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Abstract
In earlier work, we have developed a kinetic field theory (KFT) for cosmological structure formation
and showed that the nonlinear density-fluctuation power spectrumknown fromnumerical
simulations can be reproduced quite well even if particle interactions are taken into account tofirst
order only. Besides approximating gravitational interactions, we had to truncate the initial correlation
hierarchy of particlemomenta at the second order. Here, we substantially simplify KFT.We show that
its central object, the free generating functional, can be factorised, taking the full hierarchy of
momentum correlations into account. The factors appearing in the generating functional, whichwe
identify as nonlinearly evolved density-fluctuation power spectra, have a universal form and can thus
be tabulated for fast access in perturbation schemes. In this paper, we focus on a complete evaluation
of the free generating functional of KFT, not including particle interactions yet. This implies that the
nonlinearly evolved power spectra contain a damping termwhich reflects that structures are being
wiped out at late times by free streaming.Once particle interactions will be taken into account, they
will compensate this damping. If we suppress this damping in away suggested by thefluctuation-
dissipation relations of KFT, our results show that the complete hierarchy of initialmomentum
correlations is responsible for a large part of the characteristic nonlinear deformation and themode
transport in the density-fluctuation power spectrum.Without any adjustable parameters, KFT
accurately reproduces the scale at which nonlinear evolution sets in. Finally, we further develop
perturbation theory based on the factorisation of the generating functional and propose a
diagrammatic scheme for the perturbation terms.

1. Introduction

Based on the pioneering work [1–4] and in the spirit of [5], we have developed a new theory of structure
formation in ensembles of classical particles assumed to be subject toHamiltonian dynamics and initially
correlated in phase space [6]. Structurally, the theory resembles a non-equilibriumquantumfield theory. Its
central object is a free generating functional describing how the initial phase-space distribution of the particles is
transported forward in time. The symplectic structure of theHamiltonian equations and the deterministic
trajectories of the classical particles allow substantial simplifications compared to a quantum field theory.
Particle interactions are taken into account by applying to the free generating functional an interaction operator
which can be expanded into a power series reflecting increasing orders of the interaction. Cumulants of
collective fields, such as themacroscopicmass density, can be read off the generating functional by repeated
suitable functional derivatives.

Compared to other approaches (see 7–14, for a a review and a small selection of recent papers), kinetic field
theory (KFT) has several conceptual andmethodical advantages.Most importantly, since KFT is based on the
Hamiltonian flow in phase space, the problemof shell crossing does not occur. Instead, the flow in phase space is
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diffeomorphic and, due to the symplectic structure of theHamiltonian equations, even volume-conserving.
Difficulties withmultiple streams, as they plague standard perturbation theories based on either the Boltzmann
equation or the hydrodynamic equations which assume the existence of uniquely valued velocity fields, are thus
avoided by construction inKFTbecause phase-space trajectories do not cross. Related difficulties caused in
Lagrangian perturbation theories (see 15–19, for examples) by functional determinants developing singularities
in convergent flows are absent fromKFTbecause the functional determinant of the phase-space flow is constant
at unity. Since KFTneither assumes the existence of smooth density or velocity fields nor their uniqueness and
avoids takingmoments overmomentum space, it contains in principle the complete hierarchy ofmoments and
of the particle correlations in configuration andmomentum space. Aswe have shown in [20], the order of the
perturbative approach to particle interactions inKFT controls the order of correlations taken into account in a
related BBGKYhierarchy. Since no smooth and uniquely-valued velocityfield is assumed to exist, the particle
motions in phase space also trace the formation of vorticity on small scales and late times. Finally, the linearity of
Hamilton’s equations guarantees the existence of aGreen’s function. Since splitting theHamiltonian into parts
interpreted as unperturbed and perturbed contributions is to a large degree arbitrary, theGreen’s function can
be chosen such that the interactionHamiltonian becomes small. The latter is one of themain reasons forfirst-
order perturbation theory to be highly successful inKFT, as shown in [6].

We note that the fundamentalmathematical framework of KFT is adopted from statistical non-equilibrium
field theory and thus routinely used inwide areas of theoretical physics (see 21, for a recent textbook). Even
though it is not common in cosmology yet, we emphasise that it is not the formalism ofKFT that is new, but the
application of this formalism to cosmological structure formation, using the particles’ phase-space trajectories
as fundamental fields. The possibly unfamiliar, but otherwise well establishedmathematical approach is
outweighed by far by the substantial conceptual andmethodical advantages of KFT listed above.

Applying this theory to dark-matter structures in cosmology, we showed that even atfirst order in the
interactions between particles onZel’dovich-type trajectories, the nonlinear evolution of the cosmic density-
fluctuation power spectrumknown fromnumerical simulations is reproduced verywell to redshift zero and to
arbitrary wave numbers [6]. In addition to the linearization of the interaction operator, we further approximated
the initial hierarchy ofmomentum correlations to second order, i.e. we truncated this originally exponential
hierarchy after the quadraticmomentum-correlation terms. This approach caused our formalism to become
quite cumbersome.

Here, we showhow the free generating functional of our theory can be fully factorised, taking the complete
hierarchy of the initialmomentum correlations into account. Besides beingmore accurate, this entails several
major advantages: the formalism simplifies considerably, the development of perturbation theory becomes
muchmore tractable, and the factors have a universal form that can be evaluated and tabulated for fast access in
automated evaluations of perturbation terms.

In afirst cosmological application of the free generating functional of KFT,we show that including the
complete hierarchy ofmomentum correlations accurately reproduces the scale belowwhich the characteristic
nonlinear deformations of the density-fluctuation power spectrum set in, that and underwhich circumstances it
leads tomode transport from large to small scales, and that a good fraction of the amplitude of the fully
nonlinearly evolved power spectrum can already be recovered even in the free theory.

In section 2, we briefly summarise the theory, focussing on its free generating functional, specify the initial
momentum correlations, and showhow the free generating functional can be factorised. First consequences of
the theory for cosmological structure formation are described in section 3. A systematic perturbative approach
to the theory is developed in section 4 togetherwith a diagrammatic representation of the perturbation terms.
We summarise our results in section 5. Appendix A contains further detail on the correlation function of the
initial velocity potential. In appendix B, we present the details of the calculation leading to the factorisation of the
generating functional.

2.Generating functional, cumulants, andmomentum correlations

Wegive a brief overview of our non-equilibrium kinetic theory for correlated classical particle ensembles here as
we have developed it in [6]. For further detail, we refer the reader to that paper.

