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INTRODUCTION 

This paper has arisen out of a set of problems that I will now describe. 
Most of these problems arose out of a beautiful paper by Artin [I], 
they are all related to the same root: Describe the invariant theory of 
n-tuples of matrices. 

The first problem was a conjecture made by Artin on the nature of 
the invariants of m n >i n matrices Xi ,..., X,,, under simultaneous 
conjugation in characteristic 0. He conjectured that any such invariant 
is a polynomial in the elements Tr(Xi, , Xi0 ... X,,). This fact was 
classical for n = 2 [5], and proved by Spencer and Rivlin [13-151 for 
orthogonal invariants of symmetric 3 ‘x 3 matrices. The theory developed 
by them also contains a finiteness statement and some discussion of the 
relations among such invariants. They were also interested in various 
kinds of concomitats always for n = 3 and the orthogonal groups. 
A complete account of their theory can be found in [12]. In this paper, 
we first solve Artin’s conjecture (Theorem 1.3). Next, we take the 
problem of deducing a finite set of generators. This is accomplished in 
Section 3, where we give a general finiteness theorem for graded algebras 
from which we deduce that one may restrict to elements of type, 
Tr(Xil ... Xi,), where K < 2” - 1 (Theorem 3.4a). 

In view of the results of Spencer and Rivlin, we consider the problem 
of finding the matrix valued concomitants. This is a noncommutative 
algebra, which we also describe, that is generated over the ring of 
invariants T by the “coordinates” Xi . Here too, we have a finiteness 
statement. The monomials in the -Xi’s of degree < 2” - 2 span this 
algebra over T. Both estimates are sharp (possibly both estimates should 
give 2” - 2, cf., [12], f or 72 = 3) at least in the sense that they are 
equivalent, 4.7, to the known estimates for the theorem of Nagata- 
Higman on nil algebras (cf. [6 p. 274]).l 

’ Note odded in proof. In a recent paper, this estimate is sharpened: J. Rasm~slev, 
Trace identities of full matrix algebras over a field of characteristic zero, Ix. Akad. Nauk 
USSR (1974), No. 4. 
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The theorem just cited may be said to be the “first fundamental 
theorem” for invariants and matrix concomitants of m matrices (in 
characteristic 0). In the spitit of Weyl’s book [16], we then take the 
problem of describing the relations among such invariants and con- 
comitants. The result is quite striking in that it basically says that any 
relation among invariants and matrix concomitants is a consequence of 
the theorem of Hamilton-Cayley (Theorem 4.6).’ 

As a consequence, we tie the theory thus far obtained to the theory of 
polynomial identities of algebras. We have two results that seem quite 
interesting: 

(1) If an algebra over a field of characteristic 0 satisfies the identity 
P = 0, then it satisfies all the identities of n x n matrices (Corollary 
4.8). 

(2) The space of multilinear identities of degree nz of 11 x n 
matrices can be described completely in terms of Young diagrams 
(Theorem 6.1). 

The technique of the proofs is quite simple. It is based on the remark 
that in theorems on invariants, we may analyze only the multilinear 
ones. If p is a multilinear invariant depending on m matrices X1 ,..., X,,, , 
we may think of p as the linear invariant map 

p: (A-), !3 (K), @ “. ia (AT), - AT, 

((K)n the ring of matrices). Now, if I’ = K”, the basic vector space, 
identify (K), with I’ @ V*, and p: V’zJ1lL @ I/*@& + K is an invariant 
map. Next, identify ( V@jrl @ V*gm)* with End( Vsjnb): h E End( Vorn) 
induces the form u @ q + <v, h(u)). Thus, p corresponds to an element 
p of End(V@“) commuting with GZ(V). At this point, one invokes the 
classical theory that implies p = C LY,U, 0 in the symmetric group of m 
letters. Finally, we have to interpret a permutation u as an invariant. 
The computation is easy (Theorem 1.2) if u = (ii .*. ~,J(j, ...i/,) *** 

(t1 *.a t3) is the decomposition in cycles, the invariant associated is: 

Tr(Sj,Xj~ ... Xi,) Tr(-‘I;, ... Sjn) ... Tr(Stl ... 5,e).3 

’ Note added in proof. This computation appears already in B. Kostant, a theorem 
of Frebenius, a theorem of Amitsur Levitski and cohomology theory, J. Math. Mech. 7 
(1958), 237-264. 

3 Note added in proof. This result has been obtained independently b?; Rasmyslev in 
the paper cited in footnote 1. 
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With this dictionary now in hand, it is just a question of translating 
the usual theorems of invariants into this language of matrices. 

Sections 7 through 10 of Part I are dedicated to invariants over the 
other classical groups. The first fundamental theorem for O(n) and 
Sp(n) is an easy generalisation of Artin’s conjecture. In both cases, we 
get that the invariants are generated by the elements Tr( Ui, *.. Uik), 
where Ui = Xi or Xit for O(n), Ui = Xi or Xi*, the symplectic trans- 
pose, for Sp(n). One has similar results for matrix concomitants with 
all the necessary finiteness theorems. The second fundamental theorem 
also can be proved, but it is somewhat more mysterious than for GZ(n, K), 
in that strange new identities appear, whose natures are not fully 
clarified. In Section 11, we describe the unitary invariants with complete 
results. In Section 12, we study mixed invariants and concomitants for 
Gl(n, K) (for simplicity). 

This finishes what might be called the quantitative part of invariant 
theory, i.e., the explicit description of invariants and their relations. 

In Part II, we develop the qualitative results, basically, the theory of 
the quotient varieties associated to the invariant problems considered 
in Part I. 

In this part, we basically develop and adopt to the other classical 
groups the ideas and techniques given by Artin in [I]. The results are 
in all cases parallel to the theory for GZ(n, K). The ring of orthogonal 
invariants of m II x n matrices is the coordinate ring of a variety whose 
points are the equivalence classes under O(n) of orthogonal representa- 
tions of the free *-algebra in m-variables (Theorem 15.3). The irreducible 
representations are simple points of the quotient variety (Theorem 20.2), 
and on this set, the quotient map is a principal fibration (Theorem 19.4). 
Some of these results are proved in a characteristic free approach. The 
possibility of a full generalization to characteristic p f 0 is still subject 
to unsolved obstacles, although many new developments in this direction 
have occurred. Hopefully, the state of affairs of invariant theory in 
char p > 0, in the next five years will change completely. At present 
Doubilet, Rota, and Stein have proved the first fundamental theorem 
for GZ(n, I\;‘) in char p > 0 (and even over 2) [2]. The Mumford conjecture 
has been solved by Haboush (and by the author jointly with Formanek 
for GZ(n, k)). (Th’ is implies that, except for the explicit computation 
of the invariant rings, the qualitative theory of Part II is valid in every 
characteristic (f 2 for the moment). 

We thus formulate a conjecture analogous to Artin’s conjecture 
for char p > 0. 
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The invariants of m n :./ n matrices are generated by the elements 

“&(X1 9’.‘, JL)), where p is a noncommutative polynomial in the 
Xi’s, and u’i is a coefficient of the characteristic polynomial. It can be 
proved that: 

(1) The ring A generated by such elements is finitely generated [8]. 

(2) The variety associated to ,4 classifies equivalence classes of 
semisimple representations of the free algebra K{X; ,..., X,,>. [8]. 

(3) The ring of invariants B is integral over 14 and the map 
Spec B--f Spec d is a homcomorphism. (This follows from Mumford’s 
conjecture). 

We may add that, especially in Fart II, some more or less known 
theorems have been developed anew to put them in a suitable form for 
our purposes. Moreover, many well-known special theorems on orthogo- 
nal and unitary equivalence of matrices are consequences of the theory 
develqped, but we do not go into this for reasons of space. 

Finally, I would like to express my admiration to &I. Artin for his 
discovery of the deeper relations between the theory of polynomial 
identities and invariant theory. The ties between noncommutative 
algebra on one hand, and algebraic geometry and arithmetic on the 
other should be made stronger by these ideas. They have already yielded 
many interesting results and promise to give more. 
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Part II. Representations of *-Algebras 

13. *-algebras and representations. 14. Semisimple *-algebras. 
15. Equivalence of representations under O(n) and Sp(n). 16. Positive 
involutions and real points. 17. Azumaya algebras. 18. Universal maps. 
19. Irreducible representations. 20. Qualitative results for rational 
concomitants. 
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I. ALGEBRAIC INVARIANTS 

1. Invariants of n x n Matrices 

Let us fix the following notations: K denotes a field of characteristic 0, 
V ‘V K” is an n-dimensional vector space, (K)n N End(V) is the full 
ring of n x n matrices, V* is the dual space of V, and G = Gl(n, K) is 
the group of invertible matrices. We wish to study the following problem; 
consider the space IV = (KY; of i-tuples of n ); n matrices. The group G 
acts rationally on W according to the formula: 

If il E G, Bj E (Q , 

then .4 - (B, , B, ,..., BJ = (AB,F, AB,II-* ,..., AB+F). 

We want to describe the ring Ti,n. of polynomial functions on W, 
invariant under the action of G. According to the general theory, we 
will split the description into two steps. The so called “first fundamental 
theorem,” i.e., a list of generators for Ti,, , and then the “second 
fundamental theorem,” i.e., a list of relations among the previously 
found generators. Of course, it would be very interesting to continue 
the process by giving the “ith fundamental theorem,” i.e., the full 
theory of syzigies; unfortunately, this seems to be still out of the scope 
of the theory as presented in this paper. 

To obtain the first fundamental theorem, we recall a part of the 
classical theory of invariants (cf. [16]). 

First, we have the identification of the ith tensor power (K); ’ of (K)n , 
with End( Pi). The group G = GZ(n, K) is embedded in End( Pi) 
using the diagonal action A * (F~ @ v2 @ **. @ ai) = AC, @ Av, @ 
..- @ Avi ; finally, the centralizer of G in End(VBi), i.e., the algebra 
of G-linear transformations of Ii!Li, is spanned, as a vector space, by the 
endomorphisms h, , 0 an element of the symmetric group q on i letters, 
defined by the formula: 

X,(v, @ zJ2 @ .‘. @ Vi) = vo-l(l) @ vo~1(2) @ ... @ vu-,(i) . 

We have, furthermore, a canonical identification 

2-r: (p-;*oi @ Pi)* ‘v End(V@<), 

where n is obtained from the nondegenerate pairing End(Pi) x 
Y*@ @ Pi + K given by the formula: 

(a) ~~,~~O~~O~~~O~iO~lO~~O~~~O~~~ 
=(~lo~~~~p?j,x(x,~3c~~‘~~~x~)). 
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where, yj E V*, xj E V, j = l,..., i, and the right side of (a) is the 
evaluation of the form v, @ ... @ yi E Y*C3,i CY (Pi)* on the vector 
h(x, @ x2 @ ... @ Xi). It is easily verified that 7~ is an isomorphism of G 
spaces with their canonical G structures. Hence, the space of G in- 
variant vectors of ( Y*Qi @ Vi)*, which is the space of linear maps 
17*Oi @ Pi + K invariant under G is identified under rr to the 
space of G linear endomorphisms of I”+{. We already know that this 
last space is spanned by the elements A, , CJ E Yi . Thus we want to find 
an explicit expression for the linear invariant p0 corresponding to A, 
under r. 

One easily computes 

THEOREM 1.1. Any multilineav iwariant y: V*C3i @ VOi ---f K is a 
linear combination of the invariants 

PA?-% 0 *. * @, Ipi (g A-1 ‘2) ... @I Xi) = n (lpg(j) ) Xi). 

The nest step now should be to determine the exact relations among 
the h,‘s (or the p,‘s). Rahter than doing this now, we want to interpret 
the pL,‘s in a different form. 

We recall the canonical isomorphism between End(V) and I’* @ V 
given by the formula: 

(cp fg V)(U) = ‘y, u)v. 

This is a G-isomorphism and we will use it in systematically identifying 
the two spaces. For instance, we will refer to a decomposable endo- 
morphism as one corresponding to a decomposable tensor y @ v, notice 
that an endomorphism is decomposable if and only if it is of rank < 1. 

We recall, for completeness, how multiplication of endomorphisms 
and the trace map are obtained using the previous identification. 

(b) p@v~~@u=g,@(~,v,u 

(c) tr(g, 0 v) = <v, vi. 
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We can use the previous isomorphism to obtain an isomorphism of 
G-spaces: 

The description of the linear invariants of V*eii @ V”” obtained 
in 1.1 yields, therefore, a description for the linear invariants of (K): ‘. 
Choose, therefore, a u E spi , and consider the linear invariant p0 : 
(rqy -+ K. We are going to give a new explicit formula for p., in terms 
of the “matrix” variables. Decompose u in disjoint cycles, including 
the ones of length 1, 

u = ( llZZ . . ... i,J(j,j, . ..j.) .” (t,t, ‘.. te). 

THEOREM 1.2. Given A, , A, ,..., Ai E (IL)%, we have: 

p,(A1 @ A, @ ... @ Ai) 

= tr(AiIAiz ... ‘4J tr(A&, ... A,,) ... tr(.JCltPtg ... At,) 

Proof. Since the two sides of the equality are multilinear maps, it is 
sufficient to prove it when A, , . . ., Ai are decomposable, i.e., Aj = 9)j @ Xi. 

Thus, 

Consider, for instance, the product 

One verifies immediately from the formulas (b), (c) that 

FJi, 0 &, . vi, 0 xi, ,..-3 %, 0 Xik 

= <Vi, , &J(%, , &*> *.. <Fik ? %-,> vi, c3 4, * 

Therefore, M = tr(Ai,AiZ .a* Aik), and the theorem follows. 
We are now in a position to state and prove the first fundamental 

theorem for invariants of n x n matrices. 
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THEOREM 1.3. Any polynomial invariant of i n x n matrices AI,..., Ai 
is a polynomial in the invariants tr(AiIAIZ *** A,,); Ai,Ai~ a.0 Ai, running 
over all possible (noncommutative) monomaals. 

Proof. The theorem has already been proved for multilinear inva- 
riants. We claim that the general case follows immediately. In fact, 
one can fully polarize an invariant to obtain a multilinear one, and then 
recover the original invariant by identifying the variables. Now clearly, 
this last restitution process carries the invariant tr(AilAii a.* A,,) in 
invariants of the same type, and so the theorem is proved. 

2. Matrix Concomitants 

We recall that, given a group G and two G-spaces k’, IV, a polynomial 
concomitant is a polynomial map $: V -+ H’that is compatible with the 
G-structures, i.e., +(gv) = g+(v), Vg E G, v E F’. 

We want to describe the concomitants in the case that V = (K):, and 
W = (K)% , G = Gl(n, K), with the usual action. We will refer to these 
as matrix valued concomitants and denote such a set by S,,, . 

The first remark is that Si,, is a noncommutative ring under pointwise 
sum and multiplication, in fact, Si,lL is the subring of the ring Pi,,,, of 
polynomial maps from (K),i to (K), formed by those elements left 
fixed by the group G = Gl(n, K), acting on Pi,n as follows 

LEG, $EPisn 7 then (&X4 = <r . (vW’4). 

On the other hand, P,,, is easily identified as a ring isomorphic to 
the full ring of 12 x n matrices over the ring of polynomial functions 
on (KY;, , i.e., a ring of polynomials in i - n’ variables. If one identifies 
the scalars .K with the center of (K), , one sees that the ring Ti,n. of 
invariants of (Kg is a subring of the center of Si,, , which is, therefore, 
a Ti,% algebra. It is easy to show (cf. [9, p. 941) that Ti,, is exactly the 
center of S,,, as soon as i > 1 and n > I, otherwise, Si,, is commutative. 

To complete these preliminary remarks, we notice that, among the 
matrix concomitants, we can consider the j-coordinate maps, indicated 
by Xj and given by: 

xj: (A, ) A, )..., Ai) - A, . 

The first fundamental theorem for matrix concomitants now can be 
formulated. 

THEOREM 2.1. The ring Si,, is generated, as an atgebra over Ti,, , by 
the elements Xj . 

6071’913-4 



314 C. PROCESI 

Proof. Given a concomitant f: (K)k + (K)% , we build an invariant 
J: (K)?’ + (K),L defined as follows 

fV1 9 4 ,..., &,I> = tr(f(4 , 4 >...> Ai) . 4+1). 

We claim that, if f, g: (Kg -+ (K), are two concomitants and f = g, 
then f =g. In fact, if tr( f (A,, A, ,..., Ai) - LI,+~) = tr(g(A,, A, ,..., A,)Ai+,) 
for all A,, A, ,..., Ai+i, we have, by the nondegeneracy of the form 
tr(xy), that f (A, , A, ,..., AJ -= g(A, , A, ,..., Ai), as claimed. 

According to the classification theorem, 1.3, for the invariants, we 
have that, if f is a matrix concomitant, f is a polynomial in the elements 

frM& .** Ail), which is linear in Ai+r . Therefore, 

f’ = 1 llil...i, tr(Ai1Ai2 “’ Ai/&+i), 

with hi,...ij E Ti,n , and ii , i, ,..., ii # i + 1. (If Ai+r appears in the 
middle of a monomial, we can shift it to the end by a cyclic permutation.) 
We have, thus, 

f(A 1 ,..., A,+1) == tr 
f 
C Ail...i,AilAiO ... ili, . Ai+i 1 

, 

therefore, f = C hi;..ijXi,Xi, *em Xi, , as announced. 

3. Finiteness Theorems for Graded Algebras 

The theorems proved in the previous sections still lack some necessary 
features for explicit computations. One is the lack of the necessary 
finiteness statements. We are going to provide them now. First, we 
make some general remarks on TX,, and Si,, . 

Given f E Si,, , we can consider its characteristic polynomial Q(X) = 
X” + x;zl oi( f )X-l. H ere, oi( f) is an invariant, for instance, al(f) = 
-tr(f), the others can be described using the expression of the coeffi- 
cients of the characteristic polynomial of a matrix A in term of the 
invariants tr(Ai), (these formulas are the expressions of the Newton 
functions in terms of the elementary symmetric polynomials). We clearly 
have the Hamilton-Cayley theorem xr(f) = 0. 

Furthermore, both S,,, and Ti,n are graded algebras, the degree 
being the usual one of polynomial maps, if f E Si,, is homogeneous 
of degree h, then oi(f) is homogeneous of degree h * i. Finally, both 
S,,, and Ti,, are connected, i.e., (S&, = (Ti,JO = K. 

Based on the previous remarks and having in mind Theorems 1.3 
and 2.1, we develop here a general approach to finiteness theorems 
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that will apply for the algebras T(,,, and Si,ls as well as for the other 
algebras that we will encounter in the study of the other classical groups. 

Let us fix the following notation, A = @yzo Ai will be a connected 
commutative graded algebra over a field K = A,, . We will set A+ = 
~~=, Ai and recall the following well-known and easy lemma (Nakayama’s 
lemma for graded module). 

LEMMA 3.1. Let h4 = @Lo Mi be a graded A module and let N be a 
graded submodule. If M = N + AfM, then h4 = N. 

Let us consider now an associative, not necessarily commutative, 
graded algebra R over A and a subset X of R-f- such that: (i) R, = A,, = K 
(ii) R is generated as an A algebra by I and X. 

