,..., X100 be iid P(A) RVs, where A = 0.02. Let § = Syo0 =

2,122 X;. Use the central limit result to evaluate P{S > 3}, and compare your
result to the exact probability of the event S > 3.

. Let X, X2,..., Xg) be iid RVs with mean 54 and variance 225. Use Cheby-

chev’s inequality to find the possible difference between the sample mean and
the population mean with a probability of at least 0.75. Also use the CLT to do
the same.

. Use the CLT applied to a Poisson RV to show that lim,,, oo ™™ ZZ;{ )/ k! =

1for0 <t <1,=3ift=1,and0ifr > 1.

Let X, X3, ... be a sequence of iid RVs with mean ¢ and variance o2, and as-
sume that E X4 < 00. Write V,, = Zk 1 (Xe— /,L)2 Fmd the centering and norm-

ing constants A, and B, such that B, Ly, — A) L Z, where Z is N (0, 1).

From an um containing 10 identical balls numbered O through 9, » balls are
drawn with replacement.
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(a) What does the law of large numbers tell you about the appearance of 0’s in
the n drawings?

(b) How many drawings must be made in order that with probability at least
0.95, the relative frequency of the occurrence of 0’s will be between 0.09
and 0.117

(c) Use the CLT to find the probability that among the n numbers thus chosen,
the number 5 will appear between (n — 3./n)/10 and (n + 3./n)/10 times
(inclusive) if (i) n = 285, and @i) n = 100.

12. Let X1, X2,... , X, be iid RVs with EX; = O and EX? = 02 < 00. Let X =
3 i_1 Xi/n, and for any positive real number ¢, let P, , = P{X > ¢}. Show that

c V2.2
Pn,s%"_ ene/2cr

e/n 2m

asn — o0,

[Hint: Use (5.3.61).]



CHAPTER7

Sample Moments and
Their Distributions

7.1 INTRODUCTION

In the preceding chapters we discussed fundamental ideas and techniques of prob-
ability theory. In this development we created a mathematical model of a random
experiment by associating with it a sample space in which random events corre-
spond to sets of a certain o-field. The notion of probability defined on this o-field
corresponds to the notion of uncertainty in the outcome on any performance of the
random experiment.

In this chapter we begin the study of some problems of mathematical statistics.
The methods of probability theory learned in preceding chapters are used extensively
in this study. Suppose that we seek information about some numerical characteristics
of a collection of elements, called a population. For reasons of time or cost we may
not wish or be able to study each element of the population. Our object is to draw
conclusions about the unknown population characteristics on the basis of information
on some characteristics of a suitably selected sample. Formally, let X be a random
variable that describes the population under investigation, and let F' be the DF of X.
There are two possibilities. Either X has a DF Fyg with a known functional form
(except perhaps for the parameter 8, which may be a vector), or X has a DF F about
which we know nothing (except perhaps that F is, say, absolutely continuous). In the
former case let ® be the set of possible values of the unknown parameter 6. Then
the job of a statistician is to decide on the basis of a suitably selected sample which
member or members of the family {Fg, # € ®} can represent the DF of X. Problems
of this type, called problems of parametric statistical inference, are the subject of
investigation in Chapters 8 through 12. The case in which nothing is known about the
functional form of the DF F of X is clearly much more difficult. Inference problems
of this type fall into the domain of nonparametric statistics and are discussed in
Chapter 13.

To be sure, the scope of statistical methods is much wider than the statistical infer-
ence problems discussed in this book. Statisticians, for example, deal with problems

306
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of planning and designing experiments, of collecting information, and of deciding
how best the collected information should be used. However, here we concern our-
selves only with the best methods of making inferences about probability distribu-
tions.

In Section 7.2 we introduce the notions of a (simple) random sample and sample
statistics. In Section 7.3 we study sample moments and their exact distributions, and
in Section 7.5 we consider their large-sample approximations. In Section 7.4 we con-
sider some important distributions that arise in sampling from a normal population.
Sections 7.6 and 7.7 are devoted to the study of sampling from univariate and bivari-
ate normal distributions.

7.2 RANDOM SAMPLING

Consider a statistical experiment that culminates in outcomes x, which are the values
assumed by an RV X. Let F be the DF of X. In practice, F will not be completely
known; that is, one or more parameters associated with F will be unknown. The
job of a statistician is to estimate these unknown parameters or to test the validity
of certain statements about them. She can obtain n independent observations on
X. This means that she observes n values xi, x2, ..., x, assumed by the RV X.
Each x; can be regarded as the value assumed by an RV X;, i = 1,2,...,n,
where X1, X3,..., X, are independent RVs with common DF F. The observed
values (xj,x2,...,X,) are then values assumed by (Xi, X»,..., X,). The set
{X1, X2, ..., Xn} is then a sample of size n taken from a population distribution
F. The set of n values x1, x2, ... , X, is called a realization of the sample. Note that
the possible values of the RV (X1, X3, ..., X,) can be regarded as points in R,,
which may be called the sample space. In practice one observes not x1, x2, ... , X,
but some function f(x1,x3, ..., x,). Then f(xy,x2,...,x,) are values assumed
by the RV f(X1, X2,..., Xn).
Let us now formalize these concepts.

Definition 1. Let X be an RV withDF F, and let X1, X3, ..., X, beiid RVs with
common DF F. Then the collection Xy, X3, ..., X, is known as a random sample
of size n from the DF F or simply as n independent observations on X.

If X1, X3, ..., X, is a random sample from F, their joint DF is given by
) n
(1) F*(xi,x2, ..., %) = [ | F@x).
i=1
Definition 2. Let X, X5, ..., X, be n independent observations on an RV X,

and let f: R, — Rt be a Borel-measurable function. Then the RV f(Xy, Xo,...,
X,) is called a (sample) statistic provided that it is not a function of any unknown
parameter(s).
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Two of the most commonly used statistics are defined as follows.

Definition 3. Let X, X, ..., X, be a random sample from a distribution func-
tion F. Then the statistic
n
— X;

) X=nls, =) =

b— p

i=1
is called the sample mean, and the statistic

T2 2_ %2
3 o Z Xi—X)? _ Yi.Xi—nX
n—1 n—1

1

is called the sample variance, and § is called the sample standard deviation.

Remark 1. Whenever the word sample is used subsequently, it will mean ran-
dom sample.

Remark 2. Sampling from a probability distribution (Definition 1) is sometimes
referred to as sampling from an infinite population since one can obtain samples of
any size one desires even if the population is finite (by sampling with replacement).

Remark 3. In sampling without replacement from a finite population, the inde-
pendence condition of Definition 1 is not satisfied. Suppose that a sample of size 2 is
taken from a finite population (a1, az, . . . , ay) without replacement. Let X; be the
outcome on the ith draw. Then P{X| = aq;} = 1/N, P{Xo = a2 | X1 = a1} =
1/(N = 1), and P{X7 = a2 | X1 = a3} = 0. Thus the PMF of X7 depends on
the outcome of the first draw (that is, on the value of X;), and X and X are not
independent. Note, however, that

N
P{Xs=a} =) P{X;=aj}P{X2=a | a;}

j=1
1
= ZP{X] =aqj}P{Xs=a3 | a;} = N’
J#2
and X, 4 X3. A similar argument can be used to show that X, X5, ..., X, all
have the same distribution but they are not independent. In fact, Xy, X, ..., X, are

exchangeable RVs. Sampling without replacement from a finite population is often
referred to as simple random sampling.

Remark 4. 1t should be remembered that sample statistics :X'—, 52 (and others that
we will define later) are random variables, while the population parameters y, o2,
and so on, are fixed constants that may be unknown.
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Remark 5. In (3) we divide by n — 1 rather than n. The reason for this will
become clear in the next section.

Remark 6. Other frequently occurring examples of statistics are sample order
statistics X (1), X(2), . - . , X(n) and their functions, as well as sample moments, which
will be studied in the next section.

Example 1. Let X ~ b(1, p), where p is possibly unknown. The DF of X is
given by

F(x) = pe(x — 1)+ (1 — ple(x), x €R.

Suppose that five independent observationson X are 0, 1, 1,1,0. Then O, 1, 1, 1,
0 is a realization of the sample X, X», ... , X5. The sample mean is

O+1+1+14+0

0.6,
5

X =

which is the value assumed by the RV X. The sample variance is

5 2 2 2
2 (xi —x)°  2(0.6)°+3(0.4)"
s—iil e = 0.3,

4

which is the value assumed by the RV S2. Also s = +/0.3 = 0.55.

Example 2. Let X ~ N(u,0?), where p is known but o2 is unknown. Let
Xy, X2,...,X, be a sample from N (u, o2). Then, according to our definition,
3%, X:i/o? is not a statistic.

Suppose that five observations on X are —0.864, 0.561, 2.355, 0.582, —0.774.
Then the sample mean is 0.372, and the sample variance is 1.648.

PROBLEMS 7.2

1. Let X bea b(], %) RV, and consider all possible random samples of size 3 on X.
Compute X and $? for each of the eight samples, and also compute the PMFs of
X and S2.

2. A die is rolled. Let X be the face value that tums up, and X, X be two inde-
pendent observations on X. Compute the PMF of X.

3. Let X1, X1,..., Xp be a sample from some population. Show that

— —1
max |X; — X| < (—n———)'—g-
I<i<n N
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unless either all the n observations are equal or exactly n — 1 of the X;’s are
equal. (Samuelson [97])

4. Let x1, x2, ... , X, be real numbers, and let x(;y = max{xy, x2,..., xn}, X1y =
min{x;, x2, ... , X,}. Show that for any set of real numbers ay, a, ... , a, such
that 37, a; = 0, the following inequality holds:

n
D aixi
i=1 i

S. For any set of real numbers x1, x7, ... , X,, show that the fraction of xi, x2, ... , x,
included in the interval (X — ks, X + ks) fork > lisatleast I — 1/ k%. Here
is the mean and s the standard deviation of x’s.

n
< 3 (xw — x) ) _ lail.
i=1

7.3 SAMPLE CHARACTERISTICS AND THEIR DISTRIBUTIONS

Let X1, X3, ... , X, be a sample from a population DF F. In this section we consider
some commonly used sample characteristics and their distributions.

Definition 1. Let F,(x) = nt ZLI £(x — X;). Then nF;; (x) is the number of
Xi's (1 < k < n)thatare < x. F;(x) is called the sample (or empirical) distribution
Sunction.

We note that 0 < F,*(x) < 1 for all x, and moreover, that F; is right continuous,
nondecreasing, and F,(—o0) = 0, F,y(co) = 1. Thus F;} is a DF.
If Xy, X2y, - .+ » X(n) is the order statistic for Xy, X3, ... , X, then clearly

0 ifx <X
k

M Fix) = - if Xgy < x < X@+1) *k=12,...,.n—-1
1 ifx > X@y-

For fixed but otherwise arbitrary x € R, F,; (x) itself is an RV of the discrete type.
The following result is immediate.

Theorem 1. The RV F;(x) has the probability function

@ P {F:m = ﬁ} = (’;)[F(x)lfn —-F@I"J,  j=0,1,....n,
with mean
3) EF}(x) = F(x)

and variance



SAMPLE CHARACTERISTICS AND THEIR DISTRIBUTIONS 311

) var(F} (x)) = fﬂl_nﬂ_)l

Proof. Sincee(x — X;), j =1,2,...,n,areiid RVs, each with PMF
Plex - X;)=1}=Px—-X; 20} = F(x)
and
Ple(x - Xj)=0}=1- F(x),

their sum n F,’ (x) is a b(n, p) RV, where p = F(x). Relations (2), (3), and (4) follow
immediately.

Corollary 1. Foreach x € R,
N P
F,(x) - F(x) asn — 00.

Corollary 2. Foreach x € R,

VALE®) — F)] 1
FOO = F)]

Z asn — 00,

where Z is N (0, 1).

Corollary 1 follows from the WLLN and Corollary 2 from the CLT. The con-
vergence in Corollary 1 is for each value of x. It is possible to make a probability
statement simultaneously for all x. We state the result without proof.

Theorem 2 (Glivenko—Cantelli Theorem). F,(x) converges uniformly to
F(x), thatis, fore > 0,

lim P sup  |F(x)— F(x)| > 8} =0.

n—0o l—oo<x<oo

For a proof of Theorem 2, we refer to Fisz {28, p. 391].

We next consider some typical values of the DF F (x), called sample statistics.
Since F,(x) has jump points X;, j = 1,2,...,n, it is clear that all moments of
F(x) exist. Let us write

) a=n"Y xt
i=1

for the moment of order k about 0. Here g, will be called the sample moment of
order k. In this notation
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n
©) al——-n'lZij_f.
i=1

The sample central moment is defined by

n
©) be=n""Y (Xj—a)=n""
e 4

n ——
(X; - X)*.
J =1

Clearly,

n—1

by=0 and by = s2.

As mentioned eatlier, we do not call by the sample variance. $2 will be referred to as
the sample variance, for reasons that will subsequently become clear. We have

8) by =ap — (112.

For the MGF of DF F;; (x), we have

9) M*(@t) =n! Ze’xf,

j=1

Similar definitions are made for sample moments of bivariate and multivariate
distributions. For example, if (X1, Y1), (X2, Y2), ..., (Xn, ¥») is a sample from a
bivariate distribution, we write

n n
(10) X=n1Y X;, and Y=n"'>"y;

for the two sample means, and for the second-order sample central moments we write

n n
(11) bo=n"'Y (X;=%X)?, bp=n"') (¥;-¥)? and
j=1 j=1

n
bu=n""Y (X;-X)¥; - ).
j=1
Once again we write
n _ n _
Jj=1 j=1
for the two sample variances, and for the sample covariances we use the quantity

(13) Sn=0m-D""Y X; -X)¥; - 7).
j=1
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In particular, the sample correlation coefficient is defined by

(14) R = = —

It can be shown (Problem 4) that |R| < 1; the extreme values 1 can occur only
when all sample points (X1, Y1), ... , (X5, ¥,,) lie on a straight line.
The sample quantiles are defined in a similar manner. Thus, if 0 < p < 1, the

sample quantile of order p, denoted by Z,, is the order statistic X, where

np if np is an integer,

r =

[np + 1] if np is not an integer.
As usual, [x] is the largest integer < x. Note that if np is an integer, we can take any
value between X (,p) and X np)+1 as the pth sample quantile. Thus, if p = % andn is
even, we can take any value between X (,/2) and X (,/2).+1, the two middle values, as

the median. It is customary to take the average. Thus the sample median is defined
as

X((n+1)/2) if n is odd,
(15) Zyp=1X X
/ (#/2) +2 (/2 +1) if n is even.
Note that
n n+1
2 i1]-
[2 + 2
if n is odd.

Example 1. A random sample of 25 observations is taken from the interval (0,1):

050 024 089 054 034 089 092 0.17 032 0.80
006 021 058 0.07 056 020 031 0.17 041 0.38
0.88 0.61 035 0.06 0.90

In order to compute F2*5, the first step is to order the observations from smallest to
largest. The ordered sample is

0.06, 0.06, 0.07, 0.17, 0.17, 0.20, 0.21, 0.24, 0.31, 0.32,
0.34, 035, 0.38, 041, 050, 0.54, 0.56, 0.58, 0.61, 0.80,
0.88, 0.89, 0.89, 090, 092

Then the empirical DF is given by



314 SAMPLE MOMENTS AND THEIR DISTRIBUTIONS

14 -
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Fig. 1. Empirical DF for data of Example 1.

0, x < 0.06
2725, 0.06 <x <0.07
3/25, 007 <x <0.17
F2*5(x) — 5/25, 0.17<x< 0.20

24725, 090 <x <0.92
1, x > 0.92

A plot of FJ5 is shown in Fig. 1. The sample mean and variance are
X =045 s2=0084, and s=0.29.

Also, sample median is the 13th observation in the ordered sample, namely, z1/2 =
0.38, and if p = 0.2, then np = Sand z 7 = 0.17.

Next we consider the moments of sample characteristics. In the following we
write EX*¥ = my and E(X — p)* = py for the kth-order population moments.
Whenever we use my (or ), it will be assumed to exist. Also, a? represents the
population variance.

Theorem 3. Let Xy, X3,..., X, be a sample from a population with DF F.
Then
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(16) EX = u,
_— (72
an var(X) = —,
n
3 m3+3m— Dmyp+ (n — D(n — 2)p3
18) EX)? = — ,
and

ma +4(n — Dmap + 6(n — )(n — Dmau® + 3(n — Hm3
n3
+m—nm—?m—$w_
n

(19 EX)* =

Proof. In view of Theorems 4.5.3 and 4.5.7, it suffices to prove (18) and (19).
We have

(}ix,) Zx3+32x2xk+ 3 XiXeXi,
Jj=1

ik Ak

and (18) follows. Similarly,

7k A

n

DSXP+4Y X X[ 43) XIXZ+6 ) XIX;X;

i=1 ik 7k i#j Ak

+ ) XiX;XeXi,
i EkAL

(§Xi)4 (121 )(Zx3+3§:xzxk+ > XijX,)

and (19) follows.

Theorem 4. For the third and fourth central moments of X, we have

20) w® =2,
and
— —Du2
1) na(X) = 24 +35"——3)ﬁ.
n n
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Proof. 'We have
1 n }
3 =2 3
usX) = EX - p)’ = —E [;”"’ - u)]
1 n
= ;;E(X,- —w?= %2—
and
1 i 4
T2 72 4
ua®) = EX - = < E [;(Xi - u)]

1 & 4\ 1
=2 EXi—-wt+ (2) = 2 Bl — (X — )]
i=1 i<j
pa  3m—1)
et T M

Theorem 5. For the moments of by, we have

_ 2
2) EGy = 07,
pa—pud 2(pma—2u3)  pa—3u3
n n n
—1 -2
24) B = B2y,
and
_ 2 _ _ -
25) E(bs) = (n—1)@n 3n+3) s+ 3(n — 1)2nr —3) IL%-

n3 n3

1

1 n _
=—E [2 (X — )’ —n(X - u)2]
i=1

n—1
a2

= —(naz—oz) =
n n
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Now

n 2
n’b} = [Z(Xi —w? —n(X - u)z] :

i=1

Writing ¥; = X; — u, we see that EY; =0, var(Y;) = 02, and EY;' = us. We have
n 2
n’Eb2 = E (Z Y2 — n?z)
1
< 4 2v2 2 2v2 - 4
=E|Y Y+ v} - Y v2y +ZIY]-
J_—.

i=1 iA) oy
1 202, N\ pd
i#]

It follows that
2552 4_2 4 1 4
n“Eby = np4 +nn — 1)o” — ;[n(n = Do” +nual + ;2-[371(" — Do™ +nu4l
1 3 2 2
= n—2+; 4+ n—2+; (n—Dp;  (u2=0%).

Therefore,

var(by) = Eb} — (Eby)?
1 3\ u3 —1\?
=(n——2+——)-‘%+(n—l)(n—2+—)ﬁ%—(n )u,%
n n n n n

1 2
=(n—2+—)‘—"§+(n-1)(3—n)’-‘72,
n n n

as asserted.
Relations (24) and (25) can be proved similarly.

Corollary 1. ES? = o2

This is precisely the reason why we call $2, and not b, the sample variance.

3—-n ,

Corollary 2. var(Sz) = Laed + —u;.
n nn —1)

Remark 1. The results of Theorems 3 to 5 can easily be modified and stated for
the case when the X;’s are exchangeable RVs. Thus (16) holds and (17) has to be



318 SAMPLE MOMENTS AND THEIR DISTRIBUTIONS

modified to

2

_ _1
a7) var(X) = = + = 2
n

po

where p is the correlation coefficient between X; and X ;. The expressions for
(ZX;)? and (ZX;)* in the proof of Theorem 3 still hold, but both (18) and (19)
need appropriate modification. For example, (18) changes to

m3 +3(n — DEX3Xy) + (n = D(n — D E(X; Xe X))

(18)  EX = h
n

Let us show how Corollary 1 changes for exchangeable RVs. Clearly,
n —
(=18 =3 (X; —w)?* —n(X — )’
i=1
so that
(n—1ES? =no? —nEX — p)?
=no? — [02 + (n— l)paz] .
in view of (17'). It follows that
ES? =021 — p).

We note that E(S? — 02) = —po?, and moreover, from Problem 4.5.19 [or from
(17")] we note that p > —1/(n — 1), so that 1 — p < n/(n — 1), and hence

0<ES?< - o

Remark 2. In simple random sampling from a (finite) population of size N, we
note that when n = N, X = u, which is a constant, so that (17') reduces to

so that p = —1/(N — 1). It follows that

2

2
a7 var(X) = 2~ (1 -
n

n—1>_N~—ncr
N—-1/ N-1n"

The factor (N —n)/(N — 1) in (17") is called the finite population correction factor.
As N — oo, with n fixed, (N —n)/(N — 1) — 1, so that the expression from var(X)
in (17") approaches that in (17).
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The following result provides a justification for our definition of sample covari-
ance.

Theorem 6. Let (X1, Y1), (X2, Y2),...,(X,, Y,) be a sample from a bivariate
population with variances 012, a:,:_z and covariance poy03. Then

(26) ES? =0}, ES?=02, and ESy =po1oy,
where S2, 2, and S are defined in (12) and (13).

Proof. It follows from Corollary 1 to Theorem 5 that £ Sl2 = 012 and E S% = 022.
To prove that ES11 = poy07, we note that X; is independent of X;(i # j) and
Y; (i # j). We have

(n—1ES; =E [Z(X,- - X)(Y; - 'Y")] .

j=

Now

- - 1Y; X, XX %Y
E[(Xj-—X)(Yj_Y)]:E[XjYi—XjZ:l ’~YiZIn Ly :,zZY]]

= E(XY) — ;ll-[E(XY) +(n—1DEXEY]— ;11-[E(XY) +(n—-1)EXEY]
+ n~17[nE(XY) +n(n — DEXEY])
n—1

= [E(XY) - EXEY]
n

and it follows that

n—

(n—DES1=n 1[E(XY)—EXEY],

n

that is,
ES)1 = E(XY)— EXEY =cov(X, Y) = poyoz,
as asserted.

We next turn our attention to the distributions of sample characteristics. Several
possibilities exist. If the exact sampling distribution is required, the method of trans-
formation described in Section 4.4 can be used. Sometimes the technique of MGF or
CF can be applied. Thus, if Xy, X5, ..., X, is a random sample from a population
distribution for which the MGF exists, the MGF of the sample mean X is given by
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o e fleen ()]

i=\

where M is the MGF of the population distribution. If M(¢) has one of the known
forms, it is possible to write the PDF of X. Although this method has the obvious
drawback that it applies only to distributions for which all moments exist, we will
see in Section 7.6 its effectiveness in the important case of sampling from a normal
population where this condition is satisfied. An analog of (27) holds for CFs without
any condition on existence of moments. Indeed,

@ oxtr == o (1)
j=1

where ¢ is the CF of X ;.

Example 2. Let Xy, X2,..., X, be a sample from a G(a, 1) distribution. We
will compute the PDF of X. We have

Mx(t) = M(i)n————l——— Lo
x(t) = n)] (A —t/n)er’ n

so that X is a G(an, 1/n) variate.

Example 3. Let X1, X3, ..., X, be arandom sample from a uniform distribution
on (0, 1). Consider the geometric mean

n I/n
Y, = (HX,') .
i=1

Wehave log Y, = (1/n) ZL] log X;, so that log ¥, is the mean of log X1, ... ,log X,.
The common PDF of log X, ... ,log X, is

x ifx <0,

e
0 otherwise,

f(x)={

which is the negative exponential distribution with parameter 8 = 1. We see that the
MGF of log Y, is given by

1

n
— tlog Xi/n __
M) =[] Ee asom

i=1

and the PDF of log ¥, is given by
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n

n
fr) = 1T

0, otherwise.

(—x)"~lenx, -0 <x <0,

It follows that ¥,, has PDF

n

n
fra) =T

0, otherwise.

y* 1~ log y)*1, 0<y<1i,

Example 4 (Hogben [43]). Let X, X2,...,X, be a random sample from
a Bemoulli distribution with parameter p, 0 < p < 1. Let X be the sam-
ple mean and $2 the sample variance. We will find the PMF of S2. Note that
Sp=Y " 1 Xi =Y "1 X? and that S,, is b(n, p). Since

(n—1)8% = }:x,? —n(X)?
i=1

_ =S

n

52 only assumes values of the form

fo Moo D) i=0,1,2,...,[3],

T natn—-1) 2
where [x] is the largest integer < x. Thus
P(S® =1} = P{nSy — SE=i(n — )} = P{ (5 ) (i ")2
=t} = P{nS, s =i(n— i} = ,,—2 —z—-i

=P{Sy=iorS,=n—1i}

= (’i')p‘(l it (’i’)p"—"u - py

AN ier g1 2 a2 . _[n
—(i)P(l pHA = p)* ™ + p" ], z<[2].

If n is even, n = 2m, say, where m > 0 is an integer, and i = m, then

2 _ m _ 2m m _ m
P{S ”2(2m—1)]“2(m)” 4-n

In particular, if n = 7, $2 = 0, 4, 5, and 2 with probabilities {p” + (1 — p)},

Tp(1—p){p>+(1—p)3}, 21 p2(1—p)*{p>+(1-p)3}, and 35p3(1 - p)?, respectively.
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Ifn = 6, then $? = 0, §, %, and ; with probabilities {p® + (1 — p)®}, 6p(1 —
{p* + (1 = p)*), 15p%(1 — p)*{p? + (1 — p)?}, and 40p>(1 — p)3, respectively.

We have already considered the distribution of the sample quantiles in Section 4.7
and the distribution of range X () — X (1) in Example 4.7 4. It can be shown without
much difficulty that the distribution of the sample median is given by

n! r—Iry = RO o nl
TH O = FOIT 0y ifr =T

29 frn=
where F and f are the population DF and PDF, respectively. If n = 2m and the
median is taken as the average of Xy and X (1), then

2(2m)!

30 fin= - DIE

f [FQy —o)I™ '[1 = FO)1"' f2y — v) f(v) dv.
y

Example 5. Let Xy, X3, ..., X, be a random sample from U (0, 1). Then the
integrand in (30) is positive for the intersection of the regions 0 < 2y — v < 1 and
0<v<l1lThisgivesv/2 <y < (v+ 1)/2,y < v,and 0 < v < 1. The shaded
area in Fig. 2 gives the limits on the integral as

y<v<?ly if0<y§%,

and
y<uv<l if%<y<1.

0¥ i P -
0 ! ] y

Fig.2. (y<v<2y.0<y<iandy<v<l,j<y<l})
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In particular, if m = 2, the PDF of the median, (X(2) + X(3))/2, is given by

8y2(3 — 4y) if0<y<$,
H()=18@y* -9 +6y—1) iff<y<l,
0 otherwise.

In Section 7.5 we study large-sample theory techniques to approximate distribu-
tions of sample statistics when r is large.

PROBLEMS 7.3

1. Let Xy, X3, ..., X,; be random sample from a DF F, and let F,f (x) be the sam-
ple distribution function. Find cov(F,(x), F,} (y)) for fixed real numbers x, y.

2. Let F;} be the empirical DF of a random sample from DF F. Show that

1
— forall e > O.

>3l <2

3. For the data of Example 7.2.2, compute the sample distribution function.

{IF*(X) — F(x)|

4. (a) Show that the sample correlation coefficient R satisfies | R} < 1 with equal-
ity if and only if all sample points lie on a straight line.
(b) If we write U; = aX; + b (a # 0)and V; = cY; +d (c # 0), what is the
sample correlation coefficient between the U’s and the V’s?
5. (a) A sample of size 2 is taken from the PDF f(x) = 1,0 <x < l,and = 0
otherwise. Find P(X > 0.9).
(b) A sample of size 2 is taken from b(1, p). Find (i) P(X < p), and (ii)
P(5%2 > 0.5).

6. Let X1, X2,..., X, Ee arandom sample from A (u, orz). Compute the first four
sample moments of X about the origin and about the mean. Also compute the
first four sample moments of $% about the mean.

7. Derive the PDF of the median given in (29) and (30).
8. Let Uy, U, ... , Uwy be the order statistics of a sample size n from U (0, 1).
Compute E U(",) for any 1 < r < n and integer k (> 0). In particular, show that

rin—r+1)
n+D2n+2)

EUg = p il and var(Ugy) =

+1

Show also that the correlation coefficient between Uy and U, for 1 < r <
s <nisgivenby [r(n —s + 1)/s(n —r + 1)}'/2.



324 SAMPLE MOMENTS AND THEIR DISTRIBUTIONS

9. Let X1, X3,..., X, be n independent observations on X. Find the sampling
distribution of X, the sample mean, if (a) X ~ P(4), (b) X ~ C(1,0), and
©) X ~ x*(m).

10. Let Xy, X5, ... , X, be arandom sample from G (o, 8). Let us write ¥, = (X —
af)/BJajn,n=1,2,....

(a) Compute the first four moments of ¥,,, and compare them with the first four
moments of the standard normal distribution.

(b) Compute the coefficients of skewness «3 and of kurtosis o4 for the RVs Y,,.
(For definitions of a3, a4, see Problem 3.2.10.)

11. Let X, X5, ..., X, be a random sample from U[0, 1). Also let Z, = (X —
0.5)/4/1/12n. Repeat Problem 10 for the sequence Z,.

12. Let X1, qu. ., Xpbea ra_rldom sample from P (X). Find var(Sz), and compare
it with var(X). Note that EX = A = ES2. (Hint: Use Problem 3.2.9.)

13. Prove (24) and (25).

14. Multiple RVs X1, X3, ... , X, are exchangeable if the n! permutations (X;,, X,,

., X, ) have the same multidimensional distribution. Consider the special case

when X’s are two-dimensional. Find an analog of Theorem 6 for exchangeable
bivariate RVs (X1, Y1), (X2, Y2), ..., (Xn, ¥Ya).

7.4 CHI-SQUARE, ¢-, AND F-DISTRIBUTIONS: EXACT
SAMPLING DISTRIBUTIONS

In this section we investigate certain distributions that arise in sampling from a nor-
mal population. Let X1, X2, ... , X, be a sample from A (i, 02). Then we know that
X ~ N, 0%/n). Also, {/n (X — u)/o}? is x2(1). We determine the distribution
of 52 in the next section. Here we define mainly chi-square, t-, and F-distributions
and study their properties. Their importance will become evident in the next section
and later in the testing of statistical hypotheses (Chapter 10).

The first distribution of interest is the chi-square distribution, defined in Chapter 5
as a special case of the gamma distribution. Let n > 0 be an integer. Then G (r/2, 2)
is a x2(n) RV. In view of Theorem 5.3.29 and Corollary 2 to Theorem 5.3.4, the
following result holds.

Theorem 1. Let X1, X, ..., X, be iid RVs, and let S, = Y ;_; X¢. Then

@) Sn~ x%(n) & X1 ~ x2(1), and

®) X1 ~NO, 1) =Y X7~ x*(n).
k=1
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If X has a chi-square distribution with n d.f., we write X ~ x%(n). We recall that
if X ~ x%(n), its PDF is given by

xn/Z—le—x/Z
—_—————— ifx >0,
H fx) =13 2"2r(n/2)
0 ifx <0,
the MGF by
) M@ =(1-20"2  fort <},
and the mean and the variance by
3) EX =n, and var(X)=2n.

The x2(n) distribution is tabulated for values of n = 1,2, .. .. Tables usually go
up to n = 30, since for n > 30 it is possible to use normal approximation. In Fig. 1
we plot the PDF (1) for selected values of n.

We will write x,f,a for the upper a percent point of the x2(n) distribution, that is,

@ PIX*(m) > x2 )} =c.

Table ST3 at the end of the book gives the values of x,%, « for some selected values of
nand o,

0 10 20 30 40 50 60 70

Fig. 1. Chi-square densities.
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Example 1. 1.etn = 25. Then, from Table ST3,
P{x2(25) < 34.382} = 0.90.

Let us approximate this probability using CLT. We see that Ex2(25) = 25,
var x2(25) = 50, so that

x2(25) = 25 . 34382-25
V5O T 52

~ P{Z < 1.32}

= 0.9066.

P{x%*(25) < 34.382} = P {

Definition 1. Let X, X5, ..., X, be independent normal RVs with EX; = u;
and var(X;) = 02,i = 1,2,... ,n. Also, let ¥ = Y"_, X?/02. The RV Y is said
to be a noncentral chi-square RV with noncentrality parameter y ;. , p,iz /o2 and n
d.f. We will write ¥ ~ x2(n, 8), where 8 = 31, u?/o2.

Although the PDF of a xz(n, 8) RV is hard to compute (see Problem 16), its MGF
is easily evaluated. We have

n
M(t) = E¢ T X" — T Ee X0/,
1

where X; ~ N(u;i, 0%). Thus

2
EetX,'z/a'z - [oo 1 exp [:t_x’_ — Su)_z_:l dx;,

oo 027 o? 202

where the integral exists for t < % In the integrand we complete squares, and after
some simple algebra we obtain

1 tp,z 1
E IX?/GZ — ] , t -
¢ N rhiad PE T =2
It follows that
_ t Y 1
M@) =1 —21)"/? L, t < -,
) 0 =(1-2) exp(l_% 3 ) <3

and the MGF of a xz(n, &) RV is therefore

(6) M@) = (1-20""2exp (1 _tzta) , < %
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It is immediate that if Y1, Ys,..., Y are independent, ¥; ~ x%(n;,8;), i =
1,2,...,k, then YX_ Vi is x2(X5 ni, T8 80).
The mean and variance of x2(n, 8) are easy to calculate. We have

_ YTEX?  Yilvar(Xi) + (EX)H
T e T o?
no® + 30w _

EY

and

i=1 i=1

1 n n
== [ EX} - Z;[E(Xf)]z]
[ Bo?* +602u? + uh — Z(cr2 + M?)z]

= 1 (2no4 +4UZZ/L,-2) =2n +44.

We next turn our attention to Student’s t-statistic, which arises quite naturally in
sampling from a normal population.

Definition 2. Let X ~ N (0, 1)and ¥ ~ xz(n), and let X and Y be independent.
Then the statistic

X
JY/n

is said to have a t-distribution with n d.f. and we write T ~ t(n).

Q) T =

Theorem 2. The PDF of T defined in (7) is given by

Tl(n + 1)/2]
T (n/2)/nm

The proof is left as an exercise.

1+ t2/n)_(”+1)/2, —-00 < t < 00.

(®) fa(t) =

Remark ]. Forn = 1, T is a Cauchy RV. We will therefore assume that n > 1.
For each n, we have a different PDF. In Fig. 2 we plot f,,{t) for some selected values
of n. Like the normal distribution, the ¢-distribution is important in the theory of
statistics and hence is tabulated (Table ST4).
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10 5 0 5 10

Fig. 2. Student’s t-densities.

Remark 2. The PDF f,(t) is symmetric in ¢, and f,(t) — Oast — +oo0.
For large n, the ¢-distribution is close to the normal distribution. Indeed, (1 +
2/n)~ /2 e~/2 as n — 00. Moreover, as t — o0 or t —> —00, the tails of
fn(t) = 0 much more slowly than do the tails of the A'(0, 1) PDF. Thus for small n
and large fp,

P{IT] > o} = P{|Z| > 1}, Z~NQ@O1D;

that is, there is more probability in the tail of the r-distribution than in the tail of the
standard normal. In what follows we write £, o /2 for the value (Fig. 3) of T for which

) P{T| > thas2} = .

In Table ST4 positive values of ¢, , are tabulated for selected values of » and «.
Negative values may be obtained from symmetry, t; 1o = —tnq.

Example 2. Let n = 5. Then from Table ST4, we get f50025 = 2.571 and
15,005 = 2.015. The corresponding values under the N(0, 1) distribution are zg 025 =
1.96 and zg 95 = 1.65. For n = 30,

130,005 = 1.697 and 20.05 = 1.65.

Theorem 3. Let X ~ t(n),n > 1. Then EX" exists for r < n. In particular, if
r < nisodd,

(10 EX" =0,
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tn)

al2 al2

o

—th ai2 tn, ar2

Fig. 3.

and if r < n is even,

s _ 2Ll + /20 —1)/2)

(11) EX T(1/2)T(n/2)

Corollary. If n > 2, EX = 0 and EX? = var(X) = n/(n — 2).

Remark 3. If in Definition 2 we take X ~ N (i1, 02), Y/0? ~ x%(n), and X and
Y independent,

X
JY/n

is said to have a noncentral t-distribution with parameter (also called noncentrality
parameter) 8 = p/o and d.f. n. Various moments of noncentral ¢-distribution may
be computed by using the fact that expectation of a product of independent-RVs is
the product of their expectations.

T =

We leave the reader to show (Problem 3) that if T has a noncentral ¢-distribution
with n d.f. and noncentrality parameter 8, then

(12) ET — s L= /2] [n
rm/2 V2
and

2 2 _ 2
13)  var) = "4FED) ¥ (w) . 2

n-—2 2 I'(n/2)
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Definition 3. Let X and Y be independent x2 RVs with m and n d.f., respectively.
The RV

_X/m
14) F= Y/n

1s said to have an F-distribution with (m, n) d.f., and we write F ~ F(m, n).

Theorem 4. The PDF of the F-statistic defined in (14) is given by

Ci(m + n)/2} (m) (m )(M/2)—1

Tm/2)T(n/2) \n/\n

(15) g(f) = ) (1 n i’rll_f)—(m+n)/2 ’ Feo

0, f<o.

The proof is left as an exercise.

Remark4. ¥ X ~ F(m,n), then 1/X ~ F(n,m). If we take m = 1, then
F = [t(n)]?, so that F(1,n) and t?(n) have the same distribution. It also follows
that if Z is C(1, 0) [which is the same as 1 (1)], Z% is F(1, 1).

Remark 5. As usual, we write F,, , for the upper a percent point of the
F(m, n) distribution, that is,

(16) P{F(m,n) > Fpna} =a.

From Remark 4, we have the following relation:

1

Fn,m,a

(17) Fm.n,l—-a =

It therefore suffices to tabulate values of F that are > 1. This is done in Table ST5,
where values of F, , o are listed for selected values of m, n, and «. See Fig. 4 for a
plot of g( f).

Theorem 5. Let X ~ F(m, n). Then, for k > 0, integral,

k _ (MmN Tk 4 m/2)I0[(n/2) — k]
a8) EX* = (m) S TG forn > 2k.
In particular,
(19) EX=—"— n>2,

n—2
and
2 —

(20) var(X) = n“2m+2n—4) -

mn —2)2(n—4)’
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A

coY

0 1 2 3 4 5 6 7
Fig. 4. F densities.

Proof. 'We have for a positive integer k,

0 m \—(m+tn)/2
@b f et (14 2 1) DF
0 n
1
— (in_)k+(m/2)/ xk+(m/2)——1(1 —x)("/2)”k'1 dx,
n 0

where we have changed the variable to x = (m/n) f{1 + (m/n) f 171 The integral
in the right side of (21) converges for (1n/2) — k > 0 and diverges for (n/2) —k < 0.
We have

EXF =

s (a7 (),

n m
as asserted.
Fork = 1 we get

n mf2 n
Ex_;(n/z)_l_n_z, n>2.
Also,
2_ (1 2 (m/D[(m/2) + 1]
EX —(m) [(n/2) — 1{(n/2) -2V ">

2 2
(n) (n’fl—(;r;(:—)@’
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and

_(n 2 mm+2) n 2
V”(X)‘(Z) (n-2)(n—4).—(n—2)

_2n*m+n-2)
T omn—2)2(n—4)’

n>4.

Theorem 6. If X ~ F(m,n), then ¥ = 1/[1 + (m/n)X]is B(n/2, m/2). Con-
sequently, foreach x > O,

1
Fx(x) =1- Fy [—-—————] T (m/n)x-l .

If in Definition 3 we take X to be a noncentral x2 RV with n d.f. and noncentrality
parameter 8, we get a noncentral F RV.

Definition 4. Let X ~ x2(m,8)and ¥ ~ x2(n), and let X and Y be independent.
Then the RV
_X/m

(22) T Y/n

is said to have a noncentral F-distribution with (m, n) d.f. and noncentrality param-
eter 8.

1t is shown in Problem 2 that if F has a noncentral F-distribution with (m, n) d.f.
and noncentrality parameter §,

EF _— M n> 2
mn —2) ’
and
ar(F) 2’ [+ 82+ -Dm+28)], n>4
V. = n— ’ .
m2(n — 4)(n — 2)2
PROBLEMS 7.4
1. Let
_ LAY Y] L MR Y, )
Px—[I‘(Z)Z ] fow e dw, x > 0.
Show that
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10.
11.

12.
13.
14.
15.
16.

Let X ~ F(m,n,é$). Find EX and var(X).

Let T be a noncentral ¢-statistic with n d.f. and noncentrality parameter 8. Find
ET and var(T).

Let F ~ F(m,n). Then
e (1+20)" - (3)

Deduce that for x > 0,
-1
P{ng}=1—P{Y5(1+fx) }
n

Derive the PDF of an F-statistic with (m, n) d.f.
Show that the square of a noncentral z-statistic is a noncentral F-statistic.

A sample of size 16 showed a variance of 5.76. Find c such that P{X — u| <
c} = 0.95, where X is the sample mean and u is the population mean. Assume
that the sample comes from a normal population.

. A sample from a normal population produced variance 4.0. Find the size of the

sample if the sample mean deviates from the population mean by no more than
2.0 with a probability of at least 0.95.

. Let X1, X2, X3, X4, X5 be a sample from A(0, 4). Find P{Y_;_, X? > 5.75}.

Let X ~ x2(61). Find P{X > 50).

Let F ~ F(m,n). The random variable Z = %logF is known as Fisher's
Z-statistic. Find the PDF of Z.

Prove Theorem 1.
Prove Theorem 2.
Prove Theorem 3.
Prove Theorem 4.

(a) Let f1, f2,... be PDFs with corresponding MGFs M, M, ..., respec-
tively. Let o (0 < @; < 1) be constants such that }:;’il a; = 1. Then
f= ZTodjfj is a PDF with MGF M = Z?o:[aij-

(b) Write the MGF of a x2(n, 8) RV in (6) as
[e 8]
M) =) a;M;(t)
j=0

where M;(t) = (1 — 2t)~@/+"/2 i the MGF of a x2(2j + n) RV and
J . J
a; = e7%/2(8/2)/ /j!is the PMF of a P(8/2) RV. Conclude that PDF of ¥ ~
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x2(n, 8) is the weighted sum of PDFs of x2(2j +n) RVs, j =0, 1,2, ...
with Poisson weights and hence

o0 —8/2 5/2 J 4 2j+n)/2-1 —y/2
fy(y)=ze (8/2)7 y exp(—y/2)

o U 20T +m/2)

7.5 LARGE-SAMPLE THEORY

In many applications of probability one needs the distribution of a statistic or some
function of it. The methods of Section 7.3 when applicable lead to the exact distri-
bution of the statistic under consideration. If not, it may be sufficient to approximate
this distribution provided that the sample size is large enough.

Let {X,} be a sequence of RVs that converges in law to N(u, 02). Then {(X, —
n)/o)} converges in law to N (0, 1), and conversely. We will say alternatively and
equivalently that {X,.} is asymptotically normal with mean p and variance o2. More
generally, we say that X, is asymptotically normal with “mean” pu,, and “variance”
o2, and write X, is AN(fin, 0.2), if 0, > 0 and as n — o0,

(1) -X"—G_ﬁ’- LN ).

Here 4, is not necessarily the mean of X, and a,?, not necessarily its variance. In this
case we can approximate, for sufficiently large n, P{X, <t} by P{Z < (t—n)/0n}
where Z is N(0, 1).

The most common method to show that X, is AN(u,,, a,,z) is the central limit the-
orem of Section 6.6. Thus, according to Theorem 6.6.1, /n(X, — 1) LNV 0, 0%)
as n — oo, where X, is the sample mean of n iid RVs with mean  and variance
2. The same result applies to the kth sample moment, provided that E|X|%* < co.
Thus

oo ' n )

In many large-sample approximations an application of the CLT along with Slutsky’s
theorem suffices.

Example 1. Let X3, X», ... beiid N {(u, o). Consider the RV

_ J/n(X -
=¥

The statistic 7, is well known for its applications in statistics and in Section 7.6

Tn

we determine its exact distribution. From Example 6.3.4, (n — 1)§2/n LIPS and
hence S/o P, 1. Since X - py/o L, 7 ~ N0, 1), it follows from Slutsky’s
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theorem that 7, L, Z. Thus for sufficiently large n (n > 30), we can approximate
P{T,, <t}by P{Z <1t}
Actually, we do not need X’s to be normally distributed (see Problem 6.6.5).
Often, we need to approximate the distribution of g(¥,) given that Y, is AN(u, a?).

Theorem 1. Suppose that ¥, is AN(u, o2), with 0, — 0 and p a fixed real
number. Let g be a real-valued function that is differentiable at x = u, with g’(n) #
0. Then

@ #(¥a) is AN (g, (g G1%07).
Proof. 'We first show that

§¥n) —g) Yo—p p

3 0.
© g (1)on On —
Set
gx) —gw) '
h(x) = x—u g (), x#Epu
0, xX=pun

Then A is continuous at x = . Since

Yn—n

On

Lo

Yo —pn=o0,

by Problem 6.2.7, ¥y — s —> 0, and it follows from Theorem 6.2.4 that h(Y,) —>
h(u) = 0. By Slutsky’s theorem, therefore,

Yn_ll’_ﬂ_}

On

h(Yn)

That is,

gYp)-gw) Y,—p p
— ..__)()
08" (1) On

It follows again by Slutsky’s theorem that [g(Y,,) — g(u)]/1g’(1)6,] has the same
limit law as (Y, — @) /o,.

Example 2. We know by the CLT theorem that ¥,, = X is AN(, 02/n). Suppose
that g(X) = X(1 — X), where X is the sample mean in random sampling from a
population with mean p and variance o2, Since g W) =1—-2u # 0forpu # %,

it follows that for  # 1, 0% < oo, X(1 — X) is AN(u(1 — ), (1 — 2u)20%/n).
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Thus
XQ-X)—pd—p) _y—ul-p
I1—2ulo//n)  ~ 11 =2ula//n

%(D(y—.u(l—u))
11 —2pulo//n

P{Y(I—Y)Sy}=P{

for large n.

Remark 1. Suppose that g in Theorem 1 is differentiable k times, k > 1, at
x=pand g(u) =0for1 <i <k —1,g®(u) # 0. Then a similar argument
using Taylor’s theorem shows that

i
@) [8(Yn) — g()] / [Eg(k)(u)ﬂf] Ly 7k

where Z is a N(0, 1) RV. Thus in Example 2, when u = % g’(%) = 0 and g”(%) =
-2 # 0. It follows that

- - L
nX(1-X) = 31— —a?x*(1)
since Z2ix2(1).

Remark 2. Theorem 1 can be extended to the multivariate case, but we will not
pursue the development. We refer the reader to Ferguson [26] or Serfling [100].

Remark 3. In general, the asymptotic variance [g’ (u)]za,% of g(¥,) will depend
on the parameter . In problems of inference it will often be desirable to use trans-
formation g such that the approximate variance var g(Y,) is free of the parameter.
Such transformations are called variance stabilizing transformations. Let us write
a,% = o2(u)/n. Then finding a g such that var g(¥,) is free of u is equivalent to
finding a g such that

for all i, where ¢ is a constant independent of p. It follows that

dx

&) g(x)=c k)



LARGE-SAMPLE THEORY 337

Example 3. In Example 2, o) = u(l — p). Suppose that X, ..., X, are iid
b(1, p). Then 6%(p) = p(1 — p) and (5) reduces to

g(x):c[%:Zarcsinﬁ.
(1 —x

Since g(0) =0, g(1) = 1, ¢ = 2/7 and g(x) = (2/7) arcsin 4/x.

Remark 4. In Section 7.3 we computed exact moments of some statistics in
terms of population parameters. Approximations for moments of g(X) can also be
obtained from series expansions of g. Suppose that g is twice differentiable at x = p.
Then

(6) Eg(X) ~ g(n) + E(X — )g'(n) + 18" (WEX — p)?
and
@) Elg(X) - g ~ [g' WP EX — w)?,

by dropping remainder terms. The case of most interest is to approximate Eg (X) and
var g(X). In this case, under suitable conditions, one can show that

2
®) Eg(X) ~ g(u) + g—g"(u)
n
and
v 62 / 2
)] var g(X) =~ —n—[g ()]

where EX = p and var(X) = o2.

In Example 2, when X;’s are iid b(1, p), g(x) = x(1 — x), g'(x) = 1 — 2x,
g"(x) = ~2, so that

__ . . 2
Eg(X) ~ E[X(1 - )]~ p(1 - p) + ‘—2’;‘—(—2)

n-—1
= p(l - p)—
n
and

varg(X) ~ P

PAZD) (1 _opp.
n

In this case we can compute Eg(X) and var g(X) exactly. We have
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— _ J 1 - _
Eg(X>=EX—Ex2=p—["—(-nl)+p2]=p<1-p)” L

n
so that (8) is exact. Also, since X :‘ = X;, using Theorem 7.3.4 we have

var g(?('_) = var(Y - 72)
= var(X) — 2cov(X, X2) + EX" — (EXH)?

o _ ~1\?
_rld-p [(1 _apy 4 224 p)] (n 1) .
n n

-1 n

Thus the error in approximation (9) is

2p%(1 — p)?
error = —11—(—3——pl(n— 1.
n

Rem_grk 5. Approximations _(_6) through (9) do not assert the existence of Eg(X)
or Eg(X), or var g(X) or var g(X).

Remark 6. 1t is possible to extend (6) through (9) to two (or more) variables by
using Taylor series expansion in two (or more) variables.

Finally, we state the following result, which gives the asymptotic distribution of
the rth order statistic, 1 < r < n, in sampling from a population with an absolutely
continuous DF F with PDF f. For a proof, see Problem 4.

Theorem 2. If X,y denotes the rth-order statistic of a sample X1, X2,..., X,
from an absolutely continuous DF F with PDF f, then

1,2
(10) ] FGpU Xy — 3p} Lz asn — 00,

[P(l - p)

so that r/n remains fixed, r/n = p, where Z is N (0, 1), and 3, is the unique solution
of F(3p) = p (that is, 3, is the population quantile of order p assumed unique).

Remark 7. 'The sample quantile of order p, Zp, is

1 p(l—p))

AN R
(3” UGIE  n

where 3, is the corresponding population quantile and f is the PDF of the population

distribution function. It also follows that Z,, LN p-
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PROBLEMS 7.5

1.

In sampling from a distribution with mean w and variance o2, find the asymp-
totic distribution of (a) X2, (b) 1/X, (¢) In|X|2 and (d) exp(X), both when
u # 0and when u = 0.

Let X ~ P(A). Then (X — A)/v/A —2> N'(0, 1). Find a transformation g such
that (g(X) — g(A)) has an asymptotic A (0, c¢) distribution for large w, where ¢
is a suitable constant.

. Let Xy, X3, ..., X, be a sample from an absolutely continuous DF F with PDF

f. Show that

N —1 r
EXo =P\ i

and

r(n—r+1) 1
(n+ 12+ {(fIF'r/n + D]?
[Hint: Let Y be an RV with mean yu, and ¢ be a Borel function such that E¢(Y)

exists. Expand ¢ (Y) about the point 1 by a Taylor series expansion, and use the
fact that F(X () = Uqy.]

var(X(,)) 2

. Prove Theorem 7. [Hint: For any real 1 and o (> 0), compute the PDF of

(U¢y—u) /o and show that the standardized Uy, (U¢)— ) /o, is asymptotically
N0, 1) under the conditions of the theorem.]

. Let X ~ x%(n). Then (X — n)/+/2n is AN(0, 1) and X/n is AN(1, 2/n). Find

a transformation g such that the distribution of g(X) — g(n) is AN(0, ¢).

6. Suppose that X is G(1, #). Find g such that g(X) — g(®) is AN(0, ¢).
7. Let X1, X2, ..., X, be iid RVs with E|X|* < o0. Let var(X) = o2 and B, =

7.6

pafot.
(a) Using the CLT for iid RVs, show that \/A(S2 — 02) %> (0, s — o).

(b) Find a transformation g such that g(5?) has an asymptotic distribution that
depends on ; alone, not on o2

DISTRIBUTION OF (X, $2) IN SAMPLING FROM
A NORMAL POPULATION

Let X1, X2, ... , X, be a sample from NV (i, a2), and write X = n~' }"7_, X, and
S=m-~-n!t Z?=1 (X; — 3(_)2. In this section we show that X and $? are inde-
pendent and derive the distribution of S2. More precisely, we prove the following
important result.
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Theorem 1. Let X1, X2, ..., X, be iid N(u,0%) RVs. Then X and (X; —

X, X,—X,...,Xn~— Y) are independent.
Proof. 'We compute the MGFof X and X; — X, X, —X, ... , X, —X as follows:

Mt 11,00, ... . tn) = EexptX + (X1 —X) + 2(X2 — X) + -+ + t,(X, — X)}
n n .
=Eexp[Zt,'X,'——(Zt,'-—t) X]
i=1 i=1
1 Httg+- Aty —t
=Eexp[ZX,-(t,-— 1+i2+-+1 ):I
n
i=]
2 Xi(nt,--—n't'+t) - 1 -
=E —_————— heret =n~ t;
[Eexp[ " ] where n Z ;

i=1
_ HEexp{X"[’ +n(; —?)]}
i=1 R

..1—[ [._['_iL'S’L:_‘_)l+ 2[t+n(t: ~’)]2]

= exp [——[nt +nZ(z, =) + Z[z +n(t — 3]2]

2
= exp(ut) exp [20 (nt +n? Z(t — 2)2):]

i=1

02 2 0'2 n
= exp p,t+-é-;t €Xp Z(t,—t)

i=1
=MzOMy %  x, -3 02,... M)
=M(¢,0,0,... , OMQO, 11,12, ...,1t,).

