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1. INTRODUCTION 

A classical theorem of Darboux may be stated as follows: if Sz is a closed 
2-form of maximal rank on a 2n-dimensional manifold M and p is any 
point of M, then there exists a coordinate system x1 ,..., x, , y1 ,..., yn 
defined on a neighborhood U of p in M such that Sz = a!~, A dy, + . . . 
+ dx, A dy, on U. The purpose of this paper is to generalize Darboux’s 
theorem in several directions and to give some applications of the 
generalizations. 

The first direction of generalization is that the manifolds considered 
are Banach, rather than finite-dimensional, manifolds. Although our 
results in this context may have some use in theoretical mechanics, 
the main force of this generalization is that it requires us to use a method 
of proof other than induction on the dimension of M, which has been 
the standard proof technique for Darboux’s theorem. The new method 
of proof, first used in this context by Moser [12], enables us to obtain 
theorems concerning symplectic structures in the neighborhood of 
a closed submanifold, rather than just a point, of M. Another by- 
product is an equivariant version of the Darboux theorem (Corollary 4.3). 

Our main result, Theorem 4.1, is most useful when applied to the 
so-called Zagrangian submanifolds of M. These, roughly speaking, are 
maximal submanifolds on which IR pulls back to zero. Essentially, 
Theorem 6.1 says that these submanifolds have no geometric invariants. 
This fact, in turn, has the surprising consequence (discussed at the end 
of Section 6) that a neighborhood of the identity in the symplectic auto- 
morphism group of a symplectic manifold may be smoothly parametrized 
by a neighborhood of zero in the Lie algebra of infinitesimal symplectic 
automorphisms. Section 7 is devoted to foliations of symplectic manifolds 
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by lagrangian submanifolds. This study turns out to be a generalization 
of the theory, familiar in mechanics, of systems of functions in involu- 
tion. The leaves of lagrangian foliations are characterized in Theorem 7.8 
as manifolds admitting a torsion-free flat affine connection. 

Most of the results contained in this paper have been announced in 
[19] and [20]. Not all of them are new in the finite-dimensional context, 
but we feel that the generality of our treatment warrants their repetition. 

2. THE ACTION OF A LIE GROUP ON A MANIFOLD 

Let cy : G x S -+ S be a differentiable action of a finite dimensional 
Lie group G on a finite dimensional manifold S. For s E S, denote by 

% . *G+Stheorbitmapg~ + a(g, s). s is called stable if the image of OL,~ 
(i.e., the orbit of s) contains a neighborhood of s. s is called inJLinitesimally 
stable if the differential at the identity e of G, T,ol, : T,G +- T,S, is 
surjective, or, in more picturesque language, the image of cys contains 
an infinitesimal neighborhood of s. It follows directly from the implicit 
function theorem that infinitesimal stability implies stability. If S is 
connected and every s E S is infinitesimally stable, then 01~ is surjective 
and the action a: is transitive. The linear condition of infinitesimal stability 
thus provides, in the finite-dimensional situation, a sufficient condition for 
the transitivity or local transitivity of a group action. 

There is a substantial amount of recent research devoted to extending 
the result that infinitesimal stability implies stability to situations in 
which G and S are function spaces, and 01, as well as the group action, 
involves functional composition. If G and S were Banach manifolds and 
CY~ a differentiable mapping for each s, one could apply the implicit 
function theorem for Banach manifolds, but this is almost never the case. 

We use, instead, a “path-lifting” method which has also been exploited 
by Mather [ll] with the aid of a technical apparatus more sophisticated 
than any utilized here. We remark that another very powerful method for 
deducing stability from infinitesimal stability is the Kolmogorov- 
Arnold-Moser variation of Newton’s method described extensively in 

C181. 
We shall describe, in formal terms, an abstraction of the path-lifting 

method. It appears that Mather’s techniques can be used to get some very 
general theorems out of this discussion, but we leave this matter to 
another paper. The method goes as follows. 

Given a point r E S, construct a smooth path CJ : [0, l] -+ S such that 
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*(O) = s and a(l) = r. We seek a path y : [0, 11 + G such that y(O) = e 
and +(t), g(t)) = s, in which case we would have s = cz(r(l), r) and 
Y = r&(l)-‘). G iven r(O) = e, it suffices to require that 

If we suppose y(t) to be the integral curve with r(O) = e of a time- 
dependent left-invariant vector field (YJt,~s,r~ on G, a formal computa- 
tion shows that the condition d/dt ol(y(t), o(t)) = 0 on y is equivalent 
to the condition Tea& Y,(e)) + du(t)/dt = 0. The infinitesimal stability 
of s implies that we can solve this equation for t = 0, for any u. All 
the hard work in [ll] is devoted to showing that the infinitesimal 
stability of s implies that one can find a solution (Yt}lEIO,ll varying 
smoothly with t, provided that (T is close enough to a constant curve. 
In the situation considered in the present paper, this conclusion is 
attained quite simply. There is also a secondary question of showing 
that the vector field {Y,} can actually be integrated for t going from 0 
to 1, which imposes some conditions on the group considered. 

