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Preface

This Second Edition incorporates improvements in exposition, several
new and clearer proofs, expansion of some problem sets, a review of Analytic
Trigonometry, a few remarkable airbrush figures, and bonuses on pages
previously only partially used. A quick evaluation of the alterations may be
made by comparing old and new pages 3-4, 54-56, 76-77, 118, 179-186,
323-329, 352 (figure), 474-475, but all changes are too numerous to list.

The First Edition anticipated the trend in secondary and college mathe-
matics so well that an extensive survey of users revealed little need for
disturbing the content or order of the book, In fact, it was found that most
of the suggested improvements could be made within the present format and
without altering the compact size of the book. Thus a casual examination
may not reveal the extent of the revision, but, as a matter of interest, the
manuscript for it outweighed the book itself.

I deeply appreciate the help of Professors Billy J. Attebery and Marian
Brashears of the University of Arkansas, Irving Drooyan, Los Angeles
Pierce College, M. L. Madison, Colorado State University, Gary Mouck,
Santa Barbara City College, Karl Stromberg, University of Oregon, and
others who took the trouble to volunteer criticism or responded to requests
for it. I hold no delusions of perfection and continue to seek advice from
both students and faculty.

The preface of the First Edition is reproduced below, except for the
apologetic justification of set notation and terminology at this level. In the
six years since the First Edition went to press, elementary set theory has
become so common that its omission would be untenable.

There is clear evidence that some students whose records qualify them
for a first course in calculus are not ready for a rigorous treatment of the
subject. It is gratifying, however, that an increasing number of students are
impatient with vague ideas and half-truths, and that a generation of college
instructors has emerged with sufficient training and judgment to present
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vi Preface

material within reach of most students, but also dedicated to elevating the
potential of more gifted students. Democratic education must be continued
to provide many technicians who have absorbed enough intuitive background
for routine applications, but in the present international scientific marathon
it is imperative that extra effort be extended toward providing earlier and
better training for those students who have possibilities of making original
contributions in their fields.

Since most colleges cannot section their students according to ability,
this book was written in such a way that various types of students may be
taught in the same class. On page 55, for example, the inequalities

1-x2<---<l for 0<Ixl<2

replace the usual ones with little extra effort. An instructor may now point
out that "as x gets small, then " and in most classes it might be well to do
so, but there is the intriguing possibility that an additional moment or two de-
voted to showing "for e > 0, then 6 = Ve . " might pay dividends.

Many students resent an instructor's insistence upon a standard above
the texts, but readily accept a less accurate one if they are not frustrated by a
patchwork of required and omitted portions. For this reason much of the
rigorous development is placed in appendices with full confidence that a
student capable of appreciating such work is also capable of interlacing it
properly. An instructor may thus relax to fairly intuitive presentations in
class, if this seems desirable, but can help his better students to higher goals
by encouraging them to read critically and to discuss fundamental concepts
with him. All students will have the opportunity of seeing the utility of
powerful underlying principles, whereas the averse ones need not be subjected
long, if at all, to ideas beyond their comprehension.

Even should the happy situation arise of a whole class of serious students,
it might be well to omit the pertinent appendices until after Chapter 6. This
procedure would fulfill the early service obligation to a companion physics
course and give an overall picture of the main features of calculus. With this
rough picture as a guide, the student would be in a better position to appre-
ciate the value and significance of Appendices Al-A4.

The definite integral is undoubtedly the most erudite concept of calculus,
but even so there seems to be an obsession to move it ever nearer the beginning
of the course. It is argued that this shift is dictated by the needs of a con-
current physics course. Experience has shown, however, that reasonable
physicists make no such demands, whereas others would not be satisfied
unless definite integrals (even curvilinear integrals) were taken in high school.
Consequently, in this book students are given time to polish their algebraic
manipulations and equation-graph concepts, and to have transcendental
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functions in hand before tackling definite integrals late in the first or early in
the second semester. If forced against his better judgment, an experienced
instructor may work in an early exposure to definite integrals by postponing
portions of Chapters 1, 2, and 4 and all of Chapters 3 and 5 until after selected
problems of Chapter 6 have been worked.

Vector analysis is a handy tool which has either been sadly neglected or
glorified beyond its due by making analytic geometry and calculus its slaves.
With the plethora of new ideas that cannot be avoided in the early portion of
the course, it seemed prudent to allow the students the comfort of their
familiarity with plane rectangular coordinates for any new work on standard
graphs and to. delay introducing vectors until Chapter 8. Even here the
third dimension is postponed by using vectors in the plane for curvilinear
motion, parametric equations, rotation of axes, and polar coordinates.
Now with vector ideas and notation entrenched, their power and economy
as an aid to space considerations is capitalized upon in succeeding chapters.

This book was written with the numerous potential engineers and scientists
more in mind than the small group of mathematics majors. The rigor and
set theory included here are far surpassed in an introduction to analysis
course and thus serves the mathematics major as a preview and only slight
acceleration. Most undergraduate engineering programs, on the other hand,
are so crowded that mathematics courses are confined to the first two years
and hence students in these programs are forever handicapped unless they
see some careful reasoning in their calculus course. Vector analysis is
presented from the directed line segment point of view as used and under-
stood by engineers rather than the linear space approach more satisfying to
mathematicians. Also, the present tendency to subdue the traditional first
course in differential equations is followed by including a short chapter to
provide further manipulative skill in integration, introduce some of the
standard techniques in finding so called solutions, and give a glimpse of
approximations so important in modern high speed computing. It is hoped
that students who continue their mathematical studies will not be spoiled for
the solid and practical work in store for them when they are ready for an
honorable differential equations course.

It is inevitable that the first half of the book is richer in theory than the
second half. Once a fairly firm foundation has been laid, much of the super-
structure follows without ostensive honor to the underlying theory. If a
student has developed reasonable thought patterns, then he will be able to
fill in many details for himself (or at least see there are gaps), but if he has not,
there seems little point in plaguing him further. To be sure, Jacobians could
have been developed for the sake of less intuitive discussions of pdpd6, upper
and lower limits for some proofs or neater proofs,* functions of bounded

* In particular for L'Hospital's Rules, see A. E. Taylor, American Mathematical
Monthly, Vol. 59 (1952), pp. 20-24.
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variation for arc length, Stieltjes integrals for work and other concepts, or a
rigorous Fubini theorem, but the effort would seem wasted on all students
except those who will continue anyway.

Finally, this book steers a path between the terse theorem-proof listing of
bare essentials and the bulky down-to-the-student-level books that try to
usurp the role of the instructor by a wordy and chatty style. It is hoped that
most students can, and will, read the book, but it is also assumed that each
college course has an instructor who will augment the text according to the
needs of his current class and motivate the work in a more effective and
spontaneous manner than an impersonal author could hope for. If the book
were used for self-study, then Chapter 1 would seem to start rather abruptly,
as would the notion of the limit of a function. Lives there an instructor,
however, who does not set the stage for his course by a ten or fifteen minute
talk the first class period, or who does not generate limits and discontinuities
before the very eyes of his students?

My former co-author and publisher did me the great favor of granting'
free use of material from Analytic Geometry and Calculus, The Macmillan
Company, 1946, by John F. Randolph and Mark Kac. Professors Melvin
Henriksen and Warren Stenberg went far beyond their assignment of a
critical reading of the manuscript and offered many constructive criticisms,
but I asked them to forgive my not following all of their suggestions. Professor
Hewitt Kenyon helped greatly in version after version of the appendices.
I thank (and exonerate) each of the following for criticism of at least one
chapter and an independent set of its answers: Theodore A. Bick, Gordon
Branche, Mrs. Martha Burton, David Burton, Michael Lodato, David F.
Neu, Patrick S. O'Neill, William Pitt, Vemuri Sarma, Earl R. Willard, and
Ronald Winkleman.

John F. Randolph
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CHAPTER I

Rectangular Coordinates

The material of this chapter has the twofold purpose of sharpening algebraic
manipulation and laying a foundation of analytic geometry, on which calculus calls
heavily for illustration and interpretation. Work with inequalities reviews the
algebraic laws hidden behind such terms as "transpose" and "cross multiply," but
inequalities are indispensable for basic understanding of limits. The beginning of
set theory is given even though the amount included is now taught in many high
schools. Set theory is a relatively new discipline in elementary mathematics, but its
clarifying and unifying features assure it a prominent and lasting place. The notions
and notations of set theory reappear throughout the book wherever it is advan-
tageous to use them.

At the risk of seeming to de-emphasize other topics, we recommend that the
definition of a function and functional notation (Sec. 8) be given especially careful
study. Also, the axiom stated in Sec. 4 might seem to have little importance as it
appears here, but this axiom will be used repeatedly.

1. Inequalities and Absolute Values

The product of two numbers is zero if and only if at least one of the
numbers is zero. Thus

(1) (x + 2)(3x - 5) = 0
if x = -2 or else x = and there is no other number satisfying (1).

Only real numbers will be considered in this book, and the properties of
real numbers sufficient for arithmetic and algebra involving equations will be
assumed. Some work on inequalities will now be given.

To state that x represents a negative number, we write x < 0 or 0 > x.
Hence, 1 /x < 0 if and only if x < 0. Also y > 0 or 0 < y means that y
represents a positive number.

DEFINITION. The symbolism s < t will be used if and only if s and t represent
numbers such that s - t < 0. Alternatively t > s if and only if t - s > 0.
The symbol "<" is read "less than" and ">" is read "greater than".

THEOREM 1.1 . Let x, y, and a represent numbers.
1. Then x + .a < y + a if and only if x < y.

1



2 Rectangular Coordinates Chap. 1

2. ' In case a > 0, then ax < ay if and only if x < y.
3. Incasea<0, then ax >ay ifand only ifx<y.

PROOF of 3 (As an illustration of a method of proof, we shall prove only 3).
First take a < 0 and x < y. By definition, x < y means that x -'Y < 0.
Now a and x - y are both negative so their product is positive; that is,
a(x - y) > 0. Thus, ax - ay > 0 which by the alternative in the definition
means that ax > ay, as we wished to show.

For the "only if" portion of 3 above, take a < 0 and ax > ay. Then
1 /a < 0 and ay < ax. Hence, by the first part of the proof we have (1 /a)ay >
(1/a)ax. Thus, y > x so that x < y, as we wished to prove.

Notice that the above theorem gives rules for inequalities analogous to
the rules for equations referred to as "transposition" and "cross multipli-
cation." One must be careful, however, to reverse the sense of inequality if
and only if both sides of an inequality are multiplied by a negative number.
For example, if

Ix+3<5,
we "transpose 3 to the other side" by adding -.3 to both sides:

-1x+3-3<5-3; i.e.,-jx<2.
Now multiply both sides by

2
(notice the change of the sense of inequality)

(-z)(-*x) > (-J)2; i.e., x > -3.

The inequality (-*)x + 3 < 5 is said to have solution x > -3.
The statement "a, b, and x are numbers such that a < x and x < b" is

written a < x < b.

Example 1. Solve the inequalities

(2) 2<-i-2x<5.
Solution. Consider the two inequalities 2 < -2 2x and -2 - 2x < 5

separately. From the first of these 2x .< ,-2 .- 2 = -'z and therefore x < -4,
but from the second - 2 - 5 < 2x and therefore - < x. Thus, both inequalities
in (2) will hold if and only if x is a number such that x < -land also x.
The solution of (2) is therefore written as

- 4 < X < 4.

Example 2. Solve the inequality 3x2 + x - 10 > 0.

Solution. Sincet 3x2 + x - 10 = (3x - 5)(x + 2) the inequality may be
t The symbol is read "identically equal" and means, as used here, that both sides

have the same value for each value of x. In contrast "=" signifies a conditional equality.
For example 3x2.+ x - 10 * -(x + 2) since 3x2 + x - 10 = -(x + 2) if and only if
x is either ; or -2.
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written as (3x - 5)(x + 2) > 0. Either these two factors must both be positive or
else both must be negative so two cases are to be considered.

CASE 1. Both factors positive. Hence, consider separately

3x-5>0 and x+2>0.
From the first x > a and from the second x > -2. Thus, a number x will make
both factors positive if and only if x is such that both x > a and also x > -2.
Thus, both factors are positive if and only if x >

CASE 2. Both factors negative. Hence, consider separately

3x-5<0 and x+2<0.
In this case it must be that both x < s and x < -2. But x satisfies both of these
inequalities if and only if x < -2.

Thus, a number x will satisfy the given inequality if either x > a or else if
x < -2. The answer is: Either x a or else x < -2.

Example 3. Solve the inequality 2x2 - x - 15 < 0.

Solution. 2x2 - x - 15 - (x - 3)(2x + 5) < 0. Since the product of two
numbers is negative if and only if one is negative and the other positive, we consider
two cases as follows:

CASE 1

x-3>0 and 2x+5<0.
x>3 and x<-121

Impossible, since no number is both
greater than 3 and less than -.

CASE 2

x-3<0 and 2x+5>0.
x < 3 and x > -§ .

Both of these inequalities hold if and
only if x is such that -I < x < 3.

or

Thus, the answer is: "The given inequality holds if and only if < x < 3."

DEFINITION. The absolute value Jul of a number u is defined by

uifu>0
(3) Jul =

1-u ifit<0.
For example, 131 = 3 and 1-31 = -(-3) = 3.

THEOREM 1.2. For u any number

(4) - Jul < u < Jul.

PROOF. If u >- 0 then (top line of (3)), -Iul = -u < 0 <- ul= lul,;
but if u < 0 then (bottom line of (3)), - Jul = -(-a) = u 0 < -u = ful.
Hence in-both cases - Jul S u < Jul so that (4) is estal5lished.
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Example 4. If Ix - 101 < 0.5 show that 9.5 < x < 10.5.

Solution. By using (4) with it = x - 10, then

-0.5<-Ix-101 <-x-10<-Ix-101 <0.5
so that -0.5 < x - 10 < 0.5. Now add 10 to each term:

Example 5. Solve the equation Ix + 41 1.

Solution. x + 4 = 1-1 so that either x = -3 or x = -5.

Note: If Ix - 101 < 0.5 we cannot set x - 10 < ±0.5. Why?

2. Linear Coordinate System

Chap. 1

On a line- label some point 0 and. label some other point 1. The first of
these points is called the origin, and the second is called the unit point. The
distance between these points is now taken as the unit length. A point P1 on
the line is said to precede a point P2 on the line if the direction from P1 to P.
is the same as the direction from the origin to the unit point.

Now with each point P on the line associate a number x, and with each
number x associate a point P on the line, in such a way that:

1. The distance (in terms of the unit length) between P and the origin is
jxi units, and

2. P precedes the origin if and only if x < 0.
The number associated with a point is called the coordinate of the point. With
x a number, the point having coordinate x will be referred to as "the point x."

In Fig. 2.1 the point x precedes the origin, so the number x is negative.
Consequently,'xf = -x; that is, the actual distance between} the origin and

x 0 1 0 1 x 0 x 1

Figure 2.1 Figure 2.2 Figure 2.3

this point -x is -x units. Also, in this case, the distance between the point x
and the unit point is

1 + ixi = 1 - x units.

In Fig. 2.2 both the origin and the unit point precede the point x. In
particular, x > 0 and the distance between the origin and the point x is
lxi = x units. Also, the distance between the unit point and the point x is
x - 1 units.

In Fig. 2.3 the point x is between the origin and the unit point. Again,
the distance between the origin and the point x is x units, but the distance
between the point x and the unit point is 1 - x units.
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It should be seen that a point x1 precedes a point x2 if and only if the
numbers x1 and x2 are such that x1 < x2. Also, with x1 and x2 numbers such
that x1 < x2, the distance between the point x1 and the point x2 is (x2 - x1)
units; that is:

To find the distance between two points on the line subtract the lesser
coordinate from the greater coordinate.

For example, the distance between the point 2 and the point -3 is 2 - (-3)
= 5 units.

Since x2 - x1 = -(x1 - x2) it follows that:

The distance between a point x1 and a point x2 is jx2 - x1j units.

Example. With a and b numbers such that a < b, find the coordinate of the
point which is two-fifths of the way from the point a to the point b.

Solution. The length of the interval with end points a and b is b - a units. Thus,
from point a proceed toward b the distance 5(b - a) units and reach the point whose
coordinate is

2
3a + 2b

5

As a different problem notice that the point two-fifths of the way from point b
to point a has coordinate

2a + 3bb-5(b-a)=
5

PROBLEMS

1. Solve each of the inequalities:
2-x x+la.2x-I<0. c. 3 +3<0. e. 4

2x x 3 -xb.4- 3 >-0. d.4+ 6 >0. f. 0.3x < 0.8.

2. What conditions must x satisfy if:
a. x2+x-12=0? C. x2+x-12<0? e. 12 +5x-2x2>0?
b. x2+x-12>0? d. 2x2-5x-12>0? f. x2-4>-0?

3. Solve the inequalities:
2x+1 2x+1 1

a. x-3 >0. c. x+4 <0. e. x+1 >0.

2x+1 1 1

b. x-3 <_0. d.z+1>_0. f.-<1.
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4. Find conditions x must satisfy whenever:

a. Ix - 101 <1. c. j2x-31 < 1.
b. Ix + 101 <0.5. d. 12x + 51 <0.4.

5. Prove each of the following

a. If x1 < x2 then x1 <
xl x2

< x2 and xi < 2x13 x2
< X2-

2

C. JXl -- X21

(0 if x < 0.

- (xl - x2 if x1 ? x2
X2 - x1 if X1 < X2.

a+b+ja-bi
d. 2 = the larger of a and b.

Chap. 1

6. Find the coordinate of the point which is:

a. Two-thirds of the way from point -1 to point 5.
b. Two-thirds of the way from point 5 to point -1.
c. Such that the point 5 is two-thirds of the way from the point -1 to this point.
d. Such that the point -1 is two-thirds of the way from the point 5 to this point.
e. Twenty four-twenty fifths of the way from the point 1492 to the point 1965.

7. In each of the following, solve the equation, check the answers, and give an
interpretation.

a. Ix+11 =2Ix-5I. c. 412-xj =5Ix+31.
b. 31x + 11 = 21x - 51. d. 91x - a! = lOIx - bl.

3. Intervals, Half-lines, and Linear Motion

Let a and b be numbers such that a < b and consider the point a and
the-point b.

The sett of all points actually between point a and point b is called the
a, b open interval with end points a and b. This open

closed interval is represented by I(a,b). Thus, a point x lies

a b on I(a,b) if and only if the number x is such that
open a < x < b.

Figure 3.1 The set of all points whose coordinates satisfy
a < x is called the open half-line with lower end

point a and is represented by I(a, oo). The open half-line with upper end
point b is represented by I(- oo,b) and is the collection of all points- whose
coordinates satisfy x < b.

If a < b, notice that the set common to both I(a, oo) and I(- oo,b) is
t The word "collection" may be used instead of "set."
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I(a,b), since a point x* belongs to both of these half-lines if and only if
a<x<b.

The set of all points x such that a < x < b is said to be a closed interval
and is represented by I[a, b]. Thus a closed interval includes both of its end
points and all points between them.

An interval I[a, b) which includes its lower end point, but not its upper
end point, is said to be closed on the left and open on
the right. In a similar way an interval I(a, b], open on
the left and closed on the right, is defined. a b

The intervals I(a,b), I[a,b], I[a,b), and I(a,b] all have Figure 3.2

the same end points and thus the same length; namely,
b - a units. For each of these intervals the mid-point has coordinate

(1)
a + b

2

For the distance between the mid-point and either end of any of these intervals
is (b - a)12 units, and thus the coordinate of the mid-point may be obtained
either as

a-l 1(b-a)=a+b or as
b-1(b-a)=a+b.

2 2 2 2

Many problems are concerned with, or may be interpreted as, the motion
of a particle on a line. Say, for example, that a particle moves on a line
according to the law

(2) s= t2-5t+3, 0 <t 510.
This means that some instant (probably the beginning of an experiment)

has been selected as zero time, and for the next 10 units of time (seconds,
minutes, months) a particle moves on the line in such a way that t time units
after zero time, the position of the particle on the line is obtained by squaring
t, subtracting 5 times t, and adding '3. Presumably, the experiment stops
when t = 10 or some other law applies from then on. Thus

s=02-5(0)+3=3 when t=0,
s=12-5(1)+3=-1 when t=1,
s=22-5(2)+3=-3 when t=2,
s=32-5(3)+3=-3 when t=3,
s=42-5(4)-3=-1 when t=4,

etc., up to s = 102 - 5(10) + 3 = 53 when t = 10.

One way of visualizing the motion of the particle is to mark its position on
the coordinate system at several different times, as in Fig. 3.3. This motion
is illustrated more realistically by Fig. 3.4. The location of the exact place
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at which the particle changes direction and the determination of the velocity
of the particle at any designated times are problems of calculus that are

t=2 t=1 t=0

and and and
t=3 t=4 t=5 t=6

F M I- I---.-I- I I I I I I I--I-
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Figure 3.3

t-2 t-1 t-0
I E I 4 I

i I I- -I I- I- F I I I- +- I- I
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Figure 3.4

considered later. Assuming that a particle is moving on a line according to
a law which gives the coordinate s of the particle at each time t in a certain
range, we give the following definition.

DEFINITION. The average velocity of the particle from time t1 to time t2 is
defined to be

(s at t2) - (s at t1) (linear units)l(time unit).
t2 - t1

For the particle moving according to the law (2),

when t1 = 1, then s = 12 - 5(1) + 3 -1,
when t2 = 1.1, then s = (1.1)2 - 5(1.1) + 3 = -1.29

and then during the time interval from t1 = 1 to t2 = 1.1 the average velocity
is

-1.29 - (-1) = -0.29 =-
1.1 - 1 0.1

2.9 (linear units)/(time unit).

The minus sign in -2.9 means that at time t2 = 1.1 the position of the
particle precedes its position at time t1 = 1.

PROBLEMS

1. Find the coordinates of the points which divide the given interval into n sub-
intervals of equal length.

a. I(-1,5), n = 6. c. 1(-3,12), n = 10. e. I(-12,-3), n = 100.
b. 1(-2,10), n = 6. d. I(3,12), n = 10. f. I(a,b) with a < b, n = 100.
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2. Given that a particle moves on a line according to the law

s=3+6t-t2, 0<t<10.
a. Locate the particle when t = 0, t = 2, t = 4, and t = 7.
b. At what times will the coordinate of the particle be 3 ?
c. At what times will the coordinate of the particle be -3?
d. Does the particle ever have coordinate 13 ?
e. During what time intervals is the particle on I[3,11]?
f. Represent the motion of the particle by a diagram.
g. Find the average velocity of the particle in the time intervals between tl = 5

and t2 = 5.1; between tl = 5 and t2 = 4.9; between tl = 5 and t2 = 5 + h
where h = 0.

3. A ball is thrown into the air and t seconds later it is

s = 6 + 65t - l6t2 ft

in the air; the law holding until the ball returns to earth.
a. Find the height of the ball when t = 0, 1, 2, 3, and 4 sec.
b. Find the average velocity of the ball during the time interval between

tl = 2 sec and t2 = 2.1 see; between tl = 2 sec and t2 = 1.9 sec; between
tl = 3 sec and t2 = 3.01 sec; between tl sec and (t1 + h) sec.

4. Find the average velocity during the time interval from tl to tl + h for each of
the following laws of motion:
a.s=2t3-4t+5. C. s= V3t+4. e.s=5/t2,t>0.

b. s=t+t,t>0. d. s=3t-1/t2+1. f. s=10/Vt2+1.

4. Sets of Numbers and Sets of Points

A set A and a set B are said to be equal, and A = B is written, if each
element of A is also an element of B and each element of B is also an element
of A; that is, if and only if A and B are merely different names for the same
set. A B means there is at least one element in one of the sets which is
not in the other.

It has become quite standard to use

(1) {x I statement about x}

to mean, "The set of all entities which when substituted for x makes the
statement true." Also (1) is read, "The set of all x for which the statement
about x is true." Thus, the set R defined by

(2) R = {x I x is a rational number}

is "The set of all rational numbers" and hence R contains all those numbers
and only those numbers which can be written as the ratio of two integers.
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The set

(3) S = {x I x < 0, or else both x > 0 and x2 < 2}

consists of all negative numbers and zero together with all those positive
numbers whose squares are less than 2. For example, -1, -2.5, -200 are
in S and also 1, 1.4, 1.41, and 1.414 are in S.

Notice that the sets

(4) T={xl-1<x<3} and T'={xI-1<xS3}
both have a smallest number, T has no largest number, but 3 is the largest
number in V.

A set A of numbers is said to be bounded above if there is a number b
such that whenever x is in A, then x < b. Such a number b is said to be an
upper bound of A. Hence, if b is an upper bound of A, then any number
greater than b is also an upper bound of A. Similar definitions may be made
for bounded below and lower bound.

Considering the sets R, S, T, and T' defined above; R is neither bounded
above nor bounded below; S is bounded above, for example, by 2 and also
by 1.415; T and T' are both bounded above and 3 is the smallest upper
bound of both T and V.

A statement about x need not be true of any number x. For example,
"x < 1 and x > 2" does not hold for any number x. Thus,

E = {xIx<1andx>2}
is the empty set. The phrase "C is a non-empty set of numbers" means that
the statement which defines C is true for at least one number.

In addition to the usual properties of numbers (which are either stated as
axioms or taken as intuitive), we state the following axiom.

1L AXIOM. If A is a set of numbers which is non-empty and bounded above and if

B = {x I x is an upper bound of A},

then in B there is a smallest number; that is, every non-empty set of numbers
which is bounded above has a smallest upper bound. Also, every non-empty set
of numbers which is bounded below has a greatest lower bound.

Knowing that 1/2 means the positive number whose square is 2, we see
that is not in the set S defined in (3), but that 1/2 is the least upper bound
of this set S.

Any set A of numbers may be visualized as a set of points on a line by
putting a point in the point set if and only if the coordinate of the point is a
number in A.



Sec. 4 Sets of Numbers and Sets of Points 11

Given two sets A and B, then the union of these sets is defined to be the
set consisting of all those elements which belong either to A or to B or to
both. The union of sets A and B is denoted by

(5) A U B.

For example, if A is the set of points on the closed interval joining -1
to 1, and if B is the set of points of the closed interval from 0 to 2; that is, if

(6) A = I[-1,1] and B = I[0,2],
then the union A U B is the set of points of the closed interval from -1 to 2:

A U B = I[-1,2].
The intersection of two sets A and B is defined to be the set consisting of

all elements which belong both to A and to B. The intersection of sets
A and B is denoted by.

(7) A n B.

Thus, for the particular sets A and B given in (6),

A n B = I[0,1],
since a number x belongs to both of these sets if and only if x satisfies
OSxSl.

Notice that an element belongs to A U B if and only if this element
belongs to A or to B, or to both, but belongs to A r) B if and only if it belongs
to A and to B. Thus, in the definition of union the key word is "or," but for
the intersection the key word is "and."

If two sets A and B have no common elements at all, then a convenient
descriptive expression is, "The intersection of these sets is empty."

Thus, givenA={xl-1 <x<l}and B={xl2<x<3},then
A 0 B is empty.

As another example, I[-l,l) r) I[1,3] is also empty.

PROBLEMS

1. For each of the following sets, tell whether the set is bounded above, and if it is
bounded above, find its least upper bound; also, tell whether it is bounded
below, and if it is, find its greatest lower bound.

a. {x I x2 < 9). f. {x I 'fix > 3}.
b. {x I x2 < 41. g. {x I 31.

c. {x x3 < 27). h. {x x = sin a for some angle a}.

d. {x v'x < 2}. i. {x x = sect a for some angle a}.

e. {x x < 2}. j. {x x = log t for some number t > 0).
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2. For each of the following pairs of sets A and B, find the union A u B and the
intersection A n B.
a. A = {x -3 < x < 4}, B = {x 12 < x < 10}.
b. A={x -3 <x <4}, B={xIx>2}.
c.A={x -2<x<-3},
d. A = {x 4< x2}, B= {x l x< 1}.
e. A = {x x3 < 27}, B = {x I x2 < 25).

3. Find:
a. {xIx2 <9}n{xI -1 <x <4}.
b. {x x3 >- 27} n {x -1 < x < 4}.

c. {x I 'vx < 1.4} u I[-2,1].

d. {x V x % 1.4} u I[ -2,2].
e. {xix3 <8}n{xI x2 4}.

f. (x x3 > 8} n {x I x2 < 4}.

g. {x /x > j;} n {x I 'fix <}.
h. {x ''/x > 2) n {x I '"x < 21.
i. sint for some number t}U{xI -2 <x <1}.
j. {x I x = 2 sin c for some angle a} u {x I -3 < x < 1}.

k. {x I x = sin (2o) for some angle a) u {x -2 < x < 1}.

5. Plane Rectangular Coordinates

In a plane draw two perpendicular lines. On each of these lines take a
linear coordinate system with the point of intersection as the origin of each

system. With x a number, the point on one of
these lines that would be called "the point x"
if only one line were involved will now be called
" "N a the point (x,0). This line is called the axis of

4031 o abscissas and is usually represented as horizontal
with the point (1,0) to the right of the origin

The other line is called the axis of -A -0)(0, .
(0,1) "w

of abscissas
ates, and there is an analogous correspondence

(1,0) x-axis between points of this line and pairs of numbers
(O,y), the first of which is 0.

Figure 5.1 A pair of numbers with one of them selected
as the first is called an ordered pair of numbers.

The ordered pair of numbers "x first and y second" is denoted by (x,y). For
example, the pair of numbers 2 and 3 may be used in either the ordered pair
(2,3) or the different ordered pair (3,2).
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A one-to-one correspondence between points of the plane and ordered
pairs of numbers is established by using (x,y) to label a point if and only if
the projections of this point on the axis of
abscissas and the axis of ordinates are the
points (x,0) and (O,y), respectively. With x and (x b) _____ (0,1,)
y numbers, the point labeled by the ordered (0,1)

pair (x,y) is said to have abscissa x, ordinate y;
and together, x and y in this order are called
the coordinates of the point.

(x,0) (0,0) (1,0)

The point (x,y) illustrated in Fig. 5.2 has Figure 5.2
abscissa negative, since the point (x,0) precedes
the origin on the axis of abscissas. The ordinate of this point is positive.

Example. Find the coordinates of the point which is two-thirds of the way from
the point (5,1) to the point (-2,9).

2 9, ) S l i Th t ili i h iut on. ne segmen jo ng to e n e po nts (5,1)
and (-2,9) projected into the axis of abscissas is the
interval joining the points (5,0) and (-2,0). By similar
triangles (see Fig. 5.3) the desired point has the same
abscissa as the point two-thirds of the way from the
point (5,0) to the point (-2,0), and this abscissa is

i-- +----- (5,1) 2( - 15 - 14 - 1, 5 -3 5 - (-2))
3 3_90) (5.0)

In a similar way, the points (5,1) and (-2,9) project onto
the points (0,1) and (0,9) of the axis of ordinates and, for

each of these pairs of points, the point two-thirds of the way from the former to
the latter has ordinate

I+3(9-1) 31.

Thus, the desired point is (J,-113 II (0,1) I

In Fig. 5.4 the regions marked I, IT, III, and TV
are called the first, second, third, and fourth quad- (1,0)
rants, respectively. To be more specific, the first
quadrant is {(x,y) I x > 0 and y > 0) with similar iii Iv
definitions, using actual inequalities, for the other
three quadrants. Figure 5.4

The axis of abscissas is also referred to as
"the x-axis" and the axis of ordinates as "the y-axis."

THEOREM 5. The line segment having end points (x1,y1) and (x2,y2) has
mid point

(x1--'x2 Y1±Y2
2 ' 2
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PROOF. The points (x1,0) and (x2,0) are the projections of the points
(x1,y1) and (x2,y2) into the axis of abscissas. The point midway between
these projections has (see (1) of Sec. 3) abscissa

x1 ± x2
2

which is therefore the abscissa of the point midway between points (x1,y1)
and (x2,y2). By projecting into the axis of ordinates the desired mid-point
is seen to have ordinate

Y1 + Y2

2

6. Slope and Equations of a Line

A line segment which is not parallel to the y-axis and has end points
(x1,y1) and (x2,y2) is said to have
slope m where

(1)

or equivalently

m = Y2 - Yl

'x2 - X1

m=Y1-Y2
x1 - x2

Notice that the difference of the
ordinates is divided by the difference
in the same order of the abscissas.
Since the line segment is not parallel
to the y-axis, the abscissas xl and
x2 are not equal, so the denominator
in (1) is not zero.

Two line segments, neither parallel to the y-axis, which have at least one
point in common, are on the same line if and only if both segments have the
same slope. As an illustration, in Fig. 6

Y2-Y1-Y1-Y2- 8-3 _ 3-8 -5
x2-x1 x1-x2 -1-2 2-(-1) 3

Thus, if any one segment on a line has slope m, then all segments of this line
have the same slope m.

A line not parallel to the y-axis is said to have slope m where m is the slope
of any line segment of the line. For lines parallel to the y-axis, the notion of
slope is not defined.
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THEOREM 6.1. Let points (x1,y1) and (x2,y2) be given with xl x2. Then
a point (x,y) is on the line through these points if and only if

(2) y yl = Y2 -Y i (x - x1)x2 - xl
PROOF. Since xl 0 x2 the line is not parallel to the y-axis and has slope

(Y2 - Y1)/(x2 - x1). In case x = x1 the point (x,y) is on the line if and only if
y = yl and (2) also holds; both sides being zero. In case x x1, the point
(x,y) is on the line if and only if the slope of the line segment with end points
(x,y) and (xl,yl) is the same as the slope of the line segment with end points
(xl,y1) and (x2,y2); that is, if and only if

Y-Yi_-Y2-Yl
x - x1 x2 - x1

and this equation is equivalent to (2) if x x1.

COROLLARY 1. With xl, yl, and m given numbers, a point (x,y) lies on the
line through the point (xl,yl) with slope m if and only if

(3) y - Yl = m(x - x1).
For with (x2,y2) a point on the line other than the point (x1,y1), then

x2 x1, m = (y2 - yl)/(x2 - x1), and (3) follows from (2).

COROLLARY 2. With b and m given numbers, a point (x,y) lies on the line
through the point (O,b) with slope m if and only if

(4) y = mx + b.

For in (3) set x1 = 0 and yl = b to obtain y - b = mx which is equivalent
to (4).

Let a line and an equation involving x and y be given. The equation is
said to be an equation of the line if each point (x,y) whose coordinates satisfy
the equation lies on the line and the coordinates of each point on the line
satisfy the equation.

It is usual to refer to (2) as a two-point equation of a line, to (3) as a
point-slope equation of a line, and to (4) as the slope-y-intercept equation
of a line.

(5)

THEOREM 6.2. If A, B, and C are numbers with A and B not both zero, then

Ax + By + C = 0

is an equation of a line. Also, any line has an equation in the form (5).

PROOF. First let A, B, and C be given numbers with A and B not both
zero. In case B = 0, then A 0 and numbers x and y satisfy (5) if and only if
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x = -CIA; that is, if and only if the point (x,y) lies on the line perpendi-
cular to the x-axis at the point (-C/A,0). In case B 0 0, then numbers x
and y satisfy (5) if and only if

A CY=-- x --
B

that is (compare this equation with (4)), if and only if the point (x,y) is on
the line through the point (0,-C/B) with slope m = -A/B.

Next, consider any line in the plane. In case the line is parallel to the
y-axis, it cuts the x-axis at a point (a,0) and a point (x,y) lies on the line if
and only if x = a, which may be written

and this is in the form (5) with A = 1, B = 0, and C = -a. In case the line
is not parallel to the y-axis, it has a slope m and cuts the y-axis at a point
(0,b). In this case a point (x,y) lies on the line if and only if y = mx + b, and
this equation may be written as

which is in the form (5) with A = m, B = -1, and C = b.

Equation (5) is called a general equation of a line.
It should be seen that:
Two lines neither of which is parallel to the y-axis are parallel to each
other if and only if they have the same slope.

Example. Find a general equation of the line which passes through the point
(-1,5) and is parallel to the line having equation 6x + 8y - 7 = 0.

Solution. The given equation is equivalent to

y = -fix +i,

showing (from (4)) that the second line has slope m = -1. Hence, the parallel line
through the point (-1,5) also has slope m = - and (from (3)) has

y - 5 = -*(x+1)

as an equation. This equation is equivalent to

.3x + 4y - 17 = 0;

an equation of the line in general form with A = 3, B = 4, and C = -17.
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PROBLEMS

1. On a plane rectangular coordinate system locate:

a. The points (-1,0), (0,-1), (3,-2), (3,2), and (J,1).
b. The point with abscissa -4 and ordinate j.
c. The point with abscissa -2 and ordinate the square of the abscissa.
d. The point with ordinate 3 and abscissa minus the ordinate.
e. The points each with abscissa -5.
f. The points each with ordinate half of the abscissa.

2. In the fourth quadrant select a point and label it (x,y), thus determining a
number x and number y.
a. Is x positive or negative? Is y positive or negative?
b. With x and y determined above, locate the points

(-x,y), (x, -y), (y,x), and (-y,x).
3. Find the ordered pair representing the point midway between the points:

a. (-3,2), (5,2). c. (10,5), (-10,8).
b. (-3,2), (5,1). d. (1492,0), (1962,0).

4. Find the coordinates of the point which is:
a. Two-thirds of the way from the point (-3,2) to the point (9,8).
b. Two-thirds of the way from the point (9,8) to the point (-3,2).
c. Seven-tenths of the way from the point (4,5) to the point (-6,10).
d. Reached by going from the point (2,-4) to the point (-3,5) and then

proceeding an equal distance along the line joining these points.

5. Find an equation of the line which passes through the points:
a. (-5,1) and (2,3). d. (-1,2) and (1, -2).
b. (-5,1) and (-5,27). e. (3,5) and (3.01,4.98).
c. (-5,1) and (2,1). f. (-4,2) and (-3.996,2.004).

6. Find a general equation of the line which:
a. Passes through the point (-1,4) with slope -2.
b. Has no slope and passes through the point (-5,4).
c. Has slope zero and passes through the point (-5,4).
d. Passes through the point (2, -3) and is parallel to the line having 2x + y = 6

as an equation.

7. Let a and b be numbers neither of which is zero. Show that a line passes through
the points (a,0) and (0,b) if and only if an equation of the line is

a+6=1.

8. a. Show that x3 - x2y + 4x2 + 2x - 2y + 8 = 0 is an equation of a line.
b. Do the same for -y3 + 2(x + 2)y2 + 6x - 3y + 12 = 0.

9. Find the slope and y-intercept of the line whose equation is:
a. 2x-4y+10=0. c. x=3y+5.
b. 2(x - 1) = 3(y + 2). d. x sin 30° + y cos 30° = 5.
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7. Sets and Ordered Pairs

Chap. 1

A set is said to be well defined whenever there is a criterion which deter-
mines whether a given entity does or does not belong to the set. Thus, the
set of all ordered pairs of numbers such that each pair has its second number
the square of its first number is a well-defined set. For example (2,4) is an
element of this set, as is (-2,4); but (3,8) is not an element of this set. We
shall use

(1) {(x>Y) I Y = x2}

to describe this particular set of ordered pairs.
This is an illustration of the standard

notation

{(x,y) I statement about x and y}

to mean, "The set of all (x,y) for which
the statement about x and y is true." By
the graph of a set A of ordered pairs of
numbers is meant the set of all those
points of the plane each of whose points
is represented by an ordered pair in A.
Thus, the set described by (1) has the

(l,o) f
Figure 7.1

curve of rig. 7.1 as its graph. A set o
ordered pairs of numbers and its graph
may be thought of interchangeably. Thus,

we may speak of "The line {(x,y) 12y = x}" meaning, of course, "The
line consisting of the set of all points each with abscissa twice its ordinate."
Also,

{(x,y) 12y > x}

is the half-plane consisting of the set of all points (see Fig. 7.2) on and above

A

Figure 7.2 Figure 7.3

the line {(x,y) 12y = x}. The line segment {(x,y) 12y = x and IxI < 2} joins
the points (-2,-1) and (2,1) as shown in Fig. 7.3.
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The letters x and y have been used in describing sets of ordered pairs, but
any two symbols whatever may be used. For example

{(s,t) 12t = s} = {(x,y) 12y = x}
since each gives the same criterion for testing whether any given ordered pair
of numbers belongs to the set.

Example. Show that {(x,y 10 <_ x < 2 and 0 < y < Jx} may also be expressed
in the form {(x,y) 0 < y < I and 2y < x < 2}.

+(0,1)
(2,1)

(2,Y)

Figure 7.4

Solution. Considering the first expression, let x be a specific number such that
0 < x < 2, and at the point (x,0) erect a vertical line segment of length x/2. The
totality of all points on such segments is the interior and edges of the triangle with
vertices (0,0), (2,0), and (2,1).

Considering the second set, let y be a specific number such that 0 < y < 1, note
the points (2y,y) and (2,y), and join these points by a line segment. The totality of
points on such segments is the same triangle and its interior as before. Thus, the
two expressions describe the same set of ordered pairs.

8. Functions

Given a point on the curve of Fig. 8.1, there may be a different point with
the same abscissa; in particular, there are three points with abscissa zero.
On the other hand, Fig. 8.2 indicates a set of points such that whatever point

Figure 8.1 Figure 8.2

is taken in the set, then no other point in the set has the same abscissa; that is,
in the corresponding set of ordered pairs of numbers no two ordered pairs
have the same first number.



20 Rectangular Coordinates Chap. 1

DEFINITION. A set of ordered pairs is said to be a function if no two
distinct ordered pairs in the set have the some first element. The set of first
elements of a function is called the domain (of definition) of the function, and
the set. of second elements is called the range of the function.

A letter or symbol may be used in referring to a function. Thus, upon
using f for a function, then f is a set of ordered pairs such that: "If (a,b) and
(a,c) are in the set, then b = c." Also, for f a function and x in the domain
off, then the ordered pair in f with first element x is denoted by (x,f (x)) and
f (x) is read fat x."

A specific example of a function is the set of ordered pairs

(-1,2), (0,3), (1,3), and (2,4).

The domain of this function consists of the set of numbers -1, 0, 1, 2, whereas
the set of numbers 2, 3, 4 constitutes the range. Upon denoting this set of
ordered pairs by g, then

g(-1) = 2, g(0) = 3, g(1) = 3, and g(2) = 4,

but g(3), for example, is not defined, nor is g(1.5).
The set (-1,2), (-1,3), (0,3), (1,4) of ordered pairs is not a function,

since two of these have the same first element, namely - 1.
Another example of a function is

f = {(s,t) jt = 3s2 - 4}.

This function has domain the set of all numbers and given any number x,
then (x,3x2 - 4) is an ordered pair in f and

f (x) = 3x2 - 4.

Thus, for this function f(2) = 8,f(2.1) = 9.23, and

f(2.1)-f(2)=9.23-8=12.3.
2.1 - 2 0.1

Hence, the points (2,8) and (2.1,9.23) are in the graph off, and the line joining
these points has slope 12.3. Also, for x a number and h 0, the points
(x,3x2 - 4) and (x + h,3(x + h)2 - 4) are on the graph of f and the line
joining these points has slope m where

m-[3(x+h)2-4]-[3x2-4]=6xh+3h2=6x-{-3h.
(x+h)-x h

Given a function (and its domain), a symbol used to represent an arbitary
element of the domain is called the independent variable, and a symbol used
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to represent an arbitrary element in the range is called the dependent variable.
Thus, for a function f established by telling what its domain is and a rule for
finding f (x) whenever x is in that domain, it is customary to set

Y =AX)

and to call x the independent variable and y the dependent variable.
Moreover, a symbol used to represent an arbitrary element of a set (even

though no function is mentioned) is called a variable. A symbol which is to
be assigned one and only one value throughout a discussion is called a
constant. Upon seeing

ax+by=c,
x and y are considered to be variables and a, b, and c constants.

9. Some Special Functions

For later use we review some common functions.
A. ABSOLUTE-VALUE FUNCTION. The set of ordered

pairs

{(x,Y) I Y = Ix1}

is a function whose domain consists of all numbers, Z
but whose range is the set of non-negative numbers.
The graph of this function is the two half-lines shown Figure 9.1
in Fig. 9.1.

450

The absolute-value function may be used in the
definition of other functions. For example, let

.f = {(x,y) I y =
x

+ 1"I}.
2

Figure 9.2 The graph of this function f is the negative x-axis together
with the "450 half-line" shown in Fig. 9.2.

B. SQUARE-ROOT FUNCTION. For x a non-negative number, means the

non-negative number whose square is x. Thus, ''4 = 2 and not -2. Hence,

{(x,y) I x > 0 and y =1/x}

is a function whose domain and range both consist
of the non-negative numbers. Fig. 9.3 indicates the I/ Half of v2=x
graph of this function.

It may seem unnatural, but we emphasize that

1/x2 x if x < 0,
Figure 9.3

since for x < 0, then 1/x2 is positive but x is negative; so \/x2 and x cannot
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be equal if x < 0. It does, however, follow that

A/ x2 = I XI

whether x is positive, negative, or zero.

Chap. 1

Notice that if Ixl < lyl, then Ixl Ixl < lxi lyl <_ lyl lyl and x2 < y2. If,
however, Ixl > lyl, then lxl > 0, lyl >- 0 and lxl lxi > lxl Iyi ? Iyl lyl so that
x2 > y2. Thus :

if x2 < y2, then Ixi <- lyi.

This fact will be used in establishing the inequality

(1) la+bl <lal+Ibl
for a and b any numbers whatever. To see this, note that ab < Jai Ibi.
2ab S 21al lbl and, by adding a2 + b2 to both sides

a2 + 2ab + b2 < Ia12 + 21al Ibl + lb12,

(a + b)2 < (Jai + Ibl)2 and hence

Ia + bl < I lal + Ibl I
as noted above.

Since I lal + lbl = lal + Ibl the inequality (1) is seen to hold.

C. GREATEST-INTEGER FUNCTION. For x a number, the notation [x] is
sometimes used to mean the greatest integer less than or equal to x, or briefly
the greatest integer in x. For example,

[2.5]=2,[-2.5]=-3,[rr]=3,[-ir]=-4,-[rr]=-3.
Also,

(2,2)t-
if 2 < x < 3, then [x] = 2;

'
0) -+

if 1 < x < 2, thenif [x] = 1;, if 0 < x < 1, then [x] = 0;

if -1 S x < 0, then [x] = -1.
(-2,,-2) Thus, the se t

Figure 9.4 1(x,y) I y = [x]}

is a function whose domain consists of all numbers but whose range consists
of all integers. The graph of this function (see Fig. 9.4) is a "stair-step" of
unit intervals which are closed on the left and open on the right. Notice,
for example, that [2] = 2 whereas 999 and if e is oy positive
number (no matter how small), then _and.{2 - e] differ by at least 1.



Sec. 9 Some Special Functions 23

The set {(x,y) I y = x - [x]} is a function whose range is {y I 0 < y < 1}.
In particular among all the values of this function there is no largest value.
See Fig. 9.5.

Figure 9.5

D. SINE AND COSINE FUNCTIONS. For x a number, then sin x means "The
sine of an angle of x radians." (See page 578.) Thus,

S = {(x,y) I y = sin x}

is a function whose domain consists of all numbers and whose range is given
as {y I -1 < y < 1). This function is "the sine function." The cosine
function :

C = {(x,y) I y = cos x}

Figure 9.6

has the same domain and range as the sine function. The graphs of the sine
and cosine functions are indicated in Fig. 9.6.

As in trigonometry, for A and B numbers, then (see page 575)

sin (A + B) = sin A cos B + cos A sin B,

sin (A - B) - sin A cos B - cos A sin B,

and sin (A + B) - sin (A - B) - 2 cos A sin B.

Hence, with b, x, and h any numbers whatever, then upon setting

b(x+h)=A+B
and bx = A - B
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it follows that A = bx + jbh and B = Lbh. Upon substituting these relations
for A + B, A - B, A, and B above, the result is

(2) sin b(x + h) - sin bx = 2 cos (bx + ibh) sin 1bh

which is an identity that will be used later.

E. ANOTHER SINE RELATION. Let f be the function defined by

f= ((x,y) I x 0 0 and y= sin2 1

x)

This function has {x I x 0) for domain and {y 10 5 y < 1} for range.
Since sin A = 0 if and only if A = mr
for some integer n, it follows for x 0ko'ln-- that

11 sin21= 0
x

if and only if x= 1,n 0

I _L1 _L I
2,r 2 a

ysine s 2 2
5a 37r

Figure 9.7

sin2 1 = 1
x

Since sin A = 1 or sin A = -1 if and

only if A = (2n + 1)2 for some integer

n, it follows for x 0 0 that

if and only if x = 2
(2n + 1)7r

Hence, above any interval of the x-axis, which includes the origin, the graph
of f (indicated in Fig. 9.7) oscillates infinitely many times.

PROBLEMS

1. Sketch each of the following sets:

a. {(x,y) y = Ix + 21}. e. {(x,y) I Ixl + lyl = 1).

b. {(x,y) I x = lyl}. f. {(x,y) I IxI - IYI = 1}.

c. {(x,y) I Y + Ixl = 1). g. {(x,y) I ly - xl = 1).

d. {(x,y) I IYI - x = 1}, h. {(x,y) I ly - xl = 0}.

2. Which of the sets in Prob. I are functions? In each case where the set is a func-
tion, give the domain and range.
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3. In Prob. 1 replace absolute value notation by the greatest integer notation [ l
and sketch the resulting sets.

(xq)4. Let f = I y = x - x. Find:

a. f(J),f(a),f(-J),f(-2). d. {f(1) +f(2) +f(2) +f(2)}J.
b. f(2 + 2) - f(2). e. f f(12) + f(2) + f(2) + f(3)}2.

f(3.1) - f(3) f(3 + h) -f(3) f h 0 0C. 3.1 -3 (3 +h) -3 or .

5. Let x and h be any numbers with h # 0. For each of the following definitions
of a function f, obtain.the given expression for the slope m of the line joining the
points (x, f (x)) and (x + h, f (x + h)).

a. f ={{(t,s)Is = 3t2 - 4t +5}; m = 6x + 3h - 4.

b. m=x(x+h)' for x+h 0,x 0.
l 11111

C. m=
1

,x>0,x+h>0.
Vx -+h + -,/x

sink
d. f = {(t,s) I s = sin t}; m = cos (x + 2h)h .

6. Relying mainly on la f bI -< Ial + lbl, then for c and d such that:
a. Ic-2I <2 and ld-2I <J, show that Ic - d( <2.
Hint: Ic-dl=l(c-2)-(d-2)I <Ic-2I+Id-2I.
b. Ic + 21 < ?} and ld + 2I <J, show that I c - dl <
c. Ic -dl <J and Ic+21 <2, show that Id+21 <
d. Icl < J and Idl < }, show that Ic + dl < e and Ic - dl <
e. Ic -21 <J, show that 2 < c < 2. [Recall: -Jul <- u < Jul]

f. Ic - dl < 2, show that d - J < c < d + J.

7. Let f and g be functions such that:

if 0 < Ix - 21 < 0.1, then I f(x) - 31 < 0.25 and

if 0 < Ix - 21 < 0.3, then Ig(x) - 41 < 0.2.

Show that if 0 < Ix - 21 < 0.1, then

a. I f (x) + g(x) - 71 < 0.45. b. I f (x)g(x) - 121 < 1.65.

10. Distance Formula, Circles

The distance between the origin (0,0) and the point (0,1) will now be
taken the same as the distance between the origin (0,0) and the point (1,0) and
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will be called the unit distance, i.e., the same unit will be used on both axes.

Figure 10.1

The distance between the points (-2,1) and
(4,9) is therefore 10 units. For (see Fig. 10.1)
the segment joining these points is the hypo-
tenuse of a right -triangle with sides 6 units
and 8 units long and, by the Pythagorean
Theorem, A/62 = 10 units is the length
of the hypotenuse.

With x, y, x1, and yl numbers, it follows
that:

The distance between the points (x,y) and
(x1,y1) is

(1) '/(x - x1)2 + (y - y1)2 units.

For, as illustrated in Fig. 10.2, there is a right
triangle with the segment joining the points (x,y) and (xl,yl) as hypotenuse
and sides Ix - x11 units and Iy - ylI
units long. Hence, this hypotenuse has
length Ix - x112 + Iy - yll2 units.
But Ix - x1j 2 = (x - x1)2 and Iv - V,12

,

(y - yl)2, and hence the distance iy
yI

il

may be written as in (1). i

Example. Show that the triangle with
vertices (1,-2), (4,1), and (-1,3) is an
isosceles triangle. Find the area of this
triangle.

Solution. The lengths of the sides of this triangle are

V(1 - 4)2 + (-2 - 1)2 = X32 + 32 = 3V2 units,

V'(l + 1)2 + (-2 - 3)2 = V'22 + 52 = x/29 units,

V(4 + 1)2 + (1 - 3)2 = .x/52 + 22 = V29 units,

and since two of these distances are equal, the triangle is isosceles with equal sides
meeting at the point (-1,3). The altitude from this point to the side joining the
points (1,-2) and (4,1) is perpendicular to that side at its mid-point
(1 + 4 -2 + 11 = (5 ' _ 1)

Thus the altitude h is
2 2 J 2' 2

h = v'(-1 - 2)2 + (3 + J)2 = /(2E)2 + (''2)2 = z V2 units.

The base is, as computed above, 3 V'2 units long, so the area is

J(3 V-2)(12 V2) = 21- units2.

Figure 10.2
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With h and k numbers and r a positive number, the set of points

(2) {(x,y) I (x - h)2 + (y - k)2 = r2}
is a circle with center the point (h,k) and radius r.

For a point (x,y) is on the circle with center at the point (h,k) and radius r
if and only if v'(x - h)2 + (y - k)2 = r and, thus, if and only if (x - h)2 +
(y - k)2 = r2.

Example. Show that

{(x,y)12x2-8x+2y2+12y1}
is a circle and find the center and radius of the circle.

Solution. First write the equation in the form

2(x2 - 4x ) + 2(y2 + 6y ) = 1
where the space is left for "completing the square":

2(x2 - 4x + 22) + 2()2 + 6y + 32) = I + 2.4 + 2-9 = 27,

and this is equivalent to (x - 2)2 + (y + 3)2 = L. . Thus,

{(x,y) 12x2 - 8x + 2y2 + 12y = 1) = {(x,y) I (x - 2)2 + (y + 3)2 = 2 }

and from this second form, the set is a circle with center the point (2, -3) and radius
-Vzunits.

A set A is said to be a subset of a set B and the notation

A c B

is used if every element of A is also an element of B. For example,

{xIIx-21<J}c {xI Ix-2I<1}.
Example. Show that

{(x,y) I Ix -11 < 1 and ly - 21 < J} - {(x,y) I x2 + y2 < 9}.

Solution. The first set is all points inside
the rectangle with corners (4,3)+ (a ,a)
and (-J,.31), whereas the second set is the
interior of the circle with center at the origin
and radius 3. Geometrically, the point is
farthest from the origin and its distance to the
origin is

j (4)2+ (3)2 16 + 99

(49)(25) 35

144 12 < 3'
(3,0)

so the whole rectangle lies inside the circle. Figure 10.3
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Algebraically, for (x,y) in the first set

3- '- < x < 4 and 3 <y<
so that 0 < x2 < 16 , e < y2 < 99 and hence

a <x2+Y2<is +4s <9.

PROBLEMS

Chap. 1

1. Find the distance between each of the following pairs of points:
a. (6,3), (2,1). c. (-2,7), (3,-5).
b. (-6,1), (2,5). d. (-2,-5), (-8,-3).

2. Show that the three given points are vertices of a right triangle. Find the area
of the triangle.

a. (2,1), (4,2), (-1,7). c. (- 1, -2), (4,2), (6, -i).
b. (2,1), (4,2), (2,6). d. (-0.5,3.5), (1,0.5), (2,1).

3. Express in the form (2) the set which is the circle having:
a. Center (-2,3) and radius 2.
b. Center (-2,3) and passing through (1,-1).
c. Center (12,-5) and passing through the origin.
d. Radius h and center (h,k).
e. Radius r, tangent to both axes, and center in the second quadrant.
f. The points (-2,4) and (3,9) as end points of a diameter.

4. Describe each of the sets:
a. {(x,y) x2 - 4x +y2 + 6y = 3).
b. {(x,y) x2 + 6x + y2 - 2y = -1).
c. {(x,y) 4x2 + 4y2 - 4x + 16y + 13 = 0).
d. {(x,y) 4x2 +.4y2 - 24x + 12y = 551.
e. {(x,y) I x2 + y2 - 2x + 4y + 5 = 0}.
f. {(x,y) 9x2 + 9y2 - 72x + 3y + 145 = 0).

5. Describe each of the sets:
a. {(X,y) I X2 + y2 + 6x - 8y < 0}.
b. {(x,y) I x2 + y2 + 8x + joy > -32}.
c. {(x,y) x2 + y2 < 25) n {(x,y) I x2 + y2 < lox}.

d. {(x,y) x2 + y2 < 251 n {(x,y) 12(x2 + y2) < 10(x + y)}.

e. {(x,y) x2 + y2 < 25} U {(x,y) I V2(x2 + y2) < 10(x + y)}.
f. {(x,y) I x2 + y2 >_ 25} U {(x,y) I x2 + y2 >- lOx).
g. {(x,y) x2 + y2 < 100) n {(x,y) I x2 + y2 < 8y - 6x}.
h. {(x,y) I x2 + y2 <- 100} n {(x,y) I x2 + y2 >- 8y - 6x}.
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6. Establish each of the following:

a. {(x,y) I -1 < x < 3 and -4 < y < 1} c {(x,y) x2 +y2 < 52).
b. {(x,y) (x - 3)2 + (y - 4)2 < 52} {(x,y) I xs + y2 < 102}.

c. {(x,y) Ix - 21 < 1 and y = x/2} {(x,y) I Ix - 21 < 1 and Iy - I I < }.
d. {(x,y) I Ix - 21 < 1 and y = x/2} c {(x,y) x2 + y2 - 4x - 2y < 1}.

7. With A 0 0, D, E, and F given numbers show that
a. {(x,y) I Ax2 + Ay2 + Dx + Ey + F = 01

(xI (x,+ D\2
+

(y E)2D2+E2-4AFJ
,y)

2A J + 2A 4A2

b. Show that the set in a:
1. Is empty if D2 + E2 - 4AF < 0.
2. Consists of a single point if D2 + E2 - 4AF = 0.
3. Is a circle if D2 + E2 - 4AF > 0.

11. Properties in the Large

An elementary way of plotting a graph is to obtain specific points on the
graph and then join these points by a curve. This method is essentially one of
approximation; the closer together the points on the graph are taken, the
more trust one is likely to place on the form of the graph between and near
these points. Using this method in plotting

(1) {(x,y) I x2 + y2 - 6x - 7 = 01,

the equation is first solved for y:

y=± 7+6x-x2
and then a corresponding table made:

x ...1 -31 -2 -1 0 1 2 3 4 5 6 7 81 91...

y no values 0 ±2.6 ±3.5 ±3.9 ±4 ±3.9 ±3.5 ±2.6 0 no values

Upon plotting the points (-1,0), (0,2.6), (0,-2.6),; , they seem to arrange
themselves in a circular array, but with only this to go on one could not say
with confidence that (1) is indeed a circle with center (3,0) and radius 4.

Sometimes properties in the large (i.e., overall properties) of a graph may
not be revealed even by a great many points on the graph. Some such
properties. are discussed below for graphs of sets of ordered pairs defined by
means of equations.

A. SYMMETRY. Two points are said to be symmetric to a line if the line is
the perpendicular bisector of the segment joining the points. A graph is
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symmetric to a line if all points of the graph occur in pairs symmetric to the
line; the line itself is called an axis of symmetry of the graph.

If all points of a graph can be arranged in pairs so that the line segments
joining such pairs are all bisected by the same point, then the graph is said
to be symmetric to that point; the point itself is said to be a point of symmetry
of the graph.

A graph defined by means of an equation may be tested for symmetry to
the coordinate axes or the origin by noting: If an equivalentfi equation is
obtained upon replacing

(i) y by -y, then the graph is symmetric to the x-axis.
(ii) x by -x, then the graph is symmetric to the y-axis.
(iii) x by -x and y by -y, then the graph is symmetric to the origin.

For example, since x2 - xy = 1 is equivalent to (-x)2 - (-x)(-y) = 1,
but is not equivalent to either x2 - x(-y) = 1 or to (-x)2 - (-x)y = 1,
then

{(x,y)Ix2-xy=1}
is symmetric to the origin, but is not symmetric to either axis.

From the equivalence of the equation involved, it follows that:

{(x,Y) I x2y2 = x2 - 1} = {(x,Y) x2(-Y), = x2 - 1}

= {(x,Y) I (-x)2y2 = (-x)2 - 1)
= {(x,Y) (-x)2(-y)2 = (-x)2 - 1}.

Consequently, this set of points is symmetric to the x-axis, to the y-axis, and
to the origin.

B. EXTENT. The x-extent and y-extint of a graph are

{x I there is a y such that the point (x,y) is on the graph}, and

{y I there is an x such that the point (x,y) is on the graph},

respectively. Thus, a number xo is in the x-extent of a graph if and only if
the projection of the graph on the x-axis contains the point (xo,0).

For example, note that

{(x,Y) I x2y2 =x2 {(x,y) I Y = f x2 - 1}
2

Thus, if a point (xo,yo) is in this set, then one observation is that xo 0 0 but
furthermore xo - 1 - 0. Hence, for this graph the x-extent is

{x I either x > 1 or else x < -1}.
t Two equations in x and y are said to be "equivalent" if whenever an ordered pair of

numbers satisfies either equation it also satisfies the other.
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This same set may also be expressed as

(x,Y) I x =
_1

.

ll
Vy2

Hence, the restriction is now 1 - y2 > 0 and the y-extent is

{y-1 <y<1}.
The general procedure is to solve the equation for y in terms of x, and

then to note what restrictions on x are necessary to ensure that:
(i) No denominator is zero.
(ii) No negative number occurs under a square root sign (or any radical sign

with even index).
Next, solve for x in terms of y and note restrictions on y to ensure (i) and (ii).

C. HORIZONTAL AND VERTICAL ASYMPTOTE. The set

2x + 10
((x,y)

1Y= J
x

contains the points (10,3), (100,2.1), (1000,2.01), (10000,2.001), and for e any
positive number

10<2+e if x> .

x x e

The fact that "(2x + 10)lx may be made to differ from 2 to within any stated
accuracy merely by choosing x sufficiently large" is denoted' by

lim2x+10-2.
X_co x

DEFINITION. For f a junction and L a number, we write

(2) lim f(x) = L
z_oo

if to each positive number e there corresponds a positive number G such that

whenever x > G, then l f(x) - LI < e.
If, however, for each e > 0 there is a number G > 0 such that

whenever x < - G, then J f(x) - LI < e
we write

lim f(x) = L.

The symbolism x -> oo is read, according to preference, "x becomes
positively infinite" or "x approaches positive infinity" or "x increases with-
out bound." For the specific functions we meet for some time, it will be intu-
itively evident whether the limits exist as x --> oo or x - oo. For example,

lim
x2 - 1 = 1, lim Jx2 - 1 = 1, and lim Jx2 - 1 = 1

z-.oo X2 X-.W X2 z---co x2
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but lim (x - x-1) does not exist nor does lim sin x although
x--. co Z- CO

sin x
lim exists and is equal to 0.

x-.00 X

Chap. 1

Also, there is no sense in writing lim 1 - y2 since whenever y > 1,

then 1 - y2 < 0 and VT---;2 is not a real number.

DEFINITION. Given a graph, if there is a function f and a number L such that
the graph off is a part (or all) of the given graph and if

lim f (x) = L,
X- cc

then the line {(x,y) l y = L) is said to be a horizontal asymptote in the positive
direction of the given graph. By replacing x -,- co by x - - co, the definition
of a horizontal asymptote in the negative direction is obtained.

For example, {(x,y) I x2y2 = x2 - 1) contains

x2 - 1 x2 - 1 x2 7- 1
j(x,y) I y = whereas lim J = 1 and lim = 1,2
`` x2 x-. cc x2 x-.-CO x2

so that the line {(x,y) I y =1} is a horizontal asymptote in both directions.
Similarly, the line {(x,y) I y = -l} is also a horizontal asymptote in both
directions.

DEFINITION. Given a graph, if there is a function g and a number L such
that the given graph contains

{(x,y) I x.= g(y)} and if lim g(y) = L,

then the line represented by {(x,y) I x = L} is said to be a vertical asymptote
(in the positive direction) of the given graph.

For example, {(x,y) x2y2 = x2 - 1} has no vertical asymptote, since
(as noted earlier) the y-extent is {y I -1 < y < 1}.

Example. Sketch {(x,y) I x2y2 = x2 - 1}.

Solution. Had we not already done so, we would now find the graph to :
1. Be symmetric to the x-axis, the y-axis, and the origin.
2. Have x-extent = {x x 1 or x < -1 }, y-extent = {y -1 < y < 1}.
3. Have lines {(x,y) I y = ±1} as horizontal asymptotes in both directions,

but no vertical asymptote.

By setting x = 1 in the equation, the point (1,0) is the point on the graph with
smallest positive abscissa. With this information, we can hardly fail to sketch fairly
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accurately the portion of the graph in the first quadrant and then the portions in the
other quadrants by using the symmetry properties.

(0,1i---- ------------

(110)

Figure 11.1

PROBLEMS

Discuss the properties in the large given above for
{(x,y) I E(x,y)} where E(x,y) is replaced by the equation:

the graph and sketch

1. xy - 2y = 1. 6. 4xy - 3y = 3x - 2. 11. 2x2 + 5y2 = 10.

2. xy - 2x =1. 7. y = sine x. 12. 9x2 + 16y2 = 144.

3.x2y=1. 8.y=2x. 13.9x2+16y2=1.
x2

4. x2y2 =y2 - 1. 9. 1xI +lyl =1. 14. 1 + 52 =1.

5. x2y - 2y = 3. 10. x2is + y2i3 = 1.

D. GEOMETRIC ADDITION. The set {(x,y) I x2 - xy = 1 } is also the set

(1) ((x,y) y = x -z).

First {(x,y) I y = x} and {(x,y I y = -1/x}
are easily drawn, and then from these
two the desired set (1) may be obtained
by so-called "Geometric Addition" as
shown in Fig. 11.2. For example, the
point P of the desired graph was obtained
by taking the distance RS and locating
P such that PQ = RS with P below Q
since S is below the x-axis.

Figure 11.3 illustrates how geometric
addition of the sine curve (dotted) and

Figure 11.2

'the line {(x,y) I y = x/2} were used in sketching

((x1Y)IY
=:x

2
+ sin x
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Figure 11.3

Chap. 1

E. OBLIQUE ASYMPTOTES. A graph may have asymptotes which are
neither horizontal nor vertical.

DEFINITION. Let a graph be defined by means of an equation. If there are
numbers m and c and a function f such that the given graph contains (or is)

(2) {(x,y) I y = mx + c + f (x)} and if lim f (x) = 0,
x-CO

then the line {(x,y) I y = mx + c} is said to be an asymptote in the positive
direction. A similar definition may be given for an asymptote in the negative
direction.

For example, {(x,y) I x2 - 2xy + 2x - 1 = 0} is also

{(x,Y)IY=2x+1-

and, hence, the line {(x,y) I y = jx + 1} is an asymptote. The graph may be
drawn by using geometric addition.

THEOREM 11. For a > 0 and b > 0 the graphs

(3) {(x,y)

each has the lines

x2 y

a2
- b2 = 1 and {(x,y)

{(x,y) I Y = + b x}
a

Z =x2b2 a2 1

as asymptotes in both directions.

PROOF. By solving the first equation in (3) for y, the given graph contains

((x,y) I y = a2} , and this by adding and subtracting
b

x) may be
a -a
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written as

{(xy) I Y = b x + b (1/x2 - a2 - x)}
a a

(x,Y) I Y = b x + b (V X2 - a2 - x)
VX2 - a 2 + x

a a "Vx2- a2+x
2 - 2 2

(x,Y)IY=bX+b(x a)-x
a a%/X2-a2+x

(X'Y) I Y = b -ab
a \/X2 - a2 + X

which is in the form (2) with m = b/a,
c = 0 and

f(x) _ -ab
Vx2-a2+x

The denominator can be made as large
Figure 11.4

35

as we please (and the absolute value of the fraction as small as we please)
merely by choosing x sufficiently large. Consequently lim f (x) = 0 and,

X-CO

as defined above, the given graph has the line ((x,y) I y = bx/a} as an
asymptote in the positive direction. Since the given graph is symmetric to
both the x-axis and to the y-axis, the further asymptotic properties of the
graph hold.

In a similar way, the second set in (3) may be shown to have the same
asymptotes.

Example. Sketch {(x,y) 13x2 - 4y2 = 12}.

Solution- A. The graph is symmetric to the x-axis, to the y-axis, and, hence,
also to the origin.

. B. Since the graph is also

'/3{(x,y)Iy=±x2_4} or

we have x-extent = {x I x > 2 or x <- -2}, but there
is no limitation on the y-extent.

C. There are no horizontal or vertical asymptotes.
D. Geometric addition is not readily applicable.
E. The graph is also

x2 y2 l

14
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which is in the form (3), and thus the lines

v'3
1

{(x+y) I y = - z XI

are asymptotes in both directions.

Chap. 1

Upon checking that the points (2,0) and (-2,0) are on the graph, we obtain
Fig. 11.5.

PROBLEMS

1. Use geometric addition to sketch each of the following sets:

a. (x,y) I y = x + x2
. e. {(x,y) I xy - y - x2 + x = 1}.

b. t(x,y)Ix y + }. f. {(x,y) xy + x2 - x = 1).
y1

c. {(x,y) x2y + x2 + 1 = 0}. g. {(x,y) I y = sin x + cos x}.

(
d. ((xy) I y =

x
2

+ cos x}. h. {(x,y) I y = 3 + sin 2x}.

2. Each of the following sets has at least one oblique asymptote. Find the
asymptotes and sketch the graphs.

x2. y2-

4 -6 lly

x2 y2

6
4=I.

y2 X2 }

4
x2 y2 - l

2 + 32(1 - 22)

3. Each of the parts below helps in working the next part. Show that
a. (a - b)(a2 + ab + b2) = a3 - Y.
b. (al/3 - bl/3)(a2/3 + al/3b1/3 + b2/3) = a - b.

7C. [(I + x3)1/3 - x][(l + X3)2/3 + (I + x3)1/3x + X2] = 1.

d. {(x,y) 1 y3 - x3 = 1} _ {(x,y) I y = x + [(1 + x3)1/3 - x]}

I_ (X'Y) I y = x +
(1 + x3)2/3 + (1 + X2)113x + x2}.

e. The set {(x,y) I y3 - x3 = 11 has the line {(x,y) I y = x} as an oblique
asymptote in both directions.

f. The set {(x,y) I x3 + y3 = 1) has the line {(x,y) I y = -x} as an oblique
asymptote in both directions.

d. {(x,y) 19x2 - 16y2 = 144).

e. {(x,y) 19x2 - 16y2 = 1}.
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12. Translation of Coordinates

Let h and k be numbers, and plot the points (h,k), (h ± l,k), and (h,k + 1).
Now establish a new coordinate system with these points, respectively, as the
new origin, unit point on the new axis of abscissas, and unit point on the new
axis of ordinates. A point in the plane now has
coordinates (x,y) relative to the original axes,

yl ibut (X, Y) re at ve to the new axes where

(1) X=x-h, Y=y - k: (h,k+1)4 Y

As a check, note that if X = 0 and Y = 0, then
x = h and y = k. Also, if X=1 and Y=O, (h,k) (h+1,k)

then x = h + l and y = k. (0.1)

Translation of axes may be used to simplify
graphing.

(0,0) (1,0) X
Example 1. Sketch the set

(2) {(x,y) I 36x2 - 16y2 - 108x - 64y = 127} Figure 12.1

by first translating axes so the new origin is at the point (2, -2).
Solution. In (1) substitute h = 2 and k = -2 to obtain X = x - z and

Y = y - (-2) = y + 2, so that in the equation of (2) substitute

(3) x=X+l and y= Y-2.
The result of this substitution, with simplifications, is

36(X + 2)2 - 16(Y - 2)2 - 108(X + 2) - 64(Y - 2) = 127,
36X2 + 108X + 81 - 16Y2+64Y-64 - 108X - 162 -64Y+ 128 = 127,

y-axis 36X2 - 16 Y2 = 144,
Y-axis X2 y2

\ The set (2) plotted relative to the xy-system
will be the same as the set

\ x-axis X2 Y2

\ / (4) {(X' Y) 14 - 9 - 1}

\ X-axis plotted relative to the XY-system. The graph
is symmetric to the X-axis, the Y-axis, and to
the XY-origin, and thus is symmetric to the
lines

% \\ {(x,y) I x = 2} and {(x,y) I y = -2}

and to the xy-point (2, -2). Also, X-extent =
Figure 12.2 {X I X:5 -2 or X >- 2), so that

x-extent {xIx-2 <---2 or x-s>-2}={xIx_-j or x>_ }.

There is no restriction on the Y-extent, and thus no restriction on the y-extent.
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The graph has oblique asymptotes which, in the proper coordinate system, are the
lines {(X,Y) 2Y = =3X} or

{(x,y) 2(y + 2) = _3(x - 2)} _ {(x,y) I 6x - 4y = 17 or 6x + 4y = l}.

Two methods for determining a suitable translation are given below.

FIRST METHOD

Example 2. Determine the translation used in Example 1 to simplify the
equation in (2).

Solution. Rewrite the equation as

36(x2 - 196.x) - 16(y2 + 4y) = 127,

36(x2 - 3x + ) - 16(y2 + 4y + ) = 127

where enough space was left for "completing the square" :

36(x2 - 3x + g) - 16(y2 + 4y + 4) = 127 + 81 - 64,

36(x-2)2-16(y+2)2=144.
This equation looks simpler upon setting

X=x-2 and Y=y+2,
which are equivalent to the equations (3) used in Example 1.

SECOND METHOD

Example 3. Sketch {(x,y) I xy + 4x - y = 5} by first making a translation
of axes.

. Solution. Let h and k be numbers, as yet unspecified, and in the equation
xy + 4x - y = 5 substitute

Figure 12.3

(5) x = X + h and y= Y + k.
The resulting equation and a rearrangement are

(X+h)(Y+k) +4(X +h) -(Y+k) =5 and
(6) XY + (k + 4)X + (h - 1)Y =

5 - hk - 4h + k.
Upon selecting k -4 and h = 1, the coefficients
of X and Y are both zero, and 5 - hk - 4h + k =
5 - (1)(-4) - 4(1) + (-4) = 1 so that the equa-
tions of (5) become

x=X+1, y=Y-4
and (6) becomes XY = 1. Thus, the new origin
X = 0, Y = 0 is at the point where x = 0 + 1 = 1
and y = 0 - 4 = --4. Hence,

{(x,y) xy +4x -y = 5} and {(X,Y) XY = 1}



Sec. 12 Translation of Coordinates 39

are the same; it being understood that the first is drawn relative to the original
system and the second relative to the new system. Hence, in terms of the original
system, the graph is symmetric to the point (1, -4) and has the lines

{(x,y) y = -4} and {(x,y) I x = l}

as horizontal and vertical asymptotes.

PROBLEMS

1. Sketch each of the following after first making a translation of axes using the
given values of h and k.

a. {(x,y) 2xy - 4x + 3y = 6}, h k = 2.
b. {(x,y) I x - y2 - 6y = 14}, h = 5, k = -3.
c. {(x,y) y = 3 + 32(20)}, h = -5, k = 3.
d. {(x,y) j y = 1 + sin (2x - 5)}, h = 2.5, k = 1.

b b2 - 4ac
e. {(x,y) I y = axe + bx + c}, h = -

2a, k = - 4a

2. Use the first method to determine a translation which simplifies each of the
following, then sketch the graph.

a. {(x,y) 3x2 + 4y2 + 6x - 16y + 7 = 0).
b. {(x,y) 3x2 - 4y2 + 6x - 16y = 17}.
c. {(x,y) 4x2 + 6y2 - 12x + 36y + 63 = 0).
d. {(x,y) j 12x2 + 18y2 - 60x + 24y + 89 = 0}.

3. Transform each of the following so the resulting XY-equation will have no
X-term or Y-term. In each case give the xy-coordinates of the XY-origin.
a. {(x,y) I 2xy + 3x - 4y = -6}. c. {(x,y) I (x - 1)(y + 2) + 2x = 3}.

b. (x,) x 3x + 5y = 17). d. x 3 + x 2

13. Conic Sections

Let e be a positive number. In the plane select a point F and a line 1 not
passing through F.

DEFINITION. The point set
{P I P is a point in the plane such that the distance from --------7

P to F is e times the perpendicular distance from P to 11.

is a conic section with eccentricity e, focus F, and directrix
1. In case : F

1. e = 1 the conic is called a parabola.
2. 0 < e < I the conic is called an ellipse. Figure 13
3. 1 < e the conic is called a hyperbola.
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Simple expressions for sets which are the various conic sections may be
obtained by judicious choices of F and 1. Such selections of F and I are
discussed first for the parabola in Sec. 14, and then for the ellipse and
hyperbola together in Sec. 15.

14. Parabola

In this case e = 1. Letp be a number different from zero; hence, p may be
positive or negative, but p 0. Select the point (p,0) for F and select the line
{(x,y)I x = -p} for 1. The distance from a point (x,y) to F is 1/(x - p)2 + y2
units, whereas the perpendicular distance from a point (x,y) to I is Ix - (-p)I
= Ix + pl units. Since e = 1, a point (x,y) is on the parabola with focus F
and directrix I if and only if (x -- p)2 + y2 = Ix + p1. But

{(x,Y)I.\I(x-p)2+Y2= Ix+pl}

= {(x,y) (x - p)2 + y2 = (x + p)2}

= {(x,Y) x2 - 2px + p2 + y2 = x2 + 2px + p2}

= {(x,Y) YZ = 4px}.

It therefore follows that

(1) {(x,y) I y2 = 4px}, with p 0,

is the parabola with focus (p,0) and directrix the line {(x,y) I x = -P}-

Example 1. Show that {(x,y) 120x + 3y2 = 0} is a parabola. Find the focus
and directrix of this parabola.

Solution. {(x,y) 120x + 3y2 = 0} =
{(x,y) I y2 = - $°x} = {(x,y) I y2 = 4( - 3 )x}

=s s x-s and this last expression is in the form (1) with p
3 - 3. Thus, the graph is a parabola with focus

(-3,0) and directrix the line {(xy) I x = 3}. Notice
that the points (0,0), and are
on the parabola.

(-3.0) For a parabola with focus F and directrix
1, let V be the mid-point of the line segment
from F perpendicular to 1. V is equidistant
from F and I and is, therefore, on the para-

10
a a bola. The point V is called the vertex of the

parabola.
Figure 14.1 With the distance from F to I as radius,

draw a circle with center F and note the
points Pl and P2 where this circle cuts the line through F parallel to 1.
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Pl and P2 are each equidistant from F and 1, so both are on the parabola.
The line segment between Pl and P2 is called the right focal chord of the
parabola.

For the parabola (1), the vertex is (0,0) and the ends
of the right focal chord are (p,2p) and (p,-2p), so that the

I P,
length of the right focal chord is 4 pI units. Knowing the ,

e of a arabola theal sha ositio of th tp pp , n e vergener ex ( v
and ends of the right focal chord enable one to sketch the - ---
graph near the vertex with sufficient accuracy for most ,\ I

purposes.
! PZ

Example 2. Show that {(x,y) 3y2 + 12y - 20x + 42 = 01
is a parabola and find its vertex, focus, ends of the right focal
chord, and its directrix.

Figure 14.2

Solution. Toward obtaining a suitable translation we write the equation
involved as

3(y2 + 4y ) = 20x - 42,

4 s,3) 3(y2+4y+4)=20x-42+12=20x-30
)3 22-in 3)-( 2 .y = \x

Hence, from the translation determined by

(2) X=x-2, Y=y+2,
s _2) we see that the graph isF (i

{(X,Y)13Y2 = 20X} = {(X,Y)j y2 = a X} _
{(X, y) I Y2 = 4(s)X}.

the graph ison comparing this last form with (1)L69-16-) U ,p

Figure 14.3

seen to be a parabola with p = 3. The required
information about this parabola is found in terms of
XY-coordinates and then changed to the original

xy-coordinates by means of (2):

vertex

focus

XY-coordinates xy-coordinates

(0,0) (s, -2)

(a,0) (is, -2)
a lp 4 19. _ 1.6_s, 3o), (3, _ s)

8ends of right focal chord (g,
(-6 (6 , 3 )

directrix {(X, Y) X = -A'} {(X,y) I X = -166)

By analogy, it follows that

(3) {(x,y) x2 = 4py}
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is a parabola with vertex (0,0), focus (O,p), ends of right focal chord (-2p,p)
and (2p,p), and directrix the line {(x,y) I y = -PI-

The line containing the vertex and focus of a parabola is called the axis
of the parabola.

PROBLEMS

1. Sketch the following parabolas, giving in each case the vertex, focus, ends of
the right focal chord, and the directrix.

a. {(x,y) I y2 = x}. e. {(x,y) I x2 + 2x - 4y = 1).

b. {(x,y) I y2 = -6x}. f. {(x,y) y2 + 2y + 2x - 1 = 0}.

c. {(x,y) I x2 = 4y}. g. {(x,y) I y2 - 8 = 8(x + 1)}.

d. {(x,y) 12x2 + 9y = 0). h. {(x,y) 2x2 + 2x + 3y - 1 = 0}.

i. {(x,y) I (x - 1)2 - 2x - 8(y + 2) = 5}.

2. Determine A, C, D, E, and F so that

{(x,y) I Axe +Cy2 + Dx + Ey +F=0}

willt be a parabola with axis parallel to one of the coordinate axes and having:

a. Vertex (0,0), focus (2,0). c. Vertex (1,2), focus (1,5).

b. Vertex (0,0), focus (0, -2). d. Vertex (2,2), focus (-1,2).

e. Directrix {(x,y) I y = 51, focus (2,1).

f. Directrix {(x,y) I x = 10}, vertex (9,4).

g. x-extent = {x I x focus (3°-, -1).

3. Let a be a positive number, and consider a parabola with right focal chord a units
long. Show that the line through the focus of this parabola and making an angle
0 with the axis of the parabola intersects the parabola in two points whose
distance apart is a csc2 0 units. [Hint: Select a coordinate system with origin at
the vertex and x-axis the axis of the parabola.]

4. Take a parabola with its vertex at the origin and its focus F on the x-axis.
Draw a line through F and any point P on the parabola. From P draw the
perpendicular to the directrix and label the foot of this 'perpendicular A. Draw
AF and let M be the point where this line cuts the y-axis. Prove that angle
FPM = angle MPA. Also, prove that the line through P and M contains no
point of the parabola other than P.

5. Given that a ball thrown straight up is s ft above the ground t sec after being
thrown, where s = 128t - 16t2. Show that {(t,s) I s = 128t - 16t2} is a parabola
and find its vertex.

t The letter B has been omitted, since later we will discuss equations of the form
Axe+Bxy+Cy2+ Dx+Ey+F=0.
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6. Find a number 6 such that:

a. {(x,y) I Ix - 11 <6 and y = x2} c {(x,y) Ix - 11 <8 and ly - 1 I < 0.25}.
b. {(x,y) Ix - 21 < 6 and y = x2} C {(x,p) Ix - 21 < 6 and ly - 41 < 0.1}.
c. {(x,y) Ix + 31 < 6 and y = x2} c {(x,y) Ix + 31 < 6 and ly - 91 < 0.1}.
d. Let a be a positive number such that 0 <e < 9. Determine 6 > 0 such that

{(x,y) I Ix - 31 < 6 and y = x2} c {(x,y) I lx - 31 < 6 and ly - 91 < e}.

7. Sketch {(x,y) 10 < x < 2 and 0 < y < x2} and show that {(x,y) 10 < y < 4
and Vy _< x < 2} is the same.

15. Ellipse and Hyperbola

According to the definition (see Sec. 13) an ellipse or a hyperbola is a
conic with eccentricity e 1, e > 0. We now restrict e to be such that
e > 0, but e 1. Let a be a positive number. Thus, ae 0 ale; in fact

ae<a if 0<e<1
e

ae > a if 1 < e.
e

Select the point (ae,O) for the focus F and the line {(x,y) I x = ale} for the
directrix 1. The distance from a point (x,y) to the focus is 1/(x - ae)2 + y2
units, and the perpendicular distance from a point (x,y) to 1 is Ix - a/el units.
Thus, a point (x,y) is on the conic with focus (ae,0) and directrix the line
{(x,y) I x = ale} if and only if

V(x - ae)2 + y2 = elx - a/el.
This conic is therefore the set expressed in any of the following ways:

{(x,y) I\/(x - ae)2 + y2 = elx - a/el}

= {(x,y) (x - ae)2 + y2 = e2(x - a/e)2}

= {(x,y) x2 - 2aex + a2e2 + y2 = e2x2 - 2aex + a2}

= {(x,y) x2(1 - e2) + y2 = a 2(l - e2)}

((xy)(1) _
a2 + a 2(1 - e2)

1 .

With the same number e as above (e > 0, but e 1) and the same number
a > 0 as above, consider the conic with focus (-ae,0) and directrix the line
{(x,y) I x = -ale). This conic is

{(x,y) I1/(x + ae)2 + y2 = elx + afel}

which also simplifies to (1). These results may be stated as:
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For e > 0 but e I and for a > 0 the conic

1x2 2

{( k,y)
y

a2 a2(1 - e2)
1}(2)

has the point (ae,0) and the line {(x,y) I x = a/e} as one focus and directrix,
but also has the point (-ae,0) and the line {(x,y) I x = -a/e} as another focus
and directrix.

Graphical illustrations of this statement and other pertinent facts appear
on page 47 for easy reference while working the problems.

By analogy

(3) ((x,y)
Yz x2

a2 + a2(1 - e2) 1

is a conic with foci (0,ae) and (0,-ae) and with respective directrices the lines
{(x,y) I y = a/e} and {(x,y) I y = -a/e}.

Example 1. For the sets

{(x,y) I 4x2 = 60 - 3y2} and {(x,y) I 4x2 = 60 + 3y2}

show that one is an ellipse and the other a hyperbola. In each case find the foci
and the directrices.

Solution (for the first set). This set may be written in turn as

{(x,y) I 4x2 + 3y2 = 60} _ {(xy)
x2 y2

15+20

This looks, at first glance, to be in the form (2), but if we try to set a2 = 15 and
a2(1 - e2) = 20 we obtain 15(1 - e2) = 20, 1 - e2 = 3, and e2 = -3, which is
impossible. However, from (3) upon setting a2 = 20 and a 2(l - e2) = 15 we have
20(1 - e2) = 15, (1 - e2) =J, e2 =-1, and e = 2, since e > 0. Since O <e <1
the first graph is an ellipse. Since a = 2'/5 and e = 2 (and the form (3) is applicable)
the foci and directrices are given as:

(0,''/5), (0,-'/5); {(x,y) I y = 4v'5}, and {(x,y) I y = -4V'5}.

Solution (for the second set). This set may be written as

x2 y2
(4) (x,y) 15 - 20 = 1 }

which, because of the minus sign, may not look like either (2) or (3). It is, however,
in the form (2), for upon setting a2 = 15 and a2(1 - e.2) = -20 we have 15(1 - e2)
_ -20, 1 - e2 e2 = , and thus e = V 3. Since 1 < e the graph is a hyper-
bola. Since a = '/15 (and the form (2) is applicable) this hyperbola has foci and
directrices given by

(-''35,0); {(x,y) I x = 3 VI}, {(x,y) x = -3'/4).
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Also note from (4), and the previous discussion of oblique asymptotes (see Sec. 11 E,
pg. 34), this hyperbola has the lines

{(x,y) I v'3y = ±2x}
as oblique asymptotes.

The line containing the two foci of an ellipse or hyperbola is called the
principal axis of the conic, and the mid-point of the segment joining the foci is
called the center of the conic. From the typical form (2), it is seen (by substitut-
ing y = 0 in the equation and solving for x) that an ellipse or hyperbola cuts
the principal axis in the two points (a,0) and (-a,0); these points are called
the vertices of the conic. The line segment between the vertices is called:

The major axis when the conic is an ellipse.
The transverse axis when the conic is a hyperbola.

For an ellipse (0 < e < 1 so I -e 2 > 0), it follows from (2) that an
ellipse cuts the line perpendicular to the major axis in the two points
(O,av'l - e2) and (0,-a1Vl - e2); the segment between these points is
called the minor axis of the ellipse.

A hyperbola has two asymptotes since (2) may be written as

x2 y2
a2 a2(e2 - 1) 1

where both denominators are positive since e > 1 and e2 - 1 > 0. In this
form it is seen (from Theorem 11 p. 34) that the graph has two asymptotes
given by

{(x,Y)
I y = =1/e2 - lx}.

Also, the hyperbola does not cut the line perpendicular to the transverse axis
at the center; in fact from the above form

x-extent = {(x,y) I x < -a
Example 2. Find the parts defined above

for the conic

{(x,y) I 9x2 - 16y2 - 18x - 64y = 199}.

Solution. We first determine that under
the translation

X=x-1, Y=y+2
the conic is also the graph of

((X,Y)
X2 Y2

6_ + -9 = 1}.

(-4-2)

Figure 15

Thus, a2 = 16, a2(1 - e2) = -9,1 - e2 = - i e, and e = d. Since 1 < e the graph
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is a hyperbola. Now ae = 5 and ale = Y. The desired information in terms of the
XY-system and then changed to the xy-system is:

X Y xy

center (0,0) (1,-2)
foci (±5,0) (6,-2), (-4,-2)
directrices {(X, Y) X = i 5g} {(x,y) I x = s or x = - 51}
vertices 4,0) (5,-2), (-3,-2)
asymptotes {(X, Y) Y = =4X} {(x,y) I 3x - 4y = 11 or 3x + 4y = -5)

Now that set notation has instilled the concept of sets and their geo-
metric representations, the use of set notation will be subdued. Unless
there is danger of being misunderstood, a mathematician would not write
{(x,y) 3x - 4y = 11), but only 3x - 4y = 11 and even say "The line
3x - 4}' = 11." He means, of course, "The line consisting of the set of all
points in the coordinate plane whose coordinates satisfy the equation."
We will continue to use set notation to introduce some new concepts or when
we want to be unequivocal about what is meant.

PROBLEMS

1. Find the eccentricity, center, foci, directrices, vertices, the ends of the minor axis
in case of an ellipse, and the asymptotes in case of a hyperbola.

x2 y2

62 - 82

(x - 2)2 - (y + 3)2
= 1.

9 16

x2 y2

b.82-62=1.

x2 y2

C.82+102=1.

2 2

d. 1o2 + 82 = 1.

2.

g. 16y2 - 9x2 + 36x + 128y + 76 = 0.

h. 25x2 + 16y2 + 50x + 64y = 311.

Find numbers h, k, a > 0 and e > 0 such that

= 1.

(x - h)2 (y - k)2

a2 + a2(l - e2) = 1 or

(x - 2)2 (y + 3)2

52 + 42 = 1.e.

(y - k)2 (x - h)2

a2 + a2(1 - e2)
1

represents a conic with

a. Center (0,0), focus (,0), and vertex (1,0).

b. Center (0,0), focus (3,0), and vertex (1,0).
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c. Center (2, -1), vertex (2,4), end of minor axis (-1, -1).

d. Center (-2,3), vertex (-2,5), directrix {(x,y) I y = 4).

e. Asymptotes {(x,y) 4x - 3y = 17 or 4x 3y = -1), vertex (-1,-3).
f. Asymptotes {(x,y) 3y = _4x}, vertex (8,0).

3. For 0 < e < I and a > 0, let (x,y) be a point such that its distance to the point
(ae,0) plus its distance to the point (-ae,0) is 2a units. Prove the point (x,y)
is on the ellipse with foci (±ae,0) and vertices (±a,0).

4. For 1 < e and a > 0, let (x,y) be a point such that the difference of its distances
to the points (±ae,0) is in absolute value 2a units. Prove the point (x,y) is on
the hyperbola with foci (±ae,0) and vertices (±a,0).

5. A rod with ends called A and B has a point C marked on it. The rod is moved so
A stays on the x-axis and B on the y-axis. Show that C describes a circle if
AC = BC and an ellipse if AC BC.

6. Show that {(x,y) I -< x < 2 and - Vx2 - 1 <- y -< Vx2 - 1} is exactly the
same set as {(x,y) -V3 5 y S ''3 and 'Vy2 + 1 <- x <- 2}.

7. The eccentricities and lengths of the semi-major axes of the orbits of the planets
Neptune and Pluto are: ,

e a

Neptune 0.0082 2,793.5 x 106 mi

Pluto 0.25 3,680 x 106 mi

Show that Pluto is sometimes closer than Neptune to the sun. [Note: It will
be in 1989. See the Encyclopaedia Britannica (under Pluto).]

Ellipse 0<e<1

Hyperbola e > 1



CHAPTER 2

Limits and Derivatives

The most striking difference between calculus on one hand and algebra or
geometry on the other is the degree of dependence upon the notion of a limit.
Algebra and geometry are not devoid of limits (e.g., the sum of a geometric series
with common ratio in absolute value less than 1 or the area of a circle), but limits
play a minor role here; whereas, in calculus limits are basic to and permeate the
whole subject.

Calculus is traditionally divided into two main parts; one primarily concerned
with derivatives of functions (introduced in this chapter), the other with integrals
of functions (Chap. 6). This chapter, then, begins the study of calculus.

16. Limit of a Function

For c a number, L a number, e a positive number, and 6 a positive number,
then the set

{(x,y) I both Ix - cl < 6 and Iy - LI < e}

is a rectangle with center (c,L), width 26 units, and altitude 2e units. The set

{(x,y) 10 < Ix - cl <6andly-LI <e}

..............................

hit:r:::::

(a,0)

S

1 (c,01_) 1 (b,p)

Figure 16.1

differs from the above rectangle only
by not containing the vertical segment
of length 2e units through the center.

The function f whose graph is
represented in Fig. 16.1 is such that
f (x) is defined at least for all x satis-
fying a< x< c or c< x< b and
f (c) may or may not be defined. For
x close to c the value of f (x) is close
toL; that is, given any positive number
e there is a positive number h (as illus-
trated in Fig. 16.1) such that

{(x,y)I0<Ix-cl <bandy =f(x)}
{(x,y)10< Ix - cl < 6andly-LI <e}.

48
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DEFINITION. Given a function f, a number c, and a number L, the function f
is said to have limit L at c:

1. If for each number S > 0- the set {x 0 < Ix - cI < b} contains
numbers in the domain off, and

2. If given any positive number c no matter how small, there is a positive
number S such that

{(x,y) 10 < Ix - cl <aandy=f(x)}

{(x,y)10<Ix-cl <6andly-LI<E};
that is, whenever 0 < Ix - cl < S, then If (x) - LI < E.

Example 1. Show that the function f has limit 2 at c = 1, where

I -x
f (x) = _ , for x > 0 and x ; 1.

1 - 'fix
Solution. 1. Notice that f(l) is not defined, but f(x) is defined if 0 < x < 1

or 1 < x. Also, notice that if 0 <- x < 1 or 1 < x, then

1 -x 1 -x 1 + 'x
i-Vx 1--VX l+Vx

= (1 - x)(1 + Vx)
= 1 + fix.1 -x

Hence,
f={(x,y)10<x<1or 1 <x andy =1 +''x}
and this was used to obtain Fig. 16.2.

2. Let e be any number such that 0 < E < 1.
We first find the point off with ordinate 2 + E:

(1,2)

.(1,0)

Figure 16.2

2 + E = 1 + Vx, Vx = 1 + E, X = (1 + E)2,

so that ((1 + E)2, 2 + e) is the point. In the same way the point on the graph with
ordinate 2 - e is the point ((1 - E)2, 2 - E). Now (1 - E)2 < 1 < (1 + E)2 and if
either (1 - E)2 < x < 1 or 1 <x < (1 +C)2, then 2--E <f(x)<2+c. We
thus take for 6 the smaller of

(1 + E)2 - 1 = 2E + E2 and 1 - (1 -e)2 = 2E E2

and hence take 6 = 2E - E2 (which is positive since 0 < E < 1) and have that
1-x0<1x-1l <E and y=

1 - vx
c{(x,y) 0 < lx - 11 <6 and ly - 21 <e};

(0,1)

that is, if 0 <x-11 <6, then If(x) - 21 <c.

Consequently, from the definition, 2 is a limit of f at c = 1.
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A very simple limit to prove, but one used repeatedly, is

Iim x = C.
2-+C

Chap. 2

With f defined byf(x) = x we are to show that "Given an e > 0 there exists a 6
such that if 0 < Ix - cI < S then If(x) - cd < e." Merely choose 6 = e.

THEOREM 16. Let f be a function and c a number such thatf has a limit at c,
and let L be this limit. Then f has no other limit at c.

PROOF. Assume there is a second limit L1 of f at c. Then L1 L so
IL - L11 > 0 and JCL - L11 > 0. Choose e = JCL - L11 and corresponding
to this particular positive number e let 6 > 0 be such that

if 0 < I x - cl < 6, then If(x) - LI < e

and let 61 > 0 be such that

if 0<Ix-cl <61, then If(x)-L1I <e.

Let x* be such that both 0 < Ix* - cl < 6 and 0 < Ix* - cl < 61 and note
that both If (x*) - LI < e and If (x*) - L11 < e. Hence,

IL-L1I <IL-f(x*)I +If(x*)-L11 <2e=IL-L1I
which says that IL - L11 < IL - L11 and this cannot be true. The assumption,
"There is a second limit off at c" is thus incorrect, and the theorem is proved.

NOTATION AND TERMINOLOGY. Following convention, we shall write

(1) L = lim f (x)
X-'C

to mean "The limit at c of this function f exists and is L." Also, we write

lim f (x) does not exist
X-+C

to mean "For this function f and this number c there is no number L which

A

satisfies the condition 1 and 2 of the
above definition."

It is customary to read (1) as "L is
the limit of f (x) as x approaches c."
Also, a common alternative to (1) is
f (x) -* L as x -> c.

Example 2. For
f = {(x,y) I y = sin2 (1/x)} prove that

limf(x) does not exist.

(0,L)

1 1 1 x=0
37r 2,r a

Solution. LetL bean arbitrary number.
(The point (0,L) is pictured in Fig. 16.3 asFigure 16.3
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if L were about 0.9.) We shall prove that this function f does not have limit L
at c = 0 by showing "There is a number e > 0 such that for 6 an arbitrary positive
number

(1) {(x,y) 0 < Ix - 01 < 6 and y = sine (I Ix))

is not a subset of

(2) {(x,y) 0 < Ix - 01 < 6 and ly - L) < E}."

No matter how small 6 > 0 is taken, the graph (1) will have points on the x-axis
and points one unit above the x-axis. Hence, for any positive number e < 2 there
are points of (1) not in (2).

17. Limit Theorem

Given two functions f and g, the sum off and g is the function defined by

f + g = {(x>Y) I Y = Ax) + g(x)}.

Hence, the domain of f + g is the intersection of the domain of f and the
domain of g. The product off and g is the function

f- g = {(x>Y) I Y= f (x)g(x)}

and the quotient function fig is defined in a similar way, but note that the
domain of fig is the intersection of the domains of f and g diminished by
those numbers x for which g(x) = 0.

THEOREM 17. Let f and g be functions whose limits at c exist:

lim f (x) = Ll and lim g(x) = L2,
x-.eX- C

and for every number S > 0 the domain of f, the domain of g, and
{x 10 < Ix - cl < b} have numbers in common. Then the limits at c of the
sum and product functions exist and

1. lim [f(x) ± g(x)] = Ll ± L2,
x-c

II. lim [f(x) g(x)] = L1 L2.
x-c

For L2 0 0 the limit at c of the quotient function exists and

III. lim1 = 1 and lim
f(x) = Ll .

x=c g(x) L2 x=c g(x) L2

Also, for L2 > 0 and n a positive integer

IV. lim 1"/g(x) = f L2-
x-e
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For k a constant then from I and II (by setting f (x) = k)

V. Iim [k ± g(x)] = k + L2 and Iim [k g(x)] = k L2.
x-C x-C

PROOF of I. Let e be an arbitrary positive number. Since it is given that f
has limit L1 at c, choose S1 > 0 corresponding to e/2 such that

if 0<Ix-cl <61, then If(x)-L11 <Ei2

and, since g has limit L2 at c, choose S2 > 0 such that

if 0 < lx - Cl < 62, then lg(x) - L21 < e/2.

Let 6 be the smaller of 61 and 62. Hence, 6 > 0 and for x a number such that
0 < Ix - cl < 6, it follows that both I f (x) - L1l < E/2 and l g(x) - L21 < E/2
so that

If (x) + g(x) - (L1 + L2)I = I (f (x) - L1) + (g(x) - L2)I

5 if (x) - L11 + Ig(x) - L21 < e/2 + e/2 = e.

Hence, corresponding to the arbitrary positive number e, the existence of a
positive number 6 has been shown such that

if 0 < Ix - cl < 6, then If(x) + g(x) - (L1 + L2)I < E.

Hence, the function f + g has limit L1 + L2 at c. In a similar way, the
function f - g has limit L1 - L2 at c.

This proof was given here to demonstrate the method of proof. Proofs of
II-V are given in Appendix Al, but the results will be used whenever con-
venient. As an example, we establish the existence and obtain the value of
lim (5 + x2 ± 42). The usual procedure is to write
x-+3

lim(5+1'x2+4°-) =5+liml/x2+42=5+Jlim(x2+42)
¢-3 x-3 x-+3

2=5+ JIlimx)+42=5+ (limxI(limx) + 42
X-3 -3

=5+132+42=10,

not knowing the existence of any, except the last of these limits as it is
written, but then mentally to reverse the steps to justify the existence of.each
limit and equality by using I, II, III, IV, or V.
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The use of III is restricted to quotient functions whose denominator
function has limit different from zero. If, however, both numerator and
denominator functions have limit 0, it may be possible to determine the limit.

5 - Vx2 + 42 1

Example. Show that lim x2 --9 10

Solution. Both numerator and denominator functions have limit 0. However,

5 - V/x2 - 42 5 - Vx2 -1142 5 - \/x2 + 42
X2 - 9 X2 - 9 5 + //x2 = 42

9 - x22

(x2 - 9)(5 + VX2 + 42)
-1

= for x = =3.
5 + Vx2 + 42 >

In this form the denominator has limit 10 at 3 so that

5 - Ix2 + 42 -1 1

x- x2 - 9 - x-s 5 - VX2 1- 42 10

PROBLEMS

1. Using Theorem 17 find each of the following limits:

a. lim (3x3 - 4x2 + 2). e. lim (2t - 6/t).
x--2

b. lim (5x3 - 2x + 3).
x--2

f. lim (h + 6h2 - 4).
h--5

x2-4x+1 6+Vh2-3h+
g. limc. urn 3x - 4Z--3 h-o

x2-4x+1
d. lim 3x - 4X-0

2. Establish each of the following:

1 - x2
a. lim = 4.

x--12 / 2+3
-2

b. lim
1 +x

x-.-12 - -%/x2 + 3

h. lim
x-2

2-h

3x + 3
x2-5

4

\x+7-3 2
d. lim = -

x--2V'x+2-2 3

+ h - 6 1

e. lira
h--o h 2;6

1

c. lim = 2. f. lim
x--+12 - %/x2 + 3

1 -x
h--o h 3(6)2

3 - Vx2 + x + 9 1

g. lira
x3 + 1 18 'x---1
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3. Use Theorem 17 to establish each of the following.

1 - X2 1 1 1 1

a. lim = 0. d. lim
z-12+\/x2+3 h-.o h 2+h 2 4

-x 2 8 1 1 1 1

=b. lim - e. lim
z-.2x2-V14+x 31 h-.-1h 2+h 2 2

x 2- 1 11

f li - - 1 - 1

=c. limz-.1x2- 14+x X15-1
. m
h-.oh(\/2 +h 2 4V2

4. By using the definition of a limit prove that the function

a. f = {(x,y) 2x + 3y = 15} has limit 3? at 2.

b. f = {(x,y) I y = 'x} has limit 2 at 4.
c. f = {(x,y) y is the greatest integer less than x} has no limit at 2, but has limit

2 at 2.1 and has limit 1 at 1.9.

18. Limits of Trigonometric Functions

By inscribing and circumscribing sequences of polygons, Archimedes'
(c. 250 B.c.) "Method of Exhaustion" led him to conclude that the cir-
cumferences c and C, and the areas k and K of circles or radii r and R are
such that

c C k K
2r 2R r2 R2

This constant ratio is denoted by IT. The method of exhaustion is the genesis
of the concept of definite integrals (Ch. 6). By means of definite integrals it
can be proved, without using the next theorem, that the areas of two sectors
of a circle are to each other as their central angles. It then follows that a
circular sector of radius r units and central angle a radians has

(1) area = a r2 units2.
2

(see page 578). This fact is used in proving the next theorem.

I.

THEOREM 18. With angles measured in radians

lim
sin x

= 1, lim
1 - cos x = 0,

x-0 X z=O x

II. lim sin x = 0, and lim cos x = 1
x-0

PROOF. Let x be a number such that 0 < x < ?r/2 and construct the
angle of x radians in standard position. Let P(c,s) be the point where the
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terminal side of this angle cuts the circle with center
at the origin and radius 1. As illustrated in Fig. 18,
sector OBC has radius c and thus has area c2x.
Sector OAP has area 112X= Ix. Triangle OAP has
base 1 and altitude s. Since area sector OBC <
area A OAP < area sector OAP, then

IC2x<Is<IX; i.e.c2x<s<x.
2 2

Hence s2 < x2 and thus 1 - C2 = S2 < x2 so that I

Figure 18

-X2 <C2.

55

Therefore

(1 - x2)x < s < x. Since s = sin x, then upon dividing by x > 0

1-x2<sinx<1 for 0<x<-.
x 2

sin (-x) -sin x sin x
But (-x)2 = x2 and = = - so that-x -x x

(2)
X2<sinx<1 for 0<Ixi<7-.

x 2

Thus 1 = lim (1 - x2) < lim sin x
< I so the first limit in I. is seen to hold. 'I

x-o x-o x
Consequently

lim sin x = lim x sin x
= 1,im x) (X-Olim

sin x)
0 . 1 = 0

x x-.o x

which is the first limit of 11. Since 0 < cos x = \/ 1 - sin2x for 0 < IxI < '7r/2,
the second limit of II. follows.

Since sin2x = 1 - cos2x = (1 - cos x)(1 + cos x) we have

lim
1 - cos x = lim sine x

x-o x X- O x(1 + cos x)

) 0_ (lim sin x) ( lim
sin x

1=
x -o x X- O 1 + cos x 2

=0

which is the second limit of I. and finishes the proof.

tan x sin x I I
Example 1. li m

x
X-O

X cos x, = 1 1 =
1.

t To apply the definition of a limit directly, choose 0 < e <7r/2 arbitrarily and set
_ Ve. Hence, from (2), whenever 0 < IxI < 6 then

sin x1-e<sin x<1<l±e;
x
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Merely by a change of notation, II may be written as

limsinh=0 and limcosh = 1.
h-.0 h-0

Example 2. Prove that for x any given number, then

lim cos (x + h) = cos x.
h-*0

Solution. We write the following (then check existence in reverse order)

lim cos (x + h) = lim (cos x cos h - sin x sin h)
h--'0 h-0

= lim (cos x cos h) - lim (sin x sin h)
h-}0 h-0

= cos x lim cos h - sin x lim sin h
h-0

(cos x)(1) - (sin x)(0) = cos x.

19. Composition Functions

Let f and u be functions and let F be the function

F = {(x,y) I y = f (u(x))}.

The function F is called the composition off upon u. Notice that the domain
of F is

{x I x is in the domain of u and u(x) is in the domain off}.

Thus, for x in the domain of F, then not only is x in the domain of u, but
u(x) is in the domain off and

F(x) = f (u(x)).

For example if f and u are the functions

sin tf= {ty Iy= and u={(x,t)It=xz-1}

then the composition function F off upon u is

F = {(x,y) I y = sinx(x2-i 1)} with domain {x I x ±1}.

Hence, for x in the domain of this function F, then

F(x) = 'in
Xz2

1 1) for x ±1.

THEOREM 19. With c, a, and L numbers, let f and u be functions such that

lim f (t) = L,
t-.a
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let u be a function whose range, except possibly for u(c), is in the domain off
and is such that

(1)

2-+C

Then the composition function off upon u also has limit L at c:

(2) lim f (u(x)) = L.
X-.C

This theorem is proved in Appendix Al. The following example illustrates
its use.

- 1)
Example. Find lim

sin (x2

x2 -X-1
Solution. Make the identifications

sin tf (t) = t , u(x) = x2 - 1 and c = 1.

Since lim (x2 - 1) = 0, think of a = 0. Then from

sin tlim- = 1
t-+o t

it follows from Theorem 19 that also

sin (x2 - 1)
lim x2-1 =1.
X-1.

By a similar procedure,
seen that

merely involving changes of letters, it should be

sin (y2 - 4) - sin (z + 1) = sin (h/2) -
km

2
- 1, lim - 1, and lim - 1.y -4 z-.-1 z + 1 h, .o h/2

PROBLEMS

1. Find each of the following limits:

sin 3h
a. lim = 3.

h-.o h

3 sin 5h
b. lim. = 15.

h-.o h

sin2 h
c. lim

h
= 0.

h-0
sine h

d. lim = 1.
h-0 h2

e. lim h cot h = 1.
h-.o

u(x) 0 a for x c, but

lim u(x) = a.

f lim
sin2 h - 2 sin h

h-0 h

1 - cosh 1
g. lim h2

h-.0

tan 2 h

= -2.

2'

h. li
ohsinh = 1.

sin (h/2) 1
i. lira

tan h 2h-.0

j. lim
V1 +sinh - 1 1

A-0 h
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2. In each of the following, find the limit at c of the composition function off upon u.

a. f(t) _ 'v't + 3, u(x) =
sinx c = 0 [Hint: lim sinx + 3

jx

b. f(t)
sin t

= t , u(x) = 3x2 + 6x - 9; c = 1.

5t+4 2sinx-3
c. f(t) t-2'u(x) sinx-1' c=0.

d. f(t) =
sin 2t

tan t '
sin 2xe. f(t) = 3t - 2, u(x) = -; c = 0.
tan x

3. In each of the following show that Jim u(x) does not exist, but that the limit

exists at c of the composition function off upon u. (Note: This shows that theX- C

conditions of Theorem 19 are sufficient but not necessary.)

3t+4 3x+5
a. f(t) 2t - 6' u(x) 3

; c = 3.

5t + 3 sinx 7r
b. f(t) = 1 + t , u(x) 1 - sinx ' c 2

2t - 5 3 + cos x
C. f (t) 4 + t ' u(x) sinx ;

c = 0.

4. In terms of an appropriate composition function, justify eadh of the following:

sin x(x - 2) sin x(x - 2)
a. lxim2 x(x - 2) = 1 and urn 2(x - 2) = 0.X_0

'sin {(x + 3)n/4} 7r sin {(x + 3)7T/41 1

and urnb. lim x+ 3 = 4
x-: 3 x+ 3 6x-.-3

i/ l +sinx - 1 1 (1 + sin x)2
c. lim = and lim

- 1 = 2.
x-.o X 2 x-.o X

I - cos 2h 1 - cos 2h
d. Jim = 0 and Jim 2 = 2.

h4-.o h A-0

x-1
e. lim = 0 and urn

x
does not exist.

X-1 x x-.l x - 1

20. Continuous Functions

DEFINITION. A function f is said to be continuous at c if'

(1) 1im f (x) = f (c).
x-c
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Thus, a function f is continuous at c if the three questions:
1. Is f (c) defined, i.e., is c in the domain off ?
2. Does lim f (x) exist?

1--c
3. Does lim f (x) =f (c)?

x-c

59

all have affirmative answers, but if any of the answers is "No" then f is not
continuous at c. Turn to page 83 for illustrations of "No" answers.

Since lim x = c, it follows that f is continuous at c if and only if
z-c

(2) lim f (x) = f (lim x
2--C 2-C

i.e., if and only if 'Y and lim may be interchanged."
z-c

The definition of a limit may be combined with the above definition to
yield :

A function f is continuous at c provided c is in the domain off and in
addition, corresponding to an arbitrary positive number e there is a positive
number 6 such that

whenever Ix - cl < b, then f (x) - f (c)I < e.

For example, the function f defined by f (x) = 21x1 is continuous at c for
every number c, since for e > 0 then whenever x = c < of 2 follows that

21x1 - 21cl 1 = 2 1 1x1 - IcI I < 21x - cl < 2 2 C.

The greatest-integer function

[ J = {(xiy) I y is the greatest integer less than or equal to x}

is continuous at c if c is not an integer, but is not_-continuaus-at-c-if-c is an
integer.

The following theorem gives conditions under which a limit and a
continuous function may be interchanged. For a proof see Appendix Al.

THEOREM 20.1. For c and a numbers and for f and u Junctions such that

lim u(x) = a
¢-c

and such that f is continuous at a, then

lim f (u(x)) = f (a) = f (lirn u(x)) .

Stated loosely, "If, in a composition function, the outside function is
continuous, then the limit and the outside function may be interchanged,
provided the inside function has a limit."
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Since 0 < (sin x)/x < 1 for 0 < jxj < it/2 and since the square root
function is continuous at 1, we may write

lim
/sin x = / lim sin x V1 = 1,

X-0 x NNN x-o x

but for the greatest-integer function [ ] we have

0 = h_ m
Isin

z
xJ* Ll

sin x] = 1.

Note that a function f is continuous at x if

(1) lim f (x + h) = f (lim (x + h)) = f (x).
h-.0 h-.0

Thus, the cosine function is continuous at x for each number x (see
Example 2 of Sec. 18) and in the same way the continuity of the sine function
may be demonstrated.

THEOREM 20.2. Given a number x and functions f and g continuous at x,
then the sum function s = f + g and the product function p = fg are continuous
at x, and provided g(x) 0 0 the quotient function q = fig is continuous at x.

PROOF. We write, checking limits and equalities in progress,

s(x) = AX) + g(x) (from the definition of the function s)

= lim f (x + h) + lim g(x + h) (since f and g are continuous at x)
h-0 h-.0

= lim [f (x + h) + g(x + h)] (by Theorem 17 I)
h-.0

= lim s(x + h) (by the definition of the function s),
h-0

which shows that the sum function is continuous at x.
In the same way (but using Theorem 17 II and 17 III, respectively) the

product and quotient functions are continuous at x, provided that g(x) 0,
for the quotient function q.

Hence, for f continuous at x, the function f2 =f f is continuous at x,
then f 3 =f2 - f is continuous at x, and for n a positive integer f n =f '2-1 f
is continuous at x.

DEFINITION. A function which is continuous at each number x in its domain
is said to be a continuous function.
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Since the function {(x,y) I y = x} is continuous it follows, for n a positive
integer and for a any constant, that the function {(x,y) I y. = ax"} is
continuous. Now with ao, al, a2, , a" given numbers, the functions

{(x,y) I y = ao}, {(x,y) I y = ao + alx}, {(x,y) y = ao + alx + a2x2}, .. .

{(x,y) I y = ao + alx + ..+a"x"}
is each in turn the sum of two continuous functions; that is, any polynomial
function is a continuous function.

Let p be a positive integer, let n be any integer, and let f be the function

f = {(x,y) 1j, = x"'} _ {(x,_v)1 t' = 0/x)'t}; i.e.

(2) AX) = (1/x),I

whenever x is such that ?/x and are real. For example, and
-V-1 for p even are not real. Also "x= 0 and n negative" is excluded.

With xo > 0 and n, as well asp, positive

lim from IV, page 51 and lim x)" _
x-.-xa x-xo

by repeated use of II, page 51. This proves the first case of the following
theorem and the other cases should be checked.

THEOREM 20.3. With p a positive integer, the function defined by (2) is
continuous at x in each of the cases:

(i) x>0andn>0.
(ii) x any number, n > 0, p odd.

(iii) x 0,n<0,podd.

THEOREM 20.4. Let xo be a number and f a function such that:
1. xo is in an open interval of the domain off,
2. f is continuous at x0, and
3. f (x0) > 0.

Then there are numbers xl and x2 such that xl < xo < x2 and such that f is
positive on the open interval I(xi,x2).

PROOF. From 1 above select Si > 0 so the interval I(xo - S1, xo + 61) is
in the domain of f. Corresponding to e = (I) f (xo), which is positive by 3
above, let 6 > 0 be a number Sdi and such that if x is any number satisfying

[x - x01 < 6 then I f (x) - f (xo)I < J f (xo); that is,

.f (xo) - ++.f (xo) <f (x) <.f (xo) + '.f (xo)
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Hence, from the left hand inequality alone, f is positive on I(x0 - S, xo. + S)
which is the domain of f since 6 < bl. By selecting xl = xo - B and
x2 = x0 + 6 we have numbers as stated by the theorem to exist.

21. Tangents

With f a given function, let x and x + h with h = 0 be in the domain
off. Then the points

Figure 21

the domain off and if

points has

slope = f (x + h) -f(x) = f (x + h) -f(x)
(x+h)-x h

DEFINITION. Let f be a function and let x be
a number in the domain off. If whenever JhJ is
sufficiently small the number x + h is also in

limy (x +
h) -f(x)

exists,
h---O h

then the line with the value of this limit as slope and passing through the point
(x, f (x)) is said to be tangent to the graph off at the point (x,f (x)).

Example 1. Show that the graph of y = 11x has a tangent at the point of the
graph having abscissa 2.

Solution. The point in question is (2, V2). Also, if -2 < h < 0 or 0 < h,
the point (2 + h,,,12 + h) is on the graph. Moreover, by methods used previously

lira
VT-+h - '2 1 V2

h-.o h 2 V2 4

Since this limit exists, the graph has a tangent at the designated point and this
tangent has slope m = 2/4.

Notice that the line tangent to the graph of Example 1 at the point (2,V)
has slope r2/4, and thus has equation

y -1/2 = (\/2/4)(x - 2).
Example 2. For the function f = {(x,y) I y = lxI} show that the graph does not

have a tangent at the origin.

Solution. Since

(x, f (x)) and (x + h, f (x + h))

(.+h,t(x+h)) are on the graph off f and the line joining these

10+hi -101 h/h=1 if h > 0
h = I -h/h = -1 if h < 0,

the limit as h approaches zero does not exist.
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THEOREM 21. If the graph of a. function has a tangent at a point, then the
function is continuous at the abscissa of the point.

PROOF. Let f be a function and x a number such that the tangent to the
graph exists at the point (x,. f (x)). Consequently

lim
f (x + h) - f(x)

h-.o h

exists. Let m be the value of this limit. Guided by

f(x + h) = f(x + h) - f(x) + f(x) =f(x + h) -f(x) h +f(x)

we write, knowing the existence of each limit as we write it,

f(x) = m - 0 +f(x) = 1imf(x + h)
h

f (x) lim h ±f(x)

f(x + h) -f(x)=lim{
h-0 h

. h} +f(x)

=lim{f(x±h)-f(x)+f(x)}=limf(x+h)..
h-0 h-0

But the fact that lim f (x + h) = f (x) means (see (1) of Sec. 20) that f is
h--.0

continuous at x, as we wished to prove,

In establishing the existence of a tangent to the graph of a function, and
obtaining the slope of the tangent when it exists, it is only necessary to
evaluate a limit of the form

(1)
limf(x + h) -f(x)
h-.0 h

Example 3. Evaluate (1) given that f (x) = x3 - 4.

Solution. For x any number,, f (x) = x3 - 4. For x and h any numbers, then
x + h is a number and f(x + h) = (x + h)3 - 4. Thus, for x any number and
ho 0

f (x + h) -f(x) _ {(x + h)3 - 41 - {x3 - 41
h h

{x3 + 3x2h + 3xh2 + h3 - 4} - {x3 - 4}

h

3x2h + 3xh2 + h3
= 3x2 + 3xh + h2, for h00.

h
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Consequently, for this particular function and any number x,

lim
f (X + h) - f (X) = lim (3x2 + 3xh + h2) = 3x2.

h-.0 h h-.0

Chap. 2

PROBLEMS

1. Find an equation of the line tangent to the graph of each of the following
equations at the points of the graph with the given properties:

a. y = v'x + 1; point with x = 1, point with x = 0.

b. y = 1/x; point with x = 1, point with y = 2.
c. y = 3x2; point with x = 2, point with x = -2.
d. y = 3x2 - 4; point with x = 2, point with x = 0.
e. y = 3x2 - 2x; point with x = 2, point with x =.
f. y = 3x2; points with y = 12.
g. y = 3x2 - 2x; points with y = 8.

2. For each of the following functions f find the limit

lim
f (x + h) -f(x)

h--0 h

when it exists, and find the domain of numbers x for which it exists.

a. f(x) = 2x + 1. f..Ax) = x'vx + 3, x -> -3.
b. f(x) = x2 - 1. g. f(x) = x(x + 3) -1/2, x > -3.

c. f (X) = (x2 - l)-1, Ixl 1. h. f (x) = '/x2 + 3.

d. f(x) _ Vx + 3, x >- -3. i. f(x) = Jx2 + 3x - 4.

e. f(x)=(x+3)-1/2,x> -3. j. f(x)=x+Vx+1,x>- -1.
k.f(x)=V'x2-4+-Vx-1,x>-2.

3. Sketch {(x,y) I x > 0 and y = x2} and {(x,y) I x > 0 and y = Vx}. Let (a,b)
be a point on the first graph and find the slope of the tangent to this graph at this
point. With the same numbers a and b, notice that the point (b,a) is on the other
graph and now find the slope of the tangent to this graph at this point. Show that
the two slopes are reciprocals of each other.

22. Velocity
A car going 50 miles in 2 hours is said to average 25 mi/hr. A particle

moving along a coordinate line and having coordinate sl at time tl and
coordinate s2 at time t2, with t2 tl, is said to have

average velocity
s2 - Sl = Sl - S2 (coord. units)/(time unit).
t2 - tl tl - t2
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For example, if the particle has coordinate 1 when t = j and coordinate
when t = 4, then the average velocity during the time interval between t =
andt=is

2 (coord. units)/(time unit).

DEFINITION. Given a law of linear motion as a function s and given a
number tin the domain of s, then for h 0 0 and t + h in the domain of s,

s(t -4- h) - s(t)
(1) h (coord. units)/(time unit)

is the average velocity during the time interval between time t and time
t + h. Also, the limit (assumed to exist)

s(t + h) - s(t)
(2) io h (coord, units)/(time unit)h

is the instantaneous velocity at time t.

Example. Let distance be measured in feet and time in minutes and let the law of
linear motion be

s(t) = cos 77t.

For t any number and h 0 show that the average velocity between time t minutes
and time t + h minutes is

(3) - h sin u (t + 2) sin (h) ft/min

and that the velocity at time t minutes is

(4) -lr sin ITt ft/min.

Solution. The average velocity, directly from (1), is

(5)
s(t + h) - s(t) cos n(t + h) - cos in
(t + h) - t h

ft/min.

This expression may be changed by using the trigonometric identity

cos (a + fi) - cos (a - -2 sin a sin

Upon setting a + # = i(t + h) and a - # = 7rt, it follows that 20C = ur(2t + h)
and 2fl = 7rh so the right side of (5) may be replaced by (3), giving the average
velocity as

2s(t + hh - s(t) =
h 2) (T h)- sin (t + - sin h ft/min.
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To find the instantaneous velocity, write

s(t h) - s(t) 2
( 2) 2 /

Jim - lim sin i t - - sin h
h-o h-o

_ -21lim sin n(t +
h

h

I
sin h

I h

2 h2 J

_ -2{sin art} {2} _ -IT sin 7Tt ft/min.

23. Derived Function

Chap. 2

In obtaining tangents to curves and velocities in linear motions, an
essential feature is the determination of such limits as

limf (x + h) -f(x) and lim
s(t + h) - s(t)

h-.o h h-.0 h

Later on it will be seen that limits of this form will have other applications.
The study of such limits without specific interpretations of the functions
involved is more inclusive than a development restricted by a physical or
geometric meaning at each step.

DEFINITION. Given a function f, the function f' defined by

(1) {(X,Y) I Y =
limf(x + h) -f(x)}

h-.o h

is called the derived function off. For x in the domain off', the number
f'(x) is called the derivative off at x, and

f'(x) = limf (x + h) -f(x)
h-.o h

In particular, if x is in the domain of f', then certainly x is in the domain
off (since f (x) must be defined), but moreover the limit in (1') must exist.
Hence, the domain off' is a subset of (and may be all of) the domain off.

Thus, for a function f, a number x is in the domain of the derived function
f' if and only if

lim f (x + h) -f(x)
exists.

h-.o h
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Also, if x is in the domain off', then

f'(x) = limf(x + h) -f(x)
h-.o h

Example. Given that f is the function defined by

f(x) = 'fix -+3 for x >- -3,
find the derived function f'. Also, determine the domain off'.

{x,y
x - Vx+3}

Solution. f ) y = lira + h+ 3
h-.o h

(XY) I y = lim
Vx+h+3-fix+3

h Vx+h+3+Vx+3

= I y = lim
(x + h + 3 (x + 3)

h=o h(Nlx + h + 3 + Vx + 3)1

t (x,y)Iy=lim
1

h-.0 '/x+h+3+ Vx+

67

{(x.)lY
2YX±3).

Thus, the domain off is {x I x >- -3}, whereas the domain of the derived function
f' is {x I x > -3}.

THEOREM 23. Given a function f, if x is in the domain of the derived function
f', then f is continuous at x.

PROOF. We must show that lim f(x -+ h) = f(x) for x in the domain
off'. We write h-o

ff(x + h) - f(x)limf(x+h)=1im h+f(x)}
71-0 h-0 h J

f(x+h)-f(x) I.= lim m h +f(x) =fi(x)' o +f(x) =f(x)
h--o h h-o

and then retrace all steps in reverse order to make sure that each limit exists
and each equality holds.

PROBLEMS

1. Given, for t any number satisfying 0 -< t -< 2 that t sec after a body is thrown in
the air it will be s(t) = 32t - 1612 ft above the ground.
a. Find the average velocity of the body during the time interval between ?} and

sec; between a and 1 sec; between t and 4 sec.
b. For 0 < t < 2 find the velocity of the body t sec after it is thrown.
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c. Show that t sec after the body is thrown its velocity will be >0 if 0 < t < 1,
will be 0 if t = 1, and will be <0 if 1 < t < 2.

d. How high above the ground is the body when its velocity is zero?

2. Each of the following represents a law of linear motion for 0 <- t 10. In each
case find the velocity at time t where

a. s(t) = 6t - 4. c. s(t) = (t + 1)-1. e. s(t) _ (20 -t)-1/2

b. s(t) = 4 - 6t. d. s(t) = -,IT + 4. f. s(t) = sin 7rt.

3. For each of the following definitions of the function f, find f'(x).

a. f (x) = x2. e. f (x) =x113 i. f (X) = x + -Vx + 3

b. f(x) = x3. f. f(x) = x14. j. f(x) = x + 3 + VX.
c. f (X) = x4. g. f (X) = x + x3. k. f (x) = x Vx -+3..

d. f (x) = x12. h. P x) = x + Vx. 1. P x) _ (x + 3) Vx.

24. Derivative Theorems

For f a given function and x in the domain of the derived function f', then

f'(x) = limf(x + h) - f(x)
h-.o h

There are several alternative notations forf'(x), one of which is

Dz f (x).

The symbolism Dj (x) is usually read "The derivative of f (x) with respect
to x," but should be understood to indicate "The derivative off at x"; that is,

D.,f (x) = lim f (x + h) - f (x)
h-o h

In the example of Sec. 23 it was shown that:

If f (x) = -,/x + 3 for x > -3, then f'(x) = 21/x -f
3
for x > -3.

This result in the D-notation is written as

D.Vx -}- 3 = 1

3 , for x > -3.

Also, the results of Probs. 3(a) and (b) above may be written

D,,x2 = 2x and Dx3 = 3x2.
THEOREM 24.1. With n a positive integer and f the function defined by

f (x) = xn, then f'(x) = nxn-1; that is,

(1) Dxxn = nx1-1
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PROOF. From the definition of a derivative

f'(x)=lim(x+h)n-x"

h-o h

(x" + nxn-lh + n(n - 1) xn-2h2 + ... + hn
=lim 1.2

h-.o h

1) x"-2h + ... + h"-3.=
li o

(nx*n-1 + n(1
.2

= nxn-1

The formula (1) may be used even if n = 1 provided x 0
D,x = 1,(2)

- xn

69

since =1imh=1.
h--.o h h-.o h

THEOREM 24.2. With c a constant and f the function defined by f (x) = c,
then f'(x) = 0; that is,

(3) D.c = 0.
PROOF. Since both f (x) = c and f (x + h) = c, then

f'(x)=limf(x+h)-f(x)=limc-c=lim2=0.
h-.o h h-.o h h-.o h

For use in the following proof, let a 0 be constant and note that

lim
sin ah = a lim sin ah = a 1 = a and

h-o h h-o ah

1 - cos ah I - cos ah
lira =alim =a 0=0,
h-.O h ah

from I in Theorem 18, page 54.

THEOREM 24.3. With a and b constants, then

(4) Dx sin (ax + b) = a cos (ax + b) and

(5) D. cos (ax + b) = -a sin (ax + b).
PROOF. To obtain (4) we use the definition of a derivative and hence

want to evaluate the limit as h --> 0 of the quotient

sin [a(x + h) + b] - sin (ax + b) sin (ax + ah + b) - sin (ax + b)
h h

From the formula sin (oc + j3) = sin a cos f3 + cos a sin j5, this quotient may
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be written, with x = ax + b and .3 = ah, as

[sin (ax + b) cos ah + cos (ax + b) sin ah - sin (ax + b)]

Chap. 2

sin ah 1

h

- cos ah
= cos (ax + b) - sin (ax + b)

h

This specific form was obtained so the limits immediately above the state-
ment of the theorem could be used to show that

l -
Dr sin (ax + b) = cos (ax + b) lim

sin ah - sin (ax + b) lim cos ah
h '1-ao h

= [cos (ax + b)] a - [sin (ax + b)] 0

= a cos (ax + b).

Formula (5) may be obtained without going all the way back to the
definition of the derivative. Since cos = sin (rr/2 - a), then

D, cos (ax + b) = D,, sin [2 - (ax + b)]

= D., sin [-ax +
\2

-
Now we use (4) with a replaced by -a and b replaced by 7r/2 -b:

D cos (ax + b) = -a cos [-ax + (2 - b)]

= -a cos 7r - (ax + b)1

= -a sin (ax + b)
since cos (7r/2 - a) = sin a.

THEOREM 24.4. Let u and v be given functions, let s and p be their sum and
product functions defined for each x in the common domain of u and v by
s(x) = u(x) + v(x) andp(x) = u(x) v(x). Also, let

A = {x I both u'(x) and v'(x) exist}.
Then, for x in A both s'(x) and p'(x) exist, s'(x) = u'(x) + v'(x) and
p'(x) = u(x)v'(x) +u'(x)v (x); that is,

(6) D.[u(x) + v(x)] = Dxu(x) + D,,v(x) and

(7) D.[u(x) v(x)] = u(x)Dxv(x) + v(x)Dsu(x).
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PROOF. Let x be in A. Then u and v are both continuous at x (see Theorem
23. since u'(x) and v'(x) both exist, so that x is in an open interval common to
the domain of u and v. Hence we write (then check in reverse order)

s'(x) = lim
s(x =: h) - s(x)

h-o h

= lim f [u(x 4- h) + v(x h)] - [u(x) + v(-Y)])
h- o t h f

= lim
(
!
I'(x + h) - M(x) + v(x h) - y(Y))

h-o l h h

= lim it(x + h) - u(x)
lim v(x h) - v(x) = u,(x) + v,(x)

h-0 h h-0 h

which, in different notation, is (6). Toward establishing (7), first notice that
for x and x + h in the domain of p, then

p(x + h) - p(x) = u(x + h)v(x + h) - u(x)v(x)

= u(x + h)v(x + h) - u(x + h)v(x)

+ u(x + h)v(x) - u(x)v(x)

= u(x + h)[v(x + h) - v(x)] + v(x)[u(x + h) - u(x)].

With this relation as a guide, and with x in the set A, we write the following,
but then check each limit and equality by starting at the bottom and working
up:

p'(x) = lim p(x + h) - p(x)
h-0 h

= lim
u(x + h)v(x + h) - u(x)v(x)

h-0 h

= lim
(u(x + h)u(x + h) - u(x + h)v(x) + v(x)u(x + h) - v(x)u(x)1

h h )

= li m fit(x + h) v(x + h) - v(x) + v(x) u(x + h) - u(x)}

= lim ct(x + h) lim v(x + h) - v(x) T v(x) lim
u(x + h) - u(x)

h-.o h-0 h h-o h

= u(x)v'(x) + v(x)uu(x).

This result, in different notation, is (7).

Example 1. D,,(x2 + sin 3x) = Dx2 + D. sin 3x by (6)

= 2x + 3 cos 3x by (1) and (4)
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Example 2. Dx(x2 sin 3x) = x2Dx sin 3x + sin 3xDxx2 by (7)

= x2(3 cos 3x) + (sin 3x)2x

= 3x2 cos 3x + 2x sin 3x.

Example 3. Find Dx cos2 (3x + 4).

Solution. In Theorem 24.4 the functions u and v need not be different. From (7)
with both u(x) = cos (3x + 4) and v(x) = cos (3x + 4), then

Dx cos2 (3x + 4) = cos (3x + 4)Dx cos (3x + 4) + cos (3x + 4)Dx cos (3x + 4)

= 2[cos (3x + 4)][-3 sin (3x + 4)]

= - 6 cos (3x + 4) sin (3x + 4).

In.(6) and (7) with u the constant function u(x) = c, then

Dx[c + v(x)] = Dc + Dxv(x) = 0 + Dxv(x), and

D,,[cv(x)] = cDxv(x) + v(x)Dc = cDxv(x) + v(x) 0.

These results, although combinations of previous results, are listed as
formulas :

(8) Dx[v(x) + c] = Dxv(x)

(9) Dcv(x) = cD,,v(x).

Hence, Dx[u(x) - v(x)] = Dx[u(x) + (-1)v(x)] = Dxu(x) + Dx(-1)v(x)
= Dxu(x) + (-1)Dxv(x) by (9)

and, therefore, as a companion to (6) we have

(10)

i
D,,[u(x) - v(x)] = Dxu(x) - Dv(x).

Example 4. Dx x sin ax + cos ax a x2 cos ax}

2 2
111

= Dxa2xsinax + D cosax - Dxax2cosax

2 2 1

=
a2

Dx x sin ax +
as

D5 cos ax - - Dx x2 cos ax

2 2 '

= a2 [xDx sin ax + sin ax Dxx] + (- a sin ax)

- Q [x2Dx cos ax + cos axDxx2J

= . [x(a cos ax) + (sin ax)(1)] -
a2

2
sin ax

Q [x2(-a sin ax) + (cos ax)2x]

2 2 2 2=-
a
axcosax +-2 asinax --2 sin ax + x2 sin ax --xcosax

a
= x2 sin ax.
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PROBLEMS

1. Use Formulas 1-10 to obtain each of the derivatives:

a. Dx(5x4 - 6x2 + 3). e. Dx(x3 ± 2)2.

b. Dx(x2 + 2 sin x). f. Dx sin2 (4x + 3).

c. Dx(2x2 sin x). g. Dx(sin x - x cos x).

d. Dx(5 - x2 + 4x4). h. Dx(x sin x + cos x).

2. Letters other than x may be used for the independent variable. Find

a. Dt sin irt. d. Dt(t313).

b. Ds(s3 - 3s2 + 4). e. D,;(v sin v).

C. Du(4ll4 2112 + 5). f. Ds sin2 .

3. Establish each of the following:

(1
a. D,, (l 2 sin ax -

1

a x cos ax = x sin ax.
a a

(2 2 1 1

b. D,
a2

x cos ax - sin ax +
a

x2 sin ax)
=

x2 cos ax.

c. D. {4x2 - 4a x sin 2ax - 8Q2 cos tax } = 2 (1 -cos tax) = x sin2 ax.

25. Power Formulas

In Sec. 24, under the specific condition that n is a positive integer, we
derived the formula

(1) Dxxn = n x"-i

We shall now write this formula with a different exponent as

(2) Dxx9=px"I

in order to show that it also holds either:
(i) If p is a negative integer and x 0 0, or
(ii) If p = 1/n where n is a positive integer (provided x > 0 whenever n

is even).
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To establish (2) under condition (i), let p = -n and x 0 where n is a
positive integer. Then

n(x ' - - X-" li' DD = m,,x = ,,x
h-o h

=lim- 1 - 1 =lim l x n - (x + h) n

h-o h (x I h)" x" h-o h (x + h) x n

=lim I limXn-(x+h)n= I
h-o (x + h)"x" h-o h x"xn h-.0 h

(-1)
lim

(x + h)n - xn = -1 D.xn = _ nxn-1
X2" h-.o h x2n X2n

_ -nx-"-1 = pxD-1 since p = -n.

by (1)

Toward establishing (ii) let n be a positive integer and check the algebraic
identity

a" - b" -1 -2 -2 n-1n ""
a-b

b+...+ab=a a +b

where there are n terms on the right. Next, write this identity in the form

(3)
1a-b

an - b" a"-1 + an-2b + ... + ab"-2 + bn-1

With x and x + h neither zero (and both positive if n is even) set a = (x + h)1/"
and b=xl/"so all =x+h,b"= x, and (3) becomes

(x + h)1/" - Xl/"
(x+h)-x

1

nn=1 nn=2 1 1 n_2 n_1
(x+h) " +(x+h) "x"+...+(x+h)"x " +x "

The limit as h --> 0 of each term in the denominator on the right is x("-1)1"
(and there are n of them) so the limit as h -+ 0 of the left exists; that is,

Dxxl/" = lim (X +
h)1/n -X 1/n

= 1 = 1X(1/n)-1

h-.o h
-

nx(n-1)/n n

which is (2) with p = 1/n.

Example. DXVx sin x = D., [x1/2 sin x] = xl/2Dx sin x + sin xDxxll2

= x1/2 cos x + (sin x)(Jx 1/2)

I
= 'fix cos x + - sin x.2 x
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The product formula

Dxu(x)v(x) = u(x)Dxv(x) v(x)D,xu(x)(4)

75

holds even if v(x) = u(x) and in this special case we have

Dxu(x)u(x) = u(x)Dxu(x) 1 u(x)Dzu(x); that is,

(5) Dxu2(x) = 2u(x)Dxu(x).

Now by setting v(x) = u2(x) in (4) the result is

Dxu(x)u2(x) = u(x)Dxu2(x) + u2(x)Dzu(x),

Dzu3(x) = u(x) 2u(x)D,,u(x) ± u2(x)Dsu(x) (from (5))

= 3u2(x)Dxu(x).

By continuing in this way it may be shown that

(6) Dxun(x) = nun-1(x)D,u(x) for any positive integer n,

which is another in the family of power formulas.

Example. D. sin4 2x = 4 sin3 2xDx sin 2x

= 4 sin3 2x(2 cos 2x)

= 8 sin3 2x cos 2x.

Example. Dx(x3 + 2x + 1)5 = 5(x3 + 2x + 1)4Dx(x3 + 2x + 1)

= 5(x3 + 2x + 1)4(3x2 + 2).

PROBLEMS

1. Find each of the following derivatives:

a. D5 x cos X. e. Dx(y x

b. Dxx 2 sin x. f. -x v x).

c. Dxx2 cos 2x. g. Dx(Ix4 + 4-x).

d. D
sin 2x x5 - 4x2 + 1

D,,
X2

h. Dx x2

2. Use formula (6) to make the first step in finding:
a. D. cos4 2x. e. Dx(2x3 + 7x + 1)5.

b. Dx sine (3x + 4). f. D,(Vx + 3'/x + 5x)3.
c. Dx sin5 (4x + 2). g. Dx(x2 sin x)4.

d. Dx(x2 + sin x)3. h. Dx(sin 2x + cos 3x)4.
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3. Find each of the following derivatives:

a. D,,(x sin3 2x). e. D,,(-,Ix sin x)2.

b. D,,(x sin 2x)3. f. D,,x(4x - 5)5.

c. Dry(x2 + COS X)3. g. D,,(3x - 6)72x2.

d. Dx(x2 + cos3 x). h. Dx[(x2 + 1)4 - (x + 3)2].

4. Start with formula (4) and derive the formula

D,,u(x)v(x)w(x) = u(x)v(x)Dxw(x) + u(x)w(x)D,,v(x) + v(x)w(x)D,,u(x).

Use this formula to find:

a. D,,(x sin x cos 2x). c. D,,(-\I x sin 5x cos2 x).

b. Dx(x2 sin 2x cos 3x). d. D,,(x3 sin2 x cos4 2x).

26. The Chain Rule

The defining form and an equivalent form of the definition of f(c) are

f(c + h) - f(c) = f(y) -f(c)(1) f'(c) = lim - lim .

A-0 h v-ie y - c
The second form is used below and in the proof of Theorem 26.

The defining relation (page 56) of the composition function F of two
given functions f and u is

(2) F(x) =f(u(x)).
Among the derivative formulas the one which seems to be used most is called
the Chain Rule and relates the derivative F' with the derivatives f' and u'.
The formal manipulation

lim F(x + h) - F(x) = lim.f (u(x + h)) - f (u(x))
h n-.o h

= lim f(u(x + h)) -f(u(x)) u(x + h) - u(x)
n-»o t u(x + h) - u(x) h

indicates that the formula is (by using the second form of (1))

(3) F'(x) =f'(u(x))u'(x).

Unfortunately it is possible, even though h ; 0, for u(x + h) - u(x) to be
zero and thus a zero denominator might occur in the above manipulation.
The proof of the following theorem avoids zero denominators, but otherwise
is essentially the above manipulation. In the proof, an auxiliary function g
is defined. After reading the proof, one can see how someone's hindsight
led him to define this function g.
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THEOREM 26. If x0 is such that both u'(xo) and f'(u(x0)) exist, then F'(xo)
also exists and

(4) F'(xo) =.f'(u(x0))u'(x0)

PROOF. We first define an auxiliary function g by setting, for y in the
domain off,

(Y) -f(u(xo))
for y u(xo)

(5) g(Y) = y - u(x0)

f'(u(xo)) for y = u(xo).

From the upper portion of this definition we have

(6) f(J') -f(u(xo)) = g(J) (J' - u(xo))

for y u(xo), but this equation also holds if y = u(xo) since both sides are
then zero. Also from (5), g is continuous at u(xo) since (from the upper
portion)

lim g(Y) = lim f(Y) - f
(1!(x0)) =

f'(u(xo)) = g(u(x0)),
- u(xo) v-11(X0) y - u(x0)

the last equation coming from the lower portion of (5). This continuity of
g at u(xo) and the continuity of u at x0 (since u'(xo) exists) shows that

lim g(u(x)) = g(u(xo)) =f'(u(xo)).

x-xo

With x 0 xo we now replace y in (6) by u(x), then divide by x - xo 0,
and see that

F(x) - F(xo) = f (u(x)) - f (u(xo)) g(u(x))
u(x) - u(x0)

x - xo x- xo x- xo
Finally as x -> x0 the last term approached f'(u(x0))u'(x0) so that F'(xo) exists
and (4) holds.

Since x0 was any point for which u'(xo) and f'(u(xo)) exist, (4) and (3) are
equivalent.

In the D-notation a formula which is interpreted to have the same
meaning as (3) is

(3') Dxf (u(x)) = D.f (u) Dxu

wherein it is understood that whenever specific functions f and u are given,
then after taking Du f(u) the u in the result is to be replaced by u(x).
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Example 1. Show that Dx sin x2 = 2x cos x2.

Solution. Consider f the function defined by f (u) = sin u so D f(u) = cos u.
Then from (3')

Dx sin x2 = D,, sin uDxul wherein it is understood that u is
= (cos u)Dxu 11 the function defined by u(x) = x2
= (COS x2)D'X2 = 2x COS x2.

Example 2. Show that Dx sin2 x = 2 sin x cos x.

Solution. Consider f the function defined by f(u) = u2. Then from (3')

Dx sin2 x = Duu2Dxu' wherein u is the function
= 2uDxu 5 defined by u(x) = sin x
= 2 sin xDx sin x = 2 sin x cos x.

Example 3. Show that D. sin2 x2 = 4x sin x2 cos x2.

Solution. First consider f temporarily as the function defined by f (u) = u2:

Dx sin2 x2 = Du2 . Dxu wherein u is the function
= 2uDxu } defined by u(x) = sin x2
= 2 sin x2Dx sin x2.

The differentiation is not complete so now discard the original use off and this
time think off as the function defined by f(u) = sin u... Hence, by continuing with
the above result,

D. sin2 x2 = 2 sin x2Dx sin x2

= 2 sin x2[D, sin u Dxu] wherein u is the function
= 2 sin x2[(cos u)Du] ) defined by u(x) = x2
= 2 sin x2[(cos x2)Dxx2]

= 2 sin x2[(cos x2) 2x]

= 4x sin x2 cos x2.

Example 4. Show that DxX312 = 2x1/2, for x > 0.

Solution. Recalling that x3/2 = (x1/2)3, think off as defined byf(u) = u3

Dxx3/2 = Duu3Dxu wherein u is the function
= 3u2Dxu ) defined by u(x) = X1/2
= 3(x1/2)2Dx1/2 = 3x J. X--1/2

3X1/2
2

With p and q integers and r = p/q, the method of Example 4 may be
used to show that

Dxxr=rx'-1
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thus extending the power formula (1) of Sec. 25 to any rational number r.
This formula written as
(4) Duu' = ruT-1

may now be used in connection with (3').

Example 5. Find Dx(x2 + 4)3/2.

Solution.
Dx(x2 + 4)3/2 = Ducr3/2Dxu'

= 3u1/2Dxu

= 2(x2 + 4)1/2Dx(x2 + 4)

= a Yx2 + 4(2x + 0)

= 3x Vx2 + 4.

PROBLEMS

1. Obtain each of the following:
a. D. cos x2 = -2x sin x2. e. DXVx2 = 2x =
b. Dx COS2 X = -2 cos x sin x. (x2 + 2x)-1/2(x + 1).

c. Dx cos3 x2 = -6x cos2 x2 sin x2. f. Dx sin (x2 + 2x) _

d. Dx(x2 + 1)5/2 = 5('Vx2 + 1)3x. 2(x + 1) cos (x2 + 2x).

2. Find each of the following derivatives:

a. Dx(3x2 + 1). e. Dx(x2 + x sin x)5/2

b. Dx(3x2 + 1)3/2. f. Dx(x2 + x sin x)3/2
c. Dx(x sin x2)4/3. g. Dxt(X2 + 1)3 + Xl.

d. Dx(x V'x + 1)113. h. Dx[()c2 + 1)3 + X14.

3. Obtain each of the following pairs of derivatives:
a. Dx(x3+x2+x+1)=3x2+2x+1,Dx(3x2+2x+1)=6x+2.
b. Dx sin x = cos x, Dx cos x = - sin x.

c. Dx'/x + 4 = 2(x + 4)-1/2, 4)-1/2 = -I(x + 4)-3/2,
d. D. sin2 x = sin 2x, D. sin 2x = 2 cos 2x.

D 2 - 2 - -x(a2 - X2)-1/2 D I -x(a2 - X2)-1/21 =Q Xe
-a2

. X - > x (1/a2 - X2)3.

4. Obtain each of the following pairs of derivatives and explain why each pair has
the same answer.

a. Dx(x - 2)2 and Dx(x2 - 4x),
b. Dx cos 2x and Dx2 cos2 X.

c. Dx(- j cos x) and D,, sin2
x
2

d. Dx(sin4 x - cos4 x) and Dx(sin2 x - cos2 x).
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From the power formula (2) of Sec. 25, it follows that

-v-2 = 2 .
V

and, therefore, by using (3') of this section

(5) D.[v(x)]-1 =
v2(x)

Dav(x)-

Chap. 2

-1 -1
Example. Dx sec x = D,,(cos x)-1 = cost x

DI cos x =
cost x

(- sin x)

1 sin x
cos x cos x

= sec x tan x.

By using (5) we also have

D. v(x) =
Dx[v(x)]-1u(x)

= [v(x)]-1 Dxu(x) + u(x)D.[v(x)]-1

=
v(x)

D,,u(x) + u(x) . -1 Dxv(x).
V
2(X)

By putting the right side over the common denominator the result is listed
as the formula

(6)
D u(x) = v(x)Dxu(x) - u(x)Dxv(x)

v(x) v2(x)

for taking the derivative of the quotient of two functions.

5. Substitute into Formula (6) and obtain each of the following derivatives.

sin x xa. Dr - . d. Dx
x

'Vx+l

x x + COs xb. D., -
sin x

x.
sin x

De

x+1
f.

sinxc. D.
x

Dx
X + COS x

6. Establish each of the following:

a. D. tan x sect x. b. Dx cot x = -csc2 x. c. D,, csc x = -csc x cot x.
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7. Obtain each of the following pairs of derivatives and explain why each pair has
the same answer.

X X 1 X).
a. D., and D,, 5 + -

b. D x2+landD x2+5x+1x xX X

3x2 + 1 -2
c. Dx x2

+ 1
and Dx xe L

sin 2x
d. Dx and Dx 2 sin x.

cos x

cos 2x
e. Dx

s
and D,, csc2 x.

ine x

f D sin x(2 + sin x)
x.

(1- sin x)2

and Dx 2(1 + sin x)
8. Obtain each of the following pairs of derivatives:

cosx x sin x + cos x
a. Dx =

X x2

D. [-
x sin x + cos xl 2x sin x + 2 cos x - x2 cos x

L X2
JI x3

x cosx + x sin x
b. Dx cosx cost x

D.
cos x + x sin x

cost x
x cost x + 2 sin x cosx + 2x sin2 x

cos3 X

x + sin 2x + x sin2 x
cos3 x

27. Second Derivatives

Given a function f, its derived function is defined by

y = lim f (x + h) -f(x) l
n.o h ))

If x is in the domain off', then the limit exists and

Dxf (x) = f'(x) =1im f (x + h) - f (x)
n-.o h

Now f' is a function and its derived function is denoted by f" so that

f- = ((X,Y)
y=1imf f'(x + h) (x)1

h

If x is in the domain off ", then the limit exists and

f (x + h) - f (x)Dx f'(x) = f "(x) = Urn
n-.o It
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The function f " is called the second derived function off, and for x in the
domain off " the value f "(x) is called the second derivative off at x.