Corollary 1. X and S are independent.
Corollary 2. (n — 1)5%/0%is x2(n — 1).

Since

— 2
2L (X — p)? X —
(“—UTIQ‘ ~x}m, n ( ~ “) ~ x3(),

i=1
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and X and $2 are independent, it follows from

YI(Xi — n)? :n(f’f—u)z 52
o

- -1

n . 2 Y 2 2
‘E[exp[tz(_x—'UTu—)—]}zE exp tn(XUIL) +(n—1)§—2—t

— 2
X — 52

= Eexp n( u) t Eexp[(n-—l)——it],
o o

52
(1-20)"2 = (1 -2)"2E exp [(n — 1)—4 . t<z,
ag

that is;

and we see that
T i) DEPPY Y !
Eexp|(n—1) 5! =(1-2p , t < —.
o 2
By the uniqueness of the MGF it follows that (n — 1)$2/0% is x%(n — 1).
Corollary 3. The distribution of \/n(X — u)/S is t(n — 1).

Proof. Since /n(X — p)/o is N(0, 1) and (n — 1)5?/0? ~ x2(n — 1), and
since X and $? are independent,
VX — o _ VX -w
Vi —1)82/62)/(n - 1) s

ist(n —1).

Corollary 4. If X1, X, ..., X,, are iid N(m,olz) RVs, Y1, ¥, ..., Y, are iid
N(ua, 022) RVs, and the two samples are taken independently, (512 /012) / (S% /ag) is
F(m —1,n — 1).If, in particular, 6y = o7, then §?/82 is F(m — 1,n — 1).

Corollary 5. Let X1, X, ..., X, and Yy, ¥y, ... , ¥y, respectively, be indepen-
dent samples from A (uy, 012) and M (u2, 0'22). Then

X —Y — (u1 — u2) m+n-—2
{lm — DS} /671+ [(n = DS} /W2 o} /m +0}/n

~tm+n-—2).
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In particular, if o7 = o9, then

Corollary 5 follows since

and

and the two statistics are independent.
Remark 1.

Remark 2.

X-Y -

(g — u2)

\/[(m —DS?+ (n — 1)S2]

-Y

2

9y
u2, — + —=
m n

2~ x2m4n-2)

fmn(m +n —2) ~tGn+n—2).
m+n
“~N<m

(m —1)S?

The converse of Corollary 1 also holds (see Theorem 5.3.28).

In sampling from a symmetric distribution, X and $? are uncorre-
lated (see Problem 4.5.14).

Remark 3. Alternatively, Corollary 1 could have been derived from Corollary 2

to Theorem 5.4.6 by using the Helmert orthogonal matrix:

1/4/n
~1//2
~1//6

1//n
1/v/2
~1/v/6

1//n
0
2/v/6

| ~1//nn—=1) —1//nn-1) —1/J/nn—-1

1/s/n i
0

0
0

0
(n—1)/+/n(n—1)

For the case of n = 3 this was done in Example 4.4.6. In Problem 7 the reader is
asked to work out the details in the general case.

Remark 4. An analytic approach to the development of the distribution of X and
52 is as follows. Assuming without loss of generality that X; is A/(0, 1), we have as

the joint PDF of (X1, X2, ...

f(x17x27'~- , Xp) = (2 )"/2 ( Zx )

1
= -———(Zn)"/z exp |:_

3 Xn)

(n—1)s2 + nf2]
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Changing the variables to y1, y2, ... , yn by using the transformation y; = (xx —
x)/s, we see that

iyk::O and zn:y,%zn—l.
k=1 k=1

It follows that two of the y;’s, say y,—) and y, are functions of the remaining yx.
Thus either

_a+p and _a-p
or
- o+ p
Yn—1 = —5— and y, = B
where

n—2 n—2 n—-2 2
C¢=—Z}’k and B = 2(n—1)-22yf—(2yk).
k=1 k=1

k=1

We leave the reader to derive the joint PDF of (Y1, Y, ..., )j,i_z, X, $hH, using
the result described in Remark 4.4.2 and to show that the RVs X, $2 and (Y}, Y2,

, ¥,_2) are independent.

PROBLEMS 7.6

1.

2.

Let X1, X2, ... , X, be a random sample from A (u, o%) and X and 2, respec-
tively, be the sample mean and the sample variance. Let X411 ~ N (i, o), and
assume that Xy, X3, ..., X5, X+ are independent. Find the sampling distri-

bution of [(Xp4+1 — X)/S1/n/(n +1).

Let X1, X2, ... »Xmand Yy, Ya, ..., ¥, be independent random samples from
Ny, 0%) and N (u2,0%), respectlvely Also, let «, B be two fixed real num-
bers. If X, ¥ denote the corresponding sample means, what is the sampling dis-
tribution of

a(X —u) + BT — u2)

\/(m —1)S? +(n — 1)s2\/ /32
m+n—2 m n

where S12 and S%, respectively, denote the sample variances of the X’s and the
Y’s?
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3.

1.3
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Let X1, X2, ..., X, be a random sample from A (., 02) and k be a positive

integer. Find E(5%%). In particular, find E(S?) and var(S?).

. A random sample of 5 is taken from a normal population with mean 2.5 and

variance o2 = 36.
(a) Find the probability that the sample variance lies between 30 and 44.

(b) Find the probability that the sample mean lies between 1.3 and 3.5, while
the sample variance lies between 30 and 44.

. The mean life of a sample of 10 light bulbs was observed to be 1327 hours with

a standard deviation of 425 hours. A second sample of 6 bulbs chosen from a
different batch showed a mean life of 1215 hours with a standard deviation of
375 hours. If the means of the two batches are assumed to be same, how probable
is the observed difference between the two sample means?

Let 512 and S% be the sample variances from two independent samples of sizes
ny) = 5 and ny = 4 from two populations having the same unknown variance
o2. Find (approximately) the probability that 812 / S% < 1/5.2 0or > 6.25.

Let X1, X2, ... , X, be a sample from N (i, o2). By using the Helmert orthog-
onal transformation defined in Remark 3, show that X and $? are independent.

Derive the joint PDF of X and S? by using the transformation described in Re-
mark 4.

SAMPLING FROM A BIVARIATE NORMAL DISTRIBUTION

Let (X1, Y1), (X2, Y2), ..., (Xn, Yy) be a sample from a bivariate normal population
with parameters 1, 2, p, 02, o7 Let us write

and

Y:nﬁlzn:xi, ?=n_12n:yiy
i=1 i=1

S=-D1Yxi-%%  S=m-DTY -7
i=1 i=1

Su=@m-D7"Y (X -X -7

i=1

In this section we show that (X, Y) is independent of (52, S11, S%) and obtain the
distribution of the sample correlation coefficient and regression coefficients (at least
in the special case where o = 0).
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Theorem 1. The random vectors (X, ¥) and (X; — X, X2 — X,..., X, — X,

Y, -Y, Y —-Y,..., Y, — Y) are independent. The joint dlstnbutlon of (X,Y) is
bivariate normal with parameters w1, u2, p, 2/n, o5/n.

Proof. The proof follows a]ong the lmes of the proof of Theorem 7.6.1. The
MGFof (X,Y -X,... -X., Y — -Y)is given by

M*=M(us vot]at29"' )tnasl,S29"' tsn)

i=1

=Eexp[iZ:;Xi (%+t,-—?)+§l"i<—:—+si—§):|,

= Eexp [“Y'i' vY + Zti(xi -X)+ Z&‘(Yi ——7)]
i=1

where 7 =n~' 37 7,5 = n"1 31, 5;. Therefore,

& u v

= nEexp[(— + —?) X+ (—+S,' —-E) Y,]
i=1 n n
n

u - v -

= nexp[(—— +4 —t)ll«l + (—- + 5 -—S)I«LZ

i=1 n n

o2[(u/n) +t; — 112 + 2po102[(u/n) + t; — Ell(v/n) + s; — 5]
2

+02l(v/n) + si — 5P ]
2

2(712 + 2poi0ouv + v2022
2n

= exp (mu + v +

2
- exp [—61 ):(t, ~1)? + poyoy Z(t. — (s — 7+ Z :]

i=1 i=1

= Ml(ua v)MZ(tl’ 12§ crr oy tnﬂslsSZs v »Sn)

forall real u, v, t1, 12, ... slny S1,82, ... 5 Sn, where M, 1s the MGF of (X Y) and
M is the MGF of (X1 - X,..., X, — XY —7Y,. Y, — Y). Also, M, is the
MGEF of a bivariate normal distribution. This completes the proof.

Corollary. The sample mean vector (X, Y) is independent of the sample variance-

s\ . . A .
121) in sampling from a bivariate normal population.

. . (s
covariance matrix ( ]
s 83
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Remark 1. The result of Theorem 1 can be generalized to the case of sampling
from a k-variate normal population. We do not propose to do so here.

Remark 2. Unfortunately, the method of proof of Theotem 1 does not lead to the
distribution of the variance~covariance matrix. The distribution of (X, Y, §' 12, S11, S%)
was found by Fisher [27] and Romanovsky [90]. The general case is due to
Wishart [118], who determined the distribution of the sample variance—covariance
matrix in sampling from a k-dimensional normal distribution. The distribution is
named after him.

We will next compute the distribution of the sample correlation coefficient:

M) R= " (X = X)(¥; —T) sy

[ (X = X2 30, (Y -7)2]1/2 CSis

It is convenient to introduce the sample regression coefficient of Y on X

Z?—-](Xi - Y)(Yi - Y) St So
2 B = — prevery = —= R——.
2 YiX "X %) 52 5;

Since we will need only the distribution of R and By|x whenever p = 0, we make
this simplifying assumption in what follows. The general case is computationally
quite complicated. We refer the reader to Cramér [16] for details.

We note that

3 po Zim YiXi =X
(n—1)8152
and
Y VX —X)
4 Byjx = == .
4 Y|IX P Slz
Moreover,
2 @2
) g2 = Bt
s;
In the following we write B = By\x.
Theorem 2. Let (X1, Y1), ..., (Xpn, Ya), n > 2, be a sample from a bivariate

normal population with parameters EX = 1, EY = u, var(X) = 012, var(Y) =
o2, and cov(X, Y) = 0. In other words, let X1, X2, ... , Xx be iid N (i1, o) RVs,
and Y|,Y2,...,Y, beiid NV (M2,0'22) RVs, and suppose that the X’s and Y’s are
independent. Then the PDF of R is given by
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Il(n - 1)/2] (1 — r2)=4/2,

1 —1<r<l,
(©6) fir)y = { T('(n —2)/2]
0, otherwise;
and the PDF of B is given by
I(n/2 i
@) hy(b) = (n/2) % —00 < b < 0.

T(Hrie - 1)/21 (67 + o222’

Proof. Without any loss of generality, we assume that 11y = puy = 0 and 012 =
022 = 1, for we can always define

(8) X;.g _ A 23 and Y,'* _ L M2 .
ay [0

Now note that the conditional distribution of ¥;, given X1, X3, ..., X,,, is N (0, 1),
and Y1, Ys, ..., Yy, given Xy, X3, ..., X,, are mutually independent. Let us define
the foliowing orthogonal transformation:

n
9 w=y cjy;, i=12..,n,
j=1

where ((cij))i, j=1,2,... ,» 1S an orthogonal matrix with the first two rows

1 .
(10) CU:W’ i=12,...,n,
and

X; —X

(1n ) = ! —.  Ji=1.2....n

[Zriti - 02"
It follows from orthogonality that for any i > 2,

n n 1 n

(12) ZC,'j:«/ﬁ.ZC,‘j-——'zx/;Zcijclj =0

and

n
(13) wl=Y Y ciyi )y

=
X
X

ll

n n n n
Z Z ( CijCij’) Yiyj = Z)’,%-
j j i=1 j=1

Jj=1j'=1
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Moreover,
(14) up=+/ny

and

(15) uz=by/y (xi — %72,

where b is a value assumed by RV B. Also, U, Ua, ..., Uy, given X1, X2, ..., Xy,
are normal RVs (being linear combinations of the ¥ ’s). Thus

n

(16) E{U; | X1, X, ..., Xa}) = Y _cij E{¥j | X1, X2, ..., Xp)
j=1
=0
and

n n
cov{Us, Uy | X1, X2, ..., Xn} = cov [Zcijy,-, Y cip¥p | X1, Xa, .. ,x,,]
j=1 p=1

n n
=YY cijerpcovi¥;, Yp | X1, X2, ... , Xp}
j=1 p=1

n
= E CijCkj-
j=1

This last equality follows since

09 j 1
COV{Yj’YpIXl,XZ’H-an}:{ J.#p
1, = p.
From orthogonality, we have
0, i £k,
(17) cov{Us, Ug | X1, X2, - , Xn} = P
1, i =k;
and it follows that the RVs Uj, Uy, ..., Uy, given X3, X3, ..., X, are mutually

independent (0, 1). Now

n n
(18) 3= =Yy —ny
j=1 i=1
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n
- 2 2
= Z uj— g
j=1
n
_ 2
= Z uy-
j=2

Thus
2 2
er“=2 U12 UZ2 + Z;l=3 Ui2

(19) R?

Writing U = U22 and W =37 4 Uiz, we see that the conditional distribution of U,
given X1, X2, ..., Xy, is xz(l), and that of W, given X1, X2, ..., X, is x2(n—2).
Moreover, U and W are independent. Since these conditional distributions do not
involve the X’s, we see that U and W are unconditionally independent with x2(1)
and y2(n — 2) distributions, respectively. The joint PDF of U and W is

1 121 _~u/2 1 (n=2)/2-1 —w/2
fw) = r(%)ﬁu ¢ Ti(n —2)/2120—D/2 € :

Let 4 +w = z; then u = r?z and w = z(1 —r2). The Jacobian of this transformation
is z, so that the joint PDF of R? and Z is given by

1
*(rt ) = n/2-3/2,~2/2(,2y~1/2(] _ p2yn/2-2
ree T($i(n — 2)/2120-D72 (r)y~¥( )

The marginal PDF of R? is easily computed as

I'i(n —1)/2] - -
20 *0.2 — 2 1/2 1_ 2"/2 2, 0 2 1
O = ey =) <r’s

Finally, using Theorem 2.5.4, we get the PDF of R as

I'l(n—1)/2
A = [(n —1)/2]

= = (A—rH>2 _1<r<l.
rrim —2)/2]

As for the distribution of B, note that the conditional PDF of U, = /n — 1 BS],
given X1, X2, ..., X, is N(0, 1), so that the conditional PDF of B, given X, X2,
e s X 1SN0, 1/ 3 (x: — %)2). Letus write A = (n — l)Sf. Then the PDF of RV
A is that of a x2(n — 1) RV. Thus the joint PDF of B and A is given by

2 h(b,A) = g(b | A)ha(A),

where g(b | A) is N(0, 1/1), and ha(X) is x%(n — 1). We have
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(22) hi(b) = fwh(b, A)da
0

_ 1 /°° A2, =h 201487 gy
2720 (DT (n — 1)/21 Jo

C(n/2) 1

= ’ B , |
F(PTI(n — 1)/2] (1 + b2/ 00 < b < 00

To complete the proof let us write
Xi=m+Xfor and Y, =ps+Y oo,

where X} ~ N(0, 1) and Y} ~ N(0, 1). Then X; ~ N(u1, 02), ¥; ~ N(ua, o),
and

R T X =B -
VX = T, (¥ - T2
= R*,

(23)

so that the PDF of R is the same as derived above. Also,

0102 Y P (X} =X —-T)

(24) B =
012 Z?:l (X;k - Y*)Z

o2
= -ZB*,
o]

where the PDF of B* is given by (22). Relations (23) and (24) are used to find the
PDF of B. We leave the reader to carry out these simple details.

Remark 3. In view of (23), namely the invariance of R under translation and
(positive) scale changes, we note that for fixed » the sampling distribution of R,
under p = 0, does not depend on w1, @2, 01, and o2. In the general case when
p # 0, one can show that for fixed n the distribution of R depends only on p but not
on py, [2, 01, and o7 (see, for example, Cramér [16, p. 398]).

Remark 4. Let us change the variable to

R
25) T = /n—2.
Ny

Then
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2 2\~
1—-R" =11 s
+n—2

and the PDF of T is given by

1 1 1
V=2 Bl(n — 2)/2, }1 {1 +12/(n = )]n-D/2

(26) p(t) =

which is the PDF of a ¢-statistic with n —2 d.f. Thus T defined by (25)hasat(n —2)
distribution, provided that p = 0. This result facilitates the computation of probabil-
ities under the PDF of R when p = 0.

Remark 5. To compute the PDF of Bxjy = R(S1/$2), the sample regression
coefficient of X on Y, all we need to do is to interchange o1 and o2 in (7).

Remark 6. From (7) we can compute the mean and variance of B. Forn > 2,
clearly,

EB =0,
and for n > 3, we can show that
2
0. 1
EB? = var(B) = )
oin— 3

Similarly, we can use (6) to compute the mean and variance of R. We have, forn > 4,
under p =0,

ER=0
and
2 1
ER® = var(R) = ——.
n—1
PROBLEMS 7.7
1. Let (X1, Y1), (X2, Y2), ..., (Xn, Y,) be a random sample from a bivariate nor-

mal population with E)i = pui, EY = puj, var(X) = var(Y) = o2, and
cov(X,Y) = po?. Let X, Y denote the corresponding sample means, 57, S2,
the corresponding sample variances, and Sy, the sample covariance. Write R =
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2811/(S? + 52). Show that the PDF of R is given by

_ I'(n/2) N =D/20y o= =1y _ 2 2y(=3)/2
f) = ATl = D)2 1)/2](1 ,°) (1 —pr) (A —~r7) ,
Irl < 1.

[Hint: Let U = (X +Y)/2,and V = (X — Y)/2, and observe that the ran-
dom vector (U, V) is also bivariate normal. In fact, U and V are independent.]
(Rastogi [87])

2. Let X and Y be independent normal RVs. A sample of n = 11 observations on
(X, Y) produces sample correlation coefficient r = 0.40. Find the probability of
obtaining a value of R that exceeds the observed value.

3. Let Xy, X5 be jointly normally distributed with zero means, unit variances, and
correlation coefficient p. Let S be a x2(n) RV that is independent of (X1, X3).
Then the joint distribution of Y1 = X;/4/S/n and Y2 = X5/./S/n isknown as a
central bivariate t-distribution. Find the joint PDF of (Y1, Y2) and the marginal
PDFs of Y; and Y3, respectively.

4. Let (X1, Y1),...,(Xn,Yy) be a sample from a bivariate normal distribution
with parameters EX; = w1, EY; = up, var(X;) = var(¥;) = o2, and
cov(X;, ¥;)) = pa?, i =1,2,...,n. Find the distribution of the statistic
X — 1) =¥ —p2)

VI (X — ¥, ~ X + 7Y

TX,Y)=+n



CHAPTER 8

Parametric Point Estimation

8.1 INTRODUCTION

In this chapter we study the theory of point estimation. Suppose, for example, that a
random variable X is known to have a normal distribution A (1, 62),"but we do not
know one of the parameters, say (. Suppose further that a sample X, X2,..., X, is
taken on X. The problem of point estimation is to pick a (one-dimensional) statistic
T(Xy, X2,...,X,) that best estimates the parameter x. The numerical value of T
when the realization is xy, x2, ... , x, is frequently called an estimate of 1, while the
statistic T is called an estimator of p. If both p and o? are unknown, we seek a joint
statistic T = (U, V) as an estimator of (i, 0'2).

In Section 8.2 we formally describe the problem of parametric point estimation.
Since the class of all estimators in most problems is too large, it is not possible to find
the “best” estimator in this class. One narrows the search somewhat by requiring that
the estimators have some specified desirable properties. We describe some of these
and also outline some criteria for comparing estimators.

Section 8.3 deals, in detail, with some important properties of statistics, such as
sufficiency, completeness, and ancillarity. We use these properties in later sections to
facilitate our search for optimal estimators. Sufficiency, completeness, and ancillarity
also have applications in other branches of statistical inference, such as testing of
hypotheses and nonparametric theory.

In Section 8.4 we investigate the criterion of unbiased estimation and study meth-
ods for obtaining optimal estimators in the class of unbiased estimators. In Section
8.5 we derive two lower bounds for variance of an unbiased estimator. These bounds
can sometimes help in obtaining the “best” unbiased estimator.

In Section 8.6 we describe one of the oldest methods of estimation, and in Section
8.7 we study the method of maximum likelihood estimation and its large-sample
properties. Section 8.8 is devoted to Bayes and minimax estimation, and Section 8.9
deals with equivariant estimation.

353
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8.2 PROBLEM OF POINT ESTIMATION

Let X be an RV defined on a probability space (£2, S, P). Suppose that the DF F of X
depends on a certain number of parameters, and suppose further that the functional
form of F is known except perhaps for a finite number of these parameters. Let
0 = (61, 62, ..., 6;) be the unknown parameter associated with F.

Definition 1. The set of all admissible values of the parameters of a DF F is
called the parameter space.

LetX = (X1, X2,..., X,) be an RV with DF Fg, where @ = (61,6, ... ,6) is
a vector of unknown parameters, 8 € ©. Let ¢ be a real-valued function on ®. In
this chapter we investigate the problem of approximating (@) on the basis of the
observed value x of X.

Definition 2. Let X = (X1, X2, ..., X)) ~ Pa, 0 € ©. A statistic §(X) is said
to be a (point) estimator of ¥ if § : ¥ — © where X is the space of values of X.

The problem of point estimation is to find an estimator § for the unknown para-
metric function (@) that has some nice properties. The value §(x) of 5(X) for the
data x is called the estimate of v (@).

In most problems X, X3, ..., X, are iid RVs with common DF Fpg.

Example 1. Let X1, X2,..., X, beiid G(1,8), where @ = {6 > 0} and 8 is to
be estimated. Then X = R,, and any map § : X — (0, 00) is an estimator of 6. Some
typical estimators of 6 are X = nl Z;le X;,and {2/[n(n + D]} 2:7:1 IX;.

Example 2. Let X1, X2, ... , X, be iid b(1, p) RVs where p € [0, 1]. Then X is
an estimator of p and so also are §;(X) = Xj, $2(X) = (X1 + X,)/2, and 83(X) =
Z;=1anj, where 0 <a; <1, Z’j!___l aj = 1.

It is clear that in any given problem of estimation we may have a large, often
an infinite class of appropriate estimators to choose from. Clearly, we would like
the estimator § to be close to ¥ (0), and since § is a statistic, the usual measure of
closeness |8(X) — ¥ (@)] is also an RV, we interpret “8 close to ¥ to mean “close on
the average.” Examples of such measures of closeness are

(D Pg{|6(X) — ¥ (0)| < &}
for some ¢ > 0, and
(2) Egl3(X) — ¥ (0)|"

for some r > 0. Obviously, we want (1) to be large but (2) to be small. For r = 2,
the quantity defined in (2) is called mean square error and we denote it by

A3) MSEp(8) = Eo{5(X) — ¥(®)}*.
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Among all estimators for ¥, we would like to choose one, say g, such that
) Pg{150(X) — ¥(0)| < €} > Po{ld(X) — ¥(8)] < ¢}

for all 8, all £ > 0, and all @. For (2), the requirement is to choose ¢ such that
&) MSEg(80) < MSEg(8)

for ali § and all @ € ©. Estimators satisfying (4) or (5) do not generally exist.
We note that

MSE(5) = Egl8(X) — E¢(X)) + [Epd(X) — ¥(0)1

(6) = varg 8(X) + (b(8, ¥))%,
where
0) b5, ¥) = E¢6(X) — ¥(0),

is called the bias of 8. An estimator that has small MSE has small bias and variance.
To control MSE, we need to control both variance and bias.
One approach is to restrict attention to estimators which have zero bias, that is,

(8) E¢sX) =y(0) forallfc O.

The condition of unbiasedness (8) ensures that on average, the estimator § has no
systematic error; it neither over- nor underestimates ¥ on average. If we restrict at-
tention to the class of unbiased estimators, we need to find an estimator 8¢ in this
class such that 8g has the least variance for all @ € ©. The theory of unbiased esti-
mation is developed in Section 8.4.

Another approach is to replace |§ — ¥|” in (2) by a more general function. Let
L(0, 5) measure the loss in estimating ¥ by . Assume that L, the loss function,
satisfies L(0, §) > Ofor all @ and §, and L(8, 1(0)) = O for all 8. Measure average
loss by the risk function

9 R(0,3) = EpL(0, 6(X)).

Instead of seeking an estimator that minimizes R, the risk, uniformly in 6, we mini-
hize

10) / R(0, 5)1(0)do

for some weight function 7 on © and minimize

(an sup R(8, 8).
0cO
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The estimator that minimizes the average risk defined in (10) leads to the Bayes es-
timator, and the estimator that minimizes (11) leads to the minimax estimator. Bayes
and minimax estimation are discussed in Section 8.8.

Sometimes there are symmetries in the problem which may be used to restrict
attention to estimators that exhibit the same symmetry. Consider, for example, an
experiment in which the length of life of a light bulb is measured. Then an estimator
obtained from the measurements expressed in hours and minutes must agree with
an estimator obtained from the measurements expressed in minutes. If X represents
measurements in original units (hours) and Y represents corresponding measure-
ments in transformed vnits (minutes), Y = cX (here ¢ = 60). If § (X) is an estimator
of the true mean, we would expect 5(Y), the estimator of the true mean, to corre-
spond to 5(X) according to the relation §(Y) = c8(X). That is, §(cX) = ¢§(X) for
all ¢ > 0. This is an example of an equivariant estimator, a topic under extensive
discussion in Section 8.9.

Finally, we consider some large-sample properties of estimators. As the sampie
size n — oo, the data x are practically the whole population, and we should expect
3(X) to approach (@) in some sense. For example, if §(X) = X, Y(0) = EgX;,
and X, X2, ..., X, are iid RVs with finite mean, the strong law of large numbers
tells us that X — EyX; with probability 1. This property of a sequence of estimators
is called consistency.

Definition 3. Let X, X, ... be a sequence of iid RVs with common DF Fg,
0 € ©. A sequence of point estimators T,,(X1, X2, ..., X») = T, will be called
consistent for (@) if

Tn—PM,b(O) asn — oo

for each fixed @ € ©.

Remark 1. Recall that T, £ ¥ (@) if and only if P{|T, — ¢¥(0)| > ¢} — O as
n — oo for every £ > 0. One can similarly define strong consistency of a sequence

of estimators T, if T,, 25 ¥ (0). Sometimes, one speaks of consistency in the rth
mean when T, N ¥(0). In what follows, consistency will mean weak consistency

of T, for (@), that is, T, ~> ¥(8).

1t is important to remember that consistency is a large-sample property. Moreover,
we speak of consistency of a sequence of estimators rather than one point estimator.

Example 3. Let Xy, X3,... be iid b(1, p) RVs. Then EX; = p and it follows
by the WLLN that

YiXiop

n
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Thus X is consistent for p. Also, (37 X; + 1)/(n + 2) A p, so that a consistent
estimator need not be unique. Indeed, if 7, £ pand ¢, — Oasn — oo, then

P
T, +cn — p.

Theorem 1. If X, X» ... are iid RVs with common law £(X), and E|X|? < o0

for some positive integer p, then

n X’-‘

LiXi B ooy forl <k < p,

n
and n~! 3} X* is consistent for EX*, 1 < k < p. Moreover, if ¢, is any sequence
of constants such that ¢, — 0as n — 00, then (n™! 3 X,’.‘ + ¢p) is also consistent
for EXK, 1 <k < p. Also, if ¢, — 1asn — oo, then (cun ™! ZX{‘) is consistent
for EX*. This is simply a restatement of the WLLN for iid RVs.

Example 4. Let X1, X, ... be iid (i, 0%) RVs. If §? is the sample variance,
we know that (n — 1)52/02 ~ x%(n — 1). Thus E(5%/0%) = 1 and var(§%/0?) =
2/(n — 1). It follows that

var(s?) 20

2 2
PlS“ —o“| > ¢} < 3 —(n—1)52—)

0 asn —» 00.

Thus 52 5 2. Actually, this result holds for any sequence of iid RVs with E|X|? <
00 and can be obtained from Theorem 1.

Example 4 is a particular case of the following theorem.

Theorem 2. If 7, is a sequence of estimators such that ET, - (0) and
var(T,) — 0 as n — oo, then 7T}, is consistent for 1 (0).

Proof. We have
P{1T, — ¥(0)| > €} < e 2E[T, — ET, + ET, — ¢ (O)}?
=& Hvar(T,) +[ET, — v(0)]*} - 0 asn — oo.

Other large-sample properties of estimators are asymptotic unbiasedness, asymp-
totic normality, and asymptotic efficiency. A sequence of estimators {7,,} is asymp-
totically unbiased for y (0) if

Jim EgTn(X) = ¢(8)

for all 0. A consistent sequence of estimators {T,} is said to be consistent asymp-
totically normal (CAN) for v(8) if T,, ~ AN (0),v(0)/n) forall @ € O. If
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v(@) = 1/1(0), where 1(@) is the Fisher information (Section 8.7), then {T,} is
known as a best asymptotically normal (BAN) estimator.

Example 5. Let X1,X3,..., X, beiid N0, 1) RVs. Then 7, = 3|, X;/(n +
1) is asymptotically unbiased for 6 and BAN estimator for € with v(6) = 1.

In Section 8.7 we consider large-sample properties of maximum likelihood esti-
mators, and in Section 8.5 asymptotic efficiency is introduced.

PROBLEMS 8.2

1. Suppose that T, is a sequence of estimators for parameter @ that satisfies the

conditions of Theorem 2. Then 7, 3) 0, that is, T,, is squared-error consistent
for . If T, is consistent for & and |T,, — 6} < A < oo for all 8 and all (x1, x2,

.ve,Xn) € R,, show that T, 1) 6. If, however, |T,, — 8] < A, < o0, show that
T, may not be squared-error consistent for 8.

2. Let Xy, X3,..., X, be a sample from U[0,6],6 € © = (0,00). Let X(») =
max{Xj, X2, ..., X,}. Show that X, —I—J> 6. Write ¥, = 2X. Is ¥, consistent

for6?
3. Let X, X2, ..., X, be iid RVs with EX; = p and E|X;]* < oo. Show that
T(X1, X2, ..., Xn) = 2[n(n + D)1 30, i X; is a consistent estimator for .

4. Let Xy, X2, ..., X, be asample from U[0, 8]. Show that T (X1, X2, ... , X,) =
(TT7_; Xi)/™ is a consistent estimator for fe 1.

5. In Problem 2, show that T (X) = X, is asymptotically biased for # and is not
BAN. [Show that n(6 — X(n) — G(1,0).]

6. In Problem S, consider the class of estimators T (X) = ¢X (), ¢ > 0. Show that
the estimator Tp(X) = (n + 2)X(s)/(n + 1) in this class has the least MSE.

7. Let Xy, Xa,..., X, be iid with PDF fy(x) = exp{—(x — 6)}, x > 6. Consider
the class of estimators T(X) = Xy + b, b € R. Show that the estimator that
has the smallest MSE in this class is given by T(X) = X1y — 1/n.

8.3 SUFFICIENCY, COMPLETENESS, AND ANCILLARITY

After the completion of any experiment, the job of a statistician is to interpret the
data she has collected and to draw some statistically valid conclusions about the
population under investigation. In adddition to being costly to store, the raw data by
themselves are not suitable for this purpose. Therefore, the statistician would like to
condense the data by computing some statistics from them and to base her analysis
on these statistics, provided that there is “no loss of information” in doing so. In
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many problems of statistical inference a function of the observations contains as
much information about the unknown parameter as do all the observed values. The
following example illustrates this point.

Example 1. Let X, X2, ..., X, be a sample from N(u, 1), where p is un-
known. Suppose that we transform variables X, X5, ..., X, to Yy, Y2, ..., ¥, with
the help of an orthogonal transformation so that Yy is N (/n i, 1), Y2,..., ¥, are
iid MO, ), and Y1, Y, ..., Y, are independent. (Take y; = /nX, and for & =
2, .,n, y = [k — Dxg — (xy + - - - + xx—1)1/VEkk — 1).) To estimate ¢ we can
use either the observed values of X1, X2,..., X, or simply the observed value of
Y1 = ﬁ X. The RVs Y»,Ys, ..., Y, provide no information about p. Clearly, Y
is preferable since one need not keep a record of all the observations; it suffices to
accumulate the observations and compute y;. Any analysis of the data based on y;
is just as effective as any analysis that could be based on x;’s. We note that Y; takes
values in R, whereas (X, X2, ..., X,;) takes values in R,,.

A rigorous definition of the concept involved in the discussion above requires the
notion of a conditional distribution and is beyond the scope of this book. In view of
the discussion of conditional probability distributions in Section 4.2, the following
definition will suffice for our purposes.

Definition 1. Let X = (X, X5, ..., X,) be a sample from {Fy: @ € ®}. A
statistic 7 = T'(X) is sufficient for 6 or for the family of distributions {Fy: 8 € O}
if and only if the conditional distribution of X, given T = ¢, does not depend on
(except perhaps for a null set A, Py{7T € A} = 0 for all 8).

Remark 1. The outcome X, X3, ..., X, is always sufficient, but we will ex-
clude this trivial statistic from consideration. According to Definition 1, if T is suffi-
cient for 6, we need only concentrate on T since it exhausts all the information that
the sample has about 8. In practice, there will be several sufficient statistics for a
family of distributions, and the question arises as to which of these should be used in
a given problem. We will return to this topic in more detail later in this section.

Example 2. We show that the statistic Y; in Example 1 is sufficient for u. By
construction Y7, ..., ¥, are iid N'(0, 1) RVs that are independent of ¥;. Hence the
conditional distribution of Y, ... ,Y,, given Y| = /n X, is the same as the un-
conditional distribution of (Y, ..., Y,), which is multivariate normal with mean
(0,0, ... ,0) and dispersion matrix I,,_;. Since this distribution is independent of x,
the conditional distribution of (Y1, Y3, ..., ¥,), and hence (X, X2, ..., X,), given
Y1 = i, is also independent of u and Y; is sufficient.

Example 3. Let X, X, ..., X, beiid b(1, p) RVs. Intuitively, if a loaded coin
is tossed with probability p of heads n times, it seems unnecessary to know which
toss resulted in a head. To estimate p, it should be sufficient to know the number of
heads in n trials. We show that this is consistent with our definition. Let T (X, X2,
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ees Xn) =Y 71 Xi. Then

P[X1=x1,...,X,,=xn

& P{Xi=x1,..., = =
inzt}— {Xi=x Xn = xn, T =t}

B RY 00 in—t '
(t)p(l P

if Y"1 x; = ¢, and = 0 otherwise. Thus, for Y] x; = f, we have

i=l

_prina—pyrXx 1

ny o\t —(nY
(I)p(l p) (I)

which is independent of p. It is therefore sufficient to concentrate on 3 ] X;.

PXi=xi,....Xn=x, | T =1t}

Example 4. Let X1, X, be iid P(L) RVs. Then X + X is sufficient for A, for

PXi=x1,X2=x2| X1 + X2 =1}
PiXj=x1,Xo=t-xi1}

= PiXi+Xy=1t}
0 otherwise.

ft=xt4+x2,x=012,...,

Thus, forx; =0,1,2,...,i =1,2,x) + x2 = ¢, we have

t 1y}
P{X1=X1,X2=X2|X1+X2=l}=( )(—)
X 2

which is independent of A.
Not every statistic is sufficient.

Example 5. Let X1, X2 beiid P()) RVs, and consider the statistic T = X1+2X>.
We have
PX1=0,X=1}
P{X1+2X, =2}

e (he ™)
P{X;=0,X,=1}+P{X1 =2,X,=0}
_ re _ 1
T Ae P 4+ (A2 T 14+ (1/2)’

PX1=0,X,=1X1+2X,=2} =

and we see that X1 + 2X> is not sufficient for A.

Definition 1 is not a constructive definition since it requires that we first guess a
statistic T and then check to see whether 7 is sufficient. Moreover, the procedure for
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checking that T is sufficient is quite time consuming. We now give a criterion for
determining sufficient statistics.

Theorem 1 (Factorization Criterion). Let X, X;,... , X, be discrete RVs
with PMF pyg(x1, x2, ... , Xp), 0 € ®. Then T(Xi, X2, ..., X) is sufficient for 9 if
and only if we can write

(1) Pﬂ(xb st ey xn) = h(xl» x2s .. ,xn)ga(T(xl»xZ» vy xn)):

where h is a nonnegative function of x|, x3, ... , x,, only and does not depend on 4,
and gy is a nonnegative nonconstant function of @ and T (x1, x2, ... , x,) only. The
statistic T(Xy, ... , X,) and parameter # may be multidimensional.

Proof. Let T be sufficient for 8. Then P{X = x | T = t} is independent of 4,
and we may write
Po(X = x} = Po{X =x, T(X1, X2,..., Xn) =t}
=P{T =t} PX=x|T =1},
provided that P{X = x | T = t} is well defined.

For values of x for which Py{X = x} = O for all 6, let us define h(xy, x2,
. » Xn) = 0, and for x for which Py{X = x} > 0 for some 9, we define

h(xy,x2, ..., xp)=P{X1=x1,..., Xn=x, | T =1t}
and define
8o(T(x1,x2,...,%n)) = Po{T(xy,...,xn) =1t}

Thus we see that (1) holds.
Conversely, suppose that (1) holds. Then for fixed #p we have

P{T =t} = Y Pp{X=x}
x: T(X)=tp

= Y g(TEHHE

x: T(x)=ty

=gollo) Y hX.

T(x)=tg

Suppose that Pg{T = fg} > 0 for some > 0. Then

P{X:XIT__t}___Po{X::x,T(x):to}_ OP{X——x} if T (x) # to,
’ - PQ{T(X) = t()} - ___0_-_._ if T(x) - t().
Po{T (x) = 10}
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Thus, if T(x) = tg, then

PolX=x) _ 8o (to)h(x)
Po{T (x) = 19} 8o (to) ZT(x):to h(x)’

which is free of 4, as asserted. This completes the proof.

Remark 2. Theorem 1 also holds for the continuous case and, indeed, for quite
arbitrary families of distributions. The general proof is beyond the scope of this book,
and we refer the reader to Halmos and Savage [38] or to Lehmann [63, pp. 53-56].
We will assume that the result holds for the absolutely continuous case. We leave
the reader to write the analog of (1) and to prove it, at least under the regularity
conditions assumed in Theorem 4.4.2.

Remark 3. Theorem 1 (and its analog for the continuous case) holds if 9 is a
vector of parameters and T is a multiple RV, and we say that T is jointly sufficient
for §. We emphasize that even if  is scalar, T may be multidimensional (Example 9).
If 0 and T are of the same dimension, and if 7 is sufficient for 8, it does not follow
that the jth component of T is sufficient for the jth component of 6 (Example 8).
The converse is true under mild conditions (see Fraser {29, p. 21]).

Remark 4. 1f T is sufficient for 8, any one-to-one function of T is also sufficient.
This follows from Theorem 1 since if U = k(T') is a one-to-one function of T, then
t = k~(u), and we can write

fo®) = go(Hh(X) = go(k™ ' (W)h(X) = g5 (Wh(x).
If T1, T» are two distinct sufficient statistics, then
So(x) = go(t1)h1(x) = go(t2)h2(X),

and it follows that 77 is a function of T;. It does not follow, however, that every
function of a sufficient statistic is itself sufficient. For example, in sampling from

. = . . -2 . = .
a normal population, X is sufficient for the mean p but X is not. Note that X is
sufficient for 2.

Remark 5. As a rule, Theorem 1 cannot be used to show that a given statistic
T is not sufficient. To do this, one would normally have to use the definition of
sufficiency. In most cases Theorem | will lead to a sufficient statistic if it exists.

Remark 6. If T(X) is sufficient for {Fp: 6 € O}, then T is sufficient for
{Fy: 6 € w}, where w C ©. This follows trivially from the definition.

Example 6. Let X1, X5, ..., X, beiid b(1, p) RVs. Then T = Z?:l X; is suf-
ficient. We have

PyXi=x1,X2=1x3,..., Xy = Xp} = pLi%i(1 — py*~Li%,
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and taking

p i
h(xlvxz’-" 9xn)= ] and gp(xlgx2,-.. ,xn)=(1—p)" (]'—:'—‘_p) +
we see that T is sufficient. We note that T7(X) = (X1, X7 + X3+ - + X,;) and
LX) = (X + X2, X3, Xa + X5 + --- + X,,) are also sufficient for p, although T
is preferable to T} or 7.

Example 7. 1et X1, X3, ..., X, be iid RVs with common PMF

P{Xl=k}_—_ k=l,2,...,N; i:1,2,...,n.

i
N?
Then

1
PyiXy=ki,Xo=ka,... , Xn=kn} = N ifl1<ky,...,kn <N,
1 .
= Ww(l, min k.-)<p(1r2?%(nk,, N),

where ¢g(a,b) = 1if b > a, and = 0if b < a. It follows, by taking gy[max
k1, ... k)] = (1/N")p(maxy<i<p ki, N) and h = @(1, mink;), that max(Xy, X»,
..., Xn) is sufficient for the family of joint PMFs Py.

Example 8. Let Xy, X2, ..., X, be a sample from N (i, o2), where both p and
o? are unknown. The joint PDF of (X1, X2, ... , X,) is

L 2
oxp [_Z(x, ) ]

fuor® = 202

1
(o2m)"

ol e ZiE pXin e
(o/2m)" 202 a? 2062 )"

1t follows that the statistic

T(X1,...,Xp) = (Xn:xi,znjx,?)
1 1

is jointly sufficient for the parameter (11, 0%). An equivalent sufficient statistic that
is frequently used is 71 (X1, ... , X») = (X, $2). Note that X is not sufficient for n
ifo?is unknown, and S2 is not sufficient for o2 if w1 is unknown. If, however, o2 is
known, X is sufficient for u. If ;1 = pq is known, YIXi—~ 1o)? is sufficient for o2.
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Example 9. Let X1, X5, ..., X, be a sample from PDF

6 6
xe[—i,i], g >0,

1
fox)=46"
0, otherwise.

The joint PDF of X, X3, ..., X, is given by

1
f0(xl’x21 v »xn) = e_nIA(xls .o ,Xn),

where
6 . ]
A=1{(x1,x2,...,Xp): —5 < minx; < maxx; < 5 .

It follows that (X (1), X(»)) s sufficient for 6.

We note that the order statistic (X 1y, X(2), - . ., X(n)) is also sufficient. Note also
that the parameter is one-dimensional, the statistics (X (1), X(»)) is two-dimensional,
and the order statistic is n-dimensional.

In Example 9 we saw that the order statistic is sufficient. This is not a mere coin-
cidence. In fact, if X = (X, X3, ..., X,) are exchangeable, the joint PDF of X is a
symmetric function of its arguments. Thus

fo(x1, x2, ..., xn) = fa(x), X@2)s - -+ » X(m))>

and it follows that the order statistic is sufficient for fg.
The concept of sufficiency is used frequently with another concept, called com-
pleteness, which we now define.

Definition 2. Let {fp(x),6 € O} be a family of PDFs (or PMFs). We say that
this family is complete if

Epg(X) =0 forall6 € ©
implies that
Pe{g(X)=0}=1 forall6 € ©.

Definition 3. A statistic 7(X) is said to be complete if the family of distributions
of T is complete.

In Definition 3 X will usually be a multiple RV. The family of distributions of T
is obtained from the family of distributions of X1, X2, ... , X, by the usual transfor-
mation technique discussed in Section 4.4.
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Example 10. 1et X1, X2,... ,X, be iid b(1, p) RVs. Then T = Z'l' X;isa

sufficient statistic. We show that T is also complete; that is, the family of distributions
of T, {b(n, p),0 < p < 1}, is complete.

Epg(T) = Zg(t)('tl)p’(l -p)"'=0 forallpe©,1)
t=0

may be rewritten as

n t
n n r \ _
a-p ;:0 g(t)(t) (——-—1 — p) =0 forall p € (0, 1).

This is a polynomial in p/(1 — p). Hence the coefficients must vanish, and it follows
thatg(z) =0fort =0, 1,2,...,n, as required.

Example 11. Let X be N'(0, 8). Then the family of PDFs {N(0, ), 6 > 0} is not
complete since EX = 0 and g(x) = x is not identically zero. Note that T(X) = X 2
is complete, for the PDF of X2 ~ 8x2(1) is given by

e—t/20

—_—, t >0,
F@®) =1 V2not

0, otherwise.

] o0
Eog(T) = Worti /0 gt V2 gy =0 forallg > 0,

which holds if and only if f0°° gt~ 12¢=t128 gy — 0, and using the uniqueness
property of Laplace transforms, it follows that

g(t)t'”2 =0 forall: > 0,
thatis, g(¢) = 0.

The next example illustrates the existence of a sufficient statistic that is not com-
plete.

Example 12. Let X, X2,... ,X, be a sample from N(6,8%). Then T =
(X% Xi, Y7 X?) is sufficient for §. However, T is not complete since

n 2 n
Eo 2(2){,-) —(m+D)Y X?|=0 foralls,
i 1

and the function g(x1, ... ,x,) = 2(2',’ xP—m+1D Z']' x,jz- is not identically zero.
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Example 13. Let X ~ U(0,0), 6 € (0, co). We show that the family of PDFs of
X is complete. We need to show that

6

1

Eog(X) = / ag(x) dx =90 foralld > 0
0

if and only if g(x) = 0 for all x. In general, this result follows from Lebesgue
integration theory. If g is continuous, we differentiate both sides in

6
f gx)dx =0
0

to get g(@) =0 forall8 > 0.
Now let X1, X2,..., X, be iid U(0, 8) RVs. Then the PDF of X, is given by

Y I 0<x <@,
0, otherwise.

fn(x|9)=[

We see by a similar argument that X ;) is complete, which is the same as saying that
{fa(x 1 6); 8 > 0} is a complete family of densities. Clearly, X ,) is sufficient.

Example 14. Let X, X», ... , X, be a sample from PMF
! x=12 N
PN(x)= Ns _ y $ ey b}
0, otherwise.

We first show that the family of PMFs { Py, N > 1} is complete. We have
1 &
Eng(X) = — k)=0 forall N > 1,
Ng(X) = gg( ) >

and this happens if and only if g(k) = 0,k = 1,2,..., N. Next we consider the
family of PMFs of X(n) = max(X1, ..., X,). The PMF of Xy is given by

X (x-D"
L

PPx) = ., x=12,...,N.
Also,

il K k="
EngXew) =Y _g) | 1o~ —m—| =0 forall N > 1.
k=1

E18( X)) =g(1)=0
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implies that g(1) = 0. Again,

1 1
E28(X(m)) = gz(,,—) +£(2) (1 - 2—,,) =0

so that g(2) = 0.

Using an induction argument, we conclude that g(1) = g(2) = --- = g(N¥) =0
and hence g(x) = 0. It follows that P,(v" Visa complete family of distributions, and
X (s is a complete sufficient statistic.

Now suppose that we exclude the value N = ng for some fixed ng > 1 from
the family {Py: N > 1}. Letus write P = {(Py: N > 1, N # no}. Then P is
not complete. We ask the reader to show that the class of all functions g such that
Epg(X) = 0forall P € P consists of functions of the form

0, k=12,...,ng—1l,ng+2,n9+3,...,
gk) = {c, k = no,
—C, k=n0+17

where ¢ is a constant, ¢ # 0.

Remark 7. Completeness is a property of a family of distributions. In Remark 6
we saw that if a statistic is sufficient for a class of distributions, it is sufficient for
any subclass of those distributions. Completeness works in the opposite direction.
Example 14 shows that the exclusion of even one member from the family {Py: N >
1} destroys completeness.

The following result covers a large class of probability distributions for which a
complete sufficient statistic exists.

Theorem 2. Let {fo: 0 € ®} be a k-parameter exponential family given by

k
@ fo(x) = exp [Z Q;(O)T;(x) + D(6) + S(x)] ,

=1

where @ = (01,6, ... ,6;) € O,anintervalin Ry, Ty, T, ... , Tx, and § are defined
onRp, T=(T,T2,...,Th), and X = (x1,X2,... , %), k < n. Let Q = (Q, Q2,
., Qr), and suppose that the range of Q contains an open set in R;. Then

T =N&X), nX),..., (X))
is a complete sufficient statistic.

Proof. For a complete proof in a general setting, we refer the reader to Lehmann
[63, pp. 142-143]. Essentially, the unicity of the Laplace transform is used on the
probability distribution induced by T. We will content ourselves here by proving the
result for the k = 1 case when fj is a PMF.



368 PARAMETRIC POINT ESTIMATION
Let us write Q(0) = 0 in (2), and let («, B) € ©. We wish to show that

Eog(T(X)) = Y g(t) Po{T(X) =1}
t

3) =) g®)explfr + D®) + S*@)]1 =0  forall6
!

implies that g(¢) = 0.

Letuswrite xT =xifx > 0,=0ifx <0,andx™ = —xifx <0,=0ifx > Q.
Then g(z) = g* (1) — g~ (¢), and both g™ and g™~ are nonnegative functions. In terms
of g* and g, (3) is the same as

) Zg+ (t)eez+s*(z) — Zg—(t)eou—s*(t)
r 7
for all 6.
Let 6y € (o, B) be fixed, and write
+(t)e90t+5*(t) B —(t)eeot-(-s*(t)
®) pt = £ e @ p= : TN B+
2 gt Yo g (0)ebot+STH

Then both p* and p~ are PMFs, and it follows from (4) that
®) Y ptm =) p(n
t t

for all § € (@ — 6y, B8 — Gp). By the uniqueness of MGFs (6) implies that
pt@®)=p @) forall¢

and hence that g*(t) = g~ (¢) for all ¢, which is equivalent to g(¢) = O for all ¢.
Since T is clearly sufficient (by the factorization criterion), it is proved that 7" is a
complete sufficient statistic.

Example 15. Let X1, X, ..., X, be iid N (1, 02) RVs where both u and o2
are unknown. We know that the family of distributions of X = (Xy,..., X,) is a
two-parameter exponential family with T(X1, ..., X») = (L} Xi, 37 X?). From
Theorem 2 it follows that T is a complete sufficient statistic. Examples 10 and 11
fall in the domain of Theorem 2.

In Examples 6, 8, and 9 we have shown that a given family of probability distri-
butions that admits a nontrivial sufficient statistic usually admits several sufficient
statistics. Clearly, we would like to be able to choose the sufficient statistic that re-
sults in the greatest reduction of data collection. We next study the notion of a min-
imal sufficient statistic. For this purpose it is convenient to introduce the notion of a
sufficient partition. The reader will recall that a partition of a space X is just a col-
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lection of disjoint sets E, such that 3, E, = X. Any statistic T(Xy, X2, ..., X,)
induces a partition of the space of values of (X;, X2, ..., X,), thatis, T induces a
covering of X by a family il of disjoint sets A; = {(x1, x2,... ,xn) € X : T(x1, x2,

., Xn) == t}, where ¢ belongs to the range of T'. The sets A, are called partition
sets. Conversely, given a partition, any assignment of a number to each set so that
no two partition sets have the same number assigned defines a statistic. Clearly, this
function is not, in general, unique.

Definition 4. Let {Fy: 6 € ©) be a family of DFs, and X = (X, X2,... ., Xy)
be a sample from Fp. Let 41 be a partition of the sample space induced by a statistic
T =TX1, X2,...,X,). Wesay that i = {A, : ¢ is in the range of T} is a sufficient
partition for 8 (or the family {Fp: 6 € ©}) if the conditional distribution of X, given
T = t, does not depend on 6 for any A,, provided that the conditional probability is
well defined.

Example 16. Let Xy, X5, ..., X, beiid b(1, p) RVs. The sample space of values
of (X1, X2, ..., X,) is the set of n-tuples (x1, x2, ..., x,), where each x; = 0 or
= 1 and consists of 2” points. Let T(Xy, X2,...,X,) = Z'l' X;, and consider the
partition U = {Ag, Ay,... , Ap}, wherex € A; if and only ifZ'{xi =j0<j<n.

Each A; contains (;l) sample points. The conditional probability
P,{x} "
P{x|A~}=——p—=(_) ifxe Aj;,
14 J Pp ( Aj) j J
and we see that 41 is a sufficient partition.

