# The Geometry of Algebraic Groups

BIRGER IVERSEN

Matematisk Institut, Aarhus Universitet, Aarhus, Denmark

The purpose of this paper is to study the geometry of a smooth connected linear algebraic group G defined over an algebraically closed field of any characteristic.

The main tool is the characteristic map for G. Namely, let T be a maximal torus in G and B a Borel subgroup of G containing T. A character  $\chi$  of T gives rize to a homogeneous linebundle  $L(\chi)$  on G/B. This defines the characteristic map for G

$$X(T) \rightarrow \operatorname{Pic}(G/B).$$

The characteristic map fits into an exact sequence (Section 1)  $0 \rightarrow X(G) \rightarrow X(T) \rightarrow \text{Pic}(G/B) \rightarrow \text{Pic}(G) \rightarrow 0$ , which we use to study central isogenies (Section 2). By a central isogeny we understand an isogeny whose kernel is diagonalizable. We obtain two companion theorems.

There exists a central isogeny  $\tilde{G} \to G$  with Pic  $\tilde{G} = 0$ .

If  $f: G' \to G$  is a central isogeny, then there is an exact sequence

$$0 \to X(G) \to X(G') \to X(\operatorname{Ker} f) \to \operatorname{Pic} G \to \operatorname{Pic} G' \to 0.$$

These two theorems are used (Section 3) to construct the fundamental group  $\pi_1 G$  of G, in case X(G) = 0. The fundamental group  $\pi_1 G$  appears as a finite diagonalizable group, and we obtain

Pic 
$$G = X(\pi_1 G)$$
.

The same techniques allow us to study extensions of G by a diagonalizable group D, and we obtain

$$\operatorname{Ext}(G, D) = \operatorname{Hom}(\pi_1 G, D).$$

From here, we turn to the case where G is reductive, and give first (Section 4) a theory of coroots based on the same geometric ideas, especially the simple connectedness of  $Sl_2$ .

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

In the central part of the paper we return to characteristic map  $X(T) \rightarrow \text{Pic}(G/B)$  and construct (Section 5, after Chevalley) a basis  $(D_{\alpha})_{\alpha\in S}$  for the divisor classes on G/B, here, S denotes the simple roots of G. This basis has the following miraculous property.

The divisor class of  $\sum n_{\alpha}D_{\alpha}(n_{\alpha} \in \mathbb{Z})$  contains a positive divisor if and only if  $n_{\alpha} \ge 0$ for all  $\alpha \in S$ .

Next (Sections 5 and 6), we prove the formula, let  $\chi \in X(T)$ , then

$$c_1(L(\chi)) = \sum_{lpha \in S} ig',  $\chi ig> D_lpha$$$

where  $\alpha^{\vee}$  denotes the coroot associated with  $\alpha$ .

A particularly interesting case is when G is semisimple adjoint (Section 7). Then, the formula above tells that the characteristic map for G is given by the Cartan matrix  $\langle \alpha^{\vee}, \beta \rangle_{(\alpha,\beta) \in S \times S}$ . Recalling that the cokernel of the characteristic map is isomorphic to Pic G and  $X(\pi_1 G) =$  Pic G, this allows us to calculate  $\pi_1 G$  from the Cartan matrix.

In Sections 8 and 9, we apply these results to the character theory for linear representations. For a character  $\chi$  of B, let  $E(\chi)$  denote the linear representation induced from  $G_a(\chi)$ , the one-dimensional representation of B of weight  $\chi$ .  $E(\chi)$  is characterized by Frobenius reciprocity

$$\operatorname{Hom}_{G}(V, E(\chi)) = \operatorname{Hom}_{B}(V, G_{a}(\chi))$$

for all linear representations V of G.

In characteristic zero, the  $E(\chi)$ 's describe all the simple representations and we derive (Section 8) their character theory and Weyl's character formula (Section 9).

In characteristic p, the  $E(\chi)$ 's are no longer simple, but at least in the case where G is of type  $A_n$ , they satisfy Weyl's character formula

$$\operatorname{tr} E(\chi) = \int (e^{\chi + \rho}) / \int (e^{\rho}), \qquad (E(\chi) \neq 0).$$

The geometric ideas in this paper have a long history. In case of semisimple complex Lie groups, the characteristic map  $X(T) \rightarrow \text{Pic}(G/B)$  may be identified with the transgression

$$H^1(B, \mathbb{Z}) \rightarrow H^2(G/B, \mathbb{Z}),$$

(Borel's thesis, complexification of H, S where H is a compact Lie

group and S a maximal torus). The identification of the simple representations as sections in homogeneous linebundles is due to Borel and Weil [2], and developed further by Bott [3]. The algebraization of these ideas is due to Chevalley [5], Demazure [7, 8], and Kempf [16].

Since I wrote the first version of this paper, various improvements and clarifications have been achieved by means of [12], with which there is an overlap and [19] for a good Lefschetz formula, and through a suggestion by A. Borel for a more geometric proof of (5.3) based on (6.6), a result that can be found in an unpublished paper of Chevalley. It should also be said that many of the results in Sections 3 and 7 can be proved by means of *donnée radicielle* [10, exposé XXI], in connection with [9, Théorème Fundamentale, 3.6.] However, the main aim of this paper is to illustrate how far one can get with geometric means.

### 1. Homogeneous Linebundles

Throughout this section G denotes a smooth connected linear algebraic group.

Let X be a variety. By a *principal*  $G_m$ -bundle on X, we shall understand a  $G_m$ -bundle that is locally trivial in the Zarisky topology. Let  $E \to X$ be a principal  $G_m$ -bundle.  $G_m$  acts canonically on  $G_a$ . Let  $E \times {}^{G_m}G_a$ denote the space obtained by taking the quotient of  $E \times G_a$  under the  $G_m$ -action given by  $(e, x)z = (ez, z^{-1}x), e \in E, x \in G_a, z \in G_m$ . There is a canonical projection  $E \times {}^{G_m}G_a \to X$ , and we obtain in this way a linebundle on X. This construction is well known to give a 1-1correspondence between principal  $G_m$ -bundles and linebundles.

Now, let G act on X (from the left). By a (G-) homogeneous principal  $G_m$ -bundle we understand a pair  $(E \to X, \tau)$  where  $E \to X$  is a principal  $G_m$ -bundle and  $\tau$  is a (left) action of G on E that

- (1) commutes with the  $G_m$ -action;
- (2) makes  $E \rightarrow X G$ -equivariant.

In this case, we shall call  $E \times {}^{G_m}G_a$  together with the induced action of G, a homogeneous linebundle.

Given a principal  $G_m$ -bundle (or a line bundle)  $E \to X$ . An action  $\tau$  of G on E such that  $(E \to X, \tau)$  is a homogeneous  $G_m$ -bundle is called a (G-) homogenization if  $E \to X$ . In case there exists a homogenization of  $E \to X$ , we say that this bundle can be homogenized.

Let  $L \to X$  be a homogeneous linebundle. G acts on  $\Gamma(X, L)$  in virtue of the formula  $(g \in G, x \in X, s \in \Gamma(X, L))$ 

$$(gs)(x) = gs(g^{-1}x).$$
 (1.1)

EXAMPLE 1.2. Let V be a (left) linear representation of G.  $G_m$  acts on V in a canonical way. Let V\* denote the linear dual of V with the contragredient actions of G and  $G_m$  (*Caution*: Given  $z \in G_m$  and  $x' \in V$ , we have  ${}^{z}x' = z^{-1}x'$ ). The natural projection  $V^* - 0 \rightarrow \operatorname{Proj}(V)$  is a homogeneous principal  $G_m$ -bundle. The corresponding linebundle is the "universal" line-bundle  $L_{\operatorname{univ}}$  on Proj V: An element  $v \in V$  defines a section of  $L_{\operatorname{univ}}$ ,  $x' \mapsto (x', x'(v))$ . In fact, this identifies V and  $\Gamma(\operatorname{Proj}(V),$  $L_{\operatorname{univ}})$ . If we transport the action (2.1) to V we get the original action back.

EXAMPLE 1.3. Let V be a finite-dimensional vector space. Gl(V) acts on Proj(V) via the contragredient representation; this gives a morphism

$$Gl(V) \rightarrow PGl(V).$$

Given a morphism  $f: G \to PGl(V)$ . This defines a G action on Proj(V).  $L_{univ}$  can be (G-) homogenized if and only if f factors through  $Gl(V) \to PGl(V)$ , in fact it follows from the discussion in (1.2) that there is a one-to-one correspondence between homogenizations of  $L_{univ}$  and such factorizations of f.

In the remaining part of this section B denotes a Borel subgroup of G and  $p: G \rightarrow G/B$ , the canonical projection.