An alternative notation for f "(x) is D,f (x) so that

Dx f (x) = f ,,(X).

No new derivative formulas are necessary for finding second derivatives,
since we merely "Take the derivative of the derivative."

Example. Dx sin x2 = DX[DX sin x2] = Dx[cos x2Dxx2]

= Dx[2x cos x2] = 2[xD,, cos x2 + cos x2Dxx]

= 2[x(-sin x2Dxx2) + cos x2]

= 2[ -(x sin x2)2x + cos x2]

= 2[-2X2 sin x2 + COS x2].

Geometric and physical interpretations of the second derivative will be
given in the next chapter.

PROBLEMS

1. Find each of the- following second derivatives.

(x + - Ia D2 d Dx in ( 2 + 1) D +. ,x . . xs . g. z x x +

1 x + 1b. DI x2 + . e. D2 h. Dx(sin x + cos x).
X2

,,
x

c. D,2(16-X3 + jx2). f. D2
x

i. Dz[2(2x - sin x cos x) + sin 2x].x+1
2. For each of the following, find Dx f(x) and then evaluate the limit

lim
f (x + 2h) - 2 f (x + h) + f (x)

h-0 h2

and notice that the two are equal.
1

a. f (x) = x3. b. f (x) c. f (x) = sin x.
X

3. Work Prob. 2 after replacing the limit there by lim f (x - h) - 2f(x) + f (x + h)
2

4. Let f be the function defined byf(x) = xIxI.

a. Show that if x is any number, thenf'(x) exists.

b. Show that if x :0 then f"(x) exists and show that f"(0) does not exist.
c. Sketch the graphs of f, f', and f".
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5. For each of the following definitions of the function f, obtain the accompanying
equations:

a. f (x) = sin x, f "(x) = f (x).
b. f(x) = a sin x + b cos x, Dx f(x) = f(x).
c. f(x) = a sin x + b cos x + x sin x, Dx f(x) = -f(x) + 2 cos x.
d. f W = axe + b, xD; 2f (X) = Dz f (x).

e. &) =
1

X + axe + b, x3D2 f (x) - x2D,,f (x) = 3.

Examples to illustrate the three questions on page 59.

Example 1. Example 2. Example 3.

C

sin21,x; 0
.f (x) ° x

0.9, x =0
See Fig. 16.3, page 50.

For c = 0.

1. f(c) defined? Yes. 1. f(c) defined? Yes. 1. f(c) defined? No.
2. lim f(x)exist? Yes. 2. limf(x) exist? No. 2. Need not ask (although

X C X -C the answer is "No")
3. lim f(x) =f(c)? No. 3. Disregard.

x-C

(Note: Any number which is not rational (see page 9) is said to be irrational.
In a more advanced course it is proved that between any two numbers there are
both rational and irrational numbers.)

0 if x is rational
Problem. With f defined by f(x) =

1. if x is irrational

and with c any number, answer Questions I and 2 at the top of page 59.



CHAPTER 3

Applications of Derivatives

The derivative at x of a function f (as defined in Chapter 2 by

f '(x) = lim f (X + h) - f (X)
h-0 h

provided the limit exists) is a purely analytic notion. As already seen, however,
derivatives may be interpreted geometrically in terms of slopes of tangents to curves
or physically in terms of velocities of moving particles. In this chapter these
interpretations and others are exploited in attacking practical problems.

The innocent appearing Mean Value Theorem for Derivatives (Sec. 32) should
not be dismissed after its immediate application here; it will be the key to several
developments at strategic points later on.

28. Equations of Tangents

Given a function f and a number x, in the domain off ', then the point
(x,, f (x,)) is on the graph off, the line tangent to this graph at this point
has slope m = f'(xl) and an equation of this tangent line is

Y - f(xl) = f '(xl)(x - x,).

Example. Given f = {(x,y) I y = V2x2 + 1}, find an equation of the line
tangent to fat the point of the graph with abscissa 2.

Solution. First f(2) = 2.22 + 1 = 3 so that (2,3) is the desired point. Also

4x 2x
f'(x)=DxV2+1 =2V2x2+1 '2x2+1

and, thus, m = f'(2) = 4/ J2 22 + 1 = s is the slope of the tangent line at the
point (2,3). Hence, the tangent has equation

y-3=a(x-2) or 4x - 3y + 1 = 0;

that is, {(x,y) I 4x - 3y + 1 = 0} is a straight line which is tangent at the point (2,3)
to {(x,y) l y = -+I).

84
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29. Solutions of Equations
DEFINITION. Let f be a function and c and L numbers. If corresponding

to each arbitrary positive number e, there is a number b > 0 such that

whenever c< x< c+ b, then I f (x) - L I< E

we write

(1) lim f (x) = L.
x-c+

For example,

lim(1+Vi)=1.
X-0+

With e > 0 chosen arbitrarily, Fig. 29.1 illus-
trates a S > 0 such that Figure 29.1

I

the meaning of the definition for this example. Also, we may let x approach
c = 0 only through positive values (geometrically, only from the right).

The symbolism (1) is read "The limit from the right of f at c is equal
to L." In case L =f(c) the function is said to be right continuous at c. In a
similar way the limit from the left, and left continuity, are defined.

A function f is said to be continuous on a closed interval I[a,b] if f is
continuous at x for a < x < b, right continuous at a, and-left continuous at b.

THEOREM 29. Let f be a function continuous on a closed interval I[a,b].
If f(a) and f(b) have opposite signs, then there is a number x* such that
a<x* <bandf(x*)=0.

PROOF in case f (a) < 0 < f (b). Let A be the set defined by

A = {x l a< x< b and f(x) < 0}.
The set A certainly contains the number a since f(a) < 0. Also, the set A
is bounded above by b. Thus (see the axiom on p. 10) the set A has a least
upper bound which we call x*. We now show that a < x* < b and f (x*) = 0.

Sincef(a) < 0 and f is right continuous at a, there is a number x > a such
that f is negative on I [a,x). Hence x < x*. In the same way there is an x such
that f is positive on I(z,b]. Hence x* < z. Thus a < x < x* < z < b so that

(2) a < x* < b. -J
Now f is continuous at x*. Iff(x*) were > 0, r Il f(x*) +1___- ]
then f would be positive on an interval I(xl,x2) were>0. xl% x x2

Figure 29.2

with xl < x* < x2 and this would mean that x* is not the least upper
bound of A, which is a contradiction. Consequently f (x*) < 0. In a similar

a a
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way it follows that f (x*) is not <0. Thus f (x*) = 0 which, together with
(2), is what we wished to prove.

Example. Show that 2x4 - 9x3 - x2 + 25x + 11 = 0 has a root between 3
and 4.

Solution. The function f = {(x,y) I y = 2x4 - 9x3 - x2 + 25x + 1l} is con-
tinuous (see page 61), and hence it is sufficient to show that f (3) and f(4) have
opposite signs. To review a synthetic process, sometimes given in algebra, note that

f (x) = 2x4 - 9x3 - x2 + 25x + 11

= {[(2x - 9)x - 1]x + 25}x + 11.

Thus f(3) = {[(2 3 - 9)3 - 1]3 + 25}3 + 11. This computation may be arranged
as

2 -9 -1 25 11 I3

6 -9 -30 -15

2 -3 -10 -5 -4 so that f(3) = -4.

Similarily, to find f(4) we write

2 -9 -1 25 11 L
8 -4 -20 20

2 -1 -5 5 31 so that f(4) = 31.

The following intermediate value property will be used later.

COROLLARY. Let f be a continuous function on I [a,b] such that f (a) of (b)
and let y* be a number actually between f (a) and f (b). Then there is a number
x* such that a < x* < b and f (x*) = y*.

PROOF. Let g be the function defined by g(x) = f (x) - y*, note that g is
continuous on I [a,b] with g(a) and g(b) having opposite signs, apply Theorem
29 to obtain x* such that a < x* < b and g(x*) = 0, and finally note that

f (x*) = y,*.

In the next section it will be shown how derivatives may be used to aid in
the solution of equations.

PROBLEMS

1. Find equations of lines tangent to {(x,y) I y= 2x3 - 8x2 + 5):
a. At the points (0,5), (1, -1), and (-1, -5).

b. At points of the graph where the slope is 0.

c. At the point of the graph having abscissa 3.
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2. Let f(x) = x3 + 3x2 - 3x - 4. In the example of Sec. 29 it was explained
why, in the accompanying array, that
f(2) = 10. Explain why, by continuing
the array as shown that f '(2) = 21. By
using this scheme for finding values off
and f', find an equation of the tangent
to the graph of y = f(x) at the points:

1 3 -3 -4 12
2 10 14 -

1 5 7 10 = f (2)

2

14

1 7 21 = f'(2)

a. (1,f(1)). b. (-l,f(-1)). c. (-5,f(-5)). d. (5,f(5)). e. (-3,f(-3)).

3. Find the equation of the tangent to each of the following graphs at the point of
the graph indicated.

2\'5x+I
a. y =

X2
, point with abscissa 3.

b. y = (x + 1) %''x2 + 4, point with abscissa

c. y = x2 - 5x + 5, point with ordinate -1.
d. y = sin x + cos x, point with abscissa 77/4.
e, y = sin x cos 2x, point with abscissa a/3.

4. Verify that between two points where each of the sets intersects the x-axis there
is a point of the set where the tangent has slope 0; that is, where the tangent is
parallel to the x-axis.
a. {(X,y) y = x3 - 3x). d. {(x,y) I y = (x + 1)(x - 2)}.
b. {(x,y) I y = sin x}. e. {(x,y) I y = 2 sin x + sin 2x}.
c. {(x,y) I y = sin x - cos x}. f. {(x,y) I y = cos x + cos 2x}.

5. Verify that between two points where the set intersects the x-axis there is no
point where the tangent to the set has slope 0.

(xy)a. I y =
x I

b. {(x,y) I y = tan x}. c. {(x,y) I y = 1 - lxl}.

6. Prove: If f is a function and c is a number such that the left and right limits at c
both exist and are equal, then the limit off at c exists.

30. Newton's Method

In this section an intuitive discussion is given of Newton's method of
starting with an approximation xl of a solution of an equation f (x) = 0 and
successively obtaining numbers . x2, x3, - - which, under appropriate
conditions, are better and better approximations of a solution.

Let f be a function whose derived function f ' exists and is not zero
wherever we wish to use it, and let f be such that {(x,y) I y = f (x)} intersects
the x-axis at a point (x0,0) so that f (xo) = 0. Ordinarily the number x0 will
not be known exactly, but by some means (such as the one of Sec. 29) an
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approximation x1 of xp can be found. Then the tangent to the graph at the
point (xl, f (xl)) has equation

Y - {J (xl) = f'(xl)(x - xl).

By setting y = 0 and solving for x, this tangent crosses the x-axis at the
point (x2,0) where

x2

_
- x1

f /(xt)
f (xl)

Now, by proceeding with x2 as we did with x1, we obtain

(1)

x3 = x2
)

, then x4 = x3 - f (x3) etc.,
f xz

xn = x,3-1 - f(xn-1) for n > 2.
f(xn-1)

With a starting value x1 given, or obtained by an intelligent guess, the
numbers-x2, x3, . are called Newton iterates.

A B

Figure 30.1

C

At this point in the book it is not feasible to give conditions and prove
them sufficient to insure that for each positive number e there is an integer N
such that

whenever n > N then Ix,, - xol < E.
Such questions are considered in a course on numerical analysis. An

Figure 30.2

examination of the curves of Fig. 30.1 should,
however, indicate that if a curve continues "to
bend" in the same direction on the interval
joining the points (x1,0) and (x0,0), then the
Newton iterates x2,x3, seem to approach
the solution x0.

Figure 30.2 illustrates a situation in which
x2 is not a better approximation than x1 to the
desired solution.

Example 1. Given f(x) = 2 cos x - x2 and the
starting value x1 =7T/3 as an approximation of a

root of J'(x) = 0, obtain Newton iterates until two successive iterates agree to
three significant figures.
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Solution. Firstf'(x) = -2(sin x + x). By using the radian column of Table 2,
we have x1 =7r/3 = 1.0472,

2(0.5000) - (1.0472)2
x2 = 1.0472 - = 1.0219

-2(0.8660 + 1.0472)
,

2(0.5217) - (1.0219)2 0.0009
x3 = 1.0219 - -2(0.8531

+ 1.0219) = 1.0219 -
3.75

Since to three significant figures x2 = x3 = 1.02, we have proceeded as far as
directed in this example. We followed the usual
practice of allowing more figures in intermediate
computations than are eventually retained.

Note: The above example stemmed from the
problem of solving the equation 2 cos x = x2.
Solutions of this equation are the same as those
of f(x) = 0, where f(x) = 2 cos x - x2. Easy
substitutions gave f(0) = 2 and f(7r/2) = 0 -
(Tr/2)2 which have opposite signs, so (by the
continuity of f) a root is between x = 0 and
x = ir/2. We could have used x1 = or/2. It is,
however, highly desirable to have a close starting
value so we sketched the graphs of

y = 2 cos x and y = x2.

These graphs (Fig. 30.3) intersected at a point
Figure 30.3

whose abscissa seemed closer to in/3 than to 7r/2, so we chose x1 = it/3.

Example 2. For A a positive number and x1 an approximation of V'A, show
that the Newton iterates for the function f defined by f (x) = x2 - A are

x2 =
2

(X, + X ! , x3 = 2
'(x2+ -) , etc.

1 2

Let A = 3 and use x1 = 2 as an approximation of V3. Compute the above Newton
iterates for these values, continuing computation until two successive iterates agree
to three decimal places and note the agreement with /3.

Solution. Since f (X) = x2 - A, then f '(x) = 2x so that
f (x1) x2 - A 2x2 - x2 + A 1 A lxz = xl - f,(xi) = xl

2x1 2x1 2

(XI

+ x1/
By analogy the formula for x3 in terms of x2 is obtained, etc. Hence, with A = 3
and x1 = 2, these iterates (with at most three decimal places kept) are

x2
l

=212+2) 1.75,

x3 = 11.75 + 75) = 0.8750 0.8571 = 1.7321,

x4 = 2 (1.7321 +
1 7321 / = 0.8661 + 0.8660 = 1.7321.
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Since the five decimal approximation of V3 is 1.73205, the above values for x3
and x4 are accurate approximations of 1/3 as far as they go.

In many practical problems the functions involved are not exact and an
actual solution of an equation f(x) = 0 may be no more meaningful than a
number x* such that, for example, l f'(x*)I < 5 x 10-3. If x. is a Newton
iterate, then in finding x,, the value of is computed so that at each
stage the nearness to zero of the value of the function may be seen although
the nearness of x, to a solution of f(x) = 0 may not be gauged without
further analysis, which we do not go into here.

If Fand G are functions and c is a positive number, the imprecise directive
"Solve F(x) = G(x) ± c" is sometimes used to mean "Find a number x* such
that IF(x*) - G(x*)l < c. Newton's method applied to f(x) = F(x) - G(x)
is one means of attack. It may happen, even if c is relatively small, that a
"solution" of F(x) = G(x) ± c is not a good approximation of a solution of
F(x) = G(x).

In spite of the indefiniteness shrouding the present discussion of Newton's
method, this method is useful when applied with discretion. Conditions under
which Newton iterates approximate a solution to any desired precision are
given, and proved to be sufficient, in a course on numerical analysis.

PROBLEMS

1. For the equation f(x) = 0 obtain a starting value xl and compute Newton
iterates until they agree to two decimal places.

a. f (x) = 3x2 - 4x - 5. c. f (x) = x - 1 + sin x.

12 65b 3 - 3d ) + 4.. f(x) = x - . x .. f(x =
x2 + 4

2. "Solve"

a. x3 + 45x = (12x2 + 35) i 5 x 10-2. C. cos x = x ± 5 x 10-3.
b. x3-12x+22=0±5 x 10-2. d. x2-1 =sinx±5 x 10-3.

3. Find an iterative process for approximating 'VA.

4. Find an iterative process which does not involve division for approximating 1/A.
By starting with xr = 0.1 as an approximation of S show that x4 = 0.1666.
(Note: In an electronic computer the equipment for performing division is more
complicated than for multiplication. For this reason some electronic computers
do not have the necessary equipment to perform the operation B/A directly, but
the operator instructs the machine to compute 1/A by the process of this problem
and then to multiply 1/A by B.) (Hint: Setf(x) = l/x - A.)

31. Maxima and Minima

A function f is said to have maximum M if there is a number c such that
f(c) = M and f(x) < M for all x in domain f. A value f(xo) is a relative
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maximum if f (x) < f(xo) for all x in the intersection of domain f and some in-
terval centered at x0 (even if x0 is
an end-point of the domain off).
The minimum and a relative min-
imum off are defined in a similar
way.

Figure 31.1 shows a function
with domain I[a,b] having:

max. f(b),
rel. max. f (b), f (xl), and f(x3) a xl x2 I x3 x4 xb b

min. f (x2),
rel. min. f(a), f(x2), and f(x5). Figure 31.1

THEOREM 31.1. Let f be a function and x0 a number such that f'(xo)
exists and f'(xo) 0 0. Then f(xo) is neither a relative maximum nor a relative
minimum Off.

PROOF. CASE 1. f'(xo) > 0. Choose a number E > 0 such that
0 < f'(xo) - E. Let 6 > 0{ be such that whenever 0 < Ix - x01 < 6 then

(1) -E <J (x) -J (x0) -J '(x0) < E.
x - X0

Hence, from the left hand inequality only, whenever x0 - S < x < x0 or
x0 < x < x0 + 6, then

0 < f'(X0) - E < f (X) - f(x0)
x-X0

The numerator is negative if -S < x - x0 < 0, but is positive if
0 < x - x0 < 6. Thus f (xo) is neither a relative maximum nor a relative
minimum off.

CASE 2. f'(xo) < 0. The proof is similar; by choosing 0 < E < f'(x0)
and using the right hand inequality of (1).

DEFINITION. A critical value for a function f on I[a,b] is any value
x0, a < x0 < b, such that either:

x0 = a, x0 = b, f'(xo) = 0, or f' does not exist at x0.

A logical deduction from Theorem 31.1 is:
COROLLARY. On a closed interval I[a,b], a relative maximum or relative

minimum of a function f can occur only at a critical value for f on I[a,b].
Note that f = {(x,y) I y = x - (the greatest integer < x)} has no maximum

(even on I[0,1]), since each value off is actually <1, but f has values greater
than any given number <1.

The function {(x, y) I y = x + I fix} has neither a maximum nor a minimum

on l[ - 1, 1].
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It is, however, true that:
THEOREM 31.2. If a function f is continuous on a closed interval I[a,b], then

f has a maximum, and a minimum on I [a,b]; that is, there are numbers x and 9
such that a < x < b, a < z < b, and if a < x < b, then

f(x) < f(x) < f(X).
This theorem is proved in Appendix A2. In particular, Theorem 31.2

and the corollary to Theorem 31.1 imply the validity of the following test,
which may be applied to determine the maximum and minimum values of a
continuous function on a closed interval.

TEST 1. The maximum and minimum of a continuous function on a closed
interval I[a,b] may be obtained as follows:

(i) Find all critical values off on I[a,b]; that is, note a and b, find all
solutions off '(x) = 0 which are in I(a,b), and find all values of x in I(a,b) which
are not in the domain off'.

(ii) Compute f(x) for x each of the critical values and among the numbers
obtained, the largest is the maximum and the smallest is the minimum off on
I[a,b].

Example 1. For f the function defined by
f (x) = x1/3(x - 3)2/3, -1 < x < 4

find all critical values. Also, find the maximum and the minimum off on I[-1,4].

(1, 3-) (4, -4)

(-1,- V-16 )

Figure 31.2

Solution. From derivative formulas developed earlier
2 X113 1 (x - 3)2/3 x - 1

PX) = 3 (x - 3)1/3 + 3 x2/3 x2/3(x - 3)1/3
for x 0 0 and x 0 3.

Thus, critical values off on I[-1,4] are:
x = -1, x = 4 (end points of the interval)
x = I (since f'(1) = 0)
x = 0, and x = 3 (values on I[-1,4] but not in the domain of f')

Now f(-1) (-1)1/3(-4)2/3 = -"16, f(4) = ti'4, f(l) = 11/3(_2)2/3 =
f(0), = 0, and f(3) = 0. Thus, the minimum value of the function is - X16
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(occurring when x = -1), whereas the maximum value is f4 (occurring both when
x = 1 and when x = 4). Figure 31.2 is a graph of f.

The following examples illustrate applications of maxima and minima.
Example 2. A pan is to be made from a rectangle of tin 6 in. x 10 in. by cutting

squares of side x in. from each corner and turning up the
tin to form the sides and ends of the pan. Find the pan of
largest volume which can be so made.

Solution. The pan will have length 10 - 2x in., breadth
6 - 2x in., where 0 S x < 3, depth x in., and thus volume
V(x) in3 where

V(x) = (10 - 2x)(6 - 2x)x
= 4(x3 - 8x2 + 15x), 0 < x - 3.

Since V(x) = 4(3x2 - 16x + 15) exists for x on I(0,3],
and on this interval the only solution of V'(x) = 0 is

8-"19
x = 3

,x

S

10"

6"

Figure 31.3

we see that-this value together with x = 0 and x = 3 are the only critical values.
19\

Since V(0) = 0 and V(3) = 0, whereas V
(t8 -

3
V

) > 0, it follows that (to

within slide rule accuracy) the values of x to use and the maximum volume are

8-x/19
x =

3
= 1.21 and V(1.21) = 32. 8 in3.

Example 3. At 1230' (Navy time) one ship is steaming north at 12 knots and
is 25 nautical miles due south of a second ship steaming due west at 9 knots. Find

when the ships are closest together and their distance apart at
9t T this time.

Solution. Starting to measure time t in hours from the
i I described instant, the number s(t) of miles apart, and an

appropriate time interval are (see Fig. 31.4),
25

12t

s(t) = \/(25 - 12t)2 + (9t)2, 0 < t < 25/12.

Since s'(t) =
2(25 - 12t)(-12) + 2(9t)9

2s(t)

75(-4 + 3t) 25

Figure 31.4 = s(t) 0 < t <
12'

we see that s'(t) = 0 if and only if t = a = 11201. The critical values are thus
t=0,t=eiandt=!. Since

s(0) = 25, s(s) = 15, and s(I) = 4,
the closest approach occurs at 1230' + 1'20' = 1350' and this shortest distance is
15 nautical miles.
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In solving such problems a sequence of steps to follow is:
1) Express the quantity to be maximized or minimized as a function.

[The problem may be stated in terms of letters as constants, and it may be
convenient to introduce new letters to express the given relations. Then, by
using conditions of the problem, all except two of the introduced letters must
be eliminated (one of them representing a function expressed in terms of the
other as independent variable).]

2) For the independent variable, determine the significant interval whose
end points are therefore critical values.

3) Determine additional critical values by examining the derivative of the
function.

4) Since the largest and smallest values of the function (whichever is
pertinent to the problem) occur at critical values, determine the desired
maximum or minimum.

Example 4. Of all right circular cones inscribed in a sphere of radius R, find the
one having largest volume.

Solution. For this problem R is a constant. A right circular cone of radius r
and altitude h has volume V where

Figure 31.5

V = 3rrr2h.

Since, however, the cone is inscribed in a sphere of
radius R, then (see Fig. 31.5) r, h, and R are related by

r2 = R2 - (h - R)2 = 2Rh - h2.

Thus, the volume in terms of h and bounds for h are

V(h) = 37(2Rh - h2)h, R 5 h < 2R.

Since V'(h) = 3ir(4Rh - 3h2) 3irh(4R - 3h), the only
additional critical value of h is h = 4R/3. A check
shows that V(R) = 3rrR3, V(2R) = 0, and V(3R) =

81 IrR3. Thus, the largest possible volume is $-rrR3.

PROBLEMS

1. For each of the given functions, find all critical values and also the maximum and
minimum of the function.
a. f = {(x,y) 0 < x < .7r and y = sin x}.
b. f = {(x,y) I -rr/4 < x < 7r/4 and y = sin x}.
c. f = {(x,y) -1 < x < 1 and y = x2}.
d. f = {(x,y) -1 < x < 1 and y = x3}.

e. f = {(x,y) 0 < x < 6 and y = '/x(x - 5)1/3}.
f. f = {(x,y) 5 < x < 14 and y = 3(6 - x)2/3(x - 13)5/3}
g. f = {(x,y) I 0 < x < 2ir and y = sin x + cos x}.
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h. f = {(x,y) 0 < x < 2ir and y = cos x - sin x}.
i. f={(x,y)l 0<x<7r and y=jx+sinx}.
j. f = {(x,y) 10 < x < 7r and y = x + cos x}.

2. Work Example 2 with a sheet of tin (a) 12 in. x 18 in., (b) 12 in. x 12 in.

3. A box with a lid is to be made from a sheet of tin by
cutting along the dotted lines as shown in Fig. Prob. 3.
The tin is turned up to form the ends and sides and the
flap turned over to form the lid. Find the dimensions
of the box of largest volume which can be formed if the
sheet is:

a. 12 in. x 12 in.

L.J

r-

b. 14 in. x 30 in.; squares cut from a 14 in. side. Figure Prob. 3

4. Of all right circular cylinders inscribed in a sphere of radius R, find the one of
largest

C/a. Volume. b. Lateral Area. c. Total area.

5. Find the rectangle of greatest area which can be inscribed in:
a. A circle of radius 4. b. A semicircle of radius R.
c. An isosceles triangle of base 10 and altitude 10.

d. An isosceles triangle of base B and altitude H.

e. An isosceles trapezoid with bases 10 and 6 and altitude 8.

6. In Fig. Prob. 6, find the value of x,
where 0 < x < 5, which minimizes
the given expression, and find the
minimum of the expression.

a. AP + PB
b. (AP)2 + (pB)2

c. (AP)2 + 2(PB)2

d. (AP)2 - (pB)2
5

Figure Prob. 6

e. Area AA'P + area PB'B.

f. Area APB.

7. Find the dimensions of the rectangle of perimeter 36 which will sweep out a
volume as large as possible when revolved (a) about one of its sides; (b) about a
line parallel to a side and one unit away.

8. The set {(x,y) 10 S x 5 1 and x2 < y < x} is a region. Revolve this region:

a. About the x-axis and find the largest vertical cross section.

b. About the y-axis and find the largest horizontal cross section.
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9. a. Sketch {(x,y) I x > 0 and y = 1/x} and the line whose equation is y = mx
m > 0. Find the point where these graphs intersect, draw the tangent to the
curve at this point, and find the point where this tangent intersects the
x-axis. With these two points and the origin as vertices of a triangle, find an
expression for the area A(m) of the triangle.

b. Work Part a with y = 1/x replaced y = 11x2.

32. A Mean Value Theorem

The theorems proved in this section have immediate applications in
maximum and minimum considerations, but are used again in Chap. 4 and
form the basis of much of the development in Chap. 12.

THEOREM 32.1 (Rolle's Theorem).
Let g be a function such that

(i) g is continuous on a closed
(a,0) interval I[a,b],

(xo,o) (b,O) (ii) g' exists on the open interval
I(a,b), and

Figure 32.1 (iii) g(a) = g(b) = 0.
Then there is a number x0 such that

(1) a < xo < b and g'(xo) = 0.

PROOF. Since g is continuous on the closed interval I[a,b], it has a
maximum M and a minimum m on this interval. (See Theorem 31.2.)
Consider. three cases.

CASE 1. M > 0. Let x0 be on I[a,b] and g(xo) = M. Then by (iii)

(2) a < xo < b.

Thus, g'(xo) exists because of (ii), but then g'(xo) = 0 because of Theorem
31.1. Then (1) holds in this case.

CASE 2. m < 0. The proof is similar to the proof in Case 1.

CASE 3. M < 0 and m z 0. Since m < M we have M = m = 0 so that
g is constant on I[a,b]. Thus, g'(x) = 0 for a < x < b and we select for x0
any number in I(a,b).

Since these cases include all possibilities, the proof is complete.

Rolle's Theorem is used in proving the Mean Value Theorem for
derivatives, which is sometimes called the Law of the Mean for derivatives.

THEOREM 32.2 (Mean Value Theorem for Derivatives). Let f be a junction
which satisfies the conditions:

(i) f is continuous on the closed interval I[a,b],
(ii) f' exists on the open interval I(a,b).
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Then there is a number in the open interval I(a,b) such that

(3) f(b) = f(a) -}- (b - a < < b.

PROOF. Let g be the function defined on I[a,b] by

(4) g(x) =.f(x) -f(b
b - a(a) (_): - a) - f(a), a < x < b.

97

(Note: A way of remembering (4) is to write the equation of the chord joining
(a,f(a)) to (b,f(b)) as

(5)
(b) -,f (a)

Y b - a (x - a) ± f(a),

and then subtracting this expression fromf(x) to see thatg(x) is the vertical distance
(or its negative) between points of the curve and the chord.)

By substituting into (4), g(a) _
g(b) = 0 and since

g,(x) =.f '(x) - f(b) - f(a)
b-a

a<x<b a,01 (x,0) (i;,0) (b,0)

Figure 32.2

the conditions of Rolle's Theorem are satisfied. Hence there is a number
such that a < < b and g'(e) = 0; i.e.

0
f(b) - f(a)

b-a
which is equivalent to (3).

A geometric interpretation of Theorem 32.2 is: On a smooth arc there is
a point where the tangent is parallel to the chord.

DEFINITION. A function f is said to be non-decreasing on I[a,b] if
whenever x1 and x2 are numbers such that a < x1 < x2 < b, then

(6) f (x1) :-<f(x2)-

By replacing (6) by f (xo > f(x2) the definition off being non-increasing is
obtained. j-

THEOREM 32.3. If f is a continuous function on I[a,b], if f' exists on I(a,b),
and

(i) if f'(x)' > O for a < x < b, then f is non-decreasing on I[a,b], but
(ii) if f'(x) S O for a < x < b, then f is non-increasing on I[a,b].

t Some books use "monotonically increasing" in place of "non-decreasing," and
"monotonically decreasing" in place of "non-increasing."
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PROOF. Assuming f satisfies the conditions (i), let x1 and x2 be numbers
such that a < x1 < x2 < b. Then the conditions of Theorem 32.2 are
satisfied on the interval I[x1,x2]. Thus, let x0 be such that

(1) x1 < x0 < x2 and f(x2) = f(x1) + (x2 - xl)f'(XO)
Hence, a < x0 < b so that f'(x0) 0 whereas x2 - xl > 0 and thus

f (x2) - f (x1) _ (x2 - x1)f'(x0) > 0.
Consequently f(x1) < f(x2), which states that f is non-decreasing on I[a,b].
In case (ii) all statements down to and including (1) hold, but now
(x2 - x1) f'(x0) < 0 so that f(xl) > f'(x2) and f is non-increasing on I[a,b].

A paraphrase of Theorem 32.3 is the following test which may be used in
connection with maximum-minimum problems. (See p. 92 for Test I.)

C

Figure 32.3 Figure 32.4

C

TEST II. For f a continuous function and
c in the domain off, if f'(c) does not existT T1 f <o or if f '(c) = 0, then the value off (c) is:

'<0 (i) A relative maximum (see Fig. 32.3)

C

Figure 32.5

C

if there are numbers x1 < c < x2
such that f' z 0 on I(x1,c) but
f S 0 on I(c,x2).

(ii) A relative minimum (see Fig. 32.4)
if f' < 0 on I(x1,c) but f' > 0 on I(c,x2).

(iii) Neither a relative maximum nor a relative
minimum (see Fig. 32.5) if f has the same
sign in both I(x1,c) and I(c,x2).

Example 1. Find the relative maximum and relative 1
(1,2)

minimum of the function f defined by

1

f (x) = x+ x, x 0 0,
(0,1)

Solution. Since x = 0 is not in the domain off and
since

1 x2-1
f '(X) = 1 - X2 = x2 for x 0 0,

there is no critical value where the derivative fails to Figure 32.6
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exist. The only critical values are solutions off '(x) = 0; namely, x =- .. 1. Since
f' > 0 on I(-2,-1), but f' < 0 on I(-1,0), then f(-1) = -2

is a relative maximum,
f < 0 on 1(0,1), but f ' > 0 on 1(1,2), then f (1) = 2 is a relative minimum.

This example shows that a function may thus have a relative maximum
less than a relative minimum.

Example 2. Given f defined by f(x) = (x - 1)3(x - 3) + 1, determine all
relative maxima and minima.

Solution. f '(x) = (x - 1)3 + (x - 3) 3(x - 1)2 = 2(x - 1)2(2x - 5). Hence,
f'(x) exists for all x and f'(x) = 0 if either
x = 1 or x = 2. Moreover (x - 1)2 is
never negative and

f'(x) < 0 if x < 1 or if 1 < x < 2, (1,1)
(3,1)

f'(x)>0 if x>2.
Hence, this function has no relative maxi-
mum and the only relative minimum (see
Fig. 32.7) is f(2) = -is

This example shows that a function
5 11

may have a derivative equal to zero z' 16
without having a maximum or minimum Figure 32.7
there.

A point of a curve [such as (1,1) of Fig. 32.7] where the tangent is
horizontal with the curve above the tangent on one side and below on the
other, is called a point of horizontal inflection.

Example 3. A vertical post with square cross section 1 ft x 1 ft is set squarely
on a cubical block 3 ft on a side. Supports from the floor to the sides of the post
are desired. Find the inside length of the shortest possible support.

Solution. For a support making an angle 0
with the floor (see Fig 32.8), the inside length
L(8) is given by

(7) L(0) = 3 csc 0 + sec 0, 0 < 0 < 7r/2.

1 i \3\ We first find (see page 80, Example and Prob. 6)

L'(0) 3 csc 6 cot 0 + sec 8 tan 6

3 cos3 0 + sin3 0 7r
0 <0 <-sine

8 cost 0 2

Figure 32.8
Hence, L'(0) = 0 only if the angle 0 is such that
sin3 0 = 3 cos3 0; that is,

(8) tan 6 = 31/3, 0 < 0 <7r/2.
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Moreover L'(0) is negative for 0 close to 0, but L'(B) is positive for B close to 7r/2,
and hence the value of 0 for which (8) holds will make (7) a
minimum. From Fig. 32.9 in which tan 0 = 31/3, the value of
csc 0 and sec 0 may be read off to give the minimum length as

3V3 2/3 + 1 + V3213 + 1 = (32/3 + 1)3/2.
31/3

1

Figure 32.9 By slide rule computation the minimum length is 5.41 ft.

PROBLEMS

1. Find the relative maxima and minima off, find the points of horizontal inflection
of the graph, and sketch the graph.
a. f = {(x,y) I y = (X - 1)3(x - 5) + 1}.
b. f={(x,y)ly=(x-1)3(x-5)2+1}.
c. f = {(x,y) I y = (x - 1)(x - 5)3 + 1}.
d. f = {(x,y) I y = sin3 x}.

2. A farmer's barn lot is a rectangle 54 ft x 128 ft and is at the intersection of two
perpendicular roads. Find the shortest straight path from one road to the other
passing behind the lot.

3. In a gabled attic the roof has pitch J and is 30 ft across. A storage space is to
be made with horizontal ceiling and vertical side walls (ends and floor are
already there). Find the breadth and height for maximum capacity.

4. Work Prob. 3 for a Quonset hut whose end is a semicircle of radius 15 ft.

5. Work Prob. 4 for a Quonset hut whose end is a semi-ellipse 30 ft broad and
10 ft high.

6. A pup tent is to shelter 36 ft3; the ridge is to be 3 ft high and at least 6 ft long,
but there are no ends to the tent and no canvas for a floor. Find the dimensions
of the tent fulfilling these specifications that uses the least amount of canvas.

7. Given a right circular cone of base-radius r and altitude h. Show that the total
area A(x) of an inscribed right circular cylinder of radius x is given by

r-h
A(x) = 2,r X

Show that:
2

a. If r < h, then A (2(h hr r))
= 2(hh r r) is the maximum area.

b. If r = h, then A(x) = 2rrrx for 0 < x < r.
c. If r > h, then there is (properly) no maximum area.



Sec. 33 Points of Inflection 101

33. Points of Inflection

Given a function f, then f ' is its derived function, and f " is (as defined in
Sec. 27) its second derived function. We may thus apply the Law of the
Mean for derivatives (see Theorem 32.2) to the function f'; that is,

Let f be a junction such that
(i) f' is continuous on a closed interval I[a,b] and

(ii) f " exists on the open interval I(a,b),
and let c and d be any two distinct numbers on I[a,b]. Then between c and d
there is a number 77 such that

f'(d) = f'(c) + (d - c) f "(9i)

This fact will be used presently. First, we give a definition in which an
"arc" of a graph means "a connected portion of the graph."

DEFINITION. An arc of a graph is said to be:
(i) concave upward if each point of the arc is above the tangent to any

other point of the arc, but
(ii) concave downward if each point of the arc is below the tangent to

any other point of the arc.
As an illustration, for the graph in Fig.

33.1 the arc between S and T is concave
upward, the arc between T and U is con-
cave downward, and the arc between U
and V is concave upward.

THEOREM 33.1. For a function f, an arc
of the graph of ,f is concave upward if
throughout this arc f " > 0, but is concave
downward if everywhere on the arc f " < 0.

Figure 33.1

PROOF. Under the condition that f"(x) > 0 for a < x < b, we prove
that the arc between (a, f (a)) and (b, f (b)) is concave upward.

Let x1 be any number such that a < x1 < b. The tangent to the are at
(xl, f(xl)) has equation

Y = f(x1) + f'(x1)(x - x1).

We shall show that every point of the arc is above this tangent, except the
point (xl, f (x1)) of contact, by showing that

(1) f(x2) > f(x1) + f'(xl)(x2 - x1) for x2 0 x1, but a < x2 < b.

To do so, we first use the Law of the Mean to obtain

(2) f(x2) = f(x1) + f'(X3)(X2 - X1) with x3 between x1 and x2.
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Next we apply the Law of the Mean to the derived function f to obtain

f'(x3) = f'(x1) - f "(x4)(x3 - x1) with x4 between xl and x3.

This expression forf'(x3) substituted into (2) yields

(3) f (x2) =f(XI) T f '(x1)(x2 - xl) + f "(x4)(x3 - l)(x2 - xl)
The last term in (3) is positive. For if x1 < x2 then xl < x3 < x2 so that
0 <x3-x,. and 0 < x2 - xl, but if x2 < xl then x2 < x3 < xl so that
x3 - xl < 0 and x2 - x1 < 0. In either case (x3 - x1)(x2 - x1) > 0. Thus
the last term in (3) is positive since we are under the condition that f"(x) > 0
for all x between a and b.

Consequently, by dropping the last term from the equality (3) we obtain
the inequality (1). Hence the arc is concave upward under the condition
f"(x)>Ofora<x.<b.

The condition f"(x) < 0 for a < x < b leads again to (3), but this time
with the last term negative (as should be checked). Consequently the in-
equality in (1) is reversed, showing the arc to be concave downward.

(4, 3¢
4b2) JJb 3¢l

l1 4b2)

Example 1. With a and b positive
constants, find the concave upward and
concave downward portions of the graph
of the function f defined by

a
f(x) = x2 + b2 .

Figure 33.2

-2ax

Solution. We first compute

3x2 - b2
f '(x) = (x2 + b2)2

and f (x) = 2a (x2
+ b2)3'

and note that f "(x) > 0 if 3x2 - b2 > 0, but f "(x) < 0 if 3x2 - b2 < 0. Thus,

f "W > 0 if either x > b/ V3 or x < -b/ V3, but

f "(x) < 0 if -b/'/3 < x < b/V 3.

The concave upward portions are therefore separated from the concave downward
portion by the points (see Fig. 33.2)

b 3a l and (b 3b

( V3,4b2/
\\/34b2

From Theorem 33.1, a portion of the graph of a function where f' > 0

is concave upward but a portion where f " < 0 is concave downward
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Thus, if xi is such that.f'(xl) = 0 and f "(xl) > 0, then the point (x1, f(x1))
is the lowest point on a concave upward portion of the graph off, whereas
if f'(xl) = 0 and f"(xl) < 0 then the point
(xl, f(xl)) is the highest point on a concave
downward portion. See Fig. 33.3. We there-
fore have a third test for determining relative
maxima and minima of a function. (For Test
I see p. 92, and for Test II see p. 98.) 1

J 'U t"<0

TEST III. If f is a function and x1 is a
number such that f '(x1) = 0 and f "(xl) exists,
then the value f'(xl) is:

Figure 33.3

(i) A relative minimum off provided f "(x) > 0.
(ii) A relative maximum of f provided f "(x1) < 0.
(iii) Not applicable if f "(xl) = 0 or if f "(x) does not exist.

Example 2. Find the relative maxima and minima of the function f defined by

f (x) = 2 cos x - cos 2x, -7r < x < Tr.

Solution. J "(x) _ -2 sin x + 2 sin 2x = -2 sin x + 4 sin x cos x
= 2 sin x(2 cos x - 1) = 0

if x = -1r, -7r/3, 0, n/3, or Tr. For Test III we also need

f "(x) = -2 cos x + 4 cos 2x.

Now f "(-7r) = 2 + 4 > 0, so f(--ir) = -3 is a relative minimum,
f'( -a/3) _ -1 - 2 < 0, so f(-rr/3) _ ; is a relative maximum,
f "(0) = -2 + 4 > 0, so f (O) = 1 is a relative minimum,
f "(7r/3) = -1 - 2 < 0, so f(7r13) = 2 is a relative maximum,
f "(ir) = 2 + 4 > 0, so f(ir) = -3 is a relative minimum.

Example 3. In a homogeneous medium, light travels in a straight line at constant
velocity depending upon the medium. Let the velocity of light in air be vi and in
water be v2. Show that a light ray from a source S in air to an object 0 under calm
water will travel in the shortest time (as it does travel) if

(5)
sin ai sin a2

V1 V2

where ai and a2 are the angles the ray in air and water makes, respectively, with the
normal to the surface.

Solution. A ray from S to a point P on the surface and then to 0, would do so
in time T(x) where (see Fig. 33.4 for the meaning of x, a, b, and c)

T(x) - -,/a2 + x2 + /b2 + (c - x)2
V1 V2
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Since T'(x) =
x c - x

this derivative is zero if and only if
vlVa2 -+x2 v2Vb2 + (c - x)2

P

c,--'10

Figure 33.4

(6)
1 x 1 c- x

vl x2 v2 'Vb2 + (c - x)2

Since sin al = x/''a2 + x2 and sin a2 =
(c - x)/Vb2 + (c - x)2, we see that if (6)
holds, then (5) also holds.

There might be some doubt as to whether
the value of x which satisfies (6) actually
gives the minimum value of T. By taking
the second derivative and simplifying:

1 a2 I b2
T-(x)

= vl (Va2 + x2)2 + v2 (V'b2 + (c --X)2)'

which is positive for all x. Thus, the whole graph of T is concave upward so the only
place where T' is zero [namely, when (6) is satisfied] does furnish the minimum
value of T.

DEFINITION. A point of a graph is said to be a point of inflection if at
this point the tangent to the graph lies above an arc on one side and below an
arc on the other side.

Thus, in Fig. 33.1 the points S, T, U, and V are points of inflection. Also,
the graph in Fig. 33.2 has two points of inflection.

For the graph of a function f, any arc where f " > 0 is concave upward,
and any portion where f " < 0 is concave downward. Thus, at a point of
inflection f " can be neither positive nor negative. Consequently:

If (x0, f(xo)) is a point of inflection, then either f "(xo) exists and is
zero or else f "(xo) does not exist.

It therefore follows that the abscissas of all points of inflection will be found
among the solutions off "(x) = 0 together with all values of x which are not
in the domain off ". Note, however, that evbn if x0 is such that f "(xo) = 0
it may possibly be that (xo, f(xo)) is not an inflection point. For example,
the function f defined by

f(x) _ (x - 1)4
is such that f"(x) = 12(x - 1)2 so f "(1) = 0, but f"(x) > 0 for x 0 1 and
the whole curve is concave upward with no point of inflection.

PROBLEMS

Applications of Derivatives Chap. 3

1. For the graphs of each of the following function, find the portions concave
upward, the portions concave downward, and find the points of inflection
(if any) :
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a. {(x,y) I y = x3 - 3x2 + 2x - 4}.
b. {(x,y) I 0 < x < IT, y = sine x}.

c. {(x,y) I 0 < x < ir, y = I + Cos 2x}.

d. {(x,y) I -77/2 < x < ,,,/2, y = x2/4 + sin x}.

e. {(x,y) I y = x'/3(x - 2)2/3}.

f. {(x,y) I y = x2 - I /x}.

2. By using Test III, determine the relative maxima and minima for the function
defined by

a. f (x) _ (x - 2)2(x + 2). C- f W = cos 3x - 3 cos x, -7t < x S 7r.

b. f W _ (x - 2)2(x + 2)2. d. f (x) = 3 cos x - 4 cos3 x, -7r < x < 7r.

3. A box of square base and volume V is to be made from thin sheet metal. Find
the dimensions for minimum:

a. Area if there is no lid. b. Area if there is a lid.
c. Cost if there is no lid, bottom costs a$/ft2, sides b$/ft2.

d. Cost of lid c$/ft2 and otherwise as in Part c.

4. A sealed tin can is to be made in the shape of a right circular cylinder with
volume V. Find the dimensions for:

a. Smallest total area.

b. The smallest amount of tin to buy if squares and rectangles of tin can be
ordered of any size and each end is to be cut from a square (the corner
portions being wasted). Give the size of the square and the rectangle to be
ordered.

5. Figure Prob. 5 represents a straight high tension line
passing at distance a and b from two factories F1 and
F2, a transformer station T, and secondary power
cables from T to F1 and T to F2. If the cost of the
electric cable to F1 is d1$/ft and to F2 is d2$/ft, show
that the minimum cost of cable is obtained by locating
Tin such a way that

d1 sin a = d2 sin
Figure Prob. 5

6. Does {(x,y) I y = x3 - 3x2 + 6x + I1 have a tangent of minimum slope?

7. On {(x,y) I y = x3} find two points whose abscissas differ by 2 and the line joining
them has slope as small as possible.

8. A window is to be designed in the form of a rectangle surmounted by a semicircle
with diameter coinciding with the upper base of the rectangle. The perimeter of
the window is to be s ft. Find the dimensions of the window that admits as
much light as possible if:
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a. The whole window is made of the same kind of glass.

b. The rectangle is clear glass, but the semicircle is colored glass admitting half
as much light per square foot as the clear glass admits per square foot.

9. Prove that In x <- x - 1 for all x > 0. (Hint: Find the maximum of f(x) _
In x - x + 1.)

34. Simple Econometrics

In many problems some or all of the variables involved may take only
integer values. Even under such circumstances it is sometimes possible to
use calculus in such a way that much computation or mere routine work may
be eliminated.

If the price of a good is increased, the demand for the good is (presumably)
decreased and whether the profit is increased by higher price or decreased by
smaller sale is a question an economist may be called upon to answer.

Example. An economist studying a certain hardware business finds that the
wholesale price and overhead in handling n washing machines a month is

$(110 + 39n)

and that n washing machines are sold a month at $p apiece where (this is the
demand law in this case)

n = 50 - 1p.

Find the retail price the economist should advise in order to yield the greatest
profit.

Solution. Let $P(n) be the profit on n washing machines at $p apiece. Note that

P(n) = np - (110 + 39n)
= n(100 - 2n) - (110 + 39n) (From (1))

= -2n2 + 61n - 110,
which is to be maximized. SinceP = {(n,y) I y = -2n2 + 61n - 110} where n takes
only integer values, consists of isolated points, but with

f = {(x,y) I y = -2x2 + 61x - 110},

f is a curve passing through the isolated points of the set P, and we may find the
highest of these isolated points by seeing which of them is nearest the level of the
highest point of the curve. Since

f '(x) = -4x + 61 and f "(x) = -4
we see that the curve is concave downward with its highest point occurring where
x = a . Since 15 < < 16, we compute

P(15) = 355 and P(16) = 354

and therefore the sale of 15 washing machines yields the greatest profit (which is
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$355) and to obtain the proper demand the price should be set [according to (1)
with n = 15] at

$p = $(100 - 2.15) = $70.

PROBLEMS

1. In a certain locality and type of soil it is found that if 20 orange trees are planted
per acre, the yield will be 500 oranges per tree, and that the yield per tree is
reduced by 15 for each additional tree per acre. What is the best number of trees
to plant per acre?

2. The manager of a chain of stores finds that to buy and distribute x cans of
tomatoes a day costs

3 25
65 + 102 x + 106 x2 dollars.

Also, by varying the price charged for the tomatoes he finds that if p cents is
charged per can, then x cans a day are sold where V

1p = 23 -
400

X.

Find the number of cans he should buy per day and the price at which he should
sell them.

3. The manufacturer of a certain article finds that if he makes x articles,
0 < x < 1000 a day, he has :
First, fixed organizational cost of $90 per day;
Second, unit production cost for each article of $0.09; and
Third, maintenance, repairs, etc., x2/104 dollars per day. Show that it costs C(x)
dollars to produce each article where

90 x
C(x) = z + 0.09 + 104

and determine what number of articles per day makes the cost per article least.

4. A steel plant is capable of producing x tons, 0 < x < 8, of low-grade steel per
day and y tons of high-grade steel per day, where y = (40 - 5x)/(10 - x).
If the fixed market price of low-grade steel is half that of high-grade steel, show
that about 55 tons of low-grade steel should be produced per day for maximum
profit. Show that the given relation between tons of high- and low-grade steel
steel is not a sensible one if 0 < x < 12.

5. A manufacturer finds that he can sell x units per week of his product at p dollars
per unit where p = 3(375 - 5x) and that the cost of producing x units per week
is 500 + 15x + 5x2 dollars.
a. Find the number of units he should produce per week and the price he should

charge per unit to make his profit as great as possible.
b. A tax of $5 per unit is later imposed on the manufacturer. How should he

change his production and selling price to keep his profit as great as possible?
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35. Rates

Chap. 3

We have already seen that if s is a function and for each number t we let
s(t) be the coordinate at time t of a particle on a linear coordinate system,

then s'(t) is the velocity of the particle at time t.
In many problems involving rates, a function s

-s(t) may be defined whose derivative gives pertinent
T t information. The following examples illustrate

2 (2+0 two such problems.

Example 1. A highway crosses a railroad track
Figure 35.1 at right angles. A car traveling at the constant rate

of 40 mi/hr goes through the intersection 2 min
before the engine of a train traveling at the constant rate of 36 mi/hr goes through
the intersection. At what rate are the car and engine separating 10 min after the
train went through the intersection?

Solution. Just t min after the engine went through the intersection, the engine
is s t =

s
t mi down the track, the car is s °-a(2 + t) = ;(2 + t) mi down the highway,

the car and engine are

S(t) _ 'V'(5t)2 +(3)2(2 + t)2 = 15 V'181t2 + 4001 + 400 mi

apart, and are separating

I 2(181t + 200)
s'(t) =

15 2V'181t2 + 4001 + 400
mi/hr.

Thus, the answer to the problem is s'(10) = 201/(15)2 mi/min = 53.6 mi/hr.

Example 2. A man grasps a rope 6 ft above the ground. From his hand the rope
goes straight up to a pulley 36 ft above the ground
and then straight down to a wei ht restin on theg g
ground. If the man, holding fast to the rope and keep-
ing his hand 6 ft above ground, walks away at a con-
stant rate of 10 ft/sec, how fast is the weight rising:

36
a. one sec after the man starts to walk?

b. When the weight is 20 ft above ground?

Solution. The length of the rope from the man's
hand over the pulley and down to the ground is 66 ft.
Thus (see Fig. 35.2), t sec after the man started walk-
ing he has moved 10t ft, the weight has moved s(t) ft where

6t,, r-6---------

Figure 35.2

66 = '1(10t)2 + (30)2 + 36 - s(t); i.e.,

s(t) = ,/(IOt)2 + (30)2 - 30
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and the weight is moving

Rates 109

lOt
s'(t) =

9
ft/sec.

The answer to Part a is therefore s'(1) = ft/sec or approximately
3.16 ft/sec.

Part b is answered by first finding the value of t for which s(t) = 20 and then
substituting this value in s'(t). Since

20 = V(lOt)2 + (30)2 - 30

if and only if 100t2 = 2500 - 900 = 1600, i.e., if and only if t = =4, we discard
-4 and obtain the answer

40
s'(4) _ = 8 ft/sec.

'/16 + 9

PROBLEMS

1. Concentric rings are produced by a stone thrown into a calm lake. If the radius
of a ring is increasing at the rate of 1.5 ft/sec, find the rates of increase of the
circumference of the ring and the area of the ring when the radius of the ring is
(a) 5 ft; (b) 10 ft.

2. A 20-ft ladder leans against a vertical wall. The lower end is pulled along the
horizontal floor at a constant rate of 4 ft/sec and the top slides down the wall.
Find the rate at which the top moves when:

a. The lower end is 5 ft from the wall.
b. The lower end is 16 ft from the wall.

c. The upper end is 16 ft above the floor.

d. For what time interval is the top moving faster than the bottom?

3. Two highways make an angle of 60° with each other. One car traveling 40 mi/hr
goes through the intersection at 11:30 A.M., and another car traveling 48 mi/hr
on the other highway goes through the intersection at 12 noon. Show that at
t hr after noon the distance between the cars is

s(t) = 4 /124t2 + 40t + 25 or S(t) = 4V364t2 + 160t + 25

according to the relative directions of the cars. In both cases find the rate at
which the cars are separating at I P.M.

4. An airplane traveling level and going due north at 180 mi/hr passed over an
airport just 10 min before a second airplane traveling at the same level going
north 60° west at 240 mi/hr passed over the same airport. Show that t min
after the second airplane passed over the airport, the airplanes were
s(t) = '/1312 +60t + 900 miles apart. Find how fast the airplanes were
separating when the second airplane passed over the airport, and also 5 min later.
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5. A water tank is in the shape of a right circular cone of radius 3 ft and altitude
9 ft with axis vertical and vertex down. Water is flowing into the tank at the
constant rate of 8 ft3/min. Let h(t) be the depth of water in the tank t min after
the water begins to flow in. Find

a. h(t).
b. How long it takes to fill the tank.
c. How fast the water is rising when t = 8.

d. How fast the water is rising when it is 6 ft deep.

6. Sand is being poured from a spout to the ground at the constant rate of
48 ft3/min. The sand forms a conical pile with diameter of its base 3 times its
altitude. Let h(t) be the height of the pile t min after sand begins to flow.

a. Find h(t).
b. How fast is the height increasing 8 min after the sand begins to flow?
c. How long does it take to form a pile of height 4 ft?
d. How fast is the height increasing when the pile is 4 ft high?

7. Two airplanes traveling at the same level are headed for the same airport, one
traveling east at 180 mi/hr and the other north 30° east at 240 mi/hr. At a
certain instant the first is 100 mi from the airport and the second is 50 mi from
the airport. At this instant and 5 min later, find the distance between the airplanes
and the rates at which they are approaching each other.

8. At 1 P.m. a ship going due north at 10 knots is 13 nautical miles due south of a
ship going west at 15 knots. Is the distance between the ships increasing or
decreasing at 1:15 P.M.; at 1:30 P.mt.? Find the rates at these two times.
At what time are the ships closest together?

9. Figure Prob. 9 represents a crank arm OA, which revolves with constant rate

Figure Prob. 9

36. Related Rates

co radians/sec and has length r in. The
connecting rod AB has length L in. The
piston B moves back and forth along the
x-axis. Show that B has velocity

r2 sin tut cos wt
- r sin wt + (o in./sec.

V T2 -- r2 sin2 wt))))))

Given the function f defined by f(x) = 3x2 - x, then

f'(x) 6x - 1 and also D,f(x) = 6x - 1.
For example, f'(2) = 6 2 - I = 11, but on the other hand, by common
consent and usage, D. f(2) is not equal to 11, but the notation

Dxf(x)]x=2=6x-1]x=2=6.2-1=11
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is used. Since f(2) = 3 22.- 2 = 10, the meaning of Dx f(2) is "the
derivative of a constant" so that D. f(2) = Dy10 = 0.

In Sec. 35 rate problems were solved by defining pertinent functions
explicitly in terms of time, such that the time-derivatives of these functions
gave the desired results. In some situations it is, however, not feasible to
express the functional relationship explicitly in terms of t.

Example 1. From a hemispherical bowl of radius 10 ft which is partly full of
water, the water is flowing through a hole. At the instant the water is 6 ft deep,
the rate of flow is 5ft3/min. Find the rate the surface of water is falling at this
instant.

Solution. As illustrated in Fig. 36.1, when water
stands h ft deep in the bowl, the volume is V =
7(l0h2 - 3h3) ft', a formula which is given now
and will be derived later. Thus, the physical
problem is translated into mathematical terms as:

Given: 1) V = i.(1 0h2 - Ihs)
2) DgV1h=6 = -5

To find: Dth]h=6.
Figure 36.1

Although no explicit expression for the function h in terms of t is known, we may
use the formula for the derivative of the composite function V to write

D t V = DaV Dth = Dh[n(10h2 - jh3)] . Dth

= 7T(20h - h2) Dth.

The rate of change of V and the rate of change of h are related by this equation.
The rate of change of V is known only at one instant (when h = 6) and the rate of
change of h at this instant is required. Hence, from

-5 = DtV]h-s = 77(20 6 - 62) . Dth]h>61 so that

-5 5
Dth]h=6 = ii(120 - 36) 4;'

Thus, to return to the physical problem, the surface is falling 5/(84ir) ft/min.

In Example 1 the functions V and h cannot be expressed specifically in
terms of t. If the problem had been more specific (and even less practical) by
stating that water leaked out at the rate of 5 ft3/min whenever there was any
water present, then V (and hence h) could have been expressed in terms of t.

Even though all functions in a problem are expressible specifically in
terms of t, it may be less trouble not to so express the functions.

Example 2. A cruiser is steaming a straight track at 20 knots. An airplane,
flying so low that its angle of elevation from the cruiser may be neglected, is going
200 knots along a straight line making an angle of 60° with the track of the cruiser.
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A radar scope keeps a battery of guns on the cruiser pointed toward the airplane.
At the instant the guns are perpendicular to the cruiser, the airplane is ? nautical
miles away. Find the rate at which the guns are turning at this instant.

Solution. Referring to Fig. 36.2, and using the sine law, we are:
Given: Dtx = 20,

Dty = -200,
sin 8 sin ( it - 8)

(1) y = x

z = ? when e =7r/2,
To find: Dt8]e = n/2

we haveAfter writing (1) as x sin 6 = y sin (v - 0) ,

Dt[x sin 8] = Dt[y sin (rr - 8)],

so° B xDt sin 6 + (sin 8)Dtx
1 --® = y cos (Yr - 6)Dt(F'rr - 8) + sin ( rr - 6)Dty,

Figure 36.2
x cos 0Dt0 + (sin 6)Dtx

_ -y cos (Fr - 8)Dt8 + sin (mar - 8)Dty.

Now substitute Dtx = 20 and Dty = -200 and solve for Dt8:

-200 sin (J-,r - 0) - 20 sin 8
Dt8 x cos 0 + y cos (Fr - 0)

But at the instant when 0 = 7/2, and only at this instant, z = j so that at this
instant x = 1/(2V3) and y = 1/V'3. Hence,

-200 sin (4r/6) - 20 sin (ir/2)
Dte3e=n/2 1r 1 _ -240 rad/hr = -4 rad/min.

2V3cos2 + 73cos6

PROBLEMS

1. At a certain instant the area of a sphere is increasing at the rate of 3 in.2/min.
At what rate is the volume changing at the same instant?

2. The area of a right triangle is increasing at the rate of 2 in.2/sec and one of the
legs is increasing at the rate of j in./sec. For what lengths of the other leg will
that leg be increasing? Decreasing?

3. Water is being poured into a hemispherical bowl of radius 4 ft at the rate of
2 fts/min. Find the rate at which the level of the water is rising at the instant it
is 2 ft deep..

4. The height of a right circular cylinder is increasing at the rate of 3 in./min, and
the radius of the base is decreasing at the rate of 2 in./min. Find the rate at
which the volume of the cylinder is changing.
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5. A gas, obeying Boyle's law (i.e., pressure x volume = constant), occupies a
volume of 1,000 in.3 and is under pressure of I lb/in.2 If the gas is being com-
pressed at the rate of 4 in.3/min, find the rate at which the pressure is changing
at the instant when the volume is 800 in.3 (The temperature of the gas remains
unaltered during the process.)

6. A ladder 20 ft long leans against a vertical wall. The bottom of the ladder is
being pulled away from the wall at the rate of 2 ft/sec. Find the rate at which the
area of the right triangle bounded by the ladder, the wall, and the horizontal
floor is changing when the top of the ladder is 12 ft above the floor.

7. A lamp post is 8 ft high. A stone is thrown vertically upward with initial velocity
of 20 ft/sec from a point on the ground which is 100 ft from the bottom of the
post. At what rate is the shadow of the stone moving on the ground when the
stone is 4 ft above the ground if:
a. The ground is level ?

b. The ground is inclined in such a way that the level of the point from which the
stone is thrown is 10 ft below the level of the bottom of the post?

Disregard air resistance and use g = 32 ft/sec.

8. Wheat pours at the rate of 10 ft3/min from a spout to the floor forming a
conical pile with radius of base always half the altitude. How fast is the height
changing at the instant it reaches 5 ft?

9. A snowball is the shape of a sphere; as it starts rolling down a mountain, it is
growing in size but remaining spherical. If the rate at which the volume is
increasing is proportional to the surface, prove that the rate at which the radius
is changing remains constant.

10. A cube has volume increasing at the rate of 300 in.3/sec at the instant the edge
is 25 in. How fast is the edge changing at this instant?

11. A boat with deck 25 ft above the harbor bed is anchored with 75 ft of rope
which is kept taut in a straight line by a stiff breeze. Rope is then hauled in at
the rate of 5 ft/min. How fast is the boat moving the instant 10 ft of rope have
been hauled in?

12. A conical tank (vertex down) is 30 ft across the top and 10 ft deep. Water is
flowing in at a constant rate, but is also leaking out at 0.5 ft3/min. The instant
the water is 5 ft deep the surface is rising at the rate of 1.5 ft/min. How fast is
the water flowing in?

13. A baseball diamond is a square, 90 ft on each side. The instant a runner is
halfway from home to first base he is going toward first base at 30 ft/sec. How
is his distance from second base changing at this instant?

14. A bridge is 30 ft above and at right angles to the banks of a river in which the
water is flowing 10 ft/sec. A man walking 5 ft/sec on the bridge sees a block of
wood directly below him on the water. How fast are man and block separating
3 sec later?
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37. Linear Acceleration
The first derivative is interpreted geometrically in terms of slope and

physically in terms of velocity. In Sec. 33, the second derivative was inter-
preted geometrically in terms of concavity properties of a graph. We now
investigate a physical interpretation of the second derivative.

Let a particle move on a coordinate line in such a way that at time t its
position is s(t). Then

v(t) = s'(t) linear units/time unit,

is its velocity at time t. The velocity may not be constant and

v(t + h) - v(t) velocity units

is the change in velocity during the time interval from t to t -}- h. Also,

v(t + h) - v(t) velocity units
h time unit

is the average change in velocity, or the average acceleration in the time
interval from t to t ;- h. Furthermore,

v'(t) = lim v(t + h) - v(t) velocity units
,r-o h time unit

is defined to be acceleration at time t. The formalism

velocity units

=
linear units/time unit _ linear units

time unit time unit (time unit)2

and the use of a for the acceleration function leads to

a(t) = v'(t) = s"(t) linear units/(time unit)'.

As usually stated loosely, "The acceleration is the derivative of the velocity
or the second derivative of the position."

Example. Describe the motion under the foot-minute law

s(t) = t3 - 2t2 - 4t + 3, -2 <- t <_ 3.5.

Solution. v(t) = 3t2 - 4t - 4 = (3t + 2)(t - 2), and
a(t) = 6t - 4 = 2(3t - 2).

The beginning and end of the time interval and pertinent instants (where either
v(t) = 0 or a(t) = 0) are t = -2, -2, 2,

2
and 3.5:

v(t) > 0 if either -2 < t < -1 or 2 < t < 3.5,
v(t) <0 if -2 <t <2,

a(t) < 0 if 2< t < j, but a(r) > 0 if < t < 3.5.
Motion "starts" at s( -2) = -5 with initial velocity v(-2) = 16 ft/min, hence in
the positive direction, and continues in this direction until t = - when, at
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s(-3) = 2;1, direction of motion is reversed and maintained until t = 2, when,
at s(2) = -5, motion in the positive direction is resumed to continue throughout
the remainder of the given time interval. Since a(t) < 0 for -2 < t < 3 the velocity
decreases through positive values to 0 to negative values until a(t) = 0 when t = 31
v(3) = -13 ft/min, and s(3) = - -';. Velocity then increases throughout the
remaining time interval (since a(t) > 0 for 3 < t < 3.5); that is, velocity increases
through negative values to 0 and then through positive values.

t=2 (
------------ *

t

t=3.5

t=-2

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
27 4.5 7.4

Figure 37

A realistic interpretation of the relation between velocity and acceleration
can be made in terms of a car going forward (v > 0) or backward (v < 0)
and either applying gas or the brakes. Thus,

v > 0, a > 0 means forward and gas,
v > 0, a < 0 means forward and brakes,
v < 0, a > 0 means backward and brakes,
v < 0, a. < 0 means backward and gas.

Notice that a > 0 means the driver's shoulders are being pressed back. In
particular the brake is a "positive accelerator" in case the car is going
backward.

By definition, speed is the absolute value of velocity.

PROBLEMS

1. Describe the motion given by the following laws:
a. S(t) = t3 - 4t2 - 3t + 10, -5 t S S.
b. s(t) = 4 + 4t + 2t2 - t3, -3 < t < 3.
c. s(t) = 3 sin 2t, 0 <- t <7r.

d. s(t) = 2(t - sin t cos t), 0 5 t 2n.

2. Given the position function s defined below, find the velocity function v and the
acceleration function a. Solve the inequalities v(t) > 0, v(t) < 0, a(t) > 0, and
a(t) < 0.
a. s(t) = 20 - 3t2 - 36t + 5, -5 -< t < 5.
b.s(t)=2t3-9t2+12t+1, t>0.
c. s(t) = sine t, 0 < t 5 27r.
d. S(t) = cost t, 0 < t <- 21r.
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3. For each of the following laws of motion find the relative maxima, relative
minima, the maximum, and the minimum of both the velocity and the
acceleration.

a. s(t) =t4 -6t2+5, -2 -<t <_3.
b. s(t) = 6t5 - 10t4 + 20t3 - 6012 - 1601 + 101, 0 <- t <- 3.

c. s(t) = 3t - sin 2t + cos 2t, 0 5 t <- n.

d. s(t) =t2 - sine t, 0 <-t :5 27T.

38. Simple Harmonic Motion

DEFINITION. With a 0, b 0 and to given numbers, a motion governed
by either of the laws

(1) x(t) = a cos b(t - to) or x(t) = a sin b(t - to)

is said to be simple harmonic with amplitude jal, period 2ir/jbl and phase
constant to.

Either law may be transformed into the other merely by changing the
phase constant. For example,

a sin b(t - to) = a cos [b(t - to) - it/2]

= a cos b[t - (to + 7r/2b)].

The period is given as 27r/lbl since cos (A ± 27r) = cos A, and hence

a cosb[(t+ibl) -to] =acos[b(t-to)+2zr =acosb(t-to)

because b/lbl = + I according to whether b > 0 or b < 0, respectively.
In studying the harmonic laws (1), it is convenient to make a translation

to a new time-origin by setting

T=t - to

(so T = 0 when t = to) and obtaining, respectively,

(2) x(T) = a cos bT and x(T) = a sin bT.

Example. Show that the motion governed by the law

s(t) = a1 cos bT + a2 sin bT

is simple harmonic and find its amplitude, period, and phase constant.
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Solution. There is a number To (see Fig. 38) such that

cos T
al

and sin T a2

Thus s(t) _ tai i a2 (
al

cos bTt / 2l + a22a

+
a2

sin bT}
Va.1 + a2

111

_ 'tai + a2 {cos To cos bT + sin To sin bT} Figure 38

_ tai + a2 cos (bT - To) a2 cos bI T - bo)

Hence, s(t) is written in the form of the first law in (1) with amplitude V4-+-a2
period 27r/b and phase constant T0/b.

For xp a constant the law of motion given as

x=xo+acosb(t-to)
is again simple harmonic, since the law may be written in the form (2) by
setting X = x - xo and T = t - to to obtain

X = a cos bT.

PROBLEMS

1. For each of the following harmonic laws, find the amplitude, period, and phase
constant.

a. x = 3 cos (2t + 1). d. x = 10 sin 1207rt.

b. x = 3 sin (1 - 2t). e. x = 0.5 sin 7r(120t - 0.5).
c. x = 5 sin lT(t - 1). f. x = 6 sin r(72 - 2t).

2. Show that each of the following may be written as a harmonic law. In each case
find the amplitude, period, and the phase constant of smallest absolute value.
a. x =cost + sin t. e. x T cos2 t.
b. x = cos 2t - sin 2t. f. X = sine irt.

c. x = 3 cos in + 4 sin irt. g. x = cos2 t - sine t.
d. x = 12 cos t - 5 sin t. h. x = 2 sin 3t cos 3t.

3. For a particle moving according to either of the laws (1), show that each of the
following is also a simple harmonic law.

a. The velocity. c. The product of position and velocity.
b. The acceleration. d. The square of the velocity.
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4. Figure Prob. 4 represents a circular disc of radius R fastened to a shaft at a
point a units from the center. The shaft turns uniformly, and the U-shaped
mechanism is clamped so the prongs are always vertical, but the attached shank
can move back and forth. Show that the shank moves harmonically.

Figure Prob. 4

5. A point starts at the point (R,0) and moves with uniform speed counter clockwise
around a circle of radius R and center at the origin. Show that the projection
of the point on the x-axis, or the y-axis, has harmonic motion.

11,21
1

The rectangle represents the floor of
a room and AB an inelastic piece of

.4 B Th bIb h

A
string. e o represents t e same
piece of string wadded up and thrown
onto the floor. Prove there is at least
one point of the string that is the same
distance from the wall line W. W- in

Till
b h i iot pos t ons.

Visualize the figure below as the ends of two perfect circular-cylindrical logs on
a smooth horizontal plane and PQ as the edge of a board. As the logs roll the
board stays level. Can one of the logs be replaced by another with a non-circular
cross section and the board still stay level as the logs roll?

Think before turning to page 618.

3



CHAPTER 4

Additional Concepts

In recorded history there is clear evidence that before the 17th century some men
were pondering questions which later were considered as in the domain of calculus.
Isaac Newton (1642-1727) in England and Gottfried Wilhelm Leibniz (1646-1716)
in Germany are, however, regarded as independently founding systematic methods
now classified as calculus. The underlying principles adopted and expanded by
these two men are remarkably similar in content, but the terminology and notation
they used are quite different. As the subject developed and was propagated over
the world these two streams of influence merged, but neither subdued the other,
so that now rudiments of both systems permeate the literature of mathematics and

its applications. For example, D;,f(x),f'(x), and df(x) (see Sec. 41) are alternative
notations for the derivative of a function f at x.

Although this chapter is primarily concerned with problems inverse to finding
derivatives, a secondary purpose is to begin using alternative terms and symbols
in connection with derivatives.

Do you know what "Fluxions" are? Had Newton's appellation persisted this
book would have been entitled Methods of Fluxions and Analytic Geometry.

39. Derived Functions Equal

For c a constant and F a function let G be the function defined by

G(x) = F(x) 1 c.
Then D,,G(x) = DJF(x) + c] = D,F(x) so that F' = G'; that is:

If tKwo functions differ at most by a constant then they both hare the same
derived function.

The converse theorem is also true; precisely:

THEOREM 39. Let F and G be continuous on the closed interval I[a,b] and
such that F' and G' exist and are equal on the open interval I(a,b); that is,

(1) F'(x) = G'(x) for a < x < b.
Then F and G differ on I [a,b] at most by a constant; in particular,

(2) F(x) - F(a) = G(x) - G(a) for a < x < b,
(3) F(b) - F(a) = G(b) - G(a)

119
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and there is a constant c such that

(4) F(x) = G(x) + c for a < x < b.

PROOF. Let f be the function defined by

f (x) = F(x) - G(x), for a < x < b.

Now f is continuous on I[a,b], f' exists on I(a,b); and from (1)

(5) f'(x) = F'(x) - G'(x) = 0, for a < x < b.
Let x be a number such that a < x < b. Then f satisfies the conditions

of the Mean Value Theorem (Theorem 32.2) on I [a,x] so choose x such that
a<sey<xand
(6) f(x) = f(a) + (x -

a < < b so that 0 from (5) and thus for a < x 5 b

f(x) = f(a)
and then also for x = a. But f(x) = F(x) - G(x) and f(a) = F(a) - G(a)
so that

F(x) - G(x) = F(a) - G(a) for a S x < b

which is equivalent to (2). Upon setting x = b we have an equation equivalent
to (3) and upon setting F(a) - G(a) = c we obtain (4).

A geometric interpretation is obtained by taking two curves such that

Figure 39

whenever a line perpendicular to the x-axis
intersects one curve, it also intersects the
other, and at the points of intersection the
slopes of the tangents to the respective curves
are equal. Then, according to Theorem 39,
the points on the curve with a given abscissa
are the same distance apart as for any other
abscissa.

From Theorem 39 it also follows that if
two particles move in such a way that they
have the same velocity law, then the par-

ticles need not coincide, but their distance apart at one instant is the same
as at any other instant.

40. Derivative Systems

Solving x2 = 4 is an inverse operation to squaring a number, finding
logarithms of a given base is inverse to raising this base to powers, and
finding a number (or angle) whose sine is j is inverse to taking the sine of a
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number (or angle). Consider now the inverse of finding the derived function
of a given function. Thus, if

f (X) = x2
then D:,f(x) = 2x, but inversely D.,(3x3) = 1(3x2) = x2 =f(x). Further-
more, D.,(3x3 + 2) =f(x) and, from Theorem 39, if g is any function whose
derived function is f, then there is a constant c such that

g(x) =
3x3

+ c.

DEFINITION 40.1. Given a function f, then any function whose derived
function is f is said to be an anti-derived function off or an anti-derivative
off

In this terminology, Theorem 39 may be stated as:
If f is a given function, then any two anti-derived functions off differ by a

constant.
Thus, if f has an anti-derived function, then there is a whole family of

functions each of which is an anti-derived function off and any member of
the family may be obtained by adding a constant to any other member of the
family.

In some situations, as described below, a function f is not given, but its
derived function is given and a specific value off is also given. A problem is
then to find the function f itself. For example, let it be given that

(1) f'(x) = 2x for all x and that f(3) = 1.

Since 2x it follows that there is a constant c such that f(x) = x2 + c
for all x. In particular then f(3) = 32 + c. But it is given that f(3) = 1 so
it is now known that 9 + c = 1 and, hence, that c = -8. Consequently the
function f given by

f(x)=x2-8.

satisfies both conditions in (1) and is the only function satisfying these
conditions.

DEFINITION 40.2. The derived function of a function together with a spec fic
value of the function is referred to as a derivative system, and the function
satisfying both conditions is said to be the solution of the derivative system.

Example 1. A particle in linear motion starts when t = 0 at the point 2 and
thereafter has velocity.law

v(t) = sin 3t.

Find the position of the particle at any time t > 0.

Solution. As s'(t) = v(t), an equivalent problem is: Solve the derivative system

s'(t) = sin 3t, s(0) = 2.



122 Additional Concepts Chap. 4

Noting that Dt(-l cos 3t) = -3(-3 sin 3t) = sin 3t we have
s(t) _ -3 cos 3t + c, s(O) _ -3 cos 0 + C = -3 + c = 2.

Hence, c =.zs and the solution is s(t) _ -3 cos 3t +

Example 2. A curve passes through the point (1,0) and at each point (x,y)
of the curve the slope in of the tangent to the curve is given by m = cost 7rx sin 7rx.
Find an equation of the curve.

Solution. The problem is translated into: Solve the derivative system

(2) Dxy = cost 7rx sin 7rx, y = 0 when x = 1.
Since D. cos' 7rx = 3 cost 7rxDx cos 7rx = -37r cos2 7rx sin 7rx, it should be seen that

D. ( - cos3 7rx = cos2 7rx sin 7rx.3
Hence, there is a constant c such that the desired equation is

3' _ -3 Cos3 7rx + C.

But y = 0 when x=1 so that 0 = -17r cos37r +c=-17,+c and c= -j7r,
Hence,

y = -3._(1 + cos3 7rx)

satisfies both conditions of (2) and is the desired equation.

Before attempting the problems, check each of the following:

If f'(x) = ax', then f(x) =
P

a
1 x2)+1 + c, p -1.

If f(x) = a cos bx, then f (X) = a sin bx + c, b 0.

If f'(x) = a sin bx, then
f (x) = - a cos bx + c, b = 0.

If f'(x) = sins' bx cos bx, then f(x) _ sin' lbx -i-c,b 0,
b(p + 1)

If f'(x) = cos9 bx sin bx, then f(x) = -1 cos" bx + c, b = 0,
b(p + 1)

PROBLEMS

1. Solve each of the derivative systems:

a. f'(x) = x, f(2) = 3.
b. f'(x) = x2, f(-1) = 4.
c. f'(x) =Vx, x>0; f(1) =2.
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d. f '(x) = x3, f(2) = -3.
e. f'(x) = sin 2x, f(n/3) = 1.
f. f '(x) = 3 cos x, f (7r/2) = 3.
g. f'(x) = x + sin x, f(0) = 2.
h. f'(x) = sin2 x cos x, f(r/2) = -1.
i. f'(x) = cost 2x sin 2x, f(0) = 4.
j. f '(x) = sin 2x + cos 3x, f (7r/2) = 10.

2. If v(t) is the velocity and s(t) is the coordinate of a particle, find s(t).
a. v(t) = 3t, s(2) = 4. e. v(t) = sin 3t, s(n19) = 2.
b. v(t) = 3t2 + 4, s(0) = 0. f. v(t) = sin it + cos 2t, s(r) = 1.
c. v(t) = 4 - 3t2, s(l) = 0. g. v(t) = cos it + 5 sin 3t, s(0) = 1.
d. V(t) = (t - 1)2, s(l) = 0. h. v(t) = 320 cos5 et sin t, s(r) = 0.

3. Determine the function f if the graph off passes through the given point and at
the point on the graph having abscissa x the tangent to the graph has slope m.
a. (2,4), m = 3x - 1. d. (2,4), m = (3x - 1)(x + 1).

b. (4,2), m = 3 V'x, x > 0. e. (0,2), m = cos 2x - 2 cos x.
c. (0,0), m = 1 + sin x. f. (r,3), m = sin 2x sin x.

4. Find the relative maxima and minima of the function which has the given specific
value and the given derived function

a. f (O) = 4, f '(x) = (x - 2)(x + 3). d. f(3) = 4, f '(x) = I).

b. f (O) = 6, f '(x) = (x - 2)(x + 3). e. f(3) = 3, f '(x) = D,,(x/'/x + 1).
c. f(2) = 3, f-'(x) = (x3 - 1)/x2. f. f(0) = 2, f'(x) = D,,(x + sin x).

5. In each of the following an acceleration law is given and also specific values of
the velocity and position are given. Find the position law.
a. a(t) _ - 32.2, v(0) = 10, s(0) = 25.

b. a(t) _ -9 sin 3t, v(0) = 5, s(0) = -5.
c. a(t) = 9 cos 3t - 4 sin 2t, v(0) = 2, s(0) = I.

d. a(t) = -4 sin 2(t - 3v(0) = 1, s(0) = 4 _ 2

41. Differentials

A function f of a single variable is a set of ordered pairs such that if (a,b)
and (a,c) are in the set then b = c. A set F of ordered triples is, by definition,
a function of two independent variables if whenever (p,q,r) and (p,q,s) are in
the set F then r = s; that is, in the set F no two distinct ordered triples have
the same ordered pair for their first two elements. Later on (Chap. 9) a more
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detailed study of functions of two independent variables will be made, but
now we consider a special type of such functions.

Given a function f of a single variable, let F be the function of two
independent variables defined by

F = {(x,h,z) I z = f'(x)h}.

x+h, f(x+h)) Thus, the domain of F is

L-_ For x in the domain off' and h any number,

x h x is in the domain off'}.

(x,O) (x+h,O) a geometric interpretation of the value

(1)

F(x,h) =f'(x)h may be obtained by noting
Figure 41 that the points

(x + h, f (x) + F(x, h)) and (x, f (x))

both lie on the tangent to the graph off at the point (x, f(x)). For if h = 0
then the points in (1) are the same, but if h 0 the points are distinct and
the line joining them has (see Fig. 41)

slope = [f (x) + f'(x)h] - f (x) = f (x)h = f'(x).(x+h)-x h

The relation between the functions f and F is usually expressed in different
notation and terminology which we now define.

r -DEFINITION 41. Let f be a function of a single variable denoted by x. For
x any number in the domain off' and for dx denoting an arbitrary number, the
product f'(x) dx is represented by df(x):

(2) df(x) = f'(x) dx-

Under these circumstances dx is called a differential of x and df (x) is called
the corresponding differential of f at x.

Thus, dx denotes a number and in the symbolism dx, the d and the x are
inexorably bound together so that dx is not d times x and should never be
read or even thought of as such. Also, df (x) is not d times f(x). Thus,
for dx 0

(1) df(x) = f'(x)
dx

and there should be no thought of cancelling the d's. We read (1) as "Dif-
ferential f at x divided by differential x is equal to the derivative off at x."
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Thus, in addition to the previous notations f'(x) and D,,f (x) we now have
another for the derivative off at x:

df(x)=f'(x)
= Dj (x)

dx

each of which represents the value of

limf(x + h) -f(x)
h-.o h

In particular du(x) = D,,u(x) dx and dv(x) = Dxv(x) dx. Thus, by using
the formula for the derivative of the product of two functions,

d[u(x) v(x)] = D.[u(x) v(x)] dx
= [u(x) Dyv(x) + v(x) Dxu(x)] dx
= u(x) D,v(x) dx + v(x) Dxu(x) dx
= u(x) dv(x) + v(x) du(x).

It is customary, moreover, to further shrink this (and similar) formulas by
leaving out any indication of the independent variable whenever possible and
to write merely

duv = u dv + v du.

In differential notation, eight of the formulas previously discussed (with
special cases of some of them) are:

dx' = rx''-1 dx, r rational.1 .

2. dc = 0, c constant.

3. d(u + v) = du + dv.
4. duv =udv +vdu.

5. d
u vdu - udv
V V2

df du=D fddf=6 u u..

7.

8.

du
d sin u = (cos u) du.
d cos u = -(sin u) du.

Example 1.

d sin (3x2 - 4x

31. d(u + c) = du.
41. dcv=cdv.

S1 d(c) =
V

dv

V2

(where u = 3x2 - 4x + 1)
(from 7)

= cos (3x2 - 4x + 1) d(3x2 - 4x + 1)
= [cos (3x2 - 4x + l)][d3x2 - d4x + dl]
= [cos (3x2 - 4x + 1)][6x dx - 4 dx + 0]
= 2(3x - 2)[cos (3x2 - 4x + 1)] dx.

+ 1) = d sin u
= (cos u) du
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Example 2.

d sin3 x2 = du3

= 3u2 du

= 3 sin2 x2 d sin x2

= 3 sin2 x2 d sin it

= 3 sin2 x2(cos u) du

= 3 sine x2(cos x2) dx2

= 6x sin2 x2(cos x2) dx.

Chap. 4

(where it = sin x2)

(from 1 with x replaced by u)

(previous It is gone and now it = x2)

(u replaced by x2)

By definition, d[df(x)] is called the second differential of fat x and is
denoted by d2f(x):

d2f(x) = d[df(x)].

Select a number for dx. The selection is arbitrary but once made dx is
constant. Consequently

d2f(x) = d[df(x)] = d[f'(x) dx] = d[f'(x)] dx (by 41)

_ [Dxf'(x)] dx dx = f"(x)(dx)2.

Hence, for dr 0 we have a differential notation for the second derivative
off at x:

d2f(x) _ "(Y) = Dxf(x)
J l

(dx)z

Example 3. Find d2(x2 + sin x).

Solution. According to the above development

d2(x2 + sin x) = [Dz(x2 + sin x)](dx)2 = [D5(2x -i- cos x)](dx)2 = (2 - sin x)(dx)2.

It may seem unduly confusing to have three different notations for the
derivative of a function, but all three are so engrained in mathematical and
physical literature that none of them may be neglected. Moreover, each has
some manipulative or intuitive advantage over the other two, so that practice
in all three must be continued. We mention, in passing, that some books
denote first and second time-derivatives by .z and r, so that z represents the
velocity and .z the acceleration for a motion whose law expresses x in terms oft.

PROBLEMS

1. Given f(x) = (x - 2)(x - 4), find df(x) if
a. x=2 and dx = 0.5. d. x = 2 and dx = -0.1.
b. x=3 and dx=0.5. e. x = 3 and dx = -0.1.
c. x = 4 and dx = 0.5. f. x = 4 and dx = -0.1.



Sec. 41 Differentials 127

2. Find
a.d(x3-x+3) at x=1,dx=2 and at x=2,dx=0.5.
b. x + 3 at x = 2, dx = 1 and at x = 2, dx = 0.1.
c. d sin 2x at x = ir/3, dx = 7x/180 and at x = ir/4, dx = 7r/180.
d. dcos 3x at x = 7r/4, dx = 0.6 and at x = -7r/4, dx = 0.6.

3. Find each of the following differentials:

a. d[(2x + 1) sin x]. e. d(sin2 x - cost x). i. d(sin x + cos x)2

(2x + x 3 x2+5x+1
b. d( sinx f. d(2 +X). j. d( x

c. d sin4 x2. g. d(sin x close x). k. d[sin (cos x)].

d. d cost x4, h. d(sin x cos x)2. 1. d[sin2 (cos x)].

4. Find each of the following second differentials:

a. d2(3x3 + 4x2 - 5x + 1). d. d2
x

(x3+1

sm3x+1
b. d2(3 sin3 x + 4 sine x - 5 sin x + 1). e. d2

sin x

c.
d2(x3 + 1)

f. d2[(x + 1)2 + 3x + 2].x
f (x + t dx) - f (x)

5. Show that df(x) = Iim
a-.o t

42. Differential Systems

For the function f defined by f(x) = sin (3x2 + 1) we shall (whenever
there seems to be no danger of misunderstanding in this and similar cases)
speak of "The function y where

y = sin (3x2 + 1)"

and shall even follow the custom of saying "y is a function of x" or "The
dependent variable y is a function of the independent variable x." Also,
u = 3x2 + 1 is a function of the independent variable x and y = sin u is a
function of u. For this composite function of a function

dy = dy du = (Du sin u) du = cos u du
du

= cos (3x2 + 1) d(3x2 + 1) = cos (3x2 + 1)[6x dx + 0]

= 6x cos (3x2 + 1) dx.

Inversely, if we were given dy = x cos (3x + 1) clx, we would see that

y = sin (3x + 1) + c.
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Previously we have solved derivative systems. There seem to be some
manipulative advantages in translating such solutions into equivalent differ-
ential notation. Thus if we are given

dv = x cos (3x2 + 1) dx,

then each step below may be anticipated:

dv = g[cos (3x2- 1)]6x dx
= s cos (3x2 + 1) d3x2
= s cos (3x2 + 1) d(3x2 + 1)

_-ecosudu (whereu=3x2+1)
= b d sin u, (since d sin u = cos u du)

y = s sin u + c = g sin (3x2 + 1) -j- c.

We shall speak of dy = f(x) dx as a differential equation and of

dy=f(x)dx, y=a when x=b,
as a differential system. Also, any function y which satisfies dy = f(x) dx
is called an anti-differential of f (x) dx.

Example. Solve the differential system

dy = x2 sin2 x3 cos x3 dx, y = 2 when x = 0.

Solution. We write

dy = - sin2 x3 cos x3 dx3 (since dx3 = 3x2 dx)
_ sin2 u cos u du (where u = x3)
= 3 sin2 u d sin u (since d sin u = cos u du)
_ Jv2 dv (where v = sin u)
= e dv3, (since dv3 = 3v2 dv)

y = O V3 + c = e sin3 u + c = 9 sin3 x3 + c.

But y = 2 when x = 0 so 2 = e sin3 0 + c = 0 + c and, hence, the solution is

y = 2 +g sin3 x3.

PROBLEMS

1. Solve each of the following differential systems:

a. dy = x sin (3x2 + 1) dx, y=2 when x =0.
b. dy = x2 cos' x3 sin x3 dx, y = 2 when x = 0.
c. dy = x /3x2 + l dx, y=3 when x = -1.
d. dy = x2V3x3 + 1 dx, y = -4 when x = 2.
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x
e. dy = dx, y = 0 when x = 1.

v 3x2 + I
f. dy = x(3x2 + 1) dx, y = 20 when x = 2.

2. First find each of the four differentials, and then use the results to solve the four
differential systems.

a. d(sin x - x cos x). c. d(x 1 v'x2 + 42).

b. d(x - sin x cos x). d. d[(3x - 6)(x + 3)3/2].
dx

e. dy =
x2 -Vx2 _ 42

, y=2 when x=-3.

f. dy = sine x dx, y= -4 when x = ir/4.
g. dy = x sin x dx, y = 3 when x = -r/2.

h. dy = x'v'x + 3 dx, y = -s when x = 1.
3. Solve each of the following differential equations:

a. dy = x3/x + 3 dx. d. dy = (3x2 + 4x + 1) sin (x3 + 2x2 + x - 6) dx.

1 1

b. dy = x3 sin x4 dx. e. dy = (1 - z cos
` x
f x + -) dx.

1

c. dy = x3(x4 + 3) dx. f. dy =
z

sin2 Vx cos x dx.

43. Increments

We have systematically used h to denote a number to be added to a value
of the independent variable. The notation and terminology as defined below
should also be known.

DEFINITION 43. In connection with a function , f, if the letter x is used to
denote the independent variable, then Ax is used to denote an arbitrary number
different from zero and Af (x) is used (see Fig. 43.1) for the corresponding
difference

(1) Of (x) = f (x + Ox) - f W.
Also, Ax is called an increment of x and A.f(x) is called the corresponding
increment off at X.

Hence, Ax is a number and is not A times x. In
particular

XAX 0 Axe,
Ax OA, and &f(x) f (x)

X Ox X

If f'(x) exists then, in this "increment" notation

f'(x) = lim f(x + Ox) - f(x)
AX-+0 Ox Figure 43.1
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or, with even more condensation,

Chap. 4

(2) f'(x) = lim Af(x),
A .-O AX

An abridged reading of (2) is "The derivative of a function is the limit
approached by the ratio of the increment of the function to the increment of
the independent variable as the increment of the independent variable
approaches zero."

In connection with the equation y = f(x), we speak of the differential of
y and the increment of y and write

dy = f'(x) dx and Ay = f(x + Ax) - f(x).

Therefore, f(x) + Ay = f(x + Ax) or, since y = f(x),

Figure 43.2

Y+AY=f(x+Ax).
If, for example, y = x2 - x + 5, then we write

Y+Ay=(x+Ax)2-(x+Ax)+5
= x2 + 2xAx + (Ax)2 - x - Ax + 5

=(x2-x+5)+2xAx+(Ax)2-Ax
= y + (2x + Ax - 1)0x.

Hence, Ay = (2x + Ax - 1)Ax,

Oz

= 2x + Ax - 1, and

dY = lim Ay = lim (2x + Ax - 1) = 2x - 1.
dx °x-+0 Ox AX-0

With x denoting the independent variable, the symbols dx and Ax both
represent arbitrary numbers (which may be the same or different), but the
distinctive notations have come to betoken the way these arbitrary numbers
are to be used; dx to multiply f'(x), but
Ax to be added to x and later allowed to
approach zero. Figure 43.3 shows a geo-
metric interpretation of dx, Ax, df (x), and
Af(x) in which all are positive with Ax T i

df(x)
smaller than dx. From Fig. 43.3 it should
be visualized why °x-

IliW
= Jim

Oj(x)
dx Ax-.0 Ax

= slope of tangent at (x, f (x)). Figure 43.3

Under assumption of continuity and existence of derivatives, the law of
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the mean (Theorem 32.2) states that for x1 and x2 given numbers, there is a
number E between x1 and x2 such that

t
(3) f(x2) = {J lx1) +f'(S)(x2 - xl)
By using increment notation there are equivalent relations which look quite
different but are sometimes met and should be recognized. Let x and Ax 0
be given numbers. Now think of x1 = x and x2 = x + Ax in the Law of the
Mean. Then there is a number A such that 0 < A < 1 and = x + AAx,
and now (3) takes the form

(4) f (x + Ax) = f (x) + f'(x + A Ax)Ax, or
f (x + Ax) - f (x) = f'(x + AAx)Ax, or

Af(x) = f'(x + AAx)Ax, or

Af (x) = f'(x + AAx).
Ax

44. Approximations by Differentials

In one sense, two quantities are approximations of each other if their
difference has small absolute value, but if both quantities are themselves
close to zero this is not a good criterion. For example, if a = 0.001 and
b = 0.01, then b - a = 0.009, but b is ten times as large as a. Instead of this
"difference criterion" the following "ratio criterion" is generally used:

If two quantities have ratio close to 1, then these quantities are
considered to be approximations of one another.

Hence, x is an approximation of sin x for x small since

sin x
lim = 1.
x-.o x

If x represents the independent variable, then dx and Ax are arbitrary
and we may, if we wish, choose them equal. Hence, for f a function and x a
number such thatf'(x) 0 0, then

lim Af(x) = lim Af(x) = 1 lim Af(x) = 1 f'(x) = 1.
Ax=dx-.o df (x) cxx=dx-.o f '(x) dx f '(X) 7x=dx-.o Ax f'(x)

Consequently, Af(x) and df(x) are approximations of one another if
,f'(x) 0 and dx = Ax is sufficiently small. A common symbolism is:

Af(x) - df (x) ; that is, f (x + dx) - f (x) df (x), or

(1) f(x + dx)-f (x)+f'(x) dx
if dx is sufficiently small.t

t Natural questions are "What does sufficiently small mean?" and "How closely does
f(x) + f'(x) dx approximate f(x + dx)?" We postpone answering these questions until
Chapter 13.
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There are problems for which the answer is (or may be expressed in
terms of) the increment of a function, but it may be that this increment is
hard or tedious to compute and that the differential approximates the
increment closely enough for the purpose and is easily computed.

Example 1. Find approximately the value of (1.01)10 - (1.01)' - 5.

Solution. First let f(x) = x10 - x5 - 5 so that f(1.01) is the desired answer
but is tedious to compute. However, f(1) is easily found andf'(x) = lOx9 - 5x4 so
f'(1) is also easily found. Thus, from (1) with x = I and dx = 0.01,

f(1.01) -f(l) +f'(1)(0.01) = (110 - 15 - 5) + (10 .19 - 5 14)(0.01) = -4.95.

Since (1.01)10 - (1.01)5 - 5 is slightly greater than -4.947 the approximation
-4.95 is within 0.01.

Example 2. Each edge of a cube is measured as 4 in. by an instrument accurate
to within s in. Find approximately how much the volume may differ from
43 = 64 in3.

Solution. Let v(x) = x3. The volume is thus between v(4 - 84) and v(4 + a )
and the error in the volume is between v(4 ± 8 4) - v(4). By one of the above
relations v(x + dx) - v(x) - dv(x) = 3x2 dx and we see, using x = 4 and dx =
±g , that the error is approximately 3(4)2(±84) in3.

Since the differential df'(x) exists if and only iff'(x) exists, it is customary
to define:

If x is in the domain off', then f is said to be differentiable at x.
Notice that if f is differentiable at x, then (from only the continuity off

at x)
lim [zif (x) - df (x)] = lim [f (x + dx) - f (x) - f'(x) dx]

Ax = dx-.0 dx-.0

This approach to zero is, however, so much "faster" than the approach of dx
to zero that also

(2) lim L.f(x) - df(x) = 0.
,fix=dx-0 dx

The fact that (2) holds follows from:

lim rf (x + dx) - f (x) - f'(x) dx = lim rf (x + dx) -f(x) _ f,(x)]
dx-.o 1. dx dx-.o L dx

= f'(x) - f'(x) = 0.
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PROBLEMS

1. Givenf(x) = x2 - x + 1, find L. f(x)ldf(x) for each of the following values of
x and Ax = dx.

a.x=4, Oxdx=1 c x=4, Ox=dx=0.1.
b. x = 10, Ox = dx = 1. d. x = 10, Ox = dx = -0.1.

2. Use differentials to find approximations to

a. (1.01)100 - (1.01)25 - 5. C. (1.99)5. e. V9.2.

b. (0.99)10 - (0.99)5 - 5. d. (4.02)3J2. f. 65.
3. Find an approximation of s by using differentials, x = 10, and dx = -1.

4. In measuring the acceleration of gravity g by means of a pendulum, the formula

4n2l

g= T2

is used, where I is the length of the pendulum in inches and T the period in
seconds. Assuming error in measuring 1 is negligible, express the error dg in
terms of the error dT. Also, express the relative error (dg)lg in terms of the
relative error (dT)/T.

5. A particle has s(t) = t3 + t2 - 2t + 1 as its law of linear motion. By using
differentials find approximately:

a. How far the particle moved between t = I and t = 1.1.
b. How fast the particle is moving at t = 1.9 and at t = 7.1.

6. For f(x) = x + 'x find approximately the value off '(3.99).

7. Show that the Law of the Mean implies that:
If f' exists throughout an open interval containing x and, with Ox = dx, if
x + Ax is in that interval, then
a. There is a number c such that 0 < c < 1 and

Of(x) = f'(x + c Ax) Ax.

b. There is a numberbetween x and x + dx such that

f (x + dx) =f(x) + df (SE).



CHAPTER 5

Elementary Transcendental
Functions

DEFINITION. A function is transcendental if it is not algebraic.

This is a concise statement and is satisfactory if we know what an algebraic
function is. The function f defined for x > 3 by

x3-x+V 5 +x2
f W = (x - 3)5/4

should certainly be algebraic since it is built up from a (finite) number of the
algebraic operations addition, subtraction, multiplication, division, and extraction
of integer roots. But what does "built up" mean ? The function f (x) = %/x2 is so
built up, but is not algebraic since the alternative decision process in

Ixi_ x if x>>-0
-{-x if x<0

is not one of the five algebraic operations.
Even under a precise definition of "algebraic function," (not to be given here)

there are functions that, to date, have not been classified either as algebraic or as
transcendental. It is, however, known that the functions sin, cos, tan, cot, sec, csc,
and their inverses are transcendental as are logb and the function E defined by
E(x) = bz for b > 0 but b 1. In fact, precisely these functions are classified as the
elementary transcendental functions.

45. Trigonometric Functions

Each of the following formulas has been obtained in derivative notation
(see page 80), but practice using only the first two has been carried on. After
the present section familiarity with all six will be assumed.

1. D. sin x = cos x,
2. D. cos x = -sin x,
3. D. tan x = sec2 x,
4. Dx cot x = -csc2 x,
5. Dx sec x = sec x tan x,
6. D. csc x = -csc x cot x,

d sin x = cos x dx,
d cos x = -sin x dx,
d tan x = sect x dx,
dcotx = -csc2xdx,
d sec x = sec x tan x dx,
d csc x = -csc x cot x dx.

134
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Example 1. Dx-%/tan x = D,,,(tan x)112 = -2(tan x)-112D,, tan x

sec2 x
, tanx>0.

2 Vtan x

Example 2. d sec3 2t = 3 sect 2t d sec 2t

= 3 sect 2t(sec 2t tan 2t) d(2t)

= 6 sec3 2t tan 2t dt.

Example 3. A straight, level highway passes I mi from an airplane beacon
making 2 rev/min. How fast is the lighted part of the
highway traveling along the highway:

a. When it is at the nearest point to the beacon?
b. When it is 4 mi from this nearest point?

Solution. Let B be the beacon, A the nearest point of
the highway to the beacon, C the point of the highway on
which the light is shining at the instant the angle from AB
to the light ray is 0 (measured in radians). Letting x = AC
the whole problem is translated into:

Figure 45

Given: x = () tan 0 mi, DtO = 47r radians/min.

To find: Dtx]a=o and Dtx].=314

Since Dtx = (J)Dt tan B = (2) sec2 ODtO = (2)(sec2 O)47r = 2;r sec2 0,

(1) Dtx]t=o =27rsec20 =21rmi/min.

Also, when x = , then BC = V13/4, sec 0 = v'13/2 and hence

(2) Dtx]x=3/4 = 137r/2 mi/min.

We could have used the identity sec2 O - 1 + tan2 0 to obtain

Dtx = 27r sec2 0 = 27r(1 + tang O) = 27x(1 + 4x2)

and then we could substitute x = 0 and x = j to obtain (1) and (2), respectively.

Example 4. Solve the differential equation dy = x2 cot x3 csc2 x3 dx.

Solution.

dy = - cot x3 csc2 x3 dx3 (since dx3 = 3x2 dx)

cot x3 d cot x3 (since d cot u = =csc2 u du)

-ju du (where u = cot x3)

_ -g due, (since due = 2u du)

Y -gut+c= -gcot2x3+c.
Example 5. Given y = c csc x - cot x show that y' may be written as

y' = 1 -ycotx.
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Solution. Since y' = D,,y we first obtain

(3) y' _ -c csc x cot x + csc2 X.

In the given equation, c is a constant, but the variables x and y are related in such
a way that

y+cotx=Ccscx.
Now in (3) replace c csc x by y + cot x to obtain

y' _ -(y + cot x) cot x + csc2 X
= -y Cot X - Cot2 X + CSC2 x

= -y cot x + I (since 1 + cot2 x = csc2 x).

PROBLEMS

1. Find each of the following derivatives:

a. Dx Vcot X. e. Dx sec x tan x.

b. D. sec2 x. f. D,(sin x + tan x).
c. D., x tan x. g. D,,(sin x tan x).

dd tan x hd tan x3).(?s. TX X . TX

2. Establish each of the following:

d tanP+1 x
a. dx p + 1 = tang x sec2 x.

dl
b. dx-sec2x = sec2l xtanx.

P
d (cot ax )

c.
1

+ x = - cot2 ax.
aX a

i. D, csc (2x2 + 1).

j. D. cot '%/x2 +4.
k. Dx(l + cot2 x).

1.
d

tan 2

d rx 7T

= -1
d. d cot 12 - 4 I -sin x

e. (cot4 x - csc4 x) = 4 csc2 x cot x.

d(tan2 x) _ d(sec2 x)

dx dx

3. The shorter of the two parallel sides of a right trapezoid is 4 in., and the oblique
side is 8 in. Find the angle between the 8 in. side and the longer of the parallel
sides if the area of the trapezoid is maximum.

4. Find the minimum off (x) = tan x + cot x, 0 < x < i/2. (Note: This function
arises in connection with measuring electric current.)

5. For f(x) = ,rx - tan (irx/2) show that f(j + n) is a relative minimum or maxi-
mum according to whether n is odd or even.

6. A light is to be hung above the center of a circular table so as to give maximum
illumination at the edge of the table. Find the proper height, given that the
illumination at a point in a plane varies directly as the sine of the angle between
the plane and the light source and inversely as the square of the distance to the
source.
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7. A wall a ft high is b ft from a house. Find the length of the shortest ladder that
will reach from the horizontal ground over the wall to the house.

8. OA is a crankshaft a in. long revolving about 0 at 300 rev/min. AB is a con-
necting rod b in. long (b > a) with B moving on a line through O. Find B's
velocity t min after B is at its greatest distance from O.

9. A sphere rests upon a table. Find the volume of the right circular cone of
minimum volume which will cover the sphere and rest with its circular base on
the table. Use half vertex angle as independent variable.

10. Use the technique illustrated in Example 5 to show that y' can be written in
the form shown.

a. y = c sec 0 - tan e, y' = y tan 0 - 1.
b. y = c sec 0 + tan 0, y' = y tan 9 + 1.
c. y = c(sec B + tan B), y' = y sec B'.

d. y = c tan x, y' = 2y csc 2x.

46. Inverse Trigonometric Functions

Graphs of the trigonometric functions were drawn in the trigonometry
course. We now know that at each point of

{(x,y) I - 7r/2 < x < 7r/2 and y = tan x} 1

there is a tangent line with a positive slope (b,a(actually>1) since

D. tan x = sect x for x 7r/2 + mir,
I /so the graph is, as drawn in Fig. 46.1, a smooth co; z)

curve rising to the right with no horizontal or (04),
vertical tangent line. Also, for y any given
number, there is one and only one number x
such that both

-7r/2 < x < 7r/2 and y = tan x.
.by mtercnangmg the roles of x ana y, it toliows
that for any given number x there is one and
only one number y such that

Figure 46.1

- it/2 < y < 7r/2 and x = tan y,

and we write, to emphasize that x was chosen independently,

y = tan-1 x, -77/2 < y <7r/2

which is read "y is the inverse tangent at x." Hence,

{(x,y) I -7r/2 < y <7r/2 and y = tat f-1 x}
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is a function (called the inverse tangent function) and the graph of this
function is given in Fig. 46.2. Notice that for x any given number, then both

Figure 46.2

-7T/2 < tan- ix < 7r/2
and tan (tan-' x) = x.

To obtain an auxiliary fact, let al,
b,, a2, and b2 be given numbers with
a2 al. Then the line joining the points
(al,bl) and (a2,b2) has slope nil where

111 =
b2 - bl
a2- a,

If in addition b2 b,, then by using a
previous ordinate for an abscissa and

a previous abscissa for an ordinate, the line joining the points (bl,al) a td
(b2,a2) has slope m2 which is the reciprocal of ml:

1)12=a2-a1= 1b2-b, ml
Now let a be any number and select the number b such that the point

(a,b) is on the graph in Fig. 46.2. Hence, -4r/2 < b < 7r/2 and b = tan-' a
or a = tan b. Thus, the point (b,a) is on the graph in Fig. 46.1 and at this
point the tangent line to this graph has slope

Dx tan x].,=v = sec2 b.

Returning now to the point (a,b) of Fig. 46.2, this graph has a tangent line at
this point and the slope of this tangent line is the reciprocal of sect b; that
is, D. tan-' x]x=a exists and, moreover,

1 1
Dx tan-1 x]x

sect b sect (tan-1 a)
Since a was any number whatever, we therefore have

Dxtan-'x = 1

sec2 (tan-' x)
But sec2 (tan-' x) = 1 + tan2 (tan-' x) = 1 + x2 and we have the standard
formula

(1) Dx tan_l x = 11+x2

Hence, from the formula for the derivative of a composite function,

D. tan-' u(x) = 1 Dxu(x),
1 + u2 (x)

for any function u whose derivative exists.
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Should formula (1) be forgotten, it may be recovered by starting with
y = tan1 x, so that tan y = x, and, hence, writing

D tan D x, sect D 1 DY= Y xY= xY=
sec, y

But y = tan-' x so that

D tan-' x= 1 = 1 = 1

5 sect (tan x) 1 + tan, (tan-1 x) 1 + x,
Each of the trigonometric functions has an inverse function with an

appropriate domain. These are defined as follows:

If -1 < x < 1, then -7r/2 < sin 1 x < 7r/2 and sin (sin-' x) = x.
If -1 < x < 1, then 0 < cos-1 x < ,r and cos (cos-1 x) = x.
If -co < x < co, then -rr/2 < tan-' x < 1r/2 and tan (tan-1 x) = x.
If -co < x < 00, then 0 < cot-1 x < TT and cot (cot-1 x) = x.

00<x<-1 a<sec-1x<-42 -1If { 1 < x < co , then { x) x.0 < sec-1 x < -7r/2 }and sec (sec

00 <x <-1 ,r <CSC-lx <-it/2 -If ( 1 < x < oo t,
then ( 1 x) = x.0 < csc-1 x <?r/2 }and csc (csc

The graph of each of these inverse functions is given in an accompanying
figure. It should be seen that in each case the domain and values of the
inverse function are such that these
values would be called principal (1,2)

values in a trigonometry course. cos 1

An argument similar to the one
given for the inverse tangent func- (1,0)

tion will show that each of the 2) Sin
(1,0)

inverse trigonometric functions has

(Qlr)

(0,-2
tan-1 cot -1

(0,0)

(1,0)

csc 1

a

(0,-f)
see-'
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a derived function whose domain includes all except end points of the domain
of the inverse function itself. For example, the function {(x,y) I y = sin-1 x} has
domain {x I - 1 < x < 1}, but the derived function {(x,y) I y = Dx sin-' x}
has domain {x 1 < x < 1}. With the existence of a derived inverse
trigonometric function established, a formula for the derivative may be
obtained by the method suggested for recovering (1) should it be forgotten.
Thus, to obtain a formula for Dx sin-' x with -1 < x < 1 proceed as follows:

y = sin-1 x so -.7r/2 < y < Tr/2,

sin y = x, Dx sin y = Dxx = 1, cos y Dg = 1,

Dxy = 1 _ 1 and not sine y

cosy J- sine y ( since -7r/2 < y < a/2 so cos y > 0)

Dxsin-'x= 1 = 1

tilI - sine (sin-1 x) J1 - x2

Each of the following formulas should be obtained:

1. Dxsin-'x= 1 , -1<x<1.1-x2

2. Dx cos' -x = -1 -1 < x < 1.
x2

3. Dx tan-- x = 11+x2.

4. Dcot_'x= -1
1+x2

5. Dx sec-1 x =

6.

Example 1.

x<-1 or x>1.

Dx csc-1 x = x < -1 or x > 1.
xJ x2 - 1

Dx cot-' (3x + 1) _ -1 Dx(3x + 1) = -31 + (3x + 1)2 9x2 + 6x + 2
Example 2.

d sec71 x2 dx2 _ 2x 2

dx x2v'x4-1dx x2Vx4_1 xVx4_1
d /1 a1

Example 3. Find dx a cos' z where a is a constant.
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Solution.

1 d a 1 -1 d/a -1 a
( _,-

a dx
cos

\ x a
1

al 2 dx \x- a xz - a-z xz

\x / ]XI

1 1XI 1

-Vx2 - a2 X2 I XI -a 2

Example 4. A picture b ft from bottom to top hangs on a wall with lower edge
a ft above the eye-level of an observer. How far from the wall should the observer
stand in order that the picture subtends the largest angle at his eye?

Solution. When the observer is x ft from the wall let 0 be the angle subtended by
the picture, and let a and fi be the angles of elevation of
the lower and upper edges of the picture. Hence, (see

Fig. 46.3), 0 cot-' a -+b and a = cot-' -
a e

and thus B

x x a
0=cot-'a+b-cot-'-.

Therefore,

x

Figure 46.3

dB -11(a + b) I la b(a2 + ab - x2)
dx 1 + [x/(a + b)]2 + 1 + (X/a)2 [(a + b)2 + x2][a2 + x2] .

b

a

Hence,
dBl 0 dB] ` 0, do] > 0 and thus
dxJz=vat+ab dx z>Va2+ab

Y_]

V-
B is largest when x = V az + ab.

PROBLEMS

1. Findf'(x) for each of the following:

a. f (x) = sin 7l (5x). c. f (,t) = tan 7-1 Vx. e. f (x) = sec -1 (sin x).

b. f (x) = cos '
(i).

d. f (x) = cot'' (_--.). f. f (x) =csc-' (i).

2. With a > 0, b, and c constants, obtain each of the following.

d x 1 d 1 x 1
a. - sin 7l - = c. - - tan-' - _

dx a -Va2 - x2 dx a a a2 + x2

b.
d

cos-'
a- x

=
1

d.
d 1

csc'
-x = -1- - -

dx a V2ax - x2 dx a a x _%/x2 -
e.

d 1 tan' Ix a = 1 , b > 0.
dx Vab ( 4b1 axe + b
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d
f. - _

1

sinl x
\ N a/dx I/ a b

1

'lb - axe
>

1

b > 0.

dx'lb
dg. - - sec-1 \xN

b/

d 2
h. tan1

dx v'4ac - b2

b > 0.
xVax2 - b

2ax + b I

+C
4ac - b2 > 0.

V4ac - b2 ax2 + bx

d -
i.

dx 2
(X-\1a2 - x2 + a2 sin-1

a

) = v'a2 - x2.

j. dx(a-l - a2x2 + x sins ax) sin 1 ax.

3.

Some`

result in Prob. 2 may be used in solving each of the following differential
systems.

1

a, dy = T+ x2
dx, y=5 when x=2.

b. dy = dx, y = 1 when x = 0.
3 - 2x2

c. dy = /3 - x2 dx, y = 0 when x--_ I

d.dy=x2+x+ldx, y=0 when x=-1.

4. a. Let t be such that 0 < t -< 1 and plot the points (0,t) and (sin 1 t,0). Sketch
{(x,y) 10 < x <- sin 1 t, 0 <- y < sin x} and show that this set may also be
expressed as {(x,y) 10 s y< t, sin 1 y< x< sin 7l t}.

b. Let t be a number such that -1 <- t < 1. Show that

7r
IT, t < y < sin x} = {(xy) I t < y < 1, sins y 5 x <

21'

(x,y) I sins t < x <
2

47. Exponents and Logarithms

Throughout the previous work in this book'it was assumed that the laws
of exponents were known at least for rational exponents; e.g., am/n = (al/n)m
for m and n integers and a > 0. So far we have had no reason to employ
irrational exponents, but we must now do so.

Let b > 0 and p be given numbers. In a more advanced course it will be
proved: There is a number L having the property that for each number e > 0
there is a number 6 > 0 such that

{(x,y) I x rational, Ix - pi < b and y = bo}

C {(x,y)IIx-pi <6 and I - L) <e}.
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It will then follow in case p is rational that bP = L. The advanced course
will assign the value L to the symbolism bP in case p is irrational and will
proceed to prove that the laws of exponents continue to hold under this
extended definition of bP and that the functions

{(x,y) I y = bx} and {(x,y) I x > 0 and y = x'}
are continuous. We shall henceforth use these results as though we also had
proved them. These results include facts about inequalities as well as
equalities. For example :

bx3 > bx2 for 0<b<1
If x1 < x2, then bxl = bx2 = 1 for b = 1

bxl < bx2 for b > 1.
Hence, in addition to being continuous, the function

(1) {(x,y) I y = bx}

is decreasing if 0 < b < 1, but is increasing if
b > 1 (see Fig. 47.1), and in either case has domain
the set of all numbers x and range {y I y > 0}.
Thus, either for 0 < b < 1 or for b > 1, the
function (1) has an inverse function given by

(2) {(x,y) I x = b"} Figure 47.1

whose domain is {x I x > 0} and range the set of all numbers y. The graph
of this function has the form of one or the other of the curves of Fig. 47.2.

The function (2) is represented by logo so that for
x a positive number, then logo x is a number (called
the logarithm to the base b of x) and this number
is such that

(3) blOg'0=x 0<b<1 or b>1.

Figure 47.2

,

The ordinary laws of logarithms follow directly
from the relation (3) as we now show. For example,
with p any number, raise both sides of (3) to the
power p :

(bloga x)P = xP so that bP
loga x = xP.

Since (3) holds no matter what positive number is substituted for x, we
replace x in (3) by x9 to obtain

blogbz" = xP.

These expressions for x9 must be equal so that
blogb x° = V10",
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but now the exponents must be equal and this states that

(4) logo xD = p logo x.

To obtain another law, let M and N be positive numbers so that also
MN > 0. Now replace x in (3) first by M, then by N, and finally by MN:

blogb 11 = M, blogb \' = N, and blogb MN = MN.

From the first two of these, and a law of exponents,

MN = 61ogb 11blogb N = b(logb al+logb N)

and this relation, with the third equation above, gives

blogb 111"v = b(logb m+logb N)

Again the exponents must be equal so that

(5) logo MN = logo M + logo N.

By a similar procedure we also obtain

(6) logo (M/N) = logo M - logo N.

Also, upon replacing x in (3) by b and then by 1 we have
blogbb =b and blogbl = 1 (=b°),

which say, respectively, that logo b = 1 and logo 1 = 0.

THEOREM 47. The function logo is continuous; that is, if xo is any positive
number, then

lim logo x = logo xo, 0 < b < 1 or b > 1.
y.yyb

PROOF. Consider first b > 1. Let e be an arbitrary positive number.
Then I < be and if x is such that 1 < x < 1", then

0 =logs 1 <logox <log, V= elogs b = e.
Also, b_E < 1 and for x such that b_E < x < 1, then

-e = -e logo b = logo b_e < logo x < log 1 = 0.

Now let b be the smaller of b6 - 1 and 1 - b-E so that 6 > 0 and

if 0 < Ix -11 < S, then logo xj < e.

From the definition of a limit, this states that

lim logo x = 0, b > 1.

A similar procedure establishes this limit in case 0 < b < 1.
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Now let x0 be any positive number. Then

lim x = 1 and hence lim log,
x = 0.

x-.x0 XO x--x0 X0

Consequently, we may write the following, knowing the existence of each
limit as we write it:

toga xo = 0 + togb xo - ( lim to )gb - T logs xo
x xo X0, x u 0-.x X

= lim log (x x01 = lim logs x,
x-.xo x / x xo0

which states the relation we wished to establish.

48. Log Scales
Sections 48-50 are somewhat out of the main stream of the course, but

they are included for engineering and scientific applications, and to show that
in analytic geometry there need not always be equally spaced divisions on
the axes.

We now consider common logarithms; that is, logarithms with base 10,
and shall not write the base. Thus, log means log10 so that

log 1 = 0, log 10 = 1, log 100 = 2, log 0.1 = -1, and log 0.01 = -2.
Draw a line and parallel to it draw a second line. On the first line select

an ordinary linear coordinate system. Let M be a positive number. Now
10 log 0.3-10 (-1+ 0.477)=-0.523

-10 -9 -8 -7 -6-' I-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 18 9 10
I I I I I 1 1 1 1 1 1 1 I I I I I I I I

'1 .15 .2 .25 3 .35 .4 .5 .6 .7 .8 .9 1 1.5 2 2.5 3 3.54 5 7 8 9 10
I I

, ,

, I I I I 1 I I I i I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111111111

Figure 48

= lim (logs x + logs xo)

101 gx 10 log 6=7.782

X

with x a positive number, locate the point on the first line with coordinate
M log x. Opposite this point of the first line is a point of the second line, and
this second point we now label x. In particular the point opposite the origin 0
of the ordinary linear coordinate system is labeled 1 since M log 1 = M 0 = 0.
The second line so labeled is called a logarithmic scale (or log scale) with
origin 1 and modulus M. It is usually convenient to select the modulus
M = 10, and this we now do. Hence (see Fig. 48), the points 1, 10, and 0.1
of the log scale will be opposite the respective points

10 log 1 = 0, 10 log 10 = 10, and 10 log (0.1) _ -10
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of the ordinary linear coordinate system. Also, since

10 log 2 = 10(0.3010+) = 3.010+ and 10 log (j) = -10 log 2 = -(3.010+)

the points 2 and 0.5 are on opposite sides of the origin and each slightly
more than 3 units from the origin.

Let 0 < x1 < x2 be given. Then on the ordinary coordinate system the
point log x1 precedes the point log x2, on the log scale the point x1 precedes
the point x2, and the actual number of ordinary units between either pair of
points is

10 log x2 - 10 109 x1 = 10(log x2 - log x1) = 10 log (x2fx1).

49. Semi-Log Coordinates

Draw two perpendicular lines. With the point of intersection as origin of
both systems establish an ordinary linear co-

(0,10) ordinate system on the horizontal line, but on
the vertical one put a log scale with 10 ordinary

(0,7) h" ' 11 d Il T is is ca e a semi- og co-us.units as modu
(x,b) ordinate system,t and by means of it is estab-

(0,4) lisped a one-to-one correspondence between
co,3) points of the plane and ordered pairs (x,y) of

numbers in which y > 0. In particular, the origin
(0,2) (6,2)- - ---- ; ---- has coordinates (0,1).

THEOREM 49. For any line not parallel to the

coa)
log scale there are numbers a > 0 and b > 0 such

cs,1) that the line has semi-log equation

Figure 49.1
(1) Y = bax.

Conversely, with a > 0 and b > 0 the semi-log graph of'the set {(x,y) I y = baz}
is a straight line.

PROOF. Consider a line not parallel to the log scale. This line then inter-
sects the log scale say at (0,b). Consequently b > 0. Let (x,y) be any point
other than (0,b) so that x 0. The line has an actual slope m (which may be
positive, negative, or zero) and note that

10 log y - 10 log b 10M - -
log yx-0 x b

t If no commercially printed semi-log paper is available, a sheet may be made by
marking equal divisions on the x-axis and then using a scale of the slide rule to make
logarithmic divisions on the y-axis. The B scale is a convenient size.
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Consequently, log (y/b) = mx/10, yfb = 10"11110 and hence

y = b(10m11o)=

Upon setting 10m110 = a we see that a > 0 and that (1) holds.

147

Conversely, let a > 0 and b > 0 be given and consider the semi-log graph
of {(x,y) I y = bas}. Hence, the point (0,b a°), which is the point (0,b), is on
the graph. Now consider any point (x,y) of the graph other than (0,b).
Hence, x 0 0 and the line joining (x,y) and (0,b) has slope

10 log y - 10 log b 10M =
x - 0 = z

[log (ba') - log b]

10 (log b + x log a - log b) = 10 log a.
x

Since the line joining (0,b) and (x,y) of the graph has slope m = 10 log a
(which contains neither x nor y) all points of the graph lie on this line. By
the first part of the proof every point of the line satisfies the equation y = bas
so the line is the whole graph as we wished to prove.

Example. Given the line passing through the points whose semi-log coordinates
are (2,15) and (6,9). Find the equation of this line in the form (1) with a and b
accurate to two decimal places.

Solution. The problem is to determine constants a and b such that

15 = bat and 9 = bah
or, by taking logs, such that

log 15 = log b + 2 log a
log 9 = log b + 6 log a.

By subtraction, log 9 - log 15 = 4 log a.
From this equation we find log a which 20

we substitute into one of the log equations
(we choose the first) to obtain log b:

log a = J(log 9 - log 15)
= J(0.9542 - 1.1761) = -0.0555,

log b = log 15 - 2(-0.0555)
= 1.1761 + 0.1110 = 1.2871.

0 1 2 3 4 5

Figure 49.2

6 7

Thus, log a = 10 - 0.0555 - 10 = 9.9445 - 10, a = 0.88, b = 19.4 and the
desired equation is y = 19.4(0.88)x.

The amount (principal plus interest) on a $1 and on a $5 investment at
6 % compounded annually is given at 10 year intervals in the accompanying
table. Both sets of data are plotted and the points joined by a smooth curve
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on an ordinary rectangular coordinate system in Fig. 49.3 and on a semi-log
system in Fig. 49.4.

Year 0 10 20 30 40 50 60

$1 1 1.79 3.20 5.74 10.29 18.42 32.98

$5 5 8.95 16.03 28.70 51.43 92.10 164.83

100

90

80

70

60

50

40

30

20

10

(0,5)

(0,1)
0

(40,51.43)

(30,28.72)

(30,5.74) (40 ,10.29)

10 20 30

Figure 49.3

40 50

PROBLEMS

Figure 49.4

1. Sketch the graph of each of the following equations both on a rectangular and
on a semi-log system.

a. y = 2x. c. y = -2x. e. y =x 2.

b. y = 2x. d. y = 2-x. fi y = x2.

2. Find equations in the form (1) of the line passing through the semi-log points:

a. (0,2), (1,3). c. (2,3), (1,2). e. (1.86,3), (2.86,4).

b. (0,2), (-1,3)- d. (3,g), (4,4$). f. (3,1.86), (4,2.86).
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3. on a semi-log system (a) sketch the graphs of y = 20 and y = 3x, (b) obtaitl a
third graph by geometric addition of these two graphs, and (c) find an equation
of this third graph.

4. Sketch the graphs of y = 2x and y = 2x + 3 on a semi-log system. Show that
the first is an asymptote of the second.

5. Represent the data of the table by points on a semi-log system, approximate these
points by a straight line, select two points on this line, and using these points find
an equation in the form (1) of this line.

x 0.8 1.7 2.3 3.6 4.8 x
C

17 26 35 48 53

a. - . -
y 2.9 4.1 5.4 8.8 10.5 y 3.4 1.6 0.95 0.38 0.24

x
b. -

1.3 2.4 3.5 4.9 6.7 x
d. -

10.7 11.9 13.3 14.1 14.9

y 9.5 7.6 6.3 5.2 3.7 y 48 105 230 370 630

6. Show that the pair of equations represent the same line on a semi-log system.

a. y = 2(3x+'), y = 6.3x.
b. y = 0.831 103-21, y = 831(0.01)0.

c. y = 9.86(2.37)x, y = 9.86(100.3747)x

7. Let t be a number such that t >_ 1. Show that

{(x,y) 11 < x < t, 0 < y < 1092 x} = {(x,y) 10 < y < 1092 t, 2y <_ x <_ r}.

(Hint: Sketch the rectangular graph of y = loge x and note the region under the
graph and above the interval joining the points (1,0) and (t,0).)

50. Log-Log Coordinates

Draw two perpendicular lines. Use the same modulus and place a log
scale on each of these lines with the origin of each at the intersection of the
lines. The result is a logarithmic coordinate system (or log-log system). By
means of this system a one-to-one correspondence is established between
points of the plane and ordered pairs (x,y) of positive numbers. Notice that
the origin has coordinates (1,1).

THEOREM 50. For any non-vertical line there is a number b > 0 and a
number m such that the line has log-log equation

(1) y = bxm.

Conversely, with b > 0 and m any number, the log-log graph of {(x,y) I y = bxm}
is a straight line.

The proof, similar to that of Theorem 49, is left as an exercise.
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Example 1. Draw the log-log graph of y = 8.6(x)+0.4.

Solution. Since the equation is in the form (1), the graph is a straight line
so two points determine it. One point,

1 9 1 ) obtained by setting x = 1, is (1,8.6).
8 The easiest second point to compute is
7

6
the one with x = 10:

5 log y = log 8.6 - 0.4 log 10
4 = 0.9345 - 0.4 = 0.5345,

3
(10,342), so that y = 3.42 and (see Fig. 50) a

second point is (10,3.42).
A method of eometricall cog y n-2

structing a second point depends upon
the fact (known if Theorem 50 were
proved) that the line whose equation is
(1) has actual slo e m Thus in thip . , s

1 2 3 4

Figure 50

5 6 7 8 910 example the line has slope m = -0.4
_ -5 and a second point may be

obtained by using an ordinary ruler and
measuring 5 inches (regardless of the modulus used) to the right from the point
(1,8.6) and then down 2 inches.

Example 2. Find a log-log equation of the line through the points (2,85), (9,15).

Solution. We must have 85 = b - 2- and 15 = b 9m, or in log form

(2) log 85 = log b + m log 2 and log 15 = log b + m log 9.

By subtraction and then division,

log 85 - log 15 1.9294 - 1.1761 0.7533
m log 2 - log 9 0.3010 - 0.9542 0.6532

Thus, log Imi = log 0.7533 - log 0.6532 = 0.0620. Therefore, (mi = 1.154 and
m = -1.154. From the first of the equations (2)

log b = log 85 - m log 2 = 1.9294 + (1.154)(0.3010) = 2.2768

and b = 189.1. The desired equation is therefore y = 189.1(.t-1-154).

Physical phenomena in which one quantity depends (or is assumed to
depend) upon only one other quantity are often encountered. In any specific
case a guess at a governing law may be made by making several observations
in an experiment to obtain ordered pairs of numbers, plotting these ordered
pairs, passing a smooth curve approximating these points, and then assuming
that an equation of this curve represents the law to within an allowable error.
Experience has shown that for non-periodic phenomena, the ordered pairs
plotted on either a rectangular, or on a semi-log, or on a log-log coordinate
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system will appear to be linear in a sufficient number of cases to justify
checking these three possibilities first.

51. The Number e

The binomial expansion of (a + b)n where n is a positive integer may be
written as

(a + b) n = an + (n)an-1b + (n) an-2b2 +.. .
1 2

+ (n)an-b,. + ... + (n)a,obn
r n

where for n a positive integer and r an integer such that 0 < r S n,

(n
r r!

As specific examples note that

(1+#)2=1+2(4)+(4)2=2+1,
(1 8)3= 1 + 3()+3(§)2+(4)3=2+s, and
(1 + k)4 = 1 ± 4(1) + 6(1)2 + 4(1)3 + (1)4 = 2+ 2 b 8.

THEOREM 51. With n taking only integer values, the numbers

(1) u,, = (1 + 1/n) n

are such that 2<un<un+1<3forn=2,3,4,
PROOF. First note, for 2 < n and 0 < r 5 n that

(n 1''

n(n n 1) (nr! )

n n n

r!

r ! 1 1 . 2 . 2 . 2 = 2r-1 we have

(n) 1 < 1 for 1 < r < n.
r n' 2'-1
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Now, by the binomial expansion with a = 1 and b = 1In we have for n > 2

(3) un=1+1+ `2)n2+ (3)n3+...-{-
(n)n'+...+(n)-

<2+!+++2+ (1 -21_1) <3
so that 2 < un < 3 for any integer n >_ 2. Hence, for n > 2, then n + 1 > 2
and thus 2 < un+1 < 3. The rest of the proof is to show that un < un+i, and
to do this we first use (2) with n replaced by n + 1 to see that

(n+1) 1 = 1(1- 1 )(1 2
)(ir_-1)

r (n+1)'' r! n 1 n+1 n+1

r!(1
n)(1 n) ... (1 - n)

(n)
nr

Now, from (3) with each term except the first two replaced by a larger value
(and then extra terms added), we have

[+i+ (n±1)1++ (n+
(72 { 1) 1 1 + (n + 1) 1

n (n + 1)n n + 1J (n + 1)n+1

But the expression on the right is (3) with n replaced by n + 1 and is thus
equal to un+1 so that un < un+1 for n > 2.

Now, let S = {x I x = un for some positive integer n}. Hence, the set S
is bounded above by 3 and thus (see the Axiom in Sec. 4) the set S has a
smallest upper bound which we call e. Thus, e is a number, 2 < e :,.g 3, and
un < e for each positive integer, but no number smaller than e has this
property. Now, let e be an arbitrary positive number. Then, since e - e < e,
let N be an integer such that e - e < uN. Hence, from Theorem 51, if
n > N then uN < un. Thus, if n >- N, then e - e < un < e which says that

lim un = e.
n-. co

To return to the definition of un, as given by (1), we thus have

(4) lim(1+ 1 =e
n-.oo n

In (4), n takes only positive integer values. Later, we shall show how the
number e may be approximated to any desired degree of accuracy. To 15
decimal places

e = 2.7 1828 1828 45 90 45,
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which may be used for numerical approximations. It should be noted as we
proceed that no better approximation than 2 < e < 3 need be known for
all theoretical work. It is, however, necessary to know (as proved in
Appendix A3), that lim (1 + h)lTh exists and that also

h-0
(5) lim (1 + h)11h = e.

h-.0

By changing the form we obtain that given a number x, then

(AX\ /AX
(6) lim I+- = e for x 0

os- 0 x

and it is this form we shall use in deriving a formula for D,, loge jxj.
In the next section it will be seen that the constant e appears naturally in

the course of deriving formulas, and that some formulas are simplified by
using logarithms to the base e. Although there are tables of logs to the base e,
computation with them is more difficult (mainly because characteristics are
harder to determine) than for logs to the base 10. When logs to the base e
are involved in computation, it is generally better to "change the base" as
given below.

We first derive a general formula. Recall that

(7) blo5'z = x for 0 < b < 1 or b > 1.

Now let a be a number such that 0 < a < 1 or a > 1. Hence, by taking the
log to the base a of both sides of (7)

loge (bb*") = loge x

and then by using (4) of Sec. 47 with p= 109b x we have

(8) logb x log,, b = log,, x.

The approximations loglo e = 0.4343 and 1/0.4343 = 2.3026 give

0.4343 loge x = log10 x and loge x = 2.3026 loglo x

for interchanging between logs of bases e and 10. Since it is almost universal
to use In x = loge x and log x = log10 x, the formulas for changing four
place approximations of logarithms to the base 10 or e to the other base
appear as

(9) log x = 0.4343 In x and In x = 2.3026 log x.

PROBLEMS

1. For only positive values of the variables, sketch the log-log graphs of

a. y = x. C. Y = Vx. e. -VXy =1.

b.y=x2. d.xy=1. f. xVy=1.
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2. Find the equation in the form (1) of the log-log line through:

a. (1,2), (2,3). c. (2.8,11.76), (9.1,124.2).

b. (1,4.75), (10,0.96). d. (1.42,0.78), (8.75,21.4).

3. On a log-log system (a) sketch the graphs of y = x2 and y = x3; (b) obtain a
third graph by geometric addition of these two; and (c) find an equation of the
graph of part (b).

4. Work Prob. 3 using instead y = x-2 and y' = x3.

5. Work Prob. 3 using instead y = 1.5x2 and y = 2.3x3.

6. Sketch the graphs of y = x2 and y = x2 + 3 and show that the first is an
asymptote of the second.

7. Find a log-log equation of a line approximating the data:

x 1.4 2.2 3.2 4.5 7.1 x 0.7 4.5 11 20- c -a. - .

y 18 12 9.0 7.1 4.7 y 1.6 3 6 10 15

x 4.7 7.1 9.0 12 18 x 2 4 10 20 40

b - d -. - .

y 7.1 4.5 3.2 2.2 1.3 y 5 4 3 2.5 2

8. The data of the table will appear nearly linear when plotted in one of the systems;
rectangular, semi-log, or log-log. Find an approximating law.

a
0.6 1.3 2.6 4.3 5.7 0.5 1.3 2.6 4.9 5.7

. C.

1.75 2.6 5.5 14.5 32 3 2 1 0.3 0.2

b.
0.35 1.25 3.0 4.5 6.5

d.

0.1 0.3 0.5 0.8 1.5

1.89 1.65 1.15 0.75 0.15 0.62 1.2 1.6 2.1 3.0

9. Using laws of logarithms show that

a. log (1/x2) = -2 log IxL, x # 0.

b. log csc2 x = -2 log Isin xl, x 0 mgr.

c. log (1 -cos x) + log (1 + cos x) = 2log Isin xl, x 0 mlr.

d. log (1 - cos x) - log (1 + cos x) = 2 log [tan (x/2)I, x o mIT.

e. If a = bG, then log log a = log c + log log b.

f. If ax = by, then y = x logo a.
g. If y In (x + Vx2 + 1), then x = J(er - e1).
h. loglo (loge 5.26) = log10 (loglo 5.26) - log10 (log10 2).
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52. Derivatives of Log Functions

We first prove the following theorem.

THEOREM 52. The function {(x,y) I y = In Ixj} has derived function

((xy)I y = -I ; that is,

Dx1nIxI=1, x; 0.
x

PROOF. Let x be a number different from 0. Choose Ax such that
0 < IOxI < lxi. Then x + Ax and x are either both positive or both negative
and

(1) 0<x+Lx=1+ vx.
x x

By using this relation and the laws of logarithms we have

InIx+Oxj - InIxI = 1 In (Ix+AxI
Ax Ax lxI

=1In(l+Ax

Ax
)

-1 x In(1+x)
X AX x

1
In 1 +

Ox "lax=-(-
x x

This gives us the clue for writing

1=-lne=-in lim(I+A z
x x x .7x-0 x

[In1 lim (1 + ox

x ox-.o x

= 1 lim I
AX

In (1 + Ox

x ox-.o Ax x

=X lim L 1 In (x +
Ax ox-.o Ox X

= lim In Ix + Oxl - In ixi
Ox

(by (6) of Sec. 47)

absolute values

(removed by (1)

since
x = 1, x 0
x

(by (4) of Sec. 47).

(by (6) of Sec. 51)

In is a continuous
function, see Theorem 47

x is independent
of Ox

(see above)

which justifies each limit and proves the theorem.
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In formalistic notation, the result of Theorem 52 is written as

D.In lxl = 1, x 0 or
x

(2)

Du In lul=1, u00.
u

Consequently, assuming that u'(x) exists,

(3) D., In lu(x)l =
u(x)

D,u(x), u(x) 0 0.

Example 1. Dz In Isin xl = i D. sin x = cos x = cot X.
sin x sin x

For 0 < b < 1 or b > 1 the formula for changing from base b to base e
is (see (8) of Sec. 51)

logo Ixl = log, e In Ixi.

Hence, D., logo lxj = D.(log, e In jxJ) = log, e Dx In jxj so that

(4) D. log, IXI = (logs e) 1 , x 0 0 and
x

(5) D. log, l u(x)I = (logs e) u(x) D.u(x), u(x) 0 0.

loge 6(0.4343)x
Example 2. D. log 13x2 + 11 =

3x2 + 1
Dx(3x2

+ 1) = 3x2 + 1

Example 3. Find dx if y = In 1x3 - 11x2
+ 1J '

x 0l, X>1.

Solution. The problem is greatly simplified by first writing

y=InIx3-11 +IIn(4x-1)- ln(x2+1)
(which follows from the laws of logarithms) and then obtaining

dy
1 D(x3-1)+1 1 1D(4x-1)-1 D(x2+1)

dx x3-1 x 24x-1 : 2x2+1
3x2 2 x

x3-1 +4x-1 x2+1

In finding anti-derivatives, it is suggestive to write (3) in differential
notation as

(6) dIn ful =-.
u
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Example 4. Find f (x) given that f '(x) = tan x.

Solution. Write d f (x) =
sin
cos

x
x dx

d
cos
cos

x
x

which (except for the minus sign)

is the right hand side of (6) with u = cos x, and hence, with c an arbitrary constant,

f(x) = - In Icos xl + c.
Since

d 1 +1

dxp + 1
x' =x" if p-1, but

we have the following result for finding anti-derivatives:

1 xD+1 + c
If f'(x) = x9, then f(x) = p + 1

In lxi + c

PROBLEMS

1. Find dyldx for each of the following:

if p0-1
if p=-1.

a. y =1n lx3l. f. y = In (3x + 5)2.
b. y =1ogb Ix31. g. y = tan 1 (In lxl).
c. y = x In 13xl. h. y = In lln lxl 1.

d. Y = In (x + *V1 + x2). i. y = ln2 Ixl

e. y = -In( 2 + 1). j. y = sin (In lxl).

2. Work out both sides of the following and explain why the equality holds:
a. Dx(x - 2b) = Dy(b - x)2. b. D. In lx/al = D. In lxl.

X+ Vat+x2
c. Dx In ( ) = D. In (x + 'Va2 + x2), a > 0.

a

d. D,, In I x - .%/a2 + x2l = -Dx In (x +
3. Establish each of the following:

a. Dx In [tan xl = 2 csc 2x.
b. Dx In Isec x + tan x[ = sec x.

d 1 x-ac. -In
dx 2a T+ a

b

x(ax + b) '

d' ( 1 a ax+b 1

h. x { l- bx + b2 In x } x2(ax + b)

i. dlnlx+Vx2±a2l= 1
dx i a2

j. Dx(x tans x - In -+x2) = tan 1 x.

d
dx

In Ixj = x-1

V'a2 -+x2), a :A 0.

d. Dx In Icos xl = -tan x.
e. D. x(In Ixl - 1) = In lxl.

d x-
= x2 - a2 f. dx In

ax + b
2

g. aj{ax - bIn lax +bl} =ax +b'

I
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4. Some of the results in Prob. 3 will be useful in solving the following derivative or
differential systems.

a. f '(x) = x2
1

_ 9 , f(2) = 1.

b. f '(x) =
x(2x + 3) ' f (-1) = 5.

1
c. dy = Vx2 - 9 dx, y = 0 when x=5.

X
d. d y =

2x + 3
d x , y=5 when x = -1.

e. A curve passes through the point (-1,2) and at each point (x,y) on the curve
the tangent to the curve has slope m = In lxi. Find the equation of the curve.

f. Work Part e, with m = tan-' x.

5. a. Show that the graph of y = In lxj is concave downward with no relative
maxima or minima. Sketch the graph.

b. For the graph of y = x In lxi, discuss the concavity properties and find the
relative maximum and minimum points.

6. Find Dxy given

x 1, x>
L f;x2 + 1

b . y In ,
Ci

1

sin X1

+
(x2

cos
+
x
9)

= x m7r.

53. Exponential Functions

The function {(x,y) I y = ex} and the function {(x,y) I x > 0 and y = In x}
are inverse of'each other. Hence, for a any
number and b = ea, the point (a,b) is on the first

(a,b) rah and the t (b +1, d hom )g p p ,a is on a secon grap .
Moreover, the tangent to the second graph at the
point (b,a) has slope Dx In x]x=b = 1/b and,

(1)

Figure 53

hence, the tangent to the first graph exists at
the point (a,b) . and has slope the reciprocal of
1/b; that is, Dxex]x-a exists and

Dxex]x=a = b = ea.

Since a was any number we have that Dxe' exists
and

Dxex = ex.
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Hence, considering composition functions, if u is a function and x is a number
such that u'(x) exists, then
(2) Dxeu(x) = e'x)Dxu(x)

Example 1. Dxesi' = esinx Dx sin x = (cos x)esinx

Since In is merely another notation for loge, we have that for any positive
number a, then eln a = a. By raising both sides of this equation to the power
x we have
(3) Bx In a = ax, a > 0.
This formula makes it possible to write any exponential expression as e to a
power. Thus, by using (3) and (2):
(4) Dxax = Dxex In a = ex In a Dx(x In a) = ax In a, a > 0.
Hence, for u a function and x a number such that u'(x) exists, then

(5) Dxau(x) = au(x) In a Dxu(x), a > 0.
Example 2. Dx105x3 = 105x3 In 10 Dx5x3

= 105x3(2.3026)15x2 = 34.5390x210523.

In differential notation (2) and (5) appear as

(6) d eu = eu du

(7) d au = au In a du, or

(8) d(au) =au du, 0<a<1 or a>1.
In a

Example 3. Findf(x) given df(x) = sin x 10c030 dx, f(ir/2) = 1.

Solution. Since d cos x = -sin x dx we see that d f (x) _ - l Ocos x d cos x
which (except for the minus sign) is (8) with a = 10 and u = cos x, so that

l Ocos x
f(x) ]n 10+ c = -(log e)l0cosx + c.

Hence, 1 = f(-,12) = -(log e)10° + c = -loge + c so that

f(x) -(log e)10cosx + 1 + loge.

For computational purposesf(x) = -(0.4343)10c0sx + 1.4343.

PROBLEMS

1. Find Day and D :y for each of the following:
a. y = e__11. c. y = etan Z. e. y = el/x. g. y = x2ex.

b. y = Cam. d. y = etan-1 Z. f. y = xex. h. y = x3ex3
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2. Find each of the following differentials:

a. d(e x sin 2x). c. d(ex - e-x). e. d(103x).

b. de(2x2-3x+1). d. d(x2e-3/x). f. d(x22x).

3. Establish each of the following:

a. If y = ex + e-x, then Dxy = y.

b. If y = sin x +cos x, then Dxy = -y.
c. If y = ae" + be ex, then Dxy = c2y.
d. If u = (eex + e -1z) and v = J(ecx - e °x), then u2

Dxu = cv, and Dxv = cu.

4. Find the relative maxima and minima off if:

a. f (x) = xe x. C. f (X) = xe x2

b. f(x) = x2e-x. d. f(x) = sin x(e-sin x).

5. For the graph of y = e x2:
a. Find the maximum point.
b. Find the points of inflection and discuss the concavity properties of the graph,

c. Find the asymptotes of the graph. Sketch the graph.

d. Show that the rectangle of maximum area which has its base on the x-axis
and two vertices on the curve has these vertices at the points of inflection.

6. For the graph of each of the following equations, find the equation of the tangent
which passes through the origin.

a. y = ex. b. y = e x. C. Y = e2x. d. y = e -3z.

7. After examining concavity, maxima, minima, and asymptotes sketch the graph of

a. Y = e x sin x, x >- 0. b. y = el/x.

8. Find f(x) to within an additive arbitrary constant, given that:

a. f '(x) = e2x. b. f '(x) = xex2. c. f '(x) = 10x. d. f '(x) (sin x)ecoax.

9. Establish each of the following:

a. Dx(x - 1)ex = xex.
d an

b.
dx

(nx - In la + be-1) =
a + be''lx '

c. Dxeax(a sin bx - b cos bx) = (a2 + b2)e°x sin bx.

d (/a 1
=

n Vab
d.

dx tan 1 \ N b
e-x)

ae+ be nx ' a > 0, b >0.

54. Variable Bases and Powers

For a > 0 a constant and u a function, all of the functions of Sec. 53 are
defined by equations of the form

y = au(x)
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and are described as "functions with constant base and variable power."
Functions of the form

y = [u(X)]Q

have "variable base and constant power" whereas for v also a function

Y = v(X)u(x)

is a "function with variable base and variable power." Both the second and
third types may be transformed to the first type as we now explain. Let s be a
positive number and let t be any number. Then, since In means loge, we have
s = e1II8 and thus
(1) st = et ins

Hence, with a suitable substitution (and under proper conditions)

[u(x)]d = e2 In u(x) and v(X)u(x) = e ' > in v(z)

each with right hand side having constant base e and variable power.

Example 1. Considering x > 0, find Dxxsinx

Solution. Thinking of (1> with s = x and t = sin x,

Dxxsinx = Dxe(sinz) Ins = e(sinx)lnx Dx[(sin x) In x]

= xsinx[sin x D. In x + In x Dx sin x]

= xsinz sin x_ + In x cos x].
X

The formula Dxxn = nxn-1 was derived for n a rational number. Now
with x > 0 and p any number whatever we obtain the same formula by
considering (1) with s = x and t = p so that

Dxx9 = Dxep In z = ep lnx Dx(P In x) = xv P = px"-1

x

The relation (1) may also be used to avoid consideration of two cases
when a function is defined in terms of absolute values.

Example 2. Find Dx sin xi, x 0 mrr.

Solution. From (1) with t = 1 and s = Isin xl we have

D. ]sin xl = Dxein Isinxi = eln IsinZIDx In Isin xt = sin xl

Isin xj cos x if sin x > 0
= cosx -

sin x -cos x if sin x < 0.

Dx sin x
sin x

A use of In for finding derivatives of complicated expressions involving
products and quotients is illustrated in the following example and is some-
times referred to as "logarithmic differentiation."
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Example 3. Find D"y if y = (x sin x)/ V'x2 + 1.

Solution. From previous work it is known that Dy exists and hence that
Dx In Jyi exists at least for y 0 0. Since

lyl =
jxl Isin xl

, then In 1yl = In lxl + In [sin xl - 'I In (x2 + 1),
-,/x2 +1

D" In lye = Dz[In Ixl + In lsin x] - j In (x2 + 1)]

1 1 1 1 1

- D O y = +
sin x

D" sin x -
2x2 + 1 Dx(x2 + 1)

y x

((1
+

cosx 1 2x
l

xsinx 1

+ cot x -
x

Dxy -
y \x sin x 2x2 + I / Vx2 + 1(x x2 + J

PROBLEMS

1. Find Dy and D2y for each of the following.

a. y = x", x > 0. d. y = x1nz, x > 0. g. y = [sin xlx, x o mrr,

b.y=lxlx,x00. e. y=(Inx)",x>1. h. y=x>0.
c. Y = (10x)"10, x > 0. f. Y = XCO , x > 0. i. y = (02)x, x 0 0.

2. Use logarithmic differentiation to find Dxy for each of the following:

sin x sin x V l+ cost xa.y=x2+1 C. Y =
tans x

b.
_ (2x2 + 3) Vx2 + 1

d
Al + x)4

y fx"1+1 y (x-1)e

3. Each of the following expressions for y involves two constants cl and c2. Find
y' = Dxy and y" = Dyy and then eliminate the constants cl and c2 by using the
three equations for y, y', and y" to obtain the given second equation.

a. y = clex + c2e 2";

b. y = cle°" + c2e"1°x;

C. y = (Cl + C2x)e 2z;

d. y = cle-0 cos 2x + c2e-" sin 2x;

e. y = cl + c2e" + k(cos x - sin x);
f. y = cle 0 + c2e2" - 2x2 + 2x - 3;
g. y = c1 cos x + c2 sin x + 6 - 2 cos 2x;

h. y = clex + c2e2x + e2x In sec e-";

y"+y'-2y=0.
y" - 4ay' + 3a2y = 0.

y" + 4y' + 4y = 0-
y' + 2y' + 5y = 0.
y" - y' = sin x.
y" - y' - 2y = 4x2.

y" + y =12 cost x.
y" - 3y' + 2y = sect 0--X.
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55. Hyperbolic Functions

In some technical investigations, especially in connection with suspension
cables and electrical transmission, the two expressions

J(ex - e-x) and J(ex + e-x)

appear with sufficient frequency to justify special designations for them.
There are relations between these expressions and a hyperbola similar to
relations between trigonometric functions and a circle. The fact that there
are such relations is unimportant for anything that follows and we mention it
only to forestall the natural question of why these expressions are called the
hyperbolic sine and hyperbolic cosine at x, respectively, and are represented by

(1) sinh x = i(ex - e-x) and cosh x = i(ex + e-).

Further similarities with trigonometry are instigated by defining

tanh x = sinh x ex - e-x
cosh x ex + e-x'

cosh x ex + e-
coth x = _ x L 0.

sink x ex - e-x

sech x =
1 = 2

cosh x ex + e-x

csch x = 1 = 2 xO0.
sinh x ex -

e_x

Notice, furthermore, that the formula Dx sin x = cos x is duplicated for
hyperbolic functions :

(2) D. sinh x = cosh x

since DxJ(ex - e-x) = E(ex + e-x). Also, DxI(ex + e-x) = J(ex - e-x) so that

(3) D. cosh x = sinh x.

which does not duplicate Dx cos x = -sin x. There are subtle similarities
and differences between other pairs of trigonometric and hyperbolic functions.
Examples are, sin2 x + cost x = 1, but

(4) sinh2 x + cosh2 x = J(ex - e-x)2 + 1(ex + e-)2

= 1(e2x - 2 + e- 2x + e2x + 2 + e-2x)

= J(e2x + e-2x) = cosh 2x
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whereas cost x - sin2 x = cos 2x, but

(5) cosh2 x - sinh2 x = k(ex + e-)2 - k(ex - e-x)2

=4[esx+2+e-2x-(e2x-2+e-Zx)]=1.

