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INTRODUCTION

This paper has arisen out of a set of problems that I will now describe.
Most of these problems arose out of a beautiful paper by Artin [1],
they are all related to the same root: Describe the invariant theory of
n-tuples of matrices.

The first problem was a conjecture made by Artin on the nature of
the invariants of m n X n matrices X, ,..., X,, under simultaneous
conjugation in characteristic 0. He conjectured that any such invariant
is a polynomial in the elements Tr(X, , X; - X, ). This fact was
classical for # = 2 [5], and proved by Spencer and Rivlin [13-15] for
orthogonal invariants of symmetric 3 X 3 matrices. The theory developed
by them also contains a finiteness statement and some discussion of the
relations among such invariants. They were also interested in various
kinds of concomitats always for n = 3 and the orthogonal groups.
A complete account of their theory can be found in [12]. In this paper,
we first solve Artin’s conjecture (Theorem 1.3). Next, we take the
problem of deducing a finite set of generators. This is accomplished in
Section 3, where we give a general finiteness theorem for graded algebras
from which we deduce that one may restrict to elements of type,
Tr(X;, -+ X, ), where kB < 2" — | (Theorem 3.4a).

In view of the results of Spencer and Rivlin, we consider the problem
of finding the matrix valued concomitants. This is a noncommutative
algebra, which we also describe, that is generated over the ring of
invariants 7 by the ‘“‘coordinates” X, . Here too, we have a finiteness
statement. The monomials in the X,’s of degree <{ 2" — 2 span this
algebra over 7. Both estimates are sharp (possibly both estimates should
give 2% — 2, cf., [12], for n == 3) at least in the sense that they are
equivalent, 4.7, to the known estimates for the theorem of Nagata—
Higman on nil algebras (cf. [6 p. 274]).!

* Note added in proof. In a recent paper, this estimate is sharpened: J. Rasmyslev,

Trace identities of full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk
USSR (1974), No. 4.
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The theorem just cited may be said to be the “first fundamental
theorem” for invariants and matrix concomitants of m matrices (in
characteristic 0). In the spitit of Weyl’s book [16], we then take the
problem of describing the relations among such invariants and con-
comitants. The result is quite striking in that it basically says that any
relation among invariants and matrix concomitants is a consequence of
the theorem of Hamilton-Cayley (Theorem 4.6).2

As a consequence, we tie the theory thus far obtained to the theory of
polynomial identities of algebras. We have two results that seem quite
interesting:

(1) If an algebra over a field of characteristic 0 satisfies the identity
X7 == (), then it satisfies all the identities of n X n matrices (Corollary

4.8).

(2) The space of multilinear identities of degree m of n X n
matrices can be described completely in terms of Young diagrams
(Theorem 6.1).

The technique of the proofs is quite simple. It 1s based on the remark
that in theorems on invariants, we may analyze only the multilinear
ones. If u is a multilinear invariant depending on m matrices X, ,..., X, ,
we may think of 4 as the linear invariant map

M (K)n (3 (K)n @ (9 (K)n - K,

((K),, the ring of matrices). Now, if I” = K=, the basic vector space,
dentify (K), with V' @ V*, and p: Vo @ V*%m _» K is an invariant
map. Next, identify (V&n @ F*®m)* with End(V®™): e End(V®m)
induces the form u & ¢ — {p, A(u)>. Thus, p corresponds to an element
@ of End(V®™") commuting with GI(V’). At this point, one invokes the
classical theory that implies & = Y a,0, ¢ in the symmetric group of m
letters. Finally, we have to interpret a permutation o as an invariant.
The computation is easy (Theorem 1.2) if o = (¢ - ¢.)(jy =" Ju) -~
(t, -+ ¢.) 1s the decomposition in cycles, the invariant associated is:

Tr(X; Xy, o ) Tr(X - X ) oo Ty, - X )8

* Note added in proof. This computation appears already in B. Kostant, a theorem
of Frebenius, a theorem of Amitsur Levitski and cohomology theory, J. Math. Mech. 7
(1958), 237-264.

? Note added in proof. This result has been obtuined independently by Rasmyslev in
the paper cited in footnote 1.
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With this dictionary now in hand, it is just a question of translating
the usual theorems of invariants into this language of matrices.

Sections 7 through 10 of Part I are dedicated to invariants over the
other classical groups. The first fundamental theorem for O(n) and
Sp(n) is an easy generalisation of Artin’s conjecture. In both cases, we
get that the invariants are generated by the elements Tr(U; - U,),
where U, = X, or X;! for O(n), U; = X, or X,*, the symplectic trans-
pose, for Sp(n). One has similar results for matrix concomitants with
all the necessary finiteness theorems. The second fundamental theorem
also can be proved, but it is somewhat more mysterious than for Gi(n, K),
in that strange new identities appear, whose natures are not fully
clarified. In Section 11, we describe the unitary invariants with complete
results. In Section 12, we study mixed invariants and concomitants for
Gl(n, K) (for simplicity).

This finishes what might be called the quantitative part of invariant
theory, i.e., the explicit description of invariants and their relations.

In Part IT, we develop the qualitative results, basically, the theory of
the quotient varieties associated to the invariant problems considered
in Part I.

In this part, we basically develop and adopt to the other classical
groups the ideas and techniques given by Artin in [1]. The results are
in all cases parallel to the theory for Gl(n, K). The ring of orthogonal
invariants of m n X n matrices is the coordinate ring of a variety whose
points are the equivalence classes under O(n) of orthogonal representa-
tions of the free *-algebra in m-variables (Theorem 15.3). The irreducible
representations are simple points of the quotient variety (Theorem 20.2),
and on this set, the quotient map is a principal fibration (Theorem 19.4).
Some of these resuits are proved in a characteristic free approach. The
possibility of a full generalization to characteristic p - 0 is still subject
to unsolved obstacles, although many new developments in this direction
have occurred. Hopefully, the state of affairs of invariant theory in
char p > 0, in the next five years will change completely. At present
Doubilet, Rota, and Stein have proved the first fundamental theorem
for Gl(n, K)in char p > 0 (and even over Z) [2]. The Mumford conjecture
has been solved by Haboush (and by the author jointly with Formanek
for Gl(n, k)). (This implies that, except for the explicit computation
of the invariant rings, the qualitative theory of Part Il is valid in every
characteristic (£ 2 for the moment).

We thus formulate a conjecture analogous to Artin’s conjecture
for char p > 0.
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The invariants of m n > n matrices are generated by the elements
o(p(Xy,..., X)), where p is a noncommutative polynomial in the
X.s, and o; 1s a coeflicient of the characteristic polynomial. It can be
proved that:

(1) 'Thering A generated by such elements is finitely generated [8].

(2) The variety associated to 4 classifies equivalence classes of
semisimple representations of the free algebra K{X, ,..., X, }. [8].

(3) The ring of invariants B is integral over 4 and the map
Spec B— Spec 4 1s a homeomorphism. (This follows from Mumford’s
conjecture).

We may add that, especially in Part II, some more or less known
theorems have been developed anew to put them in a suitable form for
our purposes. Moreover, many well-known special theorems on orthogo-
nal and unitary equivalence of matrices are consequences of the theory
developed, but we do not go into this for reasons of space.

Finally, I would like to express my admiration to M. Artin for his
discovery of the deeper relations between the theory of polynomial
identities and invariant theory. The ties between noncommutative
algebra on one hand, and algebraic geometry and arithmetic on the
other should be made stronger by these ideas. They have already vielded
many interesting results and promise to give more.

CONTENTS
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1. Invariants of # > n matrices. 2. Matrix concomitants. 3. Finiteness
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Part 11. Representations of *-Algebras

13. *-algebras and representations. 14. Semisimple *-algebras,
15. Equivalence of representations under O(x) and Sp(n). 16. Positive
involutions and real points. 17. Azumaya algebras. 18. Universal maps.
19. Irreducible representations. 20. Qualitative results for rational
concomitants.
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I. ALGEBRAIC INVARIANTS

1. Invariants of n X n Matrices

Let us fix the following notations: K denotes a field of characteristic 0,
V ~ K" is an n-dimensional vector space, (K), ~ End(T') is the full
ring of # X n matrices, V'* is the dual space of V, and G = Gl(n, K) is
the group of invertible matrices. We wish to study the following problem;
consider the space W = (K) of i-tuples of # x n matrices, The group G
acts rationally on W according to the formula:

If AeG, B;e(K),,
then 4 -(By, By ,..., B;) = (4B, A7, AB,A~,..., AB;A™).

We want to describe the ring 7, of polynomial functions on W,
invariant under the action of G. According to the general theory, we
will split the description into two steps. The so called “first fundamental
theorem,” i.e., a list of generators for T, , and then the “second
fundamental theorem,” i.e., a list of relations among the previously
found generators. Of course, it would be very interesting to continue
the process by giving the “ith fundamental theorem,” i.e., the full
theory of syzigies; unfortunately, this seems to be still out of the scope
of the theory as presented in this paper.

To obtain the first fundamental theorem, we recall a part of the
classical theory of invariants (cf. [16]).

First, we have the identification of the ith tensor power (K),, ‘ of (K), ,
with End(V®%). The group G = Gl(n, K) is embedded in End(V®?)
using the diagonal action 4 (v v, Q Q) = Av, ® Av, @
-+ ® Av, ; finally, the centralizer of G in End(V®?%), i.c., the algebra
of G-linear transformations of 1'%, is spanned, as a vector space, by the
endomorphisms A, , ¢ an element of the symmetric group &, on i letters,
defined by the formula:

Aa(‘vl ® Uy ® ® 7)i) = 7)(,—1(1) ® 7}0*1(2) ® ® vo_l(i) -
We have, furthermore, a canonical identification
7 (V*91 ® VOiy* ~ End(V ®7),

where 7 is obtained from the nondegenerate pairing End(V®%) <
V*®t ) V0! — K given by the formula:

() Ao Pe @ - Q@ Dy ) %0 X - @ x5y
=g B D@ Mty ® %3 & -0 @ %))
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where, g, V*, x;eV, j = 1,..,7, and the right side of (a) is the
evaluation of the form ¢, ® -+ ® @, € V¥ ~(V@)* on the vector
Mxy @ x5 ® -+ & x;). It is easily verified that = is an isomorphism of G
spaces with their canonical G structures. Hence, the space of G in-
variant vectors of (V*®! & V=>)* which is the space of linear maps
P*®t Q) Ve —» K invariant under G is identified under = to the
space of G linear endomorphisms of V@, We already know that this
last space is spanned by the elements A, , o € ;. Thus we want to find
an explicit expression for the linear invariant p, corresponding to A,
under .
One easily computes

Dor o1 @ Qe @A D @ XD
={p @ Qe AX—O—l(l) @ ® ‘Yu—l(n\"\
= H {Ps» Xo—l(j)\ﬁ - H {Poty) » Xy
J

= fho(pr X - @ @ A7 & ® LX),

In this way, we recover a part of the first fundamental theorem:

TueoreM 1.1.  Any multilinear invariant y: V*® @ V9 > K is a
linear combination of the invariants

oy @ Do @ X ® - R X)) =[] <poty » X0
j

The next step now should be to determine the exact relations among
the A,’s (or the w,’s). Rahter than doing this now, we want to interpret
the u,’s in a different form.

We recall the canonical isomorphism between End(V) and V'* @ V
given by the formula:

(p X v)(u) = {g, upv.

This is a G-isomorphism and we will use it in systematically identifying
the two spaces. For instance, we will refer to a decomposable endo-
morphism as one corresponding to a decomposable tensor ¢ ) v, notice
that an endomorphism is decomposable if and only if it is of rank < 1.

We recall, for completeness, how multiplication of endomorphisms
and the trace map are obtained using the previous identification.

bB) ¢eRv b Qu=9hvu
(c) tlp ®2) =g, v)-
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We can use the previous isomorphism to obtain an isomorphism of
G-spaces:
(K)®' ~ (V* @ V)& ~ [*8i @ e,

The description of the linear invariants of V*®i (& F®! obtained
in 1.1 yields, therefore, a description for the linear invariants of (K)%".
Choose, therefore, a ¢ €, and consider the linear invariant p, :
(K)2*— K. We are going to give a new explicit formula for z, in terms
of the “‘matrix” variables. Decompose ¢ in disjoint cycles, including
the ones of length 1,

o = (Gty 4oz " Tn) T (taly 0 )
TraeEOREM 1.2. Given 4, , A4, ,..., 4; € (K), , we have:
Ha(A1 & Az & - ®A1’)
== tr(AilA,-Z e A4ik) tr(44j1Aj2 A Ajn) e tr(‘4t1‘4t2 T :/lte)

Proof. Since the two sides of the equality are multilinear maps, it is
sufficient to prove it when A4, ,..., 4; are decomposable, i.e., 4;=¢; @ X;.
Thus,

Hol Ay ® - ® A))
=@ @n @ Op X, ® - ®X)

= T X = o Xy, XD i Xy Y K
ju
RCTP. CRREECID. VR S €2
Consider, for instance, the product
M = Loiy, X; 4A@iy » Xip K@iy » Xip <Py » X
One verifies immediately from the formulas (b), (c) that

Piy ® Xil " Piy ® Xi2 yeers Piy ® Xik
= <‘Pz‘2 ’ Xi1><<Pz'3 ’ Xz'2> <‘Pik , xz',,_1> Piy & ‘Yik .
Therefore, M = tr(A4; 4; - 4;), and the theorem follows.

We are now in a position to state and prove the first fundamental
theorem for invariants of #n X 7 matrices.
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TureoreM 1.3.  Any polynomial invariant of i n X n matrices A,..., 4;
is a polynomial in the invariants tr(4; A; - A;); A; A, - A; running
over all possible (noncommutative) monomials.

Proof. The theorem has already been proved for multilinear inva-
riants. We claim that the general case follows immediately. In fact,
one can fully polarize an invariant to obtain a multilinear one, and then
recover the original invariant by identifying the variables. Now clearly,
this last restitution process carries the invariant tr(4; 4; -+ 4;) in
invariants of the same type, and so the theorem is proved.

2. Matrix Concomitants

We recall that, given a group G and two G-spaces V', W, a polynomial
concomitant is a polynomial map : V' — W that is compatible with the
G-structures, 1.e., §(gv) = gf(v),Vge G,ve V.

We want to describe the concomitants in the case that IV = (K)}, and
W = (K), , G = Gl(n, K), with the usual action. We will refer to these
as matrix valued concomitants and denote such a set by S; .

The first remark 1s that .S; , is a noncommutative ring under pointwise
sum and multiplication, in fact, S;, is the subring of the ring P, , of
polynomial maps from (K); to (K), formed by those elements left
fixed by the group G = Gl(n, K), acting on P; , as follows

¢€G, hebPy,, then (gh)(u) =g (b(gu)).

On the other hand, P,, is easily identified as a ring isomorphic to
the full ring of n x » matrices over the ring of polynomial functions
on (K). , i.e., a ring of polynomials in 7 - n* variables. If one identifies
the scalars K with the center of (K),, one sees that the ring 7, of
invariants of (K)?, is a subring of the center of S, , , which is, therefore,
a T, , algebra. It is easy to show (cf. [9, p. 94]) that T , is exactly the
center of S; , as soon as 7 > 1 and n > |, otherwise, S; , is commutative.

To complete these preliminary remarks, we notice that, among the
matrix concomitants, we can consider the j-coordinate maps, indicated
by X; and given by:

Xp(dy, Ay d)— 4,

The first fundamental theorem for matrix concomitants now can be
formulated.

Tueorem 2.1. The ring S, , is generated, as an algebva over T; , , by
the elements X; .

607/19/3-4
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Proof. Given a concomitant f: (K); — (K), , we build an invariant
fi (K)it — (K),, defined as follows

f(A1 s Ay yey Aiy) = te(f(dy, 4 sy A7) - A; )

We claim that, if f, g: (K)} — (K), are two concomitants and f = g,
then f=g. Infact, if tr(f(4,, A,,..., 4;) - A; 1) =te(g(A4y, Asy..., A) A1)
for all 4,, A,,..., A;,;, we have, by the nondegeneracy of the form
tr(xy), that f(4,, 4,,..., 4;) = g(4,, A ,..., 4;), as claimed.

According to the classification theorem, 1.3, for the invariants, we
have that, if f is a matrix concomitant, f is a polynomial in the elements
tr(A4; A;, -+ A;), which is linear in 4,., . Therefore,

F=2 Xy, (A, 4y, A;4:14),

with A; ... €Ty, and 4y, 45,..,4; %7+ 1. (If A, appears in the
middle of a monomial, we can shlft 1t to the end by a cyclic permutation.)

We have, thus,
Ty ey Ap) = 15 (8 Nyos Ay, Ay, Am),
therefore, f = ¥ A, ...; X; X; -~ X; , as announced.

3. Finiteness Theorems for Graded Algebras

The theorems proved in the previous sections still lack some necessary
features for explicit computations. One is the lack of the necessary
finiteness statements. We are going to provide them now. First, we
make some general remarks on T; , and S, ,,

Given f € S;.., we can consider its charactenstlc polynomial x(X) =
X" + 311 o f)X™ 1. Here, o f) is an invariant, for instance, oy(f) =
—tr(f), the others can be described using the expression of the coeffi-
cients of the characteristic polynomial of a matrix 4 in term of the
invariants tr(4¢), (these formulas are the expressions of the Newton
functions in terms of the elementary symmetric polynomials). We clearly
have the Hamilton-Cayley theorem x/(f) = 0.

Furthermore, both S;, and T, are graded algebras, the degree
being the usual one of polynomial maps, if fe.S;, is homogeneous
of degree A, then o(f) is homogeneous of degree % - 7. Finally, both
S, and T; , are connected, i.e., (S; )0 = (T ) = K.

Based on the previous remarks and having in mind Theorems 1.3
and 2.1, we develop here a general approach to finiteness theorems
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that will apply for the algebras T, , and S;, as well as for the other
algebras that we will encounter in the study of the other classical groups.

Let us fix the following notation, 4 — @);_, A; will be a connected
commutative graded algebra over a fleld K = 4;. We will set 47 =
Y1 A, and recall the following well-known and easy lemma (Nakayama’s
lemma for graded module).

LemMa 3.1. Let M = P, o M, be a graded A module and let N be a
graded submodule. If M — N + A*+M, then M = N.

Let us consider now an associative, not necessarily commutative,
graded algebra R over 4 and a subset X of R* such that: (i) Ry = 4, = K
(i) R is generated as an A algebra by 1 and X.

THEOREM 3.2. If every element v € R* satisfies a monic polynomial
of degree n (depending onr) x* -+ Y, | a;x" " with o, € A+ and char K = 0
or char K > n, then R is spanned over A by the monomials in the elements
of X of degree <L 2" — 2.