Theorem 4.1 of this paper is an application of the path-lifting method 
to a situation in which S is a space of symplectic structures and G is 
a group of diffeomorphisms.l 

3. LOCAL MANIFOLD PAIRS 

For problems in local differential geometry, it is useful to extend 
the category of differentiable manifolds to include germ-like objects. 
We consider pairs (M, N), where M is a C” manifold modeled on a 
Banach space and N C M is a closed submanifold. The pairs (Ml , Nl) 
and (M, , N,) are considered equivalent if Nr = N, = N, and there 
exists a pair (M, N) such that M is simultaneously an open submanifold 
of Ml and M2 . Two mappings of pairsfI : (Mi , N) -+ (Pi , Q) (i = 1,2) 
are considered equivalent if there exists a mapping f : (M, N) -+ (P, Q) 
such that M is an open submanifold of Ml and M, , P is an open sub- 

1 R. P&is, with whom I have had useful discussions on these matters, has used the 
path-lifting method to give a new proof of the Morse lemma on functions with non- 
degenerate critical points [ 141. 

* We refer the reader to [lo] for material on the foundations of differential geometry 
on Banach manifolds. 
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manifold of PI and Pz , and f = fi 1 M. The equivalence classes of 
pairs and mappings form the category 22’ of local manifold pairs. The 
ordinary manifolds are identified with a full subcategory JZ of S’ by 
the functor M ++ (44, M), and the functor (M, N) ++ N is a retraction 
of 9 onto A. 

When it is necessary to avoid ambiguity, we denote the equivalence 
class of (M, N) by [M, N] and that of f by [f]. Usually, though, we 
work with representatives and leave unsaid that the statements and 
constructions are independent of the representative chosen. 

Vector Fields 

If [M, N] is a local manifold pair, the pair [TM, TN] plays the role 
of its tangent bundle. A vector field on [M, N] is, by definition, a section 
of that bundle. A time-dependent vector field {Yt}lEIO,I~ is called integrable 
if there is a one-parameter family { f,}ts~o,ll of diffeomorphisms from 
[M, N] to itself such that f. is the identity and dfJdt = Y, oft . The 
following lemma follows immediately from the openness (see [lo]) of 
the domain of definition of the solutions of a system of ordinary differen- 
tial equations. 

LEMMA 3.1. If GY = (Yt)l,[o,ll is a time-dependent vector field on 
[M, N], then g is integrable if and only if the field g ( N = {Yt j N),,r,,,l 
on N is integrable. In particular, 1~3 is integrable ;f % 1 N is identically zero. 

Dzzeerential Forms 

A p-form on the local manifold pair [M, N] is, by definition, an 
equivalence class of p-forms on M under the equivalence relation of 
equality on a neighborhood of N. It will cause us no trouble that this 
definition is not properly dual to the definition of a vector field on [M, NJ. 
We denote by Ffl(M, N) the space of all p-forms on [M, NJ. Exterior 
differentiation on M induces an operator d : 9p(M, N) -+ 9~+l(M, N). 

Given w E Sp(M, N), there are two ways of “restricting” it to N. 
First, we may restrict it to a mapping w ) N from N to the restricted 
bundle T*M ] N. We may compose this restriction with the bundle 
mapping from T*M ) N to T*N to get the pullback wN E Sp(N). 

Our goal for this section, a homotopy operator I : 9p(lM, N) + 
Pp-‘(M, N), will be constructed in terms of a deformation of [M, N] 
into N. By the tubular neighborhood theorem, we may assume that M 
is a vector bundle whose zero-section is N. Let n( : (M, N) + (M, N) be 
multiplication by t for t E [O, l], and let X, : (M, N) -+ (TM, TN) be 
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the vector field (dn,/d~),,~ along 7~~ . Then it is a standard result that, 
for w E 5@(lM, N), 

1 (Xs*W)s=t = T*(xt J dw) + +-,*(xt J w)]. (3.1) 

(See [9, p. 1141 f or a proof of this formula and interpretation-there 
is really only one possible-of the symbols used therein.) Integrating 
(3.1) with respect to t over the interval [0, l] and using the fact that m1 
is the identity, we obtain 

w - z-~*w = 
J 
*’ {rt*(Xt J dw) + d&*(X, J w))} dt. (3.2) 

0 

If we define I(o) as S” ,, rr,*(X, _I w) dt, then (3.2) becomes 

w - z-~*w = I(dw) + d(lw). 

