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PREFACE

This, the seventh edition of Mathematical Methods for Physicists, maintains the tradition
set by the six previous editions and continues to have as its objective the presentation of all
the mathematical methods that aspiring scientists and engineers are likely to encounter as
students and beginning researchers. While the organization of this edition differs in some
respects from that of its predecessors, the presentation style remains the same: Proofs are
sketched for almost all the mathematical relations introduced in the book, and they are
accompanied by examples that illustrate how the mathematics applies to real-world physics
problems. Large numbers of exercises provide opportunities for the student to develop skill
in the use of the mathematical concepts and also show a wide variety of contexts in which
the mathematics is of practical use in physics.

As in the previous editions, the mathematical proofs are not what a mathematician would
consider rigorous, but they nevertheless convey the essence of the ideas involved, and also
provide some understanding of the conditions and limitations associated with the rela-
tionships under study. No attempt has been made to maximize generality or minimize the
conditions necessary to establish the mathematical formulas, but in general the reader is
warned of limitations that are likely to be relevant to use of the mathematics in physics
contexts.

TO THE STUDENT

The mathematics presented in this book is of no use if it cannot be applied with some skill,
and the development of that skill cannot be acquired passively, e.g., by simply reading the
text and understanding what is written, or even by listening attentively to presentations
by your instructor. Your passive understanding needs to be supplemented by experience
in using the concepts, in deciding how to convert expressions into useful forms, and in
developing strategies for solving problems. A considerable body of background knowledge

xi


http://dx.doi.org/10.1016/B978-0-12-384654-9.00032-3

xii

Preface

needs to be built up so as to have relevant mathematical tools at hand and to gain experi-
ence in their use. This can only happen through the solving of problems, and it is for this
reason that the text includes nearly 1400 exercises, many with answers (but not methods
of solution). If you are using this book for self-study, or if your instructor does not assign
a considerable number of problems, you would be well advised to work on the exercises
until you are able to solve a reasonable fraction of them.

This book can help you to learn about mathematical methods that are important in
physics, as well as serve as a reference throughout and beyond your time as a student.
It has been updated to make it relevant for many years to come.

WHAT’S NEW

This seventh edition is a substantial and detailed revision of its predecessor; every word of
the text has been examined and its appropriacy and that of its placement has been consid-
ered. The main features of the revision are: (1) An improved order of topics so as to reduce
the need to use concepts before they have been presented and discussed. (2) An introduc-
tory chapter containing material that well-prepared students might be presumed to know
and which will be relied on (without much comment) in later chapters, thereby reducing
redundancy in the text; this organizational feature also permits students with weaker back-
grounds to get themselves ready for the rest of the book. (3) A strengthened presentation of
topics whose importance and relevance has increased in recent years; in this category are
the chapters on vector spaces, Green’s functions, and angular momentum, and the inclu-
sion of the dilogarithm among the special functions treated. (4) More detailed discussion
of complex integration to enable the development of increased skill in using this extremely
important tool. (5) Improvement in the correlation of exercises with the exposition in the
text, and the addition of 271 new exercises where they were deemed needed. (6) Addition
of a few steps to derivations that students found difficult to follow. We do not subscribe
to the precept that “advanced” means “compressed” or “difficult.” Wherever the need has
been recognized, material has been rewritten to enhance clarity and ease of understanding.

In order to accommodate new and expanded features, it was necessary to remove or
reduce in emphasis some topics with significant constituencies. For the most part, the
material thereby deleted remains available to instructors and their students by virtue of
its inclusion in the on-line supplementary material for this text. On-line only are chapters
on Mathieu functions, on nonlinear methods and chaos, and a new chapter on periodic sys-
tems. These are complete and newly revised chapters, with examples and exercises, and
are fully ready for use by students and their instuctors. Because there seems to be a sig-
nificant population of instructors who wish to use material on infinite series in much the
same organizational pattern as in the sixth edition, that material (largely the same as in
the print edition, but not all in one place) has been collected into an on-line infinite series
chapter that provides this material in a single unit. The on-line material can be accessed at
www.elsevierdirect.com.
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PATHWAYS THROUGH THE MATERIAL

This book contains more material than an instructor can expect to cover, even in a
two-semester course. The material not used for instruction remains available for reference
purposes or when needed for specific projects. For use with less fully prepared students,
a typical semester course might use Chapters 1 to 3, maybe part of Chapter 4, certainly
Chapters 5 to 7, and at least part of Chapter 11. A standard graduate one-semester course
might have the material in Chapters 1 to 3 as prerequisite, would cover at least part of
Chapter 4, all of Chapters 5 through 9, Chapter 11, and as much of Chapters 12 through
16 and/or 18 as time permits. A full-year course at the graduate level might supplement
the foregoing with several additional chapters, almost certainly including Chapter 20 (and
Chapter 19 if not already familiar to the students), with the actual choice dependent on
the institution’s overall graduate curriculum. Once Chapters 1 to 3, 5 to 9, and 11 have
been covered or their contents are known to the students, most selections from the remain-
ing chapters should be reasonably accessible to students. It would be wise, however, to
include Chapters 15 and 16 if Chapter 17 is selected.
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CHAPTER 1

MATHEMATICAL
PRELIMINARIES

This introductory chapter surveys a number of mathematical techniques that are needed
throughout the book. Some of the topics (e.g., complex variables) are treated in more detail
in later chapters, and the short survey of special functions in this chapter is supplemented
by extensive later discussion of those of particular importance in physics (e.g., Bessel func-
tions). A later chapter on miscellaneous mathematical topics deals with material requiring
more background than is assumed at this point. The reader may note that the Additional
Readings at the end of this chapter include a number of general references on mathemati-
cal methods, some of which are more advanced or comprehensive than the material to be
found in this book.

1.1 INFINITE SERIES

Perhaps the most widely used technique in the physicist’s toolbox is the use of infinite
series (i.e., sums consisting formally of an infinite number of terms) to represent functions,
to bring them to forms facilitating further analysis, or even as a prelude to numerical eval-
uation. The acquisition of skill in creating and manipulating series expansions is therefore
an absolutely essential part of the training of one who seeks competence in the mathemat-
ical methods of physics, and it is therefore the first topic in this text. An important part of
this skill set is the ability to recognize the functions represented by commonly encountered
expansions, and it is also of importance to understand issues related to the convergence of
infinite series.

Mathematical Methods for Physicists.
© 2013 Elsevier Inc. All rights reserved.
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Fundamental Concepts

The usual way of assigning a meaning to the sum of an infinite number of terms is by
introducing the notion of partial sums. If we have an infinite sequence of terms u1, us, u3,
u4, us, ..., we define the ith partial sum as

i
Si= Y . (1.1)
n=1

This is a finite summation and offers no difficulties. If the partial sums s; converge to a
finite limit as i — o0,
lim s; =S, (1.2)
11— 00
the infinite series > .- ; u, is said to be convergent and to have the value S. Note that
we define the infinite series as equal to S and that a necessary condition for convergence
to a limit is that lim,_, o, u, = 0. This condition, however, is not sufficient to guarantee
convergence.

Sometimes it is convenient to apply the condition in Eq. (1.2) in a form called the
Cauchy criterion, namely that for each ¢ > 0 there is a fixed number N such that
|s; —s;| < e forall i and j greater than N. This means that the partial sums must cluster
together as we move far out in the sequence.

Some series diverge, meaning that the sequence of partial sums approaches +00; others
may have partial sums that oscillate between two values, as for example,

oo

Dup=1—141—T41—o=(=D"+-.

n=1
This series does not converge to a limit, and can be called oscillatory. Often the term
divergent is extended to include oscillatory series as well. It is important to be able to
determine whether, or under what conditions, a series we would like to use is convergent.

Example 1.1.1  THE GEOMETRIC SERIES

The geometric series, starting with ug = 1 and with a ratio of successive terms r =
Up+41/Un, has the form
Lbr4rr+
Its nth partial sum s, (that of the first n terms) is'
1—r"

= . 1.3
Sn 11— (1.3)

Restricting attention to |r| < 1, so that for large n, r" approaches zero, and s,, possesses
the limit

1
lim s, = ] , (1.4)

n— 00 —r

"Multiply and divide s, = 37—} 7" by 1 —r.
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showing that for |r| < 1, the geometric series converges. It clearly diverges (or is oscilla-
tory) for || > 1, as the individual terms do not then approach zero at large n. ]

Example 1.1.2  THE HARMONIC SERIES

As a second and more involved example, we consider the harmonic series

i1—1+1+1+1+ +1+ (1.5)
nz]n_ 2 3 4 n ' ‘

The terms approach zero for large n, i.e., lim,_, o 1/n = 0, but this is not sufficient to
guarantee convergence. If we group the terms (without changing their order) as

1+1+1+1 +1+1+1+1 +1+ +1 +
2 3 4 5 6 7 8 9 16 ’
each pair of parentheses encloses p terms of the form

1 N 1 by 1 p 1
p+1 p+2 p+p 2p 2

Forming partial sums by adding the parenthetical groups one by one, we obtain

1 3 4 5 n+1
s1=1, so==, s3> =, S4>—,..., S > ,
1 2 ) 3 ) 4 ) n )

and we are forced to the conclusion that the harmonic series diverges.

Although the harmonic series diverges, its partial sums have relevance among other
places in number theory, where H, =Y ,,_, m~! are sometimes referred to as harmonic
numbers. ]

We now turn to a more detailed study of the convergence and divergence of series,
considering here series of positive terms. Series with terms of both signs are treated later.

Comparison Test

If term by term a series of terms u,, satisfies 0 < u, < a,, where the a,, form a convergent
series, then the series ), u, is also convergent. Letting s; and s; be partial sums of the

u series, with j > i, the difference s; — s; is Zfl:i 41 Un; and this is smaller than the
corresponding quantity for the a series, thereby proving convergence. A similar argument
shows that if term by term a series of terms v, satisfies 0 < b, < v,, where the b,, form a
divergent series, then ), v, is also divergent.

For the convergent series a,, we already have the geometric series, whereas the harmonic
series will serve as the divergent comparison series b,. As other series are identified as
either convergent or divergent, they may also be used as the known series for comparison
tests.
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Example 1.1.3 A DIVERGENT SERIES

—0.999 _ ,—

Test Z;’zozl n—P, p =0.999, for convergence. Since n Uand b, = n~! forms

the divergent harmonic series, the comparison test shows that )", n=09 is divergent.
Generalizing, ), n~? is seen to be divergent for all p < 1. |
Cauchy Root Test

If (a,,)l/ " <r <1 for all sufficiently large n, with r independent of n, then ), a, is
convergent. If (an)l/ " > 1 for all sufficiently large n, then Zn ay is divergent.

The language of this test emphasizes an important point: The convergence or divergence
of a series depends entirely on what happens for large n. Relative to convergence, it is the
behavior in the large-n limit that matters.

The first part of this test is verified easily by raising (a,)'/” to the nth power. We get

a, <r" < 1.

Since r” is just the nth term in a convergent geometric series,  , a, is convergent by the
comparison test. Conversely, if (an)Y/" > 1, then a,, > 1 and the series must diverge. This
root test is particularly useful in establishing the properties of power series (Section 1.2).

D’Alembert (or Cauchy) Ratio Test

If ayt1/a, < r <1 for all sufficiently large n and r is independent of n, then ), a, is
convergent. If a,1/a, > 1 for all sufficiently large n, then Zn ay is divergent.

This test is established by direct comparison with the geometric series (1 +74r%+---).
In the second part, a,,4+1 > a, and divergence should be reasonably obvious. Although not
quite as sensitive as the Cauchy root test, this D’ Alembert ratio test is one of the easiest to

apply and is widely used. An alternate statement of the ratio test is in the form of a limit: If

<1, convergence,
. an+1
lim

n—oo a,

> 1, divergence, (1.6)
=1, indeterminate.

Because of this final indeterminate possibility, the ratio test is likely to fail at crucial points,
and more delicate, sensitive tests then become necessary. The alert reader may wonder how
this indeterminacy arose. Actually it was concealed in the first statement, a,+(/a, <r <
1. We might encounter a,41/a, < 1 for all finite n but be unable to choose an r < 1
and independent of n such that a,11/a, <r for all sufficiently large n. An example is
provided by the harmonic series, for which

an+1 n
= < 1.
a, n+1
Since
. Adnp+l
lim = =1,

n—oo  ay,

no fixed ratio r < 1 exists and the test fails.
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Example 1.1.4  D’ALEMBERT RATIO TEST

Test ), n/2" for convergence. Applying the ratio test,

a1 (n4+1/2"0 1 n+1
a, n/2n 2 0

Since

we have convergence. |

Cauchy (or Maclaurin) Integral Test

This is another sort of comparison test, in which we compare a series with an integral.
Geometrically, we compare the area of a series of unit-width rectangles with the area under
a curve.

Let f(x) be a continuous, monotonic decreasing function in which f(n) = a,. Then
Zn a, converges if f 100 f(x)dx is finite and diverges if the integral is infinite. The ith
partial sum is

si=) an=) f(n).
n=1 n=1

But, because f(x) is monotonic decreasing, see Fig. 1.1(a),

si > / fx)dx.
1

On the other hand, as shown in Fig. 1.1(b),

si—a S/f(x)dx.
1

Taking the limit as i — oo, we have

/f(x)dx52an§/f(x)dx+a1. (1.7)
1 n=1 1

Hence the infinite series converges or diverges as the corresponding integral converges or
diverges.

This integral test is particularly useful in setting upper and lower bounds on the remain-
der of a series after some number of initial terms have been summed. That is,

oo N 00
Zan=Zan+ Z a,, (1.8)
n=1

n=1 n=N+1
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A A

f(x) f(1)=ay f(x) f(1)=ay

(a) (b)

FIGURE 1.1 (a) Comparison of integral and sum-blocks leading. (b) Comparison of
integral and sum-blocks lagging.

and

o0 o0 o
/ fdx< > ap< / fx)dx +ayq. (1.9)
N+1 n=N+l N3
To free the integral test from the quite restrictive requirement that the interpolating func-

tion f(x) be positive and monotonic, we shall show that for any function f(x) with a
continuous derivative, the infinite series is exactly represented as a sum of two integrals:

N, N> N>
> fw= [ o+ [- s (1.10)
n=N1+1 N N

Here [x] is the integral part of x, i.e., the largest integer < x, so x — [x] varies sawtoothlike
between 0 and 1. Equation (1.10) is useful because if both integrals in Eq. (1.10) converge,
the infinite series also converges, while if one integral converges and the other does not,
the infinite series diverges. If both integrals diverge, the test fails unless it can be shown
whether the divergences of the integrals cancel against each other.

We need now to establish Eq. (1.10). We manipulate the contributions to the second
integral as follows:

1. Using integration by parts, we observe that

Ny N

/Xf’(X)dx =Nof(N2) = N1 f(N) — [ f(x)dx.

Ny N

2. We evaluate
N2 Nr—1 n+1 Nr—1
[irwar= Y u [ redx= Yl so+ - gon]
Ny n=N1 5 n=Ni
N
== > f) = Nif(ND) + Nof(No).
n=N1+1

Subtracting the second of these equations from the first, we arrive at Eq. (1.10).
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An alternative to Eq. (1.10) in which the second integral has its sawtooth shifted to be

symmetrical about zero (and therefore perhaps smaller) can be derived by methods similar
to those used above. The resulting formula is

n=N1+1

N, N> N>
> fw= [ sodrt [a-tx-breods
N1 N1 (111)

+ 4] rav = ran].

Because they do not use a monotonicity requirement, Eqs. (1.10) and (1.11) can be
applied to alternating series, and even those with irregular sign sequences.

Example 1.1.5  RIEMANN ZETA FUNCTION

The Riemann zeta function is defined by
o0
tpy=y n’, (1.12)
n=1

providing the series converges. We may take f(x) = x~7, and then

]

forsemf
xPdx = , p#I,
| _p+l x=1
o0
=Inx i p=1.

The integral and therefore the series are divergent for p < 1, and convergent for p > 1.
Hence Eq. (1.12) should carry the condition p > 1. This, incidentally, is an independent
proof'that the harmonic series (p = 1) diverges logarithmically. The sum of the first million

terms Y 1090000 =1 i5 only 14.392726- - - . |

While the harmonic series diverges, the combination

n
_ 1 -1 _
y = lim (Zm lnn> (1.13)

m=1

converges, approaching a limit known as the Euler-Mascheroni constant.

Example 1.1.6 A SLOWLY DIVERGING SERIES

Consider now the series
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We form the integral

o0 o0
1 00
f dx = =Inlnx ,
xInx Inx x=2
2

x=2

which diverges, indicating that S is divergent. Note that the lower limit of the integral is
in fact unimportant so long as it does not introduce any spurious singularities, as it is the
large-x behavior that determines the convergence. Because nInn > n, the divergence is
slower than that of the harmonic series. But because Inn increases more slowly than n?,
where ¢ can have an arbitrarily small positive value, we have divergence even though the
series Y, n~1+®) converges. [ |

More Sensitive Tests
Several tests more sensitive than those already examined are consequences of a theorem
by Kummer. Kummer’s theorem, which deals with two series of finite positive terms, u,,

and a,,, states:

1. The series ), u, converges if

lim (a,, n —am) >C >0, (1.14)

n—oo un+1
where C is a constant. This statement is equivalent to a simple comparison test if the
series Y, a, ! converges, and imparts new information only if that sum diverges. The
more weakly )" a, I diverges, the more powerful the Kummer test will be.

2. IfY, a;! diverges and

lim (an n —a,m) <0, (1.15)

n—o0 un+1
then ), u, diverges.
The proof of this powerful test is remarkably simple. Part 2 follows immediately from

the comparison test. To prove Part 1, write cases of Eq. (1.14) for n = N + 1 through any
larger n, in the following form:

uyy1 < (ayuy —ayyiuny1)/C,

uyy2 < (@ns1un41 —an2un+2)/C,

up < (@p—1up—1 — apu,)/C.
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Adding, we get

n
PR e (1.16)
i=N+1
aNun
. 1.17
< (1.17)

This shows that the tail of the series ) _, u, is bounded, and that series is therefore proved
convergent when Eq. (1.14) is satisfied for all sufficiently large n.

Gauss’ test is an application of Kummer’s theorem to series u, > 0 when the ratios of
successive u, approach unity and the tests previously discussed yield indeterminate results.
If for large n

(1.18)

Un+1 n n
where B(n) is bounded for n sufficiently large, then the Gauss test states that ) u, con-
verges for & > 1 and diverges for 4 < 1: There is no indeterminate case here.

The Gauss test is extremely sensitive, and will work for all troublesome series the physi-
cist is likely to encounter. To confirm it using Kummer’s theorem, we take a, = nlnn. The
series Y, a, ! is weakly divergent, as already established in Example 1.1.6.

Taking the limit on the left side of Eq. (1.14), we have

B
lim |:n1nn (1 L Bm
n

n— 00 n2

) —(n+DlInn+ 1)i|

B(n)Inn
n

lim_ [(n+1)lnn+(h—1)lnn+ —(n~|—1)ln(n~|—1):|

:nli)rgol:—(n+l)ln<n:1>+(h—1)lnn:|. (1.19)

For h < 1, both terms of Eq. (1.19) are negative, thereby signaling a divergent case of
Kummer’s theorem; for # > 1, the second term of Eq. (1.19) dominates the first and is pos-
itive, indicating convergence. At & = 1, the second term vanishes, and the first is inherently
negative, thereby indicating divergence.

Example 1.1.7  LEGENDRE SERIES

The series solution for the Legendre equation (encountered in Chapter 7) has successive
terms whose ratio under certain conditions is

@jy2 _ 2j2j+1D—2
aj  Q2j+DQj+2)
To place this in the form now being used, we define u ; = a>; and write
uj _2i+DHEj+2)
Ujt] 2j2j+ 1) —r"
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In the limit of large j, the constant A becomes negligible (in the language of the Gauss test,
it contributes to an extent B(j)/j2, where B(j) is bounded). We therefore have
uj 2j4+2  B( B
N g)=1+—+—(’) (1.20)
Ujt 2j J i

The Gauss test tells us that this series is divergent. |

Exercises

1.11

1.1.2

1.1.3

1.1.5

(a) Prove that if lim,_, oo n”u, = A < 00, p > 1, the series > - | u, converges.

(b) Prove that if lim,,_, o nu, = A > 0, the series diverges. (The test fails for A =0.)
These two tests, known as limit tests, are often convenient for establishing the
convergence of a series. They may be treated as comparison tests, comparing with

Zn_q, 1<qg<p.
n

If lim;,_ oo % = K, a constant with 0 < K < oo, show that ¥, b,, converges or diverges
with Xa,,.

b
Hint. If ¥a, converges, rescale b, to b;; = i If ¥,,a, diverges, rescale to b;,/ =

(a) Show that the series > o, w2 converges.

n (ln

(b) By direct addition ZIOO 000[n(ln n)21~1 =2.02288. Use Eq. (1.9) to make a five-
significant-figure estimate of the sum of this series.

Gauss’ test is often given in the form of a test of the ratio

Uy _n2+a1n+a0
Upt1 n?+bin+by

For what values of the parameters a; and b; is there convergence? divergence?

ANS. Convergent for aj — by > 1,
divergent fora; — b; < 1.

Test for convergence
[ee)

@ Y (nm)~! @ Y [n+ 112
= n=1

b >, n! > 1

o i © X5

© 2:: 2n(2n T
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1.1.6 Test for convergence
N | = 1
—_— d In{1+4+—
(@ Zn(n+l) @ Zn( +n)
n=1 n=1
= 1 = 1
b -
®) ,;2”1“” © ;n-nl/”

o0

© Y

n=1

1.1.7 For what values of p and g will ) - converge?

0 1
n=2 nP(Inn)

p>1, allg, p<1, allg,
ANS. Convergent for divergent for
p:l, q>1s p=1, qSl
1.1.8 Given Ziﬁ?o n~!=7.485470... set upper and lower bounds on the Euler-Mascheroni
constant.
ANS. 0.5767 <y < 0.5778.
1.1.9 (From Olbers’ paradox.) Assume a static universe in which the stars are uniformly

distributed. Divide all space into shells of constant thickness; the stars in any one shell
by themselves subtend a solid angle of wg. Allowing for the blocking out of distant
stars by nearer stars, show that the total net solid angle subtended by all stars, shells
extending to infinity, is exactly 4m. [Therefore the night sky should be ablaze with
light. For more details, see E. Harrison, Darkness at Night: A Riddle of the Universe.
Cambridge, MA: Harvard University Press (1987).]

1.1.10  Test for convergence

i 1-:3.5---(2n—1) 2_1+9+25 N
2:4-6---(2n) T4 64 256 '

n=1

Alternating Series

In previous subsections we limited ourselves to series of positive terms. Now, in contrast,
we consider infinite series in which the signs alternate. The partial cancellation due to
alternating signs makes convergence more rapid and much easier to identify. We shall
prove the Leibniz criterion, a general condition for the convergence of an alternating series.
For series with more irregular sign changes, the integral test of Eq. (1.10) is often helpful.

The Leibniz criterion applies to series of the form Y 02 | (—1)"*!a, with a, > 0, and
states that if a,, is monotonically decreasing (for sufficiently large n) and lim,,_, oo @, =0,
then the series converges. To prove this theorem, note that the remainder Ry, of the series
beyond sy, the partial sum after 2n terms, can be written in two alternate ways:

Ry = (aony1 — azny2) + (@2n43 — azpi4) + - -

= a1 — (@42 — a2n43) — (@2n44 — A2pqs5) — -+ .
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Since the a, are decreasing, the first of these equations implies Ry, > 0, while the second
implies Ry, < az,+1, SO

0 < Ry < azpy1.

Thus, Ry, is positive but bounded, and the bound can be made arbitrarily small by taking
larger values of n. This demonstration also shows that the error from truncating an alter-
nating series after ap, results in an error that is negative (the omitted terms were shown to
combine to a positive result) and bounded in magnitude by as,+1. An argument similar to
that made above for the remainder after an odd number of terms, Ry, would show that
the error from truncation after as, 4 is positive and bounded by az;,+2. Thus, it is generally
true that the error in truncating an alternating series with monotonically decreasing terms
is of the same sign as the last term kept and smaller than the first term dropped.

The Leibniz criterion depends for its applicability on the presence of strict sign
alternation. Less regular sign changes present more challenging problems for convergence
determination.

Example 1.1.8  SERIES WITH IRREGULAR SIGN CHANGES

For 0 < x < 2, the series

S=Z@=—m(2m%‘) (121

n=1

converges, having coefficients that change sign often, but not so that the Leibniz criterion
applies easily. To verify the convergence, we apply the integral test of Eq. (1.10), inserting
the explicit form for the derivative of cos(nx)/n (with respect to n) in the second integral:

S:/COS(”X)d +/(n_[n]) [—£SIH(HX)—w1| dn (122)
n n n
1

1
Using integration by parts, the first integral in Eq. (1.22) is rearranged to

[ cos(nx) in(nx)1° 1 [ sin(nx)
/cos(nx dn— [sm(nx } +_/ sm(r;x dn.
n nx 1 X n

1 1

and this integral converges because

[e¢]

o0
/‘sm(nx) /‘dn
dn < —2 =
n
1

1

Looking now at the second integral in Eq. (1.22), we note that its term cos(nx)/n? also
leads to a convergent integral, so we need only to examine the convergence of

o]

/ (n _ [n]) sin;nx) J

1
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Next, setting (n — [n]) sin(nx) = g’(n), which is equivalent to defining g(N) = f IN (n—
[n]) sin(nx) dn, we write

/ (n - [n]) sin;nx) dn :/ g ,(qn) dn = |:g§l_n)} +f %dn,
n=1
1 1 1

where the last equality was obtained using once again an integration by parts. We do not
have an explicit expression for g(n), but we do know that it is bounded because sinx
oscillates with a period incommensurate with that of the sawtooth periodicity of (n — [n]).
This boundedness enables us to determine that the second integral in Eq. (1.22) converges,
thus establishing the convergence of S. ]

Absolute and Conditional Convergence

An infinite series is absolutely convergent if the absolute values of its terms form a con-
vergent series. If it converges, but not absolutely, it is termed conditionally convergent.
An example of a conditionally convergent series is the alternating harmonic series,

00
1 1 1 -1 n—1
Z(—l)"_ln_l=1—5+—__+...+L

1.23
3 4 n + ( )

n=1

This series is convergent, based on the Leibniz criterion. It is clearly not absolutely con-
vergent; if all terms are taken with + signs, we have the harmonic series, which we already
know to be divergent. The tests described earlier in this section for series of positive terms
are, then, tests for absolute convergence.

Exercises

1.1.11  Determine whether each of these series is convergent, and if so, whether it is absolutely
convergent:
(@) In2 ln3+ln4 ln5+ln6
Yo T3 Ty T s T ’
b) 1+1 1 1+1+1 1 1+

1 2 3 4 5 6 7 8 ’

()111+1+1+1111 1+1 +1 1 1+
R A I B T R BT 15 16 21

1.1.12 Catalan’s constant 3(2) is defined by

I B
1203252

B2 =) (—Df@k+1)2=

k=0

Calculate 8(2) to six-digit accuracy.
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Hint. The rate of convergence is enhanced by pairing the terms,
16k

k-1 2—(@k+1) 2= = G 1

If you have carried enough digits in your summation, ) ", _, _ 16k/ (16k% — 1)2, addi-
tional significant figures may be obtained by setting upper and lower bounds on the tail
of the series, > po v +1- These bounds may be set by comparison with integrals, as in
the Maclaurin integral test.

ANS. B(2)=0.9159 65594177 --- .

Operations on Series

We now investigate the operations that may be performed on infinite series. In this connec-
tion the establishment of absolute convergence is important, because it can be proved that
the terms of an absolutely convergent series may be reordered according to the familiar
rules of algebra or arithmetic:

e Ifan infinite series is absolutely convergent, the series sum is independent of the order
in which the terms are added.

e An absolutely convergent series may be added termwise to, or subtracted termwise
from, or multiplied termwise with another absolutely convergent series, and the result-
ing series will also be absolutely convergent.

e The series (as a whole) may be multiplied with another absolutely convergent series.
The limit of the product will be the product of the individual series limits. The product
series, a double series, will also converge absolutely.

No such guarantees can be given for conditionally convergent series, though some of
the above properties remain true if only one of the series to be combined is conditionally
convergent.

Example 1.1.9  REARRANGEMENT OF ALTERNATING HARMONIC SERIES

Writing the alternating harmonic series as

11+1 1+ =1 b1 b1 (1.24)
2 3 4 \2 3 4 5 ’ ’

it is clear that Zzozl (=" 'n~! < 1. However, if we rearrange the order of the terms, we
can make this series converge to % We regroup the terms of Eq. (1.24), as

<1+%+é>_<;>+<l+é+1+113+115>
O el o) (o
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1.500\’\’\—‘——‘

o 1.400

£

3

w

£ 1.300

©

o

1.200 |

1.100 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of terms in sum, n

FIGURE 1.2  Alternating harmonic series. Terms are rearranged to give
convergence to 1.5.

Treating the terms grouped in parentheses as single terms for convenience, we obtain the
partial sums

s1=1.5333 s =1.0333
s3=1.5218 54 =1.2718
s5=1.5143  s¢ =1.3476
s7=1.5103 53 =1.3853
s9 = 1.5078 5190 = 1.4078.

From this tabulation of s,, and the plot of s,, versus n in Fig. 1.2, the convergence to % is
fairly clear. Our rearrangement was to take positive terms until the partial sum was equal
to or greater than % and then to add negative terms until the partial sum just fell below %
and so on. As the series extends to infinity, all original terms will eventually appear, but
the partial sums of this rearranged alternating harmonic series converge to % |

As the example shows, by a suitable rearrangement of terms, a conditionally convergent
series may be made to converge to any desired value or even to diverge. This statement is
sometimes called Riemann’s theorem.

Another example shows the danger of multiplying conditionally convergent series.

Example 1.1.10  SQUARE OF A CONDITIONALLY CONVERGENT SERIES MAY DIVERGE

. oo (=1"~! - ..
The series ), converges by the Leibniz criterion. Its square,

Jn

i N B T B S
[Z } =2 v GestEest )
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has a general term, in [. .. ], consisting of n — 1 additive terms, each of which is bigger than
S U i

NSNS so the .entlre [...] term is greater than and does not go to zero. Hence the
general term of this product series does not approach zero in the limit of large n and the
series diverges. |

These examples show that conditionally convergent series must be treated with caution.

Improvement of Convergence

This section so far has been concerned with establishing convergence as an abstract math-
ematical property. In practice, the rate of convergence may be of considerable importance.
A method for improving convergence, due to Kummer, is to form a linear combination of
our slowly converging series and one or more series whose sum is known. For the known
series the following collection is particularly useful:

1

E——
n(n+1)

S
|

1 1

“n(n+1)(n+2) —y

1 1
n(n+ D+ 2)(n+3) 18

Q
w
Il

iMe i P”ﬂ8 Avgk:

)

Z,,X:;”(”+l)~--(n+p)=ppg' (1.26)

These sums can be evaluated via partial fraction expansions, and are the subject of
Exercise 1.5.3.

The series we wish to sum and one or more known series (multiplied by coefficients)
are combined term by term. The coefficients in the linear combination are chosen to cancel
the most slowly converging terms.

Example 1.1.11  RiemanN ZETA FUNCTION £(3)

From the definition in Eq. (1.12), we identify ¢(3) as Y .o, n=3. Noting that ap of
Eq. (1.26) has a large-n dependence ~ n =3, we consider the linear combination

oo

-3 a

don +am=¢0)+ 7. (1.27)

n=1
We did not use o1 because it converges more slowly than ¢(3). Combining the two series
on the left-hand side termwise, we obtain

> 1 a il +a)+3n42
Z n3+n(n+l)(n+2) _; nBm+Dn+2)

n=1
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Table 1.1 Riemann Zeta

Function

s (s)
2 1.64493 40668
3 1.20205 69032
4 1.08232 32337
5 1.03692 77551
6 1.01734 30620
7 1.00834 92774
8 1.00407 73562
9 1.00200 83928

10 1.00099 45751

If we choose a = —1, we remove the leading term from the numerator; then, setting this

equal to the right-hand side of Eq. (1.27) and solving for ¢ (3),

3n+2
‘o= +Z P D+ (29

The resulting series may not be beautiful but it does converge as n~*, faster than n 3.
A more convenient form with even faster convergence is introduced in Exercise 1.1.16.
There, the symmetry leads to convergence as n=>. |

Sometimes it is helpful to use the Riemann zeta function in a way similar to that
illustrated for the ), in the foregoing example. That approach is practical because the
zeta function has been tabulated (see Table 1.1).

Example 1.1.12  CONVERGENCE IMPROVEMENT

The problem is to evaluate the series Y oo 1/(1 +n?). Expanding (1 +n%)~! =n=2(1 +
n=2)~! by direct division, we have

-6
(1+n2)—l=n—2 (l—n_2+n_4_ n )

(I
ZoaAt e

Therefore

1
5 =2(2)—(4) +¢(6) —;m.

n=1

The remainder series converges as n~%. Clearly, the process can be continued as desired.
You make a choice between how much algebra you will do and how much arithmetic the
computer will do. |
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Rearrangement of Double Series

An absolutely convergent double series (one whose terms are identified by two summation
indices) presents interesting rearrangement opportunities. Consider

S=>" anm. (1.29)

m=0 n=0

In addition to the obvious possibility of reversing the order of summation (i.e., doing the m
sum first), we can make rearrangements that are more innovative. One reason for doing this
is that we may be able to reduce the double sum to a single summation, or even evaluate
the entire double sum in closed form.

As an example, suppose we make the following index substitutions in our double series:
m=gq,n=p —q. Then we will cover all n > 0, m > 0 by assigning p the range (0, 00),
and g the range (0, p), so our double series can be written

oo p
S=Y"> apqq (1.30)

p=0 ¢=0

In the nm plane our region of summation is the entire quadrant m > 0, n > 0; in the pg
plane our summation is over the triangular region sketched in Fig. 1.3. This same pg region
can be covered when the summations are carried out in the reverse order, but with limits

o0 o0
S:Z Zap,q,q.

q=0 p=4q

The important thing to note here is that these schemes all have in common that, by allowing
the indices to run over their designated ranges, every a, ,, is eventually encountered, and
is encountered exactly once.

FIGURE 1.3 The pgq index space.
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Another possible index substitution is to set n = s, m =r — 2s. If we sum over s first,
its range must be (0, [r/2]), where [r/2] is the integer part of r/2, i.e., [r/2] =r/2 for r
even and (r — 1)/2 for r odd. The range of » is (0, co). This situation corresponds to

r

o
S=Y"Y agras (1.31)

r=0 s

~
]

Il
o

The sketches in Figs. 1.4 to 1.6 show the order in which the a, ,, are summed when using
the forms given in Eqgs. (1.29), (1.30), and (1.31), respectively.

If the double series introduced originally as Eq. (1.29) is absolutely convergent, then all
these rearrangements will give the same ultimate result.

306 > 0 > 0 > 0 >

) > o > 0 > 0 > o —>0—>>

10 > € —» @ —» 0 —» o —>¢—>>

0 2 4 n

FIGURE 1.4

FIGURE 1.5 Order in which terms are summed with p, g index set, Eq. (1.30).
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0
0 1 2 3 n

FIGURE 1.6 Order in which terms are summed with r, s index set, Eq. (1.31).

Exercises

1.1.13  Show how to combine ¢(2) = 302 | n~2 with &1 and @3 to obtain a series converging

asn—*.

Note. ¢ (2) has the known value 72 /6. See Eq. (12.66).
1.1.14  Give a method of computing

> 1
A(3) = —_—
) Z (2n+1)3
n=0
that converges at least as fast as n~® and obtain a result good to six decimal places.
ANS. 1(3) =1.051800.

1.1.15  Showthat (a) Y00 [¢(n) — 11=1, (b) Y02, (=D [¢(n) — 1] =4,
where ¢ (n) is the Riemann zeta function.

1.1.16  The convergence improvement of 1.1.11 may be carried out more expediently (in this
special case) by putting a2, from Eq. (1.26), into a more symmetric form: Replacing n
by n — 1, we have

s 1 _1
_r;(n—l)n(n—}-l) 4

o

N~

(a) Combine ¢(3) and o} to obtain convergence as n-.

(b) Let oy be ag with n — n — 2. Combine ¢(3), &, and c to obtain convergence
asn'.
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(c) If z(3) is to be calculated to six-decimal place accuracy (error 5 x 10~7), how
many terms are required for ¢(3) alone? combined as in part (a)? combined as in
part (b)?

Note. The error may be estimated using the corresponding integral.

o]

5 1
ANS. @) t(3)=7 - >

3(pn2 _ :
on (n 1)

1.2 SERIES OF FUNCTIONS

We extend our concept of infinite series to include the possibility that each term u,, may
be a function of some variable, u, = u,(x). The partial sums become functions of the
variable x,

Sn (%) = u1(x) +ua(x) + - +up(x), (1.32)

as does the series sum, defined as the limit of the partial sums:

D un(x) =5Sx) = lim s, (x). (1.33)

n=1

So far we have concerned ourselves with the behavior of the partial sums as a function of
n. Now we consider how the foregoing quantities depend on x. The key concept here is
that of uniform convergence.

Uniform Convergence

If for any small ¢ > 0 there exists a number N, independent of x in the interval [a, ]
(that is, a < x < b) such that

|S(x) —s,(x)| <e, forallm> N, (1.34)

then the series is said to be uniformly convergent in the interval [a, b]. This says that
for our series to be uniformly convergent, it must be possible to find a finite N so that
the absolute value of the tail of the infinite series, Z?i N1 Ui (x)|, will be less than an
arbitrary small ¢ for all x in the given interval, including the endpoints.

Example 1.2.1 NONUNIFORM CONVERGENCE

Consider on the interval [0, 1] the series

o0

S)=Y (1 —x)x".

n=0
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For 0 < x < 1, the geometric series ) _, x” is convergent, with value 1/(1 — x), so S(x) =
1 for these x values. But at x = 1, every term of the series will be zero, and therefore
S(1) =0. That s,

o0
dd-xx"=1, 0<x<l,
n=0

=0, x=1. (1.35)

So S(x) is convergent for the entire interval [0, 1], and because each term is nonnegative,
it is also absolutely convergent. If x # 0, this is a series for which the partial sum sy
is 1 — xV, as can be seen by comparison with Eq. (1.3). Since S(x) = 1, the uniform

convergence criterion is
1—(1—xN) =xN<e.

No matter what the values of N and a sufficiently small £ may be, there will be an x value
(close to 1) where this criterion is violated. The underlying problem is that x =1 is the
convergence limit of the geometric series, and it is not possible to have a convergence rate
that is bounded independently of x in a range that includes x = 1.

We note also from this example that absolute and uniform convergence are independent
concepts. The series in this example has absolute, but not uniform convergence. We will
shortly present examples of series that are uniformly, but only conditionally convergent.
And there are series that have neither or both of these properties. |

Weierstrass M (Majorant) Test

The most commonly encountered test for uniform convergence is the Weierstrass M test.
If we can construct a series of numbers Zf’il M;, in which M; > |u;(x)| for all x in the
interval [a, b] and Zﬁl M; is convergent, our series u; (x) will be uniformly convergent
in [a, b].

The proof of this Weierstrass M test is direct and simple. Since ) _; M; converges, some
number N exists such that forn + 1> N,

o0

Z M,’<8.

i=n+1

This follows from our definition of convergence. Then, with |u; (x)| < M; for all x in the
interval a <x <b,

Z ui(x) <e.
i=n+1
Hence S(x) =Y 2 | u; (x) satisfies
1S() = su) =] D uix)| <e, (1.36)

i=n+1
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we see that 2211 u; (x) is uniformly convergent in [a, b]. Since we have specified absolute
values in the statement of the Weierstrass M test, the series Y .- u;(x) is also seen to
be absolutely convergent. As we have already observed in Example 1.2.1, absolute and
uniform convergence are different concepts, and one of the limitations of the Weierstrass
M test is that it can only establish uniform convergence for series that are also absolutely
convergent.

To further underscore the difference between absolute and uniform convergence, we
provide another example.

Example 1.2.2 UNIFORMLY CONVERGENT ALTERNATING SERIES

Consider the series

o]

S(x):ZIE;—l)):;, —00 < X < 00. (1.37)

Applying the Leibniz criterion, this series is easily proven convergent for the entire inter-
val —oo < x < 00, but it is not absolutely convergent, as the absolute values of its terms
approach for large n those of the divergent harmonic series. The divergence of the absolute
value series is obvious at x = 0, where we then exactly have the harmonic series. Never-
theless, this series is uniformly convergent on —oo0 < x < 00, as its convergence is for all
x at least as fast as it is for x = 0. More formally,

1S(x) =8 ()] < lupg1 ()] = |un41(0)] .

Since u,+1(0) is independent of x, uniform convergence is confirmed. |

Abel’s Test

A somewhat more delicate test for uniform convergence has been given by Abel. If u, (x)
can be written in the form a,, f;,(x), and

1. The a, form a convergent series, Zn a, =A,

2. Forall x in [a, b] the functions f; (x) are monotonically decreasing in n, i.e., f,+1(x) <
Su(x),

3. Forall x in [a, b] all the f(n) are bounded in the range 0 < f,,(x) < M, where M is
independent of x,

then Zn uy (x) converges uniformly in [a, b].

This test is especially useful in analyzing the convergence of power series. Details of
the proof of Abel’s test and other tests for uniform convergence are given in the works
by Knopp and by Whittaker and Watson (see Additional Readings listed at the end of this
chapter).
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Properties of Uniformly Convergent Series

Uniformly convergent series have three particularly useful properties. If a series ), u, (x)
is uniformly convergent in [a, b] and the individual terms u,, (x) are continuous,

1. The series sum S(x) = ZZOII uy, (x) is also continuous.
2. The series may be integrated term by term. The sum of the integrals is equal to the
integral of the sum:

b o b
/S(x) dx:Z/un(x) dx. (1.38)
a n=l1y

3. The derivative of the series sum S(x) equals the sum of the individual-term deriva-
tives:

o]

d d
S = > T (), (1.39)

n=1
provided the following additional conditions are satisfied:
duy(x)

X

is continuous in [a, b],

e¢]

d
Z u; (x) is uniformly convergent in [a, b].
X

n=1

Term-by-term integration of a uniformly convergent series requires only continuity of
the individual terms. This condition is almost always satisfied in physical applications.
Term-by-term differentiation of a series is often not valid because more restrictive condi-
tions must be satisfied.

Exercises
1.2.1 Find the range of uniform convergence of the series
o (="' o 1
@ 1= —— b W= —
n=1 n=1
ANS. (a) 0<s <x <oo0.
b)) 1<s<x<o0.
1.2.2 For what range of x is the geometric series Y -, x" uniformly convergent?

ANS. —1<—-s<x<s<l.

1.2.3 For what range of positive values of x is Y oo 1/(1 +x™)

(a) convergent? (b) uniformly convergent?
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1.2.4 If the series of the coefficients ) a, and ) b, are absolutely convergent, show that the
Fourier series

Z(an cosnx + b, sinnx)

is uniformly convergent for —oo < x < oo.

1.2.5 The Legendre series ) u j (x) satisfies the recurrence relations

J even

GADG+D =0+ D 5
(G+20+3)

ujpo(x) = u;j(x),

in which the index j is even and / is some constant (but, in this problem, not a non-
negative odd integer). Find the range of values of x for which this Legendre series is
convergent. Test the endpoints.

ANS. —-1<x<1.

1.2.6 A series solution of the Chebyshev equation leads to successive terms having the ratio

uppa(®) _ Gkt P’
uj(e) ki +Dk+j+2)

s

with k =0 and k = 1. Test for convergence at x = £1.
ANS. Convergent.

1.2.7 A series solution for the ultraspherical (Gegenbauer) function Cj (x) leads to the
recurrence

(k+ )k +j+2a)—nn+2a)
k+j+Dk+j+2)

ajy2=a;

Investigate the convergence of each of these series at x = 41 as a function of the
parameter o.

ANS. Convergent for ¢ < 1,
divergent for o > 1.

Taylor’s Expansion

Taylor’s expansion is a powerful tool for the generation of power series representations of
functions. The derivation presented here provides not only the possibility of an expansion
into a finite number of terms plus a remainder that may or may not be easy to evaluate, but
also the possibility of the expression of a function as an infinite series of powers.
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We assume that our function f(x) has a continuous nth derivative® in the interval ¢ <
x < b. We integrate this nth derivative n times; the first three integrations yield

/ SO @dn = 10| = @ - N,

X X2 x
[dxs [ £ 0n = [ dnlro o - 10V @)

=) - @) - (x —a) f (),

X X3 X2
/dX3fdx2ff(")(x1)dxl =f(”—3)(x) _ f(n—S)(a)

N2
— a0V - L z,a) " V.

Finally, after integrating for the nth time,

X X2 _ 2
/dxn~-~/f(")(X1)dX1 =fx)— f@—(x—a)f'(a)— % (@)
a a (x—a)"_l -

e @

Note that this expression is exact. No terms have been dropped, no approximations made.
Now, solving for f(x), we have

f)=f@+x-a) fl

(x — (x—a)"!

2
+Ta)f”(a)+---+mf<"*‘>(a)+Rn, (1.40)
where the remainder, R,, is given by the n-fold integral
x x2
Rn=/dxn--~/dx1 £ (xp). (1.41)
a a

We may convert R, into a perhaps more practical form by using the mean value theorem
of integral calculus:

X

/ () dx = (x —a) g (&), (142)

a

2Taylor’s expansion may be derived under slightly less restrictive conditions; compare H. Jeffreys and B. S. Jeffreys, in the
Additional Readings, Section 1.133.
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with a < & < x. By integrating n times we get the Lagrangian form® of the remainder:

x—a)
Ry=—— Fm ). (1.43)
With Taylor’s expansion in this form there are no questions of infinite series convergence.
The series contains a finite number of terms, and the only questions concern the magnitude
of the remainder.
When the function f(x) is such that lim,_ . R, = 0, Eq. (1.40) becomes Taylor’s
series:

f(x)=f(a)+(x—a)f(a)+( ) f@+ -

= Z W o), (1.44)

Here we encounter for the first time n! with n = 0. Note that we define 0! = 1.

