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Background

In the 1850s Sir George Stokes first touched the topic of 
coherence in a quantitative way by showing how to determine 
the degree of optical polarization. The concept of correlation 
function itself has a remarkably short history, barely a century 
old [1]1. Optical physics is perhaps the field in which the study 
of coherence has become most sophisticated, and correlation 
functions were an esential element of the pioneering studies 
of Emil Wolf in the 1950s [2–4], which showed how polariza-
tion is determined by the amount of correlation existing in the 
optical field.

The foundation of our analysis will be the optical field 
itself. It has several independent degrees of freedom available 
to it [5]2. These are space, time, and spin (intrinsic polariza-
tion). Idealized optical beams can be given a well-defined 
direction of propagation, and this allows a slight simplifica-
tion, which we take for granted by ignoring the propagation 
degree of freedom and writing each field’s complex amplitude 
in terms of the orthonormal bases for each of its other degrees 
of freedom. These are the two-dimensional transverse coor-
dinate ⊥r , time t and spin (polarization) s, and we denote the 

bases as follows. The spin unit vectors satisfy ˆ ˆ⋅ =s s 01 2 . The 
temporal basis functions Fk(t) are orthonormal eigenvectors of 
the integral equation that has the field’s temporal correlation 
function as kernel (see [6]3 and section 4.7.1 in [7]), and the 
transverse beam basis functions ( )⊥G rm  are taken as orthonor-
mal in integration across the beam.

We will use Dirac notation with the abbreviations 
⟨ ⟩ ˆ   ⟨ ⟩ ( )   ⟨ ⟩ ( )| ≡ | ≡ | ≡ ⊥i s s t t F t r r G r; ;i i k k m m , allowing replace-
ment of the field by its Dirac-abbreviated form:

( ) ˆ ( ) ( )∑ ∑=⊥
=

⊥
→
E r t E D s F t G r, ,

i k m
ikm i k m0

1,2 ,
� (1)

→ ⟩ ⟩ ⟩ ⟩∑ ∑∑| = | | |
=

E D s t rE ,
i k m

ikm i k m0
1,2

� (2)

where Dikm are complex coefficients. The Dirac notation has 
not made the field quantum mechanical, but makes it easier to 
follow the vector spaces that are engaged. We will normalize 
to unit total intensity and go to lower-case ⟩|e  for that:

⟩ ⟩ ⟩ ⟩∑ ∑∑| = | | |
=

D s t re ,
i k m

ikm i k m
1,2

� (3)
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1 See Taylor’s investigations of fluid flow for a very early introduction of 
correlation functions into theoretical physics: [1].
2 Attention is directed to different roles for different degrees of freedom and 
vector spaces for the optical field in [5].

3 A complete orthonormal set of time functions directly determined by the ran-
dom process itself can be obtained as eigenfunctions of the integral equation in 
which the kernel is the random signal’s autocorrelation function. See [6].
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where the normalization ⟨ ⟩| =e e 1 implies

⟨ ⟩∑ ∑∑ | | =
=

D 1.
i k m

ikm
1,2

2
� (4)

The unit-trace tensor outer product, the equivalent of a 
quantum density matrix, is then written

∑∑| | = × | | ⊗ | | ⊗ | |∗D D s s t t r re e .
ikm jln

ikm jln i j k l m n〉〈 ( )( ) 〉〈 〉〈 〉〈� (5)

Each of the degrees of freedom clearly defines (occupies) 
one of the independent vector spaces of the field, and for con-
venience we will continue to label them s for spin, t for time, 
and r for transverse spatial location.

Our intention is simply to emphasize via several examples 
how intimately context, correlation and coherence are interre-
lated. The importance of context is often not recognized at all. 
This is especially true in discussion of so-called ‘hidden’ coher-
ences. A number of such examples of hidden optical coherence 
have been pointed out recently [5, 8–13]4. As is always the case 
in physics, experimental setups determine context.