Example 17. let X1, X>,...,X, be iid U[0, 8] RVs. Consider the statistic
T(X) = maxj<i<n X;. The space of values of X1, X», ..., X, is the set of points

fx:0<x; <0,i =1,2,...,n}. T induces a partition U on this set. The sets of
this partition are A; = {(x1, x2, ... ,xp) : max(xy,... ,x,) = t},t € [0, 8].
We have
fo(X) .
fe(x|t) = ifx € Ay,
o !

where foT (t) is the PDF of T. We have

1/6 i ,
Sox | t) = YRy == ifx € A,.

It follows that 4 = {A,]} defines a sufficient partition.

Remark 8. Clearly, a sufficient statistic T for a family of DFs {Fp: 6 € ©}
induces a sufficient partition; and conversely, given a sufficient partition, we can
define a sufficient statistic (not necessarily uniquely) for the family.
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Remark 9. Two statistics 77, 7> that define the same partition must be in one-
to-one correspondence, that is, there exists a function k such that 7y = h(T3) with
a unique inverse, T, = h~=1(T)). 1t follows that if 7 is sufficient, every one-to-one
function of T3 is also sufficient.

Let 141, 1, be two partitions of a space X. We say that L{; is a subpartition of i,
if every partition set in i, is a union of sets of 4[;. We sometimes say also that U;
is finer than il (847 is coarser than L)) or that i, is a reduction of ;. In this case,
a statistic 7, that defines L must be a function of any statistic 77 that defines ;.
Clearly, this function need not have a unique inverse unless the two partitions have
exactly the same partition sets.

Given a family of distributions { Fy : 8 € ©} for which a sufficient partition exists,
we seek to find a sufficient partition 3 that is as coarse as possible; that is, any
reduction of ! leads to a partition that is not sufficient.

Definition 5. A partition {1 is said to be minimal sufficient if

(i) i is a sufficient partition, and
(ii) if C is any sufficient partition, C is a subpartition of 1.

The question of the existence of the minimal partition was settled by Lehmann and
Scheffé [62] and, in general, involves measure-theoretic considerations. However,
in the cases that we consider where the sample space is either discrete or a finite-
dimensional Euclidean space, and the family of distributions of X is defined by a
family of PDFs (PMFs) { f3, € € ©}, such difficulties do not arise. The construction
may be described as follows.

Two points x and y in the sample space are said to be likelihood equivalent, and
we write x ~ y, if and only if there exists a k(y,x) # O which does not depend
on @ such that fg(y) = k(y, X) fo(Xx). We leave the reader to check that “~” is an
equivalence relation (that is, it is reflexive, symmetric, and transitive) and hence “~”
defines a partition of the sample space. This partition defines the minimal sufficient
partition.

Example 18. Consider Example 16 again. Then

.j_rﬂ.(_’_‘_).;— Yxi=Y¥i(] o py” REAL
7@ p (1-p ,

and this ratio is independent of p if and only if

n n
in = Z)’i,
1 1

so that x ~ y if and only if 3 Jx; = Y] yi. It follows that the partition il =
{Ao, Ay, ..., Ay}, where x € Aj if and only if Z'{ x; = j, introduced in Exam-
ple 16, is minimal sufficient.
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A rigorous proof of the assertion above is beyond the scope of this book. The
basic ideas are outlined in the following theorem.

Theorem 3. The relation “~” defined above induces a minimal sufficient parti-
tion.

Proof. H T is a sufficient statistic, we have to show thatx ~ y whenever T (x) =
T (y). This will imply that every set of the minimal sufficient partition is a union of
sets of the form A, = {T = t}, proving condition (ii) of Definition 5.

Sufficiency of T means that whenever x € A,, then

fo(x)
foT ®

is free of 0. It follows that if both x and y € A,, then

fox10) _ fox)
folylt)  fo(y)

is independent of 8, and hence x ~ y.

To prove the sufficiency of the minimal sufficient partition 4, let 77 be an RV
that induces 4. Then 7; takes on distinct values over distinct sets of 4 but remains
constant on the same set. If X € {T1 = 11}, then

fofx | T =t} = ifx € A,

fo(x)
7 Ti=t)=—22%__
v fox | Ty =1) Pl = 11]
Now
Poity =) = [ hwdy o Y o),
o:Ti(y)=n) F:Tiy)=t)

depending on whether the joint distribution of X is absolutely continuous or discrete.
Since fp(x)/fo(y) is independent of & whenever x ~ vy, it follows that the ratio on
the right-hand side of (7) does not depend on §. Thus T is sufficient.

Definition 6. A statistic that induces the minimal sufficient partition is called a
minimal sufficient statistic.

In view of Theorem 3, a minimal sufficient statistic is a function of every sufficient
statistic. It follows that if T} and 7> are both minimal sufficient, then both must
induce the same minimal sufficient partition, and hence 77 and 7> must be equivalent
in the sense that each must be a function of the other (with probability 1).

How does one show that a statistic T is not sufficient for a family of distributions
P? Other than using the definition of sufficiency, one can sometimes use a result
of Lehmann and Scheffé [62] according to which if T3(X) is sufficient for 0, 8 €
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©, then T>(X) is also sufficient if and only if T7(X) = g(7»(X)) for some Borel-
measurable function g and all x € B, where B is a Borel set with PgB = 1.
Another way to prove T nonsufficient is to show that there exist x for which
T(x) = T(y) but x and y are not likelihood equivalent. We refer to Sampson and
Spencer [96] for this and similar results.
The following important result is proved in the next section.

Theorem 4. A complete sufficient statistic is minimal sufficient.

We emphasize that the converse is not true. A minimal sufficient statistic may not
be complete.

Example 19. Suppose that X ~ U(f#,6 + 1). Then X is a minimal sufficient
statistic. However, X is not complete. Take, for example, g(x) = sin2mx. Then

6+1 1
Eg(X) = / sin2nxx dx = / sin2rx dx =0
9 0

for all 6, and it follows that X is not complete.
If X1, X3,..., X, is a sample from U (6,8 + 1), then (X(1y, X(n)) is minimal
sufficient for 6 but not complete since

n—1
n+1

Eg( Xy — X)) =

for all 6.

Finally, we consider statistics that have distributions free of the parameter(s) 6
and seem to contain no information about 8. We will see (Example 23) that such
statistics can sometimes provide useful information about 0.

Definition 7. A statistic A(x) is said to be ancillary if its distribution does not
depend on the underlying model parameter 6.

Example 20. Let X1, X, ... , X, be a random sample from N(u, 1). Then the
statistic AX) = (n — 1)§2 = YL (X; — X)? is ancillary since (n — 1)§? ~
x2(n — 1), which is free of . Some other ancillary statistics are

n
X1 —Y, X(n) - X(l), and lei - XI-

i=1

Also, X, a complete sufficient statistic (hence minimal sufficient) for w is indepen-
dent of A(X).
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Example 21. 1et X, X3, ..., X, be a random sample from N(@©, c?). Then
A(X) = X follows (0, n"'o?) and is not ancillary with respect to the parame-

ter 02.

Example 22. Let X1y, X2).... ., X(n) be the order statistics of a random
sample from the PDF f(x — 6), where # € R. Then the statistic A(X) =
(X — Xqay, ... Xy — Xy) is ancillary for 6.

In Example 20 we saw that $? was independent of the minimal sufficient statistic
X. The following result due to Basu shows that it is not a mere coincidence.

Theorem 5. If S(X) is a complete sufficient statistic for 8, then any ancillary
statistic A(X) is independent of S.

Proof. If A is ancillary, then Pp{A(X) < a} is free of 6 for all a. Consider the
conditional probability g,(s) = P {A(X) < a | S(X) = s}. Clearly,

E{8.(SX))} = Po{AX) < a}.
Thus

E9(ga(S) — P{AX) <ah =0
for all 6. By completeness of S it follows that

Py{ga($) — P{A<a}l=0}=1
that is,

Py {A(X) <a | S(X) =s}= P{AKX) < a}

with probability 1. Hence A and § are independent.

The converse of Basu’s theorem is not true. A statistic S that is independent of
every ancillary statistic need not be complete (see, for example, Lehmann [60]).

The following example due to R. A. Fisher shows that if there is no sufficient
statistic for 6 but there exists a reasonable statistic not independent of an ancil-
lary statistic A(X), the recovery of information is sometimes helped by the ancillary
statistic via a conditional analysis. Unfortunately, the lack of uniqueness of ancillary
statistics creates problems with this conditional analysis.

Example 23. Let X1,X>,..., X, be a random sample from an exponential
distribution with mean 6, and let Y1, ¥, ... , ¥, be another random sample from
an exponential distribution and mean 1/6. Assume that X’s and Y’s are inde-
pendent and consider the problem of estimation of 8 based on the observations
(X1, X2, ..., Xp; Y1,Y2,...,Y,). Let $§§(x) = ?___l x; and S7(y) = Z?:l Yi.
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Then (Sl X)), Sg(Y)) is jointly sufficient for 6. It is easily seen that (S, $>) is a

minimal sufficient statistic for 6.
Consider the statistics

51(X) ]‘/2
S52(Y) '

SX, Y) = [
and
AKX Y) = 51(X) S (Y).

Then the joint PDF of S and A is given by

2 S(x,y) 6 [A(x, )12t
[r(n>12e"p[_"(x’y)( b +S(x,y))] S, Y)

and it is clear that § and A are not independent. The marginal distribution of A is
given by the PDF

Cx, PIAx, NI L,

where C(x, y) is the constant of integration, which depends only on X, y, and n but
not on 8. In fact, C(x,y) = 4Kp[2A(x, y)]/[I‘(n)]z, where Ky is the standard form
of a Bessel function (Watson [115]). Consequently A is ancillary for 6.

Clearly, the conditional PDF of S given A = a is of the form

ey (5255
2Kol2alSx.y) T 8 sxw/l

The amount of information lost by using S(X, Y) alone is the [1/(2n + 1)]th part of
the total, and this loss of information is gained by knowledge of the ancillary statistic
A(X,Y). These calculations are discussed in Example 8.5.9.

PROBLEMS 8.3

1. Find a sufficient statistic in each of the following cases based on a random sam-
ple of size n:
(a) X ~ B(a, B) when (i) « is unknown, 8 known; (ii) 8 is unknown, o known;
and (iii) , 8 are both unknown.
(b) X ~ G(a, B) when (i)  is unknown, B known; (ii) 8 is unknown, ¢ known;
and (iii) «, B are both unknown.
(c) X ~ Pny, n,(x), where
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1

_ =Ny +1,N+2,...,Nq,
N, — N x 1+ 1 2

PN],NZ (x) =
and Nj, N>2(N1 < N,) are integers, when (i) Ny is known, N> unknown;
(ii) N2 known, N; unknown; and (iii) Ny, N> are both unknown.

(d) X ~ fo(x), where

—x+6 if <x < o0,

fox) = {

0 otherwise.

(&) X ~ f(x; u, o), where

1
f(x1 Mao)- xo’,\/ﬂ—
(f) X ~ fo(x), where

1
exp [—-Z—ﬁ(logx - ;1,)2] ,x > 0.

fox)=Py{X =x}=c@®27*° x=0,0+1,...,0>0,
and
c(0) = 211810 — 1),
(8) X ~ Py p(x), where
Po,)=0-pp*°  x=0,04+1,...,0<p<1,

when (i) p is known, 6 unknown; (ii) p is unknown, 8 known; and (iii) p, 8
are both unknown.

. Let X = (X, X2,..., X,) be a sample from N (ao, 02), where « is a known

real number. Show that the statistic T(X) = (3.7, Xi, 37, X?) is sufficient
for o but that the family of distributions of 7'(X) is not complete.

. Let X1, X2,...,Xn beasamplefromN(u,az). Then X = (X1, Xo, ..., Xp)

is clearly sufficient for the family M(u, 0%, u € R,o > 0. Is the family of
distributions of X complete?

. Let X1, X7, ..., X, be a sample from U@ — %,0 + %), 6 € R. Show that the

statistic 7' (X, ... , Xp) = (min X;, max X;) is sufficient for 6 but not complete.

5. If T = g(U) and T is sufficient, sois U.

In Example 14, show that the class of all functions g for which Epg(X) = 0 for
all P € P consists of functions of the form
0, k=1,2,...,np—1,n0+2,n0+3,...,
glk) = 1, k = ng,

—c, k=ng+1,

where ¢ is a constant.
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7.

8.

10.

11.

12.

13.

14.

15.
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For the class { Fy,, Fg,) of two DFs where Fy, is N, 1) and Fy, is C(1,0), find
a sufficient statistic.

Consider the class of hypergeometric probability distributions {Pp: D = 0, 1, 2,
..., N}, where

-1
PD{X=x}=(2’) (f)(ﬁ:f) x=0,1,..., min{n, D}.

Show that it is a complete class. f P = {Pp: D = 0,1,2,... ,N, D #
d, d integral 0 < d < N}, is P complete?

Is the family of distributions of the order statistic in sampling from a Poisson
distribution complete?

Let (X, X2, ..., X,) be a random vector of the discrete type. Is the statistic
T(X1,...,Xn) =(Xy1,...,X,1) sufficient?

Let X3, X2, ..., X, be arandom sample from a population with law £(X). Find
a minimal sufficient statistic in each of the following cases:

(@ X ~ P().

(b) X ~ UIO,01].

() X ~ NB(1; p).

(d) X ~ Py,where Py{X =k} =1/Nifk=1,2,...,N,and = 0 otherwise.
e X ~N(u,o?).

) X~ G, B).

® X ~ B(e. B).

(h) X ~ fo(x), where fo(x) = (2/69)(© —x),0 < x <8.

Let X, X, be a sample of size 2 from P(A). Show that the statistic X; + o X>,
where o > 1 is an integer, is not sufficient for A.

Let X;, X5, ..., X, be a sample from the PDF
fe‘leze ifx>0
fo(x) =196 6> 0.
0 ifx <0

Show that 37, X? is a minimal sufficient statistic for 6, but }";_; X; is not
sufficient.

Let X1, X2, ... , X, be a sample from (0, o'2). Show that 3% Xi2 is a mini-
mal sufficient statistic but Y"7_, X; is not sufficient for 2.

Let X1, X2, ... , X, be a sample from the PDF f, g(x) = Be P ifx > @,
and = 0 if x < o. Find a minimal sufficient statistic for («, B).



UNBIASED ESTIMATION 377

16. Let T be a minimal sufficient statistic. Show that a necessary condition for a
sufficient statistic U to be complete is that U be minimal.

17. Let X1, X2, ... , Xn be iid A (i, 02). Show that (X, 5?) is independent of each
of (Xmy — X1))/S. (X(ny — X)/, and 317} (Xi1 — Xi)?/5%.

18. Let Xy, X5, ..., X, be iid A'(8, 1). Show that a necessary and sufficient condi-
tion for Y ©_, @i X; and Y_;_; X; to be independent is } ;. a; =0.

19. Let Xy, X3, ..., X, be a random sample from fp(x) = exp[—(x — )}, x > 6.
Show that X(jy is a complete sufficient statistic which is independent of S2.

20. Let Xy, X2,... , Xp be iid RVs with common PDF fy(x) = (1/8) exp(—x/6),
x > 0, 6 > 0. Show that X must be independent of every scale-invariant statis-
tic, such as X1/ 3"y X

21. Let Ty, T> be two statistics with common domain D. Then T is a function of T
if and only if

forallx,y € D, Ti(x) =T(y) = T(x) = Tr(y).

22. Let S be the support of f3, 8 € ©, and let T be a statistic such that for
some 61,6, € ©,and x,y € S, x # y, T(x) = T(y) but fp, (x)fo,(y) #
Jo,(x) fo, (¥). Then show that T is not sufficient for 6.

23. Let Xy, X2,..., X, be iid A'(8, 1). Use the result in Problem 22 to show that
(X2 X;)” is not sufficient for 6.

24. (a) If T is complete, show that any one-to-one mapping of T is also complete.

(b) Show with the help of an example that a complete statistic is not unique for
a family of distributions.

8.4 UNBIASED ESTIMATION

In this section we focus attention on the class of unbiased estimators. We develop
a criterion to check if an unbiased estimator is optimal in this class. Using suffi-
ciency and completeness, we describe a method of constructing uniformly minimum
variance unbiased estimators.

Definition 1. Let {Fp, @ € O}, ® C Ry, be a nonempty set of probability
distributions. Let X = (Xjy, X2, ... , X,) be a multiple RV with DF Fy and sample
space X. Let ¢ : ® — R be a real-valued parametric function. A Borel-measurable
function 7' : X — © is said to be unbiased for  if

93 EeT(X) = ¢ (0) forall @ ¢ ©.

Any parametric function ¢ for which there exists a T satisfying (1) is called
an estimable function. An estimator that is not unbiased is called biased, and the
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function b(T', ¥r), defined by
2) b(T, ) = EqT(X) — ¥/(0),
is called the bias of T,

Remark 1. Definition 1, in particular, requires that Eg|T| < oo forall # € ©
and can be extended to the case when both ¥ and T are multidimensional. In most
applications we consider @ C Ry, ¥(0) = 6, and Xy, X3, ..., X, are iid RVs.

Example 1. Let X1, X, ... , X, be arandom sample from some population with
finite mean. Then X is unbiased for the population mean. If the population variance
is finite, the sample variance S? is unbiased for the population variance. In general,
if the kth population moment m; exists, the kth sample moment is unbiased for my.

Note that S is not, in general, unbiased for 0. If X1, X2,... , X, are iid N (i1, 0’2)
RVs we know that (n — 1)S%/02 is x2(n — 1). Therefore,

E(SJn~1/a)=/()ooﬁ !

20=D2T[(n - 1)/2)

- @ ()]
oo ([ @[ ()] )

The bias of S is given by

oo [ @ ()] -

We note that b(s, 0) > 0 as n — o0, so that S is asymptotically unbiased for o.

x(n—-l)/2—le—x/2 dx

and

If T is unbiased for 8, g(T) 1s not, in general, an unbiased estimator of g(6) unless
g is a linear function.

Example 2. Unbiased estimators do not always exist. Consider an RV with PMF
b(1, p). Suppose that we wish to estimate ¥ (p) = p2. Then, in order that 7" be
unbiased for p?, we must have

p*=E,T =pT()+(1—-p)T©O), O0<p<k
that is,

p? = p{T(1) — T(O)} + T(0)
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must hold for all p in the interval [0, 1], which is impossible. (If a convergent power
series vanishes in an open interval, each of the coefficients must be 0. See also Prob-
lem 1.)

Example 3. Sometimes an unbiased estimator may be absurd. Let X be P(A) and
¥(A) = e~ 3* We show that T(X) = (—2)¥ is unbiased for ¥ (). We have

a Ax X, (—2A)F
ExT(X)=e? Z(—z)" = = e Z (~—x-‘2— =e o =y ).
- ! - x!

However, T(x) = (—2)* > 0if x is even and < 0 if x is odd, which is absurd since

v() > 0.

Example 4. Let X1, X3, ..., X, be a sample from P().). Then X is unbiased for
A ~z_i_nd so also is $2, since both the mean and the variance are equal to A. Indeed,
aX+ (1 - a)Sz, 0 < a < 1, is unbiased for A.

Let 0 be estimable, and let T be an unbiased estimator of 8. Let T7 be another
unbiased estimator of 8, different from 7. This means that there exists at least one
6 such that Po{T # T1} > 0. In this case there exist infinitely many unbiased
estimators of 6 of the form a7 + (1 — @)T1, 0 < @ < 1. It is therefore desirable to
find a procedure to differentiate among these estimators.

Definition 2. Let 89 € © and U/ (8p) be the class of all unbiased estimators T of
6y such that E90T2 < oo. Then Ty € U(By) is called a locally minimum variance
unbiased estimator LMVUE) at 8§ if
3) Egy(To — 60)* < Eg(T — 60)°
holds for all T € U (6p).

Definition 3. Let U/ be the set of all unbiased estimators T of @ € © such that
EgT? < oo for all @ € ©. An estimator Ty € U is called a uniformly minimum
variance unbiased estimator (UMVUE) of 6 if

(4 Eo(To — 0)* < Eg(T — 6)?

forall@ e ®andevery T € U.

Remark 2. Letay,as, ..., a, be any set of real numbers with > a; = 1.
Let X1, X, ..., X, be independent RVs with common mean u and variances akz,
k=1,2,...,n.Then T = Z;':] a; X; is an unbiased estimator of p with variance

) aizal.z (see Theorem 4.5.6). T is called a linear unbiased estimator of p. Linear
unbiased estimators of p that have minimum variance (among all linear unbiased
estimators) are called best linear unbiased estimators (BLUEs). In Theorem 4.5.6
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(Corollary 2) we have shown that if X; are iid RVs with common variance a2, the
BLUE of  is X = n~'Y""_, X;. If X; are independent with common mean y
but different variance al.z, the BLUE of u is obtained if we choose g; proportional
to 1l /aiz; then the minimum variance is H/n, where H is the harmonic mean of

o2,...,02 (see Example 4.5.4).

Remark 3. Sometimes the precision of an estimator T of parameter 8 is mea-
sured by the mean square error (MSE). We say that an estimator T is at least as
good as any other estimator T in the sense of the MSE if

5) Eo(To— 0)* < Eo(T —0)*  forallg € ©.

In general, a particular estimator will be better than another for some values of ¢ and
worse for others. Definitions 2 and 3 are special cases of this concept if we restrict
attention to unbiased estimators.

The following result gives a necessary and sufficient condition for an unbiased
estimator to be a UMVUE.

Theorem 1. Let i/ be the class of all unbiased estimators T of a parameter § € @
with EoT2 < oo for all 8, and suppose that U is nonempty. Let U, be the class of all
unbiased estimators v of 0, that is,

Uy ={v: Egv =0, E(,wv2 < oo for all 8 € O}.
Then Ty € U is a UMVUE if and only if
(6) Eo(vTp) =0 for all # and all v € Up.

Proof. The conditions of the theorem guarantee the existence of Eg(vTp) for all
@ and v € Up. Suppose that Ty € U is a UMVUE and Eg,(voTo) # O for some 6p and
some vg € Up. Then Ty + Avg € U for all real A. If Egov(z) = 0, then Eq,(voTp) =0
must hold since Pg,{vp =0} = 1. Let Egov(z) > 0. Choose Ao = —Eq,(Tovo)/ Egov%.
Then

EZ (voTo)
) Egy(To + hovo)? = EgyT¢ — ~2—— < EgT¢.
Egyuy
Since Tg 4+ Agvo € U and Ty € U, it follows from (7) that
8 varg, (To + Aovo) < vargy(To),

which is a contradiction. It follows that (6) holds.
Conversely, let (6) hold for some Ty € U, all@ € @ andallv € Up,and let T € U.
Then Ty — T € Uy, and for every 6,
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Eo{To(To — T)} = 0.
‘We have
EoT¢ = Eo(TTo) < (EoT3) /> (EaT?'?

by the Cauchy—-Schwarz inequality. If Eg TO2 = 0, then P(Typ = 0) = 1 and there is
nothing to prove. Otherwise,

(EoTH'? < (EoTH'?
or varg(Tp) < varg(T). Since T is arbitrary, the proof is complete.

Theorem 2. Let U/ be the nonempty class of unbiased estimators as defined in
Theorem 1. Then there exists at most one UMVUE for 6.

Proof. If T and Tp € U are both UMVUEs, then T — Ty € Up and
Eo{To(T —Tp)} =0 foralld € ©,
thatis, EgT? = Eg¢(T To), and it follows that
cov(T, Tp) = varg(Tp) for all 6.
Since Ty and T are both UMVUEs, varg(T) = varg(7p), and it follows that the
correlation coefficient between T and Ty is 1. This implies that Pg{aT +bTp = 0} =

1 for some a, b and all 6 € ©. Since T and Ty are both unbiased for 6, we must have
Py{T = Ty} = 1 forall 6.

Remark 4. Both Theorems 1 and 2 have analogs for LMVUE’s at 63 € ©, §p
fixed.

Theorem 3. If UMVUE:s 7; exist for real functions y;, i = 1, 2, of 8, they also
exist for Ay; (A real), as well as for ¢r; + ¥, and are given by AT; and T7 + T3,
respectively.

Theorem 4. Let {T,} be a sequence of UMVUEs and T be a statistic with
EgT? < oo and such that Eg{T,, — T}> — Oasn — ooforall® € ©. Then T is
also the UMVUE.

Proof. That T is unbiased follows from |E¢T — 6| < Eg|T — Tp,| < Eé/ 2(T,, —
T)2. Forallv € Up, all 6, andeveryn = 1,2, ... ,

Eo(T,v) =0

by Theorem 1. Therefore,



382 PARAMETRIC POINT ESTIMATION
Eg(vT) = E¢(vT) — Eg(vTy)
= Ep[v(T — Ty)]
and
|EguT)| < (Eqv?)/?[Eo(T = Tn)*1'"? >0 asn —> o0
for all # and all v € Y. Thus
Eq(wT)=0 forallv ey, allb €O,

and by Theorem 1, 7 must be the UMVUE.

Exar_n_ple 5. Let X4, X3,...,X, be iid P(A). Then X is the UMV_[_JE of A.
Surely, X is unbiased._liet g be an unbiased estimator of 0. Then 7(X) = X + g(X)
is unbiased for 6. But X is complete. It follows that

E;g(X)=0 forallA>0=>g(x)=0 forx=0,1,2,....
Hence X must be the UMVUE of A.

Example 6. Sometimes an estimator with larger variance may be preferable.

Let X be a G(1, 1/8) RV. X is usually taken as a good model to describe the time
to failure of a piece of equipment. Let X;, X3, ... , X, be a sample of n observations
on X. Then X is unbiased for EX = 1/8 with variance 1/(nf?). (X is actually
the UMVUE for 1/8.) Now consider X(jy = min(X1, X2, ..., Xp). Then nXq) is
unbiased for 1/8 with variance 1/82, and it has a larger variance than X. However,
if the length of time is of importance, X (1) may be preferable to X, since to observe
nX1 one needs to wait only until the first piece of equipment fails, whereas to

compute X one would have to wait until all the n observations X, X3, ... , X, are
available.
Theorem 5. If a sample consists of n independent observations X1, X2,... , Xp

from the same distribution, the UMVUE, if it exists, is a symmetric function of the
X i ’s.

The proof is left as an exercise.

The converse of Theorem 5 is not true. If X1, X2, ..., X, are iid P(A) RVs,
A > 0, both X and S2 are unbiased for 8. But X is the UMVUE, whereas S? is not.

We now turn our attention to some methods for finding UMVUEs.

Theorem 6 (Blackwell [9], Rao [85]). Let {Fy: 8 € ©} be afamily of probability
DFs and & be any statistic in I, where I/ is the (nonempty) class of all unbiased
estimators of 8 with Egh? < oo. Let T be a sufficient statistic for {Fy,8 € ©}.
Then the conditional expectation Ep{h | T} is independent of # and is an unbiased
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estimator of 8. Moreover,
) Eg(E{h | T} — 0)?> < Eg(h —6)>  forall6 € ©.

The equality in (9) holds if and only if h = E{h | T} (thatis, Po{h = E{h | T}} =1
for all ).

Proof. We have
Eg{E{h | T}} = Egh =8.
It is therefore sufficient to show that
10) EolE{h | T})* < Egh®*  foralld € ©.
But Egh? = Eg{E{h? | T}}, so that it will be sufficient to show that
an [E(h | TV < E{h?| T}.
By the Cauchy—Schwarz inequality
E*(h | T) < E(R* | T)E(1| T},
and (11) follows. The equality holds in (9) if and only if
(2) EglE{h | TII* = Eoh?,
that is,
EolE(h® | T) ~ E*h | T}] =0,
which is the same as
Eg{var{h | T}} = 0.
This happens if and only if var{h | T} = 0, that is, if and only if
EWh* | T)=E*h | T},

as will be the case if and only if & is a function of T. Thus A = E{h | T} with
probability 1.

Theorem 6 is applied along with completeness to yield the following result.
Theorem 7 (Lehmann—Scheffé [62}). If T is a complete sufficient statistic and

there exists an unbiased estimator k of 8, there exists a unique UMVUE of 6, which
is givenby E{h | T}.
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Proof. Y hy,hy €U, then Eth) | T} and E{hy | T} are both unbiased and
EolE{hy | T} = E{hy | T} =0 forallf € ©.

Since T is a complete sufficient statistic, it follows that E{h| | T} = E{h2 | T}. By
Theorem 6 E{h | T} is the UMVUE.

Remark 5. According to Theorem 6, we should restrict our search to Borel-
measurable functions of a sufficient statistic (whenever it exists). According to The-
orem 7, if a complete sufficient statistic T exists, all we need to do is to find a Borel-
measurable function of T that is unbiased. If a complete sufficient statistic does not
exist, an UMVUE may still exist (see Example 11).

__ Example 7. Let X1, X3,..., X, be N@,1D. Xy is unbiaseﬂ for 6. However,
X =n"! Z'l' X; is a complete sgﬁcieng_statistic, S0 tha_t_ E{X; | X}is the UMVUE.
We will show that E{X; | X} = X.Let Y = nX. Then Y is N(n8,n), X;

is N'(8, 1), and (X1, Y) is a bivariate normal RV with variance covariance matrix
11
n) Therefore,

1
X;,Y
E{X) |y} = EX; +9°—z;r(—;73(y—EY)
—04(y—noy =2,
n n

as asserted. —

If we let ¥(0) = 62, we can show similarly that X~ — 1/n is the UMVUE for
¥ (8). Note that 7(-2 — 1/n may occasionally be negative, so that an UMVUE for 62
is not very sensible in this case.

Example 8. Let X1, X2,... ,X, beiidb(1, p) RVs. Then T = )] X; is a com-
plete sufficient statistic. The UMVUE for p is clearly X. To find the UMVUE for
v(p) = p(1 — p), we have EmT) = n’p, ET? = np + n(n — 1)p?, so that
E{nT — T?} = n(n — Dp(1 — p), and it follows that (nT — T?)/n(n — 1) is the
UMVUE for ¥ (p) = p(1 — p).

Example 9. et Xy, X>,..., X, be a sample from N(u,0?). Then (X, S%)
is a complete sufficient statistic for (x, 02). X is the UMVUE for u, and §? is the
UMVUE for 2. Also, k(n)$ is the UMVUE for o, where k(n) = /(n — 1)/2 '[(n—
1)/2]/ T'(n/2). We wish to find the UMVUE for the pth quantile 3,. We have

p=P{Xsap}=P[Zsﬂ’7'f‘-},
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where Z is N'(0, 1). Thus 3, = 0z1_p + u, and the UMVUE is
T(X1,X2,...,Xn) =z1-pk(n)$ +X.

Example 10 (Stigler [109]). We return to Example 8.3.14. We have seen that the
family { P,f,"): N = 1} of PMFs of X(;) = maxi<i<, X; is complete and Xy is
sufficient for N. Now EX| = (N + 1)/2, so that T(X1) = 2X — 1 is unbiased for
N. It follows from Theorem 7 that E{T(X1) | X(x)} is the UMVUE of N. We have

yn-l _(y___ 1)71-1
n _._ _1 n
PiXi=x1|X@m=y}= ==

n-1

ifx1=1,2,...,y—1,
yoo-npr T

Thus

n=1_ ¢y _ 1yn-1 y-1
BT | X = ) = 2= D S0 1)

y=-D" =
yn—l
+Qy -
YT UW IS
_yH - -y
y = (y— 1

is the UMVUE of N.

If we consider the family P instead, we have seen (Example 8.3.14 and Prob-
lem 8.3.6) that P is not complete. The UMVUE for the family {Py: N > 1} is
T(X1) = 2X;1 — 1, which is not the UMVUE for P. The UMVUE for P is, in fact,
given by

T k) = 2k — 1, k#ng, k#no+1,
2ng, k=ng, k=no+1.

The reader is asked to check that T has covariance 0 with all unbiased estimators g

of 0 that are of the form described in Example 8.3.14 and Problem 8.3.6, and hence

Theorem 1 implies that 77 is the UMVUE. Actually, T1(X) is a complete sufficient

statistic for P. Since En,T1(X1) = ng+ 1/ng, Ty is not even unbiased for the family

{Py: N > 1). The minimum variance is given by

vary (T (X)) if N < ng,

Ti(X =
vary (T1(X1)) vary (T(X1)) _% if N > ng.
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The following example shows that a UMVUE may exist, whereas a minimal suf-
ficient statistic may not.

Example 11. Let X be an RV with PMF
Po(X=-1)=6 and Py(X =x)=(1-6)%6%,
x=0,1,2,...,where0 <8 < L.Lety(0) = Pp(X =0)= (1 —6)%. Then X is

clearly sufficient, in fact minimal sufficient, for # but since

EoX = (=)0 + ) _ x(1 — 6)%6"

x=0

d o0
=—0+6(1—-0)>— Y 6" =0,
do —

it follows that X is not complete for {Ps : 0 < 8 < 1}. We will use Theorem 1 to
check if a UMVUE for ¥ () exists. Suppose that

o0
Egh(X) = h(—1)6 + Z(l ~0)20°h(x) =0
x=0
forallO <@ < 1. Then, for0 <6 < 1,
oo o0 o0
0=0h(~1)+ Y 0h(x)—2) 6" 'h(x) + > 67 2h(x)
x=0 x=0 =0

= h(0) + Z@"“[h(x + 1) = 2h(x) + h(x — 1]
x=0

which is a power series in 6.
It follows that £(0) = 0, and for x > 1, k(x + 1) — 2h(x) + h(x — 1) = 0. Thus

h(D) =h(=1), h(2) = 2r1) — h(0) = 2h(-1),
h(3) = 2h(2) — h(1) = 4h(—1) — h(-1) = 3h(-1),
and so on. Consequently, all unbiased estimators of zero are of the form A(X) = cX.
Clearly, T(X) = 1if X = 0, and = 0 otherwise is unbiased for ¥ (8). Moreover, for
all o,
E{cX - T(X)} =0,
so that 7' is UMVUE of ¢ (6).

We conclude this section with a proof of Theorem 8.3.4.
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Theorem 8. (Theorem 8.3.4) A complete sufficient statistic is a minimal suffi-
cient statistic.

Proof. Let §(X) be a complete sufficient statistic for {fs : ¢ € ©} and let T be
any statistic for which EglT?| < co. Writing h(S) = Eg{T|S}, we see that A is the
UMVUE of EyT. Let §1(X) be another sufficient statistic. We show that £(S) is a
function of S;. If not, then h1(S1) = Eg{h(S5)|51} is unbiased for E4T and by the
Rao-Blackwell theorem,

varg h1(Sy) < varg h(S),

contradicting the fact that 2(S) is UMVUE for E4T. It follows that 4(S) is a function
of 81. Since h and S} are arbitrary, S must be a function of every sufficient statistic
and hence, minimal sufficient.

PROBLEMS 8.4

1. Let X1, X2, ..., X,(n = 2) be a sample from b(1, p). Find an unbiased estima-
tor for Y (p) = p%.

2. Let X1, X2,...,Xa(n > 2) be a sample from N (i, 62). Find an unbiased
estimator for o7, where p + n > 1. Find a minimum MSE estimator of o?.

3. Let X1, X2, ..., X, be iid M(u, 02) RVs. Find a minimum MSE estimator of
the form 52 for the parameter o 2. Compare the variances of the minimum MSE
estimator and the obvious estimator S%.

4. Let X ~ b(1, 62). Does there exist an unbiased estimator of 7
5. Let X ~ P(A). Does there exist an unbiased estimator of ¥ (1) = A~1?

6. Let Xy, X2, ..., X, be asample fromb(1, p),0 < p < 1,and0 < s <nbean
integer. Find the UMVUE for (a) ¥ (p) = p*,and (b) ¥ (p) = p* + (1 — p)"~>.

7. Let X3, X2, ..., X, be a sample from a population with mean 6 and finite vari-
ance, and 7 be an estimator of 8 of the form T(X 1, X,,... , X,) = Z?:l o; X;.
If T is an unbiased estimator of @ that has minimum variance and T’ is another
linear unbiased estimator of 4, then

covp(T, T = vary (T).

8. Let 77, 7> be two unbiased estimators having common variance acl(a > 1),
where o2 is the variance of the UMVUE. Show that the correlation coefficient
between 71 and T is > (2 — a)/a.

9. Let X ~ NB(1;0) and d(@) = Pe{X = 0}. Let Xy, X2, ..., X, be a sample
on X. Find the UMVUE of d(9).
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10. This example covers most discrete distributions. Let X, X», ..., X, be a sam-
ple from the PMF
a(x)6*
PolX = x} = , x=0,1,2,...,
1)

where 8 > 0, a(x) > 0, f(0) = Y o ga(x)0*,a(0) = 1,and let T = X; +
Xo+ -+ X,,. Write

c(t,n) = Z ﬁa(x,-)

X1, X2, s Xn i==]
n

with ) x;=t.
i=1

Show that T is a complete sufficient statistic for 6 and that the UMVUE for
d(@) = ¢" (r > Ois an integer) is given by

0 ift <r.

YWy= 3 ct —r,n)

ift >r.
c(t,n)

(Roy and Mitra [92])
11. Let X be a hypergeometric RV with PMF

ra=a= ()" (V) (22

where max(0, M +n — N) < x < min(M, n).
(a) Find the UMVUE for M when N is assumed to be known.
(b) Does there exist an unbiased estimator of N (M known)?

12. Let X1, X2,..., X, beiid G(1, 1/1) RVs A > 0. Find the UMVUE of P, {X; <
to}, where 9 > 0 is a fixed real number.

13. Let X1, X2, ... , X, be a random sample from P(1). Let ¢ (d) = Y poqckrt
be a parametric function. Find the UMVUE for ¥ (1). In particular, find the
UMVUE for (a) ¥ (1) = 1/(1 — 1), (b) ¥ (1) = A* for some fixed integer s > 0,
©¢¥Q)=P{X=0},and () y(\) = {X =0or1}.

14. Let Xy, X2, ..., X, be a sample from the PMF

1
PN(X)=N, x=1,2,...,N.

Let ¥ (N) be a function of N. Find the UMVUE of ¥ (N).
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15. Let Xy, X3,..., X, be a random sample from P()). Find the UMVUE of
¥ (L) = P,{X =k}, where k is a fixed positive integer.

16. Let (X1, Y1), (X2, F2), ..., (Xp, ¥,,) be a sample from a bivariate normal pop-
ulation with parameters @i, p2, 012, 022, and p. Assume that u; = u2 = wu,
and it is required to find an unbiased estimator of u. Since a complete sufficient
statistic does not exist, consider the class of all linear unbiased estimators

@) =aX + 1 —-a)Y.

(a) Find the variance of /1.
(b) Choose o = ag to minimize var(i1), and consider the estimator

fio = aoX + (1 —ap)Y.

Compute var(fip). If o1 = o2, the BLUE of u (in the sense of minimum
variance) is

~i|

. X+
ur = 2

irrespective of whether oy and p are known or unknown.

(¢) If o1 # o2 and p, o1, 07 are unknown, replace these values in g by their
corresponding estimators. Let

. 52 -5

o = —m———

S+ 52 - 28y

Show that
=Y +X-Ya
is an unbiased estimator of .

17. Let X1, X2, ..., X, be iid M(@, 1). Let p = ®(x — 6), where ® is the DF of a
N(0, 1) RV. Show that the UMVUE of p is given by @ ((x ~X)Vn/(n - 1)).

18. Prove Theorem S.

19. In Example 10 show that 77 is the UMVUE for N (restricted to the family P),
and compute the minimum variance.

20. Let (X3, Y1), ..., (X,, Y,) be a sample from a bivariate population with finite
variances 012 and 022, respectively, and covariance y. Show that

1 n—2 alal
var($11) = " (#22 - ;—_—1')’2 + ﬁ) ,
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21

.

22,

23.

24,

25.

26.
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where py; = E[(X — EX)*(Y — EY)?]. It is assumed that appropriate order
moments exist.

Suppose that a random sample is taken on (X, Y) and it is desired to estimate y,
the unknown covariance between X and Y. Suppose that for some reason a set §
of n observations is available on both X and Y, an additional n{ —n observations
are available on X but the corresponding Y values are missing, and an additional
ny — n observations of ¥ are available for which the X values are missing. Let
S be the set of all n(> n) X values, and S, the set of all ny(> n) Y values,
and write

X = Ziesx Xj ¥ = Z1‘652 Y; ¥ = ZieS Xi Y= Zies Y;
ny ’ ny ' n ' n '

Show that

ninz
n(niny —ny —nz +n)

= Y X - - 1)

ieS§

is an unbiased estimator of y. Find the variance of 7, and show that var(y) <
var(S}1), where Sy is the usual unbiased estimator of y based on the n observa-
tions in S. (Boas [10))

Let X1, X2, ..., X, be iid with common PDF fp(x) = exp(—x 4+ 8), x > 6.
Let xg be a fixed real number. Find the UMVUE of fg(xp).

Let X;, Xa,..., X, be iid M(u, 1) RVs. Let T(X) = > 7, X;. Show that
@(x; t/n,n — 1/n) is the UMVUE of ¢(x; i, 1) where ¢(x; 1, o2) is the PDF
of a N (i, 5%) RV.

Let X1, X32,..., Xp be iid G(1, ) RVs. Show that the UMVUE of f(x;6) =
(1/8) exp(—x/8), x > 0, is given by h(x|t) the conditional PDF of X; given
T(X)= Y7, Xi =1, where

hxlt) = (n — D@ — x)" 2/t ] forx <tand =0forx > t.

Let X1, X3,..., X, be iid RVs with common PDF fy(x) = 1/(20), {x| < 6,
and = 0 elsewhere. Show that 7(X) = max{—X(), X(n)} is a complete suffi-
cient statistic for 6. Find the UMVUE of 6",

Let X1, X3, ..., X, be a random sample from the PDF

(x—u)
[e)

fe(x)=§exp|:— ], x>u, o0>0

where 6 = (u, o).
(a) Show that (X M L=y (X=X (1))) is a complete sufficient statistic for 6.
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(b) Show that the UMVUEs of i and o are given by

1 n
P > (X - Xay)-

. 1 Z N
M=X(1>“m;(xf"x(1))’ o=

(¢) Find the UMVUE of (1, 0') = E, 5 X}.
(d) Show that the UMVUE of P3{X > ¢} is given by

n—1 t—X "2
p - —— A
Pi=0="=3 [[1 YK ’X(l))] ]

where xT = max(x, 0).

8.5 UNBIASED ESTIMATION (CONTINUED): LOWER BOUND FOR
THE VARIANCE OF AN ESTIMATOR

In this section we consider two inequalities, each of which provides a lower bound
for the variance of an estimator. These inequalities can sometimes be used. to show
that an unbiased estimator is the UMVUE. We first consider an inequality due to
Fréchet, Cramér, and Rao (the FCR inequality).

Theorem 1 (Cramér [17], Fréchet [31], Rao [84]). Let @ C R be an open in-
terval and suppose that the family {f5 : 0 € ©} satisfies the following regularity
conditions:

(i) It has common support set S. Thus § = {x: fyo(x) > 0} does not depend
oné.

b
(ii) For x € S and 9 € O, the derivative P73 log fo(x) exists and is finite.

(iii) For any statistic & with Eg|h(X)| < oo for all 8, the operations of integration
(summation) and differentiation with respect to 8 can be interchanged in
Egh(X). That is,

) a% h(x) fo (%) dx = / h(x)—%fo(x)dx

whenever the right-hand side of (1) is finite.
Let T(X) be such that \;arg T(X) < oo for all @ and set Y (8) = EoT(X). If
a
I@)=Ey [% log fo (X)] satisfies 0 < 7(8) < oo, then

' @) .

2) varg T(X) > 76)
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Proof.  Since (iii) holds for A = 1, we get
3 0 / %
= | — x
500"

= /; [5% log fe(x)] Jo(x) dx

a3
=E [@logfg(X)].

Differentiating ¥ (9) = EoT (X) and using (1), we get
d
G v'(6) = / T(x) 55 fo(x) dx
S
3
- f [T(x)% log fe(X)] fo) dx
s

0
= COoV [T(X), Y log fg(X)] .

Also, in view of (3), we have

3 3 2
varg [56 log fe(X)] = Eg [8—8 log fe(X)] .

and using Cauchy—-Schwarz inequality in (4), we get

3 2
[y (0)1 < varg T(X)Eg [55 log fo(X)]

which proves (2). Practically the same proof may be given when fy is a PMF by
replacing f by .

Remark 1. f, in particular, ¢ (6) = 6, then (2) reduces to

1
&) varg (T (X)) > 0%

Remark 2. Let X1, X2,..., X, be iid RVs with common PDF (PMF) fp(x).
Then

i

2 n N2
Ea[alogfe(x)] =ZE9[alogfe<Xl)]

16
@ a0 ra 90

dlog fo(Xy)
=nbo| 7%

2
] = nl(0),
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where 11(0) = Ey[d log fo(X1)/ 9612. In this case the inequality (2) reduces to

[¥' @1
nh(@)

varg(T (X)) >

Definition 1. The quantity

dlog fO(Xl)]2

(6) L6 = Eo[ 20

is called Fisher information in Xy and

d log fo (X)

2
20 ] =nl(6)

™ 1(0) = Es [

is known as Fisher information in the random sample Xy, X2, ... , Xj,.

Remark 3. As n gets larger, the lower bound for vary (T (X)) gets smaller. Thus,
as the Fisher information increases, the lower bound decreases and the “best” esti-
mator [one for which equality holds in (2)] will have smaller variance, consequently
more information about 6.

Remark 4. Regularity condition (i) is unnecessarily restrictive. An examination
of the proof shows that it is only necessary that (ii) and (iii) hold for (2) to hold.
Condition (i) excludes distributions such as fg(x) = 1/, 0 < x < 8, for which
(3) fails to hold. It also excludes densities such as fp(x) = 1,0 <x <6 + 1, or
Jo(x) = 2/fm) sinz(x + ), 0 < x <8 + n, each of which satisfies (iii) for 7 = 1,
so that (3) holds but not (1) for all & with Eg|h| < o0.

Remark 5. Sufficient conditions for regularity condition (iii) may be found in
most calculus textbooks. For example, if (i) and (ii) hold, then (iii) holds provided
that for all & with Eg|h| < oo for all 6 € O, both Eg{h(X)[3 log f3(X)/36]} and
Eg |h(X)[3f9(X)/30]] are continuous functions of . Regularity conditions (i) to (iii}
are satisfied for a one-parameter exponential family.

Remark 6. The inequality (2) holds trivially if 7(8) = oo {and ¢'(#) is finite]
or if varg (T (X)) = o0.

Example 1. Let X ~ b(n, p); ® = (0, 1) C R. Here the Fisher information may
be obtained as follows:

log fp(x) = log (:) + xlog p + (n — x) log(1 — p),

dlog fp(x) n—x

X
ap p 1-p
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and

alog f,,()()]2 n
E = = I .
"[ ap pi—p 1P

Let ¥ (p) be a function of p and T(X) be an unbiased estimator of ¥ (p). The only
condition that need be checked is differentiability under the summation sign. We
have

n n B
V(p) = E,T(X) =) ( ) T@)p*(1 — p)"~*,
x=0 X
which is a polynomial in p and hence can be differentiated with respect to p. For any
unbiased estimator 7(X) of p, we have

1 1
var, (T (X)) > -’;p(l —-p)= o

and since

var({) :np(lz—p) _pd-p
n n n

it follows that the variance of the estimator X /n attains the lower bound of the FCR
inequality, and hence 7'(X) has least variance among all unbiased estimators of p.
Thus T(X) is the UMVUE for p.

Example 2. Let X ~ P(3). We leave the reader to check that the regularity con-
ditions are satisfied and

van (T'(X)) = A.

Since T(X) = X has variance A, X is the UMVUE of A. Similarly, if we take a
sample of size n from P (1), we can show that

A

IL,(A) = and van(T'(Xy,...,Xn) > -

>R

and X is the UMVUE.
Let us next consider the problem of unbiased estimation of ¥ (1) = e, based
on a sample of size 1. The estimator

1 if X =0,

d(X)=
(%) {0 itxX >1,
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is unbiased for ¥ (1) since
EX) =EBXP=PX=0="
Also,
van (3 (X)) = e (1 —e™).
To compute the FCR lower bound, we have
log fa(x) = xlogA — A —logx!.

This has to be differentiated with respect to e~*, since we want a lower bound for an
estimator of the parameter ¢ . Let § = ¢™*. Then

1
log fo(x) = xloglog r} + log@ — log x!,

a 1
5—0‘10gf0(x) xol()go +_9"

and
3 2 2 1 1 1\2
Eg|—1 | ==l1+ = ! log —
"[ae og fa( )] 02[ +lg9 0g — +( 0)2[0g +(og6)]]
1
=e2*[1—2+x2-(x+xz)]
22
= =1,
so that
A 1
varg T(X) 2 7 = 755
where § = e >,

Since e (1 — ™) > Ae™2* for A > 0, we see that var(8(X)) is greater than the
lower bound obtained from the FCR inequality. We show next that §(X) is the only
unbiased estimator of 8, and hence is the UMVUE.

If h is any unbiased estimator of 0, it must satisfy Egh(X) = 6. That is, for all
A>0,

00 Ak
A = Zh(k)e'k-?
p k!
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Equating coefficients of powers of L we see immediately that 2(0) = 1 and h(k) = 0
fork =1, 2,.... It follows that h1(X) = 3(X).

The same computation can be carried out when Xy, X, ..., X, is a random
sample from P(A). We leave the reader to show that the FCR lower bound for any
unbiased estimator of & = e~ is Ae=2*/n. The estimator Y r._; 3(X;)/n is clearly
unbiased for e with variance e *(1 — e™*)/n > (Ae~?*)/n. The UMVUE of ¢~*
is given by Ty = [(n — 1)/n]Zi=1 Xi with var, (Tg) = e (" — 1) > (e ) /n
forall A > 0.

Corollary. Let X, X2,..., X, be iid with common PDF f,(x). Suppose that

the family { fy : 6 € O} satisfies the conditions of Theorem 1. Then equality holds
in (2) if and only if for all 9 € ©,

, 2
® T(x) - ¢(0) = k(9)55 log fo(x)
for some function k(9).

Proof. Recall that we derived (2) by an application of the Cauchy-Schwatz in-
equality where equality holds if and only if (8) holds.

Remark 7. Integrating (8) with respect to 8, we get
log fo(x) = QAT (x) + S(8) + AX)

for some functions @, S, and A. It follows that fg is a one-parameter exponential
family and the statistic T is sufficient for 6.

Remark 8. A result that simplifies computations is the following. If fp is twice

]
differentiable and Eg {% log fo (X)} can be differentiated under the expectation

sign, then
3 z 9

= — = —=1 .
&) 1(0) = Eg [8 P log fo(x)] Eg 992 108 fo(X)
For the proof of (9), it is straightforward to check that

8 AN ]2
= — ! .
307 log fp(x) ) [ a9 108 fo(x)

Taking expectations on both sides we get (9).

Example 3. Let Xy, X3, ..., X, be iid N (., 1). Then
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1 _ 2
log fu(x) = -Elog(Zn) - 9—2—&

0
5; log fu(x) =X—H,

and

32
5—12'2- log f,L(x) = -1.
Hence I () = 1 and I,,() = n.

We next consider an inequality due to Chapman, Robbins, and Kiefer (the CRK
inequality) that gives a lower bound for the variance of an estimator but does not
require regularity conditions of the Fréchet—Cramér—Rao type.

Theorem 2 (Chapman and Robbins [11], Kiefer [50]). Let ® C R and {fp(x) :
8 € ®} be a class of PDFs (PMFs). Let i be defined on ©, and let T be an unbiased
estimator of ¥ () with EgT? < oo forall§ € ©.If 9 # @, assume that fy and f,
are different and assume further that there exists a ¢ € © such that 8 # ¢ and

10 S@) = {fo(x) > 0} D S(p) = {fo(x) > O}.

Then

[V () — ¥ OF
11 X)) z
an var(T(X)) = lw:s(«z)égg), g0} Vatol fo (X)/ 1o (X)]

for all @ € 2.

Proof. Since T is unbiased for ¥, E,T(X) = ¥ () for all ¢ € ©. Hence, for
¢ #0,

(12) f oo e =S ® ooy ax = (o) — pi0),
S(0) Jo(x)
which yields
Jo(X) ]
T(X), 22 = — ¥ @).
COV@[ X) 70 %) V(o) —¥(6)

Using the Cauchy—Schwarz inequality, we get

2 foX) fX)
covy [T(X), _fo(x) 1] < varg(T (X)) vary [fo X 1]
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= varg(T (X)) vary [M] .

JoX)
Thus

[ (p) — ¥ (@)

T(X |
varg (T (X)) > varg{ f,(X)/ fo(X)}

and the result follows. In the discrete case it is necessary only to replace the integral
in the left side of (12) by a sum. The rest of the proof needs no change.

Remark 9. Inequality (11) holds without any regularity conditions on fy or
¥(0). We will show that it covers some nonregular cases of the FCR inequality.
Sometimes (11) is available in an alternative form. Let 8 and 6 + §(8 # 0) be any
two distinct values in © such that S(6 + 8) C S(9), and take ¥ (6) = 0. Write

2
J=J@®,8 = 1 {[f0+8(X)] _ 1]‘

a2 fo(X)

Then (11) can be written as

(13) varg (T (X)) =

infEgJ’
lgl 9
where the infimum is taken over all § # 0 such that $(6 + 8) C S(@).

