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A theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-

density plasma, specifically, in the high-frequency limit where the ion response is negligible. In con-

trast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling

in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with

its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of

strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it trans-

forms into a single-mode wave upon entering high-density plasma. The theory can be used for

reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned

in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma

edge is a known issue. Published by AIP Publishing. https://doi.org/10.1063/1.5003931

I. INTRODUCTION

Mode conversion (MC) is the exchange of action (quanta)

between normal modes of a dispersive medium when the

parameters of the medium evolve in time or in space.1–4 Here,

we discuss linear MC, which is most efficient when both the

frequencies and the wave vectors of interacting modes are close

to each other. Regions of such resonant interaction are usually

assumed well-localized, so MC theories typically approximate

the coupling matrix with its Taylor expansion near the reso-

nance. Then, the general two-wave coupling problem can be

reduced,4–8 at least in the absence of dissipation, to the classic

Landau–Zener problem from quantum mechanics.9,10 This

leads to compact asymptotic formulas for the mode amplitudes

(which were also rediscovered ad hoc in various contexts; e.g.,

see Refs. 2 and 11–13). However, there are systems where this

somewhat universal “Landau–Zener paradigm” is inapplicable.

They include inhomogeneous media with degenerate and nearly

degenerate wave spectra, such as isotropic or weakly aniso-

tropic dielectrics13–15 and nonmagnetized or weakly magne-

tized plasmas as a special case.16 Although the procedure for

deriving the governing equations for such media is known in

general,16,17 calculating the coupling matrices and solving the

wave equations explicitly remains an open research area.

Here, we study MC in a specific medium with a nearly

degenerate wave spectrum, namely, cold magnetized low-

density plasma. As opposed to the standard treatment of the MC

in magnetized plasma,18 which is known as the O-X conversion,

our theory allows for a sheared magnetic field. Previous theoreti-

cal studies of the O-X conversion in a sheared field19–28 were

either pursued numerically or assumed planar geometry or spe-

cific limits (e.g., the high-density limit), or addressed the dynam-

ics of polarization instead of mode amplitudes per se. Hence,

there is still a lack of a general analytical theory that could

explicitly describe the exchange of quanta between the electro-

magnetic (EM) modes in the low-density case.

The problem of MC in cold three-dimensional low-den-

sity plasma with a sheared magnetic field is presently of

applied interest in stellarator research.28–30 Due to a strong

magnetic shear and a relatively smooth density profile near

the plasma edge in a stellarator, an externally launched

single-mode EM wave can lose its quanta to the other EM

mode through MC, hence affecting the overall wave-plasma

coupling in the device. The MC occurs due to the fact that,

in low-density plasma, both EM modes have close-to-vac-

uum dispersion, i.e., are nearly resonant; then, even a weak

inhomogeneity of the magnetic field can couple them easily.

To improve the efficiency of the wave-power input into a

stellarator, a simple three-dimensional theory of MC in edge

plasma with a sheared magnetic field could be beneficial.

Here, we construct such theory analytically by considering

the plasma density as a small parameter.

The paper is organized as follows. In Sec. II, we intro-

duce a reduced equation for MC in a general context, basi-

cally, by restating results from Refs. 8, 16, and 31. Later,

this formulation is tailored to weakly anisotropic media,

namely, an ordinary differential equation (ODE) is derived

for the mode complex envelope along geometrical-optics

(GO) rays. The result represents an alternative to the well-

known Budden-Kravtsov equations.2,13 In appropriate varia-

bles, the coefficients in our ODE depend on the medium

parameters through only one real function. Moreover, if this

function remains smooth enough, only its asymptotics mat-

ter. Using this, we propose a simple method for predicting

how the amplitudes of the two EM modes evolve within a

given wave. In Sec. III, we apply these findings to cold mag-

netized low-density plasma and explain how they can be

used for optimizing the wave-power input in fusion plasmas.

In Sec. IV, we summarize our results.

II. GENERAL THEORY

A. Basic equations

Let us consider a stationary EM wave governed by

D̂E ¼ 0: (1)
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The dispersion operator D̂ that determines the evolution of

the electric field E is obtained by combining Ampere’s and

Faraday’s laws and can be expressed as follows:

D̂ ¼ ðc=xÞ2ð�rrþ 13r2Þ þ 13 þ v̂: (2)

Here, c is the speed of light, x is the wave frequency, 1N

denotes a N�N unit matrix, and v̂ is the medium suscepti-

bility, which is generally an operator. Let us assume that the

characteristic wavelength k of E is sufficiently small as char-

acterized by the GO parameter

�� ¼: k=‘� 1: (3)

(Here, the symbol ¼: denotes definitions, and ‘ is the smallest

length scale of the inhomogeneities, including the wave-

envelope length scales.) Under this assumption, Eq. (1) can

be simplified as follows.

