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One-dimensional electromagnetic particle simulations are performed with the combination of the

overdense plasma and the negative-permeability state (metamaterial). Transverse electromagnetic

waves enter the plasma-metamaterial composite, and the waves propagate in it with a negative phase

velocity and a positive group velocity. We confirm that the plasma-metamaterial composite has a

negative refractive index. The dispersion relation of the composite has the propagation band under

the plasma frequency, and we confirm this band by theoretical calculations with the kinetic effects

and by particle simulations. When the phase velocity approaches the thermal velocity of the electrons,

we find the damping of the transverse wave in the propagation band. The propagating transverse

waves generate the propagating second harmonic waves throughout the composite. The intensities of

the second harmonic waves are enhanced because the fundamental frequency waves are efficiently

injected into the overdense plasma with the metamaterial since the refractive index is not imaginary

but real with negative values. Published by AIP Publishing. https://doi.org/10.1063/1.5001108

I. INTRODUCTION

The propagation of electromagnetic waves in a plasma

obeys various modes determined by plasma parameters and

has been one of the important research topics in plasma

physics.1 Electrons and ions receive the forces of the incident

electromagnetic waves, and their kinetics is determined by

the equation of motion. Electric fields, the Lorentz force, and

the interaction of particles are included as forces in the equa-

tion. When the amplitude of the incident wave is small, the

wave propagates in a plasma with the dominant mode. As

the amplitude increases, nonlinear harmonic waves are

enhanced. The efficiency of the frequency conversion

depends on the plasma parameters, and plasmas have been

investigated as nonlinear optical materials with variable elec-

tric susceptibity.2–5

Plasmas are frequently-used tools for vapor deposition,

surface treatment, and other industrial applications.6 A plasma

generated by microwaves is one of the typical schemes of the

plasma discharge. When a microwave enters the room of the

plasma discharge, the electron density ne becomes larger than

the cut-off density for the incident microwave, and a surface

wave stands with the characteristic mode7 between the

entrance of the room and the high-ne plasma (the overdense

plasma). The surface wave sustains the overdense plasma, but

the length of the generated plasma becomes short.

DC magnets or magnetic field coils are used to inject the

energy of electromagnetic waves into the overdense plasma.

The magnetized plasma has the propagation band under the

electron cyclotron frequency, and we can optimize this fre-

quency by the amplitude of the external DC magnets. This

propagation mode is the Whistler mode, and a wavenumber

becomes infinity when the incident wave frequency

approaches the electron cyclotron frequency. The electron

cyclotron resonance (ECR) heating is useful for the efficient

power injection into the overdense plasma,6 but it is difficult

to prepare a large-scale DC magnet for the plasma generation

systems.

Metamaterials are artificial composites made of unit pat-

terns whose size is much smaller than the wavelength of the

corresponding waves. Metamaterials give the extraordinary

propagation of electromagnetic waves and it cannot occur in

natural materials. Refractive index N becomes negative in

metamaterials because both permittivity e and permeability l
become negative.9 Wave propagation in negative N was sim-

ulated and analyzed theoretically.10–12 Generation of the sec-

ond harmonic waves in negative N with quadratic nonlinear

response was reported,12,13 and nonlinear frequency conver-

sion process was shown to be similar to that in typical non-

linear optics.14 The experimental verification was performed

with the combination of the split-ring resonators (SRRs) as

negative-l metamaterials8 and the array of metal wires as a

negative-e material.15–17 This array of metal wires has the

cut-off frequency and obtains a negative e under this fre-

quency as in an overdense plasma.18

A combination of an overdense plasma and a negative-l
metamaterial has been studied in experiments19–21 and in

simulations.22,23 Although Iwai et al. showed that the esti-

mated N was negative, the second harmonic wave was

enhanced,20 and SRRs had electric connection with plasma

microscopically,21 wave propagation is not clarified in the

composite of an overdense plasma and a negative-l metama-

terial. Sakai22 performed FDTD simulations and reported the

wave propagation with a negative N in the array of plasma

columns under a negative-l state. Kourtzanidis et al.23 clari-

fied the local electromagnetic fields around an SRR when a

plasma exists near the SRR. Since both reports used the fluid

model to simulate plasmas, nonlinear and kinetic effects of a

plasma were not considered. These effects must be included
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in a case that a high-power electromagnetic wave enters the

overdense plasma under a negative-l state.

In this paper, we perform particle simulations in a nega-

tive-l state to clarify the propagation of electromagnetic waves

in the composite of the overdense plasma and the negative-l
metamaterial (the plasma-metamaterial composite) including

nonlinear and kinetic effects of the plasma, and use the electro-

magnetic particle code modified from KEMPO1.24,25 In Sec.

II, we show the simulation model and the method to deal with

the negative-l metamaterial. In Sec. III, we show the propaga-

tion of electromagnetic waves, the propagation mode, and the

efficient generation and propagation of the second harmonic

waves in the plasma-metamaterial composite. Finally, we give

a summary in Sec. IV.

II. SIMULATION MODEL

References 24 and 25 describe the calculation scheme

and many examples of simulation results by KEMPO1. We

add the magnetic current in KEMPO1 to simulate a metama-

terial effect10,22 and describe this modification in detail using

Eqs. (3) and (4). Figure 1 shows the simulation model. An

external current Js exists at x ¼ �12:8 and oscillates along

the z axis, Js ¼ ẑJz ¼ ẑJ0 sinðx0tÞ where ẑ is a unit vector

along the z axis. The electromagnetic wave is radiated from

this external current and propagates along the x axis. The

wave consists of the z-axis component of the electric field E,

Ez, and the y-axis component of the magnetic flux B, By. The

plasma-metamaterial composite exists in the region where 0

� x � 12.8, and we call the region as the plasma region.