PROPOSITION 1.4. Let L be a linebundle on G/B such that  $V = H^0(G/B, L) \neq 0$ . Then, there is a (canonical) morphism s:  $G \rightarrow PGl(V)$  making the canonical map t:  $G/B \rightarrow Proj(V)$  G-equivariant and such that  $t^*L_{univ} \simeq L$  as homogeneous bundles,  $L_{univ}$  is homogenized as in (1.2).

**Proof.** Since G acts transitively on G/B, the linebundle L is generated by its global sections. This defines  $t: G/B \to \operatorname{Proj}(V)$  with  $t^*L_{\operatorname{univ}} \simeq L$ . The construction of s (on the level of geometric points) is easy to carry out by means of the mapping property of  $\operatorname{Proj}(V)$ , see [13, II., 4.2, or 15, No. 1], where also a proof is given for the fact that s is morphism of varieties. Q.E.D.

Let L denote a homogeneous bundle on G/B. p(e) is a fixed point for the action of B on G/B. Thus, B acts on the fiber of L at p(e). This gives

a one-dimensional representation of B; let  $\chi_L \in X(B)$  denote the corresponding character.

PROPOSITION 1.5.  $L \mapsto \chi_L$  gives a one-to-one correspondence between isomorphism classes of homogeneous linebundles on G/B and X(B).

*Proof.* Let us give the inverse construction and leave the details to the reader. Given  $\chi \in X(B)$ , let B act from the right on  $G \times G_a$  by the formula  $(g \in G, x \in G_a, b \in B)$ 

$$(g, x)b = (gb, \chi(b^{-1})x)$$

 $L(\chi)$  denotes the quotient of  $G \times G_a$  for this action. That this defines a linebundle follows from the fact that  $G \to G/B$  has a section locally for the Zarisky topology [20]. Q.E.D.

DEFINITION 1.6. The linebundle constructed in the proof of (1.5) will be denoted  $L(\chi)$ .

DEFINITION 1.7. Let  $T \subseteq B$  be a maximal torus. Let us recall that any character  $\chi \in X(T)$  extends uniquely to a character of B. The linear map

$$\chi \mapsto L(\chi), \qquad X(T) \to \operatorname{Pic}(G/B)$$

is called the characteristic map for G.

EXAMPLE 1.8.  $G = Sl_2$ ,  $T_2$  the subgroup of diagonal matrices in  $Sl_2$ ,  $B_2$  the upper triangular matrices. Consider the natural action of  $Sl_2$  on  $\mathbb{A}^2$ . Following the conventions of (1.2) we consider the contragredient action on  $\mathbb{P}^1$ .  $(0, 1) \in \mathbb{P}^1$  has B as stabilizer and this gives rise to an isomorphism  $Sl_2/B_2 \simeq \mathbb{P}^1$ . The canonical linebundle  $L_{univ}$  on  $\mathbb{P}^1$  comes equipped with a  $Sl_2$ -homogenization and  $B_2$  acts on the fiber of  $L_{univ}$  above (0, 1) with weight

$$\begin{pmatrix} z & x \\ 0 & z^{-1} \end{pmatrix} \mapsto z^{-1}.$$

Whence,  $X(T_2) \rightarrow \text{Pic}(Sl_2/B_2)$  is an isomorphism.

**PROPOSITION 1.9.** The following sequence is exact

$$0 \to X(G) \to X(T) \to \operatorname{Pic}(G/B) \to \operatorname{Pic} G \to 0.$$

*Proof.* See [12, Proposition 3.1].

## 2. Central Isogenies

DEFINITION 2.1. A morphism  $f: G' \rightarrow G$  of linear algebraic groups is called a central isogeny if

- (a) G' and G are smooth and connected,
- (b)  $f: G' \to G$  is surjective,
- (c) Ker(f) is finite and diagonalizable.

By rigidity of diagonalizable groups, Ker(f) is contained in the center of G'.

Let us first make three general remarks on central isogenies.

2.2 If  $G'' \to G'$  and  $G' \to G$  are central isogenies then the composite  $G'' \to G'$  is a central isogeny.

This follows from [11, IV, Sect. 1, No. 46].

2.3 If  $f: G' \to G$  is a central isogeny, H a smooth connected linear algebraic group and r,  $s: H \Rightarrow G'$  morphisms such that fr = fs, then r = s.

This follows from the observation that  $\chi \mapsto r(\chi) s(\chi)^{-1}$  maps H into Ker(f).

2.4 Let  $f: H \to G$  be a morphism of smooth connected linear algebraic groups. Then, a central isogeny  $G' \to G$  "may be pulled back along f."

The precise meaning is this: Let H' denote the reduced connected component of  $G' \times {}_{G}H$ .  $H' \to H$  is a central isogeny that we call the pull-back of  $G' \to G$  along f. We leave it to the reader to exhibit the universal property of this construction.

LEMMA 2.5. Let  $f: G \rightarrow H$  be a surjective morphism of smooth connected linear algebraic groups. Then, the inverse image by f of a maximal torus, respectively, a Borel subgroup is maximal torus, respectively, a Borel subgroup.

62

**Proof.** Let D denote the kernel of f. Let us first prove that any maximal torus T of G contains D:

The centralizer  $C = Z_G(T)$  is smooth [13] and connected [1, 11.12]. Let T act on D by inner conjugation. This action is trivial by rigidity of diagonalizable groups. Hence,  $D \subseteq C$ . C is a product of T and a unipotent group [1, 11.7]. Thus,  $D \subseteq T$ .

The image of T by f is a maximal torus [1, 11.14]; Conclusion by the fact that maximal tori are conjugated.

Same proof in the case of a Borel subgroup. Q.E.D.

PROPOSITION 2.6. Let  $f: G' \rightarrow G$  be a surjective morphism of smooth connected linear algebraic groups whose kernel is diagonalizable. Then, there is an exact sequence

$$0 \to X(G) \to X(G') \to X(\operatorname{Ker} f) \to \operatorname{Pic}(G) \to \operatorname{Pic}(G') \to 0.$$

**Proof.** Pick a maximal torus T of G and a Borel subgroup B of G containing T. Put  $T' = \overline{f}^1(T)$  and  $B' = \overline{f}^1(B)$ , see (2.5). The proposition now follows from the exact (1.9), commutative diagram



and the snake lemma.

THEOREM 2.7. Let G be a smooth connected linear algebraic group. Then, there exists a central isogeny  $\overline{G} \rightarrow G$  with Pic  $\overline{G} = 0$ 

607/20/1-5

Q.E.D.

**Proof.** Let B be a Borel subgroup of G. Pic(G|B) is finitely generated, since G|B is a rational variety as it follow from the Bruhat decomposition [1, 14.11]. Pic(G|B) can be generated by linebundles L, for which  $H^0(G|B, L) \neq 0$ . By virtue of (1.5) and (1.9), it suffices to prove: Let L be a linebundle on G|B with  $H^0(G|B, L) \neq 0$ . Then, there exists a central isogeny  $f: G' \rightarrow G$  (put  $B' = f^{-1}(B)$ ) such that the pull-back of L along  $G'|B' \simeq G|B$  can be G'-homogenized.

Put  $V = H^0(G/B, L)$ . With the notation of (1.4), we have canonical maps  $s: G \to PGl(V)$ , and  $t: G/B \to \operatorname{Proj}(V)$  such that  $t^*L_{\operatorname{univ}} = L$ . Now, let  $f: G' \to G$  denote the pull-back of the central isogeny  $Sl(V) \to PGl(V)$  along s. Consider  $L_{\operatorname{univ}}$  as a homogeneous Sl(V)-bundle in the canonical way. This gives the pull-back of  $L_{\operatorname{univ}}$  along the composite

$$G'/B' \to G/B \xrightarrow{\iota} \operatorname{Proj}(V)$$

a G'-homogenization.

COROLLARY 2.8. (cf. [6, 5-21]). Let G be a smooth connected linear algebraic group. Then, Pic G is a finite group.

*Proof.* Let  $f: \overline{G} \to G$  be a central isogeny with Pic  $\overline{G} = 0$ . Then, by (2.6), we have an exact sequence

Q.E.D.

COROLLARY 2.9. Let the smooth connected linear algebraic group G act on the normal projective variety X, and let L be a linebundle on X. Then, a tensor power of L admits a G-linearization.

*Proof.* Using that all components of Pic(X) are proper in this case and the see-saw principle [18, Corollary 6, p. 54], Mumford [19, Sect. 1.3] proves the following:

"The pull-back  $L_x$  of L along  $(x \in X) g \mapsto gx, G \to X$  is independent of  $x \in X$ . L admits a (G-) homogenization if and only if  $L_x \in Pic(G)$ is trivial."

