(**Pages** : 4)

Name.....

Reg. No.....

SIXTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION MARCH 2025

Mathematics

MTS6B12—CALCULUS OF MULTI VARIABLE

(Admissions Year-2019 Onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Find the domain of the function *f* defined by $f(x, y, z) = \sqrt{x + y z} + xe^{yz}$.
- 2. Define limit of a function of two variables at a point.
- 3. Evaluate $\lim_{(x, y) \to (2, 4)} \sqrt[3]{\frac{8xy}{2x + y}}$.
- 4. Show that the function $u(x, y) = e^x \cos y$ is harmonic in the *xy* plane.
- 5. Let $f(x, y) = x^2 2xy$. Find the gradient of f at the point (1, -2).
- 6. State second derivative test for a function of two variables.
- 7. Find the equation of the tangent plane to the graph of the function f defined by $f(x, y) = 4x^2 + y^2 + 2$ at the point (1, 1).
- 8. Evaluate $\int_{1}^{2} \int_{0}^{1} 3x^{2} y \, dx \, dy$.
- 9. State Fubini's theorem for rectangular regions.

Turn over

- 10. Find the volume of the solid lying under the elliptic paraboloid $z = 8 2x^2 y^2$ and above the rectangular region $R = \{(x, y)/0 \le x \le 1, 0 \le y \le 2\}$.
- 11. Find the area of the part of the surface with equation $z = 2x + y^2$ that lies directly above the triangular region R in the *xy*-plane with vertices (0, 0), (1, 1) and (0, 1).
- 12. A vector field **F** in \mathbb{R}^2 is defined by $\mathbf{F}(x, y) = -yi + xj$. Describe **F**, and sketch a few vectors representing the vector field.
- 13. Find divergence of the vector field **F** (x, y, z) = yz i + xz j + xy k.
- 14. Find curl of the vector field $\mathbf{F} = x^2 y^3 i + xz^2 k$.
- 15. State Green's theorem.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

16. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $2x^2z - 3x^2 + yz - 8 = 0$.

- 17. Use chain rule to find $\frac{dw}{dt}$, where $w = 2x^3y^2z$, x = t, $y = \cos t$, $z = t \sin t$.
- 18. A heat-seeking object is located at the point (2, 3) on a metal plate whose temperature at a point (x, y) is T $(x, y) = 30 8x^2 2y^2$. Find the path of the object if it moves continuously in the direction of maximum increase in temperature at each point.
- 19. Evaluate $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$.

20. Evaluate $\iint_{R} y \, dA$, where R is the region in the first quadrant that is outside the circle r = 2, and inside the cardioid $r = 2(1 + \cos \theta)$.

3

- 21. Evaluate $\int_{C} 2x \, ds$, where C consists of the arc C₁ of the parabola $y = x^2$ from (0, 0) to (1,1) followed by the line segment C₂ from (1, 1) to (0, 0).
- 22. Evaluate $\int_{C} kz \, ds$, where k is a constant and C is the circular helix with parametric equations

 $x = \cos t$, $y = \sin t$ and z = t where $0 \le t \le 2\pi$.

- 23. Let $F(x, y) = 2xy i + (1 + x^2 y^2) j$.
 - (a) Show that **F** is conservative, and find a potential function f such that **F** = ∇f .
 - (b) If F is a force field, find the work done by F in moving a particle along any path from (1, 0) to (2, 3).

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum 20 marks.

- 24. The production function of a certain country is given by $f(x, y) = 20x^{2/3}y^{1/3}$ billion dollars, when x billion dollars of labor and y billion dollars of capital are spent.
 - (a) Compute $f_x(x, y)$ and $f_y(x, y)$.
 - (b) Compute f_x (125,27) and f_y (125, 27) and interpret your result.
 - (c) Should the government encourage capital investment rather than investment in labor to increase the country's productivity?
- 25. Find the maximum and minimum values of the function $f(x, y) = x^2 2y$ subject to $x^2 + y^2 = 9$.

Turn over

594637

D 120184

26. Find the center of as of the solid T of uniform density bounded by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = z$.

