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Abstract
Recent progress in generation of optical pulses of durations comparable to one optical cycle 
has presented great opportunities for studies of the fundamental processes in matter as well 
as time-resolved spectroscopy of ultrafast processes in nonlinear media. It opened up a new 
area of research in modern ultrafast nonlinear optics and led to appearance of the attosecond 
science. In parallel, a new research area related to emission from resonant media excited by 
superluminally propagating ultrashort bursts of electromagnetic radiation has been actively 
developed over the last few years. In this paper, we review our recent results on theoretical 
analysis of the Cherenkov-type radiation of a resonant medium excited by few-cycle 
optical pulses propagating at superluminal velocity. This situation can be realized when an 
electromagnetic pulse with a plane wavefront incidents on a straight string of resonant atoms 
or a spot of light rotates at very large angular frequency and excites a distant circular string 
of resonant dipoles. Theoretical analysis revealed some unusual and remarkable features of 
the Cherenkov radiation generated in this case. This radiation arises in a transient regime 
which leads to the occurrence of new frequencies in the radiation spectrum. Analysis of the 
characteristics of this radiation can be used for the study of the resonant structure properties. 
In addition, a nonlinear resonant medium excited at superluminal velocity can emit unipolar 
optical pulses, which can be important in ultrafast control of wave-packet dynamics of matter. 
Specifics of the few-cycle pulse-driven optical response of a resonant medium composed of 
linear and nonlinear oscillators is discussed.

Keywords: Cherenkov radiation, few-cycle pulses, attosecond pulses, pulse shaping, unipolar 
pulses, ultrafast phenomena superluminal motions, resonant periodic structures
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1.  Introduction

Since the appearance of the first lasers, studies of the methods 
of ultrashort pulse production and their interaction with mat-
ter developed in parallel as two separate fields of optics. The 
former area led to the generation of ultrashort optical pulses 
of durations down to a single optical oscillation. As a result, 
a modern area of ultrafast optics known as attosecond science 
appeared, see [1–8]. These extremely short ‘bursts’ of light 
can be applied to time-resolved studies of different complex 
systems with duration of transients of even less than femto-
seconds. For example, it is possible to study and control the 
dynamics of wave packets in matter, thus creating ‘snapshots’ 
of complex molecules with femtosecond pulses. Hence, study 
of the optical response of the medium at such extremely short 
time scales helps to reveal the mechanisms of their interac-
tions with matter.

Another interesting area of optics related to the study of 
the optical response of a resonant medium excited by super-
luminally propagating ultrashort pulses has been developed 
over the last few years [9–19]. Physical objects moving at a 
velocity faster than the velocity of light in vacuum c have been 
the subject of intense research for many years [20–22]. In the 
pioneer works of Heaviside (1850–1925) and Sommerfeld 
(1868–1921), the radiation of charged particles moving in vac-
uum at a velocity greater than c was considered, see [23–25]  
and [26]. After the appearance of the special theory of rela-
tivity in 1905, that does not allow the motion of objects at a 
velocity greater than c, works on superluminal motion were 
accepted to be unphysical and forgotten for many years. Later, 
it was found that only those motions that involve signal (infor-
mation) transfer at the superluminal velocity are prohibited 
[20–22, 27]. Hence, if there is no signal transfer, superluminal 
movement of objects can take place.

A number of objects that can propagate at the superluminal 
velocity have been found in different areas of physics. Basov 
et al demonstrated experimentally and theoretically the pos-
sibility of superluminal propagation of the pulse maximum in 
an amplifying medium [28–30]. These experiments were per-
formed in the 1960s after the appearance of first lasers. The 
superluminal propagation of pulse maximum was related to 
nonlinear amplification of a pulse of light on its leading edge. 
Rosanov [31] analysed soliton-like light structures propagat-
ing superluminally in vacuum and in a nonlinear medium.

Different superluminal objects can be sources of electro
magnetic radiation. One of the most pronounced example is 
Cherenkov or Vavilov–Cherenkov radiation, arising when 
a charged particle moves in a medium at a velocity greater 
than the phase velocity of light in this medium [32–34]. This 
radiation was discovered in 1934 by Cherenkov (1904–1990) 
and Vavilov (1891–1951) and theoretically explained by 
Tamm (1895–1971) and Frank (1908–1990) in 1937 [35, 36]. 
Cherenkov radiation propagates at the angle determined by 
the ratio of the particle velocity and the phase velocity of light 
in the medium: ϕ = c Vncos / . Here n is the refractive index of 
the medium, V is the velocity of particle. The history of the 
discovery of this radiation can be found in [37].