#### 3. FUNDAMENTAL GROUP

DEFINITION 3.1. A smooth connected linear algebraic group G is called simply connected if G does not admit a nontrivial central isogeny,  $G' \rightarrow G$ .

We shall limit the discussion to character-free groups.

PROPOSITION 3.2. Let G be a smooth, connected linear algebraic group which is character-free. Then, G is simply connected if and only if Pic G = 0.

*Proof.* Suppose Pic G = 0. Let  $G' \rightarrow G$ . From (2.6), we get an exact sequence

$$0 \to X(G) \to X(G') \to X(\ker f) \to \operatorname{Pic}(G).$$

Pic(G) = X(G) = 0 by assumption. X(G') is torsion-free as it follows from (1.9), and  $X(\ker f)$  is finite. Whence,  $X(G') = X(\ker f) = 0$ , and therefore, ker f = 0.

The converse follows immediately from (2.7).

COROLLARY 3.3. Let G be a smooth connected linear algebraic group. Suppose G is character-free. Then, there exists a central isogeny  $\tilde{G} \rightarrow G$  with  $\tilde{G}$  simply connected.

*Proof.* Follows from (3.2) and (2.7).

DEFINITION 3.4. Let G be a smooth connected linear algebraic group that is character-free. The central isogeny  $\tilde{G} \rightarrow G$  of (3.3), unique by (2.3), is called the universal covering of G. Its kernel is denoted  $\pi_1 G$  and is called the fundamental group of G.

**PROPOSITION 3.5.** Let G be a smooth connected linear algebraic group which is character-free. Then,

Pic 
$$G = X(\pi_1 G)$$
.

*Proof.* Follows immediately from (3.2) and (2.6). Q.E.D.

In the remaining part of this Section, we shall apply the same kind of technique to reductive groups.

PROPOSITION 3.6. Let  $f: G' \to G$  be a morphism between smooth connected linear algebraic groups, and let f have a diagonalizable kernel. If G is semisimple and simply connected, then ker f is a torus and f admits a section.

*Proof.* By (2.6), we have an exact sequence

$$0 \to X(G) \to X(G') \to X(\ker f) \to \operatorname{Pic} G.$$

Pic G = X(G) = 0 since G is simply connected and semisimple. G' is reductive, and hence, T' = G'/[G', G'] is a torus by [1, 14.2]. Since the projection of ker f onto T' induces an isomorphism on the character groups, it follows that ker  $f \to T'$  is an isomorphism. From this, it follows that the inclusion ker  $f \to G'$  has a retraction r, say. The endomorphism  $g \mapsto r(g^{-1})g$  of G' is a morphism of groups and factor through  $G' \to G$  to give the required section. Q.E.D.

COROLLARY 3.7. Let G be a reductive linear algebraic group. Then, there exists a semisimple group G', a torus T and a central isogeny

$$G' \times T \rightarrow G.$$

**PROPOSITION 3.8.** Let G be a semisimple linear algebraic group, and D a diagonalizable group. Then, there is a canonical isomorphism

Hom
$$(\pi_1 G, D) \stackrel{\rightarrow}{\sim} \operatorname{Ext}(G, D)$$
.

**Proof.** Let us first construct the central extension of G by D associated with a morphism  $f: \pi_1 G \to D$ . Let  $\tilde{G} \times \pi_1^{G}D$  denote the cokernel of the morphism  $\pi_1 G \to \tilde{G} \times D$  given by  $x \mapsto (x, f(x^{-1}))$ .  $\tilde{G} \times \pi_1^{G}D \to G$ is a central extension of G by D. This construction defines a linear map

$$\operatorname{Hom}(\pi_1G, D) \to \operatorname{Ext}(G, D).$$

We are now going to construct the inverse to this map. Thus, given  $h: G' \to G$  a central extension of G by D. Let us first show that  $\tilde{G} \to G$  factors through h. Consider  $\tilde{G} \times {}_{G}G' \to \tilde{G}$ ,  $(\tilde{G} \times {}_{G}G')^{0}_{red} \to \tilde{G}$  has a section by (3.6), and consequently,  $\tilde{G} \to G$  factors through h. Such a factorization is unique: Suppose there were two factorizations of h  $g_1, g_2: \tilde{G} \to G'$ . Then

$$x \mapsto g_1(x) g_2(x^{-1})$$

defines a morphism of groups  $\tilde{G} \to G'$ , which is trivial on  $[\tilde{G}, \tilde{G}]$ . But,  $[\tilde{G}, \tilde{G}] = \tilde{G}$  since  $\tilde{G}$  is semisimple. The remaining details are left to the reader. Q.E.D.

66

COROLLARY 3.9. Let G be a semisimple linear algebraic group. Then, the canonical map

$$\operatorname{Ext}(G, G_m) \to \operatorname{Pic}(G)$$

is an isomorphism.

*Proof.* Combine (3.5) and (3.8).

### 4. Coroots

Our presentation is based on the properties of  $Sl_2$ . We shall introduce some notation for that group.

 $\alpha_2 : G_m \to Sl_2$  is given by

$$lpha_2$$
 (z) =  $\begin{pmatrix} z^{-1} & 0 \\ 0 & z \end{pmatrix}$ .

 $T_{2} = \text{the image of } \alpha_{2}^{\sim}.$   $U_{2} = \text{the group of matrices of the form } \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}, z \in G_{a}.$   $B_{2} = TU_{2}.$   $\alpha_{2} \in X(T_{2}) \text{ is } \begin{pmatrix} z^{-1} & 0 \\ 0 & z \end{pmatrix} \mapsto z^{2}.$   $s_{2} = \begin{pmatrix} 0 \\ -1 & 0 \end{pmatrix}.$ 

LEMMA 4.1.  $Sl_2$  is simply connected and all automorphisms of  $Sl_2$  are inner.

*Proof.* That  $Sl_2$  is simply connected follows from (1.8) and the easy part of (3.2).

Let u be an automorphism of  $Sl_2$ . Composing u with an inner automorphism, we may assume that u stabilizes  $T_2$ . If necessary, compose u with conjugation by  $s_2$  to obtain that u leaves  $T_2$  elementwise fixed. This ensures that  $u(U_2)$  is T-isomorphic to  $U_2$ . Hence, u stabilizes  $U_2$ , and therefore,  $B_2$ . Composing u with conjugation by an element of  $T_2$ , we can obtain that u leaves  $B_2$  elementwise fixed.  $x \mapsto u(x)x^{-1}$  factors through  $Sl_2/B_2$ , and consequently, is constant.

PROPOSITION 4.2. Let  $G_*$  be a reductive linear algebraic group of semisimple rank 1. Let  $T_*$  denote a maximal torus of  $G_*$ , and  $\alpha_*$  a root of  $G_*$  relative to  $T_*$ . Then, there exists a morphism  $\pi_* : Sl_2 \rightarrow G_*$  such that

- (1) the kernel of  $\pi_*$  is central,
- (2)  $\pi_*(T_2) \subseteq T_*$ ,
- (3)  $\alpha_*\pi_* = \alpha_2$ .

 $\pi_*$  is unique up to inner conjugation by an element of  $T_2$ , and  $\pi_*(s_2)$  normalizes  $T_*$ .

*Proof.* Let  $Z_*$  denote the center of  $G_*$  (in the scheme sense).  $[G_*, G_*] \rightarrow G_*/Z_*$  is a central isogeny by [1, p. 325]. The existence of a  $\pi_*: Sl_2 \to G_*$  with central kernel is a consequence of (4.1), once we prove that " $G_*/Z_*$  is isomorphic to  $PGL_2$ ." Proof: Borel [1, p. 309] constructs a surjective morphism  $G \rightarrow PGl_2$  whose kernel  $Z_*'$  is the intersection of all Borel subgroups of G. Let B and B' be the two Borel subgroups of G containing T. By [1, p. 310–311], we have  $LB \cap LB' =$ LT, and  $B \cap B' = T$ . Consequently,  $Z_*'$  is a diagonalizable normal subgroup of G. The rigidity of diagonalizable groups implies that  $Z_* \subseteq Z_*$ . The opposite inclusion follows from (7.3). Now, let  $\pi_*$ :  $Sl_2 \rightarrow G_*$  be a morphism with central kernel. We have  $\pi_*(T_2) \subseteq T_*$ for some maximal torus  $T_2'$  of  $Sl_2$ : Let us first note that dim  $Z^* <$ dim T by [1, p. 264]. On the other hand, dim  $Z_* = \dim G/[G, G]$ , and consequently,  $[G, G] \cap T$  contains a maximal torus, S of [G, G].  $\pi_*^{-1}(S)$  is a maximal torus in  $Sl_2$  by (2.5). Composing  $\pi_*$  by an inner conjugation, we may assume  $\pi_*(P_2) \subseteq T_*$ .  $\alpha_*\pi_*$  is a root of  $Sl_2$  relative to  $T_2$ : The restriction of  $\pi_*$  to  $U_2$  is a closed immersion, and hence,  $T_2$ operates nontrivially on LG and trivially on the kernel of  $Lie(\pi_*)$ . This proves the assertation. To make  $\pi_*$  satisfy condition (3), it suffices (if necessary) to compose  $\pi_*$  with conjugation with  $s_2$ . This proves the existence. The uniqueness follows from (4.1). The last remark follows from the fact that  $Z_*$  and  $\pi_2(T_2)$  generate  $T_*$ . O.E.D.