THEOREM 3.2. If every element r E R+ satisJies a manic polynomial 
of degree n (depending on Y) xrL + x’r=, CX$-~ with ‘Y~ E A+ and char K = 0 
OY char K > n, then R is spanned over A by the monomials in the elements 
of A’ of degree < 2” - 2. 

Proof. Consider the algebra U = RI-/A+R. By 3.1, it is enough 
to show that the monomials of degree < 2” - 2 (and 3 1) in the 
elements of X (image of X in U), span U as a vector space over K. 
Now, the hypothesis implies that U is generated, as a K algebra, by X, 
and so it is sufficient to show that U is nilpotent of degree < 2’” - 1. 
If r E Ii+, we have in +- C olirrk-i = 0 with 01~ E A-b, therefore, every 
element T of U satisfies the equation P = 0. We are, therefore, in the 
position to apply the theorem of Nagata-Higman [6, p. 2741 to conclude 
the proof. 

Assume now that the algebra R is equipped with an A linear map 
t: R -+ A preserving degrees. Furthermore, assume that, if T denotes 
the K algebra generated by X, the elements t(TI) generate A+ as an 
ideal. 

THEOREM 3.3. In the previous hypotheses, A is generated as a K 
algebra by the elemerzts t(r), where Y is a monomial in the elements of ,Y 

of degree < 2’” - I. 

Proof. By 3.2, R is spanned, as an A module, by the monomials 
in the elements of X of degree < 2 n - 2, let us call this set of monomials 
S. Let B denote the K subalgebra of A generated by the elements 
t(r), where r runs on the set S’ of monomials in the elements of 9 of 
degree < 2” - 1. We must show that B = A, since B is a graded 
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algebra and A is a graded B module, it is sufficient to show, by 3.1, 
that B + B+A = A. Now, A+ is generated by t(T+) as an ideal, 
R = AS, and T+ C T * X therefore t(T+) Z A . t(SX) C ABf (since 
SX is the set of monomials of positive degree < 2% - 1 in the elements 
of X). Hence, A +=A*t(T+)LAB+,andsoA=B+B+A. 

We can apply these theorems in the case in which A is already known 
to be generated, as a K-algebra, by the elements t(r), Y E T. 

In particular, we can apply the previous theorems to obtain the 
finiteness theorems for the rings of invariants. 

THEOREM 3.4. (a) The ring Ti,n is generated over K by the elements 
tr(AilAip ..+ A$ with j < 2” - 1. 

(b) Si.ta is spanned, as a Ti,n module, by the elements X,lLYi, 2 .** Xi 
with j < 2” - 2. 

, 

Proof. This is just a special case, in light of the remarks at the 
beginning of the section, of the previous theorems. We use for t the 
trace map, and for X the set Xr , X2 ,..., -Xi . 

4. Trace Identities 

We consider now the problem of finding, in a systematic way, all 
relations among the elements tr(M) and M, iVl varying on the mo- 
nomials in the n Jo n matrix variables Xi , X, ,..., Xi ,..., i = l,..., co. 

We construct, for this purpose, the formal polynomial ring T generated 
by the symbols Tr(XilXi,, *.* Xi,), with the convention that Tr(M) = 
Tr(N) if and only if N is obtained from M by a cyclic permuation. 

We will call an element f E T a commutative trace polynomial in the 
variables Xi and write itf(X, , Xs ,..., Xi ,...). Furthermore, we consider 
the free algebra S = T {X&r,...,,, over T in the variables Xi . 

We will refer to the elements of S as noncommutative trace polynomials 
S and T are equipped with some extra structure: 

(a) A T-linear map Tr: S + T defined by the formula 

(b) For all choices g, , g, ,..., gi , ,...; i = 1 ,..., CO of elements 
gi E S, a formal substitution f+f(g, , g, ,..., gi ,... ), which is the uni- 
quely determined endomorphism of the ring S mapping Xi into gi and 
compatible with the map Tr. 
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The substitution is easily defined on the generators: it sends a 
monomial X,1X, ... -Xi intogi,gi, .*e gi.? and an element tr(Xi,Xi, ... Xi,) 
into Tr(gil e.1 gi$r), one Verifies eaiily that this is well defined and unique. 

Having these structures in S, we can define the notion of a T-ideal. 

DEFIMTION 4.1. (a) AA T-ideal I of S is an ideal that is closed under 
Tr and under all substitutions, 

(b) ,I T-ideal J of 7‘ ‘. 1s an ideal closed under substitutions. 

One easily verifies that, given any set A C S (resp. B C T, there is a 
minimal T-ideal of S containing A and it is the ideal generated by the 
elements obtained from 9 by making all possible substitutions and 
taking the Tr values, similarly for B C T. We will refer to this T-ideal 
as to the T-ideal generated by A in S, (resp. by B in T). 

The meaning of the previous definitions is made more explicit by 
associating, to the formal trace polynomials, actual functions. One 
chooses an integer n and considers the space (K): of sequences 
(A, , A, ,..., A, ,...) f 0 n .: n matrices almost all zero. 

Given an elementf(S, ,..., -Xi ,...) E T, one associate to it a polynomial 
map, in fact an invariant, f: (K): ---f K by the obvious formula, if 
f = Tr(Sil *.. X,,), we setf(A, , A, ,..., Ai ,...) := tr(Ai,AiV ... Ai,) and 
then estend the definition on all T. Furthermore, if g(Xr ,...; Xi ,...) E S, 
one associates to it a polynomial map, in fact, a matrix concomitant 
S: (K); ---f (K),, by the obvious formulas, on T, it is the already defined 
evaluation and to the monomials Xi1 ... LYi,C , one associates the map 
(Ai ,..., Ai ,...) + Ai< ... Aii . 

If we indicate by T, ,L , S,,, the rings of invariants and concomitants 
of infinitely many matrices, we have, thus, two onto maps: 

T: T -+ T.,,,L , T:S’ST.R. 

If we consider T C S and T c*‘,n L S,,,n, we remark that n is the 
restriction of T to T. We are now able to state the problem of finding 
the relations among invariants and concomitants, it consists of describing 
the Kernels of the two maps ~7 and 7. 

An important remark, before continuing, is that we have the compati- 
bylity of 7, n with the extra trace operators, i.e., the diagram: 
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is commutative, where Tr is the formal trace in S, and tr is the 
usual trace. 

Finally, 7~ is compatible with the substitution, which becomes in S,,,, 
composition of map; i.e., m(f(g, ,..., gi ,... )) = ($)(+g,) ,..., n(gJ ,... ). 

Having made these remarks, the next proposition follows immediately: 

PROPOSITION 4.2. The ideals ker r, ker r are T-ideals. 

We will refer to the elements of ker n as commutative trace identities 
of n >! n matrices and to the elements of ker T as noncommutative 
trace identities of n x n matrices. We remark that we have already 
established, in the proof of 2.1, a strict relationship between the two 
concepts. 

We come now to the basic theorem from which all our results will 
follow. 

Establish the following notation, given a permutation u E yn, , we 
define an element $+, E T as follows. Decompose 4 in disjoint cycles, 
including the ones of length 1: 

u = (il a** i& . ..j.) *** (tl **a tJ 

and set Qpn(XI ,..., X,) = Tr(Xi,Xi, ... X,,) Tr(Xj, *a* X,,) *** 

Tr(Xtl *** X, ). & is a multilinear trace monomial of degree m. With the 
notations of 1”.1 and 1.2 we have, if A, ,..., A,, E (IQ, , that 

4Ar) = G% >***7 4n) = PL,(4 0 4 0 *** 0 4. 

From the theory of Young diagrams we obtain immediately. 

THEOREM 4.3. (a) An element x,,y;, q,@, is a trace identity fop 
n x n matrices if and only if the element C OI,(T belongs to the ideal of the 
group algebra of 9& spanned by the Young symmetrixers relative to diagrams 
with at least n + 1 rows. 

(b) In particular we have the fundamental trace identity 
F(X, ,..., -%,.I) = C& E(U)@, (E(U) the signature of a), corresponding 
to the Young diagram wi% one column and n + 1 YOWS. 

Proof. Clearly, C a,@, is a trace identity if and only if the corre- 
sponding element C OI,~,, is zero. This is zero if and only if the endo- 
morphism C a~,,&, on VCm induced by C 01~0 is zero. Hence, (a) and (b) 
follow from the theory of Young diagrams and the representation of 
9& on V@‘m (cf. [16]). 
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Since F(X, ,..., X%+,) is multilinear in all variables we can apply to it 
the same process used in the proof of 2.1 to write it formally as 

WG ,..., -L+,) = Tr(WY, ,..., XJ &+A 

where G(X, ,..., Xn) E S. 
The explicit form of G(IY, ,..., -Y,J is the following 

G(Xl ,..., X,) = i (-l)k+l 1 SjlSi2 .** lyik C c(u)@u 9 
7<=0 iI’&,“.. .fig oo.P,-k 

on {l,..., m} -(ii ” ,..*, Ik)* 

In different notations, let us write, for a set 5’ = (si ,..., sIC) 

Then, we have, setting M = 1, 2,..., n and 1 S 1 the cardinality of 5’ 

G(X; ,..., x,) = C (-I)I”-Sl+l Fs * P,, . 
SCM 

An easy consequence of 4.3 is the following. 

COROLLARY 4.4. (a) A multilineal commutative trace identity of 
degree n + 1 in n + 1 variables is a scalar multiple of F(X, ,..., X,,,). 

(b) A multilinear noncommutative trace identity of degree n in n 
variables is a scalar multiple of G(XI ,..., X,,). 

Cc> WG ,..., X,) is obtained by fullpolarization of the “characteristic 
polynomial” of X, times (- I)“-‘-‘. 

Proof. (a) This is a consequence of 4.3(a), since the ideal described 
there, for m = n + 1, is just the scalar multiples of zOEYn+ E(U)U. 

(b) This is a consequence of (a) and the relation established in 
the proof of 2.1, that f (Xi ,..., X,) E Ker T if and only if 

Tr(f(Xr ,..., XJ S,,,) E Ker r. 

(c) First, one has to explain the meaning of characteristic poly- 
nomial of an element of S. We know that if A is an n x n matrix, its 
characteristic polynomial xA(X) is a polynomial whose coefficients can 
be expressed in a formal way via the elements tr(Ai). We use the same 
formulas to construct a formal characteristic polynomial of an element 
of S, using Tr instead of the usual trace. Now, if X is a variable, we 
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consider xx(X), it is an element of S homogeneous of degree n. By the 
Hamilton-Cayley theorem, xx(X) E Ker T, hence, if we fully polarize 
xx(X), we have a multilinear trace identity of degree n. 

By (b), it is a scalar multiple of G(X, ,..., X,). On the other hand, 
its leading term (the one without coefficients in 7’) is Co.y, Xc(i) *** X,,cn) , 
therefore, (c) follows by inspection. 

We are now ready to prove the second fundamental theorem. 

THEOREM 4.5. (a) The ideal K er z- is generated by the elements 

F(M, ,..., M,+l). The Mi’s running over all possible monomials. 

(b) The ideal Ker T is generated by the elements F(MI ,..., Mn+l), 

GW, ,..., NJ. 

The Mi’s and Nj’s running over all possible monomials. 

Proof. (a) First, we want to reduce ourselves to the analysis of 
multilinear identities. This is possible by the processes of polarization 
and restitution. In fact, if f E Ker n, and we fully polarize it, the resultf’ 
is still in Ker m. If we show that f’ is in the ideal described by (a), the 
same will follow for f, since the restitution maps this ideal into itself. 

Therefore, letf E Ker 7~ be multilinear and of degree m. A priorif may 
depend on more than m variables, but we can separate f as a sum of 
polynomials fi each depending on m variables, such that fi and fj do 
not depend on the same variables if i # j. One easily sees, by setting 
some of the variables equal to zero, that each fi is a trace identity. 
Therefore, we may assume that f is multilinear of degree m and depends 
on the variables 

-q , x2 ,..., ;ri, , then f = C LX,+, . 
oeYm 

We know, by 4.3, that C 01,u is in the ideal relative to the Young 
diagrams with at least n + 1 rows. This ideal is generated by the 
antisymmetrizer C ‘TESP,+l E(U)(T) under the embedding of ym+, in q,:,, . 

Therefore, 

c a,u = 5, z9 %TTi (J ++J) 7;. 
1’3 nl f&+1 

Let us analyze, therefore, the form of the trace identity associated 
to the element 

T (oE,c .bb) 5; T’ 5 E %. 
“+I 

We make a series of remarks. 



INVARIANT THEORY OF ?Z X n MATRICES 321 

Remark 1. CUE+n+l C(U), thought of as an element of the group 
algebra over q,L correspond to the identity: 

F&q )...) 1 Yn-,) . Tr(S,+,) Tr(XnA3) ... Tr(-Y,,J 

Remark 2. If &EYm a,,h corresponds to a trace polynomial 
cH(X, ,..., X,,), and T E q,, , then ~(1 ~(,h)~-i corresponds to the trace 

polynomial H(Xdl) , XCA ,--, &,d). 

Remark 3. T(C l (u)u)t; = T(E l (O)O)< 7 . 7-l hence, to prove that 
the trace polynomial associated to T(C E(u)D)~ is obtained from 

F(Xl >***> xn+1>, substituting for the Xi’s some monomials (and changing 
sign if necessary) it is sufficient, it light of Remark 2, to do it for 

Ix -~,+I E(U)U . 57. Let us call lr = 7. 

Remark 4. CoeyP,+l l (U)CJ . 7 = & Coey4P,+l c(u), . y, where y is a 
permutation of q,, containing, in each cycle, at most one of the elements 
1, 2,..., n + 1. 

Proof. It is sufficient to show that we can write r) = h . y, with y of 
the desired type, and h E Yrl+r , since in this case C C(U) ah = C(X) * 
C E(U),. The possibility of writing 77 = Ay is obtained by a simple 
induction of which we explain the first step. Assume that 7 contains 
in a cycle two elements of 1, 2,..., n + 1, say, 1 and 2: 17 = (I z’iiz ... i,; 2 

31 . -*-it) --A ( ). 
We have (12) * 7 = (1 ii ~0. ik) (2 . ..j.) ... ( ). 

Remark 5. If u E 9%+i and y is as in 4, the cycle decomposition of u 

is obtained by formally substituting; in each cycle of u, in place of the 
elements 1, 2,..., n + 1, the strings 1 & ,..., ie , 2j, ,..., j, ,..., n + 1 t, A** tt, 
appearing in the cycle decomposition of 7 and finally adjoining the 
cycles of q in which the elements 1, 2,..., n + 1 do not appear. 

We are now in a position to finish, it is clear, by 5, that if 
y = (iii --- ik)(2jl --*j,) *-- (n + It, *** &)(A, *+. hr)(pL1 ..* pC) .** (pr *a* p,), 
the trace polynomial corresponding to C C(U) * u . y is 

0 

Therefore, from the various reductions operated, the theorem follows, 

(b) Let H(X, ,..., X,) E Ker T be a noncommutative trace iden- 
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tity of n X n matrices. We know then that the trace polynomial 
Tr(H(X, ,..., X,) . X,rl+1) is in Kerr. 

By (a), we know that such an element has the form: 

and it is linear in X,n+, . Therefore, we may assume that Xnl+r appears in 
each term of the sum, and for each term it appears linearly. Let us 
consider one such term X *F(M, ,..., M,+r), X,fi+, will either appear in h 
or in one of the monomials Mi’s. If X,,L+l appears in h, we can write 
h = Tr(X * Xm+& otherwise, permuting the monomials if necessary, 
we may assume that M,+, = A * Xnlfl * B; A, B two monomials. Then, 
hF(M, ,..., M,,,) = Tr(h * BG(M, ,..., Mm) * A * Xrntl). 

Finally, we see that 

Now, one should note that, in the formal ring S, if H(X, ,..., X,), 
K(Xl ,*..7 -L) are two polynomials such that Tr(H(X, ,..., X,) X,,,) = 

Tr(K(Xl,...,X,)X,,+l), one has necessarily H(X, ,..., XJ = K(X, ,..., XJ, 
therefore, (b) is also proved. 

We may express the previous theorem in a more suggestive form by 
using the nonhomogeneous analogs of F and G. 
We already know that G is obtained up to sign from the characteristic 
polynomial by means of full polarization. As for F, we have a similar 
result. The analog of the characteristic polynomial is the expression of 
Tr(An+i) in terms of the elements Tr(P), i < n. This, of course, can be 
realized by the equation tr(xA(X) . X) = 0. Let us call the formal 
.expressions associated to xx(X) and to tr(xx(X) * X), G(X) and F(X). 
Thus, G(X) is the “characteristic polynomial of X” and F(X) is the 
“expression” of Tr(Xm+r) in terms of Tr(Xi), i < n. (Of course, this 
expression holds only if we evaluate X in (K)n .) 

We then have 

THEOREM 4.6. (a) Ker r is the T-ideal of T generated by F(X). 

(b) Ker 7 is the T-ideal of S generated by the characteristic 
polynomial G(X). 

Proof. (a) and (b) will follow from 4.5 and the definition of T-ideals 
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for T and S once we prove that the fully polarized forms of F(X) and 
G(X) lie in the T-ideal that they generate. Now this is true since we may 
replace the process of polarization with the process of multilinearization. 
whose first step is to replace, for instance, G(X), by G(X + Y) - 
G(X) - G(Y). Th e na result of multilinearization is the same as of fi 1 
full polarization and so the claim follows, since clearly, multilinearizing 
a polynomial in a T-ideal, we remain in the same ideal. 

We can deduce now a rather intriguing corollary that ties completely 
theorem 3.4(b) with the NagataaHigman theorem. 

COROLLARY 4.7. The ring S~,/T&Si,n is isomorphic to the free 
algebra without 1, {Xi ,..., Xi} in n-variables module the T-ideal dejined 
by the polynomial identity 2’” = 0. 

Proof. We know that S~,/T~,S,,, satisfies the identity Zn = 0 and 
it is generated by the classes of the elements Xj, j = l,..., i over K. 
Therefore, the canonical map {Xi ,..., Xi} -+ S&JT&Si,, factors through 
the T-ideal J defined by the polynomial identity Zn = 0. We have to 
show that the induced map $: (X1 ,..., X,)/J + S~n/T~llLSi.n is an 
isomorphism. 

Now, $ is onto by construction, and we have to show that the only 
relations among the classes of the elements Xj in Stn/T<nSi,,, are 
deducible from the polynomial identity Z” = 0. 

We have a presentation of S,ii-, and I’:-, given by the Theorems 4.5 or 
4.6. To have a presentation for StlT~,Si,,, , we have to add to the 
relations given in 4.5, 4.6 the relation Tr(M) = 0 for all monomials M 
of positive degree. If we start from these relations, i.e., we construct 
S/T’S, we just get the free algebra without 1 over K, since TIT+ = K. 

Now, if we read in this algebra the relations given, for instance, 
by 4.6, we see that the characteristic polynomial G(X) becomes X”, the 
trace map now is 0 (as well as F(X)), and so the T-ideal generated by 
G(X) becomes modulo T+, exactly the T-ideal generated by the identity 
X”, = 0 as announced. 

There is another way of formulating the preceding corollary, which 
we state for completeness. 

