
ADVANCES IN MATHEMATICS 20, 57-85 (1976) 

The Geometry of Algebraic Groups 

BIRGER IVERSEN 

Matenzatisk Institut, Au&us Uniuersitet, Aahs, Denmark 

The purpose of this paper is to study the geometry of a smooth 
connected linear algebraic group G defined over an algebraically closed 
field of any characteristic. 

The main tool is the characteristic map for G. Namely, let T be a 
maximal torus in G and B a Bore1 subgroup of G containing T. A 
character x of T gives rize to a homogeneous linebundle L(x) on G/B. 
This defines the characteristic map for G 

X(T) + Pic( G/B). 

The characteristic map fits into an exact sequence (Section 1) 0 + 
X(G) + X(T) -+ Pic( G/B) + Pit(G) + 0, which we use to study central 
isogenies (Section 2). By a central isogeny we understand an isogeny 
whose kernel is diagonalizable. We obtain two companion theorems. 

There exists a central isogeny G -+ G with Pit G = 0. 
If f: G’ --+ G is a central isogeny, then there is an exact sequence 

0 --+ X(G) -+ X(G’) -+ X(Ker f) + Pit G -+ Pit G’ -+ 0. 

These two theorems are used (Section 3) to construct the fundamental 
group r,G of G, in case X(G) = 0. The fundamental group 7~iG appears 
as a finite diagonalizable group, and we obtain 

Pit G = X(rr,G). 

The same techniques allow us to study extensions of G by a diagonalizable 
group D, and we obtain 

Ext(G, D) = Hom(vrlG, D). 

From here, we turn to the case where G is reductive, and give first 
(Section 4) a theory of coroots based on the same geometric ideas, 
especially the simple connectedness of Sl, . 
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In the central part of the paper we return to characteristic map 
X(T) --t Pic( G/B) and construct (Section 5, after Chevalley) a basis 
(DJLIES for the divisor classes on G/B, here, S denotes the simple roots 
of G. This basis has the following miraculous property. 

The divisor class of c q$ol(n, E Z) contains 
a positive divisor if and only if nor > 0 
for all 01 E S. 

Next (Sections 5 and 6), we prove the formula, let x E X(T), then 

&(x)) = 1 (a”, x> Da 
arcs 

where 01” denotes the coroot associated with 01. 
A particularly interesting case is when G is semisimple adjoint 

(Section 7). Then, the formula above tells that the characteristic map 
for G is given by the Cartan matrix (cy”, /3)((I,B)ESXS . Recalling that the 
cokernel of the characteristic map is isomorphic to Pit G and X(n,G) = 
Pit G, this allows us to calculate rr,G from the Cartan matrix. 

In Sections 8 and 9, we apply these results to the character theory for 
linear representations. For a character x of B, let E(X) denote the linear 
representation induced from G,(x), the one-dimensional representation 
of B of weight x. E(X) is characterized by Frobenius reciprocity 

Hom&T E(X)) = Hom#, G(x)) 

for all linear representations V of G. 
In characteristic zero, the E(x)‘s describe all the simple representations 

and we derive (Section 8) their character theory and Weyl’s character 
formula (Section 9). 

In characteristic p, the E(X) ‘s are no longer simple, but at least in the 
case where G is of type A,, they satisfy Weyl’s character formula 

tr E(X) = J(eX+9/JW, (E(X) z 0). 

The geometric ideas in this paper have a long history. In case of 
semisimple complex Lie groups, the characteristic map X(T) + Pic(G/B) 
may be identified with the transgression 

(Borel’s thesis, complexification of H, S where H is a compact Lie 
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group and S a maximal torus). The identification of the simple re- 
presentations as sections in homogeneous linebundles is due to Bore1 
and Weil [2], and developed further by Bott [3]. The algebraization 
of these ideas is due to Chevalley [5], Demazure [7, 81, and Kempf [16]. 

Since I wrote the first version of this paper, various improvements 
and clarifications have been achieved by means of [12], with which 
there is an overlap and [ 191 f or a good Lefschetz formula, and through 
a suggestion by A. Bore1 for a more geometric proof of (5.3) based on 
(6.6), a result that can be found in an unpublished paper of Chevalley. 
It should also be said that many of the results in Sections 3 and 7 can 
be proved by means of don&e radicielle [lo, expose XXI], in connection 
with [9, Theoreme Fundamentale, 3.6.1 However, the main aim of this 
paper is to illustrate how far one can get with geometric means. 

1. HOMOGENEOUS LINEBUNDLES 

Throughout this section G denotes a smooth connected linear algebraic 
group. 

Let X be a variety. By a principal G,-bundle on X, we shall understand 
a G,-bundle that is locally trivial in the Zarisky topology. Let E + X 
be a principal G,-bundle. G, acts canonically on G, . Let E x GmGa 
denote the space obtained by taking the quotient of E x G, under the 
G,-action given by (e, x)z = (ex, x-lx), e E E, x E G, , z E G, . There is 
a canonical projection E x GmGa + X, and we obtain in this way a 
linebundle on X. This construction is well known to give a I - 1 
correspondence between principal G,-bundles and linebundles. 

Now, let G act on X (from the left). By a (G-) homogeneous principal 
G,-bundle we understand a pair (E -+ X, T) where E + X is a principal 
G,,-bundle and T is a (left) action of G on E that 

(1) commutes with the G,-action; 

(2) makes E -+ X G-equivariant. 

In this case, we shall call E x GmG, together with the induced action 
of G, a homogeneous linebundle. 

Given a principal G,-bundle (or a line bundle) E + X. An action T 
of G on E such that (E -+ X, T) is a homogeneous G,-bundle is called 
a (G-) homogenization if E + X. In case there exists a homogenization 
of E + X, we say that this bundle can be homogenized. 



60 BIRGER IVERSEN 

Let L + X be a homogeneous linebundle. G acts on r(X, L) in 
virtue of the formula (g E G, x E X, s E r(X, L)) 

(gW = &-1x)* (1.1) 

EXAMPLE 1.2. Let V be a (left) linear representation of G. G, acts 
on V in a canonical way. Let V* denote the linear dual of V with the 
contragredient actions of G and G, (Caution: Given x E G, and x’ E V, 
we have %’ = z-lx’). The natural projection V* - 0 + Proj( V) is a 
homogeneous principal G,-bundle. The corresponding linebundle is 
the “universal” line-bundle Luniv on Proj V: An element u E V defines a 
section Of Luniv , x’ I-+ (x’, x’(o)). In fact, this identifies V and r(Proj( V), 
Luniv). If we transport the action (2.1) to V we get the original action back. 