4

27. State divergence theorem. Let T be a solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and z = 3, and let S be the surface of T. Calculate the outward flux of the vector field $\mathbf{F}(x, y, z) = xy^2 i + yz^2 j + zx^2 k$ over S.

 $(2 \times 10 = 20 \text{ marks})$

(Pages: 3)

Name.....

Reg. No.....

SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MTS 6B 12—CALCULUS OF MULTIVARIABLE

(2019 Admissions onwards)

Time : Two Hours and a Half

Maximum Marks: 80

Section A

Questions 1—15. Answer any number of questions. Each carry 2 marks. Maximum marks 25.

1. Find the domain of the function
$$f(x, y) = \frac{\ln(x + y + 1)}{y - x}$$
.

2. Evaluate
$$\lim_{(x,y)\to(1,2)} \frac{2x^2 - 3y^3 + 4}{3 - xy}$$
.

- 3. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $\ln(x^2 + y^2) + yz^3 + 2x^2 = 10$.
- 4. Find the gradient of $f(x, y) = x^2 + y^2 + 1$ at the point (1, 2). Use the result to find the directional derivative of f at (1, 2) in the direction from (1, 2) to (2, 3).
- 5. Find the equation of the tangent plane to the hyperboloid $z^2 2x^2 2y^2 = 12$ at the point (1, -1, 4).
- 6. Find the critical points of $f(x, y) = -x^3 + 4xy 2y^2 + 1$.
- 7. Evaluate $\int_{0}^{2} \int_{y^2}^{4} dx dy$.
- 8. Set up a triple integral for the volume of the solid region in the first octant bounded above by the sphere $x^2 + y^2 + z^2 = 6$ and below by the parabolid $z = x^2 + y^2$.
- 9. Evaluate $\iint_{\mathbf{R}} 1 2xy^2 d\mathbf{A}$ where **R** is the region $\{(x, y) | 0 \le x \le 2, -1 \le y \le 1\}$.

Turn over

10. Find the volume of the solid S below the hemisphere $z = \sqrt{9 - x^2 - y^2}$ above the *xy* plane and inside the cylinder $x^2 + y^2 = 1$.

 $\mathbf{2}$

- 11. Find the gradient vector field \vec{F} of the function $f(x, y, z) = \frac{-K}{\sqrt{x^2 + y^2 + z^2}}$ and hence deduce that the inverse square field \vec{F} is conservative.
- 12. Find a parametric representation for the cone $x^2 + y^2 = z^2$.
- 13. State Stoke's theorem.
- 14. Using Divergence theorem evaluate $\iint_{S} \vec{F} \cdot n \, dS$ where $\vec{F} = x\hat{i} + y^{2}\hat{j} + z\hat{k}$ and S is the surface bounded by the co-ordinate planes and the plane 2x + 2y + z = 6.
- 15. Find an equation of the tangent plane to the paraboloid $\vec{r}(u,v) = u\hat{i} + v\hat{j} + (u^2 + v^2)\hat{k}$ at the point (1, 2, 5).

Section B

Questions 16–23. Answer any number of questions. Each carry 5 marks. Maximum marks 35.

- 16. Let $w = 2x^2y$ where $x = u^2 + v^2$ and $y = u^2 v^2$. Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$.
- 17. The dimensions of a closed rectangular box are measured as 30 in 40 in and 60 in with a maximum error of 0.2 inches in each measurement. Using differentials find the maximum error in calculating the volume of the box.
- 18. Show that the equation of the tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ at (x_0, y_0, z_0)

is
$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1.$$

19. Sketch the level curve corresponding to c = 0 for the function $f(x, y) = y - \sin x$ and find a

normal vector at the point $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$.

20. Using polar co-ordinates find the volume of the solid region bounded above by the hemisphere $z = \sqrt{16 - x^2 - y^2}$ and below by the circular region $x^2 + y^2 \le 4$.

21. Find the surface area S of the portion of the hemisphere $f(x, y) = \sqrt{25 - x^2 - y^2}$ that lies above the region R bounded by the circle $x^2 + y^2 \le 9$.