Remark 10. Inequality (11) applies if the parameter space is discrete, but the
Fréchet-Cramér-Rao regularity conditions do not hold in that case.

Example 4. 1Let X be U[0, 8]. The regularity conditions of FCR inequality do not
hold in this case. Let ¥ (6) = 6. If ¢ < 8, then S(p) C S(B). Also,

2 2
B [E0T [ (O) Lant
fo(X) o \¢/ 6 @

(p — 6)? 62
T(X = 0 —¢) = —
varg (T (X)) 22;50 @) —1 ;;lgew( ] "

Thus

for any unbiased estimator T (X) of 6. X is a complete sufficient statistic, and 2X is
unbiased for 6 so that T(X) = 2X is the UMVUE. Also,

2 92

varg(2X) = 4varX = 3 > T
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Thus the lower bound of #2/4 of the CRK inequality is not achieved by any unbiased
estimator of 9.

Example 5. Let X have PMF

1
PyiX=k={N
0, otherwise.

; k=12,...,N,

Let® = (N: N > M, M > 1 given}. Take y/(N) = N. Although the FCR regular-
ity conditions do not hold, (11) is applicable since for N # N' € ® C R,

SIN)={1,2,... . N} D S(N)=(1,2,...,N'} if N <N.

Also, Py and Py are different for N # N’. Thus

N —N')?
vary(T) = sup ———(———l——
N'<n VarN{Py'/ Py}

Now
N
Py Py (x) —, x=12,...,N, N <N,
_.(x — - !
Py Py(x) 0, otherwise,
g [ P00 2*li N\ N
MIPveo] TN4\N) TN
and
Py (X) N
= -1 N> N.
arN[PN(X)] N >0 for N > N

It follows that

(N — N')? , ,
vary (T (X)) > sup ————— = sup N'(N — N').
N Sup NN e M )

Now

k(N —k) . . N+1
(k—l)(N—k+l)>l ifand only if k < 5

so that N’(N — N’) increases as long as N’ < (N + 1)/2 and decreases if N’ >
(N + 1)/2. The maximum is achieved at N’ = [(N + 1)/2}if M < (N + 1)/2 and
at N/ = M if M > (N + 1)/2, where [x] is the largest integer < x. Therefore,
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N+1 N +1 N
vay(@oy > YA (v MRy VD
2 2 2
and
N 41
vary(T(X)) > M(N — M), if M > ; .

Example 6. Let X ~ N'(0, 02). Let us compute J (see Remark 9) for § # 0.
z 2n x? 2
J:-l- [M] -1 :‘i —j~——exp - z : +§:Xl —1
52 [ (X) 82 | (6 + &)= (o + 8)? o2

1 0 \" | EXIE +209) ]
T8 (0+8) T e |7

and

where ¢ = (82 + 208) /(0 + 8)%.
Since Y~ X?/0% ~ x%(n),

E;J ! ( i > ! 1 for !
= =3 - < =.
T2 I\e+s/) d=202 ©=32

Letk = 8/0; then

and
1 _ _
EyJ = ,Tz;i[(l +k)7"( = 2%k —kH ™ 1.

Here 1 +k > 0and 1 —2¢ > 0, so that | — 2k — k2 > 0, implying that —v/2 <
k+1<+/2andalsothatk > —1. Thus —1 < k < +/2 — 1 and k # 0. Also,
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L+k) (1 —2k—k*)™"2 -1

lim Eo-leim( L )
0 k—0 k202

_ 2n

=
by L’ Hospital’s rule. We leave the reader to check that this is the FCR lower bound
for varg (T (X)). But the minimum value of E; J is not achieved in the neighborhood
of k = 0, so that the CRK inequality is sharper than the FCR inequality. Next, we
show that for n = 2 we can do better with the CRK inequality. We have

1 1
E,J = ~1
777 k202 [(1 — 2k — k)1 +k)? ]

B k +2)?
T o2(1 + k)21 - 2k — k2)’

~l<k<+2-1, k#0.

For k = —0.1607 we achieve the lower bound as (E,J)~! = 0.269802, so that
var, (T(X)) > 0.26980% > o2/4. Finally, we show that this bound is by no means
the best available; it is possible to improve on the Chapman-Robbins-Kiefer bounds,
too, in some cases. Take

_ T/ o [ETix?
T T+ D/21/2V o2

to be an estimate of 0. Now E; T = o and

EaTzsz[ re/2) TE(Z?X?)
2 | Flw + D720 o

T(X11X21 sy Xn)

_ngt [ rem 7

2 | Tln+1)/2]
so that
2
vary (T) = o2 r (——w—) —1]1.
2 \T'i(n +1)/2]
Forn =2,

4
vary (T) = o2 (; - 1) = 0.2732¢2,

which is > 0.269802, the CRK bound. Note that T is the UMVUE.

Remark 11.  In general the CRK inequality is as sharp as the FCR inequality. See
Chapman and Robbins [11, pp. 584-5851, for details.
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We next introduce the concept of efficiency.

Definition 2. Let T;, T be two unbiased estimators for a parameter 8. Suppose
that Eg T12 < 00, Ep T22 < 00. We define the efficiency of T relative to T, by

varg(T3)
14 ffo(Ty | Th) = ——==
(14) effo(T1 | T2) ()
and say that 77 is more efficient than 75 if
(15) effo(Ty | Tr) > 1.

It is usual to consider the performance of an unbiased estimator by comparing its
variance with the lower bound given by the FCR inequality.

Definition 3. Assume that the regularity conditions of the FCR inequality are sat-
isfied by the family of DFs { Fy, 6 € ®}, ® C R. We say that an unbiased estimator
T for parameter 6 is most efficient for the family {Fp} if

-1
3 log fo0) T
(16) vare(T)={Eo[——f’—§fé‘3Q” = 1,(9).

Definition 4. Let T be the most efficient estimator for the regular family of DFs
{Fg,0 € ©O}. Then the efficiency of any unbiased estimator T} of 0 is defined as

varg(T) 1, (6)
varg(Ty) ~ varg(Th)’

an effo(Ty) =effe(T1 | T) =

Clearly, the efficiency of the most efficient estimator is 1, and the efficiency of
any unbiased estimator Ty is < 1.

Definition 5. We say that an estimator T} is asymptotically (most) efficient if
(18) lim effg(T)) =1
n—00

and T is at least asymptotically unbiased in the sense that lim, . Eg7T1 = 6. Here
n is the sample size.

Remark 12. Definition 3, although in common use, has many drawbacks. We
have already seen cases in which the regularity conditions are not satisfied and yet
UMVUE:s exist. The definition does not cover such cases. Moreover, in many cases
where the regularity conditions are satisfied and UMV UEs exist, the UMVUE is not
most efficient since the variance of the best estimator (the UMVUE) does not achieve
the lower bound of the FCR inequality.
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Example 7. Let X ~ b(n, p). Then we have seen in Example 1 that X/n is
the UMVUE since its variance achieves the lower bound of the FCR inequality. It
follows that X/n is most efficient.

Example 8. Let X1, X2,..., X, be iild P()) RVs and suppose that ¢y (1) =
P(X = 0) =-¢~*. From Example 2, the UMVUE of ¢ is given by Ty = [(n —
1)/n]&i=1 Xi with

var, (To) = e (" - 1).

Also, 1,(8) = (Ae~?*)/n. It follows that

e~y /n re My/n

o) = 1 < By -

since e* —1 > x for x > 0. Thus Tj is not most efficient. However, since eff; (7o) —
1 as n — 00, Tp is asymptotically efficient.

In view of Remarks 6 and 7, the following result describes the relationship be-
tween most efficient unbiased estimators and UMVUEs.

Theorem 3. A necessary and sufficient condition for an unbiased estimator T of
Y to be most efficient is that 7 be sufficient and the relation (8) holds for some
function k(6).

Clearly, an estimator T satisfying the conditions of Theorem 3 will be the
UMVUE, and two estimators coincide. We emphasize that we have assumed the
regularity conditions of FCR inequality in making this statement.

Example 9. Let (X, Y) be jointly distributed with PDF

fe(x,y)=exp[— (34—6’)1)], x>0, y>0.

For a sample (x, y) of size 1, we have

b d /x x
—-———-1 =t — - 2 e .
50 108 fo(x, ) 8(9(8+9y) gzt

Hence, information for this sample is

E(X?% _2E(XY)

X\2 2
10)=Eo(Y - 55) = Eat) + =5 =

Now

2
Eg(Y2)=52-, Eg(X* =20% and E(XY)=1,
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so that

2 2
1(9)—_—“;2'4'@3

2_—

2 97

D

Therefore, the Fisher information in a sample of n pairs is 2n /62.
We return to Example 8.3.23, where X1, Xo, ..., X, areiid G(1,0) and Y}, Y3,
, Yn are iid G(1, 1/6), and X’s and Y’s are independent. Then (X}, ¥;) has com-
mon PDF f5(x, y) given above. We will compute Fisher’s Information for @ in the
family of PDFs of S(X, Y) = (3 X;/ Y ¥:)!/2. Using the PDFs of 3" X; ~ G(n, )
and Y ¥; ~ G(n,1/8) and the transformation technique, it is easy to see that
S$(X, Y) has PDF

2r(2n) g\ "
ge(s) = [I‘(n)]2 (— + —) s s> 0.

Thus

dlog go(s) s 1\ (s 6\!
¢ _~2n( S )(9+s) .

It follows that

3 2 4n? S

_ 4n? n
Y 2(2n +1) 2n +1

That is, the information about # in S is smaller than that in the sample.
The Fisher nformation in the conditional PDF of S given A = a, where
AKX, Y) = §51(X)52(Y) can be shown (Problem 12) to equal

2a K(2a)
62 Ko(2a)’

where K and K are Bessel functions of order 0 and 1, respectively. Averaging over
all values of A, one can show that the information is 2n/ 62, which is the total Fisher
information in the sample of n pairs (x;, y;)’s.
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PROBLEMS 8.5

1.

Are the following families of distributions regular in the sense of Fréchet,
Cramér, and Rao? If so, find the lower bound for the variance of an unbiased
estimator based on a sample size n.

(@) fo(x) =0 le™*/% if x > 0, and = O otherwise; § > 0.
M) fo(x) =e P if < x < 00, and = 0 otherwise.

© fo(x)=6(1—6),x=0,1,2,...;0<6 < 1.

d) f(x;0%) = (l/a\/Z_n)e""Z/z"z, —00 < x <0002 > 0.

. Find the CRK lower bound for the variance of an unbiased estimator of ¢, based

on a sample of size n from the PDF of Problem 1(b).

. Find the CRK bound for the variance of an unbiased estimator of # in sampling

from N9, 1).

. In Problem 1 check to see whether there exists a most efficient estimator in each

case.

. Let X1, X2, ..., X, be asample from a three-point distribution:

1-6 1 0
P X = = —_——y P X — = -y d P X = = - y
{X =y} 5 {X =} 5 an (X =y}=7
where 0 < 6 < 1. Does the FCR inequality apply in this case? If so, what is the

Jower bound for the variance of an unbiased estimator of 67

. Let Xy, X2, ..., X, beiid RVs with mean p and finite variance. What is the effi-

cie_n_cy of the unbiased (and consistent) estimator [2/n(n+1)] Z?:l i X; relative
to X?

7. When does the equality hold in the CRK inequality?
8. Let X1, X2, ..., X, be a sample from A (u, 1), and let d(u) = u2.

10.
11.

' (a) Show that the minimum variance of any estimator of ;1> from the FCR in-

equality is 4u?/n.

(b) Show that T(X1, X2,...,X,) = X - 1/n is the UMVUE of u? with
variance (4u2/n +2/n?).

. Let X1, X, ..., X, beiid G(1, 1 /&) RVs.

(a) Show that the estimator T (X1, X2, ..., X,) = (n — 1)/nX is the UMVUE
for  with variance a%/(n — 2).

(b) Show that the minimum variance from FCR inequality is a?/n.
In Problem 8.4.16, compute the relative efficiency of figp with respect to fi1.

Let X1, X2,..., X, and Yy, Y2, ..., Y, be independent samples from NV (u, 012)

and N (i, 022), respectively, where u, 012, 022 are unknown. Let p = 022 /012 and

6 = m/n, and consider the problem of unbiased estimation of .
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(a) If p is known, show that
fpo=aX+(1—-a)7,

where ¢ = p/(p + 0) is the BLUE of w. Compute var(fig).
(b) If p is unknown, the unbiased estimator

X +0Y
1+6

Q=

is optimum in the neighborhood of p = 1. Find the variance of .
(c) Compute the efficiency of i relative to fio.
(d) Another unbiased estimator of y is
. PpFX+6Y

where F = $2/pS? isan F(m — 1,n — 1) RV,

12. Show that the Fisher information on 4 based on the PDF

e (5 7))
2Koa). TP TN\ TS

for fixed a equals (2a/02)[K1(2a)/K0(2a)], where Kp(2a) and K;(2a) are
Bessel functions of order 0 and 1, respectively.

8.6 SUBSTITUTION PRINCIPLE METHOD OF MOMENTS)

One of the simplest and oldest methods of estimation is the substitution principle:
Let ¥ (8), @ € © be a parametric function to be estimated on the basis of a random
sample X1, X, ... , X, from a population DF F. Suppose that we can write ¥ (9) =
h(F) for some known function 4. Then the substitution principle estimator of ¥ (6)
is h(Fy), where F, is the sample distribution function. Accordingly, we estimate
= pu(F) by w(F) = X, m = ErX* by 3_; X;/n, and so on. The method of
moments is a special case when we need to estimate some known function of a finite
number of unknown moments. Let us suppose that we are interested in estimating

)] 6 =h(my,my,...,mg),

where h is some known numerical function and m; is the jth-order moment of the
population distribution that is known to exist for 1 < j <k.
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Definition 1. The method of moments consists in estimating 8 by the statistic

n n n
@  T(X,... ,X,.):h(n—‘ZXi,n“‘Zx,?,... ,n"ZX,l‘).
1 1 1

To make sure that 7 is a statistic, we will assume that & : Ry — R is a Borel-
measurable function.

Remark 1. 1t is easy to extend the method to the estimation of joint moments.
Thus we use n~! Y7 X;Y; to estimate E(XY), and so on.

Remark 2. From the WLLN, n! " 1 X J —> EX/J. Thus, if one is interested
in estimating the population moments, the method of moments leads to consistent
and unbiased estimators. Moreover, the method of moments estimators in this case
are asymptotically normally distributed (see Section 7.5).

Again, if one estimates parameters of the type 6 defined in (1) and 4 is a contin-
uous function, the estimators 7' (X, X3, ... , X,) defined in (2) are consistent for 6
(see Problem 1). Under some mild conditions on 4, the estimator T is also asymp-
totically normal (see Cramér [16, pp. 386-387]).

Example 1. Let X4, X5, ..., X, be iid RVs with common mean y and variance
2. Theno = ,/mz - m%, and the method of moments estimator for o is given by

2
T(X1,...,X,) = ZXZ (ZX)

Although T is consistent and asymptotically normal for o, it is not unbiased.

In particular, if X, X3, ..., X,, are iid P(A) RVs, we know that EX; == A and
var(X;) = A. The method of moments leads to using either X or Z'l' (X; — ~X_)Z /n
as an estimator of A. To avoid this kind of ambiguity we take the estimator involving
the lowest-order sample moment.

Example 2. Let X;, X3, ..., X, be a sample from

1

MR =< =< bq
fo={b-a *=*=
0, otherwise.
Then
b b —a)?
Ex=2%% d varxy =89

2 12
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The method of moments leads to estimating EX by X and var(X) by SIXi —
X)2/n, so that the estimators for a and b, respectively, are

3VTXi — X)?
n

— n Y2
T(Xy,..., X)) =X+ 1&%_&

Example 3. Let X1, Xp, ..., Xn be iid b(n, p) RVs, where both n and p are
unknown. The method of moments estimators of p and n are given by

Ti(Xy,..., X)) =X —

and

X=EX=np

and

R 2 2.2
-ﬁ;xﬁ’ = EX? =np(1 — p) +n®p?.
Solving for n and p, we get the estimator for p as

i Xy,... , Xy) = ————m———,
1 M = X XN

where Th(X,...,X N) is the estimator for n, given by
X)*
X+X - () x3/w)

(X1, X2,...,XN) =

Note that X £ np, YV X2/N £ ap(1 = p) + n2p?, so that both Ty and T; are
consistent estimators.

Method of moments may lead to absurd estimators. The reader is asked to com-

pute estimators of § in A'(8, 0) or N(9, 62) by the method of moments and verify
this assertion.

PROBLEMS 8.6

1. Let X, —P> a, and Y, —S b, where a and b are constants. Let 2 : Ro — Rbea
continuous function. Show that h(X,,, ¥,) LY h(a, b).
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2. Let Xy, X2, ..., X, be a sample from G(a, 8). Find the method of moments
estimator for («, 8).

3. Let X1, X2,... , X, be a sample from N (u, 02). Find the method of moments
estimator for (i, 0'2).

4. Let X1, X2,..., X, be a sample from B(a, 8). Find the method of moments
estimator for («, 8).

5. A random sample of size » is taken from the lognormal PDF
1
fx;pu,0)= (ov2m) Ix~! exp [—i——i(logx —/L)2] , x> 0.
o

Find the method of moments estimators for y and o2,

8.7 MAXIMUM LIKELIHOOD ESTIMATORS

In this section we study a frequently used method of estimation, namely, the method
of maximum likelihood estimation. Consider the following example.

Example 1. Let X ~ b(n, p). One observation on X is available, and it is known
that n is either 2 or 3 and p = % or % QOur objective is to estimate the pair (1, p).
The following table gives the probability that X = x for each possible pair (n, p):

Maximum

x @H @ GH 3.1 Probability
1 4 1 8 4
0 3 5 § 7 5
R %

2

1 1 3 6 3
2 a 5 3 £ 8
3 0 0 : 5 %

The last column gives the maximum probability in each row, that is, for each value
that X assumes. If the value x = 1, say, is observed, it is more probabie that it came
from the distribution b(2, %) than from any of the other distributions, and so on. The
following estimator is therefore reasonable in that it maximizes the probability of the
value observed:

@ P ifx=0,
@3 ifx=1,
(3,3 ifx=2
3.h  ifx=3

(, py(x) =
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The principle of maximum likelihood essentially assumes that the sample is rep-
resentative of the population and chooses as the estimator that value of the parameter
which maximizes the PDF (PMF) fp(x).

Definition 1. Let (X1, X3...., X,) be a random vector with PDF (PMF) fy
(x1,x2, ... ,X,), 0 € ©. The function

(1) L@; x1,%2, ... ,%2) = fo(x1,x2, ..., %p),
considered as a function of 8, is called the likelihood function.

Usually, 6 will be a multiple parameter. If X, X»,..., X, are iid with PDF
(PMF) fy(x), the likelihood function is

) L®; x1,%2, ..., x0) = [ | fotx)-
i=1

Let® C Rrand X = (X, X2,..., Xn).

Definition 2. The principle of maximum likelihood estimation consists of choos-
ing as an es}imator of @ a 8(X) that maximizes L(0; x1, x2, ..., x,), that is, to find
a mapping @ of R,, — Ry that satisfies

3) L(®; x1,x2,... ,xn) = sup L(8; x1, %2, ..., Xn).
0co

(Constants are not admissible as estimators.) If a 0 satisfying (3) exists, we call it a
maximum likelihood estimator (MLE).

1t is convenient to work with the logarithm of the likelihood function. Since log is
a monotone function,

(CY) logL((); X1y... ,Xp) =suplog L(@; x1,...,%,).
0co

Let © be an open subset of Ry, and suppose that fg(X) is a positive, differentiable
function of @ (that is, the first-order partial derivatives exist in the components of ).
If a supremum @ exists. it must satisfy the likelihood equations

dlog L(O; x1,...,xn) _

5 0, i=1,2,...,k, @=(6,...,6).
(&) 76, J 6, &)

Any nontrivial root of the likelihood equations (5) is called an MLE in the loose
sense. A parameter value that provides the absolute maximum of the likelihood func-
tion is called an MLE in the strict sense or, simply, an MLE.
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Remark 1. If ® C R, there may still be many problems. Often, the likelihood
equation 3 L/3 6 = 0 has more than one root, or the likelihood function is not dif-
ferentiable everywhere in ©, or 6 may be a terminal value. Sometimes the likelihood
equation may be quite complicated and difficult to solve explicitly. In that case one
may have to resort to some numerical procedure to obtain the estimator. Similar re-
marks apply to the multiparameter case.

Example 2. Let X1, X2, ..., X, be a sample from N (i, 02), where both u and
o2 are upknown. Here ©® = {(i, 02), —00 < p < 00, 02 > 0}. The likelihood
function is

2, = —— - ——
L{p, 0% x1,...,x0) = on(2m)n/? exp[ Z 202 ’

i=1

2

and

Y — w)?

log L(u, o?; X) = —% logcr2 - glog(ZJr) - 252

The likelihood equations are

n

1
gil;:(xi-u)=

and
nl1 1 & 2
207t 38 i w7 =0

Solving the first of these equations for u, we get i = X and, substituting in the
second, 62 = Z, 11(X; — X)%/n). We see that (ji, 52) € © with probability 1. We
show that ({1, 6%) maximizes the llkehhood function. First note that X maximizes
L(u, 0%; x) whatever o2 is, since L{u,o? ; X) — 0 as |u| — oo, and in that case
L(ii, o ; X) —> Qaso? — Ooroowhenevero €0, 0= i, o 52).

Note that 62 is not unbiased for o2. Indeed, EG2 = [(n —1)/n]o2. But n62/(n —
1) = $2 is unbiased, as we already know. Also, /& is unbiased, and both /i and 62 are
consistent. In addition, (i and 62 are method of moments estimators for u and 62,
and (f1, 62) is jointly sufficient.

Finally, note that /i is the MLE of . if o2 is known; but if x is known, the MLE
of 62 is not 6% but "7 (X; — pw)?/n.

Example 3. Let Xy, Xa, ..., X, be a sample from PMF

1

-, k=1,2,...,N
Py(k)=1N
0

otherwise.
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The likelihood function is

1
L(N; ky, k2, ... ,kn) = { N*
0, otherwise.

\ 1 <max(ki,... . ks) <N,

Clearly, the MLE of N is given by

N(Xy, X2, ..., Xn) =max(X1, X2, ..., Xn),
for iﬁ we tgke any & < N as the MLE, then Py (ky, k2, e k) =A0; and if we take
any 8 > N as the MLE, then PB(kl,kz, ceL k) =1/(B)" < 1/(N)* = k1, k2,
cee s kn).

We see that the MLE N is consistent, sufficient, and complete, but not unbiased.

Example 4. Consider the hypergeometric PMF
M\/N-M
x n—x
Pn(x) = N ’
n

0, otherwise.

max(0,n — N + M) < x < min{n, M),

To find the MLE N = N (X) of N, consider the ratio

Pv(x) N-n N-M

R(N) = = ]
) Py_1(x) N N-M—-n+x

For values of N for which R(N) > 1, Py (x) increases with N, and for values of
N for which R(N) < 1, Py(x) is a decreasing function of N:

M
R(N)>1  ifandonlyif N < ~—
X
and
. . nM
R(N) < 1 ifand only if N > —

It follows that Py (x) reaches its maximum value where N =~ nM /x. Thus N (X) =
[nM/X], where [x] denotes the largest integer < x.

Example 5. Let X1, X2, ... , X, be a sample from U8 — %, 6 + 11. The likeli-
hood function is
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1 if§—§ <minxi, ..., X)
L@; x1,x2,...,xp) = Smax(xl,...,x,,)_<_9+%,
0 otherwise.

Thus L(#; x) attains its maximum provided that

6 — —;— < min(xy,...,x,) and 0+ % > max(xiy, ..., Xs),
or when

6 < min(xy, ... ,x,,)+% and € > max(xy,...,x,) — %
It follows that every statistic T(Xy, X3, ... , X;) such that

(6) max X; — 3 < T(X1, Xa,...,Xn) <

min X; + }
1<i<n l<i<n

is an MLE of 9. Indeed, for0 <o < 1,

To(X1,...,Xn) = max X; — § + (1 + min X; — max X;)
Il<i<n 1<i<n 1<i<n
lies in interval (6), and hence foreach @, 0 < a < 1, T,(X1, ..., X,) is an MLE

of 6. In particular, if o = 4,

min X; + max X;

Ny (Xy,..., Xp) = 5

is an MLE of 6.

Example 6. Let X ~b(1,p), p € [%, %]. In this case L(p; x) = p*(1 — p)l“‘,
x =0, 1, and we cannot differentiate L(p; x) to get the MLE of p, since that would
lead to p = x, a value that does not lie in ® = [;1‘, %]. We have

P X = 1,
L(p; =
(p; x) 1—p. =0,
which is maximized if we choose p(x) = ;lf ifx =0,and = % if x = 1. Thus the
MLE of p is given by

2X +1

pXx) = n

Note that E, p(X) = (2p + 1)/4, so that p is biased. Also, the mean square error for
pis

Ep(p(X) — p)? = & E,QX +1—4p)* = L.
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In the sense of the MSE, the MLE is worse than the trivial estimator § (X) = %, for
Epy(3 —p)? = (3 —p)* < jgforp el 3.

Example 7. Let X;, X5, ..., X, beiid b(1, p) l}}’s, and suppose that p € (0, 1).
If(0,0,...,0)((1,1,...,1))is observed, X = 0(X = 1) is the MLE, which is not
an admissible value of p. Hence an MLE does not exist.

Example 8 (Oliver [76]). This example iilustrates a distribution for which an
MLE is necessarily an actual observation, but not necessarily any particular observa-
tion. Let X3, X2, ... , X, be a sample from the PDF

2
“-x_v Ofx 56,
af

fe(x)= gu’ es_xﬁa’
oo —8
0, otherwise,

where « > 0 is a (known) constant. The likelihood function is

2\" X; o - X
LG; ) LI = - - ’
@ o om = (5) 15 1525

x; <6 x>0

where we have assumed that observations are arranged in increasing order of mag-
nitude, 0 < x; < xp < --- < x, < . Clearly, L is continuous in 6 (even for
6 = some x;) and differentiable for values of 6 between any two x;’s. Thus, for
xj <8 < xj41, we have

23" . . Jj n
S et ey — gy~ (=) . ” ey
L@) = (a) 0/ (a—-86) i—lx, (@ — x;),

= i=j+1
dlogL n—j

dlogL  j n—j _J o
02 (x—6)?

=1 qa £ 0BT
Y 0 Ta—e ™ T2

0.

It follows that any stationary value that exists must be a minimum, so that there can
be no maximum in any range x; < < x;1. Moreover, there can be no maximum
in0 < < xyorx, <@ < a«a. This follows since for 0 < 6 < xi,

2 n n
L@®) = (5) @—6)"[J@—x)
i=1

is a strictly increasing function of 6. By symmetry, L(0) is a strictly decreasing
function of @ in x, < 68 < a. We conclude that an MLE has to be one of the
observations.

In particular, let @ = 5 and n = 3, and suppose that the observations, arranged in
increasing order of magnitude, are 1, 2, 4. In this case the MLE can be shown to be
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6 = 1, which corresponds to the first-order statistic. If the sample values are 2, 3, 4,
the third-order statistic is the MLE.

Example 9. 1et Xy, X2, ..., X, be a sample from G(r,1/8); B > Oandr > 0
are both unknown. The likelihood function is

nr

r—1
L(B,r; x1,x2, ... ,%2) = { [T (N} Mz exp (=8 Ly %) % 20,
0, otherwise.

Then

log L(B,r) =nrlogB —nlogl(r)+(r — 1)) logxi — By _xi,
i=1

i=1

d log L(B, -
QlogLBr) o _§n.
i=1

2B B
and
d logL(B,r) I (r) 2
a7 nlogp ”r(r)+§ 0g X;
The first of the likelihood equations yields ﬁ(xl, X2,...,%p) = F/X, while the sec-
ond gives
rooe I(r)
log — logx; — =0,
n ogk_ +; 0gxX; —n T
that is,

() 1<
logr — = = log¥ — — 3 logx;,
ogr B 0g¥ — - 2 og x;

which is to be solved for 7. In this case, the likelihood equation is not easily solvable
and it is necessary to resort to numerical methods, using tables for I''(r)/ ' (r).

Remark 2. We have seen that MLEs may not be unique, although frequently they
are. Also, they are not necessarily unbiased even if a unique MLE exists. In terms of
MSE, an MLE may be worthless. Moreover, MLEs may not even exist. We have also
seen that MLEs are functions of sufficient statistics. This is a general result, which
Wwe now prove.

Theorem 1. Let T be a sufficient statistic for the family of PDFs (PMFs) {fs :
6 € ©). If a unique MLE of @ exists, it is a (nonconstant) function of T. If a MLE of
6 exists but is not unique, one can find a MLE that 1s a function of T.
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Proof. Since T is sufficient, we can write
L) = fo(x) = h(x)ge(T (x)),
for all x, all #, and some h and gg. If a unique MLE 6 exists that maximizes L),
it also maximizes gg(7 (x)) and hence 6 is a function of T. If a MLE of 8 exists but
is not unique, we choose a particular MLE 8 from the set of all MLEs which is a

function of T.

Example 10. Let X, X, ..., X, be arandom sample from U[6,0 + 1], 8 € R.
Then the likelihood function is given by

1 n

L:x) = (i) 1161 <x(1y <xmy <6+11 (X).

We note that T (X) = (X(1), X(ny) is jointly sufficient for 6 and any 9 satisfying
0—-1<xmy<xm=<6+1,
or, equivalently,
Xy - 120 <xqy+1

maximizes the likelihood and hence is an MLE for 8. Thus, for0 < « < 1,

be =aXmy— D+ A —0)Xay+ 1)
is an MLE of 6. If « is a constant independent ofA the X’s, then é., is a function of T'.
If, on the other hand, & depends on the X’s, then 8, may not be a function of T alone.
For example,

b = (sin” X1)(X () = 1) + (cos” X)(X 1y + 1)

is an MLE of 6 but not a function of T alone.

Theorem 2. Suppose that the regularity conditions of the FCR inequality are sat-
isfied and 6 belongs to an open interval on the real line. If an estimator 6 of 8 attains
tpe FCR lower bound for the variance, the likelihood equation has a unique solution
@ that maximizes the likelihood.

Proof. If 6 attains the FCR lower bound, we have [see (8.5.8)]

d log fp(X)

_ 14X
Y: = k(@] [6(X) — 6]

with probability 1, and the likelihood equation has a unique solution = 6.
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Let us write A(9) = [k(0)]"!. Then

log foX) ., o
——— = —0) - A(6),
302 A(B)O —0) ©
so that
2
log foX)|  _ _A0).
362 |op
We need only to show that A(9) > 0.
Recall from (8.5.4) with {(6) = 0 that
dlog fo(X)

=1,

Eg {[T(X) —0l—

and substituting 7'(X) — 6 = k(0)[d log fo(X)/30], we get

dlog fo(X) 7>
k(0)Eg [——————80 ] =1.
That is,

2
A©) = E [“&@_@] ~0
a6

and the proof is complete.

Remark 3. In Theorem 2 we assumed the differentiability of A(6) and the exis-
tence of the second-order partial derivative 32 log f5/ 6. If the conditions of The-
orem 2 are satisfied, the most efficient estimator is necessarily the MLE. It does not
follow, however, that every MLE is most efficient. For example, in sampling from
a normal population, 62 = Y 7(X; — X)?/n is the MLE of &2, but it is not most
efficient. Since Y (X; — X)2/02 is x2(n — 1), we see that var(6%) = 2(n — 1)o*/n?,
which is not equal to the FCR lower bound, 20%/n. Note that 62 is not even an
unbiased estimator of 2.

We next consider an important property of MLEs that is not shared by other meth-
ods of estimation. Often the parameter of interest is not 8 but some function A (9). If
6 is the MLE of @, what is the MLE of £(8)? If A = h(6) is a one-to-one function of
6, the inverse function A~1(1) = @ is well defined and we can write the likelihood
function as a function of A. We have

L*A;x) = LA~ (AW); %)
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so that

sup L*(X; X) = sup L(h_l(A); X) = sup L(6; x).
A A 0

It follows that the supremum of L* is achieved at A = h(é). Thus 4 () is the MLE
of h(0).

In many applications A = h(@) is not one-to-one. It is still tempting to take A=
h(6) as the MLE of A. The following result provides a justification.

Theorem 3 (Zehna [121]). Let { fo: @ € ®} be a family of PDFs (PMFs), and let
L(0) be the likelihood function. Suppose that @ C Ry, k > 1. Let hﬁ ® —> Abea
mapping of © onto A, where A is an interval in R,(1 < p < k). If @ is an MLE of

0, then h(0) is an MLE of h(0).
Proof. Foreach A € A, let us define
0,={0:0€0, h(0) =1}
and

M(x; x) = sup L(6;x).
96@1

~

Then M defined on A is called the likelihood function induced by k. If @ is any MLE
of 8, then 0 belongs to one and only one set, ®; say. Since 8 € 3, A = h(0). Now

M(i; X) = sup L(6; x) > L(é; X)
0D,

and A maximizes M, since

M@; x) < sup M(A; X) = sup L(0; x) = L(8; x),
reA 00,

so that M(%; X) = sup,c, M(A; X). It follows that A is an MLE of h(8), where
i =h(®).

Example 11. Let X ~ b(1, p),0 < p < 1, and let h(p) = var(X) = p(1 — p).
We wish to find the MLE of h(p). Note that A = [0, %]. The function 4 is not one-

to-one. The MLE of p based on g_samp_le of size n is p(X1,..., X)) = X. Hence
the MLE of parameter h(p) is h(X) = X(1 ~ X).

Example 12. Consider a random sample from G(1, B). It is required to find the
MLE of B in the following manner. A sample of size n is taken, and it is known
only that k, 0 < k < n, of these observations are < M, where M is a fixed positive
number.



MAXIMUM LIKELIHOOD ESTIMATORS 419

Let p = P{X; < M} = 1 — e M/B 50 that —~M/B = log(l1 — p) and B =
M/log[1/(1 — p)]. Therefore, the MLE of 8 is M/log[1/(1 — p)], where p is the
MLE of p. To compute the MLE of p we have

L(p; X1, %2, ..., %) = p*(1 = p)" 7,

so that the MLE of p is p = k/n. Thus the MLE of g is

M

. —
log[n/(n — k)}

Finally, we consider some important large-sample properties of MLEs. In the fol-
lowing we assume that { fg, 8 € ©} is a family of PDFs (PMFs), where @ is an open
interval on R. The conditions listed below are stated when fy is a PDE Modifications
for the case where f is a PMF are obvious and will be left to the reader.

(i) 3 log fa/86,8%log f3/8 6%, 3% log f5/d 6° exist for all # € © and every x.

Also,
3 folx) 9 log fo(X)
IO dx = g, 2281002 for all .
/_oo 50 x = Ey 30 0 orallf € ©
32
b 25, af ggx) dx=0 forallf €@.
2
I
(i) —o0 < [ L1BSI) oy i <0 forane.

o 062
(iv) There exists a function H (x) such that for all 8 € O,

3’ log fo(x)
363

< H(x) and /00 Hx) fo(x)dx = M) < oo.

(v) There exists a function g(#) that is positive and twice differentiable for every
6 € O and, a function H (x) such that for all 6

92 d log fp
5_55[8(9) 36 ]

< H(x) and /00 H(x) fo(x)dx < oo.

Note that the condition (v) is equivalent to condition (iv) with the added qualifi-
cation that g(9) = 1.
We state the following results without proof.

Theorem 4 (Cramér [16])

(a) Conditions (i), (iii), and (iv) imply that with probability approaching 1, as
n — 00, the likelihood equation has a consistent solution.
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(b) Conditions (i) through (iv) imply that a consistent solution (5,., of the likelihood
equation is asymptotically normal, that is,

o Wi, —0)5 z

where Z is N(0, 1), and

3 log 00121
0'2 = [E0 I:'—"—()gag‘a(—""):] ] .

On occasions one encounters examples where the conditions of Theorem 4 are not
satisfied and yet a solution of the likelihood equation is consistent and asymptotically
normal.

Example 13 (Kulldorf [55]). Let X ~ N(0,6), 8 > 0. Let X1, X», ..., X;,, be
n independent observations on X. The solution of the likelihood equation is 8, =
* 1 X?/n. Also, EX? = 0, var(X?) = 262, and

2 [a logfe(x>]2_ 1

90 20
We note that
b =5 0
and
n " X% — no
Jn 6y —6)=0v2 ;’—\/—2‘_—0—?— L N©,26%).
n
However,

Plogfo 1 3P

and is not bounded in 0 < 6 < oo. Thus condition (iv) does not hold.
The following theorem covers such cases also.
Theorem 5 (Kulldorf [55])
(2) Conditions (i), (iii), and (v) imply that with probability approaching 1 asn —
00, the likelihood equation has a solution.

(b) Conditions (i), (ii), (iii), and (v) imply that a consistent solution of the likeli-
hood equation is asymptotically normal.
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For proofs of Theorems 4 and 5 we refer to Cramér [16, p. 500], and Kulldorf [55].

Remark 4. 1t is important to note that the results in Theorems 4 and 5 establish
the consistency of some root of the likelihood equation but not necessarily that of
the MLE when the likelihood equation has several roots. Huzurbazar [44] has shown
that under certain conditions the likelihood equation has at most one consistent so-
lution and that the likelihood function has a relative maximum for such a solution.
Since there may be several solutions for which the likelihood function has relative
maxima, Cramér’s and Huzurbazar’s results still do not imply that a solution of the
likelihood equation that makes the likelihood function an absolute maximum is nec-
essarily consistent.

Wald [114] has shown that under certain conditions the MLE is strongly consis-
tent. It is important to note that Wald does not make any differentiability assump-
tions.

In any event, if the MLE is a unique solution of the likelihood equation, we can
use Theorems 4 and 5 to conclude that it is consistent and asymptotically normal.
Note that the asymptotic variance is the same as the lower bound of the FCR in-
equality.

Example 14. Consider Xy, X3,...,X, iid P(A) RVs, A € ® = (0, 00). The
likelihood equation has a unique solution, i(xl, ...,Xxp) = X, which maximizes
the likelihood function. We leave the reader to check that the conditions of Theo-
rem 4 hold and that MLE X is consistent and asymptotically normal with mean A
and variance A /n, a result that is immediate otherwise.

We leave the reader to check that in Example 13, conditions of Theorem 5 are
satisfied.

Remark 5. The invariance and the large-sample properties of MLESs permit us to
find MLEs of parametric functions and their limiting distributions. The delta method
introduced in Section 7.5 (Theorem 1) comes in handy in these applications. Suppose
that in Example 13 we wish to estimate ¥ (9) = 2. By invariance of MLEs, the MLE
of ¥(8) is ¥(8,) where 6, = h%1 X,.Z/n is the MLE of 6. Applying Theorem 7.5.1,
we see that ¥ (8,) is AN (62, 86%/n).

In Example 14, suppose that we wish to estimate ¥ (1) = Pi(X = 0) = e,
Then 1/1()1) = ¢ X is the MLE of ¥()) and, in view of Theorem 7.5.1, 1//(5») ~
AN(e™*, re P /n).

Remark 6. The uniqueness of MLE does not guarantee its asymptotic normality.
Consider, for example, a random sample from U (0, 6]. Then X () is the unique MLE

for 8, and in Problem 8.2.5 we asked the reader to show that n(6 — X(,)) -E> G(1,8).
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PROBLEMS 8.7

1. Let Xy, X3, ..., X, be iid RVs with common PMF (PDF) fs(x). Find an MLE
for 8 in each of the following cases:

@ for) =3e™* 0, —00 < x < 0.
(b) fox)=e** 0 <x < o0.
©) fo(x) = (Bo)x* e " x > 0, and @ known.
@ fox)=001-x010<x<1,0>1
2. Find an MLE, if it exists, in each of the following cases:

(@) X ~ b(n,6): both n and & € [0, 1] are unknown, and one observation is
available.

(b) X1, X2,...,Xs ~b(1,6), 6 €[4, 3].
©) X1,X2,...,Xn~N(6,0%, 6 € R.
(d) Xy, X3,..., X, is asample from

1-6

1 0
P{X =y}= , P{X=yz}=§, P{X=y3}=5(0<9<1).

2
(e) X1,X2,...,Xn~N(6,8),0<6 < o0.
® X ~C@H,0).

3. Suppose that n observations are taken on an RV X with distribution A '(u, 1),
but instead of recording all the observations, one notes only whether or not the
observation is less than 0. If {X < 0} occurs m(< n) times, find the MLE of .

4. Let X, X2, ..., X, be arandom sample from the PDF
Flxs a, B) = ple P a0, a<x<oo, —00<a<oo, B>0.

(a) Find the MLE of (¢, B).
(b) Find the MLE of P, g{X > 1}.

5. Let X1, X, ..., X, be a sample from exponential density fp(x) = e x >
0, 8 > 0. Find the MLE of 8, and show that it is consistent and asymptotically
normal.

6. For Problem 8.6.5 find the MLE for (i, 02).

7. For a sample of size 1 taken from A (u, 02), show that no MLE of (u, a?)
exists.

8. For Problem 5.2.5 suppose that we wish to estimate N on the basis of observa-
tions Xy, Xo,..., Xum.
(a) Find the UMVUE of N.
(b) Find the MLE of N.
(¢) Compare the MSEs of the UMVUE and the MLE.
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9. Let X;;(1 = 1,2,...,5; j = 1,2,...,n) be independent RVs where X;; ~

10

11.

12.
13.

14

15.

16.

17

N(ui o2, i =1,2,...,s. Find MLEs for st1, iz, .. . , js, and 6. Show that
the MLE for o2 is not consistent as s — oo (n fixed). (Neyman and Scott
75D

Let (X, Y) have a bivariate normal distribution with parameters 1, w2, 012, o2,
and p. Suppose that n observations are made on the pair (X,Y), and N — n
observations on X; that is, N — n observations on Y are missing. Find the MLEs
of w1, p2, 0, 02, and p. [Hint: I f(x,y; p1, 2, o}, 62, p) is the joint PDF
of (X, Y), write

f,y; 1, p2, 0862, 0) = filx; p1, 0D frix (3 | Bx, o5 (1 — p?),

where fi is the marginal (normal) PDF of X, and fy,x is the conditional (nor-
mal) PDF of Y, given x with mean

o2 (2]
Bx = (uz - p——ul) +p—x
o oy

and variance 022(1 — p?). Maximize the likelihood function first with respect to
py and 012 and then with respect to w; — p(02/01) 11, poz/o1, and 022(1 -]
(Anderson [1)])

In Problem 5, let 6 denote the MLE of 6. Find the MLE of . = EX| = 1/ and
its asymptotic distribution.

In Problem 1(d), find the asymptotic distribution of the MLE of 6.

In Problem 2(a), find the MLE of d(6) = 62 and its asymptotic distribution.

Let Xy, X2,..., X, be a random sample from some DF F on the real line.
Suppose that we observe x1, x2, ... , X, which are all different. Show that the
MLE of F is F;, the empirical DF of the sample.

Let X1, X5, ..., X, be iid A (u, 1). Suppose that @ = {u > 0}. Find the MLE
of u.

Let (X1,X2,...,X-1) have a multinomial distribution with parameters
npl-.. s k-1,0 < pr, P2, Pi-1 S 1,):’1‘—1 pj < 1, where n is known.

Find the MLE of (p1, p2, ..., Pk—1).

Consider the one-parameter exponential density introduced in Section 5.5 in its
natural form with the PDF

Jo(x) = exp[nT (x) + D(n) + S(x)].
(a) Show that the MGF of T (X) is given by
M(t) = exp[D(n) — D(n +1)]

for t in some neighborhood of the origin. Moreover, E,T(X) = —D'(n),
and var(7T (X)) = —D"(n).
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(b) If the equation E,T (X) = T (x) has a solution, it must be the unique MLE
of n.

18. In Problem 1(b), show that the unique MLE of 6 is consistent. Is it asymptoti-
cally normal?

8.8 BAYES AND MINIMAX ESTIMATION

In this section we consider the problem of point estimation in a decision-theoretic
setting. We consider here Bayes and minimax estimation.

Let { fo: 6 € ®} be a family of PDFs (PMFs), and X1, X3, ..., X, be a sample
from this distribution. Once the sample point (x1, x3, ... , Xn) is observed, the statis-
tician takes an action on the basis of these data. Let us denote by A the set of all
actions or decisions open to the statistician.

Definition 1. A decision function 8 is a statistic that takes values in .A; that is, &
is a Borel-measurable function that maps R, into A.

If X = x is observed, the statistician takes action §(X) € A.

Example 1. Let A = {a1, a3}. Then any decision function § partitions the space
of values of (X1, ..., X,), namely, R, into a set C and its complement C¢, such
that if x € C, we take action ay, and if x € C¢ action a; is taken. This is the problem
of testing hypotheses, which we discuss in Chapter 9.

Example 2. Let A = ©. In this case we face the problem of estimation.

Another element of decision theory is the specification of a loss function, which
measures the loss incurred when we take a decision.

Definition 2. Let A be an arbitrary space of actions. A nonnegative function L
that maps ® x A into R is called a loss function.

The value L(8@, a) is the loss to the statistician if he takes action @ when 6 is the
true parameter value. If we use the decision function &(X) and loss function L and
9 is the true parameter value, the loss is the RV L(6, 5(X)). (As always, we will
assume that L is a Borel-measurable function.)

Definition 3. Let D be a class of decision functions that map R, into .4, and let
L be a loss function on @ x A. The function R defined on ® x D by

ey R(8,8) = EgL(6,5(X))

is known as the risk function associated with & at 0.
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Example 3. Let A= 0 C R, L(9,a)= |0 —a|>. Then
R, 8) = EgL(8, 5(X)) = Eol5(X) — 0)2,

which is just the MSE. If we restrict attention to estimators that are unbiased, the risk
is just the variance of the estimator.

'The basic problem of decision theory is the following: Given a space of actions A,
and a loss function L(8, a), find a decision function § in D such that the risk R(9, )
is “minimum” in some sense for all 6 € ®. We need first to specify some criterion
for comparing the decision functions 4.

Definition 4. The principle of minimax is to choose §* € D so that
@) meax R(8,8" < m;nx R, 8
for all § in D. Such a rule §*, if it exists, is called a minimax (decision) rule.

If the problem is one of estimation, that is, if 4 = ©, we call §* satisfying (2) a
minimax estimator of 6.

Example4. Let X ~ b(1,p), p € © = {%, %} and A = {ay, az}. Let the loss
function be defined as follows.

a a
p1=% 1 4
p2=}2_ 3 2

The set of decision rules includes four functions: 381, 87, 83, 84, defined by §;(0) =
51(1) = a1; 82(0) = ay, 82(1) = a2; 83(0) = az, 83(1) = ay; and 84(0) = 84(1) =
az. The risk function takes the following values:

i R{(py, 6i) R(p3, 8;) Max R(p, é;) MinMax R(p, §;)
P72 i pLp2
1 1 3 3
1
2 i 3 3 3
13
3 ¥ 3 0
4 4 2 4

Thus the minimax solution is §2(x) = a; ifx =0and = ay if x = 1.

The computation of minimax estimators is facilitated by the use of the Bayes
estimation method. So far, we have considered 6 as a fixed constant and f3(x) has
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represented the PDF (PMF) of the RV X. In Bayesian estimation we treat 6 as a
random variable distributed according to PDF (PMF) = () on ©. Also, r is called
the a priori distribution. Now f(x | 8) represents the conditional probability density
(or mass) function of RV X, given that & € @ is held fixed. Since 7 is the distribution
of 8, it follows that the joint density (PMF) of € and X is given by

3) F(x,0)=n@)f(x]6).
In this framework R (6, 8) is the conditional average loss, E{L (8, §(X)) | 8}, given
that 6 is held fixed. (Note that we are using the same symbol to denote the RV ¢ and
a value assumed by it.)

Definition 5. The Bayes risk of a decision function § is defined by
C)) R(n,8) = Ex R(9, ).

If 6 is a continuous RV and X is of the continuous type, then
&) R(m, 8) = f R0, 8)m(0)de
= f[ L@,8x))f(x|6)m(0)dxdb

= f/ L(0,8(x)) f(x,0)dxdo.
If @ is discrete with PMF n and X is of the discrete type, then

O) R(m,8) =Y Y L(#,5(x))f(x,6).
g X

Similar expressions may be written in the other two cases.

Definition 6. A decision function §* is known as a Bayes rule (procedure) if it
minimizes the Bayes risk, that is, if

@) R(@t, 8% = i%xf R(m, 8).

Definition 7. The conditional distribution of RV 6, given X = x, is called the
a posteriori probability distribution of 8, given the sample.

Let the joint PDF (PMF) be expressed in the form
3 f&x,0) =gxh@ |x),

where g denotes the joint marginal density (PMF) of X. The a priori PDF (PMF)
m(P) gives the distribution of # before the sample is taken, and the a posteriori PDF
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(PMF) h(0 | x) gives the distribution of 0 after sampling. In terms of h(6 | X) we
may write

)] R(m,8) = fg(x) [/ L@, 8(x))h(0 | x) dG] dx

or

(10) R(7,8) =) g [Z L(6,5x)h(O | x)] ,
X g

depending on whether f and 7 are both continuous or both discrete. Similar expres-
sions may be written if only one of f and 7 is discrete.

Theorem 1. Consider the problem of estimation of a parameter 8 € ® C R with
respect to the quadratic loss function L(9, 8) = (6 — 8)2. A Bayes solution is given
by

an x) =E[6 | X =x}
[8(x) defined by (11) is called the Bayes estimator].

Proof. In the continuous case, if  is the prior PDF of 8, then

R(m,8) = fg(x) [/[0 — 8P hO | x)d6} dx,

where g is the marginal PDF of X, and 4 is the conditional PDF of €, given x. The
Bayes rule is a function & that minimizes R(wr, §). Minimization of R(x, §) is the
same as minimization of

J1o s ne e,
which is minimum if and only if
8(x) = E{6 | x}.
The proof for the remaining cases is similar.
Remark 1. The argument used in Theorem 1 shows that a Bayes estimator is

one that minimizes E{L (0, (X)) } X). Theorem 1 is a special case which says that
if L(8, 8(X)) = [0 — 8(X)}?, the function

8(x) = th(O | x)dé

is the Bayes estimator for 6 with respect to , the a priori distribution on ©.
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Remark 2. Suppose that T'(X) is sufficient for the parameter . Then it is easily
seen that the posterior distribution of ¢ given x depends on x only through T and it
follows that the Bayes estimator of & is a function of 7.

Example 5. Let X ~ b(n, p) and L(p,d(x)) = [p — 5(x)1%. Let 7(p) = 1 for
0 < p < 1 bethe a priori PDF of p. Then

G- py=
Jo )P = pyn—*dp

hip{x)=
1t follows that

1
E{plx}=f0 phip | x}dp

_x+1
T n+2

Hence the Bayes estimator is

X+1
* = ———
="

The Bayes risk is

R 8 = [2(0) Y1800 — pP x| pap
x=0

=/0’E((if;t§—pY 7)o

f np(1 — p) + (1 —2p)?1dp

(n+2)2
1
T 6(m+2)

Example 6. Let X ~ N (u, 1), and let the a priori PDF of u be (0, 1). Also,
let L1, 8) = [ — 8(X)}%. Then

fx, 1) N(u)f(XIu)
g(®) gx

h(p | X) =

where
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f(X)=/f(x,M)du

D[

1 "~ L) [ n+1l/( , nx
=We"f’(‘ X,fo)[meXP[‘ 5+ (12 -2 | o

(n+ 1”172 1, , n%
= "G | 3 LNy |

It fdllows that

hip | X) =

1 ex _n+1( _ nX )
s n T \P e |

and the Bayes estimator is

nx Y
6* = E === .
(x) {u | x} i

The Bayes risk is

Mmm=fﬂmfwm—m%umwwu

— 2
o nX
_f_ooE" <n+1 —u) m(u)du

o0

= [ +Dm+pdHnwdp

—00

_ 1
T a4+l

The quadratic loss function used in Theorem 1 is but one example of a loss func-
tion in frequent use. Some of many other loss functions that may be used are

6 — tS(X){2 4 (lG — tS(X)l)l/2
—sx)), 22BN e L]
16 — 8(X)], 9] , 18 —=8X)*, and T

Example 7. Let X1, X, ..., X, be iid N (i, 02) RVs. It is required to find a
Bayes estimator of u of the form 6(xy, ..., x,) = §(X), where X = Z'l’ Xi/n, using
the loss function L(u,8) = | — §(X)|. From the argument used in the proof of
Theorem 1 (or by Remark 1), the Bayes estimator is one that minimizes the integral
f I — 8 |h(uix) d . This will be the case if we choose § to be the median of the
conditional distribution (see Problem 3.2.5).
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Let the a priori distribution of & be (9, 72). Since X ~ N (u, 02/ n), we have

Vn [_(u—9)2_n(«7—u)2]

f&w = et P 272 202
Writing
GF-p)?=F—0+0—pu)?’=@F-0)>%-2F—-0)(1—0)+ (n—6)>

we see that the exponent in f (X, u) is
1 2 (1 n 2n(x — 6)(u — 9) _ 2
w02 (q ) - TR G o)

It follows that the joint PDF of u and X is bivariate normal with means 6, 6, vari-
ances 2, 12 + (6%/n), and correlation coefficient t/+/t2 + (62/n). The marginal
of X is N (8, T2 + (0% /n)), and the conditional distribution of u, given X, is normal
with mean

+ i T — gy 0@/ + 372
V2 ©0%/n) V12 + (02/n) 2+ (02/n)

and variance

t2 - 'l'2 _ Z/n
2+ (o%/n) 12+ (6%/n)

(see the proof of Theorem 5.4.1). The Bayes estimator is therefore the median of this
conditional distribution, and since the distribution is symmetric about the mean,

6(0%/n) + %12

SO = o)

is the Bayes estimator of u.
Clearly, 8* is also the Bayes estimator under the quadratic loss function L(u, 8) =

n - 8(X))2.