Proof. Consider the algebra U = R+/A+R. By 3.1, it is enough
to show that the monomials of degree <{2® — 2 (and > 1) in the
elements of X (image of X in U), span U as a vector space over K.
Now, the hypothesis implies that U is generated, as a K algebra, by X,
and so it is sufficient to show that U is nilpotent of degree < 2* — 1.
If r€ R+, we have " 4 ¥ a"~t == 0 with «; € AT, therefore, every
element 7 of U satisfies the equation 7 = 0. We are, therefore, in the
position to apply the theorem of Nagata—Higman [6, p. 274] to conclude
the proof.

Assume now that the algebra R is equipped with an A linear map
t: R — A preserving degrees. Furthermore, assume that, if 7' denotes
the K algebra generated by X, the elements #(7*) generate A+ as an
ideal.

THeoREM 3.3. In the previous hypotheses, A is generated as a K
algebra by the elements t(r), where v is a monomial in the elements of X
of degree < 2" — 1.

Proof. By 3.2, R is spanned, as an A module, by the monomials
in the elements of X of degree <{2» — 2, let us call this set of monomials
S. Let B denote the K subalgebra of A generated by the elements
#(r), where 7 runs on the set S’ of monomials in the elements of X of
degree <L 2" — 1. We must show that B = 4, since B is a graded
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algebra and A4 is a graded B module, it is sufficient to show, by 3.1,
that B + B*4 = A. Now, A%+ 1s generated by #7T+) as an ideal,
R =4S, and T+C T X therefore #(T+)C A - #SX)C AB+ (since
SX i1s the set of monomials of positive degree <{ 2® — 1 in the elements
of X). Hence, A* = A4 - t(T*) C AB*, and so 4 = B + B*+A.

We can apply these theorems in the case in which 4 is already known
to be generated, as a K-algebra, by the elements #(r), r € 7.

In particular, we can apply the previous theorems to obtain the
finiteness theorems for the rings of invariants.

Tueorem 3.4. (a) The ring T, , is generated over K by the elements
te(A; A; - Ay), withj <2 — 1.
(b) S;., is spanned, as a T, module, by the elements X; X; - X
with j < 2" — 2. )

Proof. 'This is just a special case, in light of the remarks at the
beginning of the section, of the previous theorems. We use for ¢ the
trace map, and for X the set X, X, ,..., .X;.

4. Trace Identities

We consider now the problem of finding, in a systematic way, all
relations among the elements tr(M) and M, M varying on the mo-
nomials in the » x n matrix variables X;, X, ,..., X;,..., 7 = 1,.

We construct, for this purpose the formal polynomial ring T generated
by the symbols Tr(X; X; -+ X, ), with the convention that Tr(M) =
Tr(N) if and only if N is obtained from M by a cyclic permuation.

We will call an element f e T a commutative trace polynomial in the
variables X and write it f (X, , X, ,..., X, ,...). Furthermore, we consider
the free algebra S = T {X;},_, . over T in the variables X .

We will refer to the elements of S as noncommutative trace polynomials
S and T are equipped with some extra structure:

(a) A T-linear map Tr: S — T defined by the formula
Tr (F Mytyot A i Xy X)) = ¥ Ao, THX Xy, Xi), Ay € T

(b) For all choices g1, 82,0y &55 4erj £ = 1,..., 00 of elements
g:; € S, a formal substitution f —f(g,, g2 ,..., & »-.-), Which is the uni-
quely determined endomorphism of the ring S mapping X, into g; and
compatible with the map Ttr.
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The substitution is easily defined on the generators: it sends a

monomial X; X; --- X intog; g; - g; and an element tr(X; Xy, X;)
4 1 2 51

into Tr(g; ) one verifies easily that this is well defined and unique.

Having these structures in .S, we can define the notion of a T-ideal.

DreriNtTION 4.1. (a) A T-ideal I of S is an ideal that is closed under
Tr and under all substitutions.

(b) A T-ideal ] of 7 is an ideal closed under substitutions.

One easily verifies that, given any set A C S (resp. B C T, there is a
minimal 7-ideal of .S containing A and it is the ideal generated by the
elements obtained from .4 by making all possible substitutions and
taking the Tr values, similarly for B C 7. We will refer to this 7T-ideal
as to the T-ideal generated by 4 in S, (resp. by B in T).

The meaning of the previous definitions is made more explicit by
associating, to the formal trace polynomials, actual functions. One
chooses an integer n and considers the space (K)* of sequences
(4,, A4y ,..., 4;,...) of n 2 n matrices almost all zero.

Given an element f (X ..., .X; ,...) € T, one associate to it a polynomial
map, in fact an invariant, f: (K)Z — K by the obvious formula, if
f="Tr(X, - X, ), weset f(4,, 4,,..., 4;,..) = = tr(A; A; - A, ) and
then extend the deﬁmtlon onall T. Furthermore 1fg(1 PR )x, . ) €S,
one associates to it a polynomial map, in fact, a matrix concomitant
g: (K); — (K), by the obvious formulas, on 7, it is the already defined
evaluatlon and to the monomials X; -~ X, , one associates the map
(A sy A o) > Ay o+ Ay ‘

If we indicate by T, ., S.., the rings of invariants and concomitants
of infinitely many matrices, we have, thus, two onto maps:

o T — T, s T S”“’Sr,;w

If we consider 7C S and 7,,,C S, ,, we remark that = is the
restriction of 7 to 7. We are now able to state the problem of finding
the relations among invariants and concomitants, it consists of describing
the Kernels of the two maps 7 and .

An important remark, before continuing, is that we have the compati-

bylity of 7, = with the extra trace operators, i.e., the diagram:
S—2 8, .,

T”“-'*'*)jmmy
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18 commutative, where Tr is the formal trace in S, and tr is the
usual trace.

Finally, = is compatible with the substitution, which becomes in S, ,
composition of map; i.e., 7(f(gqeees Liver)) = (W N7(g)seey 7(g)seee)-

Having made these remarks, the next proposition follows immediately:

ProrosiTiON 4.2. The ideals ker =, ker 7 are T-ideals.

We will refer to the elements of ker 7 as commutative trace identities
of #n X n matrices and to the elements of ker 7 as noncommutative
trace identities of # X n matrices. We remark that we have already
established, in the proof of 2.1, a strict relationship between the two
concepts.

We come now to the basic theorem from which all our results will
follow.

Establish the following notation, given a permutation ¢ € &, , we
define an element ¢, € T as follows. Decompose ¢ in disjoint cycles,
including the ones of length 1:

o= (i )y gn) (Bt L)

and set D,(X,,.., X,) = Tr(X;X, - X;) Tr(X; --- X;) -
Tr(X, :-+ X, ). ¢, is 2 multilinear trace monomial of degree m. With the
notations of 1.1 and 1.2 we have, if 4, ,..., 4,, € (K),, , that

7T(‘?So) = ¢U(A1 yeeey Am) = :“'a(Al ® Az & ® Am)‘

From the theory of Young diagrams we obtain immediately.

THEOREM 4.3. (2) An element 3, o P, is a trace identity for
n X n matrices if and only if the element > «,0 belongs to the ideal of the
group algebra of ,, spanned by the Young symmetrizers relative to diagrams
with at least n - 1 rows.

(b) In particular we have the fundamental trace identity
F(X1 s Xut1) = Zoew,,, €(0)P, ((0) the signature of o), corresponding
to the Young diagram with one column and n + 1 rows.

Proof. Clearly, 3> o,®, is a trace identity if and only if the corre-
sponding element ¥ a,u, is zero. This is zero if and only if the endo-
morphism ¥ «,A, on V€™ induced by Y «,6 is zero. Hence, (a) and (b)
follow from the theory of Young diagrams and the representation of

&, on Vem (cf. [16]).

m
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Since F(X] ,..., X,.;) is multilinear in all variables we can apply to it
the same process used in the proof of 2.1 to write it formally as

F(Xy oy Xiy) = THG(X, ooy X)) X)),

where G(X, ,..., X,) € S.
The explicit form of G(X, ,..., X,) is the following

GXy s Xo) = Y (=1 Y X, X, X, Y e(0)D,,
k=0

I R €L pek
on {1,..., m} — {iy y.oy I}
In different notations, let us write, for a set S = (sq,..., 53.)

FS e F(1Y51 N 4Xvs2 yerey ‘Y-"k)’
PS = z ‘Xva(ﬁl)‘XYO(-“ﬂ) KX‘a(sk) :

€L ¢
Then, we have, setting M = 1, 2,...,n and | S| the cardinality of S
G(‘X’I yrery Xn) = Z (—1)‘M—S"+1FS : PM—S'

SCM

An easy consequence of 4.3 is the following.

CoroLLARY 4.4. (a) A multilinear commutative trace identity of

degree n + 1 in n -+ 1 variables is a scalar multiple of F(X| ,..., X,.,).

(b) A multilinear noncommutative trace identity of degree n in n
variables is a scalar multiple of G(X1 ,..., X,,).

(¢) G(Xy,..., X,)1is obtained by full polarization of the ““characteristic
polynomial” of X, times (—1)"+1.

Proof. (a) 'This is a consequence of 4.3(a), since the ideal described
there, for m = n 4 1, is just the scalar multiples of 2oew,,, €(0)o.

(b) This is a consequence of (a) and the relation established in
the proof of 2.1, that (X ,..., X)) € Ker 7 if and only if

Tr(f(Xy oy X) Xoiy) € Ker 7.

(c) First, one has to explain the meaning of characteristic poly-
nomial of an element of S. We know that if 4 is an # X » matrix, its
characteristic polynomial x,(X) is a polynomial whose coefficients can
be expressed in a formal way via the elements tr(A4%). We use the same
formulas to construct a formal characteristic polynomial of an element
of S, using T'r instead of the usual trace. Now, if X is a variable, we
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consider y,(X), it is an element of .S homogeneous of degree n. By the
Hamilton—Cayley theorem, yx(X) € Ker 7, hence, if we fully polarize
xx(X), we have a multilinear trace identity of degree .

By (b), it is a scalar multiple of G(X,,..., X,,). On the other hand,
its leading term (the one without coefficients in 7)is Y .cor Xotn) *** Xotn) »
therefore, (c) follows by inspection. "

We are now ready to prove the second fundamental theorem.

Tueorem 4.5. (a) The ideal Ker n is generated by the elements
F(M,,..., M, ). The M;s running over all possible monomials.
(b) The ideal Ker r is generated by the elements F(M, ,..., M, 1),
G(Ny,..., N,).

The M;’s and N,’s running over all possible monomials.

Proof. (a) First, we want to reduce ourselves to the analysis of
multilinear identities. This is possible by the processes of polarization
and restitution. In fact, if f € Ker =, and we fully polarize it, the result f*
is still in Ker . If we show that f’ is in the ideal described by (a), the
same will follow for f, since the restitution maps this ideal into itself.

Therefore, let f € Ker = be multilinear and of degree m. A priori f may
depend on more than m variables, but we can separate f as a sum of
polynomials f; each depending on m variables, such that f; and f; do
not depend on the same variables if 7 5 j. One easily sees, by setting
some of the variables equal to zero, that each f; is a trace identity.
Therefore, we may assume that f is multilinear of degree m and depends
on the variables

X1, Xy, Xy, then f= Y ad,.
o,

We know, by 4.3, that 3 «,0 is in the ideal relative to the Young
diagrams with at least » + 1 rows. This ideal is generated by the
antisymmetrizer 3 ,.»,  €(0)o, under the embedding of &, in &, .

Therefore,

Y a0 = Z oiTs ( Z e(o)a’) 7.
575 m o€F ni1

Let us analyze, therefore, the form of the trace identity associated

to the element

T ( Z e(o)o) ' n{e .

€ F pi1

We make a series of remarks.
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Remark 1. 3,4, €(c)o thought of as an element of the group
algebra over ¥ correspond to the identity:

e
F(X; sy Xoy) - Tr(Xp1e) THX,g) - Tr(X,)

Remark 2. 1§ ¥, oA corresponds to a trace polynomial
‘H(X, .y X)), and 7€ Y, then 7(3 wA)r~Lcorresponds to the trace

134

polynomlal H(XT(I) 5 XT(Q) seeey X,T(m)).

Remark 3. (Y (o))l = (3 e(o)o){ v - v hence, to prove that
the trace polynomial associated to 7(3 e(o)o){ is obtained from
F(X,,..., X,.,), substituting for the X,’s some monomials (and changing
sign if necessary) it is sufficient, it light of Remark 2, to do it for
Loesy,, e(o)o - {r. Let us call {r = 7.

Remark 4. %, o  e(o)o- 1= 2oey,,, €(0)o "y, where y is a
permutation of %, contalmng, in each cycle “at most one of the elements

1,2,..,n+1.

Proof. 1t is sufficient to show that we can write n == A - y, with y of
the desired type, and Ae &, , since in this case Y (o) oA = €(A) -
S €(0o)o. The possibility of writing 5 = Ay is obtained by a simple
induction of which we explain the first step. Assume that » contains
in a cycle two elements of 1, 2,..., n + 1,say, L and 2: y = (L 4445 -+~ 7, 2

g () )
We have (12) - = (Ldy - 4) (2 7)) = ().

Remark 5. If o ¥, and y is as in 4, the cycle decomposition of ¢
is obtained by formally substituting; in each cycle of o, in place of the
elements 1,2,..., 2 + 1, the strings 1 73 ,..0; 4., 271 yeeis Jo e B 1 8, 8,
appearing in the cycle decomposition of 7 and finally adjoining the
cycles of % in which the elements 1, 2,..., # + 1 do not appear.

We are now in a position to finish, it is clear, by 5, that if
y = (liy - 12y o) (1 Uy = L) Ay -+ 1) (b1 *+ o)

the trace polynomial corresponding to 3" e(0) - o - y is
FXX X, X X, o A s X 0 X, 0 X))
cTr(X,, X, o X)) Tr(X, X, - AL) o (Tr(X,, - X))

Therefore, from the various reductions operated, the theorem follows.

(b) Let H(X,,..., X,,) € Ker 7 be a noncommutative trace iden-
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tity of # X » matrices. We know then that the trace polynomial
Tr(H(X, ..., X,n) - X,41) 18 in Ker 7.
By (a), we know that such an element has the form:
S Moot FOMe My ey My ),

tnt1

and it is linear in X,,,; . Therefore, we may assume that X, ; appears in
each term of the sum, and for each term it appears linearly. Let us
consider one such term A - F(M, ..., M, .,), X, will either appear in A
or in one of the monomials M;’s. If X, ., appears in A, we can write
A = Tr(A - X,,.1), otherwise, permuting the monomials if necessary,
we may assume that M, ; = 4 - X, ., - B; A, B two monomials. Then,
AF(My ..., M) = Tr(A - BG(M,y,..., M,)) - 4 - X, ).
Finally, we see that

Tr(H(X, ooy X)) Xpsy) = Tt ([Z Mot F(Mi oy M)

3 N Biyn Gy s N3) A ] o)

Now, one should note that, in the formal ring S, if H(X,,..., X,.),
K(X,,..., X,,) are two polynomials such that Tr(H(X, ,..., X,)) X,, 1) =
Tr(K(X1ye 1y X)X ua1), One has necessarily H(Xj,..., X)) = K(Xj,...,X,,),
therefore, (b) is also proved.

We may express the previous theorem in a more suggestive form by

using the nonhomogeneous analogs of F and G.
We already know that G is obtained up to sign from the characteristic
polynomial by means of full polarization. As for ¥, we have a similar
result. The analog of the characteristic polynomial is the expression of
Tr(A"*1) in terms of the elements Tr(A4?), ¢ < n. This, of course, can be
realized by the equation tr(y,(X)-X) = 0. Let us call the formal
expressions associated to yx(X) and to tr(xx(X) + X), G(X) and F(X).
Thus, G(X) is the “characteristic polynomial of X” and F(X) is the
“expression” of Tr(X"*1) in terms of Tr(X?), ¢ < n. (Of course, this
expression holds only if we evaluate X in (K),, .)

We then have

TueorReM 4.6. (a) Ker « is the T-ideal of T generated by F(X).

(b) Ker 7 is the T-ideal of S generated by the characteristic
polynomial G(X).

Proof. (a) and (b) will follow from 4.5 and the definition of 7-ideals
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for T and S once we prove that the fully polarized forms of F(X) and
G(X) lie in the T-ideal that they generate. Now this is true since we may
replace the process of polarization with the process of multilinearization.
whose first step is to replace, for instance, G(X), by G(X 4 Y) —
G(X) — G(Y). The final result of multilinearization is the same as of
full polarization and so the claim follows, since clearly, multilinearizing
a polynomial in a T-ideal, we remain in the same ideal.

We can deduce now a rather intriguing corollary that ties completely
theorem 3.4(b) with the Nagata-Higman theorem.

CoroLLary 4.7. The ring S{,[T3,S;., is isomorphic to the free
algebra without 1, {X, ,..., X;} in n-variables modulo the T-ideal defined
by the polynomial identity Z" = (.

Proof. We know that Sj,/T{,S, , satisfies the identity Z* = ( and
it is generated by the classes of the elements X, j = 1,...,7 over K.
Therefore, the canonical map {X ,..., X;} — S,/ T7,.S; , factors through
the 7-ideal | defined by the polynomial identity Z® = 0. We have to
show that the induced map : {X;,.., X;}/] — S7,/T{,S;, is an
isomorphism.

Now, ¢ is onto by construction, and we have to show that the only
relations among the classes of the elements X; in S, /77,S;, are
deducible from the polynomial identity Z* = 0.

We have a presentation of S}, and T}, given by the Theorems 4.5 or
4.6. To have a presentation for S, /T;,S;,, we have to add to the
relations given in 4.5, 4.6 the relation Tr(M) = 0 for all monomials M
of positive degree. If we start from these relations, i.e., we construct
SH/T+S, we just get the free algebra without 1 over K, since 7/T+ = K.

Now, if we read in this algebra the relations given, for instance,
by 4.6, we see that the characteristic polynomial G(X) becomes X", the
trace map now is 0 (as well as F(X)), and so the T-ideal generated by
G(X) becomes modulo T, exactly the T-ideal generated by the identity
X" = ( as announced.

There is another way of formulating the preceding corollary, which
we state for completeness,

CoroLLARY 4.8. If R is an associative algebra over a field of charac-
teristic 0, and R satisfies the polynomial identity X» = 0, then R satisfies
all the polynomial identities of n X n matrices.
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5. Trace 0 Matrices

It may be useful to recall that the representation of Gi(n, K) on (K), ,
which we have been considering all along, is not irreducible. In fact, it
decomposes as (K), = K - 1 + (K)3 where (K)) stands for the subspace
of matrices with trace 0, and K - 1 is the center of (K),, .