When the radiated wave enters the plasma region, electrons

and ions oscillate and generate true charge current Jp. The cur-

rent density Jp is determined by velocities of all particles vs and

the dielectric response of the plasma is expressed as follows:

r� B ¼ l0Jp þ l0e0

@

@t
E; (1)

d

dt
ðcvsÞ ¼

qs

ms

ðEþ vs � BÞ; (2)

where l0 is the permeability in vacuum, e0 is the permittivity

in vacuum, c is the Lorentz factor, and qs and ms are the

charge and rest mass of a particle “s.” In this simulation, c is

calculated for all particles because some electrons become

energetic ones.

When the incident amplitude of the wave is small, the

plasma has the simple dispersive reaction to E as @Jp=@t �
x2

pE where xp is the plasma frequency. The left term is

equal to the right term when the plasma consists of cold

particles.

The metamaterial used in the experiments20,21 reacts to

the penetrating B and obtains the magnetic resonance. This

magnetic reaction of the metamaterial is complementary to

the electric reaction of the plasma, and we can assume a

magnetic current Jm as the magnetic reaction of the metama-

terial in a classical approach.10,22 When it is assumed that

this magnetic dispersive reaction is expressed as the Drude

type dispersion and does not depend on the amplitude of B,

we can rewrite the Maxwell equations as

r� E ¼ �Jm �
@

@t
B; (3)

@

@t
Jm ¼ x2

mB; (4)

where xm is the magnetic resonance frequency. The modi-

fied point of this code from KEMPO1 is insertion of Jm. The

metamaterial effect based on Jm is not affected by E and

plasmas in this simulation. Jm is determined only by B and

the constant xm.

The current density Jp includes linear, nonlinear, and

kinetic motions of the particles and consists of the x- and z-

axis components. The magnetic current density Jm is parallel

to B and consists of the y-axis component. The effective per-

mittivity of the plasma ep and the effective permeability of

the metamaterial lm are expressed as follows: ep �
1� x2

p=x
2 and lm ¼ 1� x2

m=x
2.

Both sides of the plasma region are set as free space,

and we call the side where x< 0 and 12:8 < x as the

upstream side and the downstream side, respectively.

Boundaries of the simulation system are defined as periodic

FIG. 1. The one-dimensional model of the composite of the plasma and the

metamaterial. The current source Js at x ¼ �12:8 radiates electromagnetic

waves along the x axis. The plasma and the metamaterial exist only in

0 � x � 12:8, and both sides, x< 0 and 12:8 < x, are free space.

TABLE I. Parameters of 1D-PIC simulation.

Parameters value

Grid spacing Dx 0.5

Number of grids 50 000

System length 50 000

Length of plasma region 512

Time Steps Dt 0.02

Light speed c 20

Incident wave frequency x0 1.0

Electron plasma frequency xpe 1.5

Ion plasma frequency xpi 0.015

Magnetic resonance frequency xm 1.7

Charge to mass ratio of on electron �1.0

Charge to mass ratio of an ion 0.0001

Thermal velocity of electrons vthe 0.75

Thermal velocity of ions vthi 0.0075

Number of electrons 131 072

Number of ions 131 072

Amplitude of current source J0 100
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boundaries to satisfy the continuity of particles in this simu-

lation space, which is large enough to neglect the waves

coming from the boundaries in this calculation time.

Table I shows the parameters in this simulation. The

speed of light c is set at 20 to satisfy Courant condition

because Dx=Dt ¼ 25. The frequency of the incident external

current x0 is set at 1.0, and the electron plasma frequency

xpe and the magnetic resonance frequency xm are set at

1:5x0 and 1:7x0, respectively, to simulate the negative-e
overdense plasma and the negative-l metamaterial, respec-

tively. The mass ratio between an electron and an ion is

0.0001 to assume heavy ions, and they hardly move. The

numbers of electrons and ions are 256 particles in one grid,

and they exist in the plasma region at equal intervals. The

energy distribution function is the Maxwellian distribution

for both electrons and ions. The electron thermal velocity

vthe determines the Debye length kD ¼ vthe=xpe, and we set

vthe as small as possible under the condition that kD � 0:5Dx.

Parameters for ions xpi and vthi are set as 0.01 xpe and 0.01

vthe. Heavy ions hold electrons within the plasma region and

sustain the state of a bulk plasma.

III. SIMULATION RESULTS

A. Wave propagation in a plasma-metamaterial
composite

Figure 2 shows the time development of Ez in cases with

various combinations of xpe; xpi, and xm. Figure 2(a) shows

that Ez propagates with the light velocity c downstream in

free space (xpe, xpi, and xm are 0.0). The gradient of an

equiphase line is 1 because variable x on the x axis is normal-

ized by cx�1
0 and t in the y axis is normalized by x�1

0 . The

amplitude of Ez in free space can be calculated as follows:26

jEzj � Ez0 ¼
1

2
cl0J0: (5)

In Fig. 2, the amplitude of Ez is normalized by Ez0.

The wave incidence into the metamaterial is simulated,

and the result is shown in Fig. 2(b). The value of permeabil-

ity lmðx0Þ becomes -1.9, which is similar to l of our experi-

mental SRRs.20 The radiated wave from the current source

reaches the entrance of the plasma region at t¼ 12.8, and it

is reflected. The radiated wave and the reflected wave create

a standing wave in the upstream side (�12.8 � x < 0). The

impedance of the plasma region Zp can be calculated asffiffiffiffiffiffiffiffiffiffiffiffi
lðx0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � x2
mÞ=x2

0

p
for the incident wave. The

value of impedance Zp becomes a pure imaginary, and the

plasma region works like as a perfect reflector.