Not only particles, but also spots of light and optical soli-
tons, can propagate faster than the phase velocity of light in 
particular mediums and in vacuum [38–41]. Askaryan theor
etically predicted radiation produced by electromagnetic 
beams moving at a velocity greater than the phase velocity of 
light in the medium [42]. The radiation of such sources is also 
referred to as Cherenkov radiation. Cherenkov radiation of 
optical solitons was reviewed in [43]. Ginzburg (1916–2009) 
considered different spots of light propagating at superluminal 
velocity, particularly the spot of light formed by a rotating pro-
jector, searchlight (or pulsar in astrophysics) at a fairly remote 
screen, see [41, 44]. Next, the intersection point of two interfer-

ing laser beams that propagate at the velocity = >αV c csin
2

/  

(α is the angle between two interfering waves) also moves at a 
velocity exceeding that of light in vacuum. The next example 
of a ‘superluminal’ source of electromagnetic radiation is an 
ultrashort plane optical pulse crossing a plane screen, see fig-
ure 1 and [41]. In this case, the intersection line of the pulse and 
screen moves along the screen at the velocity β= >V c csin/  
(here β is the angle of wave incidence) [41].

The objective of this review is to present recent results on 
the study of the optical response of an inhomogeneous resonant 
medium excited by few-cycle optical pulses at superluminal 
velocity and to discuss the possible applications of radiation 
arising in this case [9–14]. This research is motivated by recent 
progress in the development of fabrication techniques for 
arrays of microsize particles, plasmonic nanostructures, metal-
lic nanoantennas and semiconductor quantum dots. All of them 
exhibit multiple beneficial optical properties and can serve as 
optical waveguides [45, 46], high quality optical resonators 
[47–49], antennas and detectors [50], or the active elements in 
laser diodes [51, 52]. Such nanostructures have highly flexible 
resonance frequencies which are determined by their geometry 
and size, and can be thus tuned in a wide range, from terahertz 
up to the visible one. We considered the Cherenkov radiation 
of linear and circular strings composed of resonant optical 
oscillators with spatially varying linear density and analysed 
the features of the frequency spectrum of the emission aris-
ing in this case. It was found that this radiation possesses an 
unusual character of its spectrum in the transient regime and 

Figure 1.  Plane screen is irradiated by an ultrashort pulse with a 
plane wavefront; the intersection line of the pulse wavefront and 
the screen moves along the screen at the superluminal velocity 

β= >V c csin/ .

Laser Phys. 27 (2017) 053001



Topical Review

3

contains both resonance frequency of the medium and the new 
Doppler-shifted frequency. This latter frequency depends on 
the velocity of excitation pulse propagation, spatial period 
of the oscillator density and the angle of observation. If the 
excitation velocity varies during the excitation process due to 
the medium geometry or the wavefront curvature of the pump 
pulse, a frequency continuum of the definite frequency range 
can be obtained in the spectrum of the emitted field. Analysis 
of the spectrum of such radiation can be used for the control 
and study of resonant periodic structures and the optical and 
material properties of the medium.

We also analysed the emission of strings composed of 
resonant oscillators with nonlinear coupling to an external 
electric field and excited by the ultrashort pulses at superlumi-
nal velocity [15–19]. In contrast to the linear oscillator case, 
nonlinear field coupling was shown to provide a novel and 
effective method of unipolar pulse generation in a wide fre-
quency range by all-optical means using a pair of successive 
few-cycle light pulses. As opposed to conventional pulses, 
which are bipolar and thus have an electric field of alternating 
sign, unipolar pulses exhibit a constant sign of electric field 
throughout the pulse duration. This distinguishing feature of 
unipolar pulses makes them ideally suited for controlling the 
motion of charges in matter and detection of the dynamics of 
ionic and electronic wave packets [53–56]. We also proposed 
a new method to control the waveform of an emitted unipolar 
pulse by multiple-oscillator emission interference when the 
excitation velocity varies in a prescribed manner along the 
string of oscillators.

The review is organized as follows. Section 2 discusses the 
optical response of resonant oscillators to the few-cycle pump 
pulse. Special attention is paid to the role of the carrier-enve-
lope phase of the excitation pulse and the relative values of the 
pulse duration and the period of the resonant oscillations of 
the medium. Section 3 reviews the spectral and temporal char-
acteristics of the Cherenkov radiation arising when a linear 
or circular string of dipoles is excited at superluminal veloc-
ity. We also discuss the possibility of unipolar pulse emission 
when the resonant oscillators possess nonlinear coupling to 
the electric field. In section 4 we generalize our findings to the 
case of excitation velocity varying over the course of time due 
to the curvature of the pulse wavefront. Finally, in section 5, 
we discuss both the fundamental and applied aspects of our 
findings and expound our views of their possible applications.

