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INTRODUCTION

With the introduction of gencral relativity, it became necessary to
express the differential operators of mathematical physics in a coordinate-
free form. This made it possible to define those operators on an arbitrary
Riemannian manifold—the grads, divs, and curls got translated into the
d + d* operator on the bundle of exterior forms. This particular
operator found fruitful application in the theorem of Ilodge which
expressed the dimension of the null space (the space of harmonic forms)
on a compact manifold in terms of topological invariants-—the Betti
numbers,

Another operator-—the Dirac operator—made a later appearance in
Riemannian geometry. It was used by Atiyah and Singer to explain the
integrality of the d-genus of a spin manifold, and then Lichnerowicz
proved a strong vanishing theorcm-— if a spin manifold has positive
scalar curvature, the null space of the Dirac operator (the space of
harmonic spinors) 1s zero. Bearing in mind the formal similarity between
the Dirac operator and the d - d* operator, one may ask if there is an
analogue of Hodge’s theorem—can we express the dimension of the
null space in terms of topological invariants of the manifold ? The main
purpose of this paper is to show that this is impossible and in general the
dimension of the space of harmonic spinors depends on the metric used
to define the Lirac operator,

Sections 1.1-1.4, deal with what can be said in general differential
geometric terms about harmonic spinors—which is very little. We show
that the Dirac operator is conformally invariant in a certain sense (a fact
known to physicists) and thus the dimension % of the space of harmonic
spinors is invariant under a conformal change of metric. We also consider
what happens to harmonic spinors if the scalar curvature is identically
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zero, However, to get more information, we need to cdnsider specific
examples of harmonic spinors. The first examples of naturally occurring
Riemannian manifolds which spring to mind are homogeneous spaces,
but a little thought shows that (except for the torus) with their natural
metric they have positive scalar curvature and by Lichnerowicz, no
harmonic spinors. In Sections 2.1-2.4 we look at another source of
manifolds—algebraic geometry.

On a complex manifold, the spin structures are in one-to-one cor-
respondence with holomorphic square roots of the canonical bundle K,
that is, holomorphic line bundles L such that L @ L =~ K. For a Kihler
manifeld we can then identify the space of harmoenic spinors with the
holomorphic cohomology H*(X, O(L)). We now start looking for
examples among algebraic curves and it turns out that for genus > 3,
the dimension of the space of harmonic spinors varies with the conformal
structure. Hyperelliptic curves are distinguished by special properties
of their harmonic spinors. We also consider simply connected algebraic
surfaces and compute several examples, but unfortunately find no
examples of variation of A. The case of algebraic curves is unsatisfactory
since, apart from the complication of having several spin structures,
we have the additional property that % is bounded by the topological
invariant (g + 1). For algebraic surfaces, we also have an upper bound
by + (57 + 4y)/8, and, in general, we should expect boundedness for an
algebraic family of complex structures. In Sections 3.1-3.3 we have an
example of a family of Riemannian structures where boundedness no
longer holds.

We consider the three-dimensional sphere 5%, Relative to the S? x 53-
invariant metric, this of course has positive scalar curvature and no
harmonic spinors. The 8% % S-invariant metrics are parametrized up
to a constant multiple by a positive real number A. For a generic A,
there are still no harmonie spinors but for certain values they do exist.
To find the precise dimension is a number theoretical problem, but we
can find enough to show that as A varies the dimension is unbounded.

In Sections 4.1-4.5 we consider higher dimensions. The strongest
result we have is the following: we can change the dimension of the space
of harmonic spinors (for some spin structure) on any 8% — 1 dimensional
spin manifold by altering the metric in a neighborhood of a point. Despite
the deceptive local content of this statement, we prove it by using global
differential topology. We use the Atiyah-Singer index theorem for
families of operators. Let X™ — Z — ¥ be a differentiable fibre bundle
of spin manifolds. We introduce a family of metrics in the fibres and then
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the Dirac operator in the fibres has an index in KR-"(Y). If m = 8k — |,
we can regard the Dirac operator as a real self-adjoint operator and then
if the family of null spaces has constant rank, this index is zero, which
implies the vanishing of a certain KR-characteristic number of Z. Now
by using an exotic sphere which 18 not a spin boundary and the result of
Cerf on pseudo-isotopy, we construct examples X — Z — 5% for which
this number is nonzero and deducc the above result. The exotic spheres
used are of interest to differential geometers as they do not admit metrics
of positive scalar curvature. However, we also use them to give informa-
tion on the nontriviality of the topology of the space #Z*(X) of metrics of
positive scalar curvature on X. In particular, we show that if X is a spin
manifold of dimension 8% and #'(X) » @, then 7 (#1) = 0for i — 0
and 1. Using this setup in the reverse direction, we conclude with an
index-theory proof of the invariance of the Todd genus under blowing-up.

This paper is based upon the author’s doctoral thesis, supported by
a United Kingdom SRC Research Studentship. Thanks are due especially
to Professor Atiyah for his continuing help and encouragement.

1.1, PRELIMINARY LEFINITIONS

For details on Clifford algebras and the spin representation, we refer
to Atiyah, Bott, and Shapiro [10] and Jacobson [22].

Let U be a finite dimensional vector space over R and (x, y) a positive
definite quadratic form on U. Then factoring out the ideal generated by
elements of the form x & x 4+ (x, #)1 in the tensor algebra @) U, we get
a fimite dimensional algebra C(I7), the Clifford algebra of U. We have
U7 C C(UY such that x* = —(x, x)1. Supposc dim U = 2m, then the
complexification C(U) ®p C is a matrix algebra, 1.e., End S, where S is
a 2"-dimensional complex vector space.

The special orthogonal group SO(U) acts on U preserving the
quadratic form and so induces an automorphism of C(U) &)y C, which
being a matrix algebra is an inner automorphism. We thus have

¢ o= p(g)ap(g) (g© SOW); o plg) < End S),

and gi— p(g) defines a two-valued representation of SO(U) which
lifts to a single-valued representation of the double covering Spin (U).
The representation is not irreducible: if {e, ,..., e,,} is an orthonormal
basis for U, then w —e, -+ e,,c C(U) satisfies w? = (—1)* and
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commutes with the action of Spin(U). The eigenspaces S+, S~ of w are
irreducible representation spaces and since xw = —wx (x € U), mul-
tiplication by x gives an isomorphism x:S8*— 8~ as vector spaces.

Spin(2m — 1) (= Spin{R*-1}) is a subgroup of Spin(2m) and acting
on § commutes with multiplication by e,, . Hence, &, : ST — S-
defines an isomorphism of representation spaces of Spin(2m — ).
S+ is then an irreducible representation space of Spin(2m — 1).

Let xy,..., x, € U. Then define [x, ,..., x,] € C(U) inductively by the
following formulas:

[xl] = xl H
(%1 5eees Fapmy s X)) = [[#1 50y Xary] oz,
[ sees Foie s Xgppa] = [%g y0ens Xan] * Xopga s

where [ab] = ab — ba and a - b = }(ab | ba).

Then for any permutation o of (1, 2,..., p) [%q ooy %] =
sgn o[x, ,..., x,], and so if U, denotes the subspace of C(U) spanned
by all the elements [, ,..., x,], we have a natural isomorphism of vector
spaces {J, oz A?U, the pth exterior product.

We have [y[xz]] = 4((x, )z — (3, #)x), and so the restriction of the
adjoint representation of C(U) (as a Lie algebra) to U, leaves U,(= U)
stable and acts as an element of the orthogonal Lie algebra L{SO(U)).
Hence on the Lie algebra level, the spin representation is given by:
L(SO(L))3 2 Q0 x — x D 21— {[x, 2] € C(U) CL{GL({S)).

Let X be a compact, oriented riemannian manifold, i.e., we have a
positive definite quadratic form on the tangent bundle 7. The bundle of
orthonormal frames E is a principal SO-bundle. Suppose E lifts to give
a principal Spin-bundle £; then X is a spin manifold and we can define
via the spin representation a vector bundle V = E Xg;, S, the bundle
of spinors.

E lifts to £ iff w,(X) = 0 and any two liftings differ by a Z, 1-cocycle,
so the number of inequivalent liftings (the number of spin structures)
is # HYX, Z,).

The riemannian connection induces a connection on V—if the con-
nection matrix in 7T is locally given by wy; relative to an orthonormal
basis {e; ..., €,}, then relative to the corresponding spinor basis defined
by the lifting, the lifted connection matrix is, from the previous discus-
sion, given by 1 ¥, ; we.e; € IN'(End V & T*) locally.

From the vector space isomorphism between the Clifford algebra and
the exterior algebra, we can regard (via the duality 7% o~ T defined by
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the metric) an exterior form on X as an endomorphsm of the spinor
bundle 7" by Clifford multiplication.
We define the Dirac operator P by the composition

(VY2 PV &) T%) 25 I(V),

where D 1s the covariant derivative relative to the induced connection
on I” and m is Clifford multiplication by an element of T*. (Locally
Py == 36,V where Vb is covariant differcntiation in the direction e; )
The operator P? is the spinor laplacian and since P is self-adjoint, the
two operators have the same null space,

P 1s an elliptic differential operator and ker P == H is the finite
dimensional space of harmonic spinors. Corresponding to the irreducible
representation spaces S*, 8-, we have a decomposition V' = V+ @ V-
and the Dirac operator takes sections of V7 into sections of F—. We then
get a decomposition H = H+ (P [I- where H* is the space of positive
harmonic spinors and f1- the space of negative ones. If dim X is odd, we
usually consider the Dirac operator e,, P : I'(}') — I'(V+).

Let Spin“(U) == Spin{l7) ;. S', then we have the following exact
sequences: “

| — 81— 8pin® — SO — |

I — 8pin — Spin® — §1 — 1,

A manifold X is a Spin® manifold if £ lifts to a principal Spin® bundle
via the first sequence. From the second sequence, a Spin® structure
defines a principal .S' bundle—equivalently a complex hermitian line
bundle L. The spin representation extends to Spin® and we can construct
a Dirac operator in this situation too. The main differences are

(1) XisaSpin®manifold ift Wy(X) = 0 and two Spin¢ structures
differ by an element of H¥ X, Z).

(11) To put a connection on the Spin® bundle, we have to choose
a hermitian connection on the line bundle L.

1.2. THE VanisHING THEOREM
Let X be a Spin® manifold, and let 78 be the curvature form of the

associated line bundle L. Then @ e I'(A2T*) defines via the riemannian
metric a skew-symmetric endomorphism of T. Suppose its eigenvalues
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are - @y ..., £ 24, (where dim X = 2m or 2m - 1); then we have the
following version of the vanishing theorem of Lichnerowicz [25]:

TureoreM 1.1. Let X be a Spin® manifold with scalar curvature
R =43 | N | and strict inequality at some point. Then X admits no
harmonic spinors.

Proof. 'The Dirac operator [ is given by the composition
'Vy - IV & T*) —m I'(V), where m 1s Clifford multiplication.
Now D commutes with  and hence P — mD%), where m?:
I'VRT*QT*)—T'(V) is defined by m(f Qa®B) =a- 8-

But under the identification of the Clifford algebra with the exterior
algebra,

C{TH)za B =anrf —(af) (P AYTH.
Hence, since the riemannian connection has no torsion,
Py — Q- — tr D%,
where 2 e I'(End V' & A*T*) is the curvature form of the Spin® con-
nection and acts via
End V@ AT* - End V@ End V- End V

and tr: V& T* @ T* — V denotes contraction via the riemannian
metric:

FRT*QT > V@T*QT > V.
Now since D(Dy, ) = (D%, ) + (D¢, D) € T(T* ® T*), we have
(tr D%, ) = —< Dy, Dipy -+ dX(Dif, of),
where ¢ , > denotes the inner product on ¥ & T* and &*: I'(T*) — I'(1)

ps

is the usual adjoint of the exterior derivative d.
So (Pafy, ) = (2 -, ) -+ (D, D> — d¥(Dif, ), and integrating

over X we get
[Py =1 = | (@9, ) +<DY, D> 1.
X X

(D, D> = 0 so if (824, 4) > 0 and P2 = 0, then Dyp — 0. Thus
if 2 > 0 at some point, ¢y = 0 at that point and since Dy = 0, ¢ = 0
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everywhere. In order to prove the thcorem, it remains to determine the
endomorphism £2.

Q2 e P(I(E) & 32T*) where L(E) is the vector bundle associated to the
principal Spin¢ bundle £ by the adjoint representation.