3

- 22. Evaluate $\oint_C (y^2 + \tan x) dx + (x^3 + 2xy + \sqrt{y}) dy$ where C is the circle $x^2 + y^2 = 4$ and is oriented in the positive direction.
- 23. Find the surface area of the unit sphere $\vec{r}(u,v) = \sin u \cos v \hat{i} + \sin u \sin v \hat{j} + \cos u \hat{k}$ where the domain D is $0 \le u \le \pi$ and $0 \le v \le 2\pi$.

Section C

Questions 24—27. Answer any **two** questions. Each carry 10 marks.

24. (a) Show that $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2+y^2} = 0.$

- (b) The production function of a certain company is $f(x, y) = 20x^{2/3}y^{1/3}$ Billion dollars, when x billion dollars of labour and y billion dollars of capital are spent :
 - (i) Compute $f_x(x, y), f_y(x, y)$.
 - (ii) Compute f_x (125, 27) and f_y (125, 27) and interpret your result.
- 25. Let $T(x, y, z) = 20 + 2x + 2y + z^2$ represent the temperature at each point on the sphere $x^2 + y^2 + z^2 = 11$. Find the extreme temperatures on the curve formed by the intersection of the plane x + y + z = 3 and the sphere.
- 26. Find the volume of the solid that lies below the paraboloid $z = 4 x^2 y^2$ above the *xy* plane and inside the cylinder $(x 1)^2 + y^2 = 1$.
- 27. Verify Stoke's theorem for the vector field $\vec{F}(x, y, z) = 2z\hat{i} + 3x\hat{j} + 5y\hat{k}$ and S is the portion of the paraboloid $z = 4 x^2 y^2$ for which $z \le 0$ with upward orientation and C is the positively oriented circle $x^2 + y^2 = 4$ that forms the boundary of S in the *xy*-plane.

 $(2 \times 10 = 20 \text{ marks})$

318727

C 40605

(Pages: 4)

Name..... Reg. No.....

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2023

(CBCSS-UG)

Mathematics

MTS 6B 12-CALCULUS OF MULTI VARIABLE

(2019 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Questions 1–15, Answer any number of questions. Each question carries 2 marks. Maximum marks 25.

- 1. Find the domain and range of the function $f(x, y) = \sqrt{4 x^2 y^2}$.
- 2. Show that $\lim_{(x, y) \to (0, 0)} \frac{xy^2}{x^2 + y^4}$ does not exist.
- 3. Find f_x and f_y if $f(x, y) = y^x$.
- 4. Find the Directional Derivative of $f(x, y) = 4 x^2 \frac{y^2}{4}$ at (1, 2) in the direction of
 - $\vec{u} = \cos\frac{\pi}{3}\,\hat{i} + \sin\frac{\pi}{3}\,\hat{j} \; .$
- 5. Find the gradient of $f(x, y) = y \ln x + xy^2$ at the point (1, 2).
- 6. Find the relative extrema of $f(x, y) = 1 (x^2 + y^2)^{\frac{1}{3}}$.

Turn over

7. Evaluate $\iint_{R} 2x - y \, dA$ where R is the region bounded by the parabola $x = y^2$ and the straight line

$$x-y=2.$$

- 8. Find the surface area of the portion of the plane z = 2 x y that lies above the circle $x^2 + y^2 \le 1$ in the first quadrant.
- 9. Find a transformation T from a region S to the region R bounded by the lines x 2y = 0, x 2y = -4, x + y = 4 and x + y = 1 such that S is a rectangular region.
- 10. Sketch the region of integration and reverse the order of integration in $\int_{1}^{e} \int_{0}^{\ln x} f(x, y) dy dx$.
- 11. Check whether the vector field $\vec{\mathbf{F}}(x, y, z) = 2xy \hat{i} + (x^2 + z^2)\hat{j} + 2yz \hat{k}$ is irrotational.
- 12. Find div (curl $\vec{\mathbf{F}}$) if $\vec{\mathbf{F}}(x, y, z) = xyz \,\hat{i} + y\hat{j} + z\hat{k}$.
- 13. Use Green's theorem to evaluate $\oint_C (x^2y + x^3) dx + 2xy dy$ where C if the boundary of the region bounded by y = x and $y = x^2$.
- 14. State Gauss Divergence theorem.
- 15. Evaluate the surface integral $\iint_{S} x + z \, dS$ where S is the first octant portion of the cylinder

 $y^2 + z^2 = 9$ between x = 0 and x = 4.