EXAMPLE 1.3. Let V be a finite-dimensional vector space. GZ( V) 
acts on Proj( V) via the contragredient representation; this gives a 
morphism 

GZ( V) ---f PGZ( V). 

Given a morphism f: G -+ PGZ( V). This defines a G action on Proj( V). 
L univ can be (G-) homogenized if and only if f factors through GZ( V) -+ 
PGZ( V), in fact it follows from the discussion in (1.2) that there is a 
one-to-one correspondence between homogenizations of Luniv and such 
factorizations off. 

In the remaining part of this section B denotes a Bore1 subgroup of G 
and p: G -+ G/B, the canonical projection. 

PROPOSITION 1.4. Let L be a linebundle on G/B such that V = 
W’(G/B, L) # 0. Th en, there is a (canonical) morphism s: G + PGZ( V) 
making the canonical map t: G/B -+ Proj( V) G-equivariant and such 
that t*L~niv % L as homogeneous bundles, Luniv is homogenized as in (1.2). 

Proof. Since G acts transitively on G/B, the linebundle L is generated 
by its global sections. This defines t: G/B + Proj( V) with t*Luniv 3 L. 
The construction of s (on the level of geometric points) is easy to carry 
out by means of the mapping property of Proj(V), see [13, II., 4.2, or 
15, No. 11, where also a proof is given for the fact that s is morphism of 
varieties. Q.E.D. 

Let L denote a homogeneous bundle on G/B. p(e) is a fixedpoint for 
the action of B on G/B. Thus, B acts on the fiber of L at p(e). This gives 



GEOMETRY OF ALGEBRAIC GROUPS 61 

a one-dimensional representation of B; let xL E X(B) denote the cor- 
responding character. 

PROPOSITION 1.5. L t-+ xr. gives a one-to-one correspondence between 
isomorphism classes of homogeneous linebundles on G/B and X(B). 

Proof. Let us give the inverse construction and leave the details 
to the reader. Given x E X(B), let B act from the right on G x G, by 
the formula (g E G, x E G, , b E B) 

(g, x)b = (gb, x(b-l)x. 

L(x) denotes the quotient of G x G, for this action. That this defines a 
linebundle follows from the fact that G -+ G/B has a section locally for 
the Zarisky topology [20]. Q.E.D. 

DEFINITION 1.6. The linebundle constructed in the proof of (1.5) 
will be denoted L(x). 

DEFINITION 1.7. Let T C B be a maximal torus. Let us recall that 
any character x E X(T) extends uniquely to a character of B. The linear 

map 

x t-+ L(x), X(T) -+ Pic( G/B) 

is called the characteristic map for G. 

EXAMPLE 1.8. G = Sl, , T2 the subgroup of diagonal matrices 
in Sl, , B, the upper triangular matrices. Consider the natural action 
of Sl, on A2. Following the conventions of (1.2) we consider the con- 
tragredient action on P. (0, 1) g P1 has B as stabilizer and this gives 
rise to an isomorphism S12/B2 N Pl. The canonical linebundle Luniv on 
P1 comes equipped with a Sla-homogenization and B, acts on the fiber 
of Luniv above (0, 1) with weight 

Whence, X( T,) -+ Pic(Sl,/B,) is an isomorphism. 
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PROPOSITION 1.9. The following sequence is exact 

0 -+ X(G) -+ X(T) --+ Pic(G/B) -+ Pit G -+ 0. 

Proof. See [12, Proposition 3.11. 

2. CENTRAL ISOGENIES 

DEFINITION 2.1. A morphism f: G’ -+ G of linear algebraic groups 
is called a central isogeny if 

(a) G’ and G are smooth and connected, 

(b) f: G’ -+ G is surjective, 

(c) Ker(f) is finite and diagonalizable. 

By rigidity of diagonalizable groups, Ker(f) is contained in the center 
of G’. 

Let us first make three general remarks on central isogenies. 

2.2 If G” --+ G’ and G’ -+ G are central isogenies then the composite 
G” -+ G’ is a central isogeny. 

This follows from [I 1, IV, Sect. 1, No. 461. 

2.3 If f: G’ -+ G is a central isogeny, H a smooth connected linear 
algebraic group and r, s: H* G’ morphisms such that fr = fs, then 
r = s. 

This follows from the observation that x tt r(x) s(x)-’ maps H into 
Jwf 1. 

2.4 Let f: H -+ G be a morphism of smooth connected linear 
algebraic groups. Then, a central isogeny G’ -+ G “may be pulled 
back along f.” 

The precise meaning is this: Let H’ denote the reduced connected 
component of G’ x .H. H’ + H is a central isogeny that we call the 
pull-back of G’ -+ G along f. We leave it to the reader to exhibit the 
universal property of this construction. 

LEMMA 2.5. Let f: G + H be a surjective morphism of smooth con- 
nected linear algebraic groups. Then, the inverse image by f of a maximal 
torus, respectively, a Bore1 subgroup is maximal torus, respectively, a Bore1 
subgroup. 
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Proof. Let D denote the kernel of f. Let us first prove that any 
maximal torus T of G contains D: 

The centralizer C = Zo(T) is smooth [13] and connected [l, 11.121. 
Let T act on D by inner conjugation. This action is trivial by rigidity 
of diagonalizable groups. Hence, D C C. C is a product of T and a 
unipotent group [l, 11.71. Thus, D C T. 

The image of T by f is a maximal torus [I, 11.141; Conclusion by 
the fact that maximal tori are conjugated. 

Same proof in the case of a Bore1 subgroup. Q.E.D. 

PROPOSITION 2.6. Let f: G’ -+ G be a surjective morphism of smooth 
connected linear algebraic groups whose kernel is diagonalixable. Then, 
there is an exact sequence 

0 -+ X(G) + X(G’) + X(Kerf) + Pit(G) -+ Pic(G’) -+ 0. 