COROLLARY 4.8. If R is an associative algebra over a field of charac- 
teristic 0, and R satisjes the polynomial identity X” = 0, then R sati$es 
all the polynomial identities of n x n matrices. 
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5. Trace 0 Matrices 

It may be useful to recall that the representation of Gl(n, k’) on (K),, , 
which we have been considering all along, is not irreducible. In fact, it 
decomposes as (K), = K * 1 + (K)yL where (K): stands for the subspace 
of matrices with trace 0, and K * 1 is the center of(K),, . 

This decomposition corresponds to the possibility of giving to each 
invariant a double degree in the scalar variables and in the trace 0 
variables. In fact, if we write, for a matrix A, A = (tr(A)/n) . I + A, , 
where Tr(A,) = 0, we have, for a given monomial AtlA,, 2 =.. Ai,; , that 

tr(.&,Ai,, ... ,a,,) : = C rt tr(Jhl) tr(Ah,) .‘. tr(il,J tr(ilqAUz ..I =1?$); 
h,~~~h,:j,~..i, 

where h, .*a h, j, ..* js is a shuffle of the indices i,i, ... ik . 
It is easy to see that, if we denote by TiSn the ring of invariants of the 

space ((K)i)i of i-tuples of trace 0 matrices, we have that Ti,, is the 
polynomial ring over TiSn in the variables tr(A,), tr(AJ,..., tr(AJ. In 
particular, the ring T:,,, is obtained from Ti,, setting tr(Ai) = 0, 
j = l,..., i. 

6. Relations with Polynomial Identities and Central Polynomials 

We sketch here some consequences of the previous theorems, which 
should be expanded more. If we consider the free algebra K{X, ,..., Si ,...} 
over K and embed it in the free algebra S over T, we see immediately 
that Ker T n K(X$ ,..., Xi ,... > is the d 1 i ea o polynomial identities of f 
n x n matrices. As for central polynomials, an element f~ K{X,) is a 
central polynomial for n x n matrices if and only if there is a g E T such 
that f - g E Ker T. 

We know that Ker T is generated as a T-ideal from the characteristic 
polynomial G(X), or its linearized form G(X, ,..., X,); therefore, every 
polynomial identity or central polynomial is deducible from G(X, , . . ., X,,) 
in an explicit way. On the other hand, the task of describing all poly- 
nomial identities is still quite far away. In a separate paper, Formanek [314 
shows how to deduce very simply the Amitsur-Levitzki identity 

&&(X1 ,**-, X,,) from the polynomial G(X, ,..., X,), a similar approach 
to central polynomials also should be possible. Nevertheless, we can give 
a description of polynomial identities in terms of Young diagrams 
according to 4.3(a). Let I be the ideal of the group algebra of ym+, 

4 Note added in proof. This description has been found independently by Rasmyslev 
in the paper cited in footnote 1. 
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generated by the antisymmetrizer on 11 + 1 letters (we assume m > n). 
We know that I can be identified to the space of multilinear trace 
identities of ?z Y II matrices in m + 1 variables. Let P be the subspace 
of the group algebra of xTlmtl spanned by the m + 1 cycles, we have 

THEOREM 6. I. The space of multilinear polynomial identities of n ;< 11 
matrices of degree m in m variables can be identi$ed to the space I n P. 

Proof. We fix a variable, say, S,,,_, , then writing a commutative 
trace identity in the form Tr(g . -X ,,,+i), we establish a l-1 correspond- 
ante between the space I and the space of noncommutative trace identities. 
NOM-, a noncommutative trace identity is a polynomial identity if and 
only if it does not contain coefficients Tr(M). This is easily seen to be 
equivalent to the fact that the element of I considered is a sum of m -t 1 
cycles. 

The situation for central polynomials is slightly more complicated. 
We take again an element x a,~ of the group algebra over cC$+l that is 
a trace identity, i.e., it is in I, and we associate to it the element g as 
before. The g will be, in general, a sum of monomials in the Xj’s, times 
products of trace monomials tr(M). We can recover from g a central 
polynomial exactly when g splits as the sum of pure monomials (without 
factors of type tr(M)) and scalars, i.e., products of factors tr(M) only. 

This, of course, can be read in the group algebra, it means that the 
permutations (5 appearing in x a,,ff are only of two types: ~2 + 1 cycles, 
and permutations that fix m + 1. In this case, the corresponding non- 
commutative trace polynomial is of the form 

where the left sum comes from the nz + 1 cycles, and the right 
sum comes from the permutations fixing nz + 1. In this case, the 
left sum is a central polynomial, and the opposite of the right sum is the 
scalar value taken by the central polynomial. 

Again, we can use these remarks to characterize multilinear central 
polynomials in terms of Young diagrams. 

7. Orthogonal Invariants 

We consider now the same type of questions that we have treated in 
the previous sections for the other classical groups. We study now the 
orthogonal group. The set up is the following: Consider the algebra (K), 
of n x n matrices equipped with the standard involution given by 
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transposition. This involution is associated to the canonical bilinear from 
on V = Kn given by zF=, xi yi . 

The relation between the form and the involution is, of course, the 
usual: (AU, w) = (‘u, A’w) if ZJ, w E V’, A E (K), . 

The scalar product allows us to identify canonically V with its dual I/* 
and hence, End(V) c: V* @ V with I; @ V. 

If we want to translate the multiplication, the trace map, and the 
involution of (K), in terms of its identification with V @ V, we obtain 
the following formulas: 

(a) u @ w * u @ t = u @ (u, w)t, 

(b) tr(z. @ w) = (u, w), 

(c) (v @ w)” = w @ v. 

As for the groups involved, the orthogonal group O(n, k) is, by 
definition, the group of automorphisms of V with its structure of scalar 
product. As for (K)n with its involution, assume that #: (K)n + (K), 
is an automorphism of algebras with involution. We must have #(B) = 
A * .&4-l for some A E GZ(n, K). On the other hand, the hypothesis 
implies that #(Bt) = #(B)t, h ence, A * Bt * A-l = (ABA-1)1, for all 

B E wn * 
This implies easily A t*A~K.l,letA~*A = ol~K. 
If 01 = /3” setting A’ = A//3 we see that A’ E O(n, K), and A’ defines 

the same inner automorphism as A. Hence, if we take K algebraically 
closed, we see that the automorphism group of (K)n. with its transpose 
involution is O(n, K){ 1, - 1). 

We recall now the theorems on invariants of 2i vectors under the 
orthogonal group (cf. [16, p. 53, 751). 

FIRST FUNDAMENTAL THEOREM. Any multilinear orthogonal invariant 
of 2i vectors: 

is a linear combination of ‘LcontYaction maps” i.e., maps of type: 

0 = (jl ,j2 ,..., j2i) a permutation of 1, 2 ,..., 2i. 
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SECOND FUNDAMENTAL THEOREM. Any relation among the scalar 
products (ui , vj) is a consequence of relations of the following kind: 

Ul , z'l) (Ul 7 4 ." (% 1 %+1) 

i 4 , z'l) (% > Q) ." (% 3 z',+1) 
. . . . . . . . . . . . . . . . . . . . . z-O 

. . . . . . . . . . . . . . . . . . . . . 

(%+1 !  4 (%.+1 3 4 ." (%I+1 T  %-1) 

We are now going to extract, from these theorems, the analogous ones 
for matrix invariants and concomitants. 

THEOREM 7.1. Every orthogonal invariant of i matrices (A, ,..., Ai) 
is a polynomial in the elements tr( Ui, Ui9 ... iZiik), where Vi = Aj , or 
uj = A,‘. 

Proof. We can reduce ourselves, as in the proof of 1.3, to the multi- 
linear case. 

Consider, therefore, a multilinear orthogonal invariant 

$!k (K)., @ (Iqn @ ... @ (K),, --+ K. 

We identify (K)n with V @ V, and this is compatible with the O(n, K) 
structure, then, 1+4 is a linear combination of the maps IJ~ previously 
described. Let us consider decomposable matrix variables Aj = ui @ vj , 
j = l,..., i. Then, 

$h&il, @,I A, @I ... @ Ai) 

-~~(ul~vl~u~~v~~~‘~~u~~vi) 

= (wi, 9 wi,)(wi2 t z”i3) “. (wik 7 wil) . Cwj, 9 z3j,)(wj, ) wj,) “. (wj, 1 wj,) ‘.. 

where we use the following convention: 

wj stands for uj or vj , and by definition, ZZ~ = uj , Bj = uj . 
It is now easy to verify that: 

(*) $,(A, @A, @ ... @ Ai) = tr(UilUi? ... Ui,) tr(Uj, ... O;,J ..., 

where Uj = Aj , or Uj = Ajl, according to the following rule: 
Let us say that ui , uk are of the same type, as well as vj , vk , while uj , 
vk are of different type. Let us say, furthermore, that Aj , A, are of the 
same type as well as Ajt, Alzt, while Aj and Ak2 are of different type. 
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Then, we define inductively: 

(a) -Vi1 = Ai1 , if wi, = vi, ; Uit = A,“, , if wi, = ui, . 

(b) Set ui,,, of the same type as Ui, if and only if wi, , wit,1 
have the same type. 

The equality (*) has been proved for decomposable Aj’s, but it is 
multilinear on both sides, hence, it holds for any choice of the Aj’s. 

Having classified the orthogonal invariants, we pass now to the matrix 
valued concomitants. Let us fix some notations, let us indicate TOi,, the 
ring of orthogonal invariants of i n x n matrices and SO,,?& the matrix 
valued concomitants. We see immediately that SOi,, is not a necessarily 
commutative algebra over TO{,,; furthermore, SOi,, is equipped with 
an involution, that we will still call transposition: f t(A, ,..., AJ = 

Cf(4 ye-.> AX. 
We have, as in 2. I, the basic concomitants 

Xj: (A, , A, ,..., Aj) --f Aj , 

and also 

xjt: (A, ) A 2 >..., Aj) ---f .4jt. 

THEOREM 7.2. SOi,, is generated, as a TOi,,, algebra, by the elements 
Xj ) Xjt. 

Proof. We follow the lines of 2.1. We introduce an extra variable 
X,+r and associate, to any g E SOi,, the orthogonal invariant f = 
tr(g * Xi+& By 7.1, f is a polynomial in the elements tr( Uji *.- U,,) with 
lJj = Xj or Xjt. Since f is linear in X,+r , it is a sum of monomials, in 
each of which, it appears either X,+r or Xi+, , and only once. Since 
tr(M) = tr(&P), we can rewrite the monomials, if necessary, to contain 
always Xi+r , and not Xj+r . At this point, we can writef = tr(h . Xi+l), 
where h is a polynomial in Xj, Xit, j = l,..., i, with coefficients in 
TOi,,,L . Clearly, h = g, and so the proof is complete. 

Clearly, if g E SOi,, , we can compute its characteristic polynomial, 
which has coefficients in TOi,, , and g satisfies x,(X). Therefore, we can 
apply the results of Section 3 to obtain the necessary finiteness statements 
for TOi,, and SOillL . We reproduce the statements for completeness. 

THEOREM 7.3. (a) The ring TOi,% is generated, as a K algebra, by the 
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elements tr(M), where M is a monomial in Xj, ~~jt,i = l,..., i of degree 
< 2” - 1. 

(b) SOi,, is spanned, as a TOi.,L module, by the monomials irz -Yj , 
xjt, j = I,..., i of degree < 2jL - 2. 

8. Orthogonal Tsace Identities 

We pass now to the second fundamental theorem. As usual, we will 
fix our attention mainly on multilinear identities. To make the formalism 
complete, we must introduce, as in Section 4, the formal algebras T* and 
S*. I’* is the commutative algebra in the variables Tr(M), ;?I is a 
monomial in Xj , -‘ij', j = I,..., CO, with the obvious identifications 
and S* is the free algebra over T* in the variables -Yj , -“;i*. S* is 
equipped with the trace map Tr: S* + T*, and also with an involution. 
linear over T*, mapping .Yj into Xjf. In this case also, we have the opera- 
tion of substitution of the variables. Of course, if we substitute -Yj with 
gi , we must substitute Xj” with gj I. Thus, we can introduce the notion 
of T-ideals as in Section 4, recalling that now we have also the structure 
of algebra with involution, under which the T-ideal must be closed. We 
will refer to the elements of T* as commutative trace polynomials, and 
to the ones of S* as noncommutative trace poiynomial. Finally, we have, 
as in Section 4, the two maps no: T* ----f TO,,,, , T,,: S* ---f SO,,,, , which 
are compatible with all the operations defined. The involution on SO,,,, 
being transposition. 

Theorems 7.1 and 7.2 state that 7~,, , and 7” are onto, for every IL 
The determination of their Kernels is the object of the second funda- 
mental theorem. To make the theory reasonably smooth, we must find 
an analog of the interpretation, given in Section 3, of elements of the 
group algebra as multilinear trace polynomials. We proceed now as 
follows: We introduce two infinite sequences of symbols w1 ,..., IL,,, ,. . , ; 
z'l 7"') u,,, ,'.', and construct, from these symbols, the symbols (LQ , uj), 
(vi , ztj) i f i, and (ui , vi) any i and i. Consider next the polynomial 
ring P in the “variables” (ui , uj), (ni , Zlj), (LQ , vi), (vi , z.L~). We make the 
conventional identifications: (ZQ , uj) = (uj , zli), (zi , elj) = (z)~ , ~0, 
(pi ) ~j) = (Uj ) ZL~). F or every nz, we consider now the subspace I,,, of 
this polynomial ring spanned by the monomials of degree nz in which 
appear all the symbols u1 , zig ,..., u,,,; zl , z2 ,..., v,,, . 

Reasoning as in the proof of 7.1, we see that we can associate to each 
such monomial, a formal monomial in the elements Tr( UilUjz ... UiJ, 
where Ui = Xf or -‘r-‘,l. If one follows closely the proof of 7.1, one sees 

607/‘9/3-5 
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that this monomial is uniqueIy determined up to: (1) cyclic permutation 
of the factors of a monomial Ui, **a Ui 

UI:, *-. Uf, . 
, , (2) replacing Ui, *h* Ui, , with 

The formal association becomes an actual functional relation once we 
substitute: 

(1) For the symbols ui , vi , vectors. 

(2) For the symbols (ui, j) t z, e c., the scalar products among such 
vectors. 

(3) For the matrix variables -Y{, the actual matrices ui @ vui . 

We can sum up the results in a proposition. 

PROPOSITION 8.1. (a) The space I,,, is isomorphic to the subspace of T* 
formed of multilinear trace polynomials in the variables XI ,..., X,, (even- 
tually transposed). 

(b) Given vectors uj , vj , j = l,..., and the matrices A, = uj @ vi , 
we have the compatibility of the evaluations: 

where o consists in evaluating the invariants in Ai , and p the symbols 

(Ui 3 uj) etc. in the scalar products. 

From this proposition and the multilinearity of the trace polynomials 
in the image of I,, , we deduce that the trace identities of degree m, 
multilinear in X, ,..., X,,, , correspond to the subspace of I,,, of multi- 
linear relations among the scalar products. 

We are now in a position to apply the second fundamental theorem 
for the scalar products. We introduce a notation for convenience. 

If WI ) wg )..., w,; zr ) as ,..., xx: , are vectors, we indicate by (wr ,..., wk j 
zi ,..., zk) the determinant: 

(WI ,%I (WI 3 3) ‘.. (WI 9 %) 
. . . . . . . . . . . . . . . . . 

(Wk 7 4 (WI< 9 4 ... (Wk 3 ZJ 

We know that, if we are working on the vector space lP, we have the 
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fundamental relations: (wi ,..., w,+i 1 z1 ,..., xn+i) = 0 for any choice 
of vectors wj , zi . 

Let us look at the occurrence of this relation in the space In,+1 . We 
obtain one such relation if we divide the vectors ui , u2 ,..., u,+i , z’l , 
% ,'.', u,+1 in two subsets of n + 1 elements each. 

In particular, consider the following ones (which we will show to be 
the relevant ones): Given k < (n + 1)/2 setting n + 1 = 2k + s, we 
form 

(u1 , u2 ,..., U7c+s , z1 , p'2 ,..., z', I ui;+sil > uh-s-? ,..., u,-l , z'7:,l ,..., Z'nll; . 

To this element of I,,, corresponds, by the general theory, a trace 
polynomial that we will denote FI;,,,+i(X1 ,..., X,-+,). This polynomial is 
clearly a trace identity for n Y ~z matrices. 

Let us show now that these polynomials are, in a certain sense, the 
only multilinear polynomials of degree n + 1 to be considered. 

PROPOSITION 8.2. Let w1 , w2 ,..., w,,+~ , z1 ,..., zntl be a permutation 
of Ul > % ,**'> f&+1 , 01 > z'2 ,**., z',+1 * Tlze trace polynomial corresponding 

to <Wl , w2 Ye.', w,,+1 I Xl > s2 T-.*7 %l-l/ ‘\ can be obtained, up to sign, from 
exactly one of the F,C,,,,(X, ,..., Xn+l) by permuting the aariables and 
substituting to some of the Xi’s tizeir transposes -Yj’. 

Proof. This is one of those statements that are hard only to write in 
detail, so we sketch the steps. To change Xi with Xjt means in I,,, to 
exchange uj with vj , to permute the variables corresponds to permuting 
simultaneously the uj’s and the z?j’s in the same fashion. Finally, by the 
properties of determinants we can rearrange in (wl ,..., w,+i / zi ,..., zn+r) 
either the wj’s or the .zj’s, and we only change eventually the sign. Now, 
the proof of the proposition is immediate. First, one exchanges the uj’s 
and the vj’s (i.e., substitutes Xj with Xjt) to obtain that the symbols 

Wl 7 WP >'.', %+1 consist of a certain number k + s of U’S, and k of v’s 
having the same indices of some of the u’s listed. Then, one permutes the 
variables to make sure that one has on the left side, the symbols zll -.. u,,+, 
v -*- zL in some order, then, one rearranges the left and the right side 
t,’ obtain the desired expression. One can be easily convinced that the 
number k is uniquely determined as the number of indices appearing 
twice (once in a u and once in a ZJ) in the left side of wi ,..., w,+r z1 ,..., zrLfl. 

The following properties of the polynomials Fk,,+l(Xl ,..., ,kr,+,) are 
easily verified by the same ideas developed in proving 8.2. 
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If u is a permutation of the following type: (i) ~((1, z,..., k}) = 

(1,2 ,..., k), o(jk + I,..., k + s)) = {k + I,..., k + s} and u = ((K + s + I,..., 
n + I}) = (lz + s + l,..., n + l}. 

cc> F,c,,,+l(-i;t, Tt,..., -G+1, = F,;,.+l(X,:.+,< !.I ,..*, X,&l , Xk,+l ,“‘, 
X& , x1 ) . . .) Xk). 

Parts (a) and (b) are easily proved from the determinant expression of 

Fk,n+1 f Part (c) is also easy, we have 

Property (b) suggests to extract two noncommutative trace polynomials 
out of each Fk,n+l when s and k are nonzero, by taking out of the trace 
a variable in the set X1 ,..., X,; , XJC,.s+l , X,C+n+2 ,..., X,,, , or in the set 

x,+1 Y..‘, x,.+.3 . 
Since we want to have the two polynomials depending on X, ,..., Xn 

for convenience, we define them as follows, implicitely: 

When s = 0, only G is defined, while when k = 0, only H is defined. 
From the properties (a)-(c) of F,c,,+l , we can deduce properties of G 

and H. In particular, we will need the computation: 

(cl’ WG,A& ,..., X2 * X,+d = Tr(Gk,,(Xl ,..-, XJ XA,,) = 
F/c,n,-1(X1 >..-p -K , X,,) = F~,n+dXk+n+l ,..., -Gt, -&+I > XL se..> -Gt, 
xlt,..., X,.l). 
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The meaning of these definitions is made clear by the following: 

PROPOSITION 8.3. (a) The polynomials FI,.,,,+l are commutative ortho- 
gonal trace identities for n /: n matrices. 