L(Spin®) =~ L{SO) @& R where R 13 acted on trivially by the adjoint
representation, so 2 =: 2, + £, where £, e '(L(E) QAT*) and
0, T'(A2T*). £, is the riemannian curvature form, 2:£2, is the curvature
form of L.

(i} Under the Spin® representation, ST C Spin” acts as unit
scalars, hence £, acts as 7 < Clifford multiplication. Now relative to
some local orthonormal basis {e,,..., e,}, £, may be written as
Y A€oy A €y . We shall show that the cigenvalues of this considered
as an endomorphism of J are 3 4 A, .

Let E, == ey - €y, in the Clifford algebra. Then E2 = —1, so Ey
has eigenvalues +7¢. Since Ee,, == —ey, ; =— —e,, E,, multiplication
by e, interchanges the cigenspaces which therefore have the same
dimension. The Clifford algebra generated by e, ..., e,,, commutes with
E; and hence acts as the endomorphisms of each eigenspace of E, . By
induction, we sec¢ that J7 has a local basis of 2™ spinors ik, ,..., k)
(where &y == 2-1) such that FE; acts as ik; on (k,..., k,). Then the
ugenvalucs of Qy =13 NEpare (A 4= Ay £ AL

In particular, the smallest eigenvalue is —3 VA, |

(i) 2, eI'IE)® AZT*) ~ F(/\“T* 0 A2T*). Relative to a local
orthonormal ba51s leg s e, (8y) = z Ly R i€ A €, 50 the action of

Q, is given by EJIZ R;ceeee, 16, the Clifford multiplication

RT* @) BT — (W G X2 () M)(1*) — End 7.
Now from the Bianchi identity,
R(X, Y)Z + R(Z, X)Y - R(Y, )X — 0,

the A" component is zero. Irom the symmetry (R(X, Y)Z, T) ==
(R(Z, T)X, Y), the A* component is zero. The A% component is easily
seen to be 1R,

Hence the endomorphism 2 is positive iff 1R = 3 | A;|, which
proves the theorem.

If X is a spin manifold, we can take L = 0, and then we retrieve the
vanishing theorem of Lichnerowicz: If the scalar carvature is =0 and
not identically zero, there are no harmonic spinors.
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Examples. (1) Let X = G/H, a compact homogeneous space.
If L(G) = M @ L(H) is the corresponding decomposition of the Lie
algebra and we take the metric on X induced by the bi-invariant metric
B on G, the scalar curvature 1s given by:

Ry =%} B(X:, Xjlu, [Xi, Xi]u)

+ B([X;, Xjleen » [Xy s Xlean)

where {X;} is an orthonormal basis for M (see Kobayashi and Nomizu
[23, p- 203]). Hence R, > 0 unless X is a torus. Thus there are no
harmonic spinots on a compact homogeneous space which is a spin
manifold, relative to the bi-invariant metric.

(2) X =CPr X is a Spin® manifold. H(X, 7) is generated by
one element H, so suppose the line bundle L associated to the Spin®
structure is given by L = &H. Using the almost complex structure, the
Ricei tensor S defines a 2-form p and Jip is the curvature form which
represents the first Chern class ¢,(X) = (n + 1)H. We can therefore
take a connection on L such that the curvature form is kip/2(n + 1).

X is an Einstein manifold, and the eigenvalues of p are -£ZA with
multiplicity #. Furthermore, the scalar curvature R = tr 8 = 2azA (A > 0).
Hence,

R—4Y |N|=2m —dnlk|{N2n + 1)
=2M(n +1) — [k )/(n + 1)

Thus, if | k| << # + 1, there are no harmonic spinors with respect to the
standard metric.

1.3. PARALLEL SPINORS

If X is a spin manifold and the scalar curvature R == (), then the
vanishing theorem says that Py = 0 implies that D¢y = 0; in other words,
every harmonic spinor is parallel. The following theorem shows that
parallel spinors are not very common.

THEOREM 1.2. Let X be a compact simply connected spin manifold
which admits a parallel spinor. Then if dim X s even (resp. odd), £X
(resp. X x SY) is a Kihler manifold with vanishing Ricci tensor. (There
are no known examples—see Kobayashi and Nomizu [23, pp. 151, 175]).



HARMONIC SPINORS 9

Proof. 1f X admits a parallel spinor i, then the linear holonomy
group @ C SO leaves fixed a vector under the spin representation 4,
i.c., we can reduce the holonomy group to the identity component of an
isotropy subgroup G C Spin of the spin representation. Any parallel
spinor is the sum of a positive and negative parallel spinor, so we con-
sider the irreducible representations 4%, Also, since a change of orienta-
tion interchanges the positive and negative spinor bundles, we need only
consider 4+,

I.eMma. Let G(AY) C Spin(2m) be an isotropy subgroup of A+, Then
Gy(d*) = SU(m).

Proof. Suppose g eSpin(2m) leaves fixed a vector i, ie, gf = .
Then kgh—'nfi = R, so by conjugation we can consider i as an eigen-
vector of the standard maximal torus and the subtorus which leaves ¥
fixed 13 given by the vanishing of a weight . The weights of A+ are
H4#, +x, + - o x,) with an even number of minus signs, where
Xy y..ry X, are the basic characters of SO(2m). Now the Weyl group W of
Spin(2m) consists of transformations of the form y, = ¢x,4), Wwhere
¢ = 1 and [T ¢, = 41 and p is a permutation. So W acts transitively
on the weights of 4+, and thus by a further conjugation, we can take
w = 3(x; + - + x,). Let Ty be the torus defined by w =0, T,C 7.

We claim that 7 is a maximal torus of G and the normalizer of T,
in Spin(2m), N(T,), is contained in N(T). This is true since if T, C T,
then T, C T, T, but for m > 2, w is not a multiple of aroot, so Ty == T.
Similarly, if gTygt =T,, Ty CgTe7' N Tand gTg ! = T,

Hence the Weyl group W(G) is contained in the subgroup of W which
stabilizes T, i.e., transformations of the form y, = ex,y, € = 11
which is isomorphic to S,, X Z,, where S,, is the symmetric group on m
letters. In fact, W((G) C S, since W(G) is generated by reflections in the
wall of a Weyl chamber and if (x, ¥) € S,, x Z, is of order 2, (x, ¥) does
not leave fixed a hyperplane unless y = 0.

We see then that the maximal torus of G is given by &y -}~ -+ + &, = 0
and the Weyl group is contained in the symmetric group on (x, ,..., x,).
But this is the maximal torus and Weyl group of SU{m). SU(m) is
simply connected and therefore lifts from SO(2m) to Spin(2m) where the
spin representation 4+ restricted to SU(m) is the even part of the complex
exterior product representation AV (see Atiyah, Bott, and Shapiro [10]).
Since A C Aeveu and A is the trivial representation of SU(m), SU(m) C G.
If SU(m) + G, then G would have an extra root but then there would
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be a point in the interior of a Weyl chamber of SU(m) which was left
fixed by an element of W(G). Since W(G) = W(SU(m)), this is
impossible. Hence Gy, = SU(m) for m > 2.

In the case m — 2, Spin{4) == SU(2)} x SU(2) and 4+ are given by
projections onto the two factors. The isotropy subgroups are then clearly
isomorphic to SU(2).

Since SO(2m) C SO(2m + 1) have the same maximal torus, we see
that the isotropy subgroup for Spin(2m + 1) is SU(m).

Returning to the theorem, we see that if X is a spin manifold with a
parallel spinor, then X" or X% 5 ST admits a reduction of its
linear holonomy group to SU(m). The theorem then follows since if
& C U(n), X is Kihler and if @ C SU(n), X is Kihler with vanishing
Ricci tensor—see Kobayashi and Nomizu [23] and Iwamoto [21].

1.4, CONFORMAL INVARIANCE

ProrositioN 1.3, The dimension of the space of harmonic spinors on a
manifold X is a conformal invariant.

Proof. We recall that two metrics g, # are conformally equivalent
if there is a C* function ¢ on X such that § = ¢%g. Now to compare
the Dirac operators corresponding to different metrics, we must first
define them on the same vector bundle, so let us fix a conformal structure
on X, i.e., a reduction of the group of the principal bundle of T from
GL{n, R) to SO(n) x R*. This defines an isomorphism T =~ U Q L,
where U is an orthogonal bundle and L is a trivial real line bundle. We
take the spinor bundle V" corresponding to U.

Given a connection on U/, we then have a Dirac operator
P I(V)— I'(V Q L*).

A metric is now a trivialization of L. If we take the connection on U
induced by the riemannian connection on T and use the trivialization
of L, then P: I'(V) — I'(V) is the usual Dirac operator.

If g, g are conformally equivalent metrics (§ = e*g), then the rieman-
nian connections on T are related by the following formula:

Vel = V¥ + (X - )V + (V- o)X —g(X, Y)grad e,

where X, YeI(T), (X o) = {do, X}, and g(grad o, Z) = {do, Z),
where ¢ , > is the contraction T* @ T — R.
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Fix a local orthonormal basis for U, and let {¢;}, {¢;} be the correspon-
ding orthonormal bases for T relative to the metrics g, §. 'Then & = ¢ ¢, .
Let {¢;} denote the dual basis of {¢;} relative to g.

Then rewriting the above formula in terms of the covariant derivatives

D, D, we get:
Dé; = D(ee))

Jer (dcr Qe | oy e Y 6 Ge, — Y {do, e € 6 e,-).
7 J
The connection matrices of the two induced connections on U are
then related by:

@y; = wy + fj<.df’, e — e;{do, e,

Consider now the two Dirac operators P, P: I'(V) — I'(V ® L*). We
compose with the isomorphism I'(V Q) L*) —# I'(}') defined by the
metric g and compute the action of P, P on an element ¢ of the local
spinor basis.

9P = gPh+ 1 (¥ eieres(do, ) — eeeslda, e3)
i

T (PPilb 1 1— (Z €1<d‘71 ey — 28'1'3'31<d0s Pi} + 9j<dg:- ej>) ‘f,’

i

Py |- 4(n— 1) do -4

Since P, P have the same symbol and the endomorphism do is globally
defined, then Py = Py + H{n — 1) do - 3 for any spinor .
Note that e "P(es) = P -+ do . Hence,

Py —e L”j!)i p (e ,(L;l)_“ ¢),
and so if Py = 0, then Pe((n — 1)o/2)§) = 0, i.e., the dimension of the
space of harmonic spinors is a conformal invariant.

Remarks. (1) Let us define a spin representation for the conformal
group by 7(g, ) = p(g)A V72 where (g, A) € Spin(s) x Rt and p1s the
usual spin representation. Let ¥ be the associated vector bundle, then
a metric defines an isomorphism ¢: V' ~ V. We define the Dirac
operator P: I'(V) — I'(V 5 L*) by ¢~ P, Then the proof of Proposition
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1.3 shows that P is independent of the choice of metric in the conformal
class, so we have a canonical Dirac operator associated to the conformal
structure.

(2) On S, conformal invariance trivially implies that dim H is
independent of the metric. Since H'(S, Z,) = Z,, there are two spin
structures. The two spinor bundles have real structures and are the
trivial line bundle and the Hopf bundle. On the trivial bundle, dim
H = 1; on the Hopf bundle H = 0.

(3) Since GL(1, C) == C* ~ SO(2) X R+, on a two-dimensional
manifold, Propoesition 1.3 implies that dim H depends only on the
complex structure. We shall see this more generally in Sections 2.1-2.4,

(4) We mention here the Kiinneth formula for the tensor product
of elliptic complexes (see Atiyah and Bott [9]). If X and } are two spin
manifolds and we take the product metric on X x ¥V, then the dimension
of the space of harmonic spinors on the product (&) is related to the
dimensions of the space of harmonic spinors on the factors (%, , A,) via
the Kiinneth formula by the following:

ht = hthyt -+ by hy

b = Iythy - bRyt
even X odd =t -+t )k,
odd x odd At == h— = Inh,.

even X even

In particular, for the flat torus 7% = S x -+ x S, of the 2" spin
structures, only the one corresponding to the trivial lifting admits a
harmonic spinor.

2.1. HarmoNic SPINORS ON A KAHLER MANIFOLD

Let X be a complex manifold; then the lifting

¢ _Spin” {2n)

P (see [10)
U{n) == S0(2n)

defines a canonical Spin® structure on X,
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TueoreM 2.1. Let X be a Kdhler manifold; then with respect to the
canonical Spin” structure,

H o Heven(X, 0),
II- o Hodd(X, @),

where € denotes the sheaf of germs of local holomoarphic functions on X,

Proof. The Spin® representation restricted to U(n) 1s the exterior
product representation, with Clifford multiplication given by the
following:

Cn QVU% A*En s )‘*Cn

9 G o d(v)w — 3(o)w,

where d(v)w = v A w and &(v) is its adjoint relative to the hermitian
structurc, The Z,-grading is given by the cven-odd decomposition of
the exterior algebra (see [10]).

