Q.P Code D 122901	Total Pages 3	Name 603174	
		Register No.	
SECOND SEMESTER (CUFYUGP) DEGREE EXAMINATION, APRIL 2025			
MATHEMATICS			
MAT2MN101 Differential Equations and Matrix Theory			
	2024 Admission Onw	vards	
Maximum Time :2 H	Iours	Maximum Marks :70	

All	All Question can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)		
1	Explain the difference between ordinary differential equation and partial differential equation		
	with examples		
2	Solve the differential equation $\frac{dy}{dx} = \frac{-y}{x}$		
3	Find the general solution of the given differential equation. $\frac{dy}{dx} + y = e^{3x}$		
4	Find $\mathscr{L}{\sinh t}$		
5	Find $\mathscr{L}^{-1}\left\{\frac{1}{s+1}\right\}$		
6	Solve $2x + y = 4$, $3x - 4y = 7$		
7	Evaluate the determinant of $\begin{pmatrix} 1 & 5 & 6 \\ 7 & 3 & 2 \\ 3 & 9 & 1 \end{pmatrix}$		
8	Explain Eigenvalues and Eigenvectors of a matrix		
9	Expand $f(x) = x, -2 < x < 2$, in a Fourier series.		
10	Classify the following partial differential equation		
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x \partial y} = 0$		

Γ

D 122901

	603174			
	Section B			
All	All Question can be answered. Each Question carries 6 marks (Ceiling : 36 Marks))			
11	Solve the initial-value problem $\frac{dy}{dx} - 2xy = 0; y(0) = 1$			
12	Solve the initial-value problem $(4y + 2t - 5)dt + (6y + 4t - 1)dy = 0, y(-1) = 2$			
13	Find $\mathscr{L}^{-1}\left\{\frac{3s+16}{s^2-s-6}\right\}$			
14	Define a Vector Space. Prove or Disprove that the set of all rational numbers under usual addition and multiplication is a real vector space.			
15	Solve the system of linear equations			
	5x + 3y + 7z = 4			
	3x + 26y + 2z = 9			
	7x + 2y + 10z = 5			
16	Using row reduction find the rank of $\begin{bmatrix} 0 & 2 & 3 & 10 & 3 \end{bmatrix}$			
10	$\begin{array}{c} 2 & 5 & 9 & 1 & 0 \end{array}$			
	Using row reduction find the rank of $\begin{pmatrix} 1 & 7 & 4 & 5 & 4 \\ 0 & 2 & 3 & 10 & 3 \\ 2 & 5 & 9 & 1 & 0 \\ 6 & 3 & 4 & 1 & 3 \end{pmatrix}$			
17	Expand $f(x) = \begin{cases} 0 & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 \le x < \pi \end{cases}$ in a Fourier Series.			
18	Use separation of variables to find product solutions for the following partial differential			
	equation. $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}$			

	603174			
	Section C			
Answer any ONE. Each Question carries 10 marks (1x10=10 Marks))				
19	Use the Laplace transform to solve the initial-value problem $y'' + 5y' + 4y = 0, y(0) =$			
	1, y'(0) = 0			
20	Find the eigen values and the corresponding eigen vectors of the following matrix			
	$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$			