2.  Optical response of a resonant medium to  
a few-cycle excitation pulse

We treat in the following the resonant medium as being 
composed of linear optical oscillators corresponding to the 
elastically bounded charges in atoms or molecules. The oscil-
lator displacement under the influence of an external field is 
described by the effective medium polarization P(t). We assume 
the excitation field to be linearly polarized, which gives us the 
following equation for the temporal evolution of polarization:

γ ω+ + =P P P g E t¨ ˙ ,0
2

0 ( )� (1)

where ω0 is the oscillator resonance frequency, γ is the damp-
ing rate and the variable g0 describes the coupling strength of 
the medium to the external electric field. Taking into account 
that the field coupling can be anisotropic in general, equa-
tion (1) should be written for each component of the polariza-
tion vector, but with the linearly polarized electric field these 
equations have a form analogous to equation (1). Hence, with-
out loss of generality we can restrict ourselves to the scalar 
case described by equation (1).

We suppose that the excitation pulse is spectrally broad-
band and much shorter in duration than the resonant period of 
medium π ω=T 20 0/ . This implies that the central frequency 
of the pulses used for pumping of considered scheme should 
be very large compared to the medium resonant frequency.

In view of this assumption, the oscillators are driven during 
the limited amount of time corresponding to the pump pulse 
duration and execute free oscillations after the excitation 
pulse has passed through. Integrating equation  (1) over the 
whole duration of the excitation pulse and taking the oscillator 
damping to be small �γ ω0 yield the following expression for 
this subsequent free-oscillation dynamics:

ω φ ω ω= + +Π −Π γ−P t P t t tsin sin cos e ,t
0 0 0 1 0 2 0

2( ) [ ( ) ( ) ( )] /

� (2)
where P0 and φ0 are the integration constants and Π Π,1 2 are 
given as:

∫

∫
ω

ω

ω
ω

Π =

Π =

′ ′ ′

′ ′ ′

−∞

+∞

−∞

+∞

g
E t t t

g
E t t t

cos d ,

sin d .

1
0

0
0

2
0

0
0

( ) ( )

( ) ( )
�

(3)

The integrals on the right-hand side of equation  (3) are 
considered to be taken over the whole pulse duration, as sche-
matically indicated by the infinite integration limits. Since the 
terms proportional to the field of excitation pulse are equal to 
zero before the pulse action, variables P0 and φ0 correspond to 
the oscillation amplitude and phase at the moment of excita-
tion pulse arrival.

We suppose that the excitation pulse possesses a symmet-
ric envelope with respect to the middle of the pulse (e.g. of 
Gaussian shape) and an arbitrary phase shift of the carrier:

ϑ= Ω +τ−E t E te sin ,t
0 CEp

2 2
( ) ( )/� (4)

where Ω is the central frequency and ϑCE stands for the carrier-
envelope phase (CEP).

According to equations (3) and (4), we obtain the follow-
ing dependence of the response amplitudes of medium oscil-
lators Π Π,1 2 on the carrier-envelope phase ϑCE:

π
ω
τ ω τ ϑ

π
ω
τ ω τ ϑ

Π = Ω

Π = Ω

ω τ

ω τ

− Ω +

− Ω +

E
g

E
g

e cosh 2 sin ,

e sinh 2 cos ,

p p

p p

1 0
0

0

4
0

2
CE

2 0
0

0

4
0

2
CE

p

p

2
0
2 2

2
0
2 2

( / )

( / )

( ) /

( ) /
�

(5)

that are illustrated in figure 2.
According to equations (5), the response amplitudes Π Π,1 2 

are the harmonic functions of the carrier-envelope phase ϑCE 
and vary reversely to each other. Thus control of CEP value 
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allows us to obtain both exactly sine and exactly cosine 

responses in equation (2). It also directly follows from equa-
tion (5) that:

ω τΠ Π = Ω
ϑ ϑ

max max tanh 2 .p2 1 0
2

CE CE

/ ( / )� (6)

It is seen from equation (6) that the relative values of both 
terms in equation (2) are determined by the value of the prod-

uct ω τΩ p0
2. If the excitation pulse contains just a few optical 

periods τΩ ∼ 1p  and is much shorter in duration than the reso-
nant period of medium �ω τ 1p0 , it is seen from equation (5) 

that cosine term amplitude Π2 equals zero for ϑ =± πCE 2
 only, 

but except for the vicinity of ϑ = 0CE  and ϑ π=CE , the sine 
term amplitude Π1 is much greater. When considering ω τ ∼ 1p0 , 
the response amplitudes Π Π,1 2 according to equation (6) turn 
out to be of the same order of magnitude (see figure 2).