Key to the derivation of Bayes estimator is the posteriori distribution, A(6 | x).
The derivation of the posteriori distribution s (6|x), however, is a three-step process:

1. Find the joint distribution of X and @ given by 7 (6) f(x | 9).

2. Find the marginal distribution with PDF (PMF) g(x) by integrating (summing)
over 8 € Q.

3. Divide the joint PDF (PMF) by g(x).
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It is not always easy to go through these steps in practice. It may not be possible
to obtain /(6 | x) in a closed form.

Example 8. Let X ~ N(u, 1) and the prior PDF of u be given by

m(p) = Ot oo

where @ is a Jocation parameter. Then the joint PDF of X and u is given by

—(u—
e m?/2 e 9

so that the marginal PDF of X is

g8x) = ,—2” o [l + e_(#_o)]2 "

A closed form for g is not known.

To avoid problem of integration such as that in Example 8, statisticians use con-
Jugate prior distributions. Often, there is a natural parameter family of distributions
such that the posterior distributions also belong to the same family. These priors
make the computations much easier.

Definition 8. Let X ~ f(x|9) and 7 (@) be the prior distribution on ®. Then
7 is said to be a conjugate prior family if the corresponding posterior distribution
h(0 | x) belongs to the same family as 7 (9).

Example 9. Consider Example 6, where m () is N'(0, 1) and k(i | x) is

N nx ’ 1
n+1 n+1
so that both & and 7 belong to the same family. Hence A/(0, 1) is a conjugate prior
for .

Example 10. Let X ~ b(n,p), 0 < p < 1, and 7(p) be the beta PDF with
parameters (c, 8). Then

px+a—1(1 _ p)ﬂ-—l px+a—l(1 . p)ﬁ——l

h = =
Pin fol p*re-1(1 — p)f-ldp B(x +a, B)

]

which is also a beta density. Thus the family of beta distributions is a conjugate
family of priors for p.
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Conjugate priors are popular because whenever the prior family is parametric, the
posterior distributions are always computable, h(0|x) being an updated parametric
version of 7 (6). One no longer needs to go through a computation of g, the marginal
PDF (PMF) of X. Once h(6|x) is known, g, if needed, is easily determined from

7 (6) f (x|6)

g(x) = O

Thus in Example 10, we see easily that g(x) is beta (x + «, B), while in Example 6
g is given by

x) = 1 Z 2, n*x?
X = i iRy NPT

Conjugate priors are usually associated with a wide class of sampling distribu-
tions, namely, the exponential family of distributions.

Natural Conjugate Priors

Sampling Prior, Posterior,

PDF(PMEF), f(x|6) m(6) h(@|x)
2 2 2.2
2 2 o°u+xt o°T

N(G,U) N(M,f) N( 0,2+.[2 '02_'_1—2)

G, B) G(e, B) Gl+v, g+x)

b(n, p) B(a, B) Bla+x,8+n—1x)

PQ) G(a, B) Gla+x,8+1)

NB(r; p) B(a, B) Bla+r,B+x)

G(y, 1/6) G, B) G(a+v,B+x)

Another easy way is to use a noninformative prior (@), although one needs some
integration to obtain g(x).

Definition 9. A PDF 7(0) is said to be a noninformative prior if it contains no
information about €; that is, the distribution does not favor any value of € over others.

Example 11. Some simple examples of noninformative priors are n(f) = 1,
m(0) = 1/0, and 7 (8) = /I1(6). These may quite often lead to infinite mass and the
PDF may be improper (that is, does not integrate to 1).

Calculation of h(#]x) becomes easier bypassing the calculation of g(x) when
f(x]0) is invariant under a group G of transformations following Fraser’s [30] struc-
tural theory.

Let G be a group of Borel-measurable functions on R, onto itself. The group op-
eration is composition; that is, if g; and g, are mappings from R, onto R, g281
is defined by g2g1(x) = g2(g1(X)). Also, G is closed under composition and in-
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verse, so that all maps in G are one-to-one. We define the group G of affine linear
transformations g = {a, b} by

gx =a+ bx, aeR, b>0.

The inverse of {a, b} is

_j el
{a, b) —{ b,b],

and the composition {a, b} and {c, d} € G is given by
{a, b}{c, d}(x) = {a, b}(c + dx) = a + b(c + dx)
= (a + bc) + bdx = {a + bc, bd}(x).
In particular,

a 1

{a, b}{a, b}~ = {a, b} ['5’ 5] ={0,1} =e.

Example 12. Let X ~ N(u,1) and let G be the group of translations G =
{{b,1}, —oc0 < b < oo}. Let Xy,..., X, be a sample from A'(u, 1). Then we
may write

X =1{un, 11Z;, i=1,...,n

where Z1, ... , Z, are iid N0, 1).
It is clear that Z ~ N (0, 1/n) with PDF

o e (-27)

and there is a one-to-one correspondence between values of {Z, 1} and {u, 1} given
by

x, l}={u 1}z, ) ={n+7 1}

Thus ¥ = u + Z with inverse map 7 = X — u. We fix X and consider the variation in
Z as a function of . Changing the PDF element of 7 to u, we get

o exo[ B -]

as the posterior of p given X with prior 7w (u) = 1.

Example 13. Let X ~ N (0, 52) and consider the scale group G = {{0, ¢}, ¢ >
0}. Let X1, X2, ... , X, be iid (0, 02). Write
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Xj:'—{0,0'}Z,‘, i=1,2,...,n

where Z; are iid N'(0, 1) RVs. Then the RV nS2 = 37 _, Z2 ~ x2(n) with the PDF

1 ns; 2.n/2~1
P O (‘T) (s

The values of {0, 5.} are in one-to-one correspondence with those of {0, o'} through

{0, 5:} = {0, o {0, 5.},

n

where nSf = ) i1 Xiz, so that 5, = os,. Considering the variation in s, as a

function of o for fixed s,, we see that ds, = s, (dcr/a2). Changing the PDF element
of s, to o, we get the PDF of o as

2)—1
1 x ns? ns? /D
2T (n2) P\ 252 )\ 52

which is the same as the posterior of ¢ given s, with priorm(c) = 1/0.

Example 14. Let X ... X, be a sample from N (i, 02) and consider the affine
linear group G = {{a, b}, —00 < a < 0o, b > 0}. Then

X ={u,0lZ;, i=1,...,n

where Z;’s are iid A'(0, 1). We know that the joint distribution of (Z, S2) is given

by
—-1)/2]-1
(2 (n — D2 T
Var P\ 2 )Y ez | T 2

s oxp [_ (n — 1)s§] P [(n - 1)322]
2 2 |

Further, the values of {7, 5,} are in one-to-one correspondence with the values of
{u, o'} through

{x,5:} = {1, o Hz, ;) = {n + 07, 05;}

X—u Sx
and s, = —.
o

=7=
o

Consider the variation of (Z, s;) as a function of (¢, o) for fixed (¥, sx). The Jacobian
of the transformation from {Z, 5.} to {u, o'} is given by
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1 Eop
J = g o2 | . 5%
o0 —% | o3
a2

Hence, the joint PDF of (u, o) given (X, sy) is given by

n (- 0P ] (n—s2 ]V
V 2z P 202 | Jm=D2z| 202

—1)/2}-1
(=12 [ = 0212 (0 - 12
XX T 202 o3

This is the PDF that one obtains if w(1) = 1 and n(o) = 1/o and u and o are
independent RVs.

The following theorem provides a method for determining minimax estimators.

Theorem 2. Let {fy: 0 € O} be a family of PDFs (PMFs), and suppose that an
estimator 8* of 6 is a Bayes estimator corresponding to an a priori distribution 7
on ©. If the risk function R(@, §*) is constant on ®, then 8* is a minimax estimator
for 6.

Proof. Since §* is the Bayes estimator of € with constant risk r* (free of 6), we
have

o0
r*=R(m,§) = f R(@9,8"m(0)do
~00
=8inffR(0, ) (8)de
< sup mf R(6,6) < inf sup R(6, §).
6@ 5€D seDgeco

Similarly, since r* = R(9, §*) for all & € ©, we have

= sup R(9, §*) > mf sup R(8, 8).
Pe® Dgeco

Together, we then have

sup R(9,8%) = mf sup R(9, 8)
fc® 3eDgeo

which means that §* is minimax.

The following examples show how to obtain constant risk estimators and the suit-
able prior distribution.
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Example 15 (Hodges and Lehmann [40]). Let X ~ b(n, p),0 < p < 1. We seek
a minimax estimator of p of the form X + B, using the squared-error loss function.
We have

R(p,8) = Ep@X + B — p)? = Epla(X —np) + B + (@n — 1)p)?
= [(an — 1)? — &?nlp? + [@?n + 2B(an — D]p + B,

which is a quadratic equation in p. To find & and B such that R(p, 8) is constant for
all p € ©, we set the coefficients of p? and p equal to 0 to get

(an — 1)? - a’n=0 and o?n +28(@n —1)=0.

It follows that

1 1
YA+ vm O JaGa—1)

and
1 1
= ———— O — ",
2(1 + /) 2(yn—1)

Since 0 < p < 1, we discard the second set of roots for both o and 8, and then the
estimator is of the form

B

X 1
N EWN R )

It remains to show that 8* is Bayes against some a priori PDF .
Consider the natural conjugate a priori PDF

§*(x) =

a(p) =B, N1 -pfl, 0<ps1, o, f >0
The a posteriori PDF of p, given x, is expressed by

px+a’—-1(1 _ p)n——x+ﬁ’-l
Bx+o',n—x+p)

h(p|x) =

It follows that
Bix+o' +1,n—x+p)
E{p|x}= y 7
B(x+a',n—x+ p)
_ x+ao
—n+al+ﬂl’
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which is the Bayes estimator for a squared-error loss. For this to be of the form §*,
we must have

1 1 1 o
= aﬂd = s
Jrl+ ) n+a + 2(1+4/n) n+a' + 4

giving o’ = B’ = /n/2. It follows that the estimator §*(x) is minimax with constant
risk
1

R(p,8*) = ————=  forall 0,1}
(p, &%) AT T orall p€]0,1]

Note that the UMVUE (which is also the MLE) is §(X) = X/n withrisk R(p,d) =
p(1 — p)/n. Comparing the two risks (Figs. 1 and 2), we see that

I Vvit2y/n
=201+ Jn)’

p(l1—p) <

” S 0T T2 ifand only if |p —

so that
R(p,8%) < R(p,d)

in the interval (% — ay, % + a,), where a, — 0 as n — oo. Moreover,

sup,, R(p,d
p, R(p, 8) 1/4n _n+2/n+1 1 51— 0o,
sup, R(p, ) /140 + ym)?2 — n
R
0.25 R(p.5)
1/16 \ A(p, ")
05 1 p

Fig. 1. Comparison of R(p, 8) and R(p, 8*),n = 1.
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A(p,3)

\mp,s*)

0 0.5 1 D

1/64

Fig. 2. Comparison of R(p, 8) and R(p, 8*),n = 9.
Clearly, we would prefer the minimax estimator if n is small, and would prefer the
UMVUE because of its simplicity if » is large.

Example 16 (Hodges and Lehmann [40]). A lot contains N elements, of which D
are defective. A random sample of size n produces X defectives. We wish to estimate

D. Clearly,
D\ (N — D\ (N\!
mix=n=()(327)(7) -

nD(N — n)(N — D)
NZ(N = 1)

D
EpX =n— and 2 —
D nN oh

Proceeding as in Example 15, we find a linear function of X with constant risk.
Indeed, Ep(aX + B ~ D)? = p? when

N N an
T hAmem—n ™ '8=?(1”—1s7)‘

We show that X + B is the Bayes estimator corresponding to the a priori PMF
LIN
PID=d}=c / ( d)p"(l -V "~ p)* dp,
0

where a, b > 0and ¢ = ['(a + b)/ ' (a)"(b). First note that ZZ,V:O P{D=d}=1,
so that
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i(N) Ma+b) T@a+d)T(N+b—d) 1
d=0 d F(a)r(b) (N +a+b) = 1.

The Bayes estimator is given by

Ntk g (@) (V- ()@ + DTN +b — d)

6*(k) = .
T OEHEr@+drN +b—d

A little simplification, writing d = (d — a) + a and using

(G2 =GEIEE)

yields
5 = YOI +a+ DON +b—d) .
SO INE + T (N + b —d)
a+b+ N a(N —n)
=k .
a+b+n  a+b+n
Now putting
_a+b+N and ﬂ_a(N-—n)
T a+b+n T a+b+n

and solving for a and b, we get

. pNzan-8
o —1 a—1

Sincea > 0, 8 > O,andsince b > 0, N > an+ 8. Moreover,« > 1if N > n+1.If
N = n+1, the result is obtained if we give D a binomial distribution with parameter
p= % If N = n, the result is immediate.

The following theorem, which is an extension of Theorem 2, is of considerable
help to prove minimaxity of various estimators.

Theorem 3. Let {m(0); k > 1} be a sequence of prior distributions on © and let
{67} be the corresponding sequence of Bayes estimators with Bayes risks R(mry; 8;).
If lim supy_, o, R(x; 85) = r* and there exists an estimator 8* for which

sup R0, 8*) < r*,
fe®

then 6* is minimax.
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Proof. Suppose that 8* is not minimax. Then there exists an estimator § such
that

sup R(6, 8) < sup R(8, §*).
0e® fe®

On the other hand, consider the Bayes estimators {5;} corresponding to the priors
{1 (6)}. We obtain

(12) R(my, 8}) =[R(9, 8)m(0) do
(13) ng(e,S)nk(e)de
(14) < sup R, ),

fec®

which contradicts supg.g R(6, §*) < r*. Hence §* is minimax.

Example 17. Let X, ... , X, be a sample of size n from N(u, 1). Then the MLE
of 1 is X with variance 1/ n. We show that X is minimax. Let © ~ N(0, 2). Then
the Bayes estimator of 1 is X[n12/(1 + nt?)). The Bayes risk of this estimator is

1 nt?
R(n,6 2)=—-] —=1.
(r,5,2) n(1+nr2)

Now, as 12 — oo, R(r, 8*,) — 1/n, which is the risk of X. Hence X is minimax.

Definition 10. A decision rule é is inadmissible if there exists a 8* € D such that
R(0,8*) < R(0, d), where the inequality is strict for some 8 € ©; otherwise, § is
admissible.

Theorem 4. If Xy, ..., X, is a sample from N (@, 1), then X is an admissible
estimator of @ under square-error loss L(6, a) = (8 — a)?. '

Proof. Clearly, X~N (6, 1/n). Suppose that X is not admissible, then there
exists another rule 8*(x) such that R(9, §*) < R(6, X) while the inequality is strict
for some & = 6 (say). Now, the risk R(9, &) is a continuous function of 6 and hence
there exists an £ > 0 such that R(8, 6*) < R(8, X) — ¢ for |6 — 6| < &.

Now consider the prior N(0, 72). Then the Bayes estimator is

—_ 1 \! 1 nt?
= — ith risk  — [ —e—x } .
IX)y=X (1 + ’”2) with ris " (1 +n1:2)
Thus

- 11
R(t,X) — R(m,8,2) = ————5.
1, %) = ROt 82) = — 53
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However,

t[R(%, %) — R(x, X)] = r/[R(O 8*) — R, X)]J— exp( —1362) de

e Gpt+e
i [ g
We get
0 < r[R(m, §*) — R(w, X)1 + t [R(7, X) — R(%,8,2)]

< i 6‘Oﬂex ( L 02) dt9+r !
T V2w Jogte P\722 n(l+nt?)

The right-hand side goes to —2&2/+/27 as T — oo. This result leads to a contradic-
tion that 8* is admissible. Hence X is admissible under squared loss.

Thus we have proved the X is an admissible minimax estimator of the mean of a
normal distribution (6, 1).

PROBLEMS 8.8

1. It rains quite often in Bowling Green, Ohio. On a rainy day a teacher has es-
sentially three choices: (1) to take an umbrella and face the possible prospect of
carrying it around in the sunshine; (2) to leave the umbrella at home and perhaps
get drenched; or (3) to just give up the lecture and stay at home. Let © = {61, 6},
where 6 corresponds to rain, and 8y, to no rain. Let A = {a1, a2, as}, where a;
corresponds to the choice i, i = 1, 2, 3. Suppose that the following table gives
the losses for the decision problem:

6 6

ay 1
a; 4
as 5

noN

The teacher has to make a decision on the basis of a weather report that depends
on 6 as follows:

6 | B

W (rain) 071 0.2
W, (norain) | 0.3 | 0.8

Find the minimax rule to help the teacher reach a decision.

2. Let X1, X2, ..., X, be arandom sample from P (A). For estimating A, using the
quadratic error loss function, an a priori distribution over @, given by the PDF
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a(A)=e? itx >0,

=0 otherwise,

is used.
(a) Find the Bayes estimator for A.

(b) If it is required to estimate p(A) = e~* with the same loss function and
same a priori PDF, find the Bayes estimator for ¢(L).

. Let X1, X2,..., X, be a sample from b(1, 8). Consider the class of decision

rules & of the form 8(x1, x2, ... , x,) = n~! 37, x; +a, where @ is a constant
to be determined. Find « according to the minimax principle, using the loss
function (6 — 8)2, where 4 is an estimator for 6.

. Let 8* be a minimax estimator for ay/ (6) with respect to the squared-error loss

function. Show that a6*+b(a, b constants) is a minimax estimator for ay (6)+b.

. Let X ~ b(n,8), and suppose that the a priori PDF of ¢ is U(0, 1). Find the

Bayes estimator of 8, using loss function L(#,8) = (6 — )2 /[0(1 —@)].Find a
minimax estimator for 6.

6. In Example 5, find the Bayes estimator for p.

10.

11.

. Let Xy, X5, ..., X, be a random sample from G (1, 1/A). to estimate A, let the

a priori PDF on A be m (1) = e~* A > 0, and let the loss function be squared
error. Find the Bayes estimator of A.

. Let Xy, X2,..., X, beiid U(0, 8) RVs. Suppose that the prior distribution of

9 is a Pareto PDF 7(8) = aa®/0°*! for @ > a, = 0 for @ < a. Using the
quadratic loss function, find the Bayes estimator of 6.

. Let T be the unique Bayes estimator of 8 with respect to the prior density 7.

Then T is admissible.

Let Xy, X3,..., X, be iid with PDF fy(x) = expl—(x — 0)], x > 6. Take
() = e~?,6 > 0. Find the Bayes estimator of 6 under quadratic loss.

For the PDF of Problem 10, consider the estimation of § under quadratic loss.
Consider the class of estimators a (X(1) — 1/n) for all a > 0. Show that X ;) —
1/n is minimax in this class.

8.9 PRINCIPLE OF EQUIVARIANCE

Let P = {Pg: @ € ®) be a family of distributions of some RV X. Let X C R, be
the sample space of values of X. In Section 8.8 we saw that the statistical decision
theory revolves around the following four basic elements: the parameter space ©, the
action space A, the sample space X, and the loss function L(8, a).

Let G be a group of transformations that map X onto itself. We say that P is

invariant under G if foreach g € G and every 0 € O, there isaunique ' = g0 € ®



PRINCIPLE OF EQUIVARIANCE 443

such that g(X) ~ Pgzg whenever X ~ Py. Accordingly,
(D Pg{g(X) € A} = Pz9{X € A}

for all Borel subsets in R,,. We note that the invariance of P under G does not change
the class of distributions we begin with; it only changes the parameter or index 0 to
£0. The group G induces G, a group of transformations g on © onto itself.

Example 1. 1et X ~ b(n,p),0 < p <1l.letG ={g,e}, where g(x) =n —x
and e(x) = x. Then gg~! = e. Clearly, g(X) ~ b(n, 1 — p),sothat gp = 1 — p and
ep = e. The group G leaves {b(n, p); 0 < p < 1} invariant.

Example 2. Let Xy, X5, ..., X, be iid N(u, 02) RVs. Consider the group of
affine transformations G = {{a,b}, a € R, b > 0} on X. The joint PDF of
fa.b}X =(a+bXy,...,a+ bX,)is given by

n
fx1,x2, ..., x5) = (_b;\}—Z:J?—; exp [~§b—;;5 g(x,- —a-— bu)z]
and we see that
g(n,0) = (a + no, ba) = {a,b}{u,o}.
Clearly, G leaves the family of joint PDFs of X invariant.

To apply invariance considerations to a decision problem we need also to ensure
that the loss function is invariant.

Definition 1. A decision problem is said to be invariant under a group G if

(i) P is invariant under G, and

(ii) the loss function L is invariant in the sense that forevery g € Ganda € A
there is a unique a’ € A such that

L(0,a)=L(g0,a) for all @.

The a' € A in Definition 1 is uniquely determined by g and may be denoted by
g(a). One can show that G = {g : g € G} is a group of transformations of A into
itself.

Example 3. Consider the estimation of u in sampling from N (i, 1). In Example
8.9.2 we have shown that the normal family is invariant under the location group
G = {{b, 1}, —oc < b < o0}. Consider the quadratic loss function

L(u,a) = (u ~a)*.
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Then {b, 1}a = b + a and {b, 1}{ie, 1} = {b + u, 1}. Hence
L({b, 1}, {b, 1}a) = LI + ) — (b + &)1* = (1 — a)® = L(1, ).

Thus L(u, a) is invariant under G and the problem of estimation of w is invariant
under group G.

Example 4. Consider the normal family N (0, o2) which is invariant under the
scale group G = {{0, ¢}, ¢ > 0}. Let the loss function be

L2 a)= %(02 —a).
g
Now {0, c}a = ca and {0, c}{0, 02} = {0, co2} and
Luaqa%m¢mq=-;jam2—cm2=—%w2—m2=Lw%ay
ceo [e3

Thus the loss function L(o2, a) is invariant under G = {{0,c},¢ > 0} and the
problem of estimation of o2 is invariant.

Example 5. Consider the loss function
a a
L(c%a) = — — 1 —log —
(0% a) = — og —

for the estimation of o2 from the normal family A (0, 0Z). We show that this loss
function is invariant under the scale group. Since

{0,c}o? ={0,c0%} and {0, c}HO, a} = {0, ca},
we have
LI{0, cJo, {0, cla] = — — 1 — log —5
co ca
= L(a?, a).

Let us now return to the problem of estimation of a parametric function ¥ : @ —
R.. For convenience letus take ® C Rand ¢ (#) =8. Then A =@ and G = G.

Suppose that 8 is the mean of PDF fp, G = ({b, 1}, b € R}, and { f} is invariant
under G. Consider the estimator 3(X) = X. What we want in an estimator 3* of 6 is
that it changes in the same prescribed way as the data are changed. In our case, since
X changes to {b, 1}X = X + b, we would like X to transform to {b, 1}7 =X+ b.
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Definition 2. An estimator §(X) of 6 is said to be equivariant, under G, if
2) 8(gX) = gé(X) forallg € G,
where we have written gX for g(X) for convenience.

Indeed, g on § induces g on @, Thus if X ~ fp, then gX ~ fzg, so if 8(X)
estimates 6 then §(gX) should estimate g@. The principle of equivariance requires
that we restrict attention to equivariant estimators and select the “best” estimator in
this class in a sense to be described later in this section.

Example 6. Tn Example 3, consider the estimators 8;(X) = X, 3;(X) = (X() +
X(m)/2,and 33(X) = X, o a fixed real number. Then G = {(b, 1), ~00 < b < o0}
induces G = G on © and both 9y, 3, are equivariant under G. The estimator &3 is not
equivariant unless ¢ = 1. In Example 1, 3(X) = X/n is an equivariant estimator
of p.

In Example 6, consider the statistic 3(X) = S2. Note that under the translation
group {b, 1}X = X + b and 3({b, 1}X) = 3(X). That is, for every g € G, 3(gX) =
3(X). A statistic 9 is said to be invariant under a group of transformations G if
9(gX) = 9(X) for all g € G. When G is the translation group, an invariant statistic
(function) under G is called location invariant. Similarly, if G is the scale group, we
call 3 scale invariant, and if G is the location-scale group, we call 9 location-scale
invariant. In Example 6, 94(X) = 52 is location invariant but not equivariant, and
92(X) and 93(X) are not location invariant.

A very important property of equivariant estimators is that their risk function is
constant on orbits of 6.

Theorem 1. Suppose that 3 is an equivariant estimator of 6 in a problem that is
invariant under G. Then the risk function of 8 satisfies

3 R(g6,3) = R(8, 9)

forall® € © and g € G. If, in particular, G is transitive over ©, then R(@, 3) is
independert of 6.

Proof. Wehave for0 e ®and g € G,

R(9,9(X)) = EgL(0, (X))
= EqL(gh, go(X)) (invariance of L)
= FyL (g6, 3(g(X)) (equivariance of §)
= Ez L(g0, (X)) (invariance of {Py})
= R(g0, 3(X)).
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In thg special case when G is transitive over ©, then for any 61, 0, € © there exists a
& € G such that 6, = g6. It follows that

R(62,9) = R(gb61,3) = R(6;,9)
so that R is independent of 6.

Remark 1. 'When the risk function of every equivariant estimator is constant,
an estimator (in the class equivariant estimators) that is obtained by minimizing the
constant is called the minimum risk equivariant (MRE) estimator.

Example 7. Let Xy, X3, ..., X, iid RVs with common PDF
f(x,8) =expl—(x —8)], x>0 and =0 ifx <O.

Consider the location group G = {{b, 1}, —o0 < b < oo}, which induces Gon®
where g’ = @. Clearly, G is transitive. Let L({B,d) = (6 — 2. Then the problem of
estimation of 6 is invariant, and according to Theorem 1, the risk of every equivariant
estimator is free of 8. The estimator 8o (X) = X (1) — 1/n is equivariant under G since

1 1
So({b, }X) = min (X; +b) — —=b+ Xqy— — = b+ §(X).
1<izn n n

We leave the reader to check that
1 2
R(ov 80)=E9 X(l)_‘ - -0 = =3
n n

and it will be seen later that dg is the MRE estimator of 8.

Example 8. In this example we consider sampling from a normal PDF. Let us
first consider estimation of 4 when o = 1. Let G = {{b, 1}, — 00 < b < oo}.
Then 3(X) = X is equivariant under G and it has the smallest risk 1/n. Note that
{x, 1}71 = {—X, 1) may be used to designate x on its orbits

F 1 X =(x =%, ..., %0 — %) = A(X).

Clearly, A(x) is invariant under G and A(X) is ancillary to . By Basu’s theorem
A(X) and X are independent.

Next, consider estimation of o2 with 4 = 0 and G = {{0,c},c > 0}. Then
$2=Y1Xx 12 is an equivariant estimator of 2. Note that {0, s}~ may be used to
designate x on its orbits

0, 5,) 1x = (x—l, o x—") — AX).

Sx Sx
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Again, A(x) is invariant under G and A(X) is ancillary to o2. Moreover, S and A(X)
are independent.

Finally, we consider estimation of (u, o?) when G ={{b,c}, —00 <b <
00, ¢ > 0}. Then (X, 52), where 52 = ¥"}(X; — X)? is an equivariant estimator of
(i, 0%). Also, {x, se} ! may be used to designate X on its orbits

(X, 85:) 'x = (X_I:_E ,In —x> = A(X).

Sx Sx

Note that the statistic A(X) defined in each of the three cases considered in Ex-
ample 8 is constant on its orbits. A statistic A is said to be maximal invariant if

(i) A is invariant, and
(i) A is maximal, that is, A(x;) = A(X3) = X; = g(x;) forsome g € G.

We now derive an explicit expression for MRE estimator for a location parameter.
Let X1, X2, ..., X, be iid with common PDF f3(x) = f(x — 0), —00 < 8 < o0.
Then { fp : 8 € @} isinvariant under G = {{b, 1}, —0o0 < b < 00}, and an estimator
of 6 is equivariant if

(b, 1}1X) = o(X) + b
for all real b.

Lemma 1. An estimator 3 is equivariant for @ if and only if
G IX) = X1 +q(X2 - Xy1,..., Xn — X1),
for some function q.

Proof.  If (4) holds, then

o({b, 1}X) =b+x1 +q(x2 —x1,..., Xy — X1)

= b+ 3(x).
Conversely,
9(x) = 0(x1 +x3 — X1, X1 +X2 —X1,..., X1 +Xp — X})
=x1+00,x2 —x1,...,x, —Xx1),
which is (4) with g(x; — x1, ... , X, —x1) = 80, x2 — x1,... , Xp — x1).

From Theorem 1 the risk function of an equivariant estimator 9 is constant with
risk

R(8, 3) = R(0, 3) = Eo[a(X)]? forall 8,
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where the expectation is with respect to the PDF fo(x) = f(x). Consequently,
among all equivariant estimators 3 for 8, the MRE estimator is dg, satisfying

R(0, 89) = min R(0, 3).

Thus we only need to choose the function g in (4).
Let L(6, 3) be the loss function. Invariance considerations require that

L(0,9) = L(gh,g3) =LA +b,3+b)

for all real b so that L{6, ) must be some function w of 3 — 6.

LetY; = X;— X1,i =2,...,n,and Y = (Yp,...,Y,) and g(y) be the joint
PDF of Y under 6 = 0. Let h(x;)y) be the conditional density, under § = 0, of X;
given Y = y. Then

©) R0, 3) = Eglw(X1 — q(Y))]
- / [ / wirt — g)RGLY) dx] ) dy.

Then R(0, 3) will be minimized by choosing, for each fixed y, ¢(y) to be that
value of ¢ that minimizes

6) fw(u —O)h(uly) du.

@«

Necessarily, ¢ depends on y. In the special case w(d — 6) = (d — 9)2, the integral
in (6) is minimum when c is chosen to be the mean of the conditional distribution.
Thus the unique MRE estimator of 6 is given by

@) 9p(x) = x1 — Ep{X1]Y = y}.

This is the Pitman estimator. Let us simplify it a little more by computing Eg{x; —
XY =y}

First we need to compute h(u|y). When 6 = O, the joint PDF of X1, Y2,..., ¥,
is easily seen to be

FD)fx+y2)--- fxi+yn),

so the joint PDF of (Y, ..., Y,) is given by

f S fu+y2)--- fu+yn)du.

It follows that

FWfw+y)-- flu+yn)
[ F fu+y2) - fu+yp)du

(8) h(uly) =
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Now let Z = x; — X1. Then the conditional PDF of Z given yis h(x; — z ] y). It
follows from (8) that

oo

9 do(x) = Eo{Zly) = f zh(xy — 2)dz

2T & — D) dz
T R fxj—Ddz

Remark 2. Since the joint PDF of X, X3,..., Xp is IT}:I folxj) = ["[';21 f
(xj—0), the joint PDF of # and X when 6 has prior () is 7(9) H'le f(xj—6).The
joint marginal of X is 0 7 (6) [Tj=1 f(x; — ) d6. 1t follows that the conditional
PDF of 6 given X = x is given by

w(®) [Tj—y fx; — 6)
S oo O [y flxj —0)d6
Taking 7 (6) = 1, the improper uniform prior on ©, we see from (9) that 3p(x) is the

Bayes estimator of 6 under squared-error loss and prior (f) = 1. Since the risk of
dg is constant, it follows that dg is also a minimax estimator of 6.

Remark 3. Suppose that § is sufficient for 8. Then ]_[‘}=l fo(xj) = go(s)h(x),
so that the Pitman estimator of 8 can be rewritten as

S2o0 0 1T}=1 folx;) dé
ffooo H?—.—l fﬂ(xf)de

[, 020(s)h(x) dO
I3, ga(s)h(x) dO

[ 08s(s) d6
22, 80(s)do

which is a function of s alone.

X =

Examples 7 and 8 (continued). A direct computation using (9) shows that X1y —
1/n is the Pitman MRE estimator of 6 in Example 7, and X is the MRE estimator
of w in Example 8 (when o = 1). The results can be obtained by using sufficiency
reduction. In Example 7, X(;) is the minimal sufficient statistic for 6. Every (trans-
lation) equivariant function based on X(;) must be of the form 3.(X) = X +c,
where c is a real number. Then

R@,3:) = Eg{X(1) +c —6)?

1 1\]?
= Eg X(1)~;~0+(c+;)]
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2 2 2
=R(9,30)+(c+—1-) =(1) +(c+1) ,
n n n

which is minimized for ¢ = —1/n. InExample 8, X is the minimal sufficient statistic,
so every equivariant function of X must be of the form 9.(X) = X + ¢, where cis a
real constant. Then

— 1
R(p, 8) = Ep(X +c— )’ = = +¢?,
which is minimized for ¢ = 0.

Example 9. Let X\, X3, ..., X, be iid U@ — 1,0 + ). Then (X1), Xny) is
jointly sufficient for 6. Clearly,

1, X)) <0 < xpy,
0, otherwise,

f(x1—9,...,x,,—-9)=[

so that the Pitman estimator of 8 is given by

X(n)
Jegy 096 _ X + X
[i® do 2

X

do(x) =

We now consider, briefly, the Pitman estimator of a scale parameter. Let X have a
joint PDF

1 X1 Xn
fo@=—f (3. 2)
where f is known and o > 0 is a scale parameter. The family {f; : o > 0} remains
invariant under G = {{0, c}, ¢ > 0}, which induces G = G on . Then for estimation
of o loss function L(o, @) is invariant under these transformations if and only if
L(o,a) = w(a/ o®). An estimator 9 of o* is equivariant under G if

3({0, c}X) = o (X) orallc > 0.

Some simple examples of scale-equivariant estimators of o are the mean deviation
3% 1X;—X|/n and the standard deviation /Y7 (X; — X)2/(n — 1). We note that the
group G over @ is transitive, so according to Theorem 1, the risk of any equivariant
estimator of o is free of o and an MRE estimator minimizes this risk over the class
of all equivariant estimators of o*. Using the loss function L(o, a) = w(a Jok) =
(@ — a©)2/a %, it can be shown that the MRE estimator of o*, also known as the
Pitman estimator of o*, is given by
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JS vt fuxy, . vxg) dy

do(X) = .
o Jo o vt f(uxy, ..., vxp)dv

Just as in the location case, one can show that 3y is a function of the minimal
sufficient statistic and dp is the Bayes estimator of o¥ with improper prior 7 (o) =
1/0%*+1_ Consequently, 3y is minimax.

Example 8. (continued). In Example 8, the Pitman estimator of ok is easily
shown to be

k2
T +0)/2] (&0
BX) = Tl(n + 2k)/2] (; X") '
Thus the MRE estimator of ¢ is given by {T'[(n +1)/2],/ 3] X,.z/ I'{(n+2)/2]} and
that of o2 by Y1 X?/(n +2).

Example 10. Let X1, X3, ..., X, be iid U(0, 6). The Pitman estimator of 0 is
given by

f;zl)v"du —_n+2

9 (X) = -
o X) f;fn)v"“dv n+1

(n)-

Finally, we consider, briefly, estimation of the mean vector of a multivariate nor-
mal distribution. Let @ = (64,6, ... ,e,,)’ be a column vector and I, be the p x p
identity matrix. Let X;, X», ..., X, be a sample from a p-variate normal distribu-
tion with mean vector @ and variance—covariance matrix {,. Let L(0,a) = (0 —
2)(0—a) = l.p=1 (6; — a;)?. In the univariate (p = 1) case we have seen that the
sample mean X is a minimax and admissible estimator of 6. It is therefore natural
to consider X = (X1, X2, ..., fp)’ as an estimator of @ also in the p-variate case
and suspect that it has the same properties as in p = 1 case. Certainly, X is a mini-
max estimator, but is it admissible, too? Stein [108] showed that X is admissible for
p = 2. But for p > 3, James and Stein [45] showed that the estimator

P—2\ ¢
(10) X) ( nX’X)

improves on X for all 0.

This is a surprising result but is typical in a variety of multiparameter estimation
problems. What is optimal in independent estimation problems is not necessarily
optimal if the problems are considered simultaneously. It should be noted, however,
that @° does not share the other optimality properties of X. It is not MLE, is biased,
and is not equivariant. It only dominates X under quadratic loss.

The estimator @° takes X and shrinks it toward the origin (provided X'X > p—2).
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PROBLEMS 8.9

In all problems assume that X1, X2, ... , Xp is a random sample from the distribu-
tion under consideration.

1. Show that the following statistics are equivariant under translation group:
(a) Median (X).
®) Xy + Xmy)/2.
(©) Xinpj+1, the quantile of order p,0 < p < 1.
@ (X + Xga1)+ -+ Xn—r)) /(n = 21).
(€) X + 7, where ¥ is the mean of a sample of size m, m # n.
2. Show that the following statistics are invariant under location or scale or
location-scale group:
(@) X — median(X;).
®) X@+1-0 — X@)-
© Yi1Xi —X|/n.
(X =X - Y)

p— — 1 2 )
[Cr - X2 X, =12
random sample from a bivariate distribution.

(d where (X1,Y1),...,(X,, Yy) is a

3. Let the common distribution be G (e, o), where o (> 0) isknownand o > Qs
unknown. Find the MRE estimator for ¢ under loss L(o,a) = (1 — a /0)2.

4. Let the common PDF be the folded normal distribution

2
/;exp [—-%(x - M)Z] Iy, 00) (x)-

Verify that the best equivariant estimator of x under quadratic loss is given by

expl—(n/2)(Xqy — X)?]

h=X- JaX-X) '
Vo[ [ 5O (V27 exp(—22/2)

5. Let X ~ U0, 26).
(a) Show that (X(1), X(n)) is jointly sufficient statistic for 8.

(b) Verify whether or not (X() — X(1)) is an unbiased estimator of 6. Find an
ancillary statistic.

(¢) Determine the best invariant estimator of 8 under the loss function L(6, a) =
(1 —a/6)%
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6. Let

fo(x) = 3 exp{—|x — 61}

Find the Pitman estimator of 6.

7. Let fo(x) = exp[—(x — 6)] - {[1 +exp—(x — 1} 2 forx € R, 0 € R. Find
the Pitman estimator of 6.

8. Show that an estimator 3 is (location) equivariant if and only if
3(x) = 9p(x) + ¢ (x),

where dp is any equivariant estimator and ¢ is an invariant function.

9. Let X;, X; be iid with PDF
2 x )
fo(x) = — (1 — —) , O0<x <o and =0 otherwise.
(o3 [o4

Find, explicitly, the Pitman estimator of o".

10. Let Xy, X3, ..., X, be iid with PDF
1 X .
Jo(x) = g oxP (—5) , x>0 and =0, otherwise.

Find the Pitman estimator of 6%,



CHAPTER9

Neyman—Pearson Theory of
Testing of Hypotheses

9.1 INTRODUCTION

Let Xy, X5, ..., X, be a random sample from a population distribution Fg, 0 €
©®, where the functional form of Fg is known except perhaps for the parameter 0.
For example, the X;’s may be a random sample from N(9, 1), where 6 € R is
not known. In many practical problems the experimenter is interested in testing the
validity of an assertion about the unknown parameter 6. For example, in a coin-
tossing experiment it is of interest to test, in some sense, whether the (unknown)
probability of heads p equals a given number pg, 0 < pg < 1. Stmilarly, it is
of interest to check the claim of a car manufacturer about the average mileage per
gallon of gasoline achieved by a particular model. A problem of this type is usually
referred to as a problem of zesting of hypotheses and is the subject of discussion in
this chapter. We develop the fundamentals of Neyman—Pearson theory. In Section 9.2
we introduce the various concepts involved. In Section 9.3 the fundamental Neyman—
Pearson lemma is proved, and Sections 9.4 and 9.5 deal with some basic results in
the testing of composite hypotheses. Section 9.6 deals with locally optimal tests.

9.2 SOME FUNDAMENTAL NOTIONS OF HYPOTHESES TESTING

In Chapter 8 we discussed the problem of point estimation in sampling from a pop-
ulation whose distribution is known except for a finite number of unknown parame-
ters. Here we consider another important problem in statistical inference, the testing
of statistical hypotheses. We begin by considering the following examples.

Example 1. In coin-tossing experiments one frequently assumes that the coin is
fair, that is, the probability of getting heads or tails is the same: % How does one test
whether the coin is fair (unbiased) or loaded (biased)? If one is guided by intuition, a
reasonable procedure would be to toss the coin # times say, and count the number of
heads. If the proportion of heads observed does not deviate “too much” from p = %,

one would tend to conclude that the coin is fair.

454
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Example 2. 1t is usual for manufacturers to make quantitative assertions about
their products. For example, a manufacturer of 12-volt batteries may claim that a
certain brand of their batteries lasts for N hours. How does one go about checking
the truth of this assertion? A reasonable procedure suggests itself: Take a random
sample of n batteries of the brand in question and note their length of life under
more or less identical conditions. If the average length of life is “much smaller” than
N, one would tend to doubt the manufacturer’s claim.

To fix ideas, let us define formally the concepts involved. As usual, X = (X, X3,
..., Xp)andlet X ~ Fg, @ € ® C Ry. It will be assumed that the functional form
of Fg is known except for the parameter . Also, we assume that © contains at least
two points.

Definition 1. A parametric hypothesis is an assertion about the unknown parame-
ter 0. It is usually referred to as the null hypothesis, Hy: @ € ©g C ©. The statement
Hi: 0 € ©) = © — Qg is usually referred to as the alternative hypothesis.

Usually, the null hypothesis is chosen to correspond to the smaller or simpler sub-
set ©p of © and is a statement of “no difference,” whereas the alternative represents
change.

Definition 2. If ®((0;) contains only one point, we say that ®(0,) is simple;
otherwise, composite. Thus, if a hypothesis is simple, the probability distribution of
X is specified completely under that hypothesis.

Example 3. Let X ~ N (u, 02). If both u and o2 are unknown, ® = {(i, 62): —
00 < p < 00, 62 > 0}. The hypothesis Hy: 1t < po, a2 > 0, where g is a known
constant, is a composite null hypothesis. The alternative hypothesis is Hy: i > uo,
o? > 0, which is also composite. Similarly, the null hypothesis & = g, 62 > 0 is
composite.

Ifo? = ag is known, the hypothesis Hy: u = g is a simple hypothesis.

Example 4. Let X1, X2, ..., X, beiid b(1, p) RVs. Some hypotheses of interest
are p = %, p< % p=> -;— or, quite generally, p = po, p < po, p = po, where pg is
a known number, 0 < py < 1.

The problem of testing of hypotheses may be described as follows: Given the
sample point X = (x1, x3, ... , x,), find a decision rule (function) that will lead to
a decision to reject or fail to reject the null hypothesis. In other words, partition the
sample space into two disjoint sets C and C€ such that if x € C, we reject Hp, and if
x € C¢, we fail to reject Hp. In the following we write “accept Hy” when we fail to
reject Ho. We emphasize that when the sample point x € C¢ and we fail to reject Hp,
it does not mean that Hy gets our stamp of approval. It simply means that the sample
does not have enough evidence against Hp.
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Definition 3. Let X ~ Fp, @ € ©. A subset C of R, such that if x € C, then Hp
is rejected (with probability 1) is called the critical region (set):

C={xeR,: Hyisrejected if x € C}.
There are two types of errors that can be made if one uses such a procedure. One

may reject Hy when in fact it is true, called a type I error, or accept Hy when it is
false, called a type Il error:

True
Hy H,
Hy Correct Type II error
Accept
H, | Typel error Correct

If C is the critical region of a rule, PgC, 0 € ®y, is a probability of type 1 error,
and PgC*, 0 € ©y, is a probability of type Il error, 1deally, one would like to find a
critical region for which both these probabilities are 0. This will be the case if we can
find a subset § C R, such that PgS = 1 for every @ € ®¢ and PgS = 0 for every
0 € ©;. Unfortunately, situations such as this do not arise in practice, although they
are conceivable. For example, let X ~ C(1, 8) under Hy and X ~ P(6) under H;.
Usually, if a critical region is such that the probability of type 1 error is 0, it will be
of the form “do not reject Hyp” and the probability of type 11 error will then be 1.

The procedure used in practice is to limit the probability of type I error to a pre-
assigned level « (usually, 0.01 or 0.05) that is small and to minimize the probability
of type 1I error. To restate our problem in terms of this requirement, let us formulate
these notions.

Definition 4. Every Borel-measurable mapping ¢ of R, — [0, 1] is known as a
test function.

Some simple examples of test functions are ¢(x) = 1 forall x € R,, ¢(x) =0
forallx € Ry, ore(x) =¢,0 < a < 1,forall x € R,. In fact, Definition 4 includes
Definition 3 in the sense that whenever ¢ is the indicator function of some Borel
subset A of R, A is called the critical region (of the test @).

Definition 5. The mapping ¢ is said to be a test of hypothesis Hp: 8 € O
against the alternatives Hi: 0 € ©j, with error probability o (also called level of
significance or, simply, level) if

() EgpX) < a for all @ € Oy.

We shall say, in short, that ¢ is a test for the problem (o, ®¢, ©1).
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Let us write B,(8) = Egp(X). Our objective, in practice, will be to seek a test ¢
for a given o, 0 < < 1, such that

@ sup B,(0) < a.

0680
The left-hand side of (2) is usually known as the size of the test ¢. Condition (1)
therefore restricts attention to tests whose size does not exceed a given level of sig-
nificance .

The following interpretation may be given to all tests ¢ satisfying §,(0) < a for
all @ € ©g. To every x € R,, we assign a number ¢(x), 0 < ¢(x) < 1, which is the
probability of rejecting Hp that X ~ fg, 0 € Oy, if x is observed. The restriction
B,(0) < a for @ € O then says that if Hp were true, ¢ rejects it with a probability
< o. We will call such a test a randomized test function. If p(x) = I4(x), ¢ will be
called a nonrandomized test. If x € A, we reject Ho with probability 1;and if x ¢ A,
this probability is 0. Needless to say, A € B,,.

We next turn our attention to the type 1I error.

Definition 6. Let ¢ be a test function for the problem («, O¢, ©1). For every
0 c O, define

3) By (8) = E¢p(X) = Pelreject Hp}.

As a function of @, B,(0) is called the power function of the test ¢. For any 0 € ©,,
B,(0) is called the power of ¢ against the alternative 0.

In view of Definitions 5 and 6, the problem of testing of hypotheses may now be
reformulated. Let X ~ fg, 0 € ® C Ry, © = O + ©1. Also, let0 < o < 1 be
given. Given a sample point X, find a test ¢(x) such that §,(0) < « for @ € ©p, and
By (0) is a maximum for 6 € ©,.

Definition 7. Let &, be the class of all tests for the problem («, G¢, ®1). A test
@o € Dq is said to be a most powerful (MP) test against an alternative 6 € © if

If ®; contains only one point, this definition suffices. If, on the other hand, ®,
contains at least two points, as will usually be the case, we will have an MP test
corresponding to each @ € ©;.

Definition 8. A test g9 € P, for the problem (o, ©¢, ®1) is said to be a uni-
Jformly most powerful (UMP) test if

)] B (@) = B,(0) forall ¢ € ®,, uniformlyin @ € ©,.

Thus, if ©p and @, are both composite, the problem is to find a UMP test ¢ for
the problem (o, ®g, ©1). We will see that UMP tests very frequently do not exist,
and we will have to place further restrictions on the class of all tests, ®,,.
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Note that, if ¢y, ¢, are two tests and A is a real number, 0 < A < 1, then g +
(1 — A)¢a is also a test function, and it follows that the class of all test functions &,
is convex.

Example 5. Let X1, X3, ..., X, be iid N'(u, 1) RVs, where 1 is unknown but it
is known that u € © = {uo, 1}, o < u1. Let Hy: X; ~ NM(ug, 1), Hi: Xi ~
N (u1, 1). Both Hy and Hj are simple hypotheses. Intuitively, one would accept Hy if
the sample mean X is “closer” to o than to w1 ; that is, one would reject Hy if X >k,
and accept Hy otherwise. The constant k is determined from the level requirements.

Note that under Hy, X ~ N(uo, 1/n), and under Hj, X ~ N(u1, 1/n). Given
0 <a <1, wehave

_ X - -
Puo{X>k}=P{ o K ""}

1/vn  1/m

= Pltypelerror} = a,
so that k = p + z4/+/n. The test, therefore, is (Fig. 1)

e — 2o
i, if X > po+ —,
o) = Vn

0, otherwise.

Here X is known as a fest statistic, and the test ¢ is nonrandomized with critical

region C = {X: X > o + zo/+/n}. Note that in this case the continuity of X (that is,

the absolute continuity of the DF of X) allows us to achieve any size ¢, 0 < « < 1.
The power of the test at y; is given by

—_ Z
Ey0X) = Py, [x > po + —“—}

Jn

X
=P{ ad >(uo—u1)ﬁ+za]

1/J/n
= P{Z > zo — v/n (u1 — o)},

Ko o+ 2, X

Fig. 1. Rejection region of H in Example 5.
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where Z ~ N(0, 1). In particular, E,, ¢(X) > « since pt1 > to. The probability of
type Il error is given by

P{type Merror} = 1 — E, ¢(X)
= P(Z < z4 — +/n (111 - po)}-

Figure 2 gives a graph of the power function B, (1) of ¢ for i > 0 when po = 0,
and H: u > 0.

Example 6. Let X1, X2, X3, X4, X5, be a sample from b(1, p), where p is un-
known and 0 < p < 1. Consider the simple null hypothesis Hp: X; ~ b(1, %), that
is, under Hg, p = % Then Hy: X; ~ b(1, p), p # % A reasonable procedure would
be to compute the average number of 1’s, namely, X = Zf X;/5, and to accept Hp
if |7 — %I < ¢, where ¢ is to be determined. Let a = 0.10. Then we would like to
choose ¢ such that the size of our test is ¢, that is,

Y_%’”},

0.10 = Pp_12 l

or

0.5

0.05 |-~ === =-mmsmmm e
15

e S U,
A\ 4

1.5

Fig. 2. Power function of ¢ in Example 5.
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> 5
©6) 0.90 = Pp=1/2 —5¢c < in - < 5(,‘]

5
5
= p=1/2[—~k52 Xi—'ifk}y
1

where k = 5c. Now Y7 X; ~ b(5, 1) under Ho, so that the PMF of Y3 X; — 3 is
given in the following table:

5 5 5 5 5
X; X — = P,_ X,' = i
3 £ fEt]

0 -2.5 0.03125

1 -1.5 0.15625

2 -0.5 0.31250

3 0.5 0.31250

4 1.5 0.15625

5 25 0.03125

Note that we cannot choose any k to satisfy (6) exactly. It is clear that we have to
reject Ho when k = +2.5, that is, when we observe ) X; = O or 5. The resulting size
if we use this test is & = 0.03125 + 0.03125 = 0.0625 < 0.10. A second procedure
would be to reject Hp if k = £1.5 or £2.5 Q_ X; = 0, 1, 4, 5), in which case the
resulting size is ¢ = 0.0625+2(0.15625) = 0.375, which is considerably larger than
0.10. If we insist on achieving @ = 0.10, a third alternative is to randomize on the
boundary. Instead of accepting or rejecting Ho with probability 1 when 3_ X; = 1 or
4, we reject Hy with probability y where

5 5
0.10 = Ppeip2 {in =0or 5} +¥Ppo1p2 IZX,— =1 or4] :
1 1

Thus

0.0375
=20 o114
Y= 03125

A randomized test of size ¢ = 0.10 is therefore given by

5
1 if Zx,- =0or5,
1

5
X) =
v 0.114  if Zx,-=10r4,
1

0 otherwise.
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4

05
0.1
% 05 i 157>

Fig. 3. Power function of ¢ in Example 6.

The power of this test is

5 5
Epp(X) = P, {Z Xi = OorS} +0.114P, {Z X;=1 0r4} ,
1 1

where p # % and can be computed for any value of p. Figure 3 gives a graph of

By (P).
We conclude this section with the following remarks.

Remark 1. 'The problem of testing of hypotheses may be considered as a special
case of the general decision problem described in Section 8.8. Let A = {ag, a1},
where ag represents the decision to accept Hy: 8 € ©g, and a; represents the deci-
sion to reject Hp. A decision function § is a mapping of R, into A. Let us introduce
the following loss functions:

1 if0e®
Lq(8, = d L,(6, = ( forall @,
100, ap) {0 foco, an 1(8, ag) or a
and
0 if 8 € ©g
L»(0, = d L,(0, =0 forall 6.
2(0, ap) [1 if0co, an 2(0, ay) ora

Then the minimization of EgL2(8, 5(X)) subject to EgL(0,5(X)) < « is the
hypothesis-testing problem discussed above. We have
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E¢L2(8,5(X)) = Pp{d(X) = ao}, 0 € 04,
= Pg{accept Hy | Hj true},

and

EgL(0,5(X)) = Po{d(X) = a1}, 0 € By,
= Pp{reject Hy | 0 € ®p true}.