We set xpe ¼ 1:5x0 and xpi ¼ 0:015x0 to simulate the

overdense plasma. Figure 2(c) shows the time development

of Ez, and it is similar to that in the metamaterial in Fig. 2(b).

The impedance of the overdense plasma can be calculated as

Zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=epðx0Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0=ðx2
0 � x2

peÞ
q

(cold plasma assump-

tion), and becomes a pure imaginary value too. The sign of

Zp in the overdense plasma is opposite to that in the metama-

terial, and the standing wave in the upstream side includes a

p-phase shift between Figs. 2(b) and 2(c).

Setting xpe ¼ 1:5x0; xpi ¼ 0:015x0, and xm ¼ 1:7x0,

we simulated the propagation of the wave in the plasma-

metamaterial composite. In Fig. 2(d), most parts of the inci-

dent wave penetrate into the plasma region after t¼ 12.8. This

transmitted wave propagates in the plasma region downstream

with a velocity less than c and keeps its wave shape in the

plasma region. This wave is not an evanescent wave and has a

finite wavenumber k. Reflection from the plasma region

occurs slightly because Zp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmðx0Þ=epðx0Þ

p
, and it is

slightly different from the impedance in free space. An 1D

FDTD simulation in the case with negative l and e was per-

formed in Ref. 10, and a pulse wave penetrated into the

double-negative region, although it was reflected in cases with

a negative l or negative e. This result fairly well matches with

Fig. 2 in this particle simulation. This agreement with Ref. 10

stresses that negative N is realized by the combination of

charged particles and a metamaterial based on classical

approach with magnetic current Jm.

Since an equiphase line in the plasma region has a nega-

tive slope, the propagating wave has a negative phase veloc-

ity vph. The downstream propagation of the wavefront

implies that the electromagnetic energy is transported down-

stream, and the group velocity has a positive value.

Agranovich et al. calculated the group velocity in the nega-

tive N region and showed that it became negative in Ref. 12.

This indication seems to contradict with Fig. 2(d). However,

a negative group velocity means that the direction of group

velocity is opposite to that of wavenumber vector, and this

relation of wavenumber vector (phase velocity) and group

velocity in our results is the same as that reported in Ref. 12.

We performed the Fast Fourier transform (FFT) for the

time development of Ez over a period of 128 � t � 297:44

(¼15 000 Dt, end of these simulations) and Fig. 3 shows the

frequency spectra of Ez as a function of x in (a) free space,

(b) the metamaterial, (c) the overdense plasma, and (d) the

plasma-metamaterial composite.

A sharp spectrum exists only at x ¼ x0 in Fig. 3(a)

since the radiated wave propagates in free space. The stand-

ing wave in the upstream side and the evanescent wave in

the plasma region are shown in Figs. 3(b) and 3(c) as the

spectrum at x ¼ x0. The magnetic resonance occurs in the

metamaterial at xm, and a small peak at xmð¼ 1:7x0Þ is

shown in Fig. 3(b). In Fig. 3(c), the electrons oscillate with

xpe, and we observe a peak at xpeð¼ 1:5x0Þ.
Figure 3(d) shows a sharp and strong peak at x ¼ x0 in

the upstream side, the plasma region, and the downstream side

like Fig. 3(a). Spectra emerge under 1:5x0, and it seems that

this frequency range becomes the propagation band. A weak

spectrum is seen at x ¼ 3:0x0 and it is considered as the third

harmonic wave from a nonlinear interaction between electrons

and waves. This nonlinear interaction is explained in Sec. III C.

B. Dispersion relation of a plasma-metamaterial
composite

When the plasma has cold electrons and vthe is small

enough, epðxÞ ¼ 1� x2
pe=x

2, and we have the analytical

form of the dispersion relation for the composite of the cold

plasma and the metamaterial as follows:

122112-3 Iwai, Sakai, and Omura Phys. Plasmas 24, 122112 (2017)



ck ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2
pe

x2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

m

x2

r
: (6)

In the particle simulation of high frequency electromagnetic

waves, we can neglect the motions of heavy ions, focusing

on the kinetic motions of electrons and the interaction

between electrons and waves.

Taking into account the kinetic effects of elec-

trons,27 we obtain the dispersion relation of the com-

posite of the hot isotropic plasma and the metamaterial

as follows:

c2k2 ¼ x2 � x2
m þ x2

pe 1� x2
m

x2

� �
j
ffiffiffi
p
p

Ce�C2 � I1

� �
; (7)

FIG. 2. The transverse component of

the electric field Ez around the plasma

region (0 � x � 12:8) from t¼ 0 to

100 x�1
0 . The plasma region has differ-

ent conditions. (a) free space, (b) the

metamaterial, (c) the overdense

plasma, and (d) the plasma-

metamaterial composite. The electric

field is normalized by Ez0, which is an

amplitude in free space when Js ¼ J0.
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C ¼ xffiffiffi
2
p

vthe

; (8)

I1 ¼ 1� e�C2 þ
X1
n¼1

ð2n� 1Þ!!
2nn!

n!

C2n
� e�C2

�

� 1þ n

C2
þ nðn� 1Þ

C4
þ � � � n!

