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Preface
The language and concepts of matrix theory and, more generally, of linear
algebra have come into widespread usage in the social and natural sciences,
computer science, and statistics. In addition, linear algebra continues to be
of great importance in modern treatments of geometry and analysis.

The primary purpose of this fourth edition of Linear Algebra is to present
a careful treatment of the principal topics of linear algebra and to illustrate
the power of the subject through a variety of applications. Our major thrust
emphasizes the symbiotic relationship between linear transformations and
matrices. However, where appropriate, theorems are stated in the more gen-
eral infinite-dimensional case. For example, this theory is applied to finding
solutions to a homogeneous linear differential equation and the best approx-
imation by a trigonometric polynomial to a continuous function.

Although the only formal prerequisite for this book is a one-year course
in calculus, it requires the mathematical sophistication of typical junior and
senior mathematics majors. This book is especially suited for a second course
in linear algebra that emphasizes abstract vector spaces, although it can be
used in a first course with a strong theoretical emphasis.

The book is organized to permit a number of different courses (ranging
from three to eight semester hours in length) to be taught from it. The
core material (vector spaces, linear transformations and matrices, systems of
linear equations, determinants, diagonalization, and inner product spaces) is
found in Chapters 1 through 5 and Sections 6.1 through 6.5. Chapters 6 and
7, on inner product spaces and canonical forms, are completely independent
and may be studied in either order. In addition, throughout the book are
applications to such areas as differential equations, economics, geometry, and
physics. These applications are not central to the mathematical development,
however, and may be excluded at the discretion of the instructor.

We have attempted to make it possible for many of the important topics
of linear algebra to be covered in a one-semester course. This goal has led
us to develop the major topics with fewer preliminaries than in a traditional
approach. (Our treatment of the Jordan canonical form, for instance, does
not require any theory of polynomials.) The resulting economy permits us to
cover the core material of the book (omitting many of the optional sections
and a detailed discussion of determinants) in a one-semester four-hour course
for students who have had some prior exposure to linear algebra.

Chapter 1 of the book presents the basic theory of vector spaces: sub-
spaces, linear combinations, linear dependence and independence, bases, and
dimension. The chapter concludes with an optional section in which we prove

ix



x Preface

that every infinite-dimensional vector space has a basis.
Linear transformations and their relationship to matrices are the subject

of Chapter 2. We discuss the null space and range of a linear transformation,
matrix representations of a linear transformation, isomorphisms, and change
of coordinates. Optional sections on dual spaces and homogeneous linear
differential equations end the chapter.

The application of vector space theory and linear transformations to sys-
tems of linear equations is found in Chapter 3. We have chosen to defer this
important subject so that it can be presented as a consequence of the pre-
ceding material. This approach allows the familiar topic of linear systems to
illuminate the abstract theory and permits us to avoid messy matrix computa-
tions in the presentation of Chapters 1 and 2. There are occasional examples
in these chapters, however, where we solve systems of linear equations. (Of
course, these examples are not a part of the theoretical development.) The
necessary background is contained in Section 1.4.

Determinants, the subject of Chapter 4, are of much less importance than
they once were. In a short course (less than one year), we prefer to treat
determinants lightly so that more time may be devoted to the material in
Chapters 5 through 7. Consequently we have presented two alternatives in
Chapter 4—a complete development of the theory (Sections 4.1 through 4.3)
and a summary of important facts that are needed for the remaining chapters
(Section 4.4). Optional Section 4.5 presents an axiomatic development of the
determinant.

Chapter 5 discusses eigenvalues, eigenvectors, and diagonalization. One of
the most important applications of this material occurs in computing matrix
limits. We have therefore included an optional section on matrix limits and
Markov chains in this chapter even though the most general statement of some
of the results requires a knowledge of the Jordan canonical form. Section 5.4
contains material on invariant subspaces and the Cayley–Hamilton theorem.

Inner product spaces are the subject of Chapter 6. The basic mathe-
matical theory (inner products; the Gram–Schmidt process; orthogonal com-
plements; the adjoint of an operator; normal, self-adjoint, orthogonal and
unitary operators; orthogonal projections; and the spectral theorem) is con-
tained in Sections 6.1 through 6.6. Sections 6.7 through 6.11 contain diverse
applications of the rich inner product space structure.

Canonical forms are treated in Chapter 7. Sections 7.1 and 7.2 develop
the Jordan canonical form, Section 7.3 presents the minimal polynomial, and
Section 7.4 discusses the rational canonical form.

There are five appendices. The first four, which discuss sets, functions,
fields, and complex numbers, respectively, are intended to review basic ideas
used throughout the book. Appendix E on polynomials is used primarily
in Chapters 5 and 7, especially in Section 7.4. We prefer to cite particular
results from the appendices as needed rather than to discuss the appendices
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independently.
The following diagram illustrates the dependencies among the various

chapters.

Chapter 1

�
Chapter 2

�
Chapter 3

�
Sections 4.1–4.3
or Section 4.4

�
Sections 5.1 and 5.2 � Chapter 6

�
Section 5.4

�
Chapter 7

One final word is required about our notation. Sections and subsections
labeled with an asterisk (∗) are optional and may be omitted as the instructor
sees fit. An exercise accompanied by the dagger symbol (†) is not optional,
however—we use this symbol to identify an exercise that is cited in some later
section that is not optional.

DIFFERENCES BETWEEN THE THIRD AND FOURTH EDITIONS

The principal content change of this fourth edition is the inclusion of a
new section (Section 6.7) discussing the singular value decomposition and
the pseudoinverse of a matrix or a linear transformation between finite-
dimensional inner product spaces. Our approach is to treat this material as
a generalization of our characterization of normal and self-adjoint operators.

The organization of the text is essentially the same as in the third edition.
Nevertheless, this edition contains many significant local changes that im-
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prove the book. Section 5.1 (Eigenvalues and Eigenvectors) has been stream-
lined, and some material previously in Section 5.1 has been moved to Sec-
tion 2.5 (The Change of Coordinate Matrix). Further improvements include
revised proofs of some theorems, additional examples, new exercises, and
literally hundreds of minor editorial changes.

We are especially indebted to Jane M. Day (San Jose State University)
for her extensive and detailed comments on the fourth edition manuscript.
Additional comments were provided by the following reviewers of the fourth
edition manuscript: Thomas Banchoff (Brown University), Christopher Heil
(Georgia Institute of Technology), and Thomas Shemanske (Dartmouth Col-
lege).

To find the latest information about this book, consult our web site on
the World Wide Web. We encourage comments, which can be sent to us by
e-mail or ordinary post. Our web site and e-mail addresses are listed below.

web site: http://www.math.ilstu.edu/linalg

e-mail: linalg@math.ilstu.edu

Stephen H. Friedberg
Arnold J. Insel
Lawrence E. Spence

http://www.math.ilstu.edu/linalg


1
Vector Spaces

1.1 Introduction
1.2 Vector Spaces
1.3 Subspaces
1.4 Linear Combinations and Systems of Linear Equations
1.5 Linear Dependence and Linear Independence
1.6 Bases and Dimension
1.7* Maximal Linearly Independent Subsets

1.1 INTRODUCTION

Many familiar physical notions, such as forces, velocities,1 and accelerations,
involve both a magnitude (the amount of the force, velocity, or acceleration)
and a direction. Any such entity involving both magnitude and direction is
called a “vector.” A vector is represented by an arrow whose length denotes
the magnitude of the vector and whose direction represents the direction of
the vector. In most physical situations involving vectors, only the magnitude
and direction of the vector are significant; consequently, we regard vectors
with the same magnitude and direction as being equal irrespective of their
positions. In this section the geometry of vectors is discussed. This geometry
is derived from physical experiments that test the manner in which two vectors
interact.

Familiar situations suggest that when two like physical quantities act si-
multaneously at a point, the magnitude of their effect need not equal the sum
of the magnitudes of the original quantities. For example, a swimmer swim-
ming upstream at the rate of 2 miles per hour against a current of 1 mile per
hour does not progress at the rate of 3 miles per hour. For in this instance
the motions of the swimmer and current oppose each other, and the rate of
progress of the swimmer is only 1 mile per hour upstream. If, however, the

1The word velocity is being used here in its scientific sense—as an entity having
both magnitude and direction. The magnitude of a velocity (without regard for the
direction of motion) is called its speed.

1



2 Chap. 1 Vector Spaces

swimmer is moving downstream (with the current), then his or her rate of
progress is 3 miles per hour downstream.

Experiments show that if two like quantities act together, their effect is
predictable. In this case, the vectors used to represent these quantities can be
combined to form a resultant vector that represents the combined effects of
the original quantities. This resultant vector is called the sum of the original
vectors, and the rule for their combination is called the parallelogram law.
(See Figure 1.1.)
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x + y
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Q

Figure 1.1

Parallelogram Law for Vector Addition. The sum of two vectors
x and y that act at the same point P is the vector beginning at P that is
represented by the diagonal of parallelogram having x and y as adjacent sides.

Since opposite sides of a parallelogram are parallel and of equal length, the
endpoint Q of the arrow representing x + y can also be obtained by allowing
x to act at P and then allowing y to act at the endpoint of x. Similarly, the
endpoint of the vector x + y can be obtained by first permitting y to act at
P and then allowing x to act at the endpoint of y. Thus two vectors x and
y that both act at the point P may be added “tail-to-head”; that is, either
x or y may be applied at P and a vector having the same magnitude and
direction as the other may be applied to the endpoint of the first. If this is
done, the endpoint of the second vector is the endpoint of x + y.

The addition of vectors can be described algebraically with the use of
analytic geometry. In the plane containing x and y, introduce a coordinate
system with P at the origin. Let (a1, a2) denote the endpoint of x and (b1, b2)
denote the endpoint of y. Then as Figure 1.2(a) shows, the endpoint Q of x+y
is (a1 + b1, a2 + b2). Henceforth, when a reference is made to the coordinates
of the endpoint of a vector, the vector should be assumed to emanate from
the origin. Moreover, since a vector beginning at the origin is completely
determined by its endpoint, we sometimes refer to the point x rather than
the endpoint of the vector x if x is a vector emanating from the origin.

Besides the operation of vector addition, there is another natural operation
that can be performed on vectors—the length of a vector may be magnified
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or contracted. This operation, called scalar multiplication, consists of mul-
tiplying the vector by a real number. If the vector x is represented by an
arrow, then for any real number t, the vector tx is represented by an arrow in
the same direction if t ≥ 0 and in the opposite direction if t < 0. The length
of the arrow tx is |t| times the length of the arrow x. Two nonzero vectors
x and y are called parallel if y = tx for some nonzero real number t. (Thus
nonzero vectors having the same or opposite directions are parallel.)

To describe scalar multiplication algebraically, again introduce a coordi-
nate system into a plane containing the vector x so that x emanates from the
origin. If the endpoint of x has coordinates (a1, a2), then the coordinates of
the endpoint of tx are easily seen to be (ta1, ta2). (See Figure 1.2(b).)

The algebraic descriptions of vector addition and scalar multiplication for
vectors in a plane yield the following properties:

1. For all vectors x and y, x + y = y + x.
2. For all vectors x, y, and z, (x + y) + z = x + (y + z).
3. There exists a vector denoted 0 such that x + 0 = x for each vector x.
4. For each vector x, there is a vector y such that x + y = 0 .
5. For each vector x, 1x = x.
6. For each pair of real numbers a and b and each vector x, (ab)x = a(bx).
7. For each real number a and each pair of vectors x and y, a(x + y) =

ax + ay.
8. For each pair of real numbers a and b and each vector x, (a + b)x =

ax + bx.

Arguments similar to the preceding ones show that these eight properties,
as well as the geometric interpretations of vector addition and scalar multipli-
cation, are true also for vectors acting in space rather than in a plane. These
results can be used to write equations of lines and planes in space.



4 Chap. 1 Vector Spaces

Consider first the equation of a line in space that passes through two
distinct points A and B. Let O denote the origin of a coordinate system in
space, and let u and v denote the vectors that begin at O and end at A and
B, respectively. If w denotes the vector beginning at A and ending at B, then
“tail-to-head” addition shows that u+w = v, and hence w = v−u, where −u
denotes the vector (−1)u. (See Figure 1.3, in which the quadrilateral OABC
is a parallelogram.) Since a scalar multiple of w is parallel to w but possibly
of a different length than w, any point on the line joining A and B may be
obtained as the endpoint of a vector that begins at A and has the form tw
for some real number t. Conversely, the endpoint of every vector of the form
tw that begins at A lies on the line joining A and B. Thus an equation of the
line through A and B is x = u + tw = u + t(v − u), where t is a real number
and x denotes an arbitrary point on the line. Notice also that the endpoint
C of the vector v − u in Figure 1.3 has coordinates equal to the difference of
the coordinates of B and A.

�
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w

Figure 1.3

Example 1

Let A and B be points having coordinates (−2, 0, 1) and (4, 5, 3), respectively.
The endpoint C of the vector emanating from the origin and having the same
direction as the vector beginning at A and terminating at B has coordinates
(4, 5, 3)− (−2, 0, 1) = (6, 5, 2). Hence the equation of the line through A and
B is

x = (−2, 0, 1) + t(6, 5, 2). ♦

Now let A, B, and C denote any three noncollinear points in space. These
points determine a unique plane, and its equation can be found by use of our
previous observations about vectors. Let u and v denote vectors beginning at
A and ending at B and C, respectively. Observe that any point in the plane
containing A, B, and C is the endpoint S of a vector x beginning at A and
having the form su+ tv for some real numbers s and t. The endpoint of su is
the point of intersection of the line through A and B with the line through S
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parallel to the line through A and C. (See Figure 1.4.) A similar procedure
locates the endpoint of tv. Moreover, for any real numbers s and t, the vector
su + tv lies in the plane containing A, B, and C. It follows that an equation
of the plane containing A, B, and C is

x = A + su + tv,

where s and t are arbitrary real numbers and x denotes an arbitrary point in
the plane.

Example 2

Let A, B, and C be the points having coordinates (1, 0, 2), (−3,−2, 4), and
(1, 8,−5), respectively. The endpoint of the vector emanating from the origin
and having the same length and direction as the vector beginning at A and
terminating at B is

(−3,−2, 4) − (1, 0, 2) = (−4,−2, 2).

Similarly, the endpoint of a vector emanating from the origin and having the
same length and direction as the vector beginning at A and terminating at C
is (1, 8,−5)−(1, 0, 2) = (0, 8,−7). Hence the equation of the plane containing
the three given points is

x = (1, 0, 2) + s(−4,−2, 2) + t(0, 8,−7). ♦

Any mathematical structure possessing the eight properties on page 3 is
called a vector space. In the next section we formally define a vector space
and consider many examples of vector spaces other than the ones mentioned
above.

EXERCISES

1. Determine whether the vectors emanating from the origin and termi-
nating at the following pairs of points are parallel.
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(a) (3, 1, 2) and (6, 4, 2)
(b) (−3, 1, 7) and (9,−3,−21)
(c) (5,−6, 7) and (−5, 6,−7)
(d) (2, 0,−5) and (5, 0,−2)

2. Find the equations of the lines through the following pairs of points in
space.

(a) (3,−2, 4) and (−5, 7, 1)
(b) (2, 4, 0) and (−3,−6, 0)
(c) (3, 7, 2) and (3, 7,−8)
(d) (−2,−1, 5) and (3, 9, 7)

3. Find the equations of the planes containing the following points in space.

(a) (2,−5,−1), (0, 4, 6), and (−3, 7, 1)
(b) (3,−6, 7), (−2, 0,−4), and (5,−9,−2)
(c) (−8, 2, 0), (1, 3, 0), and (6,−5, 0)
(d) (1, 1, 1), (5, 5, 5), and (−6, 4, 2)

4. What are the coordinates of the vector 0 in the Euclidean plane that
satisfies property 3 on page 3? Justify your answer.

5. Prove that if the vector x emanates from the origin of the Euclidean
plane and terminates at the point with coordinates (a1, a2), then the
vector tx that emanates from the origin terminates at the point with
coordinates (ta1, ta2).

6. Show that the midpoint of the line segment joining the points (a, b) and
(c, d) is ((a + c)/2, (b + d)/2).

7. Prove that the diagonals of a parallelogram bisect each other.

1.2 VECTOR SPACES

In Section 1.1, we saw that with the natural definitions of vector addition and
scalar multiplication, the vectors in a plane satisfy the eight properties listed
on page 3. Many other familiar algebraic systems also permit definitions of
addition and scalar multiplication that satisfy the same eight properties. In
this section, we introduce some of these systems, but first we formally define
this type of algebraic structure.

Definitions. A vector space (or linear space) V over a field 2 F
consists of a set on which two operations (called addition and scalar mul-
tiplication, respectively) are defined so that for each pair of elements x, y,

2Fields are discussed in Appendix C.
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in V there is a unique element x + y in V, and for each element a in F and
each element x in V there is a unique element ax in V, such that the following
conditions hold.

(VS 1) For all x, y in V, x + y = y + x (commutativity of addition).

(VS 2) For all x, y, z in V, (x + y) + z = x + (y + z) (associativity of
addition).

(VS 3) There exists an element in V denoted by 0 such that x+ 0 = x for
each x in V.

(VS 4) For each element x in V there exists an element y in V such that

x + y = 0 .

(VS 5) For each element x in V, 1x = x.

(VS 6) For each pair of elements a, b in F and each element x in V,

(ab)x = a(bx).

(VS 7) For each element a in F and each pair of elements x, y in V,

a(x + y) = ax + ay.

(VS 8) For each pair of elements a, b in F and each element x in V,

(a + b)x = ax + bx.

The elements x + y and ax are called the sum of x and y and the product
of a and x, respectively.

The elements of the field F are called scalars and the elements of the
vector space V are called vectors. The reader should not confuse this use of
the word “vector” with the physical entity discussed in Section 1.1: the word
“vector” is now being used to describe any element of a vector space.

A vector space is frequently discussed in the text without explicitly men-
tioning its field of scalars. The reader is cautioned to remember, however,
that every vector space is regarded as a vector space over a given field, which
is denoted by F . Occasionally we restrict our attention to the fields of real
and complex numbers, which are denoted R and C, respectively.

Observe that (VS 2) permits us to unambiguously define the addition of
any finite number of vectors (without the use of parentheses).

In the remainder of this section we introduce several important examples
of vector spaces that are studied throughout this text. Observe that in de-
scribing a vector space, it is necessary to specify not only the vectors but also
the operations of addition and scalar multiplication.

An object of the form (a1, a2, . . . , an), where the entries a1, a2, . . . , an are
elements of a field F , is called an n-tuple with entries from F . The elements
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a1, a2, . . . , an are called the entries or components of the n-tuple. Two
n-tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) with entries from a field F are
called equal if ai = bi for i = 1, 2, . . . , n.

Example 1

The set of all n-tuples with entries from a field F is denoted by Fn. This set is a
vector space over F with the operations of coordinatewise addition and scalar
multiplication; that is, if u = (a1, a2, . . . , an) ∈ Fn, v = (b1, b2 . . . , bn) ∈ Fn,
and c ∈ F , then

u + v = (a1 + b1, a2 + b2, . . . , an + bn) and cu = (ca1, ca2, . . . , can).

Thus R3 is a vector space over R. In this vector space,

(3,−2, 0) + (−1, 1, 4) = (2,−1, 4) and − 5(1,−2, 0) = (−5, 10, 0).

Similarly, C2 is a vector space over C. In this vector space,

(1 + i, 2) + (2 − 3i, 4i) = (3 − 2i, 2 + 4i) and i(1 + i, 2) = (−1 + i, 2i).

Vectors in Fn may be written as column vectors⎛⎜⎜⎜⎝
a1

a2

...
an

⎞⎟⎟⎟⎠
rather than as row vectors (a1, a2, . . . , an). Since a 1-tuple whose only entry
is from F can be regarded as an element of F , we usually write F rather than
F1 for the vector space of 1-tuples with entry from F . ♦

An m×n matrix with entries from a field F is a rectangular array of the
form ⎛⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠ ,

where each entry aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is an element of F . We
call the entries aij with i = j the diagonal entries of the matrix. The
entries ai1, ai2, . . . , ain compose the ith row of the matrix, and the entries
a1j , a2j , . . . , amj compose the j th column of the matrix. The rows of the
preceding matrix are regarded as vectors in Fn, and the columns are regarded
as vectors in Fm. The m× n matrix in which each entry equals zero is called
the zero matrix and is denoted by O.



Sec. 1.2 Vector Spaces 9

In this book, we denote matrices by capital italic letters (e.g., A, B, and
C), and we denote the entry of a matrix A that lies in row i and column j by
Aij . In addition, if the number of rows and columns of a matrix are equal,
the matrix is called square.

Two m × n matrices A and B are called equal if all their corresponding
entries are equal, that is, if Aij = Bij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2

The set of all m×n matrices with entries from a field F is a vector space, which
we denote by Mm×n(F ), with the following operations of matrix addition
and scalar multiplication: For A, B ∈ Mm×n(F ) and c ∈ F ,

(A + B)ij = Aij + Bij and (cA)ij = cAij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. For instance,(
2 0 −1
1 −3 4

)
+
(−5 −2 6

3 4 −1

)
=
(−3 −2 5

4 1 3

)
and

−3
(

1 0 −2
−3 2 3

)
=
(−3 0 6

9 −6 −9

)
in M2×3(R). ♦
Example 3

Let S be any nonempty set and F be any field, and let F(S, F ) denote the
set of all functions from S to F . Two functions f and g in F(S, F ) are called
equal if f(s) = g(s) for each s ∈ S. The set F(S, F ) is a vector space with
the operations of addition and scalar multiplication defined for f, g ∈ F(S, F )
and c ∈ F by

(f + g)(s) = f(s) + g(s) and (cf)(s) = c[f(s)]

for each s ∈ S. Note that these are the familiar operations of addition and
scalar multiplication for functions used in algebra and calculus. ♦

A polynomial with coefficients from a field F is an expression of the form

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0,

where n is a nonnegative integer and each ak, called the coefficient of xk, is
in F . If f(x) = 0 , that is, if an = an−1 = · · · = a0 = 0, then f(x) is called
the zero polynomial and, for convenience, its degree is defined to be −1;
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otherwise, the degree of a polynomial is defined to be the largest exponent
of x that appears in the representation

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

with a nonzero coefficient. Note that the polynomials of degree zero may be
written in the form f(x) = c for some nonzero scalar c. Two polynomials,

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

and

g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0,

are called equal if m = n and ai = bi for i = 0, 1, . . . , n.
When F is a field containing infinitely many scalars, we usually regard

a polynomial with coefficients from F as a function from F into F . (See
page 569.) In this case, the value of the function

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

at c ∈ F is the scalar

f(c) = ancn + an−1c
n−1 + · · · + a1c + a0.

Here either of the notations f or f(x) is used for the polynomial function

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0.

Example 4

Let

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

and

g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0

be polynomials with coefficients from a field F . Suppose that m ≤ n, and
define bm+1 = bm+2 = · · · = bn = 0. Then g(x) can be written as

g(x) = bnxn + bn−1x
n−1 + · · · + b1x + b0.

Define

f(x) + g(x) = (an + bn)xn+(an−1+ bn−1)xn−1+· · ·+(a1 + b1)x+(a0 + b0)

and for any c ∈ F , define

cf(x) = canxn + can−1x
n−1 + · · · + ca1x + ca0.

With these operations of addition and scalar multiplication, the set of all
polynomials with coefficients from F is a vector space, which we denote by
P(F ). ♦
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We will see in Exercise 23 of Section 2.4 that the vector space defined in
the next example is essentially the same as P(F ).

Example 5

Let F be any field. A sequence in F is a function σ from the positive integers
into F . In this book, the sequence σ such that σ(n) = an for n = 1, 2, . . . is
denoted {an}. Let V consist of all sequences {an} in F that have only a finite
number of nonzero terms an. If {an} and {bn} are in V and t ∈ F , define

{an} + {bn} = {an + bn} and t{an} = {tan}.

With these operations V is a vector space. ♦
Our next two examples contain sets on which addition and scalar multi-

plication are defined, but which are not vector spaces.

Example 6

Let S = {(a1, a2) : a1, a2 ∈ R}. For (a1, a2), (b1, b2) ∈ S and c ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2 − b2) and c(a1, a2) = (ca1, ca2).

Since (VS 1), (VS 2), and (VS 8) fail to hold, S is not a vector space with
these operations. ♦
Example 7

Let S be as in Example 6. For (a1, a2), (b1, b2) ∈ S and c ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, 0) and c(a1, a2) = (ca1, 0).

Then S is not a vector space with these operations because (VS 3) (hence
(VS 4)) and (VS 5) fail. ♦

We conclude this section with a few of the elementary consequences of the
definition of a vector space.

Theorem 1.1 (Cancellation Law for Vector Addition). If x, y,
and z are vectors in a vector space V such that x + z = y + z, then x = y.

Proof. There exists a vector v in V such that z + v = 0 (VS 4). Thus

x = x + 0 = x + (z + v) = (x + z) + v

= (y + z) + v = y + (z + v) = y + 0 = y

by (VS 2) and (VS 3).

Corollary 1. The vector 0 described in (VS 3) is unique.
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Proof. Exercise.

Corollary 2. The vector y described in (VS 4) is unique.

Proof. Exercise.

The vector 0 in (VS 3) is called the zero vector of V, and the vector y in
(VS 4) (that is, the unique vector such that x+y = 0 ) is called the additive
inverse of x and is denoted by −x.

The next result contains some of the elementary properties of scalar mul-
tiplication.

Theorem 1.2. In any vector space V, the following statements are true:
(a) 0x = 0 for each x ∈ V.
(b) (−a)x = −(ax) = a(−x) for each a ∈ F and each x ∈ V.
(c) a0 = 0 for each a ∈ F .

Proof. (a) By (VS 8), (VS 3), and (VS 1), it follows that

0x + 0x = (0 + 0)x = 0x = 0x + 0 = 0 + 0x.

Hence 0x = 0 by Theorem 1.1.
(b) The vector −(ax) is the unique element of V such that ax+[−(ax)] =

0 . Thus if ax+(−a)x = 0 , Corollary 2 to Theorem 1.1 implies that (−a)x =
−(ax). But by (VS 8),

ax + (−a)x = [a + (−a)]x = 0x = 0

by (a). Consequently (−a)x = −(ax). In particular, (−1)x = −x. So,
by (VS 6),

a(−x) = a[(−1)x] = [a(−1)]x = (−a)x.

The proof of (c) is similar to the proof of (a).

EXERCISES

1. Label the following statements as true or false.
(a) Every vector space contains a zero vector.
(b) A vector space may have more than one zero vector.
(c) In any vector space, ax = bx implies that a = b.
(d) In any vector space, ax = ay implies that x = y.
(e) A vector in Fn may be regarded as a matrix in Mn×1(F ).
(f) An m × n matrix has m columns and n rows.
(g) In P(F ), only polynomials of the same degree may be added.
(h) If f and g are polynomials of degree n, then f + g is a polynomial

of degree n.
(i) If f is a polynomial of degree n and c is a nonzero scalar, then cf

is a polynomial of degree n.
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(j) A nonzero scalar of F may be considered to be a polynomial in
P(F ) having degree zero.

(k) Two functions in F(S, F ) are equal if and only if they have the
same value at each element of S.

2. Write the zero vector of M3×4(F ).

3. If

M =
(

1 2 3
4 5 6

)
,

what are M13, M21, and M22?

4. Perform the indicated operations.

(a)
(

2 5 −3
1 0 7

)
+
(

4 −2 5
−5 3 2

)

(b)

⎛⎝−6 4
3 −2
1 8

⎞⎠+

⎛⎝7 −5
0 −3
2 0

⎞⎠
(c) 4

(
2 5 −3
1 0 7

)

(d) −5

⎛⎝−6 4
3 −2
1 8

⎞⎠
(e) (2x4 − 7x3 + 4x + 3) + (8x3 + 2x2 − 6x + 7)
(f) (−3x3 + 7x2 + 8x − 6) + (2x3 − 8x + 10)
(g) 5(2x7 − 6x4 + 8x2 − 3x)
(h) 3(x5 − 2x3 + 4x + 2)

Exercises 5 and 6 show why the definitions of matrix addition and scalar
multiplication (as defined in Example 2) are the appropriate ones.

5. Richard Gard (“Effects of Beaver on Trout in Sagehen Creek, Cali-
fornia,” J. Wildlife Management, 25, 221-242) reports the following
number of trout having crossed beaver dams in Sagehen Creek.

Upstream Crossings

Fall Spring Summer

Brook trout 8 3 1

Rainbow trout 3 0 0

Brown trout 3 0 0
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Downstream Crossings

Fall Spring Summer

Brook trout 9 1 4

Rainbow trout 3 0 0

Brown trout 1 1 0

Record the upstream and downstream crossings in two 3 × 3 matrices,
and verify that the sum of these matrices gives the total number of
crossings (both upstream and downstream) categorized by trout species
and season.

6. At the end of May, a furniture store had the following inventory.

Early Mediter-

American Spanish ranean Danish

Living room suites 4 2 1 3

Bedroom suites 5 1 1 4

Dining room suites 3 1 2 6

Record these data as a 3 × 4 matrix M . To prepare for its June sale,
the store decided to double its inventory on each of the items listed in
the preceding table. Assuming that none of the present stock is sold
until the additional furniture arrives, verify that the inventory on hand
after the order is filled is described by the matrix 2M . If the inventory
at the end of June is described by the matrix

A =

⎛⎝5 3 1 2
6 2 1 5
1 0 3 3

⎞⎠ ,

interpret 2M − A. How many suites were sold during the June sale?

7. Let S = {0, 1} and F = R. In F(S, R), show that f = g and f + g = h,
where f(t) = 2t + 1, g(t) = 1 + 4t − 2t2, and h(t) = 5t + 1.

8. In any vector space V, show that (a + b)(x + y) = ax + ay + bx + by for
any x, y ∈ V and any a, b ∈ F .

9. Prove Corollaries 1 and 2 of Theorem 1.1 and Theorem 1.2(c).

10. Let V denote the set of all differentiable real-valued functions defined
on the real line. Prove that V is a vector space with the operations of
addition and scalar multiplication defined in Example 3.
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11. Let V = {0} consist of a single vector 0 and define 0 + 0 = 0 and
c0 = 0 for each scalar c in F . Prove that V is a vector space over F .
(V is called the zero vector space.)

12. A real-valued function f defined on the real line is called an even func-
tion if f(−t) = f(t) for each real number t. Prove that the set of even
functions defined on the real line with the operations of addition and
scalar multiplication defined in Example 3 is a vector space.

13. Let V denote the set of ordered pairs of real numbers. If (a1, a2) and
(b1, b2) are elements of V and c ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2b2) and c(a1, a2) = (ca1, a2).

Is V a vector space over R with these operations? Justify your answer.

14. Let V = {(a1, a2, . . . , an) : ai ∈ C for i = 1, 2, . . . n}; so V is a vector
space over C by Example 1. Is V a vector space over the field of real
numbers with the operations of coordinatewise addition and multipli-
cation?

15. Let V = {(a1, a2, . . . , an) : ai ∈ R for i = 1, 2, . . . n}; so V is a vec-
tor space over R by Example 1. Is V a vector space over the field of
complex numbers with the operations of coordinatewise addition and
multiplication?

16. Let V denote the set of all m × n matrices with real entries; so V
is a vector space over R by Example 2. Let F be the field of rational
numbers. Is V a vector space over F with the usual definitions of matrix
addition and scalar multiplication?

17. Let V = {(a1, a2) : a1, a2 ∈ F}, where F is a field. Define addition of
elements of V coordinatewise, and for c ∈ F and (a1, a2) ∈ V, define

c(a1, a2) = (a1, 0).

Is V a vector space over F with these operations? Justify your answer.

18. Let V = {(a1, a2) : a1, a2 ∈ R}. For (a1, a2), (b1, b2) ∈ V and c ∈ R,
define

(a1, a2) + (b1, b2) = (a1 + 2b1, a2 + 3b2) and c(a1, a2) = (ca1, ca2).

Is V a vector space over R with these operations? Justify your answer.



16 Chap. 1 Vector Spaces

19. Let V = {(a1, a2) : a1, a2 ∈ R}. Define addition of elements of V coor-
dinatewise, and for (a1, a2) in V and c ∈ R, define

c(a1, a2) =

⎧⎪⎨⎪⎩(0, 0) if c = 0(
ca1,

a2

c

)
if c �= 0.

Is V a vector space over R with these operations? Justify your answer.

20. Let V be the set of sequences {an} of real numbers. (See Example 5 for
the definition of a sequence.) For {an}, {bn} ∈ V and any real number
t, define

{an} + {bn} = {an + bn} and t{an} = {tan}.
Prove that, with these operations, V is a vector space over R.

21. Let V and W be vector spaces over a field F . Let

Z = {(v, w) : v ∈ V and w ∈ W}.
Prove that Z is a vector space over F with the operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and c(v1, w1) = (cv1, cw1).

22. How many matrices are there in the vector space Mm×n(Z2)? (See
Appendix C.)

1.3 SUBSPACES

In the study of any algebraic structure, it is of interest to examine subsets that
possess the same structure as the set under consideration. The appropriate
notion of substructure for vector spaces is introduced in this section.

Definition. A subset W of a vector space V over a field F is called a
subspace of V if W is a vector space over F with the operations of addition
and scalar multiplication defined on V.

In any vector space V, note that V and {0} are subspaces. The latter is
called the zero subspace of V.

Fortunately it is not necessary to verify all of the vector space properties
to prove that a subset is a subspace. Because properties (VS 1), (VS 2),
(VS 5), (VS 6), (VS 7), and (VS 8) hold for all vectors in the vector space,
these properties automatically hold for the vectors in any subset. Thus a
subset W of a vector space V is a subspace of V if and only if the following
four properties hold.
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1. x+y ∈ W whenever x ∈ W and y ∈ W. (W is closed under addition.)
2. cx ∈ W whenever c ∈ F and x ∈ W. (W is closed under scalar

multiplication.)
3. W has a zero vector.
4. Each vector in W has an additive inverse in W.

The next theorem shows that the zero vector of W must be the same as
the zero vector of V and that property 4 is redundant.

Theorem 1.3. Let V be a vector space and W a subset of V. Then W
is a subspace of V if and only if the following three conditions hold for the
operations defined in V.

(a) 0 ∈ W.
(b) x + y ∈ W whenever x ∈ W and y ∈ W.
(c) cx ∈ W whenever c ∈ F and x ∈ W.

Proof. If W is a subspace of V, then W is a vector space with the operations
of addition and scalar multiplication defined on V. Hence conditions (b) and
(c) hold, and there exists a vector 0 ′ ∈ W such that x + 0 ′ = x for each
x ∈ W. But also x + 0 = x, and thus 0 ′ = 0 by Theorem 1.1 (p. 11). So
condition (a) holds.

Conversely, if conditions (a), (b), and (c) hold, the discussion preceding
this theorem shows that W is a subspace of V if the additive inverse of each
vector in W lies in W. But if x ∈ W, then (−1)x ∈ W by condition (c), and
−x = (−1)x by Theorem 1.2 (p. 12). Hence W is a subspace of V.

The preceding theorem provides a simple method for determining whether
or not a given subset of a vector space is a subspace. Normally, it is this result
that is used to prove that a subset is, in fact, a subspace.

The transpose At of an m × n matrix A is the n × m matrix obtained
from A by interchanging the rows with the columns; that is, (At)ij = Aji.
For example,

(
1 −2 3
0 5 −1

)t

=

⎛⎝ 1 0
−2 5

3 −1

⎞⎠ and
(

1 2
2 3

)t

=
(

1 2
2 3

)
.

A symmetric matrix is a matrix A such that At = A. For example, the
2 × 2 matrix displayed above is a symmetric matrix. Clearly, a symmetric
matrix must be square. The set W of all symmetric matrices in Mn×n(F ) is
a subspace of Mn×n(F ) since the conditions of Theorem 1.3 hold:

1. The zero matrix is equal to its transpose and hence belongs to W.

It is easily proved that for any matrices A and B and any scalars a and b,
(aA + bB)t = aAt + bBt. (See Exercise 3.) Using this fact, we show that the
set of symmetric matrices is closed under addition and scalar multiplication.
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2. If A ∈ W and B ∈ W, then At = A and Bt = B. Thus (A + B)t =
At + Bt = A + B, so that A + B ∈ W.

3. If A ∈ W, then At = A. So for any a ∈ F , we have (aA)t = aAt = aA.
Thus aA ∈ W.

The examples that follow provide further illustrations of the concept of a
subspace. The first three are particularly important.

Example 1

Let n be a nonnegative integer, and let Pn(F ) consist of all polynomials in
P(F ) having degree less than or equal to n. Since the zero polynomial has
degree −1, it is in Pn(F ). Moreover, the sum of two polynomials with degrees
less than or equal to n is another polynomial of degree less than or equal to n,
and the product of a scalar and a polynomial of degree less than or equal to
n is a polynomial of degree less than or equal to n. So Pn(F ) is closed under
addition and scalar multiplication. It therefore follows from Theorem 1.3 that
Pn(F ) is a subspace of P(F ). ♦
Example 2

Let C(R) denote the set of all continuous real-valued functions defined on R.
Clearly C(R) is a subset of the vector space F(R, R) defined in Example 3
of Section 1.2. We claim that C(R) is a subspace of F(R, R). First note
that the zero of F(R, R) is the constant function defined by f(t) = 0 for all
t ∈ R. Since constant functions are continuous, we have f ∈ C(R). Moreover,
the sum of two continuous functions is continuous, and the product of a real
number and a continuous function is continuous. So C(R) is closed under
addition and scalar multiplication and hence is a subspace of F(R, R) by
Theorem 1.3. ♦
Example 3

An n×n matrix M is called a diagonal matrix if Mij = 0 whenever i �= j,
that is, if all its nondiagonal entries are zero. Clearly the zero matrix is a
diagonal matrix because all of its entries are 0. Moreover, if A and B are
diagonal n × n matrices, then whenever i �= j,

(A + B)ij = Aij + Bij = 0 + 0 = 0 and (cA)ij = cAij = c 0 = 0

for any scalar c. Hence A + B and cA are diagonal matrices for any scalar
c. Therefore the set of diagonal matrices is a subspace of Mn×n(F ) by Theo-
rem 1.3. ♦
Example 4

The trace of an n × n matrix M , denoted tr(M), is the sum of the diagonal
entries of M ; that is,

tr(M) = M11 + M22 + · · · + Mnn.
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It follows from Exercise 6 that the set of n × n matrices having trace equal
to zero is a subspace of Mn×n(F ). ♦
Example 5

The set of matrices in Mm×n(R) having nonnegative entries is not a subspace
of Mm×n(R) because it is not closed under scalar multiplication (by negative
scalars). ♦

The next theorem shows how to form a new subspace from other sub-
spaces.

Theorem 1.4. Any intersection of subspaces of a vector space V is a
subspace of V.

Proof. Let C be a collection of subspaces of V, and let W denote the
intersection of the subspaces in C. Since every subspace contains the zero
vector, 0 ∈ W. Let a ∈ F and x, y ∈ W. Then x and y are contained in each
subspace in C. Because each subspace in C is closed under addition and scalar
multiplication, it follows that x + y and ax are contained in each subspace in
C. Hence x + y and ax are also contained in W, so that W is a subspace of V
by Theorem 1.3.

Having shown that the intersection of subspaces of a vector space V is a
subspace of V, it is natural to consider whether or not the union of subspaces
of V is a subspace of V. It is easily seen that the union of subspaces must
contain the zero vector and be closed under scalar multiplication, but in
general the union of subspaces of V need not be closed under addition. In fact,
it can be readily shown that the union of two subspaces of V is a subspace of V
if and only if one of the subspaces contains the other. (See Exercise 19.) There
is, however, a natural way to combine two subspaces W1 and W2 to obtain
a subspace that contains both W1 and W2. As we already have suggested,
the key to finding such a subspace is to assure that it must be closed under
addition. This idea is explored in Exercise 23.

EXERCISES

1. Label the following statements as true or false.

(a) If V is a vector space and W is a subset of V that is a vector space,
then W is a subspace of V.

(b) The empty set is a subspace of every vector space.
(c) If V is a vector space other than the zero vector space, then V

contains a subspace W such that W �= V.
(d) The intersection of any two subsets of V is a subspace of V.
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(e) An n × n diagonal matrix can never have more than n nonzero
entries.

(f) The trace of a square matrix is the product of its diagonal entries.
(g) Let W be the xy-plane in R3; that is, W = {(a1, a2, 0) : a1, a2 ∈ R}.

Then W = R2.

2. Determine the transpose of each of the matrices that follow. In addition,
if the matrix is square, compute its trace.

(a)
(−4 2

5 −1

)
(b)

(
0 8 −6
3 4 7

)

(c)

⎛⎝−3 9
0 −2
6 1

⎞⎠ (d)

⎛⎝ 10 0 −8
2 −4 3

−5 7 6

⎞⎠
(e)

(
1 −1 3 5

)
(f)

(−2 5 1 4
7 0 1 −6

)

(g)

⎛⎝5
6
7

⎞⎠ (h)

⎛⎝−4 0 6
0 1 −3
6 −3 5

⎞⎠
3. Prove that (aA + bB)t = aAt + bBt for any A, B ∈ Mm×n(F ) and any

a, b ∈ F .

4. Prove that (At)t = A for each A ∈ Mm×n(F ).

5. Prove that A + At is symmetric for any square matrix A.

6. Prove that tr(aA + bB) = a tr(A) + b tr(B) for any A, B ∈ Mn×n(F ).

7. Prove that diagonal matrices are symmetric matrices.

8. Determine whether the following sets are subspaces of R3 under the
operations of addition and scalar multiplication defined on R3. Justify
your answers.

(a) W1 = {(a1, a2, a3) ∈ R3 : a1 = 3a2 and a3 = −a2}
(b) W2 = {(a1, a2, a3) ∈ R3 : a1 = a3 + 2}
(c) W3 = {(a1, a2, a3) ∈ R3 : 2a1 − 7a2 + a3 = 0}
(d) W4 = {(a1, a2, a3) ∈ R3 : a1 − 4a2 − a3 = 0}
(e) W5 = {(a1, a2, a3) ∈ R3 : a1 + 2a2 − 3a3 = 1}
(f) W6 = {(a1, a2, a3) ∈ R3 : 5a2

1 − 3a2
2 + 6a2

3 = 0}
9. Let W1, W3, and W4 be as in Exercise 8. Describe W1 ∩W3, W1 ∩W4,

and W3 ∩ W4, and observe that each is a subspace of R3.
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10. Prove that W1 = {(a1, a2, . . . , an) ∈ Fn : a1 + a2 + · · · + an = 0} is a
subspace of Fn, but W2 = {(a1, a2, . . . , an) ∈ Fn : a1 +a2 + · · ·+an = 1}
is not.

11. Is the set W = {f(x) ∈ P(F ) : f(x) = 0 or f(x) has degree n} a subspace
of P(F ) if n ≥ 1? Justify your answer.

12. An m×n matrix A is called upper triangular if all entries lying below
the diagonal entries are zero, that is, if Aij = 0 whenever i > j. Prove
that the upper triangular matrices form a subspace of Mm×n(F ).

13. Let S be a nonempty set and F a field. Prove that for any s0 ∈ S,
{f ∈ F(S, F ) : f(s0) = 0}, is a subspace of F(S, F ).

14. Let S be a nonempty set and F a field. Let C(S, F ) denote the set of
all functions f ∈ F(S, F ) such that f(s) = 0 for all but a finite number
of elements of S. Prove that C(S, F ) is a subspace of F(S, F ).

15. Is the set of all differentiable real-valued functions defined on R a sub-
space of C(R)? Justify your answer.

16. Let Cn(R) denote the set of all real-valued functions defined on the
real line that have a continuous nth derivative. Prove that Cn(R) is a
subspace of F(R, R).

17. Prove that a subset W of a vector space V is a subspace of V if and
only if W �= ∅, and, whenever a ∈ F and x, y ∈ W, then ax ∈ W and
x + y ∈ W.

18. Prove that a subset W of a vector space V is a subspace of V if and only
if 0 ∈ W and ax + y ∈ W whenever a ∈ F and x, y ∈ W .

19. Let W1 and W2 be subspaces of a vector space V. Prove that W1 ∪W2

is a subspace of V if and only if W1 ⊆ W2 or W2 ⊆ W1.

20.† Prove that if W is a subspace of a vector space V and w1, w2, . . . , wn are
in W, then a1w1 +a2w2 + · · ·+anwn ∈ W for any scalars a1, a2, . . . , an.

21. Show that the set of convergent sequences {an} (i.e., those for which
limn→∞ an exists) is a subspace of the vector space V in Exercise 20 of
Section 1.2.

22. Let F1 and F2 be fields. A function g ∈ F(F1, F2) is called an even
function if g(−t) = g(t) for each t ∈ F1 and is called an odd function
if g(−t) = −g(t) for each t ∈ F1. Prove that the set of all even functions
in F(F1, F2) and the set of all odd functions in F(F1, F2) are subspaces
of F(F1, F2).

†A dagger means that this exercise is essential for a later section.
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The following definitions are used in Exercises 23–30.

Definition. If S1 and S2 are nonempty subsets of a vector space V, then
the sum of S1 and S2, denoted S1 +S2, is the set {x+y : x ∈ S1 and y ∈ S2}.

Definition. A vector space V is called the direct sum of W1 and W2 if
W1 and W2 are subspaces of V such that W1 ∩W2 = {0} and W1 + W2 = V.
We denote that V is the direct sum of W1 and W2 by writing V = W1 ⊕ W2.

23. Let W1 and W2 be subspaces of a vector space V.

(a) Prove that W1 +W2 is a subspace of V that contains both W1 and
W2.

(b) Prove that any subspace of V that contains both W1 and W2 must
also contain W1 + W2.

24. Show that Fn is the direct sum of the subspaces

W1 = {(a1, a2, . . . , an) ∈ Fn : an = 0}

and

W2 = {(a1, a2, . . . , an) ∈ Fn : a1 = a2 = · · · = an−1 = 0}.

25. Let W1 denote the set of all polynomials f(x) in P(F ) such that in the
representation

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0,

we have ai = 0 whenever i is even. Likewise let W2 denote the set of
all polynomials g(x) in P(F ) such that in the representation

g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0,

we have bi = 0 whenever i is odd. Prove that P(F ) = W1 ⊕ W2.

26. In Mm×n(F ) define W1 = {A ∈ Mm×n(F ) : Aij = 0 whenever i > j}
and W2 = {A ∈ Mm×n(F ) : Aij = 0 whenever i ≤ j}. (W1 is the
set of all upper triangular matrices defined in Exercise 12.) Show that
Mm×n(F ) = W1 ⊕ W2.

27. Let V denote the vector space consisting of all upper triangular n × n
matrices (as defined in Exercise 12), and let W1 denote the subspace of
V consisting of all diagonal matrices. Show that V = W1 ⊕ W2, where
W2 = {A ∈ V : Aij = 0 whenever i ≥ j}.
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28. A matrix M is called skew-symmetric if M t = −M . Clearly, a skew-
symmetric matrix is square. Let F be a field. Prove that the set W1

of all skew-symmetric n× n matrices with entries from F is a subspace
of Mn×n(F ). Now assume that F is not of characteristic 2 (see Ap-
pendix C), and let W2 be the subspace of Mn×n(F ) consisting of all
symmetric n × n matrices. Prove that Mn×n(F ) = W1 ⊕ W2.

29. Let F be a field that is not of characteristic 2. Define

W1 = {A ∈ Mn×n(F ) : Aij = 0 whenever i ≤ j}
and W2 to be the set of all symmetric n × n matrices with entries
from F . Both W1 and W2 are subspaces of Mn×n(F ). Prove that
Mn×n(F ) = W1 ⊕ W2. Compare this exercise with Exercise 28.

30. Let W1 and W2 be subspaces of a vector space V. Prove that V is the
direct sum of W1 and W2 if and only if each vector in V can be uniquely
written as x1 + x2, where x1 ∈ W1 and x2 ∈ W2.

31. Let W be a subspace of a vector space V over a field F . For any v ∈ V
the set {v}+W = {v+w : w ∈ W} is called the coset of W containing
v. It is customary to denote this coset by v + W rather than {v} + W.

(a) Prove that v + W is a subspace of V if and only if v ∈ W.
(b) Prove that v1 + W = v2 + W if and only if v1 − v2 ∈ W.

Addition and scalar multiplication by scalars of F can be defined in the
collection S = {v + W : v ∈ V} of all cosets of W as follows:

(v1 + W) + (v2 + W) = (v1 + v2) + W

for all v1, v2 ∈ V and

a(v + W) = av + W

for all v ∈ V and a ∈ F .

(c) Prove that the preceding operations are well defined; that is, show
that if v1 + W = v′1 + W and v2 + W = v′2 + W, then

(v1 + W) + (v2 + W) = (v′1 + W) + (v′2 + W)

and

a(v1 + W) = a(v′1 + W)

for all a ∈ F .
(d) Prove that the set S is a vector space with the operations defined in

(c). This vector space is called the quotient space of V modulo
W and is denoted by V/W.
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1.4 LINEAR COMBINATIONS AND SYSTEMS OF LINEAR
EQUATIONS

In Section 1.1, it was shown that the equation of the plane through three
noncollinear points A, B, and C in space is x = A + su + tv, where u and
v denote the vectors beginning at A and ending at B and C, respectively,
and s and t denote arbitrary real numbers. An important special case occurs
when A is the origin. In this case, the equation of the plane simplifies to
x = su + tv, and the set of all points in this plane is a subspace of R3. (This
is proved as Theorem 1.5.) Expressions of the form su + tv, where s and t
are scalars and u and v are vectors, play a central role in the theory of vector
spaces. The appropriate generalization of such expressions is presented in the
following definitions.

Definitions. Let V be a vector space and S a nonempty subset of V. A
vector v ∈ V is called a linear combination of vectors of S if there exist
a finite number of vectors u1, u2, . . . , un in S and scalars a1, a2, . . . , an in F
such that v = a1u1 + a2u2 + · · · + anun. In this case we also say that v is
a linear combination of u1, u2, . . . , un and call a1, a2, . . . , an the coefficients
of the linear combination.

Observe that in any vector space V, 0v = 0 for each v ∈ V. Thus the zero
vector is a linear combination of any nonempty subset of V.

Example 1

TABLE 1.1 Vitamin Content of 100 Grams of Certain Foods

A B1 B2 Niacin C

(units) (mg) (mg) (mg) (mg)

Apple butter 0 0.01 0.02 0.2 2

Raw, unpared apples (freshly harvested) 90 0.03 0.02 0.1 4

Chocolate-coated candy with coconut 0 0.02 0.07 0.2 0

center

Clams (meat only) 100 0.10 0.18 1.3 10

Cupcake from mix (dry form) 0 0.05 0.06 0.3 0

Cooked farina (unenriched) (0)a 0.01 0.01 0.1 (0)

Jams and preserves 10 0.01 0.03 0.2 2

Coconut custard pie (baked from mix) 0 0.02 0.02 0.4 0

Raw brown rice (0) 0.34 0.05 4.7 (0)

Soy sauce 0 0.02 0.25 0.4 0

Cooked spaghetti (unenriched) 0 0.01 0.01 0.3 0

Raw wild rice (0) 0.45 0.63 6.2 (0)

Source: Bernice K. Watt and Annabel L. Merrill, Composition of Foods (Agriculture Hand-
book Number 8), Consumer and Food Economics Research Division, U.S. Department of
Agriculture, Washington, D.C., 1963.

aZeros in parentheses indicate that the amount of a vitamin present is either none or too
small to measure.
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Table 1.1 shows the vitamin content of 100 grams of 12 foods with respect to
vitamins A, B1 (thiamine), B2 (riboflavin), niacin, and C (ascorbic acid).

The vitamin content of 100 grams of each food can be recorded as a column
vector in R5—for example, the vitamin vector for apple butter is⎛⎜⎜⎜⎜⎝

0.00
0.01
0.02
0.20
2.00

⎞⎟⎟⎟⎟⎠ .

Considering the vitamin vectors for cupcake, coconut custard pie, raw brown
rice, soy sauce, and wild rice, we see that⎛⎜⎜⎜⎜⎝

0.00
0.05
0.06
0.30
0.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0.00
0.02
0.02
0.40
0.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0.00
0.34
0.05
4.70
0.00

⎞⎟⎟⎟⎟⎠+ 2

⎛⎜⎜⎜⎜⎝
0.00
0.02
0.25
0.40
0.00

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0.00
0.45
0.63
6.20
0.00

⎞⎟⎟⎟⎟⎠ .

Thus the vitamin vector for wild rice is a linear combination of the vitamin
vectors for cupcake, coconut custard pie, raw brown rice, and soy sauce. So
100 grams of cupcake, 100 grams of coconut custard pie, 100 grams of raw
brown rice, and 200 grams of soy sauce provide exactly the same amounts of
the five vitamins as 100 grams of raw wild rice. Similarly, since

2

⎛⎜⎜⎜⎜⎝
0.00
0.01
0.02
0.20
2.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
90.00
0.03
0.02
0.10
4.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0.00
0.02
0.07
0.20
0.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0.00
0.01
0.01
0.10
0.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
10.00
0.01
0.03
0.20
2.00

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
0.00
0.01
0.01
0.30
0.00

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
100.00

0.10
0.18
1.30

10.00

⎞⎟⎟⎟⎟⎠ ,

200 grams of apple butter, 100 grams of apples, 100 grams of chocolate candy,
100 grams of farina, 100 grams of jam, and 100 grams of spaghetti provide
exactly the same amounts of the five vitamins as 100 grams of clams. ♦

Throughout Chapters 1 and 2 we encounter many different situations in
which it is necessary to determine whether or not a vector can be expressed
as a linear combination of other vectors, and if so, how. This question often
reduces to the problem of solving a system of linear equations. In Chapter 3,
we discuss a general method for using matrices to solve any system of linear
equations. For now, we illustrate how to solve a system of linear equations by
showing how to determine if the vector (2, 6, 8) can be expressed as a linear
combination of

u1 = (1, 2, 1), u2 = (−2,−4,−2), u3 = (0, 2, 3),
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u4 = (2, 0,−3), and u5 = (−3, 8, 16).

Thus we must determine if there are scalars a1, a2, a3, a4, and a5 such that

(2, 6, 8) = a1u1 + a2u2 + a3u3 + a4u4 + a5u5

= a1(1, 2, 1) + a2(−2,−4,−2) + a3(0, 2, 3)
+ a4(2, 0,−3) + a5(−3, 8, 16)

= (a1 − 2a2 + 2a4 − 3a5, 2a1 − 4a2 + 2a3 + 8a5,

a1 − 2a2 + 3a3 − 3a4 + 16a5).

Hence (2, 6, 8) can be expressed as a linear combination of u1, u2, u3, u4, and
u5 if and only if there is a 5-tuple of scalars (a1, a2, a3, a4, a5) satisfying the
system of linear equations

a1 − 2a2 + 2a4 − 3a5 = 2
2a1 − 4a2 + 2a3 + 8a5 = 6
a1 − 2a2 + 3a3 − 3a4 + 16a5 = 8,

(1)

which is obtained by equating the corresponding coordinates in the preceding
equation.

To solve system (1), we replace it by another system with the same solu-
tions, but which is easier to solve. The procedure to be used expresses some
of the unknowns in terms of others by eliminating certain unknowns from
all the equations except one. To begin, we eliminate a1 from every equation
except the first by adding −2 times the first equation to the second and −1
times the first equation to the third. The result is the following new system:

a1 − 2a2 + 2a4 − 3a5 = 2
2a3 − 4a4 + 14a5 = 2
3a3 − 5a4 + 19a5 = 6.

(2)

In this case, it happened that while eliminating a1 from every equation
except the first, we also eliminated a2 from every equation except the first.
This need not happen in general. We now want to make the coefficient of a3 in
the second equation equal to 1, and then eliminate a3 from the third equation.
To do this, we first multiply the second equation by 1

2 , which produces

a1 − 2a2 + 2a4 − 3a5 = 2
a3 − 2a4 + 7a5 = 1

3a3 − 5a4 + 19a5 = 6.

Next we add −3 times the second equation to the third, obtaining

a1 − 2a2 + 2a4 − 3a5 = 2
a3 − 2a4 + 7a5 = 1

a4 − 2a5 = 3.
(3)
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We continue by eliminating a4 from every equation of (3) except the third.
This yields

a1 − 2a2 + a5 = −4
a3 + 3a5 = 7

a4 − 2a5 = 3.
(4)

System (4) is a system of the desired form: It is easy to solve for the first
unknown present in each of the equations (a1, a3, and a4) in terms of the
other unknowns (a2 and a5). Rewriting system (4) in this form, we find that

a1 = 2a2 − a5 − 4
a3 = − 3a5 + 7
a4 = 2a5 + 3.

Thus for any choice of scalars a2 and a5, a vector of the form

(a1, a2, a3, a4, a5) = (2a2 − a5 − 4, a2,−3a5 + 7, 2a5 + 3, a5)

is a solution to system (1). In particular, the vector (−4, 0, 7, 3, 0) obtained
by setting a2 = 0 and a5 = 0 is a solution to (1). Therefore

(2, 6, 8) = −4u1 + 0u2 + 7u3 + 3u4 + 0u5,

so that (2, 6, 8) is a linear combination of u1, u2, u3, u4, and u5.
The procedure just illustrated uses three types of operations to simplify

the original system:

1. interchanging the order of any two equations in the system;
2. multiplying any equation in the system by a nonzero constant;
3. adding a constant multiple of any equation to another equation in the

system.

In Section 3.4, we prove that these operations do not change the set of
solutions to the original system. Note that we employed these operations to
obtain a system of equations that had the following properties:

1. The first nonzero coefficient in each equation is one.
2. If an unknown is the first unknown with a nonzero coefficient in some

equation, then that unknown occurs with a zero coefficient in each of
the other equations.

3. The first unknown with a nonzero coefficient in any equation has a
larger subscript than the first unknown with a nonzero coefficient in
any preceding equation.
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To help clarify the meaning of these properties, note that none of the
following systems meets these requirements.

x1 + 3x2 + x4 = 7
2x3 − 5x4 = −1 (5)

x1 − 2x2 + 3x3 + x5 = −5
x3 − 2x5 = 9

x4 + 3x5 = 6
(6)

x1 − 2x3 + x5 = 1
x4 − 6x5 = 0

x2 + 5x3 − 3x5 = 2.
(7)

Specifically, system (5) does not satisfy property 1 because the first nonzero
coefficient in the second equation is 2; system (6) does not satisfy property 2
because x3, the first unknown with a nonzero coefficient in the second equa-
tion, occurs with a nonzero coefficient in the first equation; and system (7)
does not satisfy property 3 because x2, the first unknown with a nonzero
coefficient in the third equation, does not have a larger subscript than x4, the
first unknown with a nonzero coefficient in the second equation.

Once a system with properties 1, 2, and 3 has been obtained, it is easy
to solve for some of the unknowns in terms of the others (as in the preceding
example). If, however, in the course of using operations 1, 2, and 3 a system
containing an equation of the form 0 = c, where c is nonzero, is obtained,
then the original system has no solutions. (See Example 2.)

We return to the study of systems of linear equations in Chapter 3. We
discuss there the theoretical basis for this method of solving systems of linear
equations and further simplify the procedure by use of matrices.

Example 2

We claim that

2x3 − 2x2 + 12x − 6

is a linear combination of

x3 − 2x2 − 5x − 3 and 3x3 − 5x2 − 4x − 9

in P3(R), but that

3x3 − 2x2 + 7x + 8

is not. In the first case we wish to find scalars a and b such that

2x3 − 2x2 + 12x − 6 = a(x3 − 2x2 − 5x − 3) + b(3x3 − 5x2 − 4x − 9)
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= (a + 3b)x3 + (−2a − 5b)x2 + (−5a − 4b)x + (−3a − 9b).

Thus we are led to the following system of linear equations:

a + 3b = 2
−2a − 5b = −2
−5a − 4b = 12
−3a − 9b = −6.

Adding appropriate multiples of the first equation to the others in order to
eliminate a, we find that

a + 3b = 2
b = 2

11b = 22
0b = 0.

Now adding the appropriate multiples of the second equation to the others
yields

a = −4
b = 2
0 = 0
0 = 0.

Hence

2x3 − 2x2 + 12x − 6 = −4(x3 − 2x2 − 5x − 3) + 2(3x3 − 5x2 − 4x − 9).

In the second case, we wish to show that there are no scalars a and b for
which

3x3 − 2x2 + 7x + 8 = a(x3 − 2x2 − 5x − 3) + b(3x3 − 5x2 − 4x − 9).

Using the preceding technique, we obtain a system of linear equations

a + 3b = 3
−2a − 5b = −2
−5a − 4b = 7
−3a − 9b = 8.

(8)

Eliminating a as before yields

a + 3b = 3
b = 4

11b = 22
0 = 17.

But the presence of the inconsistent equation 0 = 17 indicates that (8)
has no solutions. Hence 3x3 − 2x2 + 7x + 8 is not a linear combination of
x3 − 2x2 − 5x − 3 and 3x3 − 5x2 − 4x − 9. ♦
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Throughout this book, we form the set of all linear combinations of some
set of vectors. We now name such a set of linear combinations.

Definition. Let S be a nonempty subset of a vector space V. The span
of S, denoted span(S), is the set consisting of all linear combinations of the
vectors in S. For convenience, we define span(∅) = {0}.

In R3, for instance, the span of the set {(1, 0, 0), (0, 1, 0)} consists of all
vectors in R3 that have the form a(1, 0, 0) + b(0, 1, 0) = (a, b, 0) for some
scalars a and b. Thus the span of {(1, 0, 0), (0, 1, 0)} contains all the points in
the xy-plane. In this case, the span of the set is a subspace of R3. This fact
is true in general.

Theorem 1.5. The span of any subset S of a vector space V is a subspace
of V. Moreover, any subspace of V that contains S must also contain the
span of S.

Proof. This result is immediate if S = ∅ because span(∅) = {0}, which
is a subspace that is contained in any subspace of V.

If S �= ∅, then S contains a vector z. So 0z = 0 is in span(S). Let
x, y ∈ span(S). Then there exist vectors u1, u2, . . . , um, v1, v2, . . . , vn in S
and scalars a1, a2, . . . , am, b1, b2, . . . , bn such that

x = a1u1 + a2u2 + · · · + amum and y = b1v1 + b2v2 + · · · + bnvn.

Then

x + y = a1u1 + a2u2 + · · · + amum + b1v1 + b2v2 + · · · + bnvn

and, for any scalar c,

cx = (ca1)u1 + (ca2)u2 + · · · + (cam)um

are clearly linear combinations of the vectors in S; so x + y and cx are in
span(S). Thus span(S) is a subspace of V.

Now let W denote any subspace of V that contains S. If w ∈ span(S), then
w has the form w = c1w1+c2w2+· · ·+ckwk for some vectors w1, w2, . . . , wk in
S and some scalars c1, c2, . . . , ck. Since S ⊆ W, we have w1, w2, . . . , wk ∈ W.
Therefore w = c1w1 + c2w2 + · · · + ckwk is in W by Exercise 20 of Section
1.3. Because w, an arbitrary vector in span(S), belongs to W, it follows that
span(S) ⊆ W.

Definition. A subset S of a vector space V generates (or spans) V
if span(S) = V. In this case, we also say that the vectors of S generate (or
span) V.
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Example 3

The vectors (1, 1, 0), (1, 0, 1), and (0, 1, 1) generate R3 since an arbitrary vector
(a1, a2, a3) in R3 is a linear combination of the three given vectors; in fact,
the scalars r, s, and t for which

r(1, 1, 0) + s(1, 0, 1) + t(0, 1, 1) = (a1, a2, a3)

are

r =
1
2
(a1 + a2 − a3), s =

1
2
(a1 − a2 + a3), and t =

1
2
(−a1 + a2 + a3). ♦

Example 4

The polynomials x2 + 3x− 2, 2x2 + 5x− 3, and −x2 − 4x + 4 generate P2(R)
since each of the three given polynomials belongs to P2(R) and each polyno-
mial ax2 + bx + c in P2(R) is a linear combination of these three, namely,

(−8a + 5b + 3c)(x2 + 3x − 2) + (4a − 2b − c)(2x2 + 5x − 3)

+(−a + b + c)(−x2 − 4x + 4) = ax2 + bx + c. ♦

Example 5

The matrices (
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
, and

(
0 1
1 1

)
generate M2×2(R) since an arbitrary matrix A in M2×2(R) can be expressed
as a linear combination of the four given matrices as follows:(

a11 a12

a21 a22

)
= (

1
3
a11 +

1
3
a12 +

1
3
a21 − 2

3
a22)

(
1 1
1 0

)
+ (

1
3
a11 +

1
3
a12 − 2

3
a21 +

1
3
a22)

(
1 1
0 1

)
+ (

1
3
a11 − 2

3
a12 +

1
3
a21 +

1
3
a22)

(
1 0
1 1

)
+ (−2

3
a11 +

1
3
a12 +

1
3
a21 +

1
3
a22)

(
0 1
1 1

)
.

On the other hand, the matrices(
1 0
0 1

)
,

(
1 1
0 1

)
, and

(
1 0
1 1

)
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do not generate M2×2(R) because each of these matrices has equal diagonal
entries. So any linear combination of these matrices has equal diagonal en-
tries. Hence not every 2 × 2 matrix is a linear combination of these three
matrices. ♦

At the beginning of this section we noted that the equation of a plane
through three noncollinear points in space, one of which is the origin, is of
the form x = su+ tv, where u, v ∈ R3 and s and t are scalars. Thus x ∈ R3 is
a linear combination of u, v ∈ R3 if and only if x lies in the plane containing
u and v. (See Figure 1.5.)
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Usually there are many different subsets that generate a subspace W. (See
Exercise 13.) It is natural to seek a subset of W that generates W and is as
small as possible. In the next section we explore the circumstances under
which a vector can be removed from a generating set to obtain a smaller
generating set.

EXERCISES

1. Label the following statements as true or false.

(a) The zero vector is a linear combination of any nonempty set of
vectors.

(b) The span of ∅ is ∅.
(c) If S is a subset of a vector space V, then span(S) equals the inter-

section of all subspaces of V that contain S.
(d) In solving a system of linear equations, it is permissible to multiply

an equation by any constant.
(e) In solving a system of linear equations, it is permissible to add any

multiple of one equation to another.
(f) Every system of linear equations has a solution.
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2. Solve the following systems of linear equations by the method intro-
duced in this section.

(a)
2x1 − 2x2 − 3x3 = −2
3x1 − 3x2 − 2x3 + 5x4 = 7
x1 − x2 − 2x3 − x4 = −3

(b)
3x1 − 7x2 + 4x3 = 10
x1 − 2x2 + x3 = 3

2x1 − x2 − 2x3 = 6

(c)
x1 + 2x2 − x3 + x4 = 5
x1 + 4x2 − 3x3 − 3x4 = 6

2x1 + 3x2 − x3 + 4x4 = 8

(d)
x1 + 2x2 + 2x3 = 2
x1 + 8x3 + 5x4 = −6
x1 + x2 + 5x3 + 5x4 = 3

(e)

x1 + 2x2 − 4x3 − x4 + x5 = 7
−x1 + 10x3 − 3x4 − 4x5 = −16
2x1 + 5x2 − 5x3 − 4x4 − x5 = 2
4x1 + 11x2 − 7x3 − 10x4 − 2x5 = 7

(f)

x1 + 2x2 + 6x3 = −1
2x1 + x2 + x3 = 8
3x1 + x2 − x3 = 15
x1 + 3x2 + 10x3 = −5

3. For each of the following lists of vectors in R3, determine whether the
first vector can be expressed as a linear combination of the other two.

(a) (−2, 0, 3), (1, 3, 0), (2, 4,−1)
(b) (1, 2,−3), (−3, 2, 1), (2,−1,−1)
(c) (3, 4, 1), (1,−2, 1), (−2,−1, 1)
(d) (2,−1, 0), (1, 2,−3), (1,−3, 2)
(e) (5, 1,−5), (1,−2,−3), (−2, 3,−4)
(f) (−2, 2, 2), (1, 2,−1), (−3,−3, 3)

4. For each list of polynomials in P3(R), determine whether the first poly-
nomial can be expressed as a linear combination of the other two.

(a) x3 − 3x + 5, x3 + 2x2 − x + 1, x3 + 3x2 − 1
(b) 4x3 + 2x2 − 6, x3 − 2x2 + 4x + 1, 3x3 − 6x2 + x + 4
(c) −2x3 − 11x2 + 3x + 2, x3 − 2x2 + 3x − 1, 2x3 + x2 + 3x − 2
(d) x3 + x2 + 2x + 13, 2x3 − 3x2 + 4x + 1, x3 − x2 + 2x + 3
(e) x3 − 8x2 + 4x, x3 − 2x2 + 3x − 1, x3 − 2x + 3
(f) 6x3 − 3x2 + x + 2, x3 − x2 + 2x + 3, 2x3 − 3x + 1
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5. In each part, determine whether the given vector is in the span of S.

(a) (2,−1, 1), S = {(1, 0, 2), (−1, 1, 1)}
(b) (−1, 2, 1), S = {(1, 0, 2), (−1, 1, 1)}
(c) (−1, 1, 1, 2), S = {(1, 0, 1,−1), (0, 1, 1, 1)}
(d) (2,−1, 1,−3), S = {(1, 0, 1,−1), (0, 1, 1, 1)}
(e) −x3 + 2x2 + 3x + 3, S = {x3 + x2 + x + 1, x2 + x + 1, x + 1}
(f) 2x3 − x2 + x + 3, S = {x3 + x2 + x + 1, x2 + x + 1, x + 1}

(g)
(

1 2
−3 4

)
, S =

{(
1 0

−1 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

)}
(h)

(
1 0
0 1

)
, S =

{(
1 0

−1 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

)}
6. Show that the vectors (1, 1, 0), (1, 0, 1), and (0, 1, 1) generate F3.

7. In Fn, let ej denote the vector whose jth coordinate is 1 and whose
other coordinates are 0. Prove that {e1, e2, . . . , en} generates Fn.

8. Show that Pn(F ) is generated by {1, x, . . . , xn}.
9. Show that the matrices(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
, and

(
0 0
0 1

)
generate M2×2(F ).

10. Show that if

M1 =
(

1 0
0 0

)
, M2 =

(
0 0
0 1

)
, and M3 =

(
0 1
1 0

)
,

then the span of {M1, M2, M3} is the set of all symmetric 2×2 matrices.

11.† Prove that span({x}) = {ax : a ∈ F} for any vector x in a vector space.
Interpret this result geometrically in R3.

12. Show that a subset W of a vector space V is a subspace of V if and only
if span(W) = W.

13.† Show that if S1 and S2 are subsets of a vector space V such that S1 ⊆ S2,
then span(S1) ⊆ span(S2). In particular, if S1 ⊆ S2 and span(S1) = V,
deduce that span(S2) = V.

14. Show that if S1 and S2 are arbitrary subsets of a vector space V, then
span(S1∪S2) = span(S1)+span(S2). (The sum of two subsets is defined
in the exercises of Section 1.3.)
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15. Let S1 and S2 be subsets of a vector space V. Prove that span(S1∩S2) ⊆
span(S1) ∩ span(S2). Give an example in which span(S1 ∩ S2) and
span(S1) ∩ span(S2) are equal and one in which they are unequal.

16. Let V be a vector space and S a subset of V with the property that
whenever v1, v2, . . . , vn ∈ S and a1v1 + a2v2 + · · · + anvn = 0 , then
a1 = a2 = · · · = an = 0. Prove that every vector in the span of S can
be uniquely written as a linear combination of vectors of S.

17. Let W be a subspace of a vector space V. Under what conditions are
there only a finite number of distinct subsets S of W such that S gen-
erates W?

1.5 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

Suppose that V is a vector space over an infinite field and that W is a subspace
of V. Unless W is the zero subspace, W is an infinite set. It is desirable to
find a “small” finite subset S that generates W because we can then describe
each vector in W as a linear combination of the finite number of vectors in
S. Indeed, the smaller that S is, the fewer computations that are required
to represent vectors in W. Consider, for example, the subspace W of R3

generated by S = {u1, u2, u3, u4}, where u1 = (2,−1, 4), u2 = (1,−1, 3),
u3 = (1, 1,−1), and u4 = (1,−2,−1). Let us attempt to find a proper subset
of S that also generates W. The search for this subset is related to the
question of whether or not some vector in S is a linear combination of the
other vectors in S. Now u4 is a linear combination of the other vectors in S
if and only if there are scalars a1, a2, and a3 such that

u4 = a1u1 + a2u2 + a3u3,

that is, if and only if there are scalars a1, a2, and a3 satisfying

(1,−2,−1) = (2a1 + a2 + a3,−a1 − a2 + a3, 4a1 + 3a2 − a3).

Thus u4 is a linear combination of u1, u2, and u3 if and only if the system of
linear equations

2a1 + a2 + a3 = 1
−a1 − a2 + a3 = −2
4a1 + 3a2 − a3 = −1

has a solution. The reader should verify that no such solution exists. This
does not, however, answer our question of whether some vector in S is a linear
combination of the other vectors in S. It can be shown, in fact, that u3 is a
linear combination of u1, u2, and u4, namely, u3 = 2u1 − 3u2 + 0u4.
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In the preceding example, checking that some vector in S is a linear
combination of the other vectors in S could require that we solve several
different systems of linear equations before we determine which, if any, of
u1, u2, u3, and u4 is a linear combination of the others. By formulating
our question differently, we can save ourselves some work. Note that since
u3 = 2u1 − 3u2 + 0u4, we have

−2u1 + 3u2 + u3 − 0u4 = 0 .

That is, because some vector in S is a linear combination of the others, the
zero vector can be expressed as a linear combination of the vectors in S using
coefficients that are not all zero. The converse of this statement is also true:
If the zero vector can be written as a linear combination of the vectors in S
in which not all the coefficients are zero, then some vector in S is a linear
combination of the others. For instance, in the example above, the equation
−2u1 + 3u2 + u3 − 0u4 = 0 can be solved for any vector having a nonzero
coefficient; so u1, u2, or u3 (but not u4) can be written as a linear combination
of the other three vectors. Thus, rather than asking whether some vector in
S is a linear combination of the other vectors in S, it is more efficient to
ask whether the zero vector can be expressed as a linear combination of the
vectors in S with coefficients that are not all zero. This observation leads us
to the following definition.

Definition. A subset S of a vector space V is called linearly dependent
if there exist a finite number of distinct vectors u1, u2, . . . , un in S and scalars
a1, a2, . . . , an, not all zero, such that

a1u1 + a2u2 + · · · + anun = 0 .

In this case we also say that the vectors of S are linearly dependent.

For any vectors u1, u2, . . . , un, we have a1u1 + a2u2 + · · · + anun = 0
if a1 = a2 = · · · = an = 0. We call this the trivial representation of 0 as
a linear combination of u1, u2, . . . , un. Thus, for a set to be linearly depen-
dent, there must exist a nontrivial representation of 0 as a linear combination
of vectors in the set. Consequently, any subset of a vector space that con-
tains the zero vector is linearly dependent, because 0 = 1 ·0 is a nontrivial
representation of 0 as a linear combination of vectors in the set.

Example 1

Consider the set

S = {(1, 3,−4, 2), (2, 2,−4, 0), (1,−3, 2,−4), (−1, 0, 1, 0)}
in R4. We show that S is linearly dependent and then express one of the
vectors in S as a linear combination of the other vectors in S. To show that
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S is linearly dependent, we must find scalars a1, a2, a3, and a4, not all zero,
such that

a1(1, 3,−4, 2) + a2(2, 2,−4, 0) + a3(1,−3, 2,−4) + a4(−1, 0, 1, 0) = 0 .

Finding such scalars amounts to finding a nonzero solution to the system of
linear equations

a1 + 2a2 + a3 − a4 = 0
3a1 + 2a2 − 3a3 = 0

−4a1 − 4a2 + 2a3 + a4 = 0
2a1 − 4a3 = 0.

One such solution is a1 = 4, a2 = −3, a3 = 2, and a4 = 0. Thus S is a
linearly dependent subset of R4, and

4(1, 3,−4, 2) − 3(2, 2,−4, 0) + 2(1,−3, 2,−4) + 0(−1, 0, 1, 0) = 0 . ♦

Example 2

In M2×3(R), the set{(
1 −3 2

−4 0 5

)
,

(−3 7 4
6 −2 −7

)
,

(−2 3 11
−1 −3 2

)}
is linearly dependent because

5
(

1 −3 2
−4 0 5

)
+3

(−3 7 4
6 −2 −7

)
−2

(−2 3 11
−1 −3 2

)
=
(

0 0 0
0 0 0

)
.♦

Definition. A subset S of a vector space that is not linearly dependent
is called linearly independent. As before, we also say that the vectors of
S are linearly independent.

The following facts about linearly independent sets are true in any vector
space.

1. The empty set is linearly independent, for linearly dependent sets must
be nonempty.

2. A set consisting of a single nonzero vector is linearly independent. For
if {u} is linearly dependent, then au = 0 for some nonzero scalar a.
Thus

u = a−1(au) = a−10 = 0 .

3. A set is linearly independent if and only if the only representations of
0 as linear combinations of its vectors are trivial representations.
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The condition in item 3 provides a useful method for determining whether
a finite set is linearly independent. This technique is illustrated in the exam-
ples that follow.

Example 3

To prove that the set

S = {(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1), (0, 0, 0, 1)}
is linearly independent, we must show that the only linear combination of
vectors in S that equals the zero vector is the one in which all the coefficients
are zero. Suppose that a1, a2, a3, and a4 are scalars such that

a1(1, 0, 0,−1) + a2(0, 1, 0,−1) + a3(0, 0, 1,−1) + a4(0, 0, 0, 1) = (0, 0, 0, 0).

Equating the corresponding coordinates of the vectors on the left and the right
sides of this equation, we obtain the following system of linear equations.

a1 = 0
a2 = 0

a3 = 0
−a1 − a2 − a3 + a4 = 0

Clearly the only solution to this system is a1 = a2 = a3 = a4 = 0, and so S
is linearly independent. ♦
Example 4

For k = 0, 1, . . . , n let pk(x) = xk + xk+1 + · · · + xn. The set

{p0(x), p1(x), . . . , pn(x)}
is linearly independent in Pn(F ). For if

a0p0(x) + a1p1(x) + · · · + anpn(x) = 0

for some scalars a0, a1, . . . , an, then

a0 + (a0 + a1)x + (a0 + a1 + a2)x2 + · · · + (a0 + a1 + · · · + an)xn = 0 .

By equating the coefficients of xk on both sides of this equation for k =
1, 2, . . . , n, we obtain

a0 = 0
a0 + a1 = 0
a0 + a1 + a2 = 0

...
a0 + a1 + a2 + · · · + an = 0.

Clearly the only solution to this system of linear equations is a0 = a1 = · · · =
an = 0. ♦
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The following important results are immediate consequences of the defi-
nitions of linear dependence and linear independence.

Theorem 1.6. Let V be a vector space, and let S1 ⊆ S2 ⊆ V. If S1 is
linearly dependent, then S2 is linearly dependent.

Proof. Exercise.

Corollary. Let V be a vector space, and let S1 ⊆ S2 ⊆ V. If S2 is linearly
independent, then S1 is linearly independent.

Proof. Exercise.

Earlier in this section, we remarked that the issue of whether S is the
smallest generating set for its span is related to the question of whether
some vector in S is a linear combination of the other vectors in S. Thus
the issue of whether S is the smallest generating set for its span is related
to the question of whether S is linearly dependent. To see why, consider
the subset S = {u1, u2, u3, u4} of R3, where u1 = (2,−1, 4), u2 = (1,−1, 3),
u3 = (1, 1,−1), and u4 = (1,−2,−1). We have previously noted that S is
linearly dependent; in fact,

−2u1 + 3u2 + u3 − 0u4 = 0 .

This equation implies that u3 (or alternatively, u1 or u2) is a linear combina-
tion of the other vectors in S. For example, u3 = 2u1 − 3u2 + 0u4. Therefore
every linear combination a1u1 + a2u2 + a3u3 + a4u4 of vectors in S can be
written as a linear combination of u1, u2, and u4:

a1u1 + a2u2 + a3u3 + a4u4 = a1u1 + a2u2 + a3(2u1 − 3u2 + 0u4) + a4u4

= (a1 + 2a3)u1 + (a2 − 3a3)u2 + a4u4.

Thus the subset S′ = {u1, u2, u4} of S has the same span as S!
More generally, suppose that S is any linearly dependent set containing

two or more vectors. Then some vector v ∈ S can be written as a linear
combination of the other vectors in S, and the subset obtained by removing
v from S has the same span as S. It follows that if no proper subset of S
generates the span of S, then S must be linearly independent. Another way
to view the preceding statement is given in Theorem 1.7.

Theorem 1.7. Let S be a linearly independent subset of a vector space
V, and let v be a vector in V that is not in S. Then S ∪ {v} is linearly
dependent if and only if v ∈ span(S).
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Proof. If S∪{v} is linearly dependent, then there are vectors u1, u2, . . . , un

in S ∪ {v} such that a1u1 + a2u2 + · · · + anun = 0 for some nonzero scalars
a1, a2, . . . , an. Because S is linearly independent, one of the ui’s, say u1,
equals v. Thus a1v + a2u2 + · · · + anun = 0 , and so

v = a−1
1 (−a2u2 − · · · − anun) = −(a−1

1 a2)u2 − · · · − (a−1
1 an)un.

Since v is a linear combination of u2, . . . , un, which are in S, we have v ∈
span(S).

Conversely, let v ∈ span(S). Then there exist vectors v1, v2, . . . , vm in S
and scalars b1, b2, . . . , bm such that v = b1v1 + b2v2 + · · · + bmvm. Hence

0 = b1v1 + b2v2 + · · · + bmvm + (−1)v.

Since v �= vi for i = 1, 2, . . . , m, the coefficient of v in this linear combination
is nonzero, and so the set {v1, v2, . . . , vm, v} is linearly dependent. Therefore
S ∪ {v} is linearly dependent by Theorem 1.6.

Linearly independent generating sets are investigated in detail in Sec-
tion 1.6.

EXERCISES

1. Label the following statements as true or false.

(a) If S is a linearly dependent set, then each vector in S is a linear
combination of other vectors in S.

(b) Any set containing the zero vector is linearly dependent.
(c) The empty set is linearly dependent.
(d) Subsets of linearly dependent sets are linearly dependent.
(e) Subsets of linearly independent sets are linearly independent.
(f) If a1x1 + a2x2 + · · · + anxn = 0 and x1, x2, . . . , xn are linearly

independent, then all the scalars ai are zero.

2.3 Determine whether the following sets are linearly dependent or linearly
independent.

(a)
{(

1 −3
−2 4

)
,

(−2 6
4 −8

)}
in M2×2(R)

(b)
{(

1 −2
−1 4

)
,

(−1 1
2 −4

)}
in M2×2(R)

(c) {x3 + 2x2,−x2 + 3x + 1, x3 − x2 + 2x − 1} in P3(R)
3The computations in Exercise 2(g), (h), (i), and (j) are tedious unless technology is

used.
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(d) {x3 − x, 2x2 + 4,−2x3 + 3x2 + 2x + 6} in P3(R)
(e) {(1,−1, 2), (1,−2, 1), (1, 1, 4)} in R3

(f) {(1,−1, 2), (2, 0, 1), (−1, 2,−1)} in R3

(g)
{(

1 0
−2 1

)
,

(
0 −1
1 1

)
,

(−1 2
1 0

)
,

(
2 1

−4 4

)}
in M2×2(R)

(h)
{(

1 0
−2 1

)
,

(
0 −1
1 1

)
,

(−1 2
1 0

)
,

(
2 1
2 −2

)}
in M2×2(R)

(i) {x4 − x3 + 5x2 − 8x + 6,−x4 + x3 − 5x2 + 5x − 3,
x4 +3x2 −3x+5, 2x4 +3x3 +4x2 −x+1, x3 −x+2} in P4(R)

(j) {x4 − x3 + 5x2 − 8x + 6,−x4 + x3 − 5x2 + 5x − 3,
x4 + 3x2 − 3x + 5, 2x4 + x3 + 4x2 + 8x} in P4(R)

3. In M2×3(F ), prove that the set⎧⎨⎩
⎛⎝1 1

0 0
0 0

⎞⎠ ,

⎛⎝0 0
1 1
0 0

⎞⎠ ,

⎛⎝0 0
0 0
1 1

⎞⎠ ,

⎛⎝1 0
1 0
1 0

⎞⎠ ,

⎛⎝0 1
0 1
0 1

⎞⎠⎫⎬⎭
is linearly dependent.

4. In Fn, let ej denote the vector whose jth coordinate is 1 and whose other
coordinates are 0. Prove that {e1, e2, · · · , en} is linearly independent.

5. Show that the set {1, x, x2, . . . , xn} is linearly independent in Pn(F ).

6. In Mm×n(F ), let Eij denote the matrix whose only nonzero entry is 1 in
the ith row and jth column. Prove that {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
is linearly independent.

7. Recall from Example 3 in Section 1.3 that the set of diagonal matrices in
M2×2(F ) is a subspace. Find a linearly independent set that generates
this subspace.

8. Let S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} be a subset of the vector space F3.

(a) Prove that if F = R, then S is linearly independent.
(b) Prove that if F has characteristic 2, then S is linearly dependent.

9.† Let u and v be distinct vectors in a vector space V. Show that {u, v} is
linearly dependent if and only if u or v is a multiple of the other.

10. Give an example of three linearly dependent vectors in R3 such that
none of the three is a multiple of another.
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11. Let S = {u1, u2, . . . , un} be a linearly independent subset of a vector
space V over the field Z2. How many vectors are there in span(S)?
Justify your answer.

12. Prove Theorem 1.6 and its corollary.

13. Let V be a vector space over a field of characteristic not equal to two.

(a) Let u and v be distinct vectors in V. Prove that {u, v} is linearly
independent if and only if {u + v, u − v} is linearly independent.

(b) Let u, v, and w be distinct vectors in V. Prove that {u, v, w} is
linearly independent if and only if {u + v, u + w, v + w} is linearly
independent.

14. Prove that a set S is linearly dependent if and only if S = {0} or
there exist distinct vectors v, u1, u2, . . . , un in S such that v is a linear
combination of u1, u2, . . . , un.

15. Let S = {u1, u2, . . . , un} be a finite set of vectors. Prove that S is
linearly dependent if and only if u1 = 0 or uk+1 ∈ span({u1, u2, . . . , uk})
for some k (1 ≤ k < n).

16. Prove that a set S of vectors is linearly independent if and only if each
finite subset of S is linearly independent.

17. Let M be a square upper triangular matrix (as defined in Exercise 12
of Section 1.3) with nonzero diagonal entries. Prove that the columns
of M are linearly independent.

18. Let S be a set of nonzero polynomials in P(F ) such that no two have
the same degree. Prove that S is linearly independent.

19. Prove that if {A1, A2, . . . , Ak} is a linearly independent subset of
Mn×n(F ), then {At

1, A
t
2, . . . , At

k} is also linearly independent.

20. Let f, g,∈ F(R, R) be the functions defined by f(t) = ert and g(t) = est,
where r �= s. Prove that f and g are linearly independent in F(R, R).

1.6 BASES AND DIMENSION

We saw in Section 1.5 that if S is a generating set for a subspace W and
no proper subset of S is a generating set for W, then S must be linearly
independent. A linearly independent generating set for W possesses a very
useful property—every vector in W can be expressed in one and only one way
as a linear combination of the vectors in the set. (This property is proved
below in Theorem 1.8.) It is this property that makes linearly independent
generating sets the building blocks of vector spaces.



Sec. 1.6 Bases and Dimension 43

Definition. A basis β for a vector space V is a linearly independent
subset of V that generates V. If β is a basis for V, we also say that the
vectors of β form a basis for V.

Example 1

Recalling that span(∅) = {0} and ∅ is linearly independent, we see that ∅

is a basis for the zero vector space. ♦
Example 2

In Fn, let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1);
{e1, e2, . . . , en} is readily seen to be a basis for Fn and is called the standard
basis for Fn. ♦
Example 3

In Mm×n(F ), let Eij denote the matrix whose only nonzero entry is a 1 in
the ith row and jth column. Then {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for
Mm×n(F ). ♦
Example 4

In Pn(F ) the set {1, x, x2, . . . , xn} is a basis. We call this basis the standard
basis for Pn(F ). ♦
Example 5

In P(F ) the set {1, x, x2, . . .} is a basis. ♦
Observe that Example 5 shows that a basis need not be finite. In fact,

later in this section it is shown that no basis for P(F ) can be finite. Hence
not every vector space has a finite basis.

The next theorem, which is used frequently in Chapter 2, establishes the
most significant property of a basis.

Theorem 1.8. Let V be a vector space and β = {u1, u2, . . . , un} be a
subset of V. Then β is a basis for V if and only if each v ∈ V can be uniquely
expressed as a linear combination of vectors of β, that is, can be expressed in
the form

v = a1u1 + a2u2 + · · · + anun

for unique scalars a1, a2, . . . , an.

Proof. Let β be a basis for V. If v ∈ V, then v ∈ span(β) because
span(β) = V. Thus v is a linear combination of the vectors of β. Suppose
that

v = a1u1 + a2u2 + · · · + anun and v = b1u1 + b2u2 + · · · + bnun



44 Chap. 1 Vector Spaces

are two such representations of v. Subtracting the second equation from the
first gives

0 = (a1 − b1)u1 + (a2 − b2)u2 + · · · + (an − bn)un.

Since β is linearly independent, it follows that a1 − b1 = a2 − b2 = · · · =
an − bn = 0. Hence a1 = b1, a2 = b2, · · · , an = bn, and so v is uniquely
expressible as a linear combination of the vectors of β.

The proof of the converse is an exercise.

Theorem 1.8 shows that if the vectors u1, u2, . . . , un form a basis for a
vector space V, then every vector in V can be uniquely expressed in the form

v = a1u1 + a2u2 + · · · + anun

for appropriately chosen scalars a1, a2, . . . , an. Thus v determines a unique
n-tuple of scalars (a1, a2, . . . , an) and, conversely, each n-tuple of scalars de-
termines a unique vector v ∈ V by using the entries of the n-tuple as the
coefficients of a linear combination of u1, u2, . . . , un. This fact suggests that
V is like the vector space Fn, where n is the number of vectors in the basis
for V. We see in Section 2.4 that this is indeed the case.

In this book, we are primarily interested in vector spaces having finite
bases. Theorem 1.9 identifies a large class of vector spaces of this type.

Theorem 1.9. If a vector space V is generated by a finite set S, then
some subset of S is a basis for V. Hence V has a finite basis.

Proof. If S = ∅ or S = {0}, then V = {0} and ∅ is a subset of S that is a
basis for V. Otherwise S contains a nonzero vector u1. By item 2 on page 37,
{u1} is a linearly independent set. Continue, if possible, choosing vectors
u2, . . . , uk in S such that {u1, u2, . . . , uk} is linearly independent. Since S is
a finite set, we must eventually reach a stage at which β = {u1, u2, . . . , uk} is
a linearly independent subset of S, but adjoining to β any vector in S not in β
produces a linearly dependent set. We claim that β is a basis for V. Because
β is linearly independent by construction, it suffices to show that β spans V.
By Theorem 1.5 (p. 30) we need to show that S ⊆ span(β). Let v ∈ S. If
v ∈ β, then clearly v ∈ span(β). Otherwise, if v /∈ β, then the preceding
construction shows that β ∪ {v} is linearly dependent. So v ∈ span(β) by
Theorem 1.7 (p. 39). Thus S ⊆ span(β).

Because of the method by which the basis β was obtained in the proof
of Theorem 1.9, this theorem is often remembered as saying that a finite
spanning set for V can be reduced to a basis for V. This method is illustrated
in the next example.
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Example 6

Let

S = {(2,−3, 5), (8,−12, 20), (1, 0,−2), (0, 2,−1), (7, 2, 0)}.
It can be shown that S generates R3. We can select a basis for R3 that
is a subset of S by the technique used in proving Theorem 1.9. To start,
select any nonzero vector in S, say (2,−3, 5), to be a vector in the basis.
Since 4(2,−3, 5) = (8,−12, 20), the set {(2, 3,−5), (8,−12, 20)} is linearly
dependent by Exercise 9 of Section 1.5. Hence we do not include (8,−12, 20)
in our basis. On the other hand, (1, 0,−2) is not a multiple of (2,−3, 5) and
vice versa, so that the set {(2,−3, 5), (1, 0,−2)} is linearly independent. Thus
we include (1, 0,−2) as part of our basis.

Now we consider the set {(2,−3, 5), (1, 0,−2), (0, 2,−1)} obtained by ad-
joining another vector in S to the two vectors that we have already included
in our basis. As before, we include (0, 2,−1) in our basis or exclude it from
the basis according to whether {(2,−3, 5), (1, 0,−2), (0, 2,−1)} is linearly in-
dependent or linearly dependent. An easy calculation shows that this set is
linearly independent, and so we include (0, 2,−1) in our basis. In a similar
fashion the final vector in S is included or excluded from our basis according
to whether the set

{(2,−3, 5), (1, 0,−2), (0, 2,−1), (7, 2, 0)}
is linearly independent or linearly dependent. Because

2(2,−3, 5) + 3(1, 0,−2) + 4(0, 2,−1) − (7, 2, 0) = (0, 0, 0),

we exclude (7, 2, 0) from our basis. We conclude that

{(2,−3, 5), (1, 0,−2), (0, 2,−1)}
is a subset of S that is a basis for R3. ♦

The corollaries of the following theorem are perhaps the most significant
results in Chapter 1.

Theorem 1.10 (Replacement Theorem). Let V be a vector space
that is generated by a set G containing exactly n vectors, and let L be a
linearly independent subset of V containing exactly m vectors. Then m ≤ n
and there exists a subset H of G containing exactly n − m vectors such that
L ∪ H generates V.

Proof. The proof is by mathematical induction on m. The induction begins
with m = 0; for in this case L = ∅, and so taking H = G gives the desired
result.
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Now suppose that the theorem is true for some integer m ≥ 0. We prove
that the theorem is true for m + 1. Let L = {v1, v2, . . . , vm+1} be a linearly
independent subset of V consisting of m + 1 vectors. By the corollary to
Theorem 1.6 (p. 39), {v1, v2, . . . , vm} is linearly independent, and so we may
apply the induction hypothesis to conclude that m ≤ n and that there is a
subset {u1, u2, . . . , un−m} of G such that {v1, v2, . . . , vm}∪{u1, u2, . . . , un−m}
generates V. Thus there exist scalars a1, a2, . . . , am, b1, b2, . . . , bn−m such that

a1v1 + a2v2 + · · · + amvm + b1u1 + b2u2 + · · · + bn−mun−m = vm+1. (9)

Note that n −m > 0, lest vm+1 be a linear combination of v1, v2, . . . , vm,
which by Theorem 1.7 (p. 39) contradicts the assumption that L is linearly
independent. Hence n > m; that is, n ≥ m + 1. Moreover, some bi, say b1, is
nonzero, for otherwise we obtain the same contradiction. Solving (9) for u1

gives

u1 = (−b−1
1 a1)v1 + (−b−1

1 a2)v2 + · · · + (−b−1
1 am)vm + (b−1

1 )vm+1

+ (−b−1
1 b2)u2 + · · · + (−b−1

1 bn−m)un−m.

Let H = {u2, . . . , un−m}. Then u1 ∈ span(L∪H), and because v1, v2, . . . , vm,
u2, . . . , un−m are clearly in span(L ∪ H), it follows that

{v1, v2, . . . , vm, u1, u2, . . . , un−m} ⊆ span(L ∪ H).

Because {v1, v2, . . . , vm, u1, u2, . . . , un−m} generates V, Theorem 1.5 (p. 30)
implies that span(L ∪ H) = V. Since H is a subset of G that contains
(n − m) − 1 = n − (m + 1) vectors, the theorem is true for m + 1. This
completes the induction.

Corollary 1. Let V be a vector space having a finite basis. Then every
basis for V contains the same number of vectors.

Proof. Suppose that β is a finite basis for V that contains exactly n vectors,
and let γ be any other basis for V. If γ contains more than n vectors, then
we can select a subset S of γ containing exactly n + 1 vectors. Since S is
linearly independent and β generates V, the replacement theorem implies that
n+1 ≤ n, a contradiction. Therefore γ is finite, and the number m of vectors
in γ satisfies m ≤ n. Reversing the roles of β and γ and arguing as above, we
obtain n ≤ m. Hence m = n.

If a vector space has a finite basis, Corollary 1 asserts that the number
of vectors in any basis for V is an intrinsic property of V. This fact makes
possible the following important definitions.

Definitions. A vector space is called finite-dimensional if it has a
basis consisting of a finite number of vectors. The unique number of vectors
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in each basis for V is called the dimension of V and is denoted by dim(V).
A vector space that is not finite-dimensional is called infinite-dimensional.

The following results are consequences of Examples 1 through 4.

Example 7

The vector space {0} has dimension zero. ♦
Example 8

The vector space Fn has dimension n. ♦
Example 9

The vector space Mm×n(F ) has dimension mn. ♦
Example 10

The vector space Pn(F ) has dimension n + 1. ♦
The following examples show that the dimension of a vector space depends

on its field of scalars.

Example 11

Over the field of complex numbers, the vector space of complex numbers has
dimension 1. (A basis is {1}.) ♦
Example 12

Over the field of real numbers, the vector space of complex numbers has
dimension 2. (A basis is {1, i}.) ♦

In the terminology of dimension, the first conclusion in the replacement
theorem states that if V is a finite-dimensional vector space, then no linearly
independent subset of V can contain more than dim(V) vectors. From this
fact it follows that the vector space P(F ) is infinite-dimensional because it
has an infinite linearly independent set, namely {1, x, x2, . . .}. This set is,
in fact, a basis for P(F ). Yet nothing that we have proved in this section
guarantees an infinite-dimensional vector space must have a basis. In Section
1.7 it is shown, however, that every vector space has a basis.

Just as no linearly independent subset of a finite-dimensional vector space
V can contain more than dim(V) vectors, a corresponding statement can be
made about the size of a generating set.

Corollary 2. Let V be a vector space with dimension n.
(a) Any finite generating set for V contains at least n vectors, and a gener-

ating set for V that contains exactly n vectors is a basis for V.
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(b) Any linearly independent subset of V that contains exactly n vectors is
a basis for V.

(c) Every linearly independent subset of V can be extended to a basis for
V.

Proof. Let β be a basis for V.
(a) Let G be a finite generating set for V. By Theorem 1.9 some subset H

of G is a basis for V. Corollary 1 implies that H contains exactly n vectors.
Since a subset of G contains n vectors, G must contain at least n vectors.
Moreover, if G contains exactly n vectors, then we must have H = G, so that
G is a basis for V.

(b) Let L be a linearly independent subset of V containing exactly n
vectors. It follows from the replacement theorem that there is a subset H of
β containing n − n = 0 vectors such that L ∪ H generates V. Thus H = ∅,
and L generates V. Since L is also linearly independent, L is a basis for V.

(c) If L is a linearly independent subset of V containing m vectors, then
the replacement theorem asserts that there is a subset H of β containing
exactly n − m vectors such that L ∪ H generates V. Now L ∪ H contains at
most n vectors; therefore (a) implies that L ∪ H contains exactly n vectors
and that L ∪ H is a basis for V.

Example 13

It follows from Example 4 of Section 1.4 and (a) of Corollary 2 that

{x2 + 3x − 2, 2x2 + 5x − 3,−x2 − 4x + 4}

is a basis for P2(R). ♦

Example 14

It follows from Example 5 of Section 1.4 and (a) of Corollary 2 that{(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)}
is a basis for M2×2(R). ♦

Example 15

It follows from Example 3 of Section 1.5 and (b) of Corollary 2 that

{(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1), (0, 0, 0, 1)}

is a basis for R4. ♦
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Example 16

For k = 0, 1, . . . , n, let pk(x) = xk+xk+1+· · ·+xn. It follows from Example 4
of Section 1.5 and (b) of Corollary 2 that

{p0(x), p1(x), . . . , pn(x)}

is a basis for Pn(F ). ♦

A procedure for reducing a generating set to a basis was illustrated in
Example 6. In Section 3.4, when we have learned more about solving systems
of linear equations, we will discover a simpler method for reducing a gener-
ating set to a basis. This procedure also can be used to extend a linearly
independent set to a basis, as (c) of Corollary 2 asserts is possible.

An Overview of Dimension and Its Consequences

Theorem 1.9 as well as the replacement theorem and its corollaries contain
a wealth of information about the relationships among linearly independent
sets, bases, and generating sets. For this reason, we summarize here the main
results of this section in order to put them into better perspective.

A basis for a vector space V is a linearly independent subset of V that
generates V. If V has a finite basis, then every basis for V contains the same
number of vectors. This number is called the dimension of V, and V is said
to be finite-dimensional. Thus if the dimension of V is n, every basis for V
contains exactly n vectors. Moreover, every linearly independent subset of
V contains no more than n vectors and can be extended to a basis for V
by including appropriately chosen vectors. Also, each generating set for V
contains at least n vectors and can be reduced to a basis for V by excluding
appropriately chosen vectors. The Venn diagram in Figure 1.6 depicts these
relationships.
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The Dimension of Subspaces

Our next result relates the dimension of a subspace to the dimension of
the vector space that contains it.

Theorem 1.11. Let W be a subspace of a finite-dimensional vector space
V. Then W is finite-dimensional and dim(W) ≤ dim(V). Moreover, if
dim(W) = dim(V), then V = W.

Proof. Let dim(V) = n. If W = {0}, then W is finite-dimensional and
dim(W) = 0 ≤ n. Otherwise, W contains a nonzero vector x1; so {x1} is a
linearly independent set. Continue choosing vectors, x1, x2, . . . , xk in W such
that {x1, x2, . . . , xk} is linearly independent. Since no linearly independent
subset of V can contain more than n vectors, this process must stop at a
stage where k ≤ n and {x1, x2, . . . , xk} is linearly independent but adjoining
any other vector from W produces a linearly dependent set. Theorem 1.7
(p. 39) implies that {x1, x2, . . . , xk} generates W, and hence it is a basis for
W. Therefore dim(W) = k ≤ n.

If dim(W) = n, then a basis for W is a linearly independent subset of V
containing n vectors. But Corollary 2 of the replacement theorem implies
that this basis for W is also a basis for V; so W = V.

Example 17

Let

W = {(a1, a2, a3, a4, a5) ∈ F5 : a1 + a3 + a5 = 0, a2 = a4}.
It is easily shown that W is a subspace of F5 having

{(−1, 0, 1, 0, 0), (−1, 0, 0, 0, 1), (0, 1, 0, 1, 0)}
as a basis. Thus dim(W) = 3. ♦
Example 18

The set of diagonal n×n matrices is a subspace W of Mn×n(F ) (see Example 3
of Section 1.3). A basis for W is

{E11, E22, . . . , Enn},
where Eij is the matrix in which the only nonzero entry is a 1 in the ith row
and jth column. Thus dim(W) = n. ♦
Example 19

We saw in Section 1.3 that the set of symmetric n×n matrices is a subspace
W of Mn×n(F ). A basis for W is

{Aij : 1 ≤ i ≤ j ≤ n},
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where Aij is the n × n matrix having 1 in the ith row and jth column, 1 in
the jth row and ith column, and 0 elsewhere. It follows that

dim(W) = n + (n − 1) + · · · + 1 =
1
2
n(n + 1). ♦

Corollary. If W is a subspace of a finite-dimensional vector space V, then
any basis for W can be extended to a basis for V.

Proof. Let S be a basis for W. Because S is a linearly independent subset of
V, Corollary 2 of the replacement theorem guarantees that S can be extended
to a basis for V.

Example 20

The set of all polynomials of the form

a18x
18 + a16x

16 + · · · + a2x
2 + a0,

where a18, a16, . . . , a2, a0 ∈ F , is a subspace W of P18(F ). A basis for W is
{1, x2, . . . , x16, x18}, which is a subset of the standard basis for P18(F ). ♦

We can apply Theorem 1.11 to determine the subspaces of R2 and R3.
Since R2 has dimension 2, subspaces of R2 can be of dimensions 0, 1, or 2
only. The only subspaces of dimension 0 or 2 are {0} and R2, respectively.
Any subspace of R2 having dimension 1 consists of all scalar multiples of some
nonzero vector in R2 (Exercise 11 of Section 1.4).

If a point of R2 is identified in the natural way with a point in the Euclidean
plane, then it is possible to describe the subspaces of R2 geometrically: A
subspace of R2 having dimension 0 consists of the origin of the Euclidean
plane, a subspace of R2 with dimension 1 consists of a line through the origin,
and a subspace of R2 having dimension 2 is the entire Euclidean plane.

Similarly, the subspaces of R3 must have dimensions 0, 1, 2, or 3. Inter-
preting these possibilities geometrically, we see that a subspace of dimension
zero must be the origin of Euclidean 3-space, a subspace of dimension 1 is
a line through the origin, a subspace of dimension 2 is a plane through the
origin, and a subspace of dimension 3 is Euclidean 3-space itself.

The Lagrange Interpolation Formula

Corollary 2 of the replacement theorem can be applied to obtain a useful
formula. Let c0, c1, . . . , cn be distinct scalars in an infinite field F . The
polynomials f0(x), f1(x), . . . , fn(x) defined by

fi(x) =
(x − c0) · · · (x − ci−1)(x − ci+1) · · · (x − cn)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)
=

n∏
k=0
k �=i

x − ck

ci − ck
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are called the Lagrange polynomials (associated with c0, c1, . . . , cn). Note
that each fi(x) is a polynomial of degree n and hence is in Pn(F ). By re-
garding fi(x) as a polynomial function fi : F → F , we see that

fi(cj) =

{
0 if i �= j

1 if i = j.
(10)

This property of Lagrange polynomials can be used to show that β =
{f0, f1, . . . , fn} is a linearly independent subset of Pn(F ). Suppose that

n∑
i=0

aifi = 0 for some scalars a0, a1, . . . , an,

where 0 denotes the zero function. Then

n∑
i=0

aifi(cj) = 0 for j = 0, 1, . . . , n.

But also

n∑
i=0

aifi(cj) = aj

by (10). Hence aj = 0 for j = 0, 1, . . . , n; so β is linearly independent. Since
the dimension of Pn(F ) is n+1, it follows from Corollary 2 of the replacement
theorem that β is a basis for Pn(F ).

Because β is a basis for Pn(F ), every polynomial function g in Pn(F ) is a
linear combination of polynomial functions of β, say,

g =
n∑

i=0

bifi.

It follows that

g(cj) =
n∑

i=0

bifi(cj) = bj ;

so

g =
n∑

i=0

g(ci)fi

is the unique representation of g as a linear combination of elements of β.
This representation is called the Lagrange interpolation formula. Notice
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that the preceding argument shows that if b0, b1, . . . , bn are any n + 1 scalars
in F (not necessarily distinct), then the polynomial function

g =
n∑

i=0

bifi

is the unique polynomial in Pn(F ) such that g(cj) = bj . Thus we have found
the unique polynomial of degree not exceeding n that has specified values
bj at given points cj in its domain (j = 0, 1, . . . , n). For example, let us
construct the real polynomial g of degree at most 2 whose graph contains the
points (1, 8), (2, 5), and (3,−4). (Thus, in the notation above, c0 = 1, c1 = 2,
c2 = 3, b0 = 8, b1 = 5, and b2 = −4.) The Lagrange polynomials associated
with c0, c1, and c2 are

f0(x) =
(x − 2)(x − 3)
(1 − 2)(1 − 3)

=
1
2
(x2 − 5x + 6),

f1(x) =
(x − 1)(x − 3)
(2 − 1)(2 − 3)

= −1(x2 − 4x + 3),

and

f2(x) =
(x − 1)(x − 2)
(3 − 1)(3 − 2)

=
1
2
(x2 − 3x + 2).

Hence the desired polynomial is

g(x) =
2∑

i=0

bifi(x) = 8f0(x) + 5f1(x) − 4f2(x)

= 4(x2 − 5x + 6) − 5(x2 − 4x + 3) − 2(x2 − 3x + 2)

= −3x2 + 6x + 5.

An important consequence of the Lagrange interpolation formula is the fol-
lowing result: If f ∈ Pn(F ) and f(ci) = 0 for n+1 distinct scalars c0, c1, . . . , cn

in F , then f is the zero function.

EXERCISES

1. Label the following statements as true or false.

(a) The zero vector space has no basis.
(b) Every vector space that is generated by a finite set has a basis.
(c) Every vector space has a finite basis.
(d) A vector space cannot have more than one basis.
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(e) If a vector space has a finite basis, then the number of vectors in
every basis is the same.

(f) The dimension of Pn(F ) is n.
(g) The dimension of Mm×n(F ) is m + n.
(h) Suppose that V is a finite-dimensional vector space, that S1 is a

linearly independent subset of V, and that S2 is a subset of V that
generates V. Then S1 cannot contain more vectors than S2.

(i) If S generates the vector space V, then every vector in V can be
written as a linear combination of vectors in S in only one way.

(j) Every subspace of a finite-dimensional space is finite-dimensional.
(k) If V is a vector space having dimension n, then V has exactly one

subspace with dimension 0 and exactly one subspace with dimen-
sion n.

(l) If V is a vector space having dimension n, and if S is a subset of
V with n vectors, then S is linearly independent if and only if S
spans V.

2. Determine which of the following sets are bases for R3.

(a) {(1, 0,−1), (2, 5, 1), (0,−4, 3)}
(b) {(2,−4, 1), (0, 3,−1), (6, 0,−1)}
(c) {(1, 2,−1), (1, 0, 2), (2, 1, 1)}
(d) {(−1, 3, 1), (2,−4,−3), (−3, 8, 2)}
(e) {(1,−3,−2), (−3, 1, 3), (−2,−10,−2)}

3. Determine which of the following sets are bases for P2(R).

(a) {−1 − x + 2x2, 2 + x − 2x2, 1 − 2x + 4x2}
(b) {1 + 2x + x2, 3 + x2, x + x2}
(c) {1 − 2x − 2x2,−2 + 3x − x2, 1 − x + 6x2}
(d) {−1 + 2x + 4x2, 3 − 4x − 10x2,−2 − 5x − 6x2}
(e) {1 + 2x − x2, 4 − 2x + x2,−1 + 18x − 9x2}

4. Do the polynomials x3−2x2+1, 4x2−x+3, and 3x−2 generate P3(R)?
Justify your answer.

5. Is {(1, 4,−6), (1, 5, 8), (2, 1, 1), (0, 1, 0)} a linearly independent subset of
R3? Justify your answer.

6. Give three different bases for F2 and for M2×2(F ).

7. The vectors u1 = (2,−3, 1), u2 = (1, 4,−2), u3 = (−8, 12,−4), u4 =
(1, 37,−17), and u5 = (−3,−5, 8) generate R3. Find a subset of the set
{u1, u2, u3, u4, u5} that is a basis for R3.
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8. Let W denote the subspace of R5 consisting of all the vectors having
coordinates that sum to zero. The vectors

u1 = (2,−3, 4,−5, 2), u2 = (−6, 9,−12, 15,−6),
u3 = (3,−2, 7,−9, 1), u4 = (2,−8, 2,−2, 6),
u5 = (−1, 1, 2, 1,−3), u6 = (0,−3,−18, 9, 12),
u7 = (1, 0,−2, 3,−2), u8 = (2,−1, 1,−9, 7)

generate W. Find a subset of the set {u1, u2, . . . , u8} that is a basis for
W.

9. The vectors u1 = (1, 1, 1, 1), u2 = (0, 1, 1, 1), u3 = (0, 0, 1, 1), and
u4 = (0, 0, 0, 1) form a basis for F4. Find the unique representation
of an arbitrary vector (a1, a2, a3, a4) in F4 as a linear combination of
u1, u2, u3, and u4.

10. In each part, use the Lagrange interpolation formula to construct the
polynomial of smallest degree whose graph contains the following points.

(a) (−2,−6), (−1, 5), (1, 3)
(b) (−4, 24), (1, 9), (3, 3)
(c) (−2, 3), (−1,−6), (1, 0), (3,−2)
(d) (−3,−30), (−2, 7), (0, 15), (1, 10)

11. Let u and v be distinct vectors of a vector space V. Show that if {u, v}
is a basis for V and a and b are nonzero scalars, then both {u + v, au}
and {au, bv} are also bases for V.

12. Let u, v, and w be distinct vectors of a vector space V. Show that if
{u, v, w} is a basis for V, then {u+v +w, v +w, w} is also a basis for V.

13. The set of solutions to the system of linear equations

x1 − 2x2 + x3 = 0
2x1 − 3x2 + x3 = 0

is a subspace of R3. Find a basis for this subspace.

14. Find bases for the following subspaces of F5:

W1 = {(a1, a2, a3, a4, a5) ∈ F5 : a1 − a3 − a4 = 0}

and

W2 = {(a1, a2, a3, a4, a5) ∈ F5 : a2 = a3 = a4 and a1 + a5 = 0}.

What are the dimensions of W1 and W2?
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15. The set of all n×n matrices having trace equal to zero is a subspace W
of Mn×n(F ) (see Example 4 of Section 1.3). Find a basis for W. What
is the dimension of W?

16. The set of all upper triangular n × n matrices is a subspace W of
Mn×n(F ) (see Exercise 12 of Section 1.3). Find a basis for W. What is
the dimension of W?

17. The set of all skew-symmetric n × n matrices is a subspace W of
Mn×n(F ) (see Exercise 28 of Section 1.3). Find a basis for W. What is
the dimension of W?

18. Find a basis for the vector space in Example 5 of Section 1.2. Justify
your answer.

19. Complete the proof of Theorem 1.8.

20.† Let V be a vector space having dimension n, and let S be a subset of V
that generates V.

(a) Prove that there is a subset of S that is a basis for V. (Be careful
not to assume that S is finite.)

(b) Prove that S contains at least n vectors.

21. Prove that a vector space is infinite-dimensional if and only if it contains
an infinite linearly independent subset.

22. Let W1 and W2 be subspaces of a finite-dimensional vector space V.
Determine necessary and sufficient conditions on W1 and W2 so that
dim(W1 ∩ W2) = dim(W1).

23. Let v1, v2, . . . , vk, v be vectors in a vector space V, and define W1 =
span({v1, v2, . . . , vk}), and W2 = span({v1, v2, . . . , vk, v}).
(a) Find necessary and sufficient conditions on v such that dim(W1) =

dim(W2).
(b) State and prove a relationship involving dim(W1) and dim(W2) in

the case that dim(W1) �= dim(W2).

24. Let f(x) be a polynomial of degree n in Pn(R). Prove that for any
g(x) ∈ Pn(R) there exist scalars c0, c1, . . . , cn such that

g(x) = c0f(x) + c1f
′(x) + c2f

′′(x) + · · · + cnf (n)(x),

where f (n)(x) denotes the nth derivative of f(x).

25. Let V, W, and Z be as in Exercise 21 of Section 1.2. If V and W are
vector spaces over F of dimensions m and n, determine the dimension
of Z.
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26. For a fixed a ∈ R, determine the dimension of the subspace of Pn(R)
defined by {f ∈ Pn(R) : f(a) = 0}.

27. Let W1 and W2 be the subspaces of P(F ) defined in Exercise 25 in
Section 1.3. Determine the dimensions of the subspaces W1 ∩ Pn(F )
and W2 ∩ Pn(F ).

28. Let V be a finite-dimensional vector space over C with dimension n.
Prove that if V is now regarded as a vector space over R, then dimV =
2n. (See Examples 11 and 12.)

Exercises 29–34 require knowledge of the sum and direct sum of subspaces,
as defined in the exercises of Section 1.3.

29. (a) Prove that if W1 and W2 are finite-dimensional subspaces of a
vector space V, then the subspace W1 + W2 is finite-dimensional,
and dim(W1 + W2) = dim(W1) + dim(W2)− dim(W1 ∩W2). Hint:
Start with a basis {u1, u2, . . . , uk} for W1 ∩ W2 and extend this
set to a basis {u1, u2, . . . , uk, v1, v2, . . . vm} for W1 and to a basis
{u1, u2, . . . , uk, w1, w2, . . . wp} for W2.

(b) Let W1 and W2 be finite-dimensional subspaces of a vector space
V, and let V = W1 + W2. Deduce that V is the direct sum of W1

and W2 if and only if dim(V) = dim(W1) + dim(W2).

30. Let

V = M2×2(F ), W1 =
{(

a b
c a

)
∈ V : a, b, c ∈ F

}
,

and

W2 =
{(

0 a
−a b

)
∈ V : a, b ∈ F

}
.

Prove that W1 and W2 are subspaces of V, and find the dimensions of
W1, W2, W1 + W2, and W1 ∩ W2.

31. Let W1 and W2 be subspaces of a vector space V having dimensions m
and n, respectively, where m ≥ n.

(a) Prove that dim(W1 ∩ W2) ≤ n.
(b) Prove that dim(W1 + W2) ≤ m + n.

32. (a) Find an example of subspaces W1 and W2 of R3 with dimensions
m and n, where m > n > 0, such that dim(W1 ∩ W2) = n.

(b) Find an example of subspaces W1 and W2 of R3 with dimensions
m and n, where m > n > 0, such that dim(W1 + W2) = m + n.
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(c) Find an example of subspaces W1 and W2 of R3 with dimensions
m and n, where m ≥ n, such that both dim(W1 ∩ W2) < n and
dim(W1 + W2) < m + n.

33. (a) Let W1 and W2 be subspaces of a vector space V such that V =
W1⊕W2. If β1 and β2 are bases for W1 and W2, respectively, show
that β1 ∩ β2 = ∅ and β1 ∪ β2 is a basis for V.

(b) Conversely, let β1 and β2 be disjoint bases for subspaces W1 and
W2, respectively, of a vector space V. Prove that if β1 ∪ β2 is a
basis for V, then V = W1 ⊕ W2.

34. (a) Prove that if W1 is any subspace of a finite-dimensional vector
space V, then there exists a subspace W2 of V such that V =
W1 ⊕ W2.

(b) Let V = R2 and W1 = {(a1, 0) : a1 ∈ R}. Give examples of two
different subspaces W2 and W′

2 such that V = W1 ⊕ W2 and V =
W1 ⊕ W′

2.

The following exercise requires familiarity with Exercise 31 of Section 1.3.

35. Let W be a subspace of a finite-dimensional vector space V, and consider
the basis {u1, u2, . . . , uk} for W. Let {u1, u2, . . . , uk, uk+1, . . . , un} be
an extension of this basis to a basis for V.

(a) Prove that {uk+1 + W, uk+2 + W, . . . , un + W} is a basis for V/W.
(b) Derive a formula relating dim(V), dim(W), and dim(V/W).

1.7∗ MAXIMAL LINEARLY INDEPENDENT SUBSETS

In this section, several significant results from Section 1.6 are extended to
infinite-dimensional vector spaces. Our principal goal here is to prove that
every vector space has a basis. This result is important in the study of
infinite-dimensional vector spaces because it is often difficult to construct an
explicit basis for such a space. Consider, for example, the vector space of
real numbers over the field of rational numbers. There is no obvious way to
construct a basis for this space, and yet it follows from the results of this
section that such a basis does exist.

The difficulty that arises in extending the theorems of the preceding sec-
tion to infinite-dimensional vector spaces is that the principle of mathematical
induction, which played a crucial role in many of the proofs of Section 1.6,
is no longer adequate. Instead, a more general result called the maximal
principle is needed. Before stating this principle, we need to introduce some
terminology.

Definition. Let F be a family of sets. A member M of F is called
maximal (with respect to set inclusion) if M is contained in no member of
F other than M itself.
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Example 1

Let F be the family of all subsets of a nonempty set S. (This family F is
called the power set of S.) The set S is easily seen to be a maximal element
of F . ♦
Example 2

Let S and T be disjoint nonempty sets, and let F be the union of their power
sets. Then S and T are both maximal elements of F . ♦
Example 3

Let F be the family of all finite subsets of an infinite set S. Then F has no
maximal element. For if M is any member of F and s is any element of S
that is not in M , then M ∪{s} is a member of F that contains M as a proper
subset. ♦

Definition. A collection of sets C is called a chain (or nest or tower)
if for each pair of sets A and B in C, either A ⊆ B or B ⊆ A.

Example 4

For each positive integer n let An = {1, 2, . . . , n}. Then the collection of
sets C = {An : n = 1, 2, 3, . . .} is a chain. In fact, Am ⊆ An if and only if
m ≤ n. ♦

With this terminology we can now state the maximal principle.

Maximal Principle.4 Let F be a family of sets. If, for each chain C ⊆ F ,
there exists a member of F that contains each member of C, then F contains
a maximal member.

Because the maximal principle guarantees the existence of maximal el-
ements in a family of sets satisfying the hypothesis above, it is useful to
reformulate the definition of a basis in terms of a maximal property. In The-
orem 1.12, we show that this is possible; in fact, the concept defined next is
equivalent to a basis.

Definition. Let S be a subset of a vector space V. A maximal linearly
independent subset of S is a subset B of S satisfying both of the following
conditions.

(a) B is linearly independent.
(b) The only linearly independent subset of S that contains B is B itself.

4The Maximal Principle is logically equivalent to the Axiom of Choice, which
is an assumption in most axiomatic developments of set theory. For a treatment
of set theory using the Maximal Principle, see John L. Kelley, General Topology,
Graduate Texts in Mathematics Series, Vol. 27, Springer-Verlag, 1991.
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Example 5

Example 2 of Section 1.4 shows that

{x3 − 2x2 − 5x − 3, 3x3 − 5x2 − 4x − 9}

is a maximal linearly independent subset of

S = {2x3 − 2x2 + 12x − 6, x3 − 2x2 − 5x − 3, 3x3 − 5x2 − 4x − 9}

in P2(R). In this case, however, any subset of S consisting of two polynomials
is easily shown to be a maximal linearly independent subset of S. Thus
maximal linearly independent subsets of a set need not be unique. ♦

A basis β for a vector space V is a maximal linearly independent subset
of V, because

1. β is linearly independent by definition.
2. If v ∈ V and v /∈ β, then β ∪ {v} is linearly dependent by Theorem 1.7

(p. 39) because span(β) = V.

Our next result shows that the converse of this statement is also true.

Theorem 1.12. Let V be a vector space and S a subset that generates
V. If β is a maximal linearly independent subset of S, then β is a basis for V.

Proof. Let β be a maximal linearly independent subset of S. Because β
is linearly independent, it suffices to prove that β generates V. We claim
that S ⊆ span(β), for otherwise there exists a v ∈ S such that v /∈ span(β).
Since Theorem 1.7 (p. 39) implies that β ∪ {v} is linearly independent, we
have contradicted the maximality of β. Therefore S ⊆ span(β). Because
span(S) = V, it follows from Theorem 1.5 (p. 30) that span(β) = V.

Thus a subset of a vector space is a basis if and only if it is a maximal
linearly independent subset of the vector space. Therefore we can accomplish
our goal of proving that every vector space has a basis by showing that every
vector space contains a maximal linearly independent subset. This result
follows immediately from the next theorem.

Theorem 1.13. Let S be a linearly independent subset of a vector space
V. There exists a maximal linearly independent subset of V that contains S.

Proof. Let F denote the family of all linearly independent subsets of V
that contain S. In order to show that F contains a maximal element, we must
show that if C is a chain in F , then there exists a member U of F that contains
each member of C. We claim that U , the union of the members of C, is the
desired set. Clearly U contains each member of C, and so it suffices to prove
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that U ∈ F (i.e., that U is a linearly independent subset of V that contains S).
Because each member of C is a subset of V containing S, we have S ⊆ U ⊆ V.
Thus we need only prove that U is linearly independent. Let u1, u2, . . . , un

be in U and a1, a2, . . . , an be scalars such that a1u1 + a2u2 + · · ·+ anun = 0 .
Because ui ∈ U for i = 1, 2, . . . , n, there exists a set Ai in C such that ui ∈ Ai.
But since C is a chain, one of these sets, say Ak, contains all the others. Thus
ui ∈ Ak for i = 1, 2, . . . , n. However, Ak is a linearly independent set; so
a1u1 + a2u2 + · · ·+ anun = 0 implies that a1 = a2 = · · · = an = 0. It follows
that U is linearly independent.

The maximal principle implies that F has a maximal element. This el-
ement is easily seen to be a maximal linearly independent subset of V that
contains S.

Corollary. Every vector space has a basis.

It can be shown, analogously to Corollary 1 of the replacement theorem
(p. 46), that every basis for an infinite-dimensional vector space has the same
cardinality. (Sets have the same cardinality if there is a one-to-one and onto
mapping between them.) (See, for example, N. Jacobson, Lectures in Ab-
stract Algebra, vol. 2, Linear Algebra, D. Van Nostrand Company, New
York, 1953, p. 240.)

Exercises 4-7 extend other results from Section 1.6 to infinite-dimensional
vector spaces.

EXERCISES

1. Label the following statements as true or false.

(a) Every family of sets contains a maximal element.
(b) Every chain contains a maximal element.
(c) If a family of sets has a maximal element, then that maximal

element is unique.
(d) If a chain of sets has a maximal element, then that maximal ele-

ment is unique.
(e) A basis for a vector space is a maximal linearly independent subset

of that vector space.
(f) A maximal linearly independent subset of a vector space is a basis

for that vector space.

2. Show that the set of convergent sequences is an infinite-dimensional
subspace of the vector space of all sequences of real numbers. (See
Exercise 21 in Section 1.3.)

3. Let V be the set of real numbers regarded as a vector space over the
field of rational numbers. Prove that V is infinite-dimensional. Hint:
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Use the fact that π is transcendental, that is, π is not a zero of any
polynomial with rational coefficients.

4. Let W be a subspace of a (not necessarily finite-dimensional) vector
space V. Prove that any basis for W is a subset of a basis for V.

5. Prove the following infinite-dimensional version of Theorem 1.8 (p. 43):
Let β be a subset of an infinite-dimensional vector space V. Then β is a
basis for V if and only if for each nonzero vector v in V, there exist unique
vectors u1, u2, . . . , un in β and unique nonzero scalars c1, c2, . . . , cn such
that v = c1u1 + c2u2 + · · · + cnun.

6. Prove the following generalization of Theorem 1.9 (p. 44): Let S1 and
S2 be subsets of a vector space V such that S1 ⊆ S2. If S1 is linearly
independent and S2 generates V, then there exists a basis β for V such
that S1 ⊆ β ⊆ S2. Hint: Apply the maximal principle to the family of
all linearly independent subsets of S2 that contain S1, and proceed as
in the proof of Theorem 1.13.

7. Prove the following generalization of the replacement theorem. Let β
be a basis for a vector space V, and let S be a linearly independent
subset of V. There exists a subset S1 of β such that S ∪ S1 is a basis
for V.
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2
Linear Transformations
and Matrices
2.1 Linear Transformations, Null spaces, and Ranges
2.2 The Matrix Representation of a Linear Transformation
2.3 Composition of Linear Transformations and Matrix Multiplication
2.4 Invertibility and Isomorphisms
2.5 The Change of Coordinate Matrix
2.6* Dual Spaces
2.7* Homogeneous Linear Differential Equations with Constant Coefficients

In Chapter 1, we developed the theory of abstract vector spaces in consid-
erable detail. It is now natural to consider those functions defined on vector
spaces that in some sense “preserve” the structure. These special functions
are called linear transformations, and they abound in both pure and applied
mathematics. In calculus, the operations of differentiation and integration
provide us with two of the most important examples of linear transforma-
tions (see Examples 6 and 7 of Section 2.1). These two examples allow us
to reformulate many of the problems in differential and integral equations in
terms of linear transformations on particular vector spaces (see Sections 2.7
and 5.2).

In geometry, rotations, reflections, and projections (see Examples 2, 3,
and 4 of Section 2.1) provide us with another class of linear transformations.
Later we use these transformations to study rigid motions in Rn (Section
6.10).

In the remaining chapters, we see further examples of linear transforma-
tions occurring in both the physical and the social sciences. Throughout this
chapter, we assume that all vector spaces are over a common field F .

2.1 LINEAR TRANSFORMATIONS, NULL SPACES, AND RANGES

In this section, we consider a number of examples of linear transformations.
Many of these transformations are studied in more detail in later sections.
Recall that a function T with domain V and codomain W is denoted by

64
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T : V → W. (See Appendix B.)

Definition. Let V and W be vector spaces (over F ). We call a function
T : V → W a linear transformation from V to W if, for all x, y ∈ V and
c ∈ F , we have

(a) T(x + y) = T(x) + T(y) and
(b) T(cx) = cT(x).

If the underlying field F is the field of rational numbers, then (a) implies
(b) (see Exercise 37), but, in general (a) and (b) are logically independent.
See Exercises 38 and 39.

We often simply call T linear. The reader should verify the following
properties of a function T : V → W. (See Exercise 7.)

1. If T is linear, then T(0 ) = 0 .
2. T is linear if and only if T(cx + y) = cT(x) + T(y) for all x, y ∈ V and

c ∈ F .
3. If T is linear, then T(x − y) = T(x) − T(y) for all x, y ∈ V.
4. T is linear if and only if, for x1, x2, . . . , xn ∈ V and a1, a2, . . . , an ∈ F ,

we have

T

(
n∑

i=1

aixi

)
=

n∑
i=1

aiT(xi).

We generally use property 2 to prove that a given transformation is linear.

Example 1

Define

T : R2 → R2 by T(a1, a2) = (2a1 + a2, a1).

To show that T is linear, let c ∈ R and x, y ∈ R2, where x = (b1, b2) and
y = (d1, d2). Since

cx + y = (cb1 + d1, cb2 + d2),

we have

T(cx + y) = (2(cb1 + d1) + cb2 + d2, cb1 + d1).

Also

cT(x) + T(y) = c(2b1 + b2, b1) + (2d1 + d2, d1)
= (2cb1 + cb2 + 2d1 + d2, cb1 + d1)
= (2(cb1 + d1) + cb2 + d2, cb1 + d1).

So T is linear. ♦
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Figure 2.1

As we will see in Chapter 6, the applications of linear algebra to geometry
are wide and varied. The main reason for this is that most of the important
geometrical transformations are linear. Three particular transformations that
we now consider are rotation, reflection, and projection. We leave the proofs
of linearity to the reader.

Example 2

For any angle θ, define Tθ : R2 → R2 by the rule: Tθ(a1, a2) is the vector
obtained by rotating (a1, a2) counterclockwise by θ if (a1, a2) �= (0, 0), and
Tθ(0, 0) = (0, 0). Then Tθ : R2 → R2 is a linear transformation that is called
the rotation by θ.

We determine an explicit formula for Tθ. Fix a nonzero vector (a1, a2) ∈
R2. Let α be the angle that (a1, a2) makes with the positive x-axis (see
Figure 2.1(a)), and let r =

√
a2
1 + a2

2. Then a1 = r cos α and a2 = r sin α.
Also, Tθ(a1, a2) has length r and makes an angle α + θ with the positive
x-axis. It follows that

Tθ(a1, a2) = (r cos(α + θ), r sin(α + θ))
= (r cos α cos θ − r sin α sin θ, r cos α sin θ + r sin α cos θ)
= (a1 cos θ − a2 sin θ, a1 sin θ + a2 cos θ).

Finally, observe that this same formula is valid for (a1, a2) = (0, 0).
It is now easy to show, as in Example 1, that Tθ is linear. ♦

Example 3

Define T : R2 → R2 by T(a1, a2) = (a1,−a2). T is called the reflection
about the x -axis. (See Figure 2.1(b).) ♦
Example 4

Define T : R2 → R2 by T(a1, a2) = (a1, 0). T is called the projection on the
x -axis. (See Figure 2.1(c).) ♦
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We now look at some additional examples of linear transformations.

Example 5

Define T : Mm×n(F ) → Mn×m(F ) by T(A) = At, where At is the transpose
of A, defined in Section 1.3. Then T is a linear transformation by Exercise 3
of Section 1.3. ♦
Example 6

Define T : Pn(R) → Pn−1(R) by T(f(x)) = f ′(x), where f ′(x) denotes the
derivative of f(x). To show that T is linear, let g(x), h(x) ∈ Pn(R) and a ∈ R.
Now

T(ag(x) + h(x)) = (ag(x) + h(x))′ = ag′(x) + h′(x) = aT(g(x)) + T(h(x)).

So by property 2 above, T is linear. ♦
Example 7

Let V = C(R), the vector space of continuous real-valued functions on R. Let
a, b ∈ R, a < b. Define T : V → R by

T(f) =
∫ b

a

f(t) dt

for all f ∈ V. Then T is a linear transformation because the definite integral
of a linear combination of functions is the same as the linear combination of
the definite integrals of the functions. ♦

Two very important examples of linear transformations that appear fre-
quently in the remainder of the book, and therefore deserve their own nota-
tion, are the identity and zero transformations.

For vector spaces V and W (over F ), we define the identity transfor-
mation IV : V → V by IV(x) = x for all x ∈ V and the zero transformation
T0 : V → W by T0(x) = 0 for all x ∈ V. It is clear that both of these
transformations are linear. We often write I instead of IV.

We now turn our attention to two very important sets associated with
linear transformations: the range and null space. The determination of these
sets allows us to examine more closely the intrinsic properties of a linear
transformation.

Definitions. Let V and W be vector spaces, and let T : V → W be linear.
We define the null space (or kernel) N(T) of T to be the set of all vectors
x in V such that T(x) = 0 ; that is, N(T) = {x ∈ V : T(x) = 0}.

We define the range (or image) R(T) of T to be the subset of W con-
sisting of all images (under T) of vectors in V; that is, R(T) = {T(x) : x ∈ V}.
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Example 8

Let V and W be vector spaces, and let I : V → V and T0 : V → W be the
identity and zero transformations, respectively. Then N(I) = {0}, R(I) = V,
N(T0) = V, and R(T0) = {0}. ♦

Example 9

Let T : R3 → R2 be the linear transformation defined by

T(a1, a2, a3) = (a1 − a2, 2a3).

It is left as an exercise to verify that

N(T) = {(a, a, 0) : a ∈ R} and R(T) = R2. ♦

In Examples 8 and 9, we see that the range and null space of each of the
linear transformations is a subspace. The next result shows that this is true
in general.

Theorem 2.1. Let V and W be vector spaces and T : V → W be linear.
Then N(T) and R(T) are subspaces of V and W, respectively.

Proof. To clarify the notation, we use the symbols 0V and 0W to denote
the zero vectors of V and W, respectively.

Since T(0V) = 0W, we have that 0V ∈ N(T). Let x, y ∈ N(T) and c ∈ F .
Then T(x+y) = T(x)+T(y) = 0W +0W = 0W, and T(cx) = cT(x) = c0W =
0W. Hence x + y ∈ N(T) and cx ∈ N(T), so that N(T) is a subspace of V.

Because T(0V) = 0W, we have that 0W ∈ R(T). Now let x, y ∈ R(T) and
c ∈ F . Then there exist v and w in V such that T(v) = x and T(w) = y. So
T(v +w) = T(v)+T(w) = x+y, and T(cv) = cT(v) = cx. Thus x+y ∈ R(T)
and cx ∈ R(T), so R(T) is a subspace of W.

The next theorem provides a method for finding a spanning set for the
range of a linear transformation. With this accomplished, a basis for the
range is easy to discover using the technique of Example 6 of Section 1.6.

Theorem 2.2. Let V and W be vector spaces, and let T : V → W be
linear. If β = {v1, v2, . . . , vn} is a basis for V, then

R(T) = span(T(β)) = span({T(v1), T(v2), . . . ,T(vn)}).

Proof. Clearly T(vi) ∈ R(T) for each i. Because R(T) is a subspace,
R(T) contains span({T(v1), T(v2), . . . ,T(vn)}) = span(T(β)) by Theorem 1.5
(p. 30).
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Now suppose that w ∈ R(T). Then w = T(v) for some v ∈ V. Because β
is a basis for V, we have

v =
n∑

i=1

aivi for some a1, a2, . . . , an ∈ F.

Since T is linear, it follows that

w = T(v) =
n∑

i=1

aiT(vi) ∈ span(T(β)).

So R(T) is contained in span(T(β)).

It should be noted that Theorem 2.2 is true if β is infinite, that is, R(T) =
span({T(v) : v ∈ β}). (See Exercise 33.)

The next example illustrates the usefulness of Theorem 2.2.

Example 10

Define the linear transformation T : P2(R) → M2×2(R) by

T(f(x)) =
(

f(1) − f(2) 0
0 f(0)

)
.

Since β = {1, x, x2} is a basis for P2(R), we have

R(T) = span(T(β)) = span({T(1), T(x), T(x2)})

= span
({(

0 0
0 1

)
,

(−1 0
0 0

)
,

(−3 0
0 0

)})
= span

({(
0 0
0 1

)
,

(−1 0
0 0

)})
.

Thus we have found a basis for R(T), and so dim(R(T)) = 2. ♦
As in Chapter 1, we measure the “size” of a subspace by its dimension.

The null space and range are so important that we attach special names to
their respective dimensions.

Definitions. Let V and W be vector spaces, and let T : V → W be
linear. If N(T) and R(T) are finite-dimensional, then we define the nullity
of T, denoted nullity(T), and the rank of T, denoted rank(T), to be the
dimensions of N(T) and R(T), respectively.

Reflecting on the action of a linear transformation, we see intuitively that
the larger the nullity, the smaller the rank. In other words, the more vectors
that are carried into 0 , the smaller the range. The same heuristic reasoning
tells us that the larger the rank, the smaller the nullity. This balance between
rank and nullity is made precise in the next theorem, appropriately called the
dimension theorem.
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Theorem 2.3 (Dimension Theorem). Let V and W be vector spaces,
and let T : V → W be linear. If V is finite-dimensional, then

nullity(T) + rank(T) = dim(V).

Proof. Suppose that dim(V) = n, dim(N(T)) = k, and {v1, v2, . . . , vk} is
a basis for N(T). By the corollary to Theorem 1.11 (p. 51), we may extend
{v1, v2, . . . , vk} to a basis β = {v1, v2, . . . , vn} for V. We claim that S =
{T(vk+1), T(vk+2), . . . ,T(vn)} is a basis for R(T).

First we prove that S generates R(T). Using Theorem 2.2 and the fact
that T(vi) = 0 for 1 ≤ i ≤ k, we have

R(T) = span({T(v1), T(v2), . . . ,T(vn)}
= span({T(vk+1), T(vk+2), . . . ,T(vn)} = span(S).

Now we prove that S is linearly independent. Suppose that

n∑
i=k+1

biT(vi) = 0 for bk+1, bk+2, . . . , bn ∈ F.

Using the fact that T is linear, we have

T

(
n∑

i=k+1

bivi

)
= 0 .

So
n∑

i=k+1

bivi ∈ N(T).

Hence there exist c1, c2, . . . , ck ∈ F such that

n∑
i=k+1

bivi =
k∑

i=1

civi or
k∑

i=1

(−ci)vi +
n∑

i=k+1

bivi = 0 .

Since β is a basis for V, we have bi = 0 for all i. Hence S is linearly indepen-
dent. Notice that this argument also shows that T(vk+1), T(vk+2), . . . ,T(vn)
are distinct; therefore rank(T) = n − k.

If we apply the dimension theorem to the linear transformation T in Ex-
ample 9, we have that nullity(T) + 2 = 3, so nullity(T) = 1.

The reader should review the concepts of “one-to-one” and “onto” pre-
sented in Appendix B. Interestingly, for a linear transformation, both of these
concepts are intimately connected to the rank and nullity of the transforma-
tion. This is demonstrated in the next two theorems.
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Theorem 2.4. Let V and W be vector spaces, and let T : V → W be
linear. Then T is one-to-one if and only if N(T) = {0}.

Proof. Suppose that T is one-to-one and x ∈ N(T). Then T(x) = 0 =
T(0 ). Since T is one-to-one, we have x = 0 . Hence N(T) = {0}.

Now assume that N(T) = {0}, and suppose that T(x) = T(y). Then
0 = T(x) − T(y) = T(x − y) by property 3 on page 65. Therefore x − y ∈
N(T) = {0}. So x − y = 0 , or x = y. This means that T is one-to-one.

The reader should observe that Theorem 2.4 allows us to conclude that
the transformation defined in Example 9 is not one-to-one.

Surprisingly, the conditions of one-to-one and onto are equivalent in an
important special case.

Theorem 2.5. Let V and W be vector spaces of equal (finite) dimension,
and let T : V → W be linear. Then the following are equivalent.

(a) T is one-to-one.
(b) T is onto.
(c) rank(T) = dim(V).

Proof. From the dimension theorem, we have

nullity(T) + rank(T) = dim(V).

Now, with the use of Theorem 2.4, we have that T is one-to-one if and only if
N(T) = {0}, if and only if nullity(T) = 0, if and only if rank(T) = dim(V), if
and only if rank(T) = dim(W), and if and only if dim(R(T)) = dim(W). By
Theorem 1.11 (p. 50), this equality is equivalent to R(T) = W, the definition
of T being onto.

We note that if V is not finite-dimensional and T : V → V is linear, then
it does not follow that one-to-one and onto are equivalent. (See Exercises 15,
16, and 21.)

The linearity of T in Theorems 2.4 and 2.5 is essential, for it is easy to
construct examples of functions from R into R that are not one-to-one, but
are onto, and vice versa.

The next two examples make use of the preceding theorems in determining
whether a given linear transformation is one-to-one or onto.

Example 11

Let T : P2(R) → P3(R) be the linear transformation defined by

T(f(x)) = 2f ′(x) +
∫ x

0

3f(t) dt.
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Now

R(T) = span({T(1), T(x), T(x2)}) = span({3x, 2 +
3
2
x2, 4x + x3}).

Since {3x, 2 + 3
2x2, 4x + x3} is linearly independent, rank(T) = 3. Since

dim(P3(R)) = 4, T is not onto. From the dimension theorem, nullity(T) +
3 = 3. So nullity(T) = 0, and therefore, N(T) = {0}. We conclude from
Theorem 2.4 that T is one-to-one. ♦

Example 12

Let T : F2 → F2 be the linear transformation defined by

T(a1, a2) = (a1 + a2, a1).

It is easy to see that N(T) = {0}; so T is one-to-one. Hence Theorem 2.5
tells us that T must be onto. ♦

In Exercise 14, it is stated that if T is linear and one-to-one, then a
subset S is linearly independent if and only if T(S) is linearly independent.
Example 13 illustrates the use of this result.

Example 13

Let T : P2(R) → R3 be the linear transformation defined by

T(a0 + a1x + a2x
2) = (a0, a1, a2).

Clearly T is linear and one-to-one. Let S = {2 − x + 3x2, x + x2, 1 − 2x2}.
Then S is linearly independent in P2(R) because

T(S) = {(2,−1, 3), (0, 1, 1), (1, 0,−2)}

is linearly independent in R3. ♦
In Example 13, we transferred a property from the vector space of polyno-

mials to a property in the vector space of 3-tuples. This technique is exploited
more fully later.

One of the most important properties of a linear transformation is that it is
completely determined by its action on a basis. This result, which follows from
the next theorem and corollary, is used frequently throughout the book.

Theorem 2.6. Let V and W be vector spaces over F , and suppose that
{v1, v2, . . . , vn} is a basis for V. For w1, w2, . . . , wn in W, there exists exactly
one linear transformation T : V → W such that T(vi) = wi for i = 1, 2, . . . , n.
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Proof. Let x ∈ V. Then

x =
n∑

i=1

aivi,

where a1a2, . . . , an are unique scalars. Define

T : V → W by T(x) =
n∑

i=1

aiwi.

(a) T is linear: Suppose that u, v ∈ V and d ∈ F . Then we may write

u =
n∑

i=1

bivi and v =
n∑

i=1

civi

for some scalars b1, b2, . . . , bn, c1, c2, . . . , cn. Thus

du + v =
n∑

i=1

(dbi + ci)vi.