A direct check shows that sinh x cosh y + cosh x sinh y

= F1(ex - e-x)J(e' + e-v) + J(ex -f- e-x)J(ev - e -v)

= J{ex+v + ex-v - e-x+v - e-(x+v) + ex+v - ex-v + e-x+v - e-(x+v)}

= , {ex+v - e-(x+v)} = sinh (x + y); that is,

(6) sinh (x + y) = sinh x cosh y + cosh x sinh y.

and in a similar way (although cos (x + y) = cos x cos y - sin x sin y)

(7) cosh (x + y) = cosh x cosh y + sinh x sinh y.

Example. Discuss the graph of y = cosh x.

Solution. Since Dx cosh x = sinh x = 1(ex - e-2) = 0 if and only if x = 0,
the graph has a horizontal tangent at the point (0,1) and at no other point. Since

D2 cosh x = Dx sinh x = cosh x = 1(ex + -x) > 0

the whole graph is concave upward and thus cosh x > cosh 0 = 1 for x : 0.
The graph may be obtained by geometric addition of the graphs of y = ex and
y = e-x and then taking half of each ordinate.

At each point of the graph of the function sinh, the tangent has positive
slope (since Dx sinh x = cosh x z 1). Hence, sinh is an increasing function,
and therefore has an inverse function. This inverse function is designated by
sinh-' so that for each number x

sinh (sinh-' x) = x.

This inverse hyperbolic sine function is, however, not a new function;"as we
now show. Let x be any number and set

y = sinh-' x.

so that sinh y = sinh (sinh-' x) = x. Consequently,

-
x = J(ev - e-v) =

e2v 1
and (ev)2 - 2xev - 1 = 0.

Zev

This last equation is quadratic in ell and thus the formal solution is
ev = x ± Vx2 +-I. But, x2 + 1 > x (whether x is positive, negative, or
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zero) and hence x -1x2 + 1 < 0 and must be discarded, since e" > 0.
Hence, the only solution for e" is

ev=x+Vx2+1>0.

From this equation we have y = In (x + x2 + 1); that is,

sinh-1 x = In (x + Jx2 + 1).

PROBLEMS

1. Either by returning to the definitions or by using previously derived formulas,
show that

a. sinh (-x) _ -sinh x. e. sinh 2x = 2 sinh x cosh x.
b. cosh (-x) = cosh x. f. cosh 2x = 2 cosh2 x - 1.
c. tanh2 x + sech2 x = 1. g. cosh 2x = 2 sinh2 x + 1.

d. coth2 x - csch2 x = 1. h tanh 2x =
2 tanh x

1 + tanh2 x'

i. sinh (x - y) = sinh x cosh y - cosh x sinh y.
j. cosh (x - y) = cosh x cosh y - sinh x sinh y.

k. sinh u + sinh v = 2 sinh
u 2 v

cosh u 2 v

1. cosh u+ cosh v= 2 cosh u
2

v cosh
u z v

m. (cosh x + sinh x)2 = cosh 2x + sinh 2x.
n. (cosh x - sinh x)2 = cosh 2x - sinh 2x.
o. (cosh x + sinh x)n = cosh nx + sinh nx.

2. Establish each of the following formulas:

a. D. tanh x = sech2 x. e. Dx In (cosh x) = tanh x.
b. Dx coth x = -csch2 x. f. Dx In I sinh xl = coth x.

c. D,, sech x = -sech x tanh x. g. Dx sinh-1 x =

d. D., csch x = -csch x coth x.

1

-./1 + x2

3. a. Discuss the graph of {(x,y) I. y = tanh x}, show that the function tanh has an
inverse, show that this inverse has domain {x I -1 < x < 1}, and that

1 l +xtank1x=2In 1-x, x2<1.

b Obtain D tanh'1 x =-
I

1
-x2.
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c. Establish the following pair of formulas:

tan 1 ---if b < 0, but
d 2 1

d
2 tanh-1

ax

b

b = x1/ax
+ b

if b > 0.
b

4. Establish each of the following.

1 d x
a.

x2 + a2 dx s-1 a
a> 0.

b. xv'- - = i _ I
-

x2 + a2 A a such 1 x), x > 0.

1 d ',/x2 + a2
C. x2Vx2 + a2 dx 1 a2x

d.
d

V x2 + a2.. 77 + a2 = dx

z 2X d x_ ,Vx2 + a2 -
a

sinh-1 , a >e.
/x2 + a2 dx 2 2 a),

5. Given the first equation, obtain the. second:

a. y = c1 sinh (kx) + c2 cosh (kx); y' - k2y = 0.
b. y = cl sin (kx) + c2 cos (kx); y" + k2y = 0.
c. y=cl+c2e 20 +cscosh2x; y" -4y' =0.

6. Show that

a. Dx(ex cosh x) = Dx(+Ge2x). b. Dx(e2x sinh x cosh x) = D,,(ke .

7. Let t > 0 be given.. Show that {(x,y) 0 < x < t and 0 < y < sinh x} may also
be expressed as {(x,y) 0 < y < sinh t and In (y + '11 + y2) < x < t).



CHAPTER 6

Definite Integrals

As mentioned in the introduction to Chapter 2, calculus is traditionally divided
into derivative (or differential) calculus and integral calculus. Do not, however,
make the mistake of thinking, here at the beginning of a new subject, that a package
labeled "Derivatives" can now be tied up and put on the shelf to be forgotten. In
the fourth section of this chapter, an intimate relation between these two divisions is
made (The Fundamental Theorem of Calculus), and thereafter derivatives and
integrals will proceed hand in hand.

56. Sigma Notation

With m < n integers and f a function whose domain contains all integers
from m to n inclusive, the notation

n

Jf(k) =f(m) +f(m + 1) +f(m + 2) + ... +f(n - 1) +f(n)
k=m

is used and is read "The sum off (k) from k = m to k = n" or more briefly
"Sigma f (k) from m to n." For example, with m = 1, n = 5 and

f (x) = 2x2 + 3, then

5

Jf(k)=(2.12+3)+(2.22+3)+(2.32+3)+(2.42+3)+(2.52+3)
k=1

=2(12+22+32+42+52)+3+3+3+.3+3
5 5

=21k2+13.
k=1 k=1

As indicated, sigma notation is used even for constant functions :

n
c=c(n-m+1).

k=m

for c any number. Also, for a and b numbers and g a function

n n n

{af (k) + bg(k)) = a I f (k) + b I g(k)-
k=m k=m k=m

167
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Notice, also, that if p is an integer such that m < p < n, then

n a n

Y f (k) _ I f (k) + I f (k).
k=m k=m k=v+l

"The sum off (k) from m to m" is interpreted to be f (m) :
m

I f(k) =f(m)
k=m

Chap. 6

The letter k as used above is called a "dummy index," since the actual
symbol does not appear in the final result; e.g.,

4 4

jk'2=12+22+32+42=30 and 12=12+22+32+42=30.
k=1 1=1

The same symbol may be used for dummy index with different ranges:
n n-1(k-1)2k2

k=1 k=0

since both sides represent 02 + 12 + 22 + + (n - 1)2. Formally, we
may think of substituting k - 1 = 1 on the left (so I = 0 when k = 1 and
1= n - 1 when k = n) and then replacing the dummy index 1 by k to obtain
the right hand side. As an example, start with

2k-1=k2-(k-1)2,
sum both sides from k = 1 to k = n, and obtain

n n n

k=1 k=1 k=1

n n ' n n-12,lk-11=Ik2-70,
k=1 k=1 k=1 k=0

n n-1 n-1
21k-n= (.1k2+n2) - (0 Z+k2

k=1 k=1 II k=1

1)
k=n2+n =4n(n+1)

k=1 2

= n2

(see above)

which is a formula for finding the sum of the first n positive integers. For
example,

100

I k = J(100)(101) = 5050.
k=1

Now that formula (1) is established, it may be used together with

3k2-3k+1 =k3-(k- 1)3
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to sum the squares of the first n positive integers. For now

n n n n n
31: k2-31:k+71=Ik3.-I(k-1)3,
k=1 k=1 k=1 k=1 k=1

n n2 + n -n-1
31k2-3 +n= [:: +n3] -=k=0

fin`

g{n3 + J(n2 + n) - n} = *(2n3 + 3n2+ n).(2) L,k2 = 11

100

Example 1. Find (3k2 - 2k + 4).
k -I

Solution. Considering how this sum would look written out, how terms could
be grouped and common factors removed, and then how (1) and (2) may be used,
we have

100 100 100 100

1(3k2 -2k +4) = 31k2 -21: 14
k=1 k-I k=1

= *(2. 1003 + 3 .1002 + 100) - 2 (1002

2

100)
+ 4 .100

= J(2,030,100) 10,100 + 400 = 1`,005,350..

} 1
Example 2. Given f (x) = 3x2 + 2, find a formula for f (1

+
n

k.
nk-i

Solution. Since f (1' + k/n) = 3(1 + k/n)2 + 2 = 5 + 6k/n + 3k2/n2 we have

k-i n n
f(1+k)1 =.1(5+6k+32k2)1

kml n n n

n n n

712k=3

k2
n k-1 n k-1

A1

( 6 1 3

n
5n + n 2 (n2 + n) + n2 . I (2n3 + 3n2 + n)

=5+3(1 +n) +Z(2+n+

91 11
11/

=9+2n+2nz.

+ differs from 9 byNotice that we may choose n so large that 9 +
2n

as little as we please. According to the following definition, we write

lira (9 -}
9 + ?) = 9.

11-00 2n 2n2
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DEFINITION 56. Let F be a function whose domain contains all positive
integers, and let L be a number. If corresponding to each positive number e
there is an integer N such that, for n an integer,

whenever n > N it follows that JF(n) - Ll < e,

then L is said to be the limit of F(n) as n becomes infinite over integer values
and we write

lim F(n) = L.

Theorems similar to those of Sec. 17 may be proved for limits as n
becomes infinite over integer values. Thus, if f and g are functions and L1
and L2 are numbers such that

then

lim f (n) = L1 and lim g(n) = L2,
n-00 n- 00

lim [f(n) + g(n)] = L1 + L2, lim f (n)g(n) = L1L2, and
,A- CO n- oo

Example 3. Find S = lim (2 + k -) 2] 5 }
3

n- oDk=1 n
111 n

Solution. By only indicating the limit until we are sure of its value we write

S=lim 1{4+12k+9
n-+aok=1l n n /) n

n3
=limn

(-1+lnk+nk2)1

n-.co k-1 1)111)

3 lim
1

+
12 n

k +
9 ll- 2 j k2 }

n-m n k=1 n k=1 n k=1
111

1J-n 121 9
= 3 lim n +

n 2 (n2 + n) + n2 6 (2n2 + 3n2 + n)
n-boo

lim f (n) _ L provided L2 0 0.
n-..o g(n) L2

3 lim -1 +6(1 +n) +2(2 +n +n2),
II-Co

=24.
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PROBLEMS

1. By using formulas (1) and/or (2) show that

10

a. > k = 55. C.

k=1

n k2 1 1 1

1 n3 3 + 2n +
6n2.

1

23 45 9210 k
102

(
-

nb. =0.55. d. 1 +k = 21 +2n+2n
k=1 k= tt

1

2. a. Express k4 - (k - 1)4 as a third degree polynomial in k, and then use (1)
and (2) to show that

(3) 1 k3 = (n4 + 2n3 + n2).
k=1 4

b. Derive the formula

k4 = 1 (6n5 + 15n4 + 10n3 - n).
k=1 30

3. By using previously derived formulas show that:

n n
a. (2k - 1) = n2. c. (4k3 - 2k + 1) = n3(n + 2).

k=1 k=1

n
b. 1(3k2-3k+1)=n3. d. k(k+1)= n3+n2+in.

k=1 k=1

e. k(k - 1) =
a
(n3 - n).

k=1

1 1 1
4. a. Check that k k + 1 k(k + 1

Use this relation to prove that

1 1 1

1' that is, k(k+1)11 2+2 3+ + )n(n+ n +
n 1 n

n+1'k=1

n 1 1 3n2 + 5n
b. Devise a proof of _

k=1k(k+2) 4(n+1)(n+2)

5. Establish each of the following:

n k 1
,a. lim s =

n-*ook=ln 2

n k2 1

b. lim -
n-.oo k=1

n3
3

n k3 1

C.

Jim I a =
n-.mk=1n 4*

i1 n

ll-3
d. lim I\ 1 +k kJ -n

n-.ao k=1

k121 1
e.lim a+n n=a2+a+

nook=1

[ b-a]2b-a 1
f. lim a + k

n n =
(b3

- a3)n-.oo k=1

it
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57. Definite Integrals

With a and b numbers and n a positive integer let

(1) Anxb -a and xk=a+k1nx for k= 1,2,3,--.,n.
n

In Appendix A4 it is proved that if f is a function which is continuous on the
closed interval with end points a and b, then both of the limits

n n-1
lim I f (xk)Onx and lim If (xk) 1,,x

n-.mk=1 n-.ook =0

exist and have the same value. The common value of these limits is called the

definite integral off from a to b and is represented by f b f (x) dx so that

(2) f bf(x) dx = lim 7 f (xk) Onx = lim 1 f (xk) l1 nx.
n- cok=1

In this setting f (x) is referred to as the integrand. Also, a is called the lower
limit of integration and b is called the upper limit of integration.

Example 1. Find 518x2 dx.

Solution. Here a = 1 and b = 3 so that b -a =3 - 1 = 2,

2 2
Anx =

n
and xk = 1 + k

n
for k = 0, 1,.2, , n.

2

Since f(x) = x2, then f(xk) =4 (1 +k 2) . Hence, by using the first limit
in (2), n

f 3x2 dx = lim I (1 + k -) 2 -2 2 4
= lim - 1 +

-
k + -2k2

n-.ook-1 n n n-.conk=1 n n

1 n 4 n 4 n l
=2lim- 1+-Ik+W2 jk2}

n-oo n k=1 nk=1 k=1 111

1
In +

4 n2 + n 4 2n3 + 3n2 + n
=2nlim- oon n 2 n2 6

lim=2nGOI1 +2(1 +n) +3(2+n+n2

=2{1 +2 +12} =y. 1

An observation for later use is that the letter x does not appear on the
right in the above computation. In

(3) f 'f(x) dx
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the letter x is called a dummy variable or variable of integration. As examples,
the result of Example 1 above enables us to know that

f3t2dt= 36, fl u2 du= 36, f3v2dv= 36.
1

Also, the dx in (3) or dt, du, or dv in the line above merely indicates the
variable of integration so that later on when

f3 (t + x2) dx

is met it will be known that x (and not t) is the variable of integration.
The introduction of A, ,x and xk may be avoided by writing (2) as

fbf(x)dx=lim if(a-i kb-alb-a
71-.00 1 \ n J n

=limn_1f a -I kb - a b-a
n-.mk=0 n n

(2')

Also, the lower limit of integration a need not be less than the upper limit of
integration b.

Example 2. f+1(x+4)dx=lim n(+1)]+41 1-1 n(+1)
n--.co k=1

=lim { L1 -? ki +4 (-2)
n-.0o k=1 ll L n 11111111 n

=(-2)lim1 i
({5

-2k}
n-,,nk=1 n

111

r 711
=(-2)lim

l
Sn -

2n712 +

n-.oo n 2

_ (-2) lim L5 - (1 + I = (-2)[5 - 1] = -8.
9L-.CO

It may now be seen that

fryf(x)dx=-faf(x)dx.

PROBLEMS

1. By making a separate calculation of each of the integrals involved, show that

a. f 1 1x2 dx + f 1x2 dx = f 2 1x2 dx.

b. f24

(x - 1)2 dx = f 1x2 dx = f o(x + 1)2 dx.
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4 4 4 4
c. f2(t - 1)2 dt = f2u2 du - 2 f2 v dv + 21 ds.

4 4 4
d. 13x2 dx + f1 x dx = 1(3x2 + x) dx.

e. (f13x2 dx) (flx dx) f 1(3x2)(x) dx.

2. Compute the value of each of the integrals:

a
f4

1(x + 1)2 dx.

b. fox3dx.

3. With a = b prove that:
b b2 a2

a. faxdx=2 - 2.

58. Area and Work

C.

- d.

f
512

2/2t(t - 3) dt.

f3/2
-3/2x(x2 - 3) dx.

b b3 a3b. fax2dx=3 -3.

Chap. 6

We now give two illustrations of the use of definite integrals in defining
extensions of common notions.

DEFINITION 58.1. If f is a continuous function which is never aegative on
the closed interval I[a,b], then the region

(1) R = {(x,y) I a <x < b and 0<y<f(x)}
is said to have

(2) area =f
¢

f(x) dx units2

The reasoning behind this definition of area is based upon consideration
of graphs, such as Fig. 58.1, of a con-
tinuous curve rising to the right. With

O b -a
d k0nx_

n
an xk=a+ x

for k= 1,2,3,---,n,

Figure 58.1

then f (xk) A, ,x units2 is the area of a
rectangle of altitude f(xk) units and
base of A,, ,x units. If such a rectangle
is drawn with right edge along the line
perpendicular to the x-axis at the point
(xk,0), then in Fig. 58.1 an upper

corner of the rectangle is outside of R and

(4)
n

{
JG (xk) Anx

k=1



Sec. 58 Area and Work 175

appears too large for the number of square units in R. On the other hand,
the same size rectangle on the other side of the perpendicular through (x;,,0)
lies in R so that

(5)

n-1

.1 f (xk) A.x
k=0

appears too small for the number of square units in R. Since the sums in (4)
and (5) both have the same limit as n -; oo, it is natural to define (as in (2)
above) this common limit to be the number of units2 in R.

Notice also in Fig. 58.1 that all shaded portions may be fitted into the
right most rectangle between the levels y = f (a) and y = f (b) so that

f (xk) Onx - I f (xk) A.x = [f (b) - f (a)]
b - a

k=1 k=O n

and that the right side approaches 0 as n co.

Example 1. Find the area of the region

R= {(x,y) l1:5x < 3 and 0< y < x2}.

Solution. According to Definition 58.1 this area is

f J
3x2 dx units2.
1

Had we not already evaluated this integral (see Example 1 of Sec. 57) we would
now do so, and find the area of R to be ii units'.

Consider next the concept of work. If a 60 lb bucket is raised vertically
10 ft, then 60 10 = 600 ft lb of work is done according to the definition:

If a constant force off Ib, acting in the direction of motion, moves an
object h ft, then the work done is T s

Now let a force, which may not be constant, act in the direction of
motion and move an object along a coordinate line (unit 1 ft) from a point
with coordinate a to a point with coordinate b. Let the force be

f (x) lb

when the object has coordinate x where a < x < b. With n a positive
integer, let

and xk=a±kLnx for k= 1,2,3,---,n.
n

If the force either steadily increases or steadily decreases as the object moves



176 Definite Integrals Chap. 6

over the interval I[xk_l,xk], then the "work" in so moving the object is
expected to be between

f(xk-1) /nx ft lb and f(xk) A,,x ft lb

and the "work" over the whole interval I[a,b] should be between
n n
J f(xk_1) t x ft lb and 1 f(xk) Onx ft lb.
k=1 k=1

The first sum may be written (by a change of dummy index) as
n--1

L f (xk) O nx.
k=0

Again these sums have the same limit (as proved in Appendix A4), so it is
natural to use the definite integral notation to give the following definition.

DEFINITION 58.2. In moving an object along a coordinate line from a point
with coordinate a to a point with coordinate b by a force f acting in direction of
motion where

f (x) lb

is the force when the object has coordinate x, the work W done is

(3) W = f
a

f(x) dx ft lb

Example 2. A spring has natural length 12 in., and a force of lOx lb is required
to hold this spring stretched x in. beyond its natural length. Find the work done
in stretching the spring 6 in. beyond its natural length.

Solution. Establish a linear coordinate system (unit = 1 in.) with origin at the
force end and -12 at the fixed end. Then the force function f is such that f(x) _
lOx lb for 0 < x < 6. Hence, the required work is

-12 0 X W= f0el0xdx=lim T10(0+k-)-
n-.ao k=1 \ n n

n
=10 6

n-.con k=1

= 360 Jim 12 n
2 + n. 3601im

(1 +
)

n-}ro n 2 2 n-.w n10 lb

Figure 58.2 = 180 in. lb.
LT*-)

"

A definite integral involves only
61

a function and two constants and is an
abstract notion free of geometric or physical terms. ever eless, as shown
above, area and work are two illustrations of how definite integrals play a
central role in different appearing subjects; later, other illustrations will be
given.

Problems on area and work will not be given until after experience is
gained in evaluating integrals by the method of the next section.



Sec. 59 Fundamental Theorem of Calculus 177

59. The Fundamental Theorem of Calculus

The concepts of the derivative of a function and the definite integral of a
function are predominant notions of calculus. Differentiation grew out of
early work on velocities, accelerations, and tangents to curves, whereas a
direct path from Archimedes' (287?-212 B.c.) discussions of the circumference
of a circle leads through considerations of area and work to definite integra-
tion. These notions were not suspected of being related until Leibnitz
(1646-1716) in Germany and Newton (1642-1727) in England recognized
and exploited the relation between derivatives and definite integrals as
expressed in what is now called the fundamental theorem of calculus.

FUNDAMENTAL THEOREM OF CALCULUS. If f is continuous on I[a,b],
then there is a function G such that G(x) = f (x) for a < x < b. Moreover,
if F is any anti-derivative off on I[a,b]; i.e.

F'(x) = f (x) for a S x S b,
then

(1) f a f (x) dx = F(b) - F(a).
,

Leaving the proof of this theorem to the next section, we now illustrate
the use of the theorem in evaluating definite integrals.

Example 2. Find f oil 3 sin 2x dx.

Solution. In this case f(x) = 3 sin 2x, and thus to apply the fundamental
theorem of calculus, we need a solution of the derivative equation F'(x) = 3 sin 2x
and any solution will do. F(x) = (-!) cos 2x is such a solution (since F'(x) _
(-2)(-sin 2x)2 = 3 sin 2x), and therefore

f /2
3 sin 2x dx = F

(1?) - F(0) _ - 2 Cos (2 ) - (- 2 Cos 0)33
3 3

_ +2(1) =3.

This result may be interpreted either that the region

1

R= {(x,y) 10< x S 2 and 0 S y S 3 sin 2x }

has area 3 units2, or else that the force function f (x) = 3 sin 2x lb does
3 ft lb of work in moving an object along a coordinate line (unit = 1 ft)
from the origin to the point ir/2.
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It is customary to use the notation F(x)]a = F(b) - F(a). In this notation
the fundamental theorem of calculus is formalized as

(2) f a f(x) dx = F(x)]
a

where F'(x) = f(x).
a

Example 3.

2
cos

IT - (34 + 2 cos 32
2[X4

3 (4xs -sin 2 xdx = + cos 2
x]1=

14 +f
3 ir 7r

2 2
= 1 +

_
0 - (81 -80.

Example 4.

fn/2 ,r/2

_ sing t cos t dt = 3 sin3 t = 3 sins 2 - sin3 (- 2)
-,/2

1=3[1 -(-1)] =3.

PROBLEMS

1. Find the value of each of the following definite integrals:

`4. f(3x2 - 4x + 6) dx.

nl2
b. fo 5 sin 3x dx.

-4
(t + 2)-1 dt.

n/2d. fo cos2 x sin x dx.

f o (u + sin u) A.

f. f o v'x(x + 1) dx.

f 1/2

o
Vcos x sin x dx.

%3
h. f0 Vx2 + lx dx.

)fa/4 gi.: (cos X)-2 sin x dx.L i 0
j. f ,.

tan2 x dx.
0

fn/3/4 tan x dx.

log tan x dx.

2. Find an expression which does not involve derivatives or integrals for:

L f10tdt.

b. flt2x dx.

-,E. f41t2x A

f
11n

(D,,, sin x) dx.

z
Dx 1 sin t dt} .

f. Dt J1 sin x dx} .

3. Sketch the region and find its area:

{(x,y) -2 <- x <- 2 and 0 < y < x2}.
b. {(x,y) -2 < x <- 2 and 0 < y 5 4 - x2}.

1-(x,y) 0< x< 7r and 0 <- y 5 x + cos x}.

J 1
U2 3t2 dt} dx.

h. f 1/41 f2 sin t dt} dx.

fn (x + 1) dx} { f 2 xs dx} .

d. {(x,y) 1 4 5x.59and 0 <y <x
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1 1 11
4. Prove lim n + 1 + n + 2 + + in = In 2 by applying (2') of Sec. 57 to

n-+o

f
I,

xx and also evaluating this integral by the fundamental theorem of calculus.

Evaluate each of the following limits by first writing it as a definite integral and
then using the fundamental theorem of calculus.

a.
n

lim 1 + k l l
, _oo k=1 n n

b. lim 2 + k
It 3

- - .
n-.oo k=1 n n

It 1

c. lim n + 2kn-.eo kml

d. lim sin k
n-..c k=1 n n

n
e. lim sin !+k2!3 it 3 ,r

-
n-eok=1 4 4n 4n

n n
f. lim

n-.co k=1 O + k)2

60. Algebra of Integrals

Before proving the Fundamental Theorem of Calculus, we need some
preliminary results, most of which are important for other reasons as well.

In Fig. 60 the region below the
curve and above I[a,b] is divided into
two sub-regions by a line segment.
The relation between areas and definite
integrals leads us to suspect that

1. 11(x)dx=JCJ(x)dx+ rbf(x)dx

holds, at least under some conditions.
In Appendix A4 it is proved that 1.

Figure 60

holds if f is continuous on the closed interval from the smallest to the largest
of a, b, and c. Thus a need not be the smallest, nor b the largest; nor need c
lie between a and b.

The way we shall use 1. presently is first to switch to the dummy variable
t. Wethensetb=x+handc=xtohave

f
"'+h x x+h

d f(t)dt= faf(t)dt+ fx f(t) dt.

The form of this equation which we shall use is

fx+hf(t)dt-5
f(t)dt=fx

x+h
f(t) dt.

The next result is a companion to the Law of the Mean for derivatives.
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LAW OF THE MEAN FOR INTEGRALS. If f is continuous on I[a,b], then
there is a number x* such that a < x* < b and

(2) la f(x) dx = f(x*)(b - a).

PROOF. Since f is continuous on I[a,b], it has a minimum and a maximum
value, and we let x and z be such that a S x < b, a < x < b and

f (x) < f (x) < f (x) for all x of I [a,b].

Then for n a positive integer and k = 1, 2, , n we have

(3) f (x) <_ f (a + k b - a) <.f(x)

The right-hand inequality, and the definition of the definite integral, yields

rbf(x)dx=lim if(a+kb-alb-a slim Y_f(x)b-a

a n- x k=1 J n n-i° k -l n

b-a
= lim f (x) n., lim f (x)(b - a) = f (x)(b - a).

n -. m n n - cc

This, and a similar use of the left-hand inequality of (3), shows first that
f(x)(b - a) <

I
bf(x) dx < f(x)(b - a) and therefore

(4) f(x) <-
b

1
a

fab

f(x) dx <f(x).-
We now call upon the intermediate value property of continuous functions
(Corollary, page 86) to assert that there is a number x* between x and x
where f assumes the value of the middle term of (4);, i.e.

f(x*) = b i a fa f(x) dx.

The equivalence of this equation and (2) establishes the result.
These preliminary results make the following proof quite simple.

PROOF of the Fundamental Theorem of Calculus. Let G be the function
defined on I[a,b] by

(5) G(x) = fa f (t) dt.

Notice we have switched to t as the dummy variable of integration and that

(6) G(b) = f
b

f (t) dt whereas G(a)=fa f (t) d t = 0.
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Now with h 0, but such that x ;- h is also on I[a,b], then

G(x + h) - G(x) = fa +h f (t) dt - fa f(t) dt = i+h f(t)
dt by (1).

We next apply the Law of the Mean for Integrals to the interval between x
and x + h and assert there is a number th' between x and x + h such. that

x+h

fx f(t)dt=f(th)h.
Consequently

G(x + h) - G(h)
h

= f (th )

Now let h -+ 0. Then tj* - x and f (t,*) -+ f (x) from the continuity off; i.e.

G(x + h) - G(x) =
f(h)=f(X)G (x) = 1im lim t

h- 0 h h-o

We have thus shown the existence of a function G such that G'(x) = f(x)
and, because of both parts of (6), 'b r,

r (o o,
_ t" f

jf(t)dt
b

= G(b) = G(b) - G(a).

The dummy variable t has now served its purpose and we return to using
x. Thus if F is any anti-derivative off, then both

F'(x) =f(x) and G'(x) =f(x) for x on I[a,b].

But then F(b) - F(a) = G(b) - G(a) by Theorem 39, page 119. Therefore

fa f(x) dx = F(b) - F(a),

which concludes the proof of the Fundamental Theorem of Calculus.

If f and g are continuous functions on a closed interval I[a,b], thent

b2. f b [f (x) ± g(x)] dx =fa .f (x) dx ±fa g(x) dx.

To see this let F, G, and H be functions such that F'(x) = f (x), G'(x) = g(x)
and H'(x) =f (x) + g(x). Hence, H'(x) = F'(x) + G'(x) so

H(b) - H(a) = [F(b) + G(b)] - [F(a) + G(a)]

= [F(b) - F(a)] + [G(b) - G(a)]

t This result and 3 are proved under more general conditions in Appendix A4.
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which, by the Fundamental Theorem of Calculus, is 2 with the + sign.
A similar argument may be made when + is replaced by -.

If f is continuous on the closed interval with end points a and b, and if c

is a constant, then

3, fQ cf(x)dx=cf¢f(x)dx.

To see this let F be a function such that F'(x) = f (x), and therefore such
that DxcF(x) = cf (x). Then

ef
a

f (x) dx = c [F(x)] Q= [cF(x)] 6=f
Q

cf (x) dx.

Example. Find
J0
3x v 1 + x dx.

Solution. It is not evident what function F is such that F'(x) = x VT + x. The
following manipulation shows how this integral may be written as the sum of two
integrals for each of which the related anti-derivative is easily found.

1.xV l+xdx= f3(-1+1+x)v1+xdx (since-1+1=0)

= 13 -V1 +xdx + r(1 + x) \ I +xdx (by 2)
.0 0

-Irfo(1 +x)1/2dx+ fo(1 +x)3/2dx

L3(1 + X)312]0 + [*(l + x)s12]0 = 1158

Hence if F(x) -3(1 + x)312 + 5(1 + x)512 then F'(x) = xVl + x.

PROBLEMS

1. Find the value of each of the following integrals.

a. f ox V4 --x dx. d. f 0x V4 - 2x dx.

b. f 4x V x - 4 dx.
g X

C. fl xdx.

e. f o13x'?l 1 + 3x dx.

x
fo 4 - xdx.f.

g. fox V1 + 3x2 dx.

s
h. f2 x V x2 -_4 dx.

i. f ,2X(4 - 2x)312 dx.

2. Solve the given equation for c and give a geometric interpretation in terms of
area.

a. f 0ox2 dx = 9. C. f ox2 dx = J ox2 dx. e. f o (x + c) dx = 5.

b. focx3 dx = 4, c > 0. d. fo(x+1)2dx=21. f. fcc+1xdx=10.
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3. Solve each of the following equations for c.

a, f 1(x - c)x2 dx = 0. C. f W (c - cos2 x) sin x dx = 0.
o

4
b. f(' (x - c) '4 - x dx = 0. d. f 1(x - c)(3 + x)-112 dx = 0.

4. Use the algebra of integrals to simplify before evaluating.

a. f l (x - In sin x) dx + fl In sin x dx.

b. f 1x(1 + x cos x) dx + f2 X2(l + cos x) dx.

c. f 2x sin f 1x(1 - sin x) dx + f 2x(1 + sin x) dx.

d. f In (x + N/1 + x2) dx + f 2In ( -Vl+x2 - x) dx.

5. Let a and b be numbers such that a < b and let f be a function such that f is
positive and f' exists on I[a,b).

a. Show that for a < x 5 b, thenf
a
f (t) dt > 0.

b. Does it follow thatf'(x) >- 0 for a <- x < b?

61. Area Between Curves

As a supplement to the algebra of integrals, the following inequality
property is given:

If a < b, if f and g are continuous functions on I[a,b] and if g(x) S f (x)
for a < x S b, then

(1) f
a

g(x) dx < fa f(x) dx.

For, in the usual notation g(xk) < f (xk) and A,,x = (b - a)/n is positive, so

g(xk) Anx 5 f (xk) A.nx.

By summing both sides from k = 1 to n and then letting n increase without
bound, we obtain (1).

Example 1. First recall that D. tan 7l x = 1/(1 + x2) so that

f
i 1

7r
o 1 + x2

dx = tan' x1
i '

= tan 7l 1 - tan 7l 0 =
4

The ordinary long division of 1 by 1 + x2 to four and five steps gives

1 x8 X10
1+x2=1 -x2+x4-xs+1+x2=I -x2+x4-xS+xB-1+z2.
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Since x8/(1 + x2) > 0 and -x10/(1 + x2) <- 0, we have

11 -x2+x4-xe<1 +x2<1 -x2+x4-xe+x8,

Chap. 6

then by (1),

101(1 -x2 +x4 -x1)dx <f11 1x2dx < f0(1 -x2 +x4 -xs +x8)dx,

X3 X5 x7 1 1 X3 X5 X7 X9 1

X
3

5 < tan-1 x < x - + 5 7 + 9
0 0

1 1 1 7r 1 1 1 1+5+9.
Therefore 1 - + s - ; approximates 7r/4 to within but the method illustrates
how 7r/4 (and thus 7r) may be approximated to any desired degree of accuracy.

Note: It was proved by the early Greeks that, using any unit of length, the ratio
of the circumference to the diameter of any circle is the same as for any other circle
and this number they represented by 7r. By actual measurements the approximations
3.1 and 11 were obtained, but it is now known that 7r is an irrational number. The
procedure described above, permitting an evaluation of 7r to any desired degree of
accuracy, was one of the earliest and most striking triumphs of calculus. The
discovery of the connection between 7r and the series of reciprocals of odd integers
with alternating signs is commonly attributed to Leibnitz (1646-1716); actually, it
was known earlier to a Scotch mathematician, James Gregory (1638-1675). Sinceir
was defined in terms of lengths, it seemed incredible that 7r could be approximated
by any means other than actual measurements, but we now see that no instruments
whatever are necessary to obtain any desired degree of approximation.

At present there is no reason for wanting 7r to 150 decimal places (although even
more have been computed). There are, however, good reasons for being sure of the
approximation of 7r to one more place than an instrument can measure, for then
this value can be used to check the accuracy of the instrument.

The method approximating 7r is an illustration of how mathematics may be used
in practical applications. For if a physical constant is sufficiently well defined, then
by using no measurements whatever, but only mathematical methods, the constant
may be determined or approximated and the result used to check the accuracy of
subsequent physical observations.

Under the conditions which yield (1), then

0 < f
a

f (x) dx - f b g(x) dx = f
4

[f(x) - &)] dx

=lim i {f(a+kb_a) -g(a+ka) a

n'oo k1 n ` n ) n
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Upon noting how each term of each sum is related to the area of a rectangle
and how the union of the rectangles is
related to the region of the following
definition, we see why the following
definition is a natural one to make.

DEFINITION 61. If a < b, if f and g I
I (zx.f(xx)

are continuous functions on I[a,b], and if : e

g(x) < f(x) for a S x < b, then the region

{(x,y) I a S x S b, g(x) < y < f(x)}
(a,0)

((

(b,0)

\xk.9(xjhd avetois sai

area =f
a

[f (x) - &)] dx units2 Figure 61.1

Example 2. Find the area of the region of the plane bounded by the graphs of

2x2 +9y=36 and 2x + 3y =0.

Solution. The first graph is a parabola, the second is a straight line, and (by
simultaneous solution of the equations) they intersect at the points (-3,2) and

Figure 61.2

(6, -4) between which the parabola is above the line. Upon solving each equation
for y, the region is seen to be

{(x,y) -3 < x <- 6, -9x < y < 9(36 - 2x2)}

and, according to the above definition, has area

f6
3[9(36 - 2x2) - (-9x)] dx = f

6
3(4 - 9x2 + jx) dx = 27 units.2

Example 3. Find the area A of the region bounded by the graphs of
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Solution. The points of intersection are (-3, -1) and (5,3) and the vertex of the
parabola is at (-4,0). Notice how some vertical segments across the region have
both ends on the parabola, whereas others have upper end on the parabola but
lower end on the line; the division between the two classes occurring at the abscissa
x = -3. Thus, the given region is the union of

{(x,y)I -4<x<-3, -V'x+45y<V'x+4}

{(x,y) 1 -3 < x < 5, k(x + 1) < y < Vx + 4}.

The area is therefore the sum of two integrals:

A=f-4[Vx+4+4)]dx+

and

=2f4Vx+4dx+ j (V'x+4-'ix-2)dx

= 2 [I(x + 4)3/2] _' + [ (x + 4)3/2 - 1x2 - X] 5
3

= g + [1(27 - 1) - 1(25 - 9) - J(5

+F

3)] = 32 units2.

As another attack, notice that every horizontal segment across the region has
left end on the parabola and right end on the line, so the region is

{(x,y) I -1 Sy <-3,y2-4 <x<2y-1}.
Hence, by switching to the variable y,

A = -1[(2y - 1) - (y2 - 4)] dy

Figure 61.3 = 3y + y2 3 y2 3
= 33 units2.

This second method is the so-called "Method of Horizontal Strips."

PROBLEMS

1. Find the area of region bounded by the graphs of:

a. y = x2, y = x. f. y = x + sin x, y = x; 0< x< ,r.
b.y=9- x2, y = x + 3. g. y = sin x, y = cos x; 0<x<ir/4.
C. y=1x, y=x2. h. y(1 -rx2)=1, 15y=x2-1.
d. 2y2 + 9x = 36, 14y = 9x. i. xy = 8, x +y = 6.
e.x+y2=4, y=-(x+2). j.y2=4-4x, y2=4-2x.
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2. Derive a formula for the area of each of the following, but first check that

7x 2
{x ti'a2 - x2 + a2 sin -1 a) = /a2 - x2 , where a > 0.

a. A circle of radius r.
1111

b. The portion of a circle of radius r cut off by a line h units from the center
where 0 < h < r.

c. A sector of a circle with central angle a radians.

d. An ellipse with major axis 2a and minor axis 2b.

e. The region bounded by a parabola and its right focal chord.

f. The region bounded by the graphs of y = eax, y = e bx, and y = c where
a and b are positive constants and c is a constant greater than 1.

3. In Fig. Prob. 3 the curve is the graph of
xy = 1, x > 0. Use the fact that the
shaded region has area less than that of the
trapezoid and show that

b b -al 1
In - < 2 (a+b , 0<a<b.

4. a. Notice that for k < x < k + 1, the
graph of xy = 1 lies between the graphs
of ky = 1 and (k + 1)y = 1. Use this
fact to show that

b- axis

Figure Prob. 3

I k+1 dx 1

k+1 <Jk x <k'

x-axis

b. Use the result of 4a to show that for each integer n > 1

1 1 1 1 1 1
2+3+

c. Use the result of 4b to show that for each integer n > 1

1 1 1 1n<1+2+3+ +n-Inn <1.
5. Prove the formula 7r/4 = 4 tan-' (5) - tan' (z as) and thus see that

yr ('1/5 1 f1/239 1

4 -4J0 1
+x2dx -Jo 1 +x2dx.

Use the method of Example 1 to approximate each of these integrals to obtain IT
accurate to 10-6.t

6. a. Let t be a number such that 0 <- t <- 1 and sketch the region

{(x,y) 0 5 x 5 sin 1 t, 0 S y< sin x).
t For similar formulas where the same accuracy may be obtained with even fewer

terms, see D. H. Lehmer, "On Arcotangent Relations for ,r," American Mathematical
Monthly, Vol. 45 (1938), pp. 657-667.
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In terms of integrals express the area of this region both by the method of
vertical strips and by horizontal strips to obtain

fosia-lisin
x dx = f o(siri-1 t - sin1 y) dy.

From this equation obtain that

fosinlydy=tsinit+v1 -t2-1, 0<-t<-1.
b. Let t > 1 be given and sketch {(x,y) 0 <- x <- In t, ex < y < t}.

By the method of 6a obtain

1
1tlnydy=tint -t+1, t> 1.

7. For f a continuous function on I[a,b], let Mn be the mean value of the n values
b-a

f (x1), f (x2), , f (xn) where xk = a + k
n

for k = 1, 2, , n. Show that

n-co

62. Pump Problems

The following example illustrates another application of definite
integration to the concept of work.

Figure 62

1im M." = 1 f a

b a a f (x) dx.

xx

Example. A tank is in the form of a right
circular cone with vertex down, axis vertical,
altitude 10 ft, and radius of base 4 ft. The
tank is full of water, weighing 62.5 lb/ft3.
Find the work done in pumping all of the
water to a level 8 ft above the top of the tank.

Solution. Place a vertical scale (unit = 1
ft) beside the tank as shown. Divide the scale
into n equal parts by using the numbers
0 =xo <x1 <x2 < <x,, = 10 where
xk = klO/n, k =0,1,2,---,n. Consider
water pumped out until the surface stands
level with Xk. The surface is a circle of radius
rk where, by similar triangles,

rk 4

xk 10
so that rk = 0.4xk.

Visualize the top layer of water 10/n ft thick.
If this layer were cylindrical it would have
volume and weight

10 10 10
rr2ti n = n(0.4xk)2

n
ft3 and n ]b,
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respectively; the second being a downward force. Each particle of water in this
layer is to be raised approximately (18 - Xk) ft against this force so that the work to
raise this one layer should be approximately

62.57r(0.4)2 x,(148 - xk)
10
0 ft lb
n

and the sum from k = 1 to n of such terms should be (if n is large) about the work
expected to accomplish the whole task. Reminiscence prompts us to define the
work to be

(1) W =
iofo 62.5n(0.4)2x2(18 - x) dx ft lb.

Hence, by the Fundamental Theorem of Calculus,

W = 62.5R(0.4)2 f 00(18x2 - x3) dx = 62.51.(0.4)2 [6x3 - }x4] 0
10

= 62.5(0.4)2103(6 - z )rr = 35 x 1037r ft lb.

After becoming thoroughly familiar with defining work in terms of a
definite integral (i.e., as the limit of sums), it is only necessary to obtain the
form of the integrand over the range of integration. A possible synthetic
thought process for the above example is:

For 0 < x < 10, when water stands x ft deep, the surface has radius r
where r/x = so r = 0.4x ft, the surface area is 7r(0.4x)2 ft2, a layer of
thickness Ax exerts a downward force approximately 62.51r(0.4x)2 Ox lb
which must be acted against for (18 - x) ft and requires about

(2) 62.57T(0.4x)2(18 - x) Ax ft lb

of work. This expression furnishes the pattern for the integrand in (1) and
is sometimes referred to as "The element of work."

Note: Actually the symbol f is an elongated S standing for "sum" and the dx
appearing in
(3)

f a f(x) dx

is a rudiment of an early vague notion that it was "something" approached by
Ox as Ax tends toward zero but in some unexplainable way was "not quite zero."
After the results obtained by some very clever men revealed the power of calculus,
other men as clever analyzed the processes and devised an unambiguous definition
of a limit which removed the uncertainties that plagued earlier exposition and
communication. Now (as in Sec. 57) the total symbolism (3) is defined with no
specific meaning attached either to f or to dx, although the dx appearing here
looks the same as the dx used in connection with differentiation.

Notice that in the above example no coordinate system was given, and it
was up to us to pick one; we chose the origin at the bottom and 10 at the top.
As an alternative method, consider the scale in the figure turned over with
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the origin at the top and 10 at the bottom. In order not to confuse notation,
lety be the dummy variable. The synthetic analysis of the problem may now

appear as:

For 0 < y < 10, a section y feet from the top is (10 - y) ft from the vertex, and

hence this section has radius r where

r 4

o - y = io
so that r = 0.4(10 - y)

t

and the area of the section is ir(0.4)2(10 - y)2. Hence, a layer Ay ft thick exerts a
downward force of 62.5n(0.4)2(l0 - y)2 Ay lb, and this must be acted against for
(8 + y) ft, so the element of work is 62.5n(0.4)2(lo - y)2(8 + y) Ay ft lb. The

definition of the total work is now

W = f o°62.5n(0.4)2(l0 - y)2(8 + y) dy ft lb,

which, as a check will show, yields the same value as before.

PROBLEMS

1. For the problem of the above example place a vertical scale with s = 0 at the
level to which water is to be raised and s = 18 at the level of the vertex. For
this choice of scale see that W would be defined as

W = f Is62.5n(0.4)2(18 - s)2s A

2. A tank is full of water. Find the work done in pumping all the water to a level
Hft above the top of the tank if the tank is in the form of:
a. A right circular cone, vertex down, axis vertical, radius of base 5 ft, altitude

8ft,andH=10.
b. A cone as in a, with radius r ft, altitude h ft, and H 0.

c. The cone of b, but with vertex up.
d. A hemispherical bowl with radius 5 ft and H = 23.
e. A right circular cylinder, axis vertical, r = 5 ft, h = 8 ft, and H = 15.
f. The bowl of d surmounted by the cylinder of e; H = 15.
g. A sphere of radius 5 ft, and H = 10.
h. A trough of length 6 ft, whose vertical cross section is an isosceles triangle

with base 3 ft and altitude 2 ft, and H = 10.
i. A trough of length 6 ft whose vertical cross section is a semicircle of radius 2 ft,

and H = 0.
j. The trough of i but with H = 5. (Hint: The derivative in Prob. 2, p. 187 will

be useful.)

k. A trough of length 6 ft, whose vertical cross section is an isosceles trapezoid
of altitude 4 ft, upper base 3 ft, lower base 2 ft, and H = 20.
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3. An upright cylindrical storage tank has radius 6 ft and altitude 5 ft. Next to the
storage tank is a 20 ft tower on which stands an upright cylindrical utility tank
with radius 2 ft and altitude 9 ft. If the storage tank is full and the utility tank
is empty, what is the work required to fill the utility tank by pumping water
through a pipe from the lower base of the storage tank to the lower base of the
utility tank?

63. Hydrostatic Force

An incompressible substance is one which will neither contract nor expand
merely because force is applied or released. Air is compressible and a cubic
foot of air at the earth's surface
weighs considerably more than
a cubic foot of air in the strato-
sphere. Water is essentially in-
compressible, and a cubic foot
of water weighs about 62.5 lb
whether at the surface or 100 ft
below the surface. Thus, the
number of pounds of water in a
container is the number of cubic
feet of water times 62.5. A law
of hydrostatics is that an incom-

Figure 63.1

pressible fluid exerts force equally in all directions. For example, a flask and
a bowl of the same altitude h ft when full of water will sustain due to the
water the same force per square unit on their bases, and if each base is A ftz
the force on each base due to the water is

62.5 Ah lb.

Hydrostatic force on a vertical plane section requires an integral for its
definition as illustrated in the following examples.

Example 1. On a vertical dam a triangle is marked
with horizontal base 4 ft, vertex down, altitude 3 ft, and
the base is 5 ft below the surface. Define and then find

s-x sft the force on this triangle.
k

Solution. Let xk be a number such that 0 < xk S 3.
4ft Across the triangle consider a line segment xk ft from

the vertex. By similar triangles the length of this segment
is (3)xk ft, and a strip of width Ax ft at this level has

X k
area about (3)xk Ax ft2. The segment is xk ft from the

} vertex, and thus 5 + 3 - xk = 8 - xk ft from the surface.
If, then, the strip were turned edgewise to the dam it would

Figure 63.2 sustain a force of about 62.5(3)xk(8 - xk)fx lb and, since



192 Definite Integrals Chap. 6

hydrostatic force of an incompressible fluid is exerted equally in all directions,
this strip would sustain about this same force in its actual position. These con-
siderations lead to the definition

F = f 362.5(j)x(8 - x) dx = (62.5).f o(8x - x2) dx = (62.5)(36) lb.

Example 2. A horizontal supply conduit is 3 ft in diam-
a vertical valve head directl in frd bbl kd i , ye yoc ontseter an

of which is a lead-off pipe 1 ft in diameter. Find the force
6-y" on the valve head when the water level in the lead-off pipe

I is 6 ft above the center line of the conduit.

Figure 63.3

Solution. First notice that the diameter of the lead-off
pipe is superfluous information, but the 6 ft rise is all
important. Establish a coordinate system (unit = 1 ft) with
the origin at the center of the conduit and the point (0,6) at
the surface of the water. With - z <- yk 5 z, notice that
at the point with coordinate yk the horizontal line segment

across the conduit has length 2V(2)2 - yk ft. At this level a thin strip of width
Ay ft has area approximately 2,\/1 - yk Ay ft2 and each of its points is about
6 - Yk ft below the surface, regardless of whether yk is positive or negative
(but we must have - 2 < yk <- 2). Thus, this strip must sustain a force near to

(62.5)2Y V 4 - yt2.(6 - yk) Ay lb.

Consequently, we define and compute

F = (62.5)2 f 3/2/2 , 2(6 - y) dy

= 125(6f
313/2 V4 y dy - f1/3/2 v y dyl

{6[ 9 2y 3/2
3

3/2

= 125 y2 + sin 1
J + C- y/2J }

(check each of these by taking derivatives)

{3[o= 125-0+9sin-'I -4sin i(-1) +[3.0-3 0

= 125 { 3 - 4 7r } = 2.65 x 103 lb.

64. Integration By Parts

The Fundamental Theorem of Calculus states for f a continuous function,
that

f b f (x) dx = F(x)] a where F'(x) = f (x).
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This formula may be written in either of the forms

J
a
F'(x) dx = F(x)] ' or fa

DxF(x) dx = F(x)] v.
¢ 2 a

Hence, for u and v functions having continuous derivatives,

J
a

D.{u(x)v(x)} dx = u(x)v(x)]
b.

But Dx{u(x)v(x)} = u(x)v'(x) + v(x)u'(x), and thus we have

f
d

{u(x)v'(x) + v(x)u'(x)} dx = u(x)v(x)]a.

The left side written as the sum of two integrals, and then the second one
transposed, yields

(1) f
d

u(x)v'(x) dx = u(x)v(x)]2 -f'
a

v(x)u'(x) dx

which is known as the formula for Integration by Parts.

Example 1. Find f o' x sin x dx.

Solution. Upon setting u(x) = x and v'(x) = sin x, so that u'(x) = 1 and (by
finding an antiderivative) v(x) = -cos x, we obtain from (1)

12

fo
xsin xdx =x(-cosx)]o

/2 - foa/2
1 (-cos x) dx

-2cos2

-2 0 + 0 + [sin x]o'=sin 7 -sin0=1.

Integration by parts is a means by which one integral may be expressed
in terms of another integral. Unless a suitable substitution is made, the
second integral may turn out to be more complicated than the original one.
As an illustration, in Example 1 the substitutions

u(x) = sin x, v'(x) = x

could have been made, so that u'(x) = cos x, v(x) = x2/2, and

f
0n/2 X2]0 n/2 - f° n/2

2

X2
x sin x dx = (sin x)

2_
- cos x dx.

,`

This equation is valid, but the substitution is not advisable since the second
integral is more complicated than the first.

A fairly reliable rule is:

Set u(x) a part of the integrand such that u' 1s_simpl4x-than u(x).
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Having selected a part of the integrand to set equal to u(x), it is necessary
that the remaining part of the integrand (to be set equal to v'(x)) be recogniz.
able as a derivative of some function. For example, if

f ixInxdx

is sought then it is inadvisable to set u(x) = x, for (although u'(x) = 1 is
simpler than u(x) = x) then v'(x) = In x cannot easily be solved for v(x).
Hence, try u(x) = In x.

Sometimes a double exchange is necessary.

Example 2. Find the value of I = f
0
x2v'4 --x dx.

Solution. Set u(x) = x2,, v'(x) _ V4 - x. Then u'(x) = 2x, v(x) _ -1(4 - x)3/2,

I = x2(-S)(4 - x)3/2] o - fo
(4 - x)3/22x dx

= 0 + a 4
J4

x(4 - X)3/2 dx.

Having finished with the above substitutions for u and v, we are now free to make
new substitutions. In this new integral we set:

u(x) = x, v'(x) = (4 - x)312 so that u'(x) = 1, v(x) 5(4 - x)5/2, and

I=3 {x_ )(4 -x)5/21 -fo(-4-x)sl2(1)dxl
lllt J

JJ

25fo4 f04

8 2 " /-16 2048
= 15 (-

-7
(4 - x)a/2 I

o

=
105

[0 -
105J

Example 3. Find I = f o2x2 cos x dx.

Solution. Set u(x) = x2, v'(x) = cos x so that u'(x) = 2x, v(x) = sin x and

I= x2 sin x 0

2-
f"12

2x sin x dx = (2) 2- 2 f o/2x sin x d

Hence, by using Example 1, 1 = (r/2)2 - 2. \

PROBLEMS

1. A plane triangle with horizontal base 8 ft and altitude 16 ft is held vertically in
water. Find the force on one face if the triangle has :
a. Vertex 10 ft below the surface and above the base.
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b. Base 10 ft below the surface and above the vertex.

c. Vertex up and at the surface.

d. Base up and at the surface.

e. In each case check that the answer is 62.5 times the area of the triangle times
the depth of the intersection of the medians of the triangle.

2. A trough is full of water. Find the force on the end if the end is:

a. An isosceles triangle of base 4 ft and altitude 3 ft.

b. A semicircle of radius 4 ft.

c. A semiellipse whose semimaor axis is horizontal and 4 ft long and whose
semiminor axis is 3 ft long.

d. A trapezoid with upper base 4 ft, lower base 2 ft, and altitude 3 ft.

3. A plane disk is submerged vertically in water. Find the force on one face if the
disk is:

a. A circle of radius 3 ft with center 3 ft below the surface.

b. The circle of Part a, with the center 10 ft below the surface.

c. An ellipse with major axis horizontal, major axis 2a ft long, minor axis 2b ft
long, and center c ft below the surface where c >- b.

d. The ellipse of Part c with major axis vertical and c ? a.

e. In each case check that the answer is 62.5 times the area of the disk times the
depth of the center.

4. The vertical end of a. tank is an isosceles trapezoid with lower base 10 ft, upper
base 16 ft, and altitude 12 ft. Water stands 4 ft deep and then there is a 5 ft
layer of oil weighing 50 lb/ft3. Find the force on the end of the tank in terms of
integrals.

5. Evaluate each of the definite integrals:

a. fox sin 2x dx. d. f5'X2,\/7-
1 dx. g. f o V25 - x2 x dx.

,./2 5 X
b. f _v/2x cos x d x . e. f2 x - 1

dx. h. f x2 cos 2 dx.

c. f lx In x dx. f. o \ 25 - 3x x dx. i. f1
x2e- dx.

6. a. A rectangle with horizontal base 5 ft and altitude 8 ft is marked on the face of a
vertical dam with the upper base at the surface. Find a depth such that the
force on the rectangle above this depth is equal to the force in the portion
below this depth.

b. Replace the rectangle of Part a by a triangle with base of 5 ft in the surface
and altitude 8 ft.
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c. Turn the triangle of Part b over so the vertex is in the surface.
d. Replace the triangle of either Part b or Part c by a triangle with base b ft

and altitude h ft. Show that the desired depth is h/2 ft when the base is up,
but is h/ "2 when the vertex is up.

7. Start with D,,{u(x)v'(x) - u'(x)v(x)} and obtain the formula

ibf bu(x)v"(x) dx = [u(x)v'(x) - u'(x)v(x)
aa

u"(x)v(x) dx.] b +
a

Use this formula to obtain the integrals in Examples 2 and 3. Also, use this
formula to find

a. f o1-2x

cos x dx. b. f oex sin x dx.

65. First Moments and Centroids

Consider a strong light rod with a 10-lb weight at one end and a 20-lb
weight at the other. In carrying this contraption with one hand it would be
natural to grasp the rod twice as far from the 10-lb weight as from the 20-lb

weight. A rod d ft long with weights of WI
lb and W2 lb at the ends has balance point

10 (neglecting the weight of the rod) x ft from
20 Wi lb weight if

x d_x (1) xWI = (d - x)W2.

Figure 65.1

J By using a coordinate system, a generalization
W2 to more than two weights may be made. Let

xI < x2 be given and let weights of WI lb and
W2 lb be at the points (x1,O) and (x2,0), and

let (x,0) be the balance point. Thus z - xI > 0, x2 - 2 > 0, and from (1)

(X - XI)WI = (X2 - x)W2.

Since, however, 2 - xI = -(x1 - z), this equation may be written as

(2) (X1-2)W1+(x2-x)W2=0, or as
(3) z=x1WI+x2W2

(xl,o) (x,o) (x2,o)
j'1'i + W2

Now let particles of masses ml, m2, . , m,, be IV,
w2

at points (x1,yl), (x2,y2), , (x,,y,,) in a plane Figure 65.2
considered as lying horizontal. Let c be a number
and let L be the line through the point (c,0) perpendicular to the x-axis. By
definition, the numbers

(XI - C)m1, (x2 - c)m2, .. . , (Xn - c)mn
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are the first moments relative to L of the individual masses,
n tt

ML =(X1-c)ml+(x2-c)m2+...+(xn-C)mnxkrnk-Cink
k=1 k=1

is the first moment relative to L of the system, and the solution
n

(4)
x

=
(

I Xkmk) /mk
k=1 k=1

of the equation ML = 0 for c is called the abscissa of the centroid of the
system. In the same way, first moments relative to a line perpendicular to the
y-axis are defined and the point (2,p) where

(5) y = (bkmk1 ) /klink
(X3,Y3)

is called the centroid (or center of mass) of
M3 (x444)

the system. Notice that in (4) and (5) the (x2,y2) m4

denominator is the mass of the system, m2 -----
while the numerators are, respectively, the (x,,y,) (x5.y3)

first moment relative to the y-axis and the nil - - - - - - - - m5

first moment relative to the x-axis.
Consider a homogeneous sheet of metal (c,o)

of uniform thickness r and density p. Thus,
if A units2 is the area of one face of the Figure 65.3
sheet, then the volume is AT units3 and the
weight is ATp weight units. Let the sheet be placed on a horizontal plane in
which a coordinate system has been established. With a the smallest and b
the largest abscissa of the region covered by the sheet and with n a positive
integer, let

Ax=(b-a)/n and xk=a+k-Ax,
The vertical line through the point (xk,0) cuts the region in a segment whose

length, using functional notation, we denote by
s(xk). The strip of length s(xk) and width Ax
has approximate weight pTs(xk) Ax. With c a
number, each point of the strip is approximately
Ixk - cl units from the line L perpendicular to
the x-axis through the point (c,0) and with
respect to L, the first moment of the strip
should be approximately (xk - c)p'rs(xk) Ax.
Considering all such strips, the moment of the

hould be abouth t ti t Llee re a ve o s(a,0)
1

(CM (Xk,O) (6,0) s

nn`

(Xk - C)pTS(xk) Ax.
Figure 65.4 k=1
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We then define the limit as n -+ co of such sums as the first moment ML of
the sheet with respect to L, and thus have

ML = f b
p-r(x - c)s(x) dx.

a

Upon letting 2 be the value of c for which ML = 0, we call 2 the abscissa of
the centroid of the sheet. Thus, with M the first moment of the sheet relative
to the y-axis,

(6) x=
fbPTxs(x)dx= My

I
b pTs(x) dx Total mass

We are considering p and -r as constants. Thus, we shall have all essentials
for finding first moments and centroids of sheets if for regions (area A units2)
we define the first moment ML and the abscissa z of the centroid as

fb xs(x) dx
(7) ML =J b (x - c)s(x) dx and z = =

Mti

a fb
s(x) dx A

Example 1. Find the moment M (the moment with respect to the y-axis) of the
region {(x,y) 10 < x < Ir/2, 0 < y < cos x}.

Solution. Upon setting s(x) = cos x and c = 0 in (7), we have

n/2 n/2 n/2 7T r/2 ITMv= f0 xcosxdx=xsinx]0 f0 sinxdx=2-0-[-cosx]0 =2-1.

In a similar way, first moments with respect to lines perpendicular to the
y-axis and the ordinate of the centroid are defined.

Example 2. Find the centroid of the region bounded
t (2411 / by the graphs of y = x2 and y2 = 8x.

(0.4)
,

Figure 65.5

Thus, the centroid is the point (io k

J'olution. The curves intersect at the origin and at
the point (2,4) and the region is

{(x,y) 10 < x < 2, x2 < y < V'gx}. Thus,

x =
f x(V8x - x2) dx - f o(2V2x3/2 - x3) dx - s12

f of 8x - x2) d x f ( 2 V2x1/2 - x2) dx 3

The same region is {(x,y) 0 < y < 4, y2/8 < x < -Vy}.
Since the area of the region is 3 unite, it need not be recom-
puted and

4

- = ° y2/8)
dy

3 s
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Example 3. For the region {(x,y) 0 < x < ,r/2, 0 < y < sin x} find z and
express y in terms of integrals.

Solution. In this case s(x) of the general discussion is sin x so that

o
xsin xdx x(-cosx)]0 -Jo (-cosx)dx 0 -sin x]

X

f o'2sin x dx -cos x] 0,
/2 -0 +1

The region may also be expressed as {(x,y) 0 < y < 1, sin 1 y < x < 7r/2}. Thus,
since the area of the region is I unite, we
have

y - sin-' y dy sm'ufo 2 (0.u) -----------5

2foydy - foysin lydy

i=4 ysin lydy.

(Note: Later, methods for evaluating this
integral will be given.)

(x,0) (2.0)

Figure 65.6

Example 4. Find the centroid of the triangle with vertices (0,0), (1,4), and (5,0).

Solution. Equations of the sides through (1,4) are y = 4x and y = -x + 5.
Thus, the region may be written either as the union of

{(x,y) 10 5 x <- 1, 0 < y < 4x} and {(x,y)11 < x < 5, 0 < y < -x + 5}
or as {(x,y) 10 5 y< 4, y/4 < x< 5 - y}.

Since the area of the triangle is 10 units, we have

z = 10 (5'x@x) d x + f lx(-x + 5) dx1 = 2,

y 4f dyY = F

PROBLEMS

1. Find the centroid of the region bounded by the curves whose equations are given.

a. y = x2, y = 2x. e. y2 = x, x - 2y = 3.
b. y = x2, y = mx; m > 0. f. y2 = 4 - 4x, y2 = 4 - 2x.
c.y=x3, x=0, y=b; b>0. g.y=lnx, y=0, x=2.
d.y=2x, x+2y=5, y=0. h.y=e, x=0, y=0, x=2.
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2. Prove that the centroid of a triangular region is at the intersection of the medians
of the triangle.

3. First check the derivatives in a' and b' and then find the centroids of the regions

in a to c.

a'. Dy

2

[x Vat - x2 - a2 cos 1 a, = v'a2 - x2, a > 0.

2

b'. D.,' 0 - 4 cos l x - 4 x V 1 - x2 = x cos' X.

a. A
semicircle.111111

b. A semiellipse with semiaxes a and b.
c. {(xy)l - n/2 < x < er/2, 0 < y < cos x}.

4. A vertical rectangular flood gate 4 ft broad and 6 ft high is swung on a horizontal
bolt. Find where the bolt should be located so there will be no strain on the
fastening device when the water surface is 1 ft above the top of the gate.

5. Prove that the force on a submerged portion of a vertical dam is 62.5 times the
area of the portion times the depth of the centroid of the portion.

6. Two regions R1 and R2 have at most boundary points in common. If the areas
of the regions are Al and A2 and have centroids (xl,p1) and (x2,y2) show that the
union of the two regions has centroid (x,9) where

x =
X1A1+ 22A2

and y =
y1A1 + y2A2

A
(2,3)

(5,

Al + A2

1)

(4,1)

a. b.

Figure Prob. 6

c.

This result is known as a theorem of Pappus. Use the theorem and known cen-
troids to obtain the centroids of the figures a, b, and c. Find the centroid of the
region obtained by removing the circle of radius r and center (r,0) from the:
d. Circle with radius 3r and center at the origin.
e. Rectangle with corners (0, -3r), (3r, -3r), (3r,3r), (0,3r).

66. Second Moments and Kinetic Energy

A particle of mass m moving with velocity v is said, in a branch of
mechanics called dynamics, to have kinetic energy E where, in terms of the
units used,

(1) E = Jmv2.
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Let a particle of mass m move around a circle with center at the origin and
radius r and at time t (say measured in seconds) let the angle measured in
radians made by the radius vector to the particle be 0(t). The particle is said
to have angular velocity w(t) wherei

w(t) = 0,(t) = d60) = him 0(t + h) - 0(t)
radians/sec.

The length of an arc of a circle is the radius times the number of radians in
the subtended angle and, therefore, this. particle has velocity v(t) and kinetic
energy E(t) where

v(t) = rco(t) and E(t) =
2

This particle is said to have second moment (or moment of inertia) I with
respect to the origin, where

(2) I= mr2.

Notice that the second moment is independent of time and

(3)
.E(t) = 1w2(t)

The definition of second moment of a particle with respect to a point is
extended, by means of the limit of sums, to the definition of the second
moment of a sheet with respect to a line. On a coordinate system represent a
uniform sheet of thickness T and density p and let L be a line perpendicular
to the x-axis through a point (c,0) (although c need not be between a and b
as illustrated). Since each particle having abscissa
x where a < x < b is Ix - ci units from L, the
second moment IL with respect to L of the whole
sheet is defined to be

(4) IL=fbprIx - cl2s(x)dx
¢

= f.11 p-r(x - c)2s(x) dx
Figure 66

where s(x) is the length of the segment across the
sheet at the abscissa x. Whenever p and z are constants, the region covered
by the sheet is said to have second moment with respect to L where

(5) IL =f.' (X - C)2S(x) dx.

t Angular velocity for a particle moving in a curve other than a circle will be given later.
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Example 1. Find the second moment with respect to the y-axis of the region
{(x,y)10 < x < 7r/2, 0 < y < cos x}.

Solution. Letting I, be this second moment (so c = 0), we have

= '/2x2 cos x dx.Iv Jo

The use of integration by parts twice (see Example 3, Sec. 64) yields I, = (7r/2)2 - 2.

Kinetic energy of a body is of great importance in practical problems and
in such problems the angular velocity is generally known. Thus, to find the
kinetic energy of a body it is only necessary to compute the second moment
by means of (5), multiply by p -r, and then to use (3).

From (5) it is seen that

IL = f" (x2 - 2cx + c2)s(x) dx

= f
Q

x2s(x) dx - 2c f bxs(x) dx j c2,f as(x) dx.

The first term is the second moment ly with respect to the y-axis, the middle
term is -2c times the first moment M,v with respect to the y-axis, and the
last term is c2 times the area A; hence, the formula

(6) IL = I - 2cM, + c2A.

The statement (6) is referred to as "The Parallel Axis Theorem."

Example 2. Find the second moment with respect to the vertical line L through
(3,0) of the region of Example 1.

Solution. Iv = (4x/2)2 - 2 from Example 1, M = (4r/2) - 1 from Example 1
Sec. 65, and A = 1. Thus, from (6) with c = 3

IL=(4 -2) -2.3(2-1) +32.1 -37r+13.

The pitch and roll of a ship at sea and the stability of an airplane in flight
are determined quite largely by moments of inertia and it is desirable to have
these moments as small as possible. To find where L should be located to
make IL the minimum, note that I,,, M,,, and A are independent of c and that

DCIL = D,(I - 2cM + c2A) = -2M + 2cA and D2IL = 2A > 0.

Thus, the solution of D#L) = 0 for c furnishes the minimum. Hence,
c = z shows that by selecting L through the centroid, the smallest
second moment will be obtained.
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PROBLEMS

203

1. With a and b positive numbers, find I for the rectangular region with vertices
(0,0), (a,0), (a,b), (0,b).

2. Replace the rectangle of Prob. 1 by the triangle with vertices (0,0), (a,0), (0,b).

3. Replace the third vertex in Prob. 2 by (c,b) with 0 < c a.

4. Replace the rectangle of Prob. 1 by the quadrant of a circle of radius a and
bounding radii along the axes, but first check that

a2
Dx -

4
(a2 -X2)3/2 8 IX 1/a2 - x2 a2 sin 1 aI) = X2'Va2 - X2.

5. Substitute "ellipse" for "circle" in Prob. 4.

6. Replace the rectangle of Prob. 1 by {(x,y) 10 < x < p, 0 < y < 2Vpx}.

7. Replace the region of Prob. 6 by {(x,y) 10 < y < p, 0 < x < 2Vpy}.

67. Solids of Revolution

Let a < b be numbers, let f be a continuous function, and consider the
region

(1) {(x,y) I a < x < b, 0 < y < f(x)1}.

(x,If(x)I)

4-

Figure 67.1

By revolving this region about the x-axis a solid of revolution is obtained
whose volume is defined to be

(2) V = fa ir[f(x)]2 dx.

The reasoning behind this definition is based upon first approximating the
region (1) by rectangles. For x, = a + k(b - a)/n, the rectangle of altitude
If (xk)l units and base Ox = (b - a)/n units revolves into a solid disk which
is a right circular cylinder having base radius If (xk)I units, altitude Ax units,
and volume

lIf(xk)12 Ax = 7,[.f(xk)]2 Ax units3.
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The sum from k = 1 to n of such volumes and then the limit as n -+ co leads
to the definition (2).

Figure 67.2

Example 1. The region {(x,y)1 1 5 x 5 3, 0 < y < x3/2} revolved about the
x-axis generates a solid of volume

3
V

= J
3'r(X3/2)2 dx = n f 1x3 dx = 201T.

Example 2. Revolve the region of Example 1 about
the y-axis and find the volume of the resulting solid.

First Solution. Notice that the region does not abut
on the y-axis and that the curved portion of the
boundary has end points (1,1) and (3,33/2). Upon re-
volving about the y-axis it is natural to switch the
dummy variable to y, and to express a point on the
curve, not as (x,x3/2) but, as (y2/3,y). Now the given

(1,0) (x,o) (3,0) region is best expressed as the union of two regions:

{(x,y) I 0 5 y 5 1, 1'< x <- 3}
Fi 6gure 7.3

and {(x,y) 11 < y < 33/2, y2/3 < x <- 3}

and the volume will be defined as the sum of two integrals. Each horizontal approxi-
mating rectangle revolves into a washer-shaped solid. Such a solid of inner radius
rl, outer radius r2, and thickness Ay has volume (Trr2 - 7rr2) Ay. Hence, the volume
turns out as

V -J o{'T -
32 - r 12} dy + f 1 {,r 32 - 7r(y2/3)2} dy

- 7r 08 dy +'rfi \/ (9 - y4/3) dy = 4,-(27 V3 - 1).

Second Solution. To illustrate another approach we return to the dummy
variable x. For 1 <- x <- 3 the vertical segment from the point (x,0) up to the curve
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has length x3/2 units. This segment resolved about the y-axis generates a cylindrical
surface of radius x units, altitude X312 units, and thus area 27rx(x312) units2. If instead
of a segment we revolve a thin rectangle of width Ax units, we obtain a cylindrical
shell whose volume is approximately

27rx(x3'2) Ax = 2irx5/2 Ax units3.

By the usual reasoning we define

V
=f3

121rxs/2 dx = 2vr[7x'/2] 3

_ ;[27 V'3 - 1]-units3.
J

The scheme used in the second solution is referred to
as "The Method of Cylindrical Shells."

Example 3. Given the region {(x,y) I 1 < x < 3, ,0
1 < y < x3/2} find the volume of the solid obtained --- (x,

by revolving this region about :
Figure 67.4a. The x-axis. b. The line y = 1.

Solution. By visualizing "washers" in the first case
and "disks" in the second case, we obtain :

Va _ ,,f [(x32)2 - 12] dx

(X.x
812) -3

"J (x3 - 1) dx = 187r units3.

Vb =
f 1[X3/2

- 1]2
dx

(1,1)

Figure 67.5

= , 1(x3 - 2x3/2 + 1) dx

= 5 (114 - 36 V3) units3.

Consider a circular disk of homogeneous material perpendicular to the
x-axis with a point (x,0) the center of one face
and let P. be the plane perpendicular to the x-axis
at a point (c,0). If the disk has radius r, thickness
Ax, and density p, then (by analogy with the plane
"sheet" case) the first and second moments of the
disk with respect to PO are approximately

(3) (x - c) p7rr2 Ax and (x - c)2prrr2 Ox.

For solids of revolution the first moment, the
centroid, and the second moment are defined in
terms of integrals with integrands patterned upon
the expressions (3). If the material is homogeneous, Figure 67.6

(3,0)

then by symmetry the centroid is on the axis of revolution.
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Example 4. Find the centroid of a homogeneous hemispherical solid. Also,
find the moment of inertia with respect to the plane of the base.

Solution. Consider the hemisphere as having been generated by revolving the
region {(x,y) 10 <- x S r, 0 < y < x2} about the x-axis. Then 2 is the
abscissa of the centroid if the first moment about P. is zero:

for
- x)p+r(v'r2 - x2)2 dx = 0.

Since p, 7r, and z are constants while x is the dummy variable

z = J
oX(r2

- x2) dx = [4r2X2 - 1x4]

o

r

- In
f 0'r

- X2) dx [r2x x3] 0

The centroid is on the axis of rotation three-eighths of the radius from the base.
The desired moment of inertia is

I(

J
0(x - 0)$pa(V r2 - x2)2 dx = o(r2x2 - x4) dx = spars.

PROBLEMS

1. Revolve the region {(x,y) 0 < x < 4, 0 < y < x2} about the lines indicated.
In each case find the volume and centroid of the resulting solid.

a. x-axis c. Line x = 4. e. Line y = -4.
b. y-axis d. Line y = 16. f. Line x = -4.

2. Find the volume and centroid of each of the solids described.

a. A sphere of radius r.
b. A right circular cone with base radius r and altitude h.

c. A frustum of a cone with base radii r and R and altitude h.
d. The solid obtained by revolving the region bounded by an ellipse about the

major axis.

e. A slice of a sphere of radius r with center at the origin made by planes
perpendicular to the x-axis at (a,0) and (a + h,0) where -r < a < a + h S r.

f. A right pyramid of altitude h and square base of side b.

g. Obtained by revolving the region {(x,y) 10 <- x <- X42, 0 < y <- sin x} about
the x-axis. (Hint: sin2 x m j;(1 - cos 2x).)

3. Find the moment of inertia with respect to the plane of the base and for c, d,
and e, with respect to the parallel plane through the vertex.

a. A cylindrical column of altitude H and base radius r.
b. A column of altitude H and square cross section of side a.
c. A right circular cone of altitude H and base radius r.
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d. A right pyramid of altitude H and square base of side a.
e. A right pyramid of altitude H whose base is a triangle having base b and

altitude h.

4. A wedge is 8 in. long and each cross section is an isosceles triangle of altitude
6 in. and base 1 in. Find the centroid and find the moment of inertia both with
respect to the base and to the parallel plane through the edge.

68. Improper Integrals

With b > 1, let Al(b) and A2(b) be given by

Al(b) = f 1 z dx =fln b and A2(b) =f'-1z dx = 1 - .

Hence, Al(b) units2 and A2(b) units2 are the areas of the regions

{(x,y) 11< x< b, 0< y< 1/x} and {(x,y) 11< x< b, 0 5 y 5 1/x2},

respectively. Given any large positive number B, then b may be chosen
sufficiently large so that Al(b) > B; but A2(b) < 1 no matter now large b is
taken, although lim A2(b) = 1. In the following terminology we shall say

b--.oo

fl- 1 dx does not exist, but f i 12 dx exists and = 1.
x x

Recall that in the .definition of the definite integral

.1 ab f (x) dx,

a and b are numbers and f is a continuous function on the interval with end
points a and b. Hence, f is boundedt on the interval. (See Appendix A4.)

The use of the definite integral symbolism is extended by defining
improper integrals

(1) fa f (x) dx = lim f b f (x) dx
a b-00 a

if the limit exists,

(2) f b f (x) dx = lira f 'f(x) dx_a, y-00 a if the limit exists, and

(3) f(x)(x) x = lim 501(x) dx + lim
fb

f (x) dx if both limits exist.f -.
0o a-. - eo a b-+OD 0

Another type of improper integral is defined if the integrand is unbounded.

t In the definition of a definite integral in Appendix A4, continuity off is relinquished
but boundedness off is required.
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If, for example, a < c < b and lim If (x)I = eo, but f (x) is defined for
z-#c

a < x < c and for c h, then:
r to and j-be-positive numbers and compute both

fc
6

f (x) dx and f +n f (x) dx.

B. See if both lim f
°-E

f (x) dx and lim f' f (x) dx exist.
e-+0 n-'0 c+r7

C. If both these limits exist, then by definition

(4) f o f (x) dx = lim f
c-E

f (x) dx + lim f (X) dx.
a Ey0 -a n-0

Example 1. Show that f
i

z2 dx does not exist.

i 1 1j 1 1

Solution. One might set f -1x2 dx equal to
-

x = - 1 + _ 11 = -2, but

this should not be done since lim (1/x2) = co, i.e., the function f defined byf(x)
Z-0

1/x2, x 0 0 is unbounded on the interval I[-1,1].
The proper procedure is to first compute

f
o-E1

dx = -
1]-E 1 1 1

-1 for a > 0-lx2x -1- -E+-1 a1
and then to see that lim - - 1 does not exist. Hence, it is not even necessary

E-;0 e

to compute f X dx to know that f-1- dx does not exist.

3 2x
Example 2. Show that the improper integral f3 (x2 - 1)z/ dx exists.

Solution. The integrand is defined on I[0,1) andt on 1(1,3] but

2x
zlm (x2

- 1)2/3 = o0

so we must use (4). First

lim f o-E(x2 1)23 dx = lira [3(x2 - 1)1/3] 0

E*0+
E_0+

= lim 3[(-2e + e2)1/3 3, and
E-'0+

]im
77-0 f

"3
2x

J 1+,7 (x2 - 1)2,3
dx = etc. = 6.

t Recall the definition of the half open-half closed intervals I[a,b) = {x I a < x < b)
and I(a,b] = {x I a < x < b}.
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Since both limits exist, the improper integral exists and

(3 2x
J o (x2 _ 1)2/3

dx = 3 6 = 9.

Also, if f is continuous on I(a,b] but lim If (x)I = co, then by definition
x-'a+

J¢

f (x) dx exists and equals

if and only if this limit exists. A similar definition is given if f is continuous
on I[a,b) and lim If (x)I = oo.-

Several kinds of "improperness" may be combined at once. For example,
if f is defined and continuous at all x except possibly at c where lim If (x)I = co,
then we write Z-C

a-- Ja " . ,
) b-'m

k

4"0+ : c+n

and say that' f '*. f (x) dx exists if and only if all limits involved exist.

PROBLEMS

1. Examine each of the following improper integrals to see if it exists, and if it
exists, find its value.

dx r1 dx e dx
a. fl x3/2. d. J-1x4/3' g' f35 -x-

-z dx
.I 1 x2/3

1 dx 1 dx 1 dx
c. f-1x2/3. f..oyx. i. fo

V 11- X2

2. For a > 0, show that
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-1 dx e dx
e. f

x4/3/3
. h. f3 v'

b

lim
a+e

f(x) dx
e+0+

a dx exists if p < 1
a.

J o (a - x)P {does not exist if p 1.

dx
b f

if p > 1exists
.

o (a + x)p does not exist if p 1.

3. Show that

a. does not exist, but
10

dx

j -W x2 + 1
dxI(

J-co x2+2x+1
dx

b. f-
4

dxx2
does not exist, but f

_.
4 + x2 2'
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X
C.

1

COCO

x2 + 1
dx does not exist, but lim

I.

t x2 + 1 dx = 0.
e-.

d. f sin x dx does not exist, but lim sin x dx = 0.
e-CO e

( - dx l
e. f t

_1z
dx

does not exist, but lim jl f
E

-1 x + f '!Lx
x
dx

J = 0.
E-0+

f. f 1 and f 13 do not exist, but

fl-(2x
3 +

2x) dx = 21n 2 .

4. Show there is no value of t for which f, l
4. dx = 4.

5. Show that the area of the region {(x,y) 11 < x and 0 < y < l lx} is infinite,
but upon revolving this region about the x-axis a solid of finite volume is
obtained.

6. Let f be a function such that f '.f (x) dx exists and such that f'(x) exists for
- oo < x < oo. Prove the existence of the integral and the equality

(Hint: lim f(x) = 0
2 ±00

I
.f(x)f'(x)dx -- 0.

and
2

2(x) ?)



CHAPTER 7

Indefinite Integration

If f is a continuous function on an interval with end points a and b, then

(1) fbf(x)dx =lim I f(a +kb -alb -a
a n-cok=1 \ n n

and also (by the Fundamental Theorem of Calculus)

(2) fb
.f(x) dx = F(x)]

b
where F'(x) = f (x).

The relation (1) furnishes a means for making an analysis to discover the appropriate
integral in defining extensions of some common notions, such as area, work,
centroid, etc., but once the form of the integral is obtained the value of the integral
is seldom determined by actual evaluation of the limit of sums in (1); instead the
property (2) is used. Thus, after the analysis by means 1) is made, the finding
of a function F whose derived function F' is known is tan"talnount to solving many
physical problems. It is this process of finding a function whose derived function is
given which is systematized and formalized in this chapter under the name of
"indefinite integration:"

DEFINITION. If two functions F and f are related by the equation

F'(x) = f(x),

then F is said to be an indefinite integral off and the notation

f f (x) dx = F(x) + c

is used in which f (x) dx is called the integrand and c is any constant.

Hence, the three statements all pose the same problem:
First: Find F(x) if F'(x) = 3 sin2 x cos x.
Second: Find F(x) if dF(x) = 3 sine x cos x dx.
Third: Find f 3 sin2 x cos x dx.

Since Dx sin3 x = 3 sin2 x cos x, a solution of the problem is: "Any function
F defined by F(x) = sin3 x + c" and now we write

3sin2xcosxdx=sin3x+c.
211
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It is more realistic to think of the solution of the problem as a whole class of
functions where the function F defined by F(x) = sin3 x, is in the class and
any two members of the class differ at most by an additive constant. (See
Theorem 39 for a proof of this "class" property.)

69. Four Basic Formulas

The derivative of a constant .k times a function is k times the derivative
of the function, and thus for the inverse process of indefinite integration

1. fku(x) dx = kf u(x) dx.

The sum or difference of the derivatives of two functions is the sum or
difference of the derivatives of the functions and hence

2. f [u(x) j v(x)] dx = f u(x) dx ± f v(x) dx.

The following formula is necessarily given in two parts:

up +1
+c if PO-1

which are inverses of the two differential formulas

uv+1 1

d( = uD du if p + 1 0, but d In Jul =
u

du'= u-1 du.
P

+1

Example 1. f (5x3 + 3x -
2)

dx = f 5x3 dx + f 3x dx - f
2

dx (by 2)
x

=5 fx3dx+3 fxdx-2 f dx
(by1)

/x4 x2
= 51 4 + c1) + 3 (2 + c2) - 2(ln jxj + c3). (by 3)

Since c1, c2, and c3 are arbitrary constants it follows that 5c3 + 3c2 - 2c3 is an
arbitrary constant, and thus we write

f 5x3 + 3x - X) dx = 4x4 + 3x2 - 2 In jxj + c.

Given any differentiable function F with independent variable denoted
by x, then

(1) fF'(x) dx = F(x) + c.
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As examples, f Dx sin x dx = sin x + c, f In Ixi dx = In Ix! + c, and if
f and u are differentiable functions for which Dx f [u(x)] exists, then

f D.f (u(x)) dx = f (u(x)) + c.

By the chain rule for the derivative of a composition function DXf (u(x)) _
f'(u(x))u'(x) and hence

f f'(u(x))u'(x) dx = f(u(x)) + c.

But by the definition of differentials du(x) = u'(x) dx, and hence

f f'(u(x)) du(x) = f(u(x)) + c.

Now by suppressing any evidence of the independent variable x,

4. f f'(u) du = f(u) + c,
which has the same form as (1) even though u is now a function instead of
the independent variable. This formula is useful in a purely operational way
to change an integrand into a form more easily recognizable as a derivative.

Example 2. Find f sine x cos x dx.

Solution. Substitute u = sin x so du = cos x dx, and

f sine x cos x dx = fu' du = ; u7 + c = 7 sin? x + c.

In the previous example, the substitution u = sin x transformed the
integral into a form to which Formula 3 was applicable. Much time and
trouble, may be saved, however, by avoiding the actual introduction of
u = sin x and merely writing

f sin6 x cos x dx = fsin6 x d sin x ; sin? x + c.

Example 3. f sec3 x tan x dx = f sect x(sec x tan x) dx

= f sec2xdsecx seOx + c.

Example 4. Find f V5x3 + 3x(5x2 + 1) dx.

Solution. Notice that d(5x3 + 3x) = (15x2 + 3) dx = 3(5x2 + 1) dx, which.
differs from (5x2 + 1) dx only by the multiplicative constant 3, and thus

f '5x3 + 3x(5x2 + 1) dx = f (5x3 + 3x)1"2 jd(5x3 + 3x)

= 1 f (5x3 + 3x)1"2 d(5x3 + 3x)
3

1 (5x3 + 3x)3"2 2

=
+ c = (5x3 + 3x)3"2 + c.

3 3/2
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The fact that the differential of a constant is zero may be used in forcing
an integrand into the exact pattern of Formula 4.

Example 5. J x sin I x2 + 3 I dx = f sin (x2 + 3 I (x dx)

= f sin (X2 + 3) ( dx2) = 2 fsin (x2 + 3) dx2

d(X2+3=2 fsin(x2+3)

1

2

cos (x2
+ 3

(since d (x2

+ C.

PROBLEMS

1. Find each of the following indefinite integrals:

a. f(x3 - x + 5) dx.

( l - 1 1)
dxbf +.

x3
X 5 .

c. f (x3 2 - 3 Vx) dx.

d. fcos3xsinxdx.

e. fxV/x2+ldx.

x+f. f dx.
X

g. f
x

x+ldx.

X
h. dx.

dx2+1

i.

r.p.
fx4+3x3+x2-5

dx.x4

+ 3) =
dx2 + d 3 = dx2/

k. f '/a + bx dx.

1. f x a + bx2 dx.

M.

f
x x

2dx.

J 3x2 + 51n
(3x2

X

q. fcos (-,rx + 2) dx. S.
x3

f dx.a2 + x4

2. The independent variable need not be denoted by x. Find:

a+b\ t
a. Vf Vt dt. e. f zV2z dz.

b. f sin4 t cos t dt. f.

c. f sin 2t cos t dt. g

flnJul
du.

It

+5)dx.

I
eat - e -at

eat + eat
A

d. f cos 2t sin t dt. h. f sin (2s + 4) sin s ds.
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70. Trigonometric Integrals

Some of the following formulas are already known, but are included for
ready reference.

5. J sin u du = -Cos u + c. (since d(-cos u) = sin u du)

6. fCosit du =sin it +c.

7. ftanudu

8. Icotit du

9. fsec u du

-fsin
It du

--fdcosu=-inIcosul+c.
cosu cos u

=('d(tanu+secu)=In
J tan u + sec it

=In Isin ul +c.

=f sec u
(sec u + tan u) du =f sec2 u + sec u tan it

sec u tan u J sec u +- tan u

sec u + tan uI + c.

u

10. fcscudu= InIcscu - cotuI+c.

Inverse to d sec u = sec u tan u du and d csc u = -csc u cot u du are

11. fsec u tan u du = sec u + c.

12. Jcscucot udu =-cscit +c.
From the trigonometric identities cos 2u = 2 cost u - 1 = 1 - 2 sin2 u

and sin 2u = 2 sin u cos u we have

13. fsineudu= j(1-cos2u)du=i{f du _fcos 2u du)
=?(u-jsin2u)+c
_ 1(u - sin it cos u) + c.

14. f cost u du = J(u + j sin 2u) + c = J(u + sin u cos u) + c.

Since d tan u = sec2 u du and d cot u = -csc2 u we first obtain 17 and 18, and
then 15 and 16 from the identities tan2 u = sec2 u - 1 and cot2 u = csc2 u - 1.

15. ftan2udu =f(sec2u-1)du =tan u-u+c:

16. fcot2udu=-cot u-u+c.

17. fsee 2it du =tan it +c.

18. f csc2 u du = -cot u + C.



216 Indefinite Integration Chap. 7

PROBLEMS

1. Find each of the indefinite integrals:

a. fx sin 3x2 dx.

b. f x2 tan (5x3 + 1) dx.

c. f ex sec ex dx.

d. f e3x csc e3x dx.

2. Notice that

sec '/x tan v'x
dx.

%/x

f (sec x - tan x)2 dx.

1 -Cos x
j dx.

sine x

e.

f.

g.

1 + tan x
h. f dx.

cot x

1 1 1- cosx _ 1- cos x
= csc2 x - csc x cot X.

1 + cosx 1 + -cos 1 - -cos --sin-2x

Use this, and similar identities, to obtain

1 cosx
dx.a. f 1 + cos x c' f 1 - cos x

dx. e. f 1 + csc x
dx.

1 1 tan x

b' f 1 - Cos x
dx. d. f 1 + sin x

dx. f.
f 1 + tan x

dx.

3. Use sin (A + B) + sin (A - B) = 2 sin A cos B and similar identities for:

a. f sin 2x cos x dx. c. f cos 3x cos 5x dx.

b. f cos 3x sin 2x dx. d. f sin 3x sin 3x dx.

Also, with m and n positive integers, show that :

(0 if m r n
e. f

o
sin mx sin nx dx =

2n

it
ir if m = n.

(0 if m r n
f. I cos mx cos nx dx =

7r if m = n.

4. Notice that f cos' x dx = f cos4 x cos x dx = f (1 - sine x)2 cos x dx =
f(1 - 2 sine x + sin4 x) d sin x = sirix - * sin3 x + s sin' x + c, and
f sec6 x dx = f sec4 x sect x dx = f (1 + tang x)2 d tan x = etc.
Each of the following integrals may be found by similar methods.

COS3 X
a. sin3 2x dx. c. sing x COS5 x dx. e. - dx.f Jf Vsin x

b. f see x dx. d. f tan' x sec3 x dx. f. f cot3 1x dx.
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5. a. Check each of the following steps:

Pan" x dx = f tann-2 x tan2 x dx = f tan"-2 x(sec2 x - 1) dx.

=f tann-2 x sec2 x dx - J tan,-2 x dx

= f tan'-1 x d tan x - f taro-2 x dx

tann-1 X_ - f tann-2 x dx, n ; 1.n-1
This is an example of a "Reduction Formula." Use the result to find

ftan2 x dx, f tan3 x dx, and f tan' x dx.

b. Obtain a similar reduction formula for J cot' x dx.

6. Derive formulas analogous to Formulas 5-18 for hyperbolic functions.
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71.. Algebraic Transcendental Integrals

The formulas of this section contain a ebraic int Brands, but trans-
cendental relts.

From the differential relation (see Sec. 46)

d sin-1
u -

/
1 d(Y) Va2 du du

a 1 - (u/a)2 a a2 - u2 a , /a2 - u2

and a similar relation for d cos-1(u/a) we have v

a>0

19
du = sin-1

u + c = -cos-1 u + c a >f 0.

Al

l,
V/

at-u2-u2 a a

1 d u= a-1 u d thusdd

.

so

20

= 2 2 2 u, antan
(a 1 1 (u/a) a a -r u

-lu+ C = - 1cot-1-+ cdu = 1ta. l.n
J a2-f-U2 a a a a

By finding d sec-1(u/a), a > 0, it will be seen that

21. f
du 1 see -lu4-c=-icsc-lu+cl.

UN/ us - a2 a a a a

The following integral should be checked by taking a derivative

22. f du =lnIu+Vu2±a21+C.
-,/ u2 ± a2

4 2x2
Example 1. Find .1- - 4x3

X2

+
2- 5x - 1

dx.
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Solution. By the algebraic process of dividing the numerator by the
denominator :

x4-4x3+2x2-5x-1 = x
3x-1

2 - 4x +x2+2 x2+2'
where the remainder has numerator 3x - 1 of lower degree than denominator
x2 + 2. Thus, the desired integral is equal to

fx2 dx - 4 fx dx + f
x2 + 2

dX = 3x3 - 2X2 + 3f
x2 + 2 dx fx2 + 2

dx

I 2 3 d(x2 + 2) dx
= 3 X1 - 2x + 2 f x2 -2 - fx2 + (v'2)2

= 1x3 -2x2+3In(x2 +2) - v2tan-1
3 2

tit+c.

Among all the indefinite procedures of indefinite integration, the following
hard and fast rule (illustrated by the above example) must une uivocally be
followed whenever the situation arises. ,'','; <'e,

RULE. If an integrand is the ratio of two polynomials with numerator of
equal or higher degree than the denominator, then divide the numerator by the
denominator until a remainder of lower degree than the denominator is obtained.

Notice the similarity of the integrands in 20 and 23:

23. f u2du
a2

_
2a
1 In u - a +

c,
+ra

which follows from the identity
u2 1 a2 2aLu 1 a u

aJ and 3.

dx dx dx
Example 2. Find fx2

+ 4x + 1 ' . x2 + 4x + 4' and x2 + 4x + 6
Solution. "Completing the square" should be tried on quadratic expressions:

f
dx dx dx d(x + 2)

x2+4x+1 f (x2 r4x+4)+1 -4-f (x+2)2-3-f(x+ 2)2-(,/3)2
1

In
Ix+2-V3

= 2-3 2
+ c by 23.x+2 + 3

dx dx (x + 2)-1
fx2 4x + 4 - (x + 2)2 =f (x + 2)-2 d (x + 2) _ -1 + c

x+2+c. (by3)

f dx _ dx -f dx =f d(x + 2)
x2 + 4x + 6 - I (x2 + 4x + 4) + 2 (x + 2)2 + 2 (x + 2)2 + (V 2)2

1 x+2tan 1 + c
2

(by 20).2
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x dx
Example 3. Find f 2x2 + 3x - 4

Solution. The differential of the denominator is (4x + 3) dx which differs from
the numerator only by a multiplicative and an additive constant. Hence

x dx 1
I

4x dx 1 I (4x + 3 - 3) dx
f2x2+3x-4 4f2x2+3x-4 4J 2x2+3x-4

1 (4x + 3) dx 3 dx
4f 2x2+3x-4 4f 2x2+3x-4

rd(2x2+3x-4) 3 1 r dx
4. 2x2+3x-4 4 x2+2x-2

=1lnj2x2+3x-41 -3 dx
f X2+4x+(4)2-2-16

= 1 In I2x2 + 3x - 41
3 dx

4 8 f (x +A) 2 - (V41/4)2

=11nj2x2+3x-41-3 dx+
4 8 f (x + 4)2 - 41/4)2

= In 12x2 + 3x - 41 - 3 1 In
4 82 "41/4

1 3_-1n12x2+3x-41- In
4 4V41

PROBLEMS

x+4-V41/4
x+4+41/4

4x+3-V41
4x+3+V41

+ C.

1. Each of the formulas 19-23 is used for some integral in this group.

a.

b.

dx

f A4-x2
dx

f Vx2 ++6x

dx
c.

(x+3)/x2+6x
dx

d f V4x2+4x+2
2. Further practice may be obtained by finding:

(4x + 3)
a. f x2 + 4x - 3 dx.

dx
b. f Vx2 + 4x - 3

f
x2+1

e.
2

+c

(by 23)

dx.
4x + 4x + 2

(x+1)2
dx.

(x + 2)2 - 9

x2 dxe. Ix2+4x-12

f. f x4+x3+x2+3x+1
dx.

x2 + 2x
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f dx
C. V3-4x-x2

f dx
d. 4x2+4x+1

x dx
g f -3x2+2x-1

( 2x2 + 3x - 4
h' J 2x2 + 3x - 5

dx.

3. With a 00,X =axe + bx + c, and q = b2

I vVIn
q

2ax + b - Vq
2ax+b+Vq

- 4ac derive the formulas:

+k if q>0

dx 2 2ax + b
tan1 - + ka. X _ /,/-q -q
2

2ax + b
+ k

-I- In I X + 2ax + b

b. f
dx

=II

J X

Va 2Va

I -2ax - b_sin 1 +k
V -a Vi

if a <0.

72. Exponential Integrals

Since deu = e'u du (see Sec. 53) we have

24. feudu=eu+c.
Because of the special character of the constant e, this formula may seem to
have limited use, but 24 together with

(1)
bt = etln b,

0 < b

permits the indefinite integration of apparently more general exponential
functions.

Example. J '2-i-- cos x dx = f e(sinz) In 2 d sin x (by (I))

=( f e(sin z) In 2 d(sin x In 2) = 1122 esin z In 2 + c (by 24)

I

In 2
2sin z + c.

A formula often listed for 0 < b but b 1 is:

fbudu=feulnbdu_ 1 feu1,bd(uinb)= 1 eulnb+c
J In b In b

1 bu + c.
In b
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73. Trigonometric Substitutions

Of the three trigonometric identities

(1) sin2A=2sinAcosA

(2) cos 2A = 2 cos2 A - 1

(3) = 1 - 2 sine A,

(2) and (3) relate the square of one function with the first power of another
and were used to "reduce the power" in deriving 13 and 14. The next example
illustrates how these formulas may be used to "rationalize" an integrand.

Example 1. Find J cos xi/ 1 + cos x dx, -7T < x <- ?r.

Solution. 1 + cos x = 1 + cos 2 (21 = 1 + (2 cost 2 - 1) = 2 cost 2 and

VT + cos x = cos 2 = v' cos 2- -
(and not -V2 cos (x/2) since whatever the quadrant of x, then x/2 is in the first
or fourth quadrant where the cosine function is positive). Consequently, the given
integral is equal to

1

f cos x cos 2) dx = f (1 - 2 sine a I cos 2 dx (from (3))

_ (fcosZdx-2fsin22cos2dx}

_ V2 cos 2 d (2) - 2 -,2f sined sin z}.

_ 2{2sin2 - 3sin32) +c.

Given a number a > 0 and a number u, then from trigonometry there is
an angle of t radians such that

(i) -7r/2 < t <7T/2 and u = a sin t if J u l <a,

t t(ii) -7r/2 < t < 7r/2 and ,u = a an

(iii) -7r < t < -7r/2 or 0 < t <,7r/2 and it = a sec t if u > a.

These facts together with the trigonometric identities

(iv) sin 2 t + cost t = 1, 1 + tan 2 t - sect t, and sect t - 1 = tan 2 t
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are exploited to find indefinite integrals whose integrands contain expressions
which can be put into one of the forms

Va2-u2, Ya2+ u2,
Example 2. Derive the formula

or -/u2 _ a2

2
(u -Va - u2 + a2sin-1 al + c25. r Vat - u2 du =

Solution. It is, of course, understood that a2 - u2 >- 0 so that I ul < a which
appears in (i). With t limited as in (i) we set

(4) -\/a2 - u2 = a2 - (a sin t)2 = 'v'a2(1 - sin2 t) = cos2 t

= Ia cos tI = a cos t
since a > 0 and -i./2 < t -< r/2. Also, from u = a sin t we have du = a cos t dt

and
1

/a2 - u2 du = fa cos t(a cost dt) = a2f cos2 t dt

a2
=

2
(t + sin t cos t) + c (from 14).

But the range for t in (i) is exactly the range for the inverse sine function so that
t = sin 1 (u/a). Also, from (4), cos t = Vat - u2la so that

f _,/a2 u2 du = 2
2 (Sin7l

- + a
/a2a-u2+

c
a

=
2

(u'Va2 - u2 + a2 siri l
a! + c.

By using (ii) and (iii) we obtain, respectively

/26. f.//u2±a2du=2(uV/u'2±a2±a2In I u + Vu2+a2I)+C.

Example 3. Find
dxf

(x+l)2Vx2+2x+2
Solution. Since x2 + 2x + 2 = (x + 1)2 + 1, set u = x + 1, du = dx, and

obtain
du

f u2-Vu2 -+I

Now set u = tan t with -I./2 < t < n./2 (see (ii)) so that du = sect t dt, V u2 -+I =
' /tang t + 1 = V'sec2 t = Isec tj = sec t and the integral is

sect t dt sec t cos t
f 2 = f 2 dt =f 2 dt = f (sin t)-2 d sin ttan t sect tan t sin 2

-1
+

cos t sec t sec t + tan2 t
c

sin t sin t + c tan t+ c tan t +c

V1 + u2 ''1 + (x + 1)2 i/x2 + 2x + 2+c=- +c= -
u x+1 x+1 +c.
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PROBLEMS
1. Find:

e.V X 1 + e2x
a. f e3 dx. d. f 7 dx. g. f

ex
dx.

1

b. f -. dx. e. f (2e)x dx. h. f 'VT---7' sinh2 x dx.

ex
c. f 10- dr. f. f

T T e2x
dx. i. fe3xe2- dx.

2. Whenever it occurs in the following integrals, a is a positive constant.

dx a2 - x2
a. f (25 + x2)3/2

c. f
x2

dx. e. f x3 1 + x2 dx.
C25

x2 dx dx dx
b. f

(25 - x2)3/2
d. f (a2 - x2)3/2

f. f
x Vx2 - 9

3. For the smaller region into which the line having equation x = 2 divides the
ellipse having equation 9x2 + 16y2 = 144, find:

a. The area. b. The centroid.

c. The second moment with respect to the y-axis.

74. Integral of a Product

The formula for integration by parts

f b u(x)v'(x) dx = u(x)v(x)]' - f b v(x)u'(x) dx

was derived in Sec. 64. Upon setting v'(x) dx = dv(x) and u'(x) dx = du(x)
and then stripping the formula of the dummy variable x and limits of
integration we obtain

27. fudv=uv -fvdu.

Example 1. f x sin x dx = x (-cos x) - f (-cos x) dx

u
_

dv u v v du

= -x cos x +sinx +c.

In 27, upon setting u = f (x) and dv = g(x) dx so that

du = f'(x) dx and v = f g(x) dx we have

28. f f(x)g(x) dx = f (x) f g(x) dx - f (f g(x) dx) f'(x) dx.
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Example 2. f x sin x dx = x f sin x dx - N sinsin x dx) dx

Chap. 7

= x(-cos x) - f (-cos x) dx = -x cos x + sin x + c.

The derivative of a sum is the sum of the derivatives, but the derivative
of a product is not the product of the derivatives. Also, the integral of a sum
is the sum of the integrals, but the integral of a product is not the product of
the integrals as 28 vividly displays.

Sometimes more than one application of 28 is necessary. .

Example 3. f x2e2x dx = x2 f e2¢ dx - J (f e2x dx) D ,x2 dx

= x2(je2z) - f je2-2x dx = Jx2eu - f xe2x dx (use 28 again)
_ti

= Jx2e - - ix f e2- dx - f (f elm dx)Dx dx,

= jx2e2z - (xie2x - f 2e2. dx}

= 1x2e2x - jxe22 + jell, + c.

It may be that the integrand does not appear to be a product of two
functions, but 28 may be used by considering the integrand multiplied by
g(x) = 1.

Example 4. Derive the formula

29. f sin 1 x dx = x sin-' x + V 1 - x2 + c.

Solution. f (sin 1 x) 1 dx = sin 1 x f 1 dx - f (f dx)D.,(sin 1 x) dx

1 -2x=(sin1x)x-fxVl -x2dx=xsinlx+2 f
V1

-x2dx

1 1 (1 - x2)1/2
= x sins x + 2 f (1 - x2)-1/2 d(1 - x2) = x sins x +

1 /2
+ c.

After a little practice the "little integrals" of 28 may be done in the head;
for example

f x sect x dx = x tan x - f tan x dx (since f sect x dx = tan x and Dx = 1)

=xtanx±In1cosxI+c.

It is sometimes possible to use 28 twice and have the original integral
reappear as illustrated in the next example.
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Example 5. Again we do not write down the little integrals to obtain:

f e2x sin x dx = e2x( -cos x) - f (-COs x)2e2x dx

= -e2x cos x + 2f e2x cos x dx (now use 28 again)

= -e2x cos x + 2(e2x sin x -J(sin Y)2e2x dXj

= e2x( -cos x + 2 sin x) - 41 e2x sin x dx.

The original integral reappeared on the right; transpose it, solve for it, and then
add an arbitrary constant to obtain

f e2x sin x dx = *e2x( -cos x + 2 sin x) + c.

In working

out

the little integrals, an arbitrary constant may be added and
later specialized to zero or any other value chosen to simplify the big integral.

Example 6.

31 dx = In ix+31$xdx-J(fxdx)Dx1nIx
2 2 l=lnlx+31+c] -f [x +

[-Y c]x+3dx

which is true regardless of the value of c. Upon choosing c = -a we have

(-)inIxfxInIx +3Jdx= + 31 -2 f(x2-9)x+3dx

=2(x2-9)lnIx+3I -2 f(x-3)dx

=2(x2 -9)InIx + 31 -2 (2 -3x) +c.

PROBLEMS

1. Use 28 (with g(x) - 1) to obtain a formula for each of the inverse trigonometric
functions.

2. Find each of the integrals:

f x cos x dx. e. f x sinh x dx. i. f x{In lxi + sin x} dx.

b. f x2 cos x dx. f. f :x In lxi dx. j. Jx tan 1 x2 dx.

c. f X cos x2 dx. g. f e2- x3 dx. k. f ln2 lxi dx.

d. fx /x - 1 dx. h. f 'fix + 1x2 dx. 1. f /7-+-l x dx.
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3. By first using 28 and then changing the resulting integral on the right (possibly
using 28 again) make the given integral reappear on the right and thus evaluate
the given integral.

a. f e3x cos 2x dx. C. f sin x sin 3x dx.

b. f sin x sin x dx. d. f sec3 x dx.

4. Let A = f eax cos px dx and B eax sin px dx. Use 28 to obtain

A = I (eax sinpx - aB) and B = P (-e'12 cos px + aA).

Now solve these equations for A and B, thus evaluating the given integrals.

5. Use 28 to obtain each of the reduction formulas:

sine-1 x cos x n - 1
a. f sine x dx = - + f sine-2 x six.

n n

xnbax n
b. f xnbax dx

= a in b a In b
f xn-lbax dx.

c. f (In IaxI)n dx = x(ln nf (In laxI)n-1 dx.

75. Integral Tables

In the preceding sections on indefinite integration, twenty-nine formulas
were listed and several methods were illustrated. There are a great many
more formulas and methods which could be learned, but the usual procedure
is to rely quite heavily upon tables of integrals. A short table is included at
the end of this book.

Before starting to use a table of integrals, the arrangement should be
carefully studied. Most tables begin with a few fundamental forms and then
group formulas according to different types of integrands.

If one wished to use a table at the end of the book to find

fsin5 x cos5 x dx,

he could settle on Formula 1082, which is

f
r S -sinr-1 U COS.,,, L, r - 1 [sin 2sin u cos u du = r+ S + r + S Y r- u cos' u du,

and "reduces the power of the sine." First with r = s = 5 (and u = x),

f sins x cos5 x=- sin 4 x cos 6 x
[sin 3 x cos" x dx,

10 10
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next from the same formula with r = 3 and s = 5

f sin3 x coss x = - sin 2 x cost x 2

8
+ f sin x cos' x A.

The solver might then look up Formula 105, which is

v+1
fcosD u sin u du = - cos u

p 1

(although he should know this formula) and obtain

I sin x cos' x dx = - e cos' x.

The additive constant is usually omitted in tables. By putting all this back
together it then follows that

(sins x coss x dx = - sin4 X coss X sin 2 x cosh X - coss X +
C.

10 20 60

Without the use of tables we would have

f sins x COs-1 x dx = f sins x(1 - sine x)2 cos x dx

= f (sins x - 2 sin' x + sing x) d sin x

_ sins x - i sin8 x + 11o sin10 x + c

and, although the answers look quite different, they can differ at most by an
additive constant.

Tables of indefinite integrals are, however, not foolproof and cannot be
used without considerable thought. For example, few will include formulas
for finding

(1)
1 + xl/2 x2/3

f x2/3
dx or f 1 + x1/2 dx

directly. Of course the first integral is obtained as

f 1+x
1/2

dx=fx-2/3dx+x-1/6dx=3x1/3+6x5/6+ c
x2/a f 5

and the second may be transformed by using the following:

(2) If an integral involves xp/4 and XT/s, then substitute
x = z c the common denominator of p/q and r/s.
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Example 1. For the second integral in (1), c = 6 so we set x = z6 with z > p.
Now x1/2 = z3, x213 = z4 and (it is easy to forget to substitute for dx) dx = 6z5 dz.
Thus

f
x2/ 3 z4 z9

J 1 + xl/2 =J 1 + z3
6z5 dz = 6f z3 + 1 dz

=6f{z6-z3+1 - 1

dzzs+1

=6{7z7-4z4+z z3+ldz}
and to obtain the last integral we may use Formula 27 of the table of integrals.
Upon doing so, and then returning to x via z = x1/6, we obtain the answer

6{1
x7/6.4 x2/3 - x1/61 - 2{ i3 tan123 1 + In

1 +X

V1 -X +
I + c.

Example 2. Find
J

I dx.
X2+Vx+1

Solution. Let x + 1 = z2, z > 0 so that x = z2 - 1, dx = 2z dz and the given
integral is transformed into

Z2-1 z3-Z 6
2+z2zdz=2f z+2dz=2f z2-2z+3-z+2 dzf
= 2{+z3 - z2 + 3z - 61n (z + 2)} + c

=2{4(x+1)3/2-(x+1) +3V'x+1 -6In (2+Vx+1)}+c.

PROBLEMS

1. By looking for the appropriate formula in the tables find:

"2x+2 dx
a. f dx. C. J e. f sin (In lxp dxx 3x2+2x+1 .

3x - 2
b. f dx.

dx
d. f

dx

fx 3x2+2x-1' 2 + 3e4x

2. Use a reduction formula (if necessary) from the tables to find:

a. f sin4 x A.

b. f cosy x dx.

3. Find:
dxa. f x+/x
dxb. fx+vx

c. f x3-,/x-+-2 dx.

-Vx-x2
d. f x dx.

dx
c. x+3Vx-2

xl/3 - x1/4
d. f

x3/2
dx.

e. f I/ -3x2 + 2x + l dx.

f. f x2(2x3 + 5)1/2 dx

x3/2
e. f x1/3 - x114 dx.

f. f x
dx.

x-,/x-+-2
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76. partial Fractions

A standard type of problem of algebra is : "Put

(1)
3 4x-5

x-1 x2+2x+3

over a common denominator." The answer is

(2)
-x2 + 5x + 14
x3+x2+x-3

In some algebra courses an expression such as (2) is given (not knowing that
it came from (1)) and the problem is to show that (2) can be split into the
simpler fractions of (1). A reason for this type of problem is that if we want
to find

-x2 + 5x + 14
dxfx3+x2+x-3

and can find that (2) is identical with (1), then this integral is equal to the
difference

4x 5( -x - ldx -J
x

2+2x+3dx

and each of these simpler integrals may be found by previously developed
methods or by using a table of integrals.

There are standard methods for expressing the ratio of two polynomials
as the sum of simpler fractions called partial fractions. The methods fall into
four cases, depending upon the types of factors in the denominator. Before
considering these cases we state:

The numerator must be of lower degree than the denominator. Remember
the hard and fast rule stated in Sec. 71; it still applies here.

CASE I. The denominator has only first degree factors, none of which is
repeated. The given expression is equal to the sum of partial fractions each
consisting of a constant divided by a factor of the denominator.t

A method of determining the constants is illustrated below.

Example 1. Split
5x3 + 16x - 12

into partial fractions.+x -6x
t No reason will be given here for this statement or similar ones in the other cases.

Such facts are proved in an advanced algebra course.
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Solution. Factor the denominator: x(x2 + x - 6) = x(x - 2)(x + 3), see that
all factors are linear and none is repeated, and set

5x2 + 16x - 12 A B C
x3 + x2 - 6x x + x - 2 + x + 3 '

A, B, and C constants

A(x - 2)(x + 3) + Bx(x + 3) + Cx(x - 2)
x(x - 2)(x + 3)

(A+B+C)x2+(A+3B-2C)x-6A
x3 + x2 - 6x

This, being an identity, like powers of x in both numerators must have equal
coefficients; that is,

A+ B+ C=5
A+3B-2C=16

-6A = -12,
and, by simultaneous solution, A = 2, B = 4 and C = -1. Hence

5x2 + 16x - 12 2 4 1

x3+x2-6x x+x-2 x+3
Had the original request been for the integral of the expression in

Example 1, we would perform the above algebra and then write

('5x2+16x-12dx-2f dx+4(' dx -(' dx
f x3+x2-6x x J x-2 J x + 3

=2lnIxI+4lnIx-21 -lnIx+31+c.
CASE II. The denominator has only first degree factors, but some are

repeated. Corresponding- to a first degree factor to the power k there are k
partial fractions each a constant divided by the factor raised to one of the
powers 1, 2,

8X5 + 20x4 + 12x3 + 11x2 + 13x + 6
Example 2. Find f

X3(x + 1)2(x + 2)
dx.

Solution. We first note by inspection that in the denominator xs is the highest
power of x, and thus the numerator is of lower degree than the denominator. Noting
the repetition of factors in the denominator, we set

8x5 + 20x4 + 12x3 + 11x2 + 13x + 6 A B C D E F
x3(x+1)2(x+2) X+x2+x3+ -+I +(x+l)2+x+2'

Upon putting the right side over a common denominator, collecting powers of x
in the resulting numerator, and then equating like powers of x in the two numerators
(a lot of algebraic manipulation is involved) we obtain the six equations

A + D + F=8 2A+5B+4C=11
4A+ B +3D+ E+2F=20 2B+5C=13
5A+4B+C+2D+2E+ F=12 2C=6
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and the simultaneous solution A = 2, B = -1, C = 3, D = 5, E = -4, F = 1.
Having these values we can mentally substitute them, perform the simple integra-
tions, and obtain the answer

1 31 42lnW +x 2x2+5InIx+ii +x+1 +InIx+2) +c

CASE III. The denominator has one or more factors of second degree,
none of which is repeated. To each factor of the form axe + bx + c (which
has no real linear factors) corresponds a partial fraction

Ax + B
ax2 + bx + c

and any linear factors are handled as in Case I or II.

f2x4 + 3x3 + 2x2 + 11
Example 3. J (x - 1)(x2 + 2x + 3)'
Solution. The numerator is not of lower degree than the denominator so we

first multiply out the denominator, divide, and see that the integrand is equal to

(3) 2x + 1 +
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-x2 + 5x + 14
(x-1)(x2+2x+3)'

The first two terms are easily integrated, but for the remainder we set

-x2+5x+14 A Bx+C
(x-1)(x2+2x+3) x-1 +x2+2x+3

A+B
Thus 2A-B+C=5

3A -C=14

x2(A + B) + x(2A - B + C) + (3A - C)

from which A = 3, B = -4, C = -5 and there-
fore the given integral is equal to (remember the
first two terms in (3))

(x - 1)(x2 + 2x + 3)

3 4x+5x2+x+f x-1d-.I x2+2x+3'
The first integral = 3 In Ix - 1 I whereas for the second we use 74 of the tables and
finally obtain the answer

1 x+1
x2 + x + 3 In Ix - 11 - 2 In (x2 + 2x + 3) -

72
tan 1 72 + c.

CASE IV. The denominator has repeated quadratic factors. To each term
of the denominator of the form (axe + bx + c)' where ax2 + bx + c is a
prime factor, corresponds a sum of partial fractions

A1x + B1 A2x + B2 ... Akx + Bk

ax2 + bx + c' (axe + bx + c)2 ' ' (axe
+ bx + c)k
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and any linear factors or non-repeated quadratic factors are handled as in
Case I, II, or III.

With this information, the technique for determining the constants A1, B1,
A2, B2, etc., is the same as in the previous illustrations. The only additional
feature about integrating such expressions is that the integrand will have a
linear numerator, but a quadratic denominator raised to some integer power
p. If nothing better can be thought of, the following formulas may be used
to reduce this power to 1 and then the table Formula 73 used:

f
dx 1 (2ax+b+2a(2P

3) 1 dx )
X- (p -- 1)q X9-1 - J XD-i

f
xdx 1 1 b

1
dx

X9 2(p - 1) XD-1 2a f Xv-1

where X = axe + bx + c and q = b2 - 4ac. Table Formulas 20 and 22 are
equivalent to these, but are a little harder to use for a general quadratic.

The reason we need consider no more cases (i.e., denominators with
factors of third, fourth, or higher degree) is because of the following theorem
of algebra:

Any polynomial with real coefficients may be factored into prime factors of
first and second degree.

PROBLEMS

1. The four cases are illustrated by the following four integrals:

x ( x2 - 6
a.

J 2x2-x-1dx' C. J 2x3+3x2+ 3xdx'
-x2 + 3x + 7 9

b. f (2x +-3)(x + 1)2
dx. d. f x(2x2 + 3x + 3)2

dx.

2. Further practice may be gained by finding the following integrals:

dx dx
J x2+3x+2' fx3+x

x2 dx x4 dx

b' f x2+3x+d. fx3+1'

3x2 + 2x + 1
e. f x(x2 - 1)2

dx.

x(7x2 + 5)
f. f 2(x2 - 1)(x2 + 2)

dx.

3. Find the value of the definite integrals

2 dx

a' f1 (x - 3)(x + 2)
4.

(1(x+1)(x-2)

b. J0 (x+3)(x+2)dx'
With a, b, c, and d constants with be 0 ad, use partial fractions to derive the
formulas

dx I I cx + d l
a' f (ax + b)(cx + d) be - ad In

ax + b + k.
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b.
xdx = 1

{_lnlax+b!__lnicx+d!)+k.b dJ

+ b)(cx + d) be - ad a c

C.

dx = 1 Inx2 - a2 2a

x - a
x+a + k.

5. Determine A, B, etc., so each of the following will be an identity in k. Use the

resulting identity to find I k", for p = 2, 3, 4, and 5.
k=1

a. k2 = Ak{(k + 1)(2k + 1) - (k - 1)(2k - 1)}.
b. k3 = Ak2{(k + 1)2 - (k - 1)2}.
c. 0 = Ak2{(k + 1)2(2k + 1) - (k - 1)2(2k - 1)}

+ Bk{(k + 1)(2k + 1) - (k - 1)(2k - Q.
d. k5 = Ak3{(k + 1)3 - (k - 1)3} + Bk2{(k + 1)2 - (k - 1)2).

77. Resubstitution Avoided

Recall that for definite integrals

f b f (x) dx = F(x)]
b

where F'(x) =f(x)

whereas indefinite integration is merely finding F(x) when F'(x) =f (x) with
f (x) given. Some of the methods of indefinite integration obtain F(x) by
making a substitution for x in terms of u, t, z, etc., and then making the inverse
substitution to reinstate x in the final step. When definite integrals are
involved this "return to x" is not necessary as the next example illustrates.

Example 1. Find f
3 dx

o(x+3)V'x+1
Solution. Substitute x + 1 =z 2, z > 0. Hence, as in indefinite integration

x = z2 - 1, dx = 2z dz, and x + 3 = z2 + 2, but now in addition note that z = 1

when x = 0 and z = 2 when x = 3. Thus

ff3
dx y_2 2zdz 2 2 dz

Jo (x + 3) x + l -Jz=1 (z2 + 2)z J1 z2 + 2

2 1 tan1? 2 2
tan 1

2 - tan' 1_[ 2 12 1 V2 V'2

The next theorem justifies the use of new limits which depend upon the
substitution made.

THEOREM 77. Let a, b, a, and # be constants and let f and g be functions
satisfying the conditions:

(i) g(a) = a, g(9) = b,
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(ii) f is continuous throughout its domain which includes the closed interval
with endpoints a and b,

(iii) for z on the closed interval with end points a and fl, g(z) is in the
domain off,

(iv) the derived function g' is continuous on the closed interval with end
points a and ,B.

Then (conditions (ii)-(iv) ensure that the integrals exist)

(1) f bf (x) dx = f Q f (g(z))g'(z) dz.

PROOF. Let F and G be the functions defined by

F(t) = f
a
'f(x) dx and G(s) =1a f (g(z))g'(z) dz,

for t in the domain off, but s between a and j9. Thus

(2) F(b) -.f 'f (x) dx, G(fl) = f a f (g(z))g'(z) dz,

F(a) = 0, and G(a) = 0.
Moreover, by the Fundamental Theorem of Calculus,

F'(t) = f (t) and G'(s) = f(g(s))g'(s).

From the first of these equations we have F'(g(s)) = f (g(s)) and this
substituted into the second gives G'(s) = F'(g(s))g'(s) which may be written
(by using the chain rule) as

D2G(s) = DSF(g(s)).

But these derivatives being equal, it follows (see Theorem 39) that

G(fl) - G(a) = F(g(fl)) - F(g(a))
= F(b) - F(a) (by condition (i)).

From this equation and all parts of (2) we therefore have

f Q f (g(z))g'(z) dz = G((3) = F(b) _ f b f (x) dx

which is the equality (1) as we wished to prove.

f s x2 - 4x + 6 f 3 (X2 - 4x + 5) + I
Example 2.

2x2 - 4x + 5 d x 2 x2 - 4x + 5 dx

3 dx rSetx-2=usodx=duandu=0lfl-4x+4)+1 [when x = 2, but u=Iwhenx=3 J
_ 3 i du Set u = tan t so t = 0 when u = 0,
- X] 2 +fo U2 + 1 [but t = it/4 when u = I

2
=(3-2)+fat4ssec t

ec2tdt=1 +f"dt=1 +4.
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The next example illustrates another trigonometric substitution and also
emphasizes the danger of setting 1/a2 = a unless it is known that a is positive.

Example 3. Find the value of I =f0

_3 V9 --X 2 dx.

Solution. We first make the substitution x = 3 sin t, since then

V9---x2 = '/9 - 9 sine t = 3 V'cos2 t = 3lcos tj

and the radical is eliminated. Since dx = 3 cos t dt, the integrand becomes
91cos t I cos t dt. Now what limits of integration may be used?

When x = -3 then -3 = 3 sin t, sin t = -1 and t = -77/2, 377/2, etc.,
and when x = 0 then 0 = 3 sin t, sin t = 0 and t = 0, IT, etc.

As x changes from -3 to 0 it is natural to have 3 sin t also change from -3 to 0
and thus for t to either increase from -n/2 to 0 or decrease from 377/2 to n. Hence,
we obtain either

I = f o
77/2

9lcos tl cos t dt or I = f 3l77/2 9lcos tl cos t dt.

If -77/2 5 t < 0 then Icos tj = cos t, but if 377/2 > t ? in then Icos tI = -cos t.
Thus, the two integrals are, respectively,

I=9fo

cos2tdt=9 fo (1 + cos 2t) dt and42 2 -42

= 9I -g f
377/2

COS2 t dt = -2 f
3a12

(1 + cos 2t) dt

and each of these should be worked out to find that in either case I = 977/4.
Notice that a careless replacement of cos2 t by cos t in the second integral

would have yielded the incorrect value -97714. As a geometric confirmation
that 977/4 is correct, notice that I is the area (certainly positive) of the region
{(x,y) I - 3 < x < 0, 0 < y < V'9 - x2} which is the second quadrant quarter of
a circle of radius 3.

Actually, any solution of -3 = 3 sin t may be used for the lower limit of
integration, and any solution of 0 = 3 sin t may be used for the upper limit
of integration if care is taken to divide the resulting t-interval into subintervals
over which cos t >t 0 or < 0. For example,

I = 9 f cos t' cos t dt = 9 f--3
n

J I cos tj cos t dt + 9 f Icos tI cos t dt
342 a/2 42

_ 9f3422
cos2tdt+9fo

cos2tdt
/ 42

and these two should be worked out to see that their sum is again 977/4.
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The following set of problems reviews the applications of definite integrals
of Chapter 6 and the evaluation of some of the integrals depends upon
methods developed in the present chapter.

PROBLEMS

1. Find the areas of the finite region or regions bounded by the graphs of the given
equations.

a. x2 + y2 = 25, 3y2 = 16x.

b. y = sec x, y = 0, x = -n/3, x = iT/4.

c. y = (x2 + 4)-', y = 0, x = -3, x = 5.

d. y = x2(x2 + 4), y = 0, x = -3, x = 5.

a
e. y =

2
(exla + e x1a), y = 0, x = -a, x = a.

e2xf.yy=0, x=1, x=2.
g. Vx + V y = -Va, and the coordinate axes.
h. x2/3 + y213 = a2/3. (Hint: Substitute x = a sin3 t).

i. y2(x2 + 9) = 25, x = -4, x = 4.
j. y2 = x(2 - x).

2. In each of the following, the equations of the bounding curves of a region are
given. Find the volume of the solid obtained by revolving the region about the
axis named after the semicolon.

a. y = xex, y = 0, x = 10; x-axis.

b. y = xex, y = 0, x = -10; x-axis.

c. The first arch of the sine curve, y = 0; y-axis.

d. y = tang x, y = 1; y-axis.

e.
Y

= 2 (ex/a + ex/a), y = 0, x = -a, x = a; x-axis.

f. y = In x, y = 0, x = 2; x-axis.

g. y = In x, y = 0, x = 2; y-axis.

h. y = \/(x - 2)(8 - x), y = 0; y-axis.

3. Find the centroid of the region whose bounding curve is given.

a.xy=1, y=0, x=1, x=bwhere b>1.
b. yx2 = 1, y = 0, x = 1, x = b where b > 1.
c. y = sin x, y = 2, x = 0, x = Tr.
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d. y = x3 - 2x2, y = 0; find z only.

e. y2(x2 + 9) = 25, x = 0, y = 0, x = 4, first quadrant.

f. x1/2 + y112 = a1/2, x = o y = 0.
g. x2/3 + y213 = a2"" x = 0, y = 0, first quadrant.

h. y = x2, y = Vb2 - x2, a < b, first quadrant.

x2 2 x2 2

i.
a2 + 62 = 1, (2a)2

+ (26)2 = 1, first quadrant.

4. A tank on the surface of the ground is to be filled from a well in which water
always stands 20 ft below ground. Find the work done in filling the tank if:

a. The tank is a right circular cylinder of radius 3 ft and altitude 10 ft and is:
(i) Lying horizontal. (ii) Standing upright.

b. The tank has altitude 10 ft and each cross section is an ellipse with semi-axes
5 ft and 3 ft and is:
(i) Lying horizontal with major axis horizontal.
(ii) Standing upright.

5. Find the moment of inertia of the given region with respect to the given line.

a. A circle of radius r; with respect to:
(i) A diameter. (ii) A line tangent to the circle.

b. An ellipse with major and minor axes 2a and 2b; with respect to:
(i) The major axis. (ii) The minor axis.

c. A semicircle; with respect to the line parallel to the bounding diameter and
through the centroid.

6. Find the force on an ellipse marked on the vertical face of a dam if the ellipse
has its 10-ft major axis horizontal, its 6-ft minor axis vertical, and its center 15 ft
below the surface of the water.

7. The cross section of a viaduct is a rectangle surmounted by a semicircle; the
rectangle having horizontal base 5 ft and altitude 3 ft. If the viaduct is full of
water find the force:

a. On a square foot of the floor.
b. On a vertical wall across the viaduct.

8. Use Table formula 96 to establish what are known as Wallis, formulas.

a. ,fo sin2n x dx =
,r

2

1

5

3

4

2n

2n -
- 3

2

in
2n

- 1

r 2n-i l
2 4 6 2n - 2 2n

f
/sb. o in dx=3 5-7 2n-1 2n+1'



CHAPTER 8

Vectors

To an ancient Roman, even a well-educated one, the multiplication of
MMDCXLVIII by LXIX was a long and arduous task in contrast to the ease with
which we multiply 2648 by 69. The ancient Romans were able, given time, to
perform any arithmetic computation, so to them their method of representing
numbers was adequate and the learning of Hindu-Arabic numerals might well have
seemed superfluous had some visionary advocated changing to this new-fangled
arithmetic.

In much the same way vectors may seem superfluous since any quantity repre-
sented by a vector could also be described without vectors. It has been found,
however, that many geometric and physical facts can be grasped, understood, and
represented much more easily via vectors than without them. And isn't a goal of
mathematics to make things easy?

Associated with vectors, as geometric directed line segments, there is an algebra
involving addition, subtraction, and multiplication (two kinds), but not division.
Addition and subtraction of vectors seem fairly natural to most minds, but the
multiplications of vectors appear to be more elusive concepts. It would be well,
therefore, to accept the definition of the dot product of vectors (Sec. 79) with full
confidence that this notion passed the acid test of eventual usefulness.

Even though this chapter has the title "Vectors," the other topics are important
in their own rights. Since vectors in the plane are more easily visualized than in
three dimensions, this chapter restricts vectors to the plane in order to cultivate
thinking in terms of vectors as preparation for their real power in space considera-
tions of the next chapter.

78. Definitions

Two line segments are said to have the same direction if the lines
containing the segments are parallel or coincide. A segment is said to be
sensed if one end point is designated as the initial end with the other called
the terminal end. With A the initial end and B the terminal end, the sensed
segment is denoted by AB. Hence, BA is the oppositely sensed segment. In
terms of a pre-assigned unit, the (positive) length of the segment is called the

238
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modulus or absolute value of either AB or of BA and is denoted by JABI or

I. The terminology is extended to so-called point-segments of zero
modulus, but no direction or sense is assigned although the notation is
extended to AA as designating the "point-segment" con-
sisting of the single point A.

Sensed segments and point-segments are classified to-
gether as vectors with the further understanding that A1B,.
and A2B2 are the, same vector i if:

Figure 78.1

(i) Both A1B1 and A2B2 are point-segments, or else
(ii) Both are sensed segments with the same direction, sense, and

modulus.
Thus, a sensed segment or a point-segment may be moved by parallel
translation and in either position represents the same vector.

The point-vector is called the zero vector and is denoted by 5.'f

The product of a vector v = AB and a scalar (i.e., a number) c is denoted
either by cv' or vvc and is defined by:

(i) cv' = AA'if either c = 0 or v but otherwise
(ii) cv' is the vector of modulus IcII61 having the same direction as v, and

with sense the same as v if c > 0 but opposite to v if c < 0.
In particular lv = v and (-1)v = BA. We define -v' by setting

-v = (-1)6 so that -v = BA.

Given two vectors v1 and vv2, the resultant or sum vl + v2 is obtained by

taking any point A and drawing vl = AB, then from B drawing i 2 = BC,
and setting

Figure 78.2

C vl+v'2=AC.

By starting at the same point A and drawing v2 = AD
and then vl = DE, notice that vv2 + vl = AE but also
E = C so that

v2 + v1 = v1 + V2.

This states that the commutative law of addition holds for vectors. In case v1
and v'2 do not have the same direction, or in case neither vl nor vie is 6, then

f On the printed page the usual symbol for a vector is a boldface letter such as v, but
in writing on paper or the blackboard the symbolism is a half-headed arrow above a letter.
In this book we shall use the script form v rather than the print form v.
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the resultant is the sensed diagonal AC of the parallelogram having coterminal

sides vl = AB and v2 = AD. The difference vl - v'2 is defined by setting

Figure 78.3

and then

2. Ul -- v2 = v1 + (-62).

Except in the degenerate cases, the parallelogram men-
tioned above has the other diagonal DB, sensed as shown,
equal to 61-vv2.

Given three vectors 61, v2, and v63, draw vl = AB

then 62 = BC, and finally v3 = CD. Now (61 + v2) = AC

(el+v2)+v3=AC+CD= AD.
But also (fl,+6,) = BD and now vl + (62+63) = AB + BD = AD. Thus

3. (vl + v2) + 03 = vl + (v2 + v3)
which states that the associative law of addition holds for
vectors. Since the grouping of the addends is immaterial
the resultant of three vectors is written without parentheses
as

v1 + v2 + v3.

In addition to 1, 2, and 3 above, properties of vectors
which follow directly from the definition are:

4. -(-v)=v'. 7. v - v= -6 +9 =6.
5. 0v=6. 8. 6+6=6+v=v.
6. A=j. 9. I61+62I <I61I+Iv2I,

D

Figure 78.4

I61 -v2I _ 1[ell
10. c(61 + v2) = cvl + cv2, and (Cl + C2)6 = Clv + C26-

11. a(bv) = (ab)v and (a + b)v = av' + bv.

12. 1f131=132, then vl v3 = v2 v3

13. If a13 = by and 606, then a = b.

14. If a6,=a62 and a0, then 61=62.
THEOREM 78. If 61 and v'2 do not have the same direction, if neither v'l nor v'2

is the zero-vector 6, and if

a131 = bi3, then a = b = 0.
PROOF. Under the given conditions if we assumed in addition that a # 0,

then we would have
1

(a61) = 1 (bv2), vl = b v2
a a a
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which could hold only if %1 and v2 had the same direction or were both equal

to o. Consequently a = 0. Now bv2 = 06, = and since 62 we have
b=0.

COROLLARY 78. If 61 and vv2 do not have the same direction, if t 1 and
U2andif

av1 + bv2 = cvl + di2, then a = c and b = d.
PROOF. Under the stated conditions (a - c)vl = (d - b)62 so a - c = 0

and d - b = 0.
Example. Show that the medians of a triangle intersect in a point which is

two-thirds of the way from any vertex to the mid-point of the opposite side.

Solution. Let A, B, C be the vertices of a triangle. Hence

AC = AB + BC,
and the median vectors from A and B are, respectively

AB + JBC and BA + JAC = -AB + J(AB + BC) = -JAB + JBC.
Let Q be the point of intersection of these two medians and let a and b be the
scalars such that

AQ = a(AB + JBC) and BQ = b(-JAB +JBC).

In the triangle A, B, Q, we have AQ = AB + BQ so that

a(AB + JBC) = AB + b(-JAB + JBC).

The coefficients of AB and BC on both sides of this equation
are equal (by the corollary) and hence

b a b 2a=I-2 and 2=2 so that a=b=3. Figure 78.5

Thus, the medians from A and B intersect two-thirds of the way to the mid-points
of the opposite sides. The following computations:

CQ = CA + AQ = (CB + BA) + J(AB + JBC)

=CB+BAJBA-JCB=JCB+JBA
= J(CB + JBA)

show that Q is also two-thirds of the way from C to the mid-point of AB.

Notice that if P1, P2, , P.n are any n points in
?2 the plane, then

Figure 78.6

(1) P1P2 + P2P3 + ... + n + PP1
and thus the negative of any one of these vectors is
equal to the sum of all others. The relation (1)
states that the vector sum of the successively sensed

sides of a closed polygon is the zero vector.
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PROBLEMS

Chap. 8

1. Let A, B, C be the vertices of a triangle and let M be the intersection of the
medians.

a. Show that AM + BM + CM = 0.

b. With 0 any point show that 30M = OA + O -! O.
c. With A', B', C' a second triangle and M' the intersection of its medians show

that 3MM' = AA' + BB' + CC.
d. Let D, E, and Q be the points such that AD = SAB, BE _ JBC and Q the

intersection of AE and CD. Determine scalars a and b such that AQ = aAE

and CQ = bCD.

2. Let A, B, C, D be the vertices of a parallelogram so that AB = DC and AD = BC.
a. Show that the diagonals bisect each other.

b. Let P and Q be such that AP = CAB and Q is the intersection of AC and PD.

Determine scalars a and b such that A Q = aAC and PQ = bPD.
c. With 0 any point and M the intersection of the diagonals show that

40M=OA +OB+OC+OD.
3. Prove the converse of 2a; that is, show that if A, B, C, D is a quadrilateral whose

diagonals bisect each other, then the quadrilateral is a parallelogram. A, B, C,
and D are the only points where sides intersect.

4. Let 61 = OA, 62 = OB, and 63 = OC be non-zero vectors, no two having the
same direction.
a. If 61 + 262 - 363 = 0 show that A, B, and C lie on a straight line.
b. Prove that if there are numbers a, b, and c not all zero such that

a151 + b1152 + c153 = 0 and a + b + c = 0
then A, B, and C lie on a straight line. (Hint: A, B, and C lie on a line if there
is a number k such that 61 - 62 = k(6a - 62).)

79. Scalar Product

The projection of a point A on a line l is the point A' which is the foot of
the perpendicular from A to 1. The vector projection of a vector v' = AB on

_.s
a line 1 is the vector 6l = A'B' where

B A' and B' are the projections of A
and B on 1. Hence, if 6 = 6 or if ii

A
A is perpendicular to 1 then 61 = 0.,

-'J' s0^ With is and B any angle between
A' V, B' v,=-6 1 and the direction of is, then

Figure 79.1 (1) I661I = 161 1cos 01 = 16 cos 61.



Sec. 79 Scalar Product 243

Also, given two vectors v'1 = AB and U2 = BC, then (tt1)l = A'B', (v2)l = B'C'

so that (v1)l + (t 2)l = A'B' + B 'C' = A'C'. But (01 + 62)l = (AB + BC), =
(AC)l = A'C'. Thus

C

(2) (el + t2)l = 0 01 + (i2)1; Xati i v2

>ati Brojection and vector addition arevectort ish p,at
then A

vl
if v + v'Also } t =ibutivedi , 2. ,str /1

lvl)l + (02), + . .. + (v = . A' C' B'
In Sec. 78 the sum and difference of two vectors, Figure 79.2

and the product of a vector by a scalar were
defined. We now define a product of a vector by a vector.

DEFINITION 79. Given two vectors u' and v', the scalar product or dot
product or inner product u v is definedt by

0 if u'=6 or v'=6
u v = (IuI Iv'I cos 0 if u 6 and v' =

where -180° < 0 < 180° is the angle through which u could be turned to have
the direction and sense of v'.

In case u 0 6 and v' 6, it follows that -0 is the angle through which v'
could be turned to have the direction and sense of it, and thus

(3) 'v u=I I
and in case u = 6 or 6 = then u v' = i u = 0 so that the scalar product
is commutative.

Even though u and v are vectors it should be noted that u' 9 is a scalar;
that is, it v is merely a number. Also, for ii and v 6, then

>0 if 101 < 90°
(4) V-6 is =0 if 0 = 90° or 0 = -90°

<0 if - 90° < IO I < 180°.

Hence, for u' zA 6 and v 6, then u v = 0 if and only if u' and v' are
perpendicular.

Since v and -v' have the same direction but opposite senses, it follows that

(5)

If u'=tjthen if i7 then cos0°=j#12and
hence in either case

(6) u u' = Iui2

t Later (see Sec. 98), a different product a x d, called the vector or cross or outer
product will be defined.
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The square of a vector is defined to be the scalar product of the vector by

itself so that
and hence i12=IiII2,

but no other power of a vector is defined.
A vector is said to be a unit vector if its magnitude is 1. Thus, for any

vector u 0, the vector
1 --u

IuI

is a unit vector having the same direction and sense as it.
The following theorem states a relation between vector projections and

scalar products.

THEOREM 79. Given a vector il and any vector v, then for I the line
containing u'

u v =uvu(7) u
vt

=
Fur

u' u

PROOF. For v'
to 6. Consider then v

Moreover

then ti = 6 and u v' = 0 so both sides of (7) are equal
and note for the magnitudes of vt that (see (1))

Ival = 161 Icos 61.

>0 if 101 < 90°
1661 cos 0 is =0 if 0 = 90° or -90°

<0 if 90° < 101 < 180°.

Also, 6, and it are both on the line I if 0 90° or -90° and vt = if 0 = 90°
or -90°. Thus, 6, is the product of the scalar 1661 cos 0 and the unit vector

1 it so that
Iul

Ut=(Ivlcos0)-u=1- (161 cos0)
u u

Iulu=iul2 u.

Thus, the first equation in (7) holds and the second follows since ii u' = Iul2.

COROLLARY 79. Given any vectors u, v1, and v2, then

(8) u - (61 + 62) = u - v1 -1 u 1'2.

PROOF. If t _ then both sides of (8) are equal to 0. Consider then
it 6 and let 1 be the line containing u'.' Hence

(61 + t 2)1 = (fl)l + (v2)a (from (2))

u'(61+62)u=u v1u+u v2u and
IiI12 11712 11'12

L1 (61+62)]1-[1.61+u.62]u
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since 10, it 61, u v2, and u (61 + v2) are all scalars. Hence, the numbers
which are the coefficients of the vector u' on both sides are equal (see 13 of
Sec. 78), and thus

u - (Ul + v2) = u ' Ul + u ' v2.
The equation (8) is therefore established in all cases.

Equation (8) states that scalar multiplication and vector addition are
distributive. Since scalar multiplication is commutative (see (3)) it follows that

(01+62)- u= '(v1+v2)= a+62 u.
Also it ' (vl - v2) = u [v1 + (-62)] = u ul + u' . (-62) = d ul - u v2 by
(5); that is,

(9)

Thus, many of the usual algebraic rules hold for scalar multiplication.
Notice, however, that even if

u

and can state that u vl - U-62 = 0
so that (from (9)) u (vl - v2) = 0, and hence that either vl - v2 = (and
then v'1 = v2), or else that vl - 62 and u are perpendicular.

Example. Prove for a triangle ABC that the lines through the vertices perpen-
dicular to the opposite sides all meet in a point.

Solution. In case ABC is a right triangle all perpendiculars meet at the vertex of
the right triangle. Thus, consider the triangle shown. The lines from A and B
perpendicular to the opposite sides are not parallel and hence meet at point O.
Let OA = ii1, OB = i52i and OC = 03. Then AB = AO +
OB = -vl + tie, AC = -v1 + v3, and BC = -v2 + 63.
Since OB and AC are perpendicular

v2 ' (-01 + iii) = 0 so that 62 61 = v2 ' v3

Since OA and BC are perpendicular vl (-t32 + v3) = 0 so
that vl 62 = vl v3. Hence 62 v3 = 61 v3 and therefore

are not even06(e-and v- v) =6. Since 6 - vl l
parallel) it follows that d3 and t 2 - 61 are perpendicular; Figure 79.3

i.e., OC is perpendicular to OB - OA = AO + OB = AB. Hence, all three per-
pendiculars meet at O.

80. Scalar and Vector Quantities

Scalar quantities require only a number for complete specification in
terms of a pre-assigned unit. Examples are length, area, volume, density,
temperature, work, amount of heat or light, and electric charge and potential.
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Vector quantities are specified not only by magnitude, but by a direction
and sense as well. Examples are displacement, velocity, momentum, force,
and electric and magnetic intensities. Arithmetic and ordinary algebra suffice
for the discussion of scalar quantities, but vector algebra is required as well
to handle problems involving vector quantities.

In the previous discussion of moments and centroids (Sec. 65) the fact
that vectors were involved was somewhat hidden. Also, the fact that the
centroid of a system depends only on the system itself, and not on the
coordinates, was tacitly assumed. The purpose of the next example is to show
that the centroid of a system of particles depends only upon the system itself.

Example. Let 0, 0', F1, P2, - , P,, be points, let m1, m2, , mn, be numbers

such that m1 + m2 + ' ' + mn O 0 and let G and G' be the
0 v' points defined by

E mk Pk E mk P
Pk

OG =
E mk

and O'G' =
E Mk

Figure 80.1 where each summation is from k = 1 to n. Show that G = G'.

Solution. Let tf = 00'. Then OPk = 0 + O'Pk and hence' ) E M, E mk0'PkE m (v' + O P
OG= k7m =6EMk+ Em

=d+O'G'k
k k k

But 0, 0', G', G, 0 is a closed polygon so that

OG = 6 + O'G' + G'G. Figure 80.2

Hence G'G = 0 and therefore G' = G.
With the interpretation that mk is the mass of a particle located at the

point Pk, then the point G of Example 1 (and shown in Example 1 to depend
only on the system) is equivalent to the centroid defined earlier.

Vector addition is illustrated by replacing two forces by a single force,
or consecutive displacements by a single displacement.

An illustration of the scalar product is furnished by mechanical
work of a force P whose point of application experiences a straight
line displacement represented by a vector u not necessarily in line with F.

For the work (being the product of the force in the direction
F

B u of motion times the distance moved) is given by

Figure 80.3 work = IFI lul cos 0 = P it

where 0 is the angle from t to U. If t = Pl + P2, then the F?
ro

F, u
distributive law for scalar multiplication:

(Pi +P2)'it
Figure 80.4

says that the work of the resultant force is equal to the sum of the works
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of the separate forces. Also, if the point of application first follows

u'1 = AB and then 02 = BC, the distributive law

E. (ui + u2) = 'r - u1 + t 42
shows that the sum of the works during the separate
displacements is equal to the work for the single resultant

displacement u'1 + u2 = AC.

u'1

Figure 80.5

PROBLEMS

1. Given that d and it are perpendicular unit vectors show that:

a. For any angle a, then it cos a + t! sin a and it sin a - tf cos a are also perpen-
dicular unit vectors.

2 3 3 2
b.

' 13
d

+ 13
6 and 33 it 13 d are perpendicular unit vectors.

c. Find conditions on numbers a, b, c, and d such that

ad + bi and cd + dt3

are perpendicular unit vectors.

2. In a triangle ABC let the angles at the vertices be (x, fl, y and the sides opposite

them have length a, b, c. Let AB = e l, BC = ti2i and AC = 63 so that to =
-l2 + d3. Show that

01 = (_02 + i3)2

is the vector form of the cosine law c2 = a2 + b2 - 2ab cos y.

3. Show that the sum of the squares of the lengths of the diagonals of a parallelogram
is equal to the sum of the squares of the lengths of the sides.

4. a. Show that an isosceles triangle has two medians of equal length.

b. Prove the converse of the statement in Part a.

5. With d 0 6 and 6 0 $ having the same initial point and 0° < 0 < 180° the angle
between them:

a. For t a number draw the vector ti + td.
Find the value of t such that tt + td is:
b. Perpendicular to it. c. Perpendicular to t3.

d. Show geometrically that, for t any number, the vector

to = t(II d + ll e), t 0 0

with initial end coinciding

`w\

with those of

it

and t3 has terminal end on the line
bisecting the angle between it and d.
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!t U 2 (# - L)2
6. With it and i r ( show that (a2 - U2) _ rl2V2

7. Show that the perpendicular bisectors of the sides of a triangle meet in a point.

81. Vectors and Coordinates

With a coordinate system established in the plane, the discussion of both
vectors and coordinates is facilitated by two special unit vectors i and j
represented by the sensed segments each with initial end at the origin, the
first with terminal end at (1,0) and the second with terminal end at (0,1).
Since i and j are perpendicular unit vectors, it follows for scalar products that

(0,1) (2/2-1!t)71
---- 17Xl)'

Figure 81.1

(i) 1 .1 =f. = 0 and

The vector v having initial end at (x1,y1) and
terminal end at (x2,y2) has x- and y-components

vx = (x2 - x1)1 and v5,, = (yz - Y1)1

This vector 15 has magnitude given by the distance
formula

II = J(X2 - x1)2 + (Y2 - Yl)z or by 161 = Jvx { v'y or by

If v 0, then any angle a such that

cos a = x2 - x1 and sin a = 12 - Y1
161 Ivl

is called an amplitude of v and the angle a which in addition is such that
-180° < a < 180° is called the principal amplitude of v. Hence, the vector v
may also be represented as the product of the number I61 and the unit vector
icosa+jsin a:

v= 191(1cosa+jsin a).

Given any numbers a and b, then at + bj is a vector in the plane.
Conversely, given a vector v in the plane there are unique numbers a and b
such that

v=at+bj
since i and .j are not parallel while i and j so that (see Corollary 78)
ai+bj=ci+djifandonly ifc=aandd=b.

With v1 = alt + b1j and v2 = a2i + b2 it follows that

1+v2=(a1+a2)i+(bl+bz)J, v1-vz=(al-a2)I+(b1-b:).
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and v ' 1 . v2 = a1a2i ' It +- a1b2i J + a2b11 i + b1b2f' j so that from (1),

(3)
V1

-
V2 = axa2 + blb2.

Since, with 0 the angle between 61 and 62, we also have the scalar product

vl v2 = Jv11 Iv21 cos B = -/ai + b12 a2 + b2 cos 0, then2 2

(4) COS 8 = a1a2 + b1b2

Va1+bi a2+ b2
is a formula for finding the angle between two vectors or the lines containing
the vectors.

Example 1. Find the positive angle less than 180° from the first line whose
equation is given to the second :

2x -3y+4 =0, 5x+6y+7 =0.
Solution. In sketching the lines we found the intercepts (-2,0), (0,3) for the

first and (-5,0), (0,-''s) for the second. Thus,
vl = [0 --(-2)]i + [3 - 0) j = 2i + (3)f and v2 =
(- 5)i + (5)f lie along the lines and are sensed
so that when the first is rotated through the angle
0 it will have the sense of the second. Thus,

'22 +(3)2(-5)2 + (8)2

Notice that the arithmetic would be simplified by
using

X71=3'1=6t+4f and u2= 7-v2=-6i+5f
6(-6)+4.5 -16

so that cos B =
.\/62 -+42.\/ (-6)2 + 52 ''(52)(61)

Figure 81.2

180° - 0 = 73°30', and

8 = 106° 30'.

The vectors 61 = a1i + b1 f and v2 = a2t + b21 are perpendicular if and
only if 61 62 = 0; that is, from (3)

(5) vl is perpendicular to v2 if and only if a1a2 + b1b2 = 0.

or, provided a1 0 and b2 0, if and only if b1/a1 = -a2/b2. Notice that
the lines containing 61 and v2 have respective slopes b1la1 and b2/a2 so that:

Two lines, neither parallel to an axis, are perpendicular if and only if their
slopes m1 and m2 are negative reciprocals of each other:

m2 = - 1 or m1m2 = -1.
m1
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Example 2. Find an equation of the line through the point (1,2) perpendicular
to the line whose equation is 3x - y + 1 = 0.

Solution. The given equation may be written as y = 3x + 1 showing that it has
slope m1 = 3. The desired perpendicular line thus has slope m2 = -3 and equation

y-2= -j(x-1) or x+3y=7.
Given a curve C and a point P on C where the tangent to C exists, then

the normal to C at P is defined to be the line through P perpendicular to the
tangent.

Example 3. Find an equation of the normal to the graph of y = (x - 2)3 + 3
at the point on the graph having abscissa 1.

Solution. Upon setting x = 1 in the equation, the desired point is (1,2). Since
Dxy]x=1 = 3(x - 2)2]x=1 = 3, the tangent to the curve at the point (1,2) has slope
m1 = 3. Thus, the normal to the curve at the point (1,2) has slope m2 = -3 and
thus equation x + 3y = 7.