Let V' be a complex vector space with hermitian form H; then as
usual we have a complex linear embedding V' C V* g C (where F'* is
the real dual of V) given by v~ () + ip(iz), where ¢: V' — I7* is the
isomorphism defined by the bilinear form B given by the real part of I1I.
B induces a hermitian form H on I'* &), C and hence on V.

Hg(v) + ig(iv), plx) + ig(iw))
~= Blg(o), ¢(w)) + Blp(iv), (i)} + iB{p(rv), pw)) - iB(g(v), ¢liw))
= 2(B(v, w) - tB(iv, w)) = 2H (v, =).

So the induced hermitian form on V' C V* (g € is twice the original
form.

On the manifold X we have a complex linear isomorphism ¢ 7'~ T0.1
between the tangent bundle and the bundle of (0, 1) forms such that
X)), WY)> = 2{X, Y. We can thus identify the bundle of spinors
with A*701 and define Clifford multiplication by a € T* as v/2(d(a*) —
3(x%1), where a®1 is the (0, 1) component of «.

We claim the Dirac operator P — 4/2(& 4+ 0*), where &: I'(T07) —
I'(1o»+1), is the usual exterior derivative in the Dolbeault complex.

Given a connection D on a vector bundle E, any first-order linear
differential operator P: I'(E) — I'(F) may be written uniquely in the
form P = oD | 7, where o: I(E & T*) - I'(FF) is the symbol and
7 & N'(Hom{E, F)).



14 NIGEL HITCHIN

Take the riemannian connection on the spinor bundle V(sxA*T01);
then the Dirac operator P = oD}, where o is Clifford multiplication.
The symbol of @ + &* is d(a™) — §(a®1), so P and 1/2(é + &%) have
the same symbol. It remains to show that the zero-order term
(0 + 9%} = 0 relative to the riemannian connection. Since the volume
form is parallel 7(2*) = 7(8)*, we need only prove () = 0. Now
d = ¢ 4- 8, where d: I'(AT™* Xy C) — I'(APHT* ®g C) is the exterior
derivative and 7(d) = 0 since the riemannian connection has no torsion.
On a Kdhler manifold, the riemannian connection [} commutes with the
almost complex structure [ and so 7(6) = 0.

The theorem follows from the Hodge theory of the Dolbeault complex:

e I‘(TU.P) 7,, F(To,p'}l) —_ e

THeoREM 2.2. Let X be a compact Kahler manifold; then

(1) X 25 spin iff the canonical bundle K has a square root (i.e., a
complex line bundle L such that I. L ~ K);

(2) there is a one-to-one corvespondence between spin structures on
X and holomorphic square voots of K;

(3) wunder this correspondence,
I+ ~ Heven(X, ((L)),

H =~ HoW(X, ((L)).

Proof. (1) We have the following commutative diagram of group
homomorphisms:

4
s S

Z,

g' “— Spin® (2n)~——Spin (2n)

det
Ut(n) 40‘(&1) 5

where s(x) = x%

Ifu e U(n) C SO(2n), then p—(u) = +£(u) det 71/ € Spin(2n). Hence
the lifting of a cocycle u,; to a Spin(2#) cocycle corresponds bijectively
to the lifting of the Sl-cocycle det #z} to an S'-cocycle A,, such that

% = det wz;. Since det ' represents the canonical bundle K, X is
spin iff X has a square root.
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(2) Let ¢* denote the sheaf of germs of nonvanishing local
holomorphic functions on X. Then we bave an exact sequence of sheaves:

| = Zy—» €% — 0% > |
x> x2
In the corresponding exact cohomology scquence, we have:

HI(X, Z,) > H'(X, 0%) > IP(X, (%) -2 IT7(X, Z,) —,

where « is an injection for compact X.

A holomorphic line bundle L € H{(X, ¢*) thus has a holomorphic
square root iff the topological obstruction B(L) € H¥ X, Z,) is zero (in
fact B(L) = ¢;(L) mod 2). Hence X is spin iff K has a holomorphic square
root. From the first part of the proof, two liftings of an S'-cocycle to the
double covering differ by a Z,-cocycle: since a is injective, the cohomo-
logy class of this cocycle distinguishes between holomorphically distinct
square roots of K and so we get a one-to-one correspondence between
spin structures and holomorphic square roots of K (see also Atiyah [8]).

(3) The spin representation takes #{u) det#~'/* into A*(u)
(det )12 and so the bundle of spinors on a Kihler manifold is iso-
morphic to A* 701 &) L, where L 1s a square root of K. As in Theorem 2.1,
we show that P — +/2(8 -|- £*), where &( ) 5} = o 2 5 if 5 is a local
holomorphic section of L; ie., ¢ is the coboundary operator in the
Dolbeault complex of L.

The symbols of the two operators are the same, so again we must show
that & factors through the connection induced on A*7T®! (R L via the
riemannian connection. We showed this for A*T™L so it remains to
show that if s is a local holomorphic section of L, then Ds € I'(T7% @ L}
for then (¥ ®s) = aD( & s). L @ L =~ K and L has the connection
induced from K, so it suffices to prove the above statement for K, But
dz; A <o+ A dz, 15 a local holomorphic section of K and D{dz,) = T'(TY &
T since D has no torsion and so the skew part of D(dz;) 1s d{dz,),
which 1s zero. Hence D{dz, A - A dz,) e D(TH ) K).

(4) We sometimes need to consider spinors with coeflicients
in a vector bundle £ with connection. We then have a connection on
¥ ¢ E and a Clifford multiplication on the left, so that we can define a
Dirac operator as in Sections 1.1-1.4. Suppose now X 1s a Kihler
manifeld and E is a holomorphic hermitian vector bundle. If we choose
the unique unitary connection on E such that Dv = ) w; & z;, where

bo7/14/1-2
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{v;} 1s a local holomorphic basis and the w, are (1, 0) forms, and construct
the Dirac operator, we sce as in the above argument that P = /2(6 - 8%),
and, in particular, we can identify the harmonic spinors with coefficients
in E with I X, O(L & E)).

In Sections 2.1-2.4 we shall adopt the usual convention of writing
Iine bundles additively, i.e., L Q0 M =L + M. We shall use Theorem
2.2 to compute the dimension of the space of harmonic spinors for
particular Kihler manifolds but first we make some remarks:

Remarks. (1} Since H?(X, O(FK)) is defined entirely in terms of the
complex structure on X, dim H is independent of the choice of Kihler
metric defining the same complex structure. In real dimension 2, since
C* ~ SO(2) x R* via g+~ (z/| 2]) - | & |, this is equivalent to saying
that dim # is a conformal invariant which we have seen in Sections
1.1-1.4.

(2) Serre duality asserts that if L is a holomorphic line bundle,
Hr7(X, O(L)) =~ H»(X, (K — L)). Hence, if L == 4K, we have the
duality:

H'(X, O3K)) = H™ (X, O(3K)).

(3) If we take the canonical Spin® structure on a Kidhler manifold
with positive definite Ricci tensor, then the endomorphism 2 in Theorem
1.1. is positive on @p_; A»T*! and zero on A°T%!. Combined with
Theorem 2.1, this yields Bochner’s vanishing theorem, i.e., a Kihler
manifold with positive definite Ricci tensor admits no holomorphic
p-forms for p > 0. This 1s a special case of Kodaira’s vanishing theorem,
but Kodaira’s theorem does not appear to be more powerful than
Lichnerowicz’s in general. For example, one can show by Kodaira’s
method that if the scalar curvature is positive, then HYX, 6(3K))
(and hence by duality H"(X, ®(3K))) vanishes (see Kobayashi and
Wu [24]), but it is not clear that one can deduce H?(X, O(1K)) = 0 for
0 < p << n which is what Lichnerowicz’s theorem gives.

(4) Let X be a compact complex manifold and L,, L,
holomorphic line bundles on X. Then we have a bilinear map

m: HY(X, O(Ly)) X HYX, O(Ly)) — HYX, O(Ly + Ly))

defined by multiplication, i.e., if s, , s, are holomorphic sections of
L,,L;, then

mis, , 52) = $1%,
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m induces a corresponding differentiable map # on the projective
spaces P(L) = P(HYX, ¢(L))),

wi (L) # P(Ly) — P(Ly -+ Ly).

The points of P(L) correspond to effective divisors of L, i.e., the zeros
of holomorphic sections of L. Let D be a divisor of L, - L, ; then D is
in the image of # iff D = D, + D,, where Dy and D, arc effective
divisors of L, and L, , respectively. Since D has only a finite number of
irreducible components, D == D, 4+ D, in only a finite number of ways,
i.e., m~Ypt) is finite. Hence dim P(L; 4 L,) = dim P(L}) + dim P(L,).

Consider L, = L, = 1K. Then if 4% = dim H(X, O(3K)) and p, is
the geometric genus = dim H(X, €(K)), we have (p, — 1) = 2(h* — 1),

ie.,

bt

where [x] denotes the integer part of x. This gives an upper bound on A°
which as we shall see is sometimes attained.

2.2. RIEMANN SURFACES

Every oriented two-dimensional manifold X is a spin manifold since
wy(X) = 0. Furthermore, since SO(2) 22 U(1), every riemannian metric
on X is a Kihler metric, so we lose no generality by considering Kihler
metrics. By Serre duality, HYX, O(3K)) =~ HY(X, O(}K)), so we need
only compute A° to find dim H. Hence the dimension of the space of
harmonic spinors on a 2-manifold is independent of the metric iff #°
is independent of the complex structure.

We note that if X is of genus g, there are # HY(X, Z,) = 2% different
spin structures and that p, = g.

Prorosition 2.3. If g <03, the dimension of the space of harmonic
spinors 15 independent of the metric.

Proof. From Remark 4 above, we have

hl} g I:g—t::.l_]_

i

Hence, if g =0, #* =0, and if g <3, 2* = 0 or 1. Thus we can find
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the number of square roots of K with no holomorphic sections by
considering the number for which 4° is even, and it is classically known
that there are 29-1(2¢ + 1) such square roots {see Atiyah [8]). So for
g ==1, 3 square roots of the canonical bundle have no holomorphic
sections; one {the trivial one) has one section. For g = 2, there are 10
square roots with no holomorphic sections and 6 with one.

ProrosiTion 2.4. If X is hyperelliptic, B = [(g + 1)/2] for some
square root of K. Moreover, if g is even, there are at least 2(g + 1) such
square roots.

Proof. We refer to Gunning [20] for terminology and basic facts
about the Weierstrass gap sequence.

Let p € X, and let y(vp) denote the dimension of the space of holo-
morphic sections of the line bundle defined by the divisor »p, v being a
positive integer.

Then
p(vp) == v - I — {# gaps < v in Weierstrass gap sequence at p}

(see Theorem 14 in [20]). If p is a hyperelliptic Weierstrass point, the
gap sequence is
I <3 <5 e 2 — 1.

Hence y((2g — 2)p) = 2g — 1 — (g — 1) = g, and so (2g — 2)p defines
a line bundle with first Chern class (2¢ — 2)[X] and g holomorphic
sections which must therefore be the canonical bundle K. (g — l)p
then defines a square root of K and

Wg—Dp)=(g—D+1- ;az_ AR i
ie.,
_ &2 geven) r1g+1
HWE=DD =1, 12 zodd “[ " ]

Our square roots of the canonical bundle having [(g 4 1)/2] holomorphic
sections are equivalent as divisors to (g — 1)p, where p 1s a Weierstrass
point. There are 2(g + 1) Weierstrass points p; on a hyperelliptic
surface and these are the branch points of a ramified double covering
f: X — P Since all points are equivalent as divisors on P!, on X we
have 2p; ~ 2p;. Hence if g is even, (g — 1)p; ~ (g — 1)p; implies
p; ~p;. But from the Weierstrass gap sequence, y(p;) = 1 and so
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P, ~ p; implies p; = p;, thus we have 2(g + 1) distinct square roots
with &% = [(g + 1)/2].