In particular, if x0 *w = 0 (which is the case if and only if wN = 0) and 
dw = 0, then w = d(lw). This is our version of the Poincare lemma. 

We close this section by observing two properties of I. First, because 
X, vanishes along N and r,(N) C N, Iw 1 N is always zero. Second, if G 
is a group of diffeomorphisms of (M, N) compatible with the vector 
bundle structure of M, then I commutes with the induced action of G 
on the Fp(n/r, N)‘s. In particular, if G leaves the form w invariant, 
it also leaves 10~ invariant. 

4. SYMPLECTIC MANIFOLDS 

A symplectic structure on a local manifold pair [M, N] is an element 
D E 2F2(M, N) such that dJ2 = 0 and the associated bundle mapping 
Q : TM -+ T*M defined by a(x) = x J Q is an isomorphism over 
a neighborhood of N. Since the isomorphisms from one Banach space 
to another form an open subset of the space of all continuous linear 
mappings, it suffices to require that the restriction .Q ) N : TM J N + 
T*M ) N be a bundle isomorphism. 

THEOREM 4.1. Let Sz, and Q, be symplectic structures on [M, N] such that 
Q,, 1 N = s2, 1 N. Then there exists a dt~eomorphism f : [&I, NJ -+ [M, Nj 
such that f 1 N = 1, (the identity mapping of N) and f *Ql = Q, . 
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Proof. Let w = J2, - Sz,, , Q2, = Sz, + tw (t E [0, 11). Since dw = 0 
and w 1 N = 0, it follows that d.Q, = 0 and fi,I N = s’i, 1 N is an 
isomorphism, so that a, is a symplectic structure. Let 4 = I(W) (see 
Section 3). Since w is closed and w / N = 0 implies wN = 0, it follows that 
d+ = w. Let Y, = -!&I(+). S’ mce 4 1 N is zero, so is Y, 1 N, and the 
time-dependent vector field (YJlelo,il is integrable, by lemma 3.1, to 
a one-parameter family (f > t le[O,ll of diffeomorphisms of [M, N]. Com- 
puting, as in [12], we find 

Let f = fi . Then f  *L$ = fl*i2, = fO*.Q,, = ii&, . Q.E.D. 

An immediate application of Theorem 4.1 is the generalization of 
Darboux’s theorem to symplectic structures on Banach manifolds. 

COROLLARY 4.2. Let M be a Banach space, 0 E M the or&in, and Q 
a symplectic structure on [M, 01. If Sz, is the constant (with respect to the 
natural parallelixation of M) symplectic structure which agrees with Sz at 0, 
there is a dzjjfeomorphism f  : [M, 0] + [M, 0] such that f  *L? = !2, . 

The local classification of symplectic structures is thus reduced to 
the classification of linear symplectic structures on Banach spaces. 
The linear theory is further developed in Section 5 for this and further 
applications. 

The global classification of symplectic structures still appears to be 
a very difficult problem, particularly in the compact case. Which compact 
manifolds admit a symplectic structure ? Such a manifold must admit an 
almost complex structure and have a real cohomology class in dimension 
2 which remains nonzero when raised to the power B * dim M. All the 
compact symplectic manifolds known to the author are Klhler manifolds, 
which have a natural symplectic structure. Beyond these statements, 
nothing seems to be known. In the noncompact but finite-dimensional 
case, Gromov [8] has shown that an open manifold admits a symplectic 
structure (in fact, an exact one) if and only if it admits an almost complex 
structure. Since all Hilbert manifolds are diffeomorphic to open subsets 
of Hilbert space [6], they all admit symplectic structures. 

As for the equivalence question, Moser’s reduction [12], of this 
problem to a homotopy question in the compact case is the best result 
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to date, but the homotopy question, like the existence problem, has not 
been solved. In the noncompact case, Gromov has shown that two exact 
symplectic structures are homotopic if they are homotopic as non- 
singular (but not necessarily closed) Z-forms, but this does not lead, 
at least not directly, to the equivalence of the forms. In Hilbert space, 
the absence of an integration theory to provide a volume invariant 
suggests the following amusing question. Let H be a Hilbert space with 
a constant symplectic structure. Is H symplectically diffeomorphic to 
an open ball in H with the induced symplectic structure? Is a ball of 
radius 1 symplectically diffeomorphic to a ball of radius 2 ? 

The Equivariant Darboux Theorem 

COROLLARY 4.3. In the situation of Corollary 4.2, suppose a group G 
acts linearly on M and leaves Sz invariant. Then the dspeomorphism f such 
that f *Q = 52, commutes with the action of G. 

Proof. By the remark at the end of Section 3, the form 9) in the proof 
of Theorem 4.1 is G-invariant; hence, so are the vector fields Y, , and 
each ft commutes with the action of G. Q.E.D. 