Given a curve C and a point P on it where the tangent to C exists, then
(provided P is not an inflection point of C) a portion of the tangent including
P lies on one side of C called the convex side of C; the other side is called the
concave side of C. A vector with initial point at P, lying along the normal

at P, and sensed to point into the region on the concave
side of C is called an internal normal vector for C at P, but
oppositely sensed is called an external normal vector.

For f a function and x in the domain off" and such
o rti o n o f th eth e a r a h fo0th t "I t n p gf (x) , f neara Fr nalo

Figure 81.3

(x, f (x)) lies above the tangent if f "(x) > 0, but below
the tangent if f "(x) < 0. (See Sec. 33.) Thus, for the graph
of a function, the sign of the second derivative dis-
tinguishes between the convex and concave sides of the

graph, and hence together with first derivative determines the senses of the
normal vectors.

Considering the graph of Example 3, since the normal at (1,2) has slope
-} then either normal vector has itsy-component divided by its x-component
equal to -J. But Dxy]2=1 = 6(x - 2)]x=1 < 0 and thus an internal normal
vector S has R. of the same sense as i and V.,, of the same sense as -f. Hence

IV = 3 l -J'

is an internal normal vector at (1,2) and the same is true of k1 for k > 0.
In particular the unit internal normal vector is

tf= N =31- 1_j.
INI .10 ,10
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Example 4. In the triangle ABC, find the length
h of the altitude from C where A = (-2,3), B =
(l,-1), and C = (4,5).

Solution. Using A as the origin of vectors, then

AB=L1 -(-2)]i+[-1 -3]1=3i-41
and AC = 6i + 21.

For any number t, the point Q where

AQ = iAB = 3ti - 4(1

will be on the line through A and B. We wish to

locate Q (hence to determine t) so that CQ is
AB - CQ = 0. Since

1,-i )

Figure 81.4

perpendicular to AB, i.e., so

CQ = CA + AQ = -AC + AQ = -(6i + 21) + (3ti - 4tj)
= (-6 + 3t)i + (-2 - 4t)1

we have AB CQ = 3(-6 + 3t) + (-4)(-2 - 4t) = 0 and hence 25t - 10 = 0
and t = 5. Thus

8 -21- 18CQ=(-6+ 65 i+(-2-5!)
5

Sj and

j( 54)2+I 58f2=6V 2+32=6.

PROBLEMS

1. Express each of the described vectors in the form at + b1 and represent each
vector graphically.

a. P1P2 for P1 = (1, -2), P2 = (-3,5).

b. AC = AB + BC for A = (7,1), B = (2,5), and C = (4, -3).

c. OP with 0 = (0,0), P the mid-point of P1P2 where P1 = (l, -2), P2 = (5,7).
d. The unit vector of amplitude 30°.

e. The vector obtained by rotating -21 through -120°.
f. The unit vector having the same direction and sense as 31 - 41.

g. The unit vector tangent to the graph of y = x2 at the point (2,4) and with
x-component having the same sense as i.

h. The unit internal normal vector to the graph of y = x2 at (2,4).

2. Find the magnitude and amplitude of each of the vectors.
a.i-1. c. -31-41. e.5It +121.
b. -i+j. d. V3i+1. f. 12i-51.
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3. Find the length of the altitude from C for the triangle ABC:

a. A = (1,6), B = (4,2), C = (7,8).
b. A = (0,0), B = (4,5), C = (9,1).
c. A = (-1,-7), B = (2,2), C = (5,11).
d. A = (-2,3), B = (1,4), C = (6,8).
e. In Part a subtract I from each abscissa and subtract 6 from each ordinate to

obtain triangle A'B'C'. Find the length of the altitude from C'.

4. Given a triangle ABC, show that the altitude from C hits the opposite side at Q
such that

AC. AB
CQ = -AC + tAB where t =

(AB)2

Also, show that this altitude has length

(AC)2 -
(AC AB)2

(AB)2

5. Find the positive angle less than 180° from the first line to the second.

a.y=0.5x-3, y=3x+4. c.x-2y+1=0, 9x+6y=5.
b.3x-y+4=0, x-2y=6. d.y=3x, y=x-4.

6. At a point of intersection of two curves an angle between the curves is defined as
the corresponding angle between the tangents to the curves. For the graphs of
each of the following pairs of equations, find the acute angle at which the graphs
intersect.

a. xy = 1, y = 4x. d. y = x2, xy = 1.
b. x2 + y2 = 4, y2 = 3x. e. y = x2, y2 = X.

c. y = sin x, y = cos x. f. x2 + y2 = 7, x2 - y2 =1.

7. a. For the parabola with vertex at the origin and focus F = (p,0), let P = (x1,y1)

be any point on the parabola. Show that the angle from PF to the internal
normal at P is equal to the angle from this normal to the horizontal line
through P.

b. Let F1 = (-c,0) and F2 = (c,0), c > 0 be the foci of an ellipse. For P =
(x1,y1) on the ellipse show that the normal at P bisects the angle F1PF2.

c. Show that an ellipse and a hyperbola having the same foci (are confocal)
intersect at right angles.

8. Find the unit internal normal vector to the graph of each of the following equa-
tions at the point indicated.

a. y = x3 - 6x2 + 12x, (1,7). d. xy + 2x - 5y - 2 = 0, (3,2).

b. x2 + y2 = 25, (3, -4). e. y = sine x, (5-,./6,J).

c. y = e -m2, (l,e 1). f. y = (tan71 x)2, (1,7.2/16).
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82. Parametric Equations

Given a vector v' with amplitude a, then

v= 161 (icosa+jsin a.).
Upon rotating this vector about its initial end through an angle 0 (where
rotation is counterclockwise if 0 > 0, but clockwise if 0 < 0) the result is a
vector with the same magnitude as v' but with amplitude a + 0, and is thus
given by

1661 [icos(o + 0) +1 sin (a+0)].
In particular -j = i cos (-90°) + j sin (-90°) rotated through an angle
-0 is a vector we shall use in the next example and denote temporarily by.!:

(1) J = i cos (-900 - 0) +,j sin (-90° - 0) _ -tsin 0 - .jcos 0.
Example 1. Let a circle of radius a have its center C at the point (O,a). Roll this

circle without slipping along the x-axis and watch the point P on the circumference
which started at the origin. The center C moves parallel to the x-axis and the radius

vector CP rotates about C. When this rotation is through an angle -0 (so 0 > 0
if the circle rolls to the right but 0 < 0 if rolled to the left) the problem is to express
the vector from the origin 0 to P in terms of 0, i, and j with 0 measured in radians.

Solution. As illustrated in the figure, let Q be the point of tangency of the circle
and the x-axis so that

OP=OQ+QC+CP.
Since the circle rolled without slipping, the magnitude of OQ is the length of an arc
of the circle subtended by a central angle of 101
radians so that iOQi = a161 and

OQ = a01. \a
Since QC = aj and C = aJ, where J is given by
(1), we have

OP =aOit + aj +a(-t sin 0 - jcos0) -e o a e
= a(0 - sin 0)1 + all - cos 0)j

With (x,y) the rectangular coordinates of the
point P of Example 1, then Figure 82.1

(2) x = a(0 - sin 0), y = all - cos 0).
The equations (2) is an example of a pair of parametric equations with
parameter 0.

DEFINITION 82. Given a function F and a function G, then

(3) x = F(t), y = G(t)

taken together are said to be parametric equations with parameter t.
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The graph of these parametric equations is

{(x,y) I x = F(t), y = G(t) for some number t}

The graph of the parametric equations (2) is called a cycloid.
Other curves may be parametrized in various ways. For example,

x=acos0, y=asin0
is a parametrization of the circle with center at the origin and radius a.
The same circle may be represented by

x = a sin t, y = a cos t, and also by x = -a cos 2t, y = -a sin 2t.

The graph of the parametric equations

x=asect, y=btant
is a hyperbola since a point lies on the graph if and only if

(x)' - (b) 2 = sect t - tang t = 1 or
a

x2 y2

a2-b2=1.

The "elimination of the parameter" must be done with caution, however.
For example, given the parametric equations

(4) x = sin t, y=1- cos 2t,
then by using trigonometric identities we have

(5) y=1-(1-2sin2t)=2x2.
This might lead one to believe that the graph of (4) is the parabola whose
equation is y = 2x2, but this is not so since a point (x,y) on the graph of (4)
must have Ixj S 1 and 0 <y < 2. If, however, a point is on the graph of (4)
then it is also on the graph (5), but not conversely.

It is customary to conserve notation and instead of (3) to write

(6) x = x(t), y = y(t).

A parametrization establishes an "order relation" on the curve under the
convention that (x(t),y(tl)) "precedes" (x(t2),y(t2)) if tl < t2. Thus, for (4)
we have that

(sin 0, 1 - cos 0) precedes (sin 2ir, 1 - cos 47r),

although both are represented geometrically by the origin. A possible concept
is of a particle moving in the plane with its position at time t given by (4).
For such dynamic considerations, a pair of parametric equations (such as (6))
will be referred to as a law of motion in the plane.

Example 2. Describe the motion of a particle moving under the law (4) with
t>_0.
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Solution. Although the graph of (4) is part of the graph of (5), in order to
visualize the motion we construct the following table:

0
,r
6

,r

4

,r

3

,r

2

27r

3

37r

4

5,r

6
7r

7,r

6

5,r

4

4,r

3

3,r
2

5,r

3

77r

4

117r

6
Za

-
X
-
0

1

2
V2 V3

2

1 V3
2

'v'2

2

1

2
0

-1
2

V2
2

V3 1 -V
2

v'2
2

1

2
0

2

Y 0 12 1 32 2 32 1 12 0 12 1 32 2 32 1 12 0

Hence, with time measured in seconds we can visualize the particle starting at the
origin when t = 0, moving up along the parabolic arc to (1,2) in ,r/2 sec, returning
over the same path to the origin during the next 7r/2
sec, going up over the other arc of the parabola and (-1,2) (1,2)
arriving at (-1,2) when t = 37r/2 sec, returning to
the origin when t = 27r sec, and then repeating this

T 79
course in each succeeding time interval of 27r sec.

Example 3. Given that a particle moves accord- (21)
ing to the law 1,71)

(2 22 2 f2 > 0t or t, y= - ,x=t+ +

how long is the particle inside the circle of center
(2,7) and radius V10?

Solution. The particle will be within the circle
Figure 82.2

when its distance from (2,7) is less than V10, and thus for those values of t
satisfying

[(t + 2) -2]2+[(2t2+2) - 7]2 < 10 and t >0.
The inequality simplifies to 4t4 - 1912 + 15 < 0 and then to

(412 - 15)(t2- 1) < 0.
This inequality is satisfied if and only if 412 - 15 < 0 and t2 - 1 > 0, so that
1 < t2 < as and hence

1 < t < 'V I-5/2 since t > 0.

Hence, the particle is within the circle for 'V-1512 - 1 time units.

Given a function f, one way of parametrizing the
graph off is to set

x = t, Y

Also, a vector function t may be defined by letting t(x)
be the vector from the origin to the point (x, f'(x)) so that

Figure 82.3
F(x) = tx + if (x).

For this function t(x + Ax) = i(x + Ax) + if (x + Ox) and

DF(x)=iAX +j[f(x+i x)-f(x)]
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It is thus natural to define the derivative P'(x) by

oF(x) = . f (x + ,,x) -.f (x)F'(x) = lim lim Ci + J = i + Jf'(x)
AX-0 [fix Ox

Notice that IF'(x)I = ++ f'2(x). Also, P(x) has the same slope as the
tangent at (x, f (x)) and is sensed to point rightward, since its x-component
is i, and 1

[i + .lf'(x)]
Ji + f'2(x)

is a unit vector with the same direction and sense. By rotating this unit vector
through 90° if f "(x) > 0 but through -90° if f "(x) < 0, then the interior
normal unit vector is obtained.

PROBLEMS

1. a. Find parametric equations of the cycloid obtained by rolling the circle along
the under side of the x-axis.

Figure Prob. lb Figure Prob. lc

b and c. In Figs. Prob. Ib and Ic the circle of radius b rolls without slipping

Figure Prob. ld

along the circle of radius a with the point P starting at
(a,0). Find parametric equations for the path of P in
terms of B. (Hint: In b, (¢ - B)b = Ba.) (Note: The
curve of Part b is called an epicycloid; the one of Partc,
a hypocycloid.)

d. A string is wound around the circle of radius a and
center at the origin, the free end P of the string being
at the point (a,0). The string is now unwound keep-
ing it taut as shown in Fig. Prob. I d. Find parametric
equations for the path of P.

e. Show that the parametric equations for the hypo-
cycloid with b = a/4 may be written as

x = a cos3 B, y = a sin3 B.

Obtain an equation in x and y by eliminating 0 between these. equations.
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2. Show that the graph of each of the following pairs of parametric equations is
part of a straight line and specify what part.

a. x = 212, y = 3t2 + 1. c. x = 2 sin t, y = 3 sin t + 1.

b.x=2111, y=3Itl+1.
e. x = 2(1 + cos t),

d.x=2et, y=Set+1.
y 3 cos t + 4.

3. In each case show that both pairs of parametric equations have the same geo-
metric graph, but as laws of motion they are different.

a.x=2t, y=t2 and x=2t3, y=t6.
b. x = 3 sin t, y = 3 cost and x = 3 cos 2t, y = 3 sin 2t.
c.x=l+2t, y=2-t and x=-1+2t, y=3-t.
d. x = t, y = rs and x = 2t + 1, y = (2t + 1)9.

4. For each of the following laws of motion, how long will the particle be within 5

units of the origin?

a.x=312, y 2t; t 0. c.x=3(t-1)2, y=2(1-1); t>0.
b. x = 2t, y = 3t2; t 0. d. x = 1 + cos t, y = sin t; 0:5t< 2ir.

5. A particle has the law of motion x = 10 cos t, y = 10 sin t. How long during
each period will it be within the square having vertices (-5,5),(-5,10), (-10,10),
(-10,5)?

83. Vectors and Lines

THEOREM 83. Given a line I having equation

ax+by-c=0,
then u = bi - of is parallel to 1, v = at + bi is perpendicular to 1, and

(1) w=-a2+b2 (a +bJ)

is the vector from the origin to I and perpendicular to I.

PROOF. If b = 0 (so a 0 0), then I is perpendicular to
the x-axis and so is u = 0 - i - of = -af. If b 0, then 1
has slope -a/b and so does u. Thus, in either case u and l
are parallel. Now since

Figure 83.1

u.t =(bit -af)-(ai+bf)=ba-ab = 0
the vector v is perpendicular to it and hence to 1. The line containing v' passes
through the origin 0, intersects I at a point Q, and there is a number to such
that

(2) OQ = tov = to(a11 + bj).
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Hence Q = (ato,bto) and since it lies on I

a(ato) + b(bto) + c = 0 so that to =

Chap. 8

-C

a2 + b2
.

Upon substituting this expression for to into (2) we obtain (1).

COROLLARY 83. Given a point Po = (xo,yo), the perpendicular vector from
P0 to 1 is

(3)
axo by0+C(aI+bi)

+ b

and the distance from Po to 1 is

(4)
laxo + byo + cl

/a2 + b2

PROOF. Let 10 be the line through Po parallel to 1. Then 10 has equation

a(x - x0) + b(y - Yo) = 0 which may be written as

ax + by - (axo + byo) = 0

Figure 83.2 Figure 83.3

Hence, from (1) the vector 0Q0 from the origin to to and perpendicular to 10
is given by

0Q0 = - -(axo +bYo) (ai + bj) = axo + bYo (ai + bi).
a2 + b2 a2 + b2

Now the vector V = QOQ is from PO to 1, perpendicular to 1 and

QoQ = Q0O + OQ = -OQo + OQ

_-aa2+b2°(ai+bl)+a2+62(ai+bJ)
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from which (3) follows. Thus 1171 is the distance from PO to 1 and we thus
obtain (4) from

1712= axon

(axoa +
b2

c)2(a2 + b2) _ (axo a b+ b2 c)2

Example 1. Is the point Po = (100,70) and the origin on the same or opposite
sides of the line whose equation is 2x - 3y + 4 = 0?

Solution. Consider the line through PO parallel to the given line. Then

32 (21 - 3j) and QQ 2(100)22 1(+) + 4
(2i - 3j).OQ = -

22

4

Since -4 < 0 and -(200 - 210 + 4) > 0 the vectors OQ and QoQ have opposite
senses so Po and the origin are on opposite sides of the line.

Example 2. Find the distance between the parallel lines having equations

3x+4y -6 =0 and 6x+8y+27 =0.
First Solution. The vectors OQI and OQ2 from the origin to the first and second

lines are

OQl
= - 32

OQ2 = - 62

-6 6

+ 42
(3i + 4.j) =

25
(3i + 4 1) and

27 27

+ 82
(6i + 8j) - 50 (3i + 4j),

respectively. The perpendicular vector from the second to the first line is

Q2Q1=Q20+OQ1= -OQ2+OQ1=(so+z )(31+4j)=so(3!+4j)
and the distance between the lines is

Q2Q1 ' Q2 Q1= V (5 0)2(32 +42) = 5 a(5) = 10

Second Solution. The distance between the lines is the distance from any point
on the second line to the first line. By setting y = 0 in the second equation, the
point PO = (- 12,0) is on the second line and the desired distance is

13(-2) + 4(0) - 61 1(-27 - 12)/21 39

V32+42 5 10

Let PI and P2 be distinct points, let 0 be any point, and consider the line
containing P1 and P2. A point P different from P1 will be on this line if and

only if PIP and PP2 have the same direction (but not necessarily the same
sense). Thus, P lies on the line if and only if there is a number t such that

PIP = t(P1P2).
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Now add OP, to both sides of this equation and we have that P lies on the
line if and only if

Figure 83.4

(5)

OPi + P1P = OP1 + t(P1P2); that is,

OP = OP1 + t(Y P2).

Thus, (5) is referred to as a vector equation relative to
0 of the line through P1 and P2.

Example 3. Let P1 = (x1,y1), P2 = (x2,y2) and 0 =
(0,0). For the line through P1 and P2 find a vector
equation relative to 0.

Solution. Now OP1 = x1i + y, j, PuP2 = (x2 - x1)i + (y2 - yl)j, and for P =

O(x,y), OP = xt + yj. Thus, a vector equation (5) of this line is

6
xi + yj = x1a + Y1.1 + t[(x2 - x1)1 + (y2 - Y)11

= [x1 + t(x2 - x1)]1 + [Y1 + t(y2 - Y1)]j.

In (6) the coefficients of It on both sides of the equation must be equal,
and also for j, so that

(7) x = x1 + t(x2 - x), y = y1 + t(y2 - y1)
which are parametric equations of the. line through P1 = (xj,yi) and
P2 = (x2,y2). In case x2 0 x1, then by eliminating the parameter we obtain

Y-Y1=
x - xi (Y2-Y1)=Y2-Y1 (x-x1)

x2 - x1 x2 - x1

which is the ordinary two-point equation of the line.
For A and B numbers not both zero, then

(8) x = x1 + tA, y = y1 + tB
are parametric equations of a line through P1 = (x1,y1). If A = 0 the line has
slope B/A, but if A = 0 the line is perpendicular to the x-axis. Certainly the
graph of (8) passes through P1 as seen by setting t = 0. By setting t = 1,
the graph passes through

P2=(x1+ A, y1+B).
Now the line through Pi and P2 has (by (7)) parametric equations

x=x1+t[(x1+A)-x1], y=y1+t[(Y1+B)-Y1
which are the same as (8) so the graph of (8) is this line. In case A 0, then
this line passing through P1 and P2 has slope

m=(Yi+B)-yi-B
(xi+A)-x1 A
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but if A = 0, then every point on the line has abscissa xl and the line is
perpendicular to the x-axis.

Example 4. Find the point of intersection of the line having parametric equations

(9) x=5+2t, y = 4 + t

and the line having parametric equations

(10) x=-3+t, y=-6+2t.
Solution. If (9) and (10) are considered as laws of motion such that at any time

t the coordinates of the first particle is given by (9) and at the same time those of a
second particle by (10), then the particles will never be together. For the particles
will have the same abscissa at time t satisfying

5 + 2t = -3 + t, i.e., at t = -8,

but at this time the ordinate of the first particle is 4 - 8 = -4, whereas that of the
second is -6 + 2( - 8) = -22. Nevertheless, the paths of the particles may cross,
but the particles go through this intersection at different times.

To see if the paths cross we change the letter designating the parameter in (10)
to s, obtain

(10') x=-3+s, y=-6+2s
and then ask "Is there a number t and a number s such that (by setting the abscissas
equal and the ordinates equal) both of the equations

5+2t= -3+s and 4+t= -6+2s hold?
These simultaneous equations have solution t = -2, s = 4. Upon setting t = -2
in (9) we obtain the point (5 - 4,4 - 2) whereas s = 4 in (10') yields the point
(-3 +4,-6 + 8). Hence, the lines having parametric equations (9) and (10)
intersect at the point (1,2).

PROBLEMS

1. Find a vector equation, then parametric equations, and then an ordinary
rectangular equation of the line through the points.

a. (5,6), (3,4). c. (+J,3), (J,4). e. (3, -2), (4, -2 + m).
b. (250,3), (250,4). d. (3, -5), (4, -5). f. (xo,yo), (x0 + l,yo + m).

2. Find the -distance between the given point and line. Are the point and the origin
on the same or opposite sides of the line?

a. (-54,71); 4x + 3y = 17. d. (8,3); x/2 + y13 = 1.

b. (20,30); 6x - 8y + 15 = 0. e. (-1,6); 3y - 4 = 0.
c. (-60,25); 3x + 7y + 5 = 0. f. (-6,7); x = 1 + 3t, y = 2 - Q.
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3. Find the distance between the parallel lines.

a. 3x + 4y - 8 = 0, c. 0.5x + 1.2y = 7,
6x+8y+9=0. 2.5x+6y+10.5=0.

b.y=4x+5, d.x=1+2t, y=3-4t,
x-y14=1. 2x+y-15=0.

Chap. 8

4. By finding the equation of the line through two points then the distance from
the third point to this line, find the area of the triangle with given vertices
a. (0,0), (3,4), (-1,6). c. (-5,-6), (-1,4), (2,-3).
b. (-6, -3), (5, -1), (2,4). d. (5, - 6), (-3,2), (2, -3).

5. Find the point of intersection of the two lines represented in each of the following.

a. 3.75x+4.35y=2; x=2-5t, y -3+2t.
b. 5x-4y=12; x=4+3t, y=8-6t.
c.x=-5+4t, y=3t; x=1+2t, y=8+5t.
d.x=5-3t, y=-5+t; x=2+t, y=-4+3t.

84. Vector Functions

A set of number-vector ordered pairs having the property "If (a, P) and
(a, V) are in the set, then U = 17" is said to be a vector function whose domain
is the set of all numbers which are first elements and whose range is the set of
all vectors which are second elements. A vector function will be denoted by
P and, for t in its domain, P(t) will denote the "value" of P at t. Compare
this definition of a vector-valued function with the definition (see Sec. 8) of a
real valued function, which will now be called a scalar function.

DEFINITION 84. For P a vector function and t a (constant) vector, then L is
said to be the limit of F at to and we write

limF(t)=L
t-*to

Figure 84.1

if corresponding to each positive number a there is a number
b > 0 such that whenever t is a number satisfying

0<it-toj<6, then IF(t) - Ll < e.

By considering all vectors of t as having the same initial
point as t, then a geometric interpretation of t, being the limit of t at to may
be made. Draw any circle with center at the terminal end of L. Then,
depending upon the radius of this circle, all those members of F having
arguments sufficiently close to to will have directions, senses, and magnitudes
so near to the direction, sense, and magnitude oft that their terminal ends
will lie within this circle.
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For Fl and F2, vector functions, then for each number t in the domain of
both, Fi(t) + F2(t) is a vector. The vector function consisting of all such
vectors is called the sum of Fl and F2. Theorems concerning the limits of
sums and differences of vector functions follow corresponding proof for
scalar functions.

Given a vector function t, its derived function F' is defined by

(1) P(t) = lira F(t + At) - F(t)
At-0 At

whenever the limit exists. The derivative P(t) is also denoted by

Dtt(t) or by
dF(t)

dt

A vector function may be considered as a law of motion of a particle.
With all vectors of F having the same initial end, the terminal end of r(t) is
then the position of the particle at time t. With this
interpretation, the velocity vector (or merely the velocity)oF(r)
v'(t) at time t is defined by

(2) v(t) = F'(t)

The intimate connection between motion and geometry
is seen by drawing the path of the particle. Then for
a number t where P(t) exists and for At 0, the

v'(t)

Figure 84.2

terminal ends of t(t) and F(t + At) are positions of the particle on this
path at times t and t + At and F(t + At) - FE(t) = AF(t) is the vector
from the first position to the second. Also, the vectors

AF(t) and
At(t)
At

have the same direction (along a secant of the path) with senses the same if
At > 0 but opposite if At < 0, whereas the magnitude for the second is less
than for the first if jAtj > 1 but greater than for the first if jAti < 1. Since
P(t) exists, the direction of AF(t)JAt approaches, as At -> 0, the direction
of the tangent to the path at t(t) and the magnitude of AF(t)/At approaches
a definite value. Also, if P(t) # 6 then the velocity vector V(t) is pictured
with initial end at the terminal end of t(t) and lying along the tangent to the
path of the particle with sense corresponding to the way the particle is
proceeding in its path.

For a vector law of motion r, the speed at time t is defined as the scalar

At)I =
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Given a vector function F, considered as a law of motion, then the
associated vector velocity function v is defined and we now define the
acceleration function d by setting

(3) a(t) = v'(t) = F"(t)

for each number t at which W(t) exists.
Given two vector functions Fi and F2 and a number t such that Fl(t) and

F2(t) both exist, then the sum and difference functions both have derivatives
at t and

(4) Dt{Fi(t) ± Fa(t)} = DtFP(t) ± DtF2(t).

The proof follows the pattern of that for scalar functions. Also, for f a scalar
function, F a vector function, and t a number such that f '(t) and P(t) exist,
then

(5) Dtf(t)F(t) =f(t)F'(t) +f'(t)F(t)
and again the symbolic details of the proof can be copied from the proof of
the formula for the derivative of the product of two scalar functions. In
particular, if c is a scalar constant, then

(6) DtcP(t) = cF'(t),

whereas if a is a vector constant, then

(7) Dtcf (t) = ef'(t).

Whenever a vector function is interpreted as a law of motion, then all
vectors of F (but not of 6 or a') are considered as bound vectors; that is, all
vectors of t have initial ends at the same point. Also, "F(t) is the location of
the particle at time t" means that at time t the particle is at the terminal end
of P(t).

Example 1. Given the vector law of motion

(8) F(t) = i'(t3 - 7t2 + 17t - 12) + f(t2 - 7t + 11),

represent graphically F(2), i3(2), and 6(2) and then sketch a portion of the graph near
the point P(2). Also, resolve the acceleration vector tf(2) into its components along
the tangent and along the normal to the path at t(2).

Solution. By substituting t = 2 in (8) we have t(2) = 21+ j. Now

V(t) =P(t) = Dt[t(t3 - 7t2 + 17t - 12) + Dt[.j(t2 - 7t + 11)] (by (4))

= iDt(t3 - 712 + 17t - 12) + jDt(t2 -71 + 11) (by (7))

i(3t2 - 14t + 17) +.j(2t - 7), and
a(t) = tt'(t) = !(6t - 14) + j(2).

Thus 0(2) = i - 31 and ti(2) = -2i + 2j.
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Upon letting dT(2) be the component of n'(2) along the tangent and u'-.(2) the
component along the normal, we have (see Theorem 79)

d(2)-0(2)
U

,
(2)uT(2)

6(2)-6(2)

(-2i + 21) (1 - 3f)
2

i-3.j)(i -3j)

1+96(1-3j)=-5(i-3j)

and since 3i +.1 is a vector along the normal, then

av(2)
(-2i (3 +f)(3i +f)(3i+j)

2_ -5(3i+j). Figure 84.3

Vector derivative systems involve two scalar derivative systems.

Example 2. Solve the derivative system

sin t - 3t1 ; P(O) = 4i + j.

Solution. First F(t) = 1(-cos t + cl) +.j(-t3 + c2) since if x'(t) = sin t then
x(t) = -cos t + cl and if y'(t) _ -3t2 then y(t) _ -t3 + c2. Thus

P(O) = 4-COs 0 + c1) + j (0 + c2) = i(-1 + c1) + c2j = 4 +i
The equality of the coefficients of l and of j gives -1 + cl = 4 and c2 = 1 so that
F(t) = i(-cos t + 5) + j(-3t2 + 1).

Example 3. Let a projectile (considered as a particle) be shot at time t = 0 from
the origin with initial velocity 660 having amplitude a. If the force of gravity g is the
only other force considered (i.e., air resistance, rifling, etc., are neglected) show that
the vector F(t) from the origin to the position of the projectile is given by

Figure 84.4

(9) F(t) =110o1 t cos a + j (I vol t sin a - zgt2).

Solution. Since the projectile is at the origin
when t = 0, then

(10) F(0)=6=0i+0j.
The initial velocity v0 has amplitude a and

(11) F''(0) = vo = 11601 cos a + 11601 sin a.

For t > 0 the only force is gravity. Thus, the
acceleration d(t) has x-component 6 and y-component downward with magnitudeg.
Since] points upward

P" (t) = of - gj.
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Thus P(t) = c11 +/(-gt + c2) so that F'(0) = cl( + c2/. Hence, from (11),
c1 = IN cos a, c2 = Ivol sin a and

P(t) = t1601 cos a +1(Ivol sin a - gt).

By another integration

,r(t) = t(tIt0I cos a + c3) +/(tw'o1 sin (x - jgt2 + c4).

Upon setting t = 0 and then using (10) we obtain c3 = c4 = 0, and thus see that
(9) holds.

PROBLEMS

1. For each of the following laws of motion, find the vectors of position, velocity,
and acceleration and the tangential and normal components of acceleration at
the time indicated. Also, make a diagram showing these vectors and a portion of
the path.

a. F(t)=((t2-t+3)+/(-2+4t t = 1.
b. F(t) ((t2 + 1) + 1t3; t = 2.

d. F(t) _ (sin7rt +/cos7rt; t =.
2. For each of the following find 6(t), d(t), a'T(t), and dN(t).

a. -P(t) = 113 sin t + J2 cos t. d. F(t) = ( sin 2t + / cos t.
b. F(t) = (et + /e2t. e. F(t) = (sink t + 1 cosh t.
c. F(t) = ((2t - 3) + 1(t2 + t). f. F(t) = ( tanh t + / sech t.

g. F(t) = ((cost + t sin t) + J(sin t - t cos t).
h. F(t) = (r(wt - sin wt) +/r(1 - cos cot).

3. With r and co constants a law of motion is

P(t) = (r cos cot +, ' sin wt.

a. Show that the path is a circle and the speed is constant.

b. Show that 6,x(t), 6,(t), adx(t), and d,(t) are all harmonic.

c. Show that d(t) = -w2F(t) and explain what this means.

d. Independently of Part c show that dT(t) = 6 and d.y(t) = d(t).

4. For the law of motion P(t) = ((2t + 1) +/(t2 - 2t) find when the speed is
minimum.

5. For each of the following, find Ft(t).

a. d(t) = 161, 6(0) = 30t, t(O) = 100/.
b. d(t) _ - ( cos t - / sin t, v'(0) _ /, F(0) _ (.
c. d(t) _ (et +/4e 2t, 6(0) _ (- 2/, F(0) = 2(+1.
d. d(t) = -((t + 1)-2 - 2/ sect t tan t, e(0) =1, F(0) _ (.
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6. For F(t) = jet cos t + jet sin t, show that 1(t) P(t) = 0 and interpret this
result geometrically.

7. The 16 lb shot used in athletic field events is relatively so small and travels so
slowly that air resistance may be neglected. For a certain athlete the shot leaves
his hand 6j ft above ground at 40 ft/sec. For a the initial angle of elevation, find
the law of motion of the shot. Show that the distance along the ground to where
the shot hits is (using g = 32 ft/sec2)

S(a) = 5 cos a(10 sin a + v/(10 sin a)2 + 26) ft.

Check that S(45°) = 55 ft 9.9 in. and S(43°) = 56 ft 1.5 in.

85. Curvature

For a particle following the vector law of motion t, consider the normals
to the path at t(t) and F(t + At). Unless these normals are parallel they
intersect and, if they do, the intersection may approach a definite point as
At --> 0. Whenever there is such a limiting point, this point is called the
center of curvature and the vector from P(t) to the center of curvature is
called the vector radius of curvature P (t) of the path at F(t). The magnitude
of a vector radius of curvature is called a radius of curvature r(t).

We now derive formulas for obtaining the center and vector radius of
curvature given that r(t) has the form

F(t) = ix(t) + jy(t)
where the scalar functions x and y have second derivatives.

THEOREM 85. For t a number interior to the domain of both x" and y" and
such that

(1) x'(t)y"(t) - y'(t)x"(t) 0 0
then at t(t) the center of curvature of the path exists and is the terminal end
of the vector

(2) F(t) + RO)
W e - t)

where and then r(t) = jR(t)I, are given by

x'Z(t) + Y'2(t)P V / F(t)i; ' '
(t) - I- zrti(3) Y (t) + ix (t))x'(t)y"(t) - y'(t)x"(t)

, 7
r(t)

=
[X's(t) + y'°(t)]3/2

Ix'(t)Y"(t) - Y'(t)x"(t)I
Figure 85.1

PROOF. Select At 0 but so small that, from (1)

At + At) - y'(t) x'(t + At) - x'(t)
0.(4) x (t)

At
- Y (r)

At
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We shall use the notations x = x(t), Ax = x(t + At) - x(t),
x'(t + At) - x'(t), etc. Thus (4) becomes, after multiplying by At,

(5) x'Ay'-y'Ax' 0.

Chap. 8

Ax' _

Now at the points (x,y) and (x + Ax, y + Ay), normal vectors are

-iy' + Jx' and -i(y' + Ay') + J(x' + f !fix').

The normals themselves intersect if there are numbers a and b such that
(think of the vector from the origin to such a point of intersection via r(t)
and P(t + At))

(6) ix +JY + a[-iy' +Jx']
= t(x + Ax) +J(Y + Ay) + b[-1(y' + Ay') +J(x' + Ax')]

Such numbers a and b must satisfy (by equating coefficients of i and of j)

x-ay'=x+Ax-b(Y'+Ay'), Y+ax'=y+Ay±b(x'+Ax');
that is,

-ay' = Ax - b(y' + Ay'), ax' = Ay + b(x' + Ax').

By multiplying the first by (x' + Ax'), the second by y' + Ay', and adding
we obtain

a[-y'(x' + Ax') + x'(y' + Ay')] = Ax(x' + Ax') + AY(Y' + Ay'), or

(7) a(x' Ay' - y' Ax') = Ax(x' + Ax') + AY(Y' + Ay').

Thus, by (5) there is an appropriate number a, and we need not even find b
to see that the vector OC from the origin to the point C of intersection of
the normals is

Ax(x' + Ax') + Ay(Y' + AY') , 1OC = ix + JY +
x, AY, - J, Ax' (- 1Y + Jx )

(obtained by substituting the value of a from (7) into the left side of (6)).
Now divide both numerator and denominator of the fractional part by At
and use the facts:

lim
x = x'(t), lim

AY/ = y"(t), lim Ax' = lim Ay' = 0, etc.,
At-o At .t--o At

At -> 0 the fractional part approaches R(t) as given in (3), and
thus that the center of curvature is the terminal end of the vector in (2).



Sec. 85 Curvature 269

By considering the intersection of the normals at I(t) and F(t + At)
relative to the convexity of this portion of the path we see that: The vector
R(t) is an internal normal to the path at F(t). We now prove:

COROLLARY 85. The acceleration vector d(t) is on the concave side of the
path at F(t).

PROOF. Let 0, -180° < 8 < 180°, be the angle from d(t) to 4(t) so that,
for the scalar product,

d(t) R(t) = Id(i)I IR(t)I cos 0.

But d(t) = ix"(t) + jy"(t), and since

[ix"(t) + jY"(t)] . [- iy'(t) + jx'(t)] = -x"(t)y'(t) + Y"(t)x'(t)
we see (using (3)) that also d(t) R(t) = xj2(t) + y'2(t). Thus

Id(t)I IR(t)I cos 0 = x'2(t) + y'2(t) > 0 so cos 0 > 0.

Hence, the angle 0 from d(t) to the known internal normal vector R(t) is
such that 101 < 90° and thus d(t) also points into the region on the concave
side of the path at F(t).

The path for the vector law of motion t is said to have circle of curvature
at 1(t) that circle whose center is the center of curvature and whose radius
is r(t).

Example 1. Find an equation of the circle of curvature at F(1) given that
t(j) = tai + 2t2j.

Solution. Here x(t) = t3 and y(t) = 2t2. Thus, we obtain

x(l) = 1, y(l) = 2, x'(1) = 3, x"(1) = 6, y'(1) = y'(1) = 4 and
x'(1)y"(1) - y'(1)x"(1) = 3.4 - 4-6 = -12 T 0.

Hence, the center of curvature at F(1) = I + 2j exists and is the terminal end of the
vector

32+42 28 17i+2j+ -12 (-4i+3j)

Thus, the circle of curvature has center (3A, - 161) and radius

r(1) - (25)3/2 - 125

-121 12

A vector and a rectangular equation of the circle of curvature are

28) , 17) 2 32 + 42 2

[(x_T)i+(Y+--)i] 12
(-4i + 3j)I

X
28)2 ( 17)2- (125)2.

- 3 + y+ T 12
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To obtain the center of curvature and vector radius of curvature at
(x, f (x)) for the graph of a scalar function f we may parametrize the graph
by setting

x=t, Y=f(t)
to obtain the vector function Fi(t) = tt + jf (t). Now (3) and then (2) become

(8)
A (t) -

1 -i- f
Q(t)

(-if'(t) +J) and
1

1

f'z

C(t) = F(t) + R(t) = it +.lf(t) + (-f'(t) +I).

Hence, in. the original rectangular coordinates, the center (h(x),k(x)) of
curvature and the radius of curvature at (x, f (x)) are

(2') h(x) x - f '(x)
2

(x) k(x) = f (x) +
1 + f,2(X)

f and=

f 2(x) ,2 3/2

)]= [ (x ]2L( f'(x))2 + 1] =
[1

f
f "(x) 0.

The reciprocal of the radius (not the vector radius) of curvature is called
the curvature K of the graph at the point considered. Hence, formulas for
curvature of graphs of F and f are

__ I x'(t)y"(t) - Y'(t)x"(t)I If"x)I
(9) K [x'2(t)

+ y'2(t)]3/2
and K = El +

f,2(x)]312

The notion of curvature is also extended to those graphs for which
x'(t)y"(t) - y'(t)x"(t) = 0 or f"(x) = 0, but in such cases no radius of
curvature exists. Thus, every straight line has curvature zero at each of its
points.

Example 2. Show that at each point of a circle, the curvature is the reciprocal
of the radius of the circle.

Solution. A vector equation of the circle is P(t) = i'a cos t + Ja sin t. Now
x'(t) = -a sin t, x"(t) = -a cos t, y'(t) = a cos t, y"(t) -a sin t, and from (3)

[(-a sin t)2 + (a cos t)2]3/2 a3

1(-a sin t)(-a sin t) - (a cos t)(-a cos t)I a2 a

A railroad track goes from a straight section to a circular section by means
of a transition (or easement) curve whose curvature continuously increases
from zero at contact with the straight section to the reciprocal of the radius
of the circular section and moreover the transition curve is tangent to both
the straight and the circular sections.
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Example 3. A section of railroad track coincides with the negative x-axis, then
along the graph of y = 3x3 for 0 < x S 1, and then along the circle with center at
(0i3). Show the curve, the slope function, and the curvature are all continuous.

Solution. Letf(x) _ Jx3. Since f (0) = 0 and f (1) = 1, the transition curve makes
proper contact and the whole graph is continuous. The straight section has slope 0,
the circular section has slope 1 at (1,3) and, since f'(x) = x2, also f'(0) = 0 and f'(1)
= I so the slope function is continuous. The
circle has radius V-2 and thus curvature 1/,/2.
Since f "(x) = 2x, the curvature for the transition
curve is

f

2x

K(X) tl + (X2)2]3/2' 0 < X G 1

so K is continuous on this section. But K(O) = 0
and K(l) = 1/V'2 which are the proper values at
both ends of the transition curve. So K is con-
tinuous throughout.

PROBLEMS

Figure 85.2

1. Find an equation of the circle of curvature for the graph of:

a. y = x2 at (-2,4). e. y = sin x where x = 7r/4.
b. y = x2 at (0,0). f. y = I(ex + e -x) where x = 0.
c. y = x3 at (1,1). g. y = In x where x = 1.
d. xy = 2 at (1,2). h. y2 + xy = 1 at (0,1).

i. t (t) = (2t - 1)i + t2f when t = 2.
j. 'r(t) = it2 + f l of when t = 0.
k. F(t) = It sin t + f cos 2t when t = -7r/6.

1. F(t) = tt + jet when t = 0.

2. Show that the graph of the following pairs of equations intersect at the given
point and at this point have common tangents and curvatures.

a. y = x, y = x3 + X; (0,0).

b. y = x - 1, y = x3 - 3x2 + 4x - 2; (1,0)

c. y=8x3+ix2-ix
1 - 1 1(1sin(x-1)n+x2+ x

7T

3. A railroad track is to go along the negative x-axis, then along a transition curve
to the point (3,1), and then on an arc of a circle. Find the center of the circular
arc if the transition curve has equation in the form

a. y = ax3 b. y = ax4 c. y = ao + ax + a2x2 + a3x3.
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4. A railroad goes along the negative x-axis, then along a transition curve to the
point (4,1), and then along a circular arc with center (1,5). Find an equation of
the transition curve in the form -

y = a0 + alx + a2x2 + a3x3 + a4x4 + a5x5.

5. For the curvature function is of Example 3, show that the derived function Cl
is not continuous.

86. Rectifiable Curves

With a < b and f a continuous function on I[a,b], the question of assigning
a length to the graph off between the points (a, f (a)) and (b, f (b)) is attacked
as follows :

(i) Let Onx = b - a and
n

(x2,Tlx2JJ (5g,f(52))((a (a)) /I- NI-I xk=a+kb - a
for

(b,j(b)) n

(a,0) (x,,O) (52,0) (53,0) (x4,0) (b,0)

Figure 86.1

k= 0, 1, 2,...,n.
(ii)/ Join the points

/
(xO,J (x0)),

/(Xl,f(x1))' (x2,{

J(X2)),
.. .

, (Xn-1,f(Xn-1)), (x ,f(x ))
in succession by line segments, thus forming an inscribed polygon.

(iii) Find the sum of the lengths of these segments:

(1) V(Xk - Xk-1)2 + [f(X/c) -f(Xk-1)]2
k=1

G V [t nx]2 + [f(Xk) -f(Xk-1)12
k=1

_ n 1 + If(Xk) -f(Xk-1)]20 X.
k=1 L Lynx

(iv) Whenever the limit as n --> .co of such sums exists, the value of this
limit is denoted by s, is defined to be the length of the arc considered,
and this arc is said to be rectifiable.

THEOREM 86. For f a function such that f is continuous on I[a,b], then the
arc of the graph of f joining the points (a, f (a)) and (b, f (b)) is rectifiable and
has length

(2) s =J.1/1+f'2(x) dx.

For a proof of this theorem see Appendix A5.
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Example 1. Find the length of the arc of the parabola having equation y = xz
between the points having abscissas 1 and 3.

Solution. Here a = 1, b = 3, f (x) = x2, f '(x) = 2x, 1 + f '2(x) = 1 + 4x2, and

s-fl',/1 +4x2dx=2Ji
(2)2

+x2dx

=2
{x(2)2

+x2+1nIx+J 4+x2

3 X37 - tir + 1 In 6 + V371
=2k 2 2+ v's

A formula which is considered to be equivalent to (2) is

s=fao J1+(dy)z
dx.

dx
(3)

A convenient way of remembering (3) (and
thus (2)) is to think of a curve joining two
points (a,c) and (b,d) and then to consider,
with Axk > 0, that

(a,c)
(xk ,bk)

Oxx..

AY'..
(b,d)

)

V(Oxk)z + (1 Yk)2 = l 1 +
()2

Oxk Figure 86.2.I Axk

is the length of one chord of an approximating inscribed polygon.
Should the curve be the graph of x = g(y) with c < d, then consider

AYk > 0, and form

V(AXk)2 + (AYkz =
()2

+ 1 DYk
AYk

to obtain the pattern for the integrands in

(4) s =f4
C

(dx)z + 1 dy =ff Vg'2(Y) + 1 dy.

Example 2. Find the length of the graph of y3 = 8x2 joining the points (1,2)
and (27,18).

Solution. Now y = 2x2(3 sod = 3 x lt3 and

_ 27 16

s =f1
1+ 9 X 2i3 dx.



274 Vectors

But upon solving the given equation for x instead of for y, then

= 1

Y312

dx = 3 y112 dx 2 9
x

/8 dy 2'/8
'dy) + 1 32 y + 1, and

s=J2s A32 y+ldy.

Since the second integrand is easier to evaluate, we proceed with it:

s - 8 3 y + 1)3/2 3],8 = 2 {(97)3/2 - 125).

Chap. 8

We shall not prove (but shall use) the fact that if the law of motion of a
particle is

x = x(t), y = y(t) for a < t < #

(the derived function x' and y' being continuous), then the total distance
traveled by the particle during this time interval is

(5) s =fz Jx'2(t) + y'2(t) dt

even if the particle retraces on its path.

Example 3. Find the distance traveled by a particle whose law of motion is

x = 2 sin t, y = J(1 - cos 2t), 0 <_ t :51r.

Solution. We could analyze the problem to see that the answer is twice the length
of a parabolic arc from (0,0) to (2,1), but proceeding directly have (since x' = 2 cos t
and y' = sin 2t) that

s = f o ''4 cos2 t + sine 2t dt = f o v'4 cos2 t + (2 sin t cos t)2 dt

=foV4cos2t(1 +sinet)dt = 2fo costIV1 +sinetdt

= 2{ f' i`cos t v' 1+ sine t dt + f its( -cos t) V 1 sine t dt}

since cos t > 0 for 0 < t < /2, but cos t < 0 for 7r/2 < t <- ir. Now by changing
the dummy variable to u where u = sin t and du = cos t dt,

s=2{f'V1+u2du0\/1+u2du}

= 2{ fov'1 + u2du + foV 1 + u2du} = 4f01'%/ 1 -+u2 du

= zCuv'l -+u2 +InIu + Vi -+u21 ] 2[V2 + In (I + V2)].
0
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For the graph off on I[a,b] let s be the function also on I[a,b] defined by

s(x) = f
Q

V 1 + J"2(t) dt, a < x < b.

By the Fundamental Theorem of Calculus, s'(x) exists and

s'(x) = J1 + f'2(x) for a < x < b.
Since (by the definition of differentials) ds = s'(x) dx, we have

(6) ds = V1 + f,2
(x) dx

which is referred to as the differential of are length. We may also write

(7) ds = 1 + (L) dx, ds =
(dx) 2

+- 1 dy
Y

or in the parametric case with s increasing as t increases

(8) ds ='J(dx)2 + (dy)2 = .Jx7(t) + y"(t) dt.

PROBLEMS

1. For each of the following, find the length of the graph between the points
indicated.

a. y = 3(e5 + e--11) points with abscissas -1 and 1.
b. y = In sin x, points with abscissas 7r/4 and 7r/3.

c. y = In (1 - x2), points with abscissas 0 and 0.9.
d. y = e points (0,1) and (1,e).

e. y = In (x + Vx2 - 1), points with abscissas 2 and 3.
f. y = 3x' points with abscissas 1 and 2.

2. Find the circumference of a circle (a) by using rectangular coordinates, (b) by
using parametric equations.

3. For each of the following laws of motion, find the distance traveled by the particle
during the given time interval.

a.x=2t+1, y=t2; 1 <t<3.
b. x =cost, y =cost t; 0 <t <27r.
c.x=2t2, y=t3; -1 <t<1.
d. X = t2, y = bt5J2; 0 <_ t < 4.
e.x=2t-t2, y=(t-1)2; 0 <t <2.

4. a. Find the length of one arch of the cycloid. (See (2) Sec. 82).

b. For the special hypocycloid of Prob. 1 e, Sec. 82, find the length for 0 < 0 < 2,r.



276 Vectors Chap. 8

87. Parametric Derivatives

The parametric equations

(1) x = x(t), y = y(t)

and the vector function P defined by t(t) = ix(t) + jy(t) have identical
graphs. Moreover, assuming the existence of derivatives, the velocity function
v' is such that v(t) = ix'(t) + jy'(t) is a vector along the tangent to the graph
at the point (x(t),y(t)) so that this tangent has slope

Y (t) = Dty(t)
x'(t) Dtx(t)

provided x'(t) 0 0.

With x'(t) 0, then the ordinate of any point on a portion of the graph may
be determined from the abscissa of the point; that is, there is a function
expressing y in terms of x for (x,y) on the graph. Whether or not an explicit
expression can be found for y in terms of x, a function does exist and has a
derivative, denoted by Day, whose value at a point is the slope of the graph
at the point so that

(2)
Dty(t)Dxy =
Dtx(t)

Example 1. For x(t) = sin t and y(t) = cos 2t, then

Dt cos 2t _ -2 sin 2t _ sin t cos t
D2y

Dt sin t cos t -4 cos t = -4 sin t, cos t 0.

Formula (2) may be used repeatedly to find derivatives of higher order.
Since D y = Dx[Dxy], replace [Day] by the right side of (2) to obtain

DtDty(t)
11

Dz rDty(t)l LDtx(txy )JD.LDtx(t)J
Dtx(()

Dtx(t)D,[Dey(t)] - Dcy(t)D,[Dtx(t)]
[Dtx(t)]Z

Dtx(t)

_ Dtx(t) Di y(t) - Dty(t) DZx(t)

[Dtx(t)]3

It is usually better, however, when specific expressions for x(t) and y(t) are
given, to first express Dxy specifically in terms of t.
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Example 2. Find Dxy given x(t) = sin t, y(t) = cos 2t.

Solution. Had we not already done so in Example 1, we would first find Dxy =
-4 sin t. Now

Dy = D5(Dy) D,,(-4 sin t) =
Dt(-4 sin t) from (2) with y replaced by

Dtx 4 sin t
-4 cost _ -4 cost
Dt-sin t cost

_ -4.

A formal procedure is to start with (1), use differentials, write dx = x'(t) dt,
dy = y'(t) dt, and then divide to obtain

dy _ y'(t) dt = y(t) = Dty(t)
dx x'(t) dt x'(t) Dtx(t)

which is equivalent to (2). A further equivalent expression entirely in terms
of differentials is
(3) dy _ dy/dt

dx dx/dt

Given a rectifiable graph and a fixed point PO on it, then any point
P = (x,y) of the graph is at a definite distance along the graph from P0.
Considering s as measured along the graph positively in one direction from
PO but negatively in the other direction, it is usual to write

x = x(s), y = y(s)

and to say "The graph is parametrized in terms of arc length."

Example 3. For a function f show that T. tan1 f'(x) , where f '(x) = Dx f (x),

is the formula for curvature. (See (9) of Sec. 85)

Solution. Schematically -ds ] ddx ] ds
so that, with tan 1 f'(x) placed inside

both brackets,
d [tans f '(x)] _ d[tan 1 f '(x)] dx

ds dx ds
d
dxf (x) dx

I + f A (x) /I + f ,2(X) dx

The last step followed from the formula for the derivative of the inverse tangent
function and ds = VI + f i2(x) dx as given in (6) Sec. 86. Thus

d tans f'(x) = f "(x)
TS [1 + f '2(x)]32
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and the absolute value of the right side is the formula (9) of Sec. 85 for the curva-
turet function K.

PROBLEMS

1. Find D,,y and Dzy given that:

a.x=2t, y=its. e.x=te-t, y=et.
b. x = 3 cos t, y = 2 sin t. f. x = et, y = 1 + t2.
c. x = sin 26, y = sin 6. g..x = 1 + t2, y = e2t.

d. x = a cos3 6, y = a sin3 0. h. x = In t, y = t.

2. On the graphs of each of the following pairs of parametric equations find the
points where the tangents are parallel to the coordinate axes.

a. x = it, y = $(12t - t3). c. x = sin 6, y = cos 26.

b.x=2+5cost, y=3+5sint. d.x=t2-1, y=t3-t.
3. For the law of motion P(t) = ix(t) +.jy(t), and with s increasing as t increases

show that

ds
a.

dt
is the speed.

b. T = z is unit tangent vector to the path.

dT dT dT
c. Find

dt
,

ds
and show that

ds
R = 1.

1

(Note: For this reason
R

is sometimes defined to be the expression obtained
dT

for
ds

and is called the curvature.)

88. Rotation of Axes

Given a coordinate system in the plane and a vector v with modulus a
and amplitude a, then

v=a(icosa-f-jsin a), a > 0.

Upon rotating v' about its initial end through an angle 0 (where rotation is
counterclockwise if 0 > 0, but clockwise if 0 < 0), then the vector P is
obtained where

i7 = a[ It cos ((x + 0) + j sin (a + 0)].

t Some books use the expression on the right as it stands for the curvature in rectangular
coordinates so the curvature will be positive on concave upward portions, but negative on
concave downward portions. It is possible (although more involved) to provide for negative
curvatures for graphs defined parametrically, but we do not bother here since the vector
radius of curvature gives full information about the concavity properties of the graph.



Sec. 88 Rotation of Axes

In particular cos 0° + J sin 0° and J'= I cos 90° + J sin 90° yield

I=icos0+Jsin0 and
J=tcos(90°+0)+jsin(90°+0)

=-?sin0+jcos0.

279

Consider now a second coordinate system in which I Figure 88.1
and j are the basic unit vectors. A point P has coordinates
(x,y) in the first system and (X, Y) in the second system. The vector OP,
with 0 the common origin, may be written both as

OP=ix+Jy and as OP= IX +JY.
Thus Ix + jy = IX + JY and from the above expressions for f and J

ix +jy=(icos0+Jsin 0)X+(-isin 0+Jcos6)Y
= I(X cos 0 - Y sin 0) + J(X sin 0 + Y cos 0).

P Hence x, y, X, Y, and 0 are related by

Figure 88.2

(2)

(1) y = X sin 0 + Y cos 0.

Upon solving these equations for X and Y in terms
of x, y, and 0 we obtain

X=xcos0+ysin0
Y = -x sin0+ycos0.

Both (1) and (2) may be remembered by the schematic array

(3)

X Y

x cos 0 -sin 0)

y (sin 0 cos 0 )

The XY-system is said to be a rotation of the xy-system through the angle 0.

Example 1. A graph has equation 3x2 + 2V 3xy + y2 + 2x - 2V 3y = 0.
Find an equation of the same graph referred to an XY-system obtained by rotating
the xy-system through the angle 0 = 30°.

Solution. By setting cos 0 = cos 30° _ V2 and sin 0 = z into the array (3) (or
into (1)) we obtain

(4) x = J(' \13X - Y), y = J(X + V3 Y).

(x,11)
(X.Y) x=Xcos0-Ysin0,
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Now these expressions substituted into the given equation yield

4(,13X- Y)2+243(V3X-Y)(X+V3Y)+4(X+ IV 3y)2

+(V3X-Y)-V3(X+V'3Y)=0.
The algebra should be carried out to show that this expression simplifies to X2
Thus, the graph of the given expression is a parabola.

Had we been asked for the xy-coordinates of the focus and the xy-equation of
the directrix of this parabola, we would proceed as follows. Since the equation
X2 = Y may be written as

X2 = 4(D Y,

the XY-coordinates of the focus are (0,J) and the XY-equation of the directrix is
Y = - . Hence, upon setting X = 0 and Y = in (4) we obtain x = -a anda
y = '3/8 the in the the the

set in of to obtain

x
2

y = 2(X - 43).

These are parametric equations of the directrix and upon eliminating X between them
we obtain the xy-equation of the directrix as

2x - 2V3y = 1.

Another way of arriving at this equation of the directrix is to set cos 8 = V3/2 and
sin 8 = j in the second equation of (2) to obtain Y = (-x + 'V3y)/2 and then
substitute Y = -J.

Example 2. Given the equation ax2 + bxy + cy2 + dx + ey + f = 0 with
b 0 0. (a) Rotate the axes through an angle 8 and find the resulting equation. (b)
Obtain a condition in terms of a, b, -, that 8 must satisfy in order that the XY
term of the equation of Part (a) have coefficient zero.

Solution (a). Upon substituting x and y as given by (1) into the given equation
and then collecting the X2, XY, - terms we obtain

{a cost 8 + b sin 8 cos 8 + c sin2 8}X2 + {b(cos2 0 - sin2 8) - 2(a - c) sin 8cos B}XY

+ {a sine 8 - b sin 8 cos 0 + c cost 8} Y2 + {d cos 8 + e sin 8}X

+ { -d sin 8 + e cos 0} Y + f = 0.

Solution (b). The coefficient of XYis zero if and only if 8 satisfies the equation
b(cos2 0 - sine 8) - (a - c) 2 sin 0 cos 0 = 0; that is

(5) b cos 20 = (a - c) sin 20.

Now sin 28 0 0. [For if we set sin 20 = 0 in (5) we obtain cos 20 = 0 (since b 0 0)
which cannot be, since no angle has both its sine and its cosine equal to zero.)
We therefore divide both sides of (5) by the non-zero term b sin 28 to obtain

cos20_a-c a-c
sin 26 b ; that is, cot 20 =

b
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The following theorem is a statement of the facts established in Example 2.

THEOREM 88. The graph in the xy-system of the equation

(6) ax2+bxy+cy2+dx+ey+f=0 with b00
will be the graph of an equation of the form

AX2 ± CY2 + DX + EY + F = 0 (with no XY term)

in an XY-system obtained by rotating the xy-system through any angle e such
that

(7)
cot20=ac

b

Example 3. Name the conic which is the graph of

(8) 2x2 - 3xy - 2y2 - 5 = 0.

Solution. Here a = 2, b = -3, and c = -2 so a rotation through any angle
B such that

2 -(-2) 4
cot 28 = _3 3

will yield an equation we can classify. There is an angle in the second quadrant
whose cotangent is - a and we choose this angle for 20 so 8 will be in the first
quadrant. Now cot

20

= - 3, 20 is in the second quadrant, cos 28 = - s, cos 8 > 0,
sin 8 > 0, so that

1
cos 8 =

2 2 5 = X10
and sin 8 = .V10

These values substituted into (1) give the rotations

_ 1 1

x X10 (X - 3 Y), y = J10 (3X + Y).

The substitution of these expressions for x and y into (8) yields an equation which
simplifies to y2 - X2 = 2 which (of course) has no XYterm and moreover shows
that the graph of (8) is a hyperbola.

(Note: We never found 8 itself. Should we wish to draw the graph of (8), we
would draw the X-axis through the xy-point (1,3), since tan 0 = sin 8/cos 0 = 3,
then draw the Y-axis and relative to these axes sketch the graph of Y2 - X2 = 2.)

PROBLEMS

1. Draw the graph, if one exists, of each of the following equations by first rotating
the axes through the angle given.

a. x2 + 4xy + y2 = 1; 45°. f. 14x - 3y) + 13x + 4y1 = 5; tan'().

b. 2x2 - 2xy + 2y2 = 1; 45°. g. 7x2 - 2 V3xy + 5y2 + 4 = 0; -30°.
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c. 2x2 + 2V3xy = 1 ; 30°. h. x2 + y2 + 2(xy - x + y) = 0; -45'.
d. x2 - y2 = 1; 45 °. i. 16x2 - 24xy + 9y2 = 25; cot-1(- 3).

e. Ix - yj + Ix + yi = "/2; 45°. j. x2 - 2V 3 x y - y2 = 4; tan 1 V3.

2. Let A, B, and C be the coefficients of X2, X Y, and y2 in the equation of Example
2(a), with no restriction on 0. Show that

B2 - 4AC = b2 - 4ac.

(Note: For this reason b2 - 4ac is said to be an invariant under rotation.)

3. Find the foci, vertices, etc., of the conics having equations

a. 4(x2 + y2) + xy = 63. c. 12xy + 5y2 = 36.

b. 12xy - 5y2 = 1. d. x2 + xy + y2 = 0.

e. 16x2 - 24xy + 9y2 - 15x - 20y = 0.

89. Polar Coordinates

With a > 0 and a any angle, the vector

a(i cos a + I sin a)

has magnitude a and a is an amplitude. Thus the vector

-2(i cos 30° + I sin 30°)

does not have magnitude -2 nor is 30° its amplitude.
For p a positive, negative, or zero number and for 0 any angle, the vector

p(i cos 0 + I sin 0)

with initial end at the origin has its terminal end at a point which is said to
have polar coordinates (p,0). The origin is termed the pole and has coordinates
(0,0) for any angle 0. As well as the pole, any point has indefinitely many
pairs of polar coordinates. For example,

-2(i cos 30° + I sin 30°) = 2(1 cos -150° + j sin -150°)
= 2(i sin 210° + j sin 210°) = etc.

(2,60°) and the terminal end of this vector has polar
(-2,-120°)

(-1.5,270 (2 -300°) coordinates
(-1.5,-90° )

,

(1,-150°) I
(-1,30°)

(-2,30°), (2,-150°), (2,210°), etc.

Figure 89.1 illustrates some other points and
some of their polar coordinates. On the other

Figure 89.1 hand, given any number p and any angle 0,
then there is one and only one point having

polar coordinates (p,O).
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The half line consisting of all points with polar coordinates (p,0°) with
p > 0 is called the polar axis.

The polar graph of an equation in p and 6 is, by definition, the set of
points such that a point belongs to the set if and only if at least one of the
pairs of polar coordinates of the point satisfies the equation.

Example 1. Sketch the polar graph of p = 3 cos 20.

Solution. Quadrant-by-quadrant tables of corresponding values of p and 0
together with the related section of the graph are given below:

8 0° 30° 45° 60° 90°

20 0 60° 90° 120° 180°

cos 20 1 1 0 -1 -1

P 3 1.5 0 -1.5 -3

8 90° 1200 135° 150° 180°

20 180° 240° 270° 300° 360°

cos 20 -1 -1 0 1 1

p -3 -1.5 0 1.5 3

0 180° 210° 225° 240° 270-

20 360° 420° 450° 480° 540°

cos 26 1 1 0 -1 -1

p 3 1.5 0 -1.5 -3

0 270° 300° 315° 330° 360°

26 540° 600° 630° 660° 720°

cos 20 -1 -1 0 1 1

p -3 -1.5 0 1.5 3

(1.5,150°) 00,1351)

(3,180°)

(3,0°)

The curve then proceeds to repeat each section. The pieces are put together in
Fig. 89.2 of pg. 284.

When the equation involves trigonometric functions, then after some
experience the whole graph can be obtained from a portion of it. For
example, since

cos 2(0 + 90°) = cos (20 + 180°) = -cos 26
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the portion of the graph in Example 1 corresponding to angles in the
second quadrant can be predicted from the first quarter. Then since

Figure 89.2

cos 2(0 + 180°) = cos 20 (or cos (-0) = cos 0)
the graph is symmetric to the line containing the
polar axis so the rest of the graph is obtained by
symmetry.

Example 2. Sketch the polar graph of p = 28.

Solution. This is interpreted to mean that for each
point the number p is one-half of the number of
radians in the angle. Hence, the points

(0,0), (7,/12,-/6), (7r/6,7r/3), (7r/4,ir/2), (r/3,2n/3)

are on the graph. For purposes of graphing, these
points are listed (with values of p approximated from ir = 3.14 and angles changed
to degree measure) as

(0,0°), (0.26,30°), (0.52,60°), (0.79,90°), (1.05,120°), etc.

Figure 89.3 shows part of the graph, with the dotted portion corresponding to
negative values of 0. The graph is called an Archimedes spiral.

Notice, for example, that the point (7T/12,390°) lies on the graph even though the
coordinates given as (7r/12,134./6) do not satisfy the equation p = 10.

Figure 89.3

With a rectangular coordinate system in the plane, and a polar coordinate
system having pole at<the origin and polar axis along the positive x-axis, the
rectangular coordinates (x,y) of a point and any of the polar coordinates (p,0)
of the same point. are related. For the vector from the origin-pole to the
point may be-written either as

ix+jy or as p(icos0+jsin0) .

so that ix -{- jy = a p cos 0 -f- j p sin 0 and therefore

(1) x = PC . Os9; y = p sin 0, and

p=Vx2+y2 if p>-0, but p=-VX2-{-y2 if p<0.
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Example 3. Find the rectangular equation of the graph having polar equation
p = 3 sin 40.

Solution. By using trigonometric identities

p = 3 sin 40 = 3 sin 2(20) = 6 sin 20 cos 20
= 6(2 sin 0 cos 0)(cos2 0 - sin2 6) = 12(sin 0 cos3 0 - sin3 0 cos 0),

p5 .= 12[p sin 0(p cos 0)3 - (p sin 0)3 p cos 0], and

± (x2 + y2)5/2 = 12(x3y - xy3).

PROBLEMS

1. Describe the polar graphs of the equations:

a.p=3sin20. c.p=cos30. e.p=20.
b. p = sin 0. d. p = cos 40. f. 2 = 0.

2. Sketch the rectangular graph of y = f(x) and the polar graph of p =f (0) given:

a. f(t) = cos t. C. f(t) = I + cos t. e. f(t) = sin it.
b. f(t) = sin 2 I. d. f(t) = sin 3t. f. f(t) = 4.

3. Draw the graph of p = a + 2 cos 0 for:

a . a = 1 . b. a= -1. c. a = 2.

4. Draw the graph of p = sin (0/2) for 0 < 0 < 720°. Notice that the same graph
is obtained for p = cos (0/2).

5. Find an equation whose rectangular graph is the same as the polar graph of:
a. p = 4 cos 30. c. p = 3 sin 6 + 4 cos 6.
b. p cos 36 = 4. d. p = 3 csc 0 + 4 sec 0.

6. Transform to polar coordinates:

a. (x - 2)2 + (y + 3)2 = 4. C. (x2 + y2)(x - a)2 = b2x2.

b. xy = 4. d. y2(2a - x) = x3.

90. Polar Analytic Geometry

A. ALTERNATIVE EQUATIONS. Given a number p and an angle 0, then a
single point has all of the designations

(p,0), (- p,0 + 180°), (- p,8 - 180°), (p,0 + 360°), (p,0 - 360°), .. .

all of which may be written as ((-1)"p, 0 + n 180°) for n = 0, ± 1, ±2,
As a point has alternative designations, so a graph may have alternative
equations. In fact, given a function f, then the equations

(1) p = f(0) and p = (-1)"f(0 + n vr)
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have the same graph. For if (pl, 01) is a designation of a point on the first
graph so that pl = f (81), then this point is also on the second graph with
designation

((-1)'zpl, 81 - nit).

Conversely, any point on the second graph is on the first graph.

Example 1. Find the different equations of the graph one of whose equations is
p = sin j6.

Solution. From (1), possible equations of this graph are

p = (-1)'° sin J(6 + n 180°)

for n an integer. For n = 0, 1, 2, 3, these equations are

p = (-1)0 sin j(6 + 0 180°) = sin J6,

p = (-1) sin J(6 + 180°) = -sin (j6 + 90°) _ -cos #6,

p = (-1)2 sin j(6 + 2 180°) = sin (J6 + 180°) _ -sin 28,
p = (-1)3 sin J(6 + 3 180°) = -sin (16 + 270°) = cos J6.

For n = 4, 5, 6, 7, etc. (or n = 0, -1, -2, -3, etc.) the same equations are
obtained. Thus

p = sin 16, p = -cos j6, p = -sin 10, and p = cos J6

all are equations of the same graph.

B. INTERSECTIONS OF GRAPHS. The graph of p = 18 is an Archimedes
spiral (see Example 2, Sec. 89) and the graph of 8 = 7T/6 is a straight line.
Upon solving p = 16 and 0 = Tr/6 simultaneously, the only point obtained
is (1r/12,w/6), although both the spiral and the line pass through the pole and
the line intersects the spiral repeatedly. The spiral and line also have equations

p = (-1)"4(B + n7r) and 0 = 6 + mir.

Upon solving these equations simultaneously, the points of intersection are

(6+ mlr + nir), 6 + mir)

for all possible combinations of integers m and n. Also, the pole is on both
graphs. The principle illustrated is:

To find the intersection of two polar graphs,
(1) Check whether the pole is on both graphs, and then
(2) Solve each equation of one graph simultaneously with each equation

of the other graph.
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Example 2. Find the points of intersection of the graphs of

-2
p 1 +cos0 and p =2 + cos0-

Solution. Neither graph passes through the pole since in either case p = 0 leads
to an incompatible equation.

Since alternate equations of these graphs are, respectively,

-1 2
p 1 - cosO and p = 2 -cos 0

we must check the following four equations for possible solutions

1 -2 1 2

1 +cos 0 2 +cos 0' 1 +cos 0 2- cos 0'

-1 -2 -1 2

1 - cos B 2 +cos 0 ' 1- cos e 2 -cos 0

The first equation leads to 2 + cos 0 = -2 -2 cos 0, 3 cos 0 = -4, cos 0 =
-; which has no solution.

From the second equation 2 - cos 0 = 2 + 2 cos 0 and hence 0 = 90° +
m 180°. These values substituted in either of the pertinent equations gives p = 1
if m is 0 or an even integer but p = -1 if in is an odd integer. Since (1,90°) and
(-1,270°) designate the same point we give (1,90°) as the simplest designation of
the point.

From the third equation we also first obtain cos 0 = 0, then 6 = 90° + m 180°,
but this time p = -1 if m is zero or an even integer, but p = 1 if m is an odd integer.
Thus, the simplest designation is (-1,90°).

The fourth equation simplifies to cos 0 = 3, which has no solution.
Thus, these graphs intersect at the points (1,90°) and (-1,90').

PROBLEMS

1. Find the equations of the graph of:

a. p = 4 cos 0. C. P = cos 20. e. p =sin 0J.
b. p = 4 sin 26. d. p = 1. f. P = 0.

2. Find the points of intersection of the graphs of the pair of equations:

1 -2 1 1

a.p 1-sin0'p =T sine. d. p 1-sin0'p 1 +sin0'
b. p = I - sin 0, p = cos 20. e. p = cos 0, p = '\/3 sin 0.

c. p = 1, p = 2 sin 30. f. p = cos 0, p = cos 20.

3. Find the points at which the graph of the given equation intersects itself.

a. p = sin 20. b. p = cos'0. c. p = 1 + 2 cos 20.
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C. DISTANCE FORMULA. The polar coordinate points (pl,01) and (p2i02)
are the terminal ends of the vectors

61= p1(icos01+if sin 01) and 62= p2(icos62±jsin02).
Thus v = v2 - 61 ='(P2 cos 02 - PI cos 01) + j(p2 sin 02 - Pl sin 01) is the
vector from the first point to the second, and the square of the distance
between the points is/

1612 = 6.6 = (P2 cos 02 - Pl cos 81)2 (P2 sin 02 - Pl sin 01)2

P2(cos2 02 + sin2 02) + pl(cos2 01 + sin2 01)

- 2P2P1(cos 02 cos 01 + sin 02 sin 01)

P2 + P1 - 2P2P1 cos (02 - 00-

A formula for the distance between the points (pl,01) and (p2,02) is therefore

(2) JP2 + Pi - 2P2P1 cos (02 - 01).

Also, a point (p,0) lies on a circle with center (p1,01) and radius jai if and
only if

(3) a2 = P2 + pi - 2PPl cos (0 - 01).
Thus (3) is an equation of this circle. In particular for Pl = a, equation (3)
becomes a2 = p2 + a2 - 2pa cos (0 - 01); that is, p2 = 2pa cos (0 - 01).
From this we obtain (even whenever p = 0) that

(4) p = 2a cos (0 - 01)

is an equation of the circle with center (a,01) and radius jai.

D. LINES. Any line through the pole has 0 = k as an equation.
Let 1 be a line not through the pole, and let 61 be the vector from the pole

to 1 and perpendicular to 1. Hence, for (p1,0) any designation of the terminal
end of 6'1, then

61 = Pl(I cos 01 +J sin 01).

Now let (p,0) be a point in the plane and let

6=p(icos0+jsin0).
The point (p,0) will be on I if and only if v - 61 is perpendicular to 661; that
is, if and only if

0=(6-v1)-61
_ [i(p cos 0 - Pl cos 01) +.j(p sin 0 - pl sin 01)] [pl(i cos 01 +,j sin 01)]

_ (p cos 0 - Pl Cos 6,)(Pl cos 01) + (p sin 0 - Pl sin 01)(P1 sin 01)

= pp1(cos 0 cos 01 + sin 0 sin 01) - pl(cos2 01 + sin2 01)

= PPl cos (0 - 0l) - Pi.



Sec. 90 Polar Analytic Geometry 289

Hence, since pl 0 0 (because I does not pass through the pole) an equation
of I is

(5) p cos (0 - 01) = pi.

Notice also for (p,0) on I that p 0 so that cos (0 - 01) 0 0 and hence it is
safe to write the equation as

_ P1 or as Pi(6) P-cos(0-01) P= cos(01-0)

Example 3. Find the distance from the point P = (5,30°) to the line having
equation p cos (150° - 0) = 3.

Solution. Since cos (-A) = cos A, another equation of the line is
p cos (0 - 150°) = 3. Any parallel line has equation p cos (0 - 150°) = a and the
one through P must be such that

a = 5 cos (30° - 150°) = 5 cos ( -120°) 2.

Hence, the point (3,150°) is on 1, (-2,150°) is on the line parallel to l through P,
both are on the perpendicular to l so the distance between them is the distance
from P to 1, and since they are on opposite sides of the pole this distance is 3 +

2
= z1 units.

E. comics. With e > 0 and q :94- 0, there is a conic having eccentricity e,
focus at the pole, and directrix the line perpendicular to the polar axis at the
point (q,0°). A point (p,0) is on this conic if and only if the vector

6 =p(icos0+jsin6)

from the focus to the point (p,O) and the horizontal vector

iu= -iq+pcos0=i(-q+pcos0)

from the directrix to the point (p,0) have their moduli related by 161 = elt I.
Hence

jpj = eI -q + p cos 01

is an equation of the conic. Without absolute values, the two equations

p=e(-q+pcos0) and p=-e(-q+pcos0)
result and these may be written, respectively as,

(7) P 1 -
and Pe os0 +ecos0

The graph of either equation is the whole conic and neither equation has
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preference over the other. For upon starting with the first equation,
alternate equation for its graph is (see Division A)

an

_ -eq = eq

-ecos(0+ 180°) 1 +ecos0
which is the second equation.

Note that for 0 any given angle then the graph of

-eq and
eq

(8) P 1 - e cos (0 - ) P = 1 + e cos (0 -
is the rotation through the angle 0 of the conic which is the graph of (7).

Example 4. Show that the graph of p(3 + 4 cos 0) = -5 is a hyperbola; find
its center, foci, vertices, directrices, and length of semi-conjugate axis.

Solution. The equation may be written as

_S
P

1 + (s) cos 0

which (because of the + sign in the denominator) is the second form in (7) with
e = $. Since e > 1 the graph is a hyperbola. Also, eq = - a and hence q = -4.
Hence, a directrix (the one associated with the focus at the pole) is perpendicular to
the line of the polar axis at the point (-4,0°) which is preferably designated as
(4,180°). This graph being a hyperbola (and all hyperbolas having their directrices
passing between their foci) there is a number h > 4 such that the center is at (h,180°).
In the usual conic-notation, the distance from the center to a vertex is a, from the
center to a focus is ae, from the center to a directrix is ale, and hence from a focus
to the corresponding directrix is ale - ae for an ellipse but ae - ale for a hyperbola.
Hence, for this hyperbola in which the distance from a focus to its directrix is

JqJ=4

aae--=a(3 4)- 12a= 4 and a=17 .
e

Thus ae = z, and, measuring from the focus at the pole,
(27=,180°) is the center,

and ;Q units farther along is the other focus at (4, ,180°). The vertices are at the
distance a = 171 on both sides of the center so

(¢,180°) and (5,180°) are the vertices.

Since the length of the semi-conjugate axis is

15 5
b = a \/e2 - 1 = 9 - 1 = 7

the asymptotes may be drawn and the hyperbola sketched.
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PROBLEMS

291

1. Name the graph having equation:
a. p(3 cos 8 + 4 sin 8) = 10.

b. p = 10(3 cos 0 + 4 sin 8).
d. 3p cos e = 10.
e. p[3 + 4(cos 8 + sin 0)] = 10.

c. 4 sin 8 = 10p. f. p[3(cos 0 - sin 0) + 41 = 10.
g. 10 = p2 - p(3 cos 8 + 4 sin 8).

2. Find the usual information about the conic having equation:
a. p(2 + cos 8) = 6. d. p(3 + 3 cos 0) = -5.
b. p(l + 2 cos 6) = 12. e. p(3 + 5 cos 0) = 32.

c. p(4 sin 8 + 4) = 5. f. p(3 cos 8 - 5) = 32.

3. Find a polar coordinate equation of the conic having focus at the pole,
a. Center (3,0°), and eccentricity 1.

b. Center (3,0°), and eccentricity 2.

c. Vertex (3,0°), and eccentricity 1.

d. Corresponding vertex (3,0°) and center (5,0°).

e. Corresponding vertex (3,0°) and center (5,180°).

91. Polar Calculus

A. DERIVATIVES. For f a function and t in the domain off', then

Pt) = lim f (t + h) -f(t)
n-0 h

There are different interpretations of a derivative, each depending upon how
the function f is represented; by a rectangular
graph, by a particle moving on a line, etc. In the

olar "' (8)resent context will b e ted b ap f presen pe r y
coordinate graph; i.e., the graph whose equation is
p = f (8) with 6 measured in radians. The graph is
also the graph of the vector function P defined by

F(8)=f(8)(icos0+jsin 0). Figure 91.1

Now any value of P is the product of a scalar and a vector so that,
under the assumption that f'(8) exists, F'(8) exists and

F'(8) De f (8)][i cos 6 T j sin e] + f (0) DB[i cos 0 + j sin 0]

=f'(8)[icos8+jsin0]+f(8)[-1 sin0+jcos8]
= i [f '(8) cos 0 - f (0) sin 0] +.j[f'(8) sin 6+ f (e) cos 0].



292 Vectors Chap. 8

As with any vector function, F'(6) is a tangent to the graph of t at F(e).
This tangent vector P'(e) has modulus

,% [ f'(6) cos 0 -f(6) sin 6]2 + [f'(0) sin 6 + f (e) cos 0]2 = /f,2(e)

and with a an amplitude of this tangent vector, then

cos a = f'(9) cos 0 - f (0) sin 0 and sin a = f'(0) sin 0 + f (0) cos e

,lfi2(0) +f2(e) J f,2(e) + f2(e)

Upon multiplying both sides of the first equation by cos 0, then both sides
of the second by sin 0, and then adding we have

cos a cos 6 + sin « sin e = f'(e) = cos (a - e)V/fr2(e)
+ f2(e)

and in a similar way

-cos a sin e + sin a cos 6 = f (0)
/

= sin (a - e).f'2(e) + f2(0)

Thus, cot (a - 0) = f'(6)/f (6) so that, as usually written

(1) f'(0) = f(6) cot (« - 0).
Hence, in polar coordinates, f'(0) does not have the interpretation of

"the slope of the tangent," but from the values off '(0) and f (0) the inclination
a of the tangent line to the graph at (f (0),6) may be computed.

Example 1. For the graph of p = sin 29, find the angle a with 0 < a < 180°
from the polar axis to the tangent at the point where 0 = 60°.

Solution. Since p' = 2 cos 20, the angle a is such that 2 cos (2 60°) _
sin (2.60°) cot (a - 60°) so that cot (a - 60°) = -2/ V3. From tables, cot (40° 50)
= 2/%/j so that a - 60° is either -40° 50' or else 180° - (40° 50'). Because of the
requirement 0 <_ a < 180°, the first value is used to obtain a = 60° - (40° 50') _
19°10'.

Example 2. Find the angles between 0° and 180° of intersection of the graphs of

P =
1 -2

1+ cos a and P= 2+ cos 9

Solution. These equations have no simultaneous solution (see Example 2,
Sec. 90), but the first graph has alternate equation

-1

P I - cos 0

and this with the second equation has solution (-1,90°). Since

d -1 _ sin 0 d -2 -2 sin 0
andde (1 - cos 9) (1 - cos 0)2 de (2 + cos 0 ) (2 + cos 9)2
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then, upon letting al and a2 be inclinations of the tangents to the graphs at B = 90°,

sin 90° -1 -(1 -cos 900)2 1 - cos 90° cot (al 90') and

-2 sin 90° -2
(2 + cos 90°)2 2 + cos 90°

cot (a2 - 90°)

so that cot (al - 90°) _ -1 and cot (a2 - 90°) An angle at which the curves
intersect is a2 - al and

-
Cot (a2 - al) =cot [(a2 - 90°) - (al - 90°)J =

cot (a2 90°) cot (al - 90°) + 1
cot (al - 90°) - cot (a2 - 90°)+1=-.

-1 -
From the tables, cot 71 ° 34' = s so that 71 ° 34' and its supplement 108° 26' are
angles between 0° and 180' of intersection at the point
(-1,90°). Since cos (-0) = cos 0 both curves are sym-
metric to the polar line and thus have their other inter-
section at (1,90°) and here intersect at the same angles
71° 34' and 108° 26'.

Upon generalizing the procedure in Example 2,
it follows that:

If the graphs of p = f (6) and p = g(0) intersect
Figure 91.2

at (po,00) so that po = f (60) = g(00), then an angle a2 - al at which they
intersect is such that

cot (a2 - al) - Cot (a2 - 00) Cot (a1 - 00) + 1 = (gi'(60),Po)(f'(00)/Po) -f- 1
cot (al - 00) - cot (a2 - 00) f '(00)/PO - g'(00)I p0

(2) =
g,(00#,(00) + po provided f'(00) - g'(00) 0

po[f'(00) - g'(00)]
,

and Po 0.

PROBLEMS

1. Find the acute angle of intersection of the graphs of:

a. p = 4 sin B and p =;17 9'
c. p = 2 + cos B and p = 5 cos ©.

b.
p 1 -9os B

and p = 4(1 - cos 0). d. p =sin 3B and 2p = 1.

2. Show that the graphs of the two equations intersect at right angles.

1 1

a. p cos 0 - 1 and p = 1
- cos 0

b. p = 2a cos I B - 6) and p =
a

cos (B - 6)
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3. Find the acute angle of intersection of the rectangular graph of y = f(x) and
y = g(x) and also the acute angle of intersection of the polar graph of p =f(O)
and p = g(6) where f and g are the functions defined by:

a. f(t) = sin t, g(t) = cos t. c. f (t) = -t + 3, g(t) = t + 2.
b. f (t) = sin t, g(t) = -12. d. f (t) = sin t, g(t) = sin 2t.

4. Find the acute angle at which the graph of the given equation intersects itself

a. p = sin O. b. p = cos 20. c. P = 1 + 2 cos 20.

B. AREA AND LENGTH. With angles measured in radians, let a < /9 be
angles, let f be a continuous function and consider the vector

(3) F(6) = f (6)(i cos 0 + j sin 6), a <_ 0 < j9

from the pole to the point (f (0),0). As 0 is visualized to increase from a to 1q
the body of this vector sweeps over a portion of the plane, possibly some
portions more than once. For example, the vector

(4) 2a cos 0 (i cos 6 +. sin 6), 0 < 0 <_ 2ir, a > 0

sweeps twice over the circular disk with center (a,0°) and radius a.
The area swept out by the vector (3), counting repetitions if any, is defined

to be

(5) if 2(e) dO units2.

As an illustration of (5) using (4)

f o" 2(2a cos 0)2 d6 = a2 f
2r

2 cos2 6 dO = a2 f o
n,

(cos 20 + 1) dO

sin 26 2a
= a2 + 0 = 21ra2

2 0

which is twice the area of the circle of radius a.
Also, the tip of the vector (3) traces out a curve as 0 increases from a to /9

and may repeat some portions of the curve. Given that f' is also continuous,
the total distance traveled by the tip is defined to be

(6)
f \/ ' f,2(0) + f 2(e) d8.

Again using (4), since D0(2a cos 0) = -2a sin 0,

fo r'J(-2a sin 0)2 + (2a cos 6)2 dO = 2a f o\-/sine 0 + cos' 0 dO

= 2a f o n dO = 2a610 = 4ira

which is twice the circumference of the circle.
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In support of the above definitions, recall that a circular sector of radius r
units and angle h radians has:

area = Ir2h units2 and circular arc of length = rh units.

Now with n a positive integer, let AO = (fl - a)/n and

0,=o:+ kAO for k= 1,2,- --,n.
A circular sector of radius If (0k)I units and central angle AO radians has

area = J f 2(0) A0 units2, circular arc length = ; f (ek)I AO units.

For such sectors drawn appropriately relative to the graph of p = f (0), the
sectors themselves seem to approximate the sweep of the body of the vector
t(O) (even accounting for overlapping if there is any) but the arcs of the
sectors do not follow closely the course of the tip of the vector. Since,
regardless of the interpretation,

lim I jf2(ek) AO = [%j2(0) dd
n-oo k=1 `°C

we settle for (5) as a reasonable definition of "area
swept out," but even though

lim 1A601 AO =f, If(0)I dO
n-'oo k=1

Figure 91.3

we do not agree that the value of this integral fits our intuitive concept of
"distance traveled by the tip." In fact the tip of the vector

1 (icos6+jsin6), 0 <0 <7r
cos 0 4

traces once over the line segment from (1,00) to (V'2,45°), travels '/2 unit, but

f1T/4.o
1

cos 0
dO=j sec0dO =In Isec 0+tan 0110/4

=lnIV2+ 11 -1n11+01 =InI,/2+ 1I j2.

Upon letting As{k be the length of the line segment joining the points
({
J (Ok-1),Ok-1) and (f (0k),Ok), then

(P+AP,B+nO)
IAp

IpIA9

Figure 91.4

n.

Ask
k=1

is the length of a polygon inscribed in the path. It is proved
(f' being continuous) that

n-'co k=1
lim Ask =J.,/f'2(B) +}2(0) d0,
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but there are too many preliminaries to include a proof here. All we will do
is to present an intuitive way of remembering the form of the integrand in (6).
For (p,O) and (p + Ap, 0 Ir A8) two points on the path, a circular sector of
radius I pI units and central angle AB radians has circular arc length = I pI AO
units which with the difference I(p + Ap) - pI = IAPI units are lengths of
sides of a right triangular shaped region whose "hypotenuse" is visualized
as having length

IAP12 + (I PI AB)2 =
(AAPO-)

2-i- p2 OB units.

This expression is merely supposed to remind one of the form of the integrand
in (6).

Upon letting 0 be a dummy variable of integration, let s be the function
defined by

s(8) =J f2(0) dq for a < 6 5 fi.

Thus, first in derivative and then differential notation,

s,(6) = J fN5) + f2(0) 2

and ds =
(L)

8t p2 dB = 1(d P)2 + (p d6)2

The latter is referred to as the polar differential of arc length.

PROBLEMS

1. Find the area swept out and the distance traveled by the tip of the vector
t(6) = 6 sin 8(i cos 6 + j sin 0), 0 < 0 < 2ir. Explain why the answers are
twice the area and circumference of a circle of radius 3.

2. Find the area swept out and the distance traveled by the tip of:
a. F(6) = iB cos 9 +.jO sin B, -7! < 0 < 7f.
b. F(e) = (3 sin 8 + 4 cos 0)(i cos 0 +,j sin 6), 0 < 0 < 27r.
c. F(6) = (1 + cos 6)(i cos S + j sin 6), 0 < 0 < 21r.

B ,

d. F(e) = a sect 2 (i cos 0 + j sin B), ir/3 < 0 < 2ir/3.

3. Find the area of the region enclosed by the graph of
a. p = 10 sin 0. b. p = 2 - cos 8. c. P = 2 + sin 30.

4. Find the length of the polar graph of the given equation between the points
indicated:

a. p = 1 + cos B ; (1,0),
(2, 2). b. p = 1 - cos 0; (0,0), (0,277).
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5. Find the area of the region enclosed by:

a. The inside loop of the graph of p = 1 + 2 cos 0.
b. One loop of the graph of p2 = sin 0.

c. The graph of p2 = cos 20.

d. One loop of the graph of p = a sin n9, with n a positive integer.

Let f and f' be continuous on I[a,b]. Revolve the graph of y = f(x), a < x < b,
about the x-axis thus creating a surface of revolution. This surface is said, by
definition, to have

area = a 2n I f (x)I VI + f'2(x) dx.

ShowShow how this definition might have been arrived at.
Use this formula to obtain:
a. The lateral area of a right circular cone.
b. The area of a sphere.
Revolve the graph of xy = 1, x >_ 1 about the x-axis (unit I ft) thus forming an

infinitely long funnel-shaped surface.. To paint the inside surface, merely fill the
funnel with paint (show that 24 gal will do), then pour out what does not stick.
Now show that there is not enough paint in the world to paint the inside surface of
this funnel.
(Hint: Use (l/x)','l + (1/x)4 > 1/x for x > 0.)



CHAPTER 9

Solid Geometry

Having stood aloof for eight chapters and looked down on the flatland of plane
geometry, we now consider what is perceived as more nearly the space we live in.
On first blush it might seem that the more natural space of three dimensions should
be easier to study than the lifeless plane, but the freedom of one more dimension
carries with it, as do most freedoms, additional responsibilities and complications.
First off, a pencil is yet to be invented whose point will leave a visible trace in space
or shade in a twisted surface; hence to portray characteristics of three-dimensional
objects we rely upon perspective sketches of their profiles in a few strategically
placed planes. Although we seldom attempt artistic effects, we are at one with the
artist who paints a view on a flat canvas so the eye will transmit a spacial concept
to the brain.

The limitations of plane drawings of three-dimensional objects is largely over-
come in mathematics by even more abstractly identifying analytic expressions with
solids and surfaces. For this we need frames of reference; see Sec. 93 for one of these
and Sec. 103 for two others. Now with geometry represented analytically we turn
the tables and visualize analytically expressed relationships geometrically. More
of this in Chapters 10 and 11.

92. Preliminaries

The following properties of ordinary solid geometry will be used.
A. A set of points is a plane if:

a. The set contains three non-collinear points.
b. If two points of a line are in the set, the whole line is in the set.
c. The set is not the whole space.

B. Two planes are either parallel or they intersect in a line.
C. Three different planes which have a common point either have one

and only one point or one and only one line in common.
D. A line is perpendicular to a plane if and only if it intersects the plane

and is perpendicular to every line in the plane through this point of
intersection.

E. Through a given point there is one and only one plane perpendicular
to a given line.

298



Sec. 92 Preliminaries 299

F. Through a given point there is one and only one line perpendicular
to a given plane.

G. With a unit length assigned, a rectangular parallelopiped with sides of
lengths a, b, and c units has each diagonal
of length

,Ja2 + b2 + c2 units.

Vectors in space, the resultant of two vectors,
and the product of a vector by a scalar are defined
as when vectors were restricted to the plane. In par-
ticular if P1, P2, - - - , P,, are points in space, then Figure 92

P1P2 + P2P3 + ... + P.-IP,, + P P1 = .
The projection of a point P on a line I is the intersection Pt of 1 and the plane

through P perpendicular to 1, and the vector projection of a vector u = AB
on 1 is the vector ti = A1BI. Hence

(u+v),=ill +vi
since with v= BC then +v'=AC and ui+vi=AZB,+BIC,=AIC,.

With ii 0 and v' 6 any given vectors, the angle from i! to v' is defined

to be the angle 0 from AB to AC where AB and AC are any directed segments

with the same initial points such that u' = AB and v' = AC. The scalar product

0 if u=orv=6
u.v -{IuIIvlcosO

if u'zAu and vv O

is the same as for plane vectors. Hence, the vector projection of v' on the
line 1 containing u 0 6 is

vt= u v'- U.
An angle between two lines 11 and 12 in space (whether the lines intersect

or not) is defined to be the angle from any vector ii 6 on 11 and any vector
v 0 6 on 12. Also, two lines are said to be perpendicular (whether they intersect
or not) if an angle between them is 90°. Thus lines 11 and 12 are perpendicular
if and only if u v' = 0 where ii and v are any vectors on 11 and 12,
respectively.

93. Coordinates

Select two unit vectors i and.j having the same initial point and perpen-
dicular to each other. With the same initial point, let k be the unit vector
perpendicular to the plane of 1 and ,j and so sensed that a rotation from 1
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toward ,j would advance a right-handed screw from the initial toward the
terminal end of k. This is called a right-handed system. Hence

(1) and 10.
Now, for example, 21, -41, and 3k are vectors whose

resultant
u=21-4j+3k

is a vector in space. The proof that
scalar multiplication are distributive i

vector aaaztion and
n no way depended

upon the dimension of the space (see Corollary 79). Thus,
Figure 93.1 with v' = 1 + 51 + 6k the scalar product of u and v is

u t =(21'-41 +5I+6k)
(i+51±6k)+3k (1+51 +61)

and by using the distributive law again together with (1),

u'- v=2(1)-4(5)+3(6)=2-20+18 = 0.
Hence, these vectors it and .v are perpendicular to each other. Also

[ill =ti%ir u'_/2(2)-4(-4)+3(3)_..J4+16+9=,/29.
Let w be a vector with the same initial end as it

, j, and k. The vector
projection of w on the line of t is a scalar multiple of It so there is a unique
number x (which may be positive, negative, or zero) such that this projection
is ix. In the same way there are numbers y and z such thatjy and kz are the
vector projections of 0 on the lines of j and k. Hencet

(2) ii=ix+jy+kz and
The terminal end of 0 is assigned the coordinates (x,y,z). The common initial
point of i, j, and k then has coordinates (0,0,0) and is called the origin of the
rectangular coordinate system thus established. It is customary to call the
line of i the x-axis, the line of j the y-axis, the line of k the z-axis, the plane
of i and j the xy-plane, the plane of j and k the yz-plane, and the plane of
i and k the xz-plane.

Let Pi = (x1,y1,z1) and P2 = (x2,y2,z2) be two points in space. Then the

vector P1P2 = i(x2 - x1) + j(y2 - yi) + k(z2 - z) has initial end at P1,
terminal end at P2, and 1P1P21 is the distance between P1 and P2. Hence

(3) IP P21 = V(p1)2 = V (x2 - x1)2 + (y2 - y1)2 + (z2 - x1)2
is a formula for the distance between two points.

t Recall that 02, by definition, = 0. rJ and that the square of a vector is the only
power that is defined.
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Example. Show that the points (-1, - 1,9), (4, -2,6), and (5, -5,11) are vertices

of an isosceles triangle, find the area of the triangle, and the equal angles of the

triangle.

. Solution. Let it, v, and 0 be the vectors from the first point to the second, from
the first to the third, and from the second to the third. Hence

u = i[4 - (-1)) + j[-2 - (-1)) + k[6 - 9] = 5i -.j - 3k,

6 =61-41+2k, and 0=i-3,j+51r.

The squares of the lengths of the sides are

lull = u2 = 52 + (-1)2 + (-3)2 = 35, 62 = 56, and ill = 35.

Since 112 = 02 the triangle is isosceles. Considering u the
base of the triangle, the altitude h and the area A are

h='Ju2-(,t()2='/35- 4 =V'21 and

(5,-5,11)

V
7V

A = X56-21 = '114V21 = 7/6. i_1 _1 g) a (4; 2,6)

One of the equal angles is the angle 0 from it to 6 and Figure 93.2

u' 66 5(6) + (-1)(-4) + (-3)2 30 +4 -6 28 2
cos B = =

lul l01 v'35 V56 ''(35)(56) V(35)(56) N/10

From tables 0 = 50° 46'. As a check, for ¢ the angle from v' to Fr,

t3 iv 6(l) + (-4)(-3) + 2(5) 6 + 12 + 10 28
cos

l61 lk l
=

V36 VT V(56)(35) V(56)(35)

PROBLEMS

1. For the given point, find the point symmetrical with respect to the given plane or
line.

a. (1,2,5), xz-plane. d. (-1,-2,3), z-axis.

b. (-3,2,-1), yz-plane. e. (5,6,3), x-axis.

c. (2,-1,-3), yz-plane. f. (3,-1,-5), y-axis.

2. Show that the three points are vertices of a right triangle. Find the other angles
of the triangle.

a. (0,0,0), (1,2,-3), (3,3,3). c. (4, -1,3), (8,1,1), (5,1,7).

b. (1,-2,3), (3,-1,2), (3,2,11). d. (9,15,0), (4,20,25), (-1,10,5).

3. What is the distance from the point (x,y,z) to:

a. The x-axis? b. The origin? c. The yz-plane? d. The point (3,-1,6)?
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4. Show that the three points are vertices of an isosceles triangle and find the angle
between the sides of equal length.

a. (0,1,2), (-1,-2,7), (5,0,-1). b. (-8,17,8), (-2,13,10), (1,18,-3).

c. (-8,17,8), (-2,13,10), (-1,17,1).

5. Show that the four points are vertices of a parallelogram.

a. (2,6,8), (-4,2,7), (l,-2,3), (-3,10,12).
b. (-1,2,3,), (4,-3,2), (6,4,3), (11,-1,2).

6. Find a fourth point which together with the given three points forms a parallelo.
gram. There are three solutions in each case.

a. (1,2,3), (-1,4,5), (3,6,2). b. (-1,3,4), (-6,2,5), (-7,5,9).

94. Direction Cosines and Numbers

For plane vectors the amplitude determines (or is determined by) the
direction and sense of a vector. For vectors in three-dimensional space the
direction cosines 1, in, n of a vector v = at + bj + c1C are used where

I' U a1=cosa= _ a2+b2+C2-/
m=cosl3= b

/a2 + b2 + C2

.n = cos y =
C

,1a-+ b2±C2

Thus a, (3, and y are the angles from the coordinate axes to the vector and

a2-+
12 + m2 + n2 = Cost a + COS2 # + COS2 y = = 1.

(V a2 + b2 + C2)2

With v as above, then -v' has direction cosines -1, -m, -n.
If numbers 1, in, n are given with 12 + m2 + n2 = 1,

then 1, in, and n are not all zero and there is a vector
ri,1n,,1 havin The vectorthese numbers as direction cosines.g

} li+mj+ n1C
J/ Y-axis_------- from the origin to the point (l,m,n) is such a vector

x-axis and for A > 0 so is the vector
Figure 94

(Al)l + (Am)j + (An)1C.

For 1, in, n the direction cosines of a vector fl and for any number A such
that A 0, then

a=A1, b=Aln, c=An
are said to be direction numbers of v. Thus, any vector has one and only one
set of direction cosines, but has indefinitely many sets of direction numbers.
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Also, if a, b, and c are numbers not all zero, then there is a vector having
a, b, c as a set of direction numbers; namely the vector

ai+bj+c1C

from the origin to the point (a,b,c). Notice that this vector has direction
cosines

a b c

/a2 + b2 ,+ C2' ,Ja2 + b2 + c2' la2 + b2 + c2

A line in three dimensions has direction, but a sense on the line is usually
not assigned. Direction cosines and numbers of a line are defined to be the
direction cosines or numbers of any vector on the line. Thus, if 1, m, n are
direction cosines of a line, then this line also has direction cosines -1, -m,
-n (since if v' is on the line then so is -v) and direction numbers 21, am, An
for any number A 0.

Let P1 = (xl,yl,z,) and P. = (x2,y2,z2) be distinct points. Then x2 - x1,

Y2 - Y,, z2 - z,, are not all zero, v = (x2 - x1) i + (Y2 - Y,)1 + (z2 - z,) k
is on the line joining the points, and this vector and the line have

X2-xl, Y2- Y1, Z2-Z1

as a set of direction numbers. Also, these numbers divided by the constant

(x2 - x,)2 + (Y2 - Y,)2 + (z2 - z,)2 are direction cosines of the vector
and line.

95. Parametric Equations of Lines

Let P, = (x1,y1,z1) and P2 = (x2,y2,z2) be distinct points. Then the vector
f from P1 to P2 is given by

YY

Z7 = (x2 - x,)1 + (Y2 - YS + (z2 - Z,)K.

A point P = (x,y,z) lies on the line through P1 and P2 if and only if the
vector u' = (x - xl)i + (y - y1)j + (z - zl)IC from P1 to P is a scalar
multiple of v'; i.e., if and only if there is a number t such that

(x-x,)i+(Y-Yt)%+(z-z,)k=tL(x2-x,)1+(Y2-Y,)1+ (z2-z,)]
By equating the coefficients of 1, j, and k the three equations

(1) x=x1+t(x2-x,), Y=Y,+t(Y2-Y,), z=z,+t(z2-z,)
are obtained and are parametric equations of the line passing through P, and
P2. This line thus has direction numbers x2 - x,, Y2 - Y,, Z2 - Z1.

Also, with a, b, and c not all zero and with P1 = (x1,y1,z1), then

(2) x=x1+at, Y=Y,+bt, z=z,±ct
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are parametric equations of the line through P1 with direction numbers a, b, c.
For the set of points satisfying (2) contains P1, as seen by setting t = 0, and
also contains the point P. = (x1 + a, y1 + b, zl + c), by setting t = 1.
Now by (1) the line through P1 and this point P2 has parametric equations

x = x1 t[(xl + a) - x1], y = y. + t[(y1 + b) - y1],
z = z1 + t[(zl + c) - zl]

(which are the same as the equations in (2)) and thus direction numbers a, b, c.
In considering more than one straight line, it is generally better to use a

different letter for the parameter on different lines.

Example 1. Show that the lines having parametric equations

x = -1 + 3 t, y=-3+21, z = 4t

x=-2+2s, y=-13+6s, z =-2+3s
intersect by finding the point of intersection.

Solution. A point on the first line will have the same first two coordinates as a
point on the second line if t and s simultaneously satisfy

-1 +3t= -2+2s and -3 + 2t = -13 + 6s.
These values are t = I and s = 2. At t = 1 the point on the first line is (2,-1,4)
and at s = 2 the point on the second line is also (2, -1,4) so the lines intersect at this
point.

Example 2. Show that the two sets of parametric equations

x=-1+3t, y = -3+2t, z = 4t, and

x = -4+6s, y = -5 +4s, z = -4+8s
both represent the same straight line.

Solution. Setting the x values equal: -1 + 3t = -4 + 6s, leads to the equation
t - 2s = -1. Also, they-expressions set equal: -3 + 2t = -5 + 4s, leads to the
same expression t - 2s = -1. Now t = 2s - I substituted into z = 4t gives
z = 4(2s - 1) = -4 + 8s, which is the expression for z in the second set of
equations.

THEOREM 95. A line having direction numbers a1, b1, cl and a line having
direction numbers a2, b2, c2 are:

(i) Perpendicular if and only if

(3) a1a2 + b1b2 + c1c2 = 0.

(ii) Parallel (or coincide) if and only if a2: a1 = b2 : b1 = c2: c1 ; that is,
if and only if there is a constant d 0 such that

(4) a2 = 2a1, b2 = ).b1, c2 = Act.
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PROOF. Select vectors

61=ali+b1J+c1, and t'2=a2i+b2J±c2)C

on the first and second lines. The angle 0 from v'1 to v2 is such that

cos 0 = "1
62 _ a1a2 + blb2 + c1c2

(5)
k'11 Iv2I JQ2 + b2 + C2 Ja2 + b2 + c21 1 1 2 2 2

and is an angle between the lines. The lines are perpendicular if and only if
cos 0 = 0, and thus if and only if (3) holds.

Next, let it be given that (4) holds. Thus, from (5)

a1Aa1 + b1Ab1 + c1Ac1 A a2 _ b2 _ clcosh= _-
Jai + bi + ci JA2kai + bi + ci) JAI ai + bi -}- ci

_ 1 if A>0
-1 if A<0.

Hence, either 0 = 0° or 0 = 180° and in either case the lines are parallel (or
coincide)'.

Finally, let the lines be parallel (or coincide) so that either 0 = 0° or
0 = 1800 and

(6)
a1a2 + b1b2 + c1c2

= + 1.

Ja1+bi+c2 a2+b2+c2

By clearing of fractions and squaring both sides, the terms may be collected
in the form

(a1b2 - a2b1)2 + (a1C2 _ a2 C1)2 + (b1c2 - b2 2C1)2 = 0.

Consequently alb2 = a2b1, a1c2 = a2c1, and b1c2 = b2c1. From (6) it follows
that a1a2 + b1b2 + clc2 0 so at least one of the numbers a1a2, or b1b2, or
c1c2 is not zero. Considering that a1a2 0, let A = a2/a1. From a1b2 = a2b1
and a1c2 = a2c1 it then follows that also b2 = Ab1 and c2 = Ac1, and hence
that (4) holds. If a1a2 = 0 then either b1b2 0 or c1c2 0 and whichever
holds (4) follows by similar reasoning.

Example 3. Find parametric equations of the line through the point (7, -3,5)
which is perpendicular to and intersects the line having parametric equations.

x = -1 - 6t, y = -1 + 2t, z = 4 + 3t.

Solution. With t undetermined, let 6 be the vector from the point (7, -3,5) to
the point (-1 - 6t, -1 + 2t,4 + 3t) on the line, so that

ti = (-8 - 6t)1 + (2 + 2t).j + (-1 + 3t)k.
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Next determine t so that this vector (having direction numbers -8 - 6t,2 + 2t
-1 + 3t) and the line (having direction numbers - 6,2,3) are perpendicular. Hence

(-6)(-8 - 6t) + 2(2 + 2t) + 3(-l + 3t) = 0 and

-48 -4 + 3 -49
t 62 + -22+ 32 49

The point (-I - 6(-1),-l + 2(-1),4 + 3(-1)) (5,-3,1) is therefore on the
given line, the line joining this point and the given point (7, -3,5) is perpendicular
to the given line, and parametric equations of the line joining these points are

x = 7 + (5 - 7)s, y = -3 + H - (-3))s, z = 5 + (1 - 5)s
=7 -2s = -3

Example 4. Given the parametric equation

= 5 - 4s.

x=4+2t, y=4+t, z=-3-t, and

x= -2+3s, y= -7+2s, z=2-3s
of two lines, find a point Pl on the first line and a point P2 on the second line such
that the line joining Pl and P2 is perpendicular to both of the given lines.

Solution. For t and s any numbers whatever the points °

(4 + 2t,4 + t, -3 - t), and (-2 + 3s, -7 + 2s,2 - 3s)

are on the first and second given lines, and the line joining these points has direction
numbers

4 +2t -(-2 +3s),4+t -(-7 +2s), -3 -t -(2 -3s); that is,

2t-3s+ 6,t-2s+11, -t+3s-5.
Since direction numbers of the first line are 2, 1, -1 and of the second line are
3, 2, -3 we want t and s to simultaneously satisfy

2(2t-3s+6)+ 1(t-2s+11)+(-1)(-t+3s-5)=0 and
3(2t - 3s + 6) + 2(t - 2s -1- 11) + (-3)(-t + 3s - 5) = 0; that is,

6t-lls=-28 and llt-22s= -55.
The solution is t = -1, s = 2 and these values substituted in the given equations
yield the desired points (2,3, -2) and (4,-3,-4). (Note: Since the solutions are
unique, it follows that there is one and only one line perpendicular to and inter-
secting the given lines.)

PROBLEMS

1. Find a set of direction cosines of the line joining the points
a. (0,0,0) and (1,1,1). c. (2,0,2) and (-1,2,3).
b. (-1,2,1) and (3,1,-1). d. (4,5,-2) and (4,6,-2).
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2. Find direction cosines of the line having parametric equations

a.x=1 +6t,
b.x=-1 -t,

c.x=2t,
d. x = -14 + 25t,

y=1 -3t, z=3+2t.
y=2+t, z=1 -3t.
y=4, z=1+t.
y = 11 + 25t, z = -43 + 25t.

3. A line has direction angles a, , y. Given
a. a = 45°, = 60°; find y.

b. cos a = 0.1, cos fi = 0.7; find y.

c. cos a = 0.3, cos y = 0.4; find 9.

d. cos # = 0.6, cos y = 0.8; find a.

4. Find the acute angle between the pair of lines:

a. One joining (3,-1,2) to (2,4,1), the other joining (5,8, -3) to (6,4,1).

b. One joining (1,2,0) to (3,-2,4), the other having parametric equations
x = 4 - 3t, y = 6 + 2t, z = 3 - 2t.

c. Having parametric equations

x = 3 -2t,y = -10+t,z = 25 + 2t, and
x = 5 - t cos 60°, y = 3 + t cos 45°, z = 8 + t cos 60°.

5. Find the point where the perpendicular line from the given point hits the given
line.

a. (2,4,-2); x = 6 + t, y = -5 - 4t, z = -1 + 2t.
b. (5,-9,6); x = -3 + 2t, y = 2 + t, z = -5 + 3t.
c. (xl,yl,zl); x = x0 + at, y = yo + bt, z = zo + ct.

d. (7,-8,9); x=13+2t, y=-37-7t, z = 10 + t.
6. Show that the pair of lines intersect, find the point of intersection, and find

parametric equations of the line through this point of intersection perpendicular
to both lines.

a.x=8+3t, y= -2-t, z=5+2t,
x=11+3s, y = -11 - 5s, z=5+s.

b.x=3+2t, y= -3 -6t, z=1,
x=7+s, y=5+s, z=6+s.

7. Two lines are said to be skew if they are neither parallel nor intersect. Show that
the pair of lines is skew. Find the point on each line such that the line joining
this pair of points is perpendicular to both of the given lines.

a.x=8+t, y=-1-3t, z=-3-t,
x=-5+s, y=-5+2s, z=-9+4s.

b.x=5+t, y=2+t, z=6+3t,
x=-1, y=-5+s, z=-1+s.
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Given a line L and a point P0 = (xo,yo,zo) there is one and only one plane
through P. perpendicular to L (see Sec. 92E). To find an equation of this
plane let A, B, C be direction numbers of L so that

v=Ai+Bj+C1
is parallel to (or on) L. A point P = (x,y,z) is on the plane if and only if
the vector

ii=(x-xo)t+(y-Yo)j+(z-zo)1C
from P0 to P is such that v u' = 0 (that is, either u' _ in case P = Po or
else u is perpendicular to v in case P = Po). Hence

(1)

is an equation of the plane through P0 perpendicular to L.

THEOREM 96. Given numbers A, B, C not all zero and any number D, then
the graph of

(2) Ax + By + Cz = D; that is, {(x, y, z) I Ax + By + Cz = D}

is a plane and any line normal (i.e., perpendicular) to this plane has direction
numbers A, B, C.

PROOF. Let xo, Yo' zo be numbers such that Axo + Byo + Czo = D.
(If, for example, A 0 then yo and zo may be chosen arbitrarily and
x0 = (D - Byo - Czo)/A.) Hence, P0 = (xo,yo,zo) is a point on the graph of
(2). Let L be any line having direction numbers A, B, C. Then a point (x,y,z)
lies on the plane through P0 perpendicular to L if and only if

A(x - xo) + B(Y - Yo) + C(z - zo) = 0;

i.e., Ax + By + Cz = Axo + BYo + Czo = D

which is the same as equation (2). Thus, the graph of (2) is this plane and
any line normal to this plane is parallel to L and hence has direction numbers
A, B, C.

Example 1. Find an equation of the plane which contains the three points
(-3,1,1), (0,-1,-2), and (4,3,-1).

Solution. The following three equations are obtained by substituting in (2):

-3A+ B+ C=D
B-2C=D

4A+3B- C=D.
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The solution of these equations for A, B, and C in terms of D is

2 3
A = -2D, B=3D, C

4
= -5 D.

5 5

The substitution of these expressions into (2) yields

2 3 4-SDx+SDy--Dz=D,

and upon multiplying by -5/D we obtain the equation

2x-3y+ 4z = -5.

Example 2. Find the point where-the line having parametric equations

x=5-3t, y=6+2t, z= -4+t
pierces the plane having equation 2x - 3y + 4z = -5.

Solution. The point (5 - 3t,6 + 2t, -4 + t) will be on the plane whenever t is
such that

19
2(5 - 3t) - 3(6 + 2t) + 4(-4 + t) = -5 so that t = -

8
.

191 97 ( 19'1
Hence, the point of intersection has x = 5 - 3 )-

8

- =yg , 6 + 2
=

97 5 515
etc., and the point is (8 '

8

Example 3. Show that the line having parametric equations

x=2+t, y=6+2t, z=4+t
lies on the plane having equation 3x - 4y + 5z = 2.

Solution. By proceeding as if we were solving for the intersection of the line
and plane we obtain

3(2+t) -4(6+2t)+5(4+t) = 2 ; t(3 -8+5) =2 -6+24 -20
and therefore t 0 = 0 which is satisfied for all values of t. Thus, the point
(2 + t,6 + 2t,4 + t) lies both on the line and on the plane for all values of t and
hence the line lies on the plane.

Example 4. Find an equation of the plane containing the point (2, -2, -7) and
the line having parametric equations

x=1 -2t, y=2+t, z=7+7t.
Solution 1. First find two points on the line; then pass a plane through these

two points and the given point. Convenient points on the line are (1,2,7) and



310 Solid Geometry Chap. 9

(5,0, =7) obtained by using t = 0 and t = -2. Hence, the plane having equation
(2) passes through these three points if

A + 2B + 7C = D
5A - 7C = D
2A - 2B - 7C = D.

We obtain A = 2D/3, B = - D, C = D/3 and thus the equation

(3) 2x-3y+z=3.
Solution 2. A plane with equation (2) contains the line if

A(1 - 2t) + B(2 + t) + C(7 + 7t) = D
is satisfied for all t;.that is, if the coefficient of t is zero for all t:

-2A+B+7C=0
and in addition the sum of terms not containing t is equal to D:

A + 2B + 7C = D.
Also, the plane must pass through the point (2, -2, -7) and hence

2A - 2B - 7C = D.
From these three equations we again obtain (3) as an equation of the plane.

An angle between two planes is defined as an angle between the normals
to the planes. Thus, for planes having equations

Aix + Bly + C1z = D1 and Ax + B2y + C2Z = D2,
an angle 6 between the planes is such that

cos 6 =
VA

A1A2 + B1B2 + C1C2

l F Bi i- C2 VAi + B2 + C2

In particular the planes are parallel if and only if

Al : A2 = B1 : B2 = C1 : C2.

PROBLEMS

1. Find parametric equations of the line through the given point perpendicular to
the given plane.

a. (-1,2,3); -2x + 3y - z = -1. c. (0,0,0); 2x + 4y = 15.
b. (5,6,-4); 3x - y + 2z = 10. d. (2,-1,1); x + 2z = 3.

2. Find an equation of the plane through the given point and perpendicular to the
given line.

a. (2,-1,3); x = 5 + 3t, y = -4 + 8t, z = 16 - 7t.
b. (0,5,2); line joining (3,6,-1),(5,-8,4).



Sec. 96 Planes 311

c. (0,0, -4); line which is the intersection of the planes having equations
2x+y+z= 12 and 3x-y+2z=7.

d. (7,8, -5); line through the point (2, -6,8) and having direction numbers
2, -3, 4.

3. Find an equation of the plane containing the three points:

a. (-2,-1,2), (3,9,3), (1,1,1). c. (1,1,1), (5,1,1), (3,2,5).
b. (5,3, -1), (3, -2,3), (2,0,2). d. (a,0,0), (0,b,0), (0,0,c).

4. Find an equation of the plane containing the given point and line.

a. (2,1,3); x = 3 + 2t, y = 3 + t, z = 8 - 2t.
b. (0,0,5); x = 1 - 2t, y = 2 - t, z = 10 + 2t.

c. (4,3,5); x = -1 + t, y = 1 + 2t, z = 12 - t.
d. (1,2,10); x = 1 + St, y = 1 + 2t, z = 6 - 7t.

5. Show that the two lines intersect and find an equation of the plane containing
these lines.
a.x=2+3t, y = -t, z= 1 +2t.

x=8+3s, y= -6-5s, z=4+s.
b.x=2t, y=6-6t, z=1.

x=2+s, y=s, z=1+s.
c.x=2+4t, y=0, z=1 +3t.

x = 0, y = 2s, z = - + 2s.
d. x = 1 + 99t, y = 3 - 97t, z = 1 + 50t.

x=1 -101s, y=3+99s, z=1 -51s.
6. A plane and line are said to be parallel if they have no point in common. Notice

that if a plane and line are parallel, then an angle from any normal of the plane
to the line is 90°. Find an equation of the plane through the given point and
parallel to both of the given lines.

(x=10+t, y=15+t, z=20-t.
a. (2,-3,4); x = 4 + 3s, y = -8 + 5s, z = 7 - 2s.

b (2 -3 4);. , ,

c (0 0 0);. , ,

x=10+t, y=15+t, z=20-t.
x _ 10 + 3s y _ 15 + 5s z _ 20 2s.

line joining (2, -1,6) and (3,2, -4).
line having direction numbers 3

97. Determinants

With al, b1, a2, and b2 representing numbers, then

la1 b1i
(1) I a2 b2
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is a determinant of order 2 (or second order) whose value, by definition, is
the number a1b2 - b1a2. For example:

5 -3

4 2

2

5 -3

=5.2-(-3)4= 10+ 12=22 and

=4(-3)-2.5=-12-10=-22.

Since a determinant represents a number, then "a number times a deter-
minant" has meaning. For example

2
5 -3

= 2(22) = 44.
14 21

Third-order determinants, of which

1 2 -7 5

(2) -4 5 -3

3 4 2

is an example, will also be considered. The determinant (2) has the value
-104 which is found, according to the definition below, by computing

(3) 2

5 -3

4 2

+ 5
-4 5

3 2 3 4

= 2[5 2 - (-3)4] + 7[(-4)2 - (-3)3] + 5[(-4)4 - 5 3]

= 2[22] + 7[l] + 5[-31] = 44 + 7 - 155 = -104.
The value of the third-order determinant

I a1 b1 c1

(4)

-4 -3

a2 b2 C2

a3 b3 C3

is defined, in terms of second-order determinants, as

b2 C2

(5) al - bl

a2 c2

+ cl

a2 b2

b3 C3 a3 C3 a3 b3
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Hence, since each second-order determinant may be evaluated, the value of
the third order determinant (4) is

(6)

a1(b2c3 - C2b3) - b1(a2C3 - C2a3) + C1(a2b3 - b2a3)

= a1b2C3 - a1b3C2 - a2b1c3 + a3b1C2 + a2b3C1 - a3b2C1.

The manipulation of (5) and (6) are referred to as expanding the determinant
(4). Also, (6) is called "the expansion" of (4), and (5) is called "the expansion
of (4) in terms of elements of the first row."

The expansion (6) will be used in establishing some properties of deter-
minants, but it is not recommended that (6) be memorized. The exact form
of (5) should, however, be kept in mind. In particular notice that the middle
term of (5) is -b1 (instead of +b1) times the second-order determinant
consisting of those elements of (4) which are not in the same horizontal row
and not in the same vertical column with b1.

We now point out three properties of determinants.

PROPERTY 1. If all elements in any row or column of a determinant are 0,
then the value of the determinant is 0.

For example, if the second row of (4) consists entirely of zeros, then
a2 = 0, b2 = 0, and c2 = 0 and these substituted into (6) yield the value 0.

PROPERTY 2. If any two rows of a determinant are the same (or if any two
columns of a determinant are the same), then the value of the determinant is 0.

For example, if the second and third rows of (4) are the same, then a3 = a2,
b3 = b2, and c3 = c2 and (6) with every subscript 3 changed to 2 becomes

a1b2C2 - a1b2C2 - a2b1C2 + a2b1C2 + a2b2C1 - a2b2C1 = 0.

Example. Show that in the plane the graph of the equation

x y 1

3 -2 1 = 0
4 5 1

is a straight line passing through the points (3, -2) and (4,5).

Solution. Without actually expanding the determinant, one should visualize
that the equation could be written in the form Ax. + By + C = 0 in which

A = B = - 3 1

4 1

C= 3 -2

4 5

Since A, B, and C are constants, the equation is of first degree in the variables x
and y so its graph is a straight line.

Also, the equation is satisfied by x = 3 and y = -2 (since the substitution of
these values yields a determinant with two rows identical) so the line passes through
the point (3, -2). In the same way the line passes through the point (4,5).
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By following the reasoning of the example it should be seen that

x y 1

x1 Y1 1 = 0

X2 Y2 1

is a two-point-determinant equation of a line in the xy-plane.

Chap. 9

PROPERTY 3. By multiplying each element of a row (or column) of a given
determinant by a number k, then a new determinant is created whose value is
k times the value of the given determinant.

For example a1 b1 kc1

a2 b2 kc2

a3 b3 kc3

=k

since the left-hand determinant has expanded form obtained from (6) upon
replacing c1 by kc1, c2 by kc2, and c3 by kc3:

alb2kc3 - alb3kc2 - a2b1kc3 + a3b1kc2 -- a2b3kc1 - a3b2kc1,

and this is k times the expression (6) itself.
The Property 3 may be used to "remove a common factor" from any

row or column. Thus

2 4 -6

1 3 9

2 -1 0

=2

1 2 -3

3 91

2 -1 0

=6

1 2 -1

1 3 3

2 -1 0

wherein 2 was "factored" from the first row (to obtain the middle expression)
and then 3 was "factored" from the resulting third column.

Determinant notation and terminology are also extended to allow some
quantities other than numbers. For example, with i, j, and 1C the basic unit
vectors, then

J

2 -3 4

5 2 -3
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is used to represent the vector

1-3 41 12 41

2 -3
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2 -3

5 -3 + 'I 5 2

=1(9-8)-j(-6-20)+k(4+15)=1+26j+19E.

PROBLEMS

-

1. Find the value of each of the determinants
2 4 -3

3 2 1 0 20
a.

1

e. i. -1 3 2
4 5 5 15

6 4 5

3 -2 c os 6 - sin 6
b. f. 2 -1 6

4 5 si ne cos e
3 4

3 -2 s ec 6 tan 6 J. 4

C. g. -3 2 5
4 -5 t an 6 sec e

5 20 78
1 2 b 2 a

d. h. k. 0 3 49
1 2 2 c b

0 0 2

a 0 0

2. Show that x b 0 = abc and thus that the value of this determinant is
y z c

independent of x, y, and z.

3. Draw the graph of each of the following equations:

x y 1

a. I

x y
2

3I
=4. d. 5 2 1

I

=0.
-3 4 1

b.
x-2 y-3 = 0. 1 1 1

4 1

e. x 2 4 =0.
C. C. a2 62 I = a262. y 3 0

1 1 1

4. Show that x y z = (x - y)(y - z)(z - x).
2 2 2x y z

5. Show that the triangle with vertices (x1,Yi), (x2 Y2), and (x3,y3) has area the
absolute value of

x1 Yi 1

X2 Y2 1

X3 Y3 1
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(Hint: First use the corollary of Sec. 83 to find a determinant expression for the
distance from the point (xl,yl) to the line passing through the points (x2,}2) and

(x3,y3)-)

6. Express each of the following vectors in the usual vector form:

a.

i j 1

2 -3 1

4 2 -5

b. c.

i j k
1 0 2

3 4 0

7. Obtain the following relation for the scalar (dot) product of two vectors

a1

a2

bi

b2

al

a2

at c1

a2 c2
T

b' c'

b2 c2

bl cl

b2 2

The review of second- and third-order determinants given above is sufficient for the use
to which determinants will be put in the remainder of this book. Since, however, deter-
minants appear in a wide variety of applications, it is well to be acquainted with the further
properties of determinants given below.

It has been found that discussions of determinants are facilitated by means of a double
subscript notation. Thus (4), (5), and (6) above are replaced by

(4') A =
all a12 a13

a21 a2, a23

a31 a32 a33

(5') = all
a.;2 a23

a32 a33
- a12

a21. a23

a31 a33
T an

a21 a22

a31 a32

(6') = a11a22a33 - a11a23a32 - a12021a33 + a12a23a31 - 013a21a32 - a13a,2a31

(Note: The A in (4') stands either for the array in (4') or the value as given in (6').)
The first subscript indicates the row, whereas the second subscript indicates the column

in which an element is found. Thus a33 is in row 2 and column 3.
Each of the three second-order determinants of (5') requires two multiplications to

evaluate. Thus, the evaluation of a third-order determinant by this definition requires
more than

(7) 3 2 = 3! multiplications.

Given an element a of the determinant A of (4'), then A will be used to denote the
determinant (or its value) obtained by deleting all of row r and column s from A. Also
A,, is called the minor of a,,. Hence, in this notation (5') becomes

(5") a11A11 - a12A12 T a13A13

and is said to be "the expansion of A in terms of minors of the first row."
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With .? a number, note that

(8)
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all a12

a21 + .all a22 + 2a22
= a11(a22 + ka,2) - a12(a21 + tall)

all a12
= aua22 - a12a21 + 2(a11a12 - a12a11) _

since the coefficient of A is a11a12 - a12a11 = 0. Also

(9)

all a12 a13

a21 a22 a23

all
a21

a12

a22

a21 a22

als

a23

a31 a32 a33 I I a31 + 2a21 a32 + 2a22 a33 + 2a23

This is seen by noting that in the right-hand determinant the minor of all is (by using (8))

a22 a23

a32 + 2a22 a33 + .a23

a22 a23

a32 q3S
= All

and in the same way both determinants of (9) have An as the minor of a12 and A13 as the
minor of a13.

These equalities (8) and (9) indicate how the following property may be established.

PROPERTY 4. If each element of any row of a determinant is multiplied by a number a.
and the product is added to the corresponding element of another row, then the resulting
determinant has the same value as the original determinant. The same is true if "row" is
replaced throughout by "column."

The use of Property 4 is facilitated by the notational device illustrated below:

1 -3 4
-2

1 -3 4
in

1 -3 4

2 1 5 4- 0 7 -3 0 7 -3

-5 4 2 -5 4 2 0 -11 22

This means that in the determinant on the left each element of the first row is multiplied
by -2 and added to the corresponding element of the second row to form the second row
of the middle determinant; the other two rows remaining the same. Then in the middle
determinant each element of the first row is multiplied by 5 and added to the corresponding
element of the third row to obtain the determinant on the right. The middle determinant
may be omitted by writing

-
(10) 2 1 5

-
0 7

-3
and this 1s

11 22-5 4 2
s

0 -11 22

since, in the second determinant, the first-row elements -3 and 4 both have minors with
only zeros in a column. The point of such a manipulation is "to reduce a third-order
determinant to a second-order determinant."

If the upper left element all is not the number 1, then such a reduction should be pre-
ceded by "dividing each element of the first row by all." Thus (see Property 3)

14 -2 61 11 -0.5 1.51

3 0 -4
7 5 2

1 -3 4 1 -3 4
7 3

=4 3 0 -4
7 5 2

and now the reduction may proceed as in (10). Even though all elements of the given
determinant are integers this "preparing for reduction" may introduce fractions. With
modern electronic computers, however, decimal fractions are handled as easily as integers.
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3

By extending the notion of minors to fourth-order determinants, then a fourth-order
determinant is evaluated, by definition, as below

(11) A =

all a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

= -2

a14

a14

a34

a44

where each A is the third-order determinant obtained by deleting row 1 and column s
from A. Since each third-order determinant requires more than 3! multiplications (see (7)),
then to evaluate a fourth-order determinant by the above definition, requires more than

(12) 4 - 3! = 4! multiplications.

Properties 1-4 also hold for fourth-order determinants, as may be seen by using (11)
and the knowledge that these properties hold for third-order determinants. In particular
a fourth-order determinant may be "reduced to a single third-order determinant," then
this third-order determinant "reduced to a second-order determinant."

When computations are with pencil and paper, then fractions may be avoided in the
"preparing for reduction" by using a little ingenuity as illustrated below:

_ -2

= -28

= -28

-2 6
0 2

1 4

5 4

-1 3 -2 3
3 1 0 1

-3 2 1 2

1 3 5 2

=2

1 3 -2 3

0 10 -6 10

0 -7 7 -7
0 6 3 5

1 1 1

-1 1 -1

6 3 5

2 0

-3 -1

I1 = -28

= a11A11 - a12A12 + a13A13 - a14A14

= -2
1 3 -2 3

-3 1 0 1

3 2 1 2

-1 3 5 2

10 -6 10

-7 7 -7
6 3 5

1 1 1

0 2 0

0 -3 -1

= -28(-2) = 56.

PROBLEMS (cont.)

8. Evaluate each of the determinants

3 2 6 -2
1 4 2 0

2 -1 4 1

3 4 4 5

a. b.

5 2 1 -2
3 0 1 4

2 -2 3 0

4 -3 0 2

= -28

C.

1

5 -3 5

-1 1 -1

6 3 5

Chap. 9

41

1 2 -3 1

2 3 -2 -3
-1 -2 2 1

4 -3 1 2
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9. Evaluate each of the determinants by first performing the indicated operations.

3 -2 1 0 5 2 9 1

10 4 3 -4 2 2 3 0
a b..

10 0 5 3 7 7 10 2

20 -16 8 1 4 3 5 1

10. a. Show that the graph of the equation

x y z 1

X1 Y1 z1
1

X2 Y2 Z2 I
=0

X3 Y3 Z3 1

is the plane determined by the points (x1,y1,Z1), (x2,y2,z2), and (x3,y3,z3).
b. Use the result of Part a to find the equation of the plane passing through

(1, -2,3), (0,2,1), and (5,0,3).

A determinant of order n has n rows, n columns, and is written

(13) A =

all a12 a13 aln

a21 a22 a23 a2,

a31 a32 a33 a3,,...................
and an2 an3 * * ' ann

By deleting row r and column s, the resulting determinant of order n - I is represented by
A and is called the minor of the element a,,. By definition the value of the determinant in
(13) is

(14)

n
A = (-1)$+1 a13A1,.

s=1

Hence, the value of a determinant of order n is obtained from the values of determinants of
order n -_1 which in turn are obtained from values of determinants of order n - 2, etc.,
until the order is reduced to 2. It should thus be seen, by extending (7) and (12), that the
evaluation of a determinant of order n from the definition requires more than

n! multiplications.

Determinants of orders 20 or more are frequently evaluated by modern electronic
computers. A medium-fast computer will perform multiplications at the rate of 1000 per
sec, and the fastest projected computer will perform multiplications at 50,000 per sec. Thus,
merely to perform the multiplication to evaluate a determinant of order 20 from the defini-

tion (14) would require this fastest computer
50,000

sec = (50,000)(60)(60)(24)(365) years,

and even this number (check by using logarithms) is greater than

1010 years.

Clearly some method other than the definition is used to evaluate determinants of high order.
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Properties 1-4 also hold for determinants of order n. In particular, a determinant of
order n may be "reduced" to a single determinant of order n - 1 (as a fourth-order deter-
minant was reduced to a third-order determinant). The "preparation for reduction"
consists of dividing each element of the first row by a and hence n divisions are performed.
Now, the n-elements of the new first row are multiplied by a21(hence n multiplication) and
the result in each case is subtracted from the corresponding element of the second row. The
same is done for a31i aal, , a,,, so in all there are (n - 1) n such multiplications. By
counting the n divisions of the "preparation" as multiplications, a reduction from order
n to order n - 1 requires

n + (n - 1) n = n2 multiplications.

To reduce the n - 1 order determinant to an n - 2 order determinant requires (n - 1)2
multiplications, etc.

If we also reduce the final second-order determinant to a single number by the same
method, then (see Formula (2) of Sec. 56)

n2 + (n - 1)2 + - + 32 + 22 = {2n3 + 3n2 + n) - 1 < n3 multiplications

are required to evaluate a determinant of order n by the "reduction" method. A medium-
fast (1000 multiplications per sec) computer could, therefore, perform the multiplications
of a complete reduction of a determinant of order 20 in less than

(20)3

1000
= 8 sec.

Since additions and subtractions are performed on an electronic computer at a much faster
rate than multiplications and divisions, 16 sec would be ample time for all of the arithmetic
operations necessary to evaluate a determinant of order 20.

For efficient use of determinants, a few more properties are desirable.

PROPERTY 5. By interchanging any two rows (or any two columns) of a determinant, the
new determinant formed has value the negative of the value of the original determinant.

A method of establishing this property is illustrated below for the interchange of the
first and third columns of a third-order determinant:

-+
a d K
b e h

c f i

g d -a
h e -b
i f -c

g d a
h e b

i f c

PROPERTY 6. With r > 1, if row r is moved to the top position and each row above the
rth is lowered one position, the resulting determinant has value (- I)'-1 times the value of the
original determinant.

This may be seen by interchanging row r with the row immediately above it, then inter-
changing with the next row above its present position, etc., until (after r - 1 such inter-
changes) the original row r arrives at the top. For each of these r - 1 interchanges there
is a change of sign (by Property 5), and thus the factor (-1)'-' appears.

In the example below, the original row 3 arrives at top position in 2 moves:

3 4 6 2 3 4 6 2 1 0 0 3

5 0 3 4 1 0 0 3 3 4 6 2

(-1) = (-1)2
1 0 0 3 5 0 3 4 5 0 3 4

4 3 7 2 4 3 7 2 4 3 7 2
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PROPERTY 7. The determinant A of order n (see (13)) also has value
n

(15) A = I (-1)'+' a.sfl.s
$=1

which is called the expansion of A in terms of minors of row r.

To see that A has value given by (15), let B be the determinant obtained from A by
moving row r to first position so that (by Property 6)

A=(-1)'-1 B.
An element a has minor A,, in A and this same element in its new position in B has the
same minor in B so that (by expanding B in terms of minors of its first row; that is, by
using (14) applied to B)

n

B = I (-1)a+1 a.,A.,
s=1

n
Hence A = (-1)'-1 B = (-1)1-1 I (-1)' 1(-1)'- a,,A,,

s=1 s=1
n

which is (15).
s=1

In the illustration below, expansion is in terms of minors of row 3:

4-123 4 -1 3
6 204 _

2 4 -r (-)' 0
0 0 1 0 =(-)° 0 +(-)5 0 +(-)6. 1 6

2 -3 42-345
where three of the minors are not filled in since each is multiplied by zero.

Notice that the signs which appear whenever (15) is used may be remembered by the
array

We now mention that throughout all the discussion of determinants the word "row"
may be replaced by "column." In particular we check that at the very beginning the value
of a third-order determinant could have been defined in terms of elements of the first
column (instead of first row) since, for the third-order determinant (4), this expansion is
(instead of (5))

al
b- c 422

I I b1

C3
+ a3-

I I

bl

Clb3 c3 b3 c3 b2 c2

= a1(b2C3 - b3C2) - a2(b,c3 - b3c,) + a3(b1c2 - b2c1)

= a1b2c3 - a1b3c2 - a2b,c3 + a2b3c1 + a3b3c2 - a3b2c1

which has exactly the same terms (but in slightly different order) as (6).
After checking through all details, it should be seen that the nth-order determinant (13)

has expansion in terms of minors of column s given by

(16) A
r=1

(which has summation with respect to r). Formula (16) is a companion to (15) (in which
summation is with respect to s).



322 Solid Geometry Chap. 9

Another way of phrasing the equivalence of row and column expansion (as given in
(15) and (16)) is:

PROPERTY 8. If the rows 1, 2, 3, of a determinant A are made the columns 1, 2, 3,
of a determinant B, then

A=B
or, as sometimes stated, "Interchanging rows and columns of a determinant does not change
the value."

PROBLEMS (cont.)

11. Notice how the "little determinants" of the second determinant are made up of
the elements of the first determinant.

A =

5 -4 1

2 3 -1

1 6 2

I

B
5

5 -4
2 3

5 -4
1 6

5 1

2 -1

5 1

1 2

Show that A = 89. Next evaluate the "little determinants" in B and then
evaluate the resulting second-order determinant and find that also B = 89.

12. Prove that

all a12 all a13 all ain

all a12 * , * aln a21 a22 a21 a23 a21 a2n

a21 a22 a2n I all a12 all a13 all aln

a31 a32 a3n -2n-
a

a31 a32 a31 a33 I I a31 a3n
l l . . . . . . . . . . . . . .

and ant , * * ann all
an1

a12

an2

I

I

all
ant

a13

an3 I I

all

an1

a1n

ann

(Hint: Use the "reduction method" in which the "preparation for reduction" is
done by dividing each element of the first row by all.)

13. Use the method of Problem 12 to evaluate each of the determinants. Notice
that it is not necessary to write down the "little determinants."

a.

2 1 -3
1 0 2

3 1 0

98. Cross Products

b.

3 2 0 1

4 1 -2 0

1 0 0 2

0 3 4 -5

Let it 6 and v 6 be non-parallel vectors. If u and v do not have
the same initial point, then move v so they do. In this position u and v lie in a
plane. Perpendicular to this plane and with the same initial point as u' and v,
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select the unit vector n from whose terminal end the angle 0 from it to v
appears counterclockwise with 0 < 8 < 180°.

DEFINITION. Given any two vectors u and 6, the
cross (or vector or outer) product of u' into v' is
denoted by u' x v and is defined by

(6 for u and v' parallel or either = 6
(1) u x v = (fililI

161 sin 0 otherwise.

From this definition and the relative positions
of the basic unit vectors i, f, and k it follows that Figure 98.1

(2) ixf=l, fx1C=i, kx1=f and ix t=fxf=kXrc=6.
The first three equations may be remembered by writing % f,1C, % j and noting
that the result of a cross between any two is equal to the next in line.

If u x v = 6 then also v' x u' _ 6. If, however, u x e 0 6, then the
rotation of v' into u' is opposite the rotation of u into v' and hence v' x u and
u' x v' have opposite senses, but their magnitudes are the same. Hence, in
any case

(3) v x u = -(u X e).
Thus, cross multiplication of two vectors is not commutative and the order of
the factors must be carefully observed. In particular in contrast to (2),

(4) fxi=-l, 1Cxj=-1, and tx1C=-j.
With c a scalar, we shall show that

(5) (cu) x v = c(u x v').

If c = 0 then both sides are 6. If c > 0 then Icl = c so that

(cu) x v = n lcuH 161 sin 6 = n Icl litl 161 sin 0

= c(n I'll 101 sin 0) = c(u x v).

If, however, c < 0 then cu has opposite sense to u so the unit normal vector
must be reversed (but the angle less than a straight angle from cu' to v is the
same size as 0) so that

( c u ' ) x v = - n ' Jail 101 sin 8 = - Ic!' li l 161 sin 0

= cn Jul 161 sin 0 since Icl _ -c.

It then follows from (3) and (5) that

(6) ii x (cv) = -(cu) x it _ -c(v x u') = c(u x v').

Hence, for a and b scalars, we have that

(au) x (be) = ab(il x v'),
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and in particular (-u') x v = u x (-v') = -(u' x v').
In the next section it will be proved that "Cross is distributive over plus";

i.e.

(7) u'X (v+iv)=u'X v'+u'x w
and (v'+w) X u=v X u+w x U.

Example 1. Given u1 = alt + b1 j + elk and U2 = a2i + b2 j + 4, use the
distributivity of cross over plus to show that

i j kI
(8) ul X U2

I

al b1
cl l

a2 b2 C2

Solution. Each step of the following algebraic manipulations may be justified
by one of the above formulas:

1X1x2=U1 X(a2i +b2j+C2k)=a2t11 X1+ b2#1 Xj + C2111 XlC
= a2(ali + b1 j + clk) x t + b2(alt + b1 j + clk) x j

+ c2(al1 + blj + c1k) X k

= a2(a11 x i+ b1 j x t+ elk x i)

+ b2(ali x j + bl j x j+ c11 x j)
+ c2(a1t x k+ b1 j x k+ elk x k)

= a2(al(d = blk + cl j) + b2(alk + b1 - c1i) + c2(-al j + b1t + c10)
= t(b1c2 - b2cl) - j(a1c2 - a2c1) + k(alb2 - a2bl)

which is the formal expansion of the determinant of (8) in terms of minors of the
first row.

A plane having equation Ax + By + Cz = D and a line L are perpen-
dicular if and only if A, B, C is a set of direction numbers of L. (See Theorem
96.) This fact is used in the next example.

Example 2. Find an equation of the plane passing through the point P =
(-3,1,6) and perpendicular to the line L of intersection of the planes having
equations

2x-3y+4z=7 and 5x+2y-3z=4.
Solution. For A, B, and C not all zero the

graph of

A(x+3)+B(y-1)+C(z-6)=0
is a plane passing through P = (-3,1,6). Such a
plane will be perpendicular to L if A, B, C are

Figure 98.2
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direction numbers of L. To determine these direction numbers, visualize any point
on L as the initial point of vectors Nl and N2 normal to the given planes (see Fig.
98.2). Then Ni x N2 lies on L and direction numbers of Nl x N2 are also direction
numbers of L. Noting the coefficients in the equations of the given planes, it follows
that

N1XN2=

Nl =2i -31 +41
J

soN2=51+2j -3k

t 7 = i(9 -. 8) -1(-6 - 20) + k(4 + 15;
2 3

4

4

5 2 -3 =i+261+19k.
Hence Nl x N2 and L have direction numbers 1, 26, 19 and the plane has equation

1(x+3)+26(y-1)+19(z-6) =0 or x+26y+19z=137.
Given that u2 x v 6, the vectors it

h I i \ and t are adjacent sides of a triangle

Figure 98.3

it
whose area is

(9) z Iii x vI units2.

The triangle has base u units and the
altitude (see Fig. 98.3) from the terminal

end of v is h = Iv'I sin 0 since 0 < 0 < 180°. Thus the area is i Jill 191 sin 0.

But
IV x vI = InI IuI I6I sin 0 = IuI It'I,sin 0,

since Till = 1, and thus (9) follows.

Example 3. Given PO = (2, -6,7), Pl = (-3,1,4), and P2 = (3,2,4), find the
area of T of the triangle having these vertices. Also, find the area t of the projection
of this triangle on the xy-plane.

Solution. Let it = PQP, = 1(-3 - 2) +1(1 + 6) + k(4 -*7) = -5i + 7, j - 3k
and d = POP = i + 81 - 3k. Then

dxd
z 1 k

-5 7 -3
1 8 -3

=i
I

7 _ -5 -3
I8 -3 J 1 -3

= 3i - 181 - 47k, and

+k

T = ilu' x eel = j<v'32 + (-18)2 + (-47)2 = i'' 2542 units2.

The projection of the triangle has vertices Po = (2,-6,0), P, = (-3,1,0), and
PZ = (3,2,0) and two sides d' = -5i + 7+ Ok, 0' = i + 81 + Ok. Since

i 1 k

d' x V, _ -5 7 0 = -47k, then t = J(47) units2.
1 8 0
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The following theorem, for use later, may be proved by generalizing the
results of Example 3.

THEOREM 98. If T is the area of a triangle in a plane whose normal has
direction angles a, ,9, y and if t is the area of the projection of this triangle on
the xy-plane, then t = T Icos yJ and if t 0 0, then y 90° and

T = tisec yl.

PROBLEMS
1. Find ii x i given that:

a. c =2i+3j -41C c. it =I -2j+ 3]C
V = -31 - 51 + 6k. v = -2i + 41 - 6JC.

b.it=3i+5j-6/C d.i =4i+6j+91C
v=2i+31 -4J. 6 =2i+3j.

2. Compute (a' x 6) x w and (u' w)fl - (v' w)d given that:

a.#=31+5j-61C, 6=i+3j-4,C, w=31+2j+k.
b.ua=2i+3j-4k, i=-3i-51 +6JC, 0 =i+31 -21C.

3. For the given point P, and L the line of intersection of the planes whose equations
are given, find an equation of the plane through P perpendicular to L.

a.P=(2,-3,4); x-4y+5z=2, 3x+y-z= -4.
b.P=(0,0,0); x-4y=2, 3x+y-z= -4.
c. P = (10,3,-20); 3x - 4y = 2, 5x + y = 12.

d. P = (-6,2,18); 3x - 4y = 2, 5z = 12.

4. For P and L as given in Prob. 3, find parametric equations of the line through P
parallel to L.

5. Find the area T of the triangle having vertices P0, P1. and P2 where:
a. P0 = (1,0,2), P1 = (3,1,4), P2 = (-1,5,1).
b. P0 = (0,0,0), P1 = (4,0,3), P2 = (0,5,6).
c. P0 = (-1,-1,2), P1 = (1,3,5), P2 = (4,9,1).

6. Project the triangle of Prob. 5 on the coordinate planes, let t1, t2, and t3 be the
areas of these projections on the xy-, xz-, and yz-planes, respectively. Find
tl, t2, and t3 and show that T = Vtl + t2 +

12.

99. Triple Products

The scalar (dot) product of two vectors is a scalar, whereas the vector
(cross) product of two vectors is a vector. Thus
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(u x ti) w is a scalar,
(ii 0)0' is a vector, and

(u x v) x iv is a vector, but

(u v) w and (u' fl) x W have no meaning.

The last "have no meaning" since a dot or cross may be placed only between
two vector symbols and (u' 6) is a scalar. The triple product (il x v') w has
a geometric interpretation given below. A relation between triple products
of the form (u v')iv and (u' x t) x w is given in Problem 1.

The vectors u, t, and W. with the same initial point are adjacent edges of a
tetrahedron. The volume V of this tetrahedron is given by

(1)

as we now show. The triangular face with u' and v as adjacent sides has area
I Id x 61 as shown in Sec. 98. The vector it x v' is perpendicular to this face
and the projection of w on the line of u x v has the
same length as the altitude H of the tetrahedron. See
Fig. 99.1. Thus to x v

H_l(u x
1u'X UI

Consequently

V = (area of base)H = [ 1u x v1]
I(u X 6) 01

1u'X91

from which (1) follows. Figure 99.1

Example 1. Find the volume V of the tetrahedron having vertices at the points
PO = (-1,2,4), P1 = (2, -3,4), P2 = (0, -3,5) and P3 = (5, -8,9).

Solution. Let d = POP1, 0 = POP2, and sd = POPS, then

d = POP1 = 311 - 51 + OTC, 6 = i - 51 + k, 0 = 61' - l01 + 51C,
It - j k =t(-5)-j(3)+k(-15+5)

dxtt= 3 -5 0
1 -5 1 = -5i - 31 - 10k,

(d x 6) V = (-5i - 31 - 10k) (6i - 101 + 5k) _ -30 + 30 - 50 and
V = e 1 -50I = aunits3.



328 Solid Geometry Chap. 9

Consider the situation in which iv and u' x v' are on the same side of the
(6,6)-plane (as shown in Fig. 99.1). Then the scalar (u x v) w is positive and
the absolute value in (1) may be omitted to give

V=6(u'x
The same tetrahedron may be considered as having base in the (6,0)-plane.
Then ti and v x iv lie on the same side of the (i,ni)-plane and the same
volume V of the tetrahedron is

V=8(vx
w x w) U. The right side may be written as

u (v' x w) since the dot product is commutative. Thus

(2) (u'x x 0).

We thus have the:

RULE. In (u x v) iv the cross and dot may be interchanged provided
the terms are grouped so as to have meaning.

This rule has been proved only for w and u' x v on the same side of the
(i2,6)-plane. If, however, w and u' x a' are on opposite sides, then -w and
u x v' are on the same side of. the (u,v')-plane and

(uxv')
-U. [v x (-n)] by the Rule as proved

x w).

Thus the Rule holds whether u', v, w is a right-handed or a left-handed system.
We now use the Rule to prove (as promised on page 324):

THEOREM 99. The cross product is distributive over addition; i.e.

(3) u x (v' + w) = u x v + u' x w and
(4) (v' + w) x u= u x u -}- w x u.

PROOF. We shall first prove (3) by showing that the vector p defined by

(5) p=ux(6+w)-uxv'-uxw
is the z

x (u'+tiv)-uxv-u x w]
w)]-p xu)-p(uxti')
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since the dot product is distributive over addition (and subtraction). Next we
use the above Rule to interchange cross and dot:

x x x

Again the dot is distributive over addition so that

p' -p= (p x +(p x x x 0.

Thus p p = 0 so that p' = 6 and (5) becomes

ux(9+W)-it xv'-u'Xw
from which (3) follows.

It is left as an exercise to prove that (4) follows from (3).

Many books use (u v' w) to mean either side of (2); i.e. by definition

(6) (u v' K') _ (u X v) w = u' (e X TV).

Then (u' v' w) is called the scalar triple product of u, v, and 0 in this order.
Hence upon seeing (u v w) the reader is to insert mentally a cross and a dot at
his pleasure, but then to group the terms to have meaning.

PROBLEMS

1. Let u =ia, n = 1,2,and3.
a. Show that (ui x uu2) x 113 equals

.1 k _ !( -a1c2C3 + a2c1c3 - alb2b3 + a2blb3)

bi c1

b2 c2

ai c1

a2 C2

al b1

a2 b2

-J(bic2c3 - b2clc3 - aia3b2 + a2a3b1)

a3 b3 C3 + k(b1b3c2 - b2b3c1 + a1a3c2 - a2a3c1).

b. Show that (11'1 u'3)u2 ; (112 u'3)uu1 and (#'1 x 92) x U. both expand to the same
expression; that is, (111 x 11#2) x 113 = (91 . #3)112 - (112 - u3)u1.

c. Show that (11'1 x u2) x (!i3 X 114) _ (#1#3#4)#2 - (#2#3#4)#1

2. Find the volume of the tetrahedron having vertices:

a. (-1,2,-3), (4,-1,2), (7,4,-2), (2,5,8).

b. (-2,4,7), (-3,2,-1), (8,5,2), (2,-1,4).
c. (0,0,0), (1,2,3), (3,1,2), (2,3,1).

d. (0,0,0), (a,0,0), (0,b,0), (0,0,c).

3. Show that:

a. (OW) _ (Wile) = (mlt).
b. (u'u'W) _ -(tu'W).



330 Solid Geometry Chap. 9

100. Space Curves

Consider a particle moving in space in such a way that at time t > 0 it is
at the terminal end of the bound vector

(1) P(t) = 3i cos 7rt + 31 sin 1rt + j1Ct

whose initial end is at the origin. The particle is then at the point (3 cos Trt,
3 sin irt, it) which is 3 units from the z-axis and it units above the xy-plane.
Hence, the particle moves on the surface of a right circular cylinder of radius 3
in a path called a right circular helix.

For a general discussion, a vector function F defined by

(2) P(t) = af(t) +.1g(t) + 1Ch(t)

(where f, g, and h are continuous functions) is called a law of motion and the
path of a particle obeying this law has parametric equations

(3) x = f (t), y = g(t), z = h(t).