2.1. Generating functional and cumulants
The central object of the theory is the free generating functional J KZ ,0[ ]with generatorfields J and K coupled
to the phase-space coordinates x q p,= ( ) and the one-particle response fields, respectively. The bold-faced
symbols denote tensors bundling contributions from allN particles in the ensemble. Let x q p,j j j=

  
( ) be the

phase-space coordinates of particle j, and ej

anN-dimensional unit vector with components ej k jkd=

( ) , then
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x x e . 1j jÄ
 ≔ ( )

Wedefine a scalar product between two such tensors by

a b a e b e a b, , , 2j j k k j já ñ = á Ä Ä ñ =
     

· ( )

with Einstein’s summation convention implied.
This generating functional is the integral

J K J xZ t, d exp i d , 30
0

ò ò= G á ñ
¥

⎜ ⎟
⎛
⎝

⎞
⎠[ ] ¯ ( )

over theN-particle phase space at the initial time t 00 = . In terms of theGreen’s function  of the free equations
ofmotion, the particle trajectories x̄ in phase space are

x x Kt t t t t t, 0 d , . 4
t

i

0
 ò= - ¢ ¢ ¢¯ ( ) ( ) ( ) ( ) ( )( )

The phase-spacemeasure in (3) is

q p q pPd , d d 5i i i iG = ( ) ( )( ) ( ) ( ) ( )

with a suitable probability distribution P to be adapted to the initial conditions at hand. ForN particles initially
correlated in phase space, the probability distribution q pP ,i i( )( ) ( ) will be given in (21) below.

More explicitly, theN-particle Green’s function  is the tensor product

t t G t t, , 6N ¢ = ¢ Ä( ) ( ) ( )

of thematrix-valued, one-particle Green’s function

G t t
g t t g t t

g t t
,

, ,

0 ,
7

qq qp

pp

¢ =
¢ ¢

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ) ( )
( )

( )

and the unitmatrix N inN dimensions.
Particle interactions are included by applying an interaction operator to the free generating functional,

producing the full generating functional

J K J KZ S Z, exp i , , 8I 0=[ ] ( ˆ ) [ ] ( )

with

S B vd1 1 1 1 . 9I ò r= - -ˆ ˆ ( ) ( ) ˆ ( ) ( )

Here, v is the interaction potential, and r̂ and B̂ are the density- and response-field operators, respectively. The
many-particle responsefieldB describes how a particle ensemble responds to a change in the phase-space
coordinates of one of its particles. The arguments abbreviate t k1 ,1 1


≔ ( ) and t k1 ,1 1- -


≔ ( ). In a Fourier-space

representation, these operators are sums over one-particle operators

k
J

B k
K

b

1 exp i
i 1

,

1 i
i 1

1 1 1 10

j
q

j
p

j j j

1

1

j

j

r
d

d

d
d

r r

= -

=







⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( ) ·
( )

ˆ ( ) ·
( )

ˆ ( ) ≕ ˆ ( ) ˆ ( ) ( )

and the integral in (9) is taken over t k1 ,1 1


≔ ( ). The response-field operator B̂ thus contains a density

operator r̂.
Correlators of order n in the density, say, are obtained by applying n density operators to J KZ ,[ ],

J KG n n Z1 1 , . 11r r¼ =r r¼ ( ) ˆ ( ) ˆ ( ) [ ] ( )

As usual in statisticalfield theory, each of the generator fields J and K is set to zero once all functional derivatives
with respect to J or K have been applied.

An approach to a perturbative evaluation of (11) begins with expanding the exponential interaction operator
Sexp i I( ˆ ) into a power series, introducing twodensity operators r̂ and one response-field operator b̂ per power of

SI
ˆ . Thus, for an nth order correlator withmth order particle interaction, we need to evaluate one-particle
expressions of the form

J K L Kr Z Z1 , , 12Jj j 0 0 0
r1

r r ==ˆ ( ) ˆ ( ) [ ]∣ [ ] ( )

with r n m2= + , andwith the particle indices j N1s = ¼ . The density operators thus replace the generator
field J by the shift tensor
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L k t t e
0

. 13
s

r
s

s j
1

D så d- - Ä
=

 ⎛
⎝⎜

⎞
⎠⎟≔ ( ) ( )

Wedefine the position andmomentum components of the shift tensor L out by the projections

L

L

L c t t G t t e

L c t t G t t e

d , ,
0

,

d , ,
0

14

q c j

p c j

0

3

0 3

j

j





ò

ò

Ä

Ä

¥

¥

 

 

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ≔ ( ) ( )

( ) ≔ ( ) ( ) ( )

and abbreviate

L L L L0 , 0 15q q p pj j j j

   
≔ ( ) ≔ ( ) ( )

with t 00 = . The symbol 3 denotes the unitmatrix in three-dimensions.
The subsequent application of a single, one-particle response-field operator b cjc

ˆ ( ) to L KZ ,0[ ], taken at
K 0= , simply returns a response-field pre-factor b cjc

( ),

L K Lb c Z b c Z, , 0 , 16Kj j0 0 0c c
==

ˆ ( ) [ ]∣ ( ) [ ] ( )

given by

b c k L ci 17j c pc jc
= -

 
( ) · ( ) ( )

in terms of L pjc


as defined in (14). Inserting (14) results in

b c k k g t ti , , 18j
s

r

c s qp s c j j
1

c c så d=
=

 
( ) ( · ) ( ) ( )

which has two important consequences for our later considerations. First, the position-momentum component
g t t,qp s c( ) appears here, evaluated at the two times ts and tc. Due to causality, the particle ensemble can only
respond to causes prior to the response, expressed by g t t, 0qp s c =( ) for t tc s . Thus, only response-field factors
with t tc s< do not vanish. Second, theKronecker symbol j jc s

d identifies two particle indices.We shall return to
these two properties of the response-field factors later.

Our next goal will nowbe to evaluate the free generating functional LZ , 00[ ]after application of an arbitrary
number r of density operators. Constructing the phase-space probability distribution q pP ,( ) in [6], we have
assumed that a statistically homogeneous and isotropic, Gaussian random velocity potentialψ exists such that
themomentum p


at an arbitrary position is its gradient,

p . 19y= 
 

( )

Continuity then demands that the density contrast δ is its negative Laplacian,

. 20
2d y= -


( )

Then, the density-fluctuation power spectrum P kd ( ) specifies the initial phase-space probability distribution
q pP ,( ) completely. Aswe have shown in [6], it is given by

q p p p pP
V

C
C,

2 det
exp

1

2
, 21

N

N
pp

pp
3

1 

p
= -

-
-⎜ ⎟⎛

⎝
⎞
⎠( )

( )
( ) ( )

whereCpp is themomentum-correlationmatrix to be defined in (28) and discussed in the following section. The
correlation operator p( ) appearing here and defined in [6] can safely be approximated by unity,

p 1, 22 »( ) ( )

for correlators evaluated at sufficiently late times if the q–p-component of theGreen’s function is unbounded. In
the cosmological applicationwe are aiming at here, sufficiently latemeans that the cosmological scale factor a
needs to bemuch larger than the scale factor ai corresponding to the timewhen the phase-space distribution of
the particles is initially set, a ai . Adopting a 10i

3» - according to the release of the cosmicmicrowave
background, a 0.01> seems safe for approximation (22) to hold.