DEFINITION 4.3. Let G be a reductive linear algebraic group, T a maximal torus of G, and  $\alpha$  a root of G relative to T. Let  $T_{\alpha}$  denote the reduced connected component of  $\operatorname{Ker}(\alpha)$ ,  $G_{\alpha} = Z_G(T_{\alpha})$  is reductive of semisimple rank 1. Let  $\pi_* : Sl_2 \to G_{\alpha}$  denote a morphism as in (4.2) relative to the triple  $(G_{\alpha}, T, \alpha)$ . The composite of  $\pi_*$  and the inclusion of  $G_{\alpha}$  into G will be denoted  $\pi_{\alpha} : Sl_2 \to G$ .  $\pi_{\alpha}\alpha_2^{\sim} : G_m \to T$ , which does not depend on the choice of  $\pi_*$ , will be denoted  $\alpha^{\sim}$  and is called the *coroot* associated with  $\alpha$ . We put  $s_{\alpha} = \pi_{\alpha}(s_2)$ , viewed as an element of  $W = N_G(T)/T$ .

Notation 4.4. Let  $X_*(T)$  denote the multiplicative 1-parameter

subgroups of T, i.e.,  $\text{Hom}(G_m, T)$ . If  $\eta \in X_*(T)$  and  $\chi \in (T)$ , then we let  $\langle \eta, \chi \rangle$  denote the integer such that

$$\eta(\chi(z))=z^{\langle \eta\chi
angle},\qquad z\in G_m\,,$$

 $\langle , \rangle : X_*(T) \times X(T) \rightarrow \mathbb{Z}$  is a perfect pairing, [1, p. 205].

Let us make it clear that we always consider the *left* operation of W on X(T) and  $X_*(T)$ . Thus, we have the formula

$$\langle w(\eta), w(\chi) \rangle = \langle \eta, \chi \rangle, \quad w \in W, \eta \in X_*, \chi \in X.$$

**PROPOSITION 4.5.** Let  $\alpha$  be a root of G relative to T. Then

(1) 
$$\langle \alpha \check{}, \alpha \rangle = 2$$
,

(2) 
$$(-\alpha)^{\checkmark} = -\alpha^{\checkmark},$$

(3)  $(w(\alpha))^{\checkmark} = w(\alpha^{\checkmark}), w \in W.$ 

*Proof.* Consider the morphism  $\pi_{\alpha}: Sl_2 \to G$  introduced in (4.3).

(1)  $\alpha(\alpha^{\checkmark}(z)) = \alpha(\pi_{\alpha}(\alpha_{2}^{\checkmark}(z)) = \alpha_{2}(\alpha_{2}^{\checkmark}(z)) = z^{2}.$ 

(2) If we compose  $\pi_{\alpha}$  by inner conjugation by  $s_2$ , we obtain  $\pi_{\alpha}$ , thus,  $(-\alpha)^{\checkmark}(z) = \pi_{\alpha}(s_2\alpha_2^{\checkmark}(z)s_2) = \pi_{\alpha}(\alpha_2^{\checkmark}(z^{-1})) = \alpha^{\checkmark}(z^{-1})$ .

(3) With the notation of (4.3), note that  ${}^{w}G_{\alpha} = G_{w(\alpha)}$ . Thus, w will conjugate  $\pi_{\alpha}$  into  $\pi_{w(\alpha)}$ . Q.E.D.

**PROPOSITION 4.6.** Let  $\alpha$  be a root of G relative to T and  $\alpha$  the corresponding coroot. Then

$$s_{lpha}(\chi) = \chi - \langle lpha 
angle, \chi 
angle lpha,$$

for all  $\chi \in X(T)$ .

*Proof.* Let us first remark that this means

(\*) 
$$s_{\alpha}(t) = t\alpha^{\prime}(\alpha(t^{-1})),$$
 all  $t \in T$ .

We may assume that G is of semisimple rank 1. Let S be a maximal torus of [G, G] contained in T, and R the reduced connected component of Ker( $\alpha$ ). Recall from the proof of (4.2) that  $R \subseteq ZG$ , and that S and R generate T. The two expressions in (\*) obviously coincide for  $t \in R$ .

Consider the morphism  $\pi_{\alpha} : Sl_2 \to G$  introduced in (4.3);  $S = \text{Im}(\alpha^{*})$ . Substitute  $t = \alpha^{*}(z), z \in G_m$  in (\*) to get

$$s_{\alpha}(\alpha^{\checkmark}(z)) = \alpha^{\checkmark}(z^{-1}),$$
$$\alpha^{\checkmark}(z) \alpha^{\checkmark}(\alpha(\alpha^{\checkmark}(z^{-1}))) = \alpha^{\checkmark}(z) \alpha^{\checkmark}(z^{-2}) = \alpha^{\checkmark}(z^{-1}).$$
Q.E.D.

Remark 4.7. Put M = X(T),  $M^* = X_*(T)$ . We have given a perfect pairing

 $\langle , \rangle : M^* \times M \to \mathbb{Z},$ 

a finite subset (the roots of G relative to T)

```
R \subseteq M,
```

a map

$$\alpha \mapsto \alpha^{\sim} : R \to M^*,$$

with the following properties.

(Define  $s_{\alpha}: M \to M$  by  $s_{\alpha}(\chi) = \chi - \langle \alpha^{\check{}}, \chi \rangle \alpha$ )

(i)  $(-\alpha)^{\vee} = -\alpha^{\vee}, \quad \alpha \in R$ (ii)  $\langle \alpha^{\vee}, \alpha \rangle = 2, \quad \alpha \in R$ (iii)  $s_{\alpha}(R) = R$ (iv)  $\langle \alpha^{\vee}, s_{\beta}(\chi) \rangle = \langle s_{\beta}(\alpha^{\vee}), \chi \rangle, \quad \chi \in M; \alpha, \beta \in R$ 

as it follows from (4.5) and (4.6).

A structure like this

$$(M, M^*, \langle , \rangle, R, \alpha \mapsto \alpha^{\checkmark})$$

satisfying i,..., iv is studied in [10, Exposé XXI] under the name *donnée* radicielle (the axioms there are slightly different, but equivalent).

## 5. CHERN CLASS OF A HOMOGENEOUS LINEBUNDLE

Throughout the remaining part of this paper, we will fix the following standard notation.

G = a reductive, connected linear algebraic group.

T = a maximal torus in G.

W = W(T, G), the Weyl group of G relative to  $T(N_G(T)/T)$ .

70

 $s_{\alpha} = (\alpha \text{ a root of } G \text{ relative to } T)$ , the reflection with respect to  $\alpha$ .  $\alpha^{\sim} = \text{ the coroot associated with } \alpha$ .

B = a Borel subgroup in G containing T.

U = the unipotent radical of B.

 $w_0 \in W$  = the symmetry with respect to B, ( $^{w_0}B = B^-$ , the opposite Borel group).

S = the basis for the roots of G relative to T with respect to B (if  $\beta \in S$ , then  $-\beta$  is a weight of T in LB).

positive = those elements in X(T), the character group of T, that are of the form  $\sum_{\alpha \in S} n_{\alpha} \alpha$ ,  $n_{\alpha} \in \mathbb{N}$ .

 $p: G \rightarrow G/B =$  the canonical projection.

Let us recall the cellular decomposition of G/B, namely, that G/B is the disjoint union of the U-orbits of p(w) as w runs through W.

LEMMA 5.1. The U-orbit of p(w) in G/B has codimension 1 if and only if  $w = w_0 s_{\alpha}$  with  $\alpha \in S$ .

*Proof.* The stabilizer of p(w) under the action of U is

$$U \cap w B w^{-1} = U \cap w U w^{-1},$$

which is a *T*-stable subgroup of *U*. For a root  $\gamma$ , let  $U_{\gamma}$  denote the onedimensional *T*-stable subgroup of *U* on which *T* has weight  $\gamma$  [1, IV, 14.4]. The *T* stable subgroup above is directly spanned (in any order) of the  $U_{\gamma}$ 's it contains loc. cit. That is spanned by  $U_{\gamma}$ 's as  $\gamma$  runs through the set  $E(w) = \{\gamma \text{ root } | \gamma < 0 \text{ and } w^{-1}(\gamma) < 0\}$ , hence, it suffices to determines the w's for which this set has cardinality 1.