Proof. Pick a maximal torus T of G and a Bore1 subgroup B of G 
containing T. Put T’ = P(T) and B’ = S(B), see (2.5). The proposition 
now follows from the exact (1.9), commutative diagram 

0 -0 

1 1 X(G) - -TV 

o- XT) ___f X&‘) -X(Kerf) - 0 

1 1 / 
0 --+ Pic(G/B) - Pic(G’/B’) - 0 - 0 

1 1 
Pit(G) - Pic(G’) 

1 1 
0 0 

and the snake lemma. Q.E.D. 

THEOREM 2.7. Let G be a smooth connected linear algebraic group. 
Then, there exists a central isogeny G --+ G with Pit c = 0 

607/2OlI-5 
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Proof. Let B be a Bore1 subgroup of G. Pic(G/B) is finitely generated, 
since G/B is a rational variety as it follow from the Bruhat decomposition 
[l, 14.111. Pic(G/B) can be generated by linebundles L, for which 
HO(G/B, L) # 0. By virtue of (1.5) and (1.9), it suffices to prove: Let L 
be a linebundle on G/B with HO(G/B, L) # 0. Then, there exists a 
central isogeny f: G’ --+ G (put B’ = f-l(B)) such that the pull-back 
of L along G’/B’ % G/B can be G’-homogenized. 

Put V = HO(G/B, L). With the notation of (1.4), we have canonical 
maps s: G + PGZ(V), and t: G/B -+ Proj(V) such that t*Laniv = L. 
Now, let f: G’ + G denote the pull-back of the central isogeny SZ( F’) -+ 
PGZ( V) along s. Consider Luniv as a homogeneous SZ( V)-bundle in the 
canonical way. This gives the pull-back of Luniv along the composite 

G'/B' --t G/B & Proj( V) 

a G’-homogenization. Q.E.D. 

COROLLARY 2.8. (cf. [6, 5-211). Let G be a smooth connected linear 
algebraic group. Then, Pit G is a finite group. 

Proof. Let f: G -+ G be a central isogeny with Pit G = 0. Then, 
by (2.6), we have an exact sequence 

X(ker f) --t Pit(G) + Pit(G). 
4 Q.E.D. 

COROLLARY 2.9. Let the smooth connected linear algebraic group G act 
on the normal projective variety X, and let L be a Zinebundle on X. Then, 
a tensor power of L admits a G-linearization. 

Proof. Using that all components of Pit(X) are proper in this case 
and the see-saw principle [ 18, Corollary 6, p. 541, Mumford [19, Sect. 1.31 
proves the following: 

“The pull-back L, of L along (2 E X) g bgx, G -+ X is independent 
of x E X. L admits a (G-) homogenization if and only if L, E Pit(G) 
is trivial.” 

3. FUNDAMENTAL GROUP 

DEFINITION 3.1. A smooth connected linear algebraic group G is 
called simply connected if G does not admit a nontrivial central isogeny, 
G’+ G. 
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We shall limit the discussion to character-free groups. 

PROPOSITION 3.2. Let G be a smooth, connected linear algebraic group 
which is character-free. Then, G is simply connected if and only if Pit G = 0. 

Proof. Suppose Pit G = 0. Let G’ + G. From (2.6), we get an 
exact sequence 

0 -+ X(G) -+ X(G’) --+ X(ker f) + Pit(G). 

Pit(G) = X(G) = 0 by assumption. X(G’) is torsion-free as it follows 
from (1.9), and X(kerf) is finite. Whence, X(G’) = X(kerf) = 0, 
and therefore, ker f = 0. 

The converse follows immediately from (2.7). 

COROLLARY 3.3. Let G be a smooth connected linear algebraic group. 
Suppose G is character-free. Then, there exists a central isogeny C? ---t G 
with C? simply connected. 

Proof. Follows from (3.2) and (2.7). 

DEFINITION 3.4. Let G be a smooth connected linear algebraic group 
that is character-free. The central isogeny G -+ G of (3.3), unique by 
(2.3), is called the universal covering of G. Its kernel is denoted n,G and 
is called the fundamental group of G. 

PROPOSITION 3.5. Let G be a smooth connected linear algebraic group 
which is character-free. Then, 

Pit G = X(rlG). 

Proof. Follows immediately from (3.2) and (2.6). Q.E.D. 

In the remaining part of this Section, we shall apply the same kind 
of technique to reductive groups. 

PROPOSITION 3.6. Let f: G’ + G be a morphism between smooth 
connected linear algebraic groups, and let f have a diagonalixable kernel. 
If G is semisimple and simply connected, then ker f is a torus and f admits 
a section. 
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Proof. By (2.6), we have an exact sequence 

0 --t X(G) -+ X(G’) -+ X(ker f) --+ Pit G. 

Pit G = X(G) = 0 since G is simply connected and semisimple. G’ is 
reductive, and hence, T’ = G’/[G’, G’] is a torus by [l, 14.21. Since 
the projection of ker f onto T’ induces an isomorphism on the character 
groups, it follows that ker f --t T’ is an isomorphism. From this, it 
follows that the inclusion ker f + G’ has a retraction r, say. The 
endomorphism g H r(g-l)g of G’ is a morphism of groups and factor 
through G’ --+ G to give the required section. Q.E.D. 

COROLLARY 3.7. Let G be a reductive linear algebraic group. Then, 
there exists a semisimple group G’, a torus T and a central isogeny 

G’xT-G. 

PROPOSITION 3.8. Let G be a semisimple linear algebraic group, and 
D a diagonalizable group. Then, there is a canonical tiomorphism 

Hom(?r,G, D) 2 Ext(G, 0). 

Proof. Let us first construct the central extension of G by D associated 
with a morphism f: r,G -+ D. Let G x lrlGD denote the cokernel of 
the morphism r,G -+ G x D given by x tt (x, f (x-l)). c x lrlGD - G 
is a central extension of G by D. This construction defines a linear map 

Horn(?T,G, D) -+ Ext(G, 0). 

We are now going to construct the inverse to this map. Thus, given 
h: G’ + G a central extension of G by D. Let us first show that G -+ G 
factors through h. Consider G x GG’ -+ G, (G x GG’)fed - G has a 
section by (3.6), and consequently, G -+ G factors through h. Such a 
factorization is unique: Suppose there were two factorizations of h 
g, , g, : G -+ G’. Then 

defines a morphism of groups G + G’, which is trivial on [G, G]. But, 
[G, G] = G since G is semisimple. The remaining details are left to 
the reader. Q.E.D. 
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COROLLARY 3.9. Let G be a semisimple linear algebraic group. Then, 
the canonical map 

Ext(G, G,) -+ Pie(G) 

is an isomorphism. 