So

T(du + v) =
n∑

i=1

(dbi + ci)wi = d
n∑

i=1

biwi +
n∑

i=1

ciwi = dT(u) + T(v).

(b) Clearly

T(vi) = wi for i = 1, 2, . . . , n.

(c) T is unique: Suppose that U : V → W is linear and U(vi) = wi for
i = 1, 2, . . . , n. Then for x ∈ V with

x =
n∑

i=1

aivi,

we have

U(x) =
n∑

i=1

aiU(vi) =
n∑

i=1

aiwi = T(x).

Hence U = T.

Corollary. Let V and W be vector spaces, and suppose that V has a
finite basis {v1, v2, . . . , vn}. If U, T : V → W are linear and U(vi) = T(vi) for
i = 1, 2, . . . , n, then U = T.
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Example 14

Let T : R2 → R2 be the linear transformation defined by

T(a1, a2) = (2a2 − a1, 3a1),

and suppose that U : R2 → R2 is linear. If we know that U(1, 2) = (3, 3) and
U(1, 1) = (1, 3), then U = T. This follows from the corollary and from the
fact that {(1, 2), (1, 1)} is a basis for R2. ♦

EXERCISES

1. Label the following statements as true or false. In each part, V and W
are finite-dimensional vector spaces (over F ), and T is a function from
V to W.

(a) If T is linear, then T preserves sums and scalar products.
(b) If T(x + y) = T(x) + T(y), then T is linear.
(c) T is one-to-one if and only if the only vector x such that T(x) = 0

is x = 0 .
(d) If T is linear, then T(0V) = 0W.
(e) If T is linear, then nullity(T) + rank(T) = dim(W).
(f) If T is linear, then T carries linearly independent subsets of V onto

linearly independent subsets of W.
(g) If T, U : V → W are both linear and agree on a basis for V, then

T = U.
(h) Given x1, x2 ∈ V and y1, y2 ∈ W, there exists a linear transforma-

tion T : V → W such that T(x1) = y1 and T(x2) = y2.

For Exercises 2 through 6, prove that T is a linear transformation, and find
bases for both N(T) and R(T). Then compute the nullity and rank of T, and
verify the dimension theorem. Finally, use the appropriate theorems in this
section to determine whether T is one-to-one or onto.

2. T : R3 → R2 defined by T(a1, a2, a3) = (a1 − a2, 2a3).

3. T : R2 → R3 defined by T(a1, a2) = (a1 + a2, 0, 2a1 − a2).

4. T : M2×3(F ) → M2×2(F ) defined by

T

(
a11 a12 a13

a21 a22 a23

)
=
(

2a11 − a12 a13 + 2a12

0 0

)
.

5. T : P2(R) → P3(R) defined by T(f(x)) = xf(x) + f ′(x).
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6. T : Mn×n(F ) → F defined by T(A) = tr(A). Recall (Example 4, Sec-
tion 1.3) that

tr(A) =
n∑

i=1

Aii.

7. Prove properties 1, 2, 3, and 4 on page 65.

8. Prove that the transformations in Examples 2 and 3 are linear.

9. In this exercise, T : R2 → R2 is a function. For each of the following
parts, state why T is not linear.

(a) T(a1, a2) = (1, a2)
(b) T(a1, a2) = (a1, a

2
1)

(c) T(a1, a2) = (sin a1, 0)
(d) T(a1, a2) = (|a1|, a2)
(e) T(a1, a2) = (a1 + 1, a2)

10. Suppose that T : R2 → R2 is linear, T(1, 0) = (1, 4), and T(1, 1) = (2, 5).
What is T(2, 3)? Is T one-to-one?

11. Prove that there exists a linear transformation T : R2 → R3 such that
T(1, 1) = (1, 0, 2) and T(2, 3) = (1,−1, 4). What is T(8, 11)?

12. Is there a linear transformation T : R3 → R2 such that T(1, 0, 3) = (1, 1)
and T(−2, 0,−6) = (2, 1)?

13. Let V and W be vector spaces, let T : V → W be linear, and let
{w1, w2, . . . , wk} be a linearly independent subset of R(T). Prove that
if S = {v1, v2, . . . , vk} is chosen so that T(vi) = wi for i = 1, 2, . . . , k,
then S is linearly independent.

14. Let V and W be vector spaces and T : V → W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly inde-
pendent subsets of V onto linearly independent subsets of W.

(b) Suppose that T is one-to-one and that S is a subset of V. Prove
that S is linearly independent if and only if T(S) is linearly inde-
pendent.

(c) Suppose β = {v1, v2, . . . , vn} is a basis for V and T is one-to-one
and onto. Prove that T(β) = {T(v1), T(v2), . . . ,T(vn)} is a basis
for W.

15. Recall the definition of P(R) on page 10. Define

T : P(R) → P(R) by T(f(x)) =
∫ x

0

f(t) dt.

Prove that T linear and one-to-one, but not onto.
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16. Let T : P(R) → P(R) be defined by T(f(x)) = f ′(x). Recall that T is
linear. Prove that T is onto, but not one-to-one.

17. Let V and W be finite-dimensional vector spaces and T : V → W be
linear.

(a) Prove that if dim(V) < dim(W), then T cannot be onto.
(b) Prove that if dim(V) > dim(W), then T cannot be one-to-one.

18. Give an example of a linear transformation T : R2 → R2 such that
N(T) = R(T).

19. Give an example of distinct linear transformations T and U such that
N(T) = N(U) and R(T) = R(U).

20. Let V and W be vector spaces with subspaces V1 and W1, respectively.
If T : V → W is linear, prove that T(V1) is a subspace of W and that
{x ∈ V : T(x) ∈ W1} is a subspace of V.

21. Let V be the vector space of sequences described in Example 5 of Sec-
tion 1.2. Define the functions T, U : V → V by

T(a1, a2, . . .) = (a2, a3, . . .) and U(a1, a2, . . .) = (0, a1, a2, . . .).

T and U are called the left shift and right shift operators on V,
respectively.

(a) Prove that T and U are linear.
(b) Prove that T is onto, but not one-to-one.
(c) Prove that U is one-to-one, but not onto.

22. Let T : R3 → R be linear. Show that there exist scalars a, b, and c such
that T(x, y, z) = ax + by + cz for all (x, y, z) ∈ R3. Can you generalize
this result for T : Fn → F? State and prove an analogous result for
T : Fn → Fm.

23. Let T : R3 → R be linear. Describe geometrically the possibilities for
the null space of T. Hint: Use Exercise 22.

The following definition is used in Exercises 24–27 and in Exercise 30.

Definition. Let V be a vector space and W1 and W2 be subspaces of
V such that V = W1 ⊕ W2. (Recall the definition of direct sum given in the
exercises of Section 1.3.) A function T : V → V is called the projection on
W1 along W2 if, for x = x1 + x2 with x1 ∈ W1 and x2 ∈ W2, we have
T(x) = x1.

24. Let T : R2 → R2. Include figures for each of the following parts.



Sec. 2.1 Linear Transformations, Null Spaces, and Ranges 77

(a) Find a formula for T(a, b), where T represents the projection on
the y-axis along the x-axis.

(b) Find a formula for T(a, b), where T represents the projection on
the y-axis along the line L = {(s, s) : s ∈ R}.

25. Let T : R3 → R3.

(a) If T(a, b, c) = (a, b, 0), show that T is the projection on the xy-
plane along the z-axis.

(b) Find a formula for T(a, b, c), where T represents the projection on
the z-axis along the xy-plane.

(c) If T(a, b, c) = (a − c, b, 0), show that T is the projection on the
xy-plane along the line L = {(a, 0, a) : a ∈ R}.

26. Using the notation in the definition above, assume that T : V → V is
the projection on W1 along W2.

(a) Prove that T is linear and W1 = {x ∈ V : T(x) = x}.
(b) Prove that W1 = R(T) and W2 = N(T).
(c) Describe T if W1 = V.
(d) Describe T if W1 is the zero subspace.

27. Suppose that W is a subspace of a finite-dimensional vector space V.

(a) Prove that there exists a subspace W′ and a function T : V → V
such that T is a projection on W along W′.

(b) Give an example of a subspace W of a vector space V such that
there are two projections on W along two (distinct) subspaces.

The following definitions are used in Exercises 28–32.

Definitions. Let V be a vector space, and let T : V → V be linear. A
subspace W of V is said to be T-invariant if T(x) ∈ W for every x ∈ W, that
is, T(W) ⊆ W. If W is T-invariant, we define the restriction of T on W to
be the function TW : W → W defined by TW(x) = T(x) for all x ∈ W.

Exercises 28–32 assume that W is a subspace of a vector space V and that
T : V → V is linear. Warning: Do not assume that W is T-invariant or that
T is a projection unless explicitly stated.

28. Prove that the subspaces {0}, V, R(T), and N(T) are all T-invariant.

29. If W is T-invariant, prove that TW is linear.

30. Suppose that T is the projection on W along some subspace W′. Prove
that W is T-invariant and that TW = IW.

31. Suppose that V = R(T)⊕W and W is T-invariant. (Recall the definition
of direct sum given in the exercises of Section 1.3.)



78 Chap. 2 Linear Transformations and Matrices

(a) Prove that W ⊆ N(T).
(b) Show that if V is finite-dimensional, then W = N(T).
(c) Show by example that the conclusion of (b) is not necessarily true

if V is not finite-dimensional.

32. Suppose that W is T-invariant. Prove that N(TW) = N(T) ∩ W and
R(TW) = T(W).

33. Prove Theorem 2.2 for the case that β is infinite, that is, R(T) =
span({T(v) : v ∈ β}).

34. Prove the following generalization of Theorem 2.6: Let V and W be
vector spaces over a common field, and let β be a basis for V. Then for
any function f : β → W there exists exactly one linear transformation
T : V → W such that T(x) = f(x) for all x ∈ β.

Exercises 35 and 36 assume the definition of direct sum given in the exercises
of Section 1.3.

35. Let V be a finite-dimensional vector space and T : V → V be linear.

(a) Suppose that V = R(T) + N(T). Prove that V = R(T) ⊕ N(T).
(b) Suppose that R(T) ∩ N(T) = {0}. Prove that V = R(T) ⊕ N(T).

Be careful to say in each part where finite-dimensionality is used.

36. Let V and T be as defined in Exercise 21.

(a) Prove that V = R(T)+N(T), but V is not a direct sum of these two
spaces. Thus the result of Exercise 35(a) above cannot be proved
without assuming that V is finite-dimensional.

(b) Find a linear operator T1 on V such that R(T1)∩N(T1) = {0} but
V is not a direct sum of R(T1) and N(T1). Conclude that V being
finite-dimensional is also essential in Exercise 35(b).

37. A function T : V → W between vector spaces V and W is called additive
if T(x + y) = T(x) + T(y) for all x, y ∈ V. Prove that if V and W
are vector spaces over the field of rational numbers, then any additive
function from V into W is a linear transformation.

38. Let T : C → C be the function defined by T(z) = z. Prove that T is
additive (as defined in Exercise 37) but not linear.

39. Prove that there is an additive function T : R → R (as defined in Ex-
ercise 37) that is not linear. Hint: Let V be the set of real numbers
regarded as a vector space over the field of rational numbers. By the
corollary to Theorem 1.13 (p. 60), V has a basis β. Let x and y be two
distinct vectors in β, and define f : β → V by f(x) = y, f(y) = x, and
f(z) = z otherwise. By Exercise 34, there exists a linear transformation
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T : V → V such that T(u) = f(u) for all u ∈ β. Then T is additive, but
for c = y/x, T(cx) �= cT(x).

The following exercise requires familiarity with the definition of quotient space
given in Exercise 31 of Section 1.3.

40. Let V be a vector space and W be a subspace of V. Define the mapping
η : V → V/W by η(v) = v + W for v ∈ V.

(a) Prove that η is a linear transformation from V onto V/W and that
N(η) = W.

(b) Suppose that V is finite-dimensional. Use (a) and the dimen-
sion theorem to derive a formula relating dim(V), dim(W), and
dim(V/W).

(c) Read the proof of the dimension theorem. Compare the method of
solving (b) with the method of deriving the same result as outlined
in Exercise 35 of Section 1.6.

2.2 THE MATRIX REPRESENTATION OF A LINEAR
TRANSFORMATION

Until now, we have studied linear transformations by examining their ranges
and null spaces. In this section, we embark on one of the most useful ap-
proaches to the analysis of a linear transformation on a finite-dimensional
vector space: the representation of a linear transformation by a matrix. In
fact, we develop a one-to-one correspondence between matrices and linear
transformations that allows us to utilize properties of one to study properties
of the other.

We first need the concept of an ordered basis for a vector space.

Definition. Let V be a finite-dimensional vector space. An ordered
basis for V is a basis for V endowed with a specific order; that is, an ordered
basis for V is a finite sequence of linearly independent vectors in V that
generates V.

Example 1

In F3, β = {e1, e2, e3} can be considered an ordered basis. Also γ =
{e2, e1, e3} is an ordered basis, but β �= γ as ordered bases. ♦

For the vector space Fn, we call {e1, e2, . . . , en} the standard ordered
basis for Fn. Similarly, for the vector space Pn(F ), we call {1, x, . . . , xn} the
standard ordered basis for Pn(F ).

Now that we have the concept of ordered basis, we can identify abstract
vectors in an n-dimensional vector space with n-tuples. This identification is
provided through the use of coordinate vectors, as introduced next.
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Definition. Let β = {u1, u2, . . . , un} be an ordered basis for a finite-
dimensional vector space V. For x ∈ V, let a1, a2, . . . , an be the unique scalars
such that

x =
n∑

i=1

aiui.

We define the coordinate vector of x relative to β, denoted [x]β , by

[x]β =

⎛⎜⎜⎜⎝
a1

a2

...
an

⎞⎟⎟⎟⎠ .

Notice that [ui]β = ei in the preceding definition. It is left as an exercise
to show that the correspondence x → [x]β provides us with a linear transfor-
mation from V to Fn. We study this transformation in Section 2.4 in more
detail.

Example 2

Let V = P2(R), and let β = {1, x, x2} be the standard ordered basis for V. If
f(x) = 4 + 6x − 7x2, then

[f ]β =

⎛⎝ 4
6

−7

⎞⎠ . ♦

Let us now proceed with the promised matrix representation of a linear
transformation. Suppose that V and W are finite-dimensional vector spaces
with ordered bases β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm}, respec-
tively. Let T : V → W be linear. Then for each j, 1 ≤ j ≤ n, there exist
unique scalars aij ∈ F , 1 ≤ i ≤ m, such that

T(vj) =
m∑

i=1

aijwi for 1 ≤ j ≤ n.

Definition. Using the notation above, we call the m×n matrix A defined
by Aij = aij the matrix representation of T in the ordered bases β
and γ and write A = [T]γβ . If V = W and β = γ, then we write A = [T]β .

Notice that the jth column of A is simply [T (vj)]γ . Also observe that if
U : V → W is a linear transformation such that [U]γβ = [T]γβ , then U = T by
the corollary to Theorem 2.6 (p. 73).

We illustrate the computation of [T]γβ in the next several examples.
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Example 3

Let T : R2 → R3 be the linear transformation defined by

T(a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2).

Let β and γ be the standard ordered bases for R2 and R3, respectively. Now

T(1, 0) = (1, 0, 2) = 1e1 + 0e2 + 2e3

and

T(0, 1) = (3, 0,−4) = 3e1 + 0e2 − 4e3.

Hence

[T]γβ =

⎛⎝1 3
0 0
2 −4

⎞⎠ .

If we let γ′ = {e3, e2, e1}, then

[T]γ
′

β =

⎛⎝2 −4
0 0
1 3

⎞⎠ . ♦

Example 4

Let T : P3(R) → P2(R) be the linear transformation defined by T(f(x)) =
f ′(x). Let β and γ be the standard ordered bases for P3(R) and P2(R),
respectively. Then

T(1) = 0 ·1 + 0 ·x + 0 ·x2

T(x) = 1 ·1 + 0 ·x + 0 ·x2

T(x2) = 0 ·1 + 2 ·x + 0 ·x2

T(x3) = 0 ·1 + 0 ·x + 3 ·x2.

So

[T]γβ =

⎛⎝0 1 0 0
0 0 2 0
0 0 0 3

⎞⎠ .

Note that when T(xj) is written as a linear combination of the vectors of γ,
its coefficients give the entries of the jth column of [T]γβ . ♦
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Now that we have defined a procedure for associating matrices with linear
transformations, we show in Theorem 2.8 that this association “preserves”
addition and scalar multiplication. To make this more explicit, we need some
preliminary discussion about the addition and scalar multiplication of linear
transformations.

Definition. Let T, U : V → W be arbitrary functions, where V and W
are vector spaces over F , and let a ∈ F . We define T + U : V → W by
(T + U)(x) = T(x) + U(x) for all x ∈ V, and aT : V → W by (aT)(x) = aT(x)
for all x ∈ V.

Of course, these are just the usual definitions of addition and scalar mul-
tiplication of functions. We are fortunate, however, to have the result that
both sums and scalar multiples of linear transformations are also linear.

Theorem 2.7. Let V and W be vector spaces over a field F , and let
T, U : V → W be linear.

(a) For all a ∈ F , aT + U is linear.
(b) Using the operations of addition and scalar multiplication in the pre-

ceding definition, the collection of all linear transformations from V to
W is a vector space over F .

Proof. (a) Let x, y ∈ V and c ∈ F . Then

(aT + U)(cx + y) = aT(cx + y) + U(cx + y)
= a[T(cx + y)] + cU(x) + U(y)
= a[cT(x) + T(y)] + cU(x) + U(y)
= acT(x) + cU(x) + aT(y) + U(y)
= c(aT + U)(x) + (aT + U)(y).

So aT + U is linear.
(b) Noting that T0, the zero transformation, plays the role of the zero

vector, it is easy to verify that the axioms of a vector space are satisfied,
and hence that the collection of all linear transformations from V into W is a
vector space over F .

Definitions. Let V and W be vector spaces over F . We denote the
vector space of all linear transformations from V into W by L(V, W). In the
case that V = W, we write L(V) instead of L(V, W).

In Section 2.4, we see a complete identification of L(V, W) with the vector
space Mm×n(F ), where n and m are the dimensions of V and W, respectively.
This identification is easily established by the use of the next theorem.

Theorem 2.8. Let V and W be finite-dimensional vector spaces with
ordered bases β and γ, respectively, and let T, U : V → W be linear transfor-
mations. Then
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(a) [T + U]γβ = [T]γβ + [U]γβ and

(b) [aT]γβ = a[T]γβ for all scalars a.

Proof. Let β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm}. There exist
unique scalars aij and bij (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

T(vj) =
m∑

i=1

aijwi and U(vj) =
m∑

i=1

bijwi for 1 ≤ j ≤ n.

Hence

(T + U)(vj) =
m∑

i=1

(aij + bij)wi.

Thus

([T + U]γβ)ij = aij + bij = ([T]γβ + [U]γβ)ij .

So (a) is proved, and the proof of (b) is similar.

Example 5

Let T : R2 → R3 and U : R2 → R3 be the linear transformations respectively
defined by

T(a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2) and U(a1, a2) = (a1 − a2, 2a1, 3a1 + 2a2).

Let β and γ be the standard ordered bases of R2 and R3, respectively. Then

[T]γβ =

⎛⎝1 3
0 0
2 −4

⎞⎠ ,

(as computed in Example 3), and

[U]γβ =

⎛⎝1 −1
2 0
3 2

⎞⎠ .

If we compute T + U using the preceding definitions, we obtain

(T + U)(a1, a2) = (2a1 + 2a2, 2a1, 5a1 − 2a2).

So

[T + U]γβ =

⎛⎝2 2
2 0
5 −2

⎞⎠ ,

which is simply [T]γβ + [U]γβ , illustrating Theorem 2.8. ♦
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EXERCISES

1. Label the following statements as true or false. Assume that V and
W are finite-dimensional vector spaces with ordered bases β and γ,
respectively, and T, U : V → W are linear transformations.
(a) For any scalar a, aT + U is a linear transformation from V to W.
(b) [T]γβ = [U]γβ implies that T = U.
(c) If m = dim(V) and n = dim(W), then [T]γβ is an m × n matrix.
(d) [T + U]γβ = [T]γβ + [U]γβ .
(e) L(V, W) is a vector space.
(f) L(V, W) = L(W, V).

2. Let β and γ be the standard ordered bases for Rn and Rm, respectively.
For each linear transformation T : Rn → Rm, compute [T]γβ .

(a) T : R2 → R3 defined by T(a1, a2) = (2a1 − a2, 3a1 + 4a2, a1).
(b) T : R3 → R2 defined by T(a1, a2, a3) = (2a1 + 3a2 − a3, a1 + a3).
(c) T : R3 → R defined by T(a1, a2, a3) = 2a1 + a2 − 3a3.
(d) T : R3 → R3 defined by

T(a1, a2, a3) = (2a2 + a3,−a1 + 4a2 + 5a3, a1 + a3).

(e) T : Rn → Rn defined by T(a1, a2, . . . , an) = (a1, a1, . . . , a1).
(f) T : Rn → Rn defined by T(a1, a2, . . . , an) = (an, an−1, . . . , a1).
(g) T : Rn → R defined by T(a1, a2, . . . , an) = a1 + an.

3. Let T : R2 → R3 be defined by T(a1, a2) = (a1 − a2, a1, 2a1 + a2). Let β
be the standard ordered basis for R2 and γ = {(1, 1, 0), (0, 1, 1), (2, 2, 3)}.
Compute [T]γβ . If α = {(1, 2), (2, 3)}, compute [T]γα.

4. Define

T : M2×2(R) → P2(R) by T

(
a b
c d

)
= (a + b) + (2d)x + bx2.

Let

β =
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
and γ = {1, x, x2}.

Compute [T]γβ .

5. Let

α =
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

β = {1, x, x2},
and

γ = {1}.
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(a) Define T : M2×2(F ) → M2×2(F ) by T(A) = At. Compute [T]α.
(b) Define

T : P2(R) → M2×2(R) by T(f(x)) =
(

f ′(0) 2f(1)
0 f ′′(3)

)
,

where ′ denotes differentiation. Compute [T]αβ .
(c) Define T : M2×2(F ) → F by T(A) = tr(A). Compute [T]γα.
(d) Define T : P2(R) → R by T(f(x)) = f(2). Compute [T]γβ .
(e) If

A =
(

1 −2
0 4

)
,

compute [A]α.
(f) If f(x) = 3 − 6x + x2, compute [f(x)]β .
(g) For a ∈ F , compute [a]γ .

6. Complete the proof of part (b) of Theorem 2.7.

7. Prove part (b) of Theorem 2.8.

8.† Let V be an n-dimensional vector space with an ordered basis β. Define
T : V → Fn by T(x) = [x]β . Prove that T is linear.

9. Let V be the vector space of complex numbers over the field R. Define
T : V → V by T(z) = z, where z is the complex conjugate of z. Prove
that T is linear, and compute [T]β , where β = {1, i}. (Recall by Exer-
cise 38 of Section 2.1 that T is not linear if V is regarded as a vector
space over the field C.)

10. Let V be a vector space with the ordered basis β = {v1, v2, . . . , vn}.
Define v0 = 0 . By Theorem 2.6 (p. 72), there exists a linear trans-
formation T : V → V such that T(vj) = vj + vj−1 for j = 1, 2, . . . , n.
Compute [T]β .

11. Let V be an n-dimensional vector space, and let T : V → V be a linear
transformation. Suppose that W is a T-invariant subspace of V (see the
exercises of Section 2.1) having dimension k. Show that there is a basis
β for V such that [T]β has the form(

A B
O C

)
,

where A is a k × k matrix and O is the (n − k) × k zero matrix.
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12. Let V be a finite-dimensional vector space and T be the projection on
W along W′, where W and W′ are subspaces of V. (See the definition
in the exercises of Section 2.1 on page 76.) Find an ordered basis β for
V such that [T]β is a diagonal matrix.

13. Let V and W be vector spaces, and let T and U be nonzero linear
transformations from V into W. If R(T) ∩ R(U) = {0}, prove that
{T, U} is a linearly independent subset of L(V, W).

14. Let V = P(R), and for j ≥ 1 define Tj(f(x)) = f (j)(x), where f (j)(x)
is the jth derivative of f(x). Prove that the set {T1, T2, . . . ,Tn} is a
linearly independent subset of L(V) for any positive integer n.

15. Let V and W be vector spaces, and let S be a subset of V. Define
S0 = {T ∈ L(V, W) : T(x) = 0 for all x ∈ S}. Prove the following
statements.

(a) S0 is a subspace of L(V, W).
(b) If S1and S2 are subsets of V and S1 ⊆ S2, then S0

2 ⊆ S0
1 .

(c) If V1 and V2 are subspaces of V, then (V1 + V2)0 = V0
1 ∩ V0

2.

16. Let V and W be vector spaces such that dim(V) = dim(W), and let
T : V → W be linear. Show that there exist ordered bases β and γ for
V and W, respectively, such that [T]γβ is a diagonal matrix.

2.3 COMPOSITION OF LINEAR TRANSFORMATIONS
AND MATRIX MULTIPLICATION

In Section 2.2, we learned how to associate a matrix with a linear transforma-
tion in such a way that both sums and scalar multiples of matrices are associ-
ated with the corresponding sums and scalar multiples of the transformations.
The question now arises as to how the matrix representation of a composite
of linear transformations is related to the matrix representation of each of the
associated linear transformations. The attempt to answer this question leads
to a definition of matrix multiplication. We use the more convenient notation
of UT rather than U ◦T for the composite of linear transformations U and T.
(See Appendix B.)

Our first result shows that the composite of linear transformations is lin-
ear.

Theorem 2.9. Let V, W, and Z be vector spaces over the same field F ,
and let T : V → W and U : W → Z be linear. Then UT : V → Z is linear.

Proof. Let x, y ∈ V and a ∈ F . Then

UT(ax + y) = U(T(ax + y)) = U(aT(x) + T(y))

= aU(T(x)) + U(T(y)) = a(UT)(x) + UT(y).
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The following theorem lists some of the properties of the composition of
linear transformations.

Theorem 2.10. Let V be a vector space. Let T, U1, U2 ∈ L(V). Then
(a) T(U1 + U2) = TU1 + TU2 and (U1 + U2)T = U1T + U2T
(b) T(U1U2) = (TU1)U2

(c) TI = IT = T
(d) a(U1U2) = (aU1)U2 = U1(aU2) for all scalars a.

Proof. Exercise.

A more general result holds for linear transformations that have domains
unequal to their codomains. (See Exercise 8.)

Let T : V → W and U : W → Z be linear transformations, and let A = [U]γβ
and B = [T]βα, where α = {v1, v2, . . . , vn}, β = {w1, w2, . . . , wm}, and γ =
{z1, z2, . . . , zp} are ordered bases for V, W, and Z, respectively. We would
like to define the product AB of two matrices so that AB = [UT]γα. Consider
the matrix [UT]γα. For 1 ≤ j ≤ n, we have

(UT)(vj) = U(T(vj)) = U

(
m∑

k=1

Bkjwk

)
=

m∑
k=1

BkjU(wk)

=
m∑

k=1

Bkj

(
p∑

i=1

Aikzi

)
=

p∑
i=1

(
m∑

k=1

AikBkj

)
zi

=
p∑

i=1

Cijzi,

where

Cij =
m∑

k=1

AikBkj .

This computation motivates the following definition of matrix multiplication.

Definition. Let A be an m × n matrix and B be an n × p matrix. We
define the product of A and B, denoted AB, to be the m × p matrix such
that

(AB)ij =
n∑

k=1

AikBkj for 1 ≤ i ≤ m, 1 ≤ j ≤ p.

Note that (AB)ij is the sum of products of corresponding entries from the
ith row of A and the jth column of B. Some interesting applications of this
definition are presented at the end of this section.
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The reader should observe that in order for the product AB to be defined,
there are restrictions regarding the relative sizes of A and B. The following
mnemonic device is helpful: “(m × n) ·(n × p) = (m × p)”; that is, in order
for the product AB to be defined, the two “inner” dimensions must be equal,
and the two “outer” dimensions yield the size of the product.

Example 1

We have (
1 2 1
0 4 −1

)⎛⎝4
2
5

⎞⎠ =
(

1 ·4 + 2 ·2 + 1 ·5
0 ·4 + 4 ·2 + (−1) ·5

)
=
(

13
3

)
.

Notice again the symbolic relationship (2 × 3) ·(3 × 1) = 2 × 1. ♦
As in the case with composition of functions, we have that matrix multi-

plication is not commutative. Consider the following two products:(
1 1
0 0

)(
0 1
1 0

)
=
(

1 1
0 0

)
and

(
0 1
1 0

)(
1 1
0 0

)
=
(

0 0
1 1

)
.

Hence we see that even if both of the matrix products AB and BA are defined,
it need not be true that AB = BA.

Recalling the definition of the transpose of a matrix from Section 1.3, we
show that if A is an m×n matrix and B is an n×p matrix, then (AB)t = BtAt.
Since

(AB)t
ij = (AB)ji =

n∑
k=1

AjkBki

and

(BtAt)ij =
n∑

k=1

(Bt)ik(At)kj =
n∑

k=1

BkiAjk,

we are finished. Therefore the transpose of a product is the product of the
transposes in the opposite order.

The next theorem is an immediate consequence of our definition of matrix
multiplication.

Theorem 2.11. Let V, W, and Z be finite-dimensional vector spaces with
ordered bases α, β, and γ, respectively. Let T : V → W and U : W → Z be
linear transformations. Then

[UT]γα = [U]γβ [T]βα.
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Corollary. Let V be a finite-dimensional vector space with an ordered
basis β. Let T, U ∈ L(V). Then [UT]β = [U]β [T]β .

We illustrate Theorem 2.11 in the next example.

Example 2

Let U : P3(R) → P2(R) and T : P2(R) → P3(R) be the linear transformations
respectively defined by

U(f(x)) = f ′(x) and T(f(x)) =
∫ x

0

f(t) dt.

Let α and β be the standard ordered bases of P3(R) and P2(R), respectively.
From calculus, it follows that UT = I, the identity transformation on P2(R).
To illustrate Theorem 2.11, observe that

[UT]β = [U]βα[T]αβ =

⎛⎝0 1 0 0
0 0 2 0
0 0 0 3

⎞⎠
⎛⎜⎜⎜⎝

0 0 0
1 0 0
0 1

2 0

0 0 1
3

⎞⎟⎟⎟⎠ =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ = [I]β . ♦

The preceding 3 × 3 diagonal matrix is called an identity matrix and is
defined next, along with a very useful notation, the Kronecker delta.

Definitions. We define the Kronecker delta δij by δij = 1 if i = j and
δij = 0 if i �= j. The n × n identity matrix In is defined by (In)ij = δij .

Thus, for example,

I1 = (1), I2 =
(

1 0
0 1

)
, and I3 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ .

The next theorem provides analogs of (a), (c), and (d) of Theorem 2.10.
Theorem 2.10(b) has its analog in Theorem 2.16. Observe also that part (c) of
the next theorem illustrates that the identity matrix acts as a multiplicative
identity in Mn×n(F ). When the context is clear, we sometimes omit the
subscript n from In.

Theorem 2.12. Let A be an m × n matrix, B and C be n × p matrices,
and D and E be q × m matrices. Then

(a) A(B + C) = AB + AC and (D + E)A = DA + EA.
(b) a(AB) = (aA)B = A(aB) for any scalar a.
(c) ImA = A = AIn.
(d) If V is an n-dimensional vector space with an ordered basis β, then

[IV]β = In.
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Proof. We prove the first half of (a) and (c) and leave the remaining proofs
as an exercise. (See Exercise 5.)

(a) We have

[A(B + C)]ij =
n∑

k=1

Aik(B + C)kj =
n∑

k=1

Aik(Bkj + Ckj)

=
n∑

k=1

(AikBkj + AikCkj) =
n∑

k=1

AikBkj +
n∑

k=1

AikCkj

= (AB)ij + (AC)ij = [AB + AC]ij .

So A(B + C) = AB + AC.
(c) We have

(ImA)ij =
m∑

k=1

(Im)ikAkj =
m∑

k=1

δikAkj = Aij .

Corollary. Let A be an m× n matrix, B1, B2, . . . , Bk be n× p matrices,
C1, C2, . . . , Ck be q × m matrices, and a1, a2, . . . , ak be scalars. Then

A

(
k∑

i=1

aiBi

)
=

k∑
i=1

aiABi

and (
k∑

i=1

aiCi

)
A =

k∑
i=1

aiCiA.

Proof. Exercise.

For an n × n matrix A, we define A1 = A, A2 = AA, A3 = A2A, and, in
general, Ak = Ak−1A for k = 2, 3, . . . . We define A0 = In.

With this notation, we see that if

A =
(

0 0
1 0

)
,

then A2 = O (the zero matrix) even though A �= O. Thus the cancellation
property for multiplication in fields is not valid for matrices. To see why,
assume that the cancellation law is valid. Then, from A ·A = A2 = O = A ·O,
we would conclude that A = O, which is false.

Theorem 2.13. Let A be an m × n matrix and B be an n × p matrix.
For each j (1 ≤ j ≤ p) let uj and vj denote the jth columns of AB and B,
respectively. Then
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(a) uj = Avj

(b) vj = Bej , where ej is the jth standard vector of Fp.

Proof. (a) We have

uj =

⎛⎜⎜⎜⎝
(AB)1j

(AB)2j

...
(AB)mj

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
k=1

A1kBkj

n∑
k=1

A2kBkj

...
n∑

k=1

AmkBkj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= A

⎛⎜⎜⎜⎝
B1j

B2j

...
Bnj

⎞⎟⎟⎟⎠ = Avj .

Hence (a) is proved. The proof of (b) is left as an exercise. (See Exercise 6.)

It follows (see Exercise 14) from Theorem 2.13 that column j of AB is
a linear combination of the columns of A with the coefficients in the linear
combination being the entries of column j of B. An analogous result holds
for rows; that is, row i of AB is a linear combination of the rows of B with
the coefficients in the linear combination being the entries of row i of A.

The next result justifies much of our past work. It utilizes both the matrix
representation of a linear transformation and matrix multiplication in order
to evaluate the transformation at any given vector.

Theorem 2.14. Let V and W be finite-dimensional vector spaces having
ordered bases β and γ, respectively, and let T : V → W be linear. Then, for
each u ∈ V, we have

[T(u)]γ = [T]γβ [u]β .

Proof. Fix u ∈ V, and define the linear transformations f : F → V by
f(a) = au and g : F → W by g(a) = aT(u) for all a ∈ F . Let α = {1} be
the standard ordered basis for F . Notice that g = Tf . Identifying column
vectors as matrices and using Theorem 2.11, we obtain

[T(u)]γ = [g(1)]γ = [g]γα = [Tf ]γα = [T]γβ [f ]βα = [T]γβ [f(1)]β = [T]γβ [u]β .

Example 3

Let T : P3(R) → P2(R) be the linear transformation defined by T(f(x)) =
f ′(x), and let β and γ be the standard ordered bases for P3(R) and P2(R),
respectively. If A = [T]γβ , then, from Example 4 of Section 2.2, we have

A =

⎛⎝0 1 0 0
0 0 2 0
0 0 0 3

⎞⎠ .
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We illustrate Theorem 2.14 by verifying that [T(p(x))]γ = [T]γβ [p(x)]β , where
p(x) ∈ P3(R) is the polynomial p(x) = 2−4x+x2 +3x3. Let q(x) = T(p(x));
then q(x) = p′(x) = −4 + 2x + 9x2. Hence

[T(p(x))]γ = [q(x)]γ =

⎛⎝−4
2
9

⎞⎠ ,

but also

[T]γβ [p(x)]β = A[p(x)]β =

⎛⎝0 1 0 0
0 0 2 0
0 0 0 3

⎞⎠
⎛⎜⎜⎝

2
−4

1
3

⎞⎟⎟⎠ =

⎛⎝−4
2
9

⎞⎠ . ♦

We complete this section with the introduction of the left-multiplication
transformation LA, where A is an m×n matrix. This transformation is proba-
bly the most important tool for transferring properties about transformations
to analogous properties about matrices and vice versa. For example, we use
it to prove that matrix multiplication is associative.

Definition. Let A be an m × n matrix with entries from a field F .
We denote by LA the mapping LA : Fn → Fm defined by LA(x) = Ax (the
matrix product of A and x) for each column vector x ∈ Fn. We call LA a
left-multiplication transformation.

Example 4

Let

A =
(

1 2 1
0 1 2

)
.

Then A ∈ M2×3(R) and LA : R3 → R2. If

x =

⎛⎝ 1
3

−1

⎞⎠ ,

then

LA(x) = Ax =
(

1 2 1
0 1 2

)⎛⎝ 1
3

−1

⎞⎠ =
(

6
1

)
. ♦

We see in the next theorem that not only is LA linear, but, in fact, it has
a great many other useful properties. These properties are all quite natural
and so are easy to remember.
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Theorem 2.15. Let A be an m × n matrix with entries from F . Then
the left-multiplication transformation LA : Fn → Fm is linear. Furthermore,
if B is any other m × n matrix (with entries from F ) and β and γ are the
standard ordered bases for Fn and Fm, respectively, then we have the following
properties.

(a) [LA]γβ = A.
(b) LA = LB if and only if A = B.
(c) LA+B = LA + LB and LaA = aLA for all a ∈ F .
(d) If T : Fn → Fm is linear, then there exists a unique m×n matrix C such

that T = LC . In fact, C = [T]γβ .
(e) If E is an n × p matrix, then LAE = LALE .
(f) If m = n, then LIn = IFn .

Proof. The fact that LA is linear follows immediately from Theorem 2.12.
(a) The jth column of [LA]γβ is equal to LA(ej). However LA(ej) = Aej ,

which is also the jth column of A by Theorem 2.13(b). So [LA]γβ = A.
(b) If LA = LB , then we may use (a) to write A = [LA]γβ = [LB ]γβ = B.

Hence A = B. The proof of the converse is trivial.
(c) The proof is left as an exercise. (See Exercise 7.)
(d) Let C = [T]γβ . By Theorem 2.14, we have [T(x)]γ = [T]γβ [x]β , or

T(x) = Cx = LC(x) for all x ∈ Fn. So T = LC . The uniqueness of C follows
from (b).

(e) For any j (1 ≤ j ≤ p), we may apply Theorem 2.13 several times to
note that (AE)ej is the jth column of AE and that the jth column of AE is
also equal to A(Eej). So (AE)ej = A(Eej). Thus

LAE(ej) = (AE)ej = A(Eej) = LA(Eej) = LA(LE(ej)).

Hence LAE = LALE by the corollary to Theorem 2.6 (p. 73).
(f) The proof is left as an exercise. (See Exercise 7.)

We now use left-multiplication transformations to establish the associa-
tivity of matrix multiplication.

Theorem 2.16. Let A, B, and C be matrices such that A(BC) is de-
fined. Then (AB)C is also defined and A(BC) = (AB)C; that is, matrix
multiplication is associative.

Proof. It is left to the reader to show that (AB)C is defined. Using (e)
of Theorem 2.15 and the associativity of functional composition (see Ap-
pendix B), we have

LA(BC) = LALBC = LA(LBLC) = (LALB)LC = LABLC = L(AB)C .

So from (b) of Theorem 2.15, it follows that A(BC) = (AB)C.
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Needless to say, this theorem could be proved directly from the definition
of matrix multiplication (see Exercise 18). The proof above, however, provides
a prototype of many of the arguments that utilize the relationships between
linear transformations and matrices.

Applications

A large and varied collection of interesting applications arises in connec-
tion with special matrices called incidence matrices. An incidence matrix
is a square matrix in which all the entries are either zero or one and, for
convenience, all the diagonal entries are zero. If we have a relationship on a
set of n objects that we denote by 1, 2, . . . , n, then we define the associated
incidence matrix A by Aij = 1 if i is related to j, and Aij = 0 otherwise.

To make things concrete, suppose that we have four people, each of whom
owns a communication device. If the relationship on this group is “can trans-
mit to,” then Aij = 1 if i can send a message to j, and Aij = 0 otherwise.
Suppose that

A =

⎛⎜⎜⎝
0 1 0 0
1 0 0 1
0 1 0 1
1 1 0 0

⎞⎟⎟⎠ .

Then since A34 = 1 and A14 = 0, we see that person 3 can send to 4 but 1
cannot send to 4.

We obtain an interesting interpretation of the entries of A2. Consider, for
instance,

(A2)31 = A31A11 + A32A21 + A33A31 + A34A41.

Note that any term A3kAk1 equals 1 if and only if both A3k and Ak1 equal 1,
that is, if and only if 3 can send to k and k can send to 1. Thus (A2)31 gives
the number of ways in which 3 can send to 1 in two stages (or in one relay).
Since

A2 =

⎛⎜⎜⎝
1 0 0 1
1 2 0 0
2 1 0 1
1 1 0 1

⎞⎟⎟⎠ ,

we see that there are two ways 3 can send to 1 in two stages. In general,
(A + A2 + · · · + Am)ij is the number of ways in which i can send to j in at
most m stages.

A maximal collection of three or more people with the property that any
two can send to each other is called a clique. The problem of determining
cliques is difficult, but there is a simple method for determining if someone
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belongs to a clique. If we define a new matrix B by Bij = 1 if i and j can send
to each other, and Bij = 0 otherwise, then it can be shown (see Exercise 19)
that person i belongs to a clique if and only if (B3)ii > 0. For example,
suppose that the incidence matrix associated with some relationship is

A =

⎛⎜⎜⎝
0 1 0 1
1 0 1 0
1 1 0 1
1 1 1 0

⎞⎟⎟⎠ .

To determine which people belong to cliques, we form the matrix B, described
earlier, and compute B3. In this case,

B =

⎛⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞⎟⎟⎠ and B3 =

⎛⎜⎜⎝
0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0

⎞⎟⎟⎠ .

Since all the diagonal entries of B3 are zero, we conclude that there are no
cliques in this relationship.

Our final example of the use of incidence matrices is concerned with the
concept of dominance. A relation among a group of people is called a dom-
inance relation if the associated incidence matrix A has the property that
for all distinct pairs i and j, Aij = 1 if and only if Aji = 0, that is, given
any two people, exactly one of them dominates (or, using the terminology of
our first example, can send a message to) the other. Since A is an incidence
matrix, Aii = 0 for all i. For such a relation, it can be shown (see Exercise 21)
that the matrix A + A2 has a row [column] in which each entry is positive
except for the diagonal entry. In other words, there is at least one person
who dominates [is dominated by] all others in one or two stages. In fact, it
can be shown that any person who dominates [is dominated by] the greatest
number of people in the first stage has this property. Consider, for example,
the matrix

A =

⎛⎜⎜⎜⎜⎝
0 1 0 1 0
0 0 1 0 0
1 0 0 1 0
0 1 0 0 1
1 1 1 0 0

⎞⎟⎟⎟⎟⎠ .

The reader should verify that this matrix corresponds to a dominance relation.
Now

A + A2 =

⎛⎜⎜⎜⎜⎝
0 2 1 1 1
1 0 1 1 0
1 2 0 2 1
1 2 2 0 1
2 2 2 2 0

⎞⎟⎟⎟⎟⎠ .
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Thus persons 1, 3, 4, and 5 dominate (can send messages to) all the others
in at most two stages, while persons 1, 2, 3, and 4 are dominated by (can
receive messages from) all the others in at most two stages.

EXERCISES

1. Label the following statements as true or false. In each part, V, W,
and Z denote vector spaces with ordered (finite) bases α, β, and γ,
respectively; T : V → W and U : W → Z denote linear transformations;
and A and B denote matrices.

(a) [UT]γα = [T]βα[U]γβ .

(b) [T(v)]β = [T]βα[v]α for all v ∈ V.
(c) [U(w)]β = [U]βα[w]β for all w ∈ W.
(d) [IV]α = I.
(e) [T2]βα = ([T]βα)2.
(f) A2 = I implies that A = I or A = −I.
(g) T = LA for some matrix A.
(h) A2 = O implies that A = O, where O denotes the zero matrix.
(i) LA+B = LA + LB .
(j) If A is square and Aij = δij for all i and j, then A = I.

2. (a) Let

A =
(

1 3
2 −1

)
, B =

(
1 0 −3
4 1 2

)
,

C =
(

1 1 4
−1 −2 0

)
, and D =

⎛⎝ 2
−2

3

⎞⎠ .

Compute A(2B + 3C), (AB)D, and A(BD).
(b) Let

A =

⎛⎝ 2 5
−3 1

4 2

⎞⎠ , B =

⎛⎝3 −2 0
1 −1 4
5 5 3

⎞⎠ , and C =
(
4 0 3

)
.

Compute At, AtB, BCt, CB, and CA.

3. Let g(x) = 3 + x. Let T : P2(R) → P2(R) and U : P2(R) → R3 be the
linear transformations respectively defined by

T(f(x)) = f ′(x)g(x) + 2f(x) and U(a + bx + cx2) = (a + b, c, a − b).

Let β and γ be the standard ordered bases of P2(R) and R3, respectively.
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(a) Compute [U]γβ , [T]β , and [UT]γβ directly. Then use Theorem 2.11
to verify your result.

(b) Let h(x) = 3 − 2x + x2. Compute [h(x)]β and [U(h(x))]γ . Then
use [U]γβ from (a) and Theorem 2.14 to verify your result.

4. For each of the following parts, let T be the linear transformation defined
in the corresponding part of Exercise 5 of Section 2.2. Use Theorem 2.14
to compute the following vectors:

(a) [T(A)]α, where A =
(

1 4
−1 6

)
.

(b) [T(f(x))]α, where f(x) = 4 − 6x + 3x2.

(c) [T(A)]γ , where A =
(

1 3
2 4

)
.

(d) [T(f(x))]γ , where f(x) = 6 − x + 2x2.

5. Complete the proof of Theorem 2.12 and its corollary.

6. Prove (b) of Theorem 2.13.

7. Prove (c) and (f) of Theorem 2.15.

8. Prove Theorem 2.10. Now state and prove a more general result involv-
ing linear transformations with domains unequal to their codomains.

9. Find linear transformations U, T : F2 → F2 such that UT = T0 (the zero
transformation) but TU �= T0. Use your answer to find matrices A and
B such that AB = O but BA �= O.

10. Let A be an n × n matrix. Prove that A is a diagonal matrix if and
only if Aij = δijAij for all i and j.

11. Let V be a vector space, and let T : V → V be linear. Prove that T2 = T0

if and only if R(T) ⊆ N(T).

12. Let V, W, and Z be vector spaces, and let T : V → W and U : W → Z
be linear.

(a) Prove that if UT is one-to-one, then T is one-to-one. Must U also
be one-to-one?

(b) Prove that if UT is onto, then U is onto. Must T also be onto?
(c) Prove that if U and T are one-to-one and onto, then UT is also.

13. Let A and B be n × n matrices. Recall that the trace of A is defined
by

tr(A) =
n∑

i=1

Aii.

Prove that tr(AB) = tr(BA) and tr(A) = tr(At).
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14. Assume the notation in Theorem 2.13.

(a) Suppose that z is a (column) vector in Fp. Use Theorem 2.13(b)
to prove that Bz is a linear combination of the columns of B. In
particular, if z = (a1, a2, . . . , ap)t, then show that

Bz =
p∑

j=1

ajvj .

(b) Extend (a) to prove that column j of AB is a linear combination
of the columns of A with the coefficients in the linear combination
being the entries of column j of B.

(c) For any row vector w ∈ Fm, prove that wA is a linear combination
of the rows of A with the coefficients in the linear combination
being the coordinates of w. Hint: Use properties of the transpose
operation applied to (a).

(d) Prove the analogous result to (b) about rows: Row i of AB is a
linear combination of the rows of B with the coefficients in the
linear combination being the entries of row i of A.

15.† Let M and A be matrices for which the product matrix MA is defined.
If the jth column of A is a linear combination of a set of columns
of A, prove that the jth column of MA is a linear combination of the
corresponding columns of MA with the same corresponding coefficients.

16. Let V be a finite-dimensional vector space, and let T : V → V be linear.

(a) If rank(T) = rank(T2), prove that R(T) ∩ N(T) = {0}. Deduce
that V = R(T) ⊕ N(T) (see the exercises of Section 1.3).

(b) Prove that V = R(Tk) ⊕ N(Tk) for some positive integer k.

17. Let V be a vector space. Determine all linear transformations T : V → V
such that T = T2. Hint: Note that x = T(x) + (x − T(x)) for every
x in V, and show that V = {y : T(y) = y} ⊕ N(T) (see the exercises of
Section 1.3).

18. Using only the definition of matrix multiplication, prove that multipli-
cation of matrices is associative.

19. For an incidence matrix A with related matrix B defined by Bij = 1 if
i is related to j and j is related to i, and Bij = 0 otherwise, prove that
i belongs to a clique if and only if (B3)ii > 0.

20. Use Exercise 19 to determine the cliques in the relations corresponding
to the following incidence matrices.
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(a)

⎛⎜⎜⎝
0 1 0 1
1 0 0 0
0 1 0 1
1 0 1 0

⎞⎟⎟⎠ (b)

⎛⎜⎜⎝
0 0 1 1
1 0 0 1
1 0 0 1
1 0 1 0

⎞⎟⎟⎠
21. Let A be an incidence matrix that is associated with a dominance rela-

tion. Prove that the matrix A + A2 has a row [column] in which each
entry is positive except for the diagonal entry.

22. Prove that the matrix

A =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠
corresponds to a dominance relation. Use Exercise 21 to determine
which persons dominate [are dominated by] each of the others within
two stages.

23. Let A be an n × n incidence matrix that corresponds to a dominance
relation. Determine the number of nonzero entries of A.

2.4 INVERTIBILITY AND ISOMORPHISMS

The concept of invertibility is introduced quite early in the study of functions.
Fortunately, many of the intrinsic properties of functions are shared by their
inverses. For example, in calculus we learn that the properties of being con-
tinuous or differentiable are generally retained by the inverse functions. We
see in this section (Theorem 2.17) that the inverse of a linear transformation
is also linear. This result greatly aids us in the study of inverses of matrices.
As one might expect from Section 2.3, the inverse of the left-multiplication
transformation LA (when it exists) can be used to determine properties of the
inverse of the matrix A.

In the remainder of this section, we apply many of the results about in-
vertibility to the concept of isomorphism. We will see that finite-dimensional
vector spaces (over F ) of equal dimension may be identified. These ideas will
be made precise shortly.

The facts about inverse functions presented in Appendix B are, of course,
true for linear transformations. Nevertheless, we repeat some of the defini-
tions for use in this section.

Definition. Let V and W be vector spaces, and let T : V → W be linear.
A function U : W → V is said to be an inverse of T if TU = IW and UT = IV.
If T has an inverse, then T is said to be invertible. As noted in Appendix B,
if T is invertible, then the inverse of T is unique and is denoted by T−1.
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The following facts hold for invertible functions T and U.

1. (TU)−1 = U−1T−1.
2. (T−1)−1 = T; in particular, T−1 is invertible.

We often use the fact that a function is invertible if and only if it is both
one-to-one and onto. We can therefore restate Theorem 2.5 as follows.

3. Let T : V → W be a linear transformation, where V and W are finite-
dimensional spaces of equal dimension. Then T is invertible if and only
if rank(T) = dim(V).

Example 1

Let T : P1(R) → R2 be the linear transformation defined by T(a + bx) =
(a, a+ b). The reader can verify directly that T−1 : R2 → P1(R) is defined by
T−1(c, d) = c + (d − c)x. Observe that T−1 is also linear. As Theorem 2.17
demonstrates, this is true in general. ♦

Theorem 2.17. Let V and W be vector spaces, and let T : V → W be
linear and invertible. Then T−1 : W → V is linear.

Proof. Let y1, y2 ∈ W and c ∈ F . Since T is onto and one-to-one, there
exist unique vectors x1 and x2 such that T(x1) = y1 and T(x2) = y2. Thus
x1 = T−1(y1) and x2 = T−1(y2); so

T−1(cy1 + y2) = T−1[cT(x1) + T(x2)] = T−1[T(cx1 + x2)]

= cx1 + x2 = cT−1(y1) + T−1(y2).

It now follows immediately from Theorem 2.5 (p. 71) that if T is a linear
transformation between vector spaces of equal (finite) dimension, then the
conditions of being invertible, one-to-one, and onto are all equivalent.

We are now ready to define the inverse of a matrix. The reader should
note the analogy with the inverse of a linear transformation.

Definition. Let A be an n × n matrix. Then A is invertible if there
exists an n × n matrix B such that AB = BA = I.

If A is invertible, then the matrix B such that AB = BA = I is unique. (If
C were another such matrix, then C = CI = C(AB) = (CA)B = IB = B.)
The matrix B is called the inverse of A and is denoted by A−1.

Example 2

The reader should verify that the inverse of(
5 7
2 3

)
is

(
3 −7

−2 5

)
. ♦
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In Section 3.2, we learn a technique for computing the inverse of a matrix.
At this point, we develop a number of results that relate the inverses of
matrices to the inverses of linear transformations.

Lemma. Let T be an invertible linear transformation from V to W. Then
V is finite-dimensional if and only if W is finite-dimensional. In this case,
dim(V) = dim(W).

Proof. Suppose that V is finite-dimensional. Let β = {x1, x2, . . . , xn} be a
basis for V. By Theorem 2.2 (p. 68), T(β) spans R(T) = W; hence W is finite-
dimensional by Theorem 1.9 (p. 44). Conversely, if W is finite-dimensional,
then so is V by a similar argument, using T−1.

Now suppose that V and W are finite-dimensional. Because T is one-to-one
and onto, we have

nullity(T) = 0 and rank(T) = dim(R(T)) = dim(W).

So by the dimension theorem (p. 70), it follows that dim(V) = dim(W).

Theorem 2.18. Let V and W be finite-dimensional vector spaces with
ordered bases β and γ, respectively. Let T : V → W be linear. Then T is
invertible if and only if [T]γβ is invertible. Furthermore, [T−1]βγ = ([T]γβ)−1.

Proof. Suppose that T is invertible. By the lemma, we have dim(V) =
dim(W). Let n = dim(V). So [T]γβ is an n × n matrix. Now T−1 : W → V

satisfies TT−1 = IW and T−1T = IV. Thus

In = [IV]β = [T−1T]β = [T−1]βγ [T]γβ .

Similarly, [T]γβ [T−1]βγ = In. So [T]γβ is invertible and
(
[T]γβ

)−1

= [T−1]βγ .

Now suppose that A = [T]γβ is invertible. Then there exists an n × n
matrix B such that AB = BA = In. By Theorem 2.6 (p. 72), there exists
U ∈ L(W, V) such that

U(wj) =
n∑

i=1

Bijvi for j = 1, 2, . . . , n,

where γ = {w1, w2, . . . , wn} and β = {v1, v2, . . . , vn}. It follows that [U]βγ =
B. To show that U = T−1, observe that

[UT]β = [U]βγ [T]γβ = BA = In = [IV]β

by Theorem 2.11 (p. 88). So UT = IV, and similarly, TU = IW.
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Example 3

Let β and γ be the standard ordered bases of P1(R) and R2, respectively. For
T as in Example 1, we have

[T]γβ =
(

1 0
1 1

)
and [T−1]βγ =

(
1 0

−1 1

)
.

It can be verified by matrix multiplication that each matrix is the inverse of
the other. ♦

Corollary 1. Let V be a finite-dimensional vector space with an ordered
basis β, and let T : V → V be linear. Then T is invertible if and only if [T]β
is invertible. Furthermore, [T−1]β = ([T]β)−1

.

Proof. Exercise.

Corollary 2. Let A be an n× n matrix. Then A is invertible if and only
if LA is invertible. Furthermore, (LA)−1 = LA−1 .

Proof. Exercise.

The notion of invertibility may be used to formalize what may already
have been observed by the reader, that is, that certain vector spaces strongly
resemble one another except for the form of their vectors. For example, in
the case of M2×2(F ) and F4, if we associate to each matrix(

a b
c d

)
the 4-tuple (a, b, c, d), we see that sums and scalar products associate in a
similar manner; that is, in terms of the vector space structure, these two
vector spaces may be considered identical or isomorphic.

Definitions. Let V and W be vector spaces. We say that V is isomor-
phic to W if there exists a linear transformation T : V → W that is invertible.
Such a linear transformation is called an isomorphism from V onto W.

We leave as an exercise (see Exercise 13) the proof that “is isomorphic
to” is an equivalence relation. (See Appendix A.) So we need only say that
V and W are isomorphic.

Example 4

Define T : F2 → P1(F ) by T(a1, a2) = a1 + a2x. It is easily checked that T is
an isomorphism; so F2 is isomorphic to P1(F ). ♦
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Example 5

Define

T : P3(R) → M2×2(R) by T(f) =
(

f(1) f(2)
f(3) f(4)

)
.

It is easily verified that T is linear. By use of the Lagrange interpolation
formula in Section 1.6, it can be shown (compare with Exercise 22) that
T(f) = O only when f is the zero polynomial. Thus T is one-to-one (see
Exercise 11). Moreover, because dim(P3(R)) = dim(M2×2(R)), it follows that
T is invertible by Theorem 2.5 (p. 71). We conclude that P3(R) is isomorphic
to M2×2(R). ♦

In each of Examples 4 and 5, the reader may have observed that isomor-
phic vector spaces have equal dimensions. As the next theorem shows, this
is no coincidence.

Theorem 2.19. Let V and W be finite-dimensional vector spaces (over
the same field). Then V is isomorphic to W if and only if dim(V) = dim(W).

Proof. Suppose that V is isomorphic to W and that T : V → W is an
isomorphism from V to W. By the lemma preceding Theorem 2.18, we have
that dim(V) = dim(W).

Now suppose that dim(V) = dim(W), and let β = {v1, v2, . . . , vn} and
γ = {w1, w2, . . . , wn} be bases for V and W, respectively. By Theorem 2.6
(p. 72), there exists T : V → W such that T is linear and T(vi) = wi for
i = 1, 2, . . . , n. Using Theorem 2.2 (p. 68), we have

R(T) = span(T(β)) = span(γ) = W.

So T is onto. From Theorem 2.5 (p. 71), we have that T is also one-to-one.
Hence T is an isomorphism.

By the lemma to Theorem 2.18, if V and W are isomorphic, then either
both of V and W are finite-dimensional or both are infinite-dimensional.

Corollary. Let V be a vector space over F . Then V is isomorphic to Fn

if and only if dim(V) = n.

Up to this point, we have associated linear transformations with their
matrix representations. We are now in a position to prove that, as a vector
space, the collection of all linear transformations between two given vector
spaces may be identified with the appropriate vector space of m×n matrices.

Theorem 2.20. Let V and W be finite-dimensional vector spaces over F
of dimensions n and m, respectively, and let β and γ be ordered bases for V
and W, respectively. Then the function Φ: L(V, W) → Mm×n(F ), defined by
Φ(T) = [T]γβ for T ∈ L(V, W), is an isomorphism.
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Proof. By Theorem 2.8 (p. 82), Φ is linear. Hence we must show that Φ
is one-to-one and onto. This is accomplished if we show that for every m×n
matrix A, there exists a unique linear transformation T : V → W such that
Φ(T) = A. Let β = {v1, v2, . . . , vn}, γ = {w1, w2, . . . , wm}, and let A be a
given m × n matrix. By Theorem 2.6 (p. 72), there exists a unique linear
transformation T : V → W such that

T(vj) =
m∑

i=1

Aijwi for 1 ≤ j ≤ n.

But this means that [T]γβ = A, or Φ(T) = A. Thus Φ is an isomorphism.

Corollary. Let V and W be finite-dimensional vector spaces of dimensions
n and m, respectively. Then L(V, W) is finite-dimensional of dimension mn.

Proof. The proof follows from Theorems 2.20 and 2.19 and the fact that
dim(Mm×n(F )) = mn.

We conclude this section with a result that allows us to see more clearly
the relationship between linear transformations defined on abstract finite-
dimensional vector spaces and linear transformations from Fn to Fm.

We begin by naming the transformation x → [x]β introduced in Sec-
tion 2.2.

Definition. Let β be an ordered basis for an n-dimensional vector space
V over the field F . The standard representation of V with respect to
β is the function φβ : V → Fn defined by φβ(x) = [x]β for each x ∈ V.

Example 6

Let β = {(1, 0), (0, 1)} and γ = {(1, 2), (3, 4)}. It is easily observed that β
and γ are ordered bases for R2. For x = (1,−2), we have

φβ(x) = [x]β =
(

1
−2

)
and φγ(x) = [x]γ =

(−5
2

)
. ♦

We observed earlier that φβ is a linear transformation. The next theorem
tells us much more.

Theorem 2.21. For any finite-dimensional vector space V with ordered
basis β, φβ is an isomorphism.

Proof. Exercise.

This theorem provides us with an alternate proof that an n-dimensional
vector space is isomorphic to Fn (see the corollary to Theorem 2.19).
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Figure 2.2

Let V and W be vector spaces of dimension n and m, respectively, and let
T : V → W be a linear transformation. Define A = [T]γβ , where β and γ are
arbitrary ordered bases of V and W, respectively. We are now able to use φβ

and φγ to study the relationship between the linear transformations T and
LA : Fn → Fm.

Let us first consider Figure 2.2. Notice that there are two composites of
linear transformations that map V into Fm:

1. Map V into Fn with φβ and follow this transformation with LA; this
yields the composite LAφβ .

2. Map V into W with T and follow it by φγ to obtain the composite φγT.

These two composites are depicted by the dashed arrows in the diagram.
By a simple reformulation of Theorem 2.14 (p. 91), we may conclude that

LAφβ = φγT;

that is, the diagram “commutes.” Heuristically, this relationship indicates
that after V and W are identified with Fn and Fm via φβ and φγ , respectively,
we may “identify” T with LA. This diagram allows us to transfer operations
on abstract vector spaces to ones on Fn and Fm.

Example 7

Recall the linear transformation T : P3(R) → P2(R) defined in Example 4 of
Section 2.2 (T(f(x)) = f ′(x)). Let β and γ be the standard ordered bases for
P3(R) and P2(R), respectively, and let φβ : P3(R) → R4 and φγ : P2(R) → R3

be the corresponding standard representations of P3(R) and P2(R). If A =
[T]γβ , then

A =

⎛⎝0 1 0 0
0 0 2 0
0 0 0 3

⎞⎠ .
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Consider the polynomial p(x) = 2+x−3x2+5x3. We show that LAφβ(p(x)) =
φγT(p(x)). Now

LAφβ(p(x)) =

⎛⎝0 1 0 0
0 0 2 0
0 0 0 3

⎞⎠
⎛⎜⎜⎝

2
1

−3
5

⎞⎟⎟⎠ =

⎛⎝ 1
−6
15

⎞⎠ .

But since T(p(x)) = p′(x) = 1 − 6x + 15x2, we have

φγT(p(x)) =

⎛⎝ 1
−6
15

⎞⎠ .

So LAφβ(p(x)) = φγT(p(x)). ♦
Try repeating Example 7 with different polynomials p(x).

EXERCISES

1. Label the following statements as true or false. In each part, V and
W are vector spaces with ordered (finite) bases α and β, respectively,
T : V → W is linear, and A and B are matrices.

(a)
(
[T]βα

)−1 = [T−1]βα.
(b) T is invertible if and only if T is one-to-one and onto.
(c) T = LA, where A = [T]βα.
(d) M2×3(F ) is isomorphic to F5.
(e) Pn(F ) is isomorphic to Pm(F ) if and only if n = m.
(f) AB = I implies that A and B are invertible.
(g) If A is invertible, then (A−1)−1 = A.
(h) A is invertible if and only if LA is invertible.
(i) A must be square in order to possess an inverse.

2. For each of the following linear transformations T, determine whether
T is invertible and justify your answer.

(a) T : R2 → R3 defined by T(a1, a2) = (a1 − 2a2, a2, 3a1 + 4a2).
(b) T : R2 → R3 defined by T(a1, a2) = (3a1 − a2, a2, 4a1).
(c) T : R3 → R3 defined by T(a1, a2, a3) = (3a1 − 2a3, a2, 3a1 + 4a2).
(d) T : P3(R) → P2(R) defined by T(p(x)) = p′(x).

(e) T : M2×2(R) → P2(R) defined by T

(
a b
c d

)
= a + 2bx + (c + d)x2.

(f) T : M2×2(R) → M2×2(R) defined by T

(
a b
c d

)
=
(

a + b a
c c + d

)
.
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3. Which of the following pairs of vector spaces are isomorphic? Justify
your answers.

(a) F3 and P3(F ).
(b) F4 and P3(F ).
(c) M2×2(R) and P3(R).
(d) V = {A ∈ M2×2(R) : tr(A) = 0} and R4.

4.† Let A and B be n × n invertible matrices. Prove that AB is invertible
and (AB)−1 = B−1A−1.

5.† Let A be invertible. Prove that At is invertible and (At)−1 = (A−1)t.

6. Prove that if A is invertible and AB = O, then B = O.

7. Let A be an n × n matrix.

(a) Suppose that A2 = O. Prove that A is not invertible.
(b) Suppose that AB = O for some nonzero n×n matrix B. Could A

be invertible? Explain.

8. Prove Corollaries 1 and 2 of Theorem 2.18.

9. Let A and B be n×n matrices such that AB is invertible. Prove that A
and B are invertible. Give an example to show that arbitrary matrices
A and B need not be invertible if AB is invertible.

10.† Let A and B be n × n matrices such that AB = In.

(a) Use Exercise 9 to conclude that A and B are invertible.
(b) Prove A = B−1 (and hence B = A−1). (We are, in effect, saying

that for square matrices, a “one-sided” inverse is a “two-sided”
inverse.)

(c) State and prove analogous results for linear transformations de-
fined on finite-dimensional vector spaces.

11. Verify that the transformation in Example 5 is one-to-one.

12. Prove Theorem 2.21.

13. Let ∼ mean “is isomorphic to.” Prove that ∼ is an equivalence relation
on the class of vector spaces over F .

14. Let

V =
{(

a a + b
0 c

)
: a, b, c ∈ F

}
.

Construct an isomorphism from V to F3.
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15. Let V and W be finite-dimensional vector spaces, and let T : V → W be
a linear transformation. Suppose that β is a basis for V. Prove that T
is an isomorphism if and only if T(β) is a basis for W.

16. Let B be an n × n invertible matrix. Define Φ: Mn×n(F ) → Mn×n(F )
by Φ(A) = B−1AB. Prove that Φ is an isomorphism.

17.† Let V and W be finite-dimensional vector spaces and T : V → W be an
isomorphism. Let V0 be a subspace of V.

(a) Prove that T(V0) is a subspace of W.
(b) Prove that dim(V0) = dim(T(V0)).

18. Repeat Example 7 with the polynomial p(x) = 1 + x + 2x2 + x3.

19. In Example 5 of Section 2.1, the mapping T : M2×2(R) → M2×2(R) de-
fined by T(M) = M t for each M ∈ M2×2(R) is a linear transformation.
Let β = {E11, E12, E21, E22}, which is a basis for M2×2(R), as noted in
Example 3 of Section 1.6.

(a) Compute [T]β .
(b) Verify that LAφβ(M) = φβT(M) for A = [T]β and

M =
(

1 2
3 4

)
.

20.† Let T : V → W be a linear transformation from an n-dimensional vector
space V to an m-dimensional vector space W. Let β and γ be ordered
bases for V and W, respectively. Prove that rank(T) = rank(LA) and
that nullity(T) = nullity(LA), where A = [T]γβ . Hint: Apply Exercise 17
to Figure 2.2.

21. Let V and W be finite-dimensional vector spaces with ordered bases
β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm}, respectively. By The-
orem 2.6 (p. 72), there exist linear transformations Tij : V → W such
that

Tij(vk) =

{
wi if k = j

0 if k �= j.

First prove that {Tij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for L(V, W).
Then let M ij be the m×n matrix with 1 in the ith row and jth column
and 0 elsewhere, and prove that [Tij ]

γ
β = M ij . Again by Theorem 2.6,

there exists a linear transformation Φ: L(V, W) → Mm×n(F ) such that
Φ(Tij) = M ij . Prove that Φ is an isomorphism.
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22. Let c0, c1, . . . , cn be distinct scalars from an infinite field F . Define
T : Pn(F ) → Fn+1 by T(f) = (f(c0), f(c1), . . . , f(cn)). Prove that T is
an isomorphism. Hint: Use the Lagrange polynomials associated with
c0, c1, . . . , cn.

23. Let V denote the vector space defined in Example 5 of Section 1.2, and
let W = P(F ). Define

T : V → W by T(σ) =
n∑

i=0

σ(i)xi,

where n is the largest integer such that σ(n) �= 0. Prove that T is an
isomorphism.

The following exercise requires familiarity with the concept of quotient space
defined in Exercise 31 of Section 1.3 and with Exercise 40 of Section 2.1.

24. Let T : V → Z be a linear transformation of a vector space V onto a
vector space Z. Define the mapping

T : V/N(T) → Z by T(v + N(T)) = T(v)

for any coset v + N(T) in V/N(T).

(a) Prove that T is well-defined; that is, prove that if v + N(T) =
v′ + N(T), then T(v) = T(v′).

(b) Prove that T is linear.
(c) Prove that T is an isomorphism.
(d) Prove that the diagram shown in Figure 2.3 commutes; that is,

prove that T = Tη.

V/N(T)

V Z
T

η T

�

�

�

Figure 2.3

25. Let V be a nonzero vector space over a field F , and suppose that S is
a basis for V. (By the corollary to Theorem 1.13 (p. 60) in Section 1.7,
every vector space has a basis). Let C(S, F ) denote the vector space of
all functions f ∈ F(S, F ) such that f(s) = 0 for all but a finite number
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of vectors in S. (See Exercise 14 of Section 1.3.) Let Ψ: C(S, F ) → V
be the function defined by

Ψ(f) =
∑

s∈S,f(s) �=0

f(s)s.

Prove that Ψ is an isomorphism. Thus every nonzero vector space can
be viewed as a space of functions.

2.5 THE CHANGE OF COORDINATE MATRIX

In many areas of mathematics, a change of variable is used to simplify the
appearance of an expression. For example, in calculus an antiderivative of
2xex2

can be found by making the change of variable u = x2. The resulting
expression is of such a simple form that an antiderivative is easily recognized:∫

2xex2
dx =

∫
eu du = eu + c = ex2

+ c.

Similarly, in geometry the change of variable

x =
2√
5
x′ − 1√

5
y′

y =
1√
5
x′ +

2√
5
y′

can be used to transform the equation 2x2 − 4xy + 5y2 = 1 into the simpler
equation (x′)2+6(y′)2 = 1, in which form it is easily seen to be the equation of
an ellipse. (See Figure 2.4.) We see how this change of variable is determined
in Section 6.5. Geometrically, the change of variable(

x
y

)
→
(

x′

y′

)
is a change in the way that the position of a point P in the plane is described.
This is done by introducing a new frame of reference, an x′y′-coordinate
system with coordinate axes rotated from the original xy-coordinate axes. In
this case, the new coordinate axes are chosen to lie in the direction of the
axes of the ellipse. The unit vectors along the x′-axis and the y′-axis form an
ordered basis

β′ =
{

1√
5

(
2
1

)
,

1√
5

(−1
2

)}

for R2, and the change of variable is actually a change from [P ]β =
(

x
y

)
, the

coordinate vector of P relative to the standard ordered basis β = {e1, e2}, to
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[P ]β′ =
(

x′

y′

)
, the coordinate vector of P relative to the new rotated basis β′.

�

�	




x

x′

y
y′

Figure 2.4

A natural question arises: How can a coordinate vector relative to one ba-
sis be changed into a coordinate vector relative to the other? Notice that the
system of equations relating the new and old coordinates can be represented
by the matrix equation (

x
y

)
=

1√
5

(
2 −1
1 2

)(
x′

y′

)
.

Notice also that the matrix

Q =
1√
5

(
2 −1
1 2

)
equals [I]ββ′ , where I denotes the identity transformation on R2. Thus [v]β =
Q[v]β′ for all v ∈ R2. A similar result is true in general.

Theorem 2.22. Let β and β′ be two ordered bases for a finite-dimensional
vector space V, and let Q = [IV]ββ′ . Then

(a) Q is invertible.
(b) For any v ∈ V, [v]β = Q[v]β′ .

Proof. (a) Since IV is invertible, Q is invertible by Theorem 2.18 (p. 101).
(b) For any v ∈ V,

[v]β = [IV(v)]β = [IV]ββ′ [v]β′ = Q[v]β′

by Theorem 2.14 (p. 91).
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The matrix Q = [IV]ββ′ defined in Theorem 2.22 is called a change of coor-
dinate matrix. Because of part (b) of the theorem, we say that Q changes
β′-coordinates into β-coordinates. Observe that if β = {x1, x2, . . . , xn}
and β′ = {x′

1, x
′
2, . . . , x′

n}, then

x′
j =

n∑
i=1

Qijxi

for j = 1, 2, . . . , n; that is, the jth column of Q is [x′
j ]β .

Notice that if Q changes β′-coordinates into β-coordinates, then Q−1

changes β-coordinates into β′-coordinates. (See Exercise 11.)

Example 1

In R2, let β = {(1, 1), (1,−1)} and β′ = {(2, 4), (3, 1)}. Since

(2, 4) = 3(1, 1) − 1(1,−1) and (3, 1) = 2(1, 1) + 1(1,−1),

the matrix that changes β′-coordinates into β-coordinates is

Q =
(

3 2
−1 1

)
.

Thus, for instance,

[(2, 4)]β = Q[(2, 4)]β′ = Q

(
1
0

)
=
(

3
−1

)
. ♦

For the remainder of this section, we consider only linear transformations
that map a vector space V into itself. Such a linear transformation is called a
linear operator on V. Suppose now that T is a linear operator on a finite-
dimensional vector space V and that β and β′ are ordered bases for V. Then
V can be represented by the matrices [T]β and [T]β′ . What is the relationship
between these matrices? The next theorem provides a simple answer using a
change of coordinate matrix.

Theorem 2.23. Let T be a linear operator on a finite-dimensional vector
space V, and let β and β′ be ordered bases for V. Suppose that Q is the
change of coordinate matrix that changes β′-coordinates into β-coordinates.
Then

[T]β′ = Q−1[T]βQ.

Proof. Let I be the identity transformation on V. Then T = IT = TI;
hence, by Theorem 2.11 (p. 88),

Q[T]β′ = [I]ββ′ [T]β
′

β′ = [IT]ββ′ = [TI]ββ′ = [T]ββ [I]ββ′ = [T]βQ.

Therefore [T]β′ = Q−1[T]βQ.
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Example 2

Let T be the linear operator on R2 defined by

T

(
a
b

)
=
(

3a − b
a + 3b

)
,

and let β and β′ be the ordered bases in Example 1. The reader should verify
that

[T]β =
(

3 1
−1 3

)
.

In Example 1, we saw that the change of coordinate matrix that changes
β′-coordinates into β-coordinates is

Q =
(

3 2
−1 1

)
,

and it is easily verified that

Q−1 =
1
5

(
1 −2
1 3

)
.

Hence, by Theorem 2.23,

[T]β′ = Q−1[T]βQ =
(

4 1
−2 2

)
.

To show that this is the correct matrix, we can verify that the image
under T of each vector of β′ is the linear combination of the vectors of β′

with the entries of the corresponding column as its coefficients. For example,
the image of the second vector in β′ is

T

(
3
1

)
=
(

8
6

)
= 1

(
2
4

)
+ 2

(
3
1

)
.

Notice that the coefficients of the linear combination are the entries of the
second column of [T]β′ . ♦

It is often useful to apply Theorem 2.23 to compute [T]β , as the next
example shows.

Example 3

Recall the reflection about the x-axis in Example 3 of Section 2.1. The rule
(x, y) → (x,−y) is easy to obtain. We now derive the less obvious rule for
the reflection T about the line y = 2x. (See Figure 2.5.) We wish to find an
expression for T(a, b) for any (a, b) in R2. Since T is linear, it is completely
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y = 2x

(a, b)

T(a, b)

x

y

Figure 2.5

determined by its values on a basis for R2. Clearly, T(1, 2) = (1, 2) and
T(−2, 1) = −(−2, 1) = (2,−1). Therefore if we let

β′ =
{(

1
2

)
,

(−2
1

)}
,

then β′ is an ordered basis for R2 and

[T]β′ =
(

1 0
0 −1

)
.

Let β be the standard ordered basis for R2, and let Q be the matrix that
changes β′-coordinates into β-coordinates. Then

Q =
(

1 −2
2 1

)
and Q−1[T]βQ = [T]β′ . We can solve this equation for [T]β to obtain that
[T]β = Q[T]β′Q−1. Because

Q−1 =
1
5

(
1 2

−2 1

)
,

the reader can verify that

[T]β =
1
5

(−3 4
4 3

)
.

Since β is the standard ordered basis, it follows that T is left-multiplication
by [T]β . Thus for any (a, b) in R2, we have

T

(
a
b

)
=

1
5

(−3 4
4 3

)(
a
b

)
=

1
5

(−3a + 4b
4a + 3b

)
. ♦
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A useful special case of Theorem 2.23 is contained in the next corollary,
whose proof is left as an exercise.

Corollary. Let A ∈ Mn×n(F ), and let γ be an ordered basis for Fn. Then
[LA]γ = Q−1AQ, where Q is the n × n matrix whose jth column is the jth
vector of γ.

Example 4

Let

A =

⎛⎝2 1 0
1 1 3
0 −1 0

⎞⎠ ,

and let

γ =

⎧⎨⎩
⎛⎝−1

0
0

⎞⎠ ,

⎛⎝2
1
0

⎞⎠ ,

⎛⎝1
1
1

⎞⎠⎫⎬⎭ ,

which is an ordered basis for R3. Let Q be the 3×3 matrix whose jth column
is the jth vector of γ. Then

Q =

⎛⎝−1 2 1
0 1 1
0 0 1

⎞⎠ and Q−1 =

⎛⎝−1 2 −1
0 1 −1
0 0 1

⎞⎠ .

So by the preceding corollary,

[LA]γ = Q−1AQ =

⎛⎝ 0 2 8
−1 4 6

0 −1 −1

⎞⎠ . ♦

The relationship between the matrices [T]β′ and [T]β in Theorem 2.23 will
be the subject of further study in Chapters 5, 6, and 7. At this time, however,
we introduce the name for this relationship.

Definition. Let A and B be matrices in Mn×n(F ). We say that B is
similar to A if there exists an invertible matrix Q such that B = Q−1AQ.

Observe that the relation of similarity is an equivalence relation (see Ex-
ercise 9). So we need only say that A and B are similar.

Notice also that in this terminology Theorem 2.23 can be stated as follows:
If T is a linear operator on a finite-dimensional vector space V, and if β and
β′ are any ordered bases for V, then [T]β′ is similar to [T]β .

Theorem 2.23 can be generalized to allow T : V → W, where V is distinct
from W. In this case, we can change bases in V as well as in W (see Exercise 8).
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EXERCISES

1. Label the following statements as true or false.

(a) Suppose that β = {x1, x2, . . . , xn} and β′ = {x′
1, x

′
2, . . . , x

′
n} are

ordered bases for a vector space and Q is the change of coordinate
matrix that changes β′-coordinates into β-coordinates. Then the
jth column of Q is [xj ]β′ .

(b) Every change of coordinate matrix is invertible.
(c) Let T be a linear operator on a finite-dimensional vector space V,

let β and β′ be ordered bases for V, and let Q be the change of
coordinate matrix that changes β′-coordinates into β-coordinates.
Then [T]β = Q[T]β′Q−1.

(d) The matrices A, B ∈ Mn×n(F ) are called similar if B = QtAQ for
some Q ∈ Mn×n(F ).

(e) Let T be a linear operator on a finite-dimensional vector space V.
Then for any ordered bases β and γ for V, [T]β is similar to [T]γ .

2. For each of the following pairs of ordered bases β and β′ for R2, find
the change of coordinate matrix that changes β′-coordinates into β-
coordinates.

(a) β = {e1, e2} and β′ = {(a1, a2), (b1, b2)}
(b) β = {(−1, 3), (2,−1)} and β′ = {(0, 10), (5, 0)}
(c) β = {(2, 5), (−1,−3)} and β′ = {e1, e2}
(d) β = {(−4, 3), (2,−1)} and β′ = {(2, 1), (−4, 1)}

3. For each of the following pairs of ordered bases β and β′ for P2(R),
find the change of coordinate matrix that changes β′-coordinates into
β-coordinates.

(a) β = {x2, x, 1} and
β′ = {a2x

2 + a1x + a0, b2x
2 + b1x + b0, c2x

2 + c1x + c0}
(b) β = {1, x, x2} and

β′ = {a2x
2 + a1x + a0, b2x

2 + b1x + b0, c2x
2 + c1x + c0}

(c) β = {2x2 − x, 3x2 + 1, x2} and β′ = {1, x, x2}
(d) β = {x2 − x + 1, x + 1, x2 + 1} and

β′ = {x2 + x + 4, 4x2 − 3x + 2, 2x2 + 3}
(e) β = {x2 − x, x2 + 1, x − 1} and

β′ = {5x2 − 2x − 3,−2x2 + 5x + 5, 2x2 − x − 3}
(f) β = {2x2 − x + 1, x2 + 3x − 2,−x2 + 2x + 1} and

β′ = {9x − 9, x2 + 21x − 2, 3x2 + 5x + 2}
4. Let T be the linear operator on R2 defined by

T

(
a
b

)
=
(

2a + b
a − 3b

)
,
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let β be the standard ordered basis for R2, and let

β′ =
{(

1
1

)
,

(
1
2

)}
.

Use Theorem 2.23 and the fact that(
1 1
1 2

)−1

=
(

2 −1
−1 1

)
to find [T]β′ .

5. Let T be the linear operator on P1(R) defined by T(p(x)) = p′(x),
the derivative of p(x). Let β = {1, x} and β′ = {1 + x, 1 − x}. Use
Theorem 2.23 and the fact that(

1 1
1 −1

)−1

=

⎛⎝ 1
2

1
2

1
2 − 1

2

⎞⎠
to find [T]β′ .

6. For each matrix A and ordered basis β, find [LA]β . Also, find an invert-
ible matrix Q such that [LA]β = Q−1AQ.

(a) A =
(

1 3
1 1

)
and β =

{(
1
1

)
,

(
1
2

)}
(b) A =

(
1 2
2 1

)
and β =

{(
1
1

)
,

(
1

−1

)}

(c) A =

⎛⎝1 1 −1
2 0 1
1 1 0

⎞⎠ and β =

⎧⎨⎩
⎛⎝1

1
1

⎞⎠ ,

⎛⎝1
0
1

⎞⎠ ,

⎛⎝1
1
2

⎞⎠⎫⎬⎭
(d) A =

⎛⎝13 1 4
1 13 4
4 4 10

⎞⎠ and β =

⎧⎨⎩
⎛⎝ 1

1
−2

⎞⎠ ,

⎛⎝ 1
−1

0

⎞⎠ ,

⎛⎝1
1
1

⎞⎠⎫⎬⎭
7. In R2, let L be the line y = mx, where m �= 0. Find an expression for

T(x, y), where

(a) T is the reflection of R2 about L.
(b) T is the projection on L along the line perpendicular to L. (See

the definition of projection in the exercises of Section 2.1.)

8. Prove the following generalization of Theorem 2.23. Let T : V → W be
a linear transformation from a finite-dimensional vector space V to a
finite-dimensional vector space W. Let β and β′ be ordered bases for
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V, and let γ and γ′ be ordered bases for W. Then [T]γ
′

β′ = P−1[T]γβQ,
where Q is the matrix that changes β′-coordinates into β-coordinates
and P is the matrix that changes γ′-coordinates into γ-coordinates.

9. Prove that “is similar to” is an equivalence relation on Mn×n(F ).

10. Prove that if A and B are similar n × n matrices, then tr(A) = tr(B).
Hint: Use Exercise 13 of Section 2.3.

11. Let V be a finite-dimensional vector space with ordered bases α, β,
and γ.

(a) Prove that if Q and R are the change of coordinate matrices that
change α-coordinates into β-coordinates and β-coordinates into
γ-coordinates, respectively, then RQ is the change of coordinate
matrix that changes α-coordinates into γ-coordinates.

(b) Prove that if Q changes α-coordinates into β-coordinates, then
Q−1 changes β-coordinates into α-coordinates.

12. Prove the corollary to Theorem 2.23.

13.† Let V be a finite-dimensional vector space over a field F , and let β =
{x1, x2, . . . , xn} be an ordered basis for V. Let Q be an n×n invertible
matrix with entries from F . Define

x′
j =

n∑
i=1

Qijxi for 1 ≤ j ≤ n,

and set β′ = {x′
1, x

′
2, . . . , x

′
n}. Prove that β′ is a basis for V and hence

that Q is the change of coordinate matrix changing β′-coordinates into
β-coordinates.

14. Prove the converse of Exercise 8: If A and B are each m × n matrices
with entries from a field F , and if there exist invertible m×m and n×n
matrices P and Q, respectively, such that B = P−1AQ, then there exist
an n-dimensional vector space V and an m-dimensional vector space W
(both over F ), ordered bases β and β′ for V and γ and γ′ for W, and a
linear transformation T : V → W such that

A = [T]γβ and B = [T]γ
′

β′ .

Hints: Let V = Fn, W = Fm, T = LA, and β and γ be the standard
ordered bases for Fn and Fm, respectively. Now apply the results of
Exercise 13 to obtain ordered bases β′ and γ′ from β and γ via Q and
P , respectively.
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2.6∗ DUAL SPACES

In this section, we are concerned exclusively with linear transformations from
a vector space V into its field of scalars F , which is itself a vector space of di-
mension 1 over F . Such a linear transformation is called a linear functional
on V. We generally use the letters f, g, h, . . . to denote linear functionals. As
we see in Example 1, the definite integral provides us with one of the most
important examples of a linear functional in mathematics.

Example 1

Let V be the vector space of continuous real-valued functions on the interval
[0, 2π]. Fix a function g ∈ V. The function h : V → R defined by

h(x) =
1
2π

∫ 2π

0

x(t)g(t) dt

is a linear functional on V. In the cases that g(t) equals sin nt or cos nt, h(x)
is often called the nth Fourier coefficient of x. ♦
Example 2

Let V = Mn×n(F ), and define f : V → F by f(A) = tr(A), the trace of A. By
Exercise 6 of Section 1.3, we have that f is a linear functional. ♦
Example 3

Let V be a finite-dimensional vector space, and let β = {x1, x2, . . . , xn} be
an ordered basis for V. For each i = 1, 2, . . . , n, define fi(x) = ai, where

[x]β =

⎛⎜⎜⎜⎝
a1

a2

...
an

⎞⎟⎟⎟⎠
is the coordinate vector of x relative to β. Then fi is a linear functional on V
called the ith coordinate function with respect to the basis β. Note
that fi(xj) = δij , where δij is the Kronecker delta. These linear functionals
play an important role in the theory of dual spaces (see Theorem 2.24). ♦

Definition. For a vector space V over F , we define the dual space of
V to be the vector space L(V, F ), denoted by V∗.

Thus V∗ is the vector space consisting of all linear functionals on V with
the operations of addition and scalar multiplication as defined in Section 2.2.
Note that if V is finite-dimensional, then by the corollary to Theorem 2.20
(p. 104)

dim(V∗) = dim(L(V, F )) = dim(V) · dim(F ) = dim(V).
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Hence by Theorem 2.19 (p. 103), V and V∗ are isomorphic. We also define
the double dual V∗∗ of V to be the dual of V∗. In Theorem 2.26, we show,
in fact, that there is a natural identification of V and V∗∗ in the case that V
is finite-dimensional.

Theorem 2.24. Suppose that V is a finite-dimensional vector space with
the ordered basis β = {x1, x2, . . . , xn}. Let fi (1 ≤ i ≤ n) be the ith coordi-
nate function with respect to β as just defined, and let β∗ = {f1, f2, . . . , fn}.
Then β∗ is an ordered basis for V∗, and, for any f ∈ V∗, we have

f =
n∑

i=1

f(xi)fi.

Proof. Let f ∈ V∗. Since dim(V∗) = n, we need only show that

f =
n∑

i=1

f(xi)fi,

from which it follows that β∗ generates V∗, and hence is a basis by Corollary
2(a) to the replacement theorem (p. 47). Let

g =
n∑

i=1

f(xi)fi.

For 1 ≤ j ≤ n, we have

g(xj) =

(
n∑

i=1

f(xi)fi

)
(xj) =

n∑
i=1

f(xi)fi(xj)

=
n∑

i=1

f(xi)δij = f(xj).

Therefore f = g by the corollary to Theorem 2.6 (p. 72).

Definition. Using the notation of Theorem 2.24, we call the ordered
basis β∗ = {f1, f2, . . . , fn} of V∗ that satisfies fi(xj) = δij (1 ≤ i, j ≤ n) the
dual basis of β.

Example 4

Let β = {(2, 1), (3, 1)} be an ordered basis for R2. Suppose that the dual
basis of β is given by β∗ = {f1, f2}. To explicitly determine a formula for f1,
we need to consider the equations

1 = f1(2, 1) = f1(2e1 + e2) = 2f1(e1) + f1(e2)
0 = f1(3, 1) = f1(3e1 + e2) = 3f1(e1) + f1(e2).

Solving these equations, we obtain f1(e1) = −1 and f1(e2) = 3; that is,
f1(x, y) = −x + 3y. Similarly, it can be shown that f2(x, y) = x − 2y. ♦
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We now assume that V and W are finite-dimensional vector spaces over F
with ordered bases β and γ, respectively. In Section 2.4, we proved that there
is a one-to-one correspondence between linear transformations T : V → W and
m × n matrices (over F ) via the correspondence T ↔ [T]γβ . For a matrix of
the form A = [T]γβ , the question arises as to whether or not there exists a
linear transformation U associated with T in some natural way such that U
may be represented in some basis as At. Of course, if m �= n, it would be
impossible for U to be a linear transformation from V into W. We now answer
this question by applying what we have already learned about dual spaces.

Theorem 2.25. Let V and W be finite-dimensional vector spaces over
F with ordered bases β and γ, respectively. For any linear transformation
T : V → W, the mapping Tt : W∗ → V∗ defined by Tt(g) = gT for all g ∈ W∗

is a linear transformation with the property that [Tt]β
∗

γ∗ = ([T]γβ)t.

Proof. For g ∈ W∗, it is clear that Tt(g) = gT is a linear functional on V
and hence is in V∗. Thus Tt maps W∗ into V∗. We leave the proof that Tt is
linear to the reader.

To complete the proof, let β = {x1, x2, . . . , xn} and γ = {y1, y2, . . . , ym}
with dual bases β∗ = {f1, f2, . . . , fn} and γ∗ = {g1, g2, . . . , gm}, respectively.
For convenience, let A = [T]γβ . To find the jth column of [Tt]β

∗
γ∗ , we be-

gin by expressing Tt(gj) as a linear combination of the vectors of β∗. By
Theorem 2.24, we have

Tt(gj) = gjT =
n∑

s=1

(gjT)(xs)fs.

So the row i, column j entry of [Tt]β
∗

γ∗ is

(gjT)(xi) = gj(T(xi)) = gj

(
m∑

k=1

Akiyk

)

=
m∑

k=1

Akigj(yk) =
m∑

k=1

Akiδjk = Aji.

Hence [Tt]β
∗

γ∗ = At.

The linear transformation Tt defined in Theorem 2.25 is called the trans-
pose of T. It is clear that Tt is the unique linear transformation U such that
[U]β

∗
γ∗ = ([T]γβ)t.
We illustrate Theorem 2.25 with the next example.
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Example 5

Define T : P1(R) → R2 by T(p(x)) = (p(0), p(2)). Let β and γ be the standard
ordered bases for P1(R) and R2, respectively. Clearly,

[T]γβ =
(

1 0
1 2

)
.

We compute [Tt]β
∗

γ∗ directly from the definition. Let β∗ = {f1, f2} and γ∗ =

{g1, g2}. Suppose that [Tt]β
∗

γ∗ =
(

a b
c d

)
. Then Tt(g1) = af1 + cf2. So

Tt(g1)(1) = (af1 + cf2)(1) = af1(1) + cf2(1) = a(1) + c(0) = a.

But also

(Tt(g1))(1) = g1(T(1)) = g1(1, 1) = 1.

So a = 1. Using similar computations, we obtain that c = 0, b = 1, and
d = 2. Hence a direct computation yields

[Tt]β
∗

γ∗ =
(

1 1
0 2

)
=
(
[T]γβ

)t

,

as predicted by Theorem 2.25. ♦
We now concern ourselves with demonstrating that any finite-dimensional

vector space V can be identified in a natural way with its double dual V∗∗.
There is, in fact, an isomorphism between V and V∗∗ that does not depend
on any choice of bases for the two vector spaces.

For a vector x ∈ V, we define x̂ : V∗ → F by x̂(f) = f(x) for every f ∈ V∗.
It is easy to verify that x̂ is a linear functional on V∗, so x̂ ∈ V∗∗. The
correspondence x ↔ x̂ allows us to define the desired isomorphism between
V and V∗∗.

Lemma. Let V be a finite-dimensional vector space, and let x ∈ V. If
x̂(f) = 0 for all f ∈ V∗, then x = 0 .

Proof. Let x �= 0 . We show that there exists f ∈ V∗ such that x̂(f) �= 0.
Choose an ordered basis β = {x1, x2, . . . , xn} for V such that x1 = x. Let
{f1, f2, . . . , fn} be the dual basis of β. Then f1(x1) = 1 �= 0. Let f = f1.

Theorem 2.26. Let V be a finite-dimensional vector space, and define
ψ : V → V∗∗ by ψ(x) = x̂. Then ψ is an isomorphism.
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Proof. (a) ψ is linear: Let x, y ∈ V and c ∈ F . For f ∈ V∗, we have

ψ(cx + y)(f) = f(cx + y) = cf(x) + f(y) = cx̂(f) + ŷ(f)
= (cx̂ + ŷ)(f).

Therefore

ψ(cx + y) = cx̂ + ŷ = cψ(x) + ψ(y).

(b) ψ is one-to-one: Suppose that ψ(x) is the zero functional on V∗ for
some x ∈ V. Then x̂(f) = 0 for every f ∈ V∗. By the previous lemma, we
conclude that x = 0 .

(c) ψ is an isomorphism: This follows from (b) and the fact that dim(V) =
dim(V∗∗).

Corollary. Let V be a finite-dimensional vector space with dual space V∗.
Then every ordered basis for V∗ is the dual basis for some basis for V.

Proof. Let {f1, f2, . . . , fn} be an ordered basis for V∗. We may combine
Theorems 2.24 and 2.26 to conclude that for this basis for V∗ there exists a
dual basis {x̂1, x̂2, . . . , x̂n} in V∗∗, that is, δij = x̂i(fj) = fj(xi) for all i and
j. Thus {f1, f2, . . . , fn} is the dual basis of {x1, x2, . . . , xn}.

Although many of the ideas of this section, (e.g., the existence of a dual
space), can be extended to the case where V is not finite-dimensional, only a
finite-dimensional vector space is isomorphic to its double dual via the map
x → x̂. In fact, for infinite-dimensional vector spaces, no two of V, V∗, and
V∗∗ are isomorphic.

EXERCISES

1. Label the following statements as true or false. Assume that all vector
spaces are finite-dimensional.

(a) Every linear transformation is a linear functional.
(b) A linear functional defined on a field may be represented as a 1×1

matrix.
(c) Every vector space is isomorphic to its dual space.
(d) Every vector space is the dual of some other vector space.
(e) If T is an isomorphism from V onto V∗ and β is a finite ordered

basis for V, then T(β) = β∗.
(f) If T is a linear transformation from V to W, then the domain of

(Tt)t is V∗∗.
(g) If V is isomorphic to W, then V∗ is isomorphic to W∗.
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(h) The derivative of a function may be considered as a linear func-
tional on the vector space of differentiable functions.

2. For the following functions f on a vector space V, determine which are
linear functionals.

(a) V = P(R); f(p(x)) = 2p′(0)+p′′(1), where ′ denotes differentiation
(b) V = R2; f(x, y) = (2x, 4y)
(c) V = M2×2(F ); f(A) = tr(A)
(d) V = R3; f(x, y, z) = x2 + y2 + z2

(e) V = P(R); f(p(x)) =
∫ 1

0
p(t) dt

(f) V = M2×2(F ); f(A) = A11

3. For each of the following vector spaces V and bases β, find explicit
formulas for vectors of the dual basis β∗ for V∗, as in Example 4.

(a) V = R3; β = {(1, 0, 1), (1, 2, 1), (0, 0, 1)}
(b) V = P2(R); β = {1, x, x2}

4. Let V = R3, and define f1, f2, f3 ∈ V∗ as follows:

f1(x, y, z) = x − 2y, f2(x, y, z) = x + y + z, f3(x, y, z) = y − 3z.

Prove that {f1, f2, f3} is a basis for V∗, and then find a basis for V for
which it is the dual basis.

5. Let V = P1(R), and, for p(x) ∈ V, define f1, f2 ∈ V∗ by

f1(p(x)) =
∫ 1

0

p(t) dt and f2(p(x)) =
∫ 2

0

p(t) dt.

Prove that {f1, f2} is a basis for V∗, and find a basis for V for which it
is the dual basis.

6. Define f ∈ (R2)∗ by f(x, y) = 2x + y and T : R2 → R2 by T(x, y) =
(3x + 2y, x).

(a) Compute Tt(f).
(b) Compute [Tt]β∗ , where β is the standard ordered basis for R2 and

β∗ = {f1, f2} is the dual basis, by finding scalars a, b, c, and d such
that Tt(f1) = af1 + cf2 and Tt(f2) = bf1 + df2.

(c) Compute [T]β and ([T]β)t, and compare your results with (b).

7. Let V = P1(R) and W = R2 with respective standard ordered bases β
and γ. Define T : V → W by

T(p(x)) = (p(0) − 2p(1), p(0) + p′(0)),

where p′(x) is the derivative of p(x).



Sec. 2.6 Dual Spaces 125

(a) For f ∈ W∗ defined by f(a, b) = a − 2b, compute Tt(f).
(b) Compute [Tt]β

∗
γ∗ without appealing to Theorem 2.25.

(c) Compute [T]γβ and its transpose, and compare your results with
(b).

8. Show that every plane through the origin in R3 may be identified with
the null space of a vector in (R3)∗. State an analogous result for R2.

9. Prove that a function T : Fn → Fm is linear if and only if there exist
f1, f2, . . . , fm ∈ (Fn)∗ such that T(x) = (f1(x), f2(x), . . . , fm(x)) for all
x ∈ Fn. Hint: If T is linear, define fi(x) = (giT)(x) for x ∈ Fn; that is,
fi = Tt(gi) for 1 ≤ i ≤ m, where {g1, g2, . . . , gm} is the dual basis of
the standard ordered basis for Fm.

10. Let V = Pn(F ), and let c0, c1, . . . , cn be distinct scalars in F .

(a) For 0 ≤ i ≤ n, define fi ∈ V∗ by fi(p(x)) = p(ci). Prove that
{f0, f1, . . . , fn} is a basis for V∗. Hint: Apply any linear combi-
nation of this set that equals the zero transformation to p(x) =
(x− c1)(x− c2) · · · (x− cn), and deduce that the first coefficient is
zero.

(b) Use the corollary to Theorem 2.26 and (a) to show that there exist
unique polynomials p0(x), p1(x), . . . , pn(x) such that pi(cj) = δij

for 0 ≤ i ≤ n. These polynomials are the Lagrange polynomials
defined in Section 1.6.

(c) For any scalars a0, a1, . . . , an (not necessarily distinct), deduce that
there exists a unique polynomial q(x) of degree at most n such that
q(ci) = ai for 0 ≤ i ≤ n. In fact,

q(x) =
n∑

i=0

aipi(x).

(d) Deduce the Lagrange interpolation formula:

p(x) =
n∑

i=0

p(ci)pi(x)

for any p(x) ∈ V.
(e) Prove that ∫ b

a

p(t) dt =
n∑

i=0

p(ci)di,

where

di =
∫ b

a

pi(t) dt.
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Suppose now that

ci = a +
i(b − a)

n
for i = 0, 1, . . . , n.

For n = 1, the preceding result yields the trapezoidal rule for
evaluating the definite integral of a polynomial. For n = 2, this
result yields Simpson’s rule for evaluating the definite integral of
a polynomial.

11. Let V and W be finite-dimensional vector spaces over F , and let ψ1 and
ψ2 be the isomorphisms between V and V∗∗ and W and W∗∗, respec-
tively, as defined in Theorem 2.26. Let T : V → W be linear, and define
Ttt = (Tt)t. Prove that the diagram depicted in Figure 2.6 commutes
(i.e., prove that ψ2T = Tttψ1).

V
T−−−−→ W

ψ1

⏐⏐! ⏐⏐!ψ2

V∗∗ Ttt

−−−−→ W∗∗

Figure 2.6

12. Let V be a finite-dimensional vector space with the ordered basis β.
Prove that ψ(β) = β∗∗, where ψ is defined in Theorem 2.26.

In Exercises 13 through 17, V denotes a finite-dimensional vector space over
F . For every subset S of V, define the annihilator S0 of S as

S0 = {f ∈ V∗ : f(x) = 0 for all x ∈ S}.
13. (a) Prove that S0 is a subspace of V∗.

(b) If W is a subspace of V and x �∈ W, prove that there exists f ∈ W0

such that f(x) �= 0.
(c) Prove that (S0)0 = span(ψ(S)), where ψ is defined as in Theo-

rem 2.26.
(d) For subspaces W1 and W2, prove that W1 = W2 if and only if

W0
1 = W0

2.
(e) For subspaces W1 and W2, show that (W1 + W2)0 = W0

1 ∩ W0
2.

14. Prove that if W is a subspace of V, then dim(W) + dim(W0) = dim(V).
Hint: Extend an ordered basis {x1, x2, . . . , xk} of W to an ordered ba-
sis β = {x1, x2, . . . , xn} of V. Let β∗ = {f1, f2, . . . , fn}. Prove that
{fk+1, fk+2, . . . , fn} is a basis for W0.
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15. Suppose that W is a finite-dimensional vector space and that T : V → W
is linear. Prove that N(Tt) = (R(T))0.

16. Use Exercises 14 and 15 to deduce that rank(LAt) = rank(LA) for any
A ∈ Mm×n(F ).

17. Let T be a linear operator on V, and let W be a subspace of V. Prove
that W is T-invariant (as defined in the exercises of Section 2.1) if and
only if W0 is Tt-invariant.

18. Let V be a nonzero vector space over a field F , and let S be a basis
for V. (By the corollary to Theorem 1.13 (p. 60) in Section 1.7, every
vector space has a basis.) Let Φ: V∗ → L(S, F ) be the mapping defined
by Φ(f) = fS , the restriction of f to S. Prove that Φ is an isomorphism.
Hint: Apply Exercise 34 of Section 2.1.

19. Let V be a nonzero vector space, and let W be a proper subspace of V
(i.e., W �= V). Prove that there exists a nonzero linear functional f ∈ V∗

such that f(x) = 0 for all x ∈ W. Hint: For the infinite-dimensional
case, use Exercise 34 of Section 2.1 as well as results about extending
linearly independent sets to bases in Section 1.7.

20. Let V and W be nonzero vector spaces over the same field, and let
T : V → W be a linear transformation.

(a) Prove that T is onto if and only if Tt is one-to-one.
(b) Prove that Tt is onto if and only if T is one-to-one.

Hint: Parts of the proof require the result of Exercise 19 for the infinite-
dimensional case.

2.7∗ HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

As an introduction to this section, consider the following physical problem. A
weight of mass m is attached to a vertically suspended spring that is allowed to
stretch until the forces acting on the weight are in equilibrium. Suppose that
the weight is now motionless and impose an xy-coordinate system with the
weight at the origin and the spring lying on the positive y-axis (see Figure 2.7).

Suppose that at a certain time, say t = 0, the weight is lowered a distance
s along the y-axis and released. The spring then begins to oscillate.

We describe the motion of the spring. At any time t ≥ 0, let F (t) denote
the force acting on the weight and y(t) denote the position of the weight along
the y-axis. For example, y(0) = −s. The second derivative of y with respect
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to time, y′′(t), is the acceleration of the weight at time t; hence, by Newton’s
second law of motion,

F (t) = my′′(t). (1)

It is reasonable to assume that the force acting on the weight is due totally
to the tension of the spring, and that this force satisfies Hooke’s law: The force
acting on the weight is proportional to its displacement from the equilibrium
position, but acts in the opposite direction. If k > 0 is the proportionality
constant, then Hooke’s law states that

F (t) = −ky(t). (2)

Combining (1) and (2), we obtain my′′ = −ky or

y′′ +
k

m
y = 0 . (3)

The expression (3) is an example of a differential equation. A differential
equation in an unknown function y = y(t) is an equation involving y, t, and
derivatives of y. If the differential equation is of the form

any(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = f, (4)

where a0, a1, . . . , an and f are functions of t and y(k) denotes the kth deriva-
tive of y, then the equation is said to be linear. The functions ai are called
the coefficients of the differential equation (4). Thus (3) is an example
of a linear differential equation in which the coefficients are constants and
the function f is identically zero. When f is identically zero, (4) is called
homogeneous.

In this section, we apply the linear algebra we have studied to solve ho-
mogeneous linear differential equations with constant coefficients. If an �= 0,
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we say that differential equation (4) is of order n. In this case, we divide
both sides by an to obtain a new, but equivalent, equation

y(n) + bn−1y
(n−1) + · · · + b1y

(1) + b0y = 0 ,

where bi = ai/an for i = 0, 1, . . . , n − 1. Because of this observation, we
always assume that the coefficient an in (4) is 1.

A solution to (4) is a function that when substituted for y reduces (4)
to an identity.

Example 1

The function y(t) = sin
√

k/m t is a solution to (3) since

y′′(t) +
k

m
y(t) = − k

m
sin

√
k

m
t +

k

m
sin

√
k

m
t = 0

for all t. Notice, however, that substituting y(t) = t into (3) yields

y′′(t) +
k

m
y(t) =

k

m
t,

which is not identically zero. Thus y(t) = t is not a solution to (3). ♦
In our study of differential equations, it is useful to regard solutions as

complex-valued functions of a real variable even though the solutions that
are meaningful to us in a physical sense are real-valued. The convenience
of this viewpoint will become clear later. Thus we are concerned with the
vector space F(R, C) (as defined in Example 3 of Section 1.2). In order to
consider complex-valued functions of a real variable as solutions to differential
equations, we must define what it means to differentiate such functions. Given
a complex-valued function x ∈ F(R, C) of a real variable t, there exist unique
real-valued functions x1 and x2 of t, such that

x(t) = x1(t) + ix2(t) for t ∈ R,

where i is the imaginary number such that i2 = −1. We call x1 the real part
and x2 the imaginary part of x.

Definitions. Given a function x ∈ F(R, C) with real part x1 and imag-
inary part x2, we say that x is differentiable if x1 and x2 are differentiable.
If x is differentiable, we define the derivative x′ of x by

x′ = x′
1 + ix′

2.

We illustrate some computations with complex-valued functions in the
following example.
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Example 2

Suppose that x(t) = cos 2t + i sin 2t. Then

x′(t) = −2 sin 2t + 2i cos 2t.

We next find the real and imaginary parts of x2. Since

x2(t) = (cos 2t + i sin 2t)2 = (cos2 2t − sin2 2t) + i(2 sin 2t cos 2t)
= cos 4t + i sin 4t,

the real part of x2(t) is cos 4t, and the imaginary part is sin 4t. ♦
The next theorem indicates that we may limit our investigations to a

vector space considerably smaller than F(R, C). Its proof, which is illustrated
in Example 3, involves a simple induction argument, which we omit.

Theorem 2.27. Any solution to a homogeneous linear differential equa-
tion with constant coefficients has derivatives of all orders; that is, if x is a
solution to such an equation, then x(k) exists for every positive integer k.

Example 3

To illustrate Theorem 2.27, consider the equation

y(2) + 4y = 0 .

Clearly, to qualify as a solution, a function y must have two derivatives. If y
is a solution, however, then

y(2) = −4y.

Thus since y(2) is a constant multiple of a function y that has two derivatives,
y(2) must have two derivatives. Hence y(4) exists; in fact,

y(4) = −4y(2).

Since y(4) is a constant multiple of a function that we have shown has at
least two derivatives, it also has at least two derivatives; hence y(6) exists.
Continuing in this manner, we can show that any solution has derivatives of
all orders. ♦

Definition. We use C∞ to denote the set of all functions in F(R, C) that
have derivatives of all orders.

It is a simple exercise to show that C∞ is a subspace of F(R, C) and hence
a vector space over C. In view of Theorem 2.27, it is this vector space that
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is of interest to us. For x ∈ C∞, the derivative x′ of x also lies in C∞. We
can use the derivative operation to define a mapping D : C∞ → C∞ by

D(x) = x′ for x ∈ C∞.

It is easy to show that D is a linear operator. More generally, consider any
polynomial over C of the form

p(t) = antn + an−1t
n−1 + · · · + a1t + a0.

If we define

p(D) = anDn + an−1D
n−1 + · · · + a1D + a0I,

then p(D) is a linear operator on C∞. (See Appendix E.)

Definitions. For any polynomial p(t) over C of positive degree, p(D) is
called a differential operator. The order of the differential operator p(D)
is the degree of the polynomial p(t).

Differential operators are useful since they provide us with a means of
reformulating a differential equation in the context of linear algebra. Any
homogeneous linear differential equation with constant coefficients,

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0 ,

can be rewritten using differential operators as

(Dn + an−1D
n−1 + · · · + a1D + a0I)(y) = 0 .

Definition. Given the differential equation above, the complex polyno-
mial

p(t) = tn + an−1t
n−1 + · · · + a1t + a0

is called the auxiliary polynomial associated with the equation.

For example, (3) has the auxiliary polynomial

p(t) = t2 +
k

m
.

Any homogeneous linear differential equation with constant coefficients
can be rewritten as

p(D)(y) = 0 ,

where p(t) is the auxiliary polynomial associated with the equation. Clearly,
this equation implies the following theorem.
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Theorem 2.28. The set of all solutions to a homogeneous linear differen-
tial equation with constant coefficients coincides with the null space of p(D),
where p(t) is the auxiliary polynomial associated with the equation.

Proof. Exercise.

Corollary. The set of all solutions to a homogeneous linear differential
equation with constant coefficients is a subspace of C∞.

In view of the preceding corollary, we call the set of solutions to a homo-
geneous linear differential equation with constant coefficients the solution
space of the equation. A practical way of describing such a space is in terms
of a basis. We now examine a certain class of functions that is of use in
finding bases for these solution spaces.

For a real number s, we are familiar with the real number es, where e is
the unique number whose natural logarithm is 1 (i.e., ln e = 1). We know,
for instance, certain properties of exponentiation, namely,

es+t = eset and e−t =
1
et

for any real numbers s and t. We now extend the definition of powers of e to
include complex numbers in such a way that these properties are preserved.

Definition. Let c = a + ib be a complex number with real part a and
imaginary part b. Define

ec = ea(cos b + i sin b).

The special case

eib = cos b + i sin b

is called Euler’s formula.

For example, for c = 2 + i(π/3),

ec = e2
(
cos

π

3
+ i sin

π

3

)
= e2

(
1
2

+ i

√
3

2

)
.

Clearly, if c is real (b = 0), then we obtain the usual result: ec = ea. Using
the approach of Example 2, we can show by the use of trigonometric identities
that

ec+d = eced and e−c =
1
ec

for any complex numbers c and d.
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Definition. A function f : R → C defined by f(t) = ect for a fixed
complex number c is called an exponential function.

The derivative of an exponential function, as described in the next theo-
rem, is consistent with the real version. The proof involves a straightforward
computation, which we leave as an exercise.

Theorem 2.29. For any exponential function f(t) = ect, f ′(t) = cect.

Proof. Exercise.

We can use exponential functions to describe all solutions to a homoge-
neous linear differential equation of order 1. Recall that the order of such an
equation is the degree of its auxiliary polynomial. Thus an equation of order
1 is of the form

y′ + a0y = 0 . (5)

Theorem 2.30. The solution space for (5) is of dimension 1 and has
{e−a0t} as a basis.

Proof. Clearly (5) has e−a0t as a solution. Suppose that x(t) is any solution
to (5). Then

x′(t) = −a0x(t) for all t ∈ R.

Define

z(t) = ea0tx(t).

Differentiating z yields

z′(t) = (ea0t)′x(t) + ea0tx′(t) = a0e
a0tx(t) − a0e

a0tx(t) = 0 .

(Notice that the familiar product rule for differentiation holds for complex-
valued functions of a real variable. A justification of this involves a lengthy,
although direct, computation.)

Since z′ is identically zero, z is a constant function. (Again, this fact, well
known for real-valued functions, is also true for complex-valued functions.
The proof, which relies on the real case, involves looking separately at the
real and imaginary parts of z.) Thus there exists a complex number k such
that

z(t) = ea0tx(t) = k for all t ∈ R.

So

x(t) = ke−a0t.

We conclude that any solution to (5) is a linear combination of e−a0t.
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Another way of stating Theorem 2.30 is as follows.

Corollary. For any complex number c, the null space of the differential
operator D − cI has {ect} as a basis.

We next concern ourselves with differential equations of order greater
than one. Given an nth order homogeneous linear differential equation with
constant coefficients,

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0 ,

its auxiliary polynomial

p(t) = tn + an−1t
n−1 + · · · + a1t + a0

factors into a product of polynomials of degree 1, that is,

p(t) = (t − c1)(t − c2) · · · (t − cn),

where c1, c2, . . . , cn are (not necessarily distinct) complex numbers. (This
follows from the fundamental theorem of algebra in Appendix D.) Thus

p(D) = (D − c1I)(D − c2I) · · · (D − cnI).

The operators D − ciI commute, and so, by Exercise 9, we have that

N(D − ciI) ⊆ N(p(D)) for all i.

Since N(p(D)) coincides with the solution space of the given differential equa-
tion, we can deduce the following result from the preceding corollary.

Theorem 2.31. Let p(t) be the auxiliary polynomial for a homogeneous
linear differential equation with constant coefficients. For any complex num-
ber c, if c is a zero of p(t), then ect is a solution to the differential equation.

Example 4

Given the differential equation

y′′ − 3y′ + 2y = 0 ,

its auxiliary polynomial is

p(t) = t2 − 3t + 2 = (t − 1)(t − 2).

Hence, by Theorem 2.31, et and e2t are solutions to the differential equa-
tion because c = 1 and c = 2 are zeros of p(t). Since the solution space
of the differential equation is a subspace of C∞, span({et, e2t}) lies in the
solution space. It is a simple matter to show that {et, e2t} is linearly inde-
pendent. Thus if we can show that the solution space is two-dimensional, we
can conclude that {et, e2t} is a basis for the solution space. This result is a
consequence of the next theorem. ♦
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Theorem 2.32. For any differential operator p(D) of order n, the null
space of p(D) is an n-dimensional subspace of C∞.

As a preliminary to the proof of Theorem 2.32, we establish two lemmas.

Lemma 1. The differential operator D − cI : C∞ → C∞ is onto for any
complex number c.

Proof. Let v ∈ C∞. We wish to find a u ∈ C∞ such that (D − cI)u = v.
Let w(t) = v(t)e−ct for t ∈ R. Clearly, w ∈ C∞ because both v and e−ct lie in
C∞. Let w1 and w2 be the real and imaginary parts of w. Then w1 and w2 are
continuous because they are differentiable. Hence they have antiderivatives,
say, W1 and W2, respectively. Let W : R → C be defined by

W (t) = W1(t) + iW2(t) for t ∈ R.

Then W ∈ C∞, and the real and imaginary parts of W are W1 and W2,
respectively. Furthermore, W ′ = w. Finally, let u : R → C be defined by
u(t) = W (t)ect for t ∈ R. Clearly u ∈ C∞, and since

(D − cI)u(t) = u′(t) − cu(t)

= W ′(t)ect + W (t)cect − cW (t)ect

= w(t)ect

= v(t)e−ctect

= v(t),

we have (D − cI)u = v.

Lemma 2. Let V be a vector space, and suppose that T and U are
linear operators on V such that U is onto and the null spaces of T and U are
finite-dimensional. Then the null space of TU is finite-dimensional, and

dim(N(TU)) = dim(N(T)) + dim(N(U)).

Proof. Let p = dim(N(T)), q = dim(N(U)), and {u1, u2, . . . , up} and
{v1, v2, . . . , vq} be bases for N(T) and N(U), respectively. Since U is onto,
we can choose for each i (1 ≤ i ≤ p) a vector wi ∈ V such that U(wi) = ui.
Note that the wi’s are distinct. Furthermore, for any i and j, wi �= vj , for
otherwise ui = U(wi) = U(vj) = 0—a contradiction. Hence the set

β = {w1, w2, . . . , wp, v1, v2, . . . , vq}

contains p+q distinct vectors. To complete the proof of the lemma, it suffices
to show that β is a basis for N(TU).
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We first show that β generates N(TU). Since for any wi and vj in β,
TU(wi) = T(ui) = 0 and TU(vj) = T(0 ) = 0 , it follows that β ⊆ N(TU).
Now suppose that v ∈ N(TU). Then 0 = TU(v) = T(U(v)). Thus U(v) ∈
N(T). So there exist scalars a1, a2, . . . , ap such that

U(v) = a1u1 + a2u2 + · · · + apup

= a1U(w1) + a2U(w2) + · · · + apU(wp)
= U(a1w1 + a2w2 + · · · + apwp).

Hence

U(v − (a1w1 + a2w2 + · · · + apwp)) = 0 .

Consequently, v − (a1w1 + a2w2 + · · · + apwp) lies in N(U). It follows that
there exist scalars b1, b2, . . . , bq such that

v − (a1w1 + a2w2 + · · · + apwp) = b1v1 + b2v2 + · · · + bqvq

or

v = a1w1 + a2w2 + · · · + apwp + b1v1 + b2v2 + · · · + bqvq.

Therefore β spans N(TU).
To prove that β is linearly independent, let a1, a2, . . . , ap, b1, b2, . . . , bq be

any scalars such that

a1w1 + a2w2 + · · · + apwp + b1v1 + b2v2 + · · · + bqvq = 0 . (6)

Applying U to both sides of (6), we obtain

a1u1 + a2u2 + · · · + apup = 0 .

Since {u1, u2, . . . , up} is linearly independent, the ai’s are all zero. Thus (6)
reduces to

b1v1 + b2v2 + · · · + bqvq = 0 .

Again, the linear independence of {v1, v2, . . . , vq} implies that the bi’s are
all zero. We conclude that β is a basis for N(TU). Hence N(TU) is finite-
dimensional, and dim(N(TU)) = p + q = dim(N(T)) + dim(N(U)).

Proof of Theorem 2.32. The proof is by mathematical induction on the
order of the differential operator p(D). The first-order case coincides with
Theorem 2.30. For some integer n > 1, suppose that Theorem 2.32 holds
for any differential operator of order less than n, and consider a differential
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operator p(D) of order n. The polynomial p(t) can be factored into a product
of two polynomials as follows:

p(t) = q(t)(t − c),

where q(t) is a polynomial of degree n − 1 and c is a complex number. Thus
the given differential operator may be rewritten as

p(D) = q(D)(D − cI).

Now, by Lemma 1, D − cI is onto, and by the corollary to Theorem 2.30,
dim(N(D− cI)) = 1. Also, by the induction hypothesis, dim(N(q(D)) = n−1.
Thus, by Lemma 2, we conclude that

dim(N(p(D))) = dim(N(q(D))) + dim(N(D − cI))

= (n − 1) + 1 = n.

Corollary. The solution space of any nth-order homogeneous linear dif-
ferential equation with constant coefficients is an n-dimensional subspace of
C∞.

The corollary to Theorem 2.32 reduces the problem of finding all solutions
to an nth-order homogeneous linear differential equation with constant coeffi-
cients to finding a set of n linearly independent solutions to the equation. By
the results of Chapter 1, any such set must be a basis for the solution space.
The next theorem enables us to find a basis quickly for many such equations.
Hints for its proof are provided in the exercises.

Theorem 2.33. Given n distinct complex numbers c1, c2, . . . , cn, the set
of exponential functions {ec1t, ec2t, . . . , ecnt} is linearly independent.

Proof. Exercise. (See Exercise 10.)

Corollary. For any nth-order homogeneous linear differential equation
with constant coefficients, if the auxiliary polynomial has n distinct zeros
c1, c2, . . . , cn, then {ec1t, ec2t, . . . , ecnt} is a basis for the solution space of the
differential equation.

Proof. Exercise. (See Exercise 10.)

Example 5

We find all solutions to the differential equation

y′′ + 5y′ + 4y = 0 .
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Since the auxiliary polynomial factors as (t + 4)(t + 1), it has two distinct
zeros, −1 and −4. Thus {e−t, e−4t} is a basis for the solution space. So any
solution to the given equation is of the form

y(t) = b1e
−t + b2e

−4t

for unique scalars b1 and b2. ♦
Example 6

We find all solutions to the differential equation

y′′ + 9y = 0 .

The auxiliary polynomial t2 + 9 factors as (t − 3i)(t + 3i) and hence has
distinct zeros c1 = 3i and c2 = −3i. Thus {e3it, e−3it} is a basis for the
solution space. Since

cos 3t =
1
2
(e3it + e−3it) and sin 3t =

1
2i

(e3it − e−3it),

it follows from Exercise 7 that {cos 3t, sin 3t} is also a basis for this solution
space. This basis has an advantage over the original one because it consists of
the familiar sine and cosine functions and makes no reference to the imaginary
number i. Using this latter basis, we see that any solution to the given
equation is of the form

y(t) = b1 cos 3t + b2 sin 3t

for unique scalars b1and b2. ♦
Next consider the differential equation

y′′ + 2y′ + y = 0 ,

for which the auxiliary polynomial is (t + 1)2. By Theorem 2.31, e−t is a
solution to this equation. By the corollary to Theorem 2.32, its solution
space is two-dimensional. In order to obtain a basis for the solution space,
we need a solution that is linearly independent of e−t. The reader can verify
that te−t is a such a solution. The following lemma extends this result.

Lemma. For a given complex number c and positive integer n, suppose
that (t − c)n is the auxiliary polynomial of a homogeneous linear differential
equation with constant coefficients. Then the set

β = {ect, tect, . . . , tn−1ect}
is a basis for the solution space of the equation.
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Proof. Since the solution space is n-dimensional, we need only show that
β is linearly independent and lies in the solution space. First, observe that
for any positive integer k,

(D − cI)(tkect) = ktk−1ect + ctkect − ctkect

= ktk−1ect.

Hence for k < n,

(D − cI)n(tkect) = 0 .

It follows that β is a subset of the solution space.
We next show that β is linearly independent. Consider any linear combi-

nation of vectors in β such that

b0e
ct + b1te

ct + · · · + bn−1t
n−1ect = 0 (7)

for some scalars b0, b1, . . . , bn−1. Dividing by ect in (7), we obtain

b0 + b1t + · · · + bn−1t
n−1 = 0 . (8)

Thus the left side of (8) must be the zero polynomial function. We conclude
that the coefficients b0, b1, . . . , bn−1 are all zero. So β is linearly independent
and hence is a basis for the solution space.

Example 7

We find all solutions to the differential equation

y(4) − 4y(3) + 6y(2) − 4y(1) + y = 0 .

Since the auxiliary polynomial is

t4 − 4t3 + 6t2 − 4t + 1 = (t − 1)4,

we can immediately conclude by the preceding lemma that {et, tet, t2et, t3et}
is a basis for the solution space. So any solution y to the given differential
equation is of the form

y(t) = b1e
t + b2te

t + b3t
2et + b4t

3et

for unique scalars b1, b2, b3, and b4. ♦
The most general situation is stated in the following theorem.

Theorem 2.34. Given a homogeneous linear differential equation with
constant coefficients and auxiliary polynomial

(t − c1)n1(t − c2)n2 · · · (t − ck)nk ,

where n1, n2, . . . , nk are positive integers and c1, c2, . . . , ck are distinct com-
plex numbers, the following set is a basis for the solution space of the equation:

{ec1t, tec1t, . . . , tn1−1ec1t, . . . , eckt, teckt, . . . , tnk−1eckt}.
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Proof. Exercise.

Example 8

The differential equation

y(3) − 4y(2) + 5y(1) − 2y = 0

has the auxiliary polynomial

t3 − 4t2 + 5t − 2 = (t − 1)2(t − 2).

By Theorem 2.34, {et, tet, e2t} is a basis for the solution space of the differ-
ential equation. Thus any solution y has the form

y(t) = b1e
t + b2te

t + b3e
2t

for unique scalars b1, b2, and b3. ♦

EXERCISES

1. Label the following statements as true or false.

(a) The set of solutions to an nth-order homogeneous linear differential
equation with constant coefficients is an n-dimensional subspace of
C∞.

(b) The solution space of a homogeneous linear differential equation
with constant coefficients is the null space of a differential operator.

(c) The auxiliary polynomial of a homogeneous linear differential
equation with constant coefficients is a solution to the differential
equation.

(d) Any solution to a homogeneous linear differential equation with
constant coefficients is of the form aect or atkect, where a and c
are complex numbers and k is a positive integer.

(e) Any linear combination of solutions to a given homogeneous linear
differential equation with constant coefficients is also a solution to
the given equation.

(f) For any homogeneous linear differential equation with constant
coefficients having auxiliary polynomial p(t), if c1, c2, . . . , ck are
the distinct zeros of p(t), then {ec1t, ec2t, . . . , eckt} is a basis for
the solution space of the given differential equation.

(g) Given any polynomial p(t) ∈ P(C), there exists a homogeneous lin-
ear differential equation with constant coefficients whose auxiliary
polynomial is p(t).
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2. For each of the following parts, determine whether the statement is true
or false. Justify your claim with either a proof or a counterexample,
whichever is appropriate.

(a) Any finite-dimensional subspace of C∞ is the solution space of a
homogeneous linear differential equation with constant coefficients.

(b) There exists a homogeneous linear differential equation with con-
stant coefficients whose solution space has the basis {t, t2}.

(c) For any homogeneous linear differential equation with constant
coefficients, if x is a solution to the equation, so is its derivative
x′.

Given two polynomials p(t) and q(t) in P(C), if x ∈ N(p(D)) and y ∈
N(q(D)), then

(d) x + y ∈ N(p(D)q(D)).
(e) xy ∈ N(p(D)q(D)).

3. Find a basis for the solution space of each of the following differential
equations.

(a) y′′ + 2y′ + y = 0
(b) y′′′ = y′

(c) y(4) − 2y(2) + y = 0
(d) y′′ + 2y′ + y = 0
(e) y(3) − y(2) + 3y(1) + 5y = 0

4. Find a basis for each of the following subspaces of C∞.

(a) N(D2 − D − I)
(b) N(D3 − 3D2 + 3D − I)
(c) N(D3 + 6D2 + 8D)

5. Show that C∞ is a subspace of F(R, C).

6. (a) Show that D : C∞ → C∞ is a linear operator.
(b) Show that any differential operator is a linear operator on C∞.

7. Prove that if {x, y} is a basis for a vector space over C, then so is{
1
2
(x + y),

1
2i

(x − y)
}

.

8. Consider a second-order homogeneous linear differential equation with
constant coefficients in which the auxiliary polynomial has distinct con-
jugate complex roots a + ib and a − ib, where a, b ∈ R. Show that
{eat cos bt, eat sin bt} is a basis for the solution space.
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9. Suppose that {U1, U2, . . . ,Un} is a collection of pairwise commutative
linear operators on a vector space V (i.e., operators such that UiUj =
UjUi for all i, j). Prove that, for any i (1 ≤ i ≤ n),

N(Ui) ⊆ N(U1U2 · · ·Un).

10. Prove Theorem 2.33 and its corollary. Hint: Suppose that

b1e
c1t + b2e

c2t + · · · + bnecnt = 0 (where the ci’s are distinct).

To show the bi’s are zero, apply mathematical induction on n as follows.
Verify the theorem for n = 1. Assuming that the theorem is true for
n − 1 functions, apply the operator D − cnI to both sides of the given
equation to establish the theorem for n distinct exponential functions.

11. Prove Theorem 2.34. Hint: First verify that the alleged basis lies in
the solution space. Then verify that this set is linearly independent by
mathematical induction on k as follows. The case k = 1 is the lemma
to Theorem 2.34. Assuming that the theorem holds for k − 1 distinct
ci’s, apply the operator (D − ckI)nk to any linear combination of the
alleged basis that equals 0 .

12. Let V be the solution space of an nth-order homogeneous linear differ-
ential equation with constant coefficients having auxiliary polynomial
p(t). Prove that if p(t) = g(t)h(t), where g(t) and h(t) are polynomials
of positive degree, then

N(h(D)) = R(g(DV)) = g(D)(V),

where DV : V → V is defined by DV(x) = x′ for x ∈ V. Hint: First prove
g(D)(V) ⊆ N(h(D)). Then prove that the two spaces have the same
finite dimension.

13. A differential equation

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = x

is called a nonhomogeneous linear differential equation with constant
coefficients if the ai’s are constant and x is a function that is not iden-
tically zero.

(a) Prove that for any x ∈ C∞ there exists y ∈ C∞ such that y is
a solution to the differential equation. Hint: Use Lemma 1 to
Theorem 2.32 to show that for any polynomial p(t), the linear
operator p(D) : C∞ → C∞ is onto.
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(b) Let V be the solution space for the homogeneous linear equation

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0 .

Prove that if z is any solution to the associated nonhomogeneous
linear differential equation, then the set of all solutions to the
nonhomogeneous linear differential equation is

{z + y : y ∈ V}.

14. Given any nth-order homogeneous linear differential equation with con-
stant coefficients, prove that, for any solution x and any t0 ∈ R, if
x(t0) = x′(t0) = · · · = x(n−1)(t0) = 0, then x = 0 (the zero function).
Hint: Use mathematical induction on n as follows. First prove the con-
clusion for the case n = 1. Next suppose that it is true for equations of
order n − 1, and consider an nth-order differential equation with aux-
iliary polynomial p(t). Factor p(t) = q(t)(t − c), and let z = q((D))x.
Show that z(t0) = 0 and z′−cz = 0 to conclude that z = 0 . Now apply
the induction hypothesis.

15. Let V be the solution space of an nth-order homogeneous linear dif-
ferential equation with constant coefficients. Fix t0 ∈ R, and define a
mapping Φ: V → Cn by

Φ(x) =

⎛⎜⎜⎜⎝
x(t0)
x′(t0)

...
x(n−1)(t0)

⎞⎟⎟⎟⎠ for each x in V.

(a) Prove that Φ is linear and its null space is the zero subspace of V.
Deduce that Φ is an isomorphism. Hint: Use Exercise 14.

(b) Prove the following: For any nth-order homogeneous linear dif-
ferential equation with constant coefficients, any t0 ∈ R, and any
complex numbers c0, c1, . . . , cn−1 (not necessarily distinct), there
exists exactly one solution, x, to the given differential equation
such that x(t0) = c0 and x(k)(t0) = ck for k = 1, 2, . . . n − 1.

16. Pendular Motion. It is well known that the motion of a pendulum is
approximated by the differential equation

θ′′ +
g

l
θ = 0 ,

where θ(t) is the angle in radians that the pendulum makes with a
vertical line at time t (see Figure 2.8), interpreted so that θ is positive
if the pendulum is to the right and negative if the pendulum is to the
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left of the vertical line as viewed by the reader. Here l is the length
of the pendulum and g is the magnitude of acceleration due to gravity.
The variable t and constants l and g must be in compatible units (e.g.,
t in seconds, l in meters, and g in meters per second per second).

(a) Express an arbitrary solution to this equation as a linear combi-
nation of two real-valued solutions.

(b) Find the unique solution to the equation that satisfies the condi-
tions

θ(0) = θ0 > 0 and θ′(0) = 0.

(The significance of these conditions is that at time t = 0 the
pendulum is released from a position displaced from the vertical
by θ0.)

(c) Prove that it takes 2π
√

l/g units of time for the pendulum to make
one circuit back and forth. (This time is called the period of the
pendulum.)

17. Periodic Motion of a Spring without Damping. Find the general solu-
tion to (3), which describes the periodic motion of a spring, ignoring
frictional forces.

18. Periodic Motion of a Spring with Damping. The ideal periodic motion
described by solutions to (3) is due to the ignoring of frictional forces.
In reality, however, there is a frictional force acting on the motion that
is proportional to the speed of motion, but that acts in the opposite
direction. The modification of (3) to account for the frictional force,
called the damping force, is given by

my′′ + ry′ + ky = 0 ,

where r > 0 is the proportionality constant.

(a) Find the general solution to this equation.
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(b) Find the unique solution in (a) that satisfies the initial conditions
y(0) = 0 and y′(0) = v0, the initial velocity.

(c) For y(t) as in (b), show that the amplitude of the oscillation de-
creases to zero; that is, prove that lim

t→∞ y(t) = 0.

19. In our study of differential equations, we have regarded solutions as
complex-valued functions even though functions that are useful in de-
scribing physical motion are real-valued. Justify this approach.

20. The following parts, which do not involve linear algebra, are included
for the sake of completeness.

(a) Prove Theorem 2.27. Hint: Use mathematical induction on the
number of derivatives possessed by a solution.

(b) For any c, d ∈ C, prove that

ec+d = cced and e−c =
1
ec

.

(c) Prove Theorem 2.28.
(d) Prove Theorem 2.29.
(e) Prove the product rule for differentiating complex-valued func-

tions of a real variable: For any differentiable functions x and
y in F(R, C), the product xy is differentiable and

(xy)′ = x′y + xy′.

Hint: Apply the rules of differentiation to the real and imaginary
parts of xy.

(f) Prove that if x ∈ F(R, C) and x′ = 0 , then x is a constant func-
tion.
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Elementary Matrix
Operations and Systems
of Linear Equations

3.1 Elementary Matrix Operations and Elementary Matrices
3.2 The Rank of a Matrix and Matrix Inverses
3.3 Systems of Linear Equations—Theoretical Aspects
3.4 Systems of Linear Equations—Computational Aspects

This chapter is devoted to two related objectives:

1. the study of certain “rank-preserving” operations on matrices;
2. the application of these operations and the theory of linear transforma-

tions to the solution of systems of linear equations.

As a consequence of objective 1, we obtain a simple method for com-
puting the rank of a linear transformation between finite-dimensional vector
spaces by applying these rank-preserving matrix operations to a matrix that
represents that transformation.

Solving a system of linear equations is probably the most important ap-
plication of linear algebra. The familiar method of elimination for solving
systems of linear equations, which was discussed in Section 1.4, involves the
elimination of variables so that a simpler system can be obtained. The tech-
nique by which the variables are eliminated utilizes three types of operations:

1. interchanging any two equations in the system;
2. multiplying any equation in the system by a nonzero constant;
3. adding a multiple of one equation to another.

In Section 3.3, we express a system of linear equations as a single matrix
equation. In this representation of the system, the three operations above
are the “elementary row operations” for matrices. These operations provide
a convenient computational method for determining all solutions to a system
of linear equations.

147
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3.1 ELEMENTARY MATRIX OPERATIONS AND ELEMENTARY
MATRICES

In this section, we define the elementary operations that are used throughout
the chapter. In subsequent sections, we use these operations to obtain simple
computational methods for determining the rank of a linear transformation
and the solution of a system of linear equations. There are two types of el-
ementary matrix operations—row operations and column operations. As we
will see, the row operations are more useful. They arise from the three opera-
tions that can be used to eliminate variables in a system of linear equations.

Definitions. Let A be an m × n matrix. Any one of the following
three operations on the rows [columns] of A is called an elementary row
[column] operation:

(1) interchanging any two rows [columns] of A;
(2) multiplying any row [column] of A by a nonzero scalar;
(3) adding any scalar multiple of a row [column] of A to another row [col-

umn].

Any of these three operations is called an elementary operation. Elemen-
tary operations are of type 1, type 2, or type 3 depending on whether they
are obtained by (1), (2), or (3).

Example 1

Let

A =

⎛⎝1 2 3 4
2 1 −1 3
4 0 1 2

⎞⎠ .

Interchanging the second row of A with the first row is an example of an
elementary row operation of type 1. The resulting matrix is

B =

⎛⎝2 1 −1 3
1 2 3 4
4 0 1 2

⎞⎠ .

Multiplying the second column of A by 3 is an example of an elementary
column operation of type 2. The resulting matrix is

C =

⎛⎝1 6 3 4
2 3 −1 3
4 0 1 2

⎞⎠ .
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Adding 4 times the third row of A to the first row is an example of an
elementary row operation of type 3. In this case, the resulting matrix is

M =

⎛⎝17 2 7 12
2 1 −1 3
4 0 1 2

⎞⎠ . ♦

Notice that if a matrix Q can be obtained from a matrix P by means of an
elementary row operation, then P can be obtained from Q by an elementary
row operation of the same type. (See Exercise 8.) So, in Example 1, A can
be obtained from M by adding −4 times the third row of M to the first row
of M .

Definition. An n × n elementary matrix is a matrix obtained by
performing an elementary operation on In. The elementary matrix is said
to be of type 1, 2, or 3 according to whether the elementary operation
performed on In is a type 1, 2, or 3 operation, respectively.

For example, interchanging the first two rows of I3 produces the elemen-
tary matrix

E =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ .

Note that E can also be obtained by interchanging the first two columns of
I3. In fact, any elementary matrix can be obtained in at least two ways—
either by performing an elementary row operation on In or by performing an
elementary column operation on In. (See Exercise 4.) Similarly,⎛⎝1 0 −2

0 1 0
0 0 1

⎞⎠
is an elementary matrix since it can be obtained from I3 by an elementary
column operation of type 3 (adding −2 times the first column of I3 to the
third column) or by an elementary row operation of type 3 (adding −2 times
the third row to the first row).

Our first theorem shows that performing an elementary row operation on
a matrix is equivalent to multiplying the matrix by an elementary matrix.

Theorem 3.1. Let A ∈ Mm×n(F ), and suppose that B is obtained from
A by performing an elementary row [column] operation. Then there exists an
m × m [n × n] elementary matrix E such that B = EA [B = AE]. In fact,
E is obtained from Im [In] by performing the same elementary row [column]
operation as that which was performed on A to obtain B. Conversely, if E is
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an elementary m × m [n × n] matrix, then EA [AE] is the matrix obtained
from A by performing the same elementary row [column] operation as that
which produces E from Im [In].

The proof, which we omit, requires verifying Theorem 3.1 for each type
of elementary row operation. The proof for column operations can then be
obtained by using the matrix transpose to transform a column operation into
a row operation. The details are left as an exercise. (See Exercise 7.)

The next example illustrates the use of the theorem.

Example 2

Consider the matrices A and B in Example 1. In this case, B is obtained from
A by interchanging the first two rows of A. Performing this same operation
on I3, we obtain the elementary matrix

E =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ .

Note that EA = B.

In the second part of Example 1, C is obtained from A by multiplying the
second column of A by 3. Performing this same operation on I4, we obtain
the elementary matrix

E =

⎛⎜⎜⎝
1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

Observe that AE = C. ♦
It is a useful fact that the inverse of an elementary matrix is also an

elementary matrix.

Theorem 3.2. Elementary matrices are invertible, and the inverse of an
elementary matrix is an elementary matrix of the same type.

Proof. Let E be an elementary n× n matrix. Then E can be obtained by
an elementary row operation on In. By reversing the steps used to transform
In into E, we can transform E back into In. The result is that In can
be obtained from E by an elementary row operation of the same type. By
Theorem 3.1, there is an elementary matrix E such that EE = In. Therefore,
by Exercise 10 of Section 2.4, E is invertible and E−1 = E.
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EXERCISES

1. Label the following statements as true or false.

(a) An elementary matrix is always square.
(b) The only entries of an elementary matrix are zeros and ones.
(c) The n × n identity matrix is an elementary matrix.
(d) The product of two n × n elementary matrices is an elementary

matrix.
(e) The inverse of an elementary matrix is an elementary matrix.
(f) The sum of two n×n elementary matrices is an elementary matrix.
(g) The transpose of an elementary matrix is an elementary matrix.
(h) If B is a matrix that can be obtained by performing an elementary

row operation on a matrix A, then B can also be obtained by
performing an elementary column operation on A.

(i) If B is a matrix that can be obtained by performing an elemen-
tary row operation on a matrix A, then A can be obtained by
performing an elementary row operation on B.

2. Let

A =

⎛⎝1 2 3
1 0 1
1 −1 1

⎞⎠ , B =

⎛⎝1 0 3
1 −2 1
1 −3 1

⎞⎠ , and C =

⎛⎝1 0 3
0 −2 −2
1 −3 1

⎞⎠ .

Find an elementary operation that transforms A into B and an elemen-
tary operation that transforms B into C. By means of several additional
operations, transform C into I3.

3. Use the proof of Theorem 3.2 to obtain the inverse of each of the fol-
lowing elementary matrices.

(a)

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ (b)

⎛⎝1 0 0
0 3 0
0 0 1

⎞⎠ (c)

⎛⎝ 1 0 0
0 1 0

−2 0 1

⎞⎠
4. Prove the assertion made on page 149: Any elementary n×n matrix can

be obtained in at least two ways—either by performing an elementary
row operation on In or by performing an elementary column operation
on In.

5. Prove that E is an elementary matrix if and only if Et is.

6. Let A be an m× n matrix. Prove that if B can be obtained from A by
an elementary row [column] operation, then Bt can be obtained from
At by the corresponding elementary column [row] operation.

7. Prove Theorem 3.1.
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8. Prove that if a matrix Q can be obtained from a matrix P by an elemen-
tary row operation, then P can be obtained from Q by an elementary
matrix of the same type. Hint: Treat each type of elementary row
operation separately.

9. Prove that any elementary row [column] operation of type 1 can be
obtained by a succession of three elementary row [column] operations
of type 3 followed by one elementary row [column] operation of type 2.

10. Prove that any elementary row [column] operation of type 2 can be
obtained by dividing some row [column] by a nonzero scalar.

11. Prove that any elementary row [column] operation of type 3 can be
obtained by subtracting a multiple of some row [column] from another
row [column].

12. Let A be an m × n matrix. Prove that there exists a sequence of
elementary row operations of types 1 and 3 that transforms A into an
upper triangular matrix.

3.2 THE RANK OF A MATRIX AND MATRIX INVERSES

In this section, we define the rank of a matrix. We then use elementary
operations to compute the rank of a matrix and a linear transformation. The
section concludes with a procedure for computing the inverse of an invertible
matrix.

Definition. If A ∈ Mm×n(F ), we define the rank of A, denoted rank(A),
to be the rank of the linear transformation LA : Fn → Fm.

Many results about the rank of a matrix follow immediately from the
corresponding facts about a linear transformation. An important result of
this type, which follows from Fact 3 (p. 100) and Corollary 2 to Theorem 2.18
(p. 102), is that an n × n matrix is invertible if and only if its rank is n.

Every matrix A is the matrix representation of the linear transformation
LA with respect to the appropriate standard ordered bases. Thus the rank
of the linear transformation LA is the same as the rank of one of its matrix
representations, namely, A. The next theorem extends this fact to any ma-
trix representation of any linear transformation defined on finite-dimensional
vector spaces.

Theorem 3.3. Let T : V → W be a linear transformation between finite-
dimensional vector spaces, and let β and γ be ordered bases for V and W,
respectively. Then rank(T) = rank([T]γβ).

Proof. This is a restatement of Exercise 20 of Section 2.4.
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Now that the problem of finding the rank of a linear transformation has
been reduced to the problem of finding the rank of a matrix, we need a result
that allows us to perform rank-preserving operations on matrices. The next
theorem and its corollary tell us how to do this.