In order to analyze this, let us recall three facts about root system

- (1)  $\gamma > 0$  implies  $w_0(\gamma) < 0$ ,
- (2)  $w \in \mapsto$ ,  $w(\gamma) > 0$  for all  $\gamma > 0$  implies w = e,
- (3)  $\alpha \in S, \beta > 0 \text{ and } \beta \neq \alpha \text{ implies } s_{\alpha}(\beta) > 0.$

Returning to our initial problem, let  $\alpha \in S$ . Then,  $E(w_0s_{\alpha}) = \{w_0(\alpha)\}$ . Suppose, conversely, that Card E(w) = 1. Expanding an element of E(w) after the basis S, one sees immediately that E(w) if nonempty always contains an element of S. Put  $E(w) = \{w_0(\alpha)\}$ . It is easy to verify that  $w^{-1}w_0s_{\alpha}(\beta) > 0$  for all  $\beta > 0$ . Hence,  $w = w_0s_{\alpha}$ . Q.E.D.

PROPOSITION 5.2.  $(D_{\alpha})_{\alpha \in S}$  is a basis for the group of divisor classes on G/B, where  $D_{\alpha}$  is the closure of the U-orbit of  $p(w_0 s_{\alpha})$ .

The divisor class of  $\sum n_{\alpha}D_{\alpha}$ ,  $n_{\alpha} \in \mathbb{Z}$ , contains a positive divisor if and only if  $n_{\alpha} \ge 0$ , all  $\alpha \in S$ .

**Proof.**  $Up(w_0)$  is an open subset of G/B, [1, 14.11]. Let us first prove the  $D_{\alpha}$ 's are the only subvarieties of G/B of codimension 1 that do not meet  $Up(w_0)$ . Let F be such a subvariety. The complement of  $Up(w_0)$ in G/B is stable under U, and hence, F, which is an irreducible component of that complement, is stable under U. This makes F the union of closures of U-orbits. The number of U-orbits being finite, F being irreducible, we conclude that F is the closure of a U-orbit, hence,  $F = D_{\alpha}$  for some  $\alpha \in S$ .

Let *D* be a divisor on G/B, *D'* its restriction to  $Up(w_0)$ . Since  $Up(w_0) \cong \mathbb{A}^n$ , we can find a rational function f on G/B, whose restriction to  $Up(w_0)$  has divisor *D'*. *D*-div(*f*) is supported by the complement of  $Up(w_0)$ , hence, the divisor class group is generated by the classes of  $(D_{\alpha})_{\alpha \in S}$ . Suppose  $\sum n_{\alpha}D_{\alpha} \equiv 0$ . Let f be a rational function of G/B with divisor  $\sum n_{\alpha}D_{\alpha}$ . Then, the restriction of f to  $Up(w_0)$  has no poles and no zero's, hence, f is constant on  $Up(w_0)$ , and hence, f is constant.

Let us now prove that divisors of the form  $\sum n_{\alpha}D_{\alpha}$  are the only U-invariant divisors on G/B. Let D be an U-invariant divisor. By the preceding result we can write

$$D = D' + \operatorname{div}(f),$$

where D' is a linear combination of the  $D_{\alpha}$ 's and f a rational function. This gives  $\operatorname{div}^{u} f = \operatorname{div} f$  for  $u \in U$ . This makes f a semiinvariant for U, U being unipotent, f is invariant under the action of U. Consequently, f is constant on the open set  $Up(w_0)$ , and therefore, f is constant on G/B.

Let us also remark the action of U on the divisors of G/B preserves  $\equiv$  as it follows from the fact that G/B is rational [12, 2.5]. See [5, Exposé 15, Proposition 4], for a direct proof in this case.

Let us now return to the proof of the last part of (5.9). Hence, suppose the set V of positive divisors in the divisor class of  $\sum n_{\alpha}D_{\alpha}$  is nonempty. V is a projective variety, with U acting on it. Hence, by Borel's fixed point theorem, U has a fixed point in V. This means that the divisor class of  $\sum n_{\alpha}D_{\alpha}$  contains a U-invariant positive divisor, hence,  $n_{\alpha} \ge 0$ ,  $\alpha \in S$ . Q.E.D. THEOREM 5.3. Let  $\chi$  be a character of T. Then

$$c_1(L(\chi)) = \sum_{lpha \in \mathcal{S}} \langle lpha^{\checkmark}, \chi 
angle D_{lpha}$$
 .

The proof will be given in Section 6.

Let us next investigate the action (1.1) of B on  $H^0(G|B, L(\chi))$ . This is done by identifying this space with the space of regular functions on G satisfying the *functional equation* (5.5).

PROPOSITION 5.4. Let  $\chi \in X(T)$ , and suppose  $H^0(G/B, L(\chi)) \neq 0$ . Then

(i) The space of B-semiinvariants is one-dimensional. The weight in question is  $w_0(\chi)$ .

- (ii) The space of T-semiinvariants of weight  $w_0(\chi)$  is one-dimensional
- (iii) All weights of T are  $\geq w_0(\chi)$ .

*Proof.*  $\chi \in X(T)$  extends uniquely to a character of B, which we shall still denote  $\chi$ . Recall that  $L(\chi)$  is the quotient of  $G \times G_a$  under the right action of B given by

$$(g, x)b = (gb, \chi(b^{-1})x), \qquad g \in G, x \in G_a, b \in B.$$

From this, it follows that  $H^{0}(G/B, L(\chi))$  may be identified with the set of regular functions f of G, which satisfies the functional equation

$$f(xy) = f(x) \chi(y^{-1}), \quad x \in G, y \in B.$$
 (5.5)

When we transport the action (1.1) of G on  $H^0(G/B, L(\chi))$ , we get that the result <sup>g</sup>f of acting out with a  $g \in G$  satisfies

$${}^{g}f(x) = f(g^{-1}x), \qquad x \in G.$$

Let us recall [1, IV, 14.13], that  $U \times B \to G$ ,  $(u, b) \to uw_0 b$  is an open immersion. Therefore, it is clear that a solution f to (5.5) is known when we know the regular function  $f_U$  on U given by  $f_U(x) = f(xw_0)$ .

Remark the formulas

$$({}^{u}f)_{U}(x) = f_{U}(u^{-1}x), \quad u \in U, \ x \in G$$
 (5.6)

$$({}^{t}f)_{U}(x) = f_{U}(t^{-1} xt) w_{0}(\chi)(t), \qquad t \in T, \, x \in G.$$
(5.7)

The first one is clear, the second follows from

$$({}^{t}f)_{U}(x) = ({}^{t}f)(xw_{0}) = f(t^{-1} xw_{0}) = f(t^{-1} xtw_{0}(w_{0}t^{-1}w_{0})).$$

Now, using the function equation, we get

$$({}^{t}f)_{U}(x) = f(t^{-1} x t w_{0}) w_{0}(\chi)(t) = f_{U}(t^{-1} x t) w_{0}(\chi)(t).$$

Let us now prove (i). By Borel's fixedpoint theorem,  $H^0(G/B, L(\chi))$  contains a nontrivial U-invariant. The corresponding solution to the functional equation f must satisfy  $f_U = \text{constant}$ , as it follows from (5.6). This proves the first half of (i). The second half follows from (5.7).

Let us now investigate the action of T on  $\Gamma(U, O_U)$  given by

$${}^th(x) = h(t^{-1} xt), \qquad h \in \Gamma(U, O_U), x \in U, t \in T.$$

U is directly spanned by the  $U_{\alpha}$ 's as  $\alpha$  runs through all negative roots, [1, p. 328]. Thus, U is T-isomorphic (as a variety) to the product at the  $U_{\alpha}$ 's.  $U_{\alpha}$  is T-isomorphic ( ${}^{t}u = tut^{-1}$ ,  $u \in U_{\alpha}$ ,  $t \in T$ ) to  $G_{a}$  when we let T act on  $G_{a}$  through  $\alpha$ . In conclusion,  $\Gamma(U, O_{U})$  T-isomorphic to a polynomial ring in variables  $T_{\alpha}$  being a semiinvariant of weight  $\alpha$ . Consequently, all T-semiinvariants in  $\Gamma(U, O_{U})$  are positive, and the space of T-invariant is one-dimensional.

Parts (ii) and (iii) now follow from this and (5.7). Q.E.D.

6. PARABOLIC SUBGROUP ASSOCIATED WITH A SIMPLE ROOT

Let us recall that UwB as w runs through W from a partition of G, the Bruhat decomposition.

**PROPOSITION 6.1** (cf. Remark 6.7). Let  $\alpha$  be a simple root of G with respect to B. Then,  $Us_{\alpha}B \cup B$  is a closed connected subgroup of G.