Coherence matrices

We can begin by bringing to view the so-called polarization 
coherence matrix [14, 15]. This is written, for our unit-nor-
malized field, as

⟨ ⟩ ⟨ ⟩
⟨ ⟩ ⟨ ⟩

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∗ ∗

∗ ∗W
e e e e

e e e e
,

x x y x

x y y y
� (6)

where the degree of correlation captured in the matrix is tra-
ditionally written:

⟨ ⟩

⟨ ⟩⟨ ⟩
γ =

| |

| | | |

∗e e

e e
,xy

x y

x y
2 2� (7)

where the Schwarz inequality guarantees that ⩽ ⩽γ0 1.
This is familiar, but we note that the arguments of the 

field components are not specified. The components have 
arguments, but in this format there is nothing specific 
about them in the sense that the argument can justifiably be 
claimed to refer to a time instant (t), a space location ( ⊥r ), 
both of those jointly ( ⊥r t, ), or no argument at all. This odd 
situation points to interesting questions regarding detection. 
In addition, a rationale for arranging the four correlation 
averages in (6) in the form of a ×2 2 matrix is rarely, almost 
never, given. What vector space identifies these correlations 
as a matrix?

Contextual issues

There is only one vector space available, but it is a tensor 
product of several smaller spaces, the three spaces (    s r t, , ) 
used to define the field in (1) or (3), and again in (5) to form 
the dyadic tensor ⟩⟨| |e e . This is where context matters, and 

where detection determines context. While retaining spin 
(conventional polarization) identity there are several recogniz-
able approaches to detection.

	 (a)	Projected space function:
		 Spatial dependence is chosen by projecting on ⟩|e  a chosen 

spatial configuration (e.g. an arbitrary transmission mask 
in the optical beam, denoted ⟩|R ) to obtain

( )⟩ ⟨ ⟩ ⟩ ⟩ ⟨ ⟩

( ) ⟩ ⟩

∑ ∑

∑

| ≡ | = | | |

≡ | |

R R s t D R r

C R s t

e e

.
ik

i k
m

ikm m

ik
ik i k

�
(8)

		 In this r-projection example, and in the following, the C is 
a reduced coefficient obtained by obvious summation on 
the preceding D coefficient.

	(b)	Projected time function:
		 Temporal dependence is chosen by projecting on ⟩|e  a 

distinct temporal configuration (e.g. arbitrarily switching 
out a pulse from the optical beam, denoted by ⟩|T ) to 
obtain

( )⟩ ⟨ ⟩ ⟩ ⟩ ⟨ ⟩

( ) ⟩ ⟩

∑ ∑

∑

| ≡ | = | | |

≡ | |

T T s r D T t

C T s r

e e

.
im

i m
k

ikm k

im
im i m

�
(9)

		 The result of a t projection can be seen as sr coherence, 
the existence of which was highlighted in 2006 by Gori 
et al [16], and then identified as a hidden coherence by 
Abouraddy et al [8].

	 (c)	Projection jointly in space-time :
		 Joint spatial and temporal dependence is chosen by 

projecting on ⟩|e  a joint spatio-temporal functional 
arrangement, an extension of the two previous projections:

( )⟩ ⟨ ⟩ ⟩ ⟨ ⟩

( ) ⟩

∑ ∑

∑

| ≡ | = | |

≡ |

R T TR s D TR t r

C R T s

e e, ,

, .
i

i
km

ikm k m

i
i i

�
(10)

Another coherence matrix, previously unknown, abandons 
spin sensitivity. This is an arbitrary projection that fixes the 
spin degree of freedom, easily done experimentally. It fits the 
projection process perfectly and has only recently been identi-
fied and also explored experimentally [13].
	(d)	Projected spin function:

( )⟩ ⟨ ⟩ ⟩ ⟩ ⟨ ⟩

( )  ⟩ ⟩

∑ ∑

∑

| ≡ | = | | |

≡ | |

S S t r D S s

C S t r

e e

,
km

k m
i

ikm i

km
km k m

�
(11)

		 where ⟩|S  is any combination of ⟩|s1  and ⟩|s2 .