Our Taylor series specifies the value of a function at one point, x, in terms of the value
of the function and its derivatives at a reference point a. It is an expansion in powers of
the change in the variable, namely x — a. This idea can be emphasized by writing Taylor’s
series in an alternate form in which we replace x by x + 4 and a by x:

o
fath) = Z f<"><x> (1.45)

nO

Power Series

Taylor series are often used in situations where the reference point, a, is assigned the
value zero. In that case the expansion is referred to as a Maclaurin series, and Eq. (1.40)
becomes

o

2 n
FO) = FO +xf O+ 5 O+ =Y = fP(). (1.46)

n=0
An immediate application of the Maclaurin series is in the expansion of various transcen-
dental functions into infinite (power) series.

Example 71.2.3  EXPONENTIAL FUNCTION

Let f(x) = e”. Differentiating, then setting x = 0, we have

fMoy=1
foralln,n=1, 2, 3,.... Then, with Eq. (1.46), we have
2 3 o X"
e* —1+x+—+—+ —. (1.47)
3! n!

-1
3 An alternate form derived by Cauchy is R, = %]‘(") ).



28 Chapter 1 Mathematical Preliminaries

This is the series expansion of the exponential function. Some authors use this series to
define the exponential function.

Although this series is clearly convergent for all x, as may be verified using the
d’Alembert ratio test, it is instructive to check the remainder term, R,. By Eq. (1.43) we
have

n n
Ry="0 f0&) == e,
n! n!
where £ is between 0 and x. Irrespective of the sign of x,

|x|"e|x‘
n!

[Ry| <

No matter how large |x| may be, a sufficient increase in n will cause the denominator of
this form for R, to dominate over the numerator, and lim,,_, oo R,, = 0. Thus, the Maclaurin
expansion of e* converges absolutely over the entire range —0o0 < x < 00. ]

Now that we have an expansion for exp(x), we can return to Eq. (1.45), and rewrite that
equation in a form that focuses on its differential operator characteristics. Defining D as
the operator d/dx, we have

= h"D"
Fatm =3 ——f@) =" f). (1.48)
n=0 ’

Example 1.2.4  LoGARITHM

For a second Maclaurin expansion, let f(x) = In(1 + x). By differentiating, we obtain

o =0+x""

FP)==D""Tm-DI1+x)"" (1.49)
Equation (1.46) yields
X2 x3 x4
In(1 =x——4"——"—+4...4R
n(l+x)=x 2—1—3 4—|— + R,
n
xp
=Y (=D 4R, (1.50)
p=1 p

In this case, for x > 0 our remainder is given by

xl’l
Ri==— f"™&), 0<&=<x
n!

xn
<—, 0<&<x<l. (1.51)
n
This result shows that the remainder approaches zero as »n is increased indefinitely, pro-

viding that 0 < x < 1. For x < 0, the mean value theorem is too crude a tool to establish a
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meaningful limit for R,,. As an infinite series,

In(1+x)=Y (-1 % (1.52)

n=1

converges for —1 < x < 1. The range —1 < x < 1 is easily established by the d’ Alembert
ratio test. Convergence at x = 1 follows by the Leibniz criterion. In particular, at x = 1 we
have the conditionally convergent alternating harmonic series, to which we can now put a
value:

In2=1 1+1 1+1 —i( =t (1.53)

A T RO R " ‘
At x = —1, the expansion becomes the harmonic series, which we well know to be
divergent. |

Properties of Power Series

The power series is a special and extremely useful type of infinite series, and as illustrated
in the preceding subsection, may be constructed by the Maclaurin formula, Eq. (1.44).
However obtained, it will be of the general form

o
f(x)zao+a1x+a2x2+a3x3+~--=Za,,x", (1.54)
n=0

where the coefficients a; are constants, independent of x.
Equation (1.54) may readily be tested for convergence either by the Cauchy root test or
the d’ Alembert ratio test. If

an+1
an

lim :R_l,

n—o0

the series converges for —R < x < R. This is the interval or radius of convergence. Since
the root and ratio tests fail when x is at the limit points &R, these points require special
attention.

For instance, if a, = n~!, then R = 1 and from Section 1.1 we can conclude that the
series converges for x = —1 but diverges for x = +1. If @, = n!, then R = 0 and the series
diverges for all x # 0.

Suppose our power series has been found convergent for —R < x < R; then it will be
uniformly and absolutely convergent in any interior interval —S < x < §, where 0 < § <
R. This may be proved directly by the Weierstrass M test.

Since each of the terms u, (x) = a,x™ is a continuous function of x and f(x) =) a,x"
converges uniformly for —S < x < §, f(x) must be a continuous function in the inter-
val of uniform convergence. This behavior is to be contrasted with the strikingly different
behavior of series in trigonometric functions, which are used frequently to represent dis-
continuous functions such as sawtooth and square waves.



30

Chapter 1 Mathematical Preliminaries

With u,, (x) continuous and ) a,x" uniformly convergent, we find that term by term dif-
ferentiation or integration of a power series will yield a new power series with continuous
functions and the same radius of convergence as the original series. The new factors in-
troduced by differentiation or integration do not affect either the root or the ratio test.
Therefore our power series may be differentiated or integrated as often as desired within
the interval of uniform convergence (Exercise 1.2.16). In view of the rather severe restric-
tion placed on differentiation of infinite series in general, this is a remarkable and valuable
result.

Uniqueness Theorem

We have already used the Maclaurin series to expand ¢* and In(1 4 x) into power series.
Throughout this book, we will encounter many situations in which functions are repre-
sented, or even defined by power series. We now establish that the power-series represen-
tation is unique.

We proceed by assuming we have two expansions of the same function whose intervals
of convergence overlap in a region that includes the origin:

o0
f(x) =Zanx", —R, <x <Ry,
n=0
o0
=Y bux", —Rp<x <Ry (1.55)
n=0

What we need to prove is that a, = b, for all n.
Starting from

o0 o
Zanx”:Zb,,x", —R <x <R, (1.56)
n=0 n=0
where R is the smaller of R, and R}, we set x = 0 to eliminate all but the constant term of
each series, obtaining
ap = by.

Now, exploiting the differentiability of our power series, we differentiate Eq. (1.56),
getting

o0 o
Znanx”_1 =annx"_1. (1.57)
n=1 n=1

We again set x = 0, to isolate the new constant terms, and find
ay =b.
By repeating this process n times, we get

ay = by,
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which shows that the two series coincide. Therefore our power series representation is
unique.

This theorem will be a crucial point in our study of differential equations, in which
we develop power series solutions. The uniqueness of power series appears frequently in
theoretical physics. The establishment of perturbation theory in quantum mechanics is one
example.

Indeterminate Forms

The power-series representation of functions is often useful in evaluating indeterminate
forms, and is the basis of ’Hépital’s rule, which states that if the ratio of two differentiable
functions f(x) and g(x) becomes indeterminate, of the form 0/0, at x = xq, then

f )
lim = lim .
x—>x0 g(x) x—>x0 g'(x)
Proof of Eq. (1.58) is the subject of Exercise 1.2.12.
Sometimes it is easier just to introduce power-series expansions than to evaluate the

derivatives that enter I’Hopital’s rule. For examples of this strategy, see the following
Example and Exercise 1.2.15.

(1.58)

Example 1.2.5  ALTERNATIVE TO HOPITAL'S RULE

Evaluate
Jim L SO8X (1.59)
x—0 x2
Replacing cosx by its Maclaurin-series expansion, Exercise 1.2.8, we obtain
1 —cosx 1—(1— 24 ,x - 1 x2
x2 x2 2t a4l

Letting x — 0, we have

lim ———— =~ (1.60)

The uniqueness of power series means that the coefficients a, may be identified with the
derivatives in a Maclaurin series. From

ﬂ@—Z}m:—Zj ﬂmmx

m= 0

we have

1
an=— f"(0).
n:
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Inversion of Power Series

Suppose we are given a series

o0
y—Yo=ai(x —x0) +ar(x —x0)> -+ =Y _an (x —x0)". (1.61)
n=1

This gives (y — yg) in terms of (x — xg). However, it may be desirable to have an explicit
expression for (x — xq) in terms of (y — yp). That is, we want an expression of the form

00
X —x0=2bn (y_YO)nv (1.62)

n=1

with the b, to be determined in terms of the assumed known a,,. A brute-force approach,
which is perfectly adequate for the first few coefficients, is simply to substitute Eq. (1.61)
into Eq. (1.62). By equating coefficients of (x — x)" on both sides of Eq. (1.62), and using
the fact that the power series is unique, we find

bl =
ai
a
b2 = __37
a4

. (1.63)

by = — (Zag — alag),
a;

1

by = — <5a1a2a3 — a]2a4 — SaS), and so on.
a
1

Some of the higher coefficients are listed by Dwight.* A more general and much more
elegant approach is developed by the use of complex variables in the first and second
editions of Mathematical Methods for Physicists.

Exercises

1.2.8 Show that

' o ; y2n+1
(a) SInx = 112:(:)(—1) m,
o 2n
n X
(b) cosx = nX:(:)(—l) i

4H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. New York: Macmillan (1961). (Compare formula
no. 50.)
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Derive a series expansion of cot x in increasing powers of x by dividing the power
series for cos x by that for sinx.

Note. The resultant series that starts with 1/x is known as a Laurent series (cotx does
not have a Taylor expansion about x = 0, although cot(x) — x~! does). Although the
two series for sin x and cos x were valid for all x, the convergence of the series for cot x
is limited by the zeros of the denominator, sinx.

Show by series expansion that

1 1
—In 10 +1 = coth™! no, Inol > 1.

2 no-—

This identity may be used to obtain a second solution for Legendre’s equation.

Show that f(x) = x!/? (a) has no Maclaurin expansion but (b) has a Taylor expansion
about any point xo # 0. Find the range of convergence of the Taylor expansion about
X = Xxg.

Prove I’Hopital’s rule, Eq. (1.58).

With n > 1, show that

(a) l—1n< " ><0, (b) l—1n(”+1)>0.
n n—1 n n

Use these inequalities to show that the limit defining the Euler-Mascheroni constant,
Eq. (1.13), is finite.

In numerical analysis it is often convenient to approximate d>v (x)/dx? by

d? 1
WW(X) ~ ﬁ[w(x +h) =29 )+ (x —h)].

Find the error in this approximation.

h2
ANS. Error = Ew(‘” (x).

Evaluate lim
x—0

sin(tan x) — tan(sin x)
x7 '
1
ANS. —.
30
A power series converges for —R < x < R. Show that the differentiated series and
the integrated series have the same interval of convergence. (Do not bother about the
endpoints x = +R.)

1.3 BINOMIAL THEOREM

An extremely important application of the Maclaurin expansion is the derivation of the
binomial theorem.
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Let f(x) = (1 + x)™, in which m may be either positive or negative and is not limited
to integral values. Direct application of Eq. (1.46) gives

m(m — 1) 2

A4+x)"=14+mx+ o + -+ R,. (1.64)
For this function the remainder is
n
Rn=x—'(l—i—é)m_”m(m—1)~~~(m—n+1), (1.65)
n!

with & between 0 and x. Restricting attention for now to x > 0, we note that for n > m,
(14 &)™ is a maximum for & = 0, so for positive x,

n

|Rn|s%|m(m—1)--~<m—n+1>|, (1.66)

with lim,, . oo R, = 0 when 0 < x < 1. Because the radius of convergence of a power series
is the same for positive and for negative x, the binomial series converges for —1 < x < 1.
Convergence at the limit points £1 is not addressed by the present analysis, and depends
onm.

Summarizing, we have established the binomial expansion,

(mz! 1) 24 m(m 13)|(m 2) 3
convergent for —1 < x < 1. It is important to note that Eq. (1.67) applies whether or not
m is integral, and for both positive and negative m. If m is a nonnegative integer, R, for
n > m vanishes for all x, corresponding to the fact that under those conditions (1 4 x)" is
a finite sum.

Because the binomial expansion is of frequent occurrence, the coefficients appearing in
it, which are called binomial coefficients, are given the special symbol

A4x0)"=1+mx+ 2 oo, (1.67)

(m)zm(m—l)-n(m—n—i—l)’ (1.68)
n n!
and the binomial expansion assumes the general form
e m
(14 x)" =Z< >x”. (1.69)
n=0 n

In evaluating Eq. (1.68), note that when n = 0, the product in its numerator is empty (start-
ing from m and descending to m + 1); in that case the convention is to assign the product
the value unity. We also remind the reader that 0! is defined to be unity.

In the special case that m is a positive integer, we may write our binomial coefficient in

terms of factorials:
my m! (1.70)
n)  nl(m—n) '

Since n! is undefined for negative integer n, the binomial expansion for positive integer
m is understood to end with the term n = m, and will correspond to the coefficients in the
polynomial resulting from the (finite) expansion of (1 4 x)™.
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For positive integer m, the (Z’) also arise in combinatorial theory, being the number
of different ways n out of m objects can be selected. That, of course, is consistent with
the coefficient set if (1 + x)™ is expanded. The term containing x” has a coefficient that
corresponds to the number of ways one can choose the “x” from n of the factors (1 + x)
and the 1 from the m — n other (1 4 x) factors.

For negative integer m, we can still use the special notation for binomial coefficients, but
their evaluation is more easily accomplished if we set m = —p, with p a positive integer,
and write

<—p) gy POAED =D D =D

n! n!(p—D!

For nonintegral m, it is convenient to use the Pochhammer symbol, defined for general
a and nonnegative integer n and given the notation (a),, as

(@o=1, (@1=a, @py1=al@+1)---(a+n), m=1). (1.72)
For both integral and nonintegral m, the binomial coefficient formula can be written
— 1
(’") _(m—n+Dn (1.73)
n n!

There is a rich literature on binomial coefficients and relationships between them and
on summations involving them. We mention here only one such formula that arises if we
evaluate 1/+4/1 4+ x, i.e., (1 + x)~ /2. The binomial coefficient

()-a(2) () (75)

1-3---2n—-1) 2n— D!
=(-1)'—=(-1)"—, 1.74
=1 2" n! =1 @) (1.74)
where the “double factorial” notation indicates products of even or odd positive integers
as follows:
1-3-5---2n—1)=2n -1
(1.75)
2-4-6---(2n) = 2n)!.
These are related to the regular factorials by
2n)!
Cn)!'=2"n! and @2n-—DH!= (2n) . (1.76)
21!

Note that these relations include the special cases 0!! = (—1)!! = 1.

Example 1.3.1 RELATIVISTIC ENERGY

The total relativistic energy of a particle of mass m and velocity v is

) L2\ 12
E=mc|1-— , 1.77)
c
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where ¢ is the velocity of light. Using Eq. (1.69) with m = —1/2 and x = —v?/c?, and
evaluating the binomial coefficients using Eq. (1.74), we have

E 2[4 1 v? n 3 2\ 5 w2\’ n
=mc e — —— - - e
2 c? 8 c2 16 c?
1 3 v? 5 12\
=m02+§mv2+§mv2 (C—2>+1—6mv2 <—C—2> +oee (1.78)
The first term, mc?, is identified as the rest-mass energy. Then
1, 302 5 w2\
Ekineticzzmv 1+Zc—2+g 2 +--- 1. (1.79)

For particle velocity v < c, the expression in the brackets reduces to unity and we see that
the kinetic portion of the total relativistic energy agrees with the classical result. |

The binomial expansion can be generalized for positive integer n to polynomials:

n!

(a1+az+--~+am)"=z ay'ay’ ---ay (1.80)

ni'na!---ny!
where the summation includes all different combinations of nonnegative integers
ni,ny, ..., ny with Y ' n; = n. This generalization finds considerable use in statisti-
cal mechanics.

In everyday analysis, the combinatorial properties of the binomial coefficients make
them appear often. For example, Leibniz’s formula for the nth derivative of a product of
two functions, u(x)v(x), can be written

d \" n di dn—i
(E) (u(x)v(x)) = (’:) ( d”;(f)) ( dxn”_(f)). (1.81)

i=0
Exercises
1.3.1 The classical Langevin theory of paramagnetism leads to an expression for the magnetic
polarization,
coshx 1
Px)=c| — -——).
sinhx x

Expand P (x) as a power series for small x (low fields, high temperature).

1.3.2 Given that

1

0

1
/ dx tan-! T
=tan" " x —,
1+x2 4
0



1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8
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expand the integrand into a series and integrate term by term obtaining”

T _, 1+1 1+1 1y 1 N
4 35 7 9 2n+1 ’

which is Leibniz’s formula for 7v. Compare the convergence of the integrand series and
the integrated series at x = 1. Leibniz’s formula converges so slowly that it is quite
useless for numerical work.

X

Expand the incomplete gamma function y(n + 1, x) = / e 't"dt in a series of powers

0
of x. What is the range of convergence of the resulting series?

X

1 X x2
ANS. “Idr = x"! -
fe SR [Ty Sy S T )
0
(=D)PxP ]
pln+p+1) '

Develop a series expansion of y = sinh ™! x (that is, sinh y = x) in powers of x by
(a) inversion of the series for sinh y,

(b) adirect Maclaurin expansion.

1 o
Show that for integral n > 0, m = Z <’::>xm_”.
m=n
) o (m +2n — 2)!!
Show that (1 —I—x)_m/ = Z(—l)n mx", form = 1, 2, 3, e
n=0

Using binomial expansions, compare the three Doppler shift formulas:
vy\—! )

@ VvV=v (1 ¥ —) moving source;
c

(b)) v

v (1 + B) moving observer;
c

; 2\ 12
() vV=v (l + —) (1 - —2> relativistic.
c c

Note. The relativistic formula agrees with the classical formulas if terms of order v?/c?
can be neglected.

In the theory of general relativity there are various ways of relating (defining) a velocity
of recession of a galaxy to its red shift, 6. Milne’s model (kinematic relativity) gives

SThe series expansion of tan—! x (upper limit 1 replaced by x) was discovered by James Gregory in 1671, 3 years before
Leibniz. See Peter Beckmann’s entertaining book, A History of Pi, 2nd ed., Boulder, CO: Golem Press (1971), and L. Berggren,
J. Borwein, and P. Borwein, Pi: A Source Book, New York: Springer (1997).
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1.3.9

1.3.10

1.3.11

(@ vi=cé (1 + %8),

(b) v2=c8<14—%8)(1+8ya,

1 +vs/e]?
1—v3/c '

©) 1+a=[

1. Show that for § <« 1 (and v3/c < 1), all three formulas reduce to v = ¢8.
2. Compare the three velocities through terms of order 62.

Note. In special relativity (with § replaced by z), the ratio of observed wavelength A to
emitted wavelength Ag is given by

The relativistic sum w of two velocities u and v in the same direction is given by
w u/c+v/c
¢ 1+uv/c?
If
LA a,
C C

where 0 <« < 1, find w/c in powers of « through terms in .

The displacement x of a particle of rest mass mg, resulting from a constant force mqog

along the x-axis, is
1/2
2 21"
x=—1|14+\|g- -1z,
g c

including relativistic effects. Find the displacement x as a power series in time f.
Compare with the classical result,

L)
= —gt".
X 5 8
By use of Dirac’s relativistic theory, the fine structure formula of atomic spectroscopy
is given by
2 —-1/2
pencfir 2T

(s +n—[k[)

where

s= (k2= yDHY? k=41,42,43, ... .

Expand in powers of y? through order y* (y2? = Ze? /4w eghic, with Z the atomic num-
ber). This expansion is useful in comparing the predictions of the Dirac electron theory
with those of a relativistic Schrodinger electron theory. Experimental results support
the Dirac theory.
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In a head-on proton-proton collision, the ratio of the kinetic energy in the center of mass
system to the incident kinetic energy is

R = [V2mc2(Ex + 2mc?) — 2mc*]/ Ey.

Find the value of this ratio of kinetic energies for

(a) Ejp < mc? (nonrelativistic),

(b)  Ex > mc? (extreme-relativistic).

ANS. (a) (b) 0. The latter answer is a sort of law of diminish-

ing returns for high-energy particle accelerators
(with stationary targets).

=

With binomial expansions
oo x 1 o
_ n _ . —n
_ZX _1_1_x—1_2x :
n=1 n=0

Adding these two series yields Y 00 x" =0.

n=—oo
Hopefully, we can agree that this is nonsense, but what has gone wrong?

(a) Planck’s theory of quantized oscillators leads to an average energy

o
Zl negexp(—neg/kT)
n=
(8) - 0 )

> exp(—neo/kT)
n=0

where g is a fixed energy. Identify the numerator and denominator as binomial
expansions and show that the ratio is

"~ exp(eo/kT) — 1"

(b) Show that the (&) of part (a) reduces to k7, the classical result, for k7T > &g.

Expand by the binomial theorem and integrate term by term to obtain the Gregory series
for y = tan~! x (note tan y = x):

—1
t 1—12 44—+ dt
o= /1+t2 /{ * o dde

2n+1
_Z(_ )”2 T —-1<x<l.
n

The Klein-Nishina formula for the scattering of photons by electrons contains a term of
the form

_(+e 2+28_1n(1+28)
fer= g2 [1+2£ & j|
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1.3.17

1.3.18

Here & = hv/mc?, the ratio of the photon energy to the electron rest mass energy. Find
lirrb f(e).
E—>

ANS.

N UJ'|-I>

The behavior of a neutron losing energy by colliding elastically with nuclei of mass
is described by a parameter &1,

(A—1)21 A-1

=1+ A n Arl
An approximation, good for large A, is
2
&= A+l

Expand & and &, in powers of A~!. Show that &, agrees with & through (A~!)2. Find
the difference in the coefficients of the (A~1)3 term.

Show that each of these two integrals equals Catalan’s constant:
: d : d
t X
tant —, (b) — [ hx——.
(a) /arcan n (b) /n)cl_l_x2
0 0

Note. The definition and numerical computation of Catalan’s constant was addressed
in Exercise 1.1.12.

1.4 MATHEMATICAL INDUCTION

We are occasionally faced with the need to establish a relation which is valid for a set of
integer values, in situations where it may not initially be obvious how to proceed. However,
it may be possible to show that if the relation is valid for an arbitrary value of some index n,
then it is also valid if n is replaced by n + 1. If we can also show that the relation is
unconditionally satisfied for some initial value ng, we may then conclude (unconditionally)
that the relation is also satisfied for ng + 1, ng + 2, .... This method of proof is known
as mathematical induction. It is ordinarily most useful when we know (or suspect) the
validity of a relation, but lack a more direct method of proof.

Example 1.4.1  SuMm OF INTEGERS

The sum of the integers from 1 through n, here denoted S(n), is given by the formula
S(n) =n(n + 1)/2. An inductive proof of this formula proceeds as follows:

1. Given the formula for S(n), we calculate

nn+1) (n+1n+2)
—5 _

Sm+D)=Sm)+(n+1)= >

+m+D=[5+1]n+n=

Thus, given S(n), we can establish the validity of S(n + 1).
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2. Itis obvious that S(1) = 1(2)/2 =1, so our formula for S(n) is valid forn = 1.
3. The formula for S(n) is therefore valid for all integers n > 1. [ ]

Exercises

n
n
1.4.1 Sh tht§ ‘= —2n+1 DGn%+3n—1).
oW aj:l] 3O(n—i— Y(n+1)(Bn~ 4+ 3n )

14.2 Prove the Leibniz formula for the repeated differentiation of a product:
d n n n d j d n—j
() Lresw] =3 (%) [(a) f(x)} [(a) g(x)]
j=0

1.5 OPERATIONS ON SERIES EXPANSIONS OF
FUNCTIONS

There are a number of manipulations (tricks) that can be used to obtain series that represent
a function or to manipulate such series to improve convergence. In addition to the proce-
dures introduced in Section 1.1, there are others that to varying degrees make use of the
fact that the expansion depends on a variable. A simple example of this is the expansion
of f(x) =1In(1 + x), which we obtained in 1.2.4 by direct use of the Maclaurin expansion
and evaluation of the derivatives of f(x). An even easier way to obtain this series would
have been to integrate the power series for 1/(1 4 x) term by term from O to x:

1

=l-x+x'-x+... =
I+x
U N SNE N A
nl+x)=x——+———+---.
2 3 4

A problem requiring somewhat more deviousness is given by the following example, in
which we use the binomial theorem on a series that represents the derivative of the function
whose expansion is sought.

Example 1.5.1  APPLICATION OF BINOMIAL EXPANSION

Sometimes the binomial expansion provides a convenient indirect route to the Maclaurin
series when direct methods are difficult. We consider here the power series expansion
S 2n—1DN x2tl X3 3%

-
= 2 1.82
S n; el an+n T et T (1.82)

Starting from sin y = x, we find dy/dx = 1/+/1 — x2, and write the integral

X
o dt
SiIn T x=y= —(l—tz)l/z'

0
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We now introduce the binomial expansion of (1 — #2)~!/? and integrate term by term. The
result is Eq. (1.82). ]

Another way of improving the convergence of a series is to multiply it by a polynomial in
the variable, choosing the polynomial’s coefficients to remove the least rapidly convergent
part of the resulting series. Here is a simple example of this.

Example 1.5.2  MuLTIPLY SERIES BY POLYNOMIAL

Returning to the series for In(1 + x), we form

ad n e n+1
(1 -i—a]x) 11’1(1 +x) = Z(—l)n_l % +a Z(_l)n—le

n=1 n=l1

as 1 ai
— _ln—l - n
x—i—r;( ) <n n—l)x

> (1—a)—1
Yy T
= nn—1)

If we take a1 = 1, the n in the numerator disappears and our combined series converges as
n~2; the resulting series for In(1 + x) is

1l’l
e (25) (- £

Another useful trick is to employ partial fraction expansions, which may convert a
seemingly difficult series into others about which more may be known.

If g(x) and h(x) are polynomials in x, with g(x) of lower degree than h(x), and & (x)
has the factorization h(x) = (x — a1)(x — a2)...(x — ay,), in the case that the factors of
h(x) are distinct (i.e., 4 has no multiple roots), then g(x)/h(x) can be written in the form

g(x) . a c2 Cn

h(x)  x—a x—a2+“.+x—an'

(1.83)

If we wish to leave one or more quadratic factors in 4 (x), perhaps to avoid the introduction
of imaginary quantities, the corresponding partial-fraction term will be of the form

ax+b
x2+px+q

If h(x) has repeated linear factors, such as (x —a;)™, the partial fraction expansion for this
power of x — a takes the form

Cl,m Cl,m—1 €11
(x—ap™  (x —apm! x—ap
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The coefficients in partial fraction expansions are usually found easily; sometimes it is
useful to express them as limits, such as

ci = lim (x —a)g(x)/h(x). (1.84)

Example 1.5.3  PARTIAL FRACTION EXPANSION

Let
k> c ax+b
TO= e~ e

We have written the form of the partial fraction expansion, but have not yet determined the
values of a, b, and c. Putting the right side of the equation over a common denominator,
we have
kK c(x* 4+ k%) +x(ax +b)
x(x24+k2) x(x2 +k2)
Expanding the right-side numerator and equating it to the left-side numerator, we get

0(x2) +0(x) + k% = (c + a)x® + bx + ck?,

which we solve by requiring the coefficient of each power of x to have the same value
on both sides of this equation. We get b =0, ¢ = 1, and then a = —1. The final result is
therefore

X

- (1.85)

1
fx)=-
X

[ |

Still more cleverness is illustrated by the following procedure, due to Euler, for changing
the expansion variable so as to improve the range over which an expansion converges.
Euler’s transformation, the proof of which (with hints) is deferred to Exercise 1.5.4, makes
the conversion:

fo)=) (=D'epx” (1.86)
n=0

_ S Gy () 1.87

_1+x,§)(_)6’"<1+x>' (1.87)

The coefficients a,, are repeated differences of the ¢,;:
ap = ¢y, ay =c) — oo, a2=C2—261+Co, a3=C3—362+3C1—Co,...;
their general formula is
an =Z(—1)1<'>cn_,~. (1.88)
j=0 J

The series to which the Euler transformation is applied need not be alternating. The coef-
ficients ¢,, can have a sign factor which cancels that in the definition.
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Example 1.5.4  EuLer TRANSFORMATION

The Maclaurin series for In(1 4 x) converges extremely slowly, with convergence only for
|x] < 1. We consider the Euler transformation on the related series

In(1 2
le_ijx__...’ (1.89)
X 2 3

s0, in Eq. (1.86), ¢, = 1/(n + 1). The first few a, are: ap =1, a1 =3 — 1 = -3, a» =
%—2(%)+1=%,a3=3—‘—3(%)+3(%)—1:—%,0ringeneral

="
T on+17

dn

The converted series is then

In(1+x) 1 Ll Y 2+
x T l4x 2\1+x 3\1+x ’

which rearranges to

In(1 + x) SRR G SRV I (1.90)
n X) = _— — — e, .
14+x 2\1+4+x 3\1+4+x
This new series converges nicely at x = 1, and in fact is convergent for all x < co. |
Exercises
1.51 Using a partial fraction expansion, show that for0 <x < 1,
/ dt 14+x
=In .
1—12 1—x
—X
1.5.2 Prove the partial fraction expansion
1

nn+1)---(n+p)

_LpyE_(ry ! P\_L (P L
_p!|:(0>n <1>n+1+<2>n+2 +( l)p(p>n+p:|’

where p is a positive integer.

Hint. Use mathematical induction. Two binomial coefficient formulas of use here are

1 B 1
L.(’?)=<”+. ) Z(—l)/‘l(“. )=1.
p+1=Jj\J J o J
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1.5.3 The formula for ), Eq. (1.26), is a summation of the form Zzozl u,(p), with
1
nn+ D (it p)

Applying a partial fraction decomposition to the first and last factors of the denominator,
ie.,

up(p) =

1 1 |:1 1 i|
nin+p) pln n+pl
n - n -1
show that u,,(p) = % and that )0 | u, (p) = ﬁ'
Hint. 1t is useful to note that u(p — 1) =1/p!.

1.5.4 Proof of Euler transformation: By substituting Eq. (1.88) into Eq. (1.87), verify that
Eq. (1.86) is recovered.

Hint. It may help to rearrange the resultant double series so that both indices are summed
on the range (0, 00). Then the summation not containing the coefficients c¢; can be
recognized as a binomial expansion.

1.5.5 Carry out the Euler transformation on the series for arctan(x):

P I L

t =X — — F — — — 4 — — ...
arctan(x) = x 3 + 5 7 + 9

Check your work by computing arctan(1) = 7 /4 and arctan(3~'/%) = /6.

1.6 SOME IMPORTANT SERIES

There are a few series that arise so often that all physicists should recognize them. Here is
a short list that is worth committing to memory.

o0 X" x2 x3 x4
exp(x):Z——l—l—x—i———i—?—}———i— —00 <X < 00, (1.91)
n:On
0 2n+1 3 5 7
. _ (—=D"*x _ X X X
SIH(X)—HZOW—X_a‘Fy_?—F’ —_0 <X <00, (192)
0 2n 2 4 6
(—D"x X X X
cos(x):X(:)Wzl—2—!+4—!—a+~~-, —00 <X <00, (1.93)
n=
- 0 x2n+l )C3 )C5 x7 Lo4
sin (x)_z_:m—x+3 +§+—+ —00 < X < 00, (1.94)
N 0 x2n .y x2 x4 x6 .
cosh(x) = Z(Z Y +E+E+5+ —00 < X < 00, (1.95)
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1 o
=Y A=l4x4x>+x +xt 4.0, —l1<x<l, (1.96)
1—x
n=0
o
(_l)n—lxn x2 x3 x4
In(1 = - =X — 4= —— 4., —1 <1, 1.97
n(l+x)=Y" - e s <x< (1.97)
n=1
o o
P (P —n+1),
1 P = "= - x" -1 1. 1.
(1+x) Z(ﬂ)x Z 0 x", <x< (1.98)
n=0 n=0
Reminder. The notation (a),, is the Pochhammer symbol: (a)g =1, (a); = a, and for inte-
gersn > 1, (@), =a(a+1)---(a+n —1). It is not required that a, or p in Eq. (1.98), be
positive or integral.
Exercises

1 3 5
1.6.1 Showthatln<1+x)=2<x+%+%+--~), lex<l.

1.7 VECTORS

In science and engineering we frequently encounter quantities that have algebraic magni-
tude only (i.e., magnitude and possibly a sign): mass, time, and temperature. These we label
scalar quantities, which remain the same no matter what coordinates we may use. In con-
trast, many interesting physical quantities have magnitude and, in addition, an associated
direction. This second group includes displacement, velocity, acceleration, force, momen-
tum, and angular momentum. Quantities with magnitude and direction are labeled vector
quantities. To distinguish vectors from scalars, we usually identify vector quantities with
boldface type, as in V or x.

This section deals only with properties of vectors that are not specific to three-
dimensional (3-D) space (thereby excluding the notion of the vector cross product and
the use of vectors to describe rotational motion). We also restrict the present discussion to
vectors that describe a physical quantity at a single point, in contrast to the situation where
a vector is defined over an extended region, with its magnitude and/or direction a function
of the position with which it is associated. Vectors defined over a region are called vector
fields; a familiar example is the electric field, which describes the direction and magnitude
of the electrical force on a test charge throughout a region of space. We return to these
important topics in a later chapter.

The key items of the present discussion are (1) geometric and algebraic descriptions of
vectors; (2) linear combinations of vectors; and (3) the dot product of two vectors and its
use in determining the angle between their directions and the decomposition of a vector
into contributions in the coordinate directions.
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Basic Properties

We define a vector in a way that makes it correspond to an arrow from a starting point to
another point in two-dimensional (2-D) or 3-D space, with vector addition identified as
the result of placing the tail (starting point) of a second vector at the head (endpoint) of the
first vector, as shown in Fig. 1.7. As seen in the figure, the result of addition is the same if
the vectors are added in either order; vector addition is a commutative operation. Vector
addition is also associative; if we add three vectors, the result is independent of the order
in which the additions take place. Formally, this means

(A+B)+C=A+ (B+C).

It is also useful to define an operation in which a vector A is multiplied by an ordinary
number k (a scalar). The result will be a vector that is still in the original direction, but
with its length multiplied by k. If k is negative, the vector’s length is multiplied by |k| but
its direction is reversed. This means we can interpret subtraction as illustrated here:

A—-B=A+(-D)B,

and we can form polynomials such as A 4+ 2B — 3C.

Up to this point we are describing our vectors as quantities that do not depend on any
coordinate system that we may wish to use, and we are focusing on their geometric prop-
erties. For example, consider the principle of mechanics that an object will remain in static
equilibrium if the vector sum of the forces on it is zero. The net force at the point O of
Fig. 1.8 will be the vector sum of the forces labeled F1, F,, and F3. The sum of the forces
at static equilibrium is illustrated in the right-hand panel of the figure.

It is also important to develop an algebraic description for vectors. We can do so by
placing a vector A so that its tail is at the origin of a Cartesian coordinate system and by
noting the coordinates of its head. Giving these coordinates (in 3-D space) the names Ay,
Ay, A;, we have a component description of A. From these components we can use the
Pythagorean theorem to compute the length or magnitude of A, denoted A or |A|, as

A=(A]+ A} +AD' (1.99)

The components Ay, ... are also useful for computing the result when vectors are added
or multiplied by scalars. From the geometry in Cartesian coordinates, it is obvious that if
C = kA + k'B, then C will have components

Cy=kA, +k'By, Cy=kA,+k'By, C.=kA,+KkB..

At this stage it is convenient to introduce vectors of unit length (called unit vectors) in
the directions of the coordinate axes. Letting €, be a unit vector in the x direction, we can

FIGURE 1.7  Addition of two vectors.
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FIGURE 1.8 Equilibrium of forces at the point O.

now identify A,€, as a vector of signed magnitude A, in the x direction, and we see that
A can be represented as the vector sum

A=Al + A8, +AG,. (1.100)

If A is itself the displacement from the origin to the point (x, y, z), we denote it by the
special symbol r (sometimes called the radius vector), and Eq. (1.100) becomes

r=ux&, + yé, + ze,. (1.101)

The unit vectors are said to span the space in which our vectors reside, or to form a
basis for the space. Either of these statements means that any vector in the space can be
constructed as a linear combination of the basis vectors. Since a vector A has specific
values of Ay, Ay, and A, this linear combination will be unique.

Sometimes a vector will be specified by its magnitude A and by the angles it makes with
the Cartesian coordinate axes. Letting o, 8, y be the respective angles our vector makes
with the x, y, and z axes, the components of A are given by

Ay =Acosa, Ay=Acosfl, A,=Acosy. (1.102)

The quantities cos«, cos 8, cos y (see Fig. 1.9) are known as the direction cosines of A.
Since we already know that A2 + Ai + A2 = A2, we see that the direction cosines are not
entirely independent, but must satisfy the relation

cos’>a +cos? B +cos’y = 1. (1.103)

While the formalism of Eq. (1.100) could be developed with complex values for the
components Ay, Ay, A;, the geometric situation being described makes it natural to restrict
these coefficients to real values; the space with all possible real values of two coordinates
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FIGURE 1.9 Cartesian components and direction cosines of A.

Axex

X

FIGURE 1.10 Projections of A on the x and y axes.

is denoted by mathematicians (and occasionally by us) R?; the complete 3-D space is
named R3.

Dot (Scalar) Product

When we write a vector in terms of its component vectors in the coordinate directions,
as in

A=A+ A6, + A8,
we can think of A€, as its projection in the x direction. Stated another way, it is the
portion of A that is in the subspace spanned by €, alone. The term projection corresponds
to the idea that it is the result of collapsing (projecting) a vector onto one of the coordinate
axes. See Fig. 1.10.

It is useful to define a quantity known as the dot product, with the property that it
produces the coefficients, e.g., Ay, in projections onto the coordinate axes according to

A-¢,=A,=Acosa, A-&,=A,=Acosf, A-& =A,=Acosy, (1.104)

where cos «, cos 8, cos y are the direction cosines of A.
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We want to generalize the notion of the dot product so that it will apply to arbitrary
vectors A and B, requiring that it, like projections, be linear and obey the distributive and
associative laws

A-B+C)=A-B+A-C, (1.105)
A - (kB) = (kA)-B=kA B, (1.106)

with k a scalar. Now we can use the decomposition of B into Cartesian components as
in Eq. (1.100), B = B.&, + B, &, + B.¢&., to construct the dot product of the vectors A and
B as

A-B=A.(B.é, + B,&, + B;¢;)
=B.A-& +ByA-&,+ B:A-¢;
=B A+ ByA, + B;A;. (1.107)
This leads to the general formula

A.B:ZBiAi:ZAiBizB.A, (1.108)
i i

which is also applicable when the number of dimensions in the space is other than three.
Note that the dot product is commutative, with A- B=B - A.

An important property of the dot product is that A - A is the square of the magnitude
of A:

AA=AZ+AL+. =|AL (1.109)
Applying this observation to C = A + B, we have
IC’=C-C=(A+B)-(A+B)=A-A+B-B+2A-B,

which can be rearranged to
1
A-B= E[|C|2 —|A]> - |B|2]. (1.110)

From the geometry of the vector sum C = A + B, as shown in Fig. 1.11, and recalling
the law of cosines and its similarity to Eq. (1.110), we obtain the well-known formula

A-B=|A||B|cosf, (1.111)

FIGURE 1.11 Vector sum, C= A + B.



1.7 Vectors 51

where 6 is the angle between the directions of A and B. In contrast with the algebraic
formula Eq. (1.108), Eq. (1.111) is a geometric formula for the dot product, and shows
clearly that it depends only on the relative directions of A and B and is therefore indepen-
dent of the coordinate system. For that reason the dot product is sometimes also identified
as a scalar product.

Equation (1.111) also permits an interpretation in terms of the projection of a vector A
in the direction of B or the reverse. If b is a unit vector in the direction of B, the projection
of A in that direction is given by

Apb = (b-A)b=(Acosd)b, (1.112)

where 6 is the angle between A and B. Moreover, the dot product A - B can then be identi-
fied as |B| times the magnitude of the projection of A in the B direction, so A - B = A, B.
Equivalently, A - B is equal to |A| times the magnitude of the projection of B in the A
direction, so we also have A - B= B,A.

Finally, we observe that since |cos6| < 1, Eq. (1.111) leads to the inequality

|A-B| <|A| |B|. (1.113)

The equality in Eq. (1.113) holds only if A and B are collinear (in either the same or
opposite directions). This is the specialization to physical space of the Schwarz inequality,
which we will later develop in a more general context.

Orthogonality

Equation (1.111) shows that A - B becomes zero when cosd = 0, which occurs at 0 = +7/2
(i.e., at & = £90°). These values of 6 correspond to A and B being perpendicular, the
technical term for which is orthogonal. Thus,

A and B are orthogonal if and only if A-B=0.

Checking this result for two dimensions, we note that A and B are perpendicular if the
slope of B, By /By, is the negative of the reciprocal of A, /A,, or

This result expands to A, By + A, By, =0, the condition that A and B be orthogonal.

In terms of projections, A - B = 0 means that the projection of A in the B direction
vanishes (and vice versa). That is of course just another way of saying that A and B are
orthogonal.

The fact that the Cartesian unit vectors are mutually orthogonal makes it possible to
simplify many dot product computations. Because

& 8 =8y b =8y =0, & -8y =8 8 =0 & =1, (1.114)
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we can evaluate A - B as

(Aye,+A,&,+A.8,) (Byé,+Byey+B.e;)=AB.e&-e +A,Bye,-&,+A,B.¢e;-¢

+ (AxBy + A}’Bx)éx : é)’ + (AXBZ + Asz)éx ' éZ + (A)’BZ + AZB)’)éy ’ éz
= A.By + A,B, + A,B,.

See Chapter 3: Vector Analysis, Section 3.2: Vectors in 3-D Space for an introduction

of the cross product of vectors, needed early in Chapter 2.

Exercises

1.71

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

The vector A whose magnitude is 1.732 units makes equal angles with the coordinate
axes. Find A,, Ay, and A,.

A triangle is defined by the vertices of three vectors A, B and C that extend from the
origin. In terms of A, B, and C show that the vector sum of the successive sides of the
triangle (AB + BC + CA) is zero, where the side AB is from A to B, etc.

A sphere of radius a is centered at a point r.

(a) Write out the algebraic equation for the sphere.
(b) Write out a vector equation for the sphere.

ANS. (@) (x—x)’+(—yD*+ @ -z’ =d’
(b) r=r + a, where a takes on all directions
but has a fixed magnitude a.

Hubble’s law. Hubble found that distant galaxies are receding with a velocity propor-
tional to their distance from where we are on Earth. For the ith galaxy,

v; = Hor;

with us at the origin. Show that this recession of the galaxies from us does not imply
that we are at the center of the universe. Specifically, take the galaxy at r; as a new
origin and show that Hubble’s law is still obeyed.

Find the diagonal vectors of a unit cube with one corner at the origin and its three sides
lying along Cartesian coordinates axes. Show that there are four diagonals with length
V/3. Representing these as vectors, what are their components? Show that the diagonals
of the cube’s faces have length +/2 and determine their components.

The vector r, starting at the origin, terminates at and specifies the point in space (x, y, z).
Find the surface swept out by the tip of r if

(a) (r—a)-a=0. Characterize a geometrically.

(b) (r—a)-r=0. Describe the geometric role of a.

The vector a is constant (in magnitude and direction).
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1.7.8

1.7.9

1.7.10
1.7.11
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A pipe comes diagonally down the south wall of a building, making an angle of 45° with
the horizontal. Coming into a corner, the pipe turns and continues diagonally down a
west-facing wall, still making an angle of 45° with the horizontal. What is the angle
between the south-wall and west-wall sections of the pipe?

ANS. 120°.

Find the shortest distance of an observer at the point (2, 1,3) from a rocket in free
flight with velocity (1, 2, 3) km/s. The rocket was launched at time t = 0 from (1, 1, 1).
Lengths are in kilometers.

Show that the medians of a triangle intersect in the center which is 2/3 of the median’s
length from each vertex. Construct a numerical example and plot it.

Prove the law of cosines starting from AZ=B-C)>2.
Given the three vectors,
P =3¢, +2¢, — ¢,
Q= —6e, —4e, +2¢,,
R=¢, —2¢, —¢,

find two that are perpendicular and two that are parallel or antiparallel.

1.8 COMPLEX NUMBERS AND FUNCTIONS

Complex numbers and analysis based on complex variable theory have become extremely
important and valuable tools for the mathematical analysis of physical theory. Though
the results of the measurement of physical quantities must, we firmly believe, ultimately
be described by real numbers, there is ample evidence that successful theories predicting
the results of those measurements require the use of complex numbers and analysis. In a
later chapter we explore the fundamentals of complex variable theory. Here we introduce
complex numbers and identify some of their more elementary properties.

Basic Properties

A complex number is nothing more than an ordered pair of two real numbers, (a, b). Sim-
ilarly, a complex variable is an ordered pair of two real variables,

2=, y). (1.115)

The ordering is significant. In general (a, b) is not equal to (b, a) and (x, y) is not equal
to (y,x). As usual, we continue writing a real number (x, 0) simply as x, and we call
i = (0, 1) the imaginary unit. All of complex analysis can be developed in terms of ordered
pairs of numbers, variables, and functions (u(x, y), v(x, y)).

We now define addition of complex numbers in terms of their Cartesian components as

21+ 22 = (x1, y1) + (22, y2) = (x1 + x2, y1 + ¥2). (1.116)
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Multiplication of complex numbers is defined as

z122 = (x1, ¥1) - (x2, y2) = (x1X2 — Y1y2, X1y2 + X21). (1.117)

It is obvious that multiplication is not just the multiplication of corresponding components.
Using Eq. (1.117) we verify that i2=1(0,1)-(0,1) = (—1,0) = —1, so we can also identify
i = +/—1 as usual, and further rewrite Eq. (1.115) as

2=, ) =x,04+©0,y)=x+(0,1)-(y,0) =x +iy. (1.118)

Clearly, introduction of the symbol i is not necessary here, but it is convenient, in large
part because the addition and multiplication rules for complex numbers are consistent with
those for ordinary arithmetic with the additional property that i = —1:

(01 +iyD) (2 +iy2) = x1x0 +i2y1y2 +i (X1 2+ y1x2) = (X102 — y1y2) +i (X132 + y1x2),

in agreement with Eq. (1.117). For historical reasons, i and its multiples are known as
imaginary numbers.

The space of complex numbers, sometimes denoted Z by mathematicians, has the fol-
lowing formal properties:

e It is closed under addition and multiplication, meaning that if two complex numbers
are added or multiplied, the result is also a complex number.

e It has a unique zero number, which when added to any complex number leaves it
unchanged and which, when multiplied with any complex number yields zero.

e It has aunique unit number, 1, which when multiplied with any complex number leaves
it unchanged.

e Every complex number z has an inverse under addition (known as —z), and every
nonzero z has an inverse under multiplication, denoted z~! or 1/z.

e Itis closed under exponentiation: if u and v are complex numbers u” is also a complex

number.