Let us consider the phase-space representation of the

dispersion operator. Specifically, we apply the Weyl trans-

form, D̂ 7!D, where the Weyl image D is a ð3� 3Þ-matrix

function of the spatial coordinate x and the momentum

(wave-vector) coordinate p.32 Then

Dðx; pÞ ¼ D0ðpÞ þ vðx; pÞ: (4)

(The dependence on x is assumed.) Here, D0 corresponds to

the vacuum part of the dispersion operator. In terms of

components

D0ðpÞ½ �l� ¼ ðc=xÞ2ðplp� � p2dl
�Þ þ dl

� ; (5)

where l; � ¼ 1; 2; 3. (In the Euclidean metric, which is

henceforth assumed, upper and lower indexes are inter-

changeable.) Likewise, v is the Weyl image of v̂. For clarity,

we assume that there is no dissipation, so v is Hermitian.

(Weak dissipation can be introduced additively and does not

affect our general approach.) Then, the matrix Dðx; pÞ is

Hermitian too. From the spectral theorem, it has three ortho-

normal eigenvectors hrðx; pÞ, and the corresponding eigen-

values Erðx; pÞ are real, which will be used below.

Let us express the electric field as E ¼ eihW, where W is

the slow envelope and h is the rapid phase. We treat the latter

as a prescribed function that remains to be specified (see

below). The phase h also determines the wave vector k¼: rh.

By Taylor-expanding Dðx; pÞ around p ¼ kðxÞ to the first

order in ��, we get

Dðx; pÞ � DðxÞ þ pl � klðxÞ
� �

VlðxÞ: (6)

Here, summation over the repeating index l is assumed.

Also, DðxÞ ¼: Dðx;kðxÞÞ; VlðxÞ ¼: Vlðx;kðxÞÞ, and

Vlðx;pÞ¼: @Dðx;pÞ=@pl. Then, by applying the inverse

Weyl transform to Eq. (6) and substituting the result in Eq.

(1), we obtain an approximate envelope equation33

DðxÞW� i

2
@l � VlðxÞ þ VlðxÞ � @l
� �

W � 0: (7)

Here, W is a shortened notation for WðxÞ; @l is a shortened

notation for @=@xl, and the symbol � denotes the composition

of operators. Specifically, ½@l � VlðxÞ�W means, by definition,

that W first gets multiplied by the matrix VlðxÞ and then the

whole product is differentiated, so the result is @l½VlðxÞW�.
Likewise, ½VlðxÞ � @l�W means that W is first differentiated

and then is multiplied by VlðxÞ, so the result is VlðxÞð@lWÞ.
Hence, the two terms differ by @l½VlðxÞ�W. Similar expan-

sions were also used, e.g., in Ref. 8.

Since W is considered a slow function, the second term

in Eq. (7) is Oð��Þ so one can see that

DðxÞW ¼ Oð��Þ: (8)

Then, it is convenient to introduce the representation of W in

the basis formed by the eigenvectors of DðxÞ, namely,

hrðxÞ ¼: hrðx; kðxÞÞ:

W ¼
X3

r¼1

hrðxÞwrðxÞ: (9)

Here, wr are scalar functions and can be understood as fol-

lows. Consider multiplying Eq. (8) by h†
r ðxÞ from the left.

That gives ErðxÞwrðxÞ ¼ Oð��Þ, where r¼ 1, 2, 3 (no summa-

tion over r is assumed), and ErðxÞ ¼: Erðx; kðxÞÞ. This shows

that, for a given r, there are two possibilities: (i) wrðxÞ is

small or (ii) ErðxÞ is small. In case (i), the polarization hr

does not correspond to a propagating wave mode per se; the

small nonzero projection of W on hr is only due to the fact

that the wave field is not strictly sinusoidal. We call such

“modes” passive. In case (ii), ðx; kÞ are actually close to

those of a wave eigenmode that would exist in a homoge-

neous medium (�� ¼ 0) with the same parameters. In this

case, wr can be understood as the local scalar amplitude of

rth mode, so that wr ¼ Oð1Þ is allowed.

Below, we shall consider two active modes, so the third

mode (r ¼ 3) is automatically passive. In other words,

w1;2 ¼ Oð1Þ and w3 ¼ Oð��Þ. [Even if an active mode has a

zero amplitude initially, it can be excited later through MC

from the other active mode, so its amplitude is considered an

O(1) quantity.] With this in mind, let us substitute Eq. (9)

into Eq. (7) and multiply the resulting equation from the left

by P ¼: h1h
†
1 þ h2h

†
2, which is an operator projecting

a given vector on the active-mode subspace. Then, one

obtains

E � iv � r � ði=2Þ ðr � vÞ � U½ �w � 0 (10)

up to a term Oð��2Þ, which is neglected.33 Here

w ¼: w1

w2

� �
; (11)

and we introduced the following 2� 2 diagonal matrices:

EðxÞ ¼: diag fE1ðxÞ; E2ðxÞg; (12)

vðxÞ ¼: diag f@pE1ðx; pÞ; @pE2ðx; pÞgp¼kðxÞ: (13)

Also, UðxÞ ¼ Oð��Þ is 2� 2 Hermitian matrix given by

U¼: � ðN†Vl@lNÞA: (14)
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Here, NðxÞ ¼ ðh1ðxÞ; h2ðxÞÞ is a non-square, 3� 2 matrix

whose columns are h1 and h2 and the index A stands for “the

anti-Hermitian part of”. Notice that, within the adopted accu-

racy, w3 does not appear in Eq. (10), even though w3 is gen-

erally nonzero. This occurs because the eigenvectors hr are

orthogonal to each other.