A partial converse to the above is provided by a theorem of H. Martens
([26 Theorem 3.1]), which we state as follows:

ProrostTioN 2.5 (Martens). If A* = {(g + 1)/2], then X is one of
the following types:

(a) hyperelliptic,
(b) £=4
() g=6

In the nonhyperelliptic cases of g = 4 and 6, there is only one square
root having [(g + 1)/2] holomorphic sections (by a result of Farkas [19]),
but from Proposition 2.4 a hyperelliptic surface of genus 4 has at least 10
such square roots and genus 6 at least 14, We may therefore say that
hyperelliptic surfaces are distinguished by the property of having the
maximal number of harmonic spinors for the maximal number of spin
structures. Since for g 2> 3 there exist hyperelliptic and nonhyperelliptic
surfaces, we may state here the main result in 2 dimensions:

THeoreM 2.6. The dimension of the space of harmonic spinors on a
two-dimensional riemannian manifold varies with the choice of metric.

By taking products of Riemann surface and using the Kinneth
formula, we can construct manifolds in every dimension on which dim H
depends upon the metric, but these all have several spin structures, We
now look at simply connected manifolds where, since HY(X, 7,) = 0,
there is a unique spin structure.

3. ALGEBRAIC SURFACES

Every nonsingular projective algebraic variety is a Kihler manifold,
so we can apply Theorem 2.2 to an algebraic surface with wy{X) = 0.
We put A7 = dim H?(X, ¢(3K)), then 4° = k% by Serre duality and
h — Rkt + i? = A(X) by the Riemann-Roch theorem, hence we need
only calculate A°.

By Remark 4 in 2.1 we have:

W< -’%L]. 1)
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By the Riemann—Roch theorem applied to the trivial line bundle, we
have:

1 — g+ p, = (e® + €)/12 = Todd genus, 2)

where g 1s the irregularity = dim HY(X, @). Also by the Riemann—Roch
theorem applied to the holomorphic line bundle 4K, we have

B — 4B = (c? - 6)/12 — .28 = 4 genus. (3)
Hence from (1), (2), and (3), we get
(6 + )12 — 6,8 < 20° < (e + 0y)/12 + g 4

Remarks. (1) It follows from the inequality (4) that if X is a spin
algebraic surface, ¢ 2> —¢,%/8. Now suppose the intersection matrix is
of type (r,s), then r + s =25, and » — s = sign X = (¢;2 — 2¢,)/3.
Also, ¢, = Euler characteristic = 2 —4q -} b,. We can therefore
express the inequality as:

¢ — by —2 < o2

1.e,
3sign X = —2(b, -+ 2),
L.€.,
(r—s) = —=20r+s+2),
ie.,

5v —s4420.

This is a topological condition that a four-dimensional spin manifold
must satisfy in order to be algebraic.

(2) Suppose m(X) = {1}, then ¢ = 0. If ¢;* =0, then from
the inequality (4), A° = ¢,/24 and %' = 0, hence in this case /% is a
topological invariant for Kihler metrics defining algebraic structures.

(3) Every spin surface X is a relatively minimal model, for
suppose E is the divisor of an exceptional curve of the first kind. Then E

is nonsingular, rational, and of self-intersection E - E = -1, Therefore,
from the formula (for a nonsingular divisor D} D - (D -+ K} =
2(m(D) — 1), we have K - E = —1. However, the spin condition implies

that K = 2F for some divisor F, s¢ K - E is an even number, Hence, X
has no exceptional curves of the first kind and is thus a relatively minimal
model.
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(4) Applying Remarks 2 and 3 to Enriques’ classification of
algebraic surfaces (see Shafarevitch [30]), we see that A1 = 0 (and hence
A? is independent of the algebraic structure) for all simply connected
algebraic surfaces except the class « = 2 (i.e., surfaces of general type)
and possibly rational surfaces. We shall see now that this is true for
rational surfaces and a considerable number of surfaces of general type.

(a) Rational surfaces. Every relatively mimimal model of a
rational surface (except P? which i1s not spin) is a fibre bundle over P!
with fibre P! and hence in particular has sign X' = 0, and therefore
A(X) = 0. Hence, 4 = 2k% But 4 < (p, + 1)/2 and p, =0 for a
rational surface, so A® = i = B2 == (.

(b))  Complete intersections. We consider the algebraic surface
Vya, ..., a,) given by the intersection of » nonsingular hypersurfaces
F(ay),..., F(a,) of degrees a, ,..., @, in P**2 in general position. From the
Lefschetz theorem on hyperplane sections, such a variety is simply
connected.

ProPoSITION.  Vy(a, ,..., a,) &5 spin iff Ty a; — (v +4- 3) is even.

Proof. 'The total Chern class of 7 is given by
o) = (U + [HY 21 A o[ H) - (0 +a[H]),

where [H]< H)V, Z) is the cohomology class given by a hyperplane
section H in P2 Thus

e(V) = +3) — L a) [H],

so if ¥ a; — (r |- 3) is even, wy(V) = ¢;(F) mod 2 = 0 and ¥ is spin,

The converse will follow if we show that /1 is primitive, i.e., [/] +# mD
for any D e H*V, Z). For a complete intersection of dimension 2,
the Lefschetz theorem says that [H] generates H%V, 7). Let V7, —
V3 M F and consider the exact cohomology sequence:

s HY V) = HYV, O F)— HYV,, V, N F)— -

If j*[H] is not primitive, then since [H] generates H*(I;), there will be
torsion in H3Y( ¥V, Vy N F) and hence in Hy(V;, V3 N F). Consider now
the exact homology sequence:

o Hy(Vy F) 2 H(Vy — Hy(Vy, Vo F) = Hy(V, N F)— .
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J« 1s surjective by the Lefschetz theorem, hence 7 is injective. But
H\(VynF) = 0 since V, is simply connected, so there is no torsion in
Hy(Vy, VyanFyand [H] is primitive.

The canonical bundle of ¥, is thus given by K = (3 a; — (r + 3))H,
and if 3 a; # 7 | 3, then ¢,2 > 0, so V; is a surface of general type or
rational.

H>a — (@ +3) <0, then q, =1 for { == I (say) and a; = 2, 1.e,,
V, is a quadric in P3, which is rational and which we have therefore
already considered in (a}).

If > a; — (r + 3} = 25(s > 0), then the unique square root of K is
sH. It is well-known, however, that H{V,, 0(sH)) = 0 for a complete
intersection.

Hence A1 = ().

(c) Ramified coverings. In dimension 1, the most interesting
varieties from our point of view were hyperelliptic curves, i.e.,, ramified
double coverings of PL. We now consider a two-dimensional analog:
cyclic coverings of P? branched over a nonsingular curve.

Let C C P? be a nonsingular curve of degree pg. 'Then we can construct
the p-fold covering f: X — P? ramified over the branch curve C. Let
C' =fYC).

ProPoSITION. X 5 simply connected.

Proof. Let D(N), S(N) (resp. D(N"), S(N')) be the disc and sphere
bundles of the normal bundle N (resp. N') of C (resp. C’) in P? (resp. X).
Then m(P? — D(N)) ~ Z,,, and the generator is given by the inclusion
7 of a fibre of S(V):

m(S?) > m(S(N)) > m(P* — D(NV))

(see Zariski [31, Chapter VIIH]).

Now X — D(N") is a p-fold unramified covering of P? — D(N),
so my(X — D(N")) ~ Z, with generator given by the inclusion of a fibre
in S{N'}. Let z € m(S(N')) be this generator.

We claim that the homomorphism

TSN = my(X — DN X m(D(N')
is surjective (where 7, , 7, are induced by the natural inclusions). This is
true since i, is surjective from the exact sequence of the fibration S* —
S(N')— C’, so given (j'(2™), @) on the right-hand side, take w’ € m,(S(N"))
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st fy(w') = w. If £(w") = J'(3"), then i, X (2™ ") = (j'(z™), ), so
i, X 1y Is surjective.

Hence the subgroup generated by = (:S(N')) in the free product of
#(X — D(N")) and =,(D(N")) is the whole group and by Van Kampen’s
theorem, = (X) = {1}.

ProposITION. X is spin tff p &5 even and ¢ is odd.

Proof. let f: X — P2 be the projection, then the derivative of f
defines a natural homomorphism of sheaves:

I O (Ke)) — O(Ky)

(where Ky is the canonical bundle of X), or, in other words, a holo-
morphic section of Ky — f*Kp.. If « is a local nonvanishing holo-
morphic #-form on P2 then f*x vanishes to order (p — 1) on the
branch locus C’. Hence,

Ky —[*Kp = (p— ),
where 7 denotes the line bundle of the divisor C’. Hence,

Kx = f"(p — V) ¢H — 3H),

where H is the linc bundle on P? defined by a hyperplane section,
Thus if p is even and ¢ odd, ¢,(X) == 0 mod 2 and X is spin.

The converse will follow if we can show that f*([II]) e H¥ X, 2)
is primitive. Now the pg-fold ramified covering is a nonsingular hyper-
surface Y in [*3 given by the equation

Xt + glr s xy, x4} =0,
where the polynomial g defines the curve C in P2 Z,, acts on ¥ via
the action on P? given by

1o (X5 %y, %y, %5) = (exp(2mnifpg) xy , 21, Xy, ¥y)

and defines the projection ¥ —/" X —' P2 The divisor of the branch
curve (" on Y is equivalent to (ff")*H but this is also the divisor given
by x, == 0, i.e., a hyperplane section H' in P2 Hence H' = (ff')*H as
holomorphic line bundles. We know that [H’] is primitive on ¥, hence
(f)*[H] must be primitive on X.
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Hence if X is spin, {(p — 1)¢ — 3) = 25, and the unique square root
of K is given by 4K — sf*H.

If p =2, g =1, then X is a quadric and therefore rational, If p = 2,
g = 3, then K = 0. Otherwise, s > 0.

Now if  is a finite group of automorphisms of a complex manifold
X and W is a holomorphic vector bundle on X/G, f: X — X/G the
projection map, then

(HPX, O(f*W))° = HA(X/G, O(W)),

where T'¢ denotes the fixed part under the action of G (see Atiyah
and Segal [12]).

Taking X =Y, G =7,, W = }K, then f*}K = sH’ and
HYY, O(sH')) = 0 since Y is a hypersurface, hence HY{X, ¢(1K)) = 0,

le, Bl =

Remark. In view of the preceding (somewhat restricted) examples, it
is tempting to conjecture the following: Let X be a simply connected
algebraic spin surface; then for a generic complex structure,
HYX, O(}K)) = 0.

If At =0, then A(X) = 2k° >0, and hence sign X <C 0. This is
Zappa’s conjecture, which is known to be false, but the counterexamples
(see Atiyah [7], Borel [15]) are not simply connected—in fact they are
K (77, 1)’5.

2.4, BIRATIONAL INVARIANCE

We have seen that in certain cases, the dimension of the space of
harmonic spinors on an algebraic variety X depends upon the complex
structure: it is natural to ask whether it is invariant under the algebraic
notion of birational equivalence. We know for example that
dim H?(X, 0(K)) and the plurigenera dim HY(X, O(mK)) (m > 0) are
birational invariants, We ask now whether dim A?(X, 0(3K)) is invariant.

In dimension 1, birational equivalence implies biholomorphic equiv-
alence and so the invariance is trivial. In dimension 2, we saw in
Remark 3 of 2.3 that a spin manifold was a minimal model. Except
for ruled surfaces, a minimal model is unique up to biholomorphic
equivalence and so dim H?(X, O(3K)) is again invariant. For a ruled
surface, every minimal model (except P2) is a fibre bundle with base a
curve B and fibre P! and thus has zero signature; also, p, = 0, so by the
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same argument as for rational surfaces, there are no harmonic spinors.
Hence in dimension 2, dim H#(X, ¢(3K)) is a birational invariant.

We consider the question of invariance in higher dimensions under
the birational equivalence of “blowing up.”

THEOREM 2.5. Let X' be obtained from X by blowing up a subvariety
Y C X then
(1) X' is spin iff X is spin and codim Y is odd,
(2) If X' and X are spin, the projection f: X' - X induces a
one-to-one correspondence between the spin structures on X and those on X';
(3) wunder this correspondence,

dim H?(X’, 6(}3K") = dim H*(X, O(}K)).
Proof. For details on blowing up, we refer to Porteous [28].