Remark 2. In Example 6 we saw that the size « chosen is often unattainable.
The choice of a specific value of & is completely arbitrary and is determined by non-
statistical considerations such as the possible consequences of rejecting Hy falsely
and the economic and practical implications of the decision to reject Hy. An alterna-
tive and somewhat subjective approach wherever possible is to report the P-value of
the test statistic observed. This is the smallest level « at which the sample statistic
observed is significant. In Example 6, let § = Z?___l X;. Jf § = 0 is observed, then
Py, (S = 0) = Py(§ = 0) = 0.03125. By symmetry, if we reject Hy for § = 0, we
should also do so for § = 5, so the probability of interest is Pp(S = 0 or 5) = .0625,
which is the P-value. If § = 1 is observed and we decide to reject Hp, we would
also do so for § = 0 because S = 0 is more extreme than § = 1. By symmetry
considerations,

P-value = Py(S < 1 or § > 4) = 2(0.03125 + 0.15625) = 0.375.

This discussion motivates Definition 9 below. Suppose that the appropriate critical
region for testing Hp against H) is one-sided. That is, suppose that C is either of the
form {T > c1} or {T < ¢z}, where T is the test statistic.

Definition 9. The probability of observing under Hp a sample outcome at least
as extreme as the one observed is called the P-value. The smaller the P-value, the
more extreme the outcome and the stronger the evidence against Hg.

If o is given, we reject Hp if P < a and do not reject Hp if P > «. In the two-
sided case when the critical region is of the form C = {|T (X)| > k}, the one-sided P-
value is doubled to obtain the P-value. If the distribution of T is not symmetric, the
P-value is not well defined in the two-sided case, although many authors recommend
doubling the one-sided P-value.

PROBLEMS 9.2

1. A sample of size 1 is taken from a population distribution P(A). Totest Hp: A =
1 against H;: A = 2, consider the nonrandomized test ¢(x) = 1if x > 3, and
= 0if x < 3. Find the probabilities of type I and type II errors and the power
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of the test against A = 2. If it is required to achieve a size equal to 0.05, how
should one modify the test ¢?

2. Let Xy, X2, ..., X, be a sample from a population with finite mean p and finite
variance o'2. Suppose that y is not known but ¢ is known, and it is required to
test i = po against ;& = 3 (1 > pg). Let n be sufficiently large so that the
central limit theorem holds, and consider the test

o1 x ) = 1 if x>k,
¢ 15 X2y 000 5 &) = 0 iffsk,
where ¥ = n™! i—1 xi. Find k such that the test has (approximately) size a.

What is the power of this test at & = 4 ? If the probabilities of type I and type II
errors are fixed at « and B, respectively, find the smallest sample size needed.

3. In Problem 2, if o is not known, find k such that the test ¢ has size «.

4. Let Xy, Xa, ..., X, be a sample from N (1, 1). For testing 1 < po against
> wo, consider the test function
g — a
1 if x > + —,
o+
P(X1, X2, ... s Xn) = Za
0 ifX<po+—.
wo+ -
Show that the power function of ¢ is a nondecreasing function of 1. What is the

size of the test?

S. A sample of size 1 is taken from an exponential PDF with parameter 8, that is,
X ~ G(1,6). To test Hp: 6 = 1 against Hy: 6 > 1, the test to be used is the
nonrandomized test

1 if x > 2,

v = {0 if x <2.

Find the size of the test. What is the power function?

6. Let X1, X2,... , X be a sample from A(0, o2). To test Hy: o = ag against
H) = o # oy, it is suggested that the test

1 if Yx?>cror Y x? <,
0 ifczszxt?fcl,

(p(-xlsx29 ... ,xn) = {

be used. How will you find ¢y and ¢ such that the size of ¢ is a preassigned
number o, 0 < @ < 1?7 What is the power function of this test?

7. An urn contains 10 marbles, of which M are white and 10 — M are black. To test
that M = 5 against the alternative hypothesis that M = 6, one draws 3 marbles
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from the urn without replacement. The null hypothesis is rejected if the sample
contains 2 or 3 white marbles; otherwise, it is accepted. Find the size of the test
and its power.

9.3 NEYMAN-PEARSON LEMMA

In this section we prove the fundamental lemma due to Neyman and Pearson {74},
which gives a general method for finding a best (most powerful) test of a simple
hypothesis against a simple alternative. Let {fp,0 € ®}, where ® = {fy, 61}, be
a family of possible distributions of X. Also, fp represents the PDF of X if X is a
continuous RV, and the PMF of X if X is of the discrete type. Let us write fo(x) =
Jo,(x) and f1(x) = f5, (x) for convenience.

Theorem 1 (Neyman—Pearson Fundamental Lemma)

(a) Any test @ of the form

1 if fix) >k fo(x),
H px) =y if f1x) =k fo(x),

0 if f1(x) <k fo(x),
for some k > 0and 0 < y(x) < 1, is most powerful of its size for testing
Hp: 0 = 6y against Hy: 6 = 8;. If k = oo, the test

1 if fo(x) =0,

2 =
@ 00 [0 if fo(x) > O,

is most powerful of size O for testing Ho against H;.
(b) Given a, 0 < a < 1, there exists a test of form (1) or 2) with y(x) = y (a
constant) for which Eg (X)) = a.

Proof. Let ¢ be a test satisfying (1) and ¢* be any test with Eq¢*(X) <
Eg,(X). In the continuous case

/[(P(X) — " WILAI®) —k fox)]dx

= ( / + / ) [p(x) — @™ (X[ f1(X) — k fo(x)]dx.
fi>kfo fi<kfo

For any x € {f1(x) > kfo(X)}, ¢(x) — p*(x) = 1 — ¢p*(x) > 0, so that the integrand
is > 0.Forx € {fi(x) < kfo(X)}, (x) — ¢*(x) = —p*(x) < 0, so that the integrand
is again > Q. It follows that
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f[tp(x) — *®Ifi(x) — k fo(x)]dx
= Eg,9(X) — Eg,¢*(X) — k(Egy9(X) — Egy9™(X)) 2 0,
which implies that
Eg,¢(X) — Ep 9" (X) > k(Eg9(X) — Ego9™(X)) = 0

since Eg,¢*(X) < Eg,0(X).
If k = oo, any test ¢* of size 0 must vanish on the set { fo(x) > 0}. We have

Eo,0(X) — Eo,¢"(X) = f [1 — ¢* W1/ (X) dx > 0.
{ fo(x)=0}

The proof for the discrete case requires the usual change of integral by a sum
throughout.

To prove (b) we need to restrict ourselves to the case where 0 < a < 1, since the
MP size 0 test is given by (2). Let y(x) = y, and let us compute the size of a test of
form (1). We have

Egp(X) = Pg,{ /1(X) > kfo(X)} + ¥ Pap [ 1 X) = kfo(X)}
=1— Pep{ iX) = kfoX)} + ¥ Pgpl /1 (X) = kfo(X)}.

Since Py, { fo(X) = 0} = 0, we may rewrite Eg,¢(X) as

o et n [ o]
Given 0 < o < 1, we wish to find & and y such that Eg¢(X) = «, that is,
N AT
Note that

SiX) k}

FoX) =

is a DF so that it is a nondecreasing and right continuous function of k. If there exists
a kg such that

fl(X)
k —
FoX) = } 1o

we choose y = 0 and k = kg. Otherwise, there exists a kg such that
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T—a frmmmmmmmm e '
0 P %
Fig. 1.
H(X) S1(X) ]
® P%[fo(X)<k0}51_0<P9°[m§k0]’

that is, there is a jump at ko (see Fig. 1). In this case we choose k = kg and

_ Pol i)/ foX) <ko} — (1 — )
Pol 1(X)/ fo(X) = ko) '

6

Since y given by (6) satisfies (4), and 0 < y < 1, the proof is complete.

Remark 1. 1t is possible to show (see Problem 6) that the test given by (1) or (2)
is unique (except on a null set), that is, if ¢ is an MP test of size o of Hp against Hj,
it must have form (1) or (2), except perhaps for a set A with Pg,(A) = Py, (A) = 0.

Remark 2. An analysis of proof of part (a) of Theorem 1 shows that test (1) is
MP even if fi and fp are not necessarily densities.

Theorem 2. If a sufficient statistic T exists for the family {fs: 8 € 8}, ©® =
{6p, 61}, the Neyman-Pearson MP test is a function of 7'.

The proof of this result is left as an exercise.

Remark 3. Ifthe family { fp: 6 € ®} admits a sufficient statistic, one can restrict
attention to tests based on the sufficient statistic, that is, to tests that are functions of
the sufficient statistic. If ¢ is a test function and T is a sufficient statistic, E{¢(X) |
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T} is itself a test function, 0 < E{p(X) | T} < 1, and

Eg{E{p(X) | T}} = Egp(X),
so that ¢ and E{¢ | T} have the same power function.

Example 1. Let X be an RV with PMF under Hp and H; given by

x 1 2 3 4 5 6

fo(x) 001 001 001 001 001 095
fitx) 005 004 003 002 001 085

Then A(x) = fi(x)/fo(x) is given by

x |12 3 4 5 6
A® |5 4 3 2 1 089

If o

= 0.03, for example, then Neyman-Pearson MP size 0.03 test rejects Hp if
AMX) =3,

that is, if X < 3 and has power
Pi(X <3)=0.05+0.0440.03 =0.12
with P(type Il error) = 1 — 0.12 = 0.88.

Example 2. Let X ~ N(0, 1) under Hp and X ~ C(1,0) under H;. To find an
MP size « test of Hy against Hj,

_ A _ /mi/a )
fox)  (1/V2m)e/?

\/7 X 12
T

Figure 2 gives a graph of A(x) and we note that A has a maximum at x = 0 and
two minima at x = Z:1. Note that A(0) = 0.7979 and A(£1) = 0.6578, so for
k € (0.6578,0.7989), A(x) = k intersects the graph at four points and the critical
region is of the form | X| < kj or | X| = k», where k1 and k; are solutions of A(x) = k.
For k = 0.7979, the critical region is of the form |X| > k¢, where kg is the positive
solution of e %8/2 = 1 4 k2, so that kg ~ 1.59 with & = 0.1118. For k < 0.6578,
a = 1, and for £ = 0.6578, the critical region is | X| > 1 with @ = 0.3413. For the
traditional level @ = 0.05, the critical region is of the form }|X| > 1.96.

Alx)
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TS o Ty z)\(O) =0.7979
- -- \(1) =0.6578
~ko -1 ~ky 0 kK 1 k> X

Fig. 2. Graph of A(x) = (2/m)}*[exp(x?/2)/(1 + x%)].

Example 3. Let X, X5,...,X, be iid b(1, p) RVs, and let Hy: p = po,
Hi: p = p1, p1 > po- The MP size « test of Hp against Hj is of the form

pl}:xi(l _ pl)n—Zx,-

L, aw=2
P (1 — poyn=Lx

Y A(x) =k,
0, AX) < k,

>k,
‘P(xlvx2, e ,xn) =

where k and y are determined from

EpO(P(X) = a.

3oxi _ n—y xi
AX) = (&) (1__?_1) ,
Po 1~ po

and since p; > pp, AM(X) is an increasing function of Y x;. It follows that A(x) > k
if and only if >_x; > kj, where k| is a constant. Thus the MP size o test is of the
form

Now

1 if 3 x>k,
(X)) =1y if Yoxi =k,
0 otherwise.
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Also, k1 and y are determined from

n n
a=EppX) = Pp, [ZXi>k1]+pro{ZXi=kll
1 1
- ny , n—r LA n—k
= 20 ()b = por o p ()b = g

r=ki+1

Note that the MP size « test is independent of p; as long as py > po; that is, it
remains an MP size « test against any p > pg and is therefore a UMP test of p = po
against p > py.

In particular, letn = 5, pg = % P = % and o = 0.05. Then the MP test is given
by

1, Yoxi >k,
Ppx) =1y, S xi=k,
0, Zx,' < k,

where k and y are determined from

3.5\ (1Y’ 5\ (1)’
005=a =) (r) (2) * V(k) (2) ‘
It follows that £ = 4 and y = 0.122. Thus the MP size & = 0.05 test is to reject
= % in favor of p = % if )1 X; = 5 and reject p = % with probability 0.122 if
Z’f X; =4
It is simply a matter of reversing inequalities to see that the MP size o test of
Hy: p = po against Hy: p = p1 (p1 < pg) is given by

1 it ) x; <k,
px) =y if > xi =k,
0 if 3 x>k,

where ¥ and k are determined from E,,¢(X) = «.
We note that 7(X) = 3_ X; is minimal sufficient for p, so that in view of Remark
3, we could have considered tests based only on T. Since T ~ b(n, p),

(n)Pi(l - Pl)"—t t n—t
Ay =00 _ (ﬂ) (l:_!’_l)

@ (’:)”6“ AV VA )

so that an MP test is of the same form as above but the computation is somewhat
simpler.
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We remark that in both cases (p; > po, p1 < po) the MP test is quite intuitive.
We would tend to accept the larger probability if a larger number of “successes”
showed up, and the smaller probability if a smaller number of “successes” were
observed. See, however, Example 2.

Example 4. Let X1, X, ..., X, be iid N, 02) RVs where both ,LL and o2 are

unknown. We wish to test the null hypothesis Hy: u = pg, 0° = 00 against the
alternative Hy: p = py, 0% = 00 The fundamental lemma leads to the following
MP test:

wo |l Ak
P10 it am) <k,

where

(1/00v/27)" exp{—[3_(xi — n1)%/20¢1}
(1/00+/2m)" exp{—[ 3 (xi ~ po)?/2031)

A(X) =
and k is determined from E 5, ¢(X) = . We have
K1 Ko pd ul
AX) =ex X —S |+nl—F—-———51]1.
w0 = pz'(o o2 200 zgg)
If u3 > po, then

n
A() >k ifandonlyif ) x> ¥,

i=1

where k' is determined from

: Xi—npo K —nuo
= i>kKYy=pP 2 Xi ,
a = Py [?;X >k] ’ Jroo > Tn %

giving k' = z44/n 0p + npo. The case p < po is treated similarly. If og is known,
the test determined above is independent of ui as long as @1 > Wy, and it follows
that the test is UMP against Hj: u > uq, o= Uo If, however, ao is not known, that
is, the null hypothesis is a composite hypothesns Hy': = po, o? > 0 to be tested
against the alternatives H1" u = py, o2 > 0(u; > o), the MP test determmed
above depends on ol In other words an MP test against the alternative w1, 00 will
not be MP against u1, "1 , where al #* 0'0 .
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PROBLEMS 9.3

1. A sample of size 1 is taken from PDF

folx) 525(9—x) if0<x<8,
0 =

otherwise.

Find an MP test of Hg: 6 = 6y against H;: 01 (61 < ).

. Find the Neyman—Pearson size « test of Hy: @ = 6 against Hy: 6 = 6, (6; <

-

6p), based on a sample of size 1 from the PDF
Jo(x) =20x +2(1 — 6)(1 —x), O0<x<1, 6€f0,1]

Find the Neyman-Pearson size « test of Hy: 8 = 1 against H;: 8 = By (> 1),
based on a sample of size 1 from

BxB-1, 0<x <1,
x; B) = .
Fo B 0, otherwise.

Find an MP size « test of Ho: X ~ fo(x), where fo(x) = (2m)~ /212,
—00 < x < 00, against Hy: X ~ fi(x), where fi(x) =27 le " —00 <x <

00, based on a sample of size 1.

. For the PDF fy(x) = e=*~% x > 0, find an MP size & test of § = 6 against

6 = 61 (> 6p), based on a sample of size n.

. If ¢* is an MP size « test of Hy: X ~ fo(x) against Hy: X ~ f1(x), show that it

has to be either of form (1) or form (2) (except for a set of x that has probability O
under Hy and H,).

. Let ¢* be an MP size @ (0 < a < 1) test of Hy against H, and let k(o) denote

the value of k in (1). Show that if @; < a, then k(ap) < k(ay).

. For the family of Neyman—Pearson tests, show that the larger the «, the smaller

the B (= Pitype Il error}).

. Let 1 — B be the power of an MP size o test, where 0 < o < 1. Show that

10.

11.

o < 1 — Bunless Py, = Py,.

Let o be a real number, 0 < @ < 1, and ¢* be an MP size « test of Hy against
Hj. Also, let 8 = Ep,¢*(X) < 1. Show that 1 — ¢* is an MP test for testing H;
against Hg at level 1 — 8.

Let Xy, X3, ..., X, be a random sample from the PDF
0 .
fox) == if0<@<x<oo.
X

Find an MP test of 8 = 6y against 8 = 6 (£ 6p).
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12. Let X be an observation in (0, 1). Find an MP size e testof Hp: X ~ f(x) = 4x
if0 <x < j,and=4—-4xif § <x < 1,against H: X ~ f(x) = 1if
0 < x < 1. Find the power of your test.

13. In each of the following cases of simple versus simple hypotheses Hyp: X ~ fo,

Hy: X ~ fi1, draw a graph of the ratio A(x) = fi1(x)/fo(x) and find the form of
the Neyman—Pearson test:

@ folx) = Lexp(~Ix + 1]); fi(x) = §exp(—|x —1)).
®) folx) = Jexp(~Ix); fi(x) = 1/[x(1 +xD)].
© fox)=(/mI1+ A+ fitx) = Q/m)1+ A -x)1"L.

14. Let X1, X3, ..., X, be a random sample with common PDF
f(x)—lex x| xXeR, 6>0
=% P\ "9 ) ’ '

Find a size o MP test for testing Hy : 6 = 6 versus Hy : 6 = 01 (> 6p).
15. Let X ~ f;, j =0, 1, where

—
k-

fox) %
fito) %

B = | N
Rl = | W
M= A= | U

S b

(a) Find the form of the MP test of its size.
(b) Find the size and the power of your test for various values of the cutoff point.

(c) Consider now a random sample of size n from fo under Hp or fi under H;.
Find the form of the MP test of its size.

9.4 FAMILIES WITH MONOTONE LIKELIHOOD RATIO

In this section we consider the problem of testing one-sided hypotheses on a single
real-valued parameter. Let {fs, 0 € ©} be a family of PDFs (PMFs), ® C R, and
suppose that we wish to test Hy: 6 < 6 against the alternatives Hi: 8 > Gp or
its dual, Hy: 6 > 6y, against H|: 6 < 6p. In general, it is not possible to find a
UMP test for this problem. The MP test of Hy: 6 < p, say, against the alternative
6 = 8, (> ) depends on 6; and cannot be UMP. Here we consider a special class
of distributions that is large enough to include the one-parameter exponential family,
for which a UMP test of a one-sided hypothesis exists.

Definition 1. Let {f5, 6 € 0} be a family of PDFs (PMFs), 8 € R. We say that
{ fo} bas a monotone likelihood ratio (MLR) in statistic T (x) if for ; < 62, whenever
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fo,. fo, are distinct, the ratio fy,(x)/fg, (x) is a nondecreasing function of T'(x) for
the set of values x for which at least one of fy, and fy, is > 0.

It is also possible to define families of densities with nonincreasing MLR in T (x),
but such families can be treated by symmetry.

Example 1. Let Xy, X2, ..., Xn ~ U[0,0],0 > 0. The joint PDFof X1, ..., X,
is

1
fo%) gn’ 0 < maxx; <8,
9 =
0, otherwise.

Let 8; > 8; and consider the ratio

f()z(x) — (l/ef)l[maxx,-gez]
fe, (x) (l/af)l[maxx,-gol]

_ (9_1 )" limax x; <6,]
0, I [max x; <6;}

Let

1, maxx; € [Ov 91],

OO = fimexzat om0 = IOO maxx; € [61, 6]
) i N .

Define R(x) = oo if maxx; > 6. It follows that fp,/fs, is a nondecreasing func-
tion of max<;j < x;, and the family of uniform densities on [0, ] has an MLR in
maxl Si <n x,’ .

Theorem 1. The one-parameter exponential family
1 Jo(x) = explQ(O)T (x) + S(x) + D)},
where Q(9) is nondecreasing, has an MLR in T (x).

The proof is left as an exercise.

Remark 1. The nondecreasingness of Q(#) can be obtained by a reparametriza-
tion, putting 3 = Q(6), if necessary.

Theorem 1 includes normal, binomial, Poisson, gamma (one parameter fixed),
beta (one parameter fixed), and so on. In Example 1 we have already seen that
U[0, 8], which is not an exponential family, has an MLR.
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Example 2. Let X ~ C(1,0). Then

fo ) _ 1+ —6)?
for(x) 1+ (x — 62)?

and we see that C(1, 8) does not have an MLR.

-1 as x — +o0,

Theorem 2. Let X ~ f5, § € ©, where {fp} has an MLR in T (x). For testing
Hy: 6 < 6y against Hy: 6 > 6p, p € O, any test of the form

1 if T > 1,
@ px) =1y IfT@W =1,
1 i T <1,

has a nondecreasing power function and is UMP of its size Eg,¢(X) = a (provided
that the size is not 0).

Moreover, for every 0 < o < 1 and every 8y € O, there exists a9, —00 < fg <
oo, and 0 < y < 1 such that the test described in (2) is the UMP size o test of Hy
against Hj.

Proof. Let8y,6; € 8,8, < 6;. By the fundamental lemma, any test of the form

1, A(x) > k,
3 p(x) = 1y (), Ax) =k,
0, Ax) < k,

where A(x) = fp,(X)/fs, (X), is MP of its size for testing 6 = 6 against 8 = 6,
provided that 0 < k < oo; and if £ = o0, the test

@ ooy =1 /=0
0 if fo,(x) >0,

is MP of size 0. Since fy has an MLR in T, it follows that any test of form (2) is also

of form (3), provided that Eg,¢(X) > 0, that is, provided that its size is > 0. The

trivial test ¢’ (x) = o has size a and power «, so that the power of any test (2) is at

least o, that is,

Eg,9(X) > Eg,¢'(X) = a = Eg,¢(X).

It follows that if 8) < 6; and Eg, (X) > 0, then Eg, ¢(X) < Ey,p(X), as asserted.

Let 8y = 6y and 8; > 0O, as above. We know that (2) is an MP test of its size
Eg,9(X) for testing § = 6 against § = 6, (62 > 6), provided that Ego(X) > O.
Since the power function of ¢ is nondecreasing,

é) Egp(X) < Egyp(X) = ap forall 8 < 6.
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Since, however, ¢ does not depend on 6; (it depends only on constants k and y), it
follows that ¢ is the UMP size «g test for testing @ = 6 against 8 > 6g. Thus ¢ is
UMP among the class of tests ¢” for which

(6) Eg¢"(X) < Ege(X) = aq.

Now the class of tests satisfying () is contained in the class of tests satisfying (6)
[there are more restrictions in (5)]. It follows that ¢, which is UMP in the larger class
satisfying (6), must also be UMP in the smaller class satisfying (5). Thus, provided
that g > 0, @ is the UMP size ayg test for 8 < 6y against § > 6g.

We ask the reader to complete the proof of the final part of the theorem, using the
fundamental lemma.

Remark 2. By interchanging inequalities throughout in Theorem 2, we see that
this theorem also provides a solution of the dual problem Hy: 6 > 6p against
H{: 6 < 6p.

Example 3. Let X have the hypergeometric PME

(GY)
PylX =x)= 272 \""X/ x=01,2....M.

()

Py {X=x} M+1IN-M-n+x
PyiX=x}  N-M M+1-x

Since

we see that { Py} has an MLR in x(Pp,/ Pu,, where M2 > M is just a product
of such ratios). It follows that there exists a UMP test of Hy: M < My against
Hy: M > Mg, which rejects Hp when X is too large; that is, the UMP size « test is
given by

i, x>k,
ex) =1y, x =k,
0, x <k,

where (integer) k and y are determined from
Emp(X) = a.

For the one-parameter exponential family, UMP tests also exist for some two-
sided hypotheses of the form

N Hg:0 <601 or 8>6y(01 <6y).

We state the following result without proof.
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Theorem 3. For the one-parameter exponential family (1), there exists a UMP
test of the hypothesis Hp: 6§ < 6y or 8 > 62 (6 < 8y) against Hy: ) < 6 < 65 that
is of the form

1 if c; < Tx) < ¢y,
® px) = ¥ if T(x) =c, i=1,2 (c1 <cz),
0 if T(x) <cior > ¢y,

where the ¢’s and the y’s are given by
O Ep ¢(X) = Ep,0(X) = a.
See Lehmann [63, pp. 101-103] for proof.

Example 4. Let X, X3,..., X, be iid N'(u, 1) RVs. To test Ho: o < pg or
@ >y (w1 > po) against Hy: wp < p < ug, the UMP test is given by

1 if 1 < X1 xi < ez,
px) =1y if Y xi=crorey,
0 if Y x; <cror >y,

where we determine c;, ¢z from
a = Pylc < ZXi <} = Py e < ZX,- < ¢3}

and y; = y» = 0. Thus

weplii= nuo ZX:—nuo<cz—nuo
Jn NG
_P[CI-nul ZX,~n,u1<cz-—nu1}
va v vn
- p c1—nu <cz—nuo}
a Jﬁ vn
cy —ny 2 —Ri
—pli= 2z 2R
{ ST }

where Z is N(0, 1). Given a, n, ug, and iy, we can solve for ¢; and ¢; from the
simultaneous equations

(50) -+ (27) -
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o (258) -o(252) -

where & is the DF of Z.

Remark 3. We caution the reader that UMP tests for testing Hp: 81 < 8 < 63
and Hy: 6 = 6 for the one-parameter exponential family do not exist. An example
will suffice.

Example 5. Let X1, X2, ... , X, be a sample from AV (0, 0'2). Since the family of
joint PDFs of X = (Xi,...,X,) has an MLR in T(X) = Z’l‘ Xi2, it follows that
UMP tests exist for one-sided hypotheses 0 > o and o < ay.

Consider now the null hypotheses Hy: 0 = op against the alternative Hy: o #
op. We will show that a UMP test of Hy does not exist. For testing o = o9 against
o > 0y, a test of the form

1, x.2>c,
<P1(X)=[ L% !

0, otherwise,

is UMP, and for testing o = gy against o < oy, a test of the form

inz < c3,
0, otherwise,

ly
w2(x) = {

0 1 2 3

Fig. 1. Power functions of chi-square tests of Hy: o = gp against H;.
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is UMP. If the size is chosen as «, then ¢} = 002 x,?ya and ¢y = org X3.1— o Clearly,
neither ¢ nor ¢, is UMP for Hy against H;: o # oy. The power of any test of Hy
for values o > og cannot exceed that of ¢y, and for values of 0 < oy it cannot
exceed the power of test ;. Hence no test of Hg can be UMP (see Fig. 1).

PROBLEMS 9.4

1. For the following families of PMFs (PDFs) fy(x), 0 € ® C R, find a UMP size
« test of Hyp: 0 < 6p against Hy : 8 > 6y, based on a sample of n observations:

@) fo(x) =01 -60)1"%,x=0,1;0<60 < 1.

) folx) = (1/v/2m) expl—(x — )%/2], —00 < x < 00, —00 < 6 < 0.
©) fox)=e 0O /x),x=0,1,2,...;6 > 0.

) fo(x)=(1/0)e*% x>0,0>0.

©) fo(x)=[1/T@) W e * x >0,6 >0.

® fox)=0x"1,0<x<1,8>0.

2. Let Xy, Xa, ..., X, be asample of size n from the PMF

1
PN(x).—:TV—, x=12,... , N;Ne{l,2...}

(a) Show that the test

)

if max(xy, x2,...,xp) > No,
Px, X2, ... 5 Xp) = .
o if max(xy,x2,...,xn) < Np,
is UMP size « for testing Hy: N < Ny against Hy;: N > Np.

(b) Show that

1 if max(xt, x2,...,x,) > Npor
QX1 X2,y oo s Xg) = max(xy, X2, . .. , Xz) < &'/"No,
0 otherwise,

is a UMP size « test of Hy: N = Ng against H;: N # No.
3. Let X3, X7, ..., X, be a sample of size n from U(0, 8), 6 > 0. Show that the
test

( ) 1 if max(xy,...,x,) > 6,
1(X1, X2, ... s Xp) = .
¢ " o if max(xy,x2,...,x,) <6,

is UMP size ¢ for testing Hy: 6 < 6p against Hy: 6 > 6 and that the test
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1 if max(xy,...,x,) > 6Gpor
02X, X2, ..., Xp) = max(xi, x2, ... , Xn) < G}/,
0 otherwise,

is UMP size « for Hy: 6 = 6 against H{: 6 # 6.
4. Does the Laplace family of PDFs
fol) = Lexp(—lx ~8), —oco<x<oo, OeR,

possess an MLR?

5. Let X have logistic distribution with the PDF
fo(x) = e (1 +e*%)2 xeR.

Does [ fo} belong to the exponential family? Does { fy} have MLR?

6. (a) Let fy be the PDF of a N (9, 6) RV. Does { f3} have MLR?
(b) Do the same as in part (a) if X ~ A (9, 62).

9.5 UNBIASED AND INVARIANT TESTS

We have seen that if we restrict ourselves to the class ®, of all size « tests, there
do not exist UMP tests for many important hypotheses. This suggests that we reduce
the class of tests under consideration by imposing certain restrictions.

Definition 1. A size « test ¢ of Hy: 6 € @ against the alternatives H;: 6 € ©,
is said to be unbiased if

1)) Ego(X)>a  forallf € ©).

It follows that a test ¢ is unbiased if and only if its power function By (B) satisfies

) Bs(0) <a  ford e ®
and
3) Bo(6) = for 0 € ;.

This seems to be a reasonable requirement to place on a test. An unbiased test rejects
a false Hp more often than a true Hyp.

Definition 2. Let U, be the class of all unbiased size « tests of Hy. If there exists

atest ¢ € Uy that has maximum power at each # € ©1, we call ¢ a UMP unbiased
size o test.
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Clearly, U, C ®,. If a UMP test exists in Pq, it is UMP in U,. This follows
by comparing the power of the UMP test with that of the trivial test p(x) = «. It is
convenient to introduce another class of tests.

Definition 3. A test ¢ is said to be a-similar on a subset @* of © if
1C)) Bo(®) = Eop(X) =a  forf € O

A test is said to be similar on a set ©* C © if it is a-similar on ®* for some «a,
O0<a<l.

It is clear that there exists at least one similar test on every ©*, namely, ¢(x) = «,
O0<ax<l.

Theorem 1. Let f,(6) be continuous in 6 for any ¢. If ¢ is an unbiased size « test
of Hy: 6 € ©g against H;: 6 € Oy, itis a-similar on the boundary A = @y N Oy.
(Here A is the closure of set A.)

Proof. Letf € A. Then there exists a sequence {6}, 6, € ©¢, suchthat, — 0.
Since B,(6) is continuous, B,(6,) — B, (#); and since B,(6,) < a for 6, € By,
By (6) < a. Similarly, there exists a sequence {6}, 8, € ©1, such that 8,(6,) > «
(¢ is unbiased) and 6, — 6. Thus B,(6,) — B,(6), and it follows that ,(0) > a.
Hence B, (6) = o for8 € A, and ¢ is a-similar on A.

Remark 1. 'Thus if B,(8) is continuous in # for any ¢, an unbiased size o test of
Hp against H; is also a-similar for the PDFs (PMFs) of A, that is, for { fp, 6 € A} If
we can find an MP similar test of Hy: @ € A against Hj, and if this test is unbiased
size ¢, then necessarily it is MP in the smaller class.

Definition 4. A test ¢ that is UMP among all e-similar tests on the boundary
A = By N Oy is said to be a UMP a-similar test.

1t is frequently easier to find a UMP «-similar test. Moreover, tests that are UMP
similar on the boundary are often UMP unbiased.

Theorem 2. Let the power function of every test ¢ of Hy: 6 € ©g against
Hi: 6 € ©; be continuous in 6. Then a UMP «-similar test is UMP unbiased,
provided that its size is & for testing Ho against Hj.

Proof. Let ¢y be UMP o-similar. Then Egpo(X) < a for 8 € ©. Comparing
its power with that of the trivial similar test ¢(x) = a, we see that ¢ is unbiased
also. By the continuity of B,(6), we see that the class of all unbiased size « tests is a
subclass of the class of all a-similar tests. It follows that ¢p is a UMP unbiased size
« test.
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Remark 2. The continuity of power function B, (@) is not always easy to check,
but sufficient conditions may be found in most advanced calculus texts (see, for ex-
ample, Widder [116, p. 356]). If the family of the PDF (PMF) fp is an exponential
family, a proof is given in Lehmann [63, p. 59].

Example 1. Let X1, X3,..., X, be a sample from AN (u, 1). We wish to test
Ho: 1 < 0 against H;: u > 0. Since the family of densities has an MLR in ) ] X;,
we can use Theorem 9.4.2 to conclude that a UMP test rejects Ho if 3 | X; > c.
This test is also UMP unbiased. Nevertheless, we use this example to illustrate the
concepts introduced above.

Here ©® = {u < 0},0; = {u > 0}, and A = OgN O; = {u = 0}. Since
T(X) = Z?:l X; is sufficient, we focus attention on tests based on T alone. Note
that T ~ AN '(np, n), which is one-parameter exponential. Thus the power function
of any test ¢ based on T is continuous in p. It follows that any unbiased size a test
of Hp has the property 8,(0) = a of similarity over A. In order to use Theorem 2,
we find a UMP test of H : u € A against Hy. Let u; > 0. By the fundamental
lemma, an MP test of u = 0 against u = p; > 0is given by

2 2
if exp[t _Q___”L‘)_:I >k,

@) = 2n 2n
0 otherwise,
1 if t >k,
o ife <k,

‘\/'_l

Thus k = /n z4. Since ¢ is independent of x| as long as ;1 > 0, we see that the
test

0, otherwise,

1 ”
w(t)={ otz

is UMP w-similar. We need only check that ¢ is of the right size for testing Hp against
H;. We have for u <0,

Euo(T) = P,{T > \/';Za}
_ T—np _
=P T «/ﬁu}

S P{Z>Za},
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since —/n 1 > 0. Here Z is N (0, 1). It follows that

Eo(T)<a for u <0,
hence ¢ is UMP unbiased.

Theorem 2 can be used only if it is possible to find a UMP «-similar test. Unfor-
tunately, this requires heavy use of conditional expectation, and we will not pursue
the subject any further. We refer to Lehmann [63, Chaps. 4 and 5], and Ferguson {25,
pp- 224-233], for further details.

Yet another reduction is obtained if we apply the principle of invariance to
hypothesis-testing problems. We recall that a class of distributions is invariant under
a group of transformations G if for every g € G and every 8 € O there exists a
unique @ € O such that g(X) has distribution Py, whenever X ~ Py. We rewrite
0 =3z0.

In a hypothesis-testing problem we need to reformulate the principle of invari-
ance. First, we need to ensure that under transformations ¢, not only does P =
{Pp: 0 € ®} remain invariant but also the problem of testing Hy: 8 € ®g against
Hi: 0 € ©) remains invariant. Second, since the problem has not changed by appli-
cation of G, the decision also must not change.

Definition 5. A group G of transformations on the space of values of X leaves a
hypothesis-testing problem invariant if G leaves both {Pg: 6 € ©¢} and {Py: 0 €
©1} invariant.

Definition 6. We say that ¢ is invariant under G if

pg(x)) = p(x) forallx and all g € G.

Definition 7. Let G be a group of transformations on the space of values of the
RV X. We say that a statistic 7' (x) is maximal invariant under G if (a) T is invariant;
(b) T is maximal, that is, T(xy) = T(X2) = X = g(xp) for some g € G.

Example 2. Letx = (xy,x2, ... , X»), and G be the group of translations

g =(x1+c,...,x,+0), —00 < ¢ < 00.
Here the space of values of X is R,,. Consider the statistic
T(X) = (Xn — X1, --- s Xn = Xn—1)

Clearly,

T(gc(x)) = (X, — X1, ... , Xn — Xp—1) = T(X).
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IfT(x) = T(X), thenx, —x; = x;, —x/,i = 1,2,...,n — 1, and we have
Xi—x] =xy,—x;, =c(i=1,2,...,n—1)thatis, g (') = (x]+c, ... , x,+¢) =X
and T is maximal invariant.

Next consider the group of scale changes

g8c(X) = (ex1, ..., cxp), c>0.
Then
0 ifall x; =0, ”
T(x) = (fc_l,,.. , i'i) ifatleastone x; #0, z = (ixf) ,
z z 1

is maximal invariant; for

T(g.(x)) = T(cxy,...,cxp) =T(x),
and if T(x) = T (x'), then either T'(x) = 7'(x’) = 0, in which case x; = x] = 0, or
T(x) = T'(x") # 0, in which case x; /z = x]/7’, implying that x] = (Z'/2)x; = cx;,

and 7 is maximal.
Finally, if we consider the group of translation and scale changes,

gx)=(ax1 +b,...,ax, +b), a>0, —-00<b<oo,
a maximal invariant is
0 if =0,
T(x) = (x;—f X3 —X x,,~f) .
, sy if 0,
B 7 P#

where ¥ = n~1 Z'l' x;and B = n! Z'{(xi —-x)2.

Definition 8. Let I, denote the class of all invariant size « tests of Hy: 6 € O
against Hy: @ € ©;. If there exists a UMP member in I,, we call the test a UMP
invariant test of Hy against Hj.

The search for UMP invariant tests is greatly facilitated by use of the following
result.

Theorem 3. Let T (x) be maximal invariant with respect to G. Then g is invariant
under G if and only if ¢ is a function of 7.

Proof. Let ¢ be invariant. We have to show that T(x)) = T(x2) = ¢(x1) =
p(x2). H T(xy) = T(xp), there is a g € G such that x; = g(x2), so that ¢(x;) =
p(8(x2)) = ¢(x2).
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Conversely, if ¢ is a function of T, ¢(x) = h[T (x)], then

p(g(x)) = [T (g(x))] = h[T ()] = p(x),

and g is invariant.

Remark 3. The use of Theorem 3 is obvious. If a hypothesis-testing problem is
invariant under a group G, the principle of invariance restricts attention to invariant
tests. According to Theorem 3, it suffices to restrict attention to test functions that
are functions of maximal invariant T

Example 3. Let X1, X2,..., X, be a sample from N(/,L,O'z), where both ©
and o2 are unknown. We wish to test Hy: 0 > 0p, —00 < f < 00, against
Hi:o < op, —00 < u < oo. The family {N (i, 02)} remains invariant under
translations x,f = x; + ¢, —00 < ¢ < 00. Moreover, since var(X + ¢) = var(X), the
hypothesis-testing problem remains invariant under the group of translations; that is,
both {N(u, 6%): 0% > 02} and {N(/L, 2y: 62 < ao] remain invariant. The joint
sufficient statistic is (X, 3 (Xi— —~X)?), which is transformed to (X +c, S(Xi— X)?)
under translations. A maximal invariant is Y _(X; — X)2. It follows that the class of
invariant tests consists of tests that are functions of Z(X P — 7)2.

Now Y (X; —X)?/0? ~ x%(n—1), so that the PDF of Z = ¥"(X; — X)? is given
by

g~ (-D

e 1)/2]2(n_1)/2z z>0.

—3)/2 _~z/20?
f2®) = r[ (n=3)/2p~2/20%

The family of densities { f,2: 02 > 0} has an MLR in z, and it follows that a UMP
test is to reject Hy: o> 002 if z < k, that is, a UMP invariant test is given by

_JU i Y -D? <k,
o) = {o if Y —%)? > k,

where k is determined from the size restriction

o = PUO {Z(Xl ___Y)Z < k] - P I Z(Xz X)Z %]

"o
that is,
2.2
k=05Xn_1,1-a

Example 4. Let X have PDF f;(x; —6,... ,xp —8)under H; (i =0, 1), —00 <
6 < oo. Let G be the group of translations

gxX)=x1+c,...,x, +¢), —00 <€ <00, n>2.
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Clearly, g induces g on ©, where g6 = 6 + c. The hypothesis-testing prob-
lem remains invariant under G. A maximal invariant under G is 7(X) = (X} —
Xnsoo.  Xn1— Xp) = (N1, Ty, ..., Ty—1). The class of invariant tests coincides
with the class of tests that are functions of 7. The PDF of T under H; is independent
of 6 and is given by ffooo fi(t1+z, ..., ty—1+2, 7) dz. The problem is thus reduced to
testing a simple hypothesis against a simple alternative. By the fundamental lemma
the MP test

1 if A(t) > ¢,

h,to,... ,th—1) =
ol 2 n=1) {0 if A < c,

where t = (t1, 23, ... ,1,—1) and

o0
/ hti+z,... . th1+2,2dz
oo

M) = =
f foti+z,... . tho1 +2,2)dz
—0Q0

is UMP invariant.
A particular case of Example 4 will be, for instance, to test Hy: X ~ N (6, 1)
against H1: X ~C(1,0), 0 € R (see Problem 1).

Example 5. Suppose that (X, Y) has joint PDF

Sfo(x,y) = Ap exp(—Ax — uy), x>0, y>0,

and = O elsewhere, where @ = (A, u), A > 0, u > 0. Consider scale group G =
{{0, ¢}, ¢ > 0} which leaves { fg} invariant. Suppose that we wish to test Hp: p > A
against H;: p < A. It is easy to see that GO = @y, so that G leaves (a, Op, O1)
invariant and T = Y/ X is maximal invariant. The PDF of T is given by

Au

m, t>0, =0fort <O.

flo=

The family { fBT} has MLR in T, and hence a UMP invariant test of Hy is of the form

1, t > cla),
e =1y, t=cl@),
0, t < cla),

where

o 1 |
o= —dt = (@) = ——.
fc(a) Q+0)? o
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PROBLEMS 9.5

1. To test Hy: X ~ N0, 1), against H;: X ~ C(1,0), a sample of size 2 is
available on X. Find a UMP invariant test of Hy against Hj.

2. Let Xy, X2,..., X, be a sample from P(A). Find a UMP unbiased size « test
for the null hypothesis Hp: A < Ap against alternatives A > A9 by the methods
of this section.

3. Let X ~ N B(1; ). By the methods of this section, find a UMP unbiased size «
test of Hy: 6 > 89 against H;: 6 < 6.

4, Let Xy, Xo, ... , X, iid N (i, 02) RVs. Consider the problem of testing Hy: & <
0 against Hy: p > 0.

(a) It suffices to restrict attention to sufficient statistic (U, V), where U = X
and V = 2. Show that the problem of testing Hy is invariant under G =
{{a, 1}, a € R} and a maximal invariantis 7' = U/W.

(b) Show that the distribution of 7 has MLR, and a UMP invariant test rejects
HpywhenT > c.

5. Let X1, X2,..., X, be iid RVs and let Hy be that X; ~ N6, 1) and H; be
that the common PDF is fo(x) = %exp(—Ix — 6]). Find the form of the UMP
invariant test of Hyp against H;.

6. Let Xy, X3,..., X, be iid RVs and suppose that Hy: X; ~ N(0,1) and
Xi ~ fi(x) = exp(—|x])/2.

(a) Show that the problem of testing Hy against Hj is invariant under scale
changes g.(X) = ¢X, ¢ > 0 and a maximal invariantis 7 (X) = (X1/Xa, ...,
Xn—l/Xn)~

(b) Show that the MP invariant test reject Hy when

J1+Xelv?
————————<k

14+ Yy
where Y; = X;/X,, j = 1,2,...,n — 1, or equivalently, when
172
n 2
Y1 1% '

9.6 LOCALLY MOST POWERFUL TESTS

In the preceding section we argued that whenever a UMP test does not exist, we
restrict the class of tests under consideration and then find a UMP test in the subclass.
Yet another approach when no UMP test exists is to restrict the parameter set to
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a subset of ©1. In most problems, the parameter values that are close to the null
hypothesis are the hardest to detect. Tests that have good power properties for “local
alternatives” may also retain good power properties for “nonlocal” alternatives.

Definition 1. Let ® C R. Then a test gp with power function By, (8) = Egpp(X)
is said to be a locally most powerful LMP) test of Hy: 6 < 6g against Hy: 6 > 6y
if there exists a A > 0 such that for any other test ¢ with

M By (60) = Byo(60) = f () fap x) .
2) Bap(0) = B,(6) for every 8 € (6g, 6p + A).

We assume that the tests under consideration have continuously differentiable
power function at § = 6p and the derivative may be taken under the integral sign. In
that case, an LMP test maximizes

5 , _ 2
3) B0, =80, = / oW fow|_, dx

subject to the size constraint (1). A slight extension of the Neyman—Pearson lemma
(Remark 9.3.2) implies that a test satisfying (1) and given by

9
1 if géfo(x) . > kfoy(X),
3
4 wo(x) = {V ifgéfe(x) = kfg,(X),
%
3
0 ifégfe x) . < kfg,(x)

will maximize ﬂ(;, (6p). It is possible that a test that maximizes ﬂ;, (6p) is not LMP, but
if the test maximizes 8'(6p) and is unique, it must be an LMP test (see Kallenberg et
al. [47, p. 290] and Lehmann [63, p. 528]).

Note that for x for which f,(x) # 0, we can write

3
= fo(®)
06 & _ _?_
BT log fo(®)|g,»

and we can rewrite
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i b
1 if —log fo(x)} >k,
a0 %
;)
(5) pox)={y if 3¢ 08 fo)| =k,
4}
D
0 if —log fo(x)| <k.
a6 b
Example 1. 1et Xy, X», ..., X, be iid with common normal PDF with mean u

and variance o2. If one of these parameters is unknown while the other is known,
the family of PDFs has MLR, and UMP tests exist for one-sided hypotheses for the
unknown parameter. Let us derive the LMP test in each case.

First consider the case when o2 is known, say 0% =1and Ho: u <0,H;: n>0.
An easy computation shows that an LMP test is of the form

1
o) = {0 if ¥ <k,

which, of course, is the form of the UMP test obtained in Problem 9.4.1 by an appli-
cation of Theorem 9.4.2.

Next consider the case when . is known, say y == Oand Hy: 0 < op, H: 0 >
0p. Using (5), we see that an LMP test is of the form

1 i Y x>k,
P10 = 2w >
0 if 3 xf <k,
which coincides with the UMP test.
In each case the power function is differentiable and the derivatives may be taken
inside the integral sign because the PDF is a one-parameter exponential type PDE.

Example 2. Let X1, X3, ... , X, be iid RVs with common PDF

1 1

————— R,
7l+4+(x—6)2 *e

folx) =

and consider the problem of testing Hy: 6 < 0 against Hy: 6 > 0.

In this case {fs} does not have MLR. A direct computation using the Neyman-—
Pearson lemma shows that an MP test of 8 = 0 against 6 = 8y, 6; > 0, depends on
#1 and hence cannot be MP for testing 8 = 0 against 8 = 60, 6, # 61. Hence a UMP
test of Hy against H; does not exist. An LMP test of Hp against H; is of the form

2x;
toif Y e sk,

po(x) = im 1 + x;
0 otherwise,
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where k is chosen so that the size of g is 2. For small n it is hard to compute k but for
large n it is easy to compute k using the central limit theorem. Indeed, X; /(1 + X,.Z)
are iid RVs with mean 0 and finite variance (= %), s0 that k = z4+/n/2 will give an
(approximate) level « test for large n.

The test g is good at detecting small departures from @ < 0, but it is quite
unsatisfactory in detecting values of @ away from 0. In fact, for ¢ < %, Bos (@) — 0

as @ — o0o.
This procedure for finding locally best tests has applications in nonparametric
statistics. We refer the reader to Randles and Wolfe {83, Sec. 9.1] for details.

PROBLEMS 9.6

1. Let X1, Xo, ... , X, beiid C(1, ) RVs. Show that Eo(1+X2) 7% = (1/m)B(k+
%, %). Hence or otherwise, show that

x? X 1
Eo T v = var s1=3"
1+ Xx1)? 1+x?) 8

2. Let X1, X5, ..., X, be arandom sample from the logistic PDF

1 ex——9
2[1 +cosh(x — )] (1 +e*—0)2

folx) =

Show that the LMP test of Hy: ¢ = O against H;: & > 0 rejects Hy if
Ty tanh(x;/2) > k.
3. Let Xy, X», ..., X, be iid RVs with the common Laplace PDF
fox) = Jexp(—|x - 0)).

For n > 2, show that a UMP size o (0 < a < 1) test of Hp: 8 < 0 against
Hj: 6 > 0 does not exist. Find the form of the LMP test.



CHAPTER 10

Some Further Results of
Hypothesis Testing

10.1 INTRODUCTION

In this chapter we study some commonly used procedures in the theory of testing
of hypotheses. In Section 10.2 we describe the classical procedure for constructing
tests based on likelihood ratios. This method is sufficiently general to apply to multi-
parameter problems and is especially useful in the presence of nuisance parameters.
These are unknown parameters in the model which are of no inferential interest. Most
of the normal theory tests described in Sections 10.3 to 10.5 and those in Chapter 12
can be derived by using methods of Section 10.2. In Sections 10.3 to 10.5 we list
some commonly used normal theory-based tests. In Section 10.3 we also deal with
goodness-of-fit tests. In Section 10.6 we look at the hypothesis testing problem from
a decision-theoretic viewpoint and describe Bayes and minimax tests.

10.2 GENERALIZED LIKELIHOOD RATIO TESTS

In Chapter 9 we saw that UMP tests do not exist for some problems of hypothesis
testing. In was suggested that we restrict attention to smaller classes of tests and seek
UMP tests in these subclasses or, alternatively, seek tests that are optimal against
local alternatives. Unfortunately, some of the reductions suggested in Chapter 9, such
as invariance, do not apply to all families of distributions.

In this section we consider a classical procedure for constructing tests that has
some intuitive appeal and that frequently, though not necessarily, leads to optimal
tests. Also, the procedure leads to tests that have some desirable large-sample prop-
erties.

Recall that for testing Hy: X ~ fp against Hy : X ~ fi, the Neyman—Pearson MP
test is based on the ratio fj(X)/fp(x). If we interpret the numerator as the best possi-
ble explanation of x under H, and the denominator as the best possible explanation

490
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of X under Hy, it is reasonable to consider the ratio

r) = Supgeo, L(0;X)  supgee, fo(X)
SUDgee, L(0;X)  supgeq, fo(X)

as a test statistic for testing Hy: 0 € O against H;: @ € ©,. Here L(0; x) is the
likelihood function of X. Note that for each x for which the MLEs of @ under ®; and
@, exist, the ratio is well defined and free of 8 and can be used as a test statistic.
Clearly, we should reject Hg if r(x) > c.

The statistic r is hard to compute; only one of the two suprema in the ratio may be
attained. Let @ € © C R, be a vector of parameters, and let X be a random vector
with PDF (PMF) f. Consider the problem of testing the null hypothesis Hy: X ~
fo, @ € O against the alternative Hy: X ~ fg, 0 € ©y.

Definition 1. For testing Hyp against Hj, a test of the form: reject Hp if and only
if A(x) < ¢, where ¢ is a constant, and

A(X) = SUPgc@, fo(x1,x2, ... ,Xp)
SUPgc@ fo(x1,x2,...,%p)

is called a generalized likelihood ratio (GLR) test.

We leave the reader to show that the statistics A(X) and (X) lead to the same
criterion for rejecting Hp.

The numerator of the likelihood ratio A is the best explanation of X (in the sense of
maximum likelihood) that the null hypothesis Hy can provide, and the denominator is
the best possible explanation of X. Hy is rejected if there is a much better explanation
of X than the best one provided by Hyp.

It is clear that 0 < A < 1. The constant ¢ is determined from the size restriction

sup Pg{A(X) < ¢} =a.
8cBy

If the distribution of A is continuous (that is, the DF is absolutely continuous), any
size « is attainable. If, however, A(X) is a discrete RV, it may not be possible to find
a likelihood ratio test whose size exactly equals «. This problem arises because of
the nonrandomized nature of the likelihood ratio test and can be handled by random-
ization. The following result holds.

Theorem 1. If for given o, 0 < « < 1, nonrandomized Neyman—Pearson and
likelihood ratio tests of a simple hypothesis against a simple alternative exist, they
are equivalent.

The proof is left as an exercise.
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Theorem 2. For testing @ € O against @ € ©j, the likelihood ratio test is a
function of every sufficient statistic for 0.

Theorem 2 follows from the factorization theorem for sufficient statistics.

Example 1. Let X ~ b(n, p), and we seek a level o likelihood ratio test of
Hp: p < po against Hy: p > po:

sup (Z)p"(l —

sup (Z)p"(l ~

O<p<l

Now

sup p*(1—p)"* = (%)1r (1 - ’i)"—x _

0<p=l n

The function p*(1 — p)*~* first increases, then achieves its maximum at p = x/n,
and finally decreases, so that

) X
PRV LoV AN ro <o
sup p -D = X\X X\N—X X
P=pPo (;") (1 bl ;;) if 'r; =< po-
It follows that
(1 - po)"™* . x
pgx b n—x if pPo < =,
Ax) = { x/n)*[1 — (x/n)] n
1 if — < po.
n

Note that A(x) < 1 fornpy < x and A(x) = 1 if x < npyg, and it follows that A(x)
is a decreasing function of x. Thus A(x) < c if and only if x > ¢/, and the GLR test
rejects Hy if x > ¢'.