This decomposition corresponds to the possibility of giving to each
invariant a double degree in the scalar variables and in the trace 0
variables. In fact, if we write, for a matrix 4, 4 = (tr(4)/n) - 1 + 4,,
where Tr(4,) = 0, we have, for a given monomial 4; A; -~ 4, , that

tr(d, A, Ay ==y, wtee(d,) () () w(4%A4Y - 4%);
By lgdiy iy
where A, -+ b, j; -+ j, 1s a shuffle of the indices 2,7, -+~ 7, .

It is easy to see that, if we denote by 77, the ring of invariants of the
space ((K)%) of i-tuples of trace 0 matrices, we have that T, is the
polynomial ring over T¢, in the variables tr(4,), tr(4,),..., tr(4,). In
particular, the ring 77, is obtained from 7T, setting tr(4;) =0,
J=1..,1

6. Relations with Polynomial Identities and Central Polynomials

We sketch here some consequences of the previous theorems, which
should be expanded more. If we consider the free algebra K{X, ,..., X, ,...}
over K and embed it in the free algebra S over 7, we see immediately
that Ker » N K{X,,..., X;,...} is the ideal of polynomial identities of
n X n matrices. As for central polynomials, an element fe K{X,} is a
central polynomial for » X n matrices if and only if there is a g € T such
that f — g e Ker 7.

We know that Ker 7 is generated as a 7-ideal from the characteristic
polynomial G(X), or its linearized form G(Xj ,..., X,); therefore, every
polynomial identity or central polynomial is deducible from G(X, ,..., X,,)
in an explicit way. On the other hand, the task of describing all poly-
nomial identities is still quite far away. In a separate paper, Formanek [3]*
shows how to deduce very simply the Amitsur-Levitzki identity
Son(Xy yeers Xy,) from the polynomial G(X, ,..., X,), a similar approach
to central polynomials also should be possible. Nevertheless, we can give
a description of polynomial identities in terms of Young diagrams
according to 4.3(a). Let I be the ideal of the group algebra of & .,

4 Note added in proof. This description has been found independently by Rasmyslev
in the paper cited in footnote 1.
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generated by the antisymmetrizer on # + 1 letters (we assume m > n).
We know that I can be identified to the space of multilinear trace
identities of # » n matrices in m -+ 1 variables. Let P be the subspace
of the group algebra of %, spanned by the m + 1 cycles, we have

THEOREM 6.1.  The space of multilinear polynomial identities of n <X n
matrices of degree m in m variables can be identified to the space [ N P,

Proof. We fix a variable, say, A, ., then writing a commutative
trace identity in the form Tr(g - X, ), we establish a I-1 correspond-
ance between the space I and the space of noncommutative trace identities.
Now, a noncommutative trace identity is a polynomial identity if and
only if it does not contain coefhicients Tr(M). This is easily seen to be
equivalent to the fact that the element of I considered is a sum of m - |
cycles.

The situation for central polynomials is slightly more complicated.
We take again an element } «,0 of the group algebra over .%, . that is
a trace identity, 1.e., it is in /, and we associate to it the element g as
before. 'The g will be, in general, a sum of monomials in the X’s, times
products of trace monomials tr(3). We can recover from g a central
polynomial exactly when g splits as the sum of pure monomials (without
factors of type tr(M)) and scalars, i.e., products of factors tr(M) only.

This, of course, can be read in the group algebra, it means that the
permutations ¢ appearing in Y 0 are only of two types: m + 1 cycles,
and permutations that fix m 4- [. In this case, the corresponding non-
commutative trace polynomial is of the form

Z g Nig Ny Yt Z g, (M) (M) - tr(M),

where the left sum comes from the m -+ 1 cycles, and the right
sum comes from the permutations fixing m + 1. In this case, the
left sum is a central polynomial, and the opposite of the right sum is the
scalar value taken by the central polynomial.

Again, we can use these remarks to characterize multilinear central
polynomials in terms of Young diagrams.

7. Orthogonal Invariants

We consider now the same type of questions that we have treated in
the previous sections for the other classical groups. We study now the
orthogonal group. The set up is the following: Consider the algebra (K),
of n X n matrices equipped with the standard involution given by
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transposition. This involution is associated to the canonical bilinear from
on IV = K" given by Y1, %, ¥, .

The relation between the form and the involution is, of course, the
usual: (dv, w) = (v, Aw) if v, weV, 4 e(K),.

The scalar product allows us to identify canonically V' with its dual V'*
and hence, End(V) ~ V* @ Vwith IV Q V.

If we want to translate the multiplication, the trace map, and the
involution of (K), in terms of its identification with V' & V, we obtain
the following formulas:

(a) *Q@uw-u®t =v & (u,wt,
(b) tr(v @ w) = (v, w),
() @R®uw)=w o

As for the groups involved, the orthogonal group O(x, k) is, by
definition, the group of automorphisms of V' with its structure of scalar
product. As for (K), with its involution, assume that : (K), — (K),
is an automorphism of algebras with involution. We must have (B) =
A - BA™ for some A< Gl(n, K). On the other hand, the hypothesis
implies that (B) = (B)!, hence, 4 - Bt - A7 = (ABA™1)!, for all
Be(K),.

This implies easily A'- 4de K -1,let A'- 4 = a€ K.

If « = B% setting A" = A/ we see that A" € O(n, K), and A’ defines
the same inner automorphism as 4. Hence, if we take K algebraically
closed, we see that the automorphism group of (K), with its transpose
involution is O(n, K){1, —1}.

We recall now the theorems on invariants of 27 vectors under the
orthogonal group (cf. [16, p. 53, 75]).

FirsT FUNDAMENTAL THEOREM. Any multilinear orthogonal invariant
of 2t vectors:

VRV y @V-—>K
is a linear combination of ‘‘contraction maps” 1.e., maps of type:
Pt U1 Q Vg @ - @ Vo — (V5,5 UL N5y 5 ¥5,) 7 (Vg 15 Vi)

0 = (J1 ]2 - Jo;) @ permutation of 1,2,..., 2i.
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SecOND FUNDAMENTAL THEOREM. Any relation among the scalar
products (u; , v;) is a consequence of relations of the following kind:

(u1,%1) (up,v0) (¥ Tnpa)

(s, o) (up,09) (s, Upiy)
..................... = 0.
(#n1>71) (pgr ) 0 (dnn Tpat)

We are now going to extract, from these theorems, the analogous ones
for matrix invariants and concomitants.

THEOREM 7.1. Every orthogonal invariant of i matrices (A4, ,..., 4,)
is a polynomial in the elements tr(U, U; - U, ), where U; = A;, or
U] - A4jl. )

Proof. We can reduce ourselves, as in the proof of 1.3, to the multi-
linear case.
Consider, therefore, a multilinear orthogonal invariant

$: (K), ® (K), ® - ® (K), - K.
We identify (K), with V' V, and this is compatible with the O(n, K)
structure, then, ¢ is a linear combination of the maps i, previously
described. Let us consider decomposable matrix variables 4; = u; ® v;,
7 = l,..., 7. Then,
Po(4 @Ay ® - ® 4y)

= (U ® v Qi W0y ® - ®uy; @ vy)

= (w;, , W, )(w;, , @y) - (wy, , By) - (w5, , T, )y, , @) - (w;,, @) =
where we use the following convention:

w; stands for u; or v;, and by definition, #; = v;, 7; = u;.
It is now easy to verify that:

() b ® 4 ® - ® A) = (U Uy, - Up) te(Uy, o U)o,

where U; = A4;, or U; = A;!, according to the following rule:

Let us say that u;, u, are of the same type, as well as v, , v, , while «; ,
vy, are of different type. Let us say, furthermore, that 4;, 4, are of the
same type as well as 4!, 4,!, while 4; and 4, are of different type.
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Then, we define inductively:

(a) U, =4, ,ifw, =v, ;U =4, ifw;, =u,,.
(b) Set Uy, , of the same type as U, if and only if w; , w;,
have the same type.

The equality (*) has been proved for decomposable 4;'s, but it is
multilinear on both sides, hence, it holds for any choice of the 4,s.

Having classified the orthogonal invariants, we pass now to the matrix
valued concomitants. Let us fix some notations, let us indicate TO, , the
ring of orthogonal invariants of i # X # matrices and SO, , the matrix
valued concomitants. We see immediately that SO, , is not a necessarily
commutative algebra over 70, ,; furthermore, SO, ,, is equipped with
an involution, that we will still call transposition: fi(4,,..., 4;) =
[ (Ay s AT

We have, as in 2.1, the basic concomitants

X (4, 45,...,4;)— 4;,
and also

Xjt (4, Ay oy Aj) = A

THEOREM 7.2. SO, ,, is generated, as a TO, , algebra, by the elements
X;, X\

Proof. We follow the lines of 2.1. We introduce an extra variable
X;., and associate, to any ge SO;, the orthogonal invariant f =
tr(g - X;q0)- By 7.1, fisa polynomial in the elements tr(U; -~ U;) with
U; = X; or X,!. Since f is linear in X, ,,, it is a sum of monomlals in
each of Whlch it appears either X, ., or X{ ;, and only once. Since
tr(M) = tr(M?), we can rewrite the monomials, if necessary, to contain
always X, , and not X! , . At this point, we can write f = tr(h - X, ),
where 4 is a polynomial in X;, X!, j = 1,...,, 4, with coefficients in
TO,,, . Clearly, h = g, and so the proof is complete.

Clearly, if g € SO, , we can compute its characteristic polynomial,
which has coefficients in 70, ,, , and g satisfies x,(X). Therefore, we can
apply the results of Section 3 to obtain the necessary finiteness statements
for TO, , and SO,, . We reproduce the statements for completeness.

TueoreM 7.3. (a) Thering TO, , is generated, as a K algebra, by the
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elements tr(M), where M is a monomial in X;, Xj!, j = 1,..., i of degree
<2"— L

(b) SOy, is spanned, as a TO, , module, by the monomials in X;,
Xt j = 1,...,1 of degree < 2% — 2.

8. Orthogonal Trace Identities

We pass now to the second fundamental theorem. As usual, we will
fix our attention mainly on multilinear identities. To make the formalism
complete, we must introduce, as in Section 4, the formal algebras 7* and
S*. T* is the commutative algebra in the variables Tr(M), M is a
monomial in X;, X!, j = 1,..., o0, with the obvious identifications
and S* is the free algebra over T* in the variables X, X;*. S* is
equipped with the trace map Tr: S* — 7T*, and also with an involution.
linear over T*, mapping .X; into A ;!. In this case also, we have the opera-
tion of substitution of the variables. Of course, if we substitute .X; with
g;» we must substitute X;! with g;!. Thus, we can introduce the notion
of T-1deals as in Section 4, recalling that now we have also the structure
of algebra with involution, under which the T-ideal must be closed. We
will refer to the elements of 7* as commutative trace polynomials, and
to the ones of S* as noncommutative trace polynomial. Finally, we have,
as in Section 4, the two maps my: T* — TO, , , 79: S* — SO, , , which
are compatible with all the operations defined. The involution on SO.. .,
being transposition.

Theorems 7.1 and 7.2 state that =y, and 7, are onto, for every n.
The determination of their Kernels is the object of the second funda-
mental theorem. To make the theory reasonably smooth, we must find
an analog of the interpretation, given in Section 3, of elements of the
group algebra as multilinear trace polynomials. We proceed now as
follows: We introduce two infinite sequences of symbols u, ,..., u,, ,...;
V1 yeees Uy y-ery and construct, from these symbols, the symbols (;, u;),
(vi,v;) © 7, and (u;, v;) any ¢ and j. Consider next the polynomial
ring P in the “variables” (u; , w)), (v;, v}), (4; , v;), (v; , ;). We make the
conventional identifications: (u; , u;) = (u; , u), (v; , ;) = (v; , vy),
(u;, v;) = (v;, u;). For every m, we consider now the subspace I,, of
this polynomial ring spanned by the monomials of degree m in which
appear all the symbols u, , 1y ,..., u,,; ¢, , 2 4e.0, ©,,, -

Reasoning as in the proof of 7.1, we see that we can associate to each
such monomial, a formal monomial in the elements Tr(U, Uy, Uy,
where U; = X; or X,. If one follows closely the proof of 7. 1 “one sees

607/19/3-5
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that this monomial is uniquely determined up to: (1) cyclic permutation
of the factors of a monomial U; -+ U; , (2) replacing U, --- U; , with
1 i 1 H
Uf‘j Uﬁl .
The formal association becomes an actual functional relation once we
substitute:

(1) For the symbols u, , v, , vectors.

(2) For the symbols (u, , v;) etc., the scalar products among such
vectors.

(3) For the matrix variables X, the actual matrices u; &) v;.

We can sum up the results in a proposition.

ProposiTioN 8.1. (a) The space I, is isomorphic to the subspace of T*
formed of multilinear trace polynomials in the variables X, ,..., X,, (even-
tually transposed).

(b) Given vectors u; , v;, j = 1,..., and the matrices A; = u; @ v;,
we have the compatibility of the evaluations:

I, —— P

T* — T0,, —2— K,

where o consists in evaluating the invariants in A;, and p the symbols
(u; , u;) etc. in the scalar products.

From this proposition and the multilinearity of the trace polynomials
in the image of I,,, we deduce that the trace identities of degree m,
multilinear in X, ,..., X,,, correspond to the subspace of I, of multi-
linear relations among the scalar products.

We are now in a position to apply the second fundamental theorem
for the scalar products. We introduce a notation for convenience.

If o, , Wy yeey 215 21 5 2a y-00s 2y » are vectors, we indicate by <w, ,..., wy |
% ,..., 2> the determinant:

(w1, 2) (wi,2) o (wy,2)

(wk ’ 2‘1) (wk ’ 22) (wk ] zk)

We know that, if we are working on the vector space K#, we have the
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fundamental relations: {w, ,..., w, 1 | 2 ,..., Tp41» = 0 for any choice
of vectors w; , z; .

Let us look at the occurrence of this relation in the space I,,,, . We
obtain one such relation if we divide the vectors u,, uy,..., 4,1, 75,
Vg 5oy Uyyq 1N two subsets of # + 1 elements each.

In particular, consider the following ones (which we will show to be
the relevant ones): Given k < (n -+ 1)/2 setting n -+ 1 = 2k + 5, we
form

\ \ [ « N
Qthy s Uy ey Ui s U1 s Vo yoens Vg | Mgt s Mpmgun peees s s Cpsd seeey Upag s

To this element of I, corresponds, by the general theory, a trace
polynomial that we will denote F,.,, (X, ,..., X, ;). This polynomial is
clearly a trace identity for # > n matrices.

Let us show now that these polynomials are, in a certain sense, the
only multilinear polynomials of degree n + | to be considered.

PrOPOSITION 8.2. Let 2wy, Wy ,eeo, Wyyiq 5 Sy 5eeey Spiq 0€ a permutation
Of ty y Ug yeeey Uyyq y Uy Vg geesy Upoq .« Lhe trace polynomial corresponding
10 Wy, Wy youey Wyyyq | Xy s So eeey g1y can be obtained, up to sign, from
exactly one of the Fy , (X, ,..., X, 1) bv permuting the variables and
substituting to some of the X;’s their transposes X',

Proof. This is one of those statements that are hard only to write in
detail, so we sketch the steps. To change .X; with X! means in I, to
exchange u; with v; , to permute the variables corresponds to permuting
simultaneously the #;’s and the v;’s in the same fashion. Finally, by the
properties of determinants we can rearrange in {@, ,..., Wy 1 | 2y ey Spar)
either the w;’s or the 2,’s, and we only change eventually the sign. Now,
the proof of the proposition is immediate. First, one exchanges the u;’s
and the v;’s (i.e., substitutes X; with X;’) to obtain that the symbols
Wy, Wy 5.y Wyyq cOnsist of a certain number & + s of v’s, and % of o's
having the same indices of some of the #’s listed. Then, one permutes the
variables to make sure that one has on the left side, the symbols u; - 4, ,
vy -+ Ty, in some order, then, one rearranges the left and the right side
to obtain the desired expression. One can be easily convinced that the
number £ is uniquely determined as the number of indices appearing
twice (once 1n a # and once in a v) in the left side of w,,..., w, .1 21,..., T, 41 -

The following properties of the polynomials F, ,.1(X; ..., X,.,) are
easily verified by the same ideas developed in proving 8.2.
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(a) Fk,n+1(‘Yl » Xz [ AR ] Xi 3000y Xn+1) = —Fl.',:rf—l(Xl ’ ‘¥2 L AR ) Xz"r")
Xp)ifi <<kori >Fk+4 s
(b) Fk,n»kl(‘Yl ) X2 3eeey ‘YnJ.—l) = Fl.:,n+1(" o(1) » Xo(z) yeery £ o(nvo—l))

If o is a permutation of the following type: (i) o({l, 2,..., k}) =
{1,2,.., kL o(lk+1,.. k+s})y={k+ 1,..,k+s}and o = ({k +s+ 1,...,
n+1)={k+s+1,..,n+ 1}

(C) Fl.','n+17(‘yll’ ‘Yzl)"" “ 7l1+1) - FI.',n+1(Xl;+.-f—1 300y ‘Yn+1 ’ "Yk+1 ey
Kioyy Xy yeeny X))

Parts (a) and (b) are easily proved from the determinant expression of

Fy. .1 - Part (c) is also easy, we have

rt -1 -t
Flr.n%-l(‘xl ’ AXZ yeery 4Xn+1

== (V1 Vg yeees Vg s Up s Ug yeres Up | Vpgsiq seees Dngd > Ui 9oees Unan D

_ , [ .
= (Ujggat reers Cnat s Upas seres Bnad | U1 sevey Viogon s Uy geeey Uped

= <ulc+s~k1 yeees U s gy seees Ups s Uhpgrd seves Ungn | Yn ey U

Vpa1 reees Vg y UL seemy Vg

- - - - - -
= Flc,n+1(A7c+s+1 ey ‘Xn+1 ’ AIH—I ’ AIH—S ’ ‘Xl . ¢ c)‘

Property (b) suggests to extract two noncommutative trace polynomials
out of each F, ,., when s and % are nonzero, by taking out of the trace
a variable in the set X} ..., X}, Xiyer1r Xirsraseers Xna1 s OF In the set
Xk+1 LA ch+s .

Since we want to have the two polynomials depending on Xj,..., X,,
for convenience, we define them as follows, implicitely:

Fromea(Xy ooy Xnig) = THGy Xy sy X) - Xi)
Fronat(X s Xirst s Xoets Xivert ves Ny Xirs)
= Tr(Hy o(Xy oo X)) * Xong)-
When s = 0, only G is defined, while when & = 0, only H is defined.