Equation (10) can be reduced to an ODE in two limits.

One is the limit of a weakly anisotropic medium, which is

discussed below. The other one is the limit of a plane wave

propagating in a plane-layered medium, possibly at an angle

to the inhomogeneity axis. The latter case will not be consid-

ered here but could be approached similarly.

B. Weakly anisotropic medium

Suppose that a medium is only weakly anisotropic, namely,

such that E ¼ E012 þ Oð��Þ, where E0 is a scalar. Then, we can

approximate v with a scalar matrix, v � v012, where v0

¼ ½@E0ðx; pÞ=@p�p¼kðxÞ is a vector. [Since rw ¼ Oð��Þ, this

approximation introduces an Oð��2Þ error in Eq. (10), but that is

beyond the adopted Oð��Þ accuracy of our theory.] Then,

v � r � 12ð�2d=dlÞ, where d/dl is the appropriately normal-

ized spatial derivative along v0, and the factor –2 is introduced

for convenience (see Sec. III). Hence, Eq. (10) can be written as

an ODE

iw0 ¼ Hw; (15)

H¼: 1

2
U� E � i

2
ðr � v0Þ12

� �
; (16)

where the prime denotes d/dl. Let us also split H into its

traceless partH and the remaining scalar part H012,

H ¼ H� H012; H0 ¼ Tr H=2: (17)

Then, by using the variable transformation

w ¼ exp �i

ð
H0 dl

� �
a; (18)

one can also represent Eq. (15) as

ia0 ¼Ha; (19)

where the coupling matrixH can be understood as the wave

Hamiltonian. As a reminder, this theory describes the field in
the basis formed by hr [Eq. (9)] rather than in the basis deter-

mined by the scalar part of D as in the Budden-Kravtsov

theory.2,13

SinceH is Hermitian, one can readily notice the follow-

ing. First, Eq. (19) has a corollary

ja1j2 þ ja2j2 ¼ const; (20)

which reflects the conservation of wave quanta. (More spe-

cifically, the conserved quantity is the density of the wave

action flux, or equivalently, the energy flux density.) Second,

H can be parameterized as follows:

H ¼ �a �ib
ib	 a

� �
; (21)

where a is real. Let us introduce the new variable

q ¼: e�ic=2 0

0 eic=2

� �
a; (22)

where c ¼: arg b. Let us also replace the independent variable

l with s ¼:
Ð
jbj dl, henceforth called “time” for brevity.

(Replacing l with s can only be done if b is nonzero in the

whole region of interest.) Then, Eq. (19) becomes

i
d

ds
q1

q2

� �
¼ �sðsÞ �i

i sðsÞ

� �
q1

q2

� �
; (23)

where

s ¼: a
jbj �

_c
2
: (24)

Here the dot denotes a derivative with respect to s. Note that

the medium parameters enter Eq. (23) through only one real

function, s. Also note that Eq. (23) can be equivalently writ-

ten as a second-order ODE for just one of the mode ampli-

tudes. For example, the equation for q1 is

€q1 þ 1þ s2 � i _sð Þq1 ¼ 0: (25)

C. Landau–Zener model

Equations similar to Eq. (25) emerge also in other MC

theories.4–8 In those works, it is assumed that (i) the wave

trajectory starts and ends in regions with s
 1, and (ii) in

the resonance region (jsj�1), s can be approximated by a lin-

ear function of s, so Eq. (25) becomes the Weber equation.

This approximation is justified when the time needed for a

wave to traverse the resonance region, which is of order _s�1,

is small compared to the characteristic time scale of s, which

is of order one in our units; thus, generally speaking, _s must

be large.34 Under these assumptions, the MC problem

becomes identical to the Landau–Zener problem.9,10 Then, a

general asymptotic solution for q exists

q1ðþ1Þ
q2ðþ1Þ

� �
¼ T �C	

C T

� �
q1ð�1Þ
q2ð�1Þ

� �
: (26)

Here, jT j2 þ jCj2 ¼ 1, or more specifically

T ¼ exp ð�pjjj2Þ; C ¼ �
ffiffiffiffiffiffiffiffi
2pj
p

jCð�ijjj2Þ
; (27)

where C is the gamma function, and j ¼: � ið2 _sÞ�1=2
.