Section B

Questions 16–23, Answer any number of questions. Each question carries 5 marks. Maximum marks 35.

- 16. Show that the function $z = \sqrt{x^2 + y^2} \tan^{-1} \frac{y}{x}$ satisfies $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.
- 17. Let $w = x^2y xy^3$ where $x = \cos t$ and $y = e^t$. Find $\frac{dw}{dt}$ at t = 0.
- 18. Find the points on the sphere $x^2 + y^2 + z^2 = 14$ at which the tangent plane is parallel to the plane x + 2y + 3z = 12.
- 19. Find the relative extrema of $f(x, y) = 2x^2 + y^2 + 8x 6y + 20$.
- 20. Find the volume of the solid bounded by the cylinder $y^2 + z^2 = 9$ and the planes x = 0, y = 0, z = 0 and 2x + y = 2.
- 21. Evaluate $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy$ by changing the order of integration.
- 22. Find an equation of the tangent plane to the paraboloid

 $\vec{r}(u,v) = u\hat{i} + v\hat{j} + (u^2 + v^2)\hat{k}$ at the point (1, 2, 5).

23. Find the surface integral $\iint_{S} y^2 + 2yz \, dS$ where S is the first octant portion of the plane

2x + y + 2z = 6.

Turn over

Section C

4

Questions 24–27, Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Find the second order partial derivatives of $w = \cos(2u v) + \sin(2u + v)$.
 - (b) Let $z = f(x, y) = 2x^2 xy$. Find Δz and use the result to find the change in z if (x, y) changes from (1, 1) to (0.98, 1.03).
- 25. Find the absolute maximum and absolute minimum values of the function $f(x, y) = 2x^2 + y^2 - 4x - 2y + 3$ on the rectangle $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$
- 26. Evaluate $\iiint_{T} \sqrt{x^2 + z^2} \, dv$ where T is the region bounded by the cylinder $x^2 + z^2 = 1$ and the planes y + z = 2 and y = 0.
- 27. verify Divergence Theorem for $\vec{F}(x, y, z) = 2z\hat{i} + x\hat{j} + y^2\hat{k}$ and T is the solid region bounded between the paraboloid $z = 4 - x^2 - y^2$ and the xy plane.

 $(2 \times 10 = 20 \text{ marks})$

102684

C 20647

Name.....

Maximum : 80 Marks

Reg. No.....

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS-UG)

Mathematics

MTS 6B 12-CALCULUS OF MULTIVARIABLE

(2019 Admissions)

Time : Two Hours and a Half

Section A (Short Answer Questions)

Answer at least **ten** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

1. Find the domain and rang of the function f(x, y) = x + 3y - 1.

2. Evaluate
$$(x,y,z) \rightarrow \left(\frac{\pi}{2},0,1\right) = \frac{e^{2y}(\sin x + \cos y)}{1 + y^2 + z^2}$$

- 3. Find f_x and f_y if $f(x, y) = x \cos xy^2$.
- 4. Find the directional derivative of $f(x,y) = x^2 \sin 2y$ at $\left(1,\frac{\pi}{2}\right)$ in the direction of $\vec{v} = 3\hat{i} 4\hat{j}$.
- 5. Find $\nabla f(x, y, z)$ if $f(x, y, z) = x^2 + y^2 4z$ and find the direction of maximum increase of f at the point (2, -1, 1).
- 6. Find the relative extrema of the function $f(x, y) = x^2 + y^2 2x + 4y$.
- 7. Find the volume of the solid lying under the elliptic paraboloid $z = 8 2x^2 y^2$ above the rectangular region given by $0 \le x \le 1, 0 \le y \le 2$.
- 8. Find the mass of the triangular lamina with vertices (0,0), (0,3) and (2,3) given that the density at (x, y) is $\rho(x, y) = 2x + y$.

Turn over

- 9. Find the Jacobian for the change of variables defined by $x = r \cos \theta$, $y = r \sin \theta$.
- 10. Evaluate $\iint_{R} 2x y \, dA$ where R is the region bounded by the parabola $x = y^2$ and the line x y = 2.
- 11. Find whether the vector field $\vec{F} = x^2 y \hat{i} + xy \hat{j}$ is conservative.
- 12. State Green's theorem.
- 13. Find a parametric representation for the cone $x = \sqrt{y^2 + z^2}$.
- 14. Find the surface area of the torus given by $\vec{r}(u,v) = (2 + \cos u) \cos v \hat{i} + (2 + \cos u) \sin v \hat{j} + \sin u \hat{k}$ where the Domain D is given by $0 \le u \le 2\pi$ and $0 \le v \le 2\pi$.
- 15. Compute $\iint_{S} \vec{F} \cdot \hat{n} \, dS \text{ given } \vec{F}(x, y, z) = (x + \sin z) \, \hat{i} + (2y + \cos x) \, \hat{j} + (3z + \tan y) \hat{k} \text{ and } S \text{ is the unit}$

sphere $x^2 + y^2 + z^2 = 1$.

 $(10 \times 3 = 30 \text{ marks})$

Section B (Paragraph Questions)

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Find f_{xyx} and $f_y x_y$ if $f(x, y) = x \cos y + y \sin x$.
- 17. Find the differential of $w = x^2 + xy + z^2$. Compute the value of dw if (x, y, z) changes from (1, 2, 1) to (0.98, 2.03, 1.01) and compare the value with that of Δw .
- 18. Find the equation of the tangent plane and normal line to the surface $x^2 2y^2 4z^2 = 4$ at (4, -2, -1).
- 19. Find the relative extrema of $f(x, y) = -x^3 + 4xy 2y^2 + 1$.
- 20. Find the volume of the solid region bounded by the paraboloid $z = 4 x^2 2y^2$ and the *xy*-plane.

3

21. Evaluate
$$\int_{0}^{2} \int_{0}^{x} \int_{0}^{x+y} e^{x} (y+2z) dz dy dx$$
.

- 22. Determine whether the vector field $\vec{\mathbf{F}} = e^x \left(\cos y \, \hat{i} \sin y \, \hat{j} \right)$ is conservative. If so, find a potential function for the vector field.
- 23. Evaluate $\oint_C \left(e^x + y^2\right) dx + \left(x^2 + 3xy\right) dy$, where C is the positively oriented closed curve lying on the

boundary of the semi annular region R bounded by the upper semicircles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$ and the *x*-axis.

 $(5 \times 6 = 30 \text{ marks})$

Section C (Essay Questions)

Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Sketch the graph of $f(x, y) = 9 x^2 y^2$.
 - (b) Show that $(x,y) \rightarrow (0,0) \frac{xy}{x^2 + y^2}$ does not exist.
- 25. (a) Find the relative extrema of $f(x, y) = x^3 + y^2 2xy + 7x 8y + 2$.
 - (b) Find the minimum value of $f(x, y, z) = 2x^2 + y^2 + 3z^2$ subject to the constraint 2x 3y 4z = 49.
- 26. Let R be the region bounded by the square with vertices (0,1),(1,2),(2,1) and (1,0). Evaluate

$$\iint\limits_{\mathbf{R}} (x+y)^2 \sin^2(x-y) d\mathbf{A}.$$

- 27. Let $\vec{\mathbf{F}} = (x, y, z) = 2xyz^2 \hat{i} + x^2 z^2 \hat{j} + 2x^2 yz \hat{k}$.
 - (a) Show that \vec{F} is conservative and find a scalar function f such that $\vec{F} = \nabla f$.
 - (b) If \vec{F} is a force field, find the work done by \vec{F} in moving a particle along any path from (0, 1, 0) to (1, 2, -1).

 $(2 \times 10 = 20 \text{ marks})$