Proof. Combine (3.5) and (3.8). 

4. COROOTS 

Our presentation is based on the properties of Sl, . We shall introduce 
some notation for that group. 

“2 “: G, --t Sl, is given by 

f+“(z) = (;-’ i). 

T, = the image of a2”. 

U, = the group of matrices of the form (i f), x E G, . 

B, = TU,. 

a2 E X( T,) is (i-l i) F+ s2. 

s2 = (El i). 

LEMMA 4.1. Sl, is simply connected and all automorphisms of Sl, are 
inner. 

Proof. That Sl, is simply connected follows from (1.8) and the easy 
part of (3.2). 

Let u be an automorphism of Sl, . Composing u with an inner auto- 
morphism, we may assume that u stabilizes T, . If necessary, compose 
u with conjugation by s2 to obtain that u leaves T2 elementwise fixed. 
This ensures that u( U,) is T-isomorphic to Ua . Hence, u stabilizes U, , 
and therefore, B, . Composing u with conjugation by an element of T, , 
we can obtain that u leaves B, elementwise fixed. x EP U(X)X-l factors 
through Sl,/B, , and consequently, is constant. 

PROPOSITION 4.2. Let G, be a reductive linear algebraic group of 
semisimple rank 1. Let T, denote a maximal torus of G, , and 01* a root 
of G, relative to T, . Then, there exists a morphism rr* : Sl, ---f G, such that 
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(1) the kernel of T* is central, 

(2) r*(TLd G T* Y 

(3) a*rrr* = ciz. 

r* is unique up to inner conjugation by an element of T2 , and z-*(s.J 
normalizes T, . 

Proof. Let 2, denote the center of G, (in the scheme sense). 
[G, , G,] + G,/Z, is a central isogeny by [l, p. 3251. The existence 
of a 7~.+ : Sl, ---f G, with central kernel is a consequence of (4.1), once 
we prove that “G,/Z, is isomorphic to PGL, .” Proof: Bore1 [l, p. 3091 
constructs a surjective morphism G-F PGZ, whose kernel 2,’ is the 
intersection of all Bore1 subgroups of G. Let B and B’ be the two Bore1 
subgroups of G containing T. By [I, p. 310-3111, we have LB r\ LB’ = 
LT, and B n B’ = T. Consequently, 2,’ is a diagonalizable normal 
subgroup of G. The rigidity of diagonalizable groups implies that 
Z*‘&Z*. The opposite inclusion follows from (7.3). Now, let 7~* : 
SZ, ---f G, be a morphism with central kernel. We have r*( T,‘) C T, 
for some maximal torus T,’ of SZ, : Let us first note that dim Z* < 
dim T by [l, p. 2641. On the other hand, dim 2, = dim G/[G, G], 
and consequently, [G, G] n T contains a maximal torus, S of [G, G]. 
n;l(S) is a maximal torus in SZ, by (2.5). Composing rr* by an inner 
conjugation, we may assume r*(P2) c T, . a*~-.+ is a root of Sl, relative 
to T, : The restriction of VT.+ to Us is a closed immersion, and hence, T, 
operates nontrivially on LG and trivially on the kernel of Lie(n,). This 
proves the assertation. To make rr.+ satisfy condition (3), it suffices 
(if necessary) to compose 7r* with conjugation with sa . This proves the 
existence. The uniqueness follows from (4.1). The last remark follows 
from the fact that 2, and r2(T2) generate T, . Q.E.D. 

DEFINITION 4.3. Let G be a reductive linear algebraic group, T a 
maximal torus of G, and 01 a root of G relative to T. Let T, denote the 
reduced connected component of Ker(cu), G, = &(T,) is reductive 
of semisimple rank 1. Let r* : SZ, --t G, denote a morphism as in (4.2) 
relative to the triple (G, , T, CZ). The composite of 7~* and the inclusion 
of G, into G will be denoted ma : Sl, -+ G. rrUc+“: G, + T, which does 
not depend on the choice of rr* , will be denoted 01” and is called the 
coroot associated with 01. We put s, = ra(sg), viewed as an element of 
W = NG(T)/T. 

Notation 4.4. Let X,(T) denote the multiplicative l-parameter 
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subgroups of T, i.e., Hom(G, , T). If 7 E X,(T) and x E (T), then we let 
(r], x> denote the integer such that 

< , >: X,(T) x X(T) -+ z is a perfect pairing, [I, p. 2051. 
‘Let us make it clear that we always consider the left operation of W 

on X(T) and X,(T). Thus, we have the formula 

(449 w(x)> = (7, x)9 WE W,r)EX*,XEX. 

PROPOSITION 4.5. Let 01 be a root of G relative to T. Then 

(1) <a”, a> = 2, 

(2) (-a)’ = -a”, 

(3) (w(oI))’ = w(o(‘), w E w. 

Proof. Consider the morphism 7~, : Sl, -+ G introduced in (4.3). 

(1) “(c?(Z)) = +r&Yz’(z)) = .z&‘(z)) = 22. 

(2) If we compose r, by inner conjugation by sz , we obtain n, , 
thus, (-01)‘(z) = z-&~~‘(x)s~) = rr,(aJz-‘)) = oLy(z+). 

(3) With the notation of (4.3), note that wG, = Gwco,) . Thus, 
w will conjugate 7~, into TV . Q.E.D. 

PROPOSITION 4.6. Let 01 be a root of G relative to T and 01” the cor- 
responding coroot. Then 

dx> = x - <a’, X>% 
for all x E X(T). 

Proof. Let us first remark that this means 

(*) s,(t) = t+(t-1))) all t E T. 

We may assume that G is of semisimple rank 1. Let S be a maximal 
torus of [G, GJ contained in T, and R the reduced connected component 
of Ker(a). Recall from the proof of (4.2) that R C ZG, and that S and R 
generate T. The two expressions in (*) obviously coincide for t E R. 
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Consider the morphism 7~, :,Sl, + G introduced in (4.3); S = Im(o1’). 
Substitute t = 01’(z), z E G, in (*) to get 

s&“(z)) = cqx-l), 

a”(2) a”(+qx-1))) = a”(2) q-2) = a”(2-1). 

Q.E.D. 