(1) Let ¥ C X be of codimension m, with normal bundle N.
Then f (V) is the codimension | subvariety ¥’ =~ P(N). If « 1s a local
nonvanishing holomorphic #-form on X, then f*x vanishes to order
(m — 1) on Y and
Ky = f*Kx + (m — 1)E,

where £ is the line bundle defined by the divisor Y'. Hence ¢,(X") =
fHe(X) + (m — 1)[E], and if X is spin and m is odd, ¢,{X") = 0 mod 2
and so X' is spin. Conversely, we have the split exact sequence

0 HYX,7) L HYX', ) Z — 0,

where the splitting is defined by 1 — [E]. Hence if ¢;(X") = f*¢,(X) +
(m — 1)[E] =0 mod 2, then m must be odd and ¢,(X)=0 mod2.

(2) We see from above that if $K} is a holomorphic square root
of Ky, then f*1K, 4+ (m — 1)/2 [E]is a holomorphic square root of K- .
Since f* induces an isomorphism HYX, Z,) — HY{X', Z,), this defines
a one-to-one correspondence between spin structures on X and spin
structures on X',

(3) A theorem of Sampson and Washnitzer [29] states: If X
is obtained from X by blowing up a subvariety Y, then HP(X", f* &) =
H?(X, #) for any coherent sheaf % on X. Theorem 2.5 will then follow
if we can prove that

HA (X', O(f*3Kx)) > HA(X', O(3K ),
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or equivalently,
(m —1) :
K== )~ 1
H (A 0 (2K . E)) ~ H?(X', 03K)),

where we write K for K- .

Lemma. H?(X', O(3K — (E)) ~ H¥X', O:K — ({ — 1)E))  for
1 << {m— 1)j2.

Proof. Consider the following exact sequence of sheaves:

0 — AW} — oW R1S)) > OW @ {S}) [s > 0,

where S is a nonsingular subvariety of codimension 1, {S} is the cor-
responding line bundle, and ¥ is a holomorphic vector bundle.

Put W = $4K — ¢E, S = Y',{S} = E, then we have the corresponding
exact cohomology sequence:

> HY(X', 03K — (E)) — HYX', 03K — (/ — 1)E))
— HYY', 6K — (£ — DE) ly)) —.
The lemma will follow if we can prove that
HYY', 0QK — (£ — 1)E) [y) = 0.

Now K |p» = Ky — Efy and E |, = —H, where H is the Hopf
bundle over Y’ ~ P(N). We have a holomorphic fibre bundle P»-1 —
Y'—? Y and so Ky’ = p*Ky — mH — p*X"N. Therefore,

m-—1

——
Let k=(m—1)2—(/—1), then 1 <<k <(m— 1)/2. Consider
H?(P(N), O(p*L — kH)) for an arbitrary holomorphic line bundle L
on ¥. Now HP(P™, O(—kH)) =0 for p#m — 1 by Kodaira’s
vanishing theorem and

3K — (¢ — DE|p 2 15Ky — 2N) — (¢—n) &

Hm(pmet, O(—kH)) o= H(P™, O((k — m)H))

by Serre duality. Since & < (m — 1)/2, B — m < 0, and so
Hm= (Pt (—kRH)) = 0.
Hence H?(P™-!, O(—kH)) = 0 for all p and the E? term in the
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spectral sequence for the fibration P™' — P(N)— Y and the sheaf
O(p*I. — kH) vanishes and so

HYP(NY, O(p*L — kH)) ~ 0 forall p.

Consequently, HP(Y', (3K — ({ — E)ly7) =0 and the lemma
follows, taking L = MK, — A"N).
By induction on the lemma we get

7 (X', 0 (1K — (izfﬂ E)) = B, €RK)),

and the theorem follows.

Remark. 1n real dimension 2, we saw that the dimension of the space
of harmonic spinors does in general depend upon the metric but is
bounded above by the topological invariant (g + 1); furthermore, there
was no unique spin structure. In Sections 3.1-3.3 we shall see that in
3 dimensions, boundedness no longer holds.

3.1. HARMONIC SPINORS ON 5%

The standard metric on S* has positive scalar curvature and so by
Lichnerowicz’s theorem there are no harmonic spinors. This is, however,
a very special metric and if we regard S® as a compact Lie group (SU(2),
Sp(1), or Spin (3)), it corresponds to the bi-invariant metric. We consider
now only left-invariant metrics.

Tf X, YV are left-invariant vector fields and g is a left-invariant metric,
then g,(X,,, Y,) = g(X,, Y.}, and since the left-invariant vector ficlds
span the tangent space at every point p, a left-invariant metric is defined
by a metric on the tangent space at the identity, i.e., the Lie algebra.

The tangent bundle is parallelized by a basis for the Lie algebra and so
the spinor bundle is parallelized by the corresponding spinor basis.
Hence, relative to a left-invariant metric, the Dirac operator will be a
2 X 2 matrix of first-order linear left-invariant differential operators, 1.e.,
elements of the Lie algebra and constants.

ProposITION 3.1. Let g be a left-invariant metric which is diagonal
with eigenvalues A, , Ay, A; relative to a basis {e, , e, , 5} of the Lie algebra
which is orthonormal with respect to the bi-invariant metric. Then, relative
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to the corresponding spinor basis, the Dirac operator may be written:

P —ieyf \/E —iey/ \/KJF eyf \/E n (A + f\_zkﬂa)
—ies Ve — e/ ie VA, 2 VA

Proof. We first compute the riemannian connection relative to this
metric. This is defined in general by the following formula:

26X, VY)=Z-g(X, ¥) +g(Z [X, Y]) 4 ¥V - ¢(X, Z)
+ (Y, [X, Z]) — X - (Y, Z) — »(X, [V, Z])

for vector fields X, Y, and Z.
For left-invariant vector fields and a left-invariant metric, this becomes:

28(X,VZzY) = g(Z, [X, Y]) + &Y, [X, Z]) — (X, [V, Z])

since g(X, Y) is constant,

Since Ad: S®— SO(3) is surjective, the basis {e,, e,, e;} satisfies
the usual relations [e; , ¢;] = 2e;, [es, &5] = 2¢;, [eg, ;] = 2¢,, and
hence on this basis, the riemannian connection can be computed via
the above formula as:

Ve =0

Veea = (A + Ay -+ Ag) ey/Ag
Vees = —(—M Ay + Ag) eafAg
etc.

If B, = e;/+/A;, then {E, , E,, E;} is an orthonormal basis relative to
£ and then

VeFy =0
V51E2 = [‘Al + Az + ’\3) Es/ \/)‘1)‘2'\3 (1)
Vles = _("Al -+ Az + /\3) Ez/\/hl/\z)\a .

To the basis {E,} of the tangent bundle, there corresponds under the spin
representation a basis {,} of the spinor bundle V*. If w;; is the con-
nection matrix relative to the basis {¥;}, then the induced connection on
V+ is given by

D‘/’a = tlt Z wifEfEi‘wba
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(see 1.1). ITence in our case,

(A A+ A
VAR,

We have the Dirac operator P: I'(¥) — I'(V*) defined by P =
oY ENg i, where w = E\EE, is the section of the Clifford bundle
dcﬁned by the volume form and so from (1), the action of P on a basis
spinor ¢, is

V.rzl':b. ;-‘2 3) BBl - (2)

— 2 A +A) o AT
P¢ﬂ * 2 “/)‘ h A ‘1[’3 2 \/;\IA"/\_' /r\ M {3)
Now if s ¢ ['(V1), a € C*(X), we have
P(a) - Y (E; - a) Eah + aPy, (4)

where E; - a = {da, E>, i.e., E; acts on a as a first-order differential
operator and acts on ¢ by Clifford multiplication.
We take explicitly the spin representation given by

ot if) O om0 )
ok (o)

and then from (3) and (4) we compute the action of P on the spinor

awy + agpy, = (21)
P(Zl) — ( —iBy il b) LMt A) ?(al)’

—iE, — Ly 2 24/ A M) Ay I a,
and Proposition (3.1) follows.

We restrict ourselves now to constdering metrics which areleft-invariant
under $% and right-invariant under ' C 83, This is equivalent (up to a
constant multiple) to the case A, = A, = 1. Put A| = A%, then the Dirac
operator becomes:

P Jall e ey

—18; — &g ey /A
Put X =e,, Z+ — e, + ie;, Z~ = ¢, — iey, then

X Z+

P=—i(0

) + @2+ 2)/2n



30 NIGEL HITCHIN

PropPosITION 3.2.  The eigenvalues of P are:
BIA L A2 multiplicity 2p
N2+ VApghE | (p — q¥A  multiplicity p + g
Jor p,q > 0.

Proof. Let 4 be the laplacian on functions relative to the bi-invariant
metric, and let 4 act on the spinors by 4 - (32) = (572). Then 4 commutes
with P and we may consider P restricted to the eigenspaces of 4. The
eigenspaces of 4 acting on functions are given by the irreducible re-
presentation spaces E® E of S x 8% where E is an irreducible
representation space of S% There is one irreducible representation of §*
in each dimension and these are given by the symmetric products of the
two-dimensional complex representation 5% ~7 SU(2).

On the Lie algebra, this representation is defined by:

amily O a=iC ) =)

Y=ifp N = 7=l )

Then

The space of the kth symmetric power of the representation o is
spanned by monomials x™y*, where k = m - #, and the action of the
Lie algebra on this space is given by

X (™) = i{m — n) ¥y
Z e (xmyny = Qipgmtiyn-l
2 {amyR) = 2imym-lymil;

where x = (g), ¥ = ().
Consider now the operator

0=(7" 5y
then

. NEXELZRZ AN XZY — Z+X))
Q= ()rl(Z‘X — XZ7y  Z-Z* - XRX?
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But from the commutation properties of the Lie algebra,

(X, ZH = —2iZ+, [X, 2] = %Z~, |7, 7] = —4iX.

Hence,
e G A — 2124
o ( —2i Y- AT2XR ) Z"Z‘?)
and
. P CIRED ey’ G N Ay A 0
2 A1) - :
02+ 20710 — { 0 A-EXE — NIN 4 P

Now
774+ acts as —dm(n + 1) on a™y?,

Z+7Z- acts as —4n(m + 1) on ™y,

X  actsasi(m —n) on xMy*,

Thus, relative to the basis {x™y*}, O* + 2/A-1Q is diagonal, and the
eigenvalues of Q must satisfy the equation
2 2l = A (m — n)? - A =2(m — n)) — dn(m + 1)

or

- A Mm — n) A2 — m)) — dm(n -} L),

e, = —iA 1 4 At 4/(m 4+ 1 — n)? + 4m + Drd Now ¢y = (")
is an eigenvector of Q iff Z-(xmy") =0, Le, iff #» = 0 and then the
eigenvatue is A-*m. Otherwise, the space gencrated by f is two dimen-
sional and both solutions of the above equation are eigenvalues of Q.
Hence the eigenvalues of F are:

(k + l);’/\+/\/2) k=m+mn,

M2 A4 AA(m + 1) nA2 +(m —n + 1)2f,\§ m =0, n=0,
le,patingp =m + 1, ¢ = n,

piA = A2

N2 5 VAN T (p — g

paq s 0.

Both (£} and (5:) are eigenvectors corresponding to the eigenvalue
(% + 1)/A + A/2. Furthermore, the representation spacc occurs with

boy/ral1-3
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multiphicity the dimension of the representation E (=k -+ 1) in the
eigenspace of 4, since it is also a representation space on the right.
Hence the multiplicity of the eigenvalue p/A 4 A/2 is 2p and of the others
(p + q), which proves the proposition.

We are interested in the null space of P, i.e., the space of harmonic
spinors. Thus there are harmonic spinors for the metric with eigenvalues
(2%, 1, 1) iff there are positive integer solutions (p, g) to the equation:

A2 =2\ Apgd? + (p — g)% (3.3)

In particular, if A = 4m, m a positive integer, then p = ¢ = m is a
solution. Thus we have the following corollary to Proposition (3.2):

COROLLARY. Let m >> 0 be an integer and take the metric (**™ 1))
on S3 relative to the standard basis {i, j, k} of the Lie algebra. Then the
dimension of the space of harmonic spinors relative to this metric is >2m.
In particular, we can choose the metric t6 make dima H as large as we please.

Remarks. (1) To compute the exact dimension of the space of
harmonic spinors involves finding all positive integer solutions to (3.3).
I owe the following observations to S. Chowla:

(a) If m is a prime = 3(mod 4) and A = 4m, then the only
solution to (3.3) is p = ¢ = m.

Proof. (3.3) is equivalent to
(p — q)F + 64m’pq = 64m™.

Now since (p — ¢)? =0, pg << m% Furthermore, 8m | p — ¢, so put
P — q = 8mt, then

t2 - pg = m?,
and substituting for g,

24+ p2 =0 (modm).