Another interesting point is the response of an oscillator 
with nonlinear coupling to an external electric field [15–19]. 
In contrast to the constant coupling strength g0 in equation (1), 
it means that the field coupling itself depends on the elec-
tric field g(E). Let us consider the simplest case when this 
dependence is linear: g(E)  =  g1E. Such a form of field cou-
pling nonlinearity naturally holds for Raman-active media 
[57], which are usually modelled as nonlinearly bonded elec-
tronic and nuclear oscillators. Since they have the widely dif-
ferent resonance frequencies and effective masses, the motion 
of high-frequency oscillator in oscillating electrical field can 
be adiabatically excluded what results in the equation for the 
low-frequency oscillator similar to the equation (1), but with 
nonlinear coupling function g(E). Similar field coupling can 
be also realized in different hybrid optical materials contain-
ing nonlinearly bonded resonances, such as coupled local-
ized plasmonic resonances, quantum dots or microcavities. It 
should be noted that such nonlinear field coupling essentially 
differs from the usual instantaneous second-order nonlinear 
response when the medium oscillators are anharmonic and the 

second-order response term arises as a small additive to the 
linear response term.

In this case we get the following equations for the response 
amplitudes Π Π,1 2:

[ ( / ) ]

( / )

/

/

( ) /

π
ω
τ

ω τ ϑ
π

ω
τ ω τ ϑ

Π =

− Ω

Π = Ω

ω τ

τ

ω τ

−

−Ω

− Ω +

E
g

E
g

1

2 2
e

1 e cosh 2 cos 2 ,

1

2 2
e sinh 2 sin 2 ,

p

p

p p

1 0
2 1

0

8

2
0

2
CE

2 0
2 1

0

4 8
0

2
CE

p

p

p

0
2 2

2 2

2
0
2 2

� (7)
that are illustrated in figure 3.

When the condition �τ−Ωe 12p
2 2 /  is satisfied, equation (7) 

exhibits a weak dependence of oscillator response on the 
CEP. As long as this condition is fulfilled, the value of the 
cosine term amplitude Π2 in equation (7) is negligibly small, 
as compared with the sine term amplitude Π1, although it is 

exactly equal to zero just when ϑCE is multiple of π
2
. Thereby, 

the response of an oscillator with nonlinear field coupling is 
extremely close to sine regardless of the CEP value, thus mak-
ing CEP control insignificant in this case.

3. Transient Cherenkov radiation of linear and 
circular strings of resonant particles excited at 
constant superluminal velocity

In this section, we consider the features of Cherenkov radiation 
from an inhomogeneous string excited by few-cycle pulses 
superluminally propagating over the medium. The details of 
this research can be found in [9, 10]. The medium of length 
L consists of linear harmonic oscillators with resonance fre-
quency ω0 and decay rate γ. The spatial density of oscillators 
N(z) varies harmonically along the z-axis at the spatial period 
Λz. This medium is excited by the ultrashort pulse obliquely 
incident on the string, as shown in figure 4. We assume that 
the excitation pulse duration is smaller than (or comparable 
to) the resonant period of oscillators π ω=T 20 0/ . According 

Figure 2.  Dependence of the amplitudes of the oscillator response 
Π Π,1 2 on the carrier-envelope phase ϑCE; ω τ = 0.2p0 , ωΩ = 250/ .

Figure 3.  Dependence of the amplitudes of the oscillator response 
on the carrier-envelope phase for the field-coupling function 

=g E t g E t1[ ( )] ( ) (7); ω τ = 0.2p0 , ωΩ = 250/ .
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to the results of the previous section, the oscillator response 
function mainly depends on the carrier-envelope phase of 
the excitation pulse. To be definite, we shall consider in the 
following the most simple case when ϑ = 0CE . The medium 
response in equation (2) is then given by:

ω= −Π Θ γ−P t t tcos e ,t
2 0

2( ) ( ) ( ) /� (8)

where Θ is the Heaviside step function.
The electric field is measured at some angle α to the z-axis 

and in view of equation (8) is given by the integral:

∫ ω= − Θ −′ ′γ− − ′′ ′E t E N z t f t f zcos e d .
L

z z
t f

0
0

0
2z( ) ( ) [ ( )] [ ] ( )/

� (9)