Corollary 4.3 yields a positive answer to a question posed by 
I. Segal, as follows: 

COROLLARY 4.4. In the situation of Corollary 4.3, sf the linear action 
of G on the tangent space of M at 0 leaves invariant a positive-definite 
bilinear form (i.e., a Hilbert space structure), then G leaves invariant 
a Kiihler structure on [M, 0] whose associated Z-form is Q. 

Proof. By Corollary 4.3, we may assume that D is a constant sym- 
plectic structure. By [ 151, G leaves invariant a linear complex structure 
and a Hilbert space structure on M whose associated 2-form is J2 1 0. 
Extending these linear structures to constant structures on [M, 01 gives 
the required (flat) Kahler structure. 

5. LINEAR SYMPLECTIC STRUCTURES 

A linear symplectic structure on a Banach space V is a skew-symmetric 
bilinear form !J : V x V+= R such that the associated mapping 
0 : V -+ V* defined by a(~)(y) = a(~, y) is a toplinear isomorphism. 
There is a natural l-l correspondence between linear symplectic 
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structures on V, considered as a vector space, and constant symplectic 
structures on V, considered as a manifold, but the latter structures have 
more (nonlinear) mappings between them. 

The skew-symmetry of 0 implies that the restriction to V of the dual 
transformation Q* : V** + V* is equal to -0. Since a* and -Q are 
both isomorphisms, we conclude that V** = V; i.e., V must be 
reflexive if it admits a linear symplectic structure. 

All the examples known to the author of linear symplectic structures 
on Banach spaces arise in the following way. Let W be a reflexive Banach 
space and V = W @ IV*. Then V* is naturally isomorphic to IV* @ IV, 
and the natural symplectic structure Q, on V is defined by 
Qn,(x @ x*,y By*) = y*(x) - x*(y), or Cri,(, @ X*) = (-x*) @ x. 
(If W is not reflexive, then a, is injective but not an isomorphism.) 

One may try to construct isomorphisms from a given symplectic space 
to one of the form (IV @ W*, Q,) by the following method. If (V, J2) is 
any symplectic space, a subspace Wof V is called isotropic if Q 1 W x W 
is identically zero. The isotropic subspace W is called Zagrangian if 
there is another isotropic subspace IV’ such that V = W @ w’. The 
term is due to Maslov and Arnold [l] in the finite-dimensional case, 
where a lagrangian subspace is just an isotropic subspace of dimension 
*(dim V). The injectivity of Q implies that a lagrangian subspace is 
a maximal element of the set of isotropic subspaces of V, ordered by 
inclusion. This maximality and the continuity of 52 imply that a lagran- 
gian subspace is always closed. 

Given a splitting V = W @ W’ into lagrangian subspaces, there is 
a mapping $ : W -+ IV* defined by #(X)(Y) = sZ(x, y). (# is just the 
restriction of a to IV’, followed by the projection onto IV*.) One may 
easily check that $ is an isomorphism. Furthermore, for any 
X, y E W and z, w E IV’, Q(x + x, y + w) = 0(x, w) - .Q(y, z) = 
#(w)(x) - #(4(y) = fJ,(x 0 d&4, y 0 $(w>>. 1 w 0 # is, therefore, 
an isomorphism from (V, Sz) to (IV @ IV*, Sz,) which arises naturally 
from the lagrangian splitting V = W @ w’. 

The question of whether every symplectic space is isomorphic to one 
of the form (IV @ IV*, Sz,) is, therefore, reduced to the question of 
whether every symplectic space admits a lagrangian splitting. By Zorn’s 
lemma, every symplectic space admits a maximal isotropic subspace, and 
the following proposition closes the question in the hilbertable case. 

PROPOSITION 5.1. If V is a Hilbert space and r;2 is a symplectic 
structure on V, then any maximal isotropic subspace of V is lagrangian. 
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Proof. If ( , ) denotes the inner product on V, there is an operator 
T : V--f V such that (TX, y) = In(x, y) for all x and y. Since 52 is anti- 
symmetric, T is a skew-adjoint isomorphism. -TT2 is then positive 
definite and, by the spectral theory of operators on Hilbert space, it has 
a positive definite square root P which defines a new Hilbert structure 
< , )p on V by (x, y),, = (Px, y>. Writing J for P-IT one finds, as in 
[17, p. 2131, that J is orthogonal, T = PJ = JP, and J2 = -I. Also, 
E; al:; and y in. V, Q(Jx, Jr) 7 <T]x, Jr> .= <JTx, Jr>.= (TX., Y> = 

x, 9 so J is a symplectlc isomorphism. Thus, if W IS any 
maximal isotropic subspace, W’ = JW is maximal isotropic as 
well. Finally, W @ w’ = V. In fact, if x E V is P-orthogonal to IV, 
then y E W’ + Q(x, y) = <TX, y> = (JPx, y> = -(Px, Jr> = 0. BY 
the maximality of IV’ as an isotropic subspace, x E IV’. On the other 
hand, if x E IV’ and y E W, (Px,~) = -(TJx, y) = --Q(]x, y) = 0, 
since Jx and y are in the lagrangian space IV. So w’ is the P-orthogonal 
complement of IV, and W @ w’ = V. Q.E.D. 

