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1.  Introduction

Nanosecond laser ablation of solids [1–4] has found applica­
tions in many areas, including nano/microprocessing of mat­
erials [5–9], thin film deposition [10], modification of optical 
properties [11, 12], laser-induced breakdown spectroscopy 
[13, 14], modification of wetting properties [15, 16], laser 
marking [17], biomedicine [18], producing diamond-like 
materials [19], and others. Despite the numerous applica­
tions, the physical processes underlying ablation are not yet 
fully understood. In particular, reflection/absorption of high-
intensity nanosecond laser pulses in ablation of metals is one 
of these processes. Previous experiments on reflection of 
nanosecond laser pulses have shown a significant reflectivity 
drop associated with plasma ignition near the sample surface 
[20–25]. In a number of applications, for example, in induc­
tively coupled plasma mass spectrometry (ICP-MS) [26], 
there is the need in understanding laser-beam wavelength 
effects in nanosecond laser ablation. Here, to further advance 
understanding the reflection process in ablation of metals, we 
perform a comparative experimental study on the reflection 
of nanosecond laser pulses with different wavelength (1.06 
and 0.69 µm) under the same other experimental conditions. 
The studied metal is titanium. Our choice of titanium is moti­
vated by its various biomedical applications [27]. We find that 

the laser wavelength effect is essential at low laser fluence 
values, while it becomes negligible for laser fluence values 
exceeding the plasma formation threshold by about an order 
of magnitude.

2.  Experimental setup

Figure 1 shows the experimental setup used to study laser 
light reflection. An Nd:YAG laser with λ  =  1.06 µm and a 
ruby laser with λ  =  0.69 µm are used for ablation. The pulse 
duration of both lasers is 50 ns at FWHM (full width at a half-
maximum intensity). The laser fluence incident on the sample 
is varied by a calibrated variable attenuator. The laser beam 
is focused onto the sample using a lens with a focal distance 
of 250 mm. To study reflection, we use a hemiellipsoidal light 
reflector technique introduced in [22, 28], which provides col­
lecting both specular and diffuse components of the reflected 
light. The collection of both these components is critically 
important because the sample surface becomes damaged dur­
ing the nanosecond laser pulse, resulting in scattering the 
reflected light.

The sample is placed in the internal focal point of the 
hemiellipsoidal reflector. To reduce laser light backscattering 
through the entrance hole in the hemiellipsoidal reflector, the 
sample is tilted at 19° relative to the laser beam axis. The laser 
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light reflected by the sample is collected in the external focal 
point of the reflector and its energy, Erefl, is measured with an 
energy meter. To prevent plasma radiation entering into the 
energy meter, we use a cutoff filter. To measure energy of the 
laser pulse incident upon the sample, Einc, we use a beam­
splittter that directs a fraction of the laser beam onto another 
energy meter as shown in figure 1. Having measured Erefl and 
Einc, the hemispherical total reflectivity, R, (a sum of specular 
and diffuse components of the reflected light) can be found as 
R  =  Erefl/Einc. The incident laser fluence, F, is determined by 
dividing the incident laser pulse energy, Einc, by the laser spot 
area on the sample. The total reflectivity is studied in a laser 
fluence range of 0.06–100 J cm−2. After each laser shot, the 
studied sample is translated to a fresh spot on the sample. All 
experiments are performed in air of the atmospheric pressure. 
The studied metal is mechanically polished bulk titanium. 
After polishing the room-temperature reflectivity of titanium 
samples was measured at 1.06 µm and 0.69 µm wavelengths 
using a Perkin-Elmer Lambda 900 spectrophotometer with an 
integrating sphere. In this study, we also determine both sur­
face damage and plasma ignition thresholds. The surface dam­
age threshold is found as the lowest laser fluence that causes 
a surface damage to be visible under an optical microscope. 
The plasma ignition threshold is determined by detecting the 
onset  of a bright violet flash from the irradiated spot using 
a photomultiplier with a filter that blocks the wavelengths 
longer 0.45 µm [29].