With the probability distribution (21), the integrations over themomenta in (3) can be carried out
straightforwardly. Then, after applying an arbitrary number r of density operators and setting the generator
fields to zero, the free generating functional of ourmicroscopic, non-equilibrium, statistical field theory for
canonical ensembles ofN classical particles enclosed by the volumeV can bewritten in the form

L q L L L qZ V C, 0 d exp
1

2
i , , 23N

p pp p q0
ò= - + á ñ- ⎜ ⎟⎛

⎝
⎞
⎠[ ] ( )
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valid at all sufficiently late times.We note that this expression for LZ , 00[ ]needs to be summed over all different
particle configurations, expressed by the indices j j, , r1 ¼ appearing in (12). The integral in (23) is carried out
over all particle positions q , and Lq and Lp are the position andmomentum shift tensors resulting from applying
the density operators, with components defined in (14).

If only density operators are applied, the shift tensors Lq and Lp will be sums over asmany terms as density
operators have been applied, with each term representing the contribution of a particle to the density. Since the
possible later application of response-field operators will identify two particles per operation, the number of
particles involvedwill be lowered by one for each response-field operator applied. For each particle, one pair of
shift vectors L L,q pj j

 
( ) will remain. Thus, if r density operators andm response-field operators have been applied,

the number of different particles involvedwill be l r m n m= - = + .

2.2.Momentum-correlationmatrix
Themomentum-correlationmatrix is

C C E
3

, 24pp N
j k

p p jk
1
2

3 j k
  å

s
= Ä + Ä

¹

( )

where thematrix Ejk singles out the particles j and k from the ensemble ofN particles,

E e e . 25jk j kÄ
 ≔ ( )

The amplitude 1
2s is defined as thefirstmoment of the power spectrumPψ of the velocity potentialψ. Generally,

themoments n
2s are defined by

k P k , 26n
k

n2 2òs y≔ ( ) ( )

and the velocity-potential power spectrum is related to the density-fluctuation power spectrum Pδ by

k P k P k 274 =y d( ) ( ) ( )

due to (20).
By definition, themomentum-correlationmatrix is given by

C k k P k e , 28p p
k

k qi
j k

jkò= Ä y
   

( ) ( ) ( )·

where qjk


is the separation vector between particles j and k. Expression (28) is equivalent to

C P k qe , 29p p
k

k q
jk

i
j k

jkò x= -  Ä  = -  Ä y y

    
( ) ( ) ( ) ( ) ( )·

where qxy ( ) is the correlation function of the velocity potential, taken at distance q and normalised to 1
2s . Due to

isotropy, xy can only depend on q, but not on the direction of q

.

Accordingly, the tensor of second derivatives  Ä 
 

needs to be expressed in terms of derivatives with
respect to the particle separation q. Let q̂ be the unit vector in the direction of q


, and by itsmeans define the

projectors

q q, 303p p pÄ -^ ˜ ≔ ˆ ˆ ˜ ≔ ˜ ( )

parallel and perpendicular to q̂ . Then,

q
q

q

d

d

d

d
31

2

2
1p p Ä  = + ^

-
 

˜ ˜ ( )

and

C q
q

q
, 32p p jk

jk

jk
j k

p x p
x

= -  -
¢

y
y

^˜ ( ) ˜
( )

( )

with the prime denoting the derivative with respect to the argument. The correlation function xy of the velocity
potential and its derivatives x¢y and xy areworked out in appendix A together with accurate fit formulae
convenient for fast numerical evaluations.

The quadratic form

L LQ C 33p pp p
≔ ( )
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remaining in (23) splits into two terms by inserting (24),

Q L L C L
3

. 34
j

p
j i

p p p p
1
2

2

j i i j j

å å
s

= +
¹

  
( )

Replacing the sumof squares by a squared sum,we canwrite instead

Q Q Q L C L 35
j i

p p p p0 D
i i j j

å= - +
¹

 
( )

with the damping terms

Q L Q L L
3

,
3

. 36
j

p
j k

p p0
1
2

2

D
1
2

j j kå å
s s

¹

  ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟≔ ≔ · ( )

We shall see below thatQ0 will vanish identically in important cases and thatQD has an intuitive and important
effect on the time evolution of the density-fluctuation power spectrum.We shall refer to theQ0 andQD as
dispersion and diffusion terms, respectively.

2.3. Factorisation of the generating functional
Wenow turn to factorising the generating functional in the form (23), which is a lengthy procedure detailed in
appendix B. The essential ideas are that, in a statistically homogeneous field, only relative particle coordinates
q qj i-
 

mustmatter, and that all these coordinate differencesmust be statistically indistinguishable.

Thefinal result of the calculations presented in appendix B is that the free generating functional (23) for a
shift tensor L with contributions from l different particles can be completely factorised,

LZ V L, 0 2 e . 37l

j

l

q
Q Q

b a

l

k k j

l

jk jk0
3

D
1

2

2 1
j

ab

0 D 
 

òå  p d= D +-

=

- -

< <

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ] ( ) ( ) ( )( )

The index pairs (a, b) and ( j, k) are defined in (B.5) and (B.8), respectively. The function jk appearing in each of
the factors in (37),

k , e 1 e , 38jk jk
q

g k a a k q,0 iqp jk jk jk jk
2 2

 òt = -t l l+ ^
^  




( ) { } ( )( ) ( ) ·

is a nonlinearly (and non-trivially) time-evolved density-fluctuation power spectrum, aswe shall discuss in detail
in the next section. The expression jkD abbreviates

k2 . 39jk jk
3

Dp dD


≔ ( ) ( ) ( )

Thewave vectors kjk


are defined in (B.15), with the indices ( j, k) given in (B.5) and the indices (a, b)defined in

(B.8).We shall call thewave vectors kj1


external because they contain the shift vectors Lqj


, and the remaining

wave vectors kjk


with k 2 internal because they can entirely be integrated out. The quantities jk

,l ^ are defined
by

L L

g k

L L

g k, 0
and

, 0
40jk

p jk p

qp jk
jk

p jk p

qp jk
2 2 2 2

j k j k

 

l
p

t
l

p

t
= =^

^   




( ) ( )
( )

according to (B.30), with the projectors jkp and jkp^ being definedwith respect to kjk


. Let k̂ be the unit vector in

the direction of kjk


, then

k k, . 41jk jk jk3p p p= Ä = -^ ˆ ˆ ( )

The factorisation (37) of the free generating functional and the expression (38) for the time-evolved density-
fluctuation power spectrum are the firstmain results of our paper. The power spectrum jk is particularly
relevant for cosmological structure formation.