From the properties (a)-(c) of F}, .., , we can deduce properties of G
and H. In particular, we will need the computation:

(C)’ Tr(Gk,n(Xl yeess Xn)t ‘ Xn+t1) = Tr(Gk.n(Xl yerey Xn) X:H-l) =
Frii Xy seeey Xy XEi) = Frnitl X hs a1 5o Xty X s Xbiq seeey Xih
XL X0,
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The meaning of these definitions is made clear by the following:

PropositioN 8.3. (a) The polynomials F,_,, ., are commutative ortho-
gonal trace identities for n < n matrices.
(b) The polynomials G, , , H;. , are noncommutative trace identities
for n > n matrices.
(¢) Any commutative (resp. noncommutatz’z'e), orthogonal trace
identity has degree = n -- 1 (resp. == n).

(d) Any multilinear commutative (resp. noncommutative) trace
identity of degree n 4 1 (resp. n) is a linear combination of polynomials
deduced from the F;, , ., (resp. the G, , and H, ) by substitution of the
variables (and eventual transposition of the final result).

Proof. First we remark that substituting the variables means to
substitute for X ,..., . wi variables W, .., W, , where W, = X},
or X;'. The proof now is a consequence of 8.1, 8.2, and the second
fundamental theorem, plus the usual remark that noncommutative trace
identities in the variables ., ,..., X correspond bijectively to commuta-
tive trace identities in X ,..., X;, X, ;; linear in X, , via the map

8 Tr(g : 1+1)

In this case, one might have to transpose and use (c)' if X, appears
among the first & variables.

Having described the minimal identities, we proceed now to prove
the second fundamental theorem for matrix invariants and concomitants:

Turorem 8.4. (a) Kermy s the T-ideal of T* generated by the
polynomials F, ., .
(b) Ker 7, is the T-ideal of S* generated by the polynomials G, ,, ,
(SN
Proof. (a) We proceed as in 4.5 to reduce ourselves to analyze
multilinear identities only, of degree m and depending on the variables
X,,..., X, . We can apply now Proposition 8.1 and the second funda-

mental theorem to reduce ourselves to analyze a trace identity corre-
sponding to an element

f = <P1 1y Pnf‘fl qu )qn -1 (Pn" ’ Qn¢9 a (pm > qm)7

where py,..., 0,5 Q1 ¢, 18 a permutation of wuy,..,u,,, v;,.., 7, .



334 C. PROCESI

We are clearly allowed to permute the variables if necessary and to
exchange .X; with X}{, ie., to permute simultaneously the u/s, v,s,
and exchange u; with v; . Finally, changing possibly the sign, we can
rearrange separately the elements p, ,..., p,.; and ¢ ,..., ¢,41 -

If we operate this way, it is easy to convince oneself that we may
assume that p, ,..., p,; 18 the sequence u,, uy ..., Uy, T ,..., Uy for
some % such that n 4 1 = 2% 4+ s. Furthermore, ¢ ,..., ¢,,; may be
taken as the sequence ., 1, U ooy Uppopms Vit soeer Vhils ;s
Vg seer Ui Vpgsr1 s Ukt reees U WIth I K5, B+ s +m <<n + | and
the indices jy , jy ..., j, > n + 1.

Consider now u; , it appears as one of the elements p, or ¢; with
i>n-+1 in a scalar product (u; ,w;,) outside the determinant,
Wy, = Uy ON W, = Ty .

Let us separate some cases, introducing new formal symbols:

(@) If wy, = v, ,setd, = (u; ,v,)7; , ) = i .
B (b) If w, = u, and hy >mn+1, set &, = (u;,u,)v; and
u}zl = 7)?11 .

(c) fw, =uwu, and by <n+ 1 setu, = (u; ,u,)" v ,and

‘Uhl = uhl .

Furthermore, we can take the scalar product (u; , v;) inside the
determinant, and using the symbols introduced, rewrite f as:

f = (P1yeens Pt | @1 seoes Guin(Prve s Gnsa) " (Pt s Gm-1)s

where p; ey Prici s G1 5oy Gz 18 @ permutation of

5. e
U5 Um

um 7;1 .-.77}[ e :

. v
uluz...uhl...uj .es L

1
(where ¥ means omitted).
We apply now induction and assume that f, as a trace polynomial in
the variables X, , X ,..., X ..., X; ,oey X, , is of the form

T Fna(My, My ..y M) - P

Now, we see immediately that we can substitute to the variable . ,
respectxvely In case (a), X, = X, X; , in case (b) X, = Xj X, , and
in case (c) X, = X]X; usmg the forrnal multlphcatlon rule for the
symbols p ® ¢ given by PRqg-r®s=p &R (r,qs, and thinking
Xp, = Uy, ® Ty, -
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All these formal operations are compatible and give

f=4F, (M M/, . M

n+1) P”
where the M,’s and P’ are obtained from the M;’s and P substituting for
X, the corresponding expression. This completes case (a).

(b) This part is easy having developed (a). Let K(.X;,..., X,) € Ker ,,
add a new variable X, , and consider Tr(K(X,,..., X;) X, ;) € Ker .
By part (a) we have

Te(K(Xy oy X0) Xiia) = ) PF, (MO MD),

and we may assume that X, ; appears linearly in each term of the sum.
Take a term PF; , (M, ,..., M, ). We have, then, two cases, either
X, appearsin P, or X, appears in one of the monomials M’s. Further,
X, may appear transposed.

If X ., appears in P (transposed or not) we can write P = Tr(P'X, ),
if X,,, appears in one of the M,’s, then, using property (b) and (c) of the
polynomial F, , ., , we may permute the variables and assume that X,
appears in M, or in M, .. Since both cases are similar (one gives rise
to the appearence of G, , the other of H, ,), we treat the first. We might
have ‘MrH-l = An#—l‘Ys‘:—an =1, OT “Mn 1 An+1X€+1Bn o

In the first case,

Fk,n+1([‘/[1 ey ZUn;l) — Tr(Bn+le,n(jV[1 sty ]”n) *4n+1 ) ‘th‘—l)'
In the second case, we have

Fk,n+1(]”1 LA J1n+1) - Tr(Bn;lGlc,n(Jul Iy j”n) A’ln+1‘Yfz+1
= Tr(4y 1 Gron(M; ooy M) Bria Xoiy).

From these computations, it follows that Ker 7, is generated by the
elements G, ,(My,..., M,), G..M,... M), H, (M,,., M),
FI.'.11+1(M1 LA Mn+l)7 HI;,'n(Ml 3t Mn)t

When we look, therefore, at the T-ideal generated by the polynomials
Gy, and H;, we obtain, closing the ideal under substitutions, the
polynomials G, (M, ,..., M), H,. (M, ..., M,) and, closing under the
operator T'r and under the involution, the polynomials Fy, , (My,...,M,, ;)
G, My,... M), H. (M, ,..., M)}, as desired.
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9. Explicit Computations of Orthogonal Trace Identities

We want to make now a few explicit computations of the polynomials
introduced in Section 8.

The first remark is that the polynomial F, ,,.,(X, ,..., X,,;) is exactly
the trace polynomial F(X] ,..., X, ) introduced in 4.3 and obtained by
full polarization of the expression of Tr(X"+!) in terms of Tr(X%),
1< n

Similarly, H, (X ,..., X,,) is G(X},..., X)) of Section 4. As for the
other polynomials, they are not fully symmetric in all variables, hence,
cannot be obtained by full polarization of a polynomial in one variable.
Rather, we could see F,,,.;, n + 1 = 2k + s as obtained from full
polarization of a polynomial in 3 variables if &, s + 0, in two variables if
s = 0, by identifying the variables Xj,..., X, or X3, -+ X, or
Xii g1 »oees <Xns1» With respect to which the polynomial is fully sym-
metric.

Furthermore, from the remark (a) on the properties of such poly-
nomials we have:

Fk,n+1(‘Y1 PR Xn+1)
= 3P a1 sy X oy Xi1) — Fronaa (X ooy Xifrery X0 10))
= Fpt(Xp ooy (X7 = X200y X,

when { <<k or i > k + 5. Setting (X, — X,!)/2 = X;=, we have that
X, is the antisymmetric part of the variable X;, and so F}, ,,.; depends
on 2k antisymmetric variables X, 7 <{ k, 7 > k - s, plus the other s
variables X; , k <j < k -+,

Frn(X7 e Xa)
- Flc,n+1(X1_ 4 ‘XZ_:"') ‘Xkﬁ’ ‘YI-‘#I 3y ‘Xk-,ts s "YI;—H-I [AAE] ‘lei—l)'

We have similar results for the polynomials G, , and H,, ,. Inpartic-
ular, we have that for n = 2k — 1, the polynomials F} 4. and Gy o4
depend only on skew symmetric arguments. For n = 2k. the polynomial
H, ,,. depends only on skew symmetric variables, while Fy 5., depends
on 2k skew symmetric variables plus the variable X, .

Let us compute explicitely F, 5. Its formal expression in Iy, (4.8.1)
is given by

(%) gty " Ty Uyt Vg N Upgy T UV T Var)
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Let us analyze the monomials appearing in the expression of (*).
Let us call a monomial M pure if, in the scalar products, each u is paired
with a v and conversely. Such a pure monomial can be written

M = (“i1 , @,il)(“jl ) "“‘z'g)(”ig 5 "’;:_,) (ll,'k s f‘il)

g o Wty v (g, s vs) (e ) T (M, s Dz

where the indices ¢, s,..., s runs from 1| through %, and the indices
1, 4., w, from & 4 1 to 2k.

This monomial corresponds to a permutation o€ &, , which in
cycle form is

(Ertads = T Ji)(SabiSaty o Suty) o (R1%0,35% * 3,20,).

Any such permutation can be built from two bijective maps «:
{1,..., k} > {k + 1,..., 2k}, and B: {k + 1,..., 2k} — {1,..., k}. o is just the
sum a -+ 8 of the two maps. The monomial M, being one of the expan-
sion of the determinant, corresponds to a map & between rows and
columns. One easily verifies that ¢ is equal to « on the first k£ rows and
to uB~'u on the last & rows, where u: {k + 1,..., 2k} — {1, 2,..., k} is the
map { — ¢ — k. The sign of M in the expansion of (*) is the signature
of &, but we claim that o and & have the same signature. In fact, compose
g and ¢ with = = p + p7%, then, 70 = pa 4+ p78, with po, p7'8
permutations on I,.., &k, k- 1,..., 2k, respectively, while ¢ =
pa 4+ Bl = po - (uB)

Therefore, e(7) €(0) = e(ua) - e(u™8) = e(ua) e(fn) = &(7) ().

Let us return to M and write it as a trace monomial

M = Tr(XEX, XX, ;) Tr(X! X, X, X)) o Tr(YEX,, X,

In the expansion of (*), all the impure monomials are obtained from
pure monomials upon exchanging some #;’s with the corresponding v,’s,
conversely given a pure monomial any monomial obtained by such
exchanges appears; any time such an exchange is made the sign changes,
if we exchange the u;’s and ;s for all the indices in a cycle « of the
permutation o associated to a pure monomial, we obtain again a pure
monomial. Its permutation ¢’ is obtained from ¢ exchanging the cycle o
with o1

Therefore, given the pure monomial M, let us compute the contribution
to (*) given by M and all the monomials obtained from M upon ex-
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changes. Making all possible exchanges except for the indices 7 , s; ..., 2y,
we obtain the sum

e, 2% Tr(X! X7 X7, -+ X7) Tr(XE X7 X5+ X7) + Te(XE X

4y

wy X;):
where N, = 2k — A, where A is the number of cycles in which ¢ decom-
poses. If we want now to complete the exchanges, we see that we obtain
also trace monomials relative to permutation ¢’ obtained by substituting
a cycle of o with its inverse. Since we want eventually to sum over all
allowable ¢’s, we should not count twice the same term This is achieved
by substituting for X} , X; ,..., X} the variables —X;7, =X ,.., =X,
without changing the coeﬂiment 2%, Noting that 1f a cycle is a trans-
position, hence, equal to its inverse, we have the formal equality
Tr(X;'X;7) = Tr(X;7X;7). To sum up, we have

Fron= Y e(—2)% Tr(X;X; - X;) - Tr(X - Xi.),

gey2n

where %, stands for the set of special permutations of type « + 8,
as above, e.g.,

F, =2 Ti(X,7X,7)
Fyy = 8 Tr(Xy Xy Xy X,0) 4 8 Tr(X, X, X, X,
A THXX,) Tr(Ny X)) — 4 Tr(X,X,) Tr(X, Xy0).
Of course, by lumping into a unique term all the monomials obtained

from a permutation ¢ and the o’s gotten from o inverting the cycles, we
can simplify the expressions:

Fyu = 16 Tr(X,m Xy XXy ) — 4 Tr(XyXy7) Tr(Xy X,7)

— 4 Tr(XX,) Tr(XpX50).

Let us compute now F,_ . .,; rather than repeating the full reasoning

. . . Evdd ! ’
we use a trick; introduce a new variable Xy 5 = g0 & Vg0, Where
e nd uy,., satisfies (formally) the relations (u; , us;,s) = 0;
Do+ = Vgt1 ANA Ugpio y i Uapre) == U5

i=1,..,k+ land (v;, uy. o) = 0,7 = 1,..., k, while (v, , tgp40) = L.
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Then,

Fk+1,2k+2(‘X1 ety ‘X2k+1 » ‘X2k+2)

3 4 rd N,
72 Uy ey Uprg s Up geeey Vgt | Miggn " UagerWopsa¥hsn " Cons1¥aicsn
7 t AN
= (Uglly " Up Ty " Ty | Upyo 7 Uopi1 Ui " Vangrs
= Fropa(V1 5oy Xoppa)-

Now, we must eliminate all monomials in F}_; 5., in which we do not
have the scalar product (vy,,, #g;,.») = . Hence, we sum over all
special permutations of 2k + 2 indices, where k& 4 | is paired with
2k + 2. Expanding the relative monomials, we use the computations

Tr(X X0 - X7 XX X ) = Tr(XR XS - A7 NG ),

[Pl s 157y
Tr(Xf;HXﬂ AXi—;sz-.Lz) = Tr(Xf: o XA )s

to eliminate the variable X, ., , and we obtain an explicit formula.

Let us be content now to extract the trace identities for n X n matrices
n < 3.

We already know that F,, = F, of which we know the explicit
formula. We must compute F, 4, Fy 4, Fy ,, Fy 4 we have already com-
puted F, , and F, ,; F, ; can be computed using the previous ideas

Fy =4 Tr( A7 X, X,) — 2 Tr(X,X5) Tr(Xy)
As for F, , we have
Fy 4 = 4Tr(XyX,477) Tr(X) + Tr(X,X,mXG) Tr(Xy)
— Tr(X, X, X,X0) — Tr(GA X)) — Tr(N XXX )]
— Tr(X;7X) Tr(X,) Tr(X,) + Tr(X; =X ) Tr(X,X))

From these computations it is easy to extract the formulas fo G, ,,
H, , for n < 3, and we leave it to the reader.

10. Symplectic Invariants

We consider now the vector space V' = K?* endowed with the
canonical alternating form:

<(u1 y U sy Up 5 Uy 5eeey 'Un)’ (Plpz yeees Py Q1 seeny qn)> = Z (uiQi —Pﬂ)z)
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We can proceed exactly as for the orthogonal case in almost all points
and, therefore, we will only sketch the steps involved. First, the alter-
nating form identifies I with its dual V*. Therefore, we identify End(V)
with its dual V*. Therefore, we identify End(¥") with V' @ V. Under
this identification, the product, trace, and adjoint involution are expressed
as follows:

(@) a®b-c®d=2aQ b, c,
(b) Tr(a Q b) = <b, a),
() (a®b)* =—b a.

The automorphism group of ¥ with its form is the symplectic group
Sp(2n, k), and the automorphism group of End(V) with its involution
* is Sp(2n, K)/{1, —1}.

The theorems on invariants of the symplectic group that are necessary
to carry the theory through as in the orthogonal case are the following
[16, pp. 167, 168].

FirsT FUNDAMENTAL THEOREM.  Every multilinear symplectic invariant
pwVRVE - QV-—>K of 2k vectors is a linear combination of

invariants obtained by contractions
v @ @ v —> Vi Uiy T Wiy v Vigy e

SEcoND FUNDAMENTAL THEOREM. Every relation among the invariants
(v, w) is a consequence of the following basic relations

Ji= Y o)), Yo s X)) " Kaan) > Volensn))

o€ on+1

Jo= Y €0}, Y0 %) » V2 {¥s) V3> {¥a@¥os), " {Kolan) » ¥olan+1))-

Jn = yz (o) %) » Yo » Vo " {Xonin) » Yania

One deduces immediately from the first fundamental theorem and
the theory already developed the following results.

Call T(Sp);.q, the ring of invariants of 7 2n X 27 matrices under the
symplectic group and S(Sp); ,, the * algebra, over T(Sp); o, , of matrix
valued concomitants we have:
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Tueorem 10.1. (a) Thering T(Sp); 4, 15 generated, as a K algebra,
by the elements 'Tr(M), where M is a monomial in X;, X;*, j = 1,..,7 of
degree < 2% — 1.

(b) The algebra S(Sp), o, is spanned, as a f(Sp)l 2n module by the
monomials of degree <.2" — 2 inthe X;, X;* j =1,

As for the second fundamental theorem, one proceeds as in Section 8.
First, one constructs the formal algebras 7* and S* endowed with
Tr and *. These are the same as the ones considered in Section 8 except
that now, we will write .X — X™* for the involution to remind ourselves
that eventually, we want to compute the formal polynomials into matrices
endowed with simplectic involution.

Next, one defines the maps =, T* — T(Sp)ew.s,, and = S* —

S(Sp).. 5. » of which one wants to compute the kernels. Next one
constructs the polynomial ring in the variables (x, & X5 \\cL , ¥, and
{¥:, ¥ subject to the antisymmetry laws (% y Xy ==—Cx;, x;) etc.
One consider the space I,, spanned by the monomials of degree m in
which xq,..., %, , ¥1,..., »,, appear, and identifies this space with the
commutative trace polynomials in the variables X; =x; ® v;,
j = l,..., m. One should note that this identification is not the same as in
Section 8, due to the new laws of the symbols {z, w).

To establish the second fundamental theorem, we have to translate
the relations (A) into trace polynomials, i.e., into elements of [, .
This clearly can be done in various inequivalent ways. The way to
describe these translations is to stick to the notations of (A) and use the
VECtOrS ¥y ..., ¥ai_qs Xy seers Xopq tO form in all possible ways n + 1
decomposable matrices X ..., X,_; .