C2n

� 	

; (9)

where ð2n� 1Þ!! is defined as ð2n� 1Þ!! � ð2n� 1Þ � ð2n�
3Þ � � � 3 � 1 and j ¼

ffiffiffiffiffiffiffi
�1
p

. Equation (7) includes an imaginary

term, and k becomes a function of complex x ¼ xr þ jxi,

where xr and xi are the real and imaginary parts of x,

respectively, and xi indicates a time variation of the ampli-

tude of waves. We solve Eq. (7) numerically with variables

k, xr, and xi.

Figure 4(a) shows the dispersion relations from Eqs. (6)

(dotted line: the cold plasma) and (7) (circles: the hot isotro-

pic plasma). The parameters c, xpe; xm, and vthe were set as

in Table I. We included the expansion term I1 up to n¼ 3.

When x > 0:6x0, the dispersion relation of the hot isotropic

plasma shows good agreement with that of the cold plasma.

The imaginary part xi ¼ 0 and the kinetic motions of elec-

trons hardly affect the propagation of waves in this fre-

quency range.

When x � 0:6x0; jkj in the case with the hot plasma

becomes larger than that of the cold plasma and xi emerges

and rapidly decreases. Since vph approaches vthe in this fre-

quency range, xi has negative values, and a damping is

caused. Since xi ¼ 0 at every frequency [the dotted line in

Fig. 4(a)], the damping derived from xi cannot occur in the

cold plasma case. In a general non-magnetized plasma, the

Landau damping occurs only in the interaction between elec-

trons and longitudinal waves of electric fields because trans-

verse waves absolutely have vph greater than c.27 In the

composite of the hot isotropic plasma and the metamaterial,

vph becomes small enough, and we can observe the damping

in the mode of the transverse waves.

We applied the FFT to Ez in space and time in the

plasma region when Js ¼ 0:0. We draw x–k diagrams in

cases with and without the metamaterial. The kinetic

motions of electrons radiate electromagnetic waves includ-

ing some frequencies even if there is no external incidence

of waves, and the wave with x propagates in the plasma

region with the wavenumber k as a function of x. The resul-

tant x–k diagram has peaks on the dispersion relation of the

plasma region.

Figure 4(b) shows the x–k diagram for the plasma with-

out the metamaterial. The dotted line is the analytical disper-

sion relation of the cold plasma ck ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

pe=x
2

q
and

this diagram perfectly corresponds to the analytical solution.

Since vthe=c ¼ 0:0375 and velocities of electrons vse have

Maxwellian distribution, vse=c is distributed from 0 to �0:1.

In Figs. 4(b) and 4(c), white triangles show the area with vph

being less than 0.1, and the thermal noise of electrons is

FIG. 3. Frequency spectra of Ez as a

function of x in four cases of Fig. 2. The

Fourier transform of Ez is performed

over a period of 128 � t � 297:44.

FIG. 4. The dispersion relation for the plasma-metamaterial composite in

which the electric and magnetic resonance frequencies xpe and xm are

1:5x0 and 1:7x0, respectively. (a) The numerical solution of the wavenum-

ber k as a function of the complex frequency x ¼ xr þ jxi in the case of hot

isotropic plasma. The dotted line shows the case of the cold plasma. The box

of the dash line indicates the enlarged area, 0:2 � xr � 0:6. The x-k dia-

grams in (b) the overdense plasma, and (c) the plasma-metamaterial com-

posite. The white triangle shows an area with vph is less than 0.1.
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found in these triangles. Intensity of the thermal noise is

much smaller than that of the spectra on the dispersion curve

in Fig. 4(b), and we do not find any kinetic effects of elec-

trons for the transverse waves in the ordinary plasma.

The x–k diagram of the plasma-metamaterial composite

is shown in Fig. 4(c). The dotted line is the calculated disper-

sion relation in the hot isotropic plasma case by Eq. (7).

Intensities of spectra in x � 1:5x0 are emphasized. In the

range where 0:6x0 < x � 1:5x0, peaks of spectra corre-

spond to the dispersion relation calculated from Eq. (7) in

Fig. 4(a). When x � 0:6x0, the spectra enter the inside of

the triangle area and are mixed with the thermal noise of

electrons since vph comes to be less than 0.1. The intensity of

the noise is clearly stronger than that in Fig. 4(b), though

there is no external incidence of waves since radiated waves

in x < 0:6x0 have vph being close to vse and transfer their

energy to electrons. This enhanced thermal noise shows the

damping of transverse waves and the x–k diagram in Fig.

4(c) shows good agreement with the calculated dispersion

relation including xi in Fig. 4(a).

Figures 5(a) and 5(b) show the group velocity vg and

v�1
g in the composite with the cold plasma (the dotted line)

and with the hot isotropic plasma (the circles). The dotted

line is given as the analytical solution by performing vg

¼ @x=@k for Eq. (6). When we performed the numerical cal-

culation for Eq. (7), xr and k have discrete values with 0:01x0-

and 0:002x0c�1-intervals. In the hot plasma case, vg is defined

as the difference between next symbols, (e.g., vgðx1Þ is defined

as vgðx1Þ ¼ 0:01=fkðx1 þ 0:01Þ � kðx1Þg), and vg comes to

have discrete values.

When x > 0:6x0, vg in the composite with the hot iso-

tropic plasma corresponds to that in the case with the cold

plasma. The group velocity vg increases as x increases, and

it rapidly decreases as x approaches xpe. vg �
cð1þ x2

pe=x
2Þ�1

in the case that xpe ¼ xm in Ref. 10 and vg

has a finite value when x ¼ xpe. In this simulation, vg rap-

idly approaches 0 when x is close to xpe in Fig. 5(a) because

xpe 6¼ xm. The group velocity vg in the hot-plasma case is

slightly smaller than that in the cold-plasma case around

0.5x0, and it has the minimum value when x � 0:4x0. The

inversed value v�1
g indicates the time that a wave with x

requires for propagating within a certain length.

