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Raising and lowering operators for quantum billiards
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Abstract. For planar integrable billiards, the eigenstates can be classified with respect to a quantity determined
by the quantum numbers. Given the quantum numbers as m, n, the index which represents a class is c = m mod kn
for a natural number, k. We show here that the entire tower of states can be generated from an initially given state
by the application of the operators introduced here. Thus, these operators play the same role for billiards as raising
and lowering operators in angular momentum algebra.
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Quantum billiards are systems where a single par-
ticle is confined inside a boundary on which the
eigenfunctions vanish [1]. One seeks solutions of the
time-independent Schrödinger equation, which is the
same as the Helmholtz equation in the context of gen-
eral wave phenomena. The solutions of this problem
for an arbitrarily shaped enclosure is a very challeng-
ing open problem, even when we restrict ourselves to
two-dimensional cases [2–5]. There are some very inter-
esting connections between exactly solvable models and
random matrix theories. A summary may be seen in [6].
The Helmholtz operator is separable in certain coordi-
nate systems – for these cases, the solutions can be found
[7]. The non-separable problems for which the classi-
cal dynamics is integrable have been recently studied in
detail [8–10]. Although the solutions of these systems
have been known, there remain many questions regard-
ing the nature of nodal curves and domains. The nodal
domains of the eigenfunctions of the systems for which
the Schrödinger equation is separable, form a checker-
board pattern [7]. The number of crossings actually
count the number of domains. Moreover, the checker-
board patterns are trivially self-similar.

Counting the nodal domains of non-separable plane
polygonal billiards is very difficult in general [11]. Even
if we restrict to systems that are classically integrable,
the problem poses considerable challenges. Progress
on this otherwise intractable problem could be made

recently due to the observation that the eigenfunctions
could be classified in terms of equivalence classes [7,9].
Figure 1 shows examples of eigenfunctions belonging
to an equivalence class in the right isosceles triangle
billiard. One cannot miss the remarkable similarity in
each family. They seem genetically related. Here we
shall present operators that make any other state appear
starting from one in a family. Thus, we can construct
the tower of states by repeated application of this oper-
ator. This reminds us of the usual raising and lowering
operators in quantum mechanics.

We explain in the following sections the construction
of ‘raising’ and ‘lowering’ operators for the right isosce-
les and equilateral triangle billiard, and summarize with
remarks about other systems.

1. Right isosceles triangle

The solutions of Helmholtz equation for the right isosce-
les triangle with sidelength, π (chosen for convenience)
are given by

ψm,n(x, y) = sin(mx) sin(ny) − sin(nx) sin(my), (1)

m > n. This consists of two terms, each being a prod-
uct of sine functions. Of course, it can be rewritten in a
variety of equivalent ways by employing trigonometric
identities. With just one term of a product of sine func-
tions, the nodal lines are straight lines and they form a
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Figure 1. The pattern of nodal domains of the right-angled
isosceles triangle for (a) ψ 7,4, (b) ψ 15,4 and (c) ψ 23,4. All
three eigenfunctions belong to the same equivalence class
[C2n] and the similarity of the nodal pattern is evident as the
wave function evolves from one state to another within mem-
bers of the same class.

checkerboard pattern. This would be the case also for a
product of any other special function.

For instance, the solutions of Helmholtz equation for
a circular, elliptical, circular annulus, elliptical annulus,

confocal parabolic enclosures are each a product of
functions like Bessel for circular, Mathieu for elliptic
and so on [7].

Equation (1) can be rewritten in a way that will be
more useful:

ψm,n(x, y) = 1

2
�

×
[
ei(mx−ny) − ei(mx+ny) − ei(my−nx) + ei(my+nx)

]

= 1

2
�Tr

×
[{

ei(mx−ny)−ei(mx+ny)
}

0
0

{−ei(my−nx)+ei(my+nx)
}
]

:= 1

2
�Tr I. (2)

All the eigenfunctions can be classified into equiva-
lence classes labelled by C2n = m mod 2n [9]. Within
each class, it was shown that the number of domains
νm,n for one eigenfunction is related to νm+2n,n by a
difference equation [7,9]. We can, in fact, write down
the operator (in the matrix form) which actually takes us
along the ladder of states beginning with ψm,n , up and
down. The matrix is

T =
[

ei2nx 0
0 ei2ny

]
. (3)

To confirm, we get the eigenfunction ψm+2np,n(x, y)

as

ψm+2np,n(x, y) = 1

2
�Tr (T pI). (4)

Thus, we have generated all the states beginning any-
where; note that p could be any integer as long as we
keep the inequality between the two quantum numbers.

2. Equilateral triangle

The eigenfunctions of an equilateral triangle of side
length π , satisfying the Dirichlet boundary conditions,
can be written as three terms, each a product of trigono-
metric functions [10]. There are two possible solutions
– one with cosine and the other with sine functions. First
we discuss the function with cosines:
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. (5)
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This can be rewritten as

ψc
m,n (x, y) = 1

2
�
[

e
i 4

3

(
mx−n

(
x
2 −

√
3y
2

))

− e
i 4

3

(
mx−n

(
x
2 +

√
3y
2

))

−e
i 4

3

(
nx−m

(
x
2 −

√
3y
2

))

+ e
i 4

3

(
nx−m

(
x
2 +

√
3y
2

))

− e
i 4

3

(
m

(
x
2 −

√
3

2 y
)
+n

(
x
2 +

√
3y
2

))

+ e
i 4

3

(
m

(
x
2 +

√
3

2 y
)
+n

(
x
2 −

√
3y
2

))]

= �1

2
Tr A, (6)

where
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The matrix operator for this state is

T p =
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Similarly, for the eigenfunctions written in terms of sine
functions,
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In complex form, it can be rewritten as
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and in matrix form as

�s
m,n(x, y) = 1

2
�Tr[A], (10)
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where
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The corresponding matrix operator is
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This operator is the same as for the cosine form of the
eigenfunctions for equilateral triangle billiard.

3. Conclusions

The eigenfunctions of separable billiards are a sin-
gle product of special functions – trigonometric for
rectangular billiard, Bessel and trigonometric func-
tions for circular billiards (and related annuli), Mathieu
and trigonometric functions for elliptical billiards (and
annuli) and parabolic cylinder functions for confocal
parabolic billiards. In all these cases, the tower of states
can be trivially constructed along the lines described
here. This is because the index that classifies states for
all separable billiards is Cn = m mod n. For the non-
separable billiards described here, we have shown in
earlier papers that all the states can be classified by
C2n = m mod 2n or C3n = m mod 3n. Here, we have
shown that within a class, all the states can be con-
structed from the energetically lowest state. We can also
make a transformation from an excited state to the low-
est state. We hesitate to call this a ‘ground state’ as there
will be one lowest state for an index, Ck n , k = 1, 2, 3.

The results given here are for billiards with Dirich-
let boundary conditions. Of course, these results are

trivially extended to the case of periodic boundary con-
ditions. The raising and lowering operators will remain
the same. For twisted boundary conditions, these may
be generalized by introducing phases in the matrix rep-
resentation of raising and lowering operators.
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