From a rigorous mathematical viewpoint, the last statement above is somewhat loose, as it
does not really define exponentiation, but we will find it adequate for our purposes.
Some additional definitions and properties include the following:

Complex conjugation: Like all complex numbers, i has an inverse under addition,
denoted —i, in two-component form, (0, —1). Given a complex number z = x + iy, it
is useful to define another complex number, z* = x — iy, which we call the complex con-
jugate of z.° Forming

22f = +iy)(x —iy) = x> +y?, (1.119)

we see that zz* is real; we define the absolute value of z, denoted |z|, as v/zz*.

6The complex conjugate of z is often denoted 7 in the mathematical literature.
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Division: Consider now the division of two complex numbers: z'/z. We need to manipulate
this quantity to bring it to the complex number form u + iv (with « and v real). We may
do so as follows:

/!

7 d (M 4iy)(x —iy)
7 zz* x2+y2 '
or
x4y xx4+yy  xy =Xy
= i )
X+ly x2+y2 x2+y2

(1.120)

Functions in the Complex Domain

Since the fundamental operations in the complex domain obey the same rules as those for
arithmetic in the space of real numbers, it is natural to define functions so that their real and
complex incarnations are similar, and specifically so that the complex and real definitions
agree when both are applicable. This means, among other things, that if a function is repre-
sented by a power series, we should, within the region of convergence of the power series,
be able to use such series with complex values of the expansion variable. This notion is
called permanence of the algebraic form.
Applying this concept to the exponential, we define

1 1 1
7 _ 2 3y A
e—l+z+2!z +3!z +4!z+ . (1.121)
Now, replacing z by iz, we have

) 1 1 1
iz : F )2 i3 (i)
e _1+zz+2! (iz) +3!(1z) +4! @iz)" +

1, 14 . 1 5 1 5
—[l—az +ZZ —~-~]+l[z—§z +§Z — . (1.122)
It was permissible to regroup the terms in the series of Eq. (1.122) because that series is
absolutely convergent for all z; the d’ Alembert ratio test succeeds for all z, real or complex.
If we now identify the bracketed expansions in the last line of Eq. (1.122) as cosz and sinz,
we have the extremely valuable result

e'?=cosz +isinz. (1.123)

This result is valid for all z, real, imaginary, or complex, but is particularly useful when z
is real.

Any function w(z) of a complex variable z = x + iy can in principle be divided into its
real and imaginary parts, just as we did when we added, multiplied, or divided complex
numbers. That is, we can write

w(z)=ulx,y) +iv(x,y), (1.124)

in which the separate functions u(x, y) and v(x, y) are pure real. For example, if f(z) = z2,
we have

f@) =@ +iy)?= x> —y») +ixy).
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The real part of a function f(z) will be labeled PRe f(z), whereas the imaginary part
will be labeled Jm f(z). In Eq. (1.124),

Rew(z) =ulx,y), Imw) =v(x,y).

The complex conjugate of our function w(z) is u(x, y) —iv(x, y), and depending on w,
may or may not be equal to w(z*).

Polar Representation

We may visualize complex numbers by assigning them locations on a planar graph, called
an Argand diagram or, more colloquially, the complex plane. Traditionally the real com-
ponent is plotted horizontally, on what is called the real axis, with the imaginary axis in
the vertical direction. See Fig. 1.12. An alternative to identifying points by their Cartesian
coordinates (x, y) is to use polar coordinates (r, 0), with

x=rcosf, y=rsind, or r=,/x2+y2, 6=tan"! y/x. (1.125)

The arctan function tan~!(y/x) is multiple valued; the correct location on an Argand dia-
gram needs to be consistent with the individual values of x and y.

The Cartesian and polar representations of a complex number can also be related by
writing

x +iy =r(cost +ising) =re’, (1.126)

where we have used Eq. (1.123) to introduce the complex exponential. Note that r is
also |z|, so the magnitude of z is given by its distance from the origin in an Argand di-
agram. In complex variable theory, r is also called the modulus of z and 0 is termed the
argument or the phase of z.

If we have two complex numbers, z and 7/, in polar form, their product zz’ can be written

22 = () (' e”) = (rr)e! O, (1.127)
showing that the location of the product in an Argand diagram will have argument (polar

angle) at the sum of the polar angles of the factors, and with a magnitude that is the product

Jm

FIGURE 1.12  Argand diagram, showing location of z = x 4 iy = re'?.
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*

FIGURE 1.13  Left: Relation of z and z*. Right: 7 4+ z* and z — z*.

of their magnitudes. Conversely, the quotient z/z" will have magnitude r/r’ and argument
0 — 0. These relationships should aid in getting a qualitative understanding of complex
multiplication and division. This discussion also shows that multiplication and division
are easier in the polar representation, whereas addition and subtraction have simpler forms
in Cartesian coordinates.

The plotting of complex numbers on an Argand diagram makes obvious some other
properties. Since addition on an Argand diagram is analogous to 2-D vector addition, it
can be seen that

<lz£Z| <zl + 2. (1.128)

121 - 12/

Also, since z* = re~!% has the same magnitude as z but an argument that differs only in
sign, z + z* will be real and equal to 2Re z, while z — z* will be pure imaginary and equal
to 2i Jm z. See Fig. 1.13 for an illustration of this discussion.

We can use an Argand diagram to plot values of a function w(z) as well as just z itself,
in which case we could label the axes u and v, referring to the real and imaginary parts of
w. In that case, we can think of the function w(z) as providing a mapping from the xy
plane to the uv plane, with the effect that any curve in the xy (sometimes called z) plane
is mapped into a corresponding curve in the uv (= w) plane. In addition, the statements of
the preceding paragraph can be extended to functions:

@] = '@ = 0+ /@] < wE] + '@,

M jmw(z)zw. (1.129)

Rew(z) = 3 3

Complex Numbers of Unit Magnitude

Complex numbers of the form

¢'% = cos6 +i siné, (1.130)

where we have given the variable the name 6 to emphasize the fact that we plan to restrict
it to real values, correspond on an Argand diagram to points for which x = cos#, y = sin#6,
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FIGURE 1.14 Some values of z on the unit circle.

and whose magnitude is therefore cos? 6 + sin® @ = 1. The points exp(if) therefore lie on
the unit circle, at polar angle 6. This observation makes obvious a number of relations
that could in principle also be deduced from Eq. (1.130). For example, if 6 has the special
values /2, , or 37 /2, we have the interesting relationships

ein/zzi’ eiﬂ:—l’ e3iﬂ/2:—i, (1131)
We also see that exp(i6) is periodic, with period 27, so
AT =M = =, ST =72 = etc. (1.132)

A few relevant values of z on the unit circle are illustrated in Fig. 1.14. These relation-
ships cause the real part of exp(iwt) to describe oscillation at angular frequency w, with
exp(i[wt + §]) describing an oscillation displaced from that first mentioned by a phase
difference §.

Circular and Hyperbolic Functions
The relationship encapsulated in Eq. (1.130) enables us to obtain convenient formulas for
the sine and cosine. Taking the sum and difference of exp(+i0) and exp(—if), we have
0 ,—if i0 _ ,—if
cosf= T Gnp="_—° (1.133)
2 2i

These formulas place the definitions of the hyperbolic functions in perspective:

6 —0 6 __ ,—0
cosh@:%, sinhez%. (1.134)

Comparing these two sets of equations, it is possible to establish the formulas
coshiz=-cosz, sinhiz=isinz. (1.135)

Proof is left to Exercise 1.8.5.
The fact that exp(in6) can be written in the two equivalent forms

cosnf +isinnh = (cosd + i sinH)" (1.136)
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establishes a relationship known as de Moivre’s Theorem. By expanding the right mem-
ber of Eq. (1.136), we easily obtain trigonometric multiple-angle formulas, of which the
simplest examples are the well-known results

sin(20) =2sinf cosf, cos(20) = cos? O — sin” 6.

If we solve the sinf formula of Eq. (1.133) for exp(i6), we get (choosing the plus sign

for the radical)
¢ =ising +4/1—sin’6.

Setting sinf = z and # = sin~' (z), and taking the logarithm of both sides of the above
equation, we express the inverse trigonometric function in terms of logarithms.

sin~!(z) = —iln [iz ++v1- zz] )
The set of formulas that can be generated in this way includes:
sin"!(z) = —iln [iz +v1- z2] , tan"'()= %[ In(1 —iz) —In(1 + iz)] ,

sinh~!(z) = In [z V1 +12] . tanh~l(x) = %[ In(1 +z) — In(1 — z)] . (1.137)

Powers and Roots

The polar form is very convenient for expressing powers and roots of complex numbers.
For integer powers, the result is obvious and unique:

z=re'?, "=r"e"?,

For roots (fractional powers), we also have

erel(p, Zl/n:rl/nez(p/n’

but the result is not unique. If we write z in the alternate but equivalent form

7= rei((p+2mn)

where m is an integer, we now get additional values for the root:

1/n _ rl/nei((p+2mn)/n,

z (any integer m).

If n =2 (corresponding to the square root), different choices of m will lead to two distinct
values of z!/2, both of the same modulus but differing in argument by 7. This corresponds
to the well-known result that the square root is double-valued and can be written with
either sign.

In general, z'/" is n-valued, with successive values having arguments that differ by
27 /n. Figure 1.15 illustrates the multiple values of 11/3, i1/3 and (—1)!/3.

1/n
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. 1(1+3i)
L(=1+V3i) 2 (1*
2 .
1(—B+i) 7(\B+)
1 1
1(-1-Bi) - (1-\31)
(a) (b) (©)
FIGURE 1.15  Cube roots: (a) 11/3; (b) i'/3; (c) (=1)!/3.
Logarithm

Another multivalued complex function is the logarithm, which in the polar representation
takes the form

Inz =In(re'®) =Inr +i6.
However, it is also true that

Inz=1In (rei<0+2"”>) =Inr +i(0 + 2n7), (1.138)

for any positive or negative integer n. Thus, In z has, for a given z, the infinite number of
values corresponding to all possible choices of n in Eq. (1.138).

Exercises
1.8.1 Find the reciprocal of x + iy, working in polar form but expressing the final result in
Cartesian form.
1.8.2 Show that complex numbers have square roots and that the square roots are contained

in the complex plane. What are the square roots of i ?

1.8.3 Show that
(a) cosnf =cos" 0 — (n) cos" 2@ sin’ 6 + (n) cos" *@sin*o — .-,
2 4
b) sinnd=(")cos" ' osing — (" cos" 3 0sind 0 +---.
1 3

1.8.4 Prove that

N-1
sin(Nx/2)
(a) %cosnx—m (N—l)—
sm(Nx/Z) X
(b) Z sinn smx/2 sin(N — 1)5.

These series occur in the analysis of the multiple-slit diffraction pattern.
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1.8.5 Assume that the trigonometric functions and the hyperbolic functions are defined for
complex argument by the appropriate power series. Show that

isinz =sinhiz, siniz =isinhz,

cosz =coshiz, cosiz =coshz.
1.8.6 Using the identities

el iz ] el — p~iz
cosz=———, Ssing=——,
2 2i

established from comparison of power series, show that
(a) sin(x +iy) =sinxcoshy+icosxsinhy,
cos(x +1iy) =cosxcoshy —isinxsinhy,
(b) |sinz|? =sin’x +sinh®y, |cosz|? =cos?x + sinh?y.
This demonstrates that we may have |sinz|, |cosz| > 1 in the complex plane.
1.8.7 From the identities in Exercises 1.8.5 and 1.8.6 show that

(a) sinh(x +iy) =sinhxcosy+i coshxsiny,

cosh(x +iy) =coshxcosy + i sinhxsiny,
(b) |sinhz|> = sinh? x + sin® y, |coshz|?>= cosh? x + sinzy.

1.8.8 Show that
sinhx +isiny () coth z_ sinhx —isiny

(a) tanh - _— .
2 2 coshx —cosy

coshx +cosy’

. 1—i
1.8.9 By comparing series expansions, show that tan™! x = % In ( T l‘x >
ix

1.8.10 Find the Cartesian form for all values of

(@ (=8)'7,
(b) ',
(c) e/,

1.8.11  Find the polar form for all values of

(@ (1+i)3,
(b) (=D
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1.9 DERIVATIVES AND EXTREMA

We recall the familiar limit identified as the derivative, df (x)/dx, of a function f(x) ata
point x:

df@) _ . fte) = f()

dx £=0 e

(1.139)

the derivative is only defined if the limit exists and is independent of the direction from
which e approaches zero. The variation or differential of f(x) associated with a change
dx in its independent variable from the reference value x assumes the form

df=f(x+dx)—f(x)=%dx, (1.140)

in the limit that dx is small enough that terms dependent on dx? and higher powers of dx
become negligible. The mean value theorem (based on the continuity of f) tells us that
here, df/dx is evaluated at some point & between x and x + dx, butas dx — 0, & — x.

When a quantity of interest is a function of two or more independent variables, the
generalization of Eq. (1.140) is (illustrating for the physically important three-variable
case):

df =[ fGc+de,y+dy,z+da) = f(x,y+dy, 2 +d2)
n [(f(x,y+dy,z+dz)—f(x,y,z+dz)]

+ [f(x,y,Z+dZ) —f(x,y,z)]

9 d 9
=_fdx+_fdy+_fdz7 (1.141)
ox ay 9z

where the partial derivatives indicate differentiation in which the independent variables
not being differentiated are kept fixed. The fact that df/dx is evaluated at y + dy and
z + dz instead of at y and z alters the derivative by amounts that are of order dy and
dz, and therefore the change becomes negligible in the limit of small variations. It is thus
consistent to interpret Eq. (1.141) as involving partial derivatives that are all evaluated at
the reference point x, y, z.

Further analysis of the same sort as led to Eq. (1.141) can be used to define higher
derivatives and to establish the useful result that cross derivatives (e.g., 9>/dxdy) are
independent of the order in which the differentiations are performed:

9 (of\ _ 9*f  0%f
ay \dx /)  dydx  dxdy’

Sometimes it is not clear from the context which variables other than that being dif-
ferentiated are independent, and it is then advisable to attach subscripts to the derivative

notation to avoid ambiguity. For example, if x, y, and z have been defined in a problem,
but only two of them are independent, one might write

(5), o (5)
dx ), ox ),

(1.142)

whichever is actually meant.
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For working with functions of several variables, we note two useful formulas that follow
from Eq. (1.141):

1. The chain rule,
df _of dx of dy o dz
ds 3dxds dyds 9zds’
which applies when x, y, and z are functions of another variable, s,

2. A formula obtained by setting df = 0 (here shown for the case where there are only
two independent variables and the dz term of Eq. (1.141) is absent):

(1.143)

=——. 1.144
x < aof ) ¢ )
ay /,
In Lagrangian mechanics, one occasionally encounters expressions such as’

d . aL . 3L . L
EL(x,x,t): —Xx+—X+ ,

() )

dx ax | ot

an example of use of the chain rule. Here it is necessary to distinguish between the formal
dependence of L on its three arguments and the overall dependence of L on time. Note the
use of the ordinary (d/dt) and partial (9/9¢) derivative notation.

Stationary Points

Whether or not a set of independent variables (e.g., x, y, z of our previous discussion)
represents directions in space, one can ask how a function f changes if we move in various
directions in the space of the independent variables; the answer is provided by Eq. (1.143),
where the “direction” is defined by the values of dx /ds, dy/ds, etc.

It is often desired to find the minimum of a function f of n variables x;,i =1,...,n,
and a necessary but not sufficient condition on its position is that

df

— =0 for all directions of ds.
ds

This is equivalent to requiring

af
Bxl- -

All points in the {x;} space that satisfy Eq. (1.145) are termed stationary; for a stationary
point of f to be a minimum, it is also necessary that the second derivatives d? f/ds> be
positive for all directions of s. Conversely, if the second derivatives in all directions are
negative, the stationary point is a maximum. If neither of these conditions are satisfied, the
stationary point is neither a maximum nor a minimum, and is often called a saddle point
because of the appearance of the surface of f when there are two independent variables

0, i=1,...,n. (1.145)

7Here dots indicate time derivatives.
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f(x, y)

X

FIGURE 1.16 A stationary point that is neither a maximum nor minimum

(a saddle point).

(see Fig. 1.16). It is often obvious whether a stationary point is a minimum or maximum,
but a complete discussion of the issue is nontrivial.

Exercises

1.9.1

1.9.2

Derive the following formula for the Maclaurin expansion of a function of two

variables:

fx,y)=f(0,0) +xg +y%
r3l )5 O+ O3]
[0+ (st + (o

i

where all the partial derivatives are to be evaluated at the point (0, 0).

3
3

)

30°F

ay3

[+,

The result in Exercise 1.9.1 can be generalized to larger numbers of independent vari-
ables. Prove that for an m-variable system, the Maclaurin expansion can be written in
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the symbolic form

(S m P n
f(xl,...,xm)zz% (Zaia> £0,...,0),

n=0 " \i=1

where in the right-hand side we have made the substitutions x; = o 1.

1.10 EVALUATION OF INTEGRALS

Proficiency in the evaluation of integrals involves a mixture of experience, skill in pat-
tern recognition, and a few tricks. The most familiar include the technique of integration
by parts, and the strategy of changing the variable of integration. We review here some
methods for integrals in one and multiple dimensions.

Integration by Parts

The technique of integration by parts is part of every elementary calculus course, but its
use is so frequent and ubiquitous that it bears inclusion here. It is based on the obvious
relation, for u and v arbitrary functions of x,

d(uv) =udv+vdu.

Integrating both sides of this equation over an interval (a, b), we reach

) b b
=/udv+/vdu,
¢ a a

which is usually rearranged to the well-known form

uv

b

b
/udv:uv

a
a

b
—/vdu. (1.146)

Example 71.10.1  INTEGRATION BY PARTS

Consider the integral ’ x sinx dx. We identify u = x and dv = sin x dx. Differentiating
and integrating, we ﬁn(til du =dx and v = —cos x, so Eq. (1.146) becomes
b b
/x sinxdx = (x)(— cosx)‘ z — /(— cosx)dx =acosa —bcosb +sinb —sina.
a a

The key to the effective use of this technique is to see how to partition an integrand into
u and dv in a way that makes it easy to form du and v and also to integrate [ vdu.
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Special Functions

A number of special functions have become important in physics because they arise in fre-
quently encountered situations. Identifying a one-dimensional (1-D) integral as one yield-
ing a special function is almost as good as a straight-out evaluation, in part because it
prevents the waste of time that otherwise might be spent trying to carry out the integration.
But of perhaps more importance, it connects the integral to the full body of knowledge
regarding its properties and evaluation. It is not necessary for every physicist to know
everything about all known special functions, but it is desirable to have an overview per-
mitting the recognition of special functions which can then be studied in more detail if
necessary.

It is common for a special function to be defined in terms of an integral over the range
for which that integral converges, but to have its definition extended to a larger domain

Table 1.2 Special Functions of Importance in Physics

[o¢]
Gamma function 'x)= / et gy See Chap. 13.
0
o0
Factorial (n integral) n!= f e~ dt n=Tn+1)
o0
, , 1 *=ldr
Riemann zeta function ((x)= —— / See Chaps. 1 and 12.
'(x) el —1
0
[o¢]
Exponential integrals E,(x)= /t_"e_’dt E(x) =—Ei(—x)
1
g .
t
Sine integral si(x) = 7/ % dt
X
o0
S 1
Cosine integral Ci(x) =— g dt
X
2 X
2
Error functions erf(x) = T f e~ dt erf(co) =1
T
0
2 o0
2
erfe(x) = —= [ e ""dr erfc(x) = 1 — erf(x)
=/
X
[ In(1
—1
Dilogarithm Liy(o) = — [ =0 4,

t

(=]
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by analytic continuation in the complex plane (cf. Chapter 11) or by the establishment of
suitable functional relations. We present in Table 1.2 only the most useful integral repre-
sentations of a few functions of frequent occurrence. More detail is provided by a variety of
on-line sources and in material listed under Additional Readings at the end of this chapter,
particularly the compilations by Abramowitz and Stegun and by Gradshteyn and Ryzhik.

A conspicuous omission from the list in Table 1.2 is the extensive family of Bessel func-
tions. A short table cannot suffice to summarize their numerous integral representations; a
survey of this topic is in Chapter 14. Other important functions in more than one variable
or with indices in addition to arguments have also been omitted from the table.

Other Methods

An extremely powerful method for the evaluation of definite integrals is that of contour
integration in the complex plane. This method is presented in Chapter 11 and will not be
discussed here.

Integrals can often be evaluated by methods that involve integration or differentiation
with respect to parameters, thereby obtaining relations between known integrals and those
whose values are being sought.

Example 1.10.2  DiFFeRENTIATE PARAMETER

We wish to evaluate the integral

o0 2
e—x
I = d
/ x2 +a?
0

We introduce a parameter, ¢, to facilitate further manipulations, and consider the related

integral
ooeft(szraz)
Jt)= | ————dx;
0 / P
0

we note that 7 = e“zJ(l).
We now differentiate J () with respect to ¢ and evaluate the resulting integral, which is
a scaled version of Eq. (1.148):

(0,¢] oo
dJ(t) — _/eft(x2+a2) dx = _e,,aZ/e,,XZ dx = _lﬁetaz (1 147)
dt 2V ¢ ' ’

0 0

To recover J(t) we integrate Eq. (1.147) between ¢ and oo, making use of the fact that

J (00) = 0. To carry out the integration it is convenient to make the substitution u?=d%,
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so we get
\/_ 0o 0 \/_ 00
T [e T 2
J(I)ZT/WdIZT/e du,
1 atl/?

which we now recognize as J(¢) = (7r/ 2a)erfc(at'/?). Thus, our final result is
I = Ll e’ erfc(a).
2a

Many integrals can be evaluated by first converting them into infinite series, then
manipulating the resulting series, and finally either evaluating the series or recognizing
it as a special function.

Example 1.10.3  ExpaND, THEN INTEGRATE

Consider I = fol ‘ix In (1”) . Using Eq. (1.120) for the logarithm,

1
/d 145 SR AP PP POV R
5 e '
0

Noting that
1 1 1
22 (D=m+ptat
we see that
(2) — % (2)y=1+ 312 + 512 +-
so 1 =3¢(2). [

Simply using complex numbers aids in the evaluation of some integrals. Take, for
example, the elementary integral
I / dx
) 14x%

Making a partial fraction decomposition of (1 + x2)~! and integrating, we easily get

171 1 i
o d =_[1 1—ix)—In(l +i ]
/2|:1+ix+1—ixi| ¥ = 5| Ind=ix) =In(+ix)

From Eq. (1.137), we recognize this as tan~! (x).
The complex exponential forms of the trigonometric functions provide interesting
approaches to the evaluation of certain integrals. Here is an example.
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Example 1.10.4 A TRIGONOMETRIC INTEGRAL

o0
Consider 1 =/€_m cos bt dt,
0

where a and b are real and positive. Because cos bt = Qe ¢!’ we note that
o0
I=%Re / ematit gy,
0

The integral is now just that of an exponential, and is easily evaluated, leading to

1 a+ib
= ¢ .
a—ib a’+b?

I =fRe

which yields = a/(a® + b?). As a bonus, the imaginary part of the same integral gives us
a?+ b2’

o0
/ e sinbt dr =
0

Recursive methods are often useful in obtaining formulas for a set of related integrals.

Example 1.10.5 Recursion

Consider
1
1, :/t" sinwtdt
0

for positive integer n.
Integrating I,, by parts twice, taking u = ¢" and dv = sinwt dt, we have

1 n(n-—1)
I}’l = - - —2 n—2»
T b
with starting values Ip =2/m and I} = 1/7.
There is often no practical need to obtain a general, nonrecursive formula, as repeated
application of the recursion is frequently more efficient that a closed formula, even when
one can be found. |
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Multiple Integrals

An expression that corresponds to integration in two variables, say x and y, may be written
with two integral signs, as in

X )
[ rxsrandy o [ax [y sec,
X1 yi(x)

where the right-hand form can be more specific as to the integration limits, and also gives
an explicit indication that the y integration is to be performed first, or with a single integral
sign, as in

/f(x,y)dA,
S

where S (if explicitly shown) is a 2-D integration region and d A is an element of “area”
(in Cartesian coordinates, equal to dxdy). In this form we are leaving open both the choice
of coordinate system to be used for evaluating the integral, and the order in which the
variables are to be integrated. In three dimensions, we may either use three integral signs
or a single integral with a symbol dt indicating a 3-D “volume” element in an unspecified
coordinate system.

In addition to the techniques available for integration in a single variable, multiple in-
tegrals provide further opportunities for evaluation based on changes in the order of inte-
gration and in the coordinate system used in the integral. Sometimes simply reversing the
order of integration may be helpful. If, before the reversal, the range of the inner integral
depends on the outer integration variable, care must be exercised in determining the inte-
gration ranges after reversal. It may be helpful to draw a diagram identifying the range of
integration.

Example 1.10.6  REVERSING INTEGRATION ORDER

Consider
o0 o0
e—S
/ e "dr / ds,
s
0 r

in which the inner integral can be identified as an exponential integral, suggesting diffi-
culty if the integration is approached in a straightforward manner. Suppose we proceed by
reversing the order of integration. To identify the proper coordinate ranges, we draw on
a (r,s) plane, as in Fig. 1.17, the region s > r > 0, which is covered in the original inte-
gration order as a succession of vertical strips, for each r extending from s =r to s = oo.
See the left-hand panel of the figure. If the outer integration is changed from r to s, this
same region is covered by taking, for each s, a horizontal range of r that runs from r = 0 to
r = s. See the right-hand panel of the figure. The transformed double integral then assumes
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r

r

FIGURE 1.17  2-D integration region for Example 1.10.6. Left panel: inner integration
over s; right panel: inner integration over r.

the form

o0 s S
-
f—ds/e_’ dr,
s
0 0

where the inner integral over r is now elementary, evaluating to 1 — e~*. This leaves us
with a 1-D integral,

o]

/ g(l —e Y)ds.
s

0

Introducing a power series expansion for 1 — ¢~*, this integral becomes

/-essz( )nln=z( )nlfnl—sds Z(_)nl _1)!’
0

n=1 n=1 0 n=1
where in the last step we have identified the s integral (cf. Table 1.2) as (n — 1)!. We

complete the evaluation by noting that (n — 1)!/n! = 1/n, so that the summation can be
recognized as In 2, thereby giving the final result

0 o0
e—S
/e_rdrf ds =1n?2.
s
0

r

A significant change in the form of 2-D or 3-D integrals can sometimes be accomplished
by changing between Cartesian and polar coordinate systems.
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Example 1.10.7 EVALUATION IN POLAR COORDINATES

In many calculus texts, the evaluation of fooo exp(—x?)dx is carried out by first converting
it into a 2-D integral by taking its square, which is then written and evaluated in polar
coordinates. Using the fact that dxdy = r drd¢, we have

00 o0 /2 [ee) 00

2 ) 2 I _ T
fdxexfdye}=/d(p/rdrer=§/§due”=1.
0 0 0 0 0

This yields the well-known result

J7. (1.148)

Il —

o0
2
/exdxz
0

Example 1.10.8  ATOMIC INTERACTION INTEGRAL

For study of the interaction of a small atom with an electromagnetic field, one of the in-
tegrals that arises in a simple approximate treatment using Gaussian-type orbitals is (in
dimensionless Cartesian coordinates)

2
Z 2402.,2
— I ] € et o Unts o4
1 /dr 2 y2 237 e ,

where the range of the integration is the entire 3-D physical space (IR3). Of course, this is
a problem better addressed in spherical polar coordinates (r, 6, ¢), where r is the distance
from the origin of the coordinate system, 6 is the polar angle (for the Earth, known as
colatitude), and ¢ is the azimuthal angle (longitude). The relevant conversion formulas
are: x> 4+ y2 4+ z2 =r? and z/r = cos6. The volume element is dv = r2sin6 drdfde,
and the ranges of the new coordinates are 0 <r < 00,0 <6 <mw,and 0 < ¢ < 2x. In the
spherical coordinates, our integral becomes

29 00 T 21
cos
:[dt e :/drrefrZ/dQ coszésinQ/ahp
r
0 0 0

BOC)-F

Remarks: Changes of Integration Variables

In a 1-D integration, a change in the integration variable from, say, x to y = y(x) involves
two adjustments: (1) the differential dx must be replaced by (dx/dy)dy, and (2) the in-
tegration limits must be changed from x1, x3 to y(x1), y(x2). If y(x) is not single-valued
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over the entire range (x1, x2), the process becomes more complicated and we do not con-
sider it further at this point.

For multiple integrals, the situation is considerably more complicated and demands
some discussion. Illustrating for a double integral, initially in variables x, y, but trans-
formed to an integration in variables u, v, the differential dx dy must be transformed to
J dudv, where J, called the Jacobian of the transformation and sometimes symbolically
represented as

0, y)
T o(u, v)

may depend on the variables. For example, the conversion from 2-D Cartesian coordinates
X, y to plane polar coordinates r, 6 involves the Jacobian

_ 0y
A 0)

For some coordinate transformations the Jacobian is simple and of a well-known form, as
in the foregoing example. We can confirm the value assigned to J by noticing that the
area (in xy space) enclosed by boundaries at r, r + dr, 8, and 6 4 d6 is an infinitesimally
distorted rectangle with two sides of length dr and two of length rd6. See Fig. 1.18. For
other transformations we may need general methods for obtaining Jacobians. Computation
of Jacobians will be treated in detail in Section 4.4.

Of interest here is the determination of the transformed region of integration. In prin-
ciple this issue is straightforward, but all too frequently one encounters situations (both
in other texts and in research articles) where misleading and potentially incorrect argu-
ments are presented. The confusion normally arises in cases for which at least a part of
the boundary is at infinity. We illustrate with the conversion from 2-D Cartesian to plane
polar coordinates. Figure 1.19 shows that if one integrates for 0 <6 <27 and 0 <r < a,
there are regions in the corners of a square (of side 2a) that are not included. If the integral
is to be evaluated in the limit a — oo, it is both incorrect and meaningless to advance ar-
guments about the “neglect” of contributions from these corner regions, as every point in
these corners is ultimately included as a is increased.

A similar, but slightly less obvious situation arises if we transform an integration over
Cartesian coordinates 0 < x < 00, 0 < y < 00, into one involving coordinates u = x + y,

r, so dxdy=rdrdf.

FIGURE 1.18 Element of area in plane polar coordinates.
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FIGURE 1.19 2-D integration, Cartesian and plane polar coordinates.

V=a—

V=0—

FIGURE 1.20 Integral in transformed coordinates.

v = y, with integration limits 0 < u < 00, 0 < v < u. See Fig. 1.20. Again it is incorrect
and meaningless to make arguments justifying the “neglect” of the outer triangle (labeled
B in the figure). The relevant observation here is that ultimately, as the value of u is
increased, any arbitrary point in the quarter-plane becomes included in the region being
integrated.

Exercises

1.10.1 Use a recursive method to show that, for all positive integers n, I'(n) = (n — 1)!.
Evaluate the integrals in Exercises 1.10.2 through 1.10.9.

x
sinx
1.10.2 —dx.
X
0

Hint. Multiply integrand by e~%* and take the limit a — 0.

o
dx
1.10.3 .
coshx
0

Hint. Expand the denominator is a way that converges for all relevant x.
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1.10.5

1.10.6

1.10.7

1.10.8

1.10.9
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/erf(t) dt.

0

The result can be expressed in terms of special functions in Table 1.2.

X

/El(t) dt.

1

Obtain a result in which the only special function is Ej.

]

e—X
/ dx
x+1

0

00 2
t —1
1.10.10 Showthat/(an x) dx =mln2.
X
0

1.10.11

Hint. Integrate by parts, to linearize in tan~!. Then replace tan~! x by tan~!ax and
evaluate fora = 1.

By direct integration in Cartesian coordinates, find the area of the ellipse defined by
2 2
X Y

1.10.12 A unit circle is divided into two pieces by a straight line whose distance of closest

1.11

approach to the center is 1/2 unit. By evaluating a suitable integral, find the area of
the smaller piece thereby produced. Then use simple geometric considerations to verify
your answer.

DIRAC DELTA FUNCTION

Frequently we are faced with the problem of describing a quantity that is zero everywhere
except at a single point, while at that point it is infinite in such a way that its integral over
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any interval containing that point has a finite value. For this purpose it is useful to introduce
the Dirac delta function, which is defined to have the properties

8(x)=0, x#0, (1.149)
b
f(0)=ff(x)5(x)dx, (1.150)

where f(x) is any well-behaved function and the integration includes the origin. As a
special case of Eq. (1.150),

o0

/8(x)dx=1. (1.151)

—00

From Eq. (1.150), §(x) must be an infinitely high, thin spike at x = 0, as in the description
of an impulsive force or the charge density for a point charge. The problem is that no such
function exists, in the usual sense of function. However, the crucial property in Eq. (1.150)
can be developed rigorously as the limit of a sequence of functions, a distribution. For
example, the delta function may be approximated by any of the sequences of functions,
Eqgs. (1.152) to (1.155) and Figs. 1.21 and 1.22:

0, X <—-

2n
Sa(x)=1{n, —5 <x<z (1.152)
1
0, X > 0
8, (x) = % exp(—n2x?), (1.153)
y:5n(x)

FIGURE 1.21  §-Sequence function: left, Eq. (1.152); right, Eq. (1.153).



1.11 Dirac Delta Function 77

sin nx
X

FIGURE 1.22  §-Sequence function: left, Eq. (1.154); right, Eq. (1.155).

n 1

s = 1.154
. l n

5,(x) = X _ —/em dr. (1.155)
TX 2

—n

While all these sequences (and others) cause §(x) to have the same properties, they dif-
fer somewhat in ease of use for various purposes. Equation (1.152) is useful in providing
a simple derivation of the integral property, Eq. (1.150). Equation (1.153) is convenient to
differentiate. Its derivatives lead to the Hermite polynomials. Equation (1.155) is particu-
larly useful in Fourier analysis and in applications to quantum mechanics. In the theory of
Fourier series, Eq. (1.155) often appears (modified) as the Dirichlet kernel:

. 1
gn(x)ziw (1.156)
27 sin( %x)
In using these approximations in Eq. (1.150) and elsewhere, we assume that f(x) is well
behaved—that it offers no problems at large x.

The forms for §,(x) given in Egs. (1.152) to (1.155) all obviously peak strongly for
large n at x = 0. They must also be scaled in agreement with Eq. (1.151). For the forms
in Egs. (1.152) and (1.154), verification of the scale is the topic of Exercises 1.11.1 and
1.11.2. To check the scales of Egs. (1.153) and (1.155), we need values of the integrals

o0 o0 .
2.2 T sinnx
e " dx=_— and dx =m.
n X
—0o0

—00

These results are respectively trivial extensions of Eqs. (1.148) and (11.107) (the latter of
which we derive later).
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For most physical purposes the forms describing delta functions are quite adequate.
However, from a mathematical point of view the situation is still unsatisfactory. The limits

lim &, (x)
n—0oo

do not exist.

A way out of this difficulty is provided by the theory of distributions. Recognizing that
Eq. (1.150) is the fundamental property, we focus our attention on it rather than on §(x)
itself. Equations (1.152) to (1.155) with n = 1,2, 3... may be interpreted as sequences of
normalized functions, and we may consistently write

/S(x)f(x)dxEnlln;o/8n(x)f(x)dx. (1.157)

Thus, §(x) is labeled a distribution (not a function) and is regarded as defined by
Eq. (1.157). We might emphasize that the integral on the left-hand side of Eq. (1.157)
is not a Riemann integral.®

Properties of § (x)

e From any of Eqgs. (1.152) through (1.155) we see that Dirac’s delta function must be
evenin x, §(—x) =8(x).

o Ifa>0,
1
d(ax)=-6(x), a=>0. (1.158)
a

Equation (1.158) can be proved by making the substitution x = y/a:
T 1 T 1
/ f)d(ax)dx =~ / fO/a)d(y)dy =~ f(0).
—0oQ —0o0

Ifa <0, Eq. (1.158) becomes §(ax) =&(x)/|al.
e Shift of origin:

o]

/ S(x —x0) f(x)dx = f(x0), (1.159)

—00

which can be proved by making the substitution y = x — xo and noting that when y =0,
X = Xo.

81t can be treated as a Stieltjes integral if desired; §(x)dx is replaced by du(x), where u(x) is the Heaviside step function
(compare Exercise 1.11.9).
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e Ifthe argument of §(x) is a function g(x) with simple zeros at points a; on the real axis
(and therefore g’(a;) #0),

S(x —a;)
8 = —_— 1.160
(5) Z 1G] (1160
To prove Eq. (1.160), we write
00 ajt+e
/ fsdx = / F8((x—ang'a) dx,

where we have decomposed the original integral into a sum of integrals over small in-
tervals containing the zeros of g(x). In these intervals, we replaced g(x) by the leading
term in its Taylor series. Applying Egs. (1.158) and (1.159) to each term of the sum,
we confirm Eq. (1.160).

e Derivative of delta function:
o o0
f Fx)8 (x —x0)dx = — f F (x)8(x — x0)dx = — f'(x0). (1.161)
—00 —00

Equation (1.161) can be taken as defining the derivative §'(x); it is evaluated by per-
forming an integration by parts on any of the sequences defining the delta function.

e In three dimensions, the delta function &(r) is interpreted as 6(x)3(y)d8(z), so it de-
scribes a function localized at the origin and with unit integrated weight, irrespective
of the coordinate system in use. Thus, in spherical polar coordinates,

ﬂ F()8(ry — v)ridry sinfydbrdgy = f(r)). (1.162)

e Equation (1.155) corresponds in the limit to

o0

1
8(t —x) = — / exp(iw(l—x))da), (1.163)
2w
—0o0
with the understanding that this has meaning only when under an integral sign. In that
context it is extremely useful for the simplification of Fourier integrals (Chapter 20).

e Expansions of §(x) are addressed in Chapter 5. See Example 5.1.7.

Kronecker Delta

It is sometimes useful to have a symbol that is the discrete analog of the Dirac delta func-
tion, with the property that it is unity when the discrete variable has a certain value, and
zero otherwise. A quantity with these properties is known as the Kronecker delta, defined
for indices i and j as
I, i=},
=1 (1.164)
0, i#j.
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Frequent uses of this symbol are to select a special term from a summation, or to have one
functional form for all nonzero values of an index, but a different form when the index is
zero. Examples:

1 2m
%:fij(sijzzi:fii» C,= TTo0 L

Exercises
1.11.1 Let
1
0, X < —%,
5, (x) 1 1
= —— <x<—
" - 12n Yo
0, — .
o <X
Show that
o0
iim [ )8, 0dx = £0)
n—oo
—0o0
assuming that f(x) is continuous at x = 0.
1.11.2 For
n 1
8 = —
n(x) 7 14+ n2x2
show that
o0
/ Sn(x)dx = 1.
—00

1.11.3 Fejer’s method of summing series is associated with the function
1 [sin(nt/2)7?

2mrn | sin(t/2) |

Show that &, (¢) is a delta distribution, in the sense that

sin(nt/2) _
lim —/f()[m WZ)} dt = £(0).

S (1) =

1.11.4 Prove that
1
Sla(x —x1)] = ;8()6 —X1).

Note. If §[a(x — x1)] is considered even, relative to x1, the relation holds for negative
a and 1/a may be replaced by 1/ |a]|.
1.11.5  Show that
S[(x —x)(x —x2) ] =[8(x —x1) +8(x —x2)1/ |x1 — x2].
Hint. Try using Exercise 1.11.4.
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n large
n— e

n small

FIGURE 1.23 Heaviside unit step function.

. n  _ 22
1.11.6  Using the Gauss error curve delta sequence §, = — e~ " ¥, show that

N
d(S =4
x b0 = —5(x),

treating §(x) and its derivative as in Eq. (1.157).
1.11.7 Show that

oo

f 5'(x) £ (x) dx = — f'(0).

—0o0
Here we assume that f'(x) is continuous at x = 0.

1.11.8 Prove that
-1

d
5(f(x)) = ‘&

I 3(x — x0),

X=X(

where xq is chosen so that f(xp) =0.
Hint. Note that §(f)df = 8(x)dx.

1.11.9 (a) If we define a sequence §,(x) =n/(2 cosh® nx), show that

o
/ dp(x)dx =1, independent of n.
—0oQ
(b) Continuing this analysis, show that’

x
/ Sn(x)dx = % [1+tanhnx] = u, (x)
—OoQ0
and
lim u,(x) = {0’ * <0,
n— 00 1, x>0.

This is the Heaviside unit step function (Fig. 1.23).

9Many other symbols are used for this function. This is the AMS-55 notation (in Additional Readings, see Abramowitz and
Stegun): « for unit.
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CHAPTER 2

DETERMINANTS AND
MATRICES

2.1 DETERMINANTS

We begin the study of matrices by solving linear equations that will lead us to determi-
nants and matrices. The concept of determinant and the notation were introduced by the
renowned German mathematician and philosopher Gottfried Wilhelm von Leibniz.

Homogeneous Linear Equations

One of the major applications of determinants is in the establishment of a condition for
the existence of a nontrivial solution for a set of linear homogeneous algebraic equations.
Suppose we have three unknowns xp, x3, x3 (or n equations with n unknowns):

ai1xy +axxy +azxz3 =0,
bi1x1 + baxy + b3x3 =0, 2.1
c1x1 + cax2 4+ c3x3 =0.

The problem is to determine under what conditions there is any solution, apart from
the trivial one x; = 0, xp = 0, x3 = 0. If we use vector notation x = (x1, xp, x3) for the
solution and three rows a = (ay, a2, a3),b = (b1, ba, b3), ¢ = (c1, ¢, ¢3) of coefficients,
then the three equations, Egs. (2.1), become

a-x=0, b-x=0, c¢-x=0. (2.2)

These three vector equations have the geometrical interpretation that x is orthogonal
to a, b, and c. If the volume spanned by a, b, ¢ given by the determinant (or triple scalar
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product, see Eq. (3.12) of Section 3.2)

a az as
D3=(axb)-c=det(a,b,c)= b1 by b3 2.3)
¢ 2 3

is not zero, then there is only the trivial solution x = 0. For an introduction to the cross
product of vectors, see Chapter 3: Vector Analysis, Section 3.2: Vectors in 3-D Space.

Conversely, if the aforementioned determinant of coefficients vanishes, then one of
the row vectors is a linear combination of the other two. Let us assume that ¢ lies in the
plane spanned by a and b, that is, that the third equation is a linear combination of the
first two and not independent. Then x is orthogonal to that plane so that x ~ a x b. Since
homogeneous equations can be multiplied by arbitrary numbers, only ratios of the x; are
relevant, for which we then obtain ratios of 2 x 2 determinants

X arby — azb X arby —azb
X1 _ a2b3 32’ X2 a1bs 301 (2.4)

x3 aiby—axby  x3 aiby — axby
from the components of the cross product a x b, provided x3 ~ a;b> — axb; # 0. This is
Cramer’s rule for three homogeneous linear equations.

Inhomogeneous Linear Equations

The simplest case of two equations with two unknowns,
a1x1 +axxa =a3, bix; +baxy =b3, (2.5)

can be reduced to the previous case by imbedding it in three-dimensional (3-D) space with
a solution vector x = (x, xp, —1) and row vectors a = (ay,az,as),b = (b, by, b3). As
before, Egs. (2.5) in vector notation, a - x =0 and b - x =0, imply that x ~ a x b, so the
analog of Eq. (2.4) holds. For this to apply, though, the third component of a x b must not
be zero, that is, ajby — axb; # 0, because the third component of x is —1 # 0. This yields
the x; as

as  az

_ a3b2 — b3a2 _ b3 b2 (2 6)

l_ale—azbl e @ '

by b
a as

= aibs —asby _ by b3 . @7
arby —azby  |a1 a2
by b

The determinant in the numerator of x;(x;) is obtained from the determinant of the coef-
ar a
b1 b
inhomogeneous side of Eq. (2.5). This is Cramer’s rule for a set of two inhomogeneous
linear equations with two unknowns.

A full understanding of the above exposition requires now that we introduce a formal
definition of the determinant and show how it relates to the foregoing.

ficients by replacing the first (second) column vector by the vector <Zi> of the
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Definitions
Before defining a determinant, we need to introduce some related concepts and definitions.

e When we write two-dimensional (2-D) arrays of items, we identify the item in the nth
horizontal row and the mth vertical column by the index set n, m; note that the row
index is conventionally written first.

e Starting from a set of n objects in some reference order (e.g., the number sequence
1, 2,3, ..., n), we can make a permutation of them to some other order; the total
number of distinct permutations that are possible is n! (choose the first object n ways,
then choose the second in n — 1 ways, etc.).

e Every permutation of n objects can be reached from the reference order by a succession
of pairwise interchanges (e.g., 1234 — 4132 can be reached by the successive steps
1234 — 1432 — 4132). Although the number of pairwise interchanges needed for a
given permutation depends on the path (compare the above example with 1234 —
1243 — 1423 — 4123 — 4132), for a given permutation the number of interchanges
will always either be even or odd. Thus a permutation can be identified as having either
even or odd parity.

e [t is convenient to introduce the Levi-Civita symbol, which for an n-object system is
denoted by ¢;;..., where ¢ has n subscripts, each of which identifies one of the objects.
This Levi-Civita symbol is defined to be +1 if ij ... represents an even permutation
of the objects from a reference order; it is defined to be —1 if ij ... represents an odd
permutation of the objects, and zero if ij ... does not represent a permutation of the
objects (i.e., contains an entry duplication). Since this is an important definition, we set
it out in a display format:

gij..=-+1, 1ij... aneven permutation,
=—1, ij... an odd permutation,
= 0, ij...notapermutation. (2.8)
We now define a determinant of order n to be an n x n square array of numbers (or func-

tions), with the array conventionally written within vertical bars (not parentheses, braces,
or any other type of brackets), as follows:

ay; ap ... Aap
a)i axp ... axp

D,=\|az1 a3z ... az,|. 2.9
anpl ap2 ... dpp

The determinant D,, has a value that is obtained by

1. Forming all n! products that can be formed by choosing one entry from each row in
such a way that one entry comes from each column,

2. Assigning each product a sign that corresponds to the parity of the sequence in which
the columns were used (assuming the rows were used in an ascending sequence),

3. Adding (with the assigned signs) the products.
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More formally, the determinant in Eq. (2.9) is defined to have the value

Dn:ZSij“_aliazj"' . (2.10)
ij...