Remark 4.7. Put M = X(T), M* = X,(T). We have given a 
perfect pairing 

(,):M* x M-t& 

a finite subset (the roots of G relative to T) 

RCM, 
a map 

cw~ct”: R+ M*, 

with the following properties. 
(Define s, : M - M by sm(x) = x - (a’, x)4 

(i) (-01)’ = -a”, olER 

(ii) (ol”, a) = 2, OlER 

(iii) s,(R) = R 

(iv) W dx)) = (44, XL XEM;~X,/?ER 

as it follows from (4.5) and (4.6). 
A structure like this 

(MM*, <,>, R, a-4 

satisfying i,..., iv is studied in [lo, Expose XXI] under the name don&e 
radicielle (the axioms there are slightly different, but equivalent). 

5. CHERN CLASS OF A HOMOGENEOUS LINEBUNDLE 

Throughout the remaining part of this paper, we will fix the following 
standard notation. 

G = a reductive, connected linear algebraic group. 

T = a maximal torus in G. 

W = W(T, G), the Weyl group of G relative to T (NG(T)/T). 
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s, = (a a root of G relative to T), the reflection with respect to 01. 
(y” ZE the coroot associated with 01. 

B = a Bore1 subgroup in G containing T. 

I/ = the unipotent radical of B. 

ws E W = the symmetry with respect to B, (WoB = B-, the 
opposite Bore1 group). 

S = the basis for the roots of G relative to T with respect to B 
(if /3 E S, then --p is a weight of T in LB). 

positive = those elements in X(T), the character group of T, that 
are of the form Car.snolol, n, E N. 

p: G + G/B = the canonical projection. 

Let us recall the cellular decomposition of G/B, namely, that G/B 
is the disjoint union of the U-orbits of p(w) as w  runs through W. 

LEMMA 5.1. The U-orbit of p( w  in G/B has codimension 1 if and ) 
only if w = w,s, with CII E S. 

Proof. The stabilizer of p(w) under the action of U is 

u n wBw-1 = u n wuw-1, 

which is a T-stable subgroup of U. For a root y, let U,, denote the one- 
dimensional T-stable subgroup of U on which T has weight y [l, IV, 
14.41. The T stable subgroup above is directly spanned (in any order) 
of the UY’s it contains lot. cit. That is spanned by UY’s as y runs through 
the set E(w) = (y root ) y < 0 and w-l(y) < 0}, hence, it suffices to 
determines the w’s for which this set has cardinality 1. 

In order to analyze this, let us recall three facts about root system 

(1) y > 0 implies w,(y) < 0, 

(2) w E t-+, w(y) > 0 for all y > 0 implies w  = e, 

(3) 01 E S, /3 > 0 and fl # 01 implies s@) > 0. 

Returning to our initial problem, let LY E S. Then, E(wtiJ = {w,,(a)). 
Suppose, conversely, that Card E(w) = 1. Expanding an element of 
E(w) after the basis S, one sees immediately that E(w) if nonempty always 
contains an element of S. Put E(w) = {We}. It is easy to verify that 
w-lw~@) > 0 for all 18 > 0. Hence, w  = w,,s, . QED. 
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PROPOSITION 5.2. (Da)aES is a basis for the group of divisor classes on 
G/B, where D, is the closure of the U-orbit of p(wgJ. 

The divisor class of C n,D, , n, E h, contains a positive divisor if and 
only if n, > 0, all a E S. 

Proof. Up( ) w. is an open subset of G/B, [l, 14.111. Let us first prove 
the D,‘s are the only subvarieties of G/B of codimension 1 that do not 
meet Up(w,). Let F be such a subvariety. The complement of Up(w,) 
in G/B is stable under U, and hence, F, which is an irreducible component 
of that complement, is stable under U. This makes F the union of 
closures of U-orbits. The number of U-orbits being finite, F being 
irreducible, we conclude that F is the closure of a U-orbit, hence, 
F = D, for some a: E S. 

Let D be a divisor on G/B, D’ its restriction to Up(w,). Since U’(w,) 5 
A*, we can find a rational function f on G/B, whose restriction to 
Up(w,) has divisor D’. D-div(f) is supported by the complement of 
Up(w,J, hence, the divisor class group is generated by the classes of 
(Dab . Suppose C naDo: G 0. Let f be a rational function of G/B with 
divisor C n,D, . Then, the restriction off to Up(w,) has no poles and no 
zero’s, hence, f is constant on Up(w,,), and hence, f is constant. 

Let us now prove that divisors of the form C naDo: are the only 
U-invariant divisors on G/B. Let D be an U-invariant divisor. By the 
preceding result we can write 

D = D’ + div(f), 

where D’ is a linear combination of the D,‘s and f a rational function. 
This gives divUf = div f for u E U. This makes f a semiinvariant for U, 
U being unipotent, f is invariant under the action of U. Consequently, 

f is constant on the open set Up(wo), and therefore, f is constant on G/B. 
Let us also remark the action of U on the divisors of GJB preserves = 

as it follows from the fact that G/B is rational [12, 2.51. See [S, Expose 15, 
Proposition 41, for a direct proof in this case. 

Let us now return to the proof of the last part of (5.9). Hence, suppose 
the set V of positive divisors in the divisor class of C nlrDor is nonempty. 
V is a projective variety, with U acting on it. Hence, by Borel’s fixed 
point theorem, U has a fixed point in V. This means that the divisor 
class of C n,D, contains a U-invariant positive divisor, hence, n, > 0, 
a E s. Q.E.D. 
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THEOREM 5.3. Let x be a character of T. Then 

cdL(x)) = C (a”> x> Dm . 
ass 

The proof will be given in Section 6. 
Let us next investigate the action (1.1) of B on HO(G/B, L(x)). This is 

done by identifying this space with the space of regular functions on G 
satisfying the functionaE equation (5.5). 

PROPOSITION 5.4. Let x E X(T), and suppose HO(G/B, L(x)) # 0. 
Then 

(i) The space of B-semiinvariants is one-dimensional. The weight 
in question is w,(x). 

(ii) The space of T-semiinvariants of weight we(x) is one-dimensional 

(iii) All weights of T are > w,(x). 

Proof. x E X(T) extends uniquely to a character of B, which we shall 
still denote x. Recall that L(x) is the quotient of G x G, under the right 
action of B given by 

(g, x)b = (gb, x(b-l)x), g E G, x E G, , b E B. 