But note that the Landau–Zener model is not entirely

universal. For example, when a wave starts in vacuum, the

initial wave numbers of the two modes are identical, so the

modes are in resonance from the very beginning. This means

that jsj�1 initially. Likewise, the initial _s can be small, and

then it evolves gradually as the wave enters the medium, so

the assumption of constant _s is inapplicable. Hence, in order

to describe MC near boundaries, the Landau–Zener model

must be replaced with a different approach, which will be

discussed below.
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D. Spin analogy

Note that Eq. (23) is identical to the generic equation

describing a two-level quantum system. For example, one

can interpret q1;2 as the two components of the wave function

describing a spin-1/2 electron. Then, Sl ¼: q†rlq, where rl

are the Pauli matrices,

rx ¼
0 1

1 0

� �
; ry ¼

0 �i
i 0

� �
; rz ¼

1 0

0 �1

� �
;

serves as the expectation value of the lth component of the

spin vector in units �h=2. The resulting vector

S ¼
Sx

Sy

Sz

0
@

1
A (28)

is akin to but different from the commonly known Stokes

vector35,36 since qr are mode amplitudes rather than electric-

field components per se. Importantly, by assuming the

parameterization

q ¼ �qeiC e�it=2 cos ðu=2Þ
eit=2 sin ðu=2Þ

� �
; (29)

where �q ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq1j2 þ jq2j2

q
; C ¼: ðarg q1 þ arg q2Þ=2, and

t ¼: arg q2 � arg q1, one has

S ¼ �q
sin u cos t
sin u sin t

cos u

0
@

1
A: (30)

Thus, jSj ¼ �q, and one can infer the values of q1;2 from a

given S up to their common phase C.

Now that we have introduced Pauli matrices rl, let us

also use them as a basis to represent the dimensionless

Hamiltonian in Eq. (23) as follows:

�s �i
i s

� �
¼ 1

2
rlWl: (31)

The expansion coefficients Wl form a three-dimensional

vector W given by

W ¼
0

2

�2s

0
@

1
A: (32)

Then, from Eq. (23), one can deduce that S is governed by a

precession equation31

_S ¼W� S: (33)

Let us assume _s � 1. In this case, there is a well-defined

local frequency of the complex amplitudes [see Eq. (25)],

which also serves as half of the local precession frequency

W ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

. Then, the orientation of S, or, more precisely,

of the precession plane, follows that of W.37 This is due to the

conservation of the adiabatic invariant associated with the pre-

cession, so _s can be viewed as the adiabaticity parameter.

Using it, one can construct a Wentzel–Kramers–Brillouin

(WKB) asymptotic solution of the MC problem, as shown in

the Appendix. Below, we show how it can also be understood

without detailed calculations, at least in some limits.

1. Nonresonant interaction

Suppose that s
 1 at all times. Then, W remains

approximately parallel to the z axis. This means that the pre-

cession occurs in the (x, y) plane. If the initial state is a pure

mode, i.e., the initial S is parallel to the z axis, then S

remains approximately parallel to the z axis (i.e., the preces-

sion trajectory radius remains zero) forever, so no significant

MC is possible. This is understood as a nonresonant

interaction.

2. Resonant interaction

Now suppose that a wave starts at s ¼ 0, so the initial W

is in the y direction. As the wave enters a medium, s begins

to grow and W starts rotating in the (y, z) plane. Suppose

that the dispersion curves of the two modes grow apart even-

tually, so s becomes large (s
 1). Then, the final direction

of W is along the z axis. If the initial state is a pure mode,

i.e., the initial S is parallel to the z axis, then S starts precess-

ing in the (x, z) plane first, but eventually the precession

plane orients transversely to the z axis [Fig. 1(a)]. This

means that, in the final state, the two modes have equal

amplitudes. Conversely, in order to obtain a pure state when

s
 1, one needs to start with a mixed-mode state corre-

sponding to S along the y axis. As shown in Fig. 1(b), as the

vector W starts rotating in the (y, z) plane, the vector S pre-

cesses around W. The final state of S is aligned to the z axis,

which is a pure state mode.

These general arguments can also be reformulated in

terms of our original variables a instead of q. In this case, we

define

Sl ¼: a†rla (34)

and use Eq. (19) to get

S0 ¼W� S (35)

(note that the independent variable here is l rather than s;

hence the prime), where the new vector W is

W ¼ 2

Im b
Re b
�a

0
@

1
A: (36)

The vacuum value of W is not necessarily along the y axis

now. Still, if W evolves slowly ( _s � 1), the method for

ensuring a single-mode operation in the large-s region is

the same as before, namely, S must be initialized parallel

to W.

III. LOW-DENSITY PLASMA

In this section, we apply the above general theory to EM

waves in cold magnetized low-density plasma.