Due to the internal symmetries of the two sets of variables y’s and «’s
in the polynomial [, it is easy to see that it is sufficient to choose a
number 2 with 0 << h < 7, write 2t — | = 2k -~ 5 and set

N =00y, X =8 @Y, X = 0,00y, Xy = Y04 D Vg4
Newr = Yo @ Vorgreos Nopn = Voo @ ¥opan s Mg = 80 @ ¥y

u . - — & <y
Noper = Y3 O Xgpgsey Xy == 25, &) Ngpg -

With these notations, [, gives rise to a trace polynomial denoted

FIL‘L,n(*Xl 1ty X1L+i)'
The polynomials thus defined have the following properties:
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(a) F}i ,.qis invariant under a permutation of the variables acting

separately on the three sets X, ,..., X3 X g 500, Xop Xoinga reeor Xps
(b) F} ,.,1s invariant under the exchange of X; with X;* forj > s.

The proof of (b) is obtained by noticing that (¢ ® b)* = —b Q a.
Hence, the exchange of X; with X;* involves a transposition and a
change of sign, the formula for J; gives then the result.

Therefore, we can write

Fi Xy s Xurd) = Fi n(Xy oy Xy Xhg e A1),

where as usual, X+ = (X + X*)/2.

Finally, reasoning as we did for the orthogonal group, we deduce from
each F} , three different noncommutative trace identities by singling
out a variable out of each of the three sets X, ,..., X3 Xoiq 5oy Xgin s
Xs+h+1 LARA] Xn—m' '

Fli,n = Tr(GIlln : X?) = Tr(Hian "Ys+71) = Tr(KIlzn ' 4Yn+z’)‘

Finally, a procedure totally similar to the one of Section 8, 8.2, and
8.4 gives the second fundamental theorem for symplectic invariants.

Tueorem 10.2. (a) Ker w, is the T-ideal of T* generated by the
polynomials

Fp (X7 ooy Xppi)
(b) Ker =, is the T-ideal of S* generated by the polynomials
G)Z;,n ’ H?L;,n ) K;;,'Vl .

We want to make only one explicit computation for the minimal
identities. The minimal noncommutative identities are, of course, of
degree n, and obtained from F} , . A priori, one has two identities G},
and K}, , in reality, for this case, one sees that the variable y, is not
privileged, since it may be paired with any other variable, hence, we
deduce a unique noncommutative identity of degree z. Its computation
is possibly made simpler by changing notations and writing X; = x; ® ¥y,
Xy = % @ Y 5oy Xnp1 = X1 @ Vnia s and J; = 3. () s Ynpr o0
{,>. the blanks being filled in all possible ways by the remaining
symbols. First, transposing two symbols appearing in a single bracket,
one obtains the same term, hence, collecting all such terms a factor 2.
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Normalizing by dividing for this factor, one has a polynomial that is
obtained as a sum of pure monomials in which in each braket, an x is
always paired with a y in the order {x, y).

The impure monomials are obtained from these on substituting some
variables X, j << n + 1 with X;*. Finally, one sees that, after taking
out X, ., , we obtain the polynomial that is formally equal to G(X|,..., X))
of Section 4, except now, the variables are taken symmetric; i.e., G is in
the variables X;* = (X; + X;*)/2, j = l,..., n. Therefore, we obtain
the analog of 4.4(c).

PropositioN 10.3.  The minimal noncommutative trace identity for
2n » 2n symplectic matrices is G(Xi*,..., X, 7). It is obtained by full
polarization of the Pfaffian polynomial of a symmetric matrix.

Proof. We recall that the Pfaffian polynomial of a is obtained as the
characteristic polynomial by the expression Pf(x -1 — a). The proof
of 10.3 1s trivial by the uniqueness of the minimal noncommutative trace
identity, as in 4.4.

11. Umnitary Invariants

Let I” = C" be the n-dimensional vector space over the complex
numbers, and endow V' with the canonical Hilbert space structure:

((ay sees @), (b1 o, by)) = Z asz .

The group of linear transformations compatible with the given
Hermitian form is the unitary group U(n). The algebra End(V) is
endowed with the canonical involution 4 — A*, which in matrix form
is A* = A'. The theory of invariants for U(n) is slightly twisted with
respect to the orthogonal group theory because of the two following facts:

(1) Un) 1s not an algebraic group.
(i) The involution * on End(V) is of the 2nd kind, in fact o* = &
for any scalar «.

The way to deduce the invariant theory for U(n) from the one already
developed 1s based on the following remarks.
(ii1)) The automorphism group of End(¥’), as algebra with involu-
tion over C, is I' = Um)|T, T = {x e C* ! | a| = 1}
(iv) The automorphism group of End(V) as algebra with involution

over R is the semidirect product of I" with Z/(2) = {1, 7} acting on I" as
{a} = {a'}~! ({a} the class of a € U(n) modulo T).
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(v) 'The Zariski closure of U(zn) in the algebraic variety Gl(n, C)
18 Gl(n, C) itself [16, p. 177].

This last assertion 1s essentially the unitarian trick of H. Weyl.

We consider End(V') as a real vector space and construct End(V) ®, C
with the involution (¢ Q «)* = a* @ .

Then, End(V) @, C as a * algebra is isomorphic, over C, to
End(V) @ End(V) = (C), @ (C),, with the involution (a, b)* = (b}, a'),
its automorphism group (as * algebra over C) is easily described. It is
the semidirect product of Z/(2) with PGI(n, C); an element ¢ € Gl(n, C)
induces the inner automorphism (a, b) - (cac™, (¢!)7'bc!) and Z/(2) acts
mapping (4, b) into (b, a) (and on PG{(n, C) sending ¢ into (c/)71).

In particular, we consider U(n) C Gl(n, C).

Let us restrict the action of Gl(n, C) on (C), ®; C ~(C), ® (C),
to U(n). Then, the map of (C), — (C),, ® (C), , sending a into (a, ),
is compatible with the U(n) actions, where (C),, has the usual action of
conjugation: u € U(n), a € (C), , u acts on a giving uau™.

If we sum all the remarks, we see that:

(a) The ring of complex valued polynomials on @®; ((C), ®; C)

is isomorphic to the ring of polynomials on the real vector space @; (C),, .

(b) The invariants under U(n) coincide with the invariants under

Gl(n, C).

To conclude, we have to see what is the Gl(n, C) module M =

Lemma 11.1.  The given Gl(n, C) representation on M is isomorphic
to the canonical representation, (C)2 on 2j tuples of matrices, by sending

((ay , by), (ay, by),..., (a;, b)) into
(a1, By, (ag, bs)sens (), BY)).
Proof. 'This is trivial by the formula
()" bel)t — cbren.

Summing up all these remarks and recalling the formula for the

embedding of (C), into (C), ® C ~ (), @ (C), , we have:

THeOREM 11.2. (a) The unmitary invariants TU;, of j complex
matrices Xy,..., X; are polynomials in the elements Te(W, ,.., W),
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where W; = X;, or W; = X;*. As a ring, it is isomorphic to the ring of

Gl(n, C) inwvariants of 2j matrices X, ,..., X;, X *,...,, X;*.

(b) The unitary matrix valued concomitants SU;, of j complex
matrices X, ,..., X; are an algebra generated over TU; , by the elements
X,, X;*, i =1,., j. As an algebra, it is isomorphic to the algebra of
Gl(n, C) concomitants of 2] matrices X; , X *.

We remark that this theorem contains implicitely also the second
fundamental theorem, it describes formally the rings 77U and SU as
isomorphic to rings already considered.

'The involution that, as a function, is induced by *, can be thought of
formally as the involution of the 2nd kind obtained as * on C and as the
exchange of the two distinct variables .X; with X *, 7 = 1,.., .

12. Mixed Invariants and Concomitants

We consider now the problem of studying the simultaneous invariants
of matrices, vectors and covectors. For simplicity, we will restrict
ourselves to Gl(n, K) the other cases being similar. Since the study of
relative invariants of Gl(n, K) is equivalent to the study of absolute
invariants of Sl(n, K), we will refer to this group when talking about
invariants.

We consider, thus, the ring T}, , of invariants of k n x n matrices,
h, n-vectors, and ¢, n-covectors, and we have:

THEOREM 12.1. T, is generated by the following elements:

(a) Invariants of k matrices alone.

(b) Scalar products {¢; , Mv,,, where M is a monomial in the given
matrices, ¢; a covector, v; a vector.

(c) Brackets [Myv; , Myv; ..., Mo, ], where the M;s are mono-
mials in the matrices and the v;’s are vectors.

(d) Brackets [My'e; , Myto;, ..., M, p; |, where the Ms are
monomials in the matrices and the ¢;’s are covectors.

Proof. Itisimmediately verified that, upon polariztion and restitution
of variables, an expression involving the elements of the previous type
remains of the same type. Therefore, it is sufficient to deal with multi-
linear invariants.

Assume that the given multilinear invariant depends on 7 matrices

607/19/3-6
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A, , A,,..., A, , ] vectors and z covectors o ,..., ¢, . Hence, it is described
by a multilinear map

End(V) QEnd(M) @ - QEnd(M) @ VR RV V*® - ® V*— K.

i-Times J-Times z-Times
By the identification, End(V) ~ V* & V, we have an invariant
fr VO @ V*®it: s K

The classification of such invariants [16, p. 45] ensures that ¢ is a linear
combination of invariants of one of the following two types:

1) [vi, ey 'vi,,]['vhl yeeey "')h,,] [‘vt1 ey 'Ut,,]<(Pul » Ug " <‘Pu,) 7”3,>:

where 2y yeury By By yeeey By =** £1 yeoes By §4 50y S, 18 @ permutation of the
i -+ J vector indices and u, ,..., u, is a permutation of the ¢ 4 & covector
indices.

(2) The same expression where the brackets of vectors are replaced
by brackets of covectors.

One can assume that one does not have at the same time brackets of
vectors and of covectors due to the relation:

(V15 Vg 5oees Vpl[@1 5eens n] = det(<g;, Vi)

Let us consider the type (1), type (2) being perfectly similar.

Let us analyze the factor [v; , 2; ,..., v;]. If all the indices 7 ,..., 2,
are vector indices (and not matrix indices), we save this factor and pass
to the rest of the product; otherwise, say 7 is one of the matrix indices.
Lf:t us write 4; = ¢; & v; , ¢; is necessarily paired in a scalar product
with a vector {gp; , v, ).

If ¢, is a vector index we have, setting v; = (v, , ;) v; that v; =

A; v, and
@iy s VP s Vi) = [00,, Vi s D s

and we continue on the other indices.
Otherwise, we keep matching the matrix indices

<(Pi1 ’ ”tl><¢t1 s 7):2>
until we hit a vector index #, and then we have
<‘Pi1 s vtl><§9£1 'vt2> <‘Pt,h1 > vtk>[7)2‘1 s Ugy sreen vin] - [‘Mvik > Uipseens viﬂ]v
where M = A; A, - A, .
1 1 k-1
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One preceeds similarly for all the vectors in the brackets. As for the
remaining scalar products, we have a similar procedure of matching
the matrix indices and one easily sees that in doing this, one obtains the
factors of type {p, Mz> and Tr(M), where M is a monomial in the
matrices. The second case is, as we have said, similar except that
matching the matrix indices with a covector ¢, one obtains a monomial
in the transposed matrices. (Of course one could have considered
invariants {M'p, Nv), but they are just o, MNv).)

We describe now the concomitants.

Remark first that, over Si(n, K), we have the identifications A* "~ K|
A T* ~ K, Av 1 T* ~ ], Av=1 V'~ T* With these identifications
the “brackets” (A* 11y X V — K, (A* 1 1V*) Q I'* » K, are iden-
tified with the usual brackets [, >, V @ V* — K. Keceping these
identifications in mind, plus the usual identification End(¥) ~ VV* ® V|
we formulate the main result.

THEOREM 12.2 (a) The vector valued comcomitants form a module
over T}y, spanned by the elements Mv; , My'p; A Mylp; A -+ A Mfzwl‘Pf,,_l
where the M;’s are monomials in the matrices, the v;’s vectors and the ;s
are covectors.

(b) The covector valued concomitants form a module over T, ,
spanned by the elements M'p;, Myv; A Myv; A - A M, jv; , where
the M;’s are monomials in the matrices, the ¢;’s are covectors, and the v;’s
are vectors.

(c) The matrix valued concomitants form an algebra over T, , ,
generated by the elements A;, ¢, @ vy, (Myv; A - A M, 49; ) @ v;
and ¢, @ (11.41‘%-1 A Myl A - A ]V[}L_ﬂpin_l), u.)here, as usual, the A;’s
are the matrices, the M;'s monomials in the matrices, the v;s are vectors,
and the ;s are covectors.

Proof. (a) Let us introduce an extra variable covector ¢. If g is a
vector valued concomitant, then (g, g> i1s an invariant linear in ¢.

Furthermore, {p, g> = Oifand only if g = O since ¢ is an independent
variable.

By the classification theorem (12.1), ¢, g> is a polynomial in the
invariants of types (a)—(d).

Now we make a case analysis. Clearly, ¢ appears either in a factor of
type (b) or in one of type (d). In the first case, we pull out the factor Mw
and see g as this factor times an invariant; in the second case, we arrive
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to the factor My'p; A My'e; A - A M _;p;  using the identifications
[My'p;, A A My, A Mp] = (M'p, My'p;, A - A My,
= {g, ]W(Mltfpil AT A JLI;—I(Pi,l,_l)>

= (o, (M M"Y i n oA (MM ) @ >

{n-1

M* the matrix defined formally by (det M) - (M%1. The Cayley-
Hamilton theorem for M shows that M* is a polynomial in M‘ and
Tr(MY).

(b) This is dual to (a), so we do not repeat the proof.

(c) In this case, we introduce an extra matrix variable as in 2.1,
and associate to the matrix concomitant g the invariant Tr(gz), from
which g can be recovered. Then, we make, as in (a), a case analysis of
the expression of Tr(gz) in terms of the basic invariants.

If = appears in a factor Tr(M), we single out in g a term « *+ N, « an
invariant, N a monomial in the matrix variables. If z appears in a
monomial M in a factor (¢, Mz), we single out in g a term « + NV, « an
invariant and N a monomial in the matrix variable plus the matrix
concomitant ¢ () v. If ¥ appears in a monomial, say M, , in a bracket
(M2, , Myvy, ..., Mo, ], we can set

1
[Myv; , Myv,, ..., My ] = Tr(Nz),

(SR 19 9°"

where N is a monomial in the matrix variables plus the matrix con-

comitant
(Myvi Ao A My ) @ vy,

We have not bothered to write explicitely the finiteness statements for
all the various cases, since they are obvious consequences of Theorem 3.4.

Similarly, one can write the second fundamental theorem in all cases
considered by taking the second fundamental theorem for vectors and
covectors and using the method of matching the matrix indices.

The resulting theorem would be very messy, in reality, what one
proves, is that we have the following “free additing category with exterior
product.”

The objects are: The vectors M, the covectors M*, the exterior powers
of them: A® M, A9 M*. Freely generated by: vectors {u; € M};_; . 3
covectors {&; € M*};_;  .; matrices {X; € hom(M, M)}, ., with
all the formal operators:
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(a) The pairing: (x, £) - 2 @ €, M X M* — hom(M, M);
(b) Transposition: X — X*, hom(M, M) — hom(M*, M*).
(¢) Trace: hom(M, M) — A° M.

(d) Evaluation: (x, §&) — <{x, &; M x M* —~ A" M.

(e) Object isomorphism: A% M ~ A" M* A0 M ~ A M*,

Then, one has to write the usual formal axioms and then, the resulting
rings and modules are the ones under consideration.

This is the form that the second fundamental theorem takes. The
method of proof is by full polarization and the method of matching the
matrix indices in the resulting formulas taken from the second funda-
mental theorem as proved by Weyl. We hope to give a more detailed
account of these ideas elsewhere, they seem to be related to the concept
of Cayley algebra introduced in [2].

1I. REPRESENTATIONS OF *-ALGEBRAS

13. *-Algebras and Representations

We want to extend here the theory of Artin on representations of
algebras [1] (see also [7, 8]). The case treated by Artin is the one relative
to the group GL(n, K). Here, we treat the other classical groups, for
which a similar theory can be developed.

We are not going to discuss the theory in the generality that perhaps
it deserves. In particular, we will stick often to our assumption that the
fields under consideration have characteristic 0, although it will be
apparent from the proofs that most results extend to characteristic p > 0
or even to the characteristic free case.

We hope to return to this point elsewhere. We recall that a ring with
involution is, a ring R, with a map @ — a* satisfying:

(1) (a+ b* = a* + b*,
(11) (ab)* = b*a*,
(i11) a** = a.
Rings with involutions form a category, if we insist that a map ¢: R — S
between such rings is a homomorphism preserving *.

We will consider, rather than rings, algebras with involutions over a
field K (or more generally over a commutative ring A). We will refer to
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such rings as * algebras. The map * may be either the identity or an
automorphism of order 2 on K. In practice, we will consider this second
case only when K = C and o* = @ on C.

The relation among involutions and forms is the usual one. Given a
finite-dimensional vector space V over a field K, and a nondegenerate ¢
symmetric form (e = 4-1), the algebra End(}) 1s equipped with a
canonical involution having the property that (a*v, w) = (v, aw).

If € = 1, we will refer to the involution as transposition otherwise as
symplectic involution.

Similarly, when K = C, and V is equipped with a nondegenerate
Hermitian form, End(V) is endowed with an involution called adjoint.

We will study the following objects.

Given a vector space ¥ with a form of one of the previous three types,
and a * algebra R, a * representation of R in V' will be a * map ¢:
R — End(V).

In the language of modules, ¢ gives rise to an R module structure
on V, the hypothesis that ¢ is a * map becomes

(r*o, w) = (v, r w), forallo,we V,re R

We will speak, respectively, of an orthogonal, symplectic, or unitary
representation according to the nature of the form on V' symmetric,
antisymmetric, or Hermitian.

We have the natural notion of equivalence, for representations of the
same type.

Two representations ¢: R — End(V), : R — End(W) will be called
equivalent, if there exists an isometry u: V' — W for which

up(r)o) = §(r) u(v)-

In the language of R modules, # is an R-linear isometry. In this
situation, we will also say that the two modules are isometric.

In particular the group of isometries of a space I acts on the set of *
representations of R and the orbits of this action are the equivalence
classes of representations.

To give a concrete example, which is also fundamental for the theory,
we specialize to the case that R is a free *-algebra.

We will consider three different types of free algebras. Given a set I,
construct on the category of * algebras the three set valued functors:

Rc— Rl R C > RH RCc— R,
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R+ and R~ will always denote the sets of symmetric, repectively, anti-
symmetric elements of R.

Each of the three given functors is representable.

The representing algebras are constructed in this way.