Here α= + +−
′

′ ′f cosz
z

V

L z

c

r

c
 describes the emission delay 

from the oscillator placed at a point with the coordinate z, E0 
is the scaling constant and r is the distance between the obser-
vation point and the string end z  =  L. From analytical calcul
ation of equation  (9) one can see that the medium response 
contains the radiation at the resonance frequency ω0 as well as 
the new component given by:

π
α

Ω =
Λ

−

V
2

cos 1
.z

V

c

1
/

� (10)

The numerator of equation (10) is the frequency of exci-
tation of a linear string of oscillators. The denominator con-
tains typical Doppler term V/c. Equation (10) is valid in the 
case of subluminal excitation as well as in the case when the 
excitation velocity V  =  c. The physical reason for the occur-
rence of the new frequency is as follows. When a medium is 
excited at a velocity greater than c, V  >  c, the medium emis-
sion succeeds the excitation remaining behind it. In this case, 
the radiation from different parts of the medium will come to 
the observation point in turn. Since V  >  c, the radiation from 
points close to point z  =  L arrives at the observation point first. 

The radiation from the points of the medium close to z  =  0 
arrives much later. Because of the interference from incoming 
waves, a complex transient process occurs and the new fre-
quency (10) appears in the spectrum of the medium response. 
This fact is illustrated in figures 5 and 6 where an example of 
electric field time dependence and the spectral intensity are 
presented for the case when the medium is excited by a single 
ultrashort pulse. The presence of the transient process as well 
as resonance frequency ω0 and the new one Ω1 can be easily 
seen.

Figure 7 shows the dependence of the field spectrum on the 
angle of observation α. It is seen that the spectrum contains 
two branches corresponding to the resonance frequency ω0 
and the new frequency equation (10), respectively. When the 
angle of observation is equal to:

α =
c

V
cos ,0� (11)

the additional frequency (10) becomes infinite, implying that 
a single-peaked spectrum occurs. The observation angle (11) 

Figure 4.  Linear string of oscillators with a periodic density, 
excited at a superluminal velocity by a few-cycle pulse with a plane 
wavefront. Emission from the string is measured at a far-distant 
point with the observation angle α.

Figure 5.  Time dependence of the electric field obtained from a 
string of linear oscillators at the observation point for the parameter 
values V/c  =  3, λ=L 45 0, λΛ = 2z 0, γ ω = 0.050/ , α π= .

Figure 6.  Spectral intensity of the field measured from a string 
of linear oscillators for the parameter values V/c  =  3, λ=L 45 0, 

λΛ = 2z 0, γ ω = 0.050/ , α π= .

Laser Phys. 27 (2017) 053001
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coincides with the angle of Cherenkov radiation. This fact can 
be naturally expected to occur since the Cherenkov angle cor-
responds to the direction of the in-phase summation of the 
secondary waves emitted by different parts of the medium. 
Hence, no transient processes will be registered when measur-
ing at this angle.

The transient Cherenkov frequency equation (10) closely 
resembles the well-known relation for Doppler-shifted fre-
quency. Indeed, if the relation = ΛVT z0  is fulfilled, i.e. the 
excitation spot during one period of resonant oscillations of 
the medium covers one period of the modulation of medium 
density, equation  (10) is precisely the Doppler frequency in 
the nonrelativistic limit. It is also interesting to note that the 
frequency (10) has the same form as the frequency of the 
Smith–Purcell effect [58] arising when the charged particle 
moves along the surface of the metallic periodic grating.

A periodic train of ultrashort pulses can be used for 
effective control of the parameters of Cherenkov radiation 
described above. This fact was pointed out in [12, 13]. The 
idea of this control is very simple. When the frequency of the 
pulse train is equal to or a multiple of the resonance frequency 
of the medium, the radiation efficiency at the resonance fre-
quency can be increased. At the same time, the radiation 
intensity at the frequency Ω1 becomes suppressed. In addi-
tion, if the pulse repetition period is a multiple of the period 

π= ΩT 21 1/  the radiation intensity at the frequency Ω1 will be 
increased, and resonance radiation will be suppressed. This 
fact is very similar to the control of molecular vibrations by a 
train of femtosecond pulses [59, 60]. Thus we see that using 
a train of ultrashort pulses allows one to control and study 
the properties of resonant periodic structures and the radiation 
emitted by them.