Projection is not the only experimental tool that can pro-
vide context. What is sometimes called a ‘bucket detector’ is 
employed in many situations. This is a detector that captures 
everything indiscriminately. An ordinary bucket left in the 
garden during a rainstorm will catch all raindrops falling into 
it, without registering arrival times or locations drop by drop. 
Many analogs are familiar in physics. An unfiltered photon 4 A particularly wide-ranging examination is provided by De Zela [9].
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counter is of this type, since it counts photons without wave-
length registration. In reverse, a spectrometer can respond to 
wavelength intensity without counting photons. The idea is 
clear.

The mathematical-theoretical equivalent of bucket detec-
tion is the trace operation. By definition, a trace incorporates 
everything within a given vector space. The complete trace of 
any density matrix equals 1, signalling that with probability 1 
every possible event has been included. It is easy to imagine 
optical experiments in which the projections listed above are 
replaced by traces. We can extend (a) above as a sufficient 
illustration of this.
	 (e)	Traced space location: Spatial bucket detection is desig-

nated by the indiscriminate sum of projections onto all 
possible r modes. In that case the field’s multi-space dyad 
is reduced appropriately:

   ⟩⟨ → ⟨ ⟩⟨ ⟩

⟩⟨ ⟩⟨

⟩⟨ ⟩⟨

∑

∑∑ ∑

∑∑

| | | |

= | | ⊗ | |

= | | ⊗ | |

∗

r r

s s t t d d

C s s t t

e e e e

.

q
q q

ik jl
i j k l

q
ikq jlq

ik jl
ikjl i j k l

�

(12)

		 We point out that this reduction generally does not reduce 
the field dyad to a pure-state reduced outer product ⟩⟨| |′ ′e e . 
Such a special reduction is possible only if it happens that 
Cikjl can be factored in the form ∗b bik jl. In general the 
reduction by tracing produces a mixed field state (for 
illustration, see [12]).

It is clear that the same bucket tracing applied to the t and s 
spaces will have exactly similar effects, and it is equally clear 
that all of these tracings lead to different fields to be observed, 
although all start from the same original field ⟩|e , and all trac-
ings differ from all projections obtained from the same ⟩|e . 
Different experimental detection arrangements, amounting to 
different contexts, obviously have to be devised to accom-
plish either projected fields or bucket fields. Further analysis 
to determine residual coherence will naturally depend on the 
contexts, producing different, even greatly different, results.

Interpretation of a coherence matrix

We have now presented several reductions of the original field, 
but the question about the vector-space nature of the ×2 2 
matrix (6) remains open. Let us begin to address it by fixing the 
field’s spatial character, as in (8), obtaining ( )⟩| Re  with s and t 
degrees of freedom remaining active. Two different coherence 
matrices can be formed by tracing over either s or r. The result 
for a temporal-space trace is:

⟨ ( )⟩⟨ ( ) ⟩

    ⟩⟨ ( ) ( ) ⟨ ⟩⟨ ⟩

    ⟨ ( ) ( )⟩  ⟩⟨

∑

∑∑ ∑

∑

| |

= | | | |

= | | |

∗

∗

t R R t

s s C R C R t t t t

R R s s

e e

e e .

q
q q

ik jl
i j ik jl

q
q k l q

ij
i j i j

�

(13)

The corresponding result for a spin-space trace is:

⟨ ( )⟩⟨ ( ) ⟩

    ⟩⟨ ( ) ( ) ⟨ ⟩⟨ ⟩

    ⟨ ( ) ( )⟩  ⟩⟨

∑

∑∑ ∑

∑

| |

= | | | |

= | | |

∗

∗

s R R s

t t C R C R s s s s

R R t t

e e

e e .

f
f f

ik jl
k l ik jl

f
f i j f

kl
k l k l

�

(14)