3.  Results and discussion

The room-temperature reflectivity of our titanium sample 
measured with the Perkin-Elmer Lambda 900 spectrophotom­
eter was found to be 0.58 and 0.51 at 1.06 and 0.69 µm wave­
lengths, respectively. These measured reflectivity values agree 
with reflectivity measurements of polished titanium reported 
in [30]. The damage thresholds were measured to be 0.9 and 
0.8 J cm−2 at 1.06 and 0.69 µm wavelengths, respectively. The 
values of the plasma ignition threshold were found to be 1.2 
J cm−2 (λ  =  1.06 µm) and 1.1 J cm−2 (λ  =  0.69 µm), which 
are slightly higher than those for the damage threshold. The 
similar relation between the damage and plasma ignition 
thresholds has been previously observed in nanosecond laser 
ablation of Al [29] and Mg [25]. The plots of the reflectiv­
ity of titanium as a function of laser fluence at studied laser 
wavelengths are shown in figure 2. These plots show that the 
reflectivity does not change with increasing laser fluence from 
about 0.06 to 1.3 at 1.06 µm and to 1.1 J cm−2 at 0.69 µm; 

and measured reflectivity values are noticeably different at 
the studied wavelengths. It is also seen that these reflectiv­
ity values agree with the room-temperature reflectivity values 
measured with the Perkin-Elmer Lambda 900 spectrophotom­
eter. With further increasing laser fluence, the reflectivity at 
both wavelengths significantly drops and the spectral reflec­
tivity difference decreases. Our experimental data show that 
within the experimental uncertainty the laser fluence values, 
at which the reflectivity begins to drop, correlate with those of 
the plasma ignition threshold. As seen from figure 2, there is 
almost no difference between R(F) dependencies for the stud­
ied wavelengths at F  >  10 J cm−2.

The reflectivity drop observed in our experiment can be 
caused by Drude’s temperature dependence of the optical 
constants of a metal heated by the laser pulse [31, 32] and 
absorption of the laser beam in plasma generated in front of 
the irradiated sample [20, 22]. To understand Drude’s temper­
ature effect on the reflectivity drop of titanium, we computed 
the surface temperature, Tsurf, of titanium at the damage 
threshold fluence for both wavelengths using the formula 
derived by Ready [33]

( ) ( ) ( )
∫π

τ
τ

τ=
− −

+T t
R a

k

I t
T
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d

t

surf
0

0� (1)

where a is the thermal diffusivity, k is the thermal conductiv­
ity, I is the intensity of the incident laser light, t is the time, 
T0 is the initial temperature, and τ is the integration vari­
able. The plots of the surface temperature computed using 

Figure 1.  Experimental setups for studying laser light reflection in ablation of titanium.

Figure 2.  Reflectivity of titanium in nanosecond laser ablation of Ti 
at λ  =  1.06 and 0.69 µm in air.
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k  =  21.9 W · m−1 · K−1, a  =  9  ×  10−6 m2 s−1, T0  =  20 °C, 
R  =  0.58 at λ  =  1.06 µm, and R  =  0.51 at λ  =  0.69 µm are 
shown in figure 3, where we can see that the maximum surface 
temperature is about 1890 °C at λ  =  1.06 µm, and 1980 °C at 
λ  =  0.69 µm.