The vector from the terminal end of F(t) to the terminal end of F(t + At)
is expressed by

AF(t) = f Af (t) + J Ag(t) + Ah(t),

and is a chord of the path. The vector

AF(t) Af (t) + JAg(t) + Ah(t)
At At At At

lies along the line containing this chord. Assuming f'(t), g'(t), and h'(t) exist,
then
(4) v(t) _ dF(t) df (t) + dg(t) + k dh(t)

dt dt dt dt

is defined, kinematically, as the velocity at time t and is represented
geometrically by a tangent vector of length f'2(t) + g'2(t) + h'2(t) at the
point (f (t),g(t),h(t)). If f'(t), g'(t), and h'(t) are not all zero (so v(t) 0 6),
the line containing the vector v(t) and the plane perpendicular to 6(t) at the
point (f (t),g(t),h(t)) are called the tangent line and normal plane to the path
at this point. The acceleration at time t is defined by

(5) d (t) = v'(t) = P (t) = l "(t) + Jg"(t) + . h"(t).

Example 1. For the law of motion P(t) = 3it -,jt2 + t2, find equations of the
tangent line and normal plane to the path at the point corresponding to t = 2.
Also, find the tangential component of acceleration when t = 2.

Solution. F(2) = 61t - 41 + 8k so (6, -4,8) is the point in question.

it(t) = 31 - 21t + 31Ct2, 0(2) = 31 - 41 + 12k
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so 3, -4, 12 is a set of direction numbers of the tangent line. Parametric equations
of the tangent line and an equation of the normal plane are therefore

x=6+3s,y= -4-4s,z =8 +12s; and
3(x - 6) - 4(y + 4) + 12(z - 8) = 0.

Since ca(t) = Oi - 2j + 6kt and ii(2) = -2 j + 12k, the tangential component when
t = 2 is (see Theorem 79)

e(2) ,1(2) 3(0) - 4(-2) + 12(12) 152

F(2) 6(2)
v(2) 9 + 16 + 144 (3i - 41 + 12k) =

169
(3i - 41 + 12k).

If f'(t), g'(t), and h'(t) are continuous for a < t < fl, then the integral

(6) f
a

f'2(t) + g 2(t) -I al

exists and is defined to be the length of the path from F(a) to t(#). The
differential of arc length is defined by _

(7) ds = l f,2(t) + g'2(t) + h'2(t) dt

which carries the implication that a point P0 = (f (to),g(to),h(to)) has been
selected and that s is the increasing function for which Is(t)l is the length of
the path from P0 to the point (f (t),g(t),h(t)). Hence s has an inverse function
which, to conserve notation, will be denoted by t and is such that

1dt= Jfa+g'2+h'2ds.

A value of this inverse function is denoted by t(s) and the path is
parameterized in terms of arc length by setting

x = x(s) = f(t(s)), y = y(s) = g(t(s)), z = z(s) = h(t(s)).

Geometric properties of curves are studied (in a branch of mathematics
called Differential Geometry) by means of a right-handed system of three
unit vectors at each point of the curve. With the independent variables
suppressed to shorten the formulas, the first of these unit vectors is denoted
by T and is defined by

(8) T= ds+ ds+ ds

Hence T is tangent to the path. Since

dx df dt f' dy g'
ds dtds +g2+h2' ds f'2 g'2 I-h'2

dz h'
ds {i2 + g'2 + h'2
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it follows that T T = I so that T is a unit vector. Also

d(T . T) _ d1 dT dT T= dT =
ds ds

so T
ds -L ds

0 and 2r s 0,

Upon setting dflds, then 4 N = 0 so either N = 0 or else N is a
definite vector perpendicular to T. In case N # 0 let K > 0 be the number
and 4 the unit vector such that N = Kr'l and if N = 0 let K = 0 and 4 any
unit vector perpendicular to T so that

(9) N = KYf in both cases.

With T and 4 defined, let = f x . Then T, , and form a right-handed
system of three unit vectors in which T is called the unit tangent, 4 the unit
principal normal, the unit binormal, and the scalar K is called the curvature
of the curve at the point considered.

Example 2. For the path of a particle following the law of Example 1, find
and K at the point corresponding to t = 1.

dF dt I
Solution. T(t) = - - = (3i - 2jt + 3kt2)

dt ds V'32 + (-2t)2 -I- (3t2)2
dT dTdt

N(t) = ds
_

dt ds

(3i - 21t + 31Ct2) (0i - 21 + 6kt) 1
(8t + 36t3) + 1

-2(9 + 4t2 + 9t4)312 V9 + 4t2 + 9t4 V9 + 4
= etc.

t2 + 9t4

(9 + 4t2 + 9t4)2 [(-12t - 54t3)i + (-18 + 18t4)j + (54t + 12t3)1C].

1

T(1) = 1 22 (3i - 21 + 3k),

1 66 3V2 _+N(1)= Z(-66i+0 +6610) (-i+k)_-
(22) (22)2 22 V2

-i+1C Y2
Therefore 4(1)

3_ 2 and K(1) = Z Consequently

(1) = 1/2212

I j f I= 1 (-2i - 61 - 2>C)
2V11

3 -2 3

-1 0 1 = - 11(i+3y +1C).

PROBLEMS

1. Find T(t), 1(t), K(t), and ,(t) for the path of the particle following the given law.
Also, find the distance traveled by the particle from t = 0 to t = 27r.
a. P(t) = i 3 cos ITt +f3 3 sin in + kit.
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b. FP(t) = let cos t + jet sin t + ket.
c. P(t) = i2 cosh 3t +12 sinh 3t + 1C6t.

d. P(t) = ht cos t +, Pt sin t + k4t, but find only T(0), 4(0), K(0), and ft).

2. For the general law of motion (2) prove that the angle 6 between the acceleration
vector d(t) and the principal normal vector N(t) is such that 101 < 90°.

101. Surfaces and Solids

In terms of plane rectangular coordinates the set {(x,y) 13x + 2y - 6 = 0}
is a line. In terms of three-dimensional coordinates the set {(x,y,z) i 3x +
2y - 6 = 0} is a plane (it may be considered as the set {(x,y,z) 13x + 2y +
Oz - 6 = 0}). The set {(x,y,0) 13x + 2y - 6 = 0} is a line but is imbedded
in three-dimensional space. The two sets

{(x,y,0) I x2 + y2 = 4} and {(x,Y,z) I x2 + y2 = 4} w t
have graphs in three-dimensional space; the first is a circle in the xy-plane
whereas the second is unbounded, but each plane section parallel to the
xy-plane is a circle of radius 2 with center on the z-axis.

Given a curve C in a plane and a line L not in or parallel to this plane,
the set of all points on all lines parallel to L through points of C is called a
cylindrical surface. In particular the sets

x2 y2 y2 x2

((X'Y'Z) I
a2

+ b2 = 11, (X'Y'Z) a2 - - = 111 and

A. B.

(x,Y,z)

C.

are elliptic, hyperbolic, and parabolic c ti ers respectively.
The rectangular graphs of sets whose defining equations are of second

degree in x, y, and z are called quadrics. Thus { ,y,z) I (x - 3)2 + (y - 2)2 +
(z + 4)2 = 0} is the single point (3,2,-4)7the set {(x,y,z) I (x - 3)2 +
(y - 2)2 = 0} is the line through the point (3,2,0) perpendicular to the
xy-plane, and since

{(x,y,z) I (x.- 4)2 = 9} = {(x,y,z) I x = 7} U {(x,y,z) I x = 1}
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this set is two parallel planes. Also, the set

{(x,Y,z)
x2

Y2

a2
-

b2
= O) = I(X,Y,Z) Y =

b
xl U {(x,Y,z)

is two intersecting planes. These four graphs typify the degenerate quadrics.
Names of the general conics follow and the conics are designated without

using set notation, as is the usual practice. In each case the set of all points
with coordinates (.x,y,z) satisfying the equation is intended. I-ferein a > 0,
b>0,andc>0.

2 2 2

(i) Ellipsoid, a + b2 + 2
- x2 y2

Z2
Upon writing

a2
+

b2
= I - i- x2 y2

(a,o,o) or + - 1

Ellipsoid

a2(l - Z2/C2) b2(l - z2/C2)
,

-c < z < c, it follows that the plane
perpendicular to the z-axis at the point
(0,0,z) with -c < z < c intersects the
ellipsoid in an ellipse having semiaxes

a and b1/1 - (z/c)2 units long.
X2 2 z2

(ii) Hyperboloid of one sheet,
a2 + 62 - z2 = 1.

(iii) Elliptic cone,
x2

a2 + Y262 - z
c2 = 0.

Hyperboloid of one sheet Elliptic Cone Hyperboloid of two sheets
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X2
y,2 z2

(iv) Hyperboloid of two sheets, - - -
a2 ' b2 c2

(v) Elliptic paraboloid, a2 + 62 Z

(vi) Hyperbolic paraboloid, 'Y2 - L2 - ,
a2 b2

Elliptic paraboloid

1.

Hyperbolic paraboloid

Example 1. Prove that through each point of the hyperbolic paraboloid (vi)
there are two lines which lie completely on the surface. (Note: Such a surface is
called a doubly ruled surface.)

Solution. Let (x1,y1,z1) be a point on the surface so that

(1)
yi X21

a2 - b2 = zi.

For A, B, and C not all zero the line having parametric equations

x=x1+At, y-y1+Bt, z=z1+Ct
passes through the point (x1,Y1,z1). This line lies on the surface if

(yl + Bt)2 (x1 + At)2
a2 - b2 =z1+Ct

is satisfied for all values of t. This equation may be written as

y1 (2y1Bt + B2t2) x21 (2x1At + A212)
Q2 + a2 -

62
b2 = z1 + Ct or by (1) as

2 2

(2Q2B - b2 - C) t +
(B
Q2 - b

)
t2 = 0,
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which is satisfied for all values of t if and only if the coefficients of both t and t2
are zero :

2y1B 2x1A B2 A2
a2 - b2 - C=O and Q2 - 62 = 0; that is,

B=±aA, C= f2y21aA- 621Ab(±; bIA.

Now A > 0 (for if A = 0 then also B = 0 and C = 0) but otherwise A is arbitrary
and we choose A = 1. Hence, the lines having parametric equations

ax=x1+t, Y=Yl+bt,

and

z = zl + b(-a T)

a
x=x1+t, Y=Y1

Z=ZI-b(al+b)t

are distinct, both pass through the point
(x1,yl,z1) and both lie completely on the
hyperbolic paraboloid (vi).

The plane having equation
Figure 101.1

20x + 15y + 12z = 60
cuts the axes at the points (3,0,0), (0,4,0), and (0,0,5). These three points
together with the origin are vertices of a tetrahedron which as a solid may
be

{(x,y,z)

characterized as

10<y <4, 0 <x <12 4 3y, 0 <z <60-202- 15y1

For consider a point (x1,y1,z1) of this solid. Then the plane through this
point perpendicular to the y-axis cuts the y-axis at the point (O,y1,O) with
0 S yl < 4. The given plane cuts the xy-plane in the line

12 -
4

3y}{(x,y,0) I 20x + 19y = 60} _ {(xy0)x =

so that 0 < xi < 12 - 3y1
4

. Now the point is on the segment

joining the point (x1,y1,0) and that point (x1,y1,z) for which z satisfies the
equation

20x1 + 15y1 + 12z = 60 so that 0 < zl < 60 - 20x1 - 15y1
12
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The same solid may also be characterized (by first limiting x, then y) as

( ) I

0
12 - 4x 60

3

- 20x - 15y0 <x <3, < y < , 0 <z _<
12

and there are other ways of designating the solid according to the order in
which the variables are limited.

Example 2. Give a characterization of the solid which lies above the x_v-plane
and inside both the surfaces characterized by the equations

X2 },2 2

(x - 1)2 + (y - 2)22 = 4 and
5 5 + 16 = 1.

Solution. The base of this solid is the circular disc

{(x,y,0) I (x - 1)2 + (y - 2)2 < 4}

having center (1,2,0) and radius 2. Thus, a plane perpendicular to the y-axis and
intersecting the solid cuts the y-axis at a point (O,y,O). having 0 < y <- 4 and (with
y so limited) a point (x,y,0) is in the base if (x - 1)2 + (y - 2)2 < 4 and hence
(x - 1)2 < 4 - (y - 2)2 so that

1 -V'4-(y-2)2<x<1 +-,/4-(y-2)2.
Now with x and y so limited, z must be such that 0 < z and

x2 y2 Z2 x2 y2 4

25 + 25 + -
< 1 so that 0 < z < 4 1 -

25 25 5
X25 - x2 _ yz

16

Thus (since 4 - (y - 2)2 = 4y - y2), a characterization of the solid is

{(x,y,z) 10 < y < 4, 1 - V4y - y2 < x < 1 + v'4y - y2,
0<z< V25-x2-

It should be.seen that another way of expressing the same solid is

{(x,y,z)I -1 <x<-3, 2-V-x2+2x+3 <y<2+,-x2+2x+3,
0<z<5/25-x2-y2}.

With f a function of one variable, a portion
of the yz-plane is characterized by

{(O,y,Z)10 < z < I f(y)I}.

By revolving' this plane section about the
y-axis a solid is generated which is character-
ized by

{(x,y,Z) I Jx2+ z2 < I.f(y)I}

{(x,y,z) I x2 + z2 < f 2(y)}.
Figure 101.2

For, with y a given number, a point (x,y,z) belongs to this solid of revolution
if and only if the distance between the points (x,y,z) and (O,y,O) is less than
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or equal the distance between the points (O,y, f (y)) and (O,y,O). The surface
of this solid is the set

{(x,y,Z) I x2 + Z2 = JAY)) -

Example 3. Characterize the solid obtained by revolving the circular disc
{(x,0,z) I (x - 2)2 + z2 <- 1} about the z-axis.

Solution. {(x,y,z) I -1 < z S 1, 2 - V 1 - z2 < Vx2 + y2 -< 2 +
For with z a number such that -1 < z < 1, the line in the xz-plane parallel to
the x-axis intersects the circle at the points (x1,0,z) and (x2,0,2) where x1 and x2 are
the x-roots of the equation (x - 2)2 + z2 = 1 so that x1 = 2 - V-1---Z2 and
x2 = 2 + VT - z2. Hence, a point (x,y,z), with -1 5 z < 1, belongs to the solid
whenever its distance to the point (0,0,z) is between x1 and x2.

PROBLEMS

1. A solid is bounded below by the xy-plane and on the sides and above by the given
sets. Characterize the solid by limiting x, then y, then z and again by limiting y,
then x, then z.

a. {(x,y,z) I x = 1 or x = 2), {(x,y,z) I y = 0 or y = 2.1, {(x,y,z) I z = x + y}.
b. {(x,y,z) y2 = 16x}, {(x,y,z) I z = -x + 4}.
c. {(x,y,z) x2 + y2 = 16}, {(x,y,z) 12y = z}.
d. {(x,y,z)I x2 + y2 = 16), {(x,y,z) I z = x + y + 6}.

e. {(x,y,z) I Y2 = 4x}, {(x,y,z) I x2 = 4y}, {(x,y,z) I z = x2 + y}.

f. {(x,y,z) I y2 = x}, {(x,y,z) I x3 = y}, {(x,y,z) I z = 2 + xy2}.

2. Describe the solid:

a. {(x,y,z) I -4 < x < 4, -%/16 - x2 < y < 16 - x2, 0 <- z < x + 5).

b. {(xy,z) -a < x < a, -''a2 - x2 < y < 1'a2 - x2, - -,/a2 - x2 - y2 <

c. {(x,y,z) 0 < (x - 1)2 + (y - 2)2 < 1, 5 z <- 7).
d. {(x,y,z) 1 <- (x - 1)2 + (y + 2)2 < 4, 3 z :5 81.
e. {(x,Y,z) I 1 XI + lyl 5 1, 0 -< z <- 4 - x2 - y2}.

f. {(xy,z) x2 + y2 <- 4, 0 5 z 5 4 - x2 - y2}.

z 5 Vat - x2 - y2}.

3. Characterize the solid common to two cylinders each of radius a, one with axis
along the x-axis, the other with axis along the y-axis.

4. Revolve each of the given plane regions about the axis indicated and characterize
the solid generated. Also find the volume of the solid.
a. {(x,0,z) 10 5 x < 2, 0< z< x2}; x-axis.

b. {(x,0,z 10< z< 4, V'z 5 x 5 2}; x-axis.
c. {(x,0,z) I 0 < x < 2, 0 < z < x2}; z-axis.
d. {(0,y,z) 0 < y < ,r, 0 < z < sin y); y-axis.
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102. Functions of Two Variables

As defined earlier, a function is a set of ordered pairs such that if (a,b)
and (a,c) are in the set, then b = c with the set of all first elements called the
domain and the set of all second elements called the range. The elements of
the domain and/or range of a function need not be numbers. For example,
a telephone directory may be considered as a function since it gives a set of
ordered pairs; the first element of each pair being a name and address,
whereas the second element is a call signal (which may contain letters as well
as numbers). A function in which each element of the domain is an ordered
pair of numbers is said to be a function of two real variables and is said to be
numerical valued if each element of the range is a number. Such functions
will now be considered. Hence, a numerical valued function of two real
variables is a set of ordered triples of numbers such that if (p,q,r) and (p,q,s)
are in the set then r = s. For f a function of two variables and (x,y) in the
domain off, the value of f at (x,y) is
represented by f (x,y).

Relative to a three-dimensional
coordinate system, the rectangular
graph of a numerical valued function f
of two real variables is the set of all
points each having its coordinates in
f. A perspective drawing of the graph
of

(1) f = {(x,y,z) I z = y2 - x2}
is given in Fig. 102.1. Such a surface

Figure 102.1

is visualized by sketching intersections of the surface and planes; these
intersections being called profiles of the surface. For example, the plane
perpendicular to the z-axis at the point (0,0,1) cuts the surface (1) in

{(x,y,l) I y2 - x2 = 11,

which is a hyperbola shown at the top of the figure together with its
asymptotes (the dot-dash lines). The profile in the xz-plane is

{(x,0,z) I z = -x2}

and is a parabola with the vertex up and at the origin. The set

{(O,y,z) I z = y2}

is the profile in the yz-plane and is a parabola with its vertex down. The
profile in the xy-plane is

{(x,y,o) I y2 - x2 = 0} = {(x,y,0) I y = x} U {(x,y,0) I y = -x}
and thus consists of two straight lines (not shown on the figure).
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Example 1. Discuss the set f = {(x.vz)
2xy

z =x2 +y2 .

Chap, 9

Solution. The profiles of this set in the planes perpendicular to the y-axis at the
points (0,1,0), and (0,3,0) are the sets

{(x,1 ,z) Z = and ((x3z)
6x

z x2+9

portions of which are shown in Fig.

(00 1) 102.2. Since

2x 2(1 - x2)

(0,1,0
D,: T_+1 (x2 + 1)2

and

D2
2x 4(x3 - 3x)

(0,3,0) Dz x2 + 1 (x2 + 1)3

Figure 102.2 the maximum and minimum points of
the first of these profiles are (1,1,1) and

(-1,1,-1). In the same way the maximum and minimum points of the second
profile are (3,3,1), and (-3,3,-1).

For m any number
2x(mx)- x(mx) 2m=

x2 + (mx)2 1 + m2
x 0

and hence in the plane {(x,y,z) I y = mx} the profile of f is all of the line
r( 2m 2m

Notice that{(x,y,z) y = mx, z = 1

+M2 1
except the point (0, 0, 1 + m2

if zo is any number such that -1 S zo < 1, then

2m
= z01+m2

has a solution for m. Hence, the set f has no point on the z-axis, but we can
find a point off as close as we please to any designated point of the interval
of the z-axis joining the points (0,0, -1) and (0,0,1).

DEFINITION. A function f of two variables is said to have limit L at (a,b)
and we write

lim f(x,y) = L
(z,v)-+(a,b)

if corresponding to each number e > 0 there is a number 6 > 0 such that

{(x,y,z) 10 < (x - a)2 + (y - b)2 < 62 and z = f (x,y)}

is a non-empty subset of

{(x,y,z)I0<(x-a)2+(y-b)2<62 and L-e<z<L+e};
that is, whenever 0 < (x - a)2 + (y - b)2 < 62, then If (x,y) - LI < e.
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A better conception of the above definition may be gained by a specific
example of non-existence of a limit. The function f defined by

(2) f (x,Y) = 2+ 2 , x2 + Y2 o 0x2 Y2

f(0,0) = 0

(see Example 1) fails to have a limit at (0,0) as the following argument shows.
The graph off has only the origin on the z-axis, but every right circular
cylinder about the z-axis contains additional points of the graph of f in its
interior and, moreover, some such points at every level from 1 unit below to
1 unit above the xy-plane. Thus, for L any number, for e any number such
that 0 < E < 1, and for 6 any positive number, there are ordered pairs (xl,yl)
and (x2,y2) in the domain off such that 0 < (x1 - 0)2 + (yl - 0)2 < 82,
0 < (x2 - 0)2 + (Y2 - 0)2 < 82 and such that at least one of f (xl,yl) or
f (x2,y2) differs from L by more than e. Specifically

(6 6) 2(6/2)(6/2) = 1 whereas f (S , - d 1f
`2 ' 2 = (6/2)2 + (6/2)2 \2 2

= -
and any given number L differs from either 1 or -1 by more than E since
0 < e < 1. Hence, given any number L, this number cannot be the limi.. of
f at (0,0). It is customary to say, "The limit of this function at (0,0) does not
exist."

With the same function f given by (2), note that

2x(x) 2X2limf(x,x) = lim = lim = 1.
x-+0 x-.0 x2 + x' x-.o 2x2

Suggestive geometric terminology is used to express this fact by saying, "At
(0,0) the limit along the line {(x,y) I y = x} exists and is equal to 1." In the
same way, the limit at (0,0) of this function along the line {(x,y) I y = 2x}
exists and is equal to a since

lim f (x,2x) = Jim
2x(2x) 4

x-+o X--o x2 + (2x)2 5
.

Also, the limit at (0,0) of this function along the parabola {(x,y) I y = x2}
exists and is 0; that is,

2xa
lim f (x,x2) = lim

(x ) 2x= lim = 0.
x-0 x-'o x2 + x4 x-0 1 + X2 i+

In general terms it should be seen that:
If a function f is such that its limits at (a,b) exist along two curves and

these limits are different, then the limit off at (a,b) does not exist. Also, if the
limit at (a,b) along a curve does not exist, then the limit off at (a,b) does not
exist.
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Example 2. Show the limit at (1, -1) does not exist for the function f defined by

sin (x + y)
f(x,y)= x-1 ' xT1.

sin h
Solution. Recall that lim - = 1. In the plane, the line through (1, -1) with

h-.0 h
slope m has equation y + 1 = m(x - 1). Now

lim f(x -1 + m(x - 1)) = lira
sin [x - I + m(x - 1)]

x-

sin [(x - 1)(1 + m)] [sin (x - 1)(1 + m)]
=lim =lim (1 +m) = 1 +m.

Z-1 x - 1 x-l (x - 1)(l + m)

By assigning different values to m, we see that this function has different limits along
different lines through (1, -1) and thus

lim f(x,y) does not exist.

A proof of the following theorem may be patterned after the proof of
Theorem 17.

THEOREM 102. If f and g are functions of two variables such that the limit
of each exists at (a,b) then

(i) lim [f(x,y) + g(x,y)] = lim f(x,y) + lira g(x,y),
(x,v)- (a,b) (x,v)-'(a,b) (a>b)

(ii) lira [f(x,y)g(x,y)] =
L

lim f(x,y)]
[

lira g(x,y)],
(x,v)-'(a,b) (x,v)- (a,b) (x,v)-'(a,b)

and if the limit of g at (a,b) is not zero, then also

(iii) lim f (x,y) = lim f (x,y) / lim g(x,y) .
(x,v)-'(a,b) g(x,Y) (x,v)-.(a,b)

DEFINITION. A function f is said to be continuous at (a,b) if lim f (x,y)
exists and equals f (a,b). (x,y)-(a.b)

Thus, a function f is continuous at (x,y) if and only if

lim f (x + h,y + k) = f (x,y).
(h,k)-(O,O)

It may be possible to use Theorem 102 and known limits of functions of
a single variable to establish a limit of a function of two variables.

Example 3. For the function defined by (2) show that

Solution. Since

lim f(x,y) = If

lim x = 1im x = 3 and lim y = lira y = 4
(x,y)--.-(3,4) x-3 y-4
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it follows from Theorem 102(ii) that

lim 2xy = ( lim 2 I ( urn x I ( im y 2 3 4= 24.
)-.(3) 111 y)-.(34) III (3,4)

Also, from Theorem 102(ii) and (i) we have

+ 42 = 25.lim (x2 + y2) _ (lim x 1 (lim x I + (limy)(limy) = 32
(z,y)-(3,4) x-.3 III x-.3 I y-4

Since the limit in the given denominator is not zero, we then use (iii) to obtain the
existence and value of the stated limit.

The method of Example 3 may be extended to show that the function f
defined by (2) is continuous at any point other than the origin (and we have
already seen that this function is not continuous at the origin).

Problem 4 below illustrates a situation not covered by Theorem 102.

PROBLEMS

1. For the function f whose definition is given show that f does not have a limit at
any of the designated points.

x
a. f(x,y) = x + y , x + y 0 0; points (0,0), (1, -1), (-1,1).

x
b. f(x,y) =

+ y,
x A y; points (0,0), (2,2).x-y

x - 4
c. f(xy) - x - y2 , y2 T x; points (4,2), (4, -2).

1 - cos (x +Y) 1d. f(xy) = 2 , x point (1,x-1)(

e. f(x,y) = (x 1)21)(y + 2) 2 , (x - 1)2 + (y + 2)2 0 0; point (1, -2).)21(x-1) +(y+2
2. Let the function f be defined by f(x,y) = z 2 , X2 + y2 # 0.

z4 +y2

a. Show that at (0,0) the limit along any line exists.
b. Show that the limit of this function does not exist at (0,0).

3. Replace the definition off in Prob. 2 by

x2 sinf (X2= x,, + 2, x2 + y2 0.
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4. Show that the function f defined below is continuous at the origin:

XY if x2+y2T0
f(x,y) = i .,/x2 + ),2

0 if x2 + y2 = 0.

(Hint: Ixyl < J(x2 + y2) which follows from (Ixl - Iyl)2 % 0.)

5. Establish each of the following limits:

-
a. lim

xy x 4

(z,y)-. (2,3) x2 Y2 5

b. lim
x3y2 - ys

(x,v)-(-1,3) xY + 1
= 18.

Chap. 9

c. lim
sin (x - y) 3

X - y 5a

(Hint: sin (x - y) = sin x cosy
- cos x sin y)

d. lim
tan (x - y) 4

=
(x,v)-(n,n14) x _Y 37r

103. Cylindrical and Spherical Coordinates

In addition to a rectangular coordinate system for locating points in space
there are two other systems in common use.

A. CYLINDRICAL COORDINATES. Given a rectangular coordinate system in
space, establish a polar coordinate system in the xy-plane with polar axis
coinciding with the positive x-axis. A point P which has rectangular co-
ordinates (x,y,z) will now be assigned cylindrical coordinates (p,O,z) where

p and 0 are the polar coordinates of the pro-
((Px,'eO,'zz) ) .lection of P on the xy-plane.

Figure 103.1

(1) x = p cos 0, y = p sin 0, z = z.

In cylindrical coordinates {(p,6,z) I p = 2} is
the surface of a right circular cylinder of radius 2.

Also, from (1) and x2 -I- y2 + z2 = a2 it follows that

{(P,O,z) I p2 T z2 = a2}

is a sphere with center at the origin and radius a.
In the xz-plane the graph of z = x2 is a parabola. Upon revolving this

parabola about the z-axis the surface designated first in cylindrical coordinates
and then in rectangular coordinates is

{(P,O,z) I z = p2} and {(x,y,z) I z = x2 + y2}.

Thus, equations for transforming from
rectangular coordinates (x,y,z) to cylindrical
coordinates (p,O,z) are
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B. SPHERICAL COORDINATES. Let P be a point in space and consider the

vector OP, where 0 is the origin of a rectangular coordinate system. Then

Op=OP1+OP2
where P1 and P2 are the projections of P on the xy-plane and the z-axis,
respectively. With r = H OPI, 0 the angle such that 0° < 0 < 360° from the
positive x-axis to OP1, and 0 the angle such that 0° S 0 < 180° from the
positive z-axis to OF, then P is assigned the spherical
coordinates (r,0,4). Hence

(2) OP2 = JCr cos 0 and IOPlj = r sin 0.

P also has rectangular coordinates (x,y,z) where

OP = ix+jy+kz.
Since I cos 0 + J sin 0 is unit vector along OP1, then

OP = (OP1cos 0 + j sin 0) + OP2
= r sin /(i cos 0 -{- j sin 0) + kr cos 0 from (2).

Figure 103.2

Hence, upon equating coefficients of i, j, and k, the formulas

(3) x = r sin 0 cos 6, y = r sin 0 sin 0, z = r cos
are obtained for transforming between rectangular and spherical coordinates.

Formulas for transforming between cylindrical coordinates (p,0,z) with
p > 0 and spherical coordinates (r,0,q) aret

(4) p=rsin0, 0=0, z=rcos

PROBLEMS

1. Describe each of the following sets (where the designations indicate the coordinate
system to be used):

a. {(r,0,4) I r < 2). e. {(r,0,¢) 0 < 15°} n {(r,0,4) I r - 2}.
b. {(r,0,¢) 0 = 30°). f. {(r,0,4) r < 2) n {(p,0,z) I p > 1}.
c. {(r,0,¢) 0 = 30°}. g. {(x,y,z) x = 1) {(r,0,¢) 0 = 30° or 150°}.
d. {(p,O,z) 0 <- z < 2}. h. {(x,y,z) z = x + 1} n {(r,0,¢) 10 = 30°).

2. Express each of the following sets in cylindrical and in spherical coordinates.

a. {(x,y,z) 2x - 3y + 4z = 6}. d. {(x,y,z) I z2 = x2 - y2}.

b. {(x,y,z) 4z = x2 + y2}. e. {(x,y,z) I x2 + y2 = 4 - 4z2}.
x2 y2 z2 X2 y2 Z2 l

c. {(xyz)
9

+ 9 -
4

{(xyz)
I

9
- 9 +

4
= 1 } .

t Most books use p as the first coordinate in spherical coordinates, as well as for polar
and cylindrical coordinates; we shall do the same after this section.
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3. Find the rectangular coordinates of the point whose cylindrical coordinates are:

a. (3,17r,6). b. (4,150°,-2). c. (3,330°,4).

4. Find the rectangular coordinates of the point whose spherical coordinates are:

a. (2,45°,60°). b. (2,150°,150°). c. (3,210°,30°).

5. Find the direction angles of the vector from the origin to the point whose

a. Cylindrical coordinates are (3 6,tan 1 1/2, -3V2).
b. Spherical coordinates are (4,135°,45°).

Find the distance OP as shown in the figure.
Consider an analogous figure in three-dimensional space (unit sphere with

center C(1,1,1) inscribed in a cube of edge 2, etc.). Find the distance OP for this
3-dimensional figure.

In n-dimensional Euclidean space, points are given in terms of n coordinates as
(x1,x2, , xn) and (y1,y2, , yn). The distance between such points is defined by

dist. = V(y1 - x1) + (y2 - x2)2 + ... + (yn - xn)2.

The generalization of the figure is an n-sphere of radius 1, center C(1,1, , 1),
inscribed in an n-cube of edge 2, and P is the point where the segment from the
origin to C pierces the n-sphere.

Is there any dimension n in which OP is longer than the edge of the circum-
scribed cube?



CHAPTER IO

Multiple Integrals

The solid geometry of Chapter 9 is called upon heavily to illustrate the extension
of definite integrals (now called single integrals) to another dimension. The resulting
double integral is intrinsically three dimensional. True to the tradition of reducing
space concepts to plane sections, double integrals are then evaluated by repeated use
of single integrals. After double integrals become familiar through practice and
application, triple integrals are introduced without the crutch of geometry.
Multiple integrals of orders higher than three are used, but their definitions would
be repetitious.

104. Double and Iterated Integrals

Let S be a function whose domain is the set of all pairs (m,n) of integers.
The notation

(1) lim S(m,n) = L
(In,n)-'(-,x)

is used if corresponding to each positive number e there are integers M and
N such that

whenever m > M and n > N, then JS(m,n) - LI < e.

Also (1) is read "The limit of S(m,n), as m and n become infinite independently,
exists and is L."

Consider a simple closed curvet surrounding a portion of the plane and
let R be the set of points of this portion of the plane together with all points
of the curve itself. Such a set R will be called a closed region of the plane.
The projection of this region R on the x- and y-axes consist of the closed
intervals with end points (a,0), (b,0) and (O,c), (O,d) so that R is a subset of
the rectangular region with lower left-hand corner at (a,c) and upper
right-hand corner (b,d).

t For a definition of "simple closed curve" see Appendix A7.
347
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Let f be a function which is continuous on R. With n and m integers, let

(0,d)

(0,e)

R MMM\ \ \ Q A \ \ \ \ 1

NURMEMONEM
RKEMERMX1

(a,0)

Figure 104.1

b-a, xx=a+iAnx(2)Ax-

n

AmY =

for

d-c
m

, Yi=e+jAmY

for j=0,1,2,...,m.
(b,0)

For those indices i and j for which
the set

(3) {(x,Y) I xi-1 < x C xi, Ys-1 < Y < y,}

intersects R, let f (xi,y;) and f (22,9,) be the minimum and maximum off on
this intersection. Then form the following sums

(4). S(n,m) = j f (xi,y) A x Amy and

(5) S(n,m) = G If (xi,Y4) A .x Amy.
i j

where the sums in (4) are taken over those indices i and j for which (3) lies in R,
but the sums in (5) are taken over those indices i and j for which the set (3)
intersects R. In Appendix A6 it is proved that as (n,m) (cc,cc) each of
S(n,rn) and ,9(n,m) has a limit and that both have the same limit. This limit
is denoted by

SIR f(x,y) dR

and is called the double integral off over R, so that

(6)
J fR f (x,y) dR = lim S(n,m) = lim S(n,m).

(n,'m)-.(m,m) n,m)

In case the continuous function f is also positive on R then

(7) {(x,y,z) I (x,y,O) on R, 0 < z < f (x,y)}

is a three-dimensional solid and it is natural to define the volume V of this
solid by

(8) V= f fR f(x,y) dR units3.

For the solid column of altitude f (xi,yf) units standing on the base (3) of
area A ,,x Amy units2 has volume f (xi,y) A ,,x Amy units3 is within the solid
(7) so _S(n,m) units3 is, if anything, too small for the volume of the solid (7).
Similarly `(n,m) units3 is, if anything, too large for the volume of the solid (7).
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Since S(n,m) and S(n,m) have the same limit as (n,m) --> (oo,co), the definition
(8) is a natural one to make.

Double integrals have many
applications wherein it is desirable
to evaluate a double integral of a
specific function over a specific
region. For example, we may wish
to find

(9) ff., x2y dR where R =

{(xY)lo < x < 2, 2 < y <
2

but this evaluation from the defini-
tion alone would be difficult.

As a process relative to (9), but
quite different from double inte-
gration, let F be the function defined
for each number x by

Figure 104.2

(
21 V 2/E x2r{ l2 (xlz1

F(x) Jx2/2x2y d1 = x2 2 1x/2 2 L \ 21 - \21 1 8 (2x3 - x4)

and then take

0f 2
F(x) dx

= f2
1 (2x3 - x4) dx =

1 [X4 - xs12 = 1 r16 - 321 - 1 .
0 8 82 5 o 8L2 5J 5

A standard notation for these two single integrations, performed in this
order, is

(10) f 2 f /2 x2y dy dx which has value
50 x/2

and is called iterated (or repeated) integrationf (as distinct from double
integration) of the function f defined by f (x,y) = x2y over the region
R = {(x, y) 10 < x < 2, x/2 S y < 1/x/2}. The "inside' integration is to be
performed first so that in (10) "integration with respect to y" is done first.

In the following example, the order of integration is reversed.

Example 1. Find the iterated integral of the function f defined by f(x,y) = x2y
over the region

(11) R = {(x,y) 10 < y < 1, 2y2 < x < 2y}.

t For the definition of "iterated integral" see Appendix A6.
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Solution.

rx3

J-=2y2

l1 2y 1[x-2y( ( 2

(2,1) (12) J UJ 2b2
x y dx dy = o 3 y dy

Figure 104.3

=J o 3 [(2y)3 - (2)2)3] dy

= 3 fo

(),4
- y7) dy

3[55

Y811 8

3[5 8] =5.

The iterated integrals in both (10) and (12) have f (x,y) = x2y, both have
value 5i and note furthermore that the region R in (11) is merely another way
of expressing the region R of (9). This fact is an illustration of part of the
results of the following theorem.

THEOREM 104. If a function f is continuous on a bounded region R which
includes its rim, then both iterated integrals off over R have the same value
which is also the value of the double integral off over R.

This theorem is proved in Appendix A6 for R rectangular.
Thus, to find the value of a double integral, we shall merely evaluate

either of the associated iterated integrals.

PROBLEMS

In each of the following problems find the value of the double integral

JIB f(x,y) dR

by evaluating one of the appropriate repeated integrals.

1. f(xy) = xy2 + 1, R = {(x,y) 0 5 x < 2, x/2 5 y

2. f(x,y) = xy2 + 1, R = f(xy) 0 < y < 1, 2y2 < x < 2y}.

3. f(x,y) = x + y, R = {(x,y) 10 < y s 7r, 0 < x < sin y}.

4. f(xy) = x + y, R = {(x,y) -IT/2 < x < 7r/2, 0 < y < cos x}.

5. f(xy) ='Vxy - y2, R = f(xy) I 1 < y < 2, y < x < 10y}.

6. f(xy) = x2y - xy2, R = {(x,y) 10 < x <- 2, l <- y < 3}.

7. f(x,y) = (x + 1)y, R is the triangle with vertices (0,0), (2,0), and (1,1).

8. f(x,y) = xVy, R is the first quadrant of the circle with center at the origin and
radius 4.



Sec. 105

105. Volumes of Solids

Let R be a region in the xy-plane and let f be function which is continuous
on ,R and such that f (x,y) > 0 for (x,y,0) any point of R. Then as discussed
in Sec. 104

(1) {(x,y,z) I (x,y,0) is in R and 0 < z < f(x,y)}

is a solid and the volume V of this solid is defined by

V= J fR f(x,y) dR units3.

Example. Find the volume V of the solid above the xy-plane and directly below
the portion of the elliptic paraboloid

z

x2 + 4 = z)

which is cut off by the plane {(x,y,z) J z = 9}.

Solution. By symmetry considerations, V is 4
times the volume of the portion of the solid in
the first octant. The plane 9 units above the
xy-plane intersects the given surface in the
ellipse

((X,Y,9)

Volumes of Solids 351

x2 y2

The plane region within this ellipse and in the
first octant projects onto the xy-plane into the
region

R = ((x,.yO) 0 < x, 0(<y,
x2 y2

32+62C1}

Figure 105.1

2

and;V=4f JR(x2+4 ) dR.

To evaluate this double integral by means of an iterated integral, write the same
region R as

R = {(x,y,0) 0'< x < 3, 0 < y < 2 V 9 - x- and have

V = 4 f o f o ° -xY (x2 + );(3) 1 dy dx = etc. = 817r.

A reason for suspecting the equality of the double integral and an iterated
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integral may be gained, at least if f is positive over R, by considering volumes.
Let Xl and X. be functions of one variable such thatl'

R = {(x,y,O) I c < y < d, X1(y) < x < X2(y)}

and

(4) V =J JR f (x,Y) dR.

The function F defined by

Jz(v)F(y) =
11(v)

f(x,y) dx, c < y < d

(5)

Figure 105.2

is such that each value of F is the area of
a plane section of the solid. Let m be a
positive integer, let Ay = (d - c)/m and
let y; = c +j Ay for j = 1, 2, , m.
Now visualize the solid as laminated by
planes perpendicular to the y-axis at the
points (0,y,,0) for j = 1, 2, -, m. The
jth lamina appears to have volume close
to F(y) Ay. Then

m
F()'j) Ay

i=1

seems to approximate V in the sense that (5) approaches V as the limit as
- - - Since

(6) lim F(y) Ay =JC11F(Y) dy =JdJ.2 f(x,Y) dx dy,
,n-m 1=1

if we could prove all conjectural statements in this discussion we would know
the equality of the double integral in (4) and the iterated integral in (6). For
further details see Appendix A6.

A heuristic approach is to place a net on the xy-plane of lines spaced Ax
and Ay units apart and parallel to the axes. On a mesh within R stand an
upright f (x,y) units high where (x,y,0) is a point of the mesh so that

f (x,Y) Ax Ay = f (x,Y) Ay Ax

is the volume of this upright. The forming of a slab from such uprights
typifies the "inside" integral and then the fabrication of a solid from such
slabs typifies the "outside" integral.

t In Fig. 105.1 the y-axis is visualized as extending out from the page, but in Fig. 105.2
as away from the reader. The first is called a left-hand system, the second aright-hand
system. Whenever vectors are involved, the right-hand system must be used (so i x j = k),
but otherwise we use whichever system seems better for the situation under consideration.
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PROBLEMS

1. Evaluate the iterated integral (3).

2. Find the volumes of the solids described in Prob. 1, Sec. 101.

3. Find the volume of each of the
solids described in Prob. 2,
Sec. 101.

106. Mass, Moments, Centroids

Think of the xy-plane covered
by a thin sheet of material which
may or may not be of uniform
density. The density function b is
that function for which

(1) a =J .IR S(x,y) dR

is the mass of the sheet lying over
any region R.

Let L be a line perpendicular to
the x-axis at (a,0) and let R be a
region of the plane. Place a net of
lines on the plane made up of lines

L

Figure 106.1

353

Ax units apart perpendicular to the x-axis and Ay units apart perpendicular
to the y-axis. Index'the points of intersection of these lines within R. With
(xi,y;) one of these points of intersection within R, then

(xi - a) 6(xi,y;) Ox Ay

is in a sense "an arm times a mass" and hence "a first moment of a small
mass with respect to L." By summing such terns and then considering the
limit of such sums as (Ox, Ay) --> (0,0), it is natural to define

f fR (x - a) b(x,y) dR

to be the first moment with respect to the line L of the portion of the sheet
lying over the region R.

In particular if a = 0, then

(2) M = f f, x b(x, y) dR

is defined to be the first moment with respect to the y-axis of this portion of
the sheet.
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A similar definition is given for first moments with respect to lines
perpendicular to the y-axis so that

(3) Mx =J JR y 6(x,y) dR

is the first moment with respect to the x-axis of the portion of the sheet lying
over the region R.

With constants x and y such that

(4) f fR (x - x) 6(x,y) dR = 0 and f f, (y - y) 6(x,y) dR = 0

the point (2,y) is defined to be the centroid of the portion of the sheet lying
over the region R. From. the first equation of (4), since z is constant, then

0=f fRx6(x,y)dR-zf
from (2) and (1). Similarly M. - yu = 0 so that

x=Mv and y=M'
lu

are expressions for the coordinates of the centroid.
Second moments (or moments of inertia) with respect to the x-axis, the

y-axis, and the origin are defined, respectively, by

I., = f f,, y2 6(x,y) dR, I =f fR x2 6(x,y) dR, and

10 = f fR (x2 + y2) &(x,y) dR.

Sometimes to is called the polar moment of inertia.
Computations of mass and moments of a sheet require equations of

bounding curves of the region R over which the sheet lies and then the double
integrals involved are evaluated by means of iterated integrals.

Example 1. Find the coordinates of the centroid of a sheet lying over the region
R bounded by the graphs of y = -x and y2 = 2 - x where S(x,y) = y2 for each
point (x,y) of R.

Solution. Since R = {(x,y) I -1 :5y <2,
-y < x < 2 - y2} we have

=f2 1 f2-y'
y2 dx dy,

2 -Ya 2M =f J2
-v xy dxdy, and

M. =f2
f 2

yYs

2 dx dy.

11Hence µ = z o, My = -$, Mx = , - =
Figure 106.2 -21, $
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Example 2. Given that the density function is the constant
bounded by the graphs of y = sin x, y = 0,
and x = ir/2, find Ix and I, for the sheet lying
over R.

Solution. Since R = {(x,y) I 0< x < ,r/2,

0 < y <(' sin x} we have

I
=fo/2foin

y2dydx
=fo/2

31sSnadx
z

o

1 /2
sin 3 x dx-3 0

S =1

Figure 106.3

1 "/2 1 "/2
t 3

2
= 3f o (1 - cos x) sin x dx = 3 [ -cosx + 3 cos x]

0
= 9 ,

/2 sm z 2 sin

Iv =fo fo
x dy dx =f

o /2x2y] 0 dx =f o x2 sin x dx

_ [x2 f sin x dx] 0 2 -(
f;/2

r2x(-cosx) dx (by integration of a product)

_ -x2 cos x] 2+ 2{ [x fcos x dx] 0 2 -f;/2
sin x dxJ

=0+2[xsinx+cosx]o2-,r - 2

Whenever the density function is the constant 1, we shall speak of the
"moments and centroid of the region" rather than of the sheet lying on the
region. The area of a region R is denoted by IRI.

PROBLEMS

1. Find the centroid of the region bounded by the graphs of the given equations.

a. y =9 -x2,y =x+3. d. y2 = -x+4,y2 =x -2.
b. x = 9 - y2, x = y - 3. e. x = V-j-0 --y2,),2 = 9x.

3 ,rc. xy=6,x+y =5. f. y =sinx,y =cosx; -4,r _<x

2. Find the area of the shaded region. The graphs have equations

x2 + y2 = 25, 4x2 = 9y, x - 2y + 5 = 0.I
a. b. c. d.

Figure Prob. 2
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3. Find I,, and I, for the sheet lying on the given region and having the given
density function

a. y = sin 1 x, y = 7r/2, x = 0; 6(xy) = x.
b. y = sin x, x = 0, y = 1, in first quadrant; 6(xy) = y.

C. y = ex, y = 0, x = 0, x = 2; 6(xy) = xy
d. (x - 1)2 + (y - 1)2 = 1; 6(x,y) = (x2 + y2)-1 (Hint: Find Io first.)

e. y2 = 2x, x = 2, first quadrant; 6(xy) = Ix - yi.
f. Triangle with vertices (0,0), (a,0), (b,c); 6(xy) = 1, with a, b, and c all

positive.

4. For t a number let 1,(t) be the second moment of a sheet about the line perpen-
dicular to the x-axis at the point (t,0). Show that
a. ,I,(t) = I,(0) - 2tM, + t2,u. b: II(t) ? 4(2).

107. Polar Coordinates

In a circle of radius r, a sector with central angle of a radians has area jr1a,
Thus, the portion of a ring between two circles with polar equations p = r
and p = r + Ar, Ar > 0 which lies between radial lines of angles 0 and
G + AO, AO > 0 has area (see Fig. 107.1).

J(r + Ar)2 AO - jr' AO = r Ar AO + j(Ar)2 AB

This area is approximated (not by Ar AO, but) by
r Ar AO since

lim
r Ar AG + J-(Ar)2 AG

(Ar,OO)-+(0,O) r Ar AG

Figure 107.1
lim I1. + Arl

= 1.
(Ar,oe)-»(O,O) 2r1

The area and first and second moments of a plane region bounded by
polar graphs may be defined by procedures leading to double integrals which
in turn may be evaluated by means of iterated integrals. For example, let Rl
and R2 be functions such that 0 < R1(G) < R2(G) for a < G < 3 and let G
be the region expressed in polar coordinates as

G = {(p,G) I a G G < 9, R1(G) < p < R2(G)}.

With G a region we shall use the convenient notation JGI = area of G
but this should not be confused with the absolute value of a number. Also
the intermingling of (r,O) and (p,G) should cause no confusion.

The area of this region G is defined by the double integral

IGI=f fodG.
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A heuristic method of arriving at an iterated integral evaluation of this
double integral is to place a network on the plane consisting of concentric
circles Ap units apart and radial lines at
consecutive angles of A6 radians. Each
mesh then has area approximated by
p pp A6 and leads to the expectation
that

f f dG = f R f
RZ(e)

d p
G a R1(9) P P

which is true but cannot be proved here.
Also, for F a function of two vari- Graph of p=R2(9)

Graph of p=R1(e)
ables, then the double integral of F over
G and an equivalent iterated integral in
terms of polar coordinates is

Figure 107.2

f f F(p,6) dG =
I
° f RZ(B)F(P,6)p dp d6.

G a R1(e)

A way of remembering to use p dp d6 (and not just dp d6, as is often
mistakenly done) is to think of dp and dO as
small positive numbers and to consider a small

IdO

"almost" rectangle with opposite corners (p,6)
and (p -f - dp, 6 + d6). This small "almost" rec-

no) tangle has two opposite (though not parallel) sides
of length dp and one other side (actually arc)
has length p d6 (and not d6) and area "almost"

Figure 107.3 (p dp) d6 = p dp d6

Example 1. Find the polar coordinates of the
centroid of the region G enclosed by one loop of the polar graph of

p = 4 sin 29.

Solution. First draw one loop of this
graph and note that

G= {(p,O) J 0< O< a/2,

0 <_ p <_ 4 sin 20}.

A point (p,e) within this region is p sin 6
units from the initial line (see Fig. 107.4).
Hence, by using a rectangular system in
conjunction with the polar system we
have

y-axis

Mx = f fG(p sin 0) dG
initial line

x-axis

=
n12 4 sin 20 (p

sin 9)p dp d9fa f0 Figure 107.4
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for the first moment of G about the x-axis. Therefore

Chap. 10

M. =f o
19 P3 4

3
sin B]

u

sin 20dO
= Jf o /264 sin3 20 sin 0 dO

_
J o

/2(2 sin 0 cos 8)3 sin 0 dB = 8 f o /2sin4 0 cos3 B d6

= 532 f o 9sin4 0(1 - sine 0) cos 0 dO = etc. _ 512
3 35.

Also
n/2 4 sin 20 n/2

p2

4 sin 20

IGI = 10 fo p dp dB =f
o 2J

dO = etc. = 27T.
0

Since Y = Mx/1G] and since t =.P by symmetry, we may transform to obtain the
polar coordinates (P,8) of the centroid:

512 512 7r
x

= Y = lOSir ' p 105or V2' 8 = 4

Even though a solid is defined in terms of rectangular coordinates,
it may be advantageous to translate to polar coordinates to find the
volume.

Figure 107.5

. Example 2. Find the volume V of the solid in the
first octant under the graph of z = 3 - V'x2 + y2
and inside the right circular cylinder having equation
(x-1)2+y2=1.

Solution. In the xy-plane (x - 1)2 + y2 = 1 is
the equation of a circle, which may be written as
x2 + y2 - 2x = 0, and the portion in the first quad-
rant as y = /2x (- x2. Then

V = J SIP - x2 + y2) dR

where R = {(x,y) 10 < x < 2, 0 < y < V2x - x2}

2 -V-
so V = f

o J
(,2'_"(3 - Vx2 + ),2) dy dx.

This integral would be very hard to evaluate. By the trans-
formation formulas x = p cos 0, y = p sin 0 we have z =
3 - Vx2 + y2 = 3 - 'Vp2 = 3 - Jpj so that

V = f f,(3 - IpI) dG Figure 107.6
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where G is the region R expressed in polar coordinates:

G = {(p,0) 0 < 0 < it/2, 0 < p < 2 cos 6}

wherein p > 0 so that JpI = p and

V = r /2 r2cose 3 _
d d0 _ r12 3p2 pa 2cosed8

0 0
(3 P f0 [ 2 3]

-("'32z z 3 16
J o [2( cos 0) - 3(23 cos3 B)] d9 = etc. = 2 - 9

PROBLEMS

1. Find the area of the region enclosed by the graph of:
a. p = 4 cos 0. C. p = 2 cos 30. e. p = 2 + cos 0.
b. p = 5 cos 20. d. p = 4(1 + cos 0). f. p = 4(1 - cos 0).

2. Find the centroid of the region G where

0<0<. , 0<p<2acos0}.

-4 <0 :54, 0 <p <-a Sec

-4 <0 <4, 0 <_p <acos20}.

d. G = {(p,0)10 < 0 < 17r, 0 < p < 1 + 2 cos 0}.

3. Find the volume of the solid:

a. In the first octant below the graph of z = ''x2 + y2 and inside the cylinder
having equation (x - 1)2 + y2 = 1.

b. Above the xy-plane, below the graph of z = 3 - 'x2 + y2 and inside the
cylinder having equation x2 + y2 = 4.

c. Common to a sphere of radius a and a right circular cylinder of radius
b, b < a, with axis along a diameter of the sphere.

I

d. Common to a sphere of radius a and a right circular cylinder of radius a/2
having an element along a diameter of the sphere.

4. Show the existence and obtain the value of the improper integtal

f 0,0

by proceeding as follows :

a. Let I (r) = f ,e -x2 dx so that 1(r) = f re -y2 dy and hence
0 0

I2(r) =foe-z2 dxf oe-y2 dy =f?5oe-cx2+v2) dx dy.
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b. Let Rl and R2 be the first quadrant regions bounded by the axes and circles
with centers at the origin and radii r and r V2, respectively. In terms of
double integrals see that

j J
e-(x2+v2) dRl < 12(r) _ f f e-(x2+N2) dR2.

Rl RZ

c. Use iterated integrals in terms of polar coordinates to see that

JfRe-(x2+v2)dRl =fot2foe-p2pdpdO

with a similar expression for the integral over R2, and obtain

7r 7r

4
(1 - e-r2) <- 12(r) <

4
(1 - e-2r).

7rd. Use these inequalities to show that lira 12(r) =
4

. Complete the proof by
-aor

noting that 1(r) > 0 so lim 1(r) _ J'/;-
7- co

108. Reversing Order Transformations

Iterated integrals sometimes arise in differential equations or applied
mathematics through considerations in which no region of integration is
evident. If such an integral is not readily evaluated, a method .worth trying
is to examine the equivalent iterated integral in reverse order.

Example 1. Evaluate fO
f 2 eve dy dx.

Solution. From the order of integration and the limits of integration, this
integral may be interpreted as a double integral over the region

R = {(x,y) 10 < x < 1, 2x < y < 2}.

By limiting y first and then x, we have R = {(x,y) 10 < y < 2, 0 < x < y/2} and
the given integral is equal to

y (0,2)t (1,2)12 Y12 2l 2y( '2
21 v d df e x y =foe.0J

0 0 20 x dy = f(e )d (0),Y (v/2,N)y

_ ,f0 ev2 dye = 4 ev2]2 = 4(e4 - 1) F (x,2x)

The evaluation of an iterated integral may be (x,0) (1,0)
facilitated by transformation to polar coordinates.

Fi ure 108gV-x2
Example 2. Evaluate 1

at
= f f sin (x2 + y2) dy dx.

0a0

Solution. In terms of the double integral

I = f f Rsin (x2 + )2) dR where R = {(x,y) 10 < x < a, 0 < y < 'a2 - x2},
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so that R is the first quadrant portion of a circle expressed in polar coordinates as

R = {(p,0) 10 < 0 < T/2, 0 < p < a}.

By the translation formulas x = p cos 0, y = p sin 0 we have X2 + y2 = p2,. and

I = f J Rsin p2 dR.

Thus, remembering to use p dp dO (and not merely dp d0), we have

I -fol'fo(sinp2)pdpdB = 2foJ losinp2dp2do

=
21 o

J2 [- cos p2J o d0 = etc. = 4 (1 - cos a2).

PROBLEMS

1. Evaluate each of the following by first reversing the order of integration:

a. f o f .sin y2 dy dx.

b. J o

f
x/2cos

y2 dy dx.

Cl ('2

-1C. J e-x` dx dy.
1 y

d. f 'f" sin (7rx2) dx dy.
2 -2
1 tan'

xe. f0 f0 x dy dx.

1 1 dy dx
fofx 1

+y2

g.
4f

2 f(y) dy dx where f(y) _f0xJ

sin y if y 00
y

1 if y =0.
2. Transform to polar coordinates to evaluate:

a. "a2-x2 2x_xz

a. f 0fo
e(x2+y2) dy dx. C. f

02f

0
y dy dx.

b. a 0 - x Vx2 + y2 dx dy. d. a Ja2_!zx2
dx dy.

f Of f -af
3. Evaluate each of the following:

1 cos-1 x n/4 2 sec 0

a. f0f0 ydydx. C. fo fo epcosepdpd0.

b. f 1f
4-x2

x dy dx + f 2 f
4-x'x

dy dx. d. f 1 sin lvex A dy.
0 -V1-x2 1 0

If
-n/2

109. Triple Integrals

Given a function f of three variables and a solid S then,-by extending the
discussion of double integrals to one more dimension, the concept of the
triple integral off over S is obtained and denoted by

f f f sf (x,y,z) dS.
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Moreover, according to the designations of the bounding surfaces of S, a
triple integral is equal to any of 3! = 6 iterated integrals. The volume of the
solid S is denoted by BSI where

Is =fJfsdS.

The first moments of S relative to the three coordinate planes are

MuZ =J f sx dS, J J fs y dS, Mx -J J f z dS

and the centroid (z, 3,z) of S is given by

z= I.' Y= IZ, z= Slu

Example 1. Find :E for S = {(x,y,z) 0 < x < 1,x2 < y < 1, 0 < z < 1 _ y}

Solution. ISI = f oJzZJo
-adz dy dx =fo f 2 z] o-v dy dx

=f0f1.(l -y)dydz=fo[-(1 2y)2]12dx
.1'.

n 0
1

(1 -x2)2 dx = etc. = 15,

1 "1 1 y 1 1 1 -y
f0Jx2fo

x dz dy dx = 0 [x fx=fo dz dy dx
Myz

-

1

= l ox(1 - x2)2 dx = etc. = il; and z = s.

The second moments with respect to the axes are

I x = Js(Y2 z2) dS, 1,, =J f fs(x2 + z2) dS, 1 z =ff f s(x2 + y2) dS.

T-
-Oz

pA8

If the bounding surfaces of S are
expressed in cylindrical coordinates (p,O,z)
and a function f is also expressed in these
coordinates, then for the triple integral
and threefold iterated integrals

f f fsf(p,B,z) dS =f f f f(p,O,z)p dp dO dz

(with appropriate limits on each of integral
signs of the iterated integral) or any of the
other five possible orders of dp, dB, and dz.
A way of remembering to use p dp d6 dz
(and not dp dO dz) is to visualize the box-

Figure 109.1 like solid of Fig. 109.1 having meeting
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edges of lengths p O8, Op, and Az and hence volume approximately
pAOi p, z= p LpAOi z=etc.

Example 2. A homogeneous solid right circular cylinder has radius a and
altitude h. Find the second moment of the cylinder about a line which contains
one of its elements.

Solution. With S = {(p,6,z) 0 < p < a, 0 < 6 < 2a, 0 < z < h} let L be the
line through the point (a,0,0) perpendicular to the (p,6)-plane (or the xy-plane).
In rectangular coordinates the perpendicular distance from a point (x,y,z) to L is the
distance between (x,y,z) and (a,0,z) so is

''(x - a)2 + y2 = ti/x2 + y2 - 2ax + a2.

In cylindrical coordinates this distance is ./p2 - 2ap cos 6 + a2 so that

IL =JoJ4'f (p2 -2apcos6 + a2)p dz dO dp

= hJ
o

[(p2 + a2)6 - 2a p sin 6] o"p dp

= 2,,hf "V + a2p) dp = ha4.

In spherical coordinates

f f f dS =f f f f(p,0,O)p2 sin 0 dp dO d

(with appropriate limits on the threefold iterated integral) where the presence
of p2 and sin 0 in addition to dp dO do may be seen as follows:

1. With p > 0 consider a sphere of
radius p and center at the pole, and
visualize a point on the sphere.

2. With A > 0 proceed from (p,0,0)
to (p,0, 0 + AO) along an arc each point
of which has p and 0 as its first and na \ ,Psinoao
second coordinates. This arc is on a
circle of radius p and center at the pole
so the are has length p A0.

3. With AO > 0 proceed from
(p,0,4) to (p, 0 + AO, 0) along an arc
having p and 0 as first and third coor-
dinates of each of its points. This arc
is on a circle which is parallel to the A Figure 109.2
xy-plane with its center on the z-axis
and radius p sin 0. Thus, the arc has length p sin 0 OB.
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4. With Ap > 0, extend the radius of the sphere Ap units. Now the
box-like solid having these two arcs and segment as edges should have
volume approximately

(p A4)(p sin 0 AO) Ap = p2 sin 0 Ap AO A0.

PROBLEMS

1. Evaluate the triple integral over the solid given

a. J f f,, dS, S = {(x,y,z) 2 < x < 4, 1 < y < x, 0 < z < x}.

b. J f f,--.,,y dS, S {(x,y,z) 11< x <_ 2, 1 <_ z< x, 1 5 y< z}.

c. J f fscos 0 dS, s = {(p,0,z) I 0 _< 0 < ,r, 0 < p < sin 0, 0 < z < p sin 0}.

d. f f fsp sin 0 dS, S = {(p,0,z) 0 5 p <_ 1 , 0 < 0 < sin--' p, 0 <z < cos 0}.

e. f f f z dS, S = {(p,0,¢) I 0 _5 it/6, 0 < 0 <_ 27T, 0 <p <asec¢}.

f. f f f slxl dS, S a sphere of radius a and center at the origin.

2. Find the centroid of each of the following:
a. Hemisphere with density varying as the distance from the great circle base.

b. Hemisphere with density varying as the distance from the center of the base.

c. Cylinder with density varying as the square of the distance from one base.
d. Cylinder with density varying as the square of the distance from the center of

one base.

110. Attraction

According to Newton's law of gravitation, a particle of mass ml attracts
L3 a particle of mass m by a force (acting along the

mm,

ri
_ ------2 where rl is the distance between the particles and

,n K depends upon the units used in measuring

Figure 110.1
distance, mass, and time. In the C.G.S. system K =
(6.664)10-8. This force may be represented by a

vector directed along the line of the particles. By drawing the attraction
vectors from a particle of mass m toward two particles of masses ml and
m2, the vector sum is the resultant attraction.

line joining the particles) of magnitude
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In finding the resultant of the attractions of several particles of masses
ml, m2, , m,,, on a particle of mass m it is better to use vector components.
With 7 a unit vector at m, with al, a2i , a,, the angles from t to the various
attraction vectors, and with r1, r2, r the distances from the particle of
mass m to the other particles, then the component in the
direction t of the resultant attraction is i P

AS
" mm'iKz cos at = iKm

2
cos;.57

%=1 ri i=1 r2
A

Let a solid S with density function 6 be given, let a
2Fi 110gure .particle of mass m be located at a point A not in the solid,

and let I be a unit vector at A. Let P be a point in the solid and let A V be
a small portion of the solid including P, let u(P) be the distance between A
and P, and let a(P) be the angle from 1 to a vector from A toward P. Then
the mass of the portion is approximately 6(P) AV and its attraction on m
has component in the direction 1' approximately

iK m S(P) OV
cos a(P) = 7-Km a(P) cos oc(P) AV.

u2(P) u2(P)

By the usual extension we define the component in the direction I of the
attraction of the solid S on the particle of mass m to be the triple integral

I151 Km
s

cos a dS = 1Kmf f f s cos x d5.
S tl2 8 u"

If 6 is constant, then it may also be taken outside the integral.

Example. Find the attraction of a homogeneous
solid sphere of radius 1 on a particle of mass m
situated 2 units from the center of the sphere.

Solution. Locate the sphere with its center at the
origin and m at the point (0,0,2). Then by symmetry,
the x- and y-components of attraction are 6. To find
the z-component, let (x,y,z) be a point of the solid
sphere, note that the square of the distance between
this point and (0,0,2) is x2 + y2 + (2 - z)2, and the
angle from the negative z-axis to the line of these
points has its cosine equal to

z-2

Figure 110.3

Vx2 + y2 + (2 - z)2

Thus, with /C the usual unit vector on the z-axis, the
z-component of attraction is

1 z-2
-kKm 6f f f

dS.
s x2 + y2 + (2 - z)2 x2 + y2 + (2 - z)2
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The equivalent iterated integral (leaving off the multiplicative constant -1CKm S)
in rectangular coordinates is

f
1 i x2 1 _y2 _y2

2

2 - z
2 3/2 dZ dy A.+y2+ (2 -z)j

This is a formidable looking integral, so we try transforming to spherical
coordinates :

r r2' r1 (2 P p cos 0)
p2 sin 0 dp A d¢.

Q o 0

[p2-
4 coS + 413/2

Even though the limits of integration are constants, the integrand is complicated so
we try cylindrical coordinates with

S={(p,O,z)10<0<2,r, -1 <-z<-1, 0<-p<-Vi -z2}:

2,, 1(1 iz2 2 - z
d dz d9fo J -1 fo [p2 + (2 - 2)2]3/2 P P

( 2a 1

l

1-z2
= I f l (2 - z)f

0
[p2 + (2 - z)21-3/2 p dp}dz d6

0 -1
1-Z2

= f o" f 11(2 - z){((-2)[P2 + (2 - z)21-1/2]
o

} dz dO

_ 28 1 -1 I

-fo f -1(2 - z) L 1 - z2 + (2 - z)2 + ',/ (2 - z)2
dz d8

_ 2,. 1 -(2 - z)
fo f -1[x/5 - 4z + 1]dzdO=etc.=Er+=.

Thus, the total attraction vector is -kC Km S ir/3.

PROBLEMS

1. Given a solid homogeneous right circular cylinder of radius a, altitude h, and on
the extension of its axis c units from the nearest base is a particle of mass m.
Find the attraction of the cylinder on the particle with the cylinder expressed as

a. {(p,0,z) 0 <- 0 < 27r, 0 < p < a, 0 < z < h} particle at (0,0,h + c).
b. {(p,0,z) 0 <- 0 < 2,r, 0 < z < h, 0 < p <- a} particle at (0,0,h + c).
c. Cylinder same as in b, but particle at (0,0, -c).
d. {(p,O,z) 0 <- p <- a, c S z <- c + h, 0 < 0 < 27r} particle at (0,0,0).

2. Find the attraction of the solid cone inside the graph of z2 = x2 + y2 and below
the plane having equation z = 1 on a particle of mass m at the point:
a. (0,0, -1). b. (0,0,2). c. Turn the cone over so its base is in the xy-plane with

its vertex at (0,0,1) and put the particle at the point (0,0,-1).



CHAPTER II

Partial Derivatives

In this chapter, more than any other, the inherent complications of advancing
from two to three or more dimensions are in evidence. For example, the most
reasonable way of extending the definition of arc length to surface area is exploded
by the so-called "Schwarz Paradox." Also, it may seem an anomaly that a function
can have a differential at a point and still not be differentiable there.

Line integrals and Green's theorem are traditionally postponed to a course on
advanced calculus, but are included here because their usefulness has enticed
physicists at some schools to rely upon them early.

111. Definitions

For f a function of two variables, the mental image of {(x,y,z) ( z =, f (x,y)}
is a surface and of

{(x,y,z) I y = c} rl {(x,y,z) I z = f (x,y)} = {(x,c,z) I z = f (x,c)}

is the curve on this surface in the plane perpendicular to the y-axis at the
point (O,c,O). The points (x,c, f (x,c)) and (x + Ax, c, f (x + Ax, c)) on this
curve determine a line of "slope"

f (x + i x,c) - f (x,c)
Ox

and the limit of this ratio as Ax -+ 0 is visualized as the slope of the line
tangent to the curve at the point (x,c, f (x,c)).

Such a limit of a ratio is reminiscent of a derivative and we define

(1) lira f (x + Ox,Y) - f (x,Y)
AX-0 Ox

as the partial derivative, with respect to the first variable, of f at (x,y). The
partial derivative, with respect to the second variable, off at (x,y) is

(2) lim f (x,Y + AY) - f (x,Y)
AV-0 AY

367
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The two functions whose values at (x,y) are given by (1) and (2) could be
denoted, respectively by

(3) of and of
a first a second

The symbols designating a value of the first or second variables in defining f
are ordinarily used instead of "first" and "second" in (3). Thus

of (x,Y) = Iimf (x + Ox,Y) - f (x,Y) and
ax AX-0 AX

of (x,Y) = lim f (x,Y + AY) - f (x,Y)
ay ay-.o AY

In a/ax the x is merely part of the symbolism and does not represent a
value of the first variable just as neither x in "x-axis" represents a number.
For example

a sin-'Y sin-' Y - sin-1 Y

x = 1im
x + Ox x

ax AX-0 Ax

Partial derivatives are obtained by applying known derivative formulas
with one variable held constant.

Example.

a sin 7l (y/x) I a(y/x) Ixi ( y -y
ax 1 - (ylx)2 ax = vx2 - y2 ` x2) Ixi Vx2 - y2'

a sin' (y/x) - I a(y/x) _ 1x( I (x2 - y2)-112 if X>0
ay 1/1 - (y/x)2 ay

Vx2 - y2 x 1.-(x2 - y2)-112 if x < 0.

There are accepted alternative notations for the partial derivatives, such as

fx for a and f, for of .
Y

For example, given the equation z = x2e3i,, we write either

az = 2xe3i or zx = 2xe3" and either
ax

aza = 3x2e3" or z = 3x2e3".

Y

PROBLEMS

1. For the given definition of a function f, find the partial derivatives off with
respect to the first and with respect to the second variable.

a. f(x,y) = x2y3 + xy2. d. f(s,t) = sin (s2t3).
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b. f(x,y) = tan-y
x

X
c. f(x,y) = tan'

Y

e. f(u,v) = u2 In
v

u

f. f(x,y) = yx, y > 0.

2. Find each of the indicated partial derivatives.

a.
avx2

+ y2 and
aVx2 + y2 .

ax ay

a
b. T (eyi=) and - (e'1/l).

ay

c. aX sin X and ay
a

sin X .

3. Find z,, and zy given

a
d. - cos (2u2 - 3v2).

au

a
e. T cos (2s2 - 3t2).

ao
cos '

a

G).

X + y x2 y2 ,,,
a.z=x _y. C.Z=a2+62. e. z = xe

b. z = sin x cos y. d. z = xy + In I xyl. f. z = In Ix + yI.

4. For the functional relationship between x, y, and z as given by the first equation,
check the second equation.

a. z = x2 + xy + y2; xzy + yzy = 2z.

b. z = ely; xzx - yzy = 0.

az azc.z=tang; x-+y-=0.
x ' ax ay

d. z = sin x cosy; z,, + z, = cos (x + y).

112. Normals and Tangents to a Surface

The line through a point (xo,yo,zo) and having direction numbers A, B, C
has parametric representation

(1) x=xo+At, y=yo+Bt, z=zo+Ct
and (see Sec. 98) is perpendicular at (xo,yo,zo) to the plane having equation

(2) A(x - xo) + B(y - yo) + C(z - zo) = 0.

Consider now a surface having equation

z = f(x,y), where ff and f., exist,

and let (xo,yo,zo) be a point on this surface so that zo =f (xo,yo). With this
point as initial end the vector u to the point (xo, yo + 1, zo +.f,(xo,yo)) is



370 Partial Derivatives

at (xo,yo,zo).

tangent to the profile of the surface in the plane perpendicular to the x-axis
at (xo,0,0). Thus

u
tv (xo,yo)

In the same way the vector

v' = i 1 + ,j 0 + kfx(xo,Y0)

is tangent at (xo,yo,zo) to the profile of the surface
in the plane having equationsy = yo. The vector (xo,vo,o) (xo,yo+1,O)

w = u' x v is then perpendicular to these tangent
vectors it and v'.

Figure 112.1

DEFINITION. The line containing w and the plane through (xo,Yo,zo) perpen-
dicular tow are said to be the normal

asle,^ line and tangent plane to the surface

Figure 112.2

PROOF.

THEOREM 112. The normal line has
parametric representation

(3) x = x0 + tfx(xo,yo),

y = yo + tfy(xo,yo),

Chap. 11

z=zo - t
and the tangent plane has equation

(4) z - f (xo,yo) = .f:(xo,yo)(x - x0)

+ A,(xo,yo)(y - yo).
First note (see Sec. 98) that

II

i = ii x v' = 0 1 f (xo,Yo) = ifx(xo,Yo) + 2t (xo,Yo) - k
1 0 fx(x0,Y0)

Thus the normal line has direction numbers fx(xo,y0), f,(xo,yo), -1 and hence
(3) follows from (1). Then from (2) the tangent plane has equation

fx(xo,Yo)(x - x0) + f (xo,Y0)(Y - Yo) - (z - zo) = 0

which is equivalent to (4) since zo = f (xo,Yo)

Example 1. Let f be the function of two variables defined by

f(x,y) = xy2 + y.

Obtain an equation of the tangent plane and equations of the normal line to the
graph of z = f(x,y) at the point having x0 = 3 and yo = -2.
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Solution. zo =f(3,-2) = 3(-2)2 + (-2) = 10, f.(3,-2) =y 11 (3, 2) = 4,

f,(3,-2) = 2xy + l32) = -11 so that

x=3+4t, y=-2-11t, z=10-t and
z-10=4(x-3)-11(y+ 2).

are equations of the normal line and tangent plane, respectively.
By eliminating t from the parametric equations of the normal line we obtain a

symmetric representation of this normal:

x-3 y+2 z-10
4 -11 -1

Notice that if f5(xo,yo) and f,(xo,yo) are both different from zero, then
from (3) the normal line has the symmetric representation

(3) x - xo = Y - Yo = Z - f(xo,Y0)
fx(xo,Yo) A'(xo,Yo) -1

Example 2. The equation of a surface is z = V3x2 - xy ± y2. Find a represen-
tation of the normal line and an equation of the tangent plane at the point of the
surface having x = 1 and y = -2.

Solution. Since /3(1)2 - (1)(-2) + (-2)2 = 3 the point is (1, -2,3). From
_ 6x-y

and
-x+2y

zx
2 V3x2 - xy + y2

zy =
2 V 3x2 - xy + ys

a set of direction numbers of the normal line is

6-(-2) 4 -1+2(-2) -5
2(3)

= 3 , 2(3) = 6 , -1

but a simpler set to use in (1) is A =8,B= -5,C= -6. Hence

normal line: x = 1 + 8t, y = -2 - 5t, z = 3 - 6t
tangent plane: 8(x - 1) - 5(y + 2) - 6(z - 3) = 0.

A symmetric representation of the normal line and a simplified equation of the
tangent plane are

x-1 _y+2 z-3
8 -5 -6 and 8x - 5y - 6z = 0

Example 3. Find the cosine of an angle between the tangent plane to the graph
of z = In (x2 + y2) at the point having x = 2, y = 3 and the tangent plane to.the
graph of z = X 2y + y2 where x = -1, y = 1.

Solution. For the first surface

Zx1 2x ] _ 4
_T2

2y 6

(2,3) 13

, zV1

(' 3) + y2] (2,3)

_
13
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so 3- + s j -1C is a normal vector to this surface at the given point, but an easier
normal vector to use is

n'1 = 4i + 6, j - 13g.

Similarly, a normal vector to the second surface at the given point is

A2 = -21 + 3j

Hence, an angle 6 between these normals, and thus between the tangent planes, is
such that

(4i+6,j -K)
cosh= _

I)II In2I x/42 + 62 + 132 '1/22 + 32 + 12

4(-2) + 6 3+ (-13)(-1) 23

V22_1 V_5 v'(221)(14)

PROBLEMS

1. Find an equation of the tangent plane and a representation of the normal line to
the surface whose equation is given, at the point of the surface having the given
numbers for xo and yo.

a. z =x2y; 2, -1. d. z = sin (xy);
6

, 1.

b. Z = x2 + y2; 1 , 2. V / 3, -1.

c. z = tan-' y ; -2,2. f. z'= In (x2 + y2); 1, 0.x

2. Find the volume of the tetrahedron bounded by the coordinate planes and the
plane tangent to the graph of z = 16 - x2 + 3xy at the point (1, -4,3).

3. Show that the graph of z = Vx2 + y2 contains the origin, but the graph has no
tangent plane at the origin. Show that the tangent plane at any point other than
the origin contains the whole line joining the origin and that point.

4. For what values of D will the plane with the given equation be tangent to the
surface whose equation is given. Find the points of tangency.
a. 20x - 12y + 2z + D = 0, z = x2y + xy - 8.
b. 4x + 6y - 3z + D = 0, 18z = 4x2 + 9y2.

C. x+2y+z+D =0, z(x+y) =x.
5. Find the point (or points) on the graph of the given equation where the normal

to the graph is parallel to the described line.

a. z = xy + 2x - y; line with direction numbers 7, -2, -2.
b. z = y(x + y)-1; line joining points (9,2, -7) and (3, -6,5).
c. z = x2y + y; line with two-plane representation

5x-lly+5z+11 =o, 5x-13y-5z+3 =0.



Sec. 112 Normals and Tangents to a Surface 373

6. Let P be a point on the surface, let Q be the point where the normal to the
surface pierces the xy-plane, and let P1 be the projection of P on the xy-plane.
The segment P1Q is called the xv-subnormal of the surface at P.

Show that at a point (xo,yo,zo) on a surface represented by z = f(x,y), the
length of the subnormal is

I f(xo,Yo)1''fi(xo,yo) + f y(xo,yo)

7. Prove: An angle 8 between the xy-plane and the tangent plane to the graph of
z = f(x,y) at a point (xo,yo,zo) is such that

Icos 01 =
1

V fx(xo,Y0) + f y(xo,yo) + 1

113. The Schwarz Paradox

Given a. curved surface, take many points rather evenly distributed over
the surface. By judiciously selecting triplets of these points as vertices of
plane triangles, a crinkled surface may be made which in some sense should
approximate the given surface. The area of such a crinkled surface is the
sum of the areas of its triangular parts. As more and more points are taken
closer and closer together, it seems that the areas of the resulting crinkled
surfaces should approach a limit and that this limit would be a reasonable
definition of area for the given surface.

The following example shows, however, that even for the lateral surface
of a right circular cylinder, the limit does not exist. Thus, some other definition
of area for a curved surface is necessary. (See Sec. 114.)

The following facts are used in the example.

(1) lim m sin
a = lim ,r sin (,7r/m)

since lim
sin h = 1.

m-+oo m m- m Tr/m h-'o h

(2) lim m2 sin4 '-r = lim (!) 22 [sin /2/2m ]2
sine 2m = (z

2.
1 0 = 0.

M-00 2m m-, oo
-J

(3) urn m4 sin4
7r

= liM
(?r)4rsin it/2m14 = (LT)4

m-+oo 2m L J,n-.oo 2/2m 2

Example. Consider the lateral surface of a right circular cylinder of altitude H
and radius R, so the area of this surface is 21rRH. With n a positive integer divide
the lateral area into n horizontal strips each of altitude H/n. With m a positive
integer, select m equally spaced points around the top rim, and then on the bottom
of the top strip take the m points each under the mid-point of an arc between two of
the selected points on the top rim. By joining these points as shown in Fig. 113.1
(with n = 3 and m = 6), we have 2m triangles the sum of whose areas might be
considered as approximating the area of the top strip. Doing the same for each strip
we obtain 2mn congruent triangles. The sum of these triangles is thus 2mn times
the area of any one of them.
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We now find the area T of one such triangle (magnified as illustrated in Fig.
113.2). We have

T = 2 (AlA2)(CB) = (A,C)(CB)

= R sin \I(DB)2 -(CD)2
m

Figure 113.1

2

= R sin
IT

I n + (OD - OC)2

=Rsinm
n

12+IR-Rcos
111 ` ml

,r rH\ 2
=Rsinm I n I + 4R2 sin4

2m'

Thus, the sum S(m,n) of the areas of the
2mn triangles is given by

H2 IT

S(m,n) = 2mnR sin - + 4R2 sin4 -
m J n2 2m

= 2Rm sin m /H2 + 4R2n2 sin4 2m

and we hope to find "the limit" of this ex-
pression as m co and n -> oo (and hence all
sides of all triangles approach 0).

One way of assuring that both m -> oo and
n -> co is to first let n = m and then to let
m oo. Since (upon setting n = m)

B

Figure 113.2

S(m,m) = 2Rm sin m /H2 + 4R2m2 sin4 2m

we have, by using (1) and (2), that

(4) lim S(m,m) = 2R7rV'H2 + 4R2 0 = 27rRH.
M- CO

We could set n = m2 and then let m oo. We thus obtain (using (1) and (3))

4

(5) Jim S(m,m2) = Jim 2Rm sin m H2 + 4R2m4 sin4 2m = 2R,r H2 + 4R2 (2)
.,n= eo ??1- CO

Since the results in (4) and (5) are different, it follows that lim S(m,n) does
not exist. (m,n)-+(x, 00

PROBLEM

Show that lim S(m,m3) = oo.
n!- 00
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114. Area of a Surface

Let A be a region of the xy-plane and let f be a function whose domain
contains A and is such that the partial derived functions f. and f are con-
tinuous. Hence, the function 1/f'x + f

v

+ 1 is continuous so the double
integral

fJ L
_,/f.(x,y) +ff2(x,y) + 1 dA

exists by an extension of Theorem A6.8. Let S be the portion of the graph of

(1) z =.f(x,y)

whose projection on the xy-plane is A. We now define

(2) (area of S) =f fA \/.f s(x,y) + fv(x,y) + 1 dA.

Toward motivating this definition we first make four observations:
1. Given a triangle and a line I both in the same plane,

the triangle either has a side parallel to I or may be divided
into two triangles each having a side parallel to 1.

II. A rectangle in the same plane may be divided into
triangles each having a side parallel to 1. (First divide the
rectangle into two triangles by a diagonal and then use I.)

III. Let a plane intersect the xy-plane in a line I and at
Figure 114.1

an angle y 90°. In the xy-plane take a triangle t with base of length b
parallel to 1 and let T be the triangle in
the other plane which projects onto t.
Then the base of T is also parallel to I
and is also of length b, but the altitudes
H of T and h of t are related by h/H
= Icos yl so that H = h1sec yl. Thust

(area of T) = (area of t) Isec yl.

IV. If r is a rectangle in the xy-plane
and R is the figure in the other plane

Figure 114.2 which projects into r, then

(area of R) = Isec yJ (area of'r).

In the xy-plane establish a fine net of lines parallel to the axes. The
meshes (that is, small rectangles) of this net which lie in the region A we now
name r1, r2, -

-
, ,,. In each r2,, for p = 1, 2, - , n, select a point (xn,yp,0),

obtain the tangent plane to the graph of (1) at the point (xD,yq, f (xP,YD)),

t For another derivation of this formula see p. 326.
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denote the angle this plane makes with xy-plane by y,, and let Rv be the
figure in this tangent plane which projects into rv. Hence

(3) 1(area of Rv) _ Isec y,J (area of rv).
P=1 P=1

It seems that (area of R) should be, since Rv is in a tangent plane, a
reasonable estimate for area of the portion of S that projects onto rv and
thus that (3) is an estimate of area for all of S.

Notice that y, is also an angle between the z-axis and the normal to the
graph at (xv,yv, f (xv,y ,)). Since

n = iff(xv,YP) + Jfv(xv,Yv) - k
is such a normal vector, whereas k is normal to the xy-plane, we have

n -1 since
cos .P= l Vfz(xv>Yv) +f?(xv,yv) + 1 and -1C . k = -1.

Hence Isec y,J = '\/f x(xv,yv) + f'(x,,yv) + 1 and the estimate (3) for area
of S takes the form

Y-,lfx (xv,Y,) + f (xp,Y,,) + 1 (area of rv),
P=1

which is an approximating sum of the integral in (2).
In a specific situation the double integral of

(2) is evaluated by means of a twofold iterated
integral with limits depending upon the equations
of the bounding curves of the region A. The

S'
following example illustrates how space rect-

a angular coordinates and plane polar coordinates

-
may be used together.

r

Example. On a sphere of radius 3 and center at

Figure 114.3

the origin a portion S lies above the region A en-
closed by one loop of the curve in the xy-plane
having equation p = 3 cos 2B. Find the area of S.

Solution. To obtain the form of the integrand, the upper hemisphere is expressed
as the graph of z = ,/9 - x2 - y2. Hence

az -x az -y
ax -V9'- -X2- y2 ' ay -V9 - x2 - y2

and the double integral for the area of S is

az 2 az 2 (r x2 + y2

Jf4 ax) +(ay) +1dA=JJA 9-x2-y2+1dA
=f f 3

4 dA.
9 -x2 -y2
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But since A = {(p,6) 1 -ir/4 <_ 0 < ir/4, 0 < p < 3 cos 26} we transform to polar
coordinates for the iterated integral evaluation. From the transformation formulas
x = p cos 6, y = p sin 8 we have V9 _X2_ y2 = V9 - p2 and then have
(remembering to use p dp d6 and not merely dp d6) that

(area of S) "4} 3 cos 2O 3-f
-n

J o 79 - 2 p dp d6 = etc. = 9 (-2 - 1 units2.
P

(Note: In evaluating this integral, it is necessary to remember that

V 1 - cost 20 =I sin 201).

PROBLEMS

1. Use (2) to find the area of a sphere of radius r:

a. By using only rectangular coordinates.

b. By using polar coordinates in the xy-plane.

2. Find the area of the portion of the graph of z = x2 + y which lies above the
triangle with vertices (0,0,0), (1,0,0), and (1,1,0).

3. Set up an iterated integral for the area of the portion of the sphere of radius 3
and center at the origin which lies above the triangle of Prob. 2. Now evaluate
the inside integral, thus leaving the area expressed as a single integral.

4. Find the area of S = {(x,y,z) 10 < x < 1, 0 < y V l - x2, z = xy}. (Hint:
Use cylindrical coordinates.)

5. Find the area of the portion of the graph of z2 = x2 + y2 which lies above the
square in the xy-plane with sides of length 4 parallel to the axes and center at
the origin.

6. A portion of the plane having equation Ax + By + Cz + D = 0 lies inside the
cylinder having equation] x2 + y2 = a2. Find the area of this portion.

7. A thin sheet of material of density 6 is spread uniformly on the portion of the
graph of z = 4 - (x2 + y2) which lies above the xy-plane. Show that the attrac-
tion of this matter on a particle of unit mass at the origin is given (after the inside
integral is evaluated) by

k2,,K S If 2
(4 - p2) + 1 + 4p3

.
J 0

d P
\"(16 - 7p2 + p4)3

P

8. Set up (but do not attempt to evaluate) an integral expressing the vertical
component of attraction of the material of density 6 spread uniformly over the
surface of Prob. 2 on a particle of unit mass at (0,1,0).

9. Find the area of the portion of the cone having equation z2 = 2(x2 + y2) which
is above the xy-plane and below the plane having equation z = 1 - x.
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115. Partial Derivative Systems

Every indefinite integral formula is also a derivative formula. For
example, integral table formula 59:

du vla2 - tr2 + C

(1) " u2'V1a2 - U2 a 2u

tells us, without the necessity of reworking the details, that

(2)
d[_ '`/a2-it2+c] - 1 +0.
du a 2 u u2Va2 - U2

Indefinite integral formulas may be used also as "partial integral" formulas.
From (1) we may write

dx 2 2
(3) `rx2Iy2 - x 2 y2x

+ 'AY)

where the additive function T has only the variable not used in the integration
and thus is "the constant of integration." Formula (3) holds since from (2)

1

7x L YY2x X2 + `P(Y)J
X2V/y2 - X2 + a axy) x2 V/y2 - X2 + O.

Example 1. Find a function f given that both

(4)

ef(x,y)
= x2/ 2 - x2 and f(2,y) = 2 + sin y.

y

Solution. From the first equation of (4), it follows from (3) that

(5) f(x,y)
/yy2x

x2
+ q(y).

Can c(y) be determined so the second equation of (4) is also satisfied? From (5)

y2-4
f(2,y) = - y22 + T(y) which must equal 2 + sin y.

Thus, both equations of (4) are satisfied by the function f defined by

2 -X2 V 2 -4
f (x,y) _ - y2x + 2 2 + 2 + sin y.

The two equations in (4) are typical of one type of partial derivative
system; another type is illustrated in the following example. A function
which satisfies both equations of such a system is said to be "a solution of
the system."
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Example 2. Solve the partial derivative system

of ax 'y) =Y cos xy + X and a faY x'y) = x cos xy + e v

Solution. If f satisfies the first equation above, then

(6)

f(x y) =J' of ax'y) dx = J (y cos xy + X dx = sin xy + In lxi + T(y).

The second equation is satisfied by the function f defined by

f(x,y) =Jf ay!f(x,y)
dy =J ( (x cosxy + e-Y dy = sin xy - e Y+ w(x),

where the function W is independent of y. By inspection it follows, upon setting
q,(y) = -e-11 and p(x) = In lxi, that

f(x,y) =sinxy +lnlxi -e v
satisfies both equations of (6) so is a solution of (6).

This function plus any constant is also a solution of (6).

Example 3. Show that there is no simultaneous solution of the equations

a f(x,y) 1

(7) ax = cos xy + X and
af(x,y)

=Cosxy +e y.
ay

Solution. If f'satisfies the first of these equations, then

(8) f (x y) = f
a faxy)

dx = f I cos xy + 1) dx = si yxy
+ In jxj + q,(y),

whereas if f satisfies the second equation, then

(9) f(xy)
=J.

of ayy) dy =j (cos xy + es) dy =
sinxxy

- e '' + y,(x).

Since the terms containing both x and y do not agree, then it is hopeless to select
T(y) in y alone and ij (x) in x alone in such a way as to make (8) and (9) the same.
Thus, there is no function .f that satisfies both equations of (7).

PROBLEMS

1. Solve each of the following partial derivative systems:

a. f,(x,y) = 3x2y - 2xy2 and f(l,y) = y + sin y.

b. fy(x,),) = V xy and f (x,4) = x2 + 5',"x.

a, f (x, y) x ix2 l .
2 and f (X,1) =C.

a
=

2 + yxy

d a f (x. y) _ x
ax

and f'(0 _y) = lny2.
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a f(x,y) = 1

e. and f (4,y) = 0.
ax x2 v'x2 - y2

f. f (x,y) = cos (xy + y2) and f(O,y) = 0.

g. I e2xiv and f(x,2) = ex.

h. In (x2 + y2) and f(x,3) = sin x.

2. Determine a function (if one exists) such that:

a. of(xy) = i and
a f(x'y)

x +
ax y ay Y2

b. f,(x,y) = y and fv(x,y) _ -x.

C.
a f (x,Y)

= Y + ex and
a f (x,y) -x

ax X2 + y2 ay x2 + y2

d.
a f (x,y) = x and of (x'y) = y +

ax x2 + Y2 ay X2 + y2
Y.

e. f(x,y) = y2 and f,(x,y) = -1/x.

afaxy)
z e2vix and f(x,l) = ex.

116. Differentiable Functions

Chap. 11

The increment and differential notation, as used in connection with
functions of one variable (Secs. 41 and 43), is extended to functions of two
variables. With x and y denoting values of the independent variables, then
Ox and Ay are used for arbitrary numbers called increments of x and y,
respectively, and the corresponding increment of a function f at (x,y) is
defined by

(1) Af(x,y) = f(x + Ax,y + Ay) - f(x,y)

Arbitrary numbers dx and dy as used in (2) are called differentials for x and y,
respectively, and the corresponding differential of f at (x,y) is defined
(assuming, ff(x,y) and ff(x,y) exist) by

(2) df (x,y) =ffx,y) dx + f (x,y) dy.

In some books df (x,y) as defined by (2) is called "a total differential."

Example 1. With f the function defined by f(x,y) = x2 - xy, find. the increment
and the differential of fat (8,5) corresponding to Ox = dx = 0.02 and Ay = dy =
-0.01.
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Solution.

A f(8,5) = f(8 + 0.02,5 - 0.01) - f(8,5) = [(8.02)2 - (8.02)(4.99)] - [82 = 8.5]

= [64.3204 - 40.0198] - [64 - 40] = 0.3006 and

d f(8,5) =
r 3(x 2 - xy)]

(0.02) + ra(x
2 xy)1 (-0.01)

L ax (8.5) L ay J (8,5)

= 12x - y]
(815)

(0.02) + L -x1
(8,5)

(-0.01)

_ [11](0.02) + [-8](-0.01) = 0.30.

As in Example 1, the arbitrary numbers Ax and dx may be chosen equal
if desired, and also we may set Ay = dy.

The graph of z = f (x,y) and its tangent
plane (assumed to exist) at a point (xo,yo,zo) (xo + h, yo + k, zo + df (xo

may be used to show (as in Fig. 116.1) a
geometric interpretation of Af (xo,yo) and
df(xo,yo) for Ax = dx = h and Ay = dy = k.
The fact that the tangent plane at (xo,yo,zo)
also contains the point

(xo + h,yo + k,zo + df (xo,yo))
may be seen by substituting these coordinates
into the equation of the tangent plane z - zo =

fz(xo,yo)(x - xo) + f (xo,yo)(y - Yo)-
An algebraic similarity (given below)

between Af (x,y) and df (x,y) depends upon
Figure 116.1

the following extension of the law of the mean (Sec. 32).

Let f be a function of two variables, let a and b be different numbers and

,III,
let y be a number. If fx(x,y) exists for

n n
f(b,y)_f(a,x) clusive, then there is a number

b-a between a and b such that

Figure 116.2

each number x between a ad b i -

(3) f
(b, - a(a,y)

b
_ .fx(,y)

Among the various ways formula
(3) may be written are

f(b,y) - f (a,y) = fx($,y)(b - a) and

(4) f (x + Ax, y) - f (x, y) = f.($, y) Ax, $ between x and x + Ax.
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In the same way (assuming existence off,,) there is a number 77 between
y and y + Ay such that

(5) f (x,Y + AY) - f (x,Y) = fv(x,rl) Ay.

Notice that in (4) the second variable has the same value throughout, whereas
in (5) the first variable has the same value throughout.

Let fx and f, exist at all points within a circle having center (x,y). With
(x =, Ox,y + Ay) within this circle

i f (x,Y) = f (x + Lix,Y + AY) - f (x,Y)

(6) = f (x + 1 x,Y + AY) - f(x,Y + AY) + f (x,Y + AY) - f (x,Y)

since the same amount f (x,y + Ay) was subtracted and added. In the first
two terms of (6) the second variable has the value y + Ay, whereas in the

third and fourth terms the first variable has the value
x. Thus, there are numbers and rl such that

Figure 116.3

(7) Af (x,Y) = fx(E,Y + Dy) Ox + fv(x,7) Ay,

where (see Fig. 116.3) E is between x and x + Ax if
Ox 0 but = x if Ax = 0, and 17 is between y and
y+Ay if Ay 0but77 =y iftly=0.

Upon setting Ox = dx and Ay = dy the expression
(7) for Of (x,y) and the expression for df (x,y) given in
(2) are algebraically quite similar. This similarity, and
the above geometric interpretation, suggests investigating
(as we do below) conditions under which Of and df

approximate one another in some sense consistent with corresponding
notions for functions of one variable.

The increment L1 f (x,y), as defined by (1), requires that both (x,y) and
(x + Ox,y + Ay) be in the domain off, whereas df (x,y), as defined by (2),
requires that (x,y) be in the domains of both f. and f. Even with (x,y) in the
domains of ff and f, so that df (x,y) is defined, we do not say that J is
differentiable at (x,y), but give the following definition.

DEFINITION. If fz and f, exist at each point within a circle having center
at (x,y) and if (with Ox = dx and Ay = dy)

(8) Iiln Of (x,Y) - df (x,Y) = 0
(dx,dv)-+(0,0) Idxl + idyl

then f is said to be differentiablet at (x,y)

t Recall that if a function f of one variable is differentiable at x, then (see p. 132)

lim
Of(x) - df(x) = 0. This property of differentiable functions of one variable

Ox. dz-.0 dx
motivated the definition of differentiable functions of two variables.
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The following theorem gives sufficient conditions for a function to be
differentiable at a point and reveals that many functions met in practice are
differentiable over most of their domains.

THEOREM 116. A ./unction f is differentiable at (x,y) iffy and f" are both
continuous at (x,y).

PROOF. Let f. and f, be continuous at (x,y), let E be an arbitrary positive
number and determine 6 > 0 such that if (u - x)2 + (v - y)2 < 62 then
f (u,v) and f,(u,v) are not only defined but also both inequalities

I ff(u,v) - fy(x,y)I < E and I ff(u,v) - f(x,y)I < E
hold. With dx and dy given such that

(9) 0 < (dx)2 + (dy)2 < 62

we choose between x and x + dx if dx 0 0 but = x if dx = 0 and
between y and y + dy if dy 0 but = y if dy = 0 such that (7) holds with
Ax = dx and Ay = dy. Now dy) and (x,77) are within the circle of
radius S and center (x,y) so that

I dy) - ff(x,y)I < E and I f,,(x,s7) - fv(x,y)I < e.

It therefore follows for Ax = dx and Ay = dy that

IAf (x,y) - df (x,y)I = I [ff($,y + dy) dx + f,(x,r1) dy]
- [ff(x,y) dx +ff(x,y) dy] I

< dy) -f.(x,y)I ldxl
+ If,(x,77) -.fy.(x,y)l idyl

< Eldxl + Eldyl = E[Idxl + Idyl].
We have thus shown that whenever (9) is satisfied then

IAf(x,y) - df(x,y)I <
Idxl + Idyl

which means that (8) holds and hence that f is differentiable at (x,y) as we
wished to prove.

117. Exact Differentials

Whenever a function f is given, then finding df (x,y) requires only the
ability to compute the partial derivatives of f. An inverse problem is
illustrated in the following example.

Example. Show that one of the following expressions is the differential of a
function, but the other is not:

(xy3 + 3x2) dx + (x2y2 + 2y) dy and (2x)3 + x2) dx + (3x2y2 + y) dy.
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Solution. If there is a function f having the first expression as its differential,
then both of the equations

fx(x,y) = xy3 + 3x2 and fv(x,y) = x2y2 + 2y

must hold and therefore both of the equations
2

f(x,y) = x2 + x3 + 99(y) and f(x,y) =
x3

33 + y2 + 99(x)

must hold for some choice of q9(y) and ?(x). But since the terms involving x and y
together do not agree, there is no function whose differential is the first expression.

By the same technique used on the second expression, we seek a function f
such that

z3 2

.f(xy) = x2y3 +
3

+ 99(y) = x2y3 + 2 + y(x)

Thus f(x,y) = x?v3 + x3/3 + y2/2 has the second expression as its differential.

In applied or theoretical work, an expression having the form
M(x,y) dx + N(x,y) dy may arise and whenever it does the further discussion
of the situation will be simpler if there is a function f having this expression
as its differential.

DEFINITION. Let M and N be functions of two variables. Then

M(x,y) dx + N(x,y) dy
is said to be an exact differential if there is a function f having

of(xy)
= M(x,y) and of(x'Y) = N(x,y)

a ay

and hence such that

df (x,Y) = of (x,l') dx + of (x,Y)
ay

d y = M(x,y) dx + N(x,y) dy.
ax

PROBLEMS

1. For the function f as defined, find the increment and the differential off at
(xo,yo) corresponding to Ox = dx and Ay = dy as given. Also, divide the
increment by the differential.
a. f(xy) = x2 - xy + y; x0 = 2, yo = -3, Ox = dx = -0.1, Ay = dy = 0.2.

x+
b. f(x,y) =

y
X y;xo =4,Yo = -3, Ox =dx =0y =dy =0.01.

7r 7rc. f(x,y)=cos(xy);x0=2,yo=6,ix =dx=0.05,oy=dy=90.
X

d. f(x,y) = tan1Y ; x0 = yo = 1, Ox = dx = -0.02, Ay = dy = -0.01.
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2. Find df(x,y) given that

a. f (x,y) = 3x2 + 4xy + y2. d. f (x,y) = (x - y) In (x2 + y2).

Ax + By
b' f(x'y) Cx + Dy' e. f (x,y) = X8In Y .

V 2x
c. f(x,y) = tan-' (x sin y). f. f(x,y) _

2
.

yx
3. Show that if

Vx2 + y2 or z = - ,%/x2 + y2, then dz
=xdx +ydya. z =

z

b. z= '/a2 -(x2 + y2) or z = -'V'a2 - (x2 + y2) , then
xdx+ydy

dz =
z

4. Let u and v be functions of two variables.
a. Define the function f by f(x,y) = u(x,y)v(x,y) and check in turn that

fx = uvx + vux and f, = uv, + vu,
df = W. + vux) dx + (uvy + vuv) dy

= u(vx dx + v dy) + v(ux dx + u, dy)
= u dv + v du.

b. Define f by f(x,y) = u(x,y)Jv(x,y) and obtain the usual formula for the
differential of a quotient.

c. Show that du"`(x,y) = nun-1(x,y) du(x,y).

d. Show that d cos u(x,y) = -sin u(x,y) du(x,y).

5. For each of the following pairs of expressions, show that one is an exact
differential and that the other is not.

a. ydx - xdy, ydxxdy c. ydx+xdy, ydx+xdy
y2 x2

b. ydx - xdy, yxdy d. xdx+ydy, xdx
ydyX2 y2

e. (x + x Vx2 + y2) dx + y dy, (x2 + y2)-1/2[(X + xVx2 + y2) dx + y dy].

f. (y + x2y2) dx - x dy, 3y 2[(y + x2y2) dx - x dy].

6. Let f be the function defined by f(x,y) = 'VTxyj. Show:

a. That df(0,0) = 0. b. That f is not differentiable at (0,0).

118. Implicit Functions

With f a function of two variables, the sets

{(x,y,z) I z = f (x, y)} and {(x,y,0) j f (x,y) = 0}
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are visualized as a surface and a curve; the curve being the profile of the

Figure 118

surface in the xy-plane. For a point (x,y,0) to
be on this profile there must be a relation
between x and y. Thus, with (x,y,0) and
(x + Ax, y + Ay,O) both on the profile, then
not only is f (x,y) = 0 but we must have as well
f (x + Ax, y + Ay) =0 so that

(1) Af(X,Y) = f (x + Ax,Y + AY) - f (x,Y)
=0-0=0.

Assuming that fx and f, exist, there is a num-
ber between x and x + Ax, and a number
77 between y and y + Ay such that

Af (X,Y) = Ay) Ax. + fv(X,i7) AY = 0

(see (7) of Sec. 116). This equation leads to

DY = - ."(&,Y + AY) if ff(X,i7) 0.
AX f (x,1'7)

Thus, iffx and f, are continuous, if ff(x,y) 0, and if lim Ay = 0, then
AZ-0

AY)
A f= -lim(,Y + AY) (Xy)= - ,lim y fx

ax-0Ax :'x- 0 fv(X,17) lim.fu(x,q) fv(X,y)
Ax-+0

Any relation between the variables implied by

(2) f(X,Y) = 0

is said to be an implicit function. In a region throughout which (2) determines
y uniquely in terms of x and f,(x,y) =,L- 0, then

(3) D fx(X,Y)xY -
f (X,Y)

provided fx and f, are continuous.

Example 1. Given x2y - x sin y + 4 = 0, find Dy and D,x.

Solution.

a(x2y - x sin y + 4) a(x2y - x sin y + 4)
= 2xy - sin y, = z2 - x Cosy

a ax Y
(2xy - sin y)

Dxy = - 2 if x2 - z cos y 0,x - xcosy
_ x2 - xcosy

D1,x
2xy - siny

if 2xy - sin y :0- 0.

and
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By using differentials dy = Dxy dx, as defined in connection with functions
of a single variable, (3) may be written as

dy = -ff(x,y) and then as fx(x,y) dx + f(x,y) dy = 0
dx ffx,y)

which is exactly the form of the total differential df (x,y) of a function of
two variables. Thus, a perfectly formal way of finding dyldx from f (x,y) = 0
is to set df(x,y) = d(O) = 0, expand:

df (x,Y) = f,(x,Y) dx + f (x,y) d y = 0,

and then solve for dy/dx.

Example 2. Find dy/dx given that x2 - 3xy + y2 = 4.

Solution. Set x2 - 3xy + y2 - 4 = 0 and then write

d(x2 - 3xy + y2 - 4) = (2x - 3y) dx + (-3x + 2y) dy = d(0) = 0,

(3x - 2y) dy = (2x - 3y) dx,
dy 2x - 3y
dx 3x - 2y if 3x T 2y.

119. Families

The equation x2 + y2 + 2cy = 0 may be written as x2 + (y + c)2 = c2
and thus for each number c represents a circle with center at (0,-c) and
radius jcj. Also, the equation

(1) x2+y2+2cy=0
may be thought of as representing the family of all circles
tangent to the x-axis at the origin. In this interpretation,
c is called the parameter of the family. For each value of
the parameter

(2) d(x2+y2+2cy)=2xdx+2(y+c)dy=d(0)=0.
Upon eliminating c between (1) and (2) the result is the
differential equation

2xdx+2(y-x2 Y)dy=0;
Y

that is, 2xy dx ± (y2 - x2) dy = 0. Figure 119

DEFINITION. Given a family of implicit functions f (x,y,c) = 0, the result
of eliminating the parameter c between

f(x,y,c) = 0 and df(x,y,c) = 0



388 Partial Derivatives Chap. 11

is called the differential equation of the family f (x,y,c) = 0 (or of the
family of curves represented by f (x,y,c) = 0). Also, f (x,y,c) = 0 is said to be
the primitive of the resulting differential equation.

Thus, 2xy dx + (y2 - x2) dy = 0 is the differential equation of the
family of circles tangent to the x-axis at the origin. Also, x2 + y2 + 2cy = 0
is the primitive of the differential equation 2xy dx + (y2 - )c2) dy = 0.

PROBLEMS

1. Find Dry, if it exists, given:

a. xy+x2y3 - 3 =0. C. x2 +y2 + 1 =0. e. xv =4.

b. xe'" + y cot x = 3. d. sin x + cosy = 3. f. xlnY = 2.

2. Find an equation of the tangent to the graph of the given equation at the points
indicated.

a. xy + In (x + y) + 2 = 0; (2,-1), (-1,2).

b. 2 sin x cos y = 1;
(7r

0),
(ir2

, 3)

c. x2 + xy - y2 = 5; points with abscissa 3.

d. x2/3 +y2/3 = 5; points with ordinate 8.

3. Find the differential equation having the primitive:

a. xy - cy2 - 4 = 0. c. y = (c - cos x)e r. e. cy + x - sin x = 0.

b. x(y2 - c) + y = 0. d. y = ear. f. y + c(x - sin x) = 0.

4. Find the differential equation of the family of all:

a. Circles tangent to the x-axis at the point (1,0).

b. Circles tangent to the y-axis at the origin.

c. Central conics with vertices at( ±2,O).

d. Parabolas with vertices at the origin and foci on the x-axis.

e. All lines passing through the point (-1,2).

120. Functions of Three Variables

Given a function F of three variables with values denoted by x, y, and z,
the partial derived functions Fr, F,,, and F. are defined by

F(x + tx,y,z) - F(x,y,z)Fr(x,y,z) = Jim
AX-0 Ox
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with analogous definitions for Fv and F1. For example

a
az

(x2 - 3xyz + z" sin y - 4) = -3xy + 3z2 sin y.

The total differential of F is defined by

dF(x,y,z) = Fx(x,Y,z) dx + F1(x,y,z) dy + F,,(x,Y,z) dz.

Functions of one variable were represented geometrically by using two
mutually perpendicular axes and functions of two variables by three mutually
perpendicular axes. A natural tendency is to expect a geometric
representation of

{(x,Y,z,w)I w = F(x,y,z)}

by means of four mutually perpendicular axes, but these we cannot visualize.
This inability does not, however, in any way disqualify us from using functions
of three or more variables, partials of such functions, or other concepts
involving more than two variables.

We have already visualized implicit functions

(1) F(x,y,z) = 0

when we represented such equations as x2 + y2 + z2, - 4 = 0 graphically.
Considering (1) as expressing z in terms of x and y (at least throughout some
range of x, y, and z) as represented by a solid, then previous results about
implicit differentiation extend to

(2) az = - Fx(x,Y,z) and az = - if F,(x,y,z) 0.
ax F1(x,y,z) ay FZ(x,y,z)

By means of these formulas, the equations of tangent planes and normal
lines to surfaces may be put into more symmetric form. For upon expressing
some (or all if possible) of the graph of (1) as the graph of

(3) z = f (x,y), where F(x, y, f (x,y)) - 0,

then at a point (xo,Yo,zo) of this graph the tangent plane has equation

(4) z - zo = ff(xo,Yo)(x - xo) + fv(xo,Y0)(Y - yo), where zo = f (xo,Yo)

From (3) and (2)

ff(xo,YO) =
azl = - F1(xo,Yo,zo)

ax (xo.vo) FZ(xo,Yo,zo)

Hence, (4) becomes

and

z - z Fx(xO,Yo,zo) (x - x) -o
F:(xO,yO,zO)

o

fv(xo,Yo)
F_(xo,Yo,zo)

FZ(xo,yO,zo)

(Y - Yo)
F:(x0,y0,zo)



390 Partial Derivatives

which may be put in the more symmetric form
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(5) F.(xo,Yo,zo)(x - xo) + F,(xo,Yo,zo)(y - Yo) + F.x(xo,Yo,zo)(z - zo) = 0.

Hence, F(xo,yo,zo), F,(xo,yo,zo), F2(xo,yo,zo) are direction numbers of the
normal line to the surface at (xo,yo,zo) so this normal has parametric equations

x = xo + tF.(xo,Yo,zo), y = Yo + tF(xo,Yo,zo), z = zo + tFz(xo,y0,zo)-

Example 1. Find equations of the tangent plane and normal line to the graph of
x2 + y2 + (z - 3)3 = 6 at the point (2, -1,4).

Solution. Set F(x,y,z) = x2 + y2 + (z - 3)3 - 6 so the graph has equation
F(x,y,z) = 0. Now F,,(2,-1,4) = 2(2) = 4, F,(2,-1,4) _ -2, and F (2,-1,4)
3(z - 3)2] = 3. Thus, the tangent plane has equation

4(x - 2) - 2(y + 1) + 3(z - 4) = 0 or 4x - 2y + 3z = 22,

and the normal line has equations
x-2 +l z-4x=2+4t, y=-1-2t, z=4+3t or y

4 -2 3

Since F(xo,yo,zo), F(xo,yo,zo), F,(xo,yo,zo) are direction numbers of the
normal line to the graph of (1) at the point (xo,yo,zo), then the vector

tF.(xo,yo,zo) +. F,,(xo,Yo,zo) + lFz(xo,Yo,zo)

with initial end at (xo,yo,zo) is normal to the graph. This vector is called the
gradient of F at (xo,yo,zo) (abbreviated grad F). Also, a special vector symbol
V, read "del," is introduced by

(6)
VF

ax ay az

Example 2. Given F(x,y,z) = 2x2y + yz2 + 3xz, find VF(-1,2,3).

Solution. VF( - 1,2,3) _ [(4xy + 3,)i + (2x2 + z2) j + (2yz + 3x)k]

(7) =i+11j+9k.

In Example 2 note that F(-1,2,3) = 13 so the point (-1,2,3) is not on
the graph of F(x,y,z) = 0, but is on the graph of F(x,y,z) - 13 = 0 and at
this point (7) is normal to this second surface.

The del V is also used in connection with a function f of two variables by
setting

(8) of=af i+af.l
ax ay
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PROBLEMS

1.
By considering the given equation as defining z in terms of x and y, find az/ax
and azf ay.

a. xz - x2y + yz3 = 4. c. exy - In z - 5 = 0.
b. x+sin(yz) - 1 = 0. d. tan-1 (x+z)+y = 4.

2. From the equations of Prob. 1, find ax/ ay and ax/ az.

3. Find equations of the tangent plane and normal line to the surface whose
equation is given at the point indicated. In each case find the points where the
normal line pierces the coordinate planes.

a. x2 +y2 + z2 = 14, (-1,2,3). d. 2xz - y

b. x2y + y2 + Z2 = 7, (1,2, -1). e. x In Ix2 + z2 - 1 I = y, (1,0,1).

c. xy + yz = 2xz, (3, -3, -1). f. x cos (yz) + z + 1 = 0, (32).

4. Show that the graphs of 2x2 + 2y2 - z2 = 25 and x2 + y2 = 5z have a common
tangent plane at the point (4,3,5).

5. The line having equations x/2 = y/2 = z pierces the surface having equation
2x2 + 4y2 + z2 = 100 in two points. Find the acute angle between the given line
and the normal to the surface at each of these points.

6. Check that the graphs of the given equations contain the given point. Show that
at this point the normals to the graphs are perpendicular.

a. x2-y2+z2+2 =0, x2+y2+3z2=8; (-1,2,1).
b. x2 - 10y2 + 3z2 = 21, 4x2 + 5y2 - 3z2 = 24; (-3,0,2).

7. Determine a, b, and c in such a way that the graphs of the equations axe - 5y2 +
2z2 = 6 and bx2 + y2 + z2 = c will have the point (- 1,1,2) on their intersection
and at this point have perpendicular normals.

8. Find C"F(x,y,z) if:

a. F(x,y,z) = x3y + xyz + 3yz2. b. F(x,y,z) = xy cos z + x sin (xyz).

9. Let (xoyo,zo) be a point on the graph of F(x,y,z) = c. By using properties of the
dot product, show that

7F(xo,yo,zo) [i(x - xo) +./(Y - yo) + k(z - zo)] = 0

is an equation of the tangent plane to this graph at (xo,yo,zo)
Also, with r' = ix + jy + JCz and dr = idx +jdy + JCdz show that

dF = CF di .
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121. Change of Variables

Let f be a function of two variables defined by

(1) f(x,Y) = x2 - xy,

and let F be the function of one variable defined by

F(t) = f (3 cos t,2 sin t).

Then F(t) = 9 cost t - 6 cos t sin t and F'(t) is obtained as

(2) F'(t) = -18 cos t sin t - 6 cos' t + 6 sine t.

In some situations it is not only important to know the derivative of F, but
it is also desirable to know how this derivative is related to the partial
derivatives off. As shown below

(3) F'(t) = ff(3 cos t,2 sin t) Dt3 cos t + ff(3 cos t,sin t) Dt2 sin t

which may be checked by noting that

fx(x,y)=2x-y so f(3cost,2sint)=6cost-2sint,
ff(x,y) = -x so ff(3 cos t,2 sin t) = -3 cos t

and hence (since Dt3 cos t = -3 sin t and Dt2 sin t = 2 cos t) the right side
of (3) is

(6 cos t - 2 sin t)(-3 sin t) + (-3 cos t)2 cos t
_ -18 cost sin t + 6 sine t - 6 cost t

which agrees with the right side of (2).
For a general development, let f be a function of two variables and let x

and y each be a function of a single variable. Select a number tin the domains
of both x and y so that (x(t),y(t)) is an ordered pair of numbers and if this
ordered pair is in the domain of f, then f (x(t),y(t)) is a number. Thus, the
set of ordered pairs of the form

[t, f(x(t),y(t))]

is a function which we denote by F. Hence, for t and t + At both in the
domain of F we have

(4) F(t + At) - F(t) = f (x(t + At), y(t + At)) - f (x(t),Y(t))

For convenience in writing, we drop the t on the right side of (4) after
replacing x(t + At) by x + Ax and y(t + At) by y + Ay thus obtaining

F(t + At) - F(t) = f (x + Ax,Y + Ay) - f (x,Y)
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Assuming that the partials ff and f, exist, there is a number between x
and x + Ax and a number 77 between y and y + Ay such that

F(t + At) - F(t) = ff($,Y + Ay) Ax ± ffx,?7) Ay

(see (7) of Sec. 116). Now divide both sides by At. Iffy and f, are continuous
and if Dtx and Dty exist, then

AX AY
f.(x,)') Dtx + fv(x,Y) DtY = otmo AY)

At
+ f(x,77)

AtJ

= lim F(t + At) - F(t) = F'(t).
At-0 At

Thus, if t is such that x'(t), y'(t), ff(x(t),y(t)) and ffx(t),y(t)) all exist, and if
f, and f are continuous at (x(t),y(t)), then we have the formula

(5) Dtf (x(t),y(t)) = fx(x(t),y(t))Dtx(t) + f,,(x(t),y(t))Dy(t)

It is customary to use incomplete notation and from

(6) z = f (x,Y),

in a context where x and y are known to be functions expressible in terms of
t alone, to write

(7)
dz = d

xx + f,(x,y) dyat dt dt

In differential notation dz =f (x,y) dx + f,(x,y) dy so a formal way of
remembering (7) is to divide both sides of this differential formula by dt.
An even further abstraction of (5) is made by writing

dz az dx az dy

dtax dt+ay dt

By starting with (6), but under the condition that x and y are functions of
two variables with values denoted by t and s, then the above argument,
applied to each variable separately, yields

az az ax az ay
and

az az ax az ay
(8) at - ax at + ay at as - ax as + ay as

Formulas (7) and (8) are described as derivative or partial derivative
formulas under change of variables, or as the chain rule.

Example. Given z = f(x,y) with x = p cos 6 and y = p sin B show that

az az 1 az

ax = a cos e - - To sin 0.
P P
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Solution. From (8) with p in place of t and 0 in place of s,

az _ az ax az ay az az

a ax a +
a

=T -- x cos 0 +
a

sin 8, and
p p Y p ay

az az ax az ay az az
+-- = - (-p sin 8) -+ --pcos0.ae = ax ae ay ae ax ay

Multiply each term of the first equation by p cos 8, each term of the second equation
by -sin 0, and then add corresponding terms:

az az az az

ap
p cos O -

ae
sin e =

ex
(p cost 9 + p sine 9) = p

TX

which, upon division by p, is the desired equation.

In a fairly prevalent mode of dependent-independent-variable manner of speaking, we
shall indicate why it is sometimes said:

If z is a dependent variable depending upon x and y, then

(9)

whether x and y are independent variables or are themselves dependent variables.
In the first place, if x and y are independent variables, then (9) is the definition of dz

where z =f(x,y) so that z =f and z,, -fr.
On the other hand, if x and y are dependent variables with (say) s and t the independent

variables, then (9) translates into

(10) dx=x,ds+x,dt and dy =y,ds +ytdt.

Now, however, z depends intermediately upon x and y but ultimately upon s and t, so that
another translation of (9) is

(11) dz=z,ds+z,dt
wherein, according to (8),

z,=
zx, + and zt = zx, -1-

By substituting these expressions for z, and z, into (11) we obtain

dz=(z,x +zyys)ds+(=mot+z,,yt)dt
=zx(x,ds+x,dt)+zv(y,ds+y,dt)

and now the substitution using (10) yields dz = zx dx + z dy which looks exactly like (9).

PROBLEMS

1. Continuing with the above example, show that:

az az I az az 2 ai 2 (az1lI2 1 2
a.

ay
= ap sine +

a
cos b. (ax) + (ay) apl + p2

(aoaZ)
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2. In each of the following find Dtz by two methods: (i) by expressing z explicitly
in terms of t, and (ii) by using Formula 7.

a. z=X2 -xy; x =et, y =lnt.
b. z = x2 + 2xy - y2; x = cos t, y = sin t.

c. z = sin 2x cosy; x = et, y = 2t.

d. z = 'V 1 + y2 + In Ix2 - y2l ; x = sec t, y = tan t.

3. Find az/ at and az/ as by two methods.

a. z = x2 - xy; x = et cos s, y = et sins.
b. z = x2 + 2xy - y2; x = s cos t, y = s sin t.
c. z = sin 2x cos y; x = set, y = st.
d.z=x''; x=1 +t2, y=et.

4. Let f be a function of a single variable, let u be a function of two variables, and
define a function F of two variables by

F(x,y) = f(u(x,y))-

Under proper conditions derive the formulas

FF(x,y) = f'(u(x,y))
au ax

and Fy(x,y) = f'(u(x,y)) auayy)

(Note: This situation is usually described by saying, "If z = f(u) and u = g(x,y),
then

az au as au

ax
= f (u)- and

ay
= f '(u) ay

Use these formulas and show that if:

az az
a. z = f (x + 2y), then

ax
= f '(x + 2y) and

ay
= 2 f '(x + 2y).

(Hint: Set u = x + 2y.)
az azb. z=f(x-2y), then 2ax+e =0.

y
y az y y az I y

c. Z = f 1 x I , then ax = - x2 f (XI and ay = X X .

az az
d. z = f (xy), then

ax
= y f '(xy) and ay = x f '(xy).

az aze.z=xf(f), then xax+ya = z.
y

az as
f. z = x + f (xy), then xax y

a
= X.

y
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122. Second Partials

Given a function f of two variables, then fx and f,, are functions of two
variables and these functions may have partial derivatives denoted by

(1) fxx, fxv, fbx, fvv

The two middle terms are defined by

fxv(x,Y) = lim fx(x,Y + AY) - ff(x,Y)
,v-0 AY

and

fvx(x,Y) = lim
fv(x + Ax,Y) - .fv(X,Y)

AX-0 AX

The functions in (1) are called second partials off.

Example 1. Obtain the four second partials of the function f defined by
f(x,y) = x2y + xy3.

Solution. First fx(x,y) = 2xy + y3 and fv(x,y) = x2 + 3xy2. Hence

a(2xy + y3)
f xx(x,y) = ax 2y,

fvx(x y) =
8(x2 + 3xy2)

= 2x + 3y2,
ax

f a(2xy
+ y3 2x + 3y2,

ay

a(x2 + 3xy2)
fvv(x,y) = ay

= 6xy.

The order of taking partials in fx is described as "x first, y second"
whereas the order in fvx is "y first, x second." Even though these orders are

x as stated in the followingreversed, it so happens that in most cases fxY =f
theorem. First we prove a lemma.

LEMMA. If fill and fvx both exist on the rectangle shown, then there are
points (xl,yl) and (x2,y2) in the rectangle such that

fxy(X1.v1) =fvx(x2,y2)

PROOF. We arbitrarily set

F(x) = f (x,b + k) - f (x,b), a S x < a + h,

G(y) = f (a + h,y) - f (ay), b < y S b + k,

(a,b+k) (a+h, b+k)
+

(a,b) (a+h.b)

Figure 122

H(h,k) = f(a + h,b + k) - f(a + h,b) - f(a,b + k) + f(a,b).

The + and - on the figure indicate the signs assigned to the values off at
these corners in forming H(h,k). By direct substitution we check that
F(a + h) - F(a) = H(h,k). By the Law of the Mean, there is an xl between
a and a + h such that F(a + h) - F(a) = F'(xl)h so that H(h,k) = F'(xl)h.
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We now compute F' and see that

F'(xl) =f=(xi,b + k) - f=(xi,b)
=fxv(xl,yl)k for some yi between b and b + k

by another application of the Law of the Mean. Thus

H(h,k) =fxv(xj,yl)hk.

Now use G in a similar way to show that there is a point (x2,y2) in the
rectangle such that H(h,k) = f,,x(x2,y2)kh. Hence when these two expressions
for H(h,k) are set equal to one another, the stated equality follows.

THEOREM 122.1. If,fx and f,,, are continuous in a region and (a,b) is any
point in this region, then

(2) fxv(a,b) = fx(a,b)

PROOF. With e > 0 arbitrary, choose 6 > 0 such that the square with
opposite corners (a,b) and (a + a,b + S) lies in the region and if (x,y) is in
the square, then both

I fxv(x,y) - fxv(a, b) I <

2

and I fv.(x,y) - fvx(a, b) I < 2

By the Lemma, let (xl,yl) and (x2,y2) be in the square and such that
fxv(xi yi) = fx(x2,y2). Hence

I fxv(a,b) - fva(a,b) I = I fxv(a,b) - fav(x1,y1) + f x(x2,y2) - fvz(a,b) I

I fxv(a,b) -fxv(xi,yi)I + I fvX(x2,y2) -ffx(a,b)I < e

Since e > 0 is arbitrary, (2) must hold.
The following theorem is an application of Theorem 122.1.

THEOREM 122.2. Let M, N, Mv, and Nx be continuous in a region. If
M dx + N dy is an exact differential in this region, then for (x,y) in this region

(4) M,(x,y) = N.(x,y)
PROOF. Let M dx + N dy be an exact differential, let f be a function

having this expression as its differential so that, for (x,y) in the region,

df(x,y) = M(x,y) dx + N(x,y) d y
and hence

ff(x,y) = M(x,y) and fv(x,y) = N(x,y).
Since My and N,, exist in the region, then

(5) fxv(x,y) = and f,, (x,y) = N.(x,y)
Since My and N, are continuous in the region, so are fxv and fvx. Consequently,
fxv(x,y) =fvx(x,y), which, because of (5), states that (4) holds.
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The converse of Theorem 122.2 is also true; roughly, If (4) holds, then
M dx + N dy is an exact differential. At this time we are unable to prove
this converse, but will give a proof in Sec. 127.

If we are given an expression M dx + N dy, then Theorem 122.2 tells us
there is no use looking for a function whose differential is this expression if
My Nz, whereas the converse says that if My = N,, then there is a function
f such that df = M dx + N dy. For example, given

(6) (xy3 + x2) dx + (x2y2 + y) dy

take ay (xy3 + x2) = 3xy2 and ax (x2y2 + y) = 2xy2, see that the results are

not equal and know that (6) is not an exact differential. However, from

2xy3 dx ± 3x2y2 dy take a(a
y3) = 6xy2, a( axy2) = 6xy2

y

and then with perfect confidence proceed to find a function having the
expression 2xy3 dx + 3x2y2 dy as its differential.

PROBLEMS

1. Find the four second partials of the function indicated and check that zxy = zyx.

a. z = x3 - 2xy2. c. z = cos (2x + 3y). e. z = eyix.
X

b. z
x

+ y d. z = tan 7-1

x

. f. z = cosh
x

2. Verify each of the following:

a. If z = Vx2 + y2 , then zzz + zyy = z 1.

b. If z = i/x2 + y2, then (zz)2 + (zy)2 = 1.

c. If f (xy) = x4 - 3x2y2 + y3, then fxx(-1,2) _ -12, f=(- 1,2) = 24,

\1

fyy(- 1,2) = 6.

d. If f(x,y) = x2 cos y, then f,: (2,3) = 1, fzy (2,3) = -2-,/3,

xy a2z a2z a2z

n

fyy(2,3 = -2.

e. If z = x +
y

, then x2
ax2

+ 2xy
ax ay + y2 ay2 = 0.

f. If z = cos (x + 2y) + sin (x - 2y), then 4zzz = zyy.

g. If z = (x + 3y)5 + e(x-3y), then 9zzz = zy.

3. Let f and g each be functions of one variable and be such that f' and g" both
exist. With c a constant and w the function of two variables defined by

w(x,t) =f(x + ct) + g(x - ct) show that wtt = c2w .
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4. A function f of two variables is said to be harmonic in a region if

fxx(x,y) +fv,(x,y) = 0
for each point (x,y) of the region. Show that each of the functions defined below
is harmonic in all of the xy-plane except for the points indicated.

a. f(x,y) = ex siny. c. f(xy) = In (x2 + y2), (x,y) T (0,0).

b. f (xy) = x3 - 3xy2. d. f (xy) = e(-r,' -Y') cos (2x y).

e. f(x,y) = In -Vx2 + y2 + tan' (y/x), (x,y) (0,0), x o 0.

5. The first partials of second partials are called third partials. For example

a f.,
xax VX*

a. For f a function of two variables, list the eight possible third partials.
b. Find all eight third partials of:

1) Z = X3 - X2y4. 3) z = ex cosy.
2) z = sin x cosy. 4) z = In (x2 + y2).

c. Use the result symbolized by (2) and show that

f. =f ,x =fvxx and f.-,, = f.., =fvvx

123. Directional Derivatives

Select a point (xo,yo) within a region where a function f and its partials f.
and fv are continuous. Also let a be an angle. Make the change of variables
given by

(1) x=xo+scosa, y=yo +ssin a
thus obtaining a function g of one variable defined by

g(s) = f (xo + s cos a, yo + s sin a).

Since DS(xo + s cos a) = cos a and D8(xo + s sin a) = sin a, we have

g'(s) = ff xo + s cos a,yo + s sin a) cos a + f,(xo + s cos a,yo + s sin a) sin a
(see (7) of Sec. 121). In particular

(2) g'(0) = fx(xo,yo) cos a + f (xo,yo) sin a.

To obtain a geometric interpretation of (2):
1) Visualize the line in the xy-plane having (1) as parametric equations.

This line has inclination a and passes through (xo,yo)
2) Erect the plane perpendicular to the xy-plane and containing this line.
3) Observe the curve in which this plane intersects the surface having

equation z = f (x,y).
4) Notice that (2) is the "slope" of this curve at the point (xo,yo,f(xo,yo))
It is thus natural to call (2) the directional derivative, in the direction a,

off at (xo,yo)

- f
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Given a point (x,y) and an angle a, the directional derivative in the
direction a off at (x,y) is denoted by

gQ f(x,y) = fx(x,y) cos a +fy(x,y) sin a

where a script , rather than D, is used.t

Example 1. Given f(x,y) = 3x2y + 4x, find:

(a)
(b) The directional derivative at (-1,4) in the

direction toward (2,8).

Figure 123

(c) The maximum and minimum of all directional derivatives off at (-1,4),

Solution. f,,(-1,4) = 6xy + 4](_1,4) _ -20, f,(- 1,4) = 3x2](_1.4) = 3 so the
answer to (a) is
(4) iaa j(- 1,4) = -20 cos a + 3 sin oc.

(b) The vector from (-1,4) to (2,8) is (2 + 1)1' + (8 - 4)j = 31 + 41, and since
x/32 + 42 = 5 the unit vector from (-1,4) toward (2,8) is 5i + 5J Thus, the
desired angle as has cos oco = 5 and sin ao = 5 so the answer to (b) is

2ao f(-1,4) _ -20(5) + 3(s)
s$

(c) First Method. We set the derivative with respect to cc of the right side of (4)
equal to 0:

d
da

(-20 cos a + 3 sin a) = 20 sin a + 3 cos a = 0 so tan a = - 2 0'

We need consider only solutions for cc with -180° < c < 180° and, moreover,

need not find cc itself since from tan a = -20 it follows that

-3 1 tl ±1
cos a = cos tan 7-1 - =

20 sec tan 1(- o) + tan2 tan-1(- o) 1 + 40
20 22_ (::13) 3

= + -409
and sin a = cos a tan a =

X== 20 = T X409

Hence, upon substituting into (4) we obtain the extreme values

20 3 + -
-20( f

'

409) + 3 T .409/ = T T 409.

t Other notations for directional derivatives are sometimes used; among them f.,f , and D, f.
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(c) Second Method. By multiplying and dividing the right side of (4) by
V(-20)2 + 32 = V409 we obtain

2« f (-1,4) _ v'409 20 cos a + 3 sin a
X409 V409 J

The segment from the origin to the point (-20,3) has inclination e where cos 0 =
-20/ V'409 and sin 0 = 3/ v'409. Thus

(5) -9,,,f( -1,4) = "409(cos 0 cos a + sin 0 sin a) _ V409 cos (0 - a).

For all possible values of a the maximum of (5) occurs when cos (0 - a) = 1 and
hence when a = 0 and then the maximum value is V'409. Also, the minimum occurs
when cos (0 -1, hence when a = 0 ±1800, and the minimum value is
- V409.

PROBLEMS

1. Find the directional derivative of the function f defined by

a. f(x,y) = tan' (y/x) at (1,2) in the direction « = 7r/4.

b. f(x,y) = In (x2 + y2) at (3,4) in the direction a = 57x/6.

c. f(x,y) = exv at (1,2) in the direction from (1,2) toward (3,0).

d. f (x,y) = v/x2 + y2 at (3,4) in the direction from (3,4) toward (0,0).

e. f(x,y) = xy at (a,b) in the direction from (a,b) toward (0,0).

2. Given that the function f is defined by f (x,y) = yell find :

a. -9j (0,2V-3).

b. The directions in which the directional derivatives of f at (0,2 V'3) have
maximum and minimum values and find these values.

3. Let (xo,yo) be such that f,2(x0,Y0) + f 2(xo,Yo) # 0. Show that

.f (xo, yo) = Vf 2(xo,Yo) + f112 (xo,Yo) cos (0 - a)

where 6 is such that

cos B = fx(xo'yo) and sin 0 = fv(xo,Yo)

\/.fx (xo,Yo) + fv2(xo,Yo) ff2(x0,Y0) + f 2(xo,Yo)

4. For each of the following indicated functions and points, find the values of a
for which the directional derivative is zero, maximum, and minimum.

a. y2ez12, (2,4) and (2, -4). c. In y2, (3,4) and (-3,4).

b. 'Vx2 + y2, (3,4) and (-3,4). d. tan 1(y/x), (1, -1) and (-1,1).
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124. Vectors and Directional Derivatives

Chap. 11

In the xy-plane a line making an angle a with x-axis makes the angle
= 90° - a with the y-axis. Thus, the directional derivative in the direction

a of a function f of two variables may be written as

9x.f (x,y) = f x(x,y) cos a + f,(x,y) sin (90` -
f.(x,y) cos a + fv(x,y) Cos .

In three dimensions a single angle does not determine a unique direction,
but a set a, i, y of direction angles does. Thus, with

(1) icosa+j'cosfi+kCosy
and F a function of three variables, the directional derivative in the
direction v of F at (x,y,z) is

(2) -9,F(x,y,z) = F.(x,y,z) cos a + cos j9
'vF

+ FZ(x,y,z) cos y.

As defined earlier VF = tF,, + jFv + kF2. The dot
product of this vector with v is

co(3) (VF)'v'=

Figure 124
F, cos a + F cos#+Fxcosy.

For a geometric interpretation of 9-,,F consider
the family of surfaces represented by

F(x,y,z) = c
with c the parameter of the family. With (xo,yo,zo) in the domain of F, there
is a member of the family of surfaces containing the point (xo,yo,zo); in fact,
that member having equation

(4) F(x,y,z) = co where co = F(xo,yo,zo)

At the point (xo,yo,zo) the normal to this surface has direction numbers
FF(xo,yo,zo), F.(xo,yo,zo), F:(xo,yo,zo). Thus, the vector

VF(xo,y0,zo) = iF0(xo,yo,zo) +.IFv(xo,yo,zo) + TF,(xo,yo,zo)
drawn with its initial end at (xo,yo,zo) is normal to the graph of (4). The
angle 0 between this normal vector and the vector v' is such that, from the
definition of the dot product,

cos 6 =
VF(xo,yo,zo) v

I VF(xo,yo,zo)I IUI

wF(xo,3'o,zo)

.1F,(xo,yo,zo) + Fv(xo,yo,zo)+ F2(xo,yo,zo)
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by (3) and the fact that 161 = cost a + COS2 # + COS2 y = 1. Thus

(5) 2vF(xo,Yo,zo) = Fv(xo)y0,zo) + F,(xo,Yo,zo) cos 0.

If 0 = 0 then v' has the same direction as !F(xo,yo,zo), but the opposite
direction if 0 = 1800. Hence, the maximum value of the directional derivative
of F at (xo,yo,zo) is

(6) \/Fx(xo,Yo,zo) + F2(xo,Yo,zo) + FZ(xo,Yo,zo)

and occurs when the direction and sense is the same as VF(xo,yo,zo), whereas
the minimum is the negative of (6) and occurs when the sense is reversed.

125. Tangents to Space Curves

Let F and G be functions of three variables and let (xo,Yo,zo) be a specific
point such that both F(xo,yo,zo) = 0 and G(xo,y0,zo) = 0. Then the graphs of

(1) F(x,y,z) = 0 and G(x,y,z) = 0

are visualized as surfaces intersecting in a curve passing through the point
(xo,yo,zo). If at this point the surfaces have tangent planes which do not
coincide, then these tangent planes intersect in a line tangent at (xo,yo,zo) to
the curve of intersection of the surfaces. The vectors VF(xo,yo,zo) and
VG(xo,yo,zo), with initial ends (xo,y0,zo), are normal to the respective surfaces.
The cross product

(2) GF(xo,Yo,zo) x VG(xo,Yo,zo)

is a vector perpendicular to both normals, hence lies in both tangent planes
and, therefore, lies along the tangent line to the curve of intersection of the
surfaces. We shall obtain equations for this tangent line.

For economy in writing, we omit (xo,yo,zo) but insert a subscript zero as a
reminder that functions and their partials are evaluated at (xo,y0,zo). Thus (2)
becomes

GFo X VGo = (iF +JF,, + 1CF:)o x (iG,, + fG + 1Gz)0

I

F. F F.

Gx G GZ

I Fv F.

Gy Gz

0

F,

0 Gz G,,

Fx F,,,

Gx G 0
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The coefficients of % j, and k are thus direction numbers of the desired tangent
line and parametric equations of this line are

x=x0+t
F, Fz

G, Gz

Y=J'o+t
0

Fz F,;

Gz Gx

, z=z0+t
0

Fx F,

Gx G,
0

Example. Check that the point (1, - V'3/2,1) is on both the sphere and the cone
having equations

(x - 2)2 + y2 + Z2 =4 and X2 + y2 = z2.

At this point find parametric equations of the line tangent to the curve of inter-
section of this sphere and cone.

Solution. Set F(x,y,z) _ (x - 2)2 + y2 + z2 - 4 and G(x,y,z) = x2 + y2 - z2,

Thus Fx(2 23 ,1) = 2(2 - 2) _ -3, F,(2,- 2,

(1 3 )
2Fz 2 =2;

Gx(Z 23,1) = 1, G,(2 23,1) _ "3, Gz(2 23,1) _ 2.

Hence, parametric equations of the tangent line are

V3 2
X = 2 + tl -V3 -2 = 2 + y = -

2
- 4t, z = 1 + 4v'3t.

Determinants of the type appearing in (3) are of such frequent occurrence
in more advanced mathematics and applications that a special notation is
introduced. For example

a(F,G)
is used in place of

F Fz

a(y,z) I Gv Gz

and is called the Jacobian of F,G with respect to y,z.

PROBLEMS

1. Find the'directional derivative of F at the given point and in the direction either
given by a vector or described.

a. F(x,y,z) = xy + y2z + xyz2, (1,5, -2), 2i - 31 + C.
b. F(x,y,z) = x2 - y2 + xz, (0, 1, -1), i - 21 + 2k.
c. F(x,y,z) = xV'5y2 - 4z3, (0,1,-1), i.

d. F(x,y,z) = xyz, (-2,1,3), from this point toward (2,1,0).

e. F(x,y,i) = x + y + z, (-2,1,3), from this point toward the origin.



Sec. 125 Tangents to Space Curves 405

2. Find the maximum directional derivative of F at the given point.

a. F(x,y,z) = In Vx2 + y2 + z2, (2, -2,1).

b. F(x,y,z) = sin (xyz), (2, -1,6

c. F(xy,z) = tan 1 (XY) (1, -2,2).

3. Show that the maximum directional derivative of the function F defined by
F(x,y,z) = v'x2 + y2 + z2 is the same at all points except the origin (where the
directional derivative is undefined).

4. Find parametric equations of the tangent line to the curve of intersection of the
graphs of the given equations at the given point.

a. x2 + y2 = z2, x + y + z = 12; (3,4,5).

b. x2 + y2 + z2 = 4x, x2 + y2 = z2; (1, -1, v/2).

c. x2 + y2 = 8z2, x2 + y2 + z2 = 9; (-2,2,1).

5. Check that the curve in the example also passes through the point (i-,'V3/2, 1).
Show that the tangent to the curve at this point intersects the tangent obtained
in the example by finding the point of intersection.

6. Given x = p cos 0, y = p sin 0 show that a( ) = pa(p,0)

7. Given z = f (x,y) and w = g(x,y) while x = q'(u,v) and y = tp(u,v) show that

a(z,w) a(z,w) a(x,y)

a(u,v) = a(x,y) a(u,v)

126. Line Integrals

Let P be the function of two variables defined by P(x,y) = x sin y and
let C be the graph of y = 2x2 for 0 S x < 1. Then C joins the points (0,0)
and (1,2) and

fo P(x,2x2) dx = f o x sin 2x2 dx = - cos 2x2] o = 4(1 - cos 2).

Given two points (a,c) and (b,d), given a curve C joining these points and
having equation y = f (x), a S x < b, with f' continuous, and given a
continuous function P of two variables, then

f b P(x,f(x)) dx
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is called the line (or curvilinear) integral of P(x,y) dx over C from (a,c) to
(b,d) and is represented by

(b,d)

P(x,y) dx.

(a,c)

If C is the graph of x = g(y), c < y < d, and Q is a continuous function of
two variables, then

(b,d)

fa Q(g(Y),Y) dy = Jc Q(x,y) dy
(a,c)

is the line integral of Q(x,y) dy over C from (a,c) to (b,d). Also, the line
integral of P(x,y) dx + Q(x,y) dy over C from (a,c) to (b,d) is defined by

(b,d) (b.d) (b,d)

fc, {P(x,y) dx.+ Q(x,y) dY} = f, P(x,Y) dx + f, Q(x,y) dy.
(a,c) (a,c) (a,c)

If C has parametric equations x = x(t), y = y(t) with to < t <_ ti where
x' and y' are continuous, then

(b,d)

fC P(x,y) dx =fro1 P(x(t),y(t))x'(t) dt

(a, c)

with a similar expression for the line integral of Q(x,y) dy.

Example 1. With C the portion of the graph of 8y = x2 joining the points (0,0)
and (4,2), find

I = fc {(x + y) dx + x2 cosy dy}.

Solution. In the first term replace y by x2/8 and use the x-limits 0 and 4, but in
the second term replace x2 by 8y and use y-limits to obtain

X2I=fo(x+ 8)dx+f08ycosydy

2

[x2x3I:[y sin y + c os y]
0 o

= 8 + a + 8[2 sin 2 + cos 2 - 1] = s + 8(2 sin 2 + cos 2).

Example 2. Replace the curve of Example 1 by the graph of the parametric
equations x = 4t, y = 2t for 0 < t < 1, joining the same points (0,0) and
(4,2).
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Solution. The integral is now

f o {(4t + 2t) d(4t) + (4t)2 cos 2t d(2t)}

=f o 24t dt +f o 32t2 cos 2t dt

1 t2 t sin 2t 1

= 1212] 0+ 3212 sin 2t + 2 cos 2t - 4
J 0

Cl 1 1
= 12 + 32

2
sin 2 + cos 2 -

4
sin 2 = 12 + 8[sin 2 + 2 cos 21.

407

If the initial and terminal ends of C have been definitely stated, it is
customary to omit (a,c) and (b,d) from the integral sign, and to further
abbreviate

(b,d)

f, {P(x,y) dx + Q(x,y) dy} to f. P dx + Q dy.
(a,c)

By a regular are is meant a graph of y = f (x) with f' continuous or
x = g(y) with g' continuous, or x = x(t), y = y(t)
with x' and y' both continuous. By a regular curve

Cs C is meant that C is made up of regular arcs

Ca C1, C2, - - -, Cn joined successively end to end (see
C2 Fig. 126) and, by definition

C fCPdx+Qdy= ICAPdx+Qdy.
k=1

Example 3. Replace the curve of Example i by the
regular curve C consisting of the segment C1 from (0,0)

Figure 126 to (4,0) followed by the segment C2 from (4,0) to (4,2).

Solution. Since y = 0 on C1 while x = 4 on C2,

f0 {(x + y) dx + x2 cos y dy} = f o {(x + 0) dx + x2 cos 0 d0} =fo x dx = 8,

fc2{(x+y)dx +x2cosydy} =f0{(4 +y)d4+42cosy dy}

fo
16 cosy dy = 16 sin 2,

fc {(x + y) dx + x2 cos y dy} = 8 + 16 sin 2.

If a curve C is cut in at most one point by each vertical line, then
integration along C from left to right is indicated by J

0
whereas the reverse

direction of integration is indicated by J e. If R is a region bounded by a
regular closed curve C, then integration over C keeping R to the left is
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indicated by and is called integration around R in the positive direction.

Integration around R in the reverse (or negative) direction is denoted by .

Schematically
f = - f and -4.J J

Example 4. For C the boundary of R = {(x,y) 10 < x < 2, x2/4 < y < x/2},
find

(1) y dx + dy and f y dx + x dy.

Solution. C consists of two regular arcs joining (0,0) and (2,1) where the

lower are C1 has equation y = x2/4, but the

upper arc C2 has equation y = x/2.

Hence, for the first integral in (1)
2 2 1

cl(y dx + dy) =f 4 dx +J
1

dy = 2] o
+Y

o -
5

J c2(y
dx + dy) = f2

2
dx + f

0 0 0

dy = 4
-2

+
y]1=

-2, and
2

(y dx + dy) = s 2 = -.
For the second integral in (1)

J cl(Y
dx + x dy) = f a 4 dx +f

o

'v4y dy = 12J
o +

3)'3/2]
o = 2,

Jc(Ydz+xdy)=2+o2Ydy
42]2

0

+y2]0= -2, and
2 1

'(ydx+xdy) = 2 -2 = 0.

Let C be a regular curve with initial and terminal points (a,c) and (b,d).
In order along C select points

(2) (xo,Yo), (x1,Y1), ... , (X.-I, y_1), (x n,Y.)

where xo = a, xn = b; yo = c, y,. = d. With P and Q continuous functions
of two variables form the sum

(3) 1 {P(xk,Yk)(xk - xk-1) + Q(xk,Yk)(Yk - Yk-1)}.
k=1

As n- oo in such a way that xk - xk_1-> 0 and yk - yk-1 -' 0, this sum
approaches

(4) fC P dx + Q d y,

but no attempt is made at a proof here.
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In case P and Q are components of a force function t defined by

F(x,Y) = iP(x,Y) + IQ(x,y)

for each point (x,y) of a region including C, then the work W in moving an
object over C is defined by

W =L Pdx + Qdy.

To see why such a definition is made consider the force

F(xk,Yk) = IP(Xk,Yk) + IQ(xk,Yk)

at the kth point of (2). The vector from (xk-1,Yk-1) to (xk,yk) is

t(Xk - Xk_1) + J(Yk - Yk-1),

and an approximation of the work in moving an object over this chord (and
thus over the corresponding arc of C) should bet

[1P(xk,Yk) +JQ(xk,Yk)] . rt(xk - xk-1) +J(Yk - Yk-1)1

= P(xk,yk)(xk - xk-1) + Q(xk,Yk)(Yk - Yk-1)

which is the kth term in the sum (3) whose limit is (4).
It is, moreover, customary to let f = ix + j y be the vector from the

origin to an arbitrary point (x,y) of C, to set df = I dx + J dy so that

F-df=(iP+JQ).(Idx+J'dY)
=Pdx+Qdy,

and then to say: If a body is moved over a curve C defined by a vector function f,
where C lies in a force field t then the work is

W=fc,P d?.

PROBLEMS

1. Find (x + y) dx - 'fix dy where C is the graph of:

a.y=2x; 0<x<-1. c.x=t2, y=2t2; 0<t-1.
b.x=t, y=2t; 0<-t<_1. d.y=2x2; OSx<-1.

e. x = sin t, y = 1 - cos 2t; 0 -< t S 4x42.

t Recall that if a constant force/moves a body from the initial to the terminal end of a
vector tt then the work is the scalar product/- it.
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2. Find f,, (x2 + 2xy) dx + (x2 - y) dy where C has initial point (-1,0), terminal
point (1,2) and is a portion of the graph of:

a. y = x + 1.

b. 2y = (x + 1)2.

c. x = -1, then y=2.
d.x=-l+t, y=t.

e. x = 1 + 2 cos t, y = 2 sin t; -zr <- t < ir/2.

3. Let C consist of the line segments from (0,0) to (2,1) and then from (2,1) to (2,3).

Find IcPdx + Qdyif:
a. P(xy) = xVy, Q(x,y) = x3 + y.

b. P(x,y) = x3 + y, Q(x y) = x V y.

c. P(x,y) = x sin (lTy/2), Q(x,y) = yet.
d. P(x,y) = yes, Q(x,y) = x sin (7ry/2).

4. Find
c

y2 dx + x dy where C is:

a. The square with vertices (0,0), (2,0), (2,2), (0,2).

b. The square with vertices (+1,±1).
c. The circle with center (0,0) and radius 2.

d. The graph of x = 2 cos3 t, y = 2 sin3 t; 0 < t < 27r.

127. Green's Theorem

The relation between a line integral and a double integral, as expressed
below in (1), has important physical applications. The following theorem
would be Green's theorem if the curve C were as general as we later show is
possible.

THEOREM 126.1. Let R be a region bounded by a regular curve C which has
the property that each horizontal and each vertical line cuts C in at most
two points. Then

Figure 127.1

(1) . P(x,y) dx + Q(x,y) dy

=1 I1t {Q.(x,y) - Pr,(x,y)} dR

provided Py and Qx are continuous at each point
of R and C.

PROOF. Let (a,c) be the left-most and (b,d)
the right-most point of C. Let f1 and f2 be
functions such that

R = {(x,y) I a < x < b, fl(x) < y < f2(x)}.
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Designate the graph of y = f1(x), a < x < b by C1 and the graph of y = f2(x),
a < x < b by C2. By the equality of double and twofold iterated integrals

('r
J JR P,,(x,Y) dR

bfl( f2(xx))P..(x,y)
dy dx

f b v=f
2(x) dx

[by the Fundamental Theorem
Ja P(x'y)J 11=f1(x) of Calculus]

=f ,,b {P(x,J2(x)) - P(x,f1(x))I dx

=
J c2

P(x,y) dx - I P(x,y) dx
[by the definition of

J C, a line integral]
rjc, P(x,y) dx - J

2
P(x,y) dx

[since Jc2 - JC2]

= P(x,y) dx, so that

(2) P(x,y) dx = J . j, P,,(x,Y) dR.

By starting with the double integral overr R of Qx show that

(3) Q(x,y) dy -SJR Qx(x,Y) dR.

The equations (2) and (3) then yield (1) and Theorem 126.1 is proved.

A slight extension would show that (1) also holds I - C2

if portions of the regular curve C are horizontal or
vertical line segments.

If R is the region shown in Fig. 127.2, then insert
the "cross cut" C3. Let R, be the portion of R below
C3 and R2 the portion of R above C3. Then by apply-
ing Theorem 126.1 to (R1 and R2 separately: Figure 127.2

SIR (Qx - P,,) dR =J f, (Q. - Pa,) dR +J f,,2 (Qx - Pv) dR

_

+{l C2P dx + Qdy+ J C2Pdx+Qdy}

=JC Pdx+Qdy+C2Pdx+Qdy
[sinceJC2+JC2=0]

=f0Pdx+Qdy.
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By this crosscut method, (1) holds for any region (such as in Fig. 127.3)

Figure 127.3

which may be divided into a finite number of sub-
regions by regular arcs (some of which may be line
segments) such that (1) holds for each of these
subregions.