COROLLARY 5.2. Let V,, and V, be isomorphic Hilbert spaces (possibly 
jinite dimensional). If 9, and 52, are symplectic structures on [V,, , v] 
and [V, , 01, respectively, then there is a diffomorphism f : [V, , 0] + 
[V, , 0] such that f *Q, = .QO . 

Proof. Combine the discussion above with Corollary 4.2, noting 
that “halves” of isomorphic Hilbert spaces are isomorphic. 

Lagrangian Complements 

If W is a lagrangian subspace of (V, JY?), there exists, by definition, 
an isotropic subspace IV’ of (V, 52) such that V = W @ W’. For 
applications to symplectic manifolds, it is useful to know that the space 
of all such IV’ is contractible. 

Let P : V + V be the projection onto IV along IV’. If m is any 
isotropic subspace such that V = W @ W, define Wf = (1, - tP)w -- 
for t E [0, 11. One may check that m,, = IV, IV, = IV’, wt is isotropic 
and V = W @ W, for all t E [0, 11, and mt depends continuously upon 
TV and t (in the usual topology on a Grassman manifold of a Banach 
space [4].) 

In fact (see [l] for the finite-dimensional case), one may parametrize 
the space of all isotropic m such that V = W @ w by the linear space 
of operators T : W ’ + W whose composition with the natural mapping 
4 : W-t IV’* is self-adjoint. 
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6. LAGRANGIAN SUBMANIFOLDS 

We return now to the study of symplectic manifolds. If (M, Q) is 
a symplectic manifold, a submanifold NC iI4 is a lagrangian submanifold 
if, for each x E N, the tangent space T,N is a lagrangian subspace of 
T,M. It follows from the discussion at the end of Section 5 that one can 
find an isotropic subbundle E C TM 1 N such that TM 1 N = TN @ E. 

Cotangent Bundles 

We discuss here a well-known class of symplectic manifolds which 
provide models for all local manifold pairs [M, N] with symplectic 
structures for which N is a lagrangian submanifold. 

If N is any Banach manifold, the cotangent bundle T*N carries 
a natural l-form wN E .P( T*N) characterized by the following property: 
if u : N -+ T*N is any section (i.e., u E P(N)), then CT*W~ = u. The 
2-form L?, = -dw, is a symplectic structure if and only if N is reflexive. 
To see this, we may assume that N is a Banach space I’, in which case 
T*V is naturally diffeomorphic to I’ @ I’*, its tangent spaces are 
naturally isomorphic to I’ @ V*, and its cotangent spaces are naturally 
isomorphic to V* @ V **. The value of wV at z @ Z* is just .z* @ 0, 
and -dw, evaluated on the pair of constant vector fields (X @ x*, 
y By*) gives y*(x) - x*(y). Th us, Q, is the constant 2-form corre- 
sponding to the natural bilinear form on V @ V* which is also called 
9, . As we saw in Section 5, this is a symplectic structure if and only if V 
is reflexive. (We remark that some authors use the form --Q, instead 
of%, with compensating sign changes elsewhere in the theory.) 

Now we may describe some lagrangian submanifolds of T*N. From 
the local description, it is clear that the fibres of the cotangent bundle are 
lagrangian submanifolds. As for submanifolds transversal to the fibres, 
any such submanifold is locally the graph of a l-form cr : N --+ T*N. 
The graph of u is isotropic (in which case it follows that it is lagrangian) 
if and only if 0 = u*(sZ,) = u*(-ddw,) = -d(u*w,) = -du, i.e., if 
and only if u is a closed l-form. In particular, the zero section 2, is 
a lagrangian submanifold, and the lagrangian submanifolds “near” 
the zero section are in natural l-l correspondence with “small” 
closed l-forms on N. 

Equivalence Theorem for Lagrangian Submanifolds 

THEOREM 6.1. Let [&Ii , N] (i = 1, 2) be local manifold pairs with 
symplectic structures Qi such that N is a lagrangian submanifold of each 
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M< . Then there is a dzzeomorphism [f ] : [MI , N’J --+ [M, , N] such that 
f 1 N= lNandf*&=Gn,. . 

