Q.P Code D 122646	Total Pages 2	• •	N	ame	601717	
	S		R	egister No.		
SECOND SEMESTER (CUFYUGP) DEGREE EXAMINATION, APRIL 2025						
				,,		
MATHEMATICS						
MAT2CJ101-INTEGRAL CALCULUS						
2024 Admission Onwards						
Maximum Time :2 I	Iours		M	laximum M	arks :70	

Section A				
All Question can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)				
1	Evaluate $\int \sin^2 x dx$			
2	Find $\int \cos(7\theta + 5) d\theta$			
3	Graph the integrand and use areas to evaluate the integral $\int_2^5 (2x+1) dx$.			
4	State Fundamental Theorem of Calculus			
5	Find $\int \tan x dx$			
6	Find y if $\ln y = t/2 + 7$			
7	Find $\lim_{x \to 0} \frac{x^2}{\sin x}$			
8	Express $\frac{5x-3}{x^2-2x-3}$ as a sum of partial fractions.			
9	Explain the method to find the area between two curves			
10	Set up an integral for the length of the curve $y = x^2$; $-1 \le x \le 2$			

D 122646

	Section B 601717					
All	All Question can be answered. Each Question carries 6 marks (Ceiling : 36 Marks))					
11	Solve $\int \sqrt{4t-1} dt$					
12	Suppose that f is continuous and that $\int_{1}^{2} f(x)dx = 4$. Show that $f(x) = 4$ at least once on [1,2].					
13	Evaluate the integral $\int_0^{\pi} \frac{\sec x \tan x}{2 + \sec x} dx$					
14	Solve the initial value problem $e^y \frac{dy}{dx} = 2x, x > \sqrt{3}, y(2) = 0$					
15	Evaluate $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$					
16	Evaluate $\int \frac{1}{\sqrt{4x - x^2}} dx$					
17	Find the areas of the regions enclosed by the curves $x + y^2 = 3$ and $4x + y^2 = 0$					
18	Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the					
	lines $y = 1, x = 4$ about the line $y = 1$.					
	Section C					
	Answer any ONE. Each Question carries 10 marks (1x10=10 Marks))					
19	Graph the function $f(x) = x^2 - 6x + 8$ on the interval [0,3]. Then find 1. find the area of the region between the graph and the x -axis.					
	2. average value of $f(x)$ over that interval					
20	Find the length of the curve $x = \frac{y^3}{3} + \frac{1}{4y}$ from $y = 1$ to $y = 3$					