3. Cosmological consequences

For illustrating the cosmological consequences of our results (37) and (38), wewill now reduce (37) to the
simplest possible case. For l=2, the free generating functional (37) contains information on the evolution of the
density-fluctuation power spectrum, but neglecting any particle interactions. Thus, this corresponds to the free
evolution of the density-fluctuation power spectrum. The free generating functional then shrinks to
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LZ
V

L L, 0
2

e . 42q q
Q Q

0

3

2 D
2

21 211 2
0 D 

p
d= + D +- -

 
[ ] ( ) ( ) ( ) ( )( )

The single remainingwave vector is k Lq21 2
=

 
, and theDirac delta function in (42) ensures that L Lq q2 1

= -
 

.
Then, according to (14),

L g t L g t k L g t L g t k, 0 , 0 , , 0 , 0 , 43p qp q qp p qp q qp21 211 1 2 2
= = - = =

     
( ) ( ) ( ) ( ) ( )

and therefore, by the definitions (40)

1, 0. 4421 21l l= - =^ ( )

This brings (38) into the form

k e 1 e , 45
q

g k a k q,0 iqp
2 2

 ò= -t- -
 

( ) ( ) ( )( ) ·

wherewe have dropped all indices because only the single index pair 21 now remains to be considered.
According to (B.41), this expression turns into

k g P k, 0 46
qp
2 t» d( ) ( ) ( ) ( )

in the limit of early times or small wave numbers, which reflects the linear growth of the power spectrum. This
emphasises oncemore that k( ) is a density-fluctuation power spectrum,with its time evolutionmodified by
the onset of nonlinear evolution.

Since the twomomentum shift vectors L p1


and L p2


are equal in length and opposite in sign, the dispersion

termQ0 from (36) vanishes, but the diffusion termQD does not,

Q g k
2

3
, 0 . 47

qpD
1
2

2 2s
t= - ( ) ( )

We show infigure 1 the power spectrum k( ) from (45) times the diffusion factor Qexp 2D( ) after different
periods of time expressed by the propagator g , 0qp t( ). This product expresses the free evolution of the power
spectrum andwill be denoted by P 0

d
( ).

Figure 1 illustrates two aspects of the evolution. First, the nonlinearly evolved spectrum  coincides with the
linearly evolving density-fluctuation spectrum for all times at sufficiently small wave numbers, i.e. for
sufficiently large structures. Since the free generating functional does not contain interactions between
individual particles, structures are damped by free streaming, provided they are small enough. Thus, diffusion
proceeds from small to larger scales as time progresses. Starting from (38) and including the diffusion term,we
canwrite the expression for the damped power spectrumbriefly as

e e e 1 e , 48y

q

y y k qi0 0 ò= -
 

( ) ( )·

with y g k a a
qp
2 2 l l+ ^

^

≔ ( ) and y y Q 20 D = for q 0 .

Figure 1.The solid curves show the the freely evolved power spectrum P 0
d
( ), i.e. the nonlinearly evolved spectrum  times the

diffusion factor Qexp D, forfive different times, expressed by the propagator g , 0qp t( ). The dashed lines show the initial density-

fluctuation power spectrum, linearly evolved to the same times. At large scales, all spectra P 0
d
( ) coincidewith the linearly evolved

spectrum.On smaller scales, diffusion sets in and suppresses the structure, beginningwith small-scale structures at early times and
progressing towards larger scales as time proceeds.
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Our analysis allows us to largely remove this damping effect from the evolution of the power spectrum.We
do so by introducing a parameter 0 1 a meant to gradually switch on themomentum correlation in a
thought experiment.We can thenwrite

y y

e e e 1 e e d e e

e d e d e e . 49

y

q

y y k q y

q

y k q

y

q

y k q y

q

y y k q

i

0

1
i

0

1
i

0

1
1 i

0 0 0

0 0 0

 ò ò ò

ò ò ò ò

a
a

a a

= - =
¶
¶

= =

a

a a a+ - + +

   

   

( ) ( )

( )

· ·

· ( ) ( ) ·

Wehave arranged terms such that one contribution to the damping termbuilds up asα increases and the
correlation strengthens, while the other contribution is strongest for 0a = and decreases as the correlation
grows.We ignore this latter term, thus suppressing the contribution to damping present without particle
correlations, and replace (49) by

ye d e d e e . 50y

q

y y k q y

q

y k q

0

1
i

0

1
i0 0 0  ò ò ò òa a

a
 = =

¶
¶

a a a+ + +
   ¯ ( )( ) · ·

If the remaining damping contributionwas absent,  =¯ . By construction, this operation removes that part of
the power suppression due to uncorrelated particlemomenta, which dissipate the newly formed structures by
free streaming. The resulting power spectra ̄ are shown infigure 2 for the same times as the power spectra P 0

d
( )

infigure 1.
The undamped power spectra shown infigure 2 illustrate how structure builds up beginning at small and

proceding towards larger scales as time progresses. At the latest time used infigures 1 and 2, approximately
corresponding to the present time in the standardΛCDMcosmology, nonlinear structure formation has
reachedwave numbers of k h0.2 0.3 Mpc 1~ -– , in excellent agreement with the transition to nonlinearity
revealed by numerical simulations.

We can of course not expect our simple procedure to return the correct amplitude of the power spectrum
becausewe have not included particle interactions yet and thus have not gone beyond the lowest-order
approximation of the generating functional, expressed by setting l=2.Nonetheless, the shape of the
undamped, nonlinearly evolved density-fluctuation power spectrum at late cosmic times, which is obtained in a
completely parameter-free way in our theory, reflects the shape of the fully nonlinear power spectrum found in
numerical simulations verywell.We should like to emphasise that the procedure according to (50) applied to the
nonlinearly evolved power spectrumfinds a deeper explanation in thefluctuation–dissipation theorems
following fromour kinetic theory of structure formation.We shall discuss this in detail in a separate paper now
in preparation, dedicated tofluctuation–dissipation relations inKFT. The response tofluctuations in the
particle density ismediated by particle interactions. This supports the intuition that the excess diffusion seen in
the curves of figure 1will be compensated by particle interactions, which are not included yet in our analysis of
the free generating functional. Based on the factorisation of the free generating functional demonstrated in this
paper, and using the diagrammatic approach to the factorisation to be proposed in the following section, we shall

Figure 2.Nonlinearly evolved power spectra are shownhere for the same times as infigure 1, but nowwith the late-time diffusion
suppressed as specified in (50). In this representation undamped by free streaming, the nonlinearly evolving power spectra indicate
how structure formation proceeds from small to large scales.

8

New J. Phys. 19 (2017) 083001 MBartelmann et al



develop a systematic perturbative approach to nonlinear structure formation including particle interactions in
another dedicated paper.

The fact that the undamped, nonlinearly evolved power spectra ̄ shown infigure 2 already resemble the
shape of the nonlinearly developed power spectra of fully numerical simulations shows that this shape is not set
by the particle-particle interactions, but rather by their only property we have included here, which is the
correlation of their initialmomenta. The deformation of the power spectrumbeginning at k 0.2 0.3 –
characteristic for the late-time nonlinear evolution of cosmic structures is therefore determined by the statistical
initial conditions of the particle ensemble, specifically by the initial correlation properties of the particle
momenta, presumably imprinted by theGaussian randomdensity-fluctuation field generated by cosmological
inflation.