We remark that a linear string is not the only string that 
allows generation of new frequencies like (10). One can 
imagine a circular string composed of classical harmonic 
oscillators. This system can be superluminally excited by a 
spot of light propagating along the circle of radius R. This 
situation was studied in [10–12]. The quick rotation of a laser 
pulse along the circle can be realized using angular laser 
beam deflectors. Let us consider that the resonant particles 

are periodically distributed along the circle with the angular 
period Λϕ and the radiation is measured at some point on the 
axis passing through the centre perpendicular to the circle. In 
this case, the expression for the new frequency component is 
given by:

πΩ =
ΛϕV

R
2 .2

/
� (12)

The frequency (12) is proportional to the velocity of excita-
tion and depends on the angular period of the oscillator density 
Λϕ and the radius of the circle R. This frequency also arises in 
the transient regime due to the reasons described in the case of 
a linear string. One can also imagine the less realistic situation 
when the radiation is measured at an observation point placed 
directly on the circle. In this speculative case, described in 
[11], the expression for the new frequency slightly differs 
from equation (10) and is given by:

πΩ =
Λ

−

ϕV
2

1V

c

3
/

� (13)

and thus depends once again on the ratio V/c.
Use of a circular string of oscillators seems promising 

because circular arrays of resonant nanoparticles are actively 
studied nowadays and their resonant interaction with an 
electromagnetic field can find various applications in optics 
(see [48–50] and references therein).

The described phenomena remain valid for oscillators with 
nonlinear field coupling as well. However, the specifics of the 
optical response in the case of nonlinear field coupling pave 
the way for other interesting effects. Namely, let us assume 
that the oscillators are excited by the sequence of two few-
cycle pulses with the delay equal to the half-period of resonant 
oscillations T0/2. As it was shown in the previous section (see 
figure 3), the response on the first excitation pulse will have 
the sine form. Then the second pulse will stop the oscillator 
just after the half-period, so that the emitted field will be the 
half-sine unipolar impulse (except the short splashes at the 
start and stop of the oscillation) (see figure 8) [15–19].

Figure 7.  Diagram illustrating the dependence of the output 
spectrum of the string of linear oscillators by the observation of 
observation α; V/c  =  3, λ=L 47.75 0, λΛ = 5z , γ ω = 0.050/ .

Figure 8.  Unipolar half-cycle pulse emitted by an oscillator with 
the field coupling =g E t g E t1[ ( )] ( ) (red solid line) together with the 
electric field of the excitation few-cycle pulse (black dashed lines); 
ω τ = 0.2p0 , ωΩ = 250/ , ϑ = 0CE .
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Unipolar pulses seems to be unphysical because emitted 
electric field is proportional to the acceleration of bounded 
system of oscillating charges (dipoles) and this acceleration 
is bipolar. However, unipolar pulses can exist in some cases 
as it was shown by several authors, see [61–67] and review 
[68]. Unipolar pulses are usually produced when an initially 
bipolar pulse propagates in a nonlinear medium [61–64] or 
in high-intensity light–matter interactions typical in extreme 
nonlinear optics [65–67]. In some cases unipolar halfcycle 
pulses appear in the form of solitonic solutions of nonlinear 
optics equations, see review [68]. The main advantage of 
the proposed method is the possibility of efficient control 
over the profile of the obtained unipolar pulse by varying 
the spatial arrangement of excited oscillators. Specifically, 
if we consider the oscillators placed along a linear string 
with the spatial density N(z), the resulting field obtained by 
the integration over the whole string will be given as:

∫∑ ω= − Θ − ′ ′
=

′ ′E t E t f t f N z zsin d ,
k

L

z z0
0

1

0
0( ) [ ( )] [ ] ( )� (14)

where E0 is scaling constant and the time delay 

α= + + + −−
′

′ ′f kcos 1z
z

V

L z

c

r

c

T

2
0( ) . If the string is homo-

geneous N(z)  =  const the rectangular-shaped unipolar pulse is 
emitted, which is illustrated by an example in figure 9.

For the inhomogeneous string, the shape of the result-
ing pulse can vary greatly based on the particular form of 
the oscillator density. It is important to state that the gen-
erated pulse will be unipolar in all cases. Compared to the 
Cherenkov radiation caused by the single excitation pulse 
and having the well-pronounced peak in the angular spec-
trum, the unipolar pulse equation  (14) has the same form 
regardless of the value of the observation angle α. Varying 
the observation angle allows for only stretching the pulse in 
the time domain, thus inversely tuning the pulse duration and 
amplitude. Different methods of unipolar pulse generation 
and fundamental limitations on their existence are described 
in review [68].

4. Transient Cherenkov radiation of strings  
of resonant particles excited at varying  
superluminal velocity

In previous studies [9–13], it was assumed that the excitation 
pulse propagates along the medium at a constant velocity. If 
the excitation velocity varies we can expect the emitted field 
to have a more complex form of frequency spectrum [14].