The proof depends on the following.

LEMMA 6.2. Let  $\alpha$  be a root of G. Then

(i)  $U_{\alpha} \subseteq Us_{\alpha}B \cup B$ ,

(ii) if  $\alpha$  is a simple root, then

$$Us_{\alpha}B = U_{-\alpha}s_{\alpha}B.$$

74

*Proof.* (i) Let  $G_{\alpha}$  denote the centralizer of the reduced connected component of Ker( $\alpha$ ) (4.3).  $U_{\alpha} \subseteq G_{\alpha}$ , and we may consider  $s_{\alpha}$  as an element of  $G_{\alpha}$ .  $B_{\alpha} = B \cap G_{\alpha}$  is a Borel subgroup of  $G_{\alpha}$ . Bruhat decomposition in  $G_{\alpha}$  gives

$$U_{\alpha} \subseteq B_{\alpha} \cup B_{\alpha} s_{\alpha} B_{\alpha} .$$

(ii) Write  $U = U_{-\alpha}U^{\alpha}$ , where  $U^{\alpha}$  is the product (in some order) of the  $U_{-\beta}$ 's,  $\beta > 0$ ,  $\beta \neq \alpha$ )

$$Us_{\alpha}B = U_{-\alpha}U^{\alpha}s_{\alpha}B = U_{-\alpha}s_{\alpha}s_{\alpha}U^{\alpha}s_{\alpha}B.$$

Now,  $s_{\alpha}U^{\alpha}s_{\alpha}$  is a product of groups of the form  $U_{s_{\alpha}(-\beta)}$ ,  $\beta > 0$ ,  $\beta \neq \alpha$ . Since  $\alpha$  is simple we have  $s_{\alpha}(-\beta) < 0$ . Q.E.D.

**Proof of 6.1.** By (6.2 (ii)) the U-orbit  $p(s_{\alpha}) \in G/B$  is one-dimensional. The closure of  $Up(s_{\alpha})$  in G/B is  $\{p(\epsilon)\} \cup Up(s_{\alpha})$ . The inverse image of this set by  $p: G \to G/B$  is  $Us_{\alpha}B \cup B$ , consequently, this set is closed and connected.

Put  $P_{\alpha} = Us_{\alpha}B \cup B$ .  $P_{\alpha}$  is obviously stable under  $g \mapsto g^{-1}$  and contains e. To show that  $P_{\alpha}$  is stable under products, it suffices to see that the product of two elements from  $Us_{\alpha}B$  is contained in  $P_{\alpha}$ . By (6.2 (ii)) we get  $Us_{\alpha}BUs_{\alpha}B = Us_{\alpha}Us_{\alpha}B = Us_{\alpha}U_{-\alpha}s_{\alpha}B = UU_{\alpha}B$ ; conclusion by (6.2, (i)). Q.E.D.

DEFINITION 6.3. Let  $\alpha$  be a simple root of G relative to B. Then,  $P_{\alpha}$  denotes the closed connected subgroup of G defined in (6.1).

Remark 6.4.  $P_{\alpha}/B \rightarrow P/B$  identifies the closure  $C_{\alpha}$  of the U-orbit of  $p(s_{\alpha})$  and  $P_{\alpha}/B$ . Reasoning as in (5.1) it is easy to see that  $(C_{\alpha})_{\alpha \in S}$  gives all the closures of the U-orbits of dimension 1.

The proof of Theorem (5.4) consists in a conjugation of the following two lemmas.

LEMMA 6.5. Let  $\alpha$  be a simple root of G relative to B.  $C_{\alpha}$  the closure in G/B of the U-orbit of  $p(s_{\alpha})$ . Then,  $C_{\alpha} \cong \mathbb{P}^{1}$ . Moreover, if  $\chi \in X(T)$ , the restriction of  $L(\chi)$  to  $C_{\alpha}$  has degree  $\langle \alpha^{\vee}, \chi \rangle$ .

*Proof.* Consider a morphism as in (4.3)

$$\pi_{\alpha}: Sl_2 \to G$$

(unique up to inner conjugation by an element of  $T_2$ ).  $\pi_{\alpha}$  induces a closed immersion

$$Sl_2/B_2 \rightarrow G/B$$

whose image is  $C_{\alpha}$ , as it follows from the preceding results.

We have the canonical immersion  $\alpha_2^{\sim}: G_m \to Sl_2$ . Let  $e_2$  denote the projection of the origin of  $Sl_2$  onto  $Sl_2/B_2$ .  $G_m$  has weight  $\langle \alpha^{\sim}, \chi \rangle$  in the fiber above  $e_2$  of the pull-back of  $L(\chi)$  to  $Sl_2/B_2$ .

On the other hand, the weight of  $G_m$  in the fiber above  $e_2$  of the canonical linebundle is 1 according to (1.8). Q.E.D.

LEMMA 6.6. For the intersection numbers we have

$$(C_{\alpha}D_{\beta}) = 1 \quad \alpha = \beta$$
  
=  $0 \quad \alpha \neq \beta.$ 

**Proof.** Consider the fibration  $G/B \to G/P_{\alpha}$ . The fiber of this fibration through  $p(s_{\alpha})$  is  $C_{\alpha}$ . Hence,  $(C_{\alpha}D_{\beta})$  can be computed as the intersection number for  $D_{\beta}$  and any fiber of  $G/B \to G/P_{\alpha}$ . The result now follows once we establish: If  $\beta = \alpha$ , the restriction of  $G/B \to G/P_{\alpha}$  to the U-orbit of  $p(w_0s_{\beta})$  is an open immersion. If  $\beta \neq \alpha$ , the image by  $G/B \to G/P_{\alpha}$  of the U-orbit of  $p(w_0s_{\beta})$  has codimension 1.

The image of the U-orbit of  $p(w_0s_\beta)$  by  $G/B \to G/P_\alpha$  is the U-orbit of the image of  $w_0s_\beta$  in  $G/P_\alpha$ . The U-stabilizer of the last point is  $U \cap w_0s_\beta P_\alpha s_\beta w_0$ . By [1, IV, 14.1] this group is directly spanned by the  $U_{\gamma}$ 's it contains. The  $\gamma$ 's in question are those for which either (i) or (ii) below

- (i)  $\gamma < 0$ , and  $s_{\beta}(w_0(\gamma)) < 0$ ,
- (ii)  $\gamma < 0$ , and  $s_{\beta}(w_0(\gamma)) = \alpha$ .

Since  $\beta$  is simple, the complete solution to (i) is  $\gamma = w_0(\beta)$ . As to (ii), let us distinguish between two cases.

 $\beta \neq \alpha$ . The complete solution to (ii) is  $\gamma = w_0(s_\beta(\alpha))$ . Hence, the stabilizer in this case is two-dimensional. This proves the second case of the statement above.

 $\beta = \alpha$ . (ii) means  $\gamma < 0$ , and  $\gamma = w_0(-\alpha)$ , which is impossible. Hence, the stabilizer in this case is  $U_{w_0(\beta)}$ . A simple consideration of the Lie-algebras now concludes the first case of the statement. Q.E.D. Proof of Theorem 5.4. Write  $c_1(L(\chi)) = \sum n_{\beta}D_{\beta}$ . Restricting this to  $c_{\alpha}$  and counting degree, we get

left-hand side 
$$\langle \alpha^{\vee}, \chi \rangle$$
, by (6.5),  
right-hand side  $n_{\alpha}$  by (6.6).  
O.E.D.

Remark 6.7. The considerations made in Lemma 6.2 have the following important generalization.

(i') If B and B' are Borel subgroups containing T, and  $\alpha$  is a root, then

$$U_{-\alpha}s_{\alpha}\subseteq B'B\cup B's_{\alpha}B,$$

which follows by applying (4.3)  $\pi_{\alpha}$ :  $Sl_2 \rightarrow G$  to the identity

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} x & 0 \\ 1 & x^{-1} \end{pmatrix} \begin{pmatrix} 1 & -x^{-1} \\ 0 & 1 \end{pmatrix}.$$

From (i') and (6.2 (ii)), one gets if  $\alpha$  is a simple root with respect to B,

$$Bs_{\alpha}B\subseteq B'B\cup B's_{\alpha}B,$$

or with  $B' = w^{-1}Bw$ 

$$wBs_{\alpha} \subseteq BwB \cup Bws_{\alpha}B, \quad w \in W,$$

which is the crucial axiom for a Tits system [4, IV, Sect. 2.1]. The theory of Tits systems gives a complete description of the parabolic subgroups containing B, [4, IV, Sect. 2.5].