Wenotice also that the curves shown infigure 2 do not diverge for largewave numbers k. Rather, they
approach an asymptotic slope close to that of the linearly evolved density-fluctuation power spectrum, which
tends to k 3- for cold darkmatter. This indicates that there is no inherent limit to applying our theory to
arbitrarily large k, whichwas to be expected because our phase-space approach does by construction not suffer
from any problemswithmultiple streams.Of course, the amplitude of the density-fluctuation power spectrum
will be affected by particle interactions. However, the factorisation (37) of the free generating functional together
with the asymptotic behaviour of the curves shown in figure 2 both indicate that nonlinearly evolved density-
fluctuation power spectra evaluated at an arbitrary order of particle interactions will be a convolution of curves
with an asymptotic slope near k 3- , multiplied by the subsequent application of damping factors. It is plausible
that the result will retain the same asymptotic slope, butwewill have to demonstrate that. However, the regular
asymptotic behaviour of our nonlinearly evolved power spectra k̄( ) for large k suggests that KFT can in this
sense be extended to arbitrarily largewave numbers.

Figure 3 shows the derivative of ̄ from (50)with respect to gqp
2 , divided by the initial density-fluctuation

power spectrum P kd ( ). As the limit (46) shows,

P g

1
1 51

qp
2


¶
¶


d

( )

for large scales or early times. Since g Dqp = +, i.e. the linear growth factor of density perturbations, any
deviations of this expression fromunity indicates structure growth different from the growth expected in linear
theory.

The curves infigure 3 illustrate how the growth factor of cosmic density fluctuations becomes scale
dependent. They show that, for small-scale structures or at late times, the power spectrum grows substantially
more rapidly than expected from linear theory. The decrease of the curves for small-scale structure at late times
indicates the remaining damping, whichwill be counteracted by gravity once particle interactions will be
included.

Figure 3.This figure shows the derivative of the nonlinearly growing power spectrum ̄ with respect to the squared propagator
g Dqp

2 2= +, divided by the initial power spectrum P kd ( ). If the power spectrumgrew linearly, the curves would be flat at unity. The

figure shows that, for late times or small-scale structures, the power spectrumgrows far beyond the linear growth. The decrease of the
curves at late times reflects the remaining damping, whichwill be compensated by gravitational interaction.
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So far, we have evaluated the free generating functional for the simplest possible case, i.e. l=2, where
1jkl = - and 0jkl =^ . This happens if the twomomentum shift vectors L pj


and L pk


appearing in jk are equal

and opposite to each other, and if they are alignedwith thewave vector kjk


. If themomentum shift vectors are

however not alignedwith thewave vector kjk


, the parallel projection 1jkl > - . This expresses a configuration in

which themomenta of two particles aremisalignedwith the separation vector between the two particles. Power
spectra jk̄ for such cases are shown infigure 4.

Thefigure shows that such amisalignment between particlemomenta and their separation vector leads to a
reduction of power relative to the linearly evolved power spectrum at large scales, and to an enhancement on
small scales. This causesmode transport from large to small scales, adding to the characteristic deformation of
the power spectrumby nonlinear evolution.

The nonlinear growth of the power spectrum and themode transport contained in jk̄ and illustrated by
various examples infigures 1 through 4 thus leads to a characteristic deformation of the power spectrum
compared to its linearly evolved shape. As our derivation shows, this deformation does not reflect the
gravitational interaction between the particles, but is a consequence exclusively of the initial correlations of the
particlemomenta. Particles withmomenta alignedwith their separation vector lead to an enhancement of
power and thus to structure growth on small and intermediate scales. Themore these particlemomenta are
misalignedwith their separation vector, themore power is transported from large to small scales. Even before
any gravitational interaction between the particles is taken into account, the full hierarchy of initialmomentum
correlations gives rise to a characteristic deformation of the power spectrum. Initialmomentum correlations of
the dark-matter particles thus contribute substantially not only to the amplitude of cosmic structures, but also to
characteristic re-distribution of power from larger to smaller scales.

4. Perturbative and diagrammatic approach

4.1. Expansion of the generating functional
Themain goal of this section is to develop a systematic approach to evaluating (37). It begins by realising that the
product over the index pair ( j, k) in (37) can be expanded into a sumordered by an increasing power of power-
spectrum factors. Since there are

F
l l 1

2
52=

-( ) ( )

factors in this product, we canwrite formally

F

f
. 53

j k
jk jk

f

F
F f f

0

  åD + = D
> =

-
⎛
⎝⎜

⎞
⎠⎟( ) ( )

If the power-spectrum factors  are small enough, this sum can be truncated at low powers f.

Figure 4.Power spectra jk̄ for late times and for configurationswith 1jk l - , indicating that themomentum shift vectors L pj


and

L pk


aremisalignedwith the separation vector connecting the two particles. In this case, the power at large scales is reduced compared

to the linearly evolved power spectrum, and enhanced at small scales. This shows that such amisalignment causesmode transport
from large to small scales.
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According to (37), all internal wave vectors k kab ab= ¢
 

are then to be integrated over. For evaluating the result
of this sequence of integrals applied to the sum terms in (53), it is important to see howmany of these integrals
can trivially be carried out due to theΔ factors appearing in these sum terms. For f=0, for example, the

remaining integrals set all of the internal wave vectors to zero, leaving k Lj q1 j
=

 
and

L . 54
a b k j k

jk
j

l

q
2ab

jò  D = D
> > =


( ) ( )

This is a pure shot-noise term. Identifying and counting the power-spectrum factors with external or internal
wave numbers thus allows to simplify the remaining expressions substantially.

Let us illustrate this simplificationwith onemore example. For f=1, the single power-spectrum factor can
depend either on an external or an internal wave number. If it is external, theΔ factors set all internal wave
numbers to zero as for f=0 before, leaving again the external wave numbers k Lj q1 j

=
 

. All of these wave vectors

kj1


except one are also set to zero by the remainingΔ factors.Without loss of generality, we can label the one

non-zerowave vector by the index j=2 because the particles are indistinguishable. Then, the power-spectrum
factor Lq2




( ) appears besides the remainingΔ factors. If, however, the single power-spectrum factor depends on
an internal wave number, all except one internal wave numbers are integrated out. Againwithout loss of

generality, we can label the only remaining internal wave number k k32 32= ¢
 

. The external wave vectors are then

k L k k L k, 55q q21 32 31 322 3
= + ¢ = - ¢

     
( )

and k Lj q1 j
=

 
for j 3> . All external wave vectors appear as arguments ofΔ factors in this case. The remaining

integration over k32¢


sets k Lq32 3
¢ =
 

bymeans of the factor 31D and leaves k L Lq q21 2 3
= +

  
.

There are l 1- external and F l 1- + internal wave vectors. Thus, there are l 1- possibilities for
choosing an external and F l 1- + possibilities for choosing an internal wave number, allowing us towrite

F l
L

F l
L L

1

1

1

1

1
, 56

a b k

F
q

j

l

j q q
j

l

j
1

21
3

1 32 21
4

1
ab

2 3 1
  ò  D =

-
D +

- +
D D

>

-

= =

  
⎜ ⎟ ⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

where the overall Dirac delta distribution

L 57
j

l

qD
1

jåd
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

in (37) allows us to replace L Lq q21 2 3
D +

 
( ) by Lq21 1

D


( ).
From these examples for f=0 and f=1, a straightforward scheme emerges for evaluating the sum terms in

(53) and the subsequent integrations over all internal wave vectors:

(i) Expand each term into a sum ordered by the number of power-spectrum factors depending on external
wave numbers,

F

f

l

e

F l

f e

1 1
, 58F f f

e

f
e f e l e F l f e

0
ext int ext

1
int

1  åD =
- - +

-
D D-

=

- - - - + - +⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

where the subscripts ‘ext’ and ‘int’ indicate that respective factors depend on external or internal wave
vectors.