Proof. There exist isotropic subbundles Ei C TM, ) N such that 
TM, 1 N = TN 0 Ei . Applying the linear theory of Section 5 to each 
fibre of these bundles, we get bundle isomorphisms $( : Ei + T*N such 
that lTN@tii: TM,]N + TN @ T*N pulls back the standard sym- 
plectic structure (in each fibre) to Q$ . Thus, we have a bundle isomor- 
phism y = (1 TN @ #-‘) * ( lrN @ #r) : TIM, 1 N--t TM, 1 N which pulls 
back &Jn, to 52, . Using tubular neighborhoods, we can construct from 
this bundle map a diffeomorphism [g] : [MI , N] + [M, , N] which 
’ “tangent” to y, so that g 1 N = 1, and g*(J& 1 N) = J& ) N. By 
Theorem 4.1, there is a diffeomorphism [h] : [MI , N] -+ [MI , N] such 
that h 1 N = 1, and h*(gSZ,) = a,. Settingf = gh : [MI, N] -+ [M2, N] 
completes our proof. Q.E.D. 

COROLLARY 6.2. Let [M, N] be a local manifold pair with a symplectic 
structure Q such that N is a lagrangian submanifold. Then there is a 
dzfleomorphism [f] : [M, N] --f [T*N, Z,] such that f / N = IN modulo 
the identijcation of N with 2, and f *s), = Q, and the lagrangian submani- 
folds of M “near” N are in 1 - I correspondence with “small” closed forms 
on N. 

The local (in N) and finite-dimensional version of Corollary 6.2 is due 
to Souriau [16]. 

The Automorphism Group of a Symplectic Manifold 

The diffeomorphisms of a manifold M into itself may be identified 
with their graphs, i.e., with the submanifolds of M x M which are 
mapped diffeomorphically onto M by both of the projections rri and n2 . 
If M carries a symplectic structure Sa, M x M carries the symplectic 
structure SZX = 7r,*J2 - n,*SZ. It is easy to check that a diffeomorphism 
f : M--f M is a symplectic automorphism (i.e., f *sZ = JJ) if and only 
if its graph is a lagrangian submanifold of M x M. 

Let d denote the graph of the identity 1, . d is a lagrangian submani- 
fold of M, and, by Corollary 6.2, [M x M, d] is symplectically diffeo- 
morphic to [T*d, Z,], which is symplectically diffeomorphic in a natural 
way to [T*M, Z,,,,]. The diffeomorphisms “near” the identity l,,, are 
thereby put in l-l correspondence with a “neighborhood” of zero 
in the space 9](M) in such a way that the symplectic diffeomorphisms 
go onto the subspace of closed l-forms. The correspondence is differen- 
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tiable in the sense that smooth dependence on parameters is preserved. 
This gives a “coordinate chart” for the diffeomorphism group around 
the identity, in which the symplectic automorphism group goes onto 
a linear subspace, so that the symplectic automorphism group of M 
is a manifold modeled on the space of closed l-forms on M. This space 
is naturally identified by 6-r with the space of infinitesimal symplectic 
automorphisms of M, i.e., the vector fields X on M such that oli”,fz = 0. 

We have been deliberately vague about the topologies and differen- 
tiable structures on the spaces of diffeomorphisms and differential forms. 
The topologies should be strong enough that the sets on which the l-l 
correspondence is defined are really open. The charts are C” if the spaces 
are considered as differentiable spaces in the sense of [7]. The charts may 
also be extended to charts for the larger groups of diffeomorphisms 
determined by various section functors on vector bundles, e.g., Hk, 
Ck, Ck+o, etc. (see [13].) In these situations, the charts have as many 
degrees of differentiability as the mapping f bf -l in the corresponding 
diffeomorphism group, as one may verify by following through the 
identification of diffeomorphisms with their graphs and then with 
sections of the normal bundle of d. Unfortunately, the degree of differen- 
tiability is usually zero, except at special points. Ebin and Marsden [5] 
have shown the existence of charts with more differentiability in the Hk 
cases, but their method yields no result at all in the Ck cases. 

7. LAGRANGIAN FOLIATIONS 

Let (M, Q) be a symplectic manifold. A foliation g of M is Zugrangian 
if every leaf of F is a lagrangian submanifold of M. If we think of a 
foliation .F as an integrable distribution (subbundle) E C TM, then .F 
is lagrangian if and only if the fibres of E are lagrangian subspaces of 
the fibres of TM. 

The standard example of a lagrangian foliation is given by the fibres 
of any cotangent bundle (T*N, Q,). 