If m =3 (mod4), then m|p, but then m|g and pg < m® implies
P=qg=m

(b) If m == 65, then p = g = 65 and p = 528, ¢ = 8 are two
solutions.
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(2) 'The solution to (3.3) given by p = ¢ = m does not arise
fortuitously —it exists for geometric rather than number theoretic
reasons.

"Fhe space of harmeonic spinors corresponding to p = g == m consists
of 2m copies of (T n"1). Suppose that i = (a1) is a harmonic spinor, then
XNoa =im—1--ma, = —ta;, X -ay == i(m —m -+ Da, = +ia,.
Hence exp tX - a, — e 'a;, so a, is the pullback of a section of the
homogeneous line bundle over S* = S3/8! defined by the character
e~ that is, I~ where H is the Hopf bundle over S§% ~ P'. Similarly,
a, defines a section of H, so i is the pullback of a section of H {p H-1—the
spinor bundle on S* (see Sections 2.1-2.5).

Now consider Z* acting on the pullback a of a section of H:

XZta = 7 Xa — 2ilta — —iZ'a.

Hence exp X - Zta = e Z*a and Z~ defines a differential operator
Z+. I'H)—I'(H71), and similarly we have Z: I'(HY)— I'(H).
Thus P, = (,-%7) defines a differential operator on the spinor bundle
of S®—in fact a multiple of the Dirac operator.

i is an eigenvector of P, and we have found a harmonic spinor by
“separation of variables”—expressed the Dirac operator P = P, + P,,
where P, defines an operator on S* and P, defines the Dirac operator
on 5% ¢ is an eigenvector of P, and an eigenvector of P, with opposite
eigenvalue. The procedure is similar to the classical construction of
solutions to Laplace’s equation in R? (with the flat metric) by separation
of variables from eigenvectors of the laplacian on 5% and a radial
differential operator.

(3) The results of Proposition 3.2 may be used to provide an
example of the theorem of Atiyah, Patodi, and Singer [11] applied to the
Dirac operator P on a 4# — | manifold X.

We take the eigenvalues A of P and define the difference of two zeta
functions
n(s) = ) (sign A) [ A [~
20
then 7(s) is finite at s = 0. On the other hand, we make X bound a spin
manifold Y, extend the product metric near the boundary to Y, take
the Pontrjagin forms on Y relative to this metric, and integrate the A
polynomial in these forms over Y.
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The theorem then says that

w0) =2 | Ap(V)) mod Z

= 20(X) mod Q,

where @ is the Chern-Simons invariant corresponding to the A
polynomial [I8].

In our example, for A®* < 16, the positive eigenvalues are
PIA 4+ N2 and N2+ Apgh® 1+ (p — @)¥A and the negative ones
N2 — v/4pgh I (p — )/ with the appropriate multiplicities from
Proposition 3.2. Hence

n(s) = 3 2p(p + X/2)~*

P=0

+ Y (p+ Q%2 + Vapg® + (p — 95)*

— (=2 ++ Vapg® + (p — ) ).

The first term causes no problem and at 5§ = 0 has the value (A* — 1)/6.
The second term we expand as follows. Putting

f) =3 (2+9W@pa¥® + (p — %

B.q>0

we get

() BB (43)

where for A sufficiently small, g is analytic at s = 0 and g(0) = 0,
since f(s) converges absolutely for Re s > 3/2. Computing the residues
of fat s = 1/2 and s = 3/2, we finally obtain the following expression
for 5{0):

7(0) = (=1 + 22% — A%)/6.
Modulo @ (and a sign convention), this agrees with the Chern-Simons

invariant for this family of metrics as computed in [18], taking account
of the fact that A(p,) = —p,/24.
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3.2. Hoprr SURFACES

Let X = 8t x 5% Let g be an invariant vector ficld on S! and
€, , & , &; the standard orthonormal vector fields on S% Then

Jley) = —e J(es) — —ey
Jle)) = ¢ Je) = e

defines an almost complex structure on X which is integrable and gives
a complex structure. X is a Hopf manifold.

The left-invariant riemannian metric defined by the matrix
' ™
-

A

|
|
i
!
|

| 1

. |

{with respect to the basis {e,, ¢, , €,, €;}) is then hermitian, But this is
the product of an invariant metric on S* and the metric we were con-
sidering in Proposition 3.2. Hence by the product formula for harmonic
spinors (1.1, Remark 4), we can make the dimension of the space of
harmonic spinors on X as large as we please by choosing A suitably,

On the other hand, p, = 0 for X and so if A* = dim H¥(X, O(}K)),
#® = 0. Furthermore, by Serre duality and the Riemann-Roch theorem
for complex manifolds, 2h° — A* = 4(X) = 0 since sign X - 0, and
so h# = 0 for all p.

We see here the necessity of the Kihler condition in Theorem 2.2.
In fact, X is the simplest example of a non-Kihler compact complex
manifold (since H¥ X, 7) = 0, X cannot be Kihler).

3.3, Scarar CURVATURES OF 5%
The scalar curvature R of a left~-invariant metric is a2 constant and so

since we have harmonic spinors relative to metrics within the family of
Proposition 3.2, these must have nonpositive scalar curvature by the
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theorem of Lichnerowicz. It is a matter of interest then to compute the
scalar curvature of a left-invariant metric on 52,
The curvature tensor is given by:

R()(, Y.)Z = vayZ - Vyvxz - V[_‘r. y]Z.
Hence from (1) in Proposition 3.1,
R(E, , Ey) B
= VEIVEBE2 - VEQVEIE2 - V[E].EE]EZ

(<h+de th) 2

= —VE, \/)—(;\2/\3 3 \//\1).2)\3 Egta
1
= _A A {—(“)‘1 + /‘2 + A3)(A1 - }\z + ’\3) -+ 2“30‘1 + /\z - /\3)} E1 .
142113

Now the scalar curvature R = Y, ; (R(E;, E;)E;, E;). But from the
symmetry

(R(X, Y)Z, W) = (R(Z, W)X, Y)
and R(X, Y) = —R(Y, X), we get
R = (R(E, , E)) E, , B)) + (R(E, , Es) Ey , By) + (R(Ey , ) By, Eo)}.
But from the above formula,
(R(E,, Ey) By, E)) = {—(oy — 20){oy — 2X3) + 2M5(0y — 2N,)} oy,
where o, is the ith elementary symmetric function in {A, , A, , A3}, and so

R = 2{—30,2 — 4o, + d0.% + 20, — Hoy% ~ 20,)}/0,
= 2(doy — 04?0, . 3.4)

The restricted family of Proposition 3.2 was given by A, = A%
A, = A; = 1. Hence in this case,

R o= 2(4(22% + 1) — (A% 4 2)2)/x2
= 2(4 — %) (3.5)

Remarks. (1) Consider again the equation (3.3), i.e.,

Up — )t + 1690 = X
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Then 16pg < A% so there are no positive integer solutions (p, ¢) (and
hence no harmonic spinors) if A* < 16. From (3.5), we see that if
AP <4, R >0, and so this result is compatible with Lichnerowicz’s
theorem. Also, if X2 = 4, R = 0, and then the result is compatible with
Theorem 1.2, since 8% x S is not a Kihler manifold. In fact there are
no harrnonic spinors until A* = 16 and R = —24, and then there are
two linearly independent harmonic spinors since p =g =1 is the
unique solution to (3.3).

(2) We may regard the space of left-invariant metrics on 53
(up to isometry by conjugation) as parametrized by the eigenvalues
{Ar, Ay, Ag), where A; > 0. The space of such metrics of positive scalar
curvature (#+) is then given from (3.4) by:

s A A A, 4 AAy + Ah) = (A + Ay - A2,
ie.,

{('\1 t >‘2 b h3) 1 A12 -+ Azz + >‘32 < J2‘("‘1 I ‘\2 + ‘\3)2}

This is the interior of a circular cone with axis (1, 1, 1). Up to multi-
plication of the metric by a constant, we may represent the left-invariant
metrics by barycentric coordinates as the interior of a 2-simplex. The
space or metrics of positive scalar curvature is then given by the interior
of the inscribed circle:

1,0,0} 1,0

Note that #7 is contractible.

4.1, SKEW-ADJOINT FrEDHOLM OPERATORS

Let I be a real infinite-dimensional Hilbert space which is a module
for the real Clifford algebra C; ; such that J,* = — ], where
{J1 s Ju-1} is an orthonormal basis for R*—1. Let # denote the space
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of skew-adjoint Fredholm operators on H and #* the subset of all
Ae# suchthat 4], = — [,4 (1 < i < k — 1) (see Atiyah and Singer
[13] for details).

If £ = —1 (mod 4) and 4 € F%, define w(d) = J,J»,..., Jx_14. Then
w(F*}) 1s the space of self-adjoint Fredholm operators commuting with
C,_1 . Infact, since Cg =~ End (R®) and Cy o~ H, we can identify w(.%# 1)
with the space of all real self-adjoint Fredholm operators and (% 8:%)
with all quaternionic self-adjoint Fredholm operators. #¥% is the union
of components F.*, F_ ¥ and F.*, where w(F %) (resp. w(F_*)) 1s the
space of all essentially positive (resp. negative) self-adjoint operators.

If k== —1 (mod 4), then set F.* = %% It is shown in [13] that
F,k is a classifying space for KR*. Hence, given any compact space
X and a continuous map A4: X — #_.k we have a well-defined homotopy
invariant

index 4 € KR X),

Prorosition 4.1. (1) If A(x) is invertible for all x € X, then index
A =0.

(2) If k= —1 (mod 4) and the rank of A(x) s constant, then index
A =0.

Proof. (1)} 'Thisis proved in [13] and follows from Kuiper’s theorem.

(2) If rank A(x) 1s constant, we can define 2 continuous map

XA
x— P(x),

where " is the space of compact operators and P(x) is the orthogonal
projection operator onto the kernel of w(A4(x)). P(x) is selfadjoint and
commutes with C,_; since H = ker 4(x) @ (ker A(x))" is a decom-
position of C,_;-modules. Consider now

B(x, t) = w(A(x)) + tP(x).

B(x, t) is self-adjoint, Fredholm, and commutes with C; ;. B(x, 0) =
w(A(x)), and B(x, 1) is invertible. Hence A4 retracts to a map into the
invertible elements, which is homotopic to zero by part 1. Hence index
A =0.

We may equivalently regard %% in the following way (see [13]):
Let H = H*@® H' be a 7Z,graded C,-module. Consider the set of
skew-adjoint Fredholm operators 4 such that A: H® - H' and H* — H°
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and AJ; = — ;A (1 <i <k). Then A J;A | o gives an isomorphism
of the above set with F#(H) (H is a C,° = C;_, module). With this
description we can define index 4 as the index of a family of operators
parametrized by X » R¥: given A: X — #.F, we dcfine a map

B: X « R > F*
(%, 1) — A(x) + C(1),

where C(f) denotes Clifford multiplication by teR* and we have
identified %% with the above set. Since C(f)7! - A(x) 1s skew-adjoint,
B(x, t) is invertible for t 2 0 and hence defines an eclement in
KR(X x R¥) ~ KR~% X} which is the index defined above.

4.2, FamiLies oF Dirac OPERATORS

The prototype for the sort of operator described in 4.1 is given by
the real Dirac operator on a spin manifold, which we define as follows.

Let X be a spin manifold of dimension k&, define the real spinor bundle
by V = E Xgpy Cry where £ is the principal spin bundle and
Spin{k) C C,, acts on C, by left multiplication. V' decomposes into
*@ V! corresponding to the even and odd parts of C,. We can
multiply sections of ¥ on the left by sections of C(T), the Clifford
algebra bundle of the tangent bundle, and on the right by elements of
C;.. The two multiplications commute.

We have a Dirac operator P: I'(V) — I'(V) defined in the usual way,
with P: T{V%— I'(VY) and I'(V')— I'(F°). The complexification of
P is just a certain number of copies of the Dirac operator defined in
Sections 1.1-1.4, which is associated to a complex érreducible representa-
tion of Spin(k).

P is not a bounded operator on the space of sections of V, but if we
set O = (1 + D*D)Y/4 where D: I'(V) — I'(V (2 T*) is the covariant
derivative, and then put Py, = QPQO*, we get a bounded, zero-order
operator with isomorphic kernel and the same symbol (restricted to the
unit sphere bundle).