(b) The polynomials G,:,,, , H,;,, are noncommutative trace identities 
for n .p~~ n matrices. 

(c) Any commutative (resp. noncommutatire), ol,thogonal trace 

identity has degree 3 n + 1 (resp. 3 n). 

(d) Any multilineav commutative (resp. noncommutative) trace 
identity of degree n + 1 (resp. n) is a linear combination of polynomials 
deduced from the F,;,,,,, (Yesp. the GkB, and Hk,J by substitution of the 
variables (and eventual transposition of the jinal result). 

Proof. First we remark that substituting the variables means to 
substitute for X, ,..., X,L+I variables Wi, ,..., Win+, , where Wj = Xj , 
or -1Tjt. The proof now is a consequence of 8.1, 8.2, and the second 
fundamental theorem, plus the usual remark that noncommutative trace 
identities in the variables X I , .., Xi correspond bijectively to commuta- . 
tive trace identities in S, ,..., -Xi , Xi+r; linear in LYi.rl , via the map 

In this case, one might have to transpose and use (c)’ if Xi+r appears 
among the first k variables. 

Having described the minimal identities, we proceed now to prove 
the second fundamental theorem for matrix invariants and concomitants: 

~'HEOREM 8.4. (a) Ker no is the T-ideal of T* generated b>v the 
polynomials F,.,,+, . 

(b) Ker T” is the T-ideal of S* genevated by the polynomials G,;,. , 

ff,..,, . 

Proof. (a) We proceed as in 4.5 to reduce ourselves to analyze 
multilinear identities only, of degree 111 and depending on the variables 
-Y, ,..., -Y,,, . We can apply now Proposition 8.1 and the second funda- 
mental theorem to reduce ourselves to analyze a trace identity corre- 
sponding to an element 

f = <A 1.‘.1 Pll--1 / 91 ,‘..I Qn-l‘wl-2 9 qn12) “’ (Pm > 4A 

where p1 ,..., A, , Q1 ,..., 4,,1 is a permutation of u1 ,..., zl,,L , z’r ,..., v,,, . 



334 C. PROCESI 

We are clearly allowed to permute the variables if necessary and to 
exchange Xj with Xjt, i.e., to permute simultaneously the u~‘s, ZJ(‘s, 
and exchange uj with vj . Finally, changing possibly the sign, we can 
rearrange separately the elements p, ,..., ~,~+r and pi ,..., qn+l . 

If we operate this way, it is easy to convince oneself that we may 
assume that p, ,..., P,~+~ is the sequence u1 , u2 ,..., u,~+~, z’i ,..., vk for 
some K such that n + 1 = 2% + S. Furthermore, q1 ,..., qll+l may be 
taken as the sequence u~++~ , ukfSfa ,..., u~~+~+,,~ , v~+~ ,..., vl..Ll , vj, , 

vj, )a..) vj, I Z'lc+s+1 P %+s+z Y”‘) Vn+1 !  with 1 < s, k + s + m < n + I and 
the indices jr , j, ,..., j, > n + 1. 

Consider now uj, , it appears as one of the elements pi or qi with 
i > n + I in a scalar product (uj, , wh,) outside the determinant, 

w/s, = unl on wh = v,~, . 
Let us separate some cases, introducing new formal symbols: 

(a) If WI!, = VI,, 9 set @hl = ("jl , Vhl) vj, y %I = Uh, . 

(b) If WI&, = uh, 
- 

and h, > n + 1, set v,~ = (ujl, uh,) vjl and 
%tl = %, - 

Cc) If W/l, = Uhl and hi < n + 1 set uhl = (uj, , uh,) * vi, , and 
- 
V/J, = Uh I . 

Furthermore, we can take the scalar product (yjl, vh,) inside the 
determinant, and using the symbols introduced, rewrite f as: 

f = @l Y,Ll I 41 9.'., P,+mn+2 > !%b+d ... mf-1) (Tm-A 

where j?r ,..., j ,,,- i , 9; ,..., ?j,+r is a permutation of 

(where ” means omitted). 
We apply now induction and assume that f, as a trace polynomial in 

the variables Xi , X2 ,..., ,k-;l, ,..., Xj, ,..., X,,, , is of the form 

Now, we see immediately that we can substitute to the variable LTTt, , 
respectively: In case (a), Xhl 
in case (c) Xfi, = Xj”,X& 

= Xh,Xi, , in case (b) Xh, = X~,Xjl , and 
using the formal multiplication rule for the 

symbols p @ q given by p @ q . r @ s = p @ (Y, q)s, and thinking 
Xh, = ii& @ qt . 1 
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All these formal operations are compatible and give 

where the Mj’s and P’ are obtained from the Mj’s and P substituting for 
X1?, the corresponding expression. This completes case (a). 

(b) This part is easy having developed (a). Let k’(Xi,..., X,) E Ker T,,, 
add a new variable X,,, , and consider Tr(K(X; ,..., -‘it) X1+,) E Ker r,, . 

By part (a) we have 

and we may assume that -Y,,, appears linearly in each term of the sum. 
Take a term PFk,,4.1(Ml ,..., M,,,,). We have, then, two cases, either 
X,+-i appears in P, or -Y,+, app ears in one of the monomials Mj’s. Further, 
x t+1 may appear transposed. 

If X,,, appears in P (transposed or not) we can write P = Tr(P’X,+,), 
if X1+, appears in one of the n/r,‘s, then, using property (b) and (c) of the 
polynomial F,;, nT-l , we may permute the variables and assume that X1+, 
appears in MIL+r or in MI,+,? . Since both cases are similar (one gives rise 
to the appearence of G,;,, the other of H,,,), we treat the first. We might 
have ‘Vn+i = A,,.,-Y, :.,B,, L1 , or M,, i = AntlXf+lB,L L~1 . 

In the first case, 

In the second case, we have 

From these computations, it follows that Ker T,, is generated by the 
elements Gd~l ,..., M,), Gjc,,(Ml ,..., LQ’rL)‘, Hk,,,(Jfl ,..., n/r), 
F,c.,,+,(Jfl >...> Mn+1), HkJ,(~l >...> 4LY. 

When we look, therefore, at the T-ideal generated by the polynomials 
G lc,n and fh,, we obtain, closing the ideal under substitutions, the 
polynomials G,,,,(M, ,..., M,), H,,,(M, ,..., MJ and, closing under the 
operator Tr and under the involution, the polynomials Fk,n+,(Ml,...,Mn+,) 
G,,,(~~, ,..., Mn)‘, H,.,,(M, ,.,., MJf, as desired. 
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9. Explicit Computations of Orthogonal Trace Identities 

We want to make now a few explicit computations of the polynomials 
introduced in Section 8. 

The first remark is that the polynomial F,,,+r(X1 ,..., XT1+i) is exactly 
the trace polynomial F(X, ,..., Xnll) introduced in 4.3 and obtained by 
full polarization of the expression of Tr(Xn+l) in terms of Tr(Xi), 
i < n. 

Similarly, H&X1 ,..., .X1,) is G(Xr ,,,., X7*) of Section 4. A\s for the 
other polynomials, they are not fully symmetric in all variables, hence, 
cannot be obtained by full polarization of a polynomial in one variable. 
Rather, we could see F,,, ,.,. I , n + 1 = 2K + s as obtained from full 
polarization of a polynomial in 3 variables if K, s # 0, in two variables if 
s = 0, by identifying the variables X, ,..., X,, or X,,, *** Xk+, or 

xk’a-+l >‘*a, -u,,+, > with respect to which the polynomial is fully sym- 
metric. 

Furthermore, from the remark (a) on the properties of such poly- 
nomials we have: 

Fk,,,l(& >‘..9 X,+1) 
= -(F7<,.+,(lk; ,..., xi )...) AT,.:,) - F~,n+&Y; )..., x;.t )..., s,, 1)) 
= Fk.,&Y* ,..., (Xi - X:)/2 ,..., Sn+l), 

when i < K or i > K + s. Setting (Xi - Xi1)/2 = X,-, we have that 
Xi- is the antisymmetric part of the variable Xi , and so Fk,,+i depends 
on 2k antisymmetric variables Xi-, i < K, i > K + s, plus the other s 
variables Xj , k < j < k + s, 

= F,,,+,(X1- , A-- ,..,, xk-, A-,,, ,..., Sk&$ ) s,,,., )...) X,,). 

We have similar results for the polynomials G,,, and H,,,, . In partic- 
ular, we have that for n = 2K - 1, the polynomials Fk,2k and G,,,,+, 
depend only on skew symmetric arguments. For n = 2K. the polynomial 
H,,.,2k depends only on skew symmetric variables, while Fk,Bk-cl depends 
on 2K skew symmetric variables plus the variable X,,, . 

Let us compute explicitely Fk,2k. Its formal expression in IsI; (4.8.1) 
is given by 

(Y) (u1u2 .‘. UkVIVZ ‘.. Vk I uk+l ..’ uzgl,;+l .” t&>. 
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Let us analyze the monomials appearing in the expression of (*). 
Let us call a monomial A!! pure if, in the scalar products, each u is paired 
with a zi and conversely. Such a pure monomial can be written 

where the indices i, s,..., z runs from 1 through K, and the indices 

j, t,..., w, from k + 1 to 2k. 
This monomial corresponds to a permutation u E 5$ , which in 

cycle form is 

(i,j,i,j, ‘.. i,j,)(s,t,s,t, ... s,$,) ..* (x1w1z2w2 ... zcwe). 

Any such permutation can be built from two bijective maps ol: 
(L..., k) -+ {k + I )...) 2k), and /3: {k + l,..., 2k) -+ {l,..., k). (5 is just the 
sum 01 + ,/I of the two maps. The monomial M, being one of the expan- 
sion of the determinant, corresponds to a map o between rows and 
columns. One easily verifies that 6 is equal to u on the first h rows and 
to @$A on the last k rows, where’p: {k + I,..., 2k) + { 1, 2 ,..., k} is the 
map i + i - k. The sign of M in the expansion of (*) is the signature 
of 6, but we claim that 0 and G have the same signature. In fact, compose 
u and 6 with r = p + p-i, then, 70 = PLOI + p-‘/3, with P’L, p-i/3 
permutations on l,..., k, k + l,..., 2k, respectively, while TG = 
pn + pp = pa -+ (p-l/3--1. 

Therefore, E(T) C(U) = +CL) . @l/l) = +x) E(P~~P) = C(T) ~(6). 
Let us return to M and write it as a trace monomial 

In the expansion of (*), all the impure monomials are obtained from 
pure monomials upon exchanging some uj’s with the corresponding ZJ~‘s, 
conversely given a pure monomial any monomial obtained by such 
exchanges appears; any time such an exchange is made the sign changes, 
if we exchange the uj’s and vj’s for all the indices in a cycle OL of the 
permutation u associated to a pure monomial, we obtain again a pure 
monomial. Its permutation cr’ is obtained from u exchanging the cycle a: 
with a-l. 

Therefore, given the pure monomial M, let us compute the contribution 
to (*) given by M and all the monomials obtained from M upon es- 



338 C. PROCESI 

changes. Making all possible exchanges except for the indices ir , sr ,.,., zr, 
we obtain the sum 

where N, = 2k - A, where h is the number of cycles in which u decom- 
poses. If we want now to complete the exchanges, we see that we obtain 
also trace monomials relative to permutation D’ obtained by substituting 
a cycle of u with its inverse. Since we want eventually to sum over all 
allowable u’s, we should not count twice the same term. This is achieved 
by substituting for Xf, , XL, ,..., Xi, the variables -X< , -XS, ,..., -X; 
without changing the coefficient 2”~. Noting that if a cycle is a trans- 
position, hence, equal to its inverse, we have the formal equality 
Tr(XitXj-) = Tr(X-X-). TO sum up, we have 

where pa, stands for the set of special permutations of type CY + fl, 
as above, e.g., 

F,,, = 2 . Tr(Xr-X2-) 

F2,4 = 8 Tr(2Y1-X,-X,-X-) + 8 Tr(X1-X6-X2--Y3-) 

4 Tr(X,--;I-,-) Tr(‘Y2-X-) - 4 Tr(Xi-X4-) Tr(X,-X3-). 

Of course, by lumping into a unique term all the monomials obtained 
from a permutation CJ and the 0’s gotten from u inverting the cycles, we 
can simplify the expressions: 

F2,4 = 16 Tr(X,-X3-X2-Xdp) - 4 Tr(X,-X3-) Tr(X,-X4-) 

Let us compute now F,c,,,c,,; rather than repeating the full reasoning 
we use a trick; introduce a new variable X2k+2 = z&x-+2 @ vkIit2 , where 
V’ 2k+2 = ‘k+l and uik,, satisfies (formally) the relations (ui , uik+J = 0; 
i= 1 ,***, k + 1 and (vi , z&.+~) = 0, i = I,..., k, while (cok+r , z&+2) = 1. 



INVARIANT THEORY OF ?Z X ?Z MATRICES 339 

Then, 

Now, we must eliminate all monomials in Fh+1,2k.2 in which we do not 
have the scalar product (q.+r , u&+~) = 1. Hence, we sum over all 
special permutations of 2k + 2 indices, where k + 1 is paired with 
2k + 2. Expanding the relative monomials, we use the computations 

Tr(Xk+,SK ... X;Xz,+,) = Tr(X< ... Xj<Sb+r), 

to eliminate the variable Xzk+, , and we obtain an explicit formula. 
Let us be content now to extract the trace identities for n x n matrices 

n < 3. 
We already know that F,,,, = F, of which we know the explicit 

formula. We must compute F,,, , Fl,3 , Fl,4 , F2,4 we have already com- 
puted F,,, and F2,4; Fla3 can be computed using the previous ideas 

Fl,3 = 4 Tr(lYr-X-XJ - 2 Tr(X;-S,-) Tr(&) 

As for Fl,4 we have 

Fl,4 = 4[Tr(X-XJ-) Tr(X,) + Tr(X,-X’,-XJ Tr(XJ 

- Tr(X,-X-,-XJJ - Tr( X-X*d--YJ,J - Tr( X2X-X,X1-)] 

- Tr(XI--YJ-) Tr(,Y.J Tr(,YJ + Tr(XI-Xa-) Tr(X.JJ 

From these computations it is easy to extract the formulas fo G,:,, , 
Hk,n for II < 3, and we leave it to the reader. 

10. Symplectic Invariants 

We consider now the vector space V = K2n endowed with the 
canonical alternating form: 

((Ul 7 u2 ,...1 u, , z’l ,‘.., %), (PIP, ,..., Pn 1 41 I..‘, qn)) = c (Wi -ppiQ. 
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We can proceed exactly as for the orthogonal case in almost all points 
and, therefore, we will only sketch the steps involved. First, the alter- 
nating form identifies V with its dual V *. Therefore, we identify End(V) 
with its dual V*. Therefore, we identify End(P) with V @ V. Under 
this identification, the product, trace, and adjoint involution are expressed 
as follows: 

(a) a @ b * c @ d = a @ {b, c)d, 

(b) Tr(a 0 b) = (b, a>, 

(c) (a @ b)* = -b @ a. 

The automorphism group of Y with its form is the symplectic group 
Sp(2n, K), and the automorphism group of End(V) with its involution 
* is Sp(2n, K)/{l, -l}. 

The theorems on invariants of the symplectic group that are necessary 
to carry the theory through as in the orthogonal case are the following 
[16, pp. 167, 1681. 

FIRST FUNDAMENTAL THEOREM. Every multilinear symplectic invariant 
p: v @ v @ ... @ v + K of 2k vectors is a linear combination of 
invaviants obtained by contractions 

Vl 0 ... @ v2* + (Vi, ) V;i,)' ." (Vi,,&, 1 V,"$. 

SECOND FUNDAMENTAL THEOREM. Every relation amongtheinvariants 
(v, w> is a consequence of the following basic relations 

/nil = 1 4~)<KAl) ,?lx%J(,) ,Y?j’ .” (TAnn+1) ,Ym,-1‘ . 
~E~211+l 

One deduces immediately from the first fundamental theorem and 
the theory already developed the following results. 

Call T(Sp)i,P.IL th e ring of invariants of i 2n x 2n matrrces under the 
symplectic group and S(Sp),,, the * algebra, over T(L$J)~,~~~ , of matrix 
valued concomitants we have: 
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THEOREM 10.1. (a) The ring T(Sp)i,Bn is generated, as a K aZgebva, 
by the elements Tr(M), where M is a monomial in Xj , Xj*, j = l,..., i of 
degree < 2” - 1. 

(b) The algebra S(Sp&,, is spanned, as a T(SP)~,~~ module, by the 
monomials of degree < 2” - 2 in the Xj , Xj*, j = I,..., i. 

As for the second fundamental theorem, one proceeds as in Section 8. 
First, one constructs the formal algebras T* and S* endowed with 
Tr and *. These are the same as the ones considered in Section 8 except 
that noxv, we will write ,Y + X* for the involution to remind ourselves 
that eventually, we want to compute the formal polynomials into matrices 
endowed with simplectic involution. 

Nest, one defines the maps VT~: T* + T(Sp),,,,, , and r8: S* + 

S(SPL,,,, 7 of which one wants to compute the kernels. Next, one 
constructs the polynomial ring in the variables ,<xi , sj::,, .(xi , yj>, and 
( yi , yj; , subject to the antisymmetry laws ,<x*i , xj> - -,/xj , xij etc. 
One consider the space I,,, spanned by the monomials of degree m in 
which x1 ,..., x,, , yi ,..., ynl appear, and identifies this space with the 
commutative trace polynomials in the variables Xj = x’~ @ yj , 
j = I,..., m. One should note that this identification is not the same as in 
Section 8, due to the new laws of the symboIs (2, w>. 

To establish the second fundamental theorem, we have to translate 
the relations (A) into trace polynomials, i.e., into elements of 1,,L . 
This clearly can be done in various inequivalent ways. The way to 
describe these translations is to stick to the notations of (A) and use the 
vectors y1 ,..., y2i-1 , x1 ,..., x2,rmh to form in all possible ways n + 1 
decomposable matrices X, ,..., X,-i . 

Due to the internal symmetries of the two sets of variables y’s and s’s 
in the polynomial Ji, it is easy to see that it is sufficient to choose a 
number h with 0 < h < i, write 2i - 1 = 2h + s and set 

With these notations, Ji gives rise to a trace polynomial denoted 
&@-1 ,**‘> &+i). 

The polynomials thus defined have the following properties: 
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(4 FL+1 is invariant under a permutation of the variables acting 
separately on the three sets X1 ,..., li’,; X,,, ,..., X,,,; Xs+h+l ,..., ,~~+i . 

(b) F,k+l is invariant under the exchange of Xj with Xj* for j > s. 

The proof of (b) is obtained by noticing that (a @ b)* = --b @ a. 
Hence, the exchange of Xj with X;.* involves a transposition and a 
change of sign, the formula for Ji gives then the result. 