122116-4 Dodin, Ruiz, and Kubo Phys. Plasmas 24, 122116 (2017)



A. Basic approximations

Suppose a low-density plasma such that v is comparable

to ��. In this case, we can choose h such that k is constant and

satisfies the vacuum dispersion relation

k2 ¼ x2=c2: (37)

(This does not mean that the plasma dispersion is neglected.

We simply choose to describe it as an effect on a rather than as

an effect on h. As long as a remains slow, these descriptions

are equivalent.) We also choose D0 for E012 (Sec. II B). Then,

E0ðx; pÞ ¼ 1� ðpc=xÞ2; v0 ¼ �2k=k2; r � v0 ¼ 0, and

d

dl
¼ kl

k2

@

@xl
¼ ek � r

k
; ek ¼:

k

k
: (38)

The true eigenvalues of Dðx; pÞ in the plasma can be

found by considering v as a small perturbation to D0 and by

using the standard perturbation theory38

Erðx; pÞ � E0ðx; pÞ þ ðg†
r vgrÞðx; pÞ: (39)

Here, gr is the zero-density limit of hr, and r¼ 1, 2 (hence-

forth assumed). Since E0ðx; kÞ ¼ 0, this gives

ErðxÞ ¼ ðg†
r vgrÞðx; kðxÞÞ: (40)

In order to calculate U, which is already of the first order

in ��, let us use the zeroth-order approximation for Vl,

namely, Vlðx; pÞ � @D0=@pl.39 This gives

Vl ¼ c2

x2
ðelÞk† þ kðelÞ† � 2kl13

h i
; (41)

where el is a unit vector along the l axis. [The adjoints of

the real vectors el and k are the row vectors obtained simply

by transposing el and k, correspondingly. Hence, for exam-

ple, ðelÞk† is a 3� 3 matrix but k†ðelÞ is a scalar.] Let us

also use the approximation N � ðg1; g2Þ. Since g1 and g2 are

vacuum polarization vectors, they are orthogonal to k, so

k†N ¼ ðk†g1; k
†g2Þ ¼ 0 (42)

and, similarly, N†k ¼ 0. From this and the fact that k is con-

stant, it is readily seen that the first two terms in Eq. (41) do

not contribute to U in Eq. (14). This leads to

U ¼ 2ðN†N0ÞA; (43)

where we invoked Eq. (37). Then, using the fact that

g†
1g1 ¼ g†

2g2 ¼ 1; g†
1g2 ¼ g†

2g1 ¼ 0;

one can express U as follows:

U ¼ �2i
g†

1g
0
1 g†

1g
0
2

�ðg†
1g
0
2Þ
	

g†
2g
0
2

 !
: (44)

B. Polarization vectors g1;2

Let us now explicitly calculate g1;2 assuming the plasma

is cold. In order to do so, let us temporarily adopt coordi-

nates such that the local dc magnetic field B0 is along the z
axis, and the y axis is orthogonal to the plane formed by B0

and k, i.e.,

b ¼
0

0

1

0
@

1
A; k ¼

k sin#
0

k cos#

0
@

1
A: (45)

(The general result for arbitrary direction of k and B0 is pre-

sented at the end of this section.) Here, b ¼: B0=B0 is a unit

vector along B0, and # is the angle between k and B0.

Then40

v ¼
S� 1 �iD 0

iD S� 1 0

0 0 P� 1

0
@

1
A: (46)

We shall limit our consideration to high-frequency waves, so

the ion response can be neglected entirely. Hence,40

FIG. 1. Examples of the dynamics of S governed by Eq. (33) with a pre-

scribed slowly changing W. Shown are the trajectories of S (blue) and W=W
(red) on a unit sphere. (a) Initially, S is in the z direction and W is in the y
direction. Later, W rotates and becomes pointed in the z direction. This

causes the precession plane to rotate accordingly, so eventually, the vector S

ends up precessing in the horizontal plane. Hence, the final state is a mixed-

mode state. (b) Both S and W are in the y direction initially and then slowly

rotate together towards the z axis. The final state corresponds to Sz¼ 1,

which is a pure-mode state.
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S ¼ 1�
x2

p

x2 � X2
; D ¼ X

x

x2
p

x2 � X2
; P ¼ 1�

x2
p

x2
;

where xp ¼: ð4pnee2=mÞ1=2
is the electron plasma frequency,

X ¼: eB0=ðmcÞ is the electron gyrofrequency, ne is the elec-

tron density, e< 0 is the electron charge, and m is the elec-

tron mass. Also40

Dðx; kÞ ¼
S� N2 cos2# �iD N2 sin# cos#

iD S� N2 0

N2 sin# cos# 0 P� N2 sin2#

0
@

1
A;

where N ¼: kx=c is the refraction index. From

Dðx; kÞg1;2 ¼ 0, we find that each of g1;2 satisfies

gy

gx

¼ � iD

S� N2
; (47)

gz

gx

¼ �N2 sin# cos#

P� N2 sin2#
: (48)