(ii) Use the Δ factors depending on internal wave vectors to set F l f e1- + - +( ) of the internal wave
vectors to zero. Label the remaining f e-( ) internal wave vectors beginningwith k32


and determine the

external wave vectors kj1


according to (B.15).

(iii) Use the Δ factors depending on external wave vectors and the integrals over the remaining internal wave

vectors to eliminate asmany of the internal wave numbers as possible from the external wave vectors kj1


and

from the arguments of the power-spectrum factors depending on internal wave numbers.

This procedure lends itself to be evaluated by a symbolic computer code returning the terms appearing in the
sum (58), given l and f.We are now in the process of developing such a code, aiming at possibly completely
automatising the evaluation of perturbation terms.
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4.2. Summing over particles
As often in perturbation theories, diagrams are useful to keep an overview of the terms involved.We shall now
develop suitable diagrams for the perturbative approach to our non-equilibrium field theory for correlated
classical particle ensembles.

We return to the free generating functional LZ , 00[ ], evaluated at a specific shift tensor L, with the generator
field K set to zero. The position andmomentum components of L are given in (14) or, after inserting (13) there,
by

L k

L k g t

,

, 0 . 59

q
s

r

s jj

p
s

r

s qp s jj

1

1

j s

j s

å

å

d

d

=-

=-

=

=

 

 
( ) ( )

In these expressions, the index j l1   identifies the l particles whose positions are being correlated, while the
indices js assign particles towave vectors withfield labels s. TheKronecker symbols appear in (59) because only
such phase-space positions contribute to the density which are occupied by particles. Given a specific set of
particle indices j j, , r1 ¼{ }, wewrite

LZ j j Z, , , 0 60r0 1 0¼[{ }] ≔ [ ] ( )

to denote the particle indices explicitly. As indicated above, the response-field factors given by (18) have two
crucial properties affecting the selection of terms that can or cannot contribute to the perturbation series: the
Kronecker symbol appearing there identifies the two particles with indices js and jc and thus assigns the same
particle to thewave vectors labelled by c and s. Furthermore, since the propagator g t t,qp s c( ) vanishes if t ts c ,
only such terms can contribute forwhich t ts c> .

Applying r one-particle density andm one-particle response-field operators to the free generating functional
thus leaves uswith the expression

b c Z j j k k g t t Z j j, , i , , , . 61
c r m

r

j r
c r m

r

s

r

c s qp s c j j r
1

0 1
1 1

0 1c c s  å d¼ = ¼
= - + = - + =

 ⎛
⎝⎜

⎞
⎠⎟( ) [{ }] ( · ) ( ) [{ }] ( )

Several aspects are important to note at this point. First, each response-field factorwith index c identifies two
particles with the indices jc and jsc

. Second, no terms can contribute to any response-field factorwhich belong to
the same times because g t t, 0qp =( ) . Therefore, only such particlesmay be identifiedwhich are assigned to
wave vectors at different times. Fourth, since g t t, 0qp 1 2 =( ) for t t2 1 , any response-field factor implies a time
ordering in the sense t t1 2> .

Beginningwith a set of particle indices j j, , r1 ¼{ }, we thus proceed as follows to evaluate the terms in (61): we
first identify asmany particle pairs as responsefields occur, i.e. we identifym pairs of particle indices, taking care
that particle pairsmust not identify positions with equal times and that a time-ordering is involved in all
response-field factors. The remaining r−m particles form a reduced set j ¢{ } of particle indices. All possible
reduced sets j ¢{ } mustfinally be summed over.

Let us illustrate this procedure with the simple example r=4 andm=1, corresponding to the terms
contributing to a two-point density correlator calculated atfirst-order in the particle interaction. Since the
interaction is instantaneous, t t3 4= , and if the correlator is chosen to be simultaneous, t t1 2= .

In this case, (61) simplifies to the two possible terms

k k g t t Z j j j j

k k g t t Z j j j j

i , , , ,

i , , , . 62

qp

qp

4 1 1 4 0 1 4 2 3

4 2 2 4 0 1 2 4 3

=

=

 

 
( · ) ( ) [{ }]

( · ) ( ) [{ }] ( )

Other termswould identify particles at the same time and thus return zero.

4.3.Diagrams
Combining (37) and (53) can profitably be represented by diagramswhich greatly help constructing and
ordering the terms appearing in the generating functional. The essential point of the diagrammatic

representationwhichwe are going to construct now is to systematically construct all wave vectors kjk


according

to (B.15)which enter into the factors jk jk + D( ) appearing in the generating functional.
The diagrams are constructed according to the following rules:

(i) Mark the free generating functional J KZ ,0[ ] by a circle. According to (10) and (12), each one-particle
density operator js

r̂ applied toZ0 corresponds to a functional derivative with respect to a component Jqjs


of

the generatorfield J . According to (12) and (13), each of these operations adds awave vector ks


to the shift

tensor L that we need tofind for each term in a perturbation series.
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Thus, for each of the r n m2= + density operators applied for a perturbation term appearing in an nth
order correlator atmth order in the particle interaction, we attach awave vector to the circle symbolising Z0,
pointing outward.

(ii) The times when these density operators act are represented by filled dots on the circumference of the Z0
symbol. Each k


vector thus begins at afilled dot. Since each interaction is instantaneous, all internal k



vectors need to be pairwise attached to the same time. If the correlator to be calculated is simultaneous, the

external k

vectors are also attached to the same time.

Thus, the internal wave vectors representing interactions are pairwise attached to the same points in time.
Times are ordered counter-clockwise, with the latest times appearing on top. The external wave vectors
appearing in the final correlator are attached to the same time if the correlator is simultaneous.

(iii) Between the internal wave vectors corresponding to the density and the response-field operator of an
interaction term (9), a further factor appears representing the interaction potential v. If this potential
depends only on the separation between the two particles interacting, it requires the two k


vectors of the

density and the response-field operator it connects to be equal inmagnitude and opposite in sign.
Internal wave vectors aremarkedwith primes. To include the interaction potential into the diagram,we
connect any two internal wave vectors with a circled vwhich enter into a single interaction term. For
translation-invariant potentials v, the two internal wave vectors connected by a potential are equal and
opposite.

(iv) According to (18), each response field identifies two particles at different times, i.e. it assigns the same
particle to two different wave vectors at two different times. Adopting the convention in (9), we assign
response fields to the negative internal wave vectors appearing in the interaction terms.
Thus, response fields are represented by dashed circle segments between two different wave vectors attached
to different times. Each responsefieldmust begin at a negative internal wave vector andmust be connected
to exactly one other wave vector, internal or external.