These maximum surface temperature values computed 
at the damage threshold laser fluence are larger than the 
melting point of titanium (1670 °C). Thus, our reflectiv­
ity measurements and surface temperature estimations show 
that the reflectivity of the titanium sample does not change 
up to the temperature slightly above the melting point. We 
note that Drude’s temperature effect on light reflection at 
some laser wavelengths has been theoretically studied in 
[31, 32], where the reflectivity decrease with increasing 
temperature has been predicted. The discrepancy between 
our observation and theoretical predictions can be explained 
by the fact that the theory is valid only for ideally polished 
and clean metal surfaces. For real surfaces, which are com­
monly contaminated, oxidized, covered with adsorbates, and 
have nano/microstructural defects, the Drude theory may not 
be well applicable as discussed in [28]. Since the reflectivity 
drop in our experiment begins at laser fluence only slightly 
above the damage threshold and correlates with the plasma 
ignition threshold, we believe that the observed reflectivity 
drop is caused by the plasma absorption effect. The reflection 
of the laser light under conditions of plasma generation has 
been first considered first in [22] and later in [34]. Figure 4 
schematically shows the reflection process in this case. There 
are two types of laser-induced plasmas for ablation in air or 
any other ambient gas, namely, the plasma of ablated mat­
erial and the ambient gas plasma. Depending on laser fluence, 
the ambient gas plasma can take a form of a laser-supported 
combustion wave or laser-supported detonation wave [35, 36].

Taking into consideration the laser beam absorption in the 
plasma, the time-integrated reflectivity is given by [22]

( ) ( ) [ ( )] / ( )⎜ ⎟
⎛
⎝

⎞
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τ τ
R I t R t t t I t texp 2 d d
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where I0(t) is the incident laser pulse power, t is the time, 
Rs(t) is the reflectivity of the sample surface, θ(t) is the total 

optical thickness of the plasma, and τL is the laser pulse 
duration. The equation (4) shows that R depends on both the 
total optical thickness of the plasma θ and the surface reflec­
tivity Rs.

In general, the total wavelength effect on the laser light 
reflection in ablation depends on both laser light absorption in 
surface layer of the sample and in the plasma. The reflectivity 
wavelength dependence of the surface layer is described by 
the Fresnel and Drude formulae [32]. For a smooth, flat, and 
clean surface the reflectivity is given by
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where ε is the complex dielectric function, n is the refractive 
index and k is the extinction coefficient. For metals, ε is given 
by relation [37, 38]
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where ω is the angular frequency of the laser light, 

( / ) /ω π= n e m4p e
2

e
1 2 is the electron plasma frequency in the 

metal, ne is the density of free electrons in the metal, e is the 
electron charge, me is the electron mass, νeff  =  νe–ph  +  νe–e 
is the effective collision frequency, νe–ph and νe–e are contrib­
utions of the electron–phonon and electron–electron col­
lisions, respectively. In contrast to femtosecond laser pulses 
[38], the contribution of νe–e is small in the case of nano­
second laser pulses. The relations (3) and (4) predict the 
increase of the reflectivity with increasing light wavelength. 
Using table values of n and k for titanium from [39], equa­
tion (1) gives the reflectance of 0.624 and 0.615 at 1.06 µm 
and 0.69 µm, respectively. These calculated reflectance val­
ues are higher than those measured in our study (R  =  0.58 at 
λ  =  1.06 µm, and R  =  0.51 at λ  =  0.69 µm). Furthermore, 
these calculated reflectance values show a small spectral 

Figure 3.  Surface temperature of the titanium sample as a function 
of time at the damage threshold laser fluence.

Figure 4.  Schematics of laser-induced plasmas and reflection of 
the laser pulse from the sample-plasma system, where I0(t) is the 
incident laser pulse power, I0(t)exp[−θ(t)] is the laser pulse power 
that arrives at the sample surface, θ(t) is the total optical thickness 
of the plasma, I0(t)Rs(t)exp[−θ(t)] is the laser pulse power reflected 
from the sample surface, Rs(t) is the reflectivity of the sample 
surface, I0(t)Rs(t)exp[−2θ(t)] is the laser pulse power that escapes 
the sample-plasma system.

Laser Phys. 26 (2016) 126101
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effect for the studied wavelengths. These discrepancies are 
explained by the fact that the table values of n and k were 
obtained for clean and smooth thin films of high optical 
quality, while the surface of our real sample is not ideal and 
has nano/microstructural defects, oxide film, and contami­
nants, which result in a more pronounced wavelength effect 
on the reflectance.