Also, the dispersion relation det D ¼ 0 gives40

N2
1;2 ¼

B6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
; (49)

where

A ¼ S sin2#þ P cos2#; (50)

B ¼ ðS2 � D2Þ sin2#þ PSð1þ cos2#Þ; (51)

C ¼ PðS2 � D2Þ: (52)

Then, in the zero-density limit, one obtains41

g1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
1

p �cos#
ig1

sin#

0
@

1
A; (53)

g2 ¼ �
i1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
2

p �cos#
ig2

sin#

0
@

1
A; (54)

where we introduced

g1;2 ¼: u�171
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u�2

p
; (55)

u ¼: 2x
X

csc#cot#; (56)

and 1 ¼: sgn u. The normalization in g1;2 is chosen such that, at

#! p=2, one gets g1 ! ez and g2 ! ey, which corresponds to

the O and X waves, correspondingly. (Here, el denotes a unit

vector along the axis l. Also remember that our axes are tied to

the local B0.) Accordingly, at #! 0, one gets g1 !
�ðex þ iey sgn XÞ=

ffiffiffi
2
p

and g2 ! ði sgn XÞðex � iey sgn XÞ=ffiffiffi
2
p

. Then, g1 corresponds to the L wave at X < 0 (R wave at

X > 0), and g2 corresponds to the R wave at X < 0 (L wave at

X > 0).

Finally, let us rewrite g1;2 in the invariant form. To do

this, note that k ¼ kxex þ kzez and ez ¼ b, so

ex ¼
k� bkz

kx
¼ ek � b cos#

sin#
: (57)

Then, one obtains

g1 ¼
e	 þ ig1eyffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
1

p ; g2 ¼ �
i1ðe	 þ ig2eyÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
2

p ; (58)

where e	 is introduced, merely to shorten the notation, as a

unit vector given by e	¼: ðb� ek cos#Þ= sin#. Fully invariant

expressions for g1;2 can be obtained by using ey

¼ ðb� ekÞ= sin# (this equality is seen from the fact that, by

definition, ey is orthogonal to both b and k and has a unit

length) and

cos# ¼ ek � b; sin# ¼ jek � bj: (59)

C. Wave Hamiltonian

Using Eq. (40) along with Eqs. (53) and (54), one read-

ily finds that

E1;2 ¼ �
x2

p

x2 � X2
1� X2

2x2
ðek � bÞ2

2
4

7
jXj
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek � bÞ2 þ

X2

4x2
ðek � bÞ4

s 3
5: (60)

Note that E1;2 are linear with respect to the plasma density

due to the perturbative approach [Eq. (40)]. By using Eq.

(44), one also finds that

U ¼ 2
�z �x � i�y

�x þ i�y ��z

� �
; (61)

where �i ¼ Oð��Þ are scalar functions given by

�x ¼ �
u0

2ð1þ u2Þ ¼
d0

2
; (62)

�y ¼
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ¼ f cos d; (63)

�z ¼ �
fuffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ¼ f sin d: (64)

Here, d¼: � arctan u [where u is given by Eq. (56)] and

f¼: e	 � e0y, or, more explicitly,

u¼: 2xðek � bÞ
Xðek � bÞ2

; f¼: ðek � bÞ � b0

ðek � bÞ2
; (65)

so f serves as a measure of the magnetic shear. [The coeffi-

cient �x is the same at the one known for shearless fields,

where f¼ 0 (Ref. 21).] Also, q¼: E1 � E2, namely,

q ¼
2jXjx2

p

xðx2 � X2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek � bÞ2 þ

X2

4x2
ðek � bÞ4

s
: (66)

Hence, the traceless Hamiltonian H that governs MC [Eq.

(17)] is as follows:
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H ¼ �z � q=2 �x � i�y

�x þ i�y ��z þ q=2

� �
: (67)

Accordingly,

a ¼ q
2
� �z; b ¼ �y þ i�x; c ¼ arctan

�x

�y

� �
: (68)

Also, the corresponding vector W [Eq. (36)] that governs the

precession of S is

W ¼
2�x

2�y

2�z � q

0
@

1
A: (69)

D. Propagation parallel to B0

When a wave propagates parallel to a dc magnetic field

(i.e., # ¼ 0), Eq. (60) gives

E1;2 ¼ �
x2

p

xðx7XÞ ; (70)

and Eqs. (61)–(65) give U ¼ 0. In this particular case, the

two modes are uncoupled, and Eq. (15) leads to

wr ¼ exp
i

2

ð
Er dl

� �
wr0; (71)

where the constants wr0 are determined by the initial condi-

tions. Hence, each jwrj is conserved and Er=2 serves a cor-

rection to the refraction index. (As a reminder, dl is a ray-

path element measured in units k�1 ¼ c=x.) The total refrac-

tion indexes in this case are

N1;2 � 1�
x2

p

2xðx7XÞ : (72)