(v) Equivalent diagrams can appear multiple times. For example, in the diagram shown in figure 5 representing a
contribution to the density power spectrumatfirst order in theparticle interactions, the response-field arrow

can endon k1


or k2


. In a homogeneous randomfield, these twowave vectors are equivalent, and the diagram

with the response-field arrowattached to the vector k2


corresponds to an identical perturbation term.

Figure 5.Diagram representing the contribution of thefirst-order interaction term to a two-point density correlator. The diagramhas

amultiplicity of 2 because thewave vectors k1


and k2


are indistinguishable in a homogeneous random field.
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Thus, diagrams are assigned amultiplicity corresponding to thenumber of equivalent configurations they
express.

Figure 5 shows the single diagram according to these rules representing the first-order interaction
contribution to the second-order density power spectrum.

Diagrams for higher-order interactions or correlators of higher order are now easily constructed. To give an
example, we show infigure 6 the four non-equivalent diagrams contributing to a second-order density
correlator at second order in the particle interactions.

Position andmomentum shift vectors according to (59) can nowbe read off these diagrams as follows:

randomly assign particle indices to the k

vectors extending fromZ0, thereby assigning the same particle index to

such k

vectors connected by a dashed line representing a responsefield. Thesewill be r−m indices in total, for

which the numbers r m1 ¼ - can be chosenwithout loss of generality. Any permutation of these indices will
result in an equivalent set of shift vectors.

For example, we can use the diagram infigure 5 to assign the particle indices 1, 2, 3( ) clock-wise to the k


vectors extending fromZ0, beginningwith k1


. This results in the assignment of particles 1, 2, 3, 1( ) to thewave

vectors k k k k, , ,1 2 1 1¢ - ¢
   

( ) because k1


and k1- ¢


are connected by a responsefield.With (59), this implies the

position shift vectors

L k k L k L k, , 63q q q1 1 2 11 2 3
= - - ¢ = - = - ¢

      
( ) ( )

Figure 6.Diagrams representing the terms contributing to a two-point correlator at second order in the interaction. Both diagrams in
the top rowhave amultiplicity of 2 because k1


and k2


can be interchanged in a homogeneous randomfield. Themultiplicity of the

diagrams in the bottom row is 4 because the time order of the two interactions can be exchanged.
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and themomentum shift vectors

L g t k g t k L g t k

L g t k

, 0 , 0 , , 0 ,

, 0 , 64

p qp qp p qp

p qp

1 1 2

1

1 2

3

=- - ¢ ¢ = -

=- ¢ ¢

    

 
( ( ) ( ) ) ( )

( ) ( )

with t ¢ denoting the time of the interaction and t t> ¢ the timewhere the correlator is to be evaluated. Any
permutation of the particle indices wouldmerely permute the labels on these shift vectors.

These diagrams allow a quick construction of all terms contributing to the generating functionalZ for given
orders of correlators and of particle interactions. From these diagrams, the shift vectors Lq


and Lp


as well as the

response-field factors can be read off. They can then be inserted into the complete factorisation of the generating
functional to evaluate the perturbation terms. The procedures involved can nowbe implemented in a symbolic
computer code.

5. Summary and conclusions

In [6], we have developed a kinetic non-equilibrium field theory for cosmic structure formation. The central
object of this theory is a free generating functional which describes how an initially correlated ensemble of
classical particles propagates in time underHamiltonian dynamics. Particle interactions are included by an
exponential interaction operatorwhose series expansion suggests a natural perturbative approach. The initial
correlation of the particlemomentawas shown in [6] to be described by aGaussian inwhich themomentum-
correlationmatrix enters as a quadratic form. In [6], we expanded this Gaussian to second order in the quadratic
form and showed that, tofirst order in the particle interactions, the nonlinear cosmic density-fluctuation power
spectrumknown fromnumerical simulations could bewell reproduced. To a large part due to the expansion in
the order of themomentum correlations, the notation aswell as practical calculations became quite
cumbersome.

In this paper, we have substantially simplified the theory by factorising the free generating functional into
factors of universal shape, taking the complete hierarchy ofmomentum correlations into account. Ourfirst
main results are thus the expressions (37) for the free generating functional and (38) for the nonlinearly evolving
density-fluctuation power spectra  . The factorisation suggests the expansion (53) of the free generating
functional in powers of  , which contain the full hierarchy ofmomentum correlations. This expansion in terms
of power-spectrum factors togetherwith the expansion of the interaction operator suggest a diagrammatic
representation of perturbation terms, whichwe have developed here.

Our secondmain result is that the initialmomentum correlations of the dark-matter particles, prior to any
gravitational interaction, lead to a characteristic deformation of the density-fluctuation power spectrum
compared to its initial, linearly evolved shape. For particlemomenta alignedwith the separation vector between
the particles, power is enhanced onmoderate and small scales, while anymisalignment between these two
vectors leads to a substantial transport of power from large to smaller scales.

Our thirdmain result is the development of a diagrammatic approach to the perturbative terms developed
from the complete factorisation of the generating functional. Taken together, the factorisation of the free
generating functional and the diagrammatic approach to perturbation theory open away to have perturbation
terms automatically calculated and evaluated by a combination of a symbolic and a numerical computer code,
whichwe are nowplanning to develop.
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AppendixA. Potential correlation function

A.1. Relation to the density-fluctuation power spectrum
The potential correlation function xxy ( ) introduced in (29) is

q k k P k j kq
1

2
d , A.1

2 0

2
0òx

p
=y y

¥
( ) ( ) ( ) ( )
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where Pψ the power spectrumof the velocity potential.With

q k k P k j kq
1

2
d A.2q 2 0

2
0òx

p
¶ =a

y
a

y
a

¥
+( ) ( ) ( ) ( )( )

and using the recursion relations for the spherical Bessel functions and their derivatives, wefind

q
k

k
P k j kq

1

2

d
, A.3

2 0
1òx

p
¢ = -y d
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q
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2
d , A.4
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¢
=y

y
d

¥
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( )
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where the density-fluctuation power spectrum P k k P k4=d y( ) ( )was introduced. The asymptotic behaviour for
small arguments of the spherical Bessel functions of the first kind ensure that

q

q
qlim

3
lim . A.5

q q0

1
2

0

x s
x

¢
= - = y

y 

( )
( ) ( )

The functions q qx¢y ( ) and qxy ( ) are shown infigure A1.

A.2. Approximations formomentumcorrelations
In view of later numerical evaluations, it will be advantageous to introduce

a q
q

q
a q q

q

q
, . A.61 2

x
x

x¢
 -

¢
y

y
y( ) ≔

( )
( ) ≔ ( )

( )
( )

For theΛCDMdensity-fluctuation power spectrum, it turns out that these two functions a1 and a2 allow simple
fits by rational functions,

a A
q

q

a A q
q

q

q

q

1 ,

1 , A.7

1 1
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2 2

21 22
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2 2
2
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= + +

a

a
b g d
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⎞
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⎛
⎝
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ ( )

both of which fall like q 2- asymptotically for q?q1 or q?q3. For aΛCDMpower spectrum according to [22]
with cosmological parameters 0.3m0W = and 0.70W =L , wefind the best-fitting parameters listed in table A1.