## 7. CARTAN MATRIX

Let G be a reductive linear algebraic group. The matrix

$$\langle lpha 
ight
angle, eta 
angle_{(lpha,eta) \in S imes S}$$

is called the Cartan matrix of G and is denoted Cartan (G). It depends up to a simultaneous permutation of the rows and columns only on G.

By the cokernel of an  $m \times m$  matrix with Z-coefficients, we understand the cokernel of

$$\mathbb{Z}^m \to \mathbb{Z}^m, \qquad V \mapsto CV.$$

For the simple linear algebraic group, the cokernel of the Cartan matrix takes the following value depending on the type of the root system.

| $A_n$              | $B_n$ | $C_n$            | $D_{2m}$                             | $D_{2m+1}$ |
|--------------------|-------|------------------|--------------------------------------|------------|
| $\mathbb{Z}/(n+1)$ | ℤ/(2) | $\mathbb{Z}/(2)$ | $\mathbb{Z}/(2) 	imes \mathbb{Z}(2)$ | ℤ/(4)      |
| $E_6$              | $E_7$ | $E_8$            | $F_4$                                | $G_2$      |
| ℤ/(3)              | ℤ/(2) | 0                | 0                                    | 0          |

*Proof.* Work through the list of Cartan matrices given at the end of [4]. See also [24].

THEOREM 7.1. Let G be a semisimple simply connected linear algebraic group. Then, the center ZG of G is diagonalizable and

$$X(ZG) = \operatorname{coker} (\operatorname{Cartan}(G)).$$

*Proof.* Let  $X_r(T)$  denote the subgroup of X(T) generated by the roots of G. The characteristic map of G

$$X(T) \rightarrow \operatorname{Pic}(G/B)$$

is an isomorphism by (3.2) and (1.9). The restriction of the characteristic map to  $X_r(T)$  is given by the Cartan matrix of G according to (5.3), hence, it suffices to prove.

LEMMA 7.2. Let G be reductive and let  $X_r(T)$  denote the subgroup of X(T) generated by the roots of G. Then, the sequence

$$0 \to X_r(T) \to X(T) \to X(ZG) \to 0$$

is exact.

**Proof.** T is its own centralizer, hence,  $ZG \subseteq T$ . Let us first prove ZG is the intersection of ker( $\alpha: T \to G_m$ ) as  $\alpha$  runs through the roots of G. Now,  $U^-B$  is dense in G, when the center of G is the same as the centralizer of  $U^-B$ , and therefore, equals the intersection of the central-

78

izer of the  $U_{\alpha}$ 's as  $\alpha$  runs through all roots.  $U_{\alpha}$  is *T*-isomorphic to  $G_a$  when we let *T* act on  $G_a$  through  $\alpha$ . This proves the assertation.

This means we have an exact sequence

$$0 \to ZG \to T \xrightarrow{(\alpha)} \prod_{\alpha \in S} G_m \to 0.$$

Passing from this exact sequence to characters proves the lemma. Q.E.D.

Remark 7.3. Let G be a reductive group. Then, we can characterize ZG as the largest diagonalizable normal subgroup of G, or alternatively, as the intersection of all maximal tori of G.

*Proof.* This follows immediately from the conjugacy theorem for tori, rigidity of diagonalizable group, and the fact that a maximal torus in a reductive group is self-centralizing. Q.E.D.

**PROPOSITION** 7.4. Let G be a semisimple linear algebraic group. Then, there is an exact sequence

$$0 \to X(ZG) \to \text{Coker Cartan} (G) \to X(\pi_1 G) \to 0.$$

*Proof.* Let  $\tilde{G} \to G$  denote the universal covering space of G. By (7.3)

$$0 \to \pi_1 G \to Z\tilde{G} \to ZG \to 0$$

is exact, and  $\tilde{G}$  and G have the same Cartan matrix. Conclusion by (7.1). Q.E.D.

### 8. INDUCED REPRESENTATIONS

All linear representations considered are of finite rank.

PROPOSITION 8.1. Let F denote a linear representation of B. Then, there exists a linear representation E of G satisfying Frobenius reciprocity

$$\operatorname{Hom}_{G}(V, E) = \operatorname{Hom}_{B}(V, F)$$

for all linear representations V of G.

*Proof.* Let B act on  $G \times F$  via the formula

$$(g,f)b = (gb, b^{-1}f), g \in G, f \in F, b \in B.$$

607/20/1-6

 $G \times {}^{B}F$  comes equipped with a projection onto G/B, and a left action of G making  $G \times {}^{B}F$  into a G-homogeneous bundle on G/B. Let  $\mathscr{F}$ denote the sheaf of sections of  $G \times {}^{B}F$  over G/B.  $E = \Gamma(G/B, \mathscr{F})$  is a finite-dimensional vector space since G/B is a projective variety. Moreover, E is in the canonical way a linear representation of G. We are going to prove that for a G-representation V

$$\operatorname{Hom}_{G}(V, E) := \operatorname{Hom}_{B}(V, F).$$

Let  $V_c$  denote the constant G-homogeneous bundle with fiber V. We have

$$\operatorname{Hom}_{G}(V, E) = \operatorname{Hom}_{G}(V, \Gamma(G/B, \mathscr{F})) = \operatorname{Hom}_{G}(V_{c}, G \times {}^{B}F).$$

For a G-homogenized bundle K on G/B, let K(e) denote the fiber of K at the marked point of G/B. K(e) will be viewed as a linear representation of B. Recall that  $K \mapsto K(e)$ , induces an equivalence between the category of G-homogenized vector bundles on G/B and linear representations of B. Thus,

$$\operatorname{Hom}_{G}(V_{c}, G \times {}^{B}F) = \operatorname{Hom}_{B}(V, F).$$
Q.E.D.

DEFINITION 8.2. Let  $\chi$  be a character of B,  $G_a(\chi)$  the one-dimensional *B*-representation of weight  $\chi$ . Then,  $E(\chi)$  denotes the *G*-representation induced by  $G_a(\chi)$ , i.e., we have for all *G*-representations *V* 

$$\operatorname{Hom}_{G}(V, E(\chi)) = \operatorname{Hom}_{B}(V, G_{a}(\chi)).$$

THEOREM 8.3. Let  $\chi$  be a character of B. Then,  $E(\chi) \neq 0$  if and only if  $\langle \alpha^{\check{}}, \chi \rangle \geq 0$  for all positive roots  $\alpha$ . If  $E(\chi) \neq 0$ , then:

(i)  $E(\chi)$  contains precisely one B-stable line, the weight in question is  $w_0(\chi)$ .

(ii) The space of T semiinvariants in  $E(\chi)$  of weight  $w_0(\chi)$  is onedimensional.

(iii)  $\chi' \ge w_0(\chi)$  for all weights  $\chi'$  of T in  $E(\chi)$ .

*Proof.* By the proof of (8.1) we have

$$E(\chi) = H^0(G/B, L(\chi)).$$

The first part of the theorem now follows from (5.2) and (5.3). The second part from (5.4). Q.E.D.

We are now going to study the representations  $E(\chi)$  by means of Borel's fixedpoint theorem. Let us first remark that if we are in characteristic zero, then, it follows from Weyl's complete reducibility theorem and (8.3(i)) that  $E(\chi)$  is a simple G-representation.

**PROPOSITION 8.4.** Let  $\chi$ ,  $\chi'$  be characters of B. Then,

(i) If  $E(\chi) \neq 0$ , then  $E(\chi)$  contains precisely one simple subrepresentation (which we denote  $S(\chi)$ ).

(ii) If  $S(\chi)$  is isomorphic to  $S(\chi')$ , then  $\chi = \chi'$ .

(iii) Any simple G-representation is isomorphic to a representation of the form  $S(\chi)$ .

*Proof.* (i) Follows from Borel's fixedpoint theorem and (8.3(i)). By Borel's fixedpoint theorem,  $S(\chi)$  contains a *B*-stable line. The weight of *B* in such a line is  $w_0(\chi)$  by (8.3(i)). Thus,  $S(\chi) \simeq S(\chi')$  implies  $\chi = \chi'$ .

Now, let S be a simple G-representation, then, by Borel's fixed point theorem, S<sup>~</sup> contains a B-stable line. Let B have weight  $\chi$  in this line. This defines a nontrivial B-linear map  $G_a(\chi) \to S^{~}$ , and hence, a nontrivial B-linear map  $S \to G_a(-\chi)$ , and therefore, by Frobenius reciprocity, a nontrivial G-linear map  $S \to E(-\chi)$ , hence,  $S \rightleftharpoons S(-\chi)$ . Q.E.D.

COROLLARY 8.5. (cf. [20, Section 12]). Let S be a simple G-representation. Then, the set of weights of T in S' contains a largest element (the highest weight of T in S).

Two simple G-representations are isomorphic if and only if the highest weight of T in the two representations are the same.