P, is self-adjoint and commutes with Clifford multiplication on the
right. Hence we define

Pyt = Pyl |

Par = —pygy V=T
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P, is now bounded, skew-adjoint, and anti-commutes with R¥ C C, .
Furthermore, since P is a first-order differential operator, it cannot
define an essentially positive or negative operator. A family of such
operators, parametrized by Y, therefore has an index in KR-(Y). We
compute this index via the Atiyah-Singer index theorem for families
of operators [14].

Let X -7 »#Y be a compact fibre bundle with fibre X a spin
manifold of dimension %, and tangent bundle along the fibres spin.
Introduce a continuous family of metrics in the fibres and take the Dirac
operator in each fibre relative to the metric g, . 'Then y+» Py(y) defines
a family of operators A: ¥V — F *,

ProposiTioN 4.2, index A = p(1) where p! : KR(Z) — KR *(Y) is
the direct tmage homomorphism for spin maps.

Proof. By the index theorem, the analytical index (index A) is equal
to the topological index of the symbol class of the family of complexes
Py, t): (VY —>T (VY (v, te ¥ x R¥) in KR(T:Z X R¥), where TpZ
is the tangent bundle along the fibres with involution given by the
antipodal map ¢+ —¢. We first calculate this symbol class.

The symbol of the Dirac operator P is given by I(i£,): V,) @ C —
V! & C where L{x,) denotes left Clifford multiplication by «, . Thus the
symbol of the zero-order operator P; is given on the whole spinor
bundle by:

olé, , 1)V, RC—-V,®C,
o€, 5 1) "0 = L{E) - ° + R(2) - 4",
o€, t) * ' = —L(EE;) - + R(z) -,

where R(t) denotes right Clifford multiplication by ¢ € R*. Now

G(fz 5 t)2 = ""(fz L] gz) - (t: t)
and

6(§z ’ t) = 0’(_‘52 s t)!

and so with this Clifford multiplication, C;, ® C is a graded Spin(k, k)
module of dimension 2%, The symbol class of P,(y, t) is thus the Bott
class in the Thom isomorphism for the Spin{k, k) bundle T+Z x R¥ — Z
(see Atiyah [6]).
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Now let N denote the normal bundle along the fibres of a fibre-wise
embedding:

28 v Y x RBBH{

V%

Y
and let §:
KR(X) -S2nza , KR(E)

denote the Thom isomorphism in KR-theory where E is a Spin(p, ¢)
bundle over X and p == ¢ (mod §).
Consider the following commutative diagram:

p!

] ¥
KR(Z) Spinle,8s) KR(.ZV) il KR(}' w RBL‘-HC)
8 | Spinde,k) Spin(ge+k,k) Spin(e+k.k)
KR(T5Z x R —SMBE08) KT o« | —5 KR(Y x TRY'* x R
| ?
ind

(¢! and j! are induced by open inclusions).
We see that p!(1) = ind 8(1). But 8(1) is the Bott class which we have
seen is the symbol class of Py(y, £). Hence index 4 = p!(1).

Remarks. (1) 'Take Y = pt. in Proposition 4.2, then the Dirac
operator on X has an index in KR—*(pt.), given by f (1) where f: X — pt.

KR™™pt)~ 27  andthen f1) = A(X) or 14(X)
KR V() ~ 7, andthen fI(1) = dim H (mod 2)
KR @)ty ~ 7,  and then Y1) = dim H* (mod 2)
(see Atiyah and Singer [14]).

We define o X') =f (1) € KR~(pt.) for a spin manifold X of dimension
n. Then

X X V) = ofX) o V),
X # Y) = ofX) + oY),
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where ## denotes connected sum. In fact, « defines a ring homomorphism
from the spin cobordism ring Q5P to KR~ *(pt.).

(2) Let Xt — Z ¥ Y™ be a differentiable fibre bundle with
Y and Z spin manifolds. Then spin structures on Y and Z induce a
spin structure on the tangent bundle along the fibres Trand if f: ¥ — pt.,

o Z) = (fp)H (1) = fUpK1)) & KRT(pt.),

where the direct image homomorphisms are taken relative to the spin
structures on Y and 7). In particular, if pl(1) =0, then «(Z) = 0,
and we have the following proposition:

ProposiTiON 4.3. Let X - Z — Y be a differentiable fibre bundle
with Y, Z spin and o(Z) = 0. Then for some spin structure on X,

(1) X admits harmonic spinors relative to some riemannian metric,
(2) If dim X = —1(mod 4), the dimension of the space of
harmonic spinors depends upon the metric.

Proof. (1) SBuppose X admits no harmonic spinors relative to any
metric, then the family of Dirac operators is invertible, and so by
Proposition 4.1 (part 1), the index of the family is zero and hence from
Proposition 4.2 and Remark 2 above, o(Z) = 0, which contradicts the
hypothesis.

(2) Similarly, if the Dirac operators have the same rank, then by
part 2 of Proposition 4.1, the index is zero and so «(Z) = 0.

In the next section we shall construct examples where o(7Z) # 0.

4.3. GromoLL Grours aND FiBre BunNDLES

(For the constructions below, we refer to Antonelli, Burghelea, and
Kahn [3-5].)

Let I'* denote the Kervaire-Milnor group of exotic n-spheres. We
have a surjective homomorphism

T my(Diff §7) — oL
defined by T(f) = Dr+1 U, D=+,
Novikov defined a homomorphism

A;: m(Diff Sn)— [otitl
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as follows. Let ¢: D' —» Diff S* represent [¢] € 7, (Diff S*), where
@(S™1) =id. Then ¢ defines a diffeomorphism of D¥ X S* which is
the identity on the boundary. We represent St as §i-1 x D+l U D X
S™ and extend the diffeomorphism trivially over S »x D**! to obtain
a diffeomorphism of S which via 7' defines an element of I+l

The image of A, in /™' is the (1 + 1)th Gromoll group I'THH.
We have a filtration

0= I" CCI CCI" =T

PropositioN 4.4. Jf S e A, then for any manifold X, Z =
X® o SV LS fibres differentiably over ST with fibre X,
Proof. Let Difi(S”, D ) C Diff S* denote the group of orientation-

preserving diffeomorphisms of S which leave fixed the upper hemisphere
D™ Then by restriction, A; defines a homomorphism

17 T.r,-(Diff(S“, D+ﬂ)) o AL

It is shown in [5] that I'7H = imp,. This follows essentially
from the fact that the map SO(n + 1) x Diff(S®, D _*) — Diff S»
defined by group multiplication is a homotopy equivalence, but every

orthogonal diffeomorphism of S* extends to D*#1 and so goes to zero in
I"n+i+1.

Now we have a homomorphism
E: Difi($%, D %) — Diff X»

for any n-manifold X by letting f < Diff(S", D} act on an embedded
disc D* C X. Hence we have an induced homomorphism

E.: m(Diff(8”, D.7)) — w{Diff X).

An element E o] € m{Diff X'} defines a fibre bundle over S5 by
Z =X » D", X x DV withg: D! — Diff(S*, D, ") — Diff X such
that @(S71) = id. The bundle is then trivial outside D¢ x I C St
and so Z is obtained from X x SH' = X » D1y, X x DL by
removing a disc D*1+t =~ D? x DP % I and attaching another via the
diffeomorphism of the boundary given by:

id on S?lx o I
id on Dv x 81
{id, ¢} on D»x ¥ x S



44 NIGEL HITCHIN

But this i1s the diffeomorphism of S$*** which defines the Novikov
map A;, hence Z = X x S # p([¢]), so if 3 e I'MHH, then ¥ =
pi[e]) for some @ and then Z = X x SHL ¥,

Now ofZ) = ofX) - af S 4+ o(3) = a(}), since «(S”) =0 by
Lichnerowicz’s theorem for example (if # = [, we take the spin structure
which bounds, i.e., that corresponding to the nontrivial lifting of the
trivial principal bundle). But it is well-known that in dimensions
8% + 1, Bk 4 2, there exist exotic spheres ¥* for which «(I) 5 0.
Milnor [27] showed this for » =9, 10, 17, and 18 and proved the
general case would follow from the following: For n=1_(mod8),
there exists a map f S8r+n - §% g0 that the induced map f*: KR(S&‘) —
KR(S#+") o= 7, is nonzero. This was proved by Adams [1]. See also
Anderson, Brown and Peterson [2].

In fact, such spheres form a coset of the subgroup of index 2 I'¢, ;,
of spheres which bound spin manifolds.

Suppose I ;"ﬁ“‘“/f‘““*l N I3t o2 {0}; then by Proposition 4.4, if
X™ is any spin manifold, we have a differentiable fibre bundle X" —
Z — Sttlwith a(Z) # 0 (if n+1-+1=1or2 (mod 8)), so to construct
examples we have to know which Gromoll groups contain spheres
which do not bound spin manifolds.

We know that I''*t = I™+1 but as pointed out in [3], we also have
el = I'pH = P+ which follows from a theorem of Cerf on isotopy
and pseudo-isotopy:

Recall that a pseudo-isotopy is an element of Diff(X x I, X x {0})
and Cerf’s theorem [17] states that for a simply connected manifold X,
the group of pseudo-isotopies is connected. We have an exact sequence:

crm

Diff(X x I, X x {0,1}) -~ Diff{X x I, X x {0})— Diff X
and a corresponding exact sequence of homotopy groups:

s my(Diff X) s (DX X 1, X % {0, 1))~ mo(Dif(X x I, X X {0})
~ m DIff{X x £, X x {0})) = {0}

by Cerf and so « is surjective.

Consider now f e Diff(S?, D,"). f defines a diffeomorphism of
S7-1 % I'C 8™ which is the identity on the boundary and thus from
the surjectivity of « is isotopic in Diff(S*! x I, S»1 x {0,1}) to a
diffeomorphism defined by ¢: I — Diff S*1 with ¢({0, 1}) = id. By
extending the isotopy trivially outside S™-1 x I, we see that f is isotopic
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as an element of Diff $* to the extension of ¢ which occurs in the
Novikov hamomorphism, i.e., T(f) == A(gp), so I}F = I3+
For any spin manifold X, we now have differentiable fibre bundles

Xt 7 > St (n = 0,1 (mod 8))
X f o 82 (n == -1, 0 (mod 8))

for which «{Z) =2 0.
Hence from Proposition 4.3, we can state the following result:

Turorem 4.5. ([} Let X be any spin manifold of dimension O or
-+ 1 (mod R). Then X admits harmonic spinors with respect to some metric.

(2) If dim X = —1 (mod 8), the dimension of the space of
harmonic spinors depends upon the metric.

We have said nothing so far about introducing a family of metrics
along the fibres. T'his can always be done (for example, taking the metric
induced from one on the total space), but in the above examples we can
do it in an explicit way.

Let the bundle be defined by a map

@: St — Diff(S™, D.") - Diff X,

Now choose a fixed metric g on X and consider the following continuous
family of metrics parametrized by the disc D"

glrou) = (1 —r)g + re(u)*s,

where r is the radius and f *g is the pulled back metric for fe Diff X7
Since ¢(u) is the identity outside the disc D C X, the metric ts unchanged
outside D. If we take two copies of D1 with the family g{r, )} on one
and the trivial family g on the other, then identifying via ¢(u), we have
introduced a continuous family of metrics in the fibres of the bundle
X —Z - S,

We thus see that any variation of the dimension of the space of
harmonic spinors detected by the above examples is caused by altering
the metric in a neighborhood of a point.

Remarks. (1) Although we have scen that $% admits harmonic

spinors relative to some metrics, we cannot detect this by the above
method. This follows from work of Akiba, Morlet, and Rourke {(see [5])
who show that Diff°S® retracts onto SO(4) and hence I'i_y == {0}.
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(2) From Theorem 4.5, we deduce that dim H varies for the
standard spheres S®(n == 0, -1 (mod 8)) since we know there are no
harmonic spinors relative to the standard metric. Using the results of
Sections 3.1-3.3 on S® and the product formula, we can now exhibit
explicitly simply connected spin manifolds in all dimensions >5 for
which the dimension of the space of harmonic spinors depends upon
the metric:

dim
Bk i
8% +l Sszc+1

8k -2 S8 o 88

8k 4 3 S8 5 88

8k 4 ST g0
8k+5 8% x §x S
8k +6 S  §Fx §?
8k +7 S

(3) The exotic spheres 3 for which «(3)) # 0 are interesting in
their own right: they do not admit any metric of positive scalar curvature.
If they did, then by Lichnerowicz’s theorem there would be no harmonic
spinors and so «(}) (which is the mod 2 dimension of the space of
harmonic spinors) would be zero. In [3], Antonelli, Burghelea, and Kahn
raised the question: “Can every sphere in I,» be 8,-pinched?” If a
manifold has positive sectional curvature, it certainly has positive scalar
curvature and so these examples provide a strong negative answer,

4.4. MEeTrICS OF PosiTIivE ScaLar CURVATURE

Let X be a compact manifold and Z(X) the space of all riemannian
metrics on X. Let #+(X) C #(X) be the subspace of all metrics with
scalar curvature R = 0 (R £ 0). Note that Z#(X) may be empty, for
example, when X is a spin manifold with «(X) # 0.