Theorem 3.4. Let A be an m × n matrix. If P and Q are invertible
m × m and n × n matrices, respectively, then

(a) rank(AQ) = rank(A),
(b) rank(PA) = rank(A),

and therefore,
(c) rank(PAQ) = rank(A).

Proof. First observe that

R(LAQ) = R(LALQ) = LALQ(Fn) = LA(LQ(Fn)) = LA(Fn) = R(LA)

since LQ is onto. Therefore

rank(AQ) = dim(R(LAQ)) = dim(R(LA)) = rank(A).

This establishes (a). To establish (b), apply Exercise 17 of Section 2.4 to
T = LP . We omit the details. Finally, applying (a) and (b), we have

rank(PAQ) = rank(PA) = rank(A).

Corollary. Elementary row and column operations on a matrix are rank-
preserving.

Proof. If B is obtained from a matrix A by an elementary row operation,
then there exists an elementary matrix E such that B = EA. By Theorem 3.2
(p. 150), E is invertible, and hence rank(B) = rank(A) by Theorem 3.4. The
proof that elementary column operations are rank-preserving is left as an
exercise.

Now that we have a class of matrix operations that preserve rank, we
need a way of examining a transformed matrix to ascertain its rank. The
next theorem is the first of several in this direction.

Theorem 3.5. The rank of any matrix equals the maximum number of its
linearly independent columns; that is, the rank of a matrix is the dimension
of the subspace generated by its columns.

Proof. For any A ∈ Mm×n(F ),

rank(A) = rank(LA) = dim(R(LA)).
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Let β be the standard ordered basis for Fn. Then β spans Fn and hence, by
Theorem 2.2 (p. 68),

R(LA) = span(LA(β)) = span ({LA(e1), LA(e2), . . . , LA(en)}) .

But, for any j, we have seen in Theorem 2.13(b) (p. 90) that LA(ej) = Aej =
aj , where aj the jth column of A. Hence

R(LA) = span ({a1, a2, . . . , an}) .

Thus

rank(A) = dim(R(LA)) = dim(span ({a1, a2, . . . , an})).
Example 1

Let

A =

⎛⎝1 0 1
0 1 1
1 0 1

⎞⎠ .

Observe that the first and second columns of A are linearly independent and
that the third column is a linear combination of the first two. Thus

rank(A) = dim

⎛⎝span

⎛⎝⎧⎨⎩
⎛⎝1

0
1

⎞⎠ ,

⎛⎝0
1
0

⎞⎠ ,

⎛⎝1
1
1

⎞⎠⎫⎬⎭
⎞⎠⎞⎠ = 2. ♦

To compute the rank of a matrix A, it is frequently useful to postpone the
use of Theorem 3.5 until A has been suitably modified by means of appro-
priate elementary row and column operations so that the number of linearly
independent columns is obvious. The corollary to Theorem 3.4 guarantees
that the rank of the modified matrix is the same as the rank of A. One
such modification of A can be obtained by using elementary row and col-
umn operations to introduce zero entries. The next example illustrates this
procedure.

Example 2

Let

A =

⎛⎝1 2 1
1 0 3
1 1 2

⎞⎠ .

If we subtract the first row of A from rows 2 and 3 (type 3 elementary row
operations), the result is ⎛⎝1 2 1

0 −2 2
0 −1 1

⎞⎠ .
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If we now subtract twice the first column from the second and subtract the
first column from the third (type 3 elementary column operations), we obtain⎛⎝1 0 0

0 −2 2
0 −1 1

⎞⎠ .

It is now obvious that the maximum number of linearly independent columns
of this matrix is 2. Hence the rank of A is 2. ♦

The next theorem uses this process to transform a matrix into a particu-
larly simple form. The power of this theorem can be seen in its corollaries.

Theorem 3.6. Let A be an m× n matrix of rank r. Then r ≤ m, r ≤ n,
and, by means of a finite number of elementary row and column operations,
A can be transformed into the matrix

D =
(

Ir O1

O2 O3

)
,

where O1, O2, and O3 are zero matrices. Thus Dii = 1 for i ≤ r and Dij = 0
otherwise.

Theorem 3.6 and its corollaries are quite important. Its proof, though
easy to understand, is tedious to read. As an aid in following the proof, we
first consider an example.

Example 3

Consider the matrix

A =

⎛⎜⎜⎝
0 2 4 2 2
4 4 4 8 0
8 2 0 10 2
6 3 2 9 1

⎞⎟⎟⎠ .

By means of a succession of elementary row and column operations, we can
transform A into a matrix D as in Theorem 3.6. We list many of the inter-
mediate matrices, but on several occasions a matrix is transformed from the
preceding one by means of several elementary operations. The number above
each arrow indicates how many elementary operations are involved. Try to
identify the nature of each elementary operation (row or column and type)
in the following matrix transformations.⎛⎜⎜⎝

0 2 4 2 2
4 4 4 8 0
8 2 0 10 2
6 3 2 9 1

⎞⎟⎟⎠ 1−→

⎛⎜⎜⎝
4 4 4 8 0
0 2 4 2 2
8 2 0 10 2
6 3 2 9 1

⎞⎟⎟⎠ 1−→

⎛⎜⎜⎝
1 1 1 2 0
0 2 4 2 2
8 2 0 10 2
6 3 2 9 1

⎞⎟⎟⎠ 2−→
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1 1 1 2 0
0 2 4 2 2
0 −6 −8 −6 2
0 −3 −4 −3 1

⎞⎟⎟⎠ 3−→

⎛⎜⎜⎝
1 0 0 0 0
0 2 4 2 2
0 −6 −8 −6 2
0 −3 −4 −3 1

⎞⎟⎟⎠ 1−→

⎛⎜⎜⎝
1 0 0 0 0
0 1 2 1 1
0 −6 −8 −6 2
0 −3 −4 −3 1

⎞⎟⎟⎠ 2−→

⎛⎜⎜⎝
1 0 0 0 0
0 1 2 1 1
0 0 4 0 8
0 0 2 0 4

⎞⎟⎟⎠ 3−→

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 4 0 8
0 0 2 0 4

⎞⎟⎟⎠ 1−→

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 2
0 0 2 0 4

⎞⎟⎟⎠ 1−→

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 2
0 0 0 0 0

⎞⎟⎟⎠ 1−→

⎛⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎞⎟⎟⎠ = D

By the corollary to Theorem 3.4, rank(A) = rank(D). Clearly, however,
rank(D) = 3; so rank(A) = 3. ♦

Note that the first two elementary operations in Example 3 result in a
1 in the 1,1 position, and the next several operations (type 3) result in 0’s
everywhere in the first row and first column except for the 1,1 position. Sub-
sequent elementary operations do not change the first row and first column.
With this example in mind, we proceed with the proof of Theorem 3.6.

Proof of Theorem 3.6. If A is the zero matrix, r = 0 by Exercise 3. In
this case, the conclusion follows with D = A.

Now suppose that A �= O and r = rank(A); then r > 0. The proof is by
mathematical induction on m, the number of rows of A.

Suppose that m = 1. By means of at most one type 1 column operation
and at most one type 2 column operation, A can be transformed into a matrix
with a 1 in the 1,1 position. By means of at most n − 1 type 3 column
operations, this matrix can in turn be transformed into the matrix(

1 0 · · · 0
)
.

Note that there is one linearly independent column in D. So rank(D) =
rank(A) = 1 by the corollary to Theorem 3.4 and by Theorem 3.5. Thus the
theorem is established for m = 1.

Next assume that the theorem holds for any matrix with at most m − 1
rows (for some m > 1). We must prove that the theorem holds for any matrix
with m rows.

Suppose that A is any m × n matrix. If n = 1, Theorem 3.6 can be
established in a manner analogous to that for m = 1 (see Exercise 10).

We now suppose that n > 1. Since A �= O, Aij �= 0 for some i, j. By
means of at most one elementary row and at most one elementary column
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operation (each of type 1), we can move the nonzero entry to the 1,1 position
(just as was done in Example 3). By means of at most one additional type 2
operation, we can assure a 1 in the 1,1 position. (Look at the second operation
in Example 3.) By means of at most m−1 type 3 row operations and at most
n − 1 type 3 column operations, we can eliminate all nonzero entries in the
first row and the first column with the exception of the 1 in the 1,1 position.
(In Example 3, we used two row and three column operations to do this.)

Thus, with a finite number of elementary operations, A can be transformed
into a matrix

B =

⎛⎜⎜⎜⎝
1 0 · · · 0
0
...
0

B′

⎞⎟⎟⎟⎠ ,

where B′ is an (m − 1) × (n − 1) matrix. In Example 3, for instance,

B′ =

⎛⎝ 2 4 2 2
−6 −8 −6 2
−3 −4 −3 1

⎞⎠ .

By Exercise 11, B′ has rank one less than B. Since rank(A) = rank(B) =
r, rank(B′) = r − 1. Therefore r − 1 ≤ m − 1 and r − 1 ≤ n − 1 by the
induction hypothesis. Hence r ≤ m and r ≤ n.

Also by the induction hypothesis, B′ can be transformed by a finite num-
ber of elementary row and column operations into the (m−1)×(n−1) matrix
D′ such that

D′ =
(

Ir−1 O4

O5 O6

)
,

where O4, O5, and O6 are zero matrices. That is, D′ consists of all zeros
except for its first r − 1 diagonal entries, which are ones. Let

D =

⎛⎜⎜⎜⎝
1 0 · · · 0
0
...
0

D′

⎞⎟⎟⎟⎠ .

We see that the theorem now follows once we show that D can be obtained
from B by means of a finite number of elementary row and column operations.
However this follows by repeated applications of Exercise 12.

Thus, since A can be transformed into B and B can be transformed into
D, each by a finite number of elementary operations, A can be transformed
into D by a finite number of elementary operations.
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Finally, since D′ contains ones as its first r−1 diagonal entries, D contains
ones as its first r diagonal entries and zeros elsewhere. This establishes the
theorem.

Corollary 1. Let A be an m × n matrix of rank r. Then there exist
invertible matrices B and C of sizes m×m and n×n, respectively, such that
D = BAC, where

D =
(

Ir O1

O2 O3

)
is the m × n matrix in which O1, O2, and O3 are zero matrices.

Proof. By Theorem 3.6, A can be transformed by means of a finite number
of elementary row and column operations into the matrix D. We can appeal
to Theorem 3.1 (p. 149) each time we perform an elementary operation. Thus
there exist elementary m × m matrices E1, E2, . . . , Ep and elementary n × n
matrices G1, G2, . . . , Gq such that

D = EpEp−1 · · ·E2E1AG1G2 · · ·Gq.

By Theorem 3.2 (p. 150), each Ej and Gj is invertible. Let B = EpEp−1 · · ·E1

and C = G1G2 · · ·Gq. Then B and C are invertible by Exercise 4 of Sec-
tion 2.4, and D = BAC.

Corollary 2. Let A be an m × n matrix. Then
(a) rank(At) = rank(A).
(b) The rank of any matrix equals the maximum number of its linearly

independent rows; that is, the rank of a matrix is the dimension of the
subspace generated by its rows.

(c) The rows and columns of any matrix generate subspaces of the same
dimension, numerically equal to the rank of the matrix.

Proof. (a) By Corollary 1, there exist invertible matrices B and C such
that D = BAC, where D satisfies the stated conditions of the corollary.
Taking transposes, we have

Dt = (BAC)t = CtAtBt.

Since B and C are invertible, so are Bt and Ct by Exercise 5 of Section 2.4.
Hence by Theorem 3.4,

rank(At) = rank(CtAtBt) = rank(Dt).

Suppose that r = rank(A). Then Dt is an n×m matrix with the form of the
matrix D in Corollary 1, and hence rank(Dt) = r by Theorem 3.5. Thus

rank(At) = rank(Dt) = r = rank(A).

This establishes (a).
The proofs of (b) and (c) are left as exercises. (See Exercise 13.)
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Corollary 3. Every invertible matrix is a product of elementary matrices.

Proof. If A is an invertible n × n matrix, then rank(A) = n. Hence the
matrix D in Corollary 1 equals In, and there exist invertible matrices B and
C such that In = BAC.

As in the proof of Corollary 1, note that B = EpEp−1 · · ·E1 and C =
G1G2 · · ·Gq, where the Ei’s and Gi’s are elementary matrices. Thus A =
B−1InC−1 = B−1C−1, so that

A = E−1
1 E−1

2 · · ·E−1
p G−1

q G−1
q−1 · · ·G−1

1 .

The inverses of elementary matrices are elementary matrices, however, and
hence A is the product of elementary matrices.

We now use Corollary 2 to relate the rank of a matrix product to the rank
of each factor. Notice how the proof exploits the relationship between the
rank of a matrix and the rank of a linear transformation.

Theorem 3.7. Let T : V → W and U : W → Z be linear transformations
on finite-dimensional vector spaces V, W, and Z, and let A and B be matrices
such that the product AB is defined. Then

(a) rank(UT) ≤ rank(U).
(b) rank(UT) ≤ rank(T).
(c) rank(AB) ≤ rank(A).
(d) rank(AB) ≤ rank(B).

Proof. We prove these items in the order: (a), (c), (d), and (b).
(a) Clearly, R(T) ⊆ W. Hence

R(UT) = UT(V) = U(T(V)) = U(R(T)) ⊆ U(W) = R(U).

Thus

rank(UT) = dim(R(UT)) ≤ dim(R(U)) = rank(U).

(c) By (a),

rank(AB) = rank(LAB) = rank(LALB) ≤ rank(LA) = rank(A).

(d) By (c) and Corollary 2 to Theorem 3.6,

rank(AB) = rank((AB)t) = rank(BtAt) ≤ rank(Bt) = rank(B).

(b) Let α, β, and γ be ordered bases for V, W, and Z, respectively, and
let A′ = [U]γβ and B′ = [T]βα. Then A′B′ = [UT]γα by Theorem 2.11 (p. 88).
Hence, by Theorem 3.3 and (d),

rank(UT) = rank(A′B′) ≤ rank(B′) = rank(T).
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It is important to be able to compute the rank of any matrix. We can
use the corollary to Theorem 3.4, Theorems 3.5 and 3.6, and Corollary 2 to
Theorem 3.6 to accomplish this goal.

The object is to perform elementary row and column operations on a
matrix to “simplify” it (so that the transformed matrix has many zero entries)
to the point where a simple observation enables us to determine how many
linearly independent rows or columns the matrix has, and thus to determine
its rank.

Example 4

(a) Let

A =
(

1 2 1 1
1 1 −1 1

)
.

Note that the first and second rows of A are linearly independent since one
is not a multiple of the other. Thus rank(A) = 2.

(b) Let

A =

⎛⎝1 3 1 1
1 0 1 1
0 3 0 0

⎞⎠ .

In this case, there are several ways to proceed. Suppose that we begin with
an elementary row operation to obtain a zero in the 2,1 position. Subtracting
the first row from the second row, we obtain⎛⎝1 3 1 1

0 −3 0 0
0 3 0 0

⎞⎠ .

Now note that the third row is a multiple of the second row, and the first and
second rows are linearly independent. Thus rank(A) = 2.

As an alternative method, note that the first, third, and fourth columns
of A are identical and that the first and second columns of A are linearly
independent. Hence rank(A) = 2.

(c) Let

A =

⎛⎝1 2 3 1
2 1 1 1
1 −1 1 0

⎞⎠ .

Using elementary row operations, we can transform A as follows:

A −→
⎛⎝1 2 3 1

0 −3 −5 −1
0 −3 −2 −1

⎞⎠ −→
⎛⎝1 2 3 1

0 −3 −5 −1
0 0 3 0

⎞⎠ .
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It is clear that the last matrix has three linearly independent rows and hence
has rank 3. ♦

In summary, perform row and column operations until the matrix is sim-
plified enough so that the maximum number of linearly independent rows or
columns is obvious.

The Inverse of a Matrix

We have remarked that an n×n matrix is invertible if and only if its rank
is n. Since we know how to compute the rank of any matrix, we can always
test a matrix to determine whether it is invertible. We now provide a simple
technique for computing the inverse of a matrix that utilizes elementary row
operations.

Definition. Let A and B be m × n and m × p matrices, respectively.
By the augmented matrix (A|B), we mean the m× (n + p) matrix (A B),
that is, the matrix whose first n columns are the columns of A, and whose
last p columns are the columns of B.

Let A be an invertible n × n matrix, and consider the n × 2n augmented
matrix C = (A|In). By Exercise 15, we have

A−1C = (A−1A|A−1In) = (In|A−1). (1)

By Corollary 3 to Theorem 3.6, A−1 is the product of elementary matrices,
say A−1 = EpEp−1 · · ·E1. Thus (1) becomes

EpEp−1 · · ·E1(A|In) = A−1C = (In|A−1).

Because multiplying a matrix on the left by an elementary matrix transforms
the matrix by an elementary row operation (Theorem 3.1 p. 149), we have
the following result: If A is an invertible n × n matrix, then it is possible to
transform the matrix (A|In) into the matrix (In|A−1) by means of a finite
number of elementary row operations.

Conversely, suppose that A is invertible and that, for some n × n matrix
B, the matrix (A|In) can be transformed into the matrix (In|B) by a finite
number of elementary row operations. Let E1, E2, . . . , Ep be the elementary
matrices associated with these elementary row operations as in Theorem 3.1;
then

EpEp−1 · · ·E1(A|In) = (In|B). (2)

Letting M = EpEp−1 · · ·E1, we have from (2) that

(MA|M) = M(A|In) = (In|B).
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Hence MA = In and M = B. It follows that M = A−1. So B = A−1. Thus
we have the following result: If A is an invertible n×n matrix, and the matrix
(A|In) is transformed into a matrix of the form (In|B) by means of a finite
number of elementary row operations, then B = A−1.

If, on the other hand, A is an n × n matrix that is not invertible, then
rank(A) < n. Hence any attempt to transform (A|In) into a matrix of the
form (In|B) by means of elementary row operations must fail because oth-
erwise A can be transformed into In using the same row operations. This
is impossible, however, because elementary row operations preserve rank. In
fact, A can be transformed into a matrix with a row containing only zero
entries, yielding the following result: If A is an n × n matrix that is not
invertible, then any attempt to transform (A|In) into a matrix of the form
(In|B) produces a row whose first n entries are zeros.

The next two examples demonstrate these comments.

Example 5

We determine whether the matrix

A =

⎛⎝0 2 4
2 4 2
3 3 1

⎞⎠
is invertible, and if it is, we compute its inverse.

We attempt to use elementary row operations to transform

(A|I) =

⎛⎝0 2 4 1 0 0
2 4 2 0 1 0
3 3 1 0 0 1

⎞⎠
into a matrix of the form (I|B). One method for accomplishing this transfor-
mation is to change each column of A successively, beginning with the first
column, into the corresponding column of I. Since we need a nonzero entry
in the 1,1 position, we begin by interchanging rows 1 and 2. The result is⎛⎝2 4 2 0 1 0

0 2 4 1 0 0
3 3 1 0 0 1

⎞⎠ .

In order to place a 1 in the 1,1 position, we must multiply the first row by 1
2 ;

this operation yields ⎛⎜⎝1 2 1 0 1
2 0

0 2 4 1 0 0
3 3 1 0 0 1

⎞⎟⎠ .
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We now complete work in the first column by adding −3 times row 1 to row
3 to obtain ⎛⎜⎝1 2 1 0 1

2 0
0 2 4 1 0 0
0 −3 −2 0 − 3

2 1

⎞⎟⎠ .

In order to change the second column of the preceding matrix into the
second column of I, we multiply row 2 by 1

2 to obtain a 1 in the 2,2 position.
This operation produces⎛⎜⎝1 2 1 0 1

2 0

0 1 2 1
2 0 0

0 −3 −2 0 − 3
2 1

⎞⎟⎠ .

We now complete our work on the second column by adding −2 times row 2
to row 1 and 3 times row 2 to row 3. The result is⎛⎜⎜⎝

1 0 −3 −1 1
2 0

0 1 2 1
2 0 0

0 0 4 3
2 − 3

2 1

⎞⎟⎟⎠ .

Only the third column remains to be changed. In order to place a 1 in the
3,3 position, we multiply row 3 by 1

4 ; this operation yields⎛⎜⎜⎝
1 0 −3 −1 1

2 0

0 1 2 1
2 0 0

0 0 1 3
8 − 3

8
1
4

⎞⎟⎟⎠ .

Adding appropriate multiples of row 3 to rows 1 and 2 completes the process
and gives ⎛⎜⎜⎝

1 0 0 1
8 − 5

8
3
4

0 1 0 − 1
4

3
4 − 1

2

0 0 1 3
8 − 3

8
1
4

⎞⎟⎟⎠ .

Thus A is invertible, and

A−1 =

⎛⎜⎜⎝
1
8 − 5

8
3
4

− 1
4

3
4 − 1

2

3
8 − 3

8
1
4

⎞⎟⎟⎠ . ♦
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Example 6

We determine whether the matrix

A =

⎛⎝1 2 1
2 1 −1
1 5 4

⎞⎠
is invertible, and if it is, we compute its inverse. Using a strategy similar to
the one used in Example 5, we attempt to use elementary row operations to
transform

(A|I) =

⎛⎝1 2 1 1 0 0
2 1 −1 0 1 0
1 5 4 0 0 1

⎞⎠
into a matrix of the form (I|B). We first add −2 times row 1 to row 2 and
−1 times row 1 to row 3. We then add row 2 to row 3. The result,⎛⎝1 2 1 1 0 0

2 1 −1 0 1 0
1 5 4 0 0 1

⎞⎠ −→
⎛⎝1 2 1 1 0 0

0 −3 −3 −2 1 0
0 3 3 −1 0 1

⎞⎠

−→
⎛⎝1 2 1 1 0 0

0 −3 −3 −2 1 0
0 0 0 −3 1 1

⎞⎠ ,

is a matrix with a row whose first 3 entries are zeros. Therefore A is not
invertible. ♦

Being able to test for invertibility and compute the inverse of a matrix
allows us, with the help of Theorem 2.18 (p. 101) and its corollaries, to test
for invertibility and compute the inverse of a linear transformation. The next
example demonstrates this technique.

Example 7

Let T : P2(R) → P2(R) be defined by T(f(x)) = f(x) + f ′(x) + f ′′(x), where
f ′(x) and f ′′(x) denote the first and second derivatives of f(x). We use
Corollary 1 of Theorem 2.18 (p. 102) to test T for invertibility and compute
the inverse if T is invertible. Taking β to be the standard ordered basis of
P2(R), we have

[T]β =

⎛⎝1 1 2
0 1 2
0 0 1

⎞⎠ .
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Using the method of Examples 5 and 6, we can show that [T]β is invertible
with inverse

([T]β)−1 =

⎛⎝1 −1 0
0 1 −2
0 0 1

⎞⎠ .

Thus T is invertible, and ([T]β)−1 = [T−1]β . Hence by Theorem 2.14 (p. 91),
we have

[T−1(a0 + a1x + a2x
2)]β =

⎛⎝1 −1 0
0 1 −2
0 0 1

⎞⎠⎛⎝a0

a1

a2

⎞⎠
=

⎛⎝ a0 − a1

a1 − 2a2

a2

⎞⎠ .

Therefore

T−1(a0 + a1x + a2x
2) = (a0 − a1) + (a1 − 2a2)x + a2x

2. ♦

EXERCISES

1. Label the following statements as true or false.

(a) The rank of a matrix is equal to the number of its nonzero columns.
(b) The product of two matrices always has rank equal to the lesser of

the ranks of the two matrices.
(c) The m × n zero matrix is the only m × n matrix having rank 0.
(d) Elementary row operations preserve rank.
(e) Elementary column operations do not necessarily preserve rank.
(f) The rank of a matrix is equal to the maximum number of linearly

independent rows in the matrix.
(g) The inverse of a matrix can be computed exclusively by means of

elementary row operations.
(h) The rank of an n × n matrix is at most n.
(i) An n × n matrix having rank n is invertible.

2. Find the rank of the following matrices.

(a)

⎛⎝1 1 0
0 1 1
1 1 0

⎞⎠ (b)

⎛⎝1 1 0
2 1 1
1 1 1

⎞⎠ (c)
(

1 0 2
1 1 4

)
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(d)
(

1 2 1
2 4 2

)
(e)

⎛⎜⎜⎝
1 2 3 1 1
1 4 0 1 2
0 2 −3 0 1
1 0 0 0 0

⎞⎟⎟⎠

(f)

⎛⎜⎜⎝
1 2 0 1 1
2 4 1 3 0
3 6 2 5 1

−4 −8 1 −3 1

⎞⎟⎟⎠ (g)

⎛⎜⎜⎝
1 1 0 1
2 2 0 2
1 1 0 1
1 1 0 1

⎞⎟⎟⎠
3. Prove that for any m× n matrix A, rank(A) = 0 if and only if A is the

zero matrix.

4. Use elementary row and column operations to transform each of the
following matrices into a matrix D satisfying the conditions of Theo-
rem 3.6, and then determine the rank of each matrix.

(a)

⎛⎝1 1 1 2
2 0 −1 2
1 1 1 2

⎞⎠ (b)

⎛⎝ 2 1
−1 2

2 1

⎞⎠
5. For each of the following matrices, compute the rank and the inverse if

it exists.

(a)
(

1 2
1 1

)
(b)

(
1 2
2 4

)
(c)

⎛⎝1 2 1
1 3 4
2 3 −1

⎞⎠

(d)

⎛⎝0 −2 4
1 1 −1
2 4 −5

⎞⎠ (e)

⎛⎝ 1 2 1
−1 1 2

1 0 1

⎞⎠ (f)

⎛⎝1 2 1
1 0 1
1 1 1

⎞⎠

(g)

⎛⎜⎜⎝
1 2 1 0
2 5 5 1

−2 −3 0 3
3 4 −2 −3

⎞⎟⎟⎠ (h)

⎛⎜⎜⎝
1 0 1 1
1 1 −1 2
2 0 1 0
0 −1 1 −3

⎞⎟⎟⎠
6. For each of the following linear transformations T, determine whether

T is invertible, and compute T−1 if it exists.

(a) T : P2(R) → P2(R) defined by T(f(x)) = f ′′(x) + 2f ′(x) − f(x).
(b) T : P2(R) → P2(R) defined by T(f(x)) = (x + 1)f ′(x).
(c) T : R3 → R3 defined by

T(a1, a2, a3) = (a1 + 2a2 + a3,−a1 + a2 + 2a3, a1 + a3).
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(d) T : R3 → P2(R) defined by

T(a1, a2, a3) = (a1 + a2 + a3) + (a1 − a2 + a3)x + a1x
2.

(e) T : P2(R) → R3 defined by T(f(x)) = (f(−1), f(0), f(1)).
(f) T : M2×2(R) → R4 defined by

T(A) = (tr(A), tr(At), tr(EA), tr(AE)),

where

E =
(

0 1
1 0

)
.

7. Express the invertible matrix⎛⎝1 2 1
1 0 1
1 1 2

⎞⎠
as a product of elementary matrices.

8. Let A be an m × n matrix. Prove that if c is any nonzero scalar, then
rank(cA) = rank(A).

9. Complete the proof of the corollary to Theorem 3.4 by showing that
elementary column operations preserve rank.

10. Prove Theorem 3.6 for the case that A is an m × 1 matrix.

11. Let

B =

⎛⎜⎜⎜⎝
1 0 · · · 0
0
...
0

B′

⎞⎟⎟⎟⎠ ,

where B′ is an m × n submatrix of B. Prove that if rank(B) = r, then
rank(B′) = r − 1.

12. Let B′ and D′ be m×n matrices, and let B and D be (m+1)× (n+1)
matrices respectively defined by

B =

⎛⎜⎜⎜⎝
1 0 · · · 0
0
...
0

B′

⎞⎟⎟⎟⎠ and D =

⎛⎜⎜⎜⎝
1 0 · · · 0
0
...
0

D′

⎞⎟⎟⎟⎠ .

Prove that if B′ can be transformed into D′ by an elementary row
[column] operation, then B can be transformed into D by an elementary
row [column] operation.
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13. Prove (b) and (c) of Corollary 2 to Theorem 3.6.

14. Let T, U : V → W be linear transformations.
(a) Prove that R(T+U) ⊆ R(T)+R(U). (See the definition of the sum

of subsets of a vector space on page 22.)
(b) Prove that if W is finite-dimensional, then rank(T+U) ≤ rank(T)+

rank(U).
(c) Deduce from (b) that rank(A + B) ≤ rank(A) + rank(B) for any

m × n matrices A and B.

15. Suppose that A and B are matrices having n rows. Prove that
M(A|B) = (MA|MB) for any m × n matrix M .

16. Supply the details to the proof of (b) of Theorem 3.4.

17. Prove that if B is a 3× 1 matrix and C is a 1× 3 matrix, then the 3× 3
matrix BC has rank at most 1. Conversely, show that if A is any 3× 3
matrix having rank 1, then there exist a 3 × 1 matrix B and a 1 × 3
matrix C such that A = BC.

18. Let A be an m × n matrix and B be an n × p matrix. Prove that AB
can be written as a sum of n matrices of rank one.

19. Let A be an m× n matrix with rank m and B be an n× p matrix with
rank n. Determine the rank of AB. Justify your answer.

20. Let

A =

⎛⎜⎜⎝
1 0 −1 2 1

−1 1 3 −1 0
−2 1 4 −1 3

3 −1 −5 1 −6

⎞⎟⎟⎠ .

(a) Find a 5 × 5 matrix M with rank 2 such that AM = O, where O
is the 4 × 5 zero matrix.

(b) Suppose that B is a 5 × 5 matrix such that AB = O. Prove that
rank(B) ≤ 2.

21. Let A be an m × n matrix with rank m. Prove that there exists an
n × m matrix B such that AB = Im.

22. Let B be an n × m matrix with rank m. Prove that there exists an
m × n matrix A such that AB = Im.

3.3 SYSTEMS OF LINEAR EQUATIONS—THEORETICAL ASPECTS

This section and the next are devoted to the study of systems of linear equa-
tions, which arise naturally in both the physical and social sciences. In this
section, we apply results from Chapter 2 to describe the solution sets of
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systems of linear equations as subsets of a vector space. In Section 3.4, el-
ementary row operations are used to provide a computational method for
finding all solutions to such systems.

The system of equations

(S)

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm,

where aij and bi (1 ≤ i ≤ m and 1 ≤ j ≤ n) are scalars in a field F and
x1, x2, . . . , xn are n variables taking values in F , is called a system of m
linear equations in n unknowns over the field F .

The m × n matrix

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞⎟⎟⎟⎠
is called the coefficient matrix of the system (S).

If we let

x =

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎝
b1

b2

...
bm

⎞⎟⎟⎟⎠ ,

then the system (S) may be rewritten as a single matrix equation

Ax = b.

To exploit the results that we have developed, we often consider a system of
linear equations as a single matrix equation.

A solution to the system (S) is an n-tuple

s =

⎛⎜⎜⎜⎝
s1

s2

...
sn

⎞⎟⎟⎟⎠ ∈ Fn

such that As = b. The set of all solutions to the system (S) is called the
solution set of the system. System (S) is called consistent if its solution
set is nonempty; otherwise it is called inconsistent.
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Example 1

(a) Consider the system

x1 + x2 = 3
x1 − x2 = 1.

By use of familiar techniques, we can solve the preceding system and conclude
that there is only one solution: x1 = 2, x2 = 1; that is,

s =
(

2
1

)
.

In matrix form, the system can be written(
1 1
1 −1

)(
x1

x2

)
=
(

3
1

)
;

so

A =
(

1 1
1 −1

)
and B =

(
3
1

)
.

(b) Consider

2x1 + 3x2 + x3 = 1
x1 − x2 + 2x3 = 6;

that is, (
2 3 1
1 −1 2

)⎛⎝x1

x2

x3

⎞⎠ =
(

1
6

)
.

This system has many solutions, such as

s =

⎛⎝−6
2
7

⎞⎠ and s =

⎛⎝ 8
−4
−3

⎞⎠ .

(c) Consider

x1 + x2 = 0
x1 + x2 = 1;

that is, (
1 1
1 1

)(
x1

x2

)
=
(

0
1

)
.

It is evident that this system has no solutions. Thus we see that a system of
linear equations can have one, many, or no solutions. ♦
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We must be able to recognize when a system has a solution and then be
able to describe all its solutions. This section and the next are devoted to
this end.

We begin our study of systems of linear equations by examining the class
of homogeneous systems of linear equations. Our first result (Theorem 3.8)
shows that the set of solutions to a homogeneous system of m linear equations
in n unknowns forms a subspace of Fn. We can then apply the theory of vector
spaces to this set of solutions. For example, a basis for the solution space can
be found, and any solution can be expressed as a linear combination of the
vectors in the basis.

Definitions. A system Ax = b of m linear equations in n unknowns
is said to be homogeneous if b = 0 . Otherwise the system is said to be
nonhomogeneous.

Any homogeneous system has at least one solution, namely, the zero vec-
tor. The next result gives further information about the set of solutions to a
homogeneous system.

Theorem 3.8. Let Ax = 0 be a homogeneous system of m linear equa-
tions in n unknowns over a field F . Let K denote the set of all solutions
to Ax = 0 . Then K = N(LA); hence K is a subspace of Fn of dimension
n − rank(LA) = n − rank(A).

Proof. Clearly, K = {s ∈ Fn : As = 0} = N(LA). The second part now
follows from the dimension theorem (p. 70).

Corollary. If m < n, the system Ax = 0 has a nonzero solution.

Proof. Suppose that m < n. Then rank(A) = rank(LA) ≤ m. Hence

dim(K) = n − rank(LA) ≥ n − m > 0,

where K = N(LA). Since dim(K) > 0, K �= {0}. Thus there exists a nonzero
vector s ∈ K; so s is a nonzero solution to Ax = 0 .

Example 2

(a) Consider the system

x1 + 2x2 + x3 = 0
x1 − x2 − x3 = 0.

Let

A =
(

1 2 1
1 −1 −1

)
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be the coefficient matrix of this system. It is clear that rank(A) = 2. If K is
the solution set of this system, then dim(K) = 3 − 2 = 1. Thus any nonzero
solution constitutes a basis for K. For example, since⎛⎝ 1

−2
3

⎞⎠
is a solution to the given system,⎧⎨⎩

⎛⎝ 1
−2

3

⎞⎠⎫⎬⎭
is a basis for K. Thus any vector in K is of the form

t

⎛⎝ 1
−2

3

⎞⎠ =

⎛⎝ t
−2t

3t

⎞⎠ ,

where t ∈ R.

(b) Consider the system x1 − 2x2 + x3 = 0 of one equation in three
unknowns. If A =

(
1 −2 1

)
is the coefficient matrix, then rank(A) = 1.

Hence if K is the solution set, then dim(K) = 3 − 1 = 2. Note that⎛⎝2
1
0

⎞⎠ and

⎛⎝−1
0
1

⎞⎠
are linearly independent vectors in K. Thus they constitute a basis for K, so
that

K =

⎧⎨⎩t1

⎛⎝2
1
0

⎞⎠+ t2

⎛⎝−1
0
1

⎞⎠: t1, t2 ∈ R

⎫⎬⎭ . ♦

In Section 3.4, explicit computational methods for finding a basis for the
solution set of a homogeneous system are discussed.

We now turn to the study of nonhomogeneous systems. Our next result
shows that the solution set of a nonhomogeneous system Ax = b can be
described in terms of the solution set of the homogeneous system Ax = 0 . We
refer to the equation Ax = 0 as the homogeneous system corresponding
to Ax = b.

Theorem 3.9. Let K be the solution set of a system of linear equations
Ax = b, and let KH be the solution set of the corresponding homogeneous
system Ax = 0 . Then for any solution s to Ax = b

K = {s} + KH = {s + k : k ∈ KH}.
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Proof. Let s be any solution to Ax = b. We must show that K = {s}+KH.
If w ∈ K, then Aw = b. Hence

A(w − s) = Aw − As = b − b = 0 .

So w− s ∈ KH. Thus there exists k ∈ KH such that w− s = k. It follows that
w = s + k ∈ {s} + KH, and therefore

K ⊆ {s} + KH.

Conversely, suppose that w ∈ {s} + KH; then w = s + k for some k ∈ KH.
But then Aw = A(s + k) = As + Ak = b + 0 = b; so w ∈ K. Therefore
{s} + KH ⊆ K, and thus K = {s} + KH.

Example 3

(a) Consider the system

x1 + 2x2 + x3 = 7
x1 − x2 − x3 = −4.

The corresponding homogeneous system is the system in Example 2(a). It is
easily verified that

s =

⎛⎝1
1
4

⎞⎠
is a solution to the preceding nonhomogeneous system. So the solution set of
the system is

K =

⎧⎨⎩
⎛⎝1

1
4

⎞⎠+ t

⎛⎝ 1
−2

3

⎞⎠: t ∈ R

⎫⎬⎭
by Theorem 3.9.

(b) Consider the system x1 − 2x2 + x3 = 4. The corresponding homoge-
neous system is the system in Example 2(b). Since

s =

⎛⎝4
0
0

⎞⎠
is a solution to the given system, the solution set K can be written as

K =

⎧⎨⎩
⎛⎝4

0
0

⎞⎠+ t1

⎛⎝2
1
0

⎞⎠+ t2

⎛⎝−1
0
1

⎞⎠: t1, t2 ∈ R

⎫⎬⎭ . ♦
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The following theorem provides us with a means of computing solutions
to certain systems of linear equations.

Theorem 3.10. Let Ax = b be a system of n linear equations in n
unknowns. If A is invertible, then the system has exactly one solution, namely,
A−1b. Conversely, if the system has exactly one solution, then A is invertible.

Proof. Suppose that A is invertible. Substituting A−1b into the system, we
have A(A−1b) = (AA−1)b = b. Thus A−1b is a solution. If s is an arbitrary
solution, then As = b. Multiplying both sides by A−1 gives s = A−1b. Thus
the system has one and only one solution, namely, A−1b.

Conversely, suppose that the system has exactly one solution s. Let KH

denote the solution set for the corresponding homogeneous system Ax = 0 .
By Theorem 3.9, {s} = {s} + KH. But this is so only if KH = {0}. Thus
N(LA) = {0}, and hence A is invertible.

Example 4

Consider the following system of three linear equations in three unknowns:

2x2 + 4x3 = 2
2x1 + 4x2 + 2x3 = 3
3x1 + 3x2 + x3 = 1.

In Example 5 of Section 3.2, we computed the inverse of the coefficient matrix
A of this system. Thus the system has exactly one solution, namely,

⎛⎝x1

x2

x3

⎞⎠ = A−1b =

⎛⎜⎜⎝
1
8 − 5

8
3
4

− 1
4

3
4 − 1

2

3
8 − 3

8
1
4

⎞⎟⎟⎠
⎛⎝2

3
1

⎞⎠ =

⎛⎜⎜⎝
− 7

8

5
4

− 1
8

⎞⎟⎟⎠ . ♦

We use this technique for solving systems of linear equations having in-
vertible coefficient matrices in the application that concludes this section.

In Example 1(c), we saw a system of linear equations that has no solutions.
We now establish a criterion for determining when a system has solutions.
This criterion involves the rank of the coefficient matrix of the system Ax = b
and the rank of the matrix (A|b). The matrix (A|b) is called the augmented
matrix of the system Ax = b.

Theorem 3.11. Let Ax = b be a system of linear equations. Then the
system is consistent if and only if rank(A) = rank(A|b).

Proof. To say that Ax = b has a solution is equivalent to saying that
b ∈ R(LA). (See Exercise 9.) In the proof of Theorem 3.5 (p. 153), we saw
that

R(LA) = span({a1, a2, . . . , an}),
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the span of the columns of A. Thus Ax = b has a solution if and only
if b ∈ span({a1, a2, . . . , an}). But b ∈ span({a1, a2, . . . , an}) if and only
if span({a1, a2, . . . , an}) = span({a1, a2, . . . , an, b}). This last statement is
equivalent to

dim(span({a1, a2, . . . , an})) = dim(span({a1, a2, . . . , an, b})).

So by Theorem 3.5, the preceding equation reduces to

rank(A) = rank(A|b).

Example 5

Recall the system of equations

x1 + x2 = 0
x1 + x2 = 1

in Example 1(c).

Since

A =
(

1 1
1 1

)
and (A|b) =

(
1 1 0
1 1 1

)
,

rank(A) = 1 and rank(A|b) = 2. Because the two ranks are unequal, the
system has no solutions. ♦

Example 6

We can use Theorem 3.11 to determine whether (3, 3, 2) is in the range of the
linear transformation T : R3 → R3 defined by

T(a1, a2, a3) = (a1 + a2 + a3, a1 − a2 + a3, a1 + a3).

Now (3, 3, 2) ∈ R(T) if and only if there exists a vector s = (x1, x2, x3)
in R3 such that T(s) = (3, 3, 2). Such a vector s must be a solution to the
system

x1 + x2 + x3 = 3
x1 − x2 + x3 = 3
x1 + x3 = 2.

Since the ranks of the coefficient matrix and the augmented matrix of this
system are 2 and 3, respectively, it follows that this system has no solutions.
Hence (3, 3, 2) /∈ R(T). ♦
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An Application

In 1973, Wassily Leontief won the Nobel prize in economics for his work
in developing a mathematical model that can be used to describe various
economic phenomena. We close this section by applying some of the ideas we
have studied to illustrate two special cases of his work.

We begin by considering a simple society composed of three people
(industries)—a farmer who grows all the food, a tailor who makes all the
clothing, and a carpenter who builds all the housing. We assume that each
person sells to and buys from a central pool and that everything produced is
consumed. Since no commodities either enter or leave the system, this case
is referred to as the closed model.

Each of these three individuals consumes all three of the commodities pro-
duced in the society. Suppose that the proportion of each of the commodities
consumed by each person is given in the following table. Notice that each of
the columns of the table must sum to 1.

Food Clothing Housing

Farmer 0.40 0.20 0.20

Tailor 0.10 0.70 0.20

Carpenter 0.50 0.10 0.60

Let p1, p2, and p3 denote the incomes of the farmer, tailor, and carpenter,
respectively. To ensure that this society survives, we require that the con-
sumption of each individual equals his or her income. Note that the farmer
consumes 20% of the clothing. Because the total cost of all clothing is p2,
the tailor’s income, the amount spent by the farmer on clothing is 0.20p2.
Moreover, the amount spent by the farmer on food, clothing, and housing
must equal the farmer’s income, and so we obtain the equation

0.40p1 + 0.20p2 + 0.20p3 = p1.

Similar equations describing the expenditures of the tailor and carpenter pro-
duce the following system of linear equations:

0.40p1 + 0.20p2 + 0.20p3 = p1

0.10p1 + 0.70p2 + 0.20p3 = p2

0.50p1 + 0.10p2 + 0.60p3 = p3.

This system can be written as Ap = p, where

p =

⎛⎝p1

p2

p3

⎞⎠
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and A is the coefficient matrix of the system. In this context, A is called
the input–output (or consumption) matrix, and Ap = p is called the
equilibrium condition.

For vectors b = (b1, b2, . . . , bn) and c = (c1, c2, . . . , cn) in Rn, we use the
notation b ≥ c [b > c] to mean bi ≥ ci [bi > ci] for all i. The vector b is called
nonnegative [positive] if b ≥ 0 [b > 0 ].

At first, it may seem reasonable to replace the equilibrium condition by
the inequality Ap ≤ p, that is, the requirement that consumption not exceed
production. But, in fact, Ap ≤ p implies that Ap = p in the closed model.
For otherwise, there exists a k for which

pk >
∑

j

Akjpj .

Hence, since the columns of A sum to 1,

∑
i

pi >
∑

i

∑
j

Aijpj =
∑

j

(∑
i

Aij

)
pj =

∑
j

pj ,

which is a contradiction.
One solution to the homogeneous system (I−A)x = 0 , which is equivalent

to the equilibrium condition, is

p =

⎛⎝0.25
0.35
0.40

⎞⎠ .

We may interpret this to mean that the society survives if the farmer, tailor,
and carpenter have incomes in the proportions 25 : 35 : 40 (or 5 : 7 : 8).

Notice that we are not simply interested in any nonzero solution to the
system, but in one that is nonnegative. Thus we must consider the question
of whether the system (I −A)x = 0 has a nonnegative solution, where A is a
matrix with nonnegative entries whose columns sum to 1. A useful theorem
in this direction (whose proof may be found in “Applications of Matrices to
Economic Models and Social Science Relationships,” by Ben Noble, Proceed-
ings of the Summer Conference for College Teachers on Applied Mathematics,
1971, CUPM, Berkeley, California) is stated below.

Theorem 3.12. Let A be an n×n input–output matrix having the form

A =
(

B C
D E

)
,

where D is a 1×(n−1) positive vector and C is an (n−1)×1 positive vector.
Then (I −A)x = 0 has a one-dimensional solution set that is generated by a
nonnegative vector.
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Observe that any input–output matrix with all positive entries satisfies
the hypothesis of this theorem. The following matrix does also:⎛⎝0.75 0.50 0.65

0 0.25 0.35
0.25 0.25 0

⎞⎠ .

In the open model, we assume that there is an outside demand for each
of the commodities produced. Returning to our simple society, let x1, x2,
and x3 be the monetary values of food, clothing, and housing produced with
respective outside demands d1, d2, and d3. Let A be the 3 × 3 matrix such
that Aij represents the amount (in a fixed monetary unit such as the dollar)
of commodity i required to produce one monetary unit of commodity j. Then
the value of the surplus of food in the society is

x1 − (A11x1 + A12x2 + A13x3),

that is, the value of food produced minus the value of food consumed while
producing the three commodities. The assumption that everything produced
is consumed gives us a similar equilibrium condition for the open model,
namely, that the surplus of each of the three commodities must equal the
corresponding outside demands. Hence

xi −
3∑

j=1

Aijxj = di for i = 1, 2, 3.

In general, we must find a nonnegative solution to (I − A)x = d, where
A is a matrix with nonnegative entries such that the sum of the entries of
each column of A does not exceed one, and d ≥ 0 . It is easy to see that if
(I − A)−1 exists and is nonnegative, then the desired solution is (I − A)−1d.

Recall that for a real number a, the series 1 + a + a2 + · · · converges to
(1 − a)−1 if |a| < 1. Similarly, it can be shown (using the concept of conver-
gence of matrices developed in Section 5.3) that the series I + A + A2 + · · ·
converges to (I − A)−1 if {An} converges to the zero matrix. In this case,
(I − A)−1 is nonnegative since the matrices I, A,A2, . . . are nonnegative.

To illustrate the open model, suppose that 30 cents worth of food, 10
cents worth of clothing, and 30 cents worth of housing are required for the
production of $1 worth of food. Similarly, suppose that 20 cents worth of
food, 40 cents worth of clothing, and 20 cents worth of housing are required
for the production of $1 of clothing. Finally, suppose that 30 cents worth of
food, 10 cents worth of clothing, and 30 cents worth of housing are required
for the production of $1 worth of housing. Then the input–output matrix is

A =

⎛⎝0.30 0.20 0.30
0.10 0.40 0.10
0.30 0.20 0.30

⎞⎠ ;
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so

I − A =

⎛⎝ 0.70 −0.20 −0.30
−0.10 0.60 −0.10
−0.30 −0.20 0.70

⎞⎠ and (I − A)−1 =

⎛⎝2.0 1.0 1.0
0.5 2.0 0.5
1.0 1.0 2.0

⎞⎠ .

Since (I−A)−1 is nonnegative, we can find a (unique) nonnegative solution to
(I −A)x = d for any demand d. For example, suppose that there are outside
demands for $30 billion in food, $20 billion in clothing, and $10 billion in
housing. If we set

d =

⎛⎝30
20
10

⎞⎠ ,

then

x = (I − A)−1d =

⎛⎝90
60
70

⎞⎠ .

So a gross production of $90 billion of food, $60 billion of clothing, and $70
billion of housing is necessary to meet the required demands.

EXERCISES

1. Label the following statements as true or false.

(a) Any system of linear equations has at least one solution.
(b) Any system of linear equations has at most one solution.
(c) Any homogeneous system of linear equations has at least one so-

lution.
(d) Any system of n linear equations in n unknowns has at most one

solution.
(e) Any system of n linear equations in n unknowns has at least one

solution.
(f) If the homogeneous system corresponding to a given system of lin-

ear equations has a solution, then the given system has a solution.
(g) If the coefficient matrix of a homogeneous system of n linear equa-

tions in n unknowns is invertible, then the system has no nonzero
solutions.

(h) The solution set of any system of m linear equations in n unknowns
is a subspace of Fn.

2. For each of the following homogeneous systems of linear equations, find
the dimension of and a basis for the solution set.
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(a)
x1 + 3x2 = 0

2x1 + 6x2 = 0 (b)
x1 + x2 − x3 = 0

4x1 + x2 − 2x3 = 0

(c)
x1 + 2x2 − x3 = 0

2x1 + x2 + x3 = 0 (d)
2x1 + x2 − x3 = 0
x1 − x2 + x3 = 0
x1 + 2x2 − 2x3 = 0

(e) x1 + 2x2 − 3x3 + x4 = 0 (f)
x1 + 2x2 = 0
x1 − x2 = 0

(g)
x1 + 2x2 + x3 + x4 = 0

x2 − x3 + x4 = 0

3. Using the results of Exercise 2, find all solutions to the following sys-
tems.

(a)
x1 + 3x2 = 5

2x1 + 6x2 = 10 (b)
x1 + x2 − x3 = 1

4x1 + x2 − 2x3 = 3

(c)
x1 + 2x2 − x3 = 3

2x1 + x2 + x3 = 6 (d)
2x1 + x2 − x3 = 5
x1 − x2 + x3 = 1
x1 + 2x2 − 2x3 = 4

(e) x1 + 2x2 − 3x3 + x4 = 1 (f)
x1 + 2x2 = 5
x1 − x2 = −1

(g)
x1 + 2x2 + x3 + x4 = 1

x2 − x3 + x4 = 1

4. For each system of linear equations with the invertible coefficient matrix
A,

(1) Compute A−1.

(2) Use A−1 to solve the system.

(a)
x1 + 3x2 = 4

2x1 + 5x2 = 3 (b)
x1 + 2x2 − x3 = 5
x1 + x2 + x3 = 1

2x1 − 2x2 + x3 = 4

5. Give an example of a system of n linear equations in n unknowns with
infinitely many solutions.

6. Let T : R3 → R2 be defined by T(a, b, c) = (a + b, 2a − c). Determine
T−1(1, 11).

7. Determine which of the following systems of linear equations has a so-
lution.
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(a)
x1 + x2 − x3 + 2x4 = 2
x1 + x2 + 2x3 = 1

2x1 + 2x2 + x3 + 2x4 = 4
(b)

x1 + x2 − x3 = 1
2x1 + x2 + 3x3 = 2

(c)
x1 + 2x2 + 3x3 = 1
x1 + x2 − x3 = 0
x1 + 2x2 + x3 = 3

(d)

x1 + x2 + 3x3 − x4 = 0
x1 + x2 + x3 + x4 = 1
x1 − 2x2 + x3 − x4 = 1

4x1 + x2 + 8x3 − x4 = 0

(e)
x1 + 2x2 − x3 = 1

2x1 + x2 + 2x3 = 3
x1 − 4x2 + 7x3 = 4

8. Let T : R3 → R3 be defined by T(a, b, c) = (a + b, b − 2c, a + 2c). For
each vector v in R3, determine whether v ∈ R(T).

(a) v = (1, 3,−2) (b) v = (2, 1, 1)

9. Prove that the system of linear equations Ax = b has a solution if and
only if b ∈ R(LA).

10. Prove or give a counterexample to the following statement: If the co-
efficient matrix of a system of m linear equations in n unknowns has
rank m, then the system has a solution.

11. In the closed model of Leontief with food, clothing, and housing as the
basic industries, suppose that the input–output matrix is

A =

⎛⎜⎜⎝
7
16

1
2

3
16

5
16

1
6

5
16

1
4

1
3

1
2

⎞⎟⎟⎠ .

At what ratio must the farmer, tailor, and carpenter produce in order
for equilibrium to be attained?

12. A certain economy consists of two sectors: goods and services. Suppose
that 60% of all goods and 30% of all services are used in the production
of goods. What proportion of the total economic output is used in the
production of goods?

13. In the notation of the open model of Leontief, suppose that

A =

⎛⎝ 1
2

1
5

1
3

1
5

⎞⎠ and d =
(

2
5

)
are the input–output matrix and the demand vector, respectively. How
much of each commodity must be produced to satisfy this demand?
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14. A certain economy consisting of the two sectors of goods and services
supports a defense system that consumes $90 billion worth of goods and
$20 billion worth of services from the economy but does not contribute
to economic production. Suppose that 50 cents worth of goods and
20 cents worth of services are required to produce $1 worth of goods
and that 30 cents worth of of goods and 60 cents worth of services are
required to produce $1 worth of services. What must the total output
of the economic system be to support this defense system?

3.4 SYSTEMS OF LINEAR EQUATIONS—
COMPUTATIONAL ASPECTS

In Section 3.3, we obtained a necessary and sufficient condition for a system
of linear equations to have solutions (Theorem 3.11 p. 174) and learned how
to express the solutions to a nonhomogeneous system in terms of solutions
to the corresponding homogeneous system (Theorem 3.9 p. 172). The latter
result enables us to determine all the solutions to a given system if we can
find one solution to the given system and a basis for the solution set of the
corresponding homogeneous system. In this section, we use elementary row
operations to accomplish these two objectives simultaneously. The essence of
this technique is to transform a given system of linear equations into a system
having the same solutions, but which is easier to solve (as in Section 1.4).

Definition. Two systems of linear equations are called equivalent if
they have the same solution set.

The following theorem and corollary give a useful method for obtaining
equivalent systems.

Theorem 3.13. Let Ax = b be a system of m linear equations in n
unknowns, and let C be an invertible m × m matrix. Then the system
(CA)x = Cb is equivalent to Ax = b.

Proof. Let K be the solution set for Ax = b and K ′ the solution set for
(CA)x = Cb. If w ∈ K, then Aw = b. So (CA)w = Cb, and hence w ∈ K ′.
Thus K ⊆ K ′.

Conversely, if w ∈ K ′, then (CA)w = Cb. Hence

Aw = C−1(CAw) = C−1(Cb) = b;

so w ∈ K. Thus K ′ ⊆ K, and therefore, K = K ′.

Corollary. Let Ax = b be a system of m linear equations in n unknowns.
If (A′|b′) is obtained from (A|b) by a finite number of elementary row opera-
tions, then the system A′x = b′ is equivalent to the original system.
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Proof. Suppose that (A′|b′) is obtained from (A|b) by elementary row
operations. These may be executed by multiplying (A|b) by elementary m×m
matrices E1, E2, . . . , Ep. Let C = Ep · · ·E2E1; then

(A′|b′) = C(A|b) = (CA|Cb).

Since each Ei is invertible, so is C. Now A′ = CA and b′ = Cb. Thus by
Theorem 3.13, the system A′x = b′ is equivalent to the system Ax = b.

We now describe a method for solving any system of linear equations.
Consider, for example, the system of linear equations

3x1 + 2x2 + 3x3 − 2x4 = 1
x1 + x2 + x3 = 3
x1 + 2x2 + x3 − x4 = 2.

First, we form the augmented matrix⎛⎝3 2 3 −2 1
1 1 1 0 3
1 2 1 −1 2

⎞⎠ .

By using elementary row operations, we transform the augmented matrix
into an upper triangular matrix in which the first nonzero entry of each row
is 1, and it occurs in a column to the right of the first nonzero entry of each
preceding row. (Recall that matrix A is upper triangular if Aij = 0 whenever
i > j.)

1. In the leftmost nonzero column, create a 1 in the first row. In our
example, we can accomplish this step by interchanging the first and
third rows. The resulting matrix is⎛⎝1 2 1 −1 2

1 1 1 0 3
3 2 3 −2 1

⎞⎠ .

2. By means of type 3 row operations, use the first row to obtain zeros in
the remaining positions of the leftmost nonzero column. In our example,
we must add −1 times the first row to the second row and then add −3
times the first row to the third row to obtain⎛⎝1 2 1 −1 2

0 −1 0 1 1
0 −4 0 1 −5

⎞⎠ .

3. Create a 1 in the next row in the leftmost possible column, without using
previous row(s). In our example, the second column is the leftmost
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possible column, and we can obtain a 1 in the second row, second column
by multiplying the second row by −1. This operation produces⎛⎝1 2 1 −1 2

0 1 0 −1 −1
0 −4 0 1 −5

⎞⎠ .

4. Now use type 3 elementary row operations to obtain zeros below the 1
created in the preceding step. In our example, we must add four times
the second row to the third row. The resulting matrix is⎛⎝1 2 1 −1 2

0 1 0 −1 −1
0 0 0 −3 −9

⎞⎠ .

5. Repeat steps 3 and 4 on each succeeding row until no nonzero rows
remain. (This creates zeros above the first nonzero entry in each row.)
In our example, this can be accomplished by multiplying the third row
by − 1

3 . This operation produces⎛⎝1 2 1 −1 2
0 1 0 −1 −1
0 0 0 1 3

⎞⎠ .

We have now obtained the desired matrix. To complete the simplification
of the augmented matrix, we must make the first nonzero entry in each row
the only nonzero entry in its column. (This corresponds to eliminating certain
unknowns from all but one of the equations.)

6. Work upward, beginning with the last nonzero row, and add multiples of
each row to the rows above. (This creates zeros above the first nonzero
entry in each row.) In our example, the third row is the last nonzero
row, and the first nonzero entry of this row lies in column 4. Hence we
add the third row to the first and second rows to obtain zeros in row 1,
column 4 and row 2, column 4. The resulting matrix is⎛⎝1 2 1 0 5

0 1 0 0 2
0 0 0 1 3

⎞⎠ .

7. Repeat the process described in step 6 for each preceding row until it is
performed with the second row, at which time the reduction process is
complete. In our example, we must add −2 times the second row to the
first row in order to make the first row, second column entry become
zero. This operation produces⎛⎝1 0 1 0 1

0 1 0 0 2
0 0 0 1 3

⎞⎠ .
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We have now obtained the desired reduction of the augmented matrix.
This matrix corresponds to the system of linear equations

x1 + x3 = 1
x2 = 2

x4 = 3.

Recall that, by the corollary to Theorem 3.13, this system is equivalent to
the original system. But this system is easily solved. Obviously x2 = 2 and
x4 = 3. Moreover, x1 and x3 can have any values provided their sum is 1.
Letting x3 = t, we then have x1 = 1 − t. Thus an arbitrary solution to the
original system has the form⎛⎜⎜⎝

1 − t
2
t
3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
2
0
3

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
−1

0
1
0

⎞⎟⎟⎠ .

Observe that ⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−1

0
1
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

is a basis for the homogeneous system of equations corresponding to the given
system.

In the preceding example we performed elementary row operations on the
augmented matrix of the system until we obtained the augmented matrix of a
system having properties 1, 2, and 3 on page 27. Such a matrix has a special
name.

Definition. A matrix is said to be in reduced row echelon form if
the following three conditions are satisfied.

(a) Any row containing a nonzero entry precedes any row in which all the
entries are zero (if any).

(b) The first nonzero entry in each row is the only nonzero entry in its
column.

(c) The first nonzero entry in each row is 1 and it occurs in a column to
the right of the first nonzero entry in the preceding row.

Example 1

(a) The matrix on page 184 is in reduced row echelon form. Note that the
first nonzero entry of each row is 1 and that the column containing each such
entry has all zeros otherwise. Also note that each time we move downward to
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a new row, we must move to the right one or more columns to find the first
nonzero entry of the new row.

(b) The matrix ⎛⎝1 1 0
0 1 0
1 0 1

⎞⎠ ,

is not in reduced row echelon form, because the first column, which contains
the first nonzero entry in row 1, contains another nonzero entry. Similarly,
the matrix ⎛⎝0 1 0 2

1 0 0 1
0 0 1 1

⎞⎠ ,

is not in reduced row echelon form, because the first nonzero entry of the
second row is not to the right of the first nonzero entry of the first row.
Finally, the matrix (

2 0 0
0 1 0

)
,

is not in reduced row echelon form, because the first nonzero entry of the first
row is not 1. ♦

It can be shown (see the corollary to Theorem 3.16) that the reduced
row echelon form of a matrix is unique; that is, if different sequences of
elementary row operations are used to transform a matrix into matrices Q
and Q′ in reduced row echelon form, then Q = Q′. Thus, although there are
many different sequences of elementary row operations that can be used to
transform a given matrix into reduced row echelon form, they all produce the
same result.

The procedure described on pages 183–185 for reducing an augmented
matrix to reduced row echelon form is called Gaussian elimination. It
consists of two separate parts.

1. In the forward pass (steps 1-5), the augmented matrix is transformed
into an upper triangular matrix in which the first nonzero entry of each
row is 1, and it occurs in a column to the right of the first nonzero entry
of each preceding row.

2. In the backward pass or back-substitution (steps 6-7), the upper trian-
gular matrix is transformed into reduced row echelon form by making
the first nonzero entry of each row the only nonzero entry of its column.
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Of all the methods for transforming a matrix into its reduced row ech-
elon form, Gaussian elimination requires the fewest arithmetic operations.
(For large matrices, it requires approximately 50% fewer operations than the
Gauss-Jordan method, in which the matrix is transformed into reduced row
echelon form by using the first nonzero entry in each row to make zero all
other entries in its column.) Because of this efficiency, Gaussian elimination
is the preferred method when solving systems of linear equations on a com-
puter. In this context, the Gaussian elimination procedure is usually modified
in order to minimize roundoff errors. Since discussion of these techniques is
inappropriate here, readers who are interested in such matters are referred to
books on numerical analysis.

When a matrix is in reduced row echelon form, the corresponding sys-
tem of linear equations is easy to solve. We present below a procedure for
solving any system of linear equations for which the augmented matrix is in
reduced row echelon form. First, however, we note that every matrix can be
transformed into reduced row echelon form by Gaussian elimination. In the
forward pass, we satisfy conditions (a) and (c) in the definition of reduced
row echelon form and thereby make zero all entries below the first nonzero
entry in each row. Then in the backward pass, we make zero all entries above
the first nonzero entry in each row, thereby satisfying condition (b) in the
definition of reduced row echelon form.

Theorem 3.14. Gaussian elimination transforms any matrix into its re-
duced row echelon form.

We now describe a method for solving a system in which the augmented
matrix is in reduced row echelon form. To illustrate this procedure, we con-
sider the system

2x1 + 3x2 + x3 + 4x4 − 9x5 = 17
x1 + x2 + x3 + x4 − 3x5 = 6
x1 + x2 + x3 + 2x4 − 5x5 = 8

2x1 + 2x2 + 2x3 + 3x4 − 8x5 = 14,

for which the augmented matrix is⎛⎜⎜⎝
2 3 1 4 −9 17
1 1 1 1 −3 6
1 1 1 2 −5 8
2 2 2 3 −8 14

⎞⎟⎟⎠ .

Applying Gaussian elimination to the augmented matrix of the system pro-
duces the following sequence of matrices.⎛⎜⎜⎝

2 3 1 4 −9 17
1 1 1 1 −3 6
1 1 1 2 −5 8
2 2 2 3 −8 14

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
1 1 1 1 −3 6
2 3 1 4 −9 17
1 1 1 2 −5 8
2 2 2 3 −8 14

⎞⎟⎟⎠ −→
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1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 1 −2 2

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 0 0 0

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
1 1 1 0 −1 4
0 1 −1 0 1 1
0 0 0 1 −2 2
0 0 0 0 0 0

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
1 0 2 0 −2 3
0 1 −1 0 1 1
0 0 0 1 −2 2
0 0 0 0 0 0

⎞⎟⎟⎠ .

The system of linear equations corresponding to this last matrix is

x1 + 2x3 − 2x5 = 3
x2 − x3 + x5 = 1

x4 − 2x5 = 2.

Notice that we have ignored the last row since it consists entirely of zeros.
To solve a system for which the augmented matrix is in reduced row

echelon form, divide the variables into two sets. The first set consists of
those variables that appear as leftmost variables in one of the equations of
the system (in this case the set is {x1, x2, x4}). The second set consists of
all the remaining variables (in this case, {x3, x5}). To each variable in the
second set, assign a parametric value t1, t2, . . . (x3 = t1, x5 = t2), and then
solve for the variables of the first set in terms of those in the second set:

x1 = −2x3 + 2x5 + 3 = −2t1 + 2t2 + 3
x2 = x3 − x5 + 1 = t1 − t2 + 1
x4 = 2x5 + 2 = 2t2 + 2.

Thus an arbitrary solution is of the form⎛⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−2t1 + 2t2 + 3

t1 − t2 + 1
t1

2t2 + 2
t2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
3
1
0
2
0

⎞⎟⎟⎟⎟⎠+ t1

⎛⎜⎜⎜⎜⎝
−2

1
1
0
0

⎞⎟⎟⎟⎟⎠+ t2

⎛⎜⎜⎜⎜⎝
2

−1
0
2
1

⎞⎟⎟⎟⎟⎠ ,

where t1, t2 ∈ R. Notice that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
−2

1
1
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
2

−1
0
2
1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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is a basis for the solution set of the corresponding homogeneous system of
equations and ⎛⎜⎜⎜⎜⎝

3
1
0
2
0

⎞⎟⎟⎟⎟⎠
is a particular solution to the original system.

Therefore, in simplifying the augmented matrix of the system to reduced
row echelon form, we are in effect simultaneously finding a particular solu-
tion to the original system and a basis for the solution set of the associated
homogeneous system. Moreover, this procedure detects when a system is in-
consistent, for by Exercise 3, solutions exist if and only if, in the reduction of
the augmented matrix to reduced row echelon form, we do not obtain a row
in which the only nonzero entry lies in the last column.

Thus to use this procedure for solving a system Ax = b of m linear equa-
tions in n unknowns, we need only begin to transform the augmented matrix
(A|b) into its reduced row echelon form (A′|b′) by means of Gaussian elimi-
nation. If a row is obtained in which the only nonzero entry lies in the last
column, then the original system is inconsistent. Otherwise, discard any zero
rows from (A′|b′), and write the corresponding system of equations. Solve
this system as described above to obtain an arbitrary solution of the form

s = s0 + t1u1 + t2u2 + · · · + tn−run−r,

where r is the number of nonzero rows in A′ (r ≤ m). The preceding equation
is called a general solution of the system Ax = b. It expresses an arbitrary
solution s of Ax = b in terms of n − r parameters. The following theorem
states that s cannot be expressed in fewer than n − r parameters.

Theorem 3.15. Let Ax = b be a system of r nonzero equations in n
unknowns. Suppose that rank(A) = rank(A|b) and that (A|b) is in reduced
row echelon form. Then

(a) rank(A) = r.
(b) If the general solution obtained by the procedure above is of the form

s = s0 + t1u1 + t2u2 + · · · + tn−run−r,

then {u1, u2, . . . , un−r} is a basis for the solution set of the correspond-
ing homogeneous system, and s0 is a solution to the original system.

Proof. Since (A|b) is in reduced row echelon form, (A|b) must have r
nonzero rows. Clearly these rows are linearly independent by the definition
of the reduced row echelon form, and so rank(A|b) = r. Thus rank(A) = r.
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Let K be the solution set for Ax = b, and let KH be the solution set for
Ax = 0 . Setting t1 = t2 = · · · = tn−r = 0, we see that s = s0 ∈ K. But by
Theorem 3.9 (p. 172), K = {s0} + KH. Hence

KH = {−s0} + K = span({u1, u2, . . . , un−r}).
Because rank(A) = r, we have dim(KH) = n− r. Thus since dim(KH) = n− r
and KH is generated by a set {u1, u2, . . . , un−r} containing at most n − r
vectors, we conclude that this set is a basis for KH.

An Interpretation of the Reduced Row Echelon Form

Let A be an m × n matrix with columns a1, a2, . . . , an, and let B be the
reduced row echelon form of A. Denote the columns of B by b1, b2, . . . , bn. If
the rank of A is r, then the rank of B is also r by the corollary to Theorem 3.4
(p. 153). Because B is in reduced row echelon form, no nonzero row of B can
be a linear combination of the other rows of B. Hence B must have exactly
r nonzero rows, and if r ≥ 1, the vectors e1, e2, . . . , er must occur among the
columns of B. For i = 1, 2, . . . , r, let ji denote a column number of B such
that bji

= ei. We claim that aj1 , aj2 , . . . , ajr
, the columns of A corresponding

to these columns of B, are linearly independent. For suppose that there are
scalars c1, c2, . . . , cr such that

c1aj1 + c2aj2 + · · · + crajr = 0 .

Because B can be obtained from A by a sequence of elementary row oper-
ations, there exists (as in the proof of the corollary to Theorem 3.13) an
invertible m × m matrix M such that MA = B. Multiplying the preceding
equation by M yields

c1Maj1 + c2Maj2 + · · · + crMajr
= 0 .

Since Maji = bji = ei, it follows that

c1e1 + c2e2 + · · · + crer = 0 .

Hence c1 = c2 = · · · = cr = 0, proving that the vectors aj1 , aj2 , . . . , ajr are
linearly independent.

Because B has only r nonzero rows, every column of B has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

...
dr

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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for scalars d1, d2, . . . , dr. The corresponding column of A must be

M−1(d1e1 + d2e2 + · · · + drer) = d1M
−1e1 + d2M

−1e2 + · · · + drM
−1er

= d1M
−1bj1 + d2M

−1bj2 + · · · + drM
−1bjr

= d1aj1 + d2aj2 + · · · + drajr .

The next theorem summarizes these results.

Theorem 3.16. Let A be an m × n matrix of rank r, where r > 0, and
let B be the reduced row echelon form of A. Then

(a) The number of nonzero rows in B is r.
(b) For each i = 1, 2, . . . , r, there is a column bji of B such that bji = ei.
(c) The columns of A numbered j1, j2, . . . , jr are linearly independent.
(d) For each k = 1, 2, . . . n, if column k of B is d1e1 +d2e2 + · · ·+drer, then

column k of A is d1aj1 + d2aj2 + · · · + drajr
.

Corollary. The reduced row echelon form of a matrix is unique.

Proof. Exercise. (See Exercise15.)

Example 2

Let

A =

⎛⎜⎜⎝
2 4 6 2 4
1 2 3 1 1
2 4 8 0 0
3 6 7 5 9

⎞⎟⎟⎠ .

The reduced row echelon form of A is

B =

⎛⎜⎜⎝
1 2 0 4 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

⎞⎟⎟⎠ .

Since B has three nonzero rows, the rank of A is 3. The first, third, and fifth
columns of B are e1, e2, and e3; so Theorem 3.16(c) asserts that the first,
third, and fifth columns of A are linearly independent.

Let the columns of A be denoted a1, a2, a3, a4, and a5. Because the second
column of B is 2e1, it follows from Theorem 3.16(d) that a2 = 2a1, as is easily
checked. Moreover, since the fourth column of B is 4e1 + (−1)e2, the same
result shows that

a4 = 4a1 + (−1)a3. ♦
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In Example 6 of Section 1.6, we extracted a basis for R3 from the gener-
ating set

S = {(2,−3, 5), (8,−12, 20), (1, 0,−2), (0, 2,−1), (7, 2, 0)}.
The procedure described there can be streamlined by using Theorem 3.16.
We begin by noting that if S were linearly independent, then S would be a
basis for R3. In this case, it is clear that S is linearly dependent because
S contains more than dim(R3) = 3 vectors. Nevertheless, it is instructive
to consider the calculation that is needed to determine whether S is linearly
dependent or linearly independent. Recall that S is linearly dependent if
there are scalars c1, c2, c3, c4, and c5, not all zero, such that

c1(2,−3, 5)+c2(8,−12, 20)+c3(1, 0,−2)+c4(0, 2,−1)+c5(7, 2, 0) = (0, 0, 0).

Thus S is linearly dependent if and only if the system of linear equations

2c1 + 8c2 + c3 + 7c5 = 0
−3c1 − 12c2 + 2c4 + 2c5 = 0

5c1 + 20c2 − 2c3 − c4 = 0

has a nonzero solution. The augmented matrix of this system of equations is

A =

⎛⎝ 2 8 1 0 7 0
−3 −12 0 2 2 0

5 20 −2 −1 0 0

⎞⎠ ,

and its reduced row echelon form is

B =

⎛⎝1 4 0 0 2 0
0 0 1 0 3 0
0 0 0 1 4 0

⎞⎠ .

Using the technique described earlier in this section, we can find nonzero
solutions of the preceding system, confirming that S is linearly dependent.
However, Theorem 3.16(c) gives us additional information. Since the first,
third, and fourth columns of B are e1, e2, and e3, we conclude that the first,
third, and fourth columns of A are linearly independent. But the columns
of A other than the last column (which is the zero vector) are vectors in S.
Hence

β = {(2,−3, 5), (1, 0,−2), (0, 2,−1)}
is a linearly independent subset of S. If follows from (b) of Corollary 2 to the
replacement theorem (p. 47) that β is a basis for R3.

Because every finite-dimensional vector space over F is isomorphic to Fn

for some n, a similar approach can be used to reduce any finite generating
set to a basis. This technique is illustrated in the next example.
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Example 3

The set

S ={2+x+2x2+3x3, 4+2x+4x2+6x3, 6+3x+8x2+7x3, 2+x+5x3, 4+x+9x3}

generates a subspace V of P3(R). To find a subset of S that is a basis for V,
we consider the subset

S′ = {(2, 1, 2, 3), (4, 2, 4, 6), (6, 3, 8, 7), (2, 1, 0, 5), (4, 1, 0, 9)}

consisting of the images of the polynomials in S under the standard repre-
sentation of P3(R) with respect to the standard ordered basis. Note that the
4 × 5 matrix in which the columns are the vectors in S′ is the matrix A in
Example 2. From the reduced row echelon form of A, which is the matrix B
in Example 2, we see that the first, third, and fifth columns of A are linearly
independent and the second and fourth columns of A are linear combinations
of the first, third, and fifth columns. Hence

{(2, 1, 2, 3), (6, 3, 8, 7), (4, 1, 0, 9)}

is a basis for the subspace of R4 that is generated by S′. It follows that

{2 + x + 2x2 + 3x3, 6 + 3x + 8x2 + 7x3, 4 + x + 9x3}

is a basis for the subspace V of P3(R). ♦
We conclude this section by describing a method for extending a linearly

independent subset S of a finite-dimensional vector space V to a basis for V.
Recall that this is always possible by (c) of Corollary 2 to the replacement
theorem (p. 47). Our approach is based on the replacement theorem and
assumes that we can find an explicit basis β for V. Let S′ be the ordered set
consisting of the vectors in S followed by those in β. Since β ⊆ S′, the set
S′ generates V. We can then apply the technique described above to reduce
this generating set to a basis for V containing S.

Example 4

Let

V = {(x1, x2, x3, x4, x5) ∈ R5 : x1 + 7x2 + 5x3 − 4x4 + 2x5 = 0}.

It is easily verified that V is a subspace of R5 and that

S = {(−2, 0, 0,−1,−1), (1, 1,−2,−1,−1), (−5, 1, 0, 1, 1)}

is a linearly independent subset of V.
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To extend S to a basis for V, we first obtain a basis β for V. To do so,
we solve the system of linear equations that defines V. Since in this case V is
defined by a single equation, we need only write the equation as

x1 = −7x2 − 5x3 + 4x4 − 2x5

and assign parametric values to x2, x3, x4, and x5. If x2 = t1, x3 = t2,
x4 = t3, and x5 = t4, then the vectors in V have the form

(x1,x2, x3, x4, x5) = (−7t1 − 5t2 + 4t3 − 2t4, t1, t2, t3, t4)
= t1(−7, 1, 0, 0, 0) + t2(−5, 0, 1, 0, 0) + t3(4, 0, 0, 1, 0) + t4(−2, 0, 0, 0, 1).

Hence

β = {(−7, 1, 0, 0, 0), (−5, 0, 1, 0, 0), (4, 0, 0, 1, 0), (−2, 0, 0, 0, 1)}
is a basis for V by Theorem 3.15.

The matrix whose columns consist of the vectors in S followed by those
in β is ⎛⎜⎜⎜⎜⎝

−2 1 −5 −7 −5 4 −2
0 1 1 1 0 0 0
0 −2 0 0 1 0 0

−1 −1 1 0 0 1 0
−1 −1 1 0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

and its reduced row echelon form is⎛⎜⎜⎜⎜⎝
1 0 0 1 1 0 −1
0 1 0 0 −.5 0 0
0 0 1 1 .5 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

Thus

{(−2, 0, 0,−1,−1), (1, 1,−2,−1,−1), (−5, 1, 0, 1, 1), (4, 0, 0, 1, 0)}
is a basis for V containing S. ♦

EXERCISES

1. Label the following statements as true or false.

(a) If (A′|b′) is obtained from (A|b) by a finite sequence of elementary
column operations, then the systems Ax = b and A′x = b′ are
equivalent.
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(b) If (A′|b′) is obtained from (A|b) by a finite sequence of elemen-
tary row operations, then the systems Ax = b and A′x = b′ are
equivalent.

(c) If A is an n×n matrix with rank n, then the reduced row echelon
form of A is In.

(d) Any matrix can be put in reduced row echelon form by means of
a finite sequence of elementary row operations.

(e) If (A|b) is in reduced row echelon form, then the system Ax = b is
consistent.

(f) Let Ax = b be a system of m linear equations in n unknowns for
which the augmented matrix is in reduced row echelon form. If
this system is consistent, then the dimension of the solution set of
Ax = 0 is n− r, where r equals the number of nonzero rows in A.

(g) If a matrix A is transformed by elementary row operations into a
matrix A′ in reduced row echelon form, then the number of nonzero
rows in A′ equals the rank of A.

2. Use Gaussian elimination to solve the following systems of linear equa-
tions.

(a)
x1 + 2x2 − x3 = −1

2x1 + 2x2 + x3 = 1
3x1 + 5x2 − 2x3 = −1

(b)

x1 − 2x2 − x3 = 1
2x1 − 3x2 + x3 = 6
3x1 − 5x2 = 7
x1 + 5x3 = 9

(c)

x1 + 2x2 + 2x4 = 6
3x1 + 5x2 − x3 + 6x4 = 17
2x1 + 4x2 + x3 + 2x4 = 12
2x1 − 7x3 + 11x4 = 7

(d)

x1 − x2 − 2x3 + 3x4 = −7
2x1 − x2 + 6x3 + 6x4 = −2

−2x1 + x2 − 4x3 − 3x4 = 0
3x1 − 2x2 + 9x3 + 10x4 = −5

(e)
x1 − 4x2 − x3 + x4 = 3

2x1 − 8x2 + x3 − 4x4 = 9
−x1 + 4x2 − 2x3 + 5x4 = −6

(f)
x1 + 2x2 − x3 + 3x4 = 2

2x1 + 4x2 − x3 + 6x4 = 5
x2 + 2x4 = 3

(g)
2x1 − 2x2 − x3 + 6x4 − 2x5 = 1
x1 − x2 + x3 + 2x4 − x5 = 2

4x1 − 4x2 + 5x3 + 7x4 − x5 = 6

(h)

3x1 − x2 + x3 − x4 + 2x5 = 5
x1 − x2 − x3 − 2x4 − x5 = 2

5x1 − 2x2 + x3 − 3x4 + 3x5 = 10
2x1 − x2 − 2x4 + x5 = 5
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(i)

3x1 − x2 + 2x3 + 4x4 + x5 = 2
x1 − x2 + 2x3 + 3x4 + x5 = −1

2x1 − 3x2 + 6x3 + 9x4 + 4x5 = −5
7x1 − 2x2 + 4x3 + 8x4 + x5 = 6

(j)

2x1 + 3x3 − 4x5 = 5
3x1 − 4x2 + 8x3 + 3x4 = 8
x1 − x2 + 2x3 + x4 − x5 = 2

−2x1 + 5x2 − 9x3 − 3x4 − 5x5 = −8

3. Suppose that the augmented matrix of a system Ax = b is transformed
into a matrix (A′|b′) in reduced row echelon form by a finite sequence
of elementary row operations.
(a) Prove that rank(A′) �= rank(A′|b′) if and only if (A′|b′) contains a

row in which the only nonzero entry lies in the last column.
(b) Deduce that Ax = b is consistent if and only if (A′|b′) contains no

row in which the only nonzero entry lies in the last column.

4. For each of the systems that follow, apply Exercise 3 to determine
whether the system is consistent. If the system is consistent, find all
solutions. Finally, find a basis for the solution set of the corresponding
homogeneous system.

(a)
x1 + 2x2 − x3 + x4 = 2

2x1 + x2 + x3 − x4 = 3
x1 + 2x2 − 3x3 + 2x4 = 2

(b)
x1 + x2 − 3x3 + x4 = −2
x1 + x2 + x3 − x4 = 2
x1 + x2 − x3 = 0

(c)
x1 + x2 − 3x3 + x4 = 1
x1 + x2 + x3 − x4 = 2
x1 + x2 − x3 = 0

5. Let the reduced row echelon form of A be⎛⎝1 0 2 0 −2
0 1 −5 0 −3
0 0 0 1 6

⎞⎠ .

Determine A if the first, second, and fourth columns of A are⎛⎝ 1
−1

3

⎞⎠ ,

⎛⎝ 0
−1

1

⎞⎠ , and

⎛⎝ 1
−2

0

⎞⎠ ,

respectively.

6. Let the reduced row echelon form of A be⎛⎜⎜⎝
1 −3 0 4 0 5
0 0 1 3 0 2
0 0 0 0 1 −1
0 0 0 0 0 0

⎞⎟⎟⎠ .



Sec. 3.4 Systems of Linear Equations—Computational Aspects 197

Determine A if the first, third, and sixth columns of A are⎛⎜⎜⎝
1

−2
−1

3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1

1
2

−4

⎞⎟⎟⎠ , and

⎛⎜⎜⎝
3

−9
2
5

⎞⎟⎟⎠ ,

respectively.

7. It can be shown that the vectors u1 = (2,−3, 1), u2 = (1, 4,−2), u3 =
(−8, 12,−4), u4 = (1, 37,−17), and u5 = (−3,−5, 8) generate R3. Find
a subset of {u1, u2, u3, u4, u5} that is a basis for R3.

8. Let W denote the subspace of R5 consisting of all vectors having coor-
dinates that sum to zero. The vectors

u1 = (2,−3, 4,−5, 2), u2 = (−6, 9,−12, 15,−6),
u3 = (3,−2, 7,−9, 1), u4 = (2,−8, 2,−2, 6),
u5 = (−1, 1, 2, 1,−3), u6 = (0,−3,−18, 9, 12),
u7 = (1, 0,−2, 3,−2), and u8 = (2,−1, 1,−9, 7)

generate W. Find a subset of {u1, u2, . . . , u8} that is a basis for W.

9. Let W be the subspace of M2×2(R) consisting of the symmetric 2 × 2
matrices. The set

S =
{(

0 −1
−1 1

)
,

(
1 2
2 3

)
,

(
2 1
1 9

)
,

(
1 −2

−2 4

)
,

(−1 2
2 −1

)}
generates W. Find a subset of S that is a basis for W.

10. Let

V = {(x1, x2, x3, x4, x5) ∈ R5 : x1 − 2x2 + 3x3 − x4 + 2x5 = 0}.
(a) Show that S = {(0, 1, 1, 1, 0)} is a linearly independent subset of

V.
(b) Extend S to a basis for V.

11. Let V be as in Exercise 10.

(a) Show that S = {(1, 2, 1, 0, 0)} is a linearly independent subset of
V.

(b) Extend S to a basis for V.

12. Let V denote the set of all solutions to the system of linear equations

x1 − x2 + 2x4 − 3x5 + x6 = 0
2x1 − x2 − x3 + 3x4 − 4x5 + 4x6 = 0.
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(a) Show that S = {(0,−1, 0, 1, 1, 0), (1, 0, 1, 1, 1, 0)} is a linearly inde-
pendent subset of V.

(b) Extend S to a basis for V.

13. Let V be as in Exercise 12.

(a) Show that S = {(1, 0, 1, 1, 1, 0), (0, 2, 1, 1, 0, 0)} is a linearly inde-
pendent subset of V.

(b) Extend S to a basis for V.

14. If (A|b) is in reduced row echelon form, prove that A is also in reduced
row echelon form.

15. Prove the corollary to Theorem 3.16: The reduced row echelon form of
a matrix is unique.
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4
Determinants
4.1 Determinants of Order 2
4.2 Determinants of Order n
4.3 Properties of Determinants
4.4 Summary — Important Facts about Determinants
4.5* A Characterization of the Determinant

The determinant, which has played a prominent role in the theory of lin-
ear algebra, is a special scalar-valued function defined on the set of square
matrices. Although it still has a place in the study of linear algebra and its
applications, its role is less central than in former times. Yet no linear algebra
book would be complete without a systematic treatment of the determinant,
and we present one here. However, the main use of determinants in this book
is to compute and establish the properties of eigenvalues, which we discuss in
Chapter 5.

Although the determinant is not a linear transformation on Mn×n(F )
for n > 1, it does possess a kind of linearity (called n-linearity) as well
as other properties that are examined in this chapter. In Section 4.1, we
consider the determinant on the set of 2×2 matrices and derive its important
properties and develop an efficient computational procedure. To illustrate the
important role that determinants play in geometry, we also include optional
material that explores the applications of the determinant to the study of
area and orientation. In Sections 4.2 and 4.3, we extend the definition of the
determinant to all square matrices and derive its important properties and
develop an efficient computational procedure. For the reader who prefers to
treat determinants lightly, Section 4.4 contains the essential properties that
are needed in later chapters. Finally, Section 4.5, which is optional, offers
an axiomatic approach to determinants by showing how to characterize the
determinant in terms of three key properties.

4.1 DETERMINANTS OF ORDER 2

In this section, we define the determinant of a 2 × 2 matrix and investigate
its geometric significance in terms of area and orientation.

199
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Definition. If

A =
(

a b
c d

)
is a 2×2 matrix with entries from a field F , then we define the determinant
of A, denoted det(A) or |A|, to be the scalar ad − bc.

Example 1

For the matrices

A =
(

1 2
3 4

)
and B =

(
3 2
6 4

)
in M2×2(R), we have

det(A) = 1 ·4 − 2 ·3 = −2 and det(B) = 3 ·4 − 2 ·6 = 0. ♦

For the matrices A and B in Example 1, we have

A + B =
(

4 4
9 8

)
,

and so

det(A + B) = 4 ·8 − 4 ·9 = −4.

Since det(A + B) �= det(A) + det(B), the function det : M2×2(R) → R is
not a linear transformation. Nevertheless, the determinant does possess an
important linearity property, which is explained in the following theorem.

Theorem 4.1. The function det : M2×2(F ) → F is a linear function of
each row of a 2 × 2 matrix when the other row is held fixed. That is, if u, v,
and w are in F2 and k is a scalar, then

det
(

u + kv
w

)
= det

(
u
w

)
+ k det

(
v
w

)
and

det
(

w
u + kv

)
= det

(
w
u

)
+ k det

(
w
v

)
.

Proof. Let u = (a1, a2), v = (b1, b2), and w = (c1, c2) be in F2 and k be a
scalar. Then

det
(

u
w

)
+ k det

(
v
w

)
= det

(
a1 a2

c1 c2

)
+ k det

(
b1 b2

c1 c2

)
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= (a1c2 − a2c1) + k(b1c2 − b2c1)
= (a1 + kb1)c2 − (a2 + kb2)c1

= det
(

a1 + kb1 a2 + kb2

c1 c2

)
= det

(
u + kv

w

)
.

A similar calculation shows that

det
(

w
u

)
+ k det

(
w
v

)
= det

(
w

u + kv

)
.

For the 2 × 2 matrices A and B in Example 1, it is easily checked that A
is invertible but B is not. Note that det(A) �= 0 but det(B) = 0. We now
show that this property is true in general.

Theorem 4.2. Let A ∈ M2×2(F ). Then the determinant of A is nonzero
if and only if A is invertible. Moreover, if A is invertible, then

A−1 =
1

det(A)

(
A22 −A12

−A21 A11

)
.

Proof. If det(A) �= 0, then we can define a matrix

M =
1

det(A)

(
A22 −A12

−A21 A11

)
.

A straightforward calculation shows that AM = MA = I, and so A is invert-
ible and M = A−1.

Conversely, suppose that A is invertible. A remark on page 152 shows
that the rank of

A =
(

A11 A12

A21 A22

)
must be 2. Hence A11 �= 0 or A21 �= 0. If A11 �= 0, add −A21/A11 times row 1
of A to row 2 to obtain the matrix⎛⎝A11 A12

0 A22 − A12A21

A11

⎞⎠ .

Because elementary row operations are rank-preserving by the corollary to
Theorem 3.4 (p. 153), it follows that

A22 − A12A21

A11
�= 0.
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Therefore det(A) = A11A22 − A12A21 �= 0. On the other hand, if A21 �= 0,
we see that det(A) �= 0 by adding −A11/A21 times row 2 of A to row 1 and
applying a similar argument. Thus, in either case, det(A) �= 0.

In Sections 4.2 and 4.3, we extend the definition of the determinant to
n×n matrices and show that Theorem 4.2 remains true in this more general
context. In the remainder of this section, which can be omitted if desired,
we explore the geometric significance of the determinant of a 2 × 2 matrix.
In particular, we show the importance of the sign of the determinant in the
study of orientation.

The Area of a Parallelogram

By the angle between two vectors in R2, we mean the angle with measure
θ (0 ≤ θ < π) that is formed by the vectors having the same magnitude and
direction as the given vectors but emanating from the origin. (See Figure 4.1.)
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Figure 4.1: Angle between two vectors in R2

If β = {u, v} is an ordered basis for R2, we define the orientation of β
to be the real number

O
(

u
v

)
=

det
(

u
v

)
∣∣∣∣det

(
u
v

)∣∣∣∣ .
(The denominator of this fraction is nonzero by Theorem 4.2.) Clearly

O
(

u
v

)
= ±1.

Notice that

O
(

e1

e2

)
= 1 and O

(
e1

−e2

)
= −1.

Recall that a coordinate system {u, v} is called right-handed if u can
be rotated in a counterclockwise direction through an angle θ (0 < θ < π)



Sec. 4.1 Determinants of Order 2 203

to coincide with v. Otherwise {u, v} is called a left-handed system. (See
Figure 4.2.) In general (see Exercise 12),

�
��
����

�

�y

x

u
v

A right-handed coordinate system

����
���

�

�y

x

u
v

A left-handed coordinate system

Figure 4.2

O
(

u
v

)
= 1

if and only if the ordered basis {u, v} forms a right-handed coordinate system.
For convenience, we also define

O
(

u
v

)
= 1

if {u, v} is linearly dependent.
Any ordered set {u, v} in R2 determines a parallelogram in the following

manner. Regarding u and v as arrows emanating from the origin of R2, we
call the parallelogram having u and v as adjacent sides the parallelogram
determined by u and v. (See Figure 4.3.) Observe that if the set {u, v}

v

u x

y

v

u

x

y

Figure 4.3: Parallelograms determined by u and v

is linearly dependent (i.e., if u and v are parallel), then the “parallelogram”
determined by u and v is actually a line segment, which we consider to be a
degenerate parallelogram having area zero.
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There is an interesting relationship between

A
(

u
v

)
,

the area of the parallelogram determined by u and v, and

det
(

u
v

)
,

which we now investigate. Observe first, however, that since

det
(

u
v

)
may be negative, we cannot expect that

A
(

u
v

)
= det

(
u
v

)
.

But we can prove that

A
(

u
v

)
= O

(
u
v

)
· det

(
u
v

)
,

from which it follows that

A
(

u
v

)
=
∣∣∣∣det

(
u
v

)∣∣∣∣ .
Our argument that

A
(

u
v

)
= O

(
u
v

)
· det

(
u
v

)
employs a technique that, although somewhat indirect, can be generalized to
Rn. First, since

O
(

u
v

)
= ±1,

we may multiply both sides of the desired equation by

O
(

u
v

)
to obtain the equivalent form

O
(

u
v

)
·A

(
u
v

)
= det

(
u
v

)
.
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We establish this equation by verifying that the three conditions of Exercise 11
are satisfied by the function

δ

(
u
v

)
= O

(
u
v

)
·A

(
u
v

)
.

(a) We begin by showing that for any real number c

δ

(
u
cv

)
= c ·δ

(
u
v

)
.

Observe that this equation is valid if c = 0 because

δ

(
u
cv

)
= O

(
u
0

)
·A

(
u
0

)
= 1 ·0 = 0.

So assume that c �= 0. Regarding cv as the base of the parallelogram deter-
mined by u and cv, we see that

A
(

u
cv

)
= base × altitude = |c|(length of v)(altitude) = |c| ·A

(
u
v

)
,

since the altitude h of the parallelogram determined by u and cv is the same
as that in the parallelogram determined by u and v. (See Figure 4.4.) Hence
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� �



























v cv

h
u

Figure 4.4

δ

(
u
cv

)
= O

(
u
cv

)
·A

(
u
cv

)
=
[

c

|c| ·O
(

u
v

)][
|c| ·A

(
u
v

)]

= c ·O
(

u
v

)
·A

(
u
v

)
= c ·δ

(
u
v

)
.

A similar argument shows that

δ

(
cu
v

)
= c ·δ

(
u
v

)
.
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We next prove that

δ

(
u

au + bw

)
= b ·δ

(
u
w

)
for any u, w ∈ R2 and any real numbers a and b. Because the parallelograms
determined by u and w and by u and u + w have a common base u and the
same altitude (see Figure 4.5), it follows that

�
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�
�
�
���

�

�

�
�

�
�

�
�

�
u

u + w
w

Figure 4.5

A
(

u
w

)
= A

(
u

u + w

)
.

If a = 0, then

δ

(
u

au + bw

)
= δ

(
u
bw

)
= b ·δ

(
u
w

)
by the first paragraph of (a). Otherwise, if a �= 0, then

δ

(
u

au + bw

)
= a ·δ

⎛⎝ u

u +
b

a
w

⎞⎠ = a ·δ
⎛⎝ u

b

a
w

⎞⎠ = b ·δ
(

u

w

)
.

So the desired conclusion is obtained in either case.
We are now able to show that

δ

(
u

v1 + v2

)
= δ

(
u
v1

)
+ δ

(
u
v2

)
for all u, v1, v2 ∈ R2. Since the result is immediate if u = 0, we assume that
u �= 0. Choose any vector w ∈ R2 such that {u, w} is linearly independent.
Then for any vectors v1, v2 ∈ R2 there exist scalars ai and bi such that
vi = aiu + biw (i = 1, 2). Thus

δ

(
u

v1 + v2

)
= δ

(
u

(a1 + a2)u + (b1 + b2)w

)
= (b1 + b2)δ

(
u
w

)
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= δ

(
u

a1u + b1w

)
+ δ

(
u

a2u + b2w

)
= δ

(
u
v1

)
+ δ

(
u
v2

)
.

A similar argument shows that

δ

(
u1 + u2

v

)
= δ

(
u1

v

)
+ δ

(
u2

v

)
for all u1, u2, v ∈ R2.

(b) Since

A
(

u
u

)
= 0, it follows that δ

(
u
u

)
= O

(
u
u

)
·A

(
u
u

)
= 0

for any u ∈ R2.
(c) Because the parallelogram determined by e1 and e2 is the unit square,

δ

(
e1

e2

)
= O

(
e1

e2

)
·A

(
e1

e2

)
= 1 · 1 = 1.

Therefore δ satisfies the three conditions of Exercise 11, and hence δ = det.
So the area of the parallelogram determined by u and v equals

O
(

u
v

)
· det

(
u
v

)
.

Thus we see, for example, that the area of the parallelogram determined
by u = (−1, 5) and v = (4,−2) is∣∣∣∣det

(
u
v

)∣∣∣∣ =
∣∣∣∣det

(−1 5
4 −2

)∣∣∣∣ = 18.

EXERCISES

1. Label the following statements as true or false.

(a) The function det : M2×2(F ) → F is a linear transformation.
(b) The determinant of a 2× 2 matrix is a linear function of each row

of the matrix when the other row is held fixed.
(c) If A ∈ M2×2(F ) and det(A) = 0, then A is invertible.
(d) If u and v are vectors in R2 emanating from the origin, then the

area of the parallelogram having u and v as adjacent sides is

det
(

u
v

)
.
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(e) A coordinate system is right-handed if and only if its orientation
equals 1.

2. Compute the determinants of the following matrices in M2×2(R).

(a)
(

6 −3
2 4

)
(b)

(−5 2
6 1

)
(c)

(
8 0
3 −1

)
3. Compute the determinants of the following matrices in M2×2(C).

(a)
(−1 + i 1 − 4i

3 + 2i 2 − 3i

)
(b)

(
5 − 2i 6 + 4i

−3 + i 7i

)
(c)

(
2i 3
4 6i

)
4. For each of the following pairs of vectors u and v in R2, compute the

area of the parallelogram determined by u and v.

(a) u = (3,−2) and v = (2, 5)
(b) u = (1, 3) and v = (−3, 1)
(c) u = (4,−1) and v = (−6,−2)
(d) u = (3, 4) and v = (2,−6)

5. Prove that if B is the matrix obtained by interchanging the rows of a
2 × 2 matrix A, then det(B) = −det(A).

6. Prove that if the two columns of A ∈ M2×2(F ) are identical, then
det(A) = 0.

7. Prove that det(At) = det(A) for any A ∈ M2×2(F ).

8. Prove that if A ∈ M2×2(F ) is upper triangular, then det(A) equals the
product of the diagonal entries of A.

9. Prove that det(AB) = det(A) · det(B) for any A, B ∈ M2×2(F ).

10. The classical adjoint of a 2 × 2 matrix A ∈ M2×2(F ) is the matrix

C =
(

A22 −A12

−A21 A11

)
.

Prove that

(a) CA = AC = [det(A)]I.
(b) det(C) = det(A).
(c) The classical adjoint of At is Ct.
(d) If A is invertible, then A−1 = [det(A)]−1C.

11. Let δ : M2×2(F ) → F be a function with the following three properties.

(i) δ is a linear function of each row of the matrix when the other row
is held fixed.

(ii) If the two rows of A ∈ M2×2(F ) are identical, then δ(A) = 0.
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(iii) If I is the 2 × 2 identity matrix, then δ(I) = 1.

Prove that δ(A) = det(A) for all A ∈ M2×2(F ). (This result is general-
ized in Section 4.5.)

12. Let {u, v} be an ordered basis for R2. Prove that

O
(

u
v

)
= 1

if and only if {u, v} forms a right-handed coordinate system. Hint:
Recall the definition of a rotation given in Example 2 of Section 2.1.

4.2 DETERMINANTS OF ORDER n

In this section, we extend the definition of the determinant to n×n matrices
for n ≥ 3. For this definition, it is convenient to introduce the following
notation: Given A ∈ Mn×n(F ), for n ≥ 2, denote the (n−1)× (n−1) matrix
obtained from A by deleting row i and column j by Ãij . Thus for

A =

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ ∈ M3×3(R),

we have

Ã11 =
(

5 6
8 9

)
, Ã13 =

(
4 5
7 8

)
, and Ã32 =

(
1 3
4 6

)
,

and for

B =

⎛⎜⎜⎝
1 −1 2 −1

−3 4 1 −1
2 −5 −3 8

−2 6 −4 1

⎞⎟⎟⎠ ∈ M4×4(R),

we have

B̃23 =

⎛⎝ 1 −1 −1
2 −5 8

−2 6 1

⎞⎠ and B̃42 =

⎛⎝ 1 2 −1
−3 1 −1

2 −3 8

⎞⎠ .

Definitions. Let A ∈ Mn×n(F ). If n = 1, so that A = (A11), we define
det(A) = A11. For n ≥ 2, we define det(A) recursively as

det(A) =
n∑

j=1

(−1)1+jA1j · det(Ã1j).
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The scalar det(A) is called the determinant of A and is also denoted by |A|.
The scalar

(−1)i+j det(Ãij)

is called the cofactor of the entry of A in row i, column j.

Letting

cij = (−1)i+j det(Ãij)

denote the cofactor of the row i, column j entry of A, we can express the
formula for the determinant of A as

det(A) = A11c11 + A12c12 + · · · + A1nc1n.

Thus the determinant of A equals the sum of the products of each entry in row
1 of A multiplied by its cofactor. This formula is called cofactor expansion
along the first row of A. Note that, for 2 × 2 matrices, this definition of
the determinant of A agrees with the one given in Section 4.1 because

det(A) = A11(−1)1+1 det(Ã11) + A12(−1)1+2 det(Ã12) = A11A22 − A12A21.

Example 1

Let

A =

⎛⎝ 1 3 −3
−3 −5 2
−4 4 −6

⎞⎠ ∈ M3×3(R).

Using cofactor expansion along the first row of A, we obtain

det(A) = (−1)1+1A11 · det(Ã11) + (−1)1+2A12 · det(Ã12)

+ (−1)1+3A13 · det(Ã13)

= (−1)2(1) · det
(−5 2

4 −6

)
+ (−1)3(3) ·

(−3 2
−4 −6

)
+ (−1)4(−3) · det

(−3 −5
−4 4

)
= 1 [−5(−6) − 2(4)] − 3 [−3(−6) − 2(−4)] − 3 [−3(4) − (−5)(−4)]
= 1(22) − 3(26) − 3(−32)
= 40. ♦
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Example 2

Let

B =

⎛⎝ 0 1 3
−2 −3 −5

4 −4 4

⎞⎠ ∈ M3×3(R).

Using cofactor expansion along the first row of B, we obtain

det(B) = (−1)1+1B11 · det(B̃11) + (−1)1+2B12 · det(B̃12)

+ (−1)1+3B13 · det(B̃13)

= (−1)2(0) · det
(−3 −5
−4 4

)
+ (−1)3(1) · det

(−2 −5
4 4

)
+ (−1)4(3) · det

(−2 −3
4 −4

)
= 0 − 1 [−2(4) − (−5)(4)] + 3 [−2(−4) − (−3)(4)]
= 0 − 1(12) + 3(20)
= 48. ♦

Example 3

Let

C =

⎛⎜⎜⎝
2 0 0 1
0 1 3 −3

−2 −3 −5 2
4 −4 4 −6

⎞⎟⎟⎠ ∈ M4×4(R).

Using cofactor expansion along the first row of C and the results of Examples 1
and 2, we obtain

det(C) = (−1)2(2) · det(C̃11) + (−1)3(0) · det(C̃12)

+ (−1)4(0) · det(C̃13) + (−1)5(1) · det(C̃14)

= (−1)2(2) · det

⎛⎝ 1 3 −3
−3 −5 2
−4 4 −6

⎞⎠+ 0 + 0

+ (−1)5(1) · det

⎛⎝ 0 1 3
−2 −3 −5

4 −4 4

⎞⎠
= 2(40) + 0 + 0 − 1(48)
= 32. ♦
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Example 4

The determinant of the n×n identity matrix is 1. We prove this assertion by
mathematical induction on n. The result is clearly true for the 1× 1 identity
matrix. Assume that the determinant of the (n− 1)× (n− 1) identity matrix
is 1 for some n ≥ 2, and let I denote the n×n identity matrix. Using cofactor
expansion along the first row of I, we obtain

det(I) = (−1)2(1) · det(Ĩ11) + (−1)3(0) · det(Ĩ12) + · · ·
+ (−1)1+n(0) · det(Ĩ1n)

= 1(1) + 0 + · · · + 0
= 1

because Ĩ11 is the (n − 1) × (n − 1) identity matrix. This shows that the
determinant of the n× n identity matrix is 1, and so the determinant of any
identity matrix is 1 by the principle of mathematical induction. ♦

As is illustrated in Example 3, the calculation of a determinant using
the recursive definition is extremely tedious, even for matrices as small as
4×4. Later in this section, we present a more efficient method for evaluating
determinants, but we must first learn more about them.

Recall from Theorem 4.1 (p. 200) that, although the determinant of a 2×2
matrix is not a linear transformation, it is a linear function of each row when
the other row is held fixed. We now show that a similar property is true for
determinants of any size.

Theorem 4.3. The determinant of an n × n matrix is a linear function
of each row when the remaining rows are held fixed. That is, for 1 ≤ r ≤ n,
we have

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

u + kv
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

u
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ k det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

v
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
whenever k is a scalar and u, v, and each ai are row vectors in Fn.

Proof. The proof is by mathematical induction on n. The result is imme-
diate if n = 1. Assume that for some integer n ≥ 2 the determinant of any
(n − 1) × (n − 1) matrix is a linear function of each row when the remaining
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rows are held fixed. Let A be an n×n matrix with rows a1, a2, . . . , an, respec-
tively, and suppose that for some r (1 ≤ r ≤ n), we have ar = u+kv for some
u, v ∈ Fn and some scalar k. Let u = (b1, b2, . . . , bn) and v = (c1, c2, . . . , cn),
and let B and C be the matrices obtained from A by replacing row r of A by
u and v, respectively. We must prove that det(A) = det(B) + k det(C). We
leave the proof of this fact to the reader for the case r = 1. For r > 1 and
1 ≤ j ≤ n, the rows of Ã1j , B̃1j , and C̃1j are the same except for row r − 1.
Moreover, row r − 1 of Ã1j is

(b1 + kc1, . . . , bj−1 + kcj−1, bj+1 + kcj+1, . . . , bn + kcn),

which is the sum of row r − 1 of B̃1j and k times row r − 1 of C̃1j . Since B̃1j

and C̃1j are (n − 1) × (n − 1) matrices, we have

det(Ã1j) = det(B̃1j) + k det(C̃1j)

by the induction hypothesis. Thus since A1j = B1j = C1j , we have

det(A) =
n∑

j=1

(−1)1+jA1j · det(Ã1j)

=
n∑

j=1

(−1)1+jA1j ·
[
det(B̃1j) + k det(C̃1j)

]
=

n∑
j=1

(−1)1+jA1j · det(B̃1j) + k
n∑

j=1

(−1)1+jA1j · det(C̃1j)

= det(B) + k det(C).

This shows that the theorem is true for n × n matrices, and so the theorem
is true for all square matrices by mathematical induction.

Corollary. If A ∈ Mn×n(F ) has a row consisting entirely of zeros, then
det(A) = 0.

Proof. See Exercise 24.

The definition of a determinant requires that the determinant of a matrix
be evaluated by cofactor expansion along the first row. Our next theorem
shows that the determinant of a square matrix can be evaluated by cofactor
expansion along any row. Its proof requires the following technical result.

Lemma. Let B ∈ Mn×n(F ), where n ≥ 2. If row i of B equals ek for
some k (1 ≤ k ≤ n), then det(B) = (−1)i+k det(B̃ik).
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Proof. The proof is by mathematical induction on n. The lemma is easily
proved for n = 2. Assume that for some integer n ≥ 3, the lemma is true for
(n− 1)× (n− 1) matrices, and let B be an n× n matrix in which row i of B
equals ek for some k (1 ≤ k ≤ n). The result follows immediately from the
definition of the determinant if i = 1. Suppose therefore that 1 < i ≤ n. For
each j �= k (1 ≤ j ≤ n), let Cij denote the (n − 2) × (n − 2) matrix obtained
from B by deleting rows 1 and i and columns j and k. For each j, row i − 1
of B̃1j is the following vector in Fn−1:⎧⎪⎨⎪⎩

ek−1 if j < k

0 if j = k

ek if j > k.

Hence by the induction hypothesis and the corollary to Theorem 4.3, we have

det(B̃1j) =

⎧⎪⎨⎪⎩
(−1)(i−1)+(k−1) det(Cij) if j < k

0 if j = k

(−1)(i−1)+k det(Cij) if j > k.

Therefore

det(B) =
n∑

j=1

(−1)1+jB1j · det(B̃1j)

=
∑
j<k

(−1)1+jB1j · det(B̃1j) +
∑
j>k

(−1)1+jB1j · det(B̃1j)

=
∑
j<k

(−1)1+jB1j ·
[
(−1)(i−1)+(k−1) det(Cij)

]
+
∑
j>k

(−1)1+jB1j ·
[
(−1)(i−1)+k det(Cij)

]

= (−1)i+k

⎡⎣∑
j<k

(−1)1+jB1j · det(Cij)

+
∑
j>k

(−1)1+(j−1)B1j · det(Cij)

⎤⎦ .

Because the expression inside the preceding bracket is the cofactor expan-
sion of B̃ik along the first row, it follows that

det(B) = (−1)i+k det(B̃ik).

This shows that the lemma is true for n × n matrices, and so the lemma is
true for all square matrices by mathematical induction.
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We are now able to prove that cofactor expansion along any row can be
used to evaluate the determinant of a square matrix.

Theorem 4.4. The determinant of a square matrix can be evaluated by
cofactor expansion along any row. That is, if A ∈ Mn×n(F ), then for any
integer i (1 ≤ i ≤ n),

det(A) =
n∑

j=1

(−1)i+jAij · det(Ãij).

Proof. Cofactor expansion along the first row of A gives the determinant
of A by definition. So the result is true if i = 1. Fix i > 1. Row i of A can
be written as

∑n
j=1 Aijej . For 1 ≤ j ≤ n, let Bj denote the matrix obtained

from A by replacing row i of A by ej . Then by Theorem 4.3 and the lemma,
we have

det(A) =
n∑

j=1

Aij det(Bj) =
n∑

j=1

(−1)i+jAij · det(Ãij).

Corollary. If A ∈ Mn×n(F ) has two identical rows, then det(A) = 0.

Proof. The proof is by mathematical induction on n. We leave the proof
of the result to the reader in the case that n = 2. Assume that for some
integer n ≥ 3, it is true for (n − 1) × (n − 1) matrices, and let rows r and
s of A ∈ Mn×n(F ) be identical for r �= s. Because n ≥ 3, we can choose an
integer i (1 ≤ i ≤ n) other than r and s. Now

det(A) =
n∑

j=1

(−1)i+jAij · det(Ãij)

by Theorem 4.4. Since each Ãij is an (n − 1) × (n − 1) matrix with two
identical rows, the induction hypothesis implies that each det(Ãij) = 0, and
hence det(A) = 0. This completes the proof for n × n matrices, and so the
lemma is true for all square matrices by mathematical induction.

It is possible to evaluate determinants more efficiently by combining co-
factor expansion with the use of elementary row operations. Before such a
process can be developed, we need to learn what happens to the determinant
of a matrix if we perform an elementary row operation on that matrix. The-
orem 4.3 provides this information for elementary row operations of type 2
(those in which a row is multiplied by a nonzero scalar). Next we turn our
attention to elementary row operations of type 1 (those in which two rows
are interchanged).
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Theorem 4.5. If A ∈ Mn×n(F ) and B is a matrix obtained from A by
interchanging any two rows of A, then det(B) = −det(A).

Proof. Let the rows of A ∈ Mn×n(F ) be a1, a2, . . . , an, and let B be the
matrix obtained from A by interchanging rows r and s, where r < s. Thus

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

...
as

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
as

...
ar

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Consider the matrix obtained from A by replacing rows r and s by ar + as.
By the corollary to Theorem 4.4 and Theorem 4.3, we have

0 = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar + as

...
ar + as

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

...
ar + as

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
as

...
ar + as

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

...
ar

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

...
as

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
as

...
ar

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
as

...
as

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 + det(A) + det(B) + 0.

Therefore det(B) = −det(A).

We now complete our investigation of how an elementary row operation
affects the determinant of a matrix by showing that elementary row operations
of type 3 do not change the determinant of a matrix.

Theorem 4.6. Let A ∈ Mn×n(F ), and let B be a matrix obtained by
adding a multiple of one row of A to another row of A. Then det(B) = det(A).
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Proof. Suppose that B is the n × n matrix obtained from A by adding k
times row r to row s, where r �= s. Let the rows of A be a1, a2, . . . , an, and
the rows of B be b1, b2, . . . , bn. Then bi = ai for i �= s and bs = as + kar.
Let C be the matrix obtained from A by replacing row s with ar. Applying
Theorem 4.3 to row s of B, we obtain

det(B) = det(A) + k det(C) = det(A)

because det(C) = 0 by the corollary to Theorem 4.4.

In Theorem 4.2 (p. 201), we proved that a 2 × 2 matrix is invertible if
and only if its determinant is nonzero. As a consequence of Theorem 4.6, we
can prove half of the promised generalization of this result in the following
corollary. The converse is proved in the corollary to Theorem 4.7.

Corollary. If A ∈ Mn×n(F ) has rank less than n, then det(A) = 0.

Proof. If the rank of A is less than n, then the rows a1, a2, . . . , an of A are
linearly dependent. By Exercise 14 of Section 1.5, some row of A, say, row r,
is a linear combination of the other rows. So there exist scalars ci such that

ar = c1a1 + · · · + cr−1ar−1 + cr+1ar+1 + · · · + cnan.

Let B be the matrix obtained from A by adding −ci times row i to row r for
each i �= r. Then row r of B consists entirely of zeros, and so det(B) = 0.
But by Theorem 4.6, det(B) = det(A). Hence det(A) = 0.

The following rules summarize the effect of an elementary row operation
on the determinant of a matrix A ∈ Mn×n(F ).

(a) If B is a matrix obtained by interchanging any two rows of A, then
det(B) = −det(A).

(b) If B is a matrix obtained by multiplying a row of A by a nonzero scalar
k, then det(B) = k det(A).

(c) If B is a matrix obtained by adding a multiple of one row of A to another
row of A, then det(B) = det(A).

These facts can be used to simplify the evaluation of a determinant. Con-
sider, for instance, the matrix in Example 1:

A =

⎛⎝ 1 3 −3
−3 −5 2
−4 4 −6

⎞⎠ .

Adding 3 times row 1 of A to row 2 and 4 times row 1 to row 3, we obtain

M =

⎛⎝1 4 −3
0 4 −7
0 16 −18

⎞⎠ .
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Since M was obtained by performing two type 3 elementary row operations
on A, we have det(A) = det(M). The cofactor expansion of M along the first
row gives

det(M) = (−1)1+1(1) · det(M̃11) + (−1)1+2(4) · det(M̃12)

+ (−1)1+3(−3) · det(M̃13).

Both M̃12 and M̃13 have a column consisting entirely of zeros, and so
det(M̃12) = det(M̃13) = 0 by the corollary to Theorem 4.6. Hence

det(M) = (−1)1+1(1) · det(M̃11)

= (−1)1+1(1) · det
(

4 −7
16 −18

)
= 1[4(−18) − (−7)(16)] = 40.

Thus with the use of two elementary row operations of type 3, we have reduced
the computation of det(A) to the evaluation of one determinant of a 2 × 2
matrix.

But we can do even better. If we add −4 times row 2 of M to row 3
(another elementary row operation of type 3), we obtain

P =

⎛⎝1 4 −3
0 4 −7
0 0 10

⎞⎠ .

Evaluating det(P ) by cofactor expansion along the first row, we have

det(P ) = (−1)1+1(1) · det(P̃11)

= (−1)1+1(1) · det
(

4 −7
0 10

)
= 1 ·4 ·10 = 40,

as described earlier. Since det(A) = det(M) = det(P ), it follows that
det(A) = 40.

The preceding calculation of det(P ) illustrates an important general fact.
The determinant of an upper triangular matrix is the product of its diagonal
entries. (See Exercise 23.) By using elementary row operations of types 1
and 3 only, we can transform any square matrix into an upper triangular
matrix, and so we can easily evaluate the determinant of any square matrix.
The next two examples illustrate this technique.

Example 5

To evaluate the determinant of the matrix

B =

⎛⎝ 0 1 3
−2 −3 −5

4 −4 4

⎞⎠
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in Example 2, we must begin with a row interchange. Interchanging rows 1
and 2 of B produces

C =

⎛⎝−2 −3 −5
0 1 3
4 −4 4

⎞⎠ .

By means of a sequence of elementary row operations of type 3, we can
transform C into an upper triangular matrix:⎛⎝−2 −3 −5

0 1 3
4 −4 4

⎞⎠ −→
⎛⎝−2 −3 −5

0 1 3
0 −10 −6

⎞⎠ −→
⎛⎝−2 −3 −5

0 1 3
0 0 24

⎞⎠ .

Thus det(C) = −2 ·1 ·24 = −48. Since C was obtained from B by an inter-
change of rows, it follows that

det(B) = −det(C) = 48. ♦
Example 6

The technique in Example 5 can be used to evaluate the determinant of the
matrix

C =

⎛⎜⎜⎝
2 0 0 1
0 1 3 −3

−2 −3 −5 2
4 −4 4 −6

⎞⎟⎟⎠
in Example 3. This matrix can be transformed into an upper triangular
matrix by means of the following sequence of elementary row operations of
type 3:⎛⎜⎜⎝

2 0 0 1
0 1 3 −3

−2 −3 −5 2
4 −4 4 −6

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
2 0 0 1
0 1 3 −3
0 −3 −5 3
0 −4 4 −8

⎞⎟⎟⎠ −→

⎛⎜⎜⎝
2 0 0 1
0 1 3 −3
0 0 4 −6
0 0 16 −20

⎞⎟⎟⎠

−→

⎛⎜⎜⎝
2 0 0 1
0 1 3 −3
0 0 4 −6
0 0 0 4

⎞⎟⎟⎠ .

Thus det(C) = 2 ·1 ·4 ·4 = 32. ♦
Using elementary row operations to evaluate the determinant of a matrix,

as illustrated in Example 6, is far more efficient than using cofactor expansion.
Consider first the evaluation of a 2 × 2 matrix. Since

det
(

a b
c d

)
= ad − bc,
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the evaluation of the determinant of a 2× 2 matrix requires 2 multiplications
(and 1 subtraction). For n ≥ 3, evaluating the determinant of an n×n matrix
by cofactor expansion along any row expresses the determinant as a sum of n
products involving determinants of (n−1)×(n−1) matrices. Thus in all, the
evaluation of the determinant of an n×n matrix by cofactor expansion along
any row requires over n! multiplications, whereas evaluating the determinant
of an n × n matrix by elementary row operations as in Examples 5 and 6
can be shown to require only (n3 + 2n − 3)/3 multiplications. To evaluate
the determinant of a 20× 20 matrix, which is not large by present standards,
cofactor expansion along a row requires over 20! ≈ 2.4 × 1018 multiplica-
tions. Thus it would take a computer performing one billion multiplications
per second over 77 years to evaluate the determinant of a 20 × 20 matrix by
this method. By contrast, the method using elementary row operations re-
quires only 2679 multiplications for this calculation and would take the same
computer less than three-millionths of a second! It is easy to see why most
computer programs for evaluating the determinant of an arbitrary matrix do
not use cofactor expansion.

In this section, we have defined the determinant of a square matrix in
terms of cofactor expansion along the first row. We then showed that the
determinant of a square matrix can be evaluated using cofactor expansion
along any row. In addition, we showed that the determinant possesses a
number of special properties, including properties that enable us to calculate
det(B) from det(A) whenever B is a matrix obtained from A by means of an
elementary row operation. These properties enable us to evaluate determi-
nants much more efficiently. In the next section, we continue this approach
to discover additional properties of determinants.

EXERCISES

1. Label the following statements as true or false.

(a) The function det : Mn×n(F ) → F is a linear transformation.
(b) The determinant of a square matrix can be evaluated by cofactor

expansion along any row.
(c) If two rows of a square matrix A are identical, then det(A) = 0.
(d) If B is a matrix obtained from a square matrix A by interchanging

any two rows, then det(B) = −det(A).
(e) If B is a matrix obtained from a square matrix A by multiplying

a row of A by a scalar, then det(B) = det(A).
(f) If B is a matrix obtained from a square matrix A by adding k

times row i to row j, then det(B) = k det(A).
(g) If A ∈ Mn×n(F ) has rank n, then det(A) = 0.
(h) The determinant of an upper triangular matrix equals the product

of its diagonal entries.
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2. Find the value of k that satisfies the following equation:

det

⎛⎝3a1 3a2 3a3

3b1 3b2 3b3

3c1 3c2 3c3

⎞⎠ = k det

⎛⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞⎠ .

3. Find the value of k that satisfies the following equation:

det

⎛⎝ 2a1 2a2 2a3

3b1 + 5c1 3b2 + 5c2 3b3 + 5c3

7c1 7c2 7c3

⎞⎠ = k det

⎛⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞⎠ .

4. Find the value of k that satisfies the following equation:

det

⎛⎝b1 + c1 b2 + c2 b3 + c3

a1 + c1 a2 + c2 a3 + c3

a1 + b1 a2 + b2 a3 + b3

⎞⎠ = k det

⎛⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞⎠ .

In Exercises 5–12, evaluate the determinant of the given matrix by cofactor
expansion along the indicated row.

5.

⎛⎝ 0 1 2
−1 0 −3

2 3 0

⎞⎠
along the first row

6.

⎛⎝ 1 0 2
0 1 5

−1 3 0

⎞⎠
along the first row

7.

⎛⎝ 0 1 2
−1 0 −3

2 3 0

⎞⎠
along the second row

8.

⎛⎝ 1 0 2
0 1 5

−1 3 0

⎞⎠
along the third row

9.

⎛⎝ 0 1 + i 2
−2i 0 1 − i
3 4i 0

⎞⎠
along the third row

10.

⎛⎝ i 2 + i 0
−1 3 2i
0 −1 1 − i

⎞⎠
along the second row

11.

⎛⎜⎜⎝
0 2 1 3
1 0 −2 2
3 −1 0 1

−1 1 2 0

⎞⎟⎟⎠
along the fourth row

12.

⎛⎜⎜⎝
1 −1 2 −1

−3 4 1 −1
2 −5 −3 8

−2 6 −4 1

⎞⎟⎟⎠
along the fourth row

In Exercises 13–22, evaluate the determinant of the given matrix by any le-
gitimate method.
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13.

⎛⎝0 0 1
0 2 3
4 5 6

⎞⎠ 14.

⎛⎝2 3 4
5 6 0
7 0 0

⎞⎠

15.

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ 16.

⎛⎝−1 3 2
4 −8 1
2 2 5

⎞⎠

17.

⎛⎝0 1 1
1 2 −5
6 −4 3

⎞⎠ 18.

⎛⎝ 1 −2 3
−1 2 −5

3 −1 2

⎞⎠

19.

⎛⎝ i 2 −1
3 1 + i 2

−2i 1 4 − i

⎞⎠ 20.

⎛⎝ −1 2 + i 3
1 − i i 1
3i 2 −1 + i

⎞⎠

21.

⎛⎜⎜⎝
1 0 −2 3

−3 1 1 2
0 4 −1 1
2 3 0 1

⎞⎟⎟⎠ 22.

⎛⎜⎜⎝
1 −2 3 −12

−5 12 −14 19
−9 22 −20 31
−4 9 −14 15

⎞⎟⎟⎠
23. Prove that the determinant of an upper triangular matrix is the product

of its diagonal entries.

24. Prove the corollary to Theorem 4.3.

25. Prove that det(kA) = kn det(A) for any A ∈ Mn×n(F ).

26. Let A ∈ Mn×n(F ). Under what conditions is det(−A) = det(A)?

27. Prove that if A ∈ Mn×n(F ) has two identical columns, then det(A) = 0.

28. Compute det(Ei) if Ei is an elementary matrix of type i.

29.† Prove that if E is an elementary matrix, then det(Et) = det(E).

30. Let the rows of A ∈ Mn×n(F ) be a1, a2, . . . , an, and let B be the matrix
in which the rows are an, an−1, . . . , a1. Calculate det(B) in terms of
det(A).

4.3 PROPERTIES OF DETERMINANTS

In Theorem 3.1, we saw that performing an elementary row operation on
a matrix can be accomplished by multiplying the matrix by an elementary
matrix. This result is very useful in studying the effects on the determinant of
applying a sequence of elementary row operations. Because the determinant
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of the n×n identity matrix is 1 (see Example 4 in Section 4.2), we can interpret
the statements on page 217 as the following facts about the determinants of
elementary matrices.

(a) If E is an elementary matrix obtained by interchanging any two rows
of I, then det(E) = −1.

(b) If E is an elementary matrix obtained by multiplying some row of I by
the nonzero scalar k, then det(E) = k.

(c) If E is an elementary matrix obtained by adding a multiple of some row
of I to another row, then det(E) = 1.

We now apply these facts about determinants of elementary matrices to
prove that the determinant is a multiplicative function.

Theorem 4.7. For any A, B ∈ Mn×n(F ), det(AB) = det(A) · det(B).

Proof. We begin by establishing the result when A is an elementary matrix.
If A is an elementary matrix obtained by interchanging two rows of I, then
det(A) = −1. But by Theorem 3.1 (p. 149), AB is a matrix obtained by
interchanging two rows of B. Hence by Theorem 4.5 (p. 216), det(AB) =
−det(B) = det(A) · det(B). Similar arguments establish the result when A
is an elementary matrix of type 2 or type 3. (See Exercise 18.)

If A is an n × n matrix with rank less than n, then det(A) = 0 by the
corollary to Theorem 4.6 (p. 216). Since rank(AB) ≤ rank(A) < n by Theo-
rem 3.7 (p. 159), we have det(AB) = 0. Thus det(AB) = det(A) · det(B) in
this case.

On the other hand, if A has rank n, then A is invertible and hence is
the product of elementary matrices (Corollary 3 to Theorem 3.6 p. 159), say,
A = Em · · ·E2E1. The first paragraph of this proof shows that

det(AB) = det(Em · · ·E2E1B)
= det(Em) · det(Em−1 · · ·E2E1B)
...
= det(Em) · · · · · · det(E2) · det(E1) · det(B)
= det(Em · · ·E2E1) · det(B)

= det(A) · det(B).

Corollary. A matrix A ∈ Mn×n(F ) is invertible if and only if det(A) �= 0.

Furthermore, if A is invertible, then det(A−1) =
1

det(A)
.

Proof. If A ∈ Mn×n(F ) is not invertible, then the rank of A is less than n.
So det(A) = 0 by the corollary to Theorem 4.6 (p, 217). On the other hand,
if A ∈ Mn×n(F ) is invertible, then

det(A) · det(A−1) = det(AA−1) = det(I) = 1
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by Theorem 4.7. Hence det(A) �= 0 and det(A−1) =
1

det(A)
.

In our discussion of determinants until now, we have used only the rows
of a matrix. For example, the recursive definition of a determinant involved
cofactor expansion along a row, and the more efficient method developed in
Section 4.2 used elementary row operations. Our next result shows that the
determinants of A and At are always equal. Since the rows of A are the
columns of At, this fact enables us to translate any statement about determi-
nants that involves the rows of a matrix into a corresponding statement that
involves its columns.

Theorem 4.8. For any A ∈ Mn×n(F ), det(At) = det(A).

Proof. If A is not invertible, then rank(A) < n. But rank(At) = rank(A)
by Corollary 2 to Theorem 3.6 (p. 158), and so At is not invertible. Thus
det(At) = 0 = det(A) in this case.

On the other hand, if A is invertible, then A is a product of elementary
matrices, say A = Em · · ·E2E1. Since det(Ei) = det(Et

i ) for every i by
Exercise 29 of Section 4.2, by Theorem 4.7 we have

det(At) = det(Et
1E

t
2 · · ·Et

m)

= det(Et
1) · det(Et

2)· · · · · det(Et
m)

= det(E1) · det(E2) · · · · · det(Em)
= det(Em) · · · · · det(E2) · det(E1)
= det(Em · · ·E2E1)
= det(A).

Thus, in either case, det(At) = det(A).

Among the many consequences of Theorem 4.8 are that determinants can
be evaluated by cofactor expansion along a column, and that elementary col-
umn operations can be used as well as elementary row operations in evaluating
a determinant. (The effect on the determinant of performing an elementary
column operation is the same as the effect of performing the corresponding
elementary row operation.) We conclude our discussion of determinant prop-
erties with a well-known result that relates determinants to the solutions of
certain types of systems of linear equations.

Theorem 4.9 (Cramer’s Rule). Let Ax = b be the matrix form of
a system of n linear equations in n unknowns, where x = (x1, x2, . . . , xn)t.
If det(A) �= 0, then this system has a unique solution, and for each k (k =
1, 2, . . . , n),

xk =
det(Mk)
det(A)

,
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where Mk is the n × n matrix obtained from A by replacing column k of A
by b.

Proof. If det(A) �= 0, then the system Ax = b has a unique solution by
the corollary to Theorem 4.7 and Theorem 3.10 (p. 174). For each integer k
(1 ≤ k ≤ n), let ak denote the kth column of A and Xk denote the matrix
obtained from the n × n identity matrix by replacing column k by x. Then
by Theorem 2.13 (p. 90), AXk is the n × n matrix whose ith column is

Aei = ai if i �= k and Ax = b if i = k.

Thus AXk = Mk. Evaluating Xk by cofactor expansion along row k produces

det(Xk) = xk · det(In−1) = xk.

Hence by Theorem 4.7,

det(Mk) = det(AXk) = det(A) · det(Xk) = det(A) ·xk.

Therefore

xk = [det(A)]−1 · det(Mk).

Example 1

We illustrate Theorem 4.9 by using Cramer’s rule to solve the following system
of linear equations:

x1 + 2x2 + 3x3 = 2
x1 + x3 = 3
x2 + x2 − x3 = 1.

The matrix form of this system of linear equations is Ax = b, where

A =

⎛⎝1 2 3
1 0 1
1 1 −1

⎞⎠ and b =

⎛⎝2
3
1

⎞⎠ .

Because det(A) = 6 �= 0, Cramer’s rule applies. Using the notation of Theo-
rem 4.9, we have

x1 =
det(M1)
det(A)

=

det

⎛⎝2 2 3
3 0 1
1 1 −1

⎞⎠
det(A)

=
15
6

=
5
2
,

x2 =
det(M2)
det(A)

=

det

⎛⎝1 2 3
1 3 1
1 1 −1

⎞⎠
det(A)

=
−6
6

= −1,
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and

x3 =
det(M3)
det(A)

=

det

⎛⎝1 2 2
1 0 3
1 1 1

⎞⎠
det(A)

=
3
6

=
1
2
.

Thus the unique solution to the given system of linear equations is

(x1, x2, x3) =
(

5
2
,−1,

1
2

)
. ♦

In applications involving systems of linear equations, we sometimes need
to know that there is a solution in which the unknowns are integers. In this
situation, Cramer’s rule can be useful because it implies that a system of linear
equations with integral coefficients has an integral solution if the determinant
of its coefficient matrix is ±1. On the other hand, Cramer’s rule is not useful
for computation because it requires evaluating n + 1 determinants of n × n
matrices to solve a system of n linear equations in n unknowns. The amount
of computation to do this is far greater than that required to solve the system
by the method of Gaussian elimination, which was discussed in Section 3.4.
Thus Cramer’s rule is primarily of theoretical and aesthetic interest, rather
than of computational value.

As in Section 4.1, it is possible to interpret the determinant of a matrix
A ∈ Mn×n(R) geometrically. If the rows of A are a1, a2, . . . , an, respectively,
then |det(A)| is the n-dimensional volume (the generalization of area in
R2 and volume in R3) of the parallelepiped having the vectors a1, a2, . . . , an

as adjacent sides. (For a proof of a more generalized result, see Jerrold
E. Marsden and Michael J. Hoffman, Elementary Classical Analysis, W.H.
Freeman and Company, New York, 1993, p. 524.)

Example 2

The volume of the parallelepiped having the vectors a1 = (1,−2, 1), a2 =
(1, 0,−1), and a3 = (1, 1, 1) as adjacent sides is∣∣∣∣∣∣det

⎛⎝1 −2 1
1 0 −1
1 1 1

⎞⎠∣∣∣∣∣∣ = 6.

Note that the object in question is a rectangular parallelepiped (see Fig-
ure 4.6) with sides of lengths

√
6,

√
2, and

√
3. Hence by the familiar formula

for volume, its volume should be
√

6 ·√2 ·√3 = 6, as the determinant calcu-
lation shows. ♦

In our earlier discussion of the geometric significance of the determinant
formed from the vectors in an ordered basis for R2, we also saw that this
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x

y

z

(1, 1, 1)

(1, 0,−1)

(1,−2, 1)

Figure 4.6: Parallelepiped determined by three vectors in R3.

determinant is positive if and only if the basis induces a right-handed coor-
dinate system. A similar statement is true in Rn. Specifically, if γ is any
ordered basis for Rn and β is the standard ordered basis for Rn, then γ in-
duces a right-handed coordinate system if and only if det(Q) > 0, where Q is
the change of coordinate matrix changing γ-coordinates into β-coordinates.
Thus, for instance,

γ =

⎧⎨⎩
⎛⎝1

1
0

⎞⎠ ,

⎛⎝ 1
−1

0

⎞⎠ ,

⎛⎝0
0
1

⎞⎠⎫⎬⎭
induces a left-handed coordinate system in R3 because

det

⎛⎝1 1 0
1 −1 0
0 0 1

⎞⎠ = −2 < 0,

whereas

γ′ =

⎧⎨⎩
⎛⎝1

2
0

⎞⎠ ,

⎛⎝−2
1
0

⎞⎠ ,

⎛⎝0
0
1

⎞⎠⎫⎬⎭
induces a right-handed coordinate system in R3 because

det

⎛⎝1 −2 0
2 1 0
0 0 1

⎞⎠ = 5 > 0.
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More generally, if β and γ are two ordered bases for Rn, then the coordinate
systems induced by β and γ have the same orientation (either both are
right-handed or both are left-handed) if and only if det(Q) > 0, where Q is
the change of coordinate matrix changing γ-coordinates into β-coordinates.

EXERCISES

1. Label the following statements as true or false.

(a) If E is an elementary matrix, then det(E) = ±1.
(b) For any A, B ∈ Mn×n(F ), det(AB) = det(A) · det(B).
(c) A matrix M ∈ Mn×n(F ) is invertible if and only if det(M) = 0.
(d) A matrix M ∈ Mn×n(F ) has rank n if and only if det(M) �= 0.
(e) For any A ∈ Mn×n(F ), det(At) = −det(A).
(f) The determinant of a square matrix can be evaluated by cofactor

expansion along any column.
(g) Every system of n linear equations in n unknowns can be solved

by Cramer’s rule.
(h) Let Ax = b be the matrix form of a system of n linear equations

in n unknowns, where x = (x1, x2, . . . , xn)t. If det(A) �= 0 and if
Mk is the n × n matrix obtained from A by replacing row k of A
by bt, then the unique solution of Ax = b is

xk =
det(Mk)
det(A)

for k = 1, 2, . . . , n.

In Exercises 2–7, use Cramer’s rule to solve the given system of linear equa-
tions.

2.
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

where a11a22 − a12a21 �= 0
3.

2x1 + x2 − 3x3 = 5
x1 − 2x2 + x3 = 10

3x1 + 4x2 − 2x3 = 0

4.
2x1 + x2 − 3x3 = 1
x1 − 2x2 + x3 = 0

3x1 + 4x2 − 2x3 = −5
5.

x1 − x2 + 4x3 = −4
−8x1 + 3x2 + x3 = 8

2x1 − x2 + x3 = 0

6.
x1 − x2 + 4x3 = −2

−8x1 + 3x2 + x3 = 0
2x1 − x2 + x3 = 6

7.
3x1 + x2 + x3 = 4

−2x1 − x2 = 12
x1 + 2x2 + x3 = −8

8. Use Theorem 4.8 to prove a result analogous to Theorem 4.3 (p. 212),
but for columns.

9. Prove that an upper triangular n × n matrix is invertible if and only if
all its diagonal entries are nonzero.
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10. A matrix M ∈ Mn×n(C) is called nilpotent if, for some positive integer
k, Mk = O, where O is the n × n zero matrix. Prove that if M is
nilpotent, then det(M) = 0.

11. A matrix M ∈ Mn×n(C) is called skew-symmetric if M t = −M .
Prove that if M is skew-symmetric and n is odd, then M is not invert-
ible. What happens if n is even?

12. A matrix Q ∈ Mn×n(R) is called orthogonal if QQt = I. Prove that
if Q is orthogonal, then det(Q) = ±1.

13. For M ∈ Mn×n(C), let M be the matrix such that (M)ij = Mij for all
i, j, where Mij is the complex conjugate of Mij .

(a) Prove that det(M) = det(M).
(b) A matrix Q ∈ Mn×n(C) is called unitary if QQ∗ = I, where

Q∗ = Qt. Prove that if Q is a unitary matrix, then |det(Q)| = 1.

14. Let β = {u1, u2, . . . , un} be a subset of Fn containing n distinct vectors,
and let B be the matrix in Mn×n(F ) having uj as column j. Prove that
β is a basis for Fn if and only if det(B) �= 0.

15.† Prove that if A, B ∈ Mn×n(F ) are similar, then det(A) = det(B).

16. Use determinants to prove that if A, B ∈ Mn×n(F ) are such that AB =
I, then A is invertible (and hence B = A−1).

17. Let A, B ∈ Mn×n(F ) be such that AB = −BA. Prove that if n is odd
and F is not a field of characteristic two, then A or B is not invertible.

18. Complete the proof of Theorem 4.7 by showing that if A is an elementary
matrix of type 2 or type 3, then det(AB) = det(A) · det(B).

19. A matrix A ∈ Mn×n(F ) is called lower triangular if Aij = 0 for
1 ≤ i < j ≤ n. Suppose that A is a lower triangular matrix. Describe
det(A) in terms of the entries of A.

20. Suppose that M ∈ Mn×n(F ) can be written in the form

M =
(

A B
O I

)
,

where A is a square matrix. Prove that det(M) = det(A).

21.† Prove that if M ∈ Mn×n(F ) can be written in the form

M =
(

A B
O C

)
,

where A and C are square matrices, then det(M) = det(A) · det(C).
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22. Let T : Pn(F ) → Fn+1 be the linear transformation defined in Exer-
cise 22 of Section 2.4 by T(f) = (f(c0), f(c1), . . . , f(cn)), where
c0, c1, . . . , cn are distinct scalars in an infinite field F . Let β be the
standard ordered basis for Pn(F ) and γ be the standard ordered basis
for Fn+1.

(a) Show that M = [T]γβ has the form⎛⎜⎜⎜⎝
1 c0 c2

0 · · · cn
0

1 c1 c2
1 · · · cn

1
...

...
...

...
1 cn c2

n · · · cn
n

⎞⎟⎟⎟⎠ .

A matrix with this form is called a Vandermonde matrix.
(b) Use Exercise 22 of Section 2.4 to prove that det(M) �= 0.
(c) Prove that

det(M) =
∏

0≤i<j≤n

(cj − ci),

the product of all terms of the form cj − ci for 0 ≤ i < j ≤ n.

23. Let A ∈ Mn×n(F ) be nonzero. For any m (1 ≤ m ≤ n), an m × m
submatrix is obtained by deleting any n − m rows and any n − m
columns of A.

(a) Let k (1 ≤ k ≤ n) denote the largest integer such that some k × k
submatrix has a nonzero determinant. Prove that rank(A) = k.

(b) Conversely, suppose that rank(A) = k. Prove that there exists a
k × k submatrix with a nonzero determinant.

24. Let A ∈ Mn×n(F ) have the form

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 a0

−1 0 0 · · · 0 a1

0 −1 0 · · · 0 a2

...
...

...
...

...
0 0 0 · · · −1 an−1

⎞⎟⎟⎟⎟⎟⎠ .

Compute det(A + tI), where I is the n × n identity matrix.

25. Let cjk denote the cofactor of the row j, column k entry of the matrix
A ∈ Mn×n(F ).

(a) Prove that if B is the matrix obtained from A by replacing column
k by ej , then det(B) = cjk.
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(b) Show that for 1 ≤ j ≤ n, we have

A

⎛⎜⎜⎜⎝
cj1

cj2

...
cjn

⎞⎟⎟⎟⎠ = det(A) ·ej .

Hint: Apply Cramer’s rule to Ax = ej .
(c) Deduce that if C is the n × n matrix such that Cij = cji, then

AC = [det(A)]I.
(d) Show that if det(A) �= 0, then A−1 = [det(A)]−1C.

The following definition is used in Exercises 26–27.

Definition. The classical adjoint of a square matrix A is the transpose
of the matrix whose ij-entry is the ij-cofactor of A.

26. Find the classical adjoint of each of the following matrices.

(a)
(

A11 A12

A21 A22

)
(b)

⎛⎝4 0 0
0 4 0
0 0 4

⎞⎠
(c)

⎛⎝−4 0 0
0 2 0
0 0 5

⎞⎠ (d)

⎛⎝3 6 7
0 4 8
0 0 5

⎞⎠
(e)

⎛⎝1 − i 0 0
4 3i 0
2i 1 + 4i −1

⎞⎠ (f)

⎛⎝ 7 1 4
6 −3 0

−3 5 −2

⎞⎠
(g)

⎛⎝−1 2 5
8 0 −3
4 6 1

⎞⎠ (h)

⎛⎝ 3 2 + i 0
−1 + i 0 i

0 1 3 − 2i

⎞⎠
27. Let C be the classical adjoint of A ∈ Mn×n(F ). Prove the following

statements.
(a) det(C) = [det(A)]n−1.
(b) Ct is the classical adjoint of At.
(c) If A is an invertible upper triangular matrix, then C and A−1 are

both upper triangular matrices.

28. Let y1, y2, . . . , yn be linearly independent functions in C∞. For each
y ∈ C∞, define T(y) ∈ C∞ by

[T(y)](t) = det

⎛⎜⎜⎜⎝
y(t) y1(t) y2(t) · · · yn(t)
y′(t) y′

1(t) y′
2(t) · · · y′

n(t)
...

...
...

...
y(n)(t) y

(n)
1 (t) y

(n)
2 (t) · · · y

(n)
n (t)

⎞⎟⎟⎟⎠ .
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The preceding determinant is called the Wronskian of y, y1, . . . , yn.

(a) Prove that T : C∞ → C∞ is a linear transformation.
(b) Prove that N(T) = span({y1, y2, . . . , yn}).

4.4 SUMMARY—IMPORTANT FACTS ABOUT DETERMINANTS

In this section, we summarize the important properties of the determinant
needed for the remainder of the text. The results contained in this section
have been derived in Sections 4.2 and 4.3; consequently, the facts presented
here are stated without proofs.

The determinant of an n×n matrix A having entries from a field F is a
scalar in F , denoted by det(A) or |A|, and can be computed in the following
manner:

1. If A is 1 × 1, then det(A) = A11, the single entry of A.

2. If A is 2 × 2, then det(A) = A11A22 − A12A21. For example,

det
(−1 2

5 3

)
= (−1)(3) − (2)(5) = −13.

3. If A is n × n for n > 2, then

det(A) =
n∑

j=1

(−1)i+jAij · det(Ãij)

(if the determinant is evaluated by the entries of row i of A) or

det(A) =
n∑

i=1

(−1)i+jAij · det(Ãij)

(if the determinant is evaluated by the entries of column j of A), where
Ãij is the (n−1)×(n−1) matrix obtained by deleting row i and column
j from A.

In the formulas above, the scalar (−1)i+j det(Ãij) is called the cofactor
of the row i column j entry of A. In this language, the determinant of A is
evaluated as the sum of terms obtained by multiplying each entry of some
row or column of A by the cofactor of that entry. Thus det(A) is expressed
in terms of n determinants of (n− 1)× (n− 1) matrices. These determinants
are then evaluated in terms of determinants of (n−2)× (n−2) matrices, and
so forth, until 2 × 2 matrices are obtained. The determinants of the 2 × 2
matrices are then evaluated as in item 2.
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Let us consider two examples of this technique in evaluating the determi-
nant of the 4 × 4 matrix

A =

⎛⎜⎜⎝
2 1 1 5
1 1 −4 −1
2 0 −3 1
3 6 1 2

⎞⎟⎟⎠ .

To evaluate the determinant of A by expanding along the fourth row, we
must know the cofactors of each entry of that row. The cofactor of A41 = 3
is (−1)4+1 det(B), where

B =

⎛⎝1 1 5
1 −4 −1
0 −3 1

⎞⎠ .