Therefore, we can write 

%(X, 3. , X,,,) = F;,,(XI ,..., 9, , A-,+, ,..., S;+J, 

where as usual, X+ = (X + X*)/2. 
Finally, reasoning as we did for the orthogonal group, we deduce from 

each Fi,, three different noncommutative trace identities by singling 
out a variable out of each of the three sets X1 ,..., X,; X,,, ,..., -i,+, ; 
X sfhtl Y.**, X n+i . 

Fi,, = Tr(Gi,, . X,J = Tr(Hi,, . S,,?,) = Tr(Ki,, . 9,+). 

Finally, a procedure totally similar to the one of Section 8, 8.2, and 
8.4 gives the second fundamental theorem for symplectic invariants. 

THEOREM 10.2. (a) K er rs is the T-ideal of T* generated by the 
polynomials 

F;,,(S, ,..., S,+J 

(b) Ker rs is the T-ideal of S* generated by the polynomials 

Gi h,n P H;,, , l&, . 

We want to make only one explicit computation for the minimal 
identities. The minimal noncommutative identities are, of course, of 
degree n, and obtained from Fign . A priori, one has two identities G,1,, 
and K,1,, , in reality, for this case, one sees that the variable yr is not 
privileged, since it may be paired with any other variable, hence, we 
deduce a unique noncommutative identity of degree n. Its computation 
is possibly made simpler by changing notations and writing X, = xi @ yi, 

Xs = x2 0 y2 ,..., X,+, = x,+~ 0 yn+l , and J1 1 C E(U)< , yn+rj( , > *a* 
< , ). the blanks being filled in all possible ways by the remaining 
symbols. First, transposing two symbols appearing in a single bracket, 
one obtains the same term, hence, collecting all such terms a factor 2”. 
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Normalizing by dividing for this factor, one has a polynomial that is 
obtained as a sum of pure monomials in which in each braket, an x is 
always paired with a y in the order (x, y). 

The impure monomials are obtained from these on substituting some 
variables -‘;i , j < n + 1 with -Yj *. Finally, one sees that, after taking 
out XT1 > we obtain the polynomial that is formally equal to G(Xr,..., XJ 
of Section 4, except now, the variables are taken symmetric; i.e., G is in 
the variables Xj+ = (Xj j AYj*)/2, j = I,..., n. Therefore, we obtain 
the analog of 4.4(c). 

PROPOSITION 10.3. The minimal noncommutative trace identity for 
2n >’ 2n symplectic matvices is G(X,+,..., X,7). It is obtained by full 
polarization of the Pfafian polynomial of a symmetric matrix. 

Piroof. We recall that the Pfaffian polynomial of a is obtained as the 
characteristic polynomial by the expression Pf(x . 1 - a). The proof 
of 10.3 is trivial by the uniqueness of the minimal noncommutative trace 
identity, as in 4.4. 

11. Unitary Invaviants 

Let L’ = C” be the n-dimensional vector space over the complex 
numbers, and endow V with the canonical Hilbert space structure: 

((a 1 ,.... a,), (6, ,-.., 6,)) = c ad, * 
The group of linear transformations compatible with the given 

Hermitian form is the unitary group U(n). The algebra End(V) is 
endowed with the canonical involution A + A*, which in matrix form 
is A* = Al. The theory of invariants for U(n) is slightly twisted with 
respect to the orthogonal group theory because of the two following facts: 

(i) U(n) is not an algebraic group. 

(ii) The involution * on End(V) is of the 2nd kind, in fact in* = & 
for any scalar 01. 

The way to deduce the invariant theory for U(n) from the one already 
developed is based on the following remarks. 

(iii) The automorphism group of End(V), as algebra with involu- 
tion over C, is r = U(n)/T, T = {a E C* ’ 1 01 1 = 11. 

(iv) The automorphism group of End( V) as algebra with involution 
over R is the semidirect product of r with Z/(2) = {l, T> acting on r as 
{aF == {a’}-’ ((a} the class of a E U(n) modulo T). 
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(v) The Zariski closure of U(n) in the algebraic variety GZ(n, C) 
is Gl(n, C) itself [16, p. 1771. 

This last assertion is essentially the Unitarian trick of H. Weyl. 
We consider End( I’) as a real vector space and construct End(V) 0, C 

with the involution (u @ a)* = a* @ a. 
Then, End(V) 0, C as a * algebra is isomorphic, over C, to 

End(V) @ End(V) = (C),, @ (C), with the involution (a, 6)* = (bl, at), 
its automorphism group (as * algebra over C) is easily described. It is 
the semidirect product of Z/(2) with PGZ(n, C); an element c E GZ(n, C) 
induces the inner automorphism (a, b) -+ (MC-l, (cl)-lbcl) and Z/(2) acts 
mapping (a, 0) into (6, u) ( an d on PGZ(n, C) sending c into (c/)-i). 

In particular, we consider U(n) C GZ(n, C). 
Let us restrict the action of Gl(n, C) on (C),, 0, C N (C),, @ (C), 

to U(n). Then, the map of (C), + (C), @ (C), , sending a into (a, a), 
is compatible with the U(n) actions, where (C),, has the usual action of 
conjugation: u E U(n), a E (C), , u acts on a giving UUZ~-~. 

If we sum all the remarks, we see that: 

(a) The ring of complex valued polynomials on & ((C),, OR C) 
is isomorphic to the ring of polynomials on the real vector space oj (C), . 

(b) The invariants under U(n) coincide with the invariants under 
GE+, C). 

To conclude, we have to see what is the GZ(n, C) module M = 

Oj (CCL CD tc)n)* 

LEMMA 11.1. The given Gl(n, C) representation on M is isomorphic 
to the canonical representation, (C)“,i on 2j tuples of matrices, by sending 

((~1 , bl), (~2 , bz),..., (uj , bj)) into 

((ul > bit), (62 7 bz”),..*Y (aj , b,t)). 

Proof. This is trivial by the formula 

((c-y bc’)t = &c-l. 

Summing up all these remarks and recalling the formula for the 
embedding of (C), into (C), @ C ‘v (C), @ (C),, , we have: 

THEOREM 11.2. (a) The unitary invariants TU,,, of j complex 
matrices Xl ,..., Xi aye polynomials in the elements Tr( Wi, ,.. ,, IV,,), 
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where Wj = Xi , OY Wj = -Yj*. As a ring, it is isomorphic to the ring qf 
Gl(n, C) invariants of 2j matrices X1 ,..., Xj , IY,* ,..., Xj*. 

(b) The unitary matrix valued concomitants SLlj,n of j complex 
matrices X1 ,..., Xj are an algebra generated over TU,,,, by the elements 
xi ) ‘Yi*, i = I,..., j. As an algebra, it is isomorphic to the algebra of 
Gl(n, C) concomitants of 2j matrices ,Yi , Xi*. 

We remark that this theorem contains implicitely also the second 
fundamental theorem, it describes formally the rings TL’ and SU as 
isomorphic to rings already considered. 

The involution that, as a function, is induced by *, can be thought of 
formally as the involution of the 2nd kind obtained as * on C and as the 
exchange of the two distinct variables X, with Xi*, i = I ,..., j. 

12. Mixed Invariants and Concomitants 

We consider now the problem of studying the simultaneous invariants 
of matrices, vectors and covectors. For simplicity, we will restrict 
ourselves to Gl(n, K) the other cases being similar. Since the study of 
relative invariants of Gl(tz, K) is equivalent to the study of absolute 
invariants of S&n, K), we will refer to this group when talking about 
invariants. 

We consider, thus, the ring T1i,Ti,h,t of invariants of K n I* I2 matrices, 
h, n-vectors, and t, n-covectors, and we have: 

THEOREM 12.1. T,,,(,, is generated by the following elements: 

(a) Invariants of k matrices alone. 

(b) Scalar products (~j , Mvi>, where M is a monomial in the given 
matrices, vj a covector, vi a vector. 

(c) Brackets [Ml~i, , Mzvia ,..., Mnvi,], where the Mi’s are mono- 
mials in the matvices and the vj’s aye vectors. 

(d) Brackets [M1’qi,, ~~‘~i, ,..., Mmt~i,l, where the M,‘s are 
monomials in the matrices and the vj’s are covectors. 

Proof. It is immediately verified that, upon polariztion and restitution 
of variables, an expression involving the elements of the previous type 
remains of the same type. Therefore, it is sufficient to deal with multi- 
linear invariants. 

Assume that the given multilinear invariant depends on i matrices 

607/‘9/3-6 
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4 , A, >...> Ai , j vectors and x covectors y1 ,..., v2: . Hence, it is described 
by a multilinear map 

End(V) @ End(V) @ ... @ End(V) @ V @ ... @ V @ F* @ ... @ V* 4 K. 
i-Times j-Times z-Times 

By the identification, End(V) ‘v V* @ V, we have an invariant 

The classification of such invariants [16, p. 451 ensures that $ is a linear 
combination of invariants of one of the following two types: 

(1) [Vi, ,..a, Vi,lhl 7***> %,I *.. bt, >‘.‘, qpul > vsl) ... <%, 7 vs,), 
where & ,..., i, h, ,..., h, ... t, ,..., t, s1 ,..., s, IS a permutation of the 
i + j vector indices and ur ,..., u, is a permutation of the i + 2 covector 
indices. 

(2) The same expression where the brackets of vectors are replaced 
by brackets of covectors. 

One can assume that one does not have at the same time brackets of 
vectors and of covectors due to the relation: 

h > n2 >...> %Ll[% ,..., pnI = det((pj , G). 
Let us consider the type (I), type (2) being perfectly similar. 
Let us analyze the factor [v~, , nL)i, ,..., vJ. If all the indices ir ,..., i, 

are vector indices (and not matrix indices), we save this factor and pass 
to the rest of the product; otherwise, say ii is one of the matrix indices. 
Let us write Ai1 = yil @ vi, , qi, is necessarily paired in a scalar product 
with a vector <yi, , v$. 

If t, is a vector index we have, setting vi, = (z..~, , qi,) vi, that u;, = 
Ailvrl and 

(Pi, 3 %,i[%l ,*-*7 win1 = [d, 9 viz r---s q&l> 

and we continue on the other indices. 
Otherwise, we keep matching the matrix indices 

<Fi, 7 %lx?Jt, 9 nt,) ... 

until we hit a vector index t, and then we have 
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One preceeds similarly for all the vectors in the brackets. As for the 
remaining scalar products, we have a similar procedure of matching 
the matrix indices and one easily sees that in doing this, one obtains the 
factors of type ,(v, fMz> and Tr(M), where n/r is a monomial in the 
matrices. The second case is, as we have said, similar except that 
matching the matrix indices with a covector F, one obtains a monomial 
in the transposed matrices. (Of course one could have considered 
invariants (‘M+, NzJ), but they are just ‘I?, MNzj.) 

We describe now the concomitants. 
Remark first that, over Sl(n, K), we have the identifications An I7 ,‘v K, 

A” I’* ‘v K, A+-l I’* ‘V T;, A”-’ V e V*. With these identifications 
the “brackets” (ArLpl I’) @ V + K, (APL-l V*) @ I/* --f K, are iden- 
tified with the usual brackets < , :, V @ V* + K. Keeping these 
identifications in mind, plus the usual identification End(V) ‘v V* @ V, 
we formulate the main result. 

THEOREM 12.2 (a) The vector valued concomitants form a module 
over ThSh, t spanned by the elements Jlivj , MItTi A M,$iz A . .. A M~_,cpi “;I 
where the Mj’s are monomials in the matrices, the vj’s vectors and the yi s 
are covectors. 

(b) The covector valued concomitants form a module over T,,.,h,t 
spanned by the elements Mitqj , MIvi, A M,viz A ‘.’ A IW,,+~Z~~ n--l ’ where 
the IVj’s are monomials in the matrices, the yj’s are covectoss, and the ~9~‘s 
are vectors. 

(c) The matrix valued concomitants form an algebra over T,;,,,,, 
generated by the elements A, , yh @J vj , (MIvi, A *.. A iCl,t-lvi,,-l) @ vj 

and qua @ (MIt~i, A Mzt~i, A ..’ A MS-IP)i,_l), where, as usual, the Ai’s 
are the matrices, the Mj’s monomials in the matrices, the z:~‘s are vectors, 
and the cpi’s are covectors. 

Proof. (a) Let us introduce an extra variable covector 40. If g is a 
vector valued concomitant, then (p, g> is an invariant linear in 9. 

Furthermore, (y, g> = 0 if and only if g = 0 since q~ is an independent 
variable. 

By the classification theorem (12.1), L y, g> is a polynomial in the 
invariants of types (a)-(d). 

Now we make a case analysis. Clearly, 9 appears either in a factor of 
type (b) or in one of type (d). In the first case, we pull out the factor Mv 
and see g as this factor times an invariant; in the second case, we arrive 
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to the factor M,$J~~ A M~‘~i2 A **. A MA-,~I~~~~ using the identifications 

= (v, W*Wf) pi, A ... A W*M:-1) vi,,+,?. 

M* the matrix defined formally by (det M) . (Ml)-l. The Cayley- 
Hamilton theorem for Mt shows that M* is a polynomial in Mt and 
Tr((Ml)<). 

(b) This is dual to (a), so we do not repeat the proof. 

(c) In this case, we introduce an extra matrix variable as in 2.1, 
and associate to the matrix concomitant g the invariant Tr(gx), from 
which g can be recovered. Then, we make, as in (a), a case analysis of 
the expression of Tr(gx) in terms of the basic invariants. 

If z appears in a factor Tr(M), we single out in g a term 01 * N, 01 an 
invariant, N a monomial in the matrix variables. If z appears in a 
monomial M in a factor (v, M-u), we single out in g a term 01 * N, cx an 
invariant and N a monomial in the matrix variable plus the matrix 
concomitant v @ z?. If 2 appears in a monomial, say Ml , in a bracket 
[MA, > J&vi2 >..., Mmvi,,l, we can set 

where N is a monomial in the matrix variables plus the matrix con- 
comitant 

(M,ail A ... A iwvLvin) 0 vi, . 
We have not bothered to write explicitely the finiteness statements for 

all the various cases, since they are obvious consequences of Theorem 3.4. 
Similarly, one can write the second fundamental theorem in all cases 

considered by taking the second fundamental theorem for vectors and 
covectors and using the method of matching the matrix indices. 

The resulting theorem would be very messy, in reality, what one 
proves, is that we have the following “free additing category with exterior 
product.” 

The objects are: The vectors M, the covectors M*, the exterior powers 
of them: Ai M, Aj M*. Freely generated by: vectors (ZQ E M}i=l,...,,; 
covectors (~j E M*)j=1, ,, ,,cc; matrices {X, E hom(M, M)}k=l, ,.,, no , with 
all the formal onerators: 



INVARIANT THEORY OF ?Z >: ?Z MATRICES 349 

(a) The pairing: (x, 6) -+ x @ 5, M :< M* --f hom(M, M); 

(b) Transposition: X + X*, hom(M, M) --t hom(M*, M*). 

(c) Trace: hom(M, M) + A0 M. 

(d) Evaluation: (2, <) --f <x, t>; M x M* + A0 M. 

(e) Object isomorphism: A” M Y A7i-‘L &‘*, A0 M ‘v A0 M*. 

Then, one has to write the usual formal axioms and then, the resulting 
rings and modules are the ones under consideration. 

This is the form that the second fundamental theorem takes. The 
method of proof is by full polarization and the method of matching the 
matrix indices in the resulting formulas taken from the second funda- 
mental theorem as proved by Weyl. We hope to give a more detailed 
account of these ideas elsewhere, they seem to be related to the concept 
of Cayley algebra introduced in [2]. 

II. REPRESENTATIONS OF *-ALGEBRAS 

13. *-Algebras and Representations 

We want to extend here the theory of Artin on representations of 
algebras [l] (see also [7, Xl). Th e case treated by Artin is the one relative 
to the group GL(n, K). Here, we treat the other classical groups, for 
which a similar theory can be developed. 

We are not going to discuss the theory in the generality that perhaps 
it deserves. In particular, we will stick often to our assumption that the 
fields under consideration have characteristic 0, although it will be 
apparent from the proofs that most results extend to characteristic p > 0 
or even to the characteristic free case. 

We hope to return to this point elsewhere. We recall that a ring with 
involution is, a ring R, with a map a + a* satisfying: 

(i) (a + b)* = a* + b*, 

(ii) (ab)* = b*a*, 

(iii) a** = a. 

Rings with involutions form a category, if we insist that a map v: R + S 

between such rings is a homomorphism preserving *. 
We will consider, rather than rings, algebras with involutions over a 

field K (or more generally over a commutative ring LI). We will refer to 
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such rings as * algebras. The map * may be either the identity or an 
automorphism of order 2 on K. In practice, we will consider this second 
case only when K = C and CL* = ?X on C. 

The relation among involutions and forms is the usual one. Given a 
finite-dimensional vector space V over a field K, and a nondegenerate E 
symmetric form (6 = &l), the algebra End(V) is equipped with a 
canonical involution having the property that (a*~, w) = (ZI, aw). 

If E = 1, we will refer to the involution as transposition otherwise as 
symplectic involution. 

Similarly, when K = C, and V is equipped with a nondegenerate 
Hermitian form, End(V) is endowed with an involution called adjoint. 

We will study the following objects. 
Given a vector space V with a form of one of the previous three types, 

and a * algebra R, a * representation of R in V will be a * map 9: 
R -+ End(V). 

In the language of modules, v gives rise to an R module structure 
on V, the hypothesis that ~JJ is a * map becomes 

p*w, w) = (a, Y w), for all v, w E V, Y E R. 

We will speak, respectively, of an orthogonal, symplectic, or unitary 
representation according to the nature of the form on V symmetric, 
antisymmetric, or Hermitian. 

We have the natural notion of equivalence, for representations of the 
same type. 

Two representations 9): R -+ End(V), $J: R + End(W) will be called 
equivalent, if there exists an isometry U: V -+ W for which 

In the language of R modules, u is an R-linear isometry. In this 
situation, we will also say that the two modules are isometric. 

In particular the group of isometries of a space V acts on the set of * 
representations of R and the orbits of this action are the equivalence 
classes of representations. 

To give a concrete example, which is also fundamental for the theory, 
we specialize to the case that R is a free *-algebra. 

We will consider three different types of free algebras. Given a set 1, 
construct on the category of * algebras the three set valued functors: 

R c+ R’, R C-G- R+‘, R t-+ R-I. 
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R+ and R- will always denote the sets of symmetric, repectively, anti- 
symmetric elements of R. 

Each of the three given functors is representable. 
The representing algebras are constructed in this way. 

(a) The free algebra K(xi , yijiel with the involution assigned by 
the rule xi* = yi . This will be called the free *-algebra in the variables 
xi , we will write xi* rather than -vi and thus, K{xi , yJ will be denoted 
K(Xi ) xi*>. 

(b) The free algebra K(x~}~,, with the involution defined by 
x.* = xi. , Th is will be called the free *-algebra in the symmetric 
variables xi . For convenience of notation, we will write si rather than 
xi . 

(c) The free algebra K{xJi,, with the involution defined by 
x.* = 2. -xi . This will be called the free *-algebra in the antisymmetric 
variables xi . For convenience of notations, we will write ti rather than xi . 