This is in agreement with the low-density asymptotics of the

known L- and R-wave refraction indexes.40

E. Propagation perpendicular to B0

When a wave propagates perpendicular to a dc magnetic

field (i.e., # ¼ p=2), Eq. (60) gives

E1 ¼ �
x2

p

x2
; E2 ¼ �

x2
p

x2 � X2
: (73)

Then, one obtains

q ¼
x2

pX
2

x2ðx2 � X2Þ
: (74)

Also, in this case, one has u¼ 0, so �x ¼ �z ¼ 0, and

�y ¼ f ¼ ðek � bÞ � b0: (75)

The corresponding function s that enters Eq. (23) is s ¼ q=
ð2jfjÞ, and s0 ¼ jfj. The adiabaticity parameter in this case is

_s � q0=f2, where we assumed constant shear (more specifi-

cally, f0=f� q0=q). We can estimate q0 as q=ðkLnÞ, where

Ln is the characteristic scale of the plasma density profile.

Here, q can be evaluated at the edge of the adiabaticity

domain (s � 1). This gives q � f. Then, _s � Lb=Ln, where

Lb ¼: jkfj�1
is the characteristic scale of the magnetic-field

shear. If Ln�Lb (weak magnetic shear), then _s � 1, so the

wave leaves the resonance region before it has time to mode-

convert (as long as the GO approximation is satisfied, i.e.,

Ln 
 k). Then, a wave that is initially a pure mode remains

such upon entering dense plasma. In contrast, if Lb � Ln

(strong magnetic shear), then _s � 1, so the wave “spin” S

follows W (Sec. II D). Then, substantial MC is possible. In

particular, this explains the results presented in Ref. 28.

Let us consider the case of strong magnetic shear. Then,

according to the argument in Sec. II D, a wave that is a pure

mode in vacuum eventually transforms into a mixture of the

O and X waves with equal amplitudes (ja1j ¼ ja2j).
Conversely, a wave that is composed of two modes in vacuum

can asymptotically transform into a single-mode wave upon

entering high-density plasma. In the case of the O wave, this

requires that the initial amplitudes satisfy Eq. (A10), i.e., the

initial vacuum wave must be circularly polarized. Ending up

with a pure X wave instead of a pure O wave requires starting

with the opposite circular polarization.

For the case of general wave propagation with respect to

the magnetic field (arbitrary #), the MC process can be

understood similarly except that s is given by a more general

formula [Eqs. (24) and (68)].

IV. CONCLUSIONS

In summary, we developed a theory of EM mode conver-

sion in cold low-density plasma, specifically, in the high-

frequency limit where the ion response is negligible. In con-

trast to the classic (Landau–Zener-type) theory of mode con-

version, the region of resonant coupling in low-density plasma

is not necessarily narrow, so the coupling matrix cannot be

approximated with its first-order Taylor expansion; also, the

initial conditions are set up differently. For the case of strong

magnetic shear, a simple method is identified for preparing a

two-mode wave such that it transforms into a single-mode

wave upon entering a high-density plasma. The theory can be

used for reduced modeling of wave-power input in fusion

plasmas. In particular, applications are envisioned in stellara-

tor research, where the mutual conversion of two EM modes

near the plasma edge is a known issue.28–30
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APPENDIX: WKB MODEL

1. Basic equations

Here, we present a formal WKB derivation of the slow

“spin-precession” dynamics discussed in Sec. II D. We shall

refer to the medium as plasma, and s will be treated as a
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measure of the plasma density. We also adopt that sðs ¼
0Þ ¼ 0 corresponds to vacuum. (This is the case for the

example considered in Sec. III E.) However, the general idea

holds in a broader context too. Also notably, the following

model can be understood as a generalization of the “helical-

wave” GO discussed in Ref. 22.

Let us start with rewriting Eq. (25) as

€q1 þ QðsÞq1 ¼ 0; Q ¼: 1þ s2 � i _s: (A1)

Suppose that

d

ds
2pffiffiffiffi

Q
p
� �

� 1; (A2)

a sufficient condition for which is _s � 1. Then, the WKB

approximation is applicable

q1ðsÞ �
1

QðsÞ½ �1=4
Cþei/ðsÞ þ C� e�i/ðsÞ
� �

; (A3)

where C6 are constants determined by the initial conditions

at s ¼ 0, and /¼:
Ð s

0

ffiffiffiffiffiffiffiffiffiffi
Qð~sÞ

p
d~s. Since _s is assumed small,

we Taylor-expand
ffiffiffiffi
Q
p

to get / ¼ /re þ i/im, where

/re � rs

ðs

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ð~sÞ

p
d~s; (A4)

/im ¼ �rs

ðs

0

d~s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~s2

p ¼ � 1

2
ln jsj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p	 

: (A5)

The sign of / is a matter of convention and depends on the

interpretation of C6. We introduced a sign factor

rs¼: sgn sðsÞ only to ensure that, at s
 1, one can unambigu-

ously identify the term / ei/ as the first mode (Mode I) and

the term / e�i/ as the second mode (Mode II), as seen from

Eq. (23). At s � 1, both terms contribute to both modes.