Let us evaluate this determinant by expanding along the first column. We
have

det(B) = (−1)1+1(1) det
(−4 −1
−3 1

)
+ (−1)2+1(1) det

(
1 5

−3 1

)
+ (−1)3+1(0) det

(
1 5

−4 −1

)
= 1(1)[(−4)(1) − (−1)(−3)] + (−1)(1)[(1)(1) − (5)(−3)] + 0

= −7 − 16 + 0 = −23.

Thus the cofactor of A41 is (−1)5(−23) = 23. Similarly, the cofactors of A42,
A43, and A44 are 8, 11, and −13, respectively. We can now evaluate the
determinant of A by multiplying each entry of the fourth row by its cofactor;
this gives

det(A) = 3(23) + 6(8) + 1(11) + 2(−13) = 102.

For the sake of comparison, let us also compute the determinant of A
by expansion along the second column. The reader should verify that the
cofactors of A12, A22, and A42 are −14, 40, and 8, respectively. Thus

det(A) = (−1)1+2(1) det

⎛⎝1 −4 −1
2 −3 1
3 1 2

⎞⎠+ (−1)2+2(1) det

⎛⎝2 1 5
2 −3 1
3 1 2

⎞⎠
+ (−1)3+2(0) det

⎛⎝2 1 5
1 −4 −1
3 1 2

⎞⎠+ (−1)4+2(6) det

⎛⎝2 1 5
1 −4 −1
2 −3 1

⎞⎠
= 14 + 40 + 0 + 48 = 102.
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Of course, the fact that the value 102 is obtained again is no surprise since the
value of the determinant of A is independent of the choice of row or column
used in the expansion.

Observe that the computation of det(A) is easier when expanded along
the second column than when expanded along the fourth row. The difference
is the presence of a zero in the second column, which makes it unnecessary
to evaluate one of the cofactors (the cofactor of A32). For this reason, it is
beneficial to evaluate the determinant of a matrix by expanding along a row or
column of the matrix that contains the largest number of zero entries. In fact,
it is often helpful to introduce zeros into the matrix by means of elementary
row operations before computing the determinant. This technique utilizes
the first three properties of the determinant.

Properties of the Determinant

1. If B is a matrix obtained by interchanging any two rows or interchanging
any two columns of an n × n matrix A, then det(B) = −det(A).

2. If B is a matrix obtained by multiplying each entry of some row or
column of an n × n matrix A by a scalar k, then det(B) = k · det(A).

3. If B is a matrix obtained from an n× n matrix A by adding a multiple
of row i to row j or a multiple of column i to column j for i �= j, then
det(B) = det(A).

As an example of the use of these three properties in evaluating deter-
minants, let us compute the determinant of the 4 × 4 matrix A considered
previously. Our procedure is to introduce zeros into the second column of
A by employing property 3, and then to expand along that column. (The
elementary row operations used here consist of adding multiples of row 1 to
rows 2 and 4.) This procedure yields

det(A) = det

⎛⎜⎜⎝
2 1 1 5
1 1 −4 −1
2 0 −3 1
3 6 1 2

⎞⎟⎟⎠ = det

⎛⎜⎜⎝
2 1 1 5

−1 0 −5 −6
2 0 −3 1

−9 0 −5 −28

⎞⎟⎟⎠

= 1(−1)1+2 det

⎛⎝−1 −5 −6
2 −3 1

−9 −5 −28

⎞⎠ .

The resulting determinant of a 3 × 3 matrix can be evaluated in the same
manner: Use type 3 elementary row operations to introduce two zeros into
the first column, and then expand along that column. This results in the
value −102. Therefore

det(A) = 1(−1)1+2(−102) = 102.
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The reader should compare this calculation of det(A) with the preceding
ones to see how much less work is required when properties 1, 2, and 3 are
employed.

In the chapters that follow, we often have to evaluate the determinant of
matrices having special forms. The next two properties of the determinant
are useful in this regard:

4. The determinant of an upper triangular matrix is the product of its
diagonal entries. In particular, det(I) = 1.

5. If two rows (or columns) of a matrix are identical, then the determinant
of the matrix is zero.

As an illustration of property 4, notice that

det

⎛⎝−3 1 2
0 4 5
0 0 −6

⎞⎠ = (−3)(4)(−6) = 72.

Property 4 provides an efficient method for evaluating the determinant of a
matrix:

(a) Use Gaussian elimination and properties 1, 2, and 3 above to reduce the
matrix to an upper triangular matrix.

(b) Compute the product of the diagonal entries.

For instance,

det

⎛⎜⎜⎝
1 −1 2 1
2 −1 −1 4

−4 5 −10 −6
3 −2 10 −1

⎞⎟⎟⎠ = det

⎛⎜⎜⎝
1 −1 2 1
0 1 −5 2
0 1 −2 −2
0 1 4 −4

⎞⎟⎟⎠

= det

⎛⎜⎜⎝
1 −1 2 1
0 1 −5 2
0 0 3 −4
0 0 9 −6

⎞⎟⎟⎠ = det

⎛⎜⎜⎝
1 −1 2 1
0 1 −5 2
0 0 3 −4
0 0 0 6

⎞⎟⎟⎠
= 1 ·1 ·3 ·6 = 18.

The next three properties of the determinant are used frequently in later
chapters. Indeed, perhaps the most significant property of the determinant
is that it provides a simple characterization of invertible matrices. (See prop-
erty 7.)

6. For any n × n matrices A and B, det(AB) = det(A) · det(B).
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7. An n×n matrix A is invertible if and only if det(A) �= 0. Furthermore,

if A is invertible, then det(A−1) =
1

det(A)
.

8. For any n × n matrix A, the determinants of A and At are equal.

For example, property 7 guarantees that the matrix A on page 233 is
invertible because det(A) = 102.

The final property, stated as Exercise 15 of Section 4.3, is used in Chap-
ter 5. It is a simple consequence of properties 6 and 7.

9. If A and B are similar matrices, then det(A) = det(B).

EXERCISES

1. Label the following statements as true or false.

(a) The determinant of a square matrix may be computed by expand-
ing the matrix along any row or column.

(b) In evaluating the determinant of a matrix, it is wise to expand
along a row or column containing the largest number of zero en-
tries.

(c) If two rows or columns of A are identical, then det(A) = 0.
(d) If B is a matrix obtained by interchanging two rows or two columns

of A, then det(B) = det(A).
(e) If B is a matrix obtained by multiplying each entry of some row

or column of A by a scalar, then det(B) = det(A).
(f) If B is a matrix obtained from A by adding a multiple of some row

to a different row, then det(B) = det(A).
(g) The determinant of an upper triangular n×n matrix is the product

of its diagonal entries.
(h) For every A ∈ Mn×n(F ), det(At) = −det(A).
(i) If A, B ∈ Mn×n(F ), then det(AB) = det(A) · det(B).
(j) If Q is an invertible matrix, then det(Q−1) = [det(Q)]−1.
(k) A matrix Q is invertible if and only if det(Q) �= 0.

2. Evaluate the determinant of the following 2 × 2 matrices.

(a)
(

4 −5
2 3

)
(b)

(−1 7
3 8

)

(c)
(

2 + i −1 + 3i
1 − 2i 3 − i

)
(d)

(
3 4i

−6i 2i

)
3. Evaluate the determinant of the following matrices in the manner indi-

cated.
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(a)

⎛⎝ 0 1 2
−1 0 −3

2 3 0

⎞⎠
along the first row

(b)

⎛⎝ 1 0 2
0 1 5

−1 3 0

⎞⎠
along the first column

(c)

⎛⎝ 0 1 2
−1 0 −3

2 3 0

⎞⎠
along the second column

(d)

⎛⎝ 1 0 2
0 1 5

−1 3 0

⎞⎠
along the third row

(e)

⎛⎝ 0 1 + i 2
−2i 0 1 − i
3 4i 0

⎞⎠
along the third row

(f)

⎛⎝ i 2 + i 0
−1 3 2i
0 −1 1 − i

⎞⎠
along the third column

(g)

⎛⎜⎜⎝
0 2 1 3
1 0 −2 2
3 −1 0 1

−1 1 2 0

⎞⎟⎟⎠
along the fourth column

(h)

⎛⎜⎜⎝
1 −1 2 −1

−3 4 1 −1
2 −5 −3 8

−2 6 −4 1

⎞⎟⎟⎠
along the fourth row

4. Evaluate the determinant of the following matrices by any legitimate
method.

(a)

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ (b)

⎛⎝−1 3 2
4 −8 1
2 2 5

⎞⎠

(c)

⎛⎝0 1 1
1 2 −5
6 −4 3

⎞⎠ (d)

⎛⎝ 1 −2 3
−1 2 −5

3 −1 2

⎞⎠

(e)

⎛⎝ i 2 −1
3 1 + i 2

−2i 1 4 − i

⎞⎠ (f)

⎛⎝ −1 2 + i 3
1 − i i 1
3i 2 −1 + i

⎞⎠

(g)

⎛⎜⎜⎝
1 0 −2 3

−3 1 1 2
0 4 −1 1
2 3 0 1

⎞⎟⎟⎠ (h)

⎛⎜⎜⎝
1 −2 3 −12

−5 12 −14 19
−9 22 −20 31
−4 9 −14 15

⎞⎟⎟⎠
5. Suppose that M ∈ Mn×n(F ) can be written in the form

M =
(

A B
O I

)
,

where A is a square matrix. Prove that det(M) = det(A).
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6.† Prove that if M ∈ Mn×n(F ) can be written in the form

M =
(

A B
O C

)
,

where A and C are square matrices, then det(M) = det(A) · det(C).

4.5∗ A CHARACTERIZATION OF THE DETERMINANT

In Sections 4.2 and 4.3, we showed that the determinant possesses a number of
properties. In this section, we show that three of these properties completely
characterize the determinant; that is, the only function δ : Mn×n(F ) → F
having these three properties is the determinant. This characterization of
the determinant is the one used in Section 4.1 to establish the relationship

between det
(

u
v

)
and the area of the parallelogram determined by u and

v. The first of these properties that characterize the determinant is the one
described in Theorem 4.3 (p. 212).

Definition. A function δ : Mn×n(F ) → F is called an n-linear function
if it is a linear function of each row of an n × n matrix when the remaining
n− 1 rows are held fixed, that is, δ is n-linear if, for every r = 1, 2, . . . , n, we
have

δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

u + kv
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

u
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ kδ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

v
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
whenever k is a scalar and u, v, and each ai are vectors in Fn.

Example 1

The function δ : Mn×n(F ) → F defined by δ(A) = 0 for each A ∈ Mn×n(F )
is an n-linear function. ♦

Example 2

For 1 ≤ j ≤ n, define δj : Mn×n(F ) → F by δj(A) = A1jA2j · · ·Anj for each
A ∈ Mn×n(F ); that is, δj(A) equals the product of the entries of column j of
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A. Let A ∈ Mn×n(F ), ai = (Ai1, Ai2, . . . , Ain), and v = (b1, b2, . . . , bn) ∈ Fn.
Then each δj is an n-linear function because, for any scalar k, we have

δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

ar + kv
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= A1j · · ·A(r−1)j(Arj + kbj)A(r+1)j · · ·Anj

= A1j · · ·A(r−1)jArjA(r+1)j · · ·Anj

+ A1j · · ·A(r−1)j(kbj)A(r+1)j · · ·Anj

= A1j · · ·A(r−1)jArjA(r+1)j · · ·Anj

+ k(A1j · · ·A(r−1)jbjA(r+1)j · · ·Anj)

= δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

ar

ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ kδ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar−1

v
ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ♦

Example 3

The function δ : Mn×n(F ) → F defined for each A ∈ Mn×n(F ) by δ(A) =
A11A22 · · ·Ann (i.e., δ(A) equals the product of the diagonal entries of A) is
an n-linear function. ♦
Example 4

The function δ : Mn×n(R) → R defined for each A ∈ Mn×n(R) by δ(A) =
tr(A) is not an n-linear function for n ≥ 2. For if I is the n × n identity
matrix and A is the matrix obtained by multiplying the first row of I by 2,
then δ(A) = n + 1 �= 2n = 2 ·δ(I). ♦

Theorem 4.3 (p. 212) asserts that the determinant is an n-linear function.
For our purposes this is the most important example of an n-linear function.
Now we introduce the second of the properties used in the characterization
of the determinant.

Definition. An n-linear function δ : Mn×n(F ) → F is called alternating
if, for each A ∈ Mn×n(F ), we have δ(A) = 0 whenever two adjacent rows of
A are identical.
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Theorem 4.10. Let δ : Mn×n(F ) → F be an alternating n-linear function.
(a) If A ∈ Mn×n(F ) and B is a matrix obtained from A by interchanging

any two rows of A, then δ(B) = −δ(A).
(b) If A ∈ Mn×n(F ) has two identical rows, then δ(A) = 0.

Proof. (a) Let A ∈ Mn×n(F ), and let B be the matrix obtained from A
by interchanging rows r and s, where r < s. We first establish the result in
the case that s = r + 1. Because δ : Mn×n(F ) → F is an n-linear function
that is alternating, we have

0 = δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar + ar+1

ar + ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

ar + ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar+1

ar + ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

ar

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar

ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar+1

ar

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
ar+1

ar+1

...
an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 + δ(A) + δ(B) + 0.

Thus δ(B) = −δ(A).
Next suppose that s > r + 1, and let the rows of A be a1, a2, . . . , an.

Beginning with ar and ar+1, successively interchange ar with the row that
follows it until the rows are in the sequence

a1, a2, . . . , ar−1, ar+1, . . . , as, ar, as+1, . . . , an.

In all, s−r interchanges of adjacent rows are needed to produce this sequence.
Then successively interchange as with the row that precedes it until the rows
are in the order

a1, a2, . . . , ar−1, as, ar+1, . . . , as−1, ar, as+1, . . . , an.

This process requires an additional s − r − 1 interchanges of adjacent rows
and produces the matrix B. It follows from the preceding paragraph that

δ(B) = (−1)(s−r)+(s−r−1)δ(A) = −δ(A).

(b) Suppose that rows r and s of A ∈ Mn×n(F ) are identical, where r < s.
If s = r + 1, then δ(A) = 0 because δ is alternating and two adjacent rows
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of A are identical. If s > r + 1, let B be the matrix obtained from A by
interchanging rows r + 1 and s. Then δ(B) = 0 because two adjacent rows of
B are identical. But δ(B) = −δ(A) by (a). Hence δ(A) = 0.

Corollary 1. Let δ : Mn×n(F ) → F be an alternating n-linear function.
If B is a matrix obtained from A ∈ Mn×n(F ) by adding a multiple of some
row of A to another row, then δ(B) = δ(A).

Proof. Let B be obtained from A ∈ Mn×n(F ) by adding k times row i of
A to row j, where j �= i, and let C be obtained from A by replacing row j of
A by row i of A. Then the rows of A, B, and C are identical except for row
j. Moreover, row j of B is the sum of row j of A and k times row j of C.
Since δ is an n-linear function and C has two identical rows, it follows that

δ(B) = δ(A) + kδ(C) = δ(A) + k ·0 = δ(A).

The next result now follows as in the proof of the corollary to Theorem 4.6
(p. 216). (See Exercise 11.)

Corollary 2. Let δ : Mn×n(F ) → F be an alternating n-linear function.
If M ∈ Mn×n(F ) has rank less than n, then δ(M) = 0.

Proof. Exercise.

Corollary 3. Let δ : Mn×n(F ) → F be an alternating n-linear function,
and let E1, E2, and E3 in Mn×n(F ) be elementary matrices of types 1, 2,
and 3, respectively. Suppose that E2 is obtained by multiplying some row
of I by the nonzero scalar k. Then δ(E1) = −δ(I), δ(E2) = k ·δ(I), and
δ(E3) = δ(I).

Proof. Exercise.

We wish to show that under certain circumstances, the only alternating
n-linear function δ : Mn×n(F ) → F is the determinant, that is, δ(A) = det(A)
for all A ∈ Mn×n(F ). In view of Corollary 3 to Theorem 4.10 and the facts
on page 223 about the determinant of an elementary matrix, this can happen
only if δ(I) = 1. Hence the third condition that is used in the characterization
of the determinant is that the determinant of the n × n identity matrix is 1.
Before we can establish the desired characterization of the determinant, we
must first show that an alternating n-linear function δ such that δ(I) = 1 is
a multiplicative function. The proof of this result is identical to the proof of
Theorem 4.7 (p. 223), and so it is omitted. (See Exercise 12.)

Theorem 4.11. Let δ : Mn×n(F ) → F be an alternating n-linear function
such that δ(I) = 1. For any A, B ∈ Mn×n(F ), we have δ(AB) = δ(A) ·δ(B).
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Proof. Exercise.

Theorem 4.12. If δ : Mn×n(F ) → F is an alternating n-linear function
such that δ(I) = 1, then δ(A) = det(A) for every A ∈ Mn×n(F ).

Proof. Let δ : Mn×n(F ) → F be an alternating n-linear function such that
δ(I) = 1, and let A ∈ Mn×n(F ). If A has rank less than n, then by Corollary 2
to Theorem 4.10, δ(A) = 0. Since the corollary to Theorem 4.6 (p. 217) gives
det(A) = 0, we have δ(A) = det(A) in this case. If, on the other hand, A has
rank n, then A is invertible and hence is the product of elementary matrices
(Corollary 3 to Theorem 3.6 p. 159), say A = Em · · ·E2E1. Since δ(I) = 1,
it follows from Corollary 3 to Theorem 4.10 and the facts on page 223 that
δ(E) = det(E) for every elementary matrix E. Hence by Theorems 4.11
and 4.7 (p. 223), we have

δ(A) = δ(Em · · ·E2E1)
= δ(Em) · · · · ·δ(E2) ·δ(E1)
= det(Em) · · · · · det(E2) · det(E1)
= det(Em · · ·E2E1)

= det(A).

Theorem 4.12 provides the desired characterization of the determinant: It
is the unique function δ : Mn×n(F ) → F that is n-linear, is alternating, and
has the property that δ(I) = 1.

EXERCISES

1. Label the following statements as true or false.

(a) Any n-linear function δ : Mn×n(F ) → F is a linear transformation.
(b) Any n-linear function δ : Mn×n(F ) → F is a linear function of each

row of an n × n matrix when the other n − 1 rows are held fixed.
(c) If δ : Mn×n(F ) → F is an alternating n-linear function and the

matrix A ∈ Mn×n(F ) has two identical rows, then δ(A) = 0.
(d) If δ : Mn×n(F ) → F is an alternating n-linear function and B is

obtained from A ∈ Mn×n(F ) by interchanging two rows of A, then
δ(B) = δ(A).

(e) There is a unique alternating n-linear function δ : Mn×n(F ) → F .
(f) The function δ : Mn×n(F ) → F defined by δ(A) = 0 for every

A ∈ Mn×n(F ) is an alternating n-linear function.

2. Determine all the 1-linear functions δ : M1×1(F ) → F .

Determine which of the functions δ : M3×3(F ) → F in Exercises 3–10 are
3-linear functions. Justify each answer.
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3. δ(A) = k, where k is any nonzero scalar

4. δ(A) = A22

5. δ(A) = A11A23A32

6. δ(A) = A11 + A23 + A32

7. δ(A) = A11A21A32

8. δ(A) = A11A31A32

9. δ(A) = A2
11A

2
22A

2
33

10. δ(A) = A11A22A33 − A11A21A32

11. Prove Corollaries 2 and 3 of Theorem 4.10.

12. Prove Theorem 4.11.

13. Prove that det : M2×2(F ) → F is a 2-linear function of the columns of
a matrix.

14. Let a, b, c, d ∈ F . Prove that the function δ : M2×2(F ) → F defined by
δ(A) = A11A22a + A11A21b + A12A22c + A12A21d is a 2-linear function.

15. Prove that δ : M2×2(F ) → F is a 2-linear function if and only if it has
the form

δ(A) = A11A22a + A11A21b + A12A22c + A12A21d

for some scalars a, b, c, d ∈ F .

16. Prove that if δ : Mn×n(F ) → F is an alternating n-linear function, then
there exists a scalar k such that δ(A) = k det(A) for all A ∈ Mn×n(F ).

17. Prove that a linear combination of two n-linear functions is an n-linear
function, where the sum and scalar product of n-linear functions are as
defined in Example 3 of Section 1.2 (p. 9).

18. Prove that the set of all n-linear functions over a field F is a vector
space over F under the operations of function addition and scalar mul-
tiplication as defined in Example 3 of Section 1.2 (p. 9).

19. Let δ : Mn×n(F ) → F be an n-linear function and F a field that does
not have characteristic two. Prove that if δ(B) = −δ(A) whenever B is
obtained from A ∈ Mn×n(F ) by interchanging any two rows of A, then
δ(M) = 0 whenever M ∈ Mn×n(F ) has two identical rows.

20. Give an example to show that the implication in Exercise 19 need not
hold if F has characteristic two.
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5
Diagonalization

5.1 Eigenvalues and Eigenvectors
5.2 Diagonalizability
5.3* Matrix Limits and Markov Chains
5.4 Invariant Subspaces and the Cayley-Hamilton Theorem

This chapter is concerned with the so-called diagonalization problem. For
a given linear operator T on a finite-dimensional vector space V, we seek
answers to the following questions.

1. Does there exist an ordered basis β for V such that [T]β is a diagonal
matrix?

2. If such a basis exists, how can it be found?

Since computations involving diagonal matrices are simple, an affirmative
answer to question 1 leads us to a clearer understanding of how the operator T
acts on V, and an answer to question 2 enables us to obtain easy solutions to
many practical problems that can be formulated in a linear algebra context.
We consider some of these problems and their solutions in this chapter; see,
for example, Section 5.3.

A solution to the diagonalization problem leads naturally to the concepts
of eigenvalue and eigenvector. Aside from the important role that these
concepts play in the diagonalization problem, they also prove to be useful
tools in the study of many nondiagonalizable operators, as we will see in
Chapter 7.

5.1 EIGENVALUES AND EIGENVECTORS

In Example 3 of Section 2.5, we were able to obtain a formula for the
reflection of R2 about the line y = 2x. The key to our success was to find a
basis β′ for which [T]β′ is a diagonal matrix. We now introduce the name for
an operator or matrix that has such a basis.

Definitions. A linear operator T on a finite-dimensional vector space V
is called diagonalizable if there is an ordered basis β for V such that [T]β

245
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is a diagonal matrix. A square matrix A is called diagonalizable if LA is
diagonalizable.

We want to determine when a linear operator T on a finite-dimensional
vector space V is diagonalizable and, if so, how to obtain an ordered basis
β = {v1, v2, . . . , vn} for V such that [T]β is a diagonal matrix. Note that, if
D = [T]β is a diagonal matrix, then for each vector vj ∈ β, we have

T(vj) =
n∑

i=1

Dijvi = Djjvj = λjvj ,

where λj = Djj .
Conversely, if β = {v1, v2, . . . , vn} is an ordered basis for V such that

T(vj) = λjvj for some scalars λ1, λ2, . . . , λn, then clearly

[T]β =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

⎞⎟⎟⎟⎠ .

In the preceding paragraph, each vector v in the basis β satisfies the
condition that T(v) = λv for some scalar λ. Moreover, because v lies in a
basis, v is nonzero. These computations motivate the following definitions.

Definitions. Let T be a linear operator on a vector space V. A nonzero
vector v ∈ V is called an eigenvector of T if there exists a scalar λ such
that T(v) = λv. The scalar λ is called the eigenvalue corresponding to the
eigenvector v.

Let A be in Mn×n(F ). A nonzero vector v ∈ Fn is called an eigenvector
of A if v is an eigenvector of LA; that is, if Av = λv for some scalar λ. The
scalar λ is called the eigenvalue of A corresponding to the eigenvector v.

The words characteristic vector and proper vector are also used in place of
eigenvector. The corresponding terms for eigenvalue are characteristic value
and proper value.

Note that a vector is an eigenvector of a matrix A if and only if it is an
eigenvector of LA. Likewise, a scalar λ is an eigenvalue of A if and only if it is
an eigenvalue of LA. Using the terminology of eigenvectors and eigenvalues,
we can summarize the preceding discussion as follows.

Theorem 5.1. A linear operator T on a finite-dimensional vector space V
is diagonalizable if and only if there exists an ordered basis β for V consisting
of eigenvectors of T. Furthermore, if T is diagonalizable, β = {v1, v2, . . . , vn}
is an ordered basis of eigenvectors of T, and D = [T]β , then D is a diagonal
matrix and Djj is the eigenvalue corresponding to vj for 1 ≤ j ≤ n.
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To diagonalize a matrix or a linear operator is to find a basis of eigenvec-
tors and the corresponding eigenvalues.

Before continuing our study of the diagonalization problem, we consider
three examples of eigenvalues and eigenvectors.

Example 1

Let

A =
(

1 3
4 2

)
, v1 =

(
1

−1

)
, and v2 =

(
3
4

)
.

Since

LA(v1) =
(

1 3
4 2

)(
1

−1

)
=
(−2

2

)
= −2

(
1

−1

)
= −2v1,

v1 is an eigenvector of LA, and hence of A. Here λ1 = −2 is the eigenvalue
corresponding to v1. Furthermore,

LA(v2) =
(

1 3
4 2

)(
3
4

)
=
(

15
20

)
= 5

(
3
4

)
= 5v2,

and so v2 is an eigenvector of LA, and hence of A, with the corresponding
eigenvalue λ2 = 5. Note that β = {v1, v2} is an ordered basis for R2 consisting
of eigenvectors of both A and LA, and therefore A and LA are diagonalizable.
Moreover, by Theorem 5.1,

[LA]β =
(−2 0

0 5

)
. ♦

Example 2

Let T be the linear operator on R2 that rotates each vector in the plane
through an angle of π/2. It is clear geometrically that for any nonzero vector
v, the vectors v and T(v) are not collinear; hence T(v) is not a multiple of
v. Therefore T has no eigenvectors and, consequently, no eigenvalues. Thus
there exist operators (and matrices) with no eigenvalues or eigenvectors. Of
course, such operators and matrices are not diagonalizable. ♦
Example 3

Let C∞(R) denote the set of all functions f : R → R having derivatives of all
orders. (Thus C∞(R) includes the polynomial functions, the sine and cosine
functions, the exponential functions, etc.) Clearly, C∞(R) is a subspace of
the vector space F(R, R) of all functions from R to R as defined in Section
1.2. Let T : C∞(R) → C∞(R) be the function defined by T(f) = f ′, the
derivative of f . It is easily verified that T is a linear operator on C∞(R). We
determine the eigenvalues and eigenvectors of T.
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Suppose that f is an eigenvector of T with corresponding eigenvalue λ.
Then f ′ = T(f) = λf . This is a first-order differential equation whose solu-
tions are of the form f(t) = ceλt for some constant c. Consequently, every
real number λ is an eigenvalue of T, and λ corresponds to eigenvectors of the
form ceλt for c �= 0. Note that for λ = 0, the eigenvectors are the nonzero
constant functions. ♦

In order to obtain a basis of eigenvectors for a matrix (or a linear opera-
tor), we need to be able to determine its eigenvalues and eigenvectors. The
following theorem gives us a method for computing eigenvalues.

Theorem 5.2. Let A ∈ Mn×n(F ). Then a scalar λ is an eigenvalue of A
if and only if det(A − λIn) = 0.

Proof. A scalar λ is an eigenvalue of A if and only if there exists a nonzero
vector v ∈ Fn such that Av = λv, that is, (A−λIn)(v) = 0 . By Theorem 2.5
(p. 71), this is true if and only if A − λIn is not invertible. However, this
result is equivalent to the statement that det(A − λIn) = 0.

Definition. Let A ∈ Mn×n(F ). The polynomial f(t) = det(A − tIn) is
called the characteristic polynomial 1 of A.

Theorem 5.2 states that the eigenvalues of a matrix are the zeros of its
characteristic polynomial. When determining the eigenvalues of a matrix or
a linear operator, we normally compute its characteristic polynomial, as in
the next example.

Example 4

To find the eigenvalues of

A =
(

1 1
4 1

)
∈ M2×2(R),

we compute its characteristic polynomial:

det(A − tI2) = det
(

1 − t 1
4 1 − t

)
= t2 − 2t − 3 = (t − 3)(t + 1).

It follows from Theorem 5.2 that the only eigenvalues of A are 3 and −1.
♦

1The observant reader may have noticed that the entries of the matrix A − tIn

are not scalars in the field F . They are, however, scalars in another field F (t), the
field of quotients of polynomials in t with coefficients from F . Consequently, any
results proved about determinants in Chapter 4 remain valid in this context.
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It is easily shown that similar matrices have the same characteristic poly-
nomial (see Exercise 12). This fact enables us to define the characteristic
polynomial of a linear operator as follows.

Definition. Let T be a linear operator on an n-dimensional vector space
V with ordered basis β. We define the characteristic polynomial f(t) of
T to be the characteristic polynomial of A = [T]β . That is,

f(t) = det(A − tIn).

The remark preceding this definition shows that the definition is indepen-
dent of the choice of ordered basis β. Thus if T is a linear operator on a
finite-dimensional vector space V and β is an ordered basis for V, then λ is
an eigenvalue of T if and only if λ is an eigenvalue of [T]β . We often denote
the characteristic polynomial of an operator T by det(T − tI).

Example 5

Let T be the linear operator on P2(R) defined by T(f(x)) = f(x)+(x+1)f ′(x),
let β be the standard ordered basis for P2(R), and let A = [T]β . Then

A =

⎛⎝1 1 0
0 2 2
0 0 3

⎞⎠ .

The characteristic polynomial of T is

det(A − tI3) = det

⎛⎝1 − t 1 0
0 2 − t 2
0 0 3 − t

⎞⎠
= (1 − t)(2 − t)(3 − t)
= −(t − 1)(t − 2)(t − 3).

Hence λ is an eigenvalue of T (or A) if and only if λ = 1, 2, or 3. ♦
Examples 4 and 5 suggest that the characteristic polynomial of an n × n

matrix A is a polynomial of degree n. The next theorem tells us even more.
It can be proved by a straightforward induction argument.

Theorem 5.3. Let A ∈ Mn×n(F ).
(a) The characteristic polynomial of A is a polynomial of degree n with

leading coefficient (−1)n.
(b) A has at most n distinct eigenvalues.

Proof. Exercise.



250 Chap. 5 Diagonalization

Theorem 5.2 enables us to determine all the eigenvalues of a matrix or
a linear operator on a finite-dimensional vector space provided that we can
compute the zeros of the characteristic polynomial. Our next result gives
us a procedure for determining the eigenvectors corresponding to a given
eigenvalue.

Theorem 5.4. Let T be a linear operator on a vector space V, and let λ
be an eigenvalue of T. A vector v ∈ V is an eigenvector of T corresponding
to λ if and only if v �= 0 and v ∈ N(T − λI).

Proof. Exercise.

Example 6

To find all the eigenvectors of the matrix

A =
(

1 1
4 1

)
in Example 4, recall that A has two eigenvalues, λ1 = 3 and λ2 = −1. We
begin by finding all the eigenvectors corresponding to λ1 = 3. Let

B1 = A − λ1I =
(

1 1
4 1

)
−
(

3 0
0 3

)
=
(−2 1

4 −2

)
.

Then

x =
(

x1

x2

)
∈ R2

is an eigenvector corresponding to λ1 = 3 if and only if x �= 0 and x ∈ N(LB1);
that is, x �= 0 and(−2 1

4 −2

)(
x1

x2

)
=
(−2x1 + x2

4x1 − 2x2

)
=
(

0
0

)
.

Clearly the set of all solutions to this equation is{
t

(
1
2

)
: t ∈ R

}
.

Hence x is an eigenvector corresponding to λ1 = 3 if and only if

x = t

(
1
2

)
for some t �= 0.

Now suppose that x is an eigenvector of A corresponding to λ2 = −1. Let

B2 = A − λ2I =
(

1 1
4 1

)
−
(−1 0

0 −1

)
=
(

2 1
4 2

)
.
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Then

x =
(

x1

x2

)
∈ N(LB2)

if and only if x is a solution to the system

2x1 + x2 = 0
4x1 + 2x2 = 0.

Hence

N(LB2) =
{

t

(
1

−2

)
: t ∈ R

}
.

Thus x is an eigenvector corresponding to λ2 = −1 if and only if

x = t

(
1

−2

)
for some t �= 0.

Observe that {(
1
2

)
,

(
1

−2

)}
is a basis for R2 consisting of eigenvectors of A. Thus LA, and hence A, is
diagonalizable. ♦

Suppose that β is a basis for Fn consisting of eigenvectors of A. The
corollary to Theorem 2.23 assures us that if Q is the n × n matrix whose
columns are the vectors in β, then Q−1AQ is a diagonal matrix. In Example 6,
for instance, if

Q =
(

1 1
2 −2

)
,

then

Q−1AQ =
(

3 0
0 −1

)
.

Of course, the diagonal entries of this matrix are the eigenvalues of A that
correspond to the respective columns of Q.

To find the eigenvectors of a linear operator T on an n-dimensional vector
space, select an ordered basis β for V and let A = [T]β . Figure 5.1 is the
special case of Figure 2.2 in Section 2.4 in which V = W and β = γ. Recall
that for v ∈ V, φβ(v) = [v]β , the coordinate vector of v relative to β. We
show that v ∈ V is an eigenvector of T corresponding to λ if and only if φβ(v)
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V
T−−−−→ V

φβ

⏐⏐! ⏐⏐!φβ

Fn LA−−−−→ Fn

Figure 5.1

is an eigenvector of A corresponding to λ. Suppose that v is an eigenvector
of T corresponding to λ. Then T(v) = λv. Hence

Aφβ(v) = LAφβ(v) = φβT(v) = φβ(λv) = λφβ(v).

Now φβ(v) �= 0 , since φβ is an isomorphism; hence φβ(v) is an eigenvector
of A. This argument is reversible, and so we can establish that if φβ(v)
is an eigenvector of A corresponding to λ, then v is an eigenvector of T
corresponding to λ. (See Exercise 13.)

An equivalent formulation of the result discussed in the preceding para-
graph is that for an eigenvalue λ of A (and hence of T), a vector y ∈ Fn is an
eigenvector of A corresponding to λ if and only if φ−1

β (y) is an eigenvector of
T corresponding to λ.

Thus we have reduced the problem of finding the eigenvectors of a linear
operator on a finite-dimensional vector space to the problem of finding the
eigenvectors of a matrix. The next example illustrates this procedure.

Example 7

Let T be the linear operator on P2(R) defined in Example 5, and let β be the
standard ordered basis for P2(R). Recall that T has eigenvalues 1, 2, and 3
and that

A = [T]β =

⎛⎝1 1 0
0 2 2
0 0 3

⎞⎠ .

We consider each eigenvalue separately.

Let λ1 = 1, and define

B1 = A − λ1I =

⎛⎝0 1 0
0 1 2
0 0 2

⎞⎠ .

Then

x =

⎛⎝x1

x2

x3

⎞⎠ ∈ R3
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is an eigenvector corresponding to λ1 = 1 if and only if x �= 0 and x ∈ N(LB1);
that is, x is a nonzero solution to the system

x2 = 0
x2 + 2x3 = 0

2x3 = 0.

Notice that this system has three unknowns, x1, x2, and x3, but one of these,
x1, does not actually appear in the system. Since the values of x1 do not
affect the system, we assign x1 a parametric value, say x1 = a, and solve the
system for x2 and x3. Clearly, x2 = x3 = 0, and so the eigenvectors of A
corresponding to λ1 = 1 are of the form

a

⎛⎝1
0
0

⎞⎠ = ae1

for a �= 0. Consequently, the eigenvectors of T corresponding to λ1 = 1 are
of the form

φ−1
β (ae1) = aφ−1

β (e1) = a ·1 = a

for any a �= 0. Hence the nonzero constant polynomials are the eigenvectors
of T corresponding to λ1 = 1.

Next let λ2 = 2, and define

B2 = A − λ2I =

⎛⎝−1 1 0
0 0 2
0 0 1

⎞⎠ .

It is easily verified that

N(LB2) =

⎧⎨⎩a

⎛⎝1
1
0

⎞⎠: a ∈ R

⎫⎬⎭ ,

and hence the eigenvectors of T corresponding to λ2 = 2 are of the form

φ−1
β

⎛⎝a

⎛⎝1
1
0

⎞⎠⎞⎠ = aφ−1
β (e1 + e2) = a(1 + x)

for a �= 0.

Finally, consider λ3 = 3 and

B3 = A − λ3I =

⎛⎝−2 1 0
0 −1 2
0 0 0

⎞⎠ .
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Since

N(LB3) =

⎧⎨⎩a

⎛⎝1
2
1

⎞⎠: a ∈ R

⎫⎬⎭ ,

the eigenvectors of T corresponding to λ3 = 3 are of the form

φ−1
β

⎛⎝a

⎛⎝1
2
1

⎞⎠⎞⎠ = aφ−1
β (e1 + 2e2 + e3) = a(1 + 2x + x2)

for a �= 0.

For each eigenvalue, select the corresponding eigenvector with a = 1 in the
preceding descriptions to obtain γ = {1, 1+x, 1+2x+x2}, which is an ordered
basis for P2(R) consisting of eigenvectors of T. Thus T is diagonalizable, and

[T]γ =

⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠ . ♦

We close this section with a geometric description of how a linear operator
T acts on an eigenvector in the context of a vector space V over R. Let v be
an eigenvector of T and λ be the corresponding eigenvalue. We can think of
W = span({v}), the one-dimensional subspace of V spanned by v, as a line
in V that passes through 0 and v. For any w ∈ W, w = cv for some scalar c,
and hence

T(w) = T(cv) = cT(v) = cλv = λw;

so T acts on the vectors in W by multiplying each such vector by λ. There
are several possible ways for T to act on the vectors in W, depending on the
value of λ. We consider several cases. (See Figure 5.2.)

Case 1. If λ > 1, then T moves vectors in W farther from 0 by a factor
of λ.

Case 2. If λ = 1, then T acts as the identity operator on W.

Case 3. If 0 < λ < 1, then T moves vectors in W closer to 0 by a factor
of λ.

Case 4. If λ = 0, then T acts as the zero transformation on W.

Case 5. If λ < 0, then T reverses the orientation of W; that is, T moves
vectors in W from one side of 0 to the other.
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Figure 5.2: The action of T on W = span({x}) when x is an eigenvector of T.

To illustrate these ideas, we consider the linear operators in Examples 3,
4, and 2 of Section 2.1.

For the operator T on R2 defined by T(a1, a2) = (a1,−a2), the reflection
about the x-axis, e1 and e2 are eigenvectors of T with corresponding eigen-
values 1 and −1, respectively. Since e1 and e2 span the x-axis and the y-axis,
respectively, T acts as the identity on the x-axis and reverses the orientation
of the y-axis.

For the operator T on R2 defined by T(a1, a2) = (a1, 0), the projection on
the x-axis, e1 and e2 are eigenvectors of T with corresponding eigenvalues 1
and 0, respectively. Thus, T acts as the identity on the x-axis and as the zero
operator on the y-axis.

Finally, we generalize Example 2 of this section by considering the oper-
ator that rotates the plane through the angle θ, which is defined by

Tθ(a1, a2) = (a1 cos θ − a2 sin θ, a1 sin θ + a2 cos θ).

Suppose that 0 < θ < π. Then for any nonzero vector v, the vectors v and
Tθ(v) are not collinear, and hence Tθ maps no one-dimensional subspace of
R2 into itself. But this implies that Tθ has no eigenvectors and therefore
no eigenvalues. To confirm this conclusion, we note that the characteristic
polynomial of Tθ is

det(Tθ − tI) = det
(

cos θ − t − sin θ
sin θ cos θ − t

)
= t2 − (2 cos θ)t + 1,
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which has no real zeros because, for 0 < θ < π, the discriminant 4 cos2 θ − 4
is negative.

EXERCISES

1. Label the following statements as true or false.

(a) Every linear operator on an n-dimensional vector space has n dis-
tinct eigenvalues.

(b) If a real matrix has one eigenvector, then it has an infinite number
of eigenvectors.

(c) There exists a square matrix with no eigenvectors.
(d) Eigenvalues must be nonzero scalars.
(e) Any two eigenvectors are linearly independent.
(f) The sum of two eigenvalues of a linear operator T is also an eigen-

value of T.
(g) Linear operators on infinite-dimensional vector spaces never have

eigenvalues.
(h) An n × n matrix A with entries from a field F is similar to a

diagonal matrix if and only if there is a basis for Fn consisting of
eigenvectors of A.

(i) Similar matrices always have the same eigenvalues.
(j) Similar matrices always have the same eigenvectors.
(k) The sum of two eigenvectors of an operator T is always an eigen-

vector of T.

2. For each of the following linear operators T on a vector space V and
ordered bases β, compute [T]β , and determine whether β is a basis
consisting of eigenvectors of T.

(a) V = R2, T

(
a
b

)
=
(

10a − 6b
17a − 10b

)
, and β =

{(
1
2

)
,

(
2
3

)}
(b) V = P1(R), T(a + bx) = (6a − 6b) + (12a − 11b)x, and

β = {3 + 4x, 2 + 3x}

(c) V = R3, T

⎛⎝a
b
c

⎞⎠ =

⎛⎝ 3a + 2b − 2c
−4a − 3b + 2c

−c

⎞⎠, and

β =

⎧⎨⎩
⎛⎝0

1
1

⎞⎠ ,

⎛⎝ 1
−1

0

⎞⎠ ,

⎛⎝1
0
2

⎞⎠⎫⎬⎭
(d) V = P2(R), T(a + bx + cx2) =

(−4a + 2b − 2c) − (7a + 3b + 7c)x + (7a + b + 5c)x2,

and β = {x − x2,−1 + x2,−1 − x + x2}
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(e) V = P3(R), T(a + bx + cx2 + dx3) =

−d + (−c + d)x + (a + b − 2c)x2 + (−b + c − 2d)x3,

and β = {1 − x + x3, 1 + x2, 1, x + x2}
(f) V = M2×2(R), T

(
a b
c d

)
=
(−7a − 4b + 4c − 4d b
−8a − 4b + 5c − 4d d

)
, and

β =
{(

1 0
1 0

)
,

(−1 2
0 0

)
,

(
1 0
2 0

)
,

(−1 0
0 2

)}
3. For each of the following matrices A ∈ Mn×n(F ),

(i) Determine all the eigenvalues of A.

(ii) For each eigenvalue λ of A, find the set of eigenvectors correspond-
ing to λ.

(iii) If possible, find a basis for Fn consisting of eigenvectors of A.

(iv) If successful in finding such a basis, determine an invertible matrix
Q and a diagonal matrix D such that Q−1AQ = D.

(a) A =
(

1 2
3 2

)
for F = R

(b) A =

⎛⎝ 0 −2 −3
−1 1 −1

2 2 5

⎞⎠ for F = R

(c) A =
(

i 1
2 −i

)
for F = C

(d) A =

⎛⎝2 0 −1
4 1 −4
2 0 −1

⎞⎠ for F = R

4. For each linear operator T on V, find the eigenvalues of T and an ordered
basis β for V such that [T]β is a diagonal matrix.

(a) V = R2 and T(a, b) = (−2a + 3b,−10a + 9b)
(b) V = R3 and T(a, b, c) = (7a− 4b + 10c, 4a− 3b + 8c,−2a + b − 2c)
(c) V = R3 and T(a, b, c) = (−4a+3b−6c, 6a−7b+12c, 6a−6b+11c)
(d) V = P1(R) and T(ax + b) = (−6a + 2b)x + (−6a + b)
(e) V = P2(R) and T(f(x)) = xf ′(x) + f(2)x + f(3)
(f) V = P3(R) and T(f(x)) = f(x) + f(2)x
(g) V = P3(R) and T(f(x)) = xf ′(x) + f ′′(x) − f(2)

(h) V = M2×2(R) and T

(
a b
c d

)
=
(

d b
c a

)
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(i) V = M2×2(R) and T

(
a b
c d

)
=
(

c d
a b

)
(j) V = M2×2(R) and T(A) = At + 2 · tr(A) · I2

5. Prove Theorem 5.4.

6. Let T be a linear operator on a finite-dimensional vector space V, and
let β be an ordered basis for V. Prove that λ is an eigenvalue of T if
and only if λ is an eigenvalue of [T]β .

7. Let T be a linear operator on a finite-dimensional vector space V. We
define the determinant of T, denoted det(T), as follows: Choose any
ordered basis β for V, and define det(T) = det([T]β).

(a) Prove that the preceding definition is independent of the choice
of an ordered basis for V. That is, prove that if β and γ are two
ordered bases for V, then det([T]β) = det([T]γ).

(b) Prove that T is invertible if and only if det(T) �= 0.
(c) Prove that if T is invertible, then det(T−1) = [det(T)]−1.
(d) Prove that if U is also a linear operator on V, then det(TU) =

det(T) · det(U).
(e) Prove that det(T− λIV) = det([T]β − λI) for any scalar λ and any

ordered basis β for V.

8. (a) Prove that a linear operator T on a finite-dimensional vector space
is invertible if and only if zero is not an eigenvalue of T.

(b) Let T be an invertible linear operator. Prove that a scalar λ is an
eigenvalue of T if and only if λ−1 is an eigenvalue of T−1.

(c) State and prove results analogous to (a) and (b) for matrices.

9. Prove that the eigenvalues of an upper triangular matrix M are the
diagonal entries of M .

10. Let V be a finite-dimensional vector space, and let λ be any scalar.

(a) For any ordered basis β for V, prove that [λIV]β = λI.
(b) Compute the characteristic polynomial of λIV.
(c) Show that λIV is diagonalizable and has only one eigenvalue.

11. A scalar matrix is a square matrix of the form λI for some scalar λ;
that is, a scalar matrix is a diagonal matrix in which all the diagonal
entries are equal.

(a) Prove that if a square matrix A is similar to a scalar matrix λI,
then A = λI.

(b) Show that a diagonalizable matrix having only one eigenvalue is a
scalar matrix.
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(c) Prove that
(

1 1
0 1

)
is not diagonalizable.

12. (a) Prove that similar matrices have the same characteristic polyno-
mial.

(b) Show that the definition of the characteristic polynomial of a linear
operator on a finite-dimensional vector space V is independent of
the choice of basis for V.

13. Let T be a linear operator on a finite-dimensional vector space V over a
field F , let β be an ordered basis for V, and let A = [T]β . In reference
to Figure 5.1, prove the following.

(a) If v ∈ V and φβ(v) is an eigenvector of A corresponding to the
eigenvalue λ, then v is an eigenvector of T corresponding to λ.

(b) If λ is an eigenvalue of A (and hence of T), then a vector y ∈ Fn

is an eigenvector of A corresponding to λ if and only if φ−1
β (y) is

an eigenvector of T corresponding to λ.

14.† For any square matrix A, prove that A and At have the same charac-
teristic polynomial (and hence the same eigenvalues).

15.† (a) Let T be a linear operator on a vector space V, and let x be an
eigenvector of T corresponding to the eigenvalue λ. For any posi-
tive integer m, prove that x is an eigenvector of Tm corresponding
to the eigenvalue λm.

(b) State and prove the analogous result for matrices.

16. (a) Prove that similar matrices have the same trace. Hint: Use Exer-
cise 13 of Section 2.3.

(b) How would you define the trace of a linear operator on a finite-
dimensional vector space? Justify that your definition is well-
defined.

17. Let T be the linear operator on Mn×n(R) defined by T(A) = At.

(a) Show that ±1 are the only eigenvalues of T.
(b) Describe the eigenvectors corresponding to each eigenvalue of T.
(c) Find an ordered basis β for M2×2(R) such that [T]β is a diagonal

matrix.
(d) Find an ordered basis β for Mn×n(R) such that [T]β is a diagonal

matrix for n > 2.

18. Let A, B ∈ Mn×n(C).

(a) Prove that if B is invertible, then there exists a scalar c ∈ C such
that A + cB is not invertible. Hint: Examine det(A + cB).
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(b) Find nonzero 2×2 matrices A and B such that both A and A+cB
are invertible for all c ∈ C.

19.† Let A and B be similar n × n matrices. Prove that there exists an n-
dimensional vector space V, a linear operator T on V, and ordered bases
β and γ for V such that A = [T]β and B = [T]γ . Hint: Use Exercise 14
of Section 2.5.

20. Let A be an n × n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · · + a1t + a0.

Prove that f(0) = a0 = det(A). Deduce that A is invertible if and only
if a0 �= 0.

21. Let A and f(t) be as in Exercise 20.

(a) Prove that f(t) = (A11− t)(A22− t) · · · (Ann − t)+ q(t), where q(t)
is a polynomial of degree at most n−2. Hint: Apply mathematical
induction to n.

(b) Show that tr(A) = (−1)n−1an−1.

22.† (a) Let T be a linear operator on a vector space V over the field F ,
and let g(t) be a polynomial with coefficients from F . Prove that
if x is an eigenvector of T with corresponding eigenvalue λ, then
g(T)(x) = g(λ)x. That is, x is an eigenvector of g(T) with corre-
sponding eigenvalue g(λ).

(b) State and prove a comparable result for matrices.
(c) Verify (b) for the matrix A in Exercise 3(a) with polynomial g(t) =

2t2 − t + 1, eigenvector x =
(

2
3

)
, and corresponding eigenvalue

λ = 4.

23. Use Exercise 22 to prove that if f(t) is the characteristic polynomial
of a diagonalizable linear operator T, then f(T) = T0, the zero opera-
tor. (In Section 5.4 we prove that this result does not depend on the
diagonalizability of T.)

24. Use Exercise 21(a) to prove Theorem 5.3.

25. Prove Corollaries 1 and 2 of Theorem 5.3.

26. Determine the number of distinct characteristic polynomials of matrices
in M2×2(Z2).
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5.2 DIAGONALIZABILITY

In Section 5.1, we presented the diagonalization problem and observed that
not all linear operators or matrices are diagonalizable. Although we are able
to diagonalize operators and matrices and even obtain a necessary and suf-
ficient condition for diagonalizability (Theorem 5.1 p. 246), we have not yet
solved the diagonalization problem. What is still needed is a simple test to
determine whether an operator or a matrix can be diagonalized, as well as a
method for actually finding a basis of eigenvectors. In this section, we develop
such a test and method.

In Example 6 of Section 5.1, we obtained a basis of eigenvectors by choos-
ing one eigenvector corresponding to each eigenvalue. In general, such a
procedure does not yield a basis, but the following theorem shows that any
set constructed in this manner is linearly independent.

Theorem 5.5. Let T be a linear operator on a vector space V, and let
λ1, λ2, . . . , λk be distinct eigenvalues of T. If v1, v2, . . . , vk are eigenvectors of
T such that λi corresponds to vi (1 ≤ i ≤ k), then {v1, v2, . . . , vk} is linearly
independent.

Proof. The proof is by mathematical induction on k. Suppose that k = 1.
Then v1 �= 0 since v1 is an eigenvector, and hence {v1} is linearly independent.
Now assume that the theorem holds for k − 1 distinct eigenvalues, where
k−1 ≥ 1, and that we have k eigenvectors v1, v2, . . . , vk corresponding to the
distinct eigenvalues λ1, λ2, . . . , λk. We wish to show that {v1, v2, . . . , vk} is
linearly independent. Suppose that a1, a2, . . . , ak are scalars such that

a1v1 + a2v2 + · · · + akvk = 0 . (1)

Applying T − λkI to both sides of (1), we obtain

a1(λ1 − λk)v1 + a2(λ2 − λk)v2 + · · · + ak−1(λk−1 − λk)vk−1 = 0 .

By the induction hypothesis {v1, v2, . . . , vk−1} is linearly independent, and
hence

a1(λ1 − λk) = a2(λ2 − λk) = · · · = ak−1(λk−1 − λk) = 0.

Since λ1, λ2, . . . , λk are distinct, it follows that λi −λk �= 0 for 1 ≤ i ≤ k− 1.
So a1 = a2 = · · · = ak−1 = 0, and (1) therefore reduces to akvk = 0 . But
vk �= 0 and therefore ak = 0. Consequently a1 = a2 = · · · = ak = 0, and it
follows that {v1, v2, . . . , vk} is linearly independent.

Corollary. Let T be a linear operator on an n-dimensional vector space
V. If T has n distinct eigenvalues, then T is diagonalizable.
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Proof. Suppose that T has n distinct eigenvalues λ1, . . . , λn. For each i
choose an eigenvector vi corresponding to λi. By Theorem 5.5, {v1, . . . , vn}
is linearly independent, and since dim(V) = n, this set is a basis for V. Thus,
by Theorem 5.1 (p. 246), T is diagonalizable.

Example 1

Let

A =
(

1 1
1 1

)
∈ M2×2(R).

The characteristic polynomial of A (and hence of LA) is

det(A − tI) = det
(

1 − t 1
1 1 − t

)
= t(t − 2),

and thus the eigenvalues of LA are 0 and 2. Since LA is a linear operator on the
two-dimensional vector space R2, we conclude from the preceding corollary
that LA (and hence A) is diagonalizable. ♦

The converse of Theorem 5.5 is false. That is, it is not true that if T is
diagonalizable, then it has n distinct eigenvalues. For example, the identity
operator is diagonalizable even though it has only one eigenvalue, namely,
λ = 1.

We have seen that diagonalizability requires the existence of eigenvalues.
Actually, diagonalizability imposes a stronger condition on the characteristic
polynomial.

Definition. A polynomial f(t) in P(F ) splits over F if there are scalars
c, a1, . . . , an (not necessarily distinct) in F such that

f(t) = c(t − a1)(t − a2) · · · (t − an).

For example, t2 − 1 = (t + 1)(t− 1) splits over R, but (t2 + 1)(t− 2) does not
split over R because t2 +1 cannot be factored into a product of linear factors.
However, (t2 + 1)(t− 2) does split over C because it factors into the product
(t+ i)(t− i)(t−2). If f(t) is the characteristic polynomial of a linear operator
or a matrix over a field F , then the statement that f(t) splits is understood
to mean that it splits over F .

Theorem 5.6. The characteristic polynomial of any diagonalizable linear
operator splits.

Proof. Let T be a diagonalizable linear operator on the n-dimensional
vector space V, and let β be an ordered basis for V such that [T]β = D is a
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diagonal matrix. Suppose that

D =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

⎞⎟⎟⎟⎠ ,

and let f(t) be the characteristic polynomial of T. Then

f(t) = det(D − tI) = det

⎛⎜⎜⎜⎝
λ1 − t 0 · · · 0

0 λ2 − t · · · 0
...

...
...

0 0 · · · λn − t

⎞⎟⎟⎟⎠
= (λ1 − t)(λ2 − t) · · · (λn − t) = (−1)n(t − λ1)(t − λ2) · · · (t − λn).

From this theorem, it is clear that if T is a diagonalizable linear operator
on an n-dimensional vector space that fails to have distinct eigenvalues, then
the characteristic polynomial of T must have repeated zeros.

The converse of Theorem 5.6 is false; that is, the characteristic polynomial
of T may split, but T need not be diagonalizable. (See Example 3, which
follows.) The following concept helps us determine when an operator whose
characteristic polynomial splits is diagonalizable.

Definition. Let λ be an eigenvalue of a linear operator or matrix with
characteristic polynomial f(t). The (algebraic) multiplicity of λ is the
largest positive integer k for which (t − λ)k is a factor of f(t).

Example 2

Let

A =

⎛⎝3 1 0
0 3 4
0 0 4

⎞⎠ ,

which has characteristic polynomial f(t) = −(t − 3)2(t − 4). Hence λ = 3 is
an eigenvalue of A with multiplicity 2, and λ = 4 is an eigenvalue of A with
multiplicity 1. ♦

If T is a diagonalizable linear operator on a finite-dimensional vector space
V, then there is an ordered basis β for V consisting of eigenvectors of T. We
know from Theorem 5.1 (p. 246) that [T]β is a diagonal matrix in which the
diagonal entries are the eigenvalues of T. Since the characteristic polynomial
of T is det([T]β − tI), it is easily seen that each eigenvalue of T must occur
as a diagonal entry of [T]β exactly as many times as its multiplicity. Hence
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β contains as many (linearly independent) eigenvectors corresponding to an
eigenvalue as the multiplicity of that eigenvalue. So the number of linearly
independent eigenvectors corresponding to a given eigenvalue is of interest in
determining whether an operator can be diagonalized. Recalling from Theo-
rem 5.4 (p. 250) that the eigenvectors of T corresponding to the eigenvalue
λ are the nonzero vectors in the null space of T − λI, we are led naturally to
the study of this set.

Definition. Let T be a linear operator on a vector space V, and let
λ be an eigenvalue of T. Define Eλ = {x ∈ V : T(x) = λx} = N(T − λIV).
The set Eλ is called the eigenspace of T corresponding to the eigenvalue
λ. Analogously, we define the eigenspace of a square matrix A to be the
eigenspace of LA.

Clearly, Eλ is a subspace of V consisting of the zero vector and the eigen-
vectors of T corresponding to the eigenvalue λ. The maximum number of
linearly independent eigenvectors of T corresponding to the eigenvalue λ is
therefore the dimension of Eλ. Our next result relates this dimension to the
multiplicity of λ.

Theorem 5.7. Let T be a linear operator on a finite-dimensional vec-
tor space V, and let λ be an eigenvalue of T having multiplicity m. Then
1 ≤ dim(Eλ) ≤ m.

Proof. Choose an ordered basis {v1, v2, . . . , vp} for Eλ, extend it to an or-
dered basis β = {v1, v2, . . . , vp, vp+1, . . . , vn} for V, and let A = [T]β . Observe
that vi (1 ≤ i ≤ p) is an eigenvector of T corresponding to λ, and therefore

A =
(

λIp B
O C

)
.

By Exercise 21 of Section 4.3, the characteristic polynomial of T is

f(t) = det(A − tIn) = det
(

(λ − t)Ip B
O C − tIn−p

)
= det((λ − t)Ip) det(C − tIn−p)

= (λ − t)pg(t),

where g(t) is a polynomial. Thus (λ − t)p is a factor of f(t), and hence the
multiplicity of λ is at least p. But dim(Eλ) = p, and so dim(Eλ) ≤ m.

Example 3

Let T be the linear operator on P2(R) defined by T(f(x)) = f ′(x). The
matrix representation of T with respect to the standard ordered basis β for
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P2(R) is

[T]β =

⎛⎝0 1 0
0 0 2
0 0 0

⎞⎠ .

Consequently, the characteristic polynomial of T is

det([T]β − tI) = det

⎛⎝−t 1 0
0 −t 2
0 0 −t

⎞⎠ = −t3.

Thus T has only one eigenvalue (λ = 0) with multiplicity 3. Solving T(f(x)) =
f ′(x) = 0 shows that Eλ = N(T − λI) = N(T) is the subspace of P2(R) con-
sisting of the constant polynomials. So {1} is a basis for Eλ, and therefore
dim(Eλ) = 1. Consequently, there is no basis for P2(R) consisting of eigen-
vectors of T, and therefore T is not diagonalizable. ♦
Example 4

Let T be the linear operator on R3 defined by

T

⎛⎝a1

a2

a3

⎞⎠ =

⎛⎝4a1 + a3

2a1 + 3a2 + 2a3

a1 + 4a3

⎞⎠ .

We determine the eigenspace of T corresponding to each eigenvalue. Let β
be the standard ordered basis for R3. Then

[T]β =

⎛⎝4 0 1
2 3 2
1 0 4

⎞⎠ ,

and hence the characteristic polynomial of T is

det([T]β − tI) = det

⎛⎝4 − t 0 1
2 3 − t 2
1 0 4 − t

⎞⎠ = −(t − 5)(t − 3)2.

So the eigenvalues of T are λ1 = 5 and λ2 = 3 with multiplicities 1 and 2,
respectively.

Since

Eλ1 = N(T − λ1I) =

⎧⎨⎩
⎛⎝x1

x2

x3

⎞⎠ ∈ R3 :

⎛⎝−1 0 1
2 −2 2
1 0 −1

⎞⎠⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝0
0
0

⎞⎠⎫⎬⎭ ,
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Eλ1 is the solution space of the system of linear equations

−x1 + x3 = 0
2x1 − 2x2 + 2x3 = 0
x1 − x3 = 0.

It is easily seen (using the techniques of Chapter 3) that⎧⎨⎩
⎛⎝1

2
1

⎞⎠⎫⎬⎭
is a basis for Eλ1 . Hence dim(Eλ1) = 1.

Similarly, Eλ2 = N(T − λ2I) is the solution space of the system

x1 + x3 = 0
2x1 + 2x3 = 0
x1 + x3 = 0.

Since the unknown x2 does not appear in this system, we assign it a para-
metric value, say, x2 = s, and solve the system for x1 and x3, introducing
another parameter t. The result is the general solution to the system⎛⎝x1

x2

x3

⎞⎠ = s

⎛⎝0
1
0

⎞⎠+ t

⎛⎝−1
0
1

⎞⎠ , for s, t ∈ R.

It follows that ⎧⎨⎩
⎛⎝0

1
0

⎞⎠ ,

⎛⎝−1
0
1

⎞⎠⎫⎬⎭
is a basis for Eλ2 , and dim(Eλ2) = 2.

In this case, the multiplicity of each eigenvalue λi is equal to the dimension
of the corresponding eigenspace Eλi . Observe that the union of the two bases
just derived, namely, ⎧⎨⎩

⎛⎝1
2
1

⎞⎠ ,

⎛⎝0
1
0

⎞⎠ ,

⎛⎝−1
0
1

⎞⎠⎫⎬⎭ ,

is linearly independent and hence is a basis for R3 consisting of eigenvectors
of T. Consequently, T is diagonalizable. ♦



Sec. 5.2 Diagonalizability 267

Examples 3 and 4 suggest that an operator whose characteristic polyno-
mial splits is diagonalizable if and only if the dimension of each eigenspace
is equal to the multiplicity of the corresponding eigenvalue. This is indeed
true, as we now show. We begin with the following lemma, which is a slight
variation of Theorem 5.5.

Lemma. Let T be a linear operator, and let λ1, λ2, . . . , λk be distinct
eigenvalues of T. For each i = 1, 2, . . . , k, let vi ∈ Eλi , the eigenspace corre-
sponding to λi. If

v1 + v2 + · · · + vk = 0 ,

then vi = 0 for all i.

Proof. Suppose otherwise. By renumbering if necessary, suppose that, for
1 ≤ m ≤ k, we have vi �= 0 for 1 ≤ i ≤ m, and vi = 0 for i > m. Then, for
each i ≤ m, vi is an eigenvector of T corresponding to λi and

v1 + v2 + · · · + vm = 0 .

But this contradicts Theorem 5.5, which states that these vi’s are linearly
independent. We conclude, therefore, that vi = 0 for all i.

Theorem 5.8. Let T be a linear operator on a vector space V, and let
λ1, λ2, . . . , λk be distinct eigenvalues of T. For each i = 1, 2, . . . , k, let Si

be a finite linearly independent subset of the eigenspace Eλi
. Then S =

S1 ∪ S2 ∪ · · · ∪ Sk is a linearly independent subset of V.

Proof. Suppose that for each i

Si = {vi1, vi2, . . . , vini}.
Then S = {vij : 1 ≤ j ≤ ni, and 1 ≤ i ≤ k}. Consider any scalars {aij} such
that

k∑
i=1

ni∑
j=1

aijvij = 0 .

For each i, let

wi =
ni∑

j=1

aijvij .

Then wi ∈ Eλi
for each i, and w1 + · · · + wk = 0 . Therefore, by the lemma,

wi = 0 for all i. But each Si is linearly independent, and hence aij = 0 for
all j. We conclude that S is linearly independent.
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Theorem 5.8 tells us how to construct a linearly independent subset of
eigenvectors, namely, by collecting bases for the individual eigenspaces. The
next theorem tells us when the resulting set is a basis for the entire space.

Theorem 5.9. Let T be a linear operator on a finite-dimensional vector
space V such that the characteristic polynomial of T splits. Let λ1, λ2, . . . , λk

be the distinct eigenvalues of T. Then
(a) T is diagonalizable if and only if the multiplicity of λi is equal to

dim(Eλi
) for all i.

(b) If T is diagonalizable and βi is an ordered basis for Eλi
for each i, then

β = β1∪β2∪· · ·∪βk is an ordered basis2 for V consisting of eigenvectors
of T.

Proof. For each i, let mi denote the multiplicity of λi, di = dim(Eλi), and
n = dim(V).

First, suppose that T is diagonalizable. Let β be a basis for V consisting
of eigenvectors of T. For each i, let βi = β ∩ Eλi

, the set of vectors in β that
are eigenvectors corresponding to λi, and let ni denote the number of vectors
in βi. Then ni ≤ di for each i because βi is a linearly independent subset of
a subspace of dimension di, and di ≤ mi by Theorem 5.7. The ni’s sum to n
because β contains n vectors. The mi’s also sum to n because the degree of
the characteristic polynomial of T is equal to the sum of the multiplicities of
the eigenvalues. Thus

n =
k∑

i=1

ni ≤
k∑

i=1

di ≤
k∑

i=1

mi = n.

It follows that

k∑
i=1

(mi − di) = 0.

Since (mi − di) ≥ 0 for all i, we conclude that mi = di for all i.
Conversely, suppose that mi = di for all i. We simultaneously show that

T is diagonalizable and prove (b). For each i, let βi be an ordered basis for
Eλi

, and let β = β1∪β2∪· · ·∪βk. By Theorem 5.8, β is linearly independent.
Furthermore, since di = mi for all i, β contains

k∑
i=1

di =
k∑

i=1

mi = n

2We regard β1 ∪β2 ∪ · · ·∪βk as an ordered basis in the natural way—the vectors
in β1 are listed first (in the same order as in β1), then the vectors in β2 (in the same
order as in β2), etc.
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vectors. Therefore β is an ordered basis for V consisting of eigenvectors of V,
and we conclude that T is diagonalizable.

This theorem completes our study of the diagonalization problem. We
summarize our results.

Test for Diagonalization

Let T be a linear operator on an n-dimensional vector space V. Then T
is diagonalizable if and only if both of the following conditions hold.

1. The characteristic polynomial of T splits.
2. For each eigenvalue λ of T, the multiplicity of λ equals n−rank(T−λI).

These same conditions can be used to test if a square matrix A is diagonal-
izable because diagonalizability of A is equivalent to diagonalizability of the
operator LA.

If T is a diagonalizable operator and β1, β2, . . . , βk are ordered bases for
the eigenspaces of T, then the union β = β1 ∪β2 ∪ · · · ∪βk is an ordered basis
for V consisting of eigenvectors of T, and hence [T]β is a diagonal matrix.

When testing T for diagonalizability, it is usually easiest to choose a conve-
nient basis α for V and work with B = [T]α. If the characteristic polynomial
of B splits, then use condition 2 above to check if the multiplicity of each
repeated eigenvalue of B equals n − rank(B − λI). (By Theorem 5.7, condi-
tion 2 is automatically satisfied for eigenvalues of multiplicity 1.) If so, then
B, and hence T, is diagonalizable.

If T is diagonalizable and a basis β for V consisting of eigenvectors of T
is desired, then we first find a basis for each eigenspace of B. The union of
these bases is a basis γ for Fn consisting of eigenvectors of B. Each vector
in γ is the coordinate vector relative to α of an eigenvector of T. The set
consisting of these n eigenvectors of T is the desired basis β.

Furthermore, if A is an n×n diagonalizable matrix, we can use the corol-
lary to Theorem 2.23 (p. 115) to find an invertible n × n matrix Q and a
diagonal n × n matrix D such that Q−1AQ = D. The matrix Q has as its
columns the vectors in a basis of eigenvectors of A, and D has as its jth
diagonal entry the eigenvalue of A corresponding to the jth column of Q.

We now consider some examples illustrating the preceding ideas.

Example 5

We test the matrix

A =

⎛⎝3 1 0
0 3 0
0 0 4

⎞⎠ ∈ M3×3(R)

for diagonalizability.
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The characteristic polynomial of A is det(A−tI) = −(t−4)(t−3)2, which
splits, and so condition 1 of the test for diagonalization is satisfied. Also A
has eigenvalues λ1 = 4 and λ2 = 3 with multiplicities 1 and 2, respectively.
Since λ1 has multiplicity 1, condition 2 is satisfied for λ1. Thus we need only
test condition 2 for λ2. Because

A − λ2I =

⎛⎝0 1 0
0 0 0
0 0 1

⎞⎠
has rank 2, we see that 3 − rank(A − λ2I) = 1, which is not the multiplicity
of λ2. Thus condition 2 fails for λ2, and A is therefore not diagonalizable.

♦
Example 6

Let T be the linear operator on P2(R) defined by

T(f(x)) = f(1) + f ′(0)x + (f ′(0) + f ′′(0))x2.

We first test T for diagonalizability. Let α denote the standard ordered basis
for P2(R) and B = [T]α. Then

B =

⎛⎝1 1 1
0 1 0
0 1 2

⎞⎠ .

The characteristic polynomial of B, and hence of T, is −(t−1)2(t−2), which
splits. Hence condition 1 of the test for diagonalization is satisfied. Also B
has the eigenvalues λ1 = 1 and λ2 = 2 with multiplicities 2 and 1, respectively.
Condition 2 is satisfied for λ2 because it has multiplicity 1. So we need only
verify condition 2 for λ1 = 1. For this case,

3 − rank(B − λ1I) = 3 − rank

⎛⎝0 1 1
0 0 0
0 1 1

⎞⎠ = 3 − 1 = 2,

which is equal to the multiplicity of λ1. Therefore T is diagonalizable.

We now find an ordered basis γ for R3 of eigenvectors of B. We consider
each eigenvalue separately.

The eigenspace corresponding to λ1 = 1 is

Eλ1 =

⎧⎨⎩
⎛⎝x1

x2

x3

⎞⎠ ∈ R3 :

⎛⎝0 1 1
0 0 0
0 1 1

⎞⎠⎛⎝x1

x2

x3

⎞⎠ = 0

⎫⎬⎭ ,
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which is the solution space for the system

x2 + x3 = 0,

and has

γ1 =

⎧⎨⎩
⎛⎝1

0
0

⎞⎠ ,

⎛⎝ 0
−1

1

⎞⎠⎫⎬⎭
as a basis.

The eigenspace corresponding to λ2 = 2 is

Eλ2 =

⎧⎨⎩
⎛⎝x1

x2

x3

⎞⎠ ∈ R3 :

⎛⎝−1 1 1
0 −1 0
0 1 0

⎞⎠⎛⎝x1

x2

x3

⎞⎠ = 0

⎫⎬⎭ ,

which is the solution space for the system

−x1 + x2 + x3 = 0
x2 = 0,

and has

γ2 =

⎧⎨⎩
⎛⎝1

0
1

⎞⎠⎫⎬⎭
as a basis.

Let

γ = γ1 ∪ γ2 =

⎧⎨⎩
⎛⎝1

0
0

⎞⎠ ,

⎛⎝ 0
−1

1

⎞⎠ ,

⎛⎝1
0
1

⎞⎠⎫⎬⎭ .

Then γ is an ordered basis for R3 consisting of eigenvectors of B.

Finally, observe that the vectors in γ are the coordinate vectors relative
to α of the vectors in the set

β = {1,−x + x2, 1 + x2},

which is an ordered basis for P2(R) consisting of eigenvectors of T. Thus

[T]β =

⎛⎝1 0 0
0 1 0
0 0 2

⎞⎠ . ♦
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Our next example is an application of diagonalization that is of interest
in Section 5.3.

Example 7

Let

A =
(

0 −2
1 3

)
.

We show that A is diagonalizable and find a 2×2 matrix Q such that Q−1AQ
is a diagonal matrix. We then show how to use this result to compute An for
any positive integer n.

First observe that the characteristic polynomial of A is (t− 1)(t− 2), and
hence A has two distinct eigenvalues, λ1 = 1 and λ2 = 2. By applying the
corollary to Theorem 5.5 to the operator LA, we see that A is diagonalizable.
Moreover,

γ1 =
{(−2

1

)}
and γ2 =

{(−1
1

)}
are bases for the eigenspaces Eλ1 and Eλ2 , respectively. Therefore

γ = γ1 ∪ γ2 =
{(−2

1

)
,

(−1
1

)}
is an ordered basis for R2 consisting of eigenvectors of R2. Let

Q =
(−2 −1

1 1

)
,

the matrix whose columns are the vectors in γ. Then, by the corollary to
Theorem 2.23 (p. 115),

D = Q−1AQ = [LA]β =
(

1 0
0 2

)
.

To find An for any positive integer n, observe that A = QDQ−1. Therefore

An = (QDQ−1)n

= (QDQ−1)(QDQ−1) · · · (QDQ−1)

= QDnQ−1

= Q

(
1n 0
0 2n

)
Q−1

=
(−2 −1

1 1

)(
1 0
0 2n

)(−1 −1
1 2

)
=
(

2 − 2n 2 − 2n+1

−1 + 2n −1 + 2n+1

)
. ♦
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We now consider an application that uses diagonalization to solve a system
of differential equations.

Systems of Differential Equations

Consider the system of differential equations

x′
1 = 3x1 + x2 + x3

x′
2 = 2x1 + 4x2 + 2x3

x′
3 = −x1 − x2 + x3,

where, for each i, xi = xi(t) is a differentiable real-valued function of the
real variable t. Clearly, this system has a solution, namely, the solution in
which each xi(t) is the zero function. We determine all of the solutions to
this system.

Let x : R → R3 be the function defined by

x(t) =

⎛⎜⎝x1(t)
x2(t)
x3(t)

⎞⎟⎠ .

The derivative of x, denoted x′, is defined by

x′(t) =

⎛⎜⎝x′
1(t)

x′
2(t)

x′
3(t)

⎞⎟⎠ .

Let

A =

⎛⎝ 3 1 1
2 4 2

−1 −1 1

⎞⎠
be the coefficient matrix of the given system, so that we can rewrite the
system as the matrix equation x′ = Ax.

It can be verified that for

Q =

⎛⎝−1 0 −1
0 −1 −2
1 1 1

⎞⎠ and D =

⎛⎝2 0 0
0 2 0
0 0 4

⎞⎠ ,

we have Q−1AQ = D. Substitute A = QDQ−1 into x′ = Ax to obtain
x′ = QDQ−1x or, equivalently, Q−1x′ = DQ−1x. The function y : R → R3

defined by y(t) = Q−1x(t) can be shown to be differentiable, and y′ = Q−1x′

(see Exercise 16). Hence the original system can be written as y′ = Dy.
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Since D is a diagonal matrix, the system y′ = Dy is easy to solve. Setting

y(t) =

⎛⎜⎝y1(t)
y2(t)
y3(t)

⎞⎟⎠ ,

we can rewrite y′ = Dy as⎛⎜⎝y′
1(t)

y′
2(t)

y′
3(t)

⎞⎟⎠ =

⎛⎝2 0 0
0 2 0
0 0 4

⎞⎠
⎛⎜⎝y1(t)

y2(t)
y3(t)

⎞⎟⎠ =

⎛⎜⎝2y1(t)
2y2(t)
4y3(t)

⎞⎟⎠.

The three equations

y′
1 = 2y1

y′
2 = 2y2

y′
3 = 4y3

are independent of each other, and thus can be solved individually. It is
easily seen (as in Example 3 of Section 5.1) that the general solution to these
equations is y1(t) = c1e

2t, y2(t) = c2e
2t, and y3(t) = c3e

4t, where c1, c2, and
c3 are arbitrary constants. Finally,⎛⎜⎝x1(t)

x2(t)
x3(t)

⎞⎟⎠ = x(t) = Qy(t) =

⎛⎝−1 0 −1
0 −1 −2
1 1 1

⎞⎠
⎛⎜⎝c1e

2t

c2e
2t

c3e
4t

⎞⎟⎠

=

⎛⎝−c1e
2t − c3e

4t

− c2e
2t − 2c3e

4t

c1e
2t + c2e

2t + c3e
4t

⎞⎠
yields the general solution of the original system. Note that this solution can
be written as

x(t) = e2t

⎡⎣c1

⎛⎝−1
0
1

⎞⎠+ c2

⎛⎝ 0
−1

1

⎞⎠⎤⎦+ e4t

⎡⎣c3

⎛⎝−1
−2

1

⎞⎠⎤⎦ .

The expressions in brackets are arbitrary vectors in Eλ1 and Eλ2 , respectively,
where λ1 = 2 and λ2 = 4. Thus the general solution of the original system is
x(t) = e2tz1 + e4tz2, where z1 ∈ Eλ1 and z2 ∈ Eλ2 . This result is generalized
in Exercise 15.

Direct Sums*

Let T be a linear operator on a finite-dimensional vector space V. There
is a way of decomposing V into simpler subspaces that offers insight into the
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behavior of T. This approach is especially useful in Chapter 7, where we study
nondiagonalizable linear operators. In the case of diagonalizable operators,
the simpler subspaces are the eigenspaces of the operator.

Definition. Let W1, W2, . . . ,Wk be subspaces of a vector space V. We
define the sum of these subspaces to be the set

{v1 + v2 + · · · + vk : vi ∈ Wi for 1 ≤ i ≤ k},

which we denote by W1 + W2 + · · · + Wk or
k∑

i=1

Wi.

It is a simple exercise to show that the sum of subspaces of a vector space
is also a subspace.

Example 8

Let V = R3, let W1 denote the xy-plane, and let W2 denote the yz-plane.
Then R3 = W1 + W2 because, for any vector (a, b, c) ∈ R3, we have

(a, b, c) = (a, 0, 0) + (0, b, c),

where (a, 0, 0) ∈ W1 and (0, b, c) ∈ W2. ♦
Notice that in Example 8 the representation of (a, b, c) as a sum of vectors

in W1 and W2 is not unique. For example, (a, b, c) = (a, b, 0) + (0, 0, c) is
another representation. Because we are often interested in sums for which
representations are unique, we introduce a condition that assures this out-
come. The definition of direct sum that follows is a generalization of the
definition given in the exercises of Section 1.3.

Definition. Let W1, W2, . . . ,Wk be subspaces of a vector space V. We
call V the direct sum of the subspaces W1, W2, . . . ,Wk and write V =
W1 ⊕ W2 ⊕ · · · ⊕ Wk, if

V =
k∑

i=1

Wi

and

Wj ∩
∑
i �=j

Wi = {0} for each j (1 ≤ j ≤ k).

Example 9

Let V = R4, W1 = {(a, b, 0, 0) : a, b,∈ R}, W2 = {(0, 0, c, 0) : c ∈ R}, and
W3 = {(0, 0, 0, d) : d ∈ R}. For any (a, b, c, d) ∈ V,

(a, b, c, d) = (a, b, 0, 0) + (0, 0, c, 0) + (0, 0, 0, d) ∈ W1 + W2 + W3.



276 Chap. 5 Diagonalization

Thus

V =
3∑

i=1

Wi.

To show that V is the direct sum of W1, W2, and W3, we must prove that
W1 ∩ (W2 + W3) = W2 ∩ (W1 + W3) = W3 ∩ (W1 + W2) = {0}. But these
equalities are obvious, and so V = W1 ⊕ W2 ⊕ W3. ♦

Our next result contains several conditions that are equivalent to the
definition of a direct sum.

Theorem 5.10. Let W1, W2, . . . ,Wk be subspaces of a finite-dimensional
vector space V. The following conditions are equivalent.

(a) V = W1 ⊕ W2 ⊕ · · · ⊕ Wk.

(b) V =
k∑

i=1

Wi and, for any vectors v1, v2, . . . , vk such that vi ∈ Wi

(1 ≤ i ≤ k), if v1 + v2 + · · · + vk = 0 , then vi = 0 for all i.
(c) Each vector v ∈ V can be uniquely written as v = v1 + v2 + · · · + vk,

where vi ∈ Wi.
(d) If γi is an ordered basis for Wi (1 ≤ i ≤ k), then γ1 ∪ γ2 ∪ · · · ∪ γk is an

ordered basis for V.
(e) For each i = 1, 2, . . . , k, there exists an ordered basis γi for Wi such

that γ1 ∪ γ2 ∪ · · · ∪ γk is an ordered basis for V.

Proof. Assume (a). We prove (b). Clearly

V =
k∑

i=1

Wi.

Now suppose that v1, v2, . . . , vk are vectors such that vi ∈ Wi for all i and
v1 + v2 + · · · + vk = 0 . Then for any j

−vj =
∑
i �=j

vi ∈
∑
i �=j

Wi.

But −vj ∈ Wj and hence

−vj ∈ Wj ∩
∑
i �=j

Wi = {0}.

So vj = 0 , proving (b).
Now assume (b). We prove (c). Let v ∈ V. By (b), there exist vectors

v1, v2, . . . , vk such that vi ∈ Wi and v = v1 + v2 + · · · + vk. We must show
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that this representation is unique. Suppose also that v = w1 + w2 + · · ·+ wk,
where wi ∈ Wi for all i. Then

(v1 − w1) + (v2 − w2) + · · · + (vk − wk) = 0 .

But vi − wi ∈ Wi for all i, and therefore vi − wi = 0 for all i by (b). Thus
vi = wi for all i, proving the uniqueness of the representation.

Now assume (c). We prove (d). For each i, let γi be an ordered basis for
Wi. Since

V =
k∑

i=1

Wi

by (c), it follows that γ1 ∪ γ2 ∪ · · · ∪ γk generates V. To show that this
set is linearly independent, consider vectors vij ∈ γi (j = 1, 2, . . . , mi and
i = 1, 2, . . . , k) and scalars aij such that∑

i,j

aijvij = 0 .

For each i, set

wi =
mi∑
j=1

aijvij .

Then for each i, wi ∈ span(γi) = Wi and

w1 + w2 + · · · + wk =
∑
i,j

aijvij = 0 .

Since 0 ∈ Wi for each i and 0 + 0 + · · ·+ 0 = w1 + w2 + · · ·+ wk, (c) implies
that wi = 0 for all i. Thus

0 = wi =
mi∑
j=1

aijvij

for each i. But each γi is linearly independent, and hence aij = 0 for all i
and j. Consequently γ1 ∪ γ2 ∪ · · · ∪ γk is linearly independent and therefore
is a basis for V.

Clearly (e) follows immediately from (d).
Finally, we assume (e) and prove (a). For each i, let γi be an ordered

basis for Wi such that γ1 ∪ γ2 ∪ · · · ∪ γk is an ordered basis for V. Then

V = span(γ1 ∪ γ2 ∪ · · · ∪ γk)
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= span(γ1) + span(γ2) + · · · + span(γk) =
k∑

i=1

Wi

by repeated applications of Exercise 14 of Section 1.4. Fix j (1 ≤ j ≤ k), and
suppose that, for some nonzero vector v ∈ V,

v ∈ Wj ∩
∑
i �=j

Wi.

Then

v ∈ Wj = span(γj) and v ∈
∑
i �=j

Wi = span

⎛⎝⋃
i �=j

γi

⎞⎠ .

Hence v is a nontrivial linear combination of both γj and

⎛⎝⋃
i �=j

γi

⎞⎠, so that

v can be expressed as a linear combination of γ1 ∪ γ2 ∪ · · · ∪ γk in more than
one way. But these representations contradict Theorem 1.8 (p. 43), and so
we conclude that

Wj ∩
∑
i �=j

Wi = {0},

proving (a).

With the aid of Theorem 5.10, we are able to characterize diagonalizability
in terms of direct sums.

Theorem 5.11. A linear operator T on a finite-dimensional vector space
V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.

Proof. Let λ1, λ2, . . . , λk be the distinct eigenvalues of T.
First suppose that T is diagonalizable, and for each i choose an ordered

basis γi for the eigenspace Eλi
. By Theorem 5.9, γ1 ∪ γ2 ∪ · · · ∪ γk is a basis

for V, and hence V is a direct sum of the Eλi
’s by Theorem 5.10.

Conversely, suppose that V is a direct sum of the eigenspaces of T. For
each i, choose an ordered basis γi of Eλi . By Theorem 5.10, the union
γ1 ∪ γ2 ∪ · · · ∪ γk is a basis for V. Since this basis consists of eigenvectors of
T, we conclude that T is diagonalizable.

Example 10

Let T be the linear operator on R4 defined by

T(a, b, c, d) = (a, b, 2c, 3d).
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It is easily seen that T is diagonalizable with eigenvalues λ1 = 1, λ2 = 2,
and λ3 = 3. Furthermore, the corresponding eigenspaces coincide with the
subspaces W1, W2, and W3 of Example 9. Thus Theorem 5.11 provides us
with another proof that R4 = W1 ⊕ W2 ⊕ W3. ♦

EXERCISES

1. Label the following statements as true or false.

(a) Any linear operator on an n-dimensional vector space that has
fewer than n distinct eigenvalues is not diagonalizable.

(b) Two distinct eigenvectors corresponding to the same eigenvalue
are always linearly dependent.

(c) If λ is an eigenvalue of a linear operator T, then each vector in Eλ

is an eigenvector of T.
(d) If λ1 and λ2 are distinct eigenvalues of a linear operator T, then

Eλ1 ∩ Eλ2 = {0}.
(e) Let A ∈ Mn×n(F ) and β = {v1, v2, . . . , vn} be an ordered basis for

Fn consisting of eigenvectors of A. If Q is the n× n matrix whose
jth column is vj (1 ≤ j ≤ n), then Q−1AQ is a diagonal matrix.

(f) A linear operator T on a finite-dimensional vector space is diago-
nalizable if and only if the multiplicity of each eigenvalue λ equals
the dimension of Eλ.

(g) Every diagonalizable linear operator on a nonzero vector space has
at least one eigenvalue.

The following two items relate to the optional subsection on direct sums.

(h) If a vector space is the direct sum of subspaces W1, W2, . . . ,Wk,
then Wi ∩ Wj = {0} for i �= j.

(i) If

V =
k∑

i=1

Wi and Wi ∩ Wj = {0} for i �= j,

then V = W1 ⊕ W2 ⊕ · · · ⊕ Wk.

2. For each of the following matrices A ∈ Mn×n(R), test A for diagonal-
izability, and if A is diagonalizable, find an invertible matrix Q and a
diagonal matrix D such that Q−1AQ = D.

(a)
(

1 2
0 1

)
(b)

(
1 3
3 1

)
(c)

(
1 4
3 2

)

(d)

⎛⎝7 −4 0
8 −5 0
6 −6 3

⎞⎠ (e)

⎛⎝0 0 1
1 0 −1
0 1 1

⎞⎠ (f)

⎛⎝1 1 0
0 1 2
0 0 3

⎞⎠
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(g)

⎛⎝ 3 1 1
2 4 2

−1 −1 1

⎞⎠
3. For each of the following linear operators T on a vector space V, test

T for diagonalizability, and if T is diagonalizable, find a basis β for V
such that [T]β is a diagonal matrix.

(a) V = P3(R) and T is defined by T(f(x)) = f ′(x) + f ′′(x), respec-
tively.

(b) V = P2(R) and T is defined by T(ax2 + bx + c) = cx2 + bx + a.
(c) V = R3 and T is defined by

T

⎛⎝a1

a2

a3

⎞⎠ =

⎛⎝ a2

−a1

2a3

⎞⎠ .

(d) V = P2(R) and T is defined by T(f(x)) = f(0) + f(1)(x + x2).
(e) V = C2 and T is defined by T(z, w) = (z + iw, iz + w).
(f) V = M2×2(R) and T is defined by T(A) = At.

4. Prove the matrix version of the corollary to Theorem 5.5: If A ∈
Mn×n(F ) has n distinct eigenvalues, then A is diagonalizable.

5. State and prove the matrix version of Theorem 5.6.

6. (a) Justify the test for diagonalizability and the method for diagonal-
ization stated in this section.

(b) Formulate the results in (a) for matrices.

7. For

A =
(

1 4
2 3

)
∈ M2×2(R),

find an expression for An, where n is an arbitrary positive integer.

8. Suppose that A ∈ Mn×n(F ) has two distinct eigenvalues, λ1 and λ2,
and that dim(Eλ1) = n − 1. Prove that A is diagonalizable.

9. Let T be a linear operator on a finite-dimensional vector space V, and
suppose there exists an ordered basis β for V such that [T]β is an upper
triangular matrix.

(a) Prove that the characteristic polynomial for T splits.
(b) State and prove an analogous result for matrices.

The converse of (a) is treated in Exercise 32 of Section 5.4.
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10. Let T be a linear operator on a finite-dimensional vector space V with
the distinct eigenvalues λ1, λ2, . . . , λk and corresponding multiplicities
m1, m2, . . . , mk. Suppose that β is a basis for V such that [T]β is an
upper triangular matrix. Prove that the diagonal entries of [T]β are
λ1, λ2, . . . , λk and that each λi occurs mi times (1 ≤ i ≤ k).

11. Let A be an n × n matrix that is similar to an upper triangular ma-
trix and has the distinct eigenvalues λ1, λ2, . . . , λk with corresponding
multiplicities m1, m2, . . . , mk. Prove the following statements.

(a) tr(A) =
k∑

i=1

miλi

(b) det(A) = (λ1)m1(λ2)m2 · · · (λk)mk .

12. Let T be an invertible linear operator on a finite-dimensional vector
space V.

(a) Recall that for any eigenvalue λ of T, λ−1 is an eigenvalue of T−1

(Exercise 8 of Section 5.1). Prove that the eigenspace of T corre-
sponding to λ is the same as the eigenspace of T−1 corresponding
to λ−1.

(b) Prove that if T is diagonalizable, then T−1 is diagonalizable.

13. Let A ∈ Mn×n(F ). Recall from Exercise 14 of Section 5.1 that A and
At have the same characteristic polynomial and hence share the same
eigenvalues with the same multiplicities. For any eigenvalue λ of A and
At, let Eλ and E′

λ denote the corresponding eigenspaces for A and At,
respectively.

(a) Show by way of example that for a given common eigenvalue, these
two eigenspaces need not be the same.

(b) Prove that for any eigenvalue λ, dim(Eλ) = dim(E′
λ).

(c) Prove that if A is diagonalizable, then At is also diagonalizable.

14. Find the general solution to each system of differential equations.

(a)
x′ = x + y
y′ = 3x − y

(b)
x′

1 = 8x1 + 10x2

x′
2 = −5x1 − 7x2

(c)
x′

1 = x1 + x3

x′
2 = x2 + x3

x′
3 = 2x3

15. Let

A =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

⎞⎟⎟⎟⎠
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be the coefficient matrix of the system of differential equations

x′
1 = a11x1 + a12x2 + · · · + a1nxn

x′
2 = a21x1 + a22x2 + · · · + a2nxn

...
x′

n = an1x1 + an2x2 + · · · + annxn.

Suppose that A is diagonalizable and that the distinct eigenvalues of A
are λ1, λ2, . . . , λk. Prove that a differentiable function x : R → Rn is a
solution to the system if and only if x is of the form

x(t) = eλ1tz1 + eλ2tz2 + · · · + eλktzk,

where zi ∈ Eλi
for i = 1, 2, . . . , k. Use this result to prove that the set

of solutions to the system is an n-dimensional real vector space.

16. Let C ∈ Mm×n(R), and let Y be an n × p matrix of differentiable
functions. Prove (CY )′ = CY ′, where (Y ′)ij = Y ′

ij for all i, j.

Exercises 17 through 19 are concerned with simultaneous diagonalization.

Definitions. Two linear operators T and U on a finite-dimensional vector
space V are called simultaneously diagonalizable if there exists an ordered
basis β for V such that both [T]β and [U]β are diagonal matrices. Similarly,
A, B ∈ Mn×n(F ) are called simultaneously diagonalizable if there exists
an invertible matrix Q ∈ Mn×n(F ) such that both Q−1AQ and Q−1BQ are
diagonal matrices.

17. (a) Prove that if T and U are simultaneously diagonalizable linear
operators on a finite-dimensional vector space V, then the matrices
[T]β and [U]β are simultaneously diagonalizable for any ordered
basis β.

(b) Prove that if A and B are simultaneously diagonalizable matrices,
then LA and LB are simultaneously diagonalizable linear operators.

18. (a) Prove that if T and U are simultaneously diagonalizable operators,
then T and U commute (i.e., TU = UT).

(b) Show that if A and B are simultaneously diagonalizable matrices,
then A and B commute.

The converses of (a) and (b) are established in Exercise 25 of Section 5.4.

19. Let T be a diagonalizable linear operator on a finite-dimensional vector
space, and let m be any positive integer. Prove that T and Tm are
simultaneously diagonalizable.

Exercises 20 through 23 are concerned with direct sums.
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20. Let W1, W2, . . . ,Wk be subspaces of a finite-dimensional vector space V
such that

k∑
i=1

Wi = V.

Prove that V is the direct sum of W1, W2, . . . ,Wk if and only if

dim(V) =
k∑

i=1

dim(Wi).

21. Let V be a finite-dimensional vector space with a basis β, and let
β1, β2, . . . , βk be a partition of β (i.e., β1, β2, . . . , βk are subsets of β
such that β = β1 ∪ β2 ∪ · · · ∪ βk and βi ∩ βj = ∅ if i �= j). Prove that
V = span(β1) ⊕ span(β2) ⊕ · · · ⊕ span(βk).

22. Let T be a linear operator on a finite-dimensional vector space V, and
suppose that the distinct eigenvalues of T are λ1, λ2, . . . , λk. Prove that

span({x ∈ V : x is an eigenvector of T}) = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk
.

23. Let W1, W2, K1, K2, . . . ,Kp, M1, M2, . . . ,Mq be subspaces of a vector
space V such that W1 = K1⊕K2⊕· · ·⊕Kp and W2 = M1⊕M2⊕· · ·⊕Mq.
Prove that if W1 ∩ W2 = {0}, then

W1 + W2 = W1 ⊕ W2 = K1 ⊕ K2 ⊕ · · · ⊕ Kp ⊕ M1 ⊕ M2 ⊕ · · · ⊕ Mq.

5.3∗ MATRIX LIMITS AND MARKOV CHAINS

In this section, we apply what we have learned thus far in Chapter 5 to study
the limit of a sequence of powers A, A2, . . . , An, . . ., where A is a square
matrix with complex entries. Such sequences and their limits have practical
applications in the natural and social sciences.

We assume familiarity with limits of sequences of real numbers. The
limit of a sequence of complex numbers {zm : m = 1, 2, . . .} can be defined
in terms of the limits of the sequences of the real and imaginary parts: If
zm = rm + ism, where rm and sm are real numbers, and i is the imaginary
number such that i2 = −1, then

lim
m→∞ zm = lim

m→∞ rm + i lim
m→∞ sm,

provided that lim
m→∞ rm and lim

m→∞ sm exist.
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Definition. Let L, A1, A2, . . . be n× p matrices having complex entries.
The sequence A1, A2, . . . is said to converge to the n × p matrix L, called
the limit of the sequence, if

lim
m→∞(Am)ij = Lij

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. To designate that L is the limit of the
sequence, we write

lim
m→∞Am = L.

Example 1

If

Am =

⎛⎜⎜⎜⎜⎝
1 − 1

m

(
− 3

4

)m
3m2

m2+1 + i

(
2m+1
m−1

)
(

i
2

)m

2
(

1 + 1
m

)m

⎞⎟⎟⎟⎟⎠ ,

then

lim
m→∞Am =

(
1 0 3 + 2i
0 2 e

)
,

where e is the base of the natural logarithm. ♦
A simple, but important, property of matrix limits is contained in the next

theorem. Note the analogy with the familiar property of limits of sequences
of real numbers that asserts that if lim

m→∞ am exists, then

lim
m→∞ cam = c

(
lim

m→∞ am

)
.

Theorem 5.12. Let A1, A2, . . . be a sequence of n × p matrices with
complex entries that converges to the matrix L. Then for any P ∈ Mr×n(C)
and Q ∈ Mp×s(C),

lim
m→∞PAm = PL and lim

m→∞AmQ = LQ.

Proof. For any i (1 ≤ i ≤ r) and j (1 ≤ j ≤ p),

lim
m→∞(PAm)ij = lim

m→∞

n∑
k=1

Pik(Am)kj
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=
n∑

k=1

Pik · lim
m→∞(Am)kj =

n∑
k=1

PikLkj = (PL)ij .

Hence lim
m→∞PAm = PL. The proof that lim

m→∞AmQ = LQ is similar.

Corollary. Let A ∈ Mn×n(C) be such that lim
m→∞Am = L. Then for any

invertible matrix Q ∈ Mn×n(C),

lim
m→∞(QAQ−1)m = QLQ−1.

Proof. Since

(QAQ−1)m = (QAQ−1)(QAQ−1) · · · (QAQ−1) = QAmQ−1,

we have

lim
m→∞(QAQ−1)m = lim

m→∞QAmQ−1 = Q
(

lim
m→∞Am

)
Q−1 = QLQ−1

by applying Theorem 5.12 twice.

In the discussion that follows, we frequently encounter the set

S = {λ ∈ C : |λ| < 1 or λ = 1}.

Geometrically, this set consists of the complex number 1 and the interior of
the unit disk (the disk of radius 1 centered at the origin). This set is of
interest because if λ is a complex number, then lim

m→∞λn exists if and only
λ ∈ S. This fact, which is obviously true if λ is real, can be shown to be true
for complex numbers also.

The following important result gives necessary and sufficient conditions
for the existence of the type of limit under consideration.

Theorem 5.13. Let A be a square matrix with complex entries. Then
lim

m→∞Am exists if and only if both of the following conditions hold.

(a) Every eigenvalue of A is contained in S.
(b) If 1 is an eigenvalue of A, then the dimension of the eigenspace corre-

sponding to 1 equals the multiplicity of 1 as an eigenvalue of A.

One proof of this theorem, which relies on the theory of Jordan canonical
forms (Section 7.2), can be found in Exercise 19 of Section 7.2. A second
proof, which makes use of Schur’s theorem (Theorem 6.14 of Section 6.4),
can be found in the article by S. H. Friedberg and A. J. Insel, “Convergence
of matrix powers,” Int. J. Math. Educ. Sci. Technol., 1992, Vol. 23, no. 5,
pp. 765-769.
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The necessity of condition (a) is easily justified. For suppose that λ is an
eigenvalue of A such that λ /∈ S. Let v be an eigenvector of A corresponding
to λ. Regarding v as an n × 1 matrix, we see that

lim
m→∞(Amv) =

(
lim

m→∞Am
)

v = Lv

by Theorem 5.12, where L = lim
m→∞Am. But lim

m→∞(Amv) = lim
m→∞(λmv)

diverges because lim
m→∞λm does not exist. Hence if lim

m→∞Am exists, then

condition (a) of Theorem 5.13 must hold.
Although we are unable to prove the necessity of condition (b) here, we

consider an example for which this condition fails. Observe that the charac-
teristic polynomial for the matrix

B =
(

1 1
0 1

)
is (t − 1)2, and hence B has eigenvalue λ = 1 with multiplicity 2. It can
easily be verified that dim(Eλ) = 1, so that condition (b) of Theorem 5.13
is violated. A simple mathematical induction argument can be used to show
that

Bm =
(

1 m
0 1

)
,

and therefore that lim
m→∞Bm does not exist. We see in Chapter 7 that if A

is a matrix for which condition (b) fails, then A is similar to a matrix whose
upper left 2 × 2 submatrix is precisely this matrix B.

In most of the applications involving matrix limits, the matrix is diag-
onalizable, and so condition (b) of Theorem 5.13 is automatically satisfied.
In this case, Theorem 5.13 reduces to the following theorem, which can be
proved using our previous results.

Theorem 5.14. Let A ∈ Mn×n(C) satisfy the following two conditions.

(i) Every eigenvalue of A is contained in S.

(ii) A is diagonalizable.

Then lim
m→∞Am exists.

Proof. Since A is diagonalizable, there exists an invertible matrix Q such
that Q−1AQ = D is a diagonal matrix. Suppose that

D =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

⎞⎟⎟⎟⎠ .
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Because λ1, λ2, . . . , λn are the eigenvalues of A, condition (i) requires that for
each i, either λi = 1 or |λi| < 1. Thus

lim
m→∞λi

m =

{
1 if λi = 1
0 otherwise.

But since

Dm =

⎛⎜⎜⎜⎝
λ1

m 0 · · · 0
0 λ2

m · · · 0
...

...
...

0 0 · · · λn
m

⎞⎟⎟⎟⎠ ,

the sequence D, D2, . . . converges to a limit L. Hence

lim
m→∞Am = lim

m→∞(QDQ−1)m = QLQ−1

by the corollary to Theorem 5.12.

The technique for computing lim
m→∞Am used in the proof of Theorem 5.14

can be employed in actual computations, as we now illustrate. Let

A =

⎛⎜⎜⎝
7
4 − 9

4 − 15
4

3
4

7
4

3
4

3
4 − 9

4 − 11
4

⎞⎟⎟⎠ .

Using the methods in Sections 5.1 and 5.2, we obtain

Q =

⎛⎝ 1 3 −1
−3 −2 1

2 3 −1

⎞⎠ and D =

⎛⎜⎝1 0 0
0 − 1

2 0
0 0 1

4

⎞⎟⎠
such that Q−1AQ = D. Hence

lim
m→∞Am = lim

m→∞(QDQ−1)m = lim
m→∞QDmQ−1 = Q

(
lim

m→∞Dm
)

Q−1

=

⎛⎝ 1 3 −1
−3 −2 1

2 3 −1

⎞⎠
⎡⎢⎣ lim

m→∞

⎛⎜⎝1 0 0
0 (− 1

2 )m 0

0 0 ( 1
4 )m

⎞⎟⎠
⎤⎥⎦
⎛⎝−1 0 1
−1 1 2
−5 3 7

⎞⎠

=

⎛⎝ 1 3 −1
−3 −2 1

2 3 −1

⎞⎠⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠⎛⎝−1 0 1
−1 1 2
−5 3 7

⎞⎠ =

⎛⎝−1 0 1
3 0 −3

−2 0 2

⎞⎠ .
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Next, we consider an application that uses the limit of powers of a ma-
trix. Suppose that the population of a certain metropolitan area remains
constant but there is a continual movement of people between the city and
the suburbs. Specifically, let the entries of the following matrix A represent
the probabilities that someone living in the city or in the suburbs on January
1 will be living in each region on January 1 of the next year.

Currently Currently
living in living in
the city the suburbs

Living next year in the city
Living next year in the suburbs

(
0.90 0.02
0.10 0.98

)
= A

For instance, the probability that someone living in the city (on January 1)
will be living in the suburbs next year (on January 1) is 0.10. Notice that
since the entries of A are probabilities, they are nonnegative. Moreover, the
assumption of a constant population in the metropolitan area requires that
the sum of the entries of each column of A be 1.

Any square matrix having these two properties (nonnegative entries and
columns that sum to 1) is called a transition matrix or a stochastic ma-
trix. For an arbitrary n × n transition matrix M , the rows and columns
correspond to n states, and the entry Mij represents the probability of mov-
ing from state j to state i in one stage.

In our example, there are two states (residing in the city and residing in
the suburbs). So, for example, A21 is the probability of moving from the
city to the suburbs in one stage, that is, in one year. We now determine the

City ��������


���������

City

Suburbs

��������

�������

Suburbs

0.90

0.10

0.10

0.98

Figure 5.3

probability that a city resident will be living in the suburbs after 2 years.
There are two different ways in which such a move can be made: remaining
in the city for 1 year and then moving to the suburbs, or moving to the
suburbs during the first year and remaining there the second year. (See
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Figure 5.3.) The probability that a city dweller remains in the city for the
first year is 0.90, whereas the probability that the city dweller moves to the
suburbs during the first year is 0.10. Hence the probability that a city dweller
stays in the city for the first year and then moves to the suburbs during the
second year is the product (0.90)(0.10). Likewise, the probability that a city
dweller moves to the suburbs in the first year and remains in the suburbs
during the second year is the product (0.10)(0.98). Thus the probability that
a city dweller will be living in the suburbs after 2 years is the sum of these
products, (0.90)(0.10) + (0.10)(0.98) = 0.188. Observe that this number is
obtained by the same calculation as that which produces (A2)21, and hence
(A2)21 represents the probability that a city dweller will be living in the
suburbs after 2 years. In general, for any transition matrix M , the entry
(Mm)ij represents the probability of moving from state j to state i in m
stages.

Suppose additionally that 70% of the 2000 population of the metropolitan
area lived in the city and 30% lived in the suburbs. We record these data as
a column vector:

Proportion of city dwellers
Proportion of suburb residents

(
0.70
0.30

)
= P.

Notice that the rows of P correspond to the states of residing in the city and
residing in the suburbs, respectively, and that these states are listed in the
same order as the listing in the transition matrix A. Observe also that the
column vector P contains nonnegative entries that sum to 1; such a vector is
called a probability vector. In this terminology, each column of a transition
matrix is a probability vector. It is often convenient to regard the entries of a
transition matrix or a probability vector as proportions or percentages instead
of probabilities, as we have already done with the probability vector P .

In the vector AP , the first coordinate is the sum (0.90)(0.70)+(0.02)(0.30).
The first term of this sum, (0.90)(0.70), represents the proportion of the 2000
metropolitan population that remained in the city during the next year, and
the second term, (0.02)(0.30), represents the proportion of the 2000 metropoli-
tan population that moved into the city during the next year. Hence the first
coordinate of AP represents the proportion of the metropolitan population
that was living in the city in 2001. Similarly, the second coordinate of

AP =
(

0.636
0.364

)
represents the proportion of the metropolitan population that was living in
the suburbs in 2001. This argument can be easily extended to show that the
coordinates of

A2P = A(AP ) =
(

0.57968
0.42032

)
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represent the proportions of the metropolitan population that were living
in each location in 2002. In general, the coordinates of AmP represent the
proportion of the metropolitan population that will be living in the city and
suburbs, respectively, after m stages (m years after 2000).

Will the city eventually be depleted if this trend continues? In view of
the preceding discussion, it is natural to define the eventual proportion of
the city dwellers and suburbanites to be the first and second coordinates,
respectively, of lim

m→∞AmP . We now compute this limit. It is easily shown

that A is diagonalizable, and so there is an invertible matrix Q and a diagonal
matrix D such that Q−1AQ = D. In fact,

Q =

⎛⎝ 1
6 − 1

6

5
6

1
6

⎞⎠ and D =
(

1 0
0 0.88

)
.

Therefore

L = lim
m→∞Am = lim

m→∞QDmQ−1 = Q

(
1 0
0 0

)
Q−1 =

⎛⎝ 1
6

1
6

5
6

5
6

⎞⎠ .

Consequently

lim
m→∞AmP = LP =

⎛⎝ 1
6

5
6

⎞⎠ .

Thus, eventually, 1
6 of the population will live in the city and 5

6 will live in the
suburbs each year. Note that the vector LP satisfies A(LP ) = LP . Hence
LP is both a probability vector and an eigenvector of A corresponding to
the eigenvalue 1. Since the eigenspace of A corresponding to the eigenvalue
1 is one-dimensional, there is only one such vector, and LP is independent
of the initial choice of probability vector P . (See Exercise 15.) For example,
had the 2000 metropolitan population consisted entirely of city dwellers, the
limiting outcome would be the same.

In analyzing the city–suburb problem, we gave probabilistic interpreta-
tions of A2 and AP , showing that A2 is a transition matrix and AP is a
probability vector. In fact, the product of any two transition matrices is a
transition matrix, and the product of any transition matrix and probability
vector is a probability vector. A proof of these facts is a simple corollary
of the next theorem, which characterizes transition matrices and probability
vectors.

Theorem 5.15. Let M be an n×n matrix having real nonnegative entries,
let v be a column vector in Rn having nonnegative coordinates, and let u ∈ Rn

be the column vector in which each coordinate equals 1. Then
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(a) M is a transition matrix if and only if M tu = u;
(b) v is a probability vector if and only if utv = (1).

Proof. Exercise.

Corollary.
(a) The product of two n × n transition matrices is an n × n transition

matrix. In particular, any power of a transition matrix is a transition
matrix.

(b) The product of a transition matrix and a probability vector is a prob-
ability vector.

Proof. Exercise.

The city–suburb problem is an example of a process in which elements of
a set are each classified as being in one of several fixed states that can switch
over time. In general, such a process is called a stochastic process. The
switching to a particular state is described by a probability, and in general
this probability depends on such factors as the state in question, the time
in question, some or all of the previous states in which the object has been
(including the current state), and the states that other objects are in or have
been in.

For instance, the object could be an American voter, and the state of the
object could be his or her preference of political party; or the object could
be a molecule of H2O, and the states could be the three physical states in
which H2O can exist (solid, liquid, and gas). In these examples, all four of
the factors mentioned above influence the probability that an object is in a
particular state at a particular time.

If, however, the probability that an object in one state changes to a differ-
ent state in a fixed interval of time depends only on the two states (and not on
the time, earlier states, or other factors), then the stochastic process is called
a Markov process. If, in addition, the number of possible states is finite,
then the Markov process is called a Markov chain. We treated the city–
suburb example as a two-state Markov chain. Of course, a Markov process is
usually only an idealization of reality because the probabilities involved are
almost never constant over time.

With this in mind, we consider another Markov chain. A certain com-
munity college would like to obtain information about the likelihood that
students in various categories will graduate. The school classifies a student
as a sophomore or a freshman depending on the number of credits that the
student has earned. Data from the school indicate that, from one fall semester
to the next, 40% of the sophomores will graduate, 30% will remain sopho-
mores, and 30% will quit permanently. For freshmen, the data show that
10% will graduate by next fall, 50% will become sophomores, 20% will re-
main freshmen, and 20% will quit permanently. During the present year,
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50% of the students at the school are sophomores and 50% are freshmen. As-
suming that the trend indicated by the data continues indefinitely, the school
would like to know

1. the percentage of the present students who will graduate, the percentage
who will be sophomores, the percentage who will be freshmen, and the
percentage who will quit school permanently by next fall;

2. the same percentages as in item 1 for the fall semester two years hence;
and

3. the probability that one of its present students will eventually graduate.

The preceding paragraph describes a four-state Markov chain with the
following states:

1. having graduated
2. being a sophomore
3. being a freshman
4. having quit permanently.

The given data provide us with the transition matrix

A =

⎛⎜⎜⎝
1 0.4 0.1 0
0 0.3 0.5 0
0 0 0.2 0
0 0.3 0.2 1

⎞⎟⎟⎠
of the Markov chain. (Notice that students who have graduated or have quit
permanently are assumed to remain indefinitely in those respective states.
Thus a freshman who quits the school and returns during a later semester
is not regarded as having changed states—the student is assumed to have
remained in the state of being a freshman during the time he or she was not
enrolled.) Moreover, we are told that the present distribution of students is
half in each of states 2 and 3 and none in states 1 and 4. The vector

P =

⎛⎜⎜⎝
0

0.5
0.5

0

⎞⎟⎟⎠
that describes the initial probability of being in each state is called the initial
probability vector for the Markov chain.

To answer question 1, we must determine the probabilities that a present
student will be in each state by next fall. As we have seen, these probabilities
are the coordinates of the vector

AP =

⎛⎜⎜⎝
1 0.4 0.1 0
0 0.3 0.5 0
0 0 0.2 0
0 0.3 0.2 1

⎞⎟⎟⎠
⎛⎜⎜⎝

0
0.5
0.5

0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.25
0.40
0.10
0.25

⎞⎟⎟⎠ .
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Hence by next fall, 25% of the present students will graduate, 40% will be
sophomores, 10% will be freshmen, and 25% will quit the school permanently.
Similarly,

A2P = A(AP ) =

⎛⎜⎜⎝
1 0.4 0.1 0
0 0.3 0.5 0
0 0 0.2 0
0 0.3 0.2 1

⎞⎟⎟⎠
⎛⎜⎜⎝

0.25
0.40
0.10
0.25

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0.42
0.17
0.02
0.39

⎞⎟⎟⎠
provides the information needed to answer question 2: within two years 42%
of the present students will graduate, 17% will be sophomores, 2% will be
freshmen, and 39% will quit school.

Finally, the answer to question 3 is provided by the vector LP , where
L = lim

m→∞Am. For the matrices

Q =

⎛⎜⎜⎝
1 4 19 0
0 −7 −40 0
0 0 8 0
0 3 13 1

⎞⎟⎟⎠ and D =

⎛⎜⎜⎝
1 0 0 0
0 0.3 0 0
0 0 0.2 0
0 0 0 1

⎞⎟⎟⎠ ,

we have Q−1AQ = D. Thus

L = lim
m→∞Am = Q

(
lim

m→∞Dm
)

Q−1

=

⎛⎜⎜⎝
1 4 19 0
0 −7 −40 0
0 0 8 0
0 3 13 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

1 4
7

27
56 0

0 − 1
7 − 5

7 0

0 0 1
8 0

0 3
7

29
56 1

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 4

7
27
56 0

0 0 0 0
0 0 0 0
0 3

7
29
56 1

⎞⎟⎟⎟⎠ .

So

LP =

⎛⎜⎜⎜⎝
1 4

7
27
56 0

0 0 0 0
0 0 0 0
0 3

7
29
56 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

0
0.5
0.5

0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
59
112

0
0
53
112

⎞⎟⎟⎟⎠ ,

and hence the probability that one of the present students will graduate is 59
112 .
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In the preceding two examples, we saw that lim
m→∞AmP , where A is the

transition matrix and P is the initial probability vector of the Markov chain,
gives the eventual proportions in each state. In general, however, the limit of
powers of a transition matrix need not exist. For example, if

M =
(

0 1
1 0

)
,

then lim
m→∞Mm does not exist because odd powers of M equal M and even

powers of M equal I. The reason that the limit fails to exist is that con-
dition (a) of Theorem 5.13 does not hold for M (−1 is an eigenvalue). In
fact, it can be shown (see Exercise 20 of Section 7.2) that the only transition
matrices A such that lim

m→∞Am does not exist are precisely those matrices for

which condition (a) of Theorem 5.13 fails to hold.
But even if the limit of powers of the transition matrix exists, the compu-

tation of the limit may be quite difficult. (The reader is encouraged to work
Exercise 6 to appreciate the truth of the last sentence.) Fortunately, there is
a large and important class of transition matrices for which this limit exists
and is easily computed—this is the class of regular transition matrices.

Definition. A transition matrix is called regular if some power of the
matrix contains only positive entries.

Example 2

The transition matrix (
0.90 0.02
0.10 0.98

)
of the Markov chain used in the city–suburb problem is clearly regular because
each entry is positive. On the other hand, the transition matrix

A =

⎛⎜⎜⎝
1 0.4 0.1 0
0 0.3 0.5 0
0 0 0.2 0
0 0.3 0.2 1

⎞⎟⎟⎠
of the Markov chain describing community college enrollments is not regular
because the first column of Am is ⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠
for any power m.
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Observe that a regular transition matrix may contain zero entries. For
example,

M =

⎛⎝0.9 0.5 0
0 0.5 0.4

0.1 0 0.6

⎞⎠
is regular because every entry of M2 is positive. ♦

The remainder of this section is devoted to proving that, for a regular
transition matrix A, the limit of the sequence of powers of A exists and
has identical columns. From this fact, it is easy to compute this limit. In
the course of proving this result, we obtain some interesting bounds for the
magnitudes of eigenvalues of any square matrix. These bounds are given in
terms of the sum of the absolute values of the rows and columns of the matrix.
The necessary terminology is introduced in the definitions that follow.

Definitions. Let A ∈ Mn×n(C). For 1 ≤ i, j ≤ n, define ρi(A) to be the
sum of the absolute values of the entries of row i of A, and define νj(A) to be
equal to the sum of the absolute values of the entries of column j of A. Thus

ρi(A) =
n∑

j=1

|Aij | for i = 1, 2, . . . n

and

νj(A) =
n∑

i=1

|Aij | for j = 1, 2, . . . n.

The row sum of A, denoted ρ(A), and the column sum of A, denoted ν(A),
are defined as

ρ(A) = max{ρi(A) : 1 ≤ i ≤ n} and ν(A) = max{νj(A) : 1 ≤ j ≤ n}.

Example 3

For the matrix

A =

⎛⎝ 1 −i 3 − 4i
−2 + i 0 6

3 2 i

⎞⎠ ,

ρ1(A) = 7, ρ2(A) = 6 +
√

5, ρ3(A) = 6, ν1(A) = 4 +
√

5, ν2(A) = 3, and
ν3(A) = 12. Hence ρ(A) = 6 +

√
5 and ν(A) = 12. ♦
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Our next results show that the smaller of ρ(A) and ν(A) is an upper
bound for the absolute values of eigenvalues of A. In the preceding example,
for instance, A has no eigenvalue with absolute value greater than 6 +

√
5.

To obtain a geometric view of the following theorem, we introduce some
terminology. For an n×n matrix A, we define the ith Gerschgorin disk Ci to
be the disk in the complex plane with center Aii and radius ri = ρi(A)−|Aii|;
that is,

Ci = {z ∈ C : |z − Aii| < ri}.
For example, consider the matrix

A =
(

1 + 2i 1
2i −3

)
.

For this matrix, C1 is the disk with center 1 + 2i and radius 1, and C2 is the
disk with center −3 and radius 2. (See Figure 5.4.)
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−3

1 + 2i

1

2

0

C1

C2

Figure 5.4

Gershgorin’s disk theorem, stated below, tells us that all the eigenvalues
of A are located within these two disks. In particular, we see that 0 is not an
eigenvalue, and hence by Exercise 8(c) of section 5.1, A is invertible.

Theorem 5.16 (Gerschgorin’s Disk Theorem). Let A ∈ Mn×n(C).
Then every eigenvalue of A is contained in a Gerschgorin disk.

Proof. Let λ be an eigenvalue of A with the corresponding eigenvector

v =

⎛⎜⎜⎜⎝
v1

v2

...
vn

⎞⎟⎟⎟⎠ .
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Then v satisfies the matrix equation Av = λv, which can be written

n∑
j=1

Aijvj = λvi (i = 1, 2, . . . , n). (2)

Suppose that vk is the coordinate of v having the largest absolute value; note
that vk �= 0 because v is an eigenvector of A.

We show that λ lies in Ck, that is, |λ − Akk| ≤ rk. For i = k, it follows
from (2) that

|λvk − Akkvk| =

∣∣∣∣∣∣
n∑

j=1

Akjvj − Akkvk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j �=k

Akjvj

∣∣∣∣∣∣
≤
∑
j �=k

|Akj ||vj | ≤
∑
j �=k

|Akj ||vk|

= |vk|
∑
j �=k

|Akj | = |vk|rk.

Thus

|vk||λ − Akk| ≤ |vk|rk;

so

|λ − Akk| ≤ rk

because |vk| > 0.

Corollary 1. Let λ be any eigenvalue of A ∈ Mn×n(C). Then |λ| ≤ ρ(A).

Proof. By Gerschgorin’s disk theorem, |λ − Akk| ≤ rk for some k. Hence

|λ| = |(λ − Akk) + Akk| ≤ |λ − Akk| + |Akk|
≤ rk + |Akk| = ρk(A) ≤ ρ(A).

Corollary 2. Let λ be any eigenvalue of A ∈ Mn×n(C). Then

|λ| ≤ min{ρ(A), ν(A)}.

Proof. Since |λ| ≤ ρ(A) by Corollary 1, it suffices to show that |λ| ≤ ν(A).
By Exercise 14 of Section 5.1, λ is an eigenvalue of At, and so |λ| ≤ ρ(At)
by Corollary 2. But the rows of At are the columns of A; consequently
ρ(At) = ν(A). Therefore |λ| ≤ ν(A).

The next corollary is immediate from Corollary 2.
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Corollary 3. If λ is an eigenvalue of a transition matrix, then |λ| ≤ 1.

The next result asserts that the upper bound in Corollary 3 is attained.

Theorem 5.17. Every transition matrix has 1 as an eigenvalue.

Proof. Let A be an n×n transition matrix, and let u ∈ Rn be the column
vector in which each coordinate is 1. Then Atu = u by Theorem 5.15, and
hence u is an eigenvector of At corresponding to the eigenvalue 1. But since
A and At have the same eigenvalues, it follows that 1 is also an eigenvalue of
A.

Suppose that A is a transition matrix for which some eigenvector corre-
sponding to the eigenvalue 1 has only nonnegative coordinates. Then some
multiple of this vector is a probability vector P as well as an eigenvector of
A corresponding to eigenvalue 1. It is interesting to observe that if P is the
initial probability vector of a Markov chain having A as its transition matrix,
then the Markov chain is completely static. For in this situation, AmP = P
for every positive integer m; hence the probability of being in each state never
changes. Consider, for instance, the city–suburb problem with

P =

⎛⎝ 1
6

5
6

⎞⎠ .

Theorem 5.18. Let A ∈ Mn×n(C) be a matrix in which each entry is
positive, and let λ be an eigenvalue of A such that |λ| = ρ(A). Then λ = ρ(A)
and {u} is a basis for Eλ, where u ∈ Cn is the column vector in which each
coordinate equals 1.

Proof. Let v be an eigenvector of A corresponding to λ, with coordinates
v1, v2, . . . , vn. Suppose that vk is the coordinate of v having the largest ab-
solute value, and let b = |vk|. Then

|λ|b = |λ||vk| = |λvk| =

∣∣∣∣∣∣
n∑

j=1

Akjvj

∣∣∣∣∣∣ ≤
n∑

j=1

|Akjvj |

=
n∑

j=1

|Akj ||vj | ≤
n∑

j=1

|Akj |b = ρk(A)b ≤ ρ(A)b. (3)

Since |λ| = ρ(A), the three inequalities in (3) are actually equalities; that is,

(a)

∣∣∣∣∣∣
n∑

j=1

Akjvj

∣∣∣∣∣∣ =
n∑

j=1

|Akjvj |,
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(b)
n∑

j=1

|Akj ||vj | =
n∑

j=1

|Akj |b, and

(c) ρk(A) = ρ(A).

We see in Exercise 15(b) of Section 6.1 that (a) holds if and only if all
the terms Akjvj (j = 1, 2, . . . , n) are nonnegative multiples of some nonzero
complex number z. Without loss of generality, we assume that |z| = 1. Thus
there exist nonnegative real numbers c1, c2, . . . , cn such that

Akjvj = cjz. (4)

By (b) and the assumption that Akj �= 0 for all k and j, we have

|vj | = b for j = 1, 2, . . . , n. (5)

Combining (4) and (5), we obtain

b = |vj | =
∣∣∣∣ cj

Akj
z

∣∣∣∣ =
cj

Akj
for j = 1, 2, . . . , n,

and therefore by (4), we have vj = bz for all j. So

v =

⎛⎜⎜⎜⎝
v1

v2

...
vn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
bz
bz
...
bz

⎞⎟⎟⎟⎠ = bzu,

and hence {u} is a basis for Eλ.
Finally, observe that all of the entries of Au are positive because the same

is true for the entries of both A and u. But Au = λu, and hence λ > 0.
Therefore, λ = |λ| = ρ(A).

Corollary 1. Let A ∈ Mn×n(C) be a matrix in which each entry is
positive, and let λ be an eigenvalue of A such that |λ| = ν(A). Then λ = ν(A),
and the dimension of Eλ = 1.

Proof. Exercise.

Corollary 2. Let A ∈ Mn×n(C) be a transition matrix in which each
entry is positive, and let λ be any eigenvalue of A other than 1. Then |λ| < 1.
Moreover, the eigenspace corresponding to the eigenvalue 1 has dimension 1.

Proof. Exercise.

Our next result extends Corollary 2 to regular transition matrices and thus
shows that regular transition matrices satisfy condition (a) of Theorems 5.13
and 5.14.
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Theorem 5.19. Let A be a regular transition matrix, and let λ be an
eigenvalue of A. Then

(a) |λ| ≤ 1.
(b) If |λ| = 1, then λ = 1, and dim(Eλ) = 1.

Proof. Statement (a) was proved as Corollary 3 to Theorem 5.16.
(b) Since A is regular, there exists a positive integer s such that As has

only positive entries. Because A is a transition matrix and the entries of
As are positive, the entries of As+1 = As(A) are positive. Suppose that
|λ| = 1. Then λs and λs+1 are eigenvalues of As and As+1, respectively,
having absolute value 1. So by Corollary 2 to Theorem 5.18, λs = λs+1 = 1.
Thus λ = 1. Let Eλ and E′

λ denote the eigenspaces of A and As, respectively,
corresponding to λ = 1. Then Eλ ⊆ E′

λ and, by Corollary 2 to Theorem 5.18,
dim(E′

λ) = 1. Hence Eλ = E′
λ, and dim(Eλ) = 1.

Corollary. Let A be a regular transition matrix that is diagonalizable.
Then lim

m→∞Am exists.

The preceding corollary, which follows immediately from Theorems 5.19
and 5.14, is not the best possible result. In fact, it can be shown that if A is
a regular transition matrix, then the multiplicity of 1 as an eigenvalue of A is
1. Thus, by Theorem 5.7 (p. 264), condition (b) of Theorem 5.13 is satisfied.
So if A is a regular transition matrix, lim

m→∞Am exists regardless of whether
A is or is not diagonalizable. As with Theorem 5.13, however, the fact that
the multiplicity of 1 as an eigenvalue of A is 1 cannot be proved at this time.
Nevertheless, we state this result here (leaving the proof until Exercise 20 of
Section 7.2) and deduce further facts about lim

m→∞Am when A is a regular
transition matrix.

Theorem 5.20. Let A be an n × n regular transition matrix. Then
(a) The multiplicity of 1 as an eigenvalue of A is 1.
(b) lim

m→∞Am exists.

(c) L = lim
m→∞Am is a transition matrix.

(d) AL = LA = L.
(e) The columns of L are identical. In fact, each column of L is equal to

the unique probability vector v that is also an eigenvector of A corre-
sponding to the eigenvalue 1.

(f) For any probability vector w, lim
m→∞(Amw) = v.

Proof. (a) See Exercise 20 of Section 7.2.
(b) This follows from (a) and Theorems 5.19 and 5.13.
(c) By Theorem 5.15, we must show that utL = ut. Now Am is a transition

matrix by the corollary to Theorem 5.15, so

utL = ut lim
m→∞Am = lim

m→∞utAm = lim
m→∞ut = ut,
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and it follows that L is a transition matrix.
(d) By Theorem 5.12,

AL = A lim
m→∞Am = lim

m→∞AAm = lim
m→∞Am+1 = L.

Similarly, LA = L.
(e) Since AL = L by (d), each column of L is an eigenvector of A cor-

responding to the eigenvalue 1. Moreover, by (c), each column of L is a
probability vector. Thus, by (a), each column of L is equal to the unique
probability vector v corresponding to the eigenvalue 1 of A.

(f) Let w be any probability vector, and set y = lim
m→∞Amw = Lw. Then

y is a probability vector by the corollary to Theorem 5.15, and also Ay =
ALw = Lw = y by (d). Hence y is also an eigenvector corresponding to the
eigenvalue 1 of A. So y = v by (e).

Definition. The vector v in Theorem 5.20(e) is called the fixed prob-
ability vector or stationary vector of the regular transition matrix A.

Theorem 5.20 can be used to deduce information about the eventual dis-
tribution in each state of a Markov chain having a regular transition matrix.

Example 4

A survey in Persia showed that on a particular day 50% of the Persians
preferred a loaf of bread, 30% preferred a jug of wine, and 20% preferred
“thou beside me in the wilderness.” A subsequent survey 1 month later
yielded the following data: Of those who preferred a loaf of bread on the first
survey, 40% continued to prefer a loaf of bread, 10% now preferred a jug of
wine, and 50% preferred “thou”; of those who preferred a jug of wine on the
first survey, 20% now preferred a loaf of bread, 70% continued to prefer a jug
of wine, and 10% now preferred “thou”; of those who preferred “thou” on the
first survey, 20% now preferred a loaf of bread, 20% now preferred a jug of
wine, and 60% continued to prefer “thou.”

Assuming that this trend continues, the situation described in the preced-
ing paragraph is a three-state Markov chain in which the states are the three
possible preferences. We can predict the percentage of Persians in each state
for each month following the original survey. Letting the first, second, and
third states be preferences for bread, wine, and “thou”, respectively, we see
that the probability vector that gives the initial probability of being in each
state is

P =

⎛⎝0.50
0.30
0.20

⎞⎠ ,
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and the transition matrix is

A =

⎛⎝0.40 0.20 0.20
0.10 0.70 0.20
0.50 0.10 0.60

⎞⎠ .

The probabilities of being in each state m months after the original survey
are the coordinates of the vector AmP . The reader may check that

AP =

⎛⎝0.30
0.30
0.40

⎞⎠, A2P =

⎛⎝0.26
0.32
0.42

⎞⎠, A3P =

⎛⎝0.252
0.334
0.414

⎞⎠, and A4P =

⎛⎝0.2504
0.3418
0.4078

⎞⎠ .

Note the apparent convergence of AmP .

Since A is regular, the long-range prediction concerning the Persians’ pref-
erences can be found by computing the fixed probability vector for A. This
vector is the unique probability vector v such that (A − I)v = 0 . Letting

v =

⎛⎝v1

v2

v3

⎞⎠ ,

we see that the matrix equation (A − I)v = 0 yields the following system of
linear equations:

−0.60v1 + 0.20v2 + 0.20v3 = 0
0.10v1 − 0.30v2 + 0.20v3 = 0
0.50v1 + 0.10v2 − 0.40v3 = 0 .

It is easily shown that ⎛⎝5
7
8

⎞⎠
is a basis for the solution space of this system. Hence the unique fixed prob-
ability vector for A is ⎛⎜⎜⎝

5
5+7+8

7
5+7+8

8
5+7+8

⎞⎟⎟⎠ =

⎛⎝0.25
0.35
0.40

⎞⎠ .

Thus, in the long run, 25% of the Persians prefer a loaf of bread, 35% prefer
a jug of wine, and 40% prefer “thou beside me in the wilderness.”
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Note that if

Q =

⎛⎝5 0 −3
7 −1 −1
8 1 4

⎞⎠ ,

then

Q−1AQ =

⎛⎝1 0 0
0 0.5 0
0 0 0.2

⎞⎠ .

So

lim
m→∞Am = Q

⎡⎣ lim
m→∞

⎛⎝1 0 0
0 0.5 0
0 0 0.2

⎞⎠m⎤⎦Q−1 = Q

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠Q−1

=

⎛⎝0.25 0.25 0.25
0.35 0.35 0.35
0.40 0.40 0.40

⎞⎠ . ♦

Example 5

Farmers in Lamron plant one crop per year—either corn, soybeans, or wheat.
Because they believe in the necessity of rotating their crops, these farmers do
not plant the same crop in successive years. In fact, of the total acreage on
which a particular crop is planted, exactly half is planted with each of the
other two crops during the succeeding year. This year, 300 acres of corn, 200
acres of soybeans, and 100 acres of wheat were planted.

The situation just described is another three-state Markov chain in which
the three states correspond to the planting of corn, soybeans, and wheat,
respectively. In this problem, however, the amount of land devoted to each
crop, rather than the percentage of the total acreage (600 acres), is given. By
converting these amounts into fractions of the total acreage, we see that the
transition matrix A and the initial probability vector P of the Markov chain
are

A =

⎛⎜⎜⎝
0 1

2
1
2

1
2 0 1

2

1
2

1
2 0

⎞⎟⎟⎠ and P =

⎛⎜⎜⎝
300
600

200
600

100
600

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
2

1
3

1
6

⎞⎟⎟⎠ .

The fraction of the total acreage devoted to each crop in m years is given by
the coordinates of AmP , and the eventual proportions of the total acreage
used for each crop are the coordinates of lim

m→∞AmP . Thus the eventual
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amounts of land devoted to each crop are found by multiplying this limit by
the total acreage; that is, the eventual amounts of land used for each crop
are the coordinates of 600 · lim

m→∞AmP .

Since A is a regular transition matrix, Theorem 5.20 shows that lim
m→∞Am

is a matrix L in which each column equals the unique fixed probability vector
for A. It is easily seen that the fixed probability vector for A is⎛⎜⎜⎝

1
3

1
3

1
3

⎞⎟⎟⎠ .

Hence

L =

⎛⎜⎜⎝
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎞⎟⎟⎠ ;

so

600 · lim
m→∞AmP = 600LP =

⎛⎝200
200
200

⎞⎠ .

Thus, in the long run, we expect 200 acres of each crop to be planted each
year. (For a direct computation of 600 · lim

m→∞AmP , see Exercise 14.) ♦

In this section, we have concentrated primarily on the theory of regular
transition matrices. There is another interesting class of transition matrices
that can be represented in the form(

I B
O C

)
,

where I is an identity matrix and O is a zero matrix. (Such transition ma-
trices are not regular since the lower left block remains O in any power of
the matrix.) The states corresponding to the identity submatrix are called
absorbing states because such a state is never left once it is entered. A
Markov chain is called an absorbing Markov chain if it is possible to go
from an arbitrary state into an absorbing state in a finite number of stages.
Observe that the Markov chain that describes the enrollment pattern in a
community college is an absorbing Markov chain with states 1 and 4 as its ab-
sorbing states. Readers interested in learning more about absorbing Markov
chains are referred to Introduction to Finite Mathematics (third edition) by
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J. Kemeny, J. Snell, and G. Thompson (Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1974) or Discrete Mathematical Models by Fred S. Roberts (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1976).

An Application

In species that reproduce sexually, the characteristics of an offspring with
respect to a particular genetic trait are determined by a pair of genes, one
inherited from each parent. The genes for a particular trait are of two types,
which are denoted by G and g. The gene G represents the dominant char-
acteristic, and g represents the recessive characteristic. Offspring with geno-
types GG or Gg exhibit the dominant characteristic, whereas offspring with
genotype gg exhibit the recessive characteristic. For example, in humans,
brown eyes are a dominant characteristic and blue eyes are the correspond-
ing recessive characteristic; thus the offspring with genotypes GG or Gg are
brown-eyed, whereas those of type gg are blue-eyed.

Let us consider the probability of offspring of each genotype for a male
parent of genotype Gg. (We assume that the population under consideration
is large, that mating is random with respect to genotype, and that the distri-
bution of each genotype within the population is independent of sex and life
expectancy.) Let

P =

⎛⎝p
q
r

⎞⎠
denote the proportion of the adult population with genotypes GG, Gg, and
gg, respectively, at the start of the experiment. This experiment describes a
three-state Markov chain with the following transition matrix:

Genotype of female parent

GG Gg gg

Genotype GG
of Gg
offspring gg

⎛⎜⎜⎝
1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2

⎞⎟⎟⎠ = B.

It is easily checked that B2 contains only positive entries; so B is regular.
Thus, by permitting only males of genotype Gg to reproduce, the proportion
of offspring in the population having a certain genotype will stabilize at the
fixed probability vector for B, which is⎛⎜⎜⎝

1
4

1
2

1
4

⎞⎟⎟⎠ .
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Now suppose that similar experiments are to be performed with males of
genotypes GG and gg. As already mentioned, these experiments are three-
state Markov chains with transition matrices

A =

⎛⎜⎝1 1
2 0

0 1
2 1

0 0 0

⎞⎟⎠ and C =

⎛⎜⎝0 0 0
1 1

2 0

0 1
2 1

⎞⎟⎠ ,

respectively. In order to consider the case where all male genotypes are per-
mitted to reproduce, we must form the transition matrix M = pA+ qB +rC,
which is the linear combination of A, B, and C weighted by the proportion
of males of each genotype. Thus

M =

⎛⎜⎜⎝
p + 1

2q 1
2p + 1

4q 0
1
2q + r 1

2p + 1
2q + 1

2r p + 1
2q

0 1
4q + 1

2r 1
2q + r

⎞⎟⎟⎠ .

To simplify the notation, let a = p+ 1
2q and b = 1

2q + r. (The numbers a and
b represent the proportions of G and g genes, respectively, in the population.)
Then

M =

⎛⎜⎜⎝
a 1

2a 0

b 1
2 a

0 1
2b b

⎞⎟⎟⎠ ,

where a + b = p + q + r = 1.
Let p′, q′, and r′ denote the proportions of the first-generation offspring

having genotypes GG, Gg, and gg, respectively. Then

⎛⎝p′

q′

r′

⎞⎠ = MP =

⎛⎜⎜⎝
ap + 1

2aq

bp + 1
2q + ar

1
2bq + br

⎞⎟⎟⎠ =

⎛⎝ a2

2ab
b2

⎞⎠ .

In order to consider the effects of unrestricted matings among the first-
generation offspring, a new transition matrix M̃ must be determined based
upon the distribution of first-generation genotypes. As before, we find that

M̃ =

⎛⎜⎜⎝
p′ + 1

2q′ 1
2p′ + 1

4q′ 0
1
2q′ + r′ 1

2p′ + 1
2q′ + 1

2r′ p′ + 1
2q′

0 1
4q′ + 1

2r′ 1
2q′ + r′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a′ 1

2a′ 0

b′ 1
2 a′

0 1
2b′ b′

⎞⎟⎟⎠ ,
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where a′ = p′ + 1
2q′ and b′ = 1

2q′ + r′. However

a′ = a2 +
1
2
(2ab) = a(a + b) = a and b′ =

1
2
(2ab) + b2 = b(a + b) = b.

Thus M̃ = M ; so the distribution of second-generation offspring among
the three genotypes is

M̃(MP ) = M2P =

⎛⎝ a3 + a2b
a2b + ab + ab2

ab2 + b3

⎞⎠ =

⎛⎝ a2(a + b)
ab(a + 1 + b)

b2(a + b)

⎞⎠ =

⎛⎝ a2

2ab
b2

⎞⎠
= MP,

the same as the first-generation offspring. In other words, MP is the fixed
probability vector for M , and genetic equilibrium is achieved in the population
after only one generation. (This result is called the Hardy–Weinberg law.)
Notice that in the important special case that a = b (or equivalently, that
p = r), the distribution at equilibrium is

MP =

⎛⎝ a2

2ab
b2

⎞⎠ =

⎛⎜⎜⎝
1
4

1
2

1
4

⎞⎟⎟⎠ .

EXERCISES

1. Label the following statements as true or false.

(a) If A ∈ Mn×n(C) and lim
m→∞Am = L, then, for any invertible matrix

Q ∈ Mn×n(C), we have lim
m→∞QAmQ−1 = QLQ−1.

(b) If 2 is an eigenvalue of A ∈ Mn×n(C), then lim
m→∞Am does not

exist.
(c) Any vector ⎛⎜⎜⎜⎝

x1

x2

...
xn

⎞⎟⎟⎟⎠ ∈ Rn

such that x1 + x2 + · · · + xn = 1 is a probability vector.
(d) The sum of the entries of each row of a transition matrix equals 1.
(e) The product of a transition matrix and a probability vector is a

probability vector.
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(f) Let z be any complex number such that |z| < 1. Then the matrix⎛⎝ 1 z −1
z 1 1

−1 1 z

⎞⎠
does not have 3 as an eigenvalue.

(g) Every transition matrix has 1 as an eigenvalue.
(h) No transition matrix can have −1 as an eigenvalue.
(i) If A is a transition matrix, then lim

m→∞Am exists.

(j) If A is a regular transition matrix, then lim
m→∞Am exists and has

rank 1.

2. Determine whether lim
m→∞Am exists for each of the following matrices

A, and compute the limit if it exists.

(a)
(

0.1 0.7
0.7 0.1

)
(b)

(−1.4 0.8
−2.4 1.8

)
(c)

(
0.4 0.7
0.6 0.3

)

(d)
(−1.8 4.8
−0.8 2.2

)
(e)

(−2 −1
4 3

)
(f)

(
2.0 −0.5
3.0 −0.5

)

(g)

⎛⎝−1.8 0 −1.4
−5.6 1 −2.8

2.8 0 2.4

⎞⎠ (h)

⎛⎝ 3.4 −0.2 0.8
3.9 1.8 1.3

−16.5 −2.0 −4.5

⎞⎠

(i)

⎛⎜⎝− 1
2 − 2i 4i 1

2 + 5i

1 + 2i −3i −1 − 4i
−1 − 2i 4i 1 + 5i

⎞⎟⎠

(j)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−26 + i

3
−28 − 4i

3
28

−7 + 2i

3
−5 + i

3
7 − 2i

−13 + 6i

6
−5 + 6i

6
35 − 20i

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
3. Prove that if A1, A2, . . . is a sequence of n × p matrices with complex

entries such that lim
m→∞Am = L, then lim

m→∞(Am)t = Lt.

4. Prove that if A ∈ Mn×n(C) is diagonalizable and L = lim
m→∞Am exists,

then either L = In or rank(L) < n.
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5. Find 2 × 2 matrices A and B having real entries such that lim
m→∞Am,

lim
m→∞Bm, and lim

m→∞(AB)m all exist, but

lim
m→∞(AB)m �= ( lim

m→∞Am)( lim
m→∞Bm).

6. A hospital trauma unit has determined that 30% of its patients are
ambulatory and 70% are bedridden at the time of arrival at the hospital.
A month after arrival, 60% of the ambulatory patients have recovered,
20% remain ambulatory, and 20% have become bedridden. After the
same amount of time, 10% of the bedridden patients have recovered,
20% have become ambulatory, 50% remain bedridden, and 20% have
died. Determine the percentages of patients who have recovered, are
ambulatory, are bedridden, and have died 1 month after arrival. Also
determine the eventual percentages of patients of each type.

7. A player begins a game of chance by placing a marker in box 2, marked
Start. (See Figure 5.5.) A die is rolled, and the marker is moved one
square to the left if a 1 or a 2 is rolled and one square to the right if a
3, 4, 5, or 6 is rolled. This process continues until the marker lands in
square 1, in which case the player wins the game, or in square 4, in which
case the player loses the game. What is the probability of winning this
game? Hint: Instead of diagonalizing the appropriate transition matrix

Win Start Lose
1 2 3 4

Figure 5.5

A, it is easier to represent e2 as a linear combination of eigenvectors of
A and then apply An to the result.

8. Which of the following transition matrices are regular?

(a)

⎛⎝0.2 0.3 0.5
0.3 0.2 0.5
0.5 0.5 0

⎞⎠ (b)

⎛⎝0.5 0 1
0.5 0 0

0 1 0

⎞⎠ (c)

⎛⎝0.5 0 0
0.5 0 1

0 1 0

⎞⎠

(d)

⎛⎝0.5 0 1
0.5 1 0

0 0 0

⎞⎠ (e)

⎛⎜⎜⎝
1
3 0 0
1
3 1 0
1
3 0 1

⎞⎟⎟⎠ (f)

⎛⎝1 0 0
0 0.7 0.2
0 0.3 0.8

⎞⎠
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(g)

⎛⎜⎜⎜⎜⎜⎝
0 1

2 0 0
1
2 0 0 0
1
4

1
4 1 0

1
4

1
4 0 1

⎞⎟⎟⎟⎟⎟⎠ (h)

⎛⎜⎜⎜⎜⎜⎝
1
4

1
4 0 0

1
4

1
4 0 0

1
4

1
4 1 0

1
4

1
4 0 1

⎞⎟⎟⎟⎟⎟⎠
9. Compute lim

m→∞Am if it exists, for each matrix A in Exercise 8.

10. Each of the matrices that follow is a regular transition matrix for a
three-state Markov chain. In all cases, the initial probability vector is

P =

⎛⎝0.3
0.3
0.4

⎞⎠ .

For each transition matrix, compute the proportions of objects in each
state after two stages and the eventual proportions of objects in each
state by determining the fixed probability vector.

(a)

⎛⎝0.6 0.1 0.1
0.1 0.9 0.2
0.3 0 0.7

⎞⎠ (b)

⎛⎝0.8 0.1 0.2
0.1 0.8 0.2
0.1 0.1 0.6

⎞⎠ (c)

⎛⎝0.9 0.1 0.1
0.1 0.6 0.1

0 0.3 0.8

⎞⎠
(d)

⎛⎝0.4 0.2 0.2
0.1 0.7 0.2
0.5 0.1 0.6

⎞⎠ (e)

⎛⎝0.5 0.3 0.2
0.2 0.5 0.3
0.3 0.2 0.5

⎞⎠ (f)

⎛⎝0.6 0 0.4
0.2 0.8 0.2
0.2 0.2 0.4

⎞⎠
11. In 1940, a county land-use survey showed that 10% of the county land

was urban, 50% was unused, and 40% was agricultural. Five years later,
a follow-up survey revealed that 70% of the urban land had remained
urban, 10% had become unused, and 20% had become agricultural.
Likewise, 20% of the unused land had become urban, 60% had remained
unused, and 20% had become agricultural. Finally, the 1945 survey
showed that 20% of the agricultural land had become unused while
80% remained agricultural. Assuming that the trends indicated by the
1945 survey continue, compute the percentages of urban, unused, and
agricultural land in the county in 1950 and the corresponding eventual
percentages.