THEOREM 7.1. Let 9 be a Zagrangian foliation of (M, X2). Let N C M 
be a lagrangian submanifold which is transversal to 9 in the sense that 
TM 1 N = TN @ E j N, where E C TM is the subbundle corresponding 
to 9. Then there is a dzjfeomorphism [f] : [M, N] -+ [ T*N, Z,] such that 
f 1 N = 1, module the identification of N with 2, , f *Q, = Sz, and If] 
tukes the leaves of F onto thefibres of T*N. 
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Proof. By Corollary 6.2 and the proof of Theorem 6.1, there is 
a diffeomorphism [g] : [M, N] -+ [T*N, Z,] satisfying all the require- 
ments of If] except that the images under [g] of the leaves of 9 are only 
tangent along 2, to the fibres of the cotangent bundle. Denote by g9 
the foliation whose leaves are those images. One can certainly find a 
diffeomorphism [h] : [T*N, Z,] -+ [T*N, Z,] whose derivative is the 
identity at each point of 2, and which maps the leaves of g9 onto 
the fibres of the cotangent bundle. Now [hg] satisfies all the require- 
ments of If] except that (gh-l)* G / Z, = In, 1 Z, , whereas we need 
(hg-I)* Q = ,n, . Now, by Theorem 4.1, there is a diffeomorphism 
[k] : [T*N, ZN] --f [T”N, Z,] such that K 1 Z, is the identity and 
K*$12, = (hg-l)*G. Then [f] = [khg] is the “identity” on N and 
f*QN = Sz. We will be done if we can show that f takes the leaves of $ 
onto the fibres of the cotangent bundle, which will be the case if k 
preserves the fibres. Since k is obtained by integrating a time-dependent 

vector field {J’t}i,[o,l~ , it suffices to show that each Y, is tangent to 
the fibres. Now (following the notation of Section 4, with the substitution 
of (hg-l)*S2 for 52, and LJ, for L&J, Y, _I 52, = -#, where # = I(& - Sz,). 
We suppose I to have been constructed by means of the usual vector 
bundle structure on T*N, for which the vector fields X, of Section 3 
are tangent to the fibres. Now if 5 is any vector field on T*N which is 
tangent to the fibres, we have 

QdY* Y 5) = -m = -f T*((Ql - Do)(Xt , 5)) dt, 
0 

which is zero because the tangent spaces to the fibres are isotropic for 
both Sz, and Q, . Since the fibres are maximal isotropic for each 9,) 
it follows that Y, must be tangent to the fibres. Q.E.D. 

COROLLARY 7.2. Let 9 be a lagrangian foliation of (M, Sz), and let 
x E M be any point. Then there is a rejlexive Banach space V and a dz#eo- 
morphism [f] : [M, x] * [T* V, 0] such that f *Q, = 52 and f takes 
the leaves of 9 onto the Jibres of T* V. 

Proof. By Theorem 7.1, we need only find a lagrangian sub- 
manifold through x which is transversal to 9. By Corollary 6.2, we may 
assume that (M, Sz) is a cotangent bundle with the canonical symplectic 
structure, and that the leaf of 9 through x is the zero section. The fibre 
through x of the cotangent bundle is the required transversal submani- 
fold. Q.E.D. 
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Functions in Involution 

Our theorem on lagrangian foliations is actually a generalization of 
a result of Caratheodory on systems of functions in involution.3 

We recall that, if f and g are functions on the symplectic manifold 
(44, L?), their Poisson bracket (f, g) is the function X,g, where X, is the 
vector field &I(#). It follows immediately that (f, g) = X,g = 
LJ(X,, X,) = -X,f. The functions fi ,..., fm on M are in involution if 
(fi , fi) = 0 for all i and j. 

Caratheodory [3] proved that if M is 2n-dimensional, fi ,..., fn are 
in involution, and dfl ,..., df, are linearly independent, then one can find, 
locally, functions g, ,..., g, such that Sz = dg, A dfl + *-a + dgll A df, . 
The relation between Caratheodory’s theorem and ours may be seen 
from the following result. 

PROPOSITION 7.3. Let fi ,..., f ,  b e uric ions f  t on the 2n-dimensional 
symplectic manifold (M, Sz) such that dfi ,..., dfn are linearly independent. 

Then fi ,---,.fn are in involution if and only if the foliation 9 dejiined by 
the equations fd = constant is lagrangian. 

Proof. If fi )...) fn are in involution, 0 = (fi , fi) =Xr,fj implies that 
each Xri is tangent to the leaves of 9. The linear independence of the dfi 
implies that Xri are linearly independent and, for dimension reasons, 
span the tangent spaces to the leaves. But J&X,< , Xfj) = (fi , fi) = 0, 
so the tangent spaces to the leaves are isotropic and, having dimension n, 
they are lagrangian. 

Conversely, suppose 9 is lagrangian, and let X be any vector field 
tangent to the leaves 
df,(X) = Xfj = 0 f 

of 9. Then LL?(X,~, X) = (X,$ J Q)(X) = 
or all j, so that Xrj is L&orthogonal to the leaves. 

Since the tangent spaces to the leaves are maximal isotropic, each Xfj 
must be tangent to the leaves. Since the tangent spaces to the leaves are 
isotropic, (fi , fj) = sZ(Xfi , Xjj) = 0, and fi ,..., fn are in involution. 