There is a very simple relation between these algebras as soon as 
Q E K. In this case, the canonical decomposition R = R+ @ R- gives 
rise to the canonical isomorphism 

where J’J denotes the free product and 

s; =E (Si -1 si*)!‘2, t, =I (Xi - q*):‘2. 

Giving a representation q of K{xi , xi*> in End(V) is equivalent to 
assigning the elements ai = 9(x() E End(V). 

The equivalence of two such representations {a,}, (hi} corresponds to 
the existence of an isometry u with ZUQU-~ = hi , for all i. 

We see, therefore, that we are considering exactly the actions studied 
in Part I, for which the invariant theory has been developed. 

Thus, our task will be to relate the invariant theory to the problem of 
equivalence of representations. This is our final goal. 

We need some further notations and generalities. 
Let us give a vector space V, without any form, and a map cp: R + 

End( I’), with R a *-algebra. 
We can deduce, from this map, an orthogonal and a symplectic 

representation as follows. 
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(a) Construct the dual representation y*: R + End(V*) by the 
formula T*(Y) = ~(y*)~. 

(b) Construct the space W = V @ I’* and the direct sum repre- 
sentation, 9: R 4 End( IV), of q and y*. 

(c) Equip W with the canonical E-symmetric form: 

((24 0, (w, 5)> = i[<v, 5> + 4% ‘31. 

One readily verifies that g, is in each case a *-map. We will denote the 
orthogonal and symplectic representation so defined by qua, cps, respec- 
tively. 

In our future work, it will be important to endow, in the previous 
situation, directly I’ with a form for which y is a * representation. Such 
a form will be called a compatible form. In some cases, such a form may 
not exist at all, in other cases, many inequivalent compatible forms may 
be constructed. 

In the next section, an important special case will be studied for which 
one has existence and uniqueness. For the moment, let us make one 
further general remark. Given a left R module V we construct a right R 
module I’# by the formula: 

VP = r*v. 

Next consider the abelian group V# OR V = T. 
If B: V x V+K is a compatible form we have an induced map 

B: T --f K making the diagram 

v x J’ Fv#@Rv 

commutative. 
The group V+ OR I’ is equipped with an involutory map T: ZJ @ w -+ 

w @ V; B will be E-symmetric if and only if B * T = EB. 

14. Semisimple *-Algebras 

We want to specialize the general discussion of the previous paragraph, 
to the case that R is a semisimple *-algebra. The theorems that we will 
prove are mostly well known, in some cases even in a much greater 
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generality, we have chosen to reproduce them here for lack of a coherent 
reference taking our point of view of representation theory. 

Let R be a semisimple _trtinian *-algebra, 

Ri a simple algebra. 

The involution * induces a map of order 2 on the set of simple factors 
Iii; therefore, we can subdivide this set in the factors Ri that are fixed 
under *, and the remaining ones exchanged: 

R = 6 Ri 6 (Sj @ Sj*), (Ri = R,*). 
&l i=l 

Sj* is isomorphic, via *, to Sjo (the opposite algebra). 
The * algebra Sj @ Sj* is thus isomorphic to the * algebra Sj @ Sjo 

with the exchange involution (a, b)* = (b, u). 
We want to analyze modules over R. 

THEOREM 14.1. Let R be a simple *-algebra, let V be an irreducible R 
module. A = End,(V), the centralizer of R. 

(a) There exists an involution * on A and a nonzero biadditive map 
B: V x V + A such that: 

(i) B(r*v, w) = B(v, rw)for all v, w E V, and r E R. 

(ii) B(dv, w) = dB(v, w); B(v, dw) = B(v, w) d* for v, w E V, d E A 

(iii) B(v, w) = EB(w, v)*, E fixed, and E = fl. 

(b) Condition (i) implies that B is nondegenerate, i.e., B(v, w) = 0 
for all v E V implies w = 0 and symmetrically for all w E V implies v = 0. 

(c) The involution on A and the form B are unique up to the following 
changes. 

If *, # are two involutions on A, B, , B, the corresponding forms on V, 
there is an element a E A, a # 0 and a* = Ea (6 = +l), such that: 

(iv) b# = ab *a-l, B,(v, w)a = B,(v, w) for all v, w E V. 

(d) i’f A ’ ji ‘t d zs nz e imensional over its center K, every involution on A, 
coinciding on K with the automorphism induced by the involution on R, is 
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obtained in the way described before. Provided that, given E E K, if e* = 1, 
then E = &(~/cx*), 01 E K. 

(e.g., if * is the identity of K or conjugation of the complex numbers.) 

Proof. (a) With the notations of Section 13, consider the group 
I/# OR v with its involutory map T. 

v N R/I, I a maximal left ideal, as an R module. 

Similarly, V# ‘V R/I* and I* is a maximal right ideal. Thus, V* OR V N 
vp*v CT? V”/V#I as abelian groups. Consider V as a vector space over d, 
we have an induced vector space structure on V+ OR V, which makes 
it isomorphic to V/I* V. Since I* is a maximal right ideal, V/I* V is one- 
dimensional over A. 

Similarly, we can act on the first factor V#. 
We obtain, therefore, two structures of vector space over A for 

V# OR V, both one-dimensional. 
Denoting c and o the previously defined operations, one has: 

d n (v @ w) = v @ dw, d o (v @ w) = dv @ w 

T(d o (v @ w)) = d o .(v @ w) 

d, G (d2 q (v @ w)) = d,v 0 d,w = d, q (dl o (v 0~)). 

Let us now analyze 7. We may have three possibilities: 

(1) 7(m) = m for every m E Vi’ OR V. 

(2) 7-(m) = -m for every m E V# OR V. 

(3) None of the above. 

We remark first: In case (1) and (2), A is commutative and * is the 
identity on the center A of R. 

Let us show it for (l), (2) being similar. 
From T(m) = m for all m, we deduce d o m = T(d o m) = d c T(m) = 

d q m. The two operations O, c coincide, and we denote them by dm. 
From dl o (d2 E m) = d2 q (dl o m) we deduce d,d,m = d2dlm, and so 
A is commutative and thus, identified to the center of R. Finally, if 
Y E R, (r*v) @ w = v @ rw, if, furthermore, Y E A, (r*v) @ w = 
r* * (v @ w), and v @ rw = r * (v @ w), hence, r* = r. 
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Any choice of a basis element m + 0 in V OR V, identifies this space 
to d and thus, the canonical map V ,i V + V+ OR V gives rise to a 
formB:VX V+d?T’@,V. 

In case (l), B is symmetric, while in case (2), it is antisymmetric. The 
involution on d is, as we have noticed, the identity. In these two cases, 
the uniqueness of B is clear, every compatible form factors through 
V* OR V, so it amounts to chasing an isomorphism of V# OR V with d. 
This is unique up to a nonzero scalar n Ed, (I -= a*, since * is the 
identity on A. 

For case (3), consider the elements w = T(m) f m and 71 = c-(m) - m 
in V# OR V. We have T(W) = w, while T(Z)) = --z’. In our present case, 
we can choose w and v to be nonzero. 

Let us restrict our attention to the choice of w with T(W) = w f 0. 
Define a map * on A by the formula: T(d c w) = d* ‘2 w. We have: 

d o w = ?(d o w) = T(d* c: w) = d”* c zo 

(bd)* s w = T((bd) o w) = b q .(d o W) = b q (d* ? zu) 

= d* o (b q w) = d” o (b F T(ZU)) = d” n (T(b o w)) = d” G (b* L) zu). 

Thus, d** = d and (bd)* = d*b* for all 6, d E A. The * is, therefore. 
an involution. 

We use w finally to identify V OR V with A by the map d -+ dw. Let 
us callj the inverse of this map, one readily verifies thatj(d o U) = dj(u) 
and j(d o U) = j(u)d*, this proves (i) and (ii) for the form V x V + 
VgR V-JA. 

Part (iii) is also clear with E = 1 by the fact that T(W) = w and the 
definition of * on A. 

Everything we have done for the choice of a 7 symmetric element w 
could have been repeated with the choice of 2, with T(V) = -v. 

In this case, the involution is defined by T(d 3 w) = -d* 3 w, the 
resulting E is - 1. 

(b) If B(z), w) = 0 f or all w E V and we had o # 0, choosing 
v’ E V, we can find, by the irreducibility of V, an Y E R with v’ = YV. 
Hence, B(v’, w) = B(v, Y*W) = 0. We could deduce that B is 0. 

(c) Assume that B is a form with the prescribed requirements. 
By the universal property of V OR V, we have a map i?: V# OR V -+ A 
such that 



356 C. PROCESI 

(1) The diagram 

is commutative. 

(2) B ‘7 = EB 

(3) B(d 0 u) = d&L), B(d 0 24) = B(u)d”. 

In particular, since B f- 0, B is an isomorphism between the vector 
space V# OR V with the operation 12 andd.LetwEV#@, Vbesuch 
that B(e) = 1. 

Since &T(W)) = EB(w) = E, we have T(W) = EW. 
Formula (3) tells us that the involution on d is necessarily the one 

deduced from W, according to the procedure used in (a). Finally, to 
compare it with the previously chosen involution and form relative to w, 
let us indicate *, # h t e involutions relative to w and 6, respectively. Let 
us assume T(W) = EW, T(W) = E%, E, E being 1 or - 1. 

Then, w = a P w, and EC? = T(W) = ea* w; hence, a = (EE) a*. 
Moreover, ~(d c W) = Ed o w and T(d r: W) = T((da) c w) = 

l (da)* (: w = ea*d*a-%, hence, d* = ad*a-l. Finally, calling the two 
forms B, , B, , we have B,(a, 3)~ = ZJ @ s = B,(v, Z)W, thus B,(n, z) = 
B,(v, z)a. 

(d) Let # be any involution on d, coinciding with * on K. The 
map cp: d -+ (d#)* is then an automorphism of d, which is the identity 
on K. Therefore, F is an inner automorphism and there is a c E d with 
(d#)* = cdc-l for every d E A. 

Hence, d+ = (c-i)*d*c*. Set a = (c-l)*, the only thing that remains 
to be proved is that a* = EU with E = + 1. Since # is an involution, we 
have d = d## = (c-l)*((c-l)*d*c*)* . c*, or d = aa*-ld(aa*-l)-l. From 
this, we deduce that aa*-l E K. Set E = aa*-1. Thus, a*e = a. Applying 
*, we have a8 = a*, and using the two equalities, EC* = 1. By hypo- 
thesis, E = &(cx/cY*), set z = sol, 8 satisfies the conclusion. 

Let us now restrict our attention to finite-dimensional semisimple 
*-algebras over an algebraically closed field K, with the further restriction 
that * is the identity on K. 
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COROLLARY 14.2. If R is a simple *-algebra over AT, as before, R is 
isomorphic to one of the two algebras: 

(a> II x n matrices with transposition. 

(b) 2n Y 2n matrices with symplectic involution. 

Furthermore, any irreducible module has a unique compatible form up to 
a scalar multiple. 

In particular, in case (a), ezery irreducible * sepresentation of R is 
orthogonal, and any two such representations are isometric. In case (b), 
every irreducible * representation of R is symplectic and any two such 
representations are isometric. 

Proof. This is a special case of 14.1, once one recalls that, over an 
algebraically closed field K of characteristic not 2, a nondegenerate E 
symmetric form on a space V is unique up to isometry. 

Remark. If S is a central simple algebra with involution of the 
first kind, finite dimensional over its center K, and R is the algebraic 
closure of K; S OK ki with the involution (a @ z)* = a* @ Y is one 
of the two previous types. 

We will say accordingly that S has transpose or symplectic involution. 
If dim, S = r?, S has transpose involution if and only if dim, S-t = 
n(n + 1)/2, and dim, S- = n(n - 1)/2; if S has symplectic involution, 
then of course, rz = 2nr is even and dim, S’ == ~~(11 - 1)/2, dim, S- = 
n(n + 1)/2. 

If a is an invertible symmetric element, we can define a new involution 
on S by the formula d” = ad*a--l, # has the same type as *. 

If a is an invertible antisymmetric element, the formula d- = ad*a-1 
defines also an involution on S of type opposite to the one of *. Such an 
element exists if and only if n is even. 

The same reasoning as in 14.1 (d) h s ows that every involution on S is 
deduced from * in the previous way. An easy computation shows finally 
that, if # and b are two involutions deduced from * by the elements a, 
a’, respectively, # and b give rise to isomorphic *-algebra structures on S 
if and onlv if there is an invertible element c E S with c*c = a’a-1. 

LEMMA 14.3. Let R = S @ So be a *-simple (but not simple) algebra. 
Let V, (resp. V”) be an irreducible S module (resp. So module). 

(a) W = V @ V” has a nonzero symmetric compatible form B. 
B is unique up to a scalar multiple and necessarily nondegenerate. 
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(b) W = V @ V” has a noncero antisymmetvic compatible joym B. 
B is unique up to a scalar multiple and necessarily nondegenerate. 

Proof Let us consider W+ OR W; we easily see that W” OR W N 
(V” OS V) GJ (V C&o VU), w h ere we consider V” as a right S module 
and V as a right So module in the natural way. The two summands are 
both one-dimensional over K and 7 exchanges them. 

Let us choose a nonzero vector u E V” OS V and set 

If B: We OR W -+ K is a linear map, B corresponds to a symmetric 
compatible form B if and only if B(u) = B(u); B corresponds to a com- 
patible antisymmetric form B if and only if B(u) = -B(U). Therefore, 
the existence and uniqueness of B in both cases is ensured. The non- 
degeneracy of B is proved as in 14.1; one remarks that V and V” are 
isotropic subspaces of W that are set in duality by B. 

We can read the previous lemma in the language of representations, 
using the notations of Section 13. 

Let us call 9, q”, # the representations of S @ So on the vector spaces 
V, V”, V @ T/O, respectively. 

COROLLARY 14.4. (a) CJJO is isomorphic to p?*. 

(b) $ is equivalent to q? and qs$, respectively. 

(cl Any * representation isomorphic to # is isometric to @ or to @. 

We plan to extend now the previous results to not necessarily ir- 
reducible representations. 

We deal first with the simple case, then with the case R = S @ So. 
Let R be a simple *-algebra and V an irreducible R module. Any R 

module is isomorphic to V OK U, where U is a vector space and R acts 
on the first factor. 

LEMMA 14.5. Let R be simple with transpose involution (Yesp. symplectic 
involution). 

(a) If U is odd-dimensional, W = V OK U possesses a symmetric 
nondegenerate compatible form B and no antisymmetvic nondegenerate 
compatible form (resp. W possesses an antisymmetric and no symmetric 
compatible form). B is unique up to R linear isometries. 

(b) If U is even-dimensional, W possesses both a symmetric and an 
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antisymmetric compatible form. Both forms are unique up to R linear 
isometries. 

Proof. Consider W+ OR IV, it is isomorphic to ( V+gRV) OK ( UBKU). 
This implies that a compatible nondegenerate form on W is the tensor 
product of a compatible form on k’ with a nondegenerate form on ci. 
The form on V is, by 14.2, uniquely determined up to a scalar and it is 
symmetric or antisymmetric, according to the type of involution on R. 

The form on U can be chosen only symmetric if E is odd dimen- 
sional, otherwise it can be chosen both symmetric or antisymmetric. In 
each case, such a form is unique up to linear isometries of I:. The claims 
follow immediately. 

For the algebra R = S @ So, we have a similar result, a typical R 
module is of type IV == I’ OK [:I 0 T’O OS r7? . 

LEMMA 14.6. A compatible nondegenerate form on W exists if and 
only if dim U1 = dim CT, . 

In this case, one can choose both a symmetric or an antisymmetvic com- 
patible form on W. 

Such a form is unique up to R linear isometrics. 

Proof. Assume that B is a nondegenerate compatible form on W. 
Let e denote the unit element of S, e* is the unit element of SO. 

If w, ~1 E V @ U, we have 

B(w, u) = B(eza, z) = B(w, e-z>) = B(w, 0) = 0. 

Thus, I/ @ Ui is an isotropic space, similarly, V” @ Uz is isotropic. 
The nondegeneracy of B implies that dim I’ @ Ur = dim V” @ 7Ya, 

hence, dim U, = dim Uz. Set U1 = IJ, = Uand construct W+ OR W = 

NV0 OS q 0 (V @so 7;/‘O)l 0 (U OK U). 
As in 14.5, we see that a compatible symmetric nondegenerate form is 

the tensor product of a compatible symmetric form on V @ V” with a 
nondegenerate symmetric form on U, or the tensor product of a com- 
patible antisymmetric form on P @ V” with a nondegenerate antisym- 
metric form on U. Similarly, for a compatible antisymmetric form. 
Clearly, the forms obtained in each case are isometric over R. Thus, to 
conclude, we have onIy to compare any form obtained as a tensor 
product of two symmetric ones with one obtained as a tensor product of 
two antisymmetric ones (similarly in the antisymmetric case). We have, 
in each case, complete freedom of choice by the previous remarks. 

Let us choose a compatible symmetric form given by a linear map B on 
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(V” @s V) 0 (V & VO). A compatible antisymmetric form B is 
obtained from B by defining B = B on V” OS V, B = -B on F OS0 V”. 
Now, write U g P @ P*, P a vector space, equip U with the canonical 
hyperbolic form H and the canonical symplectic form S, given in 
Section 13 (i), (ii). 

It is immediately verified that B @ H = B @ S, and so the lemma 
is proved. 

We are now ready to prove the conclusive theorem on semisimple 
modules. We need to fix our notations. Let 

be a semisimple *-algebra. The terms Ri are the ones with transpose 
involution, the Sj the ones with symplectic involution, and Tk is exchanged 
with Tko. Let Vi , i = l,..., s; Wj , j = l,..., t; Z, , Zko, k = l,..., ZL be 
the irreducible modules over Ri , Sj , Tk: , and Tko, respectively. 

Consider an R module M, M is isomorphic to C ntVi + C mj Wj + 

c PkZk + c 4kZk0. 

THEOREM 14.7. (a) M has a compatible symmetric form if and only if 
mj is evenforj = l,..., t, andp,; = qk for k = l,..., u. Any two such forms 
are isometric over R. 

(b) M has a compatible antisymmetric form if and only if ni is even, 
i = I,..., s, andp, = qkfor k = l,..., u. Any two such forms are isometric 
over R. 

Proof. Let ei , fj , gk , gko7 respectively, be the unit element of Ri , 
Sj , Tk , and T,O. We have 

e.* = ei , I .h* = fj , g,” = &O, t$+ = g,. 

Let us carry out the proof of (a), (b) is perfectly similar. If B is a 
compatible form on M, then, since the idempotents ei , fj , g, + gko are 
symmetric and orthogonal, we have the decomposition of M in the 
orthogonal subspaces eiM, fjM, (gk + g,O)M. Thus, B is the direct sum 
of compatible forms on such subspaces. Now, eiM = niVi , fjM = mj Wj 
and (gk + g,‘J)M = pkZk + q,,J,O. Therefore, we are reduced to the 
case studied in the previous lemmas, and the theorem is proved. 
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15. Equivalence of Representations under O(n) and Sp(n) 

We start with some definitions. 
Recall that a flag on a vector space V is a sequence 

I- = I -n 3 I m--l 3 .” 3 l,, = 0 

of subspaces. If J’, r) Vr are two subspaces of the flag, we have an 
induced flag on V,/ V, by V,/k’, 1 V,.-i/V, r) ... r> V,/V, = 0. 