Within this WKB model, if a wave starts and ends out-

side plasma, the mode amplitude is preserved, namely,

/imð1Þ ¼ 0 due to sð1Þ ¼ 0. However, note that this

requires the low-density approximation to hold at all s,

which is usually not the case. As a rule, a wave eventually

enters a high-density region where rays of the two modes

diverge or some dissipation occurs. Thus, even if the radia-

tion escapes plasma later, the original single-mode wave is

not quite restored. Hence, the process of rays leaving the

plasma will not be considered.

2. Starting with a pure mode

Suppose a wave outside plasma is a pure Mode I, so

q1ð0Þ ¼ �q; q2ð0Þ ¼ 0, and sð0Þ ¼ _sð0Þ ¼ 0, so _q1ð0Þ ¼ 0

and Qð0Þ ¼ 1. Then, Cþ ¼ C� ¼ �q=2, so Eq. (A3) gives

FIG. 2. Numerical solutions of Eq. (A1) for jq1j2 for two sample profiles: (a)

sðsÞ ¼ 0:02s2 and (b) sðsÞ ¼ 40tanh½ðs=15Þ3�. The envelope q1 is measured

in units �q such that j�qj2 is the total number of quanta, which is conserved

[Eq. (20)]. The initial conditions are q1ð0Þ ¼ 1 and q2ð0Þ ¼ 0, i.e.,
_q1ð0Þ ¼ 0. Both solutions approach the same asymptote jq1j2 ¼ 1=2

(dashed), as predicted [Eq. (A7)].

FIG. 3. Numerical solutions of Eq. (A1) for jq1j2 (solid) and jq2j2 (dashed)

for sðsÞ ¼ 0:02s2. The envelopes q1;2 are measured in units �q such that j�qj2
is the total number of quanta, which is conserved [Eq. (20)]. The initial con-

ditions are q1ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2=2

p
and _q1ð0Þ ¼ �q2ð0Þ ¼ iu=

ffiffiffi
2
p

, so

jq1ð0Þj2 þ jq2ð0Þj2 ¼ 1. Here (a) u¼ 1, (b) u¼ 3=4, (c) u¼ 0, (d) u ¼ �3=4,

and (e) u ¼ �1. In the cases (a) and (e), one starts with a circularly polarized

wave in vacuum and ends up with a single-mode wave in dense plasma. In

the case (c), where the solid curve is the same as in Fig. 2(a), one starts with

a pure Mode I and ends up with a mixture of Modes I and II with equal num-

ber of quanta.
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q1ðsÞ
�q
� cos /ðsÞ

QðsÞ½ �1=4
: (A6)

In the high-density limit (s
 1), one has

Q � s2; 2j cos /j � exp ðj/imjÞ, and 2j/imj � lnð2jsjÞ. Then,

jq1=�qj2 asymptotically approaches a universal constant���� q1ð1Þ
�q

����
2

� e2j/imj

4jsj �
1

2
: (A7)

Due to Eq. (20), one also gets jq2ð1Þ=�qj2 � 1=2. Thus, dur-

ing the MC, an initially pure Mode I asymptotically loses half

of its action flux (which we also term loosely as “quanta”) to

Mode II. This conclusion also agrees with numerical calcula-

tions (Fig. 2), and similar results apply if the initial conditions

of the two modes are interchanged.

3. Ending with a pure mode

Suppose now that a wave becomes a pure Mode I

asymptotically in the high-density limit (s
 1). This means

that C� ¼ 0. Also, using Eq. (A5), we obtain

q1 ¼
Cþ

Q1=4
ei/ � Cþei/re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

r
: (A8)

In the limit s
 1, this gives q1 � Cþ
ffiffiffi
2
p

ei/re ¼ �qei/re , where

�q¼: Cþ
ffiffiffi
2
p

can be interpreted as the asymptotic amplitude of

Mode I deep inside the plasma. Then

q1ð0Þ �
�qffiffiffi
2
p ; _q1ð0Þ �

irs �qffiffiffi
2
p ; (A9)

where we used Q¼ 1 for vacuum [and thus _/ð0Þ ¼ 1]. Since

q2 ¼ � _q1 þ isq1 [Eq. (23)], one can also rewrite Eqs. (A9) as

q1ð0Þ=q2ð0Þ � irs; (A10)

which corresponds to Syð0Þ ¼ 61. These initial conditions

ensure that a wave that is initially a mixture of Modes I and

II asymptotically converts into the pure Mode-I upon enter-

ing high-density plasma. These conclusions also agree with

numerical calculations, as illustrated in Fig. 3.
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