12. A diaper liner is placed in each diaper worn by a baby. If, after a
diaper change, the liner is soiled, then it is discarded and replaced by a
new liner. Otherwise, the liner is washed with the diapers and reused,
except that each liner is discarded and replaced after its third use (even
if it has never been soiled). The probability that the baby will soil any
diaper liner is one-third. If there are only new diaper liners at first,
eventually what proportions of the diaper liners being used will be new,
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once used, and twice used? Hint: Assume that a diaper liner ready for
use is in one of three states: new, once used, and twice used. After its
use, it then transforms into one of the three states described.

13. In 1975, the automobile industry determined that 40% of American car
owners drove large cars, 20% drove intermediate-sized cars, and 40%
drove small cars. A second survey in 1985 showed that 70% of the large-
car owners in 1975 still owned large cars in 1985, but 30% had changed
to an intermediate-sized car. Of those who owned intermediate-sized
cars in 1975, 10% had switched to large cars, 70% continued to drive
intermediate-sized cars, and 20% had changed to small cars in 1985.
Finally, of the small-car owners in 1975, 10% owned intermediate-sized
cars and 90% owned small cars in 1985. Assuming that these trends
continue, determine the percentages of Americans who own cars of each
size in 1995 and the corresponding eventual percentages.

14. Show that if A and P are as in Example 5, then

Am =

⎛⎝ rm rm+1 rm+1

rm+1 rm rm+1

rm+1 rm+1 rm

⎞⎠ ,

where

rm =
1
3

[
1 +

(−1)m

2m−1

]
.

Deduce that

600(AmP ) = Am

⎛⎝300
200
100

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
200 +

(−1)m

2m
(100)

200

200 +
(−1)m+1

2m
(100)

⎞⎟⎟⎟⎟⎟⎠ .

15. Prove that if a 1-dimensional subspace W of Rn contains a nonzero vec-
tor with all nonnegative entries, then W contains a unique probability
vector.

16. Prove Theorem 5.15 and its corollary.

17. Prove the two corollaries of Theorem 5.18.

18. Prove the corollary of Theorem 5.19.

19. Suppose that M and M ′ are n × n transition matrices.
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(a) Prove that if M is regular, N is any n × n transition matrix, and
c is a real number such that 0 < c ≤ 1, then cM + (1 − c)N is a
regular transition matrix.

(b) Suppose that for all i, j, we have that M ′
ij > 0 whenever Mij > 0.

Prove that there exists a transition matrix N and a real number c
with 0 < c ≤ 1 such that M ′ = cM + (1 − c)N .

(c) Deduce that if the nonzero entries of M and M ′ occur in the same
positions, then M is regular if and only if M ′ is regular.

The following definition is used in Exercises 20–24.

Definition. For A ∈ Mn×n(C), define eA = lim
m→∞Bm, where

Bm = I + A +
A2

2!
+ · · · + Am

m!

(see Exercise 22). Thus eA is the sum of the infinite series

I + A +
A2

2!
+

A3

3!
+ · · · ,

and Bm is the mth partial sum of this series. (Note the analogy with the
power series

ea = 1 + a +
a2

2!
+

a3

3!
+ · · · ,

which is valid for all complex numbers a.)

20. Compute eO and eI , where O and I denote the n× n zero and identity
matrices, respectively.

21. Let P−1AP = D be a diagonal matrix. Prove that eA = PeDP−1.

22. Let A ∈ Mn×n(C) be diagonalizable. Use the result of Exercise 21 to
show that eA exists. (Exercise 21 of Section 7.2 shows that eA exists
for every A ∈ Mn×n(C).)

23. Find A, B ∈ M2×2(R) such that eAeB �= eA+B .

24. Prove that a differentiable function x : R → Rn is a solution to the
system of differential equations defined in Exercise 15 of Section 5.2 if
and only if x(t) = etAv for some v ∈ Rn, where A is defined in that
exercise.
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5.4 INVARIANT SUBSPACES AND THE CAYLEY–HAMILTON
THEOREM

In Section 5.1, we observed that if v is an eigenvector of a linear operator
T, then T maps the span of {v} into itself. Subspaces that are mapped into
themselves are of great importance in the study of linear operators (see, e.g.,
Exercises 28–32 of Section 2.1).

Definition. Let T be a linear operator on a vector space V. A subspace
W of V is called a T-invariant subspace of V if T(W) ⊆ W, that is, if
T(v) ∈ W for all v ∈ W.

Example 1

Suppose that T is a linear operator on a vector space V. Then the following
subspaces of V are T-invariant:

1. {0}
2. V
3. R(T)
4. N(T)
5. Eλ, for any eigenvalue λ of T.

The proofs that these subspaces are T-invariant are left as exercises. (See
Exercise 3.) ♦
Example 2

Let T be the linear operator on R3 defined by

T(a, b, c) = (a + b, b + c, 0).

Then the xy-plane = {(x, y, 0) : x, y ∈ R} and the x-axis = {(x, 0, 0) : x ∈ R}
are T-invariant subspaces of R3. ♦

Let T be a linear operator on a vector space V, and let x be a nonzero
vector in V. The subspace

W = span({x,T(x), T2(x), . . .})
is called the T-cyclic subspace of V generated by x. It is a simple matter
to show that W is T-invariant. In fact, W is the “smallest” T-invariant sub-
space of V containing x. That is, any T-invariant subspace of V containing x
must also contain W (see Exercise 11). Cyclic subspaces have various uses.
We apply them in this section to establish the Cayley–Hamilton theorem. In
Exercise 31, we outline a method for using cyclic subspaces to compute the
characteristic polynomial of a linear operator without resorting to determi-
nants. Cyclic subspaces also play an important role in Chapter 7, where we
study matrix representations of nondiagonalizable linear operators.
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Example 3

Let T be the linear operator on R3 defined by

T(a, b, c) = (−b + c, a + c, 3c).

We determine the T-cyclic subspace generated by e1 = (1, 0, 0). Since

T(e1) = T(1, 0, 0) = (0, 1, 0) = e2

and

T2(e1) = T(T(e1)) = T(e2) = (−1, 0, 0) = −e1,

it follows that

span({e1, T(e1), T2(e1), . . .}) = span({e1, e2}) = {(s, t, 0) : s, t ∈ R}. ♦

Example 4

Let T be the linear operator on P(R) defined by T(f(x)) = f ′(x). Then the
T-cyclic subspace generated by x2 is span({x2, 2x, 2}) = P2(R). ♦

The existence of a T-invariant subspace provides the opportunity to define
a new linear operator whose domain is this subspace. If T is a linear operator
on V and W is a T-invariant subspace of V, then the restriction TW of T to
W (see Appendix B) is a mapping from W to W, and it follows that TW is
a linear operator on W (see Exercise 7). As a linear operator, TW inherits
certain properties from its parent operator T. The following result illustrates
one way in which the two operators are linked.

Theorem 5.21. Let T be a linear operator on a finite-dimensional vector
space V, and let W be a T-invariant subspace of V. Then the characteristic
polynomial of TW divides the characteristic polynomial of T.

Proof. Choose an ordered basis γ = {v1, v2, . . . , vk} for W, and extend it
to an ordered basis β = {v1, v2, . . . , vk, vk+1, . . . , vn} for V. Let A = [T]β and
B1 = [TW]γ . Then, by Exercise 12, A can be written in the form

A =
(

B1 B2

O B3

)
.

Let f(t) be the characteristic polynomial of T and g(t) the characteristic
polynomial of TW. Then

f(t) = det(A − tIn) = det
(

B1 − tIk B2

O B3 − tIn−k

)
= g(t) · det(B3 − tIn−k)

by Exercise 21 of Section 4.3. Thus g(t) divides f(t).
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Example 5

Let T be the linear operator on R4 defined by

T(a, b, c, d) = (a + b + 2c − d, b + d, 2c − d, c + d),

and let W = {(t, s, 0, 0) : t, s ∈ R}. Observe that W is a T-invariant subspace
of R4 because, for any vector (a, b, 0, 0) ∈ R4,

T(a, b, 0, 0) = (a + b, b, 0, 0) ∈ W.

Let γ = {e1, e2}, which is an ordered basis for W. Extend γ to the standard
ordered basis β for R4. Then

B1 = [TW]γ =
(

1 1
0 1

)
and A = [T]β =

⎛⎜⎜⎝
1 1 2 −1
0 1 0 1
0 0 2 −1
0 0 1 1

⎞⎟⎟⎠
in the notation of Theorem 5.21. Let f(t) be the characteristic polynomial of
T and g(t) be the characteristic polynomial of TW. Then

f(t) = det(A − tI4) = det

⎛⎜⎜⎝
1 − t 1 2 −1

0 1 − t 0 1
0 0 2 − t −1
0 0 1 1 − t

⎞⎟⎟⎠
= det

(
1 − t 1

0 1 − t

)
· det

(
2 − t −1

1 1 − t

)
= g(t) · det

(
2 − t −1

1 1 − t

)
. ♦

In view of Theorem 5.21, we may use the characteristic polynomial of TW

to gain information about the characteristic polynomial of T itself. In this re-
gard, cyclic subspaces are useful because the characteristic polynomial of the
restriction of a linear operator T to a cyclic subspace is readily computable.

Theorem 5.22. Let T be a linear operator on a finite-dimensional vector
space V, and let W denote the T-cyclic subspace of V generated by a nonzero
vector v ∈ V. Let k = dim(W). Then

(a) {v,T(v), T2(v), . . . ,Tk−1(v)} is a basis for W.

(b) If a0v+a1T(v)+ · · ·+ak−1T
k−1(v)+Tk(v) = 0 , then the characteristic

polynomial of TW is f(t) = (−1)k(a0 + a1t + · · · + ak−1t
k−1 + tk).
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Proof. (a) Since v �= 0 , the set {v} is linearly independent. Let j be the
largest positive integer for which

β = {v,T(v), . . . ,Tj−1(v)}
is linearly independent. Such a j must exist because V is finite-dimensional.
Let Z = span(β). Then β is a basis for Z. Furthermore, Tj(v) ∈ Z by
Theorem 1.7 (p. 39). We use this information to show that Z is a T-invariant
subspace of V. Let w ∈ Z. Since w is a linear combination of the vectors of
β, there exist scalars b0, b1, . . . , bj−1 such that

w = b0v + b1T(v) + · · · + bj−1T
j−1(v),

and hence

T(w) = b0T(v) + b1T
2(v) + · · · + bj−1T

j(v).

Thus T(w) is a linear combination of vectors in Z, and hence belongs to Z.
So Z is T-invariant. Furthermore, v ∈ Z. By Exercise 11, W is the smallest
T-invariant subspace of V that contains v, so that W ⊆ Z. Clearly, Z ⊆ W,
and so we conclude that Z = W. It follows that β is a basis for W, and
therefore dim(W) = j. Thus j = k. This proves (a).

(b) Now view β (from (a)) as an ordered basis for W. Let a0, a1, . . . , ak−1

be the scalars such that

a0v + a1T(v) + · · · + ak−1T
k−1(v) + Tk(v) = 0 .

Observe that

[TW]β =

⎛⎜⎜⎜⎝
0 0 · · · 0 −a0

1 0 · · · 0 −a1

...
...

...
...

0 0 · · · 1 −ak−1

⎞⎟⎟⎟⎠ ,

which has the characteristic polynomial

f(t) = (−1)k(a0 + a1t + · · · + ak−1t
k−1 + tk)

by Exercise 19. Thus f(t) is the characteristic polynomial of TW, proving (b).

Example 6

Let T be the linear operator of Example 3, and let W = span({e1, e2}), the
T-cyclic subspace generated by e1. We compute the characteristic polyno-
mial f(t) of TW in two ways: by means of Theorem 5.22 and by means of
determinants.
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(a) By means of Theorem 5.22. From Example 3, we have that {e1, e2} is
a cycle that generates W, and that T2(e1) = −e1. Hence

1e1 + 0T(e1) + T2(e1) = 0 .

Therefore, by Theorem 5.22(b),

f(t) = (−1)2(1 + 0t + t2) = t2 + 1.

(b) By means of determinants. Let β = {e1, e2}, which is an ordered basis
for W. Since T(e1) = e2 and T(e2) = −e1, we have

[TW]β =
(

0 −1
1 0

)
and therefore,

f(t) = det
(−t −1

1 −t

)
= t2 + 1. ♦

The Cayley–Hamilton Theorem

As an illustration of the importance of Theorem 5.22, we prove a well-
known result that is used in Chapter 7. The reader should refer to Ap-
pendix E for the definition of f(T), where T is a linear operator and f(x) is
a polynomial.

Theorem 5.23 (Cayley–Hamilton). Let T be a linear operator on a
finite-dimensional vector space V, and let f(t) be the characteristic polyno-
mial of T. Then f(T) = T0, the zero transformation. That is, T “satisfies”
its characteristic equation.

Proof. We show that f(T)(v) = 0 for all v ∈ V. This is obvious if v = 0
because f(T) is linear; so suppose that v �= 0 . Let W be the T-cyclic subspace
generated by v, and suppose that dim(W) = k. By Theorem 5.22(a), there
exist scalars a0, a1, . . . , ak−1 such that

a0v + a1T(v) + · · · + ak−1T
k−1(v) + Tk(v) = 0 .

Hence Theorem 5.22(b) implies that

g(t) = (−1)k(a0 + a1t + · · · + ak−1t
k−1 + tk)

is the characteristic polynomial of TW. Combining these two equations yields

g(T)(v) = (−1)k(a0I + a1T + · · · + ak−1T
k−1 + Tk)(v) = 0 .

By Theorem 5.21, g(t) divides f(t); hence there exists a polynomial q(t) such
that f(t) = q(t)g(t). So

f(T)(v) = q(T)g(T)(v) = q(T)(g(T)(v)) = q(T)(0 ) = 0 .
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Example 7

Let T be the linear operator on R2 defined by T(a, b) = (a+2b,−2a+ b), and
let β = {e1, e2}. Then

A =
(

1 2
−2 1

)
,

where A = [T]β . The characteristic polynomial of T is, therefore,

f(t) = det(A − tI) = det
(

1 − t 2
−2 1 − t

)
= t2 − 2t + 5.

It is easily verified that T0 = f(T) = T2 − 2T + 5I. Similarly,

f(A) = A2 − 2A + 5I =
(−3 4
−4 −3

)
+
(−2 −4

4 −2

)
+
(

5 0
0 5

)
=
(

0 0
0 0

)
. ♦

Example 7 suggests the following result.

Corollary (Cayley–Hamilton Theorem for Matrices). Let A be
an n × n matrix, and let f(t) be the characteristic polynomial of A. Then
f(A) = O, the n × n zero matrix.

Proof. See Exercise 15.

Invariant Subspaces and Direct Sums*3

It is useful to decompose a finite-dimensional vector space V into a direct
sum of as many T-invariant subspaces as possible because the behavior of T
on V can be inferred from its behavior on the direct summands. For example,
T is diagonalizable if and only if V can be decomposed into a direct sum
of one-dimensional T-invariant subspaces (see Exercise 36). In Chapter 7,
we consider alternate ways of decomposing V into direct sums of T-invariant
subspaces if T is not diagonalizable. We proceed to gather a few facts about
direct sums of T-invariant subspaces that are used in Section 7.4. The first
of these facts is about characteristic polynomials.

Theorem 5.24. Let T be a linear operator on a finite-dimensional vector
space V, and suppose that V = W1 ⊕ W2 ⊕ · · · ⊕ Wk, where Wi is a T-
invariant subspace of V for each i (1 ≤ i ≤ k). Suppose that fi(t) is the
characteristic polynomial of TWi

(1 ≤ i ≤ k). Then f1(t) ·f2(t) · · · · ·fk(t) is
the characteristic polynomial of T.

3This subsection uses optional material on direct sums from Section 5.2.
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Proof. The proof is by mathematical induction on k. In what follows, f(t)
denotes the characteristic polynomial of T. Suppose first that k = 2. Let β1

be an ordered basis for W1, β2 an ordered basis for W2, and β = β1 ∪ β2.
Then β is an ordered basis for V by Theorem 5.10(d) (p. 276). Let A = [T]β ,
B1 = [TW1 ]β1 , and B2 = [TW2 ]β2 . By Exercise 34, it follows that

A =
(

B1 O
O′ B2

)
,

where O and O′ are zero matrices of the appropriate sizes. Then

f(t) = det(A − tI) = det(B1 − tI) · det(B2 − tI) = f1(t) ·f2(t)

as in the proof of Theorem 5.21, proving the result for k = 2.
Now assume that the theorem is valid for k−1 summands, where k−1 ≥ 2,

and suppose that V is a direct sum of k subspaces, say,

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk.

Let W = W1 +W2 + · · ·+Wk−1. It is easily verified that W is T-invariant and
that V = W ⊕ Wk. So by the case for k = 2, f(t) = g(t) ·fk(t), where g(t) is
the characteristic polynomial of TW. Clearly W = W1⊕W2⊕· · ·⊕Wk−1, and
therefore g(t) = f1(t) ·f2(t) · · · · ·fk−1(t) by the induction hypothesis. We
conclude that f(t) = g(t) ·fk(t) = f1(t) ·f2(t) · · · · ·fk(t).

As an illustration of this result, suppose that T is a diagonalizable lin-
ear operator on a finite-dimensional vector space V with distinct eigenvalues
λ1, λ2, . . . , λk. By Theorem 5.11 (p. 278), V is a direct sum of the eigenspaces
of T. Since each eigenspace is T-invariant, we may view this situation in the
context of Theorem 5.24. For each eigenvalue λi, the restriction of T to Eλi

has characteristic polynomial (λi − t)mi , where mi is the dimension of Eλi
.

By Theorem 5.24, the characteristic polynomial f(t) of T is the product

f(t) = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk .

It follows that the multiplicity of each eigenvalue is equal to the dimension
of the corresponding eigenspace, as expected.

Example 8

Let T be the linear operator on R4 defined by

T(a, b, c, d) = (2a − b, a + b, c − d, c + d),

and let W1 = {(s, t, 0, 0) : s, t ∈ R} and W2 = {(0, 0, s, t) : s, t ∈ R}. Notice
that W1 and W2 are each T-invariant and that R4 = W1 ⊕ W2. Let β1 =
{e1, e2}, β2 = {e3, e4}, and β = β1 ∪ β2 = {e1, e2, e3, e4}. Then β1 is an
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ordered basis for W1, β2 is an ordered basis for W2, and β is an ordered basis
for R4. Let A = [T]β , B1 = [TW1 ]β1 , and B2 = [TW2 ]β2 . Then

B1 =
(

2 −1
1 1

)
, B2 =

(
1 −1
1 1

)
,

and

A =
(

B1 O
O B2

)
=

⎛⎜⎜⎝
2 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞⎟⎟⎠ .

Let f(t), f1(t), and f2(t) denote the characteristic polynomials of T, TW1 ,
and TW2 , respectively. Then

f(t) = det(A − tI) = det(B1 − tI) · det(B2 − tI) = f1(t) ·f2(t). ♦

The matrix A in Example 8 can be obtained by joining the matrices B1

and B2 in the manner explained in the next definition.

Definition. Let B1 ∈ Mm×m(F ), and let B2 ∈ Mn×n(F ). We define the
direct sum of B1 and B2, denoted B1⊕B2, as the (m+n)× (m+n) matrix
A such that

Aij =

⎧⎪⎨⎪⎩
(B1)ij for 1 ≤ i, j ≤ m

(B2)(i−m),(j−m) for m + 1 ≤ i, j ≤ n + m

0 otherwise.

If B1, B2, . . . , Bk are square matrices with entries from F , then we define the
direct sum of B1, B2, . . . , Bk recursively by

B1 ⊕ B2 ⊕ · · · ⊕ Bk = (B1 ⊕ B2 ⊕ · · · ⊕ Bk−1) ⊕ Bk.

If A = B1 ⊕ B2 ⊕ · · · ⊕ Bk, then we often write

A =

⎛⎜⎜⎜⎝
B1 O · · · O
O B2 · · · O
...

...
...

O O · · · Bk

⎞⎟⎟⎟⎠ .

Example 9

Let

B1 =
(

1 2
1 1

)
, B2 = (3), and B3 =

⎛⎝1 2 1
1 2 3
1 1 1

⎞⎠ .
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Then

B1 ⊕ B2 ⊕ B3 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 0 0
1 1 0 0 0 0
0 0 3 0 0 0
0 0 0 1 2 1
0 0 0 1 2 3
0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ . ♦

The final result of this section relates direct sums of matrices to direct
sums of invariant subspaces. It is an extension of Exercise 34 to the case
k ≥ 2.

Theorem 5.25. Let T be a linear operator on a finite-dimensional vector
space V, and let W1, W2, . . . ,Wk be T-invariant subspaces of V such that
V = W1 ⊕ W2 ⊕ · · · ⊕ Wk. For each i, let βi be an ordered basis for Wi, and
let β = β1 ∪ β2 ∪ · · · ∪ βk. Let A = [T]β and Bi = [TWi ]βi for i = 1, 2, . . . , k.
Then A = B1 ⊕ B2 ⊕ · · · ⊕ Bk.

Proof. See Exercise 35.

EXERCISES

1. Label the following statements as true or false.

(a) There exists a linear operator T with no T-invariant subspace.
(b) If T is a linear operator on a finite-dimensional vector space V and

W is a T-invariant subspace of V, then the characteristic polyno-
mial of TW divides the characteristic polynomial of T.

(c) Let T be a linear operator on a finite-dimensional vector space V,
and let v and w be in V. If W is the T-cyclic subspace generated
by v, W′ is the T-cyclic subspace generated by w, and W = W′,
then v = w.

(d) If T is a linear operator on a finite-dimensional vector space V,
then for any v ∈ V the T-cyclic subspace generated by v is the
same as the T-cyclic subspace generated by T(v).

(e) Let T be a linear operator on an n-dimensional vector space. Then
there exists a polynomial g(t) of degree n such that g(T) = T0.

(f) Any polynomial of degree n with leading coefficient (−1)n is the
characteristic polynomial of some linear operator.

(g) If T is a linear operator on a finite-dimensional vector space V, and
if V is the direct sum of k T-invariant subspaces, then there is an
ordered basis β for V such that [T]β is a direct sum of k matrices.
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2. For each of the following linear operators T on the vector space V,
determine whether the given subspace W is a T-invariant subspace of
V.

(a) V = P3(R), T(f(x)) = f ′(x), and W = P2(R)
(b) V = P(R), T(f(x)) = xf(x), and W = P2(R)
(c) V = R3, T(a, b, c) = (a + b + c, a + b + c, a + b + c), and

W = {(t, t, t) : t ∈ R}
(d) V = C([0, 1]), T(f(t)) =

[∫ 1

0
f(x) dx

]
t, and

W = {f ∈ V : f(t) = at + b for some a and b}
(e) V = M2×2(R), T(A) =

(
0 1
1 0

)
A, and W = {A ∈ V : At = A}

3. Let T be a linear operator on a finite-dimensional vector space V. Prove
that the following subspaces are T-invariant.

(a) {0} and V
(b) N(T) and R(T)
(c) Eλ, for any eigenvalue λ of T

4. Let T be a linear operator on a vector space V, and let W be a T-
invariant subspace of V. Prove that W is g(T)-invariant for any poly-
nomial g(t).

5. Let T be a linear operator on a vector space V. Prove that the inter-
section of any collection of T-invariant subspaces of V is a T-invariant
subspace of V.

6. For each linear operator T on the vector space V, find an ordered basis
for the T-cyclic subspace generated by the vector z.

(a) V = R4, T(a, b, c, d) = (a + b, b − c, a + c, a + d), and z = e1.
(b) V = P3(R), T(f(x)) = f ′′(x), and z = x3.

(c) V = M2×2(R), T(A) = At, and z =
(

0 1
1 0

)
.

(d) V = M2×2(R), T(A) =
(

1 1
2 2

)
A, and z =

(
0 1
1 0

)
.

7. Prove that the restriction of a linear operator T to a T-invariant sub-
space is a linear operator on that subspace.

8. Let T be a linear operator on a vector space with a T-invariant subspace
W. Prove that if v is an eigenvector of TW with corresponding eigenvalue
λ, then the same is true for T.

9. For each linear operator T and cyclic subspace W in Exercise 6, compute
the characteristic polynomial of TW in two ways, as in Example 6.
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10. For each linear operator in Exercise 6, find the characteristic polynomial
f(t) of T, and verify that the characteristic polynomial of TW (computed
in Exercise 9) divides f(t).

11. Let T be a linear operator on a vector space V, let v be a nonzero vector
in V, and let W be the T-cyclic subspace of V generated by v. Prove
that

(a) W is T-invariant.
(b) Any T-invariant subspace of V containing v also contains W.

12. Prove that A =
(

B1 B2

O B3

)
in the proof of Theorem 5.21.

13. Let T be a linear operator on a vector space V, let v be a nonzero vector
in V, and let W be the T-cyclic subspace of V generated by v. For any
w ∈ V, prove that w ∈ W if and only if there exists a polynomial g(t)
such that w = g(T)(v).

14. Prove that the polynomial g(t) of Exercise 13 can always be chosen so
that its degree is less than or equal to dim(W).

15. Use the Cayley–Hamilton theorem (Theorem 5.23) to prove its corol-
lary for matrices. Warning: If f(t) = det(A − tI) is the characteristic
polynomial of A, it is tempting to “prove” that f(A) = O by saying
“f(A) = det(A − AI) = det(O) = 0.” But this argument is nonsense.
Why?

16. Let T be a linear operator on a finite-dimensional vector space V.

(a) Prove that if the characteristic polynomial of T splits, then so
does the characteristic polynomial of the restriction of T to any
T-invariant subspace of V.

(b) Deduce that if the characteristic polynomial of T splits, then any
nontrivial T-invariant subspace of V contains an eigenvector of T.

17. Let A be an n × n matrix. Prove that

dim(span({In, A, A2, . . .})) ≤ n.

18. Let A be an n × n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · · + a1t + a0.

(a) Prove that A is invertible if and only if a0 �= 0.
(b) Prove that if A is invertible, then

A−1 = (−1/a0)[(−1)nAn−1 + an−1A
n−2 + · · · + a1In].
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(c) Use (b) to compute A−1 for

A =

⎛⎝1 2 1
0 2 3
0 0 −1

⎞⎠ .

19. Let A denote the k × k matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

...
...

0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where a0, a1, . . . , ak−1 are arbitrary scalars. Prove that the character-
istic polynomial of A is

(−1)k(a0 + a1t + · · · + ak−1t
k−1 + tk).

Hint: Use mathematical induction on k, expanding the determinant
along the first row.

20. Let T be a linear operator on a vector space V, and suppose that V is
a T-cyclic subspace of itself. Prove that if U is a linear operator on V,
then UT = TU if and only if U = g(T) for some polynomial g(t). Hint:
Suppose that V is generated by v. Choose g(t) according to Exercise 13
so that g(T)(v) = U(v).

21. Let T be a linear operator on a two-dimensional vector space V. Prove
that either V is a T-cyclic subspace of itself or T = cI for some scalar c.

22. Let T be a linear operator on a two-dimensional vector space V and
suppose that T �= cI for any scalar c. Show that if U is any linear
operator on V such that UT = TU, then U = g(T) for some polynomial
g(t).

23. Let T be a linear operator on a finite-dimensional vector space V, and
let W be a T-invariant subspace of V. Suppose that v1, v2, . . . , vk are
eigenvectors of T corresponding to distinct eigenvalues. Prove that if
v1 +v2 + · · ·+vk is in W, then vi ∈ W for all i. Hint: Use mathematical
induction on k.

24. Prove that the restriction of a diagonalizable linear operator T to any
nontrivial T-invariant subspace is also diagonalizable. Hint: Use the
result of Exercise 23.
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25. (a) Prove the converse to Exercise 18(a) of Section 5.2: If T and U
are diagonalizable linear operators on a finite-dimensional vector
space V such that UT = TU, then T and U are simultaneously
diagonalizable. (See the definitions in the exercises of Section 5.2.)
Hint: For any eigenvalue λ of T, show that Eλ is U-invariant, and
apply Exercise 24 to obtain a basis for Eλ of eigenvectors of U.

(b) State and prove a matrix version of (a).

26. Let T be a linear operator on an n-dimensional vector space V such that
T has n distinct eigenvalues. Prove that V is a T-cyclic subspace of itself.
Hint: Use Exercise 23 to find a vector v such that {v,T(v), . . . ,Tn−1(v)}
is linearly independent.

Exercises 27 through 32 require familiarity with quotient spaces as defined
in Exercise 31 of Section 1.3. Before attempting these exercises, the reader
should first review the other exercises treating quotient spaces: Exercise 35
of Section 1.6, Exercise 40 of Section 2.1, and Exercise 24 of Section 2.4.

For the purposes of Exercises 27 through 32, T is a fixed linear operator on
a finite-dimensional vector space V, and W is a nonzero T-invariant subspace
of V. We require the following definition.

Definition. Let T be a linear operator on a vector space V, and let W
be a T-invariant subspace of V. Define T : V/W → V/W by

T(v + W) = T(v) + W for any v + W ∈ V/W.

27. (a) Prove that T is well defined. That is, show that T(v + W) =
T(v′ + W) whenever v + W = v′ + W.

(b) Prove that T is a linear operator on V/W.
(c) Let η : V → V/W be the linear transformation defined in Exer-

cise 40 of Section 2.1 by η(v) = v + W. Show that the diagram of
Figure 5.6 commutes; that is, prove that ηT = Tη. (This exercise
does not require the assumption that V is finite-dimensional.)

V
T−−−−→ V

η

⏐⏐! ⏐⏐!η

V/W
T−−−−→ V/W

Figure 5.6

28. Let f(t), g(t), and h(t) be the characteristic polynomials of T, TW,
and T, respectively. Prove that f(t) = g(t)h(t). Hint: Extend an
ordered basis γ = {v1, v2, . . . , vk} for W to an ordered basis β =
{v1, v2, . . . , vk, vk+1, . . . , vn} for V. Then show that the collection of
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cosets α = {vk+1 + W, vk+2 + W, . . . , vn + W} is an ordered basis for
V/W, and prove that

[T]β =
(

B1 B2

O B3

)
,

where B1 = [T]γ and B3 = [T]α.

29. Use the hint in Exercise 28 to prove that if T is diagonalizable, then so
is T.

30. Prove that if both TW and T are diagonalizable and have no common
eigenvalues, then T is diagonalizable.

The results of Theorem 5.22 and Exercise 28 are useful in devising methods
for computing characteristic polynomials without the use of determinants.
This is illustrated in the next exercise.

31. Let A =

⎛⎝1 1 −3
2 3 4
1 2 1

⎞⎠, let T = LA, and let W be the cyclic subspace

of R3 generated by e1.

(a) Use Theorem 5.22 to compute the characteristic polynomial of TW.
(b) Show that {e2 + W} is a basis for R3/W, and use this fact to

compute the characteristic polynomial of T.
(c) Use the results of (a) and (b) to find the characteristic polynomial

of A.

32. Prove the converse to Exercise 9(a) of Section 5.2: If the characteristic
polynomial of T splits, then there is an ordered basis β for V such
that [T]β is an upper triangular matrix. Hints: Apply mathematical
induction to dim(V). First prove that T has an eigenvector v, let W =
span({v}), and apply the induction hypothesis to T : V/W → V/W.
Exercise 35(b) of Section 1.6 is helpful here.

Exercises 33 through 40 are concerned with direct sums.

33. Let T be a linear operator on a vector space V, and let W1, W2, . . . ,Wk

be T-invariant subspaces of V. Prove that W1 + W2 + · · · + Wk is also
a T-invariant subspace of V.

34. Give a direct proof of Theorem 5.25 for the case k = 2. (This result is
used in the proof of Theorem 5.24.)

35. Prove Theorem 5.25. Hint: Begin with Exercise 34 and extend it using
mathematical induction on k, the number of subspaces.
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36. Let T be a linear operator on a finite-dimensional vector space V.
Prove that T is diagonalizable if and only if V is the direct sum of
one-dimensional T-invariant subspaces.

37. Let T be a linear operator on a finite-dimensional vector space V,
and let W1, W2, . . . ,Wk be T-invariant subspaces of V such that V =
W1 ⊕ W2 ⊕ · · · ⊕ Wk. Prove that

det(T) = det(TW1) det(TW2) · · ·det(TWk
).

38. Let T be a linear operator on a finite-dimensional vector space V,
and let W1, W2, . . . ,Wk be T-invariant subspaces of V such that V =
W1 ⊕ W2 ⊕ · · · ⊕ Wk. Prove that T is diagonalizable if and only if TWi

is diagonalizable for all i.

39. Let C be a collection of diagonalizable linear operators on a finite-
dimensional vector space V. Prove that there is an ordered basis β
such that [T]β is a diagonal matrix for all T ∈ C if and only if the
operators of C commute under composition. (This is an extension of
Exercise 25.) Hints for the case that the operators commute: The result
is trivial if each operator has only one eigenvalue. Otherwise, establish
the general result by mathematical induction on dim(V), using the fact
that V is the direct sum of the eigenspaces of some operator in C that
has more than one eigenvalue.

40. Let B1, B2, . . . , Bk be square matrices with entries in the same field, and
let A = B1 ⊕ B2 ⊕ · · · ⊕ Bk. Prove that the characteristic polynomial
of A is the product of the characteristic polynomials of the Bi’s.

41. Let

A =

⎛⎜⎜⎜⎝
1 2 · · · n

n + 1 n + 2 · · · 2n
...

...
...

n2 − n + 1 n2 − n + 2 · · · n2

⎞⎟⎟⎟⎠ .

Find the characteristic polynomial of A. Hint: First prove that A has
rank 2 and that span({(1, 1, . . . , 1), (1, 2, . . . , n)}) is LA-invariant.

42. Let A ∈ Mn×n(R) be the matrix defined by Aij = 1 for all i and j.
Find the characteristic polynomial of A.
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6
Inner Product Spaces

6.1 Inner Products and Norms
6.2 The Gram-Schmidt Orthogonalization Process and Orthogonal

Complements
6.3 The Adjoint of a Linear Operator
6.4 Normal and Self-Adjoint Operators
6.5 Unitary and Orthogonal Operators and Their Matrices
6.6 Orthogonal Projections and the Spectral Theorem
6.7* The Singular Value Decomposition and the Pseudoinverse
6.8* Bilinear and Quadratic Forms
6.9* Einstein’s Special Theory of Relativity
6.10* Conditioning and the Rayleigh Quotient
6.11* The Geometry of Orthogonal Operators

Most applications of mathematics are involved with the concept of mea-
surement and hence of the magnitude or relative size of various quantities. So
it is not surprising that the fields of real and complex numbers, which have a
built-in notion of distance, should play a special role. Except for Section 6.8,
we assume that all vector spaces are over the field F , where F denotes either
R or C. (See Appendix D for properties of complex numbers.)

We introduce the idea of distance or length into vector spaces via a much
richer structure, the so-called inner product space structure. This added
structure provides applications to geometry (Sections 6.5 and 6.11), physics
(Section 6.9), conditioning in systems of linear equations (Section 6.10), least
squares (Section 6.3), and quadratic forms (Section 6.8).

6.1 INNER PRODUCTS AND NORMS

Many geometric notions such as angle, length, and perpendicularity in R2

and R3 may be extended to more general real and complex vector spaces. All
of these ideas are related to the concept of inner product.

Definition. Let V be a vector space over F . An inner product on V
is a function that assigns, to every ordered pair of vectors x and y in V, a

329
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scalar in F , denoted 〈x, y〉, such that for all x, y, and z in V and all c in F ,
the following hold:

(a) 〈x + z, y〉 = 〈x, y〉 + 〈z, y〉.
(b) 〈cx, y〉 = c 〈x, y〉.
(c) 〈x, y〉 = 〈y, x〉, where the bar denotes complex conjugation.
(d) 〈x, x〉 > 0 if x �= 0 .

Note that (c) reduces to 〈x, y〉 = 〈y, x〉 if F = R. Conditions (a) and (b)
simply require that the inner product be linear in the first component.

It is easily shown that if a1, a2, . . . , an ∈ F and y, v1, v2, . . . , vn ∈ V, then〈
n∑

i=1

aivi, y

〉
=

n∑
i=1

ai 〈vi, y〉 .

Example 1

For x = (a1, a2, . . . , an) and y = (b1, b2, . . . , bn) in Fn, define

〈x, y〉 =
n∑

i=1

aibi.

The verification that 〈 · , ·〉 satisfies conditions (a) through (d) is easy. For
example, if z = (c1, c2, . . . , cn), we have for (a)

〈x + z, y〉 =
n∑

i=1

(ai + ci)bi =
n∑

i=1

aibi +
n∑

i=1

cibi

= 〈x, y〉 + 〈z, y〉 .

Thus, for x = (1 + i, 4) and y = (2 − 3i, 4 + 5i) in C2,

〈x, y〉 = (1 + i)(2 + 3i) + 4(4 − 5i) = 15 − 15i. ♦

The inner product in Example 1 is called the standard inner product
on Fn. When F = R the conjugations are not needed, and in early courses
this standard inner product is usually called the dot product and is denoted
by x �y instead of 〈x, y〉.

Example 2

If 〈x, y〉 is any inner product on a vector space V and r > 0, we may define
another inner product by the rule 〈x, y〉′ = r 〈x, y〉. If r ≤ 0, then (d) would
not hold. ♦
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Example 3

Let V = C([0, 1]), the vector space of real-valued continuous functions on
[0, 1]. For f, g ∈ V, define 〈f, g〉 =

∫ 1

0
f(t)g(t) dt. Since the preceding integral

is linear in f , (a) and (b) are immediate, and (c) is trivial. If f �= 0 , then f2

is bounded away from zero on some subinterval of [0, 1] (continuity is used
here), and hence 〈f, f〉 =

∫ 1

0
[f(t)]2 dt > 0. ♦

Definition. Let A ∈ Mm×n(F ). We define the conjugate transpose
or adjoint of A to be the n×m matrix A∗ such that (A∗)ij = Aji for all i, j.

Example 4

Let

A =
(

i 1 + 2i
2 3 + 4i

)
.

Then

A∗ =
( −i 2

1 − 2i 3 − 4i

)
. ♦

Notice that if x and y are viewed as column vectors in Fn, then 〈x, y〉 =
y∗x.

The conjugate transpose of a matrix plays a very important role in the
remainder of this chapter. In the case that A has real entries, A∗ is simply
the transpose of A.

Example 5

Let V = Mn×n(F ), and define 〈A, B〉 = tr(B∗A) for A, B ∈ V. (Recall that
the trace of a matrix A is defined by tr(A) =

∑n
i=1 Aii.) We verify that

(a) and (d) of the definition of inner product hold and leave (b) and (c) to
the reader. For this purpose, let A, B, C ∈ V. Then (using Exercise 6 of
Section 1.3)

〈A + B, C〉 = tr(C∗(A + B)) = tr(C∗A + C∗B)
= tr(C∗A) + tr(C∗B) = 〈A, C〉 + 〈B, C〉 .

Also

〈A, A〉 = tr(A∗A) =
n∑

i=1

(A∗A)ii =
n∑

i=1

n∑
k=1

(A∗)ikAki

=
n∑

i=1

n∑
k=1

AkiAki =
n∑

i=1

n∑
k=1

|Aki|2.

Now if A �= O, then Aki �= 0 for some k and i. So 〈A, A〉 > 0. ♦
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The inner product on Mn×n(F ) in Example 5 is called the Frobenius
inner product.

A vector space V over F endowed with a specific inner product is called
an inner product space. If F = C, we call V a complex inner product
space, whereas if F = R, we call V a real inner product space.

It is clear that if V has an inner product 〈x, y〉 and W is a subspace of
V, then W is also an inner product space when the same function 〈x, y〉 is
restricted to the vectors x, y ∈ W.

Thus Examples 1, 3, and 5 also provide examples of inner product spaces.
For the remainder of this chapter, Fn denotes the inner product space with
the standard inner product as defined in Example 1. Likewise, Mn×n(F )
denotes the inner product space with the Frobenius inner product as defined
in Example 5. The reader is cautioned that two distinct inner products on
a given vector space yield two distinct inner product spaces. For instance, it
can be shown that both

〈f(x), g(x)〉1 =
∫ 1

0

f(t)g(t) dt and 〈f(x), g(x)〉2 =
∫ 1

−1

f(t)g(t) dt

are inner products on the vector space P(R). Even though the underlying
vector space is the same, however, these two inner products yield two different
inner product spaces. For example, the polynomials f(x) = x and g(x) = x2

are orthogonal in the second inner product space, but not in the first.
A very important inner product space that resembles C([0, 1]) is the space

H of continuous complex-valued functions defined on the interval [0, 2π] with
the inner product

〈f, g〉 =
1
2π

∫ 2π

0

f(t)g(t) dt.

The reason for the constant 1/2π will become evident later. This inner prod-
uct space, which arises often in the context of physical situations, is examined
more closely in later sections.

At this point, we mention a few facts about integration of complex-valued
functions. First, the imaginary number i can be treated as a constant under
the integration sign. Second, every complex-valued function f may be written
as f = f1 + if2, where f1 and f2 are real-valued functions. Thus we have∫

f =
∫

f1 + i

∫
f2 and

∫
f =

∫
f.

From these properties, as well as the assumption of continuity, it follows
that H is an inner product space (see Exercise 16(a)).

Some properties that follow easily from the definition of an inner product
are contained in the next theorem.
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Theorem 6.1. Let V be an inner product space. Then for x, y, z ∈ V and
c ∈ F , the following statements are true.

(a) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉.
(b) 〈x, cy〉 = c 〈x, y〉.
(c) 〈x, 0 〉 = 〈0 , x〉 = 0.
(d) 〈x, x〉 = 0 if and only if x = 0 .
(e) If 〈x, y〉 = 〈x, z〉 for all x ∈ V, then y = z.

Proof. (a) We have

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉 + 〈z, x〉
= 〈y, x〉 + 〈z, x〉 = 〈x, y〉 + 〈x, z〉 .

The proofs of (b), (c), (d), and (e) are left as exercises.

The reader should observe that (a) and (b) of Theorem 6.1 show that the
inner product is conjugate linear in the second component.

In order to generalize the notion of length in R3 to arbitrary inner product
spaces, we need only observe that the length of x = (a, b, c) ∈ R3 is given by√

a2 + b2 + c2 =
√〈x, x〉. This leads to the following definition.

Definition. Let V be an inner product space. For x ∈ V, we define the
norm or length of x by ‖x‖ =

√〈x, x〉.

Example 6

Let V = Fn. If x = (a1, a2 . . . , an), then

‖x‖ = ‖(a1, a2 . . . , an)‖ =

[
n∑

i=1

|ai|2
]1/2

is the Euclidean definition of length. Note that if n = 1, we have ‖a‖ = |a|.
♦

As we might expect, the well-known properties of Euclidean length in R3

hold in general, as shown next.

Theorem 6.2. Let V be an inner product space over F . Then for all
x, y ∈ V and c ∈ F , the following statements are true.

(a) ‖cx‖ = |c| ·‖x‖.
(b) ‖x‖ = 0 if and only if x = 0 . In any case, ‖x‖ ≥ 0.
(c) (Cauchy–Schwarz Inequality) | 〈x, y〉 | ≤ ‖x‖ ·‖y‖.
(d) (Triangle Inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖.
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Proof. We leave the proofs of (a) and (b) as exercises.
(c) If y = 0 , then the result is immediate. So assume that y �= 0 . For any

c ∈ F , we have

0 ≤ ‖x − cy‖2 = 〈x − cy, x − cy〉 = 〈x, x − cy〉 − c 〈y, x − cy〉
= 〈x, x〉 − c 〈x, y〉 − c 〈y, x〉 + cc 〈y, y〉 .

In particular, if we set

c =
〈x, y〉
〈y, y〉 ,

the inequality becomes

0 ≤ 〈x, x〉 − | 〈x, y〉 |2
〈y, y〉 = ‖x‖2 − | 〈x, y〉 |2

‖y‖2
,

from which (c) follows.
(d) We have

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉 + 〈y, x〉 + 〈x, y〉 + 〈y, y〉
= ‖x‖2 + 2�〈x, y〉 + ‖y‖2

≤ ‖x‖2 + 2| 〈x, y〉 | + ‖y‖2

≤ ‖x‖2 + 2‖x‖ ·‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2,

where �〈x, y〉 denotes the real part of the complex number 〈x, y〉. Note that
we used (c) to prove (d).

The case when equality results in (c) and (d) is considered in Exercise 15.

Example 7

For Fn, we may apply (c) and (d) of Theorem 6.2 to the standard inner
product to obtain the following well-known inequalities:∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
[

n∑
i=1

|ai|2
]1/2 [ n∑

i=1

|bi|2
]1/2

and [
n∑

i=1

|ai + bi|2
]1/2

≤
[

n∑
i=1

|ai|2
]1/2

+

[
n∑

i=1

|bi|2
]1/2

. ♦
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The reader may recall from earlier courses that, for x and y in R3 or R2,
we have that 〈x, y〉 = ‖x‖ ·‖y‖ cos θ, where θ (0 ≤ θ ≤ π) denotes the angle
between x and y. This equation implies (c) immediately since | cos θ| ≤ 1.
Notice also that nonzero vectors x and y are perpendicular if and only if
cos θ = 0, that is, if and only if 〈x, y〉 = 0.

We are now at the point where we can generalize the notion of perpendic-
ularity to arbitrary inner product spaces.

Definitions. Let V be an inner product space. Vectors x and y in V are
orthogonal (perpendicular) if 〈x, y〉 = 0. A subset S of V is orthogonal
if any two distinct vectors in S are orthogonal. A vector x in V is a unit
vector if ‖x‖ = 1. Finally, a subset S of V is orthonormal if S is orthogonal
and consists entirely of unit vectors.

Note that if S = {v1, v2, . . .}, then S is orthonormal if and only if 〈vi, vj〉 =
δij , where δij denotes the Kronecker delta. Also, observe that multiplying
vectors by nonzero scalars does not affect their orthogonality and that if x is
any nonzero vector, then (1/‖x‖)x is a unit vector. The process of multiplying
a nonzero vector by the reciprocal of its length is called normalizing.

Example 8

In F3, {(1, 1, 0), (1,−1, 1), (−1, 1, 2)} is an orthogonal set of nonzero vectors,
but it is not orthonormal; however, if we normalize the vectors in the set, we
obtain the orthonormal set{

1√
2
(1, 1, 0),

1√
3
(1,−1, 1),

1√
6
(−1, 1, 2)

}
. ♦

Our next example is of an infinite orthonormal set that is important in
analysis. This set is used in later examples in this chapter.

Example 9

Recall the inner product space H (defined on page 332). We introduce an im-
portant orthonormal subset S of H. For what follows, i is the imaginary num-
ber such that i2 = −1. For any integer n, let fn(t) = eint, where 0 ≤ t ≤ 2π.
(Recall that eint = cos nt + i sin nt.) Now define S = {fn : n is an integer}.
Clearly S is a subset of H. Using the property that eit = e−it for every real
number t, we have, for m �= n,

〈fm, fn〉 =
1
2π

∫ 2π

0

eimteint dt =
1
2π

∫ 2π

0

ei(m−n)t dt

=
1

2π(m − n)
ei(m−n)t

∣∣∣∣2π

0

= 0.
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Also,

〈fn, fn〉 =
1
2π

∫ 2π

0

ei(n−n)t dt =
1
2π

∫ 2π

0

1 dt = 1.

In other words, 〈fm, fn〉 = δmn. ♦

EXERCISES

1. Label the following statements as true or false.

(a) An inner product is a scalar-valued function on the set of ordered
pairs of vectors.

(b) An inner product space must be over the field of real or complex
numbers.

(c) An inner product is linear in both components.
(d) There is exactly one inner product on the vector space Rn.
(e) The triangle inequality only holds in finite-dimensional inner prod-

uct spaces.
(f) Only square matrices have a conjugate-transpose.
(g) If x, y, and z are vectors in an inner product space such that

〈x, y〉 = 〈x, z〉, then y = z.
(h) If 〈x, y〉 = 0 for all x in an inner product space, then y = 0 .

2. Let x = (2, 1 + i, i) and y = (2− i, 2, 1 + 2i) be vectors in C3. Compute
〈x, y〉, ‖x‖, ‖y‖, and ‖x + y‖. Then verify both the Cauchy–Schwarz
inequality and the triangle inequality.

3. In C([0, 1]), let f(t) = t and g(t) = et. Compute 〈f, g〉 (as defined in
Example 3), ‖f‖, ‖g‖, and ‖f + g‖. Then verify both the Cauchy–
Schwarz inequality and the triangle inequality.

4. (a) Complete the proof in Example 5 that 〈 · , ·〉 is an inner product
(the Frobenius inner product) on Mn×n(F ).

(b) Use the Frobenius inner product to compute ‖A‖, ‖B‖, and 〈A, B〉
for

A =
(

1 2 + i
3 i

)
and B =

(
1 + i 0

i −i

)
.

5. In C2, show that 〈x, y〉 = xAy∗ is an inner product, where

A =
(

1 i
−i 2

)
.

Compute 〈x, y〉 for x = (1 − i, 2 + 3i) and y = (2 + i, 3 − 2i).
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6. Complete the proof of Theorem 6.1.

7. Complete the proof of Theorem 6.2.

8. Provide reasons why each of the following is not an inner product on
the given vector spaces.

(a) 〈(a, b), (c, d)〉 = ac − bd on R2.
(b) 〈A, B〉 = tr(A + B) on M2×2(R).
(c) 〈f(x), g(x)〉 =

∫ 1

0
f ′(t)g(t) dt on P(R), where ′ denotes differentia-

tion.

9. Let β be a basis for a finite-dimensional inner product space.

(a) Prove that if 〈x, z〉 = 0 for all z ∈ β, then x = 0 .
(b) Prove that if 〈x, z〉 = 〈y, z〉 for all z ∈ β, then x = y.

10.† Let V be an inner product space, and suppose that x and y are orthog-
onal vectors in V. Prove that ‖x + y‖2 = ‖x‖2 + ‖y‖2. Deduce the
Pythagorean theorem in R2.

11. Prove the parallelogram law on an inner product space V; that is, show
that

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ V.

What does this equation state about parallelograms in R2?

12.† Let {v1, v2, . . . , vk} be an orthogonal set in V, and let a1, a2, . . . , ak be
scalars. Prove that ∥∥∥∥∥

k∑
i=1

aivi

∥∥∥∥∥
2

=
k∑

i=1

|ai|2‖vi‖2.

13. Suppose that 〈 · , ·〉1 and 〈 · , ·〉2 are two inner products on a vector space
V. Prove that 〈 · , ·〉 = 〈 · , ·〉1 + 〈 · , ·〉2 is another inner product on V.

14. Let A and B be n × n matrices, and let c be a scalar. Prove that
(A + cB)∗ = A∗ + cB∗.

15. (a) Prove that if V is an inner product space, then | 〈x, y〉 | = ‖x‖ ·‖y‖
if and only if one of the vectors x or y is a multiple of the other.
Hint: If the identity holds and y �= 0 , let

a =
〈x, y〉
‖y‖2

,
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and let z = x − ay. Prove that y and z are orthogonal and

|a| =
‖x‖
‖y‖ .

Then apply Exercise 10 to ‖x‖2 = ‖ay + z‖2 to obtain ‖z‖ = 0.
(b) Derive a similar result for the equality ‖x + y‖ = ‖x‖ + ‖y‖, and

generalize it to the case of n vectors.

16. (a) Show that the vector space H with 〈 · , ·〉 defined on page 332 is an
inner product space.

(b) Let V = C([0, 1]), and define

〈f, g〉 =
∫ 1/2

0

f(t)g(t) dt.

Is this an inner product on V?

17. Let T be a linear operator on an inner product space V, and suppose
that ‖T(x)‖ = ‖x‖ for all x. Prove that T is one-to-one.

18. Let V be a vector space over F , where F = R or F = C, and let W be
an inner product space over F with inner product 〈 · , ·〉. If T : V → W
is linear, prove that 〈x, y〉′ = 〈T(x), T(y)〉 defines an inner product on
V if and only if T is one-to-one.

19. Let V be an inner product space. Prove that

(a) ‖x ± y‖2 = ‖x‖2 ± 2�〈x, y〉 + ‖y‖2 for all x, y ∈ V, where �〈x, y〉
denotes the real part of the complex number 〈x, y〉.

(b) | ‖x‖ − ‖y‖ | ≤ ‖x − y‖ for all x, y ∈ V.

20. Let V be an inner product space over F . Prove the polar identities: For
all x, y ∈ V,

(a) 〈x, y〉 = 1
4‖x + y‖2 − 1

4‖x − y‖2 if F = R;

(b) 〈x, y〉 = 1
4

∑4
k=1 ik‖x + iky‖2 if F = C, where i2 = −1.

21. Let A be an n × n matrix. Define

A1 =
1
2
(A + A∗) and A2 =

1
2i

(A − A∗).

(a) Prove that A∗
1 = A1, A∗

2 = A2, and A = A1 + iA2. Would it be
reasonable to define A1 and A2 to be the real and imaginary parts,
respectively, of the matrix A?

(b) Let A be an n × n matrix. Prove that the representation in (a) is
unique. That is, prove that if A = B1 + iB2, where B∗

1 = B1 and
B∗

2 = B2, then B1 = A1 and B2 = A2.
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22. Let V be a real or complex vector space (possibly infinite-dimensional),
and let β be a basis for V. For x, y ∈ V there exist v1, v2, . . . , vn ∈ β
such that

x =
n∑

i=1

aivi and y =
n∑

i=1

bivi.

Define

〈x, y〉 =
n∑

i=1

aibi.

(a) Prove that 〈 · , ·〉 is an inner product on V and that β is an or-
thonormal basis for V. Thus every real or complex vector space
may be regarded as an inner product space.

(b) Prove that if V = Rn or V = Cn and β is the standard ordered
basis, then the inner product defined above is the standard inner
product.

23. Let V = Fn, and let A ∈ Mn×n(F ).

(a) Prove that 〈x, Ay〉 = 〈A∗x, y〉 for all x, y ∈ V.
(b) Suppose that for some B ∈ Mn×n(F ), we have 〈x, Ay〉 = 〈Bx, y〉

for all x, y ∈ V. Prove that B = A∗.
(c) Let α be the standard ordered basis for V. For any orthonormal

basis β for V, let Q be the n × n matrix whose columns are the
vectors in β. Prove that Q∗ = Q−1.

(d) Define linear operators T and U on V by T(x) = Ax and U(x) =
A∗x. Show that [U]β = [T]∗β for any orthonormal basis β for V.

The following definition is used in Exercises 24–27.

Definition. Let V be a vector space over F , where F is either R or
C. Regardless of whether V is or is not an inner product space, we may still
define a norm ‖ ·‖ as a real-valued function on V satisfying the following three
conditions for all x, y ∈ V and a ∈ F :

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0 .

(2) ‖ax‖ = |a| ·‖x‖.
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

24. Prove that the following are norms on the given vector spaces V.

(a) V = Mm×n(F ); ‖A‖ = max
i,j

|Aij | for all A ∈ V

(b) V = C([0, 1]); ‖f‖ = max
t∈[0,1]

|f(t)| for all f ∈ V
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(c) V = C([0, 1]); ‖f‖ =
∫ 1

0

|f(t)| dt for all f ∈ V

(d) V = R2; ‖(a, b)‖ = max{|a|, |b|} for all (a, b) ∈ V

25. Use Exercise 20 to show that there is no inner product 〈 · , ·〉 on R2

such that ‖x‖2 = 〈x, x〉 for all x ∈ R2 if the norm is defined as in
Exercise 24(d).

26. Let ‖ ·‖ be a norm on a vector space V, and define, for each ordered pair
of vectors, the scalar d(x, y) = ‖x − y‖, called the distance between x
and y. Prove the following results for all x, y, z ∈ V.

(a) d(x, y) ≥ 0.
(b) d(x, y) = d(y, x).
(c) d(x, y) ≤ d(x, z) + d(z, y).
(d) d(x, x) = 0.
(e) d(x, y) �= 0 if x �= y.

27. Let ‖ ·‖ be a norm on a real vector space V satisfying the parallelogram
law given in Exercise 11. Define

〈x, y〉 =
1
4
[‖x + y‖2 − ‖x − y‖2

]
.

Prove that 〈 · , ·〉 defines an inner product on V such that ‖x‖2 = 〈x, x〉
for all x ∈ V.

Hints:

(a) Prove 〈x, 2y〉 = 2 〈x, y〉 for all x, y ∈ V.
(b) Prove 〈x + u, y〉 = 〈x, y〉 + 〈u, y〉 for all x, u, y ∈ V.
(c) Prove 〈nx, y〉 = n 〈x, y〉 for every positive integer n and every

x, y ∈ V.
(d) Prove m

〈
1
mx, y

〉
= 〈x, y〉 for every positive integer m and every

x, y ∈ V.
(e) Prove 〈rx, y〉 = r 〈x, y〉 for every rational number r and every

x, y ∈ V.
(f) Prove | 〈x, y〉 | ≤ ‖x‖‖y‖ for every x, y ∈ V. Hint: Condition (3) in

the definition of norm can be helpful.
(g) Prove that for every c ∈ R, every rational number r, and every

x, y ∈ V,

|c 〈x, y〉 − 〈cx, y〉 | = |(c−r) 〈x, y〉 − 〈(c−r)x, y〉 | ≤ 2|c−r|‖x‖‖y‖.

(h) Use the fact that for any c ∈ R, |c − r| can be made arbitrarily
small, where r varies over the set of rational numbers, to establish
item (b) of the definition of inner product.
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28. Let V be a complex inner product space with an inner product 〈 · , ·〉.
Let [ · , · ] be the real-valued function such that [x, y] is the real part of
the complex number 〈x, y〉 for all x, y ∈ V. Prove that [ · , · ] is an inner
product for V, where V is regarded as a vector space over R. Prove,
furthermore, that [x, ix] = 0 for all x ∈ V.

29. Let V be a vector space over C, and suppose that [ · , · ] is a real inner
product on V, where V is regarded as a vector space over R, such that
[x, ix] = 0 for all x ∈ V. Let 〈 · , ·〉 be the complex-valued function
defined by

〈x, y〉 = [x, y] + i[x, iy] for x, y ∈ V.

Prove that 〈 · , ·〉 is a complex inner product on V.

30. Let ‖ ·‖ be a norm (as defined in Exercise 24) on a complex vector
space V satisfying the parallelogram law given in Exercise 11. Prove
that there is an inner product 〈 · , ·〉 on V such that ‖x‖2 = 〈x, x〉 for
all x ∈ V.

Hint: Apply Exercise 27 to V regarded as a vector space over R. Then
apply Exercise 29.

6.2 THE GRAM–SCHMIDT ORTHOGONALIZATION PROCESS
AND ORTHOGONAL COMPLEMENTS

In previous chapters, we have seen the special role of the standard ordered
bases for Cn and Rn. The special properties of these bases stem from the fact
that the basis vectors form an orthonormal set. Just as bases are the building
blocks of vector spaces, bases that are also orthonormal sets are the building
blocks of inner product spaces. We now name such bases.

Definition. Let V be an inner product space. A subset of V is an
orthonormal basis for V if it is an ordered basis that is orthonormal.

Example 1

The standard ordered basis for Fn is an orthonormal basis for Fn. ♦
Example 2

The set {(
1√
5
,

2√
5

)
,

(
2√
5
,
−1√

5

)}
is an orthonormal basis for R2. ♦
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The next theorem and its corollaries illustrate why orthonormal sets and,
in particular, orthonormal bases are so important.

Theorem 6.3. Let V be an inner product space and S = {v1, v2, . . . , vk}
be an orthogonal subset of V consisting of nonzero vectors. If y ∈ span(S),
then

y =
k∑

i=1

〈y, vi〉
‖vi‖2

vi.

Proof. Write y =
k∑

i=1

aivi, where a1, a2, . . . , ak ∈ F . Then, for 1 ≤ j ≤ k,

we have

〈y, vj〉 =

〈
k∑

i=1

aivi, vj

〉
=

k∑
i=1

ai 〈vi, vj〉 = aj 〈vj , vj〉 = aj‖vj‖2.

So aj =
〈y, vj〉
‖vj‖2

, and the result follows.

The next corollary follows immediately from Theorem 6.3.

Corollary 1. If, in addition to the hypotheses of Theorem 6.3, S is
orthonormal and y ∈ span(S), then

y =
k∑

i=1

〈y, vi〉 vi.

If V possesses a finite orthonormal basis, then Corollary 1 allows us to
compute the coefficients in a linear combination very easily. (See Example 3.)

Corollary 2. Let V be an inner product space, and let S be an orthogonal
subset of V consisting of nonzero vectors. Then S is linearly independent.

Proof. Suppose that v1, v2, . . . , vk ∈ S and

k∑
i=1

aivi = 0 .

As in the proof of Theorem 6.3 with y = 0 , we have aj = 〈0 , vj〉 /‖vj‖2 = 0
for all j. So S is linearly independent.
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Example 3

By Corollary 2, the orthonormal set{
1√
2
(1, 1, 0),

1√
3
(1,−1, 1),

1√
6
(−1, 1, 2)

}
obtained in Example 8 of Section 6.1 is an orthonormal basis for R3. Let
x = (2, 1, 3). The coefficients given by Corollary 1 to Theorem 6.3 that
express x as a linear combination of the basis vectors are

a1 =
1√
2
(2 + 1) =

3√
2
, a2 =

1√
3
(2 − 1 + 3) =

4√
3
,

and

a3 =
1√
6
(−2 + 1 + 6) =

5√
6
.

As a check, we have

(2, 1, 3) =
3
2
(1, 1, 0) +

4
3
(1,−1, 1) +

5
6
(−1, 1, 2). ♦

Corollary 2 tells us that the vector space H in Section 6.1 contains an
infinite linearly independent set, and hence H is not a finite-dimensional vector
space.

Of course, we have not yet shown that every finite-dimensional inner prod-
uct space possesses an orthonormal basis. The next theorem takes us most
of the way in obtaining this result. It tells us how to construct an orthogonal
set from a linearly independent set of vectors in such a way that both sets
generate the same subspace.

Before stating this theorem, let us consider a simple case. Suppose that
{w1, w2} is a linearly independent subset of an inner product space (and
hence a basis for some two-dimensional subspace). We want to construct
an orthogonal set from {w1, w2} that spans the same subspace. Figure 6.1
suggests that the set {v1, v2}, where v1 = w1 and v2 = w2 − cw1, has this
property if c is chosen so that v2 is orthogonal to W1.

To find c, we need only solve the following equation:

0 = 〈v2, w1〉 = 〈w2 − cw1, w1〉 = 〈w2, w1〉 − c 〈w1, w1〉 .

So

c =
〈w2, w1〉
‖w1‖2

.

Thus

v2 = w2 − 〈w2, w1〉
‖w1‖2

w1.
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Figure 6.1

The next theorem shows us that this process can be extended to any finite
linearly independent subset.

Theorem 6.4. Let V be an inner product space and S = {w1, w2, . . . , wn}
be a linearly independent subset of V. Define S′ = {v1, v2, . . . , vn}, where
v1 = w1 and

vk = wk −
k−1∑
j=1

〈wk, vj〉
‖vj‖2

vj for 2 ≤ k ≤ n. (1)

Then S′ is an orthogonal set of nonzero vectors such that span(S′) = span(S).

Proof. The proof is by mathematical induction on n, the number of vectors
in S. For k = 1, 2, . . . , n, let Sk = {w1, w2, . . . , wk}. If n = 1, then the
theorem is proved by taking S′

1 = S1; i.e., v1 = w1 �= 0 . Assume then that the
set S′

k−1 = {v1, v2, . . . , vk−1} with the desired properties has been constructed
by the repeated use of (1). We show that the set S′

k = {v1, v2, . . . , vk−1, vk}
also has the desired properties, where vk is obtained from S′

k−1 by (1). If vk =
0 , then (1) implies that wk ∈ span(S′

k−1) = span(Sk−1), which contradicts
the assumption that Sk is linearly independent. For 1 ≤ i ≤ k − 1, it follows
from (1) that

〈vk, vi〉 = 〈wk, vi〉 −
k−1∑
j=1

〈wk, vj〉
‖vj‖2

〈vj , vi〉 = 〈wk, vi〉 − 〈wk, vi〉
‖vi‖2

‖vi‖2 = 0,

since 〈vj , vi〉 = 0 if i �= j by the induction assumption that S′
k−1 is orthogonal.

Hence S′
k is an orthogonal set of nonzero vectors. Now, by (1), we have that

span(S′
k) ⊆ span(Sk). But by Corollary 2 to Theorem 6.3, S′

k is linearly
independent; so dim(span(S′

k)) = dim(span(Sk)) = k. Therefore span(S′
k) =

span(Sk).

The construction of {v1, v2, . . . , vn} by the use of Theorem 6.4 is called
the Gram–Schmidt process.



Sec. 6.2 Gram-Schmidt Orthogonalization Process 345

Example 4

In R4, let w1 = (1, 0, 1, 0), w2 = (1, 1, 1, 1), and w3 = (0, 1, 2, 1). Then
{w1, w2, w3} is linearly independent. We use the Gram–Schmidt process to
compute the orthogonal vectors v1, v2, and v3, and then we normalize these
vectors to obtain an orthonormal set.

Take v1 = w1 = (1, 0, 1, 0). Then

v2 = w2 − 〈w2, v1〉
‖v1‖2

v1

= (1, 1, 1, 1) − 2
2
(1, 0, 1, 0)

= (0, 1, 0, 1).

Finally,

v3 = w3 − 〈w3, v1〉
‖v1‖2

v1 − 〈w3, v2〉
‖v2‖2

v2

= (0, 1, 2, 1) − 2
2
(1, 0, 1, 0) − 2

2
(0, 1, 0, 1)

= (−1, 0, 1, 0).

These vectors can be normalized to obtain the orthonormal basis {u1, u2, u3},
where

u1 =
1

‖v1‖v1 =
1√
2
(1, 0, 1, 0),

u2 =
1

‖v2‖v2 =
1√
2
(0, 1, 0, 1),

and

u3 =
v3

‖v3‖ =
1√
2
(−1, 0, 1, 0). ♦

Example 5

Let V = P(R) with the inner product 〈f(x), g(x)〉 =
∫ 1

−1
f(t)g(t) dt, and

consider the subspace P2(R) with the standard ordered basis β. We use the
Gram–Schmidt process to replace β by an orthogonal basis {v1, v2, v3} for
P2(R), and then use this orthogonal basis to obtain an orthonormal basis for
P2(R).

Take v1 = 1. Then ‖v1‖2 =
∫ 1

−1

12 dt = 2, and 〈x, v1〉 =
∫ 1

−1

t · 1 dt = 0.

Thus

v2 = x − 〈v1, x〉
‖v1‖2

= x − 0
2

= x.
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Furthermore,

〈
x2, v1

〉
=
∫ 1

−1

t2 · 1 dt =
2
3

and
〈
x2, v2

〉
=
∫ 1

−1

t2 · t dt = 0.

Therefore

v3 = x2 −
〈
x2, v1

〉
‖v1‖2

v1 −
〈
x2, v2

〉
‖v2‖2

v2

= x2 − 1
3
· 1 − 0 · x

= x2 − 1
3
.

We conclude that {1, x, x2 − 1
3} is an orthogonal basis for P2(R).

To obtain an orthonormal basis, we normalize v1, v2, and v3 to obtain

u1 =
1√∫ 1

−1
12 dt

=
1√
2
,

u2 =
x√∫ 1

−1
t2 dt

=

√
3
2

x,

and similarly,

u3 =
v3

‖v3‖ =

√
5
8

(3x2 − 1).

Thus {u1, u2, u3} is the desired orthonormal basis for P2(R). ♦
If we continue applying the Gram–Schmidt orthogonalization process to

the basis {1, x, x2, . . .} for P(R), we obtain an orthogonal basis whose elements
are called the Legendre polynomials. The orthogonal polynomials v1, v2, and
v3 in Example 5 are the first three Legendre polynomials.

The following result gives us a simple method of representing a vector as
a linear combination of the vectors in an orthonormal basis.

Theorem 6.5. Let V be a nonzero finite-dimensional inner product space.
Then V has an orthonormal basis β. Furthermore, if β = {v1, v2, . . . , vn} and
x ∈ V, then

x =
n∑

i=1

〈x, vi〉 vi.
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Proof. Let β0 be an ordered basis for V. Apply Theorem 6.4 to obtain
an orthogonal set β′ of nonzero vectors with span(β′) = span(β0) = V. By
normalizing each vector in β′, we obtain an orthonormal set β that generates
V. By Corollary 2 to Theorem 6.3, β is linearly independent; therefore β
is an orthonormal basis for V. The remainder of the theorem follows from
Corollary 1 to Theorem 6.3.

Example 6

We use Theorem 6.5 to represent the polynomial f(x) = 1 + 2x + 3x2 as
a linear combination of the vectors in the orthonormal basis {u1, u2, u3} for
P2(R) obtained in Example 5. Observe that

〈f(x), u1〉 =
∫ 1

−1

1√
2
(1 + 2t + 3t2) dt = 2

√
2,

〈f(x), u2〉 =
∫ 1

−1

√
3
2
t(1 + 2t + 3t2) dt =

2
√

6
3

,

and

〈f(x), u3〉 =
∫ 1

−1

√
5
8
(3t2 − 1)(1 + 2t + 3t2) dt =

2
√

10
5

.

Therefore f(x) = 2
√

2 u1 +
2
√

6
3

u2 +
2
√

10
5

u3. ♦

Theorem 6.5 gives us a simple method for computing the entries of the
matrix representation of a linear operator with respect to an orthonormal
basis.

Corollary. Let V be a finite-dimensional inner product space with an
orthonormal basis β = {v1, v2, . . . , vn}. Let T be a linear operator on V, and
let A = [T]β . Then for any i and j, Aij = 〈T(vj), vi〉.

Proof. From Theorem 6.5, we have

T(vj) =
n∑

i=1

〈T(vj), vi〉 vi.

Hence Aij = 〈T(vj), vi〉.
The scalars 〈x, vi〉 given in Theorem 6.5 have been studied extensively

for special inner product spaces. Although the vectors v1, v2, . . . , vn were
chosen from an orthonormal basis, we introduce a terminology associated
with orthonormal sets β in more general inner product spaces.
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Definition. Let β be an orthonormal subset (possibly infinite) of an
inner product space V, and let x ∈ V. We define the Fourier coefficients
of x relative to β to be the scalars 〈x, y〉, where y ∈ β.

In the first half of the 19th century, the French mathematician Jean Bap-
tiste Fourier was associated with the study of the scalars∫ 2π

0

f(t) sin nt dt and
∫ 2π

0

f(t) cos nt dt,

or more generally,

cn =
1
2π

∫ 2π

0

f(t)e−int dt,

for a function f . In the context of Example 9 of Section 6.1, we see that
cn = 〈f, fn〉, where fn(t) = eint; that is, cn is the nth Fourier coefficient for a
continuous function f ∈ V relative to S. These coefficients are the “classical”
Fourier coefficients of a function, and the literature concerning the behavior of
these coefficients is extensive. We learn more about these Fourier coefficients
in the remainder of this chapter.

Example 7

Let S = {eint : n is an integer}. In Example 9 of Section 6.1, S was shown to
be an orthonormal set in H. We compute the Fourier coefficients of f(t) = t
relative to S. Using integration by parts, we have, for n �= 0,

〈f, fn〉 =
1
2π

∫ 2π

0

teint dt =
1
2π

∫ 2π

0

te−int dt =
−1
in

,

and, for n = 0,

〈f, 1〉 =
1
2π

∫ 2π

0

t(1) dt = π.

As a result of these computations, and using Exercise 16 of this section, we
obtain an upper bound for the sum of a special infinite series as follows:

‖f‖2 ≥
−1∑

n=−k

| 〈f, fn〉 |2 + | 〈f, 1〉 |2 +
k∑

n=1

| 〈f, fn〉 |2

=
−1∑

n=−k

1
n2

+ π2 +
k∑

n=1

1
n2

= 2
k∑

n=1

1
n2

+ π2
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for every k. Now, using the fact that ‖f‖2 =
4
3
π2, we obtain

4
3
π2 ≥ 2

k∑
n=1

1
n2

+ π2,

or

π2

6
≥

k∑
n=1

1
n2

.

Because this inequality holds for all k, we may let k → ∞ to obtain

π2

6
≥

∞∑
n=1

1
n2

.

Additional results may be produced by replacing f by other functions. ♦
We are now ready to proceed with the concept of an orthogonal comple-

ment.

Definition. Let S be a nonempty subset of an inner product space V. We
define S⊥ (read “S perp”) to be the set of all vectors in V that are orthogonal
to every vector in S; that is, S⊥ = {x ∈ V : 〈x, y〉 = 0 for all y ∈ S}. The set
S⊥ is called the orthogonal complement of S.

It is easily seen that S⊥ is a subspace of V for any subset S of V.

Example 8

The reader should verify that {0}⊥ = V and V⊥ = {0} for any inner product
space V. ♦
Example 9

If V = R3 and S = {e3}, then S⊥ equals the xy-plane (see Exercise 5). ♦
Exercise 18 provides an interesting example of an orthogonal complement

in an infinite-dimensional inner product space.
Consider the problem in R3 of finding the distance from a point P to a

plane W. (See Figure 6.2.) Problems of this type arise in many settings. If
we let y be the vector determined by 0 and P , we may restate the problem
as follows: Determine the vector u in W that is “closest” to y. The desired
distance is clearly given by ‖y − u‖. Notice from the figure that the vector
z = y − u is orthogonal to every vector in W, and so z ∈ W⊥.

The next result presents a practical method of finding u in the case that
W is a finite-dimensional subspace of an inner product space.
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Theorem 6.6. Let W be a finite-dimensional subspace of an inner product
space V, and let y ∈ V. Then there exist unique vectors u ∈ W and z ∈ W⊥

such that y = u + z. Furthermore, if {v1, v2, . . . , vk} is an orthonormal basis
for W, then

u =
k∑

i=1

〈y, vi〉 vi.

Proof. Let {v1, v2, . . . , vk} be an orthonormal basis for W, let u be as
defined in the preceding equation, and let z = y − u. Clearly u ∈ W and
y = u + z.

To show that z ∈ W⊥, it suffices to show, by Exercise 7, that z is orthog-
onal to each vj . For any j, we have

〈z, vj〉 =

〈(
y −

k∑
i=1

〈y, vi〉 vi

)
, vj

〉
= 〈y, vj〉 −

k∑
i=1

〈y, vi〉 〈vi, vj〉

= 〈y, vj〉 − 〈y, vj〉 = 0.

To show uniqueness of u and z, suppose that y = u + z = u′ + z′, where
u′ ∈ W and z′ ∈ W⊥. Then u − u′ = z′ − z ∈ W ∩ W⊥ = {0}. Therefore,
u = u′ and z = z′.

Corollary. In the notation of Theorem 6.6, the vector u is the unique
vector in W that is “closest” to y; that is, for any x ∈ W, ‖y − x‖ ≥ ‖y − u‖,
and this inequality is an equality if and only if x = u.

Proof. As in Theorem 6.6, we have that y = u + z, where z ∈ W⊥. Let
x ∈ W. Then u − x is orthogonal to z, so, by Exercise 10 of Section 6.1, we
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have

‖y − x‖2 = ‖u + z − x‖2 = ‖(u − x) + z‖2 = ‖u − x‖2 + ‖z‖2

≥ ‖z‖2 = ‖y − u‖2.

Now suppose that ‖y − x‖ = ‖y − u‖. Then the inequality above becomes an
equality, and therefore ‖u − x‖2 + ‖z‖2 = ‖z‖2. It follows that ‖u − x‖ = 0,
and hence x = u. The proof of the converse is obvious.

The vector u in the corollary is called the orthogonal projection of y
on W. We will see the importance of orthogonal projections of vectors in the
application to least squares in Section 6.3.

Example 10

Let V = P3(R) with the inner product

〈f(x), g(x)〉 =
∫ 1

−1

f(t)g(t) dt for all f(x), g(x) ∈ V.

We compute the orthogonal projection f1(x) of f(x) = x3 on P2(R).

By Example 5,

{u1, u2, u3} =

{
1√
2
,

√
3
2

x,

√
5
8

(3x2 − 1)

}

is an orthonormal basis for P2(R). For these vectors, we have

〈f(x), u1〉 =
∫ 1

−1

t3
1√
2

dt = 0, 〈f(x), u2〉 =
∫ 1

−1

t3
√

3
2

t dt =
√

6
5

,

and

〈f(x), u3〉 =
∫ 1

−1

t3
√

5
8

(3t2 − 1) dt = 0.

Hence

f1(x) = 〈f(x), u1〉u1 + 〈f(x), u2〉u2 + 〈f(x), u3〉u3 =
3
5
x. ♦

It was shown (Corollary 2 to the replacement theorem, p. 47) that any lin-
early independent set in a finite-dimensional vector space can be extended to
a basis. The next theorem provides an interesting analog for an orthonormal
subset of a finite-dimensional inner product space.



352 Chap. 6 Inner Product Spaces

Theorem 6.7. Suppose that S = {v1, v2, . . . , vk} is an orthonormal set
in an n-dimensional inner product space V. Then

(a) S can be extended to an orthonormal basis {v1, v2, . . . , vk, vk+1, . . . , vn}
for V.

(b) If W = span(S), then S1 = {vk+1, vk+2, . . . , vn} is an orthonormal
basis for W⊥ (using the preceding notation).

(c) If W is any subspace of V, then dim(V) = dim(W) + dim(W⊥).

Proof. (a) By Corollary 2 to the replacement theorem (p. 47), S can be
extended to an ordered basis S′ = {v1, v2, . . . , vk, wk+1, . . . , wn} for V. Now
apply the Gram–Schmidt process to S′. The first k vectors resulting from
this process are the vectors in S by Exercise 8, and this new set spans V.
Normalizing the last n − k vectors of this set produces an orthonormal set
that spans V. The result now follows.

(b) Because S1 is a subset of a basis, it is linearly independent. Since S1

is clearly a subset of W⊥, we need only show that it spans W⊥. Note that,
for any x ∈ V, we have

x =
n∑

i=1

〈x, vi〉 vi.

If x ∈ W⊥, then 〈x, vi〉 = 0 for 1 ≤ i ≤ k. Therefore,

x =
n∑

i=k+1

〈x, vi〉 vi ∈ span(S1).

(c) Let W be a subspace of V. It is a finite-dimensional inner product
space because V is, and so it has an orthonormal basis {v1, v2, . . . , vk}. By
(a) and (b), we have

dim(V) = n = k + (n − k) = dim(W) + dim(W⊥).

Example 11

Let W = span({e1, e2}) in F3. Then x = (a, b, c) ∈ W⊥ if and only if 0 =
〈x, e1〉 = a and 0 = 〈x, e2〉 = b. So x = (0, 0, c), and therefore W⊥ =
span({e3}). One can deduce the same result by noting that e3 ∈ W⊥ and,
from (c), that dim(W⊥) = 3 − 2 = 1. ♦

EXERCISES

1. Label the following statements as true or false.

(a) The Gram–Schmidt orthogonalization process allows us to con-
struct an orthonormal set from an arbitrary set of vectors.
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(b) Every nonzero finite-dimensional inner product space has an or-
thonormal basis.

(c) The orthogonal complement of any set is a subspace.
(d) If {v1, v2, . . . , vn} is a basis for an inner product space V, then for

any x ∈ V the scalars 〈x, vi〉 are the Fourier coefficients of x.
(e) An orthonormal basis must be an ordered basis.
(f) Every orthogonal set is linearly independent.
(g) Every orthonormal set is linearly independent.

2. In each part, apply the Gram–Schmidt process to the given subset S of
the inner product space V to obtain an orthogonal basis for span(S).
Then normalize the vectors in this basis to obtain an orthonormal basis
β for span(S), and compute the Fourier coefficients of the given vector
relative to β. Finally, use Theorem 6.5 to verify your result.

(a) V = R3, S = {(1, 0, 1), (0, 1, 1), (1, 3, 3)}, and x = (1, 1, 2)
(b) V = R3, S = {(1, 1, 1), (0, 1, 1), (0, 0, 1)}, and x = (1, 0, 1)
(c) V = P2(R) with the inner product 〈f(x), g(x)〉 =

∫ 1

0
f(t)g(t) dt,

S = {1, x, x2}, and h(x) = 1 + x
(d) V = span(S), where S = {(1, i, 0), (1 − i, 2, 4i)}, and

x = (3 + i, 4i,−4)
(e) V = R4, S = {(2,−1,−2, 4), (−2, 1,−5, 5), (−1, 3, 7, 11)}, and x =

(−11, 8,−4, 18)
(f) V = R4, S = {(1,−2,−1, 3), (3, 6, 3,−1), (1, 4, 2, 8)},

and x = (−1, 2, 1, 1)

(g) V = M2×2(R), S =
{(

3 5
−1 1

)
,

(−1 9
5 −1

)
,

(
7 −17
2 −6

)}
, and

A =
(−1 27
−4 8

)
(h) V = M2×2(R), S =

{(
2 2
2 1

)
,

(
11 4
2 5

)
,

(
4 −12
3 −16

)}
, and A =(

8 6
25 −13

)
(i) V = span(S) with the inner product 〈f, g〉 =

∫ π

0

f(t)g(t) dt,

S = {sin t, cos t, 1, t}, and h(t) = 2t + 1
(j) V = C4, S = {(1, i, 2 − i,−1), (2 + 3i, 3i, 1 − i, 2i),

(−1+7i, 6+10i, 11−4i, 3+4i)}, and x = (−2+7i, 6+9i, 9−3i, 4+4i)

(k) V = C4, S = {(−4, 3 − 2i, i, 1 − 4i),
(−1−5i, 5−4i,−3+5i, 7−2i), (−27−i,−7−6i,−15+25i,−7−6i)},
and x = (−13 − 7i,−12 + 3i,−39 − 11i,−26 + 5i)
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(l) V = M2×2(C), S =
{(

1 − i −2 − 3i
2 + 2i 4 + i

)
,

(
8i 4

−3 − 3i −4 + 4i

)
,(−25 − 38i −2 − 13i

12 − 78i −7 + 24i

)}
, and A =

(−2 + 8i −13 + i
10 − 10i 9 − 9i

)
(m) V = M2×2(C), S =

{(−1 + i −i
2 − i 1 + 3i

)
,

(−1 − 7i −9 − 8i
1 + 10i −6 − 2i

)
,(−11 − 132i −34 − 31i

7 − 126i −71 − 5i

)}
, and A =

(−7 + 5i 3 + 18i
9 − 6i −3 + 7i

)
3. In R2, let

β =
{(

1√
2
,

1√
2

)
,

(
1√
2
,
−1√

2

)}
.

Find the Fourier coefficients of (3, 4) relative to β.

4. Let S = {(1, 0, i), (1, 2, 1)} in C3. Compute S⊥.

5. Let S0 = {x0}, where x0 is a nonzero vector in R3. Describe S⊥
0 ge-

ometrically. Now suppose that S = {x1, x2} is a linearly independent
subset of R3. Describe S⊥ geometrically.

6. Let V be an inner product space, and let W be a finite-dimensional
subspace of V. If x /∈ W, prove that there exists y ∈ V such that
y ∈ W⊥, but 〈x, y〉 �= 0. Hint: Use Theorem 6.6.

7. Let β be a basis for a subspace W of an inner product space V, and let
z ∈ V. Prove that z ∈ W⊥ if and only if 〈z, v〉 = 0 for every v ∈ β.

8. Prove that if {w1, w2, . . . , wn} is an orthogonal set of nonzero vectors,
then the vectors v1, v2, . . . , vn derived from the Gram–Schmidt process
satisfy vi = wi for i = 1, 2, . . . , n. Hint: Use mathematical induction.

9. Let W = span({(i, 0, 1)}) in C3. Find orthonormal bases for W and W⊥.

10. Let W be a finite-dimensional subspace of an inner product space V.
Prove that there exists a projection T on W along W⊥ that satisfies
N(T) = W⊥. In addition, prove that ‖T(x)‖ ≤ ‖x‖ for all x ∈ V.
Hint: Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are
defined in the exercises of Section 2.1.)

11. Let A be an n× n matrix with complex entries. Prove that AA∗ = I if
and only if the rows of A form an orthonormal basis for Cn.

12. Prove that for any matrix A ∈ Mm×n(F ), (R(LA∗))⊥ = N(LA).
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13. Let V be an inner product space, S and S0 be subsets of V, and W be
a finite-dimensional subspace of V. Prove the following results.

(a) S0 ⊆ S implies that S⊥ ⊆ S⊥
0 .

(b) S ⊆ (S⊥)⊥; so span(S) ⊆ (S⊥)⊥.
(c) W = (W⊥)⊥. Hint: Use Exercise 6.
(d) V = W ⊕ W⊥. (See the exercises of Section 1.3.)

14. Let W1 and W2 be subspaces of a finite-dimensional inner product space.
Prove that (W1 +W2)⊥ = W⊥

1 ∩W⊥
2 and (W1∩W2)⊥ = W⊥

1 +W⊥
2 . (See

the definition of the sum of subsets of a vector space on page 22.) Hint
for the second equation: Apply Exercise 13(c) to the first equation.

15. Let V be a finite-dimensional inner product space over F .

(a) Parseval’s Identity. Let {v1, v2, . . . , vn} be an orthonormal basis
for V. For any x, y ∈ V prove that

〈x, y〉 =
n∑

i=1

〈x, vi〉 〈y, vi〉.

(b) Use (a) to prove that if β is an orthonormal basis for V with inner
product 〈 · , ·〉, then for any x, y ∈ V

〈φβ(x), φβ(y)〉′ = 〈[x]β , [y]β〉′ = 〈x, y〉 ,

where 〈 · , ·〉′ is the standard inner product on Fn.

16. (a) Bessel’s Inequality. Let V be an inner product space, and let S =
{v1, v2, . . . , vn} be an orthonormal subset of V. Prove that for any
x ∈ V we have

‖x‖2 ≥
n∑

i=1

| 〈x, vi〉 |2.

Hint: Apply Theorem 6.6 to x ∈ V and W = span(S). Then use
Exercise 10 of Section 6.1.

(b) In the context of (a), prove that Bessel’s inequality is an equality
if and only if x ∈ span(S).

17. Let T be a linear operator on an inner product space V. If 〈T(x), y〉 = 0
for all x, y ∈ V, prove that T = T0. In fact, prove this result if the
equality holds for all x and y in some basis for V.

18. Let V = C([−1, 1]). Suppose that We and Wo denote the subspaces of V
consisting of the even and odd functions, respectively. (See Exercise 22



356 Chap. 6 Inner Product Spaces

of Section 1.3.) Prove that W⊥
e = Wo, where the inner product on V is

defined by

〈f, g〉 =
∫ 1

−1

f(t)g(t) dt.

19. In each of the following parts, find the orthogonal projection of the
given vector on the given subspace W of the inner product space V.

(a) V = R2, u = (2, 6), and W = {(x, y) : y = 4x}.
(b) V = R3, u = (2, 1, 3), and W = {(x, y, z) : x + 3y − 2z = 0}.
(c) V = P(R) with the inner product 〈f(x), g(x)〉 =

∫ 1

0
f(t)g(t) dt,

h(x) = 4 + 3x − 2x2, and W = P1(R).

20. In each part of Exercise 19, find the distance from the given vector to
the subspace W.

21. Let V = C([−1, 1]) with the inner product 〈f, g〉 =
∫ 1

−1
f(t)g(t) dt, and

let W be the subspace P2(R), viewed as a space of functions. Use
the orthonormal basis obtained in Example 5 to compute the “best”
(closest) second-degree polynomial approximation of the function h(t) =
et on the interval [−1, 1].

22. Let V = C([0, 1]) with the inner product 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. Let W

be the subspace spanned by the linearly independent set {t,√t}.
(a) Find an orthonormal basis for W.
(b) Let h(t) = t2. Use the orthonormal basis obtained in (a) to obtain

the “best” (closest) approximation of h in W.

23. Let V be the vector space defined in Example 5 of Section 1.2, the
space of all sequences σ in F (where F = R or F = C) such that
σ(n) �= 0 for only finitely many positive integers n. For σ, μ ∈ V, we

define 〈σ, μ〉 =
∞∑

n=1

σ(n)μ(n). Since all but a finite number of terms of

the series are zero, the series converges.

(a) Prove that 〈 · , ·〉 is an inner product on V, and hence V is an inner
product space.

(b) For each positive integer n, let en be the sequence defined by
en(k) = δn,k, where δn,k is the Kronecker delta. Prove that
{e1, e2, . . .} is an orthonormal basis for V.

(c) Let σn = e1 + en and W = span({σn : n ≥ 2}.
(i) Prove that e1 /∈ W, so W �= V.
(ii) Prove that W⊥ = {0}, and conclude that W �= (W⊥)⊥.
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Thus the assumption in Exercise 13(c) that W is finite-dimensional
is essential.

6.3 THE ADJOINT OF A LINEAR OPERATOR

In Section 6.1, we defined the conjugate transpose A∗ of a matrix A. For
a linear operator T on an inner product space V, we now define a related
linear operator on V called the adjoint of T, whose matrix representation
with respect to any orthonormal basis β for V is [T]∗β . The analogy between
conjugation of complex numbers and adjoints of linear operators will become
apparent. We first need a preliminary result.

Let V be an inner product space, and let y ∈ V. The function g : V → F
defined by g(x) = 〈x, y〉 is clearly linear. More interesting is the fact that if
V is finite-dimensional, every linear transformation from V into F is of this
form.

Theorem 6.8. Let V be a finite-dimensional inner product space over F ,
and let g : V → F be a linear transformation. Then there exists a unique
vector y ∈ V such that g(x) = 〈x, y〉 for all x ∈ V.

Proof. Let β = {v1, v2, . . . , vn} be an orthonormal basis for V, and let

y =
n∑

i=1

g(vi)vi.

Define h : V → F by h(x) = 〈x, y〉, which is clearly linear. Furthermore, for
1 ≤ j ≤ n we have

h(vj) = 〈vj , y〉 =

〈
vj ,

n∑
i=1

g(vi)vi

〉
=

n∑
i=1

g(vi) 〈vj , vi〉

=
n∑

i=1

g(vi)δji = g(vj).

Since g and h both agree on β, we have that g = h by the corollary to
Theorem 2.6 (p. 73).

To show that y is unique, suppose that g(x) = 〈x, y′〉 for all x. Then
〈x, y〉 = 〈x, y′〉 for all x; so by Theorem 6.1(e) (p. 333), we have y = y′.

Example 1

Define g : R2 → R by g(a1, a2) = 2a1+a2; clearly g is a linear transformation.
Let β = {e1, e2}, and let y = g(e1)e1 + g(e2)e2 = 2e1 + e2 = (2, 1), as in the
proof of Theorem 6.8. Then g(a1, a2) = 〈(a1, a2), (2, 1)〉 = 2a1 + a2. ♦
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Theorem 6.9. Let V be a finite-dimensional inner product space, and let
T be a linear operator on V. Then there exists a unique function T∗ : V → V
such that 〈T(x), y〉 = 〈x,T∗(y)〉 for all x, y ∈ V. Furthermore, T∗ is linear.

Proof. Let y ∈ V. Define g : V → F by g(x) = 〈T(x), y〉 for all x ∈ V. We
first show that g is linear. Let x1, x2 ∈ V and c ∈ F . Then

g(cx1 + x2) = 〈T(cx1 + x2), y〉 = 〈cT(x1) + T(x2), y〉
= c 〈T(x1), y〉 + 〈T(x2), y〉 = cg(x1) + g(x2).

Hence g is linear.
We now apply Theorem 6.8 to obtain a unique vector y′ ∈ V such that

g(x) = 〈x, y′〉; that is, 〈T(x), y〉 = 〈x, y′〉 for all x ∈ V. Defining T∗ : V → V
by T∗(y) = y′, we have 〈T(x), y〉 = 〈x,T∗(y)〉.

To show that T∗ is linear, let y1, y2 ∈ V and c ∈ F . Then for any x ∈ V,
we have

〈x,T∗(cy1 + y2)〉 = 〈T(x), cy1 + y2〉
= c 〈T(x), y1〉 + 〈T(x), y2〉
= c 〈x,T∗(y1)〉 + 〈x,T∗(y2)〉
= 〈x, cT∗(y1) + T∗(y2)〉 .

Since x is arbitrary, T∗(cy1 + y2) = cT∗(y1) + T∗(y2) by Theorem 6.1(e)
(p. 333).

Finally, we need to show that T∗ is unique. Suppose that U : V → V
is linear and that it satisfies 〈T(x), y〉 = 〈x,U(y)〉 for all x, y ∈ V. Then
〈x,T∗(y)〉 = 〈x,U(y)〉 for all x, y ∈ V, so T∗ = U.

The linear operator T∗ described in Theorem 6.9 is called the adjoint of
the operator T. The symbol T∗ is read “T star.”

Thus T∗ is the unique operator on V satisfying 〈T(x), y〉 = 〈x,T∗(y)〉 for
all x, y ∈ V. Note that we also have

〈x,T(y)〉 = 〈T(y), x〉 = 〈y, T∗(x)〉 = 〈T∗(x), y〉 ;

so 〈x,T(y)〉 = 〈T∗(x), y〉 for all x, y ∈ V. We may view these equations
symbolically as adding a * to T when shifting its position inside the inner
product symbol.

For an infinite-dimensional inner product space, the adjoint of a linear op-
erator T may be defined to be the function T∗ such that 〈T(x), y〉 = 〈x,T∗(y)〉
for all x, y ∈ V, provided it exists. Although the uniqueness and linearity of
T∗ follow as before, the existence of the adjoint is not guaranteed (see Exer-
cise 24). The reader should observe the necessity of the hypothesis of finite-
dimensionality in the proof of Theorem 6.8. Many of the theorems we prove
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about adjoints, nevertheless, do not depend on V being finite-dimensional.
Thus, unless stated otherwise, for the remainder of this chapter we adopt the
convention that a reference to the adjoint of a linear operator on an infinite-
dimensional inner product space assumes its existence.

Theorem 6.10 is a useful result for computing adjoints.

Theorem 6.10. Let V be a finite-dimensional inner product space, and
let β be an orthonormal basis for V. If T is a linear operator on V, then

[T∗]β = [T]∗β .

Proof. Let A = [T]β , B = [T∗]β , and β = {v1, v2, . . . , vn}. Then from the
corollary to Theorem 6.5 (p. 346), we have

Bij = 〈T∗(vj), vi〉 = 〈vi, T∗(vj)〉 = 〈T(vi), vj〉 = Aji = (A∗)ij .

Hence B = A∗.

Corollary. Let A be an n × n matrix. Then LA∗ = (LA)∗.

Proof. If β is the standard ordered basis for Fn, then, by Theorem 2.16
(p. 93), we have [LA]β = A. Hence [(LA)∗]β = [LA]∗β = A∗ = [LA∗ ]β , and so
(LA)∗ = LA∗ .

As an illustration of Theorem 6.10, we compute the adjoint of a specific
linear operator.

Example 2

Let T be the linear operator on C2 defined by T(a1, a2) = (2ia1+3a2, a1−a2).
If β is the standard ordered basis for C2, then

[T]β =
(

2i 3
1 −1

)
.

So

[T∗]β = [T]∗β =
(−2i 1

3 −1

)
.

Hence

T∗(a1, a2) = (−2ia1 + a2, 3a1 − a2). ♦

The following theorem suggests an analogy between the conjugates of
complex numbers and the adjoints of linear operators.

Theorem 6.11. Let V be an inner product space, and let T and U be
linear operators on V. Then
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(a) (T + U)∗ = T∗ + U∗;
(b) (cT)∗ = c T∗ for any c ∈ F ;
(c) (TU)∗ = U∗T∗;
(d) T∗∗ = T;
(e) I∗ = I.

Proof. We prove (a) and (d); the rest are proved similarly. Let x, y ∈ V.
(a) Because

〈x, (T + U)∗(y)〉 = 〈(T + U)(x), y〉 = 〈T(x) + U(x), y〉
= 〈T(x), y〉 + 〈U(x), y〉 = 〈x,T∗(y)〉 + 〈x,U∗(y)〉
= 〈x,T∗(y) + U∗(y)〉 = 〈x, (T∗ + U∗)(y)〉 ,

T∗ + U∗ has the property unique to (T + U)∗. Hence T∗ + U∗ = (T + U)∗.
(d) Similarly, since

〈x,T(y)〉 = 〈T∗(x), y〉 = 〈x,T∗∗(y)〉 ,

(d) follows.

The same proof works in the infinite-dimensional case, provided that the
existence of T∗ and U∗ is assumed.

Corollary. Let A and B be n × n matrices. Then
(a) (A + B)∗ = A∗ + B∗;
(b) (cA)∗ = cA∗ for all c ∈ F ;
(c) (AB)∗ = B∗A∗;
(d) A∗∗ = A;
(e) I∗ = I.

Proof. We prove only (c); the remaining parts can be proved similarly.
Since L(AB)∗ = (LAB)∗ = (LALB)∗ = (LB)∗(LA)∗ = LB∗LA∗ = LB∗A∗ , we

have (AB)∗ = B∗A∗.

In the preceding proof, we relied on the corollary to Theorem 6.10. An
alternative proof, which holds even for nonsquare matrices, can be given by
appealing directly to the definition of the conjugate transpose of a matrix
(see Exercise 5).

Least Squares Approximation

Consider the following problem: An experimenter collects data by taking
measurements y1, y2, . . . , ym at times t1, t2, . . . , tm, respectively. For example,
he or she may be measuring unemployment at various times during some
period. Suppose that the data (t1, y1), (t2, y2), . . . , (tm, ym) are plotted as
points in the plane. (See Figure 6.3.) From this plot, the experimenter
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feels that there exists an essentially linear relationship between y and t, say
y = ct + d, and would like to find the constants c and d so that the line
y = ct + d represents the best possible fit to the data collected. One such
estimate of fit is to calculate the error E that represents the sum of the
squares of the vertical distances from the points to the line; that is,

E =
m∑

i=1

(yi − cti − d)2.

�
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t
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���
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�

!
�

(t1, y1)

�

�
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�

(ti, yi)

�

(ti, cti + d)

�

y = ct + d

Figure 6.3

Thus the problem is reduced to finding the constants c and d that minimize
E. (For this reason the line y = ct + d is called the least squares line.) If
we let

A =

⎛⎜⎜⎜⎝
t1 1
t2 1
...

...
tm 1

⎞⎟⎟⎟⎠ , x =
(

c
d

)
, and y =

⎛⎜⎜⎜⎝
y1

y2

...
ym

⎞⎟⎟⎟⎠ ,

then it follows that E = ‖y − Ax‖2.
We develop a general method for finding an explicit vector x0 ∈ Fn that

minimizes E; that is, given an m × n matrix A, we find x0 ∈ Fn such that
‖y−Ax0‖ ≤ ‖y−Ax‖ for all vectors x ∈ Fn. This method not only allows us
to find the linear function that best fits the data, but also, for any positive
integer n, the best fit using a polynomial of degree at most n.
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First, we need some notation and two simple lemmas. For x, y ∈ Fn, let
〈x, y〉n denote the standard inner product of x and y in Fn. Recall that if x
and y are regarded as column vectors, then 〈x, y〉n = y∗x.

Lemma 1. Let A ∈ Mm×n(F ), x ∈ Fn, and y ∈ Fm. Then

〈Ax, y〉m = 〈x, A∗y〉n .

Proof. By a generalization of the corollary to Theorem 6.11 (see Exer-
cise 5(b)), we have

〈Ax, y〉m = y∗(Ax) = (y∗A)x = (A∗y)∗x = 〈x, A∗y〉n .

Lemma 2. Let A ∈ Mm×n(F ). Then rank(A∗A) = rank(A).

Proof. By the dimension theorem, we need only show that, for x ∈ Fn,
we have A∗Ax = 0 if and only if Ax = 0 . Clearly, Ax = 0 implies that
A∗Ax = 0 . So assume that A∗Ax = 0 . Then

0 = 〈A∗Ax, x〉n = 〈Ax, A∗∗x〉m = 〈Ax, Ax〉m ,

so that Ax = 0 .

Corollary. If A is an m × n matrix such that rank(A) = n, then A∗A is
invertible.

Now let A be an m × n matrix and y ∈ Fm. Define W = {Ax : x ∈ Fn};
that is, W = R(LA). By the corollary to Theorem 6.6 (p. 350), there exists a
unique vector in W that is closest to y. Call this vector Ax0, where x0 ∈ Fn.
Then ‖Ax0 − y‖ ≤ ‖Ax − y‖ for all x ∈ Fn; so x0 has the property that
E = ‖Ax0 − y‖ is minimal, as desired.

To develop a practical method for finding such an x0, we note from The-
orem 6.6 and its corollary that Ax0 − y ∈ W⊥; so 〈Ax, Ax0 − y〉m = 0 for
all x ∈ Fn. Thus, by Lemma 1, we have that 〈x, A∗(Ax0 − y)〉n = 0 for all
x ∈ Fn; that is, A∗(Ax0 − y) = 0 . So we need only find a solution x0 to
A∗Ax = A∗y. If, in addition, we assume that rank(A) = n, then by Lemma 2
we have x0 = (A∗A)−1A∗y. We summarize this discussion in the following
theorem.

Theorem 6.12. Let A ∈ Mm×n(F ) and y ∈ Fm. Then there exists
x0 ∈ Fn such that (A∗A)x0 = A∗y and ‖Ax0 − y‖ ≤ ‖Ax− y‖ for all x ∈ Fn.
Furthermore, if rank(A) = n, then x0 = (A∗A)−1A∗y.
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To return to our experimenter, let us suppose that the data collected are
(1, 2), (2, 3), (3, 5), and (4, 7). Then

A =

⎛⎜⎜⎝
1 1
2 1
3 1
4 1

⎞⎟⎟⎠ and y =

⎛⎜⎜⎝
2
3
5
7

⎞⎟⎟⎠ ;

hence

A∗A =
(

1 2 3 4
1 1 1 1

)⎛⎜⎜⎝
1 1
2 1
3 1
4 1

⎞⎟⎟⎠ =
(

30 10
10 4

)
.

Thus

(A∗A)−1 =
1
20

(
4 −10

−10 30

)
.

Therefore

(
c
d

)
= x0 =

1
20

(
4 −10

−10 30

)(
1 2 3 4
1 1 1 1

)⎛⎜⎜⎝
2
3
5
7

⎞⎟⎟⎠ =
(

1.7
0

)
.

It follows that the line y = 1.7t is the least squares line. The error E may be
computed directly as ‖Ax0 − y‖2 = 0.3.

Suppose that the experimenter chose the times ti (1 ≤ i ≤ m) to satisfy
m∑

i=1

ti = 0.

Then the two columns of A would be orthogonal, so A∗A would be a diagonal
matrix (see Exercise 19). In this case, the computations are greatly simplified.

In practice, the m× 2 matrix A in our least squares application has rank
equal to two, and hence A∗A is invertible by the corollary to Lemma 2. For,
otherwise, the first column of A is a multiple of the second column, which
consists only of ones. But this would occur only if the experimenter collects
all the data at exactly one time.

Finally, the method above may also be applied if, for some k, the ex-
perimenter wants to fit a polynomial of degree at most k to the data. For
instance, if a polynomial y = ct2 + dt + e of degree at most 2 is desired, the
appropriate model is

x =

⎛⎝c
d
e

⎞⎠ , y =

⎛⎜⎜⎜⎝
y1

y2

...
ym

⎞⎟⎟⎟⎠ , and A =

⎛⎜⎝ t21 t1 1
...

...
...

t2m tm 1

⎞⎟⎠ .
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Minimal Solutions to Systems of Linear Equations

Even when a system of linear equations Ax = b is consistent, there may
be no unique solution. In such cases, it may be desirable to find a solution of
minimal norm. A solution s to Ax = b is called a minimal solution if ‖s‖ ≤
‖u‖ for all other solutions u. The next theorem assures that every consistent
system of linear equations has a unique minimal solution and provides a
method for computing it.

Theorem 6.13. Let A ∈ Mm×n(F ) and b ∈ Fm. Suppose that Ax = b is
consistent. Then the following statements are true.

(a) There exists exactly one minimal solution s of Ax = b, and s ∈ R(LA∗).
(b) The vector s is the only solution to Ax = b that lies in R(LA∗); that is,

if u satisfies (AA∗)u = b, then s = A∗u.

Proof. (a) For simplicity of notation, we let W = R(LA∗) and W′ = N(LA).
Let x be any solution to Ax = b. By Theorem 6.6 (p. 350), x = s + y for
some s ∈ W and y ∈ W⊥. But W⊥ = W′ by Exercise 12, and therefore
b = Ax = As + Ay = As. So s is a solution to Ax = b that lies in W. To
prove (a), we need only show that s is the unique minimal solution. Let v be
any solution to Ax = b. By Theorem 3.9 (p. 172), we have that v = s + u,
where u ∈ W′. Since s ∈ W, which equals W′⊥ by Exercise 12, we have

‖v‖2 = ‖s + u‖2 = ‖s‖2 + ‖u‖2 ≥ ‖s‖2

by Exercise 10 of Section 6.1. Thus s is a minimal solution. We can also see
from the preceding calculation that if ‖v‖ = ‖s‖, then u = 0 ; hence v = s.
Therefore s is the unique minimal solution to Ax = b, proving (a).

(b) Assume that v is also a solution to Ax = b that lies in W. Then

v − s ∈ W ∩ W′ = W ∩ W⊥ = {0};
so v = s.

Finally, suppose that (AA∗)u = b, and let v = A∗u. Then v ∈ W and
Av = b. Therefore s = v = A∗u by the discussion above.

Example 3

Consider the system

x + 2y + z = 4
x − y + 2z = −11
x + 5y = 19.

Let

A =

⎛⎝1 2 1
1 −1 2
1 5 0

⎞⎠ and b =

⎛⎝ 4
−11

19

⎞⎠ .
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To find the minimal solution to this system, we must first find some solution
u to AA∗x = b. Now

AA∗ =

⎛⎝ 6 1 11
1 6 −4

11 −4 26

⎞⎠ ;

so we consider the system

6x + y + 11z = 4
x + 6y − 4z = −11

11x − 4y + 26z = 19,

for which one solution is

u =

⎛⎝ 1
−2

0

⎞⎠ .

(Any solution will suffice.) Hence

s = A∗u =

⎛⎝−1
4

−3

⎞⎠
is the minimal solution to the given system. ♦

EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.

(a) Every linear operator has an adjoint.
(b) Every linear operator on V has the form x → 〈x, y〉 for some y ∈ V.
(c) For every linear operator T on V and every ordered basis β for V,

we have [T∗]β = ([T]β)∗.
(d) The adjoint of a linear operator is unique.
(e) For any linear operators T and U and scalars a and b,

(aT + bU)∗ = aT∗ + bU∗.

(f) For any n × n matrix A, we have (LA)∗ = LA∗ .
(g) For any linear operator T, we have (T∗)∗ = T.

2. For each of the following inner product spaces V (over F ) and linear
transformations g : V → F , find a vector y such that g(x) = 〈x, y〉 for
all x ∈ V.
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(a) V = R3, g(a1, a2, a3) = a1 − 2a2 + 4a3

(b) V = C2, g(z1, z2) = z1 − 2z2

(c) V = P2(R) with 〈f, h〉 =
∫ 1

0

f(t)h(t) dt, g(f) = f(0) + f ′(1)

3. For each of the following inner product spaces V and linear operators T
on V, evaluate T∗ at the given vector in V.

(a) V = R2, T(a, b) = (2a + b, a − 3b), x = (3, 5).
(b) V = C2, T(z1, z2) = (2z1 + iz2, (1 − i)z1), x = (3 − i, 1 + 2i).

(c) V = P1(R) with 〈f, g〉 =
∫ 1

−1

f(t)g(t) dt, T(f) = f ′ + 3f ,

f(t) = 4 − 2t

4. Complete the proof of Theorem 6.11.

5. (a) Complete the proof of the corollary to Theorem 6.11 by using
Theorem 6.11, as in the proof of (c).

(b) State a result for nonsquare matrices that is analogous to the corol-
lary to Theorem 6.11, and prove it using a matrix argument.

6. Let T be a linear operator on an inner product space V. Let U1 = T+T∗

and U2 = TT∗. Prove that U1 = U∗
1 and U2 = U∗

2.

7. Give an example of a linear operator T on an inner product space V
such that N(T) �= N(T∗).

8. Let V be a finite-dimensional inner product space, and let T be a linear
operator on V. Prove that if T is invertible, then T∗ is invertible and
(T∗)−1 = (T−1)∗.

9. Prove that if V = W ⊕ W⊥ and T is the projection on W along W⊥,
then T = T∗. Hint: Recall that N(T) = W⊥. (For definitions, see the
exercises of Sections 1.3 and 2.1.)

10. Let T be a linear operator on an inner product space V. Prove that
‖T(x)‖ = ‖x‖ for all x ∈ V if and only if 〈T(x), T(y)〉 = 〈x, y〉 for all
x, y ∈ V. Hint: Use Exercise 20 of Section 6.1.

11. For a linear operator T on an inner product space V, prove that T∗T =
T0 implies T = T0. Is the same result true if we assume that TT∗ = T0?

12. Let V be an inner product space, and let T be a linear operator on V.
Prove the following results.

(a) R(T∗)⊥ = N(T).
(b) If V is finite-dimensional, then R(T∗) = N(T)⊥. Hint: Use Exer-

cise 13(c) of Section 6.2.
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13. Let T be a linear operator on a finite-dimensional vector space V. Prove
the following results.

(a) N(T∗T) = N(T). Deduce that rank(T∗T) = rank(T).
(b) rank(T) = rank(T∗). Deduce from (a) that rank(TT∗) = rank(T).
(c) For any n × n matrix A, rank(A∗A) = rank(AA∗) = rank(A).

14. Let V be an inner product space, and let y, z ∈ V. Define T : V → V by
T(x) = 〈x, y〉z for all x ∈ V. First prove that T is linear. Then show
that T∗ exists, and find an explicit expression for it.

The following definition is used in Exercises 15–17 and is an extension of the
definition of the adjoint of a linear operator.

Definition. Let T : V → W be a linear transformation, where V and W
are finite-dimensional inner product spaces with inner products 〈 · , ·〉1 and
〈 · , ·〉2, respectively. A function T∗ : W → V is called an adjoint of T if
〈T(x), y〉2 = 〈x,T∗(y)〉1 for all x ∈ V and y ∈ W.

15. Let T : V → W be a linear transformation, where V and W are finite-
dimensional inner product spaces with inner products 〈 · , ·〉1 and 〈 · , ·〉2,
respectively. Prove the following results.

(a) There is a unique adjoint T∗ of T, and T∗ is linear.
(b) If β and γ are orthonormal bases for V and W, respectively, then

[T∗]βγ = ([T]γβ)∗.
(c) rank(T∗) = rank(T).
(d) 〈T∗(x), y〉1 = 〈x,T(y)〉2 for all x ∈ W and y ∈ V.
(e) For all x ∈ V, T∗T(x) = 0 if and only if T(x) = 0 .

16. State and prove a result that extends the first four parts of Theorem 6.11
using the preceding definition.

17. Let T : V → W be a linear transformation, where V and W are finite-
dimensional inner product spaces. Prove that (R(T∗))⊥ = N(T), using
the preceding definition.

18.† Let A be an n × n matrix. Prove that det(A∗) = det(A).

19. Suppose that A is an m×n matrix in which no two columns are identical.
Prove that A∗A is a diagonal matrix if and only if every pair of columns
of A is orthogonal.

20. For each of the sets of data that follows, use the least squares approx-
imation to find the best fits with both (i) a linear function and (ii) a
quadratic function. Compute the error E in both cases.

(a) {(−3, 9), (−2, 6), (0, 2), (1, 1)}
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(b) {(1, 2), (3, 4), (5, 7), (7, 9), (9, 12)}
(c) {(−2, 4), (−1, 3), (0, 1), (1,−1), (2,−3)}

21. In physics, Hooke’s law states that (within certain limits) there is a
linear relationship between the length x of a spring and the force y
applied to (or exerted by) the spring. That is, y = cx + d, where c is
called the spring constant. Use the following data to estimate the
spring constant (the length is given in inches and the force is given in
pounds).

Length Force

x y

3.5 1.0

4.0 2.2

4.5 2.8

5.0 4.3

22. Find the minimal solution to each of the following systems of linear
equations.

(a) x + 2y − z = 12 (b)
x + 2y − z = 1

2x + 3y + z = 2
4x + 7y − z = 4

(c)
x + y − z = 0

2x − y + z = 3
x − y + z = 2

(d)
x + y + z − w = 1

2x − y + w = 1

23. Consider the problem of finding the least squares line y = ct + d corre-
sponding to the m observations (t1, y1), (t2, y2), . . . , (tm, ym).

(a) Show that the equation (A∗A)x0 = A∗y of Theorem 6.12 takes the
form of the normal equations:(

m∑
i=1

t2i

)
c +

(
m∑

i=1

ti

)
d =

m∑
i=1

tiyi

and (
m∑

i=1

ti

)
c + md =

m∑
i=1

yi.

These equations may also be obtained from the error E by setting
the partial derivatives of E with respect to both c and d equal to
zero.
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(b) Use the second normal equation of (a) to show that the least
squares line must pass through the center of mass, (t, y), where

t =
1
m

m∑
i=1

ti and y =
1
m

m∑
i=1

yi.

24. Let V and {e1, e2, . . .} be defined as in Exercise 23 of Section 6.2. Define
T : V → V by

T(σ)(k) =
∞∑

i=k

σ(i) for every positive integer k.

Notice that the infinite series in the definition of T converges because
σ(i) �= 0 for only finitely many i.

(a) Prove that T is a linear operator on V.
(b) Prove that for any positive integer n, T(en) =

∑n
i=1 ei.

(c) Prove that T has no adjoint. Hint: By way of contradiction,
suppose that T∗ exists. Prove that for any positive integer n,
T∗(en)(k) �= 0 for infinitely many k.

6.4 NORMAL AND SELF-ADJOINT OPERATORS

We have seen the importance of diagonalizable operators in Chapter 5. For
these operators, it is necessary and sufficient for the vector space V to possess
a basis of eigenvectors. As V is an inner product space in this chapter, it
is reasonable to seek conditions that guarantee that V has an orthonormal
basis of eigenvectors. A very important result that helps achieve our goal is
Schur’s theorem (Theorem 6.14). The formulation that follows is in terms of
linear operators. The next section contains the more familiar matrix form.
We begin with a lemma.

Lemma. Let T be a linear operator on a finite-dimensional inner product
space V. If T has an eigenvector, then so does T∗.

Proof. Suppose that v is an eigenvector of T with corresponding eigenvalue
λ. Then for any x ∈ V,

0 = 〈0 , x〉 = 〈(T − λI)(v), x〉 = 〈v, (T − λI)∗(x)〉 =
〈
v, (T ∗ − λI)(x)

〉
,

and hence v is orthogonal to the range of T ∗ − λI. So T ∗ − λI is not onto
and hence is not one-to-one. Thus T ∗ − λI has a nonzero null space, and any
nonzero vector in this null space is an eigenvector of T∗ with corresponding
eigenvalue λ.
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Recall (see the exercises of Section 2.1 and see Section 5.4) that a subspace
W of V is said to be T-invariant if T(W) is contained in W. If W is T-
invariant, we may define the restriction TW : W → W by TW(x) = T(x) for all
x ∈ W. It is clear that TW is a linear operator on W. Recall from Section 5.2
that a polynomial is said to split if it factors into linear polynomials.

Theorem 6.14 (Schur). Let T be a linear operator on a finite-
dimensional inner product space V. Suppose that the characteristic poly-
nomial of T splits. Then there exists an orthonormal basis β for V such that
the matrix [T]β is upper triangular.

Proof. The proof is by mathematical induction on the dimension n of V.
The result is immediate if n = 1. So suppose that the result is true for linear
operators on (n − 1)-dimensional inner product spaces whose characteristic
polynomials split. By the lemma, we can assume that T∗ has a unit eigen-
vector z. Suppose that T∗(z) = λz and that W = span({z}). We show that
W⊥ is T-invariant. If y ∈ W⊥ and x = cz ∈ W, then

〈T(y), x〉 = 〈T(y), cz〉 = 〈y, T∗(cz)〉 = 〈y, cT∗(z)〉 = 〈y, cλz〉
= cλ 〈y, z〉 = cλ(0) = 0.

So T(y) ∈ W⊥. It is easy to show (see Theorem 5.21 p. 314, or as a con-
sequence of Exercise 6 of Section 4.4) that the characteristic polynomial of
TW⊥ divides the characteristic polynomial of T and hence splits. By Theo-
rem 6.7(c) (p. 352), dim(W⊥) = n − 1, so we may apply the induction hy-
pothesis to TW⊥ and obtain an orthonormal basis γ of W⊥ such that [TW⊥ ]γ
is upper triangular. Clearly, β = γ ∪ {z} is an orthonormal basis for V such
that [T]β is upper triangular.

We now return to our original goal of finding an orthonormal basis of
eigenvectors of a linear operator T on a finite-dimensional inner product space
V. Note that if such an orthonormal basis β exists, then [T]β is a diagonal
matrix, and hence [T∗]β = [T]∗β is also a diagonal matrix. Because diagonal
matrices commute, we conclude that T and T∗ commute. Thus if V possesses
an orthonormal basis of eigenvectors of T, then TT∗ = T∗T .

Definitions. Let V be an inner product space, and let T be a linear
operator on V. We say that T is normal if TT∗ = T∗T. An n × n real or
complex matrix A is normal if AA∗ = A∗A.

It follows immediately from Theorem 6.10 (p. 359) that T is normal if and
only if [T]β is normal, where β is an orthonormal basis.
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Example 1

Let T : R2 → R2 be rotation by θ, where 0 < θ < π. The matrix representation
of T in the standard ordered basis is given by

A =
(

cos θ − sin θ
sin θ cos θ

)
.

Note that AA∗ = I = A∗A; so A, and hence T, is normal. ♦
Example 2

Suppose that A is a real skew-symmetric matrix; that is, At = −A. Then A
is normal because both AAt and AtA are equal to −A2. ♦

Clearly, the operator T in Example 1 does not even possess one eigenvec-
tor. So in the case of a real inner product space, we see that normality is not
sufficient to guarantee an orthonormal basis of eigenvectors. All is not lost,
however. We show that normality suffices if V is a complex inner product
space.

Before we prove the promised result for normal operators, we need some
general properties of normal operators.

Theorem 6.15. Let V be an inner product space, and let T be a normal
operator on V. Then the following statements are true.

(a) ‖T(x)‖ = ‖T∗(x)‖ for all x ∈ V.
(b) T − cI is normal for every c ∈ F .
(c) If x is an eigenvector of T, then x is also an eigenvector of T∗. In fact,

if T(x) = λx, then T∗(x) = λx.
(d) If λ1 and λ2 are distinct eigenvalues of T with corresponding eigenvec-

tors x1 and x2, then x1 and x2 are orthogonal.

Proof. (a) For any x ∈ V, we have

‖T(x)‖2 = 〈T(x), T(x)〉 = 〈T∗T(x), x〉 = 〈TT∗(x), x〉
= 〈T∗(x), T∗(x)〉 = ‖T∗(x)‖2.

The proof of (b) is left as an exercise.
(c) Suppose that T(x) = λx for some x ∈ V. Let U = T − λI. Then

U(x) = 0 , and U is normal by (b). Thus (a) implies that

0 = ‖U(x)‖ = ‖U∗(x)‖ = ‖(T∗ − λI)(x)‖ = ‖T∗(x) − λx‖.
Hence T∗(x) = λx. So x is an eigenvector of T∗.

(d) Let λ1 and λ2 be distinct eigenvalues of T with corresponding eigen-
vectors x1 and x2. Then, using (c), we have

λ1 〈x1, x2〉 = 〈λ1x1, x2〉 = 〈T(x1), x2〉 = 〈x1, T
∗(x2)〉
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=
〈
x1, λ2x2

〉
= λ2 〈x1, x2〉 .

Since λ1 �= λ2, we conclude that 〈x1, x2〉 = 0.

Theorem 6.16. Let T be a linear operator on a finite-dimensional com-
plex inner product space V. Then T is normal if and only if there exists an
orthonormal basis for V consisting of eigenvectors of T.

Proof. Suppose that T is normal. By the fundamental theorem of algebra
(Theorem D.4), the characteristic polynomial of T splits. So we may apply
Schur’s theorem to obtain an orthonormal basis β = {v1, v2, . . . , vn} for V
such that [T]β = A is upper triangular. We know that v1 is an eigenvector
of T because A is upper triangular. Assume that v1, v2, . . . , vk−1 are eigen-
vectors of T. We claim that vk is also an eigenvector of T. It then follows
by mathematical induction on k that all of the vi’s are eigenvectors of T.
Consider any j < k, and let λj denote the eigenvalue of T corresponding to
vj . By Theorem 6.15, T ∗(vj) = λjvj . Since A is upper triangular,

T(vk) = A1kv1 + A2kv2 + · · · + Ajkvj + · · · + Akkvk.

Furthermore, by the corollary to Theorem 6.5 (p. 347),

Ajk = 〈T(vk), vj〉 = 〈vk, T∗(vj)〉 =
〈
vk, λjvj

〉
= λj 〈vk, vj〉 = 0.

It follows that T(vk) = Akkvk, and hence vk is an eigenvector of T. So by
induction, all the vectors in β are eigenvectors of T.

The converse was already proved on page 370.

Interestingly, as the next example shows, Theorem 6.16 does not extend
to infinite-dimensional complex inner product spaces.

Example 3

Consider the inner product space H with the orthonormal set S from Exam-
ple 9 in Section 6.1. Let V = span(S), and let T and U be the linear operators
on V defined by T(f) = f1f and U(f) = f−1f . Then

T(fn) = fn+1 and U(fn) = fn−1

for all integers n. Thus

〈T(fm), fn〉 = 〈fm+1, fn〉 = δ(m+1),n = δm,(n−1) = 〈fm, fn−1〉 = 〈fm, U(fn)〉 .

It follows that U = T∗. Furthermore, TT∗ = I = T∗T; so T is normal.

We show that T has no eigenvectors. Suppose that f is an eigenvector of
T, say, T(f) = λf for some λ. Since V equals the span of S, we may write

f =
m∑

i=n

aifi, where am �= 0.
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Hence
m∑

i=n

aifi+1 = T(f) = λf =
m∑

i=n

λaifi.

Since am �= 0, we can write fm+1 as a linear combination of fn, fn+1, . . . , fm.
But this is a contradiction because S is linearly independent. ♦

Example 1 illustrates that normality is not sufficient to guarantee the
existence of an orthonormal basis of eigenvectors for real inner product spaces.
For real inner product spaces, we must replace normality by the stronger
condition that T = T∗ in order to guarantee such a basis.

Definitions. Let T be a linear operator on an inner product space V.
We say that T is self-adjoint (Hermitian) if T = T∗. An n × n real or
complex matrix A is self-adjoint (Hermitian) if A = A∗.

It follows immediately that if β is an orthonormal basis, then T is self-
adjoint if and only if [T]β is self-adjoint. For real matrices, this condition
reduces to the requirement that A be symmetric.

Before we state our main result for self-adjoint operators, we need some
preliminary work.

By definition, a linear operator on a real inner product space has only
real eigenvalues. The lemma that follows shows that the same can be said
for self-adjoint operators on a complex inner product space. Similarly, the
characteristic polynomial of every linear operator on a complex inner product
space splits, and the same is true for self-adjoint operators on a real inner
product space.

Lemma. Let T be a self-adjoint operator on a finite-dimensional inner
product space V. Then

(a) Every eigenvalue of T is real.
(b) Suppose that V is a real inner product space. Then the characteristic

polynomial of T splits.

Proof. (a) Suppose that T(x) = λx for x �= 0 . Because a self-adjoint
operator is also normal, we can apply Theorem 6.15(c) to obtain

λx = T(x) = T∗(x) = λx.

So λ = λ; that is, λ is real.
(b) Let n = dim(V), β be an orthonormal basis for V, and A = [T]β .

Then A is self-adjoint. Let TA be the linear operator on Cn defined by
TA(x) = Ax for all x ∈ Cn. Note that TA is self-adjoint because [TA]γ = A,
where γ is the standard ordered (orthonormal) basis for Cn. So, by (a),
the eigenvalues of TA are real. By the fundamental theorem of algebra, the
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characteristic polynomial of TA splits into factors of the form t−λ. Since each
λ is real, the characteristic polynomial splits over R. But TA has the same
characteristic polynomial as A, which has the same characteristic polynomial
as T. Therefore the characteristic polynomial of T splits.

We are now able to establish one of the major results of this chapter.

Theorem 6.17. Let T be a linear operator on a finite-dimensional real
inner product space V. Then T is self-adjoint if and only if there exists an
orthonormal basis β for V consisting of eigenvectors of T.

Proof. Suppose that T is self-adjoint. By the lemma, we may apply Schur’s
theorem to obtain an orthonormal basis β for V such that the matrix A = [T]β
is upper triangular. But

A∗ = [T]∗β = [T∗]β = [T]β = A.

So A and A∗ are both upper triangular, and therefore A is a diagonal matrix.
Thus β must consist of eigenvectors of T.

The converse is left as an exercise.

Theorem 6.17 is used extensively in many areas of mathematics and statis-
tics. We restate this theorem in matrix form in the next section.

Example 4

As we noted earlier, real symmetric matrices are self-adjoint, and self-adjoint
matrices are normal. The following matrix A is complex and symmetric:

A =
(

i i
i 1

)
and A∗ =

(−i −i
−i 1

)
.

But A is not normal, because (AA∗)12 = 1+i and (A∗A)12 = 1−i. Therefore
complex symmetric matrices need not be normal. ♦

EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.
(b) Operators and their adjoints have the same eigenvectors.
(c) If T is an operator on an inner product space V, then T is normal

if and only if [T]β is normal, where β is any ordered basis for V.
(d) A real or complex matrix A is normal if and only if LA is normal.
(e) The eigenvalues of a self-adjoint operator must all be real.
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(f) The identity and zero operators are self-adjoint.
(g) Every normal operator is diagonalizable.
(h) Every self-adjoint operator is diagonalizable.

2. For each linear operator T on an inner product space V, determine
whether T is normal, self-adjoint, or neither. If possible, produce an
orthonormal basis of eigenvectors of T for V and list the corresponding
eigenvalues.

(a) V = R2 and T is defined by T(a, b) = (2a − 2b,−2a + 5b).
(b) V = R3 and T is defined by T(a, b, c) = (−a + b, 5b, 4a − 2b + 5c).
(c) V = C2 and T is defined by T(a, b) = (2a + ib, a + 2b).
(d) V = P2(R) and T is defined by T(f) = f ′, where

〈f, g〉 =
∫ 1

0

f(t)g(t) dt.

(e) V = M2×2(R) and T is defined by T(A) = At.

(f) V = M2×2(R) and T is defined by T

(
a b
c d

)
=
(

c d
a b

)
.

3. Give an example of a linear operator T on R2 and an ordered basis for
R2 that provides a counterexample to the statement in Exercise 1(c).

4. Let T and U be self-adjoint operators on an inner product space V.
Prove that TU is self-adjoint if and only if TU = UT.

5. Prove (b) of Theorem 6.15.

6. Let V be a complex inner product space, and let T be a linear operator
on V. Define

T1 =
1
2
(T + T∗) and T2 =

1
2i

(T − T∗).

(a) Prove that T1 and T2 are self-adjoint and that T = T1 + iT2.
(b) Suppose also that T = U1 + iU2, where U1 and U2 are self-adjoint.

Prove that U1 = T1 and U2 = T2.
(c) Prove that T is normal if and only if T1T2 = T2T1.

7. Let T be a linear operator on an inner product space V, and let W be
a T-invariant subspace of V. Prove the following results.

(a) If T is self-adjoint, then TW is self-adjoint.
(b) W⊥ is T∗-invariant.
(c) If W is both T- and T∗-invariant, then (TW)∗ = (T∗)W.
(d) If W is both T- and T∗-invariant and T is normal, then TW is

normal.
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8. Let T be a normal operator on a finite-dimensional complex inner
product space V, and let W be a subspace of V. Prove that if W is
T-invariant, then W is also T∗-invariant. Hint: Use Exercise 24 of Sec-
tion 5.4.

9. Let T be a normal operator on a finite-dimensional inner product space
V. Prove that N(T) = N(T∗) and R(T) = R(T∗). Hint: Use Theo-
rem 6.15 and Exercise 12 of Section 6.3.

10. Let T be a self-adjoint operator on a finite-dimensional inner product
space V. Prove that for all x ∈ V

‖T(x) ± ix‖2 = ‖T(x)‖2 + ‖x‖2.

Deduce that T − iI is invertible and that [(T − iI)−1]∗ = (T + iI)−1.

11. Assume that T is a linear operator on a complex (not necessarily finite-
dimensional) inner product space V with an adjoint T∗. Prove the
following results.

(a) If T is self-adjoint, then 〈T(x), x〉 is real for all x ∈ V.
(b) If T satisfies 〈T(x), x〉 = 0 for all x ∈ V, then T = T0. Hint:

Replace x by x + y and then by x + iy, and expand the resulting
inner products.

(c) If 〈T(x), x〉 is real for all x ∈ V, then T = T∗.

12. Let T be a normal operator on a finite-dimensional real inner product
space V whose characteristic polynomial splits. Prove that V has an
orthonormal basis of eigenvectors of T. Hence prove that T is self-
adjoint.

13. An n×n real matrix A is said to be a Gramian matrix if there exists a
real (square) matrix B such that A = BtB. Prove that A is a Gramian
matrix if and only if A is symmetric and all of its eigenvalues are non-
negative. Hint: Apply Theorem 6.17 to T = LA to obtain an orthonor-
mal basis {v1, v2, . . . , vn} of eigenvectors with the associated eigenvalues
λ1, λ2, . . . , λn. Define the linear operator U by U(vi) =

√
λivi.

14. Simultaneous Diagonalization. Let V be a finite-dimensional real inner
product space, and let U and T be self-adjoint linear operators on V
such that UT = TU. Prove that there exists an orthonormal basis for
V consisting of vectors that are eigenvectors of both U and T. (The
complex version of this result appears as Exercise 10 of Section 6.6.)
Hint: For any eigenspace W = Eλ of T, we have that W is both T- and
U-invariant. By Exercise 7, we have that W⊥ is both T- and U-invariant.
Apply Theorem 6.17 and Theorem 6.6 (p. 350).
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15. Let A and B be symmetric n × n matrices such that AB = BA. Use
Exercise 14 to prove that there exists an orthogonal matrix P such that
P tAP and P tBP are both diagonal matrices.

16. Prove the Cayley–Hamilton theorem for a complex n×n matrix A. That
is, if f(t) is the characteristic polynomial of A, prove that f(A) = O.
Hint: Use Schur’s theorem to show that A may be assumed to be upper
triangular, in which case

f(t) =
n∏

i=1

(Aii − t).

Now if T = LA, we have (Ajj I − T)(ej) ∈ span({e1, e2, . . . , ej−1}) for
j ≥ 2, where {e1, e2, . . . , en} is the standard ordered basis for Cn. (The
general case is proved in Section 5.4.)

The following definitions are used in Exercises 17 through 23.

Definitions. A linear operator T on a finite-dimensional inner product
space is called positive definite [positive semidefinite] if T is self-adjoint
and 〈T(x), x〉 > 0 [〈T(x), x〉 ≥ 0] for all x �= 0 .

An n × n matrix A with entries from R or C is called positive definite
[positive semidefinite] if LA is positive definite [positive semidefinite].

17. Let T and U be a self-adjoint linear operators on an n-dimensional inner
product space V, and let A = [T]β , where β is an orthonormal basis for
V. Prove the following results.

(a) T is positive definite [semidefinite] if and only if all of its eigenval-
ues are positive [nonnegative].

(b) T is positive definite if and only if∑
i,j

Aijajai > 0 for all nonzero n-tuples (a1, a2, . . . , an).

(c) T is positive semidefinite if and only if A = B∗B for some square
matrix B.

(d) If T and U are positive semidefinite operators such that T2 = U2,
then T = U.

(e) If T and U are positive definite operators such that TU = UT, then
TU is positive definite.

(f) T is positive definite [semidefinite] if and only if A is positive def-
inite [semidefinite].

Because of (f), results analogous to items (a) through (d) hold for ma-
trices as well as operators.
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18. Let T : V → W be a linear transformation, where V and W are finite-
dimensional inner product spaces. Prove the following results.

(a) T∗T and TT∗ are positive semidefinite. (See Exercise 15 of Sec-
tion 6.3.)

(b) rank(T∗T) = rank(TT∗) = rank(T).

19. Let T and U be positive definite operators on an inner product space
V. Prove the following results.

(a) T + U is positive definite.
(b) If c > 0, then cT is positive definite.
(c) T−1 is positive definite.

20. Let V be an inner product space with inner product 〈 · , ·〉, and let T be
a positive definite linear operator on V. Prove that 〈x, y〉′ = 〈T(x), y〉
defines another inner product on V.

21. Let V be a finite-dimensional inner product space, and let T and U be
self-adjoint operators on V such that T is positive definite. Prove that
both TU and UT are diagonalizable linear operators that have only real
eigenvalues. Hint: Show that UT is self-adjoint with respect to the inner
product 〈x, y〉′ = 〈T(x), y〉. To show that TU is self-adjoint, repeat the
argument with T−1 in place of T.

22. This exercise provides a converse to Exercise 20. Let V be a finite-
dimensional inner product space with inner product 〈 · , ·〉, and let 〈 · , ·〉′
be any other inner product on V.

(a) Prove that there exists a unique linear operator T on V such
that 〈x, y〉′ = 〈T(x), y〉 for all x and y in V. Hint: Let β =
{v1, v2, . . . , vn} be an orthonormal basis for V with respect to
〈 · , ·〉, and define a matrix A by Aij = 〈vj , vi〉′ for all i and j.
Let T be the unique linear operator on V such that [T]β = A.

(b) Prove that the operator T of (a) is positive definite with respect
to both inner products.

23. Let U be a diagonalizable linear operator on a finite-dimensional inner
product space V such that all of the eigenvalues of U are real. Prove that
there exist positive definite linear operators T1 and T′

1 and self-adjoint
linear operators T2 and T′

2 such that U = T2T1 = T′
1T

′
2. Hint: Let 〈 · , ·〉

be the inner product associated with V, β a basis of eigenvectors for U,
〈 · , ·〉′ the inner product on V with respect to which β is orthonormal
(see Exercise 22(a) of Section 6.1), and T1 the positive definite operator
according to Exercise 22. Show that U is self-adjoint with respect to
〈 · , ·〉′ and U = T−1

1 U∗T1 (the adjoint is with respect to 〈 · , ·〉). Let
T2 = T1

−1U∗.
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24. This argument gives another proof of Schur’s theorem. Let T be a linear
operator on a finite dimensional inner product space V.

(a) Suppose that β is an ordered basis for V such that [T]β is an upper
triangular matrix. Let γ be the orthonormal basis for V obtained
by applying the Gram–Schmidt orthogonalization process to β and
then normalizing the resulting vectors. Prove that [T]γ is an upper
triangular matrix.

(b) Use Exercise 32 of Section 5.4 and (a) to obtain an alternate proof
of Schur’s theorem.

6.5 UNITARY AND ORTHOGONAL OPERATORS
AND THEIR MATRICES

In this section, we continue our analogy between complex numbers and linear
operators. Recall that the adjoint of a linear operator acts similarly to the
conjugate of a complex number (see, for example, Theorem 6.11 p. 359). A
complex number z has length 1 if zz = 1. In this section, we study those
linear operators T on an inner product space V such that TT∗ = T∗T = I. We
will see that these are precisely the linear operators that “preserve length”
in the sense that ‖T(x)‖ = ‖x‖ for all x ∈ V. As another characterization,
we prove that, on a finite-dimensional complex inner product space, these are
the normal operators whose eigenvalues all have absolute value 1.

In past chapters, we were interested in studying those functions that pre-
serve the structure of the underlying space. In particular, linear operators
preserve the operations of vector addition and scalar multiplication, and iso-
morphisms preserve all the vector space structure. It is now natural to con-
sider those linear operators T on an inner product space that preserve length.
We will see that this condition guarantees, in fact, that T preserves the inner
product.

Definitions. Let T be a linear operator on a finite-dimensional inner
product space V (over F ). If ‖T(x)‖ = ‖x‖ for all x ∈ V, we call T a unitary
operator if F = C and an orthogonal operator if F = R.

It should be noted that, in the infinite-dimensional case, an operator sat-
isfying the preceding norm requirement is generally called an isometry. If,
in addition, the operator is onto (the condition guarantees one-to-one), then
the operator is called a unitary or orthogonal operator.

Clearly, any rotation or reflection in R2 preserves length and hence is
an orthogonal operator. We study these operators in much more detail in
Section 6.11.
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Example 1

Let h ∈ H satisfy |h(x)| = 1 for all x. Define the linear operator T on H by
T(f) = hf . Then

‖T(f)‖2 = ‖hf‖2 =
1
2π

∫ 2π

0

h(t)f(t)h(t)f(t) dt = ‖f‖2

since |h(t)|2 = 1 for all t. So T is a unitary operator. ♦
Theorem 6.18. Let T be a linear operator on a finite-dimensional inner

product space V. Then the following statements are equivalent.
(a) TT∗ = T∗T = I.
(b) 〈T(x), T(y)〉 = 〈x, y〉 for all x, y ∈ V.
(c) If β is an orthonormal basis for V, then T(β) is an orthonormal basis

for V.
(d) There exists an orthonormal basis β for V such that T(β) is an orthonor-

mal basis for V.
(e) ‖T(x)‖ = ‖x‖ for all x ∈ V.

Thus all the conditions above are equivalent to the definition of a uni-
tary or orthogonal operator. From (a), it follows that unitary or orthogonal
operators are normal.

Before proving the theorem, we first prove a lemma. Compare this lemma
to Exercise 11(b) of Section 6.4.

Lemma. Let U be a self-adjoint operator on a finite-dimensional inner
product space V. If 〈x,U(x)〉 = 0 for all x ∈ V, then U = T0.

Proof. By either Theorem 6.16 (p. 372) or 6.17 (p. 374), we may choose
an orthonormal basis β for V consisting of eigenvectors of U. If x ∈ β, then
U(x) = λx for some λ. Thus

0 = 〈x,U(x)〉 = 〈x, λx〉 = λ 〈x, x〉 ;

so λ = 0. Hence U(x) = 0 for all x ∈ β, and thus U = T0.

Proof of Theorem 6.18. We prove first that (a) implies (b). Let x, y ∈ V.
Then 〈x, y〉 = 〈T∗T(x), y〉 = 〈T(x), T(y)〉.

Second, we prove that (b) implies (c). Let β = {v1, v2, . . . , vn} be an
orthonormal basis for V; so T(β) = {T(v1), T(v2), . . . ,T(vn)}. It follows that
〈T(vi), T(vj)〉 = 〈vi, vj〉 = δij . Therefore T(β) is an orthonormal basis for V.

That (c) implies (d) is obvious.
Next we prove that (d) implies (e). Let x ∈ V, and let β = {v1, v2, . . . , vn}.

Now

x =
n∑

i=1

aivi
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for some scalars ai, and so

‖x‖2 =

〈
n∑

i=1

aivi,
n∑

j=1

ajvj

〉
=

n∑
i=1

n∑
j=1

aiaj 〈vi, vj〉

=
n∑

i=1

n∑
j=1

aiajδij =
n∑

i=1

|ai|2

since β is orthonormal.
Applying the same manipulations to

T(x) =
n∑

i=1

aiT(vi)

and using the fact that T(β) is also orthonormal, we obtain

‖T(x)‖2 =
n∑

i=1

|ai|2.

Hence ‖T(x)‖ = ‖x‖.
Finally, we prove that (e) implies (a). For any x ∈ V, we have

〈x, x〉 = ‖x‖2 = ‖T(x)‖2 = 〈T(x), T(x)〉 = 〈x,T∗T(x)〉 .

So 〈x, (I − T∗T)(x)〉 = 0 for all x ∈ V. Let U = I − T∗T; then U is self-
adjoint, and 〈x,U(x)〉 = 0 for all x ∈ V. Hence, by the lemma, we have
T0 = U = I − T∗T, and therefore T∗T = I. Since V is finite-dimensional, we
may use Exercise 10 of Section 2.4 to conclude that TT∗ = I.

It follows immediately from the definition that every eigenvalue of a uni-
tary or orthogonal operator has absolute value 1. In fact, even more is true.

Corollary 1. Let T be a linear operator on a finite-dimensional real
inner product space V. Then V has an orthonormal basis of eigenvectors of
T with corresponding eigenvalues of absolute value 1 if and only if T is both
self-adjoint and orthogonal.

Proof. Suppose that V has an orthonormal basis {v1, v2, . . . , vn} such that
T(vi) = λivi and |λi| = 1 for all i. By Theorem 6.17 (p. 374), T is self-adjoint.
Thus (TT∗)(vi) = T(λivi) = λiλivi = λ2

i vi = vi for each i. So TT∗ = I, and
again by Exercise 10 of Section 2.4, T is orthogonal by Theorem 6.18(a).

If T is self-adjoint, then, by Theorem 6.17, we have that V possesses an
orthonormal basis {v1, v2, . . . , vn} such that T(vi) = λivi for all i. If T is also
orthogonal, we have

|λi| ·‖vi‖ = ‖λivi‖ = ‖T(vi)‖ = ‖vi‖;
so |λi| = 1 for every i.
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Corollary 2. Let T be a linear operator on a finite-dimensional complex
inner product space V. Then V has an orthonormal basis of eigenvectors of T
with corresponding eigenvalues of absolute value 1 if and only if T is unitary.

Proof. The proof is similar to the proof of Corollary 1.

Example 2

Let T : R2 → R2 be a rotation by θ, where 0 < θ < π. It is clear geometrically
that T “preserves length”, that is, that ‖T(x)‖ = ‖x‖ for all x ∈ R2. The
fact that rotations by a fixed angle preserve perpendicularity not only can be
seen geometrically but now follows from (b) of Theorem 6.18. Perhaps the
fact that such a transformation preserves the inner product is not so obvious;
however, we obtain this fact from (b) also. Finally, an inspection of the matrix
representation of T with respect to the standard ordered basis, which is(

cos θ − sin θ
sin θ cos θ

)
,

reveals that T is not self-adjoint for the given restriction on θ. As we men-
tioned earlier, this fact also follows from the geometric observation that T
has no eigenvectors and from Theorem 6.15 (p. 371). It is seen easily from
the preceding matrix that T∗ is the rotation by −θ. ♦

Definition. Let L be a one-dimensional subspace of R2. We may view L
as a line in the plane through the origin. A linear operator T on R2 is called
a reflection of R2 about L if T(x) = x for all x ∈ L and T(x) = −x for all
x ∈ L⊥.

As an example of a reflection, consider the operator defined in Example 3 of
Section 2.5.