The absorption of the laser light in plasma has been previ­
ously modeled in [40–46]. At the studied laser wavelengths, 
the absorption of laser light in plasma occurs dominantly 
through inverse bremsstrahlung mechanism [42, 44, 46]. An 
analysis performed in [42] shows that the absorption coef­
ficient of the laser radiation in the laser-induced plasma is 
approximately proportional to the square of the laser light 
wavelength, the square of the electron density, and to T3/2. 
Experimentally, the absorption of the incident laser pulse in 
the plasma has been previously studied in [22, 40, 41] using a 
technique of a probe hole in the center of the irradiated spot. 
By measuring the intensity of laser light transmitted through 
the probe hole, this technique allows to find the intensity of 
the laser light that reaches the surface after attenuation in 
plasma I0(t)exp[−θ(t)] (see figure 4) and optical thickness of 
the laser-induced plasma. We note that the transient plasma 
can defocus the incident laser beam at high laser fluences [47], 
significantly complicating theoretical treatment of the laser 
light reflection.

At the present time, little is known about the reflectiv­
ity of the surface that undergoes ablation and is screened 
by the plasma (term Rs(t) in equation (2)). For nanosecond 
laser pulses, ablation is dominantly driven by vaporization 
and phase explosion mechanisms, depending on laser flu­
ence [41, 44, 48]. The phase explosion threshold for metals 
is in a range of about 5–15 J cm−2 [44, 49, 50]. Therefore, 
in our study, initially solid sample surface becomes liquid 
and can be further changed to a supercritical fluid state 
(no  distinction between the liquid and vapor states). The 
optical properties of liquid metals have been previously 
studied in a number of works [51–53]. It has been shown 
that the reflection of light by liquid metals is well described 
by the Fresnel and Drude equations. A serious problem in 
modeling the reflection from the liquid layer produced in 
laser ablation is to take into account transient geometrical 
fluctuations of surface profile caused by ablation during 
laser pulse. For example, nanoscale transient ripples on 
the surface of the melted layer can significantly reduce 
the reflection due to plasmonic absorption, similar to the 
reduced reflection from solid-state surface nanostructures 
produced by laser pulses [54, 55], while microscale tran­
sient ripples can affect the reflectance through Fresnel 
angular dependence. The wavelength effect on Fresnel 
absorptivity of wavy molten metal surfaces has been mod­
eled in [56] for CW CO2 laser radiation. To our knowledge, 
there are no studies on optical properties of the transient 
nano/microripples induced on a metal surface melted by a 
nanosecond laser pulse.

When the surface layer temperature exceeds 0.9Tc, where 
Tc is the critical temperature, the phase explosion mech­
anism comes into play [48]. The phase explosion effect on 

reflectivity drop has been observed by Kudryashov et al [57] 
in ablation of graphite by nanosecond KrF laser at intermedi­
ate laser fluencies. Wu and Shin [55] have theoretically cal­
culated absorption coefficient of aluminum near the critical 
point at the wavelength of 532 nm using the Drude model and 
found that its value is smaller by about three orders of mag­
nitude as compared with room temperature value. The wave­
length effect on the absorption coefficient of aluminum near 
the critical point has been demonstrated in [59], where the 
absorption coefficient is predicted to decrease with increasing 
the laser wavelength.

The above discussion shows that laser light absorption in 
plasma increases, while the absorption in the surface layer 
decreases with increasing the laser wavelength. We believe 
that this fact plays a role in reducing the wavelength effect on 
the total reflection at F  >  10 J cm−2 in our experimental data 
shown in figure 2.

4.  Conclusions

In this work, we perform a comparative study on the reflection 
of nanosecond laser pulses with different wavelengths (1.06 
and 0.69 µm) in ablation of titanium in air. Our experiments 
show that laser wavelength effect on reflection is essential at 
low laser fluence values, while it becomes negligible for laser 
fluence values exceeding the plasma threshold by about an 
order of magnitude. We speculate that the disappearance of 
the wavelength effect is explained by opposite actions of the 
laser light absorption in plasma that increases with the laser 
wavelength and absorption in the surface layer that decreases 
with the laser wavelength.
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