The summations in Eq. (2.10) need not be restricted to permutations, but can be assumed
to range independently from 1 through n; the presence of the Levi-Civita symbol will
cause only the index combinations corresponding to permutations to actually contribute to
the sum.

Example 2.1.1  DETERMINANTS OF ORDERS 2 AND 3

To make the definition more concrete, we illustrate first with a determinant of order 2. The
Levi-Civita symbols needed for this determinant are €1 = +1 and &3 = —1 (note that
e11 = €22 = 0), leading to

apn a2

D), =
azy a2

=¢€12a11a22 + €21a12a21 = a11a22 — A1202].

We see that this determinant expands into 2! = 2 terms. A specific example of a determi-
nant of order 2 is

ay az
=a1by — bia.
by bz‘ 102 —braz
Determinants of order 3 expand into 3! = 6 terms. The relevant Levi-Civita symbols
are €123 = €231 = €312 = +1, 213 = €331 = €132 = —1; all other index combinations have
&ijk =0, s0

ail ap  ap
Dy =|ax axn ax3|= Z £ijkA1; a2 A3k
a1 azx az| ijk

= aj1a22a33 — 411423432 — a13a2a31 — a12a21a33 + aizaxzaz; +ai3azas;.

The expression in Eq. (2.3) is the determinant of order 3

a a; as
by by bi|=abycz —aibzcy — axbicy + axbscy + azbicy — azbycy.
¢l €2 €3

Note that half of the terms in the expansion of a determinant bear negative signs. It is
quite possible that a determinant of large elements will have a very small value. Here is
one example:

8 11 7
9 11 5|=1
8 12 9
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Properties of Determinants

The symmetry properties of the Levi-Civita symbol translate into a number of symme-
tries exhibited by determinants. For simplicity, we illustrate with determinants of order 3.
The interchange of two columns of a determinant causes the Levi-Civita symbol multi-
plying each term of the expansion to change sign; the same is true if two rows are inter-
changed. Moreover, the roles of rows and columns may be interchanged; if a determinant
with elements a;; is replaced by one with elements b;; = a;;, we call the b;; determi-
nant the transpose of the a;; determinant. Both these determinants have the same value.
Summarizing:

Interchanging two rows (or two columns) changes the sign of the value of a determi-
nant. Transposition does not alter its value.

Thus,
air ap ai aip ai ai3| |ann a2 431
a1 axp ax|=-—|axn a a3|=|aj2 axn azxn|. (2.11)
az| azx  ass axp a3l asz| |a13 a3 ass

Further consequences of the definition in Eq. (2.10) are:
(1) Multiplication of all members of a single column (or a single row) by a constant k
causes the value of the determinant to be multiplied by k,

(2) If the elements of a column (or row) are actually sums of two quantities, the deter-
minant can be decomposed into a sum of two determinants.

Thus,

arl
k |ax
asi

a2
ann
asn

ai + b
az1 + by
az1 + b3

ais

kayy

ax3| = |kani

ass

a2
a2
asz

ka31

ars
azs
ass

a2
azn
asp

ar

= |a21

as]

a3
an3s
ass

a2
a2
asz

as
azs
ass

kayy
as
az

by

+ |b2
b3

These basic properties and/or the basic definition mean that

kai
a»
as

a2
a2
asz

kays
ans |,
ass

(2.12)

as
ans|.
ass

(2.13)

e Any determinant with two rows equal, or two columns equal, has the value zero. To
prove this, interchange the two identical rows or columns; the determinant both remains
the same and changes sign, and therefore must have the value zero.

e An extension of the above is that if two rows (or columns) are proportional, the deter-

minant is zero.

e The value of a determinant is unchanged if a multiple of one row is added (column
by column) to another row or if a multiple of one column is added (row by row) to
another column. Applying Eq. (2.13), the addition does not contribute to the value of

the determinant.

e Ifeach element in a row or each element in a column is zero, the determinant has the

value zero.
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Laplacian Development by Minors

The fact that a determinant of order n expands into n! terms means that it is important to
identify efficient means for determinant evaluation. One approach is to expand in terms of
minors. The minor corresponding to a;;, denoted M;;, or M;;(a) if we need to identify M
as coming from the a;;, is the determinant (of order n — 1) produced by striking out row i
and column j of the original determinant. When we expand into minors, the quantities to
be used are the cofactors of the (ij) elements, defined as (—1)'+/ M; - The expansion can
be made for any row or column of the original determinant. If, for example, we expand the
determinant of Eq. (2.9) using row i, we have

n
Dn =Za,’j(—l)i+le‘j. (214)
j=1
This expansion reduces the work involved in evaluation if the row or column selected for
the expansion contains zeros, as the corresponding minors need not be evaluated.

Example 2.1.2  ExXpANSION IN MINORS

Consider the determinant (arising in Dirac’s relativistic electron theory)

ail ap a3 au 01 0 0
p=|®21 an a3 au|_ -1 0 0 O
T lasr ax azz ax| | 0O O O If
a41 a4 a43 a4 0 0 -1 O

Expanding across the top row, only one 3 x 3 matrix survives:

-1 0 0 by b bi3
D=(-D"2apMp@=1)-1)] 0 0 1|=(=1)|by by byl
0 -1 O b3y1 b3z b33

Expanding now across the second row, we get

-1 0

D= (=1D)(=1)* by M3 (b) = ’ 0 1

-

When we finally reached a 2 x 2 determinant, it was simple to evaluate it without further
expansion. |

Linear Equation Systems
We are now ready to apply our knowledge of determinants to the solution of systems of
linear equations. Suppose we have the simultaneous equations

aix| +axxy +asxz =hy,

bix1 + baxy + b3x3 = ha,

c1X1 + caxp + ¢c3x3 = h3. (2.15)
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To use determinants to help solve this equation system, we define

a a as
D=\|by by b3|. (2.16)
1 ¢ c3

Starting from x; D, we manipulate it by (1) moving x; to multiply the entries of the first
column of D, then (2) adding to the first column x; times the second column and x3 times
the third column (neither of these operations change the value). We then reach the second
line of Eq. (2.17) by substituting the right-hand sides of Eqs. (2.15). These operations are
illustrated here:

ayxy ax as ayxy+axxy+azxz ax as
x1D=|bix1t by by|=|bixi+byxo+b3x3 by b3
c1xy €2 3 c1x1t+cex2+c3x3 ¢ 3

hi a a3
=|hy by b3l (2.17)
h3 ¢y C3

If D #0, Eq. (2.17) may now be solved for x1:

1 hy ay a3

x1=—|hy by bj3|. (2.18)
Dy

3 €2 (3

Analogous procedures starting from x» D and x3 D give the parallel results

| | h a3 | |a a2 hy
=7 hz 3, ;=4 \b b2
c1 hy 3 c1 ¢ h3

We see that the solution for x; is 1/D times a numerator obtained by replacing the ith
column of D by the right-hand-side coefficients, a result that can be generalized to an arbi-
trary number n of simultaneous equations. This scheme for the solution of linear equation
systems is known as Cramer’s rule.

If D is nonzero, the above construction of the x; is definitive and unique, so that there
will be exactly one solution to the equation set. If D # 0 and the equations are homoge-
neous (i.e., all the h; are zero), then the unique solution is that all the x; are zero.

Determinants and Linear Dependence

The preceding subsections go a long way toward identifying the role of the determi-
nant with respect to linear dependence. If n linear equations in n variables, written as
in Eq. (2.15), have coefficients that form a nonzero determinant, the variables are uniquely
determined, meaning that the forms constituting the left-hand sides of the equations must
in fact be linearly independent. However, we would still like to prove the property illus-
trated in the introduction to this chapter, namely that if a set of forms is linearly depen-
dent, the determinant of their coefficients will be zero. But this result is nearly immediate.
The existence of linear dependence means that there exists one equation whose coefficients
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are linear combinations of the coefficients of the other equations, and we may use that fact
to reduce to zero the row of the determinant corresponding to that equation.
In summary, we have therefore established the following important result:

If'the coefficients of n linear forms in n variables form a nonzero determinant, the forms
are linearly independent, if the determinant of the coefficients is zero, the forms exhibit
linear dependence.

Linearly Dependent Equations

If a set of linear forms is linearly dependent, we can distinguish three distinct situations
when we consider equation systems based on these forms. First, and of most importance
for physics, is the case in which all the equations are homogeneous, meaning that the
right-hand side quantities /; in equations of the type Eq. (2.15) are all zero. Then, one or
more of the equations in the set will be equivalent to linear combinations of others, and
we will have less than n equations in our n variables. We can then assign one (or in some
cases, more than one) variable an arbitrary value, obtaining the others as functions of the
assigned variables. We thus have a manifold (i.e., a parameterized set) of solutions to our
equation system.

Combining the above analysis with our earlier observation that if a set of homogeneous
linear equations has a nonvanishing determinant it has the unique solution that all the x;
are zero, we have the following important result:

A system of n homogeneous linear equations in n unknowns has solutions that are not
identically zero only if the determinant of its coefficients vanishes. If that determinant
vanishes, there will be one or more solutions that are not identically zero and are
arbitrary as to scale.

A second case is where we have (or combine equations so that we have) the same linear
form in two equations, but with different values of the right-hand quantities #;. In that case
the equations are mutually inconsistent, and the equation system has no solution.

A third, related case, is where we have a duplicated linear form, but with a common
value of h;. This also leads to a solution manifold.

Example 2.1.3  LINEARLY DEPENDENT HOMOGENEOUS EQUATIONS

Consider the equation set
x1+x3+x3=0,
x1+3x2+5x3=0,
x1+2x2+3x3=0.

Here
1 1 1
D=1 3 5/ =13)3)—-152)—-13)1) - 1(HB) +1(5)(1) + 1(1)(2) =0.
1 2 3
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The third equation is half the sum of the other two, so we drop it. Then,

second equation minus first: 2x2 +4x3 =0 — xp = —2x3,

(3 x first equation) minus second: 2x; —2x3 =0 — x| = x3.

Since x3 can have any value, there is an infinite number of solutions, all of the form
(x1, x2, x3) = constant x (1, —2, 1).

Our solution illustrates an important property of homogeneous linear equations, namely
that any multiple of a solution is also a solution. The solution only becomes less arbitrary
if we impose a scale condition. For example, in the present case we could require the
squares of the x; to add to unity. Even then, the solution would still be arbitrary as to
overall sign. |

Numerical Evaluation

There is extensive literature on determinant evaluation. Computer codes and many refer-
ences are given, for example, by Press et al.! We present here a straightforward method
due to Gauss that illustrates the principles involved in all the modern evaluation methods.
Gauss elimination is a versatile procedure that can be used for evaluating determinants,
for solving linear equation systems, and (as we will see later) even for matrix inversion.

Example 2.1.4  Gauss ELIMINATION

Our example, a 3 x 3 linear equation system, can easily be done in other ways, but it is used
here to provide an understanding of the Gauss elimination procedure. We wish to solve

3x+2y+z=11
2x+3y+z=13
x+y+4z=12. (2.19)

For convenience and for the optimum numerical accuracy, the equations are rearranged so
that, to the extent possible, the largest coefficients run along the main diagonal (upper left
to lower right).

The Gauss technique is to use the first equation to eliminate the first unknown, x, from
the remaining equations. Then the (new) second equation is used to eliminate y from the
last equation. In general, we work down through the set of equations, and then, with one un-
known determined, we work back up to solve for each of the other unknowns in succession.

lw. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed. Cambridge, UK: Cambridge
University Press (1992), Chapter 2.



92

Chapter 2 Determinants and Matrices

It is convenient to start by dividing each row by its initial coefficient, converting
Eq. (2.19) to

2 1 11
x+§y+§z=?
3 1 13
x+§y+§z=?
x+y+4z=12 (2.20)

Now, using the first equation, we eliminate x from the second and third equations by
subtracting the first equation from each of the others:

2 1 11
x + 5 y+ g = ?
5 1 17
6" 76" 6
1 11 25
§y+?z=?. (2.21)
Then we divide the second and third rows by their initial coefficients:
2 1 11
X+ 3 y+ 3 z= 3
117
y + g 7= ?
y+ 11z =25. (2.22)

Repeating the technique, we use the new second equation to eliminate y from the third
equation, which can then be solved for z:

2 1 11
X+ 5 y+ 3 = ?
1 17
y + g 7= ?
% :15E — =2 (2.23)
Now that z has been determined, we can return to the second equation, finding
y—i—l><2=1—7 —  y=3
5 5
and finally, continuing to the first equation,
Jc—i-%><3~|—l><2=E — x=1
3 3 3

The technique may not seem as elegant as the use of Cramer’s rule, but it is well adapted
to computers and is far faster than the time spent with determinants.

If we had not kept the right-hand sides of the equation system, the Gauss elimination
process would have simply brought the original determinant into triangular form (but note
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that our processes for making the leading coefficients unity cause corresponding changes
in the value of the determinant). In the present problem, the original determinant

3 2
D=2 3
1 1

B =

was divided by 3 and by 2 going from Eq. (2.19) to (2.20), and multiplied by 6/5 and
by 3 going from Eq. (2.21) to (2.22), so that D and the determinant represented by the
left-hand side of Eq. (2.23) are related by

2 1

1 2

3 3

5 1 1 5 54

D=03B)2)( - — —|==-—=18. 2.24
()()(6)(3)0 v L=33 (2.24)

4

0 O 5—

5

Because all the entries in the lower triangle of the determinant explicitly shown in
Eq. (2.24) are zero, the only term that contributes to it is the product of the diagonal
elements: To get a nonzero term, we must use the first element of the first row, then the
second element of the second row, etc. It is easy to verify that the final result obtained in

Eq. (2.24) agrees with the result of evaluating the original form of D. |
Exercises
2.1.1 Evaluate the following determinants:
0 3 0 0
Lol 20 1 |v3 \é_ 2 0
@ |01 0, ® (3 1 2, () — .
210 2 0 3
1 00 0 3 1
0 0 V3 0
2.1.2 Test the set of linear homogeneous equations
x+3y+3z=0, x—y+z=0, 2x+y+3z=0
to see if it possesses a nontrivial solution. In any case, find a solution to this equation
set.
2.1.3 Given the pair of equations
x+2y=3, 2x+4y=6,
(a) Show that the determinant of the coefficients vanishes.
(b) Show that the numerator determinants, see Eq. (2.18), also vanish.
(c) Find at least two solutions.
2.14 If C;; is the cofactor of element g;;, formed by striking out the ith row and jth column

and including a sign (—1)"*/, show that
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2.1.5

2.1.6

2.1.7

2.1.8
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(@) ) ;aijCij =) ;a;iCj =|A|, where |A] is the determinant with the elements «;;,
(b) >aijCix=);a;iCyi =0, j #k.

A determinant with all elements of order unity may be surprisingly small. The Hilbert
determinant H;; = (i + j — D~ i, j=1,2,...,n isnotorious for its small values.

(a) Calculate the value of the Hilbert determinants of order n for n = 1, 2, and 3.

(b) If an appropriate subroutine is available, find the Hilbert determinants of order n
forn=4,5, and 6.

ANS. Det(H,)

1.

8.33333 x 1072
4.62963 x 1074
1.65344 x 1077
3.74930 x 10~12

5.36730 x 10718,

(o) WLV, TN SNER VS I S T

Prove that the determinant consisting of the coefficients from a set of linearly dependent
forms has the value zero.

Solve the following set of linear simultaneous equations. Give the results to five decimal
places.

1.0x1 +0.9x2 +0.8x3 +0.4x4 +0.1x5 = 1.0
0.9x1 + 1.0x2 + 0.8x3 + 0.5x4 + 0.2x5 + 0.1x¢ =0.9
0.8x1 +0.8x2 + 1.0x3 + 0.7x4 + 0.4x5 4+ 0.2x¢ = 0.8
0.4x; +0.5x2 +0.7x3 + 1.0x4 + 0.6x5 + 0.3x5 = 0.7
0.1x1 +0.2x2 4+ 0.4x3 4+ 0.6x4 4+ 1.0x5 4+ 0.5x¢ = 0.6

0.1x3 +0.2x3 + 0.3x4 + 0.5x5 4+ 1.0x¢ = 0.5.

Note. These equations may also be solved by matrix inversion, as discussed in
Section 2.2.

Show that (in 3-D space)
(@) Z 8ii =3,
i
(b) Z&j&jk =0,
ij
(c) Zeipqequ = 25;j,

Pq
(d) Zgijkgijk =6.

ijk
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Note. The symbol §;; is the Kronecker delta, defined in Eq. (1.164), and &;j; is the
Levi-Civita symbol, Eq. (2.8).

2.1.9 Show that (in 3-D space)

Z €ijkEpgk = Sip8jq — 8iqdjp-
k

Note. See Exercise 2.1.8 for definitions of §;; and &;j.

2.2 MATRICES

Matrices are 2-D arrays of numbers or functions that obey the laws that define matrix
algebra. The subject is important for physics because it facilitates the description of
linear transformations such as changes of coordinate systems, provides a useful formu-
lation of quantum mechanics, and facilitates a variety of analyses in classical and rel-
ativistic mechanics, particle theory, and other areas. Note also that the development of
a mathematics of two-dimensionally ordered arrays is a natural and logical extension of
concepts involving ordered pairs of numbers (complex numbers) or ordinary vectors (one-
dimensional arrays).

The most distinctive feature of matrix algebra is the rule for the multiplication of
matrices. As we will see in more detail later, the algebra is defined so that a set of lin-
ear equations such as

aixy +axxy =h
bix1 +byxa=hy
can be written as a single matrix equation of the form
G 3 ()-()
by b)) \x2) \h)’

In order for this equation to be valid, the multiplication indicated by writing the two
matrices next to each other on the left-hand side has to produce the result

ajx1 +axx;
bix1 + byxs
and the statement of equality in the equation has to mean element-by-element agreement of

its left-hand and right-hand sides. Let’s move now to a more formal and precise description
of matrix algebra.

Basic Definitions

A matrix is a set of numbers or functions in a 2-D square or rectangular array. There are
no inherent limitations on the number of rows or columns. A matrix with m (horizontal)
rows and n (vertical) columns is known as an m x n matrix, and the element of a matrix A
in row i and column j is known as its i, j element, often labeled a;;. As already observed
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‘1‘2 6 7 0 0 1
_oi 1 4 3 1 o) (an an)

FIGURE 2.1  From left to right, matrices of dimension 4 x 1 (column vector),
3x2,2x3,2x 2 (square), 1 x 2 (row vector).

uj
u

)

u
Uy

W

when we introduced determinants, when row and column indices or dimensions are men-
tioned together, it is customary to write the row indicator first. Note also that order matters,
in general the i, j and j, i elements of a matrix are different, and (if m # n) n x m and
m x n matrices even have different shapes. A matrix for which n = m is termed square;
one consisting of a single column (an m x 1 matrix) is often called a column vector, while
a matrix with only one row (therefore 1 x n) is a row vector. We will find that identi-
fying these matrices as vectors is consistent with the properties identified for vectors in
Section 1.7.

The arrays constituting matrices are conventionally enclosed in parentheses (not vertical
lines, which indicate determinants, or square brackets). A few examples of matrices are
shown in Fig. 2.1. We will usually write the symbols denoting matrices as upper-case
letters in a sans-serif font (as we did when introducing A); when a matrix is known to be a
column vector we often denote it by a lower-case boldface letter in a Roman font (e.g., x).

Perhaps the most important fact to note is that the elements of a matrix are not combined
with one another. A matrix is not a determinant. It is an ordered array of numbers, not a
single number. To refer to the determinant whose elements are those of a square matrix A
(more simply, “the determinant of A”), we can write det(A).

Matrices, so far just arrays of numbers, have the properties we assign to them. These
properties must be specified to complete the definition of matrix algebra.

Equality

If A and B are matrices, A =B only if a;; = b;; for all values of i and j. A necessary but
not sufficient condition for equality is that both matrices have the same dimensions.

Addition, Subtraction

Addition and subtraction are defined only for matrices A and B of the same dimensions, in
which case A+ B = C, with ¢;; = a;; &=b;; for all values of i and j, the elements combining
according to the law of ordinary algebra (or arithmetic if they are simple numbers). This
means that C will be a matrix of the same dimensions as A and B. Moreover, we see that
addition is commutative: A + B = B + A. It is also associative, meaning that (A + B) +
C =A+ (B + C). A matrix with all elements zero, called a null matrix or zero matrix,
can either be written as O or as a simple zero, with its matrix character and dimensions
determined from the context. Thus, for all A,

A+0=0+A=A. (2.25)
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Multiplication (by a Scalar)

Here what we mean by a scalar is an ordinary number or function (not another matrix).
The multiplication of matrix A by the scalar quantity o produces B = aA, with b;; = o a;;
for all values of i and j. This operation is commutative, with « A = Ac.

Note that the definition of multiplication by a scalar causes each element of matrix A to
be multiplied by the scalar factor. This is in striking contrast to the behavior of determinants
in which « det(A) is a determinant in which the factor « multiplies only one column or
one row of det(A) and not every element of the entire determinant. If A is an n X n square
matrix, then

det(aA) = o det(A).

Matrix Multiplication (Inner Product)

Matrix multiplication is not an element-by-element operation like addition or multiplica-
tion by a scalar. Instead, it is a more complicated operation in which each element of the
product is formed by combining elements of a row of the first operand with correspond-
ing elements of a column of the second operand. This mode of combination proves to be
that which is needed for many purposes, and gives matrix algebra its power for solving
important problems. This inner product of matrices A and B is defined as

AB=C, with c¢;j=> aixbsj. (2.26)
k

This definition causes the ij element of C to be formed from the entire ith row of A and
the entire jth column of B. Obviously this definition requires that A have the same number
of columns (n) as B has rows. Note that the product will have the same number of rows
as A and the same number of columns as B. Matrix multiplication is defined only if these
conditions are met. The summation in Eq. (2.26) is over the range of k£ from 1 to n, and,
more explicitly, corresponds to

cij =aitbij+aipbyj+ -+ ainby;.

This combination rule is of a form similar to that of the dot product of the vectors
(ai1,ai2,...,aiy) and (b1, byj, ..., byj). Because the roles of the two operands in a matrix
multiplication are different (the first is processed by rows, the second by columns), the
operation is in general not commutative, that is, AB # BA. In fact, AB may even have a
different shape than BA. If A and B are square, it is useful to define the commutator of
A and B,

[A,B] =AB — BA, (2.27)

which, as stated above, will in many cases be nonzero.
Matrix multiplication is associative, meaning that (AB)C = A(BC). Proof of this state-
ment is the topic of Exercise 2.2.26.
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Example 2.2.1  MuLTIPLICATION, PAULI MATRICES

These three 2 x 2 matrices, which occurred in early work in quantum mechanics by Pauli,
are encountered frequently in physics contexts, so a familiarity with them is highly advis-

able. They are
0 1 0 —i 1 0
o] = (1 0), o) = (i 0), 03 = <0 _1>. (2.28)

Let’s form o10%2. The 1, 1 element of the product involves the first row of o and the first
column of o,; these are shaded and lead to the indicated computation:

<(1) é) (? _()i> — 00) +1() =1i.

Continuing, we have

(0O +1G) O(=)+1O)\ _ (i O
0162—(1(0)+0(i) 1(—i)+0(0))—<0 —i)' (2.29)

In a similar fashion, we can compute

— (? _é> <(1) é) = (‘é (l)) (2.30)

It is clear that o and 0 do not commute. We can construct their commutator:

o100l —o1on —omor = (1 O)_ (O

1 0 .
=2i (0 _1) =2io3. (2.31)
Note that not only have we verified that o1 and o> do not commute, we have even evaluated
and simplified their commutator. |

Example 2.2.2  MuLTipLICATION, Row AND COLUMN MATRICES

As a second example, consider

1
A=[2]. B=(4 5 o).
3
Let us form AB and BA:
4 5 6
AB=| 8 10 12|, BA=(4x14+5%x24+6x3)=(32).
12 15 18

The results speak for themselves. Often when a matrix operation leads to a 1 x 1 ma-
trix, the parentheses are dropped and the result is treated as an ordinary number or
function. |
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Unit Matrix

By direct matrix multiplication, it is possible to show that a square matrix with elements
of value unity on its principal diagonal (the elements (i, j) with i = j), and zeros every-
where else, will leave unchanged any matrix with which it can be multiplied. For example,
the 3 x 3 unit matrix has the form

1 0
0 1
0 0

— O O

note that it is not a matrix all of whose elements are unity. Giving such a matrix the name 1,
1A=A1=A. (2.32)

In interpreting this equation, we must keep in mind that unit matrices, which are square
and therefore of dimensions n x n, exist for all n; the n values for use in Eq. (2.32) must
be those consistent with the applicable dimension of A. So if A is m X n, the unit matrix in
1A must be m x m, while that in A1 must be n x n.

The previously introduced null matrices have only zero elements, so it is also obvious
that for all A,

OA=AO0=0. (2.33)

Diagonal Matrices

If a matrix D has nonzero elements d;; only for i = j, it is said to be diagonal; a 3 x 3
example is

1 00
D=0 2 0
0 0 3

The rules of matrix multiplication cause all diagonal matrices (of the same size) to com-
mute with each other. However, unless proportional to a unit matrix, diagonal matrices
will not commute with nondiagonal matrices containing arbitrary elements.

Matrix Inverse

It will often be the case that given a square matrix A, there will be a square matrix B such
that AB = BA = 1. A matrix B with this property is called the inverse of A and is given
the name A~!. If A~! exists, it must be unique. The proof of this statement is simple: If B
and C are both inverses of A, then

AB=BA=AC=CA=1.
We now look at
CAB=(CAB=B, butalso CAB=C(AB)=C.
This shows that B = C.
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Every nonzero real (or complex) number « has a nonzero multiplicative inverse, often
written 1/«. But the corresponding property does not hold for matrices; there exist nonzero
matrices that do not have inverses. To demonstrate this, consider the following:

1 1 1 0 00
A=<O 0), B:(_l 0), SO AB=<0 0).

If A has an inverse, we can multiply the equation AB = O on the left by A~!, thereby
obtaining

AB=0 — A'AB=A"'0 — B=0.

Since we started with a matrix B that was nonzero, this is an inconsistency, and we are
forced to conclude that A~! does not exist. A matrix without an inverse is said to be singu-
lar, so our conclusion is that A is singular. Note that in our derivation, we had to be careful
to multiply both members of AB = O from the left, because multiplication is noncommu-
tative. Alternatively, assuming B! to exist, we could multiply this equation on the right
by B!, obtaining

AB=0 — ABB!=o0B"! — A=0.

This is inconsistent with the nonzero A with which we started; we conclude that B is also
singular. Summarizing, there are nonzero matrices that do not have inverses and are iden-
tified as singular.

The algebraic properties of real and complex numbers (including the existence of
inverses for all nonzero numbers) define what mathematicians call a field. The properties
we have identified for matrices are different; they form what is called a ring.

The numerical inversion of matrices is another topic that has been given much attention,
and computer programs for matrix inversion are widely available. A closed, but cumber-
some formula for the inverse of a matrix exists; it expresses the elements of A~! in terms of
the determinants that are the minors of det(A); recall that minors were defined in the para-
graph immediately before Eq. (2.14). That formula, the derivation of which is in several of
the Additional Readings, is

(=D Mji
det(A)

We describe here a well-known method that is computationally more efficient than
Eq. (2.34), namely the Gauss-Jordan procedure.

AN = (2.34)

Example 2.2.3  GaussJoRDAN MATRIX INVERSION

The Gauss-Jordan method is based on the fact that there exist matrices My, such that the
product Mz A will leave an arbitrary matrix A unchanged, except with

(a) one row multiplied by a constant, or
(b) one row replaced by the original row minus a multiple of another row, or

(c) the interchange of two rows.

The actual matrices M, that carry out these transformations are the subject of Exercise 2.2.21.
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By using these transformations, the rows of a matrix can be altered (by matrix multipli-
cation) in the same ways we were able to change the elements of determinants, so we can
proceed in ways similar to those employed for the reduction of determinants by Gauss elim-
ination. If A is nonsingular, the application of a succession of My, i.e., M= (... M/M| M),
can reduce A to a unit matrix:

MA=1, or M=A"l

Thus, what we need to do is apply successive transformations to A until these transforma-
tions have reduced A to 1, keeping track of the product of these transformations. The way
in which we keep track is to successively apply the transformations to a unit matrix.

Here is a concrete example. We want to invert the matrix

b
I
—_ N W
—_ W N
A=

Our strategy will be to write, side by side, the matrix A and a unit matrix of the same size,
and to perform the same operations on each until A has been converted to a unit matrix,
which means that the unit matrix will have been changed to A~!. We start with

and

—_ N W
—_— W N
Bo= =
SO =
oS = O
— O O

We multiply the rows as necessary to set to unity all elements of the first column of the left
matrix:

2 1 1
1 = = - 0 0
3 3 3
3 1 1
1__ando_0
2 2 2
1 1 4 0 0 1

Subtracting the first row from the second and third rows, we obtain

2 1 1

1 - = - 00
3 3 3

Oéland —110
6 6 3 2
1 11 1

0 - — —— 0 1
3 3 3
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Then we divide the second row (of both matrices) by % and subtract % times it from the
first row and % times it from the third row. The results for both matrices are

101 320
5 5 5
1 2 3
0 1 =] and —-— =0
5 5 5
18 1 1
00 — — -1
5 5 5

We divide the third row (of both matrices) by 15—8. Then as the last step, % times the third
row is subtracted from each of the first two rows (of both matrices). Our final pair is

11 7 1

5E

010 and A7l=]|_-_ -

0 0 1 18 18 18

1 1 5

18 18 18
We can check our work by multiplying the original A by the calculated A~! to see if we
really do get the unit matrix 1. |

Derivatives of Determinants

The formula giving the inverse of a matrix in terms of its minors enables us to write a
compact formula for the derivative of a determinant det(A) where the matrix A has ele-
ments that depend on some variable x. To carry out the differentiation with respect to the
x dependence of its element a;;, we write det(A) as its expansion in minors M;; about the
elements of row i, as in Eq. (2.14), so, appealing also to Eq. (2.34), we have

3 det(A)

= (=D M;j = (A1) ji det(A),
aaij

Applying now the chain rule to allow for the x dependence of all elements of A, we get
d det(A)
dx

da,-j

=det(A) Y (A7) ;i —. (2.35)
ij

dx

Systems of Linear Equations

Using the matrix inverse, we can write down formal solutions to linear equation systems.
To start, we note that if A is a n X n square matrix, and x and h are n x 1 column vectors,
the matrix equation Ax = h is, by the rule for matrix multiplication,

aynxi +apxy+---+apx, hy
axnxy +axnxy+ -+ amx,

an1X1 + ap2x2 + -+ - + apnXp hn
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which is entirely equivalent to a system of n linear equations with the elements of A as
coefficients. If A is nonsingular, we can multiply Ax = h on the left by A~!, obtaining the
result x =A"'h.

This result tells us two things: (1) that if we can evaluate A~!, we can compute the
solution x; and (2) that the existence of A~! means that this equation system has a
unique solution. In our study of determinants we found that a linear equation system had a
unique solution if and only if the determinant of its coefficients was nonzero. We therefore
see that the condition that A~! exists, i.e., that A is nonsingular, is the same as the condi-
tion that the determinant of A, which we write det(A), be nonzero. This result is important
enough to be emphasized:

A square matrix A is singular if and only if det(A) = 0. (2.36)

Determinant Product Theorem

The connection between matrices and their determinants can be made deeper by estab-
lishing a product theorem which states that the determinant of a product of two n x n
matrices A and B is equal to the products of the determinants of the individual matrices:

det(AB) = det(A) det(B). (2.37)

As an initial step toward proving this theorem, let us look at det(A B) with the elements of
the matrix product written out. Showing the first two columns explicitly, we have

anbi +aba + - +aiubyr  anbiz +azbyn + -+ aipbp

az1b1 +anby + - - +aguby1  azibia +axnbyp + -+ axbno
det(AB) =

an1b11 + an2boy + -+ appbp1  anib12 +ap2bo + -+ appbp2

Introducing the notation

(l]j
a; = azj , thisbecomes det(AB) = Zajlbjl,l Zajzbjza s,
n,j Ji 2
where the summations over ji, ja, ..., j, run independently from 1 though n. Now, calling

upon Egs. (2.12) and (2.13), we can move the summations and the factors b outside the
determinant, reaching

det(AB) = Z Z ‘.- th’lb/’z’z ~--bj, ndet(ajaj, ---aj,). (2.38)
Ui Jn

The determinant on the right-hand side of Eq. (2.38) will vanish if any of the indices j,
are equal; if all are unequal, that determinant will be 4 det(A), with the sign corresponding
to the parity of the column permutation needed to put the a; in numerical order. Both
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of these conditions are met by writing det(aj a;, --- a;,) = ¢}, j, det(A), where ¢ is the
Levi-Civita symbol defined in Eq. (2.8). The above manipulations bring us to

det(AB) =det(A) > &j.j,bji1bj2- - bj, n =det(A) det(B),
J1-eJn

where the final step was to invoke the definition of the determinant, Eq. (2.10). This result
proves the determinant product theorem.
From the determinant product theorem, we can gain additional insight regarding singular
matrices. Noting first that a special case of the theorem is that
det(AA™") =det(1) = 1 = det(A) det(A™ 1),

we see that

det(A™!) =

IR (2.39)

It is now obvious that if det(A) = 0, then det(A™!) cannot exist, meaning that A~! cannot
exist either. This is a direct proof that a matrix is singular if and only if it has a vanishing
determinant.

Rank of a Matrix

The concept of matrix singularity can be refined by introducing the notion of the rank
of a matrix. If the elements of a matrix are viewed as the coefficients of a set of linear
forms, as in Eq. (2.1) and its generalization to n variables, a square matrix is assigned a
rank equal to the number of linearly independent forms that its elements describe. Thus, a
nonsingular n x n matrix will have rank n, while a n x n singular matrix will have a rank
r less than n. The rank provides a measure of the extent of the singularity; if r =n — 1,
the matrix describes one linear form that is dependent on the others; r = n — 2 describes
a situation in which there are two forms that are linearly dependent on the others, etc. We
will in Chapter 6 take up methods for systematically determining the rank of a matrix.

Transpose, Adjoint, Trace

In addition to the operations we have already discussed, there are further operations that
depend on the fact that matrices are arrays. One such operation is transposition. The
transpose of a matrix is the matrix that results from interchanging its row and column
indices. This operation corresponds to subjecting the array to reflection about its principal
diagonal. If a matrix is not square, its transpose will not even have the same shape as the
original matrix. The transpose of A, denoted A or sometimes A’ , thus has elements

Aij=aj;. (2.40)
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Note that transposition will convert a column vector into a row vector, so

X1
. X -
if x= 2 , then X=(x1x2 ... xp).

Xn

A matrix that is unchanged by transposition (i.e., A = A) is called symmetric.

For matrices that may have complex elements, the complex conjugate of a matrix is
defined as the matrix resulting if all elements of the original matrix are complex conju-
gated. Note that this does not change the shape or move any elements to new positions.
The notation for the complex conjugate of A is A*.

The adjoint of a matrix A, denoted AT, is obtained by both complex conjugating and
transposing it (the same result is obtained if these operations are performed in either order).
Thus,

(A =a;. (2.41)

The trace, a quantity defined for square matrices, is the sum of the elements on the
principal diagonal. Thus, for an n x n matrix A,

trace(A) = Z aji. (2.42)

i=1
From the rule for matrix addition, is is obvious that
trace(A + B) = trace(A) + trace(B). (2.43)

Another property of the trace is that its value for a product of two matrices A and B is
independent of the order of multiplication:

trace(AB) = Z(AB)ii = Z Za,’jbﬁ = Z ijiaij
i i J J i
= Z(BA)fj = trace(BA). (2.44)
J

This holds even if AB # BA. Equation (2.44) means that the trace of any commutator
[A,B] = AB — BA is zero. Considering now the trace of the matrix product ABC, if we
group the factors as A(BC), we easily see that

trace(ABC) = trace(BCA).
Repeating this process, we also find trace(ABC) = trace(CAB). Note, however, that we

cannot equate any of these quantities to trace(CBA) or to the trace of any other noncyclic
permutation of these matrices.
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Operations on Matrix Products

We have already seen that the determinant and the trace satisfy the relations
det(AB) = det(A) det(B) = det(BA), trace(AB) = trace(BA),

whether or not A and B commute. We also found that trace(A + B) = trace(A) + trace(B)
and can easily show that trace(aeA) = « trace(A), establishing that the trace is a linear
operator (as defined in Chapter 5). Since similar relations do not exist for the determinant,
it is not a linear operator.

We consider now the effect of other operations on matrix products. The transpose of a
product, (AB)7, can be shown to satisfy

(AB)T =BA, (2.45)

showing that a product is transposed by taking, in reverse order, the transposes of its fac-
tors. Note that if the respective dimensions of A and B are such as to make AB defined, it
will also be true that BA is defined.

Since complex conjugation of a product simply amounts to conjugation of its individual
factors, the formula for the adjoint of a matrix product follows a rule similar to Eq. (2.45):

(AB)" =B'AT. (2.46)

Finally, consider (AB)~'. In order for AB to be nonsingular, neither A nor B can be
singular (to see this, consider their determinants). Assuming this nonsingularity, we have

AB)~' =B~ 1AL (2.47)

The validity of Eq. (2.47) can be demonstrated by substituting it into the obvious equation
(AB)(AB)~! =1.

Matrix Representation of Vectors

The reader may have already noted that the operations of addition and multiplication by a
scalar are defined in identical ways for vectors (Section 1.7) and the matrices we are calling
column vectors. We can also use the matrix formalism to generate scalar products, but in
order to do so we must convert one of the column vectors into a row vector. The operation
of transposition provides a way to do this. Thus, letting a and b stand for vectors in R>,

by
a-b — (a1 a2 a3) | by | =a1b) + arby + aszbs.
b3

If in a matrix context we regard a and b as column vectors, the above equation assumes
the form

a-b — a’b. (2.48)

This notation does not really lead to significant ambiguity if we note that when dealing with
matrices, we are using lower-case boldface symbols to denote column vectors. Note also
that because a’ b is a 1 x 1 matrix, it is synonymous with its transpose, which is b a. The
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matrix notation preserves the symmetry of the dot product. As in Section 1.7, the square of
the magnitude of the vector corresponding to a will be a’ a.

If the elements of our column vectors a and b are real, then an alternate way of writing
a’'b is a'b. But these quantities are not equal if the vectors have complex elements, as will
be the case in some situations in which the column vectors do not represent displacements
in physical space. In that situation, the dagger notation is the more useful because then a'a
will be real and can play the role of a magnitude squared.

Orthogonal Matrices

A real matrix (one whose elements are real) is termed orthogonal if its transpose is equal
to its inverse. Thus, if S is orthogonal, we may write

s !'=s", or ss” =1 (S orthogonal). (2.49)
Since, for S orthogonal, det(SST) = det(S) det(ST) = [det(S)]> = 1, we see that
det(S) =+1 (S orthogonal). (2.50)

It is easy to prove that if S and S’ are each orthogonal, then so also are SS’ and S'S.

Unitary Matrices

Another important class of matrices consists of matrices U with the property that UT =
U~ i.e., matrices for which the adjoint is also the inverse. Such matrices are identified as
unitary. One way of expressing this relationship is

Uu'=u'u=1 (U unitary). (2.51)

If all the elements of a unitary matrix are real, the matrix is also orthogonal.
Since for any matrix det(AT) = det(A), and therefore det(AT) = det(A)*, application of
the determinant product theorem to a unitary matrix U leads to

det(U) det(U") = | det(U)|> =1, (2.52)

showing that det(U) is a possibly complex number of magnitude unity. Since such numbers
can be written in the form exp(if), with @ real, the determinants of U and U" will, for
some 0, satisfy

det(U) =¢'?, det(U") =¢7.

Part of the significance of the term unitary is associated with the fact that the determinant
has unit magnitude. A special case of this relationship is our earlier observation that if U is
real, and therefore also an orthogonal matrix, its determinant must be either +1 or —1.

Finally, we observe that if U and V are both unitary, then UV and VU will be unitary as
well. This is a generalization of our earlier result that the matrix product of two orthogonal
matrices is also orthogonal.
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Hermitian Matrices

There are additional classes of matrices with useful characteristics. A matrix is identified as
Hermitian, or, synonymously, self-adjoint, if it is equal to its adjoint. To be self-adjoint,
a matrix H must be square, and in addition, its elements must satisfy

(HDij = (H);;
This condition means that the array of elements in a self-adjoint matrix exhibits a reflection
symmetry about the principal diagonal: elements whose positions are connected by reflec-
tion must be complex conjugates. As a corollary to this observation, or by direct reference
to Eq. (2.53), we see that the diagonal elements of a self-adjoint matrix must be real.

If all the elements of a self-adjoint matrix are real, then the condition of self-adjointness
will cause the matrix also to be symmetric, so all real, symmetric matrices are self-adjoint
(Hermitian).

Note that if two matrices A and B are Hermitian, it is not necessarily true that AB or BA

is Hermitian; however, AB + BA, if nonzero, will be Hermitian, and AB — BA, if nonzero,
will be anti-Hermitian, meaning that (AB — BA)" = —(AB — BA).

Extraction of a Row or Column

It is useful to define column vectors €; which are zero except for the (i, 1) element, which
is unity; examples are

O =
—_

etc. (2.54)

o>
I

© o
o>
[ )
Il

0 0
One use of these vectors is to extract a single column from a matrix. For example, if A is a
3 x 3 matrix, then

an aix aiz\ (0 an
Aer =|ax1 axp ax 1l=\ax
az1 azyp azz) \0 azn

The row vector él-T can be used in a similar fashion to extract a row from an arbitrary
matrix, as in

AT
€ A= (a1 a2 a;3).

These unit vectors will also have many uses in other contexts.

Direct Product

A second procedure for multiplying matrices, known as the direct tensor or Kronecker
product, combines a m x n matrix A and a m’ x n’ matrix B to make the direct product



2.2 Matrices 109

matrix C = A ® B, which is of dimension mm’ x nn’ and has elements
Cup = AijBu, (2.55)

with =m’(i — 1) +k, B =n'(j — 1) + L. The direct product matrix uses the indices of
the first factor as major and those of the second factor as minor; it is therefore a noncom-
mutative process. It is, however, associative.

Example 2.2.4  DIRecT PRODUCTS

We give some specific examples. If A and B are both 2 x 2 matrices, we may write, first in
a somewhat symbolic and then in a completely expanded form,

aitbyy  anbiy  anbiy  anbn
ay1B alzB)_ anbar  anby  apby  apbn
aB a»B) | anbii axbia anbi axbin |
aziby1  axibyn  axby  axnbxn

A®B:<

Another example is the direct product of two two-element column vectors, x and y.
Again writing first in symbolic, and then expanded form,

X1y

(xl) ® (Y1) _ <x1)’) _ | *)n2
X2 Y2 X2y X2¥1
X2Y2

A third example is the quantity AB from Example 2.2.2. It is an instance of the special
case (column vector times row vector) in which the direct and inner products coincide:
AB=A®B. |

If C and C’ are direct products of the respective forms
C=A®B and C'=A'®B, (2.56)

and these matrices are of dimensions such that the matrix inner products AA” and BB’ are
defined, then

CC' = (AA") ® (BB). (2.57)
Moreover, if matrices A and B are of the same dimensions, then

C®(A+B)=C®A+C®B and (A+B)®C=A®QC+B®C. (2.58)

Example 2.2.5  DIRAC MATRICES

In the original, nonrelativistic formulation of quantum mechanics, agreement between
theory and experiment for electronic systems required the introduction of the concept of
electron spin (intrinsic angular momentum), both to provide a doubling in the number of
available states and to explain phenomena involving the electron’s magnetic moment. The
concept was introduced in a relatively ad hoc fashion; the electron needed to be given
spin quantum number 1/2, and that could be done by assigning it a two-component wave
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function, with the spin-related properties described using the Pauli matrices, which were
introduced in Example 2.2.1:

(01 (0 —i (1 0
=1 o) 22=\i o) 2=\0o -1)

Of relevance here is the fact that these matrices anticommute and have squares that are unit
matrices:

‘71'2:127 and ojo; +0j0; =0, i#j. (2.59)

In 1927, P. A. M. Dirac developed a relativistic formulation of quantum mechanics
applicable to spin-1/2 particles. To do this it was necessary to place the spatial and time
variables on an equal footing, and Dirac proceeded by converting the relativistic expression
for the kinetic energy to an expression that was first order in both the energy and the
momentum (parallel quantities in relativistic mechanics). He started from the relativistic
equation for the energy of a free particle,

E? = (p} + p} + pc? + m*c* = p*c? + m*ct, (2.60)

where p; are the components of the momentum in the coordinate directions, m is the
particle mass, and c is the velocity of light. In the passage to quantum mechanics, the
quantities p; are to be replaced by the differential operators —i%id/dx;, and the entire
equation is applied to a wave function.

It was desirable to have a formulation that would yield a two-component wave function
in the nonrelativistic limit and therefore might be expected to contain the o;. Dirac made
the observation that a key to the solution of his problem was to exploit the fact that the
Pauli matrices, taken together as a vector

0 =01€] + 028 + 03€3, (2.61)
could be combined with the vector p to yield the identity
(0 -p)?=p*ly, (2.62)

where 1, denotes a 2 x 2 unit matrix. The importance of Eq. (2.62) is that, at the price of
going to 2 x 2 matrices, we can linearize the quadratic occurrences of E and p in Eq. (2.60)
as follows. We first write

E’15 — X0 - p)? = m?c*,. (2.63)

We then factor the left-hand side of Eq. (2.63) and apply both sides of the resulting equation
(which is a 2 x 2 matrix equation) to a two-component wave function that we will call v :

(Ely+co -p)(Ely—co -p)y =m>cHy. (2.64)
The meaning of this equation becomes clearer if we make the additional definition

(Ely —co - p)¥i =mcyo. (2.65)
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Substituting Eq. (2.65) into Eq. (2.64), we can then write the modified Eq. (2.64) and the
(unchanged) Eq. (2.65) as the equation set

(Ely +co -p)Yn = mc*yy,
(2.66)
(Ely —co -p)¥1 =mci;

both these equations will need to be satisfied simultaneously.