Q.E.D. 

Structure of Lagrangian-Foliated Manifolds 

Corollary 7.2 shows that any lagrangian-foliated symplectic manifold 
(M, Sz, F) may be covered by coordinate charts with values in T*V, 
for some Banach space V, such that the charts take Sz and 9 into 1;2, 
and the foliation by the fibres. The coordinate changes, therefore, are 

3 I would like to thank J. Reels for bringing this result to my attention. 
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elements of the pseudogroup $22 of local diffeomorphisms of T*V which 
preserve Sz, and the foliation by the fibres. 

To describe these diffeomorphisms, we identify T*V with F’ @ V*. 
Since the translations of V @ V* are in $9, we may restrict our attention 
to the group S,, C 22 of foliation-preserving symplectic diffeomorphisms 
of [V @ V*, 01. Every element [f] of g0 induces a diffeomorphism [fV] 
of [V, 0] such that the diagram 

V@ v*f- V@ v* 

commutes. The correspondence [f] -+ [f,] is a homomorphism from 
59s to the group 9s of diffeomorphisms of [V, 01. The kernel L%? of this 
homomorphism consists of those elements f such that f(x, x*) = 
(x, g(x, x*)) for some [g] : [V @ V*, 0] + [V*, 01. We denote by 
3,g : V @ V* ---t hom( V, V*) and C&g : V @ V* -+ hom( V*, V*) the 
“partial derivatives” of g. The derivative 

f*: V@ V*-+hom(V@ V*, V@ V*) 

is then given by 

f*@ 0 x*)(Y cB,r*1 = Y 0 PI& 0 x*)(Y) + kdx 0 x*)Y*l- 

The fact that f preserves 52, is expressed by the equation 

Setting y* and z to zero in (7.1), we find z*(r) = a2g(x @ x*)(z*)(~). 
Since y is arbitrary, asg(x, x*) is the identity for all x @ x*, and we may 
write g(x @ x*) = x* + h(x), where [h] : [V, 0] ---t [V*, 01. Now 
a,g(x @ x*) = h,(x), and (7.1) becomes 

z*(Y) --Y*c4 = h*@)(d(Y) + z*(Y) - h*(x)(Y)@) --Y*w 
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which holds if and only if 0 = h,(x)(y)(z) - h,(x)(z)(y). If h is thought 
of as a 1 -form on V, this equation says that h is a closed 1 -form. We have 
just proved 

PROPOSITION 7.4. ~6 is naturally isomorphic to the additive group of 
closed l-forms on [V, 0] which vanish at 0, acting by “translation” on 
[V @ v*, 01. 

Next, we show that the map g0 + B,, has a section, so that there 
is a split exact sequence 0 + X + 9Y0 + g0 -+ 0. Namely, let [g] be 
any element of g0 . Then [g] lifts in a natural way to a diffeomorphism 
[g*] of [T*V, 0] = [V @ I’*, 0] such that g,* = g. Since fin, and 
the foliation by the fibres are natural objects on T*V, [g*] is an element 
of 99,, . It is clear that [g] I++ [g*] is a homomorphism. We have proven 

THEOREM 7.5. S0 is naturally isomorphic to the semidirect product of 
the additive group 37 qf closed 1 -forms on [V, 0] vanishing at 0 and the 
group 9,, of dajfeomorphisms of [V, 01. The normal subgroup S acts on 
T* V by “translation”, and the group 9,, acts by the natural lifting. The 
action of g0 as automorphisms of .X is by pullback of forms. 

COROLLARY 7.6. The restriction of an element of 9 to any fibre is 
an affine transformation onto the image. 

Combining this corollary with the remarks above about charts, we have 

THEOREM 7.7. Let (44, L?, 9) b e a Iagrangian-foliated symplectic 
manifold. Then the leaves of F carry a natural ajine connection with 
curvature and torsion zero, i.e., afinely equivalent to the natural afine 
structure on a vector space. 

Theorem 7.7 generalizes the following result of Arnold and Avez [2]. 
In case the leaf is the set of zeros of functions in involution, the flat 
affine connection comes from a paralelzation (by the vector fields Xri). 
If the leaf is compact, it must be a torus. 

The converse of Theorem 7.7 is also true. Namely, let N be an affine 
manifold with curvature and torsion zero. Then the distribution of 
horizontal spaces in T*N defines a lagrangian foliation, as may be readily 
seen from the local affine isomorphism of N with a vector space. Since 
N, by identification with the zero section, may be considered as a leaf 
of this foliation, we have 
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THEOREM 7.8. A manifold N is a leaf of a lagrangian foliation of some 
symplectic manifold zjc and only if N admits an afine connection with 
curvature and torsion zero. 
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