In Fig. 2(d), we found the propagation of waves with

different vph and vg when the wavefront entered the compos-

ite. In order to confirm that the dispersion of the wavefront

obeys the dispersion relation calculated in Eq. (7), we per-

formed the short time fast Fourier transform (STFFT)28 for

the time development of Ez in the composite. When f(t)
expresses Ez at a position as a function of time, we multi-

plied a window function w(t) with f(t) and applied the FFT

to f ðtÞ � wðt� t0Þ. We used the Hann window, wðtÞ
¼ 0:5� 0:5 cosð2pt=lwÞ ð0 � t � lwÞ and lw is the length of

this window. In this STFFT, we set lw ¼ 81:92 x�1
0

(¼1024Dt) and swept t0. We obtained the frequency spectra

at t ¼ t0 þ lw=2 by the FFT for f ðtÞ � wðt� t0Þ.
Figure 6 shows the time development of frequency spec-

tra of Ez at x¼ 2.5, 5.0, 7.5, 10.0, and 12.5. We set plasma

parameters as in Table I, and the external current is set as

Js ¼ 2J0. The intensity of the spectra in Fig. 6 shows the nor-

malized value Ez=2Ez0 where Ez0 is calculated using Eq. (5).

The arrival timing of the wavefront is delayed as the position

of the observation becomes farer from the entrance. The white

points in Fig. 6 express a theoretical arrival timing of waves

as a function of x and is calculated as 12:8þ x=vgðxÞ. These

points correspond to the timing when the peaks of spectra

emerge when 0:6x0 < x. In the composite, a band gap exists

in 1.5 x0 � x � 1:7x0. The spectra in the band gap decrease

as the increment of x, and the waves in the band gap becomes

evanescent waves. In all positions, spectra in x < 0:5x0 are

not observed. In Fig. 4, waves in x < 0:6x0 are hard to prop-

agate into the composite with the hot isotropic plasma because

of xi damping. In the cold plasma case, propagation of waves

should occur in all frequencies except the band gap. The spec-

tra in Fig. 6 clearly show a lower band gap in x < 0:5x0, and

Fig. 6 matches the hot isotropic plasma case.

C. Generation of second harmonic waves
in a plasma-metamaterial composite

1. Analysis model

We introduce an analytical model of second harmonic

generation before discussion of results in the particle simula-

tions. Referring to Ref. 29, we calculate the intensity of the

second harmonic wave in Ex with the perturbation method.

When we deal with the plasma in the composite as cold elec-

tron fluid, we can introduce the momentum balance equation

to determine a motion of electrons

due=dt ¼ �e=meðEþ ue � BÞ; (10)

where ue is the averaged velocity of electrons, e is a charge

of an electron, and me is a mass of an electron. Lorentz factor

c in Eq. (2) can be omitted because we consider a cold elec-

tron plasma, and energy of electrons is small enough to

assume that c ¼ 1.

When ue, E, and B are expanded as a function of

exp fjðkn � x� nx0tÞg, where n is a positive integer from 1

FIG. 5. (a) The calculated group velocity vg as a function of frequency x.

The dotted curve shows the analytical solution in the case of the cold

plasma. The circles indicate the case of the hot plasma. (b) v�1
g as a function

of x.
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to infinity and kn is the wavenumber vector at x ¼ nx0, they

can be expressed as

ue ¼
X1
n¼1

uen exp fjðkn � x� nx0tÞg; (11)

E ¼
X1
n¼1

En exp fjðkn � x� nx0tÞg; (12)

B ¼
X1
n¼1

Bn exp fjðkn � x� nx0tÞg; (13)

where the subscript n expresses the oscillation at x ¼ nx0.

Substituting Eqs. (11)–(13) to Eq. (10), we can substitute @=@t
and r with �njx and jkn, respectively. When we focus on

components at n¼ 1, the left- and right-hand sides in Eq. (10)

are �jx0ue1 þ ðue1 � jk1Þue1 and �e=meðE1 þ ue1 � B1Þ.
Since the incident wave propagates along the x axis in this sim-

ulation, the second term in the left-hand side comes to be 0.

Selecting the components at x ¼ x0 because ue1 � B1 comes

to be an amplitude in the form of exp f2jðk1 � x� xtÞg, we

obtain ue1 as

ue1 ¼
e

jxme

E1: (14)

In the fluid model, we can express the current flux Jp

¼ �eneue where ne is electron density. The Lorentz force

between ue1 and B1 creates a current oscillating at x ¼ 2x0,

and we can introduce current flux at x ¼ 2x0 Jp2 as

Jp2 ¼ �
e2ne

j2xme

ðue1 � B1Þ: (15)

A slight fluctuation of charge density at x ¼ 2x0 q2 occurs

by Jp2 with obeying the equation of continuity

�@q2=@t ¼ r � Jp2. Combining this equation with

the Gauss’s low r � E2 ¼ q2=e0, we obtain r � ð@E2=
@tþ Jp2=e0Þ ¼ jk2 � ð@E2=@tþ Jp2=e0Þ ¼ 0. The second

order vectors Jp2; E2, and k2 are along the x axis and we

obtain

E2 ¼ �j
1

2xe0

Jp2: (16)

In this simulation, ue1 and E1 are along the z axis, B1 is

along the y axis, and Jp2 and E2 are along the x axis.