(a) The free algebra K{x;, v;};c; with the involution assigned by
the rule x;* = y,. This will be called the free *-algebra in the variables
%; , we will write x;* rather than y; and thus, K{x,, v;} will be denoted
K{Vz ’ xi*} :

(b) The free algebra K{x;},, with the involution defined by
x;* = x,. This will be called the free *-algebra in the symmetric
variables x; . For convenience of notation, we will write s, rather than
X

(c) The free algebra K{x;},, with the involution defined by
x* = —x; . This will be called the free *-algebra in the antisymmetric
variables x; . For convenience of notations, we will write ¢, rather than x, .

There is a very simple relation between these algebras as soon as
3 € K. In this case, the canonical decomposition R = Rt @ R~ gives
rise to the canonical isomorphism

K{x;, x,*} = K{s;} H K{t;}
where [] denotes the free product and
$ = ("vz' -+ Lvi*)xfyz) t; = (xz’ - xi*)‘,"v2.

Giving a representation ¢ of K{x;, x;*} in End(V) is equivalent to
assigning the elements a; = ¢(x;) € End(V).

The equivalence of two such representations {a;}, {#;} corresponds to
the existence of an isometry u with uau! = h; , for all 7.

We see, therefore, that we are considering exactly the actions studied
in Part I, for which the invariant theory has been developed.

Thus, our task will be to relate the invariant theory to the problem of
equivalence of representations. This is our final goal.

We need some further notations and generalities.

Let us give a vector space V, without any form, and a map ¢: R —
End(V), with R a *-algebra.

We can deduce, from this map, an orthogonal and a symplectic
representation as follows.
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(a) Construct the dual representation ¢*: R — End(V*) by the
formula p*(r) = @(r*)t

(b) Construct the space W = V7 @ V* and the direct sum repre-
sentation, ¢: R — End(W¥), of ¢ and ¢*.

(¢) Equip W with the canonical e-symmetric form:

<(‘Z), g)) (wa §)> = %[<‘Z), C> "l" E<‘Z(7, 5)]

One readily verifies that ¢ is in each case a *-map. We will denote the
orthogonal and symplectic representation so defined by ¢”, ¢°, respec-
tively.

In our future work, it will be important to endow, in the previous
situation, directly J with a form for which ¢ is a * representation. Such
a form will be called a compatible form. In some cases, such a form may
not exist at all, in other cases, many inequivalent compatible forms may
be constructed.

In the next section, an important special case will be studied for which
one has existence and uniqueness. For the moment, let us make one
further general remark. Given a left R module V" we construct a right R
module V# by the formula:

or = r¥o,
Next consider the abelian group V* @ V = T.

If B:V xV—K is a compatible form we have an induced map
B: T — K making the diagram

X /
K
commutative,

The group V* ®z V is equipped with an involutory map r: v @ w —
w & v; B will be e-symmetric if and only if B - 7 = €B.

VxV

V* Qg V

14. Semisimple *-Algebras

We want to specialize the general discussion of the previous paragraph,
to the case that R is a semisimple *-algebra. The theorems that we will
prove are mostly well known, in some cases even in a much greater
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generality, we have chosen to reproduce them here for lack of a coherent
reference taking our point of view of representation theory.
Let R be a semisimple Artinian *-algebra,

R=®R,;, R; a simple algebra.

The involution * induces a map of order 2 on the set of simple factors
R;; therefore, we can subdivide this set in the factors R, that are fixed
under *, and the remaining ones exchanged:

h
R=@R,

t
i=1 i=1

(Sj @ Sj*)’ (Ri = Ri*)'

S;* is isomorphic, via *, to S;° (the opposite algebra).

The * algebra S; @ S;* is thus isomorphic to the * algebra S; @ S,°
with the exchange involution (a, b)* = (b, a).

We want to analyze modules over R.

Tueorem 14.1. Let R be a simple *-algebra, let V be an irreducible R
module. 4 = Endg(V), the centralizer of R.

(a) There exists an involution * on 4 and a nonzero biadditive map
B:V X V — A4 such that:

(iy B(r*v,w) = B(v,rw) for allv,we V, and r € R.
(i) B(dv, w) = dB(v, w); B(v, dw) = B(v, w) d* for v,we V,
de A.
(i) B(v, w) = eB(w, v)*, € fived, and ¢ = -1.
(b) Condition (i) implies that B is nondegenerate, i.e., B(v, w) = 0
for all v e V implies w = 0 and symmetrically for all w € V implies v = 0.

(c) The involution on 4 and the form B are unique up to the following
changes.

If *, # are two involutions on 4, B, , B, the corresponding forms on V,
there is an element a € 4, a + 0 and a* = ea (e = 1), such that:

(iv) b* = ab*a™, By(v, w)a = By(v, w) for all v, we V.
(d) If 4 is finite dimensional over its center K, every involution on 4,
coinciding on K with the automorphism induced by the involution on R, is
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obtained in the way described before. Provided that, given € € K, if ee* = 1,
then € = +-(afa*), a e K.

(e.g., if * is the identity of K or conjugation of the complex numbers.)

Proof. (a) With the notations of Section 13, consider the group
V# Qg V with its involutory map 7.

V ~ R/I, I a maximal left ideal, as an R module.

Similarly, V'* ~ R/I* and I* is a maximal right ideal. Thus, V'* Q; V ~
VII*V ~ V#|V#I as abelian groups. Consider I as a vector space over 4,
we have an induced vector space structure on V* @3 V, which makes
it isomorphic to V/I*V, Since I'* is a maximal right ideal, V/I*V is one-
dimensional over 4.

Similarly, we can act on the first factor 1'%

We obtain, therefore, two structures of vector space over 4 for
V# &z V, both one-dimensional.

Denoting < and o the previously defined operations, one has:

do(w®w)=v® duw, do(r@w) =do@Qw
do(@®w) =do(vR®w)
dyo(dy0(v@w) = dw ®dyw =dy, 1 (d; 0 (v w)).

Let us now analyze . We may have three possibilities:

(1) 7(m) = mforeveryme V* Qi V.
(2) 7(m) = —m for everyme V* Qr V.
(3) None of the above.

We remark first: In case (1) and (2), 4 is commutative and * is the
identity on the center 4 of R.

Let us show it for (1), (2) being similar.

From 7(m) = m for all m, we deduced om = 7(d o m) = d c 7(m) =
d o m. The two operations o, C coincide, and we denote them by dm.
From d, o (d, o m) = d, o (dy © m) we deduce dydym = dyd;m, and so
4 is commutative and thus, identified to the center of R. Finally, if
reR, (r*v) @ w = v ® rw, if, furthermore, red, (r*v) Quw =
r* (v ®@w), and v Qrw = r - (v @ w), hence, r* = r.
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Any choice of a basis element m == 0 in I @, V, identifies this space
to 4 and thus, the canonical map V « V — V* @i V gives rise to a
form B: V x V-4~V @z V.

In case (1), B is symmetric, while in case (2), it is antisymmetric. The
involution on 4 is, as we have noticed, the identity. In these two cases,
the uniqueness of B is clear, every compatible form factors through
V# Rz V, so it amounts to chosing an isomorphism of V# @x V with 4.
This is unique up to a nonzero scalar ae 4, a == a*, since * is the
identity on 4.

For case (3), consider the elements w = 7(m) + mand v = 7(m) — m
in V* Qg V. We have 7(w) = w, while 7(z) = —v. In our present case,
we can choose w and v to be nonzero.

Let us restrict our attention to the choice of w with 7(w) = w = 0.

Define a map * on 4 by the formula: 7(d o @) = d* = w. We have:

dow=171dow) =r(d* ow) ==d** cw
bd)* cw =r((bd)ow) =bar(dow) =060 (d* ow)

= d* o (bow) = d* o (b 7(w)) = d* o (r(b 0 w)) = d* 0 (b* © w).

Thus, d** = d and (bd)* = d*b* for all b, d € 4. The * is, therefore,
an involution.

We use @ finally to identify V' @ V" with 4 by the map d — dw. Let
us call j the inverse of this map, one readily verifies that j(d o u) = dj(u)
and j(d 0 u) = j(u)d*, this proves (i) and (ii) for the form V' X V —
V Qg V—i A.

Part (ii1) is also clear with € = | by the fact that 7(w) = @ and the
definition of * on 4.

Everything we have done for the choice of a 7 symmetric element %
could have been repeated with the choice of v with 7(v) = —wo.

In this case, the involution is defined by #(d o w) = —d* o w, the
resulting € is —1.

(b) If B(v,w) = 0 for all we IV and we had v = 0, choosing
v’ € V, we can find, by the irreducibility of V, an r € R with ¢’ = rv.
Hence, B(v', w) = B(v, r*w) = 0. We could deduce that B is 0.

(¢) Assume that B is a form with the prescribed requirements.
By the universal property of V' @z V, we have amap B: V* @ V — 4
such that
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(1) The diagram

V<V

VF@r V
WA
4

is commutative.
(2) B-7= eB
(3) B(dou) = dB(u), B(d 0 u) = B(u)d*.

In particular, since B 5 0, B is an isomorphism between the vector
space V# X V with the operation = and 4. Let w e V* ®, V be such
that B(w) = 1.

Since B(r(#%)) = «B(@) = ¢, we have 7(@) = .

Formula (3) tells us that the involution on 4 is necessarily the one
deduced from @, according to the procedure used in (a). Finally, to
compare it with the previously chosen involution and form relative to w,
let us indicate *, # the involutions relative to w and @, respectively. Let
us assume 7(w) = ew, (@) = &, ¢, € being 1 or —1.

Then, @ = a ¢ w, and € = 7(@) = ea* = w; hence, a = (&) a*.

Moreover, 7(d ¢ @) = é o @ and (d - @) = 7((da) ¢ w) =
e(da)* © w = ea*d*a"'w, hence, d* = ad*a™'. Finally, calling the two
forms B, , B, , we have By(v, 2)# = v @ & = By(v, 2)w, thus By(v, 2) =
By(v, 2)a.

(d) Let # be any involution on 4, coinciding with * on K. The
map ¢: d — (d#)* is then an automorphism of 4, which is the identity
on K. Therefore, ¢ is an inner automorphism and there is a ¢ € 4 with

(@*)* = cdc™* for every de 4.

Hence, d* = (c)*d*c*. Set a = (c71)¥*, the only thing that remains
to be proved is that a* = ea with ¢ = 1. Since # is an involution, we
haved = d#* = (¢ ) *((c"V)*d*c*)* - ¢*, ord = aa*~'d(aa*"')"'. From
this, we deduce that aa*~1 € K. Set € = aa*~'. Thus, a*e = a. Applying
* we have ae* = a*, and using the two equalities, ee* = 1. By hypo-
thesis, € = —-(afa*), set @ = aa, a satisfies the conclusion.

Let us now restrict our attention to finite-dimensional semisimple
*_algebras over an algebraically closed field K, with the further restriction
that * is the identity on K.
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CoroLLARY 14.2. If R is a simple *-algebra over K, as before, R is
isomorphic to one of the two algebras:

(a) n X n matrices with transposition.

b) 2n ¥ 2n matrices with symplectic involution.
)

Furthermore, any irreducible module has a unique compatible form up to
a scalar multiple.

In particular, in case (a), every itrreductble * representation of R is
orthogonal, and any two such representations are isometric. In case (b),
every irreducible * representation of R is symplectic and any two such
representations are isometric.

Proof. This is a special case of 14.1, once one recalls that, over an
algebraically closed field K of characteristic not 2, a nondegenerate «
symmetric form on a space 1 is unique up to isometry.

Remark. If S is a central simple algebra with involution of the
first kind, finite dimensional over its center K, and K is the algebraic
closure of K; S ®x K with the involution (¢ ® «)* = a* ) « is one
of the two previous types.

We will say accordingly that .S has transpose or symplectic involution.
If dimy S = #?% S has transpose involution if and only if dim, St =
n(n -+ 1)/2, and dimg S~ = n(n — 1)/2; if S has symplectic involution,
then of course, 7 = 2m is even and dimy S7 == n(n — 1)/2, dim, S~ =
n(n + 1)/2.

If a is an invertible symmetric element, we can define a new involution
on S by the formula d* = ad*a~', # has the same type as *.

If @ is an invertible antisymmetric element, the formula d* = ad*a™!
defines also an involution on S of type opposite to the one of *. Such an
element exists if and only if # is even.

The same reasoning as in 14.1 (d) shows that every involution on S is
deduced from * in the previous way. An easy computation shows finally
that, if # and b are two involutions deduced from * by the elements a,
a', respectively, # and b give rise to isomorphic *-algebra structures on S
if and only if there is an invertible element ¢ € S with c*¢ = a’a™%.

LemMa 14.3. Let R = S @ S° be a *-simple (but not simple) algebra.
Let V, (resp. V) be an irreducible S module (resp. S° module).

(a) W=V @V has a nonzero symmetric compatible form B.
B is unique up to a scalar multiple and necessarily nondegenerate.
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(b) W =V @ VO has a nonzero antisymmetric compatible form B.
B is unique up to a scalar multiple and necessarily nondegenerate.

Proof. Let us consider W# Q W; we casily see that W# @, W ~
(Vo ®s V) D (V Rs0 VY, where we consider 0 as a right S module
and V7 as a right S° module in the natural way. The two summands are
both one-dimensional over K and 7 exchanges them.

Let us choose a nonzero vector u e V° @, V and set

= r(w) eV Qg VO

If B: W* ®; W — K is a linear map, B corresponds to a symmetric
compatible form B if and only if B(x) = B(#); B corresponds to a com-
patible antisymmetric form B if and only if B(u) = — B(u). Therefore,
the existence and uniqueness of B in both cases is ensured. The non-
degeneracy of B is proved as in 14.1; one remarks that J and V° are
isotropic subspaces of ¥ that are set in duality by B.

We can read the previous lemma in the language of representations,
using the notations of Section 13.

Let us call ¢, ¢°, ¢ the representations of S @ S° on the vector spaces
V, Vo, V@ VP respectively.

CorOLLARY 14.4. (a) o is isomorphic to ¢*.
(b) ¢ is equivalent to ¢" and ¢, respectively.
(c) Any * representation isomovphic to i is isometric to @™ or to ¢F.

We plan to extend now the previous results to not necessarily ir-
reducible representations.

We deal first with the simple case, then with the case R = S ) S°.

Let R be a simple *-algebra and V an irreducible R module. Any R
module is isomorphic to ¥V ®y U, where U is a vector space and R acts
on the first factor.

Lemma 14.5.  Let R be simple with transpose involution (vesp. symplectic
tnvolution).

(@) If U is odd-dimensional, W = V &y U possesses a symmetric
nondegenerate compatible form B and no antisymmetric nondegenerate
compatible form (vesp. W possesses an antisymmetric and no symmetric
compatible form). B is unique up to R linear isometries.

(b) If U is even-dimensional, W possesses both a symmetric and an
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antisymmetric compatible form. Both forms are unique up to R linear
1sometries.

Proof. Consider W# @ W, itis isomorphic to (VR V) @x (URxU).
This implies that a compatible nondegenerate form on W is the tensor
product of a compatible form on 17 with a nondegenerate form on U7,
The form on V is, by 14.2, uniquely determined up to a scalar and it is
symmetric or antisymmetric, according to the type of involution on R.

The form on U can be chosen only symmetric if U is odd dimen-
sional, otherwise it can be chosen both symmetric or antisymmetric. In
each case, such a form is unique up to linear isometries of U. The claims
follow immediately.

For the algebra R == S @ S% we have a similar result, a typical R
module is of type W == V R, U; ® VO ®f U, .

Lemma 14.6. A compatible nondegenerate form on W exists if and
only if dim U, = dim U, .

In this case, one can choose both a symmetric or an antisymmetric com-
patible form on W.

Such a form is unique up to R linear isometries.

Proof. Assume that B is a nondegenerate compatible form on W,
Let e denote the unit element of S, e* 1s the unit element of S°.
fw, veV &® U; we have

B(w, v) = B(ew, v) = B(w, ¢*v) = B(w, 0) = 0.

Thus, V' ® Uj 1s an isotropic space, similarly, V? & U, is isotropic.

The nondegeneracy of B implies that dim V' @ U, = dim V°* ® U,,
hence, dim U; = dim U, . Set U, = U, = U and construct W* ®, W =
[(V°®s V) ® (V Qs VI ® (U @k U).

As in 14.5, we see that a compatible symmetric nondegenerate form is
the tensor product of a compatible symmetric form on V" @ 7° with a
nondegenerate symmetric form on U, or the tensor product of a com-
patible antisymmetric form on V' @ V° with a nondegenerate antisym-
metric form on U. Similarly, for a compatible antisymmetric form.
Clearly, the forms obtained in each case are isometric over R. Thus, to
conclude, we have only to compare any form obtained as a tensor
product of two symmetric ones with one obtained as a tensor product of
two antisymmetric ones (similarly in the antisymmetric case). We have,
in each case, complete freedom of choice by the previous remarks.

Let us choose a compatible symmetric form given by a linear map B on
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(V°Rs V) D (V Qg V. A compatible antisymmetric form B is
obtained from B by defining B= Bon V*®s V,B = —Bon V" Qg V°.
Now, write U o~ P ( P*, P a vector space, equip U with the canonical
hyperbolic form H and the canonical symplectic form S, given in
Section 13 (1), (ii).

It is immediately verified that B ® H = B (% .S, and so the lemma
is proved.

We are now ready to prove the conclusive theorem on semisimple
modules. We need to fix our notations. Let

t

J=

be a semisimple *-algebra. The terms R; are the ones with transpose
involution, the S; the ones with symplectic involution,and 7 is exchanged
with 700 Let Vi, i = 1,..,5; W;,j = L., t; Z,, Z,° k = 1,...,u be
the irreducible modules over R;, S;, T}, and T}°, respectively.

Consider an R module M, M is isomorphic to 3 n V; + 3 m;W; +
2Py + Z 42y

TueoreM 14.7. (a) M has a compatible symmetric form if and only if
myis even for j = 1,..., t, and p;. = gy for k = 1,..., u. Any two such forms
are isometric over R.

(b) M has a compatible antisymmetric form if and only if n; is even,
1= 1,...., 5, and p,, = q,, for k = 1,..., u. Any two such forms are isometric
over R.

Proof. Let e, f;, g, &2 respectively, be the unit element of R;,
S;, Ty, and T,°. We have

% * * — o 0 0% __
€;" = €5, =1, 8" = 8k 8 — 8k -

Let us carry out the proof of (a), (b) is perfectly similar. If B is a
compatible form on M, then, since the idempotents e, , f; , g5 + g.° are
symmetric and orthogonal, we have the decomposition of M in the
orthogonal subspaces e;M, f;M, (g, + g)M. Thus, B is the direct sum
of compatible forms on such subspaces. Now, e, M = n,V,; , f;M = m;W;
and (g, + 2,OM = p. 2, + q.Z,°. Therefore, we are reduced to the
case studied in the previous lemmas, and the theorem is proved.
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15. Equivalence of Representations under O(n) and Sp(n)

We start with some definitions.
Recall that a flag on a vector space V' is a sequence

F=1,2F,,DD¥F, =0

of subspaces. If 1/, D V, are two subspaces of the flag, we have an
induced flag on V[V, by V,/V, D V,_4/V,D - D V,]V, = 0.