We can comment on these results separately. If we inter-
pret, as we may do, ˆ ˆs s,1 2 as ˆ ˆx y, , then the first result in (13) 
recovers exactly the matrix in (6), and additionally supplies 
for the fields a spatial character R that was not evident in (6):

⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩
⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∗ ∗

∗ ∗W
e R e R e R e R

e R e R e R e R
.

x x y x

x y y y
� (15)

It was the original projection that prescribed the spatial char-
acter of the coherence. There is no doubt that the matrix 
entries are spin-component correlations of the field and are 
matrix elements in the vector space of the spins, spanned by 

⟩⟨   ⟩⟨   ⟩⟨   ⟩⟨| | | | | | | |x x x y y x y y, , , .
Moreover, if we reverse the projection and trace operations 

that led to (13), and project first temporally and then trace spa-
tially, we obtain exactly the same matrix of spin component 
correlations, in exactly the same vector space, except that the 
fields are evaluated with a specific temporal character T, not 
space character R. The fact that the matrices look the same has 
nothing to do with the various numerical values of the elemen-
tal correlation functions such as ⟨ ( ) ( )⟩| ∗T Te ex y  in contrast to 
⟨ ( ) ( )⟩| ∗R Re ex y . Those values are fully context-dependent and 
different.

All of this makes it obvious that the second result above, 
shown in (14), leads to an analogous matrix in a different 
vector space. But that space is importantly different—it is 
infinite dimensional, implying an infinite-dimensional coher-
ence matrix. The infinite dimensionality was noticeable ear-
lier in (8) where the k sum includes infinitely many modes to 
accommodate the temporal continuum. However, the Schmidt 
Theorem of analytic function theory [17]5 provides an exact 
decomposition of the double summation in (8) and it has only 
two terms. In effect, there are only two distinct combinations 
of temporal modes that can couple to a similarly specific pair 
of spin modes, simply because the number of spin modes is 
fixed at two. Thus the apparently infinite-dimensional coher-
ence matrix implied in (14) is only ×2 2.

Contexts for non-lossy decoherences

The contextual character of coherence leads to practical con-
sequences related to decoherence. It can, for example, provide 
a clear distinction between intrinsic and induced decoher-
ences. We emphasize that none of the decoherences described 
below are related to absorption or other lossy mechanisms. 
These decoherences are observable in tests of a field for which 
total intensity remains fixed, i.e. ⟨ ⟩| =e e 1.

5 The original paper is: [17]. For background, see Fedorov and Miklin 
(2014).

Laser Phys. 26 (2016) 084004
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We proceed by making use of a simplified example pre-
sented recently [12]. The simplification is the assumption that 
experimental control is available to restrict participation to the 
usual two spin modes, a small number of orthonormal spatial 
modes, in this case ( )⊥G r1  and ( )⊥G r2 , and two new temporal 
modes f1(t) and f2(t) that are unit-normalized but not orthogo-
nal: ⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩= =∗ ∗f t f t f t f t 11 1 2 2  and ⟨ ( ) ( )⟩≠∗f t f t 01 2 . Thus 
the z-propagating beam field, here denoted ⟩|a , will be assem-
bled from those modes as a sum of x and y spin components:

α β| = | | + | |f G f Gax 1 1 2 2〉 〉 〉 〉 〉� (16)

α β| = | | + | |f G f Ga ,y 1 2 2 1〉 〉 〉 〉 〉� (17)

where the real coefficients α and β allow an arbitrary shift-
ing of amplitudes within the components without affecting the 
unit-normalized beam intensities.