The space # is convex and hence contractible, but #+ is not neces-
sarily trivial topologically: we have the following proposition:
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ProposiTiON 4.6. If X is a spin manifold of dimension k, there is a
homomorphism ( for each spin structure)

A m, (#HX)) - KR *{(pt.)
Proof. The space of riemannian metrics Z(.X) is contractible and so
Tpi(BT) o2 w, (R, H).

Let f: (D*, §771) — (%, #+) represent an element [f] € =, (%, #'). To
each metric we associate the real Fredholm operator P, defined in 4.2,
Thus f defines a map f: D* > F.F5 If xS, f(x) € #* and so by
Lichnerowicz’s theorem, f(x)e #,* is invertible. #.% is a classifying
space for KR and the set of invertible elements in #,* is contractible,
hence the homotopy class of f defines an element

A[f] € KR-¥Dr, $n1) =~ KR—-"(pt.).

A is easily seen to be a homomorphism.

The homomorphism A is defined analytically, but in certain circum-
stances A[f] may be determined topologically. Suppose #+ # ¢ and
let us fix g e #+. If he Diff X, the metric 2*g 1s also contained in #~.
We then get a map

T: Diff X — Z+(X)
> big

and a homomorphism
B o(DHf X) — " 7, (BH(X)) — KR-=(pt).

Given @: S* 1 — Diff X, we have the family of metrics g(u)*g on
Sn=1 which we extend to %, but this corresponds to introducing a
family of mectrics on the fibre bundle X —» Z — S* and B[¢] is then
clearly given by the analytical index of the family. So if Z i1s a spin
manifold, we can use the index theorem to identify B[] with «Z).
In particular, from the examples of Theorem 4.5, we can state the
following.

Tueorem 4.7. Let X be a spin manifold such that #'(X) + ©, then

(1) w(#H(X)) £ 0 for dim X — 8k, 8k + |
(2) m(ZHX)) # 0 for diim X = 8k — 1, 8k.

6o7/14/1-4
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Note that on 83, the space of left-invariant metrics of positive scalar
curvature is contractible (see Sections 3.1-3.3).

4.5, Browing Up anp Down

In the previous section we used the index theorem to obtain differential
geometric information (scalar curvature) from differential topological
data (spin cobordism invariants). We can equally well run the machine
backwards and use differential geometric data to prove topological
results. We shall find next invariants of “blowing up” by applying the
following lemmna.

Lemma (4.8). (1) Let E— Y be a k-dimensional quaternionic vector
bundle, and let HP(E © 1) —>* Y be the quaternionic projective bundle of
E @ 1. Then the map p is KR-oriented and

pI(1) = 0 KR-%(Y).

(2) Let E—Y be a hk-dimensional complex vector bundle and
CP(E D 1) =P Y the projective bundle of E @ 1. Then p is K-oriented
and

PUETD = 0 KT == K(Y),
where [H] € K(CP(E (D 1)) is the class of the Hopf bundle.

Proof. (1) Let E be a k-dimensional quaternionic vector bundle
and H a quaternionic line bundle. We can define a real oriented
4k-dimensional vector bundle E - H by the inclusion

Sp(k) - Sp(l) = SO(4k)

defined by left multiplication by an element of Sp(k) and right multiplica-
tion by an element of Sp(l). From the diagram

Ly — Sp(k) % Sp(l}—~ Sp(k)n‘ Sp(l}
| |
Zy —— Spin(4k) ——— SO(4k)

we see that £ - H is a spin bundle.
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Now the tangent bundle along the fibres T of HP(E D 1) - ¥ 1s
given by

Te@ 1w (pHE @ 1) - I,

and so T; is clearly spin and p is KR-ortented.

Since HP* = Sp(k + 1)/Sp(k) < Sp(l) is a homogeneous space,
it has positive scalar curvature relative to the standard metric. By
choosing an orthogonal structure on the bundle E, the structure group
of HP(E @ 1) —* Y reduces to Sp(k), which acts on HP¥ by isometries
of the standard metric, hence we can introduce a family of metrics in the
fibres all having positive scalar curvature. From Proposition 4.2 and
Lichnerowicz’s theorem, we sce then that p!(1) — 0.

(2} 'Fhe proof in the complex case is similar.

The tangent bundle along the fibres 1s complex, so p is K-oriented.
The symbol class of the Dolbeault complex defines the Thom iso-
morphism K{X) =~ K(TX), so pi([H]) is the index of the family
of operators

§ 4 g% r(roeven o fi-1) — F(Tﬂ,rjdd & HY)
in the fibres CP%. But by Kodaira’s vanishing theorem,
HACPY, ¢(I™Y) = 0.

Since the structure group of the bundle CP(E @ 1) —P Y reduces to
U(k), we see that the operators in the fibres are all invertible and so
PAH) = 0.

Equivalently, we could have used the vanishing theorem for harmonic
spinors associated to a Spin® structure on CP* given by Example 2
of 1.2.

This lemma is essentially an analytic version of the theorems on
multiplicativity in fibre bundles of Borel and Hirzebruch [16].

We recall here the Aomology theories associated to K-theory and
K R-theory.

Let X C R* be an embedding with normal bundle NV and % large, then
homology K-theory is defined by

Kp(X) n2 K*2(N)
KR,(X) ~ KR*™(N).
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If f: X — Y is a continuous map of manifolds, then there is a natural
transformation

fi Kn(X) = K(Y).

If X™ is weakly almost complex, the Thom class in K¥2(N) defines
an orientation class [X] e K, (X). Similarly, if X is spin, the Bott class
defines an orientation class in KXR,,(.X). The Thom isomorphism theorem
then defines the Poincaré duality

K (X))~ Kv=m(X),

and if f: X® — Y? is a K-oriented map, then f!: K®(X)— Kr—»m(Y)
is defined by f, via the duality.

Now if X — Z" —? Y™ js a fibre bundle with X, ¥, Z weakly almost
complex, it follows from the multiplicative property of the Thom class
that

p4lZ] = p!()[Y] € K(Y)

and similarly for spin manifolds and KR-theory.
Hence we can interpret Lemma 4.8 by saying

Ps[HP(E D 1)] = 0€ KRypn(Y)
PAHT) - [CPE D 1)]) = 0& Ky V)

if dim ¥ = m and Y is spin (resp. weakly almost complex).

To apply the lemma, we now consider blowing up from a differentiable
point of view.

TLet ¥ C X be a submanifold with (real, complex, or quaternionic)
normal bundle N, If we remove a tubular neighborhood N of ¥ in X and
replace it with the Hopf bundle 7 over P(N) (real, complex, or quater-
nionic projective bundle) by identification on the boundary S(N), we
obtain a new manifold X’ by “blowing up along ¥ C X,”” and a “blowing
down map” f: X' — X. f restricted to I C X' is just the projection
¢: N <y P(N)-> N restricted to

H={(xv)e N xy P(N)| ey} TN Xy PN)

If X is weakly almost complex and we blow up ¥ C X with complex
normal bundle, then X’ is weakly almost complex where H C X’ has



HARMONIC SPINORS 51

the almost complex structure induced from the inclusion H C N Xy P(V)
(this is the almost complex structure which comes from blowing up
analytically a complex submanifold Y C X where X is a complex
manifold).

If X is spin and we blow up ¥ C X with quaternionic normal bundle,
then X is spin.

Tueorem 4.9. (1) Let f: X' — X be a complex blowing down of
weakly almost complex mantfolds. Then

[l X) = [X] € Kp(X).

(2) Let f: X' > X be a quaternionic blowing down of spin mani-
folds. Then

F«[X'] = [X] € KR, (X).

CoroLLARY. (1)  The Todd genus of a weakly almost complex manifold
is invariant under complex blowing up.

(2) The KR-characteristic number of(X)e KR ™(pt.) of a spin
manifold is invariant under quaterniomic blowing up. In particular, the
A-genus of a spin 4k-manifold is invariant.

Proof of Theorem. (1) We use the homomorphism from unitary
bordism to homology K-thcory

B ©,9(X) — K,(X)
defined as follows. Let f: M? — X be a mapping of a weakly almost
complex manifold M7 to X. Then B([M?, f]) = f.[M?] € K (X), where
[MP] € K,(M?) is the orientation class of M.

The Hopf bundle H is diffeomorphic to a tubular neighborhood of
P(NYC P(N @ 1). Consider the map g: P(N (B 1) — D(N) defined by
22, ) = 22A/((z, 2 + M),

where (z, A)e N © 1. Let
At = {5, Ve PN D 1) ] {z, 20 > MR,

A= = {(z, ) e P(N &) 1) | <z, 25 < AAL
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Then we have the following commutative diagram:

A+ s HC N xy P(N)

|

N = N,

where A(z, A) = (g(z, A), 2).

h: A" — H and g: A= N are diffeomorphisms, hence g represents the
blowing down map if we identify 4+ and H by k. Note that / is antilinear
in the normal direction to P(N) C P(N @ 1) and so the complex structure
induced on A" by the diffeormnorphism % is obtained by taking the con-
jugate of the complex structure in the normal bundle of P(N)C P(N @ 1).
The tangent bundle along the fibres of P(N @ 1) has the standard
stable complex structure given by

TePl~HX(p*NDI),
where p: P(N @ 1)— Y is the projection. The complex structure
given by

Tr®l=HQp*N) G H ty
induces the required weakly almost comlpex structure on A4+,

Let Z be the following manifold with boundary, after straightening
the angles:

PING T
: o
T ? §
|
b -
X
24
| 1
' i
! o
X/ Y \D(N]

We have a map j: Z — X given by

J(x, 1} = glx) 0<t <1
= 2u/(t + (2 — 1)u, up) 1<t 2
=X 23

where u = 2A~1 ¢ D(N).
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We extend the weakly almost complex structure on the boundary to
the interior and then we obtain a relation in £2,V(X), namely,

[X’, f] — [X,id] = [P(N @ 1), 2],

where P(N D 1) denotes P(N (D 1) with the weakly almost complex
structure given by T @1 =~ p*Ty, (B (H @ p*N) @ H. Using the
homomorphism 8, we scc that

Fol X7 —TX] = g, [P(N ® 1)] & K (X).
But g: P(N ® 1) - D(N) ©— X retracts to p: P(N 1) " ¥ > X

s0 to prove the theorem we have to show p [P(N D 1)] = 0e K, (V).
Now

A(E @ H) = AE & (\'E @ 1D,
MEPHY=MEDWNTEDH™.
Hence,
,\odd(E ) [{fl) ~ f-1 ) ,\even(E & H),
Aeven(E (D H-1) ~v H-1 (@ MS4(E @ H),

and so the Todd class of the stable complex structure on T’ given by (i)
is the standard one multiplied by —[H'}.

Hence, the orientation class [P(N (D 1)] = —[H][P(N @ 1)] and
by Lemma 4.8 p, JP(N O 1)] = 0.

(2) The proof of part 2 is similar. We use the homomorphism:
B: O5PR(X) > KR,(X)
and part ] of Lemma 4.8.
Note that g: P(N D 1) — D(N) is well-defined for quaternionic

projective space. HP" is defined as the equivalence classes of H*1 — {0}
under r7ght multiplication by a quaternion w. Then,

(zw)(\w) = sWBA = (WA = (WT) 24,

and so g is well-defined.
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Proof of Corollary. The invariants are given by mapping to a

point 2: X — pt,

T(A™) == b, [X%] € Kpofpt.) == Z,
S(X) = hy[X] € KR,(pt) o KR-(pt.).

Now if f: X’ — X is the blowing down map, A#": X' — pt. is given by
k' = hf and hence

h[X] = b f X} = h,JX] by the theorem which proves the
corollary.

Note Added in Proof. Theorem 1.2 is incorrect as it stands as we only calculated the
principal isotropy subgroup. In fact, Berger’s classification shows that an irreducible
factor of the holonomy group must lie in SU(n), G5, or Spin(7} so modulo factors in
dimension 7 or 8 the theorem holds.
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