Figure A2 shows the functions a q1,2( ) togetherwith thefits (A.7) specified by the parameters in table A1.

Appendix B. Factorisation of the generating functional

In this section of the appendix, we factorise the free generating functional (23).We have shown in [6] that, due to
the scaling of the interaction potential with the inversemean particle density and the identification of particles
with each other by the response field, the calculation of a non-shot noise contribution to an n-point correlator at
mth order in the particle interactions requires the contribution of order r n m2= + to the free density

Figure A1. First and second derivatives of the potential correlation function qxy ( ), normalised to 31
2s . Dashed curves and parts

thereof indicate negative values.
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correlator due to l n m= + particles. Thus, there are l entries in Lq p, and uncorrelated particles can simply be
integrated out from (23). Generally, we denote the number of entries in Lq p, by l and enumerate them
consecutively from l1 ¼ , which is possible without loss of generality because the enumeration of the particles is
unimportant.

B.1. Introducing relative particle coordinates
Returning to (23), we introduce the coordinate differences with respect to the arbitrarily chosen particle 1,

q q q j l2 . B.1j j1 1- " = ¼
  ≔ ( )

Then, the scalar product of the positions q with the spatial shift tensor Lq can bewritten as

L q L q L q q L q L q, . B.2q q q
j

l

q
j

l

q j1 21 1
1

1
2

1j j1 2 å åá ñ = + + + ¼ = +
= =

        ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟· · ( ) · ( )

Since the correlationmatrixCpp depends on coordinate differences only and not on absolute positions, the
integration over q1


can be carried out. This results in

L L LZ
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L C L q, 0
2
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2
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l
j
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q
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q
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Themomentum-correlationmatrix depends on the absolute values of all pair-wise coordinate differences

q q q B.4jk j k-
  ≔ ( )

with

k l j k l1 1 , 1 , B.5= ¼ - = + ¼( ) ( ) ( )

not just on the coordinate differences qj1


with respect to particle number 1. Since there are l particles to consider

in total, the number of coordinate differences thatCpp depends on is

Table A1.Parameters of the rational functions
(A.7)fitting the functions a1 and a2 defined in
(A.6) for aΛCDMpower spectrum according to
[22]with cosmological parameters 0.3m0W =
and 0.70W =L .

Aln 1 −10.0039 Aln 1 −11.2727

q11 61.6918 q21 0.3608

q22 11.9575

1a 2.0507 2a 2.044 59

2b 0.5645

2g 1.7061

2d 2.3780

Figure A2.The functions a q1,2( ), normalised to 31
2s , are shownhere together with thefit functions (A.7) specified by the parameters

given in table A1.
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N
l l 1

2
. B.6pairs =

-( ) ( )

Of these coordinate differences, l 1-( ) are taken into account by the l 1-( ) difference vectors qj1


.We now

extend the integration in (B.3) to all these coordinate differences by introducing the remaining difference vectors

q q q q q B.7ab a b a b1 1= - = -
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with
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additional, dependent coordinates related by (B.7), whichmust be ensured by including appropriate delta
distributions

q q q B.10ab a bD 1 1d - +
  ( ) ( )

into the integrand, with a and b from (B.8). Thus, the free generating functional turns into
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Replacing all of these delta distributions by their Fourier expansions,

q q q e B.12ab a b
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k q q q
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i

ab
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with auxiliarywave vectors kab¢


conjugate to the coordinate differences qab


, we arrive at the expression

L

L L

Z
V

L

C L q k q q q

, 0
2

exp
1

2
i i B.13

l
j

l

q
a b k j k q

p pp p
j

l

q j
a b

ab ab a b

0

3

D
1

2
1 1 1

j
ab jk

j



ò òå  

å å

p
d=

- + + ¢ - +

= >
¢

>

= >



     

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

[ ] ( )

· · · ( ) ( )

for the free generating functional. Reordering terms, we can rewrite the phase factor as
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and a b, from (B.8).
With these results and the definition ofQ0 andQD in (35), the generating functional (B.13) factorises

completely in the integrations over the coordinate differences qjk


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since the correlationmatrix Cp pj k
depends on the distances qjk

∣ ∣between the particles only.We can thus
decompose the generating functional into independent factors for all particle pairs, which are then to be
convolved in Fourier space by integrating over all auxiliarywave vectors kab¢


.

B.2. Examples
For two-point density correlations, l m2= + , hence the number of coordinate pairs is

N
m m2 1

2
, B.18pair =

+ +( )( ) ( )

ofwhich

l l m m1 2

2

1

2
B.19

- -
=

+( )( ) ( ) ( )

are dependent.
For first-order perturbation theory of a two-point spectrum, we have l=3, andwe need to introduce one

auxiliarywave vector k32¢


. According to (B.15), we then have
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and L L Lq q q1 2 3
= - +
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( ) because of the δ distribution in (B.3).

For second-order perturbation theory of a two-point spectrum, l=4, and three auxiliary wave vectors k32¢


,

k42¢
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need to be introduced. Then,
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B.3. Evaluation of the generic factors
Wenowneed to evaluate the integrals Ijk defined in (B.17), which are all of the type
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with an independent wave vector k21
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representing any of the vectors kjk
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defined in (B.15).

Themomentum-correlationmatrix Cp p2 1
defined in (32) depends on the particle separation q only.

Repeating (32), we canwrite Cp p2 1
as
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with the projectors p˜ and p̃̂ defined in (30).
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For doing so, we expand theHessian of the potential-correlation function into the projectors 21p and 21p^ ,
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multiply this equation by 21p and 21p^ and take the trace of the resulting two equations tofind
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Introducing the cosine q km ≔ ˆ · ˆ of the angle between q

and k21


, the traces on the right-hand sides are
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and the quadratic form in (B.22) turns into
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It is now convenient to quantify the remaining projections by 21
,l ^ defined by
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for the integral to be solved.
This integral has an intuitive physicalmeaning. To clarify it, wefirst split off a delta distribution,
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Due to the large dynamic range of the argument of the exponential in (B.33) and the fast oscillations of the
Fourier phase, the integration required to evaluate 21 is numerically difficult in some regions of parameter
space.We use Levin collocation [23–25] for a fast and reliable integration scheme.

Themeaning of 21 becomes best visible in the limit of early times. Then, the argument of the exponential in
(B.33) is small, the exponential can be approximated by a first-order Taylor expansion, andwe are left with
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Using these results with a and â from (B.28), wefind immediately
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Therefore, at early times,
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qp qp21
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This is the density-fluctuation power spectrum, linearly evolvedwith g , 0
qp
2 t( ), times 21l-  . Aswe shall see in the

main text, 121l = - in themost straightforward applications. This shows that the function 21 generalises the
linearly evolved density-fluctuation power spectrum and thus that 21 is a nonlinearly time-evolving density-
fluctuation power spectrum. Its Fourier transform is the corresponding generalisation of the spatial density
correlation function.
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