We assume all of the spin contributions to the field 
are detected indiscriminately, which means summing the 
two contributions that are in principle observable, namely 
| | | + | | | = | | + | |x y x x y ya a a a a a2 2〈 〉 〈 〉 〈 〉〈 〉 〈 〉〈 〉. As in the spa-
tial sector tracing in (12), this is the trace of the dyadic ⟩⟨| |a a  
over an entire sector, in this case the spin sector. The result is a 
field state with contributions from both t and r sectors:

   ⟩⟨ → ⟨ ⟩⟨ ⟩

⟩⟨ ⟩⟨

⟩⟨ ⟩⟨

∑

∑∑ ∑

∑∑

| | | |

= | | ⊗ | |

= | | ⊗ | |

∗

s s

t t r r d d

C t t r r

a a a a

,

f
f f

km ln
k l m n

f
fkm fln

km ln
kmln k l m n

�

(18)

where (16) supplies the elements Ckmln. The result is a 
mixed field state except in the special factorization case: 

= ∗C c ckmln km ln.
A small technical point needs to be addressed before pro-

ceeding. Tracing over ⟩|tk s will not produce a useful result 
because ⟩| f1  and ⟩| f2  don’t provide an orthogonal basis. But 
there is always a unit-normalized orthogonal partner to ⟩| f1  
that we denote | f1̄〉, satisfying 〈 ¯ 〉| =∗f f 01 1 . This allows ⟩| f2  to 
be written in an orthogonal basis:

〉 ¯ 〉 〉α γ| = | + |f f f ,2 1 1� (19)

and from ⟨ ⟩| =f f 12 2  we easily find

γ α γ≡ | | + | | =f f and 1.1 2
2 2〈 〉� (20)

After this assignment of an orthonormal two-state basis in t 
space (relying on the Schmidt decomposition without actually 
using it) we can proceed with a trace over ⟩| f1  and ¯ 〉| f1 .

We introduce contrasting results by addressing the field in 
two ways. The first will be a projection, treating each comp
onent as a separate field, which is easily accomplished exper
imentally in a variety of ways. For example, a polarizing beam 
splitter will provide a separately accessible beam for each spin 
component. After tracing over the t sector in each case, we 
obtain two coherence matrices whose elements are correlations 
in the r sector—(i) for the x spin component considered as a 
unit-normalized field itself, and (ii) for the y spin component 
considered as a unit-normalized field itself. We easily find:

⎡

⎣
⎢

⎤

⎦
⎥α γ αβ

γαβ β
=

∗

i r
x

2

2
W( )� (21)

and

W( )
⎡

⎣
⎢

⎤

⎦
⎥β γαβ

γ αβ α
=

∗
ii .r

y
2

2� (22)

Alternatively, a different coherence matrix (iii) is found 
when the field can be treated as a whole. Its total t-space trace 
is obtained by adding matrices (i) and (ii): + ≡W W Wr

x
r
y

r 
(after dividing by 2 to ensure unit trace), to obtain:

( )
( )

( )
⎡
⎣
⎢

⎤
⎦
⎥

γ γ αβ
γ γ αβ

=
+

+

∗

∗Wiii
1

2

1
1

.r� (23)

Several interesting points show up in comparisons of  
(i)–(iii). We see that γ controls incoherence at the level where 
only one spin component is active, i.e. in each of (21) and (22) 
separately. This has been labeled [12] as ‘intrinsic’ incoherence 
in the sense that γ is a feature of the field itself, arising from 
〈 〉 ⩽γ| | | = | |f f 11 2 . Thus we see that if we simply remove its 
effect, by taking γ| | = 1, we find both (21) and (22) to have 
zero determinant, i.e. to represent fully coherent pure states.

Notice however, that even after we remove such ‘intrinsic’ 
incoherence by taking γ| | = 1, the final total coherence matrix 
(23) remains mixed. Where did such incoherence come from? 
Clearly, it was introduced by the bucket detection, the failure 
to make precise enough observation, i.e. by failing to segre-
gate the two spin components for individual attention. It might 
be called observational or ‘extrinsic’ incoherence.