HvV=v,2V, 12 2V,=0is aflagon IV and W is another
space, we can define the direct sum flag on IV @ W by

FOWII,,®&WD DI, @ W =HWD>0.

Assume that V" 1s now endowed with an e-symmetric nondegenerate
form, we make an inductive definition:

DeriniTioN 15.1. Aflag I =V, ;D =+ D Vy = 0 is a compatible
flag if one of the two possibilities are verified:

(a) Vyisisotropic, V,_; = V4, and the induced flag on V{/V,
is compatible.

(b) The form is nondegenerate on 17} and the flag is the sum of a
compatible flag on V,+ with 1 .

We are implicitly using the fact that, if W C " is isotropic W+/W
inherits from I” a natural nondegenerate form, and if the form, on the
other hand, is nondegenerate on W, then it is so on W+ and I =
W@ Wt

The meaning of a compatible flag is understood considering the graded
space associated gr V' = @ V,,,/V;. If the flag is compatible, gr 1/
inherits a nondegenerate form defined inductively as follows. If we are
in case (b), V=1, @ V,*, and canonically, gr V"~ W, @ gr V;+
(we use the induced compatible flag on V), the form is the orthogonal
sum. In case (a), we have

g V= V@V S e V) = 1 © V1V @ g, 4 Ty,

The form is the sum of the inductively defined form on gr(¥;+/V,) with
the canonical hyperbolic form induced by the form on 7 on the soace
Vi@ VIV~

Let us now consider an orthogonal representation ¢: R — End(V)
(the symplectic case is similarly treated).

607/19/3-7
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THEOREM 15.2. (a) There is a compatible flag that is a composition
series for the R module structure.

b) The quotient semisimple representation ¢° on gr V, with the
‘ Ki @ g
guotient form, is orthogonal.

(c) g~ isin the “closure of the orbit” of @ under O(V').

Proof. (a), (b) The orthogonal and symplectic case are essentially
similar, therefore, let us treat the first one. We proceed by induction on
dim V. Let V, be an irreducible submodule of V. Since ¢ is orthogonal
V.t is also an R submodule. Therefore, we either have I’ C I';1, or
V, Vit = 0.In the last case, V = V; @ V4, and g is the orthogonal
sum of two representations, by induction V% has a compatible com-
position series and we take the direct sum. In the first case, the form B
induces a nondegenerate bilinear pairing B: V[V+ < V; — K, iden-
tifying V/V;+ with V *. V/V,+ is also an R module, if v € V, 7 its class
modulo V,+ and w € V,, we have: B(r3, w) = B(rv, w) = B(rv, w) =
B(v, r*w).

Hence, V/V,* is identified to ¥V;* as R module and the quotient
representation of R on V/V;+ @ V7 is isomorphic to ¢,*, ¢, being the
induced representation on V.

The representation V/V,* is also clearly irreducible. The induced
representation on Vyt/V, is also orthogonal, and one proceeds by
induction.

(c) We do not want to formalize the meaning of this phrase in
general; in case R is the free algebra on j variables, the set of representa-
tions is an affine space, the closure is intended in the Zariski topology.
In general, one can define it using the language of schemes.

We proceed by induction. In case (a) V' = V, P V;+, there is nothing
to prove, we pass directly to 7,1 and use induction.

If V, C V4, we must show that the representation ¢’ on
ViV ® V) @ V14V, is in the closure of the orbit of ¢.

Consider a basis of V, 0, , Vg yeery Uy Uppt seees Vpops » Wy 5eeey Wy, , Where
2y ..y Ty is a basis of V', ¥y ,..., Ty, 18 a basis of V1, and B(v; , ;) = 8,7,
7,7 = 1,..., k. Write the representation in block form:

A B C
(0 D E)
0 0 F



INVARIANT THEORY OF 7 { # MATRICES 363

Consider the matrix in block form:

A(2) is an isometry of V), as is easily verified,
A B C 4 B t*C
A@) (0 D L‘) A@y* = (0 D rE).
0O 0 F 0 0 F

This describes a piece of the orbit of ¢, setting ¢ = 0, we stay in the
closure of the orbit and obtain the representation in block form:

4 0 0
(0 D 0),
6 0 F

which is exactly ¢’.
We are now ready to conclude our work.

THEOREM 15.3. Let R be a finitely generated * algebra. Let W be the
space of n-dimensional orthogonal representations. Let O(n) be the orthogonal
group acting on W, Then:

The quotient variety W|O(n) classifies isomorphism classes of orthogonal
semisimple representations.

More precisely, the map =: W — W/[O(n) is onto and =(q) = =()) if and
only if ¢° s isomorphic to °.

Proof. First, let us assume that R is the free *-algebra in j variables.
W is then the (n? - j)-dimensional affine space.

We already know, from 15.2(c), that ¢ and ¢ have the same invariants,

From 14.7, we deduce that ¢° is uniquely determined by ¢ (and not
by the composition series).

If ¢° is isomorphic to °, we have m(p) = =(). 7 is onto from the
theory of reductive groups, since we are in characteristic 0. (This hypo-
thesis now can be removed because Mumford’s conjecture has been
proved.)

The only part that has to be checked is : If ¢; , ¢, are nonisomorphic
semisimple representations, they have different invariants.

First, since ¢, is semisimple, the ideal ker ¢, is detected as the maximal
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ideal I of R such that ¢(I) is nilpotent. This is equivalent to Tr(a) = 0
for all a € g,(I), hence, this condition is expressed by invariant equations.
If Ker ¢, = Ker ¢, = I, let us consider the semisimple algebra R/I

RI=DR®S@(T,ETY),

with the notations of 14.7. By the same theorem, an orthogonal R/I
module is specified by the ranks of the idempotents e, f;, g, + g
These ranks are in turn determined by the values of the coefficients of
their characteristic polynomial, again an invariant condition.

To pass from the free *-algebra to a general finitely generated algebra,
we present such an algebra as the quotient R/I of a free *-algebra
modulo a *-invariant ideal.

The representations of R/I form a subvariety of the representations of
R, invariant under O(n). A semisimple representation ¢ of R factors
through [ if and only if the invariants Tr(¢(a)) vanish for a € 1.

The theorem is thus completed.

We have clearly a similar theorem for symplectic representations,
which is proved exactly in the same way.

THEOREM 15.4. Let R be a finitely generated *-algebra. Let Z be the
space of symplectic 2n-dimensional representations. The quotient variety
Z|Sp(n) classifies isomorphism classes of semisimple symplectic representa-
tions.

16. Positive Involutions and Real Points

We want to consider new *-algebras over the real numbers R and
“real” representations of them. For the three classical groups O(n, C),
Sp(n, C), Gl(n, C), we take the real compact groups O(n, R), Sp(n),
U(n), where Sp(n) now will stand for unitary quaternionic matrices.
In each case, we may consider the relative notion of real representation
and their equivalence under the previously defined groups. Thus, we
have orthogonal representation on the vector space R® with its form
Si 1 %% quaternionic representations in H® with its form ¥ ¢,g, and
unitary representation in C® with the Hermitian form ] ooy . The
theory in these cases in particularly pleasing, the groups are compact,
thus, the orbits are closed and the quotient is the orbit space on one hand.
On the other hand, this is reflected at the level of representations by the
fact that every representation is semisimple, since every subspace has an
orthogonal complement. We come now to the details.
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Let S be a semisimple *-algebra over the real numbers R. Consider
the reduced trace tr: S — R and the associated form on S, tr(aa*).

ProrosiTioN 16.1.  The following conditions are equivalent:

(a) tr(aa*) >0, VaeS.

(b) tr(aa*) > 0, Vae S, a #= 0.

(c) S isthe direct sum of *-algebras of the following three types:
(1) real matrices with transposition,
(2) quaternionic matrices with the involution (q;;)* = (gj,);
(3) complex matrices with adjoint involution (a;;)* = (a;).

(d) If S is simple, any irreducible module V has a posttive symmetric
compatible form with values in R. Such a form is unique up to positive
multiples.

Proof. (c) = (b) = (a) trivially. Assume (a) holds; let S = @ S;.
If we had two terms exchanged by *, S; and S;, consider their unit
elements ¢; and ¢; . We have e,* = ¢, . Hence,

tr((e; — e;)(e; — €))*) = tr(—e; — ) <O.

Therefore, every terms is fixed under *, furthermore, each simple
*-algebra S; has an involution satisfying (a), hence, (b) since the form
is nondegenerate. Then, it follows from [10, Theorem 0] that S, is of
the desired type.

We have to prove now the equivalence of (d) with the remaining
assertions. Clearly, if .S is of the type described in (c), there is a positive
form on any irreducible module.

Conversely, let I be irreducible and consider V* Qg V. A compatible
form of the type described in (d) gives rise to a map B: I'* ®; V - R.

Let we V7 Qs V be a r symmetric element mapping into I. We
identify I~ Q¢ V with the centralizer 4 of S in V, d - d-w, and
consider the induced map B: 4 — R. The map B induces a quadratic
form on 4, B(a, b) = B(ab*). The axioms on the original form imply
that B satisfies the properties:

B(d,b) == B(b,d),  B(da*,b) = B(d, ab),  B(d,d) > 0,

if d+0.
Then, it is easily checked (e.g., 0 < B(Z, #), while B(—1, 1) < 0) that
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we must be in one of the three cases (1) 4 = R, (2) 4 = C and the
involution is conjugation, (3) 4 = H and the involution is conjugation.
In each case, one sees immediately that B is a positive multiple of the
reduced trace tr: 4 — R.

As for the uniqueness, one remarks that in each of the previous cases,
the symmetric elements are the elements of R, therefore, the choice of w,
giving the same involution on 4, is unique up to a scalar multiple in R
(14.1(c)). Hence, a new form on V induces a new map B": I'* @5 V' — R
differing from B by a scalar o € R, since both forms are positive, we must
have o > 0.

DrerinrrioN 16.2. If S is a semisimple *-algebra over R, satisfying
the hypotheses of 16.1, S will be called a positive *-algebra.

LevmMa 16.3. Let S be a positive *-algebra over R, let V be a complex
orthogonal module over S Ky C.

V is the complexification of a unique real orthogonal S module with a
positice form.

Proof. From 16.1, S = @R, ® S; ® T, , where R, is a ring of
real matrices with transposition, S; quaternionic matrices and T}
complex matrices with their involution (a;;)* = (&j;).

Thus, R; ®z C is complex matrices with transposition, S; ®z C
complex matrices with symplectic involution and 73, @z Cis (C), @ (C),,
with exchange involution.

We use the classification of orthogonal modules over such a ring (14.7),
then we see immediately that such a module is the complexification of a
direct sum of the standard real modules described at the beginning of
this paragraph. The uniqueness has been proved in part (d) of 16.1,
remarking that a positive compatible form is always the direct sum of the
form restricted on orthogonal irreducible submodules, since no subspace
is isotropic (cf. 15.2).

We sum up our work for O(n, R).

TueoreM 16.4. Let S = R{x;, x;*} be a finitely generated *-algebra.

The variety W of equivalence classes of semisimple orthogonal representa-
tions of S Qg C has a real structure.

The equivalence classes of real orthogonal representations of S correspond
to the real points of W, where the invariant functions tr(aa*), a € S, are > 0.
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Proof. The real structure on W is clear from the form of the invariant
ring, generated by the elements tr(a; -~ a;), a; € S.

If ¢ is a real representations, it is semisimple and its invariants
tr(p(a; ) -~ ¢(a; )) are real, hence, it gives a real point of ¥, clearly,
in((fl(lislli)oint( V:'stz)have the desired inquualities tr(aal?") = 0. d

Conversely, let P be a real point, with tr(aa*) > 0. Let S be the
semisimple algebra of operators obtained evaluating .S in P.

It is easily verified that the reduced trace tr: S — R is strictly related
to the trace Tr of the representation.

In fact, if S = D S;, S, simple, and tr; is the reduced trace in S,,
we have tr ==Y tr,, while Tr =3 n;tr;, n, >0 some integers.
Therefore, from the condition Tr(aa*) > 0, we deduce that S is a
positive *-algebra and the claim follows from 16.3.

We pass now to unitary representations. Consider an algebra S over C
with an involution inducing conjugation on C.

We want to classify unitary representations of S in (C), . The first
remark is that every such representation is semisimple and, if .S denotes
the induced algebra of operators, S is a semisimple positive *-algebra.

The converse is clear, moreover, 16.1 (d) implies that two unitary
1somorphic representations are isometric, over U(r). Now, we have to
read thesc results geometrically. This is done as follows, let S for
simplicity be C{x, ,..., v, , 2. %,..., 2, *}.

The representations of S in (C),, are 2n-tuples of matrices and are
classified by the space [, (C),,] @r C with real structure given by the
first factor. A real point is a 2n-tuple (a, , a,%, a,, a,*,..., a,, , a,%).

Thus, the real points of the variety of representations are exactly the
unitary representations.

The initial remarks show:

TueoreM 16.5.  The equivalence classes, under U(n), of n-dimensional
unitary representations of S are classified by those real points, of the variety
of equivalence classes, under Gl(n, C), of semisimple representations of S,
where the invariants 'I't(aa*), a € S, are = 0.

Finally, we turn our attention to quaternionic representations. If V7
is a 2n-dimensional complex space, a quaternionic structure on } is a
structure of right vector space over H inducing the C vector space
structure when the scalars are restricted to C C H.

Clearly, to give a quaternionic structure on V/, one must only give a
map j: I"—> V, with j% == —1 and j antilinear over C, i.e., j(aw) = ¥j(v).



368 C. PROCESI

We will sketch the main points.

A nondegenerate quaternionic form B on V can be defined as in 14.1,
and it has the form ¥ ¢,g;".

Considering H = C @ jC, the form B gives rise to two forms, A and
A, with values in C such that

B(v, w) = K(v, w) -+ jA(v, w).

Since B(w, v) = B(z, w) we have

Kw,w) = K(w,2) and  A(w,v) = —Alz, w).

Thus, K is Hermitian and 4 is alternating.

They are nondegenerate on V. If S is a *-algebra over R, and V'is a
symplectic module over S ®z C, we will say that " is quaternionic
if it possesses a quaternionic structure with a quaternionic form, com-
patible with the involution on .S, inducing the given alternating form.
It is clear that, if S is the operator algebra induced by S on V, and V is
quaternionic, then S is a positive *-algebra and the representation is
semisimple.

The representation is identified, up to equivalence relative to Sp(n)
(Sp(n) C (H), in this case), by the irreducible quaternionic subspaces.

These subspaces are easily analyzed for the various terms R;, S;,
T, of the direct sum decomposition of S. In each case, one has the
indecomposable symplectic representation of the relative algebra
R, ®C,S; ®C, T, @ C a case analysis similar to the one carried in
the previous case, shows that the way to make this representation
quaternionic is essentially unique up to positive real numbers (one has
to reduce the discussion to V* &) V'), thus, one obtains, as in the previous
case, the theorem:

TueoreM 16.6. The equivalence classes, under Sp(n), of 2n-dimen-
sional complex symplectic representations of S Qr C with quaternionic
structure are classified by the real points of the variety of equivalence classes
of semisimple symplectic representations of S Ry C, where the invariants
tr(aa*), a € S, are = 0.

Remark. We have, in the three cases considered, the following set up.
An algebraic group G defined over R. The real points of G form a com-
pact group G, . A variety W defined over R, and a group action
G X W — W defined also over R, the quotient variety W/G defined
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over R. The real points Wy of Wand (W/G); of W/G. The quotient map
W — W|G restricted to the real points Wy gives a map mp: Wy —
(W]G)g . Then, the fibers of mp are exactly the orbits under the compact
group Gy, and the image of =, is the semianalytic subset of (IW/G)y
defined by the fact that the symmetric elements xx* of a certain non-
commutative algebra have trace = 0.

17. Azumaya Algebras

We want to develop now the notions necessary to deal with irreducible
representations.

We will follow the theory for Gl(n, K) very closely (cf. [1, 7, 8]).

Let R be an Azumaya algebra over its center 4. Assume that R has an
involution *.

DerFINITION 17.1. We say that the involution is of the first kind if *
is the identity on A.

Otherwise we say that it is of the second kind.

Let us assume now that 2 is invertible in 4 and * of the first kind.

If A— K is a map in an algebraically closed field (a geometric
point P of Spec 4), the * algebra R ¥, K is either n X 7n matrices with
transposition or 2n X 2n matrices with symplectic involution (14.2).
We will say that R is of transpose type, resp. of symplectic type in P.
We notice that the type depends only on the point of Spec 4 over which
the given geometric point lies (cf. remark after 14.2).

ProposiTiON 17.2. Let R be an Azumaya algebra over A with involu-
tion of the first kind and p € Spec A.

(a) If rk R = n® and R has transposition type in p, then there exists
an etale neighborhood Spec U of p such that R R, U is n > n matrices
with transposition.

(b) If rk R = (2n)? and R has symplectic involution in p, there is an
etale neighborhood Spec U of p such that R R, U is 2n X 2n matrices
with symplectic involution.

Proof. Let us do case (a), (b) is analogous.

Let P be a geometric point centered in p and A the strict henselization
of 4in P.

R ®, A is an Azumaya algebra of rank »2 over A with involution of
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the first kind. If K is the residue field of 4, R @, K is #n X n matrices
over K with transpose involution.

We choose matrix units in R &), K for which the involution is the
usual transposition, then, by the theory of Azumaya algebras over
Hensel rings, such matrix units lift uniquely to units e;; .

Since e} reduces to the same element as ¢;, we must have, for the
same theorem, ¢ = e;;, and the claim follows for R ® 4. To reduce
from A to an etale neighborhood is now a standard direct limit argument.

Let us work now in the category ,€* of * algebras over a fixed ring 4,
with * the identity on /.

If A is a commutative algebra, define (4). , (4);, to be the algebra of
n X n matrices with transposition and of 2n < 2z matrices with sym-
plectic involution. The two previously defined algebras are in fact
functors in 4, from the category of commutative algebras to ,€*.

Let us denote them F, , and F, , .

Consider the free algebra R = A{x; , x;*} in infinitely many variables.

An element f € R will be called a polynomial identity (briefly P.I.) of
n > n matrices with transposition, if f vanishes when computed in all
the rings (A4)! (similarly for symplectic P.I.’s).