To bring Egs. (2.66) to the form actually used by Dirac, we now make the substitution
Y1 =v%a+ Vg, Yo =v¥a — ¥p, and then add and subtract the two equations from each
other, reaching a set of coupled equations in ¥4 and {p:

EYa —co -pyg =mc*a,
co -pYa — EYp =mc*yp.

In anticipation of what we will do next, we write these equations in the matrix form

E1l 0 0 co-p v ¥
(5 fn) - Ceop ) ()=m2 () e

We can now use the direct product notation to condense Eq. (2.67) into the simpler form
(03 ® )E —y ® c(o - PIW =mc*V, (2.68)

where W is the four-component wave function built from the two-component wave

functions:
Ya )
= ,
(WB

and the terms on the left-hand side have the indicated structure because

1 0 0 1
(732(0 _1) and we define y:(_l 0). (2.69)

It has become customary to identify the matrices in Eq. (2.68) as y* and to refer to them
as Dirac matrices, with

(2.70)

1 0
)/0203@12:(02 _12>=

S = O O

0
0
0
—1

S o o~
SO = O

The matrices resulting from the individual components of o in Eq. (2.68) are (for
i=1,2,3)

i (0 o
y —y®ol—<_al_ o) 2.71)
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Expanding Eq. (2.71), we have

0 0 0 1 0 0 0 —i
. o o 1 o0 > oo i o
=1 0 =1t o o) Y= lo i o ol

1 0 0 0 i 0 0 0
0 0 1 0
s Lo o o -1

Z1-1 0 o0 o0 (2.72)

0 1 0 0

Now that the y* have been defined, we can rewrite Eq. (2.68), expanding o - p into
components:

[VOE —c('pr4+vip;+ 7/3193)] W =mc?.

To put this matrix equation into the specific form known as the Dirac equation we multiply
both sides of it (on the left) by y°. Noting that (y°)?> =1 and giving ¥°y the new name
o, we reach

[1ome + (1 py + aaps +oapy) | W = EW. (2.73)

Equation (2.73) is in the notation used by Dirac with the exception that he used 8 as the
name for the matrix here called y°.

The Dirac gamma matrices have an algebra that is a generalization of that exhibited
by the Pauli matrices, where we found that the aiz =1 and that if i # j, then o; and
o; anticommute. Either by further analysis or by direct evaluation, it is found that, for
nw=0,1,2,3andi =1,2,3,

¥H%=1, )H=-1, (2.74)
Yy Yyt =0, i (2.75)

In the nonrelativistic limit, the four-component Dirac equation for an electron reduces
to a two-component equation in which each component satisfies the Schrodinger equation,
with the Pauli and Dirac matrices having completely disappeared. See Exercise 2.2.48.
In this limit, the Pauli matrices reappear if we add to the Schrédinger equation an addi-
tional term arising from the intrinsic magnetic moment of the electron. The passage to
the nonrelativistic limit provides justification for the seemingly arbitrary introduction of a
two-component wavefunction and use of the Pauli matrices for discussions of spin angular
momentum.

The Pauli matrices (and the unit matrix 15) form what is known as a Clifford algebra,’
with the properties shown in Eq. (2.59). Since the algebra is based on 2 x 2 matrices, it
can have only four members (the number of linearly independent such matrices), and is
said to be of dimension 4. The Dirac matrices are members of a Clifford algebra of dimen-
sion 16. A complete basis for this Clifford algebra with convenient Lorentz transformation

2D. Hestenes, Am. J. Phys. 39: 1013 (1971); and J. Math. Phys. 16: 556 (1975).
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properties consists of the 16 matrices

. 0 1
Ly, y5=zy°y1y2y3=<12 02>, Y (u=0,12.3),

Yoyt (u=0,1,2,3), o =ipty’ O<p<v<3). (2.76)

Functions of Matrices

Polynomials with one or more matrix arguments are well defined and occur often. Power
series of a matrix may also be defined, provided the series converges for each matrix ele-
ment. For example, if A is any n x n matrix, then the power series

exp(A) =) .l,Af : (2.77)
=07
: - (=D i
sin(A) = Z — AN (2.78)
= 2j+ D!
cos(A) = Z (;—1): AZJ (2.79)
= @t

are well-defined n x n matrices. For the Pauli matrices o, the Euler identity for real 6
andk=1, 2, or3,

exp(ioxf) =13 cos6 +iog sinf, (2.80)

follows from collecting all even and odd powers of 8 in separate series using 0k2 = 1. For
the 4 x 4 Dirac matrices o*¥, defined in Eq. (2.76), we have for | < u <v <3,

exp(ioc"’0) =14cos0 +ic"Vsin, (2.81)
while
c Ok .\ - Ok -
exp(ioc™"¢) =14cosh¢ +ic™" sinh¢ (2.82)

holds for real ¢ because (ic%)% =1 fork =1, 2, or 3.
Hermitian and unitary matrices are related in that U, given as

U =exp(iH), (2.83)

is unitary if H is Hermitian. To see this, just take the adjoint: UT = exp(—iHT) =
exp(—iH) = [exp(iH)]"! = U~
Another result which is important to identify here is that any Hermitian matrix H satisfies
a relation known as the trace formula,
det (exp(H)) = exp (trace(H)). (2.84)

This formula is derived at Eq. (6.27).
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Finally, we note that the multiplication of two diagonal matrices produces a matrix that
is also diagonal, with elements that are the products of the corresponding elements of the
multiplicands. This result implies that an arbitrary function of a diagonal matrix will also
be diagonal, with diagonal elements that are that function of the diagonal elements of the
original matrix.

Example 2.2.6  EXPONENTIAL OF A DIAGONAL MATRIX

If a matrix A is diagonal, then its nth power is also diagonal, with the original diagonal
matrix elements raised to the nth power. For example, given

(10
=0 —1)

@ =5 ()

then

We can now compute

% = n=0 " — e 0
| \0 et
!

o
0 Zn
n=0

A final and important result is the Baker-Hausdorff formula, which, among other
places is used in the coupled-cluster expansions that yield highly accurate electronic struc-
ture calculations on atoms and molecules®:

exp(—TAexp(T) =A+[AT]+ % [[AT],T]+ % [([[ATLTLTIA+---. (2.85)

Exercises

2.2.1 Show that matrix multiplication is associative, (AB)C = A(BC).
222 Show that
(A+B)(A—B)=A>—B’
if and only if A and B commute,

[A, B] =0.

3F. E. Harris, H. J. Monkhorst, and D. L. Freeman, Algebraic and Diagrammatic Methods in Many-Fermion Theory. New York:
Oxford University Press (1992).
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(a) Complex numbers, a + ib, with a and b real, may be represented by (or are iso-
morphic with) 2 x 2 matrices:

a+ib <— (a b).
—b a

Show that this matrix representation is valid for (i) addition and (ii) multiplication.

(b) Find the matrix corresponding to (a +ib)~!.

If Ais an n x n matrix, show that
det(—A) = (—1)" detA.

(a) The matrix equation A> = 0 does not imply A = 0. Show that the most general
2 x 2 matrix whose square is zero may be written as

ab  b?
—a*> —ab)’
where a and b are real or complex numbers.
(b) IfC=A+B,in general

detC # detA + detB.

Construct a specific numerical example to illustrate this inequality.

Given
0 0 i
K=|—i 0],
0 -1 0
show that

K" =KKK- - - (n factors) = 1

(with the proper choice of n, n # 0).
Verify the Jacobi identity,

[A,[B, Cl] =B, [A, C]] - [C, [A, BI]].

Show that the matrices

010 0 00 0 0 1
A=|0 0 0], B={0 0 1], C=|0 0 O
0 0 0 0 0 0 0 0 0

satisfy the commutation relations

[A,B]=C, [A,C]=0, and [B,C]=0.
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229

2.2.10

2.2.11

2.2.12

Let
01 00 00 0 —1
-1 0 ool . [oo0o -1 o0
=1 o0 o 1] '“lo1 o ol
00 —1 0 10 0 0
and
0 0 —1 0
|0 0 o1
=1 o o0 o0
0 -1 0 0
Show that

(a) i#=j*=k?=—1, where 1 is the unit matrix.

(b) ij=—ji=k,
k=—k=i,
ki = —ik =

These three matrices (i, j, and k) plus the unit matrix 1 form a basis for quaternions. An
alternate basis is provided by the four 2 x 2 matrices, ioy, 02, —io3, and 1, where the
o; are the Pauli spin matrices of Example 2.2.1.

A matrix with elements a;; = 0 for j < i may be called upper right triangular. The
elements in the lower left (below and to the left of the main diagonal) vanish. Show that
the product of two upper right triangular matrices is an upper right triangular matrix.

The three Pauli spin matrices are
(0 1 (0 —i d (1 0
a=\y o) 2=\; o) awd o=, _|)

@@ (o) =1s,
(b) ojoj=ioy, (i, j, k) = (1,2, 3) or a cyclic permutation thereof,

Show that

(c) oioj+0jo; =26;12; 17 is the 2 x 2 unit matrix.

One description of spin-1 particles uses the matrices

L {010 L (0 =i 0
Mo=— (1 0 1}, my=—|[i o —il.
v2\o 1 0 V2o i o
and
10 0
M.=[0o 0 o
00 —1
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Show that

(@) [My,My]=iM,, and so on (cyclic permutation of indices). Using the Levi-Civita
symbol, we may write

[M;,M;]=i Zé‘ijkMk-
k
(b) M?=M2 + M2 + M2 =2 13, where 13 is the 3 x 3 unit matrix.

(©) [M? M;]=0,
M, L] =L,
(L, L7]=2M,,
where LT =M, +iMy and L™ =M, —iM,.

Repeat Exercise 2.2.12, using the matrices for a spin of 3/2,

0 /3 0 0 0 -3 0 0
Moolfv3 0o 2 o L _i|v3 o0 -2 0
210 2 o V3 Y721 0 2 0 V3

0 0 V3 0 0 0 V3 0

and
30 0 0
1flo 1 0 0
M=31o o -1 o

0 O 0 -3

If A is a diagonal matrix, with all diagonal elements different, and A and B commute,
show that B is diagonal.

If A and B are diagonal, show that A and B commute.
Show that trace(ABC) = trace(CBA) if any two of the three matrices commute.
Angular momentum matrices satisfy a commutation relation
[M;,M]=iM;, j,k,I cyclic.
Show that the trace of each angular momentum matrix vanishes.

A and B anticommute: AB = —BA. Also, A2 = 1, B2 = 1. Show that trace(A) =
trace(B) = 0.

Note. The Pauli and Dirac matrices are specific examples.

(a) If two nonsingular matrices anticommute, show that the trace of each one is zero.

(Nonsingular means that the determinant of the matrix is nonzero.)

(b) For the conditions of part (a) to hold, A and B must be n x n matrices with n even.
Show that if n is odd, a contradiction results.

If A~! has elements
—1y. _n_ Cii
(A )z;—aij = |A|’
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2.2.21

2.2.22

2.2.23

2.2.24
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where C; is the jith cofactor of |A|, show that
AlA=1.

Hence A~! is the inverse of A (if |A| # 0).

Find the matrices My such that the product My A will be A but with:

(a) The ith row multiplied by a constant k (a;; — ka;j, j =1,2,3,...);

(b) The ith row replaced by the original ith row minus a multiple of the mth row
(aij — djj — Kamj, i = 1, 2, 3, .. .);

(c) The ith and mth rows interchanged (a;; — amj, amj — aij, j=1,2,3,...).

Find the matrices Mg such that the product AMg will be A but with:
(a) The ith column multiplied by a constant k (a;; — kaj;, j =1,2,3,...);

(b) The ith column replaced by the original ith column minus a multiple of the mth
column (a;; — aji —kajm, j=1,2,3,...);

(c) The ith and mth columns interchanged (aj; — ajm, ajm — aji, j=1,2,3,...).

Find the inverse of

A=

— N W
— NN
N

Matrices are far too useful to remain the exclusive property of physicists. They may
appear wherever there are linear relations. For instance, in a study of population move-
ment the initial fraction of a fixed population in each of n areas (or industries or
religions, etc.) is represented by an n-component column vector P. The movement of
people from one area to another in a given time is described by an n x n (stochastic)
matrix T. Here T;; is the fraction of the population in the jth area that moves to the ith
area. (Those not moving are covered by i = j.) With P describing the initial population
distribution, the final population distribution is given by the matrix equation TP = Q.
From its definition, > ;_, P, = 1.

(a) Show that conservation of people requires that

n
dYTy=1, j=12...n
i=1

(b) Prove that

continues the conservation of people.
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2.2.26
2.2.27
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2.2.29

2.2.30

2.2.31

2.2.32
2.2.33

2.2.34

2.2.35

2.2.36
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Given a 6 x 6 matrix A with elements a;; = 0.511=J1 i, j=0,1,2,...,5, find AL

4 -2 0 O
-2 5 =2 0
0 -2 5 =2
o o0 -2 5 -
0o o0 0 =2
o o0 0 0 -

1
ANS. A1 =2
3

DL O OO
DO O OO

Show that the product of two orthogonal matrices is orthogonal.
If A is orthogonal, show that its determinant = +1.
Show that the trace of the product of a symmetric and an antisymmetric matrix is zero.

A s 2 x 2 and orthogonal. Find the most general form of
a b
(1)

det(A*) = (detA)* = det(A").

Show that

Three angular momentum matrices satisfy the basic commutation relation
[, dyl=id;

(and cyclic permutation of indices). If two of the matrices have real elements, show that
the elements of the third must be pure imaginary.

Show that (AB)" = BYAT.

A matrix C = S'S. Show that the trace is positive definite unless S is the null matrix, in
which case trace (C) = 0.

If A and B are Hermitian matrices, show that (AB + BA) and i (AB — BA) are also Her-
mitian.

The matrix C is not Hermitian. Show that then C 4+ C' and i (C — CT) are Hermitian.
This means that a non-Hermitian matrix may be resolved into two Hermitian parts,

1 ¥ 1 .

C=-(C+C"Y4+ —i(C—-C").

2 2i
This decomposition of a matrix into two Hermitian matrix parts parallels the decompo-
sition of a complex number z into x + iy, where x = (z + z*)/2 and y = (z — z*)/2i.
A and B are two noncommuting Hermitian matrices:

AB —BA=iC.

Prove that C is Hermitian.

Two matrices A and B are each Hermitian. Find a necessary and sufficient condition for
their product AB to be Hermitian.

ANS. [A,B]=0.
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2.2.38
2.2.39
2.2.40

2.2.41

2.2.42
2.2.43

2.2.44

2.2.45
2.2.46

2.2.47

2.2.48

Show that the reciprocal (that is, inverse) of a unitary matrix is unitary.
Prove that the direct product of two unitary matrices is unitary.

If o is the vector with the o; as components given in Eq. (2.61), and p is an ordinary
vector, show that

(0 -p)?=p’ly,
where 15 is a 2 x 2 unit matrix.

Use the equations for the properties of direct products, Egs. (2.57) and (2.58), to show
that the four matrices y#, u =0, 1, 2, 3, satisfy the conditions listed in Egs. (2.74) and
(2.75).

Show that y>, Eq. (2.76), anticommutes with all four y*.

In this problem, the summations are over u = 0, 1,2, 3. Define g,, = g"” by the
relations

go=1 gu=-1, k=1,2,3; guw=0, un#v;

and define y,, as ) g, v". Using these definitions, show that

@ yuyiyt=-2y"

®) X yurtyivt =45,

© LwuryPyiyt==2y"yPy*

IfM= %(1 + 2), where p? is given in Eq. (2.76), show that
M? = M.

Note that this equation is still satisfied if p is replaced by any other Dirac matrix listed
in Eq. (2.76).

Prove that the 16 Dirac matrices form a linearly independent set.

If we assume that a given 4 x 4 matrix A (with constant elements) can be written as a
linear combination of the 16 Dirac matrices (which we denote here as I';)

16
A= Z Ci Fi s
i=1
show that
c; ~ trace(Al';).

The matrix C = iy2y° is sometimes called the charge conjugation matrix. Show that
cyrcl=—M.

(a) Show that, by substitution of the definitions of the y* matrices from Egs. (2.70)
and (2.72), that the Dirac equation, Eq. (2.73), takes the following form when
written as 2 x 2 blocks (with ¥ and ¥¢ column vectors of dimension 2). Here
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L and S stand, respectively, for “large” and “small” because of their relative size
in the nonrelativistic limit):

mc* — E cl@pr+op2+o3pa)\ (VL) _,
2 =0.
—c(o1p1 +02p2 4 03p3) —mc? — E Vs

(b) To reach the nonrelativistic limit, make the substitution E = mc?* + ¢ and approx-
imate —2mc* — & by —2mc?. Then write the matrix equation as two simultaneous
two-component equations and show that they can be rearranged to yield

1 2 2 2) _
m (P1+P2+P3 YL =¢evL,

which is just the Schrédinger equation for a free particle.

(¢) Explain why is it reasonable to call i, and g “large” and “small.”

2.2.49 Show that it is consistent with the requirements that they must satisfy to take the Dirac
gamma matrices to be (in 2 x 2 block form)
0 0 1, ; 0 o ;
= = =1,2,3).
y (12 0), 2 <—Ui 0)’ (i=1,2,3)
This choice for the gamma matrices is called the Weyl representation.

2.2.50  Show that the Dirac equation separates into independent 2 x 2 blocks in the Weyl rep-
resentation (see Exercise 2.2.49) in the limit that the mass m approaches zero. This
observation is important in the ultra relativistic regime where the rest mass is inconse-
quential, or for particles of negligible mass (e.g., neutrinos).

22,51 (a) Given r' = Ur, with U a unitary matrix and r a (column) vector with complex

elements, show that the magnitude of r is invariant under this operation.
(b) The matrix U transforms any column vector r with complex elements into 1/,
leaving the magnitude invariant: r'r = r''r’. Show that U is unitary.
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CHAPTER 3

VECTOR ANALYSIS

The introductory section on vectors, Section 1.7, identified some basic properties that are
universal, in the sense that they occur in a similar fashion in spaces of different dimension.
In summary, these properties are (1) vectors can be represented as linear forms, with oper-
ations that include addition and multiplication by a scalar, (2) vectors have a commutative
and distributive dot product operation that associates a scalar with a pair of vectors and
depends on their relative orientations and hence is independent of the coordinate system,
and (3) vectors can be decomposed into components that can be identified as projections
onto the coordinate directions. In Section 2.2 we found that the components of vectors
could be identified as the elements of a column vector and that the scalar product of two
vectors corresponded to the matrix multiplication of the transpose of one (the transposition
makes it a row vector) with the column vector of the other.

The current chapter builds on these ideas, mainly in ways that are specific to three-
dimensional (3-D) physical space, by (1) introducing a quantity called a vector cross
product to permit the use of vectors to represent rotational phenomena and volumes in 3-D
space, (2) studying the transformational properties of vectors when the coordinate system
used to describe them is rotated or subjected to a reflection operation, (3) developing math-
ematical methods for treating vectors that are defined over a spatial region (vector fields),
with particular attention to quantities that depend on the spatial variation of the vector field,
including vector differential operators and integrals of vector quantities, and (4) extending
vector concepts to curvilinear coordinate systems, which are very useful when the sym-
metry of the coordinate system corresponds to a symmetry of the problem under study (an
example is the use of spherical polar coordinates for systems with spherical symmetry).

A key idea of the present chapter is that a quantity that is properly called a vector
must have the transformation properties that preserve its essential features under coordinate
transformation; there exist quantities with direction and magnitude that do not transform
appropriately and hence are not vectors. This study of transformation properties will, in a
subsequent chapter, ultimately enable us to generalize to related quantities such as tensors.
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Finally, we note that the methods developed in this chapter have direct application in

electromagnetic theory as well as in mechanics, and these connections are explored through
the study of examples.

3.1 REVIEW OF BASIC PROPERTIES

In Section 1.7 we established the following properties of vectors:

1.

Vectors satisfy an addition law that corresponds to successive displacements that can
be represented by arrows in the underlying space. Vector addition is commutative
and associative: A+ B=B+Aand A+B)+C=A+ B+ C).

A vector A can be multiplied by a scalar k; if £ > 0 the result will be a vector in the
direction of A but with its length multiplied by k; if k < O the result will be in the
direction opposite to A but with its length mutiplied by |k]|.

The vector A — B is interpreted as A 4 (—1)B, so vector polynomials, e.g., A — 2B +
3C, are well-defined.

A vector of unit length in the coordinate direction x; is denoted €;. An arbitrary vector
A can be written as a sum of vectors along the coordinate directions, as

A=A+ Arer+---.

The A; are called the components of A, and the operations in Properties 1 to 3 cor-
respond to the component formulas

G=A-2B+3C = G;=A; —2B;+3C;, (eachi).

The magnitude or length of a vector A, denoted |A| or A, is given in terms of its
components as

Al = (A} + A +--)" 2

The dot product of two vectors is given by the formula
A-B=ABi+ABy+---;
consequences are
JAP=A-A, A-B=|A|[B|cos#,

where 6 is the angle between A and B.
If two vectors are perpendicular to each other, their dot product vanishes and they are
termed orthogonal. The unit vectors of a Cartesian coordinate system are orthogonal:

& - & =4ij, (3.1

where §;; is the Kronecker delta, Eq. (1.164).

The projection of a vector in any direction has an algebraic magnitude given by its
dot product with a unit vector in that direction. In particular, the projection of A on
the €; direction is A;€;, with

A =8 - A.
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The components of A in R? are related to its direction cosines (cosines of the angles
that A makes with the coordinate axes) by the formulas

Ay =Acosa, Ay=Acosf, A,=Acosy,

and cos® o 4 cos? B + cos? y = 1.

In Section 2.2 we noted that matrices consisting of a single column could be used to

represent vectors. In particular, we found, illustrating for the 3-D space R?, the following
properties.

10.

11.

12.

13.

A vector A can be represented by a single-column matrix a whose elements are the
components of A, as in

Ay
A = a=|A
Aj

The rows (i.e., individual elements A;) of a are the coefficients of the individual
members of the basis used to represent A, so the element A; is associated with the
basis unit vector €;.

The vector operations of addition and multiplication by a scalar correspond exactly
to the operations of the same names applied to the single-column matrices represent-
ing the vectors, as illustrated here:

G Ay B Ci
G=A-2B+3C — Gol=1A]|-2|B]|+3]|C
G3 Az B3 C3
A1 —2B1 +3Cy
=|Ay—2B,+3C> |, or g=a—2b+3c.
A3 —2B3+3C3

It is therefore appropriate to call these single-column matrices column vectors.
The transpose of the matrix representing a vector A is a single-row matrix, called a
row vector:

al =(A; Ay A3).

The operations illustrated in Property 11 also apply to row vectors.
The dot product A - B can be evaluated as a’ b, or alternatively, because a and b are
real, as a’b. Moreover, a’b = b7 a.

B
A~B=aTb=(A1 Ay A3)| Bo | =A1B1+ AyBy + A3Bs.
B3
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3.2 VECTORS IN 3-D SPACE

We now proceed to develop additional properties for vectors, most of which are applicable
only for vectors in 3-D space.

Vector or Cross Product

A number of quantities in physics are related to angular motion or the torque required to
cause angular acceleration. For example, angular momentum about a point is defined as
having a magnitude equal to the distance » from the point times the component of the
linear momentum p perpendicular to r—the component of p causing angular motion (see
Fig. 3.1). The direction assigned to the angular momentum is that perpendicular to both
r and p, and corresponds to the axis about which angular motion is taking place. The
mathematical construction needed to describe angular momentum is the cross product,
defined as

C=A x B=(ABsin0)é,. (3.2)

Note that C, the result of the cross product, is stated to be a vector, with a magnitude that
is the product of the magnitudes of A, B and the sine of the angle 6 < 7 between A and B.
The direction of C, i.e., that of €, is perpendicular to the plane of A and B, such that A, B,
and C form a right-handed system.! This causes C to be aligned with the rotational axis,
with a sign that indicates the sense of the rotation.

From Fig. 3.2, we also see that A x B has a magnitude equal to the area of the parallel-
ogram formed by A and B, and with a direction normal to the parallelogram.

Other places the cross product is encountered include the formulas

v=wxr and Fy =gvxB.

The first of these equations is the relation between linear velocity v and and angular veloc-
ity @, and the second equation gives the force Fy; on a particle of charge ¢ and velocity v
in the magnetic induction field B (in SI units).

FIGURE 3.1 Angular momentum about the origin, L=r x p.
L has magnitude rp sinf and is directed out of the plane of the paper.

I The inherent ambiguity in this statement can be resolved by the following anthropomorphic prescription: Point the right hand
in the direction A, and then bend the fingers through the smaller of the two angles that can cause the fingers to point in the
direction B; the thumb will then point in the direction of C.
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Bsin6

A

FIGURE 3.2 Parallelogram of A x B.

We can get our right hands out of the analysis by compiling some algebraic properties of
the cross product. If the roles of A and B are reversed, the cross product changes sign, so

B xA=—A xB (anticommutation). (3.3)
The cross product also obeys the distributive laws
AxB+C)=AxB+AxC, k(AxB)=(kA) xB, 34

and when applied to unit vectors in the coordinate directions, we get
€ X éj = Zsijkék- (3.5
k

Here ¢&;jy is the Levi-Civita symbol defined in Eq. (2.8); Eq (3.5) therefore indicates, for
example, that &, x &, =0, &, x &, =&, but &, x &, = —e,.
Using Eq. (3.5) and writing A and B in component form, we can expand A x B to obtain

C=AxB= (A& +A,& +A&) x (Biéy + B,&, + B.&,)
= (AyBy — AyB) (& X &) + (A B, — A, B,) (& x &)
+(AyB, — A B)) (@, x &)
= (A:By — AyB)é + (A B, — A B,)(—&,) + (AyB, — A_B))é,.  (3.6)

The components of C are important enough to be displayed prominently:
C,=A,B,—A;B,, Cy,=A;B,—A:B,, C,=A:B,—A,B,, 3.7

equivalent to

C; ZZS,‘jkAjBk. (3.8)
ik
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Yet another way of expressing the cross product is to write it as a determinant. It is
straightforward to verify that Eqs. (3.7) are reproduced by the determinantal equation

e &, ¢
C=|A, A, Al (3.9)
B, B, B,

when the determinant is expanded in minors of its top row. The anticommutation of the
cross product now clearly follows if the rows for the components of A and B are inter-
changed.

We need to reconcile the geometric form of the cross product, Eq. (3.2), with the alge-
braic form in Eq. (3.6). We can confirm the magnitude of A x B by evaluating (from the
component form of C)

(AxB) - (AxB)=A’B?>— (A-B)>=A’B> — A>B?cos’0
= A’B?sin’6. (3.10)

The first step in Eq. (3.10) can be verified by expanding its left-hand side in component
form, then collecting the result into the terms constituting the central member of the first
line of the equation.

To confirm the direction of C = A x B, we can check that A - C =B - C =0, showing
that C (in component form) is perpendicular to both A and B. We illustrate for A - C:

A-C=A(AyB, — A B)) + Ay(A;By — A B,) + A, (A,By — AyB,) =0. (3.11)

To verify the sign of C, it suffices to check special cases (e.g., A=¢&,, B=¢&,, or Ay =
By =1, all other components zero).

Next, we observe that it is obvious from Eq. (3.2) that if C = A x B in a given coordinate
system, then that equation will also be satisfied if we rotate the coordinates, even though
the individual components of all three vectors will thereby be changed. In other words, the
cross product, like the dot product, is a rotationally invariant relationship.

Finally, note that the cross product is a quantity specifically defined for 3-D space. It is
possible to make analogous definitions for spaces of other dimensionality, but they do not
share the interpretation or utility of the cross product in R>.

Scalar Triple Product

While the various vector operations can be combined in many ways, there are two combi-
nations involving three operands that are of particular importance. We call attention first
to the scalar triple product, of the form A - (B x C). Taking (B x C) in the determinantal
form, Eq. (3.9), one can see that taking the dot product with A will cause the unit vector &,
to be replaced by A, with corresponding replacements to &, and e;. The overall result is

Ay Ay A,
A-BxC)=|B, B, B (3.12)
c. C, C.

We can draw a number of conclusions from this highly symmetric determinantal form.
To start, we see that the determinant contains no vector quantities, so it must evaluate
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BxC

FIGURE 3.3 A - (B x C) parallelepiped.

to an ordinary number. Because the left-hand side of Eq. (3.12) is a rotational invariant,
the number represented by the determinant must also be rotationally invariant, and can
therefore be identified as a scalar. Since we can permute the rows of the determinant (with
a sign change for an odd permutation, and with no sign change for an even permutation),
we can permute the vectors A, B, and C to obtain

A-BxC=B-CxA=C-AxB=—-A-CxB, etc. (3.13)

Here we have followed common practice and dropped the parentheses surrounding the
cross product, on the basis that they must be understood to be present in order for the
expressions to have meaning. Finally, noting that B x C has a magnitude equal to the area
of the BC parallelog ram and a direction perpendicular to it, and that the dot product with
A will multiply that area by the projection of A on B x C, we see that the scalar triple
product gives us (&) the volume of the parallelepiped defined by A, B, and C; see Fig. 3.3.

Example 3.2.1  RECIPROCAL LATTICE

Let a, b, and ¢ (not necessarily mutually perpendicular) represent the vectors that define a
crystal lattice. The displacements from one lattice point to another may then be written

R=nsa+npb+ncc, (3.14)
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with n,, np, and n. taking integral values. In the band theory of solids,” it is useful to
introduce what is called a reciprocal lattice a’, b’, ¢/ such that
a-a’=b-b=c-¢=1, (3.15)
and with
a-b=a-¢=b-a’=b-¢’=c-a’=c-b'=0. (3.16)

The reciprocal-lattice vectors are easily constructed by calling on the fact that for any u
and v, u x v is perpendicular to both u and v; we have

, bxc , cxa , axb
a=—-, =, C=—. (317)
a-bxec a-bxe a-bxe
The scalar triple product causes these expressions to satisfy the scale condition of
Eq. (3.15). |
Vector Triple Product

The other triple product of importance is the vector triple product, of the form A x
(B x C). Here the parentheses are essential since, for example, (&, x €) x &, =0, while
e, x (€& x &) =@, x &, = —e,. Our interest is in reducing this triple product to a simpler
form; the result we seek is

Ax(BxC)=B(A-C)—-C(A-B). (3.18)

Equation (3.18), which for convenience we will sometimes refer to as the BAC—CAB rule,
can be proved by inserting components for all vectors and evaluating all the products, but it
is instructive to proceed in a more elegant fashion. Using the formula for the cross product
in terms of the Levi-Civita symbol, Eq. (3.8), we write

Ax(BxC) = Zéi ZeijkAj (ngququ>
pPq

i jk
=Y "> &A;B,Cy Y eijkekpy- (3.19)
ij rq k
The summation over k of the product of Levi-Civita symbols reduces, as shown in
Exercise 2.1.9,t0 8;,8 j4 — 8i¢8p; we are left with

Ax(BxC)=Y &A;(BC;—B;C)=) & B Y A;C;i—C;Y A;B; |,
ij i j j

which is equivalent to Eq. (3.18).

21t is often chosen to require a - a’, etc., to be 27 rather than unity, because when Bloch states for a crystal (labeled by k) are
set up, a constituent atomic function in cell R enters with coefficient exp(ik - R), and if k is changed by a reciprocal lattice step
(in, say, the a’ direction), the coefficient becomes exp(i[k + a’] - R), which reduces to exp(2mwing) exp(ik - R) and therefore,
because exp(2wing) = 1, to its original value. Thus, the reciprocal lattice identifies the periodicity in k. The unit cell of the k
vectors is called the Brillouin zone
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Exercises

3.21 IfP=¢,P, +¢&,Pyand Q =&, 0, + &, 0, are any two nonparallel (also nonantiparal-
lel) vectors in the xy-plane, show that P x Q is in the z-direction.
3.2.2 Prove that (A x B) - (A x B) = (AB)? — (A - B)2.
3.23 Using the vectors
P =¢,cosf +¢&,sinb,
Q=¢é,cosp —e&,sing,
R =¢,cosp+¢&,sing,
prove the familiar trigonometric identities
sin(@ 4 ¢) = sinf cos ¢ + cosf sin g,
cos(6 + ¢) = cosO cos ¢ — sinb sin .
3.24 (a) Find a vector A that is perpendicular to
U=2¢,+¢, —e,
V=¢ —¢, +e,.

(b) What is A if, in addition to this requirement, we demand that it have unit
magnitude?

3.2.5 If four vectors a, b, ¢, and d all lie in the same plane, show that
(axb)x (cxd)=0.
Hint. Consider the directions of the cross-product vectors.
3.2.6 Derive the law of sines (see Fig. 3.4):

sing  sinf8  siny

Al B [C|’
3.2.7 The magnetic induction B is defined by the Lorentz force equation,
F=¢q(vxB).

FIGURE 3.4 Plane triangle.
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Carrying out three experiments, we find that if

From the results of these three separate experiments calculate the magnetic induction B.

You are given the three vectors A, B, and C,

A=¢ +é,,
B=e¢, + ¢,
C=4¢ —é,.

(a) Compute the scalar triple product, A - B x C. Noting that A = B 4+ C, give a
geometric interpretation of your result for the scalar triple product.

(b) Compute A x (B x C).

Prove Jacobi’s identity for vector products:

ax(bxe)+bx(exa)+cx(axb)=0.

3.2.10 A vector A is decomposed into a radial vector A, and a tangential vector A;. If F is a

unit vector in the radial direction, show that

(a) A,=r(A-r)and
(b) Ar=—Fx (F x A).

3.2.11  Prove that a necessary and sufficient condition for the three (nonvanishing) vectors A,

B, and C to be coplanar is the vanishing of the scalar triple product

A-BxC=0.

3.2.12 Three vectors A, B, and C are given by

A =38, —2¢, +2z,
B =68, +4¢, — 2z,
C=-3¢, —2¢, —4z
Compute the values of A-B x Cand A x (B x C),C x (A x B) and B x (C x A).

3.2.13  Show that

(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C).

3.2.14 Show that

(AxB)x (CxD)=(A-BxD)C—(A-BxC)D.



3.3 Coordinate Transformations 133

3.2.15  An electric charge ¢g; moving with velocity v; produces a magnetic induction B
given by
Ho V] XF
B=—qg ——
a2
where T is a unit vector that points from ¢; to the point at which B is measured (Biot
and Savart law).

(mks units),

(a) Show that the magnetic force exerted by g1 on a second charge g, velocity va, is
given by the vector triple product

Mo 9192

4 r2

(b) Write out the corresponding magnetic force F that gy exerts on ¢;. Define your
unit radial vector. How do F; and F, compare?

F, = Vo X (V1 X f').

(c) Calculate F and F; for the case of ¢; and g moving along parallel trajectories
side by side.

ANS.

Hno 49192 N
b) Fi=———-vy x(va XT).
(b) Fy y——— (v2 x F)

In general, there is no simple relation between
F; and F,. Specifically, Newton’s third law,

F{ = —F,, does not hold.

Mo 4192 oA

¢) Fj=——-vr
© T 4w r?

Mutual attraction.

=—F,.

3.3 COORDINATE TRANSFORMATIONS

As indicated in the chapter introduction, an object classified as a vector must have specific
transformation properties under rotation of the coordinate system; in particular, the com-
ponents of a vector must transform in a way that describes the same object in the rotated
system.

Rotations

Considering initially IR?, and a rotation of the coordinate axes as shown in Fig. 3.5, we
wish to find how the components A, and A, of a vector A in the unrotated system are
related to A’ and A’ its components in the rotated coordinate system. Perhaps the easiest
way to answer this question is by first asking how the unit vectors €, and &, are represented
in the new coordinates, after which we can perform vector addition on the new incarnations
of Ae, and Ae,.

From the right-hand part of Fig. 3.5, we see that

& =cospe, —singe,, and &, =sing& +cosye), (3.20)
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FIGURE 3.5 Left: Rotation of two-dimensional (2-D) coordinate axes through angle ¢.
Center and right: Decomposition of & and €, into their components in the rotated system.

so the unchanged vector A now takes the changed form
A=A8 +Ayey = A, (cosp&, —singe) + A, (sin p&, + cos &)
= (Aycosg + Aysing)&, + (—Aysing + Ay cos )& (3.21)
If we write the vector A in the rotated (primed) coordinate system as
A=AR + AL,
we then have
Ay =Aycosp+ Aysing, A =—A,sing+ Aycosg, (3.22)

which is equivalent to the matrix equation

, (AL _ [ cosg sing) (A
A_<A;, “ \—sing cosg/\A, ) (3.23)

Suppose now that we start from A as given by its components in the rotated system,
(AL, A’y), and rotate the coordinate system back to its original orientation. This will entail
a rotaton in the amount —¢, and corresponds to the matrix equation

A\ _ [ cos(—p) sin(—¢)\ (AL _ [(cosep —sing) (A} (3.24)

Ay) T \=sin(—g) cos(—¢)) \A}) " \sing cosp)\A}) ’
Assigning the 2 x 2 matrices in Eqgs. (3.23) and (3.24) the respective names S and S, we
see that these two equations are equivalent to A’ = SA and A = S’A’, with

s=< cosg mnw) and s/=<C°S¢’ —Sm*") (3.25)

—sing cos¢ sing  cos¢g

Now, applying S to A and then S’ to SA (corresponding to first rotating the coordinate
system an amount +¢ and then an amount —¢), we recover A, or

A =SSA.

Since this result must be valid for any A, we conclude that S’ = S~!. We also see that
S’ =ST. We can check that SS’ = 1 by matrix multiplication:

A sing\ fcosgp —singp) (1 O
" \—sing cosgp/\sing cosp/)  \O 1)
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Since S is real, the fact that S~! = ST means that it is orthogonal. In summary, we have
found that the transformation connecting A and A’ (the same vector, but represented in the
rotated coordinate system) is

A =SA, (3.26)

with S an orthogonal matrix.

Orthogonal Transformations

It was no accident that the transformation describing a rotation in R? was orthogonal, by
which we mean that the matrix effecting the transformation was an orthogonal matrix.
An instructive way of writing the transformation S is, returning to Eq. (3.20), to rewrite
those equations as
& = (€ -&)& + (é/y -ey)e

v 8y = (& &), + (&) - &))e. (3.27)

This corresponds to writing €, and €, as the sum of their projections on the orthogonal
vectors €, and &). Now we can rewrite S as

U
e -e e -e
s:(g il Ay>. (3.28)
e, & € e

This means that each row of S contains the components (in the unprimed coordinates) of
a unit vector (either &, or €}) that is orthogonal to the vector whose components are in the
other row. In turn, this means that the dot products of different row vectors will be zero,
while the dot product of any row vector with itself (because it is a unit vector) will be unity.
That is the deeper significance of an orthogonal matrix S; the v element of SS” is the
dot product formed from the yth row of S and the vth column of S” (which is the same as
the vth row of S). Since these row vectors are orthogonal, we will get zero if u # v, and
because they are unit vectors, we will get unity if i = v. In other words, SS” will be a unit
matrix.

Before leaving Eq. (3.28), note that its columns also have a simple interpretation: Each
contains the components (in the primed coordinates) of one of the unit vectors of the
unprimed set. Thus the dot product formed from two different columns of S will van-
ish, while the dot product of any column with itself will be unity. This corresponds to the
fact that, for an orthogonal matrix, we also have S”S =1.

Summarizing part of the above,

The transformation from one orthogonal Cartesian coordinate system to another Carte-
sian system is described by an orthogonal matrix.

In Chapter 2 we found that an orthogonal matrix must have a determinant that is real
and of magnitude unity, i.e., =1. However, for rotations in ordinary space the value of the
determinant will always be +1. One way to understand this is to consider the fact that any
rotation can be built up from a large number of small rotations, and that the determinant
must vary continuously as the amount of rotation is changed. The identity rotation (i.e.,
no rotation at all) has determinant +1. Since no value close to +1 except +1 itself is a
permitted value for the determinant, rotations cannot change the value of the determinant.
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Reflections

Another possibility for changing a coordinate system is to subject it to a reflection
operation. For simplicity, consider first the inversion operation, in which the sign of each
coordinate is reversed. In R3, the transformation matrix S will be the 3 x 3 analog of
Eq. (3.28), and the transformation under discussion is to set é;L = —e,, with u =x, y,
and z. This will lead to

-1 0 0
S=| 0 -1 01,
0 0 -1
which clearly results in detS = —1. The change in sign of the determinant corresponds

to the change from a right-handed to a left-handed coordinate system (which obviously
cannot be accomplished by a rotation). Reflection about a plane (as in the image produced
by a plane mirror) also changes the sign of the determinant and the handedness of the
coordinate system; for example, reflection in the xy-plane changes the sign of €,, leaving
the other two unit vectors unchanged; the transformation matrix S for this transformation is

1 0 O
S=10 1 0
0 0 -1

Its determinant is also —1.

The formulas for vector addition, multiplication by a scalar, and the dot product are
unaffected by a reflection transformation of the coordinates, but this is not true of the cross
product. To see this, look at the formula for any one of the components of A x B, and how
it would change under inversion (where the same, unchanged vectors in physical space
now have sign changes to all their components):

C.: AyB,—A,B, —> (—A,))(—B,)—(—A,)(—B,)=A,B, —A_B,.

Note that this formula says that the sign of C should not change, even though it must in
order to describe the unchanged physical situation. The conclusion is that our transforma-
tion law fails for the result of a cross-product operation. However, the mathematics can
be salvaged if we classify B x C as a different type of quantity than B and C. Many texts
on vector analysis call vectors whose components change sign under coordinate reflec-
tion polar vectors, and those whose components do not then change sign axial vectors.
The term axial doubtless arises from the fact that cross products frequently describe phe-
nomena associated with rotation about the axis defined by the axial vector. Nowadays, it
is becoming more usual to call polar vectors just vectors, because we want that term to
describe objects that obey for all S the transformation law

A’ =SA (vectors), (3.29)

(and specifically without a restriction to S whose determinants are +1). Axial vectors, for
which the vector transformation law fails for coordinate reflections, are then referred to
as pseudovectors, and their transformation law can be expressed in the somewhat more
complicated form

C' =det(S)SC (pseudovectors). (3.30)
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FIGURE 3.6 Inversion (right) of original coordinates (left) and the effect
on a vector A and a pseudovector B.

The effect of an inversion operation on a coordinate system and on a vector and a pseu-
dovector are shown in Fig. 3.6.

Since vectors and pseudovectors have different transformation laws, it is in general with-
out physical meaning to add them together.” It is also usually meaningless to equate quan-
tities of different transformational properties: in A = B, both quantities must be either
vectors or pseudovectors.

Pseudovectors, of course, enter into more complicated expressions, of which an example
is the scalar triple product A - B x C. Under coordinate reflection, the components of B x C
do not change (as observed earlier), but those of A are reversed, with the result that
A - B x C changes sign. We therefore need to reclassify it as a pseudoscalar. On the
other hand, the vector triple product, A x (B x C), which contains two cross products,
evaluates, as shown in Eq. (3.18), to an expression containing only legitimate scalars and
(polar) vectors. It is therefore proper to identify A x (B x C) as a vector. These cases
illustrate the general principle that a product with an odd number of pseudo quantities is
“pseudo,” while those with even numbers of pseudo quantities are not.

Successive Operations
One can carry out a succession of coordinate rotations and/or reflections by applying the
relevant orthogonal transformations. In fact, we already did this in our introductory discus-

sion for R? where we applied a rotation and then its inverse. In general, if R and R’ refer to
such operations, the application to A of R followed by the application of R’ corresponds to

A’ =S(R)S(R)A, (3.31)

and the overall result of the two transformations can be identified as a single transformation
whose matrix S(R’R) is the matrix product S(R’)S(R).

3The big exception to this is in beta-decay weak interactions. Here the universe distinguishes between right- and left-handed
systems, and we add polar and axial vector interactions.
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Exercises

331

33.2

333

3.3.4

335

Two points should be noted:

The operations take place in right-to-left order: The rightmost operator is the one
applied to the original A; that to its left then applies to the result of the first opera-
tion, etc.

The combined operation R'R is a transformation between two orthogonal coordinate
systems and therefore can be described by an orthogonal matrix: The product of two
orthogonal matrices is orthogonal.

A rotation ¢ + o about the z-axis is carried out as two successive rotations ¢; and
@2, each about the z-axis. Use the matrix representation of the rotations to derive the
trigonometric identities

cos(@1 4 @2) = cos @1 cos 3 — singj sin gy,
sin(¢ + @2) = sin ¢ cos @2 + cos @1 Sin ;.

A corner reflector is formed by three mutually perpendicular reflecting surfaces. Show
that a ray of light incident upon the corner reflector (striking all three surfaces) is
reflected back along a line parallel to the line of incidence.

Hint. Consider the effect of a reflection on the components of a vector describing the
direction of the light ray.

Let x and y be column vectors. Under an orthogonal transformation S, they become
x' = Sx and y’ = Sy. Show that (x')7y’ = x"y, a result equivalent to the invariance of
the dot product under a rotational transformation.

Given the orthogonal transformation matrix S and vectors a and b,

0.80 0.60 0.00 1 0
S=1-048 064 060], a=[0], b=| 2],
036 —-048 0.80 1 —1

(a) Calculate det(S).

(b) Verify that a - b is invariant under application of S to a and b.

(c) Determine what happens to a x b under application of S to a and b. Is this what
is expected?

Using a and b as defined in Exercise 3.3.4, but with

0.60 0.00 0.80
S=1-0.64 —-0.60 0.48 and c¢=|1],
—048 0.80 0.36

(a) Calculate det(S).
Apply S to a, b, and ¢, and determine what happens to
(b) axb,
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(c) (axb)-c,

(d ax((xec).

(e) Classify the expressions in (b) through (d) as scalar, vector, pseudovector, or pseu-
doscalar.