Example 3

Let T be a reflection of R2 about a line L through the origin. We show that
T is an orthogonal operator. Select vectors v1 ∈ L and v2 ∈ L⊥ such that
‖v1‖ = ‖v2‖ = 1. Then T(v1) = v1 and T(v2) = −v2. Thus v1 and v2

are eigenvectors of T with corresponding eigenvalues 1 and −1, respectively.
Furthermore, {v1, v2} is an orthonormal basis for R2. It follows that T is an
orthogonal operator by Corollary 1 to Theorem 6.18. ♦

We now examine the matrices that represent unitary and orthogonal trans-
formations.

Definitions. A square matrix A is called an an orthogonal matrix if
AtA = AAt = I and unitary if A∗A = AA∗ = I.
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Since for a real matrix A we have A∗ = At, a real unitary matrix is also
orthogonal. In this case, we call A orthogonal rather than unitary.

Note that the condition AA∗ = I is equivalent to the statement that the
rows of A form an orthonormal basis for Fn because

δij = Iij = (AA∗)ij =
n∑

k=1

Aik(A∗)kj =
n∑

k=1

AikAjk,

and the last term represents the inner product of the ith and jth rows of A.
A similar remark can be made about the columns of A and the condition

A∗A = I.
It also follows from the definition above and from Theorem 6.10 (p. 359)

that a linear operator T on an inner product space V is unitary [orthogonal]
if and only if [T]β is unitary [orthogonal] for some orthonormal basis β for V.

Example 4

From Example 2, the matrix (
cos θ − sin θ
sin θ cos θ

)
is clearly orthogonal. One can easily see that the rows of the matrix form
an orthonormal basis for R2. Similarly, the columns of the matrix form an
orthonormal basis for R2. ♦
Example 5

Let T be a reflection of R2 about a line L through the origin, let β be the
standard ordered basis for R2, and let A = [T]β . Then T = LA. Since T is
an orthogonal operator and β is an orthonormal basis, A is an orthogonal
matrix. We describe A.

Suppose that α is the angle from the positive x-axis to L. Let v1 =
(cos α, sin α) and v2 = (− sin α, cos α). Then ‖v1‖ = ‖v2‖ = 1, v1 ∈ L,
and v2 ∈ L⊥. Hence γ = {v1, v2} is an orthonormal basis for R2. Because
T(v1) = v1 and T(v2) = −v2, we have

[T ]γ = [LA]γ =
(

1 0
0 −1

)
.

Let

Q =
(

cos α − sin α
sin α cos α

)
.

By the corollary to Theorem 2.23 (p. 115),

A = Q[LA]γQ−1
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=
(

cos α − sin α
sin α cos α

)(
1 0
0 −1

)(
cos α sin α

− sin α cos α

)

=
(

cos2 α − sin2 α 2 sin α cos α
2 sin α cos α −(cos2 α − sin2 α)

)

=
(

cos 2α sin 2α
sin 2α − cos 2α

)
. ♦

We know that, for a complex normal [real symmetric] matrix A, there
exists an orthonormal basis β for Fn consisting of eigenvectors of A. Hence A
is similar to a diagonal matrix D. By the corollary to Theorem 2.23 (p. 115),
the matrix Q whose columns are the vectors in β is such that D = Q−1AQ.
But since the columns of Q are an orthonormal basis for Fn, it follows that Q
is unitary [orthogonal]. In this case, we say that A is unitarily equivalent
[orthogonally equivalent] to D. It is easily seen (see Exercise 18) that this
relation is an equivalence relation on Mn×n(C) [Mn×n(R)]. More generally,
A and B are unitarily equivalent [orthogonally equivalent ] if and only if there
exists a unitary [orthogonal ] matrix P such that A = P ∗BP .

The preceding paragraph has proved half of each of the next two theo-
rems.

Theorem 6.19. Let A be a complex n × n matrix. Then A is normal if
and only if A is unitarily equivalent to a diagonal matrix.

Proof. By the preceding remarks, we need only prove that if A is unitarily
equivalent to a diagonal matrix, then A is normal.

Suppose that A = P ∗DP , where P is a unitary matrix and D is a diagonal
matrix. Then

AA∗ = (P ∗DP )(P ∗DP )∗ = (P ∗DP )(P ∗D∗P ) = P ∗DID∗P = P ∗DD∗P.

Similarly, A∗A = P ∗D∗DP . Since D is a diagonal matrix, however, we have
DD∗ = D∗D. Thus AA∗ = A∗A.

Theorem 6.20. Let A be a real n × n matrix. Then A is symmetric if
and only if A is orthogonally equivalent to a real diagonal matrix.

Proof. The proof is similar to the proof of Theorem 6.19 and is left as an
exercise.

Example 6

Let

A =

⎛⎝4 2 2
2 4 2
2 2 4

⎞⎠ .
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Since A is symmetric, Theorem 6.20 tells us that A is orthogonally equivalent
to a diagonal matrix. We find an orthogonal matrix P and a diagonal matrix
D such that P tAP = D.

To find P , we obtain an orthonormal basis of eigenvectors. It is easy to
show that the eigenvalues of A are 2 and 8. The set {(−1, 1, 0), (−1, 0, 1)}
is a basis for the eigenspace corresponding to 2. Because this set is not
orthogonal, we apply the Gram–Schmidt process to obtain the orthogonal
set {(−1, 1, 0),−1

2 (1, 1,−2)}. The set {(1, 1, 1)} is a basis for the eigenspace
corresponding to 8. Notice that (1, 1, 1) is orthogonal to the preceding two
vectors, as predicted by Theorem 6.15(d) (p. 371). Taking the union of these
two bases and normalizing the vectors, we obtain the following orthonormal
basis for R3 consisting of eigenvectors of A:{

1√
2
(−1, 1, 0),

1√
6
(1, 1,−2),

1√
3
(1, 1, 1)

}
.

Thus one possible choice for P is

P =

⎛⎜⎜⎝
−1√

2
1√
6

1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3

⎞⎟⎟⎠ , and D =

⎛⎝2 0 0
0 2 0
0 0 8

⎞⎠ . ♦

Because of Schur’s theorem (Theorem 6.14 p. 370), the next result is
immediate. As it is the matrix form of Schur’s theorem, we also refer to it as
Schur’s theorem.

Theorem 6.21 (Schur). Let A ∈ Mn×n(F ) be a matrix whose charac-
teristic polynomial splits over F .

(a) If F = C, then A is unitarily equivalent to a complex upper triangular
matrix.

(b) If F = R, then A is orthogonally equivalent to a real upper triangular
matrix.

Rigid Motions*

The purpose of this application is to characterize the so-called rigid mo-
tions of a finite-dimensional real inner product space. One may think intu-
itively of such a motion as a transformation that does not affect the shape of
a figure under its action, hence the term rigid. The key requirement for such
a transformation is that it preserves distances.

Definition. Let V be a real inner product space. A function f : V → V
is called a rigid motion if

‖f(x) − f(y)‖ = ‖x − y‖
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for all x, y ∈ V.

For example, any orthogonal operator on a finite-dimensional real inner
product space is a rigid motion.

Another class of rigid motions are the translations. A function g : V → V,
where V is a real inner product space, is called a translation if there exists
a vector v0 ∈ V such that g(x) = x + v0 for all x ∈ V. We say that g is
the translation by v0. It is a simple exercise to show that translations, as
well as composites of rigid motions on a real inner product space, are also
rigid motions. (See Exercise 22.) Thus an orthogonal operator on a finite-
dimensional real inner product space V followed by a translation on V is a
rigid motion on V. Remarkably, every rigid motion on V may be characterized
in this way.

Theorem 6.22. Let f : V → V be a rigid motion on a finite-dimensional
real inner product space V. Then there exists a unique orthogonal operator
T on V and a unique translation g on V such that f = g ◦ T .

Any orthogonal operator is a special case of this composite, in which
the translation is by 0 . Any translation is also a special case, in which the
orthogonal operator is the identity operator.

Proof. Let T : V → V be defined by

T(x) = f(x) − f(0 )

for all x ∈ V. We show that T is an orthogonal operator, from which it
follows that f = g ◦ T , where g is the translation by f(0 ). Observe that T is
the composite of f and the translation by −f(0 ); hence T is a rigid motion.
Furthermore, for any x ∈ V

‖T(x)‖2 = ‖f(x) − f(0 )‖2 = ‖x − 0‖2 = ‖x‖2,

and consequently ‖T(x)‖ = ‖x‖ for any x ∈ V. Thus for any x, y ∈ V,

‖T (x) − T (y)‖2 = ‖T(x)‖2 − 2 〈T(x), T(y)〉 + ‖T(y)‖2

= ‖x‖2 − 2 〈T(x), T(y)〉 + ‖y‖2

and

‖x − y‖2 = ‖x‖2 − 2 〈x, y〉 + ‖y‖2.

But ‖T (x) − T (y)‖2 = ‖x − y‖2; so 〈T(x), T(y)〉 = 〈x, y〉 for all x, y ∈ V.
We are now in a position to show that T is a linear transformation. Let

x, y ∈ V, and let a ∈ R. Then

‖T(x + ay) − T(x) − aT(y)‖2 = ‖[T(x + ay) − T(x)] − aT(y)‖2
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= ‖T(x + ay) − T(x)‖2 + a2‖T(y)‖2 − 2a 〈T(x + ay) − T(x), T(y)〉
= ‖(x + ay) − x‖2 + a2‖y‖2 − 2a[〈T(x + ay), T(y)〉 − 〈T(x), T(y)〉]
= a2‖y‖2 + a2‖y‖2 − 2a[〈x + ay, y〉 − 〈x, y〉]
= 2a2‖y‖2 − 2a[〈x, y〉 + a‖y‖2 − 〈x, y〉]
= 0.

Thus T(x+ay) = T(x)+aT(y), and hence T is linear. Since T also preserves
inner products, T is an orthogonal operator.

To prove uniqueness, suppose that u0 and v0 are in V and T and U are
orthogonal operators on V such that

f(x) = T(x) + u0 = U(x) + v0

for all x ∈ V. Substituting x = 0 in the preceding equation yields u0 = v0,
and hence the translation is unique. This equation, therefore, reduces to
T(x) = U(x) for all x ∈ V, and hence T = U.

Orthogonal Operators on R2

Because of Theorem 6.22, an understanding of rigid motions requires a
characterization of orthogonal operators. The next result characterizes or-
thogonal operators on R2. We postpone the case of orthogonal operators on
more general spaces to Section 6.11.

Theorem 6.23. Let T be an orthogonal operator on R2, and let A = [T]β ,
where β is the standard ordered basis for R2. Then exactly one of the following
conditions is satisfied:

(a) T is a rotation, and det(A) = 1.
(b) T is a reflection about a line through the origin, and det(A) = −1.

Proof. Because T is an orthogonal operator, T(β) = {T(e1), T(e2)} is an
orthonormal basis for R2 by Theorem 6.18(c). Since T(e1) is a unit vector,
there is a unique angle θ, 0 ≤ θ < 2π, such that T(e1) = (cos θ, sin θ). Since
T(e2) is a unit vector and is orthogonal to T(e1), there are only two possible
choices for T(e2). Either

T(e2) = (− sin θ, cos θ) or T(e2) = (sin θ,− cos θ).

First, suppose that T(e2) = (− sin θ, cos θ). Then A =
(

cos θ − sin θ
sin θ cos θ

)
.

It follows from Example 1 of Section 6.4 that T is a rotation by the angle θ.
Also

det(A) = cos2 θ + sin2 θ = 1.
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Now suppose that T(e2) = (sin θ,− cos θ). Then A =
(

cos θ sin θ
sin θ − cos θ

)
.

Comparing this matrix to the matrix A of Example 5, we see that T is the
reflection of R2 about a line L, so that α = θ/2 is the angle from the positive
x-axis to L. Furthermore,

det(A) = − cos2 θ − sin2 θ = −1.

Combining Theorems 6.22 and 6.23, we obtain the following characteriza-
tion of rigid motions on R2.

Corollary. Any rigid motion on R2 is either a rotation followed by a trans-
lation or a reflection about a line through the origin followed by a translation.

Example 7

Let

A =

⎛⎜⎜⎝
1√
5

2√
5

2√
5

−1√
5

⎞⎟⎟⎠ .

We show that LA is the reflection of R2 about a line L through the origin, and
then describe L.

Clearly AA∗ = A∗A = I, and therefore A is an orthogonal matrix. Hence
LA is an orthogonal operator. Furthermore,

det(A) = −1
5
− 4

5
= −1,

and thus LA is a reflection of R2 about a line L through the origin by The-
orem 6.23. Since L is the one-dimensional eigenspace corresponding to the
eigenvalue 1 of LA, it suffices to find an eigenvector of LA corresponding to 1.
One such vector is v = (2,

√
5 − 1). Thus L is the span of {v}. Alternatively,

L is the line through the origin with slope (
√

5 − 1)/2, and hence is the line
with the equation

y =
√

5 − 1
2

x. ♦

Conic Sections

As an application of Theorem 6.20, we consider the quadratic equation

ax2 + 2bxy + cy2 + dx + ey + f = 0. (2)
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For special choices of the coefficients in (2), we obtain the various conic
sections. For example, if a = c = 1, b = d = e = 0, and f = −1, we
obtain the circle x2 + y2 = 1 with center at the origin. The remaining
conic sections, namely, the ellipse, parabola, and hyperbola, are obtained
by other choices of the coefficients. If b = 0, then it is easy to graph the
equation by the method of completing the square because the xy-term is
absent. For example, the equation x2 +2x+y2 +4y+2 = 0 may be rewritten
as (x + 1)2 + (y + 2)2 = 3, which describes a circle with radius

√
3 and center

at (−1,−2) in the xy-coordinate system. If we consider the transformation
of coordinates (x, y) → (x′, y′), where x′ = x + 1 and y′ = y + 2, then our
equation simplifies to (x′)2 + (y′)2 = 3. This change of variable allows us to
eliminate the x- and y-terms.

We now concentrate solely on the elimination of the xy-term. To accom-
plish this, we consider the expression

ax2 + 2bxy + cy2, (3)

which is called the associated quadratic form of (2). Quadratic forms are
studied in more generality in Section 6.8.

If we let

A =
(

a b
b c

)
and X =

(
x
y

)
,

then (3) may be written as XtAX = 〈AX, X〉. For example, the quadratic
form 3x2 + 4xy + 6y2 may be written as

Xt

(
3 2
2 6

)
X.

The fact that A is symmetric is crucial in our discussion. For, by Theo-
rem 6.20, we may choose an orthogonal matrix P and a diagonal matrix D
with real diagonal entries λ1 and λ2 such that P tAP = D. Now define

X ′ =
(

x′

y′

)
by X ′ = P tX or, equivalently, by PX ′ = PP tX = X. Then

XtAX = (PX ′)tA(PX ′) = X ′t(P tAP )X ′ = X ′tDX ′ = λ1(x′)2 + λ2(y′)2.

Thus the transformation (x, y) → (x′, y′) allows us to eliminate the xy-term
in (3), and hence in (2).

Furthermore, since P is orthogonal, we have by Theorem 6.23 (with T =
LP ) that det(P ) = ±1. If det(P ) = −1, we may interchange the columns
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of P to obtain a matrix Q. Because the columns of P form an orthonormal
basis of eigenvectors of A, the same is true of the columns of Q. Therefore,

QtAQ =
(

λ2 0
0 λ1

)
.

Notice that det(Q) = −det(P ) = 1. So, if det(P ) = −1, we can take Q for
our new P ; consequently, we may always choose P so that det(P ) = 1. By
Lemma 4 to Theorem 6.22 (with T = LP ), it follows that matrix P represents
a rotation.

In summary, the xy-term in (2) may be eliminated by a rotation of the
x-axis and y-axis to new axes x′ and y′ given by X = PX ′, where P is an
orthogonal matrix and det(P ) = 1. Furthermore, the coefficients of (x′)2 and
(y′)2 are the eigenvalues of

A =
(

a b
b c

)
.

This result is a restatement of a result known as the principal axis theorem
for R2. The arguments above, of course, are easily extended to quadratic
equations in n variables. For example, in the case n = 3, by special choices
of the coefficients, we obtain the quadratic surfaces—the elliptic cone, the
ellipsoid, the hyperbolic paraboloid, etc.

As an illustration of the preceding transformation, consider the quadratic
equation

2x2 − 4xy + 5y2 − 36 = 0,

for which the associated quadratic form is 2x2 − 4xy + 5y2. In the notation
we have been using,

A =
(

2 −2
−2 5

)
,

so that the eigenvalues of A are 1 and 6 with associated eigenvectors(
2
1

)
and

(−1
2

)
.

As expected (from Theorem 6.15(d) p. 371), these vectors are orthogonal.
The corresponding orthonormal basis of eigenvectors

β =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

2√
5

1√
5

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1√

5
2√
5

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
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determines new axes x′ and y′ as in Figure 6.4. Hence if

P =

⎛⎜⎜⎝
2√
5

−1√
5

1√
5

2√
5

⎞⎟⎟⎠ =
1√
5

(
2 −1
1 2

)
,

then

P tAP =
(

1 0
0 6

)
.

Under the transformation X = PX ′ or

x =
2√
5
x′ − 1√

5
y′

y =
1√
5
x′ +

2√
5
y′ ,

we have the new quadratic form (x′)2 + 6(y′)2. Thus the original equation
2x2−4xy+5y2 = 36 may be written in the form (x′)2+6(y′)2 = 36 relative to
a new coordinate system with the x′- and y′-axes in the directions of the first
and second vectors of β, respectively. It is clear that this equation represents

�

�	




x

x′

y
y′

Figure 6.4

an ellipse. (See Figure 6.4.) Note that the preceding matrix P has the form(
cos θ − sin θ
sin θ cos θ

)
,

where θ = cos−1 2√
5
≈ 26.6◦. So P is the matrix representation of a rotation

of R2 through the angle θ. Thus the change of variable X = PX ′ can be ac-
complished by this rotation of the x- and y-axes. There is another possibility
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for P , however. If the eigenvector of A corresponding to the eigenvalue 6 is
taken to be (1,−2) instead of (−1, 2), and the eigenvalues are interchanged,
then we obtain the matrix ⎛⎜⎜⎝

1√
5

2√
5

−2√
5

1√
5

⎞⎟⎟⎠,

which is the matrix representation of a rotation through the angle θ =

sin−1

(
− 2√

5

)
≈ −63.4◦. This possibility produces the same ellipse as the

one in Figure 6.4, but interchanges the names of the x′- and y′-axes.

EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.

(a) Every unitary operator is normal.
(b) Every orthogonal operator is diagonalizable.
(c) A matrix is unitary if and only if it is invertible.
(d) If two matrices are unitarily equivalent, then they are also similar.
(e) The sum of unitary matrices is unitary.
(f) The adjoint of a unitary operator is unitary.
(g) If T is an orthogonal operator on V, then [T]β is an orthogonal

matrix for any ordered basis β for V.
(h) If all the eigenvalues of a linear operator are 1, then the operator

must be unitary or orthogonal.
(i) A linear operator may preserve the norm, but not the inner prod-

uct.

2. For each of the following matrices A, find an orthogonal or unitary
matrix P and a diagonal matrix D such that P ∗AP = D.

(a)
(

1 2
2 1

)
(b)

(
0 −1
1 0

)
(c)

(
2 3 − 3i

3 + 3i 5

)

(d)

⎛⎝0 2 2
2 0 2
2 2 0

⎞⎠ (e)

⎛⎝2 1 1
1 2 1
1 1 2

⎞⎠
3. Prove that the composite of unitary [orthogonal] operators is unitary

[orthogonal].
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4. For z ∈ C, define Tz : C → C by Tz(u) = zu. Characterize those z for
which Tz is normal, self-adjoint, or unitary.

5. Which of the following pairs of matrices are unitarily equivalent?

(a)
(

1 0
0 1

)
and

(
0 1
1 0

)
(b)

(
0 1
1 0

)
and

⎛⎝0 1
2

1
2 0

⎞⎠
(c)

⎛⎝ 0 1 0
−1 0 0

0 0 1

⎞⎠ and

⎛⎝2 0 0
0 −1 0
0 0 0

⎞⎠
(d)

⎛⎝ 0 1 0
−1 0 0

0 0 1

⎞⎠ and

⎛⎝1 0 0
0 i 0
0 0 −i

⎞⎠
(e)

⎛⎝1 1 0
0 2 2
0 0 3

⎞⎠ and

⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠
6. Let V be the inner product space of complex-valued continuous func-

tions on [0, 1] with the inner product

〈f, g〉 =
∫ 1

0

f(t)g(t) dt.

Let h ∈ V, and define T : V → V by T(f) = hf . Prove that T is a
unitary operator if and only if |h(t)| = 1 for 0 ≤ t ≤ 1.

7. Prove that if T is a unitary operator on a finite-dimensional inner prod-
uct space V, then T has a unitary square root ; that is, there exists a
unitary operator U such that T = U2.

8. Let T be a self-adjoint linear operator on a finite-dimensional inner
product space. Prove that (T+iI)(T−iI)−1 is unitary using Exercise 10
of Section 6.4.

9. Let U be a linear operator on a finite-dimensional inner product space
V. If ‖U(x)‖ = ‖x‖ for all x in some orthonormal basis for V, must U
be unitary? Justify your answer with a proof or a counterexample.

10. Let A be an n × n real symmetric or complex normal matrix. Prove
that

tr(A) =
n∑

i=1

λi and tr(A∗A) =
n∑

i=1

|λi|2,

where the λi’s are the (not necessarily distinct) eigenvalues of A.
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11. Find an orthogonal matrix whose first row is (1
3 , 2

3 , 2
3 ).

12. Let A be an n × n real symmetric or complex normal matrix. Prove
that

det(A) =
n∏

i=1

λi,

where the λi’s are the (not necessarily distinct) eigenvalues of A.

13. Suppose that A and B are diagonalizable matrices. Prove or disprove
that A is similar to B if and only if A and B are unitarily equivalent.

14. Prove that if A and B are unitarily equivalent matrices, then A is pos-
itive definite [semidefinite] if and only if B is positive definite [semidef-
inite]. (See the definitions in the exercises in Section 6.4.)

15. Let U be a unitary operator on an inner product space V, and let W be
a finite-dimensional U-invariant subspace of V. Prove that

(a) U(W) = W;
(b) W⊥ is U-invariant.

Contrast (b) with Exercise 16.

16. Find an example of a unitary operator U on an inner product space and
a U-invariant subspace W such that W⊥ is not U-invariant.

17. Prove that a matrix that is both unitary and upper triangular must be
a diagonal matrix.

18. Show that “is unitarily equivalent to” is an equivalence relation on
Mn×n(C).

19. Let W be a finite-dimensional subspace of an inner product space V.
By Theorem 6.7 (p. 352) and the exercises of Section 1.3, V = W⊕W⊥.
Define U : V → V by U(v1 + v2) = v1 − v2, where v1 ∈ W and v2 ∈ W⊥.
Prove that U is a self-adjoint unitary operator.

20. Let V be a finite-dimensional inner product space. A linear operator U
on V is called a partial isometry if there exists a subspace W of V
such that ‖U(x)‖ = ‖x‖ for all x ∈ W and U(x) = 0 for all x ∈ W⊥.
Observe that W need not be U-invariant. Suppose that U is such an
operator and {v1, v2, . . . , vk} is an orthonormal basis for W. Prove the
following results.

(a) 〈U(x), U(y)〉 = 〈x, y〉 for all x, y ∈ W. Hint: Use Exercise 20 of
Section 6.1.

(b) {U(v1), U(v2), . . . ,U(vk)} is an orthonormal basis for R(U).
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(c) There exists an orthonormal basis γ for V such that the first
k columns of [U]γ form an orthonormal set and the remaining
columns are zero.

(d) Let {w1, w2, . . . , wj} be an orthonormal basis for R(U)⊥ and β =
{U(v1), U(v2), . . . ,U(vk), w1, . . . , wj}. Then β is an orthonormal
basis for V.

(e) Let T be the linear operator on V that satisfies T(U(vi)) = vi

(1 ≤ i ≤ k) and T(wi) = 0 (1 ≤ i ≤ j). Then T is well defined,
and T = U∗. Hint: Show that 〈U(x), y〉 = 〈x,T(y)〉 for all x, y ∈ β.
There are four cases.

(f) U∗ is a partial isometry.

This exercise is continued in Exercise 9 of Section 6.6.

21. Let A and B be n × n matrices that are unitarily equivalent.

(a) Prove that tr(A∗A) = tr(B∗B).
(b) Use (a) to prove that

n∑
i,j=1

|Aij |2 =
n∑

i,j=1

|Bij |2.

(c) Use (b) to show that the matrices(
1 2
2 i

)
and

(
i 4
1 1

)
are not unitarily equivalent.

22. Let V be a real inner product space.

(a) Prove that any translation on V is a rigid motion.
(b) Prove that the composite of any two rigid motions on V is a rigid

motion on V.

23. Prove the following variation of Theorem 6.22: If f : V → V is a rigid
motion on a finite-dimensional real inner product space V, then there
exists a unique orthogonal operator T on V and a unique translation g
on V such that f = T ◦ g.

24. Let T and U be orthogonal operators on R2. Use Theorem 6.23 to prove
the following results.

(a) If T and U are both reflections about lines through the origin, then
UT is a rotation.

(b) If T is a rotation and U is a reflection about a line through the
origin, then both UT and TU are reflections about lines through
the origin.
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25. Suppose that T and U are reflections of R2 about the respective lines
L and L′ through the origin and that φ and ψ are the angles from
the positive x-axis to L and L′, respectively. By Exercise 24, UT is a
rotation. Find its angle of rotation.

26. Suppose that T and U are orthogonal operators on R2 such that T is
the rotation by the angle φ and U is the reflection about the line L
through the origin. Let ψ be the angle from the positive x-axis to L.
By Exercise 24, both UT and TU are reflections about lines L1 and L2,
respectively, through the origin.

(a) Find the angle θ from the positive x-axis to L1.
(b) Find the angle θ from the positive x-axis to L2.

27. Find new coordinates x′, y′ so that the following quadratic forms can
be written as λ1(x′)2 + λ2(y′)2.

(a) x2 + 4xy + y2

(b) 2x2 + 2xy + 2y2

(c) x2 − 12xy − 4y2

(d) 3x2 + 2xy + 3y2

(e) x2 − 2xy + y2

28. Consider the expression XtAX, where Xt = (x, y, z) and A is as defined
in Exercise 2(e). Find a change of coordinates x′, y′, z′ so that the
preceding expression is of the form λ1(x′)2 + λ2(y′)2 + λ3(z′)2.

29. QR-Factorization. Let w1, w2, . . . , wn be linearly independent vectors
in Fn, and let v1, v2, . . . , vn be the orthogonal vectors obtained from
w1, w2, . . . , wn by the Gram–Schmidt process. Let u1, u2, . . . , un be the
orthonormal basis obtained by normalizing the vi’s.

(a) Solving (1) in Section 6.2 for wk in terms of uk, show that

wk = ‖vk‖uk +
k−1∑
j=1

〈wk, uj〉uj (1 ≤ k ≤ n).

(b) Let A and Q denote the n × n matrices in which the kth columns
are wk and uk, respectively. Define R ∈ Mn×n(F ) by

Rjk =

⎧⎪⎨⎪⎩
‖vj‖ if j = k

〈wk, uj〉 if j < k

0 if j > k.

Prove A = QR.
(c) Compute Q and R as in (b) for the 3×3 matrix whose columns are

the vectors w1, w2, w3, respectively, in Example 4 of Section 6.2.
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(d) Since Q is unitary [orthogonal] and R is upper triangular in (b),
we have shown that every invertible matrix is the product of a uni-
tary [orthogonal] matrix and an upper triangular matrix. Suppose
that A ∈ Mn×n(F ) is invertible and A = Q1R1 = Q2R2, where
Q1, Q2 ∈ Mn×n(F ) are unitary and R1, R2 ∈ Mn×n(F ) are upper
triangular. Prove that D = R2R

−1
1 is a unitary diagonal matrix.

Hint: Use Exercise 17.
(e) The QR factorization described in (b) provides an orthogonaliza-

tion method for solving a linear system Ax = b when A is in-
vertible. Decompose A to QR, by the Gram–Schmidt process or
other means, where Q is unitary and R is upper triangular. Then
QRx = b, and hence Rx = Q∗b. This last system can be easily
solved since R is upper triangular. 1

Use the orthogonalization method and (c) to solve the system

x1 + 2x2 + 2x3 = 1
x1 + 2x3 = 11

x2 + x3 = −1.

30. Suppose that β and γ are ordered bases for an n-dimensional real [com-
plex] inner product space V. Prove that if Q is an orthogonal [unitary]
n × n matrix that changes γ-coordinates into β-coordinates, then β is
orthonormal if and only if γ is orthonormal.

The following definition is used in Exercises 31 and 32.

Definition. Let V be a finite-dimensional complex [real] inner product
space, and let u be a unit vector in V. Define the Householder operator
Hu : V → V by Hu(x) = x − 2 〈x, u〉u for all x ∈ V.

31. Let Hu be a Householder operator on a finite-dimensional inner product
space V. Prove the following results.

(a) Hu is linear.
(b) Hu(x) = x if and only if x is orthogonal to u.
(c) Hu(u) = −u.
(d) H∗

u = Hu and H2
u = I, and hence Hu is a unitary [orthogonal]

operator on V.

(Note: If V is a real inner product space, then in the language of Sec-
tion 6.11, Hu is a reflection.)

1At one time, because of its great stability, this method for solving large sys-
tems of linear equations with a computer was being advocated as a better method
than Gaussian elimination even though it requires about three times as much work.
(Later, however, J. H. Wilkinson showed that if Gaussian elimination is done “prop-
erly,” then it is nearly as stable as the orthogonalization method.)
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32. Let V be a finite-dimensional inner product space over F . Let x and y
be linearly independent vectors in V such that ‖x‖ = ‖y‖.
(a) If F = C, prove that there exists a unit vector u in V and a complex

number θ with |θ| = 1 such that Hu(x) = θy. Hint: Choose θ so

that 〈x, θy〉 is real, and set u =
1

‖x − θy‖ (x − θy).

(b) If F = R, prove that there exists a unit vector u in V such that
Hu(x) = y.

6.6 ORTHOGONAL PROJECTIONS
AND THE SPECTRAL THEOREM

In this section, we rely heavily on Theorems 6.16 (p. 372) and 6.17 (p. 374) to
develop an elegant representation of a normal (if F = C) or a self-adjoint (if
F = R) operator T on a finite-dimensional inner product space. We prove that
T can be written in the form λ1T1 + λ2T2 + · · ·+ λkTk, where λ1, λ2, . . . , λk

are the distinct eigenvalues of T and T1, T2, . . . ,Tk are orthogonal projections.
We must first develop some results about these special projections.

We assume that the reader is familiar with the results about direct sums
developed at the end of Section 5.2. The special case where V is a direct sum
of two subspaces is considered in the exercises of Section 1.3.

Recall from the exercises of Section 2.1 that if V = W1⊕W2, then a linear
operator T on V is the projection on W1 along W2 if, whenever x = x1+x2,
with x1 ∈ W1 and x2 ∈ W2, we have T(x) = x1. By Exercise 26 of Section 2.1,
we have

R(T) = W1 = {x ∈ V : T(x) = x} and N(T) = W2.

So V = R(T) ⊕ N(T). Thus there is no ambiguity if we refer to T as a
“projection on W1” or simply as a “projection.” In fact, it can be shown
(see Exercise 17 of Section 2.3) that T is a projection if and only if T = T2.
Because V = W1⊕W2 = W1⊕W3 does not imply that W2 = W3, we see that
W1 does not uniquely determine T. For an orthogonal projection T, however,
T is uniquely determined by its range.

Definition. Let V be an inner product space, and let T : V → V be a
projection. We say that T is an orthogonal projection if R(T)⊥ = N(T)
and N(T)⊥ = R(T).

Note that by Exercise 13(c) of Section 6.2, if V is finite-dimensional, we
need only assume that one of the preceding conditions holds. For example, if
R(T)⊥ = N(T), then R(T) = R(T)⊥⊥ = N(T)⊥.

Now assume that W is a finite-dimensional subspace of an inner product
space V. In the notation of Theorem 6.6 (p. 350), we can define a function
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T : V → V by T(y) = u. It is easy to show that T is an orthogonal projection
on W. We can say even more—there exists exactly one orthogonal projection
on W. For if T and U are orthogonal projections on W, then R(T) = W =
R(U). Hence N(T) = R(T)⊥ = R(U)⊥ = N(U), and since every projection is
uniquely determined by its range and null space, we have T = U. We call T
the orthogonal projection of V on W.

To understand the geometric difference between an arbitrary projection
on W and the orthogonal projection on W, let V = R2 and W = span{(1, 1)}.
Define U and T as in Figure 6.5, where T(v) is the foot of a perpendicular
from v on the line y = x and U(a1, a2) = (a1, a1). Then T is the orthogo-
nal projection of V on W, and U is a different projection on W. Note that
v − T(v) ∈ W⊥, whereas v − U(v) /∈ W⊥.
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U(v)

T(v)

W

v

Figure 6.5

From Figure 6.5, we see that T(v) is the “best approximation in W to v”;
that is, if w ∈ W, then ‖w − v‖ ≥ ‖T(v) − v‖. In fact, this approximation
property characterizes T. These results follow immediately from the corollary
to Theorem 6.6 (p. 350).

As an application to Fourier analysis, recall the inner product space H and
the orthonormal set S in Example 9 of Section 6.1. Define a trigonometric
polynomial of degree n to be a function g ∈ H of the form

g(t) =
n∑

j=−n

ajfj(t) =
n∑

j=−n

aje
ijt,

where an or a−n is nonzero.
Let f ∈ H. We show that the best approximation to f by a trigonometric

polynomial of degree less than or equal to n is the trigonometric polynomial
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whose coefficients are the Fourier coefficients of f relative to the orthonormal
set S. For this result, let W = span({fj : |j| ≤ n}), and let T be the orthogo-
nal projection of H on W. The corollary to Theorem 6.6 (p. 350) tells us that
the best approximation to f by a function in W is

T(f) =
n∑

j=−n

〈f, fj〉 fj .

An algebraic characterization of orthogonal projections follows in the next
theorem.

Theorem 6.24. Let V be an inner product space, and let T be a linear
operator on V. Then T is an orthogonal projection if and only if T has an
adjoint T∗ and T2 = T = T∗.

Proof. Suppose that T is an orthogonal projection. Since T2 = T because
T is a projection, we need only show that T∗ exists and T = T∗. Now
V = R(T) ⊕ N(T) and R(T)⊥ = N(T). Let x, y ∈ V. Then we can write
x = x1 + x2 and y = y1 + y2, where x1, y1 ∈ R(T) and x2, y2 ∈ N(T). Hence

〈x,T(y)〉 = 〈x1 + x2, y1〉 = 〈x1, y1〉 + 〈x2, y1〉 = 〈x1, y1〉
and

〈T(x), y〉 = 〈x1, y1 + y2〉 = 〈x1, y1〉 + 〈x1, y2〉 = 〈x1, y1〉 .

So 〈x,T(y)〉 = 〈T(x), y〉 for all x, y ∈ V; thus T∗ exists and T = T∗.
Now suppose that T2 = T = T∗. Then T is a projection by Exercise 17 of

Section 2.3, and hence we must show that R(T) = N(T)⊥ and R(T)⊥ = N(T).
Let x ∈ R(T) and y ∈ N(T). Then x = T(x) = T∗(x), and so

〈x, y〉 = 〈T∗(x), y〉 = 〈x,T(y)〉 = 〈x, 0 〉 = 0.

Therefore x ∈ N(T)⊥, from which it follows that R(T) ⊆ N(T)⊥.
Let y ∈ N(T)⊥. We must show that y ∈ R(T), that is, T(y) = y. Now

‖y − T(y)‖2 = 〈y − T(y), y − T(y)〉
= 〈y, y − T(y)〉 − 〈T(y), y − T(y)〉 .

Since y − T(y) ∈ N(T), the first term must equal zero. But also

〈T(y), y − T(y)〉 = 〈y, T∗(y − T(y))〉 = 〈y, T(y − T(y))〉 = 〈y, 0 〉 = 0.

Thus y − T(y) = 0 ; that is, y = T(y) ∈ R(T). Hence R(T) = N(T)⊥.
Using the preceding results, we have R(T)⊥ = N(T)⊥⊥ ⊇ N(T) by Exer-

cise 13(b) of Section 6.2. Now suppose that x ∈ R(T)⊥. For any y ∈ V, we
have 〈T(x), y〉 = 〈x,T∗(y)〉 = 〈x,T(y)〉 = 0. So T(x) = 0 , and thus x ∈ N(T).
Hence R(T)⊥ = N(T).
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Let V be a finite-dimensional inner product space, W be a subspace of V,
and T be the orthogonal projection of V on W. We may choose an orthonormal
basis β = {v1, v2, . . . , vn} for V such that {v1, v2, . . . , vk} is a basis for W.
Then [T]β is a diagonal matrix with ones as the first k diagonal entries and
zeros elsewhere. In fact, [T]β has the form(

Ik O1

O2 O3

)
.

If U is any projection on W, we may choose a basis γ for V such that [U]γ has
the form above; however γ is not necessarily orthonormal.

We are now ready for the principal theorem of this section.

Theorem 6.25 (The Spectral Theorem). Suppose that T is a linear
operator on a finite-dimensional inner product space V over F with the dis-
tinct eigenvalues λ1, λ2, . . . , λk. Assume that T is normal if F = C and that
T is self-adjoint if F = R. For each i (1 ≤ i ≤ k), let Wi be the eigenspace of
T corresponding to the eigenvalue λi, and let Ti be the orthogonal projection
of V on Wi. Then the following statements are true.

(a) V = W1 ⊕ W2 ⊕ · · · ⊕ Wk.
(b) If W′

i denotes the direct sum of the subspaces Wj for j �= i, then
W⊥

i = W′
i.

(c) TiTj = δijTi for 1 ≤ i, j ≤ k.
(d) I = T1 + T2 + · · · + Tk.
(e) T = λ1T1 + λ2T2 + · · · + λkTk.

Proof. (a) By Theorems 6.16 (p. 372) and 6.17 (p. 374), T is diagonalizable;
so

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk

by Theorem 5.11 (p. 278).
(b) If x ∈ Wi and y ∈ Wj for some i �= j, then 〈x, y〉 = 0 by The-

orem 6.15(d) (p. 371). It follows easily from this result that W′
i ⊆ W⊥

i .
From (a), we have

dim(W′
i) =

∑
j �=i

dim(Wj) = dim(V) − dim(Wi).

On the other hand, we have dim(W⊥
i ) = dim(V)−dim(Wi) by Theorem 6.7(c)

(p. 352). Hence W′
i = W⊥

i , proving (b).
(c) The proof of (c) is left as an exercise.
(d) Since Ti is the orthogonal projection of V on Wi, it follows from

(b) that N(Ti) = R(Ti)⊥ = W⊥
i = W′

i. Hence, for x ∈ V, we have x =
x1 + x2 + · · · + xk, where Ti(x) = xi ∈ Wi, proving (d).
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(e) For x ∈ V, write x = x1 + x2 + · · · + xk, where xi ∈ Wi. Then

T(x) = T(x1) + T(x2) + · · · + T(xk)
= λ1x1 + λ2x2 + · · · + λkxk

= λ1T1(x) + λ2T2(x) + · · · + λkTk(x)

= (λ1T1 + λ2T2 + · · · + λkTk)(x).

The set {λ1, λ2, . . . , λk} of eigenvalues of T is called the spectrum of T,
the sum I = T1+T2+ · · ·+Tk in (d) is called the resolution of the identity
operator induced by T, and the sum T = λ1T1 + λ2T2 + · · · + λkTk in (e)
is called the spectral decomposition of T. The spectral decomposition of
T is unique up to the order of its eigenvalues.

With the preceding notation, let β be the union of orthonormal bases of
the Wi’s and let mi = dim(Wi). (Thus mi is the multiplicity of λi.) Then
[T]β has the form ⎛⎜⎜⎜⎝

λ1Im1 O · · · O
O λ2Im2 · · · O
...

...
...

O O · · · λkImk

⎞⎟⎟⎟⎠ ;

that is, [T]β is a diagonal matrix in which the diagonal entries are the eigen-
values λi of T, and each λi is repeated mi times. If λ1T1 +λ2T2 + · · ·+λkTk

is the spectral decomposition of T, then it follows (from Exercise 7) that
g(T) = g(λ1)T1 + g(λ2)T2 + · · ·+ g(λk)Tk for any polynomial g. This fact is
used below.

We now list several interesting corollaries of the spectral theorem; many
more results are found in the exercises. For what follows, we assume that T
is a linear operator on a finite-dimensional inner product space V over F .

Corollary 1. If F = C, then T is normal if and only if T∗ = g(T) for
some polynomial g.

Proof. Suppose first that T is normal. Let T = λ1T1 + λ2T2 + · · ·+ λkTk

be the spectral decomposition of T. Taking the adjoint of both sides of the
preceding equation, we have T∗ = λ1T1 + λ2T2 + · · ·+ λkTk since each Ti is
self-adjoint. Using the Lagrange interpolation formula (see page 52), we may
choose a polynomial g such that g(λi) = λi for 1 ≤ i ≤ k. Then

g(T)=g(λ1)T1 + g(λ2)T2 + · · · + g(λk)Tk =λ1T1 + λ2T2 + · · · + λkTk =T∗.

Conversely, if T∗ = g(T) for some polynomial g, then T commutes with
T∗ since T commutes with every polynomial in T. So T is normal.



Sec. 6.6 Orthogonal Projections and the Spectral Theorem 403

Corollary 2. If F = C, then T is unitary if and only if T is normal and
|λ| = 1 for every eigenvalue λ of T.

Proof. If T is unitary, then T is normal and every eigenvalue of T has
absolute value 1 by Corollary 2 to Theorem 6.18 (p. 382).

Let T = λ1T1 + λ2T2 + · · ·+ λkTk be the spectral decomposition of T. If
|λ| = 1 for every eigenvalue λ of T, then by (c) of the spectral theorem,

TT∗ = (λ1T1 + λ2T2 + · · · + λkTk)(λ1T1 + λ2T2 + · · · + λkTk)

= |λ1|2T1 + |λ2|2T2 + · · · + |λk|2Tk

= T1 + T2 + · · · + Tk

= I.

Hence T is unitary.

Corollary 3. If F = C and T is normal, then T is self-adjoint if and
only if every eigenvalue of T is real.

Proof. Let T = λ1T1 + λ2T2 + · · · + λkTk be the spectral decomposition
of T. Suppose that every eigenvalue of T is real. Then

T∗ = λ1T1 + λ2T2 + · · · + λkTk = λ1T1 + λ2T2 + · · · + λkTk = T.

The converse has been proved in the lemma to Theorem 6.17 (p. 374).

Corollary 4. Let T be as in the spectral theorem with spectral decom-
position T = λ1T1 + λ2T2 + · · · + λkTk. Then each Tj is a polynomial in
T.

Proof. Choose a polynomial gj (1 ≤ j ≤ k) such that gj(λi) = δij . Then

gj(T) = gj(λ1)T1 + gj(λ2)T2 + · · · + gj(λk)Tk

= δ1jT1 + δ2jT2 + · · · + δkjTk = Tj .

EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying inner product spaces are finite-dimensional.

(a) All projections are self-adjoint.
(b) An orthogonal projection is uniquely determined by its range.
(c) Every self-adjoint operator is a linear combination of orthogonal

projections.
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(d) If T is a projection on W, then T(x) is the vector in W that is
closest to x.

(e) Every orthogonal projection is a unitary operator.

2. Let V = R2, W = span({(1, 2)}), and β be the standard ordered basis
for V. Compute [T]β , where T is the orthogonal projection of V on W.
Do the same for V = R3 and W = span({(1, 0, 1)}).

3. For each of the matrices A in Exercise 2 of Section 6.5:

(1) Verify that LA possesses a spectral decomposition.
(2) For each eigenvalue of LA, explicitly define the orthogonal projec-

tion on the corresponding eigenspace.
(3) Verify your results using the spectral theorem.

4. Let W be a finite-dimensional subspace of an inner product space V.
Show that if T is the orthogonal projection of V on W, then I−T is the
orthogonal projection of V on W⊥.

5. Let T be a linear operator on a finite-dimensional inner product space
V.

(a) If T is an orthogonal projection, prove that ‖T(x)‖ ≤ ‖x‖ for all
x ∈ V. Give an example of a projection for which this inequality
does not hold. What can be concluded about a projection for
which the inequality is actually an equality for all x ∈ V?

(b) Suppose that T is a projection such that ‖T(x)‖ ≤ ‖x‖ for x ∈ V.
Prove that T is an orthogonal projection.

6. Let T be a normal operator on a finite-dimensional inner product space.
Prove that if T is a projection, then T is also an orthogonal projection.

7. Let T be a normal operator on a finite-dimensional complex inner prod-
uct space V. Use the spectral decomposition λ1T1 + λ2T2 + · · ·+ λkTk

of T to prove the following results.

(a) If g is a polynomial, then

g(T) =
k∑

i=1

g(λi)Ti.

(b) If Tn = T0 for some n, then T = T0.
(c) Let U be a linear operator on V. Then U commutes with T if and

only if U commutes with each Ti.
(d) There exists a normal operator U on V such that U2 = T.
(e) T is invertible if and only if λi �= 0 for 1 ≤ i ≤ k.
(f) T is a projection if and only if every eigenvalue of T is 1 or 0.
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(g) T = −T∗ if and only if every λi is an imaginary number.

8. Use Corollary 1 of the spectral theorem to show that if T is a normal
operator on a complex finite-dimensional inner product space and U is
a linear operator that commutes with T, then U commutes with T∗.

9. Referring to Exercise 20 of Section 6.5, prove the following facts about
a partial isometry U.

(a) U∗U is an orthogonal projection on W.
(b) UU∗U = U.

10. Simultaneous diagonalization. Let U and T be normal operators on a
finite-dimensional complex inner product space V such that TU = UT.
Prove that there exists an orthonormal basis for V consisting of vectors
that are eigenvectors of both T and U. Hint: Use the hint of Exercise 14
of Section 6.4 along with Exercise 8.

11. Prove (c) of the spectral theorem.

6.7∗ THE SINGULAR VALUE DECOMPOSITION
AND THE PSEUDOINVERSE

In Section 6.4, we characterized normal operators on complex spaces and self-
adjoint operators on real spaces in terms of orthonormal bases of eigenvectors
and their corresponding eigenvalues (Theorems 6.16, p. 372, and 6.17, p. 374).
In this section, we establish a comparable theorem whose scope is the entire
class of linear transformations on both complex and real finite-dimensional
inner product spaces—the singular value theorem for linear transformations
(Theorem 6.26). There are similarities and differences among these theorems.
All rely on the use of orthonormal bases and numerical invariants. However,
because of its general scope, the singular value theorem is concerned with
two (usually distinct) inner product spaces and with two (usually distinct)
orthonormal bases. If the two spaces and the two bases are identical, then the
transformation would, in fact, be a normal or self-adjoint operator. Another
difference is that the numerical invariants in the singular value theorem, the
singular values, are nonnegative, in contrast to their counterparts, the eigen-
values, for which there is no such restriction. This property is necessary to
guarantee the uniqueness of singular values.

The singular value theorem encompasses both real and complex spaces.
For brevity, in this section we use the terms unitary operator and unitary
matrix to include orthogonal operators and orthogonal matrices in the context
of real spaces. Thus any operator T for which 〈T(x), T(y)〉 = 〈x, y〉, or any
matrix A for which 〈Ax, Ay〉 = 〈x, y〉, for all x and y is called unitary for the
purposes of this section.
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In Exercise 15 of Section 6.3, the definition of the adjoint of an operator
is extended to any linear transformation T : V → W, where V and W are
finite-dimensional inner product spaces. By this exercise, the adjoint T∗ of
T is a linear transformation from W to V and [T∗]βγ = ([T]γβ)∗, where β and
γ are orthonormal bases for V and W, respectively. Furthermore, the linear
operator T∗T on V is positive semidefinite and rank(T∗T) = rank(T) by
Exercise 18 of Section 6.4.

With these facts in mind, we begin with the principal result.

Theorem 6.26 (Singular Value Theorem for Linear Transforma-
tions). Let V and W be finite-dimensional inner product spaces, and let
T : V → W be a linear transformation of rank r. Then there exist orthonormal
bases {v1, v2, . . . , vn} for V and {u1, u2, . . . , um} for W and positive scalars
σ1 ≥ σ2 ≥ · · · ≥ σr such that

T(vi) =

{
σiui if 1 ≤ i ≤ r

0 if i > r.
(4)

Conversely, suppose that the preceding conditions are satisfied. Then for
1 ≤ i ≤ n, vi is an eigenvector of T∗T with corresponding eigenvalue σ2

i if
1 ≤ i ≤ r and 0 if i > r. Therefore the scalars σ1, σ2, . . . , σr are uniquely
determined by T.

Proof. We first establish the existence of the bases and scalars. By Ex-
ercises 18 of Section 6.4 and 15(d) of Section 6.3, T∗T is a positive semidef-
inite linear operator of rank r on V; hence there is an orthonormal basis
{v1, v2, . . . , vn} for V consisting of eigenvectors of T∗T with corresponding
eigenvalues λi, where λ1 ≥ λ2 ≥ · · · ≥ λr > 0, and λi = 0 for i > r. For

1 ≤ i ≤ r, define σi =
√

λi and ui =
1
σi

T(vi). We show that {u1, u2, . . . , ur}
is an orthonormal subset of W. Suppose 1 ≤ i, j ≤ r. Then

〈ui, uj〉 =

〈
1
σ i

T(vi),
1
σ j

T(vj)

〉

=
1

σiσj

〈
T∗T(vi), vj

〉

=
1

σiσj
〈λivi, vj〉

=
σ2

i

σiσj
〈vi, vj〉

= δij ,
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and hence {u1, u2, . . . , ur} is orthonormal. By Theorem 6.7(a) (p. 352), this
set extends to an orthonormal basis {u1, u2, . . . , ur, . . . , um} for W. Clearly
T(vi) = σiui if 1 ≤ i ≤ r. If i > r, then T∗T(vi) = 0 , and so T(vi) = 0 by
Exercise 15(d) of Section 6.3.

To establish uniqueness, suppose that {v1, v2, . . . , vn}, {u1, u2, . . . , um},
and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 satisfy the properties stated in the first part of
the theorem. Then for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

〈T∗(ui), vj〉 = 〈ui, T(vj)〉

=

{
σi if i = j ≤ r

0 otherwise,

and hence for any 1 ≤ i ≤ m,

T∗(ui) =
n∑

j=1

〈T∗(ui), vj〉 vj =

{
σivi if i = j ≤ r

0 otherwise.
(5)

So for i ≤ r,

T∗T(vi) = T∗(σiui) = σiT
∗(ui) = σ2

i ui

and T∗T(vi) = T∗(0 ) = 0 for i > r. Therefore each vi is an eigenvector of
T∗T with corresponding eigenvalue σ2

i if i ≤ r and 0 if i > r.

Definition. The unique scalars σ1, σ2, . . . , σr in Theorem 6.26 are called
the singular values of T. If r is less than both m and n, then the term
singular value is extended to include σr+1 = · · · = σk = 0, where k is the
minimum of m and n.

Although the singular values of a linear transformation T are uniquely de-
termined by T, the orthonormal bases given in the statement of Theorem 6.26
are not uniquely determined because there is more than one orthonormal basis
of eigenvectors of T∗T.

In view of (5), the singular values of a linear transformation T : V → W
and its adjoint T∗ are identical. Furthermore, the orthonormal bases for V
and W given in Theorem 6.26 are simply reversed for T∗.

Example 1

Let P2(R) and P1(R) be the polynomial spaces with inner products defined
by

〈f(x), g(x)〉 =
∫ 1

−1

f(t)g(t) dt.
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Let T : P2(R) → P1(R) be the linear transformation defined by T(f(x)) =
f ′(x). Find orthonormal bases β = {v1, v2, v3} for P2(R) and γ = {u1, u2} for
P1(R) such that T(vi) = σiui for i = 1, 2 and T(v3) = 0 , where σ1 ≥ σ2 > 0
are the nonzero singular values of T.

To facilitate the computations, we translate this problem into the corre-
sponding problem for a matrix representation of T. Caution is advised here
because not any matrix representation will do. Since the adjoint is defined
in terms of inner products, we must use a matrix representation constructed
from orthonormal bases for P2(R) and P1(R) to guarantee that the adjoint
of the matrix representation of T is the same as the matrix representation of
the adjoint of T. (See Exercise 15 of Section 6.3.) For this purpose, we use
the results of Exercise 21(a) of Section 6.2 to obtain orthonormal bases

α =

{
1√
2
,

√
3
2

x,

√
5
8

(3x2 − 1)

}
and α′ =

{
1√
2
,

√
3
2

x

}

for P2(R) and P1(R), respectively.

Let

A = [T]α
′

α =
(

0
√

3 0
0 0

√
15

)
.

Then

A∗A =

⎛⎝ 0 0√
3 0

0
√

15

⎞⎠(
0

√
3 0

0 0
√

15

)
=

⎛⎝0 0 0
0 3 0
0 0 15

⎞⎠ ,

which has eigenvalues (listed in descending order of size) λ1 = 15, λ2 = 3,
and λ3 = 0. These eigenvalues correspond, respectively, to the orthonormal
eigenvectors e3 = (0, 0, 1), e2 = (0, 1, 0), and e1 = (1, 0, 0) in R3. Translating
everything into the context of T, P2(R), and P1(R), let

v1 =

√
5
8

(3x2 − 1), v2 =

√
3
2

x, and v3 =
1√
2
.

Then β = {v1, v2, v3} is an orthonormal basis for P2(R) consisting of eigen-
vectors of T∗T with corresponding eigenvalues λ1, λ2, and λ3. Now set
σ1 =

√
λ1 =

√
15 and σ2 =

√
λ2 =

√
3, the nonzero singular values of T,

and take

u1 =
1
σ1

T(v1) =

√
3
2

x and u2 =
1
σ2

T(v2) =
1√
2
,

to obtain the required basis γ = {u1, u2} for P1(R). ♦
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We can use singular values to describe how a figure is distorted by a linear
transformation. This is illustrated in the next example.

Example 2

Let T be an invertible linear operator on R2 and S = {x ∈ R2 : ‖x‖ = 1}, the
unit circle in R2. We apply Theorem 6.26 to describe S′ = T(S).

Since T is invertible, it has rank equal to 2 and hence has singular values
σ1 ≥ σ2 > 0. Let {v1, v2} and β = {u1, u2} be orthonormal bases for R2 so
that T(v1) = σ1u1 and T(v2) = σ2u2, as in Theorem 6.26. Then β determines
a coordinate system, which we shall call the x′y′-coordinate system for R2,
where the x′-axis contains u1 and the y′-axis contains u2. For any vector

u ∈ R2, if u = x′
1u1 + x′

2u2, then [u]β =
(

x′
1

x′
2

)
is the coordinate vector of u

relative to β. We characterize S′ in terms of an equation relating x′
1 and x′

2.

For any vector v = x1v1 + x2v2 ∈ R2, the equation u = T(v) means that

u = T(x1v1 + x2v2) = x1T(v1) + x2T(v2) = x1σ1u1 + x2σ2u2.

Thus for u = x′
1u1 + x′

2u2, we have x′
1 = x1σ1 and x′

2 = x2σ2. Furthermore,
u ∈ S′ if and only if v ∈ S if and only if

(x′
1)

2

σ2
1

+
(x′

2)
2

σ2
2

= x2
1 + x2

2 = 1.

If σ1 = σ2, this is the equation of a circle of radius σ1, and if σ1 > σ2, this is
the equation of an ellipse with major axis and minor axis oriented along the
x′-axis and the y′-axis, respectively. (See Figure 6.6.) ♦
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The singular value theorem for linear transformations is useful in its ma-
trix form because we can perform numerical computations on matrices. We
begin with the definition of the singular values of a matrix.

Definition. Let A be an m× n matrix. We define the singular values
of A to be the singular values of the linear transformation LA.

Theorem 6.27 (Singular Value Decomposition Theorem for Ma-
trices). Let A be an m × n matrix of rank r with the positive singular
values σ1 ≥ σ2 ≥ · · · ≥ σr, and let Σ be the m × n matrix defined by

Σij =

{
σi if i = j ≤ r

0 otherwise.

Then there exists an m × m unitary matrix U and an n × n unitary matrix
V such that

A = UΣV ∗.

Proof. Let T = LA : Fn → Fm. By Theorem 6.26, there exist orthonormal
bases β = {v1, v2, . . . , vn} for Fn and γ = {u1, u2, . . . , um} for Fm such that
T(vi) = σiui for 1 ≤ i ≤ r and T(vi) = 0 for i > r. Let U be the m × m
matrix whose jth column is uj for all j, and let V be the n×n matrix whose
jth column is vj for all j. Note that both U and V are unitary matrices.

By Theorem 2.13(a) (p. 90), the jth column of AV is Avj = σjuj . Observe
that the jth column of Σ is σjej , where ej is the jth standard vector of Fm.
So by Theorem 2.13(a) and (b), the jth column of UΣ is given by

U(σjej) = σjU(ej) = σjuj .

It follows that AV and UΣ are m×n matrices whose corresponding columns
are equal, and hence AV = UΣ. Therefore A = AV V ∗ = UΣV ∗.

Definition. Let A be an m × n matrix of rank r with positive singular
values σ1 ≥ σ2 ≥ · · · ≥ σr. A factorization A = UΣV ∗ where U and V are
unitary matrices and Σ is the m × n matrix defined as in Theorem 6.27 is
called a singular value decomposition of A.

In the proof of Theorem 6.27, the columns of V are the vectors in β, and
the columns of U are the vectors in γ. Furthermore, the nonzero singular
values of A are the same as those of LA; hence they are the square roots of
the nonzero eigenvalues of A∗A or of AA∗. (See Exercise 9.)
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Example 3

We find a singular value decomposition for A =
(

1 1 −1
1 1 −1

)
.

First observe that for

v1 =
1√
3

⎛⎝ 1
1

−1

⎞⎠ , v2 =
1√
2

⎛⎝ 1
−1

0

⎞⎠ , and v3 =
1√
6

⎛⎝1
1
2

⎞⎠ ,

the set β = {v1, v2, v3} is an orthonormal basis for R3 consisting of eigen-
vectors of A∗A with corresponding eigenvalues λ1 = 6, and λ2 = λ3 = 0.
Consequently, σ1 =

√
6 is the only nonzero singular value of A. Hence, as in

the proof of Theorem 6.27, we let V be the matrix whose columns are the
vectors in β. Then

Σ =
(√

6 0 0
0 0 0

)
and V =

⎛⎜⎜⎝
1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

−1√
3

0 2√
6

⎞⎟⎟⎠ .

Also, as in Theorem 6.27, we take

u1 =
1
σi

LA(v1) =
1
σi

Av1 =
1√
2

(
1
1

)
.

Next choose u2 =
1√
2

(
1

−1

)
, a unit vector orthogonal to u1, to obtain the

orthonormal basis γ = {u1, u2} for R2, and set

U =

(
1√
2

1√
2

1√
2

−1√
2

)
.

Then A = UΣV ∗ is the desired singular value decomposition. ♦

The Polar Decomposition of a Square Matrix

A singular value decomposition of a matrix can be used to factor a square
matrix in a manner analogous to the factoring of a complex number as the
product of a complex number of length 1 and a nonnegative number. In the
case of matrices, the complex number of length 1 is replaced by a unitary
matrix, and the nonnegative number is replaced by a positive semidefinite
matrix.

Theorem 6.28 (Polar Decomposition). For any square matrix A,
there exists a unitary matrix W and a positive semidefinite matrix P such
that

A = WP.
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Furthermore, if A is invertible, then the representation is unique.

Proof. By Theorem 6.27, there exist unitary matrices U and V and a
diagonal matrix Σ with nonnegative diagonal entries such that A = UΣV ∗.
So

A = UΣV ∗ = UV ∗V ΣV ∗ = WP,

where W = UV ∗ and P = V ΣV ∗. Since W is the product of unitary matrices,
W is unitary, and since Σ is positive semidefinite and P is unitarily equivalent
to Σ, P is positive semidefinite by Exercise 14 of Section 6.5.

Now suppose that A is invertible and factors as the products

A = WP = ZQ,

where W and Z are unitary and P and Q are positive semidefinite. Since A
is invertible, it follows that P and Q are positive definite and invertible, and
therefore Z∗W = QP−1. Thus QP−1 is unitary, and so

I = (QP−1)∗(QP−1) = P−1Q2P−1.

Hence P 2 = Q2. Since both P and Q are positive definite, it follows that
P = Q by Exercise 17 of Section 6.4. Therefore W = Z, and consequently
the factorization is unique.

The factorization of a square matrix A as WP where W is unitary and P
is positive semidefinite, is called a polar decomposition of A.

Example 4

To find the polar decomposition of A =
(

11 −5
−2 10

)
, we begin by finding a sin-

gular value decomposition UΣV ∗ of A. The object is to find an orthonormal
basis β for R2 consisting of eigenvectors of A∗A. It can be shown that

v1 =
1√
2

(
1

−1

)
and v2 =

1√
2

(
1
1

)
are orthonormal eigenvectors of A∗A with corresponding eigenvalues λ1 = 200
and λ2 = 50. So β = {v1, v2} is an appropriate basis. Thus σ1 =

√
200 =

10
√

2 and σ2 =
√

50 = 5
√

2 are the singular values of A. So we have

V =

(
1√
2

1√
2

−1√
2

1√
2

)
and Σ =

(
10
√

2 0
0 5

√
2

)
.

Next, we find the columns u1 and u2 of U :

u1 =
1
σ1

Av1 =
1
5

(
4

−3

)
and u2 =

1
σ2

Av2 =
1
5

(
3
4

)
.
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Thus

U =

(
4
5

3
5

− 3
5

4
5

)
.

Therefore, in the notation of Theorem 6.28, we have

W = UV ∗ =

(
4
5

3
5

− 3
5

4
5

)(
1√
2

−1√
2

1√
2

1√
2

)
=

1
5
√

2

(
7 −1
1 7

)
,

and

P = V ΣV ∗ =

(
1√
2

1√
2

−1√
2

1√
2

)(
10
√

2 0
0 5

√
2

)( 1√
2

−1√
2

1√
2

1√
2

)
=

5√
2

(
3 −1

−1 3

)
.

♦

The Pseudoinverse

Let V and W be finite-dimensional inner product spaces over the same
field, and let T : V → W be a linear transformation. It is desirable to have a
linear transformation from W to V that captures some of the essence of an
inverse of T even if T is not invertible. A simple approach to this problem
is to focus on the “part” of T that is invertible, namely, the restriction of
T to N(T)⊥. Let L : N(T)⊥ → R(T) be the linear transformation defined by
L(x) = T(x) for all x ∈ N(T)⊥. Then L is invertible, and we can use the
inverse of L to construct a linear transformation from W to V that salvages
some of the benefits of an inverse of T.

Definition. Let V and W be finite-dimensional inner product spaces
over the same field, and let T : V → W be a linear transformation. Let
L : N(T)⊥ → R(T) be the linear transformation defined by L(x) = T(x) for all
x ∈ N(T)⊥. The pseudoinverse (or Moore-Penrose generalized inverse) of
T, denoted by T †, is defined as the unique linear transformation from W to
V such that

T†(y) =

{
L−1(y) for y ∈ R(T)
0 for y ∈ R(T)⊥.

The pseudoinverse of a linear transformation T on a finite-dimensional
inner product space exists even if T is not invertible. Furthermore, if T
is invertible, then T† = T−1 because N(T)⊥ = V, and L (as just defined)
coincides with T.

As an extreme example, consider the zero transformation T0 : V → W
between two finite-dimensional inner product spaces V and W. Then R(T0) =
{0}, and therefore T† is the zero transformation from W to V.
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We can use the singular value theorem to describe the pseudoinverse of a
linear transformation. Suppose that V and W are finite-dimensional vector
spaces and T : V → W is a linear transformation or rank r. Let {v1, v2, . . . , vn}
and {u1, u2, . . . , um} be orthonormal bases for V and W, respectively, and let
σ1 ≥ σ2 ≥ · · · ≥ σr be the nonzero singular values of T satisfying (4) in Theo-
rem 6.26. Then {v1, v2, . . . , vr} is a basis for N(T)⊥, {vr+1, vr+2, . . . , vn} is a
basis for N(T), {u1, u2, . . . , ur} is a basis for R(T), and {ur+1, ur+2, . . . , um} is
a basis for R(T)⊥. Let L be the restriction of T to N(T)⊥, as in the definition

of pseudoinverse. Then L−1(ui) =
1
σi

vi for 1 ≤ i ≤ r. Therefore

T†(ui) =

⎧⎨⎩
1
σi

vi if 1 ≤ i ≤ r

0 if r < i ≤ m.

(6)

Example 5

Let T : P2(R) → P1(R) be the linear transformation defined by T(f(x)) =
f ′(x), as in Example 1. Let β = {v1, v2, v3} and γ = {u1, u2} be the or-
thonormal bases for P2(R) and P1(R) in Example 1. Then σ1 =

√
15 and

σ2 =
√

3 are the nonzero singular values of T. It follows that

T†
(√

3
2
x

)
= T†(u1) =

1
σ1

v1 =
1√
15

√
5
8
(3x2 − 1),

and hence

T†(x) =
1
6
(3x2 − 1).

Similarly, T†(1) = x. Thus, for any polynomial a + bx ∈ P1(R),

T†(a + bx) = aT†(1) + bT†(x) = ax +
b

6
(3x2 − 1). ♦

The Pseudoinverse of a Matrix

Let A be an m × n matrix. Then there exists a unique n × m matrix B
such that (LA)† : Fm → Fn is equal to the left-multiplication transformation
LB . We call B the pseudoinverse of A and denote it by B = A†. Thus

(LA)† = LA† .

Let A be an m × n matrix of rank r. The pseudoinverse of A can be
computed with the aid of a singular value decomposition A = UΣV ∗. Let
β and γ be the ordered bases whose vectors are the columns of V and U ,
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respectively, and let σ1 ≥ σ2 ≥ · · · ≥ σr be the nonzero singular values of
A. Then β and γ are orthonormal bases for Fn and Fm, respectively, and (4)
and (6) are satisfied for T = LA. Reversing the roles of β and γ in the proof
of Theorem 6.27, we obtain the following result.

Theorem 6.29. Let A be an m×n matrix of rank r with a singular value
decomposition A = UΣV ∗ and nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σr.
Let Σ† be the n × m matrix defined by

Σ†
ij =

⎧⎨⎩
1
σi

if i = j ≤ r

0 otherwise.

Then A† = V Σ†U∗, and this is a singular value decomposition of A†.

Notice that Σ† as defined in Theorem 6.29 is actually the pseudoinverse
of Σ.

Example 6

We find A† for the matrix A =
(

1 1 −1
1 1 −1

)
.

Since A is the matrix of Example 3, we can use the singular value decom-
position obtained in that example:

A = UΣV ∗ =

(
1√
2

1√
2

1√
2

−1√
2

)(√
6 0 0

0 0 0

)⎛⎜⎜⎝
1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

−1√
3

0 2√
6

⎞⎟⎟⎠
∗

.

By Theorem 6.29, we have

A† = V Σ†U∗ =

⎛⎜⎜⎝
1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

−1√
3

0 2√
6

⎞⎟⎟⎠
⎛⎜⎝

1√
6

0

0 0
0 0

⎞⎟⎠(
1√
2

1√
2

1√
2

−1√
2

)
=

1
6

⎛⎝ 1 1
1 1

−1 −1

⎞⎠ .

♦
Notice that the linear transformation T of Example 5 is LA, where A is

the matrix of Example 6, and that T† = LA† .

The Pseudoinverse and Systems of Linear Equations

Let A be an m × n matrix with entries in F . Then for any b ∈ Fm, the
matrix equation Ax = b is a system of linear equations, and so it either has no
solutions, a unique solution, or infinitely many solutions. We know that the
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system has a unique solution for every b ∈ Fm if and only if A is invertible,
in which case the solution is given by A−1b. Furthermore, if A is invertible,
then A−1 = A†, and so the solution can be written as x = A†b. If, on the
other hand, A is not invertible or the system Ax = b is inconsistent, then A†b
still exists. We therefore pose the following question: In general, how is the
vector A†b related to the system of linear equations Ax = b?

In order to answer this question, we need the following lemma.

Lemma. Let V and W be finite-dimensional inner product spaces, and let
T : V → W be linear. Then

(a) T†T is the orthogonal projection of V on N(T)⊥.
(b) TT† is the orthogonal projection of W on R(T).

Proof. As in the earlier discussion, we define L : N(T)⊥ → W by L(x) =
T(x) for all x ∈ N(T)⊥. If x ∈ N(T)⊥, then T†T(x) = L−1L(x) = x, and if
x ∈ N(T), then T†T(x) = T†(0 ) = 0 . Consequently T†T is the orthogonal
projection of V on N(T)⊥. This proves (a).

The proof of (b) is similar and is left as an exercise.

Theorem 6.30. Consider the system of linear equations Ax = b, where
A is an m × n matrix and b ∈ Fm. If z = A†b, then z has the following
properties.

(a) If Ax = b is consistent, then z is the unique solution to the system
having minimum norm. That is, z is a solution to the system, and if y
is any solution to the system, then ‖z‖ ≤ ‖y‖ with equality if and only
if z = y.

(b) If Ax = b is inconsistent, then z is the unique best approximation to a
solution having minimum norm. That is, ‖Az − b‖ ≤ ‖Ay − b‖ for any
y ∈ Fn, with equality if and only if Az = Ay. Furthermore, if Az = Ay,
then ‖z‖ ≤ ‖y‖ with equality if and only if z = y.

Proof. For convenience, let T = LA.
(a) Suppose that Ax = b is consistent, and let z = A†b. Observe that

b ∈ R(T), and therefore Az = AA†b = TT†(b) = b by part (b) of the lemma.
Thus z is a solution to the system. Now suppose that y is any solution to the
system. Then

T†T(y) = A†Ay = A†b = z,

and hence z is the orthogonal projection of y on N(T)⊥ by part (a) of the
lemma. Therefore, by the corollary to Theorem 6.6 (p. 350), we have that
‖z‖ ≤ ‖y‖ with equality if and only if z = y.

(b) Suppose that Ax = b is inconsistent. By the lemma, Az = AA†b =
TT†(b) = b is the orthogonal projection of b on R(T); therefore, by the corol-
lary to Theorem 6.6 (p. 350), Az is the vector in R(T) nearest b. That is, if



Sec. 6.7 The Singular Value Decomposition and the Pseudoinverse 417

Ay is any other vector in R(T), then ‖Az − b‖ ≤ ‖Ay − b‖ with equality if
and only if Az = Ay.

Finally, suppose that y is any vector in Fn such that Az = Ay = c. Then

A†c = A†Az = A†AA†b = A†b = z

by Exercise 23; hence we may apply part (a) of this theorem to the system
Ax = c to conclude that ‖z‖ ≤ ‖y‖ with equality if and only if z = y.

Note that the vector z = A†b in Theorem 6.30 is the vector x0 described
in Theorem 6.12 that arises in the least squares application on pages 360–364.

Example 7

Consider the linear systems

x1 + x2 − x3 = 1
x1 + x2 − x3 = 1 and

x1 + x2 − x3 = 1
x1 + x2 − x3 = 2.

The first system has infinitely many solutions. Let A =
(

1 1 −1
1 1 −1

)
, the

coefficient matrix of the system, and let b =
(

1
1

)
. By Example 6,

A† =
1
6

⎛⎝ 1 1
1 1

−1 −1

⎞⎠ ,

and therefore

z = A†b =
1
6

⎛⎝ 1 1
1 1

−1 −1

⎞⎠(
1
1

)
=

1
3

⎛⎝ 1
1

−1

⎞⎠
is the solution of minimal norm by Theorem 6.30(a).

The second system is obviously inconsistent. Let b =
(

1
2

)
. Thus, al-

though

z = A†b =
1
6

⎛⎝ 1 1
1 1

−1 −1

⎞⎠(
1
2

)
=

1
2

⎛⎝ 1
1

−1

⎞⎠
is not a solution to the second system, it is the “best approximation” to a
solution having minimum norm, as described in Theorem 6.30(b). ♦
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EXERCISES

1. Label the following statements as true or false.

(a) The singular values of any linear operator on a finite-dimensional
vector space are also eigenvalues of the operator.

(b) The singular values of any matrix A are the eigenvalues of A∗A.
(c) For any matrix A and any scalar c, if σ is a singular value of A,

then |c|σ is a singular value of cA.
(d) The singular values of any linear operator are nonnegative.
(e) If λ is an eigenvalue of a self-adjoint matrix A, then λ is a singular

value of A.
(f) For any m×n matrix A and any b ∈ Fn, the vector A†b is a solution

to Ax = b.
(g) The pseudoinverse of any linear operator exists even if the operator

is not invertible.

2. Let T : V → W be a linear transformation of rank r, where V and W
are finite-dimensional inner product spaces. In each of the following,
find orthonormal bases {v1, v2, . . . , vn} for V and {u1, u2, . . . , um} for
W, and the nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σr of T such that
T(vi) = σiui for 1 ≤ i ≤ r.

(a) T : R2 → R3 defined by T(x1, x2) = (x1, x1 + x2, x1 − x2)
(b) T : P2(R) → P1(R), where T(f(x)) = f ′′(x), and the inner prod-

ucts are defined as in Example 1
(c) Let V = W = span({1, sin x, cos x}) with the inner product defined

by 〈f, g〉 =
∫ 2π

0
f(t)g(t) dt, and T is defined by T(f) = f ′ + 2f

(d) T : C2 → C2 defined by T(z1, z2) = ((1 − i)z2, (1 + i)z1 + z2)

3. Find a singular value decomposition for each of the following matrices.

(a)

⎛⎝ 1 1
1 1

−1 −1

⎞⎠ (b)
(

1 0 1
1 0 −1

)
(c)

⎛⎜⎜⎝
1 1
0 1
1 0
1 1

⎞⎟⎟⎠
(d)

⎛⎝1 1 1
1 −1 0
1 0 −1

⎞⎠ (e)
(

1 + i 1
1 − i −i

)
(f)

⎛⎝1 1 1 1
1 0 −2 1
1 −1 1 1

⎞⎠
4. Find a polar decomposition for each of the following matrices.

(a)
(

1 1
2 −2

)
(b)

⎛⎝20 4 0
0 0 1
4 20 0

⎞⎠
5. Find an explicit formula for each of the following expressions.
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(a) T†(x1, x2, x3), where T is the linear transformation of Exercise 2(a)
(b) T†(a + bx + cx2), where T is the linear transformation of Exer-

cise 2(b)
(c) T†(a + b sin x + c cos x), where T is the linear transformation of

Exercise 2(c)
(d) T†(z1, z2), where T is the linear transformation of Exercise 2(d)

6. Use the results of Exercise 3 to find the pseudoinverse of each of the
following matrices.

(a)

⎛⎝ 1 1
1 1

−1 −1

⎞⎠ (b)
(

1 0 1
1 0 −1

)
(c)

⎛⎜⎜⎝
1 1
0 1
1 0
1 1

⎞⎟⎟⎠
(d)

⎛⎝1 1 1
1 −1 0
1 0 −1

⎞⎠ (e)
(

1 + i 1
1 − i −i

)
(f)

⎛⎝1 1 1 1
1 0 −2 1
1 −1 1 1

⎞⎠
7. For each of the given linear transformations T : V → W,

(i) Describe the subspace Z1 of V such that T†T is the orthogonal
projection of V on Z1.

(ii) Describe the subspace Z2 of W such that TT† is the orthogonal
projection of W on Z2.

(a) T is the linear transformation of Exercise 2(a)
(b) T is the linear transformation of Exercise 2(b)
(c) T is the linear transformation of Exercise 2(c)
(d) T is the linear transformation of Exercise 2(d)

8. For each of the given systems of linear equations,
(i) If the system is consistent, find the unique solution having mini-

mum norm.
(ii) If the system is inconsistent, find the “best approximation to a

solution” having minimum norm, as described in Theorem 6.30(b).
(Use your answers to parts (a) and (f) of Exercise 6.)

(a)
x1 + x2 = 1
x1 + x2 = 2

−x1 + −x2 = 0
(b)

x1 + x2 + x3 + x4 = 2
x1 − 2x3 + x4 = −1
x1 − x2 + x3 + x4 = 2

9. Let V and W be finite-dimensional inner product spaces over F , and sup-
pose that {v1, v2, . . . , vn} and {u1, u2, . . . , um} are orthonormal bases
for V and W, respectively. Let T : V → W is a linear transformation of
rank r, and suppose that σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are such that

T(vi) =

{
σiui if 1 ≤ i ≤ r

0 if r < i.
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(a) Prove that {u1, u2, . . . , um} is a set of eigenvectors of TT∗ with
corresponding eigenvalues λ1, λ2, . . . , λm, where

λi =

{
σ2

i if 1 ≤ i ≤ r

0 if r < i.

(b) Let A be an m×n matrix with real or complex entries. Prove that
the nonzero singular values of A are the positive square roots of
the nonzero eigenvalues of AA∗, including repetitions.

(c) Prove that TT∗ and T∗T have the same nonzero eigenvalues, in-
cluding repetitions.

(d) State and prove a result for matrices analogous to (c).

10. Use Exercise 8 of Section 2.5 to obtain another proof of Theorem 6.27,
the singular value decomposition theorem for matrices.

11. This exercise relates the singular values of a well-behaved linear operator
or matrix to its eigenvalues.

(a) Let T be a normal linear operator on an n-dimensional inner prod-
uct space with eigenvalues λ1, λ2, . . . , λn. Prove that the singular
values of T are |λ1|, |λ2|, . . . , |λn|.

(b) State and prove a result for matrices analogous to (a).

12. Let A be a normal matrix with an orthonormal basis of eigenvectors
β = {v1, v2, . . . , vn} and corresponding eigenvalues λ1, λ2, . . . , λn. Let
V be the n × n matrix whose columns are the vectors in β. Prove that
for each i there is a scalar θi of absolute value 1 such that if U is the
n × n matrix with θivi as column i and Σ is the diagonal matrix such
that Σii = |λi| for each i, then UΣV ∗ is a singular value decomposition
of A.

13. Prove that if A is a positive semidefinite matrix, then the singular values
of A are the same as the eigenvalues of A.

14. Prove that if A is a positive definite matrix and A = UΣV ∗ is a singular
value decomposition of A, then U = V .

15. Let A be a square matrix with a polar decomposition A = WP .

(a) Prove that A is normal if and only if WP 2 = P 2W .
(b) Use (a) to prove that A is normal if and only if WP = PW .

16. Let A be a square matrix. Prove an alternate form of the polar de-
composition for A: There exists a unitary matrix W and a positive
semidefinite matrix P such that A = PW .
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17. Let T and U be linear operators on R2 defined for all (x1, x2) ∈ R2 by

T(x1, x2) = (x1, 0) and U(x1, x2) = (x1 + x2, 0).

(a) Prove that (UT)† �= T†U†.
(b) Exhibit matrices A and B such that AB is defined, but (AB)† �=

B†A†.

18. Let A be an m × n matrix. Prove the following results.

(a) For any m × m unitary matrix G, (GA)† = A†G∗.
(b) For any n × n unitary matrix H, (AH)† = H∗A†.

19. Let A be a matrix with real or complex entries. Prove the following
results.

(a) The nonzero singular values of A are the same as the nonzero
singular values of A∗, which are the same as the nonzero singular
values of At.

(b) (A†)∗ = (A∗)†.
(c) (A†)t = (At)†.

20. Let A be a square matrix such that A2 = O. Prove that (A†)2 = O.

21. Let V and W be finite-dimensional inner product spaces, and let
T : V → W be linear. Prove the following results.

(a) TT†T = T.
(b) T†TT† = T†.
(c) Both T†T and TT† are self-adjoint.

The preceding three statements are called the Penrose conditions,
and they characterize the pseudoinverse of a linear transformation as
shown in Exercise 22.

22. Let V and W be finite-dimensional inner product spaces. Let T : V → W
and U : W → V be linear transformations such that TUT = T, UTU = U,
and both UT and TU are self-adjoint. Prove that U = T†.

23. State and prove a result for matrices that is analogous to the result of
Exercise 21.

24. State and prove a result for matrices that is analogous to the result of
Exercise 22.

25. Let V and W be finite-dimensional inner product spaces, and let
T : V → W be linear. Prove the following results.

(a) If T is one-to-one, then T∗T is invertible and T† = (T∗T)−1T∗.
(b) If T is onto, then TT∗ is invertible and T† = T∗(TT∗)−1.
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26. Let V and W be finite-dimensional inner product spaces with orthonor-
mal bases β and γ, respectively, and let T : V → W be linear. Prove
that ([T]γβ)† = [T†]βγ .

27. Let V and W be finite-dimensional inner product spaces, and let
T : V → W be a linear transformation. Prove part (b) of the lemma
to Theorem 6.30: TT† is the orthogonal projection of W on R(T).

6.8∗ BILINEAR AND QUADRATIC FORMS

There is a certain class of scalar-valued functions of two variables defined on
a vector space that arises in the study of such diverse subjects as geometry
and multivariable calculus. This is the class of bilinear forms. We study the
basic properties of this class with a special emphasis on symmetric bilinear
forms, and we consider some of its applications to quadratic surfaces and
multivariable calculus.

Bilinear Forms

Definition. Let V be a vector space over a field F . A function H from
the set V×V of ordered pairs of vectors to F is called a bilinear form on V
if H is linear in each variable when the other variable is held fixed; that is,
H is a bilinear form on V if

(a) H(ax1 + x2, y) = aH(x1, y) + H(x2, y) for all x1, x2, y ∈ V and a ∈ F
(b) H(x, ay1 + y2) = aH(x, y1) + H(x, y2) for all x, y1, y2 ∈ V and a ∈ F .

We denote the set of all bilinear forms on V by B(V). Observe that an
inner product on a vector space is a bilinear form if the underlying field is
real, but not if the underlying field is complex.

Example 1

Define a function H : R2 × R2 → R by

H

((
a1

a2

)
,

(
b1

b2

))
= 2a1b1 + 3a1b2 + 4a2b1 − a2b2 for

(
a1

a2

)
,

(
b1

b2

)
∈ R2.

We could verify directly that H is a bilinear form on R2. However, it is more
enlightening and less tedious to observe that if

A =
(

2 3
4 −1

)
, x =

(
a1

a2

)
, and y =

(
b1

b2

)
,

then

H(x, y) = xtAy.

The bilinearity of H now follows directly from the distributive property of
matrix multiplication over matrix addition. ♦
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The preceding bilinear form is a special case of the next example.

Example 2

Let V = Fn, where the vectors are considered as column vectors. For any
A ∈ Mn×n(F ), define H : V × V → F by

H(x, y) = xtAy for x, y ∈ V.

Notice that since x and y are n×1 matrices and A is an n×n matrix, H(x, y)
is a 1×1 matrix. We identify this matrix with its single entry. The bilinearity
of H follows as in Example 1. For example, for a ∈ F and x1, x2, y ∈ V, we
have

H(ax1 + x2, y) = (ax1 + x2)tAy = (axt
1 + xt

2)Ay

= axt
1Ay + xt

2Ay

= aH(x1, y) + H(x2, y). ♦

We list several properties possessed by all bilinear forms. Their proofs are
left to the reader (see Exercise 2).

For any bilinear form H on a vector space V over a field F , the following
properties hold.

1. If, for any x ∈ V, the functions Lx, Rx : V → F are defined by

Lx(y) = H(x, y) and Rx(y) = H(y, x) for all y ∈ V,

then Lx and Rx are linear.
2. H(0 , x) = H(x, 0 ) = 0 for all x ∈ V.
3. For all x, y, z, w ∈ V,

H(x + y, z + w) = H(x, z) + H(x, w) + H(y, z) + H(y, w).

4. If J : V × V → F is defined by J(x, y) = H(y, x), then J is a bilinear
form.

Definitions. Let V be a vector space, let H1 and H2 be bilinear forms
on V, and let a be a scalar. We define the sum H1 + H2 and the scalar
product aH1 by the equations

(H1 + H2)(x, y) = H1(x, y) + H2(x, y)

and

(aH1)(x, y) = a(H1(x, y)) for all x, y ∈ V.

The following theorem is an immediate consequence of the definitions.
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Theorem 6.31. For any vector space V, the sum of two bilinear forms
and the product of a scalar and a bilinear form on V are again bilinear forms
on V. Furthermore, B(V) is a vector space with respect to these operations.

Proof. Exercise.

Let β = {v1, v2, . . . , vn} be an ordered basis for an n-dimensional vector
space V, and let H ∈ B(V). We can associate with H an n × n matrix A
whose entry in row i and column j is defined by

Aij = H(vi, vj) for i, j = 1, 2, . . . , n.

Definition. The matrix A above is called the matrix representation
of H with respect to the ordered basis β and is denoted by ψβ(H).

We can therefore regard ψβ as a mapping from B(V) to Mn×n(F ), where
F is the field of scalars for V, that takes a bilinear form H into its matrix
representation ψβ(H). We first consider an example and then show that ψβ

is an isomorphism.

Example 3

Consider the bilinear form H of Example 1, and let

β =
{(

1
1

)
,

(
1

−1

)}
and B = ψβ(H).

Then

B11 = H

((
1
1

)
,

(
1
1

))
= 2 + 3 + 4 − 1 = 8,

B12 = H

((
1
1

)
,

(
1

−1

))
= 2 − 3 + 4 + 1 = 4,

B21 = H

((
1

−1

)
,

(
1
1

))
= 2 + 3 − 4 + 1 = 2,

and

B22 = H

((
1

−1

)
,

(
1

−1

))
= 2 − 3 − 4 − 1 = −6.

So

ψβ(H) =
(

8 4
2 −6

)
.

If γ is the standard ordered basis for R2, the reader can verify that

ψγ(H) =
(

2 3
4 −1

)
. ♦
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Theorem 6.32. For any n-dimensional vector space V over F and any
ordered basis β for V, ψβ : B(V) → Mn×n(F ) is an isomorphism.

Proof. We leave the proof that ψβ is linear to the reader.
To show that ψβ is one-to-one, suppose that ψβ(H) = O for some H ∈

B(V). Fix vi ∈ β, and recall the mapping Lvi
: V → F , which is linear by

property 1 on page 423. By hypothesis, Lvi
(vj) = H(vi, vj) = 0 for all vj ∈ β.

Hence Lvi
is the zero transformation from V to F . So

H(vi, x) = Lvi(x) = 0 for all x ∈ V and vi ∈ β. (7)

Next fix an arbitrary y ∈ V, and recall the linear mapping Ry : V → F defined
in property 1 on page 423. By (7), Ry(vi) = H(vi, y) = 0 for all vi ∈ β, and
hence Ry is the zero transformation. So H(x, y) = Ry(x) = 0 for all x, y ∈ V.
Thus H is the zero bilinear form, and therefore ψβ is one-to-one.

To show that ψβ is onto, consider any A ∈ Mn×n(F ). Recall the isomor-
phism φβ : V → Fn defined in Section 2.4. For x ∈ V, we view φβ(x) ∈ Fn as
a column vector. Let H : V × V → F be the mapping defined by

H(x, y) = [φβ(x)]tA[φβ(y)] for all x, y ∈ V.

A slight embellishment of the method of Example 2 can be used to prove that
H ∈ B(V). We show that ψβ(H) = A. Let vi, vj ∈ β. Then φβ(vi) = ei and
φβ(vj) = ej ; hence, for any i and j,

H(vi, vj) = [φβ(vi)]tA[φβ(vj)] = et
iAej = Aij .

We conclude that ψβ(H) = A and ψβ is onto.

Corollary 1. For any n-dimensional vector space V, B(V) has dimen-
sion n2.

Proof. Exercise.

The following corollary is easily established by reviewing the proof of
Theorem 6.32.

Corollary 2. Let V be an n-dimensional vector space over F with
ordered basis β. If H ∈ B(V) and A ∈ Mn×n(F ), then ψβ(H) = A if and
only if H(x, y) = [φβ(x)]tA[φβ(y)] for all x, y ∈ V.

The following result is now an immediate consequence of Corollary 2.

Corollary 3. Let F be a field, n a positive integer, and β be the standard
ordered basis for Fn. Then for any H ∈ B(Fn), there exists a unique matrix
A ∈ Mn×n(F ), namely, A = ψβ(H), such that

H(x, y) = xtAy for all x, y ∈ Fn.
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Example 4

Define a function H : R2 × R2 → R by

H

((
a1

a2

)
,

(
b1

b2

))
= det

(
a1 b1

a2 b2

)
= a1b2 − a2b1 for

(
a1

a2

)
,

(
b1

b2

)
∈ R2.

It can be shown that H is a bilinear form. We find the matrix A in Corollary 3
such that H(x, y) = xtAy for all x, y ∈ R2.

Since Aij = H(ei, ej) for all i and j, we have

A11 = det
(

1 1
0 0

)
= 0 A12 = det

(
1 0
0 1

)
= 1,

A21 = det
(

0 1
1 0

)
= −1 and A22 = det

(
0 0
1 1

)
= 0.

Therefore A =
(

0 1
−1 0

)
. ♦

There is an analogy between bilinear forms and linear operators on finite-
dimensional vector spaces in that both are associated with unique square
matrices and the correspondences depend on the choice of an ordered basis for
the vector space. As in the case of linear operators, one can pose the following
question: How does the matrix corresponding to a fixed bilinear form change
when the ordered basis is changed? As we have seen, the corresponding
question for matrix representations of linear operators leads to the definition
of the similarity relation on square matrices. In the case of bilinear forms,
the corresponding question leads to another relation on square matrices, the
congruence relation.

Definition. Let A, B ∈ Mn×n(F ). Then B is said to be congruent to
A if there exists an invertible matrix Q ∈ Mn×n(F ) such that B = QtAQ.

Observe that the relation of congruence is an equivalence relation (see
Exercise 12).

The next theorem relates congruence to the matrix representation of a
bilinear form.

Theorem 6.33. Let V be a finite-dimensional vector space with ordered
bases β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wn}, and let Q be the change
of coordinate matrix changing γ-coordinates into β-coordinates. Then, for
any H ∈ B(V), we have ψγ(H) = Qtψβ(H)Q. Therefore ψγ(H) is congruent
to ψβ(H).

Proof. There are essentially two proofs of this theorem. One involves a
direct computation, while the other follows immediately from a clever obser-
vation. We give the more direct proof here, leaving the other proof for the
exercises (see Exercise 13).



Sec. 6.8 Bilinear and Quadratic Forms 427

Suppose that A = ψβ(H) and B = ψγ(H). Then for 1 ≤ i, j ≤ n,

wi =
n∑

k=1

Qkivk and wj =
n∑

r=1

Qrjvr.

Thus

Bij = H(wi, wj) = H

(
n∑

k=1

Qkivk, wj

)

=
n∑

k=1

QkiH(vk, wj)

=
n∑

k=1

QkiH

(
vk,

n∑
r=1

Qrjvr

)

=
n∑

k=1

Qki

n∑
r=1

QrjH(vk, vr)

=
n∑

k=1

Qki

n∑
r=1

QrjAkr

=
n∑

k=1

Qki

n∑
r=1

AkrQrj

=
n∑

k=1

Qki(AQ)kj

=
n∑

k=1

Qt
ik(AQ)kj = (QtAQ)ij .

Hence B = QtAQ.

The following result is the converse of Theorem 6.33.

Corollary. Let V be an n-dimensional vector space with ordered basis β,
and let H be a bilinear form on V. For any n×n matrix B, if B is congruent
to ψβ(H), then there exists an ordered basis γ for V such that ψγ(H) = B.
Furthermore, if B = Qtψβ(H)Q for some invertible matrix Q, then Q changes
γ-coordinates into β-coordinates.

Proof. Suppose that B = Qtψβ(H)Q for some invertible matrix Q and
that β = {v1, v2, . . . , vn}. Let γ = {w1, w2, . . . , wn}, where

wj =
n∑

i=1

Qijvi for 1 ≤ j ≤ n.
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Since Q is invertible, γ is an ordered basis for V, and Q is the change of
coordinate matrix that changes γ-coordinates into β-coordinates. Therefore,
by Theorem 6.32,

B = Qtψβ(H)Q = ψγ(H).

Symmetric Bilinear Forms

Like the diagonalization problem for linear operators, there is an analogous
diagonalization problem for bilinear forms, namely, the problem of determin-
ing those bilinear forms for which there are diagonal matrix representations.
As we will see, there is a close relationship between diagonalizable bilinear
forms and those that are called symmetric.

Definition. A bilinear form H on a vector space V is symmetric if
H(x, y) = H(y, x) for all x, y ∈ V.

As the name suggests, symmetric bilinear forms correspond to symmetric
matrices.

Theorem 6.34. Let H be a bilinear form on a finite-dimensional vector
space V, and let β be an ordered basis for V. Then H is symmetric if and
only if ψβ(H) is symmetric.

Proof. Let β = {v1, v2, . . . , vn} and B = ψβ(H).
First assume that H is symmetric. Then for 1 ≤ i, j ≤ n,

Bij = H(vi, vj) = H(vj , vi) = Bji,

and it follows that B is symmetric.
Conversely, suppose that B is symmetric. Let J : V × V → F , where F is

the field of scalars for V, be the mapping defined by J(x, y) = H(y, x) for all
x, y ∈ V. By property 4 on page 423, J is a bilinear form. Let C = ψβ(J).
Then, for 1 ≤ i, j ≤ n,

Cij = J(vi, vj) = H(vj , vi) = Bji = Bij .

Thus C = B. Since ψβ is one-to-one, we have J = H. Hence H(y, x) =
J(x, y) = H(x, y) for all x, y ∈ V, and therefore H is symmetric.

Definition. A bilinear form H on a finite-dimensional vector space V is
called diagonalizable if there is an ordered basis β for V such that ψβ(H)
is a diagonal matrix.

Corollary. Let H be a diagonalizable bilinear form on a finite-dimensional
vector space V. Then H is symmetric.
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Proof. Suppose that H is diagonalizable. Then there is an ordered basis β
for V such that ψβ(H) = D is a diagonal matrix. Trivially, D is a symmetric
matrix, and hence, by Theorem 6.34, H is symmetric.

Unfortunately, the converse is not true, as is illustrated by the following
example.

Example 5

Let F = Z2, V = F2, and H : V × V → F be the bilinear form defined by

H

((
a1

a2

)
,

(
b1

b2

))
= a1b2 + a2b1.

Clearly H is symmetric. In fact, if β is the standard ordered basis for V, then

A = ψβ(H) =
(

0 1
1 0

)
,

a symmetric matrix. We show that H is not diagonalizable.

By way of contradiction, suppose that H is diagonalizable. Then there is
an ordered basis γ for V such that B = ψγ(H) is a diagonal matrix. So by
Theorem 6.33, there exists an invertible matrix Q such that B = QtAQ. Since
Q is invertible, it follows that rank(B) = rank(A) = 2, and consequently the
diagonal entries of B are nonzero. Since the only nonzero scalar of F is 1,

B =
(

1 0
0 1

)
.

Suppose that

Q =
(

a b
c d

)
.

Then (
1 0
0 1

)
= B = QtAQ

=
(

a c
b d

)(
0 1
1 0

)(
a b
c d

)
=
(

ac + ac bc + ad
bc + ad bd + bd

)
.

But p + p = 0 for all p ∈ F ; hence ac + ac = 0. Thus, comparing the row
1, column 1 entries of the matrices in the equation above, we conclude that
1 = 0, a contradiction. Therefore H is not diagonalizable. ♦

The bilinear form of Example 5 is an anomaly. Its failure to be diagonal-
izable is due to the fact that the scalar field Z2 is of characteristic two. Recall
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from Appendix C that a field F is of characteristic two if 1 + 1 = 0 in F .
If F is not of characteristic two, then 1 + 1 = 2 has a multiplicative inverse,
which we denote by 1/2.

Before proving the converse of the corollary to Theorem 6.34 for scalar
fields that are not of characteristic two, we establish the following lemma.

Lemma. Let H be a nonzero symmetric bilinear form on a vector space
V over a field F not of characteristic two. Then there is a vector x in V such
that H(x, x) �= 0.

Proof. Since H is nonzero, we can choose vectors u, v ∈ V such that
H(u, v) �= 0. If H(u, u) �= 0 or H(v, v) �= 0, there is nothing to prove.
Otherwise, set x = u + v. Then

H(x, x) = H(u, u) + H(u, v) + H(v, u) + H(v, v) = 2H(u, v) �= 0

because 2 �= 0 and H(u, v) �= 0.

Theorem 6.35. Let V be a finite-dimensional vector space over a field
F not of characteristic two. Then every symmetric bilinear form on V is
diagonalizable.

Proof. We use mathematical induction on n = dim(V). If n = 1, then every
element of B(V) is diagonalizable. Now suppose that the theorem is valid
for vector spaces of dimension less than n for some fixed integer n > 1, and
suppose that dim(V) = n. If H is the zero bilinear form on V, then trivially H
is diagonalizable; so suppose that H is a nonzero symmetric bilinear form on
V. By the lemma, there exists a nonzero vector x in V such that H(x, x) �= 0.
Recall the function Lx : V → F defined by Lx(y) = H(x, y) for all y ∈ V. By
property 1 on page 423, Lx is linear. Furthermore, since Lx(x) = H(x, x) �= 0,
Lx is nonzero. Consequently, rank(Lx) = 1, and hence dim(N(Lx)) = n − 1.

The restriction of H to N(Lx) is obviously a symmetric bilinear form on
a vector space of dimension n − 1. Thus, by the induction hypothesis, there
exists an ordered basis {v1, v2, . . . , vn−1} for N(Lx) such that H(vi, vj) = 0
for i �= j (1 ≤ i, j ≤ n − 1). Set vn = x. Then vn /∈ N(Lx), and so
β = {v1, v2, . . . , vn} is an ordered basis for V. In addition, H(vi, vn) =
H(vn, vi) = 0 for i = 1, 2, . . . , n − 1. We conclude that ψβ(H) is a diagonal
matrix, and therefore H is diagonalizable.

Corollary. Let F be a field that is not of characteristic two. If A ∈
Mn×n(F ) is a symmetric matrix, then A is congruent to a diagonal matrix.

Proof. Exercise.
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Diagonalization of Symmetric Matrices

Let A be a symmetric n × n matrix with entries from a field F not of
characteristic two. By the corollary to Theorem 6.35, there are matrices
Q, D ∈ Mn×n(F ) such that Q is invertible, D is diagonal, and QtAQ = D. We
now give a method for computing Q and D. This method requires familiarity
with elementary matrices and their properties, which the reader may wish to
review in Section 3.1.

If E is an elementary n×n matrix, then AE can be obtained by performing
an elementary column operation on A. By Exercise 21, EtA can be obtained
by performing the same operation on the rows of A rather than on its columns.
Thus EtAE can be obtained from A by performing an elementary operation
on the columns of A and then performing the same operation on the rows
of AE. (Note that the order of the operations can be reversed because of
the associative property of matrix multiplication.) Suppose that Q is an
invertible matrix and D is a diagonal matrix such that QtAQ = D. By
Corollary 3 to Theorem 3.6 (p. 159), Q is a product of elementary matrices,
say Q = E1E2 · · ·Ek. Thus

D = QtAQ = Et
kEt

k−1 · · ·Et
1AE1E2 · · ·Ek.

From the preceding equation, we conclude that by means of several elemen-
tary column operations and the corresponding row operations, A can be trans-
formed into a diagonal matrix D. Furthermore, if E1, E2, . . . , Ek are the
elementary matrices corresponding to these elementary column operations in-
dexed in the order performed, and if Q = E1E2 · · ·Ek, then QtAQ = D.

Example 6

Let A be the symmetric matrix in M3×3(R) defined by

A =

⎛⎝ 1 −1 3
−1 2 1

3 1 1

⎞⎠ .

We use the procedure just described to find an invertible matrix Q and a
diagonal matrix D such that QtAQ = D.

We begin by eliminating all of the nonzero entries in the first row and
first column except for the entry in column 1 and row 1. To this end, we
add the first column of A to the second column to produce a zero in row 1
and column 2. The elementary matrix that corresponds to this elementary
column operation is

E1 =

⎛⎝1 1 0
0 1 0
0 0 1

⎞⎠ .
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We perform the corresponding elementary operation on the rows of AE1 to
obtain

Et
1AE1 =

⎛⎝1 0 3
0 1 4
3 4 1

⎞⎠ .

We now use the first column of Et
1AE1 to eliminate the 3 in row 1 column 3,

and follow this operation with the corresponding row operation. The corre-
sponding elementary matrix E2 and the result of the elementary operations
Et

2E
t
1AE1E2 are, respectively,

E2 =

⎛⎝1 0 −3
0 1 0
0 0 1

⎞⎠ and Et
2E

t
1AE1E2 =

⎛⎝1 0 0
0 1 4
0 4 −8

⎞⎠ .

Finally, we subtract 4 times the second column of Et
2E

t
1AE1E2 from the

third column and follow this with the corresponding row operation. The cor-
responding elementary matrix E3 and the result of the elementary operations
Et

3E
t
2E

t
1AE1E2E3 are, respectively,

E3 =

⎛⎝1 0 0
0 1 −4
0 0 1

⎞⎠ and Et
3E

t
2E

t
1AE1E2E3 =

⎛⎝1 0 0
0 1 0
0 0 −24

⎞⎠ .

Since we have obtained a diagonal matrix, the process is complete. So we let

Q = E1E2E3 =

⎛⎝1 1 −7
0 1 −4
0 0 1

⎞⎠ and D =

⎛⎝1 0 0
0 1 0
0 0 −24

⎞⎠
to obtain the desired diagonalization QtAQ = D. ♦

The reader should justify the following method for computing Q without
recording each elementary matrix separately. The method is inspired by the
algorithm for computing the inverse of a matrix developed in Section 3.2.
We use a sequence of elementary column operations and corresponding row
operations to change the n × 2n matrix (A|I) into the form (D|B), where D
is a diagonal matrix and B = Qt. It then follows that D = QtAQ.

Starting with the matrix A of the preceding example, this method pro-
duces the following sequence of matrices:

(A|I) =

⎛⎝ 1 −1 3 1 0 0
−1 2 1 0 1 0

3 1 1 0 0 1

⎞⎠ −→
⎛⎝ 1 0 3 1 0 0
−1 1 1 0 1 0

3 4 1 0 0 1

⎞⎠
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−→
⎛⎝1 0 3 1 0 0

0 1 4 1 1 0
3 4 1 0 0 1

⎞⎠ −→
⎛⎝1 0 0 1 0 0

0 1 4 1 1 0
3 4 −8 0 0 1

⎞⎠
−→

⎛⎝1 0 0 1 0 0
0 1 4 1 1 0
0 4 −8 −3 0 1

⎞⎠ −→
⎛⎝1 0 0 1 0 0

0 1 0 1 1 0
0 4 −24 −3 0 1

⎞⎠
−→

⎛⎝1 0 0 1 0 0
0 1 0 1 1 0
0 0 −24 −7 −4 1

⎞⎠ = (D|Qt).

Therefore

D =

⎛⎝1 0 0
0 1 0
0 0 −24

⎞⎠ , Qt =

⎛⎝ 1 0 0
1 1 0

−7 −4 1

⎞⎠ , and Q =

⎛⎝1 1 −7
0 1 −4
0 0 1

⎞⎠ .

Quadratic Forms

Associated with symmetric bilinear forms are functions called quadratic
forms.

Definition. Let V be a vector space over F . A function K : V → F is
called a quadratic form if there exists a symmetric bilinear form H ∈ B(V)
such that

K(x) = H(x, x) for all x ∈ V. (8)

If the field F is not of characteristic two, there is a one-to-one correspon-
dence between symmetric bilinear forms and quadratic forms given by (8).
In fact, if K is a quadratic form on a vector space V over a field F not of
characteristic two, and K(x) = H(x, x) for some symmetric bilinear form H
on V, then we can recover H from K because

H(x, y) =
1
2
[K(x + y) − K(x) − K(y)] (9)

(See Exercise 16.)

Example 7

The classic example of a quadratic form is the homogeneous second-degree
polynomial of several variables. Given the variables t1, t2, . . . , tn that take
values in a field F not of characteristic two and given (not necessarily distinct)
scalars aij (1 ≤ i ≤ j ≤ n), define the polynomial

f(t1, t2, . . . , tn) =
∑
i≤j

aijtitj .
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Any such polynomial is a quadratic form. In fact, if β is the standard or-
dered basis for Fn, then the symmetric bilinear form H corresponding to the
quadratic form f has the matrix representation ψβ(H) = A, where

Aij = Aji =

{
aii if i = j
1
2aij if i �= j.

To see this, apply (9) to obtain H(ei, ej) = Aij from the quadratic form K,
and verify that f is computable from H by (8) using f in place of K.

For example, given the polynomial

f(t1, t2, t3) = 2t21 − t22 + 6t1t2 − 4t2t3

with real coefficients, let

A =

⎛⎝2 3 0
3 −1 −2
0 −2 0

⎞⎠ .

Setting H(x, y) = xtAy for all x, y ∈ R3, we see that

f(t1, t2, t3) = (t1, t2, t3)A

⎛⎝t1
t2
t3

⎞⎠ for

⎛⎝t1
t2
t3

⎞⎠ ∈ R3. ♦

Quadratic Forms Over the Field R

Since symmetric matrices over R are orthogonally diagonalizable (see The-
orem 6.20 p. 384), the theory of symmetric bilinear forms and quadratic forms
on finite-dimensional vector spaces over R is especially nice. The following
theorem and its corollary are useful.

Theorem 6.36. Let V be a finite-dimensional real inner product space,
and let H be a symmetric bilinear form on V. Then there exists an orthonor-
mal basis β for V such that ψβ(H) is a diagonal matrix.

Proof. Choose any orthonormal basis γ = {v1, v2, . . . , vn} for V, and let
A = ψγ(H). Since A is symmetric, there exists an orthogonal matrix Q
and a diagonal matrix D such that D = QtAQ by Theorem 6.20. Let β =
{w1, w2, . . . , wn} be defined by

wj =
n∑

i=1

Qijvi for 1 ≤ j ≤ n.

By Theorem 6.33, ψβ(H) = D. Furthermore, since Q is orthogonal and γ is
orthonormal, β is orthonormal by Exercise 30 of Section 6.5.
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Corollary. Let K be a quadratic form on a finite-dimensional real inner
product space V. There exists an orthonormal basis β = {v1, v2, . . . , vn} for
V and scalars λ1, λ2, . . . , λn (not necessarily distinct) such that if x ∈ V and

x =
n∑

i=1

sivi, si ∈ R,

then

K(x) =
n∑

i=1

λis
2
i .

In fact, if H is the symmetric bilinear form determined by K, then β can
be chosen to be any orthonormal basis for V such that ψβ(H) is a diagonal
matrix.

Proof. Let H be the symmetric bilinear form for which K(x) = H(x, x)
for all x ∈ V. By Theorem 6.36, there exists an orthonormal basis β =
{v1, v2, . . . , vn} for V such that ψβ(H) is the diagonal matrix

D =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

⎞⎟⎟⎟⎠ .

Let x ∈ V, and suppose that x =
∑n

i=1 sivi. Then

K(x)=H(x, x) = [φβ(x)]tD[φβ(x)]=(s1, s2, . . . , sn)D

⎛⎜⎜⎜⎝
s1

s2

...
sn

⎞⎟⎟⎟⎠=
n∑

i=1

λis
2
i .

Example 8

For the homogeneous real polynomial of degree 2 defined by

f(t1, t2) = 5t21 + 2t22 + 4t1t2, (10)

we find an orthonormal basis γ = {x1, x2} for R2 and scalars λ1 and λ2 such
that if (

t1
t2

)
∈ R2 and

(
t1
t2

)
= s1x1 + s2x2,

then f(t1, t2) = λ1s
2
1 + λ2s

2
2. We can think of s1 and s2 as the coordinates of

(t1, t2) relative to γ. Thus the polynomial f(t1, t2), as an expression involving
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the coordinates of a point with respect to the standard ordered basis for R2,
is transformed into a new polynomial g(s1, s2) = λ1s

2
1 + λ2s

2
2 interpreted as

an expression involving the coordinates of a point relative to the new ordered
basis γ.

Let H denote the symmetric bilinear form corresponding to the quadratic
form defined by (10), let β be the standard ordered basis for R2, and let
A = ψβ(H). Then

A = ψβ(H) =
(

5 2
2 2

)
.

Next, we find an orthogonal matrix Q such that QtAQ is a diagonal matrix.
For this purpose, observe that λ1 = 6 and λ2 = 1 are the eigenvalues of A
with corresponding orthonormal eigenvectors

v1 =
1√
5

(
2
1

)
and v2 =

1√
5

(
1

−2

)
.

Let γ = {v1, v2}. Then γ is an orthonormal basis for R2 consisting of eigen-
vectors of A. Hence, setting

Q =
1√
5

(
2 1
1 −2

)
,

we see that Q is an orthogonal matrix and

QtAQ =
(

6 0
0 1

)
.

Clearly Q is also a change of coordinate matrix. Consequently,

ψγ(H) = Qtψβ(H)Q = QtAQ =
(

6 0
0 1

)
.

Thus by the corollary to Theorem 6.36,

K(x) = 6s2
1 + s2

2

for any x = s1v1 + s2v2 ∈ R2. So g(s1, s2) = 6s2
1 + s2

2. ♦
The next example illustrates how the theory of quadratic forms can be

applied to the problem of describing quadratic surfaces in R3.

Example 9

Let S be the surface in R3 defined by the equation

2t21 + 6t1t2 + 5t22 − 2t2t3 + 2t23 + 3t1 − 2t2 − t3 + 14 = 0. (11)
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Then (11) describes the points of S in terms of their coordinates relative to β,
the standard ordered basis for R3. We find a new orthonormal basis γ for R3

so that the equation describing the coordinates of S relative to γ is simpler
than (11).

We begin with the observation that the terms of second degree on the left
side of (11) add to form a quadratic form K on R3:

K

⎛⎝t1
t2
t3

⎞⎠ = 2t21 + 6t1t2 + 5t22 − 2t2t3 + 2t23.

Next, we diagonalize K. Let H be the symmetric bilinear form corre-
sponding to K, and let A = ψβ(H). Then

A =

⎛⎝2 3 0
3 5 −1
0 −1 2

⎞⎠ .

The characteristic polynomial of A is (−1)(t − 2)(t − 7)t; hence A has the
eigenvalues λ1 = 2, λ2 = 7, and λ3 = 0. Corresponding unit eigenvectors are

v1 =
1√
10

⎛⎝1
0
3

⎞⎠ , v2 =
1√
35

⎛⎝ 3
5

−1

⎞⎠ , and v3 =
1√
14

⎛⎝−3
2
1

⎞⎠ .

Set γ = {v1, v2, v3} and

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
10

3√
35

−3√
14

0
5√
35

2√
14

3√
10

−1√
35

1√
14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As in Example 8, Q is a change of coordinate matrix changing γ-coordinates
to β-coordinates, and

ψγ(H) = Qtψβ(H)Q = QtAQ =

⎛⎝2 0 0
0 7 0
0 0 0

⎞⎠ .

By the corollary to Theorem 6.36, if x = s1v1 + s2v2 + s3v3, then

K(x) = 2s2
1 + 7s2

2. (12)
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Figure 6.7

We are now ready to transform (11) into an equation involving coordinates
relative to γ. Let x = (t1, t2, t3) ∈ R3, and suppose that x = s1v1+s2v2+s3v3.
Then, by Theorem 2.22 (p. 111),

x =

⎛⎝t1
t2
t3

⎞⎠ = Q

⎛⎝s1

s2

s3

⎞⎠ ,

and therefore

t1 =
s1√
10

+
3s2√
35

− 3s3√
14

,

t2 =
5s2√
35

+
2s3√
14

,

and

t3 =
3s1√
10

− s2√
35

+
s3√
14

.
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Thus

3t1 − 2t2 − t3 = −14s3√
14

= −
√

14s3.

Combining (11), (12), and the preceding equation, we conclude that if x ∈ R3

and x = s1v1 + s2v2 + s3v3, then x ∈ S if and only if

2s2
1 + 7s2

2 −
√

14s3 + 14 = 0 or s3 =
√

14
7

s2
1 +

√
14
2

s2
2 +

√
14.

Consequently, if we draw new axes x′, y′, and z′ in the directions of v1, v2,
and v3, respectively, the graph of the equation, rewritten as

z′ =
√

14
7

(x′)2 +
√

14
2

(y′)2 +
√

14,

coincides with the surface S. We recognize S to be an elliptic paraboloid.

Figure 6.7 is a sketch of the surface S drawn so that the vectors v1, v2 and
v3 are oriented to lie in the principal directions. For practical purposes, the
scale of the z′ axis has been adjusted so that the figure fits the page. ♦

The Second Derivative Test for Functions of Several Variables

We now consider an application of the theory of quadratic forms to mul-
tivariable calculus—the derivation of the second derivative test for local ex-
trema of a function of several variables. We assume an acquaintance with the
calculus of functions of several variables to the extent of Taylor’s theorem.
The reader is undoubtedly familiar with the one-variable version of Taylor’s
theorem. For a statement and proof of the multivariable version, consult, for
example, An Introduction to Analysis 2d ed, by William R. Wade (Prentice
Hall, Upper Saddle River, N.J., 2000).

Let z = f(t1, t2, . . . , tn) be a fixed real-valued function of n real variables
for which all third-order partial derivatives exist and are continuous. The
function f is said to have a local maximum at a point p ∈ Rn if there exists
a δ > 0 such that f(p) ≥ f(x) whenever ||x− p|| < δ. Likewise, f has a local
minimum at p ∈ Rn if there exists a δ > 0 such that f(p) ≤ f(x) whenever
||x−p|| < δ. If f has either a local minimum or a local maximum at p, we say
that f has a local extremum at p. A point p ∈ Rn is called a critical point
of f if ∂f(p)/∂ti = 0 for i = 1, 2, . . . , n. It is a well-known fact that if f has
a local extremum at a point p ∈ Rn, then p is a critical point of f . For, if f
has a local extremum at p = (p1, p2, . . . , pn), then for any i = 1, 2, . . . , n the
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function φi defined by φi(t) = f(p1, p2, . . . , pi−1, t, pi+1, . . . , pn) has a local
extremum at t = pi. So, by an elementary single-variable argument,

∂f(p)
∂ti

=
dφi(pi)

dt
= 0.

Thus p is a critical point of f . But critical points are not necessarily local
extrema.

The second-order partial derivatives of f at a critical point p can often
be used to test for a local extremum at p. These partials determine a matrix
A(p) in which the row i, column j entry is

∂2f(p)
(∂ti)(∂tj)

.

This matrix is called the Hessian matrix of f at p. Note that if the third-
order partial derivatives of f are continuous, then the mixed second-order
partials of f at p are independent of the order in which they are taken, and
hence A(p) is a symmetric matrix. In this case, all of the eigenvalues of A(p)
are real.

Theorem 6.37 (The Second Derivative Test). Let f(t1, t2, . . . , tn)
be a real-valued function in n real variables for which all third-order partial
derivatives exist and are continuous. Let p = (p1, p2, . . . , pn) be a critical
point of f , and let A(p) be the Hessian of f at p.

(a) If all eigenvalues of A(p) are positive, then f has a local minimum at p.
(b) If all eigenvalues of A(p) are negative, then f has a local maximum at p.
(c) If A(p) has at least one positive and at least one negative eigenvalue,

then f has no local extremum at p (p is called a saddle-point of f).
(d) If rank(A(p)) < n and A(p) does not have both positive and negative

eigenvalues, then the second derivative test is inconclusive.

Proof. If p �= 0 , we may define a function g : Rn → R by

g(t1, t2, . . . , tn) = f(t1 + p1, t2 + p2, . . . , pn + tn) − f(p).

The following facts are easily verified.

1. The function f has a local maximum [minimum] at p if and only if g
has a local maximum [minimum] at 0 = (0, 0, . . . , 0).

2. The partial derivatives of g at 0 are equal to the corresponding partial
derivatives of f at p.

3. 0 is a critical point of g.

4. Aij(p) =
∂2g(0)

(∂ti)(∂tj)
for all i and j.
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In view of these facts, we may assume without loss of generality that p = 0
and f(p) = 0.

Now we apply Taylor’s theorem to f to obtain the first-order approxima-
tion of f around 0 . We have

f(t1, t2, . . . , tn) = f(0 )+
n∑

i=1

∂f(0 )
∂ti

ti+
1
2

n∑
i,j=1

∂2f(0 )
(∂ti)(∂tj)

titj +S(t1, t2, . . . , tn)

=
1
2

n∑
i,j=1

∂2f(0 )
(∂ti)(∂tj)

titj + S(t1, t2, . . . , tn),

(13)

where S is a real-valued function on Rn such that

lim
x→0

S(x)
||x||2 = lim

(t1,t2,...,tn)→0

S(t1, t2, . . . , tn)
t21 + t22 + · · · + t2n

= 0. (14)

Let K : Rn → R be the quadratic form defined by

K

⎛⎜⎜⎜⎝
t1
t2
...
tn

⎞⎟⎟⎟⎠ =
1
2

n∑
i,j=1

∂2f(0 )
(∂ti)(∂tj)

titj , (15)

H be the symmetric bilinear form corresponding to K, and β be the standard
ordered basis for Rn. It is easy to verify that ψβ(H) = 1

2A(p). Since A(p)
is symmetric, Theorem 6.20 (p. 384) implies that there exists an orthogonal
matrix Q such that

QtA(p)Q =

⎛⎜⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

⎞⎟⎟⎟⎠
is a diagonal matrix whose diagonal entries are the eigenvalues of A(p). Let
γ = {v1, v2, . . . , vn} be the orthogonal basis for Rn whose ith vector is the
ith column of Q. Then Q is the change of coordinate matrix changing γ-
coordinates into β-coordinates, and by Theorem 6.33

ψγ(H) = Qtψβ(H)Q =
1
2
QtA(p)Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ1

2
0 . . . 0

0
λ2

2
. . . 0

...
...

...

0 0 . . .
λn

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Suppose that A(p) is not the zero matrix. Then A(p) has nonzero eigen-
values. Choose ε > 0 such that ε < |λi|/2 for all λi �= 0. By (14), there
exists δ > 0 such that for any x ∈ Rn satisfying 0 < ||x|| < δ, we have
|S(x)| < ε||x||2. Consider any x ∈ Rn such that 0 < ||x|| < δ. Then, by (13)
and (15),

|f(x) − K(x)| = |S(x)| < ε||x||2,

and hence

K(x) − ε||x||2 < f(x) < K(x) + ε||x||2. (16)

Suppose that x =
n∑

i=1

sivi. Then

||x||2 =
n∑

i=1

s2
i and K(x) =

1
2

n∑
i=1

λis
2
i .

Combining these equations with (16), we obtain

n∑
i=1

(
1
2
λi − ε

)
s2

i < f(x) <
n∑

i=1

(
1
2
λi + ε

)
s2

i . (17)

Now suppose that all eigenvalues of A(p) are positive. Then 1
2λi − ε > 0

for all i, and hence, by the left inequality in (17),

f(0 ) = 0 ≤
n∑

i=1

(
1
2
λi − ε

)
s2

i < f(x).

Thus f(0 ) ≤ f(x) for ||x|| < δ, and so f has a local minimum at 0 . By a
similar argument using the right inequality in (17), we have that if all of the
eigenvalues of A(p) are negative, then f has a local maximum at 0 . This
establishes (a) and (b) of the theorem.

Next, suppose that A(p) has both a positive and a negative eigenvalue,
say, λi > 0 and λj < 0 for some i and j. Then 1

2λi − ε > 0 and 1
2λj + ε < 0.

Let s be any real number such that 0 < |s| < δ. Substituting x = svi and
x = svj into the left inequality and the right inequality of (17), respectively,
we obtain

f(0 ) = 0 < ( 1
2λi − ε)s2 < f(svi) and f(svj) < ( 1

2λj + ε)s2 < 0 = f(0 ).

Thus f attains both positive and negative values arbitrarily close to 0 ; so f
has neither a local maximum nor a local minimum at 0 . This establishes (c).
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To show that the second-derivative test is inconclusive under the condi-
tions stated in (d), consider the functions

f(t1, t2) = t21 − t42 and g(t1, t2) = t21 + t42

at p = 0 . In both cases, the function has a critical point at p, and

A(p) =
(

2 0
0 0

)
.

However, f does not have a local extremum at 0 , whereas g has a local
minimum at 0 .

Sylvester’s Law of Inertia

Any two matrix representations of a bilinear form have the same rank
because rank is preserved under congruence. We can therefore define the
rank of a bilinear form to be the rank of any of its matrix representations.
If a matrix representation is a diagonal matrix, then the rank is equal to the
number of nonzero diagonal entries of the matrix.

We confine our analysis to symmetric bilinear forms on finite-dimensional
real vector spaces. Each such form has a diagonal matrix representation in
which the diagonal entries may be positive, negative, or zero. Although these
entries are not unique, we show that the number of entries that are positive
and the number that are negative are unique. That is, they are independent
of the choice of diagonal representation. This result is called Sylvester’s law
of inertia. We prove the law and apply it to describe the equivalence classes
of congruent symmetric real matrices.

Theorem 6.38 (Sylvester’s Law of Inertia). Let H be a symmetric
bilinear form on a finite-dimensional real vector space V. Then the number of
positive diagonal entries and the number of negative diagonal entries in any
diagonal matrix representation of H are each independent of the diagonal
representation.

Proof. Suppose that β and γ are ordered bases for V that determine di-
agonal representations of H. Without loss of generality, we may assume that
β and γ are ordered so that on each diagonal the entries are in the order
of positive, negative, and zero. It suffices to show that both representations
have the same number of positive entries because the number of negative en-
tries is equal to the difference between the rank and the number of positive
entries. Let p and q be the number of positive diagonal entries in the matrix
representations of H with respect to β and γ, respectively. We suppose that
p �= q and arrive at a contradiction. Without loss of generality, assume that
p < q. Let

β = {v1, v2, . . . , vp, . . . , vr, . . . , vn} and γ = {w1, w2, . . . , wq, . . . , wr, . . . , wn},
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where r is the rank of H and n = dim(V). Let L : V → Rp+r−q be the mapping
defined by

L(x) = (H(x, v1), H(x, v2), . . . , H(x, vp), H(x, wq+1), . . . , H(x, wr)).

It is easily verified that L is linear and rank(L) ≤ p + r − q. Hence

nullity(L) ≥ n − (p + r − q) > n − r.

So there exists a nonzero vector v0 such that v0 /∈ span({vr+1, vr+2, . . . , vn}),
but v0 ∈ N(L). Since v0 ∈ N(L), it follows that H(v0, vi) = 0 for i ≤ p and
H(v0, wi) = 0 for q < i ≤ r. Suppose that

v0 =
n∑

j=1

ajvj =
n∑

j=1

bjwj .

For any i ≤ p,

H(v0, vi) = H

⎛⎝ n∑
j=1

ajvj , vi

⎞⎠ =
n∑

j=1

ajH(vj , vi) = aiH(vi, vi).

But for i ≤ p, we have H(vi, vi) > 0 and H(v0, vi) = 0, so that ai =
0. Similarly, bi = 0 for q + 1 ≤ i ≤ r. Since v0 is not in the span of
{vr+1, vr+2, . . . , vn}, it follows that ai �= 0 for some p < i ≤ r. Thus

H(v0, v0)=H

⎛⎝ n∑
j=1

ajvj ,
n∑

i=1

aivi

⎞⎠=
n∑

j=1

a2
jH(vj , vj)=

r∑
j=p+1

a2
jH(vj , vj)<0.

Furthermore,

H(v0, v0)=H

⎛⎝ n∑
j=1

bjwj ,
n∑

i=1

biwi

⎞⎠=
n∑

j=1

b2
jH(wj , wj)=

r∑
j=p+1

b2
jH(wj , wj)≥0.

So H(v0, v0) < 0 and H(v0, v0) ≥ 0, which is a contradiction. We conclude
that p = q.

Definitions. The number of positive diagonal entries in a diagonal
representation of a symmetric bilinear form on a real vector space is called
the index of the form. The difference between the number of positive and
the number of negative diagonal entries in a diagonal representation of a
symmetric bilinear form is called the signature of the form. The three terms
rank, index, and signature are called the invariants of the bilinear form
because they are invariant with respect to matrix representations. These
same terms apply to the associated quadratic form. Notice that the values of
any two of these invariants determine the value of the third.
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Example 10

The bilinear form corresponding to the quadratic form K of Example 9 has
a 3 × 3 diagonal matrix representation with diagonal entries of 2, 7, and 0.
Therefore the rank, index, and signature of K are each 2. ♦
Example 11

The matrix representation of the bilinear form corresponding to the quadratic
form K(x, y) = x2 − y2 on R2 with respect to the standard ordered basis is
the diagonal matrix with diagonal entries of 1 and −1. Therefore the rank of
K is 2, the index of K is 1, and the signature of K is 0. ♦

Since the congruence relation is intimately associated with bilinear forms,
we can apply Sylvester’s law of inertia to study this relation on the set of real
symmetric matrices. Let A be an n × n real symmetric matrix, and suppose
that D and E are each diagonal matrices congruent to A. By Corollary 3
to Theorem 6.32, A is the matrix representation of the bilinear form H on
Rn defined by H(x, y) = xtAy with respect to the standard ordered basis for
Rn. Therefore Sylvester’s law of inertia tells us that D and E have the same
number of positive and negative diagonal entries. We can state this result as
the matrix version of Sylvester’s law.

Corollary 1 (Sylvester’s Law of Inertia for Matrices). Let A be
a real symmetric matrix. Then the number of positive diagonal entries and
the number of negative diagonal entries in any diagonal matrix congruent to
A is independent of the choice of the diagonal matrix.

Definitions. Let A be a real symmetric matrix, and let D be a diagonal
matrix that is congruent to A. The number of positive diagonal entries of
D is called the index of A. The difference between the number of positive
diagonal entries and the number of negative diagonal entries of D is called
the signature of A. As before, the rank, index, and signature of a matrix
are called the invariants of the matrix, and the values of any two of these
invariants determine the value of the third.

Any two of these invariants can be used to determine an equivalence class
of congruent real symmetric matrices.

Corollary 2. Two real symmetric n × n matrices are congruent if and
only if they have the same invariants.

Proof. If A and B are congruent n× n symmetric matrices, then they are
both congruent to the same diagonal matrix, and it follows that they have
the same invariants.

Conversely, suppose that A and B are n×n symmetric matrices with the
same invariants. Let D and E be diagonal matrices congruent to A and B,
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respectively, chosen so that the diagonal entries are in the order of positive,
negative, and zero. (Exercise 23 allows us to do this.) Since A and B have
the same invariants, so do D and E. Let p and r denote the index and the
rank, respectively, of both D and E. Let di denote the ith diagonal entry
of D, and let Q be the n × n diagonal matrix whose ith diagonal entry qi is
given by

qi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
di

if 1 ≤ i ≤ p

1√−di

if p < i ≤ r

1 if r < i.

Then QtDQ = Jpr, where

Jpr =

⎛⎝Ip O O
O −Ir−p O
O O O

⎞⎠ .

It follows that A is congruent to Jpr. Similarly, B is congruent to Jpr, and
hence A is congruent to B.

The matrix Jpr acts as a canonical form for the theory of real symmet-
ric matrices. The next corollary, whose proof is contained in the proof of
Corollary 2, describes the role of Jpr.

Corollary 3. A real symmetric n × n matrix A has index p and rank r
if and only if A is congruent to Jpr (as just defined).

Example 12

Let

A =

⎛⎝ 1 1 −3
−1 2 1

3 1 1

⎞⎠ , B =

⎛⎝1 2 1
2 3 2
1 2 1

⎞⎠ , and C =

⎛⎝1 0 1
0 1 2
1 2 1

⎞⎠ .

We apply Corollary 2 to determine which pairs of the matrices A, B, and C
are congruent.

The matrix A is the 3 × 3 matrix of Example 6, where it is shown that
A is congruent to a diagonal matrix with diagonal entries 1, 1, and −24.
Therefore, A has rank 3 and index 2. Using the methods of Example 6 (it is
not necessary to compute Q), it can be shown that B and C are congruent,
respectively, to the diagonal matrices⎛⎝1 0 0

0 −1 0
0 0 −1

⎞⎠ and

⎛⎝1 0 0
0 1 0
0 0 −4

⎞⎠ .
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It follows that both A and C have rank 3 and index 2, while B has rank 3 and
index 1. We conclude that A and C are congruent but that B is congruent
to neither A nor C. ♦

EXERCISES

1. Label the following statements as true or false.

(a) Every quadratic form is a bilinear form.
(b) If two matrices are congruent, they have the same eigenvalues.
(c) Symmetric bilinear forms have symmetric matrix representations.
(d) Any symmetric matrix is congruent to a diagonal matrix.
(e) The sum of two symmetric bilinear forms is a symmetric bilinear

form.
(f) Two symmetric matrices with the same characteristic polynomial

are matrix representations of the same bilinear form.
(g) There exists a bilinear form H such that H(x, y) �= 0 for all x and

y.
(h) If V is a vector space of dimension n, then dim(B(V )) = 2n.
(i) Let H be a bilinear form on a finite-dimensional vector space V

with dim(V) > 1. For any x ∈ V, there exists y ∈ V such that
y �= 0 , but H(x, y) = 0.

(j) If H is any bilinear form on a finite-dimensional real inner product
space V, then there exists an ordered basis β for V such that ψβ(H)
is a diagonal matrix.

2. Prove properties 1, 2, 3, and 4 on page 423.

3. (a) Prove that the sum of two bilinear forms is a bilinear form.
(b) Prove that the product of a scalar and a bilinear form is a bilinear

form.
(c) Prove Theorem 6.31.

4. Determine which of the mappings that follow are bilinear forms. Justify
your answers.

(a) Let V = C[0, 1] be the space of continuous real-valued functions on
the closed interval [0, 1]. For f, g ∈ V, define

H(f, g) =
∫ 1

0

f(t)g(t)dt.

(b) Let V be a vector space over F , and let J ∈ B(V) be nonzero.
Define H : V × V → F by

H(x, y) = [J(x, y)]2 for all x, y ∈ V.
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(c) Define H : R × R → R by H(t1, t2) = t1 + 2t2.
(d) Consider the vectors of R2 as column vectors, and let H : R2 → R

be the function defined by H(x, y) = det(x, y), the determinant of
the 2 × 2 matrix with columns x and y.

(e) Let V be a real inner product space, and let H : V×V → R be the
function defined by H(x, y) = 〈x, y〉 for x, y ∈ V.

(f) Let V be a complex inner product space, and let H : V × V → C
be the function defined by H(x, y) = 〈x, y〉 for x, y ∈ V.

5. Verify that each of the given mappings is a bilinear form. Then compute
its matrix representation with respect to the given ordered basis β.

(a) H : R3 × R3 → R, where

H

⎛⎝⎛⎝a1

a2

a3

⎞⎠ ,

⎛⎝b1

b2

b3

⎞⎠⎞⎠ = a1b1 − 2a1b2 + a2b1 − a3b3

and

β =

⎧⎨⎩
⎛⎝1

0
1

⎞⎠ ,

⎛⎝ 1
0

−1

⎞⎠ ,

⎛⎝0
1
0

⎞⎠⎫⎬⎭ .

(b) Let V = M2×2(R) and

β =
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

Define H : V × V → R by H(A, B) = tr(A) · tr(B).
(c) Let β = {cos t, sin t, cos 2t, sin 2t}. Then β is an ordered basis

for V = span(β), a four-dimensional subspace of the space of all
continuous functions on R. Let H : V × V → R be the function
defined by H(f, g) = f ′(0) · g′′(0).

6. Let H : R2 → R be the function defined by

H

((
a1

a2

)
,

(
b1

b2

))
= a1b2 + a2b1 for

(
a1

a2

)
,

(
b1

b2

)
∈ R2.

(a) Prove that H is a bilinear form.
(b) Find the 2×2 matrix A such that H(x, y) = xtAy for all x, y ∈ R2.

For a 2×2 matrix M with columns x and y, the bilinear form H(M) =
H(x, y) is called the permanent of M .

7. Let V and W be vector spaces over the same field, and let T : V → W be
a linear transformation. For any H ∈ B(W), define T̂(H) : V × V → F

by T̂(H)(x, y) = H(T(x), T(y)) for all x, y ∈ V. Prove the following
results.
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(a) If H ∈ B(W), then T̂(H) ∈ B(V).
(b) T̂ : B(W) → B(V) is a linear transformation.
(c) If T is an isomorphism, then so is T̂.

8. Assume the notation of Theorem 6.32.

(a) Prove that for any ordered basis β, ψβ is linear.
(b) Let β be an ordered basis for an n-dimensional space V over F , and

let φβ : V → Fn be the standard representation of V with respect
to β. For A ∈ Mn×n(F ), define H : V × V → F by H(x, y) =
[φβ(x)]tA[φβ(y)]. Prove that H ∈ B(V). Can you establish this as
a corollary to Exercise 7?

(c) Prove the converse of (b): Let H be a bilinear form on V. If
A = ψβ(H), then H(x, y) = [φβ(x)]tA[φβ(y)].

9. (a) Prove Corollary 1 to Theorem 6.32.
(b) For a finite-dimensional vector space V, describe a method for

finding an ordered basis for B(V).

10. Prove Corollary 2 to Theorem 6.32.

11. Prove Corollary 3 to Theorem 6.32.

12. Prove that the relation of congruence is an equivalence relation.

13. The following outline provides an alternative proof to Theorem 6.33.

(a) Suppose that β and γ are ordered bases for a finite-dimensional
vector space V, and let Q be the change of coordinate matrix
changing γ-coordinates to β-coordinates. Prove that φβ = LQφγ ,
where φβ and φγ are the standard representations of V with respect
to β and γ, respectively.

(b) Apply Corollary 2 to Theorem 6.32 to (a) to obtain an alternative
proof of Theorem 6.33.

14. Let V be a finite-dimensional vector space and H ∈ B(V). Prove that,
for any ordered bases β and γ of V, rank(ψβ(H)) = rank(ψγ(H)).

15. Prove the following results.

(a) Any square diagonal matrix is symmetric.
(b) Any matrix congruent to a diagonal matrix is symmetric.
(c) the corollary to Theorem 6.35

16. Let V be a vector space over a field F not of characteristic two, and let
H be a symmetric bilinear form on V. Prove that if K(x) = H(x, x) is
the quadratic form associated with H, then, for all x, y ∈ V,

H(x, y) =
1
2
[K(x + y) − K(x) − K(y)].
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17. For each of the given quadratic forms K on a real inner product space
V, find a symmetric bilinear form H such that K(x) = H(x, x) for all
x ∈ V. Then find an orthonormal basis β for V such that ψβ(H) is a
diagonal matrix.

(a) K : R2 → R defined by K

(
t1
t2

)
= −2t21 + 4t1t2 + t22

(b) K : R2 → R defined by K

(
t1
t2

)
= 7t21 − 8t1t2 + t22

(c) K : R3 → R defined by K

⎛⎝t1
t2
t3

⎞⎠ = 3t21 + 3t22 + 3t23 − 2t1t3

18. Let S be the set of all (t1, t2, t3) ∈ R3 for which

3t21 + 3t22 + 3t23 − 2t1t3 + 2
√

2(t1 + t3) + 1 = 0.

Find an orthonormal basis β for R3 for which the equation relating
the coordinates of points of S relative to β is simpler. Describe S
geometrically.

19. Prove the following refinement of Theorem 6.37(d).

(a) If 0 < rank(A) < n and A has no negative eigenvalues, then f has
no local maximum at p.

(b) If 0 < rank(A) < n and A has no positive eigenvalues, then f has
no local minimum at p.

20. Prove the following variation of the second-derivative test for the case
n = 2: Define

D =
[
∂2f(p)

∂t21

] [
∂2f(p)

∂t22

]
−
[
∂2f(p)
∂t1∂t2

]2

.

(a) If D > 0 and ∂2f(p)/∂t21 > 0, then f has a local minimum at p.
(b) If D > 0 and ∂2f(p)/∂t21 < 0, then f has a local maximum at p.
(c) If D < 0, then f has no local extremum at p.
(d) If D = 0, then the test is inconclusive.

Hint: Observe that, as in Theorem 6.37, D = det(A) = λ1λ2, where λ1

and λ2 are the eigenvalues of A.

21. Let A and E be in Mn×n(F ), with E an elementary matrix. In Sec-
tion 3.1, it was shown that AE can be obtained from A by means of
an elementary column operation. Prove that EtA can be obtained by
means of the same elementary operation performed on the rows rather
than on the columns of A. Hint: Note that EtA = (AtE)t.
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22. For each of the following matrices A with entries from R, find a diagonal
matrix D and an invertible matrix Q such that QtAQ = D.

(a)
(

1 3
3 2

)
(b)

(
0 1
1 0

)
(c)

⎛⎝3 1 2
1 4 0
2 0 −1

⎞⎠
Hint for (b): Use an elementary operation other than interchanging
columns.

23. Prove that if the diagonal entries of a diagonal matrix are permuted,
then the resulting diagonal matrix is congruent to the original one.

24. Let T be a linear operator on a real inner product space V, and define
H : V × V → R by H(x, y) = 〈x,T(y)〉 for all x, y ∈ V.

(a) Prove that H is a bilinear form.
(b) Prove that H is symmetric if and only if T is self-adjoint.
(c) What properties must T have for H to be an inner product on V?
(d) Explain why H may fail to be a bilinear form if V is a complex

inner product space.

25. Prove the converse to Exercise 24(a): Let V be a finite-dimensional real
inner product space, and let H be a bilinear form on V. Then there
exists a unique linear operator T on V such that H(x, y) = 〈x,T(y)〉 for
all x, y ∈ V. Hint: Choose an orthonormal basis β for V, let A = ψβ(H),
and let T be the linear operator on V such that [T]β = A. Apply
Exercise 8(c) of this section and Exercise 15 of Section 6.2 (p. 355).

26. Prove that the number of distinct equivalence classes of congruent n×n
real symmetric matrices is

(n + 1)(n + 2)
2

.

6.9∗ EINSTEIN’S SPECIAL THEORY OF RELATIVITY

As a consequence of physical experiments performed in the latter half of the
nineteenth century (most notably the Michelson–Morley experiment of 1887),
physicists concluded that the results obtained in measuring the speed of light
are independent of the velocity of the instrument used to measure the speed of
light. For example, suppose that while on Earth, an experimenter measures
the speed of light emitted from the sun and finds it to be 186,000 miles per
second. Now suppose that the experimenter places the measuring equipment
in a spaceship that leaves Earth traveling at 100,000 miles per second in a
direction away from the sun. A repetition of the same experiment from the
spaceship yields the same result: Light is traveling at 186,000 miles per second
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relative to the spaceship, rather than 86,000 miles per second as one might
expect!

This revelation led to a new way of relating coordinate systems used to
locate events in space–time. The result was Albert Einstein’s special theory
of relativity. In this section, we develop via a linear algebra viewpoint the
essence of Einstein’s theory.
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Figure 6.8

The basic problem is to compare two different inertial (nonaccelerating)
coordinate systems S and S′ in three-space (R3) that are in motion relative
to each other under the assumption that the speed of light is the same when
measured in either system. We assume that S′ moves at a constant velocity
in relation to S as measured from S. (See Figure 6.8.) To simplify matters,
let us suppose that the following conditions hold:

1. The corresponding axes of S and S′ (x and x′, y and y′, z and z′) are
parallel, and the origin of S′ moves in the positive direction of the x-axis
of S at a constant velocity v > 0 relative to S.

2. Two clocks C and C ′ are placed in space—the first stationary relative
to the coordinate system S and the second stationary relative to the
coordinate system S′. These clocks are designed to give real numbers
in units of seconds as readings. The clocks are calibrated so that at the
instant the origins of S and S′ coincide, both clocks give the reading
zero.

3. The unit of length is the light second (the distance light travels in 1
second), and the unit of time is the second. Note that, with respect to
these units, the speed of light is 1 light second per second.

Given any event (something whose position and time of occurrence can be
described), we may assign a set of space–time coordinates to it. For example,
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if p is an event that occurs at position⎛⎝x
y
z

⎞⎠
relative to S and at time t as read on clock C, we can assign to p the set of
coordinates ⎛⎜⎜⎝

x
y
z
t

⎞⎟⎟⎠ .

This ordered 4-tuple is called the space–time coordinates of p relative to
S and C. Likewise, p has a set of space–time coordinates⎛⎜⎜⎝

x′

y′

z′

t′

⎞⎟⎟⎠
relative to S′ and C ′.

For a fixed velocity v, let Tv : R4 → R4 be the mapping defined by

Tv

⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x′

y′

z′

t′

⎞⎟⎟⎠ ,

where ⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠ and

⎛⎜⎜⎝
x′

y′

z′

t′

⎞⎟⎟⎠
are the space–time coordinates of the same event with respect to S and C
and with respect to S′ and C ′, respectively.

Einstein made certain assumptions about Tv that led to his special theory
of relativity. We formulate an equivalent set of assumptions.

Axioms of the Special Theory of Relativity

(R 1) The speed of any light beam, when measured in either coordinate system
using a clock stationary relative to that coordinate system, is 1.
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(R 2) The mapping Tv : R4 → R4 is an isomorphism.
(R 3) If

Tv

⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x′

y′

z′

t′

⎞⎟⎟⎠ ,

then y′ = y and z′ = z.
(R 4) If

Tv

⎛⎜⎜⎝
x
y1

z1

t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x′

y′

z′

t′

⎞⎟⎟⎠ and Tv

⎛⎜⎜⎝
x
y2

z2

t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x′′

y′′

z′′

t′′

⎞⎟⎟⎠ ,

then x′′ = x′ and t′′ = t′.
(R 5) The origin of S moves in the negative direction of the x′-axis of S′ at

the constant velocity −v < 0 as measured from S′.

Axioms (R 3) and (R 4) tell us that for p ∈ R4, the second and third coor-
dinates of Tv(p) are unchanged and the first and fourth coordinates of Tv(p)
are independent of the second and third coordinates of p.

As we will see, these five axioms completely characterize Tv. The operator
Tv is called the Lorentz transformation in direction x. We intend to
compute Tv and use it to study the curious phenomenon of time contraction.

Theorem 6.39. On R4, the following statements are true.
(a) Tv(ei) = ei for i = 2, 3.
(b) span({e2, e3}) is Tv-invariant.
(c) span({e1, e4}) is Tv-invariant.
(d) Both span({e2, e3}) and span({e1, e4}) are T∗

v-invariant.
(e) T∗

v(ei) = ei for i = 2, 3.

Proof. (a) By axiom (R 2),

Tv

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ ,

and hence, by axiom (R 4), the first and fourth coordinates of

Tv

⎛⎜⎜⎝
0
a
b
0

⎞⎟⎟⎠
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are both zero for any a, b ∈ R. Thus, by axiom (R 3),

Tv

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ and Tv

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ .

The proofs of (b), (c), and (d) are left as exercises.
(e) For any j �= 2, 〈T∗

v(e2), ej〉 = 〈e2, Tv(ej)〉 = 0 by (a) and (c); for j = 2,
〈T∗

v(e2), ej〉 = 〈e2, Tv(e2)〉 = 〈e2, e2〉 = 1 by (a). We conclude that T∗
v(e2) is

a multiple of e2 (i.e., that T∗
v(e2) = ke2 for some k ∈ R). Thus,

1 = 〈e2, e2〉 = 〈e2, Tv(e2)〉 = 〈T∗
v(e2), e2〉 = 〈ke2, e2〉 = k,

and hence T∗
v(e2) = e2. Similarly, T∗

v(e3) = e3.

Suppose that, at the instant the origins of S and S′ coincide, a light
flash is emitted from their common origin. The event of the light flash when
measured either relative to S and C or relative to S′ and C ′ has space–time
coordinates ⎛⎜⎜⎝

0
0
0
0

⎞⎟⎟⎠ .