Substituting Eq. (14) into (15) and Eq. (15) into Eq. (16), we

obtain the intensity of the second harmonic wave

Ex2x0
¼ �j

1

4

x2
pe

x2

� �2
e

mex
Ez1By1; (17)

FIG. 6. The time development of the

frequency spectra for the transverse

component Ez from x¼ 15 to 25 when

Js ¼ 2J0. The white points indicates

the calculated delay time.
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¼ �j
1

4

x2
pe

x2

� �2
e

mexc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x2

pe

x2 � x2
m

s
E2

z1; (18)

where we rewrite E1; E2, and B1 as Ez1; E2x, and By1,

respectively.

2. Second harmonic waves in particle simulations

The Lorentz force term vs � B in Eq. (2) can create har-

monic oscillation waves, and they are perpendicular to vs

and B. The incident Ez oscillates electrons with x ¼ x0, and

vz also has the oscillation component with x0. The Lorentz

force between vz and By gives the second harmonic compo-

nents to the longitudinal wave Ex.

In this simulation, Ex is calculated by Gauss’s law, and

Ex fluctuates only in the plasma region with charged par-

ticles. We applied the FFT to Ex over a period of 128 � t �
297:44 when Js ¼ 2J0. Figure 7(a) shows the frequency

spectra of Ex in the overdense plasma. The intensity of Ex is

normalized by 2Ez0. The incident wave cannot propagate

into the overdense plasma and penetrates up to the skin depth

[Fig. 3(c)]. The generated second harmonic wave becomes

an evanescent wave and it is limited near the entrance. The

second harmonic wave moves electrons, and the spatial pro-

file of electrons fluctuates slightly. This fluctuation slightly

enhances the electron plasma wave (x ¼ 1:5x0), and it prop-

agates in the plasma region.

We applied the inverse FFT to the spectra of Ex with the

frequency filter at x ¼ 2x0 and obtain the time development

of Ex at x ¼ 2x0. Figure 7(a) shows Ex at x ¼ 2x0 in 200 �
t � 250 in the overdense plasma, and it becomes an evanes-

cent wave.

Figure 7(b) shows the case of the composite. A spectrum

at x ¼ 2x0 keeps a strong intensity at every position in the

plasma region. The time development of the wave at x ¼
2x0 shows clear equiphase lines, and the wave seems to

propagate in the composite with a negative vph. The electron

plasma wave is enhanced more efficiently in the composite

than in the overdense plasma because the second harmonic

oscillation at every position causes the plasma oscillation.

We applied the STFFT to Ex and Fig. 8 shows the time

development of frequency spectra of Ex at the same positions

as in Fig. 6. The generation of the second harmonic wave

Ex2x0
is explained by Eq. (17). Equation (17) means that

Ex2x0
is derived from Ez1 and By1. Both of them are electric

and magnetic field of the radiated wave from the external

current source and generation of Ex2x0
starts at the arrival of

Ez1 and By1. According to Fig. 6, the wavefront of Ez

includes some frequencies around x0, and it is predicted that

the coupling between the wavefront and the component at

x0 occurs by Eq. (17). Because frequencies of generated Ex

seem to be determined as the frequencies of the wavefront

þx0 and the timing of generation of Ex seems to be derived

from the arrival of the wavefront, we plot the white points

shifted by x0 on Fig. 8 compared to Fig. 6.

A peak of the spectra at x ¼ 2x0 emerges when Ez at

x ¼ x0 arrives at every position. The wave at x ¼ 2x0 is

continuously generated after the arrival of Ez. The electron

velocity vz and the magnetic field By are calculated from

Eqs. (1) and (2), respectively, and both of them include the

dispersion of the wavefront like Ez in Fig. 6. The Lorentz

force includes many combinations of frequencies around

x ¼ x0. The white points correspond to the spectra in

1:5x0 < x � 2x0 in Fig. 8.

A wave at x ¼ 1:5x0 includes components induced

from the Lorentz force and from the electron plasma wave.

The spectrum at x ¼ 1:5x0 can be observed before the

arrival of Ez at x ¼ x0 at x¼ 2.5, and it emerges after the

arrival at the other positions. These differences in the timing

suggest that vg of Ex at x ¼ 1:5x is smaller than that of Ez at

x ¼ 0:5x0. The wave at x ¼ 1:5x0 is enhanced after mix-

ing of the wave derived from the Lorentz force and the elec-

tron plasma wave, and it is observed continuously at all

positions.

The spectra in 2x0 < x < 2:5x0 are not observed in Ex

though Ez includes the spectra in x0 < x < 1:5x0. According

to Fig. 5(a), the waves in x0 < x < 1:5x0 has vg greater than

that at x ¼ x0, and the coupling between the waves in x0 <
x < 1:5x0 and the wave at x ¼ x0 cannot occur because the

waves in x0 < x < 1:5x0 go through before the wave at x ¼
x0 arrives at every position in the plasma region.

We applied the FFT to Ez and Ex in space and time in

the plasma region when Js ¼ 2J0. Figure 9 shows the x–k
diagrams in the plasma region for Ez and Ex with and without

the metamaterial. In the overdense plasma, Nðx0Þ becomes a

pure imaginary value and k becomes 0. The dotted line in

Fig. 9(a-1) is the dispersion relation in the case without

metamaterial and is expressed as ckpðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

pe=x
2

q
.