Suppose first that the oscillators are arranged along the 
linear string but the excitation pulse has a curved wavefront. 
As provided by relation β=V c sin/ , this means that the exci-
tation velocity varies during the pulse propagation over the 
string. For definiteness, we suggest a point light source to be 
placed above one of the string ends at height H (see figure 10).

From the system geometry it follows that the angle of inci-
dence β monotonically increases from its maximum value

β = 01� (15)

at the nearest end of the string to the

β =
+

arcsin
1

1 H

L

2
2( )� (16)

at the opposite end. According to equation  (10), the corre
sponding instantaneous values of the additional frequency Ω1 
are given as:

ω

α
Ω =

| |
β

λ
Λ cos

;0

z
1

0

� (17)

ω

α
Ω =

+

+ −
β

λ
Λ

1

1 cos 1

.

H

L

H

L

0
2

2
z

2

0

( )
( )

� (18)

In this case, the electric field measured at the observation 
point is expressed as follows:

∫ ω= − Θ −′ ′γ− − ′′ ′E t E N z t f t f zcos e d ,
L

z z
t f

0
0

0
2z( ) ( ) [ ( )] [ ] ( )/

� (19)

Figure 9.  Rectangular unipolar pulse obtained from equation (14) 
generated by a linear homogeneous string of oscillators with the field 
coupling =g E t g E t1[ ( )] ( ); V/c  =  3, ω =L c 300 / , α = 0.

Figure 10.  Linear string with periodic density of oscillators excited 
with a superluminal velocity by a few-cycle pulse with a cylindrical 
wavefront. Emission from the string is measured at a far-distant 
point with the angle α to observer.
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where ′ α= + − + +−
′

′f H z H cosz c

L z

c

r

c

1 2 2( )  describes 

the emission delay from the oscillator placed at the point with 
the coordinate z and r is the distance between the observation 
point and the string end z  =  L. Results of the numerical inte-
gration of equation (19) are shown in figure 11.

It is seen from equation (10) that the additional frequency 
Ω1 becomes infinite at the excitation velocity:

α
=∞V

c

cos
.� (20)

Equation (20) physically describes the situation where the 
observation point is placed in the direction of the excitation 
pulse propagation, so that the medium geometry has no effect 
on the temporal dynamics of the measured field.

In the case when the velocity (20) satisfies the condition:

⎜ ⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟β β

∉ = + +∞∞V
c c

c
H

Lsin
;

sin
1 ;

2 1

2

� (21)

the spectrum of emitted field will contain frequencies filling 
the finite continuous range:

Ω∈ Ω Ω Ω Ωβ β β βmin , ; max , .1 2 1 2[ ( ) ( )]� (22)

In the opposite case, when:

⎜ ⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟β β

∈ = + +∞∞V
c c

c
H

Lsin
;

sin
1 ;

2 1

2

� (23)

the measured spectrum extends to infinity:

Ω∈ Ω Ω +∞β βmin , ; .1 2[ ( ) )� (24)

In this latter case (24), the new frequency component Ω1 (10) 
during the finite time interval of the medium excitation takes 
on values within the infinite range that allow us to expect that 
the registered emission will have no pronounced features in 
its spectrum. Thus the former case (22) is of particular interest 
when the frequencies of the transient radiation (10) fill in the 
finite frequency range, forming a continuous spectrum with 
definite boundaries. As it follows from equations  (17)–(18),  
these boundary frequencies can be tuned within wide limits 

depending on the spatial period of the modulation of oscilla-
tor density, the geometrical parameters of the system and the 
observation angle.

An example of the field intensity spectrum is shown in 
figure 12. It is seen that besides the maximum on the reso-
nance frequency ω0, another pronounced frequency contin-
uum arises, which corresponds to the transient Cherenkov 
radiation. The boundaries of the frequency range in figure 12 
exactly agree with the equations (17)–(18).

The amplitude of the obtained continuum can be varied by 
changing the damping rate of the oscillator. As the damping 
rate increases, the peak at the medium resonance frequency 
becomes less intensive, while the amplitudes of the frequency 
components related to the Cherenkov radiation increase.

Varying excitation velocity also allows us to control the 
shape of unipolar pulses in the case of oscillators with non-
linear field coupling. For the scheme presented in figure 10, 
when assuming a homogeneous string and �γ ω0, the mathe-
matical expression for the generated pulse shape is written as:

∫∑ ω= − Θ − ′
=

′ ′E t E t f t f zsin d ,
k

L

z z0
0

1

0
0( ) [ ( )] [ ]� (25)

where the emission delay from the oscillator located at 

the point with coordinate z ′= + −′f H z Hz c

1 2 2( )
( )α+ + + −− ′ k Tcos 1L z

c

r

c p has the same form as in 

equation (19). The result of the numerical calculation of the 
integral equation (25) for some parameter values is shown in 
figure 13.

The generated unipolar pulse has a nonuniform profile 
monotonically decreasing from its highest level at the lead-
ing edge to the lowest at the trailing edge. This shape origi-
nates from the fact that the intersection point of the excitation 
pulses and the string of oscillators moves along the string 
at varying superluminal velocity due to wavefront curvature. 
Depending on the geometry of oscillator arrangement and 
the wavefront curvature of the excitation pulses, the result-
ing pulse shape can be tuned in wide limits according to the 
desired waveform.

Figure 11.  Time dependence of the electric field obtained at 
the observation point for parameter values λ=L 99 0, λΛ = 2z 0, 

λ=H 100 0, γ ω = 0.050/ , α π= .
Figure 12.  Spectral intensity of the measured field for parameter 
values λ=L 99 0, λΛ = 2z 0, λ=H 100 0, γ ω = 0.050/ , α π= .
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5.  Possible applications of the phenomena 
discussed above

The features of Cherenkov radiation discussed above represent 
only theoretical predictions. Despite this, one can think about 
its possible practical applications. From equations (10)–(13) 
one can see that generated frequencies depend on the excita-
tion velocity V, and parameters of the excited medium (spatial 
period Λz and radius R). Therefore, analysing the spectrum of 
the emitted Cherenkov radiation enables us to extract infor-
mation on the medium properties or to detect some objects 
moving at the velocity V. Furthermore, analysis of the spec-
trum near the new frequency in the case when the medium is 
excited at the variable velocity makes it possible to recover 
information about the character of the particle motion.

Recently, the transient character of Cherenkov radiation 
described above led to the theoretical prediction of a novel 
way of unipolar pulse generation in a nonlinear medium [15–
19]. Unipolar pulses are pulses with a constant sign of electric 
field. Conventional electromagnetic waves are bipolar and the 
integral of the electric field with respect to the time is equal to 
zero. Unipolar pulses, due to their unidirectionality, can effi-
ciently transfer impulsive momentum to an electron and thus 
can be effectively used for the control of wave-packet dynamics 
[53–56, 68]. A detailed description of this phenomena is beyond 
the scope of this review. However, we remark the following. 
Unipolar pulse generation described in [15–19] also takes place 
when the linear or circular string of nonlinear oscillators (for 
example, Raman-active medium) is excited by a train of few-
cycle pulses at superluminal velocity, as plotted in figure 4. In 
addition, the formation of the unipolar pulse at the observation 
point takes place in the transient regime as discussed in section 3.

6.  Conclusions

Discovery of the Cherenkov radiation in 1934 has led to 
detailed analysis of its properties in different systems and 
paved the way to several important applications in various 
fields of physics. However, in most situations, Cherenkov 

radiation is rather unstructured and has no clear frequency 
resonance. In the present review, we have discussed recent 
advances in Cherenkov radiation, which has other remark-
able properties in contrast to common ones. It is excited by 
an ultrashort pulse, which propagates at a velocity greater 
than the velocity of light in vacuum. This Cherenkov radiation 
demonstrates resonant properties as well as containing a new 
Doppler-shifted frequency. This frequency arises when dipole 
density varies periodically along the string and depends on 
the velocity of excitation and medium parameters. The unique 
feature of this radiation is that it has a transient character 
when radiation from certain points of the string are summed 
up at the observation point upon arriving with some delays. As 
soon as the transient process is finished, the dynamics of the 
system represents the decaying oscillations at the resonance 
frequency.

We tried to illustrate to the reader that the field of superlu-
minal motions and light sources is full of examples in various 
fields of physics and has a long history. The study of super-
luminal physical objects is interesting from both fundamental 
and practical points of view.

We pointed out that the features described above can serve 
as a formidable tool to explore the properties of resonant 
periodic structures, as well as to detect the localized struc-
tures which can move at the arbitrary velocity. Furthermore, 
we briefly mentioned that superluminally excited nonlinear 
chains of oscillators under certain conditions can be an effi-
cient tool for unipolar pulse generation. Effective generation 
of unipolar pulses and their remarkable feature of unidirec-
tionality will open new opportunities in the ultrafast control of 
wave-packet dynamics and in the construction and engineer-
ing of compact particle accelerators.
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