The GLR test is of the type obtained in Section 9.4 for families with an MLR
except for the boundary A(x) = c. In other words, if the size of the test happens to
be exactly o, the likelihood ratio test is a UMP level « test. Since X is a discrete RV,
however, to obtain size & may not be possible. We have

o= sup Pp{X > '} = Ppy{X > C'}.
pP=<po

If such a ¢’ does not exist, we choose an integer ¢’ such that

PpolX>c}<a and PplX>c —1})>a.
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The situation in Example 1 is not unique. For a one-parameter exponential family
it can be shown (Birkes [6]) that a GLR test of Hy: 0 < 6 against H,: 8 > 6 is
UMP of its size. The result holds also for the dual Hé : 8 > 6 and, in fact, for a
much wider class of one-parameter family of distributions.

The GLR test is specially useful when @ is a multiparameter and we wish to
test hypothesis concering one of the parameters. The remaining parameters act as
nuisance parameters.

Example 2. Consider the problem of testing i = o against ;& # pg in sam-
pling from A (u, 02), where both w and o2 are unknown. In this case By =
{(m0,0%): 0% > 0} and ® = {(,0%): —00 < pu < 00, 0% > 0}. We write

= (u, o?):

_ 1 26 — pe)?
08:@1;’0 foo = :2‘150 [ (027)" xp I: 202 :H
= 3,

where 63 is the MLE, 62 = (1/n) Y7, (xi — 1t0)2. Thus

1
sup fo(x) = e .
06, Qe /my2 [31 (i — wo)?] 2

The MLE of @ = (i, 02) when both  and o2 are unknown is Qi xi/n, Y (xi —
%)2/n). If follows that

_ 1 Xl —w?
sup fo(x) = 5?2 l—————(a Tony P [ Iy ]]
= ! e~ 2,
@r/my"2 [ Y3 — 52"

Thus
n/2
21 —X)
AX) =
® [Zl(x. uo)2]

1 n/2
B { 14+ [n(x — o)/ Y} (xi —2)2]’ ’

The GLR test rejects Hy if

Ax) < c,
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and since A(x) is a decreasing function of n(X¥ — )%/ 3. n(x; — )2, we reject Hp
if

X — Ko
Yl —6)?
that is, if
n(I - #0) ’ "
| >,

where s2 = (n — 1! 31 (xi — ¥)2. The statistic

V(X - po)

t(X) = S

has a ¢-distribution with n — 1 d.f. Under Hp: it = po, t(X) has a central t(n — 1)
distribution, but under H;: u # o, t(X) has a noncentral ¢-distribution with n — 1
d.f. and noncentrality parameter 8 = (u — uo)/o. We choose ¢’ = #,_1,42 in
accordance with the distribution of ¢(X) under Hy. Note that the two-sided ¢-test
obtained here is UMP unbiased. Similarly, one can obtain one-sided ¢-tests also as
likelihood ratio tests.

The computations in Example 2 could be slightly simplified by using Theorem 2.
Indeed, T(X) = (X, SZ) is a minimal sufficient statistic for _0_, and since X and §2
are independent, the likelihood is the product of the PDFs of X and $2. We note that

X ~ N (i, 0%/n) and 52 ~ [062/(n — 1)]x2_,. We leave it to the reader to carry out
the details.

Example 3. Let X1, X3,...,X, and Yy, Ya, ..., ¥, be independent random
samples from N'(u1,07) and N(uz, 03), respectively. We wish to test the null
hypothesis Hy: 012 = 022 against H; : 0'12 # 022. Here

© = {(u1, 0%, 2, 0 ~00 < i < 00,07 >0,i=1,2)
and

@o:{(m,olz,uz,ozz): —00 < pj < 00,i = 1,2,012=O'22>0}.

Let @ = (u1, 012, “a, 022). Then the joint PDF is

1 S 2 2

Jo(x,y) =
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Also,
log fe(x,y) = _mtn log2m — %logo,2 - %logaz2 - ;’1"();;0;#1_)2
| 2
- 50—22 ‘;(yi — u2).
Differentiating with respect to p) and w7, we obtain the MLEs
i =X, f2=7.
Differentiating with respect to 012 and 022, we obtain the MLEs
A2 1 & 2 ~2 1 ¢ 2
01=-—n;Zl:(xi—_), 2=;;(Yi“y)-
If, however, 012 = 022 = 0’2, the MLE of 62 is
52 21 -+ Y10 ‘5’)2.
m+n
Thus
e~ (m+n)/2
A T o/ S T R
and
e—(m+n)/2

sup fo(x,y) = )
0c® @ /mym2Q2mr /ny*/2 [T (xi — 7)2]'"/2 [Xioi— ?)2]'1/2

so that
= ()" (o ) BT " [0 - 9
mtn man) (ST -0+ X - A
Now

[re -0 [2ioi - »”
[Er i — D2 + Xy — 2] ™2
1
[1+ X7 — DY Xt - 92 (14 100 - 9% Xt — 02"
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Writing

Y =% m - 1)

7= Y0 =M m -1’

we have

N m mf2 n nf2
(x’y)——(m+n) (m+n)
1

X .
{1 +[m = D/(n = DI+ [(n = D/ (m — DI1/f)}m/?

We leave the reader to check that A(x,y) < c is equivalentto f < cj or f > c3.
(Take logarithms, zad use properties of convex functions. Alternatively, differentiate
logi.)

Under Hy, the statistic

po X=X m -1
NHIY =)/ n—1)

has an F(m — 1, n — 1) distribution, so that ¢y, ¢; can be selected. It is usual to take

R

P{F <c}=P{F 2 3} = 5

Under Hy, (0?/0})F hasan F(m — 1,n — 1) distribution.

In Example 3 we can obtain the same GLR test by focusing attention on the joint
sufficient statistic (X, Y, %, 52), where S% and S are sample variances of the X’s
and the Y’s, respectively. In order to write down the likelihood function, we note
that f, Y, S}K, S%, are independent RVs. The distributions X and S§, are the same as
in Example 2 except that m is the sample size. Distributions of ¥ and Sf, require
appropriate modifications. We leave the reader to carry out the details. It turns out
that the GLR test coincides with the UMP unbiased test in this case.

In certain situations the GLR test does not perform well. We reproduce here an
example due to Stein and Rubin.

Example 4, 1et X be a discrete RV with PMF

it if x = 2,
2

1 -2«

2

o ifx =0,

ifx = %1,
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under the null hypothesis Hp: p = 0, and

pc ifx = -2,
1ze(l_, if x = 1,
1-a\2
PplX =x}) = l—c
a( ) ifx =0,
l—a
L(1 = p)e ifx =2,

under the alternative Hy: p € (0, 1), where « and ¢ are constants with

1
0<a<§ and —2—i—a<c<a.

To test the simple null hypothesis against the composite alternative at the level of
significance «, let us compute the likelihood ratio A. We have

e PX=2 a2 _«
- SUPp< <1 Pp{X =2} T ¢ T 2

since @/2 < c. Similarly, A(—2) = a/(2c). Also,

1
3@ -« 1
A,lzl—-l:: — , ~,
ey Te s S e
and
-«
)»(0):1_-

The GLR test rejects Hy if A(x) < k, where k is to be determined so that the level
is . We see that

Py {k(X) < -11—:%] —P(X =42 =a,

provided that @/2¢ < [(1 —a)/(1 — ¢)]. But /(2 — @) < ¢ < « implies that
a < 2¢c—ca, sothata —ca < 2c —2ca, or (1 —¢) < 2¢(1 — @), as required. Thus
the GLR size «a test is to reject Hp if X = +-2. The power of the GLR test is

P,,{A(X)<11—:—ixc—]=PP{X=:0:2}=pc+(l—p)c=c<a

for all p € (0, 1). The test is not unbiased and is even worse than the trivial test
p(x) =a.
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Another test that is better than the trivial test is to reject Hp whenever x = 0 (this
is opposite to what the likelihood ratio test says). Then

1—
Po{X=0}=a, and P,{X =0}= “T"':? >a  (sincec < a),
for all p € (0, 1), and the test is unbiased.

We will use the generalized likelihood ratio procedure quite frequently hereafter
because of its simplicity and wide applicability. The exact distribution of the test
statistic under Hg is generally difficult to obtain (despite what we saw in Examples 1
to 3 above), and evaluation of power function is also not possible in many problems.
Recall, however, that under certain conditions the asymptotic distribution of the MLE
is normal. This result can be used to prove the following large-sample property of
the GLR under Hp, which solves the problem of computation of the cutoff point c at
least when the sample size is large.

Theorem 3. Under some regularity conditions on fg(x), the random variable
—2log A(X) under Hy is asymptotically distributed as a chi-square RV with degrees
of freedom equal to the difference between the number of independent parameters in
©® and the number in Gg.

We will not prove this result here; the reader is referred to Wilks [117, p. 419].
The regularity conditions are essentially those associated with Theorem 8.7.4. In
Example 2 the number of parameters unspecified under Hp is 1 (namely, o?), and
under H; two parameters are unspecified (i and a?), so that the asymptotic chi-
square distribution will have 1 d.f. Similarly, in Example 3, the df. =4 -3 = 1.

Example 5. In Example 2 we showed that in sampling from a normal population
with unknown mean g and unknown variance o2, the likelihood ratio for testing

Hy: p = po against Hy: @ # po is

A = |14 2E B o
B I — )2 '
Thus
X — no)?
—2logA(X) =nlog l:l +n Z'{(Xi — _5(-)2:] .

Under Hy, r(X — up)/o ~ N(0, 1) and 37 (X; — X)*/o? ~ x*(n — 1). Also,

Y (X =X}/ [(n—1)o?] 2> 1. 1t follows that if Z ~ A'(0, 1), then —2 log A(X)
has the same limiting distribution as.n log[1 + 72 /(n — 1)]. Moreover,

2 n
(1+ z 1) Ly exp(z?)

n—
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and since logarithm is a continuous function, we see that

ZZ
nlog (1 + —-—-——) Ny
n—1

Thus —2log A(X) L, Y, where Y ~ x2(1). This result is consistent with Theo-
rem 3.

PROBLEMS 10.2

1.
2.

6.

Prove Theorems 1 and 2.

A random sample of size n is taken from the PMF P(X; = x;) = pj, j =
1,2,3,4,0 < p; < 1, Zj‘:l pj = 1. Find the form of the GLR test of

Ho:p1 = p2 = p3 = ps = jagainst Hi: py = py = p/2, p3 = ps =
a-p)/2,0<p<]l.

. Find the GLR test of Hy: p = pgo against Hy: p # po, based on a sample of

size 1 from b(n, p).

. Let X1, X2,..., X, be a sample from N (u, a2), where both p and o2 are un-

known. Find the GLR test of Hy: o = oy against Hy: ¢ # oy.

Let X1, X3, ..., Xi be a sample from the PMF
1
PN{ij}zﬁ, j=12,...,N,N > lisan integer.

(a) Find the GLR test of Hyp: N < Np against H;: N > Nj.
(b) Find the GLR test of Hy: N = N against Hy: N # Np.

For a sample of size 1 from the PDF

fe(x)=§2—2—(0—-x), 0<x <8,

find the GLR test of 8 = 6 against 6 # 6.

. Let X1, X2, ..., X, be a sample from G(1, B).

(a) Find the GLR test of 8 = Bp against § # .
(b) Find the GLR test of 8 < B against § > fo.

. Let (X1, Y1), (X2, Y2), ..., (X,, ¥y) be a random sample from a bivariate nor-

mal population with EX; = uy, EY; = uy, var(X;) = o2, var(Y;) = o2,

and cov(X;, Y;) = po2. Show that the likelihood ratio test of the null hypoth-
esis Hy: p = 0 against Hy: p # 0 reduces to rejecting Hp if |R| > ¢, where
R =281/ (Sf—f—S%), S11, 512, and S% being the sample covariance and the sample
variances, respectively. (For the PDF of the test statistic R, see Problem 7.7.1.)
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9. Let X1, X2,..., Xy beiid G(1,0) RVs and let Yy, Y2, ..., ¥, be iid G(1, p)
RVs, where 6 and u are unknown positive real numbers. Assume that the X’s
and the Y’s are independent. Develop an a-level GLR test for testing Hp: 8 =
against Hy: 6 # pu.

10. A die is tossed 60 times in order.to test Hy: P{j} =1/6,j =1,2,...,6(dieis
fair) against Hy: P{2} = P{4) = P{6] = %, P{1} = P{3) = P{5} = %. Find
the GLR test.

11. Let X1, X2,..., X, be iid with the common PDF fp(x) = exp[—(x — )],
x > 6 and = O otherwise. Find the level & GLR test for testing Hp: 8 < 6p
against Hy: 6 > 6p.

12. Let X3, X2, ... , X, be iid RVs with the common Pareto PDF fp(x) = 6/x2 for
x > 6, and = 0 elsewhere. Show that the family of joint PDFs has MLR in X (1)
and find a size o test of Hy: 6 = 6y against Hy : 6 > 6p. Show that the GLR test
coincides with the UMP test.

10.3 CHI-SQUARE TESTS

In this section we consider a variety of tests where the test statistic has an exact
or a limiting chi-square distribution. Chi-square tests are also used for testing some
nonparametric hypotheses and are taken up again in Chapter 13.

We begin with tests concerning variances in sampling from a normal population.
Let X1, X2, ... , X, be iid N' (1, 02) RVs where o2 is unknown. We wish to test a
hypothesis of the type 62 > o, 02 < o, or 62 = of, where op is some given
positive number. We summarize the tests in the following table:

Reject Hy at Level « if:

H, H; 1 Known 1 Unknown
n 2 2 2 2 o
L 0>0y 0 <0p YN = 1) = X3 1000 s = lx,f_,_l-a
n 2 2 2 a3 2
IL 0 <0y 0>0p Yo =) > x2a0f 2 2 X 1a
2 2 2 2 o3 2
n
2 — 1) = Xn1—an% §t = 1 Xn-l1-as2
1L o=0p O F#0p or or
2 2 2 2 o 2
n
Zl(‘xi - = Xn,a/ZGO §° 2z n— lxn-—l.a/l

Remark 1. All these tests can be derived by the standard likelihood ratio proce-
dure. If x is unknown, tests I and I are UMP unbiased (and UMP invariant). If u
is known, tests I and II are UMP (see Example 9.4.5). For tests III we have chosen
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constants ¢y, ¢ so that each tail has probability /2. This is the customary proce-
dure, even though it destroys the unbiasedness property of the tests, at least for small
samples.

Example 1. A manufacturer claims that the lifetime of a certain brand of batteries
produced by his factory has a variance of 5000 (hours)?. A sample of size 26 has a
variance of 7200 (hours)z. Assuming that it is reasonable to treat these data as a
random sample from a normal population, let us test the manufacturer’s claim at the
o = 0.02 level. Here Hy: 02 = 5000 is to be tested against H|: 0> # 5000. We
reject Hp if either

2 C’02 2 2 “3 2
§° = 7200 < - 1Xn_1'1_a/2 or s> mxn—l,a/Z'
We have
2
() 2 5000
n— IX”“LI"D!/2 = ? X 110524 = 23048
and
2
) _ 5000 _
‘n“__TXn—l,a/z =55 x 44.314 = 8862.8
Since s? is neither < 2304.8 nor > 8862.8, we cannot reject the manufacturer’s

claim at the 0.02 level.

A test based on a chi-square statistic is also used for testing the equality of several
proportions. Let X3, X2, ..., X be independent RVs with X; ~ b(n;, p;), i =
L2,...,kk=2

Theorem 1. The RV 3%, [(X; —n; pi)/+/ni pi(1 — pi)}? converges in distribu-
tion to the xz(k) RV asny, ny, ... ,n; — oc.

The proof is left as an exercise.

If ny, ny, ..., ng are large, we can use Theorem 1 totest Hy: py = py = --- =
Prx = p against all alternatives. If p is known, we compute

y= Zk: [ Xi —n;p ]
1 2 Y n:P(I - P) ’
and if y > x,f‘a, we reject Hp. In practice, p will be unknown. Let p = (py, pa2,
. » k). Then the likelihood function is

k .
Lp;xy,...,x) = n [(::")p,{ci(l _ p,-)"‘_"i]
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so that

k .
log L(p; x) = Z log (Z'
i=1

1

k k
) + Y xilogpi + Y (m —x;) log(1 — py).
i=1 i=1
The MLE p of p under Hy is therefore given by

Z’fxi _ Z’f(ni - xi) -0
p 1—-p ’

that is,

Xitx+--+x
ni4ny+-oo g

p=

Under certain regularity assumptions (see Cramér [ 16, pp. 426-427]) it can be shown
that the statistic

k 52
M =y K mpr
T~ nip(l-p)
is asymptotically x2(k — 1). Thus the test rejects Ho: p1 = p2 =+~ = px = p, p

unknown, at fevel & if y1 > xZ_, -

It should be remembered that the tests based on Theorem 1 are all large-sample
tests and hence not exact, in contrast to the tests concerning the variance discussed
above, which are all exact tests. Inthe case k = 1, UMP testsof p > poand p < pg
exist and can be obtained by the MLLR method described in Section 9.4. For testing
P = po, the usual test is UMP unbiased.

In the case k = 2, if ny and ny are large, a test based on the normal distribution
can be used instead of Theorem 1. In this case the statistic

- Xi/n1 — Xa/na
VA= p)A/n + /)

where p = (Xj + X2)/(ny +n2) is asymptotically N'(0, 1) under Hy: p; = p; = p.
If p is known, one uses p instead of p. It is not too difficult to show that Z? is equal
to Y1, so that the two tests are equivalent.

For small sampies the Fisher-Irwin test is commonly used and is based on the
conditional distribution of X; given T = X1 + X». Let p = [p1(1 — p2)V/[p2(1 —
p1)]. Then

2

L (n i i n —; s
PX1+Xp=1)= Z(j‘)p{ (1= py (t _zj)p; T(1 = ppyn =t

j=0

1
=) (n.l)( " .)pja(n1, n2)
JINE—y

=0
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where

t
a(ni,n2) = (1 — pp)™ (1 — p2)™ (1 = ) .
- P2

(’;‘)p’,‘ (1~ py™ ( . )p‘{*(l ~ po)tH
a(ny, nz)Z(nl)( "2 )Pj
(1))
iNe=i)"
S (0)
j=0 J t—J

On the boundary of any of the hypotheses p1 = p2, p1 < p2 or p; > p2, we note

that p = 1, so that
)02
X t—Xx
PiXi=xIX1+Xp =t} = -—~+——F—,
[x1 =x1X, 2=t} ———
t

which is a hypergeometric distribution. For testing Hy: p1 < p» this conditional test
rejects if X1 < k(z) where k(¢) is the largest integer for which P{X 1 < k(DT =
t} < «. Obvious modifications yield critical regions for testing p1 = p2, and p; >
P2 against corresponding alternatives.

In applications a wide variety of problems can be reduced to the multinomial
distribution model. We therefore consider the problem of testing the parameters of a

1t follows that

PlXi=x|X1 + Xy =1t} =

multinomial distribution. Let (X, X2, ..., X¢—1) be a sample from a multinomial
distribution with parameters n, pj, p2, ..., pr—1, and let us write Xz = n — X; —
--— Xg_1,and py = 1 — p; — - -- — py_1. The difference between the model of

Theorem 1 and the multinomial model is the independence of the X;'s.

Theorem 2. Let (X1, X2,..., Xx—1) be a multinomial RV with parameters n,
Pl, P2, - - - » Pk—1- Then the RV
k 2
X; — np;
3) Uy = Z (Xi — npi)
i=1 np;i

is asymptotically distributed as a x2(k — 1) RV (as n — 00).

Proof. For the general proof we refer the reader to Cramér [16, pp. 417419} or
Ferguson [26, p. 61]. We will consider here the k = 2 case to make the result a little
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more plausible. We have

Xy —npy?  (Xa—npp)®  (Xi—mp)? | [n—Xi—n(l—py)P

Uy =
npy npz npi n(l— p1)
1 1
= (X1 —npy)* [ + ———————]
P n(l—p1)
_ - np1)?
npi(1—p1)’

It follows from Theorem 1 that U; —11> Y asn — oo, where ¥ ~ x2( 1).

To use Theorem 2 to test Hp: p1 = pj, ..., Pk = py. We need only to compute
the quantity

y= Z (x; "”P,)z

1 np;
from the sample; if n is large, we reject Hp if u > x,f_l‘ o

Example 2. A die is rolled 120 times with the following results:

Result |1 2 3 4 5 6
Frequency: | 20 30 20 25 15 10

Let us test the hypothesis that the die is fair at level @ = 0.05. The null hypothesis
is Hy: pi = 1 ,i=1,2,...,6, where p; is the probability that the face value is i,
1<i<6. By Theorem 2, we reject Hg if

O [y — 120
> X5.0.05
‘; 120(})
We have
102 52 52 10%
- — =12.5.
u=0+ -5 +0+5+% 20

Since xs005 = 11.07, we reject Ho. Note that if we choose a = 0.025, then
X5,0025 = 12.8, and we cannot reject at this level.

Theorem 2 has much wider applicability, and we will later study its application
to contingency tables. Here we consider the application of Theorem 2 to testing the
null hypothesis that the DF of an RV X has a specified form.

Theorem 3. Let Xy, X5,..., X, be a random sample on X. Also, let Hy: X ~
F, where the functional form of the DF F is known completely. Consider a collec-
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tion of disjoint Borel sets Aj, A2, ..., A that form a partition of the real line. Let
P{X € Aj}=pi,i = 1,2,... ,k, and assume that p; > O foreachi. letY; =
number of X;’sin Aj, j = 1,2,... ,k,i = 1,2,..., n. Then the joint distribution
of (Y1, Ya, ..., Yx—1) is multinomial with parameters n, p;, p2, . .. , pr—~1. Clearly,
Yvy=n-Y1—--—Yqgadpr=1-p; — - — pe-1.

The proof of Theorem 3 is obvious. One frequently selects Aj, Az, ..., Ag as
disjoint intervals. Theorem 3 is especially useful when one or more of the parameters
associated with the DF F are unknown. In that case the following result is useful.

Theorem 4. Let Hy: X ~ Fg, where 8 = (6, 6,,...,6,) is unknown. Let
X1, X2, ..., X, be independent observatlons on X, and suppose that the MLEs of
61,6, .. 6, exist and are, respectively, 01, 62, . 6 let Aj, Ay, ... , A bea
collectlon of disjoint Borel sets that cover the real line, and let

Pi=PylX € A;} >0 i=12,...,k,

where § = (él, cee ér), and Pg is the probability distribution associated with Fg.
Let Yy, Y, ..., Yi be the RVs, defined as follows: ¥; = number of X, X5,..., X,
inA;,i=12,... k.

Then the RV

¥; - "P:)
Vi = —
Z:l np;

is asymptotically distributed as a x2(k —r — 1) RV (as n — 00).
The proof of Theorem 4 and some regularity conditions required on Fg are given

in Rao [86, pp. 391-392].
Totest Hy: X ~ F, where F is completely specified, we reject Hp if

_y bz
- np; k—1,a°

provided that » is sufficiently large. If the null hypothesis is Hyo: X ~ Fg, where Fg
is known except for the parameter @, we use Theorem 4 and reject Hy if

k A2
(¥i —np;)
v=) sl

i=1 npi
where r is the number of parameters estimated.

Example 3. The following data were obtained from a table of random numbers
of normal distribution with mean 0 and variance 1.
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0464 0.137 2455 -0.323 —-0.068
0.906 —-0.513 -0.525 0595 0.881
—0.482 1.678 —0.057 -1.229 -0.486
-1.787 —0.261 1.237 1.046 —0.508

We want to test the null hypothesis that the DF F from which the data came is
normal with mean 0 and variance 1. Here F is completely specified. Let us choose
three intervals (—oo, —0.5], (—0.5, 0.5}, and (0.5, 00). We see that Y1 = 5, Y, = 8,
and Y3 =7.

Also, if Z is N (0, 1), then p; = 0.3085, p; = 0.3830, and p3 = 0.3085. Thus

"= i i —npi)?
= M

_ (5—20x0.3085)>  (8—20x0.383)> (7 —20 x 0.3085)2
- 6.17 7.66 6.17

< L
Also, X22, 0.05 = .99, so we cannot reject Hy at level 0.05.

Example 4. In a 72-hour period on a long holiday weekend, there was a total of
306 fatal automobile accidents. The data are as follows:

Number of Fatal Accidents

per Hour Number of Hours
Oorl 4
2 10
3 15
4 12
5 12
6 6
7 6
8 or more 7

Let us test the hypothesis that the number of accidents per hour is a Poisson RV.
Since the mean of the Poisson RV is not given, we estimate it by

N 306
A=X=— =4.25.
=

Let us now estimate p; = P}:{X =i},i=0,1,2,..., po = e'i = 0.0143. Note
that

P{X=x+1} 1
Pi{X=x} x+1
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so that pj 1 = [A/(i + 1)1p;. Thus

p1 = 0.0606, pr = 0.1288, p3 = 0.1825, ps = 0.1939,
ps = 0.1648, pe = 0.1167, p7 = 0.0709, pg = 1 — 0.9325 = 0.0675.

The observed and expected frequencies are as follows:

Oorl 2 3 4 5 6 7 8 or More

Observed frequency, 0; 4 10 15 12 12 6 6 7
Expected frequency 5.38 928 1314 1396 1187 841 5.10 4.86
=T72pi=¢

Since we estimated one parameter, the number of degrees of freedomisk —r —1 =
8 — 1 — 1 = 6. From Table ST3, Xg,o.os = 12.6, and since 2.74 < 12.6, we cannot
reject the null hypothesis.

Remark 2. Any application of Theorem 3 or 4 requires that we choose sets
Ay, Az, ..., Ak, and frequently these are chosen to be disjoint intervals. As a rule
of thumb, we choose the length of each interval in such a way that the probabil-
ity P{X € A;} under Hp is approximately 1/k. Moreover, it is desirable to have
n/k > 5 or, rather, e; > 5 for each i. If any of the ¢;’s is < 5, the corresponding
interval is pooled with one or more adjoining intervals to make the cell frequency at
least 5. If any pooling is done, the number of degrees of freedom is the number of
classes after pooling, minus 1, minus the number of parameters estimated.

Finally, we consider a test of homogeneity of several multinomial distributions.
Suppose that we have ¢ samples of sizes ny, n2, . .. , n. from ¢ multinomial distribu-
tions. Let the associated probabilities with the jth population be (p1j, p2j, - .. , prj)
where > ,_, pij = 1, j = 1,2,...,c. Given observations N;j, i = 1,2,...,r,
j=12,...,cwithd} [ | Njj=nj,j=12,... cwewishtotest Ho: p;j = pi,
forj=12,...,c,i =12,...,r — 1. The case ¢ = 1 is covered by Theorem 2.
By Theorem 2 for each j,

U — Zr: (Nij —njpi)*
r—i=1 n;pi
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has a limiting Xr2—1 distribution. Since samples are independent, the statistic

U, =ZZ WNij —n;pi)?

j=1i=1 Rjpi
has a limiting XCZ(,_,) distribution. If p;’s are unknown, we use the MLEs

C
. j=1 Nij
Pi = —'T——'.'»
2 =1nj

for p;, and we see that the statistic

V= ZZ (Nij ”‘"jpt

j=li= n-’p'

has a chi-square distribution with c(r — 1) — (r — 1) = (¢ — 1)(r — 1) d.f. We reject
Hy at (approximate) level ¢ is V,; > x(zr_l)(c_l)‘a.

Example 5. A market analyst believes that there is no difference in preferences of
television viewers among the four Ohio cities of Toledo, Columbus, Cleveland, and
Cincinnati. To test this belief, independent random samples of 150, 200, 250, and
200 persons were selected from the four cities and asked, “What type of program
do you prefer most: mystery, soap, comedy, or news documentary?”’ The following
responses were recorded:

City
Program Type Toledo Columbus Cleveland Cincinnati
Mystery 50 70 85 60
Soap 45 50 58 40
Comedy 35 50 72 67
News 20 30 35 33
Sample size 150 200 250 200

Under the null hypothesis that the proportions of viewers who prefer the four
types of programs are the same in each city, the maximum likelihood estimates of
pi.i =1,2,3,4 are given by

s _ _S0+70+85+60 265 _ .
Pl = 1501200 + 250 + 200 800

. _ 45+50458+4-40 193
=2 = 0.24,
P2= 800 = 300
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. 35+450+72+67

p3

800

Pa

800

224

= — = (.28,

800

. 204+30+35+33 118

— = 0.15.
800

509

Here p; =proportion of people who prefer mystery, and so on. The following table
gives the expected frequencies under Hp:

Expected Number of Responses Under Hy

Program

Type Toledo " Columbus Cleveland Cincinnati
Mystery 150 x 033 =495 200x033=66 250x0.33 =825 200 x0.33 =66
Soap 150 x 0.24 = 36 200 x 0.24 =48 250 x 0.24 =60 200 x 0.24 = 48
Comedy 150 x 0.28 =42 200 x 0.28 =56 250 x 0.28 =70 200 x 0.28 = 56
News: 150 x 0.15=22.5 200x0.15=30 250x0.15=37.5 200 x0.15=30
Sample size 150 200 250 200

1t follows that

M= 005

36

42 225

(50 — 49.5)? + (45 — 36)2 + (35 -42)? (20 —22.5)?

— 2 — 2 _ 2 - 2
+ (70 — 66) + (50 — 48) . (50 — 56) + (30 — 30)

66

48

56 30

(85 — 82.5)% 4 (58 — 60)? N (72 —70)% (35 —37.5)?
70 37.5
60 — 66)2 (40 —48)2 (67 —56)2 (33 — 30)2
+ ( ) + ( ) + ( ) " ( )

82.5

60

66
= 9.37.

48

56 30

Since ¢ = 4 and r = 4, the number of degrees of freedom is (4 — 1)(4 — 1) = 9 and
we note that under Hy

0.30 < P{Us4 = 9.37} < 0.50.

With such a large P-value we can hardly reject Hp. The data do not offer any evi-
dence to conclude that the proportions in the four cities are different.

PROBLEMS 10.3

1. The standard deviation of capacity for batteries of a standard type is known to
be 1.66 ampere-hours. The following capacities (ampere-hours) were recorded
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for 10 batteries of a new type: 146, 141, 135, 142, 140, 143, 138, 137, 142, 136.
Does the new battery differ from the standard type with respect to variability of
capacity? (Natrella [73, p. 4-1])

2. A manufacturer recorded the cutoff bias (volts) of a sample of 10 tubes as fol-
lows: 12.1,12.3, 11.8, 12.0, 12.4, 12.0, 12.1, 11.9, 12.2, 12.2. The variability of
cutoff bias for tubes of a standard type as measured by the standard deviation is
0.208 volt. Is the variability of the new tube with respect to cutoff bias less than
that of the standard type? (Natrella [73, p. 4-5])

3. Approximately equal numbers of four different types of meters are in service and
all types are believed to be equally likely to break down. The actual numbers of
breakdowns reported are as follows:

Type of Meter | 1 2 3 4
Number of Breakdowns Reported l 30 40 33 47

Is there evidence to conclude that the chances of failure of the four types are not
equal? (Natrella {73, p. 9-4])

4. Every clinical thermometer is classified into one of four categories, A, B, C, D,
on the basis of inspection and test. From past experience it is known that ther-
mometers produced by a certain manufacturer are distributed among the four
categories in the following proportions:

Category l A B c D
Proportion | 087 009 003 00

A new lot of 1336 thermometers is submitted by the manufacturer for inspection
and test and the following distribution into the four categories results:

Category l A B C D
Number of Thermometers Reported | 1188 91 47 10

Does this new lot of thermometers differ from the previous experience with re-
gard to proportion of thermometers in each category? (Natrella {73, p. 9-2})

5. A computer program is written to generate random numbers, X, uniformly in
the interval 0 < X < 10. From 250 consecutive values the following data are
obtained:

X-Value | 0-199 2399 4599 6-7.99 8-9.99
Frequency | 38 55 54 4l 62

Do these data offer any evidence that the program is not written properly?

6. A machine working correctly cuts pieces of wire to a mean length of 10.5 cm
with a standard deviation of 0.15 cm. Sixteen samples of wire were drawn at
random from a production batch and measured with the following results (cen-
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timeters): 10.4, 10.6, 10.1, 10.3, 10.2, 10.9, 10.5, 10.8, 10.6, 10.5, 10.7, 10.2,
10.7, 10.3, 10.4, 10.5. Test the hypothesis that the machine is working correctly.

. An experiment consists in tossing a coin until the first head shows up. One hun-

dred repetitions of this experiment are performed. The frequency distribution of
the number of trials required for the first head is as follows:

. Prove Theorem 1.
10.

Number of Trials J 1 2 3 4 5o0:more
Frequency | 0 2 15 7 6
Can we conclude that the coin is fair?
. Fit a binomial distribution to the following data:
x | 0 1 2 3 4
Frequency | 8 46 55 40 11

Three dice are rolled independently 360 times each with the following results.
Face Value Die 1 Die 2 Die 3
1 50 62 38
2 48 55 60
3 69 61 64
4 45 54 58
5 71 78 73
6 77 50 67
Sample size 360 360 360

Are all the dice equally loaded? That is, test the hypothesis Ho: pi1 = pi2 =
piz. i =1,2,...,6, where p;) is the probability of getting an i with die 1, and

SO On.

Independent random samples of 250 Democrats, 150 Republicans, and 100 Inde-
pendent voters were selected one week before a nonpartisan election for mayor
of a large city. Their preference for candidates Albert, Basu, and Chatfield were

recorded as follows.

Party Affiliation
Preference Democrat ~ Republican Independent
Albert 160 70 90
Basu 32 45 25
Chatfield 30 23 15
Undecided 28 12 20
Sample size 250 150 150
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Are the proportions of voters in favor of Albert, Basu, and Chatfield the same
within each political affiliation?

12. Of 25 income tax returns audited in a small town, 10 were from low- and middle-
income families and 15 from high-income families. Two of the low-income fam-
ilies and four fo the high-income families were found to have underpaid their
taxes. Are the two proportions of families who underpaid taxes the same?

13

A candidate for a congressional seat checks her progress by taking a random
sample of 20 voters each week. Last week, six reported to be in her favor. This
week nine reported to be in her favor. Is there evidence to suggest that her cam-
paign is working?

14. Let {X31, X21, ... X1}y -+, {Xics X2¢s - .. » Xre} be independent multino-

mial RVs with parameters (n1, p11, p21,--- s Pr1)s -+ » ey Ples P2es -+ - 5 Pre)s
respectively. Let X;. = 3°_, X;j and 3_%_; n; = n. Show that the GLR test
for testing Hy: pij = pj,for j =1,2,...,¢c,i =1,2,...,r — 1, where p;’s
are unknown against all alternatives can be based on the statistic

wo-T1(%)" /TIT(3)”

104 ¢TESTS
In this section we investigate one of the most frequently used types of tests in statis-

tics, the tests based on a ¢-statistic. Let Xy, X2, ..., X, be a random sample from
N (u, 0%), and, as usual, let us write

=n"1 Xn:xi, SP2=@m-1n"! Xn:(xi - X)2.
1 1

The tests for usual null hypotheses about the mean can be derived using the GLR
method. In the following table we summarize the results.

Reject Hy at Level « if:

H, H, o? Known o2 Unknown
—_ o _
L m < po u> o XZM0+7h-Zu x> 0+ﬁtn lLa
i > X < pto+ — ¥ < po+ —ect
. < —_—Z < ety 11—
m = Mo n < [ = Mo ﬁlu Ho ﬁnl,la

_ o _ s
IL m= o u# o Ix — pol = ﬁZa/Z X — pol = 7—’7tn—1,a/2
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Remark 1. A test based on a r-statistic is called a r-test. The ¢-tests in [ and 11
are called one-tailed tests; the t-test in IIl, a two-tailed test.

Remark 2. If o2 is known, tests I and I are UMP and test ITI is UMP unbiased.
If o2 is unknown, the ¢-tests are UMP unbiased and UMP invariant.

Remark 3. 1If n is large, we may use normal tables instead of ¢-tables. The as-
sumption of normality may also be dropped because of the central limit theorem. For
small samples care is required in applying the proper test, since the tail probabili-
ties under normal distribution and ¢-distribution differ significantly for small n (see
Remark 7.4.2).

Example 1. Nine determinations of copper in a certain solution yielded a sample
mean of 8.3 percent with a standard deviation of 0.025 percent. Let 1 be the mean
of the population of such determinations. Let us test Hp: p = 8.42 against Hy: u <
8.42 at level @ = 0.05.

Heren =9,x = 8.3, s = 0.025, uo = 842, and #,1 1o« = —18,0.05 = —1.860.

Thus

s 0.025
—lp-11-a = 8.42 — ——1.86 = 8.4045.
o + ﬁ n—1,l-« 3
We reject Hg since 8.3 < 8.4045.
We next consider the two-sample case. Let X1, X2,..., X, and Y1, ¥2,..., Y,

be independent random samples from N (u, 012) and N (2, 022), respectively. Let
us write

X=m 137X, Y=n1311,
S=m-DTTTX - SE=@-DTTW T,
and

g2 m— DS+ (n — 1)8?
P m+n—2 ’

Sf, is sometimes called the pooled sample variance. The following table summarizes
the two sample tests comparing w1 and us:
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Hy H, Reject Hp at Level ¢ if:
(8 = known constant) o2, 67 Known o2, 62 Unknown, 01 = o,
L m—~wm=<s pwp~pmp>8 x-y2= X -V =8+ twinaa
2 2 1 1
8+ zq 442 Spyf — + —
m n m n
1L IM—MZ‘S Hy—Hp2 <8 7"?5 E"‘ifa‘tn&n—za
ol o? 1 1
8 — Za -+ + -2 Spy — -
m n m n
L. pi—pp=8 pi—p2#38 |x-F-8= X~ — 8l 2 tuin-2072

2 o} 11
Zay2y) — + — Spyf — + —
m n m n

Remark 4. The case of most interest is that in which § = 0. If 012, 022 are un-

known and o2 = 02 = o2, o unknown, then $2 is an unbiased estimate of o2,
1 2 p

In this case all the two-sample ¢-tests are UMP unbiased and UMP invariant. Before
applying the ¢-test, one should first make sure that o? = o7 = 0’2, 02 unknown. This

means applying another test on the data. We consider this test in the next section.

Remark 5. If m + n is large, we use normal tables; if both m and n are large, we
can drop the assumption of normality, using the CLT.

Remark 6. The problem of equality of means in sampling from several popula-
tions will be considered in Chapter 12.

Remark 7. The two sample problem when o7 # o072, both unknown, is com-

monly referred to as Behrens—Fisher problem. The Welch approximate t-test of
Hp: p1 = po is based on a random number of d.f. f given by

_ ( R )2 t o1 e
f= 1+R) m—1 A+R?2n-1 ’

where

and the ¢-statistic

_ X ~-Y) ~ (11 — u2)

83 /m+ 83/n

T
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with f d.f. This approximation has been found to be quite good even for small sam-
ples. The formula for f generally leads to noninteger d.f. Linear interpolation in
t-tables can be used to obtain the required percentiles for f d.f.

Example 2. The mean life of a sample of 9 light bulbs was observed to be 1309
hours with a standard deviation of 420 hours. A second sample of 16 bulbs chosen
from a different batch showed a mean life of 1205 hours with a standard deviation
of 390 hours. Let us test to see whether there is a significant difference between the
means of the two batches, assuming that the population variances are the same (see
also Example 10.5.1).

Here Hy: p1 = pa, Hy: ) # 2, m = 9, n = 16, x = 1309, 51 = 420,
y = 1205, s, = 390, and let us take o = 0.05. We have

8(420)2 + 15(390)2
= 23

so that

M1 1 8(420)2 4+ 15(390)2 /1 1
'm4n—2,0/25p ;‘F o =t23,0.025\/ (@20) %) (3%0) 5 + T = 345.44.

Since |x — y| = 1309 — 1205] = 104 ¥ 345.44, we cannot reject Hy at level
o = 0.05.

Quite frequently, one samples from a bivariate normal population with means
n1, ma, variances 012, 022, and correlation coefficient p, the hypothesis of interest
being u; = pa. Let (X1, V1), (X2, Y2), ..., (Xa, ¥y) be a sample from a bivariate
normal distribution with parameters u1, 2, 012, 0'22, and p. Then X; —Y; is N —
p2,02), where 62 = o + 0 — 2poy0;. We can therefore treat Dj = (X; — Y;),

j=1,2,...,n,as asample from a normal population. Let us write
_ n d n . VA
d — _Z_:l._i and S‘% - _Z:I_(dl__c.i_)_’
n n—1

The following table summarizes the resulting tests:

Hyp H
(do = known constant) Reject Hp at Level « if:
— 5,
L y— 2 > dy Wy — 2 <dp d<do+ "2ty 110
Jn
— s,
IL o — 2 <dp My — pa2 > dyp d>dy+ —é'tn—l,u
N
- s,
1. Hy— p2 =dyp wy — g # do |d — do| > ~=

ﬁtn—l,a/2
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Remark 8. The case of most importance is that in which dg = 0. All the z-tests,
based on D;’s, are UMP unbiased and UMP invariant. If o is known, one can base
the test on a standardized normal RV, but in practice such an assumption, is quite
unrealistic. If n is large, one can replace ¢-values by the corresponding critical values
under the normal distribution.

Remark 9. Clearly, it is not necessary to assume that (X1, Y1), ..., (Xy, Yn)isa
sample from a bivariate normal population. It suffices to assume that the differences
D; form a sample from a normal population.

Example 3. Nine adults agreed to test the efficacy of a new diet program. Their
weights (pounds) were measured before and after the program and found to be as
follows:

Participant
1 2 3 4 5 6 7 8 9
Before 132 139 126 114 122 132 142 119 126
After 124 141 118 116 114 132 145 123 121

Let us test the null hypothesis that the diet is not effective, Hy: @1 — p2 = 0,
against the alternative, Hy: u) — pup > 0, that it is effective at level ¢ = 0.01. We
compute

3_8—2+8—2+8+0—3—4+5__§_2
- 9 T 9
53=26.75, and sz =5.17.
Thus
Sd 5.17 5.17
dy + —=th—1,0 =0+ —=13,001 = —— x 2.896 = 4.99
0+ﬁn 1e 7 8,0.01 3

Since d ¥ 4.99, we cannot reject hypothesis Hy that the diet is not very effective.

PROBLEMS 10.4

1. The manufacturer of a certain subcompact car claims that the average mileage
of this model is 30 miles per gallon of regular gasoline. For nine cars of this
model driven in an identical manner, using 1 gallon of regular gasoline, the mean
distance traveled was 26 miles with a standard deviation of 2.8 miles. Test the
manufacturer’s claim if you are willing to reject a true claim no more than twice
in 100.

2. The nicotine contents of five cigarettes of a certain brand showed a mean of 21.2
milligrams with a standard deviation of 20.05 milligrams. Test the hypothesis
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that the average nicotine content of this brand of cigarettes does not exceed 19.7
milligrams. Use & = 0.05.

3. The additional hours of sleep gained by eight patients in an experiment with a
certain drug were recorded as follows:
Patient | 1 2 3 4 5 6 7 8
Hours Gained | 0.7 —1.1 34 08 20 01 —02 30

Assuming that these patients form a random sample from a population of such
patients and that the number of additional hours gained from the drug is a normal
random variable, test the hypothesis that the drug has no effect at level « = 0.10.

4. The mean life of a sample of 8 light bulbs was found to be 1432 hours with a
standard deviation of 436 hours. A second sample of 19 bulbs chosen from a
different batch produced a mean life of 1310 hours with a standard deviation
of 382 hours. Making appropriate assumptions, test the hypothesis that the two
samples came from the same population of light bulbs at level ¢ = 0.05.

S. A sample of 25 observations has a mean of 57.6 and a variance of 1.8. A fur-
ther sample of 20 values has a mean of 55.4 and a variance of 20.5. Test the

hypothesis that the two samples came from the same normal population.

b

6. Two methods were used in a study of the latent heat of fusion of ice. Both method
A and method B were conducted with the specimens cooled to —0.72°C. The
following data represent the change in total heat from —0.72°C to water, 0°C, in
calories per gram of mass:

Method A:  79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97, 80.05,
80.03, 80.02, 80.00, 80.02
Method B: 80.02, 79.74, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97

Perform a test at level 0.05 to see whether the two methods differ with regard to
their average performance. (Natrella [73, p. 3-23])

7. In Problem 6, if it is known from past experience that the standard deviations of
the two methods are 64 = 0.024 and o5 = 0.033, test the hypothesis that the
methods are same with regard to their average performance at level @ = 0.05.

8. During World War II bacterial polysaccharides were investigated as blood
plasma extenders. Sixteen samples of hydrolyzed polysaccharides supplied by
various manufacturers in order to assess two chemical methods for determining
the average molecular weight yielded the following results:

Method A: 62,700; 29,100; 44,400; 47,800; 36,300; 40,000; 43,400; 35,800;
33,900; 44,200; 34,300; 31,300; 38,400; 47,100; 42,100; 42,200
Method B: 56,400; 27,500; 42,200; 46,800; 33,300; 37,100; 37,300; 36,200;
35,200; 38,000; 32,200; 27,300; 36,100; 43,100; 38,400; 39,900
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Perform an appropriate test of the hypothesis that the two averages are the same
against a one-sided alternative that the average of method A exceeds that of
method B. Use @ = 0.05. (Natrella [73, p. 3-38])

. The following grade-point averages were collected over a period of 7 years to

determine whether membership in a fraternity is beneficial or detrimental to
grades:

Year
1 2 3 4 5 6 7
Fraternity 24 20 23 21 21 20 20

Nonfratemnity 24 22 25 24 23 18 19

Assuming that the populations were normal, test at the 0.025 level of significance
whether membership in a fraternity is detrimental to grades.

10. Consider the two-sample t-statistic T = (X — Y)/[S p/1/m +1/n], where

§2 = [(m—1)S?+ (n — 1)S]]/(m + n — 2). Suppose that o1 # 0. Letm,n —
oo such that m/(m + n) —> p. Show that under ul = up, T —I—'-> U, where
U ~ N, %) with z = [(1 — p)a} + pa}l/lpo? + (1 — p)o}). Thus when
m=n,p=~ % and 12 ~ 1, and T is approximately N (0, 1) as m(~ n) — oc.
In this case, a t-test based on T will have approximately the right level.

10.5 F-TESTS
The term F-tests refers to tests based on an F-statistic. Let Xy, X3,..., X, and
Y1,Y2,...,Y, be independent samples from N (u,],alz) and N (uz, 022), respec-

tively. We recall that 37 (X; —X) /o ~ x2(m—1) and X7 (¥; ~Y)? /o2 ~ xZ(n—1)
are independent RVs, so that the RV

YrXi—X)? ojn—-1) 02 2
YUY - Y)? o¥m—1) o} 82

FX Y)=

is distributed as F(m — 1,n — 1).

The following table summarizes the F-tests:

Reject Hy at Level « if:

Hy H, 11, 2 Known iy, 4y Unknown
2
Xi s
L 612 < 022 012 > 022 Zl ( - #’1)2 > '_ana —12' > Fm—l,n—l,a
Z](yx Ha) 55
L )2 n s2
IL 0'12 > 622 0'12 < 022 M > —Fama '% > Fim-1e
1

YV —m) T m T s
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ZT(xi - “1)2 m 52

S 2 Fmnen = = Furn-tap
N. o?=0? o}+#o0} 200 — m2) 4 s o

or < ';I‘Fm,n.l—a/Z or < Fu_in-ti-an

Remark 1. Recall (Remark 7.4.5) that
Fm,n,l—a = {Fn,m,a}_l-

Remark 2. The tests described above can easily be obtained from the likelihood
ratio procedure. Moreover, in the important case where fi, (2 are unknown, tests I
and I are UMP unbiased and UMP invariant. For test III we have chosen equal tails,
as is customarily done for convenience even though the unbiasedness property of the
test is thereby destroyed.

Example 1 (Example 10.4.2 continued). In Example 10.4.2 let us test the
validity of the assumption on which the r-test was based, namely, that the two pop-
ulations have the same variance at level 0.05. We compute sf /s% = (420/390)? =
196/169 = 1.16. Since Fiy_1n—1,0/2 = Fg,150025 = 3.20, we cannot reject
Hy: 01 = 03.

An important application of the F-test involves the case where one is testing the
equality of means of two normal populations under the assumption that the variances
are the same, that is, testing whether the two samples come from the same population.
Let X1,X2,...,Xm and Y1, Y5, ..., ¥, be independent samples from N (i, 0?2)
and N (u2, 022), respectively. If 012 = 022 but is unknown, the ¢-test rejects Hg: p) =
w2 if |T| > ¢, where c is selected so that oy = P{|T| > ¢ | u1 = u3, 61 = o2}, that

iS, ¢ = tmyn-2,a,/25p~/(1/m + 1/n), where

2 (m—Dst+@m—1)s?
ST =
P m+n-—2

>

81, 52 being the sample variances. If first an F-test is performed to test oy = o073,
and then a f-test to test (1) = 7 at levels oy and ay, respectively, the probability of
accepting both hypotheses when they are true is

P{IT| <c,c) < F <calpr = 2,01 = o2};

and if F is independent of T, this probability is (1 — a1)(1 — a3). It follows that the
combined test has a significance level @ = 1 — (1 — a1)(1 — a2). We see that

a=a)+ay—aa <oyt
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and a > max(gg, az). In fact, o will be closer to «y + @2, since for small @; and a3,
ajaz will be closer to 0.

We show that F is independent of 7 whenever o7 = o7. The statistic V =
X, Y, Y0 (X; — X)? + 3(Y; — Y)?) is a complete sufficient statistic for the pa-
rameter (111, 12, 01 = 02) (see Theorem 8.3.2). Since the distribution of F does not
depend on 111, w2, and 07 = 09, it follows (Problem 5) that F is independent of V
whenever o1 = 0. But T is a function of V alone, so that F must be independent of
T also.

In Example 1, the combined test has a significance level of

a =1-(0.95)(0.95) =1 — 0.9025 = 0.0975.

PROBLEMS 10.5

1. For the data of Problem 10.4.4, is the assumption of equality of variances on
which the r-test is based, valid?

2. Answer the same question for Problems 10.4.5 and 10.4.6.

3. The performance of each of two different dive-bombing methods is measured a
dozen times. The sample variances for the two methods are computed to be 5545
and 4073, respectively. Do the two methods differ in variability?

4, In Problem 3, does the variability of the first method exceed that of the second
method?

5. Let X = (X1, X2,..., X,) be a random sample from a distribution with PDF
(PMF) f(x, 0), 8 € © where © is an interval in Ry. Let T(X) be a complete
sufficient statistic for the family { f(x; 8): 0 € ©}. If U(X) is a statistic (not a
function of T alone) whose distribution does not depend on @, show that U is
independent of T'.

10.6 BAYES AND MINIMAX PROCEDURES

Let X|, X2, ..., X, be a sample from a probability distribution with PDF (PMF) f5,
# € ©. In Section 8.8 we described the general decision problem, namely, once the
statistician observes X, she has a set A of options available. The problem is to find
a decision function d that minimizes the risk R(0,8) = E¢L(#, §) in some sense.
Thus a minimax solution requires the minimization of max R(g, §), while a Bayes
solution requires the minimization of R(xr,8) = ER(8, §), where x is the a priori
distribution on . In Remark 9.2.1 we considered the problem of hypothesis-testing
as a special case of the general decision problem. The set .4 contains two points, agp
and ay; ag corresponds to the acceptance of Hy: 6 € ®q, and a; corresponds to the
rejection of Hy. Suppose that the loss function is defined by



BAYES AND MINIMAX PROCEDURES 521

L@, ap) =a(@) ifd € ®;, a@® >0,
L(@,a1) = b(@) if € @y, b)) >0,
L@,a0) =0 if @ € Og,
L®,a;)=0 if6 € ©).

M

Then

2 R(9,8(X)) = L(6, a0) Po{8(X) = ap} + L(9, a) Po{8(X) = a1}

a(0) Po{8(X) = ap} if0 € O,

3) =1 .
©) Po{8(X) = a1} if 6 € Oq.

A minimax solution to the problem of testing Hp: 6 € ®¢ against Hy: 6 € Oy,
where ® = ©¢g + Oy, is to find a rule § that minimizes

max[a(6) Po{5(X) = ao}, b(6) Pe{8(X) = a1}].