From this, it follows that HO(G/B, L(x)) may be identified with the 
set of regular functions f of G, which satisfies the functional equation 

f(XY> = f(x) x(Y-Y, x~G,yeB. (5.5) 

When we transport the action (1.1) of G on HO(G/B, L(x)), we get that 
the result gf of acting out with a g E G satisfies 

“f(x) = fk-w9 XEG. 

Let us recall [I, IV, 14.131, that U x B -+ G, (u, b) -+ uw,b is an 
open immersion. Therefore, it is clear that a solution f to (5.5) is known 
when we know the regular function fu on U given by f”(x) = f (xwo). 

Remark the formulas 

W)u(x) = fu@-lx), UEU,XEG (5.6) 

w&4 = fd-’ x4 we(x)(t), tg T, XEG. (5.7) 
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The first one is clear, the second follows from 

(Ef)o(x) = (“f)(xwo) = f(t-1 xwo) = f(t-1 xtwo(wot-Iwo)). 

Now, using the function equation, we get 

Let us now prove (i). By Borel’s fixedpoint theorem, HO(G/B, L(x)) 
contains a nontrivial U-invariant. The corresponding solution to the 
functional equation f must satisfyfu = constant, as it follows from (5.6). 
This proves the first half of (i). The second half follows from (5.7). 

Let us now investigate the action of T on F( U, 0,) given by 

$h(x) = h(t-1 xt), h E r(U, 0,), x E U, t E T. 

U is directly spanned by the UN’s as 01 runs through all negative roots, 
[l, p. 3281. Th us, U is T-isomorphic (as a variety) to the product at the 
Uol’s. U, is T-isomorphic (“u = tut-l, u E U, , t E T) to G, when we 
let T act on G, through 01. In conclusion, F( U, 0,) T-isomorphic to a 
polynomial ring in variables T, being a semiinvariant of weight LY. 
Consequently, all T-semiinvariants in r( U, 0,) are positive, and the 
space of T-invariant is one-dimensional. 

Parts (ii) and (iii) now follow from this and (5.7). Q.E.D. 

6. PARABOLIC SUBGROUP ASSOCIATED WITH A SIMPLE ROOT 

Let us recall that UwB as w  runs through W from a partition of G, 
the Bruhat decomposition. 

PROPOSITION 6.1 (cf. Remark 6.7). Let (Y be a simple root of G with 
respect to B. Then, Us,B u B is a closed connected subgroup of G. 

The proof depends on the following. 

LEMMA 6.2. Let 01 be a root of G. Then 

(i) U, C Us,B v B, 

(ii) ;f 01 is a simple root, then 

Us,B = lJ_,s,B. 
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Proof. (i) Let G, denote the centralizer of the reduced connected 
component of Ker(a) (4.3). U, C G, , and we may consider s, as an 
element of G, . B, = B n G, is a Bore1 subgroup of G, . Bruhat 
decomposition in G, gives 

(ii) Write U = U-,Ua, where 0 is the product (in some order) 
of the UB’s, ,8 > 0, p # a) 

Us,B = U-,UasaB = U,s,s,Uas,B. 

Now, s,UV~ is a product of groups of the form Us,(--B) , ,5 > 0, /3 # a. 
Since 01 is simple we have s,(-/3) < 0. Q.E.D. 

Proof of 6.1. By (6.2 (ii)) the U-orbit p(sJ E G/B is one-dimensional. 
The closure of Up(s,) in G/B is {p(c)) u Up(sJ. The inverse image of 
this set by p: G -+ G/B is Us,B u B, consequently, this set is closed 
and connected. 

Put P, = Us,B u B. P, is obviously stable under g t-f g-l and 
contains e. To show that P, is stable under products, it suffices to see 
that the product of two elements from Us,B is contained in P, . By 
(6.2 (ii)) we get Us&BUs,B = Us,Us,B = Us,U-,s,B = UU,B; con- 
clusion by (6.2, (i)). Q.E.D. 

DEFINITION 6.3. Let a! be a simple root of G relative to B. Then, P, 
denotes the closed connected subgroup of G defined in (6.1). 

Remark 6.4. PJB -+ P/B identifies the closure C, of the U-orbit 
of p(sJ and PJB. Reasoning as in (5.1) it is easy to see that (C& gives 
all the closures of the U-orbits of dimension 1. 

The proof of Theorem (5.4) consists in a conjugation of the following 
two lemmas. 

LEMMA 6.5. Let OL be a simple root of G relative to B. C, the closure 
in G/B of the U-orbit of p(s,). Then, C, % IFpl. Moreover, ;f x E X(T), 
the restriction of L(x) to C, has degree (a”, x). 

Proof. Consider a morphism as in (4.3) 
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(unique up to inner conjugation by an element of T,). 7ra induces a 
closed immersion 

Sl,/B2 -+ G/B 

whose image is C, , as it follows from the preceding results. 
We have the canonical immersion 01~~: G, --f Sla . Let ea denote the 

projection of the origin of St, onto Sl,/B2 . G, has weight (oI”, x> in 
the fiber above e2 of the pull-back of L(x) to S12/B2 . 

On the other hand, the weight of G, in the fiber above ea of the 
canonical linebundle is 1 according to (1.8). Q.E.D. 

LEMMA 6.6. For the intersection numbers we have 

(C&g) = 1 a = p 

Z-Z 0 a#P. 

Proof. Consider the fibration G/B -+ G/PO,. The fiber of this 
fibration through p(sJ is C, . Hence, (Ca&) can be computed as the 
intersection number for D, and any fiber of G/B --t G/P, . The result 
now follows once we establish: If /? = (II, the restriction of G/B -+ G/P= 
to the U-orbit of p(w,s,) is an open immersion. If /3 # 01, the image by 
G/B --+ G/P, of the U-orbit of p(w,& has codimension 1. 

The image of the U-orbit of $(w,s~) by G/B -+ G/P, is the U-orbit 
of the image of w,s, in G/P,. The U-stabilizer of the last point is 
u n W&P&W, . By [I, IV, 14.11 this group is directly spanned by the 
Uy’s it contains. The y’s in question are those for which either (i) or (ii) 
below 

(i) Y -=c 0, and dwdr)) -==c 0, 
(ii) y < 0, and ss(w,(r)) = 01. 

Since /I is simple, the complete solution to (i) is y = w&3). As to (ii), 
let us distinguish between two cases. 