FIG. 7. Frequency spectra of Ex as a function of x and the time development

of Ex at x ¼ 2x0 in 200 � t � 250. The Fourier transform of Ex is per-

formed over a period of 128 � t � 297:44. (a) The overdense plasma and

(b) the plasma-metamaterial composite where Js ¼ 2J0.
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In Fig. 9(a-1), the point with the maximum intensity exists at

(0, x0), and a bright line emerges on x ¼ x0. In the over-

dense plasma, the evanescent wave is oscillating only in the

limited area near the entrance and Ez becomes 0 in the down-

stream area beyond the skin depth in the plasma region. The

resultant Ez comes to be similar to a pulse wave and the spec-

tra of Ez in space include finite values of k around 0. The

spectrum of x ¼ 1:5x0 exists at (0, 1.5x0) because this

mode is the plasma oscillation derived from the kinetic

motions of electrons at every position. It is a collective oscil-

lation and behaves as a wave with the infinite wavelength.

Figure 9(a-2) shows the x–k diagram of Ex in the over-

dense plasma. Spectra at x ¼ 2x0 are the same as them at

x ¼ x0 in Fig. 9(a-1) because of the evanescent wave profile

of Ex at x ¼ 2x0 in Fig. 7(a). The dotted line in Fig. 9(a-2)

lx is the electron plasma wave mode in the hot isotropic

plasma expressed as x2 ¼ x2
pe þ 3v2

thek2, and spectra in Fig.

9(a-2) show good agreement with lx. The Lorentz force

between vx at x ¼ 2x0 and By at x ¼ x0 creates the third

harmonic wave in the z-axis components. The third harmonic

wave propagates in the overdense plasma because 3x0 >
xpe and the working point exists at (kpð3x0Þ, 3x0) in Fig.

9(a-1).

Figure 9(b-1) shows the x–k diagram for Ez in the

composite. The strong peaks are observed at x ¼ x0 and

x ¼ 0:5x0 in Ez. The dotted line l1 is the dispersion relation

calculated using Eq. (7), and the working points for x0 and

0.5x0 exist on l1. There are two peaks of x0 at

(�jkcompðx0Þj; x0) and (jkcompðx0Þj, x0) where kcomp satis-

fies Eq. (7). The former indicates the propagating wave to

the downstream side, and the latter indicates the reflection

wave to the upstream side.

Figure 9(b-2) shows the x–k diagram for Ex in the com-

posite. The working point of 2x0 exists at

(�j2kcompðx0Þj; 2x0), and vph of the second harmonic wave

is the same as that of Ez at x ¼ x0 in the composite. This

point exists on l0 and l2 where l0 is a line with vph being equal

to that of the wave at x ¼ x0 in the composite. One of the

dotted lines in Fig. 9(b-1) l2 is moved from l1 by

(�jkcompðx0Þj, x0) and expresses the coupling of waves on l1
and the wave on (�jkcompðx0Þj, x0). In Eq. (17) and Fig. 8,

we showed the Lorentz force between vz and By created Ex,

and the coupling between waves with some frequencies and

the wave at x ¼ x0 was mainly observed. Since l2 indicates

this coupling, spectra of Ex exist on l2. The working point

(�j2kcompðx0Þj; 2x0) exists as an isolated point, and vg at

x ¼ 2x0 cannot be defined. This fact suggests that the sec-

ond harmonic wave does not transfer electric energy in the

composite unlike Ez at x ¼ x0. Phase matching should be

satisfied in typical nonlinear optics and in second harmonic

generation in negative N material in Ref. 13. Nevertheless,

working points of second harmonic wave in x-k diagram

FIG. 8. The time development of the

frequency spectra for the longitudinal

component Ex from x¼ 15 to 25 when

Js ¼ 2J0. The white points indicate the

calculated delay time.
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should be on the dispersion curve, and the working point

(�j2kcompðx0Þj; 2x0) is isolated and exists far from the dis-

persion curve. Since generation of second harmonic waves

in the composite in this simulation is derived from Lorentz

force, we can observe the unique phase matching unlike the

description in Ref. 13.

In the composite, Ez and By at x ¼ x0 propagate with

satisfying the Maxwell equations, and they have p=2 phase

difference in space and time from each other, but have the

completely same vph and vg. The transverse velocity of elec-

trons vz is induced from Eq. (2), and vz has p=2-phase differ-

ence in space and p-phase difference in time from By. The

second harmonic oscillation of electrons are induced at the

individual positions, and the phase difference between posi-

tions moves upstream with vph of By. The resultant second

harmonic wave is seen as the propagating wave with the neg-

ative N, though it is a longitudinal wave.

In Fig. 8, Ex at x ¼ 1:5x0 is enhanced after the arrival

of Ez at x ¼ 0:5x0. The frequency falling in time in Fig. 8 is

expressed as a shift of a working point on the line l2 in Fig.

9(b-2). The working point starts from (�j2kcompðx0Þj; 2x0)

when the wavefront arrives. The point moves on l2 to the

lower frequency side, and the electron plasma wave starts to

be enhanced when the point reaches the intersection of l2 and

the electron plasma wave mode lx. The group velocity vg on

this point becomes a negative value, and the energy of the

longitudinal wave is transferred upstream.

The third harmonic wave is found at two points;

(�j3kcompðx0Þj; 3x0) and (�jkcompð3x0Þj, 3x0) in Fig. 9(b-

1). The former is induced from the Lorentz force between vx

and By and this mode is seen on l0 and l3 as a propagating

wave with vph of Ez at x ¼ x0 in the composite. The mode l3
is moved from l1 by (�2jkcompðx0Þj; 2x0) and expresses the

coupling of waves on l2 and the wave on (�jkcompðx0Þj, x0).

The oscillation of electrons at x ¼ 3x0 radiates the electro-

magnetic wave, and this wave propagates in the composite

with the wavenumber �jkcompð3x0Þj.
We confirmed that the electromagnetic wave at x ¼ x0

propagated in the composite without the damping, and the

second harmonic wave is generated all over the composite. If

the composite works as a bulk material with the negative N,

we can evaluate the efficiency of the generation of the sec-

ond harmonic wave only with the macroscopic parameters e
and l. This efficiency is equal to the susceptibility of the

nonlinear optical materials.