Let P be the set of all events whose space–time coordinates⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠
relative to S and C are such that the flash is observable from the point with
coordinates ⎛⎝x

y
z

⎞⎠
(as measured relative to S) at the time t (as measured on C). Let us charac-
terize P in terms of x, y, z, and t. Since the speed of light is 1, at any time
t ≥ 0 the light flash is observable from any point whose distance to the origin
of S (as measured on S) is t · 1 = t. These are precisely the points that lie on
the sphere of radius t with center at the origin. The coordinates (relative to
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S) of such points satisfy the equation x2 + y2 + z2 − t2 = 0. Hence an event
lies in P if and only if its space–time coordinates⎛⎜⎜⎝

x
y
z
t

⎞⎟⎟⎠ (t ≥ 0)

relative to S and C satisfy the equation x2 + y2 + z2 − t2 = 0. By virtue of
axiom (R 1), we can characterize P in terms of the space–time coordinates
relative to S′ and C ′ similarly: An event lies in P if and only if, relative to
S′ and C ′, its space–time coordinates⎛⎜⎜⎝

x′

y′

z′

t′

⎞⎟⎟⎠ (t ≥ 0)

satisfy the equation (x′)2 + (y′)2 + (z′)2 − (t′)2 = 0.
Let

A =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ .

Theorem 6.40. If 〈LA(w), w〉 = 0 for some w ∈ R4, then

〈T∗
vLATv(w), w〉 = 0.

Proof. Let

w =

⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠ ∈ R4,

and suppose that 〈LA(w), w〉 = 0.
Case 1. t ≥ 0. Since 〈LA(w), w〉 = x2 + y2 + z2 − t2, the vector w gives

the coordinates of an event in P relative to S and C. Because⎛⎜⎜⎝
x
y
z
t

⎞⎟⎟⎠ and

⎛⎜⎜⎝
x′

y′

z′

t′

⎞⎟⎟⎠
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are the space–time coordinates of the same event relative to S′ and C ′, the
discussion preceding Theorem 6.40 yields

(x′)2 + (y′)2 + (z′)2 − (t′)2 = 0.

Thus 〈T∗
vLATv(w), w〉 = 〈LATv(w), Tv(w)〉 = (x′)2 + (y′)2 + (z′)2 − (t′)2 = 0,

and the conclusion follows.
Case 2. t < 0. The proof follows by applying case 1 to −w.

We now proceed to deduce information about Tv. Let

w1 =

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ and w2 =

⎛⎜⎜⎝
1
0
0

−1

⎞⎟⎟⎠ .

By Exercise 3, {w1, w2} is an orthogonal basis for span({e1, e4}), and
span({e1, e4}) is T∗

vLATv-invariant. The next result tells us even more.

Theorem 6.41. There exist nonzero scalars a and b such that
(a) T∗

vLATv(w1) = aw2.

(b) T∗
vLATv(w2) = bw1.

Proof. (a) Because 〈LA(w1), w1〉 = 0, 〈T∗
vLATv(w1), w1〉 = 0 by Theo-

rem 6.40. Thus T∗
vLATv(w1) is orthogonal to w1. Since span({e1, e4}) =

span({w1, w2}) is T∗
vLATv-invariant, T∗

vLATv(w1) must lie in this set. But
{w1, w2} is an orthogonal basis for this subspace, and so T∗

vLATv(w1) must
be a multiple of w2. Thus T∗

vLATv(w1) = aw2 for some scalar a. Since Tv

and A are invertible, so is T∗
vLATv. Thus a �= 0, proving (a).

The proof of (b) is similar to (a).

Corollary. Let Bv = [Tv]β , where β is the standard ordered basis for R4.
Then

(a) B∗
vABv = A.

(b) T∗
vLATv = LA.

We leave the proof of the corollary as an exercise. For hints, see Exercise 4.
Now consider the situation 1 second after the origins of S and S′ have

coincided as measured by the clock C. Since the origin of S′ is moving along
the x-axis at a velocity v as measured in S, its space–time coordinates relative
to S and C are ⎛⎜⎜⎝

v
0
0
1

⎞⎟⎟⎠ .
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Similarly, the space–time coordinates for the origin of S′ relative to S′ and
C ′ must be ⎛⎜⎜⎝

0
0
0
t′

⎞⎟⎟⎠
for some t′ > 0. Thus we have

Tv

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
t′

⎞⎟⎟⎠ for some t′ > 0. (18)

By the corollary to Theorem 6.41,

〈
T∗

vLATv

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠
〉

=

〈
LA

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠
〉

= v2 − 1. (19)

But also

〈
T∗

vLATv

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠
〉

=

〈
LATv

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠ , Tv

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠
〉

=

〈
LA

⎛⎜⎜⎝
0
0
0
t′

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
t′

⎞⎟⎟⎠
〉

= −(t′)2. (20)

Combining (19) and (20), we conclude that v2 − 1 = −(t′)2, or

t′ =
√

1 − v2. (21)

Thus, from (18) and (21), we obtain

Tv

⎛⎜⎜⎝
v
0
0
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0√

1 − v2

⎞⎟⎟⎠ . (22)

Next recall that the origin of S moves in the negative direction of the
x′-axis of S′ at the constant velocity −v < 0 as measured from S′. [This fact
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is axiom (R 5).] Consequently, 1 second after the origins of S and S′ have
coincided as measured on clock C, there exists a time t′′ > 0 as measured on
clock C ′ such that

Tv

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−vt′′

0
0
t′′

⎞⎟⎟⎠ . (23)

From (23), it follows in a manner similar to the derivation of (22) that

t′′ =
1√

1 − v2
; (24)

hence, from (23) and (24),

Tv

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−v√
1 − v2

0
0
1√

1 − v2

⎞⎟⎟⎟⎟⎟⎠ . (25)

The following result is now easily proved using (22), (25), and Theorem 6.39.

Theorem 6.42. Let β be the standard ordered basis for R4. Then

[TV ]β = Bv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 − v2

0 0
−v√
1 − v2

0 1 0 0

0 0 1 0
−v√
1 − v2

0 0
1√

1 − v2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Time Contraction

A most curious and paradoxical conclusion follows if we accept Einstein’s
theory. Suppose that an astronaut leaves our solar system in a space vehicle
traveling at a fixed velocity v as measured relative to our solar system. It
follows from Einstein’s theory that, at the end of time t as measured on Earth,
the time that passes on the space vehicle is only t

√
1 − v2. To establish this

result, consider the coordinate systems S and S′ and clocks C and C ′ that
we have been studying. Suppose that the origin of S′ coincides with the
space vehicle and the origin of S coincides with a point in the solar system
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(stationary relative to the sun) so that the origins of S and S′ coincide and
clocks C and C ′ read zero at the moment the astronaut embarks on the trip.

As viewed from S, the space–time coordinates of the vehicle at any time
t > 0 as measured by C are ⎛⎜⎜⎝

vt
0
0
t

⎞⎟⎟⎠ ,

whereas, as viewed from S′, the space–time coordinates of the vehicle at any
time t′ > 0 as measured by C ′ are ⎛⎜⎜⎝

0
0
0
t′

⎞⎟⎟⎠ .

But if two sets of space–time coordinates⎛⎜⎜⎝
vt
0
0
t

⎞⎟⎟⎠ and

⎛⎜⎜⎝
0
0
0
t′

⎞⎟⎟⎠
are to describe the same event, it must follow that

Tv

⎛⎜⎜⎝
vt
0
0
t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
t′

⎞⎟⎟⎠ .

Thus

[TV ]β = Bv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 − v2

0 0
−v√
1 − v2

0 1 0 0

0 0 1 0
−v√
1 − v2

0 0
1√

1 − v2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
vt
0
0
t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
t′

⎞⎟⎟⎠ .

From the preceding equation, we obtain
−v2t√
1 − v2

+
t√

1 − v2
= t′, or

t′ = t
√

1 − v2. (26)
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This is the desired result.
A dramatic consequence of time contraction is that distances are con-

tracted along the line of motion (see Exercise 9).
Let us make one additional point. Suppose that we consider units of

distance and time more commonly used than the light second and second,
such as the mile and hour, or the kilometer and second. Let c denote the
speed of light relative to our chosen units of distance. It is easily seen that if
an object travels at a velocity v relative to a set of units, then it is traveling
at a velocity v/c in units of light seconds per second. Thus, for an arbitrary
set of units of distance and time, (26) becomes

t′ = t

√
1 − v2

c2
.

EXERCISES

1. Prove (b), (c), and (d) of Theorem 6.39.

2. Complete the proof of Theorem 6.40 for the case t < 0.

3. For

w1 =

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ and w2 =

⎛⎜⎜⎝
1
0
0

−1

⎞⎟⎟⎠ ,

show that

(a) {w1, w2} is an orthogonal basis for span({e1, e4});
(b) span({e1, e4}) is T∗

vLATv-invariant.

4. Prove the corollary to Theorem 6.41.

Hints:

(a) Prove that

B∗
vABv =

⎛⎜⎜⎝
p 0 0 q
0 1 0 0
0 0 1 0

−q 0 0 −p

⎞⎟⎟⎠ ,

where

p =
a + b

2
and q =

a − b

2
.
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(b) Show that q = 0 by using the fact that B∗
vABv is self-adjoint.

(c) Apply Theorem 6.40 to

w =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠
to show that p = 1.

5. Derive (24), and prove that

Tv

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−v√
1 − v2

0
0
1√

1 − v2

⎞⎟⎟⎟⎟⎟⎠ . (25)

Hint: Use a technique similar to the derivation of (22).

6. Consider three coordinate systems S, S′, and S′′ with the corresponding
axes (x,x′,x′′; y,y′,y′′; and z,z′,z′′) parallel and such that the x-, x′-,
and x′′-axes coincide. Suppose that S′ is moving past S at a velocity
v1 > 0 (as measured on S), S′′ is moving past S′ at a velocity v2 > 0
(as measured on S′), and S′′ is moving past S at a velocity v3 > 0 (as
measured on S), and that there are three clocks C, C ′, and C ′′ such
that C is stationary relative to S, C ′ is stationary relative to S′, and
C ′′ is stationary relative to S′′. Suppose that when measured on any
of the three clocks, all the origins of S, S′, and S′′ coincide at time 0.
Assuming that Tv3 = Tv2Tv1 (i.e., Bv3 = Bv2Bv1), prove that

v3 =
v1 + v2

1 + v1v2
.

Note that substituting v2 = 1 in this equation yields v3 = 1. This tells
us that the speed of light as measured in S or S′ is the same. Why
would we be surprised if this were not the case?

7. Compute (Bv)−1. Show (Bv)−1 = B(−v). Conclude that if S′ moves at
a negative velocity v relative to S, then [Tv]β = Bv, where Bv is of the
form given in Theorem 6.42.

8. Suppose that an astronaut left Earth in the year 2000 and traveled to
a star 99 light years away from Earth at 99% of the speed of light and
that upon reaching the star immediately turned around and returned
to Earth at the same speed. Assuming Einstein’s special theory of
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relativity, show that if the astronaut was 20 years old at the time of
departure, then he or she would return to Earth at age 48.2 in the year
2200. Explain the use of Exercise 7 in solving this problem.

9. Recall the moving space vehicle considered in the study of time contrac-
tion. Suppose that the vehicle is moving toward a fixed star located on
the x-axis of S at a distance b units from the origin of S. If the space
vehicle moves toward the star at velocity v, Earthlings (who remain “al-
most” stationary relative to S) compute the time it takes for the vehicle
to reach the star as t = b/v. Due to the phenomenon of time contraction,
the astronaut perceives a time span of t′ = t

√
1 − v2 = (b/v)

√
1 − v2.

A paradox appears in that the astronaut perceives a time span incon-
sistent with a distance of b and a velocity of v. The paradox is resolved
by observing that the distance from the solar system to the star as
measured by the astronaut is less than b.

Assuming that the coordinate systems S and S′ and clocks C and C ′

are as in the discussion of time contraction, prove the following results.

(a) At time t (as measured on C), the space–time coordinates of star
relative to S and C are ⎛⎜⎜⎝

b
0
0
t

⎞⎟⎟⎠ .

(b) At time t (as measured on C), the space–time coordinates of the
star relative to S′ and C ′ are⎛⎜⎜⎜⎜⎜⎝

b − vt√
1 − v2

0
0

t − bv√
1 − v2

⎞⎟⎟⎟⎟⎟⎠ .

(c) For

x′ =
b − tv√
1 − v2

and t′ =
t − bv√
1 − v2

,

we have x′ = b
√

1 − v2 − t′v.

This result may be interpreted to mean that at time t′ as measured by
the astronaut, the distance from the astronaut to the star as measured
by the astronaut (see Figure 6.9) is

b
√

1 − v2 − t′v.
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(d) Conclude from the preceding equation that
(1) the speed of the space vehicle relative to the star, as measured

by the astronaut, is v;
(2) the distance from Earth to the star, as measured by the astro-

naut, is b
√

1 − v2.
Thus distances along the line of motion of the space vehicle appear
to be contracted by a factor of

√
1 − v2.

6.10∗ CONDITIONING AND THE RAYLEIGH QUOTIENT

In Section 3.4, we studied specific techniques that allow us to solve systems of
linear equations in the form Ax = b, where A is an m× n matrix and b is an
m× 1 vector. Such systems often arise in applications to the real world. The
coefficients in the system are frequently obtained from experimental data,
and, in many cases, both m and n are so large that a computer must be used
in the calculation of the solution. Thus two types of errors must be considered.
First, experimental errors arise in the collection of data since no instruments
can provide completely accurate measurements. Second, computers introduce
roundoff errors. One might intuitively feel that small relative changes in the
coefficients of the system cause small relative errors in the solution. A system
that has this property is called well-conditioned; otherwise, the system is
called ill-conditioned.

We now consider several examples of these types of errors, concentrating
primarily on changes in b rather than on changes in the entries of A. In
addition, we assume that A is a square, complex (or real), invertible matrix
since this is the case most frequently encountered in applications.
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Example 1

Consider the system

x1 + x2 = 5
x1 − x2 = 1.

The solution to this system is (
3
2

)
.

Now suppose that we change the system somewhat and consider the new
system

x1 + x2 = 5
x1 − x2 = 1.0001.

This modified system has the solution(
3.00005
1.99995

)
.

We see that a change of 10−4 in one coefficient has caused a change of less
than 10−4 in each coordinate of the new solution. More generally, the system

x1 + x2 = 5
x1 − x2 = 1 + δ

has the solution (
3 + δ/2
2 − δ/2

)
.

Hence small changes in b introduce small changes in the solution. Of course,
we are really interested in relative changes since a change in the solution of,
say, 10, is considered large if the original solution is of the order 10−2, but
small if the original solution is of the order 106.

We use the notation δb to denote the vector b′ − b, where b is the vector
in the original system and b′ is the vector in the modified system. Thus we
have

δb =
(

5
1 + h

)
−
(

5
1

)
=
(

0
h

)
.

We now define the relative change in b to be the scalar ‖δb‖/‖b‖, where
‖ · ‖ denotes the standard norm on Cn (or Rn); that is, ‖b‖ =

√〈b, b〉. Most
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of what follows, however, is true for any norm. Similar definitions hold for
the relative change in x. In this example,

‖δb‖
‖b‖ =

|h|√
26

and
‖δx‖
‖x‖ =

∥∥∥∥(3 + (h/2)
2 − (h/2)

)
−
(

3
2

)∥∥∥∥∥∥∥∥(3
2

)∥∥∥∥ =
|h|√
26

.

Thus the relative change in x equals, coincidentally, the relative change in b;
so the system is well-conditioned. ♦
Example 2

Consider the system

x1 + x2 = 3
x1 + 1.00001x2 = 3.00001,

which has (
2
1

)
as its solution. The solution to the related system

x1 + x2 = 3
x1 + 1.00001x2 = 3.00001 + δ

is (
2 − (105)h
1 + (105)h

)
.

Hence,

‖δx‖
‖x‖ = 105

√
2/5 |h| ≥ 104|h|,

while

‖δb‖
‖b‖ ≈ |h|

3
√

2
.

Thus the relative change in x is at least 104 times the relative change in b!
This system is very ill-conditioned. Observe that the lines defined by the two
equations are nearly coincident. So a small change in either line could greatly
alter the point of intersection, that is, the solution to the system. ♦
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To apply the full strength of the theory of self-adjoint matrices to the
study of conditioning, we need the notion of the norm of a matrix. (See
Exercise 24 of Section 6.1 for further results about norms.)

Definition. Let A be a complex (or real) n × n matrix. Define the
(Euclidean) norm of A by

‖A‖ = max
x�=0

‖Ax‖
‖x‖ ,

where x ∈ Cn or x ∈ Rn.

Intuitively, ‖A‖ represents the maximum magnification of a vector by the
matrix A. The question of whether or not this maximum exists, as well as
the problem of how to compute it, can be answered by the use of the so-called
Rayleigh quotient.

Definition. Let B be an n × n self-adjoint matrix. The Rayleigh
quotient for x �= 0 is defined to be the scalar R(x) = 〈Bx, x〉 /‖x‖2.

The following result characterizes the extreme values of the Rayleigh quo-
tient of a self-adjoint matrix.

Theorem 6.43. For a self-adjoint matrix B ∈ Mn×n(F ), we have that
max
x�=0

R(x) is the largest eigenvalue of B and min
x�=0

R(x) is the smallest eigenvalue

of B.

Proof. By Theorems 6.19 (p. 384) and 6.20 (p. 384), we may choose an
orthonormal basis {v1, v2, . . . , vn} of eigenvectors of B such that Bvi = λivi

(1 ≤ i ≤ n), where λ1 ≥ λ2 ≥ · · · ≥ λn. (Recall that by the lemma to
Theorem 6.17, p. 373, the eigenvalues of B are real.) Now, for x ∈ Fn, there
exist scalars a1, a2, . . . , an such that

x =
n∑

i=1

aivi.

Hence

R(x) =
〈Bx, x〉
‖x‖2

=

〈∑n
i=1 aiλivi,

∑n
j=1 ajvj

〉
‖x‖2

=
∑n

i=1 λi|ai|2
‖x‖2

≤ λ1

∑n
i=1 |ai|2
‖x‖2

=
λ1‖x‖2

‖x‖2
= λ1.

It is easy to see that R(v1) = λ1, so we have demonstrated the first half of
the theorem. The second half is proved similarly.
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Corollary 1. For any square matrix A, ‖A‖ is finite and, in fact, equals√
λ, where λ is the largest eigenvalue of A∗A.

Proof. Let B be the self-adjoint matrix A∗A, and let λ be the largest
eigenvalue of B. Since, for x �= 0 ,

0 ≤ ‖Ax‖2

‖x‖2
=

〈Ax, Ax〉
‖x‖2

=
〈A∗Ax, x〉

‖x‖2
=

〈Bx, x〉
‖x‖2

= R(x),

it follows from Theorem 6.43 that ‖A‖2 = λ.

Observe that the proof of Corollary 1 shows that all the eigenvalues of
A∗A are nonnegative. For our next result, we need the following lemma.

Lemma. For any square matrix A, λ is an eigenvalue of A∗A if and only
if λ is an eigenvalue of AA∗.

Proof. Let λ be an eigenvalue of A∗A. If λ = 0, then A∗A is not invertible.
Hence A and A∗ are not invertible, so that λ is also an eigenvalue of AA∗.
The proof of the converse is similar.

Suppose now that λ �= 0. Then there exists x �= 0 such that A∗Ax = λx.
Apply A to both sides to obtain (AA∗)(Ax) = λ(Ax). Since Ax �= 0 (lest
λx = 0 ), we have that λ is an eigenvalue of AA∗. The proof of the converse
is left as an exercise.

Corollary 2. Let A be an invertible matrix. Then ‖A−1‖ = 1/
√

λ,
where λ is the smallest eigenvalue of A∗A.

Proof. Recall that λ is an eigenvalue of an invertible matrix if and only if
λ−1 is an eigenvalue of its inverse.

Now let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A∗A, which by the
lemma are the eigenvalues of AA∗. Then ‖A−1‖2 equals the largest eigenvalue
of (A−1)∗A−1 = (AA∗)−1, which equals 1/λn.

For many applications, it is only the largest and smallest eigenvalues that
are of interest. For example, in the case of vibration problems, the smallest
eigenvalue represents the lowest frequency at which vibrations can occur.

We see the role of both of these eigenvalues in our study of conditioning.

Example 3

Let

A =

⎛⎝ 1 0 1
−1 1 0

0 1 1

⎞⎠ .
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Then

B = A∗A =

⎛⎝ 2 −1 1
−1 2 1

1 1 2

⎞⎠ .

The eigenvalues of B are 3, 3, and 0. Therefore, ‖A‖ =
√

3. For any

x =

⎛⎝a
b
c

⎞⎠ �= 0 ,

we may compute R(x) for the matrix B as

3 ≥ R(x) =
〈Bx, x〉
‖x‖2

=
2(a2 + b2 + c2 − ab + ac + bc)

a2 + b2 + c2
. ♦

Now that we know ‖A‖ exists for every square matrix A, we can make use
of the inequality ‖Ax‖ ≤ ‖A‖ · ‖x‖, which holds for every x.

Assume in what follows that A is invertible, b �= 0 , and Ax = b. For
a given δb, let δx be the vector that satisfies A(x + δx) = b + δb. Then
A(δx) = δb, and so δx = A−1(δb). Hence

‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖ and ‖δx‖ = ‖A−1(δb)‖ ≤ ‖A−1‖ · ‖δb‖.
Thus

‖δx‖
‖x‖ ≤ ‖x‖2

‖b‖/‖A‖ ≤ ‖A−1‖ · ‖δb‖ · ‖A‖
‖b‖ = ‖A‖ · ‖A−1‖ ·

(‖δb‖
‖b‖

)
.

Similarly (see Exercise 9),

1
‖A‖ · ‖A−1‖

(‖δb‖
‖b‖

)
≤ ‖δx‖

‖x‖ .

The number ‖A‖ · ‖A−1‖ is called the condition number of A and is
denoted cond(A). It should be noted that the definition of cond(A) depends
on how the norm of A is defined. There are many reasonable ways of defining
the norm of a matrix. In fact, the only property needed to establish the
inequalities above is that ‖Ax‖ ≤ ‖A‖ · ‖x‖ for all x. We summarize these
results in the following theorem.

Theorem 6.44. For the system Ax = b, where A is invertible and b �= 0 ,
the following statements are true.

(a) For any norm ‖ · ‖, we have
1

cond(A)
‖δb‖
‖b‖ ≤ ‖δx‖

‖x‖ ≤ cond(A)
‖δb‖
‖b‖ .
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(b) If ‖ · ‖ is the Euclidean norm, then cond(A) =
√

λ1/λn , where λ1 and
λn are the largest and smallest eigenvalues, respectively, of A∗A.

Proof. Statement (a) follows from the previous inequalities, and (b) follows
from Corollaries 1 and 2 to Theorem 6.43.

It is clear from Theorem 6.44 that cond(A) ≥ 1. It is left as an exercise
to prove that cond(A) = 1 if and only if A is a scalar multiple of a unitary or
orthogonal matrix. Moreover, it can be shown with some work that equality
can be obtained in (a) by an appropriate choice of b and δb.

We can see immediately from (a) that if cond(A) is close to 1, then a
small relative error in b forces a small relative error in x. If cond(A) is large,
however, then the relative error in x may be small even though the relative
error in b is large, or the relative error in x may be large even though the
relative error in b is small! In short, cond(A) merely indicates the potential
for large relative errors.

We have so far considered only errors in the vector b. If there is an error
δA in the coefficient matrix of the system Ax = b, the situation is more
complicated. For example, A + δA may fail to be invertible. But under the
appropriate assumptions, it can be shown that a bound for the relative error
in x can be given in terms of cond(A). For example, Charles Cullen (Charles
G. Cullen, An Introduction to Numerical Linear Algebra, PWS Publishing
Co., Boston 1994, p. 60) shows that if A + δA is invertible, then

‖δx‖
‖x + δx‖ ≤ cond(A)

‖δA‖
‖A‖ .

It should be mentioned that, in practice, one never computes cond(A)
from its definition, for it would be an unnecessary waste of time to compute
A−1 merely to determine its norm. In fact, if a computer is used to find
A−1, the computed inverse of A in all likelihood only approximates A−1, and
the error in the computed inverse is affected by the size of cond(A). So we
are caught in a vicious circle! There are, however, some situations in which
a usable approximation of cond(A) can be found. Thus, in most cases, the
estimate of the relative error in x is based on an estimate of cond(A).

EXERCISES

1. Label the following statements as true or false.

(a) If Ax = b is well-conditioned, then cond(A) is small.
(b) If cond(A) is large, then Ax = b is ill-conditioned.
(c) If cond(A) is small, then Ax = b is well-conditioned.
(d) The norm of A equals the Rayleigh quotient.
(e) The norm of A always equals the largest eigenvalue of A.
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2. Compute the norms of the following matrices.

(a)
(

4 0
1 3

)
(b)

(
5 3

−3 3

)
(c)

⎛⎜⎜⎝
1 −2√

3
0

0 −2√
3

1

0 2√
3

1

⎞⎟⎟⎠
3. Prove that if B is symmetric, then ‖B‖ is the largest eigenvalue of B.

4. Let A and A−1 be as follows:

A =

⎛⎝ 6 13 −17
13 29 −38

−17 −38 50

⎞⎠ and A−1 =

⎛⎝ 6 −4 1
−4 11 7
−1 7 5

⎞⎠ .

The eigenvalues of A are approximately 84.74, 0.2007, and 0.0588.

(a) Approximate ‖A‖, ‖A−1‖, and cond(A). (Note Exercise 3.)
(b) Suppose that we have vectors x and x̃ such that Ax = b and

‖b − Ax̃‖ ≤ 0.001. Use (a) to determine upper bounds for
‖x̃−A−1b‖ (the absolute error) and ‖x̃−A−1b‖/‖A−1b‖ (the rel-
ative error).

5. Suppose that x is the actual solution of Ax = b and that a computer
arrives at an approximate solution x̃. If cond(A) = 100, ‖b‖ = 1, and
‖b − Ax̃‖ = 0.1, obtain upper and lower bounds for ‖x − x̃‖/‖x‖.

6. Let

B =

⎛⎝2 1 1
1 2 1
1 1 2

⎞⎠ .

Compute

R

⎛⎝ 1
−2

3

⎞⎠ , ‖B‖, and cond(B).

7. Let B be a symmetric matrix. Prove that min
x�=0

R(x) equals the smallest

eigenvalue of B.

8. Prove that if λ is an eigenvalue of AA∗, then λ is an eigenvalue of A∗A.
This completes the proof of the lemma to Corollary 2 to Theorem 6.43.

9. Prove that if A is an invertible matrix and Ax = b, then

1
‖A‖ · ‖A−1‖

(‖δb‖
‖b‖

)
≤ ‖δx‖

‖x‖ .
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10. Prove the left inequality of (a) in Theorem 6.44.

11. Prove that cond(A) = 1 if and only if A is a scalar multiple of a unitary
or orthogonal matrix.

12. (a) Let A and B be square matrices that are unitarily equivalent.
Prove that ‖A‖ = ‖B‖.

(b) Let T be a linear operator on a finite-dimensional inner product
space V. Define

‖T‖ = max
x�=0

‖T(x)‖
‖x‖ .

Prove that ‖T‖ = ‖[T]β‖, where β is any orthonormal basis for V.
(c) Let V be an infinite-dimensional inner product space with an or-

thonormal basis {v1, v2, . . .}. Let T be the linear operator on V
such that T(vk) = kvk. Prove that ‖T‖ (defined in (b)) does not
exist.

The next exercise assumes the definitions of singular value and pseudoinverse
and the results of Section 6.7.

13. Let A be an n × n matrix of rank r with the nonzero singular values
σ1 ≥ σ2 ≥ · · · ≥ σr. Prove each of the following results.

(a) ‖A‖ = σ1.

(b) ‖A†‖ =
1
σr

.

(c) If A is invertible (and hence r = n), then cond(A) =
σ1

σn
.

6.11∗ THE GEOMETRY OF ORTHOGONAL OPERATORS

By Theorem 6.22 (p. 386), any rigid motion on a finite-dimensional real inner
product space is the composite of an orthogonal operator and a translation.
Thus, to understand the geometry of rigid motions thoroughly, we must ana-
lyze the structure of orthogonal operators. Such is the aim of this section. We
show that any orthogonal operator on a finite-dimensional real inner product
space is the composite of rotations and reflections.

This material assumes familiarity with the results about direct sums de-
veloped at the end of Section 5.2, and familiarity with the definition and
elementary properties of the determinant of a linear operator defined in Ex-
ercise 7 of Section 5.1.

Definitions. Let T be a linear operator on a finite-dimensional real inner
product space V. The operator T is called a rotation if T is the identity on



Sec. 6.11 The Geometry of Orthogonal Operators 473

V or if there exists a two-dimensional subspace W of V, an orthonormal basis
β = {x1, x2} for W, and a real number θ such that

T(x1) = (cos θ)x1 + (sin θ)x2, T(x2) = (− sin θ)x1 + (cos θ)x2,

and T(y) = y for all y ∈ W⊥. In this context, T is called a rotation of W
about W⊥. The subspace W⊥ is called the axis of rotation.

Rotations are defined in Section 2.1 for the special case that V = R2.

Definitions. Let T be a linear operator on a finite-dimensional real
inner product space V. The operator T is called a reflection if there exists
a one-dimensional subspace W of V such that T(x) = −x for all x ∈ W and
T(y) = y for all y ∈ W⊥. In this context, T is called a reflection of V about
W⊥.

It should be noted that rotations and reflections (or composites of these)
are orthogonal operators (see Exercise 2). The principal aim of this section
is to establish that the converse is also true, that is, any orthogonal operator
on a finite-dimensional real inner product space is the composite of rotations
and reflections.

Example 1

A Characterization of Orthogonal Operators on a One-Dimensional Real In-
ner Product Space

Let T be an orthogonal operator on a one-dimensional inner product space
V. Choose any nonzero vector x in V. Then V = span({x}), and so T(x) = λx
for some λ ∈ R. Since T is orthogonal and λ is an eigenvalue of T, λ = ±1.
If λ = 1, then T is the identity on V, and hence T is a rotation. If λ = −1,
then T(x) = −x for all x ∈ V; so T is a reflection of V about V⊥ = {0}. Thus
T is either a rotation or a reflection. Note that in the first case, det(T) = 1,
and in the second case, det(T) = −1. ♦
Example 2

Some Typical Reflections

(a) Define T : R2 → R2 by T(a, b) = (−a, b), and let W = span({e1}).
Then T(x) = −x for all x ∈ W, and T(y) = y for all y ∈ W⊥. Thus T is a
reflection of R2 about W⊥ = span({e2}), the y-axis.

(b) Let T : R3 → R3 be defined by T(a, b, c) = (a, b,−c), and let W =
span({e3}). Then T(x) = −x for all x ∈ W, and T(y) = y for all y ∈ W⊥ =
span({e1, e2}), the xy-plane. Hence T is a reflection of R3 about W⊥. ♦

Example 1 characterizes all orthogonal operators on a one-dimensional
real inner product space. The following theorem characterizes all orthogonal
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operators on a two-dimensional real inner product space V. The proof fol-
lows from Theorem 6.23 (p. 387) since all two-dimensional real inner product
spaces are structurally identical. For a rigorous justification, apply Theo-
rem 2.21 (p. 104), where β is an orthonormal basis for V. By Exercise 15 of
Section 6.2, the resulting isomorphism φβ : V → R2 preserves inner products.
(See Exercise 8.)

Theorem 6.45. Let T be an orthogonal operator on a two-dimensional
real inner product space V. Then T is either a rotation or a reflection. Fur-
thermore, T is a rotation if and only if det(T) = 1, and T is a reflection if
and only if det(T) = −1.

A complete description of the reflections of R2 is given in Section 6.5.

Corollary. Let V be a two-dimensional real inner product space. The
composite of a reflection and a rotation on V is a reflection on V.

Proof. If T1 is a reflection on V and T2 is a rotation on V, then by
Theorem 6.45, det(T1) = 1 and det(T2) = −1. Let T = T2T1 be the
composite. Since T2 and T1 are orthogonal, so is T. Moreover, det(T) =
det(T2) · det(T1) = −1. Thus, by Theorem 6.45, T is a reflection. The proof
for T1T2 is similar.

We now study orthogonal operators on spaces of higher dimension.

Lemma. If T is a linear operator on a nonzero finite-dimensional real
vector space V, then there exists a T-invariant subspace W of V such that
1 ≤ dim(W) ≤ 2.

Proof. Fix an ordered basis β = {y1, y2, . . . , yn} for V, and let A = [T ]β .
Let φβ : V → Rn be the linear transformation defined by φβ(yi) = ei for
i = 1, 2, . . . , n. Then φβ is an isomorphism, and, as we have seen in Sec-
tion 2.4, the diagram in Figure 6.10 commutes, that is, LAφβ = φβT. As a
consequence, it suffices to show that there exists an LA-invariant subspace Z
of Rn such that 1 ≤ dim(Z) ≤ 2. If we then define W = φ−1

β (Z), it follows
that W satisfies the conclusions of the lemma (see Exercise 13).

V
T−−−−→ V⏐⏐!φβ

⏐⏐!φβ

Rn LA−−−−→ Rn

Figure 6.10
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The matrix A can be considered as an n × n matrix over C and, as such,
can be used to define a linear operator U on Cn by U(v) = Av. Since U
is a linear operator on a finite-dimensional vector space over C, it has an
eigenvalue λ ∈ C. Let x ∈ Cn be an eigenvector corresponding to λ. We may
write λ = λ1 + iλ2, where λ1 and λ2 are real, and

x =

⎛⎜⎜⎜⎝
a1 + ib1

a2 + ib2

...
an + ibn

⎞⎟⎟⎟⎠ ,

where the ai’s and bi’s are real. Thus, setting

x1 =

⎛⎜⎜⎜⎝
a1

a2

...
an

⎞⎟⎟⎟⎠ and x2 =

⎛⎜⎜⎜⎝
b1

b2

...
bn

⎞⎟⎟⎟⎠ ,

we have x = x1 + ix2, where x1 and x2 have real entries. Note that at least
one of x1 or x2 is nonzero since x �= 0 . Hence

U(x) = λx = (λ1 + iλ2)(x1 + ix2) = (λ1x1 − λ2x2) + i(λ1x2 + λ2x1).

Similarly,

U(x) = A(x1 + ix2) = Ax1 + iAx2.

Comparing the real and imaginary parts of these two expressions for U(x),
we conclude that

Ax1 = λ1x1 − λ2x2 and Ax2 = λ1x2 + λ2x1.

Finally, let Z = span({x1, x2}), the span being taken as a subspace of Rn.
Since x1 �= 0 or x2 �= 0 , Z is a nonzero subspace. Thus 1 ≤ dim(Z) ≤ 2, and
the preceding pair of equations shows that Z is LA-invariant.

Theorem 6.46. Let T be an orthogonal operator on a nonzero finite-
dimensional real inner product space V. Then there exists a collection of
pairwise orthogonal T-invariant subspaces {W1, W2, . . . ,Wm} of V such that

(a) 1 ≤ dim(Wi) ≤ 2 for i = 1, 2, . . . , m.

(b) V = W1 ⊕ W2 ⊕ · · · ⊕ Wm.

Proof. The proof is by mathematical induction on dim(V). If dim(V) = 1,
the result is obvious. So assume that the result is true whenever dim(V) < n
for some fixed integer n > 1.
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Suppose dim(V) = n. By the lemma, there exists a T-invariant subspace
W1 of V such that 1 ≤ dim(W) ≤ 2. If W1 = V, the result is established.
Otherwise, W⊥

1 �= {0}. By Exercise 14, W⊥
1 is T-invariant and the restriction

of T to W⊥
1 is orthogonal. Since dim(W⊥

1 ) < n, we may apply the induc-
tion hypothesis to TW⊥

1
and conclude that there exists a collection of pair-

wise orthogonal T-invariant subspaces {W1, W2, . . . ,Wm} of W⊥
1 such that

1 ≤ dim(Wi) ≤ 2 for i = 2, 3, . . . , m and W⊥
1 = W2 ⊕ W3 ⊕ · · · ⊕ Wm.

Thus {W1, W2, . . . ,Wm} is pairwise orthogonal, and by Exercise 13(d) of
Section 6.2,

V = W1 ⊕ W⊥
1 = W1 ⊕ W2 ⊕ · · · ⊕ Wm.

Applying Example 1 and Theorem 6.45 in the context of Theorem 6.46,
we conclude that the restriction of T to Wi is either a rotation or a reflection
for each i = 2, 3, . . . , m. Thus, in some sense, T is composed of rotations and
reflections. Unfortunately, very little can be said about the uniqueness of the
decomposition of V in Theorem 6.46. For example, the Wi’s, the number m
of Wi’s, and the number of Wi’s for which TWi is a reflection are not unique.
Although the number of Wi’s for which TWi is a reflection is not unique,
whether this number is even or odd is an intrinsic property of T. Moreover,
we can always decompose V so that TWi

is a reflection for at most one Wi.
These facts are established in the following result.

Theorem 6.47. Let T, V, W1, . . . , Wm be as in Theorem 6.46.
(a) The number of Wi’s for which TWi is a reflection is even or odd according

to whether det(T) = 1 or det(T) = −1.
(b) It is always possible to decompose V as in Theorem 6.46 so that the

number of Wi’s for which TWi
is a reflection is zero or one according to

whether det(T) = 1 or det(T) = −1. Furthermore, if TWi
is a reflection,

then dim(Wi) = 1.

Proof. (a) Let r denote the number of Wi’s in the decomposition for which
TWi

is a reflection. Then, by Exercise 15,

det(T) = det(TW1) · det(TW2) · · · · · det(TWm
) = (−1)r,

proving (a).
(b) Let E = {x ∈ V : T(x) = −x}; then E is a T-invariant subspace

of V. If W = E⊥, then W is T-invariant. So by applying Theorem 6.46
to TW, we obtain a collection of pairwise orthogonal T-invariant subspaces
{W1, W2, . . . ,Wk} of W such that W = W1 ⊕ W2 ⊕ · · · ⊕ Wk and for 1 ≤
i ≤ k, the dimension of each Wi is either 1 or 2. Observe that, for each
i = 1, 2, . . . , k, TWi

is a rotation. For otherwise, if TWi
is a reflection, there

exists a nonzero x ∈ Wi for which T(x) = −x. But then, x ∈ Wi ∩ E ⊆
E⊥ ∩ E = {0}, a contradiction. If E = {0}, the result follows. Otherwise,
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choose an orthonormal basis β for E containing p vectors (p > 0). It is
possible to decompose β into a pairwise disjoint union β = β1 ∪ β2 ∪ · · · ∪ βr

such that each βi contains exactly two vectors for i < r, and βr contains
two vectors if p is even and one vector if p is odd. For each i = 1, 2, . . . , r,
let Wk+i = span(βi). Then, clearly, {W1, W2, . . . ,Wk, . . . ,Wk+r} is pairwise
orthogonal, and

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk ⊕ · · · ⊕ Wk+r. (27)

Moreover, if any βi contains two vectors, then

det(TWk+i
) = det([TWk+i

]βi
) = det

(−1 0
0 −1

)
= 1.

So TWk+i
is a rotation, and hence TWj

is a rotation for j < k + r. If βr

consists of one vector, then dim(Wk+r) = 1 and

det(TWk+r
) = det([TWk+r

]βr
) = det(−1) = −1.

Thus TWk+r
is a reflection by Theorem 6.46, and we conclude that the de-

composition in (27) satisfies the condition of (b).

As a consequence of the preceding theorem, an orthogonal operator can
be factored as a product of rotations and reflections.

Corollary. Let T be an orthogonal operator on a finite-dimensional real
inner product space V. Then there exists a collection {T1, T2, . . . ,Tm} of
orthogonal operators on V such that the following statements are true.

(a) For each i, Ti is either a reflection or a rotation.
(b) For at most one i, Ti is a reflection.
(c) TiTj = TjTi for all i and j.
(d) T = T1T2 · · · Tm.

(e) det(T) =

{
1 if Ti is a rotation for each i

−1 otherwise.

Proof. As in the proof of Theorem 6.47(b), we can write

V = W1 ⊕ W2 ⊕ · · · ⊕ Wm,

where TWi
is a rotation for i < m. For each i = 1, 2, . . . , m, define Ti : V → V

by

Ti(x1 + x2 + · · · + xm) = x1 + x2 + · · · + xi−1 + T(xi) + xi+1 + · · · + xm,

where xj ∈ Wj for all j. It is easily shown that each Ti is an orthogonal
operator on V. In fact, Ti is a rotation or a reflection according to whether
TWi is a rotation or a reflection. This establishes (a) and (b). The proofs
of (c), (d), and (e) are left as exercises. (See Exercise 16.)
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Example 3

Orthogonal Operators on a Three-Dimensional Real Inner Product Space

Let T be an orthogonal operator on a three-dimensional real inner product
space V. We show that T can be decomposed into the composite of a rotation
and at most one reflection. Let

V = W1 ⊕ W2 ⊕ · · · ⊕ Wm

be a decomposition as in Theorem 6.47(b). Clearly, m = 2 or m = 3.

If m = 2, then V = W1 ⊕ W2. Without loss of generality, suppose that
dim(W1) = 1 and dim(W2) = 2. Thus TW1 is a reflection or the identity on
W1, and TW2 is a rotation. Defining T1 and T2 as in the proof of the corollary
to Theorem 6.47, we have that T = T1T2 is the composite of a rotation and
at most one reflection. (Note that if TW1 is not a reflection, then T1 is the
identity on V and T = T2.)

If m = 3, then V = W1 ⊕ W2 ⊕ W3 and dim(Wi) = 1 for all i. For each
i, let Ti be as in the proof of the corollary to Theorem 6.47. If TWi is not a
reflection, then Ti is the identity on Wi. Otherwise, Ti is a reflection. Since
TWi

is a reflection for at most one i, we conclude that T is either a single
reflection or the identity (a rotation). ♦

EXERCISES

1. Label the following statements as true or false. Assume that the under-
lying vector spaces are finite-dimensional real inner product spaces.

(a) Any orthogonal operator is either a rotation or a reflection.
(b) The composite of any two rotations on a two-dimensional space is

a rotation.
(c) The composite of any two rotations on a three-dimensional space

is a rotation.
(d) The composite of any two rotations on a four-dimensional space is

a rotation.
(e) The identity operator is a rotation.
(f) The composite of two reflections is a reflection.
(g) Any orthogonal operator is a composite of rotations.
(h) For any orthogonal operator T, if det(T) = −1, then T is a reflec-

tion.
(i) Reflections always have eigenvalues.
(j) Rotations always have eigenvalues.

2. Prove that rotations, reflections, and composites of rotations and re-
flections are orthogonal operators.
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3. Let

A =

⎛⎜⎜⎝
1
2

√
3

2√
3

2
−1

2

⎞⎟⎟⎠ and B =
(

1 0
0 −1

)
.

(a) Prove that LA is a reflection.
(b) Find the axis in R2 about which LA reflects, that is, the subspace

of R2 on which LA acts as the identity.
(c) Prove that LAB and LBA are rotations.

4. For any real number φ, let

A =
(

cos φ sin φ
sin φ − cos φ

)
.

(a) Prove that LA is a reflection.
(b) Find the axis in R2 about which LA reflects.

5. For any real number φ, define Tφ = LA, where

A =
(

cos φ − sin φ
sin φ cos φ

)
.

(a) Prove that any rotation on R2 is of the form Tφ for some φ.
(b) Prove that TφTψ = T(φ+ψ) for any φ, ψ ∈ R.
(c) Deduce that any two rotations on R2 commute.

6. Prove that the composite of any two rotations on R3 is a rotation on
R3.

7. Given real numbers φ and ψ, define matrices

A =

⎛⎝1 0 0
0 cos φ − sin φ
0 sin φ cos φ

⎞⎠ and B =

⎛⎝cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎞⎠ .

(a) Prove that LA and LB are rotations.
(b) Prove that LAB is a rotation.
(c) Find the axis of rotation for LAB .

8. Prove Theorem 6.45 using the hints preceding the statement of the
theorem.

9. Prove that no orthogonal operator can be both a rotation and a reflec-
tion.
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10. Prove that if V is a two- or three-dimensional real inner product space,
then the composite of two reflections on V is a rotation of V.

11. Give an example of an orthogonal operator that is neither a reflection
nor a rotation.

12. Let V be a finite-dimensional real inner product space. Define T : V → V
by T(x) = −x. Prove that T is a product of rotations if and only if
dim(V) is even.

13. Complete the proof of the lemma to Theorem 6.46 by showing that
W = φ−1

β (Z) satisfies the required conditions.

14. Let T be an orthogonal [unitary] operator on a finite-dimensional real
[complex] inner product space V. If W is a T-invariant subspace of V,
prove the following results.

(a) TW is an orthogonal [unitary] operator on W.
(b) W⊥ is a T-invariant subspace of V. Hint: Use the fact that TW

is one-to-one and onto to conclude that, for any y ∈ W, T∗(y) =
T−1(y) ∈ W.

(c) TW⊥ is an orthogonal [unitary] operator on W.

15. Let T be a linear operator on a finite-dimensional vector space V, where
V is a direct sum of T-invariant subspaces, say, V = W1⊕W2⊕· · ·⊕Wk.
Prove that det(T) = det(TW1) · det(TW2) · · · · · det(TWk

).

16. Complete the proof of the corollary to Theorem 6.47.

17. Let T be a linear operator on an n-dimensional real inner product space
V. Suppose that T is not the identity. Prove the following results.

(a) If n is odd, then T can be expressed as the composite of at most
one reflection and at most 1

2 (n − 1) rotations.
(b) If n is even, then T can be expressed as the composite of at most

1
2n rotations or as the composite of one reflection and at most
1
2 (n − 2) rotations.

18. Let V be a real inner product space of dimension 2. For any x, y ∈ V
such that x �= y and ‖x‖ = ‖y‖ = 1, show that there exists a unique
rotation T on V such that T(x) = y.
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7
Canonical Forms
7.1 The Jordan Canonical Form I
7.2 The Jordan Canonical Form II
7.3 The Minimal Polynomial
7.4* The Rational Canonical Form

As we learned in Chapter 5, the advantage of a diagonalizable linear oper-
ator lies in the simplicity of its description. Such an operator has a diagonal
matrix representation, or, equivalently, there is an ordered basis for the un-
derlying vector space consisting of eigenvectors of the operator. However, not
every linear operator is diagonalizable, even if its characteristic polynomial
splits. Example 3 of Section 5.2 describes such an operator.

It is the purpose of this chapter to consider alternative matrix repre-
sentations for nondiagonalizable operators. These representations are called
canonical forms. There are different kinds of canonical forms, and their ad-
vantages and disadvantages depend on how they are applied. The choice of a
canonical form is determined by the appropriate choice of an ordered basis.
Naturally, the canonical forms of a linear operator are not diagonal matrices
if the linear operator is not diagonalizable.

In this chapter, we treat two common canonical forms. The first of these,
the Jordan canonical form, requires that the characteristic polynomial of
the operator splits. This form is always available if the underlying field is
algebraically closed, that is, if every polynomial with coefficients from the field
splits. For example, the field of complex numbers is algebraically closed by
the fundamental theorem of algebra (see Appendix D). The first two sections
deal with this form. The rational canonical form, treated in Section 7.4, does
not require such a factorization.

7.1 THE JORDAN CANONICAL FORM I

Let T be a linear operator on a finite-dimensional vector space V, and suppose
that the characteristic polynomial of T splits. Recall from Section 5.2 that
the diagonalizability of T depends on whether the union of ordered bases
for the distinct eigenspaces of T is an ordered basis for V. So a lack of
diagonalizability means that at least one eigenspace of T is too “small.”

482
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In this section, we extend the definition of eigenspace to generalized
eigenspace. From these subspaces, we select ordered bases whose union is
an ordered basis β for V such that

[T]β =

⎛⎜⎜⎜⎝
A1 O · · · O
O A2 · · · O
...

...
...

O O · · · Ak

⎞⎟⎟⎟⎠ ,

where each O is a zero matrix, and each Ai is a square matrix of the form
(λ) or ⎛⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

⎞⎟⎟⎟⎟⎟⎠
for some eigenvalue λ of T. Such a matrix Ai is called a Jordan block
corresponding to λ, and the matrix [T]β is called a Jordan canonical form
of T. We also say that the ordered basis β is a Jordan canonical basis
for T. Observe that each Jordan block Ai is “almost” a diagonal matrix—in
fact, [T]β is a diagonal matrix if and only if each Ai is of the form (λ).

Example 1

Suppose that T is a linear operator on C8, and β = {v1, v2, . . . , v8} is an
ordered basis for C8 such that

J = [T]β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 0 0
0 2 1 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a Jordan canonical form of T. Notice that the characteristic polynomial
of T is det(J − tI) = (t − 2)4(t − 3)2t2, and hence the multiplicity of each
eigenvalue is the number of times that the eigenvalue appears on the diagonal
of J . Also observe that v1, v4, v5, and v7 are the only vectors in β that are
eigenvectors of T. These are the vectors corresponding to the columns of J
with no 1 above the diagonal entry. ♦
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In Sections 7.1 and 7.2, we prove that every linear operator whose charac-
teristic polynomial splits has a Jordan canonical form that is unique up to the
order of the Jordan blocks. Nevertheless, it is not the case that the Jordan
canonical form is completely determined by the characteristic polynomial of
the operator. For example, let T′ be the linear operator on C8 such that
[T′]β = J ′, where β is the ordered basis in Example 1 and

J ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the characteristic polynomial of T′ is also (t − 2)4(t − 3)2t2. But the
operator T′ has the Jordan canonical form J ′, which is different from J , the
Jordan canonical form of the linear operator T of Example 1.

Consider again the matrix J and the ordered basis β of Example 1. Notice
that T(v2) = v1+2v2 and therefore, (T−2I)(v2) = v1. Similarly, (T−2I)(v3) =
v2. Since v1 and v4 are eigenvectors of T corresponding to λ = 2, it follows
that (T − 2I)3(vi) = 0 for i = 1, 2, 3, and 4. Similarly (T − 3I)2(vi) = 0 for
i = 5, 6, and (T − 0I)2(vi) = 0 for i = 7, 8.

Because of the structure of each Jordan block in a Jordan canonical form,
we can generalize these observations: If v lies in a Jordan canonical basis for
a linear operator T and is associated with a Jordan block with diagonal entry
λ, then (T − λI)p(v) = 0 for sufficiently large p. Eigenvectors satisfy this
condition for p = 1.

Definition. Let T be a linear operator on a vector space V, and let λ be
a scalar. A nonzero vector x in V is called a generalized eigenvector of T
corresponding to λ if (T − λI)p(x) = 0 for some positive integer p.

Notice that if x is a generalized eigenvector of T corresponding to λ, and p
is the smallest positive integer for which (T−λI)p(x) = 0 , then (T−λI)p−1(x)
is an eigenvector of T corresponding to λ. Therefore λ is an eigenvalue of T.

In the context of Example 1, each vector in β is a generalized eigenvector
of T. In fact, v1, v2, v3 and v4 correspond to the scalar 2, v5 and v6 correspond
to the scalar 3, and v7 and v8 correspond to the scalar 0.

Just as eigenvectors lie in eigenspaces, generalized eigenvectors lie in “gen-
eralized eigenspaces.”

Definition. Let T be a linear operator on a vector space V, and let λ be
an eigenvalue of T. The generalized eigenspace of T corresponding to
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λ, denoted Kλ, is the subset of V defined by

Kλ = {x ∈ V : (T − λI)p(x) = 0 for some positive integer p}.
Note that Kλ consists of the zero vector and all generalized eigenvectors

corresponding to λ.
Recall that a subspace W of V is T-invariant for a linear operator T if

T(W) ⊆ W. In the development that follows, we assume the results of Exer-
cises 3 and 4 of Section 5.4. In particular, for any polynomial g(x), if W is
T-invariant, then it is also g(T)-invariant. Furthermore, the range of a linear
operator T is T-invariant.

Theorem 7.1. Let T be a linear operator on a vector space V, and let λ
be an eigenvalue of T. Then

(a) Kλ is a T-invariant subspace of V containing Eλ (the eigenspace of T
corresponding to λ).

(b) For any scalar μ �= λ, the restriction of T − μI to Kλ is one-to-one.

Proof. (a) Clearly, 0 ∈ Kλ. Suppose that x and y are in Kλ. Then there
exist positive integers p and q such that

(T − λI)p(x) = (T − λI)q(y) = 0 .

Therefore

(T − λI)p+q(x + y) = (T − λI)p+q(x) + (T − λI)p+q(y)
= (T − λI)q(0 ) + (T − λI)p(0 )
= 0 ,

and hence x+y ∈ Kλ. The proof that Kλ is closed under scalar multiplication
is straightforward.

To show that Kλ is T-invariant, consider any x ∈ Kλ. Choose a positive
integer p such that (T − λI)p(x) = 0 . Then

(T − λI)pT(x) = T(T − λI)p(x) = T(0 ) = 0 .

Therefore T(x) ∈ Kλ.
Finally, it is a simple observation that Eλ is contained in Kλ.
(b) Let x ∈ Kλ and (T − μI)(x) = 0 . By way of contradiction, suppose

that x �= 0 . Let p be the smallest integer for which (T− λI)p(x) = 0 , and let
y = (T − λI)p−1(x). Then

(T − λI)(y) = (T − λI)p(x) = 0 ,

and hence y ∈ Eλ. Furthermore,

(T − μI)(y) = (T − μI)(T − λI)p−1(x) = (T − λI)p−1(T − μI)(x) = 0 ,

so that y ∈ Eμ. But Eλ ∩ Eμ = {0}, and thus y = 0 , contrary to the
hypothesis. So x = 0 , and the restriction of T − μI to Kλ is one-to-one.
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Theorem 7.2. Let T be a linear operator on a finite-dimensional vector
space V such that the characteristic polynomial of T splits. Suppose that λ
is an eigenvalue of T with multiplicity m. Then

(a) dim(Kλ) ≤ m.

(b) Kλ = N((T − λI)m).

Proof. (a) Let W = Kλ, and let h(t) be the characteristic polynomial of TW.
By Theorem 5.21 (p. 314), h(t) divides the characteristic polynomial of T, and
by Theorem 7.1(b), λ is the only eigenvalue of TW. Hence h(t) = (−1)d(t−λ)d,
where d = dim(W), and d ≤ m.

(b) Clearly N((T − λI)m) ⊆ Kλ. Now let W and h(t) be as in (a). Then
h(TW) is identically zero by the Cayley–Hamilton theorem (p. 317); therefore
(T−λI)d(x) = 0 for all x ∈ W. Since d ≤ m, we have Kλ ⊆ N((T−λI)m).

Theorem 7.3. Let T be a linear operator on a finite-dimensional vec-
tor space V such that the characteristic polynomial of T splits, and let
λ1, λ2, . . . , λk be the distinct eigenvalues of T. Then, for every x ∈ V, there
exist vectors vi ∈ Kλi

, 1 ≤ i ≤ k, such that

x = v1 + v2 + · · · + vk.

Proof. The proof is by mathematical induction on the number k of dis-
tinct eigenvalues of T. First suppose that k = 1, and let m be the multiplic-
ity of λ1. Then (λ1 − t)m is the characteristic polynomial of T, and hence
(λ1I − T)m = T0 by the Cayley-Hamilton theorem (p.317). Thus V = Kλ1 ,
and the result follows.

Now suppose that for some integer k > 1, the result is established when-
ever T has fewer than k distinct eigenvalues, and suppose that T has k distinct
eigenvalues. Let m be the multiplicity of λk, and let f(t) be the characteristic
polynomial of T. Then f(t) = (t − λk)mg(t) for some polynomial g(t) not
divisible by (t − λk). Let W = R((T − λkI)m). Clearly W is T-invariant.
Observe that (T − λkI)m maps Kλi onto itself for i < k. For suppose that
i < k. Since (T − λkI)m maps Kλi into itself and λk �= λi, the restriction
of T − λkI to Kλi

is one-to-one (by Theorem 7.1(b)) and hence is onto. One
consequence of this is that for i < k, Kλi

is contained in W; hence λi is an
eigenvalue of TW for i < k.

Next, observe that λk is not an eigenvalue of TW. For suppose that T(v) =
λkv for some v ∈ W. Then v = (T − λkI)m(y) for some y ∈ V, and it follows
that

0 = (T − λkI)(v) = (T − λkI)m+1(y).

Therefore y ∈ Kλk
. So by Theorem 7.2, v = (T − λkI)m(y) = 0 .

Since every eigenvalue of TW is an eigenvalue of T, the distinct eigenvalues
of TW are λ1, λ2, . . . , λk−1.
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Now let x ∈ V. Then (T−λkI)m(x) ∈ W. Since TW has the k− 1 distinct
eigenvalues λ1, λ2, . . . , λk−1, the induction hypothesis applies. Hence there
are vectors wi ∈ K′

λi
, 1 ≤ i ≤ k − 1, such that

(T − λkI)m(x) = w1 + w2 + · · · + wk−1.

Since K′
λi

⊆ Kλi
for i < k and (T − λkI)m maps Kλi

onto itself for i < k,
there exist vectors vi ∈ Kλi such that (T − λkI)m(vi) = wi for i < k. Thus
we have

(T − λkI)m(x) = (T − λkI)m(v1) + (T − λkI)m(v2) + · · · + (T − λkI)m(vk−1),

and it follows that x− (v1 + v2 + · · · + vk−1) ∈ Kλk
. Therefore there exists a

vector vk ∈ Kλk
such that

x = v1 + v2 + · · · + vk.

The next result extends Theorem 5.9(b) (p. 268) to all linear operators
whose characteristic polynomials split. In this case, the eigenspaces are re-
placed by generalized eigenspaces.

Theorem 7.4. Let T be a linear operator on a finite-dimensional vec-
tor space V such that the characteristic polynomial of T splits, and let
λ1, λ2, . . . , λk be the distinct eigenvalues of T with corresponding multiplici-
ties m1, m2, . . . , mk. For 1 ≤ i ≤ k, let βi be an ordered basis for Kλi

. Then
the following statements are true.

(a) βi ∩ βj = ∅ for i �= j.
(b) β = β1 ∪ β2 ∪ · · · ∪ βk is an ordered basis for V.
(c) dim(Kλi) = mi for all i.

Proof. (a) Suppose that x ∈ βi ∩ βj ⊆ Kλi ∩ Kλj , where i �= j. By
Theorem 7.1(b), T−λiI is one-to-one on Kλj

, and therefore (T−λiI)p(x) �= 0
for any positive integer p. But this contradicts the fact that x ∈ Kλi

, and the
result follows.

(b) Let x ∈ V. By Theorem 7.3, for 1 ≤ i ≤ k, there exist vectors vi ∈ Kλi

such that x = v1 + v2 + · · · + vk. Since each vi is a linear combination of
the vectors of βi, it follows that x is a linear combination of the vectors of β.
Therefore β spans V. Let q be the number of vectors in β. Then dimV ≤ q.
For each i, let di = dim(Kλi

). Then, by Theorem 7.2(a),

q =
k∑

i=1

di ≤
k∑

i=1

mi = dim(V).

Hence q = dim(V). Consequently β is a basis for V by Corollary 2 to the
replacement theorem (p. 47).
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(c) Using the notation and result of (b), we see that
k∑

i=1

di =
k∑

i=1

mi. But

di ≤ mi by Theorem 7.2(a), and therefore di = mi for all i.

Corollary. Let T be a linear operator on a finite-dimensional vector space
V such that the characteristic polynomial of T splits. Then T is diagonalizable
if and only if Eλ = Kλ for every eigenvalue λ of T.

Proof. Combining Theorems 7.4 and 5.9(a) (p. 268), we see that T is
diagonalizable if and only if dim(Eλ) = dim(Kλ) for each eigenvalue λ of T.
But Eλ ⊆ Kλ, and hence these subspaces have the same dimension if and only
if they are equal.

We now focus our attention on the problem of selecting suitable bases for
the generalized eigenspaces of a linear operator so that we may use Theo-
rem 7.4 to obtain a Jordan canonical basis for the operator. For this purpose,
we consider again the basis β of Example 1. We have seen that the first four
vectors of β lie in the generalized eigenspace K2. Observe that the vectors in
β that determine the first Jordan block of J are of the form

{v1, v2, v3} = {(T − 2I)2(v3), (T − 2I)(v3), v3}.
Furthermore, observe that (T−2I)3(v3) = 0 . The relation between these vec-
tors is the key to finding Jordan canonical bases. This leads to the following
definitions.

Definitions. Let T be a linear operator on a vector space V, and let x
be a generalized eigenvector of T corresponding to the eigenvalue λ. Suppose
that p is the smallest positive integer for which (T − λI)p(x) = 0 . Then the
ordered set

{(T − λI)p−1(x), (T − λI)p−2(x), . . . , (T − λI)(x), x}
is called a cycle of generalized eigenvectors of T corresponding to λ.
The vectors (T − λI)p−1(x) and x are called the initial vector and the end
vector of the cycle, respectively. We say that the length of the cycle is p.

Notice that the initial vector of a cycle of generalized eigenvectors of a
linear operator T is the only eigenvector of T in the cycle. Also observe that
if x is an eigenvector of T corresponding to the eigenvalue λ, then the set {x}
is a cycle of generalized eigenvectors of T corresponding to λ of length 1.

In Example 1, the subsets β1 = {v1, v2, v3}, β2 = {v4}, β3 = {v5, v6},
and β4 = {v7, v8} are the cycles of generalized eigenvectors of T that occur
in β. Notice that β is a disjoint union of these cycles. Furthermore, setting
Wi = span(βi) for 1 ≤ i ≤ 4, we see that βi is a basis for Wi and [TWi ]βi is
the ith Jordan block of the Jordan canonical form of T. This is precisely the
condition that is required for a Jordan canonical basis.
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Theorem 7.5. Let T be a linear operator on a finite-dimensional vector
space V whose characteristic polynomial splits, and suppose that β is a basis
for V such that β is a disjoint union of cycles of generalized eigenvectors of
T. Then the following statements are true.

(a) For each cycle γ of generalized eigenvectors contained in β, W = span(γ)
is T-invariant, and [TW]γ is a Jordan block.

(b) β is a Jordan canonical basis for V.

Proof. (a) Suppose that γ corresponds to λ, γ has length p, and x is the
end vector of γ. Then γ = {v1, v2, . . . , vp}, where

vi = (T − λI)p−i(x) for i < p and vp = x.

So

(T − λI)(v1) = (T − λI)p(x) = 0 ,

and hence T(v1) = λv1. For i > 1,

(T − λI)(vi) = (T − λI)p−(i−1)(x) = vi−1.

Therefore T maps W into itself, and, by the preceding equations, we see that
[TW]γ is a Jordan block.

For (b), simply repeat the arguments of (a) for each cycle in β in order to
obtain [T]β . We leave the details as an exercise.

In view of this result, we must show that, under appropriate conditions,
there exist bases that are disjoint unions of cycles of generalized eigenvectors.
Since the characteristic polynomial of a Jordan canonical form splits, this is
a necessary condition. We will soon see that it is also sufficient. The next
result moves us toward the desired existence theorem.

Theorem 7.6. Let T be a linear operator on a vector space V, and let
λ be an eigenvalue of T. Suppose that γ1, γ2, . . . , γq are cycles of generalized
eigenvectors of T corresponding to λ such that the initial vectors of the γi’s
are distinct and form a linearly independent set. Then the γi’s are disjoint,

and their union γ =
q⋃

i=1

γi is linearly independent.

Proof. Exercise 5 shows that the γi’s are disjoint.
The proof that γ is linearly independent is by mathematical induction on

the number of vectors in γ. If this number is less than 2, then the result is
clear. So assume that, for some integer n > 1, the result is valid whenever γ
has fewer than n vectors, and suppose that γ has exactly n vectors. Let W
be the subspace of V generated by γ. Clearly W is (T − λI)-invariant, and
dim(W) ≤ n. Let U denote the restriction of T − λI to W.
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For each i, let γ′
i denote the cycle obtained from γi by deleting the end

vector. Note that if γi has length one, then γ′
i = ∅. In the case that γ′

i �= ∅,
each vector of γ′

i is the image under U of a vector in γi, and conversely, every
nonzero image under U of a vector of γi is contained in γ′

i. Let γ′ =
⋃
i

γ′
i.

Then by the last statement, γ′ generates R(U). Furthermore, γ′ consists of
n − q vectors, and the initial vectors of the γ′

i’s are also initial vectors of
the γi’s. Thus we may apply the induction hypothesis to conclude that γ′ is
linearly independent. Therefore γ′ is a basis for R(U). Hence dim(R(U)) =
n − q. Since the q initial vectors of the γi’s form a linearly independent set
and lie in N(U), we have dim(N(U)) ≥ q. From these inequalities and the
dimension theorem, we obtain

n ≥ dim(W)
= dim(R(U)) + dim(N(U))
≥ (n − q) + q

= n.

We conclude that dim(W) = n. Since γ generates W and consists of n vectors,
it must be a basis for W. Hence γ is linearly independent.

Corollary. Every cycle of generalized eigenvectors of a linear operator is
linearly independent.

Theorem 7.7. Let T be a linear operator on a finite-dimensional vector
space V, and let λ be an eigenvalue of T. Then Kλ has an ordered basis con-
sisting of a union of disjoint cycles of generalized eigenvectors corresponding
to λ.

Proof. The proof is by mathematical induction on n = dim(Kλ). The
result is clear for n = 1. So suppose that for some integer n > 1 the result is
valid whenever dim(Kλ) < n, and assume that dim(Kλ) = n. Let U denote the
restriction of T−λI to Kλ. Then R(U) is a subspace of Kλ of lesser dimension,
and R(U) is the space of generalized eigenvectors corresponding to λ for the
restriction of T to R(U). Therefore, by the induction hypothesis, there exist
disjoint cycles γ1, γ2, . . . , γq of generalized eigenvectors of this restriction, and

hence of T itself, corresponding to λ for which γ =
q⋃

i=1

γi is a basis for R(U).

For 1 ≤ i ≤ q, the end vector of γi is the image under U of a vector vi ∈ Kλ,
and so we can extend each γi to a larger cycle γ̃i = γi ∪ {vi} of generalized
eigenvectors of T corresponding to λ. For 1 ≤ i ≤ q, let wi be the initial vector
of γ̃i (and hence of γi). Since {w1, w2, . . . , wq} is a linearly independent sub-
set of Eλ, this set can be extended to a basis {w1, w2, . . . , wq, u1, u2, . . . , us}
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for Eλ. Then γ̃1, γ̃2, . . . , γ̃q, {u1}, {u2}, . . . , {us} are disjoint cycles of gener-
alized eigenvectors of T corresponding to λ such that the initial vectors of
these cycles are linearly independent. Therefore their union γ̃ is a linearly
independent subset of Kλ by Theorem 7.6.

We show that γ̃ is a basis for Kλ. Suppose that γ consists of r =
rank(U) vectors. Then γ̃ consists of r + q + s vectors. Furthermore, since
{w1, w2, . . . , wq, u1, u2, . . . , us} is a basis for Eλ = N(U), it follows that
nullity(U) = q + s. Therefore

dim(Kλ) = rank(U) + nullity(U) = r + q + s.

So γ̃ is a linearly independent subset of Kλ containing dim(Kλ) vectors. It
follows that γ̃ is a basis for Kλ.

The following corollary is immediate.

Corollary 1. Let T be a linear operator on a finite-dimensional vec-
tor space V whose characteristic polynomial splits. Then T has a Jordan
canonical form.

Proof. Let λ1, λ2, . . . , λk be the distinct eigenvalues of T. By Theorem 7.7,
for each i there is an ordered basis βi consisting of a disjoint union of cycles
of generalized eigenvectors corresponding to λi. Let β = β1 ∪ β2 ∪ · · · ∪ βk.
Then, by Theorem 7.4(b), β is an ordered basis for V.

The Jordan canonical form also can be studied from the viewpoint of
matrices.

Definition. Let A ∈ Mn×n(F ) be such that the characteristic polynomial
of A (and hence of LA) splits. Then the Jordan canonical form of A is
defined to be the Jordan canonical form of the linear operator LA on Fn.

The next result is an immediate consequence of this definition and Corol-
lary 1.

Corollary 2. Let A be an n×n matrix whose characteristic polynomial
splits. Then A has a Jordan canonical form J , and A is similar to J .

Proof. Exercise.

We can now compute the Jordan canonical forms of matrices and linear
operators in some simple cases, as is illustrated in the next two examples.
The tools necessary for computing the Jordan canonical forms in general are
developed in the next section.
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Example 2

Let

A =

⎛⎝ 3 1 −2
−1 0 5
−1 −1 4

⎞⎠ ∈ M3×3(R).

To find the Jordan canonical form for A, we need to find a Jordan canonical
basis for T = LA.

The characteristic polynomial of A is

f(t) = det(A − tI) = −(t − 3)(t − 2)2.

Hence λ1 = 3 and λ2 = 2 are the eigenvalues of A with multiplicities 1
and 2, respectively. By Theorem 7.4, dim(Kλ1) = 1, and dim(Kλ2) = 2. By
Theorem 7.2, Kλ1 = N(T−3I), and Kλ2 = N((T−2I)2). Since Eλ1 = N(T−3I),
we have that Eλ1 = Kλ1 . Observe that (−1, 2, 1) is an eigenvector of T
corresponding to λ1 = 3; therefore

β1 =

⎧⎨⎩
⎛⎝−1

2
1

⎞⎠⎫⎬⎭
is a basis for Kλ1 .

Since dim(Kλ2) = 2 and a generalized eigenspace has a basis consisting of
a union of cycles, this basis is either a union of two cycles of length 1 or a
single cycle of length 2. The former case is impossible because the vectors in
the basis would be eigenvectors—contradicting the fact that dim(Eλ2) = 1.
Therefore the desired basis is a single cycle of length 2. A vector v is the end
vector of such a cycle if and only if (A − 2I)v �= 0 , but (A − 2I)2v = 0 . It
can easily be shown that ⎧⎨⎩

⎛⎝ 1
−3
−1

⎞⎠ ,

⎛⎝−1
2
0

⎞⎠⎫⎬⎭
is a basis for the solution space of the homogeneous system (A − 2I)2x = 0 .
Now choose a vector v in this set so that (A − 2I)v �= 0 . The vector v =
(−1, 2, 0) is an acceptable candidate for v. Since (A− 2I)v = (1,−3,−1), we
obtain the cycle of generalized eigenvectors

β2 = {(A − 2I)v, v} =

⎧⎨⎩
⎛⎝ 1
−3
−1

⎞⎠ ,

⎛⎝−1
2
0

⎞⎠⎫⎬⎭
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as a basis for Kλ2 . Finally, we take the union of these two bases to obtain

β = β1 ∪ β2 =

⎧⎨⎩
⎛⎝−1

2
1

⎞⎠ ,

⎛⎝ 1
−3
−1

⎞⎠ ,

⎛⎝−1
2
0

⎞⎠⎫⎬⎭ ,

which is a Jordan canonical basis for A. Therefore,

J = [T]β =

⎛⎝ 3 0 0
0 2 1
0 0 2

⎞⎠
is a Jordan canonical form for A. Notice that A is similar to J . In fact,
J = Q−1AQ, where Q is the matrix whose columns are the vectors in β.

♦
Example 3

Let T be the linear operator on P2(R) defined by T(g(x)) = −g(x) − g′(x).
We find a Jordan canonical form of T and a Jordan canonical basis for T.

Let β be the standard ordered basis for P2(R). Then

[T]β =

⎛⎝−1 −1 0
0 −1 −2
0 0 −1

⎞⎠ ,

which has the characteristic polynomial f(t) = −(t + 1)3. Thus λ = −1 is
the only eigenvalue of T, and hence Kλ = P2(R) by Theorem 7.4. So β is a
basis for Kλ. Now

dim(Eλ) = 3 − rank(A + I) = 3 − rank

⎛⎝0 −1 0
0 0 −2
0 0 0

⎞⎠ = 3 − 2 = 1.

Therefore a basis for Kλ cannot be a union of two or three cycles because
the initial vector of each cycle is an eigenvector, and there do not exist two
or more linearly independent eigenvectors. So the desired basis must consist
of a single cycle of length 3. If γ is such a cycle, then γ determines a single
Jordan block

[T]γ =

⎛⎝−1 1 0
0 −1 1
0 0 −1

⎞⎠ ,

which is a Jordan canonical form of T.

The end vector h(x) of such a cycle must satisfy (T + I)2(h(x)) �= 0 . In
any basis for Kλ, there must be a vector that satisfies this condition, or else
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no vector in Kλ satisfies this condition, contrary to our reasoning. Testing
the vectors in β, we see that h(x) = x2 is acceptable. Therefore

γ = {(T + I)2(x2), (T + I)(x2), x2} = {2,−2x, x2}
is a Jordan canonical basis for T. ♦

In the next section, we develop a computational approach for finding a
Jordan canonical form and a Jordan canonical basis. In the process, we prove
that Jordan canonical forms are unique up to the order of the Jordan blocks.

Let T be a linear operator on a finite-dimensional vector space V, and sup-
pose that the characteristic polynomial of T splits. By Theorem 5.11 (p. 278),
T is diagonalizable if and only if V is the direct sum of the eigenspaces of T.
If T is diagonalizable, then the eigenspaces and the generalized eigenspaces
coincide. The next result, which is optional, extends Theorem 5.11 to the
nondiagonalizable case.

Theorem 7.8. Let T be a linear operator on a finite-dimensional vector
space V whose characteristic polynomial splits. Then V is the direct sum of
the generalized eigenspaces of T.

Proof. Exercise.

EXERCISES

1. Label the following statements as true or false.

(a) Eigenvectors of a linear operator T are also generalized eigenvec-
tors of T.

(b) It is possible for a generalized eigenvector of a linear operator T
to correspond to a scalar that is not an eigenvalue of T.

(c) Any linear operator on a finite-dimensional vector space has a Jor-
dan canonical form.

(d) A cycle of generalized eigenvectors is linearly independent.
(e) There is exactly one cycle of generalized eigenvectors correspond-

ing to each eigenvalue of a linear operator on a finite-dimensional
vector space.

(f) Let T be a linear operator on a finite-dimensional vector space
whose characteristic polynomial splits, and let λ1, λ2, . . . , λk be
the distinct eigenvalues of T. If, for each i, βi is a basis for Kλi ,
then β1 ∪ β2 ∪ · · · ∪ βk is a Jordan canonical basis for T.

(g) For any Jordan block J , the operator LJ has Jordan canonical
form J .

(h) Let T be a linear operator on an n-dimensional vector space whose
characteristic polynomial splits. Then, for any eigenvalue λ of T,
Kλ = N((T − λI)n).
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2. For each matrix A, find a basis for each generalized eigenspace of LA

consisting of a union of disjoint cycles of generalized eigenvectors. Then
find a Jordan canonical form J of A.

(a) A =
(

1 1
−1 3

)
(b) A =

(
1 2
3 2

)

(c) A =

⎛⎝11 −4 −5
21 −8 −11
3 −1 0

⎞⎠ (d) A =

⎛⎜⎜⎝
2 1 0 0
0 2 1 0
0 0 3 0
0 1 −1 3

⎞⎟⎟⎠
3. For each linear operator T, find a basis for each generalized eigenspace

of T consisting of a union of disjoint cycles of generalized eigenvectors.
Then find a Jordan canonical form J of T.

(a) T is the linear operator on P2(R) defined by T(f(x)) = 2f(x) −
f ′(x)

(b) V is the real vector space of functions spanned by the set of real
valued functions {1, t, t2, et, tet}, and T is the linear operator on V
defined by T(f) = f ′.

(c) T is the linear operator on M2×2(R) defined by T(A) =
(

1 1
0 1

)
·A

for all A ∈ M2×2(R).
(d) T(A) = 2A + At for all A ∈ M2×2(R).

4.† Let T be a linear operator on a vector space V, and let γ be a cycle
of generalized eigenvectors that corresponds to the eigenvalue λ. Prove
that span(γ) is a T-invariant subspace of V.

5. Let γ1, γ2, . . . , γp be cycles of generalized eigenvectors of a linear op-
erator T corresponding to an eigenvalue λ. Prove that if the initial
eigenvectors are distinct, then the cycles are disjoint.

6. Let T : V → W be a linear transformation. Prove the following results.

(a) N(T) = N(−T).
(b) N(Tk) = N((−T)k).
(c) If V = W (so that T is a linear operator on V) and λ is an eigen-

value of T, then for any positive integer k

N((T − λIV)k) = N((λIV − T)k).

7. Let U be a linear operator on a finite-dimensional vector space V. Prove
the following results.

(a) N(U) ⊆ N(U2) ⊆ · · · ⊆ N(Uk) ⊆ N(Uk+1) ⊆ · · · .
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(b) If rank(Um) = rank(Um+1) for some positive integer m, then
rank(Um) = rank(Uk) for any positive integer k ≥ m.

(c) If rank(Um) = rank(Um+1) for some positive integer m, then
N(Um) = N(Uk) for any positive integer k ≥ m.

(d) Let T be a linear operator on V, and let λ be an eigenvalue of T.
Prove that if rank((T−λI)m) = rank((T−λI)m+1) for some integer
m, then Kλ = N((T − λI)m).

(e) Second Test for Diagonalizability. Let T be a linear operator on
V whose characteristic polynomial splits, and let λ1, λ2, . . . , λk be
the distinct eigenvalues of T. Then T is diagonalizable if and only
if rank(T − λI) = rank((T − λI)2) for 1 ≤ i ≤ k.

(f) Use (e) to obtain a simpler proof of Exercise 24 of Section 5.4: If
T is a diagonalizable linear operator on a finite-dimensional vec-
tor space V and W is a T-invariant subspace of V, then TW is
diagonalizable.

8. Use Theorem 7.4 to prove that the vectors v1, v2, . . . , vk in the statement
of Theorem 7.3 are unique.

9. Let T be a linear operator on a finite-dimensional vector space V whose
characteristic polynomial splits.
(a) Prove Theorem 7.5(b).
(b) Suppose that β is a Jordan canonical basis for T, and let λ be an

eigenvalue of T. Let β′ = β ∩ Kλ. Prove that β′ is a basis for Kλ.

10. Let T be a linear operator on a finite-dimensional vector space whose
characteristic polynomial splits, and let λ be an eigenvalue of T.
(a) Suppose that γ is a basis for Kλ consisting of the union of q disjoint

cycles of generalized eigenvectors. Prove that q ≤ dim(Eλ).
(b) Let β be a Jordan canonical basis for T, and suppose that J = [T]β

has q Jordan blocks with λ in the diagonal positions. Prove that
q ≤ dim(Eλ).

11. Prove Corollary 2 to Theorem 7.7.

Exercises 12 and 13 are concerned with direct sums of matrices, defined in
Section 5.4 on page 320.

12. Prove Theorem 7.8.

13. Let T be a linear operator on a finite-dimensional vector space V such
that the characteristic polynomial of T splits, and let λ1, λ2, . . . , λk be
the distinct eigenvalues of T. For each i, let Ji be the Jordan canonical
form of the restriction of T to Kλi . Prove that

J = J1 ⊕ J2 ⊕ · · · ⊕ Jk

is the Jordan canonical form of J .



Sec. 7.2 The Jordan Canonical Form II 497

7.2 THE JORDAN CANONICAL FORM II

For the purposes of this section, we fix a linear operator T on an n-dimensional
vector space V such that the characteristic polynomial of T splits. Let
λ1, λ2, . . . , λk be the distinct eigenvalues of T.

By Theorem 7.7 (p. 490), each generalized eigenspace Kλi
contains an

ordered basis βi consisting of a union of disjoint cycles of generalized eigen-
vectors corresponding to λi. So by Theorems 7.4(b) (p. 487) and 7.5 (p. 489),

the union β =
k⋃

i=1

βi is a Jordan canonical basis for T. For each i, let Ti

be the restriction of T to Kλi
, and let Ai = [Ti]βi

. Then Ai is the Jordan
canonical form of Ti, and

J = [T]β =

⎛⎜⎜⎜⎝
A1 O · · · O
O A2 · · · O
...

...
...

O O · · · Ak

⎞⎟⎟⎟⎠
is the Jordan canonical form of T. In this matrix, each O is a zero matrix of
appropriate size.

In this section, we compute the matrices Ai and the bases βi, thereby
computing J and β as well. While developing a method for finding J , it
becomes evident that in some sense the matrices Ai are unique.

To aid in formulating the uniqueness theorem for J , we adopt the following
convention: The basis βi for Kλi

will henceforth be ordered in such a way
that the cycles appear in order of decreasing length. That is, if βi is a disjoint
union of cycles γ1, γ2, . . . , γni and if the length of the cycle γj is pj , we index
the cycles so that p1 ≥ p2 ≥ · · · ≥ pni

. This ordering of the cycles limits the
possible orderings of vectors in βi, which in turn determines the matrix Ai.
It is in this sense that Ai is unique. It then follows that the Jordan canonical
form for T is unique up to an ordering of the eigenvalues of T. As we will
see, there is no uniqueness theorem for the bases βi or for β. Specifically, we
show that for each i, the number ni of cycles that form βi, and the length pj

(j = 1, 2, . . . , ni) of each cycle, is completely determined by T.

Example 1

To illustrate the discussion above, suppose that, for some i, the ordered basis
βi for Kλi is the union of four cycles βi = γ1 ∪ γ2 ∪ γ3 ∪ γ4 with respective
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lengths p1 = 3, p2 = 3, p3 = 2, and p4 = 1. Then

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0 0 0 0 0 0 0
0 λi 1 0 0 0 0 0 0
0 0 λi 0 0 0 0 0 0
0 0 0 λi 1 0 0 0 0
0 0 0 0 λi 1 0 0 0
0 0 0 0 0 λi 0 0 0
0 0 0 0 0 0 λi 1 0
0 0 0 0 0 0 0 λi 0
0 0 0 0 0 0 0 0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ♦

To help us visualize each of the matrices Ai and ordered bases βi, we
use an array of dots called a dot diagram of Ti, where Ti is the restriction
of T to Kλi

. Suppose that βi is a disjoint union of cycles of generalized
eigenvectors γ1, γ2, . . . , γni with lengths p1 ≥ p2 ≥ · · · ≥ pni , respectively.
The dot diagram of Ti contains one dot for each vector in βi, and the dots
are configured according to the following rules.

1. The array consists of ni columns (one column for each cycle).
2. Counting from left to right, the jth column consists of the pj dots that

correspond to the vectors of γj starting with the initial vector at the
top and continuing down to the end vector.

Denote the end vectors of the cycles by v1, v2, . . . , vni
. In the following

dot diagram of Ti, each dot is labeled with the name of the vector in βi to
which it corresponds.

• (T − λiI)p1−1(v1) • (T − λiI)p2−1(v2) · · · • (T − λiI)pni
−1(vni

)
• (T − λiI)p1−2(v1) • (T − λiI)p2−2(v2) · · · • (T − λiI)pni

−2(vni)
...

...
...
• (T − λiI)(vni

)
• vni

• (T − λiI)(v2)
• v2

• (T − λiI)(v1)
• v1

Notice that the dot diagram of Ti has ni columns (one for each cycle) and
p1 rows. Since p1 ≥ p2 ≥ · · · ≥ pni

, the columns of the dot diagram become
shorter (or at least not longer) as we move from left to right.

Now let rj denote the number of dots in the jth row of the dot diagram.
Observe that r1 ≥ r2 ≥ · · · ≥ rp1 . Furthermore, the diagram can be re-
constructed from the values of the ri’s. The proofs of these facts, which are
combinatorial in nature, are treated in Exercise 9.
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In Example 1, with ni = 4, p1 = p2 = 3, p3 = 2, and p4 = 1, the dot
diagram of Ti is as follows:

• • • •
• • •
• •

Here r1 = 4, r2 = 3, and r3 = 2.
We now devise a method for computing the dot diagram of Ti using the

ranks of linear operators determined by T and λi. Hence the dot diagram
is completely determined by T, from which it follows that it is unique. On
the other hand, βi is not unique. For example, see Exercise 8. (It is for this
reason that we associate the dot diagram with Ti rather than with βi.)

To determine the dot diagram of Ti, we devise a method for computing
each rj , the number of dots in the jth row of the dot diagram, using only T
and λi. The next three results give us the required method. To facilitate our
arguments, we fix a basis βi for Kλi

so that βi is a disjoint union of ni cycles
of generalized eigenvectors with lengths p1 ≥ p2 ≥ · · · ≥ pni .

Theorem 7.9. For any positive integer r, the vectors in βi that are
associated with the dots in the first r rows of the dot diagram of Ti constitute
a basis for N((T− λiI)r). Hence the number of dots in the first r rows of the
dot diagram equals nullity((T − λiI)r).

Proof. Clearly, N((T−λiI)r) ⊆ Kλi
, and Kλi

is invariant under (T−λiI)r.
Let U denote the restriction of (T − λiI)r to Kλi

. By the preceding remarks,
N((T − λiI)r) = N(U), and hence it suffices to establish the theorem for U.
Now define

S1 = {x ∈ βi : U(x) = 0} and S2 = {x ∈ βi : U(x) �= 0}.
Let a and b denote the number of vectors in S1 and S2, respectively, and let
mi = dim(Kλi

). Then a + b = mi. For any x ∈ βi, x ∈ S1 if and only if x is
one of the first r vectors of a cycle, and this is true if and only if x corresponds
to a dot in the first r rows of the dot diagram. Hence a is the number of dots
in the first r rows of the dot diagram. For any x ∈ S2, the effect of applying
U to x is to move the dot corresponding to x exactly r places up its column to
another dot. It follows that U maps S2 in a one-to-one fashion into βi. Thus
{U(x) : x ∈ S2} is a basis for R(U) consisting of b vectors. Hence rank(U) = b,
and so nullity(U) = mi − b = a. But S1 is a linearly independent subset of
N(U) consisting of a vectors; therefore S1 is a basis for N(U).

In the case that r = 1, Theorem 7.9 yields the following corollary.

Corollary. The dimension of Eλi
is ni. Hence in a Jordan canonical form

of T, the number of Jordan blocks corresponding to λi equals the dimension
of Eλi .
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Proof. Exercise.

We are now able to devise a method for describing the dot diagram in
terms of the ranks of operators.

Theorem 7.10. Let rj denote the number of dots in the jth row of the
dot diagram of Ti, the restriction of T to Kλi

. Then the following statements
are true.

(a) r1 = dim(V) − rank(T − λiI).
(b) rj = rank((T − λiI)j−1) − rank((T − λiI)j) if j > 1.

Proof. By Theorem 7.9, for 1 ≤ j ≤ p1, we have

r1 + r2 + · · · + rj = nullity((T − λiI)j)

= dim(V) − rank((T − λiI)j).

Hence

r1 = dim(V) − rank(T − λiI),

and for j > 1,

rj = (r1 + r2 + · · · + rj) − (r1 + r2 + · · · + rj−1)

= [dim(V) − rank((T − λiI)j)] − [dim(V) − rank((T − λiI)j−1)]

= rank((T − λiI)j−1) − rank((T − λiI)j).

Theorem 7.10 shows that the dot diagram of Ti is completely determined
by T and λi. Hence we have proved the following result.

Corollary. For any eigenvalue λi of T, the dot diagram of Ti is unique.
Thus, subject to the convention that the cycles of generalized eigenvectors
for the bases of each generalized eigenspace are listed in order of decreasing
length, the Jordan canonical form of a linear operator or a matrix is unique
up to the ordering of the eigenvalues.

We apply these results to find the Jordan canonical forms of two matrices
and a linear operator.

Example 2

Let

A =

⎛⎜⎜⎝
2 −1 0 1
0 3 −1 0
0 1 1 0
0 −1 0 3

⎞⎟⎟⎠ .
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We find the Jordan canonical form of A and a Jordan canonical basis for the
linear operator T = LA. The characteristic polynomial of A is

det(A − tI) = (t − 2)3(t − 3).

Thus A has two distinct eigenvalues, λ1 = 2 and λ2 = 3, with multiplicities 3
and 1, respectively. Let T1 and T2 be the restrictions of LA to the generalized
eigenspaces Kλ1 and Kλ2 , respectively.

Suppose that β1 is a Jordan canonical basis for T1. Since λ1 has multi-
plicity 3, it follows that dim(Kλ1) = 3 by Theorem 7.4(c) (p. 487); hence the
dot diagram of T1 has three dots. As we did earlier, let rj denote the number
of dots in the jth row of this dot diagram. Then, by Theorem 7.10,

r1 = 4 − rank(A − 2I) = 4 − rank

⎛⎜⎜⎝
0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 0 1

⎞⎟⎟⎠ = 4 − 2 = 2,

and

r2 = rank(A − 2I) − rank((A − 2I)2) = 2 − 1 = 1.

(Actually, the computation of r2 is unnecessary in this case because r1 = 2 and
the dot diagram only contains three dots.) Hence the dot diagram associated
with β1 is

• •
•

So

A1 = [T1]β1 =

⎛⎝2 1 0
0 2 0
0 0 2

⎞⎠ .

Since λ2 = 3 has multiplicity 1, it follows that dim(Kλ2) = 1, and conse-
quently any basis β2 for Kλ2 consists of a single eigenvector corresponding to
λ2 = 3. Therefore

A2 = [T2]β2 = (3).

Setting β = β1 ∪ β2, we have

J = [LA]β =

⎛⎜⎜⎝
2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

⎞⎟⎟⎠ ,
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and so J is the Jordan canonical form of A.

We now find a Jordan canonical basis for T = LA. We begin by determin-
ing a Jordan canonical basis β1 for T1. Since the dot diagram of T1 has two
columns, each corresponding to a cycle of generalized eigenvectors, there are
two such cycles. Let v1 and v2 denote the end vectors of the first and second
cycles, respectively. We reprint below the dot diagram with the dots labeled
with the names of the vectors to which they correspond.

• (T − 2I)(v1) • v2

• v1

From this diagram we see that v1 ∈ N((T − 2I)2) but v1 /∈ N(T − 2I). Now

A − 2I =

⎛⎜⎜⎝
0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 0 1

⎞⎟⎟⎠ and (A − 2I)2 =

⎛⎜⎜⎝
0 −2 1 1
0 0 0 0
0 0 0 0
0 −2 1 1

⎞⎟⎟⎠ .

It is easily seen that ⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

is a basis for N((T − 2I)2) = Kλ1 . Of these three basis vectors, the last two
do not belong to N(T− 2I), and hence we select one of these for v1. Suppose
that we choose

v1 =

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ .

Then

(T − 2I)(v1) = (A − 2I)(v1) =

⎛⎜⎜⎝
0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

0
1
2
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1
−1
−1
−1

⎞⎟⎟⎠ .

Now simply choose v2 to be a vector in Eλ1 that is linearly independent of
(T − 2I)(v1); for example, select

v2 =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ .
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Thus we have associated the Jordan canonical basis

β1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−1
−1
−1
−1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

with the dot diagram in the following manner.

•

⎛⎜⎜⎝
−1
−1
−1
−1

⎞⎟⎟⎠ •

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠

•

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠
By Theorem 7.6 (p. 489), the linear independence of β1 is guaranteed since

v2 was chosen to be linearly independent of (T − 2I)(v1).

Since λ2 = 3 has multiplicity 1, dim(Kλ2) = dim(Eλ2) = 1. Hence any
eigenvector of LA corresponding to λ2 = 3 constitutes an appropriate basis
β2. For example,

β2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Thus

β = β1 ∪ β2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−1
−1
−1
−1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

is a Jordan canonical basis for LA.

Notice that if

Q =

⎛⎜⎜⎝
−1 0 1 1
−1 1 0 0
−1 2 0 0
−1 0 0 1

⎞⎟⎟⎠ ,

then J = Q−1AQ. ♦
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Example 3

Let

A =

⎛⎜⎜⎝
2 −4 2 2

−2 0 1 3
−2 −2 3 3
−2 −6 3 7

⎞⎟⎟⎠ .

We find the Jordan canonical form J of A, a Jordan canonical basis for LA,
and a matrix Q such that J = Q−1AQ.

The characteristic polynomial of A is det(A − tI) = (t − 2)2(t − 4)2. Let
T = LA, λ1 = 2, and λ2 = 4, and let Ti be the restriction of LA to Kλi

for
i = 1, 2.

We begin by computing the dot diagram of T1. Let r1 denote the number
of dots in the first row of this diagram. Then

r1 = 4 − rank(A − 2I) = 4 − 2 = 2;

hence the dot diagram of T1 is as follows.

• •
Therefore

A1 = [T1]β1 =
(

2 0
0 2

)
,

where β1 is any basis corresponding to the dots. In this case, β1 is an arbitrary
basis for Eλ1 = N(T − 2I), for example,

β1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

2
1
0
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Next we compute the dot diagram of T2. Since rank(A − 4I) = 3, there
is only 4 − 3 = 1 dot in the first row of the diagram. Since λ2 = 4 has
multiplicity 2, we have dim(Kλ2) = 2, and hence this dot diagram has the
following form:

•
•

Thus

A2 = [T2]β2 =
(

4 1
0 4

)
,
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where β2 is any basis for Kλ2 corresponding to the dots. In this case, β2

is a cycle of length 2. The end vector of this cycle is a vector v ∈ Kλ2 =
N((T − 4I)2) such that v /∈ N(T − 4I). One way of finding such a vector was
used to select the vector v1 in Example 2. In this example, we illustrate
another method. A simple calculation shows that a basis for the null space
of LA − 4I is ⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎝
0
1
1
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Choose v to be any solution to the system of linear equations

(A − 4I)x =

⎛⎜⎜⎝
0
1
1
1

⎞⎟⎟⎠ ,

for example,

v =

⎛⎜⎜⎝
1

−1
−1

0

⎞⎟⎟⎠ .

Thus

β2 = {(LA − 4I)(v), v} =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0
1
1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1

−1
−1

0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Therefore

β = β1 ∪ β2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

2
1
0
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1

−1
−1

0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

is a Jordan canonical basis for LA. The corresponding Jordan canonical form
is given by

J = [LA]β =
(

A1 O
O A2

)
=

⎛⎜⎜⎝
2 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4

⎞⎟⎟⎠ .
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Finally, we define Q to be the matrix whose columns are the vectors of β
listed in the same order, namely,

Q =

⎛⎜⎜⎝
2 0 0 1
1 1 1 −1
0 2 1 −1
2 0 1 0

⎞⎟⎟⎠ .

Then J = Q−1AQ. ♦
Example 4

Let V be the vector space of polynomial functions in two real variables x
and y of degree at most 2. Then V is a vector space over R and α =
{1, x, y, x2, y2, xy} is an ordered basis for V. Let T be the linear operator
on V defined by

T(f(x, y)) =
∂

∂x
f(x, y).

For example, if f(x, y) = x + 2x2 − 3xy + y, then

T(f(x, y)) =
∂

∂x
(x + 2x2 − 3xy + y) = 1 + 4x − 3y.

We find the Jordan canonical form and a Jordan canonical basis for T.

Let A = [T]α. Then

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and hence the characteristic polynomial of T is

det(A − tI) = det

⎛⎜⎜⎜⎜⎜⎜⎝
−t 1 0 0 0 0
0 −t 0 2 0 0
0 0 −t 0 0 1
0 0 0 −t 0 0
0 0 0 0 −t 0
0 0 0 0 0 −t

⎞⎟⎟⎟⎟⎟⎟⎠ = t6.

Thus λ = 0 is the only eigenvalue of T, and Kλ = V. For each j, let rj denote
the number of dots in the jth row of the dot diagram of T. By Theorem 7.10,

r1 = 6 − rank(A) = 6 − 3 = 3,
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and since

A2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

r2 = rank(A) − rank(A2) = 3 − 1 = 2.

Because there are a total of six dots in the dot diagram and r1 = 3 and
r2 = 2, it follows that r3 = 1. So the dot diagram of T is

• • •
• •
•

We conclude that the Jordan canonical form of T is

J =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We now find a Jordan canonical basis for T. Since the first column of the
dot diagram of T consists of three dots, we must find a polynomial f1(x, y)

such that
∂2

∂x2
f1(x, y) �= 0 . Examining the basis α = {1, x, y, x2, y2, xy} for

Kλ = V, we see that x2 is a suitable candidate. Setting f1(x, y) = x2, we see
that

(T − λI)(f1(x, y)) = T(f1(x, y)) =
∂

∂x
(x2) = 2x

and

(T − λI)2(f1(x, y)) = T2(f1(x, y)) =
∂2

∂x2
(x2) = 2.

Likewise, since the second column of the dot diagram consists of two dots, we
must find a polynomial f2(x, y) such that

∂

∂x
(f2(x, y)) �= 0 , but

∂2

∂x2
(f2(x, y)) = 0 .
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Since our choice must be linearly independent of the polynomials already
chosen for the first cycle, the only choice in α that satisfies these constraints
is xy. So we set f2(x, y) = xy. Thus

(T − λI)(f2(x, y)) = T(f2(x, y)) =
∂

∂x
(xy) = y.

Finally, the third column of the dot diagram consists of a single polynomial
that lies in the null space of T. The only remaining polynomial in α is y2,
and it is suitable here. So set f3(x, y) = y2. Therefore we have identified
polynomials with the dots in the dot diagram as follows.

• 2 • y • y2

• 2x •xy
•x2

Thus β = {2, 2x, x2, y, xy, y2} is a Jordan canonical basis for T. ♦
In the three preceding examples, we relied on our ingenuity and the con-

text of the problem to find Jordan canonical bases. The reader can do the
same in the exercises. We are successful in these cases because the dimen-
sions of the generalized eigenspaces under consideration are small. We do
not attempt, however, to develop a general algorithm for computing Jordan
canonical bases, although one could be devised by following the steps in the
proof of the existence of such a basis (Theorem 7.7 p. 490).

The following result may be thought of as a corollary to Theorem 7.10.

Theorem 7.11. Let A and B be n × n matrices, each having Jordan
canonical forms computed according to the conventions of this section. Then
A and B are similar if and only if they have (up to an ordering of their
eigenvalues) the same Jordan canonical form.

Proof. If A and B have the same Jordan canonical form J , then A and B
are each similar to J and hence are similar to each other.

Conversely, suppose that A and B are similar. Then A and B have the
same eigenvalues. Let JA and JB denote the Jordan canonical forms of A and
B, respectively, with the same ordering of their eigenvalues. Then A is similar
to both JA and JB , and therefore, by the corollary to Theorem 2.23 (p. 115),
JA and JB are matrix representations of LA. Hence JA and JB are Jordan
canonical forms of LA. Thus JA = JB by the corollary to Theorem 7.10.

Example 5

We determine which of the matrices

A =

⎛⎝−3 3 −2
−7 6 −3

1 −1 2

⎞⎠ , B =

⎛⎝ 0 1 −1
−4 4 −2
−2 1 1

⎞⎠ ,
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C =

⎛⎝ 0 −1 −1
−3 −1 −2

7 5 6

⎞⎠ , and D =

⎛⎝0 1 2
0 1 1
0 0 2

⎞⎠
are similar. Observe that A, B, and C have the same characteristic poly-
nomial −(t − 1)(t − 2)2, whereas D has −t(t − 1)(t − 2) as its characteristic
polynomial. Because similar matrices have the same characteristic polynomi-
als, D cannot be similar to A, B, or C. Let JA, JB , and JC be the Jordan
canonical forms of A, B, and C, respectively, using the ordering 1, 2 for their
common eigenvalues. Then (see Exercise 4)

JA =

⎛⎝1 0 0
0 2 1
0 0 2

⎞⎠ , JB =

⎛⎝1 0 0
0 2 0
0 0 2

⎞⎠ , and JC =

⎛⎝1 0 0
0 2 1
0 0 2

⎞⎠ .

Since JA = JC , A is similar to C. Since JB is different from JA and JC , B is
similar to neither A nor C. ♦

The reader should observe that any diagonal matrix is a Jordan canonical
form. Thus a linear operator T on a finite-dimensional vector space V is diag-
onalizable if and only if its Jordan canonical form is a diagonal matrix. Hence
T is diagonalizable if and only if the Jordan canonical basis for T consists of
eigenvectors of T. Similar statements can be made about matrices. Thus,
of the matrices A, B, and C in Example 5, A and C are not diagonalizable
because their Jordan canonical forms are not diagonal matrices.

EXERCISES

1. Label the following statements as true or false. Assume that the char-
acteristic polynomial of the matrix or linear operator splits.

(a) The Jordan canonical form of a diagonal matrix is the matrix itself.
(b) Let T be a linear operator on a finite-dimensional vector space V

that has a Jordan canonical form J . If β is any basis for V, then
the Jordan canonical form of [T]β is J .

(c) Linear operators having the same characteristic polynomial are
similar.

(d) Matrices having the same Jordan canonical form are similar.
(e) Every matrix is similar to its Jordan canonical form.
(f) Every linear operator with the characteristic polynomial

(−1)n(t − λ)n has the same Jordan canonical form.
(g) Every linear operator on a finite-dimensional vector space has a

unique Jordan canonical basis.
(h) The dot diagrams of a linear operator on a finite-dimensional vec-

tor space are unique.
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2. Let T be a linear operator on a finite-dimensional vector space V such
that the characteristic polynomial of T splits. Suppose that λ1 = 2,
λ2 = 4, and λ3 = −3 are the distinct eigenvalues of T and that the dot
diagrams for the restriction of T to Kλi (i = 1, 2, 3) are as follows:

λ1 = 2 λ2 = 4 λ3 = −3
• • •
• •
•

• •
•
•

• •

Find the Jordan canonical form J of T.

3. Let T be a linear operator on a finite-dimensional vector space V with
Jordan canonical form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 0
0 2 1 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 1 0 0
0 0 0 0 2 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(a) Find the characteristic polynomial of T.
(b) Find the dot diagram corresponding to each eigenvalue of T.
(c) For which eigenvalues λi, if any, does Eλi = Kλi?
(d) For each eigenvalue λi, find the smallest positive integer pi for

which Kλi
= N((T − λiI)pi).

(e) Compute the following numbers for each i, where Ui denotes the
restriction of T − λiI to Kλi

.
(i) rank(Ui)
(ii) rank(U2

i )
(iii) nullity(Ui)
(iv) nullity(U2

i )

4. For each of the matrices A that follow, find a Jordan canonical form
J and an invertible matrix Q such that J = Q−1AQ. Notice that the
matrices in (a), (b), and (c) are those used in Example 5.

(a) A =

⎛⎝−3 3 −2
−7 6 −3

1 −1 2

⎞⎠ (b) A =

⎛⎝ 0 1 −1
−4 4 −2
−2 1 1

⎞⎠

(c) A =

⎛⎝ 0 −1 −1
−3 −1 −2

7 5 6

⎞⎠ (d) A =

⎛⎜⎜⎝
0 −3 1 2

−2 1 −1 2
−2 1 −1 2
−2 −3 1 4

⎞⎟⎟⎠
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5. For each linear operator T, find a Jordan canonical form J of T and a
Jordan canonical basis β for T.

(a) V is the real vector space of functions spanned by the set of real-
valued functions {et, tet, t2et, e2t}, and T is the linear operator on
V defined by T(f) = f ′.

(b) T is the linear operator on P3(R) defined by T(f(x)) = xf ′′(x).
(c) T is the linear operator on P3(R) defined by

T(f(x)) = f ′′(x) + 2f(x).
(d) T is the linear operator on M2×2(R) defined by

T(A) =
(

3 1
0 3

)
· A − At.

(e) T is the linear operator on M2×2(R) defined by

T(A) =
(

3 1
0 3

)
· (A − At).

(f) V is the vector space of polynomial functions in two real variables
x and y of degree at most 2, as defined in Example 4, and T is the
linear operator on V defined by

T(f(x, y)) =
∂

∂x
f(x, y) +

∂

∂y
f(x, y).

6. Let A be an n×n matrix whose characteristic polynomial splits. Prove
that A and At have the same Jordan canonical form, and conclude that
A and At are similar. Hint: For any eigenvalue λ of A and At and any
positive integer r, show that rank((A − λI)r) = rank((At − λI)r).

7. Let A be an n × n matrix whose characteristic polynomial splits, γ be
a cycle of generalized eigenvectors corresponding to an eigenvalue λ,
and W be the subspace spanned by γ. Define γ′ to be the ordered set
obtained from γ by reversing the order of the vectors in γ.

(a) Prove that [TW]γ′ = ([TW]γ)t.
(b) Let J be the Jordan canonical form of A. Use (a) to prove that J

and J t are similar.
(c) Use (b) to prove that A and At are similar.

8. Let T be a linear operator on a finite-dimensional vector space, and
suppose that the characteristic polynomial of T splits. Let β be a Jordan
canonical basis for T.

(a) Prove that for any nonzero scalar c, {cx : x ∈ β} is a Jordan canon-
ical basis for T.
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(b) Suppose that γ is one of the cycles of generalized eigenvectors that
forms β, and suppose that γ corresponds to the eigenvalue λ and
has length greater than 1. Let x be the end vector of γ, and let y
be a nonzero vector in Eλ. Let γ′ be the ordered set obtained from
γ by replacing x by x + y. Prove that γ′ is a cycle of generalized
eigenvectors corresponding to λ, and that if γ′ replaces γ in the
union that defines β, then the new union is also a Jordan canonical
basis for T.

(c) Apply (b) to obtain a Jordan canonical basis for LA, where A is the
matrix given in Example 2, that is different from the basis given
in the example.

9. Suppose that a dot diagram has k columns and m rows with pj dots in
column j and ri dots in row i. Prove the following results.

(a) m = p1 and k = r1.
(b) pj = max {i : ri ≥ j} for 1 ≤ j ≤ k and ri = max {j : pj ≥ i} for

1 ≤ i ≤ m. Hint: Use mathematical induction on m.
(c) r1 ≥ r2 ≥ · · · ≥ rm.
(d) Deduce that the number of dots in each column of a dot diagram

is completely determined by the number of dots in the rows.

10. Let T be a linear operator whose characteristic polynomial splits, and
let λ be an eigenvalue of T.

(a) Prove that dim(Kλ) is the sum of the lengths of all the blocks
corresponding to λ in the Jordan canonical form of T.

(b) Deduce that Eλ = Kλ if and only if all the Jordan blocks corre-
sponding to λ are 1 × 1 matrices.

The following definitions are used in Exercises 11–19.

Definitions. A linear operator T on a vector space V is called nilpotent
if Tp = T0 for some positive integer p. An n×n matrix A is called nilpotent
if Ap = O for some positive integer p.

11. Let T be a linear operator on a finite-dimensional vector space V, and
let β be an ordered basis for V. Prove that T is nilpotent if and only if
[T]β is nilpotent.

12. Prove that any square upper triangular matrix with each diagonal entry
equal to zero is nilpotent.

13. Let T be a nilpotent operator on an n-dimensional vector space V, and
suppose that p is the smallest positive integer for which Tp = T0. Prove
the following results.

(a) N(Ti) ⊆ N(Ti+1) for every positive integer i.



Sec. 7.2 The Jordan Canonical Form II 513

(b) There is a sequence of ordered bases β1, β2, . . . , βp such that βi is
a basis for N(Ti) and βi+1 contains βi for 1 ≤ i ≤ p − 1.

(c) Let β = βp be the ordered basis for N(Tp) = V in (b). Then [T]β
is an upper triangular matrix with each diagonal entry equal to
zero.

(d) The characteristic polynomial of T is (−1)ntn. Hence the charac-
teristic polynomial of T splits, and 0 is the only eigenvalue of T.

14. Prove the converse of Exercise 13(d): If T is a linear operator on an n-
dimensional vector space V and (−1)ntn is the characteristic polynomial
of T, then T is nilpotent.

15. Give an example of a linear operator T on a finite-dimensional vector
space such that T is not nilpotent, but zero is the only eigenvalue of T.
Characterize all such operators.

16. Let T be a nilpotent linear operator on a finite-dimensional vector space
V. Recall from Exercise 13 that λ = 0 is the only eigenvalue of T, and
hence V = Kλ. Let β be a Jordan canonical basis for T. Prove that for
any positive integer i, if we delete from β the vectors corresponding to
the last i dots in each column of a dot diagram of β, the resulting set is
a basis for R(Ti). (If a column of the dot diagram contains fewer than i
dots, all the vectors associated with that column are removed from β.)

17. Let T be a linear operator on a finite-dimensional vector space V such
that the characteristic polynomial of T splits, and let λ1, λ2, . . . , λk be
the distinct eigenvalues of T. Let S : V → V be the mapping defined by

S(x) = λ1v1 + λ2v2 + · · · + λkvk,

where, for each i, vi is the unique vector in Kλi
such that x = v1 +

v2 + · · ·+vk. (This unique representation is guaranteed by Theorem 7.3
(p. 486) and Exercise 8 of Section 7.1.)

(a) Prove that S is a diagonalizable linear operator on V.
(b) Let U = T − S. Prove that U is nilpotent and commutes with S,

that is, SU = US.

18. Let T be a linear operator on a finite-dimensional vector space V, and
let J be the Jordan canonical form of T. Let D be the diagonal matrix
whose diagonal entries are the diagonal entries of J , and let M = J−D.
Prove the following results.

(a) M is nilpotent.
(b) MD = DM .
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(c) If p is the smallest positive integer for which Mp = O, then, for
any positive integer r < p,

Jr = Dr + rDr−1M +
r(r − 1)

2!
Dr−2M2 + · · · + rDMr−1 + Mr,

and, for any positive integer r ≥ p,

Jr = Dr + rDr−1M +
r(r − 1)

2!
Dr−2M2 + · · ·

+
r!

(r − p + 1)!(p − 1)!
Dr−p+1Mp−1.

19. Let

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · λ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
be the m × m Jordan block corresponding to λ, and let N = J − λIm.
Prove the following results:

(a) Nm = O, and for 1 ≤ r < m,

Nr
ij =

{
1 if j = i + r

0 otherwise.

(b) For any integer r ≥ m,

Jr =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λr rλr−1 r(r − 1)
2!

λr−2 · · · r(r − 1) · · · (r − m + 2)
(m − 1)!

λr−m+1

0 λr rλr−1 · · · r(r − 1) · · · (r − m + 3)
(m − 2)!

λr−m+2

...
...

...
...

0 0 0 · · · λr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(c) lim
r→∞Jr exists if and only if one of the following holds:

(i) |λ| < 1.
(ii) λ = 1 and m = 1.
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(Note that lim
r→∞λr exists under these conditions. See the discus-

sion preceding Theorem 5.13 on page 285.) Furthermore, lim
r→∞Jr

is the zero matrix if condition (i) holds and is the 1× 1 matrix (1)
if condition (ii) holds.

(d) Prove Theorem 5.13 on page 285.

The following definition is used in Exercises 20 and 21.

Definition. For any A ∈ Mn×n(C), define the norm of A by

‖A‖ = max {|Aij | : 1 ≤ i, j ≤ n}.

20. Let A, B ∈ Mn×n(C). Prove the following results.

(a) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = O.

(b) ‖cA‖ = |c| ·‖A‖ for any scalar c.

(c) ‖A + B‖ ≤ ‖A‖ + ‖B‖.
(d) ‖AB‖ ≤ n‖A‖‖B‖.

21. Let A ∈ Mn×n(C) be a transition matrix. (See Section 5.3.) Since C is
an algebraically closed field, A has a Jordan canonical form J to which
A is similar. Let P be an invertible matrix such that P−1AP = J .
Prove the following results.

(a) ‖Am‖ ≤ 1 for every positive integer m.
(b) There exists a positive number c such that ‖Jm‖ ≤ c for every

positive integer m.
(c) Each Jordan block of J corresponding to the eigenvalue λ = 1 is a

1 × 1 matrix.
(d) lim

m→∞Am exists if and only if 1 is the only eigenvalue of A with

absolute value 1.
(e) Theorem 5.20(a) using (c) and Theorem 5.19.

The next exercise requires knowledge of absolutely convergent series as well
as the definition of eA for a matrix A. (See page 312.)

22. Use Exercise 20(d) to prove that eA exists for every A ∈ Mn×n(C).

23. Let x′ = Ax be a system of n linear differential equations, where x is
an n-tuple of differentiable functions x1(t), x2(t), . . . , xn(t) of the real
variable t, and A is an n × n coefficient matrix as in Exercise 15 of
Section 5.2. In contrast to that exercise, however, do not assume that
A is diagonalizable, but assume that the characteristic polynomial of A
splits. Let λ1, λ2, . . . , λk be the distinct eigenvalues of A.
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(a) Prove that if u is the end vector of a cycle of generalized eigenvec-
tors of LA of length p and u corresponds to the eigenvalue λi, then
for any polynomial f(t) of degree less than p, the function

eλit[f(t)(A − λiI)p−1 + f ′(t)(A − λiI)p−2 + · · · + f (p−1)(t)]u

is a solution to the system x′ = Ax.
(b) Prove that the general solution to x′ = Ax is a sum of the functions

of the form given in (a), where the vectors u are the end vectors of
the distinct cycles that constitute a fixed Jordan canonical basis
for LA.

24. Use Exercise 23 to find the general solution to each of the following sys-
tems of linear equations, where x, y, and z are real-valued differentiable
functions of the real variable t.

(a)
x′ = 2x + y
y′ = 2y − z
z′ = 3z

(b)
x′ = 2x + y
y′ = 2y + z
z′ = 2z

7.3 THE MINIMAL POLYNOMIAL

The Cayley-Hamilton theorem (Theorem 5.23 p. 317) tells us that for any
linear operator T on an n-dimensional vector space, there is a polynomial
f(t) of degree n such that f(T) = T0, namely, the characteristic polynomial
of T. Hence there is a polynomial of least degree with this property, and this
degree is at most n. If g(t) is such a polynomial, we can divide g(t) by its
leading coefficient to obtain another polynomial p(t) of the same degree with
leading coefficient 1, that is, p(t) is a monic polynomial. (See Appendix E.)

Definition. Let T be a linear operator on a finite-dimensional vector
space. A polynomial p(t) is called a minimal polynomial of T if p(t) is a
monic polynomial of least positive degree for which p(T) = T0.

The preceding discussion shows that every linear operator on a finite-
dimensional vector space has a minimal polynomial. The next result shows
that it is unique.

Theorem 7.12. Let p(t) be a minimal polynomial of a linear operator T
on a finite-dimensional vector space V.

(a) For any polynomial g(t), if g(T) = T0, then p(t) divides g(t). In partic-
ular, p(t) divides the characteristic polynomial of T.

(b) The minimal polynomial of T is unique.

Proof. (a) Let g(t) be a polynomial for which g(T) = T0. By the division
algorithm for polynomials (Theorem E.1 of Appendix E, p. 562), there exist
polynomials q(t) and r(t) such that

g(t) = q(t)p(t) + r(t), (1)
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where r(t) has degree less than the degree of p(t). Substituting T into (1)
and using that g(T) = p(T) = T0, we have r(T) = T0. Since r(t) has degree
less than p(t) and p(t) is the minimal polynomial of T, r(t) must be the zero
polynomial. Thus (1) simplifies to g(t) = q(t)p(t), proving (a).

(b) Suppose that p1(t) and p2(t) are each minimal polynomials of T. Then
p1(t) divides p2(t) by (a). Since p1(t) and p2(t) have the same degree, we have
that p2(t) = cp1(t) for some nonzero scalar c. Because p1(t) and p2(t) are
monic, c = 1; hence p1(t) = p2(t).

The minimal polynomial of a linear operator has an obvious analog for a
matrix.

Definition. Let A ∈ Mn×n(F ). The minimal polynomial p(t) of A is
the monic polynomial of least positive degree for which p(A) = O.

The following results are now immediate.

Theorem 7.13. Let T be a linear operator on a finite-dimensional vector
space V, and let β be an ordered basis for V. Then the minimal polynomial
of T is the same as the minimal polynomial of [T]β .

Proof. Exercise.

Corollary. For any A ∈ Mn×n(F ), the minimal polynomial of A is the
same as the minimal polynomial of LA.

Proof. Exercise.

In view of the preceding theorem and corollary, Theorem 7.12 and all
subsequent theorems in this section that are stated for operators are also
valid for matrices.

For the remainder of this section, we study primarily minimal polynomials
of operators (and hence matrices) whose characteristic polynomials split. A
more general treatment of minimal polynomials is given in Section 7.4.

Theorem 7.14. Let T be a linear operator on a finite-dimensional vector
space V, and let p(t) be the minimal polynomial of T. A scalar λ is an
eigenvalue of T if and only if p(λ) = 0. Hence the characteristic polynomial
and the minimal polynomial of T have the same zeros.

Proof. Let f(t) be the characteristic polynomial of T. Since p(t) divides
f(t), there exists a polynomial q(t) such that f(t) = q(t)p(t). If λ is a zero of
p(t), then

f(λ) = q(λ)p(λ) = q(λ) ·0 = 0.

So λ is a zero of f(t); that is, λ is an eigenvalue of T.
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Conversely, suppose that λ is an eigenvalue of T, and let x ∈ V be an
eigenvector corresponding to λ. By Exercise 22 of Section 5.1, we have

0 = T0(x) = p(T)(x) = p(λ)x.

Since x �= 0 , it follows that p(λ) = 0, and so λ is a zero of p(t).

The following corollary is immediate.

Corollary. Let T be a linear operator on a finite-dimensional vector space
V with minimal polynomial p(t) and characteristic polynomial f(t). Suppose
that f(t) factors as

f(t) = (λ1 − t)n1(λ2 − t)n2 · · · (λk − t)nk ,

where λ1, λ2, . . . , λk are the distinct eigenvalues of T. Then there exist inte-
gers m1, m2, . . . , mk such that 1 ≤ mi ≤ ni for all i and

p(t) = (t − λ1)m1(t − λ2)m2 · · · (t − λk)mk .

Example 1

We compute the minimal polynomial of the matrix

A =

⎛⎝3 −1 0
0 2 0
1 −1 2

⎞⎠ .

Since A has the characteristic polynomial

f(t) = det

⎛⎝3 − t −1 0
0 2 − t 0
1 −1 2 − t

⎞⎠ = −(t − 2)2(t − 3),

the minimal polynomial of A must be either (t − 2)(t − 3) or (t − 2)2(t − 3)
by the corollary to Theorem 7.14. Substituting A into p(t) = (t − 2)(t − 3),
we find that p(A) = O; hence p(t) is the minimal polynomial of A. ♦
Example 2

Let T be the linear operator on R2 defined by

T(a, b) = (2a + 5b, 6a + b)

and β be the standard ordered basis for R2. Then

[T]β =
(

2 5
6 1

)
,

and hence the characteristic polynomial of T is

f(t) = det
(

2 − t 5
6 1 − t

)
= (t − 7)(t + 4).

Thus the minimal polynomial of T is also (t − 7)(t + 4). ♦



Sec. 7.3 The Minimal Polynomial 519

Example 3

Let D be the linear operator on P2(R) defined by D(g(x)) = g′(x), the deriva-
tive of g(x). We compute the minimal polynomial of T. Let β be the standard
ordered basis for P2(R). Then

[D]β =

⎛⎝0 1 0
0 0 2
0 0 0

⎞⎠ ,

and it follows that the characteristic polynomial of D is −t3. So by the
corollary to Theorem 7.14, the minimal polynomial of D is t, t2, or t3. Since
D2(x2) = 2 �= 0 , it follows that D2 �= T0; hence the minimal polynomial of D
must be t3. ♦

In Example 3, it is easily verified that P2(R) is a D-cyclic subspace (of
itself). Here the minimal and characteristic polynomials are of the same
degree. This is no coincidence.

Theorem 7.15. Let T be a linear operator on an n-dimensional vector
space V such that V is a T-cyclic subspace of itself. Then the characteristic
polynomial f(t) and the minimal polynomial p(t) have the same degree, and
hence f(t) = (−1)np(t).

Proof. Since V is a T-cyclic space, there exists an x ∈ V such that

β = {x,T(x), . . . ,Tn−1(x)}
is a basis for V (Theorem 5.22 p. 315). Let

g(t) = a0 + a1t + · · · + aktk,

be a polynomial of degree k < n. Then ak �= 0 and

g(T)(x) = a0x + a1T(x) + · · · + akTk(x),

and so g(T)(x) is a linear combination of the vectors of β having at least one
nonzero coefficient, namely, ak. Since β is linearly independent, it follows
that g(T)(x) �= 0 ; hence g(T) �= T0. Therefore the minimal polynomial of T
has degree n, which is also the degree of the characteristic polynomial of T.

Theorem 7.15 gives a condition under which the degree of the minimal
polynomial of an operator is as large as possible. We now investigate the
other extreme. By Theorem 7.14, the degree of the minimal polynomial of an
operator must be greater than or equal to the number of distinct eigenvalues
of the operator. The next result shows that the operators for which the
degree of the minimal polynomial is as small as possible are precisely the
diagonalizable operators.
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Theorem 7.16. Let T be a linear operator on a finite-dimensional vector
space V. Then T is diagonalizable if and only if the minimal polynomial of T
is of the form

p(t) = (t − λ1)(t − λ2) · · · (t − λk),

where λ1, λ2, . . . , λk are the distinct eigenvalues of T.

Proof. Suppose that T is diagonalizable. Let λ1, λ2, . . . , λk be the distinct
eigenvalues of T, and define

p(t) = (t − λ1)(t − λ2) · · · (t − λk).

By Theorem 7.14, p(t) divides the minimal polynomial of T. Let β =
{v1, v2, . . . , vn} be a basis for V consisting of eigenvectors of T, and con-
sider any vi ∈ β. Then (T−λj I)(vi) = 0 for some eigenvalue λj . Since t−λj

divides p(t), there is a polynomial qj(t) such that p(t) = qj(t)(t− λj). Hence

p(T)(vi) = qj(T)(T − λj I)(vi) = 0 .

It follows that p(T) = T0, since p(T) takes each vector in a basis for V into
0 . Therefore p(t) is the minimal polynomial of T.

Conversely, suppose that there are distinct scalars λ1, λ2, . . . , λk such that
the minimal polynomial p(t) of T factors as

p(t) = (t − λ1)(t − λ2) · · · (t − λk).

By Theorem 7.14, the λi’s are eigenvalues of T. We apply mathematical
induction on n = dim(V). Clearly T is diagonalizable for n = 1. Now
assume that T is diagonalizable whenever dim(V) < n for some n > 1, and
let dim(V) = n and W = R(T − λkI). Obviously W �= V, because λk is an
eigenvalue of T. If W = {0}, then T = λkI, which is clearly diagonalizable.
So suppose that 0 < dim(W) < n. Then W is T-invariant, and for any x ∈ W,

(T − λ1I)(T − λ2I) · · · (T − λk−1I)(x) = 0 .

It follows that the minimal polynomial of TW divides the polynomial
(t − λ1)(t − λ2) · · · (t − λk−1). Hence by the induction hypothesis, TW is
diagonalizable. Furthermore, λk is not an eigenvalue of TW by Theorem 7.14.
Therefore W ∩ N(T − λkI) = {0}. Now let β1 = {v1, v2, . . . , vm} be a ba-
sis for W consisting of eigenvectors of TW (and hence of T), and let β2 =
{w1, w2, . . . , wp} be a basis for N(T−λkI), the eigenspace of T corresponding
to λk. Then β1 and β2 are disjoint by the previous comment. Moreover,
m + p = n by the dimension theorem applied to T − λkI. We show that
β = β1 ∪ β2 is linearly independent. Consider scalars a1, a2, . . . , am and
b1, b2, . . . , bp such that

a1v1 + a2v2 + · · · + amvm + b1w1 + b2w2 + · · · + bpwp = 0 .
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Let

x =
m∑

i=1

aivi and y =
p∑

i=1

biwi.

Then x ∈ W, y ∈ N(T − λkI), and x + y = 0 . It follows that x = −y ∈
W ∩ N(T − λkI), and therefore x = 0 . Since β1 is linearly independent, we
have that a1 = a2 = · · · = am = 0. Similarly, b1 = b2 = · · · = bp = 0,
and we conclude that β is a linearly independent subset of V consisting of n
eigenvectors. It follows that β is a basis for V consisting of eigenvectors of T,
and consequently T is diagonalizable.

In addition to diagonalizable operators, there are methods for determin-
ing the minimal polynomial of any linear operator on a finite-dimensional
vector space. In the case that the characteristic polynomial of the operator
splits, the minimal polynomial can be described using the Jordan canonical
form of the operator. (See Exercise 13.) In the case that the characteristic
polynomial does not split, the minimal polynomial can be described using the
rational canonical form, which we study in the next section. (See Exercise 7
of Section 7.4.)

Example 4

We determine all matrices A ∈ M2×2(R) for which A2 − 3A + 2I = O. Let
g(t) = t2 − 3t + 2 = (t − 1)(t − 2). Since g(A) = O, the minimal polynomial
p(t) of A divides g(t). Hence the only possible candidates for p(t) are t − 1,
t− 2, and (t− 1)(t− 2). If p(t) = t− 1 or p(t) = t− 2, then A = I or A = 2I,
respectively. If p(t) = (t−1)(t−2), then A is diagonalizable with eigenvalues
1 and 2, and hence A is similar to(

1 0
0 2

)
. ♦

Example 5

Let A ∈ Mn×n(R) satisfy A3 = A. We show that A is diagonalizable. Let
g(t) = t3 − t = t(t + 1)(t − 1). Then g(A) = O, and hence the minimal
polynomial p(t) of A divides g(t). Since g(t) has no repeated factors, neither
does p(t). Thus A is diagonalizable by Theorem 7.16. ♦

Example 6

In Example 3, we saw that the minimal polynomial of the differential operator
D on P2(R) is t3. Hence, by Theorem 7.16, D is not diagonalizable. ♦
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EXERCISES

1. Label the following statements as true or false. Assume that all vector
spaces are finite-dimensional.

(a) Every linear operator T has a polynomial p(t) of largest degree for
which p(T) = T0.

(b) Every linear operator has a unique minimal polynomial.
(c) The characteristic polynomial of a linear operator divides the min-

imal polynomial of that operator.
(d) The minimal and the characteristic polynomials of any diagonal-

izable operator are equal.
(e) Let T be a linear operator on an n-dimensional vector space V, p(t)

be the minimal polynomial of T, and f(t) be the characteristic
polynomial of T. Suppose that f(t) splits. Then f(t) divides
[p(t)]n.

(f) The minimal polynomial of a linear operator always has the same
degree as the characteristic polynomial of the operator.

(g) A linear operator is diagonalizable if its minimal polynomial splits.
(h) Let T be a linear operator on a vector space V such that V is a

T-cyclic subspace of itself. Then the degree of the minimal poly-
nomial of T equals dim(V).

(i) Let T be a linear operator on a vector space V such that T has n
distinct eigenvalues, where n = dim(V). Then the degree of the
minimal polynomial of T equals n.

2. Find the minimal polynomial of each of the following matrices.

(a)
(

2 1
1 2

)
(b)

(
1 1
0 1

)

(c)

⎛⎝4 −14 5
1 −4 2
1 −6 4

⎞⎠ (d)

⎛⎝ 3 0 1
2 2 2

−1 0 1

⎞⎠
3. For each linear operator T on V, find the minimal polynomial of T.

(a) V = R2 and T(a, b) = (a + b, a − b)
(b) V = P2(R) and T(g(x)) = g′(x) + 2g(x)
(c) V = P2(R) and T(f(x)) = −xf ′′(x) + f ′(x) + 2f(x)
(d) V = Mn×n(R) and T(A) = At. Hint: Note that T2 = I.

4. Determine which of the matrices and operators in Exercises 2 and 3 are
diagonalizable.

5. Describe all linear operators T on R2 such that T is diagonalizable and
T3 − 2T2 + T = T0.
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6. Prove Theorem 7.13 and its corollary.

7. Prove the corollary to Theorem 7.14.

8. Let T be a linear operator on a finite-dimensional vector space, and let
p(t) be the minimal polynomial of T. Prove the following results.

(a) T is invertible if and only if p(0) �= 0.
(b) If T is invertible and p(t) = tn + an−1t

n−1 + · · · + a1t + a0, then

T−1 = − 1
a0

(
Tn−1 + an−1T

n−2 + · · · + a2T + a1I
)
.

9. Let T be a diagonalizable linear operator on a finite-dimensional vector
space V. Prove that V is a T-cyclic subspace if and only if each of the
eigenspaces of T is one-dimensional.

10. Let T be a linear operator on a finite-dimensional vector space V, and
suppose that W is a T-invariant subspace of V. Prove that the minimal
polynomial of TW divides the minimal polynomial of T.

11. Let g(t) be the auxiliary polynomial associated with a homogeneous lin-
ear differential equation with constant coefficients (as defined in Section
2.7), and let V denote the solution space of this differential equation.
Prove the following results.

(a) V is a D-invariant subspace, where D is the differentiation operator
on C∞.

(b) The minimal polynomial of DV (the restriction of D to V) is g(t).
(c) If the degree of g(t) is n, then the characteristic polynomial of DV

is (−1)ng(t).

Hint: Use Theorem 2.32 (p. 135) for (b) and (c).

12. Let D be the differentiation operator on P(R), the space of polynomials
over R. Prove that there exists no polynomial g(t) for which g(D) = T0.
Hence D has no minimal polynomial.

13. Let T be a linear operator on a finite-dimensional vector space, and
suppose that the characteristic polynomial of T splits. Let λ1, λ2, . . . , λk

be the distinct eigenvalues of T, and for each i let pi be the order of the
largest Jordan block corresponding to λi in a Jordan canonical form of
T. Prove that the minimal polynomial of T is

(t − λ1)p1(t − λ2)p2 · · · (t − λk)pk .

The following exercise requires knowledge of direct sums (see Section 5.2).
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14. Let T be linear operator on a finite-dimensional vector space V, and
let W1 and W2 be T-invariant subspaces of V such that V = W1 ⊕ W2.
Suppose that p1(t) and p2(t) are the minimal polynomials of TW1 and
TW2 , respectively. Prove or disprove that p1(t)p2(t) is the minimal
polynomial of T.

Exercise 15 uses the following definition.

Definition. Let T be a linear operator on a finite-dimensional vector
space V, and let x be a nonzero vector in V. The polynomial p(t) is called
a T-annihilator of x if p(t) is a monic polynomial of least degree for which
p(T)(x) = 0 .

15.† Let T be a linear operator on a finite-dimensional vector space V, and
let x be a nonzero vector in V. Prove the following results.

(a) The vector x has a unique T-annihilator.
(b) The T-annihilator of x divides any polynomial g(t) for which

g(T) = T0.
(c) If p(t) is the T-annihilator of x and W is the T-cyclic subspace

generated by x, then p(t) is the minimal polynomial of TW, and
dim(W) equals the degree of p(t).

(d) The degree of the T-annihilator of x is 1 if and only if x is an
eigenvector of T.

16. T be a linear operator on a finite-dimensional vector space V, and let
W1 be a T-invariant subspace of V. Let x ∈ V such that x /∈ W1. Prove
the following results.

(a) There exists a unique monic polynomial g1(t) of least positive de-
gree such that g1(T)(x) ∈ W1.

(b) If h(t) is a polynomial for which h(T)(x) ∈ W1, then g1(t) divides
h(t).

(c) g1(t) divides the minimal and the characteristic polynomials of T.
(d) Let W2 be a T-invariant subspace of V such that W2 ⊆ W1, and

let g2(t) be the unique monic polynomial of least degree such that
g2(T)(x) ∈ W2. Then g1(t) divides g2(t).

7.4∗ THE RATIONAL CANONICAL FORM

Until now we have used eigenvalues, eigenvectors, and generalized eigenvec-
tors in our analysis of linear operators with characteristic polynomials that
split. In general, characteristic polynomials need not split, and indeed, oper-
ators need not have eigenvalues! However, the unique factorization theorem
for polynomials (see Appendix E) guarantees that the characteristic polyno-
mial f(t) of any linear operator T on an n-dimensional vector space factors



Sec. 7.4 The Rational Canonical Form 525

uniquely as

f(t) = (−1)n(φ1(t))n1(φ2(t))n2 · · · (φk(t))nk ,

where the φi(t)’s (1 ≤ i ≤ k) are distinct irreducible monic polynomials and
the ni’s are positive integers. In the case that f(t) splits, each irreducible
monic polynomial factor is of the form φi(t) = t−λi, where λi is an eigenvalue
of T, and there is a one-to-one correspondence between eigenvalues of T and
the irreducible monic factors of the characteristic polynomial. In general,
eigenvalues need not exist, but the irreducible monic factors always exist. In
this section, we establish structure theorems based on the irreducible monic
factors of the characteristic polynomial instead of eigenvalues.

In this context, the following definition is the appropriate replacement for
eigenspace and generalized eigenspace.

Definition. Let T be a linear operator on a finite-dimensional vector
space V with characteristic polynomial

f(t) = (−1)n(φ1(t))n1(φ2(t))n2 · · · (φk(t))nk ,

where the φi(t)’s (1 ≤ i ≤ k) are distinct irreducible monic polynomials and
the ni’s are positive integers. For 1 ≤ i ≤ k, we define the subset Kφi of V by

Kφi
= {x ∈ V : (φi(T))p(x) = 0 for some positive integer p}.

We show that each Kφi
is a nonzero T-invariant subspace of V. Note that

if φi(t) = t − λ is of degree one, then Kφi is the generalized eigenspace of T
corresponding to the eigenvalue λ.

Having obtained suitable generalizations of the related concepts of eigen-
value and eigenspace, our next task is to describe a canonical form of a linear
operator suitable to this context. The one that we study is called the rational
canonical form. Since a canonical form is a description of a matrix represen-
tation of a linear operator, it can be defined by specifying the form of the
ordered bases allowed for these representations.

Here the bases of interest naturally arise from the generators of certain
cyclic subspaces. For this reason, the reader should recall the definition of
a T-cyclic subspace generated by a vector and Theorem 5.22 (p. 315). We
briefly review this concept and introduce some new notation and terminology.

Let T be a linear operator on a finite-dimensional vector space V, and let
x be a nonzero vector in V. We use the notation Cx for the T-cyclic subspace
generated by x. Recall (Theorem 5.22) that if dim(Cx) = k, then the set

{x,T(x), T2(x), . . . ,Tk−1(x)}
is an ordered basis for Cx. To distinguish this basis from all other ordered
bases for Cx, we call it the T-cyclic basis generated by x and denote it by
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βx. Let A be the matrix representation of the restriction of T to Cx relative
to the ordered basis βx. Recall from the proof of Theorem 5.22 that

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

...
...

0 0 · · · 1 −ak−1

⎞⎟⎟⎟⎟⎟⎠ ,

where

a0x + a1T(x) + · · · + ak−1T
k−1(x) + Tk(x) = 0 .

Furthermore, the characteristic polynomial of A is given by

det(A − tI) = (−1)k(a0 + a1t + · · · + ak−1t
k−1 + tk).

The matrix A is called the companion matrix of the monic polynomial
h(t) = a0 + a1t + · · · + ak−1t

k−1 + tk. Every monic polynomial has a com-
panion matrix, and the characteristic polynomial of the companion matrix of
a monic polynomial g(t) of degree k is equal to (−1)kg(t). (See Exercise 19
of Section 5.4.) By Theorem 7.15 (p. 519), the monic polynomial h(t) is also
the minimal polynomial of A. Since A is the matrix representation of the
restriction of T to Cx, h(t) is also the minimal polynomial of this restriction.
By Exercise 15 of Section 7.3, h(t) is also the T-annihilator of x.

It is the object of this section to prove that for every linear operator T
on a finite-dimensional vector space V, there exists an ordered basis β for V
such that the matrix representation [T]β is of the form⎛⎜⎜⎜⎝

C1 O · · · O
O C2 · · · O
...

...
...

O O · · · Cr

⎞⎟⎟⎟⎠ ,

where each Ci is the companion matrix of a polynomial (φ(t))m such that φ(t)
is a monic irreducible divisor of the characteristic polynomial of T and m is
a positive integer. A matrix representation of this kind is called a rational
canonical form of T. We call the accompanying basis a rational canonical
basis for T.

The next theorem is a simple consequence of the following lemma, which
relies on the concept of T-annihilator, introduced in the Exercises of Sec-
tion 7.3.

Lemma. Let T be a linear operator on a finite-dimensional vector space
V, let x be a nonzero vector in V, and suppose that the T-annihilator of x
is of the form (φ(t))p for some irreducible monic polynomial φ(t). Then φ(t)
divides the minimal polynomial of T, and x ∈ Kφ.
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Proof. By Exercise 15(b) of Section 7.3, (φ(t))p divides the minimal poly-
nomial of T. Therefore φ(t) divides the minimal polynomial of T. Further-
more, x ∈ Kφ by the definition of Kφ.

Theorem 7.17. Let T be a linear operator on a finite-dimensional vector
space V, and let β be an ordered basis for V. Then β is a rational canonical
basis for T if and only if β is the disjoint union of T-cyclic bases βvi

, where
each vi lies in Kφ for some irreducible monic divisor φ(t) of the characteristic
polynomial of T.

Proof. Exercise.

Example 1

Suppose that T is a linear operator on R8 and

β = {v1, v2, v3, v4, v5, v6, v7, v8}

is a rational canonical basis for T such that

C = [T]β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −3 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 −2 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a rational canonical form of T. In this case, the submatrices C1, C2, and
C3 are the companion matrices of the polynomials φ1(t), (φ2(t))2, and φ2(t),
respectively, where

φ1(t) = t2 − t + 3 and φ2(t) = t2 + 1.

In the context of Theorem 7.17, β is the disjoint union of the T-cyclic bases;
that is,

β = βv1 ∪ βv3 ∪ βv7

= {v1, v2} ∪ {v3, v4, v5, v6} ∪ {v7, v8}.

By Exercise 40 of Section 5.4, the characteristic polynomial f(t) of T is the
product of the characteristic polynomials of the companion matrices:

f(t) = φ1(t)(φ2(t))2φ2(t) = φ1(t)(φ2(t))3. ♦
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The rational canonical form C of the operator T in Example 1 is con-
structed from matrices of the form Ci, each of which is the companion matrix
of some power of a monic irreducible divisor of the characteristic polynomial
of T. Furthermore, each such divisor is used in this way at least once.

In the course of showing that every linear operator T on a finite dimen-
sional vector space has a rational canonical form C, we show that the com-
panion matrices Ci that constitute C are always constructed from powers of
the monic irreducible divisors of the characteristic polynomial of T. A key
role in our analysis is played by the subspaces Kφ, where φ(t) is an irreducible
monic divisor of the minimal polynomial of T. Since the minimal polynomial
of an operator divides the characteristic polynomial of the operator, every ir-
reducible divisor of the former is also an irreducible divisor of the latter. We
eventually show that the converse is also true; that is, the minimal polynomial
and the characteristic polynomial have the same irreducible divisors.

We begin with a result that lists several properties of irreducible divisors
of the minimal polynomial. The reader is advised to review the definition of
T-annihilator and the accompanying Exercise 15 of Section 7.3.

Theorem 7.18. Let T be a linear operator on a finite-dimensional vector
space V, and suppose that

p(t) = (φ1(t))m1(φ2(t))m2 · · · (φk(t))mk

is the minimal polynomial of T, where the φi(t)’s (1 ≤ i ≤ k) are the distinct
irreducible monic factors of p(t) and the mi’s are positive integers. Then the
following statements are true.

(a) Kφi is a nonzero T-invariant subspace of V for each i.
(b) If x is a nonzero vector in some Kφi , then the T-annihilator of x is of

the form (φi(t))p for some integer p.
(c) Kφi

∩ Kφj
= {0} for i �= j. .

(d) Kφi
is invariant under φj(T) for i �= j, and the restriction of φj(T) to

Kφi
is one-to-one and onto.

(e) Kφi = N((φi(T))mi) for each i.

Proof. If k = 1, then (a), (b), and (e) are obvious, while (c) and (d) are
vacuously true. Now suppose that k > 1.

(a) The proof that Kφi
is a T-invariant subspace of V is left as an exer-

cise. Let fi(t) be the polynomial obtained from p(t) by omitting the factor
(φi(t))mi . To prove that Kφi is nonzero, first observe that fi(t) is a proper di-
visor of p(t); therefore there exists a vector z ∈ V such that x = fi(T)(z) �= 0 .
Then x ∈ Kφi

because

(φi(T))mi(x) = (φi(T))mifi(T)(z) = p(T)(z) = 0 .

(b) Assume the hypothesis. Then (φi(T))q(x) = 0 for some positive in-
teger q. Hence the T-annihilator of x divides (φi(t))q by Exercise 15(b) of
Section 7.3, and the result follows.
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(c) Assume i �= j. Let x ∈ Kφi
∩Kφj

, and suppose that x �= 0 . By (b), the
T-annihilator of x is a power of both φi(t) and φj(t). But this is impossible
because φi(t) and φj(t) are relatively prime (see Appendix E). We conclude
that x = 0 .

(d) Assume i �= j. Since Kφi is T-invariant, it is also φj(T)-invariant.
Suppose that φj(T)(x) = 0 for some x ∈ Kφi

. Then x ∈ Kφi
∩ Kφj

= {0}
by (c). Therefore the restriction of φj(T) to Kφi

is one-to-one. Since V is
finite-dimensional, this restriction is also onto.

(e) Suppose that 1 ≤ i ≤ k. Clearly, N((φi(T))mi) ⊆ Kφi
. Let fi(t) be the

polynomial defined in (a). Since fi(t) is a product of polynomials of the form
φj(t) for j �= i, we have by (d) that the restriction of fi(T) to Kφi is onto.
Let x ∈ Kφi . Then there exists y ∈ Kφi such that fi(T)(y) = x. Therefore

((φi(T))mi)(x) = ((φi(T))mi)fi(T)(y) = p(T)(y) = 0 ,

and hence x ∈ N((φi(T))mi). Thus Kφi
= N((φi(T))mi).

Since a rational canonical basis for an operator T is obtained from a union
of T-cyclic bases, we need to know when such a union is linearly independent.
The next major result, Theorem 7.19, reduces this problem to the study of
T-cyclic bases within Kφ, where φ(t) is an irreducible monic divisor of the
minimal polynomial of T. We begin with the following lemma.

Lemma. Let T be a linear operator on a finite-dimensional vector space
V, and suppose that

p(t) = (φ1(t))m1(φ2(t))m2 · · · (φk(t))mk

is the minimal polynomial of T, where the φi’s (1 ≤ i ≤ k) are the dis-
tinct irreducible monic factors of p(t) and the mi’s are positive integers. For
1 ≤ i ≤ k, let vi ∈ Kφi

be such that

v1 + v2 + · · · + vk = 0 . (2)

Then vi = 0 for all i.

Proof. The result is trivial if k = 1, so suppose that k > 1. Consider
any i. Let fi(t) be the polynomial obtained from p(t) by omitting the factor
(φi(t))mi . As a consequence of Theorem 7.18, fi(T) is one-to-one on Kφi

, and
fi(T)(vj) = 0 for i �= j. Thus, applying fi(T) to (2), we obtain fi(T)(vi) = 0 ,
from which it follows that vi = 0 .

Theorem 7.19. Let T be a linear operator on a finite-dimensional vector
space V, and suppose that

p(t) = (φ1(t))m1(φ2(t))m2 · · · (φk(t))mk
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is the minimal polynomial of T, where the φi’s (1 ≤ i ≤ k) are the dis-
tinct irreducible monic factors of p(t) and the mi’s are positive integers. For
1 ≤ i ≤ k, let Si be a linearly independent subset of Kφi

. Then
(a) Si ∩ Sj = ∅ for i �= j
(b) S1 ∪ S2 ∪ · · · ∪ Sk is linearly independent.

Proof. If k = 1, then (a) is vacuously true and (b) is obvious. Now
suppose that k > 1. Then (a) follows immediately from Theorem 7.18(c).
Furthermore, the proof of (b) is identical to the proof of Theorem 5.8 (p. 267)
with the eigenspaces replaced by the subspaces Kφi

.