/3 + ~11. The complete solution to (ii) is y = w,(ss(ol)). Hence, the 
stabilizer in this case is two-dimensional. This proves the second case 
of the statement above. 

/3 = 01. (ii) means y < 0, and y = ~~(--a), which is impossible. 
Hence, the stabilizer in this case is UWO(B) . A simple consideration of the 
Lie-algebras now concludes the first case of the statement. Q.E.D. 
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Proof of Theorem 5.4. Write c&,(x)) = C n,DB . Restricting this to 
c, and counting degree, we get 

left-hand side (or”, ,Y), by (6.5), 

right-hand side n, by (6.6). 

Q.E.D. 

Remark 6.7. The considerations made in Lemma 6.2 have the 
following important generalization. 

(i’) If B and B’ are Bore1 subgroups containing T, and 01 is a root, 
then 

UBas, 2 B’B u B’s,B, 

which follows by applying (4.3) 7~, : S2, -+ G to the identity 

6 2 e -3 = c “,-1) (:, -3. 
From (i’) and (6.2 (ii)), one gets if (Y is a simple root with respect to B, 

Bs,B C B’B u B’s,B, 

or with B’ = wvlBw 

wBs, C BwB u Bws,B, w  E w, 

which is the crucial axiom for a Tits system [4, IV, Sect. 2.11. The theory 
of Tits systems gives a complete description of the parabolic subgroups 
containing B, [4, IV, Sect. 2.51. 

7. CARTAN MATRIX 

Let G be a reductive linear algebraic group. The matrix 

<a”7 Bh3ksxs 

is called the Cartan matrix of G and is denoted Cartan (G). It depends 
up to a simultaneous permutation of the rows and columns only on G. 
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By the cokemel of an m x m matrix with Z-coefficients, we understand 
the cokernel of 

E” + P, VI+ CT. 

For the simple linear algebraic group, the cokernel of the Cartan 
matrix takes the following value depending on the type of the root 
system. 

4 &I Cm Dim D 2mi1 

‘mn + 1) W) W2) U(2) x W) WV 
Et! E7 42 F4 G2 

Z/(3) ‘u(2) 0 0 0 

Proof. Work through the list of Cartan matrices given at the end of 
[4]. See also [24]. 

THEOREM 7.1. Let G be a semisimple simply connected linear algebraic 
group. Then, the center ZG of G is diagonalixable and 

X(ZG) = coker (Cartan(G 

Proof. Let X,(T) denote the subgroup of X(T) generated by the 
roots of G. The characteristic map of G 

X(T) -+ Pic(G/B) 

is an isomorphism by (3.2) and (1.9). Th e restriction of the characteristic 
map to X,(T) is given by the Cartan matrix of G according to (5.3), 
hence, it suffices to prove. 

LEMMA 7.2. Let G be reductive and let X,(T) denote the subgroup 
of X(T) generated by the roots of G. Then, the sequence 

is exact. 

0 --+ X,(T) + X( 7’) -+ X(ZG) + 0 

Proof. T is its own centralizer, hence, ZG C T. Let us first prove 
ZG is the intersection of ker(ol: T + G,) as 01 runs through the roots 
of G. Now, U-B is dense in G, when the center of G is the same as the 
centralizer of U-B, and therefore, equals the intersection of the central- 
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izer of the Uol’s as CII runs through all roots. U, is T-isomorphic to G, 
when we let T act on G, through ~1. This proves the assertation. 

This means we have an exact sequence 

Passing from this exact sequence to characters proves the lemma. 
Q.E.D. 

Remark 7.3. Let G be a reductive group. Then, we can characterize 
ZG as the largest diagonal&able normal subgroup of G, or alternatively, 
as the intersection of all maximal tori of G. 

Proof. This follows immediately from the conjugacy theorem for 
tori, rigidity of diagonalizable group, and the fact that a maximal torus 
in a reductive group is self-centralizing. Q.E.D. 

PROPOSITION 7.4. Let G be a semisimple linear algebraic group. Then, 
there is an exact sequence 

0 + X(ZG) -+ Coker Cartan (G) --+ X(n,G) -+ 0. 

Proof. Let G -+ G denote the universal covering space of G. By (7.3) 

O-wrlG-+Z~+ZG+O 

is exact, and z‘ and G have the same Cartan matrix. Conclusion by (7.1). 
Q.E.D. 

8. INDUCED REPRESENTATIONS 

All linear representations considered are of finite rank. 

PROPOSITION 8.1. Let F denote a linear representation of B. Then, 
there exists a linear representation E of G satisfying Frobenius reciprocity 

Hom,(V, E) = HomB(V, F) 

for all linear representations V of G. 

Proof. Let B act on G x F via the formula 

(g, f)b = w> b-lf), gEG,fEF, bEB. 

607/20/r-6 
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G x BF comes equipped with a projection onto G/B, and a left action 
of G making G x BF into a G-homogeneous bundle on G/B. Let 9 
denote the sheaf of sections of G x BF over G/B. E = r(G/B, g) is 
a finite-dimensional vector space since G/B is a projective variety. 
Moreover, E is in the canonical way a linear representation of G. We 
are going to prove that for a G-representation V 

Hom,( V, E) = Hom,( V, 8). 

Let V, denote the constant G-homogeneous bundle with fiber V. We 
have 

Hom,( V, E) = Homc( V, I’(G/B, 9)) = Homc( v, , G X BF). 

For a G-homogenized bundle K on G/B, let K(e) denote the fiber of K 
at the marked point of G/B. K(e) will b e viewed as a linear representation 
of B. Recall that K N K(e), induces an equivalence between the category 
of G-homogenized vector bundles on G/B and linear representations 
of B. Thus, 

Hom,(vc , G x BF) = Horn,@‘, F). 

Q.E.D. 

DEFINITION 8.2. Let x be a character of B, G,(x) the one-dimensional 
B-representation of weight x. Then, E(X) denotes the G-representation 
induced by G,(x), i.e., we have for all G-representations V 

HomdK E(X)) = HomB(K G(x)). 

THEOREM 8.3. Let x be a character of B. Then, E(X) # 0 if and only 
if (a” , x> > 0 for all positive roots cy. If E(X) + 0, then: 

(i) E(x) contains precisely one B-stable line, the weight in question 

is w,(x). 
(ii) The space of T semiinvariants in E(x) of weight w&) is one- 

dimensional. 