If V = VjI r) V,& r) a*. 3 V, = 0 is a flag on V and W is another 
space, we can define the direct sum flag on V @ ?Y by 

I7 9 m-3 IT,-, :s WI “. 3 r;, ,@! TV =: lx’3 0. 

Assume that V is now endowed with an E-symmetric nondegenerate 
form, we make an inductive definition: 

DEFINITION 15.1. 9 flag V = VjLPl 3 ... 1 JTO = 0 is a compatible 
flag if one of the two possibilities are verified: 

(a) VI is isotropic, J7,1--I = ViL, and the induced flag on VI/V,,-, 
is compatible. 

(b) The form is nondegenerate on Jj7i and the flag is the sum of a 
compatible flag on VIL with Vi . 

We are implicitly using the fact that, if J4’C V is isotropic JVL/W 
inherits from J’ a natural nondegenerate form, and if the form, on the 
other hand, is nondegenerate on W, then it is so on WJ- and JY = 
W@ w-i. 

The meaning of a compatible flag is understood considering the graded 
space associated gr J/ = @ Vi+JkTi . If the flag is compatible, gr V 
inherits a nondegenerate form defined inductively as follows. If we are 
in case (b), V = J,‘i @ J:I, and canonically, gr V ‘v W, @ gr V,J. 
(we use the induced compatible flag on V,), the form is the orthogonal 
sum. In case (a), we have 

The form is the sum of the inductively defined form on gr( J-i’/ VI) with 
the canonical hyperbolic form induced by the form on T’ on the soace 
v, @ V/VI’. 

Let us now consider an orthogonal representation 9): R + End(V) 
(the symplectic case is similarly treated). 

w/r9/3-7 
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THEOREM 15.2. (a) There is a compatible jlag that is a composition 
series for the R module structure. 

(b) The quotient semisimple representation pv OR gr V, with the 
quotient form, is orthogonal. 

(c) qO” is in the ‘Lclosure of the orbit” of y under O(V). 

Proof. (a), (b) Th e orthogonal and symplectic case are essentially 
similar, therefore, let us treat the first one. We proceed by induction on 
dim I/. Let VI be an irreducible submodule of I’. Since v is orthogonal 
V,l is also an R submodule. Therefore, we either have V, C VII, or 
VI n VI1 = 0. In the last case, V = V, @ VII, and q is the orthogonal 
sum of two representations, by induction V,i has a compatible com- 
position series and we take the direct sum. In the first case, the form B 
induces a nondegenerate bilinear pairing B: V/VI’ r; VI + K, iden- 
tifying V/V,1 with VI *. V/V11 is also an R module, if E E V, v its class 
modulo VI1 and w E F;, we have: B(rc, w) = B(~v, w) = B(rv, w) = 
B(v, r*w>. 

Hence, V/VI1 is identified to VI* as R module and the quotient 
representation of R on I’/I’ri @ V, is isomorphic to vls, yr being the 
induced representation on V, . 

The representation V/ V,l is also clearly irreducible. The induced 
representation on V,l/Vl is also orthogonal, and one proceeds by 
induction. 

(c) We do not want to formalize the meaning of this phrase in 
general; in case R is the free algebra on j variables, the set of representa- 
tions is an affine space, the closure is intended in the Zariski topology. 
In general, one can define it using the language of schemes. 

We proceed by induction. In case (a) V = V, @ Vri, there is nothing 
to prove, we pass directly to V,J- and use induction. 

If V, C Vii, we must show that the representation y’ on 
v/v11 @ r; @ Vl’/ v, . is in the closure of the orbit of v. 

Consider a basis of V, vl , z12 ,..., z’~ , v~+~ ,..., v,,.+~ , w1 ,..., w,; , where 
2’1 )...) z!,, is a basis of Vr , z~r ,..., z’,~+~ is a basis of Vll, and B(vi , wj) = S,{, 
i, j = l,..., k. Write the representation in block form: 
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Consider the matrix in block form: 

t 00 
*-l(t) = i 0 , 

0 
1 0 1 
0 t-l 

A(t) is an isometry of V, as is easily verified, 

A(t) ii g ZJ A(t)-’ := t ; g. 

This describes a piece of the orbit of 9, setting t -= 0, we stay in the 
closure of the orbit and obtain the representation in block form: 

which is exactly v’. 
We are now ready to conclude our work. 

THEOREM 15.3. Let R be a finitely generated * algebra. Let W be the 
space of n-dimensional orthogonal representations. Let O(n) be the orthogonal 
group acting on W, Then: 

The quotient variety W/0( ) 1 ji n c assi es isomovphism classes of orthogonal 
semisimple representations. 

A!loveprecisely, the map V: W---f W/O(n) is onto and rr(q~) = rr($) if and 
only if y0 is isomorphic to @. 

Proof. First, let us assume that R is the free *-algebra in j variables. 
W is then the (n” * j)-dimensional affine space. 

We already know, from 15.2(c), that 9 and @ have the same invariants. 
From 14.7, we deduce that q” is uniquely determined by q (and not 

by the composition series). 
If y” is isomorphic to @, we have z(g)) = Z-(#J). n is onto from the 

theory of reductive groups, since we are in characteristic 0. (This hypo- 
thesis now can be removed because Mumford’s conjecture has been 
proved.) 

The only part that has to be checked is : If vi, qa are nonisomorphic 
semisimple representations, they have different invariants. 

First, since vi is semisimple, the ideal ker ~i is detected as the maximal 
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ideal 1 of R such that ~~(1) is nilpotent. This is equivalent to Tr(a) = 0 
for all a E vi(I), hence, this condition is expressed by invariant equations. 
If Ker y1 = Ker y2 = 1, let us consider the semisimple algebra R/I 

R:I = @ R< @ Sj @ (T, @ T,o), 

with the notations of 14.7. By the same theorem, an orthogonal R/I 
module is specified by the ranks of the idempotents ei , fj , g, + g,O. 
These ranks are in turn determined by the values of the coefficients of 
their characteristic polynomial, again an invariant condition. 

To pass from the free *-algebra to a g eneral finitely generated algebra, 
we present such an algebra as the quotient R/I of a free *-algebra 
modulo a *-invariant ideal. 

The representations of R/I form a subvariety of the representations of 
R, invariant under O(n). A semisimple representation 4~ of R factors 
through I if and only if the invariants Tr(v(a)) vanish for a E 1. 

The theorem is thus completed. 
We have clearly a similar theorem for symplectic representations, 

which is proved exactly in the same way. 

THEOREM 15.4. Let R be a finitely generated *-algebra. Let Z be the 
space of symplectic 2n-dimensional representations. The quotient variety 
ZjSp(n> class$es isomorphism classes of semisimple symplectic representa- 
tions, 

16. Positive Involutions and Real Points 

We want to consider new *-algebras over the real numbers R and 
“real” representations of them. For the three classical groups O(n, C), 
Sp(n, C), Gl(n, C), we take the real compact groups O(n, R), Sp(n), 
U(lz), where Sp(n) now will stand for unitary quaternionic matrices. 
In each case, we may consider the relative notion of real representation 
and their equivalence under the previously defined groups. Thus, we 
have orthogonal representation on the vector space R” with its form 
cb, xi3, quaternionic representations in Hn with its form C q& and 
unitary representation in CL with the Hermitian form C O~~CQ . The 
theory in these cases in particularly pleasing, the groups are compact, 
thus, the orbits are closed and the quotient is the orbit space on one hand. 
On the other hand, this is reflected at the level of representations by the 
fact that every representation is semisimple, since every subspace has an 
orthogonal complement. We come now to the details. 
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Let S be a semisimple *-algebra over the real numbers R. Consider 
the reduced trace tr: S + R and the associated form on S, tr(aa*). 

PROPOSITION 16.1. The following conditions are equizjalent: 

(a) tr(na*) > 0, Va E S. 

(b) tr(aa*) > 0, \Ja E S, a f 0. 

(c) S is the direct sum of *-algebras of the following three types: 

(‘1 seal matrices with transposition; 

(2) quaternionic matrices with the involution (qij)* = (qji); 

(3) complex matrices with adjoint involution (a,j)* = (aji). 

(d) If S is simple, any irreducible module V has a positice symmetric 
compatible form. with z+ahres in R. Such a form is unique up to positizte 
multiples. 

Proof. (c) a (b) +- ( ) a trivially. Assume (a) holds; let S = @ Si . 
If we had two terms exchanged by *, Si and Sj , consider their unit 
elements ei and ej . We have ei* = ej . Hence, 

tr((e, - ej)(ei - ej)*) = tr(-e, - e,) < 0. 

Therefore, every terms is fixed under *, furthermore, each simple 
*-algebra Si has an involution satisfying (a), hence, (b) since the form 
is nondegenerate. Then, it follows from [lo, Theorem 0] that Si is of 
the desired type. 

We have to prove now the equivalence of (d) with the remaining 
assertions. Clearly, if S is of the type described in (c), there is a positive 
form on any irreducible module. 

Conversely, let V be irreducible and consider V+ OS V. A compatible 
form of the type described in (d) gives rise to a map B: b’+ OS V -+ R. 

Let w E VT OS V be a T symmetric element mapping into 1. We 
identify P7- ~8, P* with the centralizer d of ‘3 in V’, d + d . w, and 
consider the induced map B: A ---f R. The map B induces a quadratic 
form on A, &a, b) = B(ab*). Th e axioms on the original form imply 
that B satisfies the properties: 

B(d, h) -.= B(b, d), B(da*, b) = B(d, ab), B(d, ‘I) > 0, 

if d f 0. 
Than, it is easily checked (e.g., 0 < B(i, i), while B( - 1, 1) < 0) that 
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we must be in one of the three cases (1) A = R, (2) A = C and the 
involution is conjugation, (3) A = H and the involution is conjugation. 
In each case, one sees immediately that B is a positive multiple of the 
reduced trace tr: A ---f R. 

As for the uniqueness, one remarks that in each of the previous cases, 
the symmetric elements are the elements of R, therefore, the choice of w, 
giving the same involution on A, is unique up to a scalar multiple in R 
(14.1(c)). Hence, a new form on V induces a new map B’: V- OS V+ R 
differing from B by a scalar a: E R, since both forms are positive, wc must 
have a: > 0. 

DEFINITION 16.2. If S is a semisimple *-algebra over R, satisfying 
the hypotheses of 16.1, S will be called a positive *-algebra. 

LEMMA 16.3. Let S be a positive *-algebra over R, let V be a complex 
orthogonal module over S $JI1 C. 

V is the complexijcation of a unique real orthogonal S module with a 
positive form. 

Proof. From 16.1, S = @ Ri @ Sj @ T, , where Ri is a ring of 
real matrices with transposition, Sj quaternionic matrices and T,; 
complex matrices with their involution (aii)* = (ajJ. 

Thus, R, OR C is complex matrices with transposition, Sj OR C 
complex matrices with symplectic involution and T,. OR C is (C), @ (C), 
with exchange involution. 

We use the classification of orthogonal modules over such a ring (14.7), 
then we see immediately that such a module is the complexification of a 
direct sum of the standard real modules described at the beginning of 
this paragraph. The uniqueness has been proved in part (d) of 16.1, 
remarking that a positive compatible form is always the direct sum of the 
form restricted on orthogonal irreducible submodules, since no subspace 
is isotropic (cf. 15.2). 

We sum up our work for O(n, R). 

THEOREM 16.4. Let S = R(xi , xi*} be a jinitely generated *-algebra. 
The variety W of equivalence classes of semisimple orthogonal representa- 

tions of S @JR C has a real structure. 
The equivalence classes of real orthogonal representations of S cowespond 

to the realpoints of W, where the invariant functions tr(aa*), a E S, are ‘> 0. 
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Proof The real structure on W is clear from the form of the invariant 
ring, generated by the elements tr(ail ... a,,), ai E S. 

is a real representations, 
tr(F(fzT) ... ~(a.)) 

it is semisimple and its invariants 
are real, hence, it gives a real point of IV, clearly, 

in thiilpoint, v& have the desired inequalities tr(aa*) >, 0. 
Conversely, let P be a real point, with tr(aa*) > 0. Let s be the 

semisimple algebra of operators obtained evaluating S in P. 
It is easily verified that the reduced trace tr: ,!? ---f R is strictly related 

to the trace Tr of the representation. 
In fact, if 3 = @ si, si simple, and tr; is the reduced trace in Si , 

we have tr = 2 tri , while Tr = 2 11~ tr, , IZ~ > 0 some integers. 
Therefore, from the condition Tr(aa*) > 0, we deduce that s is a 
positive *-algebra and the claim follows from 16.3. 

We pass now to unitary representations. Consider an algebra S over C 
with an involution inducing conjugation on C. 

\I:e want to classify unitary representations of S in (C),, . The first 
remark is that every such representation is semisimple and, if S denotes 
the induced algebra of operators, S 1s a semisimple positive *-algebra. 

The converse is clear, moreover, 16.1 (d) implies that two unitary 
isomorphic representations are isometric, over r/(n). Now, we have to 
read these results geometrically. This is done as follows, let S for 
simplicity be C{x, ,..., 3, , x1* ,..., x,*). 

The representations of S in (C),,, are 2n-tuples of matrices and are 
classified by the space [o,, (C),,J OR C with real structure given by the 
first factor. X real point is a Zn-tuple (ul , aI*, u2, u2* ,,,., a, , u,,*). 

Thus, the real points of the variety of representations are exactly the 
unitary representations. 

The initial remarks show: 

r~HEORE31 16.5. The equivalence classes, under U(n), of n-dimensional 

tlnitary representations of S are classified by those real points, of the variety 
of eqzrivulence clusses, under Gl(n, C), f  0 semisimple representutions of S, 
where the invariants Tr(uu*), a E S, nre 3 0. 

Finally, we turn our attention to quaternionic representations. If P 
is a 2n-dimensional comples space, a quaternionic structure on b’ is a 
structure of right vector space over H inducing the C vector space 
structure when the scalars are restricted to C C H. 

Clearly, to give a quaternionic structure on V, one must only give a 
map j: I- - V, with j’ = - 1 andj antilinear over C, i.e., j(ae~) 1 ?j(~). 
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We will sketch the main points. 
A nondegenerate quaternionic form B on V can be defined as in 14.1, 

and it has the form C p&‘. 
Considering H = C @ jC, the form B gives rise to two forms, K and 

A, with values in C such that 

B(v, w) = K(v, w) + jA(v, w). 

Since B(w, v) = B(v, w) we have 

S(v, w) = Iqw, 21) and A(w, v) = -.4(v, w). 

Thus, K is Hermitian and A is alternating. 
They are nondegenerate on V. If S is a *-algebra over R, and V is a 

symplectic module over S OR C, we will say that V is quaternionic 
if it possesses a quaternionic structure with a quaternionic form, com- 
patible with the involution on S, inducing the given alternating form. 
It is clear that, if S is the operator algebra induced by S on Z’, and V is 
quaternionic, then S 1s a positive *-algebra and the representation is 
semisimple. 

The representation is identified, up to equivalence relative to L@(n) 
(Sp(n) C (H),, in this case), by the irreducible quaternionic subspaces. 

These subspaces are easily analyzed for the various terms Ri , Sj , 
Tk of the direct sum decomposition of S. In each case, one has the 
indecomposable symplectic representation of the relative algebra 
Ri @ C, Sj @ C, Tk @ C a case analysis similar to the one carried in 
the previous case, shows that the way to make this representation 
quaternionic is essentially unique up to positive real numbers (one has 
to reduce the discussion to V# @ V), thus, one obtains, as in the previous 
case, the theorem: 

THEOREM 16.6. The equivalence classes, under Sp(n), of 2n-dimen- 
sional complex symplectic representations of S OR C with quatevnionic 
structure are classi$ed by the real points of the variety of equivalence classes 
of semisimple symplectic representations of S OR C, where the invaviants 
tr(aa*), a E S, aye 3 0. 

Remark. We have, in the three cases considered, the following set up. 
An algebraic group G defined over R. The real points of G form a com- 
pact group G, . A variety W defined over R, and a group action 
G x W -+ W defined also over R, the quotient variety W/G defined 
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over R. The real points I&‘, of Wand ( W/G)R of W/G. The quotient map 
W+ W/G restricted to the real points W, gives a map ~a: W, -+ 
( W/G)R . Then, the fibers of nR are exactly the orbits under the compact 

group GR , and the image of 7~~ is the semianalytic subset of (W/G)R 
defined by the fact that the symmetric elements XX* of a certain non- 
commutative algebra have trace 3 0. 

17. Azumaya AZgebras 

We want to develop now the notions necessary to deal with irreducible 
representations. 

We will follow the theory for GZ(n, K) very closely (cf. [I, 7, 81). 
Let R be an Azumaya algebra over its center A. Assume that R has an 

involution *. 

DEFINITION 17.1. \;l:e say that the involution is of the first kind if * 
is the identity on A. 

Otherwise we say that it is of the second kind. 
Let us assume now that 2 is invertible in A and * of the first kind. 
If A + K is a map in an algebraically closed field (a geometric 

point P of Spec A), the * algebra R @A K is either n x n matrices with 
transposition or 272 x 2n matrices with symplectic involution (14.2). 
We will say that R is of transpose type, resp. of symplectic type in P. 
We notice that the type depends only on the point of Spec A over which 
the given geometric point lies (cf. remark after 14.2). 

PROPOSITION 17.2. Let R be an Axumaya algebra over A with involu- 
tion of the j%st kind and p E Spec A. 

(a) If rk R = n” and R has transposition type in p, then there exists 
an etale neighborhood Spec U of p such that R @A IT is n x n matrices 
with transposition. 

(b) If rk R = (2 n ) 2 and R has symplectic involution in p, there is an 
etale neighborhood Spec U of p such that R @.4 Ii’ is 2n x 2n matrices 
with symplectic involution. 

Proof. Let us do case (a), (b) is analogous. 
Let P be a geometric point centered in p and A the strict henselization 

of A in P. 
R @A 2 is an Azumaya algebra of rank n2 over A with involution of 
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the first kind. If K is the residue field of 2, R @A K is n x n matrices 
over K with transpose involution. 

We choose matrix units in R @A K for which the involution is the 
usual transposition, then, by the theory of Azumaya algebras over 
Hensel rings, such matrix units lift uniquely to units eij . 

Since es reduces to the same element as eji , we must have, for the 
same theorem, e.$ = eji , and the claim follows for R @ A. To reduce 
from i?i to an etale neighborhood is now a standard direct limit argument. 

Let us work now in the category fl9?* of * algebras over a fixed ring fl, 
with * the identity on /l. 

If A is a commutative algebra, define (A)a , (A)& to be the algebra of 
n x n matrices with transposition and of 2n x 2n matrices with sym- 
plectic involution. The two previously defined algebras are in fact 
functors in A, from the category of commutative algebras to .,V*. 

Let us denote them F,,, and F,,, . 
Consider the free algebra R = A(x, , xi , *’ in infinitely many variables. 
An element f E R will be called a polynomial identity (briefly P.I.) of 

n >. n matrices with transposition, if f vanishes when computed in all 
the rings (A):, ( similarly for symplectic P.I.‘s). 

Any set of polynomials in R determines a variety in ,%* formed by 
those algebras on which all these identities vanish. 