In view of Theorem 7.19, we can focus on bases of individual spaces of
the form Kφ(t), where φ(t) is an irreducible monic divisor of the minimal
polynomial of T. The next several results give us ways to construct bases for
these spaces that are unions of T-cyclic bases. These results serve the dual
purposes of leading to the existence theorem for the rational canonical form
and of providing methods for constructing rational canonical bases.

For Theorems 7.20 and 7.21 and the latter’s corollary, we fix a linear
operator T on a finite-dimensional vector space V and an irreducible monic
divisor φ(t) of the minimal polynomial of T.

Theorem 7.20. Let v1, v2, . . . , vk be distinct vectors in Kφ such that

S1 = βv1 ∪ βv2 ∪ · · · ∪ βvk

is linearly independent. For each i, choose wi ∈ V such that φ(T)(wi) = vi.
Then

S2 = βw1 ∪ βw2 ∪ · · · ∪ βwk

is also linearly independent.

Proof. Consider any linear combination of vectors in S2 that sums to zero,
say,

k∑
i=1

ni∑
j=0

aijT
j(wi) = 0 . (3)

For each i, let fi(t) be the polynomial defined by

fi(t) =
ni∑

j=0

aijt
j .

Then (3) can be rewritten as

k∑
i=1

fi(T)(wi) = 0 . (4)
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Apply φ(T) to both sides of (4) to obtain

k∑
i=1

φ(T)fi(T)(wi) =
k∑

i=1

fi(T)φ(T)(wi) =
k∑

i=1

fi(T)(vi) = 0 .

This last sum can be rewritten as a linear combination of the vectors in S1

so that each fi(T)(vi) is a linear combination of the vectors in βvi
. Since S1

is linearly independent, it follows that

fi(T)(vi) = 0 for all i.

Therefore the T-annihilator of vi divides fi(t) for all i. (See Exercise 15 of
Section 7.3.) By Theorem 7.18(b), φ(t) divides the T-annihilator of vi, and
hence φ(t) divides fi(t) for all i. Thus, for each i, there exists a polynomial
gi(t) such that fi(t) = gi(t)φ(t). So (4) becomes

k∑
i=1

gi(T)φ(T)(wi) =
k∑

i=1

gi(T)(vi) = 0 .

Again, linear independence of S1 requires that

fi(T)(wi) = gi(T)(vi) = 0 for all i.

But fi(T)(wi) is the result of grouping the terms of the linear combination
in (3) that arise from the linearly independent set βwi . We conclude that for
each i, aij = 0 for all j. Therefore S2 is linearly independent.

We now show that Kφ has a basis consisting of a union of T-cycles.

Lemma. Let W be a T-invariant subspace of Kφ, and let β be a basis for
W. Then the following statements are true.

(a) Suppose that x ∈ N(φ(T)), but x /∈ W. Then β ∪ βx is linearly inde-
pendent.

(b) For some w1, w2, . . . , ws in N(φ(T)), β can be extended to the linearly
independent set

β′ = β ∪ βw1 ∪ βw2 ∪ · · · ∪ βws ,

whose span contains N(φ(T)).

Proof. (a) Let β = {v1, v2, . . . , vk}, and suppose that

k∑
i=1

aivi + z = 0 and z =
d−1∑
j=0

bjT
j(x),
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where d is the degree of φ(t). Then z ∈ Cx ∩ W, and hence Cz ⊆ Cx ∩ W.
Suppose that z �= 0 . Then z has φ(t) as its T-annihilator, and therefore

d = dim(Cz) ≤ dim(Cx ∩ W) ≤ dim(Cx) = d.

It follows that Cx∩W = Cx, and consequently x ∈ W, contrary to hypothesis.
Therefore z = 0 , from which it follows that bj = 0 for all j. Since β is
linearly independent, it follows that ai = 0 for all i. Thus β ∪ βx is linearly
independent.

(b) Suppose that W does not contain N(φ(T)). Choose a vector w1 ∈
N(φ(t)) that is not in W. By (a), β1 = β ∪ βw1 is linearly independent.
Let W1 = span(β1). If W1 does not contain N(φ(t)), choose a vector w2 in
N(φ(t)), but not in W1, so that β2 = β1∪βw2 = β∪βw1 ∪βw2 is linearly inde-
pendent. Continuing this process, we eventually obtain vectors w1, w2, . . . , ws

in N(φ(T)) such that the union

β′ = β ∪ βw1 ∪ βw2 ∪ · · · ∪ βws

is a linearly independent set whose span contains N(φ(T)).

Theorem 7.21. If the minimal polynomial of T is of the form p(t) =
(φ(t))m, then there exists a rational canonical basis for T.

Proof. The proof is by mathematical induction on m. Suppose that m = 1.
Apply (b) of the lemma to W = {0} to obtain a linearly independent subset
of V of the form βv1 ∪ βv2 ∪ · · · ∪ βvk

, whose span contains N(φ(T)). Since
V = N(φ(T)), this set is a rational canonical basis for V.

Now suppose that, for some integer m > 1, the result is valid whenever the
minimal polynomial of T is of the form (φ(T))k, where k < m, and assume
that the minimal polynomial of T is p(t) = (φ(t))m. Let r = rank(φ(T)).
Then R(φ(T)) is a T-invariant subspace of V, and the restriction of T to this
subspace has (φ(t))m−1 as its minimal polynomial. Therefore we may apply
the induction hypothesis to obtain a rational canonical basis for the restriction
of T to R(T). Suppose that v1, v2, . . . , vk are the generating vectors of the
T-cyclic bases that constitute this rational canonical basis. For each i, choose
wi in V such that vi = φ(T)(wi). By Theorem 7.20, the union β of the sets βwi

is linearly independent. Let W = span(β). Then W contains R(φ(T)). Apply
(b) of the lemma and adjoin additional T-cyclic bases βwk+1 , βwk+2 , . . . , βws

to β, if necessary, where wi is in N(φ(T)) for i ≥ k, to obtain a linearly
independent set

β′ = βw1 ∪ βw2 ∪ · · · ∪ βwk
∪ · · · ∪ βws

whose span W′ contains both W and N(φ(T)).
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We show that W′ = V. Let U denote the restriction of φ(T) to W′, which
is φ(T)-invariant. By the way in which W′ was obtained from R(φ(T)), it
follows that R(U) = R(φ(T)) and N(U) = N(φ(T)). Therefore

dim(W′) = rank(U) + nullity(U)
= rank(φ(T)) + nullity(φ(T))
= dim(V).

Thus W′ = V, and β′ is a rational canonical basis for T.

Corollary. Kφ has a basis consisting of the union of T-cyclic bases.

Proof. Apply Theorem 7.21 to the restriction of T to Kφ.

We are now ready to study the general case.

Theorem 7.22. Every linear operator on a finite-dimensional vector space
has a rational canonical basis and, hence, a rational canonical form.

Proof. Let T be a linear operator on a finite-dimensional vector space V,
and let p(t) = (φ1(t))m1(φ2(t))m2 · · · (φk(t))mk be the minimal polynomial
of T, where the φi(t)’s are the distinct irreducible monic factors of p(t) and
mi > 0 for all i. The proof is by mathematical induction on k. The case
k = 1 is proved in Theorem 7.21.

Suppose that the result is valid whenever the minimal polynomial contains
fewer than k distinct irreducible factors for some k > 1, and suppose that p(t)
contains k distinct factors. Let U be the restriction of T to the T-invariant
subspace W = R((φk(T)mk), and let q(t) be the minimal polynomial of U.
Then q(t) divides p(t) by Exercise 10 of Section 7.3. Furthermore, φk(t) does
not divide q(t). For otherwise, there would exist a nonzero vector x ∈ W such
that φk(U)(x) = 0 and a vector y ∈ V such that x = (φk(T))mk(y). It follows
that (φk(T))mk+1(y) = 0 , and hence y ∈ Kφk

and x = (φk(T))mk(y) =
0 by Theorem 7.18(e), a contradiction. Thus q(t) contains fewer than k
distinct irreducible divisors. So by the induction hypothesis, U has a rational
canonical basis β1 consisting of a union of U-cyclic bases (and hence T-cyclic
bases) of vectors from some of the subspaces Kφi

, 1 ≤ i ≤ k − 1. By the
corollary to Theorem 7.21, Kφk

has a basis β2 consisting of a union of T-
cyclic bases. By Theorem 7.19, β1 and β2 are disjoint, and β = β1 ∪ β2 is
linearly independent. Let s denote the number of vectors in β. Then

s = dim(R((φk(T))mk)) + dim(Kφk
)

= rank((φk(T))mk) + nullity((φk(T))mk)
= n.

We conclude that β is a basis for V. Therefore β is a rational canonical basis,
and T has a rational canonical form.
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In our study of the rational canonical form, we relied on the minimal
polynomial. We are now able to relate the rational canonical form to the
characteristic polynomial.

Theorem 7.23. Let T be a linear operator on an n-dimensional vector
space V with characteristic polynomial

f(t) = (−1)n(φ1(t))n1(φ2(t))n2 · · · (φk(t))nk ,

where the φi(t)’s (1 ≤ i ≤ k) are distinct irreducible monic polynomials and
the ni’s are positive integers. Then the following statements are true.

(a) φ1(t), φ2(t), . . . , φk(t) are the irreducible monic factors of the minimal
polynomial.

(b) For each i, dim(Kφi
) = dini, where di is the degree of φi(t).

(c) If β is a rational canonical basis for T, then βi = β ∩ Kφi
is a basis for

Kφi
for each i.

(d) If γi is a basis for Kφi for each i, then γ = γ1 ∪ γ2 ∪ · · · ∪ γk is a basis
for V. In particular, if each γi is a disjoint union of T-cyclic bases, then
γ is a rational canonical basis for T.

Proof. (a) By Theorem 7.22, T has a rational canonical form C. By
Exercise 40 of Section 5.4, the characteristic polynomial of C, and hence of
T, is the product of the characteristic polynomials of the companion matrices
that compose C. Therefore each irreducible monic divisor φi(t) of f(t) divides
the characteristic polynomial of at least one of the companion matrices, and
hence for some integer p, (φi(t))p is the T-annihilator of a nonzero vector of
V. We conclude that (φi(t))p, and so φi(t), divides the minimal polynomial
of T. Conversely, if φ(t) is an irreducible monic polynomial that divides the
minimal polynomial of T, then φ(t) divides the characteristic polynomial of
T because the minimal polynomial divides the characteristic polynomial.

(b), (c), and (d) Let C = [T]β , which is a rational canonical form of T.
Consider any i, (1 ≤ i ≤ k). Since f(t) is the product of the characteristic
polynomials of the companion matrices that compose C, we may multiply
those characteristic polynomials that arise from the T-cyclic bases in βi to
obtain the factor (φi(t))ni of f(t). Since this polynomial has degree nidi, and
the union of these bases is a linearly independent subset βi of Kφi

, we have

nidi ≤ dim(Kφi).

Furthermore, n =
k∑

i=1

dini, because this sum is equal to the degree of f(t).

Now let s denote the number of vectors in γ. By Theorem 7.19, γ is linearly
independent, and therefore

n =
k∑

i=1

dini ≤
k∑

i=1

dim(Kφi
) = s ≤ n.
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Hence n = s, and dini = dim(Kφi
) for all i. It follows that γ is a basis for V

and βi is a basis for Kφi
for each i.

Uniqueness of the Rational Canonical Form

Having shown that a rational canonical form exists, we are now in a po-
sition to ask about the extent to which it is unique. Certainly, the rational
canonical form of a linear operator T can be modified by permuting the T-
cyclic bases that constitute the corresponding rational canonical basis. This
has the effect of permuting the companion matrices that make up the rational
canonical form. As in the case of the Jordan canonical form, we show that
except for these permutations, the rational canonical form is unique, although
the rational canonical bases are not.

To simplify this task, we adopt the convention of ordering every rational
canonical basis so that all the T-cyclic bases associated with the same irre-
ducible monic divisor of the characteristic polynomial are grouped together.
Furthermore, within each such grouping, we arrange the T-cyclic bases in
decreasing order of size. Our task is to show that, subject to this order, the
rational canonical form of a linear operator is unique up to the arrangement
of the irreducible monic divisors.

As in the case of the Jordan canonical form, we introduce arrays of dots
from which we can reconstruct the rational canonical form. For the Jordan
canonical form, we devised a dot diagram for each eigenvalue of the given
operator. In the case of the rational canonical form, we define a dot diagram
for each irreducible monic divisor of the characteristic polynomial of the given
operator. A proof that the resulting dot diagrams are completely determined
by the operator is also a proof that the rational canonical form is unique.

In what follows, T is a linear operator on a finite-dimensional vector space
with rational canonical basis β; φ(t) is an irreducible monic divisor of the char-
acteristic polynomial of T; βv1 , βv2 , . . . , βvk

are the T-cyclic bases of β that
are contained in Kφ; and d is the degree of φ(t). For each j, let (φ(t))pj be the
annihilator of vj . This polynomial has degree dpj ; therefore, by Exercise 15
of Section 7.3, βvj contains dpj vectors. Furthermore, p1 ≥ p2 ≥ · · · ≥ pk

since the T-cyclic bases are arranged in decreasing order of size. We define
the dot diagram of φ(t) to be the array consisting of k columns of dots with
pj dots in the jth column, arranged so that the jth column begins at the top
and terminates after pj dots. For example, if k = 3, p1 = 4, p2 = 2, and
p3 = 2, then the dot diagram is

• • •
• • •
•
•

Although each column of a dot diagram corresponds to a T-cyclic basis
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βvi
in Kφ, there are fewer dots in the column than there are vectors in the

basis.

Example 2

Recall the linear operator T of Example 1 with the rational canonical basis
β and the rational canonical form C = [T]β . Since there are two irreducible
monic divisors of the characteristic polynomial of T, φ1(t) = t2 − t + 3 and
φ2(t) = t2 + 1, there are two dot diagrams to consider. Because φ1(t) is
the T-annihilator of v1 and βv1 is a basis for Kφ1 , the dot diagram for φ1(t)
consists of a single dot. The other two T cyclic bases, βv3 and βv7 , lie in Kφ2 .
Since v3 has T-annihilator (φ2(t))2 and v7 has T-annihilator φ2(t), in the dot
diagram of φ2(t) we have p1 = 2 and p2 = 1. These diagrams are as follows:

• • •
•

Dot diagram for φ1(t) Dot diagram for φ2(t) ♦

In practice, we obtain the rational canonical form of a linear operator
from the information provided by dot diagrams. This is illustrated in the
next example.

Example 3

Let T be a linear operator on a finite-dimensional vector space over R, and
suppose that the irreducible monic divisors of the characteristic polynomial
of T are

φ1(t) = t − 1, φ2(t) = t2 + 2, and φ3(t) = t2 + t + 1.

Suppose, furthermore, that the dot diagrams associated with these divisors
are as follows:

• •
•

• • •

Diagram for φ1(t) Diagram for φ2(t) Diagram for φ3(t)

Since the dot diagram for φ1(t) has two columns, it contributes two companion
matrices to the rational canonical form. The first column has two dots, and
therefore corresponds to the 2 × 2 companion matrix of (φ1(t))2 = (t − 1)2.
The second column, with only one dot, corresponds to the 1 × 1 companion
matrix of φ1(t) = t − 1. These two companion matrices are given by

C1 =
(

0 −1
1 2

)
and C2 =

(
1
)
.

The dot diagram for φ2(t) = t2 +2 consists of two columns. each containing a
single dot; hence this diagram contributes two copies of the 2× 2 companion



Sec. 7.4 The Rational Canonical Form 537

matrix for φ2(t), namely,

C3 = C4 =
(

0 −2
1 0

)
.

The dot diagram for φ3(t) = t2 + t + 1 consists of a single column with a
single dot contributing the single 2 × 2 companion matrix

C5 =
(

0 −1
1 −1

)
.

Therefore the rational canonical form of T is the 9 × 9 matrix

C =

⎛⎜⎜⎜⎜⎝
C1 O O O O
O C2 O O O
O O C3 O O
O O O C4 O
O O O O C5

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −2 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ♦

We return to the general problem of finding dot diagrams. As we did
before, we fix a linear operator T on a finite-dimensional vector space and an
irreducible monic divisor φ(t) of the characteristic polynomial of T. Let U
denote the restriction of the linear operator φ(T) to Kφ. By Theorem 7.18(d),
Uq = T0 for some positive integer q. Consequently, by Exercise 12 of Sec-
tion 7.2, the characteristic polynomial of U is (−1)mtm, where m = dim(Kφ).
Therefore Kφ is the generalized eigenspace of U corresponding to λ = 0, and
U has a Jordan canonical form. The dot diagram associated with the Jordan
canonical form of U gives us a key to understanding the dot diagram of T
that is associated with φ(t). We now relate the two diagrams.

Let β be a rational canonical basis for T, and βv1 , βv2 , . . . , βvk
be the T-

cyclic bases of β that are contained in Kφ. Consider one of these T-cyclic
bases βvj

, and suppose again that the T-annihilator of vj is (φ(t))pj . Then
βvj consists of dpj vectors in β. For 0 ≤ i < d, let γi be the cycle of
generalized eigenvectors of U corresponding to λ = 0 with end vector Ti(vj),
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where T0(vj) = bj . Then

γi = {(φ(T))pj−1Ti(vj), (φ(T))pj−2Ti(vj), . . . , (φ(T))Ti(vj), Ti(vj)}.
By Theorem 7.1 (p. 485), γi is a linearly independent subset of Cvi

. Now let

αj = γ0 ∪ γ1 ∪ · · · ∪ γd−1.

Notice that αj contains pjd vectors.

Lemma 1. αj is an ordered basis for Cvj .

Proof. The key to this proof is Theorem 7.4 (p. 487). Since αj is the union
of cycles of generalized eigenvectors of U corresponding to λ = 0, it suffices
to show that the set of initial vectors of these cycles

{(φ(T))pj−1(vj), (φ(T))pj−1T(vj), . . . , (φ(T))pj−1Td−1(vj)}
is linearly independent. Consider any linear combination of these vectors

a0(φ(T))pj−1(vj) + a1(φ(T))pj−1T(vj) + · · · + ad−1(φ(T))pj−1Td−1(vj),

where not all of the coefficients are zero. Let g(t) be the polynomial defined
by g(t) = a0 + a1t + · · · + ad−1t

d−1. Then g(t) is a nonzero polynomial of
degree less than d, and hence (φ(t))pj−1g(t) is a nonzero polynomial with
degree less than pjd. Since (φ(t))pj is the T-annihilator of vj , it follows
that (φ(T))pj−1g(T)(vj) �= 0 . Therefore the set of initial vectors is linearly
independent. So by Theorem 7.4, αj is linearly independent, and the γi’s are
disjoint. Consequently, αj consists of pjd linearly independent vectors in Cvj ,
which has dimension pjd. We conclude that αj is a basis for Cvj

.

Thus we may replace βvj
by αj as a basis for Cvj

. We do this for each j
to obtain a subset α = α1 ∪ α2 · · · ∪ αk of Kφ.

Lemma 2. α is a Jordan canonical basis for Kφ.

Proof. Since βv1 ∪ βv2 ∪ · · · ∪ βvk
is a basis for Kφ, and since span(αi) =

span(βvi
) = Cvi

, Exercise 9 implies that α is a basis for Kφ. Because α is
a union of cycles of generalized eigenvectors of U, we conclude that α is a
Jordan canonical basis.

We are now in a position to relate the dot diagram of T corresponding to
φ(t) to the dot diagram of U, bearing in mind that in the first case we are
considering a rational canonical form and in the second case we are consider-
ing a Jordan canonical form. For convenience, we designate the first diagram
D1, and the second diagram D2. For each j, the presence of the T-cyclic
basis βxj

results in a column of pj dots in D1. By Lemma 1, this basis is
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replaced by the union αj of d cycles of generalized eigenvectors of U, each of
length pj , which becomes part of the Jordan canonical basis for U. In effect,
αj determines d columns each containing pj dots in D2. So each column in
D1 determines d columns in D2 of the same length, and all columns in D2 are
obtained in this way. Alternatively, each row in D2 has d times as many dots
as the corresponding row in D1. Since Theorem 7.10 (p. 500) gives us the
number of dots in any row of D2, we may divide the appropriate expression
in this theorem by d to obtain the number of dots in the corresponding row
of D1. Thus we have the following result.

Theorem 7.24. Let T be a linear operator on a finite-dimensional vector
space V, let φ(t) be an irreducible monic divisor of the characteristic poly-
nomial of T of degree d, and let ri denote the number of dots in the ith row
of the dot diagram for φ(t) with respect to a rational canonical basis for T.
Then

(a) r1 =
1
d
[dim(V) − rank(φ(T))]

(b) ri =
1
d
[rank((φ(T))i−1) − rank((φ(T))i)] for i > 1.

Thus the dot diagrams associated with a rational canonical form of an op-
erator are completely determined by the operator. Since the rational canoni-
cal form is completely determined by its dot diagrams, we have the following
uniqueness condition.

Corollary. Under the conventions described earlier, the rational canonical
form of a linear operator is unique up to the arrangement of the irreducible
monic divisors of the characteristic polynomial.

Since the rational canonical form of a linear operator is unique, the poly-
nomials corresponding to the companion matrices that determine this form
are also unique. These polynomials, which are powers of the irreducible monic
divisors, are called the elementary divisors of the linear operator. Since a
companion matrix may occur more than once in a rational canonical form,
the same is true for the elementary divisors. We call the number of such
occurrences the multiplicity of the elementary divisor.

Conversely, the elementary divisors and their multiplicities determine the
companion matrices and, therefore, the rational canonical form of a linear
operator.

Example 4

Let

β = {ex cos 2x, ex sin 2x, xex cos 2x, xex sin 2x}
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be viewed as a subset of F(R, R), the space of all real-valued functions defined
on R, and let V = span(β). Then V is a four-dimensional subspace of F(R, R),
and β is an ordered basis for V. Let D be the linear operator on V defined by
D(y) = y′, the derivative of y, and let A = [D]β . Then

A =

⎛⎜⎜⎝
1 2 1 0

−2 1 0 1
0 0 1 2
0 0 −2 1

⎞⎟⎟⎠ ,

and the characteristic polynomial of D, and hence of A, is

f(t) = (t2 − 2t + 5)2.

Thus φ(t) = t2−2t+5 is the only irreducible monic divisor of f(t). Since φ(t)
has degree 2 and V is four-dimensional, the dot diagram for φ(t) contains only
two dots. Therefore the dot diagram is determined by r1, the number of dots
in the first row. Because ranks are preserved under matrix representations,
we can use A in place of D in the formula given in Theorem 7.24. Now

φ(A) =

⎛⎜⎜⎝
0 0 0 4
0 0 −4 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

and so

r1 = 1
2 [4 − rank(φ(A))] = 1

2 [4 − 2] = 1.

It follows that the second dot lies in the second row, and the dot diagram is
as follows:

•
•

Hence V is a D-cyclic space generated by a single function with D-annihilator
(φ(t))2. Furthermore, its rational canonical form is given by the companion
matrix of (φ(t))2 = t4 − 4t3 + 14t2 − 20t + 25, which is⎛⎜⎜⎝

0 0 0 −25
1 0 0 20
0 1 0 −14
0 0 1 4

⎞⎟⎟⎠ .

Thus (φ(t))2 is the only elementary divisor of D, and it has multiplicity 1. For
the cyclic generator, it suffices to find a function g in V for which φ(D)(g) �= 0 .
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Since φ(A)(e3) �= 0 , it follows that φ(D)(xex cos 2x) �= 0 ; therefore g(x) =
xex cos 2x can be chosen as the cyclic generator. Hence

βg = {xex cos 2x,D(xex cos 2x), D2(xex cos 2x), D3(xex cos 2x)}

is a rational canonical basis for D. Notice that the function h defined by
h(x) = xex sin 2x can be chosen in place of g. This shows that the rational
canonical basis is not unique. ♦

It is convenient to refer to the rational canonical form and elementary
divisors of a matrix, which are defined in the obvious way.

Definitions. Let A ∈ Mn×n(F ). The rational canonical form of
A is defined to be the rational canonical form of LA. Likewise, for A, the
elementary divisors and their multiplicities are the same as those of LA.

Let A be an n×n matrix, let C be a rational canonical form of A, and let
β be the appropriate rational canonical basis for LA. Then C = [LA]β , and
therefore A is similar to C. In fact, if Q is the matrix whose columns are the
vectors of β in the same order, then Q−1AQ = C.

Example 5

For the following real matrix A, we find the rational canonical form C of A
and a matrix Q such that Q−1AQ = C.

A =

⎛⎜⎜⎜⎜⎝
0 2 0 −6 2
1 −2 0 0 2
1 0 1 −3 2
1 −2 1 −1 2
1 −4 3 −3 4

⎞⎟⎟⎟⎟⎠
The characteristic polynomial of A is f(t) = −(t2 + 2)2(t − 2); therefore
φ1(t) = t2 + 2 and φ2(t) = t− 2 are the distinct irreducible monic divisors of
f(t). By Theorem 7.23, dim(Kφ1) = 4 and dim(Kφ2) = 1. Since the degree
of φ1(t) is 2, the total number of dots in the dot diagram of φ1(t) is 4/2 = 2,
and the number of dots r1 in the first row is given by

r1 = 1
2 [dim(R5) − rank(φ1(A))]

= 1
2 [5 − rank(A2 + 2I)]

= 1
2 [5 − 1] = 2.

Thus the dot diagram of φ1(t) is

• •
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and each column contributes the companion matrix(
0 −2
1 0

)
for φ1(t) = t2 + 2 to the rational canonical form C. Consequently φ1(t) is an
elementary divisor with multiplicity 2. Since dim(Kφ2) = 1, the dot diagram
of φ2(t) = t − 2 consists of a single dot, which contributes the 1 × 1 matrix(
2
)
. Hence φ2(t) is an elementary divisor with multiplicity 1. Therefore the

rational canonical form C is

C =

⎛⎜⎜⎜⎜⎝
0 −2 0 0 0
1 0 0 0 0
0 0 0 −2 0
0 0 1 0 0

0 0 0 0 2

⎞⎟⎟⎟⎟⎠ .

We can infer from the dot diagram of φ1(t) that if β is a rational canonical
basis for LA, then β ∩Kφ1 is the union of two cyclic bases βv1 and βv2 , where
v1 and v2 each have annihilator φ1(t). It follows that both v1 and v2 lie in
N(φ1(LA)). It can be shown that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
1
0
0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
1
0
0
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
0
2
1
0

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0
0

−1
0
1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

is a basis for N(φ1(LA)). Setting v1 = e1, we see that

Av1 =

⎛⎜⎜⎜⎜⎝
0
1
1
1
1

⎞⎟⎟⎟⎟⎠ .

Next choose v2 in Kφ1 = N(φ(LA)), but not in the span of βv1 = {v1, Av1}.
For example, v2 = e2. Then it can be seen that

Av2 =

⎛⎜⎜⎜⎜⎝
2

−2
0

−2
−4

⎞⎟⎟⎟⎟⎠ ,

and βv1 ∪ βv2 is a basis for Kφ1 .
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Since the dot diagram of φ2(t) = t−2 consists of a single dot, any nonzero
vector in Kφ2 is an eigenvector of A corresponding to the eigenvalue λ = 2.
For example, choose

v3 =

⎛⎜⎜⎜⎜⎝
0
1
1
1
2

⎞⎟⎟⎟⎟⎠ .

By Theorem 7.23, β = {v1, Av1, v2, Av2, v3} is a rational canonical basis for
LA. So setting

Q =

⎛⎜⎜⎜⎜⎝
1 0 0 2 0
0 1 1 −2 1
0 1 0 0 1
0 1 0 −2 1
0 1 0 −4 2

⎞⎟⎟⎟⎟⎠ ,

we have Q−1AQ = C. ♦
Example 6

For the following matrix A, we find the rational canonical form C and a
matrix Q such that Q−1AQ = C:

A =

⎛⎜⎜⎝
2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2

⎞⎟⎟⎠ .

Since the characteristic polynomial of A is f(t) = (t−2)4, the only irreducible
monic divisor of f(t) is φ(t) = t − 2, and so Kφ = R4. In this case, φ(t) has
degree 1; hence in applying Theorem 7.24 to compute the dot diagram for
φ(t), we obtain

r1 = 4 − rank(φ(A)) = 4 − 2 = 2,

r2 = rank(φ(A)) − rank((φ(A))2) = 2 − 1 = 1,

and

r3 = rank((φ(A))2) − rank((φ(A))3) = 1 − 0 = 1,

where ri is the number of dots in the ith row of the dot diagram. Since there
are dim(R4) = 4 dots in the diagram, we may terminate these computations
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with r3. Thus the dot diagram for A is

• •
•
•

Since (t − 2)3 has the companion matrix⎛⎝0 0 8
1 0 −12
0 1 6

⎞⎠
and (t − 2) has the companion matrix

(
2
)
, the rational canonical form of A

is given by

C =

⎛⎜⎜⎝
0 0 8 0
1 0 −12 0
0 1 6 0
0 0 0 2

⎞⎟⎟⎠ .

Next we find a rational canonical basis for LA. The preceding dot diagram
indicates that there are two vectors v1 and v2 in R4 with annihilators (φ(t))3

and φ(t), respectively, and such that

β = {βv1 ∪ βv1} = {v1, Av1, A
2v1, v2}

is a rational canonical basis for LA. Furthermore, v1 /∈ N((LA − 2I)2), and
v2 ∈ N(LA − 2I). It can easily be shown that

N(LA − 2I) = span({e1, e4})
and

N((LA − 2I)2) = span({e1, e2, e4}).
The standard vector e3 meets the criteria for v1; so we set v1 = e3. It follows
that

Av1 =

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ and A2v1 =

⎛⎜⎜⎝
1
4
4
0

⎞⎟⎟⎠ .

Next we choose a vector v2 ∈ N(LA−2I) that is not in the span of βv1 . Clearly,
v2 = e4 satisfies this condition. Thus⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
2
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
4
4
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
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is a rational canonical basis for LA.

Finally, let Q be the matrix whose columns are the vectors of β in the
same order:

Q =

⎛⎜⎜⎝
0 0 1 0
0 1 4 0
1 2 4 0
0 0 0 1

⎞⎟⎟⎠ .

Then C = Q−1AQ. ♦

Direct Sums*

The next theorem is a simple consequence of Theorem 7.23.

Theorem 7.25 (Primary Decomposition Theorem). Let T be a
linear operator on an n-dimensional vector space V with characteristic poly-
nomial

f(t) = (−1)n(φ1(t))n1(φ2(t))n2 · · · (φk(t))nk ,

where the φi(t)’s (1 ≤ i ≤ k) are distinct irreducible monic polynomials and
the ni’s are positive integers. Then the following statements are true.

(a) V = Kφ1 ⊕ Kφ2 ⊕ · · · ⊕ Kφk
.

(b) If Ti (1 ≤ i ≤ k) is the restriction of T to Kφi
and Ci is the rational

canonical form of Ti, then C1 ⊕ C2 ⊕ · · · ⊕ Ck is the rational canonical
form of T.

Proof. Exercise.

The next theorem is a simple consequence of Theorem 7.17.

Theorem 7.26. Let T be a linear operator on a finite-dimensional vector
space V. Then V is a direct sum of T-cyclic subspaces Cvi

, where each vi lies
in Kφ for some irreducible monic divisor φ(t) of the characteristic polynomial
of T.

Proof. Exercise.

EXERCISES

1. Label the following statements as true or false.

(a) Every rational canonical basis for a linear operator T is the union
of T-cyclic bases.
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(b) If a basis is the union of T-cyclic bases for a linear operator T,
then it is a rational canonical basis for T.

(c) There exist square matrices having no rational canonical form.
(d) A square matrix is similar to its rational canonical form.
(e) For any linear operator T on a finite-dimensional vector space, any

irreducible factor of the characteristic polynomial of T divides the
minimal polynomial of T.

(f) Let φ(t) be an irreducible monic divisor of the characteristic poly-
nomial of a linear operator T. The dots in the diagram used to
compute the rational canonical form of the restriction of T to Kφ

are in one-to-one correspondence with the vectors in a basis for
Kφ.

(g) If a matrix has a Jordan canonical form, then its Jordan canonical
form and rational canonical form are similar.

2. For each of the following matrices A ∈ Mn×n(F ), find the rational
canonical form C of A and a matrix Q ∈ Mn×n(F ) such that Q−1AQ =
C.

(a) A =

⎛⎝3 1 0
0 3 1
0 0 3

⎞⎠ F = R (b) A =
(

0 −1
1 −1

)
F = R

(c) A =
(

0 −1
1 −1

)
F = C

(d) A =

⎛⎜⎜⎝
0 −7 14 −6
1 −4 6 −3
0 −4 9 −4
0 −4 11 −5

⎞⎟⎟⎠ F = R

(e) A =

⎛⎜⎜⎝
0 −4 12 −7
1 −1 3 −3
0 −1 6 −4
0 −1 8 −5

⎞⎟⎟⎠ F = R

3. For each of the following linear operators T, find the elementary divisors,
the rational canonical form C, and a rational canonical basis β.

(a) T is the linear operator on P3(R) defined by

T(f(x)) = f(0)x − f ′(1).

(b) Let S = {sin x, cos x, x sin x, x cos x}, a subset of F(R, R), and let
V = span(S). Define T to be the linear operator on V such that

T(f) = f ′.

(c) T is the linear operator on M2×2(R) defined by
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T(A) =
(

0 1
−1 1

)
·A.

(d) Let S = {sin x sin y, sin x cos y, cos x sin y, cos x cos y}, a subset of
F(R × R, R), and let V = span(S). Define T to be the linear
operator on V such that

T(f)(x, y) =
∂f(x, y)

∂x
+

∂f(x, y)
∂y

.

4. Let T be a linear operator on a finite-dimensional vector space V with
minimal polynomial (φ(t))m for some positive integer m.

(a) Prove that R(φ(T)) ⊆ N((φ(T))m−1).
(b) Give an example to show that the subspaces in (a) need not be

equal.
(c) Prove that the minimal polynomial of the restriction of T to

R(φ(T)) equals (φ(t))m−1.

5. Let T be a linear operator on a finite-dimensional vector space. Prove
that the rational canonical form of T is a diagonal matrix if and only if
T is diagonalizable.

6. Let T be a linear operator on a finite-dimensional vector space V with
characteristic polynomial f(t) = (−1)nφ1(t)φ2(t), where φ1(t) and φ2(t)
are distinct irreducible monic polynomials and n = dim(V).

(a) Prove that there exist v1, v2 ∈ V such that v1 has T-annihilator
φ1(t), v2 has T-annihilator φ2(t), and βv1 ∪ βv2 is a basis for V.

(b) Prove that there is a vector v3 ∈ V with T-annihilator φ1(t)φ2(t)
such that βv3 is a basis for V.

(c) Describe the difference between the matrix representation of T
with respect to βv1 ∪ βv2 and the matrix representation of T with
respect to βv3 .

Thus, to assure the uniqueness of the rational canonical form, we re-
quire that the generators of the T-cyclic bases that constitute a rational
canonical basis have T-annihilators equal to powers of irreducible monic
factors of the characteristic polynomial of T.

7. Let T be a linear operator on a finite-dimensional vector space with
minimal polynomial

f(t) = (φ1(t))m1(φ2(t))m2 · · · (φk(t))mk ,

where the φi(t)’s are distinct irreducible monic factors of f(t). Prove
that for each i, mi is the number of entries in the first column of the
dot diagram for φi(t).
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8. Let T be a linear operator on a finite-dimensional vector space V. Prove
that for any irreducible polynomial φ(t), if φ(T) is not one-to-one, then
φ(t) divides the characteristic polynomial of T. Hint: Apply Exercise 15
of Section 7.3.

9. Let V be a vector space and β1, β2, . . . , βk be disjoint subsets of V whose
union is a basis for V. Now suppose that γ1, γ2, . . . , γk are linearly
independent subsets of V such that span(γi) = span(βi) for all i. Prove
that γ1 ∪ γ2 ∪ · · · ∪ γk is also a basis for V.

10. Let T be a linear operator on a finite-dimensional vector space, and
suppose that φ(t) is an irreducible monic factor of the characteristic
polynomial of T. Prove that if φ(t) is the T-annihilator of vectors x and
y, then x ∈ Cy if and only if Cx = Cy.

Exercises 11 and 12 are concerned with direct sums.

11. Prove Theorem 7.25.

12. Prove Theorem 7.26.
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Appendices

APPENDIX A SETS

A set is a collection of objects, called elements of the set. If x is an element
of the set A, then we write x ∈ A; otherwise, we write x �∈ A. For example,
if Z is the set of integers, then 3 ∈ Z and 1

2 �∈ Z.
One set that appears frequently is the set of real numbers, which we denote

by R throughout this text.
Two sets A and B are called equal, written A = B, if they contain exactly

the same elements. Sets may be described in one of two ways:

1. By listing the elements of the set between set braces { }.
2. By describing the elements of the set in terms of some characteristic

property.

For example, the set consisting of the elements 1, 2, 3, and 4 can be
written as {1, 2, 3, 4} or as

{x : x is a positive integer less than 5}.
Note that the order in which the elements of a set are listed is immaterial;
hence

{1, 2, 3, 4} = {3, 1, 2, 4} = {1, 3, 1, 4, 2}.
Example 1

Let A denote the set of real numbers between 1 and 2. Then A may be
written as

A = {x ∈ R : 1 < x < 2}. ♦
A set B is called a subset of a set A, written B ⊆ A or A ⊇ B, if every

element of B is an element of A. For example, {1, 2, 6} ⊆ {2, 8, 7, 6, 1}. If
B ⊆ A, and B �= A, then B is called a proper subset of A. Observe that
A = B if and only if A ⊆ B and B ⊆ A, a fact that is often used to prove
that two sets are equal.

The empty set, denoted by ∅, is the set containing no elements. The
empty set is a subset of every set.

Sets may be combined to form other sets in two basic ways. The union
of two sets A and B, denoted A ∪ B, is the set of elements that are in A, or
B, or both; that is,

A ∪ B = {x : x ∈ A or x ∈ B}.

549
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The intersection of two sets A and B, denoted A∩B, is the set of elements
that are in both A and B; that is,

A ∩ B = {x : x ∈ A and x ∈ B}.
Two sets are called disjoint if their intersection equals the empty set.

Example 2

Let A = {1, 3, 5} and B = {1, 5, 7, 8}. Then

A ∪ B = {1, 3, 5, 7, 8} and A ∩ B = {1, 5}.
Likewise, if X = {1, 2, 8} and Y = {3, 4, 5}, then

X ∪ Y = {1, 2, 3, 4, 5, 8} and X ∩ Y = ∅.

Thus X and Y are disjoint sets. ♦
The union and intersection of more than two sets can be defined analo-

gously. Specifically, if A1, A2, . . . , An are sets, then the union and intersec-
tions of these sets are defined, respectively, by

n⋃
i=1

Ai = {x : x ∈ Ai for some i = 1, 2, . . . , n}

and
n⋂

i=1

Ai = {x : x ∈ Ai for all i = 1, 2, . . . , n}.

Similarly, if Λ is an index set and {Aα : α ∈ Λ} is a collection of sets, the
union and intersection of these sets are defined, respectively, by⋃

α∈Λ

Aα = {x : x ∈ Aα for some α ∈ Λ}

and ⋂
α∈Λ

Aα = {x : x ∈ Aα for all α ∈ Λ}.

Example 3

Let Λ = {α ∈ R : α > 1}, and let

Aα =
{

x ∈ R :
−1
α

≤ x ≤ 1 + α

}
for each α ∈ Λ. Then⋃

α∈Λ

Aα = {x ∈ R : x > −1} and
⋂

α∈Λ

Aα = {x ∈ R : 0 ≤ x ≤ 2}. ♦
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By a relation on a set A, we mean a rule for determining whether or not,
for any elements x and y in A, x stands in a given relationship to y. More
precisely, a relation on A is a set S of ordered pairs of elements of A such
that (x, y) ∈ S if and only if x stands in the given relationship to y. On the
set of real numbers, for instance, “is equal to,” “is less than,” and “is greater
than or equal to” are familiar relations. If S is a relation on a set A, we often
write x ∼ y in place of (x, y) ∈ S.

A relation S on a set A is called an equivalence relation on A if the
following three conditions hold:

1. For each x ∈ A, x ∼ x (reflexivity).
2. If x ∼ y, then y ∼ x (symmetry).
3. If x ∼ y and y ∼ z, then x ∼ z (transitivity).

For example, if we define x ∼ y to mean that x − y is divisible by a fixed
integer n, then ∼ is an equivalence relation on the set of integers.

APPENDIX B FUNCTIONS

If A and B are sets, then a function f from A to B, written f : A → B, is
a rule that associates to each element x in A a unique element denoted f(x)
in B. The element f(x) is called the image of x (under f), and x is called
a preimage of f(x) (under f). If f : A → B, then A is called the domain
of f , B is called the codomain of f , and the set {f(x) : x ∈ A} is called the
range of f . Note that the range of f is a subset of B. If S ⊆ A, we denote
by f(S) the set {f(x) : x ∈ S} of all images of elements of S. Likewise, if
T ⊆ B, we denote by f−1(T ) the set {x ∈ A : f(x) ∈ T} of all preimages of
elements in T . Finally, two functions f : A → B and g : A → B are equal,
written f = g, if f(x) = g(x) for all x ∈ A.

Example 1

Suppose that A = [−10, 10]. Let f : A → R be the function that assigns
to each element x in A the element x2 + 1 in R; that is, f is defined by
f(x) = x2+1. Then A is the domain of f , R is the codomain of f , and [1, 101]
is the range of f . Since f(2) = 5, the image of 2 is 5, and 2 is a preimage
of 5. Notice that −2 is another preimage of 5. Moreover, if S = [1, 2] and
T = [82, 101], then f(S) = [2, 5] and f−1(T ) = [−10,−9] ∪ [9, 10]. ♦

As Example 1 shows, the preimage of an element in the range need not be
unique. Functions such that each element of the range has a unique preimage
are called one-to-one; that is f : A → B is one-to-one if f(x) = f(y) implies
x = y or, equivalently, if x �= y implies f(x) �= f(y).

If f : A → B is a function with range B, that is, if f(A) = B, then f is
called onto. So f is onto if and only if the range of f equals the codomain
of f .
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Let f : A → B be a function and S ⊆ A. Then a function fS : S → B,
called the restriction of f to S, can be formed by defining fS(x) = f(x) for
each x ∈ S.

The next example illustrates these concepts.

Example 2

Let f : [−1, 1] → [0, 1] be defined by f(x) = x2. This function is onto, but
not one-to-one since f(−1) = f(1) = 1. Note that if S = [0, 1], then fS is
both onto and one-to-one. Finally, if T = [12 , 1], then fT is one-to-one, but
not onto. ♦

Let A, B, and C be sets and f : A → B and g : B → C be functions. By
following f with g, we obtain a function g ◦ f : A → C called the composite
of g and f . Thus (g ◦ f)(x) = g(f(x)) for all x ∈ A. For example, let
A = B = C = R, f(x) = sin x, and g(x) = x2 + 3. Then (g ◦ f)(x) =
(g(f(x)) = sin2 x + 3, whereas (f ◦ g)(x) = f(g(x)) = sin(x2 + 3). Hence,
g ◦ f �= f ◦ g. Functional composition is associative, however; that is, if
h : C → D is another function, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

A function f : A → B is said to be invertible if there exists a function
g : B → A such that (f ◦ g)(y) = y for all y ∈ B and (g ◦ f)(x) = x for all
x ∈ A. If such a function g exists, then it is unique and is called the inverse
of f . We denote the inverse of f (when it exists) by f−1. It can be shown
that f is invertible if and only if f is both one-to-one and onto.

Example 3

The function f : R → R defined by f(x) = 3x + 1 is one-to-one and onto;
hence f is invertible. The inverse of f is the function f−1 : R → R defined
by f−1(x) = (x − 1)/3. ♦

The following facts about invertible functions are easily proved.

1. If f : A → B is invertible, then f−1 is invertible, and (f−1)−1 = f .
2. If f : A → B and g : B → C are invertible, then g ◦ f is invertible, and

(g ◦ f)−1 = f−1 ◦ g−1.

APPENDIX C FIELDS

The set of real numbers is an example of an algebraic structure called a
field. Basically, a field is a set in which four operations (called addition,
multiplication, subtraction, and division) can be defined so that, with the
exception of division by zero, the sum, product, difference, and quotient of
any two elements in the set is an element of the set. More precisely, a field is
defined as follows.
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Definitions. A field F is a set on which two operations + and · (called
addition and multiplication, respectively) are defined so that, for each pair
of elements x, y in F , there are unique elements x+ y and x ·y in F for which
the following conditions hold for all elements a, b, c in F .

(F 1) a + b = b + a and a ·b = b ·a
(commutativity of addition and multiplication)

(F 2) (a + b) + c = a + (b + c) and (a ·b) ·c = a ·(b ·c)
(associativity of addition and multiplication)

(F 3) There exist distinct elements 0 and 1 in F such that

0 + a = a and 1·a = a

(existence of identity elements for addition and multiplication)

(F 4) For each element a in F and each nonzero element b in F , there exist
elements c and d in F such that

a + c = 0 and b·d = 1

(existence of inverses for addition and multiplication)

(F 5) a·(b + c) = a·b + a·c
(distributivity of multiplication over addition)

The elements x + y and x ·y are called the sum and product, respectively,
of x and y. The elements 0 (read “zero”) and 1 (read “one”) mentioned in
(F 3) are called identity elements for addition and multiplication, respec-
tively, and the elements c and d referred to in (F 4) are called an additive
inverse for a and a multiplicative inverse for b, respectively.

Example 1

The set of real numbers R with the usual definitions of addition and multi-
plication is a field. ♦
Example 2

The set of rational numbers with the usual definitions of addition and multi-
plication is a field. ♦
Example 3

The set of all real numbers of the form a + b
√

2, where a and b are rational
numbers, with addition and multiplication as in R is a field. ♦
Example 4

The field Z2 consists of two elements 0 and 1 with the operations of addition
and multiplication defined by the equations

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0,

0 ·0 = 0, 0 ·1 = 1 ·0 = 0, and 1 ·1 = 1. ♦
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Example 5

Neither the set of positive integers nor the set of integers with the usual
definitions of addition and multiplication is a field, for in either case (F 4)
does not hold. ♦

The identity and inverse elements guaranteed by (F 3) and (F 4) are
unique; this is a consequence of the following theorem.

Theorem C.1 (Cancellation Laws). For arbitrary elements a, b, and
c in a field, the following statements are true.

(a) If a + b = c + b, then a = c.
(b) If a ·b = c ·b and b �= 0, then a = c.

Proof. (a) The proof of (a) is left as an exercise.
(b) If b �= 0, then (F 4) guarantees the existence of an element d in the

field such that b ·d = 1. Multiply both sides of the equality a ·b = c · b by d
to obtain (a ·b) ·d = (c ·b) ·d. Consider the left side of this equality: By (F 2)
and (F 3), we have

(a ·b) ·d = a ·(b ·d) = a ·1 = a.

Similarly, the right side of the equality reduces to c. Thus a = c.

Corollary. The elements 0 and 1 mentioned in (F 3), and the elements c
and d mentioned in (F 4), are unique.

Proof. Suppose that 0′ ∈ F satisfies 0′ + a = a for each a ∈ F . Since
0 + a = a for each a ∈ F , we have 0′ + a = 0 + a for each a ∈ F . Thus 0′ = 0
by Theorem C.1.

The proofs of the remaining parts are similar.

Thus each element b in a field has a unique additive inverse and, if b �= 0,
a unique multiplicative inverse. (It is shown in the corollary to Theorem C.2
that 0 has no multiplicative inverse.) The additive inverse and the multi-
plicative inverse of b are denoted by −b and b−1, respectively. Note that
−(−b) = b and (b−1)−1 = b.

Subtraction and division can be defined in terms of addition and multi-
plication by using the additive and multiplicative inverses. Specifically, sub-
traction of b is defined to be addition of −b and division by b �= 0 is defined
to be multiplication by b−1; that is,

a − b = a + (−b) and
a

b
= a ·b−1.

In particular, the symbol
1
b

denotes b−1. Division by zero is undefined, but,
with this exception, the sum, product, difference, and quotient of any two
elements of a field are defined.
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Many of the familiar properties of multiplication of real numbers are true
in any field, as the next theorem shows.

Theorem C.2. Let a and b be arbitrary elements of a field. Then each
of the following statements are true.

(a) a ·0 = 0.
(b) (−a) ·b = a ·(−b) = −(a ·b).
(c) (−a) ·(−b) = a ·b.

Proof. (a) Since 0 + 0 = 0, (F 5) shows that

0 + a ·0 = a ·0 = a ·(0 + 0) = a ·0 + a ·0.

Thus 0 = a ·0 by Theorem C.1.
(b) By definition, −(a ·b) is the unique element of F with the property

a ·b + [−(a ·b)] = 0. So in order to prove that (−a) ·b = −(a ·b), it suffices
to show that a ·b + (−a) ·b = 0. But −a is the element of F such that
a + (−a) = 0; so

a ·b + (−a) ·b = [a + (−a)] ·b = 0 ·b = b ·0 = 0

by (F 5) and (a). Thus (−a) ·b = −(a ·b). The proof that a ·(−b) = −(a ·b)
is similar.

(c) By applying (b) twice, we find that

(−a) ·(−b) = −[a ·(−b)] = −[−(a ·b)] = a ·b.

Corollary. The additive identity of a field has no multiplicative inverse.

In an arbitrary field F , it may happen that a sum 1 + 1 + · · · + 1 (p sum-
mands) equals 0 for some positive integer p. For example, in the field Z2

(defined in Example 4), 1+1 = 0. In this case, the smallest positive integer p
for which a sum of p 1’s equals 0 is called the characteristic of F ; if no such
positive integer exists, then F is said to have characteristic zero. Thus Z2

has characteristic two, and R has characteristic zero. Observe that if F is a
field of characteristic p �= 0, then x+x+ · · · +x (p summands) equals 0 for all
x ∈ F . In a field having nonzero characteristic (especially characteristic two),
many unnatural problems arise. For this reason, some of the results about
vector spaces stated in this book require that the field over which the vector
space is defined be of characteristic zero (or, at least, of some characteristic
other than two).

Finally, note that in other sections of this book, the product of two ele-
ments a and b in a field is usually denoted ab rather than a ·b.
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APPENDIX D COMPLEX NUMBERS

For the purposes of algebra, the field of real numbers is not sufficient, for
there are polynomials of nonzero degree with real coefficients that have no
zeros in the field of real numbers (for example, x2 + 1). It is often desirable
to have a field in which any polynomial of nonzero degree with coefficients
from that field has a zero in that field. It is possible to “enlarge” the field of
real numbers to obtain such a field.

Definitions. A complex number is an expression of the form z = a+bi,
where a and b are real numbers called the real part and the imaginary part
of z, respectively.

The sum and product of two complex numbers z = a+bi and w = c+di
(where a, b, c, and d are real numbers) are defined, respectively, as follows:

z + w = (a + bi) + (c + di) = (a + c) + (b + d)i

and

zw = (a + bi)(c + di) = (ac − bd) + (bc + ad)i.

Example 1

The sum and product of z = 3 − 5i and w = 9 + 7i are, respectively,

z + w = (3 − 5i) + (9 + 7i) = (3 + 9) + [(−5) + 7]i = 12 + 2i

and

zw = (3 − 5i)(9 + 7i) = [3 ·9 − (−5) ·7] + [(−5) ·9 + 3 ·7]i = 62 − 24i. ♦

Any real number c may be regarded as a complex number by identifying c
with the complex number c + 0i. Observe that this correspondence preserves
sums and products; that is,

(c + 0i) + (d + 0i) = (c + d) + 0i and (c + 0i)(d + 0i) = cd + 0i.

Any complex number of the form bi = 0 + bi, where b is a nonzero real
number, is called imaginary. The product of two imaginary numbers is real
since

(bi)(di) = (0 + bi)(0 + di) = (0 − bd) + (b ·0 + 0 ·d)i = −bd.

In particular, for i = 0 + 1i, we have i · i = −1.
The observation that i2 = i ·i = −1 provides an easy way to remember the

definition of multiplication of complex numbers: simply multiply two complex
numbers as you would any two algebraic expressions, and replace i2 by −1.
Example 2 illustrates this technique.



Appendix D Complex Numbers 557

Example 2

The product of −5 + 2i and 1 − 3i is

(−5 + 2i)(1 − 3i) = −5(1 − 3i) + 2i(1 − 3i)

= −5 + 15i + 2i − 6i2

= −5 + 15i + 2i − 6(−1)
= 1 + 17i. ♦

The real number 0, regarded as a complex number, is an additive identity
element for the complex numbers since

(a + bi) + 0 = (a + bi) + (0 + 0i) = (a + 0) + (b + 0)i = a + bi.

Likewise the real number 1, regarded as a complex number, is a multiplicative
identity element for the set of complex numbers since

(a + bi) ·1 = (a + bi)(1 + 0i) = (a ·1 − b ·0) + (b ·1 + a ·0)i = a + bi.

Every complex number a + bi has an additive inverse, namely (−a) + (−b)i.
But also each complex number except 0 has a multiplicative inverse. In fact,

(a + bi)−1 =
(

a

a2 + b2

)
−
(

b

a2 + b2

)
i.

In view of the preceding statements, the following result is not surprising.

Theorem D.1. The set of complex numbers with the operations of addi-
tion and multiplication previously defined is a field.

Proof. Exercise.

Definition. The (complex) conjugate of a complex number a + bi is
the complex number a− bi. We denote the conjugate of the complex number
z by z.

Example 3

The conjugates of −3 + 2i, 4 − 7i, and 6 are, respectively,

−3 + 2i = −3 − 2i, 4 − 7i = 4 + 7i, and 6 = 6 + 0i = 6 − 0i = 6. ♦

The next theorem contains some important properties of the conjugate of
a complex number.

Theorem D.2. Let z and w be complex numbers. Then the following
statements are true.
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(a) z = z.
(b) (z + w) = z + w.
(c) zw = z ·w.

(d)
( z

w

)
=

z

w
if w �= 0.

(e) z is a real number if and only if z = z.

Proof. We leave the proofs of (a), (d), and (e) to the reader.
(b) Let z = a + bi and w = c + di, where a, b, c, d ∈ R. Then

(z + w) = (a + c) + (b + d)i = (a + c) − (b + d)i
= (a − bi) + (c − di) = z + w.

(c) For z and w, we have

zw = (a + bi)(c + di) = (ac − bd) + (ad + bc)i

= (ac − bd) − (ad + bc)i = (a − bi)(c − di) = z ·w.

For any complex number z = a + bi, zz is real and nonnegative, for

zz = (a + bi)(a − bi) = a2 + b2.

This fact can be used to define the absolute value of a complex number.

Definition. Let z = a + bi, where a, b ∈ R. The absolute value (or
modulus) of z is the real number

√
a2 + b2. We denote the absolute value

of z by |z|.
Observe that zz = |z|2. The fact that the product of a complex number

and its conjugate is real provides an easy method for determining the quotient
of two complex numbers; for if c + di �= 0, then

a + bi

c + di
=

a + bi

c + di
· c − di

c − di
=

(ac + bd) + (bc − ad)i
c2 + d2

=
ac + bd

c2 + d2
+

bc − ad

c2 + d2
i.

Example 4

To illustrate this procedure, we compute the quotient (1 + 4i)/(3 − 2i):

1 + 4i

3 − 2i
=

1 + 4i

3 − 2i
· 3 + 2i

3 + 2i
=

−5 + 14i

9 + 4
= − 5

13
+

14
13

i. ♦

The absolute value of a complex number has the familiar properties of the
absolute value of a real number, as the following result shows.

Theorem D.3. Let z and w denote any two complex numbers. Then the
following statements are true.
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(a) |zw| = |z| · |w|.
(b)

∣∣∣ z
w

∣∣∣ =
|z|
|w| if w �= 0.

(c) |z + w| ≤ |z| + |w|.
(d) |z| − |w| ≤ |z + w|.

Proof. (a) By Theorem D.2, we have

|zw|2 = (zw)(zw) = (zw)(z · w) = (zz)(ww) = |z|2|w|2,

proving (a).
(b) For the proof of (b), apply (a) to the product

( z

w

)
w.

(c) For any complex number x = a + bi, where a, b ∈ R, observe that

x + x = (a + bi) + (a − bi) = 2a ≤ 2
√

a2 + b2 = 2|x|.

Thus x + x is real and satisfies the inequality x + x ≤ 2|x|. Taking x = wz,
we have, by Theorem D.2 and (a),

wz + wz ≤ 2|wz| = 2|w||z| = 2|z||w|.

Using Theorem D.2 again gives

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + wz + zw + ww

≤ |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2.

By taking square roots, we obtain (c).
(d) From (a) and (c), it follows that

|z| = |(z + w) − w| ≤ |z + w| + | −w| = |z + w| + |w|.

So

|z| − |w| ≤ |z + w|,

proving (d).

It is interesting as well as useful that complex numbers have both a ge-
ometric and an algebraic representation. Suppose that z = a + bi, where a
and b are real numbers. We may represent z as a vector in the complex plane
(see Figure D.1(a)). Notice that, as in R2, there are two axes, the real axis
and the imaginary axis. The real and imaginary parts of z are the first and
second coordinates, and the absolute value of z gives the length of the vector
z. It is clear that addition of complex numbers may be represented as in R2

using the parallelogram law.
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Figure D.1

In Section 2.7 (p.132), we introduce Euler’s formula. The special case
eiθ = cos θ + i sin θ is of particular interest. Because of the geometry we have
introduced, we may represent the vector eiθ as in Figure D.1(b); that is, eiθ

is the unit vector that makes an angle θ with the positive real axis. From
this figure, we see that any nonzero complex number z may be depicted as
a multiple of a unit vector, namely, z = |z|eiφ, where φ is the angle that the
vector z makes with the positive real axis. Thus multiplication, as well as
addition, has a simple geometric interpretation: If z = |z|eiθ and w = |w|eiω

are two nonzero complex numbers, then from the properties established in
Section 2.7 and Theorem D.3, we have

zw = |z|eiθ · |w|eiω = |zw|ei(θ+ω).

So zw is the vector whose length is the product of the lengths of z and w,
and makes the angle θ + ω with the positive real axis.

Our motivation for enlarging the set of real numbers to the set of complex
numbers is to obtain a field such that every polynomial with nonzero degree
having coefficients in that field has a zero. Our next result guarantees that
the field of complex numbers has this property.

Theorem D.4 (The Fundamental Theorem of Algebra). Suppose
that p(z) = anzn + an−1z

n−1 + · · · + a1z + a0 is a polynomial in P(C) of
degree n ≥ 1. Then p(z) has a zero.

The following proof is based on one in the book Principles of Mathematical
Analysis 3d., by Walter Rudin (McGraw-Hill Higher Education, New York,
1976).

Proof. We want to find z0 in C such that p(z0) = 0. Let m be the greatest
lower bound of {|p(z)| : z ∈ C}. For |z| = s > 0, we have

|p(z)| = |anzn + an−1z
n−1 + · · · + a0|
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≥ |an||zn| − |an−1||z|n−1 − · · · − |a0|
= |an|sn − |an−1|sn−1 − · · · − |a0|
= sn[|an| − |an−1|s−1 − · · · − |a0|s−n].

Because the last expression approaches infinity as s approaches infinity, we
may choose a closed disk D about the origin such that |p(z)| > m + 1 if z is
not in D. It follows that m is the greatest lower bound of {|p(z)| : z ∈ D}.
Because D is closed and bounded and p(z) is continuous, there exists z0 in
D such that |p(z0)| = m. We want to show that m = 0. We argue by
contradiction.

Assume that m �= 0. Let q(z) =
p(z + z0)

p(z0)
. Then q(z) is a polynomial of

degree n, q(0) = 1, and |q(z)| ≥ 1 for all z in C. So we may write

q(z) = 1 + bkzk + bk+1z
k+1 + · · · + bnzn,

where bk �= 0. Because −|bk|
bk

has modulus one, we may pick a real number θ

such that eikθ = −|bk|
bk

, or eikθbk = −|bk|. For any r > 0, we have

q(reiθ) = 1 + bkrkeikθ + bk+1r
k+1ei(k+1)θ + · · · + bnrneinθ

= 1 − |bk|rk + bk+1r
k+1ei(k+1)θ + · · · + bnrneinθ.

Choose r small enough so that 1 − |bk|rk > 0. Then

|q(reiθ)| ≤ 1 − |bk|rk + |bk+1|rk+1 + · · · + |bn|rn

= 1 − rk[|bk| − |bk+1|r − · · · − |bn|rn−k].

Now choose r even smaller, if necessary, so that the expression within the
brackets is positive. We obtain that |q(reiθ)| < 1. But this is a contradiction.

The following important corollary is a consequence of Theorem D.4 and
the division algorithm for polynomials (Theorem E.1).

Corollary. If p(z) = anzn + an−1z
n−1 + · · · + a1z + a0 is a polynomial

of degree n ≥ 1 with complex coefficients, then there exist complex numbers
c1, c2, · · · , cn (not necessarily distinct) such that

p(z) = an(z − c1)(z − c2) · · · (z − cn).

Proof. Exercise.

A field is called algebraically closed if it has the property that every
polynomial of positive degree with coefficients from that field factors as a
product of polynomials of degree 1. Thus the preceding corollary asserts that
the field of complex numbers is algebraically closed.
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APPENDIX E POLYNOMIALS

In this appendix, we discuss some useful properties of the polynomials with
coefficients from a field. For the definition of a polynomial, refer to Sec-
tion 1.2. Throughout this appendix, we assume that all polynomials have
coefficients from a fixed field F .

Definition. A polynomial f(x) divides a polynomial g(x) if there exists
a polynomial q(x) such that g(x) = f(x)q(x).

Our first result shows that the familiar long division process for polyno-
mials with real coefficients is valid for polynomials with coefficients from an
arbitrary field.

Theorem E.1 (The Division Algorithm for Polynomials). Let
f(x) be a polynomial of degree n, and let g(x) be a polynomial of degree
m ≥ 0. Then there exist unique polynomials q(x) and r(x) such that

f(x) = q(x)g(x) + r(x), (1)

where the degree of r(x) is less than m.

Proof. We begin by establishing the existence of q(x) and r(x) that sat-
isfy (1).

Case 1. If n < m, take q(x) = 0 and r(x) = f(x) to satisfy (1).
Case 2. When 0 ≤ m ≤ n, we apply mathematical induction on n.

First suppose that n = 0. Then m = 0, and it follows that f(x) and g(x)
are nonzero constants. Hence we may take q(x) = f(x)/g(x) and r(x) = 0 to
satisfy (1).

Now suppose that the result is valid for all polynomials with degree less
than n for some fixed n > 0, and assume that f(x) has degree n. Suppose
that

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

and

g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0,

and let h(x) be the polynomial defined by

h(x) = f(x) − anb−1
m xn−mg(x). (2)

Then h(x) is a polynomial of degree less than n, and therefore we may ap-
ply the induction hypothesis or Case 1 (whichever is relevant) to obtain
polynomials q1(x) and r(x) such that r(x) has degree less than m and

h(x) = q1(x)g(x) + r(x). (3)
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Combining (2) and (3) and solving for f(x) gives us f(x) = q(x)g(x) + r(x)
with q(x) = anb−1

m xn−m + q1(x), which establishes (a) and (b) for any n ≥ 0
by mathematical induction. This establishes the existence of q(x) and r(x).

We now show the uniqueness of q(x) and r(x). Suppose that q1(x), q2(x),
r1(x), and r2(x) exist such that r1(x) and r2(x) each has degree less than m
and

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x).

Then

[q1(x) − q2(x)] g(x) = r2(x) − r1(x). (4)

The right side of (4) is a polynomial of degree less than m. Since g(x) has
degree m, it must follow that q1(x) − q2(x) is the zero polynomial. Hence
q1(x) = q2(x); thus r1(x) = r2(x) by (4).

In the context of Theorem E.1, we call q(x) and r(x) the quotient and
remainder, respectively, for the division of f(x) by g(x). For example,
suppose that F is the field of complex numbers. Then the quotient and
remainder for the division of

f(x) = (3 + i)x5 − (1 − i)x4 + 6x3 + (−6 + 2i)x2 + (2 + i)x + 1

by

g(x) = (3 + i)x2 − 2ix + 4

are, respectively,

q(x) = x3 + ix2 − 2 and r(x) = (2 − 3i)x + 9.

Corollary 1. Let f(x) be a polynomial of positive degree, and let a ∈ F .
Then f(a) = 0 if and only if x − a divides f(x).

Proof. Suppose that x − a divides f(x). Then there exists a polynomial
q(x) such that f(x) = (x − a)q(x). Thus f(a) = (a − a)q(a) = 0 ·q(a) = 0.

Conversely, suppose that f(a) = 0. By the division algorithm, there exist
polynomials q(x) and r(x) such that r(x) has degree less than one and

f(x) = q(x)(x − a) + r(x).

Substituting a for x in the equation above, we obtain r(a) = 0. Since r(x)
has degree less than 1, it must be the constant polynomial r(x) = 0. Thus
f(x) = q(x)(x − a).
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For any polynomial f(x) with coefficients from a field F , an element a ∈ F
is called a zero of f(x) if f(a) = 0. With this terminology, the preceding
corollary states that a is a zero of f(x) if and only if x − a divides f(x).

Corollary 2. Any polynomial of degree n ≥ 1 has at most n distinct
zeros.

Proof. The proof is by mathematical induction on n. The result is obvious
if n = 1. Now suppose that the result is true for some positive integer n, and
let f(x) be a polynomial of degree n + 1. If f(x) has no zeros, then there is
nothing to prove. Otherwise, if a is a zero of f(x), then by Corollary 1 we
may write f(x) = (x−a)q(x) for some polynomial q(x). Note that q(x) must
be of degree n; therefore, by the induction hypothesis, q(x) can have at most
n distinct zeros. Since any zero of f(x) distinct from a is also a zero of q(x),
it follows that f(x) can have at most n + 1 distinct zeros.

Polynomials having no common divisors arise naturally in the study of
canonical forms. (See Chapter 7.)

Definition. Two nonzero polynomials are called relatively prime if no
polynomial of positive degree divides each of them.

For example, the polynomials with real coefficients f(x) = x2(x − 1) and
h(x) = (x − 1)(x − 2) are not relatively prime because x − 1 divides each of
them. On the other hand, consider f(x) and g(x) = (x− 2)(x− 3), which do
not appear to have common factors. Could other factorizations of f(x) and
g(x) reveal a hidden common factor? We will soon see (Theorem E.9) that
the preceding factors are the only ones. Thus f(x) and g(x) are relatively
prime because they have no common factors of positive degree.

Theorem E.2. If f1(x) and f2(x) are relatively prime polynomials, there
exist polynomials q1(x) and q2(x) such that

q1(x)f1(x) + q2(x)f2(x) = 1,

where 1 denotes the constant polynomial with value 1.

Proof. Without loss of generality, assume that the degree of f1(x) is greater
than or equal to the degree of f2(x). The proof is by mathematical induction
on the degree of f2(x). If f2(x) has degree 0, then f2(x) is a nonzero constant
c. In this case, we can take q1(x) = 0 and q2(x) = 1/c.

Now suppose that the theorem holds whenever the polynomial of lesser
degree has degree less than n for some positive integer n, and suppose that
f2(x) has degree n. By the division algorithm, there exist polynomials q(x)
and r(x) such that r(x) has degree less than n and

f1(x) = q(x)f2(x) + r(x). (5)
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Since f1(x) and f2(x) are relatively prime, r(x) is not the zero polynomial. We
claim that f2(x) and r(x) are relatively prime. Suppose otherwise; then there
exists a polynomial g(x) of positive degree that divides both f2(x) and r(x).
Hence, by (5), g(x) also divides f1(x), contradicting the fact that f1(x) and
f2(x) are relatively prime. Since r(x) has degree less than n, we may apply
the induction hypothesis to f2(x) and r(x). Thus there exist polynomials
g1(x) and g2(x) such that

g1(x)f2(x) + g2(x)r(x) = 1. (6)

Combining (5) and (6), we have

1 = g1(x)f2(x) + g2(x) [f1(x) − q(x)f2(x)]
= g2(x)f1(x) + [g1(x) − g2(x)q(x)] f2(x).

Thus, setting q1(x) = g2(x) and q2(x) = g1(x) − g2(x)q(x), we obtain the
desired result.

Example 1

Let f1(x) = x3 − x2 + 1 and f2(x) = (x − 1)2. As polynomials with real
coefficients, f1(x) and f2(x) are relatively prime. It is easily verified that the
polynomials q1(x) = −x + 2 and q2(x) = x2 − x − 1 satisfy

q1(x)f1(x) + q2(x)f2(x) = 1,

and hence these polynomials satisfy the conclusion of Theorem E.2. ♦
Throughout Chapters 5, 6, and 7, we consider linear operators that are

polynomials in a particular operator T and matrices that are polynomials in a
particular matrix A. For these operators and matrices, the following notation
is convenient.

Definitions. Let

f(x) = a0 + a1(x) + · · · + anxn

be a polynomial with coefficients from a field F . If T is a linear operator on
a vector space V over F , we define

f(T) = a0I + a1T + · · · + anTn.

Similarly, if A is a n × n matrix with entries from F , we define

f(A) = a0I + a1A + · · · + anAn.
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Example 2

Let T be the linear operator on R2 defined by T(a, b) = (2a + b, a − b), and
let f(x) = x2 + 2x− 3. It is easily checked that T2(a, b) = (5a + b, a + 2b); so

f(T)(a, b) = (T2 + 2T − 3I)(a, b)
= (5a + b, a + 2b) + (4a + 2b, 2a − 2b) − 3(a, b)
= (6a + 3b, 3a − 3b).

Similarly, if

A =
(

2 1
1 −1

)
,

then

f(A) = A2+2A−3I =
(

5 1
1 2

)
+2

(
2 1
1 −1

)
−3

(
1 0
0 1

)
=
(

6 3
3 −3

)
. ♦

The next three results use this notation.

Theorem E.3. Let f(x) be a polynomial with coefficients from a field F ,
and let T be a linear operator on a vector space V over F . Then the following
statements are true.

(a) f(T) is a linear operator on V.
(b) If β is a finite ordered basis for V and A = [T]β , then [f(T)]β = f(A).

Proof. Exercise.

Theorem E.4. Let T be a linear operator on a vector space V over a
field F , and let A be a square matrix with entries from F . Then, for any
polynomials f1(x) and f2(x) with coefficients from F ,

(a) f1(T)f2(T) = f2(T)f1(T)
(b) f1(A)f2(A) = f2(A)f1(A).

Proof. Exercise.

Theorem E.5. Let T be a linear operator on a vector space V over a
field F , and let A be an n × n matrix with entries from F . If f1(x) and
f2(x) are relatively prime polynomials with entries from F , then there exist
polynomials q1(x) and q2(x) with entries from F such that

(a) q1(T)f1(T) + q2(T)f2(T) = I

(b) q1(A)f1(A) + q2(A)f2(A) = I.

Proof. Exercise.
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In Chapters 5 and 7, we are concerned with determining when a linear
operator T on a finite-dimensional vector space can be diagonalized and with
finding a simple (canonical) representation of T. Both of these problems are
affected by the factorization of a certain polynomial determined by T (the
characteristic polynomial of T). In this setting, particular types of polynomi-
als play an important role.

Definitions. A polynomial f(x) with coefficients from a field F is called
monic if its leading coefficient is 1. If f(x) has positive degree and cannot be
expressed as a product of polynomials with coefficients from F each having
positive degree, then f(x) is called irreducible.

Observe that whether a polynomial is irreducible depends on the field F
from which its coefficients come. For example, f(x) = x2 + 1 is irreducible
over the field of real numbers, but it is not irreducible over the field of complex
numbers since x2 + 1 = (x + i)(x − i).

Clearly any polynomial of degree 1 is irreducible. Moreover, for polyno-
mials with coefficients from an algebraically closed field, the polynomials of
degree 1 are the only irreducible polynomials.

The following facts are easily established.

Theorem E.6. Let φ(x) and f(x) be polynomials. If φ(x) is irreducible
and φ(x) does not divide f(x), then φ(x) and f(x) are relatively prime.

Proof. Exercise.

Theorem E.7. Any two distinct irreducible monic polynomials are rela-
tively prime.

Proof. Exercise.

Theorem E.8. Let f(x), g(x), and φ(x) be polynomials. If φ(x) is ir-
reducible and divides the product f(x)g(x), then φ(x) divides f(x) or φ(x)
divides g(x).

Proof. Suppose that φ(x) does not divide f(x). Then φ(x) and f(x) are
relatively prime by Theorem E.6, and so there exist polynomials q1(x) and
q2(x) such that

1 = q1(x)φ(x) + q2(x)f(x).

Multiplying both sides of this equation by g(x) yields

g(x) = q1(x)φ(x)g(x) + q2(x)f(x)g(x). (7)

Since φ(x) divides f(x)g(x), there is a polynomial h(x) such that f(x)g(x) =
φ(x)h(x). Thus (7) becomes

g(x) = q1(x)φ(x)g(x) + q2(x)φ(x)h(x) = φ(x) [q1(x)g(x) + q2(x)h(x)] .

So φ(x) divides g(x).
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Corollary. Let φ(x), φ1(x), φ2(x), . . . , φn(x) be irreducible monic polyno-
mials. If φ(x) divides the product φ1(x)φ2(x) · · ·φn(x), then φ(x) = φi(x)
for some i (i = 1, 2, . . . , n).

Proof. We prove the corollary by mathematical induction on n. For n = 1,
the result is an immediate consequence of Theorem E.7. Suppose then that for
some n > 1, the corollary is true for any n−1 irreducible monic polynomials,
and let φ1(x), φ2(x), . . . , φn(x) be n irreducible polynomials. If φ(x) divides

φ1(x)φ2(x) · · ·φn(x) = [φ1(x)φ2(x) · · ·φn−1(x)] φn(x),

then φ(x) divides the product φ1(x)φ2(x) · · ·φn−1(x) or φ(x) divides φn(x) by
Theorem E.8. In the first case, φ(x) = φi(x) for some i (i = 1, 2, . . . , n−1) by
the induction hypothesis; in the second case, φ(x) = φn(x) by Theorem E.7.

We are now able to establish the unique factorization theorem, which is
used throughout Chapters 5 and 7. This result states that every polynomial
of positive degree is uniquely expressible as a constant times a product of
irreducible monic polynomials.

Theorem E.9 (Unique Factorization Theorem for Polynomials).
For any polynomial f(x) of positive degree, there exist a unique constant
c; unique distinct irreducible monic polynomials φ1(x), φ2(x), . . . , φk(x); and
unique positive integers n1, n2, . . . , nk such that

f(x) = c[φ1(x)]n1 [φ2(x)]n2 · · · [φk(x)]nk .

Proof. We begin by showing the existence of such a factorization using
mathematical induction on the degree of f(x). If f(x) is of degree 1, then
f(x) = ax+ b for some constants a and b with a �= 0. Setting φ(x) = x+ b/a,
we have f(x) = aφ(x). Since φ(x) is an irreducible monic polynomial, the
result is proved in this case. Now suppose that the conclusion is true for any
polynomial with positive degree less than some integer n > 1, and let f(x)
be a polynomial of degree n. Then

f(x) = anxn + · · · + a1x + a0

for some constants ai with an �= 0. If f(x) is irreducible, then

f(x) = an

(
xn +

an−1

an
xn−1 + · · · + a1

an
+

a0

an

)
is a representation of f(x) as a product of an and an irreducible monic poly-
nomial. If f(x) is not irreducible, then f(x) = g(x)h(x) for some polynomials
g(x) and h(x), each of positive degree less than n. The induction hypothesis
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guarantees that both g(x) and h(x) factor as products of a constant and pow-
ers of distinct irreducible monic polynomials. Consequently f(x) = g(x)h(x)
also factors in this way. Thus, in either case, f(x) can be factored as a product
of a constant and powers of distinct irreducible monic polynomials.

It remains to establish the uniqueness of such a factorization. Suppose
that

f(x) = c[φ1(x)]n1 [φ2(x)]n2 · · · [φk(x)]nk

= d[ψ1(x)]m1 [ψ2(x)]m2 · · · [ψr(x)]mr ,
(8)

where c and d are constants, φi(x) and ψj(x) are irreducible monic polynomi-
als, and ni and mj are positive integers for i = 1, 2, . . . , k and j = 1, 2, . . . , r.
Clearly both c and d must be the leading coefficient of f(x); hence c = d.
Dividing by c, we find that (8) becomes

[φ1(x)]n1 [φ2(x)]n2 · · · [φk(x)]nk = [ψ1(x)]m1 [ψ2(x)]m2 · · · [ψr(x)]mr . (9)

So φi(x) divides the right side of (9) for i = 1, 2, . . . , k. Consequently, by the
corollary to Theorem E.8, each φi(x) equals some ψj(x), and similarly, each
ψj(x) equals some φi(x). We conclude that r = k and that, by renumbering
if necessary, φi(x) = ψi(x) for i = 1, 2, . . . , k. Suppose that ni �= mi for some
i. Without loss of generality, we may suppose that i = 1 and n1 > m1. Then
by canceling [φ1(x)]m1 from both sides of (9), we obtain

[φ1(x)]n1−m1 [φ2(x)]n2 · · · [φk(x)]nk = [φ2(x)]m2 · · · [φk(x)]mk . (10)

Since n1 − m1 > 0, φ1(x) divides the left side of (10) and hence divides the
right side also. So φ1(x) = φi(x) for some i = 2, . . . , k by the corollary to
Theorem E.8. But this contradicts that φ1(x), φ2(x), . . . , φk(x) are distinct.
Hence the factorizations of f(x) in (8) are the same.

It is often useful to regard a polynomial f(x) = anxn + · · ·+a1x+a0 with
coefficients from a field F as a function f : F → F . In this case, the value of
f at c ∈ F is f(c) = ancn + · · ·+ a1c + a0. Unfortunately, for arbitrary fields
there is not a one-to-one correspondence between polynomials and polynomial
functions. For example, if f(x) = x2 and g(x) = x are two polynomials over
the field Z2 (defined in Example 4 of Appendix C), then f(x) and g(x) have
different degrees and hence are not equal as polynomials. But f(a) = g(a) for
all a ∈ Z2, so that f and g are equal polynomial functions. Our final result
shows that this anomaly cannot occur over an infinite field.

Theorem E.10. Let f(x) and g(x) be polynomials with coefficients from
an infinite field F . If f(a) = g(a) for all a ∈ F , then f(x) and g(x) are equal.

Proof. Suppose that f(a) = g(a) for all a ∈ F . Define h(x) = f(x)− g(x),
and suppose that h(x) is of degree n ≥ 1. It follows from Corollary 2 to
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Theorem E.1 that h(x) can have at most n zeroes. But

h(a) = f(a) − g(a) = 0

for every a ∈ F , contradicting the assumption that h(x) has positive degree.
Thus h(x) is a constant polynomial, and since h(a) = 0 for each a ∈ F , it
follows that h(x) is the zero polynomial. Hence f(x) = g(x).



Answers
to Selected Exercises
CHAPTER 1

SECTION 1.1

1. Only the pairs in (b) and (c) are parallel.

2. (a) x = (3,−2, 4) + t(−8, 9,−3) (c) x = (3, 7, 2) + t(0, 0,−10)

3. (a) x = (2,−5,−1) + s(−2, 9, 7) + t(−5, 12, 2)

(c) x = (−8, 2, 0) + s(9, 1, 0) + t(14,−7, 0)

SECTION 1.2

1. (a) T (b) F (c) F (d) F (e) T (f) F
(g) F (h) F (i) T (j) T (k) T

3. M13 = 3, M21 = 4, and M22 = 5

4. (a)

(
6 3 2

−4 3 9

)
(c)

(
8 20 −12
4 0 28

)
(e) 2x4 + x3 + 2x2 − 2x + 10 (g) 10x7 − 30x4 + 40x2 − 15x

13. No, (VS 4) fails.

14. Yes

15. No

17. No, (VS 5) fails.

22. 2mn

SECTION 1.3

1. (a) F (b) F (c) T (d) F (e) T (f) F (g) F

2. (a)

(−4 5
2 −1

)
; the trace is −5 (c)

(−3 0 6
9 −2 1

)

(e)

⎛⎜⎜⎝
1

−1
3
5

⎞⎟⎟⎠ (g)
(
5 6 7

)
8. (a) Yes (c) Yes (e) No

11. No, the set is not closed under addition.

15. Yes

571
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SECTION 1.4

1. (a) T (b) F (c) T (d) F (e) T (f) F

2. (a) {r(1, 1, 0, 0) + s(−3, 0,−2, 1) + (5, 0, 4, 0) : r, s ∈ R}
(c) There are no solutions.
(e) {r(10,−3, 1, 0, 0) + s(−3, 2, 0, 1, 0) + (−4, 3, 0, 0, 5) : r, s ∈ R}

3. (a) Yes (c) No (e) No

4. (a) Yes (c) Yes (e) No

5. (a) Yes (c) No (e) Yes (g) Yes

SECTION 1.5

1. (a) F (b) T (c) F (d) F (e) T (f) T

2. (a) linearly dependent (c) linearly independent (e) linearly dependent
(g) linearly dependent (i) linearly independent

7.

{(
1 0
0 0

)
,

(
0 0
0 1

)}
11. 2n

SECTION 1.6

1. (a) F (b) T (c) F (d) F (e) T (f) F
(g) F (h) T (i) F (j) T (k) T (l) T

2. (a) Yes (c) Yes (e) No

3. (a) No (c) Yes (e) No

4. No

5. No

7. {u1, u2, u5}
9. (a1, a2, a3, a4) = a1u1 + (a2 − a1)u2 + (a3 − a2)u3 + (a4 − a3)u4

10. (a) −4x2 − x + 8 (c) −x3 + 2x2 + 4x − 5

13. {(1, 1, 1)}
15. n2 − 1

17. 1
2
n(n − 1)

26. n

30. dim(W1) = 3, dim(W2) = 2, dim(W1 + W2) = 4, and dim(W1 ∩ W2) = 1

SECTION 1.7

1. (a) F (b) F (c) F (d) T (e) T (f) T

CHAPTER 2

SECTION 2.1

1. (a) T (b) F (c) F (d) T (e) F (f) F (g) T (h) F
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2. The nullity is 1, and the rank is 2. T is not one-to-one but is onto.

4. The nullity is 4, and the rank is 2. T is neither one-to-one nor onto.

5. The nullity is 0, and the rank is 3. T is one-to-one but not onto.

10. T(2, 3) = (5, 11). T is one-to-one. 12. No.

SECTION 2.2

1. (a) T (b) T (c) F (d) T (e) T (f) F

2. (a)

⎛⎝2 −1
3 4
1 0

⎞⎠ (c)
(
2 1 −3

)
(d)

⎛⎝ 0 2 1
−1 4 5

1 0 1

⎞⎠

(f)

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ (g)
(
1 0 · · · 0 1

)

3. [T]γβ =

⎛⎜⎝− 1
3

−1

0 1
2
3

0

⎞⎟⎠ and [T]γα =

⎛⎜⎝− 7
3

− 11
3

2 3
2
3

4
3

⎞⎟⎠

5. (a)

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ (b)

⎛⎜⎜⎝
0 1 0
2 2 2
0 0 0
0 0 2

⎞⎟⎟⎠ (e)

⎛⎜⎜⎝
1

−2
0
4

⎞⎟⎟⎠

10.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0
0 1 1 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
SECTION 2.3

1. (a) F (b) T (c) F (d) T (e) F (f) F
(g) F (h) F (i) T (j) T

2. (a) A(2B + 3C) =

(
20 −9 18
5 10 8

)
and A(BD) =

(
29

−26

)
(b) AtB =

(
23 19 0
26 −1 10

)
and CB =

(
27 7 9

)
3. (a) [T]β =

⎛⎝2 3 0
0 3 6
0 0 4

⎞⎠, [U]γβ =

⎛⎝1 1 0
0 0 1
1 −1 0

⎞⎠, and [UT]γβ =

⎛⎝2 6 6
0 0 4
2 0 −6

⎞⎠

4. (a)

⎛⎜⎜⎝
1

−1
4
6

⎞⎟⎟⎠ (c) (5)
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12. (a) No. (b) No.

SECTION 2.4

1. (a) F (b) T (c) F (d) F (e) T (f) F
(g) T (h) T (i) T

2. (a) No (b) No (c) Yes (d) No (e) No (f) Yes

3. (a) No (b) Yes (c) Yes (d) No

19. (b) [T]β =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠
SECTION 2.5

1. (a) F (b) T (c) T (d) F (e) T

2. (a)

(
a1 b1

a2 b2

)
(c)

(
3 −1
5 −2

)

3. (a)

⎛⎝a2 b2 c2

a1 b1 c1

a0 b0 c0

⎞⎠ (c)

⎛⎝ 0 −1 0
1 0 0

−3 2 1

⎞⎠ (e)

⎛⎝5 −6 3
0 4 −1
3 −1 2

⎞⎠
4. [T]β′ =

(
2 −1

−1 1

)(
2 1
1 −3

)(
1 1
1 2

)
=

(
8 13

−5 −9

)

5. [T]β′ =

⎛⎝ 1
2

1
2

1
2

− 1
2

⎞⎠(
0 1
0 0

)(
1 1
1 −1

)
=

⎛⎝ 1
2

− 1
2

1
2

− 1
2

⎞⎠
6. (a) Q =

(
1 1
1 2

)
, [LA]β =

(
6 11

−2 −4

)

(c) Q =

⎛⎝1 1 1
1 0 1
1 1 2

⎞⎠, [LA]β =

⎛⎝ 2 2 2
−2 −3 −4

1 1 2

⎞⎠
7. (a) T(x, y) =

1

1 + m2
((1 − m2)x + 2my, 2mx + (m2 − 1)y)

SECTION 2.6

1. (a) F (b) T (c) T (d) T (e) F (f) T (g) T (h) F

2. The functions in (a), (c), (e), and (f) are linear functionals.

3. (a) f1(x, y, z) = x − 1
2
y, f2(x, y, z) = 1

2
y, and f3(x, y, z) = −x + z

5. The basis for V is {p1(x), p2(x)}, where p1(x) = 2 − 2x and p2(x) = − 1
2

+ x.

7. (a) Tt(f) = g, where g(a + bx) = −3a − 4b

(b) [Tt]β
∗

γ∗ =

(−1 1
−2 1

)
(c) [T]γβ =

(−1 −2
1 1

)
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SECTION 2.7

1. (a) T (b) T (c) F (d) F (e) T (f) F (g) T

2. (a) F (b) F (c) T (d) T (e) F

3. (a) {e−t, te−t} (c) {e−t, te−t, et, tet} (e) {e−t, et cos 2t, et sin 2t}
4. (a) {e(1+

√
5)t/2, e(1−√

5)t/2} (c) {1, e−4t, e−2t}

CHAPTER 3

SECTION 3.1

1. (a) T (b) F (c) T (d) F (e) T (f) F
(g) T (h) F (i) T

2. Adding −2 times column 1 to column 2 transforms A into B.

3. (a)

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ (c)

⎛⎝1 0 0
0 1 0
2 0 1

⎞⎠
SECTION 3.2

1. (a) F (b) F (c) T (d) T (e) F (f) T
(g) T (h) T (i) T

2. (a) 2 (c) 2 (e) 3 (g) 1

4. (a)

⎛⎝1 0 0 0
0 1 0 0
0 0 0 0

⎞⎠; the rank is 2.

5. (a) The rank is 2, and the inverse is

(−1 2
1 −1

)
.

(c) The rank is 2, and so no inverse exists.

(e) The rank is 3, and the inverse is

⎛⎜⎝
1
6

− 1
3

1
2

1
2

0 − 1
2

− 1
6

1
3

1
2

⎞⎟⎠.

(g) The rank if 4, and the inverse is

⎛⎜⎜⎝
−51 15 7 12

31 −9 −4 −7
−10 3 1 2
−3 1 1 1

⎞⎟⎟⎠.

6. (a) T−1(ax2 + bx + c) = −ax2 − (4a + b)x − (10a + 2b + c)

(c) T−1(a, b, c) =
(

1
6
a − 1

3
b + 1

2
c, 1

2
a − 1

2
c,− 1

6
+ 1

3
b + 1

2
c
)

(e) T−1(a, b, c) =
(

1
2
a − b + 1

2
c
)
x2 +

(− 1
2
a + 1

2
c
)
x + b

7.

⎛⎝1 0 0
0 1 0
1 0 1

⎞⎠⎛⎝1 0 0
1 1 0
0 0 1

⎞⎠⎛⎝1 0 0
0 −2 0
0 0 1

⎞⎠⎛⎝1 2 0
0 1 0
0 0 1

⎞⎠⎛⎝1 0 0
0 1 0
0 −1 1

⎞⎠⎛⎝1 0 1
0 1 0
0 0 1

⎞⎠
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20. (a)

⎛⎜⎜⎜⎜⎝
1 3 0 0 0

−2 1 0 0 0
1 0 0 0 0
0 −2 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎠
SECTION 3.3

1. (a) F (b) F (c) T (d) F (e) F (f) F (g) T (h) F

2. (a)

{(−3
1

)}
(c)

⎧⎨⎩
⎛⎝−1

1
1

⎞⎠⎫⎬⎭
(e)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−2

1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
3
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1

0
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (g)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
−3

1
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1

−1
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

3. (a)

{(
5
0

)
+ t

(−3
1

)
: t ∈ R

}
(c)

⎧⎨⎩
⎛⎝2

1
1

⎞⎠+ t

⎛⎝−1
1
1

⎞⎠: t ∈ R

⎫⎬⎭
(e)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠+ r

⎛⎜⎜⎝
−2

1
0
0

⎞⎟⎟⎠+ s

⎛⎜⎜⎝
3
0
1
0

⎞⎟⎟⎠+ t

⎛⎜⎜⎝
−1

0
0
1

⎞⎟⎟⎠: r, s, t ∈ R

⎫⎪⎪⎬⎪⎪⎭
(g)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0
0
0
1

⎞⎟⎟⎠+ r

⎛⎜⎜⎝
−3

1
1
0

⎞⎟⎟⎠+ s

⎛⎜⎜⎝
1

−1
0
1

⎞⎟⎟⎠: r, s,∈ R

⎫⎪⎪⎬⎪⎪⎭
4. (b) (1) A−1 =

⎛⎜⎝
1
3

0 1
3

1
9

1
3

− 2
9

− 4
9

2
3

− 1
9

⎞⎟⎠ (2)

⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝ 3
0

−2

⎞⎠

6. T−1{(1, 11)} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

11
2

− 9
2

0

⎞⎟⎟⎟⎠+ t

⎛⎝ 1
−1

2

⎞⎠: t ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
7. The systems in parts (b), (c), and (d) have solutions.

11. The farmer, tailor, and carpenter must have incomes in the proportions 4 : 3 : 4.

13. There must be 7.8 units of the first commodity and 9.5 units of the second.

SECTION 3.4

1. (a) F (b) T (c) T (d) T (e) F (f) T (g) T
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2. (a)

⎛⎝ 4
−3
−1

⎞⎠ (c)

⎛⎜⎜⎝
2
3

−2
−1

⎞⎟⎟⎠ (e)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

4
0
1
0

⎞⎟⎟⎠+ r

⎛⎜⎜⎝
4
1
0
0

⎞⎟⎟⎠+ s

⎛⎜⎜⎝
1
0
2
1

⎞⎟⎟⎠: r, s ∈ R

⎫⎪⎪⎬⎪⎪⎭

(g)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
−23

0
7
9
0

⎞⎟⎟⎟⎟⎠+ r

⎛⎜⎜⎜⎜⎝
1
1
0
0
0

⎞⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎝
−23

0
6
9
1

⎞⎟⎟⎟⎟⎠: r, s ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(i)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
2
0
0

−1
0

⎞⎟⎟⎟⎟⎠+ r

⎛⎜⎜⎜⎜⎝
0
2
1
0
0

⎞⎟⎟⎟⎟⎠+ s

⎛⎜⎜⎜⎜⎝
1

−4
0

−2
1

⎞⎟⎟⎟⎟⎠: r, s ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

4. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
3

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ t

⎛⎜⎜⎝
1

−1
1
2

⎞⎟⎟⎠: t ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(c) There are no solutions.

5.

⎛⎝ 1 0 2 1 4
−1 −1 3 −2 −7

3 1 1 0 −9

⎞⎠
7. {u1, u2, u5}

11. (b) {(1, 2, 1, 0, 0), (2, 1, 0, 0, 0), (1, 0, 0, 1, 0), (−2, 0, 0, 0, 1)}
13. (b) {(1, 0, 1, 1, 1, 0), (0, 2, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0), (−3,−2, 0, 0, 0, 1)}

CHAPTER 4

SECTION 4.1

1. (a) F (b) T (c) F (d) F (e) T

2. (a) 30 (c) −8

3. (a) −10 + 15i (c) −24

4. (a) 19 (c) 14

SECTION 4.2

1. (a) F (b) T (c) T (d) T (e) F (f) F (g) F (h) T

3. 42 5. −12 7. −12 9. 22 11. −3

13. −8 15. 0 17. −49 19. −28 − i 21. 95
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SECTION 4.3

1. (a) F (b) T (c) F (d) T (e) F (f) T (g) F (h) F

3. (4,−3, 0) 5. (−20,−48,−8) 7. (0,−12, 16)

24. tn + an−1t
n−1 + · · · + a1t + a0

26. (a)

(
A22 −A12

−A21 A11

)
(c)

⎛⎝10 0 0
0 −20 0
0 0 −8

⎞⎠
(e)

⎛⎝ −3i 0 0
4 −1 + i 0

10 + 16i −5 − 3i 3 + 3i

⎞⎠ (g)

⎛⎝ 18 28 −6
−20 −21 37

48 14 −16

⎞⎠
SECTION 4.4

1. (a) T (b) T (c) T (d) F (e) F (f) T
(g) T (h) F (i) T (j) T (k) T

2. (a) 22 (c) 2 − 4i

3. (a) −12 (c) −12 (e) 22 (g) −3

4. (a) 0 (c) −49 (e) −28 − i (g) 95

SECTION 4.5

1. (a) F (b) T (c) T (d) F (e) F (f) T

3. No 5. Yes 7. Yes 9. No

CHAPTER 5

SECTION 5.1

1. (a) F (b) T (c) T (d) F (e) F (f) F
(g) F (h) T (i) T (j) F (k) F

2. (a) [T]β =

(
0 2

−1 0

)
, no (c) [T]β =

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠, yes

(e) [T]β =

⎛⎜⎜⎝
−1 1 0 0

0 −1 1 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠, no

3. (a) The eigenvalues are 4 and −1, a basis of eigenvectors is{(
2
3

)
,

(
1

−1

)}
, Q =

(
2 1
3 −1

)
, and D =

(
4 0
0 −1

)
.

(c) The eigenvalues are 1 and −1, a basis of eigenvectors is{(
1

1 − i

)
,

(
1

−1 − i

)}
, Q =

(
1 1

1 − i −1 − i

)
, and D =

(
1 0
0 −1

)
.
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4. (a) λ = 3, 4 β = {(3, 5), (1, 2)}
(b) λ = −1, 1, 2 β = {(1, 2, 0), (1,−1,−1), (2, 0,−1)}
(f) λ = 1, 3 β = {−2 + x,−4 + x2,−8 + x3, x}
(h) λ = −1, 1, 1, 1 β =

{(−1 0
0 1

)
,

(
0 1
0 0

)
,

(
1 0
0 1

)
,

(
0 0
1 0

)}
(i) λ = 1, 1,−1,−1 β =

{(
1 0
1 0

)
,

(
0 1
0 1

)
,

(−1 0
1 0

)
,

(
0 −1
0 1

)}
(j) λ = −1, 1, 5 β =

{(
0 1

−1 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
1 0
0 1

)}
26. 4

SECTION 5.2

1. (a) F (b) F (c) F (d) T (e) T (f) F
(g) T (h) T (i) F

2. (a) Not diagonalizable (c) Q =

(
1 4
1 −3

)

(e) Not diagonalizable (g) Q =

⎛⎝ 1 1 1
2 −1 0

−1 0 −1

⎞⎠
3. (a) Not diagonalizable (c) Not diagonalizable

(d) β = {x − x2, 1 − x − x2, x + x2} (e) β = {(1, 1), (1,−1)}

7. An =
1

3

(
5n + 2(−1)n 2(5n) − 2(−1)n

5n − (−1)n 2(5)n + (−1)n

)
14. (b) x(t) = c1e

3t

(−2
1

)
+ c2e

−2t

(
1

−1

)

(c) x(t) = et

⎡⎣c1

⎛⎝1
0
0

⎞⎠+ c2

⎛⎝0
1
0

⎞⎠⎤⎦+ c3e
2t

⎛⎝1
1
1

⎞⎠
SECTION 5.3

1. (a) T (b) T (c) F (d) F (e) T (f) T
(g) T (h) F (i) F (j) T

2. (a)

(
0 0
0 0

)
(c)

⎛⎜⎝ 7
13

7
13

6
13

6
13

⎞⎟⎠ (e) No limit exists.

(g)

⎛⎝−1 0 −1
−4 1 −2

2 0 2

⎞⎠ (i) No limit exists.

6. One month after arrival, 25% of the patients have recovered, 20% are ambu-
latory, 41% are bedridden, and 14% have died. Eventually 59

90
recover and 31

90

die.
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7. 3
7
.

8. Only the matrices in (a) and (b) are regular transition matrices.

9. (a)

⎛⎜⎜⎜⎜⎝
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎞⎟⎟⎟⎟⎠ (c) No limit exists.

(e)

⎛⎜⎜⎜⎜⎝
0 0 0

1
2

1 0

1
2

0 1

⎞⎟⎟⎟⎟⎠ (g)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

1
2

1
2

1 0

1
2

1
2

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
10. (a)

⎛⎝0.225
0.441
0.334

⎞⎠ after two stages and

⎛⎝0.20
0.60
0.20

⎞⎠ eventually

(c)

⎛⎝0.372
0.225
0.403

⎞⎠ after two stages and

⎛⎝0.50
0.20
0.30

⎞⎠ eventually

(e)

⎛⎝0.329
0.334
0.337

⎞⎠ after two stages and

⎛⎜⎜⎜⎜⎝
1
3

1
3

1
3

⎞⎟⎟⎟⎟⎠ eventually

12. 9
19

new, 6
19

once-used, and 4
19

twice-used

13. In 1995, 24% will own large cars, 34% will own intermediate-sized cars, and
42% will own small cars; the corresponding eventual percentages are 10%, 30%,
and 60%.

20. eO = I and eI = eI.

SECTION 5.4

1. (a) F (b) T (c) F (d) F (e) T (f) T (g) T

2. The subspaces in (a), (c), and (d) are T-invariant.

6. (a)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1

−1
2
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (c)

{(
0 1
1 0

)}

9. (a) −t(t2 − 3t + 3) (c) 1 − t

10. (a) t(t − 1)(t2 − 3t + 3) (c) (t − 1)3(t + 1)

18. (c) A−1 =
1

2

⎛⎝2 −2 −4
0 1 3
0 0 −2

⎞⎠
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31. (a) t2 − 6t + 6 (c) −(t + 1)(t2 − 6t + 6)

CHAPTER 6

SECTION 6.1

1. (a) T (b) T (c) F (d) F (e) F (f) F (g) F (h) T

2. 〈x, y〉 = 8 + 5i, ‖x‖ =
√

7, ‖y‖ =
√

14, and ‖x + y‖ =
√

37.

3. 〈f, g〉 = 1, ‖f‖ =
√

3
3

, ‖g‖ =

√
e2 − 1

2
, and ‖f + g‖ =

√
11 + 3e2

6
.

16. (b) No

SECTION 6.2

1. (a) F (b) T (c) T (d) F (e) T (f) F (g) T

2. For each part the orthonormal basis and the Fourier coefficients are given.

(b)
{√

3
3

(1, 1, 1),
√

6
6

(−2, 1, 1),
√

2
2

(0,−1, 1)
}

; 2
√

3
3

, −
√

6
6

,
√

2
2

.

(c) {1, 2
√

3(x − 1
2
), 6

√
5(x2 − x + 1

6
)}; 3

2
,

√
3

6
, 0.

(e)
{

1
5
(2,−1,−2, 4), 1√

30
(−4, 2,−3, 1), 1√

155
(−3, 4, 9, 7)

}
; 10, 3

√
30,

√
155

(g)

{
1

6

(
3 5

−1 1

)
,

1

6
√

2

(−4 4
6 −2

)
,

1

9
√

2

(
9 −3
6 −6

)}
; 24, 6

√
2, −9

√
2

(i)
{√

2
π

sin t,
√

2
π

cos t,
√

π
π2−8

(1 − 4
π

sin t),
√

12π
π4−96

(t + 4
π

cos t − π
2
)
}

;√
2
π
(2π + 2), −4

√
2
π
,
√

π2−8
π

(1 + π),
√

π4−96
3π

(k)
{

1√
47

(−4, 3 − 2i, i, 1 − 4i), 1√
60

(3 − i,−5i,−2 + 4i, 2 + i),

1√
1160

(−17 − i,−9 + 8i,−18 + 6i,−9 + 8i)
}

;
√

47(−1 − i),
√

60(−1 + 2i),
√

1160(1 + i)

(m)

{
1√
18

(−1 + i −i
2 − i 1 + 3i

)
,

1√
246

( −4i −11 − 9i
1 + 5i 1 − i

)
,

1√
39063

(−5 − 118i −7 − 26i
−145i −58

)}
;

√
18(2 + i),

√
246(−1 − i), 0

4. S⊥ = span({(i,− 1
2
(1 + i), 1)})

5. S⊥
0 is the plane through the origin that is perpendicular to x0; S⊥ is the line

through the origin that is perpendicular to the plane containing x1 and x2.

19. (a)
1

17

(
26

104

)
(b)

1

14

⎛⎝29
17
40

⎞⎠
20. (b)

1√
14
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SECTION 6.3

1. (a) T (b) F (c) F (d) T (e) F (f) T (g) T

2. (a) y = (1,−2, 4) (c) y = 210x2 − 204x + 33

3. (a) T∗(x) = (11,−12) (c) T∗(f(t)) = 12 + 6t

14. T∗(x) = 〈x, z〉 y

20. (a) The linear function is y = −2t + 5/2 with E = 1, and the quadratic
function is y = t2/3 − 4t/3 + 2 with E = 0.

(b) The linear function is y = 1.25t + 0.55 with E = 0.3, and the quadratic
function is t2/56 + 15t/14 + 239/280 with E = 0.22857 (approximation).

21. The spring constant is approximately 2.1.

22. (a) x = 2
7
, y = 3

7
, z = 1

7
(d) x = 7

12
, y = 1

12
, z = 1

4
, w = − 1

12

SECTION 6.4

1. (a) T (b) F (c) F (d) T (e) T (f) T (g) F (h) T

2. (a) T is self-adjoint. An orthonormal basis of eigenvectors is{
1√
5
(1,−2),

1√
5
(2, 1)

}
, with corresponding eigenvalues 6 and 1.

(c) T is normal, but not self-adjoint. An orthonormal basis of eigenvectors
is{

1

2
(1 + i,

√
2),

1

2
(1 + i,−

√
2)

}
with corresponding eigenvalues

2 +
1 + i√

2
and 2 − 1 + i√

2
.

(e) T is self-adjoint. An orthonormal basis of eigenvectors is{
1√
2

(
0 1
1 0

)
,

1√
2

(
1 0
0 1

)
,

1√
2

(
0 −1
1 0

)
,

1√
2

(−1 0
0 1

)}
with corresponding eigenvalues 1, 1, −1, −1.

SECTION 6.5

1. (a) T (b) F (c) F (d) T (e) F (f) T
(g) F (h) F (i) F

2. (a) P =
1√
2

(
1 1
1 −1

)
and D =

(
3 0
0 −1

)

(d) P =

⎛⎜⎜⎜⎝
1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

⎞⎟⎟⎟⎠ and D =

⎛⎝−2 0 0
0 −2 0
0 0 4

⎞⎠
4. Tz is normal for all z ∈ C, Tz is self-adjoint if and only if z ∈ R, and Tz is

unitary if and only if |z| = 1.

5. Only the pair of matrices in (d) are unitarily equivalent.
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25. 2(ψ − φ)

26. (a) ψ − φ

2
(b) ψ +

φ

2

27. (a) x =
1√
2
x′ +

1√
2
y′ and y =

1√
2
x′ − 1√

2
y′

The new quadratic form is 3(x′)2 − (y′)2.

(c) x =
3√
13

x′ +
2√
13

y′ and y =
−2√
13

x′ +
2√
13

y′

The new quadratic form is 5(x′)2 − 8(y′)2.

29. (c) P =

⎛⎜⎜⎜⎝
1√
2

1√
3

− 6√
6

1√
2

− 1√
3

√
6

6

0 1√
3

√
6

3

⎞⎟⎟⎟⎠ and R =

⎛⎜⎜⎝
√

2
√

2 2
√

2

0
√

3
√

3
3

0 0
√

6
3

⎞⎟⎟⎠
(e) x1 = 3, x2 = −5, x3 = 4

SECTION 6.6

1. (a) F (b) T (c) T (d) F (e) F

2. For W = span({(1, 2)}), [T]β =

(
1
5

2
5

2
5

4
5

)
.

3. (2) (a) T1(a, b) = 1
2
(a + b, a + b) and T2(a, b) = 1

2
(a − b,−a + b)

(d) T1(a, b, c) = 1
3
(2a − b − c,−a + 2b − c,−a − b + 2c) and

T2(a, b, c) = 1
3
(a + b + c, a + b + c, a + b + c)

SECTION 6.7

1. (a) F (b) F (c) T (d) T (e) F (f) F (g) T

2. (a) v1 =

(
1
0

)
, v2 =

(
0
1

)
, u1 =

1√
3

⎛⎝1
1
1

⎞⎠, u2 =
1√
2

⎛⎝ 0
1

−1

⎞⎠, u3 =
1√
6

⎛⎝ 2
−1
−1

⎞⎠
σ1 =

√
3, σ2 =

√
2

(c) v1 =
1√
π

sin x, v2 =
1√
π

cos x, v3 =
1√
2π

u1 =
cos x + 2 sin x√

5π
, u2 =

2 cos x − sin x√
5π

, u3 =
1√
2π

,

σ1 =
√

5, σ2 =
√

5, σ3 = 2

3. (a)

⎛⎜⎜⎝
1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

− 1√
3

0 2√
6

⎞⎟⎟⎠
⎛⎝√

6 0
0 0
0 0

⎞⎠(
1√
2

1√
2

1√
2

− 1√
2

)∗
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(c)

⎛⎜⎜⎜⎜⎜⎝
2√
10

0 1√
2

1√
10

1√
10

− 1√
2

0 − 2√
10

1√
10

1√
2

0 − 2√
10

2√
10

0 − 1√
2

1√
10

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝
√

5 0
0 1
0 0
0 0

⎞⎟⎟⎠
(

1√
2

1√
2

1√
2

− 1√
2

)∗

(e)

(
1+i
2

1+i
2

1−i
2

−1+i
2

)(√
6 0
0 0

)( 2√
6

1−i√
6

1+i√
6

− 2√
6

)∗

4. (a) WP =

(
1√
2

1√
2

1√
2

− 1√
2

)( √
8+

√
2

2
−√

8+
√

2
2

−√
8+

√
2

2

√
8+

√
2

2

)

5. (a) T †(x, y, z) =
(x + y + z

3
,
y − z

2

)
(c) T †(a + b sin x + c cos x) = T−1(a + b sin x + c cos x) =

a

2
+

(2b + c) sin x + (−b + 2c) cos x

5

6. (a)
1

6

(
1 1 −1
1 1 −1

)
(c)

1

5

(
1 −2 3 1
1 3 −2 1

)
(e)

1

6

(
1 − i 1 + i

1 i

)
7. (a) Z1 = N(T)⊥ = R2 and Z2 = R(T) = span{(1, 1, 1), (0, 1,−1)}

(c) Z1 = N(T)⊥ = V and Z2 = R(T) = V

8. (a) No solution
1

2

(
1
1

)
SECTION 6.8
1. (a) F (b) F (c) T (d) F (e) T (f) F

(g) F (h) F (i) T (j) F
4. (a) Yes (b) No (c) No (d) Yes (e) Yes (f) No

5. (a)

⎛⎝0 2 −2
2 0 −2
1 1 0

⎞⎠ (b)

⎛⎜⎜⎝
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎟⎠ (c)

⎛⎜⎜⎝
0 0 0 0

−1 0 −4 0
0 0 0 0

−2 0 −8 0

⎞⎟⎟⎠

17. (a) and (b)

⎧⎨⎩
⎛⎝ 2√

5

− 1√
5

⎞⎠ ,

⎛⎝ 1√
5

2√
5

⎞⎠⎫⎬⎭ (c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

1√
2

0

1√
2

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎝
0

1

0

⎞⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1√
2

0

− 1√
2

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

18. Same as Exercise 17(c)

22. (a) Q =

(
1 −3
0 1

)
and D =

(
1 0
0 −7

)

(b) Q =

(
1 − 1

2

1 1
2

)
and D =

(
2 0

0 − 1
2

)

(c) Q =

⎛⎝0 0 1
0 1 −0.25
1 0 2

⎞⎠ and D =

⎛⎝−1 0 0
0 4 0
0 0 6.75

⎞⎠
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SECTION 6.9

7. (Bv)−1 =

⎛⎜⎜⎜⎜⎜⎝
1√

1 − v2
0 0

v√
1 − v2

0 1 0 0
0 0 1 0
v√

1 − v2
0 0

1√
1 − v2

⎞⎟⎟⎟⎟⎟⎠
SECTION 6.10

1. (a) F (b) T (c) T (d) F (e) F

2. (a)
√

18 (c) approximately 2.34

4. (a) ‖A‖ ≈ 84.74, ‖A−1‖ ≈ 17.01, and cond(A) ≈ 1441
(b) ‖x̃ − A−1b‖ ≤ ‖A−1‖ · ‖Ax̃ − b‖ ≈ 0.17 and

‖x̃ − A−1b‖
‖A−1b‖ ≤ cond(A)

‖b − Ax̃‖
‖b‖ ≈ 14.41

‖b‖

5. 0.001 ≤ ‖x − x̃‖
‖x‖ ≤ 10

6. R

⎛⎝ 1
−2

3

⎞⎠ =
9

7
, ‖B‖ = 2, and cond(B) = 2.

SECTION 6.11

1. (a) F (b) T (c) T (d) F (e) T (f) F
(g) F (h) F (i) T (j) F

3. (b)

{
t

(√
3

1

)
: t ∈ R

}
4. (b)

{
t

(
1
0

)
: t ∈ R

}
if φ = 0 and

{
t

(
cos φ + 1

sin φ

)
: t ∈ R

}
if φ �= 0

7. (c) There are six possibilities:

(1) Any line through the origin if φ = ψ = 0

(2)

⎧⎨⎩t

⎛⎝0
0
1

⎞⎠ : t ∈ R

⎫⎬⎭ if φ = 0 and ψ = π

(3)

⎧⎨⎩t

⎛⎝cos ψ + 1
− sin ψ

0

⎞⎠ : t ∈ R

⎫⎬⎭ if φ = π and ψ �= π

(4)

⎧⎨⎩t

⎛⎝ 0
cos φ − 1

sin φ

⎞⎠ : t ∈ R

⎫⎬⎭ if ψ = π and φ �= π

(5)

⎧⎨⎩t

⎛⎝0
1
0

⎞⎠ : t ∈ R

⎫⎬⎭ if φ = ψ = π
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(6)

⎧⎨⎩t

⎛⎝sin φ(cos ψ + 1)
− sin φ sin ψ

sin ψ(cos φ + 1)

⎞⎠ : t ∈ R

⎫⎬⎭ otherwise

CHAPTER 7

SECTION 7.1

1. (a) T (b) F (c) F (d) T (e) F (f) F (g) T (h) T

2. (a) For λ = 2,

{(−1
−1

)
,

(
1
0

)}
J =

(
2 1
0 2

)

(c) For λ = −1,

⎧⎨⎩
⎛⎝1

3
0

⎞⎠⎫⎬⎭ For λ = 2,

⎧⎨⎩
⎛⎝1

1
1

⎞⎠ ,

⎛⎝1
2
0

⎞⎠⎫⎬⎭ J =

⎛⎝−1 0 0
0 2 1
0 0 2

⎞⎠

3. (a) For λ = 2, {2,−2x, x2} J =

⎛⎝2 1 0
0 2 1
0 0 2

⎞⎠

(c) For λ = 1,

{(
1 0
0 0

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)}
J =

⎛⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠
SECTION 7.2

1. (a) T (b) T (c) F (d) T (e) T (f) F (g) F (h) T

2. J =

⎛⎝A1 O O
O A2 O
O O A3

⎞⎠ where A1 =

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠,

A2 =

⎛⎜⎜⎝
4 1 0 0
0 4 1 0
0 0 4 0
0 0 0 4

⎞⎟⎟⎠ and A3 =

(−3 0
0 −3

)

3. (a) −(t − 2)5(t − 3)2 (b)

λ1 = 2 λ2 = 3
• •
• •
•

• •

(c) λ2 = 3 (d) p1 = 3 and p2 = 1
(e) (i) rank(U1) = 3 and rank(U2) = 0

(ii) rank(U2
1) = 1 and rank(U2

2) = 0
(iii) nullity(U1) = 2 and nullity(U2) = 2
(iv) nullity(U2

1) = 4 and nullity(U2
2) = 2
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4. (a) J =

⎛⎝1 0 0
0 2 1
0 0 2

⎞⎠ and Q =

⎛⎝1 1 1
2 1 2
1 −1 0

⎞⎠

(d) J =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎞⎟⎟⎠ and Q =

⎛⎜⎜⎝
1 0 1 −1
1 −1 0 1
1 −2 0 1
1 0 1 0

⎞⎟⎟⎠

5. (a) J =

⎛⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 2

⎞⎟⎟⎠ and β = {2et, 2tet, t2et, e2t}

(c) J =

⎛⎜⎜⎝
2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2

⎞⎟⎟⎠ and β = {6x, x3, 2, x2}

(d) J =

⎛⎜⎜⎝
2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4

⎞⎟⎟⎠ and

β =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 −1
0 2

)
,

(
1 −2
2 0

)}

24. (a)

⎛⎝x
y
z

⎞⎠ = e2t

⎡⎣(c1 + c2t)

⎛⎝1
0
0

⎞⎠+ c2

⎛⎝0
1
0

⎞⎠⎤⎦+ c3e
3t

⎛⎝ 1
1

−1

⎞⎠
(b)

⎛⎝x
y
z

⎞⎠ = e2t

⎡⎣(c1 + c2t + c3t
2)

⎛⎝1
0
0

⎞⎠+ (c2 + 2c3t)

⎛⎝0
1
0

⎞⎠+ 2c3

⎛⎝0
0
1

⎞⎠⎤⎦
SECTION 7.3

1. (a) F (b) T (c) F (d) F (e) T (f) F
(g) F (h) T (i) T

2. (a) (t − 1)(t − 3) (c) (t − 1)2(t − 2) (d) (t − 2)2

3. (a) t2 − 2 (c) (t − 2)2 (d) (t − 1)(t + 1)

4. For (2), (a); for (3), (a) and (d)

5. The operators are T0, I, and all operators having both 0 and 1 as eigenvalues.

SECTION 7.4

1. (a) T (b) F (c) F (d) T (e) T (f) F (g) T

2. (a)

⎛⎝0 0 27
1 0 −27
0 1 9

⎞⎠ (b)

(
0 −1
1 −1

)

(c)

(
1
2
(−1 + i

√
3) 0

0 1
2
(−1 − i

√
3)

)
(e)

⎛⎜⎜⎝
0 −2 0 0
1 0 0 0
0 0 0 −3
0 0 1 0

⎞⎟⎟⎠



3. (a) t2 + 1 and t2 C =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠; β = {1, x,−2x + x2,−3x + x3}

(c) t2 − t + 1 C =

⎛⎜⎜⎝
0 −1 0 0
1 1 0 0
0 0 0 −1
0 0 1 1

⎞⎟⎟⎠
β =

{(
1 0
0 0

)
,

(
0 0

−1 0

)
,

(
0 1
0 0

)
,

(
0 0
0 −1

)}

588
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Index

Absolute value of a complex num-
ber, 558

Absorbing Markov chain, 304
Absorbing state, 304
Addition

of matrices, 9
Addition of vectors, 6
Additive function, 78
Additive inverse

of an element of a field, 553
of a vector, 12

Adjoint
of a linear operator, 358–360
of a linear transformation, 367
of a matrix, 331, 359–360
uniqueness, 358

Algebraic multiplicity of an eigen-
value, see Multiplicity of an
eigenvalue

Algebraically closed field, 482, 561
Alternating n-linear function, 239
Angle between two vectors, 202,

335
Annihilator

of a subset, 126
of a vector, 524, 528

Approximation property of an or-
thogonal projection, 399

Area of a parallelogram, 204
Associated quadratic form, 389
Augmented matrix, 161, 174
Auxiliary polynomial, 131, 134, 137–

140
Axioms of the special theory of

relativity, 453
Axis of rotation, 473

Back substitution, 186
Backward pass, 186
Basis, 43–49, 60–61, 192–194

cyclic, 526
dual, 120

Jordan canonical, 483
ordered, 79
orthonormal, 341, 346–347, 372
rational canonical, 526
standard basis for Fn, 43
standard basis for Pn(F ), 43
standard ordered basis for Fn,

79
standard ordered basis for Pn(F ),

79
uniqueness of size, 46

Bessel’s inequality, 355
Bilinear form, 422–433

diagonalizable, 428
diagonalization, 428–435
index, 444
invariants, 444
matrix representation, 424–428
product with a scalar, 423
rank, 443
signature, 444
sum, 423
symmetric, 428–430, 433–435
vector space, 424

Cancellation law for vector addi-
tion, 11

Cancellation laws for a field, 554
Canonical form

Jordan, 483–516
rational, 526–548
for a symmetric matrix, 446

Cauchy–Schwarz inequality, 333
Cayley–Hamilton theorem

for a linear operator, 317
for a matrix, 318, 377

Chain of sets, 59
Change of coordinate matrix, 112–

115
Characteristic of a field, 23, 41,

42, 430, 449, 555
Characteristic polynomial, 373
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of a linear operator, 249

of a matrix, 248

Characteristic value, see Eigenvalue

Characteristic vector, see Eigen-
vector

Classical adjoint

of an n × n matrix, 231

of a 2 × 2 matrix, 208

Clique, 94, 98

Closed model of a simple econ-
omy, 176–178

Closure

under addition, 17

under scalar multiplication, 17

Codomain, 551

Coefficient matrix of a system of
linear equations, 169

Coefficients

Fourier, 119

of a differential equation, 128

of a linear combination, 24, 43

of a polynomial, 9

Cofactor, 210, 232

Cofactor expansion, 210, 215, 232

Column of a matrix, 8

Column operation, 148

Column sum of matrices, 295

Column vector, 8

Companion matrix, 526

Complex number, 556–561

absolute value, 558

conjugate, 557

fundamental theorem of alge-
bra, 482, 560

imaginary part, 556

real part, 556

Composition

of functions, 552

of linear transformations, 86–
89

Condition number, 469

Conditioning of a system of linear
equations, 464

Congruent matrices, 426, 445, 451

Conic sections, 388–392

Conjugate linear property, 333

Conjugate of a complex number,
557

Conjugate transpose of a matrix,
331, 359–360

Consistent system of linear equa-
tions, 169

Consumption matrix, 177
Convergence of matrices, 284–288
Coordinate function, 119–120
Coordinate system

left-handed, 203
right-handed, 202

Coordinate vector, 80, 91, 110–
111

Corresponding homogeneous sys-
tem of linear equations, 172

Coset, 23, 109
Cramer’s rule, 224
Critical point, 439
Cullen, Charles G., 470
Cycle of generalized eigenvectors,

488–491
end vector, 488
initial vector, 488
length, 488

Cyclic basis, 526
Cyclic subspace, 313–317

Degree of a polynomial, 10
Determinant, 199–243

area of a parallelogram, 204
characterization of, 242
cofactor expansion, 210, 215, 232
Cramer’s rule, 224
of an identity matrix, 212
of an invertible matrix, 223
of a linear operator, 258, 474,

476–477
of a matrix transpose, 224
of an n × n matrix, 210, 232
n-dimensional volume, 226
properties of, 234–236
of a square matrix, 367, 394
of a 2 × 2 matrix, 200
uniqueness of, 242
of an upper triangular matrix,

218
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volume of a parallelepiped, 226
Wronskian, 232

Diagonal entries of a matrix, 8
Diagonal matrix, 18, 97
Diagonalizable bilinear form, 428
Diagonalizable linear operator, 245
Diagonalizable matrix, 246
Diagonalization

of a bilinear form, 428–435
problem, 245
simultaneous, 282, 325, 327, 376,

405
of a symmetric matrix, 431–433
test, 269, 496

Diagonalize, 247
Differentiable function, 129
Differential equation, 128

auxiliary polynomial, 131, 134,
137–140

coefficients, 128
homogeneous, 128, 137–140, 523
linear, 128
nonhomogeneous, 142
order, 129
solution, 129
solution space, 132, 137–140
system, 273, 516

Differential operator, 131
null space, 134–137
order, 131, 135

Dimension, 47–48, 50–51, 103, 119,
425

Dimension theorem, 70
Direct sum

of matrices, 320–321, 496, 545
of subspaces, 22, 58, 98, 275–

279, 318, 355, 366, 394, 398,
401, 475–478, 494, 545

Disjoint sets, 550
Distance, 340
Division algorithm for polynomi-

als, 562
Domain, 551
Dominance relation, 95–96, 99
Dot diagram

of a Jordan canonical form, 498–
500

of a rational canonical form, 535–
539

Double dual, 120, 123
Dual basis, 120
Dual space, 119–123

Economics, see Leontief, Wassily
Eigenspace

generalized, 485–491
of a linear operator or matrix,

264
Eigenvalue

of a generalized eigenvector, 484
of a linear operator or matrix,

246, 371–374, 467–470
multiplicity, 263

Eigenvector
generalized, 484–491
of a linear operator or matrix,

246, 371–374
Einstein, Albert, see Special the-

ory of relativity
Element, 549
Elementary column operation, 148,

153
Elementary divisor

of a linear operator, 539
of a matrix, 541

Elementary matrix, 149–150, 159
Elementary operation, 148
Elementary row operation, 148, 153,

217
Ellipse, see Conic sections
Empty set, 549
End vector of a cycle of general-

ized eigenvectors, 488
Entry of a matrix, 8
Equality

of functions, 9, 551
of matrices, 9
of n-tuples, 8
of polynomials, 10
of sets, 549

Equilibrium condition for a sim-
ple economy, 177

Equivalence relation, 107, 551
congruence, 449, 451
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unitary equivalence, 394, 472
Equivalent systems of linear equa-

tions, 182–183
Euclidean norm of a matrix, 467–

470
Euler’s formula, 132
Even function, 15, 21, 355
Exponential function, 133–140
Exponential of a matrix, 312, 515
Extremum, see Local extremum

Field, 553–555
algebraically closed, 482, 561
cancellation laws, 554
characteristic, 23, 41, 42, 430,

449, 555
of complex numbers, 556–561
product of elements, 553
of real numbers, 549
sum of elements, 553

Field of scalars, 6–7, 47
Finite-dimensional vector space, 46–

51
Fixed probability vector, 301
Forward pass, 186
Fourier, Jean Baptiste, 348
Fourier coefficients, 119, 348, 400
Frobenius inner product, 332
Function, 551–552

additive, 78
alternating n-linear, 239
codomain of, 551
composite, 552
coordinate function, 119–120
differentiable, 129
domain of, 551
equality of, 9, 551
even, 15, 21, 355
exponential, 133–140
image of, 551
imaginary part of, 129
inverse, 552
invertible, 552
linear, see Linear transforma-

tion
n-linear, 238–242
norm, 339

odd, 21, 355
one-to-one, 551
onto, 551
polynomial, 10, 51–53, 569
preimage of, 551
range of, 551
real part of, 129
restriction of, 552
sum of, 9
vector space, 9

Fundamental theorem of algebra,
482, 560

Gaussian elimination, 186–187
back substitution, 186
backward pass, 186
forward pass, 186

General solution of a system of
linear equations, 189

Generalized eigenspace, 485–491
Generalized eigenvector, 484–491
Generates, 30
Generator of a cyclic subspace, 313
Geometry, 385, 392, 436, 472–478
Gerschgorin’s disk theorem, 296
Gram–Schmidt process, 344, 396
Gramian matrix, 376

Hardy–Weinberg law, 307
Hermitian operator or matrix, see

Self-adjoint linear operator
or matrix

Hessian matrix, 440
Homogeneous linear differential equa-

tion, 128, 137–140, 523
Homogeneous polynomial of de-

gree two, 433
Homogeneous system of linear equa-

tions, 171
Hooke’s law, 128, 368
Householder operator, 397

Identity element
in C, 557
in a field, 553, 554

Identity matrix, 89, 93, 212
Identity transformation, 67
Ill-conditioned system, 464
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Image, see Range
Image of an element, 551
Imaginary number, 556
Imaginary part

of a complex number, 556
of a function, 129

Incidence matrix, 94–96, 98
Inconsistent system of linear equa-

tions, 169
Index

of a bilinear form, 444
of a matrix, 445

Infinite-dimensional vector space,
47

Initial probability vector, 292
Initial vector of a cycle of gener-

alized eigenvectors, 488
Inner product, 329–336

Frobenius, 332
on H, 335
standard, 330

Inner product space
complex, 332
H, 332, 343, 348–349, 380, 399
real, 332

Input–output matrix, 177
Intersection of sets, 550
Invariant subspace, 77–78, 313–

315
Invariants

of a bilinear form, 444
of a matrix, 445

Inverse
of a function, 552
of a linear transformation, 99–

102, 164–165
of a matrix, 100–102, 107, 161–

164
Invertible function, 552
Invertible linear transformation, 99–

102
Invertible matrix, 100–102, 111,

223, 469
Irreducible polynomial, 525, 567–

569
Isometry, 379
Isomorphic vector spaces, 102–105

Isomorphism, 102–105, 123, 425

Jordan block, 483
Jordan canonical basis, 483
Jordan canonical form

dot diagram, 498–500
of a linear operator, 483–516
of a matrix, 491
uniqueness, 500

Kernel, see Null space
Kronecker delta, 89, 335

Lagrange interpolation formula, 51–
53, 125, 402

Lagrange polynomials, 51, 109, 125
Least squares approximation, 360–

364
Least squares line, 361
Left shift operator, 76
Left-handed coordinate system, 203
Left-multiplication transformation,

92–94
Legendre polynomials, 346
Length of a cycle of generalized

eigenvectors, 488
Length of a vector, see Norm
Leontief

closed model, 176–178
open model, 178–179

Leontief, Wassily, 176
Light second, 452
Limit of a sequence of matrices,

284–288
Linear combination, 24–26, 28–30,

39
uniqueness of coefficients, 43

Linear dependence, 36–40
Linear differential equation, 128
Linear equations, see System of

linear equations
Linear functional, 119
Linear independence, 37–40, 59–

61, 342
Linear operator, (see also Linear

transformation), 112
adjoint, 358–360
characteristic polynomial, 249
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determinant, 258, 474, 476–477
diagonalizable, 245
diagonalize, 247
differential, 131
differentiation, 131, 134–137
eigenspace, 264, 401
eigenvalue, 246, 371–374
eigenvector, 246, 371–374
elementary divisor, 539
Householder operator, 397
invariant subspace, 77–78, 313–

315
isometry, 379
Jordan canonical form, 483–516
left shift, 76
Lorentz transformation, 454–461
minimal polynomial, 516–521
nilpotent, 512
normal, 370, 401–403
orthogonal, 379–385, 472–478
partial isometry, 394, 405
positive definite, 377–378
positive semidefinite, 377–378
projection, 398–403
projection on a subspace, 86,

117
projection on the x-axis, 66
quotient space, 325–326
rational canonical form, 526–548
reflection, 66, 113, 117, 387, 472–

478
right shift, 76
rotation, 66, 382, 387, 472–478
self-adjoint, 373, 401–403
simultaneous diagonalization, 282,

405
spectral decomposition, 402
spectrum, 402
unitary, 379–385, 403

Linear space, see Vector space
Linear transformation, (see also

Linear operator), 65
adjoint, 367
composition, 86–89
identity, 67
image, see Range
inverse, 99–102, 164–165

invertible, 99–102
isomorphism, 102–105, 123, 425
kernel, see Null space
left-multiplication, 92–94
linear functional, 119
matrix representation, 80, 88–

92, 347, 359
null space, 67–69, 134–137
nullity, 69–71
one-to-one, 71
onto, 71
product with a scalar, 82
pseudoinverse, 413
range, 67–69
rank, 69–71, 159
restriction, 77–78
singular value, 407
singular value theorem, 406
sum, 82
transpose, 121, 126, 127
vector space of, 82, 103
zero, 67

Local extremum, 439, 450
Local maximum, 439, 450
Local minimum, 439, 450
Lorentz transformation, 454–461
Lower triangular matrix, 229

Markov chain, 291, 304
Markov process, 291
Matrix, 8

addition, 9
adjoint, 331, 359–360
augmented, 161, 174
change of coordinate, 112–115
characteristic polynomial, 248
classical adjoint, 208, 231
coefficient, 169
cofactor, 210, 232
column of, 8
column sum, 295
companion, 526
condition number, 469
congruent, 426, 445, 451
conjugate transpose, 331, 359–

360
consumption, 177
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convergence, 284–288
determinant of, 200, 210, 232,

367, 394
diagonal, 18, 97
diagonal entries of, 8
diagonalizable, 246
diagonalize, 247
direct sum, 320–321, 496, 545
eigenspace, 264
eigenvalue, 246, 467–470
eigenvector, 246
elementary, 149–150, 159
elementary divisor, 541
elementary operations, 148
entry, 8
equality of, 9
Euclidean norm, 467–470
exponential of, 312, 515
Gramian, 376
Hessian, 440
identity, 89
incidence, 94–96, 98
index, 445
input–output, 177
invariants, 445
inverse, 100–102, 107, 161–164
invertible, 100–102, 111, 223,

469
Jordan block, 483
Jordan canonical form, 491
limit of, 284–288
lower triangular, 229
minimal polynomial, 517–521
multiplication with a scalar, 9
nilpotent, 229, 512
norm, 339, 467–470, 515
normal, 370
orthogonal, 229, 382–385
orthogonally equivalent, 384–385
permanent of a 2 × 2, 448
polar decomposition, 411–413
positive definite, 377
positive semidefinite, 377
product, 87–94
product with a scalar, 9
pseudoinverse, 414
rank, 152–159

rational canonical form, 541
reduced row echelon form, 185,

190–191
regular, 294
representation of a bilinear form,

424–428
representation of a linear trans-

formation, 80, 88–92, 347,
359

row of, 8
row sum, 295
scalar, 258
self-adjoint, 373, 467
signature, 445
similarity, 115, 118, 259, 508
simultaneous diagonalization, 282
singular value, 410
singular value decomposition, 410
skew-symmetric, 23, 229, 371
square, 9
stochastic, see Transition ma-

trix
submatrix, 230
sum, 9
symmetric, 17, 373, 384, 389,

446
trace, 18, 20, 97, 118, 259, 281,

331, 393
transition, 288–291, 515
transpose, 17, 20, 67, 88, 127,

224, 259
transpose of a matrix inverse,

107
transpose of a product, 88
unitary, 229, 382–385
unitary equivalence, 384–385, 394,

472
upper triangular, 21, 218, 258,

370, 385, 397
Vandermonde, 230
vector space, 9, 331, 425
zero, 8

Maximal element of a family of
sets, 58

Maximal linearly independent sub-
set, 59–61

Maximal principle, 59
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Member, see Element
Michelson–Morley experiment, 451
Minimal polynomial

of a linear operator, 516–521
of a matrix, 517–521
uniqueness, 516

Minimal solution to a system of
linear equations, 364–365

Monic polynomial, 567–569
Multiplicative inverse of an ele-

ment of a field, 553
Multiplicity of an eigenvalue, 263
Multiplicity of an elementary di-

visor, 539, 541

n-dimensional volume, 226
n-linear function, 238–242
n-tuple, 7

equality, 8
scalar multiplication, 8
sum, 8
vector space, 8

Nilpotent linear operator, 512
Nilpotent matrix, 229, 512
Nonhomogeneous linear differen-

tial equation, 142
Nonhomogeneous system of linear

equations, 171
Nonnegative vector, 177
Norm

Euclidean, 467–470
of a function, 339
of a matrix, 339, 467–470, 515
of a vector, 333–336, 339

Normal equations, 368
Normal linear operator or matrix,

370, 401–403
Normalizing a vector, 335
Null space, 67–69, 134–137
Nullity, 69–71
Numerical methods

conditioning, 464
QR factorization, 396–397

Odd function, 21, 355
One-to-one function, 551
One-to-one linear transformation,

71

Onto function, 551
Onto linear transformation, 71
Open model of a simple economy,

178–179
Order

of a differential equation, 129
of a differential operator, 131,

135
Ordered basis, 79
Orientation of an ordered basis,

202
Orthogonal complement, 349, 352,

398–401
Orthogonal equivalence of matrices,

384–385
Orthogonal matrix, 229, 382–385
Orthogonal operator, 379–385, 472–

478
on R2, 387–388

Orthogonal projection, 398–403
Orthogonal projection of a vector,

351
Orthogonal subset, 335, 342
Orthogonal vectors, 335
Orthonormal basis, 341, 346–347,

372
Orthonormal subset, 335

Parallel vectors, 3
Parallelogram

area of, 204
law, 2, 337

Parseval’s identity, 355
Partial isometry, 394, 405
Pendular motion, 143
Penrose conditions, 421
Periodic motion of a spring, 127,

144
Permanent of a 2 × 2 matrix, 448
Perpendicular vectors, see Orthog-

onal vectors
Physics

Hooke’s law, 128, 368
pendular motion, 143
periodic motion of a spring, 144
special theory of relativity, 451–

461
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spring constant, 368
Polar decomposition of a matrix,

411–413
Polar identities, 338
Polynomial, 9

annihilator of a vector, 524, 528
auxiliary, 131, 134, 137–140
characteristic, 373
coefficients of, 9
degree of a, 10
division algorithm, 562
equality, 10
function, 10, 51–53, 569
fundamental theorem of alge-

bra, 482, 560
homogeneous of degree two, 433
irreducible, 525, 567–569
Lagrange, 51, 109, 125
Legendre, 346
minimal, 516–521
monic, 567–569
product with a scalar, 10
quotient, 563
relatively prime, 564
remainder, 563
splits, 262, 370, 373
sum, 10
trigonometric, 399
unique factorization theorem, 568
vector space, 10
zero, 9
zero of a, 62, 134, 560, 564

Positive definite matrix, 377
Positive definite operator, 377–378
Positive semidefinite matrix, 377
Positive semidefinite operator, 377–

378
Positive vector, 177
Power set, 59
Preimage of an element, 551
Primary decomposition theorem,

545
Principal axis theorem, 390
Probability, see Markov chain
Probability vector, 289

fixed, 301
initial, 292

Product
of a bilinear form and a scalar,

423
of complex numbers, 556
of elements of a field, 553
of a linear transformation and

scalar, 82
of matrices, 87–94
of a matrix and a scalar, 9
of a vector and a scalar, 7

Projection
on a subspace, 76, 86, 98, 117,

398–403
on the x-axis, 66
orthogonal, 398–403

Proper subset, 549
Proper value, see Eigenvalue
Proper vector, see Eigenvector
Pseudoinverse

of a linear transformation, 413
of a matrix, 414

Pythagorean theorem, 337

QR factorization, 396–397
Quadratic form, 389, 433–439
Quotient of polynomials, 563
Quotient space, 23, 58, 79, 109,

325–326

Range, 67–69, 551
Rank

of a bilinear form, 443
of a linear transformation, 69–

71, 159
of a matrix, 152–159

Rational canonical basis, 526
Rational canonical form

dot diagram, 535–539
elementary divisor, 539, 541
of a linear operator, 526–548
of a matrix, 541
uniqueness, 539

Rayleigh quotient, 467
Real part

of a complex number, 556
of a function, 129

Reduced row echelon form of a
matrix, 185, 190–191
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Reflection, 66, 117, 472–478
of R2, 113, 382–383, 387, 388

Regular transition matrix, 294
Relation on a set, 551
Relative change in a vector, 465
Relatively prime polynomials, 564
Remainder, 563
Replacement theorem, 45–46
Representation of a linear trans-

formation by a matrix, 80
Resolution of the identity opera-

tor, 402
Restriction

of a function, 552
of a linear operator on a sub-

space, 77–78
Right shift operator, 76
Right-handed coordinate system,

202
Rigid motion, 385–387

in the plane, 388
Rotation, 66, 382, 387, 472–478
Row of a matrix, 8
Row operation, 148
Row sum of matrices, 295
Row vector, 8
Rudin, Walter, 560

Saddle point, 440
Scalar, 7
Scalar matrix, 258
Scalar multiplication, 6
Schur’s theorem

for a linear operator, 370
for a matrix, 385

Second derivative test, 439–443,
450

Self-adjoint linear operator or ma-
trix, 373, 401–403, 467

Sequence, 11
Set, 549–551

chain, 59
disjoint, 550
element of a, 549
empty, 549
equality of, 549
equivalence relation, 107, 394,

449, 451

equivalence relation on a, 551
intersection, 550
linearly dependent, 36–40
linearly independent, 37–40
orthogonal, 335, 342
orthonormal, 335
power, 59
proper subset, 549
relation on a, 551
subset, 549
union, 549

Signature
of a bilinear form, 444
of a matrix, 445

Similar matrices, 115, 118, 259,
508

Simpson’s rule, 126
Simultaneous diagonalization, 282,

325, 327, 376, 405
Singular value

of a linear transformation, 407
of a matrix, 410

Singular value decomposition of a
matrix, 410

Singular value decomposition the-
orem for matrices, 410

Singular value theorem for linear
transformations, 406

Skew-symmetric matrix, 23, 229,
371

Solution
of a differential equation, 129
minimal, 364–365
to a system of linear equations,

169
Solution set of a system of linear

equations, 169, 182
Solution space of a homogeneous

differential equation, 132, 137–
140

Space–time coordinates, 453
Span, 30, 34, 343
Special theory of relativity, 451–

461
axioms, 453
Lorentz transformation, 454–461
space–time coordinates, 453
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time contraction, 459–461
Spectral decomposition, 402
Spectral theorem, 401
Spectrum, 402
Splits, 262, 370, 373
Spring, periodic motion of, 127,

144
Spring constant, 368
Square matrix, 9
Square root of a unitary operator,

393
Standard basis

for Fn, 43
for Pn(F ), 43

Standard inner product on Fn, 330
Standard ordered basis

for Fn, 79
for Pn(F ), 79

Standard representation of a vec-
tor space, 104–105

States
absorbing, 304
of a transition matrix, 288

Stationary vector, see Fixed prob-
ability vector

Statistics, see Least squares ap-
proximation

Stochastic matrix, see Transition
matrix

Stochastic process, 291
Submatrix, 230
Subset, 549

linearly dependent, 36–40
linearly independent, 59–61
maximal linearly independent,

59–61
orthogonal, 335, 342
orthogonal complement of a, 349,

352, 398–401
orthonormal, 335
span of a, 30, 34, 343
sum, 22

Subspace, 16–19, 50–51
cyclic, 313–317
dimension of a, 50–51
direct sum, 22, 58, 98, 275–279,

318, 355, 366, 394, 398, 401,

475–478, 494, 545
generated by a set, 30
invariant, 77–78
sum, 275
zero, 16

Sum
of bilinear forms, 423
of complex numbers, 556
of elements of a field, 553
of functions, 9
of linear transformations, 82
of matrices, 9
of n-tuples, 8
of polynomials, 10
of subsets, 22
of vectors, 7

Sum of subspaces, (see also Direct
sum, of subspaces), 275

Sylvester’s law of inertia
for a bilinear form, 443
for a matrix, 445

Symmetric bilinear form, 428–430,
433–435

Symmetric matrix, 17, 373, 384,
389, 446

System of differential equations,
273, 516

System of linear equations, 25–30,
169

augmented matrix, 174
coefficient matrix, 169
consistent, 169
corresponding homogeneous sys-

tem, 172
equivalent, 182–183
Gaussian elimination, 186–187
general solution, 189
homogeneous, 171
ill-conditioned, 464
inconsistent, 169
minimal solution, 364–365
nonhomogeneous, 171
solution to, 169
well-conditioned, 464

T-annihilator, 524, 528
T-cyclic basis, 526
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T-cyclic subspace, 313–317
T-invariant subspace, 77–78, 313–

315
Taylor’s theorem, 441
Test for diagonalizability, 496
Time contraction, 459–461
Trace of a matrix, 18, 20, 97, 118,

259, 281, 331, 393
Transition matrix, 288–291, 515

regular, 294
states, 288

Translation, 386
Transpose

of an invertible matrix, 107
of a linear transformation, 121,

126, 127
of a matrix, 17, 20, 67, 88, 127,

224, 259
Trapezoidal rule, 126
Triangle inequality, 333
Trigonometric polynomial, 399
Trivial representation of zero vec-

tor, 36–38

Union of sets, 549
Unique factorization theorem for

polynomials, 568
Uniqueness

of adjoint, 358
of coefficients of a linear com-

bination, 43
of Jordan canonical form, 500
of minimal polynomial, 516
of rational canonical form, 539
of size of a basis, 46

Unit vector, 335
Unitary equivalence of matrices,

384–385, 394, 472
Unitary matrix, 229, 382–385
Unitary operator, 379–385, 403
Upper triangular matrix, 21, 218,

258, 370, 385, 397

Vandermonde matrix, 230
Vector, 7

additive inverse of a, 12
annihilator of a, 524, 528
column, 8

coordinate, 80, 91, 110–111
fixed probability, 301
Fourier coefficients, 119, 348, 400
initial probability, 292
linear combination, 24
nonnegative, 177
norm, 333–336, 339
normalizing, 335
orthogonal, 335
orthogonal projection of a, 351
parallel, 3
perpendicular, see Orthogonal

vectors
positive, 177
probability, 289
product with a scalar, 8
Rayleigh quotient, 467
row, 8
sum, 7
unit, 335
zero, 12, 36–38

Vector space, 6
addition, 6
basis, 43–49, 192–194
of bilinear forms, 424
of continuous functions, 18, 67,

119, 331, 345, 356
of cosets, 23
dimension, 47–48, 103, 119, 425
dual, 119–123
finite-dimensional, 46–51
of functions from a set into a

field, 9, 109, 127
infinite-dimensional, 47
of infinitely differentiable func-

tions, 130–137, 247, 523
isomorphism, 102–105, 123, 425
of linear transformations, 82, 103
of matrices, 9, 103, 331, 425
of n-tuples, 8
of polynomials, 10, 86, 109
quotient, 23, 58, 79, 109
scalar multiplication, 6
of sequences, 11, 109, 356, 369
subspace, 16–19, 50–51
zero, 15
zero vector of a, 12
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Volume of a parallelepiped, 226

Wade, William R., 439
Well-conditioned system, 464
Wilkinson, J. H., 397
Wronskian, 232

Z2, 16, 42, 429, 553
Zero matrix, 8

Zero of a polynomial, 62, 134, 560,
564

Zero polynomial, 9
Zero subspace, 16
Zero transformation, 67
Zero vector, 12, 36–38

trivial representation, 36–38
Zero vector space, 15
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