3. Comparison with analytical model and particle
simulations

We express the effective values of Ex at x ¼ 2x0 as

Ex2x0
. Figure 10 shows the normalized Ex2x0

with various

intensities of Js. When Js ¼ rJ0 (r¼ 1, 2, 3, 4, and 5), the

normalization factor is rEz0. Figure 10(a) shows the case in

the overdense plasma. The generation of the second har-

monic wave occurs in the limited region up to x � 2 even if

Js ¼ 5J0 because the incident wave is the evanescent wave

in the overdense plasma.

Figure 10(b) shows the normalized Ex2x0
in the compos-

ite. The generation of the second harmonic wave occurs all

over the composite, and the normalized intensity increases

FIG. 9. The x-k diagrams of the trans-

verse wave Ez and the longitudinal

wave Ex when Js ¼ 2J0. (a-1) Ez and

(a-2) Ex in the overdense plasma. (b-1)

Ez and (b-2) Ex in the plasma-

metamaterial composite. The line l0 is

the extended line between the origin

and the point (�jkcompðx0Þj;x0) where

kcomp satisfies Eq. (7). The dispersion

curve l1 expresses the relation between

kcomp and x. The modes l2 and l3 are

moved from l1, and they are on the

points (�2jkcompðx0Þj; 2x0) and

(�3jkcompðx0Þj; 3x0), respectively.
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almost linearly as Js increases up to 3J0. In the cases with

strong input (4J0 and 5J0), the normalized Ex2x0
seems to

approach the saturation level. According to the Gauss’s law

@Ex=@x ¼ qðxÞ=e0, the strong Ex induces a spatial density

ripple of electrons, and the reflection from the plasma region

comes to be enhanced. The strong longitudinal wave works

as the negative feedback for the generation of the second

harmonic wave in the composite, and the normalized Ex2x0

approaches the saturation level as the increment of Js. The

power efficiency of generation of the second harmonic

waves in a magnetized dense plasma was reported as �1%

in Refs. 30 and 31. When Js > 3J0, the power efficiency

becomes greater than 1% (Ex2x0
=rEz0 becomes greater than

10%), and the efficiency is similar in comparison with that in

the magnetized plasma.

Figure 11 shows the intensity of Ez at x¼ 0 as a function

of xpe when the radiated wave enters the overdense plasma.

In Fig. 11, Ez max is the maximum amplitude of the standing

wave in the upstream side, and it becomes the double of the

incident amplitude when the plasma works as the perfect

reflector. The amplitude of Ez at the boundary decreases as

xpe increases because the reflection coefficient from the

overdense plasma is ejh and h approaches p when xpe

increases. The skin depth becomes short, and the intensity of

the second harmonic wave cannot increase even if xpe

increases.

In the case of the composite, the negative-l metamate-

rial keeps the propagation of the electromagnetic wave even

if xpe increases and we can obtain the efficient generation of

the second harmonic wave. When ne increases, the negative-

l metamaterial becomes more powerful in the generation of

the second harmonic wave.

Figure 12 shows the comparisons between Ex2x0
from

the simulations and the theoretical intensity of the second

harmonic wave from Eq. (17). The intensity of Ex2x0
is not

zero without the external current, and it is from the kinetic

motions of electrons (�4� 10�6). When the external current

has a finite value, Ex2x0
shows good agreement with the sum

of the theoretical intensity and the thermal noise. We confirm

that Eq. (17) correctly expresses the intensity of the second

harmonic wave. When the input current is strong, the spatial

profile of Ex2x0
includes a ripple unlike the profile by the the-

oretical calculation. Although we assume a constant xpe in

Eq. (17), the strong input causes the density ripple and xpe

has the spatial variation.

FIG. 11. The intensity of Ez at the boundary, x¼ 0, as a function of xpe in

the case without a metamaterial. The intensity is normalized by the maxi-

mum amplitude of the standing wave Ez max.

FIG. 12. Comparison between the effective values of Ex2x0
in the simulation

and the theoretical values given by Eq. (17). Red lines: Simulation, Black

lines: Theory [Eq. (17)].

FIG. 10. The effective value of the longitudinal component Ex at x ¼ 2x0

when the input current Js ¼ J0 to 5J0. (a) The overdense plasma. (b) The

plasma-metamaterial composite. The constant r is the normalized amplitude

of the input current r ¼ Js=J0.
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IV. CONCLUSION

We performed the one-dimensional particle simulation

with the negative-l metamaterial and simulated the propaga-

tion of the electromagnetic waves in the plasma-

metamaterial composite. The electromagnetic wave propa-

gating in the composite had the negative vph and the positive

vg. We calculated the dispersion relation of the composite

including the kinetic effects of electrons and found the

damping for transverse waves when N becomes large nega-

tive value. We found the efficient generation of the second

harmonic longitudinal wave all over the composite because

the transverse wave could propagate in the composite. We

assumed that the composite has the macroscopic e and l and

calculated the theoretical intensity of the second harmonic

wave in the composite. We found that the theoretical inten-

sity corresponded to Ex at x ¼ 2x0 and confirmed that the

composite worked as the bulk material even if it consisted of

the microscopic charged particles and the metamaterial with

the macroscopic l. These results strongly suggest that the

combination of the plasma and the metamaterial can be the

negative-N material, and the plasma can be a tunable compo-

nent of metamaterials.
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