(iii) x’ 3 w&) for all weights x’ of T in E(X). 

Proof. By the proof of (8.1) we have 

E(X) = ff”(GI& L(x)). 
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The first part of the theorem now follows from (5.2) and (5.3). The 
second part from (5.4). Q.E.D. 

We are now going to study the representations E(X) by means of 
Borel’s fixedpoint theorem. Let us first remark that if we are in charac- 
teristic zero, then, it follows from Weyl’s complete reducibility theorem 
and @.3(i)) that E(X) is a simple G-representation. 

PROPOSITION 8.4. Let x, x’ be characters of B. Then, 

(i) If E(X) # 0, th en E(X) contains precisely one simple subre- 
presentation (which we denote S(x)). 

(ii) If S(x) is isomorphic to S(x’), then x = x’. 

(iii) Any simple G-representation is isomorphic to a representation 
of the form S(x). 

Proof. (i) Follows from Borel’s fixedpoint theorem and (8.3(i)). 
By Borel’s fixedpoint theorem, S(x) contains a B-stable line. The 

weight of B in such a line is w,(x) by (8.3(i)). Thus, S(x) 3 S(X’) 
implies x = x’. 

Now, let S be a simple G-representation, then, by Borel’s fixedpoint 
theorem, S’ contains a B-stable line. Let B have weight x in this line, 
This defines a nontrivial B-linear map G,(x) -+ S’, and hence, a non- 
trivial B-linear map S + G,(--x), and therefore, by Frobenius reci- 
procity, a nontrivial G-linear map S -P E(-x), hence, S 2 S(-x). 

Q.E.D. 

COROLLARY 8.5. (cf. PO, Section 121). Let S be a simple G-represen- 
tation. Then, the set of weights of T in S’ contains a largest element (the 
highest wezght of T in S). 

Two simple G-representations are isomorphic if and only if the highest 
weight of T in the two representations are the same. 

There exists a simple G-representation with highest weight x (x E X(T)) 
if and only if 

<a”, X) 3 0 for all positive roots (Y. 

If S is a simple representation of G with highest weight x, then the space 
of T-semiinvariants in S of weight x is one-dimensional. 

Proof. By the proof of (8.4), we have S(x) 3 S(-w,,(x))“. Q.E.D. 
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COROLLARY 8.6. Let R(G), respectively, R(T) denote the representation 
ring of G, respectively T, then, the restriction map T + G induces an 
isomorphism 

R(G) r R(T)Y 

Proof. Follows from (8.5) and a general lemma on root systems 
[22, Lemma 61. Q.E.D. 

9. WEYL'S CHARACTER FORMULA 

For notational convenience, see (9.2) below, we shall in this paragraph 
assume that our reductive group G has vanishing Picard group. In case G 
is semisimple, this means that G is simply connected. 

Let X denote the character group of T and put R = Z[Xj and let 
x ++ ex denote the canonical embedding X + R. A linear representation 
E of T can be decomposed E = eXEXEX , where T has weight x in E, . 
Define tr E E R by 

tr E = C (rank E&x. 
X6X 

We are now going to “polarize” R in two ways. W = We(T) acts 
on X from the left. For w  E W we let e(w) denote the determinant for 
the action of w  on X, and define the antisymmetry operator 

J: R + R, J(e”) = 1 c(w)ewfx). 
WEW 

The half sum of the positive roots 

p=;CCd 
a>0 

(9.1) 

(9.2) 

belongs to X since Pit G = 0, as it follows from (1.9), (5.3) and 
[4, Chap. VI, No. 3.31. 

Let us recall the formula, 

n (1 - ew) = e-O J(@). 
a<0 

(94 
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THEOREM 9.4. Let x be a character of T. Then, 

T (-l)i tr ZP(G/B, L(x)) = J(eX+o)/J(e“). 

Proof. Let us first quote the general Lefschetz formula for action 
of a torus T on a smooth projective variety V. Suppose T acts with 
isolated fixed points on 0 and let E be a homogenized vector bundle 
on I/. Then, in the fraction field of R, one has 

tr E, 
T (-‘)i tr H”(v9 E, = $(-l)i tr ,, iT (J,T)“’ 

x 

The last sum being over all fixed point x of T on V, [19]. 
In the present case, we let e denote the image of the origin of G by 

G --+ G/B. We have an exact sequence 

O+LB-+LG+ T,(G/B)+O, 

which shows that 

tr T,(G/B)” = c ea, 
U<O 

and hence, using (9.3), 

T (-l)i trAiT,(G/B)” = n (1 - @) = e-oJ(eo). 
a<0 

The T-fixed point e, thus contributes with ex+P/J(eP) to the above sum. 
Recalling that the fixed point of T in G/B is parametrized by W, we get 
that the fixed point corresponding to w  E W contributes with 

w(eX+p)/w(J(eD)) = e(w) w(eX+P)/J(eP). 

Q.E.D. 

COROLLARY 9.5 (Weyl). S pp u ose the ground field has characteristic 
zero. Let S be a simple linear representation of G, and x the highest weight 
of T in S. Then 

tr S = j(ex+“)/J(ep). 

Proof. It follows from Section 8 that S is isomorphic to HO(G/B, L(x)) 
and from [7] that H*(G/B, L(x)) = 0 for i 2 1. Conclusion by 9.4. 

Q.E.D. 
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COROLLARY 9.6. Let the ground jield have any characteristic, and 
suppose G !Y Sl, . Then, for a character x of T for which the induced 
representation E(X) # 0, 

tr %d = .W+9/JW 

Proof. We have E(x) = HO(G/B, L(x)) by the proof of (8.1). On 
the other hand, we have 

W’W, L(x)) = 0, for i>l, 

by a result of Kempf [16]. Q.E.D. 

Note added in proof. For an extensive study of the geometry of G/B, see: M. Demazure, 
Desingularization des varietes de Schubert Generalistes, Ann. S&n. .??cole Norm. Sup. 7 

(1974), 53-88. 
The vanishing theorem aluded to in 9.6 has now been proved incomplete generality by 

G. Kempf. For partial results, see: L. Bai, C. Musili, and C. S. Seshadri, Cohomology of 
linebundles on G/B, Ann. S&n. &Cole Norm. Sup. 7 (1974), 89-138. 
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