Coherence and entanglement

Coherence cannot escape entanglement, and this is becoming 
widely appreciated. Again, context matters. To discuss coher-
ence quantitatively one commonly resorts to degree of polar-
ization P, easily obtained from the eigenvalues λ1  ⩾  λ2 of any 
of the ×2 2 coherence matrices. When a field is normalized to 
unit intensity, as in our examples, one has λ λ+ = 11 2 , and the 
known result [14, 15] is

λ λ= −P ,1 2� (24)

guaranteeing ⩽ ⩽P0 1. At the same time, the degree of entan-
glement may be found from the same eigenvalues. We will 
measure entanglement via concurrence [18]6 and denote it by 
C. One finds

λ λ=C 2 ,1 2� (25)

where ⩽ ⩽C0 1. We have noted [13] that a significant qua-
dratic constraint emerges to quantify what may be called 
coherence sharing which unites degree of polarization and 
degree of concurrence (non-separability, entanglement). For 
st polarization one finds this constraint:

+ =C P 1.st st
2 2� (26)

6 Concurrence is basis independent and is conveniently bounded to address 
entanglement (inseparability): 0 1⩽ ⩽C .

Laser Phys. 26 (2016) 084004
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The st constraint has an exact partner constraint in the inde-
pendent (and contextually distinct) sr coherence:

+ =C P 1.sr sr
2 2� (27)

We have likened the partnership of entanglement and polariz-
ability to a form of complementarity [13].

Entanglement is becoming widely understood to be pre-
sent in classical as well as in quantum physics, with notable 
examples already appearing in optical studies, both classical 
and quantum. One can easily understand entanglement as 
Schrödinger described it [19]: if a function ( )Ψ x y,  of two vari-
ables cannot be written as f(x)g( y ), i.e. with the independent 
variables x and y in factored form, then ( )Ψ x y,  is said to be 
entangled. In his own words ‘What constitutes the entangle-
ment is that Ψ is not a product of a function of x and a function 
of y’. Many treatments have been made of classical optical 
fields entangled across degrees of freedom. Essentially all of 
our examples have been of this type.

The possibility that classical entanglement is open for 
experimental observation via optical wave functions was 
apparently suggested first by Spreeuw in 1998 [20]. This was 
supported strongly by Ghose and Samal [21] in 2001. An early 
experimental report by Lee and Thomas [22] came in 2002 
and other experimental and theoretical treatments appeared in 
the following decade [8, 9, 23–30]. Interest in the issues raised 
by classical entanglement continues to grow. Various different 
directions of investigation and applications have been reported 
in the past two years [31–36].

Summary

Our discussion has been based on an optical field. Because it has 
several independent degrees of freedom available to it, namely 
space, time, and spin (intrinsic polarization), the field admits 
application in a wide variety of contexts. We have derived coher-
ences arising from different forms of projective-detection and 
from different forms of tracing, identified with bucket detection. 
All have been directed to the lowest-order coherence matrices 
available to a single field, which all take the form

⟨ ⟩ ⟨ ⟩
⟨ ⟩ ⟨ ⟩

⎡

⎣
⎢

⎤

⎦
⎥=

∗ ∗

∗ ∗W
e e e e

e e e e
,a a b a

a b b b
� (28)

where the labels a and b identify any of the vector spaces 
open to the field under study. Notational similarities of 
this kind conceal wide differences, and the differences are 
beginning to attract attention, most notably in the wide 
notice given lately to so-called ‘hidden coherences’. Our 
discussion here illuminates the origin of hidden character. 
Perhaps not all of the consequences have been revealed, but 
it is already clear that ‘hiding’ is mainly a matter of the 
context in which detection is undertaken. It is best not asso-
ciated with issues still to be examined in detail, such as the 
presence or absence of mixedness of the state of an opti-
cal field, but rather more simply with the availability of the 
degree of freedom required. For example, there is no way 
to examine the st degree of polarization if the s degree of 

freedom is not actually operationally free, say because of a 
projection. These and other questions of recent interest are 
defined by methods of detection. Our last trivial calculation 
showed that contexts associated with slight differences in 
detection can lead even to the presence or absence of deco-
herence, without engaging any loss process. By design, the 
coherences examined here have features common to both 
classical and quantum optics and are open to investigations 
in both domains.
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