PROPOSITION 17.3. Let R be a rank nz Azumaya algebra with involu- 
tion. Assume that R satisfies the P.I.‘s of n x n matrices with transposition. 

Then, the involution is of the jifivst kind and R is of transpose type at each 
point. 

Similarly, for symplectic involution. 

Proof. Let A be the center of R. It is known that A = F(R), the 
Formanek center [8]. 

If f(% >“‘> x~) is a central polynomial for n :s: n matrices, and we 
evaluate f in (A); to obtainf(x, ,..., x/J” = f (x1 ,..., x1,.). This is, therefore 
an identity of n >: n matrices with transposition hence it holds in R and 
so the involution is of the first kind. 

The rest of the statement follows from the fact that, if n = 2k, there 
are different multilinear identities for n x n matrices with transposition, 
and for n >(: n matrices with symplectic involution (cf. Section 20). 

18. Universal Maps 

We return now to the two functors Ft.,, and F,,,, considered in 
Section 17. 
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PROPOSITION 18.1. Both functovs F,,,L and F,,, possess a left adjoint. 

Proof. Let us do it, for instance, for FIS, . Given a * algebra, R we 
must find a universal map y: R -+ (A)iz . This follows of course by the 
general theorem on the existence of adjoint functors. On the other hand, 
it can be easily accomplished building ,4 by generators and relations. 

In this case, the essential point is to do it for R = A[xi, xi*jiel the 
free algebra. 

Construct A = A[z$)J, i E I, s, t = l,..., n the polynomial ring. 
Map A+ in the matrix Ei = (x$), while xi* is mapped in tit. 

The formal properties of these functors are easily checked and follow 
the ones given in [9, Chap. 41 for rings without *. 

Given a commutative algebra A consider: G,,(A) the group of A 
automorphisms of the *-algebra (A)i; H,(A) the group of A automor- 
phisms of the *-algebra (A).& . 

Both G,( ) and Ii,,( ) are group valued functors on the category 
of commutative algebras. 

It is immediately verified that they are both representable by Hopf 
algebras finitely presented over A. 

Indicate the two algebras 8, and A$ . 
Consider, furthermore, the orthogonal group 

and the symplectic group Sp,,(A) = (b E (A)& i bb* = l}. 
These group valued functors are also clearly representable by finitely 

presented Hopf algebras over A. 
Call these algebras “%/,, and 9% . 
We have two natural transformations: 

n: O,(A) ---f G,(A), 

7: Spn(A) --f H&4), 

given by r(a)(b) = aba-l (similarly for T). 

LEMMA 18.2. Let A be a local ying. We haze two exact sequences: 

(i) 0 + sA* + O,(A) - G,(A) - A*/(A*)2 

(ii) 0 + ,A* - Sp,(A) - H,,(A) - A*/(A*)2 - 0, 
where 2A* = {a E A 1 d = 1). 
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If n is odd, O,(A) + G,(A) is onto; ;f  n is even and A” is hyperbolic, 
G,(A) ---t A*/(A*)2 is onto. 

Proof. Some parts are trivial; in particular, the definition and 
exactness of 

and 

0 + J* --+ O,(A) --f G,(A), 

0 + 2fl* --j q&4) + H,(A). 

Let o E G,(A), since u is an automorphism of (A), and A is local, 
u is inner. 

Thus, u(b) = aba-I, a E GZ(n, A). We have u(b[) = u(b)t, hence, 
abla-l = (aba-l)t, and so a abl = bfata for all b E (A)n. . 

We deduce a”a E A*, the invertible scalars. If c E GZ(n, A) is another 
element such that u(b) = cbc-I, we have c = ala, 01 E A*, thus, ctc = 
r2ata. Therefore, the scalar ata is defined up to elements of (A*)2. If u 
comes from O,(A), we can choose a E O,(A), hence, ala = 1. Finally, 
if aat = ,Y, set c = a/p, we have c E O,(A), and the exactness of (i) is 
proved. For (ii), the steps are similar. 

Ifnisoddandol = at - a, we have OP = det(a)2, and so a: E (A*)2. 

For the other assertion, if A2” is hyperbolic (and in the symplectic case), 
choose a hyperbolic basis and consider, in that basis, the block matrix 

a 0 

a=0 1’ ( ) 

We have at = (i z) and a”a = LY. 
Consider now, the maps of Hopf algebras 

induced by the natural transformations rr, r. 

PROPOSITION 18.3. Both i and j aye injecthe. 

Proof. Let us do it for i. Let u E Ker i, if m is any maximal ideal 
of ‘2Ym , localize at m and consider the map gn 4 (5’J,,, . 

This map corresponds to a point u E G,((Yn),), associate to a the 
scalar 01 E (??Jz modulo squares. Let A = (%‘J,,,[x]/(x~ - IX). We have 
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an induced map 23% -+ A classifying a o E G,(A) induced, as inner 
automorphism, by some element a E O,(A). We can factor: 

cg’, ---- a?l. 

Hence, u is mapped to zero in (g’,,),,, . Since this is true for all maximal 
ideals, we have u = 0. 

One can derive some consequences on the structure of 3, , *II , when 
A is an integral domain. 

In this case, Yn is an integral domain while +YVL has two minimal primes 
relative to the decomposition of O,, in SO,,, and its complement. 

For 27 ,L , ;K,, , we easily see: Pfi is always a domain, 9% is a domain 
when ?z is odd, and has two minimal primes when n is even. 

This last assertion comes from the fact that, -1 has determinant -1 
if 12 is odd, O,, = SO,, \,I (I, -I]-, - 1 is in the kernel of the map 

O,, - G,, . 
Finally, consider A = Z. In this case, Y,, and P?, are torsion free, 

hence, flat, in each case there is an integer valued point (e.g., the one 
corresponding to the identity of (Z):, , (Z)&). Therefore, g,L and :X;, are 
faithfully flat over 2. 

Therefore, the same is true for any A by base change. 
Let us call for simplicity r,, = Spec 27, , the group scheme associated 

to /9 I, T similarly, 17,, = Spec N;, . 
Consider again the two functors Ft,,, and F,?,,,; we analyze F,,,, since 

the other case is similar. 
If R is a *-algebra, we know that the functor Maps 21V*(R, (A);) is 

representable. Call the representing object BRllL and A,,, = Spec B,,, . 
Since the group valued functor G,,(A) acts on Maps LIV*(R, (A):,), we 

have a group scheme action: 

This is clearly functorial in R. 

19. Irreducible Representations 

We wish to study irreducible representations over an algebraically 
closed field. 
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We find it convenient to generalize the concept to deal with generic 
points applying the functorial language. 

We will restrict our analysis to the orthogonal case, the symplectic 
case being absolutely similar. 

DEFINITION 19.1. Let S be a rank n2 Azumaya algebra over a 
commutative ring A with an involution of transposition type. 

(i) A * map pl: R -+ S is an orthogonal irreducible representation 
ifrp(R)A = S. 

(ii) Two representations vr: R --+ S, , ~a: R ---f S, are equivalent 
if there is a *-isomorphism 7: S, --f S, with ~a = 7~~ . 

Consider now the subset I,(A) C Maps ,V*(R, (A)&) of irreducible 
representations. We have: 

PROPOSITION 19.2. I,(A) corresponds to an open subscheme A f ,,, of 
A R,ll invariant under T,, . 

Proof. The invariance of I,,(A) under G,JA) is clear. As for the open 
condition, we use the criterion of [7, 81. Let q: R -+ (B& be the 
universal map and R = Im y, let F(R) be the Formanek center of a. 
We have F(R) C B, and a point 9) Maps nV*(R, (A);) is in I,,(A) if and 
only if the classifying map 9): B, --f A gives ,(F(a)) + 0. 

We want to construct now the quotient of Af,, under r,, . Consider 
the previous set up 

y: R -+ (&& > 

R = y(R), L is the center of R, F(R) Z L is the Formanek center. If 
f EF(W), the ring R, = R[l/f] is an Azumaya algebra with transpose 
type involution (cf. 17.3). Let /I$,,fi be the open subscheme of Spec(L), 
where F(R) is not identically zero. By the previous remarks, AZ,, is 
equipped with a coherent sheaf 9 of Azumaya algebras with transposition. 

PROPOSITION 19.3. The scheme A:,, represents the following functor: 
equivalence classes of irreducible representations. 

Proof. The proof is similar to the one in [7]. We clearly have a map 
A: R --t r(/f,*,,, , 3). To a map 91: Spec A 4 AZ,, , we associate the 
composition 

A: R - T(A:,, ,a) -+ r(Spec zI, y*(W)). 
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Conversely, if ;\: R ++ 5’ is an orthogonal irreducible representation, 
we split S be a faithfully flat extension T of its center A (17.2) to make 
it 1~ 1: n matrices with transposition. 

Then, we complete the diagram 

R ---Y---t (B& 

We verify, since h is irreducible, X induces a map from Spec T to 
Spec B, - V(F(R)). 

Then, we use faithfully flat descent to see that the map factors through 

m,, . 
We finally tie the previous discussion with the classification of ir- 

reducible representations in the sense of 15.3, 15.4. 
We state the Main Theorem for the orthogonal case, the other case 

is similar. 
Recall the action p: r,, Y il,, )) + /I,,, defined at the end of Section 18. 

~‘HEOREM 19.4. The action p is scheme theoretically free on At,n . The 
quotient scheme is Af,, . The resulting quotient map p: Af,,, + A;.,, is a 
principal$bration orer r,, locally trivial in the etale topology of A;,, , 

Proof. We follow the lines of [7], to which we refer for details. Take 
fgF(W) and consider cl(f), A(f) the open subschemes of AZ,, , 

a,,, 7 where f is invertible. We will work locally on these subschemes, 
which cover A;,, and if:,,, . The universal map R C (BR)iL gives 
by localization atf the universal map a --f (B,[l/f])i, . Rj is a rank n’ 
Azumaya algebra with transpose involution. 

Let us analyze thus the universal map in this case. 
If S is a rank n2 Azumaya algebra with transpose involution over its 

center A, S --f (T)f, is the universal map and .3 -F B is a map of com- 
mutative rings we obtain, by base change, the universal map S, + ( TB)tl,, 
In particular, we will apply this remark when B splits S. 

Thus, we are led to study the split case S = (A);. In this case, 
reasoning as in [7], we see that the universal map is obtained as follows: 

Consider -4 @ -,gq, and the two maps 
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given by 

i(a) = a @ 1, j(b) = 1 @ b. 

The map j classifies an automorphism u of the algebra (A @ 3,); . 
The composition 

is the universal map for (A); . 
In the scheme language of Section 18, 

A (&,.t = Spec(A @ YJ = Spec 4 X r, , 

the action p: r,l. x (1~~); n + /I(,,; n is the canonical action of I’, on 
itself as second factor. ’ 

We now collect all the previous steps. 
The map .i$ + (B,[l/‘])k induces a map L, + B,[l/f] that dually 

gives the projection pf: d( f ) + /i( f ). 
These maps glue together to give the required projection p: clf,,n --+ 

%n . Take an etale covering U, -+ A(f) over which the Azumaya 
algebra Rf splits. By pull back and all the previous propositions we have 

and (l(f) x R(fjUE= U, x r,,pa ’ is the first rejection and the action 
of F, is the canonical action on the second factor. 

This is sufficient for all the statements of our theorem. 

Remark. It follows from the proof that the universal map R -+ (I?& , 
when R is a rank n2 Azumaya algebra with transposition over its center A, 
is injective and furthermore, B, is faithfully flat over A. 

20. Qualitative Results for Rational Concomitants 

We want to conclude our work describing various qualitative results 
that apply to the rings of matrix concomitants. Many of these results are, 
of course, well known (cf. [9]). 

We consider a field K of characteristic not 2. Let K{xi , xi*:, K(sJ, 
K{ti} be the free algebras described in Section 13. Let D be a simple * 
algebra with center an infinite field F 2 K. Assume dim, D = n2. We 
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have the usual two possibilities: * is of the first kind or of the second kind. 
In the first case, we have two subcases, transpose or symplectic type. 
In each case one easily shows, as in [9, p. 201, that the ideal of polynomial 
identities in each free algebra does not depend on D. We have in fact 
only: the identities of (F); , the identities of (F)$, , the identities of 
(F)n @ (F): . The last case does not give anything new, one easily can 
verify that the identities of (Q @ (F)O, as a *-algebra are the same as the 
ordinary identities of (F),2 , thinking xi and xi* are distinct variables. 

In fact, one can by the same argument used in [9, p. 661 show that: 

every prime T-ideal is one of the ideals of identities previously 
desc!i?ed. 

(ii) If K is infinite, the radical of a T-ideal is a T-ideal intersection 
of at most 3 prime T-ideals relative to the 3 types. 

(iii) There are various inclusions among the various T-ideals 
deducible from the fact that: 

(at c (%+, 7 m?z c mn+1) (th e inclusions do not preserve I). 
Let us call K[ti , tit]% , K[ti , ([*In the free algebra modulo the ideal 

of identities of (F); , respectively, of (F)in . 
Similarly, taking the identities in the free algebras K(si}, K(ti} we will 

obtain algebras K[& , K[si]i , K[i&, , K[fJk . 
We list now the properties of these rings and sketch the proofs. 

‘THEOREM 20.1. All the algebras constructed are prime rings with 
polynomial identities. 

Indicate by K(fi, fit),5, K(&, ti*),, , K(fJk, Kc~s~);, K<$)L, 
K(EJi , K(Q): their respectiue rings of quotients. 

cente,(Ji 6) K(fi 7 i3n is a central simple algebra of rank n2 oz’er its 

(ii) K(ti, eil)n is a *-algebra of transpose type, k’(ti , fiL),, = 
(D),, , h x h matrices over a division ring D of degree 2’, where n == 2’ * h 
and 2 T h. 

(iii) K<Si , fiL>rb is the ring of rational concomitants, for the 

607/19/3-S 
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orthogonal group, from I-tuples of matrices to matrices. Z is the field of 
orthogonal invariants of matrices. 

(iv) If I consists of m elements, we have Tr deg Z/K = 
mn2 - (nZ - n)/2. 

(v) If A is the center of K[[i , titln , Z is the quotient$eld of A and 
K<fi 7 fi’>n = K[fi 7 (it], @A Z* 

its tar $ K([i T Ei*iia is a central simple algebra of rank (2n)2 over 

(ii) ‘K,c<[~ , fi*jn is a * -algebra of symplectic type K(ti , ti*jn = 
(A),( , h x h matrices over a division ring A of degree 2’; with 2n = 2’ . h, 
2-r h. 

(iii) K!:ti , si*),,, is the ring of rational concomitants, for the 
symplectic group, from I-tuples of matrices to matrices. W is the field of 

symplectic invariants of I-tuples of matrices. 

(iv) If I is finite, with m elements, we have 

Tr deg W/S = m . (2~2)~ - ((2~2)~ f 2n)/2. 

(v) If B is the center of K[f, , ,$i*],L , Wis thefield offractions of B 
and Ktti , fi*),L w  K[5;, 5i*],, @e W. 

(3) Similar results fey the algebras K(si)k , K(t,).~ , K(Qk , K’(li)i 
with the following exceptions: 

(a) I has one element, n > 1 for the transpose type; every n for 
the symplectic type. In this case the algebras are commutative. 

(b) K(t& is commutative. 

(c) K(sJs is commutative. 

(d) K<s, , s,),S is a quaternion algebra. 

In the other cases, the results are parallel to cases (1) and (2) with the 
exception of the computation of the transcendence degree which is, respectively; 

n2 + 12 n2 - n n2 - n n2 - n 
m 112 __- - ___ 2 2 ’ 2 2 ) 

m (242 - 2rz (242 + 2n 2 -----9 2 m (2n)2 + 2n 2 (2nT2f 2n _ . 

Proof. Let us give the main ideas of the proof, for instance, in the 
transposition case. 
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It is clear that K[ti , ti’], is the image of the free algebra k’{x( , xi*> 
under the universal map y: K(xi , xi*)-(K[x,z’,]), , i E I, s, t = I ,..., 11, 
(cf. 18.1). All the statements, except for the last part of (ii), will be a 
consequence of the theory of rings with polynomial identities and of 
Theorem 19.4 once we shovv that the representation K{xi , xi*> ---t 

(K(x:‘,))f, is irreducible (here, K(xbf’,) denotes the field of rational 
functions in the variables x2$ 

‘To prove that the representation is irreducible, one may proceed in 
various ways. If I has more than one element, we already have two 
generic matrices, and so the claim follows. Otherwise, we must show that 
a generic matrix and its transpose are irreducible, this can be checked by 
specializing to a matrix that with its transpose is irreducible, such 
matrices are readily found. 

One can proceed similarly in all the other cases, of course, we have 
the exceptional cases described in (3) for which the universal map is not 
irreducible (at the generic point). 

To complete the theorem, one has to prove the last part of (ii). Let us 
do it for the transpose type. First of all, any central simple algebra with 
involution of first kind is the full matrix ring over a division ring of 
degree a power of 2. 

In our case, setting K,‘<( , fi’jJL = (D), , we must only prove that h 
is odd. 

Let n = 2’ - k, thus, we have to show that D has degree 2’ and h = k. 
It is known that, given a field K and a number 2’, there is a division 

ring E with involution of degree 2’ with center a field F containing K. 
The involution can be fixed to be of transposition type (cf. the remark 
after 14.2). 

Consider the simple algebra (E),, , of degree n and of transposition 
type. Let a1 ,..., aTLz be a basis of (E),; over the center F. Introduce 
variables xj’), i E I,j =: I,..., n2 over F and construct the generic elements 

By the initial remarks, it is clear that the kernel of the map h: 
K{xi , xi*> -+ (E 0, F(x~‘))~ is the ideal of polynomial identities of 
n x n matrices with transposition. Thus, K[f, , tit],, is isomorphic to 
the algebra K[Q , q7ii] generated by the elements 7i , all. Furthermore, 
h is irreducible. Hence, we have an embedding 
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and an isomorphism of *-algebras: 

If the division ring constituent of K(fi , fi’>,[ had degree 2” with 
s < r, we would have a contradiction since E 0, F(xy’) is clearly a 
division ring of degree 2’. 

We finish with a consequence of Theorem 19.4 for the rings of 
invariants. It can be derived in characteristic + 0, but we will limit 
ourselves to the rings TOi,, , SO{,,. , T(Sp)i,2?L , S(Sp)i,Pn . 

We can consider the elements of TOi,, that are expressible, as elements 

Of soi.n , as polynomials in the variables Xi , Xii with coefficients in K 

( i.e., the central polynomials for n x n matrices with transposition). 
The variety of points of TOi,n represents equivalence classes of semi- 
simple orthogonal representations of the free algebra, 15.3, and the 
points of this variety on which some central polynomial does not vanish, 
represent the irreducible representations, by 19.3. This set is nonempty, 
by 20.1, and we may apply Theorem 19.4 to obtain: 

THEOREM 20.2, The irreducible representations qf the free algebra are 
simple points of the variety of semisimple representations. 

Proof. The irreducible representations are the points of the base of 
a principal fibration over a reduced algebraic group with the total space 
nonsingular. 

Remark. The discussion before 20.2 was done for the orthogonal case 
for convenience of language, but it clearly holds in both the orthogonal 
and the symplectic case. In both cases, one has 20.2 (and also in the case 
of Gl(n, K), from which one has in fact started to obtain all these 
generalizations). 
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