There exists a simple G-representation with highest weight  $\chi$  ( $\chi \in X(T)$ ) if and only if

$$\langle \alpha \tilde{}, \chi \rangle \geqslant 0$$
 for all positive roots  $\alpha$ .

If S is a simple representation of G with highest weight  $\chi$ , then the space of T-semiinvariants in S of weight  $\chi$  is one-dimensional.

*Proof.* By the proof of (8.4), we have  $S(\chi) \simeq S(-w_0(\chi))^{\checkmark}$ . Q.E.D.

COROLLARY 8.6. Let R(G), respectively, R(T) denote the representation ring of G, respectively T, then, the restriction map  $T \rightarrow G$  induces an isomorphism

$$R(G) \cong R(T)^{W}.$$

Proof. Follows from (8.5) and a general lemma on root systems [22, Lemma 6]. Q.E.D.

## 9. WEYL'S CHARACTER FORMULA

For notational convenience, see (9.2) below, we shall in this paragraph assume that our reductive group G has vanishing Picard group. In case G is semisimple, this means that G is simply connected.

Let X denote the character group of T and put  $R = \mathbb{Z}[X]$  and let  $\chi \mapsto e^{\chi}$  denote the canonical embedding  $X \to R$ . A linear representation E of T can be decomposed  $E = \bigoplus_{x \in X} E_x$ , where T has weight  $\chi$  in  $E_x$ . Define tr  $E \in R$  by

$$\operatorname{tr} E = \sum_{x \in X} (\operatorname{rank} E_x) e^x.$$

We are now going to "polarize" R in two ways.  $W = W_G(T)$  acts on X from the left. For  $w \in W$  we let  $\epsilon(w)$  denote the determinant for the action of w on X, and define the antisymmetry operator

$$J: R \to R, \ J(e^{x}) = \sum_{w \in W} \epsilon(w) e^{w(x)}.$$
(9.1)

The half sum of the positive roots

$$\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha \tag{9.2}$$

belongs to X since Pic G = 0, as it follows from (1.9), (5.3) and [4, Chap. VI, No. 3.3].

Let us recall the formula,

$$\prod_{\alpha<0} (1-e^{\alpha}) = e^{-\rho} J(e^{\rho}).$$
(9.3)

THEOREM 9.4. Let  $\chi$  be a character of T. Then,

$$\sum_i (-1)^i \operatorname{tr} H^i(G/B, L(\chi)) = J(e^{\chi+
ho})/J(e^{
ho}).$$

**Proof.** Let us first quote the general Lefschetz formula for action of a torus T on a smooth projective variety V. Suppose T acts with isolated fixed points on 0 and let E be a homogenized vector bundle on V. Then, in the fraction field of R, one has

$$\sum_{i} (-1)^{i} \operatorname{tr} H^{i}(V, E) = \sum_{x} \frac{\operatorname{tr} E_{x}}{\sum_{i} (-1)^{i} \operatorname{tr} \wedge {}^{i}T_{x}(V)}.$$

The last sum being over all fixed point  $\chi$  of T on V, [19].

In the present case, we let e denote the image of the origin of G by  $G \rightarrow G/B$ . We have an exact sequence

$$0 \rightarrow LB \rightarrow LG \rightarrow T_e(G/B) \rightarrow 0,$$

which shows that

tr 
$$T_e(G/B)$$
  $\stackrel{\sim}{}=\sum_{lpha<0}e^{lpha},$ 

and hence, using (9.3),

$$\sum_{i} (-1)^{i} \operatorname{tr} \Lambda^{i} T_{e}(G/B)^{\checkmark} = \prod_{\alpha < 0} (1 - e^{\alpha}) = e^{-\rho} J(e^{\rho}).$$

The *T*-fixed point *e*, thus contributes with  $e^{x+p}/J(e^p)$  to the above sum. Recalling that the fixed point of *T* in G/B is parametrized by *W*, we get that the fixed point corresponding to  $w \in W$  contributes with

$$w(e^{x+\rho})/w(J(e^{\rho})) = \epsilon(w) w(e^{x+\rho})/J(e^{\rho}).$$
Q.E.D.

COROLLARY 9.5 (Weyl). Suppose the ground field has characteristic zero. Let S be a simple linear representation of G, and  $\chi$  the highest weight of T in S. Then

$$\operatorname{tr} S = \frac{J(e^{x+\rho})}{J(e^{\rho})}.$$

**Proof.** It follows from Section 8 that S is isomorphic to  $H^{0}(G/B, L(\chi))$  and from [7] that  $H^{i}(G/B, L(\chi)) = 0$  for  $i \ge 1$ . Conclusion by 9.4. Q.E.D.

COROLLARY 9.6. Let the ground field have any characteristic, and suppose  $G \cong Sl_n$ . Then, for a character  $\chi$  of T for which the induced representation  $E(\chi) \neq 0$ ,

tr 
$$E(\chi) = J(e^{\chi+\rho})/J(e^{\rho}).$$

*Proof.* We have  $E(\chi) = H^0(G/B, L(\chi))$  by the proof of (8.1). On the other hand, we have

$$H^i(G/B, L(\chi)) = 0, \quad \text{for} \quad i \ge 1,$$

by a result of Kempf [16].

Note added in proof. For an extensive study of the geometry of G/B, see: M. Demazure, Désingularization des varietés de Schubert Généralisées, Ann. Scien. École Norm. Sup. 7 (1974), 53-88.

The vanishing theorem aluded to in 9.6 has now been proved incomplete generality by G. Kempf. For partial results, see: L. Bai, C. Musili, and C. S. Seshadri, Cohomology of linebundles on G/B, Ann. Scien. École Norm. Sup. 7 (1974), 89–138.

#### References

- 1. A. BOREL, "Linear Algebraic Groups," Benjamin, New York, 1969.
- A. BOREL AND A. WEIL, Représentation linéaires et espace homogènes Kählerians de groupes de Lie compacts, (Exposé par J.-P. Serre), Séminaire Bourbaki, May 1954.
- 3. R. BOTT, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
- 4. N. BOURBAKI, "Groupes et algèbre de Lie," Chap. 4-6, Hermann, Paris, 1968.
- 5. C. CHEVALLEY, "Classification des groupes de Lie algébriques," Vol. 2, Secrétariat mathématique, Paris 5e, 1958.
- 6. C. CHEVALLEY, "Anneaux de Chow et applications," Secrétariat mathématique, Paris 5e, 1958.
- M. DEMAZURE, Une démonstration algébrique d'un théorème de Bott, Invent. Math. 5 (1968), 349-356.
- M. DEMAZURE, Sur la formule des caractères de H. Weyl, Invent. Math. 9 (1970), 249-252.
- 9. M. DEMAZURE, Schemas en groupes reductifs, Bull. Soc. Math. France 93 (1965), 369-413.
- 10. M. DEMAZURE AND A. GROTHENDIECK, Schemas en groupes III, in "Lecture Notes in Math. 153," Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- 11. M. DEMAZURE AND P. GABRIEL, "Groupes algébrique," North-Holland, Paris/ Amsterdam, 1970.
- 12. R. FOSSUM AND B. IVERSEN, On Picard groups of algebraic fibre spaces, J. Pure Appl. Algebra 3 (1973).

Q.E.D.

- A. GROTHENDIECK, Éléments de géométrie algébrique, Publ. Math. I.H.É.S. No. 8 (1961).
- B. IVERSEN, A fixed-point formula for action of tori on algebraic varieties, *Invent. Math.* 16 (1972), 229-236.
- T. KAMBAYASHI, Projective representations of algebraic linear groups of transformations, Amer. Math. J. 88 (1966), 199-205.
- 16. G. KEMPF, "Schubert Methods with an Application to Algebraic Curves," Stichting Mathematisch Centrum, Amsterdam, 1971.
- 17. D. MUMFORD, "Geometric Invariant Theory," Springer, New York, 1965.
- D. MUMFORD, "Abelian Varieties," Tata Institute, Bombay, Oxford Univ. Press, London, 1970.
- 19. H. A. NIELSEN, Diagonalizably linearized coherent sheaves, Bull. Soc. Math. France 102 (1974), 85-97.
- M. ROSENLICHT, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443.
- M. ROSENLICHT, Toroidal Algebraic Groups, Proc. Amer. Math. Soc. 12 (1961), 984-988.
- J.-P. SERRE, Groupe de Grothendieck des Schémas en groupes réductifs déployés, Publ. Math. I.H.É.S. No. 34, (1968), 37-52.
- 23. R. STEINBERG, Lectures on Chevalley groups, (Notes by J. Faulkner and R. Wilson), Yale Univ. 1967.
- 24. J. TITS, Tabellen zu den einfachen Lie-Gruppen und ihren Darstellungen, Springer Lecture Notes 40, 1967.