3.4 ROTATIONS IN R3

Because of its practical importance, we discuss now in some detail the treatment of
rotations in IR3. An obvious starting point, based on our experience in R?, would be to
write the 3 x 3 matrix S of Eq. (3.28), with rows that describe the orientations of a rotated
(primed) set of unit vectors in terms of the original (unprimed) unit vectors:

e -¢ e -e e -¢&
S=|¢&-& ¢&-& & & (3.32)
e, -8 &-& @& -&
We have switched the coordinate labels from x, y, z to 1, 2, 3 for convenience in some of
the formulas that use Eq. (3.32). It is useful to make one observation about the elements
of S, namely s, = é;L - €y. This dot product is the projection of é;L onto the €, direction,
and is therefore the change in x,, that is produced by a unit change in xL. Since the relation
between the coordinates is linear, we can identify é;L -€,as dx,/ Bxl’u so our transformation
matrix S can be written in the alternate form
dx1/0x] Ox2/dx] 9x3/0x]
S=|0x1/0x) dx2/dx) dx3/0x} |. (3.33)
dx1/0x5 dx2/dx; 0x3/0x5
The argument we made to evaluate &), - €, could as easily have been made with the roles

of the two unit vectors reversed, yielding instead of dx, / 8fo the derivative ax; /0x,. We
then have what at first may seem to be a surprising result:

Xy _ Bxl/L (3.34)
dx;,  Ax, ' '

A superficial look at this equation suggests that its two sides would be reciprocals. The
problem is that we have not been notationally careful enough to avoid ambiguity: the
derivative on the left-hand side is to be taken with the other x” coordinates fixed, while that
on the right-hand side is with the other unprimed coordinates fixed. In fact, the equality in
Eq. (3.34) is needed to make S an orthogonal matrix.

We note in passing that the observation that the coordinates are related linearly restricts
the current discussion to Cartesian coordinate systems. Curvilinear coordinates are treated
later.

Neither Eq. (3.32) nor Eq. (3.33) makes obvious the possibility of relations among the
elements of S. In R?, we found that all the elements of S depended on a single variable,
the rotation angle. In R?, the number of independent variables needed to specify a general
rotation is three: Two parameters (usually angles) are needed to specify the direction of
€/; then one angle is needed to specify the direction of &) in the plane perpendicular to &;;
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at this point the orientation of €} is completely determined. Therefore, of the nine elements
of S, only three are in fact independent. The usual parameters used to specify R? rotations
are the Euler angles.” It is useful to have S given explicitly in terms of them, as the
Lagrangian formulation of mechanics requires the use of a set of independent variables.

The Euler angles describe an R? rotation in three steps, the first two of which have
the effect of fixing the orientation of the new €3 axis (the polar direction in spherical
coordinates), while the third Euler angle indicates the amount of subsequent rotation about
that axis. The first two steps do more than identify a new polar direction; they describe
rotations that cause the realignment. As a result, we can obtain the matrix representations
of these (and the third rotation), and apply them sequentially (i.e., as a matrix product) to
obtain the overall effect of the rotation.

The three steps describing rotation of the coordinate axes are the following (also illus-
trated in Fig. 3.7):

1. The coordinates are rotated about the €3 axis counterclockwise (as viewed from posi-
tive €3) through an angle « in the range 0 < o < 277, into new axes denoted &}, &, €.
(The polar direction is not changed; the &3 and €/ axes coincide.)

2. The coordinates are rotated about the €, axis counterclockwise (as viewed from posi-
tive &) through an angle 8 in the range 0 < 8 < &, into new axes denoted &/, €7, €.
(This tilts the polar direction toward the €| direction, but leaves &, unchanged.)

3. The coordinates are now rotated about the & axis counterclockwise (as viewed from
positive &) through an angle y in the range 0 < y < 2, into the final axes, denoted

e/’, &), &' (This rotation leaves the polar direction, &5, unchanged.)

In terms of the usual spherical polar coordinates (r, 8, ¢), the final polar axis is at the
orientation 6 = B, ¢ = «. The final orientations of the other axes depend on all three Euler
angles.

We now need the transformation matrices. The first rotation causes €, and &, to
remain in the xy-plane, and has in its first two rows and columns exactly the same form

X5 = X4

(@) (b) (c)

FIGURE 3.7  Euler angle rotations: (a) about &3 through angle «; (b) about &, through
angle B; (c) about & through angle y.

4There are almost as many definitions of the Euler angles as there are authors. Here we follow the choice generally made by
workers in the area of group theory and the quantum theory of angular momentum.
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as S in Eq. (3.25):

cosa sina 0
Si(x) =| —sina¢ cosa O]. (3.35)
0 0 1

The third row and column of S; indicate that this rotation leaves unchanged the €3 com-
ponent of any vector on which it operates. The second rotation (applied to the coordinate
system as it exists after the first rotation) is in the €;€| plane; note that the signs of sin 8
have to be consistent with a cyclic permutation of the axis numbering:

cosf 0 —sinp
S28=| 0 1 0
sinB 0 cospB

The third rotation is like the first, but with rotation amount y:

cosy siny O

S3(y)=| —siny cosy O
0 0 1
The total rotation is described by the triple matrix product
S(a, B, y) =S3(y)S2(B)S1 (). (3.36)
Note the order: S;(«) operates first, then Sy(8), and finally S3(y). Direct multiplication
gives
S(a.B.y) =
cosy cos S cosa — siny sina cosycosfsina +sinycosae  —cosy sinf
—siny cos fcosa —cosy sinae  —siny cos Bsina +cosy cosa  siny sin 8
sin B coso sin B sino cos f
(3.37)

In case they are wanted, note that the elements s;; in Eq. (3.37) give the explicit forms of
the dot products &” - €; (and therefore also the partial derivatives dx; / 8x}’ N.
Note that each of Sy, Sy, and S3 are orthogonal, with determinant +1, so that the overall

S will also be orthogonal with determinant +1.

Example 3.4.1 AN R3 ROTATION

Consider a vector originally with components (2, —1,3). We want its components in
a coordinate system reached by Euler angle rotations « = 8 = y = & /2. Evaluating

S(. B.y):
-1.0 0
S@B )= 0 01
01 0

A partial check on this value of S is obtained by verifying that det(S) = +1.
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Then, in the new coordinates, our vector has components

-1 0 0 2 -2
0 0 1 —1|= 3
010 3 —1

The reader should check this result by visualizing the rotations involved. |

Exercises

341

34.2

343

344

345

Another set of Euler rotations in common use is

(1) arotation about the x3-axis through an angle ¢, counterclockwise,
(2) arotation about the x|-axis through an angle 6, counterclockwise,
(3) arotation about the x5-axis through an angle v, counterclockwise.

If

a=¢p—m/2 o=
B=0 or 0=8
y=vy+m/2 v=y

show that the final systems are identical.

Suppose the Earth is moved (rotated) so that the north pole goes to 30° north, 20° west
(original latitude and longitude system) and the 10° west meridian points due south
(also in the original system).

(a) What are the Euler angles describing this rotation?
(b) Find the corresponding direction cosines.

0.9551 —-0.2552 —-0.1504
ANS. (b) S=10.0052 05221 —-0.8529
0.2962  0.8138 0.5000

Verify that the Euler angle rotation matrix, Eq. (3.37), is invariant under the transfor-
mation

o—a+n, B——B, y—o>y—m.

Show that the Euler angle rotation matrix S(«, 8, y) satisfies the following relations:

(@ S Ha B.y)=S(B.7),
(b) S_l(aa ﬁv V)ZS(—)/,_ﬂ, _O{)'

The coordinate system (x, y, z) is rotated through an angle ® counterclockwise about an
axis defined by the unit vector i into system (x’, y’, z’). In terms of the new coordinates
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the radius vector becomes

r =rcos®+r xnsin® +ndh-r)(1 —cos ®).

(a) Derive this expression from geometric considerations.

(b) Show that it reduces as expected for i = €,. The answer, in matrix form, appears
in Eq. (3.35).
(c) Verify that > = r2.

3.5 DIFFERENTIAL VECTOR OPERATORS

We move now to the important situation in which a vector is associated with each point
in space, and therefore has a value (its set of components) that depends on the coordinates
specifying its position. A typical example in physics is the electric field E(x, y, z), which
describes the direction and magnitude of the electric force if a unit “test charge” was placed
at x, y, z. The term field refers to a quantity that has values at all points of a region; if the
quantity is a vector, its distribution is described as a vector field. While we already have
a standard name for a simple algebraic quantity which is assigned a value at all points of
a spatial region (it is called a function), in physics contexts it may also be referred to as a
scalar field.

Physicists need to be able to characterize the rate at which the values of vectors (and also
scalars) change with position, and this is most effectively done by introducing differential
vector operator concepts. It turns out that there are a large number of relations between
these differential operators, and it is our current objective to identify such relations and
learn how to use them.

Gradient, V

Our first differential operator is that known as the gradient, which characterizes the change
of a scalar quantity, here ¢, with position. Working in R?, and labeling the coordinates x1,
X2, X3, we write ¢(r) as the value of ¢ at the point r = x1€; + x2€, + x3€3, and consider
the effect of small changes dx;, dx,, dx3, respectively, in x1, x2, and x3. This situation
corresponds to that discussed in Section 1.9, where we introduced partial derivatives to
describe how a function of several variables (there x, y, and z) changes its value when these
variables are changed by respective amounts dx, dy, and dz. The equation governing this
process is Eq. (1.141).
To first order in the differentials dx;, ¢ in our present problem changes by an amount

ad d a
dop =22 ) dx; + (22 ) dar + [ 22 ) ds, (3.38)
0x1 dx2 0x3
which is of the form corresponding to the dot product of
dp/0x] dx;

Vo=10¢/0x2 and dr=|dx;
3¢ /0x3 dx;
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These quantities can also be written

Vo= (%) &+ (5—)‘2) &+ (;7*‘;) &, (3.39)
dr =dx1€] + dx2€; + dx3é€3, (3.40)

in terms of which we have
dgp = (Vo) -dr. (3.41)

We have given the 3 x 1 matrix of derivatives the name V¢ (often referred to in speech as
“del phi” or “grad phi”); we give the differential of position its customary name dr.

The notation of Eqgs. (3.39) and (3.41) is really only appropriate if Vg is actually a
vector, because the utility of the present approach depends on our ability to use it in coor-
dinate systems of arbitrary orientation. To prove that V¢ is a vector, we must show that it
transforms under rotation of the coordinate system according to

(Vo) =S (Vo). (3.42)

Taking S in the form given in Eq. (3.33), we examine S(V¢). We have

dx1/0x]  Ox2/dx] 9x3/0x] dp/dx
S(Vo) = | dx1/0x) 0dx2/dx), 0x3/0x5 | | 9¢/dx2

dx1/0xy  xp/dxy dx3/dxy ) \9¢/dx3

23: dx, 0@

= dx| 9xy

3

dx, 0
DIy § (3.43)

= dx; dxy

ZS: dx, 0@

— dxy dx,

Each of the elements in the final expression in Eq. (3.43) is a chain-rule expression for
dp/ 3)‘;/u w=1,2,3, showing that the transformation did produce (V¢)’, the representa-
tion of Vg in the rotated coordinates.

Having now established the legitimacy of the form V¢, we proceed to give V a life of
its own. We therefore define (calling the coordinates x, y, z)

V=e 0 yo, L 1o 0 3.44
_exax+eyay+ezaz. (3.44)
We note that V is a vector differential operator, capable of operating on a scalar (such
as @) to produce a vector as the result of the operation. Because a differential operator
only operates on what is to its right, we have to be careful to maintain the correct order in
expressions involving V, and we have to use parentheses when necessary to avoid ambi-
guity as to what is to be differentiated.
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The gradient of a scalar is extremely important in physics and engineering, as it
expresses the relation between a force field F(r) experienced by an object at r and the
related potential V (r),

F(r)=-VV(r). (3.45)

The minus sign in Eq. (3.45) is important; it causes the force exerted by the field to be in
a direction that lowers the potential. We consider later (in Section 3.9) the conditions that
must be satisfied if a potential corresponding to a given force can exit.

The gradient has a simple geometric interpretation. From Eq. (3.41), we see that, if
dr is constrained to have a fixed magnitude, the direction of dr that maximizes d¢ will
be when Vg and dr are collinear. So, the direction of most rapid increase in ¢ is the
gradient direction, and the magnitude of the gradient is the directional derivative of ¢ in
that direction. We now see that —V'V, in Eq. (3.45), is the direction of most rapid decrease
in V, and is the direction of the force associated with the potential V.

Example 3.5.1 GrabpiENTOF /"

As a first step toward computation of Vr”, let’s look at the even simpler Vr. We begin by
writing r = (x% + y? 4 z)!/2, from which we get

ar X X ar y ar z
T AL LR g 3 T (3.46)
ax  (X2Hy24+zH2 7 ¥y r 3z r
From these formulas we construct
X. Y. o Z. I . R n r
Vr=—¢ + =€, +-e,=—(xe +ye, +z€;)=—. (3.47)
r r r r r
The result is a unit vector in the direction of r, denoted r. For future reference, we note
that
P=Te + 28, + e (3.48)
r r r
and that Eq. (3.47) takes the form
Vr=r. (3.49)

The geometry of r and F is illustrated in Fig. 3.8.

fj/y/r

FIGURE 3.8 Unit vector r (in xy-plane).
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Continuing now to Vr”, we have

a n
—— ﬂ,
ax dax
with corresponding results for the y and z derivatives. We get
Vit =nr"'Vr =0 g (3.50)

Example 3.5.2 cCouLoms’s Law

In electrostatics, it is well known that a point charge produces a potential proportional
to 1/r, where r is the distance from the charge. To check that this is consistent with the
Coulomb force law, we compute
1
F=-V|-).
r

This is a case of Eq. (3.50) with n = —1, and we get the expected result

1.

F=—r.
72

Example 3.5.3  GENERAL RADIAL POTENTIAL

Another situation of frequent occurrence is that the potential may be a function only of the
radial distance from the origin, i.e., ¢ = f(r). We then calculate

dp df(r)or

— = —, etc,

ox dr 0x
which leads, invoking Eq. (3.49), to

_df(

Dyp= Y05

\% 3.51
¢ dr dr (3-51)
This result is in accord with intuition; the direction of maximum increase in ¢ must be
radial, and numerically equal to d¢/dr. |
Divergence, V-
The divergence of a vector A is defined as the operation
A 0A A
V. A= 2 J z (3.52)

+ 24+ ==
ax ay 0z
The above formula is exactly what one might expect given both the vector and differential-
operator character of V.

After looking at some examples of the calculation of the divergence, we will discuss its
physical significance.
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Example 3.5.4  DivERGENCE OF COORDINATE VECTOR

Calculate V - r:

Vor— (éxi 1o, +ézi) (@ex 4 &y +8:2)
ox dy 0z
_ox by i
dx dy 9z’
which reducesto V - r = 3. ]

Example 3.5.5  DIVERGENCE OF CENTRAL FORCE FIELD
Consider next V - f (r)r. Using Eq. (3.48), we write

V- f(rr= (éxi +éyi +é 9 ) . <xf(r)éx + yf(r)éy + Zf(r)éz>.
ox dy r r

‘9z r

_ D (OB (20N, D (0
-5 (5) 5 ()5 ()

Using
d (xf(r\ f@r) xf@r)dr xdf(r)or ) 1 x*]  x2df(r)
_— = — —_— —_ —_ = r _— _
ox r r r2 9x r dr ox roor r2 dr
and corresponding formulas for the y and z derivatives, we obtain after simplification
d
V. =2l L IO (3.53)
r dr
In the special case f(r) =r", Eq. (3.53) reduces to
V.r"t=m+2)r" " (3.54)
For n = 1, this reduces to the result of Example 3.5.4. For n = —2, corresponding to the
Coulomb field, the divergence vanishes, except at r = 0, where the differentiations we
performed are not defined. ]

If a vector field represents the flow of some quantity that is distributed in space, its
divergence provides information as to the accumulation or depletion of that quantity at the
point at which the divergence is evaluated. To gain a clearer picture of the concept, let us
suppose that a vector field v(r) represents the velocity of a fluid® at the spatial points r,
and that p(r) represents the fluid density at r at a given time ¢. Then the direction and
magnitude of the flow rate at any point will be given by the product p (r)v(r).

Our objective is to calculate the net rate of change of the fluid density in a volume
element at the point r. To do so, we set up a parallelepiped of dimensions dx, dy, dz
centered at r and with sides parallel to the xy, xz, and yz planes. See Fig. 3.9. To first
order (infinitesimal dr and dt), the density of fluid exiting the parallelepiped per unit time

STt may be helpful to think of the fluid as a collection of molecules, so the number per unit volume (the density) at any point is
affected by the flow in and out of a volume element at the point.
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- - +pvy | X+ dx/2

—-pv, | x-dx/2
dz dy N \

- Y —

FIGURE 3.9 Outward flow of pv from a volume element in the +x directions. The
quantities +pv, must be multiplied by dy dz to represent the total flux through the
bounding surfaces at x &+ dx /2.

through the yz face located at x — (dx/2) will be

dx
Flow out, face at x — - T (pvy) (r—dr /2y dydz.

Note that only the velocity component vy is relevant here. The other components of v
will not cause motion through a yz face of the parallelepiped. Also, note the following:
dy dz is the area of the yz face; the average of pv, over the face is to first order its value at
(x —dx/2, v, z),asindicated, and the amount of fluid leaving per unit time can be identified
as that in a column of area dy dz and height v,. Finally, keep in mind that outward flow
corresponds to that in the —x direction, explaining the presence of the minus sign.

We next compute the outward flow through the yz planar face at x 4+ dx /2. The result is

d
Flow out, face at x + 7)(: + (pvy) dydz.

(x+dx/2,y,2)

Combining these, we have for both yz faces

d(pvyx)
(—(,ovx) x+dx/2>dydz—( o )dxdydz.

Note that in combining terms at x — dx/2 and x + dx/2 we used the partial derivative
notation, because all the quantities appearing here are also functions of y and z. Finally,
adding corresponding contributions from the other four faces of the parallelepiped, we
reach

x—dx/2 + (pUX)

Net flow out _ | 9 9 9
per unit time = [a(pvx) + 5(:0%) + 3_1(va) dxdydz
=V . (pv)dxdydz. (3.55)

We now see that the name divergence is aptly chosen. As shown in Eq. (3.55), the
divergence of the vector pv represents the net outflow per unit volume, per unit time. If
the physical problem being described is one in which fluid (molecules) are neither created
or destroyed, we will also have an equation of continuity, of the form

ap

ot

This equation quantifies the obvious statement that a net outflow from a volume element
results in a smaller density inside the volume.

When a vector quantity is divergenceless (has zero divergence) in a spatial region, we

can interpret it as describing a steady-state “fluid-conserving” flow (flux) within that region

+V - (pv) =0. (3.56)
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(a) (b)

FIGURE 3.10 Flow diagrams: (a) with source and sink; (b) solenoidal. The divergence
vanishes at volume elements A and C, but is negative at B.

(even if the vector field does not represent material that is moving). This is a situation that
arises frequently in physics, applying in general to the magnetic field, and, in charge-free
regions, also to the electric field. If we draw a diagram with lines that follow the flow paths,
the lines (depending on the context) may be called stream lines or lines of force. Within a
region of zero divergence, these lines must exit any volume element they enter; they cannot
terminate there. However, lines will begin at points of positive divergence (sources) and
end at points where the divergence is negative (sinks). Possible patterns for a vector field
are shown in Fig. 3.10.

If the divergence of a vector field is zero everywhere, its lines of force will consist
entirely of closed loops, as in Fig. 3.10(b); such vector fields are termed solenoidal. For
emphasis, we write

V-B=0 everywhere — B is solenoidal. (3.57)

Curl, V x

Another possible operation with the vector operator V is to take its cross product with a
vector. Using the established formula for the cross product, and being careful to write the
derivatives to the left of the vector on which they are to act, we obtain

VxVeé, (ivz _ ivy> s (ivx - ivz> +é. (ivy _ ivx>
ay 9z 0z ax ax dy
e, &, &
=|d/dx d/dy 9/9z|. (3.58)
Ve V, V;

This vector operation is called the curl of V. Note that when the determinant in Eq. (3.58)
is evaluated, it must be expanded in a way that causes the derivatives in the second row to
be applied to the functions in the third row (and not to anything in the top row); we will
encounter this situation repeatedly, and will identify the evaluation as being from the top
down.

Example 3.5.6  CuRrLOF A CENTRAL FORCE FIELD

Calculate V x [ f(r)r]. Writing



150 Chapter 3 Vector Analysis

and remembering that dr/dy = y/r and dr/dz = z/r, the x-component of the result is
found to be

9 2f() D yf()
dy r az r

_ d f(r) E)r_ d f(r)\ or
(g ()
_Z<if(r)>z_ (if(ﬂ)g_o
“Y\dr r N\ )T

By symmetry, the other components are also zero, yielding the final result

[V x L], =

V x [£(r)§] =0. (3.59)

Example 3.5.7 A NoNzero CURL

Calculate F = V x (—yeé, + xé,), which is of the form V x b, where b, = —y, b, =x,

b; =0. We have
ab, b ab a ab ab
x:—z——y:O’ y: x—ﬁzo’ FZ:—y— x:’
ay 9z 9z ox ax ay
so F=2¢,. [ |

The results of these two examples can be better understood from a geometric interpreta-
tion of the curl operator. We proceed as follows: Given a vector field B, consider the line
integral ¢ B - ds for a small closed path. The circle through the integral sign is a signal
that the path is closed. For simplicity in the computations, we take a rectangular path in
the xy-plane, centered at a point (xg, y), of dimensions Ax x Ay, as shown in Fig. 3.11.
We will traverse this path in the counterclockwise direction, passing through the four seg-
ments labeled 1 through 4 in the figure. Since everywhere in this discussion z = 0, we do
not show it explicitly.

y
Xo=AX, Yo+Ay. Xo+AX, yot+Ay
2 2 3 2 2
4 3 2
1
X=X, yo=2y Xo+AX, yo-Ay
2 2 2 2
X

FIGURE 3.11 Path for computing circulation at (xg, yg).
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Segment 1 of the path contributes to the integral
x0+Ax/2
Segment 1 = / B.(x. yo — Ay/2)dx ~ By(xo. 3o — Ay/2) Ax,
xo—Ax/2

where the approximation, replacing By by its value at the middle of the segment, is good
to first order. In a similar fashion, we have

Yo+Ay/2
Segment 2 = / By (xo+ Ax/2,y)dy = By(xo + Ax /2, yo) Ay,
Yo—Ay/2
x0—Ax/2
Segment 3 = / By (x, yo + Ay/2)dx =~ — By (x9, yo + Ay/2)Ax,
xo+Ax/2
yo—Ay/2
Segment 4 = / By(xo — Ax/2,y)dy ~ —By(xo — Ax /2, y0) Ay.
yo+Ay/2
Note that because the paths of segments 3 and 4 are in the direction of decrease in the value

of the integration variable, we obtain minus signs in the contributions of these segments.
Combining the contributions of Segments 1 and 3, and those of Segments 2 and 4, we have

B
Segments 1 + 3 = (B (x0, Yo — Ay/2) — By(x0, yo + Ay/2)) Ax ~ —a—xAyAx,
y

0B
Segments 2 + 4 = (By(xo + Ax/2, yo) — By(xo — Ax/2, yo)) Ay ~ —i—a—yAx Ay.
X

Combining these contributions to obtain the value of the entire line integral, we have

0By 0By
B-ds=|—— AxAy =~ [V x B];AxAy. (3.60)
ax ay

The thing to note is that a nonzero closed-loop line integral of B corresponds to a nonzero
value of the component of V x B normal to the loop. In the limit of a small loop, the line
integral will have a value proportional to the loop area; the value of the line integral per
unit area is called the circulation (in fluid dynamics, it is also known as the vorticity).
A nonzero circulation corresponds to a pattern of stream lines that form closed loops.
Obviously, to form a closed loop, a stream line must curl; hence the name of the V x
operator.

Returning now to Example 3.5.6, we have a situation in which the lines of force must
be entirely radial; there is no possibility to form closed loops. Accordingly, we found this
example to have a zero curl. But, looking next at Example 3.5.7, we have a situation in
which the stream lines of —yé, + xé, form counterclockwise circles about the origin, and
the curl is nonzero.
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Exercises

3.5.1

3.5.2

353

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

Chapter 3 Vector Analysis

We close the discussion by noting that a vector whose curl is zero everywhere is termed

irrotational. This property is in a sense the opposite of solenoidal, and deserves a parallel
degree of emphasis:

V x B=0 everywhere — B is irrotational. (3.61)

IfS(x,y,2) = (x2 4 y2 +22) " find

(a) VS atthe point (1, 2, 3),
(b) the magnitude of the gradient of S, [V S| at (1, 2, 3), and
(c) the direction cosines of VS at (1, 2, 3).
(a) Find a unit vector perpendicular to the surface
x4 y2 +72=3
at the point (1, 1, 1).
(b) Derive the equation of the plane tangent to the surface at (1, 1, 1).
ANS. (a) (& +8&,+&)/v3, (b) x+y+z=3.

Given a vector rip = &x(x; —x2) +@&,(y1 — y2) +€;(z1 — z2), show that Vr2 (gradient
with respect to x, y1, and z; of the magnitude r{7) is a unit vector in the direction of
rio.

If a vector function F depends on both space coordinates (x, y, z) and time ¢, show that
oF
dF = (dr-V)F+ Edt'
Show that V(uv) = vVu + uVv, where u and v are differentiable scalar functions of
x,y, and z.

For a particle moving in a circular orbit r = &,r cos wt + &,r sinwt:

(a) Evaluater x r, with F =dr/dt =v.
(b) Show that ¥ 4+ w?r = 0 with ¥ = dv/dt.

Hint. The radius r and the angular velocity w are constant.
ANS. (a) &.wr’.

Vector A satisfies the vector transformation law, Eq. (3.26). Show directly that its time
derivative dA/dt also satisfies Eq. (3.26) and is therefore a vector.

Show, by differentiating components, that

(a) d (A-B) A B+ A dB
a —_— . [ —— - —_
dt dt dt
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3.5.11
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d dA dB
b) —(AxB)=—xB+Ax—,
®) dt( xB) dtx + th

just like the derivative of the product of two algebraic functions.

Prove V.-(axb)=b-(V xa)—a-(V xDb).
Hint. Treat as a scalar triple product.

Classically, orbital angular momentum is given by L = r x p, where p is the lin-
ear momentum. To go from classical mechanics to quantum mechanics, p is replaced
(in units with = 1) by the operator —i V. Show that the quantum mechanical angular
momentum operator has Cartesian components

} d d
Ly=—i ya—z—z$ ,

Using the angular momentum operators previously given, show that they satisfy com-
mutation relations of the form

[Ly, Ly] = LxLy - Lny =ilL,
and hence
L xL=iL.

These commutation relations will be taken later as the defining relations of an angular
momentum operator.

With the aid of the results of Exercise 3.5.11, show that if two vectors a and b commute
with each other and with L, that is, [a, b] =[a, L] = [b, L] = 0, show that

[a-L,b-L]=i(axb)-L.

Prove that the stream lines of b in of Example 3.5.7 are counterclockwise circles.

3.6 DIFFERENTIAL VECTOR OPERATORS: FURTHER

PROPERTIES

Successive Applications of V

Interesting results are obtained when we operate with V on the differential vector operator
forms we have already introduced. The possible results include the following:

(@) V-V (b)V x Vg (©) V(V-V)
V- (VxV)  (e)Vx(VxV).
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All five of these expressions involve second derivatives, and all five appear in the

second-order differential equations of mathematical physics, particularly in electromag-
netic theory.

Laplacian

The first of these expressions, V - Vg, the divergence of the gradient, is named the
Laplacian of ¢. We have

V.V A8+A8+A8 A8¢+A8¢+Aa¢
. =(ex,—+e,—+e,— |- (e&x—+e,— +€&,—
¢ T ox y8y ‘oz T ox yay ‘oz

82<p 82<p 82g0

=—+—+—. 3.62
ax2  3y? 972 (3:62)
When ¢ is the electrostatic potential, we have
V.-Vp=0 (3.63)

at points where the charge density vanishes, which is Laplace’s equation of electrostatics.
Often the combination V - V is written V2, or A in the older European literature.

Example 3.6.1  LaPLACIAN OF A CENTRAL FIELD POTENTIAL

Calculate V2¢(r). Using Eq. (3.51) to evaluate V¢ and then Eq. (3.53) for the divergence,
we have

de(r) _2de(r)  d’o(r)

dr r o dr dr? -

We get a term in addition to d?¢/dr? because &, has a direction that depends on r.
In the special case ¢(r) = r", this reduces to

V2" =n(n + D)r" 2.

This vanishes for n = 0 (¢ =constant) and for n = —1 (Coulomb potential). For n = —1,
our derivation fails for r = 0, where the derivatives are undefined.

Vi(r)=V Vo) =V

Irrotational and Solenoidal Vector Fields

Expression (b), the second of our five forms involving two V operators, may be written as
a determinant:

€ ey €, €, e, €,
VxVep=|0d/0x 09/dy d/dz|=19/0x d/dy 0/9z|¢ =0.
dp/ox d¢@/dy 0¢/oz d/ox 0/dy 9/0z
Because the determinant is to be evaluated from the top down, it is meaningful to move

¢ outside and to its right, leaving a determinant with two identical rows and yielding the
indicated value of zero. We are thereby actually assuming that the order of the partial



3.6 Differential Vector Operators: Further Properties 155

differentiations can be reversed, which is true so long as these second derivatives of ¢ are
continuous.
Expression (d) is a scalar triple product that may be written

d/d0x 0/dy 0/0z
V- (VxV)=|d/ox d/dy d/dz|=0.
Vi Vy V.
This determinant also has two identical rows and yields zero if V has sufficient continuity.
These two vanishing results tell us that any gradient has a vanishing curl and is therefore

irrotational, and that any curl has a vanishing divergence, and is therefore solenoidal.
These properties are of such importance that we set them out here in display form:

VxVp=0, allg, (3.64)
V. (VxV)=0, allV. (3.65)

Maxwell’s Equations

The unification of electric and magnetic phenomena that is encapsulated in Maxwell’s
equations provides an excellent example of the use of differential vector operators. In SI
units, these equations take the form

V-B=0, (3.66)
v.E=2, (3.67)
€0
oE
V x B=80M0§ + nod, (3.68)
B
VXE=——. (3.69)
ot

Here E is the electric field, B is the magnetic induction field, p is the charge density, J is
the current density, &g is the electric permittivity, and wg is the magnetic permeability, so
gopo = 1/c?, where c is the velocity of light.

Vector Laplacian

Expressions (c) and (e) in the list at the beginning of this section satisfy the relation
Vx(VxV)=V(V-V)—-V.VV., (3.70)

The term V - VV, which is called the vector Laplacian and sometimes written V2V, has
prior to this point not been defined; Eq. (3.70) (solved for VZV) can be taken to be its
definition. In Cartesian coordinates, V2V is a vector whose i component is V2V;, and that
fact can be confirmed either by direct component expansion or by applying the BAC-CAB
rule, Eq. (3.18), with care always to place V so that the differential operators act on it.
While Eq. (3.70) is general, V2V separates into Laplacians for the components of V only
in Cartesian coordinates.
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Example 3.6.2 ELECTROMAGNETIC WAVE EQUATION
Even in vacuum, Maxwell’s equations can describe electromagnetic waves. To derive an

electromagnetic wave equation, we start by taking the time derivative of Eq. (3.68) for the
case J = 0, and the curl of Eq. (3.69). We then have

3V X B:eouoaz—E

ot 012’
Vx(VxE)= —iV xB= —eouoaz—E.
ot 92

We now have an equation that involves only E; it can be brought to a more convenient
form by applying Eq. (3.70), dropping the first term on the right of that equation because,
in vacuum, V - E = 0. The result is the vector electromagnetic wave equation for E,

V2E=eou032—E=iaz—E. (3.71)

a2 2 ar?
Equation (3.71) separates into three scalar wave equations, each involving the (scalar)
Laplacian. There is a separate equation for each Cartesian component of E. |

Miscellaneous Vector Identities

Our introduction of differential vector operators is now formally complete, but we present
two further examples to illustrate how the relationships between these operators can be
manipulated to obtain useful vector identities.

Example 3.6.3  DIVERGENCE AND CURL OF A PRODUCT

First, simplify V - (fV), where f and V are, respectively, scalar and vector functions.
Working with the components,

0 0 d
V- (fV)= a(fo) + 5(ny) + 3—2(sz)

of oV, of vy of oV,
ox X+f8x+8y )+f8y+82 Z+f3z

=(Vf)-V+[fV-V. (3.72)

Now simplify V x (f V). Consider the x-component:

v, v, af afv]
P vy

0 0

—(fV.)= —(fV,)=f| = -2 2L

ay(f 2) az(f y) f[ay az}+[8y Sy
This is the x-component of f(V x V) + (V f) x V, so we have

Vx(fV)=f(VxV)+(Vf)xV. (3.73)
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Example 3.6.4  GRADIENT OF A DOT PRODUCT

Verify that
VA-B)=B-V)A+(A-V)B+B x (V xA)+ A x(V xB). (3.74)

This problem is easier to solve if we recognize that V(A - B) is a type of term that appears
in the BAC-CAB expansion of a vector triple product, Eq. (3.18). From that equation,
we have

Ax(VxB)=Vg(A-B)—(A-V)B,

where we placed B at the end of the final term because V must act on it. We write Vg to
indicate an operation our notation is not really equipped to handle. In this term, V acts only
on B, because A appeared to its left on the left-hand side of the equation. Interchanging
the roles of A and B, we also have

Bx (VxA)=Vi(A-B)—(B-V)A,

where V4 acts only on A. Adding these two equations together, noting that Vp + V4 is

simply an unrestricted V, we recover Eq. (3.74). |
Exercises
3.6.1 Show that u x v is solenoidal if u and v are each irrotational.
3.6.2 If A is irrotational, show that A x r is solenoidal.
3.6.3 A rigid body is rotating with constant angular velocity . Show that the linear velocity
v is solenoidal.
3.6.4 If a vector function V(x, y, z) is not irrotational, show that if there exists a scalar func-
tion g(x, v, z) such that gV is irrotational, then
V-VxV=0.
3.6.5 Verify the vector identity
Vx(AxB)=B-V)A—(A-V)B—B(V-A)+A(V-B).
3.6.6 As an alternative to the vector identity of Example 3.6.4 show that
VA-B)=(AxV)xB+BxV)xA+A(V-B)+B(V-A).
3.6.7 Verify the identity
1
Ax(VxA)= EV(AZ) —(A-V)A.
3.6.8 If A and B are constant vectors, show that

V(A-Bxr)=A xB.
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3.6.9 Verify Eq. (3.70),
Vx(VxV)=V(V.V)-V.VV,
by direct expansion in Cartesian coordinates.
3.6.10 Provethat V x (¢V¢) =0.

3.6.11  You are given that the curl of F equals the curl of G. Show that F and G may differ by
(a) aconstant and (b) a gradient of a scalar function.

3.6.12  The Navier-Stokes equation of hydrodynamics contains a nonlinear term of the form
(v - V)v. Show that the curl of this term may be written as —V x [v x (V x v)].

3.6.13 Prove that (Vu) x (Vv) is solenoidal, where u and v are differentiable scalar functions.

3.6.14  The function ¢ is a scalar satisfying Laplace’s equation, V2¢ = 0. Show that V¢ is
both solenoidal and irrotational.

3.6.15  Show that any solution of the equation
Vx(VxA) —k*A=0
automatically satisfies the vector Helmholtz equation
VIA+K*A=0
and the solenoidal condition
V-A=0.
Hint. Let V - operate on the first equation.
3.6.16  The theory of heat conduction leads to an equation
VW =k |VD|?,

where ® is a potential satisfying Laplace’s equation: V>® = 0. Show that a
solution of this equation is W = k®? /2.

3.6.17 Given the three matrices

0O 0 O 0 0 i
My={0 0 —i], My=| 0 0 0],
0O i O —i 0 0
and
0 —i 0
M,=i 0 0],
0O 00

show that the matrix-vector equation

19
M-V4+13—-— )¢y =0
< + BCBI)VI
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reproduces Maxwell’s equations in vacuum. Here ¥ is a column vector with compo-
nents ¥, = Bj —iEj/c, j =x,y,z. Note that goso = 1/c? and that 13 is the 3 x 3 unit
matrix.

3.6.18  Using the Pauli matrices o; of Eq. (2.28), show that
(0-a)(o-b)=(a-b)ly+io-(axb).
Here
oc=¢80+¢&0,+¢.03,

a and b are ordinary vectors, and 1, is the 2 x 2 unit matrix.

3.7 VECTOR INTEGRATION

In physics, vectors occur in line, surface, and volume integrals. At least in principle, these
integrals can be decomposed into scalar integrals involving the vector components; there
are some useful general observations to make at this time.

Line Integrals

Possible forms for line integrals include the following:

/godr, /F-dr, /V x dr. (3.75)

C C C

In each of these the integral is over some path C that may be open (with starting and
endpoints distinct) or closed (forming a loop). Inserting the form of dr, the first of these
integrals reduces immediately to

/godrzéx/w(X,y,Z)dx+éyf¢(X,y,Z)dY+éz/‘P(x,y72)dZ~ (3.76)

C C C C

The unit vectors need not remain within the integral beause they are constant in both mag-
nitude and direction.

The integrals in Eq. (3.76) are one-dimensional scalar integrals. Note, however, that
the integral over x cannot be evaluated unless y and z are known in terms of x; similar
observations apply for the integrals over y and z. This means that the path C must be
specified. Unless ¢ has special properties, the value of the integral will depend on the path.

The other integrals in Eq. (3.75) can be handled similarly. For the second integral, which
is of common occurrence, being that which evaluates the work associated with displace-
ment on the path C, we have:

W=/F~dr=fFx(x,y,z)dx+/Fy(x,y,z)dy+/Fz(x,y,z)dz. (3.77)

C C C C
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Example 3.7.1  LINE INTEGRALS

We consider two integrals in 2-D space:

Ic = /go(x, y)dr, withe(x,y)=1,
C

Jo= /F(x, y)-dr, with F(x, y) = —ye, + xé,.
c

We perform integrations in the xy-plane from (0,0) to (1,1) by the two different paths
shown in Fig. 3.12:

Path Cy is (0,0) — (1,0) — (1, 1),
Path C; is the straight line (0,0) — (1, 1).

For the first segment of Cy, x ranges from 0 to 1 while y is fixed at zero. For the second
segment, y ranges from 0 to 1 while x = 1. Thus,

1 1 1 1
Ic, =éx/dx(p(x,0)+éy/dy(p(1,y)=éx/dx+éy/dy:éx+éy,
0 0 0
1 1 1 1

1
Je, =/dxe(x,O)+/dyFy(1,y)=/=/dx(0)+/dy(1)=1.
0 0 0 0 0

On Path 2, both dx and dy range from 0 to 1, with x = y at all points of the path. Thus,
1 1
ICZ:éx/dx¢(x’x)+éy/dy(ﬂ()77y)zéx +éy,
0 0
1 1 1 1

1 1
ch=/dxe(x,X)+/dyFy(y,y)=/dX(—X)+/dy(y)=——+—=0-

2 2
0 0 0 0

We see that integral / is independent of the path from (0,0) to (1,1), a nearly trivial special
case, while the integral J is not. |

y

]| A

C, c,
Cy

FIGURE 3.12 Line integration paths.
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FIGURE 3.13  Positive normal directions: left, disk; right, spherical surface with hole.

Surface Integrals

Surface integrals appear in the same forms as line integrals, the element of area being a
vector, do, normal to the surface:

fwda, /V-da, /dea.

Often do is written fidA, where 1 is a unit vector indicating the normal direction. There are
two conventions for choosing the positive direction. First, if the surface is closed (has no
boundary), we agree to take the outward normal as positive. Second, for an open surface,
the positive normal depends on the direction in which the perimeter of the surface is tra-
versed. Starting from an arbitrary point on the perimeter, we define a vector u to be in the
direction of travel along the perimeter, and define a second vector v at our perimeter point
but tangent to and lying on the surface. We then take u x v as the positive normal direction.
This corresponds to a right-hand rule, and is illustrated in Fig. 3.13. It is necessary to define
the orientation carefully so as to deal with cases such as that of Fig. 3.13, right.

The dot-product form is by far the most commonly encountered surface integral, as it
corresponds to a flow or flux through the given surface.

Example 3.7.2 A SURFACE INTEGRAL

Consider a surface integral of the form / = | ¢B - do over the surface of a tetrahe-
dron whose vertices are at the origin and at the points (1,0,0), (0,1,0), and (0,0,1), with
B=(x + 1)&, + yé, — zé,. See Fig. 3.14.

The surface consists of four triangles, which can be identified and their contributions
evaluated, as follows:

1. On the xy-plane (z = 0), vertices at (x, y) = (0,0), (1,0), and (0,1); direction of out-
ward normal is —€;, so do = —€,d A (d A = element of area on this triangle). Here,
B = (x + 1)&, + yéy, and B - do = 0. So there is no contribution to /.

2. On the xz plane (y = 0), vertices at (x, z) = (0,0), (1,0), and (0,1); direction of out-
ward normal is —&y, so do = —e,d A. On this triangle, B = (x 4 1)é, — z&;, Again,
B - do = 0. There is no contribution to 1.

3. On the yz plane (x = 0), vertices at (y,z) = (0,0), (1,0), and (0,1); direction
of outward normal is —&, so do = —&,dA. Here, B = &, + yeé, — zé,, and
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FIGURE 3.14 Tetrahedron, and detail of the oblique face.

B-do = (—1)dA; the contribution to / is —1 times the area of the triangle (=1/2),
or [z =—1/2.

4. Obliquely oriented, vertices at (x, y, z) = (1,0,0), (0,1,0), (0,0,1); direction of out-
ward normal is fi = (&, + &, + é.)/+/3, and do = ndA. Using also B = (x 4 1)&, +
y€, — z&., this contribution to / becomes

x+1+y—z /2(1—Z)
— “dA=
V3 V3

Ay Ay
where we have used the fact that on this triangle, x +y +z=1.
To complete the evaluation, we note that the geometry of the triangle is as shown
in Fig. 3.14, that the width of the triangle at height z is +/2 (1 — z), and a change dz in
z produces a displacement 4/3/2dz on the triangle. I4 therefore can be written

Iy = dA,

1

5 2
Iy = 2(1—Z)dZ=§
0

Combining the nonzero contributions /3 and 14, we obtain the final result
1 2 1

2+3_6

Volume Integrals

Volume integrals are somewhat simpler, because the volume element dt is a scalar
quantity. Sometimes dt is written d°r, or d3x when the coordinates were designated
(x1, x2, x3). In the literature, the form dr is frequently encountered, but in contexts that
usually reveal that it is a synonym for dt, and not a vector quantity. The volume integrals
under consideration here are of the form

/th:éx/det—I—éy/Vydt—l—éZ/VZdr.

The integral reduces to a vector sum of scalar integrals.
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Some volume integrals contain vector quantities in combinations that are actually scalar.
Often these can be rearranged by applying techniques such as integration by parts.

Example 3.7.3  INTEGRATION BY PARTS

Consider an integral over all space of the form [A(r)V - f(r)d 3r in the frequently occur-
ring special case in which either f or A vanish sufficiently strongly at infinity. Expanding
the integrand into components,

[ aw-vrwar=[faya: [Axf|j°=_oo - e dx] o

d

Z_J‘fffaaix dxdydz—ff f%dXdde_jfffaaA;dXdde

=—/f(r)v A()d’r. (3.78)
ikz g

For example, if A = ¢"**p describes a photon with a constant polarization vector in the
direction p and v (r) is a bound-state wave function (so it vanishes at infinity), then

d

ikz
[eisz)-Vlﬂ(l’)d3i’:—(f)'éz)[1//(r) 2 d3r:—ik(f)-éz)/llf(r)eikzd3r.
z

Only the z-component of the gradient contributes to the integral.
Analogous rearrangements (assuming the integrated terms vanish at infinity) include

/ OV -A@d’r=— / A(r) -V f(n)d°r, (3.79)

/ Cr)- (Vx A(r)d’r = / A@) - (V x C(r))d>r. (3.80)

In the cross-product example, the sign change from the integration by parts combines with
the signs from the cross product to give the result shown. ]

Exercises

3.71

3.7.2

The origin and the three vectors A, B, and C (all of which start at the origin) define a
tetrahedron. Taking the outward direction as positive, calculate the total vector area of
the four tetrahedral surfaces.

Find the work ¢ F - dr done moving on a unit circle in the xy-plane, doing work against
a force field given by

_ —€yy éyx
_x2+y2 x2+y2 '

(a) Counterclockwise from O to 7,
(b) Clockwise from 0 to —r.

Note that the work done depends on the path.
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3.7.3 Calculate the work you do in going from point (1, 1) to point (3, 3). The force you exert
is given by

F=¢(x —y)+ey(x+y).
Specify clearly the path you choose. Note that this force field is nonconservative.

3.7.4 Evaluate § r - dr for a closed path of your choosing.

3.7.5 Evaluate
! f r-d
— . o"
3

S

over the unit cube defined by the point (0, 0, 0) and the unit intercepts on the positive
x-, y-, and z-axes. Note that r - do is zero for three of the surfaces and that each of the
three remaining surfaces contributes the same amount to the integral.

3.8 INTEGRAL THEOREMS

The formulas in this section relate a volume integration to a surface integral on its boundary
(Gauss’ theorem), or relate a surface integral to the line defining its perimeter (Stokes’
theorem). These formulas are important tools in vector analysis, particularly when the
functions involved are known to vanish on the boundary surface or perimeter.

Gauss’ Theorem

Here we derive a useful relation between a surface integral of a vector and the volume
integral of the divergence of that vector. Let us assume that a vector A and its first deriva-
tives are continuous over a simply connected region of R (regions that contain holes,
like a donut, are not simply connected). Then Gauss’ theorem states that

%A-dc:[V-Adr. (3.81)
av v

Here the notations V and dV respectively denote a volume of interest and the closed sur-
face that bounds it. The circle on the surface integral is an additional indication that the
surface is closed.

To prove the theorem, consider the volume V to be subdivided into an arbitrary large
number of tiny (differential) parallelepipeds, and look at the behavior of V - A for each. See
Fig. 3.15. For any given parallelepiped, this quantity is a measure of the net outward flow
(of whatever A describes) through its boundary. If that boundary is interior (i.e., is shared
by another parallelepiped), outflow from one parallelepiped is inflow to its neighbor; in a
summation of all the outflows, all the contributions of interior boundaries cancel. Thus, the
sum of all the outflows in the volume will just be the sum of those through the exterior
boundary. In the limit of infinite subdivision, these sums become integrals: The left-hand
side of Eq. (3.81) becomes the total outflow to the exterior, while its right-hand side is the
sum of the outflows of the differential elements (the parallelepipeds).
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|

FIGURE 3.15 Subdivision for Gauss’ theorem.

A simple alternate explanation of Gauss’ theorem is that the volume integral sums the
outflows V - A from all elements of the volume; the surface integral computes the same
thing, by directly summing the flow through all elements of the boundary.