We will consider here only the special case of testing Ho: 6 = g against Hy : 6 =
6. In that case we want to find a rule § that minimizes

@) max[aPg, {8(X) = a0},  bPg{8(X) = a1}l.
We will show that the solution is to reject Hy if

fel(x) >k
foo® ~

provided that the constant k is chosen so that

(5)

(6) R(6o, §(X)) = R(61, §(X)),

where &' is the rule defined in (5); that is, the minimax rule § is obtained if we choose
k in (5) so that

U a Py, {3(X) = ap} = bPy,{8(X) = a1},

or, equivalently, we choose k so that

fo,(X) ] fo, X) ]
8 P, — <kt = R
® “ {feo(x) <kp=bho im0 2k

Let 8* be any other rule. If R(6p, §) < R(fg, 8*), then R(p,8) = R(6,68) <
max[R(6p, 6*), R(91,8%)] and &* cannot be minimax. Thus R(6y, 8) > R(6p, 8*),
which means that

©) Po,{8*(X) = a1} < Pgy(8(X) = a1} = Plreject Ho | Hy true}.
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By the Neyman—Pearson lemma, rule 8 is the most powerful of its size, so that its
power must be at least that of §*, that is,

P, (6(X) = a1} > Pp, (8" (X) = a1}
so that

Py, {8(X) = ag) < P, {§"(X) = ag}.
It follows that

aPo, {8(X) = ao} < aPy, {6 (X) = ao}
and hence that
(10) R(6;,d) < R(6y,8%).
This means that
max[R(6p, 8), R(f1,8)] = R(61,8) < R(61,8)
and thus
max[R(6p, 8), R(61,8)] < max[R(8y, 8*), R(61,8%)).

Note that in the discrete case one may need some randomization procedure in
order to achieve equality in (8).

Example 1. Let X1, X2,..., X, be iid N(u,1) RVs. To test Ho: & = o
against Hy: p = u) (> o), we should choose k so that (8) is satisfied. This is the
same as choosing ¢, and thus k, so that

abP,, X <c}= me,{—X7 > c}

or

X—m c—m| X—po _ c—po
"P’"[ NI 1/ﬁ]"bP"°{ VANV

Thus
a®[/n(c — pu)l = b{1 — ®[/n(c - uo)l},

where @ is the DF of an N (0, 1) RV. This can easily be accomplished with the help
of normal tables once we know a, b, 1o, (1, and n.

We next consider the problem of testing Hy: 6 € ©Op against i4;: € € O froma
Bayesian point of view. Let 71 (8) be the a priori probability distribution on ©. Then
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(11) R(m,8) = EgR(8, §(X))
f@ R(8, 8)r(8)dO if v is a PDF,
Y o RO, m(H) if w is a PMF,
f®o b@)n(0) Po{6(X) = a1 }do+
f@] a®@)m(0)Ps{6(X) = agldb if 7 is a PDF,

ZG)O b)Y (@) Po{8(X) = a1 }+
Yo, a@)n @) Ps(6(X) =ao} if  isa PMF.

The Bayes solution is a decision rule that minimizes R(r, 8). In what follows we
restrict our attention to the case where both Hy and Hj have exactly one point each,
that is, @9 = {6y}, ©1 = {61}. Let w(6p) = mp and 7 (0;) = 1 — 7o = m;. Then

(12) R, 8) = bmo Py {6(X) = a1} + am Py {6(X) = ap},
where b(6p) = b, a(61) = a; (a, b > 0).

Theorem 1. Let X = (X, X5,..., X,;) be an RV of the discrete (continuous)
type with PMF (PDF) fy,0 € © = {6, 6,}. Let w(6p) = o, w(61) = 1 —mp = my

be the a priori probability mass function on ®. A Bayes solution for testing Hyp: X ~
Jfo, against Hy: X ~ fy,, using the loss function (1), is to reject Hy if

fo®) _ b

13 .
(43 fooX) T am

Proof. 'We wish to find § that minimizes
R(m, 8) = bro Py, {5(X) = a1} + amy P, (5(X) = ag}.
Now

R(n,8) = EgR(0, 8)
= E{Es{L(8, 8)|X}},

so it suffices to minimize Eg{L (0, 8)|X].
The a posteriori distribution of 6 is given by

7(6) fo (x)
Yo fo(x)m(6)
w0 fo®
7o fa, (%) + 71 fg, (X)

(14) h(@Ix) =
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710 fo, (X) .
fo =0,
_ 7o fo, (X) + 71 fg, (%) ' 0
nlfel(x) if0 =0,

70 fo, () + 71 fo, (%)
Thus

bh(6o|x), 0 = 6p, 8(X) = ay,

Eg{L(6,8X)))X =X} = [ah(9llx)- 6 = 61,5(X) = ag,

It follows that we reject Hy, that is, §(X) = ay if
bh(6o|x) < ah(B1]x),
which is the case if and only if

b fa, (X) < am fo, (X),

as asserted.

Remark 1. In the Neyman-Pearson lemma we fixed Py, {8(X) = a1}, the prob-
ability of rejecting Hp when it is true, and minimized Py, {3(X) = ap}, the proba-
bility of accepting Hop when it is false. Here we no longer have a fixed level o for
Py, {6(X) = a1}. Instead, we allow it to assume any value as long as R(m, §), defined
in (12), is minimum.

Remark 2. 1t is easy to generalize Theorem 1 to the case of multiple deci-
sions. Let X be an RV with PDF (PMF) f3, where @ can take any of the & values
61,65, ...,6;. The problem is to observe x and decide which of the 6;’s is the
correct value of 6. Let us write H;: 8 = 6;,i = 1,2,...,k, and assume that
@) = mi, i = 1,2,...k%, Z’l‘ m; = 1, is the prior probability distribution on
O =1{61,6,...,6} Let

1 if 8 chooses §;, j # i.

L6:,68) =
©:.9) [0 if 8 chooses ;.

The problem is to find a rule § that minimizes R(rr, §). We leave the reader to show
that a Bayes solutionisto accept H;: 6 = 6; (i = 1,2, ... , k) if

(15) ;i fo, (X) > Jijoj(X) forall j #i,j=1,2,... ,k,

where any point lying in more than one such region is assigned to any one of them.

Example 2. Let X1, Xs,..., X, be iid N(u,1) RVs. To test Hy: u = po
against Hy: u = uj (> po), let us take a = b in the loss function (1). Then
Theorem 1 says that the Bayes rule is one that rejects Hp if
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f9| (X) - o

foo®) T 1—mg’
that is,
exp [_ Z’f(xiz— n)? + Z'{(xiz— 120)* | > - J—mno
and
CXP[(M uo)z ,+ ) zlﬂo .
. - 7o

This happens if and only if

Z 1 l08[71‘0/(1 —mo)] | o+
= +
— o 2

]

where the logarithm is to the base e. It follows that, if mo = %, the rejection region
consists of

0+M1

rzT

Example 3. This example illustrates the result described in Remark 2. Let
X1, X2, ..., Xn be a sample from N (i, 1), and suppose that y can take any one
of the three values 141, pg, or u3. Let uy < uz < us3. Assume, for simplicity, that
m = ny = 3. Then we accept H; : p = w;,i =1, 2,3, if

n 2 n e N2
i exp [”Z (xk 2#4) :| > ) exp l:_z (xk 2#‘«/) ]
k=1 k=1
foreachj #i,j=1,2,3.

It follows that we accept H; if

(i — )T + —‘——zu =123 (#i)

that is,

(i — p )i + 1)
2 A3

(i — pj) = i=423 (G #D.

Thus the acceptance region of Hj is given by
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ES w and

— M1t p3
< —
2 =T

Also, the acceptance region of H» is given by

.fzu1+.u2 and f5“2+”3
2 2
and that of H; by
;2%& and ;Z_’i*z”_“é_

In particular, if 41 =0, up =2, u3 = 4, weaccept H1ifx <1, H,if 1 <x <3,
and H; if ¥ > 3. In this case, boundary points 1 and 3 have zero probability, and it
does not matter where we include them.

PROBLEMS 10.6

1. In Example 1, letn = 15, o = 4.7, and py = 5.2, and choose a = b > 0. Find
the minimax test and compute its power at 4 = 4.7 and . = 5.2.

2. A sample of five observations is taken on a b(1, 8) RV totest Hy: 0 = % against
Hy:0=3.
(a) Find the most powerful test of size o = 0.05.
® ¥LE, H =03 =0LG, 2 =1,and L(}, }) = 2, find the minimax

rule.

(c) If the prior probabilities of § = % and 0 = % are my = % and my = %,

respectively, find the Bayes rule.

3. A sample of size # is to be used from the PDF
fo(x) =0e7%, x>0,

to test Hy: 6 = 1 against H; : 6 = 2. If the a priori distribution on € is mg = %,
m = % and a = b, find the Bayes solution. Find the power of the testat @ = 1
and 0 = 2.

4. Given two normal densities with variances 1 and with means —1 and 1, respec-
tively, find the Bayes solution based on a single observation when a = b and
@mp=m = %,and(b)ﬂo= %,m = %-

5. Given three normatl densities with variances 1 and with means —1, 0, 1, respec-
tively, find the Bayes solution to the multiple decision problem based on a single

observation when 7y = %, m2 = %, m3 = .

6. For the multiple decision problem described in Remark 2, show that a Bayes
solution is to accept H;: 0 = 0; (i = 1,2,... , k) if (15) holds.



CHAPTER 11

Confidence Estimation

11.1 INTRODUCTION

In many problems of statistical inference the experimenter is interested in construct-
ing a family of sets that contain the true (unknown) parameter value with a specified
(high) probability. If X, for example, represents the length of life of a piece of equip-
ment, the experimenter is interested in a lower bound @ for the mean 6 of X. Since
6 = 6(X) will be a function of the observations, one cannot ensure with probabil-
ity 1 that §(X) < 6. All that one can do is to choose a number 1 — « that is close to 1
so that Pp{d(X) < 8} > 1 — a for all 6. Problems of this type are called problems of
confidence estimation. In this chapter we restrict ourselves mostly to the case where
® C R and consider the problem of setting confidence limits for the parameter 6.

In Section 11.2 we introduce the basic ideas of confidence estirnation. Sec-
tion 11.3 deals with various methods of finding confidence intervals, while Sec-
tion 11.4 deals with shortest-length confidence intervals. In Section 11.5 we study
unbiased and equivariant confidence intervals.

11.2 SOME FUNDAMENTAL NOTIONS OF
CONFIDENCE ESTIMATION

So far we have considered a random variable or some function of it as the basic
observable quantity. Let X be an RV, and a, b be two given positive real numbers.
Then

Pla<X <bl=Pla<Xand X < b}

=PI£’-1X—>bandX<b]
a
=P{X<b<§},

a

and if we know the distribution of X and a, b, we can determine the probability
Pla < X < b}. Consider the interval I (X) = (X, bX/a). This is an interval with

527
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endpoints that are functions of the RV X, and hence it takes the value (x, bx/a)
when X takes the value x. In other words, I (X) assumes the value I (x) whenever X
assumes the value x. Thus /(X)) is a random quantity and is an example of a random
interval. Note that (X) includes the value b with a certain fixed probability. For
example,ifb=1,a = % and X is U (0, 1), the interval (X, 2X) inclades point 1 with
probability % We note that /(X) is a family of intervals with associated coverage
probability P(1(X) 3 1) = 11t has (random) length I{(I(X)) =2X-X=X.In
general, the larger the length of the interval, the larger the coverage probability. Let
us formalize these notions.

Definition 1. Let Py, 0 € ©® C Ry, be the set of probability distributions of
an RV X. A family of subsets S(x) of ®, where S(x) depends on the observation x
but not on @, is called a family of random sets. If, in particular, ® € R and S(x)
is an interval (6(x), 8(x)), where 6(x) and 6(x) are functions of x alone (and not
6), we call S(X) a random interval with 8(X) and 6(X) as lower and upper bounds,
respectively. 8(X) may be —oo, and 6(X) may be +oco.

In a wide variety of inference problems, one is not interested in estimating the
parameter or testing some hypothesis concerning it. Rather, one wishes to establish
a lower or an upper bound, or both, for the real-valued parameter. For example, if X
is the time to failure of a piece of equipment, one may be interested in a lower bound
for the mean of X. If the RV X measures the toxicity of a drug, the concern is to find
an upper bound for the mean. Similarly, if the RV X measures the nicotine content
of a certain brand of cigarettes, one may be interested in determining an upper and a
lower bound for the average nicotine content of these cigarettes.

In this chapter we are interested in the problem of confidence estimation, namely,
that of finding a family of random sets S(x) for a parameter 8 such that for a given
o, 0 < a < 1 (usually small),

) Pe{iSX)20}>1—a forall @ € ©.
We restrict our attention mainly to the case where § € ® C R.
Definition 2, Letd € @ C R and 0 < « < 1. A function §(X) satisfying
) Pofo(X) <0}>1—a  forallf
is called a lower confidence bound for 8 at confidence level 1 — «. The quantity

inf Pp{o(X) <9
3 oot p{0(X) < 6}
is cailed the confidence coefficient.

Definition 3. A function @ that minimizes

“) Pofd(X) < 0’} foralld’ <6
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subject to (2) is known as a uniformly most accurate (UMA) lower confidence bound
for @ at confidence level 1 — c.

Remark 1. Suppose that X ~ Py and (2) holds. Then the smallest probability of
true coverage, Po{0(X) < 8) = P3{[8(X), 00) > 6} is 1 — a. The probability of
false (or incorrect) coverage is Pp{[6(X), 00) > 6’} = Ps{0(X) < 6’} for 6’ < 6.
According to Definition 3, among the class of all lower confidence bounds satisfying
(2), a UMA lower confidence bound has the smallest probability of false coverage.

Similar definitions are given for an upper confidence bound for ¢ and a UMA
upper confidence bound.

Definition 4. A family of subsets S(x) of ® € R is said to constitute a family
of confidence sets at confidence level 1 — ¢ if

5) Pp{S(X)20}>1 -« forall 0 € ©,

that is, the random set S(X) covers the true parameter value @ with probability
> 1 — a. A lower confidence bound corresponds to the special case where k = 1 and

(6) S(x) ={0: 6(x) <6 < oo}

and an upper confidence bound to the case where

) Sx) = {6:6(x) 2 6 > —o0}.
If S(x) is of the form

8) S(x) = @(x), 6(x))

we will call it a confidence interval at confidence level 1 — «, provided that

9) Pol0(X) <0 <0X))>1—a  foralld,
and the quantity
(10) irenf Pyl0(X) < 6 < 6(X)}

will be referred to as the confidence coefficient associated with the random interval.

Remark 2. We write S(X) > 0 to indicate that X, and hence S(X), is random
here and not 0, so the probability distribution referred to is that of X.

Remark 3. When X = x is the realization, the confidence interval (set) S(x) is
a fixed subset of ;. No probability is attached to S(x) itself since neither 6 nor
S(x) has a probability distribution. In fact, either S(x) covers @ or it does not, and
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we will never know which since @ is unknown. One can give a relative frequency
interpretation. If (1 —a)-level confidence sets for @ were computed a large number of
times, a fraction (approximately) 1 —a of these would contain the true (but unknown)
parameter value.

Definition 5. A family of (1 —a)-level confidence sets {S(x)} is said to be a UMA
family of confidence sets at level 1 — ¢ if

Po{S(X) contains @'} < Pg{S’(X) contains 6’}
for all @ # @’ and any (I — a)-level family of confidence sets §'(X).

Example 1. Let X1, X3, ..., X, be iid RVs, X; ~ N(u, o). Consider the in-
terval (X — ¢1, X 4 ¢3). In order for this to be a (1 — a)-level confidence interval,
we must have

PX—ci<p<X+c}>1—a,
which is the same as
Plu—ca<X<p+ci}>1—a.

Thus

o

P{_Q " X_uﬁ<ﬁﬁlzl~a.
o o

Since /n(X — u)/o ~ N(0, 1), we can choose c] and ¢; to have equality, namely,

c X - ¢
p[——zﬁ< “ﬁ<—‘«/ﬁ]=1—a,

o o o
provided that o is known. There are infinitely many such pairs of values (¢, ¢2). In
particular, an intuitively reasonable choice is ¢ = —c2 = ¢, say. In that case

c/n
= Za/ 2,
o

and the confidence interval is (X — (o/ ﬁ)za/z, X+ (/)2 /2). The length of
this interval is (20/4/n)zq/2. Given o and o, we can choose n to get a confidence
interval of a fixed length.

If o is not known, we have from

Pl—c; <Y—u<cl}zl—a
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that
X—u
S/J/n

and once again we can choose pairs of values (ci, ¢2) using a ¢-distribution withn—1
d.f. such that

Pl—%ﬁ< <%ﬁ]21——a,

S S S
In particular, if we take ¢; = —c2 = c, say, then
Jn
C—S_ = In—-1,a/2,

and (X —(S//Mtn—1,a/2, X +(S//M)tn-1,4/2), is a (1 ~a)-level confidence interval
for u. The length of this interval is (25//)tn—1 4 /2, which is no longer constant.
Therefore, we cannot choose n to get a fixed-width confidence interval of level 1 —a.
Indeed, the length of this interval can be quite large if o is large. Its expected length

18
) 9 2 I'(n/2)
— _t_ EsS=—t,- ’

which can be made as small as we please by choosing n large enough.

Example 2. In Example 1, suppose that we wish to find a confidence interval for
o2 instead when f is unknown. Consider the interval (cy 52, 02S2), ci,c2 > 0. We
have

P{c;S2 <o’ < czSz} >1—ea,

so that
52
—1 -1
P{c2 <——o'2 <¢ }zl—a,

Since (n — 1)S2/¢:r2 is Xz(n — 1), we can choose pairs of values (c1, ¢7) from the
tables of the chi-square distribution. In particular, we can choose cy, ¢ so that

2 2
PE_>-1_ =g:P S_<l
6?2 " ¢ 2 62 7 ¢

n—1

Then

n-—1

_ 2 2
= An_1,0/2 and = An-1,1—-ay2:

Ci 2
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((n -1DS? (- 1)S2)
2 2
Xn—t1,a/2 Xn—1,1-ay2
is a (1 — a)-level confidence interval for 02 whenever u is unknown. If i is known,
then

Thus

(X — )
Z'(—?E)— ~ x*(n).
]

Thus we can base the confidence interval on Y} (X; — w)?. Proceeding similarly, we
get a (1 — a)-level confidence interval as

(}:'{(x,- — w)? X~ u)z) '

»

2 2
Xn,ot/2 Xn,l——a/z

Next suppose that both i and o' are unknown and that we want a confidence set
for (i, 02). We have from Boole’s inequality

- S - S (n—1)8?% (n—1)8?
P {X — —=lp-1,a2 <M <X+ —=l1,0/2, ———— < ? < W
Vn va Xn—1.7/2 Xn—1,1-a3/2

-~ S — S
>1-P {X + ";tn—l,a;ﬂ SporX — —ty w2 = /L]

7 7
— 2 - 2

- P {————-———(Z D§ <olor e D5 > 02}
Xn—l,l—a2/2 Xn—l,a2/2

=1—a) —ay,

so that the Cartesian product,

n—0D8% (n-1s%
N NG

- S - 8
S(X) = (X - _“tn—l.ot]/Z’ X + "_tn~—1,ot]/2) X ( 3 s T3
Xn—ta3/2 Xn—11-ay/2

isa (1 — ay — a)-level confidence set for (i, 02).

11.3 METHODS OF FINDING CONFIDENCE INTERVALS

We now consider some common methods of constructing confidence sets. The most
common of these is the method of pivots..
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Definition 1. Let X ~ Pg. A random variable T (X, 0) is known as a pivot if the
distribution of T (X, @) does not depend on 6.

In many problems, especially in location and scale problems, pivots are easily
found. For example, in sampling from f(x — @), X(») — @ is a pivot and so is X —0.
In sampling from (1/0) f (x /o), a scale family, X(,)/0 is a pivot and so is X()/0,
and in sampling from (1/0) f((x — 8) /o), a location-scale family, X —-6)/S,isa
pivot, and so is (X(2) + X1y — 20)/S.

If the DF Fy of X; is continuous, then Fp(X;) ~ U[0, 1] and, in case of random
sampling, we can take

T(X,0) =[] FoX0),
i=1
or

n
—logT(X,6) = — ) _log Fy(X:)

i=1

as a pivot. Since Fp(X;) ~ UI0, 1], — log Fp(X;) ~ G(1, 1) and Z;’:l log Fo(X;)
~ G(n, 1). It follows that — Y ", log Fy(X;) is a pivot.

The following result gives a simple sufficient condition for a pivot to yield a con-
fidence interval for a real-valued parameter 6.

Theorem 1. Let T(X, ) be a pivot such that for each 8, T(X, ) is a statistic,
and as a function of 8, T is either strictly increasing or decreasing at each x € R,.
Let A € R be the range of T, and for every AL € A and x € R,, let the equation
A = T(x, 8) be solvable. Then one can construct a confidence interval for 6 at any
level.

Proof. let0 < o < 1. Then we can choose a pair of numbers A (a) and A> (o)
in A not necessarily unique such that

1) Poldi(a) < TX,0) < (@)} > 1~«a for all 6.

Since the distribution of T is independent of 6, it is clear that A; and A, are indepen-
dent of 8. Since, moreover, T is monotone in 6, we can solve the equations

) T(x,0) =Xxi() and T(x,0)=Aise)
for every x uniquely for 8. We have
(3) Poff(X) <6 <6(X)}>1—a  foralld,

where 8(X) < 8(X) are RVs. This completes the proof.
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Remark 1. The condition that A = T (X, ) be solvable will be satisfied if, for
example, T is continuous and strictly increasing or decreasing as a function of 6
in ©.

Note that in the continuous case (that is, when the DF of T is continuous) we can
find a confidence interval with equality on the right side of (1). In the discrete case,
however, this is usually not possible.

Remark 2. Relation (1) is valid even when the assumption of monotonicity of T’
in the theorem is dropped. In that case, inversion of the inequalities may yield a set
of intervals (random set) S(X) in © instead of a confidence interval.

Remark 3. The argument used in Theorem 1 can be extended to cover the multi-
parameter case, and the method will determine a confidence set for all the parameters
of a distribution.

Example 1. Let X1, X2,..., X, ~ N(u, o?2), where o is unknown and we seek
a (1 — a)-level confidence interval for u. Let us choose
X—u
S

TX, 1) = Jn,

where —)f, $2 are the usual sample statistics. The RV T(X, i) has Student’s ¢-
distribution with n — 1 d.f., which is independent of & and T (X, u), as a function
of i is monotone. We can clearly choose A1 (), Az2(a) (not necessarily uniquely) so
that

Pirm@) <TX, u) < a)}l=1—-« for all u.

Solving

A@) = ;“JE,

we get

- S e = S
wX) =X~ :/—r—lkz(a), nX) =X ﬁkl(a),

and a (1 — «)-level confidence interval is

— S — S
(X - ﬁlz(a), X — -ﬁll(a)> .

In practice, one chooses Az(a@) = —Aj (@) = th—1,0/2.
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Example 2. Let X, X2, ..., X, be iid with common PDF
fo(x) = exp{—(x — D)}, x>0 and Oelsewhere.

Then the joint PDF of X is

n
f(x;0) =exp (— Zx,- + n9) Iix)>01-

i=1
Clearly, T(X, 8) = X(1) — 6 is a pivot. We can choose A (), Ay(er) such that
Po{m@) <Xy —0 <hal@)}=1-a  forallg
which yields (X 1y —A2(e0), X1y —A1(a)) as a (1~a)-level confidence interval for 6.

Remark 4. In Example 1 we chose Ay = —Aj, whereas in Example 2 we did
not indicate how to choose the pair (A1, A7) from an infinite set of solutions to
Py {hi(a) < T(X, 8) < Aa(a)} = 1 —a. One choice is the equal-tails confidence in-
terval, which is arrived at by assigning probability r/2 to each tail of the distribution
of T. This means that we solve

% = Po{T(X, 0) < A1} = PIT(X,6) > Az).

In Example 1, symmetry of the distribution leads to the choice indicated. In Ex-
ample 2, Y = X1y — 6 has PDF

g(y) =nexp(-ny) fory>0
so we choose (A1, A2) from

Pg{X(])——9<A.1}= =P9{X(1)-—9>A.2},

N R

giving A2 (@) = (1/n) In{(a/2), and 11 (@) = —(1/n) In(1 —a/2). Yet another method
is to choose Aj, A2 in such a way that the resulting confidence interval has smallest
length. We discuss this method in Section 11.4.

We next consider the method of test inversion and explore the relationship be-
tween a test of hypothesis for a parameter 6 and confidence interval for 8. Consider
the following example.

Example 3. Let X1, X, ..., X, be asample from NV (u, a&) where gy is known.
In Example 11.2.1 we showed that

— 1 — 1
(X — —=2a200, X + “‘_‘Za/200)

Vn va
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is a (1 — a)-level confidence interval for p. If we define a test ¢ that rejects a value
of u = g if and only if 1o lies outside this interval; that is, if and only if

Vi IX — pol -
Teg 2

then

IX — ol

o0

and the test @ is a size « test of u = o against the alternatives p # wo.

Conversely, a family of -level tests for the hypothesis ;4 = o generates a family
of confidence intervals for 1 by simply taking, as the confidence interval for 1, the
set of those u for which one cannot reject . = puo.

Similarly, we can generate a family of a-level tests from a (1 — a)-level lower
(or upper) confidence bound. Suppose that we start with the (1 — a)-level lower
confidence bound X — z4(0g/+/n) for u. Then, by defining a test p(X) that rejects
W < o if and only if pg < X — za(00/+/n), we get an a-level test for a hypothesis
of the form u < ugp.

Example 3 is a special case of the duality principle proved in Theorem 2 below.
In the following we restrict attention to the case in which the rejection (acceptance)
region of the test is the indicator function of a (Borel-measurable) set, that is, we
consider only nonrandomized tests (and confidence intervals). For notational conve-
nience we write Hy(6p) for the hypothesis Hy: 6 = 6y and Hj (6p) for the alternative
hypothesis, which may be one- or two-sided.

Theorem 2. Let A(6p), 9y € ©, denote the region of acceptance of an «-level
test of Hy(6p). For each observation X = (x1, x2, . . . , Xz), let S(x) denote the set

C)) Sx)={0:xe A(©),6 € O}.

Then S(x) is a family of confidence sets for 8 at confidence level 1 —a. If, moreover,
A(Bp) is UMP for the problem (o, Ho(6p), Hi(6p)), then S(X) minimizes

5 Ps{S(X) >0’} for all 8 € H (")
among all (1 — a)-level families of confidence sets. That is, S(X) is UMA.
Proof. We have

(6) Sx)>6 if and only x € A(9),
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so that
Po{S(X) >0} = P{XcA@)} =1 ~a,
as asserted.
If $*(X) is any other family of (1 — «)-level confidence sets, let A*(9) =

{x: $*(x) > 6). Then

Py{X € A*@)) = Po{S*"X) 26} = 1 — o
and since A(Hp) is UMP for (a, Hp(6p), Hj(6p)), it follows that

Po{X € A*(8p)} = Pe{X € A(Op)} for any 6 € H;(6p).
Hence
Py(S*(X) 2 6o} > Po{X € A(60)} = Po{S(X) > 6o}

for all & € H;(6p). This completes the proof.

Example 4. Let X be an RV of the continuous type with one-parameter exponen-
tial PDF given by

fo(x) = exp[Q(O)T (x) + S'(x) + D@®)],

where Q(0) is a nondecreasing function of 6. Let Hy: 6 = 6 and Hj: 8 < 6. Then
the acceptance region of a UMP size « test of Hy is of the form

A(6g) = {x: T(X) > c(6p)}.
Since for 8 > 6/,
Py{T(X) < c(0)} = a = Po{T(X) < c(6)} < Pe({T(X) < c(8)},

c(#) may be chosen to be nondecreasing. (The last inequality follows because the
power of the UMP test is at least «, the size.) We have

Sx)=1{0:x€ A(O)},

so that S(x) is of the form (—oo, ¢~ 1(T(x))) or (—o0, c” /(T (x))], where ¢! is
defined by

¢ T (x)) = sup{6: c(6) < T(x)}.
]

In particular, if X1, X5, ..., X, is a sample from
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1 —X
_eX/8
fox) e , x>0,
0, otherwise,

then T(x) = Z;’:] x;; and for testing Hyg: 6 = 6y against H;: 8 < 6p, the UMP
acceptance region is of the form

A(Bo) = {x: Y oxz 6(90)} ,
i=1

where c(6p) is the unique solution of

0o yn—l
f e Vdy=1-a, O<a<l.
@)/ (n— D!

The UMA family of (1 — a)-level confidence sets is of the form
Sx)=1{6:x € A@9)}.

Inthecasen =1,

1 X
fy) = Gyl S d Sx)=10, ———|.
e =iog () and 00 [ ~log<1—a)]
Example 5. Let X3, X2, ... , X, be iid U(0, 6) RVs. In Problem 9.4.3 we asked
the reader to show that the test

1, xm>6 or xp <6oa'/",
¢(x) = { 0, otherwise

is UMP size « test of 6 = 0 against 8 # 6p. Then
ABo) = {x: 600r'/" < x(n) < 60}
and it follows that [x(y), X(-y@~ /"] is a (1 — )-level UMA confidence interval for 6.

The third method we consider is based on Bayesian analysis, where we take into
account any prior knowledge that the experimenter has about §. This is reflected in
the specification of the prior distribution 77(6) on ®. Under this setup the claims of
probability of coverage are based not on the distribution of X but on the conditional
distribution of @ given X = x, the posterior distribution of 6.

Let © be the parameter set, and let the observable RV X have PDF (PMF) fp(x).
Suppose that we consider 6 as an RV with distribution 7 (6) on ©. Then fp(x) can be
considered as the conditional PDF (PMF) of X, given that the RV 0 takes the value 6.
Note that we are using the same symbol for the RV # and the value that it assumes.
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We can determine the joint distribution of X and @, the marginal distribution of X,
and also the conditional distribution of 6, given X = x as usual. Thus the joint
distribution is given by

)] f(x,0) =n(0) fo(x),
and the marginal distribution of X by

_ 3> 7w(0) fo(x) if r is a PMF,

® 8@ =1 () fs00d6  ifisaPDE.

The conditional distribution of 6, given that x is observed, is given by

7(6) fo(x)

9 h® =
&) ©® 1x) 2 (%)

, g(x) > 0.

Given k(0 | X), it is easy to find functions /(x), u(x) such that
PIX) <0 <uX)}>1-—a,
where

JEh© 1% do,

(10) PilX) <8 <uX) | X=x}= [Z?h(g | %),

depending on whether k is a PDF or a PMF.

Definition 2. An interval (/(x), u(x)) that has probability at least 1 —a of includ-
ing 0 is called a (1 — ar)-level Bayes interval for 0. Also, I(x) and u(x) are called the
lower and upper limits of the interval.

One can similarly define one-sided Bayes intervals or (1 — «)-level lower and
upper Bayes limits.

Remark 5. 'We note that under the Bayesian setup, we can speak of the probabil-
ity that 6 lies in the interval (/(x), u#(x)) with probability 1 — « because [ and u are
computed based on the posterior distribution of 8 given x. To emphasize this distinc-
tion between Bayesian and classical analysis, some authors prefer the term credible
sets for Bayesian confidence sets.

Example 6. Let Xy, Xo,..., X, be iid N(u, 1), u € R, and let the a priori
distribution of x be A/(0, 1). Then from Example 8.8.6 we know that A(u | X) is

N Z'llxi 1
n+1’ n+1/’
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Thus a (1 — a)-level Bayesian confidence interval is

(nx __Za2 nx + Za/2 )
n+l Jnyln+l Jnii)'

A (1 —a)-level confidence interval for u (treating u as fixed) is a random interval

with value
- Za/2 _— . Zaf2
¥ — L, T4 ).
( vn ﬁJ

Thus the Bayesian interval is somewhat shorter in length. This is to be expected since
we assumed more in the Bayesian case.

Example 7. Let X1, X2, ..., X, beiid b(1, p) RVs, and let the prior distribution
on ® = (0, 1) be U(0, 1). A simple computation shows that the posterior PDF of p,
given x, is

prizi(l — pyrXix
h(plx) = B(Z'l'xi +1l,n—Y1xi+ 1)
0, otherwise,

O<p<i

Given a table of incomplete beta integrals and the observed value of Z'{ Xi, one
can easily construct a Bayesian confidence interval for p.

Finally, we consider some large-sample methods of constructing confidence in-
tervals. Suppose that 7(X) ~ AN (6, v(0)/n). Then

T(X)-6 1 .
V(@) ’

where Z ~ N(O,1). Suppose further that there is a statistic $(X) such that
S(X) —F> v(6). Then, by Slutsky’s theorem,

Jn

TX)—-96 N
7 SX)

and we can obtain an (approximate) (1 — «)-level confidence interval for 6 by invert-
ing the inequality

NG

X)) —
m = Zaf2:

Example 8. Let X;, X, ..., X, be iid RVs with finite variance. Also,let EX; =
p and EX? = 0% + u?. From the CLT it follows that

)f
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X-pr,
o/Jn ’

where Z ~ AN(0, 1). Suppose that we want a. (1 — «)-level confidence interval for

w when o is not known. Since S LN o, for large n the quantity [/n(X — p)/S] is
approximately normally distributed with mean O and variance 1. Hence, for large n,
we can find constants ¢y, ¢3 such that

X —

P[c1< Su\/ﬁ<cz}=l—a.

In particular, we can choose —c; = ¢2 = z4/7 t0 give

s N
X— —=2a/2, X+ —=2
(7= Freen ﬁ“/z)

as an approximate (1 — «)-level confidence interval for u.

Recall that if & is the MLE of 6 and the conditions of Theorem 8.7.4 or 8.7.5 are
satisfied (caution: see Remark 8.7.4), then

ﬁ%ﬁlf;]\[(o,l) asn — 00,

where

-1
ol = [Eg l——a log fo(X) 2] = _.1__
90 1(6)

Then we can invert the statement

6—6

PB{"‘Za/2< «/77<Za/2lzl—0l

to give an approximate (1 — «)-level confidence interval for 6.

Yet another possible procedure has universal applicability and hence can be used
for large or small samples. Unfortunately, however, this procedure usually yields
confidence intervals that are much too large in length. The method employs the well-
known Chebychev inequality (see Section 3.4):

P [|x _EX| < s\/var(X)] >1- 215

If § is an estimate of 8 (not necessarily unbiased) with finite variance 02(9), then by
Chebychev’s inequality
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P{|é—e| <e\/E(6A——0)2] > 1—8%.

It follows that
(é —eJEB —0)2,6+6\/E@6 — 9)2)

isa[l - (1 /52)]'leve] confidence interval for 8. Under some mild consistency con-

ditions one can replace the normalizing constant / [E é - £)?], which will be some

function A(6) of 8, by A(6).
Note that the estimator 6 need not have a limiting normal law.

Example 9. Let X1, X2,..., X, be iiq_b(l, p) RVs and it is required to find a
confidence interval for p. We know that EX = p, and

var(X) = var:X) _ p(l — p).

n

It follows that

P[I_}?—p|<e‘/~p——q—~—p)] > 1——12-.
n £

Since p(1 — p) < 1 we have

- 1 - 1 1
PiX————e<p<X+-—=cp>1——.

{ 2vm P 27 } &2
One can now choose ¢ and n or, if n is kept constant at a given number, ¢ to get

the desired level.
Actually, the confidence interval obtained above can be improved somewhat. We

note that
— 1— 1
P{lX—p|<e‘/££——p)}>1—-5,
n €

so that
= o &pl-p) 1
PIX-plf < —— >1——5.
n &

Now
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2 2
— £ =2
<1+fn—>p2—(2X+—n—>p+X <0.

This last inequality holds if and only if p lies between the two roots of the quadratic

equation
2 2
(1+ f;z_) - (27(_+ %)p+X2=O.

22X+ (2 /m) - \/ [2X + (£2/m)P — 4[1 + (62/mIX"

if and only if

The two roots are

p 201 + (2/m]
X (e%/n) - J4(s2/n)'i(1 —X) + (¢*/n?)
=1xrenm T 21 + (e2/n)]
and
22X+ (/m) + / [2X + (2/m)]? — 41 + (/)X
pr= 201 + (2/m)]
X (6¥/m) +4EemX( ) + (4 /n2)
T 1+ (e2/n) + 2[1 + (e2/n)]
It follows that

1
P{p1<p<pz}>1—€—2.

Note that when n is large,

- X(1-X - X1-X
e T A et

as one should expect in view of the fact that X — p with probability 1 and

,/[—f(l — X)/n) estimates JIp(1 — p)/n]. Alternatively, we could have used the
CLT (or large-sample property of the MLE) to arrive at the same result but with ¢
replaced by z4/2.

Example 10. Let Xy, X>,... ,X, bea sampleA from U (0, ). We seek a confi-
dence interval for the parameter 8. The estimator § = X, is the MLE of 8, which
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is also sufficient for 6. From Example 5, [X(n), @ ~//" X (] is 2 (1 — «)-level UMA
confidence interval for 6.

Let us now apply the method of Chebychev’s inequality to the same problem. We
have

n
EoXoo = o7°

and

2

_ 2= 2
Eo(Xm —0)" =96 n+Dn+2)

Thus

Xy — 0| /(n+l)(n+2) 1
P[ 0 > <e]>1—-€—§.

Since X(n) 5 0, we replace 6 by X,y in the denominator, and for moderately

large n,
p [X(ny — 6| /(n+1)(n+2)<8 >1__1__
X 2 g2
It follows that
V2 V2
Xy —eXpyp————m———-=xs, Xtn) + e X)) —m————
( R Y s Ty M RNV RSN CEY)

isal— (1/82) confidence interval for 8. Choosing 1 — (1/e%) =1 —a,0ore =

1/./a, and noting that 1/+/[(n + 1)(n + 2)] = 1/n for large n, and the fact that
with probability 1, X () < 6, we can use the approximate confidence interval

1 /2

In the examples given above we see that for a given confidence interval 1 — o, a
wide choice of confidence intervals is available. Clearly, the larger the interval, the
better the chance of trapping a true parameter value. Thus the interval (—o00, +00),
which ignores the data completely, will include the real-valued parameter 6 with
confidence level 1. However, the larger the confidence interval, the less meaningful
itis. Therefore, for a given confidence level 1 —q, it is desirable to choose the shortest

for 6.
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possible confidence interval. Since the length 8 — 6, in general, is a random variable,
one can show that a confidence interval of level 1 —a with uniformly minimum length
among all such intervals does not exist in most cases. The alternative, to minimize
Eg(6 — ), is also quite unsatisfactory. In the next section we consider the problem
of finding shortest-length confidence interval based on a suitable statistic.

PROBLEMS 11.3

1

10.

A sample of size 25 from a normal population with variance 81 produced a mean
of 81.2. Find a 0.95 level confidence interval for the mean 1.

. Let X be the mean of a random sample of size n from N'(u, 16). Find the small-

est sample size n such that (X—1, X+1) is 20.90 level confidence interval for W

. Let X3, X»,..., X, and Yy, Y2, ..., ¥, be independent random samples from

N1, 62 and N (u2, a?), respectively. Find a confidence interval for i1 — 2
at confidence level 1 — « when (a) o is known, and (b) ¢ is unknown.

. Two independent samples, each of size 7, from normal populations with com-

mon unknown variance o2 produced sample means 4.8 and 5.4 and sample
variances 8.38 and 7.62, respectively. Find a 0.95-level confidence interval for
11 — W2, the difference between the means of samples 1 and 2.

. In Problem 3, suppose that the first population has variance 012 and the second

population has variance 022, where both 012, and 022 are known. Find a (1 — «)-
level confidence interval for p; — u2. What happens if both 012 and 022 are
unknown and unequal?

. In Problem 35, find a confidence interval for the ratio 022 /012, both when w1, 17

are known and when w1, uy are unknown. What happens if either 1 or u; is
unknown but the other is known?

. Let Xy, Xa, ..., X, be asample from a G(1, 8) distribution. Find a confidence

interval for the parameter 8 with confidence level 1 — a.

. (a) Use the large-sample properties of the MLE to construct a (1 — a)-level

confidence interval for the parameter ¢ in each of the following cases:
(1) X1, X2, ..., X, is a sample from G(1, 1/6), and (ii) X1, X3, ..., X, is
a sample from P (9).

(b) In part (a), use Chebychev’s inequality to do the same.

For a sample of size 1 from the population

fe(x)=92—2(0—x), 0<x<8,

find a (1 — a)-level confidence interval for 6.

Let X1, X2, ... , X, be a sample from the uniform distribution on N points. Find
an upper (1 —a)-level confidence bound for N, based on max(X1, X2, ... , X,).
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11. In Example 10, find the smallest n such that the length of the (1 — «a)-level
confidence interval (X(,), @~ 1/"X(,)) < d, provided it is known that § < a,
where a is a known constant.

12. Let X and Y be independent RVs with PDFs Ae™** (x > 0) and ue ™" (y > 0),
respectively. Find a (1 — «)-level confidence region for (A, u) of the form
{(, w): A X + puY <k}

13. Let X1, X3,..., X, be a sample from N (u, 0?), where o2 is known. Find a
UMA (1 — o)-level upper confidence bound for .

14. Let X3, X2, ... , X, be a sample from a Poisson distribution with unknown pa-
rameter A. Assummg that A is a value assumed by a G(«, 8) RV, find a Bayes1an
confidence interval for A.

15. Let X1, X2, ..., X, be a sample from a geometric distribution with parameter
6. Assuming that  has a priori PDF that is given by the density of a B(«, B)
RY, find a Bayesian confidence interval for 6.

16. Let X1, X3,..., X, be a sample from A/ (u, 1), and suppose that the a priori
PDF for p is U(—1, 1). Find a Bayesian confidence interval for p.

114 SHORTEST-LENGTH CONFIDENCE INTERVALS

We have already remarked that we can increase the confidence level simply by taking
a longer-length confidence interval. Indeed, the worthless interval —oo < 8 < oo,
which simply says that 6 is a point on the real line, has confidence level 1. In prac-
tice, one would like to set the level at a given fixed number 1 —a (0 < o < 1) and,
if possible, construct an interval as short as possible among all confidence intervals
with the same level. Such an interval is desirable since it is more informative. We
have already remarked that shortest-length confidence intervals do not always exist.
In this section we investigate the possibility of constructing shortest-length confi-
dence intervals based on simple RVs. The discussion here is based on Guenther [34].
Theorem 11.3.1 is really the key to the following discussion.

Let X}, X2, ..., X, beasample fromaPDF fy(x),and T (X, X2, ..., X,,0) =
Tp be a pivot for 6. Also, let 11 = Ay (), A2 = Az(@) be chosen so that

1) Py < Ty < A}=1—q,
and suppose that (1) can be rewritten as
) PEX) <0 <6X)}=1-a.

For every Ty, A1 and A, can be chosen in many ways. We would like to choose
Ap and Ay so that & — @ is minimum. Such an interval is a (1 — «)-level shortest-
length confidence interval based on Tp. It may be possible, however, to find another
RV T that may yield an even shorter interval. Therefore, we are not asserting that
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the procedure, if it succeeds, will lead to a (1 — «)-level confidence interval that has
shortest length among all intervals of this level. For Ty we use the simplest RV that
is a function of a sufficient statistic and 6.

Remark 1. An alternative to minimizing the length of the confidence interval
is to minimize the expected length Eg {6(X) — 6(X)}. Unfortunately, this also is
quite unsatisfactory since, in general, there does not exist a member of the class of
all (1 — a)-level confidence intervals that minimizes Eg{f(X) — 6(X)} for all 6.
The procedures applied in finding the shortest-length confidence interval based on a
pivot are also applicable in finding an interval that minimizes the expected length. We
remark here that the restriction to unbiased confidence intervals is natural if we wish
to minimize E»[0(X) — 0(x)]. See Section 11.5 for definitions and further details.

.Exg_mple I Let X, Xa,..., X, be sample from N (u, o2), where o2 is known.
Then X is sufficient for x4 and take

X —

Then

g

N

= c
<u<X—a——].

Jn

The length of this confidence interval is (o//n)(b — a). We wish to minimize L =
(o//n)(b — a) such that

1—a=P[a<X~uﬁ<b|=P{Y—b

b b
D) ~ P(a) = —\/12—_7;—[ %12 gx =f e(x)dx =1 —a.
a a

Here ¢ and @, respectively, are the PDF and DF of an (0, 1) RV. Thus

dL _ o (db
da = \/n \da

and
db
w(b)d— —¢(a) =0,
a
giving
dL o [¢(a) ]
da  J/n|ob) '
The minimum occurs when ¢(a) = @(b), that is, when a = b or a = —b. Since

a = b does not satisfy
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b
f e®)dt =1—a,
a

we choose a = —b. The shortest confidence interval based on T}, is therefore the
equal-tails interval,

- g —_— g — a — g
(X +Zl—a/2—ﬁ', X +Za/2:/—';i) or (X - Za/ZW, X +Za/2ﬁ) .

The length of this interval is 2z¢/2(0/+/n). In this case we can plan our experiment
to give a prescribed confidence level and a prescribed length for the interval. To have
level 1 — « and length < 2d, we choose the smallest n such that

2
o , O

d>2un—= OF n>275h,—.
et u/ﬁ a/2 42

This can also be interpreted as follows. If we estimate 1 by X, taking a sample of
size n > zz /2(02/d2), we are 100(1 — «) percent confident that the error in our
estimate is at most d.

Example 2. In Example 1, suppose that ¢ is unknown. In that case we use

X —

T.%) = = Vn

as a pivot. T, has Student’s ¢-distribution with n — 1 d.f. Thus

1—a=P{a<X”“ﬁ<b}=P[Y—b

S -
—<;L<X—a—§—].

Vn vn

We wish to minimize

L=(b—a)——s—
n

7

subject to

b
f fo1)dt =1 —a,

where f;,_1(t) is the PDF of T,,. We have

dL db 0y db
i (E _ 1) om O - @ =0,
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giving
i]: - [fn—l(a) _ 1] _S_
da | fo-1(b) vn
It follows that the minimum occurs at a = —b (the other solution, a = b, is not

admissible). The shortest-length confidence interval based on 7}, is the equal-tails
interval,

S
Jn W) '
The length of this interval is 2t, 1 4/2(S/ /1), which, being random, may be arbi-
trarily large. Note that the same confidence interval minimizes the expected length

of the interval, namely, EL = (b — a)c,(0/+/n), where ¢, is a constant determined
from ES = c,o and the minimum expected length is 2t,_1 4/2¢n(0/+/n).

— S —
(X ~In—-1,0/27 X +Ih-1,0/2

Example 3. Let Xy, X5, ..., X, beiid N (u, 0%) RVs. Suppose that i is known
and we want a confidence interval for o%. The obvious choice for a pivot 7,2 is given
by

Y — w)?
s

T, 2(x) = p

which has a chi-square distribution with n d.f. Now

Ry .2
p[“z&_@.d}:l_a,

o2

so that

— Q.

P l Eio: - W _ o Xii- u2)} .
a

We wish to minimize
1 1\ &
L={--- § X; — w)?
(a b) 1 (X; ~ )
subject to

b
f fa@®)dt =1~a,

where f, is the PDF of a chi-square RV with n d.f. We have
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dL 1 db s
EZZ(? b2da)z( i K
and

db _ fala)

da ~ fa(b)’

so that

dL 1 1 fa <
-—=[*——f“q§}&—m2

1
which vanishes if

R AC)

a2 b2 fu(b)’

Numerical results giving values of @ and b to four significant places of decimals are
available (see Tate and Klett [111]). In practice, the simpler equal-tails interval,

(Z?;l(xi - IL) Zl I(Xz )

)
Xnap2 Xn 1—ay2

may be used.
If 1 is unknown, we use

SHX: — X)? 52
2
o

T2X) = =(n— 1);2.

asapivot. T2 hasa x 2(n—1) distribution. Proceeding as above, we can show that the
shortest-length confidence interval based on T,z is ((n — 1)(5%/b), (n — 1)(5%/a));
here a and b are a solution of

Pla<x*n—-1 <bl=1—a
and
a? fu_1(@) = b* fu_1(b),

where f,_1 is the PDF of a x*(n — 1) RV. Numerical solutions due to Tate and
Klett [111] may be used, but in practice, the simpler equal-tails confidence interval,

((n—l)s2 (n—1)52)
Xr%—l,a/2 X3—1,1—a/2

is employed.
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Example 4. Let Xy, X2, ..., X, be a sample from U (0, 8). Then X, is suffi-
cient for 6 with density

n—1

fn()’)=n—-y6n , O<y<§6.
The RV Ty = X(n)/6 has PDF
h(t) = nt"1, 0<t<l.

Using Ty as pivot, we see that the confidence interval is (X (»)/b, X(n)/a) with length
L = Xn)(1/a — 1/b). We minimize L subject to

b
f nt" ldt =bp"-a"=1-aq.

a

Now
Q-a)/"<b<1

and

dL 1da 1 attl — prtl
& =% (~ag @) =X (_'152-71— <0

so that the minimum occurs at » = 1. The shortest interval is therefore (X(,),
X(ny/ee!/"). Note that

1 1 ng (1 1
EL={-—-=-EXty=——|-—=},
(a b) @ n+1(a b)

which is minimized subject to
bV'—-a"=1—a,

where b = 1 and a = !/”. The expected length of the interval that minimizes EL
is [(1 /al/ ") — 1)[n6/(n + 1)], which is also the expected length of the shortest con-
fidence interval based on X(). Note that the length of the interval (X(,), ¢~ /"X (1))
goes to 0 as n — oo.

For some results on asymptotically shortest-length confidence intervals, we refer
the reader to Wilks [117, pp. 374-376].
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PROBLEMS 11.4

1.

Let Xy, X7, ..., X, be a sample from

)

folx) = 0

ifx > 86,
otherwise.

Find the shortest-length confidence interval for 6 at level 1 — ¢, based on a
sufficient statistic for 6.

. Let X1, X2,..., X, be a sample from G(1, 8). Find the shortest-length confi-

dence interval for 8 at level 1 — «, based on a sufficient statistic for 6.

. In Problem 11.3.9, how will you find the shortest-length confidence interval for

@ at level 1 — « based on the statistic X/67?

. Let T(X, ) be a pivot of the form T(X, 0) = T1(X) — 6. Show how one can

construct a confidence interval for 6 with fixed width d and maximum possi-
ble confidence coefficient. In particular, construct a confidence interval that has
fixed width d and maximum possible confidence coefficient for the mean 1 of
a normal population with variance 1. Find the smallest size n for which this
confidence interval has a confidence coefficient > 1 — o. Repeat the above in
sampling from an exponential PDF

fu(x)=e""" forx>p and f,(x)=0 forx <p.

(Desu [20])

. Let X1, X3, ..., X, be a random sample from

1 _
fe(x)=5§exp(%—l), xeR, 6>0.
Find the shortest-length (1 — «)-level confidence interval for 8, based on the
sufficient statistic Y ;_; |X;|.

In Example 4, let R = X,) — X(1). Find a (1 — a)-level confidence interval for
# of the form (R, R/c). Compare the expected length of this interval to the one
computed in Example 4.

. Let Xj, X»,..., X, be a random sample from a Pareto PDF f3(x) = 0/x2,

x > 0, and = 0 for x < 0. Show that the shortest-length confidence interval for
6 based on Xy is (X(yee!/”, X1y). (Use 8/ X (1) as a pivot.)

. Let X1, X2, ..., X, be a sample from PDF fg(x) = 1/(6 —61), 61 < x <

62, 61 < 6, and = 0 otherwise. Let R = X4y — X(1). Using R/(62 — 61) as
a pivot for estimating 6, — 61, show that the shortest-length confidence interval
is of the form (R, R/c), where ¢ is determined from the level as a solution of
AN —NDe—nl+a=0. (Ferentinos [24])
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11.5 UNBIASED AND EQUIVARIANT CONFIDENCE INTERVALS

In Section 11.3 we studied test inversion as one of the methods of constructing con-
fidence intervals. We showed that UMP tests lead to UMA confidence intervals. In
Chapter 9 we saw that UMP tests generally do not exist. In such situations we either
restrict consideration to smaller subclasses of tests by requiring that the test functions
have some desirable properties, or we restrict the class of alternatives to those near
the null parameter values. In this section we follow a similar approach in constructing
confidence intervals.

Definition 1. A family {S(x)} of confidence sets for a parameter @ is said to be
unbiased at confidence level 1 — o if

nH Py{S(X) contains 6} > 1 — «
and
2) Ps{S(X) contains 8’} <1 —a foralld, &' e ®, 0 #46.

If $(X) is an interval satisfying (1) and (2), we call it a (1 — «)-level unbiased con-
fidence interval. If a family of unbiased confidence sets at level 1 — « is UMA in
the class of all (1 — «)-level unbiased confidence sets, we call it a UMA unbiased
(UMAU) family of confidence sets at level 1 —«. In other words, if $*(x) satisfies (1)
and (2) and minimizes

Py{S(X) contains 8’} forg, 0 e®, 0#6

among all unbiased families of confidence sets S(X) at level 1 — «, then S*(X) is a
UMAU family of confidence sets at level 1 — a.

Remark 1. Definition 1 says that a family S(X) of confidence sets for a parame-
ter @ is unbiased at level 1 — « if the probability of true coverage is at least 1 — & and
that of false coverage is at most 1 — «. In other words, S(X) traps a true parameter
value more often than it does a false one.

Theorem 1. Let A(