Green's theorem simplifies evaluation of some line
integrals.

Example. Find §c (x2 + y2) dx + sin y dy where c is
the boundary of the region {(x,y) 0 < x < 1, x2 < y < x}.

Solution. Here P(x,y) = x2 + y2, Q(x,y) = sin y, PP(x,y) = 2y, Qx(x,y) = 0
and by Green's theorem

1 'x 1 x 2
fa (x2 + y2) dx + sin y dy =f

o J x2
(0 - 2y) dy dx = - fa y2] x2 dx =etc. _ =

1 S

A region is said to be simply connected if every simple closed curve in the
region surrounds only points of the region. For example, the region between
two concentric circles is not simply connected.

THEOREM 127.2. Let G be a simply connected region within which Py and
Qx are continuous and such that at each (x,y) in G

(4) PP(x,Y) = Qx(x,Y)

I. If C is any regular simple closed curve in G, then

(5) fC
P dx +Q dy = 0 for either order along C.

II. If (a,b) and (x,y) are any two points in G and if Cl and C2 are any
two regular curves in G joining (a,b) to (x,y), then

(6) f f1Pdx+Qdy=fCZPdx+Qdy.

III. The expression P dx + Q dy is an exact differential in G; that is, there
is a function F such that for each point (x,y) in G

. dF(x,y) = P(x,y) dx + Q(x,y) dy.

Note 1: The property stated in II is sometimes described as "Curvilinear
integration of P dx + Q dy between two points is independent of the path in a simply
connected region throughout which P. = Qx." More advanced work in mathematics
and physics is necessary to appreciate the importance of this fact.

Note 2: Theorem 122.2 is in essence: If M dx + N dy is an exact differential,
then M = N. In Sec. 122 the converse (If Mv = N, then M dx + N dy is an exact
differential) was stated and a proof promised for later. Part III is this converse with,
however, M replaced by P and N by Q to conform with the notation of the present
section.
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PROOF of I. Let C be any simple closed curve in G and let R be the region
C surrounds. Hence, (1) holds for this C and R. In addition, from (4),
Q.(x,y) - P,,(x,y) = 0 for (x,y) in R. Thus, for this R the double integral
in (1) has value 0 and hence so does the line integral; that is, (5) holds.

PROOF of II. With (a,b), (x,y), C1 and C2 as given, assume first that Cl
lies entirely below C2 except for the points (a,b) and (x,y). Let C be.the
curve from (a,b) to (x,y) along C1 and then back.to (a,b) along C2. Thus,
from Part I

O= f0Pdx+Qdy='c,,Pdx+Qdy± j02Pdx+Qdy

C Pdx+Qdy

and hence (6) holds. If Cl and C2 cross each other, take a third curve C.
connecting (a,b) and (x,y) completely above both C, and C2 except for (a,b)
and (x,y). Then by what has just been proved

fc, Pdx+Qdy=frl Pdx+Qdy and

fCsPdx+Qdy=f, Pdx+Qdy

so again (6) holds.

PROOF of III. A translation of Part 11 is: The curvilinear integral of
P dx + Q dy from (a,b) to (x,y) is, under hypothesis (4), independent of the
(regular) curve joining these points and hence depends only upon the points
themselves. We may thus consider (a,b) as fixed and define a function F by
setting, for each (x, y) in G,

xF( ,Y) _
(a,6)

wherein this new notation for the curvilinear integral (which does not specify
the path but only the end points) may be used only when (4) holds, as it does
here. Let Ax be such that the line segment joining (x,y) to (x + LIx,y) is
also in G. Then

F(x + Ox ,Y) P dx + Q.dy.

Now consider a path from (a,b) to (x + Ox,y) which goes from (a,b) to (x,y)
and then from (x,y) along the line segment to (x + Ox,y) so that

f (x,v) P dx + Q d Y +f (z+ox.y) P dx + Q d yF(x + Ax,y) = J(¢,b) (x,v)

= F(x,Y) +f (x+Ox,v) P dx + Q dy.
. (x,v) .
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Since the segment from (x,y) to (x + Ax,y) is parallel to the x-axis, we
reduce this integral (by considering dy = 0) to

fxx+Ax
P dx.

To this integral we apply the Law of the Mean for integrals (p. 186) and
determine a number between x and x + Ax for which

xx+AX
J P dx = Ax.

It therefore follows that

F(x + Ax,y) - F(x,y) = Ax or F(x -- Ax,Y) - F(x,Y)
= p( ,Y)

Ax

Since P is continuous at (x,y) we now let Ax - * 0 and obtain

Fx(x,Y) = P(x,y).

In a similar way it follows that F.(x,y) = Q(x,y). Hence

dF(x,y) = Fx(x,y) dx + Fv(x,y) dy = P(x,y) dx + Q(x,y) dy

which shows, as we wished to prove, that if (4) holds in G then P dx + Q dy
is an exact differential in G.

The converse of Theorem 127.211 is:

THEOREM 127.3. Let G be a simply connected region in which Pv and Q.
are continuous. If for every regular simple closed curve C in G

(7) LPdx+Qdy=0,

then P,,(x,y) = Q5(x,y) for each point (x,y) in G.

PROOF. Assume (xo,yo) is inside G and P,,(xo,yo) Qx(xo,yo). From the
continuity of Pv and Q., there is a circular region R in G with center (xo,yo)
such that at each point (x,y) of R, Qx(x,y) - P1(x,y) is different from zero
and has the same sign as Q,,(xo,yo) - P1(xo,yo) The boundary C of R is
certainly regular, and from (1)

LPdx+Qdy=f fR(Q.-P1)dR 0

contrary to the fact that (7) holds for every regular curve in G.
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PROBLEMS

1. Work Prob. 4, Sec. 126 (p. 410) by using Green's theorem.

2. For C a regular simple closed curve, check that

a. f C(xy cos x + sin y) dx + (x cosy + x sin x + cos x) dy = 0.

b. f c(2xy3 + 5) dx + (3x2y2 - 4) dy = 0.

2x x2y
c. fo VI -+y2 dx -

(1 + y2)3/2
dy = 0.

d. f Cex'(1 + xy) dx + x2exr dy = 0.

e. f CFx(x y) dx + dy = 0 if the second partials of F are continuous at
each point within and on C.

3. Let P(x,y) = x and Q(x,y) = xy. Show that

fCPdx+ Q dy =0

for every circle with center at the origin. Notice that Qx(x,y) P,(x,y). Does
this contradict Theorem 127.3?

4. Let F be a function of two variables such that Fxx, F., and F,,,, are everywhere
continuous. Let (a,c) and (b,d) be any two points. Prove that if C is any regular
curve from (a,c) to (b,d), then

fo
dF(x,y) = F(b,d) - F(a,c).

(Hint: Show that the equation holds for the curve Ci consisting of the line
segment from (a,c) to (b,c) followed by the segment from (b,c) to (b,d). Then use
Theorem 127.2 11.)



CHAPTER 12

Approximations

Applications of mathematics usually involve the occupational hazard of
obtaining numerical results. At each stage of a computation there is a positive
probability of a mistake whose effect may be large, small, or anything in between
with no a priori method of control. In contrast to mistakes, which are blunders
occurring without intent, most computations involve errors made intentionally for
practical or expedient reasons, but kept within a preassigned range of uncertainty
suitable to the problem at hand. In this chapter a few approximation methods are
given with error estimates. The approximation methods mentioned previously in
this book (for example, Newton's Method) were given as background material and
have been accompanied with apologies for not including criteria for judging
accuracy.

Approximation theory (which develops methods for computing to within any
desired tolerance of an exact, but usually unattainable, ideal) has .long been a
respectable branch of analysis and now, with the advent of high-speed electronic
computers, is indispensable. In fact, the indefinite phrase "Close enough for all
practical purposes" is a cliche of pious hope seldom heard around a modern
computing center where "how close?" is an ever-present question which should be
answered before expensive time is scheduled on a machine so reliable that mistakes
occur (if at all) less frequently than once in a human lifetime of computing.

128. Taylor's Theorem

After reading Taylor's theorem, it should be seen that the Law of the
Mean (Sec. 32) is the special case of Taylor's theorem in which n = 1.

THEOREM 128 (Taylor's Theorem). Let a and b be numbers, a b, let n
be a positive integer, and let f be a function whose nth derivative f (n)(x) exists
for each number x between a and b inclusive. Then there is a number n between
a and b such that

(1) f(b) =f(a) +.f'(a)(b - a) +f"2a) (b - a)2
+ f,,3 a) (b

- a)s

+ ... +(nn-1)1)I (b - a)n- +f nn) (b -a)

416
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The following proof of Taylor's theorem for n = 4 illustrates a procedure
by which the theorem may be proved for any positive integer n.

PROOF for a < b and n = 4. Let S, be the number such that

(2) f (b) = f (a) + f'(a)(b - a) +f za) (b - a)2 +f
3

a)a) (b - a)3 + S4 (b - a)4.

Let 97 be the function defined for each number x such that a -< x < b by

(3) 92(x) = f (b) + f (x) + f'(x)(b - x)

+ X (b - x)2 + f (x) (b - x)3 + S4 (b - x)4.2! 3!

Notice that 4p'(x) exists for a < x < b since each term on the right of (3) has a derivative.
Also, by taking the derivative, then

4p'(x) = 0 + f'(x) + { f'(x) + f'(x)(b - x)} + -(X) 2(b - x) +f ZX) (b - x)2 j

x
f 3 ) 3(b -- x)2 +3 ix) (b -x)3l1 - 4S4 - (b - x)3 so that

m'(x) f(4)

In (3) substitute x = a:

P(a) = f (b) +f (a) + f'(a)(b - a) + za (b - a)2 +f 3(a) (b - a)3 + S4 (b - a)4 = 0

where the = 0 follows from (2). Also, in (3) substitute x = b and see that

2(b) = -f(b) +f (b) +f '(b)(b - b) +f (b - b)2 +f
3

(b) (b - b)3 + S4 (b - b)4 = 0.

Hence, 92(a) = 0, 92(b) = 0, and 92'(x) exists for a < x < b and thus by Rolle's theorem
(see Sec. 32) there is a number S4 such that a < 4 < b and 0. Hence, from (4)

0 = 97'04) = f f
3 (b - X4)3 - 4 S4 - (b - $4)3.

Consequently, upon solving this equation for S4:

4

47

This expression for S4 substituted into (2) yields (1) with n = 4. A similar proof may be
made if b < a.

Example. Substitute f = sin, a = a/3, b = 13,r/36, and n = 4 into (1).

Solution. First f (a) = sin 7r/3 = V'3/2 and f (b) = sin (131r/36). Also

f'(x) = cos x, f"(x) = -sin x, f'(x) = -cos x, and f t4'(x) = sin x.
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Hence f'(a) = J, -113/2,f"(a) = -1, sin 4, and

13a _ A/3 1 137r 7r 1/3 11, r 2
sin

36 2 + 2(36 3) 2 2!(36 3

Chap. 12

4
1 13n 13 sin 4 13,r in

2-3! 36 3 4! 36 3) '

v3 1 it -V3 Tr 1 n
3

sin spa
1r

4 it 13rr
(5) sin 65° =

2 + -23-6 - 2 ! (36) 2-3! (36 4! (36 34 < 36
On the right of (5), the first four terms may be approximated to the

number of decimal places known for V3 and ir, but the fifth term is unknown
since 4 is only limited by inequalities. However, as a generous estimate,
0 < sin 4 < 1 and thus the last term is positive and certainly less than

1

4!(36)4
24(3.14369

'

.)4< 241

= .3q(0.1)4 = 24(0.000 1) < 0.000 005.

Thus, upon computing each of the first four terms to 6 decimal places, their
sum will agree with sin 65° to at least 5 decimal places.

One use of Taylor's theorem is to set up such finite arithmetic sums for
computations with error estimates.

PROBLEMS

Write the formula of Taylor's theorem for:

1.f(x)=ez; a=0, b=2, n=5.

2. f(x) =.cosx; a =4, b =2, n =4.

3.f(x)=lnx; a=1,
4.f(x)=V'x; a=1,

b=1.2, n=4.
b=1.2, n=4.

5.f(x)=tan'x; a = 0, b = 1, n=3.
6.f(x)=x1/s; a=8, b=8.5, n=3.

1 17.f(x)=1+x' a=0, b = 2 , n=4.

in z
'r

8.f(x)=e9 ; a=2, 3rrb=4, n=3.

9. f(x)=x4; a = 2, b = 2.01, n = 5.
7r10. f(x) = tan x; a=4, b=1, n=3.
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129. The Remainder Term

The expression (1) of Sec. 128 is referred to as "Taylor's formula for the
expansion off (b) around the point a." Because of the connection with series
established later (and to emphasize the difference in the nature of the last
term and those preceding it), this formula is written as

(1) f(b) =zfk! (b - a)' + R where the remainder

cn)

(2) R n = f «n) (b - a)" for some number s,, between a and b.
n.

In (1), f «) (a) is the kth derivative off evaluated at a, and the zero-derivative
f °(a) is interpreted as f (a).

Example. Find how many terms of Taylor's formula with f(x) = In x, a = 1,
and b = 1.2 are necessary to compute In (1.2) with error less than 5 x 10-4.

Solution. First f'(x) = z 1, f "(x) = -X-2,.f "(x) = 2x 3, f (4)(x) = -3!X-4, etc.
Therefore, by considering only the formula for the remainder, there are numbers
1, 21 ' ' ' all between 1 and 1.2 such that

IR11 = I (1.2 - 1) _ X1(0.2) < 0.2 since 0 < < 1

IR2I !LM 2 = (1)2(0.2)2 0.04
= 2! (1.2 - 1)

2

2 < 2 < 0.02,

I f "(a) I 3
=

(113 (0.2)3 0.008
IR31 = 31 (1.2 - 1) 2 J 6 < 3 < 0.003,

I f (1)4(0.2)4 (0.2)4 0.0016IR414 (1.2-1)4=3!4 < 4 = 4 <0.0005.
4

Thus, R4 is the first remainder we are sure is in absolute value less than 5 x 10-4.
The computation of In (1.2) from the first four terms of Taylor's formula with
a = I and b = 1.2 will, therefore, be in error less than 5 x 10-4. This computation
was not asked for, but note that

f(1.2) = In (1.2), f(l) = In 1 = 0, f'(1) = 1, f°(1) = -1, f "(1) = 2,

and hence, from the first four terms of Taylor's formula, and the preceding informa-
tion about R4,

In (1.2) = 0 + 1(0.2) - 2i (0.2)2 + 3 (0.2)3 l 5 x 10-4

= 0.1827 ± 5 X 10-4.
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PROBLEMS

Chap. 12

1. Use Taylor's formula for f(x) = '/1 + x with a = 0, b = 0.2, and n = 4 to
compute approximately. Also estimate the error.

2. Compute approximately cos 61 ° by using Taylor's formula with f(x) = cos x,
a = n/3, b = 617r/180, and n = 4. Estimate the error.

3. Find how many terms of Taylor's formula with f(x) = el, a = 0, and b = 1 are
required to compute e with error not exceeding 5 x 10-5.

4. How many terms of Taylor's formula with-f(x) = sin x, a = 0, and b = n/180
are required to compute sin 1 ° with error not exceeding 5 x 10-6.

5. Compute ly9 with error less than 5 x 10-3.

6. Compute IY4 + (1.9)2 with error less than 5 x 10-3.

130. Alternative Notation

By a change of notation, Taylor's formula for the expansion of f (a + h)
about the point a is

(1) f(a + h) =f(a) +f'(a)h h2 + ... +P-i>(a hn-1
+ Rn

2! (n - 1)!

where Rn =f(n)(a + 0nh) hn for some number Bn such that 0 < 0n < 1.
n.

To obtain this formula set b = a + h in (1) of Sec. 128. Hence, b - a = h
and any number between a and a + h may be represented as a + Oh by a
proper choice of 0 with 0 < 8 < 1.

In particular the formula for expansion of f (h) around a = 0 appears as

(2) .f (h) =,f(0) +,f'(o)h +f h2 + ... +
(n-")I

hn-r + Rn

n)(B h)where R,, = f n hn for some 0,, such that 0 < Bn < 1. Expansion
n!

around a = 0 is usually called Maclaurin's expansion.

Example 1. Use Maclaurin's expansion to express sin 40° to within 5 x 10-5.

Solution. With f (x) = sin x, then f (O) = sin 0 = 0,
f'(0) = cos 0 = 1, f "(0) = -sin 0 = 0,

f "(0) = -cos 0 = -1, f (4)(0) = sin 0 = 0, etc.

The remainder is either expressed in terms of the sine or cosine and

1 n n

IRnI = nl f Sin (en 180) () < ni
(2,r)

IRnI = n, I f cos (en 0) I (1 0) <

n

if n is odd.
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A check will show that 2ir/9 < 0.7. Therefore

I R21 < 2 (0.7)2 =
2

(0.49) < 0.25,

1R31 <
3

77 (0.25) = 3 (0.175) < 0.06,

0.7 1

IR41 < 4
(0.06) = 4 (0.042) < 0.011,

0.7 1

IR51 <
5

(0.011) =
5

(0.007 7) < 0.001 6,

0.7 1

IR61 <
6

(0.001 6) =
6

(0.001 12) < 0.000 2,

1R,1 < 0.7 (0.000 2) < 0.000 02 < 5 x 10-5.

Thus seven terms are sufficient, but every other term has value zero so that

(3)
° - 2ir 1 (27r) $ 1 (27r 5

5sin 40' 0 9 +0-3 +0+5 +0 f5 x10-

=
27r

C - 1 (2'r 2 1

(27r
4

9 1 3 9 + 5 9
f 5 x 10-5.

Example 2. Express sin 40° to within 5 x 10-5 by using Taylor's expansion
around a = 7r/4.

a 40rr IT
Solution. Since

4 180 36
the remainder is such that

n. 36 < n.
(0.1)n1i(7r) 11

whether n is odd or even. Hence

2

IR21 <
(02)

= 021 = 0.005 > 5 X 10-5,

IR31 <
31

(0.005) < 0.000 2 > 5 x 10-5,

IR41 < 41 (0.000 2) < 0.000 005 < 5 x 10-5,

sin 40° =sin
IT

+ (cos )( 36) i (sin 4)l 36 2 311 cos 4 H-36)y f 5 x 10-5

7r
1

7r

3\ 1 \ 1\

(4) 2 I 1 36 2136

)2+;1(T6lr)
5 x 10-5.

Notice that there is one more term in (4) than in (3).
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131. Remainder in Other Forms

Chap. 12

The following more general form of Taylor's theorem is useful in some
connections.

THEOREM 131. Let a and b be numbers, a < b, let p be a positive number, let n be a
positive integer, and let f be a function for which the nth derivative f("3(x) exists for each
number x such that a < x < b. There is then a number l:n such that a < n < b and

(1) f (b) = f (a) + f'(a)(b - a) + f "(a)(b -
a)2 + ... + fln-1'(a)(b - a)n-' +

Rn
2! (n - 1)!

where R = fcn>( n)(b - Sn)n-'(b - a)'
p(n - 1)!

PROOF. Let S. be the number such that

f (b) = f (a) + f'(a)(b - a) + f "(a)(b - a)2 + ... +, f' n i (a)(b - a)^-1 +
Sn (b - a)'

2! (n - 1)!

and let ¢ be the function defined for each number x such that a < x < b by

- .. .¢(x) = f (b) + f (x) + f '(x)(b - x) +
f "(x)(b x)2 +

2!

+ f fn-i,(x)(b - x)"-1 +
S. (b - x)P(n - 1)!

Thus ¢(a) = 0 by the definition of S., ¢(b) = 0 since p > 0, and

( 21
Sl - 2 +

f "(x)(b - x)
{ '(x) + j"(x)(b - x)) + f "(x)2(b - x)

2 i Jt0'(x) = f '(x) + f

+ {_f',,(x)3(b - x)2 + f(4)(x)(b - x)31 + .. .
3! 3! 1

+
f"' ' (x) . (n - 1)(b - x)n-2 + f'')(x)(b - x)n-1

_ Sp(b - x)P-i(n-1)! (n-i)!
- f(n)(x) (b - x)"-1

- S"p(b - x)1-1, a < x < b.
(n - 1)!

The function 0 is thus seen to satisfy the conditions of Rolle's theorem (Sec. 32) and we
accordingly let g" be a number such that a < E,. < b and

0 = #'(sn) = f (")(E)(b S"p(b -(n - 1)!

Therefore S. =
f " f(n)($n)(b - n)n-P

.
(n - 1)!p(b - fin)'-3 p(n - 1)!

We thus set R. = S" (b - a)P, note that

(2) Rn =
f ")l'!n)(b - 4n)"-'(b - a)'

p(n - 1)!
and hence see that the theorem is proved.

The remainder R. given in (2) is said to be the Schlomilch form of the remainder.
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Upon setting p = n in (2) we obtain

(3) R" _ .f c",(g,")(b - a)"
n!

which is called the Lagrange form of the remainder. Taylor's formula is therefore seen to
have remainder in the Lagrange form.

Upon setting p = I in (2) we obtain

D f 111(g")(b - 9")"-'(b - a)
(4) (n - 1)!
which is called the Cauchy form of the remainder. Also see page 447.

PROBLEMS

1. Obtain an expression for computing cos 40° to within 5 x 10-5 by using:
a. Maclaurin's expansion. b. Taylor's expansion about it/6.

2. Apply Taylor's expansion for a suitable f, a, and h and approximate the indicated
number to within the given error.

a. V17; 5 x 10-3. d. tan 46°; 5 x 10-3.

b.
X63 '

5 x 10-3. e. ; 5 x 10-4.
(21)2

c. In (0.9); 5 x 10-4. f. e°'" 1°; 5 x 10-3.

3. By using Maclaurin's expansion prove:

h h2--VT- ha.1+28 <+h<l+2 for h>0.
h2 h3ehb.eh-1 -h-2 < 6 for h>0.
h3

c. Isinh -hi <- J6

4. Estimate the error in replacing the length of a circular arc by the length of its
chord if the central angle of the arc does not exceed 10°.

132. Polynomial Approximations

Taylor's formula for the expansion off (x) around a is

(1) AX) = .1t' "'(a) (x - a)k + R where
k=o k!cR = f (x - a)" for some E,,, between a and x.

n!
This formula is used to obtain polynomial approximations of a function

on a given range of the independent variable.
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X2 x3 X4
Example 1. Show that e-x = 1 - x + 2 - 3 ii + Ti ± 0.000 3 for 0 < x :5;

Solution. Let f(x) = e-x and a = 0. First

f '(x) = -e-=, f " (x) = e-x, f "(x) = -e x,

f t4>(x) = e s, and f (5)(x) = -e-z.

Consequently f(0) = f"(0) = f (4)(0) = e0 = 1 and f '(0) = f '(0) = -e0 = -1.
From these values and formula (1) there is' a number 5 between 0 and x such
that

x2 x3 . x4 a-eaex=1-x+2 -3i+4i+RS where R5=-
51

xs,

G 2 , then 0 < 5 < J, 0 < e-$s < 1, 0 < x5 < (2)5 = 32 and

IR51 < 51 32
< 0.000 3 as we wished to show.

Example 2. Given that 0 <- x <- j show that

(3)
x4 x6 x8ex2 = 1 - x2 + 2 i + 4 ± 0.000 009.

Solution. Replace x in (2) by u so that

U2 u3 U4 efaeu=1-u+2-3i+4!+R5 where R5=-5iu5, 0<e5<u.

Now in this relation set u = x2 and obtain

4 8 _X6
-e ss = 1 - x2 + 2 -y! + ! + R5 where R. = - 5 (x2)5, 0 < 5 < X2.

If 0 < x <s , then 0 < 15 < (z)2, 0 < e-h < 1, 0 < (x2)5 < 1/210 and

1 1

IR51 <-- <0.000009.
51.210

Hence, if 0 < x <- J, then (3) holds.

A polynomial approximation of a function, with an error estimate valid
throughout an interval, may be used to approximate the definite integral
with error estimate.
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Example 3. Show that
112f
o

e_x a dx = 0.461 280 ± 5 x 10-1.

Solution. Since (3) holds for 0 < x < 1, then

1/2 z 1/2 X4 X6 X8
e + - 3i + 4i f 0.000009) dxfo x dx -f0

(1 - x2 2

x3 x5 x7 x9 1/2
= x

3 + 10 - 317 + 419 ± 0.000 009x1
0

1 1 1 1 1 0.000009
2 3(23) + 10(25) 3!7(2') + 4!9(29) ± 2

= 0.461 280 ± 0.000 004 5 = 0.461 280 1 5 x 10-6.

PROBLEMS

x3 1

1. a. Obtain sin x = x -
3 I ± 5 i25

for 0 < x <

b. Use this result to approximate fo sin t2 dt with error estimate.

X x2
2. a. Obtain 1 -+x = 1 + 2 -

8
f

2(g4)
for 0 < x <.

1J2
b. Use this result to approximate fo V I + t3 dt with error estimate.

3. a. Obtain T +X = I -x+x2 -x3+x4 -x5+xs ±4for0 <<-x <<-i.

b. Use this result to approximate tan i j with error estimate.

sin x x2 x4 1

4. a. Show that X= 1- i+ for 0< x 5 1.

b. Use this result to approximate, with error estimate, the improper integral

1 sin x
I - dx.
o x

5. Approximate the following integrals with errors not exceeding 0.001.

1/2 dX 1

a. fo 1 + x4
c. fo ex2 dx.

ie5-l
e. dx.

f0 X

425

1/2 dx 1 0.5

b. fo ,/1 - x3
. d. f oxe- dx. f. f. sin x2 dx.

6. A tower of unknown. height x stands on the equator. Find x if a wire 10 ft
longer than the equator and passing through the top of the tower fits around the
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earth tightly and then over the top of the tower without sag. (Hint: Let R
(4000)(5280) ft and let 6 be the angle at the center of the earth between the radii
to foot of the tower and one of the points of tangency of the wire and the equator.
Show that R(tan 0 - 0) = 5, express x in terms of sec 0, and (since 0 is small)
use the first two non-zero terms of the Maclaurin expansions to approximate
tan 0 and sec 0.)

7.t Let a, b, c denote the longer leg, the shorter leg, and the hypotenuse,
respectively, of a right triangle. Show that the value in degrees of the smaller
acute angle is given approximately by

b
B = 2c + a 172°.

b sin B
(Hint: Write 2c + a 2 + cos B =f (B) and use the first term of Maclaurins

expansion of f(B).)

133. Simpson's Rule

A method of approximating a definite integral is based on the following
fact:

MIDPOINT RULE. If q(x) is a polynomial of third or lower degree, then

6 10(a) +
(p 2 bl +(1) Ja O(x) dx =

b
a

PROOF. First let p(s) = co + cis + c2s2 + c3s3. Then

1

(2) f 1 p(s) ds = 2co +
3

c2 (independent of cl and c3).

Since p(-l) =C0 - C1 + C2 - C3
P(0) = Co

p(l) = Co + C1 + C2 + C3,

then co = p(0), 2co + 2c2 = p(-1) + p(1) so that

2c2 = p(-1) +p(l) - 2p(0).

Consequently, from (2),

(3) f 11 p(s) d s = 2p(O) + 3 [P(-1) + p(l) - 2p(0)]

t For more details of this formula see the article by R. A. Johnson, "Determination of
an Angle of a Right Triangle, Without Tables," American Mathematical Monthly, Vol.
XXVII, 1920, pp. 368-369; also editorial comment, pp. 365, 366.
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= 3 [p(-1) + 4p(O) + p(l))

This result (3), for any polynomial up to third degree, will be used to
obtain (I). Make the transformation

(4)
ds,

x=a
2

b +6 2 as so that dx=b
2

a

s=-1 whenx=a,s=0 whenx=a 2b, ands=1 whenx=b. Set

p(s)
[a+bZ+

b2 a
S I.

This polynomial p(s) is the same degree in s that O(x) is in x. Then

fa O(x) dx = f11p(s) b 2 a ds
= b 2 a

3

[p(-1) + 4p(O) + p(1))

= b
6

a [O(a) + 4,(a

2

b) +

This mid-point rule is used to obtain an approximation of a definite
integral of any function f.

SIMPSON's RULE. With n an even number, with xk = a + k b - a and with

yk=f(x) n

(5)
rbf(x)dx^'b3na{Yo+4Y1+2Y2+4Y3+2Y4+...

+ 2Yn-2 + 4y.-1 + y.)-

DERIVATION. Pass a parabolic (or third-degree) are through the three
points (a,yo), (xl,y1), and (x2,y2). The function defining this arc has the same
values as f at a, x1, and x2 and its
integral from a to x2 will, presum-

1ably, approximate the integral off (x2, 2

from a to x2. Without even knowing
(XISI)

the function defining this arc, its
(a,11o)

integral (from the mid-point rule) is
x2 - a

6 (Yo + 4y1 + y2) Since x2 - a

= 2(b - a)ln, it thus follows that Figure 133

f-2 f (x) dx b - a (Yo + 4Yi + Y2)
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By the same reasoning applied to x2 < x < x4, then to x4 < x < x6, etc.
xn_2 S x < x,,, it follows that

.f (x) dx r- b
3n

a (Y2 + 4Y3 + Y4), etc.

O b - a
rrt-z

f ( x )
dx -' 3n

(Yn-2 + 4Y.-1 + yn).

By adding these approximations, the formula (5) is obtained.

Example 1. By using Simpson's rule with n = 4, find an approximation of

f3 -,/4 + x3 dx.

Solution. Since a = -1, b = 3, and n = 4, then (b - a)/n = 1,

a = -1, x1 = 0, x2 = 1, x3 = 2, and x4 = 3.

Therefore with y = V4 -+x-3 the computation is:

Yo = V4 + (-1)3 = V3 = 1.732 yo = 1.732

yl = V4 + 03 = V4 = 2.000 4y1 = 8.000

Y2 = v4 + 13 = V5 = 2.236 2y2 = 4.472

y3 = V4 + 23 = VU = 3.464 4y3 = 13.856 J

Y4 = V4 + 33 = 1/31 = 5.568 Y4 = 5.568

to

s = 33.628

Hence f 31'4 -+x3 dx ~ 3
3((4)

1) 33.628 = 11.209.

Data on a physical experiment, with equally spaced observations,
represents isolated values of a function whose analytic expression is not
known, but even so an approximation of the integral of this function over
the range of observations may be desired. In such a case Simpson's rule may
be used.

x 0 0.5 1 1.5 2

Exam le 2 Given - thp . en
y 1.000 1.649 2.718 4.482 7.389

fo

2 2

y dx 3 4 [1.000 + 4(1.649) + 2(2.718) + 4(4.482) + 7.389]

= 8[38.349] = 6.3915.

Actually in the table y = ex so the integral = e2 - 1 = 6.389.

Simpson's rule is one of the most widely used methods for approximating
definite integrals. The following error estimate is useful to know. The proof
is given in the next section.
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ERROR FOR SIMPSON'S RULE. In the notation of the statement of Simpson's
rule, the error is given as:

fa f(x) dx - b
3n a {yo + 4Yi + 2Y2 + ... +. 2Yn-2 i 4Y12-i + Yn}

(6) < (b - a)5M
180n4

where M is any constant such that M Z I f (4'(x)l for a < x < b.

Example 3. Find a number n which in Simpson's rule will yield

f
('0.5

sin em A accurate to three decimal places.

Solution. Set f (x) = sin ex and find the fourth derivative

f (4)(X) = ex cos ex - 7e2x sin e5 - 6e3x cos ex + e4x sin ex.

To be sure to find a number M such that M >- I f (4)(x)I for 0 < x <- 0.5 take the
absolute value of each term, use Isin ex1 < 1, Icos exI <_ 1 so that surely

l f (4)(x)1 S ex + 7e2x + 6e3x + e4x <- e0 5 + 7e + 6e15 + e2, 0 < x _< 0.5.

From a table of powers of e a perfectly safe value to use for M is

1.649 + 7(2.718) + 6(4.482) + 7.389 = 44.952

or any larger number. With M = 45, then from (6) the result of applying Simpson's
rule will be within 5 x 10-4 of being correct if n is an even integer satisfying

(0.5)545
< 5 x 10-4 so that

(0.5)5

180n4
104 < n4

20 '

and hence n > (0.5)10 '(0.5)/20 = 5"0.025 = 1.99 by logarithmic computation.
Thus, n = 2 may be used with confidence that the result will be within the stated
accuracy; that is, the mid-point rule

f0.5 0.5

0
sin ex dx = 6 (sin 1 + 4 sin sin eo.5)

with computation carried to four decimal places, will round accurate to three
decimal places. By using a table of powers of e and a radian-trig. table, the result
is 0.473.

134. Error for Simpson's Rule

Let h and M be positive numbers and letg be a function whose fourth derivative exists
and is such that

(1) (x)I < M for -h < x < h.
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We shall first obtain an upper bound for the error in using the mid-point rule to approximate
the integral of g from -h to h. To do so let p be the function defined by

(2)
=fatg(x)

dx - 3 [g(-t) + 4g(O) + a(t)] for 0 < t < h.

Let G be a function such that G'(x) = g(x) for -h < x < h so that

t

J -t
g(x)dx = G(t) - G(-t) and

dt
ft

g(x) dx = G'(t) + G'(-t) =g(t) +g(--t).

We now compute three successive derivatives of T:

m'(t) =g(t) +g(-t) - '[g(-t) + 4g(O) +g(t)] - 3 [-g'(-t) +g'(t)l

= I[g(t) + g(-t)] - 4g(0) - 3 [g'(t) - s'(- 01,

m"(t) = 1[g'(t) -g'(-t)] - 0 - M['-'(t) - 3 [g"(0 +g""(-t)]

= 1[g'(t) -g'(-t)] - 3 [g"(t) +g"(-t)],

(3)
p"(t) = 11f(t) +g"(-t)] - g"(-t)] - 3 [g (t) -g,,,(-t)]

3 [g",(0

By substituting t = 0 notice, for later use, that

(4) 9(0) = 0, q>'(0) = 0, and 9)"(0) = 0.

With t a number such that 0 < t < h we now apply the Law of the Mean to g"' for the
closed interval I[-t,t] and determine a number t such that

g,,(t) -g"(-t) =gt4 (-t)] t)' 2t.

Thus, from (3), q'(t) = and then, from (1), 1go'(t)j < ;t2M or

-;Mt2 < q,(t) < ;Mt2 for 0 < t < h.

Hence, for 0 < s < t < h it follows that

-IMf o 0 dt < fo-p (t) dt < ;Mf t2 dt,

--Mt3J
0
< 9,-(t)]

0 < .Mt 3]
o'

-oMs2 <'"(s) - q"'(0) < ;Mss.

Since 97"(0) = 0 and these inequalities hold for 0 < s < t < h, then

-IMt35 (t)<;Mts for 0<t<h.
By two more similar integrations it follows that

2M
is < q7(t) <

9
2M ib9 4 . 5 .4.5 for 0 < t < h.
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In particular for t = h we have
M
90

h5; that is,

fh
J -ng(x) dx - 3 [g(-h) + 4g(O) + g(h)] M h5.

For a function f such that I f"I(x)I < M for c - h < x < c + h, then (by making a
translation of axes with the new origin at the point (c,0)) the above result yields

(4)
i J c

±h f (x) dx - 3 [ f (c - h) ± 4f (c) + f (c + h)) M hs.

We are now ready to obtain the expression as given on p. 429 for the error in using
Simpson's rule for approximating

bfa f (x) dx where I f"'(x)I < M wherever a < x< b.

Let n be an even number, let h = (b - a)/n, let xk = a + kh, and let

yk=f(xk) n.

Then by considering intervals centered at x1, xa, xs, and each of length 2h, it
follows from (4) that

fa2f(x)dx-b3na('o+4y1+y2)I:5 M16 na >

90

_ _
aJ52f(x)dx-63na(y2+4ya+ys)I<

90

Ib
n

a

etc.

rb
b-a M(b - a

J
(x) dx -

3n
(Yn-x + yn) I <

9o
n

There are n/2 of these inequalities and together they yield

fb b - a
a

f ( x ) dx - 3n (yo + 4y1 + 2yx + 4y3 + ... Y 2yr_x + 4yn-1 + Y.)

< n M b - a5(b-a)5M
2 90 ( n 180n`

PROBLEMS

1. a. Approximate f 2 x 1 dx by using Simpson's rule with n = 10 and thus obtain
t

an approximation of In 2.

b. Show that the error of Part a is <5 x 10-5.

2. a. Express the length of the graph of 4y = V25 - x2 from (0,14) to (3,1) as an
integral.

b. Do the same for the graph of x = V25 - 16y2 from (5,0) to (3,1).
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c. Approximate these integrals by using Simpson's rule with n = 2 in Part a and
n = 4 in Part b.

d. Use Part c to approximate the circumference of the ellipse having equation
x2 + 16y2 = 25.

3. Approximate the length of the graph of y = sin x between (0,0) and (x/2,1) by
using Simpson's rule with n = 4.

4. By using Simpson's rule with n = 4 approximate the "elliptic integral"

f
I2 dx

J0 V1 -0.5sin2X

5. Find a number n such that the error in computing
JI

o
sin ex dx

by Simpson's rule will be less than 5 x 10-4.

6. Use Simpson's rule to approximate the integral of the function whose tabular
values are given:

x 0 1 2 1 3 4a. -
y 25.2 17.5 40.3 35.0 30.7

x 1 0.5 1 1.0 1.5 2.0 1 2.5 3.0 1 3.5

b. -
y 20.2 9.79 6.56 4.92 3.91 3.24 2.75

135. L'Hospital's Rules

We first prove: THE EXTENDED LAW OF THE MEAN. Let f andg be functions
satisfying the three conditions:

(a) f and g are both continuous on a closed interval I[a,b].
(b) f'(x) and g'(x) both exist and g'(x) 0 0 for a < x < b.

Then there is a number X such that

(1) a < X < b and
f (b) - f (a) - f'(X)
g(b) - g(a) g'(X)

PROOF. Notice first that g(b) - g(a) 0 0 since (by the Law of the Mean)
there is a number such that g(b) - g(a) = a), which is 0 since

0 0 because a < 1= < b.
Next, let 9' be the function defined for a < x < b by

9a(x) = [.f (b) - f (a)] [g(x) - g(a)] - [.f (x) - .f (a)] [g(b) - g(a)]
so that qu(a) = 0 and p(b) = 0. Also, for a < x < b

,pr(x) = [f(b) -.f(a)]g'(x) -.f'(x)[g(b) - g(a)].
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Thus, by Rolle's theorem (Sec. 32) let X be such that a < X < b and

0 = g,'(X) = [f(b) -f(a)]g'(X) -f'(X)[g(b) - g(a)]
Since g'(X) 0 and g(b) - g(a) 0, the equation in (1) follows.

The following theorem (1'Hospital's Rule I) may be used for determining
limits of some quotients in which both numerator and denominator approach
zero.

RULE I. Let f and g be functions whose domains include the open intervals
I(a,c) and I(c,b) and are such that:

(a) lim f (x) = 0 and lim g(x) = 0.
X-C x-C

(b) f'(x) and g'(x) exist and g'(x) 0 0 for a < x < c or c < x < b.

(c) limf ,(x) exists, or is +oo, or is - oo.
X-C 9'(x)

Then also

(2) limf _(x = limf (x)
X-C g(x) x-C g'(x)

PROOF. If c is not in the domain of f or g (or if f (c) or g(c) is different
from zero) then define f (c) = g(c) = 0. Now f and g are continuous on the
open interval I(a,b) and the Extended Law of the Mean may be applied to
any closed sub-interval of 1(a,b). For x such that a < x < c or c < x < b
let X be between x and c and such that

f (x) - f (c) = f'(X) and hence f (x)

g(x) - g(c) g'(X) g(x) g'(X)
As x -- c then X -- c and thus (2) follows.

ex-2 - e2-
Example 1. Find limx.2 sin (x - 2)

Solution. Upon setting f (x) = ex-2 - e2-x andg(x) = sin (x - 2), then f '(x) _
ex-2 + e2-x, g'(x) = cos (x - 2) and

f'(x) ex-2 + e2-x e° + e° 2
li = _li = 2mm - =

z-.2 g'(x) -.2 cos (x - 2) cos 0 1

Consequently, by l'Hospital's Rule I also

x)
2 - 2-xeX-

elimf = 2; that is, urn 2.
a-.2 9W x2 sin (x - 2)

For some functions f and g such that lim f (x) = 0 and lim g(x) = 0 it
X-C X-C

happens that also Jim f '(x) = 0 and Jim g'(x) = 0. In such cases apply

Rule I again to the quotient f '(x)/g'(x).
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Example 2.

lira
ex-3 + e3-x - 2

= lim
Dx(ex-3 T e3-x - 2)

X-3 1 - cos (x - 3) 3 Dx[1 - cos (x - 3)]

ex-3 - e3-x (form "0/0" so
= lim

x-.3 sin (x - 3) try Rule I again)

D5(ex-3 - e3-x) ex-3 + e3-x= , D. sin (x - 3) z' 3 cos (x - 3) - 2.

Two mistakes are so common that we warn against them.
FIRST. Do not differentiate the fraction f (x)/g(x); the new quotient is

obtained by differentiating the numerator for a new numerator and
differentiating the denominator for a new denominator.

SECOND. Do not apply Rule I unless both numerator and denominator
approach 0. Thus

limx2-40limDx(x2-4)=lim2x=4,

x-'2 x - 3 z-'2 Dx(x - 3) x-2 1

and the reason for not applying Rule I is because the denominator does not
approach 0. By Theorem 17

x2-4 lim(x2-4) 22-4 0
lim = x-'2 = _ - = 0.x-2x-3 Iim(x-3) 2-3 -1

x-.2

If f (x) and/or g(x) are defined. only on one side of c, then 1'Hospital's
Rule I may be used with x -- c+ or x c- as the case may be.

Example 3.

z-+o+ x x-0+ Dxx x-o+ 2'\Ix

RULE If. In Rule I replace the conditions (a) by

1im jg(x)I = oo.
x-c

The conclusion is then the same as in Rule I.

A proof is given at the end of this section.

1 - cos \/x Dz(1 - cos 'fix) sin vx
lim = lim = lim

1 1

2 2

Example 4. Find lim
see x

In sec x
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Solution. The denominator becomes infinite as x -, (r/2) - so earlier limit
theorems are not applicable, but Rule II is:

secx _ Dx sec x

x (n/?) -
In secx x-.(nm) - Dx In sec x

secx tan x
lim = lim sec x = D.

(n/,)_ sec x tan x) x-.(vis)_
sec x

RULE III. The conclusions of Rule I and 11 remain the same if x -' c is
replaced either by x -- co or by x , - co.

PROOF for x -+ co. Make the transformation t = 1 and set
x

F(t) = f (x) and G(t) = g(x).

Notice that t -+ 0+ as x - co, that DxF(t) = Dx f (x) = f '(x) but also

DxF(r) = DtF(t)Dxt = F'(t)(- 12) = F'(t)(-t2).
X

Similar relations hold for G and g and hence

lim
=f'(x) - lim F'(t)(-t2)

= lim F(t) = urn f(t) by Rule I or II as}
x-»x g'(x) t-o+ G'(t)(-t2) t-o+ G'(t) t-.o+ G(t) the case may be

limfW
X-00 g(x)

Example 5.

x3
Example 6. Find lim x .

x-..- cce

= lim x again -
ex ( °°)X -. 00

6
=1im - = 0.

Z- co

Solution. Since the numerator -. - whereas the denominator, 0 as
x - oo, none of the I'Hospital Rules apply. Since, however, ex > 0 for any
number x, then

x3 Dxx3 3x2 ( cc)
lim - = lim x = lim x form -

X- 00 a x-. oo Dze x-,. CO a 00

x3
lim = - cX- _ ex
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PROOF of ('Hospital's Rule H. With f and g satisfying the condition

lim f (x ) = L, where - / I - .

g'(x)

Let E > 0 be an arbitrary number. Let S, > 0 be such that

Chap. 12

(3) if 0 < Ix - cI <6, then g(x) 0 and L--<'-f x) < L + E
2 g'(x) 2

Choose a definite number x0 such that 0 < Ixo - el < S, and then let x be any number
between x0 and c. By the Extended Law of the Mean, let X be a number between x0
and x such that

f'(X) _ f(x) - f(xo) xo x

g'(X) g(x) - g(X0) c-S X C c+b

Hence also 0 < I X - ci < S1, and thus from (2) Figure 135

E f'(X) E f(X) - f(XO) EL--<<L+-; that is L--< <L+
2 g'(X) 2 2 g(x) -g(XO) 2

By dividing both numerator and denominator of this last inequality byg(x) # 0, we have

E
(4)

L_ < f (x)Ig(x) - f (xo)Ig(x) < L i E
2 1 - g(xo)Ig(x) 2

Since lim Ig(x)j - oo, while xo is a definite number, we see that both
X -C

lim f (xo) = 0 and lim g(xo) - 0
x-c g(x) z-c g(x)

which, together with (4), means that there is a number 6 > 0 such that

if 0<Ix---cl<(5, then L-E<f-(x)<L4-E.
g(x)

Since E was arbitrary we have, from the definition of a limit, that

I i m = L.
x - .c g(x)

A similar proof can be made if L is replaced either by - oo or by - cc.

PROBLEMS

1. Establish each of the following limits:

x2 - 2x 2
a. lim

x-.0sinxIn(3 -x) ln3

x2 - 2x 2
b. Jim

x-,, sin x In (3 - x) sin 2

c. Jim
z-.0

x3
- sin x

3!
x

x5

(1.01.)x
d. lim 5 = co.

x-. oC x
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2. Find each of the following:

x3-5x+2
a. lim x4 + 6x2 - 40

b V- 2

I;-

x- + 6x - 40

x3-5x+2
x`-Ffix" -4V

tan x
d.lim .

x-.O X

e. lim
I -cosx

x2z-.0

ex-1 -x
f. lira

z-0 sin2 x

x2 x3ex-1 x-2 -31
g. lim

z-.0 X4

ex-1 x-x2-x3
h.lim 4

z-.o X

i. lim
In (I +x 1)

x-. co
x1

j. lim
x -sin x

X-0
x2

k. hm
x3

X-0 x - sin x

1. lim
x-.0 tan x - sin x

M. hm
sin 2x

z-,12 a - 2x

n lim - 2x

x-.0 sin (ir - 2x) .

0. Jim
1 + cos 2x

1-,/2 1 - Sin x

In (e3x + x)
P. lim

x- oo X

3. In the figure, the circle has radius 3 and is tangent to the y-axis at the origin.
For 0 < h < 3 the point A is (O,h)

and B is h units from the origin 0.
The line AB cuts the x-axis at the

point E.
a. Express the distance OE in terms

of h.
b. Find lim OE.

h-0 Figure Prob. 3

4. Solve Prob. 3 in case B is chosen so that arc OB = h (instead of chord OB = h).

5. Let P be the point (h,h2) on the graph of y = x2. Connect P with the origin 0.
Find

chord OP
lim.
h-.o arc OP

6. For g(h) an nth degree polynomial in h, and for f a function, the notationa:
contrivance "f(h) -g(h) for IhI small" means that both

lim g(h) =
1 and hi mm

f (h
constant.7,0
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In physics and engineering the following approximations for 1hj small are
frequently used. Justify each of them.

a. eh-1 +h.
h2

d. cosh h - 1 + 2 .

eh - 1 h
b. h -1 +i- e. sin h -r h.

h 2

c. _-1 +
2

. f. In(1 +h) -h - h2

136. Other Limit Forms

The following examples show methods to try if:

lim f (x) . g(x) takes the form 0 oo,

lim [f (x) - g(x)] takes the form oo - oo,

lim f (x)°(x) takes any of the forms 00, 1', oo°.

In each case changes are made so that one of l'Hospital's rules applies.

Example 1. Find Jim x In jxj which takes the form 0 w.
X-0

Solution. Upon writing x In Jxj =
In jxI

x1 , then the absolute value of the

denominator becomes infinite as x -. 0 so l'Hospital's Rule II applies:

In jxj Dx In Ixj X-1
lim x In jxj = lim 1 = lim 1 = Jim 2 = Jim (-x) = 0.
z0 x--0 X-1 X-0 Dxx x--0 -x- x-0

Example 2. Find Jim (sec x - tan x) which takes the form ±(oo - oo).

Solution. First use trigonometric identities and obtain a form to which one of
l'Hospital's rules applies:

1

lim (sec x - tan x) = lira
X_/2 cos X

= lim
Dx(1 -sin x)

= lira
x--,ri2 Dx cos x x-.,,is

(1)

sin x 1 I - sin x
J=Jimcos x cos x

-cos x 0 _
-sin x -1 -0.

The two logarithmic relations

b = eln b and In by = p In b

are useful in evaluating limits of functions having exponents which approach
zero or become infinite.
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Example 3. Find Jim Ixix which takes the form 00.
X-0

Solution. From (1), Ixlx = e1= exinlxl,
The result of Example 1 may be used on the exponent:

lim z In lzl
Jim jxlx = Jim exin lz; = e-° = e° = 1.
X-0 x-+0

Example 4. Show that lim (x + 2x)1/x = 2e.
X-0

Solution. The graph of y = x + 22 intersects the y-axis at (0,1) and hence, by
continuity, there are negative values of x for which (x + 2x)1/1 is defined. Thus, it is
permissible to let x 0 through either positive or negative values. Again, from the
two relations of (1):

In (z+2x)

Jim (x + 2x)1/x = Jim eln (x+2x)i/x = lime x
X-0 z-+0 z-0

liraIn(z+2x) limDxIn(x+2x iim1+2xIn2
= ex-.o x = ex-`° Dxz = ex-.° x+2x -

= e(1+ln2)= eeln2= e2 =2e.

PROBLEMS

1. Establish each of the following:

a. lim x3 In jx[, 0.
X-0

b. lim [2 csc2 x
X-0 1

1 1-cosxl _
2

3 x
c. lim i 1 + - = e3.

X)

d. Jim (x +
a2)/x2

= 1.

e. lim
[X-0 1 -1Jsin x x

2. Obtain the following:

a. lim (x + ex)1/x = e2
X-0

b. lim ex + J
= 1

x-aoex+x
C. Jim (x + ex)1/x = e.

1.001

[sin x x

_ ICl+x
1lim J = .

Z-0 sin x x

1 +ax 1

g

h. lim = a.
X-0 sin x xC

Ii.
jI _1

lim
-

J
z-.o sin2 x x2 3

1 1

ilim ao.
x-o sin3 x x3

d. lira (1 + x)1/x2 = co.
X-0+

e. Jim (1 + x)1/x2 = 0.
x-.o-

f. Jim (1 + x + x2)1/x = e.
X- 00 x--0
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3. Examine each of the following limits:

a. lira x3 cot x.
x-0

b. Ii...
In (1 + sin x)

sin x

In (e3x + X)
c. lim

x_.0 X

\3
d. lim

\Z
- x I tan x.

e. Jim jxj
x-0

f. lim lxIi-cosx.
x-0

g. Jim X(x 1).

h. lim (csc x - cot x).
x-»0

i. Jim {In (ex + 1) - x}.
X- CO

[sin x 1/x2
j. Jim -

z-0 LX

a x

k. Jim cos , a -_ 0.
X_ co XJ

1. Jim (ex - x)1/x
x-0

4. Show that the graph of each of the following equations has a horizontal asymp.
tote. Find an equation of the asymptote.

a. y = x sin a . c. y = (x2 + 2)1/x2. e. y = [cos (I /x)112.
X

x3 x+lnx e x
b. y = p. d.

y xlnx . f. Y In (1 +x

5. With p a positive number and a any number, show that:

a. Jim he-ph = 0. d. Jim
h

x2e px dx = .

b. Jim f h e px dx = -' .
A_ co 0 P

1c. lim f o xe 1'x dx =
h-.co

e. lim f h .X3e Px dx =
I

4h- 00

h
f Jim f e Px sin ax dx =

a
P2+a2.

h- co

g. Jim h e nx cos ax dx = 2
P

2h-M0 p +a

h. Jim foe pxxsinaxdx = +a)h
'(p2 22

6. Evaluate each of the following improper integrals :

a. f 1 In x dx. c. f 'In 2 x dx. e. f o x.4e x dx.

b, fox In x dx. d. f000xexdx. f. fo12foe-'2rdrdB.
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137. Taylor's Theorem in Two Variables

Let F be a function of two variables, where F has continuous partial
derivatives of as high order as we wish to use. With dx and dy any designated
numbers (constants) used for differentials of the first and second variables,
the total differential dF(x,y) was defined by

aF(x,y)
dx

aF(x,y)dF(x,y) =
ax + a

dy
v

To save space in writing, we omit (x,y) and note that the second differential
d2F ° d(dF) is such that

d2F=d[axdx+aFdy]
Y

ax[ax
dx + ay dy] dx + ay[ax

dx + ay dy] dy

a2 F
x2dx + a22F dy] dx + Caa2ax

dx + dy dy] dyCa x ay

= i (dx)2 + 2 as 8 dx dy + a2 a (dy)2
Si_ nca2 F

a
= aa2a F

Y ay v y

Now d3F = d(d2F) and by working out the details it will be found that

d3F =
a3F

(dx)3 + 3 a3F (dx)2 dy + 3 a3F (dx)(dY)2 +a3F (dy)3.
ax3 ax2 ay ax aye ay3

The similarity of the expressions for d2F and d3F with the ordinary binomial
expansions

(a + b)2 = a2 + 2ab + b2, (a + b)3 = a3 + 3a2b + 3ab2 + b3

should be noted. Such similarities continue to higher differentials so that for
any positive integer k:

dkF (dx)k + k axakFaY (dx)k-' dy
aXk

+ k(k2' 1) ax a ay2 (dx)k-2(dy)2 + ... + alk (dy)k.

This fact makes it possible to write Taylor's formula for a function of two
variables in compact form. The formula to be obtained is:

(1) F(x + dx,y + dy) = F(x,y) + dF(x,y)

+ d2F2x,y) + ... + d(n dF(x,y) + R,
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where for some numbers and 77, with between x and x + dx but 71 between
y and y + dy, P. has the form

Rn =
n!

This formula is obtained from a form of Taylor's formula for a function
of one variable by letting f be defined by

(2) f (t) = F(x + t dx, y + t d y), 0 < t < 1.

For t given and 0 < t, there is a number Tn such that 0 < Tn < t and

f(n-1)(0)
f(t)=f(0)+f'(0)t+f2! t2 +...+(n-( tn- 1 +Rn

where

In particular for t = 1

Rn = I f(n)(Tn)tn
n!

(n-1)
(0)f(0) +Rn+...+

(
(3) f(1)=f(0)+f'(0)+

2! - 1)!n

where Rn = f
n!

From (2) we have f (1) = F(x + dx, y + dy) and f (0) = F(x,y). Notice
also from (2) that

f(t) = F,,(x + t dx, y + t dy)D,(t dx) + F,(x + t dx, y + t dy)D,(t dy)

f'(0) = FF(x,y) dx + FF(x,y) dy = dF(x,y),
f"(t) = Fxx(x + t dx, y + t dy) dxD,(t dx)

+ F.,,(x + t dx, y + t d y) dx D,(t d y)

+ F1,.(x + t dx, y + t dy) dyD,(t dx)

+ F,,,,(x + t dx, y + t dy) dyD,(t dy),

f"(0) = F,, (x,y)(dx)2 + 2Fx,(x,y) dx dy + Fvv(x,y)(dy)2
= dFF(x,y)

and by continuing in this manner

f (k)(0) = dFF(x,y)

Since 0 < Tn < 1 in (3), then upon setting = x + Tn dx and 27 = y + Tn dy
it follows that is between x and x + dx whereas is between y and y + dy.
All these facts show that (1) is merely (3) under the substitution (2).
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Example 1. Use three terms of a Taylor expansion of an appropriate function to
find an approximation of

3.2 sin 59°.

Solution. Set F(x,y) = x sin y. Hence

F (3.2,
5918"0)

= 3.2 sin 59°, F (3, ) = 3 sin 60° = 3 2) = 2.598 077.

Thus, use dx = 0.2, dy = -n/180 so that from (1)

1
F(3 + 0.2,

3 180)
F(3, 3) + dF(3, 3) + 2 d2F(3, 3) .

Since dF(x,y) = sin y dx + x cos y dy and

d2F(x,y) = 0 (dx)2 + 2 cos(3cos)(_1)y dx dy - x sin y(dy)2, then

7r
- 'ITdF (3, .) = + = 0.147 025

'Ir
d2F (3, 3) = 0 + 2 (cos 3) (0.2) I - 180) - 3

(sin 3) ( 180) 2
-0.004 282.

Hence, by keeping 6 decimal places then rounding to 5, we have

3.2 sin 59° = 2.598 077 + 0.147 025 + (0.5)(-0.004 282) = 2.742 96.

Example 2. Expand ex+dx sin (y + dy) through second-degree terms in dx
and dy. Use this expansion to approximate e0 5 sin 5 °.

Solution. Set f(x,y) = ex sin y and find

fx(x,y) = ex sin y, fxx(x,y) = ex sin y, ex cosy,

ex cos y, and f,,,,(x,y) = -ex sin y. Thus

ex+ax sin (y + dy) ^- ex sin y + [ex sin y dx + ex cos y dy]

+ J[ex sin y(dx)2 + 2ex cos y dx dy - ex sin y(dy)1.
Upon setting

x = y = 0, dx = 0.5 and dy = 5n/180 = ir/36, then

[0(0.5)e0 5 sin 5° + + Tr 36] +
1

21 0(0.5)2 + 2(0.5)
'
36 -

0(36)2]

Ir 7r 7T
36

+0.5
36 24

PROBLEMS

1. a. Verify the Taylor expansion as far as given:

sin (x + dx) cos (y + dy) - sin x cos y + [cos x cos y dx - sin x sin y dy]
+ J[ -sin x cos y(dx)2 - 2 cos x sin y dx dy - sin x cos y(dy)2].
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b. Write down the corresponding expansion of cos (x + dx) sin (y + dy).
c. Find the same number of terms for Taylor's expansion of

cos (x + dx) cos (y + dy).

d. Write down the corresponding expansion of sin (x + dx) sin (y + dy).
e. Extend the result of Part a through the term involving (dy)3, then set x = y =

0 and verify
sin dx cos dy - dx - 6(dx)3 - dx(dy)2.

f. By using Taylor's expansion for functions of one variable, write expansions
of sin (x + dx) through (dx)2 and cos (y + dy) through (dy)2. Multiply the
results to obtain an approximation formula for sin (x + dx) cos (y + dy).

2. a. Expand ex sin y through terms involving (dy)2, then set x = y = 0 and
obtain

edx sin dy - dy + dx dy.

b. By the same method show that also

edx In (1 + dy) -- dy + dx dy - z (dy)2.

c. In Parts a and b extend the results through terms involving (dy)3 and find the
corresponding approximations of edx sin dv and edx In (1 + dy).

138. Maxima and Minima, Two Variables

A function F of two variables is said to have F(xo,yo) as a
relative maximum if F(x,y) < F(xo,yo), but a
relative minimum if F(x,y) > F(xo,y0)

for all (x,y) in some neighborhood of (xo,yo)
Given that (xo,yo) and a neighborhood of it are in the domains of F, Fx,

and F, and that F(xo,yo) is either a rel. max. or a rel. min. of F, then each of
the profiles

{(x,Yo,z) I z = F(x,Yo)} and {(xo,Y,z) I z = F(xo,Y)}

has a tangent line at (xo,yo,F(xo,yo)) parallel to the xy-plane and thus it
follows (is necessary) that

(1) Fx(xo,Yo) = 0 and F,,(xo,Yo) = 0.

Equations (1) are, however, not sufficient for either a rel. max. or a rel.
min. of F at (xo,yo). For example

a(x2ax y2)
= 2x and

a(x2a
Yz) -=-2j7

v

are both 0 at (0,0), but Fdefined by F(x,y) = x2 -y2 does not have F(0,0) = 0
either a rel. max. or a rel. min. since, in particular, the profiles

{(x,0,z) I z = F(x,0) = x2} and {(0,y,z) I z = F(0,y) = -y2}
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are parabolas with vertices at the origin, the first with vertex down but the
second with vertex up.

The following theorem (a proof is at the end of the section) gives sufficient
conditions for relative maxima and relative minima.

THEOREM 138. Let F be a function, let (xo,yo) and a neighborhood of it be
in the domain of F, let

(1)

(2)

Fx(xo,y0) = 0, 0, and

Fxx(x0,y0)Fyv(x0,yo) - [Fx,,(xo,yo)]2 > 0,

and let Fxx, Fv,, and Fxv be continuous at (xo,yo). Then F(x0,y0) is

(3) a rel. max. of F if Fxx(xo, yo) < 0, but is a rel. min. of F if Frx(xo,yo) > 0.

Example 1. Find the dimensions of the box of minimum cost if the volume is
Vft3, the base costs 15fft2, the lid and the sides 5¢/ft2.

Solution. With z ft the depth and the base x ft by y ft, then V = xyz and the
cost is

C = 15xy + lOxy + 2(5xz + 5yz) = 25xy + IOV (Y + X)

IOV lOV
Thus Cx = 25y -

x2
, C, = 25x -

Y2
so that Cx = 0 and C, = 0 has solutions

X0 = .Yo
= I2V/5 = '0.4V.

20V 20V
Since Cxx =

x3
, Cyy and Cxv = 25, relation (2) is

20V 20V
0.4V 0.4V -

(25)2 = (50)2 - (25)2 > 0.

Also Cxx at (xo,y0) is 50 > 0 so (xo,yo) determines a minimum. The box therefore
has square base i X0.4 V on a side and the altitude is '3' V(0.4)'2/3.

Example 2. Find the minimum distance from the origin to the surface S having
equation

(4) z2 = xy - 4.

Solution. Let F be the function defined by

(5) F(x,y) = x2 + y2 + xy - 4 with domain {(x,y) I xy - 4 >- 0}.

Hence, if (x,y,z) is a point on S (so z2 = xy - 4), then F(x,y) is the square of the
distance from the origin to this point. It is necessary to specify the domain in (5)
since if (x,y,z) is a point of S, then z2 = xy - 4 >- 0.

Now Fx = 2x + y, F = 2y + x and these could both be zero if and only if
x = 0 and y = 0. Since (0,0) is not a point of the domain of F, then F. and F
cannot both be zero at any point in the domain of F. Consequently, if F has a
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minimum, this minimum will occur at a boundary point of the domain of F, i.e., at a
point (x,y) such that xy - 4 = 0 so y = 4/x. For such a point, the square of the
distance to the origin is

\ ()+f(x)=F(x1 x2+0=x2+16x2.x x

Since f'(x) = 2x - 32x-3 it follows that f'(x) = 0 if

32
2x -

xs
= 0 and thus if x = ±2.

Also f "(x) = 2 + 96x'4 > 0. Thus, the desired- minimum is

v'f(2) _ V22 + (4/2)2 = 2V2 or V7(--2) = 2V2

and occurs at the points (2,2,0) and (-2, -2,0) of S.

PxooF of Theorem 138. Let 6 > 0 be such that if IhI < 6 and JkJ < 6, then (x,, + h,
yo + k) is in the domains of the continuity of Fxx, and Fxv; such that Fxx(xo + h,
yo + k) has the same sign as Fxx(xo,yo) and such that

(6) [FzxFvv - Fxyl txo+h,vo+x> > 0-

Choose any numbers dx and dy such that IdxI < 6 and Idyl < d. Let be between xo
and x,, + dx, and 77 be between yo and yo + dy such that (from Taylor's formula)

F(xo + dx, yo + dy) = F(xo,yo) + [F,(xo,yo) dx + F,,(xo,yo) dy]

+ 2 [Fxx(dx)2 + 2F... dx dy + F,,,,(dy)2](4,n)

Since FF(xo,yo) = F,(xo,yo) = 0 from (1), it follows that

F(xo + dx, yo + dy) - F(xo,yo) = Z[Fxx(dx)2 + 2Fx dx dy + F,,,

Fxx($,77) {dx2 + 2 dx dy + (dy)2't
2 Fxx Fxx

= {(dx)2 + 2 dx dy + (F.. dy-i F! (dy)-
dy }Fxx J Fxx (F.x /($.77)

= Fxx($,77) { [dx +
F5

dy]2-}- Fxx F. - (Fxv)2 (dy)21
2 l (Fxx)2 U. 77)

The first term in { ) is >- 0 and the second is also > 0 by (6). Thus F(xo + dx, yo + dy)
-F(xo,yo) has the same sign as which is the same as the sign of Fxx(xo,yo); that is,

F(xo + dx, yo + dy) < F(xo,yo) if Fxx(xo,yo) < 0, but

F(xo + dx, yo + dy) ? F(xo,yo) if Fxx(xo,yo) > 0.

PROBLEMS

1. A bin of volume 48 ft3 is to be put in a basement corner by using the floor and
two walls. Find the dimensions for minimum cost if one side costs 5$/ft2, the
other side 10$/ft2, and the lid 15$/ft2.
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2. Find the dimensions and volume of the rectangular parallelepiped of relative
maximum volume which has three faces in the coordinate planes and the vertex
opposite the origin in the plane having equation:

a.6x+4y+3z=36. b. 6x - 3y + 2z = 6.

3. Find the minimum distance from the origin to the surface having equation
a. z2 = xy + 4. C. z2 = x2y - 8. e. 2x + 3y + z = 7.
b. z2=x2y+8. d. x2 +y2 = 4. f. 3y+z = 7.

4. Find the minimum distance between the lines L1 and L2 whose parametric
equations are:

a.LI:x=5+2s, y=8+2s, z=6-2s,
L2:x= -1 +t, y=6-2t, z=t.

b.L1:x= -1, y=5+3s, z= -6-s,
L2:x=2-4t, y=6, z=7+t.

5. Given that (2) holds, prove:

a. ff(xo,ya) 0 0. b. fv,(xo,ya) and ff(xo,yo) have the same sign.

Let f be a function whose (n + 1)st derived function f(n+l) is continuous on the
closed interval I[a,b]. Define Ik by

(b
(b - x)k-1

Ik = Ja (k - 1)! f(-`)(x) dx, for k = 1,2, , n +- 1.

a. Show that I1 = f (b) - f (a).
b. By using integration by parts, show that

f y:'(a)
Ik = k) (b - a)k + lk+1, fork = 1,2, .. , n.

It
c. Show that I Ik leads to the expression

k=1

f (b) = f(a) + f'(a)(b - a) + 'f Z- (b - a)2 + +
f(nn)(a)

(b - a)n

where R b (b -
x)n

f(-+')(x) dx.
a n!

+ Rn

(Note: This is called Taylor's formula with remainder in integral form.)
Start with the remainder in integral form, use the Law of the Mean for integrals

(page 180), and obtain both the Lagrange and the Cauchy forms of the remainder
(page 423).



CHAPTER 13

Series

"Achilles running to overtake a crawling tortoise ahead of him can never over-
take it, because he must first reach the place from which the tortoise started; when
Achilles reaches that place the tortoise has departed and so is still ahead. Repeating
the argument we easily see that the tortoise will always be ahead." t This reasoning
of Zeno's (fifth century B.c.) was one of the perplexing paradoxes of antiquity and
awaited a satisfactory answer until Friedrich Gauss (1777-1855), "The Prince of
Mathematicians" according to E. T. Bell,t started the trend of rigorous work on
infinite series.

139. Sequences

A sequence is a function whose domain is the set of all integers greater
than or equal to a given integer. For example, the function f defined for
each integer n z 1 by f (n) = 1/n is a sequence which is usually displayed as

1 1 12'3...,n,..

Problem 1 below shows there are other sequences having 1, J, s as their
first three terms. The purpose of this problem is to show.that it is necessary
to know the definition of the function which is the sequence.

Since 0! = 1, the function g defined by g(n) = 1/n! for each integer
n Z 0 is the sequence

Subscript notation, rather than the usual functional notation, is used in
connection with sequences. Thus, the sequence defined by

(1)
3n

Sn = n-I
t Men of Mathematics (New York, Simon and Schuster, Inc., 1937). This is good

recreational reading; a blend of biography, history, and philosophy. And don't skip the
Introduction.

448
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is understood to have its first (or initial) term corresponding to n = 2 and
the sequence is displayed as

1

6,2
3n

The defining relation of a sequence is also called the general term of the
sequence. If sn is the general term of a sequence, then the sequence is denoted
by {sn} which really means {(n,y) I y = s}.

DEFINITION 139.1. A sequence {sn} is said to be convergent, and to con-
verge to s, where s is a number, if

llm Sn = s;
n-oo

that is, if corresponding to each positive number e there is an integer N such
that whenever n > N, then Is,, - si < E. If a sequence is not convergent,
then the sequence is said to be divergent.

Thus, the sequence defined by (1) is convergent, and converges to 3, since

lim
3n = lim 3 = 3.n-1 72-X00 1 - 1/n

The sequence 1, -1, 1, -1, , (-1)n, is divergent and is typical of
sequences which are said to oscillate.

DEFINITION 139.2. A sequence is said to diverge to + oo if correspond-
ing to each positive number G there is an integer N such that whenever n > N,
then sn > G and the limit notation

limsn=+o0
n-cc

is used even though this means that the limit does not exist. A similar definition
is given for divergence of a sequence to - oo.

For example, 1, 2, 4, - , 2n, , diverges to +oo. However,
1,-2,4,...E (-2)-, ...

diverges, but neither to +oo nor to -oo.

Let r be a number. We shall show that the sequence

(2) I r l , 1 r 1 2 , . .
,
grin, .. .

diverges to +oo if I r I > 1, but converges to 0 if Irk < 1; that is,

lim irin =
{+00 if iri > 1

n- 0 if iri < 1.
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First, consider lrl > I and let c be the positive number such that lrl = I + c.
Hence

IrIn=(1+c)n>1+nc,
as may be seen by using the binomial expansion of (1 + c)n. Hence, for G a
positive number, let N be an integer such that N > (G - 1)/c. Then for
n z N it follows that

Irjn>_l+Nc> 1+(G-1)=G so that JimIrln=+co.
n-o0

Hence, the sequence (2) diverges to +oo if lrl > 1.
Next consider lrl < 1. If lrl = 0, then Inn = 0 and Jim lrln = 0. Hence,

n--.'o
take 0 < lrl < 1 and now 1/lrl > 1. Choose any number e > 0 and then an
integer N such that (by the first part)

whenever n > N then 1 > 1 ; that is, Inn < e.

Since e > 0 is arbitrary, we have lim lrln = 0 and hence that the sequence
(2) converges to 0 if lrl < I. n-oo

Laws of limits for functions hold when the functions are sequences as
stated in the following theorem using sequence notation.

THEOREM 139.1. If {sn} and {tn} are convergent sequences and c is a number,
then

lim can = c lim sn,
n- w n co

lim (sn + tn) = lim sn + Jim tn,
n- CO n-oo n-co

lim (sntn) = Jim sn X Jim tn,
n-+oo n--oo n-.o

and if Jim tn = 0, then to # O for n sufficiently large and
n-oo

lim
sn

= lim sn/ lim tn.
n-oo to n-+oo

Example 1. Let a be a non-zero number, let r be a number, and let {sn} be the
sequence

so = a,
sl=a+ar,
s2 = a + ar + are,

sn = a + ar + ar2 + -- +arn,

Show that this sequence converges if and only if Irl < 1.
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Solution. CASE 1. Irl ; 1 so in particular 1 - r 0 0. Notice that

rSn = ar + art + ar3 + + arn+1

= (a + or + are + + arn) + arn}1 - a

= Sn + arn+1 - a,

451

so that sn(r - 1) = arn+1 - a and sn = (arn+1 - a)/(r - 1). Hence, if Irl < 1,
then lim rn+1 = 0,

n- co

lira s
n-.m

_ -a a
r-1 1 -r'

and the sequence {sn} converges, but if Irl > I then lim IrIn+1 = + oo and the
sequence {sn} diverges. R-

CASE 2. Irl = 1. If r = 1 the sequence is

a, 2a,3a,...,(n+1)a,

which diverges (to + oo if a > 0, but to - co if a < 0). If r = -1, the sequence is
the divergent (oscillating) sequence

a,0,a 0,..., a + (-1)na2

Hence, the sequence converges if and only if Irl < 1.

The following theorem will be used repeatedly.

THEOREM 139.2. If k is a number and {un} is a sequence such that both

u1<u2<u3< <un< and un<k,
then the sequence {un} is convergent and lim un < k.

n- ao

k

U1 U 2 U3 U4 U5

Figure 139.1

PROOF. Let S = {x I x = u,, for some integer n}. Then S is bounded above
by k and we denote the least upper bound of S by I (which exists by the
axiom of Sec. 4). Hence

un<l for n=1,2,3,
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since 1 is an upper bound of S. Let e > 0 be arbitrary. Then 1 - E < 1 so
I - e is not an upper bound of S and we let N be such that l - E < uX.
Consequently, whenever n > N then I - E < us S u,,. Hence

whenever n > N then Iun - 11 < e

which states that lim un, exists (and is 1).
n- M

The theorem above is sometimes stated : If a sequence is monotonically
increasing and is bounded above, then the sequence is convergent.

It follows that if a sequence is monotonically decreasing and bounded below,
then the sequence is convergent. For if

b1>b2>b3>... >bn >... >A,

then -b1 < -b2 < -b3 < S -b,n S <- -a, so that lim (-bn)
exists. But -lim (-bn) = -(-1) lim bn = lim bn. n-.oo

n-:CO n--eo n-oo

Example 2. Show that the sequence {sn} defined by

SO =p!

1 1
s1 = off + f!

1 1 1s2p!+-!+2!

1 1 1 1

n !

is a convergent sequence.

Solution. Since each term is the preceding term increased by a positive number,
we have so < s1 < s2 < < sn < Note that k! = 1 2 3 ... k >t 21'-1 and
thus 1/k! < 1/2'-1. Consequently

1 1 1 1 )snS1+1+2+22+...+2n_1=2+ 1-2_1 <3.
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Thus we have a monotonically increasing sequence bounded above. Hence, by the
theorem above, lim sn exists; i.e., the sequence is convergent.

n- oo

Example 3. Let p be a positive number and let be the sequence

s1=1
1

S3=1 +2a

1

S3=1+2Y
1

3"

1 1 1+-+...+nvSn+-
21) 3P

Show that {sn} converges if and only if p > l .

Solution. Sketch the graph of y = 1/x'`, x > 0.

CASE I. p > 1 sop - 1 > 0. Construct the rectangles shown in Fig. 139.2, note
that sn = sum of areas of first n rectangles, and

fnl 1
Sn + IXndX ?I=-p>1

1 1
\ (i,i) 1

+p-1(1 -nl_ll (2,2v)(3ap)

1 /<1+p-1, p>0.
Figure 139.2

Thus, {sn} is a monotonically increasing
sequence bounded above and hence is convergent.

CASE 2. 0 < p < 1 so 1 - p >- 0. Construct
the rectangles shown in Fig. 139.3. Again

t \r o<psl sn = sum of areas of first n rectangles, but

(i,i) (__ (3 lv) rn
Inn if p = 1

3 sn'J1Xvdx=
1 1p(nl-v_1) if p<1.

Figure 139.3 In either situation (p = 1 or p < 1) we see
that merely by choosing n sufficiently large we

may make s,, be as large as we please, i.e., {s,,} diverges to + co.
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PROBLEMS

e. un = n 2(n-1)(n-2)(n-3)

1. For the sequence whose nth term un is given, show that the first three terms are
1, , . Also find the fourth term.

1 5a. an =-. d. un, =n2-6n+11 --
n n

1 1

b. U 6 2 1 2 6 .

n2-3n+11
C. un = t. un =

23(n + 2) 2n

2. Find lim un if
n-m

5n n /n - 1
2n-1*

5n2

2n2-1'
5n3/2

2n3/2 - I

5n3/2

f.un= .

(n+1)Vn+1 -1
Vn+25

g. un =

n + (-1)n(n - 2)

vn
en+1 1 + 3n

h. un =
1 + 3n+1 en

d. un = i. un
Vn(2n - 1)

(5 + n)1oo 5n
e. un = Sn+1 (4 + n)100

n + 21

J Un

sin (I/2n)
1/n

n
2n '

Chap. 13

k. un =
(n + 1) + 2n+1'

4n5+3n4-5n3+2n2-58n+6
I. u,

3n5 + 6n4 - 500n3 - n + 25

3. For the given definition of u,, find lim u++1+1

n-. co un
en n100 n.a. un =

1 + 3n
. d. un =

(1.001)n g. un = 07 .

en-1 1 n
b. un = 1 +3n-1 e. u.., = n'°°(0.999)n h. un = Sn

en Ion
C. un = I + 2n . f. un = n .

4. Let {s,,) be the sequence such that
s1 = I, s2 = 0, s3 = 1, S4 = 0,

n
1. un =

-V2n+3

sn = {1 + (-1)n+1},
Let {an} be the sequence defined (taking arithmetic means) by

s1+S2+ " +Sn
an=

Show that lim an = i.
n

n-00
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140. Series of Numbers

If {un} is a sequence of numbers, then

Ul + U2 +U3+... +U +

is called a series (or an infinite series) and is also represented by

0C

un or
n=1

0C

57 U.
k=1

It is sometimes convenient to have the first term of a series associated
zero and to write

00

u n or I uk.
n=o k=o

Thus, if un = I/n! for n > 0, then we write

+1+1+1+...+1+...
2! 3! n!

or

with

If we do not want to be specific as to the first term we write merely

o
u n.

With some series a number is associated, but with other series no number
is associated in the following definition.

DEFINITION. Given a series

(1) Ul+U2+U3+...+U,n+...,

form the sequence {sn} (called the sequence of partial sums) by writing

SI=U1
S2=u1+U2
S3=Ul+ U2 + U3

n
Sn = U1 + U2 + 113 + ... +

U n Uk
k=1

If this sequence {sn} is convergent, then we say the series (1) is convergent.
Also, if this sequence {sn} converges to 1, we set

W
1 = Ul + U2 + U3 + ... + Un + Un

n=1

and say that the sum of the series is 1. If a series is not convergent, we say
the series is divergent, and attach no number to the series.
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Thus from Examples 1 and 3 of Sec. 139, we obtain the following two
examples, respectively.

Example 1. For a T 0, the series

(2) a + ar + ar2 + + am +

a
is convergent if Iri < 1 and then converges to 1 _ r but is divergent if Irk > 1.

Example 2. The series
1 1 1

(3) 1 +2P+3P+...+nn+...

converges if p > I (although we do not know what it converges to), but diverges if
p <_ 1.

We now establish the result:
If a series E un converges, then lim u,, = 0. For if the series converges,

n n-1 n-.co
then lim uk and lim 57 uk both exist and are the same so that

n- CO k=1 n- oo k=1

n n-1 n n-1
0=11m Iu, -lim =limun.

?1-00 k=1 . 7Z-00 k=1 n- ao k k=1 n-CO

We shall give several results which may be used to test whether a given
series converges or diverges. As a consequence of the above result, we obtain
the first of these tests.

TEST 1. If as n --> oo the nth term of a series does not have a limit or else
has a limit different from 0, then the series diverges.

As examples

1+0-1+0+...+sin n2+...

diverges since lim sin n

2

does not exist, whereas
n-. m

2

+ 3 +

4

+ +
n

n 1 + diverges since lim n = 10
0.

n-oo n + 1

Notice that Test 1 is a test for divergence (and not convergence); that is,
even though the nth term approaches zero, the series may still diverge. For
example, the divergent series

+2+3+...+n+...

[which is (3) with p = 1] has lim (1/n) = 0.
n-+co
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TEST 2. If an > O for n = l,2, 3, . 5 if al ;ara2 an > ,and
if lim an = 0, then

%_00

a1 - a2 + a3 - a4 + ... + (-1J\n+lan + ---

is a convergent series.

\\

PROOF. The odd partial sums written as

s1 = /a1

S3=(a1-a2)+a3

Stn-1 = (a1 - a2) + (a3 - a4) + ... + a2n-3 - a2n-2) + a2n-1 > 0
shows that the odd partial sums are bounded below by zero. Also

Stn+1 = S2n-1 - a2n + a2n+1 = S2-A-1 - (a2n - a2n+1) C S2n-1

shows that the odd partial sums form a monotonically decreasing sequence.
Hence, by Theorem 139.1 we know that lim 52n_1 exists. Since lim a2n = 0

n x n-.
and S2n = S2n-1 - a2n it then follows that

urn S2n_1 = llm S2,t-1 - lim a2n = urn (S2n-1 - a2n) = liM S2n.
n- 00 n_ m R-00 n- oo

Thus, the sequence of partial sums has a limit, i.e., the series converges.

Example 3. The series 1 - 1 + 1 - 1
4

+ + (-1)n+1
n

. converges.
2 3

TEST 3. If E u.n is a series of positive terms and N is a positive integer such
that

un+1 >
1 whenever n >_ N,

u,t
then ZE u,, diverges.

PROOF. For if the conditions are satisfied,- then

> 0,H L±-' > 1 so that u .,v
U N

UN+2 >
1 so that u_V+2 = u V+1 UN > 0,

U .V+1

and it should be seen that whenever n > N, then un > UN > 0. Thus u,,
does not approach 0 as n > oo so the series diverges by Test 1.

.1
2 6 n!

Example 4. Show that
10 + 100 + 1000 + + 10`n + .. diverges.
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n
Solution. Upon letting u,,= n!/10n we have

1
uu+i+l = 10 + n! = n

+ 1
n 10

which is greater than I whenever n > 10. Thus the series diverges by Test 3.

Notice for the series 1 + 2 + I + ' ' ' + n + ' ' , that
3

u.n+i = n < 1 for every n,
u,y n + 1

but nevertheless the series diverges (see Example 2 with p = 1).

TEST 4. (The Ratio Test). Let E un be a series of positive ter; is such that

(4) p = lim u"-+i
n- .o u,y

exists. Then
p < 1 the series converges.

if p > 1 the series diverges.
p = 1 there is no conclusion.

PROOF. CASE 1. p < 1. Let r be a number such that p < r < 1.
Since r is greater than p and (4) holds, let N be such that

n+1

whenever n > N, then 11" < r = rn and thus un+i < un
.un rn r

The last inequality holds between u's with two successive subscripts so long
as both these subscripts are >_N. Thus

whenever n > N, then
un+i+l < un < un-i < <
rn+1 rn rn-1 rN

Out of this we separate the fact that

whenever n > N, then un < ! ` r'.
r-

Consequently for any integer m > N, then

Tnu <u ?nrn< v Lrn-UNr
n

n=V rN n=N r n=o rN 1- r
where the equality follows from Example 1 and the fact that 0 < r < 1.
Now let C be the constant defined by

C=u1+u2+...+uN'-1+u
1r- 1-r

Hence for the positive integer n, we have that
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kuk G C.
k=1

Thus, the sequence of partial sums is increasing (since un > 0) and is bounded
above (by C) so is convergent; i.e. the series E un is convergent.

CASE 2. p > 1. There is then an integer N such that

whenever n > N then

(since the limit is greater than 1) and thus the series diverges by Test 3.

CASE 3. p = 1. To show that no conclusion can be drawn as to con-
vergence or divergence in this case, we need only exhibit one convergent
series with p = 1 and one divergent series with p = 1. To do so we note
that for p any number, the series having u,, = 1/n' is such that

limun+l = lim = lim
n D=

lim
1

9=
1" = I.

un n-oo (n + 1)" n-.o n + 1 n_w 1 + 1/n

However (see Example 2), the series E
1

v converges if p > 1, but diverges if
n

p < 1. Thus, some convergent series have p = 1, but also some divergent
series have p = 1.

Example 5. Show that the following series converges:

1003 loon
100 + 5000 + 3i + + ni +

loon loon+1
Solution. Since un = n and un+l =

(n + 1)!
we see that

un+1 loon+1 1 2 . 3 . n 100

un 100n 1 2 3 n(n+1) n+1

Consequently lim
u-+1 = lim 100

= 0 < 1, and thus the series converges.
n- eo un n- 00 n + 1

Example 6. Establish the divergence of the series

1 8 1 2n2+2+27+4+...+w+....
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u 2n+1 n3 8

Solution. We compute lim n 1 = lim s n = lim 2( ) =2 > 1,
n-. cc un ,z ro (n + 1) 2 n-. oo n + 1

and thus see that the series is divergent.

Example 7. Is the following series convergent or divergent?

1 2 3 n3+5+7+...+2n+1 +...

Solution. The ratio test yields

Un+1lim - n+1 2n+1 n+1 2n+1
= lim =lim

n 2n+32n+3 nn-. w Un n- 00 n- CO

lim
1 +

1) (2 + 1/n) 2
1im

n 2+3/n -1 2
and from this (p = 1) there is no conclusion as to the convergence or divergence of
the series. Notice, however, that

n 1
lim un = lim

n-. co n-. co 2n + 1 2

which is not 0, and thus (by Test 1) the series is divergent.

Example 8. For n = 1, 2, 3, , letfn be the function defined by

Xn
fn(x) = ri3n

w

00

Show that I fn(2) converges, but that J fn(3) diverges.
n=1 n=1

Solution. Upon letting un be the nth term of the first series we have

1 2' n 1 2 n+1
un

= n (3 , un}1 = n
+ 1 (3 '

uu+1=n+13' and limuu+1=3 <1.
n n-. m n

1
Therefore (by Test 4) the first series converges. Since fn(3) =

n
, the second series is

1

E - and therefore diverges (from Example 2 with p = 1).
n

COROLLARY (to Test 4). If for each integer n, u,, 0 and if

(4) lira

then lim u,, = 0.

A- 00

Un+1

Un
< 1,

n-. 00
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PROOF. If (4) holds, then the series Ejunj converges, thus lim junj = 0
and hence lim un = 0. n-. x

n- 00
n100

Example 9. Show that lim = 0.
n-.w (1.0001)n

Solution. lim
(n + 1)100 (1.0001)n (n + 1100 1 _ 1

n-. (1.0001)n+l n100
n 1. n 1.0001 1.0001

therefore the stated result follows from the corollary.

PROBLEMS

1. Use the ratio test to establish the convergence or divergence of each of the

following series:

1 000 000 1 000 000 000 1000n
a.1000+ 2 + 6 + + ni

1 n'00
b.

5n
e. (1.001),, . h. tan- 60°.

n rrn
c. S,L . f. n100(0.999)n . i.

I + (3.1416)-

d.
n'00

.2 Sn
g. sirin 60°.

. c 'Tn

1 + (3.14159)n

2. Establish the convergence or divergence of each of the following series:

n3 n
d.

n! g' 3 +4n'

3nc.Ini.

nn (n!)2
e. n i . h. (2n) !

1 (n!)2nvn. 2(n!)

3. For each positive integer n let fn be the function defined by the given equation:

a. fn(x) = nxn. Show that E fn(J) converges and E f,(1) diverges.

b. fn(x) = n(n + 1) '
Show that E fn( o) converges and E fn(9) diverges.

2ri-1
c. Mx) =

2nxn
, x 0 0. Show that E fn(() diverges and E fn(1) converges.

d. fn(x) = zn . Show that E f,(2) diverges, E fn(-2) converges, E fn(1.9)

converges, I f,(2.1) diverges.
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4. Let E un be a series of positive terms.
1

a. Show that if Z un converges, then E - diverges.
un

n
b. Let un = n + 1

and show that E u.., and E - both diverge.

Chap. 13

1

c. Show that if 1im un exists and is not 0, then both E un and E
un

diverge.
n-. CO

1

d. Show that if lim un exists, then E - diverges.
n- co Un

e. Give an example of a series E un which diverges, but such that E
1

converges.
un

5. What is wrong with each of the following?

a. Lets1-1+1-1+
=1 -s, ..2slands=#.

b. Lets=1+1+1+
=1+(1+1+1+ )

=1+s, .'. s - s = 1 so that 0 = 1.

c. Lets=1 +2+22+ 23+
=1 +(2+22 +23+
=1 +2(1
=1 +2s, :. -s=lands= -1.

6. Let x be a number such that x < 1. Use the corollary and show that

(2n)! x i/2lim
(2n)! n

n-.. (n!)222n T- x (1 - x) = 0.

141. Comparison Tests

It may be possible to establish the convergence or divergence of a given
series by comparing the terms of the given series with the terms of another
series whose convergence or divergence is known.

TEST 5. Let E un and E vn be two series of positive terms. If there is a
positive number c such that

un < cvn

for all sufficiently large values of n and:
a. If the v-series converges, then the u-series converges, but
b. If the u-series diverges, then the v-series diverges.

PROOF. Let c be a positive number and let N be such that

whenever n z N, then un < cvn.
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To prove Part a, let the v-series be convergent and converge to 1. Hence,
for n ? N

n n

1 uk G C I Vk G C 1 Uk G cl.
k=-v k=N k=1N-1

Let I uk = A. Hence for any integer n
k=1

Uk <A+cl
k=1

and this last expression does not depend upon n. Thus, the sequence of
partial sums of the u-series is bounded above and is an increasing sequence
(since each term is positive) and the u-series converges.

To prove Part b, let the u-series be divergent. The v-series is therefore
also divergent (for if it were convergent, then the u-series would be convergent
by Part a).

Example 1. We have already shown that the series

(1) i 2+3 _I+...+(-I)n+1n+...

is convergent. Show, however, that the series of alternate terms

(2)
1 1 1+3+5+"'+2n-1+ and

1 1 1 12_4-6_...-2n_...
are both divergent.

Solution. Even though each term of the series (1) is less than or equal to the
corresponding term of the divergent series 1 + ji + j + + 1/n + neverthe-

less
1 11

n < 2 2n - i .
Thus knowing that E

n
diverges, we use Test 5 (with c = 2)

to see that (1) diverges.
It should be seen that the series (2) diverges if and only if

1 1 1 1
(3) 2+4++...+2n+...

diverges and that (3) does diverge since
1

n
S 2

1

2n

TEST 6. Let E un and Z vn be series of positive terms.

a. If E vn converges and lim
un

exists, then E un converges.
n- mvn

b. If E vn diverges and lim
un

is + co or exists and is not zero, then E un
diverges. n-`'° vn
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PROOF. a. If E v,, converges and lim
un

= 2, then for sufficiently large
n- = v n

values of it we have u,, < 1)vn and thus (by Test 5) E un converges.

un
b. If E rn diverges and lim = co, then given any number G > 0 we

n,=Zn
have, for sufficiently large values of n, that un > Gvn and thus E un diverges.

Also, if E vn diverges and lim.
un

= A > 0, then for sufficiently large values
vn

of it, un > -2v,, and thus E un diverges.

oo
1

Example 2. Show that I diverges.
n=2 Vn lnn

Solution. Consider lim ( 1 1 lim In order to find this limit note
n- In n) /n n- w In n

V.X
D Vx Jsx 1/2 1 _

lim - = lim = lim _1 = lim - Vx = w.x..Inx n- 00 DxInx x-oo x z-02

Thus lim( 1 00, and since E I diverges we see by Test 6b that the
n-00)/I

n
given series also diverges.

COROLLARY. Let E un and E vn be two series of positive terms such that

(4) lim
un exists and is 0 0,

n-oo Vn

then either both series converge or else both series diverge.

00

Example 3. Does sin In - 1 converge or diverge?
n=i

sin h sin (7T/(2n - 1))
Solution. Remembering lim

h
= 1, we have lim = 1 0.

/(2 - 1)h-0 n-.co 77 n

7T

Thus, the given series and E
2n 1

either both converge or else both diverge. Since

lim
ir/(2n - 1) IT

0
n- CO 1 /n 2

F

IT
and E - diverges, then E 2n - 1 diverges. Hence the given series diverges.
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TEST 7. (Integral test). Let f be a continuous positive decreasing function
defined for x > no (no an integer) and let an = f(n). Then for

(5)

0
I ak and f f(x) dx

k=no no

the series converges if and only if the improper integral exists.

PROOF. For k > no and x such that k < x < k + I we have

ak =f(k) >_ f(x) ? f(k + 1) = ak+l > 0 and

ak
=fk

k +1 ak dx > fk +1 f (x) dx > Ik +1 ak+l dx = ak+1 > 0

Consequently, for n an integer such that n > no, then

(6) ak
> fk+1f(x)dx _ fn+1f(x)dx > ak+1>0.

k= no k= no 72 k= no

If the series converges, then (from the left-hand inequality of (6)) the integral
in (5) exists, but if the series diverges, then (from the right-hand inequality)
the integral does not exist.

Example 4. Show the series
1 1 1

21n2T31n3+ +nlnn diverges.

1

Solution. Let f (x) =
x In x

for x >_ 2. Since

lim fb
dx = Jim

I

d In x
_ Jim In (in x)Jb = oo

b- 2x In x b- . 2 In x b- co

the integral
dx

does not exist and (by Test 7) the series diverges.
f2 xInx

142. Sums and Differences

The following theorem shows how series may be added or subtracted
term by term.

THEOREM 142. Let E un and E vn be two given series and for each integer n let

wn=un+vn and Zn=Un - vn.

Also, let E un converge to Ll and let Z vn converge to L2. Then E w, and E Zn
are both convergent and converge to Ll + L2 and Ll .- L2, respectively.
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PROOF. We need merely note the existence of the limits

n n
lim ± Uk = L1, lim I vk = L2, and
n-co k=1 n-.co k=1

n n

L1 + L2 =1im Uk + lim vk
n-oo k=1 n-.co k=1

( n
=lim j.{ Uk+Yvk

n n

= Jim (Uk + vk) = lim Wk
n-..co k=1 n-oo k=1

which proves that Y. wn is convergent and converges to L1 + L2. In the same
way E zn is convergent and converges to Ll - L2.

In the notation of Theorem 142, it should be noted that E wn may converge

but both E un and E vn diverge, e.g., E
n

2
1

and Z 1 both diverge whereas

r

n n

E to n2 1 +
nlJ l

n21 converges. As a simpler example 1 + 1 + 1 +

diverge but(1-1)+(l-1)+(1-1)+..
converges.

PROBLEMS

1. First establish the convergence of E (e/3)n and then use this series as a comparison
to establish the convergence of

en lOen 10 + en
10+3n' 5+3n and n+3n4

2.' Use a comparison test to establish the convergence or divergence of:

I n
a 5+3n2 g. 2(n+l)(n+2)

2 2n+I
V.

5 + 3n2 (n + 1)(n + 2)(n + 3)
2 1

50n + n2 In n

2 IT

50n + 1002 sin2n2 _ I
2 ,r

25 + sin n + n2 ' k: cos 2n2 _ I

2+sinn kI IT
tan

n2 2n-1'
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3. Let f be a function such that f(n) > 0 for each positive integer n and such that
for some positive numberp

lim nV f(n) exists and is 0 0.
711- 00

Show that E f (n) converges if p > 1 and diverges if 0 < p < 1.

4. Let E u be a series such that 0 for all sufficiently large values of n. Show:

a. if V un >_ 1 for all sufficiently large values of n, then E u,, diverges.

b. If there is a number r, 0 < r < 1, such that for all sufficiently large n

u.n < r,

then E u.n converges. (This is known as Cauchy's Root Test.)
c. if 0 < r < 1, then Z r" Isin nxl converges.

5. Show that both of the following series diverge.

a. +;-e+- o+ +un+
*19

I 1 if n is odd

where un =
n

1

2(n - 1) if n is even.

2

Iif nis odd

where u,,
1

- - if n is even.
n

143. Absolute Convergence
The first of the series

1-1+I_...(-1)n+il+... and 1 + ...
2 3 n 2 3 n

converges, but the second diverges. Also, each term of the second series is
the absolute value of the corresponding term of the first series. According to
the following definition the convergence of the first series is further qualified
as "conditional convergence."

DEFINITION. A series E un is said to be absolutely convergent if the
series E IunI is convergent. A series E un is said to be conditionally con-
vergent if the series itself is convergent, but the series E junj is divergent.

Sometimes it is easier to establish the convergence of E Iunl than it is the
convergence of E un itself. Hence the following test may be useful.
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TEST 8. If E I
I

u is convergent, then L u, is convergent; that is, if a series
is absolutely convergent, then the series is convergent.

PROOF. Let u1, u2, u3, be such that E lung is convergent and has sum L.
First define

U'k=uk+lukI for k= 1,2,3,
Notice that if uk < 0 then vk = 0 but if uk >_ 0 then vk = 2Uk = 2Jukl and
hence in either case 0 < vk < 2lukl. Consequently

n n

vk<_21IukI52L.
k=1 k=1

Thus the partial sums of the v-series is a monotonically increasing sequence
bounded above by 2L. Hence

n

lim Y vk exists.

n n n

Therefore lim vk - urn Izrk I = urn I (vk - I ukl )
n-oo k=1

n

k=1

and the existence of this limit means (by definition) that E un converges.

cos n
Example 1. Show that E

n2
is convergent.

Solution. Since I c n2n I <_ n2 and E n2 converges, the given series is absolutely

convergent and hence the series itself is convergent by Test 8.

From Tests 3, 4, and 7 (and their proofs) we have:

TasT 9. If for all sufficiently large values of n

un 0 0 and un+1 > 1,
I un I

then the nth term cannot approach 0 as n oo and E un diverges. Also,
whenever

lim un+1l exists and = p
un

if p < 1, then 'E un converges absolutely (hence E u,, converges), but
if p > 1, then E un diverges.

Example 2. Determine the convergence or divergence of each of the series

fn( -1.1), and If,(-I), given fn(x) =(-I)"+'
(x + 2)n

Vn
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Solution. Let x be a number such that x 76 -2 and note that

lim fn}1(x) lim
Ix + 21n+1 n

n-.ocl f,,(X) n-m Vn + I Ix + 21n = IX -}- 21.

Since -j + 21 = 2 > 1, we see that the first series diverges.
Since -1.1 + 21 = 0.9 < 1, the second series converges.
Since -1 + 21 = 1, the ratio test is inconclusive for the third series. The third

series is, however,

72 73 n

whose terms alternate in sign, the numerical values of the terms decrease and
approach zero, and hence (see Test 2) the series converges.

For further properties of absolutely convergent series and conditionally
convergent series, see Appendix A9.

144. Series of Functions

Let x be a number and consider the series
00

(1) I (_1)n+l xn

n=1 n2"

In particular if x = 0, then each term is zero, so the series converges to 0.
Let x be different from zero and set un(x) _ (-1)n+lx"/(n2"). Thus

lim un+l(x) _ lim I

Xn+11 n2"
= 1im

n lx1 = ix[

n-.oo Un(x) -n- oo (n + 1)2n+1 Ix"i n-. n + 1 2 2

Hence, if 0 < ixj < 2, then the series converges. If, however, the number x
is such that jxj > 2, then the series diverges. If jxj = 2, then this ratio test
does not tell whether the series converges or diverges. Notice, however, that
if x = 2, then the series is

°°
1 +l?n = 1 -1+1-...+(-1)n+11+...1(-)n

n2" 2 3 n

which converges, but if x = -2, then the series is

00` n+1 (-2)" _ 1 1 1

which diverges. Thus, we see that the series (1) converges if and only if

-2<x<2.
DEFINITION. For n = 1, 2, 3, . - , let fn be 'a function. For x a number

the series
00

I fn(x)
n=1

either converges or diverges. The collection of all numbers x for which the
series converges is called the region of convergence.
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Thus, for the series (1) the region of convergence is

{x1 -2<x <2}.

DEFINITION. Given a sequence of numbers a1, a2, , a,,, , the series
E anxn is said to be a power series in x, and E a (x - c)n is said to be a
power series in (x - c).

PROBLEMS

1. Show that each of the following series is absolutely convergent:

a.

b.

(-1)n
j.. n2n=1 + 1

0, (-1)n oo (-1)nn
c. I e.

n=0 n. n=0 2n

00 (-1)n °' sinnx
d. f.

n=0 (2n)! n=0 2n

2. Show that each of the following series is conditionally convergent:

o (-I)n
a.

n=0 'V2n + I

`o (-1)n,
b.

1

n2 + .

co n cos mr
c.

n=1 (n + 1)(n + 2)

d. I .

n=1 n

co

e.

00

f.
(-1)n

n=l Vn(n + 1)

3. State as much as possible about the convergence of each of the following series:

n2
a. n3+

n2b.' (-1)n n3 + 1 .

c. j (-I)n 3n-1

n2
d. (-I)n

3n-1

n3

k.
4.7 (3n - 2)

3

!1

f.

I:"
(

g. I In n2

n2+1
h. (-1)n

n3 + 1000

n2 +1
n3+2n

n3 + 1. n2+2n

(-1)3n

tan(4+n2

( n)
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4. Find the region of convergence for:

xn
a. h. I .2n ' n

(-x)n 2n

b.
2n

. i.
xn

, x 0.

xn 1

C. n2 j. nxn
X T 0.

x2n 1

d. J-. k. n, x 0 0.
n

x3n

e.'V-. 1.1-,x:0.
n xn

xn 1

f. n2n. M. Y nn!xn, x 0.

xn (x - 2)n

n( -x)

n 3n .

(2 - X)n
3n

(x + 2)n
P. 3n

(x + 2)n
q On

(x + 2)"r.
vn

(2x - 1)n
S. n(n + 1)(n + 2)

xn+s
t. 10n .

U. 110""xn+5

1 4.7...(3n - 2) n 1)
x3n+1V. (3n)!

x3 . W.
On + 1)!

471

5. Show that the regions of convergence of the three series differ at most by two
points :

CO OD 00

Y_a. I xn, Dxxn, L. J
to dt.

n=1 n=1 n=1

fUx

fox toCo rxn ooo xn Co

b. 1.,,1 n3n , n,C, D,, n3n n J n3n
dt.

°' (x - 4)n oo (x - 4)n Co x (t - 4)n
c. 112n2+1' 1Dx2n2+1' 1 J42n2+1dt.

d.
(x + 2)n 00 D (x + 2)n co (t + 2)n

dt.x -n=1 n=1 -1/n n-1 s 'n

145. Functions Represented by Power Series

From Taylor's theorem [see (3) and (4) of Sec. 131 with a = 0 and b = x]
if a function f has its nth derived function f (n) continuous throughout an
interval containing the origin, then throughout this interval

(1) If(x) - {f(0) +f'(0)x --f:O) x2 + ... + (nn-1k0) xn-11
JRn(x)l

xn

n!
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where R,,, may be written in two ways, namely, for some number n between
0 and x

(2) Rn(x) =f (n)( n) x" (Lagrange form)
n!

or (possibly with a different number for fin)

(3) Rn(x) _'(n)(1>)
(x - e,,)'-'x (Cauchy form).

If for a specific function having all derivatives continuous in an interval
containing the origin and for a specific number x in this interval we can
show that

lim Rn(x) = 0,

then we have thatf(x) is represented by its Maclauren series:
(n)

(4) f(x) =f(0) -}-f,(0)x + xs + ... +f n'0) xn + .. .

in the sense that the series converges and converges to f (x).

Example 1. Show that

X3 X5
(-1)n

2n+1(5) sinx=x-3i+i+ +(2n+1)!X +

Solution. Upon setting f(x) = sin x we see that f(0) = 0, f'(0) = cos 0 = 1,
f"(0) = -sin 0 = 0, fm(0) _ -cos 0 = -1, etc. Moreover I f(n)(x)I is either
]sin xl or Icos xI both of which are < 1. Thus, for this function [from (2)]

I
I Rn(x)I < n- Ixln.

However, regardless of the value of x (see corollary p. 460),

1
Jim Ixln = 0.

n_-O n.

Thus Jim R,,(x) = 0 and hence (5) holds for any number x.
nom

Example 2. Show that

(6)ln(1+x)=x-2+4 for-1<x<1.

Solution. Upon setting f(x) = In (1 + x) for x > -1, the nth derivative is

(7) f(n)(x) = (-1)n+'(n - 1)!(1 + x)-", x > -1.
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fn(0) ( - 1)n+i(n - I)! (-1)n+lThus f (O) = 0, whereas
n

! =
n

, and we obtain the

series in (6). We need, however, to prove that if -1 < x < 1, then Rn(x) 0 as
n - oo. This we do by considering two cases, noting first that if x = 0, then both
sides of (6) are zero.

CASE 1. -1 < x < 0 so that -1 < x < En < 0. In this case, use the remainder
in the Cauchy form (3) which may now be written as

l Rn(x)l =
(n - 1) !(1 + $,C)-n

(n - 1)!
(x -n)n-1x

- Ix - nln-'lxI
(1 -F n)n

n-11n - x n-1 1 sin + 1XI

+ sin IxI 1 + ;n(1 + lxl

From -1 < x < fin, we have 0 < 1 + x < 1 + n and thus

1 10<1+Tn+x
sin + lxl n + IxI

< IxI, for if we thought that 1

Xn
> IxI, then we -would haveAlso + sn +

+ IxI ? 1XI + U X1, nlxl and hence (since < 0), 1 5 Ixl which is not so.
Thus in this case

lRn(x)I < 1 + x Ixln

and hence R,,(x) 0 as n --> co since Ixl < 1.

CASE 2. 0 < x < 1. Use the Lagrange form and show that IRn(x)l < 1/n.
Thus if -1 < x 5 1, then R,,(x) 0 as n - co and hence (6) holds.

Since (6) is valid for -1 < x < 1 (and for x in this range 0 < 1 + x < 2)
then (6) may be used to compute the natural logarithm of any positive
number <2 but is seldom used because of other formulas such as (8) below.

Example 3. Use (6) to show that if lxl < 1, then

1 - xl = -( x3 x5 x2n_1

(8) l+x 2 x+3+5+...+2n-1+...

Solution. Replace x in (6) by -x to obtain

O 9
( 1 1ln(1-x)=- x+ 1

2x2+
1
3x3+ +xn+ if-1 <_x<1.

For x in the domain of validity of both (6) and (9), then lxl < 1 and now term by
term subtraction of (6) from (9) yields (8).
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Notice now that if y is any positive number, and we set

1-x =), then x = 1 - Y and IxI < 1.
1+x 1+Y

For example, if y = 3 then x = -0.5 and from (8)

1n3=2[0.5+x(0.5)3-4 ,{0.5)5+ ].

PROBLEMS

Chap. 13

1 -X
1. Sketch the graph of y = 1 + x for jx4 < 1. Use derivatives to show that the

graph is descending to the right.

2. Show that if (x,y) is a point with x < y < 3 on the graph of Prob. 1, then
-x <- x < J. (Note: This shows that (8) may be used to compute the natural
logarithms of a number between I and 3 by a rapidly converging series.)

3. Prove that for all real x
n

1cosx=l -Zix2+4'x4-...+

(2
)' x2n+...

4. In (5) replace x by x2 to obtain

sin (x2) = x2 - 3 1 x6 + I x10 - 7 x14 + .

Next let f(x) = sin (x2), find f'(x), f"(x), etc., to see how much more trouble it is
to obtain the above expansion directly.

5. Obtain the formal expansion as far as given

= -2x2 _ 2- x4 _ 10
lncosx

1

which certainly does not hold if cos x is zero or negative. Representation is too
hard to establish since the form of the n-th derivative is too complicated.

6. Show that if -17r < x < 27r, then

vl+sinx=I+X- x2 - x4
x

s

2 22.21 'T-T! + 24.41 +
25.5 !

but if air < x < it the negative of the series must be used.
(Hint: I/ 1 -+ sin x = Isin #x + cos xx!.)
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7. We know that cos t 5 1. With 0 < x check in sequence
x x x x

J costdt Jodt, sin x <x, fosin tdt < fotdt,

lr 1 x 1 x
-cos X. + 1 < - x2, 1 -

2
t2 -< cos t, Vfo I 1 - 2 t2 dt < fo cos t dt, etc.

475

Continue obtaining inequality, integral, inequality, etc. to see that partial sums
of sine and cosine series emerge.

146. Calculus of Power Series

From previous work (including examples and problems) it follows that
if a power series E anxn is such that

(1) lira
n- 00

an

an+1

exists and = r > 0,

then E l anxnl and E anxn converge whenever -r < x < r and E anxn
diverges whenever x < -r or x > r, but it requires other tests to determine
the convergence or divergence of E an(-r)n and E anxn.

Any power series E anxn converges at x = 0 and E n !xn converges only
if x = 0. On the other hand E (n !)-lxn converges for all values of x.

The following theorem does not depend upon the limit in (1).

THEOREM 146.1. Let E anxn be a power series which converges for some
number x 0, but does not converge for all x. Then there is a number r > 0
(called the radius of convergence of the series) such that

(2) lanxnl converges whenever Ixi < r but

(3) anxn diverges whenever r < Ixi.

PROOF. Let x1 0 be a number such that E anxi converges and let x2 be
a number such that E anx2 diverges. We first prove that

(4) n converges whenever lxi < Ix1i, but
(5) lanx diverges whenever ;x21 < Ixi

To prove (4) note, from the convergence of E anxi, that

lim anxi = 0 so lim I anxi I = 0.
n-, oo "-00

Let N be such that whenever n > N, then lanx,I < 1 and let c be the largest
of the N + 1 numbers laix1I, ja2xil, , l aNx' fl, and 1. Thus c is Z all the
numbers

Ialxll, la2x21, lasxil, . . , I,
. .
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Now let x be a number such that IxI < lxii, note for this Y that

lanxnl = a. X 1 (1)
X1

n

= lanai
x
x1

n< C

nx

xi

Chap. 13

and hence (by comparison Test 5) E lanxnl converges since the geometric
series E cjx/.xij" converges because lx/.xii < 1. Thus (4) is established.

To see (5), let x be a number such that 1x21 < IxI. Then for this x, E lanai
diverges (for if it converged then E anxn would converge and then E janx24
would converge by (4) with x replaced by x2 and xi by x). Thus (5) is
established.

With (4) and (5) established, let S be the set defined by

S = {x I I lanxnl converges}.

Then S is not empty since x = 0 is in S but even more any number x such
that 0 < IxI < lxii is in S by (4). Also, any number b such that x21 < b is
an upper bound of S by (5). Thus S has a least upper bound (by the axiom
of Sec. 4) which we call r. Then r > 0 since in particular 0 < Ixii < r.

We now show that (2) and (3) hold for this number r.
First let x be a number such that IxI < r and choose a number x such

that IxI < 1 i < r. Then x is in S so E lanx'I converges so E anxn converges
and-now E I anxnI converges by (4) with x1 replaced by x. This establishes (2).

Next, let x be any number such that r < IxI and choose a number z such
that r < 121 < IxI. Then 1x1 is not in S so E lan2nl diverges. Hence E anxn
diverges (for if it converged then E l an nl would converge by (4) with x
replaced by z and x1 replaced by x). This establishes (3), and hence the
theorem.

The notion of radius of convergence is extended by saying that a power
series E anxn which converges only for x = 0 has radius of convergence
r = 0, but if it converges for all x its radius of convergence is r = oo.

THEOREM 146.2. Let E anxn have radius of convergence r (finite or infinite),
but r > 0. Then each of the two series

(6) nanx'-1 and 57.
an Xn+1

n+1
has the some radius of convergence r.

PROOF. Let x be a number such that 0 < IxI < r. We first show that
E Ina,,x"-1l converges. Let x1 be a number such that IxI < Ixil < r. Hence
E converges so that lim lanxi) = 0. As in the proof of Theorem 146.1,

X- CO

let c be greater than or equal to all the numbers Iaix1l, I a2x'i, I a,,Xi1,

Hence

X <
Cn

r1(7) Inanx -ll
= n l x anal \x11 n I X lanai I

xi Ixl

x

xl

n
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n
Upon setting un =

fX1

c
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x
x1

n

, it follows that

lim u n+1 = lim n + 1
n- co U. "co n

x

x1

x

x1
< 1.

Thus E un converges and then from (7) E Inanxn-1I converges.

In a similar way E i
n

+
I

xn+l I converges whenever IxI < r. Thus, both

series (6) converge if IxI < r. We need yet to show that both of these series
diverge if r < IxI whenever r is finite.

With r finite, let x be a number such that r < IxI and then let xz be a
number such that r < Ix21 < IxI and note that

a nxln diverges.

We now state that E nanxn-1 diverges; for if it converged then (by the first
part of this proof with an replaced by nan and the exponent n replaced by
n - 1) the series

I nan
X2(n-1)+1

=LIanx2l(n-1)+1

would converge so E anx2 would converge contrary to the above stated fact
that this series Z anx2 diverges.

In the same way the second series in (6) diverges if r < Ixj.

The following theorem is sometimes stated : A power series may be
differentiated and integrated term by term within its region of convergence.

THEOREM 146.3. Let E anxn have radius of convergence r > 0. Then

(a) Dx(I akxk) _ Dxakxk for -r < x < r
k=0 k=0

(b) JQ ( akxk) dx k=0(f bakxk dx) for (-r < b < r.

PROOF of (a). Since Dxakxk = kakxk-1, the series on the right in (a)
has (by Theorem 146.2) the same radius of convergence r as E akxk.
By letting f be the function defined by

(8) 1(x) = I akxk for -r < x < r,
k=0
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it remains, in proving Part (a), to show that

CO

(9) f'(x) = I kakxk-1 for -r < x < r,
k=1

Chap. 13

where summation is started with k = 1 instead of k = 0 since DSa0 = 0.
Toward proving (9), let x be a specific number such that -r < x <

Hence 1xj < r and we choose a number c such that
r.

(10) Ixl <c<r.

The radius of convergence of E k(k - 1)akxk-2 is also r (by applying Theorem

146.2 with E kaxk-1 as the first series). In particular (since 0 < c < r) the
series E k(k - 1)akck-2 converges absolutely; and we let d be the number

CO

d = I k(k - 1)laklck-2

k=2

With these preliminaries ready for use, let Ox 0 be such that also
I x + Oxj < c. Hence, both f (x) and f (x + Ax) may be computed by means
of (1) so that

CO CO

f( + Ox) - f (x) ak(X + Ax)' - Y akXk

k=0 k=0

CO

= T ak[(x +
Ox)k - xk]

k=0
00

= ao 0 + a10x + I ak[(x + Ox)k - xk].
k=2

Now use Taylor's formula (with remainder after two terms) and select xk for
k = 2, 3, 4, such that xk is between x and x + Ox and

(x + Ox)k = xk + kXk-1 0x + k(k - 1) xk-2(0x)2 so that
2!

ak[(x + Lx)k - xl] = kakxk-10x + k(k - 1) akxk-2(Ax)2.
2!

Notice that lxkI < c so that Jakxk-21 < laklck-2 Since the series below on the
right converges (see (11)), then by comparison Test 5, the series on the left
also converges and the inequality holds:

- k(k - 1)
a Xk-2 < °CC° k(k - 1)

a ck-2 = d(12) 2 2!
k k - G2

2
kl

2
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Hence E k(k - 1)akx'-2 itself converges so that

f(x + Ax) - f(x) = al Ax + I I kakxk-1 Ax + k(k - 1) akxk-2(Ax)2J
k=2 2

00

f(x + Ax) -f(20

002(Ax)= a1 Ax + Ax I kakxk-1 + k(k - 1)a7xk-2,

k=2 2 7c=2

00
'0- a1 - F Xk-1 _ Ax > k(k - 1)a xk-2 ,k

Ax k=2 2 k=2

f(-'' + Ax) -f(x) - , kakxk-1
Ax k=1

tAxI

2
k(k - 1)akxk-2

k=2

< !

xl
A k(k - 1)lakxk-2l

2 k=2

so that f (-N + Ax) - f (x-) -- I kakxk-1
Ax k=1

'

2xl d by (5).

Notice that d is a constant (certainly independent of x and Ax). Hence, as
Ax--* 0 the right side approaches 0 so also the left side approaches 0; that is

f'(x) = liTrlf ( + Ax) - f(X) = Y kakxk-1
Ox-0 Ax k=1

Since x was any number such that -r < x < r, it follows that (9) holds and
this completes the proof of Part (a).

PROOF of (b). Let a and b be any two numbers such that both

-r<a<r and -r<b<r.
Also, let f and g be the functions defined by

00

f (x) _ I akxk and g(x) = I
k

+ 1 xk+1 for -r < x < r,00

this being permissible since the series defining g also has radius of convergence
r by Theorem 146.2. First note that

(13) g(x)Jb
a
= g(b) - g(a) _ ak bk+1 ak ak

k=ok+1 k=ok+1
L bCo a \k (bk+1 - ak+1) _ a0

f akxk dx .

k=ok+1 k=o R

By applying Part (a) to g (instead of to f) we have that
0C 00

g'(x) =
`C D. ak xk+1 = x akxk

= f(x)
k==o k + 1 k=0
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so, by the Fundamental Theorem of Calculus,

f bf(x) dx = %(x)]d

Hence, from the definition off (x) and the relation (13) we have

Chap. 13

f b akxk') dx = 00 (f bakxk dx)
k=0 k=0

which is the equation of Part (b) and thus Theorem 146.3 is proved.

PROBLEMS

1. Obtain the power series in x for cos x from the power series for sin x by:

a. Differentiation. b. Integration.

1
2. a. Obtain the power series for

1 + x ,
-1 < x < 1 by differentiating the power

series for In (1 + x).
b. Using the result of Part a find a series expansion for (1 + x)-2, -1 < x < 1.
c. Check that the series in Part b is the formal binomial expansion of (1 + x)-2.

3. a. For a > 0 use (6) of Sec. 145 to show that if -a < x -< a then

X X2 X3 Xn
ln(a+x)=Ina+Q-2a2+.3a3-"'+(-l)ntl

na'
b. Proceeding as in Prob. 2, find the formal binomial expansion of (a d- x)-2

and note the validity for -a < x < a.

4. Show, for any number x, that

X2 X3 Xnex+x+2i+3i+...+ni+...
5. Using Prob. 4, find the series expansion in powers of x for cosh x and sinh x.

6. a. Let f(x) _ (1 - x)-112 for x < 1. Show that

f(n)(X) - 3 . 5 ... (2n - 1) 1

2n (I - x)n'-x
b. Use the Cauchy form of Rn(x) to prove that if -1 < x < 1, then

1 1 3

VI -x-i+2x+222x2+...+ 2nni Xn+...

c. Use the result of Part b to see that if -1 < x < 1, then
1 1 3 X2n+...'/I =1+2X2+

2
X4T...+

2nl--X2 2 2. n
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d. Use the result of Part c to see that for -1 < x < I

arcsin x = x + - x3 +
3

x5 + +
3 5 (2n - 1) x2n+1 +

3 222!5 2nn!(2n + 1)

7. With x 0, A any number and n a positive integer such that 2n > A, replace x
in the formula of Prob. 4 by 11x2 and see that

1 1 1 1 1 1

Ixlz el/x2 = Ixl' l +
x2 xa + ... +

n! X2n
+ ... >

Ixlzn-x

The last term -->oo as x --> 0. Hence we first see that

1
P(x)e1/x2

lim , 1/x2 = 0 and then that JIM = 0
x-o x e x-o x

for any polynomial P(x) and any integer m. This limit may be used in Part b
below.

Let f be the function defined by

(14) f(x) = e -1-1x2 for x 0 0, but f(0) = 0.

a. Prove that

f'(x) = 2e 1/x2/x3 for x 0, and that f'(0) = 0.

b. Prove there is a polynomial P,,(x) such that

f(n)(x) = P .(X)
a 1/x2 for x 0, and that f (n)(0) = 0.

(Note: This shows that every term of the Maclauren series for this f(x) is zero,
so the series converges for all x, but not to f'(x) for x : 0.)

8. Naively replace x in the formula of Prob. 4 by hDx and write

h2 h3
eh.Dx =1 +hDx+2i Dx+3i D3 +..,,

Then argue either for or against interpreting

f(x + h) = ell-f(x)

as a shorthand for the formal Taylor's series

h2 h3
f(x + h) = f(x) + hf'(x) +

2!

f"(x) + 3' f"(x) + ....



CHAPTER 14

Differential Equations

This chapter is largely a bag of tricks. If you follow the suggested procedures
you can fill reams of paper with technique-improving manipulations and obtain
an excellent review of indefinite integration, but if in the end you do not know
exactly what is going on do not blame yourself entirely. The recognized discipline
known as "Differential Equations" has a splendid history, an exciting present, and
a promising future; its theoretical aspects intrigue pure mathematicians and its
tasty flavor of applications assures its respect in those of a practical turn. One short
chapter cannot possibly do justice to so venerable a subject, but may give some hint
of why calculus is such a basic course. Please reserve judgment as to whether
you "like" Differential Equations until you are exposed to more than its tricky
caprices and at least see an unequivocal definition of a solution of a differential
equation.

147. An Example

In a vertical plane take points P and Q with P to the left of Q. Fasten
the ends of a uniform flexible cable (weight w lb/ft) at P and Q, the cable

being long enough for the lowest point of the sag
Q to be below the level of both P and Q. Through

this lowest point pass a vertical line for the y-axis
P of a coordinate system (unit I ft) and let (O,a) be

the coordinates of this lowest point. The problem
411

coal is to find an equation y = f (x) of the curve formed
by the cable.

Cut the cable at (O,a) and attach a force with
Figure 147.1 proper direction and magnitude to maintain the

shape of the cable from (O,a) to Q. This force
has no vertical component and is directed to the left. Represent the force by
the vector -(H, where His a positive number.

Between (O,a) and Q select a point (x,y) on the cable (so y = f (x)), cut
the cable at this point and attach a single force to maintain the shape of the
cable between (O,a) and (x,y). The vector it representing this force has

482
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horizontal and vertical components th and fv: It is natural to assume u to be
tangent to the curve at(x,y) so that

(1) fi(x)=h
A physical principle to be relied upon is: For all

forces acting on a static body, the sum of horizontal
components is zero and the sum of vertical components
is zero.

For the horizontal components acting on the
cable from (O,a) to (x,y):

(2) -1H+ih=6 so h=H. Figure 147.2

The length of the cable from (O,a) to (x,y) is f o '/1 + f'2(t) dt. The down-
ward force due to the weight of the cable added to the vertical components
at the ends must sum to 6; but the vertical component at the end (O,a) is zero
and hence

-fwfo/i+f'2(t)dt+fuso
v together with (1) and (2) yield

f'(x) = H fo ,/1 + f,2(t) di

By the Fundamental Theorem of Calculus dx $o IT+ f'2(t) dt = V1 + f'2(x).
Since w and H do not depend upon x:

(3) f"(x) = H 1 + f'2(x).

This equation together with the known values

(4) f'(0) = 0 and f(0) = a

are sufficient to find f (x) by methods developed in this chapter. Later it
will be shown, using (3) and (4), that

(5) y =AX) = (ewx/H + e- wxl') + a - H2
This equation is simplified by choosing the x-axis so that a = H/w. Hence,
(5) becomes

y = a (ex/a + e-xla)
2

which is the usual form for the equation of a catenary.
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Equation (3) is an example of a derivative equation and associated
equations (4) are called initial conditions. In differential notation (3) and (4)
appear as

(6) d2}

dx2 V H 1

(-i)2,
where dy = O and y = a when x = 0,

dx dx

and is called a differential equation with initial conditions. Also, (5) is said
to be the solution of this system.

The study of some physical, electrical, chemical, or other phenomena may
lead to differential equations with initial conditions. The setting up of a
differential system usually involves principles or assumptions not primarily
mathematical. After such a system is obtained the second step, a purely
mathematical one, is to relate x and y without derivatives (such as (5)). The
third step is to interpret the relation between x and y in the original setting.
The current chapter presents methods pertinent to the second step in this
sequence, leaving the first and third steps to disciplines in which mathematics
is applied.

148. Definitions

A differential equation is an equation in two or more variables and
differentials (or derivatives) of these variables. It is usually known which of
the variables are to be considered as functions, with the others as independent
variables. A differential equation involving one or more functions and their
ordinary derivatives with respect to a single independent variable is an
ordinary differential equation.t Examples are:

(1) dy _ sin x dx
d2 _

(2) +y 0
dx2

(3) x(dx

2

= 1 (or xy,s = 1).

The order of the derivative (or differential) of highest order in an equation
is called the order of the differential equation. Thus (1) is of order 1, (2) is
of order 2, and (3) is of order 1. If a differential equation is a polynomial in
the derivatives involved, the degree of the highest order derivative is called
the degree of the differential equation. Thus (1) and (2) are of degree 1,
(3) is of degree 2, and (6) of Sec. 147 is of degree 2. In case all derivatives

t A partial differential equation contains partial derivatives and will not be considered
in this book.
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of y and y itself occur to the first degree, the differential equation is said to
be linear. Thus

2

x2 dz + sin x dy + y In jxj = 0 is linear,

but the first degree equation y" + (y')2 = sin x is not linear.
A one parameter family of equations f (x,y,c) = 0 in two variables

(without their derivatives) is the primitive (see Sec. 119) of a first order
differential equation obtained by eliminating the parameter c between the
equations

(4) f(x,y,c) = 0 and df(x,y,c) = 0.

Example 1. Find a differential equation having primitive x(c + y) = c2.

Solution. Set f(x;y,c) = x(c + y) - c2 = 0 so that df(x,y,c) = 0 is

(c + y) dx + x dy = 0 and hence c = - x dy + y dx - - (x dx +Y)

This expression for c substituted into x(c + y) - c2 = 0 yields

l

2

xj -x ) (x dx +}) = 0
2

or x2 (dx) + (2xy + x2)
ds

+ y2 = 0.

The reverse problem of starting with a first-order differential equation
and then seeking its primitive was considered in Sec. 119 and will now be
studied in more detail. In this setting the primitive will be referred to as the
general solution of the differential equation ; a particular solution is obtained
by assigning a specific value to the parameter.

Example 2. Find the general solution of the differential equation

xydx -(I +x2)dy =0.

Solution. Divide each term by y(1 + x2) to obtain

(5)

x dy

(6) 1 + x2
dx - -

1
= 0.

d 1 x d 1 dy
Since

dx
21n (1 x2) = 1 + x2

and
dx

In !yI _ -
dz

, (6) may be written as
Y

dx1IIn(1+x2)-1nIyl1 =0 so that

(7) jln(1 +x2) - InIyi = c
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is the general solution. Equivalent forms of this general solution are

In '%/T -+x2 - In lyl = c, In Ily+

x2
= -c,

1Y1 = e°, lyl = e c ,/ + x2.
VT-+X2

Chap. 14

Since c is arbitrary then e° is positive but otherwise is arbitrary. Since y occurs only
in lyl, the last of the above equations may be written in the more usable form

y = CV 1 + x2, C arbitrary.

After changing (5) into (6) a quite formal procedure is to "indefinitely
integrate" each term :

f
x dx_fdy

1+x2 y

apply formulas of indefinite integrals, and add an arbitrary constant to
obtain (7). This method is applicable whenever the differential equation may
be algebraically manipulated into a form in which each term involves only
one of the variables times the differential of that variable; this is the variables
separable case. There are other cases to be considered later.

In solving a differential system the procedure is to find the general solution
of the differential equation and then obtain the particular solution which
also satisfies the supplementary conditions.

Example 3. Solve the system

(8) y2(l + x) dx - x3 dy = 0; y=2 when x = 1.

Solution. The variables are separable:

1 Xxdx-y2dy =0, f(x 3+x-1) dx - ry 2dy =0

1 1 1

x2 z + -
y

= c; general solution.

Set x = 1 and y = 2 to determine c and find c = -1. Thus (8) has solution

1 1 1 2x2-2x2-x+y= or y = I +2x-2x2'

There is no accepted "simplest form" of a general (or even a particular)
solution, but whenever one variable may conveniently be expressed explicitly
in terms of the other this should be done.
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PROBLEMS

1. Find the differential equation having primitive:

487

a. y = cx - 0. d. y = ce x. g. y = x + c V l + X2.
b. xy = c(y + 1). e. Y = e-x + ce-2a. h. y2 = c2e-x2 - 1.

c. xy = c(x + 1). f. 2y = x + cx-1. i. 2cy = x2 - c2.

2. Find the general solution of:
a. (I +y)dx+(2 -x)dy=0.
b. xydx+(1 - x)dy = 0.
c. (3 - y) dx + xy dy = 0.

d. ex+y dx + dy = 0.
e. 2x+y dx + 3x+y dy = 0.

3. Solve the derivative system:

dv x-3

f. (I - y2) dx + dy = 0.
g. (I +y2)dx+x2dy=0.
h. sec y dx +ydy = 0.
i. x2(1 - cos 2y) dx + (x + 1) dy = 0.
j. x2y dy - dx = x2 dx.

a.d=Y72; y=3 when x=2.

dv v+2
b.dx x-3; y=3 when x=2.

c. ye2x dx + 2(ex + 1) dy = 0; y =3 when x = In 8.

d. V'1 - x2 dy = Vy dx; y = 1 when x = 0.

e. 2Vydx+yd+1 -0; y=3 when x=0.

f.2'Vy+Idx+dy=0; y=3 whenx=0.
Y

149. Substitutions

The variables are not separable in the differential equation

(1) (x2+xy+'y2)dx-xydy=0.
By factoring out x2 (assuming z 0 0) this equation may be written as

l r

x2{1

[1 +y+
()2]

dx - ydy} = 0 or [l +y+ ()21 dx-ydy=0.x x x J x x x

Set y/x = v so y = vx and dy = v dx + x dv. The differential equation
becomes (1 + v + v2) dx - v(v dx + x dv) = 0 or upon collecting terms

(1+v)dx-vxdv=0
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and the variables x and v are separable. Thus, as in Sec. 148

dx v dv-0, dx--(1- 1 )dv=0,
x i+v x 1+v

lnIxI-v+ln11+vi=c
so a form of the general solution of (1) is (since v = ylx)

Chap. 14

Inlxj -z+lnl1+Z =c.

The principle here is: If M(x,y) dx + N(x,y) dy = 0 is such that after
factoring out x to some power, the variables appear only in the combination
y/x, then set y/x = v so

(2) y = vx and dy = v dx + x dv.
In the resulting equation the variables x and v are separable. For if x and y
appear only as ylx, then after the substitutions (2) the equation appears in
the form

f (v) dx + g(v)(v dx + x d v) = 0

in which the variables x and v are separable into

dx g(v)

x { f ,(v) + vg(v)
dv = 0.

Example 1. Solve the differential system

-+y2 + y) dx - x dy = 0; y = -3 when x = 4.

Solution. Considering x > 0 so Vxz = x, factor out x:

xLV1-+V+ x) dx - dy] = 0.

The substitution (2) yields (V1 -+v2 + v) dx - (v dx + x dv) = 0 so that

1/1+v2dx-xdv=0, dx- dv =0,
x V1 + v2

\z
In x - In (v + V1 + v2) = c, In x - In x(±.Jl + (z I) = c, or

x2
1

In = c.

y + /x2 + y2
The side conditions y = -3 when x = 4 shows that c = In 8. Thus, a form of the
desired particular solution is

x2
y+Vx2+y2-8 for x>0.
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One might not suspect that the graph of this equation is half of a parabola, but by
rationalizing the denominator, etc., we obtain

x2=16y+64 for x>0.
The substitution illustrated in the next example is merely a translation of

axes.

Example 2. Solve (3x - 2y - 9) dx + (2x + y + 1) dy = 0.

Solution. Substitute x = X + h, y = Y + k with h and k constants:

(3X-2Y+3h - 2k - 9) dX + (2X + Y + 2h + k + 1) dY = 0.

This equation is simplified by choosing h and k such that both

3h-2k-9=0 and 2h+k+l =0.
The simultaneous solution is h = 1, k = -3 so that

(3X-2Y)dX+(2X+ Y)dY=O where x=X+l,y= Y-3.
The differential equation is of the form for setting Y = VX:

(3 -2V)dX+(2+V)(VdX+XdV)=0,
dX 2+V

(3 + V2) dX + (2 + V)X dV = 0, X + 3 -+V2 dV = 0,

lnIXI+ 3tan13+21n(3+ Y2) C.

Now X = x - 1, Y = y + 3, V = Y/X = (y + 3)/(x - 1) so the general solution
is

rIn Ix - 11 +
2 Y= tan 1

x 3 1
+ 21n 3 + (Y

+ 3)21 = c.

( ) L (x = 1)2

Example 3. Solve (2x - y + 1) dx + (4x - 2y - 5) dy = 0.

Solution. The substitution x = X + h, y = Y + k as in Example 2 leads to the
equations

2h-k+1=0, 4h-2k-5=0
which have no simultaneous solutions. Notice, however, that the combination
2x - y is present in both terms of the given equation which suggests setting

2x - y = v so that y = 2x - v and dy = 2 dx - dv.

The equation becomes (v + 1) dx + (2v - 5)(2 dx - dv) = 0 which is

(v + 1 + 4v - 10) dx - (2v - 5) dv = 0.

The variables x and v are separable so previous methods may be applied, then
resubstitution made, to yield the general solution

x-6(2x-y) +2s In 15(2x - y) - 91 = c.



490 Differential Equations

PROBLEMS

Chap. 14

1. Each of the following may be solved by the method illustrated in Example 1.

a. (3x - y) dx + (x + y) dy = 0. d. y2 dx = (x2 + xy) dy.

b. y dx - (x + y) dy = 0. e. (x2 + xy - y2) dx + xy dy = 0.

c. (xy + y2) dx = (x2 + xy + y2) dy. f. (x2 - x2y + xy2)(dx + dy) = y3 dx.

2. Work Probs. lc and Id by first making the substitution x = uy.

3. Use the method of Example 2 or Example 3 to solve:

a. (3x-y-5)dx+(x+y+l)dy=0.
b. (2x + y + 1) dx + (4x + 2y - 5) dy = 0.
c. (2x - 4y + 1) dx - (3x - 6y + 2) dy = 0.
d. (y + 1) dx + (x + y) dy =0.

150. Linear Equation of First Order

With p and q functions of one variable, the differential equation

(1)
dx

+ P(x)Y = q(x)

is linear and of first order. Toward obtaining a method for solving differential
equations of this form, let P be any function such that

(2) d dzx) = p(x) that is, set P(x) = fp(x) dx.

Multiply both sides of (1) by ep(x):

(3) ep(x) dz + ep(x)p(x)Y = ep(x)q(x)

The left side of (3) is a perfect derivative; in fact (3) may be written as

(4) dx
[eP(x)y]

= ep(x)q(x)

since upon expanding the left side of (4) we obtain

ep(x) = ep(x)q(x),ep(x) z + Y
dxdx

+ yep(x) d
x) =

ep(x)q(x)
dz dx

which is the same as (3) because dx = p(x) by (2).
d

x)
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(5)

From (4) it follows that

e'(x)y = fer(')q(x). dx

491

and this may be used to solve equations of the form (1).

Example. 1. Solve the differential equation x dy + 2y dx = 10x$ dx.

Solution. Upon dividing both sides by x dx the result is

y = IOx2 (provided x T 0)dz +
2

which is in the form (1) with p(x) = 2/x and q(x) = 10x2. Thus, from (2)

f 2 dx = 21n jxl = In x2 and eP(x) = eInx2 = xz(6) P(x) =
2

x

Hence, for this particular problem, equation (5) becomes

X2y = f x2(I Ox2) dx

(7) = 2x5 + c.

Upon dividing both sides by x2 we obtain

y=2x3+cx 2
which, as a check will show, is the solution of the given equation.

Since P is any function such that P'(x) = p(x) we choose the simplest
such function by not adding an arbitrary constant to the integral in (6).
Since, however, we want the most general function y satisfying the differential
equation, we do add an arbitrary constant in (7).

A differential equation which can be put in the form (1) should be
recognized even if the letters are different, as illustrated in the next two
examples. The equation in Example 2 appears in the study of electric circuits.

Example 2. With A, L, R and co constants, solve the system

di
(8) L dt + Ri = A sin cot, i = 0 when t = 0.

Solution. The implication is that t is the independent variable and i the dependent
variable. Upon dividing by L, the equation

di R A

d t
+ L i = L sin cot

is in the form (1) with p(t) the constant RIL and q(t) = (AIL) sin cot. Hence,
corresponding to (2),

P(t) =f fdt=Lt



492 Differential Equations

(where no constant of integration is added) and (5) takes the form

e(R/L)ti =f e(RIL)r f sin wt dt

AIL
(R/L)2 + w2

[sinwt_wcoswt]+c

by Table Formula 156. Since i = 0 when t = 0, it follows that

(A/L)w
(R/L)2+w2

Consequently, the solution of the differential system (8) is

AIL IR
(9) t (R/L)2 + w2

[L sin wt - CO cos wt + we

Chap. 14

A (RIL)LT2
+

L2w2 (R sin wt - Lw cos wt + Lwe- ).

Example 3. Solve the differential equation

(10) (x-xy+2)dy+ydx =0.
Solution. In attempting to put this equation in the form (1) we write

0dx+x-xy+2y
which might appear to be in the form (1) withg(x) = 0. Notice, however, that the

1
coefficient of y, namely - xy+ 2' cannot be set equal to p(x) since it involves y

as well as x. Incidentally, none of the previous methods (variables separable,
y/x = v, translation, etc.) are applicable either.

Returning to (10), write it as y dx + (x - xy + 2) dy = 0,

dx x-xy+2 dx 1 -y 2
+ =0, + x = --

dY Y dY Y Y

which is in the form (1) with x and y interchanged throughout. Therefore, set

p(y) =
1 y y

, q(y)
2

Y
,

P(y)
f Y -

1) dy = In Jyj -y, and ep(v) = Inlvl -v = lyle-v

so the equation corresponding to (5) is

[lyle ']x = f lylev(-Y 2) dy.
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Since Iyl = y if y > 0 but Iyl = -y if y < 0 we obtain in either case

ye-yx = -2fe ydy =2e y+c, y 0.

Hence, the solution of (10), giving x in terms of y, is

2 cx=-+-ey.
Y y

PROBLEMS
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1. Solve the linear differential equation of first order:

a. (2x3y - 1) dx + x4 dy = 0. d. 4xy dx + (x2 + x - 2) dy = 0.
dy dy In x

b.
dx

= 1 - y cot x. e. dx +
y
- x = xz .

c. x dy + y dx = sin x dx. L e3x[dy + (3y + 6) dx] = 2x dx.

2. Each of the following is a linear differential equation of first order (i.e., may be
put in the form (1) except for different letters).

a. dp + p cos 0 dB = sin 20 dB. d. du = 2(4v - u) dv.
b. sin B dp + (2p cos 0 + sin 26) dB = 0. e. dy - dx = x cot y dy.
c. t ds = 2(t4 + s) dt. f. ey(x dy - dx) = 2 dy.

3. Find the particular solution satisfying the differential equation and the side
condition.
a. x2 dy + (2xy - 1) dx = 0; y = 2 when x = 1.

y = 2
c. dy + (y - sin x) cos x dx = 0; y =0 when x =7r.
d. y' = x + y; y = 0 when x = -1.

151. The Bernoulli Equation

A differential equation of the form

(1) dx + p(x)y = q(x)ya; a 0, a 1

is known as a Bernoulli equation. Upon multiplying each term of (1) by
(1 - a)y a the result is

(1 - a)y-a dz + (1 - a)p(x)yl-a = (1 - a)q(x)

and the first term may be rewritten to give

d yI-a + (1 - a)p(x)yl-a = (1
- a)q(x).
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This equation may now be written as

(2) du + (1 - a)p(x)u = (1 - a)q(x) where u = yl-a

Chap. 14

which is a linear differential equation of first order to which the method of
Sec. 150 may be applied.

Example. Solve the equation xy' + y = x5y4.

Solution. Upon dividing by x this equation becomes

+-I

which is a Bernoulli equation with a = 4. Hence by (2), since 1 - a = -3,

du 1

dx
+ (-3) x u = -3x4 where u = y-3.

By the method of Sec. 150, the solution for u in terms of x is

u=cx3-2x5

Consequently, the original equation has solution

y = (Cx3 - 2x5)-1/3.

PROBLEMS

1. Solve each of the Bernoulli equations:

a. x dy = y(y2 + 1) dx. c. y dy + (2 + x2 - y2) dx = 0.

b. x d = y - x3y3. d. dt - 2x = 4x312 sin t.

2. The following miscellaneous set of problems reviews the methods for solving
differential equations as given so far in this chapter and in Sec. 117.

a. (4x3y3 + 3) dx + 3x4y2 dy = 0.

b. (2xy + cos x) dx + (x2 - 1) dy = 0.

c. (3x -y + 5)dx
+ (6x - 2y + 1) dy = 0.

d. (x + 2y - 4) dx - (2x - 4y) dy = 0.
e. ydx + xdy =2dx + 3dy.
f. y(I - x) dx + x2(1 - y2) dy = 0.

g. (x + 1)y' = y + (x + I)e2=y3.

h. ds + (2s - s2) dt = 0.

i. xdy - y dx = V x2 + y2 dx.
J. (xevll - y) dx +xdy = 0.

k. dx = (sec t - x tan t) dt.
1. dr = (r cot 6 + tan 6) dD.

m. (u +v +2)du =(u -v -4)dv.

n.
dy x+y-1
dx x-y+1'
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A differential equation of the form

(1) dX2 + al

dz

+ a2Y = f(x); al and a2 constants,

is of second order (since the second derivative is the highest order derivative
present), is linear (since y and its derivatives occur to the first power), and
has constant coefficients 1, al, and a2. Two equations are associated with (1);
the homogeneous differential equation

(2) d!LYx2 +
al

dx
+ a2Y = 0

and the algebraic equation, called the characteristic equation,

(3) r2+alr+a2=0.
In this section we state how the roots of the characteristic equation (3) are
related to the solutions of the homogeneous equation (2). In the next section
it will be shown how, in some circumstances, the solutions of (2) may be
used to find the solutions of (1).

In a more advanced course in differential equations it is proved that if
s1(x) and s2(x) are both solutions of (2), and if neither sl(x) nor s2(x) is a
constant times the other, then any solution of (2) may be written as
C1sl(x) + c2s2(x) for suitably chosen constants c1 and c2. Under these
circumstances sl(x) and s2(x) are said to be linearly independent (that is,
neither is a constant times the other) and are called specific solutions of (2)
and cis1(x) + c2s2(x) is said to be the general solution of (2).

For the ordinary quadratic equation (3), the roots are either real and
unequal, real and equal, or conjugate complex numbers a + ib, a - ib with
b 0. Upon letting r1 and r2 be the roots of (3), the following are facts
about the solutions of the homogeneous differential equation (2):

Case Conditions Specific Solutions General Solution

1. r1 r2 real erix, er2x cierlx + c2er-x

2. r1 = r2 erlx, xerlx (Cl + C2X)erlx

3'
r1 = a + ib
r2 = a - ib

ell cos bx
ell sin bx

e«'(c1 cos bx + c2 sin bx).

To indicate the truth in Case 1, let r1 and r2 be real with r1 r2, note
that (3) is (r - rl)(r - r2) = r2 - (r1 + r2)r + rlr2 = 0 and the corre-
sponding form of (2) is

(2) 4X2 - (ri + r2) dz + r1r2Y = 0.
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Into the left side of (2) substitute y = e°'lx:

rlerLx - (rl + r2)r1e7x + rlr2erlx = enlx[rl - (r1 + r2)r1 + rlr2] = 0.

Thus y = erlx is a specific solution of (2) in Case 1, and in the same way it
may be checked that y = e'2x is also a solution.

Cases 2 and 3 may be checked in the same way.

Example 1. Solve the homogeneous differential equation

2

4d2-12d-+9y=0.

Solution. This equation and its characteristic equation are

d2y 3dy
d x 2

d x
+ 4y =0 and r2 - 3r + 4 = (r - 2)2.

Since the characteristic equation has both roots equal to 2, the homogeneous
differential equation has general solution' (see Case 2)

y = (c1 + c2x)e(3/2)x.

d2
Example 2. Solve dx2 + 4y = 0.

Solution. The characteristic equation is r2 + 0 r +4 =r2+4 =0 whose
roots are r = ±2i = 0 2i. The desired solution is

y = e0 ' x(c1 cos 2x + c2 sin 2x) = c1 cos 2x + c2 sin 2x.

Example 3. Solve the derivative system

ds+2 -8y=0; y=0 and =6 when x=0.

Solution. The characteristic equation is r2 + 2r - 8 = (r + 4)(r - 2) = 0 and
the general solution of the differential equation is

y = C1e 4ce + C2e2x.

Hence
d

= -4c1e' + 2c2e2' and, from the associated conditions,

0 = c1e-4'0 + c2e2'0 = ci + c2 and 6 = -4c1 + 2c2.

The simultaneous solution of these two equations is c1 = -1, c2 = 1 so the solution
of the given differential system is

y = -e-4x + e2x.
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1. Solve each of the second order, homogeneous differential equations with constant
coefficients :

a. Al +d - 6y =0.

b. 2dx +dx -v = 0.

d2d.di2-4y=0.

e.dX2-4d +13y=0.

c. 47- - 20' + 25y = 0.
d2

f. dx2 + 9y = 0.

2. Solve each of the following differential equations:

d2s ds
a. dt2 - 2 dt

+ 5s = 0.
d2x dx

d. Cjt2 - dt - x = 0.

d2s ds
b.

dt2
-4dt+5s=0.

d2x dx
C.

Ctt2
-

Cjt
= 0.

3. Solve each of the differential systems:

At du
e. dU2 +

do
- u = 0.

d2x dxf. s+2WY- -4x=0.
dy

a. d-j - 4 y + 5 0; 1 and
dy = -1 when x=0.dx dx y ' dx

b. d22 -2 - + 5y = 0; y=5 and dy
= 3 when x=0.d

dx dx dx

c. d -2 - 4 d - 5y = 0; y=4 and dx -2 when x=0.

d. 4 d22 - 12 dy +9y=O; y=2 and dy
= 2 when x = 0.

dx dx dx

4. A particle moves on a line in such a way that its acceleration function a and
position function s are related by

a = -4s.

The particle "starts" when t = 0 at s = 2 with velocity 6. Show that the motion
is simple harmonic (see Sec. 38) with amplitude V 13, period IT, and phase 0.49
(in radians).
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5. Find the law of motion under the following conditions with the usual interpreta-
tions in terms of acceleration and velocity.
a. a = -9s; s = 0 and v=4 when t = 0.
b. 2a = -s; s = 0 and v = 1 when t = 0.
c. 4a = -9s; s = v'3 and v when t = 0.

d. a + 4s = 0; s= -1 and v = 2v'3 when t = 0.

153. Undetermined Coefficients

With f (x) # 0, then the second-order linear differential equation with
constant coefficients

(1) dx2 ± a, dx + a2y = f (x); a1 and a2 constants,

is nonhomogeneous and its associated homogeneous equation is

(2)
d-

+a1dx+a2y=0.

The previous section contained methods for solving (2) and we now denote
the general solution of (2) by yH. After introducing some terminology, we
show how to use yH to find, at least in a wide variety of cases, a solution y.
of (1) where yp is free of arbitrary constants and is called the particular
solution of (1). Then

(3) Y=YIN+YH

is also a solution of (1) and is called the complete solution of (1).
The method of "Undetermined Coefficients" is applicable whenever f (x)

is the sum of terms containing xm (with m a positive integer) sin px, cos px,
eqx, and a constant together with products of such terms. Corresponding to
each of these terms is associated a company as listed below:

Term

xm
sin px
cos px

eqx

c, a constant

Company

{X 7n, xm-1, ... , x, 1 }
{sin px, cos px}
{sin px, cos px}

{eqx}

{1}

Two companies are combined to form a third company consisting of all
products of members of the-two companies. Thus, if f'(x) contains the terms
x2 sin 2x then x2 has the company {x2,x,1 }, sin 2x has the company
{sin 2x, cos 2x}, and the term x2 sin 2x has the company

{x2 sin 2x, x2 cos 2x, x sin 2x, x cos 2x,jsin 2x, cos 2x}.
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The method of undetermined coefficients for finding the particular
solution yp of (1) is outlined as follows:

1. Find the general solution YH of the homogeneous equation (2).
2. Construct the company of each term off (x).
3. If any company contains another company discard the smaller

company.
4. If any company has a member which is a term in yH, then replace

each member of that company by the member multiplied by the lowest
integral power of x for which no member of the new company is a
term of yH_

3. Assume yp is a linear combination of all members of all those
companies obtained.

6. Substitute yp into the left side of (1), set the result identically equal
to f (x), and from the result determine the (constant) coefficients of yp.

Example 1. Solve the non-homogeneous differential equation

d2y
(4) 2-4dy+4y = x3 + 2x + 3 + e2x.

Solution. 1. The homogeneous equation, characteristic equation, and yH are

d2y

dx2 - 4
dx

+ 4y = 0, (r2 - 4r + 4) = (r.- 2)2 = 0, and

YH = (Cl + c2x)e2x = c1e2x + c2xe2x.

2. Since f (x) = x3 + 2x + 3 + e2x the companies to consider are

{x3,x2,x,1}, {x,I}, {I}, {e2x}.

3. The elements of the second and third companies are in the first so retain only
2 (' 2x

4. Since e2x occurs in yH replace {e2x} by but since {xe2x} also occurs in yH
the companies of 3 are replaced by

{x3,x2,x,1}, {x2e2x}.

5. Assume yp = Ax3 + Bx2 + Cx + D + Ex2e21.

6. dd p = 3Ax2 + 2Bx + C + 2Exe2x + 2Ex2e2x and

d2yl,
= 6Ax + 2B + 2E(e2x + 2xe2x) + 2E(2xe2x + 2x2e2x)

dx2
= 6Ax + 2B + 2Ee2x + 8Exe2x + 4Ex2e2x.

Hence, by substituting yp into (4), we have

6Ax + 2B + 2Eex + 8Exe2x + 4Ex2e2x
- 4(3Ax2 + 2Bx + C + 2Exe2x + 2Ex2e2x)
+ 4(Ax3 + Bx2 + Cx + D + Ex2e2") -- x3 + 2x + 3 + e2x,
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and hence upon collecting like terms:

4Ax3 + (4B - 12A)x2 + (4C - 8B + 6A)x
(4D - 4C + 2B) + (4E - 8E + 4E)x2e2x

Now by equating coefficients
4A = 1 so A =

4B - 12A = 0 so B =
4C-8B+6A=2 so C= . ,
4D-4C+2B=3 so D=2,

2E=1 so E=1.
Thus yp = 4x3 + jx2 + 83x + 2 + .jx2e2x is the particular solution of (4) and the
complete solution of (4) is

y = (f4x3 + Jx2 + 8Ix + 2 + 'x2e2x) + (c1 + C2x)e2x.

d2y
Example 2.2 - y- = sin x.

Solution. 1. From the characteristic equation r2 - r = r(r - 1) = 0, then

YH = c1eo: + C2ex

2. The only company is {sin x, cos x}
3. and 4. Nothing to be done.
5. Assume yp = A sin x + B cos x.

= C1 + c2ex.