If the region of interest is the complete R3, and the volume integral converges, the
surface integral in Eq. (3.81) must vanish, giving the useful result

/ V.Adt =0, integration over R? and convergent. (3.82)

Example 3.8.1  TETRAHEDRON

We check Gauss’ theorem for a vector B = (x + 1)&, + yé, — zé,, comparing

/V-Bdr VS. fB~da,

Vv A%

where V is the tetrahedron of Example 3.7.2. In that example we computed the surface
integral needed here, obtaining the value 1/6. For the integral over V, we take the diver-
gence, obtaining V - B = 1. The volume integral therefore reduces to the volume of the
tetrahedron that, with base of area 1/2 and height 1, has volume 1/3 x 1/2 x 1=1/6.
This instance of Gauss’ theorem is confirmed. ]

Green’s Theorem

A frequently useful corollary of Gauss’ theorem is a relation known as Green’s theorem.
If u and v are two scalar functions, we have the identities

V- @Vv) =uVZv+ (Vu) - (Vv), (3.83)
V- @Vv) =uV*v+ (Vu) - (V). (3.84)
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Subtracting Eq. (3.84) from Eq. (3.83), integrating over a volume V on which u, v, and
their derivatives are continuous, and applying Gauss’ theorem, Eq. (3.81), we obtain

f(uV2v —vV2u)dt = f(uw —vVu) -do. (3.85)
14 v
This is Green’s theorem. An alternate form of Green’s theorem, obtained from Eq. (3.83)
alone, is
fuw. do = / uvVivdr + / Vv, - Vuvdr. (3.86)
3V 14 14

While the results already obtained are by far the most important forms of Gauss’ theo-
rem, volume integrals involving the gradient or the curl may also appear. To derive these,
we consider a vector of the form

B(x,y,z) = B(x,y,z)a, (3.87)

in which a is a vector with constant magnitude and constant but arbitrary direction. Then
Eq. (3.81) becomes, applying Eq. (3.72),

a~§£Bda=/V-(Ba)dt=a/VBdt.
v 1% v

This may be rewritten

a- dea—fVBdr =0. (3.88)

% %

Since the direction of a is arbitrary, Eq. (3.88) cannot always be satisfied unless the quan-
tity in the square brackets evaluates to zero.® The result is

dea :/VBdt. (3.89)

A% Vv

In a similar manner, using B =a x P in which a is a constant vector, we may show

fda xP:/V x Pdr. (3.90)

A% Vv

These last two forms of Gauss’ theorem are used in the vector form of Kirchoff diffraction
theory.

6This exploitation of the arbitrary nature of a part of a problem is a valuable and widely used technique.
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Stokes’ Theorem

Stokes’ theorem is the analog of Gauss’ theorem that relates a surface integral of a deriva-
tive of a function to the line integral of the function, with the path of integration being the
perimeter bounding the surface.

Let us take the surface and subdivide it into a network of arbitrarily small rectangles.
In Eq. (3.60) we saw that the circulation of a vector B about such a differential rectan-
gles (in the xy-plane) is V x B|ZéZ dx dy. Identifying dx dy €, as the element of area do,
Eq. (3.60) generalizes to

> B-dr=V xB-do. (3.91)

four sides

We now sum over all the little rectangles; the surface contributions, from the right-hand
side of Eq. (3.91), are added together. The line integrals (left-hand side) of all interior
line segments cancel identically. See Fig. 3.16. Only the line integral around the perimeter
survives. Taking the limit as the number of rectangles approaches infinity, we have

fB~dr:/VxB~da. (3.92)
3s S
Here 0S is the perimeter of S. This is Stokes’ theorem. Note that both the sign of the
line integral and the direction of do depend on the direction the perimeter is traversed,
so consistent results will always be obtained. For the area and the line-integral direction
shown in Fig. 3.16, the direction of ¢ for the shaded rectangle will be out of the plane of
the paper.
Finally, consider what happens if we apply Stokes’ theorem to a closed surface. Since it
has no perimeter, the line integral vanishes, so

/V X B-do =0, forS aclosed surface. (3.93)
s

As with Gauss’ theorem, we can derive additional relations connecting surface integrals
with line integrals on their perimeter. Using the arbitrary-vector technique employed to

2
i

FIGURE 3.16 Direction of normal for the shaded rectangle when perimeter of the surface
is traversed as indicated.
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reach Egs. (3.89) and (3.90), we can obtain

/do x Vo :%(pdr, (3.94)
S s
/(daxV)xP:%drxP. (3.95)
s

Example 3.8.2  OERSTED’S AND FARADAY’S LAWS

Consider the magnetic field generated by a long wire that carries a time-independent cur-
rent I (meaning that 0E/dt = dB/dt = 0). The relevant Maxwell equation, Eq. (3.68),
then takes the form V x B = poJ. Integrating this equation over a disk S perpendicular to
and surrounding the wire (see Fig. 3.17), we have

1
I=/J-d0=—/(VxB)~d0.
MOS

S

Now we apply Stokes’ theorem, obtaining the result I = (1/uo) §,(B - dr, which is
Oersted’s law.

Similarly, we can integrate Maxwell’s equation for V x E, Eq. (3.69). Imagine moving
a closed loop (9.5) of wire (of area S) across a magnetic induction field B. We have

f(VxE) da_——/B da_——,

where @ is the magnetic flux through the area S. By Stokes’ theorem, we have

dd
/ E.ar=-22

dt
S

This is Faraday’s law. The line integral represents the voltage induced in the wire loop; it is
equal in magnitude to the rate of change of the magnetic flux through the loop. There is no
sign ambiguity; if the direction of 9§ is reversed, that causes a reversal of the direction of
do and thereby of ®. [ |

g
N

FIGURE 3.17 Direction of B given by Oersted’s law.
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Using Gauss’ theorem, prove that

do =0

Va&e\

if § =9V is a closed surface.

Show that

frdozv,

N

W | =

where V is the volume enclosed by the closed surface S =aV.
Note. This is a generalization of Exercise 3.7.5.

%B-dc:O

S

IfB=V x A, show that

for any closed surface S.

From Eq. (3.72), with V the electric field E and f the electrostatic potential ¢, show
that, for integration over all space,

/pgodr:sO/EZdr.

This corresponds to a 3-D integration by parts.
Hint. E=—V¢,V -E = p/ey. You may assume that ¢ vanishes at large r at least as

fastas r 1.

A particular steady-state electric current distribution is localized in space. Choosing a
bounding surface far enough out so that the current density J is zero everywhere on the
surface, show that

/ Jdr =0.

Hint. Take one component of J at a time. With V - J =0, show that J; =V - (x;J) and
apply Gauss’ theorem.

Given a vector t = —&yy + &yx, show, with the help of Stokes’ theorem, that the integral
of t around a continuous closed curve in the xy-plane satisfies

1 1
Eygtd}»:z%(xdy—ydx):A,

where A is the area enclosed by the curve.
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3.8.7 The calculation of the magnetic moment of a current loop leads to the line integral

%rxdr.

(a) Integrate around the perimeter of a current loop (in the xy-plane) and show that
the scalar magnitude of this line integral is twice the area of the enclosed surface.

(b) The perimeter of an ellipse is described by r = éxa cos 6 4 €yb sin6. From part (a)
show that the area of the ellipse is wab.

3.8.8 Evaluate § r x dr by using the alternate form of Stokes’ theorem given by Eq. (3.95):

/(daxV)xP:%dle.

S

Take the loop to be entirely in the xy-plane.

‘(ﬁqud)»:—vau-dl.

%qu-dl:/(Vu) x (Vv) -do.
s

3.8.9 Prove that

3.8.10 Prove that

3.8.11 Prove that

fdaxP:/Vdet.

av 1%
3.8.12 Prove that
/dango:%cpdr.
S s
3.8.13  Prove that
f(da xV)xP:?ﬁdrxP.
S s

3.9 POTENTIAL THEORY

Much of physics, particularly electromagnetic theory, can be treated more simply by intro-
ducing potentials from which forces can be derived. This section deals with the definition
and use of such potentials.
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Scalar Potential

If, over a given simply connected region of space (one with no holes), a force can be
expressed as the negative gradient of a scalar function ¢,

F=-Vo, (3.96)

we call ¢ a scalar potential, and we benefit from the feature that the force can be described
in terms of one function instead of three. Since the force is a derivative of the scalar poten-
tial, the potential is only determined up to an additive constant, which can be used to adjust
its value at infinity (usually zero) or at some other reference point. We want to know what
conditions F must satisfy in order for a scalar potential to exist.

First, consider the result of computing the work done against a force given by —Vg
when an object subject to the force is moved from a point A to a point B. This is a line
integral of the form

B

B
—/F-dr:/Vgo~dr. 3.97)
A

A

But, as pointed out in Eq. (3.41), Vg - dr = dg, so the integral is in fact independent of the
path, depending only on the endpoints A and B. So we have

B

- / F-dr=o(rs) — o(ra), (3.98)
A

which also means that if A and B are the same point, forming a closed loop,

fF-dr:O. (3.99)

We conclude that a force (on an object) described by a scalar potential is a conservative
force, meaning that the work needed to move the object between any two points is inde-
pendent of the path taken, and that ¢(r) is the work needed to move to the point r from a
reference point where the potential has been assigned the value zero.

Another property of a force given by a scalar potential is that

VxF=-V xVgp=0 (3.100)

as prescribed by Eq. (3.64). This observation is consistent with the notion that the lines of
force of a conservative F cannot form closed loops.

The three conditions, Egs. (3.96), (3.99), and (3.100), are all equivalent. If we take
Eq. (3.99) for a differential loop, its left side and that of Eq. (3.100) must, according
to Stokes’ theorem, be equal. We already showed both these equations followed from
Eq. (3.96). To complete the establishment of full equivalence, we need only to derive
Eq. (3.96) from Eq. (3.99). Going backward to Eq. (3.97), we rewrite it as

B
/(F+V<p)~dr:0,
A
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which must be satisfied for all A and B. This means its integrand must be identically zero,
thereby recovering Eq. (3.96).

Example 3. 9. 1 GRAVITATIONAL POTENTIAL

We have previously, in Example 3.5.2, illustrated the generation of a force from a scalar
potential. To perform the reverse process, we must integrate. Let us find the scalar potential
for the gravitational force

Gmimar kr

Fg= =-—,
2 2

radially inward. Setting the zero of scalar potential at infinity, we obtain by integrating
(radially) from infinity to position r,

r o0

¢G(r)—</)c(00)=—/FG'dr=+ch'dr.

o r

The minus sign in the central member of this equation arises because we are calculating
the work done against the gravitational force. Evaluating the integral,

o0
kdr k Gmimy

o= [ 5 =—"=-T""2
v
The final negative sign corresponds to the fact that gravity is an attractive force. |
Vector Potential

In some branches of physics, especially electrodynamics, it is convenient to introduce a
vector potential A such that a (force) field B is given by

B=V x A. (3.101)

An obvious reason for introducing A is that it causes B to be solenoidal; if B is the mag-
netic induction field, this property is required by Maxwell’s equations. Here we want to
develop a converse, namely to show that when B is solenoidal, a vector potential A exists.
We demonstrate the existence of A by actually writing it.

Our construction is

x y X
A:éy/BZ(x,y,z)dx+éz /Bx(xo,y,z)dy—fo(x,y,z)dx . (3.102)

X0 Yo X0
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Checking the y- and z-components of V x A first, noting that A, =0,

X
A, 3
(VxA)y=-— ox =+£ By(x,y,z)dx = By,
X0
X
A, d
(VXA =+—-==— | B:(x,y,2)dx =B;.
0x 0x
X0

The x-component of V x A is a bit more complicated. We have

dA, DA,
(VxA)y=———2
ay 0z

2| T r 9 [

=% /Bx(xo,y,z)dy_/By(x,y,z)dx —£/Bz(x,y,z)dx
Yo X0 X0
X
0By(x, v,z 0B, (x,vy,z
=&mmm—/[y;y)+ Ay)}m
y 0z

X0

To go further, we must use the fact that B is solenoidal, which means V - B = 0. We can
therefore make the replacement

8By(x’y»z) aBZ(-xvy?Z) 8Bx(xsyvz)
+ =- ,
ay 9z ax

after which the x integration becomes trivial, yielding

Y 0By(x, v,z
b [BED - B0,
Yo dax

leading to the desired final result (V x A), = By.

While we have shown that there exists a vector potential A such that V x A = B subject
only to the condition that B be solenoidal, we have in no way established that A is unique.
In fact, A is far from unique, as we can add to it not only an arbitrary constant, but also the
gradient of any scalar function, V¢, without affecting B at all. Moreover, our verification
of A was independent of the values of xo and yp, so these can be assigned arbitrarily
without affecting B. In addition, we can derive another formula for A in which the roles of
x and y are interchanged:

X

y
A:—éx/Bz(x,y,z)dy—éz /By(x,yo,z)dx—/Bx(x,y,z)dy . (3.103)

Yo X0 Yo



174 Chapter 3 Vector Analysis
Example 3.9.2 MAGNETIC VECTOR POTENTIAL

We consider the construction of the vector potential for a constant magnetic induction field
B =B.¢,. (3.104)
Using Eq. (3.102), we have (choosing the arbitrary value of x¢ to be zero)

X
Azéy/BZ dx =¢&,xB;. (3.105)
0
Alternatively, we could use Eq. (3.103) for A, leading to

A= —&,yB.. (3.106)

Neither of these is the form for A found in many elementary texts, which for B from
Eq. (3.104) is

1 B
A = 3 Bxr)= ?Z (x&y — y&y). (3.107)

These disparate forms can be reconciled if we use the freedom to add to A any expression
of the form V. Taking ¢ = Cxy, the quantity that can be added to A will be of the form

Vo =C(yé, + xe&).

We now see that
B . AN A/ B . AN A
A— T(yex +xey)=A+ T(yex +xey) =A",

showing that all these formulas predict the same value of B. |

Example 3. 9.3 POTENTIALS IN ELECTROMAGNETISM

If we introduce suitably defined scalar and vector potentials ¢ and A into Maxwell’s
equations, we can obtain equations giving these potentials in terms of the sources of the
electromagnetic field (charges and currents). We start with B =V x A, thereby assuring
satisfaction of the Maxwell’s equation V - B = 0. Substitution into the equation for V x E
yields

0A 0A
VXE=-Vx— — Vx|E+—|=0,
ot ot

showing that E 4+ 0A/dt is a gradient and can be written as —V ¢, thereby defining ¢. This
preserves the notion of an electrostatic potential in the absence of time dependence, and
means that A and ¢ have now been defined to give

IA
B=VxA E=-Vy-— (3.108)

At this point A is still arbitrary to the extent of adding any gradient, which is equivalent to
making an arbitrary choice of V - A. A convenient choice is to require

1 dp
— —+V.-A=0. 3.109
cZ ot + ( )
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This gauge condition is called the Lorentz gauge, and transformations of A and ¢ to
satisfy it or any other legitimate gauge condition are called gauge transformations. The
invariance of electromagnetic theory under gauge transformation is an important precursor
of contemporary directions in fundamental physical theory.
From Maxwell’s equation for V - E and the Lorentz gauge condition, we get
P VB VE_Lv.ac_viq LY (3.110)
0 - ot STV T 252 '
showing that the Lorentz gauge permitted us to decouple A and ¢ to the extent that we
have an equation for ¢ in terms only of the charge density p; neither A nor the current
density J enters this equation.
Finally, from the equation for V x B, we obtain

L O*A V2A = pod (3.111)
c2 92 - Mot '
Proof of this formula is the subject of Exercise 3.9.11. |

Gauss’ Law

Consider a point charge ¢ at the origin of our coordinate system. It produces an electric
field E, given by

qr

=—. 3.112
47T80r2 ( )

Gauss’ law states that for an arbitrary volume V,

4 if 3V encloses ¢,
%E-da: €0 (3.113)

v 0 if 3V does not enclose g.

The case that 3V does not enclose ¢ is easily handled. From Eq. (3.54), the r~2 central
force E is divergenceless everywhere except at » = 0, and for this case, throughout the
entire volume V. Thus, we have, invoking Gauss’ theorem, Eq. (3.81),

/V~E=0 —> E-do=0.
Vv

If g is within the volume V, we must be more devious. We surround r = 0 by a small
spherical hole (of radius §), with a surface we designate S, and connect the hole with the
boundary of V via a small tube, thereby creating a simply connected region V' to which
Gauss’ theorem will apply. See Fig. 3.18. We now consider § E - do on the surface of
this modified volume. The contribution from the connecting tube will become negligible
in the limit that it shrinks toward zero cross section, as E is finite everywhere on the
tube’s surface. The integral over the modified 9V will thus be that of the original 9V (over
the outer boundary, which we designate S), plus that of the inner spherical surface (S’).
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FIGURE 3.18 Making a multiply connected region simply connected.

But note that the “outward” direction for S’ is toward smaller r, so do’ = —rd A. Because
the modified volume contains no charge, we have

—
fE-dasz-do+ 9 fr 7 —o, (3.114)

4meg 82
av’ S s

where we have inserted the explicit form of E in the S’ integral. Because S’ is a sphere of
radius §, this integral can be evaluated. Writing d<2 as the element of solid angle, so dA =

§2d,
e )
%ra—z"zfsiz-(—fazdszh—/dsz:—w,

s/

independent of the value of §. Returning now to Eq. (3.114), it can be rearranged into

f]gE'da =1 (4my=11,
4meg £0
S

the result needed to confirm the second case of Gauss’ law, Eq. (3.113).

Because the equations of electrostatics are linear, Gauss’ law can be extended to collec-
tions of charges, or even to continuous charge distributions. In that case, g can be replaced
by [, pdt, and Gauss’ law becomes

/E~d0= Ly (3.115)
&0
A%

If we apply Gauss’ theorem to the left side of Eq. (3.115), we have

/V~Edr:/£dt.
€0
\%4

v
Since our volume is completely arbitrary, the integrands of this equation must be equal, so
v.E=L. (3.116)

€0

We thus see that Gauss’ law is the integral form of one of Maxwell’s equations.
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Poisson’s Equation

If we return to Eq. (3.116) and, assuming a situation independent of time, write E = —V ¢,
we obtain
v2p=_L (3.117)
&0

This equation, applicable to electrostatics,’ is called Poisson’s equation. If, in addition,
p =0, we have an even more famous equation,

V2 =0, (3.118)

Laplace’s equation.

To make Poisson’s equation apply to a point charge ¢, we need to replace p by a con-
centration of charge that is localized at a point and adds up to ¢g. The Dirac delta function
is what we need for this purpose. Thus, for a point charge g at the origin, we write

V2= —81 8(r),  (chargeqatr=0). (3.119)
0

If we rewrite this equation, inserting the point-charge potential for ¢, we have

1
12 (—) =—Lsw),
dmeg r £0

which reduces to

1

v? (-) = —47 8(r). (3.120)
r

This equation circumvents the problem that the derivatives of 1/r do not exist at r = 0,

and gives appropriate and correct results for systems containing point charges. Like the

definition of the delta function itself, Eq. (3.120) is only meaningful when inserted into an

integral. It is an important result that is used repeatedly in physics, often in the form

1
Vi — ) =—478@ —r). (3.121)
r2

Here r1» = |r| — 1|, and the subscript in V| indicates that the derivatives apply to ry.

Helmholtz’s Theorem

We now turn to two theorems that are of great formal importance, in that they establish
conditions for the existence and uniqueness of solutions to time-independent problems in
electromagnetic theory. The first of these theorems is:

A vector field is uniquely specified by giving its divergence and its curl within a simply
connected region and its normal component on the boundary.

TFor general time dependence, see Eq. (3.110).
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Note that both for this theorem and the next (Helmholtz’s theorem), even if there are points
in the simply connected region where the divergence or the curl is only defined in terms of
delta functions, these points are not to be removed from the region.

Let P be a vector field satisfying the conditions

V.P=s, VxP=c, (3.122)

where s may be interpreted as a given source (charge) density and ¢ as a given circulation
(current) density. Assuming that the normal component P, on the boundary is also given,
we want to show that P is unique.

We proceed by assuming the existence of a second vector, P’, which satisfies Eq. (3.122)
and has the same value of P,. We form Q =P — P/, which must have V - Q, V x Q, and
Q,, all identically zero. Because Q is irrotational, there must exist a potential ¢ such that
Q = —Vy, and because V - Q =0, we also have

V29 =0.

Now we draw on Green’s theorem in the form given in Eq. (3.86), letting u and v each
equal ¢. Because 0, = 0 on the boundary, Green’s theorem reduces to

f(V(p)~(Vg0)dtz/Q-th:0.
v 1%

This equation can only be satisfied if Q is identically zero, showing that P’ = P, thereby
proving the theorem.
The second theorem we shall prove, Helmholtz’s theorem, is

A vector P with both source and circulation densities vanishing at infinity may be writ-
ten as the sum of two parts, one of which is irrotational, the other of which is solenoidal.

Helmbholtz’s theorem will clearly be satisfied if P can be written in the form
P=—-Vp+VxA, (3.123)

since —V g is irrotational, while V x A is solenoidal. Because P is known, so are also s
and ¢, defined as

s=V.P, ¢=VxP.

We proceed by exhibiting expressions for ¢ and A that enable the recovery of s and c.
Because the region here under study is simply connected and the vector involved vanishes
at infinity (so that the first theorem of this subsection applies), having the correct s and ¢
guarantees that we have properly reproduced P.

The formulas proposed for ¢ and A are the following, written in terms of the spatial
variable ry:

(p(rl):L/S(“)dQ, (3.124)

4 ri2

Ar) = / 2 o, (3.125)
47 ri2

Here rip = |r1 — ra|.
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If Eq. (3.123) is to be satisfied with the proposed values of ¢ and A, it is necessary that
V- P=-V.Vp+V.(VxA)=-Vip=s,
VXP=-V xVp+Vx(VXA)=Vx(VxA)=c

To check that —V2¢p = s, we examine

1 1
~Vip@r) = pr / Vi (E) s(ra)d

1
=—7 [—478(r1 —r2)]s(r))d = s(r1). (3.126)

We have written V| to make clear that it operates on r; and not r», and we have used the
delta-function property given in Eq. (3.121). So s has been recovered.

We now check that V x (V x A) = ¢. We start by using Eq. (3.70) to convert this
condition to a more easily utilized form:

Vx(VxA)=V(V-A)—V?A=c.

Taking r; as the free variable, we look first at

1
Vi(Vi-AmD) = Vi [ V1 (“r”) dv,

r2

= LV1 /C(rz) -V <L> dry
47 r12
1 1
=—V /c(l‘z) . [—Vz <—>] do.
4 r2

To reach the second line of this equation, we used Eq. (3.72) for the special case that the
vector in that equation is not a function of the variable being differentiated. Then, to obtain
the third line, we note that because the V| within the integral acts on a function of r| — 12,
we can change V| into V, and introduce a sign change.

Now we integrate by parts, as in Example 3.7.3, reaching

1 1
Vi[Vi-A(r)] = EVI f (V2-e(r2) (E) dry.

At last we have the result we need: V; - ¢(rp) vanishes, because ¢ is a curl, so the entire
V(V - A) term is zero and may be dropped. This reduces the condition we are checking to
~-VA=c.

The quantity —V2A is a vector Laplacian and we may individually evaluate its Cartesian
components. For component j,

2 1 2 1
“VEA ) == [ VP (- )dn

1
= _E/cj(rz)[—4n6(r1 —r)]dny =cj(ry).

This completes the proof of Helmholtz’s theorem.
Helmholtz’s theorem legitimizes the division of the quantities appearing in electromag-
netic theory into an irrotational vector field E and a solenoidal vector field B, together
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with their respective representations using scalar and vector potentials. As we have seen

in numerous examples, the source s is identified as the charge density (divided by &¢) and
the circulation ¢ is the current density (multiplied by o).

Exercises

3.9.1 If a force F is given by
F=(+ )2+ 29" @x + &y +&2),

find
(a) V.F.
(b) V xF.

(c) A scalar potential ¢(x, y, z) sothat F=—Vo.
(d) For what value of the exponent n does the scalar potential diverge at both the
origin and infinity?

ANS. (a) Qn+3)r™" () 0
() —rt2/2n+2),n#—-1 d) n=-1, g=—Inr.
3.9.2 A sphere of radius a is uniformly charged (throughout its volume). Construct the elec-

trostatic potential ¢(r) for 0 <r < oco.

3.9.3 The origin of the Cartesian coordinates is at the Earth’s center. The moon is on the
z-axis, a fixed distance R away (center-to-center distance). The tidal force exerted by
the moon on a particle at the Earth’s surface (point x, y, z) is given by

X y Z
FX:—GMmﬁ, Fy:—GMmF, FZ:—I—ZGMmE

Find the potential that yields this tidal force.

GMm 1 |
ANS. — 2o X222
R3 (Z 2t 7Y

394 A long, straight wire carrying a current / produces a magnetic induction B with com-
ponents

_ ol <_L o 0)
27\ x24y2 x24+y2 )
Find a magnetic vector potential A.
ANS. A = —z(uol /47) In(x? + y2). (This solution is not unique.)
3.9.5 If
find a vector A such that V x A =B.

€,z eyxz

ANS. One possible solution is A = — .
b ! D TR
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3.9.11

3.9 Potential Theory 181

Show that the pair of equations
1
A:E(er), B=V xA,

is satisfied by any constant magnetic induction B.

Vector B is formed by the product of two gradients
B=(Vu) x (Vv),
where u and v are scalar functions.

(a) Show that B is solenoidal.
(b) Show that

1
A:E(qu—vVu)

is a vector potential for B, in that

B=V x A.

The magnetic induction B is related to the magnetic vector potential A by B=V x A.

By Stokes’ theorem
/B-da:v(fA-dr.

Show that each side of this equation is invariant under the gauge transformation, A —
A+Vo.
Note. Take the function ¢ to be single-valued.

Show that the value of the electrostatic potential ¢ at any point P is equal to the average
of the potential over any spherical surface centered on P, provided that there are no
electric charges on or within the sphere.

Hint. Use Green’s theorem, Eq. (3.85), with u = r~!, the distance from P, and v = ¢.
Equation (3.120) will also be useful.

Using Maxwell’s equations, show that for a system (steady current) the magnetic vector
potential A satisfies a vector Poisson equation,

V2A =—pd,

provided we require V - A = 0.

Derive, assuming the Lorentz gauge, Eq. (3.109):

13?4 _,

Hint. Eq. (3.70) will be helpful.



182 Chapter 3 Vector Analysis

3.9.12

3.10

Prove that an arbitrary solenoidal vector B can be described as B=V x A, with

y X
A:—éx/Bz(x,y,z)dy—éz [By(x,yo,z)dx—/Bx(x,y,Z)dy
Yo X0 Yo

CURVILINEAR COORDINATES

Up to this point we have treated vectors essentially entirely in Cartesian coordinates; when
r or a function of it was encountered, we wrote r as v/x2 + y2 + z2, so that Cartesian
coordinates could continue to be used. Such an approach ignores the simplifications that
can result if one uses a coordinate system that is appropriate to the symmetry of a problem.
Central force problems are frequently easiest to deal with in spherical polar coordinates.
Problems involving geometrical elements such as straight wires may be best handled in
cylindrical coordinates. Yet other coordinate systems (of use too infrequent to be described
here) may be appropriate for other problems.

Naturally, there is a price that must be paid for the use of a non-Cartesian coordinate sys-
tem. Vector operators become different in form, and their specific forms may be position-
dependent. We proceed here to examine these questions and derive the necessary formulas.

Orthogonal Coordinates in R’

In Cartesian coordinates the point (xg, o, zo) can be identified as the intersection of three
planes: (1) the plane x = x¢ (a surface of constant x), (2) the plane y = yg (constant y), and
(3) the plane z = zg (constant z). A change in x corresponds to a displacement normal to
the surface of constant x; similar remarks apply to changes in y or z. The planes of constant
coordinate value are mutually perpendicular, and have the obvious feature that the normal to
any given one of them is in the same direction, no matter where on the plane it is constructed
(a plane of constant x has a normal that is, of course, everywhere in the direction of €, ).
Consider now, as an example of a curvilinear coordinate system, spherical polar coor-
dinates (see Fig. 3.19). A point r is identified by r (distance from the origin), 6 (angle of
r relative to the polar axis, which is conventionally in the z direction), and ¢ (dihedral
angle between the zx plane and the plane containing €; and r). The point r is therefore at
the intersection of (1) a sphere of radius r, (2) a cone of opening angle 6, and (3) a half-
plane through equatorial angle ¢. This example provides several observations: (1) general

X

FIGURE 3.19  Spherical polar coordinates.
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ke,

FIGURE 3.20 Effect of a “large” displacement in the direction ég. Note that r’ # r.

coordinates need not be lengths, (2) a surface of constant coordinate value may have a
normal whose direction depends on position, (3) surfaces with different constant values of
the same coordinate need not be parallel, and therefore also (4) changes in the value of a
coordinate may move r in both an amount and a direction that depends on position.

It is convenient to define unit vectors €,, &, €, in the directions of the normals to the
surfaces, respectively, of constant r, 6, and ¢. The spherical polar coordinate system has
the feature that these unit vectors are mutually perpendicular, meaning that, for example, €g
will be tangent to both the constant-r and constant-¢ surfaces, so that a small displacement
in the €y direction will not change the values of either the r or the ¢ coordinate. The
reason for the restriction to “small” displacements is that the directions of the normals
are position-dependent; a “large” displacement in the €y direction would change r (see
Fig. 3.20). If the coordinate unit vectors are mutually perpendicular, the coordinate system
is said to be orthogonal.

If we have a vector field V (so we associate a value of V with each point in a region of
R3 ), we can write V(r) in terms of the orthogonal set of unit vectors that are defined for
the point r; symbolically, the result is

V() =V, & + Vg &g + Vy &.

It is important to realize that the unit vectors €; have directions that depend on the value
of r. If we have another vector field W(r) for the same point r, we can perform algebraic
processes® on V and W by the same rules as for Cartesian coordinates. For example, at the
point r,

VW=V, W, + VoWp + Vi, W,

However, if V and W are not associated with the same r, we cannot carry out such opera-
tions in this way, and it is important to realize that

r #ré, + 608 + pé,.

Summarizing, the component formulas for V or W describe component decompositions
applicable to the point at which the vector is specified; an attempt to decompose r as
illustrated above is incorrect because it uses fixed unit-vector orientations where they do
not apply.

Dealing for the moment with an arbitrary curvilinear system, with coordinates labeled
(91,92, q3), we consider how changes in the g; are related to changes in the Cartesian

coordinates. Since x can be thought of as a function of the q,- ,namely x(q1, g2, g3), we have
ax
dx = —dq —|— dqz —|— — dqg, (3.127)
aq1 ol7p) g3

with similar formulas for dy and dz.

8 Addition, multiplication by a scalar, dot and cross products (but not application of differential or integral operators).
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We next form a measure of the differential displacement, dr, associated with changes
dg;. We actually examine

(dr)? = (dx)* + (dy)’ + (d2)*.
Taking the square of Eq. (3.127), we get

2 dx 0x
(dx) Z——dq, a

and similar expressions for (dy)? and (dz)z. Combining these and collecting terms with
the same dq; dq j, we reach the result

(dr)2=2gijdqz‘dqj', (3.128)
ij
where

dx ox ay By dz 0z
8ij(q1,q2,q3) = — +— +— (3.129)
& dqi dq; ' dqi dq; = 9qi 9q;

Spaces with a measure of distance given by Eq. (3.128) are called metric or Riemannian.

Equation (3.129) can be interpreted as the dot product of a vector in the dg; direction, of
components (dx/dg;, dy/dq;, 9z/9q;), with a similar vector in the dq; direction. If the
gi coordinates are perpendicular, the coefficients g;; will vanish when i # j.

Since it is our objective to discuss orthogonal coordinate systems, we specialize
Egs. (3.128) and (3.129) to

(dr)* = (h1dq))* + (h2dg2)* + (h3dg3)?, (3.130)

9 9 9
K2 = (%) n (%) n <%) . (3.131)

If we consider Eq. (3.130) for a case dgy = dg3 = 0, we see that we can identify h1dq
as dry, meaning that the element of displacement in the g direction is 41dq;. Thus, in
general,

or

d”i =hid%’, or —Zhi éi. (3132)
9gi
Here ¢; is a unit vector in the g; direction, and the overall dr takes the form
dr=hdq €| + hadq; & + hidgs é;. (3.133)

Note that #; may be position-dependent and must have the dimension needed to cause
h;dg; to be a length.

Integrals in Curvilinear Coordinates

Given the scale factors /; for a set of coordinates, either because they have been tabulated
or because we have evaluated them via Eq. (3.131), we can use them to set up formulas for
integration in the curvilinear coordinates. Line integrals will take the form

/V-dr:Z/Vih,-dq,-. (3.134)
c i c
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Surface integrals take the same form as in Cartesian coordinates, with the exception that
instead of expressions like dx dy we have (h1dq1)(hadqa) = h1hy dq dgs etc. This means
that

/V~d0=/V1h2h3dq2dq3+/V2h3h1dQ3dQ1+/V3h1h2dq1dq2. (3.135)
S S S S

The element of volume in orthogonal curvilinear coordinates is
dt :h1h2h3dq1dq2dq3, (3.136)

so volume integrals take the form

/(ﬂ(fh, 92, q3)h1h2h3dqidgardgs, (3.137)
\%4

or the analogous expression with ¢ replaced by a vector V(q1, g2, ¢3).

Differential Operators in Curvilinear Coordinates
We continue with a restriction to orthogonal coordinate systems.

Gradient—Because our curvilinear coordinates are orthogonal, the gradient takes the
same form as for Cartesian coordinates, providing we use the differential displacements
dr; = h; dg; in the formula. Thus, we have

dp . 1 d¢ . 1 9¢

1
Vo(qi,q2,q3) =€— — +&— — +é3— —, 3.138
vl 2.4 hy 9q; hy 9g2 h3 g3 ( )

this corresponds to writing V as

4o 1 o n 1 o
6— — + 63— —.
h1 9qi ha 9g2 h3 g3

~

(3.139)

Divergence—This operator must have the same meaning as in Cartesian coordinates,
so V - V must give the net outward flux of V per unit volume at the point of evaluation.
The key difference from the Cartesian case is that an element of volume will no longer be
a parallelepiped, as the scale factors &; are in general functions of position. See Fig. 3.21.
To compute the net outflow of V in the ¢ direction from a volume element defined by

hadaq,
-B1hydgoh3dqsl g, ag.2 a‘ +B1h2dqzh3003] 4.+ dgy/2
™

hzdqs

FIGURE 3.21 Outflow of Bj in the g direction from a curvilinear volume element.
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dq1, dqa, dgz and centered at (q1, q2, q3), we must form
Net g outflow = —Vihyh3dgadgs + Vihah3dgadqs .
91—dq1/2.92.93 q1+dq1/2.92.93

(3.140)

Note that not only Vi, but also k3 must be evaluated at the displaced values of ¢y; this
product may have different values at ¢; +dgq1/2 and g1 — dq1/2. Rewriting Eq. (3.140) in
terms of a derivative with respect to g1, we have

d
Net g1 outflow = a—(V1h2h3)d611d612dQ3-
q1

Combining this with the ¢» and g3 outflows and dividing by the differential volume
h1hahs dqidqrdgs, we get the formula

d 0 d
V-V(@qi,92,93) = [%(Vlhﬂ%) + a—qz(Vzhﬂll) + @(VShth)] (3.141)

1
hihohs

Laplacian—From the formulas for the gradient and divergence, we can form the Laplacian
in curvilinear coordinates:

VZ‘P(QI,C]27Q3)=V~V¢:
1 9 (hahz 9 d (h3h 9 d (hihy 9
_[_(g_‘ﬂ)jL_(L_‘/))JF_( i 2_(0)] .
hihahz [ 9q1 \ hi 9qi g2 \ hy 3q 93 \ 3 dqs

Note that the Laplacian contains no cross derivatives, such as 9%/dg19¢2. They do not
appear because the coordinate system is orthogonal.

Curl—In the same spirit as our treatment of the divergence, we calculate the circulation
around an element of area in the g;q> plane, and therefore associated with a vector in
the g3 direction. Referring to Fig. 3.22, the line integral § B - dr consists of four segment

_pahdalan 92

Bohydqal g, g2
-Boh2daslg,—dq.2

+B1h1da1|¢,-dgyi2

FIGURE 3.22 Circulation f B - dr around curvilinear element of area on
a surface of constant g3.



3.10 Curvilinear Coordinates 187

contributions, which to first order are

Segment 1 = (h; By)

q1,92—dq2/2,q3

Segment 2 = (h2B>)

q1+dq1/2,92.93

Segment 3 = —(h]B])) dqy,
q1,92+dq2/2,q3

Segment 4 = —(thz))
q91—dq1/2,92,93

Keeping in mind that the h; are functions of position, and that the loop has area

h1hydqidqs, these contributions combine into a circulation per unit area

1 d d
(VxB);=-— |:—_(hlBl) + —(thz)}-
by | 992 dq1
The generalization of this result to arbitrary orientation of the circulation loop can be
brought to the determinantal form

€th  &hy  e3h3

0 a 0

- hihohs 9q1 9g2 ag3 |

hiBy hyBy, h3Bj3
Just as for Cartesian coordinates, this determinant is to be evaluated from the top down, so
that the derivatives will act on its bottom row.

V xB (3.143)

Circular Cylindrical Coordinates

Although there are at least 11 coordinate systems that are appropriate for use in solving
physics problems, the evolution of computers and efficient programming techniques have
greatly reduced the need for most of these coordinate systems, with the result that the dis-
cussion in this book is limited to (1) Cartesian coordinates, (2) spherical polar coordinates
(treated in the next subsection), and (3) circular cylindrical coordinates, which we discuss
here. Specifications and details of other coordinate systems will be found in the first two
editions of this work and in Additional Readings at the end of this chapter (Morse and
Feshbach, Margenau and Murphy).

In the circular cylindrical coordinate system the three curvilinear coordinates are labeled
(p, ¢, 2). We use p for the perpendicular distance from the z-axis because we reserve r for
the distance from the origin. The ranges of p, ¢, and z are

O<p<oo, 0<¢p<2m, -—-00<z<OO.
For p =0, ¢ is not well defined. The coordinate surfaces, shown in Fig. 3.23, follow:

1. Right circular cylinders having the z-axis as a common axis,

1/2
p= <x2 + y2> = constant.
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FIGURE 3.23  Cylindrical coordinates p, ¢, z.

2. Half-planes through the z-axis, at an angle ¢ measured from the x direction,
Q= tan~! (X) = constant.
X

The arctangent is double valued on the range of ¢, and the correct value of ¢ must be
determined by the individual signs of x and y.
3. Planes parallel to the xy-plane, as in the Cartesian system,

Z = constant.
Inverting the preceding equations, we can obtain
X=pcosp, y=psing, z=2z. (3.144)

This is essentially a 2-D curvilinear system with a Cartesian z-axis added on to form
a 3-D system.

The coordinate vector r and a general vector V are expressed as
r=pé,+z¢&, V=V,&,+V,e,+ V..
From Eq. (3.131), the scale factors for these coordinates are

hy=1, hy=p, h =1, (3.145)
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so the elements of displacement, area, and volume are

dr=¢,dp+peéy,dy+e.dz,
do=pé,dodz+e,dpdz+peé;dpdy, (3.146)
dt =pdpdedz.

It is perhaps worth emphasizing that the unit vectors €, and €, have directions that vary
with ¢; if expressions containing these unit vectors are differentiated with respect to ¢, the
derivatives of these unit vectors must be included in the computations.

Example 3.710.1  KepPLER’S AREA LAW FOR PLANETARY MOTION

One of Kepler’s laws states that the radius vector of a planet, relative to an origin at the
sun, sweeps out equal areas in equal time. It is instructive to derive this relationship using
cylindrical coordinates. For simplicity we consider a planet of unit mass and motion in the
plane z = 0.

The gravitational force F is of the form f(r)€,, and hence the torque about the origin,
r x F, vanishes, so angular momentum L =r x dr/dt is conserved. To evaluate dr/dt,
we start from dr as given in Eq. (3.146), writing

dr . g
—=e €,00,
dr o P 0 PP
where we have used the dot notation (invented by Newton) to indicate time derivatives.
We now form
L=08&, x (8,0 +&,09) = p*¢8..
We conclude that p2 ¢ is constant. Making the identification p? ¢ = 2dA/dt, where A is
the area swept out, we confirm Kepler’s law. ]

Continuing now to the vector differential operators, using Eqs. (3.138), (3.141), (3.142),
and (3.143), we have

ALV 1

VY (p,¢,2)=6,— - &, —, 3.147
Yo, 9, 2) pabp ¢p8¢+ zaz ( )
1d 19V, 9V
V.V=——(V,)+ -2+ 2=, 3.148
pap(p o) 20 T s ( )
19 [ d 1 92 92
v = L2 (20 Lo oY (3.149)
pdp \" dp 0% 0?0972
&, pé, &
yxy—1/2 29 (3.150)
XV=—|—— —| .
0| 0p dp 0z

V, pV, V,



190 Chapter 3 Vector Analysis

Finally, for problems such as circular wave guides and cylindrical cavity resonators, one
needs the vector Laplacian V2V. From Eq. (3.70), its components in cylindrical coordi-
nates can be shown to be

I 2 9V,
VIV =V, - v, - S
P P p- 3¢
1 2 9V,
VIV =V, - v+ (3.151)
@ P p= 0
ViV| =V3V..
Z

Example 3.10.2 A NAVIER-STOKES TERM

The Navier-Stokes equations of hydrodynamics contain a nonlinear term
V x [VX(VXV)],
where v is the fluid velocity. For fluid flowing through a cylindrical pipe in the z direction,
v=2¢,v(p).
From Eq. (3.150),

&, pe, &

0 . ov
Vxv=—|— — — |=—€—,
plop Od¢ 0z ap
0 0 v
e, & e
. av
vx (Vxv)= 0 0 v =e,v(p) —.
av 0
0 —=
ap
Finally,
e, pe, e
1 a a a
VX(VX(VXV)):— 8)0 8(ﬂ 0z =0.
P
dv
U —
dp
For this particular case, the nonlinear term vanishes. ]

Spherical Polar Coordinates

Spherical polar coordinates were introduced as an initial example of a curvilinear coordi-
nate system, and were illustrated in Fig. 3.19. We reiterate: The coordinates are labeled
(r, 6, ¢). Their ranges are

0<r<oo, 0<6<m O0=<¢p<2m.
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For r = 0, neither 6 nor ¢ is well defined. Additionally, ¢ is ill-defined for 8 = 0 and
6 = m. The coordinate surfaces follow:

1. Concentric spheres centered at the origin,

1/2
r= (x2 + y2 + 22) = constant.

2. Right circular cones centered on the z (polar) axis with vertices at the origin,
z
6 = arccos — = constant.
r
3. Half-planes through the z (polar) axis, at an angle ¢ measured from the x direction,

@ = arctan Y — constant.
X

The arctangent is double valued on the range of ¢, and the correct value of ¢ must be
determined by the individual signs of x and y.
Inverting the preceding equations, we can obtain

x=rsinfcosg, y=rsinfsing, z=r cosb. (3.152)
The coordinate vector r and a general vector V are expressed as
r=reé, V=V, & +Voyg+V,e,.
From Eq. (3.131), the scale factors for these coordinates are
hy=1, ho=r, hy=rsinb, (3.153)
so the elements of displacement, area, and volume are
dr=2¢.dr+reégdf +rsinfé,do,
do =r*sin6é,d0dg +r sind & dr dy +ré, dr dé, (3.154)
dt =r’sinfdpdbde.

Frequently one encounters a need to perform a surface integration over the angles, in which
case the angular dependence of do reduces to

dQ =sin0do dg, (3.155)

where d€2 is called an element of solid angle, and has the property that its integral over all
angles has the value
/ dQ=4m.

Note that for spherical polar coordinates, all three of the unit vectors have directions that
depend on position, and this fact must be taken into account when expressions containing
the unit vectors are differentiated.
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The vector differential operators may now be evaluated, using Egs. (3.138), (3.141),
(3.142), and (3.143):

W lay . 1 oy

VU6, 0) =6 - 4+ 8g— — . 3.156
V0. @)= Tt e S0 T Tine bp (3.156)
9, ' 2V,
V.Vzm[an 5(r Vr)—{-r%(sme Vg)—i—rw] (3.157)
1 R IV 3 (. oy 1 0%y
Vi =——|sind— (222 )+ = (sind = | + — 2|, (3.158
V= 2me [Sm or (r 8r)+89 (Sm 89)+sino9 o2 |° G199
e, reég rsinfeé,
R 9
VxV= (3.159)

P2 sing |or 96 3y
v, rVo rsinfV,

Finally, again using Eq. (3.70), the components of the vector Laplacian V2V in spherical
polar coordinates can be shown to be

vV =VV,— =V, ——=cotVp — - — — —— ——,
r r2 r2 r?2 960 r’sinf ¢
2 9V, 2cosf dV,
VWV =V V- ——— V> — - — ¢ 3.160
0 r2sin% 0 r2 390 y2sin%0 ¢ ( )
vyl —v2y 1 Vo 2 9V n 2cos0 9V,
0 Y r2sin20 ¥ rZsind d¢ - 2sin?0 d¢

Example 3.10.3 v, V., Vx FOR A CENTRAL FORCE

We can now easily derive some of the results previously obtained more laboriously in
Cartesian coordinates:
From Eq. (3.156),

L
Vf(”)—erﬁ,

Specializing to the Coulomb potential of a point charge at the origin, V = Ze/(4meor), so
the electric field has the expected value E= —VV = (Ze /4neor2)ér.
Taking next the divergence of a radial function, we have from Eq. (3.157),

2 d
V(@) =250+

Specializing the above to the Coulomb force (n = —2), we have (except for r = 0)
V - r~2 =0, which is consistent with Gauss’ law.

Continuing now to the Laplacian, from Eq. (3.158) we have
2df d*f
rdr  dr?’

in contrast to the ordinary second derivative of r” involving n — 1.

Vi =enr" . (3.161)

V@ r"=n+2)r"" (3.162)

Vif(r) = V2" =n(n + 1)r'" 2, (3.163)
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Finally, from Eq. (3.159),
V x (érf(r)) =0, (3.164)

which confirms that central forces are irrotational. |

Example 3.10.4  MAGNETIC VECTOR POTENTIAL

A single current loop in the xy-plane has a vector potential A that is a function only of r
and 6, is entirely in the €, direction and is related to the current density J by the equation

pod =V xB=V x [V x &,A,(r,0)].

In spherical polar coordinates this reduces to

e, rég rsinf e,
J_v 1 d d 0
= X — | — — R
Ho 72sind |or 96 99
0 rsinfA,
v ! _Aa('GA) Aa('GA)
=V X 5——|&—(rsin —rég—(rsin .
r2sind | 86 oy ¢
Taking the curl a second time, we obtain
e, rég rsinf €,
1 0 0 0
J= ar 90 90
M0 2 sind or a0 g
i (sinfAy) L0 (rAy) 0
—(sin e (2
rsing 90 e Y
Expanding this determinant from the top down, we reach
A, 20A 19 dA 1
J=—¢& e —(sin6—2 ) - ———A4,|  (3.165
Ho “’[ 02 T r or | Zsing 39( 06 ) " ramtee] G109
Note that we get, in addition to V2A¢,, one more term: —A(/,/r2 sin® 6. ]

Example 3.70.5  STOKES THEOREM

As a final example, let’s compute ¢ B - dr for a closed loop, comparing the result with
integrals [(V x B) - do for two different surfaces having the same perimeter. We use
spherical polar coordinates, taking B =e¢7"€,.

The loop will be a unit circle about the origin in the xy-plane; the line integral about
it will be taken in a counterclockwise sense as viewed from positive z, so the normal to
the surfaces it bounds will pass through the xy-plane in the direction of positive z. The
surfaces we consider are (1) a circular disk bounded by the loop, and (3) a hemisphere
bounded by the loop, with its surface in the region z < 0. See Fig. 3.24.



194 Chapter 3 Vector Analysis

FIGURE 3.24 Surfaces for Example 3.10.5: (left) Sy, disk; (right) S>, hemisphere.

For the line integral, dr = r sin6 &, d¢, which reduces to dr = &, d¢ since 6 = /2 and
r = 1 on the entire loop. We then have

2

2
ygB-drz / e*1é¢~é¢d<p=—n.
e

=0

For the surface integrals, we need V x B:

V xB ! 8('9")A 3(’9")A

X = —(rSind e e —r—I(rsinde (¢

7Zsind | 90 "y 0
e "cosO ,

=——¢ —(1—r)e " &.
rsinf

Taking first the disk, at all points of which 6 = 7 /2, with integration range 0 <r <1,
and 0 < ¢ < 27, we note that do = —e&g r sin@ dr dp = —eg r dr d¢. The minus sign arises
because the positive normal is in the direction of decreasing 0. Then,

2 1
2
/—(VxB)-égrdrdgo:/dgo/dr(l—r)e”:—n.
N} 0 0

e

For the hemisphere, defined by r =1, 7/2 <6 < m, and 0 < ¢ < 27, we have do =

—&,r?sinf df dgp = —e, sin@ dO dy (the normal is in the direction of decreasing r), and
Ed 2
N . —1 2
—(VxB)-& sinfdddp=— | dfe "cosO | dp=—.
e
$ /2 0

The results for both surfaces agree with that from the line integral of their common
perimeter. Because V x B is solenoidal, all the flux that passes through the disk in the
xy-plane must continue through the hemispherical surface, and for that matter, through
any surface with the same perimeter. That is why Stokes’ theorem is indifferent to features
of the surface other than its perimeter. |
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Rotation and Reflection in Spherical Coordinates

It is infrequent that rotational coordinate transformations need be applied in curvilinear
coordinate systems, and they usually arise only in contexts that are compatible with the
symmetry of the coordinate system. We limit the current discussion to rotations (and
reflections) in spherical polar coordinates.

Rotation—Suppose a coordinate rotation identified by Euler angles («, 8, y) converts the
coordinates of a point from (r, 0, @) to (r,6’, ¢’). It is obvious that r retains its original
value. Two questions arise: (1) How are 0’ and ¢’ related to 6 and ¢? and (2) How do the
components of a vector A, namely (A,, Ag, Ayp), transform?

It is simplest to proceed, as we did for Cartesian coordinates, by analyzing the three
consecutive rotations implied by the Euler angles. The first rotation, by an angle « about
the z-axis, leaves € unchanged, and converts ¢ into ¢ — «. However, it causes no change
in any of the components of A.

The second rotation, which inclines the polar direction by an angle 8 toward the (new)
x-axis, does change the values of both 6 and ¢ and, in addition, changes the directions
of €y and &,. Referring to Fig. 3.25, we see that these two unit vectors are subjected to
a rotation y in the plane tangent to the sphere of constant r, thereby yielding new unit
vectors €, and €, such that

& =cos x & —sinx &,, &, =sinyx & +cos x &,.
This transformation corresponds to
< cosy sin X)
S) = . .
—siny cosy
Carrying out the spherical trigonometry corresponding to Fig. 3.25, we have the new
coordinates

cos B cosf’ — cosh

cos8’ = cosBcosh + sinBsinfcos(p — ), cos¢’ = . (3.166)

sin § sin 6’

FIGURE 3.25 Rotation and unit vectors in spherical polar coordinates, shown on a sphere
of radius r. The original polar direction is marked z; it is moved to the direction z’, at an
inclination given by the Euler angle 8. The unit vectors &y and &, at the point P are
thereby rotated through the angle x.
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and
cos B —cosf cos b’

cos x = (3.167)

sin@ sin 6’
The third rotation, by an angle y about the new z-axis, leaves the components of A
unchanged but requires the replacement of ¢’ by ¢’ — y.
Summarizing,

Al 1 0 0 A,
A:e =10 cos x sin x Ag |. (3.168)
A, 0 —siny cosy Ay

This equation specifies the components of A in the rotated coordinates at the point
(r,0’, ¢’ — y) in terms of the original components at the same physical point, (r, 8, ¢).

Reflection—Inversion of the coordinate system reverses the sign of each Cartesian coor-
dinate. Taking the angle ¢ as that which moves the new +x coordinate toward the new +y
coordinate, the system (which was originally right-handed) now becomes left-handed. The
coordinates (r, 8, ¢) of a (fixed) point become, in the new system, (r, 7 — 0, 7w + ¢). The
unit vectors &, and &, are invariant under inversion, but & changes sign, so

Al A,
Ay | =|—-A4s |, coordinate inversion. (3.169)
A, Ay

Exercises

3.10.1

3.10.2

The u-, v-, z-coordinate system frequently used in electrostatics and in hydrodynamics
is defined by

xy=u, xz—y =v, z=2.
This u-, v-, z-system is orthogonal.

(a) In words, describe briefly the nature of each of the three families of coordinate
surfaces.

(b) Sketch the system in the xy-plane showing the intersections of surfaces of constant
u and surfaces of constant v with the xy-plane.

(¢) Indicate the directions of the unit vectors €, and €, in all four quadrants.

(d) Finally, is this u-, v-, z-system right-handed (&, x €, = +¢€;) or left-handed (€, x
€, =—¢,)?

The elliptic cylindrical coordinate system consists of three families of surfaces:

x2 y2 x2 y2

-1 Q@ -
a2cosh’u  a?sinh®u ’ a?cos?v  q2sin®v

(M

=1; 3) z==z.

Sketch the coordinate surfaces # = constant and v = constant as they intersect the first
quadrant of the xy-plane. Show the unit vectors €, and €,. The range of u is 0 < u < oc.
The range of vis 0 < v < 2m.



3.10.3

3.10.4

3.10.5

3.10.6

3.10.7

3.10.8
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Develop arguments to show that dot and cross products (not involving V) in orthogonal
curvilinear coordinates in R3 proceed, as in Cartesian coordinates, with no involvement
of scale factors.

With €; a unit vector in the direction of increasing g1, show that

1 d(hah
@ V-& = (hah3)
hihahs  dqi
1 1 0h 1 doh
(b) V xé = |:éz——1—é3——1:|.
hy L h dgs hy 3q2

Note that even though €; is a unit vector, its divergence and curl do not necessarily
vanish.

Show that a set of orthogonal unit vectors €; may be defined by

R 1 or
6 =——.
hi 9q;

In particular, show that €; - ¢, = 1 leads to an expression for /; in agreement with
Eq. (3.131).
The above equation for €; may be taken as a starting point for deriving

and

Resolve the circular cylindrical unit vectors into their Cartesian components (see
Fig. 3.23).

ANS. ép =&, cosg + éy sin¢,
e(,) = —&,sing + &, cos ¢,
eZ - eZ

Resolve the Cartesian unit vectors into their circular cylindrical components (see
Fig. 3.23).
ANS. &, =@,cosp — &,sing,
e, =¢&,sing + &, cosy,
e, =¢€,.
From the results of Exercise 3.10.6, show that
de R 2é R
P _a " Y _ _& )
dp ap
and that all other first derivatives of the circular cylindrical unit vectors with respect to
the circular cylindrical coordinates vanish.



198

Chapter 3 Vector Analysis

3.10.9

3.10.10

3.10.11

3.10.12

3.10.13

3.10.14

Compare V -V as given for cylindrical coordinates in Eq. (3.148) with the result of its
computation by applying to V the operator

V¢ 0 I 10 L 0
=e¢,— e,—— e, —
P ap Y dp ‘oz
Note that V acts both on the unit vectors and on the components of V.
(a) Showthatr=e¢,p + &,z.
(b) Working entirely in circular cylindrical coordinates, show that
V.r=3 and Vxr=0.

(a) Show that the parity operation (reflection through the origin) on a point (p, ¢, z)
relative to fixed x-, y-, z-axes consists of the transformation

p—>p, ¢o—extm, 27— —2Z.

(b) Show that €, and &, have odd parity (reversal of direction) and that &, has even
parity.
Note. The Cartesian unit vectors €,, €,, and €, remain constant.

A rigid body is rotating about a fixed axis with a constant angular velocity . Take ®
to lie along the z-axis. Express the position vector r in circular cylindrical coordinates
and using circular cylindrical coordinates,

(a) calculatev=w X,
(b) calculate V x v.

ANS. (a) v=eywp
b)) Vxv=2w.

Find the circular cylindrical components of the velocity and acceleration of a moving
particle,

vo=p, a,=p—pg’,

Vo = PP, ap=pP+209,

v, =2, a, =7%.
Hint. r(r) =e,()p(t) + &,z(1)

=[excosg(r) + &, sing(t)]p(r) + €,z(1).
Note. p =dp/dt, p =d*p/dt*, and so on.
In right circular cylindrical coordinates, a particular vector function is given by
Vo, 0) =&,V,(p.9) +&Vy(p, 9).

Show that V x V has only a z-component. Note that this result will hold for any vector
confined to a surface g3 = constant as long as the products #;V) and h,V, are each
independent of g3.



3.10.15

3.10.16

3.10.17

3.10.18

3.10.19

3.10.20

3.10.21

3.10.22
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A conducting wire along the z-axis carries a current /. The resulting magnetic vector
potential is given by
Ny 1
A=¢, H n (—) .
2 0

Show that the magnetic induction B is given by

I
B=¢,——.
2mp
A force is described by
A y A X

_exxz_’_y2 +eyx2+y2.

F=

(a) Express F in circular cylindrical coordinates.
Operating entirely in circular cylindrical coordinates for (b) and (c),
(b) Calculate the curl of F and
(c) Calculate the work done by F in encircling the unit circle once counter-clockwise.
(d) How do you reconcile the results of (b) and (c¢)?

A calculation of the magnetohydrodynamic pinch effect involves the evaluation of

(B - V)B. If the magnetic induction B is taken to be B = &, B, (p), show that
(B-V)B=—¢&,B,/p.

Express the spherical polar unit vectors in terms of Cartesian unit vectors.

ANS. &, = e sinfcos¢g + &, sinf sing + €;cosb,
€y =&, cosf cosg + &, cosfsing — e;sinb,
€y = —€x SInY + €y, Cos .

Resolve the Cartesian unit vectors into their spherical polar components:

€x

€, sinf cos @ + €y cos 6 cosp — &, sing,
e, =&, sinf sing + & cosf sing + &, cos ¢,
€, =€, cosf — ey sinb.

(a) Explain why it is not possible to relate a column vector r (with components x,
¥, z) to another column vector r’ (with components r, 6, ¢), via a matrix equation
of the form r’ = Br.

(b) One can write a matrix equation relating the Cartesian components of a vector to
its components in spherical polar coordinates. Find the transformation matrix and
determine whether it is orthogonal.

Find the transformation matrix that converts the components of a vector in spherical
polar coordinates into its components in circular cylindrical coordinates. Then find the
matrix of the inverse transformation.

(a) From the results of Exercise 3.10.18, calculate the partial derivatives of &, &y, and
&, with respect to r, 6, and ¢.
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3.10.23

3.10.24

3.10.25

3.10.26

3.10.27

(b) With V given by
. 0 4o 10 n 1 9
& —+e——+¢€ —
Tor 0 90 " “rsind dg

(greatest space rate of change), use the results of part (a) to calculate V - V. This
is an alternate derivation of the Laplacian.

A

Note. The derivatives of the left-hand V operate on the unit vectors of the right-hand V
before the dot product is evaluated.

A rigid body is rotating about a fixed axis with a constant angular velocity @. Take @ to

be along the z-axis. Using spherical polar coordinates,

(a) calculatev=w xr.
(b) calculate V x v.

ANS. (a) v=_g@ywrsinb.
(b)) Vxv=2w.

A certain vector V has no radial component. Its curl has no tangential components.
What does this imply about the radial dependence of the tangential components of V?

Modern physics lays great stress on the property of parity (whether a quantity remains
invariant or changes sign under an inversion of the coordinate system). In Cartesian
coordinates this means x — —x, y - —y, and z > —z.

(a) Show that the inversion (reflection through the origin) of a point (r, 8, ¢) relative
to fixed x-, y-, z-axes consists of the transformation
r—>r, 6—>m—-0, ¢—>¢xm.
(b) Show that &, and &, have odd parity (reversal of direction) and that & has even
parity.
With A any vector,
A-Vr=A.

(a) Verify this result in Cartesian coordinates.
(b) Verify this result using spherical polar coordinates. Equation (3.156) provides V.

Find the spherical coordinate components of the velocity and acceleration of a moving
particle:

v =7, a, =¥ —r6% — rsin 0>,
Vg :ré, ag :r§+2fé—rsin90059¢2,

vy =rsinf¢, ay,=rsinf¢ + 27 sinf¢ + 2r cos00¢.



3.10.28

3.10.29

3.10.30

3.10.31
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Hint. r(t)=¢,.()r(t)
= [€, sin&(r) cos ¢ (t) + &, sin b (¢) sin(r) + &, cos O (t)]r (¢).
Note. The dot in 7, é, ¢ means time derivative: r = dr/dt, 6= de/dt,
¢ =dg/dt.
Express d/dx, 0/dy, d/0dz in spherical polar coordinates.

a d 19 sing 0

ANS. =sin0¢osg08— +cosfcosgp—— —
r

ax r 30  rsind g’
d 0 si 8+ 0,18+cos¢)8

— =sinfsing — + cosf sinp— — —,
dy Yor Y796 " rsind g

0 0 .

— =cosf— —sinf——.

0z ar r a0

Hint. Equate V,,; and V,g,.

Using results from Exercise 3.10.28, show that

This is the quantum mechanical operator corresponding to the z-component of orbital
angular momentum.

With the quantum mechanical orbital angular momentum operator defined as L =
—i(r x V), show that

; a d
(@) Ly+iL,=e¢"? (— +icot9—>,
%
; a ad
(b) Ly—iLy=—e"? (— —icot@—).
®

Verify that L x L = iL in spherical polar coordinates. L = —i(r x V), the quantum
mechanical orbital angular momentum operator.
Written in component form, this relation is

LyL,—L,Ly=iL,, L,Ly—L,L;=-Ly, LyLy—LyL,=iL,.

Using the commutator notation, [A, B] = AB — BA, and the definition of the Levi-
Civita symbol ¢;, the above can also be written

[Li, Lj]=ieéiji Li,

where i, j, k are x, y, z in any order.
Hint. Use spherical polar coordinates for L but Cartesian components for the cross
product.
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3.10.32

3.10.33

3.10.34

3.10.35

3.10.36

(a)

(b)

(©)

Using Eq. (3.156) show that
L=—i(rxV)=i <é9#i —é(pi).
sinf d¢ a6
Resolving €y and €, into Cartesian components, determine L., Ly, and L in
terms of 0, ¢, and their derivatives.
From L% = L)zc + L% + L? show that

5 1 a8 /. @ 1 9?
LZ—_—— sing — YY)
20 sin“ 6 ¢

3 3
" a) (r E >

With L = —ir x V, verify the operator identities

(@)

(b)

Voo 0 rxL
=8 — —1i ,
"or r2

9
er—V<1+ra—)=iVxL.
r

Show that the following three forms (spherical coordinates) of V24 (r) are equivalent:

(a)

1d [ ,dy(r)] 1 d? , >y (r) | 2dy(r)
’725[7 ar :|, (b) ;ﬁ[“ﬁ(”)], () P +; dr

The second form is particularly convenient in establishing a correspondence between
spherical polar and Cartesian descriptions of a problem.

A certain force field is given in spherical polar coordinates by

(a)
(b)

(©)
(a)
(b)

(©)

2Pcos6 . P .
—+e9731n0, r>PJ/2.
e

Examine V X F to see if a potential exists.

Calculate § F - dr for a unit circle in the plane 6 = /2. What does this indicate
about the force being conservative or nonconservative?

If you believe that F may be described by F = —V, find ¢ . Otherwise simply
state that no acceptable potential exists.

Show that A = —&, cotf/r is a solution of V x A =&, /r?.
Show that this spherical polar coordinate solution agrees with the solution given
for Exercise 3.9.5:

n yz R Xz
=&y —ey .

r(x2+y2)  ra24+y?)

Note that the solution diverges for 6 =0, 7 corresponding to x, y = 0.
Finally, show that A = —&y¢ sin6/r is a solution. Note that although this solution
does not diverge (r # 0), it is no longer single-valued for all possible azimuth
angles.

A
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An electric dipole of moment p is located at the origin. The dipole creates an electric
potential at r given by
p .
r) =
v 4 egr3

Find the electric field, E= -V atr.

Additional Readings
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Davis, H. F., and A. D. Snider, Introduction to Vector Analysis, 7th ed. Boston: Allyn & Bacon (1995).

Kellogg, O. D., Foundations of Potential Theory. Berlin: Springer (1929), reprinted, Dover (1953). The classic
text on potential theory.

Lewis, P. E., and J. P. Ward, Vector Analysis for Engineers and Scientists. Reading, MA: Addison-Wesley (1989).
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using left-handed coordinate systems even for Cartesian coordinates. Elsewhere in this excellent (and diffi-
cult) book there are many examples of the use of the various coordinate systems in solving physical problems.
Eleven additional fascinating but seldom-encountered orthogonal coordinate systems are discussed in the sec-
ond (1970) edition of Mathematical Methods for Physicists.

Spiegel, M. R., Vector Analysis. New York: McGraw-Hill (1989).

Tai, C.-T., Generalized Vector and Dyadic Analysis. Oxford: Oxford University Press (1966).

Wrede, R. C., Introduction to Vector and Tensor Analysis. New York: Wiley (1963), reprinting, Dover (1972).
Fine historical introduction. Excellent discussion of differentiation of vectors and applications to mechanics.



CHAPTER 4

TENSORS AND
DIFFERENTIAL FORMS

4.1 TENSOR ANALYSIS

Introduction, Properties

Tensors are important in many areas of physics, ranging from topics such as general relativ-
ity and electrodynamics to descriptions of the properties of bulk matter such as stress (the
pattern of force applied to a sample) and strain (its response to the force), or the moment
of inertia (the relation between a torsional force applied to an object and its resultant angu-
lar acceleration). Tensors constitute a generalization of quantities previously introduced:
scalars and vectors. We identified a scalar as an quantity that remained invariant under
rotations of the coordinate system and which could be specified by the value of a sin-
gle real number. Vectors were identified as quantities that had a number of real compo-
nents equal to the dimension of the coordinate system, with the components transforming
like the coordinates of a fixed point when a coordinate system is rotated. Calling scalars
tensors of rank 0 and vectors tensors of rank 1, we identify a tensor of rank n in a
d-dimensional space as an object with the following properties:

e Ithas components labeled by n indices, with each index assigned values from 1 through
d, and therefore having a total of d" components;

e The components transform in a specified manner under coordinate transformations.

The behavior under coordinate transformation is of central importance for tensor anal-
ysis and conforms both with the way in which mathematicians define linear spaces and
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with the physicist’s notion that physical observables must not depend on the choice of
coordinate frames.

Covariant and Contravariant Tensors

In Chapter 3, we considered the rotational transformation of a vector A = A €] + A&, +
Ase3 from the Cartesian system defined by €; (i = 1, 2, 3) into a rotated coordinate system
defined by &}, with the same vector A then represented as A’ = A’ &] + A,&, + Ale}. The
components of A and A’ are related by

Aj=) @ -4y, @1
J

where the coefficients (€] - ;) are the projections of € in the &; directions. Because the &;
and the &; are linearly related, we can also write

a =Sy 42)
! n 8x j I '
J

The formula of Eq. (4.2) corresponds to the application of the chain rule to convert the set
Aj into the set A}, and is valid for A; and A’ of arbitrary magnitude because both vectors
depend linearly on their components.

We have also previously noted that the gradient of a scalar ¢ has in the unrotated Carte-
sian coordinates the components (V) ; = (d¢/dx;)€;, meaning that in a rotated system
we would have

ap ax; 0@
Vo)=L =) <L~ 43
Vol =5 ;Bxi’ o (4.3)

showing that the gradient has a transformation law that differs from that of Eq. (4.2) in
that 9x//0x; has been replaced by dx;/dx/. Remembering that these two expressions, if
written in detail, correspond, respectively, to (8xlf /0x;j)x, and (dx;/ 8x{ ) X where k runs
over the index values other than that already in the denominator, and also noting that (in
Cartesian coordinates) they are two different ways of computing the same quantity (the
magnitude and sign of the projection of one of these unit vectors upon the other), we see
that it was legitimate to identify both A and V¢ as vectors, as we did in Chapter 3.
However, as the alert reader may note from the repeated insertion of the word
“Cartesian,” the partial derivatives in Eqs. (4.2) and (4.3) are only guaranteed to be equal
in Cartesian coordinate systems, and since there is sometimes a need to use non-Cartesian
systems it becomes necessary to distinguish these two different transformation rules. Quan-
tities transforming according to Eq. (4.2) are called contravariant vectors, while those
transforming according to Eq. (4.3) are termed covariant. When non-Cartesian systems
may be in play, it is therefore customary to distinguish these transformation properties by
writing the index of a contravariant vector as a superscript and that of a covariant vector as
a subscript. This means, among other things, that the components of the position vector r,
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which is contravariant, must now be written (x', x2, x3). Thus, summarizing,

. 9 Ay} . .
A = Z ;%j) A’ A, a contravariant vector, (4.4)
j
ax/
A= Z FTeoy Aj A, acovariant vector. (4.5)
J

It is useful to note that the occurrence of subscripts and superscripts is systematic; the
free (i.e., unsummed) index i occurs as a superscript on both sides of Eq. (4.4), while it
appears as a subscript on both sides of Eq. (4.5), if we interpret an upper index in the
denominator as equivalent to a lower index. The summed index occurs once as upper
and once as lower (again treating an upper index in the denominator as a lower index).
A frequently used shorthand (the Einstein convention) is to omit the summation sign in
formulas like Eqs. (4.4) and (4.5) and to understand that when the same symbol occurs
both as an upper and a lower index in the same expression, it is to be summed. We will
gradually back into the use of the Einstein convention, giving the reader warnings as we
start to do so.

Tensors of Rank 2

Now we proceed to define contravariant, mixed, and covariant tensors of rank 2 by the
following equations for their components under coordinate transformations:

ayi = 3 LAY

m axk  9x! ’

. axHt axt
B, =Y ————Bf, 4.6
(B — oxk o)/ (46)

axk  ax!
Chij=Y —————Cu.
( )lj ;a(x/)l d(x')) kl

Clearly, the rank goes as the number of partial derivatives (or direction cosines) in the
definition: O for a scalar, 1 for a vector, 2 for a second-rank tensor, and so on. Each index
(subscript or superscript) ranges over the number of dimensions of the space. The number
of indices (equal to the rank of tensor) is not limited by the dimensionality of the space. We
see that AX! is contravariant with respect to both indices, Cy; is covariant with respect to
both indices, and Blk transforms contravariantly with respect to the index k but covariantly
with respect to the index /. Once again, if we are using Cartesian coordinates, all three
forms of the tensors of second rank, contravariant, mixed, and covariant are the same.

As with the components of a vector, the transformation laws for the components of a
tensor, Eq. (4.6), cause its physically relevant properties to be independent of the choice
of reference frame. This is what makes tensor analysis important in physics. The inde-
pendence relative to reference frame (invariance) is ideal for expressing and investigating
universal physical laws.
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The second-rank tensor A (with components A¥) may be conveniently represented by
writing out its components in a square array (3 x 3 if we are in three-dimensional (3-D)
space):

All A12 A13
A= | A2 A22 4B |, 4.7)
A3l A32 A33

This does not mean that any square array of numbers or functions forms a tensor. The
essential condition is that the components transform according to Eq. (4.6).
We can view each of Eq. (4.6) as a matrix equation. For A, it takes the form

(AT =Sy AM (ST or A =8AST, (4.8)
kl

a construction that is known as a similarity transformation and is discussed in
Section 5.6.

In summary, tensors are systems of components organized by one or more indices that
transform according to specific rules under a set of transformations. The number of
indices is called the rank of the tensor.

Addition and Subtraction of Tensors

The addition and subtraction of tensors is defined in terms of the individual elements, just
as for vectors. If

A+B=C, (4.9)
then, taking as an example A, B, and C to be contravariant tensors of rank 2,
Al 4 B = C, (4.10)
In general, of course, A and B must be tensors of the same rank (of both contra- and
co-variance) and in the same space.

Symmetry
The order in which the indices appear in our description of a tensor is important. In general,
A™" is independent of A™", but there are some cases of special interest. If, for all m and n,
A" = A" Ais symmetric. (4.11)
If, on the other hand,
A" = —A" " Ais antisymmetric. (4.12)

Clearly, every (second-rank) tensor can be resolved into symmetric and antisymmetric
parts by the identity

1 1

the first term on the right being a symmetric tensor, the second, an antisymmetric tensor.
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To illustrate some of the techniques of tensor analysis, let us show that the now-familiar
Kronecker delta, &, is really a mixed tensor of rank 2, 8," .I The question is: Does Slk trans-
form according to Eq. (4.6)? This is our criterion for calling it a tensor. If Slk is the mixed
tensor corresponding to this notation, it must satisfy (using the summation convention,
meaning that the indices k and / are to be summed)

a(x) ox! o) oxk
axk a(x) LT axk axnyd’
where we have performed the / sum and used the definition of the Kronecker delta. Next,
I axk )
axk a(x — a(xi’
where we have identified the k¢ summation on the left-hand side as an instance of the
chain rule for differentiation. However, (x")' and (x")/ are independent coordinates, and

therefore the variation of one with respect to the other must be zero if they are different,
unity if they coincide; that is,

¢ =

N
m =(6 )j. (4.14)
Hence
ni 0Dt axl

showing that the 811‘ are indeed the components of a mixed second-rank tensor. Note that
this result is independent of the number of dimensions of our space.

The Kronecker delta has one further interesting property. It has the same components in
all of our rotated coordinate systems and is therefore called isotropic. In Section 4.2 and
Exercise 4.2.4 we shall meet a third-rank isotropic tensor and three fourth-rank isotropic
tensors. No isotropic first-rank tensor (vector) exists.

Contraction

When dealing with vectors, we formed a scalar product by summing products of corre-
sponding components:

A-B= E A;B;.
i
The generalization of this expression in tensor analysis is a process known as contraction.

Two indices, one covariant and the other contravariant, are set equal to each other, and then
(as implied by the summation convention) we sum over this repeated index. For example,

1t is common practice to refer to a tensor A by specifying a typical component, such as A;;, thereby also conveying information

as to its covariant vs. contravariant nature. As long as you refrain from writing nonsense such as A= A;;, no harm is done.
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let us contract the second-rank mixed tensor B;'. by setting j to i, then summing over i. To

see what happens, let’s look at the transformation formula that converts B into B’. Using
the summation convention,

' !
a(x")' ax k_ ax!
axk () ! T axk
where we recognized the i summation as an instance of the chain rule for differentiation.
Then, because the x' are independent, we may use Eq. (4.14) to reach

(B"); = 8B = B}. (4.16)

(B = Bf,

Remembering that the repeated index (i or k) is summed, we see that the contracted B
is invariant under transformation and is therefore a scalar.” In general, the operation of
contraction reduces the rank of a tensor by 2.

Direct Product

The components of two tensors (of any ranks and covariant/contravariant characters) can
be multiplied, component by component, to make an object with all the indices of both
factors. The new quantity, termed the direct product of the two tensors, can be shown to be
a tensor whose rank is the sum of the ranks of the factors, and with covariant/contravariant
character that is the sum of those of the factors. We illustrate:

j
Cklm = Al B Fkl = A’ sz

Im>

Note that the index order in the direct product can be defined as desired, but the covari-
ance/contravariance of the factors must be maintained in the direct product.

Example 4.1.1  DirecT PRODUCT OF TWO VECTORS

Let’s form the direct product of a covariant vector a; (rank-1 tensor) and a contravariant
vector b/ (also a rank-1 tensor) to form a mixed tensor of rank 2, with components C l] =

a;b’ . To verify that C l] is a tensor, we consider what happens to it under transformation:
axk ! axk a(x)l

Y = @)@y = =
(€ =@y = 5y b= s S
confirming that C lj is the mixed tensor indicated by its notation.

If we now form the contraction Cf (remember that i is summed), we obtain the scalar
product a;b'. From Eq. (4.17) it is easy to see that ¢;b' = (a’); (b')’, indicating the invari-
ance required of a scalar product. |

cl, (4.17)

Note that the direct product concept gives a meaning to quantities such as VE, which
was not defined within the framework of vector analysis. However, this and other tensor-
like quantities involving differential operators must be used with caution, because their

2In matrix analysis this scalar is the trace of the matrix whose elements are the B;
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transformation rules are simple only in Cartesian coordinate systems. In non-Cartesian
systems, operators d/dx’ act also on the partial derivatives in the transformation expres-
sions and alter the tensor transformation rules.

We summarize the key idea of this subsection:

The direct product is a technique for creating new, higher-rank tensors.

Inverse Transformation

If we have a contravariant vector A’, which must have the transformation rule (using sum-
mation convention)

d(x")

~_ Al
Ax! ’

(A =
the inverse transformation (which can be obtained simply by interchanging the roles of the
primed and unprimed quantities) is

ax!

i_ nNJ
Al = TR (A", (4.18)

as may also be verified by applying 8(x")¥/dx? (and summing i) to A’ as given by
Eq. (4.18):
3(x)* AP = Ik ox!
axi T axt a(x)i

(A = 5’; (A") = (A, (4.19)

We see that (A")* is recovered. Incidentally, note that
o [awy -
(x")J dxt ’

as we have previously pointed out, these derivatives have different other variables held

fixed. The cancellation in Eq. (4.19) only occurs because the product of derivatives is
summed. In Cartesian systems, we do have

oxt o(x)/
A~ axi

’

both equal to the direction cosine connecting the x’ and (x)/ axes, but this equality does
not extend to non-Cartesian systems.

Quotient Rule

If, for example, A;; and By, are tensors, we have already observed that their direct product,
AjjBy, is also a tensor. Here we are concerned with the inverse problem, illustrated by
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equations such as

K;A' =B,
K!Aj=B;,
K! Aji = Bu, (4.20)
KijuAY = By,
K Ak = Biik,

In each of these expressions A and B are known tensors of ranks indicated by the number
of indices, A is arbitrary, and the summation convention is in use. In each case K is an
unknown quantity. We wish to establish the transformation properties of K. The quotient
rule asserts:

If the equation of interest holds in all transformed coordinate systems, then K is a tensor
of the indicated rank and covariant/contravariant character.

Part of the importance of this rule in physical theory is that it can establish the tensor
nature of quantities. For example, the equation giving the dipole moment m induced in an
anisotropic medium by an electric field E is

m; = P,'jEj.

Since presumably we know that m and E are vectors, the general validity of this equation
tells us that the polarization matrix P is a tensor of rank 2.

Let’s prove the quotient rule for a typical case, which we choose to be the second of
Eqgs. (4.20). If we apply a transformation to that equation, we have

K/Aj=B — (K)/A,=B, (4.21)

We now evaluate B, reaching the last member of the equation below by using Eq. (4.18)
to convert A; into components of A’ (note that this is the inverse of the transformation to
the primed quantities):
; ax™ )"
B;: - By, = _ K}, ji= - r]n()A;l
A(x’) a(x) a(x) ax/

It may lessen possible confusion if we rename the dummy indices in Eq. (4.22), so we
interchange n and j, causing that equation to then read

B — axm ax .
Pt axn MmUY

ax™ ax™
m

(4.22)

(4.23)

It has now become clear that if we subtract the expression for B/ in Eq. (4.23) from that in
Eq. (4.21) we will get

i ™ () ] P
[(K ), T Al =0. (4.24)

Since A’ is arbitrary, the coefficient of A/j in Eq. (4.24) must vanish, showing that K has
the transformation properties of the tensor corresponding to its index configuration.
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Other cases may be treated similarly. One minor pitfall should be noted: The quotient
rule does not necessarily apply if B is zero. The transformation properties of zero are
indeterminate.

Example 4.1.2  EQUATIONS OF MOTION AND FIELD EQUATIONS

In classical mechanics, Newton’s equations of motion mv = F tell us on the basis of the
quotient rule that, if the mass is a scalar and the force a vector, then the acceleration a=v
is a vector. In other words, the vector character of the force as the driving term imposes its
vector character on the acceleration, provided the scale factor m is scalar.

The wave equation of electrodynamics can be written in relativistic four-vector form as

1 82
B
C

where J" is the external charge/current density (a four-vector) and A" is the four-
component vector potential. The second-derivative expression in square brackets can be

shown to be a scalar. From the quotient rule, we may then infer that A* must be a tensor
of rank 1, i.e., also a four-vector. |

The quotient rule is a substitute for the illegal division of tensors.

Spinors

It was once thought that the system of scalars, vectors, tensors (second-rank), and so on
formed a complete mathematical system, one that is adequate for describing a physics
independent of the choice of reference frame. But the universe and mathematical physics
are not that simple. In the realm of elementary particles, for example, spin-zero particles’
(w mesons, « particles) may be described with scalars, spin 1 particles (deuterons) by
vectors, and spin 2 particles (gravitons) by tensors. This listing omits the most common
particles: electrons, protons, and neutrons, all with spin % These particles are properly
described by spinors. A spinor does not have the properties under rotation consistent with
being a scalar, vector, or tensor of any rank. A brief introduction to spinors in the context

of group theory appears in Chapter 17.

Exercises

4.1.1

Show that if all the components of any tensor of any rank vanish in one particular
coordinate system, they vanish in all coordinate systems.

Note. This point takes on special importance in the four-dimensional (4-D) curved space
of general relativity. If a quantity, expressed as a tensor, exists in one coordinate sys-
tem, it exists in all coordinate systems and is not just a consequence of a choice of a
coordinate system (as are centrifugal and Coriolis forces in Newtonian mechanics).

3The particle spin is intrinsic angular momentum (in units of 7). It is distinct from classical (often called orbital) angular
momentum that arises from the motion of the particle.
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4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9
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The components of tensor A are equal to the corresponding components of tensor B in
one particular coordinate system denoted, by the superscript O; that is,

0 0
A; = B; i
Show that tensor A is equal to tensor B, A;; = B;;, in all coordinate systems.

The last three components of a 4-D vector vanish in each of two reference frames. If the
second reference frame is not merely a rotation of the first about the xg axis, meaning
that at least one of the coefficients 8(x") /x° (i = 1,2,3) is nonzero, show that the
zeroth component vanishes in all reference frames. Translated into relativistic mechan-
ics, this means that if momentum is conserved in two Lorentz frames, then energy is
conserved in all Lorentz frames.

From an analysis of the behavior of a general second-rank tensor under 90° and 180°
rotations about the coordinate axes, show that an isotropic second-rank tensor in 3-D
space must be a multiple of 83..

The 4-D fourth-rank Riemann-Christoffel curvature tensor of general relativity, R;xim,
satisfies the symmetry relations

Rikim = —Rikmi = — Reiim-

With the indices running from 0 to 3, show that the number of independent components
is reduced from 256 to 36 and that the condition

Rikim = Rimik

further reduces the number of independent components to 21. Finally, if the components
satisfy an identity Rjx;m + Riimk + Rimki = 0, show that the number of independent
components is reduced to 20.

Note. The final three-term identity furnishes new information only if all four indices are
different.

Tikim 1s antisymmetric with respect to all pairs of indices. How many independent com-
ponents has it (in 3-D space)?

If T _; is a tensor of rank n, show that BTH_,‘/ij is a tensor of rank n + 1 (Cartesian
coordinates).

Note. In non-Cartesian coordinate systems the coefficients g;; are, in general, functions
of the coordinates, and the derivatives the components of a tensor of rank n do not
form a tensor except in the special case n = 0. In this case the derivative does yield a
covariant vector (tensor of rank 1).

If Tjjx... is a tensor of rank n, show that Zj 8T,‘jk_“/8xj is a tensor of rank n — 1
(Cartesian coordinates).

The operator

»_ 192
c2 3r?
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may be written as
>
P— 0x;

using x4 = ict. This is the 4-D Laplacian, sometimes called the d’Alembertian and
denoted by [12. Show that it is a scalar operator, that is, invariant under Lorentz trans-
formations, i.e., under rotations in the space of vectors (x!, x2, x3, x*).

4.1.10  The double summation K; in B/ is invariant for any two vectors A’ and B/. Prove that
K;; is a second-rank tensor.

Note. In the form ds? (invariant) = g; j dx" dx/, this result shows that the matrix g; j 1is
a tensor.

4.1.11  The equation K;; ATk = B{‘ holds for all orientations of the coordinate system. If A and
B are arbitrary second-rank tensors, show that K is a second-rank tensor also.

4.2 PSEUDOTENSORS, DUAL TENSORS

The topics of this section will be treated for tensors restricted for practical reasons to Carte-
sian coordinate systems. This restriction is not conceptually necessary but simplifies the
discussion and makes the essential points easy to identify.

Pseudotensors

So far the coordinate transformations in this chapter have been restricted to passive rota-
tions, by which we mean rotation of the coordinate system, keeping vectors and tensors at
fixed orientations. We now consider the effect of reflections or inversions of the coordinate
system (sometimes also called improper rotations).

In Section 3.3, where attention was restricted to orthogonal systems of Cartesian coor-
dinates, we saw that the effect of a coordinate rotation on a fixed vector could be described
by a transformation of its components according to the formula

A =SA, (4.25)

where S was an orthogonal matrix with determinant +1. If the coordinate transformation
included a reflection (or inversion), the transformation matrix was still orthogonal, but
had determinant —1. While the transformation rule of Eq. (4.25) was obeyed by vectors
describing quantities such as position in space or velocity, it produced the wrong sign
when vectors describing angular velocity, torque, and angular momentum were subject to
improper rotations. These quantities, called axial vectors, or nowadays pseudovectors,
obeyed the transformation rule

A’ =det(S)SA (pseudovector). (4.26)

The extension of this concept to tensors is straightforward. We insist that the designation
tensor refer to objects that transform as in Eq. (4.6) and its generalization to arbitrary
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rank, but we also accommodate the possibility of having, at arbitrary rank, objects whose
transformation requires an additional sign factor to adjust for the effect associated with
improper rotations. These objects are called pseudotensors, and constitute a generalization
of the objects already identified as pseudoscalars and pseudovectors.

If we form a tensor or pseudotensor as a direct product or identify one via the quotient
rule, we can determine its pseudo status by what amounts to a sign rule. Letting T be a
tensor and P a pseudotensor, then, symbolically,

T®T=P®P=T, TQP=P®T=P. (4.27)

Example 4.2.1 LEVI-CIVITA SYMBOL

The three-index version of the Levi-Civita symbol, introduced in Eq. (2.8), has the values

€123 = €231 = &312 = +1,
g1z =813 =¢831=—1, (4.28)
all other ¢;j; = 0.

Suppose now that we have a rank-3 pseudotensor 7z, which in one particular Cartesian
coordinate system is equal to &; . Then, letting A stand for the matrix of coefficients in an
orthogonal transformation of R3, we have in the transformed coordinate system

nl{jk =det(A) Z AipQjqQkr€pqr, (429)
rqr

by definition of pseudotensor. All terms of the pgr sum will vanish except those where
pqr is a permutation of 123, and when pgr is such a permutation the sum will correspond
to the determinant of A except that its rows will have been permuted from 123 to i jk. This
means that the pgr sum will have the value ¢; jx det(A), and

0 = eijk [detW) P = e, (4.30)

where the final result depends on the fact that | det(A)| = 1. If the reader is uncomfortable
with the above analysis, the result can be checked by enumeration of the contributions of
the six permutations that correspond to nonzero values of #; e

Equation (4.30) not only shows that ¢ is a rank-3 pseudotensor, but that it is also
isotropic. In other words, it has the same components in all rotated Cartesian coordinate
systems, and —1 times those component values in all Cartesian systems that are reached
by improper rotations. ]

Dual Tensors

With any antisymmetric second-rank tensor C (in 3-D space) we may associate a pseu-
dovector C with components defined by

C,':%é‘ijkcjk. 4.31)
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In matrix form the antisymmetric C may be written

0 C12 _C31
c=|-c? o c* | (4.32)
C31 _C23 0

We know that C; must transform as a vector under rotations because it was obtained from
the double contraction of ¢;;; C/ k_but that it is really a pseudovector because of the pseudo
nature of ¢;¢. Specifically, the components of C are given by

(C1, C2, C3) = (C3, 3, ). (4.33)

Note the cyclic order of the indices that comes from the cyclic order of the components
of Eijk-

We identify the pseudovector of Eq. (4.33) and the antisymmetric tensor of Eq. (4.32)
as dual tensors; they are simply different representations of the same information. Which
of the dual pair we choose to use is a matter of convenience.

Here is another example of duality. If we take three vectors A, B, and C, we may define
the direct product

vik=A'BICk. (4.34)
Viik is evidently a rank-3 tensor. The dual quantity
V=g Vik (4.35)
is clearly a pseudoscalar. By expansion it is seen that
Al B! C!
V =|A? B2 C? (4.36)
A3 B3 C3

is our familiar scalar triple product.

Exercises

4.2.1

4.2.2

An antisymmetric square array is given by
0 C3 —C 0o c?cb
-C3 0 C |=|-c? 0o c*?|,
C, —Ci 0 -cB3-c® o

where (C1, C2, C3) form a pseudovector. Assuming that the relation
1 .
C,’ = 5 SijkC'/k

holds in all coordinate systems, prove that C/* is a tensor. (This is another form of the
quotient theorem.)

Show that the vector product is unique to 3-D space, that is, only in three dimensions can
we establish a one-to-one correspondence between the components of an antisymmetric
tensor (second-rank) and the components of a vector.
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Write V-V x A and V x Vg in tensor (index) notation in IR so that it becomes obvious
that each expression vanishes.

ad
oxi

k

?
ANS. V-V xA=cgijps oA

a 0
(vaw)z—gl]ka Jaxk(p

Verify that each of the following fourth-rank tensors is isotropic, that is, that it has the
same form independent of any rotation of the coordinate systems.

(a) A’k 8 3f,

(b) Bl =sis] +8i5],

) Cg =85l -3,

Show that the two-index Levi-Civita symbol &;; is a second-rank pseudotensor (in two-
dimensional [2-D] space). Does this contradict the uniqueness of 3} (Exercise 4.1.4)?

Represent ¢;; by a 2 x 2 matrix, and using the 2 x 2 rotation matrix of Eq. (3.23), show
that ¢;; is invariant under orthogonal similarity transformations.

Given A, = %sijkB"j with B = —BJI, antisymmetric, show that

B — SmnkAk.

4.3 TENSORS IN GENERAL COORDINATES

Metric Tensor

The distinction between contravariant and covariant transformations was established in
Section 4.1, where we also observed that it only became meaningful when working with
coordinate systems that are not Cartesian. We now want to examine relationships that can
systematize the use of more general metric spaces (also called Riemannian spaces). Our
initial illustrations will be for spaces with three dimensions.

Letting ¢’ denote coordinates in a general coordinate system, writing the index as a
superscript to reflect the fact that coordinates transform contravariantly, we define covari-
ant basis vectors &; that describe the displacement (in Euclidean space) per unit change
in ¢', keeping the other ¢/ constant. For the situations of interest here, both the direction
and magnitude of &; may be functions of position, so it is defined as the derivative

ox ay . 0z 6
€l‘:a—qiex+aq ey+8 7 Z'
An arbitrary vector A can now be formed as a linear combination of the basis vectors,
multiplied by coefficients:

(4.37)

A=Ale; + A%er+ Ades. (4.38)
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At this point we have a linguistic ambiguity: A is a fixed object (usually called a vector)
that may be described in various coordinate systems. But it is also customary to call the
collection of coefficients A’ a vector (more specifically, a contravariant vector), while
we have already called e; a covariant basis vector. The important thing to observe here is
that A is a fixed object that is not changed by our transformations, while its representation
(the A") and the basis used for the representation (the &;) change in mutually inverse ways
(as the coordinate system is changed) so as to keep A fixed.

Given our basis vectors, we can compute the displacement (change in position) associ-
ated with changes in the ¢’ . Because the basis vectors depend on position, our computation
needs to be for small (infinitesimal) displacements ds. We have

(ds)* =) (eidq') - (e;dq),
ij
which, using the summation convention, can be written
(ds)* =gijdq'dq’, (4.39)
with
gij=¢i-€j. (4.40)

Since (ds)? is an invariant under rotational (and reflection) transformations, it is a scalar,
and the quotient rule permits us to identify g;; as a covariant tensor. Because of its role in
defining displacement, g;; is called the covariant metric tensor.

Note that the basis vectors can be defined by their Cartesian components, but they are, in
general, neither unit vectors nor mutually orthogonal. Because they are often not unit vec-
tors we have identified them by the symbol &, not €. The lack of both a normalization and
an orthogonality requirement means that g;;, though