Any set of polynomials in R determines a variety in ,4* formed by
those algebras on which all these identities vanish.

ProposiTioN 17.3. Let R be a rank n* Azumaya algebra with involu-
tion. Assume that R satisfies the P.1.’s of n X n matrices with transposition.

Then, the involution is of the first kind and R is of transpose type at each
point.

Similarly, for symplectic involution.

Proof. Let A be the center of R. It is known that 4 = F(R), the
Formanek center [§].

If f(x,,..., %) is a central polynomial for » > » matrices, and we
evaluate fin (A4)} to obtain f (% ,..., ¥,)' = f(%, ,..., %;,). This is, therefore
an identity of # > 7 matrices with transposition hence it holds in R and
so the involution is of the first kind.

The rest of the statement follows from the fact that, if n = 2k, there
are different multilinear identities for » x » matrices with transposition,
and for n X n matrices with symplectic involution (cf. Section 20).

18. Universal Maps

We return now to the two functors F,, and F,, considered in
Section 17.
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ProposiTioN 18.1. Both functors F,, and F,, possess a left adjoint.

Proof. Let us do it, for instance, for F;,, . Given a * algebra, R we
must find a universal map y: R — (4)! . This follows of course by the
general theorem on the existence of adjoint tunctors. On the other hand,
it can be easily accomplished building 4 by generators and relations.

In this case, the essential point is to do it for R = Afx; , x,*};.; the
free algebra.

Construct A = A[x{)}, iel, s,t = 1,..,n the polynomial ring.
Map x; in the matrix §; = (x¥)), while x,* is mapped in &;".

The formal properties of these functors are easily checked and follow
the ones given in [9, Chap. 4] for rings without *,

Given a commutative algebra A4 consider: G, (4) the group of A4
automorphisms of the *-algebra (A4)%; H,(A) the group of A automor-
phisms of the *-algebra (4);, .

Both G,( ) and H,( ) are group valued functors on the category
of commutative algebras.

It is immediately verified that they are both representable by Hopf
algebras finitely presented over /.

Indicate the two algebras 4, and 5%, .

Consider, furthermore, the orthogonal group

0,(4) = {ae (), aat = 1},

and the symplectic group Sp,(4) = (be(4);, | bb* = 1}.

These group valued functors are also clearly representable by finitely
presented Hopf algebras over 4.

Call these algebras %, and &, .

We have two natural transformations:

™ On(A) - Gn(‘d))
i Spo(A) — H,(4),
given by n(a)(b) = aba~! (similarly for 7).
Lemma 18.2. Let A be a local ring. We have two exact sequences:

(1) 0= d* —> 0,(4) - Gu(4) — A*[(A*)?
(i) 0> pA% > Spy(A) — Hy(A) — AX|(A%)} -0,
where ,A* = {a e A | o® = 1}.
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If n is odd, O, (A) — G,(A) is onto; if n is even and A" is hyperbolic,
G,(4) — A*|(A*)? is onto.

Proof. Some parts are trivial; in particular, the definition and
exactness of

0 — 4% — 0,(4) = G,(4),
and

0 — ,d* — Spy(A) — H,(4).

Let o € G,(4), since ¢ is an automorphism of (4), and A4 is local,
o is inner,

Thus, ofb) = aba™?, ac Gl(n, A). We have o(b') = o(b)!, hence,
abta™! = (aba™)!, and so a ab' = blala for all be (4), .

We deduce ala € A*, the invertible scalars. If ¢ € Gl(n, A) is another
element such that o(d) == ¢bc™, we have ¢ = aa, a € 4%, thus, ¢lc =
o%ala. Therefore, the scalar ala is defined up to elements of (4*)% If o
comes from O, (A4), we can choose a € O,(4), hence, ala = 1. Finally,
if aat = B*, set ¢ = a/B, we have ¢ € O,(A4), and the exactness of (i) is
proved. For (ii), the steps are similar.

If nis odd and a« = a! - @, we have «® = det(a)?, and so « € (4*)%

For the other assertion, if A% is hyperbolic (and in the symplectic case),
choose a hyperbolic basis and consider, in that basis, the block matrix

= )

We have a! = (§ 2) and ala = w
Consider now, the maps of Hopf algebras

Gy U, J >,
induced by the natural transformations m, 7.

ProposiTION 18.3. Both i and j are injective.

Proof. Let us do it for 7. Let u € Ker 7, if m is any maximal ideal
of 4, , localize at m and consider the map 4, — (% )n -

This map corresponds to a point o € G,((%4,)n), associate to o the
scalar o € (%4,)¥ modulo squares. Let 4 = (¥,)u[x]/(x* — «). We have
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an induced map %, — A classifying a o€ G, (4) induced, as inner
automorphism, by some element a € O,(4). We can factor:

G, — 4.

Hence, u is mapped to zero in (%,),, . Since this is true for all maximal
ideals, we have u = Q.

One can derive some consequences on the structure of 4, , %
/ 1s an integral domain.

In this case, &, is an integral domain while %,, has two minimal primes
relative to the decomposition of O, in SO, and its complement.

For %, , A, , we easily see: 5, 1s always a domain, %, is a domain
when # 1s odd, and has two minimal primes when # is even.

This last assertion comes from the fact that, —1 has determinant —1
if nis odd, O, = SO, » {1, —1}, —1 is in the kernel of the map
O/l g Gn N

Finally, consider 4 = Z. In this case, %, and #, are torsion free,
hence, flat, in each case there is an integer valued point (e.g., the one
corresponding to the identity of (Z)},, (Z)3,). Therefore, ¥, and #, are
faithfully flat over Z.

Therefore, the same is true for any /1 by base change.

Let us call for simplicity I', = Spec ¢, , the group scheme associated
to ¥, , similarly, II, = Spec J£,, .

Consider again the two functors F, , and F, ,; we analyze F, , since
the other case is similar.

If R is a *-algebra, we know that the functor Maps ,%*(R, (4)}) is
representable. Call the representing object By , and /1 , = Spec B, ,, .

Since the group valued functor G,(4) acts on Maps ,F*(R, (4)), we
have a group scheme action:

when

no

u: Fn X AR.n - AR.n .

This 1s clearly functorial in R.

19. Irreducible Representations

We wish to study irreducible representations over an algebraically

closed field.
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We find it convenient to generalize the concept to deal with generic
points applying the functorial language.

We will restrict our analysis to the orthogonal case, the symplectic
case being absolutely similar.

DrriNiTION 19.1. Let S be a rank »?> Azumaya algebra over a
commutative ring 4 with an involution of transposition type.

(1) A * map ¢: R — S is an orthogonal irreducible representation
if p(R)A = S.

(1) Two representations ¢,: R — S;, @50 R — S, are equivalent
if there is a *-isomorphism 7: .S; — .S, with g, = 7¢, .

Consider now the subset 7,(4) C Maps ,€*(R, (4),) of irreducible
representations. We have:

ProposiTioN 19.2. 1,(A) corresponds to an open subscheme A%, of
Ay , invariant under I, .

Proof. 'The invariance of I,(A4) under G,(4) is clear. As for the open
condition, we use the criterion of [7,8]. Let 5: R — (Bg)., be the
universal map and R = Im y, let F(R) be the Formanek center of R.
We have F(R) C B, and a point ¢ Maps ,6*(R, (4),,) is in I,(4) if and
only if the classifying map ¢: By — A gives $(F(R)) # 0.

We want to construct now the quotient of A% , under I', . Consider
the previous set up

y: R— (BR)'tn H

R = y(R), L is the center of R, F(R) CL is the Formanek center. If
feF(R), the ring R, = R[1/f] is an Azumaya algebra with transpose
type involution (cf. 17.3). Let A% , be the open subscheme of Spec(L),
where F(R) is not identically zero. By the previous remarks, A%, is
equipped with a coherent sheaf # of Azumaya algebras with transposition.

PropositioN 19.3. The scheme A%, represents the following functor:
equivalence classes of irveducible representations.

Proof. The proof is similar to the one in [7]. We clearly have a map
XR— (A%, ,%). To a map ¢:Spec A — A%, we associate the
composition

AR > I'(JE, , %) — [(Spec A, y*(#)).
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Conversely, if A: R — S is an orthogonal irreducible representation,
we split S be a faithfully flat extension T of its center 4 (17.2) to make
it # . n matrices with transposition.

Then, we complete the diagram

R —— % (Bp),

NN

S—> (80, T)=(T),.

We verify, since A is irreducible, A induces a map from Spec T' to
Spec B, — V(F(R)).

Then, we use faithfully flat descent to see that the map factors through
A?,n .

We finally tie the previous discussion with the classification of ir-
reducible representations in the sense of 15.3, 15.4.

We state the Main Theorem for the orthogonal case, the other case
is similar.

Recall the action u: I'), < A, , — Ay, defined at the end of Section 18.

THEOREM 19.4.  The action p is scheme theoretically free on A%, . The
quotient scheme is A%, . The resulting quotient map p: A%, —+_/Tj§m s a
principal fibration over I, locally trivial in the etale topology of AF ., .

Proof. We follow the lines of [7], to which we refer for details. Take
feF(R) and consider A(f), A(f) the open subschemes of A%,
A%, , where f is invertible. We will work locally on these subschemes,
which cover A%, and A% ,. The universal map R C(Bg), gives
by localization at f the universal map R — (By[1/f]) . R, is a rank »n?
Azumaya algebra with transpose involution.

Let us analyze thus the universal map in this case.

If S is a rank #? Azumaya algebra with transpose involution over its
center A, S — (T)! is the universal map and 4 — B is a map of com-
mutative rings we obtain, by base change, the universal map S, — (T',)} .
In particular, we will apply this remark when B splits S.

Thus, we are led to study the split case S = (4)} . In this case,
reasoning as in {7], we see that the universal map is obtained as follows:

Consider 4 & 4%, and the two maps

i Ad—>AdAXR4Y,, 2%, —~A0.9Y,
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given by
@=a®1, j®)=1®b>.

The map j classifies an automorphism o of the algebra (4 ® %)}, .
The composition

(A —"> (A ® %)~ (4 ® ,),

is the universal map for (4)}, .
In the scheme language of Section 18,

A = Spec(d ® ¥,) = Spec 4 x I,

(A)ix,n

the action u: I, X Agyt — Ayt is the canonical action of I', on
itself as second factor. "

We now collect all the previous steps.

The map R, — (Bg[1/f])} induces a map L; — B[1/f] that dually
gives the projection p,: A(f) — A(f).

These maps glue together to give the required projection p: A%, —
A%, . Take an etale covering U, — A(f) over which the Azumaya
algebra R; splits. By pull back and all the previous propositions we have

A(f) % apUe —— A(f)

P’

X

0, ——— ()

and A(f) X (U, = U, X I, p,’ 1s the first rejection and the action
of I',, is the canonical action on the second factor.
This is sufficient for all the statements of our theorem.

Remark. 1t follows from the proof that the universal map R — (Bg)}, ,
when R is a rank #? Azumaya algebra with transposition over its center A4,
is injective and furthermore, By is faithfully flat over A4.

20. Qualitative Results for Rational Concomitants

We want to conclude our work describing various qualitative results
that apply to the rings of matrix concomitants. Many of these results are,
of course, well known (cf. [9]).

We consider a field K of characteristic not 2. Let K{x, , x,*}, K{s;},
K{t,} be the free algebras described in Section 13. Let D be a simple *
algebra with center an infinite field F 2 K. Assume dim, D = »% We
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have the usual two possibilities: * is of the first kind or of the second kind.
In the first case, we have two subcases, transpose or symplectic type.
In each case one easily shows, as in [9, p. 20], that the ideal of polynomial
identities in each free algebra does not depend on D. We have in fact
only: the identities of (F),, the identities of (F);, , the identities of
(F),, ® (F)5 . The last case does not give anything new, onc easily can
verify that the identities of (F), @ (F)% as a *-algebra are the same as the
ordinary identities of (F), , thinking x; and x;* are distinct variables.

In fact, one can by the same argument used in [9, p. 66] show that:

(1) every prime T-ideal is one of the ideals of identities previously
described.

(i1) If K is infinite, the radical of a T-ideal is a 7-ideal intersection
of at most 3 prime T-ideals relative to the 3 types.

(1) There are various inclusions among the various 7-ideals
deducible from the fact that:

(FR@EF) = (Fan,  (F @F) = Flin,

(P DERC(F)ns (B0 @ (F)n C(Fan s

(F),, C (F) 4y s (F)3, C (F)swsn (the inclusions do not preserve 1).

Let us call K[¢;, &1, , KI[&;, &;*], the free algebra modulo the ideal
of identities of (F),, , respectively, of (F){,, .

Similarly, taking the identities in the free algebras K{s;}, K{t;} we will
obtain algebras K[5,], , K[5,]5 , K[£],, K[F]5 .

We list now the properties of these rings and sketch the proofs.

'THEOREM 20.1. All the algebras constructed are prime rings with
polynomial identities.

Indicate by K<§L > gil>n ’ K<§7, ’ é‘:i*>n ) K<§z>£1, ’ K<§L>;L ’ K<iz>£7, ’
K255, KBy their respective vings of quotients.

(1) () K&, &Y, ts a central simple algebra of rank n® over its

center Z.

(i) K&, &5 is a *algebra of transpose type, K(&;, £, —
(D), , B X h matrices over a division ring D of degree 27, where n = 27 « h
and 2 1 h.

(i) K&, €Y, is the ring of rational concomitants, for the

607/19/3-8
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orthogonal group, from I-tuples of matrices to matrices. Z is the field of
orthogonal invariants of matrices.

(iv) If I consists of m elements, we have Tr deg Z|K —
mn? — (n® — n)/2.

(v) If Aisthe center of K[¢;, £, , Z is the quotient field of A and
K<§7, ) §it>n = K[gz 3 gzt]n ®A Z.

(2) () K&, &%), is a central simple algebra of rank (2n)? over

its center W.

(i) K&, €%, is a *-algebra of symplectic type K&, , £, —
(4, , kX h matrices over a division ving A of degree 27; with 2n — 2 - b,
21 h

() K&, &%, is the ring of rational concomitants, for the
symplectic group, from I-tuples of matrices to matrices. W is the field of
symplectic invariants of I-tuples of matrices.

(iv) If 1 is finite, with m elements, we have
Trdeg W/K = m - (2n)> — ((2n)? + 2n)/2.

(v) If B isthe center of K[¢; , £;*1,, , W is the field of fractions of B

and ’<§i ’ gi*>n =~ K[f’i) fi*]n ®B W
(3) Similar results for the algebras K55} , K(E)L , K55 , K<{E>5

with the following exceptions:

(a) 1 has one element, n > 1 for the transpose type; every n for
the symplectic type. In this case the algebras are commutative.

(b) K(E)4 is commutative.

(¢} K5 ts commutative.

(d) K5y, 5205 is a quaternion algebra.

In the other cases, the results are parallel to cases (1) and (2) with the
exception of the computation of the transcendence degree which 1s, respectively;

nwtn n—n nt—n n®—n
) - ) s m D) — 3 s
2nff =2 (2n) 4 2n (2n) 420 (20 420
m — m _
2 2 ’ 2 ) .

Proof. Let us give the main ideas of the proof, for instance, in the
transposition case.
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It is clear that K[¢,;, &,'], is the image of the free algebra K{x;, x;*}
under the universal map y: K{x; , &;¥}—(K[x{]), , i€, s, = 1,..,n,
(cf. 18.1). All the statements, except for the last part of (i1), will be a
consequence of the theory of rings with polynomial identities and of
Theorem 19.4 once we show that the representation K{x;, v;*} —
(K (=), is irreducible (here, K(x{)) denotes the field of rational
functions in the variables x{?}).

To prove that the representation is irreducible, one may proceed in
various ways. If I has more than one element, we already have two
generic matrices, and so the claim follows. Otherwise, we must show that
a generic matrix and its transpose are irreducible, this can be checked by
specializing to a matrix that with its transpose is irreducible, such
matrices are readily found.

One can proceed similarly in all the other cases, of course, we have
the exceptional cases described in (3) for which the universal map is not
irreducible {at the generic point).

To complete the theorem, one has to prove the last part of (ii). Let us
do it for the transpose type. First of all, any central simple algebra with
involution of first kind is the full matrix ring over a division ring of
degree a power of 2.

In our case, setting K¢, , &0, = (D), , we must only prove that /
is odd.

Letn — 27 - k, thus, we have to show that D has degree 2"and 2 = k.

It is known that, given a field K and a number 27, there is a division
ring E with involution of degree 2" with center a field F containing K.
The involution can be fixed to be of transposition type (cf. the remark
after 14.2).

Consider the simple algebra (E),, of degree n and of transposition
type. Let a,,...,, a,» be a basis of (E), over the center F. Introduce

variables 289, 7 € I, j = 1,..., n? over F and construct the generic elements

2
7
(¢4 — @
0= Y aila; e (B), DpF().
=1

By the initial remarks, it is clear that the kernel of the map A:
Kix; , 2%} — (E @, F(x{")),, is the ideal of polynomial identities of
n X n matrices with transposition. Thus, K[¢;, ¢, is isomorphic to
the algebra K[, , ;] generated by the elements 7, , n,!. Furthermore,
A is irreducible. Hence, we have an embedding

K&, €50 C(E @ F()),
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and an isomorphism of *-algebras:
Kt 660 @2F") o= (E @pF))e

If the division ring constituent of K{¢;, ¢;%, had degree 25 with
s <r, we would have a contradiction since E X, F(x{") is clearly a
division ring of degree 2".

We finish with a consequence of Theorem 19.4 for the rings of
invariants. It can be derived in characteristic 5= 0, but we will limit
ourselves to the rings 70; ,, SO, ., T(SP)ion> S(SP)i.on -

We can consider the elements of TO; , that are expressible, as elements
of SO, , as polynomials in the variables X, X! with coeflicients in K
(i.e., the central polynomials for n X » matrices with transposition).
The variety of points of TO, , represents equivalence classes of semi-
simple orthogonal representations of the free algebra, 15.3, and the
points of this variety on which some central polynomial does not vanish,
represent the irreducible representations, by 19.3. This set is nonempty,

by 20.1, and we may apply Theorem 19.4 to obtain:

THEOREM 20.2, The irreducible representations of the free algebra are
simple points of the variety of semisimple representations.

Proof. The irreducible representations are the points of the base of
a principal fibration over a reduced algebraic group with the total space
nonsingular.

Remark. The discussion before 20.2 was done for the orthogonal case
for convenience of language, but it clearly holds in both the orthogonal
and the symplectic case. In both cases, one has 20.2 (and also in the case
of Gl(n, K), from which one has in fact started to obtain all these

generalizations).
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