6. (-A sin x - B cos x) - (A cos x - B sin x) = sin x,

-A+B=1} A = - , B = , yp = -+ sin x + j cos x.-A-B=0 '
Thus, the complete solution is y = J(-sin x + cos x) + cl + c2ex.

PROBLEMS

1. Solve each of the nonhomogeneous differential equations:

a. 2-4 +4y=x+1 +ex.

b.d-2dx+yx+l+ ex.

C.
d

s -dX=cosx.

d. z2 -
dx

=Bx COS X.
d X2

e. 2-2-+2y=cosx.
2

f. dz2 - 2 + 2y = ex cos x.

dg.

dx2 + 4y = sing x.
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2. Solve each of the derivative systems.
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y2 + 4y = 4ex; y = 0a. d and =1 when x = 0.

b. dy2 - y = cos 2x; y=1 and
dX =0 when x = 0.

2 d
c. dt + 4 dt + 5s = 8 sin t;

s
ss =2 and y= -I when t = 0.

d2s ds
d. at + 5

dt
+ 4s = 8 sin t;

dss =2 and wt =-I when t = 0.

154. Linear, Constant Coefficients

With f (x) # 0 and n a positive integer, the differential equation

dny d"-ly dy
(1) -

dx'

is nonhomogeneous, is linear, is of nth order, has constant coefficients
1, a1, - , an, has associated homogeneous differential equation

(2)

» dn-1
+al' 1 +...+an-ldx+any=0

dx' dx

and characteristic equation

(3) r,z + a1r"-1 + ... + a,,-1r + a = 0.

By the Fundamental Theorem of Algebra, the algebraic equation (3) may be
written as the product of linear factors of the form (r - rk), with rk real, and
quadratic factors of the form (r2 - tar + a2 + b2) where, since the coefficients
are real, such quadratic factors produce conjugate complex roots of (3) of
the form a ± ib. The factors of (3) and the solutions of (2) are related as
follows :

Factors of (3) Specific solutions of (2)

(r - rk)9, rk real erk, xerkx, x2erk'z, ... , xv-1er,z

(r2 - 2ar + a2 + b2)" eax cos bx, e°x sin bx, xe°x cos bx, xe°x sin bx,
- , x9-1e°x cos bx, xv-le°x sin bx

The general solution of (2) is then the linear combination (with arbitrary
constant coefficients) of all specific solutions of (2).
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Example 1. Solve the homogeneous fifth order equation

(4) d5Y-6d4Y+13d3Y-14422+12dY8y=0.
dxs 4x4 4x3 dx dx

Solution. The characteristic equation

(5) rs - 6r4 + 13r3 - 14r2 + 12r - 8 = 0

Chap. 14

has integer coefficients (with 1 as the first coefficient) so the possible rational roots
are f1, ±2, ±4, ±8; that is, the factors of the last coefficient -8. By trial, using
synthetic division, 2 is a root:

21 1 -6 13 -14 12 -8
- 2 -8 10 -8 8

21 1 -4 5 -4 4 0, zero, so try 2 again
2 -4 2 -4

21 1 -2 1 -2 0 , zero, so try 2 again
2 0 2

1 0 1 0

Hence, (5) may be written as (r - 2)3(r2 + 0 r + 1) = (r - 2)3(r2 + 1) = 0.
The triple root 2 and the complex roots ±i = 0 ± i show that (4) has general
solution

y = cle2x + c2xe2x + c3x2e2x + c4eo'x cos x + cse°'x sin x

= (c1 + c2x + c3x2)e2x + c4 cos x + C5 sin x.

A repeated quadratic factor, such as (r2 - 2ar + a2 + b2)? with p = 2
or more, occurs so seldom that we do not even give an example.

The method of undetermined coefficients (Sec. 153) applies (when the
coefficients are constants) to linear nonhomogeneous differential equations
of order greater than 2 as well as when the order is 2.

Example 2. Solve the nonhomogeneous equation

(6) d5y - 6d4Y + 13d3Y - 14d2Y + 12dy - 8 250sinx.
dxs 4x4 4x3 4x2 dx Y =

Solution. 1. Solve the homogeneous equation (see Example 1) and set

YH = (Cl + c2x + c3x2)e2x + c4 cos x + c5 sin x.

2. The only company of f(x) = 250 sin x is {sin x, cos x}.
3. Nothing to do.
4. Since sin x (and/or cos x) occurs in yyj replace the company by {x sin x,

x cos x}.
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5. Assume yp = Ax sin x + Bx cos x.

6. yP = Ax cos x - Bx sin x + A sin x + B cos x
yP = -Ax sin x - Bx cos x + 2A cos x - 2B sin x

yP = -Ax cos x + Bx sin x - 3A sin x - 3B cos x
y"P =Axsinx+Bxcosx-4Acosx+4Bsinx
y(P = Ax cos x - Bx sin x + 5A sin x + 5B cos x

503

(-8A -12B+ 14A + 13B-6A -B)xsinx +(-8B+ 12A + 14B - 13A -6B+A)xcosx

+(12A +28B -39A -24B+5A)sinx+(12B -28A -39B+24A +5B)cosx =250sinx,

(-22A + 4B) sin x + (-4A - 22B) cos x = 250 sin x,

-22A + 4B = 2501} 1

-4A-22B=0 A=-1I, B=2.

Therefore, the complete solution of (6) is

y = -11 x sin x + 2x cos x + (c1 + c2x + c3x2)e2x + c4 cos x + c5 sin x.

PROBLEMS

1. Solve the differential equation dz5 + d = f(x) given that:

a. f (x) = 2. C. f (X) = x2. e. f (x) = 2 sin x + 3 cos x.

b. P x) = x. d. f (x) = sin x. f. f (X) = ex.

2. Replace the differential equation of Prob. 2 by

day - 3 d2y + 3
dy - = (x).

dx2 dx2 dx y
f

3. Solve each of the differential equations

a.

dX
- d2 + dz -

y = 4 sin x. e. d - dz2 = 6x + 2xex.

b. day - d2y - d + = 4e. f. day = 6x + 2xex.
dx3 dx2 dx y dx3

c. d y + 6 dX2 + 12 d + 8y = 8x2. g.
L

- y = 9e-0.5x + 91 cos 2x.

2 4y
d. 4d- - 4- - 15 d + 18y = 49e 2x. h. dx4 - y = ex(1 + cos x).
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155. Variation of Parameters

Chap. 14

Consider again a nonhomogeneous, linear differential equation with
constant coefficients:

do do-1 dy

dxy + al
dxn-1

y ...Tan-l ax + any f(x)

In case f (x) or any term off (x) is not xm, e-, sin bx, cos bx, or a product of
one or more of these, then the method of undetermined coefficients (Sec. 153)
is not applicable. Another method, called variation of parameters, is
illustrated in the following example.

Example. Solve the differential equation

(a) y" + y = sec x tan x.

Solution. Step 1. Solve the homogeneous equation y" + y = 0 and call yH the
solution so

(b) yH = c1 cos x + c2 sin x.

Step 2. Assume there is a particular solution of the form

(c) yp = A(x) cos x + B(x) sin x

(obtained from yH by replacing the constants c1 and c2 by functions).
Step 3. Find y' = -A(x) sin x + B(x) cos x + A'(x) cos x + B'(x) sin x

and simplify this by setting

(d) A'(x) cos x + B'(x) sin x = 0 so that

.(e) yp = -A(x) sin x + B(x) cos x.

Find yP from this expression for yP:

(f) yP = -A(x) cos x - B(x) sin x - A'(x) sin x + B'(x) cos x.

[Note: If the equation were of higher than second order we would simplify yP by
setting the terms involving A'(x), etc., equal to zero.]

Step 4. Substitute yp and its derivatives for y and its derivatives in given differ-
ential equation. In this case substitute (f), (e), and (c) into (a):

[ -A(x) cos x - B(x) sin x - A'(x) sin x + B'(x) cos x] + 0 [ -A(x) sin x

+ B(x) cos x] + [A(x) cos x + B(x) sin x] = sec x tan x

and simplify [the terms in A(x) and B(x) always cancel]:

(g) -A'(x) sin x + B'(x) cos x = sec x tan x.

Step 5. From (g) and (d) [we copy (d) over for convenience]

(d) A'(x) cos x + B'(x) sin x = 0

solve for A'(x) and B'(x):

A'(x)(sin2 x + cost x) -sin x sec x tan x, A'(x) _ -tang x
B'(x)(cos2 x + sin2 x) = cos x sec x tan x, B'(x) = tan x.
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Step 6. Integrate to find the simplest expressions for A(x) and B(x):

A(x) = f (-tang x) dx = x - tan x
}

No constant of integration

B(x) =f tan x dx = -In ]cos xl
J

is added.

505

Step 7. Substitute these expressions for A(x) and B(x) into the assumed form
[namely (c)] of yp:

yP = (x - tanx)cosx + (-In lcosxl)sinx
= x cos x - sin x - sin x In Icos xl.

The complete solution is then

y = yp + yH = x cos x - sin x - sin x In Icos xj + c1 cos x + c2 sin x.

In cases where the method of undetermined coefficients is applicable, the
method of variation of parameters may also be used, but the integrations in
Step 6 may be difficult.

PROBLEMS

1. Solve the differential equation y" + y = f(x) after substituting:
a. f (x) = sec x. b. f (x) = sect X. c. f (x) = tang x. d. f (x) = sect x csc x.

2. Replace the differential equation of Prob. 1 by y" + 4y = f(x).

3. Solve
a. y" + 4y' + 4y = z 2e 2x. c. y" - 3y' + 2y = ex(1 + ex)-1.
b. y" - 2y' + 2y = ex sec x csc x. d. y' + y' = sec x.

4. As a comparison, solve each of the following by the method of variation of
parameters and also by the method of undetermined coefficients.

a. y" - 5y' + 6y = 10 sin x. b. y" - 2y' + 5y = 5x2 + 6x + 3.

156. Missing Variables

In this section two types of differential equations are considered whose
solutions may be made to depend upon the solutions of lower order differential
equations.

A. DEPENDENT VARIABLE MISSING. In the equations of Examples I and 2,
only derivatives of y occur and not y itself.

Example 1. Solve xy" - y' _ (y')3.

Solution. Substitute y' = u, and y" = u', to obtain the equation xu' - u = u3
whose order is one less than the order of the given equation. The variables u and x
are separable:

du dx

u3 +u X
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By using partial fractions (see Sec. 76) this equation is

u - u2 + l l du = XX so In lui - 2 In (u2 + 1) = In iclxi

u (c1x)2

u2 + 1 = (C1X)2 and thus ll2 1 - (clx)2

But u = dy/dx and therefore

Chap. 14

dy = Cix (Note: ± not necessary since
dx V 1 - (clx)2 cl is arbitrary.)

which, by an ordinary indefinite integration, gives the desired solution

= -
I

y V1 - (C1X)2 + C2.
C1

Example 2. With w and H constants, solve the derivative system

d2y w

(dx)
dy 2 dy(2) = 1

,
where, dz = 0 and y = a when x = 0.

dy du
Solution, v so L

-X2 dx and the differential equation in (2) becomes

=
w

V1 + v2 in which the variables v and x are separable:

dv w w

T+ v H
dx so that In (v + V 1 -+V2) =

H
x + c1.

2

Since v = y' we have v = 0 when x = 0 so In (0 + I1 + 02) = 0 + c1. Thus
cl = 0, hence In (v + VT -+v2) = wx/H and thus

v + VI + v2 = ewx/H, %/I + v2 = ewx/H - v, 1 + v2 = e2wx/H - 2vewx/H + V2,

1 e2wz/H - 1 1

v = - _
ewx/H 2

[ewx/H - e-wx/Hl
2

Since v = dy/dx, a simple indefinite integration gives

1 H ewxI H+ e -wx/H
2y 2w( )+c.

But y = a when x = 0 so a =

2

w (e° + e°) + c2 and thus

1 H
ewx/H wx/H Hy 2w( +e-)+a-w.

[Note: Example 2 fulfills a promise made earlier (see the sentence including,
(5) of Sec. 147).]
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2

B. INDEPENDENT VARIABLE MISSING. If an equation involves d and
dx2but x appears only in derivatives, the method is to set

zdy
= u and

d y _ du

dx dx2 dx

An additional step, which is easily forgotten, is to write the equation as
(instead of x) were the independent variable by using the formula

du _ du dy so that
du = du

u
dx dy dx dx dy

Thus, in this situation the recommended substitutions are

(3)

zdy=u
and

dy_duu.
dx dx2 dy

Solution. The substitutions (3) change this equation into

(4) Y dy u + u2 = 2yu so u Ldy + y u - 2] = 0 and

du 1u=0 or +-u=2.
dY Y

This is a linear equation (see Sec. 151) wherein we set

p(y) =
1

y
, P(y) = f p(y) dy = In lyl and know that

eIn I1Iu = f eln IYI 2 dy, lyiu = 121yl dy, yu = f 2y dy = y2 + c1.

Thus
y2 + cl dy y2 + cl Y

"
_

dy = dx,y dx y , y2 + Cl

(5) x = j In ly2 + c1l + c2.

?f Y

The equation u = 0; that is, dz = 0 has solution y = c. Notice that (4) has it as

one factor so in addition to (5) the given equation has the trivial solution y = c.
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1. Solve

dXa. X2 dX2 - 2x
dX

(d.)A2

PROBLEMS

d.
y TX-2

(dx)2

dx

e. Y dz2 + (dz)

2

= 0.

d2y (dy)2y d2 + 4y2
TX

2. Continue from equations (3) and show that

d3y 2 2

anddX3 = d.Y2 u2 + (y)
u

d4y =dual+4d2uduu2+
dY3 Y2 Y (Y)

u

157. Integrating Factors

So far in this chapter (and in Sec. 117) some common types of differential
equations have been given, together with definite procedures to follow in each
case. A complete listing of types for which methods have been developed
would be a ponderous tome and, even so, would not include all differential
equations met in practice.

This introduction to finding solutions of differential equations in closed
form.is concluded by illustrating dependence upon experience and insight.

Example 1. (x3 - y) dx + x dy = 0.

Solution. Write x3 dx + x dy - y dx = 0 and recognize x dy - y dx as the
(y) -xdy-ydx

numerator of d X J X2 . The given equation may be written, by dividing

by x2, as
xdx+xdy _ X2ydx=0, d(2)2+d(2)=0,

so as
.d(22

-X)
= 0.

Jx2

Hence, the solution is 2 - z = c or y = cx +
2

.

The given equation could have been written as

dy 1

dx xy
= -x2

x3

which is a linear equation but for this problem the above procedure (if recognized)
is easier than the method of Sec. 150.
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Notice the numerators of each of the following:

d(y) = x dy - y dx
,

X X2

d(- y) -ydx - xdy
X X2

d(x) -ydx xdy d(- x) =xdy ydx
Y

Yz ' y y

d In
2 ( x ydy), dln.Jx2+ y2=xdx+ydy,(x2 -y2) = X2+Y2

X2+Y2

dtan-1 y= d(y/x) (xdy - ydx)/x2-xdy- ydx
x 1 + (Y/x)2 (x2 + y2)Ixz x2 + yz

and also d(xy) = x dy + y dx, and d(xn + yn) = n(xn-1 dx + yn-1 dy).

Should part of a differential equation be x dy - y dx, x dx + y dy, or
y dx + x dy, it may be possible to multiply through the whole equation by
an expression so the resulting equation is recognizable as a differential equal
to zero. Such a multiplier is called an integrating factor.

Example 2. x(1 - xy) dy +ydx = 0.

Solution. x dy + y dx - x2y dy = 0, d(xy) - x2y dy = 0,

d(xy) - dy = 0, -d(xY)-1 - d In I I = 0, d[(xy)-1 + In lyll = 0,xzyzy Y-
and the solution is (xy)-1 + In lyl = c.

At one stage the integrating factor 1 /(xy)2 was used.

Example 3. (x3 + y) dx + (x2y - x) dy = 0.

Solution. (y dx - x dy) + (x3 dx + x2y) dy = 0. The first parenthesis is the
numerator of d(x/y) so try the integrating factor I /y2:

y dx

Y

xdy x3 dx y2x2y dy
(XY-)

LYX3 Y22

+ =0, d + dx +-dyJ = 0

wherein the bracket is not a perfect differential. But y dx - x dy is also the
numerator of d(-y/x) so try the integrating factor I/x2:

ydx-xdy+x3dx Xz x2ydy 0

d(-z +
1

2d(x2+y2)=0,

d( - x1 + [x dx +ydy] = 0,
/

z

dI -X+X
2

z 2

so the solution is X 2 y -
y

= C.
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PROBLEMS

Chap. 14

1. In each of the following an integrating factor may be used, although in some cases
another method will also work.

a. (3 - x2 - y) dx + x dy = 0. e. x dy - y dx = (x2 + y2) dx.
b. y dx + x(xy2 + 1) dy = 0. f. x dy - y dx = (x2 - y2) dx.

c. x(xy2-1)L+x4+y=0. g. +X=sinx.

d. xy' + y(1 + x4y) = 0. h. s dt - t ds = (s2 + 1) ds.

2. The following miscellaneous collection will provide a review of all methods
given so far in this introduction to differential equations.

a. Y xy x dx + },z dy =0.

c. ye' dx - (1 + ex) dy = 0.
e. (x+3y)dx +(y -3x)dy =
g. (y2 - y) dx = x2 dy
i. y'+ay =e

d2s dsb.2dt2-5dt+3s=0.

d. (x + 2)y' - x + 2y = 0.
f. (x + x sin t)x' = (1 + 2x)2.
h. x2dy + (4xy + 2) dx = 0.
j. y' - xy = xy-l.

k. y- =y. 1. cos y
d

+ 3 sin y = 2x.

m. 2d-+5dy2 -2244+ 15y = 0.

n.(xVx2+y2-y)dx+(yVx2+y2-x)dy=0.
o. (xy - 2x2) dy = (x2 + y2 + 3xy) dx.

p. y"+9y"+27y' +27y =esx.
q. y" = ax" + alx"-1 + + a, _lx + a,.
r. (x-3y+3)dx=(2x-6y+1)dy.
s. x sin (y/x) dy = (y sin y/x + x) dx.
t. (4x -y -2)dx+(x+y+.2)dy =0.
u. (3x2 - 6xy) dx - (3x2 + 2y) dy = 0.
v. y" = 15y - 2y' + 130 sin x.

158. Power-Series Method

If a power series converges to zero :

(1) 0=bo+blx+b2x2+...+br-lxr-'.+brxn+...,
for all x such that I xj < a, then all coefficients are zero; that is

(2) bo=0, bi=0, b2=0,...,br=0,....
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Let (1) hold for all x such that jxj < a. First set x = 0 so that 0 = bo +
bl 0 + b2.0 + and hence bo = 0. Since (1) holds, then term-by-term
derivatives (see Sec. 146) are permissible:

D,,bo + DSblx + Dyb2x2 + ... + Dxb nx n + .. .

(3) 0=0+b1+2b2x+3b3x2+ +nbnxn-1+ for allIxj <a.

In this equation set x = 0 and see that bl =0. The derivative of both sides
of (3) yields

+n(n-1)b,Xn-2+ foralllxj<a
and hence b2 = 0. By continuing in this way, (2) holds.

Conversely, if (2) holds, then (1) does also.
The fact that (1) holds if and only if (2) holds will be used to obtain

solutions in terms of power series for some differential equations. As will be
seen below, the power-series method entails considerable manipulation and
hence, in practice, is not turned to until other methods have been tried
unsuccessfully. We shall, however, illustrate the method by a simple example
which could be solved more easily by other methods.

Example 1. Determine constants ao, al, a2, , a,,, . such that

(4) y = ao + alx + a2X2 + ... + an_1Xn-1 +

will be the general solution of the differential equation

(5) 2d- -y =0.

Solution. It is assumed that the power series in (4) converges in some interval
with center at the origin and hence (see Sec. 146) that its derivative may be obtained
by taking derivatives term-by-term:

(6)
dy
dx = a1 + 2a2x + 3a3x2 ... + (n - 1)an_1xn-2 ± na,,xn-1 + .. .

with the result converging in the same interval. Subtract the terms of (4) from two
times the terms of (b) and collect like powers of x to obtain

(7) 0 = 2 dx - y = (2%t1 - ao) +,(2 .2a2 - al)x

+ i(2 .3a3 - a2)x2 + ... + (2nan - a,1)xn-1 + .. .

From the above discussion all coefficients must be zero:

(8)
2a1 - ao = 0, 2 2a2 - a1 = 0, 2 3a3 - a2 = 0, , 2nan - an_1 = 0,
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Hence al = Ja0, a2 = aal = sao, a3 = sae = s(sao) = Sao, etc. The first four
terms of the series in (4) are thus

y = a0 + Za0x + ga0x2 + 48aox3
+ ....

From these few terms, however, we cannot determine whether the series converges
or not. We thus write the first n equations of (8) as

2a1 = ao
2.2a2=a1
2.3a3 = a2

2nan = an_,.

The product of the n terms on the left is equal to the product of the terms on the
right :

271n! ala2a3... an = aoala2 .. an-1.

By cancelling factors, the result is 21n! an = ao so that

ao
an = 2nn!

and thus (4) becomes

y=ao+2x+222x2+2Z3x3+...+2an!xn+...

((" x 1 x 2 1 3
(9) y=a0+2+(2+(x) +...+ni 2 +...1.

At this point, as a matter of logic, we have not proved that (9) is the general
solution of (5). We have merely shown: If (5) has a solution in the form (4), then (9)
must be this solution. It remains first to determine whether (9) converges and if it
does then to check whether (9) satisfies (5).

The series in (9) converges for x = 0 and for x 0 0 the ratio test may be used:

lim
n-+ co

1 x n+l 1 x n
(n + 1)! (2 n! 2)

XI2(n1

+ 1) = 0 < 1.

Thus (see p. 469), the series in (9) converges for all x and hence its derivative may be
obtained by taking term-by-term derivatives with the resulting series converging for
all x (see p. 477). A check may now be made to show that (9) satisfies the given
equation 2y' - y = 0.

Notice that ao is not determined and indeed is arbitrary; it is the arbitrary
constant of the general solutiont of the first-order differential equation (5).

The summation index n on either side of

(10) 1 n(n - 1)anxn-2 = I (n + 2)(n + 1)an+2xn

n=2 n=0

t By other methods, the solution of (5) is y = cex/'. Notice also that the series in (9)
is equal to apex/2.
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is a "dummy index" in the sense that either side of (10) written out is
2 la2x° + 3 2a3x + 4. 3a4x2 T and does not contain n.

In the next example we use (10), and it is well to have a method of starting
with the left side of (10) and obtaining the right side. On the left of (10) set
m = n - 2. Hence, if n = 2 then m = 0, if n = 3 then m = 1, etc. Also,
n=m±2andhence

00 Co

I n(n - 1)anx"-2 = I (in + 2)(m + 1)am.+2x"
n=2 m=0

Now, on the right (and on the right only) change the dummy index m to n
and the result is (10).

Example 2. Obtain the power-series solution of

(11) (1 - x2)y" - 6xy' - 4y = 0.

Solution. We first assume (11) has a solution in the form (4) (but write (4) using
summation notation), obtain the corresponding series for y' and y" (on the right of
the double line below), then multiply by the respective coefficients given on the
left of the double line, and add the results in the form (12):

-4

-6x

(I - X2)

00

nxny'=Ga
n=0
a

y' _ .1 na,,x"-1 (summation starts with n = 1)
16=1

x
y' _ I n(n - 1)anx"-2

n=2
(starts with n = 2)

(12) n(n - 1)a"x"-2 - n(n - 6nanx- 0.
In'=* 2 n=2 n=1 1L=°

The first summation is now changed to agree with the others in having x" instead of
x"-2 (see (10)):

co 00 Co Co

'I (n + 2)(n + 1)an+2x" - .1 n(n - 1)anx'L - 16nan)c" - 14anx" = 0.
n=0 n=2 11=1 n=0

The second summation starts with n = 2, the third with n = 1, and we thus write
out the terms for n = 0 and n = 1, then collect all summations from n = 2 under
one summation sign:

2 la2x° + 3 2a3x - 6alx - 4a°x° - 4a1x
co

+ _7 [(n + 2)(n + 1)an+2 - n(n -1)an - 6na,L - 0.
n=2

Upon collecting terms we thus have
Co

(2a2 - 4a0) + (6a3 - 10a1)x + 7_ [(n + 2)(n + 1)an.2 - (n + 4)(n + 1)a"]x" = 0.
n-2
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Since all terms must be zero for any x in the eventual interval of convergence, then

(13) a2 = 2a0, a3 = ga, and

(14) = for =2 3 4 ---an+2 n ± 2 an n , , , .

Notice that the subscripts n and n + 2 in (14) differ by 2. It is thus natural to group
the coefficients with even subscripts by replacing n in (14) by 2k:

(15) a2k+2

-2k+2a2k-k+2a2k,
for k =1,2,3,2k+2 k+1

and for the coefficients with odd subscripts to replace n in (14) by 2k 1:

(16) a2k+1 (2k - 1) + 2 a2k-1 2k + 1 a2k-1 for k = 2, 3, 4,

We now arrange two lines according to evenness or oddness of subscripts (using (13)
for the first two entries and (15) or (16) for later ones):

a2 = 2a0 a3 = 3 a1
3

a4 = 2a2 a6 = sa3

9
ag = 3a4 a7 = qas

. . . . . . . . . . . . . . .

k+2. 2k+3
a2k-1azk+$, = k i i a2k a2k+1 2k -+I

Fro the first column (by setting the product of all terms on.the left equal to the
profit ct: of terms on the right)

a2k+2_ = (k. +, 2)ao for k = 0, 1, 2, .

and from the second column

2k + 3
a27.+1. = 3 al for k 0,.1,.2,

Hence y = I anxn = ao + I a2k+2a2k+2 + a2k-F1x2k+1-

00 '0
n=0 k=0 k=0

co 00 2k + 3
= a0 + I (k + 2)a0x2k+2 + alx2k+1,

k-0 k-0 3

(17) y = (k + 2)x2k}2] + Tal 00
I (24' + 3)x24'+1.

k0 3 ka0

Upon applying the ratio test to the first series:

(k+3)x24'+4
2

k+3 _
2

k-+oo (k + 2)X24'+2 I - Ixl k + 2 - I xI

the first series is seen to converge if x12 < I ; that is, if -I < x < 1. The ratio test
also shows that the second series in (17) converges for -1 < x < 1.
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A check will now show that (17) is a solution of the differential equation (11),
but only for -I < x < 1.

Notice that a° and a1 are arbitrary and that the general solution of the second-
order differential equation (11) must have two arbitrary constants.

PROBLEMS

1. Even though some other method may be easier, find the series solution of:
a. y' = 2xy. e. (x2 + I)y" + 6xy' + 6y = 0.
b. y'=y-x. f. (x2-i)y"-6y=0.
C. Y" + y = 0. g. y" - xy' + 2y = 0.
d. y" + y' = 0. h. (x2 + 1)y" - 4xy' + 6y = 0.

2. Find the particular solution of the differential equation which also satisfies the
initial condition.
a. y" + xy' - 2y = 0; y = 1 and y'= -2 when x = 0.
b. y" + xy' + 3y = x2; y=2 and y' = 1 when x = 0.

159. Indicial Equation

As in the previous section, the differential equation
(1) 2xy" + y, - y = 0

is assumed to have its general solution in the form

(2)

This assumption leads to

cc

y=Yanx".
n=0

CL 0C cc

12n(n - 1)anxn-1 + I nanxn-1 - I anxn = 0,
n=2 n=1 n=°

2n(n; - 1)anXn-1 + I nanxn-1 - an-lxn-1 = 0,
n=2 9l=1 n=1

cc

a1x° - aox°'+ 7.[2n(n - 1)an + nan - an-1]xn-1 = 0.

n=2.

Consequently a1 = a° and

an= 1

n(2n - 1)
a,,-,, n=2,3,4,...

By the usual scheme a,, = 1 a° for n =2,3,4,---
and thus (2) becomes n!3-5-----(2n- 1)

(3) y_ 1 na 1- ° +x+ x2n!3.5.(2n-1)
A check will show that (3) is a solution of (1). Unfortunately, however, (3)
contains only one arbitrary constant so is not the general solution of the
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second-order differential equation (1), since the general solution of (1)
requires two arbitrary constants.

Ftom experience it has been found that a differential equation whose
general solution is not expressible as an ordinary power series may have one
solution y1(x) in the form

(4)

00 00Y=xr 1+anzn =xr+Ianx2+r
2=1 n=1

for one value of r and another solution y2(x) in the same form (4) but with a
different value of r. Whenever this happens then

y = c1y1(x) + c2y2(x),
with c1 and c2 arbitrary constants, is the general solution of the given
differential equation. The following example is an illustration of the
technique.

Example. Show there are two values of r, and corresponding values of a1, a2,
a3, , for each of which (4) is a solution of (1).

Solution. We rewrite (4), its first and second derivatives, and multiply by the
coefficients in (1) :

CO

1

2x

y = xr + a,,Xn+r

n=1
co

y' = rxr-1 + I (n + r)an Xn+7-1

n=1
00

y" = r(r - 1)xr-2 + I (n + r)(n + r - I)anxn+r-2,

n=1
00

2r(r - 1)xr-1 + rxr-1 - x'' + I [2(n + r)(n + r - 1) + (n + r)]anxn+r-1

n=1
m

-57 anxn+r=0
n=1

m a
r(2r - 1)xr-1 - xr + I (n + r)(2n + 2r - 1)anXn}r-1 - I an-1X2+r-1 = 0

n=1 n=2

r(2r - 1)xr-1 - x'' + (1 + r)(2 + 2r - 1)alxr
00

+ _7 [(n + r)(2n + 2r - l)an - an-1]x2+r-1 = 0.

n=°

Upon equating coefficients of powers of x to zero, we have

(5) r(2r - 1) = 0,
I

al (1 + r)(2r + 1) '

(7)
an = (n + r)(2n + 2r - I) an-1 for n = 2, 3, 4, .



Sec. 159 Indicial Equation 517

The equation (5) is called the indicial equation for (1). This indicial equation has
roots r = 0 and r = . We now show that (1) has a solution in the form (4) for each
of these roots.

CASE I. r = 0. Then (6) and (7) become

1
al = 1 and a,,= n(2n - I) for n = 2, 3, 4, .

1
Hence a., =

n! 3 5 (2n - 1)
for n = 2, 3, and (4) becomes

1

Y1(X) + x +I X for all X.
n=2 n! 3 5 (2n - 1)CASE

2. r = . Then (6) and (7) become

al = a and a,, = (2n 1)n an-1 for n = 2, 3, 4, .

1 1

Thus a,, _ _

and (4) becomes

for n=1,2,3,

«
y2(x) = x1/2 1 + x"] for all x > 0.I1_1 3 . 5 ... (2n + 1) n!

A check will show that both y1(x) and y2(x) satisfy (1) in their respective ranges and
thus

y = c1y1(x) + c2y2(x)

is the general solution of (1) throughout the range x > 0.

If the indicial equation has equal roots, or the difference of the roots is an
integer, then further analysis is necessary and we leave this to a later course.

PROBLEMS

1. Find two solutions y1(x) and y2(x) of the differential equation

a. 2xy" + (1 + 2x)y' + 4y = 0. c. 2xy° + (2x + 1)y' + 2y = 0.
b. 3xy" + (2 - x)y' + 2y = 0. d. 4xy" + 2y' + y = 0.

2. Extend the method of Sec. 158 to find the general solution of:

a. y" - (x - #)y = 0 in the form y = r )n.

b. y" - 2(x + 1)y' - 3y = 0 in the form y = 1)".

160. Taylor Series Solutions

Let y be a function all of whose derivatives exist at x = 0. Then the
Taylor expansion about x = 0:

1

(1) y(x)=y(0)±y'(0)x-f-y(2)x2+23!0)x3+...
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is valid (that is, the series converges to y(x)) provided the remainder Rn(x)
after n terms approaches 0 as n -- oo (see Secs. 129-13 1). We shall show how
(1) may be used to obtain approximations of solutions of some differential
equations with initial conditions.

Example. Find the first six terms of (1) if

(2) y" + xy' -2y = sin x; y=1 and y' =j when x = 0.

Solution. The initial conditions may be written as

(3) y(O) = I and y'(0) = I

thus furnishing the first two terms of (1). The differential equation itself may be
written as

(4) y" = -xy' + 2y + sin x so y"(0) = -0(i) + 2(l) + sin 0 = 2

and we have the coefficient of x2 in (1). The derivative of both sides of the first
equation of (4) yields

y" = -(xv" + y') + 2y' - cos x
= -xy" + y' + cos x and y"(0) = -0(2) + z + cos 0 = 3.

Then y(4) = -xy ' - y" + y" - sin x = -xy' - sin x, y(4)(0) = 0. Also

ys> = -xy(4) - y" - cos x and ys>(0) _ - - 1 = _ g
Hence, the first six terms of (1), where y is presumably the solution of (2), is

1 2
2 3 +0 _ 5 5 +...y=1 2x+2ix i

T-31
X3

31x3
4iX4

2-5-f
x

1 1 1

(5) y = 1 +2 x + x2 + 4x3 -
48
-x5+....

By continuing the above process it should be seen how any desired number of
coefficients may be computed. As yet, however, we have no assurance that
the resulting series will converge, and it may be difficult to determine the nth
coefficient in terms of n. It is thus well to know the following theorem whose
proof we cannot give here.t

THEOREM. If P(X), Q(x), and f (x) have Taylor expansions about x = 0
which are valid for Jxj < a, then the solution of

y" + P(x)y' + Q(x)Y =f(x); Y(0) = a0, Y`'(0) = al

(notice the coefficient of y" is 1) also has a Taylor expansion about x = 0
which is valid for I xj < a.

t See page 363 of Ordinary Differential Equations by Wilfred Kaplan (Boston: Addison-
Wesley Publishing Company, Inc., 1958).
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In(2),
Q(x)=-2+0.x+0.x2+..., and

x3 x'f(x)=sinx=x-3!+-
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are valid for all x so the series of which (5) gives the first six terms is a solution
of (2) valid for all x.

The Taylor expansion of the solution of

(1 - x)y" + xy' - 2y = sin x; y(0)= 1,y'(0)=
is valid only for IxI < 1 since, in order to apply the above theorem, the
equation should be written

+ x y, 2 sinx
1-x 1-x 1-x

for which P(x) =
x

x
= x + x2 + x3 + for IxI < 1 with the same1-

interv1a1 of convergence for the power series expansions of

2 and f (x) = .

1 - x 1 - x

PROBLEMS

1. Find the first six terms of the Taylor expansion of the solution of:
a.y"+xy'-y=sinx; y=1, y'=2 if x=0.
b.y"+xy'-y=sinx; y=0, y' = 0 if x = 0.
c.(1+x)y"+xy'-y=sinx; y=1, y'=2 if x=0.
d.y"+exy'-y=1+x-sin x; y=1, y'=0 if x=0.

2. If the supplementary conditions are given at x = x° (instead of at x = 0) then
the Taylor expansion

y(x) = y(x°) + y (x0) (x - x°) + -"(- (x - z )2 + .. .
1! 2! °

may be used. Find five terms of the Taylor expansion of y if:

a. xy" +x2y' - 2 y = In x; )'=O and y' = 2 if x = 1.
b. x2y" - 2xy' + (x - 2)y = 0; y = 2 and y' =0 if x = 2.

sin x
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While working on a Ph.D. thesis in Physics, the candidate obtained a function
f of a single variable satisfying

J (x3)f (xl - X2) = 0(1) ,/ (x1)f (x2 - X3) + f (x2)f (x3 - x1) +
{

for all real xl,x2,x3. Further work was delayed until a simple expression for
f (x) could be obtained. As far as the physicist was concerned, f (x) could be
assumed to have a Taylor expansion converging to it for all x.

A graduate student in Mathematics helped out as follows.
First set x1 = x2 = x3 = 0 to obtain 3f2(0) = 0 so that

(2) f (O) = 0.

If f(x) = 0 for all x, then (1) is satisfied, but this trivial solution has no
physical significance. Thus consider that there is an xl such that

(3) f (x1) 0 0.

Take x2 = x1. Then from (1) and (3)

f(x1 - x3) + f(x3 - x1) = 0.

Upon setting x = x1 - x3, then

(4) f(x) = f (-x)
so that f is an odd function.

Next set x2 - x3 = x1 in (1):

f2(x1) + f (X1 + x3)f (x3 - x1) + f (x3)f (-x3) = 0.

Set x1 = x, x3 = y, and use (4) to obtain

(5) P (X) -(y) = f (X + y)f (x - y).
As an undergraduate, the graduate student in Mathematics had solved the

following problem:

Find every twice-differentiable real-valued function f with domain all
real numbers and satisfying the functional equation (5) for all real numbers
x and y.

which was given at the William Lowell Putnam Mathematical Competition of
1963. He took the derivative of both sides of (5) first with respect to x and then
with respect to Y and proceeded from there. If this is not a sufficient hint, a
solution may be found in The American Mathematical Monthly, Vol. 71 (June-
July 1964), 640.



Appendix

Al. Proofs of Limit Theorems. Some of the theorems of Sections 17, 19, and 20 were
not proved and these proofs will now be provided. The theorems are restated for easy
reference.

THEOREM 17. Let f and-g be functions whose limits exist at c:

lim f(x) = L1 and limg(x) = L2,
X-C X-C

and for every number 6 > 0 the domain off, the domain ofg and {x 10 < Ix - cl < 6) have
numbers in common. Then

1. lira [1'(x) + g(x)] = L1 + L2,
s-c

Also, for L1 >

IV. I i m f(x) = ti'L1.
X-C

Recall that I is the only part which has been proved. (Seep. 52.) Let E be an arbitrary
number. We now use this number in the proofs of the remaining parts.

PROOF of II. We shall first prove the auxiliary results:

a. lim L2[ f(x) - L1] = 0, lim L1[g(x) - L2] = 0, and
X-C X-C

b. lim V (x)(x) - L1] (g(x) - L2] = 0.
X- C

Let b be such that if 0 < Ix - cl < 5 then lf(x) - L11 < IL IE+ I . Hence, if 0 < Ix - cl
< 6, then 2

I L2[f (x) - L1]l = IL21 l f (x) - L1l < IL21 IL21E+ 1
E

which establishes the first part of a. The second part of a. follows in a similar manner.
Next, let 61 0 and 62 > 0 be such that

if 0 < Ix - cl < 61i then f(x) - L11 < 'VE and

if 0 < Ix - cl < 62, then lg(x) - L21 < v'E.

lim [f(x)g(x)] = L1L2.
x-c

lim I = I and lim f(-X) = L1

X-C g(x) L2 X-C g(x) L2

0 and n a positive integer

521
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6 be the smaller of 6, and 62. Thus

if 0 < Ix - cl < 6, then I [f(x) - L1] [g(x) - L.]I = I f (x) - L11 I ,-(X) - LZI

< -'/E-VIE =E
%.iich says that b. holds.

Now notice that

f(x)g(x) = [f(x) - Lj [g(x) - L.] + L2[f(x) - Lj + L,[g(x) - L2] + L1L_.
As x -+ c the first three terms on the right approach 0 while the fourth term is the constant
L,L2. By part I the sum of the limits as x - c of the terms on the right is the limit as x -,- c
of the sum and thus the limit as x c of the left term exists and is equal to L,L_, thus
establishing II.

PaooF of III. First choose 6, > 0 such that

if 0 < Ix - cI < 62, then Ig(x) - L2I < JILZI

which is possible since IL2I > 0 because L. T 0 in this part. Hence, if 0 < Ix - cl < 6,,
then

IL.I = IL. -g(x) +g(x)I 5 IL2 -g(x)I + Ig()I < JIL2I + Ig(x)I and

IL2I - JILZI < lg(x)l; that is,

if 0 < Ix - Cl < 61, then Ig(x)I > fILZI and
Ig(x)I < IL_I

Next choose 62 such that if 0 < Ix - cI < 62, then IS(x) - L_I < IL2IZE. Let 6 be the
smaller of 61 and 62. Hence, if 0 < Ix - cI < (5, then

1 1

g(x) L1

and this says that

(1)

= IL2 -g(x)I = Ig(x) - L2I I < Ig(x) - L 2 1
.

2

Ig(x)L,I IL2I Ig(x)I IL2I IL2I

= Ig(x) - L2I IL IIZ <.1 ILZI2E * I I. = E

lim
1 = 1 = 1

x-.c g(x) L, lim g(x)
z--.c

which is the first part of HE. By omitting x c to save space

L, _ lim.f(x) 1 1

L2 limlrg(x) =
lim f(x) .

lim g(x)
limf(x) limv x) by (1)

W

= lim[fx) 1

J
by II

g (x)

= iimf (x)
g(x)

which is the second part of III and thus the proof of III is complete.

PttooF of IV. An auxiliary result we shall need is:

(2) Ift>2>0, then It-sl < nlt"-s"I
s

where n is a positive integer.
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The following sequence of steps shows that (2) holds:

t" - S" = (t - S) (t"-1 + P-$ s + to-2 S2 + + W-' + S!'-%
n SS. -I 5n-s.

It, - Sni > It - sl Zri
{

2"Y
S 2n-2

S2 + . .. + 2 s"-2 + Jn-1

It-sIsn-1 + 1 1 1F-1 .+2-s+.... 2

= I t - SI sn-1 (2 -
"/

>It - sI s"

s

1)

1 1 I
since- I f 2+ ... + 2"-1-1 = 2- zn

since 2 -
2"

> I,
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which upon multiplying by s/s" yields the second inequality of (2).
In this part IV it is given that L1 > 0. Thus L1/2" is less than L1 and since lim f (x) = L1

z-.c
then for all x sufficiently close to c it follows that f (x) will be greater than L1/2". Let 61 > 0
be. such that if 0 < Ix - cl < 61, then f(x) > L1/2". Hence _

L
(3) if 0 < Ix - cI <6, then /f(x) > Z

Now from (2), with t = v'7(x) and s = it follows that

0 < Ix - cI <6 , , then '-?(x) > 2 and

Itif(x) - ''L1I < L 1 If(x) - L1I.
Next choose 62 > 0 such that

L1
(5) if 0 < Ix - cI < 62i then If(x) - LEI < EF.

Finally, with 6 the smaller of 61 and 62 it follows that-
L

if 0 < Ix - cI < 6, then IV f(x) -- ti' L1I < -,L/ 11 If, (x). - L1I by (4)

L L< - e by (5)

which by definition means that lim Vf(x)'=. L.1..
z-.c

All parts of Theorem 17 have now been proved.

Z1.1.. v L1

THEOREM 19. With c, a, and L numbers, let f be a function such that

limf(t) = L,
t-.a

let u be a function whose range, except possibly u(c), is in the domain off and is such that

(6) u(x) oa if x 0 c, but
lim u(x) = a.
2,-c

Then the composition function off upon u also has limit L at c:

(7) lim f[u(x)] = L.
X- C
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PROOF. Given an arbitrary number e > 0, let e be a positive number such that (since
f has limit L at a)

(8) whenever 0 < I t - al <e, then f (t) - LI <e.

Corresponding to this number e > 0 let d > 0 be such that (since u has limit a at c)

whenever 0 < Ix - cl < <, then u(x) - at < e,

or even more 0 < iu(x) - at < e from (6). Thus, whenever x is such that 0 < Ix - cI < b,
then 0 < Iu(x) - at < e and then in turn, by using (8), f[u(x)] - LI < E. Hence

whenever 0 < Ix - cI < 6, then If [u(x)] - LI < e

and this, from the definition of a limit means that (7) holds.

In case the outside function f is continuous, then slightly different conditions for inter-
changing the limit and f are given in:

THEOREM 20.1. For c and a numbers and for f and u Junctions such that

lim u(x) = a,
s-c

and such that f is continuous at a, then

lim f [u(x)l =f(a)

f [lim u(x)].
z-c

PROOF. In the proof of Theorem 19 replace L throughout by f(a). Now repeat the
proof of Theorem 19 with the minor changes of replacing 0 < It - at < e by merely
it - al < e and 0 < ju(x) - al < e by tu(x) - at < e. The result is a proof of Theorem
20.1.

A2. Continuity Theorems. Throughout this section, f is a function which is continuous
on a closed interval I(a,b]; that is,

(1)

(2)

If a < c < b, then lim f(x) =f(c), while
z-c

lim f(x) = f(a) and Iim f(x) =f(b).
z-.a+

Before proving Theorem 31.2 we prove a lemma.

LEMMA. The function f is bounded on 1[a,b].

PROOF. Corresponding to e = 1 let dl > 0 and d2 > 0 be such that from (2)

if a<x<a+d1 then If(x)-f(a)d <1 and

if b - d4 < x < b, then If (x)(x) - f(b)t < 1.

Hence, f is bounded on the closed intervals I[a,a d- dl/2] and I[b - d2/2,b].
Let A be the set defined by

A = (x a < x < b and f is bounded on 1[a,x];.
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The set A is bounded above by b and A is not empty since a + d,/2 is in A because f is
bounded on I[a,a + d,/2]. Thus, by the axiom on p. 10 the set A has a least upper bound.
Denote this least upper bound by c. Thus

a+ -'<c<b so that a<c<b.

We now show that c = b. For:
(3) Suppose c < b.

Then a < c < b. Corresponding to e = 1 let 6 > 0 be such that [by (1)]

if fix - cl < 6 then I f(x) -f(c)l < 1

with 6 less than the smaller of c - a and b - c. Hence 1 Lc -
2

, c ±
S
z C I[a,b] and

[ s 6] .f is bounded on I c- 2, c + 2'
But c - 6/2 < c so c - (512 is in A (since c is the least upper bound of A); that is,

f is bounded on I Ca,c - 2] .

Thus, f is bounded on the union of I a,c
-,2]

and I
L
c - rS2 , c --

6
2 so

C

f is bounded on I + z].

Consequently, c + 2 is in the set A which contradicts the fact that c is the least upper

bound of A. Hence, the supposition (3) is wrong and therefore c = b.
Thus, b is the least upper bound of the set A. Hence, bb - d2/2 is in A so

f is bounded on 1 La,b - 2 ] and on I Lb - 2', b]

and consequently .f is bounded on I[a,b] as we wished to prove.

THEOREM 31.2. The function f has a maximum and a minimum on I[a,b].

PROOF. Let B be the set defined by

B = {y I y =f(x) for some x on I[a,b]}.

The lemma then states "The set B is bounded." Hence, by the axiom of p. 10 B has a
least upper bound. Let

(4) M be the least upper bound of B.

We shall now show thatf(x) = M has at least one solution on I[a,b]. To do so:

(5) Assume f (x) : M for a < x< b.
Since M is an upper bound of B, then f (x) < M for a < x < b so that under assump-

tion (5)

(6) M - f (x) > 0 for a< x < b.



526 Appendix

Letg be the function defined by

Sec. A2

g(x) = M I
f (X)

for a< x< b

which is permissible since the denominator is r0 by (6). Now is the reciprocal of a
continuous function so is itself a continuous and hence by the lemma is bounded on
I(a,b]. Let N > 0 be such that

N>-g(x)=
I for a<x<b.M-f(x)

Consequently

I 1M- f(x)>_ ,M-N> f(x) for a <x <b.

1
This, since N > 0, says that M - is a smaller upper bound of f on I[a,b] than the least

upper bound M off on I[a,b] and we have a contradiction. Thus, the assumption (5) is
wrong so f (x) = M has a solution on I[a,b]. Let x, be such that a < x, < b and f (x,) = M.
Since M is an upper bound off on I[a,b] it then follows that:

If a<x<b then f(x) <M= f(x,).
Hence f(x,) is the maximum value off on I[a,b].

A similar proof shows that f has a minimum on I[a,b].

Problem. As an alternative proof that '!f has a minimum on I[a,b]," show that the
functiong defined byg(x) _ -f(x), for a < x < b, has a max. on I[a,b], and that -(max.
of g on I[a,b]) = (min. off on I[a,b]).

11A3. The Number e. In Sec. 51 it was proved that, over integer values, Jim 1 +
1

n

exists and then this limit was denoted by e: 'i'. n)

(4)

11n
lim 1+11 =e.
n-oo n///l

1 n+3

Hence, also Jim 1 -i = e.n-. n+1
We shall now prove the existence of the limit and the equality

(5) lim (1 + h)" = e.
h-.0

To accomplish this, first let x be any number such that x > 1 and denote by n,, the
greatest integer <x so that nz is an integer and

i <n=<x<ny+1.

Therefore
I > I > I

nx x n + I

1+ 1> I + 1> 1+ > 1n: X nz +
1 t+3 1

l
z

(
1

%_!

1 nyi+nz)..41>

\l+x/ > +xl > \l+n.+l/ 11+n:+

\i + nr/ \1 + Rxl > l1
+ I 1 + na +

(1
+ nx + 1Y,
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Also, nx - oo if and only if x oo. Consequently, as x co it follows that I 1 .+ 1
n+1 n:

1 "x 1 1 -1
1, I 1 + - -> e, 1 + I e and I1 + - 1 and thus that/ nx + 1\ nx !Tx + 1)"

(6) lim (1 + I sexists and = e, and then also
z-.CO \ x

(7)

1 x-1

lim 1+ =e.
x-.oo x - 1

Next, let x be such that x < -1, set k = -x, notice that x > 1, that

I1+zY-(1-XI Ixx1)24+x11

_ (l + 77-1 411 + x 1 1)

and that k oo if and only if x - oo. Hence, as x - oo the expression after the last
equality sign in the preceding display approaches e 1 [because of (7)] and therefore

1 x

hm +- =e.x

This fact together with (6) may be combined as

lim (i+!)x=e.
IzI-.D X

Finally, for h 0 0 we set x = 1/h and obtain

lim(1+h)11"=e
h-.0

which shows the existence of the limit and the equality (5), as we wished to prove.

A4. Darboux and Riemann Integrals. Let a and b be numbers such that a < b and let
P be a finite set of numbers such that a and b are in P but otherwise each number in P is
greater than a and less than b. Such a set P is thought of geometrically as a partition of
the closed interval I[a,b]. If P consists of the
n + 1 numbers x0, x1, x2, , x,,, then these OR
numbers will be considered as arranged in a I b

increasing order so that + {g x0 x1 x2 xk X.

xk_1<xk for k=1,
with xo = a and x

Figure A4.1

and thus I[a,b] may be thought of as being divided by the points xk into n subintervals

I[xo,x1], I[x1,x2], I[x2,x2], . ,

which may or may not have the same length. The length of the longest subinterval is denoted
by IIPII and is called the norm of P. Thus 0 < xk - xk_1 < IIPII for k = 1, 2, 3, . , n
and the equality holds at least once.
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For example, the set P consisting of the n + 1 numbers

-xk=a±k b a for k=0, 1,2, ,n
n

Sec. A4

is a partition of I[a,b], but is a special type of partition since it divides I[a,b] into subintervals
all of the same length

IIPII=bna

A partition P consisting of xo, x,, x2, , x is also denoted by using square brackets

as [x0,x1,x2, , so that
P = [XO,x1+x2, ' ' , X'11

and each of the numbers xO, x,, x2, , x will be called an element (or point) of the set.
Also, we shall use t!Ax to denote the difference xk - xk_,; that is,

Okx=xk-xk_1 for

If P, and P2 are two partitions of I[a,b] such that P, C P2, then P2 consists of all points
of P1 together with possibly some more points. The partition P2 is then said to be a

I

Figure A4.2

refinement of P,.
P' If P' and P" are any two partitions of I[a,b], then
P~ the union P = P' V P" is also a partition of l[a,b]
P,UP, since P certainly contains a and b together with a

finite number of points between a and b. Notice that
P = P' u P" is a refinement of P' and also is a refine-
ment of P".

Let f be a function whose domain includes 1[a,b] and is such that f is bounded on I[a,b].
This means that the set

;y I y = f(x) for some x on I[a,b]}

is bounded. Let B be the least upper bound and B the greatest lower bound of this set
(B and B are known to exist by the axiom on p. 10). Then for x any number such that
a < x < b it follows that B < f(x) < B, but also given any number e > 0 there are
numbers x and x satisfying

a < x < b, a < .t< b for which f(x) < B + e and f Q) >B-c.

With P = [x0,x,,x2,' a partition of I[a,b], let Bk and B,; be the g.l.b. and l.u.b.,
respectively, off on I[xk_,,xk] for k = 1, 2, , n. Hence B < Bk < Bk < 8,

BOkX < BkAkX C 6k0,,x < BDx, and

n n n n
I AkX < 1 C 1 B1Okx :5 B_7 ikx.

k-1 k=1 k=1 k=1

The extreme left and right members are equal to B (b - a) and B (b - a), respectively.
The middle terms are denoted by S(P) and S(P):

n n
S(P) = I B141, S(P) = 1 BkOkX

. k=1 k=1

and are called the lower and upper Darboux sums for f on I(a,b] over P. Consequently

(1) B(b - a) -< 5(P) < S(P) < B(b - a).
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Now let x* L, x2*, x,*, - , xn be such that xk_ 1 < xk < xk for k = 1, 2, , n. The sum

(2)

n

f (xk )Akx
k=1

529

is called a Riemann sum for f on I[a,b] over P. Notice that with the same function f, the
same interval I[a,b], and the same partition P of 1 [a,b], there are many Riemann sums
depending upon choices of xi, xQ, , x,*. Since, however,

Xk_1 < Xk < Xk, then Bk 5; f (xk) :5 Bk

so that BkAkx < f(xk) Alx <- B1Akx for k = 1, 2, . , n and therefore

(3) S(P) < G f (xk) Akx <- S(P).
k=1

Hence, for a given function f and a given partition P of I[a,b) all Riemann sums are bounded
below by the lower Darboux sum S(P) and above by the upper Darboux sum S(P).

We now prove four lemmas about upper and lower Darboux sums. For all these lemmas
we restrict the function

(4) f to be bounded on I[a,b].

LEMMA 1. If P is a partition and P1 is a refinement of P consisting of only one more point
than P, then

(5) S(P1) ? S(P), S(P1) S S(P),

0 < S(P1) - S(P) < (B - B) I I P I I , and 0 < S(P) - S(P1) _ < (B - B) I

PROOF. Let P = [xa,x1,x2, , Let the additional point of P1 be denoted by z.
Then z falls between say xi_1 and xi so

xi_1 < z < X.

Now Bi is the l.u.b. off on I[xi_1,x;] so that if xi_1 < x < x then f(x) < Bi. Thus

if xi_1 S x < z then f(x) < Bi

so B, is an upper bound off on I[x;_1,z]. Hence, upon letting B; be the l.u.b. off on I[x;_1,z]
then

. B,.' < B1.

In a similar way Bt where B,! is the l.u.b. off on I[z,xi). Thus

B;(z - xi_1) + P ax, - z) < A(z - xi_1) + Bi(xi - z)

= Bi(z - xi-1 + xi - z) = Bi(xi - xi_1).
Since all subintervals other than I[xi_1,xi] contribute the same to S(P1) as to S(P) it follows
that S(P1) < S(P). Also

S(P) - S(PO) = Bi(xi - xi_1) - [B; (xi - z) + B;(z - xi-1)]

< B(xi - xi_1) - [B(xi - z) + B(z - x1_1)]

= B(xi - xi_1) - B(xi - xi-1)
=(B-B)(xi-xi_1)<(B-B)IIPII

A similar proof holds for lower sums.
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LEMMA 2. If P and P. are partitions with P. a refinement of P (so that P C Pm), then

(6) S(Pm) > S(P) and S(P)

and if Pm has m more points than P, then

(7) 0 < S(P,) - S(P) < m(B - B) IIPII, and 0 <- S(P) - S(Pm) <- m(B - B) IIPII

PROOF. Consider the points of P. which are not points of P and denote these points
by z1, z2, , Z. Let PI be P augmented by z1, let P2 be Pi augmented by z2, etc., until

Z1, Z2, , zm are used up. Then PI, P2, , P. are partitions, PI is a refinement of P,
P2 is a refinement of PI, etc. Thus, by Lemma I

S(P) ? V(P1) ? S(P2) > ... > S(Pm)

which is the second inequality of (6); the first also follows in a similar way. The second
inequality of (7) follows by addition from the m inequalities (which themselves follow
from Lemma 1).

0:5 S(P) - S(P) <- (. - B) IIPII

0:5 S(PI) - S(P2)<- iB - B) I IPII
...............................

0 < a(P,_I) - J(Pm) C ($ - B) IIPII.

By replacing upper sums by lower sums, the first of (7) follows.

LEMMA 3. If P' and P" are any. partitions, then

(8) _$(P') < S(P") and S(P") < S(P').

PROOF. Let P = P' v P". Then

(9)

P' C P so S(P) >t S(P') and S(P) < S(P') and

P" C P so S(P) > S(P") and S(P) < S(P").

But for the partition P itself, S(P) < S(P) which, together with some of the inequalities
of (9), allows us to state

S(r) < S(P) < S(P) < S(P") so 5(P') < S(P")

which is the first inequality of (8) and the second follows by interchanging the prime and
the double-prime.

Now let P be any partition. From Lemma 3 we may thus state:
The upper sum S(P) is an upper bound of all lower Darboux sums. Hence, all lower

Darboux sums are bounded above by S(P) so the least upper bound of all lower Darboux
sums exists and is <S(P). The l.u.b. of all lower Darboux sums depends only upon the
function f and the numbers a and b; it is denoted by f

a

f and is called the lower Darboux

integral off from a to b. Thus

(10) f of _< SA(P).

The Pin (10) was any partition whatever. Thus, the result (10) may be stated:

The lower Darboux integral is a lower bound of all upper Darboux sums.
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Hence, the greatest lower bound of all upper Darboux sums is not less than faf. This

g.l.b. of upper Darboux sums is denoted by faf, is called the upper Darboux integral off
from a to b, and therefore

(11) faf < faf

LEMMA 4. Let c be an arbitrary number. Corresponding to this number c there is a partition
P such that both

(12)

(13)

f a.f - E < S(P) < fbf and

faf<S(P) < faf+E.

PROOF. We first consider the left inequality of (12). Since faf is the l.u.b. of lower

Darboux sums, then faf - E is not an upper bound of lower Darboux sums. Hence, select

a partition P' such that
faf - E < S(P').

In a similar way select a partition P" such that

S(P") < faf + E.

Now let P = P' U P" so P is a partition which is a refinement of both P' and P". Thus,
from Lemma 2,

P' P so S(P) > S(P') and

P" P so S(P) < ,S(P") and hence

(14) f 'f f -, < S(P') < S(P) and 9(P) < $(P") < f
a

f + E.

But, since P is a partition, S(P) < fa f'and S(P) > faf and these inequalities combined with
(14) give both (12) and (13). -

THEOREM A4.1. (Darboux's Theorem). Let f be a bounded function on I[a,b] and let
e be an arbitrary positive number. Corresponding to this number e there is a number S > 0
such that if P is any partition with IIPII < S, then both

(15) faf -,F < S(P) < faf and

(16) faf< S(P) <fa f+E.

PROOF. Corresponding to e/2 let (by using Lemma 4) P' be a partition such that

(17) faf - 2 < RS P') and

(18) .S(P') < J a f + 2 .

P' then has a finite number of points. Let m be the number of points in P'. Set

6= E

2m(B - B) + 1

(where the 1 is added in the denominator just in case B = B). Thus 6 is a positive number.
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Let P be a partition with IIPII < 6. We now claim:

(19) The inequalities (15) and (16) hold for this partition P.

Toward establishing this claim, let

P"=PVP'.

Sec. A4

Then P" is a refinement of P and contains at most m more points than P does, so by
Lemma 2

0 < S(P") - S(P) < m(R - B)IIPII

< m(D - B)
2m(B EB) + 1 < 2

so that
S(P") < S(P) + E/2.

But P" is also a refinement of P' so from Lemma 2

S(P) < S(P").

These last two inequalities together with (17) show that

I a f - 2 < S(P') <_
S(P") < S(P) + E/2,

l a .f - E < S( p)

b
which is the left inequality of (15). The right inequality of (15) follows since fa f is an
upper bound of all lower sums.

The inequalities (16) are left for the reader to prove.
Thus, our claim (19) is established and hence the theorem is proved.

COROLLARY. Let e be an arbitrary positive number. Corresponding to this number E there
is a number S > 0 such that if P is any partition with IIPI I < S, then any Riemann sum over
P lies between

fa f - E and fa f+E.

PROOF. Let d be the number shown to exist in Darboux's theorem and let P =
(x0,x1i - be a partition with IIPII < 6 so that

E.(20)

a

f- < SP) and S(P) < I 'f+

Choose any numbers xi, x2 i , xn such that x,;_1 < x,* < X. for k = 1, 2, n.

Thus by (3)
17.

FS(P) < I {/ (xk) A,x < J(P)
k=1

which together with (20) says that this Riemann sum lies between f a f- E and f a f+ E.
Since P was any partition with IIPII < 6 and the star-points were any choice, then any

Riemann sum over any partition with norm less than b lies between Ia f - E and fa f + E
as we wished to prove. _
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The following theorem shows an additive property of upper and lower integrals.

THEOREM A4.2. Let f be a bounded function on I(a,b] and let c be a number such that
a < c < b. Then
(21) faf+fcf=faf and J¢f+f,f=faf.

PROOF. Let e > 0 be an arbitrary number. Choose partitions P, of I[a,c], P2 of I[c,b],
and P3 of I[a,b] such that

i) faf- <S(P,)< faf,

i i)
16 f - < S(P2) < J.b f, and

iii) Jaf - E < S(P3) 5 la.f

Then let P = P, U P, v P,, P' = P n 1[a,c], and P" = P n I[c,b]. Notice that P' is a
refinement of P,, so that i) holds with P, replaced by P'. In the same way ii) holds with
P. replaced by P" and iii) holds with P3 replaced by P. Also

S(P) = RP') + S(P").
Hence

(22)

faf-E<S(P)=S(P')+S(P")

fof+fcf
af<faf+fcf

But also I

a

f > S(P) = 5(P') + S(P")

so that

e

f- E bf- E
_a 2+_ 2

(23) fa.f>fof+fcf'

so that

From (22) and (23) the left hand equality of (21) follows. The right hand equality of
(21) may be proved in a similar way.

DEFINITION 1. If f is a function whose domain includes l[a,b], if f is bounded on I[a,b]
and if

_faf= faf
then f is said to be Darboux integrable on I[a,b] with Darboux integral I

a

f where

fb b f=af= fa.f= Jaf
DEFINITION 2. If f is a function whose domain includes 1[a,b], if f is bounded on I[a,b],

and if a number R exists having the property:
"Corresponding to each positive number e > 0 there is a number 6 > 0 such that when-
ever P is any partition of 1[a,b] with norm IIPI I < 6 it follows that every Riemann sum
for f over P differs from R by less than e,"

then f is said to be Riemann integrable with Riemann integral denoted by f
a

f (x) dx where

R = faf(x)dx.
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THEOREM A4.3. A function f is Riemann integrable if and only if it is Darboux integrable,
Also, T f is integrable in either sense, then its Riemann and Darboux integrals are equal:

f,b -bf (x) dx = J,, f

PROOF. Let f be Darboux integrable on I[a,b] so that f is bounded on I[a,b] and

f "f= "f= fob

Let e > 0 be arbitrary. Use the corollary of Theorem A4.1 to choose a number 6 > 0 such
that if P is a partition with IIPII < 6, then any Riemann sum over P lies between J b f - E
and Ja f + E. This states, "Over any partition with norm less than 6 any Riemann sum
differs from a f by less than e," and hence (by Definition 2) f is Riemann integrable on
I[a,b] with Riemann integral

fab
[bf(x)dx= fa.f

Next, let f be Riemann integrable and, for short, denote its Riemann integral by R.
Let E > 0 be an arbitrary number and choose a partition P with IIPI I sufficiently small so
that

(24) R-?< f(xk)Akx<R+Z
x=t

for any Riemann sum for f over P. Now choose xk such that

< x(25) x < x and +
C

f ( ) < Bk.k_j k

and choose zk such that

xk k 2(b - a)

E
(26) xk-1 C zk < xk and RA- -

2(b - a <f (xk).

Hence, for this particular subdivision P

n n

S(P) = Bk Akx > [f2(b_a)] Aax= I k=i

74
E

Cn

_
k=1

f (Xk) Akx 2(b --a) k l AkY

n
f(&) AAx - 2(b a

a) (b - a)

n
Ef (xk) Akx -
2

so that
n

If(Xk)Akx<S(P)+2

Since x,, is on I[xk_l,xk] and xk of (24) was any point on I[xk_l,xk) it follows that

E n
R - 2 < I f (xk) Akx.k-I
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From these last two inequalities R - e/2 < S(P) + E/2 so that

R-e<S(P).
Moreover 5(P) < f

a
f since f

a

f is an upper bound (in fact the least upper bound) of all

lower sums and therefore
R -

e<Jabf.

Since R and fa f are constants (certainly independent of e) and a is any positive number, then

R<Iaf.

By repeating such arguments, starting with (26) instead of (25), it follows that

R > Jaf.

Hence

a

f' < R < I 'b f. But I a f< iQ f from (11), so that

Jaf<R<+af<Jaf
'b 'b

which means that all equality signs hold:

R = Ja.f= Jaf

Thus, the lower and upper Darboux integrals are not only equal, so f is Darboux integrable,
but since we have been using R for the Riemann integral, then

fal(x)`tx= f, f,
and this completes a proof of the theorem.

Since a function is Riemann integrable if and only if it is Darboux integrable, we shall
henceforth use the adjective "integrable" or the noun "integral" without either of the
appellatives Riemann or Darboux.

The following theorem gives a definite procedure for computing the integral of an
integrable function.

THEOREM A4.4. For f an integrable function on I[a,b],

7L

(27) faf(x)dx=lim i f a+kb-a b-a

n-oo k=1 n n

b-a b-a'L-1 (a+k=lim I fn-.m
k=0 n n

PROOF. Let e > 0 be arbitrary. Corresponding to this number a let (5 > 0 be such that
if P = [x0, x,, .. , is a partition of I[a,b] with I IPI I < (5, then

n
(28) fa f- E < I f (-"k*) &kx < f a f+ E

k=1

for any choice of x,* such that xk_, -< xL*, < xk for k = 1, 2, , n.
With & > 0 so determined, let N be a positive integer such that

if n>N, then
b-a<6.

n
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Choose a number n such that n > N and let xk be defined by

b - axk=a±k for
n

Sec. A4

Then a = x0, b = x,,, and P = [x0, x1, x2, , is a partition of I[a,b]. Moreover

b-a01x=xk-xk_1= for k=1,2,3, ,n
n

so IIPII =
b a < S and thus (28) holds for this partition P and any choice of xk such

n
that xk_1 < xk < xk for k = 1, 2, , n. Hence, by choosing xk* = x, we have

r n

I

a
f- e< f (x)) .7"x < I

a
f+ e; that is,

k=1

b - ab -afaf -e< . f(a+k
n

n < faf+f.

k=1

Since this holds for any number n > N, then (by definition of a limit) the first equation of
(27) follows. The second equation of (27) is obtained by choosing xx". = xk_1 for k =
1,2,3, ,n.

THEOREM A4.5. Let c be such that a < c < b. Then f is integrable on I[a,c] and on
I[c,b] if and only if f is integrable on I[a,b]. Also, if f is integrable on I[a,b], then

(28) faf+ fc,f-Jaf
PROOF. From Theorem A4.2 (whether f is integrable on I[a,b] or not)

faf =faf+ f cf and faf = Ja.f + f f

But also Iaf<_ fafandJ"f< fbfSo that

(29)
b

(

+
ff+

Ja

f°
Jaf=laffcf<

caf+fc.f=Jaf
r

f+fcf
First let f be integrable on I[a,b]. Then the extreme left and right terms are equal (and

both = f
a

f) so all equalities hold; in particular (using the upper terms enclosed by braces)

(30) faf=faf+fcf=faf+fcf=faf+ fcf=faf
From the second of these equations it follows that

f
C

f =faf whereas faf = J a.f

follows from the third equation. From the first of these equations f is integrable on I[c,b]
and from the second f is integrable on I[a,c]. Then all lower and upper bars may be removed
in' (30) and thus (28) follows.

Next, let jr be integrable on both I[a,c] and I[c,b]. It is left for the reader to check
(starting with (29)) that f is then integrable on I[a,b] and that (28) again holds.
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Let a function f be defined and bounded on a closed interval with end points a and b.

The upper and lower Darboux integrals f b f and f
a

f have been defined only in case the

lower limit of integration a was less than the upper limit of integration b. We now extend
the definition to allow the upper limit to be less than or equal to the lower limit by setting

(31) faf=- f5 4f and faf=- fbf if b<a and

(32) f¢f= fdf=0.

The following theorem is known as the Mean Value Theorem for upper and lower
integrals.

THEOREM A4.6. Let f be bounded on the closed interval having endpoints a and b where
a b. With B and B the least upper and greatest lower bounds off on this interval. then

(33)

b

B.< ¢f <B and Bb¢
a

PROOF. CASE 1. a < b. For P any partition of I[a,b], then (see (1) p. 528)

B(b - a) < 5(P) < S(P) < B(b - a).

Hence, the least upper bound of all lower sums is not greater than B(b - a) nor less than
B(b - a); i.e.,

B(b - a) < f a f< B(b - a).

Upon dividing by the positive number b - a, the first part of (33) is obtained. The second
part of (33) follows in a similar way.

CASE 2. b < a. The interval is now I[b,a] so by Case I

fbf fbfB< - <B and B< <B.

(

a - b - a - b -

Since fbf = -f n f J b f = -Ia .f and a - b = -(b - a), the middle terms retain their
same values if a and b are interchanged, so (33) again holds.

THEOREM A4.7. For a < b, let f be bounded on I[a,b] and let F and F be the functions
defined by

(34) F(x) = f a f and F(x) = fa f, for a < x < b.

If t is such that a < t < b and f is continuous at t, then F'(t) and F'(t) both exist and

(35) F(t) = F'(t) = f(t)

PROOF. First consider a < t < b. Let e > 0 be arbitrary and determine 6 > 0 such
that if t < x < t + 6 then x < b and I f (x) -1(t)! <.E. Let h be such that 0 < h < 6.
Hence, upon applying Theorem A4.2 to the interval I[a,t + h] we have

F(r+h)= fa+hf= f,f+ fir+hf=F(t)+ fi}hf,
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so that, upon transposing F(t) and then dividing by h

f(t + h) - F(t)
l

i+h f

(36) h
h

Sec. A4

Since f (t) - e < f (x) < f (t) + E for t < x < t + h, we apply Theorem A4.6 to the
interval I[t,t + h] to obtain

ft+hf

f(t) - E < (t + h) - t f (t) + E.

These inequalities together with (36) show that

-E<F(t+h)-F(t)- f.(t)<E
h

We have thus shown that corresponding to each number E > 0 there is a number 6 such
that if 0 < h < 6 then

f(t + h) - F(t)

Hence, if f is continuous at t where a < t < b, then

lim
F(t+h)-F(t)- f(t)

h_..,O h

The reader should now check that if f is continuous at t where a < t < b, then

lim
F(t+h)-F(t)-f(t)

h-.o- h

It therefore follows that if jr is continuous at t where a < t < b, then F(t) exists and is
equal to f (t).

The above portion of the proof was written so it could be reread verbatim with every
lower bar changed to an upper bar, and thus (35) holds.

The next theorem is a direct corollary of Theorem A4.7, but the result is too important
to be given as a corollary.

THEOREM A4.8. If a < b and f is continuous on the closed interval I [a,b], then f is integrable
on I[a,b].

PROOF. Let jr be continuous at each x such that a < x < b. Then f is bounded on
I[a.b] (see p. 524) and in the notation of the above theorem

F'(x) = F'(x) = f (x) for a < x < b.

Since these derivatives are equal at each x such that a < x < b, there is a constant c such
that

F(x) = F(x) + c for a < x < b,

(see Theorem 39). But F(a) = F(a) = f a f = f a f = 0 (see (32)] so that c = 0. Hence
F(x) = F(x); that is, -

faf=faf for a<x<b.
In particular f a f = f a f which, by definition, means that jr is (Darboux) integrable on
I[a,b]. -
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A5. Rectifiability. PROOF of Theorem 86, p. 272. From the continuity off' on I[a,b]
the function g defined by

g(x) = ' 1 + f i2(x) for a < x < b

is continuous on I[a,b]. Thus, the integral in (2) exists (see Theorem A4.8).
Let e > 0 be arbitrary. Corresponding to this number e, let 6 > 0 be such that if P

is any partition of I[a,b] with IIPII < 6, then the lower and upper Darboux sums for the
function g relative to P satisfy the inequalities

(3) 5i + 7"(x) dx - E < S(P) < S(P) < f a' 1 + f '2(x) dx + e.

Next, let N be such that if n > N then Ax = (b - a)ln < 6.
Choose an integer n such that n > N and form the partition

P = [xo, x1, x2, . , where x2 = a + k

Next, for k = 1, 2, , n choose xk such that (by the Law of the Mean)

f(xx) -f(xx-1)xA._1 < xk* < x,; and I x =

Now the lower and upper Darboux sums for g are such that
91

S(P) < I V1 + f'2(x,*) S(P).
k=1

Consequently, whenever it is such that n > N, then

f b
-V 1 +

9I IE j'(xx) - f (xx-1) b _ / 2f,2(X) dX - E < I 1 + < V 1 + f' (x) dx + E.
L

]2x
0*x

This states not only that the limit as n -+ co of the lengths of inscribed polygons exist (so
the arc is rectifiable) but also that this limit is the integral in (2), as we wished to prove.

A6. Double Integrals. Throughout this section a, b, c, and d are numbers with- a < b
and c < d and R is the rectangular region

R={(x,y)Ia<x<b and c<y<d}.
Let P1 = [x0, x,, x_, , xm] be a partition (recall that x0 = a and x,,, = b) of the interval
I[a,b] and let P2 = [yo, y1, y2, - ' ' , y.) be a partition of the interval I[c,d]. By taking the
union of the m + n + 2 sets

{(x,y)jx=xj,c<y<d} and {(x,y)Ia<x<b,y=y;}

for i = 0, 1, 2, . , m and .j = 0, 1, 2, , n we obtain what is called a partition P of R.
This partition P is represented by

(1) P = [xo, x1, x2, , x,,,; yo, y1, y2, .. , y,a.

Thus, P may be thought of as a net on R dividing R into m it rectangles

(2) R, = ((x,y) I xi-1 < x < xi, yr-1 < y < y;)

f o r i= 1 , 2, , m and j = 1 , 2, , n. With &,x = x; - x;_1 and o;y = y; - y;-1
the area of R;, is equal to Aix o,y.
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Let f be a function of two variables whose domain includes R and such that f is bounded
on R. Also, let B and B be the greatest lower and least upper bounds off on R. With P
the partition (1) let Bi; and Bi; be the greatest lower and least upper bounds off on the
rectangle R,,. We then let

ni n. M n

S(P) _ Pi; .fix A,y and S(P) _ B;; Six A',y,
i=1j=1 i=1j=1

and call S(P) and S(P) the lower and upper Darboux sums for f over P. Also, for x* and
y* such that xi_1 < x{ <- x; and y;_1 < y* < y; then (x* ,y*) is a point of R;; so
Bu < f (x*,y*) S B,;. Thus

M n

5(p):5 f (x* ,y*) E,x ,;y< S(P)
i=1j=1

and the middle term is called a Riemann sum for f over P.
The least upper bound of all lower Darboux sums is called the lower Darboux double

integral of j on R and is represented by

ffR.f

The g.l.b. of all upper Darboux sums is called the upper Darboux double integral off on R
and is represented by

ffRf
If these upper and lower Darboux double integrals are equal, then f is said to be Darboux
double integrable on R with Darboux double integral j J R f this common value.

The longest diagonal of all the rectangles R;; determined by a partition P is called
the norm of P and is represented by IIPII

Let T be a number. If "Corresponding to each number e > 0 there is a number d > 0
such that whenever P is a partition of R with norm IIPII < r5, then all Riemann sums off
over P differ from T by less than e," then f is said to be Riemann double integrable over R
with Riemann double integral

(b,d)

T = 5J f (x,y) d(x,y)
(a,c)

Section A4 was written in such a way that, with only minor alterations, it could be
reread to obtain results for double integrals analogous to most of the results through
Theorem A4.4 for single integrals. It is recommended that such a rereading be done to see
that for f a bounded function on R then:

1. f is Riemann double integrable if and only if f is Darboux double integrable.
2. If f is double integrable on R in either sense, then its Riemann and Darboux double

integrals have the same value and this value is equal to

(3) lim
a+ib - a c+j- b -ad -c= G1f

(an,n)--(co,C0) in n J m n

The results of Sec. A4 through Theorem A4.4 have thus been extended to double
integrals. Theorem A4.5 is, however, not easily extendable to double integrals, but Theorem
A4.8 (continuity off on a closed interval implies integrability on this interval) does have an
analogue which is proved, however, by methods differing considerably from those used in
the proof of Theorem A4.8. For these different methods, the notion of uniform continuity
of a function is required which we introduce first for functions of one variable.

ni nn
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DEFINITION A6.1. Let f be a function of one variable and let A be a subset of the domain
off (so A might be all of the domain off). The function f is said to be uniformly continuous
on A if for each positive number a there is a number 6 > 0 (which depends both on a and A)
such that if x and s are points of A and

(4) Is - xI <6, then If(s)-f(x)l <e.
An illusive distinction between the notions of "continuity at a point" and "uniform

continuity on a set" should be observed. Recall that f is continuous at a point x, in the
domain off, if for each positive number a there is a number 6 > 0 (which depends upon
both e and x) such that whenever s is in the domain off and

(5) Is - xj < 6, then If (s) - f(x)I < e.

Even though (4) and (5) are identical, it is the words above these respective displays which
convey the distinction between continuity at a point and uniform continuity on a set; the
crux being the respective parenthetic phrases following 6 > 0.

An example of a function which is continuous at each point of its domain, but not
uniformly continuous on its domain, may help to clarify the distinction between these
notions. Such an example is the function f defined by

(6) f(x)=1 for 0<x<1.
X

The domain is therefore the open interval I(0,1). Even for e _ and 6 chosen as any
positive number, there are points of 1(0,1) differing by less than 6 where the values of f
differ by more than e. To see this, choose a positive number x less than 1 such that also
x:!5 6, and let s = x/2. Then is - xI = x/2 < 6 and

If(s)-f(x)I
12 -- I=X> 1 >e.

Hence, there is a positive number e, such that no matter what positive number 6 is given,
then there exist points s and x in the domain of f with is - xI < 6
but If (s) - f (x)I > e; that is, f is not uniformly continuous on 1(0,1). p

We now show, on the other hand, that the function f defined by
(6) is continuous at each point of 1(0 1). To do so select any point x e,

on 1(0,1). Thus, x is a number (to emphasize this we even say that x
" "is a fixed number ) such that 0 < x < 1. Let E be an arbitrary

positive number. Next choose
Si

2

6
_ ex

(x 0)
1 + ex' (x1.0)

which certainly depends upon both e and x. This choice of 6 might Figure A.6
seem cryptic without the aid of Fig. A6 and the hint that we chose
S = x - xl where f (xl) =f (x) + e. Now, lets be such that is - x) < 6, so that

E4 2

x

2

X
+ ex

< s < x +
1 E{ Ex

and hence
1 + ex

< s <
1 l + Ex

1 +ex 1 l I +ex 1
Consequently

x x > s x > x + 2Ex2 x ' that is,

E > s - x > 1 + 2ex >
-e so that

is
- <

. X1

Thus, f is continuous at this point x and, since x was any point on 1(0,1),f is continuous at
each point of 1(0,1).
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DEFINITION A6.2. Let f be a function of two variables and let A be a subset of the domain
of f. The function f is said to be uniformly continuous on A if corresponding to each
positive number a there is a number b > 0 (depending upon both a and A) such that if (x,y)
and (s,r) are two points of A and

\'(s - x)= + (t - y)2 < S, then If (s,t) - f (x,y)I < e.

The following theorem is numbered A6.8 to emphasize its analogy with Theorem A4.8.

THEOREM A6.8. Let f be a function of two variables whose domain includes the rectangle
R. If f is bounded and uniformly continuoust on R, then f is (double) integrable on R.

PROOF. For f any bounded function on R, the upper and lower Darboux integrals exist
and for any partition P of R

r r f
(7) f J R .f < S(P), S(P) < JJ R .f, and J J R f-< J J Rf

Throughout the rest of this proof we take f to be bounded and uniformly continuous on
the rectangle

R={(x,y)Ia<_x<b and c<y<d)
and we arbitrarily choose a positive number e. In terms of this number e, let 77 > 0 be
defined by

(8)
C

2(b - a)(d - c)

From the uniform continuity off on R, let 6 > 0 (depending upon R and 77) be such that
if (x,y) and (s,t) are in R and

(9) ''(s - X)2 + (t - y)2 < 6 then If (s,t) -f (x,y)I < n.

Having determined 6 > 0 in this manner, we select a partition

P[xo, x1, , x.; yo, yi, ... , ynl with IIPII < 6.

Also, let R;j = {(x,y) I x;_, x < xi and yi-, < y < yj} for i = 1, 2, , m and j =
1, 2, , n. If (x,y) and (s,t) both belong to the same rectangle Rij then, since the diagonal
of this rectangle is less than or equal to I IPII < 6, we use (9) to see that f (s,t) - n <f (x,y)
< f (s,t) + 77 of which we use only

f(x,y) <f(s,t)+n.

By thinking of (s,t) as any fixed point of Rij and letting (x,y) run over Rij it follows that
the l.u.b. Bij off on Rjj is such that

.L j <_.f(s,t) + n or &ij - n < f(s,t).

With this inequality established for (s,t) any point of Rij it therefore follows that

(10) Bij - n C Bij

t One purpose of Sec. A7 which follows is to prove that if f is merely continuous on R,
then f is both bounded and uniformly continuous on R. Hence, we will eventually have:
If f is continuous on R, then f is integrable on R.
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and therefore, from Dix = xi - x1_1 and Ay = y; - y;_1, we have

B;, Dix oiy - 77 Aix AiY :5 Aj Aix AJY.

Since this holds for i = 1, 2, , m and j = 1, 2, , n then from the definitions of the
upper and lower Darboux sums over P

na n

S(P)-771 Dix t y < S(P).
i=1ja1

Since the sum multiplying ?I is the area of R then

S(P) - r7(b - a) (d - c) < S(P) so that S(P) - e/2 < S(P)

from the definition (8) of 77. The inequalities (7) hold for any partition whatever, and thus
from the first of these and the inequality we have just obtained

ffRf2 <S(P)-2 <S(P)S f lRf

We have thus shown: If a is any positive number whatever (and f is bounded and uniformly
continuous on R), then

ffRf - E<ffRf

The upper and lower integrals are constants and a is an arbitrary number and therefore

ffRf<ffRf
But the lower integral is always less than or equal to the upper integral and thus (for the
function f we are considering) these integrals are equal:

ffRf- ffRf
which, by definition, means that our function f is integrable on R. This, therefore, establishes
the theorem.

A7. Uniform Continuity. Before studying uniform continuity further we will discuss
some auxiliary geometric properties of intervals and circles.

Recall that an interval is said to be closed if it includes both its end points and all points
between them, and is said to be open if it includes all points between its end points but not
the end points themselves. We shall be considering a family of intervals. A family of inter-
vals is merely a collection of intervals. Instead of "family of intervals" we could say
"set of intervals," but prefer "family" instead of "set" to avoid possible confusion with
sets of points.

Given a closed interval I and a family of intervals, the family will be said to cover I if
each point of I is also a point of at least one of the intervals of the family; in other words,
if I is a subset of the union of all the intervals of the family.

Let I be a closed interval with end points a and b so that

1={xIa<x<b}.
Given a point x of f take an open interval with center at x and length < 1. (The number 1 is
chosen as a convenient upper bound.) Do this for each point of I and let 5 denote the
family of all such open intervals. The family .d covers I since each point of I is even the
center of one of the open intervals of J. Our first theorem is a special cast of what is
known as the Heine-Borel theorem for linear sets.
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THEOREM A7.1. There is a finite subfamily of the family 5 defined above which also
covers I ; that is, there is a finite number of open intervals I I2, , I selected from the

family 3 such that
1c 1lUI2U...UI,,.

PROOF. In the proof of this theorem we shall use the set S defined as follows:

S = {x I a < x and the closed interval l[a,x] can be covered with
a finite number of intervals selected from 9}.

1/2 1/2 The set S is non-empty since the single open interval of
_0 with center at a covers a closed interval with lower

a a+1/4 b end point a. (To be specific, if the interval of J1 which
is centered at a has length 1, then the closed interval

Figure A7.1 I[a, a + 1/4] is covered and 1/4 is a point of S.) Also,
the set S is bounded above (certainly by b + I since

every interval off has length <1 and center on 1). Thus, by the axiom on p. 10, the set
has a l.u.b. which we call z. We now claim that

(1) x>b.

In order to establish (1) assume it is not so; that is,

assume .2 < b.

Under this assumption z is a point of 1 and as such there is an open interval off with
center at z; we call this open interval J. Let x' and x" be points of J (see Fig. A7.2) such
that a < x' < z < x. Then x' is a point of S (since
z = I.u.b. of S and x' < z). Hence, the closed interval
with end points a and x' can be covered with a finite a x' x" b
number of intervals of .0 and then exactly these in-
tervals together with J covers the closed interval with Figure A7.2
end points a and x". Thus, x" is a point of S, but this
is a contradiction since x < x" and z is an upper bound (in fact the l.u.b.) of S.

The above contradiction shows that (1) holds. Thus, b is a point of S which means that
the closed interval T with end points a and b can be covered with a finite number of open
intervals selected from the family 5.

We now turn to considerations of sets in the plane. By a circle we shall mean what might
better be called a circular disk and shall also say, for (h,k) a given point and r > 0, that

{(x,y) I (x - h)2 + (y - k)2 < r2}

is a closed circle and {(x,y) I (x - h)2 + (y - k)2 < r2} is an open circle. Thus, a "closed
circle" is a circular disk including its rim, whereas an "open circle" is a circular disk without
its rim.

What we have been referring to as a rectangle:

R={(x,y)I a<x<b and c<y<d},

we now call a closed rectangle to emphasize it is a rectangular region including its boundary.
As another convenient notation we shall also denote this closed rectangle by

R = [(a,c); (b,d)].
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LEMMA 1. In the plane take a closed interval parallel to the x-axis and let its endpoints be
(a,y) and (b,y). Let 2 be a family of open circles each of diameter <1 and such that each
circle of 2 has its center on the interval and
each point of the interval is the center of a
circle of 2. Then there are a finite number
of circles C1, C2, . , C selected from 2
which cover the interval.

PROOF. The line through (ay) and (by) (a,y) (b,y)
intersects each of the open circles of 2 in
an open interval centered at a point of
the interval and we let Jf be the family
of such open intervals. This family I Figure A7.3
satisfies all conditions of Theorem A7.1
and hence there is a finite number of them I,, I2, . , I whose union contains the given
closed interval. With C1 the circle of 2 having I,. as a diameter, then C, U C2 U U C
also contains the given closed interval.

LEMMA 2. Given the open circles C1, C2, , C of Lemma 1, there are numbers y' and
y", with y' < y < y", such that the closed rectangle [(ay'); (b,y"] is also included in the
union C1 U C2 U U C,,.

PROOF. Look at the intersections of the rims of the circles C,, C2, , C. which are
above or below the interval. (If two of these circles have rims intersecting on the interval,

Figure A7.4

then this point belongs to neither of these
open circles so there must be a third circle
among C,, C2, , C. containing this
point.) Also, draw the lines through (ay)
and (by) perpendicular to the segment and
note the intersections of these lines with
rims of those circles which contain (ay) or
(b,y). The closest of all these (finite number
of) intersections to the interval is a positive

distance above or below the interval. See Fig. A7.4. We take y' and y" such that
y' < y < y" and such that both y - y' and y" - y are less than this distance. Notice
that these numbers y' and y" satisfy the conclusion of the lemma.

The following theorem is a special case of the Heine-Borel theorem for plane sets.

THEOREM A7.2. Let R be the closed rectangle [(a,c); (b,d)] and let W be a family of open
circles each of diameter <1 such that each point of R is the center of a circle of 4', and each
circle of has its center at a point of R. Then there is a finite subfamily of V which covers
R; that is, there are a finite number of open circles C11 C21 , C,a selected from the family
`' such that

PROOF. We first define a set T by:

T = {y c < y and the closed rectangle [(a,c); (by)]
may be covered by a finite subfamily of '}.

First T is non-empty. For by Lemma 1 there are a finite number of circles of W centered
on the closed interval with end points (a,c) and (b,c) which covers this interval. Then by
Lemma 2 there is a number y" > c such that the rectangle [(a,c); (by')] is also covered
by this same subfamily. Hence, y" is in T so T is non-empty.
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Also, T is bounded above by d + 1 and we let y be the l.u.b. of T. We leave it to the
reader to follow arguments similar to those used in the proof of Theorem A7.1 to show
that y > d and hence prove this theorem.

We now use the geometric Theorem A7.2 to prove the following theorem which has
many significant consequences one of which is given in Theorem A7.4. Unless the definition
of uniform continuity is well in mind, this definition (see p. 541) should now be reviewed.

THEOREM A7.3. If a function f of two variables is continuous at each point of a closed
rectangle, then f is uniformly continuous on this rectangle.

PROOF. Let f be continuous on the closed rectangle R and let a be an arbitrary positive
number. Select a point (x,y) of R. Since f is continuous at (x,y), let p(x,y) be a positive
number (depending upon both (x,y) and a/2) such that if (u,v) is a point of R and

(2) V/(u - x)2 + (v - y)2 < P(x,y), then If (u,v) - f (x,y)I < e/2.

Draw the open circle with center (x,y) and (not with radius p(x,y), but)

(3) radius the smaller of Jp(x,y) and J.

Consider this done for each point (x,y) of R and let V be the family of all circles so obtained.
Hence, each point of R is the center of a circle of `P, each circle of `e has its center at a point
of R, and each circle of `e has radius <I.

By using Theorem A7.2, let C,, C2, ... , C be a finite number of circles of `e such that
Rr--

Let r,, r2, , r be the respective radii of these circles. Each radius is positive and, being
finite in number, there is a smallest among them. Let 6 be the smallest of r,, r2, , r so
that
(4) 6>0 and also 6<r,,6<r2, ,6<r,,.

We now assert that:
(5) If (s,t) and (u,v) are points of R such that

V(s - u)2 + (t - v)22 < 6 then I f (s,t) - f (u,v)I < e.

Notice that (5) says "f is uniformly continuous on R" and thus the proof of this assertion
will finish the proof of the theorem.

Let (s,t) and (u,v) be points of R such that

(6) '/(s-u)2+(t-v)2<6.
Now (s,t), being a point of R, lies in at least one of the circles C,, C21 , C,,. We denote by
Ck one of these circles containing (s,t) and also specify its center as(xk,yk) and its radius as rk.

Hence, the distance between (s,t) and (xk,yk) is <rk:

V (s - xk)2 + (t - y,)2 < rk = ip(xk,yk) < P(X,,yk)
so by (2)

(7) If(s,t) - f(xk,yk)I < e/2.

Figure A7.5

From (6), '/(s - u)2 + (t - v)2 < 6 < rk - iP(Xk,yk) Hence,
the distance from (u,v) to (s,t) is <f p(xk,yk) and also the distance
from (s,t) to (xk,yk) is <1p(xk,yk) so the distance from (u,v) to
(xk,yk) is less than p(xk,yk):

V (U - xk)2 + (v yk)2 C -\/(U -- 3)2 + (t - v)2 + VV (S - xk)2 + (t - Yk)2

< ZP(Xk,yk) + zp(xk,Yk) = P(Xk,yk)
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Thus, by (2)

J(8) IJ `u,v) - J (xk,y)L)I < E/2.

Hence, under the condition (6), both (7) and (8) hold; that is, under the condition (6)

I f ($,t) -f (u,v)I <- If (S,t) - f (xk,yk)I + if (xk,yk) -f (u,v)I

< E/2 + E/2 = e.

This, however, is the assertion (5) and thus the proof of the theorem is complete.

COROLLARY. The function f in the proof of Theorem A7.3 is bounded on R; that is, if a
function is continuous at each point of a closed rectangle, then the function is bounded on the
rectangle.

PROOF. In the notation in the proof of Theorem A7.3, notice the largest and smallest
of the finite number of values

(9) f (xl,yl), f (x2,y2), ... f

Any point (x,y) of R lies in at least one of the circles Cl, C21 , C. so the value f (x,y)
differs from at least one of the values in (9) by less than a/2. Hence, the largest value in
(9) plus E/2 and the smallest value in (9) minus e/2 are upper and lower bounds off on R.

A purpose of Theorem A7.3 and its corollary is so the hypotheses of Theorem A6.8
may be weakened to such an extent that most functions met in practice are known to be
integrable on closed rectangles of their domains. Thus, the results of this section together
with Theorem A6.8 yield the following theorem (already stated in the footnote of p. 542)
which is the complete analogue of Theorem A4.8 for one variable.

THEOREM A7.8. If a function f of two variables is continuous on a closed rectangle R,
then f is integrable on R.

A set A in the plane is said to have zero area if corresponding to each positive number
e there is a finite collection of rectangles whose union contains A and the sum of their areas
is less than e.

Problem 1. Let f be a function which is bounded on a rectangle R and such that the set
of discontinuities off on R has zero area. Prove that f is double integrable on R.

A plane curve is, by definition, the continuous image of a closed interval; that is, there
are continuous functions 4' and TIC such that

C={(x,y)Ix=9(t),y=v(t) for or.<t<f3}

consists of those points and only those points of the curve. In case the set C has zero area,
then the curve is said to have zero areat. The curve is said to be closed if

T(a) = 9,(p) and V(cc) = y(fl)

and is said to be simple closed if, in addition, the points

(97(tl), y(t1)) and Wt2), +V(t2))

are different whenever a C tl < t2 < 9 or a < tl < t2 C fl-

t For an example of a curve which does not have zero area see 1.7. Schoenberg, "On the
Peano Curve of Lebesgue," Bulletin of the American Mathematical Society, Vol. 44 (1938),
p. 519.
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A plane set is said to be bounded if there is some rectangle which includes all points of
the set.

We assume the Jordan Curve Theorem; namely:
Every simple closed curve divides the plane into two regions, one and only one of which
is bounded.

Given a simple closed curve, of the two regions into which it divides the plane, the
bounded one is said to be surrounded by the curve and the curve is said to be the boundary
of this region.

Let G be a region surrounded by a simple closed curve and let f be a function defined at
each point of G (not necessarily at points of its boundary). Let R be a closed rectangle
which includes all points of G and its boundary. Let f * be the function defined by

f (x,y) if (x,y) is a point of G
f * (x,y) _

0 if (x,y) is not a point of G.

If f * is integrable on R, then f is said to be integrable on G with, by definition,

ffGf=ffRf*.
Problem 2. Assume that f is bounded and continuous at each point of G and that the

boundary of G has zero area. Give a geometric argument to indicate that f is integrable on G.

AS. Iterated Integrals. Let f be a function of two variables defined on the closed
rectangle

R={(x,y)Ia<x<b,c<y<d}.
We consider the respective possibilities a) and b) below:

a) It may be that for each (fixed) y such that c < y < d the function f (considered as
a function of x alone) is integrable on the closed interval joining the points (ay)
and (by); that is, it may be that

(1) f
a

f(x,y) dx exists for each y such that c<y <d.

If (1) holds, then we define a function Fon I[c,d] by setting

(2) F(y) = f
a

f (x,y) dx for c <y < d.

b) It may then be that this function F is integrable on I[c,d]; that is, it may be that

(3) f c F(y) dy exists.

If both (1) and (3) hold, then the result of performing first the integration in (1) and then
the integration in (3) is denoted by

(4) f cfa f (x,y) dx dy

and (4) is said to be an iterated integral (x first, y second) offon R.
By assuming the existence of integrals in reverse order, then

(5) f afc .F(x,y) dy dx

is also an iterated integral (y first, x second) offon R.
If both iterated integrals (4) and (5) exist, a natural question is "Are these iterated

integrals equal?" Also, if f is double integrable on R, so

(6) ffRf
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exists "Do the iterated integrals (4) and (5) exist and, if they do, are their values the same
as the value of the double integral in (6)?"

These questions will not be answered here, but we shall prove the following special
case of what is known as the Fubini Theorem.

THEOREM A8.1. If the function f is continuous on the rectangle R, thent both iterated
integrals (4) and (5) exist and have the same value which is also the value of the double integral:

(7) f fR f = f c f a .f (x y) dx dy = Jaf c f (x y) dy dx-

PROOF. With f continuous on R we shall prove the existence of the first iterated integral
and the first equality in (7).

Since f, as a function of two variables, is continuous on R then for each y, where
c < y < d, the function g defined by g(x) = f (x,y) for a < x 5 b is continuous and
hence (by Theorem A4.8) is integrable on I[a,b]. We define the function F by (2) and shall
prove:

(8) The function F is continuous on I[c,d].

Let e be an arbitrary positive number. We again use the fact that the continuity of f
on the closed rectangle R implies the uniform continuity off on R and accordingly deter-
mine 6 > 0 (depending upon a/(b - a) and R) such that if (u,v) and (s,t) are points of R and

(9) V (s - u)2 + (t - v)= < 6, then If (s, t) - f (u,v) I <
E

b - a
Let y be any number such that c < y < d and let h be a number such that

(10) IhI <6 and c5 y + h :5d. (o,d)t----
For n a positive integer let

xk=a+kband (0,y)
n

(o, c)

Oxx - b a for
.n

Hence (xk,y) and (xk,y + h) are points of R

(xk,y+h)

(xk,U)

(a,o)

Figure AS

and the distance between them is <6, because of (10), and therefore by (9)

f (xk,y) E <J (xk:y + h) < f (Xk,y) +
E

ba ba
We now multiply each term by Ax-v, sum from k = 1 to n, and then (by relying upon
Theorem A4.4) take the limit as n --> oo to obtain

faf(x,y)dx-e<faf(x,y+h)dx< fa f(x,y)+E

F(y) - e < F(y + h) < F(y) + E.

Thus, under the conditions (10) we have IF(y + h) - F(y)I < e and hence Fis continuous
at y. Since y was any point of I[c,d], the statement (8) has been proved.

Now that we know F is continuous on I[c,d] we know the first iterated integral in (7)
exists and we now prove the first equality of (7).

t We already know the double integral (6) exists by Theorem A7.8.
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Let e > 0 be arbitrary. Since f is double integrable on R, choose m and n so large (as
justified by Formula (3) on p. 540) that

(11)
f

n in n in
II f

f ,f-E<Y- IBitA,nXAnY<L Bi)AmxAny<J^fRfTE
j=1i=1 9=1i=1

-where Amx = (b - a)/m, xi = a + i Amx f o r i = 0, l , 2, , m,

Any = (d - c)/n, y; = c + j Any for j=0,1,2,---,n,
and Bii and Bi; are the g.l.b. and l.u.b. off on

Ri3= {(x,y)I xi-1 Gx <xi,y,_1 <y <y;}.

By using the Law of the Mean (for single integrals) let x=; be such that

xi_1 < x= < xi and f--'

Hence
m nz

(12) F(y) = f
¢

f (x>y) dx = f z 1 f (x>Yi) dx = f (xZi,y,) Amx.
i=1 i=1

Since (x ,y;) is a point of Ri1, then Bi; < f (xt;,y;) < Bi; in which multiplication by Ax
and summation from i = 1 to in, together with (12), yields

1n nL

Bii Ax < F(y;) Bii AmX.
i=1 i=1

Now multiply by Any and sum from j = 1 to n;
[n nz

G
n n. nt.

I Bii Amx Any C F(yi) Any Bii An,x V.
j=1i=1 j=1 j=1i=1

Hence, from (11),
n

JRf - E < 1 F(y)Any < JJR f+e.
j=1

The outside terms do not depend upon n while the limit as n o0 of the middle term exists
and is (by the continuity of F on I[c,d]) the integral of F from c to d:

fiRf-E<fF(y)dy<SIR f+
Since e > 0 is arbitrary, this establishes the first equality of (7).

The existence of the second iterated integral and the second equality of (7) may be
established in the same manner. Thus, the theorem is proved.

Uniform continuity is also used in proving the following theorem which is frequently
used in more advanced mathematics and applications.

THEOREM A8.2. Let a function f and its partial derived function f, both be continuous
on the closed rectangle R. Then

(13) D f
a

f (x,y) & = fa f,(x,y) d., for c < y < d.

PROOF. Because of continuity, both integrals appearing in (1) exist, but we have to
prove the existence of the derivative and the equality.

Let E > 0 be arbitrary. Since the function f, is continuous on the closed rectangle R,
it is uniformly continuous on R and we let 6 > 0 (depending upon a/(b - a) and R) be
such that if (u,v) and (s,t) are points of R and

(14) V/(u - s)2 + (v - t)2 < 6 then f f,(s,t)I < E/(b - a).
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Now choose a number y such that c < y < d and select a number h such that

(15) 0<Ihl <6 and c<y+h<d.
We next determine a function g defined on I[a,b] as follows: For x such that a < x < b,
let g(x) be such that, by the Law of the Mean for derivatives of functions of one variable,

g(x) is between y and y + h and f (x,y + h) - f (x,y) = f (x,g(x))h.

Notice that the distance between the points (x,g(x)) and (x,y) is less than S so that, from (14),

-E/(b - a) < fv(x,g(x)) - fy(x,y) < e/(b - a),
and therefore

E f (x,y + h) - f (x,y) Eb< h
-fv(xy)<b-a.- a

By integrating (with respect to x) from a to b we obtain

- E < h {ff(xy + h) dx - f a f (x,y) dx } - Ja fv(x, y) dx < E.

Since these inequalities were obtained under the conditions (15), this is the statement that
the derivative in (13) exists and the equality holds. Thus, the proof of the theorem is
complete.

Notice that, under the conditions of the theorem, the following interchange of integral
and limit

lim fb f(x,y + AY) - f(x,Y) dx = b lim
f(x,Y + oy) - f(x,y)f dx

Dy_0 . a AY a AY

is permissible.

A9. Rearrangements of Series. On p. 472 it was shown that

x2 x2 x4 x"In(1+x)=x- 2 +3 4 n
for -1 <x<1.

Notice in particular that x = I is a value for which the series converges and the equality
holds. Upon setting x = 1 we thus have

(1) 1n2=1-1.}.1_1+i_l fl_1+....+(-1)n+11+....
2 3 4 5 6 7 8 n

For illustrative purposes we rearrange this series to show what seems at first to be a paradox.
We use each term of the series (1) once and only once, but rearrange them as

1 1 1_1_1 1 1_ 1 1_ 1_ 1 1

(2) 1-2 4+3 6 8+5 10 12+7 14-16+9
From (1) we have taken the first positive term, then the first two negative terms, then the
first remaining positive term, then the first two remaining negative terms, etc. Notice that
each term of (1) appears once and only once in (2). Call the sequence of partial sums of (2)

(3) s1, s2, s3, 34, Sb: Se, S7, S8, S9, S16, ... , Sn .. .

but first concentrate on the subsequence s2, se, Se, , s2,,,, . Notice that

1 1 1 1 1 1 1 1 1 1S2=1 -2-4,s4=1 -2-4+3 -6-8, s9 =s9+5
10 12'
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1 1 1 1 1 1 1 1

24 3(6817'... +2m-1 4m-2 4m

= (1 -2! -4+ (3-6) -8+...+ \2m1 1 4m1 2) 4m

1 1 1 1 \ / 1 1-2-4+6-8+...+2(2m-1)
4m

1 1 1 1 1 1

-2 1-2 3 4+ +2m-1 2m

The parenthetic expression is a partial sum of the series in (1) and hence

limsg,n=fIn2.
m-.w

But s3m+, and s3m+2 differ from s3,,, by either one or two terms each of which approaches
0 as m -- oo. Thus, for the whole sequence (3)

Hence, although the series (1) and (2) both have exactly the same terms, the series (2)
converges to only one-half the sum of the series (1).

Further discussions of rearrangements of series depend upon the following theorems.

THEOREM A9.1. Let E u be a convergent series all of whose terms are non-negative
(or else all of whose terms are non positive), let L be the sum of the series, and let E U. be a
rearrangement of E u,,. Then E U. also converges to L.

PRoor. First consider all terms non-negative. Let n be a positive integer and select a
positive integer m such that each of the terms U1, U2, . , U is somewhere among the
terms u1, u2, , um. Since no term is negative, then

n m
IU7< u1,<L.
k=1 k=1

Hence, the partial sums of the U-series form a monotonically increasing sequence bounded
above by L. Consequently, the U-series converges and has sum, say M, such that

M:5 L.

This result may be paraphrased as "Given a convergent series of non-negative terms, then
any rearrangement is also convergent with sum < the sum of the given series." Now by
considering the U-series as given, then the u-series is the rearrangement and hence L < M.
Therefore M = L, i.e., both series converge and have the same sum.

If the terms are all non-positive, then apply the above result to obtain E (- Un) _

E u we shall use the notation u,+, and u, defined by

un = u 2lu,I = f u if u;, > 0
un = u,. - lu,j (0 if u > 0

0 if u < 0, u if u < 0.
THEOREM A9.2.
a. If E u is absolutely convergent, then E and E u,, are both convergent and

(4) 11 u,I <- 11 U.I.
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b. If E un and E un are both convergent, then E un is absolutely convergent.
c. If E un is conditionally convergent, then E un diverges to + oo, E un diverges to - oo

while
(5) lim u;, = 0 and lim un = 0.

n- Co n-ao

PROOF of a. By hypothesis E lung converges so E un converges (by Test 8) and

U. +
lunl U. +I lun1

un +2 lunl =dun

showing the convergence of E u,,. Similarly E uu converges. Since all of these series are
convergent, the inequality (4) may be obtained as follows:

I1u,I=I2[un +un]I=I1 un + 1u.I :5 11 1unI + 11 unI
=1: un -I ua =I,[un -un]=IIun1.

PROOF of b. By hypothesis E un and E un are both convergent so E [un - un] is con-
vergent, but un - un = Iu, I so E lung is convergent; that is, E un is absolutely convergent.

PROOF of C. By hypothesis E u is convergent but E lung is divergent. If E un were also
convergent, then E [tun - un] = E lung would be convergent (contrary to hypothesis)
and hence E un is not convergent. Since each un >- 0 then E un, being divergent, must
diverge to +oo. Similarly E un may be seen to diverge to -oo. Even though E un and
E un diverge, the limits (5) hold since lim un = 0 from the convergence of E un.

n-.co

Relative to rearrangements, absolutely convergent series behave much like series of
non-negative (or non-positive) series as shown by:

THEOREM A9.3. Let E un be an absolutely convergent series and let E U. be a re-
arrangement of it. Then E U. is also convergent (even absolutely) and both series have the
same sum.

PROOF. E U is a rearrangement of E un and since these are series of non-negative terms
then E UZ = E un by Theorem A9.1. In the same way E Un = E un. Hence, since all
are convergent series,

Mn 11

- [un ± un)1 uni ( -
lJ Un

InnunU.+
IUnI

THEOREM A9.4. Let E un be a conditionally convergent series and let A be any number.
The given series may be rearranged in such a way that the rearranged series will converge to A.

PROOF. 1. From the given series pick enough non-negative terms in the order in, which
they come so their sum just exceeds A (i.e., so without the last positive term selected the sum
would be less than A). This is always possible since the series of non-negative terms diverges
to +oo (see Theorem A9.2c). In case A is zero or negative take one positive term.

2. Pick out enough negative terms beginning at the first so when their sum is added to
the first group the sum will be just less than A. This is possible since the series of negative
terms diverges to -oo.

3. Pick out enough non-negative terms, beginning with the first such term not already
selected, so the sum of all three groups just exceeds A.

The process of rearranging the given series should now be clear. Since lim u = 0, the
partial sums of the rearranged series approach A. n- Co



Table 1. Four Place Logarithms

Mantissas Proportional Parts

N 0 1 2 3- 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

10 0000 0043008601280170,0212'0253;0294'0334:0374 4 8 12 17 21 25 1 29 33 37

11 0414045304920531056906070645068207190755 4 8 11 1 15 19 23 1 26 30 34

12 0792 0828 0864,08990934!0969 1004;103810721106 3 7 10 14 17 21 24 28 31
13 11391173 1206! 123911271 li 1303;133511367:139911430 3 6 10 13 16 19 23 26 29

14 1461 1492 1523 1553',158411614 1644 1673 170311732
1

3 6 9 12 15 18! 21 24 27
15
16

1959.1987!201417611790'! 1818 184711875,1903 1931,
204120681209521222148!2175;220122271225312279

3 6 8
3 5 8

11 14 17 ;
11 13 16

20 22 25
18 21 24

17 2304.2330 2355'23801240512430124552480250412529 2 5 7 10 12 15 17 20 22
18 2553!2577i2601:26;25126481267212695 2718 274212765 2 5 7 9 12 14 16 19 21
19 278812810.283328562878;29002923.2945 2967 2989 2 4 7 9 11 13 16 18 20

963 8 3 39:
3160 3181 3201 2 4 6 8 11 13 1520 11 - 13010 3032 3054 3075130 17 19

21 3222.3243 3263 3284:330413324334513365 33853404 2 4 6 8 10 12 141618
22
23

3424,3444j34643483,350213522135413560,

3617,3636-3655,3674 3692'3711 3729 3747
3579!3598
3766 3784

2 4 6
2 4 6

8 10 12
7 9 11

141617
131517

24 3802-3820 3838 3856 38741'I38923909j3927 3945.3962 2 4 5 7 9 11 12 14 16
25 397939971401440311404814065;4082!4099; 41164133 2 4 5 7 910 121416
26

27

415014166:4183;42004216 42324249142651

431414330!43464362!4378'4393144094425

4281 14298

44564440

2 3 5

2 3 5

7 8 10
6 8 9

11 13 15

11 1214
28 4472!44874502'4518!4533145481456414579

1

45944609 2 3 5 6 8 9. 11 1214
29 4624146394654 4669;4683.469814713147281 4742'4757 1 3 4 6 7 9 101213
30 4771;4786'480048144829;4843;4857;4871 48864900 1 3 4 6 7 9 101113
31 49831499715011 5024150384914'4928 49424955;4969' 1 3 4 1 5 7 8 101112
32 505115065.5079'50921510551191513251451 515915172 1 3 4 5 7 8 91112
33 5 7 8

1

4 5 8
1 2 4 5 6 7

5 6 7

1 2 4 5 6 7 8

1 2 5 6 7 8

1 2 4 5 6 8

1 2 3 5 6 7 8 9
42 1 2 3 4 5 6 8 9

1 2 3 4 5 6 7 8 9
1 2 6

1 2 3 4 5 6 7 8 9
4 6 7

1

2 3 4 5 6 7 8

4 6 7
1 1 1 2 3 4 5 6 7 8

50 69906998:7007 7016 7024 7033 70427050 7059, 7067 1 2 3 3 4 5 6 7 8
51 707617084;7093:7101 7110

1

7118 7126 7135 17143 7152 1 2 3 3 4 S 6 7 8
52
53

7160;7168;717717185
7243172511725917267

7193
72751

7202
72841

721017218
729217300

7226
173081

7235
7316

1 2 3
1 2 2

3 4 5
3 4 5

6 7 7
6 6 7

54 732417332734017348, 7356' 73641 7372i7380 7388i 7396 1 2 2 3 4 5 6 6 7
N 0 1 1 1 2 1 3 4 5 1 6 1 7

,

1 8 1-9- 12 3 4 5 6 7 8 9
554



Table 1. Four Place Logarithms

Mantissas Proportional Parts

N 0 1 2 3, 4 5 6 7 1 8 9 1 2 3 4 5 6 7 8 9

55 7404 7412! 7419; 7427 7435 7443 7451 7459' 7466 7474 1 2 2 3 4 5 5 6 7
56 7482 7490

1

7497 7505 75131 75201 7528 7536 7543 7551 1 2 2 3 4 5 5 6 7
57 7559 7566 7574 7582 75891 7597 7604 7612 7619 7627 1 1 2 3 4 5 5 6 7
58 7634 7642 7649 7657 7664 7672 7679 7686 6 7701 1 1 2 3 4 4 5 6 7
59 7709 7716. 7723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 5 6 7
60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 1 1 2 3 4 4 5 6 6
61 7853 7860 7868 7875j 7882 7889 7896 7903 7910, 7917 1 1 2 3 3 4 5 6 6
62 7924 7931 7938 79451 79521 7959 7966 79737973 79801 7987 1 1 2 3 3 4 5 5 6
63 7993

1

8000 8007 8014;

1

8021 8028 8035
,

8041 8048 8055 1 1 2 3 3 4 5 5 6
64 8062 8069 8075 8082 8089! 8096 8102 8109 8116 8122 1 1 2 3 3 4 5 5 6
65 8129' 8136 8142 81491 81561 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6
66 8195! 8202! 8209 8215, 8222 8228 8235 8241 8248 8254 1 1 2 3 3 4 5 5 6
67

8
8261;

258
82671 8274

,

8280
8 44

8287
8351

1

8293
8

8299
6 1

8306
0

8312 8319 1 1 2 3 3 4 5 5 6
6 3 83318331 83388338 3 1 357 83 3 837 8376 8382 1 1 2 3 3 4 4 5 6
69 8388 8395 8401

3
8407 8414 8420 8426 8432 8439 8445 1 1 2 3 3 4 4 5 6

70 8451 8457 846 8470 8476 8482 8488 8494 8500 8506 1 1 2 3 3 4 4 5 6
71 8513' 85198525

1

8531 8537 8543; 8549 8555 8561 8567 1 1 2 3 3 4 4 5 6
72
73

8573
8633

8579 8585
8639 8645

8591
8651

8597
8657

8603
8663

8609
8669

8615
8675

8621
8681

8627
8686

1 1 2
1 1 2

3 3 4
2 3 4

4 5 6
4 5 5

74 86921

1

8698:8704- 8710 8716 8722 8727 8733 8739 8745 1 1 2 2 3 4 4 5 5
75 87511 87568762.

'

8768 18774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5
76

77

8808

8865

8814 8820

887118876

8825

8882
18831

8887

8837

8893

8842

8899

8848

8904

8854

8910

8859

8915

1 1 2
1 1 2

2 3 3
2 3 3

4 4 5
4 4 5

78
79

8921
89761

8927!8932I
8982 8987

i

8938
8993

8943
;8998

8949
9004

8954
19009

8960
90151

89651
9020

8971
9025

1 1 2
1 1 2

2 3 3
2 3 3

4 4 5
4 4 5

80 9031 9036 9042 9047 9053 9058 9063 9069 .9074 9079 1 1 2 2 3 3 4 4 5
81 9085 19090-9096 9101 9106 9112 9117 9122 9 3128 913

1

1 1 2 2 3 3 4 4 5
82 9138 91439149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 3 3 4 4 5
83

84

9191

9243

9196'9201

19248 9253

19206

9258
19212

9263

9217

92

9222

9274

9227

27

9232 9238 1 1 2 2 3 3 4 4 5
; 69 9 9 9284 9289 1 1 2 2 3 3 4 4 5

85 9294 92999304
'

9309 19315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5
86 9345 9350 9355 9360 .9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5
87 9395 940019405 9410 '9415 9420 9425 9430 9435

1

9440 1 1 2 2 3 3 4 4 5
88 9445 9450,9455 9460

1 9
9465 9469 9474 94,9 9484 9489

1

0 1 .1 2 2 3 3 4 4
89 9494 9499-9504 950 9513 9518 9523 9528 9533 9538 0 1 1 2 2 3 3 4 4
90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 0 1 1 2 2 3 3 4 4
91
92

9590
9638

9595
9643

19600
9647

9605
9652

!9609
9657

9614
9661

9619
9666

9624
9671

9628
9675

9633
9680

0 1 1

0 1 1

2 2 3
2 2 3

3 4 4
3 4 4

93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 0 1 1 2 2 .3 3 4 4
94
95

9731
9777

9736
(9782

9741
!9786

9745
19791

9750
19795

9754
9800

9759
9805

9763
9809

9768
9814

9773
9818

0 1 1

0 1 1

2 2 3
2 2 3

3 4 4
3 4 4

96 9823 19827 9832 9836 9841 9845 19850 9854 9859 9863 0 1 1 2 2 3 3 4 4
97 9868 19872 9877

1 1 1 598
99

9912
9956

19917 9921 9926
99,69

9930
9

19934
1 7

9939
9 3!

9943 9948 5299 0 1 1 2 2 3 3 3 4
9961 9965 974 99 8 9 8 9987 9991 9996 0 1 1 2 2 3 3 3 4

N 0 1 1 2 3 4 1 5 1 6 7 1 8 1 9 1 2 3 4 5 6 7 8 9

555



Table 2. Trig and Log Trig
[Subtract 10 from logs = n.xxxx if n = 7, 8, or 9]

Radians Degrees
Sine

Value Log
Tangent Cotangent

Value Log Value Log
Cosine

Value Log

-0000 0° 00 .0000 -
.0000 1.0000 0.0000 ;0700' 1.5708

.0029 10 .0029 7.4637 .0029 7.4637 343.77 2.5363 1.0000 .0000 50 1.5679

.0058 20 .0058 .7648 .0058 .7648 171.89 .2352 1.0000 .0000 40 1.5650

.0087 30 .0087 7.9408 .0087 7.9409 114.59 2.0591 1.0000 .0000 30 1.5621

.0116 40 .0116 8.0658 .0116 8.0658 85.940 1.9342 .9999 .0000 20 1.5592

.0145 50 .0145 .1627 .0145 .1627 68.750 .8373 .9999 0.0000 10 1.5563

.0175 1000, .0175 8.2419 .0175 8.2419 57.290 1.7581 .9998 9.9999 89° 00' 1.5533

.0204 10 .0204 .3088 .0204 .3089 49.104 .6911 .9998 .9999 50 1.5504

.0233 20 .0233 .3668 .0233 .3669 42.964 .6331 .9997 .9999 40 1.5475

.0262 30 .0262 .4179 .0262 .4181 38.188 .5819 .9997 .9999 30 1.5446

.0291 40 .0291 .4637 .0291 .4638 34.368 .5362 .9996 .9998 20 1.5417

.0320 50 .0320 .5050 .0320 .5053 31.242 .4947
1

.9995 .9998 10 1.5388

.0349 2°00' .0349 8.5428 .0349 8.5431 28.636 1.4569 .9994 9.9997 88° 00' 1.5359

.0378 10 .0378 .5776 .0378 .5779 26.432 .4221 .9993 .9997 50 1.5330

.0407 20 .0407 .6097 .0407 .6101 24,542 .3899 .9992 .9996 40 1.5301

.0436 30 .0436 .6397 .0437 .6401 22.904 .3599 .9990 .9996 30 1.5272

.0465 40 .0465 .6677 .0466 .6682 21.470 .3318 .9989 .9995 20 1.5243

.0495 50 .0494 .6940 .0495 .6945 20.206 .3055 .9988 9.9995 10 1.5213

.0524 3° 00' .0523 8.7188 .0524 8.7194 19.081 1.2806 .9986 .9994 87° 00' 1.5184

.0553 10 .0552 .7423 .0553 .7429 18.075 .2571 .9985 .9993 50 1.5155

.0582 20 .0581 .7645 .0582 .7652 17.169 .2348 .9983 .9993 40 1.5126

.0611 30 .0610 .7857 .0612 .7865 16.350 .2135 .9981 .9992 30 1.5097

.0640 40 .0640 .8059 .0641 .8067 15.605 .1933 .9980 .9991 20 1.5068

.0669 50 .0669 .8251 .0670 .8261 14.924 .1739 .9978 .9990 10 1.5039

.0698 4° 00' .0698 8.8436 .0699 8.8446 14.301 1.1554 .9976 9.9989 86° 00' 1.5010

.0727 10 .0727 .8613 .0729 .8624 13.727 .1376 .9974 .9989 50 1.4981

.0756 20 .0756 .8783 .0758 .8795 13.197 .1205 .9971 .9988 40 1.4952

.0785 30 .0785 .8946 .0787 .8960 12.706 .1040 .9969 .9987 30 1.4923

.0814 40 .0814 .9104 .0816 .9118 12.251 .0882 .9967 .9986 20 1.4893

.0844 50 .0843 .9256 .0846 .9272 11.826 .0728 .9964 .9985 10 1.4864

.0873 5° 00' .0872 8.9403 .0875 8.9420 11.430 1.0580 .9962 9.9983 85° 00' 1.4835

.0902 10 .0901 .9545 .0904 .9563 11.059 .0437 .9959 .9982 50 1.4806

.0931 20 .0929 .9682 .0934 .9701 10.712 .0299 .9957 .9981 40 1.4777

.0960 30 .0958 .9816 .0963 .9836 10.385 .0164 .9954 .9980 30 1.4748

.0989 40 .0987 8.9945 .0992 8.9966 10.078 1.0034 .9951 .9979 20 1.4719

.1018 50 .1016 9.0070 .1022 9.0093 9.7882 0.9907 .9948 .9977 10 1.4690

.1047 6°00' .1045 9.0192 .1051 9.0216 9.5144 0.9784 .9945 9.9976 84° 00' 1.4661

.1076 10 .1074 .0311 .1080 .0336 9.2553 .9664 .9942 .9975 50 1.4632

.1105 20 .1103 .0426 .1110 .0453 9.0098 .9547 .9939 .9973 40 1.4603

.1134 30 .1132 .0539 .1139 .0567 8.7769 .9433 .9936 .9972 30 1.4573

.1164 40 .1161 .0648 .1169 .0678 8.5555 .9322 .9932 .9971 20 1.4544

.1193 50 .1190 .0755 .1198 .0786 8.3450 .9214 .9929 .9969 10 1.4515

.1222 7° 00' .1219 9.0859 .1228 9.0891 8.1443 0.9109 .9925 9.9968 83° 00' 1.4486

.1251 10 .1248 .0961 .1257 .0995 7.9530 .9005 .9922 .9966 50 1.4457

.1280 20 .1276 .1060 .1287 .1096 7.7704 .8904 .9918 .9964 40 1.4428

.1309 30 .1305 .1157 .1317 .1194 7.5958 .8806 .9914 .9963 30 1.4399

.1338 40 .1334 .1252 .1346 .1291 7.4287 .8709 .9911 .9961 20 1.4370

.1367 50 .1363 .1345 .1376 .1385 7.2687 .8615 .9907 .9959 10 1.4341

.1396 8°00' .1392 9.1436 .1405 9.1478 7.1154 0.8522 .9903. 9.9958 82° 00' 1.4312

.1425 10 .1421 .1525 .1435 .1569 6.9682 .8431 .9899 .9956 50 1.4283

.1454 20 .1449 .1612 .1465 .1658 6.8269 .8342 .9894 .9954 40 1.4254

.1484 30 .1478 .1697 .1495 .1745 6.6912 .8255 .9890 .9952 30 1.4224

.1513 40 .1507 .1781 .1524 .1831 6.5606 .8169 .9886 .9950 20 1.4195

.1542 50 .1536 .1863 .1554 .1915 6.4348 .8085 .9881 .9948 10 1.4166

.1571 9° 00' .1564 9.1943 .1584 9.1997 6.3138 0.8003 .9877 9.9946 81° 00' 1.4137
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Table 2. Trig and Log Trig
[Subtract 10 from logs = n.xxxx if n = 7, 8, or 9]

Degrees
Sine

Value Log
Tangent

Value Log
Cotangent

Value Log
e

Value Log

.1571 9° 00' .1564 9.1943 .1584 9.1997 6.3138 0.8003 .9877 9.9946 81° 00' 1.4137

1600 10 .1593 .2022 .1614 .2078 6.1970 .7922 .9872 .9944 50 1.4108

1629 20 .1622 .2100 .1644 .2158 6.0844 .7842 .9868 .9942 40 1.4079

.1658 30 .1650 .2176 .1673 .2236 5.9758 .7764 .9863 .9940 30 1.4050

.1687 40 .1679 .2251 .1703 .2313 5.8708 .7687 .9858 .9938 20 1.4021

.1716 50 .1708 .2324 .1733 .2389 5.7694 .7611 .9853 .9936 10 1.3992

1745 10° 00' .1736 9.2397 .1763 9.2463 5.6713 0.7537 .9848 9.9934 80° 00' 1.3963
.1774 10 .1765 .2468 .1793 .2536 5.5764 .7464 .9843 .9931 50 1.3934
.1804 20 .1794 .2538 .1823 .2609 5.4845 .7391 .9838 .9929 40 1.3904

1833 30 .1822 .2606 .1853 .2680 5.3955 .7320 .9833 .9927 30 1.3875
.1862 40 .1851 .2674 .1883 .2750 5.3093 .7250 .9827 .9924 20 1.3846
.1891 50 .1880 .2740 .1914 .2819 5.2257 .7181 .9822 .9922 10 1.3817

.1920 11° 00' .1908 9.2806 .1944 9.2887 5.1446 0.7113 .9816 9.9919 79° 00' 1.3788

.1949 10 .1937 .2870 .1974 .2953 5.0658 .7047 .9811 .9917 50 1.3759

.1978 20 .1965 .2934 .2004 .3020 4.9894 .6980 .9805 .9914 40 1.3730

.2007 30 .1994 .2997 .2035 .3085 4.9152 .6915 .9799 .9912 30 1.3701

.2036 40 .2022 .3058 .2065 .3149 4.8430 .6851 .9793 .9909 20 1.3672

.2065 50 .2051 .3119 .2095 .3212 4.7729 .6788 .9787 .9907 10 1.3643

.2094 12° 00' .2079 9.3179 .2126 9.3275 4.7046 0.6725 .9781 9.9904 78° 00' 1.3614

.2123 10 .2108 .3238 .2156 .3336 4.6382 .6664 .9775 .9901 50 1.3584

.2153 20 .2136 .3296 .2186 .3397 4.5736 .6603 .9769 .9899 40 1.3555

.2182 30 .2164 .3353 .2217 .3458 4.5107 .6542 .9763 .9896 30 1.3526

.2211 40 .2193 .3410 .2247 .3517 4.4494 .6483 .9757 .9893 20 1.3497

.2240 -.50 .2221 .3466 .2278 .3576 4.3897 .6424 .9750 .9890 10 1.3468

.2269 13° 00' .2250 9.3521 .2309 9.3634 4.3315 0.6366 .9744 9.9887 77° 00' 1.3439

.2298 30 .2278 .3575 .2339 .3691 4.2747 .6309 .9737 .9884 50 1.3410

.2327 20 .2306 .3629 .2370 .3748 4.2193 .6252 .9730 .9881 40 1.3381

.2356 30 .2334 .3682 .2401 .3804 4.1653 .6196 .9724 .9878 30 1.3352

.2385 40 .2363 .3734 .2432 .3859 4.1126 .6141 .9717 .9875 20 1.3323

.2414 50 .2391 .3786 .2462 .3914 4.0611 .6086 .9710 .9872 10 1.3294

.2443 14° 00' .2419 9.3837 .2493 9.3968 4.0108 0.6032 .9703 9.9869 76° 00' 1.3265

.2473 10 .2447 .3887 .2524 .4021 3.9617 .5979 .9696 .9866 50 1.3235

.2502 20 .2476 .3937 .2555 .4074 3.9136 .5926 .9689 .9863 40 1.3206

.2531 30 .2504 .3986 .2586 .4127 3.8667 .5873 .9681 .9859 30 1.3177

.2560 40 .2532 .4035 .2617 .4178 3.8208 .5822 .9674 .9856 20 1.3148

.2589 50 .2560 .4083 .2648 .4230 3.7760 .5770 .9667 .9853 10 1.3119

.2618 15° 00' .2588 9.4130 .2679 9.4281 3.7321 0.5719 .9659 9.9849 75° 00' 1.3090

.2647 10 .2616 .4177 .2711 .4331 3.6891 .5669 .9652 .9846 50 1.3061

.2676 20 .2644 .4223 .2742 .4381 3.6470 .5619 .9644 .9843 40 1.3032

.2705 30 .2672 .4269 .2773 .4430 3.6059 .5570 .9636 .9839 30 1.3003
.2734 40 .2700 .4314 .2805 .4479 3.5656 .5521 .9628 .9836 20 1.2974
.2763 50 .2728 .4359 .2836 .4527 3.5261 .5473 .9621 .9832 10 1.2945

.2793 16° 00' .2756 9.4403 .2867 9.4575 3.4874 0.5425 .9613 9.9828 74° 00' 1.2915

.2822 10 .2784 .4447 .2899 .4622 3.4495 .5378 .9605 .9825 50 1.2886

.2851 20 .2812 .4491 .2931 .4669 3.4124 .5331 .9596 .9821 40 1.2857

.2880 30 .2840 .4533 .2962 .4716 3.3759 .5284 .9588 .9817 30 1.2828
.2909 40 .2868 .4576 .2994 .4762 3.3402 .5238 .9580 .9814 20 1.2799
.2938 50 .2896 .4618 .3026 .4808 3.3052 .5192 .9572 .9810 10 1.2770

.2967 17° 00' .2924 9.4659 .3057 9.4853 3.2709 0.5147 .9563 9.9806 73° 00' 1.2741

.2996 10 .2952 .4700 .3089 .4898 3.2371 .5102 .9555 .9802 50 1.2712

.3025 20 .2979 .4741 .3121 .4943 3.2041 .5057 .9546 .9798 40 1.2683

.3054 30 .3007 .4781 .3153 .4987 3.1716 .5013 .9537 .9794 30 1.2654

.3083 40 .3035 .4821 .3185 .5031 3.1397 .4969 .9528 .9790 20 1.2625

.3113 50 .3062 .4861 .3217 .5075 3.1084 .4925 .9520 .9786 10 1.2595

.3142 18° 00' .3090 9.4900 .3249 9.5118 3.0777 0.4882 .9511 9.9782 72° 00' 1.2566
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Table 2. Trig and Log Trig
[Subtract 10 from logs = n.xxxx if n = 7, 8, or 9]

Radians Degrees
Sine

Value Log
Tangent

Value Log
Cotangent

Value Log
Cosine

Value Log

.3142 18° 00' .3090 9.4900 .3249 9.5118 3.0777 0.4882 .9511 9.9782 72° 00' 1.2566

.3171 10 .3118 .4939 .3281 .5161 3.0475 .4839 .9502 .9778 50 1.2537

.3200 20 .3145 .4977 I .3314 .5203 3.0178 .4797 .9492 .9774 40 1.2508

.3229 30 .3173 .5015 .3346 .5245 2.9887 .4755 .9483 .9770 30 1.2479

.3258 40 .3201 .5052 .3378 .5287 2.9600 .4713 .9474 .9765 20 1.2450

.3287 50 .3228 .5090 .3411 .5329 2.9319 .4671 .9465 .9761 10 1.2421

.3316 19° 00' .3256 9.5126 .3443 9.5370 2.9042 0.4630 .9455 9.9757 71° 00' 1.2392

.3345 10 .3283 .5163 .3476 .5411 2.8770 .4589 .9446 .9752 50 1.2363

.3374 20 .3311 .5199 .3508 .5451 2.8502 .4549 .9436 .9748 40 1.2334

.3403 30 .3338 .5235 .3541 .5491 2.8239 .4509 .9426 .9743 30 1.2305

.3432 40 .3365 .5270 .3574 .5531 2.7980 .4469 .9417 .9739 20 1.2275

.3462 50 .3393 .5306 .3607 .5571 2.7725 .4429 .9407 .9734 10 1.2246

.3491 20° 00' .3420 9.5341 .3640 9.5611 2.7475 0.4389 .9397 9.9730 70° 00' 1.2217

.3520 10 .3448 .5375 .3673 .5650 2.7228 .4350 .9387 .9725 50 1.2188

.3549 20 .3475 .5409 .3706 .5689 2.6985 .4311 .9377 .9721 40 1.2159

.3578 30 .3502 .5443 .3739 .5727 2.6746 .4273 .9367 .9716 30 1.2130

.3607 40 .3529 .5477 .3772 .5766 2.6511 .4234 .9356 .9711 20 1.2101

.3636 50 .3557 .5510 .3805 .5804 2.6279 .4196 .9346 .9706 10 1.2072

.3665 21° 00' .3584 9.5543 .3839 9.5842 2.6051 0.4158 .9336 9.9702 69° 00' 1.2043

.3694 10 .3611 .5576 .3872 .5879 2.5826 .4121 .9325 .9697 50 1.2014

.3723 20 .3638 .5609 .3906 .5917 2.5605 .4083 .9315 .9692 40 1.1985

.3752 30 .3665 .5641 .3939 .5954 2.5386 .4046 .9304 .9687 30 1.1956

.3782 40 .3692 .5673 .3973 .5991 2.5172 .4009 .9293 .9682 20 1.1926

.3811 50 .3719 .5704 .4006 .6028 2.4960 .3972 .9283 .9677 10 1.1897

.3840 22° 00' .3746 9.5736 .4040 9.6064 2.4751 0.3936 .9272 9.9672 68° 00' 1.1868

.3869 10 .3773 .5767 .4074 .6100 2.4545 .3900 .9261 .9667 50 1.1839

.3898 20 .3800 .5798 .4108 .6136 2.4342 .3864 .9250 .9661 40 1.1810

.3927 30 .3827 .5828 .4142 .6172 2.4142 .3828 .9239 .9656 30 1.1781

.3956 40 .3854 .5859 .4176 .6208 2.3945 .3792 .9228 .9651 20 1.1752

.3985 50 .3881 .5889 .4210 .6243 2.3750 .3757 .9216 .9646 10 1.1723

.4014 23° 00' .3907 9.5919 .4245 9.6279 2.3559 0.3721 .9205 9.9640 67° 00' 1.1694

.4043 10 .3934 .5948 .4279 .6314 2.3369 .3686 .9194 .9635 50 1.1665

.4072 20 .3961 .5978 .4314 .6348 2.3183 .3652 .9182 .9629 40 1.1636

.4102 30 .3987 .6007 .4348 .6383 2.2998 .3617 .9171 .9624 30 1.1606

.4131 40 .4014 .6036 .4383 .6417 2.2817 .3583 .9159 .9618 20 1.1577

.4160 50 .4041 .6065 .4417 .6452 2.2637 .3548 .9147 .9613 10 1.1548

.4189 24° 00' .4067 9.6093 .4452 9.6486 2.2460 0.3514 .9135 9.9607 66° 00' 1.1519

.4218 10 .4094 .6121 .4487 .6520 2.2286 .3480 .9124 .9602 50 1.1490

.4247 20 .4120 .6149 .4522 .6553 2.2113 .3447 .9112 .9596 40 1.1461

.4276 30 .4147 .6177 .4557 .6587 2.1943 .3413 .9100 .9590 30 1.1432

.4305 40 .4173 .6205 .4592 .6620 2.1775 .3380 .9088 .9584 20 1.1403

.4334 50 .4200 .6232 .4628 .6654 2.1609 .3346 .9075 .9579 10 1.1374

.4363 25° 00' .4226 9.6259 .4663 9.6687 2.1445 0.3313 .9063 9.9573 65° 00' 1.1345

.4392 10 .4253 .6286 .4699 .6720 2.1283 .3280 .9051 .9567 50 1.1316

.4422 20 .4279 .6313 .4734 .6752 2.1123 .3248 .9038 9561 40 1.1286

.4451 30 .4305 .6340 .4770 .6785 2.0965 .3215 .9026 .9555 30 1.1257

.4480 40 .4331 .6366 .4806 .6817 2.0809 .3183 .9013 .9549 20 1.1228

.4509 50 .4358 .6392 .4841 .6850 2.0655 .3150 .9001 .9543 10 1.1199

.4538 26° 00' .4384 9.6418 .4877 9.6882 2.0503 0.3118 .8988 9.9537 64° 00' 1.1170

.4567 10 .4410 .6444 .4913 .6914 2.0353 3086 .8975 .9530 50 1.1141

.4596 20 .4436 .6470 .4950 .6946 2.0204 3054 .8962 .9524 40 1.1112

.4625 30 .4462 .6495 .4986 .6977 2.0057 .3023 .8949 .9518 30 1.1083

.4654 40 .4488 .6521 .5022 .7009 1.9912 .2991 .8936 .9512 20 1.1054

.4683 50 .4514 .6546 .5059 .7040 1.9768 .2960 ; .8923 .9505 10 1.1025

.471.2 27° 00' .4540 9.6570 .5095 9.7072 1.9626 0.2928 .8910 9.9499 63° 00' 1.0996
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Table 2. Trig and Log Trig

[Subtract 10 from logs = n.xxxx if n = 7, 8, or 9]

Radians Degrees
Sine

Value Log
Tangent Cotangent Cosine

Value Log Value Log Value Log

.4712 27° 00' .4540 9.6570 .5095 9.7072 1.9626 0.2928 .8910 9.9499 63° 00' 1.0996
.4741 10 .4566 .6595 .5132 .7103 1.9486 .2897 .8897 .9492 50 1.0966
.4771 20 .4592 .6620 .5169 .7134 1.9347 .2866 .8884 .9486 40 1.0937

.4800 30 .4617 .6644 .5206 .7165 1.9210 .2835 .8870 .9479 30 1.0908

.4829 40 .4643 .6668 .5243 .7196 1.9074 .2804 .8857 .9473 20 1.0879

.4858 50 .4669 .6692 .5280 .7226 1.8940 .2774 .8843 .9466 10 1.0850

.4887 28°00' .4695 9.6716 .5317 9.7257 1.8807 0.2743 .8829 9.9459 62° 00' 1.0821

.4916 10 .4720 .6740 .5354 .7287 1.8676 .2713 .8816 .9453 50 1.0792

.4945 20 .4746 .6763 .5392 .7317 1.8546 .2683 .8802 .9446 40 1.0763

.4974 30 .4772 .6787 .5430 .7348 1.8418 .2652 .8788 .9439 30 1.0734

.5003 40 .4797 .6810 .5467 .7378 1.8291 .2622 .8774 .9432 20 1.0705

.5032 50 .4823 .6833 .5505 .7408 1.8165 .2592 .8760 .9425 10 1.0676

.5061 29°00' .4848 9.6856 .5543 9.7438 1.8040 0.2562 .8746 9.9418 61° 00' 1.0647

.5091 10 .4874 .6878 .5581 .7467 1.7917 .2533 .8732 .9411 50 1.0617

.5120 20 .4899 .6901 .5619 .7497 1.7796 .2503 .8718 .9404 40 1.0588

.5149 30 .4924 .6923 .5658 .7526 1.7675 .2474 .8704 .9397 30 1.0559

.5178 40 .4950 .6946 .5696 .7556 1.7556 .2444 .8689 .9390 20 1.0530

.5207 50 .4975 .6968 .5735 .7585 1.7437 .2415 .8675 .9383 10 1.0501

.5236 30° 00' .5000 9.6990 .5774 9.7614 1.7321 0.2386 .8660 9.9375 60° 00' 1.0472

.5265 10 .5025 .7012 .5812 .7644 1.7205 .2356 .8646 .9368 50 1.0443

.5294 20 .5050 .7033 .5851 .7673 1.7090 .2327 .8631 .9361 40 1.0414

.5323 30 .5075 .7055 .5890 .7701 1.6977 .2299 .8616 .9353 30 1.0385

.5352 40 .5100 .7076 .5930 .7730 1.6864 .2270 .8601 .9346 20 1.0356

.5381 0 .5125 .7097 .5969 .7759 1.6753 .2241 .8587 .9338 10 1.0327

.5411 31° 00' .5150 9.7118 .6009 9.7788 1.6643 0.2212 .8572 9.9331 59' 00' 1.0297

.5440 10 .5175 .7139 .6048 .7816 1.6534 .2184 .8557 .9323 50 1.0268

.5469 20 .5200 .7160 .6088 .7845 1.6426 .2155 .8542 .9315 40 1.0239

.5498 30 .5225 .7181 .6128 .7873 1.6319 .2127 .8526 .9308 30 1.0210

.5527 40 .5250 .7201 .6168 .7902 1.6212 .2098 .8511 .9300 20 1.0181

.5556 50 .5275 .7222 .6208 .7930 1.6107 .2070 .8496 .9292 10 1.0152

.5585 32° 00' .5299 9.7242 .6249 9.7958 1.6003 0.2042 .8480 9.9284 58° 00' 1.0123

.5614 10 .5324 .7262 .6289 .7986 1.5900 .2014 .8465 .9276 50 1.0094

.5643 20 .5348 .7282 .6330 .8014 1.5798 .1986 .8450 .9268 40 1.0065

.5672 30 .5373 .7302 .6371 .8042 1.5697 .1958 .8434 .9260 30 1.0036

.5701 40 .5398 .7322 .6412 .8070 1.5597 .1930 .8418 .9252 20 1.0007

.5730 50 .5422 .7342 .6453 .8097 1.5497 .1903 .8403 .9244 10 .9977

.5760 33° 00' .5446 9.7361 .6494 9.8125 1.5399 0.1875 .8387 9.9236 57° 00' .9948

.5789 10 .5471 .7380 .6536 .8153 1.5301 .1847 .8371 .9228 50 .9919

.5818 20 .5495 .7400 .6577 .8180 1.5204 .1820 .8355 .9219 40 .9890

.5847 30 .5519 .7419 .6619 .8208 1.5108 .1792 .8339 .9211 30 .9861

.5876 40 .5544 .7438 .6661 .8235 1.5013 .1765 .8323 .9203 20 .9832

.5905 50 .5568 .7457 .6703 .8263 1.4919 .1737 .8307 .9194 10 .9803

.5934 34° 00' .5592 9.7476 .6745 9.8290 1.4826 0.1710 .8290 9.9186 56° 00' .9774

.5963 10 .5616 .7494 .6787 .8317 1.4733 .1683 .8274 .9177 50 .9745

.5992 20 .5640 .7513 .6830 .8344 1.4641 .1656 .8258 .9169 40 .9716

.6021 30 .5664 .7531 .6873 .8371 1.4550 .1629 .8241 .9160 30 .9687

.6050 40 .5688 .7550 .6916 .8398 1.4460 .1602 .8225 .9151 20 .9657

.6080 50 .5712 .7568 .6959 .8425 1.4370 .1575 .8208 .9142 10 .9628

.6109 35° 00' .5736 9.7586 .7002 9.8452 1.4281 0.1548 .8192 9.9134 55°00' .9599

.6138 10 .5760 .7604 .7046 .8479 1.4193 .1521 .8175 .9125 50 .9570

.6167 20 .5783 .7622 .7089 .8506 1.4106 .1494 .8158 .9116 40 .9541

.6196 30 .5807 .7640 .7133 .8533 1.4019 .1467 .8141 .9107 30 .9512

.6225 40 .5831 .7657 .7177 .8559 1.3934 .1441 .8124 .9098 20 .9483

.6254 50 .5854 .7675 .7221 .8586 1.3848 .1414 .8107 .9089 10 .9454

.6283 36° 00' .5878 9.7692 .7265 9.8613 1.3764 0.1387 .8090 9.9080 54° 00' .9425
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Table 2. Trig and Log Trig
[Subtract 10 from logs = n.xxxx if n = 7, 8, or 9]

Radians Degrees
Sine Tangent Cotangent

Value LogValue Log Value Log
Cosine

Value Log

6283 36° 00' .5878 9.7692 .7265 9.8613 1.3764 0.1387 .8090 9.9080 54° 00' .9425

.6312 10 .5901 .7710 .7310 .8639 1.3680 .1361 .8073 .9070 50 .9396

.6341 20 .5925 .7727 .7355 .8666 1.3597 .1334 .8056 .9061 40 .9367

.6370 30 .5948 .7744 .7400 .8692 1.3514 .1308 .8039 .9052 30 .9338

.6400 40 .5972 .7761 .7445 .8718 1.3432 .1282 .8021 .9042 20 .9308

.6429 50 .5995 .7778 .7490 .8745 1.3351 .1255 .8004 .9033 10 .9279

6458 37° 00' .6018 9.7795 .7536 9.8771 1.3270 0.1229 .7986 9.9023 S3° 00' .9250

.6487 10 .6041 .7811 .7581 .8797 1.3190 .1203 .7969 .9014 50 .9221

.6516 20 .6065 .7828 .7627 .8824 1.3111 .1176 .7951 .9004 40 .9192

.6545 30 .6088 .7844 .7673 .8850 1.3032 .1150 .7934 .8995 30 .9163

.6574 40 .6111 .7861 .7720 .8876 1.2954 .1124 .7916 .8985 20 .9134

.6603 50 .6134 .7877 .7766 .8902 1.2876 .1098 .7898 .8975 10 .9105

.6632 38° 00' .6157 9.7893 .7813 9.8928 1.2799 0.1072 .7880 9.8965 52° 00' .9076

.6661 10 .6180 .7910 .7860 .8954 1.2723 .1046 .7862 .8955 50 .9047

.6690 20 .6202 .7926 .7907 .8980 1.2647 .1020 .7844 .8945 40 .9018

.6720 30 .6225 .7941 .7954 .9006 1.2572 .0994 .7826 .8935 30 .8988

.6749 40 .6248 .7957 .8002 .9032 1.2497 .0968 .7808 .8925 20 .8959

.6778 50 .6271 .7973 .8050 .9058 1.2423 .0942 .7790 .8915 10 .8930

.6807 39° 00' .6293 9.7989 .8098 9.9084 1.2349 0.0916 .7771 9.8905 51° 00' .8901

.6836 10 .6316 .8004 .8146 .9110 1.2276 .0890 .7753 .8895 50 .8872

.6865 20 .6338 .8020 .8195 .9135 1.2203 .0865 .7735 .8884 40 .8843

.6894 30 .6361 .8035 .8243 .9161 1.2131 .0839 .7716 .8874 30 .8814

.6923 40 .6383 .8050 .8292 .9187 1.2059 .0813 .7698 .8864 20 .8785

.6952 50 .6406 .8066 .8342 .9212 1.1988 .0788 .7679 .8853 10 .8756

.6981 40° 00' .6428 9.8081 .8391 9.9238 1.1918 0.0762 .7660 9.8843 50' 00' .8727

.7010 10 .6450 .8096 .8441 .9264 1.1847 .0736 .7642 .8832 50 .8698

.7039 20 .6472 .8111 .8491 .9289 1.1778 .0711 .7623 .8821 40 .8668

.7069 30 .6494 .8125 .8541 .9315 1.1708 .0685 .7604 .8810 30 .8639

.7098 40 .6517 .8140 .8591 .9341 1.1640 .0659 .7585 .8800 20 .8610

.7127 50 .6539 .8155 .8642 .9366 1.1571 .0634 .7566 .8789 10 .8581

.7156 41° 00' .6561 9.8169 .8693 9.9392 1.1504 0.0608 .7547 9.8778 49' 00' .8552

.7185 10 .6583 .8184 .8744 .9417 1.1436 .0583 .7528 .8767 50 .8523

.7214 20 .6604 .8198 .8796 .9443 1.1369 .0557 .7509 .8756 40 .8494

.7243 30 .6626 .8213 .8847 .9468 1.1303 .0532 .7490 .8745 30 .8465

.7272 40 .6648 .8227 .8899 .9494 1.1237 .0506 .7470 .8733 20 .8436

.7301 50 .6670 .8241 .8952 .9519 1.1171 .0481 .7451 .8722 10 .8407

.7330 42° 00' .6691 9.8255 .9004 9.9544 1.1106 0.0456 .7431 9.8711 48' 00' .8378

.7359 10 .6713 .8269 .9057 .9570 1.1041 .0430 .7412 .8699 50 .8348

.7389 20 .6734 .8283 .9110 .9595 1.0977 .0405 .7392 .8688 40 .8319

.7418 30 .6756 .8297 .9163 .9621 1.0913 .0379 .7373 .8676 30 .8290

.7447 40 .6777 .8311 .9217 .9646 1.0850 .0354 .7353 .8665 20 .8261

.7476 50 .6799 .8324 .9271 .9671 1.0786 .0329 .7333 .8653 10 .8232

.7505 43° 00' .6820 9.8338 .9325 9.9697 1.0724 0.0303 .7314 9.8641 47° 00' .8203

.7534 10 .6841 .8351 .9380 .9722 1.0661 .0278 .7294 .8629 50 .8174

.7563 20 .6862 .8365 .9435 .9747 1.0599 .0253 .7274 .8618 40 .8145

.7592 30 .6884 .8378 .9490 .9772 1.0538 .0228 .7254 .8606 30 .8116

.7621 40 .6905 .8391 .9545 .9798 1.0477 .0202 .7234 .8594 20 .8087

.7650 50 .6926 .8405 .9601 .9823 1.0416 .0177 .7214 .8582 10 .8058

.7679 44° 00' .6947 9.8418 .9657 9.9848 1.0355 0.0152 .7193 9.8569 46' 00' .8029

.7709 10 .6967 .8431 .9713 .9874 1.0295 .0126 .7173 .8557 50 .7999

.7738 20 .6988 .8444 .9770 .9899 1.0235 .0101 .7153 .8545 40 .7970

.7767 30 .7009 .8457 .9827 .9924 1.0176 .0076 .7133 .8532 30 .7941
.7796 40 .7030 .8469 .9884 .9949 1.0117 .0051 .7112 .8520 20 .7912
.7825 50 .7050 .8482 .9942 9.9975 1.0058 0.0025 .7092 .8507 10 .7883

.7854 45°00' .7071 9.8495 1.0000 0.0000 1.0000 0.0000 .7071 9.8495 45' 00' .7854

Value Log Value Log Value Log Value Log Degrees I Radians
Cosine Cotangent Tangent Sine
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Table 3. Exponential and Hyperbolic Functions

ex e'r sink x cosh x

x In x Value log Value log Value log Value log

0.0 1.000 0.000 1.000 0.000 0.000 1.000 0
0.1 -2.303 1.105 0.043 0.905 9.957 0.100 9.001 I 1.005 0.002
0.2 -1.610 1.221 0.087 0.819 9.913 0.201 9.304 1.020 0.009
0.3 -1.204 1.350 0.130 0.741 9.870 0.305 9.484 1.045 0.019
0.4 -0.916 1.492 0.174 0.670 9.826 0.411 9.614 1.081 0.034

0.5 -0.693 1.649 0.217 0.607 9.783 0.521 9.717 1.128 0.052
0.6 -0.511 1.822 0.261 0.549 9.739 0.637 9.804 1.185 0.074
0.7 -0.357 2.014 0.304 0.497 9.696 0.759 9.880 1.255 0.099
0.8 -0.223 2.226 0.347 0.449 9.653 0.888 9.948 1.337 0.126
0.9 -0.105 2.460 0.391 0.407 9.609 1.027 0.011 1.433 0.156

1.0 0.000 2.718 0.434 0.368 9.566 1.175 0.070 1.543 0.188
1.1 0.095 3.004 0.478 0.333 9.522 1.336 0.126 1.669 0.222
1.2 0.182 3.320 0.521 0.301 9.479 1.509 0.179 1.811 0.258
1.3 0.262 3.669 0.565 0.273 9.435 1.698 0.230 1.971 0.295
1.4 0.336 4.055 0.608 0.247 9.392 1.904 0.280 2.151 0.333

1.5 0.5
47

4.482 0.651 0.223 9.349 1 2.129 0.328 2.352 0.372
1.6 0. 0 4.953 0.695 0.202 9.305 2.376 0.376 2.577 0.411
1.7 0.531 5.474 0.738 0.183 9.262 2.646 0.423 2.828 0.452
1.8 0.588 6.050 0.782 0.165 9.218 2.942 0.469 3.107 0.492
1.9 0.642 6.686 0.825 0.150 9.175 3.268 0.514 3.418 0.534

2.0 0.693 7.389 0.869 0.135 9.131 3.627 0.560 3.762 0.575
2.1 0.742 8.166 0.912 0.122 9.088 4.022 0.604 4.144 0.617
2.2 0.788 9.025 0.955 0.111 9.045 4.457 0.649 4.568 0.660
2.3 0.833 9.974 0.999 0.100

.1 0
9.001
9 -0

4.937 0.690 5.037 0.702
2.4 0.875 11.02 1.023 0 091 8 . 5.466 0.738 5,557 0.745

2.5 0.916 12.18 1.086 0.082 8.914 6.050 0.782 6.132 0.788
2.6 0.956 13.46 1.129 0.074 8.871 6.695 0.826 6.769 0.831
2.7 0.993 14.88 1.173 0.067 8.827 1 7.406 0.870 7.473 0.874
2.8 1.030 16.44 1.216 0.061 8.784 8.192 0.913 8.253 0.917
2.9 1.065 18.17 1.259 0.055 8.741 9.060 0.957 9.115 0.960

3.0 1.099 20.09 1.303 0.050 8.697 10.018 1.001 10.068 1.003
3.5 1.253 33.12 1.520 0.030 8.480 16.543 1.219 16.573 1.219
4.0 1.386 54.6Q 1.737 0.018 8,263 27.290 1.436 27.308 1.436

4.5 1.504 90.02 1.954 0.011 8.046 45.003 1.653 45.014 1.653

5.0 1.609 148.4 2.171 0.007 7.829 74.203 1.870 74.210 1.870

6.0 1.792 403.4 2.606 0.002 7.394 201.7 2.305 201.7 2.305
7.0 1.946 1096.6 3.040 0.001 6.960 548.3 2.739 548.3 2.739
8.0 2.079 2981.0 3.474 0.000 6.526 1490.5 3.173 1490.5 3.173

9.0 2.197 8103.1 3.909 0.000 6.091 4051.5 3.608 4051.5 3.608
10.0 2.303 22026. 4.343 0.000 5.657 11013. 4.041 11013. 4.041

Table 4. Constants

=
e =

log e =
In 10 =
log n =

log log e =

3.14159 26535 89793 23846 26433 83280
2.71828 18284 59045 23536 02874 71353
0.43429 44819 03251 82765 11289 18917
2.30258 50929 94045 68401 79914 54684
0.49714 98726 94133 85435 12682 88291
9.63778 43113 00536 78912 -10
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Table 5. Indefinite Integrals

Note: In this table x, X, u, v, and w are variables which may be functions. All other
letters are constants. Constants of integration have been omitted.

RATIONAL ALGEBRAIC INTEGRALS

1. fau(x) dx = of u(x) dx

2. f [u(x) + v(x) - w(x)] dx =f u(x) dx +f v(x) dx -f w(x) dx

3. J u(x)Dsv(x) dx = u(x)v(x) -f v(x)D..(x) dx, f u dv = uv -f v du

41.
f u'du=

u'+1

p+1 if p -1

In Jul if p = -1

51.

J (au + b)9 du =

52.

6.

7.

8.

9.

10.

11.

(au + b)v+1

a(p + 1)
if p = -1

l In fau + bf if
a

p=-1

f au+b -{(au+b)-bInlau+bf}

u2 du 1 f(au + b)2
- 2b(au + b) + b'- Inf au+b ask 2

u du = 1 b

f (au+b)2 a2
lau+b+Infau+blI

2

b2J (au +b)2 a3
au+b-au+b-2binlau

du _ I u

f ii(au+b) bIn au+b
du a

f u'-(au _+b) bu + b2 In
au+bl

u

du
=

I 1 u
12. f u(au + b)2 b(au + b) + P

In
au + b

f d u _ - 2 a u + b 2a I + bl13. -u2(au + b)2 b2u(au + b)
+ T. In

u

14. f xm(ax + b)" dx, f (ax + b)" dx, is a positive integer. Expand (ax + b)" by
X. the binomial theorem.

15. f xm(ax + b) dx, f
xm

dx,
im a positive integer

(ax + b)" n not an integer

Substitute ax+b=u,x=u-b,dx=1du.

a a



Table S. Indefinite Integrals

16.
dx - -1 r (U - a)m+n-z

J
du where u

m ,+ b)n b.+- l Un '(axX

17. (f a _
u2 + a2 a tan-' a 18. f

u2

du

a2 I In

u 1 duu
19. f

_
au2 + b a f u2 + (b/a)

u du _ 1
In au2 + bI

J au2 + b 2a

( u du 1

J (au2 -+b)" 2(p - 1)a(au2 + b)"-1
if

f
u2 du

=
u b

(
du

J au2+b a aJ au2+b

u-a
u+a

f du - u 2p - 3 r du
if o 120. f (au2 + b)" 2(p - 1)b(au2 + b)"'1 T 2(p - 1)b J (au2 + W-1 P

21.

22.

23.

24.

25.

26.

Use 17 or 18.

p31

u2 du u + I r du

f (au2 -+b)], 2(p - 1)a(au2 + b)"-i 2(p - 1)a (au2 +b)"-1

du I a f du

J u2(au2 + b) bu b J au2 + b

(
du 1

f
du a 1 du

J u2(au2 + b)" b u2(au2 + b)"-1 b

f
(au2 + b)1

563

if pr1

2u-kdu k ( k+u1
In27.

au2 + b 3b
{ ti 3 tan-

kV3

+
I
Vk2 - ku + u2

ea
t

where k

2

I - 2u-k k+u z

a
28. f

u du = _ V3 tan-'
3

- In Vkz

k
J

u + b 3ak u + u

du _ I u»
29. f u(au"+b) bplnIa&'+b

INTEGRALS INVOLVING 'Jau + b

j du
f 'eau + b du,

J b These may be integrated
by Formula 51.

f (au + b)n-,Iau + bdu, f
du

u(au + b) au + b

2(3au - 2b)V'(au + b)2
30. f u'lau +bdu =

ISa2

31. f u2 eau +bdu =
2(15a2u2 - 12abu + 8b2)V(au + b)2

105a3

32. f unV au + b du =
a(2n

2

+ 3)
{u'V'(au+ b)1 - nb f un-1Vau + b du}

if 2n+3 00
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( I "au+b - Vbl
33,. 12V au + b + V; In eau + b + Vb

if b > 0
fyan±b

uJ du = I332.
au+bb if b<0

Use Formula 4, if b = 0.

Vau + b 1 V(au+b)3 (2n - 5)a Vau+b
34. ( du = - + du if n T lU. (n - I)b { u"-1 2 u"-1

35.
udu =2(au-2b)Vau+b

'eau + b 3a'

u2 du 2(3a'u'' - 4abu + 8b2) y au + b36.
eau+b 15a'

37. f it, du = 2 Iu"v'au + b - nb f .eau + b}
if 2n + 1 T 0

Vau+b a(2n + 1)

38,
r

1 In
Vau+b - Vb if b>0

1 du VI7Vau+b+Vb
uVau + b

382. 2 tan 1 au + b
if b < 0

l -b -b
du "au + b (2n - 3)a du

39. I - f if n 0 1
u"Vau + b (n - 1)bu"-1 (2n - 2)b u"-'Vau + b

INTEGRALS INVOLVING Vu2 ± a2, Va2 - u2, AND u2

(These integrals are important special cases of those in the next section.)

40. f vu2 ±a2 du =l{uVu2±a2±a2In lu+Vu2±a2I}

41. J -,/a2 - u2 du = 2 k %/a2uVa2 - u2 + a' sin-1 al

42. f
du

= In 1u + I/u2 ± a21 43. J
du

= sin-1
u

Vu2 f a'' u2 a
(a2 ±. az)(n/z)+1

44. f u(u2 ± a2)"/' du =
n + 2

if n 0 -2

45.

46.

(a'' - u'-)("/2)+1J u(a2 - u2)"/z du = - n +2 if n 0 -2

z

f u2Vu2fa2du=4V(u2±a')'-r 8 (uv'u2±a''+a-In Iu+Vu2±a21)

2

47. f {uV'a2 - U' + a' sin-'



Table S. Indefinite Integrals

Va2 ± u2
48. f du=-Va2±u2-aIn

u

a + 'lag ± u2
u

z 2

49. f u - a du
= 'V;2 - a2 - a COs-1 a

u u

f
vu2 a2 llu2 tat

u2 u
+ In lu + v u2 ± all

"Va2-u2
A

'Va2
51. f

-u2=-
u2 u

u- sin-i -
a

52. f
u du

= V u2 ± a2 53. f
u du = -'a2 -

u2.V/u2 ± a2
u2

u2 du u/ a2
54. f = - "V u2 ± a2 F - In Iu + 1/u2 ± a2l/2 2± a 2 2

f u2 du u./a2
+

a2
sin-1

u= - - - u2 - -55. / 2 2 22V a - u

56.

a

du 1 a+Va2±u2
In

uN/a2 ± u2 a u

58. f
du

= R
vu. -±&

u2vu" ±a2 a2u

du 1 a
57. f - / - cos-1

uV u2-a2 a , u

59. f du
=-"Va2-u2

U2-,/a 2 - u2 a2u

565

3a' -60. f V(u2 ± a2)2 du = -1 uV (u2 f a2)3 f
3 2 u

Vu2 ± a2 + - In lu + Vu2 ± all r
4 2

3a2u 3a4
a sin-1

ul
61. f Vat-u2)2du=4ull(a2-u2)2+

2
2-u 2

2 a

62.
du _ ±u

f .'(u2 ± a2)2 a2 Ju2 t a2
63

f

du = u

V(a2 - u2)3 a2 V al - u2

u - a a2 (u - a
64. f 2au - u2 du = 2 2au - u2 + 2 sin-1 a

65.
-u'-1(2au - u2)2/2 (2n + 1)a

f u^ 2au - u2 du =
n + 2 + n + 2

f u"-1/2au - u2 du

-\12au - u2
66. f du =

if n0-2
(2au - u2)2/2 + n - 3 V2au - u2

du if n 0
(3 - 2n)au" (2n - 3)a f u"-1

67. f du
= 2 sin-'

N
/ u =cos-

(a - u

u2 2a 1 \ a

68. f
u" du - -u"-1V2au - u2 + a(2n - 1) u"-1 du if n 0

V2au - u2 n n f V2au - 0
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69.
J

du = ti 2au - u2 n - 1 f du_ I ;}
u"V 2au - u' all - 2n)u" (2n - 1)a ' u"-1V'2au - u2

if n

70. f
du u-a 71. r udu u

= J =
(2au - u2)2/2 a2V2au - u2 (2au - u2)2/2 aV2au - u2

72. f du =1nlu+a+v2au+u21
V2au+u2

INTEGRALS INVOLVING axe + bx + C AND
mx + n
rx + s

LetX=ax2+bx+candq=b2 -4ac:
l

73,.
1 In tax + b - if q > O

dx /q 12ax + b + Vq I If q = 0, then X is a perfect
J + 6 square; use 5, with p = -2

2 2ax
732.

tan-' _ if q < O/-q /-q

74.
f(mx+n)d= fdxf

X 2a 2a X

x2 x b b2 - 2ac - dx75. JXdx=a-2a'lnIXI+
2a' -I X

76.
dx _ 1 x2 b dx

f a 2c
In

JXJ 2c f X

771. ( J a if a>0
dx

f
.7=X

1

1 -2ax - b

/
if a < 0772, l -a sin-' (

9 )

78.
mx+n myX 2an-bm dx

f X- a + 2a f7X

79
x2 dx (2ax - 3b' - 4ac dx

f \/x 4a2 8a2 f '\/X

801. - 1 In
7c

X + Vc b

x + 2V'c

80. dx = ' I sin-' bx + 2c
2 f xV'X -c x\q

211X
802. - bx
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Let k = ant - bmzz + cm2.

1 mVX + \/k bm - 2an
811.

dx

-
1

-In
Vk mx + n

(bm - 2an)(m

2Vk

x + n) + k

if k>0

812.
sin-1 if k < 0

(mx+n)'X -k m(mx + n)V'q

2mV'X
813. if k=0

L (bm - 2an)(mx + n)

82.

84.

85.

86.

dx /X b
1

dx
f xlvX cx 2c" xV'X

83. I Xdx = (2ax + b)V'X q f dx
4a 8a '/X

bq r dx
3a 8a2 16a2 J --/X

r - ( 5bl XV X 5b2 - 4ac p -J X'-,Ix dx = `x -
6aJ 4a + 16a2

J V X dx

I dz = V X
+

bm - 2an f dx
+

an2 - bmn + cm2
I

dx

mx+n m 2m2 X m22 (mx+n)VX

87. I VT
dx

VX
+

bI dx +a l dx-=--- =
x2 x 2 x/X \/X

88.

89.

r dx 2(2ax + b)

J X-,/-x q.VX

I X-,IXdx = (2ax + b)4v/ X- 3q +
3q2

I dx

8a 8a 128a2

/mx+n (mx+n)dx
90. I dx = I then use Formula 78.

rx + s V rmx2 + (sm + rn)x + sn

BINOMIAL REDUCTION FORMULAS

911.

912.

913.

91,.

.1 xm(ax" + b)P dx =

xm`1(ax" + b)P+l b(m - n + 1)
a(m+zzp+1) a(m+np+1)

xm+z(ax" + b)P bnp Ij

m+np+1 +m+np+1Ixm(ax"+b)P'dx
j

if m+np+1 0

xm+' (ax" + b) P+1 a(m + np + n + 1) f
xm+" (ax" + b)P dx

b(m + 1) b(m + 1)
if m+1 TO

-xm+'(ax" + b)P+1 + m + np + n + 1
I xm(ax" + b)P+1 dx

bn(p + 1) bn(p + 1)
if p + 1 0
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TRANSCENDENTAL INTEGRALS

92. f sin u du = -cos u 93. f cos u du = sin u

94. f sin' u du = J(u - sin u cos u) 95. f cos' u du = (u + sin u cos u)

sin"-'ucosu n -
96. f sin" u du = - + f sin"'' u du

n n In case n is odd, Formulas

97. J cos" u du =
cos"-'usinu n -I

f cos"-2 u du

n n

98 and 99 may be used.

98. f sin""-' u du = J (1 - cos' u)"'sin u du
Expand and use Formula 104 or 105.

99. f cos'"'+' u du = f (1 - sine u)'° cos u du

du cosu n-2I- du
100.

sin" u (n - 1 )sin"-1 u + n - 1 J sin"'2 u If n = 1. In case n is even,
Formulas 102 and 103 may be

1du _ sin u n - 2 du used.
101.

cos"u (n-1)cos"-'u+n- If cos"-2u J

102. J d u = f csc'm u du then use Formula 125.

103. f du =f sect- u du then use Formula 124.
cos"" u

sine" u
104. J sin' u cos u du = p + I

cos'+' u
105. f cos' u sin u du = - p+1

ifp is any number 0 -1

106. f sin' u cos' u du =
4u 3sin 4u 107.

J sin u cos u
'

du
du = In Itan ul

The integrals f sin- u cos" u du, f du f sin- u du and f cos" u
du .

sin' u cos" u Cos" U Sin- u
may be reduced to integrals given above by use of the following reduction formulas,
in which r and s are any integers positive or negative.

108,.

1082.

108,.

108..

f sin" u cos' u du =

cos''' u sinr+' u s - 1+sf sinrucos'-'udu if r+s0
r + s r +

-sin'-' u cos'+' u r - 1
r+s +r+sf'sin'''ucos'udu if r + f 0

sin*+'ucos'+'u s + r + 2
+ 1

fsin*+'ucos'udu if r#-1
r + 1 r +

-sin'+'ucos'+'u s+r+2
3 + 1 + 7-+- 1

f sinlucos'+2u du ifs -1
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109, f sin mu sin nu du
sin (m + n)u sin (m - n)u

2(m + n) + 2(m - n)
is n (m + n)u _ sin (m - n)u if in +n110. cos mu cos nu du =
2(m + n) 2(m - n
cos(m + n)u _ cos (m - n)u

111. f sin mu cos nu du = - 2(m + n) 2(m - n) J

112. f tan u du = -In Icos uI 113. f cot u du = In Isin ui

tan"-' u
114. f tan- udu = n - I - f tan"-2 u du

cot"-' u
115. f cot" u du = - n _ 1 - fcot"-2 u du J

116. f tan2int1 u du = f (sec2 u - 1)- tan u du

If n 0 1. In case n is odd, Formulas
116 and 117 may be used.

I
nr

22 1 u du = f (cscm* u - 1)m cot u du117. f cot

118. f sec u du = In sec u + tan ul 119. f csc u du = In f csc u - cot ul

120. f sect u du = tan u 121. f csc2 u du = -cot u
du

122. f sec" udu = f
cos" u Use Formula 101 or 100. In case n is even, Formula

du 124 or 125 may be used.
123. f csc"udu = f

sin" u J

124. f sect"' u du = f (tan 2 u + 1)'n-' sec2 u du
Expand and use Formula 128 or 129.

125. f csc2'n u du = f (cot' u + 1)'" ' csc2 u du

126. f sec" u tan u du =
sec" u

csc" U
127. f csc" u cot udu = -

P

i p s any cons an

tan"" u
128. ftan"usec'udu=

p+1
D+'

129. f cot" ucsc2udu=- P+1uji

130,.

1302.

du
f a+bsinu+ ccosu

if p is any constant = -1

I In
V'b2 + c2 - a2

2

Va2 - b' - C2

Ub - V'b2+c2-a2+(a-c)tan 2

2b + j/b'+c2-a2+(a-c)tan
u

if a2 < b2 + c'
Ub+(a-c)tan2

tan-' / if a'> b2 + c'_Va'-b'
-c2



570 Tables

131. f V1 -cosudu= -2\'2cos2

132. f V (l - cos u)3 = 4 32 (cos, 2 - 3 cos
2

133. f u sin u du = sin u - u cos a 134. it cos u du = cos u + u sin u

135. f u"sinudu= -u"cosu+n f u"-1cosudu

136. J u"cosudu=u"sinu-nj u"-'sinudu

137. f sin-' u du = u sin-1 u + v"l - u2 138. f cos-' u du = u cos-1 u -
139. J tan-' u du = u tan-' u - In /1 + u'-

140. J cot-' u du = u cot-' u + In V1 + u2

141. f sec-1 udu=usec-'u-InIu+1/0 -11

142. f csc-ludu=ucsc-'u+InIu+v'u2-ii

143. f log, u du = u(log, u - logo e) 144. if In a du = u(In it - 1)

145. f u"' log, u du = u-+' logo It logo e l if m -A Im-} 1 (m+1)-J

146. f u'"Inudu=um+1m in. - I 1 if m -1m+1 (m+1)"

1471. n
(In u)1

iff(Inu) du= p+1
u

1472. In In uI if

148. J sin (In u) du = 2 [sin (In u) - cos (in u)]

149. f cos (in u) du = 2 [sin (in u) + cos (In u)]

150. f b"du=lnb 151. f e"du=e"

152. f ue" du = e"(u - 1) 153. f u"e" du = u"e" - n f u"-'e« du

154.
du - 1f -{nu-In1a+ be""I}a±be"" an

(e/)155. f du
= nVab tan-'a+be--

156. f ea" sin nu du = e°"(a sin nu - n cos nu)
a2 -I- n2
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157.
e°"(n sin nu + a cos nu)

°" cosnudu=J e a2 + n2

158. f sinh x dx = cosh x 159. f cosh x dx = sinh x

sinh 2x x sinh 2x x
160. f sinh2 x A = 4 -

2
161. f cosh2 x A = 4 +2

162. f x sinh x dx = x cosh x - sinh x 163. f x cosh x dx = x sinh x - cosh x

164. f tanh x dx = In (cosh x) 165. f coth x dx = In I sinh xI

166. f tanh2 x dx = x - tank x 167. f cosh2 x dx = x - coth x

168. f sech x dx = tan-' (sinh x) 169. f csch x dx = In I tanh 2

170. f sech2 x dx = tanh x 171. f csch2 x dx = -coth x

172. f sinh x cosh x dx = I cosh 2x 173. f sech x tanh x dx = -sech x

174. f csch x coth x dx = -csch x

175. f sinh mx sinh nx dx =
sinh (m + n)x - sinh (m - n)x

m T
1 -n

2(m + n) 2(m - n)

176.

177.

sinh (m + n)x sinh (m - n)xf cosh mx cosh nx dx = + m :A +n
2(m + n) 2(m - n)

f sinh mx cosh nx dx =
cosh (m + n)x + cosh (m - n)x

m # +J:
2(m + n) 2(m - n)

if an integral involves only sin u and cos it, such as

sin it du
J3sinu+4cosu+2'

try the substitution tan
Z

= t. Then

1 + t2 = 1 + tans u = sec---
l!

, so cos u = 1 sin = 1

2 2 2 1 + t2 2 V1 + t2
11sinu =2sinZcos=

'1 +t2
2

2

dt = sect it - = 1 2 t du,

cosit =2cos21--1-1-t2

2 l+t2'
and du = 2 dt.

1 + t2

For example, the above integral becomes

f
2J

t dt
(1 + t-)(-t2 + 3t -I- 3)

which may be handled by using partial fractions (Sec. 76) and then Table formula 74.



Review of Analytic Trigonometry

TI. Trigonometric Functions of Angles

The unit circle is, by definition, the circle of radius 1 and center at the
origin; it has equation

x2+y2= 1.

An angle with vertex at the origin and initial side on the positive x-axis is
said to be in standard position.

Place an angle a in standard position. The terminal side of a then cuts
the unit circle at a point. Let c denote the abscissa and s the ordinate of this
point. Then, by definition,

Figure T1.1

sing=s

cosa=C

tang= s if cL0
C

Ccots =- ifs 0
S

sec a= 1 ifc00
C

csc a1 ifs=0
s

As direct consequences of these definitions it follows that whenever both
sides of the expressions below are defined, then the equalities hold:

(1) = sin a
t

(5
an a

CoS a

)

(2) cot a = cos Of.
(6)

sill a

(3) t 7co a=
tan a

( )

1(4) seca = (8)
Cos a

1

csc a =
sin a

sine a + cos' a = I

I -}- tan 2 a. = sec 2 OF.

Cot2 a + 1 = csc2 a

since s2+C2= 1

since I +
(S)2 _ Il)2

\C C.

since
)2

These eight relations are called "The eight fundamental identities." By
use of these identities other identities may be established without returning
to the definitions.

Example 1. Show that sin a cos f seca csc (3 = tan a tmi(t.
572
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Solution.

sin cccosfl sec cccsc(3 =sin a.cosfl
1c sin

sin a cos ,B
= tan a cot

cos a sin (9

573

by (4) and (5)

by (1) and (2).

In particular, the terminal sides of the angles of 90° and -270° in
standard position cut the unit at the point (0,1) so that

sin 90° = sin (-270°) = 1 and cos 90° = cos (-270°) = 0.

Also, directly from Fig. T1.1 sin (+ 180°) = 0, cos (+ 180°)
sin 0° = sin (+360°) = 0 and cos 0° = cos (+360°) = 1.

Figure T1.2 Figure T1.3

From Figs. T1.2 and T1.3 may be read

sin (+60°)
23

, cos (±60°) tan (+60°) _ ±V3

sin (+120°) 2 , cos (+120°) 2 , tan (+120°) _ etc.

sin (+30°) 2 , cos (+30°) = 23 , tan (+30°) etc.
1/3

A square with sides parallel to the axes inscribed in the unit circle has corners

at the points (± 1_ 1_ I and thus it follows that
72:

sin (+45°) = ±
2

, cos (+45°) =
2

, tan (+45°) = ±1, etc.
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PROBLEMS

Sec. T2

1. For any angle a, the point (cos a, sin a) is on the unit circle. Show that the dis-
tance from this point to the point (1,0) is 2 - 2 cos a.

2. By using the fundamental identities, show that whenever both sides of the
expressions are defined

a. (1 - sin a)2 + cost a = 2(1 - sin a).
b. (1 - cos a)2 - sin2 cc = 2(1 - cos c).
c. (1 + tan a)2 - sect a = 2 tan a.
d. sect a + csct a = sect a csc2 a = (tan a + cot a)2.

1 1 1 -sin a cosa
e. + = 2 sect a. f. -1 +sina 1 -sins cosa 1 +sina

2 1- tans a cot2 a

= 0.

g. sect a;
= 1 + cost a. h.

1 + csc a =
csc a - 1.

3. Show that the line containing the terminal side of an angle a in standard position
intersects the tangent to the unit circle:

a. At (1,0) in the point (1, tan a) if a 0 90° + m 180°, m an integer.
b. At (0,1) in the point (cot a, 1) if a 0 m 180°.

T2. Addition and Subtraction Formulas

For any positive or negative angle a, the terminal sides of a and -a in
standard position cut the unit circle in points symmetric to the x-axis so that

(1) sin (-(x) = -sin a and cos (-a) = cos a.

Let a and /9 be any angles whatever. The terminal sides of these angles in
standard position cut the unit circle at the points

A(cos a, sin a) and B(cos /9, sin /9),

respectively. The square of the distance AB is

AB2 = (cos a - cos j3)2 + (sin a - sin ,8)2

_ (cost a + sin2 a) + (cost j9 + sine /9) - 2 (cos a cos 9 + sin a sin /9)
= 2 - 2 (cos a cos ,B + sin a sin /9).

If two points on a circle are rotated about the center through a common
angle, they remain the same distance apart.

Rotate the points A and B through the same angle -/9. The new positions
A' and B' are

A' (cos (a - /9), sin (a - /9)) and B' (1,0).
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Then A'B'2 = [1 -cos (a - /9)]2 + Suit (a -9)=2-2 cos (a - /4). But
A'B72 = AB2 so that

(2) cos (a - (3) = cos a cos [3 + sin a sin

holds with no restrictions whatever on the angles a and /9.
In (2) we may replace /9 by -fl and obtain

(3) cos(a+(3)=cos [a-(-/9)]
= cos a cos (-/9) + sin a sin (-/9) by (2)
= cos a cos (3 - sin a sin P. by (1)

For different relations we again use (2), but this time with a = 90°, and
obtain

(4) cos (90° - (3) = cos 90° cos /9 + sin 90° sin /9

=sin(3

for any angle /9. Hence we may set 90° - /9 = a in (4) and have

(5) cos a = sin (90° - a).

We next write (4) as sin y = cos (90° - y) and then set y = a + /9 to
obtain

(6) sin (a + (3) = cos [90° - (a + /9)]

= cos [(90° - a) - /9]
= cos (90° - a) cos 9 + sin (90° - a) sin /9 from (2)
= sin a cos (3 +- cos a sin (3 by (4) and (5)

Upon replacing j9 by -/9 in (6) it follows that

(7) sin (a - (3) = sin a cos (3 - cos a sin (3.

Example 1. Show that for a any angle whatever and n an integer, then

(8) COS (cc + n - 180°) _ (-1)n COS a.

Solution. From (3) with (3 = n 180°

cos (a + n 180°) = cos cc cos (n 180°) - sin cc sin (n 180°).

The terminal side of the angle n 180° in standard position cuts the unit circle at the
point

(1,0) if Ini is even or zero

(-1,0) if Ini is odd

so that cos (n 180°) _ (-1)n and sin (n 180°) = 0. Hence (8) is seen to hold.
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In the same way

(9) sin (a + n . 180°) (-1)" sin a

Example 2. Establish that

(10) sin A + cos B = 2 sin (A + B) cos J (A - B)

holds for any angles A and B whatever.

Solution. From (6) and (7) by addition

(11) sin (a + f3) + sin (a - (3) = 2 sin a cos f3.

Make the substitutions « + (3 = A, a. - P = B. Then.

J(A + B), (3 = j(A - B),

which substituted into (11) yields (10).

Sec. T2

A formula expressing tan (a + (3) in terms of tan a and tan /9 is obtained

as follows:

(12) tan (a ± (3) = sin (a + f3) = sin a cos /9 + cos a sin /3

cos (a + f3) cos a cos /9 - sin a sin /3

sin a cos (3 + cos a sin /9
cosacos/9 cosacos5 = tang + tan f3
cos a cos f3 sin a sin (3 1 - tan a tan f3
cos a cos l3 cos a cos fi

PROBLEMS

1. By using the method of Example 2, show that

a. sin A - sin B = 2 cos J(A + B) sin J(A - B).

b. cos A + cos B = 2 cos J(A + B) cos J(A - B).

c. cos A - cos B = -2 sin -'(A + B) sin J(A - B).

sin A - sin B tan J(A - B)
d' sin A + sin B tan J(A + B)'

2. Establish the formulas:

tang - tan(i cotacot/9-1
a. tan (a - ) = 1 + tan «tan (t' b. cot (a + f3) =

cot # + cot a

c. cot (a - (i)
cot a cot 9 + 1
cot # - cot cc '

3. Establish the following by specializing some of the formulas given previously.
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a. sin 2a =2sin acosP

b. cos 2m = cos' a - sin2 a

= 2 cost a - 1

M a
d. sin a = 2 sin 2 cos

2

= 1 - 2 sine a.
2tana

c. tan 2a = 1 - tang a'

4. Establish each of the following:

a. (cos a - sin a)(cos a + sin a) = cos 2a.
b. cos2 a = j(1 + cos 2a), sin2 a = J(1 - cos 2a).

c. tan a + cot a = 2 csc 2m.

a
tan

2
=2

2
a

sec
2

577

sin 3a cos 3a
=

sin a + sin 2a
d.

sin a cos a - 2. e.
1 + cos a + cos 2a

= tan a.

f. sin 3m =3sina -4sin3a.
g. cos3a =4cos3a - 3cosa.

5. Set tan
2

= t and show that

2t 2t 1 - t2
tan a = 1 - t2, sin a = 1 -+t2, and cos a = 1 + t2'

(Hint: Use Problem 3c and d.)

6. Show, for any angles a, P, and y, that

a. sin a sin (j9 - y) + sin ft sin (y - a) + sin y sin (cc - 9) = 0.
b. cos cc sin (j9 - y) + cos j9 sin (y - (x) + cos y sin (a - j9) = 0.
c. cos a sin ((3 - y) - sin cos (y - a) + sin y cos (a - j3) = 0.

7. a. Show that if a and b are numbers, not both zero, then there is an angle a
such that both

a bcos a = a2 + 62 and sin a = Ala2 + 62

b. Show that for a an angle as in Part a,

1
a cos 0 + b sin B = a2 +

b2 cos (B - a)

c. Show that there is an angle a such that

1

a cos 0 + b sin 0 = + 62 sin (a + 0).
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T3. Trigonometric Functions of Numbers

Sec. T3

On a circle of radius r, lay off an arc of length r. The central angle sub-
tended by this arc is, by definition, an angle of one radian. Since the cir-

Figure T3.1

cumference is of length 27Tr, then there are 2a radians
in one revolution. Thus

2a radians = 360°

(1) one radian = (360)0
=

(180J 1°

2a a
Since 3.14159 is an approximation of a, then one radian
is approximately

= 57.29583° = 57° 17.7498' = 57° 17' 44.988".
(3180.14159)°

It will be taken for granted that the areas of two sectors of a circle are to
each other as their subtended angles. Hence in a circle, two sectors of areas
Ai units2 and A2 units2 whose angles have xl radians and x2 radians, respec-
tively, are such that

Ai xl
A2 X2

A circle of radius r units may be considered as a sector of itself, the sector
having area art units2 and angle of 27T radians. Hence a sector of this circle
with area .A units2 and central angle x radians, 0 < x < 27T, is such that

.(2) A22 = - so that A = r2
7 2

If the central angle had been given as y°, 0 5 y S 360, then

(3) = y so that A = y are.
are 360 360

One of the main reasons for using radians, instead of the sexagesimal
system, for measuring angles is because (2) is simpler than (3).

The use of "sin" is extended to sin x, with x a number, by setting

(4) sin x = sin (an angle of x radians).

Also, by definition, cos x = cos (an angle ofx radians) and in the same way
tan x, cot x, sec x and csc x are defined. The previously derived formulas
involving angles may, therefore, be used to obtain analogous formulas in-
volving numbers. For example, with x and y numbers, then

(5) sin (x +y) = sin xcos y + cos x sin y.
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In all of calculus it is understood that "sin x" carries the implication
that x is a number. Thus we write

sin x ±
2/

= cos x

and do not replace ir/2 by 90°. Also

sin 1 is approximately sin (57° 17' 45") = 0.841 3655

whereas sin 1° is approximately 0.017 4524.
With x a number, it is permissible to write either

sin x or sin x°,

whichever is meant, but these should not be expected to be equal.
It is possible to avoid specific mention of angles and to develop "Trigo-

nometry without Angles" by using a wrapping technique. Assume that you
never heard about the sine of an angle and consider the following procedure
as your introduction to trigonometry.

Let x be a number. Lay a piece of inelastic flexible string along the
x-axis, the piece cut so one end is at (0,0) and the other end at (x,0). Next
shift the piece of string along the x-axis so its ends are at (1,0) and (x + 1,0).
Keep the end at (1,0) fixed and wrap the string along the rim of the unit
circle, going counterclockwise if x > 0, but clockwise if x < 0. The end
which was originally at (x,0), and then at (x + 1,0), will come to rest at a
point (c,s) of the unit circle. With x a given number, this procedure
uniquely determines numbers c and s. By definition

ssin x = s, cos x = c, tan x = - , etc.
C

Without going into all the details, it should be seen that the method used

(1,0)
Z/Jfl//fl,Jf/,fflff

C(x,0)
J

(1,0) (x+1,0)

Figure T3.2

with angles could now be duplicated to produce analogous results entirely
in terms of numbers.
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The following graphs are included for reference.

Figure T3.3

Figure T3.4

Figure T3.5

Sec. T3



Answers

Sec. 2, page 5.

1. a. x<1. c. x> 11. e. x> -1. ,

2.a.x=3 or x=-4. c. -4<x<3. e. -12 <x<4.
3. a. x < -i or x > 3. c. -4 < x < -}. e. x > -1.
4. a.9<x<11. c.I<x<2.
6. a. 3. c. 8. e. Jan. 29, 1946.

7. a. x = 3 or x = 11. The points 3 and I1 are each twice as far from the point -1 as
from the point 5. c. x = -23 and x = -;. Each of the points -23 and -; is
such that its distance to the point -3 is four-fifths of its distance to the point 2.

Sec. 3, page 8

1. a. 0, 1, 2, 3, 4. c. -1.5, 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5. e. -11.91, -11.82, -11.73,
-11.64, etc., to -3.09 where for k = 1, 2, 3,- ,99 the kth point is -12 + k(0.09).

2. a.3,11,11,-4. c. t=3+1115. e. Once when 0 <t <2, again when 4 <t <6.
g. -4.1, -3.9, -4 - h.

3. a. 6, 55, 72, 57, 10. b. -0.6 ft/sec, 2.6 ft/sec, -31.16-ft/sec, 65 - 32t1 - 16h ft/sec.

h 2h2 466 '

V3(t +h)+4-''3t 1+4
1

-5(211+h)
tl - . c.4. a. t,. + + h e' (tl + h)'tl

Sec. 4, page 11

1. a. Bounded above, 1.u.b. = 3; bounded below, g.1.b. _ -3.
c. Bounded above, l.u.b. =
e. Bounded above, l.u.b. =

3; not bounded below.
4; bounded below, g.1.b. = 0.

g. Not bounded above; bounded below, g.l.b. 27. i. Not bounded above, g.l.b. = 1.

2. a. ALB={xl -3<x<10},AnB={xI 2<-x<4}.
c. A u B= {x -2 < x< 4}, A n B is empty.
e. AvB={xlx<5},AnB={xI -5<x<3}.

3. a. {x I -1 < x < 3). c. {x -2 < x < 1.96}. e. {x x < -2}.
g. empty. i. and k. {x -2 < x < 1).

Sec. 6, page 17

3. a. (1,2). c. (0,6.5). 4. a. (5,6). c. (-3,8.5).

5. a.y-3=3(x-2)or 2x-7y+17=0. c.y=1. e.2x+y-11=0.
6. a. 2x+y-2=0. c.y=4.

581
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8. a. x3 - x2y + 4x2 + 2x - 2y + 8 = (x2 + 2)(x - y + 4) and since x2 + 2 0 0 the
given expression is zero if and only if x - y + 4 = 0-

9. a. m = ,J, (0,1.). c. m = }, (0,-;).

Sec. 9, page 24

1. a. Half-lines each with end point (-2,0); one through (0,2), other through (-4,2).
c. Half-lines each with end point (0,1); one through (1,0), other through (- 1,0).
e. Square with vertices (1,0), (0,1), (-1,0), (0,-1).
g. Two parallel lines with slope 1; one through (0,1), other through (0,-I).

2. a. {x l x any number}, {y I y > 0}. c. {x I x ally number), {y y < 1 }.
h. (x I x any number}, {y y any number). Others not functions.

3. a. Horizontal unit intervals closed on left and open on right with left ends at
(-3,-1), (-2,0), (-1,1), (0,2), (1,3), ' '

c. Intervals as in a, left ends at , (-1,2), (0,1), (1,0),
e. Unit squares closed on lower and left edges, open on other edges, with lower left

corners at , (-1,2), (0,1), (1,0), .

g. A strip bounded by parallel lines of slope 1, one through (0,1), other through (0,2),
lower line in set, upper line not in set.

4. a. -,-,, 12, Q, -A.. c. (103)/(93). e. 3.55.

Sec. 10, page 28

1. a. 2V'5. c. 13. 2. a. .A. c. ;1.

3. a. {(x,y) (x + 2)2 + (y - 3)2 = 22}. C. {(x,y) I (x - 12)2 + (y + 5)2 = 132).
e. {(x,y) (x + r)2 + (y - r)2 = r2}.

4. a. Circle, center (2,-3), radius 4.c. Circle center (J,-2), radius 1.
e. Single point (1,-2).

5. a. All points inside the circle having center (-3,4) and radius 5.
c. All points common to the interiors of two circles of radius 5, one with center at

(0,0), the other with center (5,0).
e. All points in either of two circles, one with center at (0,0) with radius 5, the other

with center (5/V'2,5/N/2) and radius 5.
g. All points inside the circle having center (-3,4) and radius 5.

Sec. 11, A, B, C, page 33

1. Not sym. to either axis or origin.
{x x 0 2), {y I y# 0}. Asym. {(x,y) I y = 0), {(x,y) I x = 2}.

Figure Prob. 1 Figure Prob. 5
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3. Sym. to y-axis. (x I x 0 0), {y I y > 01. Asym. x-axis andy-axis.

5. Sym. to y-axis. {x I x ± V'2}, {y j y > 0 or y <
Asym. x-axis and {(x,y) I x= ±v'2}.

7. Sym. to y-axis. No restriction on x,
{y 10 < y < 1}. No asym.

9. Sym. to x-axis, y-axis, origin. {x I -1 < x < 1),
{y I -1 < y < 1}. No asym.

11. Sym. to x-axis, y-axis, origin. (x I -'"s < x < Vs), {y l -,/2 < y < V'2}.

583

13. Sym. to x-axis, y-axis, origin. {x I -} < x < }}, {y I - < y < },

Sec. 11, D, E, page 36

1. a. Not sym. to x-axis, y-axis, or origin. {x I x 0 0), no restriction on y. Oblique asym.
{(x,y) I y = x}, vertical asym. y-axis.

c. Sym. to y-axis. {x I x 0 0), {y I y < -1 ). Asym. {(x,y) I y = -1), {(x,y) I x = 0}.
e. No sym. {x I x 0 +1}, {y I y > 3 or y < -1). Asym. {(x,y) I y = x}, {(x,y) I x = 1),

-V ).
(Hint: y=x+x 1 1 and x=y+1 f (2+1)(y-3)

2. a. {(x,y) 12y = f -V6x}. c. {(x,y) I 6y = +2x}. e. {(x,y) 14y = f3x}.

Sec. 12, page 39

1. a. {(X, Y) I XY = 0), so graph is X-axis and Y-axis. Translated back, graph is
((x,y) I x = -')and {(x,y) I y = 2}.

c. {(X, Y) I Y = 2x}. e. {(X, Y I Y = aX2).

2. a. Xx+1, Y=y-2,(X,Y)142+32=1}:
c. X = x - ;, Y = y + 3,

ll{(X,
Y) 14X2 + 6 Y2 =1110}. The graph is the single point

(0,0) in the XY-system or (;,-3) in the xy-system.

3. a. {(X,Y)I XY= -6),(2,-1.). c. {(X,Y)I XY= 1), (1,-4).

Sec. 14, page 42

1. a. V(0,0), F(1,0); (3,1r), (,-}); {(x,y) I x = - }.
c. V(0,0), F(0,1); (-2,1), (2,1); {(x,y) y =
e. V(-1,-j), F(-1,+); (-3,J), (1,); {(x,Y) I Y
g. V(-2,0), F(0,0); (0,-4), (0,4); {(x,y)I x = -4).
i. V(2,-3), F(2,-1): (-2,-1), (6,-1); {(x,y) I y = -5).

2. a. In this case p = 2 and this parabola is the graph of
{(x,y) I y2 = 4.2x} _ {(x,y) I y2 - 8x = 0}. Thus, A = 0, C= 1, D = -8,E= F= 0.

c. A = 1, C = 0, D = -2, E = -12, F = 25. e. A = 1, C = 0, D = -4, E = 8,
F=-20. g. A=0,C=9,D=-96,E=18,F=73_

5. (4,256).

6. a.6=' 1.25-1. c.6='/9.1-3. d.6='v'9+E-3.
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Sec. 15, page 46

1. a. e = (0,0), (±10,0), {(x,y) I x = (f 6,0), {(x,y) 13y = f4x).
c. e = s, (0,0), (0,±6), {(x,y) I y (0,±10), (±8,0).
e. e = (2,-3); (-1,-3) and (5,-3), {(x,y) I x = al or x (7,-3) and

(-3,-3), (2,1) and (2,-7).
g. e = 3, (2,-4); (2,1) and (2,-9), {(x,y)I y = - 31 or y = - bl}, (2,1) and (2,-7),

{(x,y)I3x-4y =22or3x+4y= -10}.
2. a. h=k=0,a=e=3. c. h=2,k= -1,a=5,e= S.

e. h=2,k=-3,a=3,e=3.
3. V'(x - ae)2 + y2 + V (x + ae)2 + y2 = 2a, V(x - ae)2 + y2 = 2a - 'V(x + ae)2 + y2,

x2 - 2aex + a2e2 + y2 = 4a2 - 4a''(x + ae)2 + y2 + x2 + 2aex + a2e2 + y2,
4aV (x + ae)2 + y2 = 4a2 + 4aex, V (x + ae)2 + y2 = a + ex,
x2 + 2aex + a2e2 + y2 = a2 + 2aex + e2x2, x2(1 - e2) + y2 = a2(l - e''-),
x2 y2

a2 + a2(l - e2) =
1.

Sec. 17, page 53
1. a. 10. c. e. b` g. 4.

4. a. Let e be an arbitrary positive number. The point in f with ordinate (g) + e
15 - 3(13-' + e) 15 - 11 - 3e 3

has -abscissa x = 2 = 2 = 2 - 2 e. Also, the point

(2 + qe, - e) is inf. The portion of the graph between thesepoints is a line segment.
Thus,

0<Ix-21 <23 e,y=15 3 2x1

((xy)10<Ix-21 <2E,IY-13 1 I <e

Hence 6 = 3e/2.
c. Let L be any number, take e such that 0 < e < J, and let 6 be any positive number.

Take x, such that 1 < x, < 2 and 2 - 6 < x, < 2 and take x2 such that 2 < x2 < 3
and 2 < x2 < 2 + 6. Then f (x,) = 1 and f (x2) = 2 so certainly at least one of f (x,)
or f (x2) differs from L by more than e. Thus, f does not have a limit at c. = 2.

Given c = 2.1, let e > 0 be arbitrary and choose 6 = 0.1. Hence, if Ix - 2.11 < 6,
then f (x) = 2 so if (x) - 21 = 0 < e. Hence,

{(x,y) 10 < Ix - 2.11 < 6, y = f (x)} c {(x,y)10 < Ix - 2.11 < 6, ly - 21 < e},

so lim f (x) exists and = 2.
x-.2.1

Given c = 1.9, let e > 0 be arbitrary, again take 6 = 0.1, etc.

Sec. 19, page 57
2. a. 2. c. 19. e. 4.

3(3x + 5)/(x - 3) + 4 13x + 3 5
3. a. f (u(x)) =

2(3x + 5)/(x - 3) - 6 =
etc. = 28 , x 0 3, x 0

3

m f (u(x)) = Z . C. 2.
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Sec. 21, page 64

1. a. y - V2 = (V2/4) (x - 1), y - 1 = (J)x. c. y - 12 = 12(x - 2),
y-12=-12(x+2). e.y-8=10(x-2),3y+1=0.

g.y-8= 10(x-2),y-8=-10(x+;).
-2x -1

2. a. 2, all X. C. (x2 - 1)2, {x x f 1}, a 2(x + 3)3/2'
{x x > -3}.

x+6 x I

g 2(x+3)3/2'{xI x> -3). L x+3,allx. k. {xI x>2}.

Sec. 23, page 67

1. a. 12 ft/sec; -12 ft/sec; 0 ft/sec. d. 16 ft.

1

2. a. 6. c. (t + 1e.
2(20 - t)3/2

1 1

3. a. f'(x) = 2x. c. f'(x) = 4x2. e. f'(x) = 3 X23. g. f'(x) = I + 3x2.

1 x 3x+6
i. f'(x) = 1 + k. f'(x) = + V + 3 =

x + 3 2Vx + 3 2Vx + 3

Sec. 24, page 73

1. a. 20x3 - 12x. c. 2(x2 cos x + 2x sin x). e. 6x2(x8 + 2). g. x sin. x.

2. a. Tr cos 4rt. c. u3 - U. e. v cos v + sin v.

Sec. 25, page 75

1. a. 1_ (-2x sin x +cos x). c. - $ (x sin 2x +cos 2x).
x

e. 8x-2/3 + 8x-11. g. x3 + x-3/4.

2. a. -8 cos3 2x sin 2x. c. 20 sin 4 (4x + 2) cos (4x + 2).
e. 5(2x3 + 7x + 1)'(6x2 + 7). g. 4x' sin3 x(x cos x + 2 sin x).

3. a. sin2 2x(6x cos 2x + sin 2x). c. 3(x2 + cos x)2(2x - sin x).
e. x sin 2x + sin' x. g. 6x(3x - 6)3(9x - 4).

4. a. -2x sin x sin 2x + x cos x cos 2x + sin x cos 2x.

c. -2V'x sin 5x cos x sin x -}- 5 V'x cos 5x cos2 x + -sin 5x cos2 X.
x

Sec. 26, page 79

2. a. 6x. c. ',(x sin x2)1J3(2x2 cos x2 + sin x2).
e. 2(x2 + x sin x)3I2(2x + x cos x + sin x). g. 6x(x2 + 1)2 + 1.
h. 4[6x(x2 + 1)2 + 1][(x2 + 1)3 + x]3

4. a. 2(x - 2) = 2x - 4, same derivative since (x - 2)2 and x2 - 4x differ by a constant.
1 ! x x 1 1 x x 1

C. 2 sin x, 2 sin 2 cos 2)2 2
2 sin 2 cos z = Z

5.

sin x.

x cos x -\\\sin x x + 2 sin x -(1 + x cos x)
a. . c. - . e.

X2 2x2-,/x + I sine x

7. a - 1 c 4x
a

-2 cos x = -2 csc2
x cot x.

x2 (x2 + 1)2 sin3 x
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Sec. 27, page 82

2 3x2 + 12x + 8 2 i, 0.g (x _ 1)a1. a. Z3. c. x - 1. e.
4r7(r -r 1)3:'2

2. a. lim 1 [(x + 2h)3 - 2(x + h)3 + x3]
h-0 h'3

1 [xs -^ 3x2(2h) + 3x(2h)"-+ (2h)3 - 2(x3 + 3x"Zh + 3xh'- + hs) + x3]
l o /t2h.

= lira
1
- [6xh2 + 6h3] = lira (6x + 6h) = 6x.

h-.0 h"- h-0

c. lim
i
- [sin (x + 2h) - 2 sin (x + h) + sin x]

h-.0 h2

= lim 1 {[sin (x + 2h) - sin (x + h)] - [sin (x + h) - sin x]}
h-.0 h2

r r
=liymoh2'2cos Ix+3 h) sing-2cos Ix+

h2)
sin

h
g

h)]
=himmh Isinh)[cos 1x+3h -cos Ix+2

=lim-(sin-//l(-2sin(x+h)sin
h-.0 h2 \ 2/ L 2J

nlrn I h/2 2)J

z[-sin
(x + h)] _ -sin x.

4. a. CASE 1. For x > 0 and x + h > 0, then (x + h) Ix + hl = (x + h)2and x I xI = x3 so

lim(x+h)Ix+hl-xIxI=lim(x+h)2-x2=lim(2x+h)=2x.
h-.0 h h-.0 h h-.0

CASE 2. For x < 0 and x + h < 0, then (x + h) Ix + hl = -(x + h)2 and
xIxI = -x2 so

(x+h)Ix+hl -xIxI -(x+h)2+x2
lim = lim = lim (-2x - h) = -2x.
h-.0 h2 h-*0 h h-'0

CASE 3. For x = 0, then

lim(0+ h)IO+hI - OIOI = limhihl =limIhl =0.
h-.0 h h-.o h h-0

Sec. 29, page 86

1. a.y=5,y+1=-10(x-1),y+5=22(x+1). c.y+13=6(x-3).
2. a.y+3=6(x-1). c.y+39=42(x+5). e. 6x-y+23=0.

3 7(
3).3.a.y-e=- oe(x-3). c.x+y=l,x-y=4. e.y+ 4 =-4 x-
17

4. Two points where the graph crosses the x-axis, and a point on the graph between them
where the tangent has slope 0 are:
a. (0,0), (''3,0), and (1,-2); also (-X3,0), (0,0), and (-1,2).
c. (7r/4,0), (57T/4,0), and (37r/4,V2). e. (0,0), (ir,0), and (7T/3,3 V-3/2).
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6. Let e > 0 be arbitrary. By left continuity off at c choose 6, > 0 such that

C C < f ( C )

By right continuity off at c choose b2 > 0 such that
{(x,y)I c<x<c+62,y=f(x)}e{(x,y)Ic<x<c+82if(c)-e <f(x)<f(c)+e}.
Let 6 be the smaller of 61 and 62. Then 6 > 0 and
{(x,Y)I c-6 <x<c+6,y= f(x)}

e {(x,y)I c - S < x<c+8,f(c)-e <f(x) <f(c)+e}.
Hence, lim f (x) exists and = f (c); i.e., f is continuous at c.

X- C

Sec. 30, page 90

1. a. -0.79, 2.12. b. 2.33. c. 0.51. d. 1.39.

2. a. f (x) = x3 - 12x2 + 45x - 35, x, = 1, x2 = 1.042, f (X2) _ -0.008, in absolute
value < 5 x 10-2.

b. f (x) = x3 - 12x + 22, x1 = -4, x2 = -4.16, f (x2) _ -0.072, x3 = -4.158,
f (x3) = 0.009. c. f (x) = cos x - x, x1 = 7r/4 = 0.7854, x2 = 0.7393,f (x2) = 0.0004.

d. f (x) = x2 - 1 - sin x, x1 the radian measure of 80°; i.e., x1 = 1.3963.
f (xl) = -0.0380, x2 = 1.4065, f (x2) = -0.0080, x3 = 1.4096,
f (x3) = 1.9870 - 1.9870 = 0 to five decimal places.
For the other "solution" use x1 the radian measure of -40° so
x, = -0.6981, x2 = -0.6379,f(x2) = 0.0024 < 5 x 10-3.

3. With x1 an approximation of V A, then z +, =

3

(2x. + X.2) , it = 1, 2, 3,

4. With x1 an approximation of 1/A, then x,, = 2x,, - Ax.2, it = 1, 2, 3, .

(Hint: Use f (x) = x-1 - A.)

Sec. 31, page 94

1. a. 0, 7r/2, 7r; max. f (7r/2) = 1, min. f (0) = f (7r) = 0.
c. -1,0,1; max. f (- 1) = f (1) = 1, min. f (0) = 0.
e. 0, 3, 5, 6; max. f(6) _ 6, min. f(3).= -V'3 2.
g. 0, 4r/4, 57x/4, 27r; max. f(ir/4) = V2, min. f(5ir/4) _ - V2.
i. 0, 27x/3, 7r; max. f(27r/3) = 7r/3 + V'3/2, min. f(0) = 0.

2. a. 5 - V7,2+2V'7,8+2V7, V=8(10+7V'7).
3. a. 2 in. x 4 in. x 8 in.

4. a. r = RV ;S2 h = 2R/V3, V = 47rR3/(3V'3). c. With x the radius of the base

A(x) = 2ir(x2 + 2xVR2 - x2), A'(x) = 4,r
xVR2 - x2 + R2 - 2x2

VR2 - x2

A'(x) = 0 if xVR2 - x2 = 2x2 - R2 which seems to have positive solutions
x = R, but note that the minus sign gives an extraneous root because,
with x positive, xN/R2 - x2 = 2x2 - R2 requires 2x2 - R2 -> 0. Maximum of A is
7TR2(1 + /5).

The above difficulties may be avoided by expressing A in terms of an angle in the
right triangle having vertex at the center of the sphere, hypotenuse R, and sides the
radius and semi-altitude of the cylinder.

5. a.4V'2x4' 2. c. b = 5, h = 5. e.b=6,h=8.
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6. a. x = 2, min. 5V'2. c. x = 1. 2, min. (116)/3. e. x = 5, min. 5.

7. a. Side J. to line of revolution is 12, other 6.

8. a. Section through (1/2,0), area 7r/4 units2.

9. a. (1/V'm,'v'm), (2/Vm,0), A(m) = 1 unit2.

Sec. 32, page 100

1. a. Rel. min. f(4) = -26, horiz. int. (1,1). c. Rel. min. f(2) = -26, horiz. infl. (5,1).

3. 15 ft x 85 ft.

5. 15''2 ft x 5V2 ft.
Sec. 33, page 104

1. a. Down x < 1, up x > 1; int. (1,-4).
c. Down 0 < x < 7r/4 and 37r/4 < x < rr, up 7r/4 < x < 377/4; infl. (77/4,1), (377/4,1).
e. Down 0 < x < 2 and 2 < x, up x < 0; vertical infl. (0,0).

(Note: The point (2,0) is a cusp for this graph.)

2. a. Rel. min. f (2) = 0, rel. max. f (-;) _ IN.

C. f' = 0 i -7r I -37r/4 -77/4 0 77/4 377/4 7r

+ - I + - + - +

f min. 2 max. 2V2 min.-2V2 max. -2 imin.-2V2 max. 2V2 I min. 2

3. a. Base side '2 V, depth 7/4. c. Base side ' 12bV/a, depth /a2V/(4b2).

4. a. Radius V/27r, alt. '4 V/ir.

7. (-1,-I), (1,1).

2s s
S. a. Rectangle 4 + ,r x 4 + 7r

Sec. 34, page 107

1. 27. 3. 948. 5. a. 29 units at $76.67 apiece.

Sec. 35, page 109

1. a. 377 ft/sec, 1577 ft2/sec. 2. a. -41'N/15 ft/sec. c. -3 ft/sec.

3. (576)/V189 = 41.9 mi/hr, (592)!V61 = 75.8 mi/hr.

5. a. 0/7J-;. c. 0.57r-1/3 ft/min. 6. a. h(t) = 4/t/7r. c. 7r min.

7. 50V3 = 86.6 mi, -90V3 = -155.9 mi/hr; 5Y223 = 74.6 mi, (1920)!V223
= 128.5 mi/hr.

Sec. 36, page 112

1. 0.75VA/7r in./min, A in.2 is the area at given instant. 3. 1/(677) ft/min.

5. 1/(160) lb/in.2/min. 7. a. ±600 ft/sec. 9. If D,v = ks, then D,r = k.

11. About 5.4 ft/min. 13. About 13.4 ft/sec.
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( > 0

Sec. 37, page 115

if -5 < t < or 3 < t < 5-}
1. a. W) = (3t + 1)(r - 3) < 0 if-<t<3,

( > 0 if < t < 5
a(t) = 2(3t - 4) <0 if -5<t<;.
Starts at s(-5) = -200 with velocity v(-5) = 112, slows down until s(-})
is reached, reverses direction, speeds up to rel. max. speed Iv()I = I-VI at
s(;) = 1217, then slows down until s(3) = -8 is reached, again reverses direction,
speeds up to velocity v(5) = 32 at s(5) = 20.

(> 0 if 0 < t < 7r/4 or 37r/4 < t < 7r
c. v(t) = 6 cos 2t {l

< 0 if 7r/4 < t < 37r14,

a(t) = -12 sin 2t
J>0 if 7r/2<t<7r
< 0 if 0 < t < 7r/2.

Starts at s(0) = 0 with velocity v(0) = 6, slows down until s(7r/4) = 3 is reached,
reverses direction, speeds up to max. speed Iv(7r/2)I = 1-61 at s(7r/2) = 0, slows down
until s(37r/4) = -3 is reached, again reverses direction and reaches s(7r) = 0 with
velocity v(1r) = 6.

(>0 - if -5<t<-2 or 3<t<5
2. a.v(t)=6(t-3)(t+2)Sl<0 if -2<t<3.

a(t)=6(2t-1),>0 if ,J < t < 5, < 0 if -5 < t < J.

c. v(t) = sin 2t
(> 0 if 0 < t < 7r/2 or 7r < t < 37r/2

< 0 if 7r/2 < t < 7r or 37x/2 < t < 27r

a(t) = 2 cos 2t
> 0 if 0 < t < 7r/4, 37r/4 < t < 57r/4 or 77r/4 < t < it

< 0 if 7r/4 < t < 37r/4 or 57x/4 < t < 77r/4.

3. a. v(-2) = v(I) = -8 rel. min. and min., v(-1) = 8 rel. max., v(3) = 72 max.
a(0) = -12 rel. min. and min., a(3) = 96 max., a(-2) = 36 rel. max.

c. v(0) = I rel. max., v(7r/8) = 3 - 2'/2 min., v(57r/8) = 3 + max.,
v(1r) = I rel. min.
a(0) = -4 rel. min., a(37r/8) = 4''2 max., a(77r/8) = -41/2 min.,
a(r) = -4 rel. max.

Sec. 38, page 117

1. a. 3, 7r, - . c. 5, 2, 1. e. 0.5, -o, 14-0

2. a. x = '/2 cos (t - 7r/4), '/2 27r, -7r/4.
c. x = 5 cos 7r(t - a/7r) where a = tan-1(;), 5, 2, o:/77; or

x = 5 sin 77(t + P/7r) where P = tan-1(0.75), 5, 2, -P/7r.
e. x = 0.5 + 0.5 cos 2t so X= 0.5cos2t where X=x-0.5; 0.5,7r,0.
g. x = cos 2t; 1, 7r, 0.

3. a. v(t) = -ab sin b(t - to) or v(t) = ab cos b(t - to); labs, 27r/Ibl, to.
c. -ja°b sin 2b(t - to) or +ja2b sin 2b(t - to); Ija2bl, 7r/Ib1, to.

Sec. 40, page 122

1. a. f (x) = .x2 + 1. c. f (x) = *x2'2 + ;. e. f (x) cos 2x + 1.
g. f (x) = ,jx2 - cos x + 3. i. f (x) = ;(25 - cos' 2x).
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2. a. s(t) = zt2 - 2. c. s(t) = 4t - t3 - 3. e. s(t) _ -} cos 3t + }e .
g. s(t) = Q sin it - 3 cos It + 4.

3. a. f(x)=yx2-x. c. f(x)=1+x- cos x. e. f(x) sin 2x - 2 sin x + 2.

4. a. f(2) = -1, min., f (-3) = 17.5 max. c. f (l) = 2 min., no max.

e. f (x) = 1 + xlVx + I has no rel. max. or min.
5. a. s(t) = -16.1t2 + 10t + 25.. c. s(t) = 2 - cos 3t + sin 2t.

Sec. 41, page 126

1. a. -1. c. 1. e. 0. 2. a. 4,5.5. c. -7r/180,0.

3. a. [(2x + 1) cos x + 2 sin x] dx. c. (8x sin' x2 cos x2) dx. e. 2 sin 2x dx.
g. (-2 sin2 x + cos' x) cos x dx. i. 2 cos 2x A. k. -sin x cos (cos x) dx.

4. a. (18x + 8)(dx)2. c. 2(1 + 1/x3)(dx)2. e. [2 cos 2x + csc x(2 csc2 x - 1)](dx)2.

Sec. 42, page 128

1. a. ;[cos 1 - cos (3x2 + 1)] + 2. c. ;[(3x2 + 1)3/2 + 19]. e. 1 - 2).

-42 _ 1 42
2. a. x sin x dx. c. x2V/x3 + 42 e y

42 \ 3

_
) -x

g. y=sinx-xcosx+2.
(

3. a. y= x°+3)'/2+C. c. y=}x3+Ix°+c. e. y=sin Ix+ 1

+c.
x

Sec. 44, page 133

1. a. = 1.143-. c. (0.71)/0.7 = 1.014+. 2. a. -4.25. c. 31.20. e. 3.033.

4. dg = -(87r21/T2) dT, (dg)lg = -2(dT)/T.
5. a. 0.3 units. 6. 1.25 + 0.01/32.

Sec. 45, page 136
-csc2 x1. a. - c. X sec' x + tan x. _e. sec x (2 sect x - 1). g. sinx (1 + sect x).

x
i. -4x csc (2x2 + 1) cot (2x2 + 1) k. -2 csc2 x cot X.

3. 60°. 7. (a2/3 + b2'3)3/2 ft. 9. (,)a3zr, a = radius of sphere.

Sec. 46, page 141

1. a.
5

c.
1

e.
cot x

obtained formally, but actually
Vi - 25x2 x(1 + x) Vsin2 X_ 1

f (x) = sec-' (sin x) is defined only at isolated values so this function does not have
a derivative.

x 7r 1 x IT 3 V33.a. }tan-'-+5--. c.-(x'V3-x2+3sin-'x3 ++
2 8 21 3 2 8

Sec. 49, page 148

2. a. y = 2('))1. c. y = 3(3)1. e. y = 1.76(3)x.

(
3. c. Y = 61.

4.
X

imp [10 log (21 + 3) - 10 log 2x] = 10 Jinn log I 1 + Zx) = 0.

5. a. (0,2.1), (7,35), y = 2.1(1.495)1. c. (10,5.4), (6\6,0.1), y = 11.01(0.9316)1.
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Sec. 51, page 153

1. All complete straight lines through the origin (1,1) with respective slopes 1, 2, }, -1,
-2.

2. a. Y = 2x9.595. c. Y = 1.5x2. 3. c. Y = x5. 5. c. Y = 3.45x5.

7. a. (1,23), (10,3.8), y = 23x-9.7919. c. (0.7,1.6), (20,15), y = 2.03x..99e

8. a. Semi-log, (0,2.5), (5.7,32), y = 2.5(l.56). b. Rect. y = (-,)x + 2.
c. Semi-log, (0.5,3), (5.7,0.2), y = 3.89(0.594)x.
d. log-log, (0.1,0.62), (1.5,3), y = 0.237x9.592

Sec. 52, page 157

1. a. 3
3

. c. 1 + In I3xI. e.
2 1

x2 +
1 In (x2 + 1). g. i.

2

x(1 + 1n2 jxj)
In IxI.

Ix-3
+ 1 +

1
ln5.4. a. f(x)=61n x+3I

c. f (x) = In (x + -v/x2 - 9) - 21n 3. e. y = x(ln Ixl - 1) + 1.

5. a. Dxy = 1/x, D2y = -1/x2, hence graph is concave downward.
1 3 x2 1 x6. a. Dxy=x-1+2x+3 2x2+1

Sec. 53, page 159

1. a. -e 2, e-'. c. sect xetan 2 sec2 xet"a 1(sec2 x + 2 tan x).
e. (-1/x2)e1/1, (1/x°)e1/x(2x + 1). g. (2x + xz)ex, (2 + 4x + x2)e1.

2. a. (2 cos 2x - sin 2x) e-x dx. c. (ex + e-x) dx. e. 3(ln 10)1092 dx.

4. a. (1, e) max. C.

\J , 2
e-1/2/ max.,

\ - 2 , -
2

e 1/21 min.
J \ 2 J ` J

5. a. (0,1). c. {(x,y)I y = 0}. 6. a. y = ex. c. y = 2ex.

7. a. Y' = e-x(cos x - sin x), y" = -2e-2 cos x. Concave down for 0 < x < 7r/2 and
31r/2 + 2m7r < x < 57r/2 + m27r, concave up for 7r/2 + 2mir < x < 3712 + 2mir.

Rel. max. and min. + 2m,r, a-(n/°+2'"")
57T

+ 2m7r, - 1 a-(sn/4 zmn)
4 2 )1(4 2

Asymptote is x-axis.
101

8. a. f(x)=.Je2 +c. C. f(x)=1n10+c=10xloge+c.

Sec. 54, page 162

1. a. x5(1 + In x), x1(1 + In x)2 + x2-1. c. 3(10x)2(1 + In 10x).
3(10x)2x[x-1 + 3(1 + In 10x)2].

( l
e. (In x) L 1 + In On x)J , (In x) IX) + I + I + In In x

In x )21In x x(ln 2 x In x (_---
g. Isin xIx(x cot x + In Isin xD), Isin xl2[-x csc2 x + 2 cot x + (x cot x + In Isin xI)2].
i. 2x21(1 + In IxI), 2x21[1 1 + 2(1 + In IxI)2].

sin x 2x sin x/ I + cost x sin x cos x 3
2. a. cot x - c. cot x - -

x2 + 1( x2 + 1 tan' x 1 + cost x sin x cos x
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Sec. 57, page 173

1. a. x' dx = Jim- + k)2
2 = 2 Jim 1 I 1 n k + n2 k2

n- ook=1\ n n n_oonk=l\ if

= 2 Jim
n

I["_ 2 (n2 + n) + 6,2 (2n2 + 3n2 + n)11

=2n-ool -211+n) +3(2+n+n2)] =2[i -2+31 =3,

G (
7

1 x2 dx = Jim G 1 +
-J
- J =etc. _1

n-.2' k=1 n1 n 3'

x--dx= lim \-1+3k)23=etc.=3, -+3=3.
J n-xk=1\

2c. f2(t-1)2dt= Jim j 2+-k-1J -=etc.= 26

n--o k=1\ /

2
f24

4 4u2du-2f2vdv+f2l ds= n-.1Jm (2+-k
oo k=1 n )2?n

- 2 Jim 12 +
?

k)? + Jim I (1) ?
n-.oo k=1 \ n / n nook=1 n

2 Jim C4+k+k2-2(2 +2k) +1
n-oo n k=1 n n2 n

= 2 Jim 1 j L1 + k + 4k2
n-oo n k=1 n n2

= 2 Jim 1 n + (n2 + n) +
4

(2n3 + 3n2 + n)
n-.co n [ 2n 6n2

=etc. =2(1+2+;)=2('g)= as
e. (63)(x)

2.a.', . c.-.
Sec. 59, page 178

,mix

1. a. 55. c. In It + 2I]=$ = in 2. e.
uz
2 - cos u]o = 2 + 2.

g. -1 cos3'2 x]o/2 = 1. i. sec x]o1° = A/2 - 1. k. -In lcos xI ]nj; = In V2.

2. a. +)(x2 - 1). c. 21x. e. sin x. g. f 1(x3 - 8) dx = 4. i. M.
3. a. 231 units2. C. 7!2/2 units2.

n n n
4. In 2 = f i zx = Jim

I I
= Jim

n I
= Jim

I

n-.oo k=11 +k2-ln n-oo k=1n+k n noo7,=1n+k.1 1
n

=Jim I + 1 }...+1
,t-ao n +I n + 2 2n



Answers 593

5. a. f i
Vx dx = xb/2ji = *(2V2 - 1) or f o l + x dx = *(1 + x)-11]01 = J(2v'2 - 1).

n
1 1

n
1 2 1 2 dx 1 s dx I

c. lim = Inn f or f - = In 3.
n-CO k=1 n + 2k 2 k / n 2 0 1+ x 2 1 x 2

fl,/4
fr 1

e. sin x dx or n/a sin x dx = 1 + 2
Sec. 60, page 182

1. a. if c. . e.

(Hint:
9

(1 + 3x2)9J2 = x V'1 + 3x2. i. 3;; .

2. a. c=3, area of{(x,y)I0 <x<3,0 <y<-x2}is9units2.

c. c = 10/f2. Area of {(x,y) 0 < x < 10/f -2, 0 < y < x2} is equal to area of
{(x,y)I10/2<x<-10,0<y<x2).

e. c = 4.5. {(x,y) I 0 < x < 1, 0 < y < x + 4.5} has area 5 units'.

3. a. c=ff. c. c=}.

4. a. = f2 (x - In sin x + In sin x) dx = f2xdx=Q.

c. = [fixsinxdx - fixsinxdx+ f2xsinxdx] + fixdx+ f2xdx
= [0] + [x2/2]i + [x2/2]i = V3.

Sec. 61, page 186

1. a. ;. c. }. e. x spa. g. %/2-1. i. 6-81n2-
2. Parts a, b, and c should not be worked out by calculus since a and c were used in deriving

the derivative (and hence integral) formulas for trigonometric and inverse trigono-
metric functions. Also, b can be obtained from c by subtracting the area of a triangle.
d. crab. e. (a)p2, 1p1 = vertex to focus distance. f. (1 - c + c In c)(a-1 + b-1).

6. a. {(x,y) 10 < x < sin-' t, 0 < y < sin x} = {(x,y) 10:5 y < t, sin-'y <- x < sin-' t} so

f80 ltsin xdx= fo(sin-'t-sin-'y)dy,
-cos x]o`n 1 t = sin-' t[y]o - f 0 sin-' y dy,

fosin-'ydy,
f o sin-' y d y = t sin-' t + cos sin-' t - cos 0 = t sin-' t + 1 - t2 - 1.

Sec. 62, page 190

2. a. 62.5x8 x 102. c. 7rr2h(H/3 + h/4)62.5. e. 6.25ir3.8 x 10'.
g. 6.257r2.5 x 101. i. (62.5)32. j. 62.5(32 + 607r). k. 8.20 X 10'.

3. 62.57x(7.2) x 10' = 1.41 x 106.

Sec. 64, page 194

1. a. 62.5(3968)/3 = 8.27 x 10'. c. 62.5(2048)/3 = 4.27 x 10'.

2. a. 375. c. (62.5)24 = 1.5 x 10'. 3. a. 62.5(277r). c. 62.5irabc.

4. f
o

(10 + }x){(4 - x)62.5 + 5 50} dx + f'50(1050(10 + +)x)(9 - x) dx, x measured up.



594 Answers

5. a. -7-,/2. c. -j + 21n 2. (Hint: Set u(x) = In x.) e. 139-

g. -*[(25 - x2)3/2]0 = asi. i. e - 2.

6. a. c. d=8/x''2=4313=6.35.

7. a. [x sin x cos x]o/2 ±f '2 0 (-cos x) dx = 2 - 1.

Sec. 65, page 199

1. a. (i,5). c. e. (y'-,1).

9.

In 4-Q) In22-In4+1= y = (Hint: Find the area as the denominator of y,In4-1' In4-1
See Prob. 5(c), Sec. 64 for the numerator of z.)

3. a. On radius of symmetry (1)r/7r from center. c. (0,7x/8).

4. 3 ft 9 in. from top of gate.

6. a. (e C.
(25 + 87r 47 + 12x1

To-+
47r ' 30 + 12I

or about
(2.22,1.25).

e. z(27-7r)r/(18-7r)=1.61r,9=0.

Sec. 66, page 203
sLeb

1.
3

. 3. ]2 (a2 + ac + c2). 5. 16 7r. 7. J2 p°.

Sec. 67, page 206

1. a. '244 7r, x c. ' a' 7r, y = V. e. 1 417r, 2 = y .

2. a. V = (g)7rr3, centroid at the center.

3
4

R2c. V = h(Rz + Rr + r2), centroid h
R3

++2Rr Rr+3+ r2r2
from R-base.

( h2) r hl r2 - a2 - ah - h2/2e. V= 7Th r2-a2-ah-- ,x= a+-
3 2 r2 - a2 - ah - h2/3

g V = ('r/2)2, S = ir/4 + 1/7r.

H3 7rr2H3 7rr2H3 I H3 I H33. a. nr2 3 p. c.
30

p, 5 p. e. 2 bh
30

p,
2

bh
5 P.

4. Centroid 2 in. above center of base. 144p, 432p.

Sec. 68, page 209
1. a. 2. b. Does not exist. c. 6. d. Does not exist. e. 3. f. 2.

[Hint:g. Does not exist. h. 1(22i3 - 1). i. . D. sin -1 z =
1

2 1/1 --X 2

4. fix-2 dx = - t + I if t > 0. - 1 + 1 = 4 has solution t f "3x-2 dx ist
improper and does not exist.
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Sec. 69, page 214

1. a. jx4 - Yixa + 5x + c. c. axai2 -2 x3/a + c. e. J(x2 + 1)3/2 + c.
g. x - InIx+ 11 + c.

12 2

Hint: Setu=x+1orelse write x+l xx+1 1-1 x { 1

i. -In [cos xj + c. k. b 3 (a + bx)3/2 + c. M. 2x3/2 - 2/x + c. o.. 3 sins + c.

q.
1

sin (7rx + 2) + c. s. ltVa2 + x4 + c.
7r

2. a. 2a''t + bt + c. c. -1 cos3 t + c. e.
2 2 z5/2 + c. g. _ In (eat + e-a0) + c.

Sec. 70, page 216

1. a. (-;) cos 3x2 + c. c. In sec ex + tan eel + c.
e. 2 sec 'x + c. g. -cot x + csc x + c.

2. a. See 1g. c. -csc x - cot x - x + c. e. sec x - tan x + x + c.

3. a. -J(j cos 3x + cos x) + c. c. J(} sin 8x + j sin 2x) + c.

4. a. J(* cos' 2x - cos 2x) + c. c. ; sin' x - a sins x + } sin3 x + c.
e. 21Vsin x - (I)(sin x)5/2 + c.

5. f tang x dx =
tang-' x

2 - 1 - f tan2-2 x dx = tan x - f dx = tan x - x + c.

a a

f tan' xdx= 3 x- f tan' x-tanx+x+c.

Sec. 71, page 219

1. a. sin-'
x

+ c. c.
1

3
sec-'

x

3

+ 3
+ c.

e. ix-}In(4x2+4x+2)+itan-'(2x+1)+c.
-

2. a. 2In jx2+4x-31 - 5
in

x + 2 V7
+ c. c. sin-' x + 2 +c.

2V'7 x+2+''7 ''7

e. x-2In jx2+4x-121 +5Inix+6l+c
2

g.
1In tan-'3x-1+c.

3V'2 '2
Sec. 73, page 223

x x

1. a. ie3x + c. c. 1n/+ c. e. 1 + In 2 + c. g. 2 sinh x + c. i. ae'x + c.

x v/aa - x2 x 3x2 - 2
2. a. + c. C. - - sin' - + c. C. (1 + x2)ai2 + c.

25''25 + x2 x a 15

3. a. 4,7 - 31/3. c. 16nr + 0/3.
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Sec. 74, page 225

2. a. x sin x + cos x + c. c. } sin x2 + c. e. x cosh x - sinh x + c.
g. e2i'(+)x3 - jx' + J) + c. i. jx21n jxi - 1x2 - x cos x + sin x + c.
k. x(ln2 lxJ - 21n lxi + 2) + c.

3. a. l je3r(sin 2x + z cos 2x) + c. c. }(sin 3x cos x - 3 sin x cos 3x) + c.

4. A = a2 P
p2

e'l (sin px + P cospx) + c.

Sec. 75, page 228

1. a. 33,with a=3,b=2. c. 732 with a = 3, b = 2, c = 1, q = -8. e. 148.

2. a. -I sin' x cos x + J(x - sin x cos x) + c.
C. (X + 2)3I2(yX3 - Axe + 84106 ,)x - -1 + c.

C.
3'x-1v-3x2+2x+1+ 2sin-' 3x-1 +c.

6 3v'3 ( 2

3. a. 21n(Vx+1)+c. c. In Ix +3V'x-21 - 3
In

X17
(

k

ne 1
e. 12S Y.

1k
xki'2 + In (x'112 - 1)) + C.

=

2Vx+3-V17
2l/ x+3+V 17

+ C.

Sec. 76, page 232

1. a. 1 Inl2x+II+1InIx-1I+c. b.2In j2x+31-In Ix+11--.. +c.

C.
9 tan-_'4x+3 +5In(2x2+3x+3)-21njxj+c.215 X15 4

d.Inlxi - In (2x2 + 3x + 3) - 3 2x-1 27 tan-14x+3+c.
52x2+3x+3 5-V15 15

2. a. In

e.Inlx-I

+ c. c. In jxi - In '6 2 + 1 + c.

3 1 1 1

2x- 1 +2x+ I +c.

3. a(ln 3 - 31n2) = -0.196.

5. a. A=;; k'=;n(n+1)(2n-1).
k=1

n
C. A B=-s ; Ik°=s°n(n+1)(2n+1)(3n2+3n-1).

k=1
Sec. 77, page 236

1. a. 4 + 25 sin-' a, 25ir - 4 - 25 sin-' a. c. J(tan-' A. + tan-' ;).
e. a2(e - e-'). g. a2/6. i. 201n3.

2. a. 4(181e20 - 1). c. 2v2. e.

4

a3(e2 - e-2 + 4). g. 41rln2 - fn,
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b-1 b-i 7r 77r3. a. z lnb 'Y-2binb. c.
z

2'Y 8(7r-1)
2 25(ir/2 - sin-' 0.6) _ _ 256ae. x-ln3,y

301n3
x- y315,r

28 28
L x=-a,Y=-b.

4. a. (i) 62.5vr2070. (ii) 62.5(2250),r.

5. a. (i) r1liir/4. (ii) 5r'7r/4. c. 2r4
(7, 4

16 9n

7. a. (7.5)62.5. b. 62.5(60 + ($)'(1r/2 - 1)l.

Sec. 78, page 242

1. a. Let P be the mid-point of BC. Then AM = JAP = i(AB + BP) _ *(AB + iBC).
Also, BM = E(BC + iCA), CM = i(CA + CAB), and by addition

AM + BM + CM = i[(AB + BC + CA) + i(BC + CA + AB)] = 10 +
b. OM = OA + AM, OM = OB + BM, OM = OC + CM, and by addition

3OM=(OA+OB+OC)+(AM+BM +CM)=(OA+OB+OC)+
by Part a.

c. MM' = MA + AA' + A'M' with two similar equations and by addition the result
follows by Part a.

d. a b = ;. (Hint: AC + CQ = AQ, now substitute the given expressions for
A Q and CQ, then express everything in terms of AB and BC, and then equate the
coefficients of each of these vectors on both sides of the equation.)

2. a. Let Q1 and Q, be the mid-points of AC and BD, resp. Then

AQ, = JAB + iBC, AQ, = AB + iBC + iCD = AB + iBC - lAB

= 1AB + iBC so AQ, = AQ, and hence Q, = Q2.

b. a = b = i. (Hint: AP + PQ = AQ.)
c. OM = OA + AM, etc., 40M=OA + OB + OC + OD + (AM + BM + CM

+ DM). Parenthetic terms have resultant 6 since CM = -AM and DM = -BM.

3. Let Q be the intersection of the diagonals so AQ = QC and BQ = QD. Then

AB = AQ + QB = QC - BQ = QC - QD = -(CQ + QD) = -CD = DC, etc.
for other sides.

4. a. Write d, + 2d, - 3d, _ as -d, + dl = 2(-d, + d,) and see that CA = 2(BC)
showing that CA and BC have the same direction and hence lie on a line, since C is
common to both segments.

Sec. 80, page 247

1. a. (d cos a + d sin a)' = d2 cos' a + 21t d cos a sin a + 62 sin" a = cos' a + 0 +
sin' a = 1 since Jill _ 161 = 1 and d it = 0. Also, (d sin a - d cos a)2 = 1.
(d cos (x + it sin a) (d sin a - it cos a) = d2 cos a sin a + d d(-cos2 a + sin' (X) -

02 sin a cos a = cos a sin a + 0(-cos' a + sine a) - sin a cos a = 0.
c. a2+b2=1,c'+d2=l,ac+bd=0.
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3. (Hint: With it and U two adjacent sides, the sum of the squares of the moduli of the
diagonals is (d + 6)2 + (d - 6)2.)

4. a. With 12, v, and u' + U the sides of the triangle with 1121 = ldI, then the median from
the initial end of u' is u' + JU, whereas the median from the mid-point of it is Jd + U.
Since (a+ Jij)- = 1j2 T u -1 T 162 = d U and

(112 + U)2 = J112 + it v + V2 = flitJ2 + it - 6 the diagonals have the same
length.

62
IUI

5. c. (t + td) U = 0 has solution t = - - = - - sec 8.
ldl

7. (Hint: With M2, M2, M3 the mid-points of AB, BC, and AC, let O be the intersection of

the perpendiculars at M. and M2, designate M1O = v1, M2O = v2, and M3O = v'3.
From triangles M1M20, M2M30, and M3M1O

M1M2 + U2 = U1, M2M3 + 03 = U2, M3M1 + v1 = v3.

Use M1M2 = JAC, etc. Now dot both sides of the first of these equations by 63i the

second by 61i the third by 02. The fact that AB U1 = 0 and BC v2 = 0 will reveal that

AC vv3 = 0, thus showing that AC and U3 are perpendicular.)

Sec. 81, page 251

1. a. -4i + 7 j . c. OP = OP, + $P1P2 = (i - 21) + ,)(4i + 9 j ) = 3i + 2.5J

ai + bj 1 4
e. -V3i + j. g. = i+ -1 since b = Dxx--]z=2 = 4 and a > 0.

/a2 + b2 '/17 V17 a

2. a.'V2, -45°. c. 5, -126° 52'. e. 13, 67°23'.

3. a. 6. c. 0, the three points lie on a line. e. 6.

5. a. 45°. c. cos 0 = -1/165, 0 = 97° 08'.
6. a. cos 0 = '-;, 0 = 28° 03'. c. cos 0 = 1, 0 = 70° 32'.

e. At the origin 90°; at (1,1) cos 0 = a, 0 = 36° 52'.

8. a. y'=3x2-12x+12,m=3 -12+12= 3,T=It +3j.
y"]z-1 = 6x - 12]s=1 < 0 so curve concave down. Hence, rotate T through -90° to

1
obtain internal normal 17 = 3i - j and unit internal normal n' = 1 (3i - j).

A/ 10
(Note: If curve is concave up, rotate forward tangent vector

to obtain internal normal vector.)
2 e

c.
:4

i + j
+ e2 e2

e. -7 3i + 2j).

Sec. 82, page 256

1. a. x = a(0 - sin 6), y = a(-1 + cos 0).
b. OP = OC + CP, CP = bl where I is -i rotated through qS.

x=(a+b)cos0-bcosa b b0,y=(a+b)sin0-bsina
b

b0.

c. x=(a-b)cos0+bcosa
b

b0,y=(a-b)sin0-bsina
b

b0.

through 90°

d. x = a (cos 0 + 0 sin 0), y = a(sin 0 - 0 cos 0).
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e. x = I a cos 6 + j a cos 30 = 4[3 cos 0 + cos 30] = 4[2 cos 0 + (cos 30 + cos 0)]

= 4[2 cos 0 + 2 cos 20 cos 0] = 2 cos 0 (1 + cos 20) = a cost 0. Similarly

y = a sin3 0. x213 + y213 = (a cos3 0)2/3 + (a sin3 0)2/3 = az13(cosz 0 + sinz 0) = a213.

2. All lie on the graph of y = (Z) x + 1. a. Half-line in first quadrant and end point,
(0,1). c. Interval with end points (2,4), (-2,-2). e. Interval with end points (4,7)
(0,1).

4. a. ''5/3. c. 1 + V5/3. 5. 77/6.

Sec. 83, page 261

1.-a.xi+yi=(5-2t)1+(6-2t)1;x=5-2t,y=6- 2t;y=x+1.
c. xi+y1=( )1+(3+t)1; x=+),y=3+t; x=1.
e. xi+y1=(3+t)i+(-2+mt)1; x = 3 + t, y = -2 + mt; y+2=m(x-3).

2. a. 4, same. c. 0, point is on line. e. 3 , opposite.

3. a... c. 7. 4. a. 11. c. 29.

1.51 11.57 9.055. a. t = - , - c. (-1,3).
2.01 2.01 2.01

Sec. 84, page 266

1. a. F(1)=31+j,>3(l)=i+31,d(l)=2(1-1),
dT(I) _ -E!+ 31), etiv(I) = 6(31 -1).

c. F(1)=i+21,0(1)= -i+21,zt(l)=I+21,
z tr(1)=a -I+21),z 1z(l)=`a21+1)

2. a. ti(t) = 13 cos t -12 sin t,
d(t) 3 sin t +12 cos t) _ F(t),

-5 sin t cos t
tfT(t) _ (t3 cos t -12 sin t),

9 cost t + 4 sinz t

ztN(t)
4 + S cost t

(12 sin t + 13 cost).

c. e(t)=21+1(2t+1),z1(t)=21,

(drt) =
2(2t + 1) [2i +1(2t + 1)],4t2+4t+5

dx(t)=4tz+4t+[(2t+ 1)1-2j]

Prob. la

Prob. 1c

e. ti(t) = i cosh t + 1 sinh t, d(t) = F(t), zFT(t) = (tanh 2t) ii(t),
&i, (t) _ (sech 2t) (-tsinh t + J cosh t).

g. ii(t) = it cos t + It sin t, d(t) = i(cos t - t sin t) + 1(sin t + t cost),

42.(t) =
t

ti(t), dy(t) _ it sin t +1t cost.

5. a. P(t) = 130t +1(8tz + 100). C. F(t) = i (e° + 1) +1e

7. P(t) = 140t cos a + I (40t sin a - +jgtz + 6.5).
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Sec. 85, page 271

25 2 178
( y-$2 5001. a. (x-32)2+ (y- 2 =

4
. c. x+4)2 +( a) o

e. x42 x

(y+V2)2 47. g. (x-3)22+(y+2)2=8.

i. OC = P(2) + R(2) _ (31 + 41) + 10(-2i +1) _ -171 + 141 so equation of circle
is (x + 17)2 + (y - 14)2 = IR(2)I2 = 102[(-2)2 + 1] = 500.

k. (X + 2)2 + (y + 1)2 = 1124

3. a. (0,4). c. (0,4).

4. y = 2-9(9x8 - }x4 + 1 xs).
2

5. x'(x) = 0 for x < 0 or x > 1 whereas x'(x) _ (1 + x4)5,2 (1 - 5x4) for 0 < x < 1.
Thus, neither lira K'(x) nor lira K '(X) exists.

z-.0 z-.1

Sec. 86, page 275

1. a. e - e-1. c. -0.9 + In 19 = 2.045. e. 2V2 - V3.

3 + Y10 122
c.3. a. V2 + In

1 +V2 27
. e. 22. 4. a. 8a.

Sec. 87, page 278

1. a. D# = D2 = it. C.
cos 0 2 cos 0 sin 2 8 cos 20 sin 0

2 cos 20 ' 4 cos' 20
e2t est(3 - 2t) e2'

e2t(2t - 1)
e. -

1-t, (I -t)8 t 20

2. a. (1,2),(-1,-2). c. (0,1).

3. c. With x' = Dtx, etc., since r' = (x'2 + y'2)-1'2 (ix' + 1y
d r

= ( 1 x ' + i y ' ) (x'2 + y'2)-112 + (x 2 + y'2)-1,2
d

(ix + 1y')
dt dt dt

= X 2" - X"8'2 (_iy' +
ix'),

dT dT dt d ' 1 X 'Y' - x"y'
- dt dS - dt Vx 2 + y 2 (x'2 + y 2)2 (-Ty +,)x ).

( z y2 2 'y" }'ds ' 1Z = [XIYI+
X )' +lx)1 IX x 2 - X"2 (-iy' +.1x').1

= 1.= x' + Y'2 (-ry +1X )2 = X12 + Y'2 [(-y)2 + X'11z

Sec. 88, page 281

1. a. and c. 3X2 - Y2 = 1. e. IXI + I YI = 1. g. No graph. i. X = +1.

3. a. Center (0,0), vertices (T3, +3), foci (T V2, ±V'2), ends of minor axis (f V'7, ± V7)
directrices y = x ± 9V2.

c. Center (0,0) vertices (±4/V'13, ±6/V'13), foci (±2, ±3), asymptotes
12x + 5y = O,y = 0.

e. Vertex (0,0), focus (210, 1.), ends of right focal chord
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Sec. 89, page 285

1. a. Fig. 89.2 rotated 45°. c. Three leaved clover traced twice for 0 < B < 360°.
e. Spiral expanding as 0 increases, approaching the pole as 6 - co.

2.

y= cos x

Prob. 2a

4 7r

Prob. 2c

p=1+cos 9

U=sin
2

x p=sin
2

e

Prob. 2e

3.

Prob. 3a

4.

Prob. 4

Prob. 3c

5. a. (x2 + y2)2 = 4(x3 - 3xy2). C. (x - 2)2 (y - 2)2 = (z)2.

6. a. p2 - 4p cos 0 + 6 p sin 0 + 9 = 0. c. p=±b+asec0.
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Sec. 90, A, B, page 287

1. a. Only p = 4 cos B. c. p = cos'0, p = sin AO, p = -cos 20, p = sin Q0.

e. p Isin 01, p = -sin 01.

2. a. (1,0'), (1,180°). c. p = 1 and angles 10', 50°, 130°, 170°, 250°, 290°.
e. The pole and (' 312,30°).

3. a. The graph has equations p = sin 10, p = -cos 30, p = -sin 30, p = cos -0, and
when solved simultaneously in pairs give the pole and the simplest designations of
the other points (1/'2,90°), (1/'2,-90°). c. The pole.

Sec. 90, C, D, E, page 291

1. a. Method I. p[5(s cos 0 + b sin 0)] = 10. Let 0 be an angle such that cos = is and
sin ¢ = I. Then the equation is p(cos 0 cos 0 + sin ¢ sin 0) = 2 so that p cos (0 - 0)
= 2 which is in the form (5) with 6, = 0 and p, = 2. Thus, the graph is the straight
line perpendicular to t, = 2(i cos ¢ +1 sin ¢) and passing through its terminal end.
Method II. Change to rectangular coordinates: 3x + 4y = 10.

c. sin 0 = cos(0 - 90°) so equation is p = (5) cos (6 - 90°) which is in the form (4).
Graph is a circle with center (3,90°), radius 3.

e. cos 0 + sin 0 ='2 cos 0 r -sin 0) ='2(cos 0 cos 45° + sin 0 sin 45°)

r 4V2 ') 10='2 cos (0 - 45'). Thus, the equation is p 1 T 3 cos (0 - 45) J = 3 which

has the form of the second equation of (8). The eccentricity is 4'2/3 > 1 so the
graph is a hyperbola with transverse axis making an angle of 45° with the polar axis.

g. With 0 as in Part (a), equation is 10 = p2 - 5p cos (0 - ¢) = p2 - 2(3) p cos (0 - 0),
10 + (2)2 = p2 ± (s)2 - 2(x) p cos (0 - ¢) which is in the form (3) so the graph is a
circle with center (Q, 0) and radius '65/2.

2. a. e = }, so an ellipse. q = 6, a = 4, b = 2'3. Center (2,180°), vertices (2,0°),
(6,180°), foci at pole and (4, 180°), directrices perpendicular to polar axis at (6,0°),
(10,180°).

c. p[1 + cos(0 - 90°)] _ ;. Since e = I graph is a parabola. Axis is vertical with
vertex up. eq = I q = 4 = 2p where, in the usual parabola notation, p is the
distance between the focus and vertex. Hence, p = 8 and the vertex is (e, 90°). Right
focal chord has length 4p and ends (;,0°), (;,180°). a 18e. p(1 + a cos 0) Hyperbola since e = > 1. q a = 6, ae = 10,

=e 5
b = 8. Center (10,0°), foci at pole and (20,0°), vertices (4,0°), (16,0°), directrices
1 polar axis at (;z,0°), (V90°).

3. a. p(2 - cos 0) = 9 or p(2 + cos 0) _ -9. c. p(l - cos 6) _ -6 or p(l + cos 0) = 6.
e. p(8-5cos0)_-39 or p(8+5cos6)=39.

Sec. 91, A, page 293
1. a. 60°. c. 40° 53'.

2. a. (Hint: Find alternate equation for first graph.)

3. a. 70° 32'; 90° at pole and at 0 = 7r/4. c. 90°; 43° 36' at 0 = f radians.

4. a. [Hint: Use f (0) = sin f0, g(O) = cos J0]. 530 08' at 0 = 2x/2, 0° at pole.
c. At pole 0° and 60°.
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Sec. 91, B, page 296

,r2 1 ,r + ti! 1 + 722. a. -, , r V1 + ,r2 + In = ,r VT T a2 + In (,r + ,r2).
3 2 -,r + Vi + ,r2

c. 3,r/2, 8.

3. a. 25,r. c. 97r/2.

4. a. V2 + In(1 + V2).

if5. a. )J 2,./3 p2 dB = ,r - ;V'3. C. 2() f "/n/4 p2 dB = 1. (There are two loops.)

Sec. 93, page 301

1. a. (1, -2, 5). c. (-2, -1, -3). e. (5, -6, -3).
2. a. From origin to other two points u' = i + 2j - 3k, it = 3i + 3J + 3k, from second

to third point w = 21 + J + 6k. U-6= 1(3) + 2(3) + (-3)3 =0 so u' and it
perpendicular.
01 = cos-' '" = 35°45', 02 =COs 1 ; = 54° 15'.

c. 46° 55', 43° 05'.

3. a. Vy2 + z2. C. Ix!.

4. a. With (0,1,2) initial end d = -i - 3]+ 5k, it = 51 - j - 3k are such that
-5+3-15

cos 6 = showing these are the equal sides and cos 0'v/1+9+25.25+1+9
35. Thus 0 = 180° - (60° 57) = 119° 03' is the desired angle.

c. At (-1,17,1), 0 = cos-' (8) = 44° 25'.
5. a. Vector from third to first is parallel to vector from second to fourth; and these

vectors have the same length. Also other sides are parallel.

6. a. (1,8,4), (5,4,0), (-3,0,6). (Hint: Let d be the vector from the origin to one of the
given points and let 6, and d2 be the vectors from this point to the other given points.
Then fourth vertex is the terminal end of u' + 661 + 62.

Sec. 95, page 306

1 1 1 -3 2 1 6 -3 2 2 11. a. -,. c. 2. a. -,-,-. c. -,0,-.V373'73 V'14 14
714

7 7 7 'v'5

3. a. 60° or 120°. c. 30° or 150°.

4. a. cos-1
25

= 33° 07.5'. c. Cos-14 +
y'2

= 25° 33'.
9 i1 6

5. a. (4,3,-5). c. (xo + ato, yo + bto, zo + cto), to =
a(x,-xo) +b(y1-yo) +c (z, -zo)

a2+b2+c2
6. a. (5,-1,3); x=5-3t,y=-1 -t,z=3+4t.
7. a. (6,5,-1), (-2,1,3).

Sec. 96, page 310

1. a. x=-1 -2t,y=2+3t,z=3-t. c. x=2t,y=4t,z=0.
2. a. 3(x-2)+8(y+1)-7(z-3)=0 or 3x+8y-7z=-23.

c. -3(x - 0) + 1(y - 0) + 5(z + 4) = 0 or 3x - y -- 5z = 20. (Hint: Find two
points common to both planes, from these points obtain direction numbers of normal
to desired plane.)
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3. a. 3x-2y+5z= 6. c. 4y-z=3.
4. a. andc. 3x-4y+z=5.
5. aandc. 3x+y-4z=2.
6. a. 3x-y+2z=17. c. 19x + 17y + 7z = 0.

Sec. 97, pages 315, 318, 322

1. a. 7. b. 23. c. -7. d. 0. e. 50. f. 1. g. 1.
h. b2 - 4ac. i. 148. j. 148. k. 30.

6. a. 13i+141+16IC. b. 31+41. c. -8i+61+4k.

S. a. 56. b. 322. c. -9.
9. a. -220. b. 16.

10. b. 2x-4y-9z+17=0.
13. a. -1. b. 34.

Sec. 98, page 326
1. a. -2i c. 0.

2. a. axd=-21+61+41C,(it +9)x0=-21+141-22k.
=9+10-6=

(d x0)6 = 5(31 + 51 - 6k) = 151 + 25j - 30k,
-21+ 141-22.C=(u' x 6) x 0.

b. (tlx d) x 0 =3i-51-6IC=(it-O)d-(6 w)t'i.
3. a. x - 16y - 13z = -2. c.z=-20.
4.a.x=2+t,y-3-16t,z=4-13t. c. x=10,y=3,z-20+t.
5. a. T = (0.5)V269. c. T = (8.5)V'5.

6. a. t1=6,t2=1,t2=5.5. c. t,=0,t2=8.5,t3=17.

Sec. 99, page 329

abc
2. a. and b. q-*. 0. c. 3. d.

6

Sec. 100, page 332

1. a. 4(t) = (-6iri sin Tr t + 6rr1 cos 7rt + 1C),
V36rr2 + 1

K(t) = (t) _ -1 cos zrt -1 sin irt,12"2
36,x2+1

1 r
(t) _ (1 sin it + j cos it + 67rK) , 7rV 36rr2 + 1 = dist. traveled.

36rr2 + I
1 sech2 3t,

C. T(t) _
2

(i tanh 3t + I + 1c sech 3t), K(t) =
4

sech 3t - 1C tanh 3t, o(t) = 72 (-i tanh 3t + 1- 1C sech 3t), 2V'2 sinh Err.
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2.zt=if"+.ig"+A",T=dFdt
= (f'f .dt ds + Ig" + fhl (f'2 + g'2 + h'2)-1/2

N=((,f "+lg'+kh')(ff i'gg +hh)+ +kh"1

p p

(f,2 +g'2 + h'2)3/2 f.2 +g,z + h z1 Vf.2 +g,z + h'2

f'h'h' +g 2f" + h'2f") +i( ) + K( )
(f,2

+ g'2
+h)2

N _ ( J 8g/.f"
-.f,h'h"F" +g,2 f"2 + h,2f"2) + ( ) + ( )

1 (f'2 +g'2 + h'2)2
(-2`g g, f +g,2 f"2 +f,2 g"2) + ( ) + ( )

(f '2 + '2 + h'2)2
f"g"72 + ( )2 + ( )2 > 0.

(f'2 +g'2 + h'2)2

Since also N it = INI Idl cos 0 for 0 the angle from d to N, it follows that cos 0 > 0
so 101 < 90°.

Sec. 101, page 338

1. a. {(x,y,z) I 1 < x < 2, 0 < y < 2, 0:5 z < x + y}, {(x,y,z)10 < y < 2, 1 < x < 2,

0<z<x+y}. c. {(x,y,z)I -4<x<4,0<y<'%/16-x2,0<z<2y),
{(x,y,z) I 0 < y < 4, -x/16 - y2 < x < 16 - y2, 0 < z < 2y}.

e. {(x,y,z) 0 < x < 4, x2/4 < y < 2Vx, 0 < z < x2 + y},
{(x,y,z)I0<y<4,y2/4<x<2V/y,0<z<x2+y}.

2. a. A solid right circular cylinder but with slanting top.
c. All points inside a right circular cylinder except the points on its central axis; radius

1, altitude 2. _
e. The solid common to a beam, with square base and side V'2, and the space enclosed

by the nose of a circular paraboloid.

3. {(x,y,z)I -a<x<a,-`"a2-x2<z <Ja2-x2,-V'a2-z2<y<z2}
or {(x,y,z) I -a < y < a, -V a2 - y2 < z - VT- z2 < x < 1/a"- - z2}

or {(x,y,z) I -a < z < a, -''a2 - z2 < x < Va2 - z2, - a2 - z2 < y < z2}

4. a. {(x,y,z) I 0 < x < 2, 0 < y2 + z2 < xa} or
{(x,y,z)-4<z<4,-x/16-z2<y<x/16-z2,f +z2<x<2}.
From first form V = f o ir x° dx = a 7r.

c. {(x,y,z) I 0 < z < 4, Vz < V;'- 77:5 2} = {(x,y,z) 10 < z S 4, z < x2 + y2 < 4} or
{(x,y,z) -2 < x < 2, -1/4 - x2 < y < V/4 - x2,.0 < z < x2 + y2},
V=for(4-z)dz=8zr.

Sec. 102, page 343

1. a. lim f (x,mx) = lim x = 1 , different for different values of m.
x-->o z_ox ± mx 1 + m

X X
lim f (x,-1 + m(x - 1)) = lim = lim = 00
X-I '_1x-l+m(x-1) z-.1(x-1)(l+m)
for m -1, hence, there is at least one line (actually any line with slope -1)
along which the limit at (1,-1) does not exist, so the limit at (1,-1) does not exist.
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Also at (-1,1)
lim f (x,l + m(x + l)) = oo for m-- -1.

X--1

c. limf(x,2+m(x-4)) =1im (x-4)
z-.4 2: - [2 Y- m(x - 4)]2 x-

= Jim
4

x-.4 (x - 4)(1 - 4m + m2 (x -4)]

4m
if m but oo if m = , so no limit at (4,2).1 -

e. lim x,-2+mx-1 m
Xytf ( ( )) = l

+ m2
, so f has no limit at (1,-2).

2. a. Jim f (x,mx) = lim
x2mx

= lim
mx

= 0 so at (0,0) the limit along any line,
x-.0 z-O x° + m2x2 ry0 x2 + m2

except y-axis, is zero. But also the limit along the y-axis is zero since

lim f (0,y) = lim
OZy

= 0.
V-0 0° + y2

b. For k -- 0, consider approach to (0,0) along the parabola {(x,y) I y = kx2}:
z( z

Jim f (x,kx2) = Jim
x x) = k

and, hence, different limits are obtained
z-.o z- O e + (kx2)2 1 1- k2
along different parabolas. It follows that f does not have a limit at (0,0).

Sec. 103, page 345

1. a. Solid sphere of radius 2 and center at the origin.
c. plane. e. Ice cream cone and ice cream. g. Hyperbola.

2. a. {(p,O,z) I p(2 cos 0 - 3 sin 0) + 4z = 6}, {(r,0,¢) r sin ¢(2 cos 0 - 3 sin 0)
+ 4r cos 0 = 6). c. {(p,O,z) 14p2 - 9z2 = 36},
{(r,0,4,) 4r2 sin2 ¢ - 9r2 cost 0 = 36} _ {(r,0,¢) r2(4 - 13 cost ¢) = 36).

e. {(p,O,z) p2 = 4 - 4z2}, {(r,0,¢) 100 + 3 cost ¢) = 4}.

3 3
''/2°61. c. (323,-2,4)3.a. (1/i

a. (v', 'Z, 1) . c.
3 3 - 3

5. a. 60°, 45°, 120°.4. (-4 4' 2

Sec. 104, page 350
1. b. 3. ;rr.

2 tov 2 2 2 (xy - yz)2,2-]x-
t0v

5. ft fv xy-y dxdy= f13
,

dy=etc.=42.
v

7. R={(x,y)IO<y<l,y<x<2-y}so f'f'y-"(x +1)ydxdy= or
R={(x,y)I0<x<1,0<y<x}u{(x,y)I1.<x<2,0<y<2-x}and
f0f0(x+1)ydydx + f1 fo-z(x+1)ydydx=y.

Sec. 105, page 353

2 a. f1f0(x+y)dydx=5or fo fi(x+y)dxdy5.
C. f4

4
f *1/16is -

zz 2y dy dx = 256 or f4 f Jlg _ y2
2y dx dy =

256
3 0 - -,/ - U2 3
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e.

3, a.

e.

4 2 2 2
1104

f0fz2/4 (X' + f0fy2/4 (x +y)dxdy= 35

4 X16 - x2 f2 2 + /2z - x2f4fV16-zi(x+5)dydx=807x. c. fo

f 0-z (4 - x2 - y2) dy dx = ?3

Sec. 106, page 355

1. a. RI = 3na, My = -li2s , M. = eea, (-J,5).

5 lc. RI=+61n3,M.=M5= , 2 =Y 1=
2 3 6 15 + 361n (j)

e. RI = 1 + 10 sin-'
3 M. = 102

Ms = 0.
v'10 5

607

102X= ==
5 + 50 sin-1(3/'v'10)

1.51,9 0.

2. a. f a
15/8 f 41

(z
x2/0

5) dy dx = 6a- C.
f25/16f o-I V5

dx dy = = A. y' n.2y -

3. a. I, =' fn°/? f oin y xy2 dx dy = '$ + Iv = f /2 f sin y x3 dx dy =
37T

96 16 ' ° ° 64

7e8+1 17e4+3c Ix
64 'Iv 16

e. Since Ix - yi
x - y ifx > y

divide the region by the graph of y = x and havey-xifx<y
R={(x,y)10<x<2,0<y<x)v{(x,y)10<-x<2,x<y<,'ix},

I = = f2 (; f
o

(x - y)y2 dy + f z (y - x)y2 dy1 dx = s b, Iv = '

4. a. Iv(t) =ff., (x - t)26(x,y) dR = f f R(x2 - 2xt + t2) 6(x,y) dR

=ffR x2 6(x,y) dR - 2tJJ R x h(x,y) dR + 0 f f R 6(x,y) dR

= Iv(0) - 2tMv + t2,u.
Sec. 107, page 359

a. 47r. c. f o fo2 cos 30p
dp dO = 77. e. f oR f o +

cos 0p
dp dO 7r.1.

2. a. My= foefo cosepsin0pdpdO=3a3,Mv=fo2f2oacos0pcosOpdpdB=2a3,

7r 4a
IGI=2a2, Y=3--, 5=a.

a2 16''2 128 V'2 a
C. IGI =

8
7r, M. =0, My =

105
-a', Y =0,.k =-T05

7r'

a.
fr/2 f2 cos 0p2

do dO0 0

c. 2 f Oaf0
'V'a2 - p2 p d p dO = s IT (a3 - (a2 - b2)3'2].

3.
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Sec. 108, page 361

1. a. ;(1 - cos 4). c. J0Jt+1e x2dydx=2(1 -e 1.

e. J p ean y x dx dy = 2
J 0 [X2]ian v dy = etc. = 2 Or - 1.) .

g. f o J2z f (y) dx dy J a (2y - y2) f (y) dy o (2 -y) sin y dy = etc. = 2 - sin 2.

2. a. 4 (eaZ - 1). C. f /2 Jo cos 0 p sin 9 p dp d9 = ;.

pcos0pdpd9=,--.3. a. fol9Jasvydxdy=2-1. b. follj12
,./2 - /2

c. f
u

f ex dy dx or fo
fy ex & dy = e2 + 1 I. d.

a 3e'
2

Sec. 109, page 364

1. a. I. c. 0. e. j0 f0,. f
0
a sec 4 p cos , p2 sin ¢ d p dO do = 12 aa.

o aa.2. a # = Jl
z J o' Jo k p cos ¢ p2 sin ¢ d p d0 do = 4
2k

Mx"= IS as,X=Y=0,2= Aa.

C. z = y = 0, 1 = ;h, assuming the cylinder is setting with its rare end on the
xy-plane with center at the origin.

Sec. 110, page 366

1. a. -kKmb f2rf fh c+h-z
dz d p0 0 0 [P2 + (c + h - z)2]3/2 p P

a_ +kKm b2a 1 - 1

0
-,/p2 + (c + v + cz

p dP

= kKma 2,r [V a2 + (c + h)2 - 1/az + cr - h].

f fC. kKm b fo'JofO
z+c

pdpdzd9
[P2 + (z + c)2]2/2

J-kKm 82,r h z + c
1 dz = -fKm 62, [Paz + (z + c)z - z]0

O1'a2 + (z + c)2 - J
_ -kKm 62,r [V'a2 + (h + c)2 - c2 - h].

2. a. The cone is {(p,9,z) I 0 < p < 1, p < z < 1, 0 < 0 < 27r}. The answer is )Con 6
multiplied by the integral

f1 (1 (2,. z+1
dO dz d p Jt - 1 zgl p d p[pa+(z+1)z]s/2 P P 01/pz+(z+1)z]z_p P

2n fl P
1 dp which, with the aid of Table formula 780 2p + 1 +4J

evaluates as xL-'/5 + 3. 1 in
V'10 + 31

V2 'V2 + 1 J



Answers 609

Sec. 111, page 368

1. a. ft(x,y) = 2xy3 + y2, fv(x,y) = 3x2yt + 2xy.

8 (x,y) y of (x,y) -x
ax = x2 +

y2
, ay = x2 +y2*

e.
of (u,v)

au = 2u In
v

U

of(u,v) u2-u, _-
av v

2. a. x y c. - Y cos Y
, 1 cosy. e. 6t sin (2s2 - 3t2).

v xt + y2 V/x2 + y2 x2 x x x

-2y 2x 2x 2y
3. a. c. - e. evlt 1 - Y , evIz.(X-y)2'(x-y)2 a2'b2 \ X

Sec. 112, page 372

1. a. 4x-4y+z=8; x=2-4t,y= -1 + 4t, z = -4 - t or x - 2 = -y - 1
= 4z + 16.

c. x+y+4z+rr=0; x=-2+t,y=2+t,z=-rr/4+4t or
4(x + 2) = 4(y - 2) = z + 7r/4.

e. 3x+5y+2z=8; x = 3 + 3t, y = -1 + 5t, z = 2 + 2t.
4. a. D, = 76, (-3,2,4); D2 = -24, (2,-2,-20). c. D = -2, (2,-1,2).
5. a. (O,Q,-Z). c. (2,3,15), (-2,-3,-15).

Sec. 114, page 377

1. a. 8 f o fo rz_yz /(-x)2 + (-y)2
+ 1 dy dx = 8 fr

(0rz_z2 r dy dx
'V r2 - x2 - y2 0 J Vr2 - x2 - y2

= 8r f
o

sin-- y dx = 8r f r (sin-' 1 - sin-- 0) dx =
8r'-

r = 4-,r2.
Vr2 - x2 0 2

3.
fl (z

3 dx = 3 fl sin--
x

dx or f >r14 f see 0 3
d p0 0 V9-x2-y2 0 x2 o 4 -,/9-P2P P

= 3
J
O'4 (3 - '19 - sect 0 d9. 4.

6

(2V2 - 1). 5. 16'd2. 6.
PAZ + B2 + C2

7ra2
lCl

z

4X2 + 2 dy dx. 9. 6rr.8. kK a f
0 f0 (xz + (y - 1)2 + (x2 + y)2]3/2

Sec. 115, page 379

1. a. f (x,y) = x3y - x2y2 + y2 + sin y. c. f (x,y) = tan-- y + 1 - tan--1

'Vx2 - y2 V16 - y2
x x

e. f (x,y) = xy2 - 4yt g. f (,,,y) = e2t,v.

+ et + c. e. No function.2. a. f (x y) = y + y + c. C. f (x,y) = tan-'

-

x

y

Sec. 117, page 384
1. a. -0.87, -0.9, 0.967.

c. cos 65° 36' - cos 60° = -0.0869, -0.0836, 1.04.
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2. a. (6x + 4y) dx + (4x + 2y) dy. c.
sin y dx + x cos y dy

z sin z yr
e.

x`°Lsinydx+Inxcosydyy
1 + x

x J

5. a. Second d (f). c. First d(xy). e. Second d(Vx2 + y2 + x2).

119, page 388Sec.

1. a. D=y - - y +
2x2 3

. c. Formally we obtain Dy = -xly, but note that there is
x+3xy2

no pair of numbers (x,y) satisfying x2 + y2 + 1 = 0.

e.Dy=-lx Xlog,,efor0<x<1or<x.
x

2. a,y= -1,x= -1. c. 2x-y=2,x+y=2.
3. a. y2 dx + (8 - xy) dy = 0. c. (ye= - sin x) dx + e= dy = 0.

e. y(1 - cos x) dx - (x - sin x) dy = 0.
4. a. 2y (X - 1)dx + [y2 - (x - 1)2] dy = 0.

c. Primitive x2/4 + y2/c = 1; diff. eq. xy dx + (4 - x2) dy = 0.
e. (y-2)dx-(x+1)dy=0.

Sec. 120, page 391

az 2xy - z az x2 - z2 az az
1. a. - = = C. - = yze=y, - = xze=v.

ax x -+-3y Z2 ' ay x + 3yz2 ' ax ay

ax x2 - z3 ax x + 3yz2 ax x ax 12.a.-_ = c. - _- -_-.
ay z - 2xy' az 2xy - z ay y az yze=

3. a. x-2y-3z+14=0; x = -1 +t,y=2- 2t,z=3 -3t; (0,0,0).
c. x-2y+9z=0; x=3+t,y=-3-2t,z=-1+9t; (B=,-'8,0,)(*,0,-Z ),

(0,3,-28). e. 2x - y + 2z = 4; x = 1 + 2t, y = -t, z = 1 + 2t; (0,1,0), (1,0,1)
4. 8x + 6y - 5z = 25.

5. Line has direction numbers 2,2,1, passes through (0,0,0), so has parametric equations
x = 2t, y = 2t, z = t, pierces the surface when 2(2t)2 + 4(2t)2 + t2 = 100 so when
t = ±2. Thus, one of the points is (4,4,2). At this point normal has direction numbers
16, 32, 4 or better 4, 8, 1. Thus, desired angle 0 has

2(4) + 2(8) + 1(1) 25
cos0= _-

22+22+12V42+82+12
By symmetry the angle at the other point is the same.

7. a. a=3,b= -1,c=4.
8. a. t(3x2y + yz) +!(x3 + xz + 3z2) + 1(xy + 6yz).

27

Sec. 121, page 394

2. a. (1) z = e2' - e' In t, D,z = 2e2° - e° In t - eyt.
(2) D,z = (2x - y)D,x + (-x)Dey = (2e` - In t) e° + (-e`)(1/t)

= 2e2° - e' In t - e°/t.
c. (1) z = sin 2e° cos 2t, D,z = -2 sin 2e' sin 2t + 2e° cos 2e° cos 2t.

(2) D,z = (2 cos 2x cos y)D,x + (-sin 2x sin y)D,y
= 2(cos 2e' cos 2t) e' - (sin 2e' sin 2t) 2.
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d. (1) z = Vi + tang t + In Isec2 t - tan 2 tJ _ ]see ti + In 1 = Isec tJ,
sec t tan t if sec t > 0

D,z =
-sec t tan t if sec t < 0

(Note: Diz # Isec t tan tI.)

x2x
[_y -

2y
D,x + 2 _ y2 Ay(2) Dtz =

z
y 2 x

2seet r tant 2 tan t= sec t tan t +
L777

sect t
sect t - tan2 t tang t sect t - tan' t

_ 2sec2ttant tan tsec2t 2tantsee' t
1 + sec' t 1

_ tan t sect t
Isec tj

= tan t Isec tl.

3. a. (1) z = ell cos' s - e21 coss sin s = e21(cost s - cos s sin s),
aZ

at = 2e21(cost s - cos s sin s),

az
as= e2L (-2 coss sin s - costs + sin's) _ -elf (sin 2s + cos 2s).

(2)
az

= (2x - y)
ax

+ (-x)
ay

= ef(2 cos s - sin s)ef cos s - (et sin s)et coss,
at at at

aZ = (2x - y) ax
+ (-x)

ay
= e,(2 cos s - sin s)(-et sin s) - (et cos s) et cos s.

as as as

c. (1) z = sin (2set) cos st,
aZ

at
= 2set cos (2set) cos st - s sin (2se) sin st,

aZ

as
= 2e' cos (2set) cos st - t sin (2set) sin st.

az ax ay
(2)

at
= 2 cos 2x cosy

at
- sin 2x sin y

at

= [2 cos 2 set cos st] set - [sin 2set sin st] s,
a
az = [2 cos 2set cos st] et - [sin 2set sin st] t.

Sec. 122, page 398

1. a. zxx = 6x, zxv = -4y, zvx = -4y, zvv = -4x.

c. z= = -4 cos (2x + 3y), zxv =
a

a [-2 sin (2x + 3y)] = -6 cos (2x + 3y),
a y

zvx = ax [-3 sin (2x + 3y)] = -6 cos (2x + 3y), z,,, = -9 cos (2x + 3y).

e. zxx = 12 + )e2Ix, z= - + ) elx = z, zvv
1n

evl .X3 \ x x x

,fxvv5. a. fxxx, fxxv, fxvx, fvxx, fvvv, fvvx, f11',
b. (1) zx, = 6, zxx, = -8y3 = z:vx = zvxx, zvvv, _ -24x2y,

zvvx = -24xy2 = zvxv = zavv
(3) zvx = ex cos y, zz,t = -ex sin y, zxv, = -ex cos y, zvv. = ex sin y.
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Sec. 123, page 401

1 e2 -2ab1. a. - _ . c. e.
5'/2 b2

2. a. -9,f (0,21/3) = \/3 cos a + sin a. b. Value 0 if a = 120° or -60°, max. value 2
when a = 30°, min. value -2 when a = -150'.

4. a. At (2,4); 0 if a = -45° or 135°, max. 8V2e if a = 45°, min. if a = -135°.
At (2,-4); 0 if a = 45° or -135°, max. 8V2e if a = -45°, min. -8'\/2e if oc = 135°.

c. At (3,4); 6 = tan-' 3 = 53° 08'. Value 0 if a = 53° 08' - 90° -36° 52' or
a = 53' 08' + 90° = 143° 08', max. s if a = 53° 08', min. -5 if a = -126° 52'.

At (-3,4); 8 = tan-'
43

= -53' 08', etc.

Sec. 125, page 404

100 2 31. a. - . (Hint: Write the direction vector e = - i - -- j + so the
V14 V'14 V14
coefficients are direction cosines and not merely direction numbers.)

c. 3. e. -2/'d 14.

2. a. I. c. V6/4.

4. a. x = 3 +9t,y=4- 8t,z=5 -t.
c. x = -2 + t,y = 2 + t, z = 1.

5. (Hint: Use s as the parameter on the new line.)

Sec. 126, page 409

1. a. f o (x + 2x) dx -10 x d(2x) = a. c. e. -; oo .

_

2. a. , for all parts. 3. a. 24.1. c. I + 14 + 4

4. a. 0+fo2dy+f24dy+0= -4. c. fo"[4sin' t(-2sint)+2cost(2cost)]dt=47r.

Sec. 127, page 415

a(xy cos x + sin y) a(x cos y + x sin x + cos x)
2. a. ay = x cos x + cos y =

ax
so answer

follows from Theo. 126.2.
zc. _ 2x 2xy = a -x y so ans. follows from Theo. 126.2.

ay /1 + y2 (1 +Y 2)3/2 ax (1 +Y 2)3/2
a a

e. F F,, = FT = F,,, =
ax

F,, so ans. follows from Theo. 126.2.
y

3. With C a circle with center (0,0) and radius r
fcPdx+Qdy=fcxdx+xydy=fa"rcosodreos0+fo"(rcos0)(rsin 0)drsin 0

z 2" 2"-(r c2 B)l o
+r3fa"cost6sin0d6=0+r3Co33e..JJ

J
= 0.

JJ o

Sec. 128, page 418

1. e2=1+2+2! +3! +2i+2-ea,0<6<2.
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(0.2)2 (0.2)9 _ (0.2)a3. In 1.20.2- 2 + 3 4$4 ,1<g4<1.2.
71 2 (1 _ 2

4 3

7. 3 =1 )0< a <2
a

9. (2.01)4 = 211 + 4(29) (0.01) + z3 (22) (0.01)2 +
43-2

(2) (0.01)9 + 4i (0.01)4.

= 16 + 0.32 + 0.0024 + 0.000 008 + 0.000 000 01 = 16.322 408 01.

Sec. 129, page 420

1. 1.0955 ± 0.000 062 5. 3. n =9. 5. 2.08.

Sec. 131, page 423

1. a. cos 40° = 1 - i
(29 2+ 4' ( ``29 - 6' 19" 8±

5 x 10-9.

2. a. 4.125. c.

-0.105`.

e. 0.0023 by using f (x) = x-2, b = 21, a = 20, n = 2.

Sec. 132, page 425

1. 0.1157 ± 0.0002. 3. 0.46365 -E= 0.00003 5. a. 0.4940. C. 1.4626 e. 1.318.

6. 0 = (15/R)1/9, x = R02/2 which is about 840 ft.

1. a. 0.693 159.
Sec. 134, page 431

2. a.
1

f3 400 - 15x2
ax . c.

13
[4 + 4

366.25 +X2651
= 3.015,

4

0

25 - x2 46 22.75 4

1 /40
12 [1 +4 24 + 2 21

+ 4 / 60 + 295 = 2.347.

3. 2 Z [V2 + 4 1 + cost 8 + 2 1 + cost 4 + 4 1 + cost 3$ + 1]

= 24 [1.4142 + 5.4460 + 2.4494 + 4.4284] = 1.929.

5.1f4(x)I <e+7e2+6e9+ea<231. (b-a)M<1.(231)<5 x 10-aif n>8.
180n' 180na

6. a. 4340 (346.5) = 115.5.

Sec. 135, page 436

2. a. J. c. 0. e. . g. }!, i. 1. k. 6. m. 1. o. 4.

3h[1 - cos (h/3)]4. a. OE _ . b. 9.
h - 3 sin (h/3)

Sec. 136, page 439

3. a. 0. c. 4. e. 0 (Note: In
x

i ! -+ - w as x 0) . g. 1.

1 1
i. 0 I Hint: e" (. +1)-:

ein (ex+l) ex +
k. e-02/2.

ex ex ex
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4. a. y = a. c. y = 1. e. Y = e-1,12,

6. a. - 1. c. 2. e. 4!.
Sec. 137, page 443

1. c. cos x cos y - [sin x cos y dx + cos x sin y dy] +
1

2 [-cos x cos y(dx)2

+ 2 sin x sin y dx dy - cos x cos y(dy)2].

2, c. ed, sin y dy dy + dx dy + }(dx)"- dy - a(dy)3.

ed, In (1 + dy) ^' dy + dx dy - J(dy)2 + 3(dx)1 dy - k dx(dy)2 + 3(dy)3.

Sec. 138, page 446

1. Base 2 ft x 4 ft, depth 6 ft. 2. a. 2 x 3 x 4 = 24.
3. a. At (0,0,2) and (0,0,-2) dist. = 2. c. At 2/-/2,O), dist. = 2213V3.

(Hint: Same situation as Ex. 2). e. At (1,1M) dist. = V'14/2.

4. a. Occurs when s = -I, t = 2; points (3,6,8), (1,2,2), dist. = 2V14.

5. a. If f z(xo,yo) = 0, then (2) becomes 0 f,,,,(xo,yo) - [f",(xo,yo)]2 < 0 contrary to (2).

Sec. 139, page 454
1. a. c. A. e. it U.
2. a. c. Z. e. b. g. 1. i. 3. k. J.

en+i e e 1000
3. a. un+l = I + 3n+1' 3 c. 2. e.

999
g. co. i. 1.

Sec. 140, page 461

1. Conv. a, b, c, d, e, g, i. Div. f, h, j.
2. Conv. b, c, d, f, h. Div. a, e, g, i.

Sec. 142, page 466
2. Conv. a, b, c, e, f, h, j.

Sec. 144, page 470

3. a. Div. c. Abs. cony. e. Abs. cony. g. Cond. cony. i. Abs. cony. k. Abs. cony.

4. a.{xI-2<x<2). c. {x I -1<x<1). e.{x1-1<x<1).
g. {x -2 < x < 2). i. {x I x > 2 or x < -2}. k. {x l x > I or x < -1}.

o. {x1-1 <x<5}. g. {x1 -5<x<1}. s. {x I0<x<1}.
U. {x l -0.1 < x < 0.1 }. W. {x I - w < x < 00}.

5. a. {x -1 < x < 1), {x 1 -1 < x < 1}, {x -1 < x < 1 }.
c. {x 13 <x<5},{x1 -3 <x<5},{x13 <x<5}.

Sec. 146, page 480

x2n+1

x
x3

+ !

xs (_ +...1
dx 3 ! 5 (2n

1)n

+ 1)!

d

3x' 5x4 (-1)"(2n + 1)x2"
- 1 3! + 5! _ ... +

(2n + 1)!
x2 x4 (-1)n x2n
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Sec. 148, page 487

1. a .
(dy)

x +y=0. c. (x2+x)dy+y=0e. +2yg.
(I1 +x2) dy = (1 + xy) dx. i. x(y')3 - 2yy' - x = 0.

2. a. II+yl=e°12-xlor1+y=C(2-x).
c. Inlxi -y-3 Inly-31 =cor x=Ce'(y-3)3.

e. C. g. -x-'+tan-'y=c. i. 2 -x+In Ix +I[-2coty=c.

3. a. (y + 2)2 = (x - 3)2 + 24. C. ex-In(ex+1)+1ny2=8.

e. x = 3 - tan-' -,/y (Hint: Set -/y = t.)

Sec. 149, page 490

1. a. - tan-' Y + 2 In (3x2 + y2) = C. c. (x + y)2 = y2(c + In y2).3
e. x+Inlxl -InII +x C.

3. a.
3

t a n - c. 2x - 3y +InIx - 2y1= c.
(x I)

Sec. 150, page 493

1. a. y = -x-3 + Cx-2. c. y = cx-' - x-' cos x. e. xy = z In2 x + c.

2. a. p = 2(-1 + sin 0) + ce-etn a c. s = 11 (t2 + c). e. x = c csc y - cot y.

3. a. y = x-z + x-'. c. y = e-efa z - 1 + sinx.

,
xz

1. a. y2 =
C X, .

C. y2 =.x2 + x + s + ce2x.

2. a. x'y' + 3x = c. (See Sec. 116). c. 7x + 14y + 9 In 121x - 7y + 81 = c.
e. (x - 3) (y - 2) = c. g. 2y-2(x + 1)2 = c - e'x(2x2 + 2x + 1).

i. Y + Vx2+ y2 = cx2 v+3
k. x = sin t + c cos t. m. In [(u - 1)2 + (v + 3)2] = 2 tan-' + c.U-1

Sec. 152, page 497

1. a. y = c,e2x + c2e-3x. c. y = (c1 + c2x)e'112. e. y = ezx(c, cos 3x + c2 sin 3x).

2. a. s = e'(c, cos 2t + c2 sin 2t). c. x = c, + c2et. e. u = e-v/2(c,e Viv/z + c2e Viv/z).

3. a. Y = e2z(cos x - 3 sin x). c. Y = esx + 3e-x.

4. The problem is translated into: Solve the derivative system

Sec. 151 page 494

d's ds
dt2+4s=0; s=2anddt=6when t=0.
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The general solution (see Ex. 2) is s = c1 cos 2t + c2 sin 2t. Hence,
ds
wt = 2(-c1 sin 2t + c2 cos 2t) and the initial conditions give c1 = 2, c2 = 3. Thus,

2 3
s = 2 cos 2t + 3 sin 2t = V'22-+3' (13 cos 2t + 13 sin 2t

= V13cos(2t-0) [where cos6 13,sin0=

X13 cos 2(t - 0/2). Since tan 56° 20' = 1.501, then in terms of radians

-56_330 = 0.98 and the phase
2

=0.49.
180

5. All are simple harmonic. a. s = () sin 3t, amp. ;, period 2v/3, phase 0.

c. S = 2 cos Z t - 9 I , amp. 2, period 377, phase 9 .

/// Sec. 153, page 500

1. a. y = Ix + J.+ ez + (Cl + c2x)e2x. c. y = -J(sin x + cos x) + c1 + c2ez.
e. y = s(cos x -2 sin x) + ez(c1 cosx + c2 sin x).
g. y = *(1 - x sin 2x) + cl sin 2x + c2 cos 2x. (Hint: sin2 x = j(1 - cos 2x).)

2. a.y=0.1(8ez-8cos2x+sin2x). c. s=sint - cost+e2t(3co_st+4sint).

Sec. 154, page 503

1. In all parts ya = c1 + c2x + cax2 + c4 sin x + c5 cos x.
X44 X60 a

a. y = 3 + y$. b. y = 2
4

+ yg. c. y = 60 - 3 + y$. d. y 2 sin x + yg.

e. y = x sin x + -ix cos x + ys. f. y = lez + H.
3. a. y = cles + (c2 + x) cos x + (ca - x) sin x.

c. y = (c1 + c2x + csx2)e-2s + 3 - 3x + x2.
e. y = -xa - 3x2 + c1 + c2x + (ca - 4x + x2)ez.

g. y = -8e-0.5z + (Cye-o.sm - 64) cos 23 x + (c2e o.sx -- 24V'3) sin 23 x + caez.

Sec. 155, page 505

1. a. y =(c1+InIcosxj)cosx+(c2+x)sinx.
c. y = -2 + c1 cosx + (c2 + In Isec x + tan xl) sin x.

2. a. y = cos x + c1 cos 2x + (c2 - j In Isec x + tan xl) sin 2x.
c. y = -} - sin2 x + (c1 + In cos xl) cos 2x + (c2 + x) sin 2x.

3. a. y = e-22(-In jxi + c1 + c2x). c. y = (ez + e2°)[-x + In (ez + 1)] + clez + c2en.

4. a. y = sin x + cos x + cie2z + c2e2x.

Sec. 156, page 508

1. a. y = - 2 - c1x - ci In ix - c1i + c2. [Hint: The differential equation in u and x

is a Bernoulli equation (see Sec. 151.)].
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I x - Inlclx li+c21
1 1

2
-x + - tan-' (clx) + C2

C, J

e. y2 = c1x + czf also y = c.

according to whether we set

dy/dx - 1
dy/dx + 1

equal to (c,x)2 or -(c1x)2.

Sec. 157, page 510

1. a. y = x2 + 3 + cx. c. j(x3 + y2) - Y = c.
x

e. x + tan-'(x/y) = c. g. xy = -x cos x + siri x + c.

2. a. x=yInIxj +cy. c. Je' +c.

e. In (x2 + y2) + 6 tan-'
x

= c. g. - 1 = In I y - I I + c. i. y = e -(x + c).
y x y

(
k. y = Ilex + e-/2 cz cos

V3
2 x + c3 sin

vi
2

x m. y = Ilex + cze3:/2 cse-5Z.

o. 5y-111n
x

5y+1
x

n

617

= 25 In jxI + c. q. y = 1 un-k
xk+2 .+. C1X + Cg.

k=o(k+1)(k+2)
s. -cos Y_ = In Ixj + c. u. x3 - 3x2y - y2 = c.

x
Sec. 158, page 515

! 2n z n
001.

a.y=a011+x2+x4+x8 .+_...+X +...l =ao I (X) =aoey2.
2! 3! n! fJ o n!

00 (-1)kx2k 00 xU-1
C. y = a0 I + a, .1 (-1)k+1 = a0 cos x + a1 sin x.

k=o (2k)! k=1 (2k - 1)!
00 CO

e. y = a0 (-1)k+1(2k + 3)x'1 + a, (-1)k (k + 1)x2k+1 -1 < x < 1.
k=0 k=0

$ y = a0(1 - x2) + a, - 1x3 x2k+1 all x.
IX 31 k2 (2k - 1) (2k + 1) 2k 1

,

2.

00 (-1)k+1
a. y = 1 + X2 -2 1 x2k+1, all x.

k=0(2k - 1) (2k + 1)20k!

Sec. 159, page 517

00 (-1)12n(n + 1)
y2 xLl + I1(-1)

inn
+ 3) nl1. = x, = x Ja. y, l + 1 . 3 .5 ... (2n - 1)

00 n n nL (-) 2 x
y2 = x L (-') xn = '/xes.C. Y). =1 +

I

n=1 1 . 3 ... (2n - 1)' n=o n!

C CO (x - )3k+3
2. a. y = a0 1 + Ik=03 k (k + l)! 2 5 (3k + 2)J

I (x - ilsk+4
+al (X- + o3k(k+1)!4.7..(3k+4) .



618 Answers

Sec. 160, page 519

1. a.y1+kx+1jx2ex3-2,x°- !6xs+. .40
C. y ix 81x2+0'x 1X4+ <x<1.

2.a.y0 + (x-1)-;(X-02i 0<x<2.

Examples of rollers (or curves of constant width). See page 118.

P Q

Figure ADCBE was constructed
as follows:

With A as center draw arc A'A".
With B on arc A'A" draw arc AB'.
With C on arc A'A" draw arc AC'.
With D on arc AB' draw arc BE.
With E as center draw arc CD.
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Abscissa, 12
Absolute (see Convergence)
Absolute value, I

Ja + bi < Jal + Ibl, 22
definition, 3
function, 21
of vector, 239

Acceleration:
in space, 330
linear, 114
normal and tangential component, 265

Achilles, 448
Alternating series, 457
Altitude of triangle, 251
Amplitude, harmonic motion, 116

of vector, 248
And, used with intersection, 11
Angle between:

curves, 252
lines in the plane, 249
lines in space, 299, 305
planes, 310
vectors, 252, 299, 305

Angles, direction, 302
Anti-derivative, 121
Approximations:

as difference or ratio, 131
by differentials, 131, 384 (Prob. 1)
by Newton's method, 87
chapter on, 416
of integrals:

Simpson's rule, 426
Taylor's series, 423

of Pi (n), 183, 187
polynomial, 423

Arc length, 272
polar form, 294
space, 331

Arc, regular, 407

Archimedes, 177
spiral, 284

Area:
between curves, 183
definition as integral, 174
polar form, 294
projection of triangle, 326, 375
of revolution, 297
Schwarz paradox for, 375
surface, 375
triangle in space, 325

Associative law (vectors), 240
Asymptote:

horizontal, vertical, 32
oblique, 34
of hyperbola, 45
semi-log and log-log coordinates, 149, 154

Attraction, 364
Auxiliary (characteristic) equation, 495
Axiom, 10
Axis of symmetry, 30

Bell, E. T., 448
Bernoulli equation, 493
Binomial expansion, 151, 480
Binormal, 332
Bound vectors, 264
Boundary of region, 548
Bounded set, 10, 548
Bounded continuous function, 524

Cable, hanging, 483
Catenary, 483
Cauchy (remainder), 423
Center of curvature, 267
Center of mass, 197
Central force, 364
Centroid, 196, 353
C. G. S. system, 364
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Chain rule, 76, 393
Change of base (logs), 153
Change of variables for:

derivatives, 76
integrals, 233 (Theorem 77)
partials, 392

Characteristic equation, 495
Circle:

closed, open (disk), 544
formula for, 27
of curvature, 269
parametric equation, 254
polar coordinate equation, 288

Circular disk, 544
Closed curve, 547
Closed interval, 6, 543
Commutative law for:

dot (scalar) product, 243
not cross (vector) product, 323
vectors, 239

Company, 498
Comparison tests, 462
Components, of vectors, 248

of acceleration, 265
Composition (composite) function, 56

derivative for, 76
Concave, 101
Concave, convex, 250
Conditional (see Convergence)
Confocal, 252
Conic sections, 39

polar form, 289
Continuous:

at a point, 58
function, 60
intermediate value, 86
left, right, 85
two variables, 342
uniformly, 541, 543

Continuity theorems (proofs), 59, 86,
524

Convergence:
absolute, 467, 552
conditional, 467, 553
radius of, 475
region of, 469
sequence, 449
series, 455

Coordinate (systems):
cylindrical, 344
left-handed, 352
linear, 4

Coordinate (systems) (Continued):
log-log, 149
plane rectangular, 12

polar, 282
right-handed, 352
semi-log, 149
space rectangular, 300
spherical, 344
vectors, and, 248

Cosine, 23
derivative of, 70
direction, 302

Covering theorems, 543
Critical values, 91
Cross cut, 411
Cross product, 322
Curvature:

center, radius of, 267
circle of, 269
of space curve, 332

Curve:
constant width, 618
rectifiable, 272
regular, 407
simple closed, 347

Curvilinear integral, 406
Cycloid, 254
Cylindrical:

coordinates, 344
shell method, 205
surfaces, 333

Darboux:
integrable, 533
lower and upper integrals, 530, 540
lower and upper sums, 528, 540
theorem, 531

Del (V), 390
Delta notation, 129
Demand law, 106
Density, 197, 353
Dependent variable missing, 505
Derivative:

alternative notation for, 125
definition, 66
directional, 399
directional and vectors, 402
function, 66
functions (vector), 263
of power series, 477
parametric, 276
partial, 367
polar coordinates, 291
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Derivative (Continued) :
second, 81
systems, 120, 378
theorems, 68
vector, 265

Determinant:
column, 316
cross product as, 324
Jacobian, 404
minor, 316, 319
reduce order, 317
row, 316
time to compute, 319
triple product as, 328

Differentiable function, 132, 380, 382
Differential, 124, 380

anti-, 128
arc length, 275
arc length (polar), 296
arc length (space), 331
equation, 128, 482
exact (see Exact)
geometry, 331
second, 126
systems, 127
total, 380

Differential equation, 128, 482
of catenary, 484, 506
of family, 388
primitive for, 388

Differentiation :
implicit, 386
logarithmic, 161

Direction (angles, cosines, numbers), 302
Directional derivative, 399

and vectors, 402
Directrix, 39, 289
Distance formula:

in plane, 26
point to line, 258
polar form, 288
three dimensions, 300
vector form, 248

Distributive law:
cross product, 328
dot product, 245

Divergent:
sequence, 449
series, 455

Domain, 20, 339
Dot (scalar) product, 243
Double integral, 347, 539

Dummy :
index, 168, 513
variable, 173

e, base of natural logarithms, 151, 526
Eccentricity, 39, 289
Econometrics, 106
Elementary transcendental functions, 134
Ellipse, 39, 43

major, minor axes, 45
polar form, 290

Ellipsoid, 334
Elliptic surfaces, 333
Empty set, 10
Endpoint max. and min., 91, 445
Epicycloid, 256
Equation:

harmonic, 399
indicial, 515

Equivalent equations, 30
Euclidean n-space, 346
Exact differential:

necessary, test for, 397
sufficiency, 412

Exponential functions, 158
Extended law of the mean, 432

Families:
of curves, 387
of intervals, 543

Fluxions, 119
Focus, 39, 289
Force:

field, function, 409
of attraction, 364

Fubini Theorem, 549
Function, 19

absolute value, 21
algebraic, 134
composition (composite), 56
continuous (see Continuous)
definition, 20, 123, 339
density, 197, 353
differentiable, 135, 380
domain of, 20
derived, 66
exponential, 158
force, 409
greatest integer, 21
hyperbolic, 163
implicit, 385
inverse trig., 137
limit of (see Limit)
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Function (Continued):
logarithmic, 143
polynomial, 61
range of, 20
square root, 21
three variables, 388
transcendental, 134
trigonometric, 23, 134
two variables, 123, 339
vector, 262

Fundamental theorem of:
Algebra, 501
Calculus, 177

Index

Indicial equation, 515
Inequalities, 1
Inertia, moment of, 354
Inflection, 99, 104
Inner (dot) product, 243
Integrable (Darboux and Riemann), 533

double, 540
on a region, 548
without appellatives, 535

Integral:

Gauss, Friedrich, 448
General solution (differential equ.), 485
Geometry:

analytic, 1
differential, 331

Gradient (Grad), 390
Gravity, 265
Greatest:

integer function, 21
lower bound, 10

Green's theorem, 410
Gregory, James, 183

Half-line, 6
Half open (closed) interval, 7
Harmonic:

equation, 399
motion, 116

Heine-Borel theorem, 543, 545
Helix, 330
Homogeneous (differential equ.), 495
('Hospital's rules, 432
Hyperbola, 39, 43

polar form, 290
transverse axis, 45

Hyperbolic:
functions, 163
paraboloid, 335

Hyperboloids, 334
Hypocycloid, 256
Hydrostatic force, 191
Identically equal, 2
Implicit function, 385

differentiation, 386
Improper integral, 207
Increment, 129, 380
Indefinite integral, 211
Independent variable missing, 509
Indeterminant forms, 432

algebra of, 179
curvilinear, 406
cylindrical coordinates, 362
Darboux, 527
definite, 167, 172
double, 348, 539
exponential, 220
improper, 207
iterated, 349, 548
line, 405
lower and upper, 530, 540
of product, 223
repeated, 349, 548
reversing order of, 360
Riemann, 527
spherical coordinates, 363
tables, 226, 562
trigonometric, 215
triple, 361

Integral test (series), 465

Integrand, 172, 211

Integrating factor, 508
Integration:

around a region, 408

by parts, 192
indefinite, 211
independent of path, 412

of product, 223
positive direction, 408
reversing order of, 360

Interchange of limit and integral, 551
Intermediate value theorem, 86
Internal normal, 269
Intersection ((1) of sets, 11
Interval (open, closed), 6, 543
Invariant, 282
Iterated integral, 349, 548

Jacobian, 404
Johnson, R. A., 426
Jordan curve theorem, 548

Kaplan, Wilfred, 518
Kinetic energy, 200
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Lagrange (remainder), 423

Lamina, 352
Large, properties in the, 29
Law of the mean:

derivatives, 96
extended, 432
integrals, 180
two variables, 381
upper and lower integrals, 537

Law of motion, 254
in space, 330
of gravitation, 364

Least upper bound axiom, 10
Lebesque, Peano curve of, 547
Left-handed system, 352
Lehmer, D. H., 187

.Leibniz, Gottfried Wilhelm, 119, 177, 183
I/I'Hospital, 432

Limit:
along a line or curve, 341
as x - oo, 31
by 1'Hospital's rules, 432
from left or right, 85
function of two variables, 340
of function, 48, 49
of trigonometric functions, 54
vector functions, 262

Limit theorems (proofs), 51, 342, 521
Line:

determinant equation, 314
equations of, 14
general equation, 16
parametric:

plane, 260
space, 303

point slope, 15
polar equation, 289
slope of, 14
slope-y-intercept, 15

Line integral, 405
work as, 409

Linear coordinate system, 4
Linear differential equation, 485

of first order, 490
of second order, 495
with constant coefficients, 501

Linearly independent, 495
Log rolling, 118
Logarithm:

change of base, 153
definition, 143
derivative, 155
natural. 153

623

scales, 145
Logarithmic differentiation, 160-162
Lower:

bound of set, 10
Darboux sum and integral, 528, 530,

540

Maclauren's expansion, 420
series. 472

Major axis (ellipse), 45, 289
Mass, 353
Maximum and minimum, 90

at boundary point, 445
at end of interval, 91
of continuous function, 525
relative, 91
tests for, 92, 98, 103, 445

vMean value (see Law of Mean)
Men of Mathematics, 448
Midpoint:

formula. 7. 13
rule. 426

Minor axis (ellipse), 45
Missing variables, 505
Modulus, 239
Moments:

first, 196, 353
of inertia, 201
polar, 354
second, 200, 354

Monotonic sequence, 452

Natural logarithms, 153
Neptune, 47
Newton, Isaac, 119, 177

gravitation law, 364
method, 87

Norm of a partition, 527, 540
Normal, 250

binormal, 332
internal, external, 269
line to surface, 370
principal, 332

Numbers:
direction, 302
irrational, 83
rational, 9

One-sided limit, 85
Open circular disk, 544
Open intervals, 6

family of, 543
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Or, used with union, 11
Order of differential equation, 484
Ordered pairs, 12

sets of, 18
Ordered triples, 123, 339
Ordinate, 12
Origin, 1, 300
Oscillate (sequence), 449
Outer (vector) product, 323'

Index

Pappus, 200
Parabola, 39, 40

optical property, 252 (Prob. 7)
polar equation, 289

Paraboloids, 335
Paradox:

apparent (series rearrangement), 551
Schwarz, 373
Zeno, 448

Parallel:
axis theorem, 202
lines and vectors in space, 304
lines in the plane, 16

Parallelogram law, 239
Parameter, 387
Parametric derivatives, 276
Parametric equations, 253

of lines in space, 303
Partial:

derivative, 367
fractions, 229
second partials, 396
sums (series), 445

Particular solution, 485
Partition, 527

norm of, 527
refinement of, 528
(of) rectangle, 539

Peano curve, 547
Period (simple harmonic), 116
Perpendicular (lines or vectors), 249, 304

to two skew lines, 306
Phase (simple harmonic), 116
Pi (t), 54

approximations of, 183
Planes, 308
Pluto, 47
Point of inflection, 99, 104
Polar:

analytic geometry, 285
area in coordinates, 356
calculus, 291

coordinates, 282
moment, 354

Polynomial approximations, 423
Power formulas, 73
Power series, 470

calculus of, 475
functions represented by, 471
method (differential equ.), 510

Pressure (hydrostatic), 191
Primitive (of differential equ.), 388
Principal value, 139
Profile, 339
Projectile, 265
Pythagorean theorem, 26

Quadrant, 13
Quadrics, 333

Radian, 54
Radius of:

convergence, 475
curvature, 267

Range (of a function), 20, 339
Rate, 108

related, 110
Ratio test, 458
1 ational number, 9
Rearrangement of series, 551
Rectifiable curve, 272, 539
Reduction formulas, 226, 567, 568
Refinement of a partition, 528
Region, closed, 347
Regular arc (curve), 407
Related rates, 110
Remainder (Taylor's formula), 419-423
Repeated integral, 349
Resultant (vector), 239
Revolution, solid of, 203, 337
Riemann:

double integrable, 540
integrable, 533
integral, 527
sum, 529

Right focal chord, 41
Right-handed system, 300, 331, 352
Rollers, 618
Rolle's theorem, 96
Rotation of axes, 278
Ruled surface, 335

Scalar product, 242



Scales:
log, 145
semi-log, 146

Schldmilch remainder, 422
Schoenberg, 1. J., 547
Schwarz paradox, 373
Second:

derivatives, 81
moment, 200, 354
partials, 396

Separable variables, 486
Sequence, 448
Series, 455

rearrangement of, 551
Set, 6

and ordered pairs, 18
empty, 10
equality, 9
intersection, 11
lower bound, 10
notation, 9, 18
sub (set), 27
union, 11
upper bound, 10

Shell (cylindrical) method, 205
Sigma notation, 167
Simple closed curve, 347, 547
Simple harmonic motion, 116
Simply connected, 412
Simpson's rule, 426

error for, 429
Sine, 23

derivative, 69
limit sin x 54

x
Skew lines, 307
Slope of line, 14

of tangent, 62
Solid:

geometry, 298
of revolution, 203, 337

Solution, derivative system, 121
Space curves, 330
Speed, 115

vector, 263

Spherical coordinates, 344
Spring, work of, 176
Square of a vector, 300
Square root, 21
Straight line, 14

direction cosines of, 302
distance to, 258

Index

parametric equations, 260, 303
perpendicular, 249, 304
polar equation, 288

String, 118
Sum:

Darboux, 528
Riemann, 529
series, 455

Summation (sigma) notation, 167
Surface area, 375

of revolution, 297
Schwarz paradox for, 373

Symmetry, 29
Synthetic division, 86

Tangent:
plane to surface, 370
to plane -graph, 62, 84
to space curve, 330, 403

Taylor series solution, 517
Taylor's theorem, 416, 447

two variables, 441
Theorem (intermediate value), 86
Theorems on limits (proofs), 51, 521
Total differential, 380
Tower on equator, 425
Transcendental, 134
Transition curve, 270
Translation of coordinates, 37
Transverse axis (hyperbola), 45
Trigonometric functions, 23, 134

addition formulas, 574
and hyperbolic, 163
derivatives of, 69, 134
fundamental limits, 54
inverse, 137
of angles, 572
of numbers, 578

Trigonometry, review of, 572
Triple integrals, 361
Triple'products, 327
Trivial solution, 507

Undetermined coefficients, 498
Uniform continuity, 541, 543
Unit point, 1

distance, 26
vector, 244, 299

Union ( tJ ) of sets, 11
Upper bound, 10
Upper (Darboux) integral, 530, 540

sum, 528, 540
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Variable, 21
dependent, 20, 127
dummy, 173
independent, 20, 127
missing (differential equ.), 505
of integration, 173

Variation of parameters, 504
Vector, 238

bound, 264
function, 262
in space, 330
product (cross), 323
velocity, 263

Velocity, 64
angular, 201
average, 8, 65
instantaneous, 65
vector, 263

Index

Vertex of:
ellipse and hyperbola, 45
parabola, 40

Volume, 351
of revolution, 203
of tetrahedron,, 327

Wallis' formulas, 237
Work, 174

as line integral, 409

x and $ , 126

Zeno's paradox, 448
Zero area, 547
Zero vector, 239


	Title Page
	Copyright Page
	Preface
	Contents�
	CHAPTER 1 Rectangular Coordinates�
	CHAPTER 2 Limits and Derivatives�
	CHAPTER 3 Applications of Derivatives�
	CHAPTER 4 Additional Concepts�
	CHAPTER 5 Elementary Transcendental Functions�
	CHAPTER 6 Definite Integrals�
	CHAPTER 7 Indefinite Integration�
	CHAPTER 8 Vectors�
	CHAPTER 9 Solid Geometry�
	CHAPTER 10 Multiple Integrals�
	CHAPTER 11 Partial Derivatives�
	CHAPTER 12 Approximations�
	CHAPTER 13 Series�
	CHAPTER 14 Differential Equations�
	Appendix�
	Table 1. Four Place Logarithms,�
	Table 2. Trig and Log Trig,�
	Table 3. Exponential and Hyperbolic Functions,�
	Table 4. Constants,�
	Table 5. Indefinite Integrals,�
	Review of Analytic Trigonometry�
	Answers�
	Index�

